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Abstract

Friction Stir Welding (FSW) is a solid-state welding process, which has strongly impacted welding technology, particularly
for aluminum alloy applications. Reliable in-line process monitoring is not yet available for most common defects and
downstream non-destructive and intermittent destructive testing are generally employed to validate weld seam quality. To
reduce cost and production time significant efforts have been undertaken in the recent past to develop process-monitoring
systems for FSW based on the evaluation of transient process-data. Neural Networks have been used widely to analyse FSW-
process data and evaluate the process characteristics or weld seam quality. The data analysed includes welding parameters,
thermal-/acoustic-measurement, image or video data and, most notably, the distinct and descriptive process feedback forces
and torque. In this study, conducted within the scope of RWTH Aachen’s Cluster of Excellence (Internet of Production), a
high granularity direct force measurement setup, which was adapted to the production environment, by integrating reliable,
cost-efficient sensors into the machining spindle, was used. Weld data was recorded over a wide range of FSW applica-
tions with varying weld-parameters and Al-alloys. Convolutional Neural Networks (CNN) that were previously developed
based on measurements of external force and torque sensors were adapted to evaluate the higher granularity data of the new
sensor-system and detect volumetric defects within the welds. Good generalization was shown across the weld parameter
sets, alloys and welding tool. An average classification accuracy of 98.04% was achieved over three network trainings. Due
to the segmentation of data for the evaluation 100% of internal defects were successfully detected by each network iteration.
The developed solution aims at offering a highly reliable, spindle integrated and cost-efficient quality monitoring solution
for FSW to replace the required expensive and time-consuming testing.
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1 Introduction

The research presented within this publication is part of the
interdisciplinary, collaborative Cluster of Excellence Frame-
work “Internet of Production” of RWTH Aachen University.
The superior goal is the digitalization of complete produc-
tion chains [1]. This publication is a continuation of previ-

Recommended for publication by Commission III - Resistance
Welding, Solid State Welding, and Allied Joining Process.

D4 P. Rabe ously published research in developing a generalized defect
pascal.rabe @isf.rwth-aachen.de detection solution with a wide application range and low
! Welding and Joining Institute, RWTH Aachen University, barrller of apphcatlon.. The experqnental methoc%ology has
PontstraBe 49, 52062 Aachen, Germany previously been established, allowing for comparison of the
2 Laboratory for Machine Tools and Production Engineering: achieved results. The ma-] 9r new deve%opments m. this paper
Werkzeugmaschinenlabor der RWTH Aachen University, relate to the data-acquisition system, its granularity and the
Steinbachstr. 19, 52074 Aachen, Germany influence of measured variables and relation to the accuracy

Published online: 19 January 2026 @ Springer


http://orcid.org/0000-0002-1811-9304
http://orcid.org/0000-0001-8427-6765
http://orcid.org/0000-0003-4920-2351
http://orcid.org/0009-0007-5538-8857
http://orcid.org/0000-0002-8049-3364
http://crossmark.crossref.org/dialog/?doi=10.1007/s40194-025-02307-9&domain=pdf

Welding in the World

of quality determination. The fundamental motivation of the
project and used methodology are constant along develop-
ment path and accompanying publications, which there-
fore overlap in the in the chapters regarding introduction,
motivation, state of the art and experimental setup [2—6]. A
detailed list of new research aspects and inherited methodol-
ogy aspects is given at the end of this chapter.

Friction Stir Welding (FSW) was developed by The Weld-
ing Institute (TWI) and patented in 1991 [7]. This advanced
solid-state welding process enables high quality welding
through intermixing of materials in a plastic state and sub-
sequent dynamic recrystallization, driven by frictional heat
and pressure generated by a rotating, non-consumable weld-
ing tool. Joining in the solid phase mitigates the challenges
conventionally associated with fusion welding processes
for aluminum alloys, resulting in a refined microstructure.
The reduced specific energy input contributes to enhanced
mechanical and technological properties, alongside the
energy efficiency, making FSW a favored joining process in
the aerospace and rolling stock industries [8]. The growth
of electromobility in conjunction with efforts in light weight
construction across all transportation sectors has increased
the number of FSW applications. Many developments and
applications are centered around battery trays, heat exchang-
ers and mixed material joints of copper and aluminum for
electrical power systems [9, 10]. For FSW industrial quality
control is realized thorough downstream testing methods,
introducing extra process steps and an increase in production
time and cost. The increasing number and diversification
of applications, coupled with a rise in production volume
necessitates the development of reliable and cost-efficient
non-destructive inline quality monitoring for FSW [11].

In current industrial production specialized FSW welding
machines, capable of automated welding with closed loop
axial force control to adaptively control the welding process
are most commonly used. The machines are equipped with
sensors to monitor the axial force and other welding param-
eters to enable the closed, adaptive control loop.

Variations in sensor selection, accuracy, recording fre-
quency and latency between different manufacturers and
machines result in insufficient process force feedback for
efficient monitoring of the FSW’s dynamic process behav-
ior. The limitations associated with direct measurements
and internal sensor systems have led to the use of external
sensors to research and develop correlations between the
dynamic characteristics of the FSW process, recorded tran-
sient data and weld-seam quality [2, 12—15]. The major-
ity of published research utilizes analysis of the dynamic
force components of the in-plane welding force feedback or
variations of the axial force or torque. A defect detection is
generally achieved despite varying methods of analysis and
recorded variables. However, most defect detection systems
are limited in their applicability to a single joining task with
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fixed alloy, sheet thickness, welding tool and often a single
weld parameter combination.

In previous works the detection of internal volumetric
defects based on transient process data was developed, a
system based on Convolutional Neural Networks (CNN)
was used, its generalization between welding tasks was
addressed and the possibility of transfer between different
types of welding machines was shown [2, 3]. To further
increase applicability this publication focuses on the used
measuring system. The previously employed external sys-
tem, which was expensive and offered limited data granular-
ity, is replaced by a spindle-integrated solution. The Spindle-
Force measurement system enables real-time measurement
of process forces. It was initially designed for the characteri-
zation of milling processes across a wide frequency range.
The new system provides direct force measurement based
on cost-efficient and reliable sensors integrated directly into
the main spindle, offering an industry-ready solution that
remains robust in typical production environments [16].

Today the FSW process is regarded as comparably stable
and well controllable in industrial production environments.
Despite this FSW is susceptible to numerous external distur-
bances and variations of workpieces and operational condi-
tions, which can induce defects in the resulting weld seam.
Some of the defects may remain undetected by the most
commonly used quality monitoring techniques, such as axial
force monitoring and visual inspection. [17]

The factors influencing process stability can be separated
into welding parameter-based factors, welding machine
properties and workpiece irregularities. When monitoring
FSW weld quality the machine properties can be regarded as
constant and only need to be parameterized when develop-
ing generalized solutions [18]. The welding tool presents a
special case, as it is a constant factor in most development
cycles, but needs to be included for production environ-
ments, as tool wear significantly influences resulting pro-
cess forces, their dynamic behavior and the resulting weld
seam quality [19, 20]. In FSW the primary welding param-
eters, spindle speed, feed rate and axial force, are generally
established though empirical methods and remain fixed for
each specific welding task. As these are resilient against
outside influence, significant disturbances are not primarily
attributed to these parameters, but rather to their interaction
with the workpiece, which can induce process deviations
that result in defects. The most prevalent irregularities in
workpieces are gap tolerances, thickness variations, hardness
gradients, and surface condition changes [21]. Changes in
hardness, thickness variations and gap tolerances influence
the material volume underneath the welding tool, chang-
ing the heat input condition, material plastization, resulting
transport of material by the tool and weld seam formation.
This negative interplay can result in process instabilities
and weld seam defects [21].Surface conditions of tool and
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workpiece have significant impact on the interface condi-
tion, heat input and material transport through wear state,
adhesion and friction coefficient [22]. Each of these factors
or their combinations can contribute to deviations from a
steady cyclical state. The deviations can induce a process
state during which conventional quality control measures
fail to detect defects occurring during weld seam formation.

Two primary mechanisms for defect initiation have been
identified based on the relation of influences on weld quality.
Plunge depth significantly affects heat generation and mate-
rial transport. It can reliably be monitored through inter-
nal machine data and related to weld quality. Variations in
plunge depth are a result of multiple factors, leading to either
an increase or decrease in resulting depth, which can result
in incomplete penetration and compromised weld proper-
ties [23]. Increased plunge depth leads to close proximity or
direct contact between tool and backing, potentially causing
adhesion, backing plate or tool failure or defects induced
by excessive temperatures and abnormal material transport.

The second identified mechanism is considerably more
challenging to detect using current quality monitoring solu-
tions. Defects are caused by irregular material flow within
the stir zone. The periodically oscillating process condi-
tion and resulting intermittent material transport around
the welding tool are mainly driven by the specific energy
input and tool geometry and can be influenced by changes
of multiple process variables. Energy input is influenced by
process parameters as well as the interface condition, work-
piece strength/thickness, or tool wear. Significant changes
in specific energy input, higher as well as lower, can disrupt
the weld seam formation by reducing material flow around
the tool [24, 25]. Insufficient material transport may lead to
local or prolonged internal volumetric defects within friction
stir welded (FSW) seams, such as voids, cavities, or surface
imperfections. Due to these defect occurrences, FSW pro-
duction using current process control and quality monitor-
ing generally requires downstream quality inspection. These
additional quality control measures add complexity, time and
cost to the FSW-production chain.

Due to the added cost and time significant efforts have
been made by many researchers to develop quality moni-
toring systems based on process data. The friction-based
heat input at the tool workpiece interface and translational
movement of the tool through the plasticized material result
in comparatively high process forces, which are commonly
used to characterize the process. During welding the pro-
cess forces consist of static and dynamic components in all
three spatial directions. In a steady welding state the forces
oscillate cyclically, corresponding to the rotational speed of
the welding tool and its higher harmonics [26]. While the
cyclical oscillation of spatial forces at the spindle-imprinted
frequency is commonly known, numerous influencing fac-
tors, interdependencies, and relationships to force amplitude,

occurrence of higher harmonics, material transport, as well
as dependencies on welding parameters, tools, and work-
piece properties remain inadequately understood or quanti-
fied. Many studies have focused on establishing correlations
between the measured oscillation, their temporal deviations
and weld seam quality, despite the uncertain causes of the
phenomena. Many different solutions have been proposed to
relate weld quality to deviations of forces and torque oscilla-
tions, e.g. [3, 6, 12, 13, 27-30]. These proposed solutions are
based on the proven hypothesis that the majority of process
parameters and disturbances are condensed in the record-
able process force feedback. Therefore, a representation of
the process’s dynamic behavior and induced deviations and
instabilities can be drawn. Based on this compounded rep-
resentation of the process state an indication towards weld
quality can then be derived.

Numerous authors demonstrate the potential for empirical
anomaly detection through process force feedback evalua-
tion. The analysis primarily relies on extracted incremental
features or gradual changes within the recorded data. Most
studies focus on variations of the dynamic oscillations or
combinations of changes in static and dynamic force com-
ponents. Jene’s correlation of weld defects is however based
on the mean average lateral force [30]. Further research into
the empirical evaluation of process forces [12, 28] confirms
the feasibility of assessing dynamic components while high-
lighting limitations and the necessity to adjust evaluations
and selected features for each change in welding condi-
tions, which restricts industrial applicability. Besides the
time domain analytical correlations can be identified in the
frequency domain. Gebhard analyzed frequency spectra and
determined that high levels of low frequency oscillation can
indicate internal void defects [18].

For the first application of Artificial Neural Networks
(ANN) to detect internal welding defects in FSW Bold-
saikhan et al. also utilized frequency domain data [31]. A
Fully Connected Neural Network (FCNN) was trained with
the frequency domain data of welding torque recorded at
51.2 Hz. The FCNN could identify internal weld defects in
a dataset heavily biased towards defect free (96.6%) welds.
Subsequent work demonstrates the application of wavelet
transformations of the in-plane forces to evaluate weld qual-
ity using ANNs [29]. 95% of internal defects greater than
0.08 mm of the test dataset were identified correctly by a
FCNN. Further advancements in Al-technology, particularly
deep learning techniques, enabled Hartl et al. [32] to classify
FSW-welds using surface images and weld force data by
using Convolutional Neural Networks (CNN). Classification
accuracies up to 79,2% were achieved by CNN based on the
Alex-Net [33] architecture.

Multiple different solutions have demonstrated success
in correlating dynamic process behavior with FSW weld
quality. The studies shown are all limited in applicability
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as they do not provide generalized solutions across differ-
ent alloys, workpiece thicknesses and multiple welding
tools. Overall, the possibility of detection of internal weld
defects through force feedback analysis has been validated.
Despite this progress, most current methods remain inap-
plicable to industrial production requirements. Preparation
of the necessary datasets for training of Neural Networks
(NN) involves significant effort, as extensive test welds
with sufficient variation must be produced, prepared and
labeled for each welding task.

The systems used to record weld data, forces, torque,
currents, vibrations, etc., at high granularity must be
added to the welding fixture or tool holder. Restricting
the possibility of implementation into FSW-production.
These high frequency, high fidelity devices are generally
expensive to acquire and implement, often also requiring
special expertise in operation, recording and data evalua-
tion, making them cost prohibitive for industrial produc-
tion environments.

For this study the methodology of previous studies
was retained. While the previous developments focused
increases in classification accuracy and generalization
between welding tasks [3, 4], as well applicability through
welding machine transfer [2] the current publication aims
to improve data acquisition at high granularity and low-
ered cost and implementation requirements. To achieve
this goal a robust and wear-free spindle integrated meas-
urement system based on eddy current sensors with high
measurement granularity of all spatial force was used. The
system does not limit accessibility and provides a compar-
atively cheap measurement solution based on industrially
established principles and devices.

The major new aspects evaluated within this paper are
listed in Table 1 and generally regard the evaluated, indus-
trially applicable measurement system, as well as further
evaluation of the NN classification data and results.

2 Experimental setup and data-acquisition

The welding experiments were performed on a 5-Axis
machining center, Heller HF3500. The machine is equipped
with a WEISS Spindle with 40 kW and a maximum spin-
dle speed of 18,000 RPM. The workpieces were rigidly
clamped to a 10 mm mild steel backing plate. The mill
scale of the backing plate was retained to efficiently prevent
adhesion of the workpiece, resulting in increased rough-
ness of the weld root surface. Workpiece dimensions were
500 x 150x1.5 mm? allowing for multiple parallel welds of
440 mm length on the same plate. To prevent the influence
of edge shape and gaps between plates, the welds were per-
formed as full penetration seam on plate welds. Workpieces
of three different aluminum alloys were used for the experi-
ments. Alloys AW5754-H22, AW6005-T4, AW7075-T6
were chosen to include a wide range of FSW applications
and industries using FSW. The welding tools were fabricated
from H13 tool steel and heat treated to achieve a hardness of
600+ 10 HV. The tool dimensions and geometry are given in
Fig. 1. A tool tilt angle of 2° was used during all welds. Over
the course of the experiments the tool wear condition can be
regarded as constant, due to the tool changes for each new
alloy and the comparatively low welded distances per alloy
(AW5754 ~28.2 m, AW7075 ~30.4 m, AW6005 ~ 11.4 m).

The used parameter ranges for welding feedrate and
spindle speed (RPM) aimed to evaluate a broad spectrum of
industrially applicable parameters within the limits of the
machining centers’ load capabilities (axial load) and work-
piece material properties. The selected parameter combi-
nations facilitate an examination of the primary variables
influencing measurable force feedback and the resulting
deviations in weld exhibiting defects.

The primary force oscillation at the frequency corre-
sponding to tool rotation primarily results from the superpo-
sition of radial tool runout, discontinuous material transport,
and geometric tool pin features [34]. Oscillation amplitude

Table 1 New and continued aspects regarding methodology and evaluation within this paper

New aspects to this paper

Methodology and proceedings carried over from previous works

High granularity spindle-integrated process force measurement system

Reduction of measurement data-channels, no torque measurements for
evaluation

Longer welds with up to five changes in plunge depth and three defec-
tive areas of differing length per weld

Completely new data set, including new alloy with specific material
properties

Higher welding speeds (up to 4200 mm/min) than before

Evaluation of reliability diagrams and binning based on defect predic-
tion value

DenseNet-CNN for data classification

Adjustment of classification threshold by modification of cost function
to prevent false negative classifications

Generation of weld data set across multiple alloys and numerous
welding parameter combinations classified by digital micro focus
radiographic images

Meta-data use to scale CNN output for generalization across weld-
parameters and alloys
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Fig.1 Cross-section drawing
and relevant dimensions of used
welding tools

is driven by temperature dependent material resistance to
extrusion in stir zone and thermomechanical affect zone as
well as parameter dependent extrusion volume per tool rota-
tion. The parameter combinations were chosen to examine
these influences. 27 different parameter combinations were
successfully welded across the three alloys. The combina-
tions are shown in Fig. 2, with marker shape and color indi-
cating the alloy.

Similar to previous efforts, the welding parameter com-
binations are generally organized in three groups. The first
group is characterized by a fixed pitch of 0.5 mm feed per
tool revolution, going from 600 to 3600 RPM. The second
and third set are based on fixed RPM to evaluate the increase
in static forces and oscillation amplitude with increases in
welding speed. For AW7075 the spindle speeds are 1200
and 1800 as further increases lead to surface galling and
therefore unwanted surface defects. The maximum welding
speed was limited by the ability to reliably produce defect
free welds. For the other two alloys higher spindle speeds
could be utilized and higher welding speeds achieved for
defect free welds. To obtain a sound and balanced dataset
the lower spindle speed parameters were equal to those of
AW7075 and the second set was welded at higher federate
and spindle speed. The maximum welding speed was again

=Y

Probe Radius rp 1.5mm
Shoulder Radius rg 4.0 mm
Conical Probe Angle 8 10°
Probe Length hp 1.42 mm
Concave Shoulder Angle y 7°
Pin Feature Metric thread

limited by achieving defect free welds. AW6005 was used
to extend the dataset to include a third alloy, overall a lower
number of welds was performed to later evaluate generaliza-
tion capabilities.

FSW welds are typically executed using closed loop axial
(Z-axis) force control, to compensate for variations in work-
pieces and fixtures in industrial production environments.
The used machining center does currently not offer that
option, therefore welds were produced in position control
mode, which in combination with rolled plates of consistent
thickness results in superior reliability and reproducibility of
plunge depth. This control strategy also mitigates the effects
of lag, set force deviation, machine-induced z-axis oscil-
lation, and drift within the recorded data by removing the
closed-loop force control system. The reduction in systemic
variance enhances the reliability and reproducibility of pro-
ducing defect-free welds and welds containing inner volu-
metric defects for each parameter combination. During pre-
trials, two plunge depths were experimentally determined
for each combination of alloy and parameters to achieve
both defect free welds and welds without outer defects,
but internal void defects. Defects were induced through a
reduction in tool plunge depth and resulting decreases of
heat input and forging pressure, producing welds with inner

Fig.2 Welding parameter com-
binations for each workpiece
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volumetric defects while avoiding visually detectable sur-
face and root defects. The plunge depth was varied within
each weld through a ramp of two second length, ramp length
was reduced to one second for welds faster than 3600 mm/
min. Welds 1800 mm/min or faster contained only one ramp
changing depth. These welds were performed with both
plunge depth change directions. Slower welds contained
up to 5 changes in plunge depth within the weld resulting
in alternating defective and defect free areas. The plunge
depths and an image of the weld surface are shown for two
different welding speeds in Fig. 3. Each weld was repeated
a different number of times according to the welding speed
to obtain 35-41 segments of three seconds length of usable
recorded data.

During FSW, the spatial forces were measured using
the spindle-integrated real-time force measurement system
SpindleForce. The system includes a total of six eddy-
current sensors mounted directly in the spindle housing,
three arranged axially and three radially, that measure, in
a contactless manner, the distance from the sensor head to
the target, which in this case is the surface of the HSK63A
tool interface. To calculate the relative displacement from
the measured sensor signals, the geometrical deviations of
the measurement target are compensated by determining
the runout of the spindle shaft. The runout is measured
in the load-free state, with the spindle angle positions
simultaneously acquired using the integrated main spin-
dle encoder. Since the thermal growth of the main spindle
components also influences the measurement of the force-
induced displacement, this part of the measurement signal
is compensated using the method presented in [35]. After
compensation of the geometric deviations of the measure-
ment target and the thermal growth of the spindle com-
ponents, the process-force related relative displacement

1column=1s
5 segments (3 s each)

l Plunge Depth

can be obtained. The calculation method of the relative
spindle shaft displacements in axial and radial directions
is presented in detail in [36]. Based on the calculated rela-
tive displacement of the spindle shaft, the process force
can be calculated with the known transfer characteristics
between the tool center point and the measurement sec-
tion. This calculation is based on the input disturbance
observer, which is methodically presented in [37]. The
input disturbance observer accounts for effects that influ-
ence the structural-dynamic characteristics of the spindle,
such as tool geometry, rotational speed, force level, and
thermo-elastic behavior.

The accuracy of the measurement system strongly
depends on the structural stiffness between the tool center
point and the measurement section. For the spindle used
in this study, the accuracy of the measurement system
can be described for the specific working point and dif-
ferent frequency ranges (dynamic 0-2000 Hz and quasi-
static 0-50 Hz) for the applied tool by defining the force
measurement sensitivity, the accuracy for both is given
in Table 2.

The main spindle system with integrated measure-
ment System SpindleForce produced by the Innomotics
GmbH is mounted into the milling machining center Hel-
ler HF3500.

Table 2 Sensitivity for different frequency ranges of the used process
force measurement system

Sensitivity (0-2000 Hz) Sensitivity (0-50 Hz)

<20 N (0.083 pm) <5N (0.03 um)

05s

v

Weld length

1column=1s
41 segments
(3 s each)

1 Plunge Depth

Weld length

a
»

Fig.3 a) Weld and data-segments at 3000 mm/min; b) Picture of welds in a and c; ¢) Weld and data-segments at 600 mm/min
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3 Results and discussion
3.1 Welding results, classification and dataset

The welds were executed as described above and the data
recorded. After FSW some welds were eliminated from
evaluation through visual inspection, due to surface gall-
ing or surface breaking cavities. The total number of welds
was reduced to 134 (AW7075: 51, AW5754: 59, AW6005:
24). To quantify the resulting weld seam quality and local-
ize internal volumetric defects, the specimens were ana-
lyzed using radiographic testing (RT). The RT was per-
formed on a digital micro-focus computed tomography
machine, Procon CT-ALPHA with a micro (u)-tube. In
micro-focus tomography, X-rays are generated from a sin-
gle spot source directed toward the detector, with opening
ray paths facilitating magnification of the imaged speci-
men. The rate of magnification is thereby determined by
the chosen distance between source, specimen, and detec-
tor and directly proportional to the detectable defect size
[38, 39]. To obtain high-resolution images with a small
defect-detection threshold for the long and narrow welds,
specimens were cut into four sections of 115 mm length
each, including plunge and tool exit location. The digi-
tal images were subsequently compounded to restore the
weld image. A duplex wire indicator in accordance with
ISO 19232-5, also known as Image Quality Indicator
(IQI), was added to the images to accurately determine
the detectable size of volumetric defects [40]. The detec-
tion threshold established for voids and tunnel defects
(internal volumetric defects) was 0.08 mm parallel to the
weld surface (D11, ISO 19232-5). This detection thresh-
old exceeds those typically achieved by quality control
measures in industrial applications. Along the weld length
another wire indicator with consistent mm-based step
length was positioned for easy location determination in
regards to the weld length. To detect small defects, bright-
ness and contrast adjustments were made on the digital
images during post-processing. For the weld classifica-
tion the adjusted images underwent manual analysis to
detect, locate, and mark internal weld defects. The plunge
and tool exit locations were excluded from analysis. The
annotated images with defect location data were used to
label the weld data for NN training. Weld data labeling
was performed on a per 3 s weld data segment (Fig. 3)
bases, any segment containing a detectable defect of any
detectable length (~0.08 mm) was classified as containing
a defect, class 1 (positive class, defect detected) and data
segments containing no detectable defect were label as
class 0 (negative class, no defect detected). The RT image
analysis was validated through the examination of micro-
sections. Multiple cross-sections were cut from various

locations of selected welds, including areas free of defects
and areas with internal volumetric defects. The resulting
classification was in good accordance with the RT image
analysis, qualifying the selected method and machine for
the weld classification.

For the development of an applicable inline quality
monitoring solution with a capability of localizing defects
through data analysis, the welds and respective recorded data
were divided into shorter segments. Each second of weld-
ing time a new segment begins and lasts for three seconds,
thereby overlapping the previous and subsequent segment
by one second each. This weld segmentation and resulting
data structure is shown for two different welding speed in
Fig. 3a and 3c. The segment length was determined within
prior developments, enabling high classification rates. The
overlapping of segments was introduced to increase accu-
racy by enabling multi-context evaluation of each data point,
as the differing data contexts for evaluation allow for feature
relation across multiple different folds and broader detection
of relevant features, supporting generalization. The overlap-
ping of the segments increases the amount of training data
by repeating each data point, compared to consecutive 1 s
segments, but the efficient NN implementation still allows
for fast training cycles and near real time (~2/100th s) infer-
encing. Compared to consecutive 3 s segments the overlap-
ping of the segments allows for better localization of defects
and an increase in detection reliability through multi context
evaluation. Regarding the given dataset, the weld length of
each segment and thereby the area in which defects start
or end, if classified correctly, is reduced from a maximum
length of 210 mm to 70 mm (at 4200 mm/min feed rate). The
overlapping segmentation expands the amount of available
training-data and enables multi-context evaluation for each
data-point, improving generalization and defect detection
threshold determination.

At the measurement frequency of 2.5 kHz each three sec-
ond segment of data includes 7500 points of process-force
data for each spatial direction, resulting in 22.5k data-points
for analysis per weld segment. The data acquisition fre-
quency was derived from previous developments. At 2.5 kHz
it allows for the DL development of discernable classifi-
cation features within the selected segment and especially
filter length, while requiring comparatively low computa-
tional effort in training and inferencing. At the maximum
used spindle speed the acquisition rate still offers > 40 data
points pers tool revolution, which enables clear mapping
of the process force data of relevant changes of the process
compared to an idealized process.

The weld length and maximum feedrate served as ref-
erences to determine the maximum number of segments
for each weld. At the weld length of 440 mm, between 4
(4200 mm/min welding speed) to 41 (600 mm/min) seg-
ments could be extracted per weld, while excluding the
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last 0.5 s per weld and the first half of welds performed
at 300 mm/min to maintain a balanced dataset. Based on
RT image labeling, defect identification, and localization,
each segment of the welds was classified. Classification was
based on the presence of internal void defects within a seg-
ment versus segments without detectable defects. For NN
training and evaluation, class determination was adapted to
a weld segment classification system where the positive class
1 indicates NOK welds (defect detected), while the negative
class 0 signifies OK welds (no defect present within the weld
seam segment). The final dataset size and classification of
134 welds (AW7075: 51, AWS5754: 59, AW6005:24) sepa-
rated into 1703 segments of weld data is shown in Table 3
on a weld segment base.

3.2 Adaption, training, testing, and validation
of neural networks

As the current developments are a continuation of the
research, the reasoning behind the selection of densely con-
nected CNN (DenseNet) [41] for this classification task has
been extensively discussed in [2, 3]. Furthermore, the adap-
tations of the original architecture, the addition of meta-data
inputs and the modification of the cost function to prevent
false negative classification have been presented. A detailed
description of the computer hardware used for network train-
ing (Nvidia RTX 3090) and network training times related
to network widths and learnable parameter counts can be
found in chapter 3.2 of [2]. In this study the optimized Net-
work configurations K16T32 and K16T +, which previously
showed the highest classification accuracies were used. The
exact NN configurations utilized for this research are given
in Fig. 4.

The networks were adapted to three input channels for
the spatial forces, as no torque was measured. Layer counts,
filter sizes and step length were carried over from previ-
ous developments. Meta-data channels and input scaling
remained consistent with the previous developments. Fur-
thermore, the cost-function developed in [2] for predicted
value adjustment to prevent false negative classifications was
used. Hyper parameters for the NN training as well as the
parameters adjusting the predicted value and threshold were
tuned to match the new dataset and defect classification.

The configuration of the NN as well as the average resulting
classification accuracy and positive factor of summed up
misclassifications of the test set data (10% of data-set, 170
observations) of n=3 training iterations (total of 510 data-
segments) are shown in Table 4. The positive factor (P;) has
been reviously established (compare [2]) to measure the
success of the threshold modification and relate the shift to
overall accuracy. It relates the number of false negative clas-
sifications to the number of false positive classifications and
offers significant insight for performance comparison when
presented alongside overall accuracy. It is established this
way, as division by the targeted number of O false negatives
is not possible and will be denoted as the given fraction and
not the calculated value in cases of 0 false negative classifi-
cations. The formula is given in Eq. 1.

number of false negative  t—y=1

Positive factor : Py =

number of false positive ¢t —y = —1
ey
Eq. (1).

The achieved accuracies are overall lower than in previ-
ous publications. The reduction is based on the absence of
torque data, which has been shown to relate well to material
transport and reduces the learnable dependencies between
lateral force oscillation, axial force and torque. As before,
the accuracies show the better result for the network con-
figuration with less learnable parameters. Over three train-
ings iterations 10 of 510 segments were misclassified, with
one being a false negative. The wider network was slightly
less accurate, misclassifying 14 of 510 segments, however,
as shown in previous publications, the generalization and
threshold determination benefit from an increase in classi-
fication features, resulting in O false negative classifications
on a dataset with 80 weld segments containing defects, and
90 defect free segments. The summed-up confusion matrices
of n=3 network trainings are shown in Fig. 5.

The detailed confusion matrices that analyze the data
from Fig. 5 on a per alloy basis are given in Fig. 6. The indi-
cated differences in accuracy across the different alloys are
low and in good accordance with overall accuracy showing
a good fit of the trained model for the classification task.

Further analysis of the one critical false negative misclas-
sification (AW5754, K16T32) shows that the not detected

Table 3 Number of weld

Dataset Full set AW7075 AWS5754 AW6005
segments per alloy and
classification label Class 0: defect 787 346 301 140
free segment 46.21 % 46.51 % 46.81 % 4430 %
Class 1: volu- 916 398 342 176
metric defect 53.79 % 53.49 % 53.19 % 55.70 %
segment
Sum 1703 703 643 316
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Fig.4 DensNet-CNN configuration and modifications for FSW weld-data classification

Table 4 Network configuration and resulting average classification
accuracy (n=3)

Network configuration K16T32 K16T +

Initial convolution 512*3 %3 512*%3 %3
Transition-layer T1, T2, T3 128,256,896 512,512, 1024
Bottleneck width (P) 128 128

Positive factor (Pf), n=3 0.111 0/14
Classification accuracy [%], n=3  98.04 97.25

Acc. [%] iteration 1 98.24 96.47

Acc. [%] iteration 2 98.24 98.24

Acc. [%] iteration 3 97.65 97.05

defect is the beginning of an internal void defect. While the
data-segment is labeled as defective, because it contains a
defective area, the defect area within the data-segment is
only about 0.25 s of the 3 s data segment. Both consecu-
tive segments, which contain these misclassified 0.25 s are
classified correctly, identifying the defect through the fol-
lowing data or features generated by the relations of data,
which provides a clear indication of the defect. The data of
the relevant weld is shown in Fig. 7. The segmented data is
given in Fig. 7 b-d, with segment b showing the false nega-
tive classification based on 0.25 s of data corresponding to
an identified defect. At the given welding speed of 2700 mm/
min the 0.25 s time is equal to 11 mm of weld distance. The
true positive classifications of data segments in Fig. 7 ¢ and
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Fig.5 Summed up confusion
matrices (n=3) for both net-
work configurations
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Fig.6 Confusion matrices (n=3) of each alloy for both network configurations

d enable the correct identification of the defect with a loca-
tion error of 11 mm distance from the expected 45 mm weld
length (1 s at 2700 mm/min) segment of the position of the
segment first detecting the defect.

When analyzing the false positive classifications spik-
ing oscillations of lateral forces can be identified in nearly
half. The spiking oscillation is characterized by an additional
oscillation of the upper threshold of the oscillation ampli-
tude while the lower threshold remains nearly constant. True
positive classifications are often characterized by increased
or erratic oscillation amplitudes of the lateral force. Gener-
ally, this includes variations in the upper and lower threshold

@ Springer

of the amplitude. For the remainder of misclassifications
no indication for the underlying reasons could be identi-
fied when manually analyzing the data and resulting force
graphs.

14 of the 23 false positive and the one false negative mis-
classification occur in data segments containing a change
in plunge depth and are therefore physically close to the
beginning or the end of a nearby internal void defect. This
indicates challenges in determining a generalized defect
detection threshold over the wide range of used welding
parameters and alloys. The derived detection threshold over
classifies defects for some weld parameter combinations.
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Fig.7 Segmented welding data of false negative classification, two consecutive data segments and defect localization

The same results can be derived from the reliability dia-
grams of the investigated CNN configurations, which are
shown in Fig. 8. The network predictions were separated
into 10 bins based on the predicted value and the mean
values of the bin predictions plotted against the relative
frequency of true positive class occurrences within the
bin. Along with the prediction data, the number of obser-
vations in each bin was plotted.

Based on Fig. 8 it can be deduced that the model falls
considerably short of the conventional definition of a “per-
fectly calibrated” model, particularly for the bins within
the 0.1-0.9 mean prediction values. Along with the low
number of observations within these bins, the significant
influence exerted by the adjustment of the cost function is
illustrated. The relative frequency of positive class clas-
sifications is further skewed due to the limited total num-
ber of instances available, which diverges substantially
from the anticipated ideal calibration. Instances where the
target values are 0 yet result in predictions > 0 signify an
additional impact of the cost function modification, which
serves to elevate the average classification value closer to
that of the positive class. This is validated when compar-
ing predicted value and mean relative frequency of the
positive class. The mean predicted value generally exceeds
the mean relative frequency due to the cost function modi-
fication, which penalizes false negative classifications sig-
nificantly stronger than false positives.

These findings demonstrate the complexity involved
in achieving adequate model calibration and highlight the
impact of cost function modification on overall classification
performance for the application of quality monitoring. Over-
all the results demonstrate that the model is well fit for the
quality monitoring task, by pushing predicted values close
to absolute O or 1 predictions (88.43% of prediction <0.1
or>0.9) and balancing classification accuracy with the pri-
oritization of defect detection over false negatives.

To validate the achieved results a “leave one domain out”
investigation was performed. The data set was separated and
all data segments of welds in AW5754 and AW7075 were
used for the NN training, while the data segments of the
AW6005 were used as the test data. AW6005 was chosen
as it is the smallest partial data set containing 316 of the
1703 observations. The resulting classification accuracy and
defect detection rate for the alloy left out of training are in
good accordance with the results achieved within similar
validation experiments during previous research [2]. An
overall classification accuracy of 87.97% was achieved.
The confusion matrix is shown in Fig. 9, along with the
reliability plot and an event level analysis. It is assumed
that the significant increase in misclassifications is based
on the faulty scaling of detected features relevant to clas-
sification, especially due to the comparably low flow stress
meta-data of AW6005, which is outside (lower at 450 °C)
the flow stress range included in the training data set. The
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Fig. 8 Reliability diagrams (mean values/total observations in bins for n=3) and complementary data for 10 bin classification reliability investi-
gation both network configurations
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Fig. 9 Confusion matrix, reliability plot and event level defect analysis

reliability plot of the predicted values for the positive class  higher bins with mean predictions up to 0.6. Despite the
shows higher uncertainty of the predictions than Fig. 8, with  increased uncertainty of the predictions the defect detection
a significant number of defect free welds spread out across  threshold shift is still evident within confusion matrix and
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reliability plot, resulting in a positive factor of 0.31. When
analyzing the test data set on an event-based level (defect
detection), 41 of 42 defects within the welds are correctly
detected, resulting in a 97.6% defect detection rate. The
percentage being vastly dependent on the low number of
occurrences. The undetected defect is located at the end of
a weld and only 2 data segments contain parts of the defect,
both including the plunge depth ramp. The other seven false
negatives are all located within plunge depth ramps and only
contain small parts of defects within the 3 s data segment,
similar to Fig. 7b.

4 Application for inline quality control

The network classification accuracies obtained from the
training of the modified DenseNets with the recorded dataset
demonstrate an advantage over conventional defect detec-
tion methods used in industry. The developed system can be
used as near real-time inline quality control. Furthermore,
it eclipses methods such as ultrasonic testing, radiographic
testing, and visual inspection in terms of the size of detect-
able defects, cost efficiency and production time [11, 42—45].
Initial validation results indicate a potential limitation in the
developed system’s applicability due to classification accura-
cies between 88 and 98% for generalized tasks. For the inline
quality monitoring, however, the defect detection rate sub-
stantially surpasses the classification accuracy. The improve-
ment results from multi-context evaluation of the staggered
data-segments. Most misclassifications occur within the
defect transition zones, with only isolated weld segments
being incorrectly classified. For the developed dataset across
all NN training iteration (n =6) all internal void defects were
successfully detected due to the multi context evaluation,
with only the start point of one not being localized properly.
The single false negative classification of the testing data
has been discussed on the previous chapter. Based on the
presented confusion charts and the correct defect detection
by overlapping segments of data, 100% of defects were cor-
rectly identified in the testing data. The same holds true for
the training data. While the total number is of false negatives
is higher (10) the overlapping evaluation also generates a
100% defect detection rate during the six evaluated training
cycles and 10,218 used data-segments. During “leave one
domain out” validation, accuracies of 87.97% with defect
detection rate of 97.6% were achieved, when classifying an
alloy with mechanical properties outside the training data
range. The accuracy and defect detection rate are compara-
ble to alternative quality control methods. However, since

higher rates can be achieved, it cannot be recommended to
utilize the system without expanding the training data set to
include labeled welds with the chosen material properties.

The developed system, based on a robust, high granu-
larity process data recording system is capable of real time
process data recording. The recorded process data is sup-
plemented with meta-data related to the welding parameters
and workpieces. The developed evaluation algorithm can be
implemented on an edge device and deliver quality indica-
tion in near real-time, giving localized ROI at up to less than
2% error rate for further defect investigation. While achieving
high classification accuracies and 100% defect detection, the
classification results are up to 2.5% worse, when compared to
previous implementations which utilized a different measure-
ment system that included torque measurements. In FSW tool
torque is directly related to energy input and material intermix-
ing and can therefore provide important information regarding
the process, especially in conjunction with the process forces
and information regarding the welded components. Based on
these facts and the results achieved with the presented dataset
the inclusion of direct torque measurement for any industrial
implementation is strongly recommended to increase accuracy
and improve stability.

Data inferencing of segmented process-data (3 s seg-
ment length) can be performed at low computational cost
in~2/100 s (on a laptop computer with 6th gen Intel i5 and 8
GB of RAM) and even faster on dedicated edge TPUs (tensor
processing units). An evaluation of the recorded data is thereby
possible in near real time.

This, in conjunction with the quality information, can meet
customer requirements for product traceability. In subsequent
steps, the system can be enhanced within a fully connected
production workshop. This enhancement will enable not only
the delivery of localized quality data to downstream processes
but also the utilization of data from upstream processes to
adjust metadata according to local workpiece properties and
current tool and machine quality information.

At the current stage of development the state of tool wear
is not included in the quality evaluation. Tools utilized for
data-set generation are in generally good condition and only
used for sub 50 m of weld distance. It is known that geometric
wear influences the occurrence of process forces, especially
the base value and amplitude of the in-plane welding forces
(feed force and lateral force). Therefore, further experiments
will need to be conducted to include the tool wear state in the
quality evaluation. It is to be determined whether the state of
wear can be integrated into the general evaluation data, or if
adding the wear state as a feature data input through either
welded distance or fraction of tool life expectancy is the most
effective solution.

@ Springer



Welding in the World

5 Conclusion

Within this work convolutional neural networks based on
DenseNet201 were modified and weld-parameter and work-
piece meta-data was concatenated to scale features detecting
internal void defects based on transient process data and
enhance generalization. The networks were trained to detect
internal void defects based on welding data recorded by a
robust, high granularity spindle integrated force measure-
ment system. For a dataset of 1703 weld seam segments
from three different alloys and 27 different feedrate and
spindle speed combinations average classification accura-
cies of >98% were achieved. The modification of the cost
function proved effective again, shifting the positive factor
over six trainings iterations to 0.04. However, the number
of false positive ROI indications shows the challenges in
determining a generalized defect detection threshold, even
when utilizing meta-data for feature scaling. The achieved
accuracy is lower than in previous works, due to the lack of
torque measurement data, which allows for the identification
of material transport through evaluation of interdependen-
cies between the spatial forces and tool torque.

The performed validation experiments, removing on alloy
from the data set and using it as test-data, showed a sig-
nificant drop in classification accuracy to 87.97%, which is
assumed to be mostly based on the meta-data base feature
scaling of the material flow stress which is outside the train-
ing data flow stress range. The trained network still achieved
a defect detection rate of 97.6% (41 of 42) for the new alloy,
which is comparable to most NDE techniques. These results
suggest that while the system is capable of quality monitor-
ing and defect detection even for welds in alloys outside
its training property range, including data containing all
mechanical properties will yield better and more reliable
results.

Despite the lower classification accuracy, the staggered
data-structure and multi-context evaluation allow for a
detection rate of 100% of the targeted internal volumetric
defects when evaluation data is within the training data set
range. The used data-recording system provides weld-force
data in real-time allowing for near real-time evaluation
(~0.2 s delay) and integration of the light-weight evalua-
tion algorithm at the edge. Furthermore, the recorded data,
amended with meta-data and quality information can be used
in connected production environments, integrating upstream
production data providing downstream quality information,
while allowing for complete production traceability.
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