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1. Einleitung 
 
Der Begriff Tissue Engineering beschreibt einen interdisziplinären Ansatz zur 

Verbesserung oder Wiederherstellung einer eingeschränkten Funktion bei Patienten 

mit pathologisch veränderten Geweben oder Organen. An diesem aufstrebenden, 

verhältnismäßig jungen Ansatz der Domäne der Regenerativen Medizin sind neben 

Ärzten auch Biologen, (Bio)Chemiker, Biotechnologen, Ingenieure, 

Materialwissenschaftler und viele andere beteiligt. Nur die erfolgreiche 

Zusammenarbeit zwischen diesen Disziplinen wahrt langfristig die Chance, bisher  

vorhandene Probleme verschiedener Art bezüglich der Implantation von 

synthetischen, medizinischen Unterstützungssystemen oder gar der 

Organtransplantation durch den Einsatz der Regenerativen Medizin zu überwinden, 

und in vielerlei Hinsicht zu einer Verbesserung der Lebensqualität des Patienten zu 

führen. 

Ausgehend von einer Zellspende des späteren Empfängers wird in verschiedenen 

Schritten das zu ersetzende Gewebe oder Organ „tissue engineert“, um im Anschluss 

in den Patienten implantiert zu werden. Doch die Möglichkeiten zu untersuchen, 

inwieweit das tissue engineerte Gewebe ausgereift ist, um den richtigen Zeitpunkt zur 

Implantation festzulegen, sind begrenzt. Die Anfertigung von histologischen 

Präparaten beispielsweise hat immer zur Folge, den aktuellen Reifungsprozess zu 

stoppen, auch wenn das Gewebe womöglich noch nicht den benötigten Reifegrad 

erlangt hat.  

Ganz entscheidend für die Reife eines Gewebes ist nicht nur der Zustand der Zellen, 

sondern vielmehr der Entwicklungsgrad der Extrazellulären Matrix (EZM), welche die 

Zellen umgibt und einen entscheidenden Beitrag zu Form, mechanischer Integrität und 

den biochemischen Eigenschaften des tissue engineerten Gewebes leistet. 

  

Gegenstand dieser Dissertation ist es, das Potential von Tropoelastin als 

Zellkulturmedium-Marker für die Synthese von Elastin, einem der wesentlichen 

strukturgebenden Bestandteile der EZM im Kardiovaskulären Tissue Engineering,  zu 

evaluieren. Dabei ist das Ziel, eine neue Möglichkeit zur nicht-destruktiven, „online“-

Überwachung der EZM-Synthese aufzuzeigen, mit welcher der Reifegrad des 

entstehenden Konstrukts im Sinne einer beständigen Qualitätskontrolle ermittelt und 

der optimale Implantationszeitpunkt bestimmt werden kann. 
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2. Grundlagen des Tissue Engineerings  
 
Die therapeutischen Möglichkeiten in der Behandlung von erkrankten, beschädigten 

oder in anderer Art und Weise beeinträchtigten Geweben und Organen bei Patienten 

reichen von rekonstruktiven chirurgischen Verfahren, dem Einsatz von implantier-

baren oder extrakorporalen medizinischen Unterstützungssystemen bis hin zum 

kompletten Ersatz eines Organs durch eine Organtransplantation. Das Ziel dabei ist es, 

die natürliche Funktion von Geweben und Organen zu erhalten, zu unterstützen oder 

wiederherzustellen. Trotz der vielen Verbesserungen und Fortschritte sowohl in den 

rekonstruktiven chirurgischen Verfahren als auch in der Anwendung von 

implantierbaren oder extrakorporalen medizinischen Unterstützungssystemen kann 

die Struktur und Funktion des natürlichen Gewebes bei einem Ersatz durch oben 

genannte Mittel nicht vollständig wiederhergestellt werden. Darüber hinaus birgt das 

Einbringen von Fremdmaterial in den menschlichen Organismus Risiken im Sinne einer 

erhöhten Abstoßungs-, Infektions- und Thrombosegefahr, sodass häufig eine 

lebenslange Einnahme von Immunsuppressiva und Antikoagulanzien notwendig wird.  

Allogene Gewebe- und Organtransplantationen stellen, nicht zuletzt aufgrund der 

Verbesserung chirurgischer Techniken und der Optimierung immunsupprimierender 

Behandlungsregime, eine Alternative zu den oben genannten Verfahren dar. 

Doch auch diese Therapieverfahren weisen eine bedeutende Limitation auf: In Zeiten 

einer alternden Gesellschaft steigt die Zahl der chronisch multimorbiden Patienten 

stetig an, sodass die Zahl der Patienten, die ein Transplantat benötigen, bei Weitem 

die Anzahl der zur Verfügung stehenden Spendegewebe/-organe übersteigt.  

 

Eine Lösungsmöglichkeit zur Beseitigung des Gewebe- und Organmangels stellt der 

Bereich des Tissue Engineerings dar. Hier besteht grundsätzlich die Möglichkeit, 

beliebige Gewebe oder Organe aus Zellen des zukünftigen Empfängers herzustellen, 

die die Bedingungen eines idealen Transplantats erfüllen. Dazu zählen  

Biokompatibilität, mechanische Integrität, Langlebigkeit, Fähigkeit zum Wachstum und 

Resistenz gegenüber Infektionen. 
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2.1.  Geschichte des Tissue Engineerings 
 
In den frühen Anfängen des Tissue Engineerings standen Zell- und Gewebekultur-

basierte Ansätze im Vordergrund.  

W.T. Green, ein Kinderorthopäde des Boston Children`s Hospital, führte Anfang der 

1970er Jahre mehrere Versuche zur Generierung neuen Knorpelgewebes durch, indem 

er Knochen-Spiculae mit kultivierten Chondrozyten besiedelte. Obwohl dieses 

Experiment nicht zum gewünschten Erfolg führte, stellte Green ein theoretisches und 

praktisches Konzept auf, welches die Besiedelung von geeigneten Stützgerüsten, 

sogenannten Scaffolds, mit lebenden Zellen beschrieb. 

Einige Jahre später wurde dieser Ansatz von J. Burke vom Massachusetts General 

Hospital und I. Yannos vom M.I.T. aufgegriffen mit dem Ziel, ein Hautsubstitut zur 

Deckung von Brandverletzungen durch die Kultivierung von dermalen Fibroblasten auf 

einem Kollagen-Scaffold herzustellen. Weitere Versuche, die man prospektiv bereits 

der neu aufstrebenden Domäne des Tissue Engineerings zurechnen konnte, 

thematisierten die Transferierung von mit Keratinozyten besiedelten Hautinseln durch 

Howard Green oder die Besiedelung eines Kollagen-Scaffolds mit Fibroblasten durch 

Eugene Bell.  

Wahrscheinlich aber war der Schlüsselmoment für die Geburtsstunde dieses neuen 

Bereiches Mitte der 1980er Jahre die Idee der beiden eng miteinander kooperierenden 

Kollegen Joseph Vacanti vom Boston Children`s Hospital und Robert Langer vom M.I.T.: 

sie konzentrierten sich darauf Scaffolds zu produzieren, die auf das jeweilige 

Zielgewebe abgestimmt sind, um diese in einem zweiten Schritt mit geeigneten Zellen 

zu besiedeln. Dieser Ansatz hob sich also von den zuvor verfolgten Ansätzen ab, weil 

hier der Fokus nicht auf der Verwendung von verfügbaren, natürlich vorkommenden 

Scaffolds lag, deren physikalische und chemische Eigenschaften nicht mehr verändert 

werden konnten (Vacanti 2006).  

Es dauerte nicht lange, bis sich Forschungsgruppen auf der ganzen Welt diesem 

vielversprechenden neuen Bereich des Tissue Engineerings anschlossen. Im Jahre 1994 

wurde die Tissue Engineering Society (TES) von den Brüdern Charles und Joseph 

Vacanti in Boston gegründet, im Jahre 2000 als europäisches Korrelat dazu die 

European Tissue Engineering Society (ETES) von Stark und Horch in Freiberg.  
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In den letzten Jahren wurde die TES um den Bereich der Regenerativen Medizin 

erweitert, sodass sich der Name der Tissue Engineering Society (TES) in Tissue 

Engineering Regenerative Medicine International Society (TERMIS) änderte. 

2.2.  Definition des Begriffs Tissue Engineering 
 
Der 1993 in dem Journal Science veröffentlichte Artikel der Dres. Joseph Vacanti und 

Robert Langer gibt eine bis heute gültige und meistzitierte Definition für die neue 

wissenschaftliche Domäne des Tissue Engineerings wieder: 

 „Tissue engineering is an interdisciplinary field that applies the principles of 

engineering and the life sciences towards the development of biological substitutes 

that restore, maintain, or improve tissue function“ (Langer & Vacanti 1993).  

Das Tissue Engineering wird demnach als ein interdisziplinärer Ansatz zur Entwicklung 

biologischer Substitute zur Reparatur, Erhaltung und Wiederherstellung der Funktion 

von Geweben beschrieben.  
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2.3.  Allgemeine Prinzipien des Tissue Engineerings 
 
Das folgende Schema fasst im Wesentlichen die Prinzipien des Tissue Engineerings 

zusammen. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Abbildung 1: Prinzipien des Tissue Engineerings  
 

Das Prinzip des Tissue Engineerings beginnt mit der Isolierung von vornehmlich 

körpereigenen (autologen) Zellen des zukünftigen Empfängers mit Hilfe einer 

Gewebsbiopsie (1). Durch die Verwendung von autologen Zellen wird das Risiko einer 

möglichen immunologischen Abstoßungsreaktion minimiert. Die gewonnenen Zellen 

werden üblicherweise unter definierten Bedingungen so lange kultiviert, bis die 

gewünschte Zellzahl und Zellpassage erreicht wird (2). Die Zellen werden dann auf den 

Scaffold übertragen, der aus unterschiedlichen Substanzen aufgebaut sein kann (3). 

Dieser mit vitalen Zellen besiedelte Scaffold wird in einem sogenannten Bioreaktor 

unter kontrollierten Wachstumsbedingungen kultiviert. Hierbei ist es möglich durch 

variable Stimuli den Wachstums- und Entwicklungsprozess zu beeinflussen (4). Das 

entstehende vitale biologische Konstrukt wird dann dem Empfänger, der in diesem Fall 

auch gleichzeitig Spender der Zellen gewesen ist, implantiert (5). Im optimalen Fall 

wird die Entwicklung des erstellten Konstrukts nun in vivo fortgesetzt. Dort unterliegt 
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es weiteren Reparatur- und Umbauprozessen des Körpers, sodass am Ende die 

Funktion des zu ersetzenden Gewebes vollständig übernommen werden kann. 

2.3.1. Zellen im Tissue Engineering 
 

Für das Tissue Engineering kommen verschiedenste Zellquellen in Betracht. Zum einen 

muss unterschieden werden zwischen der Gewinnung von autologen Zellen aus dem 

Patienten und der Verwendung allogener Zellen eines Spenders gleicher oder 

xenogener Zellen eines Spenders einer anderen Spezies. Zwar kommen im Tissue 

Engineering insbesondere aufgrund der fehlenden Abstoßungsreaktion autologe Zellen 

zur Anwendung, jedoch stößt diese Methode häufig besonders dann an ihre Grenzen, 

wenn die Patienten bereits fortgeschrittenen Alters sind oder multiple 

Vorerkrankungen aufweisen (Heath 2000). Die Verwendung autologer Zellen ist 

dennoch die Methode der Wahl, denn allogene oder xenogene Zellen bergen 

zusätzlich neben dem Nachteil der eingeschränkten Verfügbarkeit Risiken, wie z.B. die 

Übertragung von Infektionen (Perico et al. 2002).  

Neben der Unterscheidung der Zellen nach ihrem Spenderorganismus können diese 

des Weiteren nach dem Grad ihrer Differenzierung eingeteilt werden. Pluripotente 

Embryonale Stammzellen, die aus der Inneren Zellmasse (ICM) eines Embryos im 

Blastozystenstadium vor der Implantation gewonnen werden, erscheinen deshalb 

attraktiv, weil sie in der Lage sind, sich in Derivate aller drei Keimblätter (Endoderm, 

Mesoderm und Ektoderm) sowie in Zellen der Keimbahn zu differenzieren und in vitro 

im undifferenzierten Zustand unbegrenzt zur Proliferation angeregt werden können 

(Thomson et al. 1998). Trotz dieser hervorragenden Eigenschaften ist die Verwendung 

embryonaler Stammzellen nicht uneingeschränkt zu empfehlen, da in Versuchen mit 

Mäusen gezeigt wurde, dass undifferenzierte Stammzellen onkogenes Potential in sich 

bergen und zu Teratomen oder Teratokarzinomen heranreifen können (Solter & 

Gearhart 1999). Während Embryonale Stammzellen nur im frühen Embryonalstadium 

vorhanden sind, existieren multipotente Adulte Stammzellen im Organismus ab dem 

Zeitpunkt nach der Geburt ein Leben lang. Sie haben bereits einen gewissen Grad der 

Differenzierung erreicht, sind aber dennoch in der Lage, sich in mehrere verschiedene 

Zelltypen weiter zu differenzieren. Entgegen der Auffassung, dass Adulte Stammzellen 

nur in den Geweben zu finden sind, die eine hohe Teilungsfähigkeit besitzen, können 

sie in fast allen Organen identifiziert werden. Als wichtige Vertreter sind vor allem 
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Hämatopoetische Stammzellen und Mesenchymale Stammzellen zu nennen, welche 

aus dem Knochenmark oder aus Nabelschnurblut gewonnen werden können (Poulsom 

et al. 2002). Da Adulte Stammzellen aus dem Individuum entnommen werden können, 

welches auch letztendlich die Therapie benötigt und im Gegensatz zu Embryonalen 

Stammzellen sicherer einzustufen sind in Bezug auf die Kanzerogenität (Raff 2003), 

stellen sie neben unipotenten Zellen, die bereits regelhaft Verwendung finden, eine 

vielversprechende Quelle für die Nutzung im Tissue Engineering dar.  

Eine weitere, aussichtsvolle Zellquelle stellen induzierte Pluripotente Stammzellen dar. 

Dabei handelt es sich um unipotente, somatische Zellen, die in vitro zu Pluripotenten 

Stammzellen durch Transfektion mit entsprechenden Pluripotenzgenen wie Oct4, 

Sox2, Klf4 und dem Proto-Onkogen cMyc über einen viralen Vektor umprogrammiert 

werden (Hochedlinger & Plath 2009). Die Vorstellung dieses Verfahrens durch  

Yamanaka et al. im Jahr 2007 zog natürlich auch die Aufmerksamkeit einiger Tissue 

Engineering-Arbeitsgruppen auf sich (Takahashi et al. 2007). Xie et al. erzielten 

beispielsweise bereits gute Ergebnisse bei der Herstellung von Blutgefäßen auf der 

Basis induzierter Pluripotenter Stammzellen (Xie et al. 2011). Jedoch erlaubt die 

gegenwärtige Studienlage noch keine klinischen Studien am Menschen, da Fragen nach 

der Sicherheit der umprogrammierten Zellen noch weitergehend geklärt werden 

müssen (Robbins et al. 2010). 

2.3.2. Scaffolds im Tissue Engineering 
 

Als Scaffold oder auch Matrix wird im Tissue Engineering eine Struktur bezeichnet, 

welche als Wachstumsschiene für die Zellen den Prozess der Gewebsneubildung 

unterstützt. Die Anforderungen an einen idealen Scaffold sind hoch (Hutmacher 2001): 

Er sollte eine Oberfläche besitzen, auf der Zellen gut anhaften und wachsen können. 

Durch eine hohe Porosität sollten Zell-Zell-Kontakte, das Einwachsen der Zellen in das 

Innere des Scaffolds, die Vaskularisation und ausreichend Raum für die Bildung von 

neuer EZM gewährleistet sein. Der Scaffold selbst oder seine Abbauprodukte dürfen im 

Organismus weder inflammatorische noch toxische Reaktionen auslösen. Sein Abbau 

sollte regulierbar sein; im Idealfall sollte er im gleichen Maße abgebaut werden wie 

neues, vitales Gewebe entsteht. Darüber hinaus sollte die Möglichkeit bestehen, den 

Scaffold verschiedenförmig und -groß zu produzieren. 
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Als Scaffoldmaterialien eingesetzt werden neben Keramiken verschiedene synthetische 

Polymere, zu denen aliphatische Polyester wie Polyglycolic acid (PGA), Polylactic acid 

(PLLA), ihre Copolymere (zum Beispiel PLGA) und Polycaprolactone (PCL) gehören 

(Agrawal et al. 2000).  

Auch natürlich vorkommende Polymere wie zum Beispiel Kollagen und Fibrin finden als 

Hydrogel-Scaffolds neben dezellularisierten Matrizes im Tissue Engineering ihren 

Einsatz (Lee & Mooney 2001).  

2.3.3. Bioreaktoren im Tissue Engineering 
 
Neben geeigneten Zellen und Scaffolds werden im Tissue Engineering Behälter 

benötigt, in denen die Kultivierung des Zell-Scaffold-Konstrukts stattfinden kann. 

Bioreaktoren werden im Allgemeinen definiert als Behältnisse, in denen biologische 

und/oder biochemische Prozesse unter streng kontrollierten Umgebungsbedingungen 

stattfinden können (Martin et al. 2004). Im Tissue Engineering werden Bioreaktoren 

dazu eingesetzt die physiologischen Konditionen im Organismus nachzuahmen um 

damit das Zell- und Gewebewachstum in vitro zu unterstützen. Die Parameter, die 

Einfluss auf die Gewebsentwicklung ausüben, umfassen unter anderem die 

Temperatur, den pH- Wert, mechanische Stimuli und biochemische Gradienten 

(Bilodeau & Mantovani 2006). Die Anpassung des Bioreaktors an das herzustellende 

Gewebe ist dabei von grundlegender Bedeutung (Griffith & Naughton 2002).  
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Abbildung 2: Kultivierung eines mit Zellen besiedelten Scaffolds im Bioreaktor 
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3. Die Extrazelluläre Matrix (EZM) 
 
Die EZM ist definiert als die Gesamtheit aller Makromoleküle, die sich zwischen den 

Zellen im sogenannten interzellulären Raum befindet. Sie setzt sich zusammen aus 

einer Reihe von Proteinen und Polysacchariden, die hauptsächlich von (Myo-) 

Fibroblasten, Chrondroblasten, Osteoblasten, Endothelzellen und glatten Muskelzellen 

produziert werden. Weitere Bestandteile der EZM stellen Wasser und Elektrolyte dar. 

Sie unterliegt einem ständigen Remodeling-Prozess, an dem verschiedene Enzyme, 

unter anderem Serinproteasen und Mitglieder der Familie der Matrix-

Metalloproteinasen, beteiligt sind. Dieser dynamische Auf- und Abbau der EZM, 

gesteuert durch mechanische und biologische Stimuli, reguliert die Zellproliferation, -

differenzierung und -migration und bestimmt die strukturellen und funktionellen 

Eigenschaften verschiedener Gewebe. 

In Bezug auf das Tissue Engineering ist es notwendig, grundlegende Kenntnisse in 

Bezug auf die einzelnen Komponenten der EZM, ihrer Zusammensetzung in den 

jeweiligen Geweben und der interzellulären Kommunikation zu besitzen. 

3.1. Komponenten der EZM 
 
Anhand ihrer Funktion werden die Matrixmoleküle in vier Hauptgruppen eingeteilt:  

1. Kollagene 

2. Glykosaminoglykane und Proteoglykane 

3. nichtkollagene Glykoproteine 

4. Elastische Fasern 

3.1.1. Kollagene 
 
Kollagene stellen quantitativ die wichtigsten Proteine der EZM dar und tragen durch 

die Ausbildung fibrillärer Strukturen wesentlich zur funktionellen Stabilität von 

Geweben wie z.B. Knochen, Knorpel, Haut und Sehnen bei. Sie machen etwa 30 

Prozent der Gesamtmasse an Proteinen im menschlichen Körper aus. 

Im kardiovaskulären System vermitteln sie vor allem die Zugfestigkeit und Stabilität der 

Arterien und Herzklappen gegenüber der mechanischen Beanspruchung durch den 

Herzzyklus. Lokalisiert in der Tunica adventitia der Gefäße, verhindern sie eine 

Zerreißung der Gefäße bei hohen Blutdrücken (Wagenseil & Mecham 2009). Als 
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Bestandteil der EZM von Herzklappen verhindern sie eine Distension der 

Herzklappensegel, die während der Diastole maximal gespannt sind (Mendelson & 

Schoen 2006).  

Allen Kollagenen gemeinsam ist die Grundstruktur. Sie setzt sich aus drei linksgängigen 

Polypeptid-Ketten, sogenannten α-Helices bzw. α-Ketten zusammen, die umeinander 

gewunden eine rechtsgängige Tripelhelix ausbilden. Diese kann, abhängig von dem 

jeweiligen Kollagen-Typ, entweder homotrimer oder heterotrimer aufgebaut sein 

(Boot-Handford & Tuckwell 2003). Charakteristisch für die Primärstruktur der Kollagen-

α-Helices ist das sich monoton wiederholende Triplet aus den Aminosäuren Glycin-X-Y, 

wobei die Position X üblicherweise durch Prolin und die Position Y üblicherweise durch 

Hydroxyprolin, eingenommen wird (van der Rest & Garrone 1991) . 

3.1.1.1. Prokollagenbiosynthese 
 
Die Kollagenbiosynthese der fibrillären Kollagene beginnt mit der Transkription der für 

den jeweiligen Kollagentyp kodierenden Gene (siehe Abbildung 3). Dadurch entsteht 

eine funktionelle mRNA, welche durch Translation zur Ausbildung einer Präpro-α-Kette 

führt (1). Diese wiederum wird in den Innenraum des rauen Endoplasmatischen 

Retikulums (rER) aufgenommen (2), in welchem durch Abspaltung eines Signalpeptids 

(SP) die Pro-α-Kette entsteht (Burgeson & Nimni 1992). Im Anschluss beginnt noch im 

rER die Ausbildung des Prokollagens, indem die Propeptide am C-terminalen Ende der 

Pro-α-Ketten mit der  Trimerisierung beginnen. 

Die C-Propeptid-Domänen der Pro-α-Ketten sind nichtkollagene Domänen, die etwa 

250 Aminosäuren umfassen. Sie spielen eine wichtige Rolle für die genaue 

Zusammenlagerung der für den jeweiligen Kollagentyp benötigten Prokollagen-α-

Ketten und für die korrekte Ausbildung der Prokollagen-Tripelhelix. 

Nach Assoziation der drei Pro-α-Ketten an der C-Propeptid-Domäne kommt es zur 

Ausbildung von stabilisierenden Disulfidbrückenbindungen auf der Gesamtlänge der 

drei Pro-α-Ketten mit Hilfe der Protein-Disulfid-Isomerase (Koivu 1987). Gleichzeitig 

beginnen die Tripelhelix-Regionen der Pro-α-Ketten, die bis zu 1000 Aminosäuren 

umfassen können, sich umeinander zu winden.  

Durch die sogenannte Prolyl-4-Hydroxylase (PH) kommt es zur Hydroxylierung von 

etwa jedem dritten Prolin in der X-Position zu Hydroxyprolin. Dieser Vorgang erfolgt 

mit Hilfe des Kosubstrats α-Ketoglutarat sowie der Kofaktoren Fe2+ und Vitamin C 
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(Myllyharju 2003). Der Schmelzpunkt und die Stabilität des entstehenden Prokollagen-

Moleküls werden durch die Anzahl der hydroxylierten Proline bestimmt. Je mehr OH-

Gruppen vorhanden sind, desto mehr Wasserstoffbrücken können sich ausbilden, 

desto höher ist der Schmelzpunkt und umso stabiler ist das Prokollagenmolekül (Berg 

& Prockop 1973, Burjanadze 2000, Colognato & Yurchenco 2000, Rosenbloom et al. 

1973). 

Die Lysine, die sich an manchen Stellen in der Y-Position anstelle des Hydroxyprolins 

befinden, werden durch Lysyl-Hydroxylasen (LH) hydroxyliert. Über diese OH-Gruppe 

können dann in der Folge durch Galaktosyl-Transferasen und 

Galaktosylhydroxylysylglukosyl-Transferasen (GT) Galaktose- und Glukosereste O-

glykosidisch an das Polypeptid gebunden werden. Zusätzlich werden am C-terminalen 

Propeptid N-glykosidische Verbindungen mit Zuckerresten geknüpft (CnG) (Harwood et 

al. 1975). Während der Synthese von Kollagen kommt dem Kollagen-spezifischen, ER-

ständigen Chaperon HSP 47 (heat shock protein) eine entscheidende Bedeutung zu: es 

verhindert die intrazelluläre Degradation von Prokollagen und unterstützt den 

Transport des Proteins vom ER zum Golgi-Apparat zusammen mit dem Vesikel 

beschichtenden Protein COP II (Duden 2003, Koide & Nagata 2005). Transportiert 

werden die Prokollagen-Moleküle in sakkulären Strukturen, die direkt aus Anteilen der 

ER-Membran gebildet werden. Entlang von Mikrotubuli erfolgt anschließend die 

Wanderung Richtung cis-Golgi. Sobald Prokollagen-Bündel sich vom trans-Golgi-

Apparat Richtung Plasmamembran in Bewegung setzen, bilden sie sogenannte 

sekretorische Vakuolen aus (Leblond 1989). Diese sekretorischen Vakuolen, auch 

Golgi-zu-Plasmamembran-Transport-Kompartimente (GPC) genannt, können mit der 

Plasmamembran fusionieren, um sogenannte Fibripositoren, Prokollagen-Fibrillen-

enthaltende Plasmamembranerweiterungen, auszubilden (Canty et al. 2004). Mit dem 

Ende der intrazellulären Synthese des Prokollagens wird das Kollagenmonomer in den 

Extrazellularraum sezerniert. Dort erfolgt einer der wichtigsten Schritte in der 

Kollagenfibrillen-Formation, die Abspaltung der C-und N-terminalen Propeptide durch 

die Prokollagen-N- und C-Proteinasen, wodurch das Tropokollagen entsteht (3) (Leung 

et al. 1979). Anschließend erfolgt die spontane Zusammenlagerung der 

Tropokollagenmonomere zu Fibrillen an der Zelloberfläche, welche aufgrund 

hydrophober und elektrostatischer Wechselwirkungen in vier homologen, 67 nm 

langen Regionen, zu einer charakteristischen Querstreifung führt (Hulmes et al. 1989). 
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Abbildung 3: Kollagenbiosynthese, modifiziert nach Gelse K, Poschl E and Aigner T. 
Collagens--structure, function, and biosynthesis. Adv Drug Deliv Rev. 55:1531-46, 
2003. 
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3.1.2.  Glykosaminoglykane und Proteoglykane 
 
Glykosaminoglykane (GAGs) bestehen aus langen Kohlenhydratketten und stellen 

einen großen Anteil der EZM-Makromoleküle dar. Sie setzen sich aus einem sich 

wiederholenden Dissaccharid-Muster aus einer Uronsäure und einem Aminozucker 

zusammen, der zusätzlich noch sulfatiert sein kann. 

 

Zu den vier Hauptgruppen der Glykosaminoglykane gehören Hyaluronsäure, 

Chondroitin-/ Dermatansulfat, Heparin / Heparansulfat und Keratansulfat (Hardingham 

& Fosang 1992, Sasisekharan et al. 2006). 

 

GAGs kommen einerseits frei in der EZM von Geweben oder auch im Blut vor. Auf der 

anderen Seite können GAGs mit Ausnahme von Hyaluronsäure funktionelle 

Seitengruppen von Proteoglykanen bilden.  

Letztere stellen eine sehr heterogene Gruppe von EZM-Komponenten dar und können 

aus einer Vielzahl von unterschiedlichen Kombinationen von GAGs und Proteinen 

aufgebaut sein. Sie bestehen aus einem kleinen Proteinenkern („core protein“), an den 

glykosidisch GAG-Seitenketten geknüpft sind, die 95% des Moleküls ausmachen. 

Proteoglykane dürfen nicht mit Glykoproteinen verwechselt werden, welche 

hauptsächlich aus Protein und nur zu 5% aus Kohlenhydraten bestehen. Ein einzelnes 

Proteoglykan kann viele verschiedene GAGs tragen, die wiederum an 

unterschiedlichen Positionen Sulfatgruppen aufweisen können und so die 

Heterogenität dieser Gruppe weiter steigern. Ihre Größe ist sehr unterschiedlich - die 

Spannweite reicht von dem 40 kDa schweren Decorin aus der Gruppe der kleinen 

Leucin-reichen Proteoglykane bis hin zum über 3000 kDa schweren Aggrecan.  

3.1.2.1. Biosynthese von GAGs und Proteoglykanen 
 
Die Biosynthese der meisten GAGs beginnt im Golgi-Apparat. Dort werden an ein 

spezifisches Tetrasaccharid durch verschiedene Glykosyltransferasen Zucker 

angehängt. Durch das Verknüpfen von Iduron-, Glukuronsäuren oder Galaktose mit 

einem Glukos- oder einem Galaktosamin-Monozucker wird entschieden, welches GAG 

gebildet wird (Sugahara & Kitagawa 2000). Diese können dann entweder frei in die 

EZM sezerniert oder an ein Proteoglykan-Kernprotein geknüpft werden, welches dann 
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im Anschluss in sekretorische Vesikel verpackt und in Richtung der Plasmamembran 

transportiert wird und dort entweder in die EZM abgegeben oder in die 

Plasmamembran eingebaut wird. 

 

Hyaluronsäure bildet hier eine Ausnahme: es wird als unsulfatiertes Polymer in der 

Nähe der Innenseite der Plasmamembran gebildet und dann in die EZM sezerniert 

(Vigetti et al. 2009). 

3.1.2.2.  Funktionen von GAGs und Proteoglykanen 
 
Glykosaminoglykane haben vielfältige Funktionen. Eine Auswahl ist in der folgenden 

Tabelle 1 wiedergegeben. 

Funktionen von GAGs 

Kategorie Funktion 

Heparin Beschleunigung der Inaktivierung von Thrombin (Desai et al. 

1998) 

Heparansulfat Beeinflussung der Zellmigration, Bestandteil von Basal-

membranen (Sasisekharan et al. 2002, Vlodavsky & 

Goldshmidt 2001) 

Chondroitinsulfat wichtige funktionelle Seitengruppe von Aggrecan, 

Puffereigenschaften 

Dermatsulfat Beeinflussung von Zellwachstum und Wundheilung durch 

Bindung an Fibroblastic Growth Factor (Sasisekharan et al. 

2006) 

Keratansulfat Bildung eines dynamischen Puffers für die Hydratation der 

Kornea (Funderburgh 2000) 

Hyaluronsäure Bildung großer Netzwerke z.B. im Komplex mit Aggrecan, 

wichtig für die „Stoßdämpferfähigkeit“ des Gewebes, z.B. 

Knorpel, Förderung der Wundheilung 

Tabelle 1: Funktionen von GAGs 
 
Eine ihrer wichtigsten Aufgaben ist die Gewährleistung von Stabilität gegenüber 

mechanischen Belastungen. Durch die negativ geladenen Carboxyl- und Sulfatgruppen 
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vermögen die GAGs Kationen, wie z.B. Na+ zu binden. Das wiederum hat eine 

Wassereinlagerung in den GAGs zur Folge. Durch dieses wässrige Milieu wird 

extrazellulär eine schnelle Diffusion wasserlöslicher Stoffe ermöglicht. Je nach Art und 

Funktion des Gewebes bilden die GAGs unterschiedliche wässrige Gele.  

Im Knorpel beispielsweise wird die Stoßdämpferwirkung durch Chondroitinsulfate 

gewährleistet, im Glaskörper des Auges hingegen spielt die Wassereinlagerung durch 

Keratansulfat und Hyaluronsäure eine wichtige Rolle.  

 

Die wichtige Eigenschaft der GAGs als formgebende und -erhaltende Komponenten 

allein oder in Verbindung mit Proteoglykanen kann am einfachsten am Beispiel von 

Aggrecan erläutert werden. 

Aggrecan gehört zu den großen Proteoglykanen und verfügt über Bindungsregionen 

für Chondroitin- und Keratansulfatseitengruppen. Es bildet zusammen mit anderen 

Aggrecan-Molekülen und Hyaluronsäure große Komplexe in der EZM (Roughley 2006). 

Diese Aggrecan-Hyaluron-Komplexe führen im Knorpel aber auch in anderen Geweben 

durch das Aufnehmen von Wasser zu einer Expansion der EZM, sodass mechanische 

Belastungen kompensiert und neue Räume für die Zellproliferation und -migration 

geschaffen werden. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

Die folgende Tabelle 2 zeigt eine Übersicht über einige Vertreter aus der großen 

Familie der Proteoglykane und ihre Funktionen. 

 

Übersicht über einige Vertreter der Proteoglykane 

Proteoglykan 

 

Molmasse  

Protein-

anteil 

Anzahl der 

Kohlenhydrat-

seitenketten 

GAG Vorkommen Funktion 

Perlecan 600 kDa 2-15 Heparansulfat 
Basal-

membran 

Ausbildung 

eines Netzes 

mit Filter-

funktion 

Decorin 40 kDa 1 

Chondroitin-

sulfat oder 

Keratansulfat 

weit 

verbreitet im 

Bindege-

webe 

bindet Typ-I-

Kollagen 

(unterstützt 

Kollagenfaser

-bildung) und 

TGFβ 

Fibromodulin 42 kDa 4 Keratansulfat 

weit 

verbreitet im 

Bindege-

webe 

bindet Typ-I-

Kollagen 

(unterstützt 

Kollagenfaser

-bildung) 

Tabelle 2: Übersicht über einige Vertreter der Proteoglykane; modifiziert nach Löffler 
G, Petrides PE, Heinrich PC. Biochemie & Pathobiochemie. 8. Auflage. Springer-Berlin 
Heidelberg 2006: 728 
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3.1.3.  Nichtkollagene Glykoproteine 
 
Die nichtkollagenen Glykoproteine stellen einen kleinen, aber wichtigen Anteil der EZM 

dar. Ihre Hauptaufgabe besteht in der Förderung der Kontaktherstellung zwischen den 

Zellen und den einzelnen Komponenten in der EZM. Außerdem spielen sie eine Rolle 

bei der Zellproliferation, -differenzierung und -migration. Einige nichtkollagene 

Glykoproteine unterstützen die Produktion von anderen Komponenten der EZM, wie 

z.B. Emilin, Fibulin und die Mikrofibrillen-assoziierten Glykoproteine (MAGP-1 und-2), 

die entscheidend zur korrekten Zusammenstellung der Elastischen Faser beitragen 

(siehe Kapitel 3.1.4.5.). 

3.1.3.1.  Fibronektin 
 

Einer der bekanntesten Vertreter der Glykoproteine der EZM ist das Fibronektin. Es ist 

als Glykoprotein mit einem hohen Molekulargewicht von etwa 440 kDa lokalisiert auf 

Zelloberflächen, in  extrazellulären Flüssigkeiten, in Bindegeweben und 

Basalmembranen (Muro et al. 2003). Fibronektin beeinflusst u.a. die Differenzierung 

und Morphologie sowie die Adhäsion und Migration von Zellen (Kornblihtt et al. 1996). 

Des Weiteren spielt es eine entscheidende Rolle in der Embryogenese und besitzt 

sowohl eine wachstumsregulierende als auch gewebserhaltende Funktion (Ahumada 

et al. 1981). Es existiert einerseits eine lösliche Variante des Fibronektin, das von 

Makrophagen und Hepatozyten produziert wird, und andererseits ein unlösliches, 

fibrilläres Fibronektin, zu dessen Produzenten Fibroblasten, glatte Muskelzellen, 

Chondroblasten und Endothelzellen gehören (Hynes & Yamada 1982).  

 

Struktur und Funktion von Fibronektin 

Fibronektin besteht zu 5 % aus Kohlenhydraten, welche an Asparaginsäure-Reste 

gebunden sind. Die genaue Funktion der Kohlenhydrate ist nicht bekannt, jedoch 

existieren Hinweise dafür, dass die Kohlenhydrate spezifische Regionen des 

Fibronektins vor Proteolyse schützen (Olden et al. 1979). Sowohl lösliches als auch 

fibrilläres Fibronektin besteht als Heterodimer aus zwei ähnlich aufgebauten 

Polypetidketten, welche C-terminal über Disulfidbrücken miteinander in Verbindung 

stehen (Kim et al. 1999). 
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Fibronektin verfügt über vier funktionale Domänen, die eine Interaktion mit einer 

Vielfalt an EZM-Komponenten ermöglichen. 

Über eine sogenannte Kollagen-bindende Domäne erfolgt die Interaktion mit Kollagen 

oder Gelatin.  

Eine weitere Domäne, die sogenannte Zell-bindende Domäne, enthält eine  RGD-

Sequenz, die aus den Aminosäuren Arginin, Glycin und Asparaginsäure besteht und als 

Bindungspartner für Zelloberflächen-Integrine dient (Robinson et al. 2003). Besonders 

diese Funktion ist interessant im Hinblick auf die Nutzbarmachung zur Aktivierung von 

Scaffold-Oberflächen. 

Die Verbindung zu Heparin und in der Basalmembran lokalisierten Heparansulfaten 

wird durch die GAG-bindende Domäne vermittelt. Dadurch werden 

Organisationsprozesse in der EZM auf zelluläre Basis übertragen und z.B. die 

Proliferationsrate der Zellen gesteigert oder deren Migrationsaktivität erhöht (Gui et 

al. 2006).  

In der Phase der frühen Wundheilung vermittelt die Fibrin-/ Faktor XIIIa-bindende 

Domäne die Quervernetzung von Fibronektin, Fibrin und Kollagen. So entsteht ein 

Netzwerk, in dem anschließend Fibroblasten adhärieren und die Wundheilung 

initiieren können (Grinnell et al. 1980). 

3.1.3.2. Laminin 
 

Laminine tragen zum Aufbau von Basalmembranen bei, einer dünnen, spezialisierten 

Schicht Extrazellulärer Matrix, die sich unterhalb von Epithelverbänden befindet.  

Sie stellen heterotrimere, ungleichmäßig glykosylierte Proteine dar, die aus drei 

verschiedenen Polypetidketten, α, β und γ aufgebaut sind, welche zentral über 

Disulfidbrücken miteinander verbunden sind. Bisher sind fünf α-, vier β- und drei γ- 

Ketten bekannt. Durch unterschiedliche Kombination der Polypetidketten existieren 

mindestens 15 verschiedene Isoformen, welche organ- und entwicklungsspezifisch 

exprimiert werden (Aumailley et al. 2005). Während Laminin-1 vorwiegend in 

embryonalen Basalmembranen zu finden ist, ist Laminin-2 die überwiegende Form in 

Muskeln und peripherend Nerven und Laminin-4 vorherrschend in neuromuskulären 

Synapsen vorzufinden (Colognato & Yurchenco 2000).  
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In der Mehrzahl der Fälle verfügen Laminine über eine aus sechs Domänen 

bestehende, asymmetrisch-kreuzförmige Struktur, die die Fähigkeit besitzt an andere 

Zellmembran- oder Extrazellulärmatrix-Moleküle zu binden.  Die α-Kette verfügt über 

eine C-terminale, globuläre Domäne, die über eine RGD-Sequenz als 

Heparinbindungsstelle an die anderen Bestandteile der Basalmembran, nämlich 

Kollagen IV, das Heparansulfat Perlecan oder andere GAGs binden kann (Beck et al. 

1990). Während des Prozesses der Basalmembranbildung polymerisieren Laminine 

über ihre N-terminale Domäne VI der kurzen Arme zu einem Netzwerk. Die 

Polymerisation ist Calcium-abhängig und wird von dem Protein Nidogen (auch 

bezeichnet als Entactin) als linker-Protein unterstützt, das Laminin an das Kollagen IV 

der Basalmembran knüpft (Fox et al. 1991).  

Neben der Basalmembran-Organisation haben Laminine vielfältige andere Aufgaben, 

sie beeinflussen unter anderem Zelldifferenzierung, -morphologie, -motilität, die 

interzelluläre Kommunikation, Embryonalentwicklung und halten die Gewebeintegrität 

aufrecht. 

3.1.4. Elastische Fasern 
 

Im Folgenden soll das Protein Elastin genauer betrachtet werden, auf dem das 

Hauptaugenmerk dieser Dissertation liegt.  

Elastische Fasern kommen gehäuft in der EZM derjenigen Gewebe vor, deren Funktion 

von einer reversiblen Dehnbarkeit abhängig ist, wie es zum Beispiel in der Lunge, in 

Arterien vom elastischen Typ, elastischen Bändern, im elastischen Knorpel, in Sehnen 

und der Haut der Fall ist. Sie machen dabei bis zu 50% der Masse elastischer Bänder, 

30-50% des Trockengewichts größerer Blutgefäße, 3-7% des Lungenparenchyms, 4% 

von Sehnen und 2-3% der Haut aus (Wagenseil & Mecham 2009).  

Es bestehen je nach Gewebe Unterschiede in der Konfiguration der elastischen 

Matrizes. Während die Elastischen Fasern in Haut, Lunge und Ligamenten in feinen, 

netzwerkartigen Geflechten vorliegen, bilden sie konzentrische Lamellen in 

Blutgefäßen und ein wabenartiges Muster im elastischen Knorpel (Li et al. 1998, 

Pasquali-Ronchetti & Baccarani-Contri 1997, Sanzone & Reith 1976). Elastische Fasern 

sind in der Lage, sich bei Zugkräften auf das zweieinhalb-fache ihrer Länge 
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auszudehnen und kehren automatisch wieder in ihre Ausgangslage zurück, sobald die 

auf sie wirkenden Kräfte nachlassen.  

 

Ultrastrukturell sind Elastische Fasern aus zwei Komponenten aufgebaut: einem 

amorphen Kern aus quervernetztem Elastin, der 90% der Faser ausmacht und einem 

den Kern umgebenden fibrillären Mantel, bestehend aus 10-12 nm großen 

Mikrofibrillen (Mithieux & Weiss 2005).  

3.1.4.1. Das Elastin-Gen 
 
Humanes Elastin wird durch ein Elastin-Gen kodiert, welches auf Chromosom 7q11.1 - 

21.1 lokalisiert ist und 34 Exons bzw. 45 Kilobasenpaare umfasst (Fazio et al. 1991). Bis 

heute sind mindestens 11 verschiedene Splicevarianten bekannt, die durch 

alternatives Splicen der Domänen 22, 23, 24, 26 A, 32 und 33 resultieren (Bashir et al. 

1989). 

3.1.4.2. Tropoelastin 
 
Als lösliche Vorläuferstufe des Elastins wurde das EZM-Protein Tropoelastin mit einer 

Masse von etwa 70kD identifiziert (Rosenbloom et al. 1980). Mehrere Zellarten, 

darunter glatte Muskelzellen, Endothelzellen, Chondrozyten und Fibroblasten sind in 

der Lage, Tropoelastin zu synthetisieren (Uitto et al. 1991). Sobald 

Tropoelastinmonomere in den Extrazellularraum freigesetzt werden, werden sie 

umgehend mit Hilfe eines komplexen Quervernetzungsprozesses in unlösliches Elastin 

umgewandelt. Die Aminosäuresequenz von Tropoelastin beinhaltet abwechselnd 

hydrophobe und hydrophile Domänen. Während die hydrophoben Domänen sich 

durch ihren hohen Gehalt an nicht-polaren Aminosäureresten wie Glycin, Valin, Prolin 

und Leucin auszeichnen, besitzen die hydrophilen Domänen einen hohen Gehalt an 

Alanin und Lysin und sind darüber hinaus in Quervernetzungs-Prozesse eingebunden 

(Rosenbloom 1984).  
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3.1.4.3. Tropoelastin-Biosynthese 
 
Die Biosynthese von Tropoelastin verläuft ähnlich wie die von Prokollagen. Nachdem 

die mRNA an der Oberfläche des rER translatiert worden ist, wird die wachsende 

Polypeptidkette in das Lumen des rER transloziert. Zuvor wird das N-terminale 

Signalpeptid abgespalten (Saunders & Grant 1985). Sobald die Translation beendet ist, 

wird das Tropoelastin-Molekül im Inneren des rER von einem 67kD Chaperon namens 

EBP (elastin binding protein) gebunden. EBP zeigt sich ähnlich wie eine enzymatisch 

inaktive Form der β-Galaktosidase (Privitera et al. 1998). Durch seine Bindung an zwei 

61 und 55kD große integrale Membranproteine formt das EBP den Elastinrezeptor, 

welcher an der äußeren Zellmembran lokalisiert ist und Elastin-Zell-Interaktionen und 

Signaltransduktionskaskaden vermittelt. Das EBP besitzt drei Bindungsstellen, wobei es 

mit einer davon hydrophobe Sequenzen von Tropoelastin binden kann. Die anderen 

beiden Bindungsstellen binden zum einen an die Zelle selbst und zum anderen an 

Galaktozucker. EBP begleitet das Tropoelastin durch seinen gesamten sekretorischen 

Pfad und schützt es dadurch vor intrazellulärer Proteolyse bzw. extrazellulärer 

Degradation. Sobald der EBP-Tropoelastin-Komplex den Extrazellularraum erreicht hat, 

wirkt das EBP als ein wichtiger Mediator zwischen Tropoelastin und dem 

mikrofibrillären Scaffold (siehe Abbildung 4, (1)). Durch das Andocken mit seiner 

Lectin-Bindungsstelle an ein galaktosyliertes Protein, welches auf der Mikrofibrille 

lokalisiert ist, wird seine Bindungs-Affinität zum Tropoelastin gesenkt, sodass das 

Tropoelastin sich loslösen und mit dem mikrofibrillären Scaffold assoziieren kann 

(Hinek & Rabinovitch 1994).  

Posttranslational finden nur wenige Modifikationen von Tropoelastin statt, 

hauptsächlich werden bis zu 20 Prozent der Prolin-Reste mit Hilfe der Prolyl-

Hydroxylase hydroxyliert. Diese Hydroxylierung scheint nicht unbedingt notwendig für 

die Synthese der Elastischen Fasern zu sein, da gezeigt werden konnte, dass eine 

Inhibition der Hydroxylierung keinen Einfluss auf die Tropoelastin-Sekretion hat. Eine 

übermäßige Hydroxylierung hingegen durch den Zusatz von Ascorbinsäure, einem 

Cofaktor der Prolyl-Hydroxylase, resultiert in einer verminderten Produktion von 

Tropoelastin in vivo (Wagenseil & Mecham 2009). 
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3.1.4.4. Regulation der Tropoelastin-Expression 
 
Die stärkste Tropoelastin-mRNA-Expression und Elastogenese wird in der frühen Phase 

der Entwicklung beobachtet; im Erwachsenenalter ist ein rapider Abfall zu verzeichnen. 

Es existieren jedoch Mechanismen, die im Falle einer Verletzung die Elastin-

Biosynthese erhöhen können um den neu aufgetretenen Bedarf zu decken (Rich et al. 

2003). Die Tropoelastin-Expression kann dabei sowohl prä- als auch 

posttranskriptionell beeinflusst werden. Prätransskriptionelle Regulatonsmechanismen 

umfassen die Herauf- und Herabregulierung der Elastin-Gen-Expression auf Promotor-

Level und des Weiteren über untranslationierte Exon- und Intron-Regionen. Auf dem 

posttranskriptionalen Level spielt die mRNA-Stabilität eine wichtige Rolle. 

Beeinflussende Faktoren sind hierbei unter anderem Transforming Growth Factor β1, 

Insulin-like Growth Factor-1, Vitamin D, Interleukin-1β, Basic Fibroblast Growth Factor, 

Tumor Necrosis Factor-α und Interleukin-10 (Carreras et al. 2002, Conn et al. 1996, 

Kahari et al. 1992, Kucich et al. 1997, Mauviel et al. 1993, Pierce et al. 1992, Reitamo et 

al. 1994). 

3.1.4.5. Zusammenlagerung zur Elastischen Faser 
 
Die Elastische Faser wird an der Zelloberfläche gebildet, indem Tropoelastin-

Monomere, die an die Zelloberfläche sezerniert wurden, entweder direkt auf die 

Mikrofibrillen, welche als Stützstrukturen die spätere Quervernetzung der 

Tropoelastinmonomere begünstigen (Kielty et al. 2002), übertragen werden, oder 

diese Monomere zuerst Aggregate formen (2), bevor sie auf den mikrofibrillären 

Scaffold übertragen werden (Kozel et al. 2006). Der Quervernetzungs-Prozess, welcher 

durch spezifische Mitglieder der Kupfer-abhängigen Lysyl-Oxidasen katalysiert wird, 

bezieht nahezu alle Lysin-Reste im Tropoelastin-Monomer ein (Lucero & Kagan 2006). 

Die ε-Aminogruppen dieser Lysin-Reste werden oxidativ desaminiert, es entsteht das 

sogenannte α-Aminoadipic-δ-Semialdehyd-Allysin, welches mit einem weiteren Allysin 

oder einer weiteren ε-Aminogruppe reagiert um unter Kondensation bi-, tri- und 

tetrafunktionale Quervernetzungen zu bilden. Letztere führen zur Ausbildung von 

Desmosin und Isodesmosin, Aminosäure-Ringstrukturen, die charakteristisch sind für 

Elastin.  
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Die Quervernetzung (3) macht die Elastischen Fasern stabil und unlöslich und ist daher 

durchaus wichtig für die strukturelle und funktionelle Integrität des Elastins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 4: Tropoelastin-Sekretion, Zusammenlagerung zur Elastischen Faser und 
Quervernetzung 
 

Die Mikrofibrillen bestehen aus einer Reihe von verschiedenen Proteinen. Die 

Hauptkomponente stellen Fibrilline dar, etwa 350kD große, Cystein-reiche  

Glykoproteine, von denen drei verschiedene Subtypen existieren: Fibrillin-1,-2 und -3 

(Corson et al. 2004, Sakai et al. 1986, Zhang et al. 1994). Für die Zusammenstellung der 

Elastischen Faser spielen darüber hinaus zwei weitere Glykoproteine eine Rolle: 

MAGP-1 (Gibson et al. 1991) und MAGP-2 (Gibson et al. 1996). Diese kleinen 

Glykoproteine, die kovalent an die Mikrofibrillen gebunden sind, dienen als 

Brückenmoleküle zwischen Fibrillin und Tropoelastin mit ihrer Fähigkeit an beide zu 

 

 

 

EBP-Tropoelastin-Komplex 

Mikrofibrillen 
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binden. Zusätzlich existieren in der Elastischen Faser noch viele weitere Komponenten, 

die in der Lage sind, an die Mikrofibrille, an Elastin oder an beide zu binden, als 

Beispiele zu nennen sind hier Fibuline (Roark et al. 1995) und Emilin (Bressan et al. 

1993).  

 
3.1.4.6. Koazervation 
 
Tropoelastin befindet sich in Lösungen bis zu 20 °C in löslicher Form. Sobald die 

Temperatur allerdings ansteigt und physiologische Werte um 37 °C erreicht, beginnen 

die Tropoelastin-Monomere, auf der Basis von Interaktionen zwischen ihren 

hydrophoben Domänen, zu aggregieren. Dieser Prozess wird als Koazervation 

bezeichnet und ist durch das Herunterkühlen der Lösung wieder reversibel (Vrhovski & 

Weiss 1998).  

 

Eine mögliche Erklärung für dieses Phänomen liegt in dem geordneten Arrangement 

der Wassermoleküle, die das Tropoelastin-Molekül, insbesondere die hydrophoben 

Regionen, umgeben, wodurch das Tropoelastin-Molekül in einer fixierten, ungefalteten 

Konfiguration gehalten wird. Mit einem Anstieg der Temperatur werden die 

Wasserstoff-Brückenbindungen unterbrochen und die nun frei beweglichen 

Tropoelastin-Monomere können über die Auto-Aggregation einen gefalteten Zustand 

einnehmen.  

Obwohl die Ordnung auf dem Protein-Level ansteigt, nimmt insgesamt gesehen die 

Entropie zu durch die zunehmende Wassermolekül-„Unordnung“ (Urry 1995). Das 

Tropoelastin-Koazervat zeigt sich als eine trübe Suspension, bestehend aus 15 nm-

großen Tropoelastin-Monomeren, die sich zu etwa 6 µm-großen, sphärischen 

Tröpfchen zusammenlagern. Wahrscheinlich dient die Koazervation der Konzentration 

und der Ausrichtung der Tropoelastinmonomere zur Vorbereitung auf die 

Quervernetzung durch die Lysyl-Oxidase (Clarke et al. 2006). 
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3.2. Bedeutung der EZM für das Tissue Engineering 
 
Lange herrschte die Meinung vor, dass die EZM als statische Einheit hauptsächlich zur 

Gewebestabilität beiträgt. Heute aber stellt sie sich als ein überaus komplexer 

Bestandteil von Geweben dar, der neben dem Beitrag zur Gewebestabilität einen 

Raum aufspannt, in dem Informations- und Signalübertragungen zwischen dem 

Inneren und dem Äußeren der Zellen sowie zwischen den Zellen selbst stattfinden 

können. Die EZM unterliegt einem ständigen Auf- und Abbauprozess und spielt eine 

wichtige Rolle bei der Homöostase eines Gewebes. Soll also ein bestimmtes Gewebe 

im Tissue Engineering hergestellt werden, so ist es von essenzieller Bedeutung, dass 

nicht nur die passende Zellquelle ausgewählt wird, sondern dass diese auch dazu 

stimuliert wird, eine EZM zu synthetisieren, die der des natürlichen Gewebes 

entspricht. Die Herausforderung im Tissue Engineering besteht also darin, zu 

verstehen, inwiefern die EZM-Formation durch verschiedene biochemische, 

strukturelle und mechanische Faktoren in vivo beeinflusst wird, um eine suffiziente 

EZM-Formation in vitro durch Nachahmung der physiologischen Bedingungen zu 

ermöglichen. 

3.3.  Quantitative und qualitative Erfassung der EZM-Bildung 
 
Im Herstellungsprozess eines Gewebes im Tissue Engineering ist eine der 

entscheidenden Fragen diejenige, wie weit das tissue engineerte Gewebe ausgereift 

ist. Da die Reife des Gewebes in engem Zusammenhang mit dem Fortschritt in der 

Formierung der EZM steht, kann eine qualitative und quantitative Erfassung der EZM 

über den Zustand des Gewebes Rückschlüsse liefern.  

Methoden, die zum heutigen Zeitpunkt häufig zur quantitativen Messung der EZM 

angewandt werden, umfassen Nukleinsäure-Amplifikationsmethoden wie die 

Polymerase-Ketten-Reaktion, Immunoassays, radiometrische sowie photometrische 

Verfahren.  

Des Weiteren kann mit Hilfe einer histologischen oder immunhistologischen 

Aufarbeitung eine Aussage über die Morphologie der EZM gemacht werden.  

Alle oben genannten Verfahren, die in der Praxis bereits routinemäßig Anwendung 

finden, weisen den großen Nachteil auf, dass der Entwicklungsprozess des 

heranreifenden Gewebes gestoppt wird und dieses Gewebe, sofern es noch nicht den 
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Punkt erreicht hat, implantiert zu werden, nicht mehr unter Anpassung der 

Kultivierungsbedingungen an den aktuellen Entwicklungsgrad weiterkultiviert werden 

kann.  

Eine Methode, die eingesetzt werden kann um während des Wachstumsprozesses 

Aussagen über die Morphologie der EZM machen zu können, ohne dass das Gewebe 

für die üblichen Schritte der Histologie aufbereitet werden muss, stellt die 

Multiphotonen-Mikroskopie dar.  

Die Multiphotonen-Mikroskopie beschreibt eine Mikroskopie-Methode, bei der durch 

nicht-lineare, lichtbezogene Interaktionen, hochauflösende Bilder entstehen (Schenke-

Layland et al. 2004).  

Diese Methode ermöglicht es zwar, EZM-Strukturen im vitalen, heranwachsenden 

Gewebe zu beurteilen, jedoch ist sie aufgrund der dafür benötigten technischen Mittel 

sowohl kostspielig als auch impraktikabel in der täglichen Anwendung im Labor.  

Eine andere, nicht-invasive Methode wurde kürzlich von Kreitz et al. entwickelt: 

Hierbei wurde das Potential eines Ultraschall-Monitorings für die quantitative Analyse 

des Kollagengehalts von mit Myofibroblasten kultivierten Fibringelen untersucht. Die 

Grauwerte der Ultraschallbilder der Fibringele wurden in Korrelation gesetzt mit dem 

korrespondierenden Hydroxyprolin-Gehalt, welcher wiederum einen quantitativen 

Marker für die Kollagensynthese darstellt (Kreitz et al. 2011). Auch wenn die 

Ergebnisse der Ultraschallmessung eine vielversprechende Korrelation zwischen dem 

Ultraschallsignal und dem Hydroxyprolin-Gehalt der untersuchten Fibringele zeigten, 

so erlaubt die Methode doch keine Differenzierung zwischen der Expression 

unterschiedlicher Kollagentypen. Desweiteren kann aufgrund der Ultraschallmessung 

keine Aussage über die Produktion anderer, wichtiger EZM-Bestandteile wie z.B. 

Elastin und GAGs getroffen werden – sie muss also um weitere Verfahren zur 

Bestimmung dieser ergänzt werden.  

Auch Weinbaum et al. haben eine Methode zum Monitoring der Kollagen-I-Synthese 

entwickelt: Sie koppelten dazu den Promotor für Kollagen I mit dem Enzym Luciferase. 

So wurde bei jedem Ablesen der DNA für Kollagen I auch Luciferase produziert. Durch 

die Zugabe des entsprechenden Substrats Luciferin und einer anschließend mit 

geeigneten Kameras detektierten Lichtemission, konnte nicht-invasiv eine Aussage 

über die Kollagen I-Expression getroffen werden. Dazu korrelierten sie unter anderem 

den Kollagengehalt im Gewebe über die Bestimmung des Kollagen-Gewebe-Markers 



28 

 

Hydroxyprolin (Weinbaum et al. 2010). Auch diese Methode stellt einen interessanten 

Lösungsansatz bezüglich der Problematik des nicht-destruktiven Nachweises der EZM-

Produktion dar. Sie hat aber den entscheidenden Nachteil, dass die Zellen vorher mit 

dem Luciferase-Kollagen I-Promoter transfeziert werden müssen. Ein unter diesen 

Bedingungen tissue engineertes Konstrukt würde eventuell die Möglichkeit der nicht-

invasiven Bestimmung der Kollagen I-Produktion bieten, könnte aber nach Abschluss 

des Reifungsprozesses nicht in einen Empfänger implantiert werden. 

Wie man an den oben genannten, in neuerer Zeit veröffentlichten Arbeiten sehen 

kann, hat das Interesse an einer Methode zum „Online-Monitoring“ der EZM-Synthese 

im Tissue Engineering zugenommen. Es wird eine Messmethode benötigt, die es 

möglich macht, während des Wachstumsprozesses eines sich entwickelnden Gewebes 

eine Aussage über den Fortschritt der EZM-Produktion zu machen, ohne das Gewebe 

selbst dabei zu schädigen. Diese Methode sollte die oben genannten, standardmäßigen 

angewendeten Methoden ergänzen und auch im Sinne einer Qualitätskontrolle vor 

dem klinischen Einsatz des Implantats sicher, praktikabel und zu beliebigen 

Zeitpunkten anwendbar sein. 
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4. Zielsetzung der Dissertation 
 
In dieser Dissertation soll ein Messverfahren evaluiert werden, das die EZM-Bildung 

anhand des Gehalts an Elastin im Gewebe zukünftig indirekt in vitro quantifizieren 

kann, ohne dass das Gewebe untersucht werden muss. Als Untersuchungsmaterial 

kommt hierfür das das Gewebe umgebende Bioreaktormedium in Frage, da dieses bei 

einem Kultivierungsprozess in regelmäßigen zeitlichen Abständen erneuert wird und 

eine Untersuchung desselben keinen störenden Eingriff in die Entwicklung des sich 

noch im Tissue Engineering-Prozess befindenden Gewebes darstellt. 

 

Das Augenmerk dieser Dissertation liegt dabei auf dem Gehalt des Proteins 

Tropoelastin im Bioreaktormedium, als löslicher Vorstufe des Elastins, welches im 

zeitlichen Verlauf mit dem Gehalt an Elastin im kultivierten Gewebe korreliert werden 

soll. Als zu untersuchende Gewebe dienen in diesem Falle Fibringele, in die humane 

Nabelschnur-Myofibroblasten eingebettet sind.  

 

Doch warum ist das Wissen über die Elastinsynthese bzw. den Elastingehalt im 

entstehenden tissue engineerten Gewebe im Kardiovaskulären Tissue Engineering 

überhaupt von Interesse? 

 

Betrachten wir dazu zwei Bereiche, in denen das Kardiovaskuläre Tissue Engineering in 

den letzten Jahren große Fortschritte gemacht hat: das Tissue Engineering von 

Herzklappen und das Tissue Engineering von Blutgefäßen.  

Wie bereits zu Beginn des Kapitels erwähnt, ist ein grundlegendes Verständnis über die 

in vivo-Verhältnisse der EZM der jeweiligen Gewebe von Bedeutung. 

In der EZM von Herzklappen spielt Elastin eine wichtige Rolle, weil es in der Systole die 

Fläche der Klappensegel minimiert, in dem sich die Elastischen Fasern wieder 

zusammenziehen, nachdem sie in der Diastole gedehnt worden sind (Mendelson & 

Schoen 2006). In der EZM von Gefäßen sind Elastische Fasern hauptsächlich in der 

Membrana elactica interna, einem von den glatten Muskelzellen der Tunica media 

gebildeten,  zum Lumen des Gefäßes gerichteten Netzwerk, zu finden. Dieses fängt 

Druckschwankungen und insbesondere die auf die Gefäßwand wirkenden Scherkräfte 

auf und verteilt sie auf die in die Membrana elactica interna einstrahlenden 
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Kollagenfasern der Tunica adventitia. Auch in der Membrana elastica externa, die 

hauptsächlich in größeren Gefäßen zu finden ist, erfüllen Elastische Fasern diese 

Aufgabe und tragen damit wesentlich zu den mechanischen Eigenschaften der 

Blutgefäße bei (Wagenseil & Mecham 2009).  

 

Im Kardiovaskulären Tissue Engineering ist es daher natürlich besonders wichtig, die 

Produktion Elastischer Fasern auch in vitro zu erzielen um Aspekte wie mechanische 

Integrität und physiologische Compliance der tissue engineerten Gewebe zu erreichen. 

Um die Elastin-Synthese „online“ zu überwachen, wäre es ideal einen Parameter zu 

identifizieren, der im Kulturmedium des tissue engineerten Gewebes nachweisbar ist 

und in irgendeiner Form Aufschluss über die Elastin-Synthese gibt- einen Parameter 

wie Tropoelastin. Die Vorstellung zum Vorhandensein einer löslichen Vorstufe in der 

Elastin-Biosynthese trat schon in den frühen 1960er Jahren auf, doch erst im Jahre 

1968 gelang Smith et al. zum ersten Mal die Isolation von einem löslichen, Elastin-

ähnlichen Molekül, welches in nachfolgenden Arbeiten als Tropoelastin identifiziert 

wurde (Sandberg et al. 1969, Smith et al. 1968). Diese Entdeckungen begünstigten 

weitere Forschungstätigkeiten im Bereich der Elastin-Biosynthese: einige 

Arbeitsgruppen begannen, vaskuläre Myofibroblasten, meist aus der Aorta gewonnen, 

zu kultivieren, die in vitro-Expression von Tropoelastin zu untersuchen (Sandberg et al. 

1981, Uitto et al. 1976) und die Biosynthese beeinflussende Faktoren zu identifizieren 

(Johnson & Keeley 1990).  

Auch im Bereich des Tissue Engineerings blieben diese Entwicklungen nicht 

unbemerkt. In einer Arbeit von Hoffmann-Kim et al. aus dem Jahre 2005 wurde das 

Potenzial verschiedener Myofibroblasten für das Tissue Engineering von Herzklappen 

evaluiert und dabei unter anderem auch ihre Fähigkeit, EZM-Komponenten wie Elastin 

zu synthetisieren, bewertet und Tropoelastin im Kulturmedium nachgewiesen 

(Hoffman-Kim et al. 2005).  

Auf der Basis dieser Vorarbeiten liegt nun der Gedanke nahe, zu untersuchen, ob 

zwischen dem Tropoelastingehalt im Medium und dem Elastingehalt im Gewebe eine 

Korrelation besteht und so das im Medium gemessene Tropoelastin als „Online-

Marker“ der EZM-Synthese im Kardiovaskulären Tissue Engineering verwendet werden 

kann. 
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5. Material und Methoden 
 

5.1. Grundlagen für Zellkulturmedien 
 
Für die Anzucht von Zellkulturen wird ein entsprechendes Kulturmedium benötigt, 

welches in seiner Zusammensetzung je nach Anforderung variiert. Allen Medien 

gemein ist aber ihre Grundzusammensetzung aus anorganischen Salzen, Aminosäuren, 

Vitaminen und anderen Komponenten.  

Die Basis für ein Kulturmedium stellen Elektrolytlösungen dar, die zu einer Anpassung 

der Milieuverhältnisse extra- und intrazellulär führen und das Überleben der Zellen 

außerhalb des Organismus erst ermöglichen. Für den Proteinstoffwechsel der Zelle 

werden dem Kulturmedium Aminosäuren in der L-Isoform zugefügt, da sowohl im 

menschlichen als auch im tierischen Organismus nur die L-Isoform zur Proteinsynthese 

verwendet wird. Es konnte gezeigt werden, dass besonders dem L-Glutamin bei der 

Kultur von Säugetierzellen eine wichtige Bedeutung als Energiequelle zukommt (Zielke 

et al. 1984). Weitere benötigte Zusatzstoffe sind Vitamine und Nukleinsäuren für die 

DNA- und RNA-Synthese. Der Einsatz von Antibiotika und Antimykotika findet vor allem 

bei Primärkulturen Anwendung, da durch die Präparation aus dem Spender-

Organismus keine hundertprozentige Sterilität gewährleistet ist. 

Der pH-Wert des Kulturmediums sollte in einem Bereich zwischen 7,2 - 7,4 liegen. 

Eingesetzte Puffersubstanzen wie Natriumhydrogenkarbonat bewirken eine 

Aufrechterhaltung des Säure-Basen-Gleichgewichts.  

Fetales Bovines Serum (FBS) oder Fetales Kalbsserum sind die mit Abstand am 

häufigsten eingesetzten Serumzusätze. Sie enthalten u.a. eine komplexe Mischung aus 

Proteinen, Hormonen und Wachstumsfaktoren, welche für das Zellwachstum und die -

proliferation von entscheidender Bedeutung sind (Minuth 2003).  

5.1.1. Verwendetes Zellkulturmedium in der Proliferationsphase 
 
Nach der Isolation der humanen Myofibroblasten aus Nabelschnurarterien erfolgt die 

Kultivierung mit Dulbecco‘ s Modified Eagle Medium (DMEM, invitrogen 21885-025), 

welchem 10 % FBS (PAA A15-151) und 1 % Antibiotikum-Antimykotikum-Lösung (PAA 

P11-002) zugegeben wird.  

 
 



32 

 

5.1.2. Bioreaktormedium in der Fibringel-Phase 
 
Sobald die benötigte Zellzahl in der gewünschten Passage vorhanden ist und die Zellen 

im Fibringel kultiviert werden können, wird das DMEM ohne den Farbindikator 

Phenolrot (invitrogen 11054-020) zur Kultivierung verwendet, da dieser vermutlich mit 

dem Fastin™ Assay der Firma Biocolor, der zum Elastin- bzw. Tropoelastinnachweis 

zum Einsatz kommt, interferiert. Dem Medium werden zusätzlich 5 % FBS, 1 % 

Antibiotikum-Antimykotikum-Lösung, 1 % GlutaMAX TM (invitrogen 35050), 888 µL 

Tranexamsäure (Cyclocapron 1000 mg / 10 ml, Pfizer, PZN 0523241) sowie 142,1 mg L-

Ascorbat-2-phosphat (SIGMA A-8960) zugesetzt.  

 

Das L-Ascorbat-2-phosphat wird in ca. 20 ml DMEM unter Lichtschutz gelöst und 

ebenso wie die Tranexamsäure nach Sterilfiltration durch einen Sterilfilter der 

Porengröße 0,22 µm (Millipore Millex® Syringe Filter 0,22 μm, Bedford, USA) dem 

sterilen DMEM zugegeben.  

L-Ascorbat spielt eine wichtige Rolle bei der Kollagenbiosynthese als Enzym-Kofaktor 

für die Hydroxylasen. Ohne die Hydroxylierungen ist, wie bereits oben dargestellt, eine 

korrekte Faltung der Kollagen-Tripelhelix nicht möglich. Darüber hinaus stabilisiert L-

Ascorbat die Procollagen-mRNA und steigert die Transkription der Prokollagen-

Genabschnitte (Hata & Senoo 1989).  

Die antifibrinolytisch wirkende Tranexamsäure (Trans-4-aminomethyl-cyclohexan-1-

carboxylsäure [t-AMCA]) wird im Fibrin-basierten Tissue Engineering verwendet um 

einer zu schnellen Degradation des Fibrins entgegenzuwirken. Dabei bindet sie 

kompetitiv an die Lysin-Bindungsseite des Plasminogens, sodass dessen Aktivierung zu 

Plasmin nicht stattfinden kann (Cholewinski et al. 2009). 

5.2. Zellkultur 
 

5.2.1. Anlage von Primärkulturen aus humanen Nabelschnurarterien 
 
Das für die Anlage der primären Zellkulturen verwendete Gewebe in Form einer 

humanen Nabelschnur entstammt aus dem Kreißsaal des Uniklinikums Aachen als 

anonymisierte Gewebeprobe. Diese Kooperation mit Herrn Prof. Neulen aus der Klinik 

für Gynäkologische Endokrinologie und Reproduktionsmedizin wurde durch die 

Ethikkomission des Uniklinikums Aachen genehmigt (Votum der Ethikkomission: #EK 
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2067).  Nach Geburt und anschließender Entbindung wird die Nabelschnur in einen 

Behälter mit sterilem Transportpuffer überführt und in einem Kühlschrank bis zur 

Präparation bei 4 °C aufbewahrt.  

 

Zusammensetzung des Transport-Puffers 

0,5 l Transport-Puffer (pH = 7,5) Benötigte Chemikalien 

11,9 g Hepes (SIGMA Aldrich H3784) 

40 g NaCl (SIGMA Aldrich S9625) 

1,5 g KCl (Merck 1.04936.0500) 

10 g Glucose (Merck 1.08337.0250) 

Tabelle 3: Zusammensetzung des Transport-Puffers 
 

 

Die Präparation der Nabelschnur selbst erfolgt so bald wie möglich unter der 

Sicherheitswerkbank unter sterilen Bedingungen. Die Nabelschnur wird dabei in eine 

Petrischale überführt. Mit PBS angefeuchtete Mullkompressen verhindern ein 

Austrocknen des Gewebes. Mit einer 5 ml-Einmalspritze wird PBS aufgesogen und die 

beiden vorhandenen Nabelschnurarterien (Aa. umbilicales) werden drei- bis fünfmal 

durchgespült, um restliche Blutbestandteile zu entfernen. Mit Hilfe einer Chirurgischen 

und Anatomischen Pinzette sowie einer Schere werden nun die Nabelschnurarterien 

sowohl von dem sie umgebenden Bindegewebe als auch größtenteils von der Tunica 

adventitia befreit. Im Anschluss erfolgt die enzymatische Entfernung der 

Endothelzellen mittels 0,1 % Kollagenase (Sigma C0130). In einem nächsten Schritt 

werden die freipräparierten Nabelschnurarterien mit Skalpellen der Größen 11 und 23 

in 2 - 3 mm breite Ringe geschnitten. In T-75-Zellkulturflaschen (Greiner 658175) 

werden nun 12 - 15 solcher Arterienringe mit Hilfe einer sterilen Pasteurpipette 

überführt und auf dem Boden der Zellkulturflasche verteilt. Für die Dauer von fünf 

Minuten werden die Arterienringe zum Antrocknen und damit zum Anhaften auf der 

Zellkulturflaschen-Oberfläche belassen, bevor sie mit 10 ml Primärkulturmedium 

vorsichtig eingedeckt werden.  

Nach Zugabe des Mediums werden die Zellkulturflaschen im Inkubator (CB 150, Binder, 

Tuttlingen, Deutschland) bei einer Temperatur von 37 ° C, 5 % CO2 und einer 

Luftfeuchtigkeit von 95 % kultiviert.  
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Das Aussprossen der ersten Zellen ist bereits nach wenigen Tagen zu beobachten; der 

erste Mediumwechsel erfolgt nach sieben Tagen. Nach spätestens 14 Tagen werden 

die Arterienringe mit Hilfe einer 10 ml fassenden serologischen Pipette mit breitem 

Auslauf entfernt um ein weiteres Wachstum der Zellen zu gewährleisten.  

5.2.2. Subkultivierung in Zellkulturflaschen 
 
Trotz der Entfernung der Arterienringe findet die Proliferation der Zellen verstärkt an 

den Stellen des Zellkulturflaschenbodens statt, wo zu Beginn auch die Aussprossung 

stattgefunden hat. Durch das Überführen der Primärkultur in die Passage 1 kann dieses 

inhomogene Wachstum aufgehoben werden. Dafür wird das alte Medium zunächst 

durch Absaugung entfernt. Im Anschluss erfolgt ein Waschschritt mit 5 ml PBS-Puffer 

um u.a. restliches Medium und Detritus zu entfernen. Die Zellen werden nachfolgend 

mit 3 ml 0,25 % Trypsin-0,02% EDTA (Gibco 25200-056) und einer fünfminütigen 

Inkubationszeit bei 37 °C abgelöst. Die Zellablösung wird unter Einsatz des 

Phasenkontrastmikroskops kontrolliert und bei vollständiger Ablösung die 

proteolytische Spaltung der Adhärenzmoleküle der EZM durch die Zugabe von 7 ml 

serumhaltigen Mediums gestoppt. Nach mehrmaligem Abspülen des 

Zellkulturflaschenbodens wird die gewonnene Zellsuspension je nach gewünschtem 

Split-Verhältnis (1:2 bis 1:4) auf neue T-75-Zellkulturflaschen verteilt. In jede der 

Flaschen wird neues Medium nachgegeben, sodass insgesamt wieder 10 ml 

resultieren. Dieses Medium enthält keinen Antibiotikum-Antimykotikum-Zusatz mehr.  

Haben sich die Zellen so weit vermehrt, dass sie konfluent den Boden der 

Zellkulturflasche bedecken (siehe Abbildung 5), so wird der Passagierungsvorgang 

erneut durchgeführt und die Zellen bei der 2. Passage anstatt in T-75-Zellkulturflaschen 

in Triple Flasks (Nunclon 132913) mit einer Oberfläche von 500 cm2 kultiviert um eine 

beschleunigte Zellvermehrung zu erreichen. Auf jede Triple Flask werden 60 ml 

Medium gegeben. Auch die Menge an PBS und Trypsin erhöhen sich entsprechend auf 

25 ml und 20 ml für den kommenden Passagierungsvorgang.  

 

http://products.invitrogen.com/ivgn/en/US/adirect/invitrogen?cmd=catProductDetail&productID=25200056
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Abbildung 5: Myofibroblasten in P3 bedecken den Boden einer T75-Zellkulturflasche 
 
 
5.2.3. Kryokonservierung der Myofibroblastenkulturen 
 
Finden die Zellen nicht in absehbarer Zeit für einen Versuch Verwendung, so erfolgt 

eine Kryokonservierung der Zellen in der Passage 1 oder 2. Hierfür werden die 

Zellkulturflaschen wie bereits oben beschrieben mit Trypsin-EDTA behandelt und der 

Trypsinierungsprozess nach fünf Minuten Inkubationszeit und Kontrolle der Ablösung 

der Zellen unter dem Phasenkontrastmikroskop mit der Zugabe von Zellkulturmedium 

beendet. Die Zellsuspension wird bei 500 rpm für die Dauer von fünf Minuten 

zentrifugiert und das gewonnene Zellpellet in einer definierten Menge an 

Zellkulturmedium resuspendiert um die Zellzahl zu bestimmen. Im Anschluss an die 

Zellzahlbestimmung mittels des elektronischen Zellzahlbestimmungsgerätes CASY® 

(Cell Counter and Analyser System, Schärfe System, Reutlingen, Deutschland) werden 

die Zellen nochmals bei 500 rpm zentrifugiert und das Zellpellet in wenig 

Zellkulturmedium resuspendiert. Das Einfriermedium, welches in einem Verhältnis von 

1:1 zu der Zellsuspension hinzugegeben wird, setzt sich aus 60 % DMEM, 20 % FBS und 
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20 % Dimethylsulfoxid (DMSO, SIGMA D2650) zusammen. DMSO wirkt als 

Kryoprotektiv und verhindert während der Gefrierphase eine intra- und extrazelluläre 

Eisbildung und schützt die Zelle vor der Dehydratation des Zytoplasmas. Die ~ 2,0 x 10 6 

Zellen auf 1,5 ml Medium enthaltenden Kryoröhrchen (Greiner 8070176) werden zügig 

in einen Einfrierbehälter mit 2-Propanol überführt und bei -80 °C für 12 Stunden 

gelagert. Nach diesem ersten Gefrierabschnitt werden die Kryoröhrchen bei  

-196° C in den Flüssigstickstoffbehälter überführt und verbleiben dort bis zu ihrer 

Verwendung.  

Das Auftauen der Kryoröhrchen erfolgt nach Entnahme aus dem Stickstofftank in 

einem 37°C-Wasserbad. Anschließend  wird die Zellsuspension in ein 15 ml Falcon (BD 

Falcon™ 352097) überführt und mit reichlich Zellkulturmedium vermischt und dann bei 

500 rpm für 5 min zentrifugiert. Danach wird das Zellpellet in Zellkulturmedium 

aufgelöst und nach gewünschter Zellzahl in T-75-Zellkulturflaschen überführt. Das 

Zellkulturmedium wird nach einer Ruhezeit von 12 h am nächsten Tag ausgewechselt.  

5.3.  Nutzung von Fibringel als Scaffold 
 
Schon im einleitenden Kapitel wurde die allgemeine Funktion eines Scaffolds als 

Stützstruktur im Tissue Engineering beschrieben, der als Leitschiene für das 

Zellwachstum besonders zu Beginn der Kultivierungsphase neuen Gewebes 

mechanische Stabilität verleiht und idealerweise im gleichen Maß von den Zellen 

resorbiert werden kann, wie das Gewebe aufgebaut wird, sodass am Ende ein 

vollständig autologes Konstrukt resultiert.  

Hydrogele aus natürlich vorkommenden Polymeren wie Fibrin eignen sich sehr gut als 

Scaffolds für das Tissue Engineering von Weichgeweben. Sie weisen einen ähnlich 

hohen Wassergehalt wie diese Weichgewebe in vivo auf, besitzen entsprechend 

ähnliche mechanische Eigenschaften, sind biokompatibel und gewährleisten einen 

effizienten Transport von Nährstoffen und Stoffwechselprodukten (Ahmed et al. 2008).  

Eines der am häufigsten genutzten Hydrogele stellt das Fibringel dar, dessen Einsatz als 

dreidimensionale Matrix im Kardiovaskulären Tissue Engineering von Ye et al. im Jahre 

2000 etabliert wurde. 

Als Bestandteil des Blutes kann Fibrinogen aus dem späteren Empfänger des tissue 

engineerten Gewebes selbst isoliert werden, sodass das Risiko einer Infektion oder 
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inflammatorischen Reaktion auf ein Minimum reduziert wird (Ye et al. 2000). Im 

Vergleich zu anderen verwendeten Scaffoldmaterialien kann im Fibringel eine 

gleichmäßige Verteilung der Zellen durch einen schnellen Polymerisationsprozess 

erreicht werden, der die Zellen in ihrer Position im entstehenden Gel fixiert (Swartz et 

al. 2005). Die Bedeutung einer dieser initialen gleichmäßigen Verteilung der Zellen für 

die EZM-Produktion konnte in verschiedenen Studien gezeigt werden (Kim et al. 1998, 

Vunjak-Novakovic et al. 1998). 

Darüber hinaus besteht die Möglichkeit, das Fibringel in seiner noch flüssigen Phase in 

verschiedene dreidimensionale Formen zu bringen um es an die individuellen 

Anforderungen anzupassen (Jockenhoevel et al. 2001).  Das Fibringel wird in der 

Kultivierung von im Medium enthaltenen Proteasen oder von den Zellen selbst 

enzymatisch abgebaut. Dabei entstehen keinerlei toxische Abbau- oder 

Zwischenprodukte. Dieser Prozess der Fibringel-Degradation, auch Fibrinolyse 

genannt, kann durch den Einsatz von Protease-Inhibitoren wie Aprotinin kontrolliert 

werden, welches durch seine Bindung an Plasmin die Fibrinolyse verhindert (Ye et al. 

2000). In einer klinischen Studie von Mangano et al. im Jahre 2006 konnte gezeigt 

werden, dass Aprotinin mit einem erhöhten Risiko von gesundheitlichen 

Komplikationen, darunter Nieren- und Herzversagen, Herzinfarkt, Schlaganfall und 

Enzephalopathie assoziiert ist, sodass es seitdem nicht mehr für den klinischen Einsatz 

empfohlen wird (Mangano et al. 2006). Als eine sicherere Alternative etablierten 

Cholewinski et al. im Jahre 2009 die Tranexamsäure für das Fibrin-basierte 

Kardiovaskuläre Tissue Engineering (Cholewinski et al. 2009).  

Tranexamsäure wird bereits seit Jahrzehnten in der Chirurgie appliziert um vor allem 

postoperative Blutverluste zu kontrollieren. Sie ist ein synthetisches Derivat der 

Aminosäure Lysin und übt ihren antifibrinolytischen Effekt aus durch die reversible 

Blockade von Lysin-Bindungsstellen an Plasminogen-Molekülen (Dunn & Goa 1999). 

5.3.1.  Komponenten des Fibringels 
 
Für die Herstellung von Fibringelen werden als Komponenten Fibrinogen, Thrombin, 

Calciumchlorid (CaCl2) und Tris-Buffered Saline (TBS) benötigt. Der Polymerisations-

Prozess, der aus den flüssigen Einzelkomponenten das Fibringel entstehen lässt, stellt 

den finalen Schritt in der plasmatischen Blutgerinnungskaskade dar. 



38 

 

Fibrinogen 

Fibrinogen stellt als Gerinnungsfaktor I das wesentliche Substrat in der Blutgerinnung 

dar und gehört mit einer Länge von 45 nm und einem Molekulargewicht von 340 kD zu 

den Glykoproteinen. Es ist in löslicher Form im Blutplasma lokalisiert, seine 

Konzentration beträgt dort 2 - 4 g/l. Das Fibrinogen-Molekül (siehe Abbildung 6) ist 

symmetrisch zusammengesetzt aus den beiden äußeren D-Domänen, die durch jeweils 

fünf Disulfidbrückenbindungen in der zentralen E-Domäne kovalent miteinander 

verknüpft sind. Nichtsymmetrische Disulfidbrückenbindungen bilden in dieser Region 

eine Disulfid-Ringstruktur aus. Jede der D-Domänen setzt sich aus den drei 

verschiedenen Polypeptidketten Aα, Bβ und γ zusammen, welche aus 610, 461 und 

411 Aminosäureresten bestehen. Die zentrale E-Domäne wird von den N-terminalen 

Bereichen aller sechs Polypeptidketten gebildet, während die beiden D-Domänen vor 

allem aus den hydrophoben C-terminalen Bereichen der Bβ-und γ-Polypeptidketten 

bestehen. Der hydrophile C-terminale Bereich der Aα-Kette, die sogenannte α-C-

Domäne, ist im Gegensatz zu den C-terminalen Bereichen der Bβ-und γ-

Polypeptidkette frei beweglich, verlässt die D-Domäne und interagiert mit der E-

Domäne. 

 

 

Abbildung 6: Fibrinogen-Struktur, Löffler G, Petrides PE, Heinrich PC. Biochemie & 
Pathobiochemie. 8. Auflage. Springer - Berlin Heidelberg 2006: 982 
 

Außerdem sind diese α-C-Domänen an der Polymerisation des Fibrinogens zu Fibrin 

beteiligt. Bei der Konversion von Fibrinogen zu Fibrin dissoziieren sie von der zentralen 

E-Domäne ab und stehen für intermolekulare Interaktionen zur Verfügung (Weisel & 

Medved 2001), wodurch unter anderem die Lateral-Assoziation der Fibrin-Fibrillen und 

damit auch die Ausbildung fibrillärer Fibrin-Netzwerke unterstützt wird (Collet et al. 

2005).  Darüber hinaus beinhalten die α-C-Domänen RGD-Sequenzen, über die 

D-Domäne 

α-C-Domäne 
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zelluläre Interaktionen mit Fibrinogen bzw. Fibrin stattfinden können. Dies geschieht 

über die Bindung von Integrinen, transmembranären Zelladhäsionsmolekülen, an eben 

diese Sequenz (Mosesson 2005). Durch die Serinprotease Thrombin wird die 

Abspaltung der Fibrinopeptide A katalysiert. Bei den Fibrinopeptiden handelt es sich 

um N-terminal gelegene, 16 Aminosäuren-umfassende Abschnitte der 

Polypeptidketten Aα.  

Dadurch wird die Polymerisationsregion EA, die sich über die Aα- und Bβ-

Polypeptidkette erstreckt, freigelegt und ist imstande, mit der komplementären 

Bindungsstelle DA benachbarter Fibrinogen-Moleküle, die sich C-terminal auf der γ-

Polypeptidkette befindet, zu assoziieren. Durch diese Assoziation entstehen 

doppelsträngige, sich umeinander windende Fibrin-Fibrillen.  

Die Abspaltung der Fibrinopeptide B der Bβ-Polypeptidketten, die ebenfalls durch 

Thrombin katalysiert wird, geschieht langsamer als die der Fibrinopeptide A und legt 

die Polymerisationsstelle EB frei, die mit der komplementären DB-Bindungsstelle der 

Bβ-Polypeptidkette assoziiert um zu einer Lateralassoziation der Fibrin-Fibrillen zu 

führen, sodass schließlich ein dreidimensionales Fibrillen-Netzwerk resultiert. Alle 

zuvor stattfindenden Interaktionen sind von nicht-kovalenter Natur. Für eine 

ausreichende Stabilität des Fibrillen-Netzwerks bedarf es der Mithilfe des Faktors XIIIa, 

einer Transglutaminase. Diese wird durch Thrombin aktiviert und induziert in 

Abhängigkeit von Calcium die Ausbildung kovalenter Peptidbindungen zwischen Lysyl-

und Glutaminylresten der Aα-und γ-Peptidketten (siehe Abbildung 7). Dadurch wird 

das Fibrin-Netzwerk mechanisch stabiler, weniger deformierbar und resistenter 

gegenüber der Lyse durch Plasmin (Lai et al. 1994). 
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Abbildung 7: Quervernetzung der Fibrinogen-Moleküle durch F XIIIa, Löffler G, 
Petrides PE, Heinrich PC. Biochemie & Pathobiochemie. 8. Auflage. Springer - Berlin 
Heidelberg 2006: 984 
 

Für die Herstellung des Fibringels wird kommerziell erhältliches humanes Fibrinogen-

Lyophilisat der Firma (Sigma Aldrich F4883) verwendet.  

 

Thrombin 

Die Serin-Protease Thrombin als Faktor IIa der Blutgerinnung entsteht durch die 

Aktivierung der Vorläuferstufe Prothrombin und besitzt eine strukturelle Ähnlichkeit zu 

Trypsin. Sie spielt eine zentrale Rolle im Polymerisationsprozess des Fibrinogens durch 

ihre Fähigkeit, die Fibrinopeptide A und B des Fibrinogens proteolytisch abzuspalten, 

sodass eine spontane Assoziation der dadurch freigewordenen 

Polymerisationsregionen stattfinden kann. Des Weiteren unterstützt Thrombin durch 

die Aktivierung von Faktor XIIIa wie bereits oben dargestellt die Ausbildung von 

stabilisierenden Peptidbindungen zwischen den Peptidketten des Fibrinogens.  

 

Calciumchlorid (CaCl2) 

Bei der Blutgerinnung binden mehrere der oben aufgeführten Gerinnungsfaktoren im 

Verletzungsgebiet an Zellmembranen. Dabei vermitteln freie Calcium-Ionen die 

Bindung der Gerinnungsfaktoren an die Zellmembranen, indem sie die Fähigkeit 

besitzen, auf der einen Seite in Wechselwirkung mit den Phospholipden zu treten und 

auf der anderen Seite von γ-Carboxyglutaminsäure-Gruppen der Gerinnungsfaktoren 

gebunden zu werden.  

Calcium-Ionen unterstützen außerdem den Polymerisationsprozess des Fibrinogens 

insofern,  als der Faktor XIII erst durch die Bindung von Calcium-Ionen an seinen 

Calcium-bindenden Domänen Asn436, Asp438, Ala457, Glu485 und Glu490 seine volle 
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Aktivität erlangt (Fox et al. 1999) um die Fibrinogenmonomere untereinander quer zu 

vernetzen, sodass eine ausreichende Stabilität im Fibrin-Fibrillen-Netzwerk erreicht 

wird (Lai et al. 1994). Des Weiteren wird eine verbesserte Polymerisation durch das 

Vorhandensein von Calcium-Ionen erreicht, indem die Wirkung von N-

Acetylneuraminsäuren vermindert wird, die über Asparaginsäure gekoppelt an den 

Positionen Bβ364 und γ52 des Fibrinogens lokalisiert sind und ansonsten zu einer 

Abstoßung der Fibrinogenmonomere untereinander führen würden (Dang et al. 1989).  

Um eine vollständige Polymerisation und Unlöslichkeit des Fibringels in vitro zu 

erreichen wird eine 50 mM CaCl2-Lösung verwendet.  

 

TBS (Tris buffered saline)-Puffer 

Tris-gepufferte Salzlösung wird bei der Herstellung von Fibringelen sowohl als 

Dialysierflüssigkeit für das gelöste Fibrinogen als auch zur Resuspension des 

gewonnenen Zellpellets aus den abtrypsinierten Zellkulturflaschen eingesetzt. Durch 

den beim Ansetzen der Tris-gepufferten Salzlösung eingestellten pH-Wert von 7,4 bei 

Raumtemperatur und der isoosmotischen Umgebung können die Zellen in der 

Salzlösung bis zum Gießen in das Fibringel verbleiben, ohne eine osmolare Schädigung 

zu erfahren. Für 4,5 l Puffer werden 19,62 g Tris HCl (SIGMA Aldrich T3253),  2,88 g 

Trisma Base (SIGMA Aldrich T6066), 36 g NaCl (SIGMA Aldrich S9625) und 0,9 g KCl 

(Merck 1.04936.0500) benötigt. 

5.4.  Herstellung der Fibringele 
 
Die Fibringele werden in 24-Well-Platten (Greiner 662160) kultiviert. Da in diesem 

Versuch eine statische Kultivierung gewählt wird, sollte das Volumen der Gele so 

bemessen werden, dass zum einen der Diffusionsweg für die Nährstoffe aus dem 

Medium so kurz wie möglich ist und zum anderen aber die Fibringele noch eine 

ausreichende Stabilität gewährleisten, da sie als Scaffold, wie bereits oben erwähnt, 

den Zellen als Stützstruktur für die eigene EZM-Synthese dienen.  

Aus eigenen Vorversuchen wurde zur Erfüllung oben genannter Eigenschaften eine 

Fibringel-Dicke von 2 mm ermittelt.  
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Hieraus ergibt sich ein Fibringel-Gesamtvolumen von 400 µl pro Well, welches sich 

wiederum zusammensetzt aus 200 µl Fibrinogen, 140 µl TBS mit Zellen bzw. ohne 

Zellen, 30 µl CaCl2 sowie 30 µl Thrombin. 

5.4.1. Herstellung der Fibrinogen-Lösung 
 

Zunächst wird unter Berücksichtigung einer gewissen Reserve die benötigte Menge an 

Fibrinogen-Lösung angesetzt.  

Dafür wird das in lyophilisierter Form vorliegende Fibrinogenpulver in 6-Well-Platten 

(Greiner 657160) gelöst, in die jeweils 3 ml Reinstwasser (Direct-Q UV3, Millipore, 

Billerica, Massachusetts, USA) gefüllt werden. Etwa 75 mg des Lyophilisats pro Well 

werden dann vorsichtig auf die Wasseroberfläche gegeben. Bevor der Deckel der 6-

Well-Platte aufgelegt werden kann, sollte das Fibrinogen-Pulver bereits in das 

Reinstwasser diffundiert sein, da ansonsten aufgrund elektrostatischer 

Wechselwirkungen das Pulver von dem Deckel angezogen wird. Nach der vollständigen 

Auflösung des Fibrinogen-Pulvers nach etwa 1 - 2 Stunden wird die Fibrinogen-Lösung 

in einen Dialyseschlauch (Spectra / Por 1, MW Co 6000-8000, 32 mm breit, Novodirect, 

Kat. Nr. 10801) überführt und gegen 4 l TBS-Puffer über Nacht dialysiert. Im Anschluss 

an den Dialyse-Vorgang wird die Fibrinogen-Lösung sterilfiltriert und in einen sterilen 

Behälter überführt. 

 

Die Konzentrationsbestimmung des Fibrinogens erfolgt photometrisch mithilfe des 

Spektralphotometers bei einer Wellenlänge von λ = 280 nm in einer Quarzküvette. Zur 

Verdünnung in einem Verhältnis von 1:20 wird TBS-Puffer verwendet. Die 

Konzentration des Fibrinogens (mg / ml) wird wie folgt berechnet (Nguyen 2006): 

 

 

                                 
                    

    
                     

 

 

Formel 1: Berechnung der Fibrinogen-Konzentration  
 
 
Die Konzentration wird mit sterilem TBS-Puffer auf 11,5 mg / ml eingestellt. 
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5.4.2. Vorbereitung der zusätzlichen Fibringel-Komponenten 
 

Für die Herstellung des Fibringels wird im Gefrierschrank gelagertes steriles Thrombin 

in der benötigten Menge aufgetaut und 50 mM CaCl2-Lösung autoklaviert. Damit die 

Zellen, die in die Fibringele gegossen werden, nicht unnötigem Stress unterliegen, 

werden sie erst kurz vor dem eigentlichen Gießen der Fibringele in den 

Zellkulturflaschen abtrypsiniert. Das durch fünfminütige Zentrifugation gewonnene 

Zellpellet wird in einer definierten Menge an Zellkulturmedium resuspendiert und die 

Zellzahl mithilfe des CASY® ermittelt. Je nachdem, welche Zellzahl pro ml Fibringel 

angestrebt wird, werden die Zellen in entsprechender Menge an TBS-Puffer 

resuspendiert. 

Für die Durchführung dieser Studie wurden Myofibroblasten aus sechs verschiedenen 

Nabelschnüren isoliert und „gepoolt“. Zur Herstellung der Zellsuspension für das 

Fibringel wurden also zum Teil zuvor kryokonservierte Zelllinien verwendet, nachdem 

diese wie die „frischen“ Myofibroblasten in die Generation P3 überführt worden 

waren. Dieses Vorgehen wurde gewählt um Störeinflüsse durch etwaige Unterschiede 

zwischen den Zelllinien der verschiedenen Spender zu reduzieren. 

5.4.3.  Gießen der Fibringele 
 
Das Gießen der Fibringele erfolgt mithilfe einer Spritzenvorrichtung der Firma Baxter 

(Baxter Healthcare Corporation, Unterschleißheim, Deutschland). Diese 

Spritzenvorrichtung bietet Platz für zwei 1 ml-Spritzen, die parallel eingesetzt werden 

können. Der Aufsatz dieses Systems wird auf die beiden Spitzen der Spritzen 

aufgesteckt und beinhaltet zwei separate Kanäle, die in einen gemeinsamen Endkanal 

münden. Diese Spritzenvorrichtung erleichtert und beschleunigt das Gießen der 

Fibringele und trägt darüber hinaus durch den gemeinsamen Endkanal zu einer guten 

Durchmischung der einzelnen Komponenten bei (siehe Abbildung 8).  
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In die eine 1 ml-Spritze wird die Mischung aus Thrombin, CaCl2 und TBS mit Zellen bzw. 

ohne Zellen, und in die andere 1 ml-Spritze Fibrinogen aufgezogen. Mit den Füllungen 

beider Spritzen können so fünf Gele zu je 400 µl nacheinander gegossen werden. Vor 

dem Gießen des ersten Fibringels sollte darauf geachtet werden, dass sich keine 

Luftbläschen mehr im Kanalsystem befinden, da diese 

ansonsten zu einer nachteiligen Inhomogenität im 

Fibringel führen können. Nach dem Gießen eines 

Fibringels wird die 24-Well-Platte vorsichtig geschwenkt 

um die homogene Verteilung der hineingegebenen 

Substanzen weiter zu unterstützen, bevor die 

Polymerisation innerhalb von 30 Sekunden zu einem 

festen Gel führt.  

Die weitere, vollständige Polymerisation benötigt etwa 

1 Stunde. Erst im Anschluss werden die Fibringele mit 

jeweils 2 ml Bioreaktormedium, dessen 

Zusammensetzung in Kapitel 5.1.2. erläutert wurde, 

eingedeckt. 

 

 
 
 
 
 

Abbildung 8: Spritzensystem 
 
 

5.5. Statische Kultivierung der Fibringele, Probenentnahme und -lagerung 
 
Die Kultivierung der Fibringele erfolgt statisch bei 37 °C, 5 % CO2 und 95 % 

Luftfeuchtigkeit für die Dauer von 24 Tagen.  

Für die Untersuchung von Tropoelastin im Medium werden alle drei Tage, also an den 

Tagen 0, 3, 6, 9, 12, 15, 18, 21 und 24 Proben aus vier unterschiedlichen, dafür 

vorgesehen Wells entnommen. Für die Untersuchung des Elastingehalts in den 

Fibringelen werden jeweils vier Fibringele zu den Zeitpunkten 3, 6, 12, 18 und 24 

entnommen. Als Hintergrundwerte zu den Mediumproben dienen Proben des frischen 
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Mediums, welche bei jedem Mediumwechsel entnommen werden. Als 

Hintergrundwerte für die Fibringele dienen Fibringele ohne Zellen.  

Alle Proben werden nach ihrer Entnahme in 1,5 ml Eppendorf-Gefäße überführt, in 

flüssigem Stickstoff Schock-gefrostet und im Gefrierschrank bei -80 °C bis zur 

Anwendung des Fastin™ Assays zur Bestimmung von Tropoelastin bzw. Elastin 

gelagert. Die entnommenen Fibringele werden, bevor sie Schock-gefrostet und 

gelagert werden, 2 x 15 min mit PBS gespült um überschüssiges Medium zu entfernen.  

Zu jedem Zeitpunkt, an dem die Fibringele als Proben entnommen werden, werden 

auch jeweils drei Fibringele für die histologische Aufbereitung und drei Fibringele für 

die Überprüfung der mechanischen Reißfestigkeit mit dem Burst Strength-Test 

entnommen. 

5.6.  Messung des Elastingehalts mit dem Fastin™ Assay 
 
Für die Messung des Tropoelastingehalts im Medium und Elastingehalts in den 

Fibringelen kommt der Fastin™ Assay der Firma Biocolor (Biocolor Ltd., Carrickfergus, 

Nordirland) zur Anwendung. Es handelt sich dabei um ein quantitatives, 

photometrisches Verfahren zum Nachweis von Elastin in Flüssigkeiten oder 

Gewebeextrakten. Der verwendete saure Farbstoff 5, 10, 15, 20-Tetraphenyl-21,23-

Porphyrin Tetra-Sulfonat (TPPS) interagiert mit basischen und nicht-polaren 

Aminosäuresequenzen der Tropoelastin-Monomere und führt zu einem Farbumschlag 

der zu messenden Lösung. Dieser Effekt wurde schon vor ungefähr 40 Jahren durch 

Versuche von Winkelman und Spicer beschrieben, die eine Ablagerung von TPPS in 

elastischen Geweben von Ratten beobachteten (Winkelman 1962, Winkelman & Spicer 

1962).  

Aufgrund der Absorptionsmessung des mitgelieferten Tropoelastin-Standards 

bekannter Konzentration (1 mg / ml) kann hinterher auf die Konzentration der 

gemessenen Medium-und Fibringelproben zurückgeschlossen werden. 

5.6.1. Vorbereitung der Fibringelproben und der Positivkontrolle 
 
Während Tropoelastin in Aliquots der Mediumproben direkt mit dem Assay gemessen 

werden kann, müssen die Fibringelproben zunächst für die Messung vorbereitet 

werden, da in den Fibringelen Tropoelastin aufgrund des in 3.1.4.5 erläuterten 
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extrazellulären „Processing“ bereits in quervernetzter Form vorliegt. Auch in der als 

Positivkontrolle mitgeführten Nabelschnur ist davon auszugehen, dass Elastin nicht als 

lösliches Tropoelastin vorliegt, sondern in die EZM der Nabelschnur als elastische Faser 

eingebaut wurde. 

Zur Extraktion von Elastin aus den Fibringelen bzw. des Nabelschnurstückchens, 

werden diese in kleine Falcons (BD Falcon™ 352097) überführt und für 1 h in 0,25 M 

Oxalsäure (SIGMA 241172) gekocht. Das Volumen der hinzugegeben Oxalsäure richtet 

sich dabei nach dem Feuchtgewicht des Gewebes, sodass das Verhältnis von Gewebe 

zu Oxalsäure 1 : 20 beträgt. Nach dem ersten Kochzyklus werden die Proben auf 

Raumtemperatur abgekühlt und anschließend bei ca. 3000 rpm für 10 min 

zentrifugiert. Der Überstand wird danach abpipettiert und erneut in kleine Falcons 

überführt. Die Extraktionsprozedur wird so lange wiederholt, bis das Fibringel völlig 

aufgelöst wurde. Erfahrungsgemäß werden zwei bis drei Kochzyklen zur Auflösung der 

Fibringele benötigt. Anschließend stehen die Proben, die nun fraktioniertes α-Elastin1 

enthalten, für die Messung mit dem Fastin™ Assay zur Verfügung. Bis zur weiteren 

Verwendung kann eine sinnvolle Modifikation der Herstelleranweisungen zur 

Durchführung des Assays vorgenommen werden: aufgrund des in Kapitel 3.1.4.6. 

erklärten Vorgangs der Koazervation ist eine Abkühlung der Fibringelextrakte auf                   

< 20°C empfehlenswert. Während der Abkühlungsphase kann der Assay auch 

unterbrochen und ggf. am nächsten Tag fortgesetzt werden. 

5.6.2.  Durchführung des Fastin™ Assays 
 

Nach erfolgter Extraktion von α-Elastin aus den Fibringelen kann der Assay nun 

durchgeführt werden. 

Die Mediumproben werden aus dem -80 °C-Gefrierschrank entnommen und bei  

Zimmertemperatur aufgetaut. Zunächst werden für die Leerwerte je 100 µl Oxalsäure 

und PBS in Eppendorf-Gefäßen vorgelegt. Anschließend werden je 12,5 µl, 25 µl, 50 µl 

und 100 µl des Standards in Eppendorf-Gefäße gegeben. Aus den Mediumproben und 

Fibringel-bzw. Nabelschnurextrakten werden Aliquots von 50 µl in Eppendorf-Gefäßen 

vorgelegt.  

                                                 
1
 Nach dem Kochen der Fibringele in Oxalsäure liegt Elastin in fraktionierter Form als sog. α-Elastin vor. 
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Zu allen Eppendorf-Gefäßen wird anschließend ein äquivalentes Volumen an 

Tropoelastin-Präzipitationsreagenz hinzugegeben. Nach kurzem Durchmischen mittels 

eines Vortexers, wird nach 10 min eine vollständige Präzipitation erreicht. Dann 

werden die Eppendorf-Gefäße bei > 10.000 g für 10 min zentrifugiert, um das 

Präzipitat zu verdichten. Der Überstand wird vollständig aus den Gefäßen entfernt, in 

dem diese nach der Entleerung in ein Becherglas kräftig auf Papierhandtücher geklopft 

werden (siehe Abbildung 9.1). Anschließend wird in jedes Eppendorf-Gefäß 1 ml TPPS 

hinzugegeben und die Elastin-Präzipitate mit Hilfe des Vortexers aufgelöst. Die Proben 

werden dann für mindestens 90 min auf einem Shaker (Polymax 1040, Heidolph, 

Schwabach, Deutschland)  in Bewegung gehalten um eine ausreichende Interaktion 

des Farbstoffs mit dem Substrat zu ermöglichen. Im Anschluss werden die Eppendorf-

Gefäße erneut bei > 10.000 g für 10 min zentrifugiert. Wiederum wird der Überstand 

möglichst vollständig entfernt. Zurück bleibt in Tropoelastin enthaltenden Proben ein 

rötlich-braunes Pellet am Boden des Gefäßes (siehe Abbildung 9.2). Zu allen 

Eppendorf-Gefäßen werden anschließend 250 µl des Dissoziationsreagenz 

hinzugegeben (siehe Abbildung 9.3) und die Pellets wieder mit Hilfe des Vortexers 

aufgelöst. Sobald diese vollständig gelöst sind, werden 200 µl eines jeden Eppendorf-

Gefäßes in eine 96-Well-Platte (Greiner 655180) überführt und anschließend mit dem 

Microplate Reader Tecan Infinite 200® (Tecan Group Ltd., Männedorf, Schweiz) bei 513 

nm gemessen. 

 

1 

Elastin-

Präzipitat 

nach dem 

Zentrifugieren 

  

2 

Elastin-TPPS-

Farbkomplex 

nach dem 

Zentrifugieren  

3 

Auflösen des Elastin-

TPPS-Farbkomplexes 

mittels 

Dissoziationsreagenz 

Abbildung 9: Durchführung des Fastin™ Assays, Fastin Manual. Biocolor Ltd. - 

Carrickfergus, Nordirland 2007: 2 

Die Berechnung des Tropoelastingehalts in den Medium- bzw. des Elastingehalts in den 

Fibringelproben erfolgt nach Erstellung der Standardkurve. Die Ergebnisse werden 

erfasst und grafisch ausgewertet. 
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5.7. Messung der Reißfestigkeit der Fibringele mit dem Burst Strength-Test 
 
Um die mechanische Reißfestigkeit der Fibringele zu beurteilen werden diese mit einer 

in unserer Arbeitsgruppe entwickelten Druckkammer gemessen. Dazu werden an 

jedem Tag der Fibringelentnahme je drei Fibringele in der Druckkammer platziert 

(siehe Abbildung 10). Über eine mit Reinstwasser gefüllte Spritze wird von unten Druck 

auf das Fibringel appliziert und das Reinstwasser durch das Fibringel filtriert, welches 

sich durch eine Öffnung in der Kammer nach oben wölbt. Wird die Filtrationskapazität 

des Fibringels überschritten, reißt es ein. Der zuvor gemessene maximale Druck 

entspricht dann der mechanischen Reißfestigkeit des Gels (Burst Strength). 

 

 

 

 

 

 
 
 
 
 
Abbildung 10: Messvorrichtung für den Burst Strength-Test 
 

5.8.  Histologische Analyse der Fibringele 
 
Die Analyse der Fibringele umfasst die konventionelle histologische Färbung in Form 

einer Hämatoxylin-Eosin-Doppelfärbung sowie die immunhistologische Darstellung von 

Elastin und Zellkernen.  

5.8.1.  Herstellung fixierter Fibringele und Mikrotomschnitte 
 
Für die Fixierung der Fibringele werden diese nach der Entnahme aus den Well-Platten 

in Einbettkassetten gelegt und zunächst für 2 Stunden in Carnoy-Fixativ fixiert. Carnoy-

Fixativ als alkoholisches Fixiergemisch setzt sich zusammen aus 60 % Ethanol absolut 

(Merck 1.009.832.511), 30 % Chloroform (SIGMA C2432) und 10 % Eisessig (SIGMA A-

6283) und dringt rasch in Gewebe ein.  

 

Spritzenvorrichtung 

Druckkammer Fibringel Messwandler 
zum PC 



49 

 

Bevor die Präparate jedoch in Paraffin gegossen werden können, müssen sie zunächst 

in einer aufsteigenden Alkoholreihe entwässert werden.  

Dafür werden sie in einem Entwässerungsautomaten durch sukzessives Überführen in 

60%, 80%, 90% und 100% Isopropanol-Lösungen (Isopropanol Merck 1.009.832.511) 

und 100% Xylol-Lösung (Sigma 296325) für je 1 h entwässert.  

Im Anschluss werden die Präparate in reinem Paraffin (Paraffin-Pastillen Merck 

K29908058-237) über Nacht gelagert und werden am nächsten Morgen an einem 

Ausblock-Automaten (Leica GmbH, Wetzlar, Deutschland) in Paraffinblöcke gegossen.  

Sobald der Paraffinblock erkaltet und ausgehärtet ist, werden 3,5 bzw. 5 µm dicke 

Schnitte mit Hilfe eines Schlittenmikrotoms angefertigt, die in einem 37° C warmen 

Wasserbad gestreckt und anschließend auf Objektträger (SuperFrost Plus Menzel 

GmbH & Co. KG J1800AMNZ) übertragen werden, wobei die glänzende Messerseite 

des Schnittes dem Objektträger zugewandt ist. Abschließend werden die Schnitte bei 

37° C über Nacht getrocknet. 

5.8.2.  Histologische Färbungen 
 

Mithilfe histologischer Färbungen können intra- und interzelluläre Strukturen 

dargestellt werden, indem natürliche oder synthetische Farbstoffe als Spektralfarben 

(λ = 400 - 800 nm) detektiert werden.  

Bevor jedoch eine histologische oder immunhistologische Färbung durchgeführt 

werden kann, müssen Paraffinschnitte am Tag der Färbung entparaffiniert werden.  

Hierzu werden sie nacheinander 

 3 x 5 min in Xylol,  

 2 x 5 min in 100 % Ethanol,  

 1 x 5 min in 96 % Ethanol,  

 1 x 5 min in 80 % Ethanol  

 1 x 5 min in 70 % Ethanol überführt.  

 

Nach Äquilibirierung in Aqua dest. kann die Färbung der Schnitte beginnen.  
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5.8.2.1.  HE-Färbung 
 
Die HE-Färbung ist eine Doppelfärbung mit Hämatoxylin und Eosin und dient zur 

Übersichtsfärbung eines Präparats. Bei Hämatoxylin handelt es sich um einen 

natürlichen Farbstoff, der zunächst zu Hämalaun aufbereitet werden muss, bevor er 

alle basophilen Strukturen, also z.B. Zellkerne und das rER blau-violett färbt (Hämalaun 

steht aber auch als Fertiglösung zur Verfügung). Eosin ist ein synthetischer Farbstoff, 

der alle eosinophilen Strukturen, also z.B. Zellplasma, rot färbt. 

Das Vorgehen zur Färbung ist wie folgt: 

1. Entparaffinieren wie in 4.8.2 beschrieben 

2. Färbung der Zellkerne in Mayers Hämalaun (Fertiglösung; Merck 

1.09249.0500) für 10 sek 

3. Entfärben unter fließendem Leitungswasser, erst einzeln dann in einem 

Färbekasten nach Hellendahl für 7 min 

4. Färbung des Cytoplasma in Eosin Y (Fertiglösung; Sigma HT110-2-16) 

 1000 µl Eosin + 5 µl Eisessig (Glacial Acid) für 1 min 

5. Entfärben unter fließendem Leitungswasser für 7 min 

6. in 96 % und dann in 100 % Ethanol kurz schwenken 

7. in 100 % Xylol kurz schwenken 

8. Xylol kurz abdampfen lassen  

9. mit dem Einschlussmittel Euparal (Roth 7356.1) eindecken und luftblasenfrei 

mit einem Deckglas abdecken 

 

Die Auswertung der histologischen Präparate erfolgt mit dem Imager D1-Mikroskop 

(Carl Zeiss MicroImaging GmbH, Jena, Deutschland). 

5.8.2.2  Immunhistologische Färbungen 
 
Bei der immunhistologischen Färbung werden Antikörper gegen bestimmte Proteine 

eingesetzt um diese in einem Präparat sichtbar zu machen. Dabei macht man sich die 

Affinität eines Antikörpers gegen ein bestimmtes Epitop im Sinne einer Antigen-

Antikörper-Reaktion zunutze. Idealerweise kommt es dabei zur Ausbildung einer 

starken spezifischen Bindung zwischen Antigen und Antikörper, wobei der Antikörper 
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mit einem Detektionssystem gekoppelt ist, der dessen Vorhandensein im Präparat 

sichtbar macht.  

Man unterscheidet grundsätzlich zwischen einer direkten und einer indirekten 

Methode. Bei der direkten Methode wird das zu untersuchende Antigen mit einem 

Antikörper zusammengebracht, der entweder direkt mit einem fluoreszeierenden 

Farbstoff oder mit einem Enzym, welches bei der Umsetzung eines Substrats zu einer 

Farbemission führt, gekoppelt ist. Man bezeichnet den Antikörper, der das Antigen 

bindet, als Primärantikörper. Bei der indirekten Methode wird durch die Bindung eines 

Sekundärantikörpers, der an ein Enzym gekoppelt und gegen den Primärantikörper 

gerichtet ist, eine Enzym-Substrat-Reaktion ausgelöst, durch die die Farbentstehung 

initiiert wird (siehe Abbildung 11). 

 

 

 

 

 
 
 
 
 

Abbildung 11: Indirekte Methode der Immunhistologie 

In dieser Arbeit kommt die indirekte Methode der immunhistologischen Färbung von 

Elastin zur Anwendung.  

 

Die Beurteilung der Schnitte erfolgt mit dem Observer Z1-Fluoreszenzmikroskop (Carl 

Zeiss MicroImaging GmbH, Jena, Deutschland) bei einer Belichtungszeit von 300 ms. 

 
Immunhistologische Färbung von Elastin 

Das Vorgehen zur immunhistologischen Färbung von Elastin ist wie folgt:  

Alle Mengenangaben beziehen sich auf einen Schnitt. 

1. Entparaffinieren wie in 4.8.2 beschrieben 

2. Blocken unspezifischer Bindungsstellen für 1 h mit 100 µl des 0,1% Triton-

Waschpuffers (Merck 648465), der 5% Normal Goat Serum (Dako X0907) 

enthält 



52 

 

3. Inkubation mit 100 µl des Primärantikörpers gegen Elastin für 1 h (α-Elastin, 

Fitzgerald 20R-ER003, Host Rabbit) in der Verdünnung 1:50 

4. Waschen in 0,1% Triton-Waschpuffer für 3 x 5 min 

5. Inkubation mit 100 µl des Sekundärantikörpers für 1 h (Alexa Fluor 594 

invitrogen, anti Rabbit) in der Verdünnung 1:400 

6. Waschen in 0,1% Triton-Waschpuffer für 4 x 5 min 

7. Färbung der Zellkerne mit 100 µl der DAPI (4',6-Diamidin-2'-phenylindol-

dihydrochlorid )-Lösung für 5 min 

 Herstellung aus 7,5 µl der DAPI-Socksolution, die auf 5 ml PBS verdünnt 

werden 

8. Waschen in 0,1% Triton-Waschpuffer für 3 x 5 min 

9. Eindecken mit Fluoreszenz Mounting Medium und Abdecken mit Deckglas 

 

Die Schnitte dürfen während des gesamten Färbeprozesses nicht austrocknen und 

werden bis zur Aufnahme der Bilder lichtgeschützt in einem mit feuchten Tüchern 

ausgelegten, dunklen Behälter aufbewahrt. 

 

Anfertigung von Negativkontrollen 

Das Vorgehen zur Anfertigung von Negativkontrollen ist wie in Kapitel 5.8.3.1. 

beschrieben, jedoch mit dem Unterschied, das die Schnitte nicht mit dem 

Primärantikörper inkubiert und in einem separaten Gefäß gewaschen werden. Sie 

dienen dazu die geeignete Belichtungszeit für die Positivkontrollen zu ermitteln. 

5.9. Statistische Auswertung 
 
Die statistische Auswertung der Messergebnisse erfolgt mit SAS® Vers. 9.1.3 SP4 (SAS 

Institute Inc, North Carolina, USA). Es werden die Tropoelastin-Konzentrationen in den 

Mediumproben bzw. der α-Elastingehalt in den Fibringelen sowie die mechanische 

Reißfestigkeit der Fibringele aufeinanderfolgender Tage untersucht. Die beobachteten 

Zusammenhänge werden deskriptiv beschrieben. Eine Aussage zur statistischen 

Signifikanz der festgestellten Konzentrationsunterschiede in Form einer univariaten 

Varianzanalyse kann nicht getroffen werden, da durch Verwendung eines „Zellpools“ 

zur Besiedlung der Fibringele die Voraussetzungen zur Varianzanalyse nicht erfüllt sind.   
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6.  Ergebnisse 
 
Die Kultivierung der Fibringele wurde planmäßig durchgeführt und die entnommenen 

Medium- und Fibringelproben wie in Kapitel 5.5. beschrieben bis zur Durchführung des 

Fastin™ Assays gelagert. Die Zahl der zu untersuchenden Mediumproben und der 

entsprechenden Fibringele wurde auf n = 4 für jeden Messzeitpunkt festgelegt. 

Substanzen wie PBS oder Oxalsäure, die zur Aufbereitung der Proben für die Messung 

verwendet wurden, sowie das zu jedem Mediumwechsel abgenommene, frische 

Medium wurden doppelt bestimmt. Für die Messung der mechanischen Reißfestigkeit, 

die zu jeder Gelentnahme durchgeführt wurde, standen jeweils drei Fibringele zur 

Verfügung. 

6.1.  Erstellung der Standardkurve zum Fastin™ Assay 
 

Zur Bestimmung der Tropoelastin-Konzentration in den Mediumproben und der 

Elastin-Konzentration in den Fibringelproben wurde zunächst eine Standardkurve mit 

Hilfe des mitgelieferten α-Elastin-Standards erstellt (siehe Abbildung 12). Die 

Ergebnisse dieser Messung sind in Tabelle 4 wiedergegeben. Von dem jeweiligen, sich 

aus der doppelten Messung ergebenden Mittelwert wird der Leerwert für PBS 

abgezogen, da diese zur Verdünnung des α-Elastin-Standards hinzugegeben wurde. 

 

Absorption des α-Elastin-Standards 

α-Elastin 

(1 mg / ml) 

in µg 

Messung 

1 

Messung 

2 
Mittelwert 

Leerwert 

PBS 

korrigierter 

Messwert *) 

0 0,0395 0,0438 0,04165 0,04085 
 

0,0018 
12,5 0,536 0,458 0,497 0,04085 

 
0,416 

25 0,709 0,6156 0,6623 0,04085 
 

0,5736 
50 1,3285 1,1492 1,23885 0,04085 

 
1,1072 

 

*) korrigierter Messwert = Mittelwert-Leerwert PBS 

Tabelle 4: Absorption des α-Elastin-Standards 
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Abbildung 12: Standardkurve des Fastin ™ Assays 
 

 

Anhand des Absorptions-Konzentrations-Koeffizienten kann nun die Absorption in die 

entsprechende Elastin-Konzentration umgerechnet werden (siehe Formel 2). Das 

Bestimmtheitsmaß beträgt R² = 0,9944. 

 

 

 

 

Formel 2: Berechnung der Elastin-Konzentration 

 

6.2. Tropoelastingehalt im Medium 
 
Die Mediumproben wurden, wie in Kapitel 5.6. beschrieben, mit dem Fastin™ Assay 

gemessen und die Absorptionen der Proben nach Formel 2 in entsprechende Werte in 

µg umgerechnet (siehe Tabelle 7, Kap. 11.1.). 
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Folgende Abbildung 13 zeigt den Verlauf des Tropoelastingehalts im Medium über 

einen Zeitraum von 24 Tagen.  

 

 

Abbildung 13: Tropoelastin-Verlauf im Medium; dargestellt sind Mittelwerte ± 
Standardabweichungen 

Aus der Abbildung sind zweierlei wichtige Informationen zu entnehmen. Offensichtlich 

nimmt die in dunkelgrau dargestellte kumulierte Menge an Tropoelastin (∑ 

Tropoelastin), welches im Medium nachweisbar ist, kontinuierlich zu. 

Weiterhin ist aus der Grafik ersichtlich, dass die Tropoelastin-Sekretion in das 

umgebende Medium zwischen den aufeinanderfolgenden Messzeitpunkten (∆ 

Tropelastin = Sekretionszeitraum 3 Tage) ab Tag 6 des Kultivierungszeitraums 

kontinuierlich abnimmt.  

 

Die folgende Tabelle 5 zeigt die absoluten Werte zur vorangegangenen Abbildung 13. 

Hellgrau unterlegt ist der Hintergrundwert (Leerwert) der Messung im Medium an  

Tag 0. 
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Deskriptive Statistik der Mediumproben-Messung 

Tag 
Mittelwert ∆ Tropoelastin in 

µg  
/ 50 µl Medium 

SD 
Mittelwert  ∑ Tropoelastin 

in µg  
/ 50 µl Medium 

0 23,0977 0,1511 0 

3 34,7091 0,6720 23,0977 

6 35,5261 0,3392 57,8068 

9 33,0318 0,1845 93,3329 

12 32,8011 0,6005 126,3647 

15 29,8795 0,2670 159,1658 

18 28,5943 0,3168 189,0453 

21 27,6477 0,3073 217,6396 

24 26,9898 0,3789 245,2873 

Tabelle 5: Deskriptive Statistik der Mediumproben-Messung
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6.3. Elastingehalt im Fibringel 
 
An den Tagen 3, 6, 12, 18 und 24 wurde der Elastingehalt im Fibringel bestimmt. Die 

Fibringele wurden wie in Kapitel 5.6.1. erläutert mit Oxalsäure vorbehandelt, um das 

unlösliche Elastin im Gel in lösliches, mit dem Fastin™ Assay detektierbares, α-Elastin 

umzuwandeln. Nach den Empfehlungen des Herstellers wurden Aliquots von 50 µl des 

Gelextrakts auf ihren Gehalt an α-Elastin untersucht.  

 

Es konnte über den Zeitraum von 24 Tagen eine stetige Zunahme des α-Elastingehalts 

im Fibringel beobachtet werden, wie in nachfolgender 

Abbildung 14 dargestellt ist (für alle Messwerte Tabelle 8, Kap. 11.2.). 

 

 

Abbildung 14: α-Elastin Gehalt im Fibringel; dargestellt sind Mittelwerte ± 

Standardabweichungen 

 

Eine Übersicht über die deskriptive Statistik der Fibringel-Messung zeigt die folgende 

Tabelle 6 . 
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Deskriptive Statistik der Fibringel-Messung 

Tag Mittelwert α-Elastin 
in µg / 50 µl 

SD 

3 14,8455 0,5667 

6 15,3261 0,2676 

12 22,7784 0,4603 

18 28,4011 0,9012 

24 33,6943 0,9781 

Tabelle 6: Deskriptive Statistik der Fibringel-Messung 
 

Der Hintergrundwert der Fibringele ohne Zellen ist wie auch der Hintergrundwert der 

Mediumproben weitestgehend konstant; er macht durchschnittlich bis zu 30 % der 

Messwerte der Fibringele mit Zellen aus (siehe Abbildung 14). 

6.4. Korrelation von Tropoelastin im Medium und Elastin im Fibringel 
 
Betrachtet man nun den Verlauf des kumulativen Gehalts von Tropoelastin im Medium 

und den Elastingehalt im Fibringel über die Zeit, ergibt sich eine stark positive 

Korrelation mit einem Pearson-Korrelationskoeffizienten von 0,99 (siehe Abbildung 

15).  

 

Abbildung 15: Tropoelastin / α-Elastin Korrelation 
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6.5. Mechanische Reißfestigkeit der Fibringele 
 
Die mechanische Reißfestigkeit der Fibringele wurde mit Hilfe des Burst Strength-Test 

ermittelt (siehe Kap. 11.1.3.,Tabelle 9).  

 

Auch wenn in dieser Dissertation der Schwerpunkt auf der Quantifizierung der Elastin-

Synthese liegt, sollte anhand eines etablierten Verfahrens wie dem Burst Strength-Test 

allgemein überprüft werden, ob eine Synthese von EZM-Komponenten im Fibringel 

über Gewichtsveränderungen hinaus zu Veränderungen der mechanischen 

Reißfestigkeit der Fibringele führt. 

  

 

Abbildung 16: Messung der mechanischen Reißfestigkeit der Fibringele 
 
 
Die mechanische Reißfestigkeit der Fibringele sinkt zwischen den Tagen 3 und 6 um ca. 

20 %, nimmt aber anschließend kontinuierlich zu und beträgt am Ende mehr als das 

Doppelte des Ausgangswertes (siehe Abbildung 16).  
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6.6. Histologie und Immunhistologie 
 

Zur histologischen und immunhistologischen Betrachtung der Fibringele wurden diese 

wie in Kapitel 5.8. beschrieben aufbereitet und anschließend gefärbt.  

 

HE-Färbung 

Von den HE-gefärbten Schnitten des Nabelschnurpräparats und der Fibringele der Tage 

3, 6, 12, 18 und 24 wurden zum einen Übersichtsaufnahmen und Detailaufnahmen zur 

besseren Beurteilung der Zellmorphologie angefertigt (siehe Abbildung 17 und 

Abbildung 19). 

 

Abbildung 19 zeigt einen Querschnitt der Nabelschnurarterie, die als Quelle für die in 

diesem Versuch verwendeten Myofibroblasten dient. Deutlich ist die konzentrische, 

längliche Ausrichtung der Myofibroblastenkerne und -zellkörper im Gefäß zu erkennen. 

Dagegen scheinen die Zellen im Anfangsstadium der Fibringel-Kultivierung an den 

Tagen 3 und 6 noch zum größten Teil abgerundet, vereinzelt und zufällig im Fibringel 

verteilt zu sein, wobei in diesem Zeitraum durchaus eine Vermehrung der Zellzahl zu 

beobachten ist. Ab dem 12. Tag deutet sich eine verstärkte Proliferation der Zellen vor 

allem in dem Bereich des Fibringels an, der dem Medium zugewandt ist. Dieser Trend 

verstärkt sich an den Tagen 18 und 24, sodass am 18. Tag bereits ein 

zusammenhängender Zellverband an der Oberfläche des Fibringels zu finden ist, der 

dieses zum Medium hin abgrenzt. Am 24. Tag scheint mindestens eine weitere 

Zellschicht hinzugekommen zu sein (siehe schwarze Pfeile in Abbildung 17). Mit 

zunehmender Zellzahl und vor allem in den Regionen erhöhter Zelldichte zeigen sich 

die Zellen nun länglich oval und ähneln den Myofibroblasten im Präparat der 

Nabelschnurarterie. Die Verteilung der Zellen im Fibringel ist nun eindeutig auf die 

dem Medium zugewandten Bereiche beschränkt. In den unteren Regionen des 

Fibringels finden sich viele abgeblasste Zellkerne, die hinweisend auf einen Untergang 

der Zellen sind (siehe gestrichelte, schwarze Pfeile in Abbildung 17). 
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Immunhistologische Färbung 

Zur Untersuchung der Elastin-Synthese der im Fibringel kultivierten vaskulären 

Myofibroblasten wurden Schnitte der Fibringele der entsprechenden 

Gelentnahmezeitpunkte sowie das Nabelschnurpräparat zunächst mit einem 

Antikörper gegen α-Elastin (rote Fluoreszenz) gefärbt. Die Zellkerne kommen aufgrund 

der anschließenden DAPI-Färbung in blau zur Darstellung (siehe Abbildung 18 und 

Abbildung 19; oben: Färbung für α-Elastin, unten: Negativkontrolle). Es wurde bei allen 

Präparaten eine Belichtungszeit von 300 ms für den roten Kanal gewählt, um eine 

Vergleichbarkeit der Färbungsintensität der Bilder untereinander zu gewährleisten.  

 

Durch die kontrastreiche Färbung mit DAPI lässt sich die bereits in der Auswertung der 

HE-gefärbten Fibringel-Präparate beschriebene Veränderung der Zellverteilung im 

Gewebe noch einmal gut nachvollziehen. Die Färbung für α-Elastin ergibt ein 

ubiquitäres Färbungsmuster im Fibringel, welches vom 3. bis zum 24. Tag stetig an 

Intensität zunimmt (siehe Abbildung 18). Dieses Ergebnis steht im Einklang zu dem mit 

dem Fastin™ Assay gemessenen Konzentrationsanstieg von α-Elastin im Fibringel. Die 

Bildung elastischer Fasern kann nicht beobachtet werden. 
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7. Diskussion 
 
Die Entwicklung von verschiedenen Gewebe- und Organersatzsystemen mit den 

Methoden des Tissue Engineerings ist in den letzten Jahren weit vorangeschritten. In 

der Herstellung tissue engineerter Gewebe bezieht sich eine der grundlegenden 

Fragestellungen auf den Zeitpunkt des Reifegrads des Gewebes, an dem es in den 

Patienten implantiert werden kann.  

Inwiefern ein tissue engineertes Gewebe im Vergleich zum ursprünglichen Gewebe, 

welches ersetzt werden soll, ausgereift ist, hängt nicht nur von dem Zustand der Zellen 

ab, sondern vielmehr von der EZM, die von den Zellen produziert wird. Die EZM als 

Substanz, die die Zellen umgibt und einen Raum für Proliferation, Migration und 

interzelluläre Kommunikation eröffnet, bestimmt letztendlich die mechanischen und 

biochemischen Eigenschaften, die ein Gewebe ausmachen.  

Das Ziel der vorliegenden Dissertation besteht darin eine Messmethode für das 

Kardiovaskuläre Tissue Engineering zu evaluieren, die es in Zukunft ermöglicht, eine 

Aussage über den Reifegrad der EZM tissue engineerten Gewebes zu machen ohne 

dieses Gewebe selbst untersuchen zu müssen. Anstelle dessen wurde als leicht 

zugängliches Untersuchungsmaterial Bioreaktormedium Myofibroblasten-besiedelter 

für 24 Tage statisch kultivierter Fibringele auf die Anwesenheit von Tropoelastin, der 

löslichen Vorstufe von Elastin, untersucht. In einem zweiten Schritt wurde die 

ermittelte Konzentration des Tropoelastingehalts im Medium mit dem Gehalt an 

unlöslichem Elastin im Gewebe korreliert.  

7.1. Beurteilung des Tropoelastingehalts im Medium im Zusammenhang mit dem 

 Elastingehalt im Fibringel 

 
Nach Ablauf der 24-tägigen Kultivierungsphase wurden die gelagerten Mediumproben 

mit dem Fastin™ Assay auf ihren Tropoelastingehalt untersucht. Die Ergebnisse zeigen, 

dass Tropoelastin im Medium nachgewiesen werden kann.  

Mit der Messung des Tropoelastingehalts in der jeweiligen Mediumprobe wird die 

sezernierte Menge an Tropoelastin innerhalb von drei Versuchstagen bestimmt, hier 

bezeichnet als ∆ Tropoelastin, da alle drei Tage das Medium durch frisches Medium 

ersetzt wird. Es kann durch die Konzentrationsbestimmung über die Zeit gezeigt 

werden, dass ∆ Tropoelastin im Verlauf geringer wird, während der kumulative 
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Tropoelastingehalt, hier als Σ Tropoelastin bezeichnet, genauso wie der Gehalt an α-

Elastin im Fibringel im Rahmen des Beobachtungszeitraums ansteigt.  

 

Zunächst soll anhand folgender Abbildung 20 zunächst die gesamte Elastin-Produktion 

im Verlauf über die Kultivierungszeit von 24 Tagen analysiert werden. 

 

 

Abbildung 20: Elastinproduktion gesamt 

 

Bei der Betrachtung der Kurve fällt auf, dass die Gesamtproduktion an Elastin über den 

Beobachtungszeitraum kontinuierlich ansteigt. 

Den Verlauf der Kurve des von den Myofibroblasten produzierten Elastins kann man in 

drei Phasen unterteilen, wobei die mutmaßliche dritte Phase im Kultivierungszeitraum 

von 24 Tagen nicht vollständig abgebildet ist.  

Die erste Phase umfasst den Zeitraum von Tag 0 bis Tag 6. Hierbei fällt auf, dass bereits 

initial am 3. Tag ungefähr 50 µg Elastin insgesamt in den Proben aus Medium und 

Fibringel-Extrakt enthalten sind und die Menge bis zum 6. Tag kaum ansteigt, d.h. mit 

anderen Worten: nach 6 Tagen ist ungefähr die gleiche Menge an α-Eastin im Fibringel 

vorhanden und die Sekretionsrate in das umgebende Medium hat sich gegenüber Tag 

3 kaum verändert.  

Die zweite Phase umfasst den Zeitraum ab Tag 6, in dem die Elastin-Produktion 

insgesamt kontinuierlich ansteigt. Der stärkste Anstieg ist von Tag 6 nach Tag 12 zu 
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beobachten, an den Folgetagen von Tag 12 nach Tag 18 bzw. von Tag 18 nach Tag 24 

verringert sich dieser Anstieg.  

 

Es ist stark anzunehmen, dass sich ab Tag 24 eine dritte Phase anschließt, in der die 

Elastin-Produktion ihr Maximum erreicht und dann von den Zellen herab reguliert 

wird, wobei diese Vermutung in Studien mit größerem Beobachtungszeitraum noch 

weitergehend untersucht werden muss. Im Rahmen dieses Beobachtungszeitraums ist 

gegen Ende lediglich ein Abnehmen der Sekretionsleistung ∆ Tropoelastin zu 

verzeichnen, es wird jedoch immer noch Tropoelastin sezerniert.   

Doch worin sind die Unterschiede in der Sekretion begründet? Die Antwort muss 

mehrere Aspekte berücksichtigen. Zum einen spielt das Verhalten der Zellen selbst 

eine Rolle, die aus ihrer „gewohnten“ zweidimensionalen Umgebung in der 

Zellkulturflasche entrissen und in einen dreidimensionalen Raum in Form eines 

Fibringels eingebettet und fixiert werden. In der ersten Phase nach der Umsiedlung der 

Zellen steht die Proliferation im Vordergrund. Hinweise dafür ergeben sich auch aus 

der immunhistologischen Betrachtung der Fibringele von Tag 3 und Tag 6 in einer 

Zunahme der Zelldichte.  

Mit dem Hinzukommen der dritten Dimension steht den Zellen ein größerer Raum zur 

Verfügung, der sowohl durch die Ausbildung interzellulärer Netzwerke als auch durch 

weitere Zellen ausgefüllt wird, wobei eine proliferationsfördernde Umgebung auch 

durch das Fibringel selbst gegeben ist. Ahmann et al. konnten zeigen, dass durch 

Fibrinolyse entstehende Fibrinspaltprodukte die Proliferation von vaskulären 

Myofibroblasten und auch die Synthese von EZM-Komponenten fördern (Ahmann et 

al. 2010).  

Ein weiterer Grund für die anfängliche Stagnation der Elastinproduktion insgesamt ist 

vermutlich im extrazellulären „Processing“ des Tropoelastins begründet. Wie in Kapitel 

3.1.4. erläutert sind Genexpression und extrazelluläres „Processing“ von Tropoelastin 

als wichtigem Schritt in der Zusammenlagerung zur Elastischen Faser von zahlreichen 

Faktoren abhängig. 

Einige dieser Faktoren wie Vitamin D, Kupfer (Kothapalli & Ramamurthi 2009) oder 

Wachstumsfaktoren können den Kulturmedien zugesetzt werden und wirken 

entweder auf Promotor-Ebene oder als Kofaktoren für die an der Zusammenlagerung 

zur Elastischen Faser beteiligten Enzyme, während andere wie Glykosaminoglykane 
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dazu verwendet werden Scaffolds zu funktionalisieren. So konnte eine signifikante 

Hochregulierung der Kollagen- und Elastinproduktion durch Endothelzellen in 

Fibringelmatrizes beobachtet werden, in die Glykosaminoglykane und 

Wachstumsfaktoren eingebettet waren (Divya & Krishnan 2009). Das in dieser 

Versuchsreihe verwendete Medium enthielt keine spezifischen, die Elastinproduktion 

fördernden Zusätze, und auch das Fibringel selbst wurde nicht modifiziert. Die EZM 

kann also in Bezug auf Elastin nur soweit reifen, wie die in ihr enthaltenen Zellen die 

für das extrazelluläre „Processing“ des Tropoelastins benötigten Faktoren, wie zum 

Beispiel Glykosaminoglykane und Glykoproteine, selbst produzieren. Dabei 

unterstützen Glykosaminoglykane über Interaktionen ihrer negativ geladenen 

Seitenketten mit positiv geladenen Lysylgruppen der Tropoelastinmoleküle den 

Koazervationsprozess, der einen wichtigen Schritt zur Bildung der Elastischen Faser 

darstellt (Wu et al. 1999).  

Diese Dissertation ist Teil des Projekts „Online-Marker der Gewebsentwicklung“. Zwei 

weitere Dissertationen beschäftigen sich mit den EZM-Komponenten Kollagen und 

sulfatierten Glykosaminoglykanen. Als Modell der beiden anderen Dissertationen 

dienten ebenfalls Fibringele, die mit denselben Zellpopulationen wie in dieser 

Dissertation verwendet, besiedelt und unter denselben Bedingungen kultiviert 

wurden. Die Ergebnisse der Dissertation von Michael Tümen mit der Untersuchung der 

Fibringele auf sulfatierte Glykosaminoglykane zeigen bis zum Tag 6 niedrige 

Konzentrationen an sulfatierten Glykosaminoglykanen im Fibringel. Ein Umstand also, 

der eine mögliche Erklärung für die initiale Stagnation der Elastinproduktion insgesamt 

bedeutet. Im weiteren Verlauf steigt parallel mit der Zunahme der Menge an 

sulfatierten Glykosaminoglykanen auch der Gehalt an produziertem Elastin im 

Fibringel.  

An die Proliferationsphase der Zellen schließt sich zwischen Tag 6 und Tag 12 eine 

Sekretionsphase an. In dieser Phase sind die Zellen in einer größeren Zahl vorhanden 

und haben ein interzelluläres Kommunikations-Netzwerk im Fibringel etabliert, sodass 

nun die EZM-Synthese ihr volles Ausmaß erreichen kann.  

Im Anschluss an diese Phase schließt sich vermutlich die Sättigungsphase an, in der die 

Gesamtproduktion an Elastin stagniert: die Konzentration im Fibringel steigt nicht 

mehr weiter an, während die Sekretionsleistung in das Medium innerhalb von drei 

Tagen immer weiter abnimmt, der kumulative Anteil der 



69 

 

Tropoelastingesamtproduktion aber natürlich weiter steigt, solange Tropoelastin 

sezerniert wird.  

Die Herabregulierung der Elastogenese in Fibringelen nach vier Wochen konnte bereits 

von Ross et al. gezeigt werden und ist zwar grundsätzlich kohärent mit den 

Ergebnissen dieser Dissertation (Ross & Tranquillo 2003), jedoch konnte in dem 

Zeitraum von 24 Tagen der Zeitpunkt, an dem in Bezug auf die Elastinproduktion ein 

steady-state erreicht wird, nicht genau festgelegt werden. Bei erneuter Durchführung 

des Versuchs ist also eine Verlängerung des Beobachtungszeitraums mindestens um 

weitere zwölf Versuchstage anzustreben.  

 

Um die Hauptfrage dieser Dissertation nach einem möglichen Zusammenhang 

zwischen dem Gehalt an Tropoelastin im Medium und α-Elastin im Fibringel zu 

beantworten, muss also Folgendes berücksichtigt werden: 

Während die gemessene Konzentration an sezerniertem Tropoelastin zwischen den 

Mediumwechseln kontinuierlich sinkt (∆ Tropoelastin), steigt der Gehalt an 

quervernetztem, eingebautem Elastin im Fibringel kontinuierlich an, wobei zumindest 

in dem hier beobachteten Zeitraum die Gesamtsekretion von Tropoelastin (∑ 

Tropoelastin) und der Gehalt an α-Elastin hochgradig korrelieren. 

Diese Beobachtung lässt sich im Hinblick auf die Biosynthese von Elastin erklären: 

Bevor Elastin in die die Zellen umgebende EZM eingebaut werden kann, wird es als 

lösliche Vorstufe von den Zellen als Tropoelastin in den Extrazellularraum sezerniert 

und tritt dann ungehindert in das Medium über. Dieser Prozess findet so lange statt, 

bis die Zellen damit beginnen, das sie umgebende Tropoelastin als unlösliches Elastin 

in die EZM einzubauen. Die Ergebnisse von Hoffmann-Kim et al. bestätigen diese 

Überlegung für die zweidimensionale Zellkultur. Die Arbeitsgruppe untersuchte 

Myofibroblasten auf ihr Potential zur EZM-Synthese und bestimmte unter anderem die 

Konzentration an Tropoelastin im Medium an den Tagen 7, 14, 21 und 28. Nach 7 

Tagen hatte die Sekretion ihr stärkstes Ausmaß erreicht und fiel dann rapide ab. Dieser 

rasche Abfall der Tropoelastin-Sekretion könnte dadurch erklärt werden, dass in der 

zweidimensionalen Zellkultur der extrazelluläre Raum bedeutend schneller in Bezug 

auf Tropoelastin gesättigt ist als im dreidimensionalen Fibringel, da das lösliche 

Tropoelastin dort kaum zu einem Netzwerk oder gar einer Elastischen Faser 
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zusammengebaut werden kann und aufgrund einer negativen Rückkopplung die 

weitere Tropoelastin-Produktion gedrosselt wird (Hoffman-Kim et al. 2005).  

Im Gegensatz zur zweidimensionalen Zellkultur besitzen die Zellen im Fibringel die 

Möglichkeit dreidimensionale, elastische Netzwerke auszubilden, sobald die für das 

extrazelluläre „Processing“ oben dargestellten, benötigten Faktoren vorhanden sind.  

Dadurch lässt sich erklären, dass, solange die Zellen noch ein elastisches Netzwerk in 

der EZM aufbauen, keine Sättigungskinetik eintritt.  

Das bedeutet also, dass die Beobachtungen von Hoffmann-Kim et al. nicht vollständig 

auf die Verhältnisse im Fibringel übertragen werden können: der Gehalt an 

Tropoelastin im Medium fällt ebenfalls über den Kultivierungszeitraum ab, was jedoch 

nicht dahingehend interpretiert werden darf, dass die Elastinproduktion insgesamt 

abnimmt. Diese steigt an, da der Gehalt an Elastin in den Gelen immer weiter zunimmt 

(siehe auch 

Abbildung 14). Dies legt den Gedanken nahe, dass das sezernierte Tropoelastin von 

den Zellen prozessiert wird und als elastisches Netzwerk unlöslich in die EZM der Gele 

eingebaut wird.  

Eine negative Rückkopplung wie in der zweidimensionalen Zellkultur findet erst spät 

statt, was darauf zurückgeführt werden kann, dass einerseits eine dritte Dimension 

zum Aufbau von EZM zur Verfügung steht und andererseits durch die Fibrinolyse neuer 

Raum geschaffen wird, der ausgefüllt werden kann. 

 

 

 

 

  



71 

 

7.2. Beurteilung der ermittelten mechanischen Reißfestigkeit der Fibringele 
 

Neben der Bestimmung des Gehalts an Tropoelastin im Medium und des α-

Elastingehalts im Fibringel wurden die Fibringele zu den jeweiligen Messzeitpunkten 

auf ihre mechanische Reißfestigkeit mit Hilfe des Burst Strength-Tests überprüft.  

Bei der Betrachtung des Verlaufs der mechanischen Reißfestigkeit der Fibringele  fällt 

auf, dass diese bis zum 6. Tag abnimmt, um dann kontinuierlich bis zum 24. Tag 

anzusteigen und auf das Doppelte des Ausgangswerts anzusteigen.  

 

Die initiale Abnahme der Reißfestigkeit könnte darauf zurückzuführen sein, dass die 

Myofibroblasten kurz nach ihrer Einbettung in die Fibringele mit der Fibrinolyse 

beginnen. Dieser Vorgang wird schon alleine dadurch beschleunigt, dass aufgrund der 

anfänglichen Proliferation der Zellen mehr „Fibringel-Konsumenten“ vorhanden sind. 

Durch die betriebene Fibrinolyse verlieren die Fibringele zunächst an Stabilität, da der 

Aufbau der EZM, wie bereits oben erläutert, noch nicht Schritt halten kann. Diese hier 

beobachtete initiale mechanische Instabilität von Fibringel-Scaffolds durch die 

einsetzende Fibrinolyse, ist ein bekanntes Phänomen, welches bereits vor einigen 

Jahren beschrieben worden ist (Jockenhoevel et al. 2001).  

Zwischen Tag 6 und Tag 12 folgt nun ein Wendepunkt in Bezug auf die mechanische 

Reißfestigkeit: sie steigt auf Werte über dem Ausgangsniveau an und erreicht am Tag 

24 fast doppelt so hohe Werte. Eine mögliche Erklärung für diese Beobachtung stellt 

die gesteigerte Synthese extrazellulärer Matrixkomponenten dar, die die Stabilität 

fördern. Neben Elastin ist dies mutmaßlich zum großen Teil auf einen Anstieg des 

Kollagengehalts im Fibringel zurückzuführen.  

7.3. Histologische und immunhistologische Analyse der Fibringele 
 
Die in den vorherigen beiden Kapiteln beschriebenen drei Phasen, die auf der Basis der 

Messungen der Fibringele mit dem Fastin™ Assay angenommen wurden, lassen sich 

zum Teil aus histologischer und immunhistologischer Sicht bestätigen. In der initialen 

Phase, also in den ersten sechs Tagen, ist eine verstärkte und noch ungerichtete 

Proliferation der Zellen zu beobachten. Es wird zwar grundsätzlich Elastin produziert, 

jedoch in geringem Ausmaß. In der zweiten Phase resultiert mit der beginnenden 

Umverteilung der Zellen bzw. der verstärkten Proliferation im oberen, an das Medium 
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angrenzenden Bereich, dort eine erhöhte Zelldichte, die es den Zellen erleichtert, 

interzelluläre Kontakte zu knüpfen und EZM aufzubauen.  

Die zunehmende Intensität der Färbung bei gleicher Belichtungszeit bestätigt eine 

stetige Zunahme des α-Elastingehalts im Fibringel korrespondierend zu den 

Ergebnissen des Fastin™ Assays. Es stellt sich die Frage, warum die Verteilung von α-

Elastin im Gewebe ubiquitär ist und in den immunhistologischen Färbungen auch 

Bereiche, in denen keine Zellkerne abgebildet sind, scheinbar α-Elastin enthalten ist. 

Hierzu sind zwei Aspekte anzumerken: zum einen ist das nachgewiesene α-Elastin 

Bestandteil der EZM und damit nicht an Zellgrenzen gebunden. Es kann in der Nähe 

von Zellen nachgewiesen werden, jedoch müssen die Zellkerne nicht unbedingt in der 

Schnittebene liegen und mit angefärbt worden sein. Zum anderen ist α-Elastin auch 

nicht mit dem Vorhandensein vitaler Zellen verbunden, d.h. einmal in die EZM 

eingebautes Elastin ist auch dann noch vorhanden, wenn die Zellen untergegangen 

sind. Dies könnten Erklärungen dafür sein, dass auch in den mittleren und unteren 

Bereichen des Fibringels rot fluoreszierende Signale für den Nachweis von Elastin 

sichtbar sind, obwohl dort nur wenige Zellkerne nachweisbar sind. 

Mit der deutlich erkennbaren Ausbildung eines Zellverbands am 18. Tag, der bis zum 

24. Tag sogar bis zu zwei Schichten aufweist, haben die Zellen, wie bereits erwähnt, 

leichter die Möglichkeit, interzelluläre Netzwerke auszubilden.  

Generell stellt sich die Synthese von Elastin in vitro schwierig dar, wie bereits in einem 

Review von Patel et al. gezeigt werden konnte (Patel et al. 2006). Dass in diesem Fall 

das nachgewiesene Elastin nicht in Form von Elastischen Fasern sichtbar ist, ist 

womöglich auf die Tatsache der fehlenden mechanischen Stimulation zurückzuführen. 

7.4. Bewertung des Fastin™ Assay 
 

Mit der Nutzung des Fastin™ Assays der Firma Biocolor zur Untersuchung von 

Fibringelen auf ihren Elastingehalt und von Kulturmedium auf seinen 

Tropoelastingehalt sollte evaluiert werden, ob auf der Basis des Gehalts an 

Tropoelastin im Medium zukünftig eine Aussage über den Gehalt an Elastin im 

Fibringel gemacht werden kann.  

Die Verarbeitung aller Proben nahm trotz zügiger Durchführung der einzelnen Schritte 

des Assays mehr als doppelt so viel Zeit in Anspruch wie im Benutzermanual 
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angegeben. Um bessere zeitliche Rahmenbedingungen für den Assay zu schaffen, kann 

die Extraktion des Elastins aus den Fibringelen am Vortag der Assay-Durchführung 

vorgenommen und die Extrakte über Nacht im Kühlschrank gelagert werden, wie 

bereits in Kapitel 5.6.1. beschrieben wurde.  

 

Die Bewertung des Fastin™ Assays soll sich aber nicht nur auf Aspekte der Assay-

Durchführung beschränken, sondern die routinemäßige Anwendung im Bereich des 

Kardiovaskulären Tissue Engineerings überprüfen. Hierzu ist zunächst zu sagen, dass in 

der vorliegenden Arbeit die Menge an verwendetem Kulturmedium sehr gering war. 

Die Menge an Medium, mit der das Fibringel pro Well überschichtet wurde, betrug 

maximal 2 ml. In üblichen Bioreaktor-Systemen zum Tissue Engineering von 

Herzklappen oder Gefäßen wird jedoch eine weitaus größere Menge an Kulturmedium 

eingesetzt. Der Assay ist laut Herstellerangaben in der Lage, 5-70 µg Elastin in der 

jeweiligen Probe zu detektieren. Es ist also anhand des hier verwendeten Modells nicht 

abzuschätzen, ob in einem üblicherweise verwendeten Bioreaktorsystem der Gehalt an 

Tropoelastin im Medium die Nachweisgrenze des Assays überhaupt erreicht.  

Eine weitere Einschränkung des Assays ergibt sich aus der Interferenz mit dem 

Medium-Zusatz FBS. Insbesondere was die Medium-Messung angeht, ist der 

Hintergrundwert des Mediums trotz reduziertem FBS-Anteil noch relativ hoch. Gerade 

in den Bereichen, in denen nur noch wenig Tropoelastin im Medium nachzuweisen ist, 

lässt der hohe Hintergrundwert des frisch hinzugegebenen Mediums keine klare 

Aussage zu, ob die Sekretion ins Medium vollständig eingestellt wurde. Als mögliche 

Alternative wurde kürzlich von Felka et al. eine serumfreie Kultivierungs-Methode 

vorgestellt. Hierbei handelt es sich um einen Mediumzusatz, der anstelle von FBS 

humane Plasma-und Plättchenextrakte enthält (Felka et al. 2010). Es ist dennoch auch 

bei der Kultivierung ohne tierische Serumzusätze nicht auszuschließen, dass Medium-

Zusatzstoffe mit dem Farbstoff TPPS des Assays interagieren könnten.  

Auch der üblicherweise in Kulturmedium enthaltene pH-Wert-Indikator Phenolrot 

stellt eine mögliche Interferenzquelle mit dem Farbstoff des Assays dar. Dieser 

Störfaktor kann allerdings durch den Gebrauch von Phenolrot-freiem Kulturmedium 

eliminiert werden, welches in dieser Dissertation auch verwendet wurde.  
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8. Zusammenfassung 
 

Diese Dissertation hat eine neue, nicht-destruktive Möglichkeit zur Überwachung und 

zur Qualitätskontrolle der EZM-Synthese von sich im Tissue Engineering Prozess 

befindenden Geweben und Organen untersucht. Es konnte gezeigt werden, dass der 

im Bioreaktormedium gemessene Gesamtgehalt an sezerniertem Tropoelastin mit dem 

Elastingehalt des sich entwickelnden Gewebes hervorragend korreliert (Pearson-

Koeffizient von 0,99). 

Darüber hinaus konnten Erkenntnisse anderer Arbeitsgruppen über den Verlauf der 

Elastinproduktion bzw. das Auftreten von Tropoelastin im Medium von 

zweidimensionalen Zellkulturen um die Gegebenheiten im dreidimensionalen Fibringel 

erweitert werden. 

Auch wenn die hier gewonnenen Erkenntnisse dieser grundlegenden Arbeit noch nicht 

die gesamte Dynamik der Elastinsynthese erfasst haben, so ermutigen die Ergebnisse 

doch zu weiterer Forschungstätigkeit in diesem Bereich.  

So sollte als nächstes von dem Modell der alleinigen statischen Kultivierung von 

Fibringelen Abstand genommen werden und der Versuch unternommen werden, 

Tropoelastin im Kulturmedium gängiger Bioreaktoren, wie sie z.B. für das Tissue 

Engineering einer Herzklappe oder eines Gefäßes verwendet werden, nachzuweisen. 

Unter dynamischen Kultivierungsbedingungen wäre es von besonderem Interesse, ob 

durch die mechanische Stimulation der Zellen gegenüber dem statisch kultivierten 

Fibringel eine quantitative Steigerung der Elastinsynthese zu beobachten wäre. 

Im Grunde kann auch erst dann eine eindeutige Beurteilung des Fastin™ Assays der 

Firma Biocolor abgegeben werden, mit dem der Nachweis von Tropoelastin bzw. 

Elastin zwar grundsätzlich möglich war, der jedoch, wie bereits geschildert, einige 

Nachteile aufwies. Ein wesentlicher Nachteil des hier gewählten Ansatzes war die 

Verwendung eines Zellpools zur Besiedlung der Fibringele, wodurch die grundlegenden 

Voraussetzungen für eine statistische Überprüfung der Signifikanz der festgestellten 

Unterschiede mittels einer univariaten Varianzanalyse nicht gegeben waren. In 

künftigen Studien sollte also die Verwendung eines Zellpools vermieden werden. 

Inwiefern interindividuelle Unterschiede der Nabelschnurspender Störeinflüsse für die 

dann erhobenen Messwerte darstellen, wird sich zeigen. In jedem Fall kann die 

vorliegende Dissertation als Pilotstudie zur Einordnung künftiger Folgestudien dienen. 
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Abschließend bleibt zu sagen, dass eine umfassende Bewertung der EZM-Synthese 

nicht allein mit dem Nachweis von Tropoelastin erfolgen kann: die Produktion von 

sulfatieren Glykosaminoglykanen und Kollagenen ist ebenfalls von fundamentalem 

Interesse, da wie auch im Rahmen dieses Projekts der „Online-Marker der 

Gewebsentwicklung“ und des daraus resultierenden Artikels „Non-Destructive Analysis 

of Extracellular Matrix Development in Cardiovascular Tissue-Engineered Constructs“ 

gezeigt werden konnte, eine gegenseitige Beeinflussung der Synthese der EZM-

Komponenten untereinander stattfindet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 

 

 

9. Abkürzungsverzeichnis 

 

CASY Cell Counter and Analyser System 

DAPI 4',6-Diamidin-2'-phenylindol-dihydrochlorid 

DMEM Dulbecco‘ s Modified Eagle Medium 

DMSO Dimethylsulfoxid 

EBP elastin binding protein 

EZM Extrazelluläre Matrix 

FBS Fetales Bovines Serum 

GAGs Glykosaminoglykane 

GPC Golgi-zu-Plasmamembran-Transport-Kompartimente 

HE Hämatoxylin und Eosin 

HSP 47 Heat shock protein 47 

ICM Innere Zellmasse eines Embryos 

MAGP Mikrofibrillen-assoziiertes Glykoprotein 

MMP Matrix-Metalloproteinase 

PBS Phosphate-Buffered Saline 

PCL Polycaprolactone 

PGA Polyglycolic acid 

PLGA Copolymere von Polyglycolic acid und Polylactic acid 

PLLA Polylactic acid 

rER raues Endoplasmatisches Retikulum 

sGAGs sulfatierte Glykosaminoglykane 

TBS Tris-Buffered Saline 

TERMIS Tissue Engineering Regenerative Medicine International Society 

TES Tissue Engineering Society 

TPPS 5, 10, 15, 20-Tetraphenyl-21,23-Porphyrin Tetra-Sulfonat 
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11. Anhang 

11.1 Messwerttabellen 

11.1.1. Tropoelastin-Konzentration im Medium 

T 
a 
g 

Mediumproben Hintergrundwerte des frischen Mediums 

Code 
Messung

en  

Tropo-
elastin in 
µg / 50 

µl 

Mittel-
wert  

in µg / 
50 µl 

Messung 
1 

Messung 
2 

Mittel-
wert 

Mittel-
wert in 
µg / 50 

µl 

0 M0 - - - 0,5938 0,5891 0,59145 23,0977 

3 

M3-B1 0,8274 33,8227 

34,7091 0,6107 0,6088 0,60975 23,9295 
M3-B2 0,8563 35,1364 

M3-B3 0,8602 35,3136 

M3/24-B 0,8437 34,5636 

6 

M6-C4 0,8562 35,1318 

35,5261 0,5937 0,6061 0,5999 23,4818 
M6-C5 0,8713 35,8182 

M6-C6 0,8709 35,8000 

M6/24-C 0,8611 35,3545 

9 

M9-B1 0,8123 33,1364 

33,0318 0,6275 0,6316 0,62955 24,8295 
M9-B2 0,8091 32,9909 

M9-B3 0,8047 32,7909 

M9/24-B 0,8139 33,2091 

12 

M12-C1 0,801 32,6227 

32,8011 0,6254 0,6239 0,62465 24,6068 
M12-C2 0,7946 32,3318 

M12-C3 0,7998 32,5682 

M12/24-
C 

0,8243 33,6818 

15 

M15-B4 0,7384 29,7773 

29,8795 0,6331 0,62 0,62655 24,6932 

M15-B5 0,7466 30,1500 

M15-B6 0,7441 30,0364 

M15/24-
B 

0,7335 29,5545 

18 

M18-C4 0,7191 28,9000 

28,5943 0,6298 0,6324 0,6311 24,9000 

M18-C5 0,7086 28,4227 

M18-C6 0,7173 28,8182 

M18/24-
C 

0,7045 28,2364 

21 

M21-B1 0,6858 27,3864 

27,6477 0,6431 0,6543 0,6487 25,7000 
M21-B2 0,6875 27,4636 

M21-B3 0,7009 28,0727 

M21-B 0,692 27,6682 

24 

M24-C1 0,6785 27,0545 

26,9898 
an diesem Tag wurde keine Mediumproben 

für den Hintergrundwert entnommen, da der 
Versuch planmäßig beendet wurde 

M24-C2 0,6712 26,7227 

M24-C3 0,6883 27,5000 

M24-D 0,6703 26,6818 

Tabelle 7: Messwerte der Mediumproben 
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11.1.2. α-Elastin-Konzentration im Fibringel 

T 
a 
g 

Code 

Fibringele mit Zellen 
Hintergrundwert der Fibringele 

ohne Zellen 

Messung 
1 

α-Elastin in 
µg / 50 µl 

Mittel-
wert in 

µg 

Messung 
1 

Wert in µg 
/ 

50 µl 

Mittel-
wert in 

µg 

3 

G3-A1 0,4201 15,3091 

14,8455 

0,2211 6,2636 

6,3000 
G3-A2 0,4176 15,1955 0,2293 6,6364 

G3-A3 0,4094 14,8227 0,2240 6,3955 

G3-BS 0,3925 14,0545 0,2132 5,9045 

6 

G6-A4 0,4216 15,3773 

15,3261 

0,2283 6,5909 

6,5114 
G6-A5 0,4135 15,0091 0,2249 6,4364 

G6-A6 0,4277 15,6545 0,2225 6,3273 

G6-BS 0,4191 15,2636 0,2305 6,6909 

12 

G12-A1 0,5829 22,7091 

22,7784 

0,2279 6,5727 

6,7705 
G12-A2 0,5926 23,1500 0,2364 6,9591 

G12-A3 0,5915 23,1000 0,2369 6,9818 

G12-BS 0,5707 22,1545 0,2278 6,5682 

18 

G18-A4 0,7062 28,3136 

28,4011 

0,2383 7,0455 

6,5795 
G18-A5 0,7184 28,8682 0,2277 6,5636 

G18-A6 0,7267 29,2455 0,2315 6,7364 

G18-BS 0,6812 27,1773 0,2147 5,9727 

24 

G24-A1 0,8331 34,0818 

33,6943 

0,2360 6,9409 

7,0920 
G24-A2 0,8409 34,4364 0,2415 7,1909 

G24-A3 0,8314 34,0045 0,2393 7,0909 

G24-BS 0,7929 32,2545 0,2405 7,1455 

Tabelle 8: Messwerte der Fibringele 

11.1.3. Mechanische Reißfestigkeit der Fibringele 

Tag 

Fibringele mit Zellen 

Messung 1 Messung 2 Messung 3 MW SD 

3 53,57 53,55 46,23 51,12 4,23 

6 46,04 42,22 34,60 40,95 5,82 

12 60,66 55,32 67,52 61,17 6,12 

18 105,34 74,07 83,99 87,80 15,98 

24 134,32 132,04 97,72 121,36 20,50 

Tabelle 9: Mechanische Reißfestigkeit der Fibringele 
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