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Abstract

Phase-change materials (PCM) offer the potential to be employed as active switching material in
novel, non-volatile memory devices. These devices allow for faster read- and write operations as
compared to common Flash memory and are superior to state-of-the-art DRAM due to their ability
to retain information even when the external power supply is removed. The application of such
phase-change memory in various fields (e.g. automotive and home use) requires the adaptation to
specific external conditions and hence can be realized only if systematic design rules are available to
tune the material’s properties. These design rules can be derived from a microscopic theory for their
properties and transitions. Data storage in these devices is generally based on the distinct properties
of their amorphous and crystalline phases, from which the present state can be read. Information
is written by heating the active material either above the crystallization temperature or above the
melting temperature for vitrification. Therefore, research on these materials can be classified into
three areas: The static properties of the amorphous phase, those of the crystalline phase and the
nature of the quasi-reversible transition. Progress in the systematic understanding of phase-change
materials has to be based on an atomistic picture of both, transitions and properties, in particular
since only compounds containing some few elements — mostly chalcogenides — show the necessary
properties.

The atomic short range order has a crucial impact on the property contrast and was investi-
gated here by means of x-ray absorption spectroscopy, total and inelastic neutron scattering. The
resulting atomic pair distribution functions revealed that all investigated materials (i.e. GeSb,Tey,
Ge,Sb,Tes, In3SbTe,, SbyTe, AIST, GeTe und Ge;sSbgs) show 5% to 15% longer average inter-
atomic distances in the crystalline phase. Also their coordination number was found to increase.
This increase is particularly pronounced in the case of Ge,Sb,Tes, where the average bond length in-
creases from 2.72(1) A by 11% upon crystallization, while at the same time the coordination number
increases from 2.8(1) by 88(5)%. This modification of the local atomic structure indicates a change
in the bonding mechanism and increases the contrast e.g. in optical reflectivity. In GeSb,Tes and
Ge,Sb, Tes, however, also the variance of interatomic distances increases upon crystallization. This
observation is surprising, since a larger variance of bond lengths in the crystalline phase as compared
to that of the amorphous phase at equal temperatures indicates a softening of the interatomic poten-
tials upon crystallization. Measurements of the mechanical stress, however, show that the crystalline
phase is mechanically harder than the amorphous phase. Measurements of the density of vibrational
states were performed to resolve this discrepancy. They confirmed that the crystalline phase con-
sists of softer bonds. The changes of the interaction potential are accompanied by a change in the
bonding mechanism: While the coordination numbers of the amorphous phase of all investigated
phase-change materials is well described by the 8-N rule, the coordination numbers of the respec-
tive crystalline phases is generally higher and in good agreement with resonance bonding, which is
accompanied by a particularly large optical dielectric constant. This transition from stiffer bonds in
the amorphous and softer bonds in the crystalline phase is favorable for the switching properties of
memory devices.

Recently, a metal-insulator transition was reported for various compounds from the pseudo-
binary line GeTe-Sb,Te; (GST), whose order parameter is the atomic disorder. This transition can
be controlled by changing the annealing temperature of amorphous phase-change materials above
the crystallization temperature. At low annealing conditions, the material behaves semiconducting

and becomes metallic after heating to higher temperatures. Motivated by these results, the local
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atomic disorder of the crystalline phase was investigated. First, different sources of atomic disor-
der are discussed. This revealed that the chemical disorder on one of the two sublattices induces
pronounced static atomic displacements, whose amplitude reduces with increasing annealing tem-
perature. This is a manifestation of a decrease of the amplitude of the Peierls mechanism, which
then reduces its energy gap. These changes, however, leave the alloy in a semiconducting state. At
even higher annealing conditions, the majority of intrinsic vacancies is arranged on layers. Never-
theless, it was shown that the materials still remain in a semiconducting phase. A comparison of
measured and calculated EXAFS suggests that even in this phase, the Ge and Sb atoms are chemi-
cally disordered on their sublattice. These atoms are only ordered at even higher temperatures and
on long time scales, where also stacking faults are removed. A unique atomic model for the metal-
insulator transition cannot be derived from these data, since as few as 7% of the atoms remaining
on the layers of vacancies suffice to localize the charge carriers. This low number of atoms in their
quasi-regular arrangement is insufficient for detection by most present techniques of atomic structure
determination.

The crystallization process of phase-change materials was investigated calorimetrically in or-
der to describe its thermodynamic and kinetic properties. This description will help to reveal the
characteristics of the crystallization mechanism in this class of materials. Even here, the disorder
of the crystalline is of importance. The phase transition itself reduces the enthalpy by only 40—
50 meV/atom, which indicates a remarkably small driving force as compared to the crystallization of
Ge or Si, where the enthalpy is reduced by approx. 120 meV/atom. This becomes even more impor-
tant, when the additional change in entropy is taken into account, which has to be subtracted from
the change in enthalpy in order to calculate the driving force of crystallization via AG = AH —TAS.
Hence, the pronounced disorder of crystalline phase-change materials reduces the change in entropy
AS and thereby increases the driving force of crystallization AG. In order to quantify AS, the full
entropies of both, the amorphous and the crystalline phases have to be known. Two facts make these
measurements very complicated: Firstly, crystallization occurs so rapidly upon cooling the melt,
that it is not possible to measure the specific heat of the undercooled liquid phase. Secondly, in
the case of GST, the specific heat of the liquid phase — even if it were known — could not be ex-
trapolated to the amorphous phase, since a change in the local atomic coordination was observed
for the Ge atoms: While there are only octahedrally coordinated atoms in the liquid phase, a non-
negligible fraction of Ge atoms transforms to a tetrahedral geometry upon cooling. This change in
bonding could also influence the thermodynamic properties of the system. Nevertheless, the specific
heat of the undercooled liquid and the crystalline phases of AIST could be measured. An extrap-
olation of the differences in specific heat to the amorphous phase could be performed and allowed
quantifying the change in free enthalpy due to the decrease of entropy upon crystallization, which
is AS = —16(6) meV/atom, so that the total driving force of crystallization AG amounts to only
30(9) meV/atom. Hence, the driving force of crystallization in phase-change materials is surpris-
ingly low. The implications of this result on the fundamental processes of nucleation and growth is
discussed for different materials.
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Abstract

Phasenwechselmaterialien konnen als aktive Komponente in neuartigen nicht-fliichtigen Daten-
speichern genutzt werden. Diese Speicher erlauben hohere Schreib- und Lesegeschwindigkeiten als
herkémmliche Flash-Speicher und sind gleichzeitig vorteilhaft gegeniiber schnelleren DRAMs, da
ihre Informationen selbst dann erhalten bleiben, wenn die externe Spannungsversorgung entfernt
wird. Fiir die Anwendung von Phasenwechselmaterialien in Speichermedien ist es erforderlich, sie
auf die jeweiligen Anwendungsgebiete anzupassen, so dass Designregeln fiir die Eigenschaften notig
sind. Diese Designregeln konnen iiber ein fundamentales Verstdndnis der Materialien auf atomarer
Skala gewonnen werden. Fiir die Datenspeicherung werden der amorphen und der kristallinen Phase
die verschiedenen Zustinde des Speichers zugeordnet. Der Speicher kann somit iiber die verschiede-
nen optischen und elektrischen Eigenschaften dieser Phasen ausgelesen werden. Daher sind also die
Untersuchungen in drei Gebiete zu unterteilen: Die Eigenschaften der amorphen Phase, die der
kristallinen Phase und der Ubergang zwischen beiden Phasen — fiir deren Verstindnis jeweils Mod-
elle erforderlich sind, die bis auf die mikroskopische Ebene reichen.

Die atomare Nahordnung ist entscheidend fiir den Eigenschaftskontrast beider Phasen und wurde
daher im Rahmen dieser Arbeit untersucht, indem mittels Rontgenabsorptionsspektroskopie und
Neutronenstreuung die Paarverteilungsfunktionen gemessen wurden. Ein charakteristisches Merk-
mal aller untersuchten Phasenwechselmaterialien (das sind GeSb,Te4, Ge,Sb,Tes, In3SbTe,, Sb,Te,
AIST, GeTe und Ge5Sbgs) ist, dass der mittlere atomare Abstand bei der Kristallisation um min-
destens 5%, maximal um 15% zunimmt. Gleichzeitig nimmt auch die Koordinationszahl zu. Am
Beispiel von Ge,Sb,Tes wird dieser Unterschied besonders deutlich: Die Bindungslinge nimmt
von 2.72( 1)/0% um 11% zu, die Koordinationszahl von 2.78 um 88(5)%. Diese starke Andemng der
lokalen Struktur unterstiitzt den Eigenschaftskontrast von Phasenwechselmaterialien, indem sie z.B.
den optischen Reflektivititskontrast vergrofert. Bei Ge,Sb, Tes und GeSb, Te4 erhoht sich allerdings
bei der Kristallisation auch die Verteilungsbreite der Bindungsldngen. Diese Beobachtung wirkt
zunichst liberraschend, weil eine breitere Verteilung in der kristallinen Phase i.d.R. auf weichere
Wechselwirkungspotentiale zuriickzufiihren ist, obwohl aber aus mechanischen Spannungsmessun-
gen bekannt ist, dass die kristalline Phase hirter ist als die amorphe. Daher wurden die atom-
aren Schwingungsmoden beider Phasen untersucht. Diese Messungen zeigen eindeutig, dass die
kristalline Phase weichere Bindungen besitzt als die amorphe. Diese Anderung der Bindungsverhilt-
nisse wird auch von einem Wechsel des Bindungsmechanismus begleitet: Wihrend die amorphe
Phase aller Phasenwechselmaterialien iiberwiegend der 8-N-Regel folgt, tritt in der kristallinen Phase
eine Resonanzbindung auf, die mit einer hohen dynamischen Ladung der Atome einhergeht. Dieser
Ubergang von hirteren zu weicheren atomaren Wechselwirkungspotentialen ist fiir die Eigenschaften
als Phasenwechselmaterial von Vorteil.

In der kristallinen Phase von verschiedenen Legierungen des GeTe-Sb,Tes;- (GST)-Systems
wurde kiirzlich ein Metall-Isolator Ubergang gefunden, der lediglich von der atomaren Unordnung
abhiingt, nicht aber von der lokalen Koordination. Dieser Ubergang wird durch eine Variation der
Heiztemperatur gesteuert, so dass die kristalline Phase nach geringer Heiztemperatur halbleitend,
nach hoherer Heiztemperatur metallisch ist. Motiviert durch diese Erkenntnis wurde die Unord-
nung der kristallinen Phase im Detail untersucht. Zunichst werden die verschiedenen Ursachen
fiir atomare Unordnung diskutiert. Dabei zeigt sich, dass besonders die chemische Unordnung auf
einem kristallographischen Untergitter der Kochsalzstruktur zu starken Auslenkungen der Atome
fiihrt. Die Amplitude dieser statischen Auslenkungen verkleinert sich zunédchst mit der Heiztem-
peratur und spiegelt sich in einer Verkleinerung der Bandliicke wider. Selbst nach dieser Umord-
nung ist das Material allerdings noch in einem halbleitenden Zustand — mit etwas verringertem elek-
trischen Widerstand. Bei noch hoheren Heiztemperaturen ordnet sich die Mehrheit der intrinsischen
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Phase sind. Ein Vergleich von gemessenen und berechneten EXAFS Daten legt nahe, dass auch in
dieser Phase die Ge und Sb Atome noch unsortiert das Untergitter bilden. Diese Atome werden bei
noch hoheren Heiztemperaturen geordnet und gleichzeitig werden Stapelfehler ausgeheilt. Eine ein-
deutige Identifikation des fiir den Metall-Isolator-Ubergangs relevanten Mechanismus ist aus diesen
Messungen nicht moglich, da bereits 7% verbleibender Atome auf den Leerstellenebenen zu einer
Lokalisierung der Elektronen fiihren — eine GroBe die unterhalb der Detektionsschwelle der meisten

strukturauflosenden Methoden liegt.

Die thermodynamischen und kinetischen Aspekte des Kristallisationsvorgangs wurden kalori-
metrisch untersucht. Es zeigt sich, dass auch hier die Unordnung der kristallinen Phase eine Rolle
spielt. Der Phaseniibergang geht mit einer verglichen mit Ge oder Si (ca. 120 meV/Atom) kleinen
Enthalpiednderung von nur 40-50 meV/Atom einher. Dies wird besonders deutlich, wenn die treiben-
de Kraft der Kristallisation — d.h. die Reduktion der freien Enthalpie untersucht wird, da im Vergleich
zur Enthalpieéinderung noch der mit einer Entropiedinderung verbundene Beitrag abgezogen werden
muss. Somit erhoht die Unordnung der kristallinen Phase deren Entropie, die wiederum die treibende
Kraft der Kristallisation vergrofert. Folglich muss die gesamte Entropie des Systems bekannt sein,
um den Einfluss dieser zusitzlichen Konfigurationsentropie der kristallinen Phase zu quantifizieren
— allerdings ldsst sich dieser Wert aus mindestens zwei Griinden nicht mit herkdmmlicher Kalorime-
trie messen: Zum einen findet die Kristallisation zu schnell statt, so dass die Wiarmekapazitit der un-
terkiihlten Schmelze nicht gemessen werden kann. Zum anderen ldsst sich auch die Wérmekapazitét
der fliissigen Phase bei GST-Systemen nicht zur amorphen Phase extrapolieren, da eine Anderung
des Bindungsmechanismus beobachtet wurde: Wihrend in der fliissigen Phase, keine tetraedrischen
Ge-Atome gefunden werden konnten, so befindet sich in der amorphen Phase ein nicht vernach-
lassigbarer Anteil der Atome in dieser lokalen Konfiguration. Es kann also nicht ausgeschlossen
werden, dass dieser Wechsel des Bindungsmechanismus einiger Atome auch die Wirmekapazitit
beeinflusst. Dennoch wird in dieser Arbeit eine Methode vorgestellt, mit deren Hilfe der Beitrag der
Unordnung quantifiziert werden kann. Am Beispiel von AIST wurde eine solche Messung der spez-
ifischen Wirme der fliissigen und kristallinen Phasen durchgefiihrt. Der resultierende Beitrag zur
Anderung der freien Enthalpie betridgt bei der Kristallisationstemperatur -16(6) meV/atom, so dass
die gesamte Enthalpieinderung nur noch 30(9) meV/atom betrigt. Die treibende Kraft der Kristalli-
sation ist also bei Phasenwechselmaterialien erstaunlich gering, wird aber durch die Unordnung der
kristallinen Phase bei GST weniger stark durch die Entropieéinderung reduziert. Die Auswirkun-
gen der treibenden Kraft auf die verschiedenen Kristallisationsprozesse, Nukleation und Wachstum,

werden ebenfalls fiir verschiedene Materialien diskutiert.
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CHAPTER 1

Introduction

1.1 Motivation for a new memory technology

The progress of a society depends on its ability to obtain, preserve and provide information
wherever and whenever necessary. This can be seen e.g. from the correlation between the
information and communication technology (ICT) index with the Global Competitiveness
Index (GCI). Both factors are regularly reported by the World Economic Forum [1]]. In
Fig.[I.1] both indices are plotted against each other for various countries and a striking cor-
relation is found. Therefore, the efficient use of information technology directly correlates
with the competitiveness of a society. Data storage is naturally a key technology to enable

the use of information and therefore leads to economic competitiveness by itself.

The insight of the importance of preserving knowledge dates back to the invention of
the Sumerian cuneiform script (first evidence from 3150 BC [2], p. 47), whose writing pro-
cess is based on mechanically engraving wet clay. The data retention of these clay tablets
is enhanced by the pronounced change in the viscosity of clay as a function of annealing
(more precisely as a function of the amount of water between the clay particles [3]): In wet
condition, the clay particles can be easily rearranged, so that the cuneiforms can be written.
Heating the clay tablets reduces the content of water, so that the shape of the clay becomes
mechanically protected by its significantly higher fragility. This allows the long-term stor-
age of information in clay tablets. Surprisingly, there is a direct analogy to phase-change
memory, where also a change in viscosity is used to store information: In phase-change
materials, it is the change of the microscopic, atomic structure and not just the surface
topology, which contains the information. Nevertheless, also in phase-change materials the
low atomic mobility at room temperature allows to preserve the information, whereas the
high atomic mobility at elevated temperatures facilitates the writing process. Therefore, the
crucial parameter, which was the water content in clay tablets is the temperature in phase-

change materials. Naturally, the details of both processes are very different, given alone the
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Figure 1.1: Correlation between information technology and economic competitiveness,
showing that more efficient use of information technology goes along with faster
economic progress. Taken from [[1]].

fact that a single bit of information is stored in some (30 nm)* of phase-change material,
whereas at least (1 mm)? of clay is necessary to store the same amount of information. This

corresponds to a storage density, which is 10'3 times higher.

Almost together with the invention of the cuneiform, the first competitive product was
developed: The Egyptian hieroglyphs, which were based on writing symbols with ink on
papyrus. From this point in time, writing was continuously refined until finally electro-
mechanical data storage was developed together with the first programmable computer —
the Zuse Z3 in 1941. In the early 1970’s, the first semiconductor memories were developed
and started an enormous progress in data storage density and access times. The following
digital revolution, well described by Moore’s law [4]], created a large demand for storage
technology.

Not only the economic progress, but also the pleasure of personal entertainment gener-
ated this demand for data storage technology. Several technologies have been developed to
fulfill the various requirements. On the one hand, large amounts of electronic storage ca-
pacity are necessary for data backup and -protection purposes. These data should better not
be stored on mobile devices, but rather in safe buildings (data centers). There, technologies
like magnetic tapes and magnetic hard disk drives are employed to retain the information.
These technologies have random access times of milliseconds to seconds [3]] but reasonable
transfer rates once the device is positioned. There, information are stored in the differ-
ent orientation of the remanent magnetic field of ferromagnetic domains on tapes or discs.

These data are even retained without supply of power so that this memory is called non-
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volatile. These properties make it perfectly suitable for data backup. On the other hand,
there is an enormous market for mobile data storage: "Mobile DRAM Market to Grow 71
Percent in 2011” to 2.9 billion gigabits [6] with about 20 US-$ per gigabit in 2010. Here,
light-weight memory is required with large capacity, low power-consumption and short ran-
dom access times. Currently, the ideal memory with all these properties is missing: Either
very fast dynamic random-access memory (DRAM) can be used, which is volatile, i.e. the
stored information are lost if the voltage supply is interrupted. Therefore, these memories
consume a significant amount of power even without operation. Alternatively, Flash mem-
ory [7] can be used, which is non-volatile but significantly slower than current DRAM [8]].
Therefore, combinations of this memory are used in most mobile devices — sometimes even
in combination with a hard disc drive, thereby creating an additional level of storage in a
single device. This combination of technologies is complex and therefore expensive and
power-consuming and the unification of the different memory types in a single device is
highly desirable from the perspective of both, manufacturer and consumer, because it al-
lows for the cheaper manufacturing of products with higher storage density and therefore
higher mobility.

One potential concept of such a unified memory technology is the phase-change random
access memory (PCRAM), which is based on the cycling of a so-called phase-change mate-
rial (PCM) between its amorphous and crystalline phases. Its invention dates back to 1968,
when S. Ovshinsky published the first proof of principle [9]. This switching process is non-
volatile in nature, very fast [8]] (less than 1 ns) and works even in small volumes [[10] (films
as thin as 2 nm). Thus, the most fundamental requirements for a unified memory technology
have been shown and the production of working devices is based on an optimization of the
materials’ properties. Therefore, it is the aim of this thesis to contribute to the understanding
of the fundamental physical mechanisms, involved in the switching of PCMs.

This introductory first chapter will continue by explaining the non-volatile switching (or
phase-change) mechanism in more detail in Sec.[I.2] followed by a discussion of the nec-
essary properties of the materials employed (cf. Sec.[I.3). These properties will be brought
in the framework of previous scientific work in Sec.[T.4] from which questions for scientific

work are derived.

1.2 Non-volatile data storage with phase-change materials

PCMs are a rare class of compounds, which can be rapidly cycled between an amorphous
and a crystalline phase. These different atomic arrangements induce changes in the macro-
scopic properties, like the optical reflectivity and electronic resistivity [[L1]. The change
in optical reflectivity is commonly employed in rewritable optical discs, while the con-
trast in electronic resistivity is utilized to develop resistive random access memory devices
(PCRAM). These are beneficial as compared to common Flash memory due to their faster
switching times [12], but also due to their inertness against external sources of radiation

[13]] (p.84). Since they are non-volatile, they can bridge the gap between fast, but volatile
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DRAM and non-volatile, but slower Flash memory.

The fundamental physical mechanisms involved in the switching are a crystallization
transition from the amorphous phase (SET operation) and a quenching process, upon which
the material is vitrified (RESET operation) [12], cf. Fig.@ These two operations and
the scientific challenges related to their optimization will be discussed in the following.
The RESET operation is based on the vitrification and is mainly limited by the heating and
cooling rates of the device. The most significant properties of the phase-change material
influencing the vitrification are the melting temperature 7,, the thermal conductivity x and
the specific heat C,,. These mostly thermodynamic properties of phase-change materials
will be discussed in Sec.[/} The design of memory devices and their improvement is dis-
cussed e.g. in the review article by Wong etal. [12]. The fast crystallization mechanism
(SET operation) on the other hand strongly depends on the employed material. It is the
process, which usually limits the switching speeds of phase-change memories [12]]. Its op-
timization involves the selection of specific materials, i.e. design-rules are necessary, which
can be derived from a systematic analysis of macroscopic and microscopic properties and
should finally reveal, which atomic mechanisms control the speed of the crystallization pro-
cess. Therefore, this thesis will focus on the investigation of microscopic properties and in
particular on the atomic structure of both, amorphous and crystalline phase-change mate-
rials (cf. Chpt. ) and on the influence of thermodynamic properties on the crystallization
mechanism (cf. Chpt.[7). From a scientific point of view, “the deepest and most interest-
ing unsolved problem in solid state theory is probably the theory of the nature of glass and
the glass transition” [[14], borrowing Nobel price winner P. W. Anderson’s words. Phase-
change materials are an extreme case of glass forming systems, whose properties can be

used to verify existing models and to extend our understanding of glass formation.

PC cycle "reset"
melting
"seth { lquench
glass transition prm—

Temperature ——

ambient \

Time ——

Figure 1.2: Thermal cycling of a phase-change material is accomplished by applying differ-
ent heating pulses. A low intensity pulse crystallizes the amorphous material by
heating it above the crystallization temperature (which roughly equals the glass
transition temperature in phase-change materials [15]]). A pulse of high intensity

can melt the material locally, so that it is vitrified upon cooling.
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1.3 What is a phase-change material?

Before we can turn to a discussion of the physical properties and the scientific questions
related to phase-change materials, it should be clearly defined, what requirements exist for a
phase-change material. These criteria are essentially derived from the expectations towards
a phase-change memory device and therefore, this discussion will not go into the details of
the complex challenges, which occur when a cost optimized mass production of PCRAM
shall be started for the first time.

This collection of requirements is summarized in Tab.[I.} where every property is sup-
ported by the value for the most common phase-change material, Ge,SbyTes. The most
crucial feature of every phase-change material is certainly the large difference between the
crystallization rates at ambient conditions and high temperature. The crystallization rate at
ambient conditions is usually too low to be experimentally accessible and is therefore ex-
trapolated from the crystallization rate at higher temperature by assuming an Arrhenius-like
behavior. For Ge,Sb,Tes, the temperature at which the material crystallizes after 10y is ex-
trapolated as 343 K [[16]]. This value is sufficiently above ambient temperature for most pur-
poses (except e.g. automotive application). The maximum crystallization rate is usually too
high in order to follow the transition in-situ by common experimental techniques. A valu-
able parameter to describe the crystallization speed is the critical cooling rate. It measures
the lowest cooling rate, with which the liquid phase of the PCM needs to be quenched in
order to reach the glass transition temperature without crystallization. This critical cooling
rate can be estimated from the switching characteristics [17] to be approx. 3.4-10° K/s. This
high value ensures that the crystallization process can take place in only some nanoseconds,
which enables fast data storage. It further points out that most time-resolved experimental
techniques are at their limit of time resolution and that pump-probe experiments are the

most feasible technique to characterize the crystallization in-situ.

The specific heat up to the melting temperature and the additional latent heat of melting
define the amount of heat, which has to be released in the active material in order to per-
form the RESET operation. It is desirable to reduce both, melting temperature and latent
heat, because the RESET operation requires the highest amount of electric energy. In order
to develop a device with low power consumption, these values have to be kept as low as

possible.

There are several further parameters related to the ability to retain the written infor-
mation over a longer time. These are the resistance drift of the amorphous phase, which
is related to a structural relaxation [18]]. The relaxation towards the ideal glassy state is
driven by a reduction of the free enthalpy and is accompanied by a change in the electronic
conductivity. This change could be neglected, if the contrast between the amorphous and
crystalline conductivity is sufficiently large and if only two levels of conductivity need to be
distinguished in a phase-change memory cell. But in order to increase the storage density
of phase-change memory, multi-level storage is desired. Then, many more levels need to

remain distinguishable over long times so that resistance drift becomes an important param-
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Table 1.1: Materials research related requirements for phase-change materials. All proper-

ties are given for Ge,Sb,Tes, the material of choice for CD-RWs.

Property Requirements Value for Ge,SbyTes  Reason

Crystalliz. rate (elevated temp.)  High crit. cooling rate 3.4-10°K/s [17] Fast crystallization

Crystalliz. rate (ambient temp.) ~ As low as possible 10y at 343 K [16] Long term data retention
Crystallization temperature Signific. above 423K [12] 428 K (cf. Chpt. Data retention

Melting temperature As low as possible 900K [19] Energy for RESET operation
Resistance drift Low drift index v at 323K 0.14 [20] Long term data retention
Property contrast Large ratio o/07, > 1000 [21] Read-out & multi-level storage

eter to reduce in order to allow for higher storage densities. The results from a study of the

model system GeTe-SnTe are presented in Chpt.[A]

1.4 Design-rules and Motivation for this thesis

The aim of materials research on phase-change materials is to develop design rules, which
predict new compounds with equal or even more suitable properties. Also the design of
specialized materials, e.g. for higher operating temperatures, could be possible by such
rules. These are usually derived from experimental and calculated data of microscopic and
macroscopic properties. Several such design rules have been proposed, which are focused
on one or two specific properties. They will be summarized in the following, since in
particular the combination of these results will provide a scheme, on which the prediction

of new materials can be based.

1.41 Tg/Tm rule

The crystallization rate, X, where x is the fraction of crystalline volume, of an undercooled
liquid material has a specific temperature dependence. In phase-change materials, this crys-
tallization rate has to depend significantly on temperature in order to combine the two as-
pects of fast switching times and long data retention. We can therefore wonder, which phys-
ical properties describe this behavior and how they can be used to identify phase-change
materials. Crystallization rates are usually depicted in the so called TTT-diagram, where
temperature and time are plotted on the axes and contour lines give the time it takes to
crystallize a specific fraction xg of the undercooled liquid material at a given temperature.
Below the glass transition temperature T, and above the melting temperature 7',, no trans-
formation occurs. A rough estimate was derived by Kauzmann in 1948 [22], that the width

of this transformation window is given by
T,/Tn = 0.66. (1.1)

This estimate was roughly confirmed by a compilation of the glass transition temperatures

of 108 compounds by Gutzow et al. [23]. Between T, and T,,, however, the transformation
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Table 1.2: T, rule for several glass forming materials. The table shows that indeed T is

particularly low for phase-change materials.

Compound T,

SiO, 0.84 [26]
GeO, 0.65 [26]
Se 0.61 [26]
Fe,B 0.49 [26]
AgelngSbsyTerg  0.56 [25]]
Ge,Sb, Tes 0.49 [25]

time depends strongly on temperature (cf. Sec.[6.I.T] for details). It was proposed that this
region, limited by T, and T, is very broad for a material that has a large nucleation rateEI,
ie. T,y = Tg/T,, is very low. Turnbull simplified an expression for the nucleation rate
and predicted that the nucleation rate is largest in those materials, where the ratio T, /T, is
lowest [24], i.e. where the temperature window between T, and T, is large. These materials
would need to be cooled very rapidly to obtain a glass. Materials with large T,, could
even be vitrified at slower cooling rates and therefore crystallize more slowly. Kalb et al.
could show that indeed the value of T, for the phase-change materials AgeIngSbsoTez9 and
Ge,Sb, Tes is rather low [25]], cf. Tab.[1.2]

Glass forming materials can be classified additionally by their kinetic fragilityE] m, which
is defined as the deviation of the temperature dependence of viscosity from the Arrhenius
behavior, i.e. [28]

_ 0logon(T)

oF) s,

Unfortunately, no clear relationship can be found between the T, /T, value and the fragility

(1.2)

m [27], as also the collection of data by Nascimento and Aparicio suggests [29]. Up to now,
only one measurement of the fragility of a phase-change materials has been published and
a strong deviation from the Arrhenius behavior was obtained with a fragility of m =~ 90 for
Ge,SbyTes. From the knowledge of thermodynamic properties like the excess specific heat
at the glass transition AC,(T,) and the latent entropy of melting AS,,, the fragility can be

calculated [27]].
ACP(Tg) _ m — Mmin

AS m(l — Trg) + Mmin Trg ’

(1.3)

where mpy,i, = log; 0(1¢ /7« is the minimum slope of the viscosity curve, taking into account
the shortest relaxation times, 7o, ~ 1074 s and the relaxation times at the glass transition,
7¢ = 100s. Further, the driving force of crystallization is the change in free enthalpy AG.
Therefore, measurements of thermodynamic properties can be used to classify phase-change

'Nucleation refers to the formation of crystalline grains (nuclei) in an amorphous matrix and is followed by

the continuous growth of these grains.
2The kinetic fragility can differ from the thermodynamic fragility of the undercooled liquid [27], which will

not be discussed here.
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materials further. Such measurements have been performed in the framework of this thesis
and will be discussed in Chpt.[7]

1.4.2 Atomic structure contrast

The transition process in PCMs is based on the (meta-)stability of an amorphous and crys-
talline phase at ambient conditions. These structures must have different macroscopic prop-
erties, to allow for an easy reading of the stored information. This contrast is not usually
observed upon crystallization in glass forming systems (cf. e.g. the crystalline modifications
of silicate glasses). In PCMs, this property contrast is large and in conclusion it is natural to
wonder, whether also the microscopic, atomic structures are different in both phases. This
question will be addressed in Chpt.[d]and in the following, previous results for phase-change

materials are briefly summarized.

Many amorphous semiconductors like Si, Ge, but also III-V compounds like GaAs and
GaSb are well described in the continuous-random-network (CRN) model [30, [16]. This
model for an amorphous material has many features in common with the crystal lattice:
Coordination numbers, nearest-neighbor distances and the average bond angle. The only
difference lies in the larger variance of bond angles and, of course, in the absence of long

range order.

An investigation of the local order in GeSb,Te, revealed that the local atomic environ-
ment changes upon crystallization even in those aspects, which are considered to remain
unchanged in common semiconductors. This local environment can be probed by extended
x-ray absorption fine structure (EXAFS) independently for each element contained. Specif-
ically, nearest neighbor distances were found to increase significantly upon crystallization
from 2.61 Ato 2.83 A [31] (values for the Ge-Te distances from EXAFS analysis). EXAFS
necessarily relies on the comparison with a theoretical model, if quantitative information
like atomic distances shall be obtained. The analysis of EXAFS data is very accurate only if
the correct model for the local atomic configuration is chosen. The choice of this model has
been a matter of constant debate and it can be easily shown that the models used so far are
unable to reproduce the average nearest neighbor spacing, that is observed in scattering ex-
periments combined with pair distribution function (PDF) analysis. In their analysis of the
amorphous phase, Kolobov et al. [[31]] obtained nearest neighbor distances of 2.61 A for Ge-
Te and 2.85 A for Sb-Te distances. In the crystalline phase, on the other hand, bond lengths
of 2.83 A and 2.91 A were obtained for Ge-Te and Sb-Te distances, respectively. The result-
ing average bond lengths are compared to the results of a PDF analysis in Tab.[I.3] The data
show a significant deviation — 2% in the amorphous and 4% in the crystalline phase. This
deviation is clearly larger than the precision of both techniques, which is better than 1%.
Since the PDF analysis technique is not based on comparison with some structural model,
it can be considered reliable. In Chpt.[3] this deviation between EXAFS data and PDF
analysis will be explained and a different data analysis will be presented, which accurately

reproduces the average nearest neighbor distances from EXAFS data.

It was further proposed that a specific switching mechanism could be responsible for the
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Table 1.3: Average nearest neighbor spacings in amorphous Ge,;Sb,Tes, measured at am-
bient conditions. A significant deviation is found between the values obtained
by EXAFS and PDF analysis. In Chpt.[3] the origin of this deviation will be ex-
plained and an EXAFS analysis will be presented, which is in line with the PDF

analysis.
Phase EXAFS [31] EXAFS [32] PDF [33]
Amorphous  2.73 A 2.73A 278 A
Crystalline 2.87 A n/a 2.99 A
Contrast +5% n/a +8%

fast crystallization of Ge-based phase-change materials [31]]. This mechanism is based on
the assumption that the Ge atoms are tetrahedrally coordinated in the amorphous phase and
switch to an octahedral coordination in the crystalline phase. The basic structural features
will be re-investigated in this thesis, but it is stressed that the derivation of structural models
alone cannot explain the kinetics of the transition and therefore cannot explain the speed
of the crystallization — just like the knowledge of the final and initial states are insufficient
in Fermis golden rule [34]] to predict the transition time. This becomes possible only if the
interaction operator is known as well. In the case of crystallization, this interaction operator
must be based on thermodynamic (e.g. the driving force AG) and kinetic properties (e.g. the

viscosity 1) of the system, but no such operator is known so far.

The analysis presented throughout this thesis does not go so far as to derive a crys-
tallization mechanism from the static structures of both phases. The atomic structures of
phase-change materials are only used to identify a unique property contrast between the
local atomic structure of both phases, which is not observed in other glass forming materi-
als. It can be stated already that all investigated phase-change materials changed their local
atomic configuration upon crystallization. This thesis will therefore focus on systematic
differences between the atomic rearrangement of various phase-change materials.

Some differences among phase-change materials can be observed from their crystalliza-
tion behavior. It is often written that some phase-change materials like GeTe and Ge,Sb, Tes
crystallize in a nucleation dominated way, whereas Sb-based materials like Ag4In3Sbg;Tesq
crystallize growth dominated. This difference is indeed suggested by TEM images, which
are depicted in Fig.[I.3] They were obtained by laser-recrystallizing the respective material
under various external conditions. On these length scales, however, the dominant mecha-
nism can be observed from the many tiny crystallites in Ge,Sb,Tes, which imply that the
crystal nucleation rate is very high. In Ag4In3Sbg;Tes, on the other hand, larger crystal-
lites are observed — indicating that only few nucleation events were necessary for the nuclei
to grow all over the heated volume. Therefore, a distinction is commonly made between

nucleation- and growth dominated materials. It has to be kept in mind, however, that the
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200 nm
(a) Nucleation dominated crystallization in (b) Growth dominated crystallization in
Gez szTes . Ag4Il'l3 Sb67 Tez(, .

Figure 1.3: TEM images of crystallized spots in GST and AIST: Nucleation and Growth.
Images from [33]]

dominating mechanism inside a phase-change memory cell depends on the geometry of the
cell — most significantly on the ratio of interfaces to volume. In this way, even in the nucle-
ation dominated material GeTe, features of growth dominated crystallization were observed
[8]. This observation, however, does not affect the basic crystallization mechanism with
nucleation and growth processes, which can be clearly distinguished from optical switch-
ing experiments as shown in Fig.[T.3] This seemingly different crystallization mechanism

motivates further investigation of the local atomic property contrast in those compounds.

1.4.3 Resonance Bonding

Since the atomic arrangement in crystalline phase-change materials differs from that of the
amorphous phase, it is reasonable to suspect that a change in the bonding mechanism might
occur, which might be responsible for the contrast in many properties — most directly for the
contrast in optical reflectivity. Indeed, resonant covalent bonds were found in the crystalline

phase as compared to the ordinary covalent bonds of the amorphous phase.

The concept of resonance bonding was first discussed by Pauling in 1939 [36]: He pro-
posed the concept to describe the bonding in a benzene ring, where the average distance
between C atoms lies between that of single- and double-bonds. Therefore, Pauling inter-
preted the bonding in benzene as a resonance between single- and double-bonds between
adjacent atoms. Therefore, he suggested to add two quantum mechanical wavefunctions of
the electronic configuration: One, where the alternation of single and double bonds starts
to the one direction along the ring and another configuration, where the alternation starts to
the opposite direction. The description of the electronic state by the superposition of these

degenerate states lowers the energy by the so-called resonance energy AE,.

10
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The resonance bonding in phase-change materials is based on the same concept, ex-
cept that it takes place in three dimensions: Most PCMs crystallize in a cubic rock-salt like
structure with three p-electrons per atom. These electrons form covalent bonds to the six
neighboring atoms, but there are too few electrons to saturate all six bonds. Hence, the
electronic configuration can be described as a superposition of saturated covalent bonds in
opposite crystallographic directions. This superposition again reduces the energy of the to-
tal system and the bonds remain unsaturated. In contrast to the benzene ring, where both
wavefunctions remain perfectly degenerate, static atomic displacements occur in crystalline
PCMs. These displacements can be described as an unequal superposition of wavefunc-
tions. They are driven by an additional reduction of the electronic energy in a Peierls-like
mechanism in three dimensions. Thereby, they localize electronic charge and lift the lo-
cal octahedral symmetry. The atomic displacements therefore limit the effect of resonance
bonding and will be studied extensively in this thesis (cf. Chpt.[3). The atomic displace-
ments can also generate configurational entropy, which is relevant to the driving force of
crystallization AG = AH — TAS (cf. Chpt.[6).

Resonance bonding in phase-change materials was first observed by their large optical
dielectric constante,, [37], which is the most direct experimental evidence. Lucovsky and
Littlewood mention three additional criteria, by which resonance bonding can be observed:
These are the energy gap E, [38], the transverse electric charge e7. [38] and the transverse
optical phonon frequency wro [39]. The transverse electric charge will be referred to in
this thesis as dynamic charge Z*, since both terms are used synonymously [40] although
their definitions are somewhat different. However, the latter term is much more directly
related to the features of resonance bonding, cf. eq.[[.4 The mathematical definition of
the dynamic charge is introduced for a rock-salt crystal with covalent bonding, where a
distortion of atomic planes along the 111-direction is modeled by u, the short bond length,
and an opposite long bond length u,, which is related to u via the average bond length #:
u = 2it — up. Then, the dynamic charge of the solid Z*(u) is given by the change of the

electronic dipole moment of the diatomic bonds, dp for a variation of the atomic distance,

dp(u)
ou

Z'(u) = . (1.4)

The transverse effective charge also contains the contribution from the static charge [41]], i.e.
the different charge of the atomic cores, which is negligible in all materials studied here [42]].
Therefore, it must be the dynamic charge, which dominates the transverse effective charge.
The effect of a large dynamic charge can be described as follows: If an atom is displaced
in such a solid, a particularly large amount of electronic charge is reorganized (shifted) due
to this atomic displacement. This leads to a large increase of the dipole moment associated
with the asymmetric distribution of electronic charge. It is therefore not surprising that also
the electronic polarizability, €., — 1 is large in these systems. Lucovsky et al. showed that
indeed the relationship

(Z°) = a(en— 1) (1.5)

holds within good approximation of a =~ 1 [38]. The best indicator for resonance bonding

11
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is the experimentally accessible optical dielectric constant, and since it occurs only in the
crystalline phase, where neighboring p-orbitals are aligned, a large contrast in €, is observed

between the amorphous and crystalline phases.

Experimentally, a large optical dielectric constant was found for all investigated crys-
talline phase-change materials. The electric field E in the optical regime excites the elec-
tronic system in the solid. In the optical frequency regime, the atoms will not significantly
follow this excitation, so that only the electronic system is displaced. It was found by den-
sity functional theory (DFT) calculations that static atomic displacements from the high-
symmetry rock-salt lattice site reduce the optical dielectric constant [42]. This trend can
be understood from the more significant localization of charge in the more covalent bond.
The static atomic displacements therefore reduce the effect of resonance bonding. These
displacements can be of different nature, because the atoms can be displaced in a random
direction (e.g. in the cubic phase of GeSb,Tey4) or along a specific crystallographic direction
(e.g. in a-GeTe and in the hexagonal phase of GeSb,Tes). The nature of these displace-
ments will be investigated throughout this thesis and will be related to the Peierls effect and
distortions originating from chemical disorder.

As mentioned before, also the energy gap and the frequency of transverse optic (TO)
phonons are related to resonance bonding. In particular the scaling of the energy gap with
the optical dielectric constant is given by [38§]]

hw) 2
€0 =14+—-. (1.6)
E,
This leads to the rare situation, in which the crystalline phase has a smaller band gap than
the amorphous phase. In common semiconductors (e.g. Si) the energy gap of the amorphous
phase is usually smaller due to tail states in the gap (caused by disorder). The criterion of
TO phonon modes is experimentally most challenging, since it relies on the softening of the
TO mode. This softening is observed in many IV-VI compounds, where an atomic distortion
along the cubic 111-direction is *frozen in’ at low enough temperatures. This instability is
a direct cause of the unsaturated bonds [38]]. Although this mode softening is a fingerprint
of resonance bonding, it is the only criterion, which cannot be transferred to the amorphous

phase without extending the definition of an LO mode[]]

1.4.4 Map for phase-change materials

The aim of creating a “treasure” map to identify the most suitable PCM for a specific ap-
plication was brought one step closer, when a coordinate scheme was applied to categorize
those materials, which have on average 3 p-electrons and crystallize in a (distorted) rock-
salt structure. It was found that all phase-change materials are located in a specific region

of this map. The coordinate scheme is based on purely atomic parameters, which gives

3A vibrational mode in a crystal is labeled LO, when the vibrations take place in the direction of the wave
vector of the excitation. However, wavenumber is not a well-defined quantity in amorphous materials so that no

clear definition of TO and LO is yet established for amorphous materials.
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the map a quite significant predictive power over the class of materials to which it can be
applied.

The axes of the map are hybridization and ionicity of a material. The hybridization is
related to the difference of the radii of s and p-electrons at the same atom. A strong hy-
bridization implies that this difference is particularly small. The ionicity on the other hand
is related to the difference of the radius of the p-electrons on the anion and cation sublat-
tice. A large ionicity implies a large difference of these radii. Phase-Change materials are
located in a corner of this map, where both, ionicity and hybridization are very low. Indeed,
no phase-change materials with a significant ionicity are known so far. It is nevertheless
desirable to develop a coordinate scheme for materials with more or less than 3 p-electrons

per lattice site.

1.4.5 Transport properties of phase-change materials

It is well known that amorphous solids have a very low thermal conductivity, because the
topological disorder leads to a strong phonon scattering and reduces their mean free path
(cf. [43]], p.58). Therefore, it is no surprise that amorphous phase-change materials have a
low thermal conductivity as well [44]. The thermal conductivity of amorphous Ge,Sb,Tes
was found to be 0.14 W (K m)~!. Even more surprising is the fact, that even crystalline
phase-change materials have a rather low thermal conductivity of only 0.39 W (K m)~! [44].
In addition, they have a significant electronic conductivity so that they resemble the ideal
properties of thermoelectric materials, i.e. "phonon glass, electron crystal’ quite closely.

The low thermal conductivity in crystalline phase-change materials might be related to
the significant sources of disorder due to substitutional disorder on the one hand (disorder
of the occupation of lattice sites, cf. Secs.[I.5]and and the resulting atomic displace-
ments from their ideal lattice sites. This argument, however, was not yet proven because
the situation in the crystalline phase with its translational symmetry of lattice sites is in
principle different from that encountered in amorphous materials. However, the random
sequence of strongly varying masses (vacancies and heavy atoms) in these crystals might
impose significant challenges for thermal conduction by phonons. Acoustic phonon modes
are usually responsible for thermal conductivity of the lattice. Therefore, changes in the
thermal conductivity are caused by changes in the local atomic structure. Even in those rare
cases, where the optical modes significantly reduce the thermal conductivity by a strong an-
harmonic coupling mechanism [45]], measurements of the atomic structure and its thermal
expansion can explain transport properties. This coupling was found in the rock-salt phase
of the IV-VI compound PbTe, which is not too different from the crystalline phase-change
materials investigated here. Therefore, also the lattice dynamics of phase-change materials
will be discussed in Chpt.[5]

Furthermore, also the electronic properties of the crystalline GeTe-Sb, Te3-based PCMs
show surprising features: It is the first three-dimensional crystal in which a metal-insulator
transition occurs entirely due to changes in atomic disorder [21]]. This atomic disorder in

turn is irreversibly controlled by the annealing temperature. At lowest annealing conditions,
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1.5. Phase-change compounds

the crystalline phase contains several sources of atomic disorder: Local atomic displace-
ments, substitutional disorder and a large concentration of vacancy. This phase is semicon-
ducting. At higher annealing temperatures, all these sources of disorder are removed. It is
not yet clear, which of these sources of disorder is (or are) responsible for the transition.
Therefore, the annealing temperature dependence of this disorder will be investigated by
probing the local atomic environment as well as the lattice symmertry (cf. Chpt.[3)). Further

influences on thermodynamic properties will be discussed in Chpt.[7]

1.4.6 Resistance drift

An important challenge in the large scale application of phase-change memory devices is
the control of the resistance drift in the amorphous phase. The crystalline phase, on the other
hand, does not show such drifting behavior at the commonly observed temperatures up to
350 K. The term resistance drift refers to the change of the electrical resistivity with time
even at room temperature [46]. It can become critical, if the states involved in the mem-
ory operation have very similar resistances. This is particularly the case, when several bits
are encoded as different resistances — so called multi-level storage. Several technological
mechanisms have been proposed in order to reduce the impact of resistance drift on the op-
eration, e.g. by encoding information only in the resistance difference between neighboring
cells, which show a similar drift behavior. The resistance drift phenomenon is based on a
structural relaxation mechanism [[18]] in the amorphous phase, but since the atomic structure
of many phase-change materials has been described controversially, it is not yet possible
to identify this relaxation mechanism. Therefore, the structural model for the amorphous
phase of several phase-change materials has been investigated in the framework of this the-
sis. It was shown in particular that the resistance drift of amorphous GeTe can be reduced
by substituting several percent of the Ge atoms by Sn [20]. These compounds were shown
to have a more stable resistance and their structural differences will be discussed in Chpt.[A]

1.5 Phase-change compounds

From the discussion presented so far, one can derive already that the atomic bonding mech-
anism in phase-change materials is very complex: As covalency and ionicity are both very
low, the materials are just at the transition between semiconductors and metals. This critical
state of bonding ensures that large property differences can be expected from small varia-
tions of the local order. Furthermore, the directional bonding of covalent bonds is necessary
to stabilize the amorphous network and prevent the atomic structure to relax to closest pack-
ing. It is therefore not surprising that all phase-change materials consist of those elements,
which are at the transition between metals and non-metals, also known as metalloids (some-
times also referred to as semimetals). Of these metalloids, Ge, Sb and Te are the most
commonly employed materials — sometimes with the addition of metallic elements like Ag,

In and Sn. In the following the known classes of phase-change materials will be discussed.

Compounds from the GeTe-Sb, Tes-system are commonly employed in CD-RWs. Since
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1.5. Phase-change compounds

the crystallization temperature of SbyTes is too low for applications, only those materials
with a sufficient content of GeTe can be employed as phase-change materials. Therefore,
Ge;,Sb,Tes is employed in CD-RWs. Most materials from this pseudobinary system possess
a meta-stable cubic phase, which is composed of two sublattices like in a rocksalt structure
(cf. [47] for GeSbyTe7, [48] for GeSb,Tes and [49] for Ge,SbyTes). One sublattice is fully
occupied with Te atoms, while the other contains some Ge and Sb atoms and the remaining
lattice sites are empty. The empty sites (vacancies) are in fact energetically favorable, be-
cause they reduce the average number of p-electrons per lattice site to three and therefore
shift the Fermi energy in the band gap. Therefore, these vacancies are intrinsic [S0] (in con-
trast to those non-intrinsic defects, which are formed due to the entropic contribution —7'S
to the free enthalpy G). The disorder of the occupation of the second sublattice induces a
significant amount of configurational entropy (cf. Sec.[6.2.3)), but at the same time creates
large atomic distortions. This can be seen from the large Debye-Waller factor even at very
low temperatures, as well as from the splitting of atomic nearest neighbor spacings to short

and long distances, which is observed from an analysis of EXAFS data.

Another class of phase-change materials is based on Sb,Te, whose crystallization tem-
perature is too low (383 K [51]) for application. Substituting 4% Te with Ag and 3% Te with
In increases the crystallization temperature to 451 K (cf. Sec.[7). Due to its higher optical
contrast at shorter wavelengths, AgsIn3Sbg;Tess is a well known phase-change material
used in DVD-RWs.

Sb-based phase-change materials are probably the structurally most simple phase-change
materials. Of this class, Ge;5Sbgs is the most well-investigated material. Although it crys-
tallizes rapidly [52] and has a high crystallization temperature of 512 K [53]], the material
might be difficult to employ in phase-change devices, because it phase separates upon crys-
tallization at a heating rate of 5 K/min. It is not yet clear, if this phase-separation also takes

place upon rapid switching in electronic or optical devices.

Several other compounds have been investigated as well, which are possibly phase-
change materials as well: In3SbTe, (IST) is a glass forming compound as well and crys-
tallizes rather rapidly at about 515(10) K, depending on the film thickness. Thinner films
crystallize at higher temperature, which is beneficial for scaling properties. Upon crystal-
lization, the electronic resistivity is changed by more than seven orders of magnitude [54]].
Crystallization times of 100ns were also observed in phase-change cells [55]], so that in
principle all requirements for a phase-change material are fulfilled. It is well known, that
IST crystallizes in a cubic structure, but it will be shown that also IST consists of a rocksalt-
like crystal structure with one sublattice fully occupied with In, while the second sublattice
contains Sb and Te atoms (cf. Chpt.d.3). Therefore, also IST might contain significant
atomic displacements and will be studied here. IST also phase separates at higher annealing
temperatures, where crystalline InSb is formed [56]].

Another potential phase-change material is SnSe,, which is exceptional because it is

based on Se, not on Te. Indeed, the crystallization times observed are significantly longer
than those of Te-based materials [S7], p. 126. SnSe, crystallizes at 493(5) K [38] into a
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1.6. Structure of this thesis

layered, hexagonal structure and changes its electronic resistivity by about five orders of
magnitude. No phase separation was observed even after annealing at higher temperatures.
There is, however, a large change in density upon crystallization, which could hamper its
application in phase-change memory. The amorphous phase has a density of 4.77 gcm™3,
which increases upon crystallization by 21% to 5.75 gcm™ in the crystalline phase [58]. It
was shown from the analysis of EAXFS data that this change in density is a result of the sig-
nificant increase of nearest neighbor spacing and coordination number upon crystallization,

[59], p. 108.

The previous summary of different phase-change compounds shows that there is no ob-
vious universal property. An analysis of the local atomic structure in those various materials
might reveal a universal structural motif. The identification of such a structural motif might
help to understand the universal properties of phase-change materials, i.e. the property con-
trast and the thermodynamic properties. Furthermore, several studies of the crystallization
mechanism are based on ab-initio molecular dynamics (AIMD) methods and rely on a model
of the atomic arrangement in the amorphous phase [60, 161]]. Both, the initial and the final
crystalline structure should be in good agreement with experimental data so that highly ac-
curate data are necessary to confirm the calculated models. Therefore, the atomic structure
of both phases is discussed in Chpts. ] and[7]

1.6 Structure of this thesis

This thesis will start with an analysis of the static structure of amorphous and crystalline
phase-change materials. To reveal these, scattering and spectroscopic experiments were
performed. These technique will be explained first in Chpt.[2] of this thesis in order to put
the following data treatment on a solid mathematical framework. This theory will be re-
ferred to in the data treatment in Chpts.[3]and ] Chpt.[3|focussed entirely on the annealing
dependence of the crystalline phase of GeSb,Tey. It will also introduce the application of
all different techniques of structure determination to one specific compound. The aim of
that chapter is to reveal the changes in atomic disorder during the disorder-induced metal-
insulator transition (MIT). The following Chpt.[d] discusses the structural contrast between
the amorphous and crystalline phases for a variety of phase-change materials. Based on an
understanding of the microscopic structure, this thesis continues with an analysis of the in-
teratomic forces in a prominent phase-change material, GeSb, Tey, cf. Chpt.[5] This analysis
is based on the density of phonon states (DOPS), which was obtained from nuclear inelastic
scattering (INS) experiments. The DOPS allows calculating several thermodynamic quan-
tities, like the Debye temperature or the interatomic force constants. These results will
help to find out why the interaction potentials in a crystalline phase are stiffer than those
of the respective amorphous material. These results will be combined with a discussion of
the thermodynamics of glass forming materials Chpt.|[6] which focuses in particular on the
role of entropy upon crystallization. Calorimetric analyses are presented in Chpt.[7] which

presents a method to determine the entropy difference in glass-forming systems. Finally,
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1.6. Structure of this thesis

the knowledge of atomic disorder and thermodynamic data will be combined to discuss the

nucleation and growth mechanisms of the crystallization.

17



CHAPTER 2

Methods of microscopic structure
analysis

It was shown in the introduction (cf. Sec.[I.4)) that the difference in atomic structures and the
corresponding property contrast is the fundamental principle of data storage in phase-change
materials. Therefore, an investigation of material properties and stoichiometric trends in
these materials should start from a detailed analysis of the atomic structure. From a knowl-
edge of the atomic structure on different lengths scales, many macroscopic properties of a
material can be determined by empirical laws and/or by complex quantum mechanical cal-
culations. Therefore, the atomic structure of phase-change materials will be investigated by
several different techniques, which focus on different lengths scales of the atomic ordering.
Diffraction e.g. probes the short and long range order of materials, whereas spectroscopic
techniques like EXAFS probe the short range order with a special sensitivity for chemical
ordering. These complimentary techniques have been employed and their theory will be
explained in the following. Wherever possible, the theories behind all techniques will be
brought in relation.

In order to put the analysis of experimental data on a solid mathematical framework,
the theory of the applied methods will be summarized in this chapter. Several techniques
have been employed also because the atomic structure of phase-change materials is rather
complex due its different types of disorder depending on the investigated length scales. Fur-
thermore, many methods of structural analysis rely on the periodicity of the investigated
structures, which is simply absent in the amorphous phase. Therefore, different techniques
have to be employed, like pair-distribution function (PDF) analysis of X-ray and neutron
scattering experiments and X-ray Absorption Spectroscopy (XAS). Even after switching to
the crystalline state, many phase-change materials do not possess the kind of translational
symmetry which is desired for a Rietveld refinement of X-ray diffraction patterns: Many

materials consist of two sublattices, of which both have significant atomic displacements
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2.1. General scattering theory

even at 0 K. Furthermore, one of the sublattices is almost randomly occupied by a fraction
of more than 10% vacancies. This high degree of disorder motivates the use of methods,
which do not rely on translational symmetry also for the analysis of the crystalline phase.
This chapter begins with a fundamental treatment of X-ray and neutron scattering and con-
tinues to discuss the differences between elastic and inelastic scattering. Inelastic scattering
contains information on the density of vibrational states and will become important later. Fi-
nally, also x-ray absorption spectroscopy is discussed as a complimentary method of struc-
tural analysis. The formulae given in this chapter will be of use during the data analysis
presented in Chpts. [3|and

2.1 General scattering theory

Let an incident particle (either photon or neutron in this study) of k; be scattered to the state
l?f. This situation has six free parameters - neglecting any other property of the scattered
particle, like e.g. the spin state. Since this combination of vectors, including the scatterer can
be rotated in any direction without changing the scattering condition, only four parameters

remain free to chose. These can be expressed in terms of the momentum transfer

- - -

J=k-k 2.1)
for both neutron and x-ray scattering and the energy transfer AE = E; — Ey = E

h2
— (132 - lp) for neutron scattering, (2.2)
2m ! /

E fic (Il?il - |13f|) for x-ray scattering. (2.3)

If, in addition, the sample has no preferential orientation, which is the case for amorphous
and poly-crystalline samples, only two parameters, e.g. |Q| and E need to be varied to obtain
all available information about the scattering sample. In this case, it suffices to count the
number of particles scattered per unit time to a small solid angle dQ = dS/r* (r is the
distance from the sample to the detector, r2 >> dS, dS the area of the detector) with an
energy E + dE per incident particle per unit time. This is called the double differential cross

section,
d’c
dQdE’

which is of unit m?J~! and is usually given in unit of barns per eV with Ibarn = 1072* cm

(2.4)
2-
The double differential cross section, being the experimentally accessible quantity differs

significantly for the cases of neutron and x-ray scattering. This expression is related to the

scattering potential (i.e. the sample) via (cf. [62], p. 17)

d’o 1kr m

dons = g o G Ve R (B Ea-Er). @)
A Ay

In this equation, N is the number of scattering atoms, m the mass of the scattering particle,

A numerates all possible states of the sample and V(7) is the interaction potential. E, is
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2.2. General Neutron scattering

the energy of the sample in state 4. p, is the probability for the sample to be in the state
A before the scattering event. Here, V(7) is the scattering potential, which is different for
x-ray and neutron scattering, but contains the crucial information about the structure of the
investigated sample. The techniques of neutron and x-ray scattering will be discussed in the
following, based on the approach given in Eq.[2.5]

2.2 General Neutron scattering

The full double differential cross section, Eq.[2.4] of isotropic (amorphous or poly-crystalline)
PCMs can be measured with a time-of-flight (TOF) spectrometer. Large quantities of sample
mass (approx. 1 g) are necessary for these experiments to be possible at high-flux spectrom-
eters. Nevertheless, these experiments could be performed and the theory of these exper-
iments will be discussed first, because they nicely reveal the difference between coherent
and incoherent scattering and the relation to different scattering cross sections. Later in this
thesis, total scattering experiments will be presented, which are a special, energy transfer
averaged case of neutron scattering. There, only do/dQ is measured (by some specific
experimental integration over E).

In the scattering geometry used here, the direction of the incident beam k; is always
kept constant and only the kinetic energy of the incoming neutrons is varied. For a more
convenient theoretical description, the wave vectors should be replaced by scalar quantities.
Therefore, k; is defined as l?,- = &, - k;. Taking into account only the scattering angle 6, it
follows that

Kpki @, = kpki cos(26). (2.6)

Then, the so called scattering parabola can be derived, which determines the maximum

energy and momentum transfers for a specific scattering angle 26 and incident energy E;,

2
E_P_Q

E; 3

- ]— 2. (005(26) + \/0052(26) + QR - 1). 2.7)

A plot of this scattering parabola for the conditions used in various experiments can be
seen in Fig.[2.1] For inelastic scattering, it is desirable to resolve the excitations with the
best energy resolution possible. Therefore, at low temperatures, where the excitations have
to be created (Stokes side), the energy is chosen to be slightly higher than the most energetic
excitation. A large number of excited states exists at ambient or high temperature conditions
so that it is sufficient to measure with neutrons of lower kinetic energy the annihilation of
these excited states (anti-Stokes side). The latter condition is even advantageous because
a better energy resolution can be obtained because of the higher final kinetic energy of the
neutrons. In total scattering experiments, on the other hand, a high momentum transfer is
desired to probe over a large range in reciprocal space so that neutrons of a short wavelength
(0.5 A) have been chosen in this study.

Neutron scattering offers different insights to the structure of matter than x-ray scatter-

ing, because the interaction of neutrons with matter is mediated by (cf. [63], Chpt. 11)
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Figure 2.1: Energy and momentum transfer in a neutron scattering experiment. The lines
show the maximum absolute energy transfer upon creation or annihilation of an
excitation, so that the area enclosed by them is accessible using neutrons of the
given wavelengths. The momentum transfer is further limited by the available
angular range of the detectors.

(1) scattering at atomic nuclei and (2) scattering from magnetic moments. The investi-
gated atoms (Ge, Sb and Te) typically posses only small magnetic moments and hence only
nuclear scattering has to be taken into account. In particular, the scattering by unpaired
magnetic moments of electrons is neglected. Therefore, the scattering at atomic nuclei is
discussed in the following. When the neutron has a wavelength comparable to interatomic
distances, it has about the kinetic energy of ambient temperature — hence the name “ther-
mal” neutron. A quick way to transform energy (and temperature) to wavelength is given
by 1 = 0.286 - E-'/2 A with the kinetic energy E of neutrons given in eV without unit.
With a wavelength of this order of magnitude, the neutron scattering can resolve inter-
atomic distances, but is not sensitive to the inner structure of nuclei, which is on the order of
1075 A. This means that no inner features of the nuclei can be resolved and accordingly that
no dependence of scattering length on momentum transfer is expected for thermal neutron
scattering (so-called s-wave scattering). It suffices to describe the scattering nucleus as a
point particle with a scattering length b = (0/41)'/? of some fm. This scattering length
goes into scattering theory via the application of the so called Fermi pseudo potential (cf.

(641, p. 15),
27Th2 >
V(A= —— ) b;j6(F—R)). 2.8
== Z 107 = R)) 2:8)
This potential contains the mass of the neutron m and a sum over all atoms j in the scat-
tering sample with their scattering lengths b; at position R;. In order to calculate the

wavefunction of the scattered neutron i ¢, given the wavefunction of the incoming neutron
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2.2. General Neutron scattering

Wi = exp (i . (l?if’ - a)it)), a lot more information is necessary. In typical samples with some
10?3 atoms, the number of parameters in Eq. is huge. Therefore, a way was worked out
to analyze the experimental scattering cross sections based on fundamental properties, like
interatomic distances and densities of phonon states. To realize this, the potential is inserted
into the formula for the double differential cross section, Eq.[2.5] (not taking into account

polarization effects. The resulting formula can be simplified to (cf. [62], p. 20)

d’c 1k . .

OGN >0 D (biby)Sy (CE), (2.9)
dd’' jed,jed

Where the sums d and d’ run over all kinds of elements in the sample and j and j* run
over all atoms of element d and d’, respectively. The average, (...), refers to an averaging
over spin and isotope distributions of the corresponding pair of atoms. This equation allows
discussing the origin of coherent and incoherent scattering, which is the aim of the following
paragraphs. Finally, it is desirable to explain the derivation of the density of phonon states
from inelastic neutron scattering and the influence of the different cross sections. Eq.[2.9]
contains the structure factor S ;v (Q E) which will be discussed later. For an uncorrelated

distribution of isotopes, it holds that (b;*b; ) = (b;") - (b ). with

(b*) - (by) = (ba") - bar) + ((ba®) = Ba)*) 6 Sutar. (2.10)

Introducing this equation into Eq. [2.9] the delta functions allow separating the sum over

all atoms in two contributions (cf. [62], p. 20):

deE Nk Z<bd> <bd’>zsu +1 fz bd <bd>2)ZSjj (2.11)

J

coherent scattering incoherent scattering

The first term represents a sum over all distinct pairs of atoms, where each term stands
for the correlation of atom j at time O with atom ;' at time ¢ and therefore contains the
interference terms, which make the coherent scattering. The coherent cross section for
bound nuclei is defined as 0. = 4x(b)>. It can replace <b j*> . <b j/>, when the sample
contains only one element and its isotopes are distributed randomly. o is usually only
slightly smaller than o, given in Tab.[2.1]

The second term on the right side of Eq. [2.11] represents the sum over all atoms and
contributes the correlation between atom i at time 0 with itself at time ¢. It is called the
incoherent cross section and since it only depends on one single species at a time, can be

replaced by the incoherent cross section for bound nuclei: o; = 4rx (<b2> - (b)z).

It is common to define two additional quantities: The total scattering cross section
for bound nuclei: oy = 4r <b2> and the absorption cross section for bound nuclei: o, =
4nb" | k;, where k; is the magnitude of the incoming neutron wave vector and b” is the imag-
inary part of the scattering length, defined as b = b” — ib”’. For the experiments presented

throughout this thesis, " is of negligible magnitude. Scattering lengths are measured in
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2.3. Inelastic Neutron Scattering

Table 2.1: Bound coherent scattering lengths b, total cross sections for bound atoms o
and coherent cross sections oy of the most common elements of phase-change

materials [62]]

Element binfm o,inb o.inb

Ge 8.193  8.60(6) 8.435(4)
Sb 5.641  43(1) 3.99(2)
Te 543 37(2)  3.71(5)

fm, while cross sections are usually give in unit barns, i.e. 1b = 100fm?. A list of bound

coherent scattering lengths can be found in Tab.[2.1]
The scattering function is defined as (cf. [62]], p. 20)

= 1 0 ‘OR ‘OR i
S (Q, E) _ %I <e—tQR/-(O)etQRj/(t)> B g (2.12)

From a single experiment, the partial scattering functions S ;; cannot be obtained, be-
cause just one total scattering function § (é, E) is measured, as shown in Eq. It is
possible, at least in principle, to prepare isotopically enriched samples with the same struc-
ture, which have different scattering lengths. Taking the differences of these structure factors
for enriched and non-enriched samples allows obtaining the partial structure factors as well.
But since the necessary amounts of sample material are rather large in neutron scattering,
these experiments are not regularly performed. We will return to the discussion of structure
factors in more detail in the data treatment of total scattering experiments, where only the
IQI-dependence of §' is measured. For the general purpose of the following data treatment,
the structure factor S will be related to the experimentally obtained double differential cross

section via

o kp o
= —=S(Q,E). 2.1
d0dE = 1, @B (2.13)

2.3 Inelastic Neutron Scattering

2.3.1 Density of Phonon States

Eq. describes the scattering function, which can be partially obtained from an exper-
iment with neutrons. The accessible range is limited by the scattering parabola shown in
Fig. 2.1|for creation (E > 0) or annihilation (E < 0). The density of phonon states (DOPS)
describes the vibrational features of a sample and is of high interest for many materials be-
cause it allows deriving macroscopic properties like the Debye temperature, for example,
and microscopic properties like atomic force constants from one measurement. It is a rare
occasion, that such a multitude of length scales can be probed with a single experiment. The
DOPS can be obtained from the partial structure factor, if the measured Q-range fulfills the

criterion [65]]:
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2.3. Inelastic Neutron Scattering

2
(Omax — Omin) >> 7”, (2.14)

where d is the average atomic spacing in the sample. In order to obtain the density of
vibrational states, the double differential cross section obtained from experiment, Eq.[2.13]
is multiplied by sin(f) and integrated over the scattering angle 6 [65]:

do Onax 42 0r
= in () do. 2.1
dE fgmin aeaq @ @-15)

This expression is linked to the density of one-phonon states f(E) for a sample contain-

ing only one element by [[65]]

do _ 1
" 8k E (oxp () 1)

(anax - Qiin) %f(E). (2.16)

2.3.2 Partial Density of Phonon States

It was shown that the so-called incoherent approximation can be applied even to polycrys-
talline samples [66]. It takes into account one-phonon scattering only, i.e. the phonons are
considered to be uncorrelated. Then, the total scattering cross sections o of the specific
elements can be used to sum the partial elemental DOPS in order to obtain Eq.[2.16]
Eq.[2.16|can be generalized for a compound of n atomic species (elements, not isotopes)

with atomic fraction c; by [65]

do #? 1 4 4\ N\ GO
_ - 0%, 2 fi(E), 2.17)
2 _E (Qmax Qmm) Z - f](
dE Sﬂkl' Eexp (kB_T) -1 j mj
where f; is the partial DOPS and m; is the molar mass of species j, ¢; its atomic fraction
and o its total cross section for bound atoms. The generalized density of phonon states

g(E), which is measured in inelastic neutron scattering, is obtained by

8(E) = > a;f{(E), (2.18)
J
with /
CjO's’j mj
i - 2.19
i 2 €101 /my (2.19)

Therefore, light elements with a large cross section contribute most to the total density of
phonon states, which is obtained directly from experiment.

2.3.3 The density of phonon states

In the previous section, the measurement of g(w) by inelastic neutron scattering has been
described, but neither was g(w) defined, nor was explained what exactly the DOPS repre-
sents. In the framework of this thesis, the partial elemental DOPS f;(E) of amorphous and

crystalline phase-change materials was measured by nuclear inelastic scattering. Since this
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2.3. Inelastic Neutron Scattering

technique is based on the absorption and not on the scattering of particles, it is not discussed
here, but is discussed separately in Chpt.[5] The corresponding results and data analysis will
be presented in Chpt.[5] as well. In the following paragraphs, the means of analyzing the
DOPS from both techniques will be explained.

The number of allowed frequencies of atomic vibrations in the range w to w + dw for a
system of 3N atoms is 3Ng(w)dw, so that the normalization condition

f ) glwdw =1 (2.20)
0

holds for g(w). In a perfectly ordered polycrystalline system, the DOPS can be separated
into well defined, sharp features from the limited number of allowed vibrational modes,
which is 3 times the number of atoms per unit cell. In disordered polycrystalline or in amor-
phous samples, however, the DOPS becomes rather featureless, except for some general
properties, which always remain valid. These general properties will be discussed in the

following.

The first peak in the DOPS corresponds to acoustic modes, which probe macroscopic
properties of a sample due to their large wavelengths. In particular, the Debye temperature
can be obtained exactly from the density of states in the regime of acoustic modes. To
do so, it is necessary to observe all phonon modes in the density of states. This is surely
the case for a polycrystalline sample, where many equal Brillouin zones are covered by
the scattering parabola. In topologically disordered, amorphous materials however, there
is no periodicity in reciprocal space, so that the acoustic modes at low wave-number k
are smeared out at higher k. Therefore, the scattering parabola should contain only the
acoustic modes, i.e. the wavelength should be sufficiently large — a condition that can be met
experimentally. From the measured Debye temperatures, elastic properties of the isotropic

and homogeneous samples can be obtained to a good approximation (cf. Sec.[2.3.4)

The total number of acoustic modes is related to the number of bonds within the atomic
network: The N atoms, within a sample have in general 3N degrees of freedom. If every
atom has only 2 bonds, which have to be kept of fixed length, 3N — 2N = N displacement
directions stay free so that no restoring force applies and therefore these must be zero fre-
quency modes [67]. Thus, the ratio of acoustic to optic modes is related to the formation
of the atomic network. The above discussion neglects the influence of bond bending con-
straints, but delivers a useful estimate for the fraction of acoustic modes in the amorphous

phase.

2.3.4 Debye temperature

From the low-frequency regime of the density of phonon states, the Debye temperature 6p
can be obtained. According to Ashcroft and Mermin [68]], the Debye temperature should
only be derived from specific heat measurements at low temperatures, where the Debye
relation Cy o T3 holds. Due to this difficulty, we will use the Debye temperature as an

approximate number only and try to suggest trends in the resulting values. From a possible
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2.3. Inelastic Neutron Scattering

trend in the Debye temperature, we can then derive trends in other properties. This func-
tional relationship shall be discussed in the following. The Debye temperature 6p, is obtained

from the definition of the Debye phonon spectrum with the cut-off frequency wp = kgbp/#,

-, 0<w< wp
glw)y=4 “v , (2.21)
0, w > Wp

by fitting the low-frequency behavior to the experimental DOPS g(w).

From the Debye temperature 8p, we can derive the mean velocity of sound v,,. To do
so, we start from the assumption that the Debye model describes well the acoustic phonon
modes of a given compound. Then, the longitudinal mode has to be distinguished from the
two transverse modes with velocities v; and v;, respectively. The total number of modes is
then made up as ([69] p. 239)

dar (1 2 (kg \
3N = ?V(—3 + —3]-(59,)) . (2.22)

V} Vi

Since only one quantity can be obtained from the Debye temperature, a mean velocity of
sound v,, is defined as [[70]

-1/3

1 2
vy, =313 (V—3 t3 , (2.23)

l t

This leads to the relation
1/3
h (3N

QD = E (m) V. (224)

The atomic number density N/V in this equation can be obtained from the compilation in
Tab.[B.1l

The velocity of sound, in turn, can be used to estimate the bulk modulus B if the shear
modulus G and the mass density p are known (cf. Tab. via [[71]]

V= 4 / BJr;ﬂ. (2.25)

Some macroscopic parameters are linked to the acoustic phonon modes of a system and are

2.3.5 Vibrational entropy

well described within the Debye model. These parameters were discussed in the previous
section. Furthermore, some properties are linked to the exact shape of the total DOPS. These
are the specific heat Cyj, (which is independent of pressure and volume), the entropy S vip

and the interatomic force constant F', which will be derived from the DOPS in this section.

In a crystal, the different eigenmodes can be considered as independent harmonic oscil-
lators. This also applies to the localized atomic vibrations in an amorphous solid. For such
a system of independent harmonic oscillators, the partition function can be used to calculate
the vibrational entropy from the DOPS directly ([69], p. 237),
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2.3. Inelastic Neutron Scattering

Z= Z exp( E[n(ka)]], (2.26)

kgT
n(kO')

where n(Eo-) denotes the occupation number of states with momentum K and phonon branch
o. By applying the common thermodynamic relations, the free energy of the vibrations can
be calculated by Fy = —kgT InZ,

E [n(/?a)] ]} -
2kpT ‘

Fy = kT Z In [2 sinh

ko

The sum over ko~ in Eq.[2.27] can be replaced by the integral g(w)dw and allows calcu-
lating the specific heat and the entropy using the common thermodynamic relations. The

resulting expressions are [[72]

- Fyv-T—— h? | —— 22
or GT( v 6T) sk | (2kBT) (Sm (ZkBT)) glwydo, (228

for the specific heat, where N is the number of unit cells in the sample.

The entropy is given by

oFy *| hiw hiw . hiw
Sy =-2Y 3Nk th — In(2sinh [ —£_ do. (229
V=TT Bfo [2kBT°° (2kBT) n( st (ZkBT))]g(w) w. (229

Finally, also the interatomic force constants F' can be approximated based on the DOPS.
To this end, the second moment of the DOPS has to be calculated [73]]

F=m f N g(w) W’ dw, (2.30)
0

where m is the average mass of the atoms in the sample. The origin of this relation will
be discussed again at the end of the following section, where the situation for a crystalline

structure is discussed.

2.3.6 Dynamical Matrix

After this presentation of general properties of the DOPS, the discussion should be extended
to well-ordered crystalline systems, which can be considered a limiting case of disordered
crystals. It was already mentioned in the introduction that many phase-change materials
resemble a rock-salt type atomic structure with a significant amount of chemical disorder,
which is introduced by the random occupation of at least one lattice site (e.g. by vacancies
and Ge or Sb atoms in the meta-stable phase of GeSb,Te4 and Ge,Sb,Tes). A fully analytic
and therefore very instructive calculation of the lattice vibrations in the sodium chloride
structure can be found e.g. in the work by Kellermann [74]. The quantitative analysis of
the density of phonon states in crystalline samples is most commonly performed by the

construction of the dynamical matrix. From this, the eigenmodes of a crystalline solid can
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2.3. Inelastic Neutron Scattering

be derived and can explain its vibrational properties. In the following, the general features
of the dynamical matrix will be discussed. We will use this model later in order to compare
it to the experimentally obtained DOPS.

An ideal lattice consists of atoms n, which are displaced by u from their equilibrium
sites n;, where i denotes the cartesian compontent x, y or z. The potential energy of the

configuration in harmonic approximation is given by
1 ’ 7
D= 522@;;’} Wl (2.31)
nn’ i’

The coefficients are defined as

, R0)
o =

= - 2.32
éu;’ﬁu;i ( )

Due to translational invariance, the potential for the relative displacement of n vs. n’ is

the same as that of n’ vs. n, so that

DM = Oy (it - ) (2.33)

From this expression, we can write down the equations of motion for atom 7,

=i = Y Wyt — i (2.34)

n v

This set of equations conveniently describes the oscillations of the atoms along the carte-
sian axis, but it is usually energetically favorable for the atoms to oscillate along different
directions, which are denoted €0 where the index & is due to the definition of new coordi-

nates Qp, by employing the lattice periodicity,

| ,

W= —— > e O exp(ikii) (2.35)
VN 4

~Oceix =0 ) DB ey, (2.36)

which as compared to[2.34]does no longer depend on all other coordinates.

The new matrix, D,,,,/(lz), is called the dynamical matrix, which is written as
-, 1 JE
Dip(k) = = " iy (i) exp(iki) (2.37)
m n

The frequencies of the vibrations are now the eigenvalues of the dynamical matrix and
the polarization vector €, » defines the displacement of the atom i due to the vibrational mode

N

k,

> DKy, ;=o€ (2.38)
l'/
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Now, the squared frequencies are the elements on the diagonal of D,',v(lz) so that the
second moment of the distribution of frequencies in the DOPS, [2.30} is nothing else than

F= % Z [ Dy (R)). (2.39)

k

For a crystal of the rock-salt type, like meta-stable Ge,;Sb,Tes, it is now possible to
refine the experimentally observed DOPS with a model for the dynamical matrix, using the
analytical model by Kellermann [74]. Even without such detailed refinement, the measured
DOPS allows calculating parameters of the atomic interaction and macroscopic properties
at the same time. This is a great opportunity for PCMs, where the partial DOPS of Sb and
Te can be measured by nuclear inelastic scattering.

2.4 Total Neutron Scattering

In the previous section, the scattering cross section was averaged over the momentum trans-
fer and it was shown that it allows deriving the DOPS. The energy-average of the scattering
cross section on the other hand contains information on the atomic structure of a solid. It
can be shown that at higher incident neutron energies and for sufficiently large systems
of N atoms, the total scattering is dominated by the elastic contribution (scales with N?)
and furthermore that the inelastic contribution (scales with N) can be removed to a very
good approximation. The remaining elastic contribution to the scattering contains both, the
Bragg reflections, as well as the diffuse scattering underneath the Bragg reflections, which
originates from atomic disorder. Therefore, total scattering allows obtaining structural in-
formation on disordered materials, where Bragg reflections are absent. Short and long range
correlations of atomic positions can be probed with total scattering. In the following, the
treatment of such measurements of do-/dQ will be discussed.

2.4.1 Instrumentation

Total neutron scattering measurements are based on the counting of scattering events at
fixed scattering angles without energy resolution. This, of course, increases the count rate
as compared to the energy resolved TOF measurements presented earlier, since in TOF, the
chopper necessarily absorbs some fraction of the incoming neutrons. For the total scatter-
ing measurements presented in this thesis, monochromatized neutrons with 0.498 A were
employed. The monochromator was a Cu 220 surface, which creates an energy resolution
of approximately AA/A ~ 1072, which implies a coherence length L for neutron scattering

of [73] .
1A
T2AL

which equates to 25 A under the conditions given above. This is approximately the largest

(2.40)

real space distance, over which correlations can be observed. It should not remain un-

mentioned that this value is smaller than the lattice constant ¢ of the hexagonal phase of
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2.4. Total Neutron Scattering

GeSb,Tey, but since a PDF analysis and no Rietveld refinement is performed, this is not of

further relevance.

2.4.2 The Static Approximation

In order to successfully evaluate the results from total scattering experiments, we have to
investigate how the energy insensitive counting influences the structure factor S(Q). The
experimental conditions imply that we have to mathematically describe the transformation
of the double differential cross section

d’o do

3048 ~ aa (2.41)

The static approximation is the common theoretical framework for this transformation and

its basic assumptions will be discussed in the following.

Mathematically, the transformation is performed by [62]

do Eo g0
— = dE 2.42
dQig j:oo dQdE ( )

where Ey denotes the maximum energy transfer for a specific value of Q In a real ex-
periment, however, this integration is performed for constant scattering angles 6 — not for
constant Q — so that scattering intensity for different momentum transfers is averaged. Fur-
thermore, the pre-factor k;/k; has been neglected in the integrand and E( should be oo for
the transformation to be correct. Neglecting the errors involved in these limitations is called
the static approximation, which is commonly used in the analysis of total scattering data.
Its name ”’static approximation” becomes obvious by investigating the van-Hove correlation

function, giving the probability to find atoms at distance 7 after time ¢,

(oo

G 1) = @ f dQ exp (-igF) f dw exp (iw)S (3, w). (2.43)

(&9

Here, ¢t = 0 corresponds to a static snapshot of the atomic structure and is based on integrat-
ing S (0, w) over w without transformation — just as the integration over energy transfers in
experiment.

The differential scattering cross section resulting from Eq.[2.42] is considered equal to

the experimental result and in case of a monoatomic sample with N atoms equals

N
do .3
_ iOR;; 2 2
o _<§ K f><b> +N(p?), (2.44)
i self

distinct

with the first term on the right side resulting from scattering at different atoms (distinct
scattering) at positions R ; and (...) over the exp-function denoting a time average over
thermal vibrations and the second term resulting from so-called self-scattering. It is nicely
seen that only the first term depends on 0. It can also be seen that the second term does not

correspond to the incoherent scattering due to its different scattering cross section.
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2.4. Total Neutron Scattering

2.4.3 Structure factor
The energy-integrated structure factor is usually extracted from scattering experiments and
s (0) = 1 <ZN: eiQRff>. (2.45)
N

bJ
The second term in Eq.[2.44] however, does not depend on atomic correlations and has

it is defined as

to be subtracted from the experimental differential cross section. Furthermore, there is
a difference between the first term in Eq.[2.44] and the common definition of the (static)
structure factor, Eq.[2.45] By comparison, one obtains

1 do

Nag S (?) @2 + (<b2>1_ @2)- (2.46)
elastic nelastic

This differential scattering cross section contains the sum of the elastic and inelastic con-
tributions. It is obvious that - in order to extract the structure factor S (Q) from the exper-
imental differential scattering cross section - the full inelastic scattering of the sample has
to be subtracted. These different contributions to the experimental data are nicely depicted
in Fig.2.2] The influence of thermal vibrations on the structure factor, Eq.[2.45] will be
discussed in Sec.2.8.11

1do
NdQ
j | bz
b°S(0)}
b’
0 I
0 ~2n/r interatomic q

Figure 2.2: Contributions to the structure factor S (Q) are shown. The flat background from
inelastic scattering, (<b2> - (b>2), can be subtracted and the self-scattering re-

mains on top of the inelastic contribution at Q = 0. Figure taken from [76]].

2.4.4 Polyatomic samples

The previous theory was developed for monoatomic samples, but usually the local structure

of polyatomic samples is of interest in materials research. In the following, it will be shown

31



2.4. Total Neutron Scattering

that this formalism can be easily extended to systems containing n different elements, each

with an atomic fraction c. Therefore, on defines an average scattering length

n

@ =) cioej+0ij). (2.47)
J
The resulting expression reads
47 _ N (0) + N(o (2.48)
dQ ’ ‘

where F (Q) is called total interference function. From this quantity, the fotal pair-correlation

function G(r) can be obtained by means of Fourier transformation:

G(r) =

72 f qF(q) sin(gr)dq. (2.49)
TErpo Jo

This function is composed of the partial pair-correlation functions g;;(r), weighted by the

scattering lengths of the atomic species involved:

n
G(r) = ) cicj (b (bY; [2ii(r) - 1]. (2.50)
ij
In practice, also related functions are frequently investigated. These are the radial distribu-
tion function (RDF), defined by

RDE(r) = 4nr?poG(r), (2.51)

. . . . . 2 =3 . .. .
where pg is the atomic number density, usually given in atoms-A ~. The radial distribution
function oscillates around a curve given by 477%py, i.e. around the average number of atoms

in a sphere with radius r.

2.4.5 Data treatment

All total scattering experiments were performed at D4, ILL, Grenoble. The resulting data are
the differential scattering cross section, Eq.[2.48] i.e. the scattering events under the angle
of each detector element. The data treatment procedure will be described in the following in
order to achieve maximum reproducibility. First, the number of scattering events is divided
by the number of incoming neutrons. This compensates for time-dependent changes of
the source intensity. The scattering angles between the incoming flux and each detector
element with respect to the sample is calibrated with a measurement of pure Ni, whose
diffraction pattern is corrected for a constant offset in the scattering angle 26. Also the exact
wavelength of neutrons coming from the monochromator is obtained from this experiment
and turned out to be 0.4976 A. The sample environment was varied with respect to the
desired temperature conditions. For low temperature measurements at 10 K, the powderous
specimen was filled in vanadium cans, whose inner diameter (4.88 mm) and outer diameter
(5.08 mm) are known. Then, the stacking height of the powder and its weight are used to

calculate the packing fraction from the well known density of amorphous PCMs (cf. Sec.
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2.5. General X-ray scattering

[B.1)). From the beam profile of 20 x 7.8 mm and the fact that the stacking height was slightly
larger than 20 mm, the amount of scattering atoms in the neutron flux is well known. The
samples for measurements under ambient conditions were prepared in the same way, except
that quartz capillaries were employed instead of the vanadium sample containers. These had
a outer diameter of 1.9 mm with a wall thickness of 0.01 mm and were filled with 40-45 mm
of powderous specimen. The packing fraction of the scratched powder after shaking the

container was about 0.30(5).

A scan of the empty instrument and of the instrument with an empty vanadium can
was performed for background subtraction. Subsequently, samples were measured and the
resulting data were treated with the software CORRECT [77]], which takes into account the
quantity and geometry of the atoms in the container and the same geometric properties of
the sample. It subtracts the scattering events of the container and transforms the resulting
data to meaningful units of barns per sr per atom. Subsequently, the Placzek correction is
employed to remove the angular dependence of the self-scattering term. Therefore, the data
are fitted by a polynomial in powers of 02, which is subsequently subtracted so that the
final data oscillate symmetrically around O (giving the F(Q) of Eq.[2.48). The data are then
Fourier transformed and scaled with (b)? according to Eq. Number densities pg can be
found in Sec.[B.T]for the as-deposited amorphous phases. The resulting G(r) and the derived
RDF(r) will be discussed in detail in Chpt.[3]

2.5 General X-ray scattering

Due to the significantly higher availability of intense sources of X-rays than neutron sources,
more experiments and -series can be performed based on x-ray scattering. There are signifi-
cant differences between x-ray and neutron scattering, but the fundamental concepts are the
same, so that this section continues from the discussion presented in Chpt.[2.1] It aims at

highlighting the differences and similarities between both techniques.

The scattering length for X-rays is far more complex than that of neutrons and this makes
a PDF analysis more complicated. The fundamental reason is that X-rays are scattered dom-
inantly by the electronic charge in the sample and the distribution of charge has features on
the same length scale as the interatomic distances, so that those photons, which probe the
atomic structure are necessarily modified by the electronic structure as well. The absence
of purely s-wave scattering induces an additional momentum dependence of the scattering
length. The scattering length for X-rays furthermore depends both on the momentum trans-
fer O and on the incoming X-ray energy Eg. Although, this complexifies data treatment, the
understanding of these dependencies is so well progressed, that it opens new opportunities:
The scattering lengths of different atoms depend differently on the incident energy, which
enables a technique called anomalous scattering”. There, specific energies E( are selected

for the incoming x-rays, where the scattering of a specific element is significantly increased.
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2.5. General X-ray scattering

2.5.1 Scattering length for x-rays

Let us first write the scattering length for X-ray scattering in the same framework as the

scattering length of neutron scattering was treated [76]],

b(Q, Eo) = re [f(Q) + ['(Eo) +if"(Ep)], (2.52)

where the last two terms are referred to as anomalous scattering, which originates from the
inner electrons, so that these terms do not have a significant Q-dependence. r, = 2.818 fm is
the classical radius of the electron. The most significant contribution originates from f(Q),
which goes from the atomic number, Z, at Q = 0to 0 as Q — oo. Itis given by the electronic

charge distribution p around an atom,
ﬂ@=j‘_lmmmﬁ4@w% (2.53)
atomic site

The anomalous scattering coeflicients are negligible if the x-ray energy is clearly above
all absorption edges. If this is not the case, the so-called dispersion corrections, f’ and
f"" can become significant. For Cu K-« radiation used on Sb and Te, f” can be as high
as 5-6, while it is negligible for Ge. f” is slightly negative (-1) for all elements (cf. [78]],
p-22). A quantum mechanical treatment has been elaborated, but it is beyond the scope of
this document. Here it suffices to say that the real contribution from the charge of static
electrons, f' (Q) suffices to describe the scattering, whereas extra dispersion effects come in
strongly, when vibrations of the core electrons are excited.

In order to refer to the general scattering theory, the scattering potential of elastic x-ray
scattering k; = k is simply U (Q) =f (Q) in Eq. In X-ray scattering, there are two basic
contributions to the scattered intensity: Elastic scattering and Compton scattering, of which
the latter is inelastic and since the scattered photons have a different wavelength, there is no

coherence and no interference 78], p. 12.

2.5.2 Interference conditions

Due to the physics behind Compton scattering, at § = 0 there is no Compton scattering, only
coherent scattering with the atomic scattering factor equal to the number of electrons in the
sample plus anomalous contributions. At large angles, there is only Compton scattering left,
since the atomic structure factor converges to zero. It is therefore important to know, which
of these mechanism dominates the total scattered intensity. For a sample, which consists of
N atoms, the Compton intensity increases with N, while the coherent scattering increases

with N? due to constructive interference conditions ([78], p- 20).

The ratio of scattered X-ray intensity / over incident X-ray intensity Iy is given by
(ct. [78] p. 103f)

Q) 5, 1+cos?26 1 30 n
Iy e 2 1677 sin® 6 cos @ 4 Fhkl(Q)WD(Q) av, @54)
—_ —_— €

Polarization factor Lorentz factor
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where r is the distance of the detector from the scattering object, r, is the classical radius of
the electron, F(Q) is the structure factor, n is the multiplicity factor for the planes (hkl),
V. is the volume of the unit cell, D is the temperature- or Debye-factor, dV is the volume of
the diffracting powder. The scattered intensity can be described equally by its dependence
on the momentum transfer Q or on the scattering angle 6, given by Eq.[2.6] Eq.[2.54] nicely
enables a summary of the following discussion: The scattered intensity in X-ray scattering
contains a yet unknown influence of thermal vibrations D(Q), which reduces the scattered
intensity. In addition, the diffraction pattern /(Q) is strongly influenced by the structure

factor Fp(Q). These two factors will be discussed in the following.
Thermal vibrations around the equilibrium position are described by
167 sin? 6 o
D = -
exp( 2 3 )

o is the root mean square of the distance of the atoms from their equilibrium lattice sites.

(2.55)

It depends strongly on temperature, since the vibrations are thermally excited. Usually, the
temperature dependence is given in the Debye Model as:

o M T [19—” NI A S dy], (2.56)

An’mkOp Op |4 T ~ 6p Jy exp(y — 1)

where y = fiw/kpT. The residual displacement o> at T = 0 refers to atomic zero point
motion alone. However, the framework holds equally well for additional static atomic dis-
placements 0'3, which are isotropic and do not displace the time- and space-averaged atomic
positions. X-ray scattering is always a time- and space-average, so that we can wonder how
static atomic displacements will influence the displacement parameter. If these displace-
ments are of a random direction, then they can be described in the same framework as
thermal vibrations, since after averaging over space, the average atomic position does not
differ from its lattice position. Therefore, we will observe in crystalline PCMs displacement
parameters o> significantly larger at 7 = 0 K than those predicted by Eq.

2.6 The structure factor

The structure factor of x-ray and neutron scattering F ﬁkl(Q) first occurred in Eq.|2.54] It con-
tains the information on the structure of the investigated specimen. The following discussion
will be limited to the case of powder diffraction, which holds for any isotropic distribution
of crystal orientations and therefore can be applied to crystalline PCMs as well. Since the
PCMs are as-deposited amorphous, they do not contain any preferred orientation after de-
position. The crystallization of the films starts from the surface of the films, which has a
significant roughness and therefore no preferred orientation is observed even in crystalline
PCMs. Furthermore, the crystal grains (<40 nm) are much smaller than the film thickness
(>500nm) in all studies presented here. The structure factor (for x-rays) of a crystal with
N atoms is given by (cf. [78] p. 104)

N
Fr = Z fi(hkl) exp [-2ni (hx; + ky; + 1z))], (2.57)
i=1
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where x;, y; and z; are the cartesian coordinates of atom i and f; its atomic form factor.

The constructive interference of x-ray photons creates a maximum of intensity at a spe-
cific scattering angle 6. These maxima of order n can occur at the angles given by the Bragg
equation,

2dsinf = nA. (2.58)

The intensity of these reflections is then obtained from the structure factor Fpy;.

The angular width A26 of these maxima depends on several properties of the solid.
These contributions to A26 will be discussed, starting from the most common, i.e. the reflex
broadening A26,, due to the finite size of the crystallites (grain size) [78]], from which the
X-rays are scattered coherently. Another source of broadening is stress induced strain in the
atomic structure, A26,.4;, [79]]. Usually, also an instrumental broadening A26;,, has to be
taken into account, but already A26,; > A26;,,. Both remaining terms sum up to the total

reflex width,

£260 = A2 + A6y (2.59)

Both contributions will be discussed in sequence. A large crystal of N lattice planes will

create a reflection with a sharp angular distribution of intensity

_| 1 sinNgJ?

1@ = N? sin¢

. (2.60)

The width of the peak created by this function is expressed by the Scherrer equation, which
therefore gives a lower limit for the reflex broadening in the case of ideal constructive in-
terference. This can be used to obtain an approximate value for the average size of the
scattering (unstrained) crystals in a polycrystalline sample. The Scherrer equation for a

sample with an average crystallite size L reads

A

A20,, = ——,
8 Lcos

2.61)

where the reflections are centered at 6y. In order to obtain the total width of a reflex,
A20, usually Voigt peak functions are fitted to the profile. They are a superposition of a
Lorentzian contribution due to finite crystal size and a Gaussian contribution due to micros-
train. Then, A26 denotes the full angular width at half maximum of these profile functions.
Additional broadening is caused by microstrain in the sample, caused e.g. by stress due to

the density change upon crystallization. This contribution is described by
A204y4in = 4etan Oy, (2.62)

where the parameter e is related to the average strain in the sample (€) in case of a Gaussian
distribution of strain on a lateral average via (€) = v2/me [80]. Both contributions to the
reflex broadening are conveniently described by the formula of Caglioti [81]], which is based
on the different 8-dependence of the strain and size-broadening. Then, the total broadening

is parametrized by U, V, W, X and Y as

0% = U -tan* () + V - tan(6p) + W (2.63)
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for the Gaussian contribution and
oL =X -tan(f) + Y cos™ (6p). (2.64)

A detailed analysis of the structure factors of the phase-change material GeSb,Te4 and the

reflex broadening in particular will be presented in Chpt.[3]

Reports on both contributions of reflex broadening can be found in the literature. The
strain induced broadening after crystallization has been discussed by Rimini et al. [82] by
TEM and XRD experiments. In particular, they compare the grain size of crystallized phase-
change material observed by applying the Scherrer formula and by direct study using TEM.
They find that the crystallites are significantly larger than predicted by the Scherrer formula
- due to the strain, which allows the Bragg condition to be fulfilled only for a fraction of
the bended crystalline grain. However, they investigate only the meta-stable cubic phase
and the question remains how the strain evolves upon further annealing. Without taking
into account strain-induced broadening, the grain-size was investigated as a function of
the annealing temperature [83]]. It was found that the grain size within the meta-stable
cubic phase is increased continuously. The result of including both effects over the full
transformation range of GeSb,Tes from the meta-stable cubic to the stable rhombohedral
phase will be discussed in Sec.[3.§]
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2.7 X-ray Absorption Spectroscopy

X-ray Absorption Spectroscopy (XAS) is complimentary to scattering techniques in the
field of microstructure analysis, since it is readily capable of determining partial atomic
correlation functions in polyatomic samples. It does not rely on translational symmetry and
can therefore resolve atomic correlations in amorphous structures as well. This study will
focus on the analysis of the extended absorption fine structure (EXAFS) only, which is based
on the absorption spectrum above the absorption edge. The EXAFS contains information
about the partial atomic pair distribution functions and can thereby resolve the short range
order around a specific element. This makes it a valuable tool, which can be employed to
both, amorphous and crystalline phase-change materials. Due to the inherent necessity to
tune the energy in the X-ray regime around the absorption edges (between 10 and 32 keV for
the K-edges of Ge, Sb and Te), the experiments have to be performed at synchrotron beam
lines. Since an energy resolution of some eV is usually sufficient, the monochromatized

radiation from a bending magnet is used for EXAFS measurements.

The absorption features around the K-edge were measured in this work, but also L or
M edges are frequently used for heavier elements. Several textbooks have already been
published about this technique, some of which will be cited in the following [84}63]]. Quite
generally, XAS refers to the precise E] measurement of the absorption y as a function of
energy as defined by Lambert Beer’s law,

E
—— = exp[- w(E) - d]. (2.65)

I and Iy are the incoming and transmitted intensities, respectively, and d is the thickness of
the sample. When the energy is increased above a specific absorption edge of one of the
elements inside the sample, the absorption increases significantly. This increase is attributed
to the fact that now electrons from the K, L or M shell (hence the name K, L or M-edge) can
be promoted from a localized core orbital to an unoccupied electronic state. An example is
shown in Fig.[2.6](a) for the K edge of Ge. The short region in k-space from the absorption
edge to 1/A above the edge is usually called XANES (X-ray Absorption Near Edge Struc-
ture), whereas the region more than 50 eV [84}163]] above the absorption edge is attributed to
EXAFS. Therefore, XANES features contain information on the density of electron states
some eV above the Fermi level. This density of states differs from that of the unexposed
sample due to the presence of a core hole in the 1s state and has to be compared to calculated
electronic structures. The electronic states in this energy regime are usually delocalized, so
that their calculation requires large atomic models. These models usually contain more in-
formation on the atomic structure, than the XANES features can provide. Therefore, this
method is usually used for a fingerprint-type analysis. The so-called EXAFS states on the
other hand, which are at least 50 eV above the absorption edge, scatter more strongly at the
surrounding atoms. Single scattering dominates here and the information contained mostly

regards atomic distances and the total electronic charge found at the scattering atom.

IThe adjective precise is added here, since the oscillatory changes in y are usually at least a factor 100 lower

than the height of the absorption edge.
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In the following, the experimental setup will be described first, followed by a derivation

of the most important formula in the theory of EXAFS.

2.7.1 Experimental Setup

fluorescence
detector (optional)

beam
stopp |

monochromator
I source
sample

(can be rotated) beam

stopp entrance
slit

reference
@ @
= X
i

ionization chambers

Figure 2.3: Schematics of the EXAFS setup at beamline C, Hasylab. Ionization chambers
(green) measure the intensity of the radiation as a function of energy in front
of and behind the sample (red). Details on the setup can be found in the text.
Taken from [85]]

All measurements have been performed at beamline C [86]] of DORIS III at HASYLAB
(Hamburger Synchrotronstrahlungslabor). A schematic drawing of the beamline setup is
depicted in Fig. 2.3] The white beam of x-rays coming from the bending magnet enters
from the right, passes a collimator slit and is reflected by a double-crystal monochromator
crystal. This double-crystal monochromator uses a double Si(111) or Si(311) crystal set,
allowing for a total energy range of 2.3 to 43.4 keV behind the exit slit [86]]. It is installed at
19.3 m from the bending magnet source. The construction of this advanced monochromator
is described in detail in [87]]. The second crystal is usually detuned (i.e. rotated out of re-
flection geometry) in order to exclude higher order Bragg reflections with a different energy
from the beam. This is possible, because higher-order reflections have narrower angular
widths and thus loose coherent scattering conditions at lower angles of detuning. However,
a loss of usually 50% in intensity is inevitable [88] [84].

The beam is again collimated by a rotational slit, which is located 28.8 m from the
source. As controlled by this slit, the beam usually has a cross section of 5 X 8 mm. The
intensity of the monochromatic, collimated beam is then measured in ionization chamber 1,
which is usually filled - like all three ionization chambers - with an inert gas like nitrogen,
argon or krypton. The beam propagates through the sample and is partly absorbed according
to Eq.2.65] This remaining intensity is measured by ionization chamber 2 and passes a
reference sample of the pure element under investigation and its intensity is measured again

in ionization chamber 3. The edge energy of that sample is then used as a reference for the
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Table 2.2: Filling of ionization chambers with inert gas for EXAFS experiments on specific

edges

Element K-edge energy Ioniz. chamb. 1 Ioniz. chamb. 2

Ge 11103 eV 0.13 bar Ar 0.88 bar Ar
Sb 30491 eV 0.17 bar Kr approx. 1bar Kr
Sn 29200eV 0.15 bar Kr 0.99 bar Kr
Se 12658 eV 0.20 bar Ar 0.72 bar Kr

calibration of the x-ray energy setting of the monochromator.

The type and pressure of the gas in the ionization chambers during these experiments
was calculated by using the software XAFSmass [89]]. Usually, the pressures are chosen in
order to absorb 10% of the beam intensity in the first ionization chamber and about 50%
of the intensity in the second chamber. The rest of the beam (about 90%) is subsequently
absorbed in chamber 3. The filling of the chambers for each measured edge is presented
in Tab.[2.2] The average error on the filling amounts to 0.01 bar. Data concerning the edge

energy were taken from the Elam database [90].

2.7.2 EXAFS Sample preparation

All samples except In3SbTe, were prepared by sputter depositing a layer of approximately
1.5um. The exact conditions of the sputter system are described elsewhere [91] and the
films were obtained after a deposition time of 4h at 20 W. This layer was subsequently
scratched to powder using another silica substrate. During this mechanical scratching pro-
cess, usually some silica was unintentionally admixed to the sample, but EXAFS is only
sensitive to the direct environment of a specific element, so that the silica will not influence
the data. The powder was in some cases annealed at elevated temperature under a constant
flow of Ar to prepare the desired phase. Subsequently, the powder was admixed with cellu-
lose and processed to pellets of 13 mm diameter for use in the sample holder [86]. Usually,
about 20 to 100 mg of phase change material and 100 mg of cellulose are necessary for one
pellet. The ideal mass can be determined by maximizing the edge step Aud, while simulta-
neously taking care that the total absorption ud remains below approximately three. Only
then, the count rates in the first and second ionization chambers produce a similar count

rate, which minimizes the experimental error on ud.

Samples of amorphous In3SbTe, had to be prepared in a different manner than other
phase-change compounds, since the scratched powder turned out to be crystalline after
preparing the pellet for EXAFS mesaurements. The crystallinity of the material was tested
only after the preparation of the pellet so that it might have crystallized already during
the long sputter deposition process. This suggests a significant thickness dependence of

In3SbTe; films, which was indeed observed from a strongly decreasing crystallization tem-
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perature with increasing film thickness [92]]. 37 nm thick layers of In3SbTe; crystallized at
535 K, whereas 285 nm thick films crystallized already at 483 K. Amorphous layers of about
150 nm thickness were sputter deposited on Al foil of 10 um thickness. About 140 of these
foils were subsequently stacked to obtain Au-d =~ 1 and measured in transmission geometry.

No Bragg reflections of Al were observed in the relevant EXAFS energy spectrum.

During the EXAFS experiments the spectra have been measured two or three times for
every sample (approx. 40 min each). If no significant differences could be observed, these

measurements were averaged to improve the counting statistics.

2.7.3 Theory of EXAFS

In Fig.[2.6|(a)&(b), oscillations can be seen above the absorption edge. They are caused by

a quantum mechanical effect, which will be explained in the following.

In this heuristic derivation, a central atom absorbs the X-ray photons, whose energy is
transferred to photoelectrons, which are then scattered at the neighboring atoms and form
spherical waves. This mechanism is depicted in Fig.[2.4] For simplification, scattering pro-
cesses are treated only to first order in the derivation presented here. Additionally, scattering
of the spherical waves of the photoelectrons at other neighboring atoms - often termed mul-
tiple scattering - is not taken into account here for simplicity. Some articles were published
about EXAFS formula for multiple scattering [93] and the resulting formalism will be in-

cluded later in this derivation.

The origin of the oscillations can be described as follows: As a function of the en-
ergy, constructive or destructive interference conditions of the outgoing and backscattered
electron-wave are observed at the absorbing atom. These interference conditions modify the
probability to find the electron at the absorbing site and thereby also modify the transition
probability from the core level. This concept will be written down in a mathematical form
in the following.

The EXAFS structure function is usually defined by the absorption p from Lambert
Beer’s law as
_ M(E) — fspline(E)

E
X( ) ,uspline(E)

(2.66)

Here, pgpline(E) is a smooth background function representing the absorption of an isolated
atom, which will be discussed in more detail in Sec. Transforming y(E) to y(k) in

order to be able to describe the wave character of the photoelectron, one usually applies the

2mo(E — Eo)
k= </ o (2.67)

For plotting, one usually compensates for the fact that the oscillations are damped at higher

relation

wave vectors by plotting k" - y(k), where n usually equals 3.

Fermi’s Golden rule describes absorption quantum mechanically [34] and is therefore
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Figure 2.4: Origin of the EXAFS: Incoming, continuous waves of different energies £; and
E, are absorbed and generate a free electron with different wavelengths A. The
photoelectron is scattered back from adjacent atoms and interferes with the gen-
eration of a subsequent electron, which leads to oscillations in the absorption as

a function of energy E;. Taken from [63]].

the starting point for deriving p(E) based on atomic properties:
2r N
Rinj= = zj: [ A )] 6(E ~ E; = o) (2.68)

R;_, j is the transition rate from initial state |i) to final state |j), where the initial state consists
of a photon and an atomic structure with an electronic system in its ground state, whereas
the final state describes the same atomic structure with an ionized atom and a photo electron
with Ey, > 0. The absorption of the photon is included in the equation by the term —7iw.
Therefore, only the electronic system has to be described by those two states. |i) is a 1s-like
state of the electron localized at the atom and |j) is the state of a spherical electron wave.
E; and E; are the respective eigenenergies and Hiy: (int. stands for interaction) mediates the
transition between the states. In the end, the transition rate R;_,; is obtained. How is this
transition rate related to the absorption u? Therefore, one has to take the x-ray beam as a

continuous wave described by a vector potential A, like

A®,1) = 2Aycos (k¥ - wr) (2.69)
= A [exp (+i(k¥ - wr)) +exp (=i(k¥ - wr)) (2.70)
incoming wave outgoing wave

For the process of the photoeffect, only the incoming wave has to be taken into account.
The energy density u = dE/dV can be directly evaluated using the common definition of E

and B in terms of A reads

2.71)
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Figure 2.5: This figure shows the energies of K- and Ly absorption edges as a function
of atomic number Z. For heavier elements, also the Lyj;-edge can be used to

observe oscillations. Taken from [94]].

For a continuous wave (i.e. continuous in time), the energy density u is proportional to the
intensity I of the beam. Therefore, the differential equation of absorption can be slightly
modified

dil(x) = —ul(x) 2.72)
X
BN diu(x) = —pu(x) (2.73)
X
o ou=-19 0 (2.74)
udx

The energy absorbed from the beam per unit time (the beam propagates with the speed of
light ¢) is given by the expression
R j

iu(x) = —Nyt hw —— (2.75)
dx c

Nyt 1s the number of absorbing atoms per unit volume and R;_,; the transition rate given
by Fermis Golden Rule. Finally, by inserting [2.68 in 2.75] and [2.75] in [2.74] we obtain an
expression for the absorption:

Nyt ¢
@

p=dn’ D Bt 1] 8CE - Ei — ) (2.76)

-
‘Ao J

A more detailed evaluation of Eq. can be found in [84], but is too complex for the
framework of this thesis. Therefore, a different derivation will be presented here, which

lacks some mathematical rigor but gives the crucial insight to the technique. The sum in Eq.
runs over all possible final states.

The following simpler expression will be used at the beginning of this derivation:
N |2
o< |l Hing 1] (2.77)

The final state |j) is essentially the photo-electron, leaving the atom as a spherical wave

| jo) and returning as a scattered wave |0j). The ansatz |j) = |jo) + |0) will be the basis of
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an expansion in terms of small effects by the scattered wave:

SN a1 ol Hing 1) :
W(E) o [¢ol B 1] - [ 1+ €81 Fing liy ~222 1 4 compl. conj. (2.78)

<61 Fin 11)|

Comparing this expression with Eq. , one can see that ug = |( Jjol Hine |i)|2 corresponds

to the bare atom, while the interaction with neighboring atoms is included by:
X(E) o< (81 B 1) (2.79)

This expression can be written more clearly for the purpose of understanding the principle.
Evaluating the interaction operator from a classical radiation field is maybe the most difficult
task. The important part of that operator is A P, which is proportional to exp (ilz?) (for a
detailed derivation cf. [34]], p. 340f). The initial state can — due to its extension of just ag/Z
— be roughly approximated by a delta function centered around the atomic core. This results

in a very simple expression for the EXAFS:

(k) o f dré(r) e ysi(r) = woi(r = 0). (2.80)

We can see that the EXAFS is proportional to the probability of finding the scattered pho-
toelectron at the absorbing atom. This is nicely compatible with what has been described
earlier by Fig.
The above expression can be developed further by simple arguments. The outgoing
photoelectron can be described as a spherical wave
ok
Yk,r) = g (2.81)
During traveling a distance R, a phase shift of kR occurs and the amplitude decreases by a
factor of (kR)™'. When the photoelectron reaches the nearest neighbor, it enters the electric
field of that atom and is scattered again. Thereby, the phase is shifted by 6(k) and the
amplitude of the wave varies by a factor of 2kf(k). These two functions (k) and f(k)
strongly depend upon the nuclear charge Z of the neighboring atom. This is essentially
why different neighboring elements can be distinguished in EXAFS. Upon multiplying all
factors, including an additional phase shift and reduction of amplitude for the way back to

the absorbing atom, the result is:

D = U= 0,0 = e [2kf ] Co 1. conj 2.82
xk) = ys(r=0, )_ﬁ[ f(k)e ]E+comp.conj. (2.82)
% sin (2kR + 6(k)) (2.83)

This expression considers only one absorbing atom and one scattering atom. As there are
usually N; (coordination number of shell i) atoms in a shell, the EXAFS has to be multiplied
by this factor. Measurements are not performed at zero Kelvin but slightly above, so the
remaining vibrational energy and some displacements will occur. They are accounted for

by introducing an additional factor, where o~ is the mean-square-displacement of the atoms
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of the shell at distance R. As it is not just a single shell that contributes, but also higher
shells, i.e. next-nearest neighbors, the EXAFS simply has to be summed over all shells in

the system:

£ —2Kk202
x(k) = Z % sin (2kR; + 6;(k)) (2.84)

1

If there are different kinds of atoms in each shell, as is sometimes the case, then an additional
sum has to be introduced. There is one more correction that still has to be incorporated:
It was always assumed that the photoelectron scatters elastically at the neighbors and the
finite lifetime of the core-hole has not been taken into account. It could also happen that the
photoelectron scatters at other electrons or phonons. Thus, it is reasonable to use a spherical
wave, which is damped by a factor exp (—r/A(k)) instead of 2.81] Additional damping effects
are taken into account by a pre factor S %. The resulting and final EXAFS equation is:

NF ik
OENDY ékzje(z ) 20% (2R;100) i (2kR; + 7 - 5(K)) (2.85)
] j

The factor 1/R? reduces the EXAFS strongly for shells that are far away from the absorbing
atom. This is why EXAFS can only resolve the short range order in condensed matter.
Usually, the EXAFS can be evaluated up to a distance of about 6 A. The functions f(k)
and 6(k) can be calculated using first-principles methods. In the framework of this thesis,
FEFF [93] has been used to determine those functions. Also analytical models for these
functions exist, but they are not accurate enough to allow for a quantitative evaluation. If
the two functions are known, the scattering paths in Eq.[2.85|can be calculated and some of
the parameters in the formula can be obtained from a fit of y(k) to the experimental data.

It can be seen that oscillations with different frequencies contribute to the EXAFS. This
is why we will continue with a Fourier transform of this equation. Fourier transforming
the EXAFS y(k) gives additional insight into the experiment, which is necessary for an
understanding of the plots shown later in sectionfd] The Fourier transform is defined as

.
F (k) = §(r) = — k)e* dk 2.86
() = 710) = = af (e (2.86)

The principle of superposition also holds for Fourier transforms, F (f+ag) = F (f)+aF (g),
i.e. to transform the EXAFS in Eq. 2.85]it is sufficient to transform the contribution of a
simplified single shell j:

k—kio\* .
xik) = exp( e )31n(2kRj+7r—6(k)) (2.87)
J

(2.88)

k—kjo\?
S[exp (( Ak -J’O) + (00 + k - 61)] exp (ZikRj)

J
The envelope of this oscillation is centered around ko and its width amounts to Ak. A linear
behavior 6(k) = m — 69 — k - 01 is assumed for the phase shift. Generally, the coefficient ¢
will be negative [96]]. The Fourier transform of Eq. is [84]]

Ak Ak?
/\7(1”) = 2— exp (i(50 + ik061 + Zikor - T(Zr —2R - 61)2) (289)
l
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As this is an imaginary function, usually its magnitude is plotted in real space. The expres-

sion then reads:

oo Ak ) 51\
le(r)l = —-exp (—Ak (r -R- 3) ) (2.90)

It is obviously a Gaussian function, which is centered around R + §;/2 and as 61 < 0 itis
shifted to lower radii. This shift is a general attribute of real-space distributions obtained by
EXAFS and has to be considered during data treatment.

2.7.4 Data treatment

The EXAFS, y(k), can be extracted from a measurement of u(E) - d. Subsequently, the
EXAFS is fitted based on a path expansion as shown in Eq.[2.85] The method behind these
two steps will be explained in the following in order to allow for a reproducible data analysis.

Raw data of d - u(E) can be seen in Fig.[2.6] (a), black curve. Polynomials are fitted
to the pre-edge region below the absorption energy (green curve) Ey and to the post-edge
region (orange curve). These functions are necessary for data normalization, defining the
pre-edge polynomial . as zero and the post-edge polynomial p,0s¢ as one. These polyno-
mials cannot follow the oscillations and therefore, the normalized EXAFS oscillates closely
around one (cf. Fig. right). Therefore, a spline function pgpline is fitted to the data,
according to an algorithm published by Newville [97]. The spline contains (2/7) Ak Rpxg
data points, where Ak is the interval, in which oscillations are clearly visible in k-space. The
parameter Rpg depends on the shortest possible bond length in the sample, since it filters
out all low-frequency oscillations. As a rule of thumb, Ryyg should be not larger than half
the distance to the next-nearest neighbor in order to avoid interferences with the physically
relevant oscillations. Applying Eq.[2.66|and [2.67| gives the correct experimental y(k), which
will be extensively investigated in this thesis.

In order to extract physical quantities from the EXAFS, a path expansion has to be
applied, which is based on Eq.[2.85] This procedure is discussed in the following for a
binary sample, where data sets of the two K-edges are assumed to exist. It can be easily
extended to a ternary system. First, each data set is refined independently using all structural
information, which are already available. If nothing is known, a good start is to assume
heteropolar bonds only with bond lengths given by the sum of the covalent radii of the atoms
involved. This refinement has to start from the most dominant contribution, i.e. from the
first coordination shell, which can be separated from higher coordination shells in r-space
so that refinements are usually performed on this Fourier transform of the EXAFS. The
additional parameters in Eq.[2.85]are obtained from FEFF calculations, which introduce an
energy shift AE between experiment and calculation. This is an additional fitting parameter.
During the refinement, parameters like atomic distance and the nature of the backscattering
atoms are modified until the best possible refinement is obtained. If the refinement has a low
residual (roughly below 0.05), the next coordination shell is refined. If no correspondence

between refinement and data can be obtained, a second scattering path has to be added to
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Figure 2.6: Treatment of X-ray absorption spectra around the Ge K-edge of amorphous
GeSb,Tey. The extraction of the EXAFS y(k) is shown in Fig. (¢) and its Fourier

transform in Fig. (d).

the same coordination shell. Finally, a good (and stable EI) fit of the full data set should

2Stable means that all fitting parameters are at least in a local minimum of the residual landscape.
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be obtained. The same procedure is applied to the data set of the other edge and in the
ideal case (which occurs quite frequently), the fitting results are in good agreement for the
various data sets. For a system containing atoms A and B, this means that the parameters for
A-B scattering paths obtained from the absorption data of element A are equally obtained
from the data of element B. Then, both data sets can be refined simultaneously by using the
same variables for both data sets. If the fit remains stable, then the refinement is finished if
the final residual is below approximately 0.02. If the result is not satisfactory at this stage,
additional contributions from homopolar A-A or B-B bonds can be tested, but if this does
not significantly improve the refinement, most likely the model was not correct or the sample
was not homogeneous. The method described above has been employed for the refinement
of all EXAFS data throughout this thesis. The results and conclusions from the local atomic

arrangement of PCMs will be presented in Chpts.[3|and 4]

2.8 Atomic displacements probed by XRD and EXAFS

Thermal vibrations of atoms are inherently present in matter and can be observed in EXAFS
and XRD data, where they reduce the amplitude of oscillations and intensity of reflections,
respectively. Indeed, large atomic displacements have been observed in the crystalline PCM
Ge,Sb,Tes [98]] at room temperature. At this temperature, it is not possible to verify if the
displacements are of thermal or of static nature. In a perfect crystalline solid, thermal vibra-
tions can be described by coupled equations of oscillatory motion around the ideal lattice
sites (cf. Sec.[2.3.6). If, however, the center of the oscillation is shifted with respect to the
ideal lattice site, we call this static disorder. Large static displacements would be mainly due
to substitutional disorder, whereas large amplitudes of thermal vibration would indicate soft
phonon modes. Whereas the soft phonon modes could indicate a low thermal conductivity
[98]], the substitutional disorder might be responsible for the recently observed disorder in-
duced localization [21]]. In this section two essential questions shall be answered: How
can we use X-ray absorption spectroscopy and/or scattering techniques to distinguish
thermal from static disorder? and it should be further discussed, Which thermal vibra-
tions influence the results from X-ray absorption spectroscopy and/or which influence
scattering techniques?

When thermal vibrations are considered, the time scales of the different experiments
should be mentioned as well. It is well known that atomic vibrations in phase change ma-
terials have less than about 30 meV [73] which corresponds to a frequency of about 7 THz,
i.e. one oscillation period takes roughly 100 fs. Since scattering occurs instantaneously, the
diffraction pattern consists of a sum of snapshots, which are then averaged over both, time
and space. In EXAFS spectroscopy, the time dependence of the interference pattern origi-
nates from the lifetime of the core hole, which is of the order of a fs for K edges [84], p. 11.
Thus, EXAFS equally probes the instantaneous local structure. The space and time average
is then imposed by a large absorption volume and a large number of subsequent absorption

events. In conclusion, both methods, scattering and absorption spectroscopy are unable to
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distinguish static from thermal disorder from a single measurement. However, the temper-
ature dependence of the atomic displacements can resolve those two contributions, since at
very low temperature, amplitudes of thermal vibration are very low (zero point motion, cf.
Eq.[2.56) and can be approximated by a model of harmonic oscillators. Therefore, temper-
ature dependent measurements of the displacement parameter can distinguish static
from thermal atomic displacements.

2.8.1 Atomic displacements in XRD

In XRD, the structure factor defines the observed diffraction pattern. Thermally induced
displacements of the i-th atom A7; lead to a modified scattering amplitude F (Q) with the

modified scattering amplitude given by

Finermal (0) = ), frexp (<G (7 + A7), 2.91)

where Q = k} — k; is the momentum transfer and 7, is the average position of the atom i,
which is displaced at a specific point in time of the snapshot by A7;. Now the Debye Waller

factor shall be derived and factorized from the unperturbed scattering amplitude,
F(0)= Z frexp(-igF). (2.92)
i

For small displacements, (Ar? < |f§ - rj|) Vj # i, the additional term can be developed as

follows (it is assumed here, that this expansion indeed converges):
xp (~i0AR) = 1 — iGAR — + (GARY + ... (2.93)
© 2

Taking the time-average of this expression over the timescale of an experiment 7 ~ minutes
and assuming purely thermal vibrations (no static contribution!) yields
(0AR) o= 0o, = 0. (2.94)

T,eX

This, however, is not the case for the second order term, which can be written with the

simplifying assumption of isotropic displacements:
PR LR QZ 2
Fuvermat (0) = ) fi-exp (=i07) | 1 = = (A7) |. (2.95)
i

Due to the scattering at different sets of lattice planes, XRD is sensitive to the anisotropy
of the atomic displacements. A precise discussion of anisotropic displacements requires an
individual description of every observed reflex. While this is possible, the resulting formula
could not be easily compared for XRD and EXAFS.

Long-wavelength phonon modes induce atomic deviations from the lattice sites, which
hardly affect the local interatomic distances, observed in EXAFS. On the other hand, they

contribute significantly to the displacement parameter obtained from XRD analysis, where
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the number of probed lattice sites is limited by the coherence length of the scattering X-
rays, which in the case of PCMs is larger than the grain size. The displacement parameter
obtained from XRD is therefore sensitive to both, short wavelength optic and long
wavelength acoustic phonons and measures the root mean square of the atomic dis-
placement from the high-symmetry lattice site. It should be mentioned further, that the
condition in Eq.[2.94]is not necessarily legitimate in the case of static displacements without
further justification. This justification comes from the fact that the observed static displace-

ments are considered to be randomly distributed, so that for the space average over all atoms,
AR =0 (2.96)
i

holds.

2.8.2 Atomic displacements in EXAFS

The EXAFS displacement parameter differs somewhat from the displacement parameter
observed in scattering experiments. In EXAFS, the distribution of atomic distances is mea-
sured, while the absorbing atom is always located exactly at 7 = 0. By refining a specific
peak in EXAFS, the variance of this atomic distance o> can be obtained, assuming a Gaus-

sian distribution of bond lengths centered around ry [99],

-12 (r—ro)’
= (20 - : 2.97
p(r) = (2n07) eXp( 3 ) (2.97)
This expression can be included in the general EXAFS equation [[100],
NS2 (" p(r) 2r '\ o
k)= —2.3|Fk "slf 278 exp|-—— | 2*d 2.98
x (k) Z 5[ (k)e Ml exp 10 e“"dr (2.98)

and after a lengthy solution of this integral, one obtains the commonly employed EXAFS
Eq.2.85

(k) NS§ F (k) exp( 2 ) =220 Gin (2krg + 61) (2.99)
X = . — e o 1) - .
k2 10

Now, it is still necessary to understand how o is obtained from the variance of atomic
distances for a given set of atomic positions. An example for the first coordination shell in
an arbitrary system is depicted in Fig. While the ideal lattice positions with an arbitrary
reference point are iy and i}, the atoms are displaced to the new position iy; = iy + Ay
and A, j- Therefore, the atomic distance ry = |L70 - 12’1| is modified by oscillations of the
absorber by its displacement direction projected on the normed atomic distance (ify; — ilp) -
(¢, — i) /ro and by those of the scattering atom (ﬁ’l,j - ﬁ’l) - (#y — ip) /ro. Therefore, the
displacement parameter amounts to:

TEXAFS = <”2>T = <[(“ai —up +uij - “7) - (ui — up) /r0]2> , (2.100)

T

which can be inspected more easily by letting iy = 0:

ThxARS = <[(ﬁ0 + iy — i) ﬁl/ro]2> (2.101)

T
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The EXAFS displacement parameter contains only the displacement along the di-
rection of the atomic distance and is therefore referred to as mean squared relative
displacement (MSRD) parameter. This reduces the contribution of transverse optic
modes and due to the local probe also the influence of long wavelength modes.

2.8.3 Conclusions on the difference of displacement parameters

Two differences can be observed between the two displacement parameters: The first (1)
concerns the contribution of anisotropic thermal and static displacements, the second (2)
concerns the weighting of thermal vibrational modes with different wave lengths.

G> . —
xo (u3-tp) L)1(1
\ /
(] [ )

Uo Us,

Figure 2.7: In EXAFS, the absorbing atom (red) at position iy; emits a photo-electron,
which is scattered at a neighboring atom (green) at position i} ;. Therefore, the
bond length observed in EXAFS corresponds to the distance between the cen-
ters of static and thermal displacements along the direction of the bond. This
leads to the fact, that the EXAFS displacement parameter is not as sensitive to
transverse phonon modes as the XRD displacement parameter, which averages

displacements isotropically over longer distances.

(1) Anisotropic displacement distributions can be quantified in XRD by comparing the
reduction of reflex intensities for different reflex families with different Ak / |Al?|. In EXAFS,
however, only the mean square displacement in the direction of the interatomic distance
(it — iip) is taken into account. The resulting number O-IZEX Aps contains both, an average shift
of the absorbing and of the scattering atom from the central position and static and thermal
displacements are equally taken into account. For different atomic distances, i.e. for higher
coordination shells, the direction of the interatomic distance will be different, and a different
displacement parameter could occur. In the case of the meta-stable crystalline phase of
GeTe-Sb,Tes alloys, the EXAFS displacement parameter for the first coordination shell
({100}-directions) might underestimate the displacement amplitude in the {110}- and {111}-
directions, which can be seen from the second and third coordination shells, respectively.

(2) Thermal vibrations of short, longitudinal wavelengths (i.e. 4 = a/2) contribute
equally to the XRD and EXAFS displacement parameters, but modes of long wavelengths
and transversal modes in general contribute less to the EXAFS displacement parameter, be-
cause they leave the local atomic distances mostly unchanged. The different weighting can

be immediately quantified from the equations given above by defining various snapshots of
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2.8. Atomic displacements probed by XRD and EXAFS

vibrational modes and calculating o>. However, this is very demanding and involves com-
paring the unknown coherence length of the employed x-rays (or neutrons) with the phonon

wavelength.

In conclusion, displacement parameters of different samples should be compared be-
tween measurements with the same technique. If such data are not available, a larger dis-
placement parameter is expected for XRD measurements, where also acoustic modes with
longer wavelength are taken into account. In the case of this thesis, such displacement

parameters will be compared for amorphous and crystalline PCMs in Sec.{.2.3]
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CHAPTER 3

Disorder in crystalline GeSb,Tey:
Modifications along the MIT

3.1 Disorder in solids

The fundamental switching mechanism in phase-change materials can be described as a
transition between different levels of atomic disorder, with one state having translational
symmetry (i.e. a crystalline state) and the other phase showing no sharp diffraction spots.
The latter phase therefore does not comply with the definition of a crystal by the IUCr
and translational periodicity must be absent. This section is included to provide a general
framework for the description of these disordered materials, where long range order (LRO)
is absent. In contrast to the extensive treatment of perfect crystals in courses on solid state
physics, disordered matter is not so often discussed. This is partly due to the lack of a
basic concept as fundamental as for example Bloch’s theorem in the crystal. This section
is therefore included to define the term disorder, which — by itself — is rather vague. In this
sense, disorder refers not to mere chaos but rather to a specific deficiency of order [101].
Several types of disorder will be introduced and defined in the following, because they will
simplify the description of disorder later.

Let us begin with the so-called topological disorder [30], p. 49. It is the type of disorder
usually encountered in amorphous glasses and liquids. As introduced earlier, let us define
disorder based on the deficiency of order. In a single crystal both, the coordination number
and the chemical nature of the bonded atoms are well defined. In a topologically disor-
dered network of bonds, these two conditions are replaced by statistical distributions. This
also means that not every amorphous material is equally topologically disordered. Some
compounds retain the well-defined bond length and the chemical nature of the bonds in the
crystalline phase. This definition also implies that amorphous as well as crystalline PCMs

contain topological disorder — the amorphous materials due to the existence of homopo-
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3.1. Disorder in solids

lar bonds — the crystalline materials due to the local atomic displacements, which create a
broad distribution of bond lengths. This shows that we need more precise terms to describe

disorder.

There are three general types of continuous-random models: The continuous random
network (CRN), which applies for covalent glasses, random close packing for metallic
glasses and the random coil model for polymeric organic glasses. PCMs should fit most
conveniently into the first category (CRN), since the bonding of the amorphous phase is
mostly covalent due to the general applicability of the 8-N rule, cf. Sec.[d] for the coordina-
tion number and due to the rather well-defined bond lengths (as compared to the crystalline
phase). However, Ge atoms in some PCMs are polyvalent with one contribution in a tetra-
hedral geometry being in good agreement with the covalent coordination numbers and the
sum of covalent radii, while the other, distorted octahedral geometry, is less well-defined
with a higher coordination number and larger bond lengths [[102]. Therefore, the random
close packing model can hold only approximately for amorphous PCMs.

In the crystalline phase of all PCMs, translational periodicity exists. In contrast to e.g.
NaCl, some of the lattice sites are randomly filled with atoms of different chemical species.
The meta-stable cubic phase of most GST compounds consists of Te atoms on one site and a
random distribution of Ge and Sb atoms on the other site. This lack of order is the so-called
substitutional disorder ([101]], p. 6). We can equally say that the lattice sites form a regular
lattice, whereas each element in the solid does not. It is worth mentioning that substitutional

disorder does not include a chemical substitution with an arbitrary atomic species.

Quite frequently, this substitutional disorder induces static atomic displacements of var-
ious amplitudes. Here, the laterally random variable is the displacement (-amplitude and
-direction) of each atom from its presumed site in a regular lattice. The same holds for a
snapshot of the atomic positions in a single crystal at high temperature. The atomic displace-
ments due to thermal vibrations or static disorder are therefore best described in the frame-
work of displacement disorder. Although both types, thermal and static displacements lead
to displacement disorder, they are quite different (cf. [78] p. 153): Thermal displacements
fall in the category of imperfections of the first type, where distances fluctuate, but the mean
position of the atom remains unchanged so that the long range order is preserved. Here, the
fluctuation of distances to the first, second and n-th neighbor have the same amplitude, i.e.
fluctuations are not additive. Imperfections of the second type reduce the long-range order.
This occurs for example if the filling of lattice sites occurs in a random fashion so that the
fluctuations of nearest neighbors is increased to the next nearest neighbor, and the distance
fluctuations increase with distance and thereby destroy long-range order at large distances.
This will become important later in the discussion of EXAFS data, which were obtained at
10 K, where thermal fluctuations are almost absent.

The degree of subtitutional disorder should be put on a clear mathematical framework,
which would allow comparing different atomic structures with each other. First, it is impor-
tant to distinguish the different ranges of subtitutional order: If only nearest neighbors are
concerned, the majority of atoms on a perfect lattice might be ordered, but due to entropy
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3.2. Motivation

reasons, defects have to occur at finite temperatures. These rare fluctuations can cancel out
the substitutional order on the long range. Therefore, short range order (SRO) and long

range order (LRO) will be distinguished in the following.

SRO can be defined starting from a solid of N atoms of type A and B with N4 + Ng = N.
Let Nap define the number of nearest neighbors, i.e. bonds between type A and B. The
coordination of every atom is z so that the probability for a randomly chosen bond to be of
type A-B is given by

Nag
0.5-zN’

If each site would be occupied randomly, i.e. the lowest amount of order would exist,

PAB = 3.1

pap = 2cacp. It is therefore straightforward to define an order parameter for short-range

order as

1
s = 5PAB = CACB: (3.2)

This concept can be easily extended to include LRO as well by taking I'45(r) and pap(r)

as a function of r. The existence of long range order is then given by
I'eo = lim ['yp(r) (3.3)
r—00

Experiments, however, are always limited to some maximum of length scale, up to which
they can probe the distribution of atoms. This description of long range order is therefore
not directly accessible in experiments, By investigating the radial dependence of I'(r), even
the intermediate range order (IRO) can be defined. Usually, the radial dependence of this

order parameter is given by the functional behavior

I'(r) o« r™exp(-r/0), (3.4)

with n depending on the dimensionality of the solid (approx. 1 for 3D) and ¢ is called the
correlation length scale.

The next distinct type of disorder is the topological disorder ([101], p.36). Non-
crystalline, amorphous, vitreous or glassy solids are categorized as topologically disordered:
They appear homogeneous and isotropic on the macroscopic scale. The formalism to de-
scribe this disorder is the subject of research of statistical geometry, which is a field too large
to present here. It should be noted, however, that the most common tools to investigate and
to describe these systems theoretically are atomic radial distribution functions, bond angle
distribution functions and ring statistics. For diatomic or more complex systems, these func-
tions can be split into partial and total distributions functions. Most experimental techniques
like total scattering and EXAFS are limited to the determination of atomic radial distribution

functions.

3.2 Motivation

The atomic structure is the basis of all macroscopic properties of a solid — however, some

properties like electronic and thermal conductivity are complex to predict even when the
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3.2. Motivation

atomic structure is known. In this sense, GeSb,Te, is a very interesting material since it
shows a continuous transition from insulating to metallic behavior (cf. Fig.[3.1)) without a
significant change in the local atomic configuration [21]]: The transition takes place without
a structural phase transition in the hexagonal phase. Therefore, it is interesting to study
the subtle structural modifications, which lead to this change in conductivity. In the sta-
ble hexagonal phase, all Ge- and Sb-atoms are in a distorted octahedral 6-fold coordination
with 3 shorter and 3 longer bonds, while Te atoms exist in two configurations: Some are
octahedrally 6-fold coordinated with 3 short and 3 long bonds and some are located next to
vacancy layers, leaving them 3-fold coordinated [49], [48]. This atomic arrangement was
observed after long thermal treatment at high temperature. After thermal treatment at lower
temperatures and/or shorter times, some substitutional disorder might remain even though
the unit cell has already the hexagonal structure of the perfect crystal. Depending on these
annealing conditions, either the insulating (lower annealing temperatures) or the metallic
(higher annealing temperatures) phases are obtained. Thus, Sec.[3| will answer the question:
Which modifications of atomic disorder can be observed from the symmetry of the
unit cell and from the interatomic distances to accompany the metal-insulator transi-
tion in GeSb,Te4? This chapter is structured as follows: First, previous investigations from
literature will be summarized for comparison. Experimental details of the XRD measure-
ments performed for this thesis follow, and their results are finally discussed for annealing
trends in the meta-stable cubic (Chpt.[3.5) and stable hexagonal phases (Chpt.[3.6). Finally,
changes in the local atomic ordering are investigated based on EXAFS and neutron PDF
analysis (Chpts.[3.11]and [3.12)) and all results are concluded in Chpt.[3.13]

E GeSb,Te,
108 £

107 3

106 £
E Amorphous

105?2 ....................

Hexagonal

100F

Sheet resistance R (Q)

10%¢ &

102, ——

................................................................

0 ‘50 .1C;OI15IO‘2(I)OI21%OI360I31%O
Annealing temperature T (°C)

Figure 3.1: The sheet resistance of a 100 nm thin film of GeSb,Te, is reduced irreversibly by
increasing the annealing temperature, finally leading to a change from insulating
behavior after annealing at about 450 K to metallic behavior after annealing at
550 K. Since also insulating samples with hexagonal lattice structure have been

obtained, the electronic transition takes place within the hexagonal phase. Taken
from [21]].
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3.3. Previous investigations

3.3 Previous investigations

At 418 K, the as-deposited amorphous phase of GeSb,Tes crystallizes in the meta-stable
rock-salt phase (cf. Chpt.[7) with a significant amount of substitutional disorder. At even
higher temperatures of about 548 K, the structure begins to transform to the hexagonal
phase. In the following, previously published results on the atomic structure and its dis-

order will be discussed.

The atomic ordering in the rock-salt phase of GeSb,Te, is reported to follow the space
group Fm3m (No. 225) with a lattice constant of a = 6.0430(9)A [48]. The refinement
of reflex intensities further revealed the occupation of the atomic basis, where two distinct
lattice sites were necessary to refine the diffraction patterns. At room temperature, one site
is fully occupied with Te (B = 1.4 Az), while the other is occupied to 25% with Ge and
50% with Sb (B = 3.2 Az), whereas the remaining 25% of the sites are vacant. This atomic
structure can be considered a stacking of layers in abcabc. . . sequence (cf. Fig.[3.2). In the
typical fashion of a rock-salt lattice, the intensity of the 111 reflection /;;; is proportional
to the |fx — fB|2, i.e. the difference of the average atomic form factors of the two sublattices
A and B. The intensity of the 200 reflex on the other hand is proprtional to the squared
sum of these form factors |f + f3|2. Atomic form factors contain a real and an imaginary
contribution, cf. Sec.2.5.1] Since the real contribution of an atomic form factor dominates
the imaginary contribution, the 111 reflex is usually much smaller than the 200 reflex and
proves the existence of some ordering of the chemical species to particular lattice sites —

because for a fully random sorting of atoms, the 111 reflex is absent.

The hexagonal phase of GeSb,Tes was reported to comply with the space group R3
with lattice parameters a; = 4.21 A and c, = 40.6 A [48]], cf. Fig. Now, in addition to
the layers of Te, also "layers” of vacancies are formed, which induce a step in the stacking
sequence, by which the cubic symmetry is destroyed. In total, 3 blocks of 7 layers each
comprise a unit cell of GeSb,Te4. In literature, also the phase-change material Ge,Sb,Tes
was investigated and it behaves equally with regard to structural [49, [104] and electronic
[21]] properties, except that transition temperatures are slightly higher. Therefore, it seems
reasonable to assume in the following that the atomic reordering processes in GeSb,Tey
and Ge,Sb,Tes are of the same nature. Due to the fact that the number of atoms in the
formula unit of Ge,Sb,Tes is a multiple of three, the lattice parameters of Ge,SbyTes are
a, = 4.22(1)A and ¢, = 17.18(4) A [LOS]. The lattice constant c is significantly smaller,
because one block of 9 layers is sufficient to create a periodic stacking, including the step
at the vacancy layer. As compared to these well known properties, there is no consensus
on the occupation of lattice sites. This might be due to difficulties to distinguish Sb from
Te, but also originate from the different states of substitutional ordering in the investigated
samples. To describe the occupation of lattice sites, it suffices to consider only one block.
In literature, there is still uncertainty whether the Ge and Sb atoms each occupy their own
layers. The formation of single elemental layers is favored energetically, as obtained from
DFT calculations on GeSb,Tes and GeSbsTe; [106]. On the other hand, the mixing of ele-
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3.4. Experimental details for XRD
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Figure 3.2: Crystal structures of rock-salt and hexagonal GeSb,Te4 obtained from a DFT
based relaxation of the atomic sites [103]]. The local atomic order is very sim-
ilar, but significant differences between these states can be seen: substitutional
disorder in the rock-salt phase induces large atomic displacements. The change
in stacking sequence, initiated by the formation of vacancy layers, is depicted
by the operation A and its inverse A~!.

ments on the layers might be favored for entropic reasons (cf. Chpt.[6). Indeed, Matsunaga
et al. find a mixing of Ge and Sb atoms on the layers of hexagonal GeSb,Tes by means of
XRD analysis [48]. Their samples were prepared by sputter deposition, crystallized to the
meta-stable phase by laser irradiation and subsequently heated to 873 K in order to obtain
and anneal the hexagonal phase. This consistent model is contradicted by HRTEM analysis,
where a formation of pure layers of Ge or Sb is found for GeSb,Te4 after preparing the
samples by slow melt quenching [107]. It might still be possible that the substitutional dis-
order on the Ge/Sb layers cannot be removed by heating the sample, but only by preparing
the samples from the melt. The author of this thesis is not aware of any such compari-
son. In another study, SnSb,Tes was investigated by resonant x-ray diffraction, where the
energy dependence of the atomic form factors is exploited to distinguish different elements
[108]. A significantly increased fraction of Sn atoms is found on the center layer, suggesting

pronounced but not perfect substitutional ordering.
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Figure 3.4: The XRD patterns of stable hexagonal GeSb,Te4 are shown for films of about 750 nm thickness measured in Grazing Incidence (GI) geometry.

The stable hexagonal phase crystallizes above 548 K. Upon increasing the annealing temperature further, some reflections of the hexagonal

phase become narrower (e.g. 39.3°, {0 1 14}), while some remain almost unchanged (e.g. 42.7°, {1 1 0}). This trend originates from a decreasing

number of stacking faults (cf. text).

60



3.4. Experimental details for XRD

3.4 Experimental details for XRD

Figs.@] and@ show the trend in XRD patterns obtained for GeSb,Te, after different an-
nealing temperatures. 750(50) nm of GeSb,Tes were deposited on borosilicate substrates
and heated to the given temperatures with a heating rate of 5 K/min and a holding time
of 30 min in a continuous flow of Ar. Each data set corresponds to a different sample so
that the annealing effect is not accumulative and the samples were only heated from the
as-deposited phase to the given temperature. The samples were not capped, but even after
the treatment at 748 K, no segregation effects were observed in the subsequent XRD mea-
surement at ambient conditions. Also, no significant evaporation residues were observed in
the tube furnace. The XRD patterns were recorded in Grazing Incidence (GI) geometry at

1° angle of incidence, using Cu K-a X-rays.

3.5 Annealing dependence of the lattice constant in cubic
GeszTe4

The scattering from the initially as-deposited amorphous structure shows a clear maximum
just where the strongest crystalline reflexes occur and an additional shoulder at larger an-
gles. At higher annealing temperatures, starting from 423 K, the meta-stable phase crys-
tallizes. The atomic ordering in this phase is reported to follow the space group Fm3m
with a lattice constant of 6.0430(9) A [48], if the meta-stable phase is prepared by irradi-
ating the as-deposited material with a laser. Fig.[3.3] shows that the reflex height increases
when the annealing temperature is elevated from 423 to 448 K and remains almost con-
stant thereafter. No broad features of the amorphous phase remain in both these diffraction
patterns, so that both samples are fully crystalline. However, the width of the reflections
and its 6-dependence changes according to an analysis of the peak parameters U and Y (cf.
Eqgs.[2.63]and [2.64). This shows that the grain size increases and that the strain decreases.
Both parameters U and Y remain unchanged within the metastable cubic phase. To quantify
the lattice parameters, the diffraction patterns have been fitted using the Winprep software,
which fits peak functions to all reflections at the angles given by the space group and lattice
constants. The intensity of each reflex is an additional free parameter in this model, i.e. no
features of the atomic basis (like atomic numbers and positions) are refined. The results

from this refinement are summarized in Tab.3.1]

The data set of the sample annealed at 423 K is only partly crystallized as can be seen
from the lower reflex intensity and the higher background signal between the reflections in
Fig.[3.3] Starting from 448 K, the sample is completely in the meta-stable rocksalt phase.
For higher annealing temperatures, a trend of increasing conductivity was found in literature
[21]] (and is confirmed here). If this trend originates from a reduction of disorder, then there
should also be a trend in the structural properties. Indeed the lattice constant a shrinks
with increasing annealing temperature. This is perfectly in line with the even larger lattice

constant of the sample after very fast laser crystallization (6.043(1) A[48]), which should
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3.6. Annealing dependence of the lattice constants in hexagonal GeSb,yTey

Table 3.1: Refinement of XRD patterns of meta-stable cubic GeSb,Te4 as a function of the
annealing temperature, measured at room temperature. The lattice constant is
observed to decrease, while simultaneously the sheet resistance measured in the

van-der-Pauw four point geometry decreases as well.

Annealed at Lattice constanta  2@-offset Reflex shape W  Residual VdP Sh. Resist.

448 K 6.022(2) A 0.07(1)° 0.44(2) 0.170 4708 Q
473K 6.015(1) A 0.07(1)° 0.44(1) 0.169 1259Q
498 K 6.004(1) A 0.10(1)° 0.45(1) 0.186 410Q
523K 5.995(2) A 0.13(1)° 0.48(2) 0.170 196 Q

leave the sample in a more disordered state than those investigated here. Thus, the increase
in conductivity in the meta-stable phase goes along with an increasing mass density of the
specimen. The overall decrease in the lattice constant amounts to a density increase of 1.4%
(2.4%, if the laser crystallized sample is used as reference), which is a rather low value
as compared to the total volume of the vacancies, 12.5%, so that only a small fraction of

vacancies might collapse.

3.6 Annealing dependence of the lattice constants in hexag-
onal GeSb,Te,

The annealing sequence has been continued for XRD measurements of the stable hexagonal
phase, which is formed above 548 K. At this annealing temperature both, cubic and hexago-
nal phases coexist so that this dataset is not treated further. The hexagonal structure, which
is the only solid phase that exists above 573 K, was reported to comply with the space group
R3m with lattice parameters a; = 4.21 A and cp = 40.6 A [48]]. The lattice constant cj, is
quite large and the reason for this will be explained in the following. GeSb,Te4 has 7 atoms
in the formula unit. In the meta-stable cubic structure, the atoms are stacked periodically
...abcabca... butif a vacancy layer is introduced after every 7th layer and this block
is declared a unit cell, then the stacking would begin from the same letter with which it
started. It is energetically favorable to start with a different position so that 3 of these blocks
are necessary to create a periodic sequence. The situation is different in Ge,Sb,Tes, whose
9 layers can be perfectly stacked. The analysis of the obtained diffraction patterns was
again performed with Winprep in the same way as described above for various annealing
temperatures and the results are summarized in Tab.[3.2]

Does the trend of an increasing mass density from the meta-stable phase continue in
the stable hexagonal phase? To answer this question, the volume of the unit cell was cal-
culated by V = aich sin(60). The results are presented in the table and show a reversed
behavior: the volume increases for higher annealing temperatures, except in the last three
measurements, where the density remains stable within the experimental error. This de-

creasing mass density can be traced back to an increasing lattice constant cj. It goes along
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3.6. Annealing dependence of the lattice constants in hexagonal GeSb,Tey

Table 3.2: Refinement of XRD patterns of stable hexagonal GeSb,Tes annealed at different
temperatures. The lattice constant cj, is observed to increase with decreasing
sheet resistance, obtained from four point measurements in the van-der-Pauw

geometry.

Annealing Lat. const. a, ch Volume  20@-offset w Resid.  Sh. Resist.

573K 4240(DA  4081(2)A 6354A° -0.11(1)° 0.18(1) 0.161 2490
598 K 4242(HA  4085()A 636.6A° -0.10(1)° 0.15(1) 0.154  20.8Q
623K 4238(HVA  4098(2)A 637.4A° -008(1)° 0.13(1) 0.144 17.9Q
648 K 4236(HA  4L11(DA 6388 A% -0.07(1)° 0.12(1) 0.136 15.0Q
673K 4237(HA  41.12(DA 6393 A% -0.04(1)° 0.10(1) 0.122 12.6Q
698 K 4232(HA  41.15(HA 6383 A7 -0.02(1)° 0.091) 0.110 11.1Q
723K 4233()A  41.14(H)A 6384 A  0.00(1)° 0.08(1) 0.097 10.4Q

with the transition from insulating to metallic behavior in Fig.[3.1] In the following, the
question will be answered, which atomic reordering mechanism is responsible for the
increasing lattice constant during the metal-insulator transition? The increase of a lat-
tice constant with higher annealing temperature is a rather rare feature, since most materials
shrink upon annealing. Changes in lattice constants are usually observed during the reduc-
tion of imperfections of the second kind (cf. Sec.[3.1)), i.e. due to an increasing SRO. This
material contains a significant amount of substitutional disorder on the Ge/Sb sublattice,
which might decrease during annealing, leading to the observed change in cj,. This hypoth-
esis will be discusses further in the the remaining and in the following section. Several
mechanisms could explain such behavior, but whereas strong covalent bonds connects the
layers within the blocks, the spacing between the blocks is determined by a complex mix-
ture of interactions: Van-der-Waals forces contribute to the bonding and counteract the ionic
repulsion. It seems reasonable to investigate this repulsion mechanism further. It originates
from the negative charge of Te atoms on the outer layers of each block. This negative charge
originates from the slight ionicity of the bonding with Ge and Sb. It was reported that Sb
atoms form a more ionic bond with Te [109] in hexagonal Ge,Sb,Tes compounds than Ge
atoms. Therefore, a mechanism exists, which links the occupation of the layers next to the
outer layers with the lattice constant ¢,. If the increase in c¢; originates from a change in
the spacing between adjacent blocks, then an increasing concentration of Sb at the connec-
tion between blocks could explain this trend. Therefore, it remains to be shown that indeed
the distance between neighboring blocks changes (cf. Sec.[3.7). First, let us recall that the
stacking sequence is sometimes reported as Te-Sb/Ge-Te-Sb/Ge-Te-Sb/Ge-Te and some-
times as Te-Sb-Te-Ge-Te-Sb-Te (cf. introduction). This controversy could be explained by
the slow diffusive occupation of layers at elevated temperatures. In addition, it was shown
by DFT calculations that the driving force for the sorting of atoms is very low (3 meV/atom
in GeSb,Te, [106]) and can be easily compensated for by the gain in entropy (cf. Sec.[7).
It is therefore reasonable to assume that both stacking sequences occur depending on the

annealing conditions.
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3.7. The layer distances in hexagonal GeSb,Tey

Therefore, continuous structural rearrangements might take place within the compound
even in the stable hexagonal phase. The opposing trends of increasing and decreasing mass
density in the meta-stable and stable phases, respectively, suggest that indeed two different
mechanisms could exist. The next section will be devoted to analyzing a possible mecha-

nism by which this sorting of atoms could be detected experimentally.

3.7 The layer distances in hexagonal GeSb,Te,

In the preceding paragraph, it was assumed that the block distance changes as a conse-
quence of the ordering of Ge and Sb on the layers. A possible mechanism in support of this
assumption will be presented in the following. It will be based on the observation that the
{0 0 12} reflection at 26° in the stable hexagonal phase changes its intensity continuously
with the annealing temperature (cf. Fig.[3.4). It corresponds to the {111} reflections in the
meta-stable cubic structure. They originate from the diffraction of x-rays from next nearest
layers at a distance of about 2Ac = 3.42 A. To obtain insight in the origin of the differ-
ent reflex intensities, the structure factor (cf. Eq.2.45)) can be calculated. For simplicity,
Ge,SbyTes is calculated here, because its stable hexagonal phase consists of only 9 layers
as compared to the 21 layers in GeSb,Tey. It turns out that only the layer positions c¢; en-
ter the formula, which are referenced to the centered Te*-layer at the origin ¢y = 0: The
stacking sequence in Ge,Sb,Tes is assumed as Te-Sb-Te-Ge-Te*-Ge-Te-Sb-Te [107]]. In a
high-symmetry configuration, the c; are given by i - (Ac), with (Ac) = ¢/9, the average dis-
tance of layers. If, however, atoms are more distant at the vacancy layer due to the weaker
van-der-Waals bonds, then the average distance of layers can decrease down to (Ac) = ¢/10,
which would imply that the atoms at the vacancy layer are 2 (Ac) apart. The interlayer spac-
ing was calculated by DFT to be between 3.0 and 3.2 A[106]. The structure factor for this

model structure reads

S = > fi@-exp(idr)
J

= fre- (1 + 2cos (1071'%) + 2 cos (1071%4)) + 2 fGe cOS (1071%1) + 2 fsp cos (171%3)

This structure factor depends on four parameters (c;), which all influence the resulting
intensity of the reflex |S|*. Since the spacing of layers is roughly equidistant [49], the
contributions to the structure factor are positive for Te and negative for Ge and Sb. If the
vacancy spacing equals (Ac) (i.e. ¢; = i - ¢/9), the structure factor has a value of 40, but
if the spacing increases to 2 (Ac) (i.e. ¢; = i - ¢/10), the value increases to 95. This shows
that the intensity (|S |2) of the {005} reflections of Ge,SbyTes (which correspond to the {0
0 12} reflections of GeSb,Te,) increases with an increasing block spacing. This trend is
also observed in Fig.[3.4] at 26° so that we conclude that the argument of the increasing
ionic repulsion at the block distance is indeed consistent with the experimental observation.

It is however not possible to proof that this is the only change of atomic disorder, which
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accompanies the metal-insulator transition. To conclude, the metal-insulator transition is
accompanied by an ordering of Ge and Sb atoms to separate layers of the hexagonal
phase of GeSb,Te;. Other mechanisms, like the imperfect ordering of some remaining
vacancies and some remaining atoms in the vacancy layer might as well explain the

metal-insulator transition and cannot be excluded after this analysis.

3.8 Reflex broadening in XRD patterns of hexagonal GeSbh,Te,

Another trend can be seen in the diffraction patterns in Fig.[3.4] (inset): The two reflections
of the hexagonal phase at 39.6° and 42.7° have different peak heights and widths when the
hexagonal phase is formed. This is rather surprising, since in most cases the reflex width is
given by the grain size and thus depends only weakly on the momentum transfer. Increasing
the annealing temperature increases the height of the first reflex, while it simultaneously re-
duces its width and shifts its position to lower angles of diffraction. The latter angular shift is
simply a consequence of the change in lattice constants, but the change of reflex width could
have two explanations: Grain growth and stacking faults. Which atomic rearrangement
is responsible for the narrowing reflection at 39.6°?

Thermal vibrations about well-defined mean positions do not contribute to the broad-
ening. ([78]], p. 189) and therefore are not taken into account. The two remaining effects
will be discussed in the following in order to see whether they can influence the disorder
induced localization, which was reported recently [21]]. Grain growth does not influence
the localization phenomenon, since the electron mean free path is below 22 A — even after
annealing at 598 K, whereas the grain size is at least 84 A. The stacking faults, however,
could still influence the conductivity. The crucial way to distinguish grain size effects from
stacking faults is the different dependence of the reflex broadening on the miller indices
h, k and I: ”The essential difference between size and distortion effects is that, in the first
case, the apparent size is independent of the order of the reflection, while in the second case
it is not independent.” [78]], p. 161. This dependence on miller indices will be discussed
and compared to the data in the following. The experimental data were obtained by fitting
Gaussian peak functions to the most significant reflections. However, the /-value of the re-
flections needs to be determined as well. They can be extracted from the angle of diffraction
after the model of the unit cell was refined. The reflections listed in Fig.[3.3] were used to
determine the Cagliotti-W’s (reflex widths) for the different annealing conditions (here, an
example for 573 K is shown).

This table already shows that there is no trend of reflex broadening W with scattering
angle, but that there is indeed a large difference in W’s for different reflections. This differ-
ence scales with the Miller index /. The resulting data for several annealing conditions are
summarized in Fig.[3.5]and prove the /-dependence of W for those samples, which have just
reached the fully hexagonal phase at the lowest possible temperature (573 K, black curve,
which is a linear fit to the black data points). Upon increasing the annealing temperature,

the slope decreases continuously. In the following, the different mechanisms, which could
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Table 3.3: The broadening of various reflections in hexagonal GeSb,Te4 does not scale with

the scattering angle 26, but quite well with the Miller index /.

Angle 20in °© Broadening W h k I
28.8 0.391 0o 1 7
39.6 0.744 0 1 14
42.7 0.279 1 1 0
524 0.374 0 2 7
65.0 0.900 0 1 21

explain the reflex broadening will be discussed.
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Figure 3.5: The Reflex width is plotted vs. the momentum transfer associated with the
Miller index L in the stable hexagonal phase of GeSb,Tes. It can be seen that
at lowest annealing conditions, the reflex width is dominated by the influence of
stacking faults because it has a significant non-zero slope. At higher annealing
temperatures, the slope is reduced so that the grain size broadening dominates.
Therefore, stacking faults are removed upon increasing the annealing tempera-
ture.

Grain growth is approximately described by the Scherrer equation ([[78l], p. 124)

W = o?

= , 3.5
gcos® (3-5)

where O is the angle of diffraction and g is the average thickness of the crystallites. Com-

bining this equation with the general formula for the distance of lattice planes dp; for given
h, k and [ (cf. [110], p. 125),

2
dhkl 3

. =. (3.6)

ah

1 4(h2+hk+k2) 2
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3.8. Reflex broadening in XRD patterns of hexagonal GeSb,Tey

and together with Bragg’s law (Eq.[2.58), it follows that

A |4(h2+hk+k> 2
sin® = -, [=|————+ —=|. 3.7
EAE] B

Therefore, by combining Egs.[3.5] and we obtain a general relationship of the reflex
broadening o on the Miller indices, which should apply for every reflex. Only the depen-
dence of 6 on [ will be considered in the following, i.e. & and k are left unchanged. A plot of
this function is shown for the case that only grain size (g = 482.5 A) leads to an increased
width of the reflections in Fig.[3.5] (green curve). It is easily seen that the influence of grain
sizes is rather constant with / and therefore also with 6. A comparison with the data at the
lowest annealing temperature for the hexagonal phase (black curve) shows that grain sizes
alone cannot account for the broadening.

Reflex broadening by stacking faults on the other hand shows a different angular depen-
dence, as given by (cf. [78]], p. 223)
2 Al
2 sin20°

It will be assumed in the following that the atoms on each layer are arranged in a perfect

W=0?= (3.8)

hexagonal grid, i.e. perfect 2-dimensional translational symmetry exists within each layer.
The stacking faults are then described as an irregularity in the stacking sequence of these
layers. In the case of hexagonal samples, the / direction is perpendicular to the layers. The
resulting reflex broadening o2 is then a function of / and of the parameter Al, which equals
half the probability to find a stacking fault at a randomly chosen layer. It is obvious from
this equation and from the sine in the denominator, that there will be a strong dependence
of 0% on I. This dependence is indeed visible from a plot of this function with Al = 0.25
in Fig.[3.5] (blue curve). It can very well reproduce the /-dependence of the broadening
parameter o in the sample annealed at 573 K. It also reproduces the absolute numbers for
the broadening, if the additional broadening from two sources is added: One originates from
the grain sizes and another from the non-zero 4 and k terms, which contribute an additional
broadening (cf. Eqs.[3.7/and3.8). The strong /-dependence of the reflection width shows
that stacking faults of the layers are present in the hexagonal phase at lowest annealing
temperatures. The decrease of this /-dependence upon annealing further shows that
the stacking faults are reduced upon increasing the annealing temperature.

In the following, the validity of the Williamson-Hall method is discussed. The de-
pendence of reflex widths on / for lower annealing temperatures causes problems with the
determination of grain sizes with the Williamson-Hall method, because it assumes that the
broadening originates from the grain size alone and therefore averages the width of all re-
flections. The analysis presented above shows that the Williamson-Hall treatment does not
deliver correct grain sizes in the presence of stacking faults. However, the Scherrer for-
mula can be employed to approximate the grain size from those reflections, which are not
broadened by the stacking faults — i.e. from the reflections with / = 0. The resulting grain
size is rather constant as a function of annealing (cf. Fig.[3.5at [ = 0) and amounts to

approximately 450 A.
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3.9 Conclusions from Annealing trends in GeSb,Te, from re-
ciprocal space

Structural changes with increasing annealing temperature have been investigated. In the
meta-stable cubic phase of GeSb;Tey, the mass density increases with increasing annealing
temperature. At even higher annealing temperatures, the structure transforms to a hexago-
nal phase, in which an metal-insulator transition is observed upon increasing the annealing
temperature. Throughout this transition, the mass density of the sample is found to de-
crease. Thus, two different continuous structural transformations have been observed. The
first could be related to the ordering of vacancies in the meta-stable cubic phase, leading
to the formation of some vacancy layers, which still retain the cubic symmetry. This “col-
lapse” would lead to the observed increase in mass density. The transformation in the stable
hexagonal phase is probably related to the ordering of Ge and Sb atoms on separate lay-
ers. These diffusion processes are also suggested for a similiar compound, SnSb,Te4, in
which the Ge atoms are isoelectronically replaced by Sn. Oeckler et al. show by resonant
x-ray scattering (RXS) that the Sn and Sb atoms are neither fully ordered nor randomly
distributed, but rather that Sn agglomerates on the center layer of the unit cell [108]]. In the
case of Ge atoms, this ordering increases the repulsive, ionic interaction across the blocks
and thereby decreases the mass density. This opening of the block spacing takes place con-
tinuously during the metal-insulator transition. The grain sizes evaluated at [ = 0 are found
to be rather independent of the annealing temperature in both phases and can therefore not
account for the MIT: They are 14 nm and 45 nm in the cubic and hexagonal phases, respec-
tively. The observed structural transformations reveal that several ordering mechanisms can
be responsible for the MIT:

1. some vacancies could continuously arrange to layers during annealing in the meta-
stable cubic phase (however, due to the absence of scattering from vacancies, this

mechanism cannot be discussed exactly)

2. the number of stacking faults in the hexagonal phase is reduced continuously upon

annealing

3. the Ge and Sb atoms diffuse to separate layers in the stable hexagonal phase at ele-

vated annealing temperatures, thereby increasing the spacing between the blocks

Unfortunately, it is not possible to determine a unique modification of the atomic order,
which can be claimed responsible for the metal-insulator transition. The main problem
is that experimentally, these different mechanisms cannot be decoupled because they take
place simultaneously during the annealing process. An alternative approach might be the
calculation of electronic conductivities by first principles. These calculations have been
performed on systems containing about 200 atoms [[111]], but this number might be too
small to sample the full substitutional disorder in these phase-change materials. It is still

possible to investigate the localization-delocalization transition by calculating the so-called
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inverse participation ratio of the electronic states to the transport. It was indeed found that
fluctuations of the local density of vacancies have a pronounced influence on the localization
of electronic states. If a Te atom is surrounded by 4 vacancies (i.e. by 2 atoms of either Ge
or Sb), electronic states are localized [[103]]. These fluctuations in the local concentration of
vacancies are reduced when the sample is annealed, since the formation of vacancy layers
allows only three or zero vacancies in the direct neighborhood of Te atoms. Thus, a PCM
in the stable hexagonal phase at highest annealing conditions cannot contain those Te sites
with 4 vacancies, which were found to be responsible for the localization of charge carriers.

In conclusion, the hexagonal phase turns out to be metallic at highest annealing conditions.

3.10 EXAFS analysis of meta-stable cubic GeSb,Te,

In the preceding sections, it was concluded that the SRO in crystalline GeSb,Te4 depends
on the annealing conditions. Although a change in the diffraction patterns was observed, it
was not possible to determine the exact modifications of the local atomic environment. In a
crystalline material with large atomic displacements, a local probe can deliver complimen-
tary information. EXAFS is such a local probe and was applied to GeSb,Te4 at different
annealing conditions. Up to now, EXAFS measurements on meta-stable crystalline GeTe-
Sb,Te; compounds have been reported in literature only once [31] and they were performed
at room temperature. There, bond lengths of 2.83 A and 2.91 A were obtained for Ge-Te and
Sb-Te bonds, respectively. No additional longer atomic distances were reported. Comparing
the average atomic distance from this result, 2.87 A, with the atomic distance obtained from
XRD, 3.01 A, one notices that a strong deviation exists in published structural information
on meta-stable crystalline GeSb,Te4. The fundamental goal of this section|3.10|is therefore
to find out, which properties of the local atomic arrangement of each individual atom
can be obtained from an EXAFS analysis of GeSb,Te4 and to explain the discrepancy
between published structural information of meta-stable crystalline GeSb,Te,; based
on EXAFS and XRD. The exact trends upon annealing will be discussed in the following
section [3.111

In a crystalline material, there are several coordination shells, whose backscattered elec-
trons interfere and reduce the overall amplitude of the EXAFS oscillations. Therefore, it is
even more important to have an accurate baseline than for amorphous materials with larger
amplitudes. It is reported in literature, that several excitation channels exist at the Ge K-edge
EXAFS at 11140 eV (1s-3d), corresponding to k = 3.1 A_l, and more weakly at 11240 eV
(1s-3p), corresponding to k = 6.0 10%_1, [112]]. These energies correspond to electronic states
of Ge with a core hole present, which are similar to the electronic transition energies in As.
Because the first excitation is only closely above the edge, the corresponding data below 5 A
were not taken into account during the fitting process, because the remaining k-range from
5A to 16 A is still sufficiently large. The second transition, however, is of low amplitude
and was therefore neglected in the fit. However, increasing the fitting range above the first

feature improved the data quality in real space significantly, as can be seen in Fig.[3.6]
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Figure 3.6: Fourier Transforms of EXAFS from crystallized GeSb,Te4 with different win-
dow functions for the Fourier transform. A higher k,; (red curve) signifi-
cantly reduces the noise in the data around the main peak, because features

atk = 3.1 A_l distort the absorption baseline.

EXAFS data of GeSb,Tes were measured at 10 K sample temperature. These data have
a significantly higher information content, as will be discussed later (cf. Sec.[.2.3). Quanti-
tative results can be obtained from an EXAFS analysis by performing least squares fits. The
general fitting procedure was already described in Sec.[2.7.4] and was applied here as well.
In the case of GeSb,Te4, the structural model for each edge must be based on a rock-salt
structure of one sublattice of Te atoms and displaced Ge and Sb atoms with vacancies on
the second sublattice. Atomic displacements on the Ge/Sb sublattice could not be fitted by
large Debye Waller factors (DWFs), because the distribution of distances is not of Gaus-
sian shape, but consists rather of two or more individual contributions, which are at least
02A apart. It follows that the large displacements are not of thermal, but rather of static
nature. The atomic displacements could be refined, by including a short and a long nearest
neighbor distance around Ge and Sb, as described elsewhere [113]. These short and long
interatomic distances show individual distribution width, which are described by two inde-
pendent DWFs, which include thermal and possible static variations from the average short
and the average long distance. The resulting fit reproduces all features in the fitting range
(gray shaded area), cf. Fig.[3.7] The fit has remaining residuals of 0.011, 0.016 and 0.040 at
the Ge, Sb and Te edges, respectively and can be considered reliable. The energy shift AE
between experiment and calculations amounts to 6(1), 11(1) and 8(1) eV for the three edges,
which is in the usual range of energy deviations of 5 to 10 eV. Since the fitting model was
based on a rock-salt model, the coordination numbers N were known in advance to be 6, 6
and 4.5 for Ge, Sb and Te, respectivelyﬂ These numbers are valuable for the determination
of the amplitude reduction factors S 2, which are obtained from the fit via N-S§ (2). They turned
out as: 0.79(12), 0.97(14) and 0.84(14), for Ge, Sb and Te, respectively. These factors are
in agreement with the common range of 0.7 to 0.9, but the errors are quite large due to the
splitting of bond lengths and the large displacement parameters.

All parameters involved in the data refinement are summarized in Tab.[3.4] Taking the

IThese coordination numbers N were used for the sum of short and long nearest neighbor coordination
numbers N; + N,.
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Figure 3.7: Fourier Transforms of EXAFS from meta-stable cubic GeSb,Te,4 together with

fits based on a rock-salt structure. The data are based on the treatment by Julia
van Eijk [L13], [114].

average of the short and long distance around Ge, one obtains 2.97(1)A and around Sb
3.05(1) A. To determine the average atomic spacing in meta-stable cubic GeSb,Teq, these
numbers have to be weighted by the atomic occurrence in the ratio 1:2, which results in
3.02(1) A, which is only slightly larger than the result from XRD of 2.998(1) A (extrapolated
to 10K [73]]). The remaining deviation will be discussed later in this section. The average
atomic distance obtained from XRD and EXAFS is well in line, when the short and
long nearest neighbor distances are taken into account. It should be added, that the
longer distances became visible by the low measurement temperature, where the amplitude
of thermal vibrations is significantly reduced. Especially for the long bonds, the MSRD
parameters are so large that their amplitude is low and very accurate measurements are
necessary to detect them. This can be easily seen from Fig.[3.7) by comparing the signal
from the long atomic distance to the overall signal. Already the MSRD parameters for
the short atomic distances are exceptionally large, which shows that the displaced atomic

position itself is not well defined.

Now, that separate short and long distances were determined, it might be tempting to
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Table 3.4: Fit results from meta-stable cubic GeSb,Te4, annealed at 378 K for 60 h and mea-
sured at 10 K. Around both, Ge and Sb, short and long distances to the nearest
neighboring Te atom are found. This shows that the atomic displacements in

GeSb,Tey are of static and not of thermal nature.

Scattering Path N Distance Displacement Parameter

Ge-Te (short) 2.5(5) 2.854(4)A (a) 0.0056(6) Az (a)
Ge-Te (long) 3.5(5) 3.084(5)A (b) 0.014(3) AZ (b)

Sb-Te (short)  2.7(6) 2.933(5)A (c) 0.0052(8) A% (¢)
Sb-Te (long)  3.3(6) 3.16(DA(d)  0.0128)A° (d)

Te-Ge (short)  0.6(1) 2.8544)A (a) 0.0056(6) A” (a)
Te-Ge (long)  0.9(1) 3.084(5)A (b) 0.014(3)A” (b)
Te-Sb (short)  1.4(3) 2.933(5)A (c) 0.0052(8) A” (c)
Te-Sb(long)  1.73) 3.16(HA ()  0.012(8) A’ (d)
Te-Te 92) 4292)A@  0.0173) A% (d)

conclude that the atoms are displaced along the cubic {111} directions. This seems to be a
good approximation, indeed, but is not necessarily true. The short and long distances were
obtained because it was assumed in the fitting model that exactly two different distances
exist. Whereas it was obvious that a single distance is insufficient, also three distances can
be refined and the resulting residual is even slightly lower (cf. [113]] for details). The third
distance obtains an intermediate value, which resembles half the lattice constant quite well.
This three-fold splitting is the fingerprint of atomic displacements along the {100} and {110}
directions. Therefore, even a random displacement direction with four or more distances is
compatible with these EXAFS data as well.

The intrinsic vacancies of GeSb,Te4 were found to influence the electronic properties of
these materials significantly: They shift the Fermi level from a mid-band state to the band
edge [50]. It is also observed, that the electronic resistivity of GeSb,Te4 changes irreversibly
with increasing annealing temperature. This suggests that atomic rearrangements take place.
To understand how these rearrangements take place, it is necessary to understand the local
atomic structure around the vacancy. To answer this question, several DFT calculations
have been performed, which showed that charge is localized in the vacancy region [103]].
They are based on the result that the Te atoms, which are direct neighbors to vacancies are
displaced into the free space of the vacancy. This fundamental result seems counterintuitive
at first sight, because it is well known that atoms at the surface of crystals tend to form
short bonds into the bulk material. If the vacancy is considered a tiny surface area, the
Te atoms are expected to be dragged away from the vacancy. The remaining deviation of
average bond lengths at 10K, 3.02A in EXAFS and 2.998 A in XRD can be explained
based on fundamental differences in the methods. As discussed in Sec.2.8.2] EXAFS is
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Figure 3.8: The effect of vacancies in meta-stable cubic GeSb,Te4 on the resulting EXAFS
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and XRD data is schematically depicted. The central vacancy (grey) elongates
the bonds of the neighboring atoms. These elongated distances (black lines)
are taken into account in EXAFS, but the corresponding shorter distances (grey
lines) do not exist. In XRD, however, when only the Bragg reflections are re-
fined (e.g. in the Rietveld method), the distortions cancel out and on average the

lattice constant remains unchanged.

only sensitive to the displacements along the direction between two atoms, whereas Bragg
reflections occur due to reflections at layers of atoms. A 2-dimensional lattice of a rock-salt
lattice with a vacancy (in grey) is depicted in Fig.[3.8] If the atoms are displaced into the
empty space of the vacancy, the nearest neighbor distances are on average longer, because
there is no shorter nearest neighbor distance to compensate for this elongation. In XRD,
however, the Bragg reflections are not shifted, because the average distance between planes
is unaffected and averages out, when the whole structure is taken into account, since the
average atomic position is not changed: If all displacement vectors are added, the result
is zero. Therefore, the longer distance obtained from EXAFS is direct evidence for the
displacement of Te atoms into the empty space of a vacancy. This leads to a decrease of the
Te-Te distance across a vacancy, avac. In the following, this distance will be calculated in
order to compare it to published results from DFT calculations: In GeSb;,Te4, one sublattice
is occupied by nge = 25%, ngp, = 50% and ny,e = 25%. Let agp be the average Te-Te
distance along the {111}-directions with a central atom of Sb. It then must hold that

AxXRD = NGe * AGe * NSb * ASh + Nyac * vac (3.9

From this equation it follows that av,. = 5.86(5) A, which is in line with the general ob-
servation from DFT [109]]. This result is rather counterintuitive, because one would expect
that there is lack of attractive force towards the vacancy — just as for the surface layer of a
single crystal. In this surface layer, the distance between atoms in the first and second layers
is reduced as compared to that inside the crystal [[115]. One could expect a similar effect
in the meta-stable phase of GeSb,Te4 due to the absence of attractive force from the va-
cancy, but on the contrary, the atomic positions relax into the vacancies, i.e. towards a more

uniform filling of the space. To conclude, an EXAFS analysis of the Ge and Sb edges
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provides precise interatomic distances and the respective MSRD parameters, when the
measurements are performed at low temperature. From these interatomic distances,
the average atomic displacements could be determined. Their displacement pattern is
in good agreement with the result of a Peierls distortion mechanism. It was further
shown that Te atoms next to the vacancies are displaced towards the vacancy.

3.11  Annealing dependence of the crystalline phase from EX-
AFS analysis

It is now evident that the local atomic nearest neighbor distances can be obtained from EX-
AFS data for the local environment of all atoms and also for the vacancies. It was further
shown from XRD experiments that the SRO changes upon increasing the annealing tem-
perature. Therefore, EXAFS measurements have been performed on samples of GeSb,Tes,
which were annealed at different temperatures. The results from this analysis will be pre-
sented in the following in order to find out which atomic features of the SRO in GeSb;,Te,

change upon increasing the annealing temperature.

As-deposited samples were annealed in a tube furnace under a constant flow of Ar at
various temperatures. The heating rate was kept constant at 5 K/min and holding time 30 min
were kept constant so that the observed trends are meaningful. The resulting data of all
edges are compiled in Fig.[3.9)and will be analyzed in the following. It is worth repeating,
that the samples annealed at 423, 448 and 473 K show reflections in line with space group
Fm3m (rock-salt), while the samples annealed at 523 and 573 K show reflections at angles
corresponding to space group R3m (hexagonal). The intermediate sample annealed at 498 K

shows reflections of both types and therefore needs to be interpreted with caution.

Upon increasing the annealing temperature of GeSb,Te4, a continuous change of the
K-edge EXAFS of Sb is observed in Fig.[3.9] The Ge and Te K-edge EXAFS on the other
hand change quite suddenly at the phase transition between 473 K and 498 K. This finding
suggests that there is a continuous rearrangement of Sb atoms, whereas the Ge and Te atoms

change their local order rather suddenly.

The most significant change around Ge is marked by #1 in Fig. [3.9] It is surprising
to find it located at such large atomic distances, because this behavior is usually observed
upon crystallization: In amorphous materials like pure Ge, the nearest neighbor spacing
in the amorphous and in the crystalline phase is equivalent. Nevertheless, a change in the
EXAFS spectra is observed upon crystallization in pure Ge, where an additional peak is
formed at larger atomic distances [[116]. This additional peak is due to the reduction of the
variance of bond angles. It is therefore reasonable to conclude the same behavior for the
annealing dependence of crystalline GeSb,Tes: The large atomic displacements at lowest
annealing temperature lead to a variance of bond angles as well and this variance is reduced
when the stable hexagonal phase is obtained. It is worth mentioning that in the hexagonal
phase, the displacement direction of Ge and Sb atoms is aligned with the c-axis, so that the

distortion angle around Te is reduced.
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Figure 3.9: Fourier Transformed EXAFS spectra of crystalline GeSb,Te, after different an-
nealing temperatures. The changes in short-range order are quite subtle, but the
fingerprint of the hexagonal ordering at 500 K and above is the Te-Te distance
across the vacancy layer, which is 3.75 A and is denoted by "#5’.

At the Sb edge, the first peak grows continuously upon annealing. The exact mechanism
behind this change has to be determined by fitting the peak, because two nearest neighbor
distances exist and at least three parameters influence the height: The relative distance of
short and long bonds and their MSRD parameters. In addition to this effect, the peak at
4 A (feature "#2°) increase with annealing conditions above 498 K. These changes corre-

spond to Ge-Ge and Ge-Sb distances, which are getting more well defined, i.e. their MSRD
parameter is decreasing.

The most significant modifications can be observed at the Te edge. In order to find out,
which peaks are significant, the lowest noise level has to be identified. This level represents

the background noise over the full spectrum and is a good measure for the quality of the

data and for the data extraction process. The lowest level is observed at 5 A and 7A and

75



3.11. Annealing dependence of the crystalline phase from EXAFS analysis

can be compared to the peak heights. This shows that also the features denoted as ’#4’
and '#5° are important. The first peak changes rather suddenly and at the same time an
additional peak "#4" at 3 A is created. It corresponds to the long Sb-Te bonds, which are
getting more well defined. The feature at "#5° originates from the unique atomic distance
across the vacancy layers, i.e. the interblock distance. These are Te-Te distances of 3.75 A
[49] and it can be clearly seen that this peak grows continuously upon heating above 475 K.
This increase could either originate from the ordering of these distances or from the creation
of vacancy layers. At the same time, Te-Te distances at 5.8 A do not change with annealing
in the hexagonal phase.
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Figure 3.10: SRO in crystalline GeSb,Te4: The resulting nearest neighbor distances ob-
tained from fitting EXAFS data are plotted as a function of the annealing
temperature. It is observed that within the meta-stable cubic phase, the aver-
age bond length (black line) remains rather unaffected, but the average atomic
displacement (i.e. the difference between long and short bond) decreases (cf.

Fig.

All EXAFS data of crystalline GeSb,Te4 can be fitted using the model presented earlier,
since the residuals for all annealing temperatures between 425 K and 575 K are each below
0.025. The resulting parameters are plotted as a function of temperature in Fig.[3.10] The

average interatomic distance, (d) can be calculated from the individual atomic distances by
(d) = 0.5 (XGe-Te (d1 + do) + Xsp-Te (d3 + dy)) . (3.10)

Here, the parameters x denote the fraction of a particular bond and d; and d, are the short
and long bond around Ge, respectively. The plotted data show that this average bond length
is very constant over the whole range of annealing temperatures. The data also show that
a clear tendency exists for the short bond lengths to increase with increasing annealing
temperature. This increase is mostly compensated by a shortening of the longer atomic

distances, so that the average bond length remains almost unchanged. This means, in con-
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3.11. Annealing dependence of the crystalline phase from EXAFS analysis

clusion, that the amplitude of atomic displacements is reduced upon annealing. This reduced
splitting between short and long bonds is considered to be responsible for the increase in

EXAFS first peak height upon annealing the crystalline phase.
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Figure 3.11: The average atomic displacements in GeSb,Te4 and the optical band gap [117]]
correlate for different annealing conditions. This correlation between both pa-
rameters is likely due to the Peierls distortion mechanism, which opens the
band gap. The optical dielectric constant is also plotted for comparison (blue
line and numbers). The latter number increases rather suddenly at the cubic-
hexagonal phase transition and is therefore more likely controlled by the length
of atomic chains along the cubic 111-direction. The transition temperatures
for the cubic-to-hexagonal transition are taken from the study by Siegrist et
al. [21]].

The difference between the shorter and the longer nearest neighbor distance equals twice
the displacement length of an atom from its ideal lattice site. This displacement length 6d
is defined by

0d = 0.5 - (XGe-Te (dy — dy) + Xsp-Tc (ds — d3)) . (3.11)

and is plotted in Fig.[3.TT]as a function of annealing temperature. A clear trend of decreasing
local disorder can be seen in the meta-stable cubic phase. The hexagonal phase, however,
shows the reverse trend. The figure also contains the optical band gap, as measured by FTIR
(cf. [117], p. 126), which clearly follows the magnitude of the local atomic disorder, with a
slightly shifted temperature scale. This shift might be due to the different sample preparation
techniques and the different film thicknesses in particular. The correspondence of the two
curves could have been expected from the Peierls distortion model. The Peierls mechanism
opens an electronic gap by decreasing the energy of the occupied states and increasing the
energy of unoccupied states, which actually does not cost energy. This usually occurs during
the displacement of an atom from an octahedral coordination along the 111-direction. The

theory of atomic displacements in IV-VI narrow-gap semiconductors has been worked out
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3.12. Annealing dependence of the PDF of crystalline GeSh,Tey

by Enders in an interesting series of papers (cf. [41] and Ref. therein) based on an LCAO
approach. He found that the band gap E, is described by

E, =2|A +i2éw| + OE,, (3.12)
where A denotes the ionic gap opening, £ is the resonance integral, w is the displacement
amplitude w = 2%. OE, is an additional term due to spin-orbit interaction and chain

hybridization. It is reasonable to assume that both, A and §E, remain unchanged, so that
a direct relation is obtained between the optical band gap and the displacement amplitude.
The resonance integral & of the ppo-chains is in good approximation constant during the
annealing series, since the average atomic distance (d) is unchanged (cf. Fig.[3.10). The
formula can reproduce the relationship between w and E, very well with the parameters
A = 0 due to the low ionicity of GST. The resonance integral £ = 5eV, which is a value
larger than that of GeTe (£ = 4¢eV) and Sb (£ = 3.7¢eV). Due to spin orbit coupling, 6E, =
-0.35eV.

To conclude, it was shown that the local atomic distortions are decreased during anneal-
ing the meta-stable crystalline phase. The strong scaling effect with the optical band gap can
be described as a variable Peierls distortion and originates from the large resonance integral
&. The Peierls distortion is due to an instability of the lattice against an atomic displacement.
Since the amplitude of this distortion, w is controlled by an elastic and an electronic part, we
can further analyse the origin of the annealing dependence. Enders reported the distortion
to have the magnitude

7K, A?
o =dexp|-2)- = . (3.13)
8¢ 4¢2
S——— S~——
elastic electronic

Since all quantities of the electronic part are unaffected by changing the annealing tem-
perature, it must essentially be the lattice rigidity «o, which changes upon annealing. In
conclusion, the lattice becomes harder upon increasing the annealing temperature.

Once the hexagonal phase is reached, however, the displacements start to increase again.
Although it is tempting to correlate it with the opening of the band gap, the Fermi energy
is shifted into the valence band, once the hexagonal phase is formed. Therefore, the Peierls
mechanism can no longer be easily applied. However, there is no obvious reason why the
Peierls mechanism should work only for exactly half filled bands. It is left for further the-
oretical investigations if the Peierls mechanism could be involved here as well. It might be
tempting to relate the changes in the band gap also with the changes in electronic resistivity,
but it is well known that the carrier densities reported in literature do not depend much on
annealing temperature [21]. Therefore, only a negligible fraction of the charge carriers can

be thermally excited.

3.12 Annealing dependence of the PDF of crystalline GeSb,Te,

In the previous sections, several trends of the structural rearrangement upon annealing were

already found: Local atomic displacements in the meta-stable cubic phase of GeSb,Tey
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Figure 3.12: Radial Distribution Functions of crystallized GeSb,Te, measured at 300 K for

different annealing temperatures.

were shown to decrease based on an EXAFS analysis and atomic rearrangements of Ge and
Sb atoms within the stable hexagonal phase were found by investigating the Bragg reflec-
tions from XRD. These analysis were based on an exact evaluation of individual nearest
neighbor distances — the strength of EXAFS — and from the change of lattice parameters
— the strength of XRD. In order to investigate trends in coordination numbers, the method
of choice is the pair-distribution function (PDF) analysis. It also delivers information on
atomic medium range distances between 3 A and 12 A, which is beyond the scope of EX-
AFS. At these distances, the unique fingerprint of the block structure of the hexagonal phase
can be expected, so that an annealing series based on PDF analysis should allow following
the formation of the hexagonal block structure. The essential questions of this section are
therefore: How does the coordination number change during the transformation to the
hexagonal phase and when is the block-structure of the hexagonal phase formed?

The PDF analysis is based on the knowledge of the structure factor S (Q) over a large Q-
range. This data set can be Fourier transformed in order to obtain its radial distribution func-
tion (RDF). These RDFs have been obtained from neutron scattering on phase-change mate-
rials at ambient conditions [118]]. The neutron scattering experiments have been performed
by P. Merkelbach, G. Bruns and H. Fischer at D4, ILL, Grenoble. The RDF of GeSb,Te,4
has been measured at 300K for the as-deposited amorphous and crystalline phases. They
are shown in Fig.[3.12] for different annealing conditions of the material. Trends in the data
of the crystalline phase have been related to a pronounced disorder on the local scale, which

might be related to the metal-insulator transition [21]].

The coordination number has been obtained by integrating the RDF to its first minimum
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3.12. Annealing dependence of the PDF of crystalline GeSh,Tey

Table 3.5: The RDF of crystalline GeSb; Te4 was measured by neutron scattering at ambient
conditions. This table shows the results of an integration up to 3.75 A (coordi-
nation numbers) and from fitting a Gaussian peak function (peak width FWHM

and average nearest neighbor distance).

Annealing temperature  Avg. bond length Peak width Coord. No. (Integration)

cubic 430K 3.02(D)A 0.36 A 4.85
cubic 455K 3.02(1) A 0.34 A 4.85
cubic 505K 3.02() A 0.33A 4.84
hexagonal 555K 3.04(D)A 034 A 4.99

at 3.63 A. The resulting numbers are presented in Tab. and remain rather unchanged for
different annealing temperatures, so that the increase in peak height observed in Fig.[3.12]has
to be attributed to the reduction of the distribution width, which is also shown in Tab.[3.3|
and is in line with the observation from EXAFS, that the amplitude of local distortions
decreases. A similar comparison for the amorphous phase and in particular a comparison
of both phases will be presented in Chtp.4.2] Coming back to the coordination numbers,
a slight increase is observed upon transformation to the hexagonal phase. This effect will
be briefly discussed in the following. In a perfect cubic structure, it should equal six, but
it is well known that the vacancies on the Ge/Sb sublattice reduce the coordination number
because it contains 25% vacancies. This leads to an average coordination number of 5.25.
The experimental value after annealing at 430 K is 4.85. The origin of this difference cannot

be determined from this analysis.

In the stable hexagonal phase, the average coordination number of nearest neighbor dis-
tances remains unchanged. This can be seen from the data in Fig.[3.13] and it is further
confirmed by the integration over the first peak. Looking for differences upon annealing,
the most striking change occurs at about 8 A, whose origin shall be discussed in the fol-
lowing. When the hexagonal phase is formed, the vacancies arrange in a planar geometry
so that layers of larger spacing exist. The spacing of atoms (Te-Te distances) across this
layer is 3.75 A [49]. Their partial coordination number is only 0.75 and its fingerprint can
be observed in the measured RDF from the difference curve of the cubic and hexagonal
phases (cf. purple line). Since it cannot be discriminated easily from the first peak, this
was a strong motivation to perform measurements at lower temperature. Nevertheless, it
is worth highlighting the results that it was experimentally shown that the coordination
number remains unchanged during the cubic to hexagonal phase transition in the GST
compounds.

So far, the large difference at 8 A has not been explained, but we will see that it is of
the same origin as the peak at 3.75 A, which was discussed before. A purely geometrical
investigation of the distances across the vacancy layers is visualized in Fig.[3.13|and reveals
that additional distances are formed at 5.72 A and 7.97 A. Their total contribution to the

coordination number is 1.7 and 8.6, respectively. An integration over the difference between
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3.12. Annealing dependence of the PDF of crystalline GeSh,Tey

the RDFs (cf. purple curve in Fig.[3.13) gives 7.9 for the peak around 8 A. Since the
expected value of 8.6(1.0) is obtained rather well, we can conclude that the formation of
vacancy layers can be observed from the height of the RDF at 7.97 A, which shows that
most of the vacancy layers (> 90%) are formed during the transition from the cubic to
the hexagonal phase. A combined measurement of the RDF and the electronic resistivity
could provide valuable insight on the changes in resistivity, which are accompanied by the

formation of vacancy layers.
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Figure 3.13: Atomic distances in GeSb,Tes across the layer, to which the vacancies have
diffused. The distances shown here can be seen as extra peaks in the RDF of the

hexagonal phase and are particularly easy to observe in the purple difference

curve in Fig.lT_l’Zl

The trend of an increasing average bond length, which was predicted from the EXAFS
data in Sec.[3.11]is consistently found in the analysis of the RDF as well. In particular, its
increase upon the transition to the hexagonal phase is reproduced, cf. Tab.[3.5]

It was suggested earlier, that measurements at lower temperatures reduce the width of
peaks in the RDF and thereby reveal more features of the local atomic structure. The data
shown in Fig.[3.14] were therefore measured for different annealing conditions at low tem-
peratures of 10 K. This time, Ge,Sb,Tes was measured in order to investigate a material
with similar contributions from Ge and Sb. The samples were prepared in the meta-stable
cubic phase by annealing at 450 K. The higher temperature annealing steps were performed
in an external furnace under vacuum conditions at the ILL in steps of approx. 50K, but

without a clear reference temperature so that no precise temperature values can be given
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Figure 3.14: Radial Distribution Functions of crystallized Ge,Sb,Tes were measured at
10 K. New interatomic distances are formed in the hexagonal phase (red ar-
rows) and originate from the different atomic spacing across the vacancy layer.
The curves hexagonal (1) to hexagonal (4) originate from an annealing series,
but the annealing temperature during this measurement was not sufficiently
reliable to report it here. The temperature spacing between the different an-

nealing temperatures is approx. 50 K.

here.

The resulting data are depicted in Fig.[3.14] and indeed, the overall information content
has increased as compared to the measurements at ambient conditions (compare Fig.[3.12).
An analysis of the annealing effect will be performed for Ge,Sb,Tes as well, but the temper-
ature scale of the furnace, which was used to anneal the samples was for some reason rather
poorly defined so that the samples were already in the hexagonal phase after annealing them
significantly below the transition temperature of 599 K. The most striking additional feature
at 10K is the peak at 3.75 A in the hexagonal phase, which is highlighted with a red arrow
and originates from the formation of vacancy layers. The additinoal difference at 7.97 A is
observed very clearly as well. Since no continuous annealing was performed, it is not pos-
sible to determine a temperature window for the transition from the cubic to the hexagonal

phase.

An increase in the average atomic coordination number is observed again, which has
to be compared to the ideal coordination number in Ge;SbyTes, 5.4. This coordination
number is only reached in the hexagonal phase and the deviation in the cubic might be
due to the remaining atomic density between the first and second peaks, which most likely

results from some particularly long Sb-Te bonds, which were not included in the counting
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Table 3.6: The results from a RDF analysis for different annealing conditions of Ge,Sb,Tes
are summarized and a trend of slighlty decreasing bond lengths and peak width is
observed, which suggests that the substitutional disorder is reduced upon anneal-
ing. The coordination number increases only slightly during the cubic to hexag-
onal transition. Due to the slightly asymmetric distribution function of nearest
neighbors, the average bond length was extracted by integrating the RDF to half
the total coordination number reported.

Annealing temperature  Avg. bond length Peak width Coord. No. (Integrated)

cubic 450K 3.015(3) A 0.4203)A  5.2(1)
hexagonal (1) 2.995(3) A 0.4003)A  5.4(1)
hexagonal (2) 2.995(3) A 0.405(3)A  5.5(1)
hexagonal (3) 3.000(3) A 0.3753)A  5.4(1)
hexagonal (4) 3.000(3) A 0.380(3)A  5.4(1)

of nearest neighbors.

3.13 Conclusions from Annealing trends in GeSb,Te, from
real space

The atomic microstructures of crystalline GeSb,Tes and Ge,Sb,Tes have been reported in
literature and have been compared based on the difference between the well-defined meta-
stable cubic and the stable hexagonal phase. The analysis in the preceding sections has
revealed that subtle, but significant structural differences exist within the meta-stable phase
after different annealing conditions (and timescales). Similar dependencies were observed
in the stable phase as well. This section is included to summarize these findings and to

interpret them based on their relevance for the disorder induced metal-insulator transition.

A precise description of a disordered system must be based on a clear definition of the
order, from which it falls short. For the phase-change material GeSb,Te4, this definition
must be based on the perfectly ordered hexagonal state, cf. Fig.[3.2] Let us now summarize
the various sources of disorder one by one. The smallest increase in total energy occurs, if
the Ge and Sb atoms are chemically mixed on the layers (about 3 meV/atom [[106], [103]).
Experimentally, this mixing is observed indirectly in XRD and in EXAFS: The lattice con-
stant ¢, increases with annealing temperature, which is compatible with the increasing ionic
repulsion of the building blocks. The most direct evidence of the remaining atomic mixing
of Ge and Sb atoms on the layers even in the hexagonal phase comes from a comparison
of EXAFS spectra and DFT-based atomic relaxations. The DFT calculations are based on
an atomic model with 1008 atoms and was relaxed using CP2K [103] [[119]]. The EXAFS

spectra of these models was calculated using a custom made code including a Debye model
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to include atomic displacements. These data are shown in Fig.[3.15|for two different atomic
models: In the first (ordered Ge/Sb), the layers are sorted and contain only one specific ele-
ment. In the second (mixed Ge/Sb), the layers contain both, Ge and Sb atoms. It is easy to
see that the structure with mixed layers is in much better agreement with the experimental
data than the ordered one. This suggests that mixed layers of Ge and Sb are observed af-
ter annealing sputter deposited GeSb,Te4 at 575 K. At even higher temperatures, the layers
might obtain higher degree of ordering.
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Figure 3.15: A comparison of calculated and measured EXAFS data of hex. GeSb,Te4. The
calculated data originate from a model after DFT-based atomic relaxation for
ordered and mixed layers of Ge/Sb. A comparison to the experimental data

after annealing at 575 K shows that they are incompatible with the spectra of

perfectly ordered GeSb,Te,.

At lower annealing temperatures around 570 K, the XRD pattern of the stable hexagonal
phase shows some broadened reflections, which originate from irregularities in the stacking
sequence of layers. These stacking faults are removed upon heating the samples to higher
temperatures, because the reflex width decreases. The nature of these stacking faults cannot
be resolved from the present data, but it is worth mentioning that a modification of the

stacking sequence is responsible for the significant change of the diffraction pattern from
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the cubic to the hexagonal phase (cf. Fig.[3.2).

In the hexagonal phase even after lowest annealing conditions, the majority of vacan-
cies are ordered on layers. This was observed from total neutron scattering data, where an
additional shoulder at 7.97 A was uniquely attributed to atomic distances between the build-
ing blocks. It was shown by DFT-based calculations, however, that already a filling of the
vacancy layers by 10% atoms leads to the formation of localized states, which are expected
to turn the system insulating. It would therefore be very important to observe the ordering
of vacancies with high accuracy, but the absence of scattering from the vacancies makes it

experimentally almost impossible to reveal their ordering.

An analysis of EXAFS data for different annealing conditions revealed that a large am-
plitude of local atomic distortions is maintained during the entire annealing series. This
distortion was derived from the difference between shortest and longest nearest neighbor
spacings for the Ge-Te and Sb-Te distances. An initial reduction of this displacement am-
plitude by annealing the meta-stable cubic phase does not continue in the stable hexagonal
phase. In conclusion, a change in the amplitude of atomic displacements cannot be respon-
sible for the metal-insulator transition. However, the direction of these displacements might
still change from random displacements in the meta-stable cubic phase to aligned displace-
ments along the hexagonal c-axis. Therefore, no unique mechanism for the reduction of
disorder along the metal-insulator transition could be revealed — however, several experi-
mental observations reveal the nature of the disorder in crystalline GeSb,Te4 and proof that
the configurational entropy due to the substitutional disorder continuously decreases upon

increasing the annealing temperature — even within the hexagonal phase.
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CHAPTER 4

Structure contrast between
amorphous and crystalline
phase-change materials

4.1 Motivation

Data storage in phase-change memory devices is based upon cycling between the amor-
phous and the crystalline phase, where the time-limiting process is the crystallization. This
does not deviate in its fundamental principle from the crystallization of SiO, or Si, but
whereas SiO, and Si crystallize very slowly even at elevated temperatures, the transition is
several orders of magnitude faster in phase-change materials. To point this out even more
clearly, the maximum growth velocities of these materials can be compared. It turns out
that crystals in Si grow with a maximum velocity of 1072 my/s [[120], 10~° m/s in SiO, [121]]
and more than 1 m/s in the phase-change material Ge,SbyTes [122]]. There are also several
chalcogenide glasses, which are good glass formers, so that the question is naturally de-
rived, why phase-change materials crystallize so rapidly. A first step in the analysis of the
crystallization process follows the suggestion ”If you want to understand function, study
structure!”, by the Nobel price winner Francis Crick, who has revealed the structure of the
DNA. In phase-change materials, this study is based upon the initial amorphous and the final
crystalline atomic structures. It will be very difficult, however, to derive the crystallization
mechanism from the atomic ordering, but some hints from the analysis of atomic structure

on thermodynamic properties exist and will be discussed later.

In good glass forming materials, the local order is usually preserved upon crystalliza-
tion and the contrast originates mostly from the absence of long-range order. It is natural

to wonder, whether this also applies to phase-change materials. It is already known from
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literature, that the atomic configuration of both phases is different: The average bond length
in amorphous Ge,;SbrTes (GST) prepared by quenching from the melt was reported to be
2.73 A, whereas in the same study, the meta-stable crystalline phase was reported to possess
an average bond length of 2.87 A [31]]. This corresponds to an increase of 5% upon crys-
tallization, but the average bond length of the crystalline phase is not compatible with the
lattice constant obtained from XRD, which is between 3.00 A and 3.02 A, cf. Tab. After
this initial result, no comprehensive study of the local atomic environment in both phases,
amorphous and crystalline, was reported in literature. This lack of consistent data was the
motivation to study the local atomic arrangement in different phase change materials in the
amorphous and in the crystalline phase. Some of these results were subsequently published
[73]] and will be discussed in more detail in the following for many phase-change materials.
The fundamental task is to find out, whether a motif exists, that distinguishes the struc-
tural contrast between amorphous and crystalline PCMs from that of common glass
forming materials.

In addition to this fundamental question, it is often written that some PCMs like GeTe
and Ge;Sb,Tes crystallize in a nucleation dominated way, whereas Sb-based materials like
Ag4In3Sbg;Teye crystallize growth dominated. This difference is indeed suggested by TEM
images, which are depicted in Fig.[I.3] They were obtained after recrystallizing areas of the
respective material by short (ns) laser pulses. On these length scales, however, the dominant
mechanism can be observed from the many tiny crystallites in Ge,Sb,Tes, which imply that
the crystal growth velocity is actually low. In Ag4In3Sbe;Tezs (AIST), on the other hand,
larger crystallites are observed — indicating that only few nucleation events were necessary
for the nuclei to grow all over the heated volume. Therefore, a distinction is commonly
made between nucleation- and growth dominated materials. It has to be kept in mind, how-
ever, that the dominating mechanism inside a phase-change memory cell depends on the
geometry of the cell — most significantly on the ratio of interfaces to volume. In this way,
even in the nucleation dominated material GeTe, features of growth dominated crystalliza-
tion were observed [8]. This observation, however, does not affect the basic crystallization
mechanism with nucleation and growth processes, which can be clearly distinguished from
optical switching experiments as shown in Fig.[I.3] The models for nucleation and growth
are briefly described in Chpt.[6.1.1]to be controlled by a specific activation energy AG. This
theory relies on a macroscopic model of the crystalline nuclei and microscopic properties of
the atomic bonds are not taken into account. Unfortunately, no established model exists so
far, which links the observed activation energy AG to microscopic potential barriers. Since
the crystallization process is a rearrangement of atoms, a full understanding of crystalliza-
tion is only possible once microscopic models exist. There has been quite some advance
in this respect recently, when it became possible to simulate the crystallization of a PCM
based on AIMD. These simulations have to be checked against experiments and therefore, it
is of particular importance to know the microscopic structure of PCMs with great accuracy.
Furthermore, a knowledge of the atomic structure allows calculating the potential barri-
ers for atomic rearrangements (nudged elastic band calculations). In this respect, different
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atomic structures in the amorphous phase will have different potential barriers for atomic
rearrangements. Due to the absence of a microscopic model for crystallization, there is a
lack of design-rules for fast crystallization. In order to derive such design rules, kinetic,
thermodynamic and structural data should be available to model the microscopic transition
process. In this respect, a knowledge of the amorphous — crystalline contrast of GST and
AIST systems will be of particular interest, since it is already known from macroscopic
properties that those materials crystallize differently. Therefore, this chapter will answer
the questions, how are the atoms in amorphous GST (or GeTe) and AIST (or Sb,Te)
arranged and how does this local structure compare to the respective local configura-
tions of the crystalline phase? To answer these questions, EXAFS and PDF analysis will

be employed.

4.2 Amorphous and Crystalline GeSb,Te, and Ge,Sb,Tes

The atomic structure of crystalline GeSb,Tes was already discussed in the preceding chap-
ter. In the following, a detailed analysis of the amorphous phase will follow so that both
phases can be compared at the end of this section. The amorphous phase has been measured

by EXAFS at 10 K sample temperature and by neutron total scattering.

4.2.1 Amorphous GeSb,Te, and Ge,Sb,Tes
EXAFS analysis of amorphous GeSb,Te,

A significant number of publications have focussed on the atomic structure of amorphous
GeSb,Tey or Ge,SbyTes. The results of these studies are summarized in Tab.[B.2]and will
be discussed in the following. Both compounds are reported to show the same structural fea-
tures with only small variations in magnitude. The different preparation techniques should
be distinguished: The melt-quench (MQ) phase is usually obtained in AIMD studies and
can be prepared experimentally by rapidly quenching the liquid phase, e.g. applying short
laser pulses to thin films of the material on a substrate with reasonable thermal conduc-
tivity. The as-deposited (AD) structures are usually investigated in experiments, since the
sputtered films are amorphous but they might be more disordered than the melt-quenched
samples. Tab.[B.2] shows, however, that there is no significant difference between the MQ
and AD amorphous phases, since the average bond lengths of Kolobov et al. (entry no. 12)
and Baker et al. (entry no. 13) are equal. Furthermore, no significant differences were found
at the Ge K-edge for AD and MQ samples [123]].

The collection of results in Tab.[B.2] further shows that most AIMD simulations (1-7)
agree very well in the fact, that the coordination numbers of Sb and Te are larger than those
from experiments (9-13). All experimental studies derive coordination numbers, which are
consistent with the 8-N rule. A particularly interesting case is the calculation (8), which
was performed on SipAs;Ses. After the simulated quench, the atoms were replaced by

Ge,Sb,Tes and the resulting atomic positions and the geometry of the cell were relaxed.
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Tab.[B.2] shows that this is the only AIMD simulation, where the resulting coordination
number of Te (2.1) is in good agreement with experiment (2.0). All other AIMD simula-
tions lead to an average coordination of the Te atoms of 3.0(1), which is far outside the

experimental error bars. Similar arguments can be made for Sb, but not for Ge.

After this summary of controversies from literature, we can turn to a discussion of the
additional data, which were obtained by EXAFS experiment with a sample temperature of
10 K. This low measurement temperature reduces the MSRD parameters for the coordina-
tion shells and might reveal additional atomic distances in the samples. In particular the
large atomic distances of ~ 3.15 A, which are related to the distorted octahedral coordi-
nation of Ge-Te bonds, might be revealed and might explain the deviation of bond lengths

between AIMD simulations and experiments.

The resulting EXAFS data are shown together with a fit in Fig.[d.1] The fit was per-
formed as described in and is based on the constrained scattering paths shown in
Tab.[.1] This refinement is based on a dominating contribution of Ge-Te and Sb-Te bonds
and few additional bonds of Ge-Ge and Ge-Sb type. It is worth mentioning that a single
distance with even a small variance was sufficient to describe the dominating Ge-Te and Sb-
Te interatomic distances. This means in particular, that no evidence of distorted octahedral
configurations with short and long bonds could be evidenced in amorphous GeSb,Te,4 for
both, Ge and Sb atoms. This configuration is frequently reported for Ge atoms in amorphous
GeSb,Tes based on AIMD calculations [[124]], but no experimental evidence for octahedrally
distorted coordinations was shown so far. On the other hand, a tetrahedral arrangement of
Ge atoms was proposed to explain the local geometry of the amorphous phase, since the
measured interatomic distances around Ge are well in line with the tabulated values for the
covalent radii of Ge and Te — which is not the case for the results of AIMD calculations,
where the Ge-Te distances turn out to be about 5% longer than the experimental value. After
all, no experimental evidence exists in literature for any of both local configurations. Even
at 10 K no longer atomic distances were revealed by the measurements. Although this could
be a problem with the EXAFS technique, the good agreement of the averaged bond lengths
from EXAFS and the result from neutron total scattering (where the peak area is directly
proportional to the number of atoms at that distance), cf. Figs.[.2]or[4.3] shows that there
is areal deviation between experiments and computer simulations based on AIMD. With an
averaged resulting residual of 0.008 (clearly below 0.02), the refinement can be considered
reliable and the resulting parameters can be compared with the data from literature ﬂ

In order to compare the coordination numbers from Tab.[4.1| with those from literature,
the given numbers have to be divided by the amplitude reduction factors S (2) of the crystalline
phase. These numbers can be transferred from measurements of the same element in a
crystal with similar bonding conditions, but well known coordination numbers. Due to
the complex distortion pattern in crystalline GeSb,Tey4, those amplitude reduction factors

have significant uncertainties and should not be employed here. In this discussion, the

The edge energy corrections between theory and experiment turned out as AE = 4.1(2) eV, 9.6(4) eV and
7.7(6) eV for Ge, Sb and Te, respectively
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Table 4.1: Interatomic distances in amorphous GeSb,Te,4 at 10 K. It can be seen that Ge-Te

and Sb-Te strongly dominate over other *wrong’ bonds.

Scattering Path N - S % Distance Displacement Parameter
Ge-Ge 02(1) 2.492)A 0.000(4) A>

Ge-Sb 04(2) 267(HA@©)  0.0012)A°

Ge-Te 193) 2.60()A (@)  0.004(1)A% (a)

Sb-Ge 02(1) 2.67(MA ) 0.001(2)A°

Sb-Te 2.0(1) 2.8393)A (b) 0.0033(3)A° (b)

Te-Ge 0.6(1) 2.60()A @)  0.004(1)A” (a)

Te-Sb 1.0(1)  2.8393)A (b) 0.0033(3)A” (b)

amplitude reduction factors of the binary systems will be used. In this way, S S of Ge and
Te is obtained from crystalline GeTe as 0.67(6) and 0.86(8) [[113]]. The corresponding value
for Sb is obtained from crystalline Sb,Te as 0.68(6), where all Sb atoms are in a distorted
octahedral coordination with three short and three long bonds [125]]. The resulting elemental
coordination numbers N are 3.7(3), 3.2(3) and 1.9(1). These values are given as entry no. 17
in Tab.[B.2] and agree well with the average coordination numbers from other experimental
techniques. If all atomic nearest neighbor distances are observed in this EXAFS analysis,
the resulting average bond lengths should correspond to the result of a PDF analysis. Such
an analysis was performed based on total neutron scattering data and is presented in the

following.

PDF analysis of amorphous GeSb,Te,

The RDF(r) of amorphous GeSb,Tes has been measured at ambient conditions and is de-
picted in Fig. black curve. A clear peak can be observed at approx. 2.8 A and is related
to the average nearest neighbor in the compound. Since it has an almost Gaussian shape, it
can be reproduced by refining all parameters of the following function,

y=_2 exp(—2(r_r0)2). 4.1)

w2 w

Here, rg is the bond length, w is related to the mean-square relative displacement (MSRD)
parameter used in EXAFS analysis (cf. via 0> = 0.25 - w?. The area parameter
A directly gives the partial coordination number of the respective contribution. The first
peak in this RDF is rather broad (02 = 0.036(1)A2 (w = 0.381(2) A)) and has a slightly
asymmetric Gaussian shape with an area of 2.85(1) atoms — slightly more than what is
expected from the 8-N rule: 2.80 atoms ﬂ The aim of this measurement was to find out
if the average bond lengths obtained from PDF analysis is in line with the result from the

Please mind that this value is larger than the average coordination number of GeSb,Te, with 8-N coordina-

tion (2.57 atoms) due the larger neutron scattering length of Ge
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Figure 4.1: Fourier Transforms of EXAFS data (black) of as-deposited amorphous
GeShyTeyq at 10 K. The fit (red) consists of several scattering paths from atoms
on the first neighboring shell. No peaks from higher shells are visible in the
data. Bond lengths and Displacement parameters of all equal scattering paths
have been constrained. The resulting R-factor is 0.008. Homopolar bonds be-
tween Sb and Te cannot be distinguished from heteropolar Sb-Te bonds, so that
Sb-Sb and Te-Te scattering paths were not taken into account because their error

would be large.

previous EXAFS analysis (2.75 A). Therefore, the average nearest neighbor distance was
obtained from the RDF by integrating it over the distance until half the coordination number
is reached. The resulting distance is 2.78(1) A, a value which has to be compared against
the partial atomic distances from EXAFS weighted by the neutron scattering lengths. The
resulting value for the EXAFS data is: 2.74(1)A. This deviation is of the order of the
commonly observed thermal expansions for the EXAFS data taken at 10K and the PDF
analysis performed at 300 K: A linear coefficient of thermal expansion of 5-10>K~! applied
to the result from EXAFS would predict an average bond lengths of 2.78 A at ambient

conditions, which is well in line with the observed result.

Due to the smooth and featureless Gaussian shape, no partial contributions can be de-
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Figure 4.2: Radial Distribution Functions of as-deposited amorphous GeSb,Tes measured
at ambient temperature. The plot also contains the RDFs of as-deposited amor-
phous GeTe and SbyTe for comparison of the bond lengths. Those data are
rescaled to reproduce approximately the number Ge-Te and Sb-Te distances in
GeSb,Tey. It is clearly visible that the range of bond lengths in GeSb,Tes ex-
tends over both partial contributions. The black vertical lines denotes the aver-

aged bond lengths derived from the EXAFS analysis of samples at 10 K.

rived from the RDF. It is, however, instructive to compare the RDF of amorphous GeSb,Te,
to those of amorphous GeTe and szTeE] — also measured at ambient conditions and pre-
sented for comparison with a weighting factor in Fig.[4.2] It becomes clear that their aver-
age bond lengths could be well contained within the first coordination shell of amorphous
GeSb;Tey. Since it was observed during EXAFS measurements, that a lot more informa-
tion can be obtained by cooling the sample to 10 K, the same approach has been applied in

Neutron PDF analysis as well.

Amorphous Ge;Sb,Te;s

Total neutron scattering experiments were also performed on amorphous Ge,;Sb,Tes at low
temperatures of 10 K. Ge,SbrTes was used in this measurement due to its equal atomic
fraction of Ge and Sb atoms. The resulting RDF(r) of Ge,Sb,Tes is depicted in Fig.}4.3]
black curve and will be discussed in the following. A visual analysis of the first peak alone
suggests the higher information content of these data. It can be seen well, that the first peak
is composed of two contributions and it was decomposed into two Gaussian distributions,

Eq.[.1] The bond lengths corresponding to the two nearest neighbor distances (blue curve

3The comparison should be based on a dataset of Sb,Te;, but the latter compound cannot be prepared in an
amorphous phase by means of sputter deposition, because its crystallization temperature is too closely above

ambient temperature.
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Figure 4.3: Radial Distribution Functions of as-deposited amorphous Ge;Sb,Tes and GeTe
measured at 10K together with as-deposited amorphous Sb,Te, measured at
300 K. The data of Ge;Sb,Tes are decomposed to two Gaussian peaks (blue).
Of these two Gaussians, the first compares very well to the average first neigh-
bor distance in as-deposited amorphous GeTe at 2.58 A, while the second corre-
sponds well to the average distance in Sb,Te at 2.88 A. These values are further
indicated by vertical lines and are in good agreement with those obtained from
an EXAFS analysis for Ge-Te and Sb-Te distances in amorphous GeSb,Te, at
10K (2.60 A and 2.84 A).

in Fig. are 2.586(6) A and 2.816(8) A. They contribute partial coordination numbers
of Ay = A = 1.4(1) for both. This is well in line with the result of a numeric integration
of the RDF up to the first minimum at 3.05 A, which results in an average coordination
number of A = 2.78. The widths w of the two fitted Gaussian are 0.180(6) A and 0.22(1) A,
respectively. Since it is well known from EXAFS analysis, that Ge-Te distances are shorter
than Sb-Te bond lengths in GeSbyTes (cf. Sec.d.2.I), the two partial contributions can
be related to Ge-Te and Sb-Te nearest neighbor distances. This is further supported by
the good agreement with the RDFs of amorphous GeTe at 10 K and of amorphous Sb,Te at
ambient conditions. Let us assume in the following, that this assignment of nearest neighbor
distances is indeed correct. Then, the areas under the peaks can be related to actual partial
coordination numbers A; ; by taking into account the neutron scattering lengths b;. It holds

that the partial coordination numbers are weighted by

A= Z CiCjbibjA,',j. (4.2)
i.j

If only Ge-Te and Sb-Te distances are taken into account, the ratio of scattering from Ge-Te

to Sb-Te is simply

CGeCTebGebTeNGe,Te — 145 (43)

¢shCTebshbTe NS, Te
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Table 4.2: Local atomic arrangement in amorphous and crystalline Ge,Sb,Tes

(r) o? N
Amorphous phase  2.72(1)A  0.008 A> and 0.012A3°  2.78(3)
Crystalline phase ~ 3.02(1) A 0.044 A> 5.23(5)
Change +11% +340% +88%

This ratio does not agree with the equal number of scattering events observed experimentally
for both contributions so that we have to conclude that the two Gaussian peaks do not
distinguish Ge-Te from Sb-Te distances. Therefore, this splitting must have a different
origin. We know from the EXAFS analysis, that no atomic nearest neighbor distances exist
around Sb, which are short enough in order to contribute to the first peak. Therefore, we
can ask how many Ge-Te distances have to contribute to the second peak in order to obtain
the observed ratio of scattering events in those peaks. We can do this by including an extra

Ge-Te contribution to the previous equation, contributing for a fraction x of the atoms:

CGeCTebGebTeNGe,Te 1-x)
¢sbCTebshbTe Nsp,Te + XCGeCTebGebTeNGe, Te

1. (4.4)

It follows that a fraction of x = 0.15(3) of the Ge-Te distances contribute to the second peak.

4.2.2 Comparison of amorphous and crystalline GST-compounds

The experimental EXAFS and PDF data for amorphous and crystalline GST compounds are
compiled in Fig. This figure shows that an unexpectedly large change of the local atomic
arrangement occurs upon crystallization. The change regards all parameters of the local
atomic coordination: Nearest neighbor distances (r), their variance 0% and the coordination
numbers N. These parameters are summarized in Tab.[4.2]

Also a common semiconductor glass crystallizes at elevated temperature — usually with
a lower growth velocity, but the fundamental thermodynamic principles are the same. This
also applies to pure amorphous Ge, which has been studied in detail. There, the coordination
number in the amorphous phase is found to be 4.0(2) and remains 4.0 upon crystallization.
At the same time, the average bond length slightly decreases from 2.47 At0245A and its
variance disappears almost totally. This behavior is also found in heavier elements, like e.g.
GaSb [[126] and reflects the common atomic rearrangement upon crystallization in common
semiconductors with <nsp> =4.

In PCMs, all of these differences are reversed: The average bond length increases by
as much as 11%, while simultaneously the atomic displacement parameter increases. Fur-
thermore, the average coordination number increases almost by a factor of two. It is natural
to wonder, if this trend holds for all PCMs and therefore, several more materials will be
discussed in the following. However, before continuing with this task, let us investigate the
surprising increase in local disorder in more detail. This investigation is essentially based

on the displacement parameter from EXAFS, which measures the variance of interatomic
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(a) EXAFS data from all K-edge of as-deposited amor- (b) PDF analysis of neutron scattering data of as-
phous and crystalline GeSb,Te, at 10K deposited amorphous and crystalline Ge,Sb,Tes at
10K

Figure 4.4: The local order in amorphous and crystalline GST-compounds shows several
significant differences: In EXAFS, the height of the first peak shows a rarely ob-
served decrease upon crystallization, which is due to the larger variance of near-
est neighbor distances in the crystalline phase. This shows that the crystalline
phase shows a less well defined local atomic coordination than the amorphous
phase. Both techniques consistently show that the average nearest neighbor
spacing — in particular that around Ge — increases upon crystallization. The PDF
analysis further shows that the average coordination number increases signifi-
cantly upon crystallization. The Te-EXAFS data of the crystalline phase show a
lower height of the odd numbered peaks, which is related to the lower amplitude
of atomic displacements on the Te sublattice, as compared to the Ge/Sb/Vac-

sublattice.

distances. The variance most surprisingly increases upon crystallization — even for samples
measured at 10 K, where thermal vibrations are almost absent. This effect implies that the
local atomic configuration of the amorphous phase contains more well defined next nearest
neighbor distances than the corresponding crystalline phase, although the amorphous phase
is disordered, whereas the crystalline phase shows a well defined cubic lattice. Therefore,
crystalline GeSb,Tes4 and Ge,Sb,Tes show a record-large amplitude of static atomic dis-
placements. These displacements are most likely induced by substitutional disorder on the

Ge/Sb/Vacancy sublattice. The total amount of disorder in this materials is sufficient even to

95



4.2. Amorphous and Crystalline GeSb,Tes and GeySbyTes

induce insulating behavior by localizing the charge carriers [21]]. So far, the measurement of
atomic displacements was conducted at low temperature, so that mostly static displacements
were observed. Under real conditions, additional thermal disorder occurs due to atomic vi-
brations. It will be interesting to compare the amorphous and crystalline phases at ambient
temperature in order to see whether still the crystalline phase has a larger variance of inter-
atomic nearest neighbor distances. Therefore, EXAFS measurements of both phases were

performed at various temperatures.

4.2.3 Temperature dependence of EXAFS spectra of GeSb,Te,

The variance of the average nearest neighbor distance, i.e. the MSRD parameter o, was

observed to be larger in the crystalline phase and since the data were obtained at only 10K,
the fundamental atomic displacements must be of static nature. With increasing tempera-
ture, the amplitude of average atomic displacements increases and its slope can be used to
derive an approximate value for the Debye temperature, cf. Eq.[2.56] to which an additional
offset a‘% has to be added, which takes into account the static displacements. The Debye
temperature 6p is a valuable quantity, since it is directly related to the thermal conductivity,
1
3

K=

Cpvil, 4.5)

where C, is the specific heat at constant pressure, v; the longitudinal speed of sound and /
the phonon mean free path. The Debye temperature enters via the temperature dependence
of the specific heat, which dominates the thermal conductivity at low temperatures. Even at

elevated temperatures, thermal conductivity is observed to roughly follow [127]]
k o (my Q'3 (4.6)

where Q is the volume of the unit cell and (m) is the average mass of the atoms.

Therefore, temperature dependent EXAFS measurements have been performed and the
resulting data are shown in Fig.[4.5| for the Te edge of GeSb,Tes. Upon reducing the tem-
perature, there are two most significant changes in the data. The height of the first peak
increases and finally at 10 K, new features become visible in the crystalline phase. These
additional features have already been taken into account during the least squares fitting and
this result motivated us to continue measuring phase-change materials only at this low tem-
perature in the following. The change in peak height is surprisingly larger in the crystalline
phase. This is remarkable, since according to Eq.[2.85] the peak height is mostly domi-
nated by the displacement parameter o>, which usually changes linearly with temperature
and the slope of this linear dependence indicates the softness of the interatomic potentials.
And since the crystalline phase shows a higher slope of MSRD vs. temperature, we have to
conclude that the interaction potential is weaker in the crystalline phase. This point will be
discussed further in Sec.[3

A quantitative evaluation of such EXAFS data for the amorphous phase shows that
its displacement parameter indeed depends only weakly on temperature, cf. Fig.4.6] The
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Figure 4.5: EXAFS spectra of the Te K-edge of GeSb,Tes measured at different tempera-
tures. A higher data content is obtained upon reducing the measurement tem-
perature of the crystalline phase to 10 K, where larger interatomic distances are
revealed. A more pronounced temperature dependence of the peak heights is ob-
served in the crystalline phase [[114]. This indicates that the atomic interaction

potentials soften upon crystallization.

displacement parameter of the crystalline phase can be better obtained from XRD measure-
ments, since no ambiguity of the treatment of short and long bonds exists: The difference
between short and long bonds is observed in XRD as an additional static contribution to the
displacement parameter, whereas in EXAFS, separate displacement parameters are defined
for the short and long bonds. Although this splitting in EXAFS does not influence the tem-
perature dependence of the displacement parameters, the determination of exact values is

hampered by the overlap of both atomic distances.

The displacement parameter of Ge,Sb,Tes is depicted in Fig.[d.6] where indeed a stronger
temperature dependence is observed for the crystalline phase. This strongly indicates that
the atomic interaction potential softens upon crystallization. Fitting the Debye model to
these data results in a Debye temperature of 155(5) K for both, Ge/Sb and Te data. The
static displacement parameter 0'(%, however differs from 0.07(1) A% for Te to 0. 17(1) A for
Ge/Sh. In the amorphous phase, the lower slope leads to a significantly higher Debye tem-
perature of 300(30) K. This result is rather surprising, because it is commonly expected
that the Debye temperature increases upon crystallization - even in chalcogenide materials
[128]. As discussed in Sec.[2.8] acoustic modes with long wavelengths do not contribute
as significantly to EXAFS data as to XRD data. This might also decrease the slope of
the displacement parameter of the amorphous phase, which was measured by EXAFS. It
is therefore necessary to measure the density of phonon states of phase-change materials.

These measurements will be presented in Chpt.[5]
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Figure 4.6: Displacement parameter o> of Ge,Sb,Tes as a function of temperature. Indeed,
a larger temperature dependence is observed in the crystalline phase, based on
both Rietveld and PDF analysis. EXAFS data were analysed to determine the

atomic displacements in the amorphous phase.

4.3 Amorphous and Crystalline GeTe

Let us return to the initial question, if the structural contrast differs among the phase-
change materials. The compound GeTe was reported to crystallize on the time-scale of
only nanoseconds [8]] and due its binary composition, it should be a preferred material for
investigations of its local atomic arrangement. The composition of the material investigated
here is Ges3Tey47, as obtained from Rutherford backscattering spectroscopy (RBS) [[129]].
The crystalline phase of this material at 10 K has been investigated in detail by J. van Eijk
[113]] and was found to follow the R3m space group, with lattice parameters a = 4.27(1) A,
a = 58.4(1) and u = 0.528(1). In addition, 7(4)% of the Ge-atoms were found to phase
separate upon crystallization of GeTe. This result is well in line with the 6% excess Ge ob-
tained from the stoichiometry of the investigated materials, leaving the GeTe-phase without
a significant contribution from additional vacancies. It was found that the minimum pulse
duration for crystallization depends more critically on excess Te than on excess Ge [130],
so that the essential fast crystallization mechanism is not affected by this off-stoichiometric
composition. Given these information, the amorphous structure can be investigated to com-

pare the start- and end-point of the crystallization transition.

4.3.1 Amorphous GeTe

The following analysis is partly based on the previous analysis by Julia van Eijk [[113]], but
an additional scattering path is included, which turns out to be consistent with crystalline
GeTe and a slightly lower residual is obtained. The EXAFS data of amorphous GeTe and
the respective fits are shown in Fig.[4.7) together with the individual scattering paths. The
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residuals for the Ge and Te edges are 0.002 and 0.009, respectively, which is clearly below
the upper limit for a reliable fit of 0.02 so that the fitting model can be considered reliable.
The technically caused edge energy corrections were obtained from the fit to be 3(1) eV and
7(1)eV at the Ge and Te edges, respectively. As will be discussed later, the model is based
on Ge-Ge and several Ge-Te distances (i.e. scattering paths). In addition, some Te-Te bonds
can be included to improve the quality of the fit at the Te edge. This improvement, however,
is rather low and therefore, Te-Te bonds were not taken into account here (cf. [113]] for a
more detailed discussion). The amplitude reduction factors S2, which allow the determi-
nation of absolute coordination numbers, were taken from the crystalline phase of GeTe,
where 0.67 and 0.86 are obtained for the Ge and Te edges, respectively (cf. Sec.[A.3.1).

15 ‘

Data

Fit

Ge-Ge L

Ge-Te short
Ge-Te medium
Ge-Te long

X(r)| in A3

e e S e n

Data
o Fit =——— M
< Te-Ge short
c Te-Ge medium
= 0.4 |- Te-Ge long ]
=
- 02 / \, .
0 (=—r——r——r——r ‘. \/_\0 \/\ T y‘\\-\/\\/‘\/\\f\\/* T T /\\
0 1 2 3 4 5 6

rin A
Figure 4.7: Amorphous GeTe at 10 K: The Fourier transformed EXAFS data (black curves)
are shown for the Ge (upper figure) and Te (lower figure) K edges together with
the refinement (red curve). The refinement consists of several scattering paths,
which are included as well. The curves show nicely that the short Ge-Ge bonds
are responsible for the broad first peak at the Ge edge and that the dominant con-
tribution originates from bond lengths, which correspond to particularly short

Ge-Te distances.

The results from the fitting of scattering paths is summarized in Tab.[4.3] and will be
discussed in the following. While several binary amorphous materials contain only a single
atomic nearest neighbor distance (cf. e.g. the analysis of amorphous SnSe; [59]]), as many as
four different scattering paths were necessary to reproduce the experimental data of amor-
phous GeTe. This can be expected already from the large width of the first peak especially at
the Ge edge. This shows that Ge can exist in several different chemical environments. Most
of the observed chemical environments of Ge involve bonds to Te. Indeed, these atomic

distances are in good agreement with those obtained at the Te edge, so that both data sets
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4.3. Amorphous and Crystalline GeTe

Table 4.3: EXAFS fitting parameters of amorphous GeTe at 10 K. These data show that Ge
atoms are in various chemical environments. Parameters with the same letter in

brackets were constrained.

Scattering Path N Atomic distance » Displacement Parameter o>
Ge-Ge 1.7(2) 2.470(5) A 0.0034(6) A”

Ge-Te (short) 1.4(3) (a)  2.604(6) A (a) 0.0027(5) A* (a)

Ge-Te (medium) 1.0(0.5) (b) 2.77(3) A (b) 0.008(6) A” (b)

Ge-Te (long) 1.0(0.5) (b) 3.15(2)A (c) 0.011(7) A% (¢)

Te-Ge (short) 1.4(3) (a)  2.604(6) A (a) 0.0027(5) A (a)

Te-Ge (medium) 1.0(0.5) (b) 2.77(3) A (b) 0.008(6) A” (b)

Te-Ge (long) 1.0(0.5) (b) 3.15(2) A (c) 0.011(7) A% (¢)

were refined simultaneously by a model that constrained parameters as indicated in Tab.}4.3]

The amorphous phase of GeTe in this specific stoichiometry contains a significant quan-
tity of short bonds (2.470(5) 10\) around Ge. These can be identified as Ge-Ge bonds for three
reasons: (i) No bonds exist at this short distance at the Te edge; (ii) the phase-shift during
backscattering corresponds to backscattering from a lighter element (Ge, but not Te); (iii)
the resulting bond length of 2.470(5) A agrees with the Ge-Ge distance observed in pure
amorphous Ge (2.468(5) A [L16]). In order to quantify the relative amount of Ge-Ge bonds,

all scattering paths around Ge have to be analyzed first.

The next longer bond length is denoted “Ge-Te (short)” in Tab.[4.3] The EXAFS data

analysis shows that the backscattering atoms at this distance are Te atoms. Their atomic dis-
tance of 2.604(6) A agrees perfectly to those observed in amorphous GeSb,Tes (2.60(1) A

cf. Tab.[.1).

Furthermore, two longer bonds are obtained, which are denoted ”Ge-Te (medium)” and
”Ge-Te (long)”. Their distances correspond rather well to the distorted octahedral environ-
ment observed in crystalline GeTe, where 2.863 A and 3.127 A are obtained for the short and
for the long bond, respectively (cf. Sec.. Their average, 2.96 A, is in good agreement
with the average of the crystalline phase of GeTe (2.99 A). However, the difference between
both is larger in the amorphous phase. This shows that octahedral sites can be even more
strongly distorted in amorphous GeTe. This additional distortion corresponds to a static
displacement of atoms, which can be described as a freezing of the atomic displacements
induced by the thermal vibrations of the A; phonon mode in the crystalline phase of GeTe
[131]. This A; phonon mode softens upon heating, and at the same time, the static distortion
decreases. Finally, the energy of the phonon mode goes to zero at the @ — [ phase transi-
tion from a rhombohedral to a cubic phase. This shows that the magnitude of the distortion
strongly depends on temperature (and pressure), which could explain the stronger distortion

amplitude of defective octahedral Ge sites in amorphous GeTe.
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4.3. Amorphous and Crystalline GeTe

All atomic distances, which were discussed so far based on the EXAFS data of the Ge
edge were transformed to the Te edge and nicely reproduce those data as well, as can be
seen in Fig.[4.7]

Let us continue with a quantitative discussion of the different chemical environments.
According to the 8-N rule [132]], the coordination numbers of Ge and Te are 4 and 2, re-
spectively. Following this rule and assuming that heteropolar bonds are favorable over ho-
mopolar bonds, 50% of the Ge atoms should remain without bonds. It is therefore expected,
that a large number of Ge-Ge bonds should occur in amorphous GeTe, but the situation is
more complex, since the 8-N rule is broken in the amorphous phase of GeTe as well as in its
crystalline phase. The total coordination numbers of amorphous GeTe are 5.1(8) and 3.4(8)
for Ge and Te, respectively. They are in fact larger as expected from the 8-N rule due to the
influence of distorted octahedral environments.

We can conclude that it is possible using EXAFS analysis to distinguish several distinct
bond lengths, which are only 0.2 A apart. This is a remarkable resolution and would not
be possible by diffraction techniques, since the available Q-range of the signal is usually
too short ﬂ Using EXAFS analysis and the connection between bond lengths and -angles,

different coordination environments could be quantified.

4.3.2 Structural change upon crystallization in GeTe

A comparison of the local atomic ordering in amorphous and crystalline GeTe can be found
in Fig.[4.8] containing EXAFS and PDF data. The EXAFS data show a different transition
than in the GeTe-Sb,Tes compounds: Upon crystallization, the height of the first peak in-
creases — just as expected for more well defined nearest neighbor spacings in crystalline
materials. Therefore, the crystalline phase of GeTe contains significantly less substitutional
disorder than the related GST compounds. This is most likely related to the fact that the
local atomic displacements in GeTe, which can be well observed in the RDF, are aligned
in the same crystallographic direction. This alignment breaks the cubic symmetry and ex-
plains why the space group is R3m — just the same as the stable hexagonal phase of several
GeTe-Sb,yTes compounds. To conclude, GeTe directly crystallizes to the stable thombohe-
dral phase, without an intermediate meta-stable phase. The reason for the existence of this
meta-stable phase will be discussed further in Chpt.[7]

It is worth mentioning that the atomic nearest neighbor distances of amorphous and
crystalline GeTe hardly overlap, which underlines the magnitude of the change in average

bond lengths. All related parameters are summarized in Tab.[4.4]

“More than Q = 32 A™" would be necessary to indeed resolve these contributions, but already above Q =

o -1 . . .
12 A hardly any features was observed in the neutron scattering experiments.
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(a) EXAFS data from all K-edge of as-deposited amor- (b) PDF analysis of neutron scattering data of as-
phous and crystalline GeTe at 10 K deposited amorphous and crystalline GeTe at 10 K

Figure 4.8: Amorphous and crystalline GeTe at 10 K: A comparison of EXAFS and RDF
data show that a significant increase of the nearest neighbor distance occur upon
crystallization. There is hardly any overlap between the nearest neighbor peaks
in the RDFs of both phases.

4.4 Amorphous and Crystalline AIST and Sb,Te

All materials, which were discussed so far contained Ge. Another class of phase-change
materials is based on Sb and well-known from its application in rewriteable DVDs. This
compound is commonly referred to as AIST (in our case AgqIn3SberTess, but slightly dif-
ferent compositions are used as well). It is essentially based on Sb,Te, which has a rather
low crystallization temperature of only 376 K ([[133]], p.94; [51]). This temperature is too
low for application and therefore, Ag and In have been added in order to increase the crys-
tallization temperature to 451 K (cf. Fig.[7.3).

The crystallization in these Sb,Te-based materials is usually considered growth-domi-
nated. Indeed, the TEM images of a crystallized region show significantly larger grains than
those of GST (cf. Fig.[L.3). In the absence of a microscopic theory for crystallization, it is
helpful to find differences in the amorphous atomic arragement of nucleation dominated and
growth dominated materials. Since the activation barriers for local atomic rearrangements
are given by the atomic coordinates, a knowledge of the latter would help to propose micro-

scopic models of crystallization — in particular during the early formation of critical nuclei,
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4.5. Amorphous and Crystalline In3SbTe;

Table 4.4: Local atomic arrangement in amorphous and crystalline GeTe at 10K

(r) (PDF) o2 (EXAFS) N (PDF)
Amorphous phase  2.59()A  0.0027(5) A” (short) 2.8(2)
0.008(6) A” (medium)
0.0011(7) A” (long)
Crystalline phase ~ 2.99(1)A  0.0031(3) A” (medium) 5.4(4)
0.0049(4) A” (long)
Change +15(1)% -60(10)% +90(13)%

where the continuum approach of driving force of crystallization AG and the surface tension
can only be crude approximations. Therefore, and because the property contrast between
the amorphous and crystalline phases shall be investigated, EXAFS and total neutron scat-
tering experiments have been performed on these Ge-free compounds. The resulting data
for Sb,Te are depicted in Fig.[4.9

The amorphous phase of Sb,Te has an average atomic nearest neighbor distance of
2.87(1) A, which is larger than the sum of averaged covalent radii for Sb and Te, which
is 2.77A [134]. Nevertheless, the coordination number of 2.6(2) is well in line with the
8-N rule, which predicts 2.7 nearest neighboring atoms. The crystalline phase has even
longer average interatomic distances. Fig.[4.9] shows that an additional long bond forms

upon crystallization, which significantly increases the coordination number.

The EXAFS data again show a decrease in the peak height upon crystallization, which
— in the case of Sb,Te — is related to an overlap of short and long atomic nearest neighbor
distances in the crystalline phase. The displacement parameter o> of the short distances
remains almost identical upon crystallization (cf. Tab.[d.3). However, an additional longer
nearest neighbor distance is established upon crystallization. This effect is hard to observe
from the EXAFS data, since the large displacement parameter, 0.014(3) A? significantly
dampens the EXAFS oscillations. In the PDF data, however, these longer distances can be
clearly observed. This transition shows, that the crystallization in SbyTe is accompanied
by the formation of an additional, longer interatomic distance. This leads to an increase of
the average nearest neighbor distance by 8%. It is worth mentioning that in Sb,Te, there is
a strong overlap of atomic distances in the amorphous and crystalline phases — in striking

contrast to the behavior of GeTe, where no such overlap was observed.

4.5 Amorphous and Crystalline In;SbTe,

In3SbTe; is another candidate for future phase-change memory devices. The ternary com-
pound crystallizes at around 500 K, depending on the film thickness [54]. The crystalline
phase is reported to show a rock-salt like structure with a lattice constant of 6.126(1) A at

293 K, which results in a density of 6.95 gcm™ [56]. It is well known that In atoms occupy
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(a) EXAFS data from all K-edges of as-deposited (b) PDF analysis of neutron scattering data of as-
amorphous and crystalline Sb,Te at 10K deposited amorphous and crystalline Sb,Te at 300 K

Figure 4.9: Amorphous and crystalline SbyTe: A comparison of EXAFS data shows that the
structural contrast between both phases is less based on a change of the near-
est neighbor distances. Instead, the RDF’s show that an additional longer bond
forms in the crystalline phase, which was absent (not disordered) in the amor-
phous phase. This comparison nicely shows the complimentary use of EXAFS
and PDF analysis, since the long nearest neighbor distances in the crystalline

phase are too disordered to give a clear signal in the EXAFS data.

the first, and Sb and Te atoms the second sublattice. No information were found in liter-
ature on the ordering of the Sb and Te atoms on their sublattice. The crystalline phase is
of rocksalt-structure and was prepared by sputter depositing thick films of 1400 to 1700 nm
on microscope slide and scratching the film to powder. Subsequently, the powder was an-
nealed under a constant flow of Ar gas at 533 K. The films of this thickness were found to
be relatively unstable against crystallization and at several occasions, the sample prepara-
tion for EXAFS measurements crystallized the samples. Therefore, the EXAFS data of the
as-deposited phase were obtained from thinner samples, whose preparation was described
earlier (cf. Sec.[2.7.2).

4.5.1 Atomic structure of crystalline In;SbTe,

The refinement of EXAFS data for crystalline In3SbTe, (IST) will be summarized in the

following. The rocksalt-like structure consists only of In-Sb and In-Te bonds, so that only
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4.5. Amorphous and Crystalline In3SbTe;

Table 4.5: Local atomic arrangement in amorphous and crystalline Sb,Te. Values denoted
by * from ND, and ° from EXAFS. § (2) = 0.7(1) was assumed to determine the
coordination numbers from EXAFS data.

(r) o2 N
Amorphous phase 2.87(1) Ax 0.0026(2) A” ° 2.6(2)
2.870Q2) A ° 2.3(3)
Crystalline phase 3.10(1) Ax 5.4(4)*

2.909(4) A(short) ©  0.0028(4) A’(short) ° 7(1) (of Sb)
3.39(2) A(long) ° 0.014(3) A (long) ° 3.1(4) (of Te)
5.7(6) (avg.) °

Change +8% +0% + longer distance +108(15)%

these were taken into account during the fitting process. Indeed, single scattering paths
were sufficient to refine the structure of this compound as can be seen from the comparison
of experimental EXAFS data and the refinement in Fig.d.10] According to the rock-salt
structure, also larger atomic distances were taken into account during the fitting process in

order to refine the higher order coordination shells as well.

An important observation in the meta-stable phase of GST was the large amplitude of
local atomic displacements. These displacements are related to the substitutional disorder
of both, vacancies and Ge/Sb atoms. This disorder was shown to be responsible for the
insulating behavior of this compound, because it led to a localization of charge. We can now
wonder if the same holds for IST, since Sb and Te atoms might be disordered as well. The
resulting information from the EXAFS analysis are sufficient to reveal the nature of atomic
displacements in IST, which will be discussed in the following. The In-Sb distances are
shorter than the In-Te distances (which can be evidenced from the different nearest neighbor
distances at the Sb and Te edges, respectively). This is well in line with the observations in
GST, where shorter Ge-Te than Sb-Te distances are observed. However, in GST, a splitting
to short and long Ge-Te and Sb-Te distances was observed, whereas no such splitting exists
in IST. The absence of this splitting shows that in IST, the atoms on the In sublattice are
displaced from their lattice sites with the Sb-Ing octahedra (A) being smaller than the Te-
Ing octahedra (B). This size difference suggests that an approximately alternating sequence
ABAB of these octahedra should prevail, because otherwise a large sequence of one type of
octahedra AAAA would accumulate a too large lattice mismatch. Since no tetragonal lattice
parameters are found by XRD, we can conclude that substitutional disorder exists for Sb
and Te atoms on the anion sublattice. The displacement amplitude for atoms in IST is by far
lower than that of GST and therefore, it resembles much closer the rock-salt structure, which
is rather surprising when the charge carrier concentration n = 1.2 - 1022 cm™3 [135]], [54] is

considered. This charge carrier density corresponds to as much as 0.34 electrons/atom.

The lattice constant resulting from the EXAFS analysis for IST at 10K is 6.095(8) A

105



4.5. Amorphous and Crystalline InzSbTe,

1.2 Data =
In edge Fit ——
® 1= In-In N
oC B \ In-Sb L
c 08 \ In-Te
= 06 In-Sb (sep.) — H
= j

0.4 —
0.5 :vv_—,t——[,\ J\.—L \ “a”A{\A/f

IX(n)lin A=

2 D H
Sb edge \ aéﬁ —_—
- Sb-In a
15 Sb-Sb
Sb-Te
— ‘ : - > m—

IX(nlin A=

rin A
Figure 4.10: Fourier Transforms of EXAFS data (black) of crystallized In3SbTe, at 10 K.
The sample was annealed at 533 K. The fits (red) consist of several scattering
paths at all edges and the crystal structure resembles rocksalt. Bond lengths
and displacement parameters of all equal scattering paths (i.e. In-Sb and In-Te)
have been constrained. The resulting total residual is 0.012. Some additional
In-Sb bonds (orange) are related to segregated InSb. They improve the quality
of the fit by 0.002 on the total residual and were observed by XRD at higher

annealing temperature [[133]].

This result can be used to determine the coefficient of linear thermal expansion (CLTE)
using the reference value by Deneke et al. [56] of 6.126(1) A at 293 K. It turns out that the
CLTE is 2.1(4) x 10°K~!. This number agrees well with the CLTE published in literature:
2.4 x 10°K~! [136] and 2 x 107K™! (cf. [137]). The thermal expansion of In3SbTe,
is significantly smaller than the value reported for Ge,Sb,Tes (5.05 X 105K [73]). The
lattice constant of similar samples obtained by the same sputtering technique were measured
by Rausch [135]], who obtained a = 6.11(1) A. Even using this value, the CLTE of 0.9(4) x
107°K~! remains smaller than that of Ge,Sb,Tes.
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4.5. Amorphous and Crystalline In3SbTe;

Table 4.6: Interatomic distances in crystalline (rock-salt-like) In3SbTe, at 10 K. The edge
energy corrections AE are 6.9(2), 5.6(4) and 7.2(3) eV for IST, respectively. The
fit values of N - S(Z) are readily divided by the coordination numbers N of a rock-

salt lattice, so that the remaining parameter S% can be determined.

Scattering Paths S (2) Distance MSD

In-Sb (Ist shell)  0.66(2) 29923)A  0.0014(3) A”
In-Te (1st shell) 0.66(2) 30712)A  0.0031(2) A
Sb-Te (2nd shell)  0.64(3) 4282)A  0.006(2) A
Te-Te (2nd shell)  0.59(2) 430(DA  0.056(1) A
In-In 2nd shell)  0.66(2) 434(1)A  0.015(1)A°
Sb-Sb (2nd shell)  0.64(3) 4342)A  0.0042)A°
In-Sb (3rd shell)  0.66(2) 5253)A  0.0093) A’
In-Te (3rd shell)  0.66(2) 528()A  0.007(1)A°

In-Sb (segregated) N = 0.36(6) 2.80(DA  0.007(1)A°

4.5.2 Amorphous In;SbTe,

The K-edge EXAFS spectra have been recorded for all three K absorption edges of as-
deposited amorphous In3SbTe,. The resulting data are depicted in Fig.[4.11] together with
a least squares refinement. Since IST consists of three elements with very similar atomic
charges (49, 51 and 52), large uncertainties are expected for the partial coordination numbers
N;j (e.g. Ny corresponds to the number of In-Sb bonds per In atom). These nine parameters
are constrained in a homogeneous sample by the stoichiometry, which is given by the atomic
fractions x; with Z? x; = 1. The partial coordination numbers are then constrained by
N;j = (xj/x;)-Nj;. For the case, that no homopolar bonds exist, i.e. N;; = 0V i, the fit has only
three remaining coordination numbers and the total residual R for all edges is 0.017. This
residual is below 0.02 and shows that the inclusion of homopolar bonds to the fitting model
is not necessary to obtain a reliable model. If e.g. homopolar bonds of In are included in the
fit, like they are observed in MD-DFT calculations [[135]], the residual reduces significantly
to 0.011 and the reduced chi-square is reduced as well from 28.0 to 22.1. All other bond
types reduce the residual less significantly. E.g. Sb-Sb bonds only improve the residual from
0.017 to 0.016. All further scattering paths only increase the reduced chi-square due to the
larger number of fit parameters. All resulting values of the scattering paths in amorphous
In3SbTe, are summarized in Tab.[4.7] where constrained parameters are denoted by the same
letter in parenthesis. Partial coordination numbers N;; have been obtained by dividing by
the amplitude reduction factors S (2) of the crystalline phase.

The resulting coordination numbers of amorphous In3SbTe; are 5.7(6), 5.2(4) and 3.8(3),
respectively. These numbers are significantly larger than those predicted by the 8-N rule
[132], i.e. 5, 3 and 2 for In, Sb and Te. Therefore, the amorphous phase of In3SbTe, differs
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Figure 4.11: Fourier Transforms of EXAFS data (black) of as-deposited amorphous
In3SbTey at 10 K. The fits (red) consist of three scattering paths at the In edge
and of only single heteropolar scattering path at the Sb and Te edges. Only
atoms on the first neighboring shell can be detected. Bond lengths and Dis-

placement parameters of all equal scattering paths (i.e. In-Sb and In-Te) have

been constrained. The resulting R-factor is 0.011.

from that of all phase-change materials investigated in this thesis. This deviation is partly
confirmed by AIMD simulations performed by Rausch [[135], who obtained coordination
numbers of 5.0(5), 4.8(5) and 4.7(4). Just like the AIMD simulations for GST compounds,
the coordination number of Te in IST turns out larger than the experimental result.

Bond lengths in covalently bonded systems can be compared to the sums of tabulated
covalent radii, which give the following results: In-In 2.84(1) A, In-Te 2.80(1) A and In-
Sb 2.81(1)A. The predictions for In-Sb and In-Te distances agree very well to the ob-
served values, but a deviation exists for In-In bonds. A comparison to values from literature
shows that this deviation is not a unique observation: Studies on the structure of other crys-
talline indium-chalcogenides revealed In-In bond lengths of 2.760(5) Ain IngSey [1138]] and
2.763(4)1& in In;Tejo (at room temperature) [139]. These values agree with those from

amorphous In3SbTe,, but the In-In distances in pure In (3.25 A), however, are larger than
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4.6. Conclusions from the study of atomic order

Table 4.7: Atomic nearest neighbor distances in as-deposited amorphous In3SbTe; at 10 K.
The edge energy corrections are 5(1)eV, 9(1)eV and 8(1)eV for IST, respec-

tively.
Scattering Pathi-j N;; Distance o2 in A’
In-In 1.5(5) 2.77(1) A 0.006(2)
In-Sb 2.5(2) (a) 2.829(4)A (a) 0.0033(5) (a)
In-Te 1.7(2) (b)  2.839(5) A (b)  0.0039(5) (b)
Sb-In 52(4) (a) 2.829(4)A (a) 0.0033(5) (a)
Te-In 3.8(3) (b) 2.839(5)A (b) 0.0039(5) (b)

these and explain why the tabulated numbers for covalent radii of In are larger.

4.5.3 Comparison of amorphous and crystalline IST

Significant changes in the local atomic ordering occur in IST as well. These changes are
described by the numbers in Tab.[d.8] which show that although a large increase of the
average interatomic distances occurs, the coordination number increases only slightly. In
this respect, the structural contrast in IST differs from all other phase-change materials —
because the atomic coordination in the amorphous phase exceeds the prediction of the 8-N
rule. Therefore, the bonds in amorphous IST are not ordinary covalent — just as those of
the crystalline phase. It is not yet clear, if resonance bonding occurs in crystalline IST —
although the atomic geometry seems to be strongly in favor of resonance bonding due its
cubic rocksalt structure and the p-bonding. This is because measurements of €., have not
been possible due to the large carrier concentration, which results from the lower number
of electrons per atom (< n, >= 2.33) and the position of the Fermi level inside the p-
band. Local atomic distortions are very small and do not open a gap at the Fermi level. The
ionicity of IST is comparable to that of SnTe, which is no phase-change material any longer,
but still has resonance bonding. It is therefore rather likely that resonant bonds exist in IST
as well, which are screened by the large susceptibility of the many free charge carriers.

As expected for a glass forming material, the displacement parameter reduces upon
crystallization. The parameter of the crystalline phase of IST is rather low, although local
atomic displacements and substitutional disorder prevails. In contrast to GST, the radii of
the different atoms are rather similar and no vacancies have yet been reported for IST so
that there is by far less displacement disorder in the crystalline phase. In conclusion, the
structural contrast resembles more closely the features found in Sb,Te, than those of GST.

4.6 Conclusions from the study of atomic order

The local atomic ordering in the amorphous and crystalline phases of at least four different

phase-change materials has been investigated. This comprehensive analysis has shown that
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Figure 4.12: Fourier transformed EXAFS data reveal the contrast of the local atomic en-
vironment between amorphous and crystalline In3SbTe,. An increase in bond
lengths and a decrease of the atomic displacement parameters is observed upon

crystallization. The data were measured at 10 K.

the average interatomic distance increases in all these materials upon crystallization. Since
this list of materials contains compounds of all so-called families of phase-change materials,
it can be concluded that the increase in bond length is a general structural motif of phase-
change materials. It was observed in Ge,Sb,Tes, GeTe, AIST, SbyTe and In3SbTe,. The
largest increase of nearest neighbor spacing was observed in GeTe (+15%), in Ge,Sb,Tes
(+11%), in In3SbTe; (+8%) and in SbyTe (+8%). This modification of the local atomic
arrangement is related to a change in bonding mechanism, which supports the property
contrast desired for phase-change applications. This structure-property relationship is im-

portant for the design of phase-change materials for optical data storage. However, the

Table 4.8: Local atomic arrangement in amorphous and crystalline In3SbTe,

) o? N

Amorphous phase  2.82()A  0.0035(5) A 5.0(4)
Crystalline phase  3.05(DA  0.00252)A> 6.0
Change +8% -29% +20%
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4.6. Conclusions from the study of atomic order

investigation of static atomic structures cannot explain the exact route of the fast crystal-
lization mechanism. Therefore, further investigations are necessary, which can be based on
thermodynamic and kinetic properties. These measurements will be presented in the fol-
lowing and it will become clear, why thermodynamic measurements should be based on the

previous knowledge of the atomic structures.
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CHAPTER 5

Vibrational properties of
phase-change materials

The structural analysis by EXAFS and XRD analysis revealed that the crystalline phase of
GST shows a stronger variance of nearest neighbor distances than the amorphous phase (cf.
Sec.[.2.3). This result was based on the comparison of the temperature dependence of dis-
placement parameters from EXAFS and XRD data. Since these displacements are based on
a different weighting of short- and long-wavelengths modes, it was only possible to specu-
late that the atomic interaction potential softens upon crystallization. Are the interaction
potentials of the crystalline phase softer than those of the amorphous phase and could
this behavior be linked to the prevalence of resonance bonding in the crystalline phase.

It was shown in Sec.[2.3.5] that these force constants can be obtained from an analysis
of the densities of phonon states. Therefore, such measurements are desirable to further
investigate the surprising observation, that the displacement parameter increases upon crys-
tallization (softening of the atomic potentials), whereas the bulk modulus increases from
28(5) GPa to 45(9) GPa as well [25] and the compound hardens macroscopically (or 30(2)
to 37(2) GPa in a different study [140]).

Nuclear Inelastic Scattering (NIS) is a technique, whose fundamentals were pioneered in
1995 (cf. [141] and references therein), when highly brilliant pulsed synchrotron radiation
from undulator sources became available at the European Synchrotron Radiation Facility
(ESRF). It can be employed to measure the partial density of phonon states (pDOPS) of spe-
cific MoBbauer atoms in samples in every phase. The low spot size of the synchrotron beam
further enables the measurement of small samples and in particular of thin film samples.
Therefore, this method does not face the challenges of INS, where large sample quantities
are necessary and of Raman scattering, where a profound structural model is necessary to
interpret the results. The limited availability of MoBbauer active atoms on the other hand

is a challenge to NIS. However, recently, the method became available for 1215p [142]] and
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5.1. Mossbauer Effect

125Te [143]]. '2'Sb has a natural abundance of 57% and is sufficient for NIS in most sam-
ples, whereas the natural abundance of '>>Te is only 7% and therefore, samples need to be
enriched in '»Te. With these two elements, the largest fraction of atoms in most common
phase-change materials is accessible and measurements have been performed at the ESRF
to obtain the pDOPS of as-deposited amorphous, meta-stable crystalline GeSb,Tes [73].
The beauty of this method lies within its simplicity, once the very high technical require-
ments concerning both, beamline and sample, are realized. The physical principle will be

explained, followed by a discussion of the results.

5.1 Mossbauer Effect

The Mossbauer effect is sometimes referred to as the recoil-free absorption of gamma (or
X-) rays by a nucleus. The energy is then entirely transferred to an excitation of the nu-
clear spin. This recoil-free process seemed puzzling at first, because the momentum of the
gamma photon has to be retained — just as in the Compton effect, where a photon scatters
inelastically E] with a free electron. The essential difference is, that the Mdssbauer effect is
only observed on atoms, which are bonded in a solid. Then, just as for the reflection of a
ball from a hard wall, the solid does not obtain a significant amount of kinetic energy and
the absorption occurs without recoil so that the total energy retained in the excited nucleus

and can be passed, thereby leading to resonant absorption.

5.2 Nuclear Inelastic Scattering

First, the incident x-rays are monochromatized by Si 111 double crystals for pre-selection
and in particular to reduce their intensity. The resulting beam is further monochromatized
by a highly specialized monochromator (sapphire, Al,O3) to adapt the nuclear transition
[141]] in the investigated '2!Sb (37.13 keV) and '>Te (35.492 keV) isotopes with an energy
resolution of 6.6 meV (corresponding to 1.8 - 10~7). The incident flux of x-rays is measured

using an ionization chamber.

Hitting the sample, some x-ray photons are scattered by the electrons and some are scat-
tered by the nuclei. One of the key challenges is to resolve the nuclear scattering, which
is generally a factor of 10~ lower than the electronic scattering [144]. This filtering is
possible due to the different time structure of the scattering with the electronic scattering
being prompt (<1 ns) and the nuclear scattering being delayed by some ns. Two avalanche
photodiode (APD) detectors are placed at different scattering angles and at different dis-
tances to the sample so that they are able to resolve both different scattering processes, if
the delay is some nanoseconds. The nuclear scattering has an inelastic contribution from
photons, which have been ejected after the creation or annihilation of a vibrational state.
These inelastic scattering events occur spatially incoherent within the sample and therefore

only lead to constructive interference in the forward direction, where the distance to the

lexcept for forward scattering
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5.2. Nuclear Inelastic Scattering

sample is constant for all scattering paths. This coherent scattering is measured by detector
#2 in Fig.[5.1] which is located far from the sample. The first detector measures the inco-
herent nuclear scattering over the largest possible solid angle so that it is placed as closely
to the sample as the sample environment (temperature, pressure and atmosphere) allows.

The temporal delay of nuclear scattering allows filtering out the electronic scattering
and the directly transmitted beam from both detectors. The half-life time of excited 121gp,
is only 3.5(4) ns [145], making a distinction of the different scattering mechanisms more
difficult than in 5Fe, where it amounts to 99.3 ns [143]. '®Te is even more complicated
to measure, since the half-life time of the excited state with /. = 3/2+ (as compared to the
ground state with I, = 1/2+) is only 2.14(1) ns [143].

Resonant High-resolution Storage ring

sample monochromator

' .
Tonization

Detector #2 ’/ l\ chamber

h—— High-heat-load
Detector #1 monochromator

Detector #2
Detector #1

Energy Energy

Figure 5.1: The experimental setup for Nuclear Inelastic Scattering experiments is based
upon a set of monochromator crystals, which are placed at an undulator source.
This is the only energy discrimination, which is necessary for NIS. By tuning
the energy, the detectors #2 and #1 record the coherent elastic and the nuclear
inelastic absorption spectra, which allow extracting the density of phonon states
(cf. text). Adapted from [141].

The name nuclear inelastic scattering is not precise, since there are two methods, by
which the excited nucleus can decay: (a) Internal conversion and (b) radiative decay. The
internal conversion coeflicient a describes the probability a/(1 + ), with which internal

conversion is the decay mechanism of the nucleus.

(a) Internal conversion (also called nuclear inelastic absorption) refers to the transfer of
the excitation energy to an electron of the atomic shell, which is emitted from the atom and

a y or Auger electron is released when another electron fills the hole. This channel was
measured for phase-change materials.

(b) For radiative decay, the probability is 1/(1 + @) and refers to the emission of y

fluorescence radiation, which can have the energy of the nuclear transition (elastic) or that
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5.3. Results and Conclusion

plus/minus the energy of a vibrational state.

For several reasons (the most significant one being the fact that @ >> 1), the internal
conversion mechanism leads to the strongest signal in emitted x-rays. This is a huge benefit,
since the internal nature of the mechanism leads to the fact that the emission is isotropic and
therefore does not depend on the exact geometry of the setup. Therefore, always the whole
k-space within the dispersion of the X-rays is integrated automatically.

The energy scale in NIS can be easily aligned by setting £ = 0 to the highest peak in
the nuclear inelastic absorption spectrum, which is measured by detector #1 in Fig.[5.1] Its
spectrum is given by

W(E) = fim (5(1*3) + an(E))’ (5.1
n=1
where frr is the Lamb-Mdssbauer factor, 6(E) denotes the elastic scattering (i.e. the zero-
phonon term) and the following sum is an expansion of n-phonon terms S ,(E), which will
be discussed in the following. The density of phonon states g(E) can be extracted from the
experimental data in Eq.[5.1|by the recursive definition of the n-phonon terms,

E, g(E)
S1(E) m (5.2)
Su(E) = % f S1(ENS u-1(E - E"dE', (5.3)

where E, = %k*/2M is the recoil energy of a free nucleus of mass M after absorbing the
X-ray photon with wave vector k. Furthermore, 8 = (kgT)~!, as usual. The series expansion
for n-phonon terms converges particularly fast, if the Lamb-Mdssbauer factor fi is close

to unity, which is the case at lower temperature, since

> In(fLm)
T

, 5.4)

where o is the well-known atomic displacement parameter. Therefore, NIS experiments

were performed at very low temperature.

5.3 Results and Conclusion

Measurements of this kind were performed at the ESRF, Grenoble, France around the 121gp
and '2Te nuclear excitations at about 36 keV, where the momentum transfer is about 20 AT
The samples of GeSb,Tes were prepared by evaporating from 3 different cells simultane-
ously: GeTe and Sb in natural abundance and from 125Te. In the case of GeSb,Tey, this led

to an isotopic concentration of 77% '*>Te, sufficient for the NIS experiments.

The resulting densities of phonon states are depicted in Fig.[5.2|for the amorphous (black
curve) and meta-stable crystalline (red curve) phases of GeSb,Tey. It is clearly observed for
modes involving Sb and Te, that the low energy acoustic modes increase in energy, i.e.
harden upon crystallization. This hardening is commonly observed in glass forming mate-

rials and is related to the macroscopic hardening of the material, which goes along with an
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5.3. Results and Conclusion

Table 5.1: Parameters of the vibrational properties of phase-change materials. The elastic
hardening is reflected by the increase of the Debye temperature, although the
exact numbers have to be taken with care (cf. text). The surprising result of a
vibrational softening upon crystallization can be evidenced by the decrease of

interatomic force constants. [73]]

Phase Sb Te

0pinK FinNm™' 6pinK FinNm™!

As deposited amorphous 131 97(4) 120 84(4)
Meta-stable crystalline 153 72(4) 151 68(4)

increase in the sound velocity (cf. formulae in Sec.[2.3.4). This macroscopic hardening is
best reflected by the Debye temperature, which is a good measure for the acoustic phonon
modes. The low energy regime has been refined with a Debye model, resulting in the num-
bers given in Tab.[5.1] These numbers well reflect the elastic hardening upon crystallization.
The exact values, however, have to be taken with care since the densities of phonon states are
the average over a large k-range, where averaging effects can influence the resulting spectra
especially in the amorphous phase. In the crystalline phase, the Debye temperature should
be more accurate and is indeed found to be in good agreement with the value of 155(5) K,

found from the temperature dependence of displacement parameters (cf. Sec.[d.2.3).

In addition, the interatomic force constants can be derived from the densities of phonon
states. Therefore, measurements of vibrational properties allow the rare chance to investi-
gate both, macroscopic and microscopic properties simultaneously. Most surprisingly, and
in contrast to common glass forming semiconductors, the force constant decreases upon
crystallization. This effect shows that there is a significant change of the bonding mech-
anism upon crystallization with purely covalent bonds in the amorphous and resonant co-
valent bonds in the crystalline phase. This observation is well in line with the larger tem-
perature dependence of the displacement parameter in the meta-stable crystalline phase, cf.
Fig.[4.6|

In conclusion, it was shown that optical modes of higher frequencies exist in the amor-
phous phase, so that a vibrational softening occurs upon crystallization. It can be won-
dered, whether these soft interaction potentials could be related to the high values of €.
Although this relation is likely, it is difficult to proof, since the frequencies of optical vi-
brational modes are lower in energy than the optical dielectric constant €,,. The optical
dielectric constant is based upon electronic properties, where the atoms can no longer fol-
low the excitation frequency. On the other hand, the large dynamic charge of phase-change
materials [42] shows that also the electrons can be significantly displaced by small atomic
movements. Consequently, a soft atomic interaction potential implies a large electronic
polarizability in case of a large dynamic charge.
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Figure 5.2: Partial density of phonon states in GeSb,Tes. The low-energy acoustic modes
harden upon crystallization, whereas surprisingly the optical modes soften. This
shows that the atomic interaction potentials are softer in the crystalline phase
[73]].
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CHAPTER 6

Thermodynamic properties of
phase-change materials

So far, the static and dynamic structures of phase-change materials have been discussed.
It was revealed, how the atoms are locally arranged in both phases involved in the phase-
change. The essential switching mechanism, however, was not addressed by those studies.
Therefore, the earlier results shall be brought in context with the thermodynamics and kinet-
ics of the phase-transition. This chapter is included to provide the theoretical foundation
of thermodynamics and calorimetry for the thermal analysis presented in Chpt.[7}

6.1 Crystallization / Motivation

Phase transitions are governed by both, kinetics and thermodynamics. Thermodynamically,
any phase transition can occur spontaneously, if the free enthalpy G is reduced. However,
the transition can be kinetically suppressed by a large activation barrier. Hence, both in-
fluences have to be investigated to describe and predict the crystallization process. In this
section, the thermodynamic properties are discussed and it will be explained how the ki-
netics of crystallization can be assessed based on thermodynamic properties. The driving
force of crystallization is the change in free enthalpy AG = G, — G.. In case of AG > 0,
crystallization can take place thermodynamically any time. At the same time, the entropy
changes by AS = §, — S, > 0, because the entropy of an amorphous system is necessarily
larger than that of a crystal. This follows directly from the fact that the crystal is the thermo-
dynamically stable state (below the melting temperature). Therefore, the change in enthalpy
is AH = AG + TAS, and consequently, AH > AG. The driving force of crystallization is
always smaller than the measured change in enthalpy AH and the difference is given by
the entropy difference between the final and the initial states involved in the crystallization

T.AS . Itis the aim of this section to determine both quantities in order to understand in how
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6.1. Crystallization / Motivation

far phase-change materials differ from other glass-forming materials.

6.1.1 Kinetics

This section will show how the change in free enthalpy per atom Agy = AG/V (V is the
volume of atoms that crystallize) enters the kinetic models of crystallization. These models
are given also to motivate the measurement of thermodynamic properties — or more precisely

the measurements of not only AH, but also AS.

Nucleation

The classic theory of nucleation dates back to Gibbs, Volmer, Becker and Doring (cited from
[146], p. 183). The basic idea is that crystallites form with a given rate and that they have
to exceed a specific critical radius — linked to an activation barrier — above which they gain
free enthalpy by growing further. The rate, with which nuclei reach this critical radius per
unit volume is termed nucleation rate J and follows an Arrhenius temperature dependence.

It is given by

(6.1)

J=A- eXp(Agnuc(r))

kgT

The activation barrier of nucleation has two contributions, Ag,,.(r) = Ags(r) + Agy(r).
Agy = 4/3nr3Agy is the driving force due to Agy, the free enthalpy difference between
amorphous and crystalline material per atom (which will be studied in detail in this and the
following chapter). Ags = —4nr’y contributes the activation barrier due to the interface en-
ergy . It is important to note that the volume effects favor crystallization, so that Agy > 0,
while the extra surface tension y between the crystalline nucleus and the surrounding amor-
phous material disfavors crystallization and therefore Ags < 0. At this point it is worth
mentioning that the GST-based materials, i.e. at least GeSb,Tes and Ge,SbrTes possess a
high nucleation rate, which might be related either to a large gain in free enthalpy Agy or
a low interface energy . In the absence of a comparative study of the interface energy
for different PCMs, its influence will be discussed only briefly. As can be seen from the
equation for Ags(r), a large interface energy increases the activation energy for nucleation
and reduces the nucleation rate. The interface energy for different materials can be mea-
sured by the shape of crystals at the surface, since their contour allows deriving the wetting
angle at the amorphous-crystal interface, if the densities of both phases are known. It was
shown already that such contours can be recorded by means of atomic force microscopy
[147] — however, no interface energies were calculated. This work will focus only on the
influence of the volume term Agy to the nucleation rate. It will be discussed with respect to

calorimetric measurements as well as the important influence of atomic disorder.

Growth

In case a stable nucleus has formed (i.e. if its size exceeds the critical radius), it will con-

tinue growing. The growth rate is either limited by atomic rearrangement processes at the
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6.2. Thermodynamics of glass forming systems

interface of the nucleus, or, in the case of a change of composition upon crystallization, the
growth rate is limited by diffusion processes. Since all investigated phase-change materials,
which do not phase-separate (this excludes Ge5Sbgs and GejsTegs), retain their compo-
sition upon crystallization, only the first interface limited process is considered. Then the
growth velocity of the nucleus’ interface is limited by atomic rearrangement processes. This
model is derived in the work by Christian [148]], p. 436 (and references therein) and the re-
sulting velocity with which the interface proceeds is given by

Y = 5Bv(ﬂ)exp(—ﬂ). (6.2)

kgT kgT

In this expression, v is the attempt frequency of an atom trying to access the growing crystal.
It is of the same order of magnitude as atomic vibrations [[148], p. 499. 68 is the distance
across the amorphous-to-crystal interface and Ag;,, > 0 is the activation barrier for the atom
to cross this interface. Agy > 0 is the driving force for crystal growth, i.e. the difference in
free enthalpy per atom in the amorphous and crystalline phases.

It was shown that both mechanisms, nucleation and growth, are driven by a reduction
of the free enthalpy per crystalline volume, Agy. But whereas the nucleation rate depends
exponentially on differences in the driving force, the growth velocity is only a linear function
of this value. Therefore, this quantity offers new insight to the differences in the mechanism

of nucleation and growth and will be discussed in more detail in the following.

6.2 Thermodynamics of glass forming systems

6.2.1 Free enthalpy

The driving force of crystallization is a reduction of the free enthalpy G(T, p) = U-TS +pV,
which enters in both dominant mechanisms, i.e. in crystal nucleation and -growth rates. The
pV term can usually be neglected in solids, and even during the density change of approx.
5%, the term p - AV/V =~ lueV/atom at ambient pressure (p = 0.1 MPa). By comparison
with the values given in Tab.[6.1|for the entropy and energy changes, it becomes obvious that
the pV-term remains negligible even up to pressures of 10 MPa, where it is less than 1% of
the entropy change. Hence, only the enthalpy difference AH,. and the entropy difference
AS ;. enter the expression for AG,, since G = H — TS and

AGue(T) = AHuo(T) = T - AS oo(T). (6.3)

It is instructive to compare the magnitude of both contributions upon crystallization, i.e.

AHg,. > 0 and T, - AS ;- < 0 for various compounds, for which they are known.

From Eq. it is clear that three quantities are necessary for the calculation of AG,.(T,):
T., AH,. and AS .., which will be discussed in sequence. To gain insight on the order of
magnitude of these quantities, the numbers for amorphous Si and Ge, prepared by ion bom-
bardment are given in Tab.[6.I] Amorphous Si crystallizes at 960 K and amorphous Ge at
750K. AG4(T.) is about 25% smaller than AH,.(T.), which proves that, considering the
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6.2. Thermodynamics of glass forming systems

Table 6.1: Contributions to the change in free enthalpy upon crystallization of pure Si and

Ge. The values reveal, that the entropy contribution must not be neglected [[149]].

Element AH,.(T,) =T - AS ,(T) AG.(T,)
Si 124 meVatom™! -31meVatom™! 93 meV atom™!
Ge 119 meVatom™! -26meVatom™! 93 meV atom™!

exponential dependence in the nucleation rate, the entropy difference is a crucial parameter
for the thermodynamic description and prediction of the crystallization rates.

Fig.[6.1] depicts the free enthalpy as a function of temperature for the amorphous and
crystalline phases. Both phases are in equilibrium at the melting temperature 7, and the
slope of G must be negative with temperature, since 0G/0T = —S and absolute values
of entropy are always positive. Furthermore, the undercooled liquid must be unstable as
compared to the crystalline phase so that the entropy of the (undercooled) liquid must be
larger than that of the crystal. If the undercooled liquid is cooled below the glass transition
temperature without crystallizing, it has fallen out of equilibrium at the glass transition
temperature. Below, no longer are all microstates of the system sampled on the time-scale
of the experiment. This state is referred to as a glass. At lower cooling rates, however,
crystallization sets in before the glass transition temperature is reached (red arrow). The
crystalline phase of many phase-change materials, e.g. on the GeTe-Sb,Tes line, is not well
defined because additional metastable crystalline phases exist. These phases are obtained

depending on the applied temperature program.

6.2.2 Entropy

The entropy is usually referenced to its value at very low temperatures, which — according
to the third law of thermodynamics — equals zero, i.e.

}% S =0. (6.4)

However, this law only applies to system with a non-degenerate ground state. A quantum

mechanical treatment for systems with a go-fold degenerate ground state reveals the residual
entropy at 7 = 0 ([150], p. 525f)

S(T = 0) = kglog(go) > O. (6.5)

This residual entropy also exists in glasses, although no commonly accepted strategy exists
to predict the degeneracy of the amorphous state. It should be noted, however, that there is
an ongoing discussion about the question, which states have to be taken into account, when
the degeneracy g is calculated: Only those, which are sampled at the actual temperature on
the time scale of the experiment (favored by Gupta et al. [[151]) or all those, which corre-

spond to a state of the same energy (favored by Goldstein [152])). In the first model only the
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Figure 6.1: The free enthalpy G of glass forming materials is shown schematically for the
amorphous and crystalline phases. At the melting temperature, the liquid and
crystalline phases are in equilibrium, but below this temperature, the under-
cooled liquid and glassy phase are only meta-stable states. The difference in
free enthalpy depends not only on the state of relaxation of the glass, but also on
the crystalline phase. If a meta-stable crystalline phase exists, its free enthalpy
must be larger than that of the stable phase over the full range where it exists. In
contrast to glassy states, the meta-stable crystalline phase of GST-compounds
has not yet been observed above its transition temperature to the stable phase,
T,.

states are counted, which are actually sampled, so that all other states have to be added when
the glass transition temperature is passed. Then, the same residual entropy has to be added
during T,, which was assumed to exist at 0K in the second model. This discussion im-
plies that the absolute entropy of a substance out of internal equilibrium cannot be obtained
by measuring the specific heat from 0 K. Therefore, the only reasonable reference state for
such substances is the liquid state, where different cooling rates lead to the amorphous or

the crystalline phase.

Fig.[6.2]shows the entropy of glass forming systems as a function of temperature. Start-
ing from the liquid phase at high temperature, the material crystallizes upon cooling below
the melting temperature, where the latent entropy is lost and depending on the cooling rate,
several meta-stable crystalline modifications can occur. In this compound, only the entropy
of the unique stable phase goes to zero upon cooling to 0 K. This means that the convention
of Goldstein is followed, where all degenerate microstates are considered in the calculation
of the entropy. Consequently, the residual entropy of the amorphous phase remains at 0 K.
Upon heating the glass above the glass transition, a step in the specific heat occurs, which
changes the slope of entropy vs. temperature. In phase-change materials, however, this un-

dercooled liquid state above the glass transition temperature is almost not accessible due to
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the fast onset of crystallization.

Entropy S

Tg Tm
Temperature T

Figure 6.2: Temperature dependence of the entropy in glass forming systems. Starting from
the liquid state, the entropy splits to a crystalline and an undercooled liquid
phase — depending on the cooling rate, i.e. on kinetic aspects. Also a meta-stable
crystalline state has residual configurational entropy at 0 K, which reduces the
entropy difference to the glassy and undercooled liquid state.

With the liquid state as reference, the entropy difference AS ,. between the amorphous/

undercooled liquid and crystalline phases is given by the following expressions:

ASqc(T) = Sa(T)—S(T) (6.6)
_ " Coayr (7 Cre
= AS,+ dT dT 6.7)
Tm T TlTl T
B fT AC,
= AS,+ | —Zdr, (6.8)
7, T
(6.9)

which shows that the entropy difference can be obtained experimentally from the spe-
cific heat difference. However, for an assessment of the entropy difference AS,.(T) =
S o(T) =S (T), the specific heats of the undercooled liquid and crystalline phases have to be
known. By using cooling rates of less than 10 K/s, the undercooled liquid phase is not acces-
sible. It is therefore not possible to determine the entropy difference by commonly available
calorimeters Iﬂ Another strategy to follow is to extrapolate the entropy of the undercooled
liquid by [25]]

AS4o(T)=aln (Tl) +b(T - Tp), (6.10)

m

The emerging technique of chip calorimetry might lead to significant improvements in this field [153]
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6.2. Thermodynamics of glass forming systems

where AS ;(T) = 0 an Tg < T is the Kauzmann temperature. Both constants, a and b

can be obtained by fitting a straight line to the specific heat of the undercooled liquid.

Therefore, absolute values for both, the amorphous and the crystalline phases can be
obtained from a measurement of the specific heat of the liquid state and crystalline phase,
when in addition the glass transition temperature is known. Therefore, the specific heat and

all its contributions will be discussed in the following.

6.2.3 Specific heat

The specific heat is given by either C,, = T - dS/dT|, or Cy = T - 3§ /3Ty, depending on
the fixed property during the experiment p or V. In this study, the specific heat at constant
pressure is used, since the experiments are performed in sample pans with a small opening.
Furthermore, the well known stoichiometry of all samples enables the calculation of molar
heat capacities ¢, = C p(mmol)‘l, which have the benefit of being easily comparable for
different substance, since according to the law by Dulong-Petit, the molar specific heat at

constant volume should always converge to ¢, = 258 ueV (atom K)~!.

Configurational contribution

The configurational entropy is defined in general by
Scont = —kplnW, (6.11)

where W is the number of possible configurations of the whole system for a given energy.
Thus, single crystals have no configurational entropy. Amorphous systems, however, have
a significant configurational entropy even at zero temperature. This is the largest contribu-
tion to the residual entropy observed in these systems ([154], p. 56). An efficient method
to determine the configurational entropy of disordered network systems is found e.g. in the
work by Vink et al. [155]], [156]]. Amorphous phase-change materials are distinct from these
materials because they have variable coordination numbers and because they are diatomic.
The extension of the model by Vink et al. is beyond the scope of this thesis and the con-
figurational entropy is used here only to determine the configurational disorder of the dif-
ferent crystalline phases, where substitutional disorder occurs. The configurational entropy
is usually temperature independent (except for relaxation effects at higher temperature) and
therefore does not contribute to the specific heat.

Compounds from the GeTe-Sb,Tes pseudobinary line possess a large configurational
entropy in the metastable cubic phase due to substitutional disorder on the Ge/Sb/Vac sub-

lattice. Its configurational entropy due to substitutional disorder can be quantified by

N!
S =kg-In| ——— 6.12
conf B - 1n (NGe!NSb!NVac!) ( )

using the Stirling formula
In(N)*x N-InN-N (6.13)
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Table 6.2: Configurational entropy of GST phase-change materials in the meta-stable cubic

phase, assuming fully random substitutional disorder on the Ge/Sb/Vac sublat-

tice.
Compound GeSbsTe; GeSb,Tes GerSbyTes GezSbyTeq
S conf in ueV(atom K)™!  -41.1 -44.8 -45.4 -43.5
=T, - Scont in meV/atom -17.0 -18.7 -19.4 -19.2

can be simplified to
S conf = —kp * N [xGe In xGe + xsp In xsp + (1 — XGe — Xxsp) In (1 — XGe — xsp)].  (6.14)

Since only one sublattice is involved, N = 0.5N,, with N, Avogadro’s constant, in order
to obtain the specific entropy per mole. The resulting values of several phase-change ma-
terials is calculated in Tab.[6.2] which shows that the substitutional disorder increases the
driving force of crystallization AG by approx. 21 meV/atom at the average crystallization
temperature of 500 K.

It is of particular interest to note that the meta-stable phase of GST compounds is only

observed, when its configurational entropy is larger than the entropy kp from thermal fluc-
tuations of energy kgT, cf. Fig.
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Figure 6.3: The configurational entropy due to substitutional disorder in the metastable
phase of several GeTe-Sb,Tes-compounds is compared to the thermal energy
of the atoms. It turns out that the meta-stable phase only crystallizes, when the

disorder suffices to overcome the influence of thermal fluctuations.

125



6.3. Calorimetry

Vibrational entropy

The vibrational entropy has already been discussed in Sec.[2.3.5] where also the respective
formula was given to calculate the vibrational entropy from a density of phonon states. This
calculation should be based on the full density of phonon states and since the NIS data only
contain the partial density of states of the Sb and Te atoms, the entropy is not calculated here.
However, in a fundamental article from 1964, Adam and Gibbs suggest that the vibrational

entropy of a glass and the respective crystal do not deviate significantly [157].

Electronic contribution

In a band model, the electrons at the Fermi level can be thermally excited and therefore
contribute to the specific heat as well. Their contribution to the specific heat is linear in
temperature and determined by [115], p. 155,

2
Cpel = %D(EF)kéT (6.15)

In phase-change materials, the density of states at the Fermi level can be roughly estimated
from the carrier concentration n and the Fermi energy Er. In order to obtain an upper
limit for the electronic contribution in e.g. GeSb,Tes, the values after annealing at 573 K
are used, which are n = 2.2 - 10%%cm™ and Er = 0.14eV. With D(Ef) = 1.5N/EF, the
resulting specific heat is Cpe) < 0.081J (mol K)~!, which is negligible as compared to the
Dulong-Petit limit, 24.942 J/(K mol).

In conclusion, the most significant contributions to the entropy originate from atomic
thermal vibrations and from configurational disorder. This could allow determining the
excess entropy of the undercooled liquid. However, the enthalpy difference AG,, = G, —
G. > 0 consists of a change in enthalpy AH,,. and in entropy AS ... It is therefore the aim of
the following section to explain calorimetry, from which both numbers can be obtained.

6.3 Calorimetry

How is the entropy of a system accessible by calorimetric measurements and what
exactly does a calorimeter measure? These questions will be answered in the following.
In a calorimeter, the power P is measured, which is necessary to compensate the temperature
difference between the sample and an empty container. During the measurement, sample
and empty container are at the same temperature, which can be modified linearly with time.
To describe the situation quantitatively, let us start from the basic situation in a calorimeter:
A sample with heat capacity C,(T) (under constant pressure, the specific heat is defined
as C, = OH/0T| ) 1s heated by a heat flow rate ®pg from the furnace to the sample. The

sample itself can be another source of heat flow, @,. Both change the temperature of the

126



6.3. Calorimetry

sample T’s. A similar equation holds for the empty container (reference) [[158]].

dT

cp,s<T)-d—f = Dps - D, (6.16)
dT

Cp,R(T)‘—dtR = Opg (6.17)

As briefly denoted before, it is the difference in sample and reference temperature, AT =

Ts — Tg, which is compensated by the DSC. Therefore, we need to continue with the differ-
ence of Eqgs. [0.16/and [6.17] which reads

dT, dAT
®ps — Dps = (Cps — Cpr) - d—tR +Cps e+ By (6.18)

In a last step, the heat flows @ are replaced by the respective temperature differences be-
tween furnace and sample/reference: ®rs = (T — Ts) /R, where R is the universal thermal

contact resistance between furnace and sample/reference. We find that

AT dAT
O = —— - (Cps = Cpr)-B=Cps - — (6.19)

This means, that the reaction flow rate equals the measured signal AT (which is in turn
proportional to the compensating power P) divided by the thermal resistance R plus some
additional terms. The second term on the right originates from the unequal heat capaci-
ties of sample and reference. Since heat capacities are smooth functions, it contributes a
background signal behind the chemical reaction, which is proportional to the difference in
specific heats and to the heating rate 8 = dTr/dt. This also shows that it is difficult to distin-
guish chemical reactions which take place over a large temperature window from the heat
capacity. The third term on the right includes a thermal delay due to the limited heat flow
and can be simplified by introducing a time constant 7 = C), 5 - R to replace C 5. In this
notation, it becomes obvious that a sufficient thermal contact (large R) with a sufficiently
low heating rate makes this term negligible. In practice, this effect is taken care of by inves-
tigating the equilibration times of the calorimeter and making sure that they are shorter than
the time scale of the investigated effects. It can become important, however, and needs to be
compensated if the heating rate is increased to investigate the kinetics of a specific chemical
reaction (e.g. during the so-called Kissinger analysis).

It is instructive to discuss the influence of the heat capacities a little further, since e.g.
Cps = Cp + Cppan,s contains both, the contribution of the specimen C, and that of the
sample container/sample pan C), pan s, Which is usually made of Al. In a similar way, C, g =

C pan,g» SO that the final equation reads

AT dAT

q)r = —7 - (Cp + (Cp,pan,S - Cp,pan,R))ﬁ - Cp,S 7 (6'20)

The calibration of the DSC works as follows: The measured signal AT is integrated
over time during the melting process of In at low heating rates (without the specific heat of
In). This number is then calibrated to the latent heat of the melting of In at about 430K,

which is a well-known property. After this calibration, the temperature difference AT can
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be converted to a power P and the latter physical quantity will be used in the treatment of
experimental data.

Integrating this power over time ¢ results in the heat AQ = f AP - dt (as for the latent
heat of melting In). For any experiment, where the heat release due to the chemical reaction
can be properly distinguished from changes in the specific heat (or sometimes even changes
in the sample quantity), its total heat AQ can be measured. It equals the change in enthalpy

AH, since the first law of thermodynamics, including internal changes in energy, is
dU =60 + oW (6.21)

and the enthalpy H = U + pV is differentiated dH = dU + pdV + Vdp. It follows that
00 = dH-Vdp. Under constant pressure (as discussed above and it even holds for closed Al
pans, which can hold a maximum additional pressure of about 1 bar), and without changes
in the sample mass,

o0H =60. (6.22)

Therefore, changes in enthalpy H upon a phase transition can be measured in a calorime-
ter. For a reversible transition, this allows deriving the latent entropy as well, since the
second law of thermodynamics,

ds < %, (6.23)

holds exactly (i.e. the < is a =), when the phase transition is reversible. This trivial solution
AS -T = AH is valid e.g. for the melting transition. The additional temperature dependence
of the entropy in the absence of phase transition follows from a measurement of the specific
heat. Therefore, relative values of the entropy can be measured calorimetrically as well.
Crystallization, however, is a thermodynamically irreversible process and therefore, only an
upper limit for the change in entropy can be given. In the absence of phase-transitions,
the entropy as a function of temperature can be exactly obtained via S(7T) — S(Ty) =
Jy. Cp/TdT.
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CHAPTER 7

Phase transitions and Entropy

In the preceding chapter, the fundamental thermodynamic properties of glass forming ma-
terials were discussed and it was motivated that both, entropy and enthalpy difference
upon crystallization AS ,.(T.) and AH,.(T.) influence the driving force of crystallization,
AG.(T,) and a strategy was presented, how these numbers could be obtained. Therefore,
this chapter is devoted to the results from measurements of the specific heat, the en-
tropy and the latent heats involved in the phase transition. How much does the change
in entropy AS ,.(T,) influence the driving force of crystallization?

This chapter is organized as follows: First, some details on the experimental method
and data treatment procedure of thermal analysis are briefly introduced. Subsequently, the
phase transitions of crystallization and melting are investigated for several compounds, like
e.g. AIST and GST. From these investigations, AH,.(T.) and AH,.(T,,) are obtained. Then,
information on the specific heat C;, will be discussed, which should provide an estimate for
the excess entropy upon crystallization, AS ,.(7T.). Finally, the results will be summarized

and discussed.

7.1 Sample preparation

The experimental procedure begins with sputter-depositing layers of the specific material
with 20 W sputtering power from stoichiometric targets. The substrates were continuously
rotated (dynamic mode) in order to keep the temperature of the substrates low and in order to
cover a larger surface. The substrates consisted of spring steel, from which the layers could
be easily removed by bending the steel. The so obtained flakes were ground and filled into
Al pans of 6 mm diameter and approx. 18 mg mass, which then contained about 30 to 50 mg
phase-change material each. Finally, they were closed with a lid of about 10 mg Al, which
was not sealed so that the pressure could equilibrate. All samples were weighted before and

after thermal scans in order to make sure that no material evaporated. The scale used for

129
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this purpose is a Mettler Toledo UMT 2 with a resolution of 1 g, which corresponds to a

detection of mass changes of 25 ppm.

7.2 Differential Scanning Calorimetry

7.2.1 DSC Setup

A Diamond DSC by Perkin-Elmer was used to perform differential scanning calorimetry
(DSC). It allows for heating rates between 1 and 500 K/min up to a maximum temperature
of 1003 K, but since the sample containers are made of Al, the maximum temperature was
limited by the melting of Al at 933.5 K [[159] to a safe value of 863 K, which is unfortunately
below the melting temperature of all GST compounds (cf. Tab.[7.I). In literature, a safe
range of operation of 913 K is given [[160]], which is only 20 K below the melting temperature
of Al, but also only slightly above the melting temperature of GST. Therefore, different
sample containers would be necessary to measure the liquid state of GST. A method will
be presented later in Sec.[7.3.1} where the material under investigation is admixed with
powderous Boron-Nitride and pressed to a pellet. Steel pans might then be sufficient to

prevent alloying of any of the materials involved.

The DSC is supplied with cooling water from the tap and Argon of purity 4N8 for
purging the sample compartment. Due to the use of tap water, sufficient cooling rates can
only be achieved at 323 K and above, thereby limiting the measurement range to 323 K to
863 K. The phase-change material with its sample pan is inserted to one furnace, while a

similar empty reference pan is inserted to the neighboring furnace for power-compensation.

The temperature and heat-flux are calibrated to the melting temperature and latent heat
of melting In, respectively. The reference values are well-known from literature as Ty, 1q =
429.7K and 34.0(3) meV atom~!. The high temperature range is additionally calibrated to
the melting temperature of pure Bi, which melts at 544.6 K. Due to the thermal lag dis-
cussed in Sec.[6.3] the detected melting temperature depends on the heating rate. This
effect has been investigated based on the melting process of In at different heating rates
between 1 and 500 K/min. The resulting calibration curve for heating rates between 1 and
40 K/min is obtained as T n, measured = Tm,1n — 0.4 K + 0.041/min - 5. At even higher
heat rates, a different linear behavior is observed, which corresponds to T in, measured =
Tmm + 04K + 0.021/min - 8. To maintain a small thermal lag, temperature scans have
usually been performed at 5 K/min, where the error in temperature is below 0.5 K. The ad-
ditional calibration for specific heat measurements is described later, after the method of

measuring specific heats is introduced.

7.2.2 Direct Scans

Measurements of the heat flow of a sample, ®,, as a function of temperature are referred
to as direct scans, because the temperature is sweeped continuously from the lowest to the

highest value. The DSC maintains a steady state equilibrium to balance the temperatures
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of sample and reference. The resulting data allow evaluating the latent heat of a phase
transition and the transition temperature. These measurements were performed at heating
and cooling rates of +5 K/min with an additional rescan to distinguish reversible from irre-

versible transitions.

7.2.3 3-step method

Specific heats can be measured in DSC’s by employing the so-called three-step method,
which will be discussed in the following. In principle, also a direct scan can be used, since
according to Eq.[6.20] the measured signal is proportional to the specific heat, but in practice,
the baseline in a calorimeter is not sufficiently stable. That means that the drift in the
background signal is larger than the signal resulting from the specific heat. Therefore, it is
not even sufficient to take the difference of two subsequent measurements with and without
the sample, because the time between these measurements is too large. The three-step
method, however, eliminates almost all effects caused by drift of the baseline. Essentially,
it is based on a measurement of the heat AH to increase the temperature of the sample by
AT. The specific heat is obtained, if only AT is chosen sufficiently small. In this case, AT
has been chosen to be 10 K as a compromise between too much drift at larger steps and too
large errors on the heat AH at smaller steps. This method has the advantage, that isothermal
conditions are established before and after each temperature step. The isothermal heat flow
does not depend on the sample quantity, but only on the temperature (and of course the
geometry of the calorimeter). Therefore, these isothermal heat flow rates can be aligned,
by adding the difference of the fitted lines of sample and reference over the full time of the
scan. Two such scans are shown in Fig.for Ge,Sb,Tes at 528 K, where the heating rate

between the two isotherms was 10 K/min.

From this measurement over different temperature steps from 7| to T», the specific
heat C,(Ty) can be obtained with 7o = 0.5 - (T, + T), by calculating C,(Ty) = AH/AT
for each step. Then, the specific heat originating from the mass difference between the
sample pan and the reference pan is subtracted. Finally, the specific heat is divided by the
molar mass to obtain c¢,. Two such reference measurements are shown in Fig. One
measurement was performed on the reference material Al,O3 (a sapphire disc), whereas the
second measurement was performed on a powderous specimen of sputter-deposited Sb. The
measurements show that the literature data from Al,O3 are very well reproduced with small
deviations at very low temperatures below 400 K and a slight additional slope above 750 K.
The reference measurements of sputter deposited Sb show that the specific heat can be
measured reproducibly upon heating or cooling the sample. Furthermore, the similarity of
the heating and cooling curves on sputter deposited samples shows that no outgasing effects
occur, which could change the specific heat irreversibly. The data on Sb also show that
there is a deviation of approx. 2% from literature data on Sb, which might originate from
various facts: When the measured specific heats were transformed to molar heat capacities,
the molar mass of pure Sb was used. The real molar mass, however, might be influenced

by some O, Ar or H contamination of the sample. It should be noted, that already a total
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Figure 7.1: A calorimetric step-scan of Ge,SbyTes from 523K at 1 < 1min to 533K at
t > 2min is shown for sample and reference scans. Straight lines are fitted
to the isothermal data after an equilibration time of 0.5 min. Subsequently, the
isotherms are aligned so that the integral over the difference between the two
curves can be calculated. The specific heat is obtained after some final correc-

tions are applied (cf. text for details).

atomic percentage of <0.5% of O, Ar or H could explain the increase in molar specific
heat, since all these lighter atoms contribute significantly less to the mass, but contribute a
similar molar specific heat c,. If the isotherms show a remaining slope, an isothermal phase

transition is taking place in the sample and the resulting data point cannot be used.

It can be concluded that a promising method has been established to measure the spe-
cific heat of sputter deposited materials in a wide temperature range of 350 K to 863 K. The
calorimetric method of obtaining specific heats is well established for adiabatic calorime-
ters, but it is not commonly performed in power compensated DSCs, because the drift of
the zeroline is significant. This prohibits the evaluation of specific heats from direct scans.
However, if the drift of the zeroline is compensated for, precise measurements can be per-
formed once sufficient amounts of sample quantity are available. The basic idea is that the
isothermal heat flow is not affected, whether the sample or an empty container is measured.
In fact, the heat flow does change in subsequent isothermals at the same temperature. By
aligning these isothermal heat flows, the drift can be compensated. Fig.[/.1|shows two scans
of sample and empty container, each starting with an isotherm at 7';, followed by a tempera-
ture scan and then another isotherm at 7. The resulting difference in heat flow between the
two curves can be integrated over time to determine the enthalpy AH that had to be supplied

to the sample in order to increase its temperature by AT = T, — T';. Hence, the specific heat
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Figure 7.2: The molar specific heat has been measured for Al,O3 (a sapphire disc) and for
sputter deposited Sb. While the data for Al,O3 are in good agreement, the molar
specific heats of sputter deposited Sb are by approx. 2% larger, which might

originate from contamination with light atoms.

is obtained.

7.3 Thermodynamics of the phase transitions

7.3.1 Phase separation in Ge;;Sbg;s

A complete study of phase transitions in a phase-change material was performed for Ge;5Sbss,
where two techniques were combined to reveal the two-fold crystallization process based
on structural and thermodynamic changes. It was already suspected from an annealing se-
ries, that amorphous Ge is segregated upon the first exothermal phase transition [161]. A
combined DSC and in-situ EXAFS analysis was performed on the as-deposited amorphous
phase of this compound in order to determine the local atomic structure after the first crys-
tallization transition. The combination of these two instruments is a non-trivial task as will
be explained in the following. To achieve a good detection of the heat flux during a DSC
measurement, the sample needs to be in good thermal contact with the measuring system.
For EXAFS measurements, however, the sample should be homogeneously distributed over
all the incident X-rays and have a constant thickness. These requirements for sample prepa-
ration are contradictory. In addition, the absorption of X-rays by the sample could generate
extra heat, which could affect the calorimetric signal. These challenges could be solved by
modifying a Sensys, SETARAM calorimeter. The used setup is depicted in Fig.[7.3] which
shows a cross section through this specific calorimeter, which was used for this study only.
Due its larger size, the heating rates of this calorimeter are further limited than those of the
other DSC of the Diamond DSC used for all other thermal analyses. The cross sectional

drawing depicts the two tubes, which contain the sample and a reference. Both consist of
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a pressed pellet of Boron-Nitride (BN), to which powderous amorphous Ge|sSbgs was ad-
mixed for the sample compartment. Due to the higher sensitivity of this calorimeter, already
15 mg of sample material were sufficient to detect the heat released by the sample. This DSC
has the additional advantage, that X-rays can pass the sample compartment without signifi-
cant further modifications. Only the supply of a purge and contact gas (He in this case) had
to be rotated by 90° — and including a thin film of mylar for thermal radiation reflection,

X-ray transmissivity and as a barrier for the He atoms.

Mylar
window
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X-RAY - X-RAY
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Figure 7.3: Technical drawing of the coupled DSC and EXAFS experiment.

The DSC was calibrated prior to the synchrotron experiment with exactly the same
sample geometry and operating conditions. The calibration of temperature and energy was
performed using the melting of high purity In, Sn, Pb, Sb samples prepared as ingots of
30mg inside a 100 mg BN pellet. The heat flow dependence of the calibration factor was
taken into account by performing the measurements of In, Pb, Sb and Sn references at
5K/min and 10 K/min. The DSC was calibrated to the standard values as proposed by
Stolen [159]. The resulting thermal scans are depicted in Fig.[7.4] center. The peaks in
this figure correspond to exothermal phase transitions, whose onset temperatures are 514 K
and 604 K with enthalpy changes of 45 (4) meV atom™' and 6(1) meV atom™', respectively.

These numbers are in good agreement with the results from literature [53]].

During the heating ramp, the X-ray energy was scanned over the Ge K-edge at 11103 eV
up to 11850eV (15 A~1) continuously every half minute, so that a full EXAFS pattern could
be recorded. The same experiment was repeated for the Sb K-edge and the resulting EXAFS
data sets were treated by refining a fixed set of parameters as published in literature [S3]].
Details in the data treatment are given in literature [[161] and the resulting data are depicted
in Fig.[7.4] left and right plots. The most dominant change is visible at the Ge edge, where a
continuous reconfiguration of bonds can be observed: The number of Ge-Ge bonds (n Ge in
the left plot) increases as soon as the first exothermal transition sets in, whereas the number
of Ge-Sb bonds (n Sb) decreases. This reconfiguration is due to a phase separation, when
an Sb-rich phase crystallizes upon the first transition. The second peak goes along with a
shortening of the Ge-Ge atomic distances at 604 K. This decrease corresponds perfectly to
the decrease in Ge-Ge bond lengths upon crystallization, which is reported to be 0.02 Ain
pure Ge [116].
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Figure 7.4: DSC and in-situ EXAFS scan of Ge;sSbgs: Phase separation can be observed
from the data on the Ge edge (left panel), where the ratio of Ge-Sb to Ge-Ge
distances reverses during the crystallization. At the same time, also the number
of Sb-Ge bonds reduces at the Sb edge.

It was shown that a calorimetric analysis allows determining the latent heats of a phase
transition like crystallization. Even a small signal due to the crystallization of the segregated
Ge atoms could be evidenced and evaluated. From this latent heat and from the number of
Ge-Ge bonds, it can be concluded that 33(8)% of the Ge atoms segregate during the first
crystallization. If the phase separation prevails after melt-quenching the material (as it oc-
curs in a phase-change memory cell), the crystallization temperature is significantly reduced
due to the higher concentration of Sb [[162] and the stability of the stored information is no

longer assured.

7.3.2 Phase transitions in AIST

Agaln3Sbg;Teos (AIST) was measured because of its low melting temperature, which is
accessible even in a DSC with aluminum containers. A calorimetric scan of 22.062 mg of
powderous, as-deposited amorphous AIST is depicted in Fig.[7.5] The scan was performed
up to the melting temperature so that a larger vapor pressure might exist. Therefore, the scan
was performed more rapidly with a heating and cooling rate of 40 K/min. The mass of the
sample did not change by more than 0.1 mg. The first crystallization from the amorphous
phase took place at an onset temperature of 451 K and a latent heat of 47.2 meV/atom is
released. The melting process begins at 805 K, peaks at 819 K and a latent heat of AH =
—190 meV/atom is necessary to complete the melting. The crystallization from liquid state
begins at 809 K, peaks at 804 K and releases a total heat of AH = —182 meV/atom. Upon
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the second heating, no more phase transitions occur and the melting transition set in very
reproducibly at 805 K, peaks at 819 K and costs a latent heat of AH = —186 meV/atom.
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Figure 7.5: A direct DSC scan of as-deposited amorphous AIST is shown for a heating rate
of 40 K/min. The two transitions (endo up) correspond to crystallization and

melting of the material at an onset temperature of 451 K and 805 K, respectively.

7.3.3 Phase transitions in Ge;Sb,Te,

A temperature scan of 37.25 mg as-deposited amorphous GesSb,Teg has been performed
at a heating rate of 5 K/min. This temperature scan is depicted in Fig.[7.6] but since the
melting temperature of this compound is above the melting temperature of aluminum, it was
not possible to access the liquid phase. Nevertheless, the crystallization process could be
investigated. Its onset is at 441.1 K and releases a latent heat of 46.2 meV/atom. This leads
to the formation of the meta-stable cubic phase [[163], which is relevant for the transition
in phase-change devices. A second, rather broad phase transition occurs at 614 K, which
releases additional 7.5 meV/atom. This transition is related to the transition to the stable
hexagonal phase. The results of this experiment are also included in Tab.[7.1]

A comparison of the results for AIST and Ge3;Sb,Teg shows that the enthalpy changes

upon crystallization are very similar.

7.3.4 Phase transitions in the GeTe-Sb,Te;-system

For many materials, a calorimetric analysis of the phase-transitions has been performed
by M. Klein [51] and the available data are compiled in Fig.[7.7] where some data points

have been added for completeness. The calorimetric analyses of phase-transitions were per-
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Figure 7.6: This DSC scan of amorphous Ge3Sb,Teg was obtained during heating with 5 K
min~! and the crystallization is clearly visible with an onset temperature of
441.1 K. The peak is located at 442.3 K and the total heat release amounts to
46.2 meV/atom. mass 37.25mg. The second peak has 7.5 meV/atom and is
located at 614 K onset and 640 K peak.

formed at heating rates of 10 K/min up to 450°C, including a re-scan. The resulting values
are compiled in Tab[7.1] and in Fig.[7.7] Whereas the crystallization temperatures are well
in line with literature data [[164], the transition temperatures to the hexagonal phase deviate
quite significantly. This deviation might originate from two facts: Yamada et al. prepared
their samples by electron beam coevaporation [[164], where the samples investigated here
are prepared by sputter deposition from stoichiometric targets. Also the different film thick-
ness (500nm in the study by Yamada and 1500 nm here) might contribute a shift of the
transition temperature.

The phase-diagram nicely shows the trend towards higher crystallization temperatures
for GeTe-rich materials, which should allow for higher operation temperatures of the de-
vices. This trend is nicely reproduced by the liquidus line, which is reproduced from
literature [19]. In the original phase-diagram, only the phases GeSb4Te;, GeSb,Tes and
Ge;,Sb,Tes are drawn so that the additional phases GeszSbyTeg and GegSb,oTe;; might be
thermodynamically unstable against decomposition to Ge,SbyTes and GeTe. These less

stable phases are therefore drawn as thinner lines in Fig.[7.7]
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Table 7.1: Compilation of thermodynamic data of many glass-forming materials, including several phase-change materials. Values with (*) have been

obtained by calculation. Scans with (+) were performed at 5 K/min. (#) The heats of crystallization are too small because the samples was only

partly amorphous. All energies are given in meV/atom, except denoted otherwise. All entropies are given in ueV (atom K)~!, except denoted

otherwise. Molar masses are given in g/mol.

Compound Molar mass Crystallization Melting Cubic — Hex.
AH,. T, AS 4 AH,, T AN Ten AHy,

Ge 72.6 117 [149] 750K 323 -384 [165] 1211 K [166] -317
Si 28.1 124 960 K 34.7 -522 [165] 1687K [166] -309
Sb,Tes 125.3 393K [167] 483 N_W_
GeSb,Tey 121.1 # 413K #) -179(12) [168] 880K [168] -169 [168] 501K
GeSb, Tey 118.1 33.0 (+) [51] 418KI[51] 886 K [[169] -146 [91] 547K 10.9 [51]
Ge,Sb, Tes 114.1 343 (+) [51] 428K[51] 599K 5.3[51]
Ge;Sb, Teg 111.5 46.2 (+) 441.1K (+) 623K 7.6
GegSb,Tey; 106.1 35 [51] 448 K 773K ﬂ
GeTe 100.1 46.7 (+) [51] 483K [51] -74(14) [168] 985K [168] -74 [168] 793 Wm
In;SbTe, 120.2 888 K [170]
Sb,Te 123.7 46.1 (+) [51] 383 KI[51] ([133], p.94) 823 K [171]
AgqIn3SbgrTers  122.5 47.2 451K 35(20) 807 K [91] -186, -212 [91]
Ge,Sbgg 115.9 880K [91] -252 [91]
Ge5Sbgs 114.4 51.0 (total) 514 and 604 K
GeTeg 119.7 434 (+) [51] 451K /484K [51] -153(10) [168] 655K [168] -185 [168]
SnSe; 92.9 -221(9) (+) [168] 917K [168] -238 [168]
GeSe 75.8 -109(10) [168] 947 K [168] -115 [168]

“max. in C,

bextrapolated

‘extrapolated
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Figure 7.7: This partial phase diagram of GeTe-Sb,Te; contains the crystallization temper-
atures of amorphous compounds and the transition temperatures for the cubic
to hexagonal phase transition for those materials, which possess a meta-stable
cubic phase. Additional data are included: Yamada et al. [164] (triangles),
Abrikosov et al. [19] (liquidus line).

7.4 Measurements of specific heat/entropy

In the preceding section, the phase transitions have been investigated thermodynamically,
resulting in values of AH,.(T;) and T,. Still, the entropy difference at the crystallization
temperature, AS ,.(T,), is unknown. In Sec.[6.2.2] a strategy was presented to calculate this
number based on the knowledge of the specific heats as a function of temperature for the
crystalline phase and for the (undercooled) liquid. These measurements will be presented
in the following.

Since the temperature range of the available calorimeter is limited to the temperature
range below 863 K, only some phase-change materials can be molten. One such material is
AIST, but unfortunately, all materials from the pseudobinary line between GeTe and Sb, Tes
melt at higher temperatures and are therefore inaccessible for this analysis. The result-
ing specific heats of AIST in the amorphous, crystalline and liquid phases are depicted in
Fig.[7.8] The bright red stars denote the specific heat of the as-deposited amorphous phase,

whereas the dark red crosses and the blue triangles denote a scan of the crystallized sample
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7.4. Measurements of specific heat/entropy

over the full available temperature range. The data are in good agreement with the earlier
results by Kalb et al. [235].
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Figure 7.8: The specific heat of amorphous, crystalline (for heating and cooling) and liquid
AIST is shown. Due to a low Debye temperature, the Dulong-Petit limit is
always exceeded. Phase transitions occur upon crystallization at 451 K and at
807 K during melting.

A significant increase of specific heat above the general value by Dulong Petit occurs
at higher temperature. This increase is usually observed at higher temperatures. During the
melting transition, the extra heat release of the phase transition prevents an exact evaluation
of the specific heat. In the liquid phase, an even higher specific heat is obtained, which
decreases with temperature. These values can be fitted by a straight line C, = Cy + aT,
because its integral leads to Eq.[6.10] This fit has been applied and leads to the param-
eters Co = 0.933)meV (atom K)~! and @ = —5.6(3)meV (atom K?)~'. The data of
Fig.[7.§|can be used to calculate entropy functions of temperature for each phase according
toS = f C,/TdT. Only the absolute values of these entropies are still unknown. Starting
from the liquid phase, it can be defined arbitrarily that S(7,,) = 0. This convention is ap-
plied in Fig.[7.9] where the entropies of all phases and the extrapolation of the liquid phase
are included. Since there is no phase transition between the liquid and the undercooled
liquid, these data can be extrapolated to very low temperatures. Since the latent entropy
of fusion is also known, the entropy of the crystalline phase can be aligned to match the
criterion S(7,,) = 0. Both curve intersect at the Kauzmann temperature, which turns out
as 410(20) K. This value is reasonable, but the error contains only the experimental error of
the specific heat measurement in the liquid phase. It is furthermore known, that the glass
transition coincides with the crystallization (cf. Kalb [15]]), so that the undercooled liquid is
frozen to the glassy phase at the crystallization temperature. The entropy of the undercooled
liquid at the glass transition therefore allows deriving the excess entropy of the amorphous
phase, which is 35(20) ueV (atom K)~! and contributes -16(10) meV atom™! to the change
of free enthalpy of crystallization, which is then reduced to 30(10) meV atom™~!. Unfor-

tunately, the large error denies a useful comparison to other materials, but the preceding
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7.5. Comparison of GST and SbyTe-based phase-change materials

analysis shows that this evaluation is feasible with precise data for the specific heat of the

liquid phase.
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Figure 7.9: Entropy of AIST in the amorphous, crystalline and liquid phases with a refer-
ence value of S (7,,) = 0. The thin grey lines denote the 1o statistical error for

the extrapolation of the entropy in the undercooled liquid phase.

7.5 Comparison of GST and Sb,Te-based phase-change ma-
terials

A pronounced substitutional disorder was revealed during the structural analysis of the
metastable cubic phase of several GST phase-change materials. This disorder was shown
to contribute a configurational entropy of approx. 40ueV(atom K)~!. At the crystalliza-
tion temperature of approx. 420K, this corresponds to a contribution to the free enthalpy
G of -17meV(atom)~!, which is significant as compared to the change in enthalpy upon
crystallization, AH,. ~ 40meV(atom)~'. This large configurational entropy reduces the
free enthalpy of the meta-stable crystalline phase in those GST compounds, where such
a disordered phase exists. The reduction of free enthalpy is even larger than the gain in
enthalpy during the transition from the meta-stable to the stable phase (cf. Tab.[7.I) and
therefore, this disorder is the reason for the existence of the meta-stable phase. It is natural
to wonder, how this extra entropy of the crystalline phase enters the driving force of crys-
tallization, AG,. = AH,e — TAS 4. Since AS,. = S, — S > 0, the extra entropy of the
crystalline phase reduces the entropy change upon crystallization and thereby increases the
driving force of crystallization, AG .. It is therefore evident, that a significant entropy of the
crystalline phase involved in the fast crystallization increases the driving force of crystal-
lization and therefore increases the temperature dependence of nucleation and growth-rates,
cf. Sec.[6. 1.1l

Since such pronounced disorder was not observed for Sb,Te-based phase-change mate-

rials like AIST, we can conclude that the entropy difference AS . is smaller for GST than
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7.5. Comparison of GST and SbyTe-based phase-change materials

for SbyTe-based phase-change materials. Quite related to this analysis, it is worth returning
to the observation of nucleation and growth dominated crystallization. Fig.[I.3|depicts TEM
images of crystallized regions in AIST and in GST and it can be seen that crystallization
takes place growth dominated in AIST, whereas GST crystallizes mostly by nucleation. It
was further discussed that the formula for growth (cf. Eq.[6.2)) is dominated by the activa-
tion barrier for the diffusion process, whereas nucleation is exponentially dependent on the
change of free enthalpy per volume, Agy > 0. Additional surface effects Ags < 0 enter the
fundamental equation for nucleation Eq.[6.1} Let us now discuss the influence of the large
entropy of the crystalline phase of GST compounds. It was shown that it reduces the change
in entropy As and thereby increases the change of free enthalpy Agy = Ahy — T Asy. Since
this is the driving force of nucleation, the larger entropy of crystalline GST as compared
to crystalline AIST could explain the larger nucleation rate observed in this material. It is
important to remember that also the temperature of crystallization T, enters the equation,
so that this comparison holds only for the crystallization using common heating rates some
tens of K/min. At faster heating rates and higher crystallization temperatures, this situa-
tion might change. It should be pointed out as well, that the interface energies between the

amorphous and crystalline regions might differ for both materials.
This result is well in line with the T,/T,, = T,¢-criterion, which was introduced in

Sec. As can be seen from Tab. the value for T, is indeed lower for a GST com-

pound, which is related to a larger nucleation rate by the original theory of Turnbull.

In conclusion, two arguments were presented, why the crystallization in GST com-
pounds should be based on higher nucleation rates than that of e.g. AIST: The higher en-
tropy of the crystalline phase of GST reduces the change in entropy upon crystallization
and thereby increases the driving force of nucleation. This increase of the driving force
has a more significant influence on the nucleation, where it enters exponentially than on the
growth process, where it enters only linearly. Therefore, a large configurational entropy of
the crystalline phase should favor nucleation dominated crystallization. The value for T, is
also lower for GST, which is a criterion for nucleation dominated crystallization according
to Turnbull.

One can speculate that materials with similarly large entropies of the crystalline phase
will also crystallize via a large influence of nucleation. Indeed, also in In3SbTe; and in
the ternary GeTe-SnTe-systems, large configurational entropies were found based on the
analysis of local atomic structures. Therefore, these materials might crystallize via faster
nucleation than e.g. SbyTe or SnSe;, whose crystalline structures contain only negligible

configurational entropy — despite the usual thermally induced imperfections.
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CHAPTER 8

Summary and conclusions

Atomic structure

The local atomic structure of several amorphous and crystalline phase-change materials has
been investigated. The analysis of EXAFS and scattering data revealed that the atomic short
range order changes significantly upon crystallization in all investigated materials, i.e. for
GeSb,Tey4, Ge,SbyTes, InzSbTey, SbyTe, AIST, GeTe and Ge5Sbgs. In all these materials,
the average nearest neighbor distance increased by 5% to 15%. This pronounced change in
atomic distances goes along with an increase in the total coordination numbers, whereas the
8-N rule was found to hold for the amorphous phase of all materials except In3SbTe;. In
Ge;,Sb,Tes, e.g., the coordination number was found to increase from 2.78(3) to 5.23(5) in
the crystalline phase. In conclusion, the 8-N rule is not obeyed in the crystalline phase of
all investigated materials, where most atoms are in a 6-fold coordinated octahedral environ-
ment with the number of neighboring atoms being somewhat reduced due to the presence
of intrinsic vacancies. This change in coordination number upon crystallization implies
changes in the electronic structure as well. Indeed, the covalent bonds of the amorphous
phase turn to resonant covalent bonds in the crystalline phase, since the valence orbitals
are only half filled. Such an arrangement of atoms in the crystalline phase with perfect

octahedral symmetry and half-filled bands is unstable against atomic displacements.

These atomic displacements are indeed observed in the crystalline phase of several of
these compounds. It was shown that they are well described by a Peierls mechanism, which
opens a gap in proportion to the amplitude of the atomic displacements. The octahedral
atomic environment implies the formation of a rock-salt lattice, from which the atomic
positions deviate randomly. The rock-salt structure of phase-change materials usually con-
tains one sublattice, which is occupied by a single element (usually Te, but In in the case of
In3SbTe;) and another sublattice, which is chemically disordered. This chemical disorder is

referred to as substitutional disorder and induces static atomic displacements in particular
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in GST compounds, because the local atomic charges deviate significantly: O for vacancies
and 51 for Sb atoms. Also in In3SbTe; and in ternary GeTe-SnTe compounds, such disorder

was shown to exist.

Disorder

This atomic disorder is of particular interest, mainly because of two reasons: Firstly, a
disorder induced metal-insulator transition has been reported to occur as a function of the
annealing temperature of several GST-compounds, i.e. as a function of atomic disorder. Sec-
ondly, the disorder of the crystalline phase was shown to increase the driving force of crys-
tallization since it leads to an increase of the change in free enthalpy upon crystallization.
Therefore, the sources of atomic disorder in rock-salt like GeSb,Te4 have been investigated
and several trends have been found, which reveal a gradually decreasing disorder: The am-
plitude of local atomic displacements reduces continuously within the cubic rock-salt phase.
However, the resulting phase is still insulating. At a well defined transition temperature, the
insulating cubic phase transforms into an insulating hexagonal phase, where the majority of
vacancies is ordered on layers. This structure, however, was found to contain still signifi-
cant sources of disorder: The atomic displacement parameters are much larger than what is
expected for a single crystal and indeed, a remaining substitutional disorder on the Ge/Sb-
sublattice was revealed for the metallic hexagonal phase by comparing DFT calculations
to experimental data. This finding suggests that it is not the disorder of Ge and Sb atoms,
which is responsible for the metal-insulator transition. Therefore, two sources of disorder
remain, which could drive the metal-insulator transition: Stacking faults of the layers in the
hexagonal phase or remaining atoms on the vacancy layers. The stacking faults were shown
to decrease during the metal-insulator transition, whereas the second mechanism could not
be evidenced due to the low fraction of atoms, which suffices to localize charge carriers.
Already an occupation of the vacancy layers with 7% of the atoms is sufficient to localize
charge carriers. This low fraction of atoms was below the detection limit of the experi-
ments. The importance of the chemical ordering of the layers is further supported by the
pronounced anisotropy of electronic conductivity, since significantly higher electronic con-
ductivities (approx. a factor of 100) are found parallel to the layers than perpendicular to
them (in e.g. SbyTes or BiyTes [172]).

Thermal vibrations

In common semiconductors, the variance of interatomic distances is larger in the amorphous
phase than in the crystalline phase. In phase-change materials, however, it is larger in the
crystalline phase of GeSb,Tes and Ge,Sb,Tes. This is rather surprising and might at first
sight be linked to the large static atomic displacements. However, also the temperature
dependence of the variance is larger in the crystalline phase, as was revealed by the com-
parison of XRD data for the crystalline phase and EXAFS data on the amorphous phase.

This observation suggests that the interaction potentials of the crystalline phase are softer
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than those of the amorphous phase. At the same time, it is known from literature, that
the crystalline phase is elastically harder than the respective amorphous phase. This con-
troversy was revealed by direct evidence of this vibrational softening from the density of
phonon states. Indeed, the partial density of phonon states around Sb and Te shows that the
interaction potentials (optic modes) soften upon crystallization, whereas macroscopically
the material (acoustic modes) hardens. This surprising observation might be caused by the
significantly larger coordination number of the crystalline phase, where the softness of the

interaction potential is overcompensated by the larger number of bonds.

Thermodynamics of Crystallization

The phase transitions and the specific heat of phase-change materials have been investigated
calorimetrically. It was found that the latent heats of crystallization AH are significantly
lower than those of e.g. pure Ge. This observation is surprising, since one would expect a
large driving force for crystallization AG in a material, which crystallizes more rapidly. Both
quantities, AH and AG are related via the entropy change upon crystallization, AS, which
has been measured calorimetrically by determining the specific heat of crystalline and liquid
AIST. The specific heat of the liquid phase could be measured with good accuracy and was
extrapolated over the undercooled liquid regime in order to obtain the residual entropy S ,.
This number was obtained as 35(10) ueV (atom K)~!, which is in good agreement with the
values 32 and 35 ueV (atom K)~! for Ge and Si, respectively. For a material with residual
entropy in the crystalline state, this entropy difference should be significantly smaller, since
already the configurational entropy for a random configuration of Ge, Sb and vacancies on
the second sublattice, the residual entropy of the crystalline phase would be about 42 ueV
(atom K)~!. This residual entropy of the crystalline phase increases the thermodynamic
driving force of crystallization. An inspection of the equations of nucleation and growth
revealed that the driving force enters linearly in the growth rate and exponentially in the
nucleation rate. In conclusion, the large entropy of the crystalline phase could explain the
larger nucleation rate of e.g. GeSb,Tes. In conclusion, it was shown that a large atomic
disorder in the crystalline phase and the highest possible ordering of the amorphous phase

lead to the highest possible thermodynamic driving force of crystallization.
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APPENDIX A

Drift in phase-change materials: A
study of the model system GeTe-SnTe

One of the challenges towards the application of phase-change memories in consumer prod-
ucts is to find a strategy to control the resistance drift in these materials [[18]]. The magnitude
of the resistance drift is measured by the dimensionless drift coefficient v so that no drift
occurs for v = 0. It refers to the change in electronic resistivity with time [173]. The
magnitude of drift therefore defines a minimum difference in resistivity between the differ-
ent states of resistivity in a device. Concludingly, the resistance drift limits the number of
states, which can be reliably stored in one phase-change memory cell. Whereas the com-
mon phase-change material GeTe shows a significant drift, the substitution of Ge with Sn
reduces this effect: GeTe shows a drift coefficient of v = 0.122(2) at 323 K, whereas the
drift coefficients of Ge3Sn; Te4 and Ge,;Sn, Tey are only 0.100(2) and 0.051(1), respectively
[[174]. Since resistance drift is linked to the structural relaxation of these materials [173]], it
is important to at least know their atomic structure. This knowledge might reveal a struc-
tural difference in the materials, which enables the development of design-rules to control

resistance drift.

Based on earlier investigations of resistance drift and an observed trend of v vs. sto-
ichiometry in the GeTe-SnTe system [20][[174], the atomic structure of amorphous GeTe,
GesSn;Teq, GeoSnyTey and of crystalline GeTe, GesSn; Teq, Ge,SnyTeq and SnTe was de-
termined using EXAFS analysis. Amorphous SnTe crystallizes below ambient temperature
and is therefore not a potential phase-change material and was not investigated here. Sam-
ples of these compounds were deposited from stoichiometric targets using a DC magnetron
sputtering setup described elsewhere [91]. The films had a thickness of some yum and did
not show sharp reflections in x-ray diffraction so that the samples are in an amorphous
phase. These films were deposited on borosilicate substrates and subsequently scratched

using another slide of borosilicate slide. This method allowed the preparation of sufficient
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A.1. Amorphous Phase

amounts of amorphous material with only small contaminations of the sample with borosil-
icate. These contaminations are not relevant for EXAFS measurements due to the low en-
ergies of absorption edges in borosilicate and its low absorption coefficients. The samples
were enriched with about 200 mg of cellulose and subsequently pressed to pellets of 13 mm
diameter with a weight of 5-6 tons.

All EXAFS measurements on the GeTe-SnTe compounds were performed at beamline
C at HASYLAB, DESY, Hamburg (cf. Sec.[2.7.1) using a cryostat to keep the samples at

10 K during the measurements.

A.1  Amorphous Phase

A.1.1 Amorphous GeTe

GeTe is the most prominent phase-change material from the system GeTe-SnTe. Since it is
a binary material, the EXAFS data should be less complex than those of the intermediate
ternary compounds and the results from the analysis of GeTe should simplify their evalua-
tion. The analysis of EXAFS data on the binary data has already been presented in Sec.}.3]|
In total, four distinct interatomic distances were found: One of them involved Ge-Ge dis-
tances only, whereas the other three were identified as Ge-Te distances. This arrangement
of scattering paths at the Ge edge will be employed for the ternary materials as well.

A.1.2 Amorphous Ge;SnTe,

The next investigated material of the GeTe-SnTe system contains already a significant amount
of Sn, which is incorporated instead of some Ge. The content of Sn turned out to be suffi-
cient to obtain high quality data on all three K-edges, as can be seen from Fig.[A.T] where
EXAFS data of all edges are shown together with a fit. A detailed analysis of the fitting re-
sults in comparison to GeTe is presented in the following. At this point of the discussion, it
would make sense to investigate the other binary end-point of the GeTe-SnTe system, amor-
phous SnTe, but unfortunately, amorphous SnTe crystallizes below ambient temperature at
180 K [1775]], and could not be prepared in the amorphous phase.

In order to fit all EXAFS data of amorphous GesSnTe,, an additional element has to be
included in the discussion, whose amplitude reduction factor S % is not yet known. It was
obtained rather precisely from the analysis of crystalline SnTe in Chpt.[A.3.2]and the factors
S% are set to 0.67, 0.69 and 0.74 in the following for Ge, Sn and Te, respectively. The best
fit has residua of 0.006, 0.008 and 0.013 for the three edges — again below the maximum for
a reliable fit. The edge energy corrections obtained reasonable values of 8(2)eV, 5(1)eV
and 7(2) eV for Ge, Sn and Te, respectively.

In the case of Ge3SnTey, the Ge K edge was analyzed first, using the same combination
of scattering paths as for amorphous GeTe. Subsequently, the Sn K-edge was refined with
the lowest number of scattering paths (i.e. free parameters) possible. It turned out that 2

scattering paths were already sufficient to obtain a residual of 0.008. Finally, the results of
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Figure A.1: Amorphous Ge3SnTes at 10 K: Fourier Transforms of measured and refined
EXAFS spectra are shown. As compared to amorphous GeTe, the stronger
influence from longer bonds around Ge can be seen in the data. They agree

well with the bond lengths obtained from amorphous GeTe.

both refinements were transformed to the Te edge and checked for consistency. Since a good
agreement between this transformation and the data of Te K-edge was obtained, a possible
influence of Te-Te bonds is very unlikely and the resulting structural model was employed
to refine all three K edges simultaneously. The fitting results are presented in Fig.[A.T|and
Tab.[ATl

The fit is based on the assumption that the same Ge-based atomic distances exist as in
amorphous GeTe. These parameters were used as starting values for the fit and it leads to a
stable result with similar atomic distances. While the Ge-Ge and Ge-Te (short) distances are
in good agreement with amorphous GeTe, there is a difference in the bond lengths associated
with the longer distances around Ge: In amorphous Ges;SnTe4, the medium distance is
significantly larger than that of amorphous GeTe and in good agreement with the short
distance of crystalline GeTe.

At the Sn edge, two scattering paths are sufficient to refine the EXAFS data. The atomic

distances related to these scattering paths can be compared only to the bond length of Sn-Te
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Table A.1: EXAFS fitting parameters of amorphous Ge3SnTey at 10 K. The fitting model is
based on the model employed for GeTe. Around Ge, almost the same sequence

of bond lengths is observed. Constrained parameters are denoted by the same

letter.

Scattering Path N Atomic distance r  Displacement Parameter o
Ge-Ge 1.2(3) 2.49(1) A 0.004(3) A
Ge-Te (short) 0.8(3) 2.60(1) A (a) 0.003(1) A” (a)
Ge-Te (medium) 2.0(5) (a) 2.84(1) A (b) 0.0112) A” (b)
Ge-Te (long) 2.0(5) (a) 3.15(1)A (c) 0.016(1) A” (c)
Sn-Te (short) 2.42) (b) 2.98(1)A (d) 0.004(1) A” (d)
Sn-Te (long) 24(2) (b) 3.13(2)A (e) 0.0102) A” (e)
Te-Ge (short) 0.6(1) 2.60(1) A (a) 0.0027(5) A* (a)
Te-Ge (medium) 0.8(4) (c) 2.84(1) A (b) 0.008(6) A” (b)
Te-Ge (long) 0.8(4) (c) 3.152)A (¢ 0.011(7) A% (¢)
Te-Sn (short) 122) (d) 2.98(1)A (d) 0.004(1) A” (d)
Te-Sn (long) 1.2(2) (d) 3.13(2) A (e) 0.01002) A” (e)

in crystalline SnTe. There (cf. Sec.[A.3.2), the undistorted cubic rock-salt structure (5-
phase) was obtained, where the unique bond length of 3.151(2) A is revealed, which nicely
corresponds to the long Sn-Te distance observed in amorphous GeszSnTe4. This shorter dis-
tance is only observed in amorphous ternary Ge-Sn-Te-sytems. In principle, this shorter
distance might as well originate from Sn-Sn instead of Sn-Te bonds, because the phase-shift
induced upon backscattering at Sn or Te cannot be clearly distinguished. From a simulta-
neous refinement of all three edges (including the Te edge), it was found that the residual
of the Te data increases from 0.012 to 0.020 if the Sn-Te (short) scattering path is replaced
by a Sn-Sn scattering path. Therefore, the fit using two Sn-Te distances leads to a slightly

better refinement and this result is presented here.

Like in amorphous GeTe, a simultaneous refinement of all absorption edges is presented
here and the resulting coordination numbers will be discussed in the following. The total
coordination numbers for the atoms in amorphous GeszSnTe4 turn out as 6.0(9), 4.8(3) and
4.6(7), for Ge, Sn and Te, respectively. 33(6)% of the average interatomic distances around

Ge are related to Ge-Ge distances, i.e. to phase-separated Ge.

A.1.3 Amorphous GeSnTe,

Let us continue the series with amorphous GeSnTe;, a compound, which contains already
the same amount of Sn as Ge. High quality EXAFS data have also been obtained for all three
K-edges of this material and they are depicted in Fig.[A.2] where a fit is included as well.
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A detailed analysis of the fitting results in comparison to amorphous GeTe and Ge3;SnTey is

presented in the following.

The fit has been performed using the amplitude reduction factors S (2) like before, i.e.
0.67, 0.69 and 0.74 for Ge, Sn and Te, respectively. The best refinement, which is also
shown in Fig.[A72] has a residual deviation of 0.006, 0.008, 0.012 at the Ge, Sn and Te
edges, respectively and the fit can be considered reliable. The edge energy corrections at
those edges turn out as 2.4(1) eV, 4.7(6) eV and 3.2(8) eV.
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Figure A.2: Amorphous GeSnTe, at 10 K: Fourier Transforms of EXAFS spectra are shown
together with their refinement. The data nicely reveal the dominance of het-
eropolar Ge-Te and Sn-Te bonds: The short distances of Ge-Te and the long
distances of Sn-Te can be found at the Te edge as well. The refinement is based
on the fitting model, that already turned out suitable for amorphous Ge3SnTey.
The grey shaded areas denote the region that was taken into account during the
least squares fitting.

The EXAFS data of the Ge edge are refined based on the same configuration of scat-
tering paths as used for amorphous GeTe. The scattering paths for the Sn edge have been
copied from the fit of amorphous Ge3;SnTes. The Ge and Sn edges were refined and the

model was tested at the Te edge for consistency. It turns out that the fitting model for the Ge
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A.2. Conclusions for the structural relaxation during the drift

Table A.2: EXAFS fitting parameters of amorphous GeSnTe, at 10 K. The fitting model is
based on the results of amorphous GeTe and Ge;SnTey. Values with an (*) were

fixed to the values obtained for amorphous Ges;SnTey

2

Scattering Path N Atomic distance r  Displacement Parameter o

Ge-Ge 1.1(2) 2.46(1) A 0.003 A% (%)
Ge-Te (short) 1.4(2) 2.61(1)A (a) 0.003 A% (%)
Ge-Te (medium) 2.6(5) (a) 2.82(2) A (b) 0.011A% (%)
Ge-Te (long) 2.6(5) (a) 3.132)A (¢ 0.016 A% (%)
Sn-Te (short) 23(2) (b)  2.99(1)A (d) 0.006(1)A” (d)
Sn-Te (long) 23(2) (b) 3.12(3)A (e) 0.012(4)A” (e)
Te-Ge (short) 0.6(1) 2.61(1)A (a) 0.003 A% (%)
Te-Ge (medium)  0.8(4) 2.82(2) A (b) 0.011A% (%)
Te-Ge (long) 0.8(4) 3.13(2) A (¢) 0.016 A% (%)
Te-Sn (short) 1.2(2) 2.99(1) A (d) 0.006(1)A” (d)
Te-Sn (long) 1.2(2) 3.12(3) A (e) 0.012(4) 10\2 (e)

and Sn-edges is very suitable to predict the data at the Te edge so that all three edges could
be refined simultaneously. Some of the displacement parameters, however, were copied and
fixed to results of the refinement of GesSnTe,, because otherwise very large error bars were
obtained on these parameters.

The atomic distances at both, the Ge and the Sn edge are in good agreement with those
observed for Ge3SnTey, so that these two ternary compounds are characterized by the same

structural features — only with different contributions.

A.2 Conclusions for the structural relaxation during the drift

The resistance drift of the amorphous phase is a limiting factor for the increase of storage
density and therefore should be as low as possible. Since drift occurs irreversibly and is
based on structural relaxation in these materials, it might be related to specific atomic ar-
rangements in the amorphous phase. It was already observed in the study of amorphous
GeTe, that as many as four distinct atomic distances exist around Ge. The shortest of these
distances were identified as Ge-Ge distances, whereas the longer distances are due to bonds
between Ge and Te. The existence of Ge-Ge bonds is related to the different coordination
numbers of Ge and Te and the absence of a sufficient amount of Te atoms to satisfy the
covalent bonding associated with the 8-N rule. It is therefore not surprising that Ge-Ge
bonds appear. The observation, that the resistance drift is lower after the substitution of Ge
atoms by Sn suggests that the atomic structures related to the resistance drift are decreased

in these compounds. The previous analysis of EXAFS data revealed that (a) the intermedi-

151



A.3. Crystalline phase

ate and long distances of Ge-Te in the ternary systems are in better agreement with those
observed in crystalline GeTe and (b) the average number of Ge-Ge distances per Ge atom
reduces from 1.7 in amorphous GeTe to 1.2 in Ge3SnTe4 and 1.1 in GeSnTe;. The fraction
of short distances between Ge and Te did not show a clear trend with composition. It can
be speculated that either (a) the local atomic displacements are more well-relaxed (i.e. the
total energy is lower) in the ternary compounds or that (b) a continuing formation of Ge-Ge
distances occurs within the amorphous state. Whatever the structural relaxation mechanism
is, this analysis has shown that the Ge atoms favor a particularly large spread of interatomic
distances, which vary from 2.45 At03.15A ie. by 29%. This influence of the Ge atoms
will lead to a strong degeneracy of the amorphous state and will favor structural relaxation.
Sn atoms on the other hand only form bonds between 2.99 Aand 3.12 A, so that the variance
of 4% is significantly smaller. In order to reduce the resistance drift effect it seems therefore

beneficial to employ phase-change materials without Ge content.

A.3 Crystalline phase

A.3.1 Crystalline GeTe

As-deposited amorphous GeTe crystallizes at approx. 470 K into the rhombohedral S-phase.
Taking into account the measured stoichiometry of the sample (Ges3Tes7 [129, [8]]), it is
expected that some excess Ge will segregate upon crystallization. The amorphous powder
was annealed in a tube furnace at 508 K in order to perform EXAFS measurements on the
crystalline phase. These measurements were performed at 10 K sample temperature on both
K edges. The resulting data have been treated by van Eijk [113]] and only the most relevant
results are given here for a direct comparison with the analysis of the GeTe-SnTe ternary
compounds. The EXAFS data were fitted using a parametrized model according to the R3m
space group and lattice parameters a = 4.277(5) A and @ = 58.30(8)° are obtained at 10 K.
The atomic positions are slightly displaced from their rocksalt-like position (# = 0.25) to
+(u, u, u)" with u = 0.236(1). The fit is performed at both edges simultaneously and residua
of 0.031 and 0.024 are obtained for the Ge and Te edges, respectively, after fitting over a
range of 2t0 6.5 A. The amplitude reduction factors S 3 were obtained from the well-known
crystal structure with 3 short (2.863 A) and 3 long (3.127 A) bonds around each atom. The
SS are 0.67(6) (Ge) and 0.86(8) (Te) with corresponding edge energy shifts of 5.8(6) and
6.7(7)eV.

Furthermore, 6(4)% of the Ge atoms were found to segregate. It is well known that
Ge segregates from the sputter deposited samples of GeTe [21] due to their Ge-rich stoi-
chiometry GessTes7. The result of 6(4)% of the Ge atoms segregating is perfectly in line
with the 6% excess Ge in this compound. Therefore, the so-formed GeTe is rather free of
vacancies. The Ge-Ge distance of the segregated phase is obtained as 2.45(2) A, which is
obtained for both, amorphous and crystalline pure Ge. These results present a good basis

for the treatment of the Ge edges of the ternary GeTe-SnTe compounds.
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A.3. Crystalline phase

Table A.3: Crystalline SnTe at 10 K: Partial coordination numbers, atomic distances and
displacement parameters are given. These were obtained from the least-squares
fitting of EXAFS data. Numbers, which are equal due to crystallographic con-
straints (according to cubic rock-salt structure, Fmgm) are denoted with the same
letter in brackets. The lattice constant is a = 6.302(4) A.

Scattering Path N Atomic distance » Displacement Parameter o>

Sn-Te/Te-Sn 6  3.151(2) A (a) 0.0048(3) A”

Te-Te 12 4.456(3) A (a) 0.0045(4) A°
Sn-Sn 12 4.456(3)A (a) 0.0056(5) A°
Sn-Te/Te-Sn 8  5.45803)A (a) 0.008(1) A>
Sn-Sn 6  6.302(4)A (a) 0.005(3) A~ (b)
Te-Te 6  6.302(4)A (a) 0.005(3) A” (b)

Before the crystalline ternary compounds are discussed, the other end of the GeTe-SnTe
system should be analyzed, because it can give valuable information on the fitting process
at the Sn K-edge.

A.3.2 Crystalline SnTe

The EXAFS spectra of crystallized powder of SnTe were measured at 10K at both K ab-
sorption edges in transmission geometry. The magnitude of their Fourier transforms are
depicted in Fig. which shows that the data correspond to a well ordered crystalline
structure, since peaks of different coordination shells are narrow and visible even beyond
6 A. The data were fitted with calculated scattering paths, which originate from a rocksalt
structure (Fmgm) of SnTe (8-SnTe) with a lattice constant of a=6.303(4) A. Both edges were
refined simultaneously using only a small number of 11 free parameters out of 86, which
are contained in the data according to the criterion by Nyquist [84]. These 11 parameters
consist of two edge corrections, two amplitude reduction factors, the lattice constant and 6
displacement parameters. The residua of the edges are 0.044 and 0.018, which corresponds
to a good fit considering the low number of parameters. The amplitude reduction factors
are 0.69(3) and 0.74(3) for Sn and Te, respectively. The edge corrections are 7.7(3) eV and
6.3(3) eV. The displacement parameters are summarized in Tab.[A.3]

In addition, several multiple scattering paths were taken into account. If their total path
length is below 6 A, their displacement parameter was constructed by adding the parameters
of the contributing paths. Above 6 A, an additional displacement parameter was defined for
all multiple scattering paths, which turned out to be 0.0040(7) A%
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Figure A.3: Crystalline SnTe: Fourier Transforms of measured and refined EXAFS spectra
from both K edges are shown. The fit is based on a rocksalt model of SnTe
with a lattice constant of a=6.303(4) A. The various coordination shells can be
clearly distinguished at both edges. They are not split to short and long bonds
and therefore the local environment must be undistorted cubic at 10K - well in
line with findings in literature for samples with p-type charge carrier densities
larger than 2 - 10%° cm™ [176]. The grey shaded areas denote the region over
which the least squares fitting was performed.

A.3.3 Crystalline Ge;SnTe,

As-deposited GeszSnTe, crystallizes into a cubic rock-salt like structure at 452 K (peak value
after heating at 5 K/min) [177]. The crystalline phase has a density of 6.4 g/cm3 [177] and
contains some segregated Ge, as will be shown in this section. Like in Ge|5Sbgs, the excess
Ge is probably segregated during the crystallization and forms an amorphous region [S3]].
This amorphous Ge crystallizes at 552 K (peak value after heating at 5 K/min) [177]. A de-
tailed analysis of EXAFS data is presented in the following. The samples were prepared by
sputter deposition on silica substrates and subsequently scratched to powder. This powder
was crystallized at 488 K under Ar atmosphere and measured in transmission geometry over
all three K absorption edges. The resulting data are shown together with the best refinement
in Fig.[A.4] The amplitude reduction factors of the fit were set to 0.67, 0.69 and 0.74 for
the three edges of Ge, Sn and Te. The fitted edge energy corrections are AE = 4.5(3) eV,
5.1(3)eV and 4.8 eV. All scattering paths of the fit are summarized with their parameters in
Tab.[A.4] The residuals of the fit are 0.012, 0.012 and 0.031.

An analysis of the individual local atomic environments reveals an interesting analogy

between the amorphous and crystalline phases of GesSnTes: A splitting of bond lengths
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Figure A.4: Crystalline GezSnTe4 at 10 K: EXAFS data are shown together with a refine-

ment of the first two coordination shells of the rock-salt lattice.

around Sn is observed not only in amorphous, but also in crystalline Ge3SnTe4 — although
this splitting does not occur in crystalline SnTe, where a slight displacement of the atomic
positions along the cubic {111} directions could easily create such splittings. It is worth
noting, that the resulting short and long bond lengths of Sn in crystalline Ge3;SnTe4 are in
very good agreement with those observed in the amorphous phase. This result shows that lo-
cal atomic distortions prevail in crystalline GeTe-SnTe compounds, just like those observed
in the meta-stable cubic phase of many GeTe-Sb,Te; compounds. Both systems therefore
possess a significant amount of substitutional disorder — in contrast to the binary materials
GeTe and SnTe. It might therefore be worth investigating the GeTe-SnTe system further
with regard to disorder induced localization effects, but since no vacancies are contained,

no significant localization effects are expected.

The same substitutional disorder exists for the Ge atoms, which are also in a distorted
coordination with short and long bonds. These Ge-Te bond lengths correspond well to those
observed in crystalline GeTe. Since the transformation of these results to the Te edge gives
a good agreement as well, all three edges were refined simultaneously. A fit of the second

neighboring atoms has been performed as well, but although the resulting curves match the
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Table A.4: Results from an EXAFS analysis of crystalline Ge3SnTe4 at 10K. The short
Ge-Ge distances are due to phase-separated Ge. Significant local atomic dis-

placements are revealed by the splitting of short and long distances around both,

Ge and Sn.

Scattering Path N Atomic distance r  Displacement Parameter o
Ge-Ge 0.9(3) 2.44(1) A 0.004(2) A
Ge-Te (short)  2.6(2) (a) 2.839(3) A 0.0044(5) A>
Ge-Te (long)  2.6(2) (a)  3.16(1) A 0.011(1) A’
Ge-Ge 10.0(6) (c) 4.28(1) A 0.015(2) A°
Ge-Sn 2.06) (¢)  4.30(1)A 0.012(2) A
Sn-Te (short)  3.3(2) (b)  2.993(4) A 0.0032(3) A>
Sn-Te (long)  3.3(2)(b)  3.17(1)A 0.007(1) A
Sn-Ge 10.0(6) (c) 4.28(1) A 0.015(2) A”
Sn-Sn 2.0(6) c) 4.332)A 0.005(2) A>
Te-Ge (short)  2.2(2)(d)  2.839(3) A 0.0044(5) A>
Te-Ge (long)  2.2(2)(d)  3.16(1)A 0.011(1)A°
Te-Sn (short)  0.6(2) (e)  2.993(4) A 0.0032(3) A>
Te-Sn (long)  0.6(2) () 3.17(D)A 0.007(1) A
Te-Te 12 423(2)A 0.021(2) A

experiments well, a ratio of 1/6 is obtained for the content of Sn to Ge atoms — instead of
the expected value of 1/4, which only lies within the 20" interval of the experimental value.
This deviation suggests that although some Ge is segregated, there is still a larger fraction

of Ge on the lattice than expected from the initial stoichiometry of the sample.

A quantitative evaluation of the coordination numbers gives a total coordination number
of 6.1(4) around Ge, 6.6(3) around Sn and 5.6(3) around Te. These values suggest that
the material does not contain a significant amount of vacancies — but the large errors of

coordination numbers determined from an EXAFS analysis weaken this conclusion.

A.3.4 Crystalline GeSnTe,

Crystalline GeSnTe; is known to crystallize to a rock-salt like cubic structure at 410 K
(peak value after heating at 5 K/min) [[177]]. The density increases upon crystallization from
5.85(5) gcm™! in the amorphous phase to 6.30(5) gcm™! [177]. Additional reflections from
crystalline pure Ge appear after heating the material further above 541 K. The samples for
the EXAFS analysis were prepared by sputter deposition on silica substrates, scratching the
obtained films to powder and heating the powder in a tube furnace up to 448 K. The three K

absorption edges of the resulting crystalline powder were measured and the resulting data

156



A.3. Crystalline phase

are presented in Fig. During the fit, the amplitude reduction factors S (2) were set to 0.67,
0.69 and 0.74 for the Ge, Sb and Te edges, respectively. The best fit obtained is based on
the scattering paths listed in Tab.[A3] It has residua of 0.013, 0.011 and 0.026 and the edge
energy corrections are fitted as 5.6(6) eV, 6.8(3) eV and 4.2(3) eV.
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Figure A.5: The EXAFS data of the three K absorption edges of GeSnTe;, are shown to-
gether with the best fit, which has an average residual of 0.017. The different
contributions by short and long bonds can be seen at both, Ge and Sn edges. At
the Ge edge, the additional influence of segregated Ge is visible (green curve).
The Te edge is shown for consistency, since all three edges were refined using

a constrained model.

The EXAFS refinement for crystalline GeSnTe; is based on the same model, that was
used to refine the data of crystalline GezSnTe4, except that here, the data for the Ge edge
were for some reason not very clear above 3.8A and the peak at = 4.2 A could not be
included in a stable fit. In a disordered crystal, the fitting of higher order coordination
shells is very delicate, because these atomic distances are always influenced not only by the
variance of bond lengths, but also by the variance of bond angles. Therefore, the higher

order coordination shells were not refined at the Ge edge of crystalline GeSnTe;.

With an equal stoichiometric fraction of Ge and Sn, a perfectly ordered crystal could
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Table A.5: Results of an EXAFS analysis of crystalline GeSnTe, at 10 K. The splitting of
short and long distances around Ge and Sn atoms shows that local displacements

exist. The short distances around Ge are due to the segregation of some Ge.

Scattering Path N Atomic distance » Displacement Parameter o>
Ge-Ge 1.2(3) 2.46(1) A 0.005(2) A
Ge-Te (short)  2.0(2) (a) 2.860(5) A 0.0045(7) A>
Ge-Te (long)  2.0(2) (a) 3.16(2) A 0.014(4) A
Sn-Te (short)  3.7(2) (b) 3.032(4) A 0.0043(4) A>
Sn-Te (long)  3.7(2) (b) 3.18(1)A 0.008(1) A
Sn-Ge 20(4) 3.892) A 0.031(4) A°
Sn-Sn 5(1) 437(1) A 0.009(2) A
Te-Ge (short)  1.1(2) (d) 2.860(5) A 0.0045(7) A”
Te-Ge (long)  1.1(2) (d) 3.16(2) A 0.014(4) A
Te-Sn (short) 1.7(1) (e) 3.032(4) A 0.0043(4) A’
Te-Sn (long) 1.7(1) (e) 3.18(1)A 0.008(1) A’
Te-Te 12 422(2) A 0.016(4)A°

be obtained. Instead, Sn-Ge and Sn-Sn distances are found at 4 A at the Sn edge, so that
substitutional disorder must prevail also in crystalline GeSnTe,. Further substitutional dis-
order is evidenced by the splitting of atomic distances around Ge and Sn. Those atomic
displacements are even more pronounced as compared to Ge3SnTey, because in GezSnTey
they were limited to the Ge/Sn sublattice, but in GeSnTe, also a distortion of the Te sublat-
tice is observed: In Fig.[A.5] a splitting of Te-Te distances is observed (cf. Te edge data at
4 A).

Coordination numbers of GeSnTe, can be obtained from the parameters in Tab.[A.5}
The Ge atoms are on average 5.2(5)-fold coordinated, the Sn atoms 7.4(4)-fold and the Te
atoms 5.6(4)-fold. Since the deviations of coordination numbers deviate in the same way as
seen for crystalline Ge3SnTey, it seems that a deviation of the amplitude reduction factor S %
might be involved, since this parameter was obtained from binary GeTe and SnTe. Due to
the product N - § (2) in the EXAFS equation, this factor influences the resulting coordination
numbers directly.

In conclusion, local atomic displacements were revealed in all investigated ternary Ge-
Sn-Te compounds, despite their cubic symmetry of the unit cell. These atomic displace-
ments are due to the substitutional disorder, i.e. the structure of Ge atoms on the Ge/Sn
sublattice does not possess translational symmetry. In addition, a phase separation of Ge
atoms was observed in all compounds from the GeTe-SnTe system, which might be due to
the excess Ge after sputter deposition.

158



APPENDIX B

Data compilation of phase-change
materials

B.1 Density of phase-change materials

Many properties of phase-change materials can be obtained from ab-initio molecular dy-
namics (AIMD) simulations based on DFT calculations. This technique is usually per-
formed to simulate the quenching process from the liquid phase and to obtain a structural
model for the amorphous phase, from which further information can be derived. These
simulations are usually performed under isochoric conditions, fixed to the atomic density
of the amorphous phase. The atomic density is also crucial for the normalization of struc-
ture factors from neutron scattering, where it is necessary to subtract the correct amount of
self-scattering and to normalize the data to exact coordination numbers. Experimentally,
the atomic density can be derived from x-ray reflectivity measurements, which probes the
electron density of smooth thin films of amorphous and crystalline phase-change materials.
This value is obtained from the critical angle, under which total reflection is interrupted.
If, in addition, the stoichiometry of the sample is known, the mass density can be calcu-
lated from the electron density. A list of these values is given in the following, which is a
compilation of the values used in the data treatment of total neutron scattering and to some
extent in AIMD simulations. The data are presented in Tab.[B.1I] In cases, where multiple
references are given, the average values are printed. The error on the mass density from
XRR is always given as 0.05gcm™ in the cited references. The number densities have
been derived under the assumption that the stoichiometries correspond to the given values

of the sputtering targets.
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Table B.1: Collection of experimental values for the densities of phase-change materials,

which are necessary to obtain absolute coordination numbers from the treatment

of total neutron scattering data.

Material Molar mass Mass-density ~ Number density Reference
as-deposited amorphous phase:
Sb,Te; 12526 gmol™!  6.01(5)gecm™  0.02890 at. A=3  [178]
GeSbyTe;  121.07gmol™"  5.95(5)gem™  0.02960 at. A=>  [163]] (partly crystalline as dep.)
GeSb,Te,  118.08gmol™"  5.95(5)gem™  0.03035 at. A [163]
Ge,SbyTes  114.08gmol™  5.82(3)gem™  0.03073 at. A= [163], [179)], [180]
GesSbyTes  111.54gmol™"  5.80(5)gem™  0.03132at. A= [163]
GegSb,Te;;  106.10gmol™"  5.45(5)gem™  0.03094 at. A= [163]
GeTe 100.11 gmol™"  5.50(2)gem™  0.03309 at. A=3  [163], [179]
GeSe 75.79gmol™!  4.60(5)gem™  0.03656 at. A=3  [177]
GeBi,Te, 143.00gmol™!  6.91(5)gem™  0.02910 at. A=3  [178]
SnSb,Tey 124.66gmol™"  6.15(5)gem™  0.02971 at. A=3  [178]
GesSnTey  105.87gmol™!  5.90(5)gem™  0.03356 at. A= [177]
GeSnTe, 111.63gmol™"  5.90(5)gem™ 0.03183 at. A= [177]
SnSe; 9221 gmol™!  4.77gcm™3 0.03116 at.t A= [58]
meta-stable crystalline phase:
GeSb,Te;,  118.08gmol™"  6.20(5)gem™  0.03162 at. A= [163]
Ge,SbyTes  114.08gmol™  6.35(5)gem™  0.03352at. A3  [163]
stable crystalline phase:
GeSb,Te,  118.08gmol™"  6.50(5)gem™  0.03315at. A= [163]
Ge,SbyTes  114.08 gmol™  6.60(5)gem™  0.03484 at. A= [163]
GeTe 100.11gmol™"  5.95(5)gem™  0.03580 at. A= [163]
SnSe, 9221¢g mol ™! 5.75¢g cm™3 0.03756 at. A3 58]
In3SbTe, 120.23 gmol™!  7.00gcm™> 0.03507 at. A= [135]
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B.2 Compilation of structural investigations of amorphous
GST-based PCMs

Tab.[B.2] contains a summary of the available information on the local atomic ordering in
the amorphous Ge,Sb,Tes and GeSb,Tey.
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Table B.2: Most published studies of the atomic structure of amorphous GeSb,Tes and
Ge,SbyTes are summarized in this table with a special focus on the average co-
ordination numbers and bond lengths. The AIMD simulations were most com-
monly performed on melt-quenched samples (MQ) and in one case, the sputter
deposition process was simulated (AD) or an ideal glass (IG) of Si; As,Ses was
simulated, subsequently replacing the atoms by Ge, Sb and Te. The experimental
samples were prepared by sputter deposition (AD), by melt-quenching (MQ) or
by ion bombardement (IB). The table shows that (1) the average bond lengths (r)
obtained from AIMD simlations are by 5% to 3% larger than the experimental
values and that (2) there is no significant deviation between the average bond
lengths (r) in as-deposited or melt-quenched samples (compare entry 12 with 13
or 14 with 15 and 16).

No. Compound Method Nce Nsp, Nrte (r) Reference
1 Ge;SbyTes MQ  AIMD 4.2 3.7 2.9 2.855A [124]

2 Ge;SbyTes MQ  AIMD 3.8 4.0 2.9 2.865 A [181]]

3 Ge,SbyTes MQ  AIMD 4.1 3.7 2.8 2.805 A [182]]

4 Ge,Sb,Tes MQ  AIMD 4.05 4.2 3.17 n/A [183]

5 Ge,SbyTes MQ  AIMD 4.2 3.7 2.9 2.85A [184]

6 GeSb,Tey MQ AIMD 3.5 3.8 2.9 n/A [102]

7 Ge,Sb,Tes AD AIMD 4.2 3.7 2.8 2.79A [182]]

8 Ge,Sb, Tes IG AIMD 4.0 3.0 2.1 2.765 A [184]

9 Ge,Sb,Tes AD EXAFS, XRD,ND 3.9 3.1 2.0 271A [185]

10 GeSb,Tey AD EXAFS, XRD,ND 3.9 2.9 2.0 272A [185]

11 Ge,Sb,Tes AD?  XRD, PDF 3.7 3.0 n/A n/A [33]

12 Ge,Sb,Tes MQ  EXAFS n/A n/A n/A 273A [131]]

13 Ge,Sb,Tes AD  EXAFS 3.9 2.8 2.4 273A [132]]

14 Ge,Sb,Tes AD  EXAFS (Ge only) n/A n/A n/A 2.62A (Ge-Te) [123]

15 Ge,Sb,Tes MQ  EXAFS (Ge only) n/A n/A n/A 2.62A (Ge-Te) [123]

16 Ge,Sb,Tes IB EXAFS (Ge only) n/A n/A n/A 2.62A (Ge-Te)  [123]

17  GeSb,Tey AD EXAFS at 10K 373) 323) 1.9(1) 2751A this work
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