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1 Introduction

Nanoscience, the investigation of objects in the nanometer regime, has greatly emerged

within the last decades, due to new synthesis routes to nanomaterials and also further

developed analytical tools to characterize them. Along with this, the �eld of nanotechno-

logy where nanomaterials with new, size-dependent properties are brought to application is

growing steadily.[1]

Among these, diverse applications in the biomedical �eld are envisioned.[2, 3] Nanomaterials

might help to answer fundamental questions in cell biology to understand molecular mecha-

nisms of natural nanostructures.[4] They might also �nd their way to applications in medi-

cinal diagnosis, imaging and therapy techniques, the latter both in the form of drug carrier

systems or as active compounds in magnetically or photometrically based thermotherapy.

Furthermore, the enhanced production and use of nanomaterials in other than biomedical

applications such as electronic devices and in materials science leads to increased poten-

tial exposition to public and the environment during production, usage and even after

disposal.[5]

For these reasons, the investigation of biological e�ects of nanomaterials is of great impor-

tance. There is already a huge number of nanomaterials of di�erent materials, sizes and

shapes available, and this number is still growing, yet data of biological e�ects are sparse

and far from being fully understood.[6]

Based on the information gained so far, there are some �rst general assumptions. Firstly,

there are size-dependent e�ects, i. e. a non-toxic bulk material might be toxic in the nano-

meter size range. Nanomaterials with dimensions of smaller than approximately 2 nm are

in the same size regime as cellular structures and can thus potentially mimic biologically

active compounds, such as peptide hormones, cytokines or antigens, thereby causing adverse
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1 Introduction

e�ects to living organisms. Secondly, these phenomena are not only determined by size, but

the chemical composition, which might be crucial as well.[7] It would therefore be important

to conduct systematic investigations concerning these parameters to potentially �nd some

fundamental mechanisms and conclusions about the manifold interactions of nanomaterials

with biological entities.

Exemplary for unexpected toxic behavior are gold nanoparticles (AuNPs) for which con�ict-

ing data were presented. While in its bulk form being biologically inert, small phosphine-

stabilized AuNPs of the chemical formula Au55[(C6H5)2P(C6H4SO3Na)]12Cl6 were found to

be highly cytotoxic in di�erent cell lines. A potential mechanism based on an interaction of

these AuNPs with the major groove of DNA was proposed, supported by molecular dynamics

simulations.[8, 9]

Pernodet et al. reported of 14 nm sized citrate-stabilized AuNPs that induced a disturbed

actin structure in human dermal �broblasts, accompanied by a decrease in cell prolifera-

tion, adhesion, and motility.[10] On the other hand it was found that 18 nm sized AuNPs,

stabilized by either citrate or biotin, do not cause acute cytotoxicity in K562 leukemia cells

despite being taken up in cells.[11]

Against this background, a DFG funded cooperation project of the groups Simon and

Jahnen-Dechent (Aachen), Schmid and Brandau (Duisburg-Essen) and, in a second funding

phase, Wenzel (Karlsruhe), was initiated concerning the �Control of the physiological impact

of noble metal nanoparticles by size and chemical modi�cation�, including a project part for

�Size-selective synthesis of new, water-soluble noble metal nanoparticles� that was the basis

for this work.

In this, the synthesis and characterization of a series of ligand-stabilized water-soluble spher-

ical AuNPs was sought by modifying known synthesis routes as well as generating new ones

for systematic cytotoxicity studies. The parameters of variation include AuNP size as well

as the gold-ligand stability and the outer functional groups of ligands, thus the introduction

of new, AuNP-stabilizing ligands (see �g. 1.1). While this work focuses on synthesis and

chemical characterization of the AuNPs, the cell experiments were conducted by Dr. Yu

Pan-Bartneck and are described in detail in the respective dissertation.[12]

2



Figure 1.1: Control parameters for the cytotoxicity evaluation of AuNPs.

Further, the subjacent mechanisms of biological activity of AuNPs were investigated by a

variety of methods. The generation of reactive oxygen species (ROS) and resulting oxidative

stress has been related to nanomaterial toxicity before[13] and was therefore investigated in

detail. This was, amongst other tests, done by EPR spectroscopy.

Besides cytotoxicity evaluation, genotoxicity was also examined by sophisticated GC/MS

measurements in cooperation with Dr. Bryant Nelson at the National Institute of Standards

and Technology (NIST, Gaithersburg, MD, USA).

An approach to identify the toxicity mechanism of AuNPs was an investigation concerning

possibly released Au(I) species, and the analysis of the equilibrium between AuNPs, a Au(I)

complex and the phosphine ligand 3-(diphenylphosphino)benzenesulfonic acid sodium salt

(TPPMS) by 31P-NMR spectroscopy.

As another potential biological e�ect, the interaction of AuNPs with ion channel expressing

cells was determined by electrophysiological patch clamp experiments. This was done at

Cytocentrics AG in Rostock. Parts of these results are already described in the dissertation

of Dr. Yu Pan-Bartneck.[12]

3



1 Introduction

Besides these mechanistic investigations, a species with application potential in cancer ther-

apy was synthesized. This was sought by functionalization of toxic AuNPs with (Lys3)-

bombesin, an oligopeptide, to induce cancer cell speci�city for a conceivable application as

an anticancer drug. By a similar route it was also attempted to functionalize AuNPs with

a �uorophore as a probe for potential ligand release in contact to cells.

4



2 Basic Knowledge

2.1 Gold Nanoparticles

2.1.1 De�nitions and Nomenclature

The term �nanotechnology� describes the �eld of developments in which size-dependent

properties of materials in the nanometer regime play a dominant role, and where these

properties can be used to generate new techniques and devices.[14] The materials can

include nanoparticles with dimensions of less than 100 nm as well as patterned surfaces

and more sophisticated assemblies. Nanotechnology is an interdisciplinary �eld with

contributions from physics, chemistry, biology, materials science, medicine and other

disciplines. A typical example of a nanomaterial with distinct properties and a broad

variety of potential and already realized applications are gold nanoparticles.[15]

Gold nanoparticles (AuNPs) are spherical particles with a diameter of less than 100 nm

and, in solution, typically consist of a gold metal core and a stabilizing ligand shell that

prevents the particles either sterically or electrostatically from aggregation.[16] The term

�nanoparticles� (NPs) includes clusters as well as colloids. The term �cluster� is used for

very small NPs with a well de�ned number of metal atoms, i. e. molecular species. The

term �colloid� describes larger particles. Hence, colloidal materials do not have a precise

molecular formula any more and are not monodisperse. However, particles with a size

distribution of less than 10% deviation are typically regarded as systems with su�ciently

low polydispersity, and it is reasonable to describe such samples by their mean diameter.

In this work, the term �ligand� is used for organic molecules that have the ability to bind

to NPs via electron donating functional groups. For AuNPs, the most commonly used

5



2 Basic Knowledge

molecules for this purpose are thiols that form a thiolate bond on the gold surface. Other

molecules are for example phosphines, amines, carboxylates and polymers. For a more

detailed discussion about ligands for AuNPs, see chapter 2.1.4.

The nomenclature for the AuNPs used in this work includes the element, the mean diameter

of the particles in nm and an abbreviation for the ligand. For example, Au1.4MS is a NP

of gold with a mean diameter of 1.4 nm and a ligand shell of TPPMS (MS).

2.1.2 Physical Properties

This work focuses on biological e�ects of AuNPs. However, to fully understand the discussion

of the observed e�ects and the proposed mechanisms, an introduction into the main size-

related physical properties of AuNPs is requisite.

2.1.2.1 Electronic Structure of AuNPs

As metal NPs have atom numbers between molecular species and the bulk material, their

electronic structure di�ers from these both boundary states and thus they have several

unique size-dependent properties.[16] Small gold clusters exhibit distinct energy gaps in

their electronic structure, whereas for larger colloids no energy gaps exist in the 6sp band.

A cluster can be described as a zero-dimensional entity in which the electrons occupy dis-

crete energy levels and quantum mechanical properties become dominant.[17] The valence

electrons in clusters are therefore in quantized states, but also highly delocalized within

the cluster.[18] With increasing NP size, the orbital density increases and quasi-continuous

electron bands as in the bulk state arise. These size-dependent electronic states have an im-

pact on intrinsic features such as optical or electronic properties and on application relevant

characteristics, for example in metal NP catalysis (see chapter 2.1.2.3).

6



2.1 Gold Nanoparticles

2.1.2.2 Optical Properties

In small gold clusters with energetically separated orbitals, discrete electron excitations

occur. UV/Vis spectra show narrow peaks in the short-wave length range, re�ecting such

single electron excitations, as for example shown for the cluster [Au9[(C6H5)3P]8](NO3)3.[19]

AuNPs above a size of approximately 3 nm show a plasmon resonance peak in their UV/Vis

spectra. This phenomenon arises from the electron gas of delocalized 6s electrons of the

individual particles. The plasmons of the electron gas are excited with energies in the range

of visible light. In the case of resonance of the electromagnetic wave of light and the plasmon

frequency, the latter is stimulated to oscillate and the light is absorbed. A full theoretical

description of this was already given by Mie in 1908.[20]

The plasmon oscillation frequency depends on the restoring force between electrons and

nuclei. The UV/Vis spectrum of a certain AuNP species therefore depends e. g. on the size

and shape of the particles and on the environment (i. e. the ligand shell and the solvent).

This can be used for AuNP analysis (see 2.2.1).[21]

AuNPs can also display �uorescence. This phenomenon is clearly dependent from size and

ligand functionalization. Huang and Murray investigated tiopronin-stabilized AuNPs with

a diameter of 1.8 nm and found �uorescence at 700-800 nm. They hypothesize a mechanism

of interband transitions between the �lled 5d10 band and 6(sp)1 conduction band.[22]

2.1.2.3 Catalytic Activity of AuNPs

The electronic structure also has an impact on the catalytic activity of AuNPs. In general,

NPs often have high catalytic activity due to their large number of surface atoms relative to

their mass. Surface atoms are energetically in an activated state and can catalyze reactions

of molecules that adsorb on the surface. For example, O2 can be activated by AuNPs

through partial electron transfer from the gold clusters to the antibonding π∗ orbital of

O2 and generation of highly active peroxo-like species.[23] Thus, the catalysis of oxidation

reactions by AuNPs has recently been investigated by di�erent groups.[24, 25]

For small gold clusters, it was found that the activity varies with changes in the gold

atom number, already with the alteration of single atoms.[26] The observed size dependence
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is, on the one hand, related to the surface to volume ratio and the enlarged number of

energetically activated surface atoms. The energy levels of gold clusters, which are very

sensitive to changes in single atom numbers, are on the other hand of great importance as

well, as they in�uence the ability to activate adsorbed molecules. The activation of adsorbed

substrates is a key issue in NP catalysis.

AuNPs on supporting metal oxides such as TiO2 or MgO show signi�cantly enhanced activity

and selectivity.[27] This is explained by charge transfer between gold clusters and metal oxide

support. Ligands on the other hand may hinder catalytic reactivity of AuNPs as they shield

the surface against adsorption of the substrate. In some examples however, certain ligands

such as poly(vinylpyrrolidone) (PVP) can enhance catalytic activity. A mechanism similar

to the one proposed for support materials is expected.[28]

Turner et al. reported high activity and selectivity for the oxidation of styrene to benzal-

dehyde by Au55[(C6H5)3P]12Cl6 on di�erent support materials at relatively mild conditions

of 100 ◦C in toluene. AuNPs of larger sizes were less active to completely inactive.[29] The

ability of AuNPs to catalyze oxidation reactions will be relevant in the following discussion

of AuNP cytotoxicity.

AuNPs can also catalyze other reactions. For example, the hydrogenation of α, β-

unsaturated ketones and aldehydes by a Au25(SR)18 cluster was published. Here, a cat-

alytic cycle was proposed, in which the active sites on the Au25 structure could be spatially

located.[30]

2.1.3 Syntheses

Metal NPs can generally be synthesized either in gas or in solution phase. In this work, only

wet chemical synthesis routes are discussed. Gas phase syntheses are described elsewhere.[31]

Due to the great interest of AuNPs for applications in di�erent �elds, there is a huge and still

increasing number of di�erent synthesis routes.[15] Some of these are exemplary described

here in more detail.

The bottom-up synthesis of AuNPs is typically conducted by the reduction of a dissolved

Au(III) salt or Au(I) complex to Au(0) in presence of a ligand. Typical reducing agents
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are for example trisodium citrate, Na3C6H5O7, sodium borohydride, NaBH4, and diborane,

B2H6.

One of the most commonly used synthesis routes is the one of Turkevitch et al. from

1951.[32] Here, [AuCl4]
� is reduced by trisodium citrate in boiling water. The citrate which

is added in excess also acts as ligand for the formed AuNPs. Depending on the synthesis

conditions, i. e. the concentrations of the components as well as temperature and reaction

time, di�erent AuNP sizes in the range from 15 nm up to 150 nm can be generated.

Very small clusters with the chemical formula Au55[(C6H5)3P]12Cl6 and a gold core diame-

ter of 1.4 nm can be synthesized by the method developed by Schmid et al. in 1981.[33]

The Au(I) complex [(C6H5)3P]AuCl is dissolved in benzene and reduced with diborane at

moderate heat.

Schmid et al. also developed a method to transfer these AuNPs into the aqueous phase.[34]

For this purpose, a dichloromethane dispersion of the clusters is covered with an aqueous so-

lution of TPPMS and stirred at room temperature for three days. An equilibrium of AuNPs

in both phases is reached after this time. To improve the yield of water soluble clusters,

the volume of the water phase is larger and TPPMS is added in excess. Furthermore, the

ability to stabilize AuNPs is slightly higher for TPPMS compared to triphenylphosphine.

They are not only stabilized by steric repulsion but also by an electrostatic stabilization

of the charged TPPMS which has a negative sulfonate group when it is in solution. This

further shifts the equilibrium.

Another break-through in AuNP synthesis was achieved in 1994 when Brust et al. developed

the so-called Brust-Schi�rin synthesis.[35] In this two-phase system, HAuCl4 is dissolved in

H2O, covered with an organic solvent (e. g. toluene) containing an alkylthiol, and reduced

with an aqueous solution of sodium borohydride. AuNPs with sizes between 1.5 and 5.2 nm

with di�erent alkylthiol ligands were obtained. One year later, they expanded this route to

a one-phase method by using methanol as solvent for all compounds.[36]

Le� et al. described a synthesis route to amine-stabilized AuNPs in a size range from 2.5

to 7.0 nm, depending on the synthesis conditions.[37] As amines are weakly binding ligands,

these AuNPs are of special interest for subsequent ligand exchange reactions with more

strongly binding ligands.
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An approach to thiol-stabilized, water soluble AuNPs was performed by Whetten et al. and

re�ned by Negishi et al..[38, 39] HAuCl4 is reduced by sodium borohydride in the presence

of glutathione, a biogenic tripeptide consisting of L-cysteine, L-glutamic acid and glycine.

The resulting AuNPs have a mean diameter of approximately 1 nm.

2.1.4 Ligands and Functionalization

AuNPs need a stabilizing surfactant shell to prevent them from aggregation.[40] Molecules

which are electron donors can act as ligands for AuNPs. The interaction between ligand and

AuNP surface depends on the functional group which binds to the particle and ranges from

coordinative chemisorption of strong ligands to electrostatic attraction of weaker ones. The

binding strength has in�uence on several properties of the particles, the most prominent

one being the AuNP stability.

AuNP stability in media further depends on the character of the end group (the part of the

ligand molecule that points away from the particle surface). The stabilization is achieved

either by steric (e. g. alkylthiols) or by electrostatic repulsion (e. g. phosphine sulfonates).

The nature of the ligand not only determines the AuNP stabilization, but also in�uences

their properties, such as solubility in apolar or polar solvents and the ζ potential. With

respect to biological e�ects of AuNPs, it is reasonable to expect the ligand shell to play a

crucial role, as this is the �rst entity the cell gets in contact with.

Thiols have the highest a�nity to gold and are therefore the most frequently used class of

ligands. For self-assembled monolayers (SAM) consisting of thiols on a �at gold surface, a

binding energy of approximately 200 kJ/mol (=̂ 2.07 eV) was determined.[41] However, this

value may be di�erent for AuNPs as the surface of NPs di�ers from a plain surface because of

its curvature and the resulting edge and vertex atoms. Other sulfur containing molecules are

e. g. disul�des and thioethers, both forming considerably weaker bonds towards AuNPs.[42,

43]

Phosphines are another class of widely used AuNP ligands. Compared to thiols, the binding

energy is lower, as DFT calculations on Au38 and Au39 clusters showed. Here, binding

energies of 0.93 eV for the Au−PH3 bond compared to 2.45 eV for Au−SCH3 were found.[44]
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Typically, aryl phosphines like triphenyl phosphine (TPP) and its derivatives are used, as

their phenyl rings provide high AuNP stability due to sterical bulkiness as well as oxidation

resistance of the phosphine itself.

Amines, such as alkylamines or the amino acid lysine, have also been used as ligands.[45]

Compared to thiols and phosphines, their a�nity is only moderate, but stable AuNP dis-

persions can be obtained.

Carboxylates like trisodium citrate can also act as AuNP ligands. As they are mainly

electrostatically bound to the surface, the stability strongly depends on factors such as salt

concentration and pH of the solution. It is not possible to dry and redisperse such AuNPs.

Dendrimers and polymers such as PVP and PEG are also used as ligands to stabilize AuNPs.

Such AuNPs are often synthesized by reducing a gold salt in presence of the respective

polymer, so that the polymer matrix determines the particle growth.[15]

Furthermore, a chelate e�ect can play a role in ligand binding. Multivalent ligands show

higher a�nity to NP surfaces. This is based on a higher probability of recombination if one

functional group desorbed from the nanoparticle surface. A multivalent molecule remains in

the proximity of the particle, as opposed to monovalent ligands which will desorb completely.

Also, entropic e�ects play a role.

Perumal et al. investigated binding kinetics of mono-, di- and trithiols on di�erently sized

AuNPs (2.2, 3.2 and 4.4 nm) via time resolved �uorescence spectroscopy of the leaving ligand

(a pyrene).[46] They found that divalent ligands show highest exchange velocity and explain

this by a cooperative activation model of vicinal atoms. The lower velocity of trithiols is

explained by enhanced sterical hindrance. They also �nd a particle size dependence, as the

ligand exchange rate increases with increasing particle size.

The chemical stability of mono-, di- and trithiol-stabilized AuNPs (2 nm diameter) was

also investigated by Srisombat et al. by UV/Vis spectroscopic monitoring of cyanide

degradation.[47] They found the same trend that dithiols stabilize AuNPs best.

Diphosphines can also act as AuNP ligands. An example are 2,2'-bis(diphenylphosphino)-

1,1'-binaphthyl (BINAP)-stabilized AuNPs with an mean diameter of 1.7 nm that could

be synthesized via a direct route.[48] Ligand characterization was performed by XPS, also

showing that the gold atoms are present as Au0.
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Furthermore, Au11 clusters, stabilized by four BINAP molecules per particle, were

reported.[49]

The formation mechanism of diphosphine-stabilized undecagold was investigated in detail

by electrospray ionization−mass spectrometry (ESI-MS).[50] It was found that ligand

lability is an important factor in the equilibria of relevant gold complex intermediates

and that the direct formation of diphosphine-stabilized clusters from diphosphine-gold

complexes may be hindered due to high stability of such complexes. A problem in AuNP

stabilization with polyfunctional ligands may occur by possible network formation of

numerous AuNPs and a resulting aggregation.

Ligands undergo dynamic binding and unbinding processes.[40] The phenomenon of

ligand mobility was described in detail for thiols.[51] Kinetics of the exchange rate of

ligands depend on the ligand concentration and the character of the competing ligand.

Furthermore, some atoms in a cluster are more prone to ligand exchange than others.

Functionalization of AuNPs can be realized either by a ligand exchange or by further chem-

ical modi�cation of the existing ligand shell. The mechanistic aspects of ligand exchange

reactions are quite complex and depend on several factors such as the leaving ligand, the

incoming ligand, the AuNP size and of course the reaction conditions under which the ligand

exchange is performed.[52] In general it is possible to exchange weak binding ligands against

stronger ones. This can be done either in one phase or in a two phase system. In a one

phase system, AuNPs and incoming ligands can easily interact. A disadvantage is the more

elaborate puri�cation. The main drawback of a two phase ligand exchange is the possibly

impaired NP stability at the phase boundary, as the AuNPs lose their primary ligands and

are partly unprotected during phase crossing.

The aspect of chemical modi�cation of the ligand shell is further discussed in chapter 2.4.

2.1.5 Separation from Possible Impurities

Three key issues are important concerning the purity of AuNPs: Polydispersity of a sample,

excess ligand, and metal ion or complex impurities. These factors depend on the synthesis
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conditions, and ideally those are adjusted in such a way that sophisticated puri�cation

steps are not necessary. Nevertheless, even for well optimized synthesis routes the degree of

purity from the raw product might not be su�cient for the envisioned further experiments

or applications. Several methods can then be applied to purify the material.

The most frequently used methods for size selectivity include �ltration, selective centrifu-

gation, selective precipitation, and column chromatography.

Filtration is useful if considerably larger aggregates have to be removed, but not for samples

with a broad size distribution. Filters with di�erent membrane pores down to 20 nm are

commercially available, fabricated from di�erent materials such as alumina and various

polymers. It is important to choose a suitable material to exclude any interaction of the

particles with the membrane material.

Quantitative centrifugation, relying on the sedimentation principle, can also be used to

separate particles with a bimodal distribution of di�erent masses.[53] Both the centrifugate

or the supernatant may content the desired product. Sample volumes range from µL to

hundreds of mL which makes centrifugation especially interesting for large batches.

Size selective precipitation is based on di�erent solubility of di�erently sized NPs due to

varying numbers of ligands on the particle surface and therefore di�ering stabilization. NPs

are dispersed in a solvent, and a nonsolvent or a salt is added stepwise, enabling the suc-

cessive precipitation and removal of NP fractions.[54]

Column chromatography or size exclusion chromatography relies on the same principle,

as the retention time of NPs depends on the particle size and therefore solubility and

polarity.[55] Di�erent materials for the stationary phase are useful for puri�cation of AuNPs,

such as cellulose or sephadex (a cross-linked dextran gel). However, not all AuNPs are suit-

able for column chromatography, as especially larger particles or weakly stabilized ones tend

to aggregate on the adsorbent.

Puri�cation methods to eliminate excess of ligand, synthesis by-products, and ionic im-

purities include centrifugation, washing or precipitation, and column chromatography, but

also dialysis. Here, di�erent membranes are commercially available with di�erent molecular

weight cut o� (MWCO) radii and made of di�erent materials. Although dialysis may be a

quite time consuming method when performed over several days, it is easy to perform.
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Depending on particle size and ligand stabilization, AuNPs sometimes show problems of sta-

bility when kept in solution over longer periods of time. The particle size might change due

to ripening e�ects, and partial decomposition and therefore slow enrichment of impurities

is possible. Because of their large surface area and therefore activated state, NPs are ther-

modynamically metastable. Energy input by elevated temperature or light might enhance

further reactions. Also, the medium plays a role, as for example high salt concentrations

may impair NP stability.

These facts need to be considered for the preparation, storage and handling of AuNPs.

Regularly repeated analysis of the NP quality is essential to ensure that the investigated

material has the expected structure.

2.2 Characterization

Two aspects have to be considered in NP analysis: size and polydispersity determination of

a sample, and characterization of the ligand shell. Di�erent methods to address these two

issues will be brie�y explained, together with recent examples of nanomaterial applications.

Typically, only a few selected of the presented analysis methods are used and presented

by di�erent groups reporting about AuNP synthesis and characterization. One must be

aware of the detection limits and the advantages and disadvantages of di�erent techniques

when applied to AuNPs. The comparability between di�erent methods is sometimes not

directly given and must carefully taken into account. One example of extensive AuNP

characterization with various di�erent techniques was given by Le� et al. by the investigation

of di�erently sized alkylamine-stabilized AuNPs.[37]

2.2.1 UV/Vis Spectroscopy

The optical properties of a AuNP sample can easily be investigated by UV/Vis spectroscopy.

AuNPs above a certain size (∼ 3 nm) exhibit a plasmon resonance peak (2.1.2.2). As this de-

pends on size and NP surrounding, UV/Vis spectroscopy is used for qualitative NP analysis

for dispersions of spherical AuNPs. When parameters such as solvent and ligand shell are
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equal for two samples, the wavelength of the absorption maximum depends on the particle

size and the width of the peak is a measure for the polydispersity of the sample.

Furthermore, assemblies of AuNPs can be investigated. If AuNPs are in close proximity,

their valence electrons interact. The excited plasmon of one AuNP induces an alteration

of the polarizability of the neighboring AuNPs. The resonance frequency is a�ected, which

leads to a redshift of the plasmon resonance peak maximum.

This is for example used in enzyme sensors. In a recent example, peptide- as well as

antibody-functionalized AuNPs were synthesized and mixed.[56] In presence of a kinase,

the peptide was phosphorylated and thus compatible for antibody interaction, leading to

AuNP aggregation. This colorimetric assay enables the quanti�cation of enzyme and also

the determination of kinase inhibitors, which is important in drug development for several

diseases.

2.2.2 Electron Microscopy

Electron microscopy (EM) is used in this work to determine mean AuNP sizes. An elec-

tron microscope consists of an electron gun, an anode to accelerate the electrons, several

electrostatic and electromagnetic lenses to focus the electron beam, a sample holder and a

detection system. The detection of EM is performed under high vacuum conditions. It is,

depending on the measurement mode, based on elastic or inelastic scattering or di�raction

of the electrons by the sample.[57]

The use of an electron beam for the imaging of objects strongly increases the resolution as

compared to light microscopy. The resolution of a system is determined by the wavelength of

the probe beam, and energy-rich electrons correspond to shorter wavelengths than possible

in the visible spectrum (photons). The resolution of a transmission electron microscope

(TEM) is approximately 0.1 nm.[58] By using aberration correctors, resolution could be

improved to 50 pm in annular dark-�eld scanning TEM imaging.[59]

However, several obstacles have to be overcome when using TEM for NP size determination.

As it is not an integral method, relatively few particles are examined compared to other

methods. Analysis of a statistically signi�cant number of particles is therefore important.
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For very small NPs, the contrast between particles and substrate (usually an amorphous

carbon �lm) may be low.[60] Due to the high electron density of gold this problem is mostly

negligible for AuNPs. The resolution can be improved by measuring in dark-�eld imaging

mode and even further in high-angle annular dark-�eld (HAADF) mode, using a detector

operating in a preselected angular range while excluding the direct electron beam.

The appropriate choice of magni�cation and accelerating voltage is also crucial. Magni�-

cation is especially important for statistical NP size analysis. With higher magni�cation,

the particle size can be determined more correctly. On the other hand, less particles per

image are available for evaluation. Higher voltage enhances contrast, but may induce severe

sample damage. A compromise has to be found for both. Typical voltages used are of in-

termediate energy (80−400 keV). To reduce sample damage by the electron beam, scanning

transmission EM (STEM) can be performed. A scanning beam is advantageous compared

to continuously exposing the entire sample to the electron beam.

Furthermore, the image analysis is an important parameter. Manual evaluation may be

defective, but for samples with low contrast, it is preferred compared to software-assisted

or fully automated analysis. Smoothing and sharpening processes of the images may come

along with loss of information and addition of artifacts.

A state-of-the art example for AuNP EM characterization was presented by Li et al., who

used aberration-corrected HAADF-STEM for the three-dimensional analysis of a Au309 clus-

ter. They could achieve atomic resolution when combined with cluster simulations.[61]

2.2.3 X-ray Di�ractometry

X-ray di�ractometry (XRD) is based on elastic scattering of X-rays from the electrons of

atoms of a sample. Powder di�raction is used to analyze the crystallographic structure and

crystallite size of a material. For very small crystallite sizes, signals in XRD are broadened,

a phenomenon described by the Scherrer equation.

XRD is used as a characterization tool for structure analysis of AuNPs. Small angle X-ray

di�raction (SAXRD) was used to determine the structure of Au55[(C6H5)3P]12Cl6 in crys-

tallites, showing a simple close packed arrangement of clusters correlating with an e�ective

cluster distance of 2.3 nm.[62] Until now it was not possible to generate large single crystals
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of the Au55 cluster, therefore no single-crystal X-ray structure analysis to solve the complete

structure could be performed.[17]

Crystallization of single crystals is however possible for other AuNP species. In 2007,

Jadzinsky et al. reported of the crystallization and X-ray structure determination of a

p-mercaptobenzoic acid (p-MBA)-protected AuNP, consisting of 102 gold atoms and 44

p-MBA molecules.[63]

2.2.4 DLS and ζ Potential Measurement

In dynamic light scattering (DLS) measurements, laser light is used to determine the size

distribution pro�le of a nanoparticle dispersion.[64] Photons are scattered by particles if

the particles are small compared to the wavelength used. For monochromatic coherent

laser light, time-dependent �uctuations of the scattering intensity occur, which are induced

by the Brownian motion particles undergo in dispersion. From the intensity trace, an

autocorrelation function can be generated which typically shows exponential decay. This

decay is related to the di�usion coe�cient of the NPs. With this it is possible to calculate

the hydrodynamic radius of a sphere through the Stokes-Einstein equation.

The ζ potential of a colloidal dispersion describes the potential di�erence between the dis-

persion medium and the stationary layer of �uid attached to the dispersed particle.[65] It is

a measure to approximate the stability of a NP dispersion. If the absolute value is higher

than 30mV, a dispersion is regarded as stable. Measurement of the ζ potential of a NP dis-

persion is conducted by applying an electrical �eld during a DLS measurement and therefore

determining its electrophoretic mobility, which correlates with the ζ potential.

Advantageous of DLS and ζ potential measurements is the very fast and easy performance.

Opposed to EM, it is an integral method. A great number of particles is measured in one

measurement, providing statistically relevant data.

There is however a major drawback related to this. As the intensity of scattered light

varies with the sixth power of particle diameter, impurities such as comparatively large dust

particles are highly disturbing.

Manufacturers of DLS instruments give values around 1 nm or below as lower size detection

limits. However, this value depends strongly on factors as medium viscosity, temperature
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and monodispersity of the sample. A critical discussion of potential problems arising in size

determination of AuNPs by DLS was given by Khlebtsov et al..[66]

As one example, AuNPs with a mean gold core diameter of 2.7 nm, stabilized by a mixed

ligand shell of GSH and cysteamine, were able to be measured in DLS, resulting in a hy-

drodynamic diameter of 3.1 nm.[67]

In another study, Rotello and co-workers performed ζ potential measurements of 2 nm sized

thiol-stabilized AuNPs with mixed ligands shells of tetra(ethylene glycol) (TEG) and 1-

pentanethiol and found di�erences in the values depending on the ratio of ligands bound to

the particles.[68] They found a qualitative correlation of ligand shell ratio and ζ potentials.

Furthermore, DLS was used to investigate interactions of AuNPs and biomolecules, namely

the interaction of AuNP-bound protein A with the human IgG protein.[69] Here, the binding

stoichiometry could be quanti�ed by DLS.

2.2.5 Elemental Analysis

Elemental analysis (EA) is a standard technique for the determination of elemental compo-

sition. Most typically, carbon, hydrogen and nitrogen (CHN) amounts are quanti�ed in a

sample by combustion and detection of the resulting combustion products.

For AuNPs, EA is useful to characterize the ligand shell composition. If the structure of a

cluster and thus the theoretical elemental composition is known, EA can be used to verify

the purity of the sample. For Au55[(C6H5)3P]12Cl6 the EA result was one of the means to

determine its chemical composition.[33]

One problem that intrinsically occurs for EA of AuNPs is the high mass of the gold core

and thus the mass ratio between core and shell. This makes it di�cult to distinguish for

example between samples before and after a ligand exchange, if the chemical formula of the

outgoing and incoming ligands are similar. The percental changes of the AuNP species are

then small compared to the EA of the pure ligands.
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2.2.6 Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is widely used in chemical analysis to

determine molecular structures. It is based on the interaction of nuclear spins of a sample

with a magnetic �eld. NMR active nuclei absorb electromagnetic radiation at a characteristic

frequency. For di�erent local chemical environments (on an atomic scale), e. g. depending

on the functional group an atom belongs to, the chemical shielding is in�uenced and the

resonance frequency is slightly shifted. This chemical shift is thus characteristic and can be

used for example for structural determination of a molecule.

When ligands of a NP species are investigated by NMR spectroscopy, the proximity of

the ligand molecules to the metallic core has an e�ect towards the resulting spectra, e. g.

line broadening may occur. This originates from the variability of di�erent chemical shift

environments at the surface of the NPs due to ligand mobility of the NP surface.

NMR spectroscopy can be performed in solution, giving averaged signals as the time scale

of a NMR experiment is slow compared to molecular movements. It can also be conducted

in solid state, which is typically used in polymer analysis and structure determination of

huge molecules such as membrane proteins.[70]

For AuNPs, NMR spectroscopy may yield important information about ligand dynamics.

This was shown by Schmid et al. for Au55[(C6H5)3P]12Cl6 in interaction with excess TPP

ligand,[71] and also for similar TPP-stabilized clusters with a mean diameter of 1.8 nm

by Sharma et al..[72] They found that if excess TPP (in deuterated form, d15-PPh3) was

added, ligand exchange reactions appear in which the gold(I) complex TPP-Au(I)-Cl is also

involved.

2.2.7 Infrared Spectroscopy

In infrared (IR) spectroscopy, vibrational modes of atoms or atom groups in molecules are ex-

cited and the respective absorption is detected. This covers the range from ∼400− 4000 cm-1

of the electromagnetic spectrum, typically given in wavenumbers.

As for NMR spectroscopy, IR spectroscopy in context with AuNPs is mainly used to analyze

the ligand shell. Characteristic bands from functional groups can be identi�ed to ensure
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particle functionalization with the respective molecules. Sometimes, further information can

be gained, e. g. for thiols bound to AuNPs. Here, the S−H vibrational mode disappears

in AuNP spectra as thiols bind via the sulfur atom to the AuNP surface, as for example

shown by Brust et al..[36] Again, the problem of signal broadening arises and can hinder

the identi�cation of weak bands in an IR spectrum.

2.2.8 Fluorescence Spectroscopy

Fluorescence spectroscopy uses electromagnetic radiation to excite �uorescent molecules.

Typically, emission spectra are recorded, but absorption can be detected as well.

As already described before, small AuNPs can be �uorescent (see 2.1.2.2). Several exam-

ples for this phenomenon can be found in literature. Polymer-stabilized AuNPs with sizes

between 1.1 to 1.7 nm were found to be �uorescent, with 1.1 nm sized AuNPs having the

highest quantum yield of 3%.[73]

Also, �uorophores attached to AuNPs are investigated. When �uorophores are in close prox-

imity to AuNPs, their �uorescence is typically quenched by a Förster resonance energy trans-

fer (FRET).[74] Therefore, �uorescence spectroscopy can be a valuable tool to determine

ligand release from AuNPs. This was for example shown by Seferos et al., where �uores-

cein labeled DNA sequences were hybridized to AuNPs functionalized with complementary

strands.[75] DNA melting processes could then be followed by �uorescence spectroscopy due

to increasing �uorescence induced by released �uorophore-labeled DNA strands.

2.2.9 X-ray Photoelectron Spectroscopy

In X-ray photoelectron spectroscopy (XPS), X-ray radiation is used as a surface probe to

trigger electron emission from the sample surface. As the energies of those are element

and oxidation state dependent, information about the chemical composition of the sample

surface can be derived.

A limitation of the technique is that ultrahigh vacuum conditions are required. Also, sample

degradation can occur during the measurement in the case of irradiating sensitive samples.
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As a surface analysis method, XPS can be used to characterize the ligand shell of NPs. Also,

the oxidation state of the metal core can be detected as the radiation depth is up to 10 nm

of the sample.

Techane et al. used XPS to monitor ligand exchange of 24 nm sized AuNPs that were initially

functionalized with cysteamine (HS−(CH2)2−NH2) which was then exchanged against a

long chain amine-terminated alkanethiol (HS−(CH2)11−NH2).[76] They found that ligand

exchange was complete after 4 days, while the ligand density further increased for the next

10 days.

2.2.10 Electron Paramagnetic Resonance Spectroscopy

Electron paramagnetic resonance (EPR) spectroscopy is a method to detect unpaired elec-

trons in a sample. The physical principles are the same as in NMR spectroscopy, but

the resonance frequencies of electrons are detected instead of those of nuclei. Absorption

frequency and signal �ne structure are compound dependent, and the signal intensity is

proportional to the species concentration.

As most stable compounds do not have unpaired electrons, EPR spectroscopy is restricted to

the analysis of radical species, paramagnetic transition metal complexes or excited molecules

in the triplet state. This restriction is on the other hand an advantage as it makes EPR

spectroscopy highly speci�c, even in complex systems such as in vivo analyses.[77]

Stable radicals can be used as a probe to investigate interactions with EPR inactive com-

pounds such as AuNPs. This was for example shown by Zhang et al., who used 4-Amino-

2,2,6,6-tetramethylpiperidine-1-oxyl (Amino-TEMPO) to determine the interaction with

citrate-stabilized AuNPs. They found that Amino-TEMPO is adsorbed on the AuNP sur-

face, leading to a signal decrease. In the presence of oxygen, Amino-TEMPO was oxidized

to its oxo derivative, potentially catalyzed by the AuNPs.[78]

2.3 Biological E�ects of Gold Nanoparticles

As the number of envisioned applications of AuNPs in biomedical applications rapidly in-

creases, the e�ects towards biological systems need to be analyzed. This �eld can be gener-
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ally divided into in vitro and in vivo investigations. Although the latter is closer to realistic

application scenarios, the former has also its value, as important basic knowledge can be

gained and some general principles of the interactions of AuNPs with living organisms may

already be found and understood in the easier accessible, cheaper and ethically better justi-

�able cell experiments. Also, the analysis of in vivo experiments comprises a higher degree

of complexity due to parameters such as uptake pathway, organ distribution, retention time

and the complex interplay of numerous di�erent cell types. In vitro assays may enable easier

access of structure-property relationships as a lower number of parameters must be taken

into account.

This work is restricted to in vitro experiments. Two recent overviews of in vivo investigations

were given by Alkilany et al. and Li et al..[79, 80]

2.3.1 Methods

Di�erent methods exist to determine cytotoxicity.[6] Besides light microscopy to analyze

changes in cellular structure, staining assays are widely used. Some are based on the fact

that dying cells become leaky, such as Neutral Red, which usually accumulates in lysosomes

of healthy cells, so that reduced uptake is a sign for impaired cell viability, and Trypan Blue

that is only permeable to cells with compromised membranes.

Mitochondrial activity can be analyzed by the widely used MTT assay. Here, the dye 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) is colorimetrically quan-

ti�ed. In living cells, it is metabolized to its blue formazan derivative, thus a correlation of

cell viability can be drawn. Other dye assays working on the same principle are MTS, WST

and XTT. As a measure, typically the half maximal inhibitory concentration (IC50) is given

as the concentration of the toxic compound that impaired cell viability by 50%.

Cytotoxic compounds may induce in�ammation reactions within living organisms. Thus,

concentrations of in�ammation biomarkers such as IL-1β, IL-6, and TNF-α together with

IL-8 can be quanti�ed.

To di�erentiate between necrosis (sudden cell death as cellular response of acute cellular

injury) and apoptosis (programmed cell death leading to cell fragments that can be digested),

double staining with two dyes and subsequent �ow cytometry is often used. Annexin V is a
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staining reagent for phosphatidylserine, a membrane lipid which concentration is increased

on the extracellular side during apoptosis. Propidium iodide is a nuclear stain for impaired

membrane integrity, hence for necrosis. By di�erentiation between single annexin V stained

apoptotic cells and double stained necrotic cells, the cell death mechanism can be elucidated.

2.3.2 Uptake Mechanisms

Endocytosis is the generic term for several uptake mechanisms. Cells capture extracellular

molecules in vesicles consisting of plasma membrane. Depending on the size of the resulting

vesicles, endocytosis is di�erentiated into phagocytosis (0.1 - 10µm) and pinocytosis (up to

100 nm for micropinocytosis and up to 1000 nm for macropinocytosis). There are several

sub-mechanisms described, depending on whether cell membrane receptors are involved or

not.[81]

Concerning NPs, the kind of cellular uptake is dependent on nanomaterial intrinsic factors

such as size, shape, surface chemistry determined by charge and ligand type (hydrophilic or

hydrophobic), and potential biologically active species like receptor a�ne functionalities.[82]

This number of determining parameters complicates a general prediction. Some recent

examples from literature will describe the di�erent and sometimes contradictory results.

A study about the uptake of 14, 50, and 74 nm sized AuNPs, stabilized with citric acid,

revealed size-dependent kinetics.[83] Here, 50 nm sized AuNPs were most e�cient in uptake.

The investigation of di�erently sized PEGylated AuNPs was described by Oh et al. AuNPs

from 2.4 to 89 nm were functionalized with cell penetrating peptides (CPPs), and uptake was

investigated in COS-1 cells.[84] They found that cellular uptake is directly dependent on the

surface display of the CPP whereas the �nal intracellular destination is further determined

by AuNP diameter. 2.4 nm sized AuNPs were found in the nucleus. 5.5 and 8.2 nm sized

AuNPs were partially taken up by cells into the cytoplasm, while larger AuNPs with mean

diameters of 16 nm and larger were not taken up at all. This last �nding signi�cantly di�ers

from another report in which AuNPs of 18 nm size were endocytosed and ended in endocytic

vesicles.[11]

The endocytotic uptake of single AuNPs was investigated by atomic force spectroscopy. 4,

12, and 17 nm sized L-cysteine-stabilized AuNPs were used. Uptake forces increase with
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AuNP size, which can possibly be attributed to the increased interaction area between

AuNP and cell membrane. Endocytosis could be inhibited by treating the cell with the

cytoskeleton inhibitor cytochalasin B.[85]

Furthermore it was found by Verma et al. that even the surface structure of the ligand

shell can in�uence the uptake mechanism.[86] AuNPs of the same size of 4.5 nm and with a

mixed ligand shell of the same composition, but with either unordered or stripe-like ordered

ligands, were either trapped in endosomes or could pass the cell membrane without bilayer

disruption.

In biological tissue as well as in cell culture medium, particles will be wrapped in a shell of

the proteins present. For 10 - 20 nm sized FePt and CdSe/ZnS NPs stabilized by a polymer

coating, this so-called protein corona could be quanti�ed to have a thickness of 3.3 nm.[87]

The occurrence of a protein corona around AuNPs could be shown for citrate-stabilized

AuNPs of 5 - 100 nm in interaction with typical blood proteins such as albumin and

insulin.[88] The binding constant and also the thickness of the �nal protein layer depend on

the particle size, both increasing with increasing AuNP size.

Mirkin and co-workers describe a dependance of the oligonucleotide density of 13 nm sized

AuNPs and the number of proteins absorbed, thus a�ecting the cellular uptake in a mouse

cell line (C-166) and two human cell models (HeLa and A594).[89]

2.3.3 Cytotoxicity

As a result of AuNP uptake, cytotoxicity may occur. Within the last years, several studies

were published concerning the toxicity of AuNPs. Various AuNPs were analyzed by di�erent

methods, which complicates a direct comparison or the statement of a general hypothesis.

The lack of systematic investigations and reports of sometimes contradictory results by

di�erent groups were the starting point for the DFG project in which framework this work

was conducted.

There are some recent reviews concerning the topic of nanoparticle cytotoxicity.[6, 90] The

most relevant publications with regard to the present work will be discussed here.

Surprisingly high cytotoxicity was found for Au55[(C6H5)2P(C6H4SO3Na)]12Cl6 clusters (ab-

breviated as Au1.4MS in the present work) in eleven di�erent cancer and healthy human
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cell lines after an incubation time of 24 h, determined by MTT assay.[8] Further, the intra-

cellular distribution was investigated by neutron activation analysis (NAA). 57.5% of the

radioactive gold isotope was located in the cytoplasmatic fraction, 42.5% was bound to the

cell nucleus. After removal of the nuclear proteins, 21.1% were found in the DNA fraction.

However, this was possibly an artifact of the sample preparation because the nuclei always

fractionate with the pellet and thus together with the AuNPs.

Connor et al. revealed the uptake of 18 nm sized citrate- or biotin-capped AuNPs in K562

leukemia cells.[11] An MTT assay after three days of incubation did not show toxicity

induced by the AuNPs up to gold atom concentrations of 250µM. The same was determined

for cysteine- and citrate-capped 4 nm sized and glucose-stabilized 12 nm sized AuNPs (up

to 25µM).

Another study reported of 13 nm sized citrate-stabilized AuNPs in human dermal �broblast

cells.[10] After incubation times of 2, 4 and 6 days, proliferation of the cells was impaired.

Moreover, it was found that the formation of actin �laments was disturbed.

2 nm sized thiol-stabilized AuNPs with either cationic ammonium or anionic carboxylate

functional end groups were analyzed for their e�ects towards COS-1 cells, red blood cells

and E. coli bacteria cells.[91] Cells were incubated with up to 3µM AuNPs for a maximum

of 24 h and analyzed by MTT assay. E. coli cells were found to be slightly more resistant

to AuNP toxicity that was induced by the cationic AuNPs. The anionic species had no

toxic e�ect, which was explained by less favored interaction with the negatively charged

lipid bilayer of which a cell membrane consists.

In 2009, 8 nm sized poly(vinylpyrrolidone)-stabilized AuNPs were investigated in madine

darby canine kidney cells (MDCK) and human hepatocellular carcinoma cells (HepG2)

after 24 h of exposure.[92] No cytotoxicity was found with Neutral Red uptake and colony

forming e�ciency tests.

From these �ndings, no clear trend could be found yet concerning the size- or ligand-

dependent cytotoxicity of AuNPs, obviously resulting from the di�erent protocols, descrip-

tions of dosage and reference compounds used so far.
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2.3.4 Oxidative Stress & Reactive Oxygen Species

Oxidative stress describes a state in metabolism in which a critical concentration of reactive

oxygen species (ROS) is formed. These are the superoxide O �
2 , hydrogen peroxide H2O2

and the hydroxy radical ·OH. The concentrations of cellular antioxidant defenses such as

glutathione (GSH) are depleted. In consequence, lipid membranes, proteins and DNA are

a�ected and become oxidized which may critically disturb their vital functionalities.

A general model of NP induced oxidative stress, the determining factors and the conse-

quences in biological organisms was presented by Nel et al.. The nanomaterial factors

include material composition, electronic structure, surface bound species, surface coatings

and solubility. It is therefore not possible to predict if a certain nanomaterial will induce

oxidative stress in cells but has to be individually investigated.[13] Some studies indicate

that AuNPs may induce oxidative stress in cells.

A MRC-5 human fetal lung �broblast cell line was treated with 20 nm citrate-stabilized

AuNPs which were further passivated with fetal bovine serum (FBS).[93] The highest

AuNP concentration used was 1 nM (particle concentration) and was incubated up to

72 h. A decrease in total cell number was found. Furthermore, the generation of 8-Oxo-2'-

deoxyguanosine (8-OH-dG) could be shown. This is related to oxidative stress and genotoxi-

city (see below in section 2.3.5). The AuNPs also a�ected genes associated with genomic

stability and DNA repair.

13 nm sized citrate-stabilized AuNPs were analyzed for their potential to produce NO in

blood serum.[94] Concentrations up to 80µM clearly induced NO release. It is speculated

that S -nitroso adducts with a thiol group, such as S -nitrosoalbumin, S -nitrosocysteine, and

S -nitrosoglutathione are the source for NO release. This conclusion was drawn from the

occurrence of a thiolate peak in XPS spectra of the AuNPs after contact with blood serum.

Cationic AuNPs with thiols of di�erent alkyl chain lengths were analyzed towards HeLa

cells determined by alamar blue assay.[95] The production of ROS was shown by 2'-7'-

dichlorodihydro�uorescein diacetate (H2DCFDA) staining. Increasing the hydrophobicity

of the particles increased their cytotoxicity and also ROS production.
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2.3.5 Genotoxicity

Oxidative stress can damage DNA and induce single-strand breaks, double-strand breaks,

oxidatively induced base damage, and other DNA lesions. This can further lead to mutage-

nesis, carcinogenesis, or other age related diseases.[96]

There are di�erent methods to investigate NP induced genotoxicity. One common method

is the comet assay, which is based on gel electrophoresis of a single cell after lysis. It is

a relatively simple and fast assay. One disadvantage is the lack of information about the

targets of oxidative damage.

For a more detailed investigation, single DNA base oxidation products can be quanti�ed.

Typically, this is done by HPLC or ELISA detection for 8-OH-dG, an oxidation product of

deoxyguanosine with mutagenic and promutagenic activity.[97]

However, there are several other DNA oxidation products (lesions) with adverse e�ects that

are more di�cult to detect as they are present in lower concentrations. A detection method

for identi�cation and quanti�cation of numerous lesions is GC/MS. If this is performed

together with a so-called isotope-dilution procedure for which known concentrations of the

respective, isotopically labeled lesions are added, it is possible to quantify the concentrations

of several lesions in a single measurement of one sample.[98] Despite the more elaborate

sample preparation compared to other assays, the latter method was chosen in this work to

investigate AuNP induced genotoxicity, thus enabling the detection of multiple DNA lesions

simultaneously.

An analog technique to quantify DNA damage that was also used here is liquid chroma-

tography/tandem mass spectrometry (LC/MS/MS). Similar sensitivities as compared to

results from GC coupled systems could be shown.[99] An advantage compared to GC/MS

is that the analyte does not have to be derivatized prior to the measurement.[100]

The tandem mass spectrometry measurement unit enables the selection of a certain ion

from a �rst overview mass spectrometry unit, its fragmentation and subsequent analysis

of secondary fragments. This allows simultaneous detection of lesions and recording of

fragmentation patterns thereof.
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2.3.6 Ion Channels & Patch Clamp Technique

One important step to bridge the huge gap between in vitro toxicity assays and in vivo

studies is the investigation of negative e�ects towards ion channels of cells by the patch

clamp technique.[101]

Nowadays, many new chemical compounds are abandoned early in the drug development

process because they interfere with the KV11.1 potassium ion channel (encoded by the

hERG gene and therefore abbreviated as hERG).[102] The hERG ion channel is a voltage

gated potassium channel that, together with other ion channels, regulates the heartbeat

as it mediates the rapid delayed recti�er K+ current in heart (IKr). IKr is activated by

membrane depolarization and is a major determinant of the duration of action potentials in

the ventricle. Mutations in hERG leading to a complete or partial loss of channel function

are a major cause of inherited long QT syndrome (LQTS). More often, dysfunctions of

hERG that lead to LQTS are caused by a blockade of medications as an undesirable side

e�ect. This has already led to the removal of several drugs from the market and is now

a indispensable pretest in the development of new drugs. Therefore, new drug candidates

have to be tested for a potential inhibitory e�ect on the hERG current (Guidance ICH S7A,

S7B by the FDA). This susceptibility relates to the special structure of hERG.[103]

Distinct from other voltage gated K+ channels the S6 loop of the hERG protein lacks a

proline-X-proline motif that is proposed to insert a 'kink' in this inner helix. Therefore, the

cavity of the hERG channel is supposed to be wider compared to the related K+ channels

and thus providing more space for chemical compounds, e. g. small NPs, interacting with

putative binding sites.

With the patch clamp technique, the electrophysiology of cells, i. e. the membrane poten-

tial and channel currents of ion-channel expressing cells can be examined.[104] Undesirable

interactions of potential drugs that compromise or inhibit the channel functionality can

be analyzed. For this purpose, the patch electrode (a glass micropipette �lled with an

electrolyte solution and a chlorinated silver wire) is brought in close contact to the cell

which is adherent in the medium �lled cell chamber. Depending on the question that is

addressed, di�erent pipette-cell con�gurations can be realized. In a typical experiment, the
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glass capillary is placed in contact with the cell membrane. By applying a slight suction

the cell-to-capillary contact is sealed (�gigaseal�). By enhancing the suction the membrane

is ruptured and the electrode is in contact with the cytosol (�whole cell con�guration�). Via

this patch electrode and with a counter electrode in the cell chamber it is now possible to

apply a certain potential to the cell membrane as well as to measure the ion current through

the ion channels of the entire cell. The test compound can then be added to the cell culture

medium in the cell chamber, and in�uences on the channel activity can be detected. Patch

clamp is now a standard technique for new therapeutics.

In a �rst example for an application of patch clamp measurements on NP incubated cells,

Parak and co-workers investigated the e�ect of di�erently coated CdSe NPs with a core

diameter of 2.4 nm towards hERG expressing CHO cells.[105] They found that particles of

this size do not cause any e�ects towards characteristic electrophysiological properties of

the cells, but a quanti�ed cytotoxicity of CdSe NPs that could be related to the release of

Cd2+ ions.

2.4 Modi�cation of AuNPs for Biomedical Applications

Cytostatic drugs used nowadays in chemotherapy have several disadvantages that have to

be solved for a better treatment of patients. One huge disadvantage is the general toxicity

of most cytostatic drugs, thereby leading to severe side e�ects during cancer therapy such as

depression of the immune system, fatigue, nausea and others. Therefore, anticancer drugs

need urgently to be improved and to be made more speci�c.

NPs can easily be functionalized via their ligand shell. Thus, targeting molecules can

be attached to the NP surface, leading to a speci�c interaction with cells having suitable

receptors. Appropriate target molecules include peptides, proteins, enzymes and antibodies,

depending on the aspired application.[40]

NPs with active targeting functionalities are classi�ed as third generation NPs and are ca-

pable of speci�cally recognizing their target. Typically, they interact with receptors present

on the cell surface via peptides, proteins, aptamers and antibodies. Uptake can then occur

through receptor-mediated endocytosis.[106]
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This was for example shown for a variety of AuNPs (10, 20, 30, and 60 nm diameter,

respectively), functionalized with mixed ligand shells of PEG and two di�erent receptor-

mediated endocytosis-triggering peptides in HeLa cells. E�cient uptake could be con�rmed

by induced coupled plasma-optical emission spectroscopy (ICP-OES) of the lysed cells.[107]

2.8 nm sized AuNPs functionalized with tiopronin and then further with a Tat protein-

derived peptide sequence were tested in a human �broblast cell line by TEM. Speci�c nuclear

targeting could successfully be performed.[108]

A TEM based study with 16 nm sized AuNPs investigated the uptake in HeLa cells de-

pending on functionalization.[109] If the AuNPs were coated with CPPs, the uptake did

no longer happen via endocytosis, or possibly the AuNPs were able for endosomal escape,

as they were not found in endosomes within cells. When they were functionalized with a

mixture of CPPs and nuclear localizing signal (NLS) peptides, it was possible to induce

nuclear targeting with these AuNPs.

2.4.1 Targeting with Bombesin

Bombesin is an oligopeptide consisting of 14 amino acids which was �rst found in the skin

of a toad, Bombina bombina.[110] It shows antitumor activity as it binds to gastrin releasing

peptide receptors (GRPR). GRPR are overexpressed in a number of di�erent cancer cells,

such as prostate, gastrinoma and breast cancer cells.[111] It is thus an excellent marker for

early molecular events in carcinogenesis.[112]

Bombesin was already used for AuNP targeting. When 16 nm sized AuNPs were func-

tionalized with a thioctic acid-bombesin derivative, enhanced speci�city towards GRPR

expressing cells could be shown in vitro, as well as in vivo in a prostate tumor bearing mice

model. Biodistribution was followed by using radiolabeled 198Au.[113]

Furthermore, Kogan and co-workers synthesized multifunctional 20 nm sized AuNPs, func-

tionalized with a bombesin analogue and an analogue of the RAF peptide as a drug

peptide.[114] They also found an enhanced activity and selectivity towards GRPR expressing

cells, the latter induced by the targeting entity bombesin.

One advantage of bombesin and its analogues compared to other targeting entities such

as antibodies is its relatively small size. This is especially important if small AuNPs are
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functionalized, as it might not be possible to attach a huge biomacromolecule to small gold

clusters for sterical reasons.

2.4.2 Labeling with Fluorophores/Amino�uorescein

Besides a functionalization to induce target speci�city, it is also possible to attach marker

molecules such as �uorophores to AuNPs to enable visualization within organic matter. If a

�uorophore is attached to a AuNP, quenching e�ects can occur, depending on the AuNP size

and the linker length.[74] This can be used to visualize ligand desorption from the particles

which results in increasing �uorescence.

2 nm sized AuNPs with thiol ligands were partially functionalized with a �uorescein deriva-

tive that was bound via a TEG linker containing additional 9 CH2 groups. Here, e�ective

quenching between �uorophore and AuNPs was observed, and the particles were used to

quantify ligand release by �uorescence spectroscopy.[68]
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3.1 Syntheses of AuNPs

Di�erent routes were followed to synthesize a variety of AuNP species, varying in size,

ligand shell and functionalization. The syntheses performed in this work were all based on

wet chemical synthesis, i. e. the reduction of a gold salt or complex in solution. Depending

on the synthesis conditions, di�erent AuNPs could be produced and further modi�ed. For

this purpose, two main strategies were pursued: ligand exchange reactions which could be

performed in one or two phase systems, or further chemical modi�cation of the existing

ligand shell.

Many AuNPs described in this work are based on the Au55 cluster �rst synthesized by Schmid

et al.[33] and its water soluble derivative Au1.4MS.[34] Furthermore, citrate-stabilized

AuNPs with mean diameters between 10 - 15 nm, synthesized by the Turkevitch method

[32], were often used as precursor AuNPs for further functionalization. Some other synthe-

sis strategies were also performed and are described at the respective parts.

All AuNPs were analyzed regarding two aspects: their size and monodispersity, and the

chemical composition of their ligand shell. Di�erent analytical tools were used for these

purposes: UV/Vis spectroscopy, electron microscopy and dynamic light scattering for size

determination; elemental analysis, IR and NMR spectroscopy for the chemical constitu-

tion. Mean diameters correspond to values determined by statistical analysis of electron

microscopy micrographs if not stated di�erently. The results for the di�erent AuNPs are

described at the respective parts.
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3.2 Size-Dependent Cytotoxicity

A variety of di�erently sized AuNPs between 0.8 and 15 nm, all stabilized with a TPPMS

ligand shell, was synthesized, characterized and the cytotoxicity of each species was eval-

uated. The cell experiments were conducted by Dr. Yu Pan-Bartneck at the University

Hospital Aachen (UKA), and parts of the results of these tests are described in her PhD

thesis.[12]

Au0.8MS, Au1.4MS and Au15MS were synthesized according to known protocols [19, 34,

115] (see also chapter 5 for details). The UV/Vis spectra of the three materials are shown

in �g. 3.1. The spectrum of Au0.8MS shows discrete peaks in the range below 500 nm and

is consistent with a spectrum of a Au8 cluster.[19] Au1.4MS shows a smooth spectrum with

decreasing absorbance to longer wavelengths, but without discrete absorptions as small

clusters or a plasmon resonance peak as colloids. The spectrum of Au15MS shows a typical

surface plasmon band with an absorption maximum at a wavelength of 524 nm.

STEM micrographs for Au1.4MS and Au15MS are shown in �g. 3.2 and show AuNPs with

a narrow size distribution (1.4± 0.2 nm and 15± 1 nm, respectively).

Figure 3.1: UV/Vis spectra of Au0.8MS, Au1.4MS and Au15MS.
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Figure 3.2: STEM micrographs of 1.4 nm (left) and 15 nm (right) sized, TPPMS-
stabilized AuNPs.

In a newly developed route, AuNPs with a mean diameter of 5.6 nm (Au5.6MS) were syn-

thesized in a two step procedure. First, dodecylamine-stabilized AuNPs were synthesized

and dispersed in dichloromethane.[37] In a two phase ligand exchange reaction, these par-

ticles were functionalized with TPPMS and transferred to the aqueous phase. The UV/Vis

spectrum, showing a distinct plasmon resonance peak at 518 nm, and a representative STEM

micrograph are shown in �g. 3.3, respectively.

Figure 3.3: UV/Vis spectrum (left) and STEM micrograph (right) of Au5.6MS.
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Furthermore, the cytotoxicities of two AuNP species with sizes of 1.2 and 1.8 nm (Au1.2MS

and Au1.8MS, respectively), kindly provided by STREM Chemicals Inc, were examined as

well.

First, the stabilities of all AuNP species in cell culture medium were con�rmed. The

AuNP cytotoxicities were then evaluated in an MTT assay with an incubation time of

48 h. Tauredon®, a gold(I) thiomalate complex which is in clinical use as an anti-rheumatic

drug, was tested as a reference. This complex does not exist in its molecular form in solu-

tion, but forms polymeric structures. Number and nature of the species thereby depend on

parameters such as concentration, pH and nature of the cation (here Na+).[116]

The �rst AuNPs tested (Au0.8MS, Au1.2MS, Au1.4MS, Au1.8MS, and Au15MS) were

tested in four di�erent cell lines: HeLa cervix carcinoma epithelial cells (HeLa), SK-Mel-

28 melanoma cells (SK-Mel-28), L929 mouse �broblast cells (L929), and mouse mono-

cytic/macrophage cells (J774A1). The sensitivity di�erence between di�erent growth phases

of cells, i. e. the logarithmic growth phase after 72 h of cell seeding into microtiter plates and

the stationary phase after seven days of cell culturing, was also investigated. Later, HeLa

cells in the logarithmic growth phase were used as the standard experiment conditions for

all AuNPs.

A size-dependent cytotoxicity was found for all cell lines and incubation conditions (see

�g. 3.4 for the results from the logarithmic growth phase). The di�erent cell lines resulted

in slightly di�erent absolute IC50 values, but the trends were the same in all cell lines. Cells

in the logarithmic growth phase were generally more sensitive to all toxic species by a factor

of 1.5 - 3.3 compared to cells in the stationary phase.

Au1.4MS was the most toxic species with an IC50 of 46µM in HeLa cells in the logarithmic

phase. Smaller (Au0.8MS, Au1.2MS) and larger AuNPs were less toxic (Au1.8MS) or even

non-toxic (Au15MS) in the highest concentration that was applied. Au5.6MS was tested

up to a concentration of 150µM and was not toxic in this concentration. In a subsequent

experiment it was found that the IC50 of Au4.6MS, a di�erent batch but synthesized via the

same route as Au5.6MS, is 370µM.[118] The IC50 value for Au5.6MS is presumably in the

same order of magnitude or even higher than this value.

36



3.2 Size-Dependent Cytotoxicity

Figure 3.4: IC50 values of di�erent AuNPs and Tauredon as reference for four di�erent
cell lines, determined in the logarithmic growth phase.[117]

The mononuclear reference substance, Tauredon®, had an IC50 value of 19 mM in logarith-

mically growing HeLa cells. This is a �rst indicator that the cytotoxicity of AuNPs is not

induced by ionic gold species; this issue is further discussed in chapter 3.7.

The pure ligand TPPMS was also tested and resulted in an IC50 value of 600µM. For

the most toxic species, Au1.4MS, the molecular ratio of Au:TPPMS is 55:12. At the

IC50 concentration of 46µM (gold atom concentration), the TPPMS concentration thus

amounts to 10µM, being signi�cantly below the IC50 concentration of TPPMS itself. It

could be imaginable that the AuNPs act as a carrier for TPPMS. This would lead to

spatially accumulated TPPMS molecules and a locally increased ligand concentration,

potentially being more harmful than the free TPPMS. However, this hypothesis would not

explain the size dependence with a maximum for a medium size of 1.4 nm as it was found.

Furthermore, this could later be disproven when a mixture of Au1.4MS with additional

TPPMS was tested (see chapter 3.4.3) and showed a signi�cantly lower cytotoxicity than

Au1.4MS alone. The moderate cytotoxicity of TPPMS is therefore considered to be not

related to the high toxicity of Au1.4MS.
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For the size dependence of AuNP cytotoxicity a variety of potential mechanisms can be

named.

Nano-objects are in the same size range as cell components and proteins. A size-speci�c

interaction of AuNPs with certain important cell functionalities is conceivable. Such an

interaction might block the target entity and induce a fatal disturbance in the cellular

signaling, motility and metabolism. It is possible that AuNPs of certain sizes �t better

in the blocked structures than others and that there is a maximum of interaction and a

resultant toxicity maximum for Au1.4MS. One possible target of such a size- or structure-

related interaction is DNA, as explained by the model presented by Liu et al..[9] Here, an

interaction of Au1.4MS with the phosphate groups in the major groove of the DNA double

helix backbone is hypothesized. Such an interaction could block DNA transcription and

therefore cause cell death. For a further discussion, see chapter 3.4.2.

Also, proteins might be impaired by AuNPs. It was shown for other nanomaterials (copoly-

mer particles, cerium oxide particles, quantum dots, and carbon nanotubes) that they induce

protein �brillation which is related to various diseases.[119] A similar e�ect might be the

reason for the cytotoxicity of AuNPs.

Another potential location of activity is the cell membrane. Nanoparticles may induce

disruption of the membrane, or block certain essential functional entities. The e�ect of

AuNPs towards HEK 293 cells, transfected with the hERG gene leading to a high expression

of potassium channels, is further discussed in chapter 3.8. But also in other cell types

without an enhanced number of ion channels in the membrane, lethal e�ects of AuNPs are

imaginable.

It is also known that AuNPs with very small diameters are catalytically active for a range

of reactions such as oxidation and hydrogenation reactions. The size dependence here is

explained by the number of active sites, relative to the number of total gold atoms, i. e.

the smaller the particle, the more energetically favored surface atoms are present. The

toxicity of nanoparticles has been related to oxidative stress and reactive oxygen species

(ROS) before.[13] It is imaginable that the cytotoxicity of AuNPs is directly related to

the generation of ROS and that Au1.4MS is, due to its structure, the most potent ROS

generating species of the AuNPs tested (see chapters 3.4.3 and 3.5 for further discussion).
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In all scenarios the accessibility of the AuNP surface is crucial. If the e�ect is based on

a blockade of cell functions, it seems plausible that the TPPMS shell is stripped at some

time point of the cell incubation, and that it is the bare gold core that interacts with the

target. On the other hand, the generation of ROS would very probably take place on the

gold particle surface as well. In both cases, the interaction between gold core and ligand

shell might play a role in the toxicity progress, and varying the binding strength between

gold and ligand might a�ect the toxicity potential of a given AuNP size.

3.3 Ligand-Dependent Cytotoxicity: Phosphine vs.

Thiol

Thiols have a generally higher a�nity towards gold than phosphines (see chapter 2.1.4).

DFT calculations on small clusters (Au38 and Au39) resulted in a binding energy of 0.93 eV

for the Au−PH3 bond compared to 2.45 eV for Au−SCH3.[44]

Therefore, small thiol-stabilized AuNPs with a glutathione (GSH) ligand shell (Au1.1GSH)

were synthesized in a direct synthesis approach.[39] The UV/Vis spectrum and a STEM

micrograph are depicted in �g. 3.5, respectively. The UV/Vis spectrum shows a simple decay

which is typical for very small AuNPs. This is con�rmed by the STEM analysis, resulting in

a mean particle diameter of 1.1± 0.2 nm. Note that for other batches synthesized, AuNPs

with a mean diameter of 1.5 nm were produced, therefore abbreviated as Au1.5GSH at the

respective parts.

The cytotoxicity was tested under the standardized conditions. These particles were clearly

less toxic than AuNPs of a comparable size but with the weaker binding TPPMS ligand.

They showed an IC50 value of 3131µM in HeLa cells in the logarithmic growth phase and

are therefore 68-fold less toxic than Au1.4MS.

Furthermore, a mixture of Au1.4MS and 10 eq GSH was incubated and tested. The IC50

value determined was 181µM. As thiols have a generally higher a�nity to gold than phos-

phines, a ligand exchange resulting in Au1.4GSH was assumed. A �rst hint for a chemical

reaction was the distinct solubility behavior, as the reaction product was less soluble in
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3 Results and Discussion

Figure 3.5: UV/Vis spectrum (left) and STEM micrograph (right) of Au1.1GSH.

bidistilled water, but was amphoteric and well soluble in acidic and basic solution. ζ poten-

tial measurements resulted in -48mV in basic and +25mV in acidic solution and con�rmed

the amphoteric nature of the AuNPs. Compared to that, Au1.4MS has a ζ potential of

-42mV in H2O at pH7 due to its acidic sulfonate group.

The method of ζ potential determination is exactly valid only for larger particles than

the species investigated here. Thus, the quantitative values measured here are questionable.

However, order of magnitude and especially the positive and negative pre�xes point towards

a ligand exchange reaction.

A 31P-NMR spectrum of washed and resuspended Au1.4GSH showed no signal, indicating

a complete ligand exchange and no residual TPPMS. The IR spectrum showed the charac-

teristic features of GSH, whereas the S-H stretching vibration at 2526 cm-1 was missing (see

�g. 3.6). This indicates a binding mode of GSH towards the AuNP surface via the thiolate

function.[120]

STEM analysis revealed a slightly broadened size distribution of the AuNPs, but still a mean

diameter of 1.4 nm (see �g. 3.7). The analytical investigations proved the ligand exchange

of TPPMS against GSH.

Another analyzed material was the commercially available Aurovist�which consists of

AuNPs with a mean diameter of 1.9 nm. The exact chemical formula of the ligand shell
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3.3 Ligand-Dependent Cytotoxicity: Phosphine vs. Thiol

Figure 3.6: IR spectra of Au1.4GSH (black) and GSH (red).

Figure 3.7: STEM micrograph (left) and histogram (right) of Au1.4GSH.
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3 Results and Discussion

is not known for this material, but it consists of carboxylic acid containing thiols.[121] The

IC50 value was determined to 9532µM.

Small thiol-stabilized AuNPs are obviously less toxic than phosphine-stabilized ones of a

comparable size. As brie�y explained above, this phenomenon is in accordance with both

models of toxicity. The gold core is either too tightly wrapped into the thiol shell so that

ligand stripping is inhibited, and the gold surface is not accessible to bind to a target cell

functionality. Or the bound thiols shield the gold surface against O2 adsorption so that no

ROS can be generated and cause cell death. This can be compared to �poisoning� of the

gold surface by thiols, as it is known for catalytic processes using metal surfaces or NPs in

interaction with impurities of sulfur containing molecules in the feed.[122]

Further experiments that corroborate this �nding are discussed in chapter 3.4.3. Another ap-

proach for a deeper understanding of the correlation between ligand−gold binding strength

and toxicity was the synthesis of diphosphine-stabilized AuNPs (see chapter 3.10). Here, the

chelating e�ect of a ligand molecule with two phosphine groups should enhance the stability

of the bond between ligand and particle surface.

3.4 Cellular Response Reactions

3.4.1 Necrosis vs. Apoptosis

The mechanism of cell death was further investigated. HeLa cells in the logarithmic growth

phase, incubated with AuNPs, were double stained with propidium iodide and annexin V and

analyzed by �ow cytometry. By this method, the two main cell death pathways necrosis and

apoptosis can be di�erentiated. Au1.2MS and Au1.4MS were both used in their respective

double IC50 concentrations (Au1.2MS: 285µM; Au1.4MS: 90µM). Cells were incubated for

increasing incubation times (6, 12, 18, 24, 30, 39, 48 h). Untreated cells were analyzed as

negative control. As a positive control to induce apoptosis, staurosporine was used. The

percental values from �ow cytometry are plotted in �g. 3.8.

Interestingly, the two AuNP species tested showed opposite results. Au1.2MS caused apop-

tosis to a larger extent (�g. 3.8C). After 48 h, 90% of the cells were dead, whereof 60% went
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3.4 Cellular Response Reactions

Figure 3.8: Results of �ow cytometry after double staining with propidium iodide
and annexin V (HeLa cells). A: untreated reference, B: staurosporine as
positive apoptosis control, C: 285µM Au1.2MS, D: 90µM Au1.4MS.[117]
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into apoptosis. On the other hand, Au1.4MS induced mainly necrosis (�g. 3.8D). After 48 h,

100% of the cells were dead with 80% necrotic cells. This di�erence in cell death mechanism

was not obvious from the MTT assay, which is a classical end point analysis, but was only

revealed by the kinetic study design.

The two materials comprise the same chemical components as they both consist of atomic

gold cores and TPPMS ligand shells. Their main di�erence is a variation of 0.2 nm in

the mean diameter of particle size, accompanied by a slightly varying number of TPPMS

molecules per particle, caused by distinct synthesis routes. The number of TPPMS molecules

per Au1.2MS particle was approximated to 30. The gold core consists of approximately 39

gold atoms (estimated by calculating the volume of a 1.2 nm sized sphere, with the atomic

radius of gold of 144 pm and an atomic packing factor of 0.74 for the ccp structure). Au1.4MS

has a gold atom to ligand ratio of 55:12, thus a lower relative concentration of TPPMS.

Anyhow, for both materials the TPPMS concentration is below its critical concentration for

the IC50 concentrations of the AuNPs.

The fact that Au1.2MS and Au1.4MS induce di�erent kinds of cell death can be interpreted

in two ways. Depending on the exact toxicity mechanism behind, it is possible that the two

AuNP species trigger di�erent cell response cascades. This would for example be the case

if a size-speci�c blocking of a biologically essential functionality by the AuNPs is taking

place, and the two di�erent AuNP species hit di�erent points of action. On the other hand,

Au1.4MS was found to be more toxic than Au1.2MS. It is therefore possible that simply

the severity of toxicity causes a sudden necrotic cell response, whereas the slightly less toxic

Au1.2MS enables the cell to activate the apoptosis pathway.

3.4.2 Gene Regulation

With a genome-wide mRNA expression analysis (A�ymetrix Genechips®), the in�uence of

AuNPs on cellular gene expression was investigated. HeLa cells were incubated with 100µM

Au1.4MS and 1000µM Au15MS for 1, 6 and 12 h. mRNA was extracted from the cells and

reverse transcribed into cDNA. The puri�ed cDNA was used to synthesize biotinylated

complementary RNA samples which were hybridized to the DNA array. By comparing
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the read-out values to results from untreated cells and by performing a hierarchical cluster

analysis, di�erences in gene regulation could be identi�ed.

Cells incubated with Au1.4MS showed a distinct gene pro�le compared to the reference.

After an incubation time of 1 h, some genes were already signi�cantly up-regulated (�g. 3.9).

After 6 h and more pronounced after 12 h, Au1.4MS had induced an oxidative stress response.

35 genes showed an enhanced expression. These were mainly heat shock and stress related

genes. On the other hand, several cell cycle related genes were down-regulated. In contrast,

the non-toxic Au15MS did not induce a strong reaction towards the gene regulation for any

incubation time.

The results show that the cytotoxicity of Au1.4MS is not primarily based on a DNA interac-

tion, leading to a direct transcriptional inhibition, as some genes are up-regulated within the

time frame of the experiment. However, an interaction with DNA at a later date cannot be

excluded from these results. Also, the �ndings are in agreement with the fact that Au1.4MS

induces mainly necrosis.

3.4.3 Oxidative Stress

As mentioned above, the generation of ROS is an often discussed topic concerning the

toxicity of nanoparticles. To investigate if this holds true for AuNPs as well, an-

other �ow cytometry experiment was performed. Here, 5-(and-6)-chloromethyl-2',7'-

dichlorodihydro�uorescein diacetate, acetyl ester (CM-H2DCFDA) was used as a staining

reagent. This �uorescein derivative has two acetate groups and shows no �uorescence in its

reduced form. In the presence of ROS, CM-H2DCFDA is oxidized, the acetate groups are

cleaved and the �uorescence of the reaction product is detectable (�g. 3.10).

HeLa cells were incubated for 48 h with 1000µM of Au1.1GSH and Au15MS, respectively.

Au1.4MS was applied in a lower concentration of 100µM with increasing incubation times

(6, 12, 18, 24, and 48 h, respectively). Untreated cells were analyzed as negative control,

and 30min incubation with 0.3% H2O2 served as positive control for oxidative stress.

The �uorescence curves (see �g. 3.11) clearly show that Au1.4MS causes oxidative stress in

HeLa cells in a time-dependent manner. The non-toxic AuNPs Au1.1GSH and Au15MS

on the other hand do not induce ROS formation although applied in 10-fold higher con-
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Figure 3.9: Gene chip results. Vertically ordered rows: genes with distinct expression
pro�les. The boxes show (in duplicate) from right to left: expression
pro�le of control (G); after incubation with Au15MS after 1 (F), 6 (E)
and 12 h (D), and Au1.4MS after 1 (C), 6 (B) and 12 h (A), respectively,
compared with the median expression level of the gene's transcript for all
samples shown. Blue: below median; white: equal to median; red: above
median.[123]
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Figure 3.10: Reaction of CM-H2DCFDA to its �uorescent derivative. This reaction
is used to indicate the presence of ROS.

Figure 3.11: Flow cytometry results, plotted as one-parameter histograms, of cells
incubated with Au1.4MS, Au15MS and Au1.1GSH and stained with
CM-H2DCFDA.
Green: untreated HeLa cells (no oxidative stress). Pink: HeLa cells
treated with 0.3% H2O2 for 30min (strong oxidative stress). Violet:
HeLa cells treated for 48 h with 1000µM Au15MS. Orange: 1000µM
Au1.1GSH. All others: HeLa cells treated with 100µM Au1.4MS for 6
(medium blue), 12 (dark blue), 18 (yellow), 24 (light blue), and 48 h
(light orange), respectively.[123]
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centrations. This result is a hint that the cytotoxicity of Au1.4MS is related to oxidative

stress.

Unfortunately, this result is ambiguous as it is also possible that the detected oxidative

stress is an indirect secondary e�ect of the necrosis that Au1.4MS de�nitively induces. The

di�erent sources for nanoparticle related oxidative stress were also discussed by Krug et al.:

the direct generation of ROS at the nanomaterial surface or a catalytic e�ect of transition

metals, damage of mitochondria and thereby a disturbance in the respiratory chain, or an

increased ROS level induced by the activation of macrophages or neutrophiles.[5]

The e�ect of anti-oxidants towards the cytotoxicity of Au1.4MS was investigated.

N -acetylcysteine (NAC), GSH, TPPMS and ascorbic acid were used (NAC in 3mM; GSH,

TPPMS, and ascorbic acid in 1mM concentrations). The chemical structures and IUPAC

names are shown in �g. 3.12.

Figure 3.12: The four anti-oxidants tested for their inhibition potential of Au1.4MS
toxicity.

Di�erent incubation schemes were followed: either the HeLa cells were pre-incubated with

anti-oxidants and subsequently with 100µMAu1.4MS (with (C) or without interjacent wash-

ing (E)), or Au1.4MS was pre-treated with anti-oxidants and added immediately (F) or after

3 h (D) to cells. The e�ects of the pure anti-oxidants was also tested (G).
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3.4 Cellular Response Reactions

Figure 3.13: E�ect of diverse anti-oxidants towards cytotoxicity of Au1.4MS.
A: untreated reference. B: positive reference (100µM Au1.4MS). C: cells
pre-incubated with anti-oxidants, washed, incubated with Au1.4MS.
D: Au1.4MS pre-incubated with anti-oxidants (3 h), mixture added to
cells. E: cells pre-incubated with anti-oxidants, no washing step, incu-
bated with Au1.4MS. F: Au1.4MS pre-mixed with anti-oxidants, mixture
added to cells immediately. G: pure anti-oxidants.[123]

As can be seen in �g. 3.13, NAC and GSH can protect the cells from the toxic impact of

Au1.4MS if the AuNPs are pre-incubated with the anti-oxidants (D, F) or if those are present

in the cell culture medium when the AuNPs are added (E). TPPMS has the same tendency,

but with lower e�cacy. A pre-incubation with subsequent washing of the cells does not

in�uence the toxicity of Au1.4MS (C). This points to an interaction of the anti-oxidants

with Au1.4MS, not with the cells. This interaction could be a direct ligand exchange as

shown before (3.3), or an indirect interaction by capturing and neutralizing the ROS that

are potentially generated and related to the AuNP toxicity.

Ascorbic acid on the other hand does not have a protecting e�ect. NAC and GSH as thiols

and TPPMS as a phosphine have functional groups with high binding a�nities to the AuNP

surface. This is not the case for ascorbic acid, as its OH groups have only weak a�nity

towards gold. It is therefore likely that a direct interaction of NAC, GSH and TPPMS with

the AuNP surface is responsible for the reduced toxicity. A ligand exchange with GSH was

already shown (see 3.3). NAC will probably react in the same way with AuNPs. TPPMS
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will either build a closer packed ligand shell around the particles, or an excess of TPPMS

in�uences the desorption equilibrium in solution and leads thereby to a less accessible AuNP

surface. Ascorbic acid cannot attach strongly onto the AuNP surface and has therefore no

e�ect in this experiment.

3.5 EPR Spectroscopy with AuNPs

One hypothesis concerning the toxicity mechanism of nanomaterials states that the gener-

ation of ROS plays a key role. This is related to the ability of AuNPs to catalyze oxidation

reactions (chapter 2.1.2.3). Likewise the �ndings about the cytotoxicity of AuNPs, their

catalytic activity is often related to size and functionalization. The former, the AuNP size,

determines the number of active surface atoms per particle, especially activated edge and

vertex atoms. The ligand shell chemistry a�ects the accessibility and the chemical and

therefore catalytic activity of these surface atoms. Corresponding to toxicity, small AuNPs

with weakly bound ligands are potentially more active to generate toxic oxygen radicals

than larger particles or particles with inactivating, strongly bound ligands.

The �ndings of Turner et al. that especially Au55[(C6H5)3P]12Cl6 is more potent than other

AuNPs in the oxidation reaction of styrene to benzaldehyde enforced the hypothesis that the

strong cytotoxicity of Au1.4MS could be based on the generation of ROS.[29] The general

correlation between oxidative stress and AuNP toxicity could be shown with the substrate

CM-H2DCFDA (3.4.3), although it is here not possible to di�erentiate between primary

ROS generation and subsequent cell death or �rstly induced necrosis and, as a secondary

e�ect, related increase of oxidative stress in dying cells (see �g 3.14).

One way to analyze the potential catalytic activity towards oxidation reactions of AuNPs

is the reaction with a stable radical substrate and the analysis by EPR spectroscopy.[78]

According to the experiments of Zhang et al., 4-Amino-2,2,6,6-tetramethylpiperidine-1-oxyl

(Amino-TEMPO), a stable radical, was used as a substrate for an indirect detection of

ROS. It can catalytically be oxidized to the also EPR active 4-Oxo-2,2,6,6-tetramethyl-1-

piperidinyloxy (Oxo-TEMPO) (reaction scheme in �g. 3.15).
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Figure 3.14: Scheme depicting the possible pathways related to oxidative stress in-
duced by AuNPs, as a primary (left) or secondary (right) e�ect in the
cell. Both pathways might include a ligand stripping step.

Figure 3.15: Oxidation reaction of Amino-TEMPO to Oxo-TEMPO.
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Figure 3.16: EPR spectra of Amino-TEMPO solutions with di�erent concentrations
of Au15Citrate. Light blue: Amino-TEMPO reference; blue: 5.8mM;
gray: 2.9mM; green: 1.16mM; black: 0.58mM.

Concentrated solutions of Au15Citrate, Au15MS, Au1.4MS and Au1.5GSH were saturated

with O2 or Ar, respectively. The oxidation reaction of Amino-TEMPO to Oxo-TEMPO

should be inhibited in the samples prepared under Ar atmosphere, the saturation with O2

should on the other hand facilitate the reaction. The prepared AuNP solutions were mixed

with equally treated saturated stock solutions of Amino-TEMPO at moderately basic pH,

and the amounts of detectable Amino-TEMPO were determined by EPR spectroscopy.

Interestingly, in di�erence to the �ndings of Zhang et al., in none of the experiments a

generation of Oxo-TEMPO was observed. The e�ects under oxygen and argon atmosphere

were very similar. From the four AuNP species tested, only Au15Citrate was able to quench

the EPR signal of Amino-TEMPO (see �g. 3.16).

This points to an adsorption of the Amino-TEMPO molecules onto the AuNP surface. In

this manner, the unpaired electron of the radical may interact with the electron pool of the

metallic nanoparticle, and therefore the radical character of Amino-TEMPO is lost and it

is not detectable in the EPR anymore. As can be seen in �g. 3.16, the quenching potential

of Au15Citrate is concentration dependent. In the lowest concentration of approximately

0.58mM (black curve in �g. 3.16), the characteristic features of the EPR spectrum of Amino-
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Figure 3.17: Sample of Au15Citrate with Amino-TEMPO, measured directly after
mixing (brown) and after 24 h (blue).

TEMPO are still visible, although already with considerably lower signal intensity. In higher

AuNP concentrations, the signal is completely quenched. Moreover it was observed that the

signal of Amino-TEMPO in a sample further decreased over longer periods of time. A sample

that was left at room temperature for 24 h and was measured again showed a further drop

in signal intensity to approximately 20% of the original intensity, indicating a continued

slow adsorption (�g. 3.17).

All other AuNPs behaved di�erently in the experiments (�g. 3.18). The Amino-TEMPO

signal was not quenched at all by Au15MS, Au1.4MS and Au1.5GSH, not even at concen-

trations of 8.2mM (Au15MS), 4.7mM (Au1.4MS) and 5.4mM (Au1.5GSH), respectively.

The results under oxygen and under argon atmosphere were identical. This �nding indi-

cates that the accessibility of the AuNP surface plays a crucial role for the Amino-TEMPO

adsorption. In the case of citrate which is the weakest ligand in this set of AuNPs, Amino-

TEMPO can interact with the AuNP surface, probably via its amino function as amines are

known to act as AuNP ligands as well. Possibly, the Amino-TEMPO replaces the citrate

from the AuNP surface and becomes thereby EPR inactive. In case of TPPMS- or GSH-

stabilized AuNPs, the ligands bind more strongly to the AuNP surface and a reaction with
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Figure 3.18: EPR spectra of samples of Amino-TEMPO with di�erent AuNP species
(blue: Au15Citrate (2.3mM), red: Au15MS (8.2mM), orange: Au1.4MS
(4.7mM), gray: Au1.5GSH (5.4mM)).

Amino-TEMPO is inhibited. A reference experiment with pure citrate was performed to

exclude any reaction between citrate and Amino-TEMPO. Here, the Amino-TEMPO was

detectable without any quenching.

A set of experiments, under the same conditions as the previously performed ones but

with the addition of Oxo-TEMPO instead of Amino-TEMPO, was conducted. The results

were comparable to the Amino-TEMPO experiments: Au15Citrate was able to quench the

radical, the other AuNPs had no in�uence on the signal intensity. Obviously, the oxo

function of Oxo-TEMPO, or the tertiary amine, or both in a concerted way, may interact

with the AuNP surface of weakly stabilized AuNPs. This di�ers from the results found

by Zhang et al., who proposed that Oxo-TEMPO interacts less strongly with AuNPs than

Amino-TEMPO and becomes therefore detectable after an oxidation reaction of Amino-

TEMPO with AuNPs.

The results from EPR spectroscopy show an interaction of Amino-TEMPO only with

Au15Citrate, probably as an adsorption, but not necessarily an oxidation reaction. As

it was found that Oxo-TEMPO is quenched by Au15Citrate as well, this question cannot
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be answered by EPR spectroscopy. The results from the experiments performed under O2

and Ar atmosphere are comparable. This points noticeably to an adsorption rather than an

oxidation reaction.

Furthermore, it is obvious that the reactivity of di�erent AuNPs with Amino-TEMPO does

not correlate with their cytotoxicity. This is in opposition to the hypothesis that primary

ROS generation plays a crucial role in the toxicity mechanism of Au1.4MS.

3.6 Genotoxicity Studies

The cytotoxicity of AuNPs is possibly related to the blockade and/or damage of important

cellular structures. Besides potential contact points such as the cell membrane, proteins,

enzymes or organelles like the mitochondria, another possible target of such an interaction

is DNA. Con�icting conclusions can be drawn from the so far discussed results. A cell frac-

tionation experiment with BLM cells, treated with Au1.4MS and subjected to subsequent

neutron activation analysis (NAA) showed a gold content of 42.5% in the nuclear fraction

with 21.1± 2.9% bound to DNA.[8] A possible interaction of Au1.4MS with the major

groove of the DNA backbone was proposed. On the other hand, the gene chip analysis (see

chapter 3.4.2) revealed predominantly up-regulation of a number of genes after AuNP incu-

bation. This controverts a full blockade of DNA transcription, i. e. the immediate inhibition

of transcription activity.

Further experiments were necessary to answer the question of AuNP induced genotoxicity.

An elegant method to determine DNA damage is the GC/MS analysis of DNA, more pre-

cisely the detection and quanti�cation of oxidized DNA bases.[98]

Two sets of samples were prepared by Dr. Yu Pan-Bartneck (UKA). HeLa cells were in-

cubated for 3, 24, and 72 h with three di�erent AuNP species, respectively: Au1.4MS,

Au15MS and Au1.1GSH. Afterwards, the DNA was extracted from the cells (see �g. 3.19).

Furthermore, the same AuNPs and incubation times were applied on pure DNA which was

previously extracted from HeLa cells.
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Figure 3.19: Scheme of sample preparation for genotoxicity studies (sample set 1).
HeLa cells were incubated with AuNPs, DNA was extracted, isotopically
labeled DNA oxidation products were added, and after further treat-
ment the concentrations of DNA oxidation products were determined by
GC/MS.

The further treatment of the samples and the GC/MS measurements were conducted at the

National Institute of Standards and Technology (NIST; Gaithersburg, MD, USA), together

with Dr. Bryant Nelson and Dr. Elijah Petersen.

De�ned amounts of isotopically labeled derivatives of seven typical oxidation products

(lesions) of DNA bases were added to the samples prior to an enzymatic digestion of the

DNA (all lesions that were investigated are shown in �g. 3.20). The samples were analyzed

by GC/MS, and the amounts of lesions could be quanti�ed by comparing the integrals of

the gas chromatography peaks of the lesion and the respective isotopically labeled species.

In the case of oxidative damage of DNA induced by AuNPs, a signi�cant increase of one or

several lesion concentrations compared to the reference samples was expected. Interestingly,

in the �rst set of samples (the incubated cells), the concentrations of the lesions FapyAde

and FapyGua were signi�cantly decreased by Au1.4MS and Au1.1GSH (�g. 3.21). This was
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Figure 3.20: The DNA oxidation products (lesions) that were examined by GC/MS
in DNA samples from HeLa cells, incubated with AuNPs.

constant over all time points. The concentrations of the other lesions investigated were not

altered signi�cantly. Also, Au15MS had no measurable e�ect at any time point.

These �ndings were surprising for two reasons: No lesion concentration was increased, as

was expected before; instead, two lesions were depleted. Furthermore, Au1.1GSH behaved

similarly as Au1.4MS, although the two AuNP species have completely di�erent cytotoxicity

pro�les. A distinction of FapyAde and FapyGua from the other lesions can be explained by

the formation mechanism of these two lesions.

Generally, DNA bases are attacked by a ROS, typically the ·OH radical. The thus formed

base radical can further react in di�erent ways. For FapyAde and FapyGua, the second

reaction step is a one-electron reduction, either preceded or followed by a ring opening. This

one-electron reduction is unique for these two lesions and might be the impaired reaction

step.[99]

The second sample set on the other hand, the samples of DNA incubated directly with

AuNPs, did not show any signi�cant change, irrespective of the AuNP species or the in-

cubation time (�g. 3.22). No lesion concentration was increased which would have pointed
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Figure 3.21: Lesion concentrations from the �rst sample set (HeLa cells). Each lesion
point consists of four values: untreated reference (purple), cells treated
with Au1.4MS (green), Au15MS (blue), and Au1.1GSH (light blue; all
AuNPs applied in 50µM, respectively). The three graphs depict three
incubation times (3; 24; 72 h). For 72 h, 5OHUra and TG are not de-
picted because the GC/MS data were not integrable.
Results were statistically analyzed by analysis of variance (ANOVA).
P values: < 0.001: Extremely signi�cant ∗∗∗. 0.001 to 0.01: Very signif-
icant ∗∗. 0.01 to 0.05: Signi�cant ∗. >0.05: Not signi�cant.
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Figure 3.22: Results from second sample set (extracted DNA treated with AuNPs).
Each lesion point consists of four values: untreated reference (purple),
DNA treated with Au1.4MS (green), Au15MS (blue), and Au1.1GSH
(light blue; all AuNPs applied in 50µM, respectively). The three graphs
depict three incubation times (3; 24; 72 h). Results were statistically
analyzed as in �g. 3.21.

to a catalytic oxidation e�ect by AuNPs; also, no decrease of FapyAde and FapyGua was

found as in the case of incubated cells.

All samples should be further investigated by the more sophisticated LC/MS/MS method.

Besides a di�erent separating step (liquid chromatography (LC) instead of gas chromato-

graphy (GC)), in LC/MS/MS either two mass spectrometry units are connected in series, or

ion traps are included. Ions can be separated and speci�cally further ionized and analyzed.

Fragmentation patterns can thus be investigated in detail.

However, no clear results were received. As these measurements were performed several

months after the GC/MS investigations and the samples were stored in the freezer (T =

59



3 Results and Discussion

−20 ◦C) in between, but exposed to air, it is very probable that the samples had been

altered during storage. The results from these measurements were therefore discarded and

not further interpreted.

From the �ndings of the GC/MS measurements, no direct correlation between the results

and the AuNP cytotoxicity can be found, as Au1.4MS and Au1.1GSH give similar results

despite their di�erent cytotoxicities. Some hypotheses regarding these surprising results can

be discussed:

The catalytic properties of AuNPs were already discussed before. As such reactions on the

AuNP surface depend on the chemical equilibrium, under certain conditions it is conceivable

that the back reaction takes place. In the case of a relatively high concentration of radicals,

the AuNPs could potentially capture these and catalyze a reaction to less reactive species.

However, a correlation between toxic e�ects and catalytic activity of AuNPs could not been

shown in other experiments. Also, there is no reason why two out of seven investigated

lesions should preferentially be protected from oxidative damage.

Another concept is a protecting interaction of AuNPs with DNA. A preference towards

certain lesions could then stem from a stronger interaction of the AuNPs with the respective

bases; but this hypothesis does not explain why the AuNPs did not have the same e�ect on

the second sample set of pure DNA.

The third scenario is the enhanced activity of DNA repair enzymes. This can either happen

via an activation of present enzymes through some kind of interaction of the AuNPs with

these enzymes, or as an up-regulation of transcription of certain enzymes induced by the

AuNPs. This would explain why the whole cells incubated with AuNPs showed signi�-

cantly altered lesion concentrations whereas the pure DNA without repair enzymes present

and without ongoing transcription did not show the same e�ects. Furthermore, there are

base speci�c DNA repair enzymes which would account for the decrease of only two of the

examined lesions.

One example of a purine speci�c DNA repair enzyme is encoded by the nei endonuclease

VIII-like 1 gene and therefore abbreviated as NEIL1.[124] The results from the gene chip

analysis (see chapter 3.4.2) showed no up-regulation for NEIL1. However, it is possible that

the AuNPs do not induce enhanced transcription but an enzyme activity enhancement.
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Further experiments were therefore conducted at NIST. Two sample sets were generated:

the enzyme NEIL1 was pre-incubated with Au1.4MS and then added to DNA. Here, γ-ray

irradiated calf thymus DNA (ct-DNA) with an arti�cially increased number of lesions was

used. In the second set, AuNPs and ct-DNA were pre-incubated and NEIL1 was added in

a second step. An excision assay was performed, i. e. the supernatants of the samples were

analyzed by GC/MS for lesion concentrations of FapyAde and FapyGua.

If NEIL1 was activated by the presence of Au1.4MS, the concentrations of FapyAde and

FapyGua should be increased in the supernatant. Interestingly, the opposite was the case.

In the �rst sample set, both Fapy lesion concentrations were decreased compared to the

reference. This points towards a deactivation of NEIL1 by the AuNPs which does not occur

when the order of incubation is inversed and the reaction time between AuNPs and NEIL1

is short.

In general, a deactivation of a repair enzyme by cytotoxic AuNPs is not surprising, as ad-

verse e�ects on biological materials are expected. Here, NEIL1 was one candidate to explain

the surprising results from the �rst GC/MS experiments on cells incubated with AuNPs.

Obviously, this enzyme is not a�ected in a stimulating way by AuNPs to enhance DNA re-

pair. As there are numerous DNA repair enzymes with di�erent lesion repair patterns, other

enzymes should be investigated in the same way as NEIL1 to potentially �nd a candidate

which can be activated by AuNPs. Other potential enzyme candidates include NEIL3, Fpg,

Ogg1 and Nth.

3.7 The Au(I) Question

As another reference material for the cytotoxicity experiments, a gold(I) complex, the

sodium salt of chloro[diphenyl(3-sulfonatophenyl)phosphine]gold(I) (referred to as TPPMS-

Au(I)-Cl afterwards), was tested. It was found that this Au(I) species is highly cytotoxic

as well (IC50=50µM in HeLa cells in the logarithmic phase). This raised the question if

the cytotoxicity is predominantly based on the toxicity of Au(I) species and not the AuNPs

themselves. A similar mechanism is in discussion concerning the toxicity of silver nanopar-
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ticles (AgNPs).[125] AgNPs possibly serve as a source for constant Ag+ ion release which

then cause toxicity.

Furthermore, the equilibrium between AuNPs, phosphine ligands and Au(I) species was

investigated by Sharma et al.. They performed extensive NMR studies on 1.8 nm sized

TPP-stabilized AuNPs in CH2Cl2. They found that both TPP and a TPP-Au(I)-Cl species

can be released from the AuNP surface.[72] In H2O, a polar solvent, and with TPPMS the

situation might though be di�erent.

Hence, it was important for two reasons to investigate if there are Au(I) impurities in the

Au1.4MS material: �rstly, to �nd out whether the cytotoxicity of Au1.4MS was based on

Au(I) and not on a nanoparticle speci�c e�ect, and secondly, to certify the purity of the

synthesized Au1.4MS in general.

By comparing the IC50 values of Au1.4MS (IC50 = 46µM) and TPPMS-Au(I)-Cl it becomes

obvious that Au1.4MS would have to be degraded completely to Au(I) species to induce such

a toxic e�ect. This is de�nitely not the case, as the cell culture solutions are still colored

brown from the Au1.4MS after the incubation time, whereas TPPMS-Au(I)-Cl is colorless.

The AuNPs could also be found in TEM micrographs of incubated cells, although a size

determination was not possible due to the low contrast of the AuNPs in the biological

matrix.[12] The relation between Au1.4MS and TPPMS-Au(I)-Cl was further investigated

nevertheless to exclude any side e�ects.

Au1.4MS is synthesized via Au1.4TPP, whose precursor is the water-insoluble chlorotri-

phenylphosphine gold(I) (TPP-Au(I)-Cl), and a subsequent two-phase ligand exchange re-

action. Therefore, no water-soluble Au(I) species should be present as an impurity remaining

from the synthesis precursor. However, as discussed above, it is possible that Au(I) impuri-

ties might be present in AuNPs. These might originate from degradation processes taking

place when AuNPs remain in solution over longer periods of time.[126]

NMR spectroscopy was used for this purpose to examine Au1.4MS. A 31P-NMR spectrum

of a concentrated solution of Au1.4MS in D2O gave signals at δ = 15.6 ppm, 33.0 ppm,

37,5 ppm, 45.7 ppm (major signal), 55.4 ppm and 58.0 ppm (�g. 3.23). Not all signals could

be assigned, but obviously impurities are present. The material was further puri�ed.
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Figure 3.23: 31P-NMR spectrum of Au1.4MS in H2O.

After column chromatography over cellulose with ethanol and H2O (4:1), the product was

measured in a mixture of deuterated methanol and D2O. Three signals remained (slightly

shifted due to di�erent solvent: 33.9 ppm, 45.3 ppm, 57.2 ppm), but the integrals and thus

the concentrations were a�ected (�g. 3.24). The signal at 45.3 ppm is still the signal with

highest intensity (approximately 77%), and the other two remaining signals are of minor

intensity.

TPPMS-Au(I)-Cl gives a 31P-NMR signal at 32.1 ppm in this solvent mixture. Free TPPMS

results in a signal at −6 ppm and is not visible at all. On the other hand, TPPMS in

aqueous solution is prone to oxidation, and the oxidation product of TPPMS, sodium 3-

(diphenylphosphoryl)benzenesulfonate (abbreviated as TPPMS=O), shows a 31P-NMR sig-

nal at 36.5 ppm. It shows very low cytotoxicity (IC50=4677µM). The three species are

shown in �g. 3.25.

The signal at 45 ppm refers to the TPPMS ligand molecules bound to AuNPs of 1.4 nm

diameter. It is slightly broadened. One reason for this broadening is that the 12 TPPMS

molecules are weakly bound via a coordinative bond. This leads to ligand mobility on the

AuNP surface and thus structural �exibility when the AuNPs are in solution, resulting in
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Figure 3.24: 31P-NMR spectrum of Au1.4MS after column chromatography, mea-
sured in deuterated methanol/D2O (1:1).

Figure 3.25: The species possibly detected in 31P-NMR spectra of Au1.4MS: the
ligand TPPMS, its oxidation product TPPMS=O and potentially
cleaved TPPMS-Au(I)-Cl.
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a broadened signal 31P-NMR spectroscopy. From this spectrum, it is not de�nitely deter-

minable which species causes the signal at 33.9 ppm, TPPMS=O or the Au(I) complex,

or if signals of both species overlap here. The signal at 57.2 ppm is probably caused by

small phosphine-stabilized gold clusters. A signal for free TPPMS which would be visible

at −6 ppm is not seen at all.

It is possible to purify Au1.4MS by column chromatography. The IC50 value for such puri�ed

material was similar to non-puri�ed Au1.4MS judged by MTT assays in HeLa cells. The

cytotoxicity therefore most likely was due to the Au1.4MS proper and not to low molecular

weight impurities.

In none of the 31P-NMR spectra of Au1.4MS, free TPPMS was detected. This was surprising

as the TPPMS molecules are weakly bound to the AuNP surface and are expected to be

in equilibrium to free TPPMS in solution. On the other hand, studies of the non-water

soluble derivative Au1.4TPP have shown that the addition of excess TPP does not lead to

the detection of free TPP in the 31P-NMR spectrum, but to a high �eld shift of the signal

of Au1.4TPP.[71]

It was therefore investigated if Au1.4MS in aqueous solution shows the same e�ect in reaction

with TPPMS. Au1.4MS was dissolved in D2O and measured in 31P-NMR. 10 eq of TPPMS

were added and another measurement was performed. This was repeated up to a total

amount of 118 eq TPPMS. As in the case of Au1.4TPP, a high �eld shift of the Au1.4MS

signal was observed, and no free TPPMS was visible even in the highest amount added (see

�g. 3.26).

The high �eld shift of the spectra was used to perform a �rst-order estimation of the equi-

librium constant for the Au1.4MS/TPPMS system. The δ values were plotted against the

concentration of additional TPPMS and approximated with a logarithmical �t (�g. 3.27).

From this, the amount of intrinsic free TPPMS (cdiss) was estimated, and the amount of

bound TPPMS (cass) was calculated from the original sample weight with the assumption

of 12 ligand molecules per particle. With these two values, a dissociation constant Kd of

4.76× 10-7 was calculated:

Kd = cdiss
cass
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Figure 3.26: 31P-NMR spectra of Au1.4MS with subsequent TPPMS addition. Sig-
nals at 36.5 ppm derive from TPPMS=O.

Figure 3.27: Plot of chemical shifts δ of the 31P-NMR spectra of Au1.4MS depending
on the addition of TPPMS.
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With Kd, a Gibbs energy of ∆G0=35.5 kJ/mol was calculated:

∆G0 = −RTlnKd

The bond strength theoretically determined for PH3 by Häkkinen et al. was 0.93 eV, which

equals to 89.7 kJ/mol.[44] The value determined by 31P-NMR spectroscopy is thus signi�-

cantly lower. In the theoretical calculations, solvation e�ects were not taken into account.

Also, PH3 is only a simple model for a phosphine ligand and not directly comparable to the

bulkier and charged TPPMS.

The question remained if the detected TPPMS-Au(I)-Cl was present in the �as synthesized�

material, or if it was generated in solution. Thus, a sample of Au1.4MS was investigated

by solid state 31P-NMR spectroscopy. A static measurement resulted in one very broad

signal ranging from −100 ppm to 200 ppm without further signi�cant characteristics and

�ne structures (�g. 3.28, bottom).

Next, it was measured under magic angle spinning (MAS) conditions at frequencies of 15

and 35 kHz (�g. 3.28,middle and top spectra, red). Here, the signal became narrower, but

was still ranging from approximately −40 ppm to 120 ppm at a MAS frequency of 35 kHz.

The MAS spectra reveal that the broad peak consists of at least three overlapping signals

with an absolute maximum at δ=20ppm. 1H decoupling did not in�uence the spectrum

measured with a MAS frequency of 15 kHz (�g. 3.28,middle spectrum, green).

Furthermore, a sample of TPPMS-Au(I)-Cl was analyzed in a reference measurement (MAS

with 15 kHz; �g. 3.28,middle spectrum, blue). It gave a considerably narrower signal than

Au1.4MS, with a maximum at δ=10ppm. By superimposing the spectra of Au1.4MS and

TPPMS-Au(I)-Cl it is obvious that the signal of the Au(I) complex has the same chemical

shift as one of the three signals in the spectrum of Au1.4MS, visible as a shoulder of the

main signal.

It is not clear what causes this shoulder in the Au1.4MS spectrum. It is possible that

TPPMS-Au(I)-Cl exists as a molecular species independently besides Au1.4MS and that it

was formed as the result of a degradation reaction during the synthesis of Au1.4MS. Another

possibility is that TPPMS molecules bound to partially polarized Au surface atoms of a

AuNP have a similar electronic environment as TPPMS in TPPMS-Au(I)-Cl and therefore
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Figure 3.28: Solid state 31P-NMR spectra, static (top) and with MAS frequencies
of 15 (middle) and 35 kHz (bottom), from Au1.4MS (red), Au1.4MS
measured with 1H decoupling (green, with MAS at 15 kHz), and
TPPMS-Au(I)-Cl (blue, with MAS at 15 kHz). Stars indicate rotational
side bands in MAS measurements.
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3.7 The Au(I) Question

Figure 3.29: Scheme of dialysis experiments of Au1.4MS (left) and TPPMS-Au(I)-Cl
as reference (right). The dried dialysates were analyzed by EDX analysis.

give a signal at the same chemical shift. From this data, no �nal conclusion can be drawn

concerning this question. A quanti�cation of the three overlapping signals of the spectrum

of Au1.4MS by a line shape analysis could not be performed without considerable e�ort and

was therefore not conducted.

To �nally answer the question if signi�cant amounts of TPPMS-Au(I)-Cl are present in

aqueous solutions of Au1.4MS, another analysis method was chosen. A dialysis experiment

with Au1.4MS was conducted (�g. 3.29).

The supernatant was dried and the resulting white residue was examined by energy disper-

sive X-ray (EDX) analysis. The EDX spectrum indicates that small amounts of TPPMS

were shed from Au1.4MS during the dialysis, but no gold could be found. The control exper-

iment with TPPMS-Au(I)-Cl showed that Au(I) (in whatever form) could readily traverse

the dialysis membrane with a molecular weight cut o� radius (MWCO) of 5 kD, as a signal

for gold was found in the EDX spectrum of the white residue of this experiment.

This experiment shows that no TPPMS-Au(I)-Cl as an independent species is present in

Au1.4MS in signi�cant amounts. The contradictory results from the NMR investigations

may be due to chemical compounds with similar chemical environments adsorbed to AuNPs.
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3.8 Patch Clamp Experiments

In order to explore the e�ect of smaller particles, particularly of Au1.4MS on hERG express-

ing HEK 293 cells, patch clamp experiments were performed with a variety of phosphine-

and thiol-stabilized AuNPs and ionic gold complexes, serving as reference materials. Parts

of these results were already described in the dissertation of Dr. Yu Pan-Bartneck.[12]

HEK 293 cells transfected with the hERG gene were used in a manual patch clamp set-up.

They were patched in whole-cell con�guration to detect the whole cell membrane potential

(�g. 3.30). In the voltage protocol used the hERG channel was opened for 2 s, expressing

the typical tail current characteristics. The maximum amplitude serves as a measure for

decrease of the cell membrane voltage and therefore an inactivation of hERG.

Figure 3.30: Schematic patch clamp setup of a cell in whole-cell con�guration. Blue:
hERG ion channels.

First, 65µM Au1.4MS was applied to a patched cell. After a response time of approximately

2min, the hERG current amplitude decreased signi�cantly (�g. 3.31). Compared to other

well-known molecular hERG blockers such as �uvoxamin, this onset is quite slow.[127]

The e�ect was irreversible, i. e. when the cell was perfused with extracellular bu�er (EC)

after the Au1.4MS incubation, the amplitude remained at its low level and did not recover

to its original value.

The time scale of a typical patch clamp experiment is in the range of minutes up to a

maximum of one hour, and the �rst detectable changes occur within a few minutes. The

70



3.8 Patch Clamp Experiments

(a)

(b)

Figure 3.31: Current response of a hERG expressing cell in a patch clamp experiment
during perfusion with Au1.4MS.
(a) Time response of hERG current amplitude, detected during 2× per-
fusion of 65µM Au1.4MS on a patched cell in whole-cell con�guration
for 10min. Arrows indicate start (S) and end (E) of perfusion.
(b) hERG current before (red) and after (black) perfusion with Au1.4MS.
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Figure 3.32: Concentration dependent response of hERG towards Au1.4MS (3.1µM,
6.5µM, 16.25µM). Arrows indicate start (S), change (C) and end (E) of
perfusion.

cytotoxicity of Au1.4MS in an in vitro cell test typically appears after a time period in the

range of hours. The e�ect towards hERG is thus not correlated to simply induced cell death,

but is probably caused by an interaction with the ion channel.

The concentration dependent behavior of Au1.4MS was investigated. Increasing concentra-

tions of Au1.4MS were applied. The amplitude was plotted against incubation time, and the

slope became steeper for higher concentrations (�g. 3.32). The lowest concentration applied

was 3.1µM. Already at this concentration (a gold atom concentration of 3.1µM equals to

a particle concentration of 56 nM), a slight decrease of amplitude was detectable.

As Au1.4MS is stabilized by TPPMS, a triphenylphosphine, an aromatic interaction between

the aromatic residues within the hERG cavity and the phenyl rings is imaginable. Therefore,

the e�ect of the TPPMS ligand alone towards hERG was tested (�g. 3.33). At concentrations

in the same magnitude that was applied with the addition of Au1.4MS (12 TPPMS molecules

per particle consisting of 55 gold atoms; i. e. when 3µM Au1.4MS are applied, the TPPMS

concentration is approximately 0.65µM), no e�ect was detected (up to 50µM). At a higher

concentration of 100µM, the amplitude decreased within one minute.

In contrast to the blockade of Au1.4MS, this e�ect was reversible when the cell was washed

with EC afterwards. The blockade of TPPMS therefore obviously follows a di�erent mech-

anism than the irreversible blocking of Au1.4MS.
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Figure 3.33: HERG response towards TPPMS in increasing concentrations (10, 50,
100, 500µM). Arrows indicate change (C) and end (E) of perfusion. The
perfusion with 10µM TPPMS was started immediately (no arrow).

Furthermore, TPPMS was also applied intracellularly by applying it in the IC medium

via the patch pipette. Here, no e�ect was measurable up to a concentration of 1mM

TPPMS. This indicates that the reversible blocking of TPPMS is related to an extracellular

interaction. Also, the blocking of Au1.4MS is obviously not related to an interaction of

hERG with TPPMS.

One possible mechanism for the blocking by Au1.4MS is the stripping of TPPMS in contact

with the cell and an interaction of the pure gold core with the hERG channel. To prove

this hypothesis, mixtures of Au1.4MS with a surplus of TPPMS in di�erent concentrations

were prepared and tested. At enhanced concentrations of free TPPMS, the equilibrium in

solution between bound and dissociated TPPMS should be altered. If the accessibility of

the gold core surface is crucial for the blocking mechanism of Au1.4MS, the addition of

excess TPPMS will make the particle surface less accessible.

When a cell was perfused with a mixture of 20µM Au1.4MS (a concentration that should

induce a distinct blockade) together with 50µM TPPMS, only a slight decrease in the

hERG tail current amplitude was detected (�g. 3.34). This slight decrease was a lot slower

and less steep than the usual e�ect and in a non-signi�cant scale. After 10min, another

mixture with a AuNP/TPPMS ratio of 20/25µM was applied to the cell. Again, no obvious

in�uence towards the hERG current was detectable. Only when the TPPMS concentration
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Figure 3.34: E�ect of mixtures of Au1.4MS (20µM) pre-incubated with varied con-
centrations of TPPMS (50, 25, 10µM). Arrows indicate start (S) and
change (C) of perfusion.

Figure 3.35: Patch clamp measurement during TPPMS application (50µM) and sub-
sequent Au1.4MS application (20µM). Arrows indicate start (S) and
change (C) of perfusion.

was further reduced and a pre-incubated mixture of 20µM Au1.4MS with 10µM TPPMS

was applied, the typical reduction of tail current amplitude was found.

In a control experiment, the order of addition was changed (�g. 3.35). The patched cell was

pre-treated with 50µM TPPMS for 10min, and then 20µM Au1.4MS was applied. Here,

the blocking could not be prevented. A direct reaction between TPPMS and Au1.4MS is

necessary to in�uence the ion channel blockade.

In this experiment, the response time was slightly higher compared to Au1.4MS perfused

on a fresh cell. This can be explained by the excess TPPMS in the cell chamber that was

still present when the addition of Au1.4MS was started.
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Figure 3.36: Perfusion of a patched cell with Au1.4MS (300µM) + GSH (455µM).
Arrows indicate start (S) and end (E) of perfusion.

Furthermore, a mixture of 300µM Au1.4MS with 455µM GSH (�nal concentrations, respec-

tively) was applied to a cell (�g. 3.36). The tail current dropped slightly (23%), but did not

decrease further. After 20min of application the cell was washed with EC and the current

amplitude recovered to its starting value. This indicates again that the surface accessibility

is crucial for the blocking interaction of Au1.4MS. After the TPPMS ligands were replaced

by GSH, the resulting species does not cause a complete, irreversible blockade of hERG as

Au1.4MS does.

Au15MS should also be tested in patch clamp experiments. When the stock solution was

diluted with EC, the AuNPs were not stable in the medium. When 10% fetal calf serum

(FCS) was added to the EC prior to dilution, the AuNPs remained stable. This solution

was tested, but no e�ect towards the hERG amplitude was detectable.

As a reference experiment, Au1.4MS (300µM �nal concentration) was given to 10% FCS

containing EC and applied to a cell (�g. 3.37). First, the cell was pre-treated with EC +

10% FCS which already induced a slight decrease in tail current amplitude to a stable value.

When Au1.4MS in EC + 10% FCS was added, di�ering from the previous experiments, this

solution did not induce the expected blockade but the current amplitude remained constant.

It is likely that FCS forms a protein corona around both AuNP species and thereby alters

the interaction of AuNPs with the ion channel. This �nding is however in contrast to the

cytotoxicity investigations, where Au1.4MS was found to be toxic in the presence of FCS.
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Figure 3.37: E�ect of 300µMAu1.4MS in EC containing 10% FCS; the �rst arrow (S)
indicates the start of FCS (10%) perfusion. The other arrows indicate
change of sample (C) to Au1.4MS + 10% FCS and back to only 10%
FCS and end (E) of perfusion.

Figure 3.38: Thiol-stabilized AuNPs in patch clamp experiments, left: 300µM
Au1.1GSH, right: 300µM Aurovist. Arrows indicate start (S) and end
(E) of perfusion.

As Au15MS is not stable in EC without FCS it was not possible to investigate the pure size

e�ect of di�erently sized TPPMS-stabilized AuNPs.

Two thiol-stabilized AuNP species were also tested: Au1.1GSH and Aurovist� (both in a

concentration of 300µM). No e�ect was detectable for both materials (�g. 3.38). It can be

assumed that the gold cores of the AuNPs are too strongly shielded by the respective thiol

shell so that an interaction as in the case of Au1.4MS with its weaker bound phosphine

ligands is disabled.

Obviously, the size di�erence of 1.1 nm respectively 1.9 nm does not play a role here, but

the ligand shell determines the activity of AuNPs towards hERG.
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Various types of ion channels are blocked by metal ions if these are applied in high mi-

cromolar and millimolar concentrations.[128] To exclude this possible pathway of gold ion

blockade by potential impurities in the AuNP solutions, di�erent gold salts and complexes

were investigated.

Au(III)Cl3 was not stable in the EC. The yellow solution turned grayish-blue within minutes,

indicating the formation of large AuNPs. As the EC contains glucose, this may act as a

reducing agent for Au(III). If Au(III) ions would be present as an impurity in the AuNP

solutions, it can be supposed that they would react in the same way when diluted with EC.

Au(III) was therefore not further investigated.

TPPMS-Au(I)-Cl was also examined. For 50µM or 300µM solutions of Au(I) complex, the

cells became leaky immediately after the perfusion was started. This was reproducible in

several cells. No conclusion can thus be drawn about the interaction of TPPMS-Au(I)-Cl

with the hERG channel. The very rapidly induced leaking of the cells is however a di�erent

response than in the case of Au1.4MS. As it was found in the dialysis experiment (see chapter

3.7), obviously no signi�cant amounts of Au(I) were present in a solution of Au1.4MS, as

otherwise the AuNP solution should lead to leaky cells as well.

Another gold complex that was examined was Tauredon®. In the patch clamp experiment,

no e�ect towards hERG could be found up to a complex concentration of 50µM.

Summarized, all gold salts and complexes tested gave a di�erent response in the patch clamp

experiment than Au1.4MS. The e�ect of Au1.4MS on hERG is obviously not induced by

gold ions but by the nanoparticle species itself.

As already described, the hERG ion channel has a special structure and is very prone to

channel-drug interactions, mainly because of the aromatic residues Y652 and F656 and the

possibility of aromatic interaction with a variety of compounds. Thus, another ion channel

(NaV1.5) was investigated to check whether the blocking of Au1.4MS is speci�c to hERG.

NaV1.5 expressing CHO-K1 cells were used. The NaV1.5 channel has a distinct gating

behavior compared to hERG, leading to a di�erent response curve with a negative current

amplitude in the patch clamp experiment.

When a CHO-K1 cell was perfused with 300µMAu1.4MS, a strong decrease of the amplitude

was observed (�g 3.39). Blocking of Au1.4MS is therefore not speci�c to hERG. As the
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Figure 3.39: Patch clamp experiment with a NaV 1.5 channel expressing CHO-K1
cell exposed to 300µM Au1.4MS. The arrow indicates the start (S) of
perfusion. Note that the compared to hERG expressing cells inverted
run of the curve is caused by the distinct gating behavior of NaV 1.5
channels.

NaV1.5 channel is, in contrast to hERG, not especially sensitive towards blocking by aromatic

molecules, this result is another hint that the blocking of ion channels by Au1.4MS is not

correlated to the aromatic residues inside the hERG cavity.

The investigation of the NaV1.5 channel revealed another e�ect: the current curve showed an

impaired channel inactivation. A similar behavior occurs when NaV1.5 cells are incubated

with di�erent metal ions such as La3+ and Zn2+.[128] However, as discussed above, the

blocking e�ect of Au1.4MS is not caused by released metal ions. Such an incomplete channel

inactivation points again towards an intracellular action of Au1.4MS. What exactly leads

to this e�ect here is not yet known.

Most so far known hERG blockers are inner cavity blockers. This means that the channel

has to be in the open state to enable the blocking species to enter from the intracellular site.

This open channel block leads to the characteristic kinetic features of hERG blockade: upon

depolarization, the onset of channel blocking occurs quite fast, within some 100ms, while

the wash-out of blockers at hyperpolarized membrane potentials is extremely slow. In the

standard voltage protocol applied before, hERG is opened for 2 s. When a di�erent protocol

(the so-called �envelope of tails�-protocol) is used, it is possible to investigate whether a

species is an open channel blocker. The length of the opening time of the intracellular gate
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is varied and the tail current is elucidated by activating depolarization pulses with increasing

durations.

When 300µM Au1.4MS were applied during an envelope of tails-experiment, the typical

blockade of hERG could unexpectedly not be detected at all anymore. If the respective cell

was further perfused with Au1.4MS and the usual voltage protocol was conducted again, the

blockade occurred as expected. This points towards an intracellular blocking mechanism,

as for an extracellular event the channel opening would be no prerequisite.

Furthermore, the hERG ion channel has obviously to be opened long enough for Au1.4MS

to interact. There are two possible explanations for this phenomenon: either the di�usion of

Au1.4MS (or, in more general, the blocking species) into the ion channel is very slow com-

pared to other typical blocker molecules that were successfully investigated in an envelope

of tails-experiment; or the postulated stripping of the TPPMS ligands from the gold core

occurs only in direct interaction with the opened channel and is the rate-determining step.

In cooperation with Prof. W. Wenzel from Karlsruhe Institute of Technology (KIT), the

hERG structure as well as Au1.4MS were modeled and an interaction was investigated

theoretically by Monte Carlo simulations. A classical force �eld was used for electrostatics,

hydrogen bonding, Lennard-Jones potential and implicit solvent interactions in a solvent

accessible surface model. The charges of Au1.4MS were calculated by DFT calculations.

Au1.4MS was modeled with varying numbers of TPPMS ligands (12, 10, 8,... 0 molecules

per particle). The hERG channel was based on a homology model with the crystal structure

of a K+ channel of the mammalian voltage-dependent Shaker family (pdb 2A79).

At pH 7.4 the hERG channel is negatively charged, and there is a repulsive interaction for

a Au55 cluster with 12TPPMS molecules which are also negatively charged. Hypothetical

AuNP structures with less ligand molecules on the surface show increasing a�nity towards

hERG (�g. 3.40). This �ts well to the experimental �nding that an excess of TPPMS hinders

Au1.4MS to block hERG.

Furthermore, the calculations exclude some potential points of binding. Au1.4MS will not

�t into the inner cavity and will therefore not interact with the aromatic side chains as

most hERG blockers do. Further, it cannot bind near the entrance of the K+-passage at the

bottom of the extracellular channel side.
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3 Results and Discussion

Figure 3.40: Simulations of hERG (depicted in blue) in interaction with Au1.4MS
with varying numbers of TPPMS ligands: (a) pure gold core with-
out TPPMS ligands; (b) gold core with 6 TPPMS ligands; (c) gold
core with 12 TPPMS ligands. Best lowest energy conformations out of
500 simulations are shown. Models were provided by W. Wenzel, KIT.

The ligand functionalization of AuNPs, similarly as in the cytotoxicity experiments, de-

termines the response of ion channel expressing cells. 1.4 nm phosphine-stabilized AuNPs

block hERG channels in an irreversible manner, whereas thiol-stabilized AuNPs of similar

sizes have no e�ect. It can be hypothesized that Au1.4MS strips its relatively weakly bound

TPPMS ligands and a partially unprotected AuNP or the pure gold core blocks the ion

channel irreversibly.

3.9 Other Monophosphine Ligands

As the ligand shell of a nanoparticle is the �rst entity the cell gets in contact with, the

functionalities of the ligand molecules might play a crucial role in the cytotoxicity.[91] This

parameter should therefore also be investigated. The phosphine ligand needs charged groups

to guarantee water solubility. In the case of TPPMS, this is one sulfonate group per ligand

molecule. The pKA value of TPPMS was not determined, but the pKA value of the respective

acid H2SO4 is −3, the pKA value of a simple alkyl sulfonic acid, methanesulfonic acid

(CH3SO3H), is still very low (−0.6), and the pKA value of benzenesulfonic acid (C6H5SO3H)

is −2.8. Therefore it can be presumed that TPPMS also has a low pKA value and is

fully dissociated in aqueous solution, which results in one negative charge in the dissolved

state.[129, 130]

A simple modi�cation is the use of 3,3',3�-phosphinidynetris(benzenesulfonic acid) trisodium

salt (triphenylphosphine trisulfonate, TPPTS) instead of TPPMS. TPPTS is commercially
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3.9 Other Monophosphine Ligands

Figure 3.41: Reaction scheme of the Pd-catalyzed coupling reaction of diphenylphos-
phine with a iodo aryl species, and the coupling products pTPPMA,
mTPPMA and TPPMCMA.

available and has three sulfonate groups, therefore a net charge of −3 in the dissociated form

in water. As the chemical composition of Au1.4MS is Au55[(C6H5)2P(C6H4SO3Na)]12Cl6,

there are 12 ligand molecules per particle, i. e. one particle has a total charge of −12 in the

fully dissociated state. There is no crystal structure of Au1.4TS available, but assuming that

Au1.4TS has a ligand number of 12 as well, the total negative charge is enlarged to −42.

The precursor cluster Au1.4TPP was functionalized with TPPTS in a two-phase ligand

exchange reaction and tested towards the four cell lines. Au1.4TS showed a very similar

cytotoxicity as Au1.4MS (IC50 = 30µM in logarithmically growing HeLa cells), so that the

increase of negative charges just by multiplying the same functional group obviously does

not strongly alter the e�ect of the AuNPs.

Other water-soluble triphenyl phosphine derivatives were synthesized and used as ligands

for Au1.4TPP. P - andm-(aminophenyl)diphenylphosphine (pTPPMA andmTPPMA) were

synthesized according to a protocol of Hessler et al..[131] Here, p- and m-iodoaniline, re-

spectively, were coupled to diphenylphosphine in a Heck type Pd-catalyzed coupling reaction

(reaction scheme see �g. 3.41).

The reaction products showed little amounts of impurities which were identi�ed as the

respective phosphine oxide species. Di�erent routes that were tested to purify the phosphines

were not successful, so the raw reaction products were used for subsequent ligand exchange

reactions. Both TPPMA isomers showed only moderate solubility in H2O. The stability of
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the phosphines towards oxidation reactions was tested in a simple experiment. An NMR

sample of the respective TPPMA, dissolved in deuterated dichloromethane, was left under

ambient conditions for three days. The 31P-NMR spectrum measured after this time period

did not show any changes compared to the original spectrum. Therefore, it can be assumed

that the phosphines are stable under ligand exchange reaction conditions.

Di�erent routes were tried to exchange the ligands of Au1.4TPP against mTPPMA. In a

�rst approach, similarly to TPPMS, a two phase reaction of Au1.4TPP in dichloromethane

and mTPPMA in H2O was tested. Due to the low solubility of mTPPMA in H2O it was

not possible to generate water soluble AuNPs by this method. As there are 12 ligands

per particle, Au1.4TPPMA might potentially be better soluble in water than the pure

ligand. This might be due to the formation of a micelle-like structure, with a nonpolar

core consisting of gold and the hydrophobic parts of TPPMA, and a polar outer surface

of 12 amine functionalities. Au1.4TPP and mTPPMA were therefore both dissolved in

dichloromethane. This mixture was stirred at room temperature for several days, dried,

and it was tried to redisperse the residue in H2O. The H2O phase remained completely

colorless, indicating that the residue was insoluble in H2O. It was not possible to generate

Au1.4TPPMA via these routes.

To enhance water solubility of the phosphine ligand, 2-amino-5-(diphenylphosphino)benzoic

acid (TPPMCMA) with one amino and one carboxylic acid function was chosen as an-

other candidate. It was synthesized analogously to TPPMA from diphenylphosphine and

2-amino-5-iodobenzoic acid in a Pd-catalyzed P-C coupling reaction. Au1.4TPPMCMA

was synthesized by a two phase ligand exchange reaction from Au1.4TPP. The H2O phase

became brown after 1.5 h so that the reaction was stopped and the product was puri�ed

by ultracentrifugation. Water soluble AuNPs with a mean particle diameter of 1.5± 0.4 nm

were obtained. The UV/Vis spectrum showed a slightly more pronounced shoulder around

500 nm than Au1.4MS (�g. 3.42), which corresponds to the few larger particles visible in the

STEM micrograph (�g. 3.43).

In cell culture medium, Au1.4TPPMCMA was not stable and showed aggregation to some

extent. Therefore it was not possible to determine an IC50 value. The instability might be
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3.9 Other Monophosphine Ligands

Figure 3.42: UV/Vis spectrum of Au1.4TPPMCMA.

Figure 3.43: STEM micrograph (left) and histogram (right) of Au1.4TPPMCMA.
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3 Results and Discussion

Figure 3.44: UV/Vis spectrum of Au1.4TPPMC.

due to the slightly basic pH of 7.4 of cell culture medium, or because of the (compared to

ultrapure water) high salt concentration.

Furthermore, 4-(diphenylphosphino)benzoic acid (TPPMC) with one carboxylic acid func-

tionality and Au1.4TPPMC particles were synthesized in the same way. The UV/Vis spec-

trum does not show signi�cant features as expected for AuNPs of the desired size (�g. 3.44).

This was con�rmed by STEM analysis, as AuNPs with a mean diameter of 1.4± 0.2 nm

with only few larger particles were visible (�g. 3.45).

Figure 3.45: STEM micrograph (left) and histogram (right) of Au1.4TPPMC.

The EA revealed slightly higher C and H contents than theoretically expected (table 3.1).

Dialysis of the sample improved the results a little.
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Table 3.1: Results of EA of Au1.4TPPMC.

C/% H/%

Theoretical values 17.0 1.2
Measured values prior to dialysis 26.2 2.3
After dialysis 24.2 2.3

For Au1.4TPPMC, an IC50 value of 43µMwas determined under standard conditions. These

AuNPs were also used for further functionalization (see chapters 3.11 and 3.12).

The comparison of the results from TPPMS-, TPPTS- and TPPMC-stabilized AuNPs of

1.4 nm shows that the functional groups do not have a great in�uence towards the cyto-

toxicity. Small, phosphine-stabilized AuNPs show relatively high toxicity irrespective which

functional groups the phosphine ligands have. It was not possible to generate stable AuNPs

with positive charges. Here, a di�erence in cell uptake and therefore toxicity might be possi-

ble, as the cell membrane is negatively charged and is thus generally more sensitive towards

positively charged entities.[91]

3.10 Diphosphine Ligands

As the binding strength between gold surface and ligand shell was found to in�uence the

cytotoxicity of AuNPs (see chapter 3.3), this parameter should be further investigated. Small

thiol-stabilized AuNPs were found to be less toxic than comparable phosphine-stabilized

species, or even non-toxic (see chapter 3.3). Thus, AuNPs with a ligand shell that stabilizes

with intermediate strength between monophosphines and thiols should be generated.

Other functionalities that are known to function as ligands for AuNPs, e. g. amines or

oxygen-containing groups such as carboxylates, bind even more weakly than phosphines.

Therefore, diphosphines were chosen to synthesize AuNPs with medium ligand-gold binding

strength. The a�nity of a molecule with two phosphine groups towards gold should be

enhanced due to a chelate e�ect, i. e. the second phosphine of one bound molecule should

be energetically favored to bind to the particle in comparison to two single monophosphine

molecules. Some examples exist for diphosphine-stabilized small gold clusters (see 2.1.4).
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3 Results and Discussion

Figure 3.46: Water soluble sulfonated aryl diphosphines synthesized and investigated
as AuNP ligands.

To largely exclude any e�ect of chemical functionalities and to cut down the e�ect on the

binding strength of the ligand shell only, diphosphines were chosen that are as similar to

the monophosphines used as possible.

Sodium3,3',3�,3� '-(ethane-1,2-diylbis(phosphinetriyl)tetrabenzenesulfonate (DPPETS),

sodium3,3',3�,3� '-(propane-1,2-diylbis(phosphinetriyl)tetrabenzenesulfonate (DPPPTS)

and sodium3,3',3�,3� '-(butane-1,2-diylbis(phosphinetriyl)tetrabenzenesulfonate (DPPBTS)

meet these requests as they are aryl phosphines with sulfonate groups (�g. 3.46). As well

as the monophosphines used, these diphosphines are quite well examined in the �eld of

catalysis, where they act as ligands for metal organic complexes of Ru, for example.[132]

The sulfonated diphosphines were synthesized from the respective aryl diphosphines by

sulfonation with fuming sulfuric acid (�g. 3.47).

Figure 3.47: Reaction scheme of the sulfonation reaction of diphosphines. DPPE and
DPPETS are exemplarily shown.

In the case of DPPETS, the purity of the raw product was only approximately 67%, es-

timated by 31P-NMR. It was not possible to remove the phosphine oxide impurities by
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Figure 3.48: UV/Vis spectrum of Au1.4DPPETS.

standard puri�cation techniques. As a phosphine oxide should have a lower a�nity to bind

to gold compared to a phosphine, the product was used as such for ligand exchange reactions.

DPPPTS and DPPBTS were synthesized via slightly di�erent routes, leading to higher

product purities (86% for DPPPTS and 97% for DPPBTS, respectively, both determined

by 31P-NMR spectroscopy). For DPPETS and DPPBTS, the long term stability against

oxidation was tested. The NMR sample solutions were left under atmospheric conditions

for three days and then measured again. In both cases, no increase of the phosphine oxide

amount was detectable.

The ligand exchange reactions were again performed as two phase systems. In the case of

Au1.4DPPETS, the reaction mixture was stirred overnight. After this time, the aqueous

phase had become brown, thus the reaction was stopped and the product isolated. The

UV/Vis spectrum did not show a prominent shoulder (�g. 3.48); however, the STEM analysis

showed several larger particles than expected and a mean diameter of 1.8± 0.3 nm (�g. 3.49).

In the 31P-NMR, no signal of free DPPETS could be detected anymore. The signals were

shifted to δ=20 - 23 ppm.

The chemical analysis revealed C and H amounts much higher than expected, reproducibly

for several batches (see table 3.2).

Usually this is caused by excess ligands, but washing of the sample did not improve the

results. One explanation might be that more diphosphine molecules than expected co-

ordinated to one AuNP, possibly in a monodentate binding mode. As one phosphorus
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Figure 3.49: STEM micrograph (left) and histogram (right) of Au1.4DPPETS.

Table 3.2: Results of EA of Au1.4DPPETS. Theoretical values are calculated for
potential chemical formulas of Au55DPPETS6Cl6 (DPPETS bidentate
bound) and Au55DPPETS12Cl6 (DPPETS monodentate bound).

C/% H/%

Theoretical values (6 ligands) 11.8 0.8
Theoretical values (12 ligands) 18.0 1.2
Measured values 40.99 3.42
After 2nd washing 40.82 4.24
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atom is surrounded by only two phenyl rings and one alkyl chain, it is sterically less bulky

the TPPMS with its three phenyl groups per phosphorus, and potentially more ligands �t

around one particle. Another explanation might be the occurrence of smaller gold clusters

or mononuclear gold complexes, stabilized by diphosphines. Possibly this is thermodynam-

ically favored due to steric reasons so that the AuNP cores were partially degraded by the

diphosphine excess during ligand exchange.

With another batch of AuNPs, some stability experiments concerning the ligand-AuNP

bond were performed. The chemical stability of the material was tested by the addition

of KCN to a Au1.4DPPETS solution and time-dependent UV/Vis spectroscopy. In the

presence of KCN, elemental gold is oxidized by oxygen according to the reaction shown in

scheme 3.50.

Figure 3.50: Oxidative degradation of AuNPs in the presence of KCN.

The degradation rate of the AuNPs by KCN depends on the ability of a ligand to shield the

AuNP surface.[47] Au1.4DPPETS and as a reference Au1.4MS were both analyzed for 2 h.

The intensity of absorbance at λ=430 nm was plotted against time (�g. 3.51).

Interestingly, the decay is steeper in the case of Au1.4DPPETS than it is for Au1.4MS.

This greater sensitivity of Au1.4DPPETS against KCN degradation might be a hint that

DPPETS only acts as a monodentate ligand and not, as it was expected, as a bidentate one.

In that case, the behavior towards degradation can possibly again be related to the fact that

each phosphorus atom in DPPETS has only two phenyl rings and one alkyl chain. From a

steric point of view, it is conceivable that the AuNP surface is therefore better accessible

than in the case of a TPPMS-stabilized AuNP.

To investigate whether DPPETS acts as a mono- or a bidentate ligand, atom distances of

the ligand and the gold cluster were theoretically estimated. They were based on the Au55

cluster as this was the precursor species for the ligand exchange reaction. In Au55, the
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3 Results and Discussion

Figure 3.51: Time-dependent plot from the UV/Vis spectra of the KCN degradation
of Au1.4DPPETS (black) and Au1.4MS (red), followed at 430 nm.

distance of two vertex atoms, to which the TPPMS molecules are bound, is approximately

0.86 nm. The P−P distance in a DPPETS molecule is approximately 0.45 nm, as assessed

with the program ChemBio3D (CambridgeSoft, version 12.0). The molecule is therefore not

appropriate to bind to a Au55 cluster in the expected way. Still, one DPPETS molecule

could possibly bind to two adjacent gold atoms or even to the same gold atom. More

sophisticated calculations were not performed in that direction, but the insu�cient chain

length of DPPETS might be the explanation for the unexpected behavior of Au1.4DPPETS

in the KCN experiment.

As another method, di�erential scanning calorimetry (DSC) was applied to analyze

Au1.4DPPETS and Au1.4MS (�g. 3.52). The ligands, DPPETS and TPPMS, were mea-

sured �rst and showed no thermal degradation up to 400 ◦C.

The measurement of Au1.4MS showed a sharp signal at 240 ◦C which may indicate the loss

of the TPPMS shell. This is comparable to a thermogravimetric analysis of 1.5 nm sized,

TPP-stabilized AuNPs.[133] These showed a mass loss of 24.5% in a temperature range of

200 − 250 ◦C which is assigned to the organic fraction of the AuNPs.

For Au1.4DPPETS on the other hand, no sharp signal is found, but a steady decay above

320 ◦C, indicating a higher stability than Au1.4MS. Compared to the KCN degradation

experiment which focuses on the chemical stability, DSC is a method to investigate material
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(a) DPPETS (black) and TPPMS (red). (b) Au1.4DPPETS (black) and Au1.4MS (red).

Figure 3.52: DSC measurements of the ligands (a) and the AuNPs (b).

properties such as melting, vaporization and sublimation. Furthermore, it is performed with

the solid material in contrast to the KCN experiment in solution. These di�erences might

explain why the results from both methods are contradictory and DSC points towards a

higher stability of Au1.4DPPETS compared to Au1.4MS.

As the theoretical investigation of DPPETS as a ligand for Au55 showed that the alkyl chain

between the two phosphorus atoms might be too short, the ligands DPPPTS and DPPBTS

were used for ligand exchange reactions. The reaction times were prolonged to 4 days to

increase the yields of water soluble product.

For Au1.4DPPPTS, the ligand exchange reaction seemed to be partially successful, as a

moderately colored water phase could be obtained after one week of reaction. A chemical

analysis however showed, similar as for Au1.4DPPETS, higher C and H values than expected

(see table 3.3).

Table 3.3: Results of EA of Au1.4DPPPTS.

C/% H/%

Theoretical values 12.24 0.98
Measured values 27.41 2.73

During a further puri�cation by dialysis, the AuNPs aggregated. In general, the particles

showed low stability in aqueous solution, thus, no further analytics in solution were per-

formed. The low stability of DPPPTS-stabilized AuNPs might also stem from the still too

short P−P distance of the molecule, still being too short to act as a bidentate ligand. When
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the diphosphines bind as monodentate ligands to the particle surface, they have a lower

steric hindrance than TPPMS and are thus weaker stabilizing ligands.

The synthesis of Au1.4DPPBTS was partially successful. As for the other two diphosphine-

stabilized AuNP species, the elemental analysis revealed a higher fraction of hydrocarbons

than the theoretical values for Au1.4DPPBTS with 6 or 12 ligand molecules (see table 3.4).

Further puri�cation by dialysis did not a�ect this fact: 40mg of Au1.4DPPBTS were dis-

solved in H2O and dialyzed for three days. 15mg product were retrieved, of which the EA

showed even slightly higher amounts of C and H than prior to the dialysis. This might be

due to some aggregation that occurred during the dialysis, and parts of the released ligands

from aggregated AuNPs might have increased the ligand excess in the product.

Table 3.4: Results of EA of Au1.4DPPBTS.

C/% H/%

Theoretical values 12.65 1.05
Measured values 26.73 2.75
After dialysis 29.30 3.30

For further analytics, the non-dialyzed raw product was used. A STEM analysis showed

that the AuNPs had a mean diameter of 1.4± 0.2 nm (�g. 3.53).

Figure 3.53: STEM micrograph (left) and histogram (right) of Au1.4DPPBTS.

A 31P-NMR spectrum showed only two broadened signals at 40.8 and 43.5 ppm. No signal

at −12.1 ppm from the free ligand was detected. The signal at 40.8 ppm can be assigned
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Figure 3.54: Stability test with increasing concentrations of DTT. Plotted are the
intensities at 400 nm of UV/Vis spectra from Au1.4DPPBTS (black)
and Au1.4MS (red) with the respective logarithmic �t curves.

to phosphine oxide impurities, whereas the signal at 43.5 ppm indicates a phosphine−gold

interaction.

A di�erent experiment was performed to test the binding strength of DPPBTS to AuNPs.

The reaction with dithiothreitol (DTT) with two thiol functions as a competing ligand was

shown to be useful to induce ligand release.[134] Here, it was used to test ligand dependent

stability. Dispersions of Au1.4DPPBTS were mixed with increasing concentrations of

aqueous DTT solutions. Au1.4MS was processed in the same way. The AuNP starting

concentrations were not identical. This impedes a direct comparison. However, when the

absorbances at 400 nm are plotted against DTT concentration, the logarithmic �t curve

for Au1.4MS shows a steeper decrease, indicating a higher stability of the diphosphine-

stabilized species against competing ligands (�g. 3.54).

Table 3.5 summarizes all successfully performed ligand exchange reactions with Au1.4TPP.

Within this work, it was not possible to synthesize diphosphine-stabilized small AuNPs that

were long-term stable, especially in other media than H2O such as cell culture medium with

high ionic strength. One problem could be the ability of bi-functional molecules to bridge

two particles and therefore induce the occurrence of networks and aggregation of the AuNPs.
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Table 3.5: Two-phase ligand exchange reactions performed with Au1.4TPP (discussed
in chapters 3.9 and 3.10).

Particle species Ligand Starting mass/mg Yield/mg Sizea/nm

Au1.4MS TPPMS 35 10.7 1.3± 0.2
Au1.4TS TPPTS 163 15 1.4± 0.2

Au1.4TPPMCMA TPPMCMA 50 n. d.b 1.5± 0.4
Au1.4TPPMC TPPMC 50 10.7 1.4± 0.2
Au1.4DPPETS DPPETS 50 27 1.8± 0.3
Au1.4DPPBTS DPPBTS 100 144c 1.1± 0.2
a Determined by STEM. b Not determined. c Before further puri�cation.

Due to this lack of stability, no cell tests could be performed so far to verify the hypoth-

esis that diphosphine-stabilized AuNPs are less toxic than the respective monophosphine-

stabilized AuNPs. Within the cooperation project, there are on-going studies in this �eld

to enable the synthesis of stable diphosphine-stabilized AuNPs and allow the toxicological

investigation of such compounds.[135]

To check whether the synthesized diphosphines are suitable ligands for AuNPs in general,

they were used to functionalize larger citrate-stabilized gold colloids. Di�erent batches of

citrate-stabilized AuNPs with slightly di�ering mean diameters were used.

DPPETS was mixed with 13 nm sized citrate-stabilized AuNPs. The plasmon resonance

maximum in the UV/Vis spectrum shifted from 522 nm to 524 nm, indicating a di�erent

dielectric environment and therefore a successful ligand exchange (�g. 3.55). The STEM

analysis showed that the AuNP size was not altered (13± 1.4 nm, see �g. 3.56). In the 31P-

NMR spectrum of the sample, no free DPPETS around −12 ppm was detected, only one

signal at 41 ppm, indicating phosphine groups bound to gold.

From Au11Citrate with a plasmon resonance peak at 519 nm, Au11DPPPTS

(λmax=520 nm) and Au12DPPBTS (λmax=519 nm) were synthesized (�g. 3.55). The STEM

analytics resulted in mean particle diameters of 11± 0.7 nm and 12± 1.2 nm for the two sam-

ples, respectively (�g. 3.56).

DLS measurements were conducted to investigate the hydrodynamic radii of the AuNPs

(�g. 3.57). The precursor colloids Au11Citrate showed a hydrodynamic particle size of

19.1 nm. As with DLS not only the metal core is measured but the particle including
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Figure 3.55: UV/Vis spectra of Au13DPPETS (black), Au11DPPPTS (gray) and
Au12DPPBTS (purple).

its ligand shell and the hydrate shell, it is reasonable that the value is higher than the

diameter determined from STEM micrographs.

For Au11DPPPTS and Au12DPPBTS, hydrodynamic diameters of 21.0 nm and 19.9 nm

were determined. A comparison of the DLS measurements of all species shows that the

hydrodynamic radii are slightly increased during ligand exchange. DPPPTS and DPPBTS

are both sterically bulkier than citrate. The DLS data re�ect this as both diphosphine-

stabilized AuNPs have increased hydrodynamic radii compared to Au11Citrate. The dif-

ference between Au11DPPPTS and Au12DPPBTS is thus surprising, as DPPBTS is the

larger molecule but the resulting hydrodynamic diameters of the AuNPs are smaller. The

histogram reveals that Au11DPPPTS has a broader size distribution, therefore the here

determined diameter might be more defective than the value from Au12DPPBTS.

The stability of all three species was investigated with the KCN degradation experiment

(�g. 3.58). Within the accuracy of the experiments, no signi�cant di�erences in the decay of

absorbance was observable for the diphosphine species Au13DPPETS, Au11DPPPTS and

Au12DPPBTS. In contrast to that, a batch of Au13MS showed a clearly faster reaction to-

wards KCN. Au11Citrate was degraded even faster and was almost completely decomposed

after 20min.
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Figure 3.56: STEM micrographs and histograms of Au13DPPETS (top),
Au11DPPPTS (middle) and Au12DPPBTS (bottom).
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Figure 3.57: Histograms of DLS measurements (intensity weighted) of Au11Citrate
(blue), Au11DPPPTS (gray) and Au12DPPBTS (purple).

Figure 3.58: Plots of time-dependently measured UV/Vis spectra at respective ab-
sorbance maxima during KCN degradation (0.1M).
Black: Au13DPPETS (plotted at 524 nm); gray: Au11DPPPTS
(520 nm); purple: Au12DPPBTS (520 nm); red: Au13MS (524 nm);
blue: Au11Citrate (520 nm). Note that starting intensities were not
the same for the di�erent AuNP solutions, and for better visualization,
the spectra were not normalized.
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Diphosphines are obviously suitable molecules as AuNP ligands in the case of colloids. They

stabilize gold colloids more strongly against chemical degradation than weaker ligands such

as monophosphines or citrate. No e�ect was found regarding the chain length of diphosphine

ligand molecules in the case of colloids above a diameter of 10 nm. This can be explained

by the surface curvature of larger AuNPs. On a molecular level, the gold atoms to which

one diphosphine molecule binds are almost in one plane. Therefore, the binding situation

is completely di�erent, and the resulting strain is obviously not strongly in�uenced by the

chain length of the investigated diphosphines.

Because Au15MS was nontoxic in cell tests, the diphosphine-stabilized gold colloids were

not tested in cell experiments as the same result is expected here.

3.11 Labeling Au1.4 with (Lys3)-bombesin

The cytotoxicity of Au1.4MS opens possibilities for therapeutic applications. By binding a

target molecule to the AuNP, a selective toxic compound can be generated, for example for

use as a cytotoxic drug in cancer therapy.

The concept chosen was the functionalization with bombesin. Bombesin is an oligopeptide

that binds to the gastrin-releasing peptide receptor (GRPR) which is expressed mainly in

the pancreas. The structural formula is shown below (�g. 3.62).

Figure 3.59: Coupling reaction scheme of a cell speci�c target molecule to
Au1.4TPPMC.

As Au1.4TPPMC shows almost the same toxicity as Au1.4MS (IC50=43µM, see chap-

ter 3.9), it was used as the precursor entity (�g. 3.59). The carboxylic acid function enables

di�erent routes to bind target molecules. An EDC/sulfo-NHS coupling was chosen (�g. 3.60).

When Au1.4TPPMC was functionalized with bombesin, the resulting AuNPs showed

mediocre solubility in H2O and in cell culture medium (pH7.4). They were well soluble
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3.11 Labeling Au1.4 with (Lys3)-bombesin

Figure 3.60: EDC/sulfo-NHS coupling reaction of an amine R−NH2, indicating
bombesin or (Lys3)-bombesin, to TPPMC. The carboxylic acid function
is �rst activated by EDC, reacts with sulfo-NHS to a temporarily stable
sulfo-NHS-ester, and then reacts further with the amine, generating an
amide bond.
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3 Results and Discussion

in acidi�ed solutions. Acidic conditions are not applicable in cell tests though, and neither

in later in vivo applications.

However, the product was characterized. The di�erent solubility behavior was a �rst hint

for a successful functionalization. Furthermore, the AuNPs were treated with dithiothreitol

(DTT), a dithiol with a strong binding a�nity towards gold and the ability to cross-link

AuNPs (�g. 3.61). The aggregates were removed by centrifugation, the supernatant was

dried and analyzed by mass spectroscopy. A signal for the TPPMC-bombesin adduct at

m/z=1907.9 could be con�rmed.

Figure 3.61: DTT ligand exchange reaction with bombesin-functionalized AuNPs.
The supernatant was subsequently analyzed by MS.

Di�erent derivatives of the peptide bombesin are available that are equally e�ective in

binding assays and clinical studies. To facilitate the coupling reaction, (Lys3)-bombesin

with a lysine residue instead of arginine on third position of the peptide structure was

chosen for further experiments (�g. 3.62). The primary amine of lysine (pKB =10.5) is

more prone for a coupling reaction than the amine of the guanidinium group of arginine

(pKB =12.5).[136] The use of (Lys3)-bombesin instead of bombesin should not a�ect the

binding a�nity towards GRP receptors.[111]

To enhance solubility and stability, AuNPs with a mixed ligand shell of TPPMS and TPPMC

were synthesized (Au1.4MS/MC). The optimal ratio concerning solubility and stability was

determined to be a TPPMS:TPPMC molar ratio of 7:1. This is the ratio that was initially

used for the ligand exchange reaction; the �nal exact ratio that was present on the AuNPs

was not evaluated.

Characterization of Au1.4MS/MC showed typical UV/Vis spectra without speci�c features

(�g. 3.63), identical for two synthesis batches. The STEM analytics showed AuNPs with

narrow size distribution and a mean diameter of 1.4± 0.2 nm (�g. 3.64). The standard MTT

assay revealed cytotoxicity in the same magnitude as Au1.4MS (IC50=30.1µM).
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3.11 Labeling Au1.4 with (Lys3)-bombesin

Figure 3.62: Bombesin, an oligopeptide consisting of 14 amino acids. Natural
bombesin has an arginine group at third position, which is replaced by
lysine in (Lys3)-bombesin.

The ligand shell of Au1.4MS contains 12 ligands. As TPPMC has a very similar chemical

structure to TPPMS, the same number of ligand molecules per particle can be assumed.

With a statistical ratio of 7:1 (TPPMS:TPPMC), one to two ligand molecules per AuNP

have a carboxylic acid function, suitable for the coupling of (Lys3)-bombesin. The

coupling was successfully performed, resulting in (Lys3)-bombesin-functionalized AuNPs

(Au1.4MS/MC-(Lys3)-bombesin) with approximately one or two bombesin molecules per

particle. Therefore, no cooperative e�ect can be expected, i. e. a higher a�nity per par-

ticle because of an increased number of agonists to GRPR and thus binding events. On

the other hand, it is probable that the binding e�cacy of one single bombesin molecule

attached to one AuNP is not impaired in this surface density. The product was puri�ed by

ultracentrifugation to ensure the absence of free bombesin molecules.

The product was well dispersible in H2O and stable in cell culture medium. It was charac-

terized by UV/Vis spectroscopy, STEM and IR spectroscopy. The UV/Vis spectrum did

not show a de�ned peak which would be a hint of aggregates in a size range above 3 nm
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3 Results and Discussion

Figure 3.63: UV/Vis spectra of two batches of Au1.4MS/MC.

Figure 3.64: STEM micrograph (left) and histogram (right) of Au1.4MS/MC.
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3.11 Labeling Au1.4 with (Lys3)-bombesin

Figure 3.65: UV/Vis spectrum of Au1.4MS/MC-(Lys3)-bombesin.

Figure 3.66: STEM micrograph (left) and histogram (right) of Au1.4MS/MC-(Lys3)-
bombesin.

(�g. 3.65). The STEM analysis con�rmed this as no aggregates were visible, and a mean

diameter of 1.5 nm± 0.2 nm was determined (see �g. 3.66).

In the IR spectrum of Au1.4MS/MC-(Lys3)-bombesin, the characteristic absorption band

for amides was clearly visible at 1643 cm-1 (�g. 3.67). This band is thus probably induced

by both, the new formed amide bond between TPPMC and the amine functionality of

(Lys3)-bombesin as well as the peptide bonds within the latter.

When the product was dried and redispersed in H2O, the solubility was impaired. Therefore,

the afterwards synthesized batches were not dried and stored as solid, but kept in solution.

As such, they were stable over months.
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3 Results and Discussion

Figure 3.67: IR spectra of Au1.4MS/MC (black) and Au1.4MS/MC-(Lys3)-bombesin
(red). The arrow indicates the characteristic amide absorption band at
1643 cm-1.

As the analytics showed AuNPs of the desired size and the functionalization could be

proven by IR spectroscopy, cell tests were performed. The MTT assay showed that the

functionalization of 1.4 nm sized AuNPs with (Lys3)-bombesin did not alter the cytotoxi-

city (IC50=59µM).

GeneBLAzer® GRPR-NFAT-bla CHO-K1 cells, purchased from Invitrogen�, were used to

analyze if the (Lys3)-bombesin attached to the AuNPs was still active. The cells contain a

β-lactamase (bla) reporter gene under control of a NFAT response element. In the case of

a receptor-agonist interaction, the production of bla is triggered. As a substrate, coumarin-

lactam-�uorescein is added which shows �uorescence at 520 nm from the �uorescein entity.

The coumarin �uorescence is transferred by a Förster resonance energy transfer (FRET)

to the �uorescein entity in this adduct. Bla cleaves the lactam bridge between the two

�uorophores. An interaction with GRPR therefore induces an increase of the coumarin

�uorescence at 447 nm, which can be quanti�ed by a �uorescence microplate reader or

detected by �uorescence microscopy of cell cultures.
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3.11 Labeling Au1.4 with (Lys3)-bombesin

To prove the speci�c functionalization of Au1.4MS/MC-(Lys3)-bombesin, distinguished from

a reaction by potential residual free (Lys3)-bombesin in the sample, the supernatant from

the last ultracentrifugation step was also tested as a reference sample. This supernatant

visibly contained a low concentration of not centrifuged Au1.4MS/MC-(Lys3)-bombesin. To

exclude e�ects from these particles, the supernatant was dialyzed prior to testing, and the

dialysis water was concentrated to a low volume and used.

The e�ect of Au1.4MS/MC-(Lys3)-bombesin towards the GRPR containing cells was �rst

analyzed visually. Under the microscope, the cytotoxicity of Au1.4MS/MC-(Lys3)-bombesin

could be con�rmed, whereas pure (Lys3)-bombesin did not cause cell death.

The GRPR cells were then analyzed in a �uorescence reader. For Au1.4MS/MC-(Lys3)-

bombesin, increasing �uorescence could be determined, indicating an interaction between

the bound (Lys3)-bombesin and the GRP receptors. Pure (Lys3)-bombesin which was tested

as reference showed the same e�ect. Au1.4MS and the ultracentrifugation supernatant,

on the other hand, gave no �uorescence signal. This proves that (Lys3)-bombesin could

successfully be coupled to Au1.4MS/MC and be puri�ed without any impairment of the

(Lys3)-bombesin receptor a�nity.

A not expected phenomenon was that even at very low concentrations, there was still an

increased �uorescence detectable for Au1.4MS/MC-(Lys3)-bombesin and for the (Lys3)-

bombesin reference. A possible explanation is that the bombesin is sticky and was therefore

accidentally pipetted in the dilution series in higher concentrations than intended. Although

this result is not well understood so far, the trends of all samples show the expected results

and point towards covalently to AuNPs attached (Lys3)-bombesin that is still receptor

active.

To further con�rm these results, the cells were investigated by �uorescence microscopy by

Prof. G. Müller-Newen (UKA). Like the �uorescence quanti�cation, the detected �uores-

cence intensities in the micrographs con�rm the e�ective functionalization of the AuNPs.

As can be seen in �g. 3.68, Au1.4MS does not induce an enhanced coumarin �uorescence

and the cells are only stained with the uncleaved substrate (the �uorescence at 520 nm from

the adduct is shown in red). (Lys3)-bombesin on the other hand leads to an increased

�uorescence at 447 nm, shown as yellow �uorescence here. Au1.4MS/MC-(Lys3)-bombesin
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3 Results and Discussion

Figure 3.68: GeneBLAzer GRPR-NFAT-bla CHO-K1 cells in �uorescence micro-
graphs. Cells were untreated (up left), treated with 1 nM (Lys3)-
bombesin as positive control (up right), with 1µM Au1.4MS as neg-
ative control (down left) and with 1µM Au1.4MS/MC-(Lys3)-bombesin
(down right). Au1.4MS/MC-(Lys3)-bombesin induces enhanced �uores-
cence at 447 nm as indicated by the yellow color. Figures were provided
by G. Müller-Newen, UKA.
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has the same e�ect. The (Lys3)-bombesin bound to AuNPs is still active, can bind to the

GRP receptor and trigger the release of coumarin.

In tissue consisting of healthy cells and cancerous cells expressing GRPR, interaction of

Au1.4MS/MC-(Lys3)-bombesin with cancer cells is possibly ampli�ed and the functionalized

AuNPs will a�ect mainly those. This would �nally lead to a potential cytotoxic drug with

reduced side e�ects.

3.12 Labeling Au1.4 with 5-Amino�uorescein

It could be shown that the ligand binding strength plays a crucial role in AuNP cytotoxicity

(3.3). Furthermore, in the patch clamp experiments it became obvious that the equilibrium

of bound and free ligands has a great in�uence on the interaction with ion channels (3.8).

From these �ndings it can be assumed that the ligand shell of Au1.4MS is partially or

completely stripped at some point of the interaction with a cell.

Until now, there is no clarity about this stripping event, i. e. the time point and the spatial

circumstance and which cell organelles or molecular entities might be involved. Also, the

uptake mechanism of small AuNPs could not be veri�ed so far. The uptake of Au15MS

via endocytosis and the fate of these AuNPs in vesicles within the cells could be shown by

TEM. Au1.4MS is however too small to be clearly visualized in the organic material.

To learn more about the interaction of Au1.4MS with a cell and its membrane and to follow

the TPPMS ligand shell, it would be helpful to have a probe that can easily be visualized.

The use of �uorescence markers would allow further investigation.

The �uorescence of �uorophores that are bound closely to the surface of metal nanoparticles

is quenched due to resonant energy transfer. This e�ect depends of the AuNP size and the

spacer length, determining the distance between �uorophore and nanoparticle.[74] A species

consisting of a 1.4 nm gold core and a phosphine ligand shell labeled with a �uorophore would

allow to follow the fate of the ligand molecules within the cell by �uorescence microscopy.

In the moment of ligand stripping, the until then quenched �uorophore should light up.

5-Amino�uorescein was chosen for this purpose (�g. 3.69). It was attached to Au1.4MS/MC

by an EDC/sulfo-NHS coupling under the same conditions as (Lys3)-bombesin (�g. 3.70,
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3 Results and Discussion

see also chapter 3.11), resulting in Au1.4MS/MC-Amino�uorescein comprising the adduct

TPPMC-AF.

Figure 3.69: Chemical structure of the �uorophore 5-amino�uorescein.

Figure 3.70: 5-Amino�uorescein, coupled to TPPMC via an amide bond.

The UV/Vis spectrum of the product showed a distinct peak at 484 nm (�g. 3.71). A com-

parison to the UV/Vis spectrum of pure 5-amino�uorescein revealed the origin for this peak,

as it showed high absorbance at this wavelength.

The STEM analysis showed that the particle functionalization had not altered the AuNP

size distribution much (mean diameter 1.5 nm± 0.2 nm; see �g. 3.72).

An IR spectrum of the product con�rmed the positive functionalization, as the characteristic

bands at 1630 cm-1 and 1385 cm-1 from the spectrum of 5-amino�uorescein were clearly visible

here as well (�g. 3.73).

Next, the ability for monitoring the ligand binding and unbinding was evaluated.

Au1.4MS/MC-Amino�uorescein was treated with DTT to release TPPMC-AF from the

AuNP surface. Fluorescence spectroscopy measurements of the stock solution before treat-

ment and of the supernatant after DTT induced aggregation were conducted.
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3.12 Labeling Au1.4 with 5-Amino�uorescein

Figure 3.71: UV/Vis spectra of Au1.4MS/MC-Amino�uorescein (black) and
5-amino�uorescein (red).

Figure 3.72: STEM micrograph (left) and histogram (right) of Au1.4MS/MC-
Amino�uorescein.
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3 Results and Discussion

Figure 3.73: IR spectra of Au1.4MS/MC-Amino�uorescein (black) and
5-amino�uorescein (red).

The measurements gave contradicting results. The �uorescence intensity at 520 nm (�uo-

rescence maximum for 5-amino�uorescein) did not change strongly. After the reaction with

DTT the signal was even slightly weaker, opposed to what was expected (�g. 3.74).

Possibly, AuNPs with a mean diameter of 1.4 nm are too small for e�cient �uorescence

quenching, and the 5-amino�uorescein attached to the particles already gave a full intensity

signal. Another explanation for this �nding is an excess of unbound 5-amino�uorescein in

the AuNP stock solution. This is however not probable, as the wash supernatants of the

sample after synthesis showed decreasing �uorescence, indicating e�cient washing (�g. 3.75).

Within the �rst three washing steps, �uorescence increased, probably due to subsequent

release of unspeci�cally bound 5-amino�uorescein. In washing steps 4 and 5, the �uorescence

decreases. This was interpreted as successful washing.

If the insu�cient quenching e�cacy of 1.4 nm sized AuNPs is the reason for the �uorescence

spectroscopy results, a di�erent concept instead of using attached 5-amino�uorescein has to

be applied to visualize ligand desorption.

The standard cell test was performed nonetheless, giving a similar IC50 as non-functionalized

Au1.4MS (IC50=32µM). This result suggests that the functionalization of Au1.4MS/MC

with 5-amino�uorescein does not alter the interaction with cells.
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3.12 Labeling Au1.4 with 5-Amino�uorescein

Figure 3.74: Fluorescence spectra of a Au1.4MS/MC-Amino�uorescein solution be-
fore (red) and after (black) reaction with DTT.

Figure 3.75: Fluorescence spectra of the washing supernatants from the coupling
product Au1.4MS/MC-Amino�uorescein.
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4 Summary and Outlook

The biological activity of a variety of AuNPs was examined in detail. For this, diverse

water soluble AuNPs have been synthesized and characterized for subsequent cytotoxicity

investigations. Following the �rst of the initially formulated parameters, AuNPs of di�erent

sizes up to 15 nm were synthesized. They were all functionalized with TPPMS for a ligand

independent size e�ect determination which resulted in the identi�cation of Au1.4MS as the

most toxic AuNP species.

A toxicity dependence of gold−ligand binding strength was revealed by synthesis and further

analysis of GSH-stabilized AuNPs. The stronger binding thiol ligands could clearly reduce

the AuNP toxicity. This pointed towards an in�uence of the accessibility of the AuNP

surface.

Mechanistic aspects concerning the Au1.4MS toxicity were examined. These AuNPs mainly

induce necrosis in cells. Furthermore, they activate the expression of heat shock and stress

related genes. A �uorophore dye based �ow cytometry analysis indicated a correlation with

oxidative stress. This could partially be con�rmed by the protecting e�ect of anti-oxidants.

However, this was obviously more related to a binding reaction to the AuNPs and not

directly to an antioxidative e�ect, as ascorbic acid without gold a�ne functional groups had

a signi�cantly di�erent e�ect than GSH, NAC and TPPMS.

A hypothesized correlation between cytotoxicity and catalytic activity towards oxidation

reactions could not be con�rmed when Amino-TEMPO was used as oxidation substrate

for EPR studies. Only non-toxic citrate-stabilized gold colloids were able to quench the

Amino-TEMPO signal whereas all other di�erently stabilized AuNPs (with TPPMS or GSH,

respectively) had no e�ect on the substrate signal intensity, thus no oxidation activity.
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The experiments concerning genotoxicity of AuNPs gave unexpected results. DNA damage

was investigated by quanti�cation of DNA base lesions via GC/MS in the presence of iso-

topically labeled oxidation products. Here, Au1.4MS and Au1.1GSH showed a very similar

behavior despite an opposite toxicity pro�le. Furthermore it was found that the concentra-

tions of two lesions, FapyAde and FapyGua, were decreased. This was not expected and is

still under further investigation for a deeper understanding.

A toxic e�ect by potentially present TPPMS-Au(I)-Cl could be ruled out. Although the

Au(I) complex shows high cytotoxicity, it was proven in a dialysis experiment that only

TPPMS shows desorption of Au1.4MS to some extent, but no gold could be detected by

EDX analysis of the supernatant residue. The adsorption/desorption equilibrium of TPPMS

on Au1.4MS was analyzed by 31P-NMR spectroscopy, resulting in an equilibrium constant

of Kd=4.76× 10-7 and a free Gibbs energy of 35.5 kJ/mol.

This e�ect plays obviously also a role in the interaction of Au1.4MS with potassium ion

channels. Patch clamp experiments identi�ed Au1.4MS as an irreversibly acting hERG

channel blocker. No other AuNP material tested showed this e�ect, and for Au1.4MS

it could be inhibited by the addition of FCS, GSH or TPPMS. Again, ligand stripping of

TPPMS as a crucial factor for feasible interaction was postulated and could be corroborated

by docking simulations, conducted by the Wenzel group (KIT, Karlsruhe).

In agreement to this, variation of the phosphine functionalities (TPPTS, TPPMC) did not

alter the toxicity of Au1.4MS. Obviously, the interaction strength with the AuNP surface is

the dominating factor whereas the in�uence of outer ligand functionalities can be neglected.

However, it was not possible to synthesize stable positively charged AuNPs of 1.4 nm size,

which may potentially show a di�erent cell interaction.

The e�ort to synthesize diphosphine-stabilized 1.4 nm sized AuNPs was not successful.

This would be an interesting species with potentially intermediate binding a�nity between

monophosphines and thiols. Di�erent diphosphine-stabilized gold colloids, stabilized with

DPPETS, DPPPTS and DPPBTS, with an average size of 12 nm were successfully synthe-

sized and showed all a higher stability in a KCN degradation experiment than TPPMS-

stabilized AuNPs.
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The functionalization of Au1.4MS/MC with (Lys3)-bombesin could be realized by an

EDC/sulfo-NHS coupling reaction. The functionalization was proven by IR spectroscopy.

Cell tests showed that both the IC50 value of the AuNPs as well as the receptor a�nity of

(Lys3)-bombesin could be retained. This proof of concept shows high potential for a further

application in cancer therapy.

Via the same route, 5-amino�uorescein functionalized AuNPs could be synthesized. Nev-

ertheless, they were not applicable for ligand visualization in cells due to unspeci�c ligand

desorption and therefore �uorophore release already in ultrapure water.

Summarized, the biological e�ects of diverse AuNP materials were investigated in detail.

A size- as well as a ligand-dependent toxicity were observed, with Au1.4MS as the most

toxic species. Some hypotheses concerning its mechanism could be validated, others be

disproven. The high cytotoxicity of Au1.4MS could neither be directly connected with

DNA transcription inhibition, nor with direct oxidation catalysis. A side e�ect by Au(I)

species could also be ruled out. The understanding of toxicity behavior still requires further

mechanistic studies.

In future, it might be interesting to use sophisticated cell analytics regarding speci�c sub-

cellular structures and reactions to gain deeper insight into the exact mechanism of the

cytotoxicity of Au1.4MS. In vitro EPR spectroscopy is a method to visualize ROS in cells

and could therefore help to answer the questions concerning time point of action and cell

organelle(s) involved, i. e. when and where oxidative stress occurs.

The genotoxicity studies should be further conducted. The investigation of other DNA

repair enzymes besides NEIL1 could lead to the identi�cation of an enzyme that can be

activated by AuNPs. As the non-toxic Au1.1GSH also led to an decrease of certain DNA

lesions, this species would be an interesting candidate for potential medical applications to

enhance DNA repair.

The synthesis of diphosphine-stabilized, small AuNPs with long-term stability was found

to be challenging. However, species of this type would be interesting for cytotoxicity in-

vestigations. Variation of the reaction conditions and testing of further diphosphines could

potentially lead to success here.
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A system of phosphine-stabilized, 1.4 nm sized AuNPs with a �uorophore marker that does

not readily desorb from the AuNPs would be an interesting probe for �uorescence microscopy

investigations in cells. Possibly this can be achieved by varying the reaction and puri�cation

conditions for the synthesis of Au1.4MS/MC-Amino�uorescein. Alternatively, a combina-

tion of this approach with the use of diphosphine ligands could solve this problem. The

desorption of the ligand shell is most probably a crucial step in the AuNP/cell interaction

pathway and deserves further investigation.

The functionalization of AuNPs with bombesin gave encouraging �rst results. These parti-

cles are very promising candidates for further tests, potentially in vivo in a tumor model to

investigate whether the AuNPs show increased uptake in tumor cells besides healthy tissue.

The organ distribution of Au1.4MS in an in vivo rat model was already investigated. 24 h

after intravenous injection, the highest concentration (∼ 50%) was found in the liver due

to clearance e�ects. 19.3% were present in the carcass (which refers to the entire body

of the animal without the organs and tissues that were removed). This re�ects a uniform

distribution of Au1.4MS throughout the whole body. No speci�c uptake in any organs could

be observed, but signi�cant amounts of the injected dose (3.7%) circulated in the blood.

For a potential application of a targeted species it is interesting to notice that Au1.4MS was

not cleared completely within 24 h, in opposite to larger AuNPs of 18 nm diameter.[137]

In a more recent study, the size dependence of AuNP biodistribution was further investi-

gated. 5 di�erently sized, TPPMS-stabilized AuNPs were intravenously injected in rats in

low doses to exclude acute toxicity, and the distribution after 24 h was analyzed by using

radio-labeled AuNPs with 198Au. Au1.4MS was not accumulated in the liver to the same

extent as all other, larger AuNPs (51% compared to >80%). Further, Au1.4MS showed

highest percentage of retention in blood (8%) and highest clearance via urine (4.7%) of

all AuNPs tested.[138] These �ndings con�rm that Au1.4MS is well distributed in vivo and

also that slow clearance is possible, which is crucial for a potential therapeutic use.

Administration of the same library of AuNPs to rats by oral ingestion led to a generally

low absorption across intestinal membranes, showing that the administration pathway is

an important parameter, but again Au1.4MS showed highest uptake of all AuNPs tested

(0.37%).[139]
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This �eld could also be further expanded by using other targeting entities, such as CPPs

or NLS peptides. There are numerous receptors on cells that are interesting target

structures.[106]

Besides the here investigated toxicity dependence on size and ligand functionalization of

spherical AuNPs, the in�uence of shape could be examined, as for example gold nanorods

and hollow gold nanospheres have interesting optical properties with application potential

in imaging and treatment of diseases which makes the toxicological analysis indispensable.

Apart from AuNPs, various other metal nanoparticles have valuable properties with poten-

tial applications for biomedical purposes, such as superparamagnetic FePt nanoparticles.

Synthesis of water-soluble species and systematic toxicology investigations would open the

door to new developments in diverse nanomaterial based applications.
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5 Experimental Part

5.1 Chemicals and Solvents

5.1.1 Precursor Chemicals

Chemicals were available at the Institute of Inorganic Chemistry (IAC), RWTH Aachen

University, at the Cytocentrics AG, Rostock, or at the National Institute of Standards

and Technology (NIST), Gaithersburg, MD, USA, or purchased from diverse commercial

suppliers. If not stated explicitly di�erently, chemicals were used as received.

Table 5.1: Chemicals, solvents and suppliers.

Substance, grade/concentration Supplier

Acetic acid Riedel de Häen

Acetonitrile Merck

5-Amino�uorescein Fluka

2-Amino-5-iodobenzoic acid Fluka

4-Amino-2,2,6,6-tetramethylpiperidine-1-oxyl Aldrich

(Amino-TEMPO)

Benzene, p. a. AppliChem

BF3 · OEt2 Aldrich

1,4-Bis(diphenylphosphino)butane (DPPB), 98% Aldrich

1,2-Bis(diphenylphosphino)ethane (DPPE), 99% Aldrich

Continued on next page
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Substance, grade/concentration Supplier

1,3-Bis(diphenylphosphino)propane (DPPP), 97% Aldrich

Bis(2-methoxyethyl)ether (diglyme), 99% Acros

CaCl2 Grüssing

Chlorodiphenylphosphine (Ph2PCl) Aldrich

Chloro[diphenyl(3-sulfonatophenyl)phosphine] ABCR

gold(I), sodium salt, 98%

Dichloromethane, p. a. VWR

Diethyl ether Riedel de Häen

4-(Diphenylphosphino)benzoic acid (TPPMC), 97.0% TCI Europe

Dithiothreitol (DTT) Aldrich

D2O Aldrich

Dodecylamine Sigma-Aldrich

Ethanol Grüssing

GeO2 Schuchardt

Glutathione (GSH), 98.% Fisher BioReagents

HAuCl4 · 3 H2O, ACS reagent Sigma-Aldrich

HCl, 37% KMF

H3PO4 Merck

H2SO4, 20% Riedel de Häen

H2SO4, 65% Merck

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic Sigma

acid (HEPES)

4-Iodobenzoic acid Fluka

KBr Sigma

KCN Grüssing

KOH KMF

LiAlH4 Fluka

Continued on next page
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Substance, grade/concentration Supplier

(Lys3)-Bombesin, 98% Bachem

Methanol, p. a. VWR

MgSO4 Grüssing

M -iodoaniline Fluka

NaBH4, , purum p. a. Aldrich

NaOH Geyer

N -(3-Dimethylaminopropyl)-N '-ethylcarbodiimide Fluka

(EDC)

N -Hydroxysulfosuccinimide sodium salt Fluka

(sulfo-NHS)

Palladium(II) acetate Fluka

P -iodoaniline Sigma-Aldrich

Pentane Grüssing

Petroleum ether Merck

Sodium auro(I)thiomalate hydrate (Tauredon®) Aldrich

Tetrakis(triphenylphosphine)palladium Merck

Toluene Merck

TPPTS Fluka

Triethylamine Grüssing

Triphenylphosphine (TPP), 99+% Alfa Aesar

Trisodium citrate dihydrate Fluka

H2O was obtained from an ELGA Purelab Plus water puri�cation system.

5.1.2 Commercially Purchased or Provided AuNPs

Au1.2MS and Au1.8MS were kindly provided by STREM Chemicals Inc.

Aurovist�was purchased from Nanoprobes.
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5.2 General Comments on Preparative Work

As phosphines are sensitive towards oxidation, most syntheses including phosphines were

performed in inert atmosphere (N2 or Argon).

All glassware, magnetic stir bars and other materials used for AuNPs were cleaned with

aqua regia and thoroughly washed with de-ionized H2O prior to usage. When AuNPs were

kept in solution over longer periods of time (in reactions or for storage), this was done under

exclusion from light to prevent light induced aggregation.

Centrifugation was performed with a Biofuge fresco centrifuge (Heraeus). Ultracentrifuga-

tion was performed at the Institute of Physical Chemistry, RWTH Aachen University, with

a Sorvall Discovery 90SE. Drying of solutions in Eppendorf tubes was performed with a

miVac DNA concentrator (Genevac). To �lter AuNP solutions, Anotop �lters (Millipore®,

pore diameter 20 nm) were used. For dialysis experiments, dialysis membranes made of

regenerated cellulose with a molecular weight cut-o� (MWCO) of 5 kD (ZelluTrans, Roth,

V series) were used.

5.3 General Comments on Analytics

5.3.1 UV/Vis Spectroscopy

UV/Vis measurements were performed on a J & M TIDAS microspectrometer in PMMA

cuvettes for aqueous solutions and fused quartz glass cuvettes for organic solvents in a

spectral range from λ=300 - 800 nm. Low concentrated AuNP solutions were used (maximal

absorbance ≤ 1), and the respective solvent was measured as a reference. For long-term

measurements, fused quartz glass cuvettes were used and tempered to 23 ◦C.

5.3.2 Scanning Transmission Electron Microscopy (STEM)

Low concentrated AuNP solutions were used. A drop of 5µL was placed on a carbon-coated

copper grid (S160, Plano) and dried.
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A STEM FEI Tecnai G2 F20 with a High Angle Annular Dark Field (HAADF) detector

(Ernst Ruska-Centre Jülich), operated at 200 kV, or a FE-SEM Leo/Zeiss Supra 35 VP

(IAC), operated at 20 kV, were used.

Grids measured in Jülich were cleaned in a Fishione Model 1020 Plasma Cleaner with a

25% oxygen and 75% argon plasma (Ernst Ruska-Centre Jülich) before they were analysed.

The statistical analysis of the micrographs was performed with a Visual Basic tool for

CorelDraw, developed by Dr. T. Koplin (IAC, RWTH Aachen University).

5.3.3 Scanning Electron Microscopy (SEM) and Energy-Dispersive

X-Ray Spectroscopy (EDX)

For AuNP solutions, low concentrated solutions were used. A drop of 5µL was placed on a

clean silicon wafer and dried. For solids, a small part of the respective sample was �xed on

a conductive adhesive carbon tab attached to a pin stub. A FE-SEM Leo/Zeiss Supra 35

VP with an integrated EDX system (Oxford, INCA Energy 200 with SiLi crystal, 133 eV,

10mm2) was used.

5.3.4 Elemental Analysis (EA)

For an elemental analysis (elements C, H, N), 3mg of a solid sample was investigated on a

Elementar Vario EL in the Institute of Organic Chemistry, RWTH Aachen University.

5.3.5 Atomic Absorption Spectroscopy (AAS)

For concentration determinations of AuNP solutions, 100µL of the respective sample was

diluted with 400µL H2O, oxidized with aqua regia and measured on a Shimadzu AA-6200.

Concentrations of AuNP solutions are therefore always given as gold atom concentrations,

if not stated di�erently.
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5.3.6 Electron Paramagnetic Resonance (EPR)

The EPR measurements were performed on a magnettech MiniScope MS100 EPR spec-

trometer (Forschungszentrum Jülich). They were measured with a B0 �eld of 3380G, a

magnetic �eld variation of 140G, a modulation of 205mG and a microwave damping of

6 dB. Concentrated solutions of AuNPs, Amino-TEMPO and Oxo-TEMPO stock solutions

were saturated with O2 or Ar by bubbling with gas for at least 10min. For the measure-

ments, solutions were �lled into Blaubrand intraMARK micropipettes (50µL volume) and

closed with paramagnetic silicon paste.

5.3.7 Gas chromatography / mass spectrometry (GC/MS)

The GC/MS experiments were conducted at the NIST, Gaithersburg, MD, USA. A mass

spectrometer (Hewlett-Packard Model 5989A MS Engine) interfaced to a gas chromatograph

(Hewlett-Packard Model 5890 Series II ), equipped with an automatic injector, was used.

5.3.8 Nuclear Magnetic Resonance Spectroscopy (NMR)

5.3.8.1 Solution NMR

For organic samples, 10mg of the sample was dissolved in 700µL deuterated solvent and

measured on a Bruker Avant II 400 (400MHz) or aMercury 200B (200 MHz). The chemical

shifts are given as δ in ppm and are referenced to the respective solvent (for 1H-NMR) or

to H3PO4 as external standard (for 31P-NMR).

For AuNP solutions, highly concentrated solutions were used (for small particles, 15mg of

the respective sample was dissolved in 300µL D2O; solutions of AuNPs >5nm were concen-

trated by centrifugation). For aqueous solutions, FEP sample tube liners (Wilmad®) were

used. The number of scans and the delay time were individually �tted for each experiment.

5.3.8.2 Solid State NMR

Static and magic angle spinning (MAS) solid state 31P-NMR investigations were carried out

with a Bruker AVANCE III spectrometer with a magnetic �eld of 9.40T equipped with a
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standard Bruker 4.0 and 2.5mm MAS probe, respectively. The corresponding frequency

of 31P is 161.988MHz. 31P-NMR signals of Au1.4MS were recorded using a Hahn echo

sequence with pulses of 2.0µs and an interpulse delay of 100µs for the static measurements.

Rotor synchronized interpulse delays were applied under MAS conditions of 15 and 35 kHz,

respectively. A cycle delay of 5.4 s was used to ensure full recovery of the magnetization.

1H decoupling was achieved throughout a Spinal64 sequence with pulses of 5.0µs. For the

NMR measurements of TPPMS-Au(I)-Cl, a 1H decoupled (Spinal64, 5.4µs) single pulse

sequence with pulses of 3.4µs and a cycle delay of 64 s was applied. The 31P-NMR signals

are referred to H3PO4.

5.3.9 Patch Clamp Experiments

The patch clamp experiments were performed at the Cytocentrics AG, Rostock, together

with Dr. Olaf Scheel, Dr. Yu Pan-Bartneck and Frank Schiefer. The recordings were

performed on a patch clamp setup:

Patch clamp ampli�er: EPC-10, HEKA Elektronik ; Software: PatchMaster, HEKA Elek-

tronik, v2.15; Tube pump: ISM830, Ismatec; Bath chamber: RC-25 with platform P-3,

Warner Instruments, with glass cover slips; patch clamp pipettes: pipette resistance be-

tween 1.5 and 4MOhm. The pipette electrode was built of a chlorinated silver wire in IC.

As reference electrode a Ag/AgCl pellet electrode (Warner Instruments) was used. Patch

clamp data were recorded and analyzed using the HEKA patchmaster software. Further

analysis was performed with Microsoft Excel. The peak amplitude of the hERG tail current

was corrected by the value of the leak current determined with the -50mV pulse before the

depolarizing activation pulse giving the hERG tail current value.

5.3.10 Di�erential Scanning Calorimetry (DSC)

Samples of 5 - 20mg were weighted exactly and investigated on a NETZSCH DSC 204.
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5.3.11 Dynamic light scattering (DLS) and ζ potential

measurements

DLS measurements and ζ potential measurements were performed with low concentrated

solutions in 10mM or 100mM HEPES bu�er with a pH of 8 in folded capillary cells (clear

polycarbonate) on a Malvern ZETA SIZER ZS with a laser of the wavelength λ = 632.8 nm.

5.3.12 Mass Spectrometry (MS)

The MS measurements at the IAC were performed on a Finnigan MAT95. FAB-SIMS

spectra were recorded in a glycerine/thioglycerine matrix and in a 1,4-dithioerythritol/DL-

dithiothreitol (DTE/DTT) matrix.

5.3.13 Infrared Spectroscopy (IR)

Samples were either mixed as a powder (1mg) with 200mg pre-dried KBr, or 5µL of a

concentrated AuNP solution was added to 200mg KBr and dried. This mixture was pestled

and then pressed in a molding press. The pellet was measured on a FT-IR Bruker Vertex

70 spectrometer.

The spectra were processed with the OPUS 6.5 program. A baseline correction and a CO2

correction were performed.

5.3.14 Fluorescence Spectroscopy

Low concentrated solutions were measured in PMMA cuvettes with four clear sides in a

Jasco FP-6300 �uorescence spectrometer.

5.3.15 Cell Experiments

All other, not so far mentioned cell experiments described in this work were performed at

the UKA and are described in detail in the PhD thesis of Dr. Yu Pan-Bartneck.[12] To

prepare test compound solutions, the AuNP solutions of small AuNPs (<5nm) were always
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�ltered with an Anotop �lter after redispersion. A small portion of each sample was taken

for the measurement of the concentration by AAS.

5.4 Syntheses

5.4.1 Ligands

5.4.1.1 TPPMS

To a mixture of 4.8mL 20% fuming sulfuric acid and 0.2mL 65% fuming sulfuric acid, 2.5 g

(9.5mmol) TPP were added slowly under stirring and cooling with an ice bath. After the

dissolution of the TPP, the solution was heated to 90 ◦C. After 30min, the reaction was

stopped and cooled to room temperature. The solution was poured into 200mL H2O and

neutralized with saturated NaOH. The product precipitated as �ne white platelets. It was

�ltered, recrystallized from ethanol and dried.

5.4.1.2 Diphenylphosphine (precursor)

3.1 g LiAlH4 were added to 50mL dry diethyl ether. 25mL Ph2PCl in 50mL diethyl ether

were added drop wise with a dropping funnel under stirring and cooling with an ice bath.

After complete addition, the solution was re�uxed for 1 h. A white suspension formed.

13mL H2O were added drop wise and the solution was re�uxed for further 2 h. A white

precipitate formed. It was �ltered, and the solid was dissolved in 60mL diethyl ether. The

solution was dried over CaCl2, then the ether was removed. The product remained as a

yellow viscous liquid.

5.4.1.3 pTPPMA, mTPPMA

1.31 g (5.95mmol) p-Iodoaniline, or m-iodoaniline respectively, and 0.61 g (5.95mmol) tri-

ethylamine were mixed in 15mL acetonitrile. The solution was degassed, and 1.11 g

(5.95mmol) diphenylphosphine were added. The solution was heated to re�ux, and 7mg

tetrakis-(triphenylphosphine)palladium in 5mL acetonitrile and 5mL H2O were added. The

reaction was re�uxed for 60 h. Afterwards, the solvent was removed and the residue was
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dissolved in 5mL H2O. 5mL dichloromethane were added and the mixture was poured in

a separation funnel. The organic phase was separated and discarded, the H2O was removed

and the remaining yellowish product was dried.

5.4.1.4 TPPMCMA

3.53 g (13.4mmol) 2-Amino-5-iodobenzoic acid, 3.8mL triethylamine and 2mg (9µmol)

palladium(II) acetate were dissolved in 30mL acetonitrile. After the addition of 2mL

(11.5mmol) diphenylphosphine, the reaction mixture was re�uxed for 48 h. The solution

was dried and the residue was dissolved in 30mL 1M KOH. The aqueous phase was washed

with dry diethyl ether (4× 30mL) and once with 30mL petroleum ether. The aqueous

phase was cooled to 5 ◦C and acidi�ed to a pH of 2 with 2M HCl. A yellowish precipitate

formed. It was �ltered, dissolved in dry diethyl ether, washed with 20mL H2O and dried

over MgSO4. After removal of the ether, the product remained as a yellow-orange solid.

5.4.1.5 TPPMC

1.96 g (7.9mmol) 4-Iodobenzoic acid, 2.3mL (16mmol) triethylamine and 2mg (9µmol) pal-

ladium(II) acetate were mixed in 24mL acetonitrile. After the addition of 1.2mL (7.9mmol)

diphenylphosphine, the reaction mixture was heated to 85 ◦C for 12 h. The color of the so-

lution changed from red to yellow-green during that time. Afterwards, the solvents were

removed and the residue was dissolved in 20mL H2O with 1.06 g (16mmol) KOH. The

solution was washed 3× with dry diethyl ether and then acidi�ed with 5mL 2M HCl. Af-

terwards, the product was extracted from the aqueous phase with diethyl ether (3× 30mL),

the combined ether fractions were washed with 20mL H2O and dried over MgSO4. After

removal of the ether, the product remained as a yellowish powder.

5.4.1.6 DPPETS

2.0 g (5.0mmol) 1,2-bis(diphenylphosphino)ethane (DPPE) were dissolved in 25mL 20%

fuming sulfuric acid. The reaction mixture was stirred for 90 h at 0 ◦C, while the temperature

was kept constant with a cryostate. After this time, the solution was slowly neutralized

with 120mL 25% NaOH. The H2O was removed. 160mL methanol were added and the
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solution was re�uxed for 1 h. It was �ltered hot and washed in portions with 50mL of a

hot methanol/H2O mixture (4:1). The �ltrate was dried, then dissolved in methanol/H2O

(10:1) and stored in the refridgerator overnight to recrystallize. The solvents were removed

and the product was dried.

5.4.1.7 DPPPTS, DPPBTS

32.5mL 30% fuming sulfuric acid was cooled to 0 ◦C. 2.5 g of DPPP (6.0mmol), respectively

DPPB (5.9mmol), were dissolved in 8mL cold sulfuric acid and then added via a dropping

funnel to the fuming sulfuric acid. The dropping speed was adjusted so that a temperature

of 5 ◦C was not exceeded. After the addition, additional 10mL 30% fuming sulfuric acid

were added via the dropping funnel. The reaction mixture was stirred for 48 h at room

temperature. After this time, the solution was slowly poured into 250mL H2O while a

temperature of 10 ◦C was not exceeded. Afterwards, the pH of the solution was adjusted

to 2 with saturated NaOH. 175mL methanol were added, and the Na2SO4 formed was

removed. The �ltrate was dried, and the remaining solid was dissolved in H2O. The pH

was brought to 7, and 125mL methanol were added. The solid was �ltered and the �ltrate

was dried. DPPPTS remained as a light brown solid, DPPBTS as a beige solid.

5.4.2 Gold Nanoparticles

5.4.2.1 Au1.4TPP

Au1.4TPP (with the chemical structure Au55[(C6H5)3P]12Cl6) was synthesized according to

the literature.[33] Brie�y, 3.907 g (7.9mmol) TPP-Au(I)-Cl was dispersed in 200mL benzene

in inert atmosphere. B2H6 was generated in situ from 20 g (529mmol) NaBH4 in 100mL

diglyme and 100mL BF3 · OEt2, slowly added via a dropping funnel, and bubbled through

the Au(I) dispersion which was heated to 50 ◦C. The gas �ow rate and temperature were

kept constant for 40min, while the solution turned from turbid to colorless and clear to

dark brown. After the reaction, the solution was cooled to room temperature, the dark

brown solid formed was �ltered and washed with benzene and pentane. It was redispersed
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in dichloromethane and �ltered through an Anotop �lter. After removal of the solvent, the

product remained as a dark brown solid.

5.4.2.2 Au1.4MS

Au1.4MS (with the chemical structure Au55[(C6H5)2P(C4H4So3Na)]12Cl6) was synthesized

according to the literature.[34] 163mg (0.01mmol) Au1.4TPP was dissolved in 10mL

dichloromethane and covered with a solution of 62mg (0.17mmol) TPPMS in 50mL H2O.

This two-phase system was stirred at room temperature to the exclusion of light for three

days. After this time, the H2O phase had become dark brown, indicating the phase transfer

by a ligand exchange reaction. The two phases were separated, the H2O was removed, the

obtained solid was washed 3× with 20mL dichloromethane and 3× with 20mL ethanol to

remove excess TPPMS, and dried. It was redispersed in H2O and �ltered through an Anotop

�lter. After removal of the solvent, the product remained as a dark brown solid.

5.4.2.3 Au5.6MS

56mg (165 µmol) HAuCl4 · 3 H2O were dissolved in 12.5mL H2O and 12.5mL toluene.

287mg (1.5 mmol) dodecylamine in 12.5mL toluene were added. A yellowish precipitate

formed. 82.5mg (2.2mmol) NaBH4 were dissolved in 12.5mL H2O and directly added drop

wise to the reaction mixture over a period of 5min. The solution turned black. It was stirred

at room temperature for 7 h. Afterwards, the aqueous phase was separated and discarded

and the volume of the organic phase was reduced to 5mL. 60mL ethanol were added, and

the solution was kept at −25 ◦C overnight. It was warmed up to room temperature, the

black precipitate formed was centrifuged, washed with ethanol and resuspended in 1mL

dichloromethane.

The red AuNP solution was mixed with 12.8mL TPPMS in 10mL H2O and stirred for

2 h at room temperature. The organic phase was removed, and the red aqueous phase was

centrifuged (15min at 8000 rev/min). The supernatant was taken and further used.
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5.4.2.4 Au15MS

Au15Citrate was synthesized in allusion to a route known from literature.[32] The ligand

exchange reaction was performed according to the literature.[115] 17mg (40µmol) HAuCl4 ·

3 H2O were dissolved in 5mL H2O (solution I), 42mg (1.4mmol) trisodium citrate dihydrate

were dissolved in 15mL H2O (solution II). 85mL H2O were brought to boil, and solution I

and II were added consecutively under vigorous stirring. After a few minutes, a color change

from yellow over dark blue to red was visible. When the color of the solution remained

constant, the solution was heated for further 10min and then cooled to room temperature.

The size of AuNPs synthesized via this route is very sensitive towards the starting con-

centrations of the precursors and towards reaction conditions. Therefore, not all batches

synthesized gave AuNPs of exactly 15 nm. If the size of a certain batch di�ered, it is stated

at the respective part.

To 100mL of the AuNP solution, 10mg (27µmol) TPPMS were added. The solution was

stirred for 5min at room temperature and then kept in the refrigerator overnight. In small

portions (1.5mL per tube), it was centrifuged (15min, 5 ◦C, 10000 rev/min). The super-

natants (1.4mL per tube) were discarded and the tubes were re�lled with H2O (1.4mL).

The centrifugation was repeated, the supernatants were again discarded, and afterwards,

the concentrated solutions (100µL per tube) were collected.

5.4.2.5 Au1.1GSH, Au1.5GSH

Au1.1GSH was synthesized in allusion to a route known from literature.[39] 100mg

(0.25mmol) HAuCl4 · 3 H2O was dissolved in 50mL methanol. 154mg (0.5mmol) glu-

tathione (GSH) were added. The solution was cooled to 0 ◦C. 12.5mL of a freshly prepared

NaBH4 solution (0.2M, 95mg, 2.5mmol) were added drop wise over 5min. The yellow-

ish solution turned dark brown. It was stirred for 30min, and the precipitate formed was

�ltered. It was �rst washed with a mixture of H2O and methanol (1:10) and then with

methanol. The solid was resuspended in H2O and the dispersion was �ltered through an

Anotop �lter. After removal of the solvent, the product remained as a dark brown solid.
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In di�erent batches, slightly di�erent particle sizes were obtained (1.1 -1.5 nm). The mean

diameter, determined by STEM, of the corresponding AuNPs is stated at the respective

part.

5.4.2.6 Au1.4GSH by Ligand Exchange

7mg (0.45µmol) Au1.4MS and 75.6mg (246µmol) GSH were dissolved in 0.7mL H2O and

kept 24 h at 37 ◦C. Afterwards, the solution was centrifuged (30min, 5 ◦C, 13000 rev/min)

and washed 3× with ethanol. The remaining residue was redispersed in 1mL H2O plus

50µL 10% NaOH, �ltered through an Anotop �lter and used for a ζ potential measurement.

Another batch was not redispersed but used as a powder for IR spectroscopy.

5.4.2.7 Au1.4TS

Au1.4TS was synthesized analogously to Au1.4MS. 163mg (0.01mmol) Au1.4TPP was dis-

solved in 10mL dichloromethane and covered with a solution of 97mg (0.17mmol) TPPTS

in 50mL H2O. This two-phase system was stirred at room temperature to the exclusion of

light for ten days. After this time, the H2O phase had become dark brown, indicating the

phase transfer by a ligand exchange reaction. The two phases were separated, the H2O was

removed, the solid was washed 3× with 20mL dichloromethane and 3× with 20mL ethanol

to remove excess TPPTS, and dried. It was redispersed in H2O and �ltered through an

Anotop �lter. After removal of the solvent, the product remained as a dark brown solid.

5.4.2.8 Au1.4TPPMCMA

50mg (3.5µmol) Au1.4TPP were dissolved in 3.5mL dichloromethane. A solution of 16.1mg

(52µmol) TPPMCMA in 10mL H2O and 300µL 2M NaOH was added. The mixture was

stirred for 1.5 h at room temperature. After this time, the aqueous phase was dark brown.

The organic phase was separated and discarded. The aqueous phase was centrifuged in

an ultracentrifuge (4 h, 20 ◦C, 50000 rev/min). The supernatant was discarded, and the

pellet at the bottom of the centrifuge tube was washed 3× with H2O by redispersion and

centrifugation under the same conditions. After the last centrifugation step the pellet was
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dried. It was redispersed in H2O and �ltered through an Anotop �lter. After removal of the

solvent, the product remained as a dark brown solid.

5.4.2.9 Au1.4TPPMC

100mg (7µmol) Au1.4TPP were dissolved in 8mL dichloromethane. A solution of 46.1mg

(0.16mmol) TPPMC in 10mL H2O and 20mL 0.1M NaOH was added. The mixture was

stirred for 2 h at room temperature. After this time, the aqueous phase was dark brown.

The organic phase was separated and discarded. The aqueous phase was centrifuged in

an ultracentrifuge (4 h, 20 ◦C, 50000 rev/min). The supernatant was discarded, and the

pellet at the bottom of the centrifuge tube was washed 3× with H2O by redispersion and

centrifugation under the same conditions. After the last centrifugation step the pellet was

dried. It was redispersed in H2O and �ltered through an Anotop �lter. After removal of the

solvent, the product remained as a dark brown solid.

5.4.2.10 Au1.4DPPETS

50mg (3.5µmol) Au1.4TPP were dissolved in 4mL dichloromethane. A solution of 48mg

(0.06mmol) DPPETS in 20mL H2O was added. The mixture was stirred for 15 h at room

temperature. The two phases were separated, the H2O was removed, the obtained solid was

washed with dichloromethane once and 3× with ethanol to remove excess DPPETS, and

dried. It was redispersed in H2O and �ltered through an Anotop �lter. After removal of the

solvent, the product remained as a dark brown solid.

5.4.2.11 Au1.4DPPPTS

100mg (7µmol) Au1.4MS were dissolved in 8mL dichloromethane. A solution of 158.5mg

(0.175mmol) DPPPTS in 60mL H2O was added. The mixture was stirred for 4 days at room

temperature. The two phases were separated, the H2O was removed, the obtained solid was

washed 2× with dichloromethane and once with ethanol to remove excess DPPPTS, and

dried.
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5.4.2.12 Au1.4DPPBTS

100mg (7µmol) Au1.4MS were dissolved in 8mL dichloromethane. A solution of 160.6mg

(0.175mmol) DPPBTS in 60mL H2O was added. The mixture was stirred for 4 days at room

temperature. The two phases were separated, the H2O was removed, the obtained solid was

washed 2× with dichloromethane and once with ethanol to remove excess DPPBTS, and

dried. For a further puri�cation, 40mg of the product were redispersed in 4.5mL H2O and

dialyzed for 3 days (MWCO of 5 kD), while the wash water (400mL) was exchanged 3× a

day.

5.4.2.13 Au13DPPETS

As a precursor, citrate-stabilized gold colloids were synthesized as described above (see

5.4.2.4). To 25mL of this AuNP solution, 5.5mg (6.8µmol) of DPPETS were added. The

solution was stirred at room temperature for 1 h and then left in the refrigerator overnight. In

small portions (1.5mL per tube), it was centrifuged (15min, 5 ◦C, 10000 rev/min). The su-

pernatants (1.4mL per tube) were discarded and the tubes were re�lled with H2O (1.4mL).

The centrifugation was repeated, the supernatants were again discarded, and afterwards,

the concentrated solutions (100µL per tube) were collected.

5.4.2.14 Au11DPPPTS

As a precursor, citrate-stabilized gold colloids were synthesized as described above (see

5.4.2.4). To 30mL of this AuNP solution, 5.9mg (7.2µmol) of DPPPTS were added. The

solution was stirred at room temperature for 10min, left in the refrigerator overnight and

centrifuged under the same conditions as described above (see 5.4.2.13).

5.4.2.15 Au12DPPBTS

Au12DPPBTS was synthesized analogously to Au11DPPPTS (see 5.4.2.14) using 6.0mg

(7.2µmol) DPPBTS.
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5.4.2.16 Degradation of Diphosphine-Stab. AuNPs with KCN

The stability against KCN degradation of Au1.4MS, Au1.4DPPETS, Au11Citrate, Au13MS,

Au13DPPETS, Au11DPPPTS and Au12DPPBTS was analyzed by time-dependent UV/Vis

spectroscopy. For Au1.4MS and Au1.4DPPETS, a AuNP stock solution of 9.8mg AuNPs

in 3mL H2O was used. For larger gold colloids, highly concentrated solutions, concentrated

by centrifugation, were used.

To 1mL AuNP solution in a fused quartz glass cuvette, 0.17mL 0.1M KCN was added.

The cuvette was tempered to 23 ◦C and UV/Vis spectra were taken over a time period of

8 h (1 spectrum/min).

5.4.2.17 DTT Exchange with Au1.4DPPBTS

8mg Au1.4DPPBTS were redispersed in 10mL H2O. For each experiment, 900µL of this

stock solution were taken and mixed with 100µL of di�erently concentrated DTT solutions

(2.2µM - 22µM). The mixtures were heated to 60 ◦C for 5min. After cooling to room

temperature, UV/Vis spectra were taken and the absorbance at λ = 400 nm was determined.

In a reference experiment, 3mg Au1.4MS were redispersed in 10mL H2O, and samples were

prepared and measured as described above.

5.4.2.18 Au1.4MS/MC

180mg (0.01mmol) Au1.4TPP were dissolved in 12mL dichloromethane. 10.6mg (35µmol)

TPPMC and 88.7mg (243µmol) TPPMS (molar ratio TPPMC:TPPMS 1:7) were dissolved

in 25mL H2O and 25mL 0.1M NaOH. This two-phase system was stirred for 24 h. The

organic phase was separated and discarded. The H2O was removed, the obtained solid was

washed 2× with dichloromethane and once with ethanol to remove excess ligands, and the

product was dried. It was redispersed in H2O, �ltered through an Anotop �lter and further

puri�ed by dialysis for 24 h (MWCO of 5 kD), while the wash water (400mL) was exchanged

3×. The dialyzed solution was dried, and the product remained as a dark brown solid.
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5.4.2.19 Au1.4MS/MC-(Lys3)-bombesin

50mg (3.3µmol) Au1.4MS/MC were dissolved in 8mL H2O. 43.4mg (0.2mmol, �nal con-

centration 20mM) sulfo-NHS and 77.6mg (0.5mmol, �nal concentration 50mM) were dis-

solved in 2mL HEPES bu�er (100mM, pH8), �ltered through an Anotop �lter and added

to the AuNP solution. It was stirred for 30min at room temperature, then 5mg (3.1µmol)

(Lys3)-bombesin were added. The solution was stirred for 20 h at room temperature, trans-

ferred into Eppendorf tubes and centrifuged (30min, 5 ◦C, 13000 rev/min) to remove aggre-

gates. The supernatant was transferred into centrifugation tubes and ultracentrifuged (2 h,

20 ◦C, 50000 rev/min). The supernatant was discarded, the pellets were redispersed in H2O

and centrifuged once more. The supernatant was collected and was used as a reference after

a further dialysis step. The pellet of Au1.4MS/MC-(Lys3)-bombesin was stored as a highly

concentrated AuNP solution.

5.4.2.20 Au1.4MC-bombesin

Under similar conditions, bombesin was coupled to Au1.4MC. This product was only soluble

in acidic solvents and had a poor stability in cell culture medium (pH7.4). For cell exper-

iments, Au1.4MS/MC-(Lys3)-bombesin was therefore used. However, Au1.4MC-bombesin

was used for a DTT ligand exchange reaction (see 5.4.2.21 below).

5.4.2.21 DTT Exchange with Au1.4MC-bombesin

10mg of Au1.4MC-bombesin were redispersed in 2mL of diluted acetic acid. 2mL of acetic

DTT solution (0.5M) were added, and the mixture was heated to 60 ◦C for 5min. After-

wards, it was stirred for 1 h at room temperature. The precipitate was centrifuged, and the

supernatant was dried. The residue was analyzed by MS.

5.4.2.22 Au1.4MS/MC-Amino�uorescein

The functionalization of Au1.4MS/MC with 5-Amino�uorescein was conducted under sim-

ilar conditions as the coupling reaction with (Lys3)-Bombesin (5.4.2.19).
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40mg (2.6µmol) Au1.4MS/MC were dispersed in 6.4mL H2O. 34.8mg (160µmol) sulfo-

NHS and 62.1mg (400µmol) EDC were dissolved in 1.6mL HEPES bu�er (100mM, pH8).

The two solutions were mixed and stirred for 30min at room temperature. Afterwards,

2.0mg (5.8µmol) 5-Amino�uorescein was added and the solution was stirred for further

20 h. The solution was transferred to Eppendorf tubes, centrifuged and washed once with

ethanol. The product was dried in a miVac DNA concentrator. The residue was dispersed

in diluted NaOH (pH7.5) by shaking overnight. The insoluble residue was separated by

centrifugation and discarded.

5.5 Measurements with AuNPs

5.5.1 EPR Measurements

All solutions used were saturated with Ar or O2, respectively, before they were diluted

and mixed. The aqueous AuNP stock solutions were diluted in di�erent ratios to a total

volume of 100µL, respectively (for concentrations see table 5.2). They were then mixed

with 100µL of a 4-Amino-2,2,6,6-tetramethylpiperidine-1-oxyl (Amino-TEMPO) solution

(30µM) directly prior to the measurements. The pH was adjusted to 8-9 with 50mM

NaOH.

Table 5.2: Concentrations of AuNP solutions for EPR spectroscopy.

AuNP species conc. stock solution / mM �nal conc. / mM

Au15Citrate 18.2 2.3
Au15MS 32.7 8.2
Au1.4MS 18.6 4.7
Au1.5GSH 21.6 5.4

5.5.2 GC/MS Measurements

DNA samples were prepared by Dr. Yu Pan-Bartneck (UKA). Au1.4MS, Au1.1GSH, and

Au15MS (50µM, respectively; Au1.4MS was also applied in 20µM) were used to incubate
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HeLa cells (incubation times 3 h, 24 h, 72 h), followed by subsequent DNA extraction (sam-

ple set 1). As a positive control, cells were also treated with 0.3% H2O2 for 30min.

Furthermore, DNA was isolated from untreated HeLa cells and the pure DNA was incu-

bated (incubation times 3 h, 24 h, 72 h) with Au1.4MS, Au1.1GSH, and Au15MS (50µM,

respectively) as well (sample set 2).

Further treatment of the samples and GC/MS measurements were performed at the NIST,

Gaithersburg, MD, USA, together with Dr. Bryant Nelson and Dr. Elijah Petersen. All

DNA pellets were washed several times (2× 70% ethanol, 1× 100% ethanol). Then the

exact DNA concentrations were determined with a NanoDrop spectrometer. 50µg DNA

was taken of each sample (except for the few samples that contained less DNA). Isotopi-

cally labeled internal standards (FapyAde, FapyGua, 8OHGua, 5OHCyt, 5OHUra, TG, and

5OH5MeHyd) were added. After that, the DNA was enzymatically digested by Endo III/Nth

and Fpg enzymes. The samples were freeze dried, and bis(trimethylsilyl)tri�uoroacetamide

(BSTFA) was added to derivatize the DNA bases to their silyl ester analogues. GC/MS

measurements were performed. For the data analysis, the signals were integrated manu-

ally with the MSD Productivity ChemStation (Agilent) and further processed for statistical

analysis with GraphPad Prism.

5.5.3 NMR and EDX Experiments

5.5.3.1 Au1.4MS + TPPMS

15mg (0.95µmol) Au1.4MS were dissolved in 300µL D2O and the 1H and 31P-NMR spectra

were measured (400MHz). 3.2mg (8.7µmol, 9.8 eq) TPPMS were dissolved in 60µL D2O

and added. The NMR measurements were repeated. Successively, more TPPMS was added

(see table 5.3), and the NMR measurements were repeated after each addition.

The δ values of the 31P-NMR spectra were plotted against the concentration of additionally

added TPPMS. A logarithmic �t was performed with Microsoft Excel. The �rst measure-

ment value was neglected as the added concentration of TPPMS was in the same regime

as the calculated concentration of intrinsically present TPPMS (which is not taken into

account in the �t). Therefore, this �rst measurement point is not feasible for a �t.
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Table 5.3: TPPMS amounts for 31P-NMR analysis.

Measurement No. m (TPPMS) / mg eq (TPPMS) δ / ppm

1 0 0 44.95
2 3.2 9.8 42.95
3 3.2 19.6 30.56
4 3.2 29.4 25.98
5 3.2 39.2 21.98
6 6.4 58.8 19.70
7 6.4 78.4 18.38
8 6.4 98.0 15.44
9 6.4 117.6 16.56

The δ value for pure Au1.4MS (measurement no. 1) was used to approximate the amount of

dissociated TPPMS ligands in a Au1.4MS solution (cdiss).

5.5.3.2 Solid State NMR of Au1.4MS

Fine powdered samples of Au1.4MS and TPPMS-Au(I)-Cl were diluted with GeO2 in a ratio

of approximately 1 : 5 and mounted in a 4.0 and 2.5 mm ZrO2 rotor.

5.5.3.3 Dialysis and EDX of Au1.4MS

6mg (0.38µmol) Au1.4MS were dissolved in 6mL H2O and �lled in a dialysis membrane

(MWCO of 5 kD). The membrane was put in a beaker �lled with 400mL H2O and the

AuNP solution was dialyzed under slow stirring at room temperature for 2 h. Afterwards

the supernatant was reduced to dryness and the remaining residue was examined by EDX

analysis. In the control experiment, 12.4mg (0.38µmol) TPPMS-Au(I)-Cl was dialyzed

under the same conditions and the dialysate was examined.

For the EDX investigation, the solid samples were �xed on a conductive adhesive carbon

tab attached to a pin stub.

5.5.4 Patch Clamp Experiments

HEK 293 cells, stably transfected with the hERG ion channel gene, or CHO-K1 cells trans-

fected with the gene encoding the sodium ion channel NaV1.5, were used. These cells were
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stored in liquid nitrogen and were ready-to-use directly after thawing without any culti-

vation. After thawing, the cells were resuspended in extracellular bu�er and kept in the

Cytocentrics Cell Reservoir as a cell suspension at a density of 2.0millions/mL in extracel-

lular bu�er at room temperature and were used for 4 h after thawing.

The extracellular bu�er (EC) was used for thawing the cells, the storage in the Cell Reser-

voir and the preparation of the working concentrations of the test and reference compounds.

The extracellular bu�er consists of: 140mM NaCl, 2.5mM KCl, 2mM MgCl2, 2mM CaCl2,

10mM HEPES, 10mM glucose, 15mM sucrose. The bu�er was adjusted to a pH of 7.4± 0.1;

osmolality 320± 5mOsmol/kg. The bu�er was stored at 4 ◦C and heated up to room tem-

perature prior to usage. The intracellular bu�er (IC) consists of: 100mM K-gluconate,

20mM KCl, 1mM CaCl2, 1mM MgCl2, 10mM HEPES, 11mM EGTA-KOH, 4mM ATP-

Mg2+, 3mM phosphocreatine-Na2-H2O, 9mM sucrose. The bu�er was adjusted to a pH of

7.2± 0.1; osmolality 295± 5mOsmol/kg. Aliquots were stored at −20 ◦C. Prior to usage

an aliquot IC was thawed and used no longer than for 4 h.

The di�erent AuNPs were dissolved in H2O as stock solutions and diluted with EC in

the concentrations needed for the experiments directly prior to the experiments. When

Au1.4MS was pre-incubated with TPPMS or GSH, both compounds were diluted in EC to

the respective concentrations, mixed and kept at 37 ◦C for 3 h.

For patch clamp recordings, cells were seeded in the bath chamber �lled with EC. After

approx. 5min in which the cells attached to the cover slips the seal process was started.

After gigaseal formation the membrane patch under the tip of the glass pipette was opened

by a short suction pulse to gain electrical access from the pipette electrode to the cytosol

(whole cell con�guration). Then the cell was lifted from the cover slip with the pipette

and positioned close to the perfusion entry of the bath chamber and perfusion with EC was

started. To activate hERG currents the voltage protocol was repeated every 10 s. The hERG

currents were then recorded for 10min upon EC perfusion to assure that stable recording

conditions were established. Only cells with tail current amplitude of more than 400 pA were

used. After the control phase the test compounds were applied. Application time was in

general 10min per concentration. Recordings in which the whole cell membrane resistance
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decreased below 500MOhm without recovery (leaky) were stopped and not taken into the

analysis from here. All measurements were done at room temperature.

The typical pulse protocol that was applied was: 0.2 s, -80mV; 0.2 s, -50mV; 2 s, +40mV;

2 s, -50mV; 0.2 s, -80mV.

5.5.5 Cell Experiments

All other cell experiments were performed by Dr. Yu Pan-Bartneck at the UKA and are

described elsewhere.[12]
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AAS Atomic absorption spectroscopy

AF 5-Amino�uorescein

Amino-TEMPO 4-Amino-2,2,6,6-tetramethylpiperidine-1-oxyl

ANOVA Analysis of variance

ATP Adenosine-5'-triphosphate

AuNPs Gold nanoparticles

BINAP 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl

bla β-lactamase

BLM Human melanoma cell line

ccp cubic close-packed

cDNA complementary DNA

CHO-K1 Chinese hamster ovary cell line

ct-DNA calf thymus DNA

CM-H2DCFDA 5-(and-6)-chloromethyl-2',7'-dichlorodihydro-

�uorescein diacetate, acetyl ester

COS-1 Cell line (�CV-1 (simian) in Origin, and carrying

the SV40 genetic material�)

CPP Cell penetrating peptide

DFT Density functional theory

DNA Deoxyribonucleic acid

DLS Dynamic light scattering

DPPB 1,2-Bis(diphenylphosphino)butane

DPPBTS 1,2-Bis(diphenylphosphino)butane tetrasulfonate

DPPE 1,2-Bis(diphenylphosphino)ethane

DPPETS 1,2-Bis(diphenylphosphino)ethane tetrasulfonate

Continued on next page
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DPPP 1,2-Bis(diphenylphosphino)propane

DPPPTS 1,2-Bis(diphenylphosphino)propane tetrasulfonate

DSC Di�erential scanning calorimetry

DTE Dithioerythritol

DTT Dithiothreitol

EA Elemental analysis

EC Extracellular bu�er

EDC 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

EDX Energy-dispersive x-ray spectroscopy

EGTA Ethylene glycol tetraacetic acid

ELISA Enzyme-linked immunosorbent assay

EM Electron microscopy

EPR Electron paramagnetic resonance

eq Equivalents

FBS Fetal bovine serum

FCS Fetal calf serum

FEP Fluorinated ethylene propylene

FRET Förster resonance energy transfer

GC/MS Gas chromatography / mass spectrometry

GRPR Gastrin releasing peptide receptor

GSH Glutathione

HAADF High angle annular dark �eld

HEK 293 Human embryonic kidney cell line

HeLa HeLa cervix carcinoma epithelial cell line

HEPES 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

HepG2 Hepatocellular carcinoma cell line

hERG Human ether-à-go-go related gene

HPLC High-performance liquid chromatography

IAC Institute of Inorganic Chemistry

(RWTH Aachen University)

IC Intracellular bu�er

ICP-OES Induced coupled plasma-optical emission spectroscopy

Continued on next page
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IC50 half maximal inhibitory concentration

IR Infrared

IUPAC International Union of Pure and Applied Chemistry

J774A1 Mouse monocytic/macrophage cell line

KIT Karlsruhe Institute of Technology

L929 L929 mouse �broblast cell line

LC/MS/MS Liquid chromatography /

tandem mass spectrometry

Lys Lysine

MAS Magic angle spinning

MDCK Madine darby canine, kidney cell line

mRNA Messenger ribonucleic acid

MS Mass spectrometry

MTT Dimethyl thiazolyl diphenyl tetrazolium salt

MWCO Molecular weight cut o� radius

NAA Neutron activation analysis

NAC N -acetylcysteine

NEIL1 Enzyme encoded by nei endonuclease VIII-like 1

gene

NIST Natinal Institute of Standards and Technology

NLS Nuclear localizing signal

NMR Nuclear magnetic resonance

NP nanoparticle

8-OH-dG 8-Oxo-2'-deoxyguanosine

Oxo-TEMPO 4-Oxo-2,2,6,6-tetramethyl-1-piperidinyloxy

PEG Poly(ethylene glycol)

PMMA Poly(methyl methacrylate)

PVP Poly(vinylpyrrolidone)

ROS Reactive oxygen species

RWTH Rheinisch-Westfälische Technische Hochschule

SAM Self-assembled monolayer

SK-Mel-28 SK-Mel-28 melanoma cell line

Continued on next page
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STEM Scanning transmission electron microscopy

Sulfo-NHS N-Hydroxysuccinimide sulfonate

Tat Trans-activator of transcription

TEG Tetra(ethylene glycol)

TEM Transmission electron microscopy

TPP Triphenylphosphine

TPPMA Triphenylphosphine monoamine

TPPMC Triphenylphosphine monocarboxylate

TPPMCMA Triphenylphosphine monocarboxylate monoamine

TPPMS Triphenylphosphine monosulfonate

TPPMS=O Sodium 3-(diphenylphosphoryl)benzenesulfonate

TPPTS Triphenylphosphine trisulfonate

UKA University Hospital Aachen

UV/Vis Ultraviolett/Visible

XPS X-ray photoelectron spectroscopy

XRD X-ray di�ractometry
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