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Abstract
Friction Stir Welding (FSW) is a solid-state welding process, which has strongly impacted welding technology, particularly 
for aluminum alloy applications. Reliable in-line process monitoring is not yet available for most common defects and 
downstream non-destructive and intermittent destructive testing are generally employed to validate weld seam quality. To 
reduce cost and production time significant efforts have been undertaken in the recent past to develop process-monitoring 
systems for FSW based on the evaluation of transient process-data. Neural Networks have been used widely to analyse FSW-
process data and evaluate the process characteristics or weld seam quality. The data analysed includes welding parameters, 
thermal-/acoustic-measurement, image or video data and, most notably, the distinct and descriptive process feedback forces 
and torque. In this study, conducted within the scope of RWTH Aachen’s Cluster of Excellence (Internet of Production), a 
high granularity direct force measurement setup, which was adapted to the production environment, by integrating reliable, 
cost-efficient sensors into the machining spindle, was used. Weld data was recorded over a wide range of FSW applica-
tions with varying weld-parameters and Al-alloys. Convolutional Neural Networks (CNN) that were previously developed 
based on measurements of external force and torque sensors were adapted to evaluate the higher granularity data of the new 
sensor-system and detect volumetric defects within the welds. Good generalization was shown across the weld parameter 
sets, alloys and welding tool. An average classification accuracy of 98.04% was achieved over three network trainings. Due 
to the segmentation of data for the evaluation 100% of internal defects were successfully detected by each network iteration. 
The developed solution aims at offering a highly reliable, spindle integrated and cost-efficient quality monitoring solution 
for FSW to replace the required expensive and time-consuming testing.
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1  Introduction

The research presented within this publication is part of the 
interdisciplinary, collaborative Cluster of Excellence Frame-
work “Internet of Production” of RWTH Aachen University. 
The superior goal is the digitalization of complete produc-
tion chains [1]. This publication is a continuation of previ-
ously published research in developing a generalized defect 
detection solution with a wide application range and low 
barrier of application. The experimental methodology has 
previously been established, allowing for comparison of the 
achieved results. The major new developments in this paper 
relate to the data-acquisition system, its granularity and the 
influence of measured variables and relation to the accuracy 
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of quality determination. The fundamental motivation of the 
project and used methodology are constant along develop-
ment path and accompanying publications, which there-
fore overlap in the in the chapters regarding introduction, 
motivation, state of the art and experimental setup [2–6]. A 
detailed list of new research aspects and inherited methodol-
ogy aspects is given at the end of this chapter.

Friction Stir Welding (FSW) was developed by The Weld-
ing Institute (TWI) and patented in 1991 [7]. This advanced 
solid-state welding process enables high quality welding 
through intermixing of materials in a plastic state and sub-
sequent dynamic recrystallization, driven by frictional heat 
and pressure generated by a rotating, non-consumable weld-
ing tool. Joining in the solid phase mitigates the challenges 
conventionally associated with fusion welding processes 
for aluminum alloys, resulting in a refined microstructure. 
The reduced specific energy input contributes to enhanced 
mechanical and technological properties, alongside the 
energy efficiency, making FSW a favored joining process in 
the aerospace and rolling stock industries [8]. The growth 
of electromobility in conjunction with efforts in light weight 
construction across all transportation sectors has increased 
the number of FSW applications. Many developments and 
applications are centered around battery trays, heat exchang-
ers and mixed material joints of copper and aluminum for 
electrical power systems [9, 10]. For FSW industrial quality 
control is realized thorough downstream testing methods, 
introducing extra process steps and an increase in production 
time and cost. The increasing number and diversification 
of applications, coupled with a rise in production volume 
necessitates the development of reliable and cost-efficient 
non-destructive inline quality monitoring for FSW [11].

In current industrial production specialized FSW welding 
machines, capable of automated welding with closed loop 
axial force control to adaptively control the welding process 
are most commonly used. The machines are equipped with 
sensors to monitor the axial force and other welding param-
eters to enable the closed, adaptive control loop.

Variations in sensor selection, accuracy, recording fre-
quency and latency between different manufacturers and 
machines result in insufficient process force feedback for 
efficient monitoring of the FSW’s dynamic process behav-
ior. The limitations associated with direct measurements 
and internal sensor systems have led to the use of external 
sensors to research and develop correlations between the 
dynamic characteristics of the FSW process, recorded tran-
sient data and weld-seam quality [2, 12–15]. The major-
ity of published research utilizes analysis of the dynamic 
force components of the in-plane welding force feedback or 
variations of the axial force or torque. A defect detection is 
generally achieved despite varying methods of analysis and 
recorded variables. However, most defect detection systems 
are limited in their applicability to a single joining task with 

fixed alloy, sheet thickness, welding tool and often a single 
weld parameter combination.

In previous works the detection of internal volumetric 
defects based on transient process data was developed, a 
system based on Convolutional Neural Networks (CNN) 
was used, its generalization between welding tasks was 
addressed and the possibility of transfer between different 
types of welding machines was shown [2, 3]. To further 
increase applicability this publication focuses on the used 
measuring system. The previously employed external sys-
tem, which was expensive and offered limited data granular-
ity, is replaced by a spindle-integrated solution. The Spindle-
Force measurement system enables real-time measurement 
of process forces. It was initially designed for the characteri-
zation of milling processes across a wide frequency range. 
The new system provides direct force measurement based 
on cost-efficient and reliable sensors integrated directly into 
the main spindle, offering an industry-ready solution that 
remains robust in typical production environments [16].

Today the FSW process is regarded as comparably stable 
and well controllable in industrial production environments. 
Despite this FSW is susceptible to numerous external distur-
bances and variations of workpieces and operational condi-
tions, which can induce defects in the resulting weld seam. 
Some of the defects may remain undetected by the most 
commonly used quality monitoring techniques, such as axial 
force monitoring and visual inspection. [17]

The factors influencing process stability can be separated 
into welding parameter-based factors, welding machine 
properties and workpiece irregularities. When monitoring 
FSW weld quality the machine properties can be regarded as 
constant and only need to be parameterized when develop-
ing generalized solutions [18]. The welding tool presents a 
special case, as it is a constant factor in most development 
cycles, but needs to be included for production environ-
ments, as tool wear significantly influences resulting pro-
cess forces, their dynamic behavior and the resulting weld 
seam quality [19, 20]. In FSW the primary welding param-
eters, spindle speed, feed rate and axial force, are generally 
established though empirical methods and remain fixed for 
each specific welding task. As these are resilient against 
outside influence, significant disturbances are not primarily 
attributed to these parameters, but rather to their interaction 
with the workpiece, which can induce process deviations 
that result in defects. The most prevalent irregularities in 
workpieces are gap tolerances, thickness variations, hardness 
gradients, and surface condition changes [21]. Changes in 
hardness, thickness variations and gap tolerances influence 
the material volume underneath the welding tool, chang-
ing the heat input condition, material plastization, resulting 
transport of material by the tool and weld seam formation. 
This negative interplay can result in process instabilities 
and weld seam defects [21].Surface conditions of tool and 
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workpiece have significant impact on the interface condi-
tion, heat input and material transport through wear state, 
adhesion and friction coefficient [22]. Each of these factors 
or their combinations can contribute to deviations from a 
steady cyclical state. The deviations can induce a process 
state during which conventional quality control measures 
fail to detect defects occurring during weld seam formation.

Two primary mechanisms for defect initiation have been 
identified based on the relation of influences on weld quality. 
Plunge depth significantly affects heat generation and mate-
rial transport. It can reliably be monitored through inter-
nal machine data and related to weld quality. Variations in 
plunge depth are a result of multiple factors, leading to either 
an increase or decrease in resulting depth, which can result 
in incomplete penetration and compromised weld proper-
ties [23]. Increased plunge depth leads to close proximity or 
direct contact between tool and backing, potentially causing 
adhesion, backing plate or tool failure or defects induced 
by excessive temperatures and abnormal material transport.

The second identified mechanism is considerably more 
challenging to detect using current quality monitoring solu-
tions. Defects are caused by irregular material flow within 
the stir zone. The periodically oscillating process condi-
tion and resulting intermittent material transport around 
the welding tool are mainly driven by the specific energy 
input and tool geometry and can be influenced by changes 
of multiple process variables. Energy input is influenced by 
process parameters as well as the interface condition, work-
piece strength/thickness, or tool wear. Significant changes 
in specific energy input, higher as well as lower, can disrupt 
the weld seam formation by reducing material flow around 
the tool [24, 25]. Insufficient material transport may lead to 
local or prolonged internal volumetric defects within friction 
stir welded (FSW) seams, such as voids, cavities, or surface 
imperfections. Due to these defect occurrences, FSW pro-
duction using current process control and quality monitor-
ing generally requires downstream quality inspection. These 
additional quality control measures add complexity, time and 
cost to the FSW-production chain.

Due to the added cost and time significant efforts have 
been made by many researchers to develop quality moni-
toring systems based on process data. The friction-based 
heat input at the tool workpiece interface and translational 
movement of the tool through the plasticized material result 
in comparatively high process forces, which are commonly 
used to characterize the process. During welding the pro-
cess forces consist of static and dynamic components in all 
three spatial directions. In a steady welding state the forces 
oscillate cyclically, corresponding to the rotational speed of 
the welding tool and its higher harmonics [26]. While the 
cyclical oscillation of spatial forces at the spindle-imprinted 
frequency is commonly known, numerous influencing fac-
tors, interdependencies, and relationships to force amplitude, 

occurrence of higher harmonics, material transport, as well 
as dependencies on welding parameters, tools, and work-
piece properties remain inadequately understood or quanti-
fied. Many studies have focused on establishing correlations 
between the measured oscillation, their temporal deviations 
and weld seam quality, despite the uncertain causes of the 
phenomena. Many different solutions have been proposed to 
relate weld quality to deviations of forces and torque oscilla-
tions, e.g. [3, 6, 12, 13, 27–30]. These proposed solutions are 
based on the proven hypothesis that the majority of process 
parameters and disturbances are condensed in the record-
able process force feedback. Therefore, a representation of 
the process’s dynamic behavior and induced deviations and 
instabilities can be drawn. Based on this compounded rep-
resentation of the process state an indication towards weld 
quality can then be derived.

Numerous authors demonstrate the potential for empirical 
anomaly detection through process force feedback evalua-
tion. The analysis primarily relies on extracted incremental 
features or gradual changes within the recorded data. Most 
studies focus on variations of the dynamic oscillations or 
combinations of changes in static and dynamic force com-
ponents. Jene’s correlation of weld defects is however based 
on the mean average lateral force [30]. Further research into 
the empirical evaluation of process forces [12, 28] confirms 
the feasibility of assessing dynamic components while high-
lighting limitations and the necessity to adjust evaluations 
and selected features for each change in welding condi-
tions, which restricts industrial applicability. Besides the 
time domain analytical correlations can be identified in the 
frequency domain. Gebhard analyzed frequency spectra and 
determined that high levels of low frequency oscillation can 
indicate internal void defects [18].

For the first application of Artificial Neural Networks 
(ANN) to detect internal welding defects in FSW Bold-
saikhan et al. also utilized frequency domain data [31]. A 
Fully Connected Neural Network (FCNN) was trained with 
the frequency domain data of welding torque recorded at 
51.2 Hz. The FCNN could identify internal weld defects in 
a dataset heavily biased towards defect free (96.6%) welds. 
Subsequent work demonstrates the application of wavelet 
transformations of the in-plane forces to evaluate weld qual-
ity using ANNs [29]. 95% of internal defects greater than 
0.08 mm of the test dataset were identified correctly by a 
FCNN. Further advancements in AI-technology, particularly 
deep learning techniques, enabled Hartl et al. [32] to classify 
FSW-welds using surface images and weld force data by 
using Convolutional Neural Networks (CNN). Classification 
accuracies up to 79,2% were achieved by CNN based on the 
Alex-Net [33] architecture.

Multiple different solutions have demonstrated success 
in correlating dynamic process behavior with FSW weld 
quality. The studies shown are all limited in applicability 
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as they do not provide generalized solutions across differ-
ent alloys, workpiece thicknesses and multiple welding 
tools. Overall, the possibility of detection of internal weld 
defects through force feedback analysis has been validated. 
Despite this progress, most current methods remain inap-
plicable to industrial production requirements. Preparation 
of the necessary datasets for training of Neural Networks 
(NN) involves significant effort, as extensive test welds 
with sufficient variation must be produced, prepared and 
labeled for each welding task.

The systems used to record weld data, forces, torque, 
currents, vibrations, etc., at high granularity must be 
added to the welding fixture or tool holder. Restricting 
the possibility of implementation into FSW-production. 
These high frequency, high fidelity devices are generally 
expensive to acquire and implement, often also requiring 
special expertise in operation, recording and data evalua-
tion, making them cost prohibitive for industrial produc-
tion environments.

For this study the methodology of previous studies 
was retained. While the previous developments focused 
increases in classification accuracy and generalization 
between welding tasks [3, 4], as well applicability through 
welding machine transfer [2] the current publication aims 
to improve data acquisition at high granularity and low-
ered cost and implementation requirements. To achieve 
this goal a robust and wear-free spindle integrated meas-
urement system based on eddy current sensors with high 
measurement granularity of all spatial force was used. The 
system does not limit accessibility and provides a compar-
atively cheap measurement solution based on industrially 
established principles and devices.

The major new aspects evaluated within this paper are 
listed in Table 1 and generally regard the evaluated, indus-
trially applicable measurement system, as well as further 
evaluation of the NN classification data and results.

2 � Experimental setup and data‑acquisition

The welding experiments were performed on a 5-Axis 
machining center, Heller HF3500. The machine is equipped 
with a WEISS Spindle with 40 kW and a maximum spin-
dle speed of 18,000 RPM. The workpieces were rigidly 
clamped to a 10 mm mild steel backing plate. The mill 
scale of the backing plate was retained to efficiently prevent 
adhesion of the workpiece, resulting in increased rough-
ness of the weld root surface. Workpiece dimensions were 
500 × 150x1.5 mm3 allowing for multiple parallel welds of 
440 mm length on the same plate. To prevent the influence 
of edge shape and gaps between plates, the welds were per-
formed as full penetration seam on plate welds. Workpieces 
of three different aluminum alloys were used for the experi-
ments. Alloys AW5754-H22, AW6005-T4, AW7075-T6 
were chosen to include a wide range of FSW applications 
and industries using FSW. The welding tools were fabricated 
from H13 tool steel and heat treated to achieve a hardness of 
600 ± 10 HV. The tool dimensions and geometry are given in 
Fig. 1. A tool tilt angle of 2° was used during all welds. Over 
the course of the experiments the tool wear condition can be 
regarded as constant, due to the tool changes for each new 
alloy and the comparatively low welded distances per alloy 
(AW5754 ~ 28.2 m, AW7075 ~ 30.4 m, AW6005 ~ 11.4 m).

The used parameter ranges for welding feedrate and 
spindle speed (RPM) aimed to evaluate a broad spectrum of 
industrially applicable parameters within the limits of the 
machining centers’ load capabilities (axial load) and work-
piece material properties. The selected parameter combi-
nations facilitate an examination of the primary variables 
influencing measurable force feedback and the resulting 
deviations in weld exhibiting defects.

The primary force oscillation at the frequency corre-
sponding to tool rotation primarily results from the superpo-
sition of radial tool runout, discontinuous material transport, 
and geometric tool pin features [34]. Oscillation amplitude 

Table 1   New and continued aspects regarding methodology and evaluation within this paper

New aspects to this paper Methodology and proceedings carried over from previous works

High granularity spindle-integrated process force measurement system DenseNet-CNN for data classification
Reduction of measurement data-channels, no torque measurements for 

evaluation
Adjustment of classification threshold by modification of cost function 

to prevent false negative classifications
Longer welds with up to five changes in plunge depth and three defec-

tive areas of differing length per weld
Generation of weld data set across multiple alloys and numerous 

welding parameter combinations classified by digital micro focus 
radiographic images

Completely new data set, including new alloy with specific material 
properties

Meta-data use to scale CNN output for generalization across weld-
parameters and alloys

Higher welding speeds (up to 4200 mm/min) than before
Evaluation of reliability diagrams and binning based on defect predic-

tion value
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is driven by temperature dependent material resistance to 
extrusion in stir zone and thermomechanical affect zone as 
well as parameter dependent extrusion volume per tool rota-
tion. The parameter combinations were chosen to examine 
these influences. 27 different parameter combinations were 
successfully welded across the three alloys. The combina-
tions are shown in Fig. 2, with marker shape and color indi-
cating the alloy.

Similar to previous efforts, the welding parameter com-
binations are generally organized in three groups. The first 
group is characterized by a fixed pitch of 0.5 mm feed per 
tool revolution, going from 600 to 3600 RPM. The second 
and third set are based on fixed RPM to evaluate the increase 
in static forces and oscillation amplitude with increases in 
welding speed. For AW7075 the spindle speeds are 1200 
and 1800 as further increases lead to surface galling and 
therefore unwanted surface defects. The maximum welding 
speed was limited by the ability to reliably produce defect 
free welds. For the other two alloys higher spindle speeds 
could be utilized and higher welding speeds achieved for 
defect free welds. To obtain a sound and balanced dataset 
the lower spindle speed parameters were equal to those of 
AW7075 and the second set was welded at higher federate 
and spindle speed. The maximum welding speed was again 

limited by achieving defect free welds. AW6005 was used 
to extend the dataset to include a third alloy, overall a lower 
number of welds was performed to later evaluate generaliza-
tion capabilities.

FSW welds are typically executed using closed loop axial 
(Z-axis) force control, to compensate for variations in work-
pieces and fixtures in industrial production environments. 
The used machining center does currently not offer that 
option, therefore welds were produced in position control 
mode, which in combination with rolled plates of consistent 
thickness results in superior reliability and reproducibility of 
plunge depth. This control strategy also mitigates the effects 
of lag, set force deviation, machine-induced z-axis oscil-
lation, and drift within the recorded data by removing the 
closed-loop force control system. The reduction in systemic 
variance enhances the reliability and reproducibility of pro-
ducing defect-free welds and welds containing inner volu-
metric defects for each parameter combination. During pre-
trials, two plunge depths were experimentally determined 
for each combination of alloy and parameters to achieve 
both defect free welds and welds without outer defects, 
but internal void defects. Defects were induced through a 
reduction in tool plunge depth and resulting decreases of 
heat input and forging pressure, producing welds with inner 

Fig. 1   Cross-section drawing 
and relevant dimensions of used 
welding tools

Fig. 2   Welding parameter com-
binations for each workpiece 
alloy
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volumetric defects while avoiding visually detectable sur-
face and root defects. The plunge depth was varied within 
each weld through a ramp of two second length, ramp length 
was reduced to one second for welds faster than 3600 mm/
min. Welds 1800 mm/min or faster contained only one ramp 
changing depth. These welds were performed with both 
plunge depth change directions. Slower welds contained 
up to 5 changes in plunge depth within the weld resulting 
in alternating defective and defect free areas. The plunge 
depths and an image of the weld surface are shown for two 
different welding speeds in Fig. 3. Each weld was repeated 
a different number of times according to the welding speed 
to obtain 35–41 segments of three seconds length of usable 
recorded data.

During FSW, the spatial forces were measured using 
the spindle-integrated real-time force measurement system 
SpindleForce. The system includes a total of six eddy-
current sensors mounted directly in the spindle housing, 
three arranged axially and three radially, that measure, in 
a contactless manner, the distance from the sensor head to 
the target, which in this case is the surface of the HSK63A 
tool interface. To calculate the relative displacement from 
the measured sensor signals, the geometrical deviations of 
the measurement target are compensated by determining 
the runout of the spindle shaft. The runout is measured 
in the load-free state, with the spindle angle positions 
simultaneously acquired using the integrated main spin-
dle encoder. Since the thermal growth of the main spindle 
components also influences the measurement of the force-
induced displacement, this part of the measurement signal 
is compensated using the method presented in [35]. After 
compensation of the geometric deviations of the measure-
ment target and the thermal growth of the spindle com-
ponents, the process-force related relative displacement 

can be obtained. The calculation method of the relative 
spindle shaft displacements in axial and radial directions 
is presented in detail in [36]. Based on the calculated rela-
tive displacement of the spindle shaft, the process force 
can be calculated with the known transfer characteristics 
between the tool center point and the measurement sec-
tion. This calculation is based on the input disturbance 
observer, which is methodically presented in [37]. The 
input disturbance observer accounts for effects that influ-
ence the structural-dynamic characteristics of the spindle, 
such as tool geometry, rotational speed, force level, and 
thermo-elastic behavior.

The accuracy of the measurement system strongly 
depends on the structural stiffness between the tool center 
point and the measurement section. For the spindle used 
in this study, the accuracy of the measurement system 
can be described for the specific working point and dif-
ferent frequency ranges (dynamic 0–2000 Hz and quasi-
static 0–50 Hz) for the applied tool by defining the force 
measurement sensitivity, the accuracy for both is given 
in Table 2.

The main spindle system with integrated measure-
ment System SpindleForce produced by the Innomotics 
GmbH is mounted into the milling machining center Hel-
ler HF3500.

Fig. 3   a) Weld and data-segments at 3000 mm/min; b) Picture of welds in a and c; c) Weld and data-segments at 600 mm/min

Table 2   Sensitivity for different frequency ranges of the used process 
force measurement system

Sensitivity (0–2000 Hz) Sensitivity (0–50 Hz)

 < 20 N (0.083 µm)  < 5 N (0.03 µm)
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3 � Results and discussion

3.1 � Welding results, classification and dataset

The welds were executed as described above and the data 
recorded. After FSW some welds were eliminated from 
evaluation through visual inspection, due to surface gall-
ing or surface breaking cavities. The total number of welds 
was reduced to 134 (AW7075: 51, AW5754: 59, AW6005: 
24). To quantify the resulting weld seam quality and local-
ize internal volumetric defects, the specimens were ana-
lyzed using radiographic testing (RT). The RT was per-
formed on a digital micro-focus computed tomography 
machine, Procon CT-ALPHA with a micro (µ)-tube. In 
micro-focus tomography, X-rays are generated from a sin-
gle spot source directed toward the detector, with opening 
ray paths facilitating magnification of the imaged speci-
men. The rate of magnification is thereby determined by 
the chosen distance between source, specimen, and detec-
tor and directly proportional to the detectable defect size 
[38, 39]. To obtain high-resolution images with a small 
defect-detection threshold for the long and narrow welds, 
specimens were cut into four sections of 115 mm length 
each, including plunge and tool exit location. The digi-
tal images were subsequently compounded to restore the 
weld image. A duplex wire indicator in accordance with 
ISO 19232–5, also known as Image Quality Indicator 
(IQI), was added to the images to accurately determine 
the detectable size of volumetric defects [40]. The detec-
tion threshold established for voids and tunnel defects 
(internal volumetric defects) was 0.08 mm parallel to the 
weld surface (D11, ISO 19232–5). This detection thresh-
old exceeds those typically achieved by quality control 
measures in industrial applications. Along the weld length 
another wire indicator with consistent mm-based step 
length was positioned for easy location determination in 
regards to the weld length. To detect small defects, bright-
ness and contrast adjustments were made on the digital 
images during post-processing. For the weld classifica-
tion the adjusted images underwent manual analysis to 
detect, locate, and mark internal weld defects. The plunge 
and tool exit locations were excluded from analysis. The 
annotated images with defect location data were used to 
label the weld data for NN training. Weld data labeling 
was performed on a per 3 s weld data segment (Fig. 3) 
bases, any segment containing a detectable defect of any 
detectable length (~ 0.08 mm) was classified as containing 
a defect, class 1 (positive class, defect detected) and data 
segments containing no detectable defect were label as 
class 0 (negative class, no defect detected). The RT image 
analysis was validated through the examination of micro-
sections. Multiple cross-sections were cut from various 

locations of selected welds, including areas free of defects 
and areas with internal volumetric defects. The resulting 
classification was in good accordance with the RT image 
analysis, qualifying the selected method and machine for 
the weld classification.

For the development of an applicable inline quality 
monitoring solution with a capability of localizing defects 
through data analysis, the welds and respective recorded data 
were divided into shorter segments. Each second of weld-
ing time a new segment begins and lasts for three seconds, 
thereby overlapping the previous and subsequent segment 
by one second each. This weld segmentation and resulting 
data structure is shown for two different welding speed in 
Fig. 3a and 3c. The segment length was determined within 
prior developments, enabling high classification rates. The 
overlapping of segments was introduced to increase accu-
racy by enabling multi-context evaluation of each data point, 
as the differing data contexts for evaluation allow for feature 
relation across multiple different folds and broader detection 
of relevant features, supporting generalization. The overlap-
ping of the segments increases the amount of training data 
by repeating each data point, compared to consecutive 1 s 
segments, but the efficient NN implementation still allows 
for fast training cycles and near real time (~ 2/100th s) infer-
encing. Compared to consecutive 3 s segments the overlap-
ping of the segments allows for better localization of defects 
and an increase in detection reliability through multi context 
evaluation. Regarding the given dataset, the weld length of 
each segment and thereby the area in which defects start 
or end, if classified correctly, is reduced from a maximum 
length of 210 mm to 70 mm (at 4200 mm/min feed rate). The 
overlapping segmentation expands the amount of available 
training-data and enables multi-context evaluation for each 
data-point, improving generalization and defect detection 
threshold determination.

At the measurement frequency of 2.5 kHz each three sec-
ond segment of data includes 7500 points of process-force 
data for each spatial direction, resulting in 22.5k data-points 
for analysis per weld segment. The data acquisition fre-
quency was derived from previous developments. At 2.5 kHz 
it allows for the DL development of discernable classifi-
cation features within the selected segment and especially 
filter length, while requiring comparatively low computa-
tional effort in training and inferencing. At the maximum 
used spindle speed the acquisition rate still offers > 40 data 
points pers tool revolution, which enables clear mapping 
of the process force data of relevant changes of the process 
compared to an idealized process.

The weld length and maximum feedrate served as ref-
erences to determine the maximum number of segments 
for each weld. At the weld length of 440 mm, between 4 
(4200 mm/min welding speed) to 41 (600 mm/min) seg-
ments could be extracted per weld, while excluding the 
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last 0.5 s per weld and the first half of welds performed 
at 300 mm/min to maintain a balanced dataset. Based on 
RT image labeling, defect identification, and localization, 
each segment of the welds was classified. Classification was 
based on the presence of internal void defects within a seg-
ment versus segments without detectable defects. For NN 
training and evaluation, class determination was adapted to 
a weld segment classification system where the positive class 
1 indicates NOK welds (defect detected), while the negative 
class 0 signifies OK welds (no defect present within the weld 
seam segment). The final dataset size and classification of 
134 welds (AW7075: 51, AW5754: 59, AW6005:24) sepa-
rated into 1703 segments of weld data is shown in Table 3 
on a weld segment base.

3.2 � Adaption, training, testing, and validation 
of neural networks

As the current developments are a continuation of the 
research, the reasoning behind the selection of densely con-
nected CNN (DenseNet) [41] for this classification task has 
been extensively discussed in [2, 3]. Furthermore, the adap-
tations of the original architecture, the addition of meta-data 
inputs and the modification of the cost function to prevent 
false negative classification have been presented. A detailed 
description of the computer hardware used for network train-
ing (Nvidia RTX 3090) and network training times related 
to network widths and learnable parameter counts can be 
found in chapter 3.2 of [2]. In this study the optimized Net-
work configurations K16T32 and K16T + , which previously 
showed the highest classification accuracies were used. The 
exact NN configurations utilized for this research are given 
in Fig. 4.

The networks were adapted to three input channels for 
the spatial forces, as no torque was measured. Layer counts, 
filter sizes and step length were carried over from previ-
ous developments. Meta-data channels and input scaling 
remained consistent with the previous developments. Fur-
thermore, the cost-function developed in [2] for predicted 
value adjustment to prevent false negative classifications was 
used. Hyper parameters for the NN training as well as the 
parameters adjusting the predicted value and threshold were 
tuned to match the new dataset and defect classification. 

The configuration of the NN as well as the average resulting 
classification accuracy and positive factor of summed up 
misclassifications of the test set data (10% of data-set, 170 
observations) of n = 3 training iterations (total of 510 data-
segments) are shown in Table 4. The positive factor ( Pf  ) has 
been previously established (compare [2]) to measure the 
success of the threshold modification and relate the shift to 
overall accuracy. It relates the number of false negative clas-
sifications to the number of false positive classifications and 
offers significant insight for performance comparison when 
presented alongside overall accuracy. It is established this 
way, as division by the targeted number of 0 false negatives 
is not possible and will be denoted as the given fraction and 
not the calculated value in cases of 0 false negative classifi-
cations. The formula is given in Eq. 1.

 Eq. (1).
The achieved accuracies are overall lower than in previ-

ous publications. The reduction is based on the absence of 
torque data, which has been shown to relate well to material 
transport and reduces the learnable dependencies between 
lateral force oscillation, axial force and torque. As before, 
the accuracies show the better result for the network con-
figuration with less learnable parameters. Over three train-
ings iterations 10 of 510 segments were misclassified, with 
one being a false negative. The wider network was slightly 
less accurate, misclassifying 14 of 510 segments, however, 
as shown in previous publications, the generalization and 
threshold determination benefit from an increase in classi-
fication features, resulting in 0 false negative classifications 
on a dataset with 80 weld segments containing defects, and 
90 defect free segments. The summed-up confusion matrices 
of n = 3 network trainings are shown in Fig. 5.

The detailed confusion matrices that analyze the data 
from Fig. 5 on a per alloy basis are given in Fig. 6. The indi-
cated differences in accuracy across the different alloys are 
low and in good accordance with overall accuracy showing 
a good fit of the trained model for the classification task.

Further analysis of the one critical false negative misclas-
sification (AW5754, K16T32) shows that the not detected 

(1)

Positive factor ∶ Pf =
number of false negative

number of false positive
=

t − y = 1

t − y = −1

Table 3   Number of weld 
segments per alloy and 
classification label

Dataset Full set AW7075 AW5754 AW6005

Class 0: defect 
free segment

787
46.21 %

346
46.51 %

301
46.81 %

140
44.30 %

Class 1: volu-
metric defect 
segment

916
53.79 %

398
53.49 %

342
53.19 %

176
55.70 %

Sum 1703 703 643 316
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defect is the beginning of an internal void defect. While the 
data-segment is labeled as defective, because it contains a 
defective area, the defect area within the data-segment is 
only about 0.25 s of the 3 s data segment. Both consecu-
tive segments, which contain these misclassified 0.25 s are 
classified correctly, identifying the defect through the fol-
lowing data or features generated by the relations of data, 
which provides a clear indication of the defect. The data of 
the relevant weld is shown in Fig. 7. The segmented data is 
given in Fig. 7 b-d, with segment b showing the false nega-
tive classification based on 0.25 s of data corresponding to 
an identified defect. At the given welding speed of 2700 mm/
min the 0.25 s time is equal to 11 mm of weld distance. The 
true positive classifications of data segments in Fig. 7 c and 

Fig. 4   DensNet-CNN configuration and modifications for FSW weld-data classification

Table 4   Network configuration and resulting average classification 
accuracy (n = 3)

Network configuration K16T32 K16T + 

Initial convolution 512*3 × 3 512*3 × 3
Transition-layer T1, T2, T3 128, 256, 896 512, 512, 1024
Bottleneck width (P) 128 128
Positive factor ( Pf  ), n = 3 0.111 0/14
Classification accuracy [%], n = 3 98.04 97.25
Acc. [%] iteration 1 98.24 96.47
Acc. [%] iteration 2 98.24 98.24
Acc. [%] iteration 3 97.65 97.05
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d enable the correct identification of the defect with a loca-
tion error of 11 mm distance from the expected 45 mm weld 
length (1 s at 2700 mm/min) segment of the position of the 
segment first detecting the defect.

When analyzing the false positive classifications spik-
ing oscillations of lateral forces can be identified in nearly 
half. The spiking oscillation is characterized by an additional 
oscillation of the upper threshold of the oscillation ampli-
tude while the lower threshold remains nearly constant. True 
positive classifications are often characterized by increased 
or erratic oscillation amplitudes of the lateral force. Gener-
ally, this includes variations in the upper and lower threshold 

of the amplitude. For the remainder of misclassifications 
no indication for the underlying reasons could be identi-
fied when manually analyzing the data and resulting force 
graphs.

14 of the 23 false positive and the one false negative mis-
classification occur in data segments containing a change 
in plunge depth and are therefore physically close to the 
beginning or the end of a nearby internal void defect. This 
indicates challenges in determining a generalized defect 
detection threshold over the wide range of used welding 
parameters and alloys. The derived detection threshold over 
classifies defects for some weld parameter combinations.

Fig. 5   Summed up confusion 
matrices (n = 3) for both net-
work configurations

Fig. 6   Confusion matrices (n = 3) of each alloy for both network configurations
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The same results can be derived from the reliability dia-
grams of the investigated CNN configurations, which are 
shown in Fig. 8. The network predictions were separated 
into 10 bins based on the predicted value and the mean 
values of the bin predictions plotted against the relative 
frequency of true positive class occurrences within the 
bin. Along with the prediction data, the number of obser-
vations in each bin was plotted.

Based on Fig. 8 it can be deduced that the model falls 
considerably short of the conventional definition of a “per-
fectly calibrated” model, particularly for the bins within 
the 0.1–0.9 mean prediction values. Along with the low 
number of observations within these bins, the significant 
influence exerted by the adjustment of the cost function is 
illustrated. The relative frequency of positive class clas-
sifications is further skewed due to the limited total num-
ber of instances available, which diverges substantially 
from the anticipated ideal calibration. Instances where the 
target values are 0 yet result in predictions > 0 signify an 
additional impact of the cost function modification, which 
serves to elevate the average classification value closer to 
that of the positive class. This is validated when compar-
ing predicted value and mean relative frequency of the 
positive class. The mean predicted value generally exceeds 
the mean relative frequency due to the cost function modi-
fication, which penalizes false negative classifications sig-
nificantly stronger than false positives.

These findings demonstrate the complexity involved 
in achieving adequate model calibration and highlight the 
impact of cost function modification on overall classification 
performance for the application of quality monitoring. Over-
all the results demonstrate that the model is well fit for the 
quality monitoring task, by pushing predicted values close 
to absolute 0 or 1 predictions (88.43% of prediction < 0.1 
or > 0.9) and balancing classification accuracy with the pri-
oritization of defect detection over false negatives.

To validate the achieved results a “leave one domain out” 
investigation was performed. The data set was separated and 
all data segments of welds in AW5754 and AW7075 were 
used for the NN training, while the data segments of the 
AW6005 were used as the test data. AW6005 was chosen 
as it is the smallest partial data set containing 316 of the 
1703 observations. The resulting classification accuracy and 
defect detection rate for the alloy left out of training are in 
good accordance with the results achieved within similar 
validation experiments during previous research [2]. An 
overall classification accuracy of 87.97% was achieved. 
The confusion matrix is shown in Fig. 9, along with the 
reliability plot and an event level analysis. It is assumed 
that the significant increase in misclassifications is based 
on the faulty scaling of detected features relevant to clas-
sification, especially due to the comparably low flow stress 
meta-data of AW6005, which is outside (lower at 450 °C) 
the flow stress range included in the training data set. The 

Fig. 7   Segmented welding data of false negative classification, two consecutive data segments and defect localization
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reliability plot of the predicted values for the positive class 
shows higher uncertainty of the predictions than Fig. 8, with 
a significant number of defect free welds spread out across 

higher bins with mean predictions up to 0.6. Despite the 
increased uncertainty of the predictions the defect detection 
threshold shift is still evident within confusion matrix and 

Fig. 8   Reliability diagrams (mean values/total observations in bins for n = 3) and complementary data for 10 bin classification reliability investi-
gation both network configurations

Fig. 9   Confusion matrix, reliability plot and event level defect analysis
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reliability plot, resulting in a positive factor of 0.31. When 
analyzing the test data set on an event-based level (defect 
detection), 41 of 42 defects within the welds are correctly 
detected, resulting in a 97.6% defect detection rate. The 
percentage being vastly dependent on the low number of 
occurrences. The undetected defect is located at the end of 
a weld and only 2 data segments contain parts of the defect, 
both including the plunge depth ramp. The other seven false 
negatives are all located within plunge depth ramps and only 
contain small parts of defects within the 3 s data segment, 
similar to Fig. 7b.

4 � Application for inline quality control

The network classification accuracies obtained from the 
training of the modified DenseNets with the recorded dataset 
demonstrate an advantage over conventional defect detec-
tion methods used in industry. The developed system can be 
used as near real-time inline quality control. Furthermore, 
it eclipses methods such as ultrasonic testing, radiographic 
testing, and visual inspection in terms of the size of detect-
able defects, cost efficiency and production time [11, 42–45]. 
Initial validation results indicate a potential limitation in the 
developed system’s applicability due to classification accura-
cies between 88 and 98% for generalized tasks. For the inline 
quality monitoring, however, the defect detection rate sub-
stantially surpasses the classification accuracy. The improve-
ment results from multi-context evaluation of the staggered 
data-segments. Most misclassifications occur within the 
defect transition zones, with only isolated weld segments 
being incorrectly classified. For the developed dataset across 
all NN training iteration (n = 6) all internal void defects were 
successfully detected due to the multi context evaluation, 
with only the start point of one not being localized properly. 
The single false negative classification of the testing data 
has been discussed on the previous chapter. Based on the 
presented confusion charts and the correct defect detection 
by overlapping segments of data, 100% of defects were cor-
rectly identified in the testing data. The same holds true for 
the training data. While the total number is of false negatives 
is higher (10) the overlapping evaluation also generates a 
100% defect detection rate during the six evaluated training 
cycles and 10,218 used data-segments. During “leave one 
domain out” validation, accuracies of 87.97% with defect 
detection rate of 97.6% were achieved, when classifying an 
alloy with mechanical properties outside the training data 
range. The accuracy and defect detection rate are compara-
ble to alternative quality control methods. However, since 

higher rates can be achieved, it cannot be recommended to 
utilize the system without expanding the training data set to 
include labeled welds with the chosen material properties.

The developed system, based on a robust, high granu-
larity process data recording system is capable of real time 
process data recording. The recorded process data is sup-
plemented with meta-data related to the welding parameters 
and workpieces. The developed evaluation algorithm can be 
implemented on an edge device and deliver quality indica-
tion in near real-time, giving localized ROI at up to less than 
2% error rate for further defect investigation. While achieving 
high classification accuracies and 100% defect detection, the 
classification results are up to 2.5% worse, when compared to 
previous implementations which utilized a different measure-
ment system that included torque measurements. In FSW tool 
torque is directly related to energy input and material intermix-
ing and can therefore provide important information regarding 
the process, especially in conjunction with the process forces 
and information regarding the welded components. Based on 
these facts and the results achieved with the presented dataset 
the inclusion of direct torque measurement for any industrial 
implementation is strongly recommended to increase accuracy 
and improve stability.

Data inferencing of segmented process-data (3  s seg-
ment length) can be performed at low computational cost 
in ~ 2/100 s (on a laptop computer with 6th gen Intel i5 and 8 
GB of RAM) and even faster on dedicated edge TPUs (tensor 
processing units). An evaluation of the recorded data is thereby 
possible in near real time.

This, in conjunction with the quality information, can meet 
customer requirements for product traceability. In subsequent 
steps, the system can be enhanced within a fully connected 
production workshop. This enhancement will enable not only 
the delivery of localized quality data to downstream processes 
but also the utilization of data from upstream processes to 
adjust metadata according to local workpiece properties and 
current tool and machine quality information.

At the current stage of development the state of tool wear 
is not included in the quality evaluation. Tools utilized for 
data-set generation are in generally good condition and only 
used for sub 50 m of weld distance. It is known that geometric 
wear influences the occurrence of process forces, especially 
the base value and amplitude of the in-plane welding forces 
(feed force and lateral force). Therefore, further experiments 
will need to be conducted to include the tool wear state in the 
quality evaluation. It is to be determined whether the state of 
wear can be integrated into the general evaluation data, or if 
adding the wear state as a feature data input through either 
welded distance or fraction of tool life expectancy is the most 
effective solution.
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5 � Conclusion

Within this work convolutional neural networks based on 
DenseNet201 were modified and weld-parameter and work-
piece meta-data was concatenated to scale features detecting 
internal void defects based on transient process data and 
enhance generalization. The networks were trained to detect 
internal void defects based on welding data recorded by a 
robust, high granularity spindle integrated force measure-
ment system. For a dataset of 1703 weld seam segments 
from three different alloys and 27 different feedrate and 
spindle speed combinations average classification accura-
cies of > 98% were achieved. The modification of the cost 
function proved effective again, shifting the positive factor 
over six trainings iterations to 0.04. However, the number 
of false positive ROI indications shows the challenges in 
determining a generalized defect detection threshold, even 
when utilizing meta-data for feature scaling. The achieved 
accuracy is lower than in previous works, due to the lack of 
torque measurement data, which allows for the identification 
of material transport through evaluation of interdependen-
cies between the spatial forces and tool torque.

The performed validation experiments, removing on alloy 
from the data set and using it as test-data, showed a sig-
nificant drop in classification accuracy to 87.97%, which is 
assumed to be mostly based on the meta-data base feature 
scaling of the material flow stress which is outside the train-
ing data flow stress range. The trained network still achieved 
a defect detection rate of 97.6% (41 of 42) for the new alloy, 
which is comparable to most NDE techniques. These results 
suggest that while the system is capable of quality monitor-
ing and defect detection even for welds in alloys outside 
its training property range, including data containing all 
mechanical properties will yield better and more reliable 
results.

Despite the lower classification accuracy, the staggered 
data-structure and multi-context evaluation allow for a 
detection rate of 100% of the targeted internal volumetric 
defects when evaluation data is within the training data set 
range. The used data-recording system provides weld-force 
data in real-time allowing for near real-time evaluation 
(~ 0.2 s delay) and integration of the light-weight evalua-
tion algorithm at the edge. Furthermore, the recorded data, 
amended with meta-data and quality information can be used 
in connected production environments, integrating upstream 
production data providing downstream quality information, 
while allowing for complete production traceability.
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