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Abstract

This work is mainly concerned with sensitivity analysis of DAE-based models described
by the modern object-oriented modeling language Modelica. In this context, an automatic
differentiation tool named as ADModelica is presented. It fully employs Modelica-based
compiler techniques forming a new automatic differentiation approach for non-causal
equation-based languages. Already existing open-source compiler tools are utilized for
reducing implementation efforts. A generated output model efficiently represents a sensi-
tivity equation system by which parameter sensitivities can be simulated using any exist-
ing Modelica simulation environment. The resulting tool has been successfully applied on
high-level Modelica models in the field of Systems Biology. In benchmark examples, the
performance of the generated models are better than applying common finite difference
methods in terms of accuracy and runtime performance. Moreover, the representation of
these models permits the exploitation of structural characteristics of sensitivity equation
systems for significantly improved runtime performance on supercomputer clusters.

Using ADModelica, several sensitivity analysis application studies of computationally,
algorithmically and technically challenging nature have been performed towards the real-
ization of stable efficient parameter estimation process of large and badly-scaled dynamical
models. These studies cover among others:

e The examination of several global multistart optimization methods w.r.t. results
quality and implementation efforts, in particular the design of new derivative-based
hybrid heuristic strategies

e The determination of confidence regions of model parameters via identifiability anal-
ysis techniques based on linearized statistics and Monte Carlo bootstrap methods

Within this work further Modelica-based both domain-dependent and domain-independent
computational tools have been implemented such as:

e A compact Modelica library for simplified kinetics for modeling complex reaction
systems through which model families can be easily specified

e A tool for visualizing scaled parameter sensitivities within a supervised master thesis

e A Modelica-based editor for modeling biochemical reaction networks within a col-
laborative work with colleges

Finally, this thesis also covers theoretical studies concerning the differential and the
structural index of a DAE system and the corresponding sensitivity equation system with
an interesting mathematically proven conclusion about their relationship.
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Zusammenfassung

Diese Arbeit befasst sich hauptsédchlich mit der Sensitivitdtsanalyse DAE-basierter Mo-
delle, die mit der modernen, objektorientierten Modellierungssprache Modelica beschrie-
ben sind. In diesem Zusammenhang wurde ADModelica, ein Werkzeug fiirs Automatische
Differenzieren von Modelicamodellen, entwickelt. Anderes als gingige Ansitze verwendet
dieses Werkzeug Modelica-basierte Compilerverfahren, wodurch ein neuer Ansatz zum
Automatischen Differenzieren gleichungsbasierter Sprachen entstanden ist. Um ein derar-
tiges AD-Werkzeug fiir die umfangreiche Sprache Modelica zu erméglichen, wurde ein vor-
hander quelloffener Compiler verwendet. Ein automatisch generiertes Modell enthélt eine
effiziente Formulierung der Sensitivitdtsgleichung, womit Parametersensitivitdten mithilfe
jeder beliebigen Simulationsumgebung fiir Modelica berechnet werden kénnen. ADModeli-
ca wurde auf realistische Modelicamodelle aus dem Bereich der Systembiologie erfolgreich
angewendet. Die Benchmarks zeigen, dass die Laufzeitefizienz der Simulation generierter
Modelle und die Genauigkeit der resultierenden Parametersensitivitdten erheblich besser
sind als bei den iiblichen Methoden der finiten Differenzen. Des Weiteren gestattet die
Representétion dieser Modelle die Ausnutzung struktureller Eigenschaften der Sensitivi-
tatsgleichung zur verbesserten Simulationslaufzeit auf Hochleistungsrechnern.

Mit ADModelica wurden einige zeitintensive, algorithmisch schwierige und technisch
herausfordernde Studien von Anwendungen der Sensitivitdtsanalyse durchgefiihrt. Mit
diesen Anwendungen lassen sich Verfahren zur Parameterschitzung schlecht skalierter
dynamischer Modelle, eine herausfordernde Problemstellung aus dem Bereich Systembio-
logie, stabil und effizient realisieren. Diese Studien beeinhalten u. a.:

e Untersuchung einiger globaler Optimierungsstrategien im Bezug auf Qualitétser-
gebnisse und Implementierungsaufwand: In diesem Zusammenhang wurden neue
ableitungsbasierte hybride Optimierungsstrategien entworfen.

e Bestimmung der Konfidenzintervalle von Modellparametern durch gédngige Techni-
ken aus dem Bereich Identifizierbarkeitsanalyse.

Aulerdem wurden sowohl domainabhéngige als auch domainunabhingige rechenbetonte
Modelica-basierete Softwarewerkzeuge implementiert, z. B.:

e cin Werkzeug zur Visualisierung von skalierten Parametersensitivitdten im Rahmen
einer betreuten Masterarbeit,

e cine Modelicabibliothek zur Modellierung biochemischer Netzwerke mit vereinfach-
ten Kinetikgleichungen, durch die Modellfamilien spezifiziert werden kénnen, und

e ecin Modelica-basierter Editor zur Modellierung biochemischer Reaktionsnetzwerke
im Rahmen einer Zusammenarbeit mit Kollegen.

Des Weiteren enthélt diese Dissertation theoretische Studien beziiglich des Differentiations-
und Strukturindex von differential-algebraischen Gleichungssystemen mit einem inter-
essanten Beweis zur ihrem Zusammenhang.
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Chapter 1.

Introduction

Motivation

Model-based scientific research aiming at gaining valuable insights into complex systems
usually requires an in-depth knowledge in a wide spectrum of scientific majors. From
one side, this enforces multidisciplinary activities to take place in a collaborative manner.
From the other side, experiences from highly-specialized areas become a requirement for
a successful continuous progress. These aspects are much obvious in the fields of Sys-
tems Biology and Metabolic Engineering (cf. section (.1)). Knowledge in these domains
is usually gained from data resulting from various experiment types (Noack 2009). Due
to the diversity and the richness of these data sources, comprehensive information would
not be directly deduced. In this context, mathematical modeling becomes very vital for
providing a quantitative description of the underlying systems. The resulting models are
the basis of mathematical tools for dealing with sophisticated questions. These questions
are answered by solving mathematical problems that may correspond to an elementary
simulation of an ODE system or an optimization problem but also to a computationally
challenging inverse problem.

The ability of constructing models in a flexible and intuitive way forms a strong basis
for supporting collaborative research. While specialists can directly focus on the physical
construction of highly-complex models without paying attention at technical and pure
mathematical details, computational scientists can focus on solving complex mathemati-
cal problems without getting deeply involved in the scientific background of the underlying
models. These desired features are one of the essential advantages of modern modeling
and simulation languages. Such languages based on standardized design concepts have
been continuously developed along decades ago, one of the most modern of which is Model-
ica. Modelica is a universal equation-based modeling language supporting object-oriented
design and code-reuse from a continuously growing large set of libraries. It imposes a
lot of attractive features with which physical modeling becomes a straightforward task.
Construction of hierarchically organized complex models becomes the task of dragging,
dropping, browsing and connecting icons together.

This work follows a newly established trend aiming at building a bridge between the
Systems Biology community and the physical modeling community through the language
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Modelica. The attractive features of Modelica make us believe that this trend is always
going to get better evolved and more practiced in the near future (Wiechert et al) 2010,
Elsheikh 2012). The main contribution of this work is mainly concerned with sensitivity
analysis of Modelica-based models in the field of Systems Biology. The provided tools both
at modeling and simulation levels efficiently contribute to the solution of computationally-
expensive tasks related to hard ill-posed inverse problems. Meanwhile, being a universal
modeling language, some of the implemented tools and concepts can be generally applied
to all types of Modelica models as the title of this thesis directly suggests. A hidden
aspect of the title is that the resulting works are influenced by many concepts on which
Modelica is based as it will be illustrated in many contexts.

This work has been partially performed within the Evonik industries and BMBF co-
funded project SysMA. This project taken by several academical working groups has
the ambitious goal of studying, analyzing and understanding various cellular activities
within the organism Corynebactirum Glutamicum seeking an integrative understanding
of its metabolic regulation for improving the fermentation process (cf. chapter [Bl). This
thesis summarizes some of the activities taken within the modeling part of the SysMAP
project.

Main topics of this work

Modeling and simulation of physical systems is, in general, a complex iterative process.
Asserted models are necessarily based on simplifications and in many cases are subject to
improvement and optimization. In this context, a wide range of applications of sensitivity
analysis can assist the modeling process, from parameter fitting and optimization through
model validation to statistical analysis and experimental design. For DAE-based models,
computation of parameter sensitivities represents the potentially most expensive part in
such tasks. These common methods, among others, drew increasing attention to a research
area of scientific computing, i.e. Automatic Differentiation or Algorithmic Differentiation
(AD) of program code. The main task within this work is aiming at providing efficient
solutions for sensitivity analysis of DAE-based Modelica models in terms of performance
and accuracy using AD techniques. The following key aspects need to be realized:

1. Implementation of a reliable AD tool for performing sensitivity analysis of large-
scale Modelica models with little efforts by utilizing Modelica concepts, available
open-source compilers and common advanced DAE solvers

2. Providing a reliable framework for performing parameter estimation of highly non-
linear large-scale Modelica models using advanced global optimization algorithms
and statistical analysis techniques for examining the quality of the fits and the
identifiability of model parameters

! Systems Biology on microbial Amino acid producers (project no. 0313704)
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1.3. Structure of the thesis

The fulfillment of these tasks are largely influenced by:
1. The underlying domain of models (i.e. Systems Biology)
2. The nature of the universal modeling language Modelica

Models from the field of Systems Biology, describing complex cellular processes, are nec-
essarily based on idealized assumptions that could be far away from reality. Many tiny
details get neglected to avoid overparameterization of models. Ultimately, it is not known
how far these assumptions influence the quality of the descriptive models in terms of cor-
rectness, validity and predictive power. In comparison with some other physical domains
where the underlying "human-made" technical systems are fully understood up to their
tiniest parts, model assumptions could be experimentally examined and justified in bet-
ter ways. Moreover, constructed models are based on measurements expressing cellular
processes at various levels in the cell (so called Omics-data). From one side, these data
measurements are erroneous. From the other side, the underlying inverse problem for
model identification is so sensitive to measurements (i.e. ill-posed).

The employment of Modelica as a young domain-independent language had serious
consequences on the underlying tasks needed for achieving the desired goals. Modelica,
comprehensively presented in part one, still suffer from the lack of developer-oriented sup-
porting tools in some serious aspects concerning standardized low-level communication
with Modelica-based simulators. This is rather a general problem to the whole com-
munity to which standardized solutions are being suggested and continuously developed
(Blochwitz et al. 2011). At the modeling level, though there are appreciable efforts for
providing first guidelines for implementing libraries supporting modeling applications in
the field of Systems Biology (Nilsson and Fritzson 2005), there are still no standardized
published libraries in this field. Many desired features required for a practical realization
of vital modeling applications are not supported.

Under the light of the previous discussion, further goals need to be achieved. At the
modeling level, the absence of domain-dependent tools with which models can be easily
constructed is a further motivation for implementing and enhancing existing Modelica
libraries. With these libraries, applications requiring automatic model generation with
highly specialized editors can be supported. At the technical level, Modelica-based in-
fra structure software for supporting low-level communication via standard programming
languages needs to be implemented. Based on these tools, implementing global optimiza-
tion algorithms, supporting parameter estimation as an incremental process and utilizing
supercomputers for achieving high performance are realized.

Structure of the thesis

This thesis consists of six parts. In part [, a comprehensive introduction to the language
Modelica is given. In chapter 2] an overview of the basic features of Modelica is presented.
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Chapter Bl summarizes the basic compiler steps performed to transform a high-level Mod-
elica model into executable C code. Finally, chapter [ introduces basic mathematical
aspects concerning the simulation of DAE-based Modelica models. Part [[Il is concerned
with the fundamentals of the field of Systems Biology, the main applications domain of
this work. Basic concepts of this field is introduced in chapter B Chapter [B summarizes
common modeling examples related to biochemical reaction networks.

Part [0l is concerned with Modelica-based tools and applications, performed within
this work, in the field of Systems Biology. Chapter [1 discusses the advantages of Mod-
elica in the field of Systems Biology. In this context, Modelica is compared with SBML,
the standard specification language used by the Systems Biology community. Further
comparative aspects are presented in the following chapters. Chapter 8 demonstrates the
open-source free Modelica library for modeling biochemical reaction networks using gener-
alized kinetic formats adequate for applications demanding automatic model generations.
Chapter [@ presents a highly-specialized Modelica-based editor for biochemical networks.
Finally, chapter [I0] describes a reliable implementation of model families in Modelica, an
important concept in the model validation process.

Part [[V] is concerned with algorithmic differentiation of Modelica models. Chapter [I1]
presents common ways for computing parameter sensitivities of DAE systems. In this
context, basic notions of AD are introduced. Chapter [[2] introduces the tool ADModel-
ica, its design and an overview of generated code. In chapter [[3] algorithmic concepts
behind ADModelica adopting a new approach relevant for equation-based languages are
discussed. Additionally, the main Modelica compiler optimization steps performed on
ADModelica generated code are clarified. Chapter [[4] presents a theoretical result of this
work concerning the differential index of ADModelica code (i.e. the differentiated DAE
systems). In chapter [[5, the accuracy of finite difference methods applied to DAE sys-
tems is compared with analytical methods. Chapter [I6] presents a runtime benchmark of
ADModelica generated code.

Part [V]is concerned with computationally-expensive applications of sensitivity analysis
in the field of Systems Biology. Chapter [[7] discusses large-scale parameter estimation us-
ing new derivative-based hybrid heuristics designed within this work. Chapter [I8 presents
statical methods for examining the quality of parameter estimation results and determin-
ing the identifiability of model parameters. In chapter [I9] a tool for visualizing parameter
sensitivities is presented. Finally, chapter 20 summarizes the achieved results within this
work and presents an outlook to further possible extensions to this work.

Finally part [V is concerned with technical notes related to all previous parts. The
covered topics include among others: implementation details of some self-implemented
Modelica libraries emphasizing highly-specialized aspects as well as algorithmic details
behind some advanced DAE solvers, statistical methods and optimization algorithms.
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Chapter 2.
Introduction to Modelica

This section gives a brief introduction to basic concepts necessary and sufficient to un-
derstand the problems demonstrated in this thesis. This includes some background to
Modelica which gives a quick overview to the circumstances under which Modelica was
invented and hence illustrates the basic motivation and goals behind this language. Ad-
ditionally, clarifying the main modeling concepts adopted is necessary for appreciating
the way resulting models are handled and solved. Finally, quick and basic elementary
language constructs are illustrated through standard examples. For more details, com-
prehensive introduction can be found in (Eritzson 2003, [Tiller 2001).

Background and motivation to Modelica

Since the invention of computers, modeling and simulation has been rapidly evolving
both from methodological and technical perspectives. Early programmers were able to
use ready "off-the-shelf" integrators and concentrate on the formulation of ODEs instead
of explicitly coding an integrator them selves. The trend of simplifying the modeling
and simulation process and making the user concentrates less on solution methods has
continued ever since (Astroem et al/[1998). Initially, specialized modeling tools restricted
to special domains enhanced by elegant GUI and numerical solvers optimal for particular
models were implemented (eg. Spice for electrical circuits (Nagel and Pederson [1973)).
Meanwhile, general-purpose tools have also emerged adopting the so-called block-diagram
approach where a block of unknown quantities is computed by known quantities repre-
sented by another block as in Simulink. From one side, the user of such tools is not
restricted to a specific domain, however he may require more time for engineering the
formulation of his specific problem to more general concepts.

In 1978 Hilding Elmqvist pioneered the so-called non-causal modeling approach adopted
by the Dymola modeling language implemented within his PhD thesis (Elmqvist [1978).
This approach reduces the gap between specialized and general-purpose domain tools in a
couple of aspects. An important aspect is that it relies on universal physical concepts (cf.
section [Z2]) with which many applications from different domains can be easily modeled
and even integrated for multidisciplinary applications. The modeler is able to focus on
modeling from a physical perspective by building up complex systems using elementary
library components and connections similar to the real conceptual topology of the mod-
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eled system as any domain-specific tools. Additionally, graph and symbolic algorithms
were introduced to transform the resulting model into a solvable form for appropriate
ODE solvers. An important milestone in the development of this approach came in 1988
with the development of the Pantelides algorithm for DAE index reduction (Pantelides
1988). This allowed a large set of DAE-based models to be considered without bothering
the end-user with the task of transforming his DAE model into solvable ODEs (cf. section

12).

Afterwards, many simulation tools from industry and academic sides relying on the
non-causal modeling approach have been developed. While each of these languages may
exhibit its own important aspects and distinguished design features, it was not possible to
exchange models among these different groups. Additionally, a lot of excessive individual
and conventional efforts have been done to implement these tools. Consequently, in 1996
again he was Hilding Elmqvist who initiated an effort to unify the splintered landscape of
existing modeling languages. Many meetings by a wide spectrum of involved participants
have been organized to discuss and design a modeling language that:

1. remains domain neutral as much as possible.

2. adopts many other modeling paradigms like the block-diagram approach for continuous-
time based system, finite state automata and petri nets for discrete systems.

3. adopts relevant features provided by so far existing modeling tools.

4. provides a model-exchange specification language that can describe the small pieces
of complex systems and their interrelationship among each others.

5. makes equations (and not assignments) be the base elements for describing the
behavior of system components while also supporting the usual classical constructs.

As an ultimate result of all these efforts, the open-source non-proprietary specification
of Modelica was developed and is continuously subject to further constructive discus-
sions on an annual basis (Elmqvist and Mattsson [1997). For these reasons, Modelica can
be considered as the convergence of many elegant ideas, well-established concepts and
methodologies and as the successor of many successful modeling tools. Additionally, a
free Modelica Standard Library (MSL) has been developed so that users of Modelica
would not have to create their own basic models for many common modeling domains.
Many compilers and simulation environments both commercial (eg. Dymola [Elmqvist
(1993), MathModelica [Fritzson et al. (2002b)) and academic (OpenModelica Compiler
(OMC) [Eritzson et al! (2002a) and Mosilab Nytsch-Geusen and et all (2005)) have been
implemented for the task of performing equations generation, symbolic transformation
and simulation. Even Matlab and Maple started to support Modelica specification using
their powerful symbolic engine capabilities. OMC has been extensively exploited for as-
sisting the implementation of many tools throughout this work, whereas Dymola is used
for performing the simulations.
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2.2. Universal physical concepts behind Modelica

Figure 2.Jlshows two Modelica models from two different domains given in graphical nota-
tion. Regardless of the syntax (section 2.3]) and semantics (chapter [7)) of these two models,
this section is mainly concerned with the basic modeling principles behind Modelica that
enable descriptive modeling of physical systems from different domains. The resulting
models are usually analogous to the topology of the underlying systems in reality. In

Figure 2.1.: Graphical Modelica Models composed of hierarchically organized components
linked by using connectors through connections

comparison with the earlier block diagram approach, it is much easier to design and ma-
nipulate such presented models based on non-causal modeling (Mattsson and Elmqvist
1997). For example, while a slight modification to a complex system based on the early
block-diagram approach (eg. insertion of an additional resistor) can be difficult to carry
out, significant changes in a model following the non-causal design of a complex system
is very straight forward.

The non-causal approach attempts to view a physical system, no matter how complex
it is, as a finite set of independent components (eg. resistors, capacitors, etc.). Each
component is considered as an independent particle that influences and gets influenced
by the external world through universal conservation laws found in physical domains.
Figure illustrates how conservation laws are modeled. Each component (eg. resistor
or a substance) is equipped with a port (or ports) with which communication to the
external world is done by plugging it into other identical ports of other components.
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These ports are called connectors in the Modelica language. Within these connectors two
kinds of quantities are characterized:

1. flow variables: carriers for transporting energy, charges, material etc.

2. potential variables: as carriers for representing the potential (i.e. level of energy) of
a system

By plugging identical ports into each other, the interactions among independent compo-
nents become defined by connection equations which assemble the underlying conservation
laws of the modeled system. For example, the principle of conservation of energy states

Flow E +E.+E =0 @:rnal World of Componeﬂ
a b c

Potential P,=P =P, L, B
" P,

]

Figure 2.2.: Modeling flow of energy from external world to a component and vise versa

that the amount of energy in a closed system can neither be created nor destroyed. Ad-
ditionally, the potential of two connected points must be equal. Therefore, plugged ports
describes two kind of equations:

1. sum-to-zero equation for flow variables
2. equality equations for potential variables

As a consequence, the sum of all energy flows into and out of a component must be equal
to zero. In (Fritzson 12003), it is shown how to choose the energy carrier and energy

Table 2.1.: The choice of energy carriers and energy level variables for non-causal modeling
of electrical circuits and biochemical networks

Criteria - Domain Electrical Engineering Biochemical Engineering

Potential variables Voltage Substance concentration
Flow variables FElectrical charges Reaction Rate
Conservation Law Kirchhoff’s law Material flow balance

10
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level variables for several physical domains. Table [2.J] demonstrates this for the running
examples. Important consequences of non-causal modeling are that

e the notion of causality among variables (i.e. input and output variables) is com-
pletely absent. This clarifies why the topology of a physical system is preserved

e multidisciplinary modeling (Elsheikh et al. [2012) is feasible by simply identifying
the energy carrier and energy level variables that assemble the flow of energy into
and from a subsystem

Equation-based object oriented modeling with Modelica

This section gives a quick overview of basic Modelica constructs with which it is quite
possible to build up reasonable physical systems. The presented simplified code is ex-
tracted from the Modelica Standard Library (MSL) for building electrical circuits. Such
abstract examples are optimal for:

1. introducing Modelica constructs which are self-explainable and straightforward to
extend to other domains

2. demonstrating Modelica compiler techniques with which the resulting equation sys-
tems are generated (cf. chapter []).

In following chapters, no repetition of Modelica constructs are done unless new ideas or
concepts require further new constructs. Chapter [ is devoted for illustrating the advan-
tages of Modelica in Systems Biology where additional constructs are presented.

Figure 23] shows the implementation of basic components with which electrical circuits
is built. The most elementary unit is the connector class for representing the communi-
cation ports. Connectors identify two types of variables, potential variables (the voltage)
and flow variables (the current). The abstract class ElectricalPin declares two connec-
tors: p as a positive pole and n as a negative pole. The positive and negative notions
represent dummy standards for directions (upper and left poles are positive, lower and
right poles are negative) but they don’t influence the mathematical representation in any
aspect. By extending the abstract class, the components resistor, capacitor, inductor, etc.
are implemented using equation-based syntax. Note that these equations don’t specify
any input-output relation, in contrast to assignments in classical procedural languages.
These equations can be formulated in implicit form because Modelica specification does
not enforce the modeler to write equations in explicit format. Once the implementation
of all components are available, modeling becomes the matter of dragging and dropping
icons, and connecting ports to each other using common graphical editors. The corre-
sponding intuitive syntax of the graphical representation of the models in figure .11 is
presented in figure 241 Following a similar approach, the biochemical network can be
also implemented (Wiechert et all2010, [Elsheikh [2012).

11
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type Voltage
type Current

connector Pin
Voltage v;
flow Current i;

end Pin;

package Electrical

Real(unit="Vv");
Real(unit="T1");

partial class TwoPin

model Resistor
extends TwoPin;

equation
R*1iz=vy;
end Resistor;

model Capacitor
extends TwoPin;

parameter Real C(unit="F"});

"Components with 2 pin" equation

Pin p,n; C * der(v) = i;
Voltage v; end Capacitor;
Current i;

equation // The rest ...
v = p.v - n.v;
0 =p.i+ni; end Electrical;
i=p.d;

end TwoPin;

Figure 2.3.: Implementation of basic components of electrical circuits

model SimpleCircuit
import Electrical;

Resistor R1(R=50);
Resistor R2(R=50);
Resistor R3(R=20);
Capacitor C(C=0.01);
Inductor L(L=0.1);
VoltageSource U;
Ground G;

equation

connect(U.p,R1l.p);
connect(Rl.p,L.p);
connect(Rl.n,R2.p);
connect(R2.p,C.p);
connect(C.n,G.p);
connect(L.n,R2.n);
connect(R2.n,R3.p);
connect(R3.n,G.p);
connect(G.p,U.n);

end SimpleCircuit;

model SimpleBNetwork

MH_1S
MM_1S1I

MM_1S1P

equation

import Biochem;

DynMet A(c_0=10.0);
DynMet B,C,D,E;

v1l{vmax=10,km=0.05);

v2({vmax=0.6,km=1.0,
ki=0.4);

v3(vmaxf=0.3,vamb=0.4,
kmS=0.4,kmP=0.5);

connect(A.n,vl.p);
connect(vl.n,B.n);
connect(B.n,v2.p);
connect(v2.n,C.p);
connect(D.I,v2.1);
connect(B.n,v3.p);
connect(v3.n,D.n);
connect(D.n,v4.p);
connect(vd.n,E.p);

end SimpleBNetwork;

Figure 2.4.: Implementation of an electrical circuit and a biochemical network

parameter Real R(unit="ohm");




3.1.

Chapter 3.
Compiler Methods for Modelica

As already illustrated in the last chapter, the object-oriented approach of Modelica as
well as the physical concepts behind it makes it quite easy for a modeler to build up large
models consisting of thousands of equations. Consequently such large models demand
special techniques both at compilation and simulation levels in order to perform efficient
real-time simulations. This chapter demonstrates basic compiler steps taken to transform
a Modelica model probably given in graphical format to simulation code through running
examples, cf. figure Bl Only techniques needed throughout this work are emphasized.
More details can be found in comprehensive literature like (Cellier [1991). The problem
of index reduction is introduced in section .2, and the symbolic algorithm for solving
this problem is presented in the context of theoretical results presented in chapter 14l
Numerical methods for solving the resulting equation systems are presented in chapter [l

Code flattening and optimization

Given a Modelica model with high-level constructs in graphical notations as in figure
211 the whole configuration is assembled into pure mathematical representation by the
following rules:

1. For each component instance, one copy of all equations is generated with distin-
guished identifiers for local and port variables.

2. For each connection between two or more instances, potential variables are set to
be equal and flow variables are summed to zero.

Flat Sorted

Model ——Flattening =P ——Sorting =P i
¢ Model * 9 Equations

Index Reduction

Execu_table ) ODE < Index Refiuced
File Equations

Figure 3.1.: Modelica Compilation Process
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For example figure shows a part of the assembled equations system describing the
current and voltage at each point for the electrical circuit example. Equations system
for the biochemical network example can be also generated in a similar manner, see
(Wiechert et al) 2010).

= = L.i,+L.i =0
v =R,.v. =C.v
P 2 n n L.i=L.i
.i 4 R,.i, +C.i, =0 =
L.v=L.vF—L.v"
d(L.i)
I L.v=L.L-——
dt

R,.v,=R,.v,=C.v,
.i,+R,.i,+C.i,=0

R,.i +R,.i =0
R,.i=R,.i,
Ry,.v=R;.v —R,.v,

R,.v=R,.i*R,.R

U.v,=R,.v,=C.v,=Gv,
U.i +R,;.i, +C.i +Gi =0

Figure 3.2.: The mathematical representation of connection points. Together with the
equation systems of all components, the resulting equation system describes
the current and voltage at each point within electrical circuit

The dimension of such automatically generated DAE systems is usually large due to the
presence of connect statements corresponding to many equations of the form v = v and
u+v = 0. Such equations need not to be passed to the solver and they can get eliminated
from the flatted DAE system by keeping one instance variable for each group of alias
variables (Maffezzoni et alll1996). A Modelica compiler employs simple computer algebra
methods for drastically reducing such equation systems into minimal set of equations as
shown in figure B3

Graph theory tools for DAE systems

In order to symbolically handle and simulate automatically generated DAE systems, in-
termediate representations in form of directed bipartite graphs are used.

14
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Vozf(t) (1) __________ /@
Vi=RXI, (2) @;‘\’\\ //’:
V,=R,XI, (3) ‘.\ \; 7\‘.}®
V,=Lxi, (4) (4. *?:,{.;4;',"}.@
I.=CxV, (5) (5. )“;@
V0:V1+VC (6) @' “.‘ .lt ‘/‘@
V.=V, +V, (7) \®
VeV, (8) Gy KD
I,=1,+1, (9) ER 2D
1,=0L,+1, (10) (20 T

Figure 3.3.: Left: The simplified equation system of the electrical circuit. Dot notations
are simplified with simpler identifiers
Middle: The bipartite graph representation of the equation system
Right: The structure digraph: A red edge means equation solves variable,
blue edge means variable is used for solving the equation

Definition 3.1 (Bipartite graph representation of a DAE system). A Bipartite Graph
G = (V,E) representation of a DAE system of the form (([&2)) consists of a set of
verticies:

V=VUuV,=
{ei : equation number i} U{z; : x; is a variable} i=1,2,...,.N

and a set of edges:

E = {(ei,xj) : x; arises in equation e;} i,j € {1,2,...,N}

Remark 3.2. 1. |V.| = |V;| = n, otherwise the equation system is not consistent

2. G is clearly a bipartite Graph, i.e. 3 no edge (u,v) s.t. {u,v} CV, or{u,v} CV

The bipartite graph can be transformed by recursive applications of some simple rules
into a directed graph called Structure Digraph for deducing the causality among variables
and equations (i.e. which variable or group of variables is solved by which equation or
group of equations). These rules are stated as follows:

15
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1. equations with one variable would certainly solve this variable
2. any variable arising only once, is solved by the equation at which it arises

By applying these rules recursively, there are three possible causality relations for each
edge (e,x) € E,

1. e explicitly solves .
2. x is used for solving e, i.e. x is used to solve another variable in e.

3. no explicit causality relation. In this case e becomes bidirectional.

Figure B3] shows the bipartite graph and the structure digraph representations of the
electrical circuit from figure 2J1 In ideal cases, each equation explicitly solves a cer-
tain variable. In practice, groups of variables and equations usually need to be fulfilled
concurrently.

System decomposition in BLT-Format

The resulting intermediate format from the last subsection inherits causality information
that enable further improvement in simulation run-time. Instead of solving these equa-
tions as one single block, it is possible to decompose such equation system into smaller
blocks of equations, which can be sequentially solved in a faster way due to the reduction
of the overall complexity. This is done by applying Tarjan’s algorithm (Tarjan 1972) to
the structure digraph to obtain a set of Strongly Connected Components (SCCs). Figure
[B.4] shows the resulting SCCs by applying Tarjan’s algorithm on the structure digraph in
figure B3] . These SCCs establish a topological sorting of the equations from the SCCs,
by which the equation system is transformed into the so-called BLT formatll. Having
transformed the equation system into blocks of equations, several methods could be used
for solving the resulting systems depending upon the resulting subsystems. In lucky cases
analytical methods might be applied for solving simple equations (eg. explicit equations,
linear ODE systems or analytically solvable ODE systems). In practice numerical meth-
ods for solving nonlinear-system of equations or DAE systems are applied.

In the electrical circuit example, the equations are sequentially solved according to the
established topological sorting shown in figure B4l In the biochemical network example,
BLT form shows a cascaded systems of DAE. Standard Modelica simulation environments
would not attempt to exploit such format for fast sequential solving procedure using spe-
cialized solvers. In (Noh and Wiechert [2004) an attempt for solving cascaded systems for
special type of models is done. In general exploiting BLT format is common for algebraic
equations but not yet exploited at DAE level. However, it is shown in section that
the underlying BLT format of DAE systems explains the behavior of the corresponding
parameter sensitivities (Elsheikh and Wiechert 2008).

'because the adjacency matrix of the bipartite graph is in block triangular form
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yp—
v1:f1(A;P1)

:
A

Figure 3.4.: The sorted equation according to the topological sorting out established from
of the SCCs of structure digraph of the electrical circuit and biochemical
network models

Tearing algorithms

In practice, it is not often the case that a system can be decomposed as in figure B4l By
exchanging the capacitor with a resistor in the example of figure 2.1], the decomposition
of the resulting equation system looks as shown in figure (Cellier 1991). The large
equation subsystem represented by the large SCC is referred to as algebraic loop. Vari-
ables in such algebraic loops don’t exhibit any causality relationship and they need to be
solved concurrently as a single block of equations. Such linear blocks of equations in figure
can be solved using Gaussian elimination. In large physical systems where large sets
of equation systems result, efficiency is further improved by considering a sophisticated
technique called tearing method (Kron [1963). Tearing algorithms are used for breaking
algebraic loops into smaller equation systems. This is done by heuristically assigning an
initial solution guess for a variable (tear variable).

In the running example from figure [3.5] assigning an initial guess for I3 makes the
entire set of equations directly solvable. After solving for other variables, a better guess is
achieved for I3 and the iteration can be done again and again until I3 remains constant.
This iteration can be even reformulated as an optimization problem that can be efficiently
solved using Newton-like method. A significant issue for the success of such method
is the choice of the tearing variables. Usually domain-specific knowledge is used for

17
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1 1 1

Figure 3.5.: Left: The equation system consists of a large algebraic loop
Right: Breaking the algebraic loop by the tearing algorithm

choosing successful candidates. (Elmqvist and Otter 1994) presents a general strategy
for picking tear variables. However, in general there is no guarantee that such algorithm
would always work. In appendix[Dla global optimization multistart strategy is presented.
This strategy utilizes the idea of tearing algorithms for breaking parameter estimation of
large DAE systems with cyclic structure into smaller parameter estimation subproblems
(Elsheikh et al. 2009).

18
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Chapter 4.

Mathematical Aspects behind Modelica

This chapter introduces basic mathematical terminologies for numerical simulation of
Modelica models. These Modelica models may follow a variety of modeling paradigms as
mentioned (cf. section [21]). Section A Ilfixes the mathematical representation of the set of
Modelica models on which conclusions made in this work are valid. Section discusses
some solvability issues of DAE systems in general and emphasizes the basic differences
with ODE systems. Section[43]introduces the algorithmic techniques applied by standard
Modelica compilers for transforming a general DAE system into a numerically solvable
DAE system. Finally, numerical aspects behind common ODE/DAE solvers utilized by
standard Modelica simulation environments are discussed in section .41

A mathematical representation of Modelica models

In chapter [ it is shown how a Modelica model, given in a graphical specification, is
transformed into pure mathematical formulation. In general, for Modelica models based
on continuous-time scale, the resulting DAE system may have the form:

M, y®), 2@, pt) =0, ylto) = n(p) )
g(u), =(t), p, t) =0 . (to) = 20(p) |

where y € R™ stands for state variables, z € R™ for the algebraic variables, p € R™ for
parameters and t for time. Notice that

(50 @) 90 ), 20 (@), pto) = g(uo(p), 20(p), p, o) = 0

is only fulfilled if consistent initial conditions are present. Such initial conditions could be

specified by the modeler which either need to be consistent or they can be made consistent

by the Modelica compiler. Alternatively, the DAE system (4.]) can be rewritten as:
F(&,2z,p,t) =0 , (o) = zo(p) (4.2)

where z = (¥) € R", n =mny +ng and F : R""™+1 — R" Equations (&I and (Z2) do
not correspond to a generalized form of hybrid DAEs where events are present. Although
some of the presented models in this thesis can be categorized under hybrid systems due
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to the presence of discrete events in few ignorable limited cases, the conclusions made in
this thesis are basically drawn on models based on continuous-time scale. Nevertheless,
conclusions regarding generalized hybrid systems are avoided.

Handling general DAE systems

Given an explicit ODE system
0= h(U,p,t) ’ ’U(to) = Vo (43)

it can be solved by integrating the continuous-time state variables from their derivatives,
expressed by the ODE right-hand side in equation (3] (eg. explicit Euler formula). For a
DAE system like ([1]), the function g expresses algebraic constraints among state variables
since dg/0y = 0 or equivalently |0F /0z| = 0 in equation (£2). Applying integration alone
leads in general to a structurally singular problem except for special cases. In order to
solve a DAE system, not only integration but also differentiation should be included, in
order to reformulate the system into a solvable ODE system. In this case, a selected
subset of algebraic equations gets differentiated in order to extend the constraints among
state variables and their derivatives and hence to enable integration.

Example 4.4.
=t* diff. 1st eq. i =2t, y1(0) =0 diff. 2nd eq. 1 =2t, y1(0) =0
2.11 iff. 1st eq U1 y1(0) iff. 2nd eq 9.1 y1(0)
U1 =Y Y2 = 2t 2=2 , y2(0) =0

The DAFE system is transformed to an ODE system with consistent initial conditions.

The solution process within the last example aims actually at the reduction of the
so-called Differential Index defined as follows (Brenan et al)|1989):

Definition 4.5 (The Differential Index of a DAE System). For a general DAE system
[&2)) the differential index along a solution z(t) is the minimum number of differentiations
of the system which would be required together with the help of algebraic substitutions to
derive © uniquely as a continuous function in terms of x,p and t. Thus, the index is
defined in terms of the overdetermined system

F(z,z,p,t) = 0
& (z,x,p,t) = 0
ar . ) (4.6)

20



4.3.

4.3. Index reduction using the structural index

to be the smallest q so that & can be solved in terms of z,p and t.

Informally, the differential index of a DAE system is the minimum number of times
that subsets of equations need to be differentiated to get transformed to an ODE system.
Using the above definition, the DAE system (£2]) could be transformed into an ODE
system by differentiating all equations w.r.t. time to obtain:

Fy i+ F,-i+F=0 (4.7)

& can be expressed as a function in z,p and ¢ only if F} is nonsingular, otherwise the
differential index is more than one. In this case some of the equations in ([@7]) are used for
reducing the index by substituting them in equation ([&2]). This process is done iteratively
until a solvable ODE system is obtained. Computationally, it is difficult to determine the
differential index in this manner.

Index reduction using the structural index

Typical Modelica models are represented by finite number of components with many
connections. These connections represent algebraic constraints among state variables as
illustrated in chapter 2l Therefore, Modelica models can be of higher index. Nevertheless,
different representation of the same model can generate DAE systems with lower index.
In general, the index of a DAE system is not a property of the modeled system but a
property of the model representation and therefore a function of the modeling methodol-
ogy (Fritzson 12003). Domain specific tools can utilize domain specific rules for applying
index reduction. However, these domain specific rules don’t fit into the Modelica concept
and violate the generalized methodology adopted by Modelica. From one side, it is then
superior to have such higher index representation from modeling perspective. From the
other side, reliable general algorithms for index reduction need to be followed.

Computationally, it is not practical to reduce a DAE system into an ODE system
using the standard definition of the differential index. An efficient alternative is to
reduce the so-called structural index used to approximate the differential index defined
through Pantelides algorithm (Pantelides [1988). This algorithm is used for selecting
the equations subject to differentiation and algebraic substitution targeted at reducing
the structural index with the help of graph matching algorithms. In this way, DAE
systems with high index can be mechanically transformed into solvable ODE systems.
Nevertheless, while the differential index is of a numerical nature (see definition E.5I),
the structural index relies purely on the topology of the bipartite graph representation
of the underlying DAE-model. Consequently, the structural index may not reflect the
true differential index corresponding to hidden numerical singularities of the Jacobian
that cannot be captured by the topology alone. The relationship of structural index
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and differential index was a source of confusion in literature (Reissig et alll1999), but in
general the structural index is not necessarily equal to the differential index, though both
are equal in many practical cases. The following definitions are needed for defining the
structural index (Leitold and Hangos 2001)):

Definition 4.8 (Matching). Given a graph G = (V, E,w), where V and E are sets of
verticies and edges respectively. w : E — N is a pre-given weight function. A Matching
M*(G) is a group of s edges:

M?*(G) = {ei € E,|M*(G)| = s},
s.t. no two edges in M*(G) are incident in a vertex. A perfect Matching is a matching

where all vertecies are covered. The Weight of a Matching M?*(G) is given by:

w(M?(Q)) = iw(ei), e; € M*(G)

=1

A Mazimal Matching of size s M;,,.(G) is a matching where w(M3,,.(G)) >

max max

w(M;(G)) V possible matchings Mj(G) of size s.

Definition 4.9 (Structural Index of a DAE-System). Given the DAE system ([A£.2) and
let G = (V, E,w) be the bipartite graph representation of the DAE System (definition[31])
with a weight function w : E — N defined as follows:

w((e;, ;) = The highest time derivative order of variable x; € V, in equation e; € V,

The structural indez is given by:

L (G) = w(M™H(G)) — w(M?,.(G)) +1

max max

Remark 4.10. The number of variables in equation ([L2) is equal to n, number of equa-
tions is also n and hence a perfect matching has to be of size n.

By identifying maximal matchings within bipartite graphs (Und 2001, [Frenkel et al.
2012) Index reduction is performed using Pantelides algorithm combined with the method
of dummy derivatives (Mattsson and Soéderlind [1993) roughly performed as follows:
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1. Identify M. (G) = max; M*(G) and similarly M 1(G) = max; Mfﬁl(G).

axr ( max

2. Compute Iy, (G) = w(ME Y G) — w(M?E,.(G)) + 1

max max

3. ¢ = e, for the unique e € M?, (G) and e ¢ M"-1(QG)

dt max max

4. augment the DAE system with ¢'. However, the DAE system becomes overdeter-
mined since the number of equations is more than the number of variables.

5. replace one of the differentiated algebraic variable with new dummy algebraic vari-
able. The DAE system becomes consistent

The structural index of the new system is decremented and the process is recursively re-
peated until a solvable system is achieved. Polynomial runtime graph matching algorithms
are applicable on bipartite graph representation.

Numerical methods for ODE/DAE systems

In this section, numerical techniques used by common Modelica simulation environment
for solving resulting ODE/DAE systems are discussed. Some numerical techniques for
solving ODE systems can be extended to DAE systems of index one by viewing a DAE
system like (41)) as a regularized ODE system:

f(y(t),y(t),z(t),p,t) =0 ) y(tO):yO(p)
g(y(t),z(t),p,t) = €z(t) . 2(to) = zo0(p)

and assume that 0 < € < 1 and |gy| # 0. This is a very stiff ODE system and hence
ODE stiff methods can be applied to ([@II) with e — 0 for obtaining a feasible solu-
tion (Gear, C. W. [1971). On the other side, general higher index DAE systems cannot
be considered in this way as there are no DAE solvers for DAE systems with arbitrary
differential indices. In this case, the differential index should be reduced to one or zero
possibly with the help of AD techniques (Campbell [1994).

(4.11)

ODE/DAE systems generated from typical Modelica models are usually sparse, can
be stiff and may require event handling. Consequently, common Modelica simulation
environments tend to employ generalized implicit ODE/DAE solvers which are generally
applicable to all possibilities. These generalized solvers employ, among others, implicit
multistep methods like the ABM for non-stiff systems or BDF with wider stability region
for stiff systems (Cellier[1991). In order to illustrate the underlying numerical integration
process, for the sake of simplicity the numerical solution of the explicit ODE system (4.3])
is demonstrated. Nevertheless numerical solvers for implicit ODEs or DAEs index one
systems can be also used. The numerical integration process begins with an iteration of
the form (Cohen and Hindmarsh [1996):

kl k2
Z Qp iUn—i + 6n Zﬁn,irbnfi =0 ,  Qno= -1 (412)
=0 =0
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for solving for v, at time step ¢,, with step size 6,. a,; and 3, ; are variable coefficients
depending on the variable order ¢, at time ¢, to meet accuracy conditions in an efficient
manner. For ABM, k; = 1 and ks = ¢, — 1 while for BDF, k1 = ¢,, and k3 = 0. At each

time step t,,, a large nonlinear equation system of the form
G(Un) = Un — 6n/8n,0h(vnapatn) —ap = 0
an = Z [an,ivnfi + 5n5n,zvn72] (413)
>0
need to be solved. This is done by solving a Gauss-Newton scheme of the form:

M [opth = o] = ~G(u) (4.14)

with an initial guess v¥ estimated from available history data and:

oG Oh
M~—=1-6,8b0— 4.1
ov b 0 ou (4.15)

The resulting system can be sparse and ill-conditioned. Thus, an efficient Modelica sim-
ulation environment would attempt to use an efficient sparse iterative solver employing
preconditioning techniques (Saad 2003). In this context, an ideal preconditioning matrix
is chosen to be a fairly good approximation of the Jacobian so that factorization be-
comes cheap and avoidable for many following time steps (Brown and Hindmarsh [1986).
Furthermore, % should be analytically computed which is generally recommended both
for performance and accuracy (Brenan et al)[1989). In this context, AD techniques can
be employed for computing the Jacobian as done with Dymola (Olsson et all[2005) and
OpenModilca (Braun and Bachmann 2011). Missing any of the mentioned aspects may
lead to significant reduction in the quality of the solution This may also explain the wide
gap in performance among various Modelica simulation environments. For instance, the
Dymola simulation environment employs among others the following solvers:

o LSODAR (Hindmarsh|1983): uses ABM for non-stiff systems. It switches automat-
ically to BDF if any stiffness is detected. The solver can also handle events with
the help of root finding algorithms.

o DASSL: (Brenan et alll1989): the default solver for many simulation environments.
It is specially designed for solving DAE index one systems. It implements BDF
method and provides the opportunity to supply a routine for analytical Jacobian.
Many variations and descendant of this solvers exist for handling more special cases.

Using such generalized solvers has two perspectives. From one side, many physical models
can be then reliably simulated. From the other side specialized features of the system may
not be detected for improved efficient solution. Nevertheless, the gap between run-time
performance of using specialized solvers for special kind of problems and that of general-
ized solvers can be reduced in many cases by employing symbolic and graph algorithms
(cf. chapter B]). Some Modelica simulation environments provide solver prototyping capa-
bility to allow end-user employing his own solver for specialized problems (Claeys et al.
2006).
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5.1.
5.1.1.

Chapter 5.
Basic Concepts of Systems Biology

This chapter introduces some fundamentals of Systems Biology, the main domain of the
modeling applications handled in this work. Section [B.1] introduces some basic concepts
in the fields Systems Biology and Metabolic Engineering. Section presents a ba-
sic overview of enzyme kinetics as an important topic necessary for understanding all
later chapters within this part. Such enzyme kinetics are used for describing enzymatic
reactions, the most elementary components on which the models handled in this work
rely. Additionally, to gain some insights into the implemented advanced tools, a basic
understanding of the phenomenological meaning behind enzyme kinetics is needed. In
particular, the variety of enzyme kinetics and the underlying mechanisms behind them
are emphasized.

Basic Concepts

Systems Biology

The main building block of all living organisms is the cell. Whether a cell belongs to a
multicellular or unicellular organism, all cells are structurally similar and they perform
similar functions for accomplishing vital life activities (Alberts et al. 2002). The field
of Systems Biology aims at understanding complex cellular processes by studying the
underlying biological components and their mutual interactions. These interactions give
rise to the activities, the functions and the behavior of the cell (Kitano2002). One of the
stated goals of this field is the discovery of hidden information through a cyclic procedure
composed of the following steps (Klipp et all2005):

e Proposition of testable hypotheses based on theoretical and gained knowledge
e Validation by experiments
e Quantitative description of data through mathematical models
These steps cover many highly-interrelated levels of cellular processes:
1. Genome level: proteins among other organism characteristics are coded by the DNA

2. Transcriptome level: DNA sequences are copied by an intermediate carrier, the
mRNA to get translated to amino acids and proteins (enzymes)
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3. Protome level: the present set of proteins and their amounts determine which cel-
lular activities take place and how they get performed

4. Metabolome level: all cellular biochemical enzymatic reactions that take place for
substrate uptake (e.g. Glucose), energy building (Catabolism), performing vital
processes and constructing cell structures (Anabolism)

5. Fluxome level: the reaction paths by which a substrate is converted into a product

The regulation among these levels is very complex. From one side, the construction plans
and the amount of enzymes in the cell are coded by the DNA. From the other side,
the metabolism influences the cell functions at genome level resulting in feed-back loops.
Moreover, another aspect that contributes to the complexity is that the cellular processes
are operating on completely different time scales. While an enzymatic reaction can be
recorded in milliseconds scaler, the influence of a genetic modification may take hours.
Consequently, the complexity of such regulatory networks makes the aims of Systems
Biology very challenging since raw data corresponding to all mentioned levels (so called
omics-data) need to be understood in an integrative manner. Modeling is considered as a
vital assisting tool for resolving such challenges. From one side, further physical meaning
and in-depth knowledge can be extracted from the available pure data. Additionally,
with the help of validated models, further hidden information can be gained from the
underlying system under study.

Metabolic Engineering

Microorganisms like bacteria, fungi, algae and protozoans are tiny organisms of significant
importance for biotechnological applications. They have been utilized since thousands of
years in producing vinegar, bread, alcoholic beverages, milk products and others. With
the raise of DNA technologies, the scope of biotechnological applications has been tremen-
dously enlarged through the field of Metabolic Engineering. In (Stephanopoulos et al.
199R), this field is defined as the directed improvement of production formation or cellular
properties through the modification of specific biochemical reaction(s) or the introduction
of new one(s) with the use of recombinant DNA technology. That is, the considered organ-
isms are viewed as elementary chemical factories by engineering the metabolism through
genetic modifications to achieve desired goals like:

e reduction of cellular energy use or waste production
e control enzyme activity or substrate selectivity

Many biotechnological products vital for agricultural and environmental technologies,
food-, pharmacy- and medicine industries involve Metabolic Engineering methods. For
industry-relevant microorganisms cultured in a large-scale level, applications of metabolic
engineering attempt to employ genetically modified strains of the selected microorganism
for improved productivity in terms of costs, quality and quantity.
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In order to achieve successful genetic modifications, it should be known how such mod-
ifications would influence the targeted regulatory networks. The complexity of cellular
processes and the interaction of their regulation processes limit the impact of genetic mod-
ifications if done in an ad-hoc fashion. Consequently, a model-based predictive metabolic
engineering benefits from the field of Systems Biology. By applying systematic concepts
and tools from the field of Systems Biology, directed genetic modifications can be exam-
ined and predicted. Additionally, validated models can assist the identification of targets
for Metabolic Engineering based on quantitative information rather than performing ge-
netic modifications based on intuitive decisions.

Enzyme kinetics

Vital cellular processes are performed according to the present set of enzymatic reactions
at the metabolism level. The main elements of such networks (cf. section [6.1]) are the
involved enzymatic reactions. An enzymatic reaction is catalyzed by a specific enzyme (say
E). The molecules of such enzymes can bind only to a specific set of substrates molecules
(say S). The substrate molecules within the substrate-enzyme complex ES are vastly
transformed to the product molecules (say P). Such reactions can be mathematically
modeled by decomposing this process into more elementary steps as in the following
simple example.

Example 5.1. The schema of the simple irreversible uniuni reaction with one substrate
S and one product P catalyzed by an enzyme E looks as follows:

k
S+E —?5 ES 2 p4ip (5.2)
—il

k_1 is a rate constant describing the decomposition rate of the complex ES into E and S.
k1 and ko are analogous rate constants. The concentration changes of the reactants can
be described by the following ODEs:

i = —k[S][E]

48 = _ki[S)[E] + (k_1 + k2)[ES)] (5.3)
dflgtsl = k[S)[E] — (k-1 + k2)[ES] |
dF = klES] = v

The reaction rate v is equal to the rate of product formation.

The previous ODE system is nonlinear and is not analytically solvable in this form. In
the following subsections, some analytically derived nonlinear algebraic functions, the so
called enzyme kinetics for describing enzymatic reactions v are presented.
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Mechanistic kinetics

Mechanistic kinetics aim at describing enzymatic mechanisms behind enzymatic reactions.
These kinetics are analytically derived from rate equations as in (5.3)) by taking additional
assumptions regarding to the underlying enzymatic mechanism (or equivalently the rate
constants) (Bisswanger 2002).

Michaelis-Menten kinetics

For the simple reaction (5.2), Michaelis and Menten observed that the conversion of E
and S to ES and vice versa is much faster than the decomposition of ES into £ and P
(i.e. k1,k_1 > ko). Equivalently, under the assumptions of quasi-equilibrium conditions
d[E]/dt = d[ES]/dt = 0 and that the total amount of enzyme [E]y = [E] 4+ [ES] is
constant, the ODE system (5.3]) becomes analytically solvable and results in the so-called
Michaelis-Menten kinetic:

_ k2[E]0[S] _ Vmaﬂc[S]
v = k,lk-lf—kg_i_[s] - Km+[5] (5.4)

From the previous equation, the following statements can be made:

1. for [S] < K, : v increases linearly w.r.t. [S] implying that substrate molecules are
more likely to bind with many existing free enzyme molecules

2. for [S] > K,, : v approaches its asymptotically upper bound V;,,,, as more enzyme
molecules are bound with existing substrate molecules

The parameter K, is equal to the substrate concentration that yields the half-maximal re-
action rate Vj,q,/2. These two parameters represent important enzymatic characteristics
demonstrating how quickly the enzyme becomes saturated and what its maximum activ-
ity is. For reversible uni-uni reactions, the following kinetic can be analytically derived
in a similar manner

Vfwd[s] wad[P]

_ _Vimaz _ max 5.5
Kps+[S]  Knp+ [P] (5.5)

Similarly, V,{o" and V%4 denote the maximal possible reaction activity in forward and
backward directions, respectively. The parameters K,,s and K,,p denote the substrate
and product concentration causing half maximal forward and backward reaction rates,

respectively.

Reactions with Effectors

Enzymatic activities can be influenced by effectors by which the formation rate of a
reaction’s product is changed. A blocking influence is referred to as inhibition while an
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accelerating influence is called activation. For an irreversible reaction inhibited by I, the
derivation of a mechanistic kinetic may lead to:
Vmam [S]

S R+ (/KD T8 (56)

Where K7 is a parameter that expresses the ratio of £ formation to EI decomposition.
Therefore, v decreases with larger Kj;. This kinetic states that v decreases with an
increasing amount of I’s molecules. This equation corresponds to the so-called competitive
inhibition where the molecules of an inhibitor I compete with the molecules of a substrate
S for binding with the molecules of the enzyme F. In this case, the release of P is blocked
by I. Further types of inhibition mechanisms are distinguished by mechanistic kinetics
according to whether

e the inhibitor binds to the complex ES
e the inhibitor binds to S, see figure (.11 (Tillack 2008)
e the reversibility of the inhibition

The resulting kinetics are distinguished by the formulation and kinetic parameters.

S S S S
E€NSES—>E+P E<€SES—>E+P E<€3ES—>E+P E<€3ES—>E+P

1\1 &1 1\1: &1 I¢ :[/1
EI EIS EI ?EIS EI ?EIS —> EI+P
a) b) c) d)

Figure 5.1.: Various enzyme inhibition mechanisms

Multi-substrate reactions

Most cellular reactions involve more than one substrate and one product. Mechanistic
kinetics become more sophisticated. Their analytical derivation additionally considers
the sequence in which substrates bind and products are released. For example, within a
bi-bi reaction, (two substrates Sy, So and two products P;, P») the underlying enzymatic
mechanisms some of which shown in figure are distinguished according to whether
binding to enzyme is done

e in random order, (i.e. E binds with both of S; and S in any order)
e in a sequential order, (i.e. So binds only with the complex ES)

e alternate binding of substrates and release of products (ping-pong mechanisms)
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e which intermediate complexes are formed (only ES;, ES, or also ES1S9)

e Interactions among reactants (e.g. inhibition through product formation)

T, \Isf P, P, S }F S P,
a) b)

Figure 5.2.: Multi-substrate enzyme mechanisms: a) Sequential b) Ping-Pong ¢) Random

For example, the kinetic of an ordered bi-bi reaction (i.e. binding in a specific order)
EF+5 = ES{+5Sy, = ES15 = EPP = PP+FEP, =FE+P+ 85 (5.7)

is described with the equation:

v = Vmax[sl][SZ] (58)
Kis, Kins, + Kins, [S1] + [S1][S2]

Interestingly, the previous kinetic format is a special case of the general kinetic formula
of random bi-bi mechanism revealing that ordered mechanisms are special cases of the
general random mechanisms. In summary, an enormous number of equation patterns
corresponding to combinatorially large number of enzymatic mechanisms exist. As it is
shown later, this causes challenging difficulties in the modeling process since hundreds of
components need to be separately implemented for expressing different enzyme binding
mechanisms.

Kinetic formats

As already shown, mechanistic kinetics characterize detailed description of the underly-
ing enzymatic mechanisms. These kinetics pose however some problems when used for
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describing enzymatic reactions within cellular environment. Under crowded conditions
within a cellular environments, a lot of effectors may influence the enzyme activity. When
considering all these effectors and other typical interactions, the corresponding kinetic
becomes very complex and over-parametrized. Parameter dependencies are enhanced
when estimating the parameters with experimentally generated data. This argument mo-
tivates the employment of the s.c. generalized kinetics which rely on more simplified
assumptions two of which are introduced. The first type is the so-called convenience
kinetics which assumes a reversible rapid equilibrium with random binding mechanism
(Liebermeister and Klipp2006). In this way, the corresponding mechanistic kinetic of any
reaction with arbitrary number of substrates S;, products P;, inhibitors I; and activators
A, becomes:

yuwd T 2Ly pp L2
v=Kp- ]___[ Ky, + [A4) ‘ Ky, . ; Kpns, ; Kmnp,
K4 Ki, + [I) < [Si] 7]
a a b b i )
1+ —> + 1+ — -1

(5.9)

Another kinetic format is the linlog kinetic formulated as:

[

A, 1
D+ S

(5.10)

v:v0+zai'ln(%)+25j‘l”(%)‘FZVa'l”(

In contrary to usual mechanistic parameters, which provide descriptive physical insights
into enzymatic mechanisms, linlog parameters are based on scaled sensitivities describing
the influence of characteristic changes of enzymes on a referenced reaction rate at a ref-
erence steady-state v° (Heijnenl 2005).

One of the main advantages of the presented kinetics in the context of this work is
that they are expressed in terms of generalized structured formulas very adequate for
compact implementation (Elsheikh 2012) (cf. chapter [{) and automatic generation of
highly complex models (cf. chapters [@ and [I0). However, one of the limitation of such
kinetics is that they may not describe the enzymatic behavior accurately in some boundary
cases. A comparative study has been presented in (Hadlich et all2009).
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Chapter 6.
Modeling Examples

This chapter demonstrates several modeling examples from the domain of Systems Bi-
ology. Section introduces the standard biochemical network modeling approach for
describing the dynamics of the cellular metabolism. These models are based on enzyme
kinetics presented in the previous chapter. In section 6.2, the introduced models are
extended for describing labeled biochemical networks as an important tool for flux quan-
tification. Section [6.3] presents the vertical modeling approach for linking the metabolism
together with the genome level. Finally, all models handled in this work are briefly sum-
marized.

Modeling biochemical reaction networks

Biochemical reaction networks are used for describing cellular processes of the metabolism.
Figure demonstrates a typical biochemical network of enzymatic reactions termed
as "Spirallus" which represents an abstraction of the Tri-Carboxylic Acid (TCA) cycle
(Wahl 2007). The set of freely distributed metabolites A, B,C, D, E and F are viewed as
pools, while the reactions are viewed as intermediate edges among the metabolites. With
the presence of substrates being taken up through the initial reaction v, intermediate
reactions becomes active and the two products E.,, F., get produced as long as enough
substrate molecules are taken up (or absorbed). The reactions vy, v3 and vy are inhibited
by the molecules of the metabolites A, D and C, respectively.

Mathematical structure

Biochemical network modeling is used to describe the dynamics of molecular species and
their interactions within cellular environment. The models are usually based on the
continuuml| and homogeneity assumptions@. The law of mass conservatior] is used for
describing the rate of change in the mass of intermediate metabolites in a biochemical
network (Wiechert et al!2010). These models have more or less the following structure:

¢=N-v(c,a), ¢(0)=cp (6.1)

L All chemical species involved have such a high copy number to be described by a continuous concentra-
tion value

2Diffusion processes are so fast that concentrations can be considered to be spatially homogeneous

3the mass within a closed system remains constant over time
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Figure 6.1.: An abstraction of TCA cycle.

where ¢ € R™ stands for vectors of the metabolite concentrations, v = v(c,p) € R" is
a vector of reaction rates described by enzyme kinetics, « is kinetic parameters vector
describing enzyme characteristics and N € R™*" is the reactions stoichiometry describing
the number of molecules in any single reaction.

Example 6.2. The dynamics of intracellular metabolites within the simple network of
figure [6.1] are described with the DAE system:

[A] Vypt — V1 [B] = v — vy — Vs
[C] = U2—13 [D] = U3 —U

[E] = U4+ U5 —V3— Vs [F] = wvz+uvg—vy
[El, = v [Flee = vr

Reaction rates v; are expressed using convenience kinetics. For example v1 becomes:

vivd [Al/Kpas — V2 - [B]/Kmp1

max,l max,1

(1 +[A]/Kman1) + (1 +[B]/Kmp1) — 1

U1 =

The above system can be rewritten in matriz form as in equation (6.1)) with:
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Vf Uy (%] V9 V3 V4 Vs V6 (%

A /0 +#1 -1 0 0O O O 0 O
B0 0+ -1 0 0 -1 0 O

N — cJj0 o 0 +1 -1 O O O O
pio 0 0 0 +1 -1 0 0 O
El10 0 O -1 0 +1 +1 -1 O

F \0 0 0 0 +1 +1 0 0 -1

In real-life applications, intracellular metabolites concentration data obtained by stimu-
lus response ea:periments@ (SRE) form the basis for constructing and validating biochem-
ical network models (Oldiges and Takors 2005). These models quantify the dynamics
of the considered reaction networks and give more insights into the underlying cellular
processes.

Modeling labeled biochemical reaction networks

While methodologies for obtaining dynamic intracellular metabolites concentration data
are available, there is no direct way for measuring reaction rates. Instead, metabolic fluz
analysis (MFA) techniques are used to quantify the fluxes of a biochemical network under
quasi-steady state assumption (i.e. determining the reaction rates v under the assumption
that dec/dt = 0) experimentally achieved by a chemostat process. In such a process, a
strain of microorganisms in a biochemical reactor is feed by a fixed amount of substrate
in a way that the substrate concentration is assumed to be constant. Mathematically, for
certain subsets of biochemical reaction networks of linear non-cyclic structure, the set of
all admissible fluxes known as the elementary fluz modes (EFM) are represented within
the null space of the stoichiometry matrix N, (i.e. the solution of N -v = 0, see equation
(61)). This technique is so limited in the sense that the number of reactions is usually
more than the number of metabolites, i.e. m > n and hence there are infinitely many
solutions. In the Spirallus network of figure [6.T], by measuring the extracellular fluxes i.e.
the substrate influx v.q and the product outfluxes vg and vz, m becomes equal to n and
only one exact solution for fluxes exist.

13C MFA

I3C MFA is used to determine the unknown fluxes by employing >C and '3C isotopomers,
used as labeling tracers in biochemical networks (Wiechert 2001). Isotopes are different
types of atoms of the same chemical element. Isomers are compounds that have identi-
cal molecular formula but have different atoms arrangements. Isotopomers are isotopic

4Disturb the metabolism of a cultivated strain of microorganisms in a biochemical reactor by a sudden
pulse of substrate mostly Glucose
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isomers. The isotope '2C is considered to be unlabeled (0) while *C is considered to
be labeled (1). For isotopomers of n isotopes, there are 2" different possible arrange-
ments (i.e. labels). Within a chemostat process with labeled substrates, such labels in a
biochemical network can be traced for determining the fluxes.

v p#_ () )—wEs(  )+F#()
: p#_ ) @—»-E#( ( )+F# @
y J v D4 @) —-E#(_ @+F1()

gl mk 6 vl OO—-E @@
8,__5(3@ - @) ) —-E#@) H)+F#()
—\y) " 0@ @—=@ @

K ol —ei@@ Fi
I H B 0@ —c: @@+ F+@
O+

Figure 6.2.: TCA-Cycle model with labeled isotopomers

Figure shows the path of isotopomers within the Spirallus network. A metabo-
lite molecule D marked by an isotopomer of the arrangement 2C-'2C-'3C is termed
as D#101. It can be noticed that a labeled metabolite molecule E#01 is formed only
through D#01z, x € {0,1}. The mathematical representation of labeled networks models
are extended from equation (6.1]) by considering each distinguishable labeled metabolite to
be a stand-alone substance that can be measured independently (Wiechert and de Graaf
1997). In this case, for each labeled metabolite, a corresponding rate equation is present
and hence the size of the DAE system becomes so large.

Example 6.3. There are 42 rate equations needed for representing the concentration
changes of labeled metabolites from the Spirallus network of figure [622. For example, the
concentration changes of labeled metabolites D are represented by 8 rate equations:

dD#ijk .. ..
# =Coijk - V3 + Crijk - U3 — fi-va —ejp-va , D#ijk(0) = Do#ijk
ith
wi  C#aijk P F#i - Edtjk Va,i, 4, k € {0,1}
Coijk = C ) T Ia y €jk = E z,,7, )

The reaction rates v; remain exactly as in example [6.2. The whole DAE system is of size
102 in comparison with only 16 equations for the simple Spirallus network.
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Models of labeled biochemical networks can correspond to two types of experiments:

1. stationary > C MFA, the underlying networks are stationary both at metabolic and
isotopic levels (i.e. dc/dt = dc#i/dt = 0 V possible 7). In this case, the correspond-
ing model does not include any differential equation.

2. instationary 3 C MFA where the underlying networks are stationary at metabolic
level but instationary at isotopic level (i.e. dc/dt =0, de#i/dt # 0)

With the availability of extracellular fluxes and labeled pool measurements, fluxes can be
quantified using the resulting equations.

Vertical modeling

The approaches demonstrated so far correspond to a horizontal modeling approach, in
which presented models cover only the metabolism level in the cell. Interpretation of
single-level data without considering the network context (i.e. the regulation among
different levels) may lead to wrong conclusions. These shortcomings are overcome by the
vertical modeling approach in which various regulation levels are linked with each other.
In (Noack 12009), models describing different regulation levels of the cell, in particular
genome and metabolome focusing on the central metabolism of the citrate cycle were
presented, cf. figure The corresponding mathematical model includes the standard
model representation of biochemical reaction networks as follows:

¢ = N-v(e,E,a) (6.4)

Figure 6.3.: Vertical model (Noack 2009)
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Additionally, enzyme kinetic v is dependent on the amount of enzymes E controlled by the
transcription process. The amount of enzymes is modeled by rate equations for describing
the concentration change of each enzyme Ej:

d[Ey]
dt
dRN Ay,
dt

ku(p) - mRN Ay, — (kap + 1) - [Ex]

kie(p) - GPi — (kdypya + 1) - mBRN Ay

Where k, are relevant rate constants for describing the transcription process.

Summary of models

The models handled in this work are concerned with biochemical networks of simple
prokaryote like Escherichia coli and Corynebacterium glutamicum. In contrary to eu-
karyotes?, they have simpler structure due to the lack of nucleus and other membrane-
bound organs. The genetic sequences of both organisms as well as their central metabolism
are fully known and identified. Table [6.4] summarizes some of the models, their sizes and
their various applications context used within this work. "PE" and "SA" stand for pa-
rameter estimation and sensitivity analysis, respectively. Only non-trivial equations are

counted.
Table 6.1.: Summary of models
Model Type Dim | Par | Context
Spirallus reaction network 25 45 | Benchmark for SA
Coryne reaction network 173 268 | Benchmark for SA
EMP instationary 13C MFA | 1382 335 | Parallel SA
Spirallus instationary 13C MFA 95 54 | Monte Carlo simulation of PE
Coryne instationary 13C MFA | 2201 457 | Monte Carlo simulation of PE
Visser reaction network 19 19 | kinetic variants
Haunschild reaction network 16 | 16-20 | enzymatic variants
TCA reaction network 182 124 | Control coefficients
C-Glutamicum | vertical model 518 234 | Control coefficients

Scomes from the Greek (pro, "before") 4 (karyon, "nut" or "kernel")
Scomes from the Greek (eu, "good") and (karyon)
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Chapter 7.

Modelica as a Descriptive Language for
Systems Biology

Biochemical network modeling is usually done using the Systems Biology Markup Lan-
guage (SBML), the standard language established and maintained by the Systems Biology
community. On the other hand, employing Modelica as a modern language for biochem-
ical network modeling applications is still a new trend that is practiced from a small
community. In (Wiechert et al) 2010), Modelica was compared with SBML in many as-
pects for showing the advantages and disadvantages of the underlying approaches of both
sides. It was concluded that Modelica is capable of supporting large set of standard
SBML-based applications. These conclusions are emphasized with further applications
presented in this and next chapters. It is shown that efficient employment of powerful
Modelica language constructs and existing developer-oriented modeling tools for model
parsing and automatic model generation significantly simplifies the implementation of
highly specialized tools for Systems Biology. Additionally, the expressiveness of Model-
ica constructs can reduce the gap of using universal modeling languages for specialized
complex tasks using descriptive specifications with easy-to-deduce semantics relevant for
automatic model generation.

This chapter is structured as follows: Section[ZIlgives an overview of SBML. Section
introduces the Biochem library, the current non-standard] Modelica attempt for modeling
biochemical reaction networks. Finally, section [Z3] lists the main conclusions made in
(Wiechert et all2010) regarding the comparison between Modelica and SBML. The next
chapters provide further comparative aspects under the light of further three contributions
of this work:

1. An algorithmically differentiated Modelica library for generalized kinetics adequate
for applications of automatic model generation

2. A highly-specialized Modelica-based editor for biochemical reaction networks

3. A Modelica-based approach for specifying model families, an important methodol-
ogy for model validation

it is not a part of the standard Modelica, library
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SBML

SBML was established as a standardized model exchange language for biochemical net-
work models. It is based on the extended markup language (XML) format and thus sup-
plies a hierarchical structure for the exchange of biochemical network data (Hucka and et al
2003). A specific strength of SBML is that there is a numerous number of freely-available
tools based on this language. In particular, tools for formulating, parsing, manipulating,
analyzing and translating models and generating code for simulation are available. In
order to give a quick overview about the structure of an SBML document, the simple
example from figure [[T]is presented. The different sections of a hierarchically structured
SBML description are given as follows :

<tuml wersion="1.0" encoding="UTF-8" standalone="no" 7=
— =sbml smins="http:/ /weww.sbml.org/sbml/flevel2 /versiond" level="2"
metaid="metaid_01" version="3">
- zmodel id="model_01" metaid="metaid_02" name="SimpleNetwork">
+ <annotation:
+ «listofCompartmentss
- <listOfSpecies:=
zspecies compartment="compartment_01" id="species_01"
initialamount="10.0" metaid="metaid_02" hame="A" />
<species compartment="compartment_01" id="species_02"
metaid="metaid_03" name="B" /=
<flistOfSpecies=>
- «listOfReactions>
- zreaction id="reaction_01" metaid="metaid_04" name="v1" reversible="false":
- <listOfReactants=>
<speciesReference name="A" species="species_01" />
<flistOfReactantss
- <listOfProducts:>
<speciesReference name="B" species="species_02" /=
</flistOfProducts>
- zkineticLaw>
+ <math xmins="http:/ /www.w3.o0rg/ 1998 /Math/MathML">
- <listOfParameterss
<parameter id="parameter_01" name="vmax" value="10.0" />
zparameter id="parameter_02" name="km" value="0.05" />
</flistOfParameters=
</kineticLaw:=
z/reaction>
<flistofReactions>
</modelz

Figure 7.1.: Segment of an SBML file represent a part of the Spirallus network

1. The whole system might be spatially structured into different disjoined homogeneous
compartments. A list of these compartments is given in the compartment section

2. The species section gives a list of all chemical substances involved in the reaction
network (here: A, B, etc.). For each specie, it must be specified to which spatial
compartment it belongs, its biochemical name and its initial concentration

3. All network reactions are arranged in the reaction section (here: vy, v9, etc.). Each
reaction definition includes a list of all reactants and products as well as a mathemat-
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ical term for a kinetic model describing the biochemical conversion. Corresponding
kinetic parameters are specified in the parameter list (here: v,q,,1 etc.)

Given this information, the complete network in figure [6.1] can be assembled. Using
an SBML based biochemical network modeling tool, the information can be supplied in
a user friendly form from which the SBML document is automatically generated.

Modeling biochemical networks with the Biochem library

What is the Biochem library?

For modeling biochemical networks with Modelica, considerable efforts have been done
by designing the Biochem library (Nilsson and Fritzson 2005). The Biochem library is an
abstract general-purpose library for modeling biochemical network models. It provides
only guidelines and design principles, (e.g. basic implementable interfaces and basic
types) rather than a real implementation. According to the available publication, the
Biochem library provides about 99 abstract reaction types under the restriction that a
reaction can get connected to at most 3 substrates, 3 products and 1 effector. Out of these
abstract types, many reaction kinetics can be derived. Within the library Metabolic, a
published implementation of Biochem, at least 180 kinetics are implemented and classified
according to the number of substrates and products within many sub-packages. If more
than one effector is required, which is very realistic in real-life applications, the number
of components corresponding to various kinetics would be so high. Aiming at advanced
implementation of the Biochem library adequate for real-life network models, further
concepts have been extended? some of which are:

° Cofactorsﬁ
e Reactions with more than one effector

e Further components for vertical modeling
Within this work, further extensions have been taken regarding

e Mechanistic kinetics: emphasizing implicit hierarchies for hierarchical modeling

o Generalized kinetics: exploiting generalized formulas for template modeling

This was particularly useful for supporting advanced applications based on automatic
model generation presented in chapter@and[I0. In particular, generalized implementation
of linlog kinetics and convenience kinetics for anonymous number of reactants with the
help of advanced constructs in Modelica have been carried out throughout this work
(Elsheikh 12012), cf. chapter Bl The resulting library, ADGenKinetics (algorithmically
differentiated Modelica library for generalized kinetics), is available online at the standard
Modelica websitdd.

?by Stephan Noack, Institute of Bio- and Geosciences, research centre Jiilich
3Reactants which participate in many reactions
4 www.modelica. org/libraries/adgenkinetics.html
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Chapter 7. Modelica as a Descriptive Language for Systems Biology

Overview of the Biochem library

Figure presents an overview of a subset of a simplified implementation of the Biochem
library. More implementation details are comprehensively given in (Nilsson and Fritzson
2005). With the provided types, an implementation of a reaction kinetic usually extends
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Figure 7.2.: General overview of the Biochem library

the base type of BasicReaction and further interfaces: OneWayReaction or Two WayReac-
tion for irreversible, reversible reactions respectively. Reactions affected by one inhibitor
or one activator extend the interface InhibitedReaction, ActivatedReaction respectively.
The implementation of a kinetic of an inhibited uni-uni reaction looks as follows:

Listing 7.1: a Uni-Uni inhibited irreversible kinetics

model MMS1I
extends BasicReaction ;
extends OneWayReaction ;
extends InhibitedReaction ;
parameter Units.Affinity km = 1.0;

equation
v = kf«Sl.c/(km_S1 + Sl.c) * k_I1/(Il.c + k_1I1);
Sl.v = —v;
Pl.v =v;

end MM1SI;

An implementation of the Spirallus network may look as follows:

Listing 7.2: Implementation of network of fig.

model Spirallus
import Biochem.x;

// Metabolites

NodeElements.FixedSource Aex(c_0=10.0);
NodeElements.DynNode B,C,D,E F;
NodeElements.ProductNode Eex,Fex;
NodeElements.CofactorNode F;
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// Reactions

Reactions.UniUni. MMSI1I vupt(kf=10.0,km_ S1=0.05,k_I1=.4);

Reactions.UniUni. MMSP v1(kf=1.5kb=1.2,km_P1=.3),
v5(kf=0.6,kb=0.4,km_ S1=0.2);

Reactions.BiUni.MMS  v2(kf=0.6,km_ S1=1.0);

Reactions.UniBi. MMS1I v3(kf=0.3,kb=0.4,km_ S1=0.4),
v4(kf=0.3,kb=0.4,km_ S1=0.4,k_11=0.2);

v6(

Reaction.UniUni.DegS kf=0.4),v7(kf=0.3);

equation
connect(Aex.S1,vupt.S1); connect(vupt.P1,A.P1); connect(A.M1,vupt.M1);
connect(A.S1,v1.S1); connect(vl.P1,B.P1);
connect(B.S1,v2.81); connect(E.S1,v2.S2); connect(v2.P1,C.P1);
connect(C.S1,v3.51); connect(v3.P1,D.P1); connect(v3.P2,F.P1); connect(D.M1,v3.M1);
connect(D.S1,v4.S1); connect(v4.P1,F.P2); connect(v4.P2,E.P1); connect(C.M1,v4.M1);
connect(B.S2,v5.81); connect(v5.P1,E.P2);
connect(E.S52,v6.S1); connect(v6.P1,Eex.P1);
connect(F.S1,v7.S1); connect(v7.P1,Fex.P1);

end Spirallus;

Advantages of Modelica versus SBML

In (Wiechert et all2010) Modelica was compared with SBML for Systems Biology appli-
cations from different contexts. SBML from the one side, being the standard language
for biochemical network modeling, is maintained and supported by the Systems Biology
community, is distinguished by a large set of tools for highly specialized tasks. Addition-
ally, a lot of network models are already stored in the SBML format in public databases.
From the other side, it was shown that Modelica is superior when hierarchical modeling,
multidisciplinary modeling, object-oriented reusable components and support of different
modeling flavors are desired. Appendix [A] demonstrates more examples, where Modelica
as a rich specification language shows further advantages from expressibility and mathe-
matical perspectives. In particular the following aspects are addressed:

e The impact of declaration on the mathematical structure

e Whether a correct syntax corresponds to well-defined mathematical formulation

The completeness of equations

The ability of describing topological relations among compartments

Freedom of equations formulation

Shortcomings in some SBML constructs

47




Chapter 7. Modelica as a Descriptive Language for Systems Biology

It is shown that while a syntactically valid SBML document can be semantically or math-
ematically a wrong model, Modelica as a real programming language inherits natural
mechanisms with which some semantical errors are forbidden at the early phase of mod-
eling. Moreover and according to the followed design approach of a Modelica library, the
common structural information within kinetic formulas can be utilized for implementing
extendible interfaces (cf. section[.2)) or templates for generalized kinetics (Elsheikh et al.
2012) (cf. chapter B). These templates can be then specialized according to the number
of reactants, products, specific effectors, reversibility etc. In contrary, the declaration of
reaction types within a SBML document has no impact on the mathematical formulation
of the corresponding kinetics.
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Chapter 8.
The ADGenKinetics library

This section demonstrates the ADGenKinetics library which implementation is motivated
by the shortage of relying on mechanistic kinetics for applications of automatic model
generations demonstrated in the following chapters. The library is one of the very few
published libraries in the domain of Systems Biology. It is open-source, available in the
standard Modelica Websit and it is provided under the Modelica license version 2@ The
power of Modelica constructs is utilized for providing a compact implementation of sim-
plified kinetic formats with generalized structured formulas. This gives the opportunity
of realizing biochemical reaction networks using few number of reaction components, in
contrast to libraries based on classical mechanistic kinetics requiring hundreds of reaction
components.

Overview

ADGenKinetics (Elsheikhl[2012) provides a compact implementation of simplified kinetics
formats (cf. subsection[5.2.2)). The employment of generalized kinetics has two advantages
from two perspectives:

1. From the modeling perspective: Utilization of generalized kinetics formulas provides
the opportunity of implementing a compact library with so few numbers of compo-
nents that the user neither needs to choose an enzyme kinetic component from a
long list of components nor he needs to self implement newer enzyme kinetics for
newer cases of non considered reactions

2. From the implementation perspective: By efficient employment of powerful Modelica
language constructs, the implementation of highly specialized practical library for
modeling biochemical network applications gets simplified

ADGenKinetics follows in many aspects the main guidelines provided by the Biochem
library (cf. section[.2]). The key aspects distinguishing A DGenKinetics appear whenever
the mathematical structures of simplified kinetics are utilized for implementing interfaces
for the underlying generalized formulas. These interfaces are specialized according to the

"https://www.modelica.org/libraries
*https://www.modelica.org/licenses/Modelicalicense2
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Chapter 8. The ADGenKinetics library

number of reactants, products, specific effectors as well as reactions (ir)reversibility. Addi-
tionally, it is worth to mention that A DGenKinetics is the first algorithmically differenti-
ated Modelica library. Additional differentiated components are used for the computation
of parameter sensitivities.

8.2. The structure of ADGenKinetics
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Figure 8.1.: General overview of the ADGenKinetics library

Figure Bl summarizes the presented library. The following packages are available:

1. Interfaces: connectors and classification interfaces independent from specific kinetic
formats

2. NodeElements: components for nodes

3. Reactions: generalized non-specific components for reactions. Specific implementa-
tions are located in specialized subpackages like convenience, linlog, etc.

4. Derivatives: extended components for computing parameter sensitivities
5. Examples: biochemical network models as usage examples

Many classes within the Biochem library have been taken for the implementation of gen-
eralized kinetics, for instance the library structure, physical units, naming conventions
and others. However, further components of ADGenKinetics are specially designed for
providing compact implementation of generalized kinetic formats. Components for nodes
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are declared with only one connector ChemicalPort to arbitrary number of reactions and
one connector to arbitrary number of effectors (Wiechert et alll2010). A node acts as a
reactant, i.e. substrate or product, to the connected reactions via ChemicalPort, while it
acts as effector to the connected reactions via ModifierChemicalPort. This is a bit more
flexible than Biochem which implements a node with a static fixed number of connec-
tions to reactions. The next section is devoted for the illustrating the implementation of
Reactions, the significant part of ADGenKinetics.

Implementation of reactions

Typical kinetics are implemented by extending several generalized abstract classes which
specifies a reaction according to:

1. its dimension: how many substrates and products are involved as well as the stoi-
chiometry of the reactants

2. its reversibility
3. whether the reaction is effected by other modifiers, how many and their types
The implementation of some of these basic classes are shown as follows:

Listing 8.1: The dimension of a reaction

class ReactionDimension
parameter Integer NS = 1 ;
parameter Units.StoichiometricCoef n_ S[NS]=ones(NS) ;
parameter Integer NP =1 ;
parameter Units.StoichiometricCoef n_ P[NP]=ones(NP) ;
end ReactionDimension;

Using the previous class, an abstract type for reactions slightly modified version from the
one provided in Biochem is given as follows:

Listing 8.2: The dimension of a reaction

partial model BasicReaction
extends Interfaces.dynamic.Dimension.ReactionDimension;
Units. VolumetricReactionRate v ;
Interfaces . ChemicalPort_S rc_ S[NS] ;
Interfaces . ChemicalPort_ P rc_ P[NP] ;

equation
rc_S[].r =n_S[] * v;
rc_P[].r = —n_P[] x v;

end BasicReaction;

Specification of the reaction reversibility is done via the related classes One WayReaction
and TwoWayReaction. These classes provide the basic declaration of related kinetic pa-
rameters and they are directly taken from Biochem. Moreover, two additional abstract
classes BasiclrrReaction and BasicRevReaction are introduced in the proposed library for
emphasizing type abstractions among implemented kinetics, for instance:

o1




8.4.

Chapter 8. The ADGenKinetics library

Listing 8.3: Basic reversible reaction

partial model BasicRevReaction
extends Reactions.convenience.dynamic.BasiclrrReaction;
extends Interfaces.Reversible. TwoWay;
Real P1 ;
Real P2 ;
parameter Units. AffinityConst KmP[NS] = ones(NS) ;
equation
P1 = Vbwdmax * product({rc_P[i].c/KmP][i] for i in 1:NP});
P2 = product({rc_P[i].c/KmPJ[i] + 1 for i in 1:NP});
end BasicRevReaction;

The corresponding classes for specifying the effectors are given by the classes Reaction-
Inhibition and ReactionActivation, for instance:

Listing 8.4: The inhibitors of a reaction

partial model ReactionInhibition
parameter Integer NI = 1 ;
Interfaces . ModifierChemicalPort__I mc_ I[NI]J;
parameter Units. AffinityConst KI[NI] = ones(NI) ;
Real I ;

equation
I = product({KI[i] / (KI[i] + mc_I[i].c) for i in 1:NI});

end Reactionlnhibition;

Using these classes, all reaction types of convenience kinetics are realized only with eight
classes. For instance, the implementation of convenience kinetics for reversible inhibited
reactions with arbitrary numbers of reactant substrates, products and inhibitors is given
as follows:

Listing 8.5: Kinetic for reversible inhibited reaction

class InhRevKinetic
extends Reactions.convenience.dynamic.BasicRevReaction;
extends Reactions.convenience.dynamic.ReactionInhibition;
equation
v=1%(S1—-"P1)/(S2+ P2 —1);
end InhRevKinetic;

Examples
The implementation of the Spirallus network (cf. section [6.1]) is assembled as follows:

Listing 8.6: Implementation of the Spirallus network with ADGenKinetics

model Spirallusdyn
import ADGenKinetics.NodeElements.dynamic.x;
import ADGenKinetics.Reactions.convenience.dynamic.x;
Node Aex(c_0=1);
InhIrrKinetic vupt(NS=1,NP=1,NI=1,Vfwdmax=1.0,KmS={0.1},KI={3.0});
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Figure 8.2.: Concentration of substances Figure 8.3.: Reaction rates

ModifierNode A;

RevKinetic v1(NS=1,NP=1,Vfwdmax=3.0,Vbwdmax=1.0,KmS={0.1},KmP={3.0});
Node B;

equation
// vupt
connect(Aex.rc,vupt.rc_S[1]);
connect(vupt.rc_P[1],A.rc);
connect(vupt.mc_I[1],A.mc);
// 1
connect(A.rc,vl.rc_S[1]);
connect(vl.rc_P[1],B.rc);

end Spirallusdyn;

Figures and B3] demonstrate the simulation results of the concentration of chemical
substances and the reaction rates of the Spirallus network, respectively.

Simulating parameter sensitivities

Using the subpackage Derivatives, parameter sensitivities can be computed in a straight
forward way. For the Spirallus example, this can be done by slightly modifying the
declaration part of the code from listing to the following:

Listing 8.7: Implementation of the dynamics of the Spirallus network together with the
parameter sensitivities

model ad_ Spirallusdyn
import ADGenKinetics.Derivatives.NodeElements.dynamic.x;
import ADGenKinetics.Derivatives.Reactions.convenience.dynamic.x;
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Figure 8.4.: Parameter sensitivities of v7

import ADGenKinetics.Derivatives.Functions.x;
inner parameter Integer NG = 24 ;
Node Aex(c_0=1);
InhRevKinetic vupt(NS=1,NP=1,
Viwdmax=1.0,g_ Vfwdmax=unitVector(1,NG),
KmS={0.1},g KmS={unitVector(2,NG)},
KI={3.0},g_ KI={unitVector(3,NG)});

IrrKinetic v7(NS=1,NP=1,
Viwdmax=2.0,g_ Vfwdmax=unitVector(23,NG),
KmS={3.0},g  KmS={unitVector(24,NG)});
Node Fex;
equation

// equations remain as before

end ad_ Spirallusdyn;

In the last model, the standard types for nodes and reactions are replaced by the ex-
tended types within the subpackage Derivatives. An additional unique parameter NG is
declared, specifying the number of active parameters w.r.t. which derivatives are sought.
Finally, the input gradient of any parameter p is initialized with the help of the function
unitVector(i,NG) which returns a unit vector of length NG with the ith component equal
to one. In this way, for any variable v, g_v[i] corresponds to dv/dp. For parameters with
non-initialized gradients, they simply become inactive. Figure B.4] shows the parameter
sensitivities of the reaction v; w.r.t. all kinetic parameters. More comprehensive details
behind the employed methodologies are given in (Elsheikh [201xb) and appendix [C.2|
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Chapter 9.
The Omix-Modelica plugin

This chapter presents a Modelica-based simulator tool for Omix, a highly-specialized bio-
chemical network modeling editor. Omix (Droste et all2009) is a general-purpose editor
for constructing, editing and visualizing biochemical networks in a semi-automatic manner
(i.e. with the help of manual positioning from the user). All figures of biochemical net-
work models in this work are drawn by Omix. Additionally, Omix is a developer-oriented
tool as it provides guidelines for systematic implementation of additional sophisticated
features through standardized plugins. An example is shown in figure presenting an
Omix snap-shot of a dynamic simulation of the labeled Spirallus network (Tillack et al
2009). Aiming at the implementation of a Modelica-based simulator, this section de-
scribes the basic steps done from Modelica perspectives for overcoming serious difficulties
and providing a simplified implementation. The Omix-Modelica plugin is a result of a
cooperative Wor, aiming at converting manually edited biochemical networks by the
Omix tool to valid Modelica models based on the Biochem library and its derivations.
The exact contribution of this work is summarized at the end of this section.

Main difficulties of converting an Omix network to Modelica

Omix is able to visualize biochemical networks based on SBML format. This is a rather
straightforward task, since the required information is present in the SBML model, like the
present metabolites, the participant reactions, which metabolites are involved in which
reactions, present effectors and many others. Consequently, with the help of manual
positioning of metabolites and reactions, SBML network models can be drawn with Omix.
In contrary, transforming an Omix network model to a Biochem-based model is much
harder. The reason is that there is no one-to-one direct association of the given Omix
network to the components of the Biochem library and vise versa. For example, given the
implementation in listing [7.T] implementing the kinetics of an inhibited uni-uni reaction,
required information cannot be directly deduced at syntax level such as:

e the number of substrates, products and effectors of a reaction
e the type of a metabolite (e.g. whether it is a cofactor)

e the presence and the type of the involved effectors

'together with Peter Droste, research centre Jiilich, Germany

95



Chapter 9. The Omix-Modelica plugin

Cc+0 c+2 ] C+3 ] CH

\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!

Figure 9.1.: Animation of a dynamic simulation of the labeled Spirallus network. Ani-
mation is done by scaled simulation data of intermediate concentration and
reaction rates by filled boxes and varying arrow widths, respectively

In another word, direct automatic generation of Modelica models is not possible and
hence assigning kinetics to reactions should be done manually. In this case, for each
reaction, a corresponding enzyme kinetic should be manually assigned from hundreds of
available kinetics, most of which are structurally not the right one (e.g. different number
of substrates or effectors, etc.)

9.2. Design of the Omix-Modelica plugin

The basic steps performed by the Omix-Modelica plugin as illustrated in figure are
summarized as follows:

Biochem.mo

Omix
2
Modelica

Model.omx

Figure 9.2.: General design of Omix2Modelica plugin
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1. OMC is used to parse the basic components within the Biochem library

2. The parsed components are classified into types (metabolites and kinetics) with the
help of an XML specification file

3. The user assigns the types of all metabolites and the values of kinetic parameters of
an Omix network from a dialog menu. Only the types specified within the XMIL-file
appears in the dialog menu

4. OMC is used to automatically generate the Modelica model (i.e. declaration of
components and connection equations are automatically inserted by OMC rather
than following an ad-hoc fashion)

The specification file explicitly declares which subset of types needs to appear at all in the
dialog menu when the user assigns the types of metabolites and enzyme kinetics. In this
way, the implementation is not restricted to a fixed library design. Moreover, different
subsets of kinetics can be maintained instead of presenting all possible available kinetics
in dialog menus.

x| I Change I
by
Change parameters of the reaction 'v4'z
Parame ters:

Kla [12 | molm3

K b [0.4 | mol/m3
k.51 (o5 | moljm3
Kk [10 | 1s
npPl |10 |
nstfto |

Class: Bochem.Blocks. Metabolom.Enzymes. examMM LI

| Change Class... | | Abbrechen || — OK |

Figure 9.3.: Assigning parameter values to reaction v4 of the Spirallus network

9.3. The problem of enormous numbers of kinetics

A main difficulty of the current implementation is that an enormous number of kinetics
appearing in the dialog menu can be assigned to a reaction. Whenever, a large-scale net-
work is modeled, further kinetics, which can be not yet available, need to be additionally
implemented. This has many consequences:
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1. The set of available reaction kinetics candidates get enlarged
2. The XML specification file needs to be extended by the user

3. Due to the potentially large number of types for enzyme kinetics, the user needs to
identify the right kinetic from hundred of candidates

4. The user may assign a structurally wrong kinetic assignment to a reaction of different
dimension

This is an obstacle for a smooth flexible modeling where several kinetics pro each reaction
need to be examined, simulated and validated.

Enriching the Biochem library with annotations

These problems can be solved by enriching the Biochem library components with addi-
tional annotations. The Modelica annotations are kind of structural tools-oriented docu-
mentation used by many standard software and Modelica-oriented development editors.
Such annotations can explicitly declare the missing information to announce the Omix-
Modelica plugin which class of reactions it can get assigned to. Annotation elements can
be also used for

o differentiating between metabolites and cofactors which require special handling
e declaring the number of inhibitors and activators

An example of enhanced annotations is given in the model BasicReaction from listing [R.2]
as follows:

Listing 9.1: Annotation for number of reactants

partial model BasicReaction
(ReactionKinetic(nsubstrates=1,nproducts=1));

end BasicReaction;

announcing that any model extending this abstract type has one substrate and one prod-
uct. Nevertheless for reaction kinetics declaring further substrates or products, the anno-
tation should then be overwritten:

Listing 9.2: Overwriting Annotation

partial model BiUniReaction
extends BasicReaction
(ReactionKinetic(nsubstrates=2));
Interfaces . ChemicalPort__ S S2;

end BasicReaction;
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If the number of substrates or products are parameterized, i.e. specified by a parameter
declaring array variable of non fixed size, the same annotation should be used with that
parameter.

Whenever these interfaces are extended by specialized kinetics, these annotations are
also inherited within these kinetics which explicitly declare the dimension of the underly-
ing reaction. By a proper implementation extension of Omix-Modelica plugin, it can be
guaranteed that the user cannot assign a structurally wrong kinetic for a corresponding
reaction. In this case, fewer relevant kinetics would appear in a dialog menu instead of
hundreds of kinetics. Moreover, whenever extra kinetics are implemented by extending
annotated interfaces, no or little reconfiguration procedures need to be excessively re-
peated. In particular, there is no need to extend the XML specification file. Another way
is to overcome the enormous number of present kinetics is to use approximative kinetics
instead if relevant cf. chapter Rl

In summary, exploiting Modelica constructs makes the transformation of an Omix net-
work model to Modelica model possible in the same way an SBML document can be
transformed to an Omix network.

The contribution made to the Omix-Modelica plugin through
this work

The activities performed within this work have been substantially contributed to the
design and the implementation of the Omix-Modelica plugin in the following aspects:

1. The employment of OMC for model parsing and automatic model generation has
tremendously simplified the implementation of the Omix-Modelica plugin. This
has contributed also to the modularity of the back-end library, on which generated
models are based. Without OMC, the resulting plugin would rather rely on an
adhoc static implementation possibly fixed towards only one library

2. The first versions of this product has been also tested and experimented for providing
further feedback and improvement potentials

3. Further recommendations and suggestions for expected future problems regarding
enormous numbers of reaction kinetics are given in this thesis

4. The first Modelica library aiming at providing compact implementation of sim-
plified kinetic formats adequate for applications of automatic model generation is
implemented, cf. chapter Bl This library does not only serve as a candidate for spe-
cific enzyme kinetics but it is also suitable as a base library for modeling arbitrary
large-scale networks with very few number of reaction components
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Chapter 10.

Implementation of Model Families in
Modelica

This chapter presents a novel way for implementing model families in Modelica, an impor-
tant concept for model validation. Section [I0.] introduces the concept of model family in
the context of biochemical network modeling. Section [I0.2lgives a quick overview of speci-
fication of model family in Modelica. Finally, the common concepts between model family
and the Omix-Modelica plugin are emphasized. Additionally, the Modelica approach is
compared with an SBML-based approach for model family specification.

The concept of model family

Generally a mathematical model could be considered to be valid if it is able to
1. describe the system it is modeling
2. predict the real system behavior w.r.t. different inputs

For network models corresponding to cellular processes, it is quite impossible to assert that
any model satisfies the above definition (Wiechert and Takord 2004). In particular, many
enzyme-related information like amount, interactions with other metabolites and influence
of cellular environmental conditions on enzyme binding mechanisms are partially or totally
unknown within the specific system under study. In order to resolve this situation, a lot
of simplification assumptions need to be considered by model construction. Namely, for
each reaction there could be some assumptions regarding:

e the set of influentially significant effectors
e the specific enzyme binding mechanisms

that need to be considered by the model. Each combination of assumptions results in a
distinguished model w.r.t. the resulting kinetic terms. The set of all assumption combina-
tions compose a space of models referred to as model family (Haunschild 2006). FigureI0.T]
presents two abstract network models that have been used in literatures for demonstrating
applications of model families. The network model in the left of the figure has been used
to examine the accurateness of the linlog kinetics against mechanistic Michaelis-Menten
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kinetics (Visser and Heijnen 2003). This is done by generating in-silico simulation data
out of a reference model represented by mechanistic kinetics and incrementally replacing
mechanistic kinetics by linlog kinetics one reaction after another. After each replacement
parameter estimation is done to reproduce the original data.

~_

Figure 10.1.: Network models for examining kinetic variants

The other network model has been used to examine how far simulations of differ-
ent networks with different enzyme inhibition mechanisms can reproduce each other
(Haunschild et all 2006). Initially, one of the models has been considered as a refer-
ence model for generating in silico simulation data. The model space consisted of 2880
models, only some of which were explored and tuned with parameter estimation due to
the computational complexity behind them. Interestingly, couple of models reproduced
similar behavior. This shows that reproduction of data does not imply the correctness
of model. Nevertheless, qualified models that have been subject to intensive validation
through generation of experiments can be assumed to inherit part of the truth in a way,
that model-based decisions can be collectively made in an integrative manner. The fol-
lowing is a formal definition of model family developed within this work:

Definition 10.1 (Model variants of a metabolic network M). Suppose that M is a
metabolic network with n reactions r1,79,...,7y. Assume that

Vi= {vzl (0%1) vvz‘2 (O‘?> ""vvzm (O‘?Z)}
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10.2. Specification of model families in Modelica

is the set of all admissible kinetic variants for a reaction r; according to some given
assumptions. Assume also that M;, ;, . i, represents the mathematical description of M
using the kinetics vi* (al'), v (al?) and vir (i) with 1 < i; <n;Vj € {1,2,...,n}. Then
the model space S is defined as:

S = {Mil,ig,...,z‘n ; v;-j (oz;-j) eV, Vijed{l,z2, ,n}}

n
with |S| = Hnl Two models My, ry. . rps Mg, so...s, € S are adjacent if 1y = s; Vi €

=1
{1,2,..,n} /{j} except exactly one i # j. In this case, the first model can get transformed

to the second model by exchanging the kinetic v;j with v;j .

As it will be shown in the next section, the hidden mapping behind the definition of
adjacent models is the base of representing model families in Modelica.

Example 10.2. Assuming that there are about 3 kinetics law variants for each reaction
in the first network model. Given that v},v? and v} represent the linlog, convenience and
one variant of mechanistic kinetics respectively. Then, the model Mio111111 Stands for
a model described by the linlog kinetics except the second reaction with the convenience
kinetics. Two models are adjacent in the model space if they differ only in one digit.

In order to choose valid model candidates describing a system, they must be validated
with experimental data. In practice, the space of models is rather finite but it is composed
of combinatorially high number of models not all of which can be validated due to the
huge computational complexity. Model selection strategies attempt to rather explore only
a small subspace of models for identifying a subset of models satisfying:

min {Cm’t [min {P (M*, Mz(a;))H } (10.3)

7 7]

where P corresponds to parameter estimation function using a reference model M* with
the help of some selection criteria like the Akaike criteria (Akaike 1980).

Specification of model families in Modelica

The basic idea behind the presented approach is to provide a compact representation of
a model family through one single model by making use of template programming. In
Modelica this is realized by making use of:

e replaceable components for declaring unfixed reaction mechanisms and

63



10.2.1.

Chapter 10. Implementation of Model Families in Modelica

e annotations for specifying the candidate choices

The resulting model specification declares a well-defined model space. As it will be shown,
element models within this space can be expressed in terms of each others in the sense
of definition [0.Il In order to simplify the clarification of this concept, approximative
kinetics are used instead of mechanistic ones. Nevertheless, the same approach is also
applicable for mechanistic kinetics. The implementation relies on additional sub-packages
for the Biochem library, providing more components with which hierarchies of descriptive
elements are present at declaration level. In the followings, the basic idea is presented.

Kinetic law variants

The realization of kinetic law variants with the left network of figure M0l is done as
follows:

Listing 10.1: Replaceable Kinetics

model KineticVariants
import ModBioChem.x;
replaceable class RKinetics = Reactions.LinLogReaction
extends Interfaces .Kinetics.KineticLaw
( ( =Reactions.LinLogReaction,
=Reactions.ConvenienceReaction));
// Metabolite Declaration
NodeElements.Node AH(c_ 0=1.0,N=3);
NodeElements.Node M1(c_0=3.0,N=2);

// Reaction Declaration
replaceable RKinetics R2(NS=2,NP=2kf=1.0,E_S={1.0,1.0},E_P={1.0,1.0});

equation

end KineticVariants;

This model describes the dynamics of the chosen metabolic network using the linlog
kinetics. In this model kinetic laws are declared as replaceable types and annotations are
used for specifying other alternative kinetics. In this way, the same network modeled by
convenience kinetics can be described as follows:

Listing 10.2: Convenience kinetics variant

model ConvenienceVariant = KineticVariants(
redeclare replaceable class RKinetics = Reactions.ConvenienceReaction
extends Interfaces .Kinetics.KineticsLaw);

The parameters (e.g. specialized kinetic parameters) which are not explicitly present
at the declaration take the default values. The optimal parameter values need to be
determined by parameter estimation. For large models, it makes sense to perform the
replacement of kinetics in an incremental manner, i.e. replace a reaction one after another
with incremental parameter estimation. This is done as follows:
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Listing 10.3: Incremental replacement

model M__ 12111111 =
KineticVariants(redeclare replaceable
Reactions.ConvenienceKinetics. Types.BiBi R2(km_ 1=0.5,km_ 2=0.5));

The class BiBi is a static type definition from the ConvenienceKinetics class with fixed
number of substrate and products. Note that in that specific class parameters (e.g. k1)
can now be present at declaration level with suggested start values for the optimization
algorithm. In the same way, further models can be generated from Mis111111-

Enzymatic variants

For representing enzymatic variants, almost the same approach is adopted. The only
issue which is different is that the number of effectors influencing a certain reaction may
change from a model to another within a model family. For this reason, the implementa-
tion requires reaction effectors to be present at declaration level. The declaration of the
reaction vy in the right network model of figure [[0.1] looks as follows:

Listing 10.4: Inhibited reaction declaration

// Reaction Declaration

replaceable RKinetics R4(redeclare class RModifier =
Interfaces . Effectors . InhibitedReaction(NI=1), NS=1,NP=1,inhibitors = {Z.mc},
E I1={1.0}kf=1.0,E_S={1.0},E_P={1.0});

Given a model with the reaction v4 inhibited by node Z, another model with an additional
inhibition node Y can be simply described as follows:

Listing 10.5: Enzymatic variants

model EnzymaticVariants_ 00121010 =
EnzymaticVariants(replaceable redeclare RKinetics
R4(NI=2,inhibitors = {Z.mc,Y.mc},E_1={1.0,—0.2} );

In a similar manner, any model in the underlying model space can be explicitly generated
in terms of a reference model.

The advantages of the Modelica approach

Common issues with the Omix-Modelica plugin

Given a Modelica model in which a model family is internally specified, an automatic
model generator would be needed to realize model selection strategies. An automatic
model generator needs to perform the following steps:

1. parse the model specification

2. parse the underlying library
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3. generate the required model

These steps are partially performed with the Omix-Modelica plugin. It is not a surprise
to say that the implementation approach of this tool was actually the same approach
planned for realizing model families in Modelica. Both concepts benefit from:

e generalized kinetics with which automatic model generation is easily done
e OMC with which model parsing and generation is easily done
e annotation elements with which missing information is declared

Once the implementation of the Omix-Modelica plugin achieves a mature state, it is
recommended to extend it as an editor for model family specification in which

e the user can specify kinetic candidates for each reaction and let

e the specification of model family be automatically generated

Model family: Modelica versus SBML

In (Haunschild 2006), SBML was extended with additional elements in order to be able
to specify model families. Consequently, additional efforts have been taken for imple-
menting additional parser for the extended SBML documents. Out of such specification,
it was possible to generate equation-based models subject to simulation and parameter
estimation for the validation process according to a model selection strategy. From the
other side, it is shown that a compact specification of model families can be completely
specified using only one single Modelica model without the need of additional language
elements. The specification has the advantage that

1. the resulting model spaces can be easily explored in the sense of definition [[0.1]
2. it could be parsed by existing tools, OMC and the Omix-Modelica plugin

The powerful expressibility of Modelica constructs makes it possible to generate descrip-
tive models in terms of each other. This is favorable for incremental model selection
strategies (i.e. models expressed in terms of one additional modification of another model).
Furthermore, the tools used within the Omix-Modelica plugin can be also employed for
parsing model family specification and systematic model generation.

Thus, this shows that full utilization of Modelica constructs makes Modelica models
enough descriptive as SBML for supporting Omix models. Additionally, the implemen-
tation of model families is totally realizable in Modelica without additional language
elements. Thus, existing model parsing and model generation tools can fully support
such sophisticated tasks keeping individual efforts at an acceptable minimal level.

66



Part 1V.

Sensitivity Analysis of Modelica
Models

67






11.1.

Chapter 11.
Parameter Sensitivities of DAE Systems

The last part demonstrates some modeling applications in Systems Biology based on DAE
systems. The discussion of the last chapter together with the applications shown in part
[Vl show that it is not only model simulations but also the whole package of sensitivity
analysis, model validation and discrimination, optimization and others which are most
useful to gain knowledge. A significant computational part within all these applications
is based on the computationally expensive task of sensitivity analysis of DAE systems
for computing parameter sensitivities. This part introduces new tools and equation-
based concepts developed throughout this work aiming at efficient automatic sensitivity
analysis of Modelica models. In this chapter, analytical methods for computing parameter
sensitivities of DAE systems through direct integration of sensitivity equation systems
is introduced in section [IT.Il Section presents a simplified overview of classical
automatic differentiation (AD) techniques with which sensitivity equations of explicit
DAE systems can be efficiently derived as shown in section [[T.3l The presented overview
of classical AD techniques is demonstrated in a way that serves as a base for the new
invented equation-based AD techniques, especially developed for DAE-based models.

Common methods

Generally, sensitivity analysis aims at analyzing the behavior of the corresponding model
outputs w.r.t. model inputs. The validity of the resulting analysis is either local around
the chosen input values but can have also global scope via global sensitivity analysis
methods (Saltelli et al. 2004). The scope of applications in this work requires only local
sensitivity analysis of DAE systems around input parameter values. Formally, consider
the DAE system:

F(:i:,x,p,t) =0 ) x(t(]) = CEQ(])) (111)

where x(t) € R™ and p € R represent state variables and model parameters, respectively.
Required are the derivatives dx/dp (or a subset of them) which quantify, according to their
mathematical definition, the impact of parameters p on variables x. One way for numerical
computation of parameter sensitivity is to employ finite difference (FD) methods. From
one side, these methods are straightforward to implement. From the other side, they
cause a lot of numerical problems so that the computation of accurate results could be
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not possible, as shown in chapter [8l A better alternative is to compute derivatives
analytically. Namely, for DAE systems of the form (I1.I]) with differential index less
than or equal to one, corresponding parameter sensitivities can be computed by directly
integrating the sensitivity equation system consisting of the original DAE system (IT.1I)
and the sensitivity equation subsystems obtained by differentiating all equations w.r.t.
desired parameters:

0

Fusit Fosi+Fy =0 s(ty) = 220P) (11.2)
Opi

where Si O for i=1,2,....m

- Op;

The dimension of the whole system is equal to n+mn. All sensitivity equation subsystems
are independent from each other. However the terms Fj, F, and Fj, depend on x solved by
the original DAE system (II.IJ). Hence, the sensitivity equation subsystems (IT.2] cannot
be decoupled from the original DAE system (II.1]). Integration of the sensitivity equation
systems could be inefficient and much slower than simple versions of FD methods. The
reason is that the number of iterations required by the DAE solver for maintaining error
tolerance may become excessively enlarged. Moreover, high-dimensional Jacobians need
to be factorized for the solution process of the underlying Newton-like scheme (4.14]).
Alternatively, further advanced methods exist by which some of the above mentioned
drawbacks are partially overcome. These methods, summarized in appendix [Bl, provide
more efficient implementation by exploiting the structure of sensitivity equation systems
for problem decomposition, cheap factorization and parallelization.

Introduction to AD

In this section, a technique for evaluating analytical derivatives, termed in literatures
as automatic differentiation or algorithmic differentiation (Griewank and Walther 2008,
Naumann 2012), is introduced. AD is a methodology that refers to algorithmic techniques
for semantic augmentation of numerical programs with additional code for computing
derivatives. AD employs common compiler techniques to compute an efficient represen-
tation of analytical derivatives without the drawbacks present in symbolic differentiation
(shown in the following) and FD methods (cf. chapter I3). AD is fundamentally different
that common symbolic differentiation methods available from common Computer Algebra
(CA) packages as illustrated throughout the following example.

Symbolic differentiation

Sensitivity equation subsystems can be explicitly computed by symbolic differentiation
techniques. Nevertheless, within explicitly differentiated formulas, many common subex-
pressions are excessively evaluated as in the following example.
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Example 11.3 (Evaluating sensitivity equations by symbolic differentiation). A typical
equation of an enzyme kinetic formula within a large biochemical network model would
look similar to:

. S Ky
S = — =V 11.4
Yo YT SEK, T+ K (11.4)
The corresponding sensitivity subsystem w.r.t. any parameter p is:
8 = —u,
S K S, (S+ Kp)—S(S K K
Up —_ V;o I 4 vV p( + m) (I;“’( m)p) 1 +
S+ Kn I+ K; (S + Kp) I+ K,
14 S (Kl)p(I+KI) _KI(IP+(KI)p)
S+ Km (I+K;p)’
(11.5)

The terms S + K, 1/(S + K,,) and S/(S + K,,) are evaluated 6, 5 and 4 times
at each single iteration within the DAE-solver. Additionally, the same terms appear in
all sensitivity equations obtained by differentiating the kinetic equation (IT4]) w.r.t. all
parameters. Overall, for typical kinetic equations summarized in section (2] there is a
large excessive number of common expressions that need to be evaluated when integrating
symbolically differentiated equations for computing parameter sensitivities.

Common Concepts in AD

In this subsection, some basic terminologies of AD, used throughout this part are intro-
duced. Formally, given a numerical program P that computes a function:

fixeR" —yeR"

with m independent variables as inputs and n dependent variables as outputs, AD com-
putes a new code P’ additionally evaluating partial derivatives. P’ is either explicitly
generated or it is the same copy of P in which standard mathematical operations are
semantically overloaded with derivative rules. The former is referred to as semantical
source-to-source transformation while the later approach is known as operator overload-
ing. A summary of common software is given in (Naumann et al![2004). AD comes in two
flavours, the forward mode evaluating the tangent linear model and the backward mode
evaluating the adjoint model. The latter approach is out of the scope of this work.

The tangent linear model evaluates a function of the form f’ = (9y/dx) - z(1) together
with f, where:
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e (Jy/0x) € R™™ corresponds to the Jacobian
e 2() = (92/0s) € R™ is a seed vector specifying the desired directional derivatives

e s is an auxiliary variable chosen in a way making f’ equal to the desired directional
derivatives

The Jacobian (Qy/0x) can be accumulated by executing P’ m times, each time with s
initialized to a different unit vector e; € R™ for i = 1,2,...,n. The cost of executing the
generated derivatives is in O (m - f(z)) which is identical to the cost of FD methods. If
the Jacobian is sparse, the sparsity pattern can be exploited for efficient computations
by initializing (1) in a way that different partial derivatives are computed simultaneously.

The variables y are usually not expressed as an explicit function of x, but in terms of
intermediate or temporary variables u, as follows:

y = f(x) = up (ug—1 (... (u2 (u1 (2))) ...))

These temporary variables u, represent intermediate computations corresponding to branches
and loops. A derivative object represents derivatives information, such as a vector of par-
tial derivatives (Ou/dvy, ..., 0u/0v,)T of a variable u w.r.t. a vector v = (vy,v2,...,v,)7.
Any program variable with which a derivative object is associated is called an active
variable, otherwise it is termed as an inactive variable. AD exploits the chain rule for
generating derivatives in the form of:

%y LD = Oy _ Oy Ouy Ouy Ouy Ox

Ox ds  Oup Oug_q ~ Oup Or Os

If the program P expresses a functional unit evaluating a DAE system (II) and
parameter sensitivities are sought through integrating the corresponding sensitivity equa-
tion system (ILI) and (IT.2Z), then the parameters p are the independent variables and
x are the dependent variables. This should not be confusing since parameters can be
also thought as variables whose values are constant within a single simulation but dif-
ferent from a simulation to another. As a conservative strategy, all dependent variables
x;,i = 1,..,n are considered to be active, i.e. a corresponding derivative object dx;/dp is
always associated. If only a subset of parameters p are desired, only the corresponding
subset of the sensitivity equations need to be considered by rewriting equation (IT2) to:

dzo(p)
dp

[Fms + Fps+ Fp] Jn=0 S(to) = (116)

Where J;;,, € R™*™ is the input Jacobian specifying the independent parameters w.r.t.
which derivatives are computed. If all parameters p are independent and all parameter
sensitivities are desired then J;, = I,.
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Algorithmic aspects of AD

The key concept behind AD is that any mathematical function expressed as a program, no
matter how complex it is, can be decomposed into a limited set of elementary equations
composed of basic operations (e.g. +,—,..etc.) and intrinsic functions (e.g. sin and cos).
The derivative of each of these elementary equations can be computed by applying the
chain rule to combine their local partial derivatives. Consequently, the resulting common
subexpressions are executed only once each iteration.

Example 11.7 (Deriving sensitivity equations with AD). Given equation (IL4) and
using the Abstract Syntax Tree (AST) representation shown in figure I1.1, the kinetic
equation and the corresponding sensitivity equation w.r.t. a set of parameters pi,pa, ..., Pm
can be represented with only two temporary variables as:

Tn = S+K, = 7 = S+K,,

o= 1T — T = -TIT\ T

n = ST — W = STi+ST

T, = I+K; = T, = I'+K;

= T = T, = -T,DT

T = K1 — T2/ S= K} T + Ky T2'
T = WD = T, = T Ty+T, T}

v o= VT = o= VL + VT
where X' = (dX/dpy,dX/dps, ...,dX/dpm)T V variables X

and := corresponds to an assignment relationship between an output and inputs.

The following observations concerning the previous example are emphasized:

1. The assignment T := —T] Ty T is equivalent to the expression:
S+ K'
o= 2R
(S+K)

2. The expression 17 17 can be stored in a temporary variable and need not to be
performed m times

3. Further arithmetic operations can be eliminated by exploiting the sparsity of the
input Jacobian J;, (e.g. K’ and V' have maximally 1 nonzero entry)

73



Chapter 11. Parameter Sensitivities of DAE Systems

Figure 11.1.: AST of the right hand side of the kinetic equation from (IT.4]). Each non-
leave node is represented by a reusable temporary variable.

The following table summarizes the number of FLoating-point OPerations (FLOPs)
for one evaluation of equation (IT.4]) and its parameter sensitivities using all presented
approaches for sensitivity analysis.

# Ops + — X /
Eq. (LJ) 2 1 2 2
CD equation (I5.3) 8m 4 8m 9m
SD equation (IL.5) 14m 3m  10m  8m
AD example (IT7) | 442m 1m 4+8m O

SD corresponds to symbolic differentiation. CD corresponds to a CD formula of order 4
illustrated in section 5.1l The table shows that a successful application of AD gives the
most promising approach taking into account that division is computationally the most
expensive arithmetic operation. This AD approach, though presented in a simplified
way, is rather adequate for explicit DAE systems implemented in an assignment format
within a procedural language like C/Fortran. This way is not applicable for equation-
based languages like Modelica. In chapter I3, an alternative modified equation-based
approach is presented.
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This chapter introduces ADModelica an AD tool supporting Modelica models. The next
chapter discusses the algorithmic aspects behind the developed equation-based approach.
In section [[ZT] the employment of AD techniques for Modelica models is motivated.
The adopted approach is realized through the ADModelica tool presented in section
Finally, section [2Z3] gives an example of an ADModelica generated model.

Why AD for Modelica?

Standard Modelica compilers already employ AD techniques for evaluating analytical Ja-
cobians for the task of index reduction and numerical integration (Olsson et all 2005,
Braun and Bachmann 2011), cf. chapter @l Similarly, in order to compute parame-
ter sensitivities of a given DAE-based Modelica model, the discussion of the previous
chapter reveals that the best approach is to integrate the corresponding sensitivity equa-
tion systems computed by AD techniques for the following reasons. Firstly, providing
derivatives within a Modelica model makes the derived model independent from common
Modelica compilers and accessible for various simulation environments. Secondly, the
derivatives produced by AD techniques don’t contain computationally expensive com-
mon sub-expressions. This is significant for the present model applications, cf. equation
B9 Additionally, a Modelica model is usually given in a high-level abstraction rather
than a pure mathematical formulation using library components and connections. These
components could be implemented using loops, branches and other language constructs.
Therefore, it makes sense to adopt Modelica high-level compiler techniques by AD for:

1. accessing the underlying DAE system of the given model

2. reducing the size and complexity of sensitivity equations, rather than blind differ-
entiation of all equations as equation (I1.2]) suggests (cf. section [[3.2])

Luckily, the implementation of a Modelica-based AD tool for Modelica models can be
assisted using OMC in a similar way to the Omix-Modelica plugin (cf. section @.2]). With
OMC (cf. section [2Z]), it is possible to parse a high-level model and to access its un-
derlying solvable optimized mathematical formulation. Consequently, there are different
abstraction levels on which AD techniques can be applied (Elsheikh and Wiechert [2008).
These levels are:

75



Chapter 12. Overview of ADModelica
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Figure 12.1.: ADModelica basic units

1. The library level: represented as high-level descriptive Modelica code. An AD tool
relying on this level is given in (Bischof et al. [2005). Other works based on that
approach are given in (Elsheikh 2012) and (Elsheikh 201xb)

2. The flat level: the underlying DAE system represented in pure equations form

3. The low-level C code: the generated simulation code in C. AD tools following this
approach are given in (Imsland et all2009, |Andersson et al. [2010)

Appendix [(] discusses all these approaches in more details. In this work the flat model
approach is adopted due to the minimal efforts required for implementation.

12.2. ADModelica: An AD tool for Modelica models

ADModelica is an AD tool that accepts a Modelica model and dependent base libraries as
inputs to compute the corresponding sensitivity equation system represented as a Model-
ica model (Elsheikh et all2008). The tool is implemented in the Java language with which
communication with OMC through well-defined API is performed (Sjolund and Fritzson
2009). Figure[IZIlshows the main steps performed for computing parameter sensitivities.
These steps are briefly summarized as follows:

e Flattening: A high-level model is flattened to pure mathematical equations

e Transforming to intermediate format: The ModelicaXML tool (Pop and Fritzson
2003) transforms the mathematical equation system to an easy-to-handle XML for-
mat, in which ASTs representation of the equation system is implicitly present

e Analyzing: The ASTs are transformed to equation-based intermediate format opti-
mized for differentiation
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e Differentiating: The ASTs of the sensitivity equation system are computed
e Code-generation: The differentiated model is generated as shown in the next section

e Visualizing ASTs: Producing graphs of the ASTs using the graphviz tool (Ellson et al
2003) was proven to be useful for discovering potential semantical mistakes

The implementation is decomposed into independent packages, each of which corresponds
to a functional-unit of the source-code transformation process.

Description of the generated code

This section illustrates the structure of the generated code by ADModelica, illustrated
upon the Spirallus network example from section 201l By operating ADModelica on an
input model, two modes are available; the CA mode corresponding to symbolic differenti-
ation and the AD mode. In the CA mode, the original model is extended with additional
equations for derivatives obtained by symbolic differentiation as follows:

Listing 12.1: The header of a differentiated Model

model ad_ Spirallus
extends Spirallus;

In this way, the differentiated model still preserves the original model topology with the
same components and connections in a graphical editor. On the other side, the AD
mode declares a totally new flat model independent from the original model. All original
components and connections are flattened into pure equations formulation. Both modes
rely on an identical declaration part. ADModelica assumes that all present parameters
are active, unless explicitly specified by switches. The following declaration part is used
for selecting the set of active parameters:

Listing 12.2: Input Jacobian and selection of active parameters

protected
// Input Jacobian of input parameters
constant Integer [:] gp_vl_fwd_vmax =  {1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
constant Integer [;] gp_vl km_ A = {0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

constant Integer [;] gp_vl_ bwd_vmax = {0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
constant Integer [:] gp_vupt_ki = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};

parameter Integer[:] PARINDEX = {1,3,10}; // The index of active parameters
parameter Integer NACTPAR = size(PARINDEX,1); // The number of active parameters

The array PARINDEX declares the indices of the active parameters within the input
Jacobian. In this case, the generated code simulates parameter sensitivities only w.r.t.
vfnigfi,l, vfif%dLl and K7 yup¢. Usually the input Jacobian is equal to the identity matrix if
parameters are independent. Directional derivatives or fixed derivatives can be alterna-

tively considered by altering the above matrix. All parameters not appearing within the
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input Jacobian are inactive. The generated model declares derivative objects as arrays
for each active variable as follows:

Listing 12.3: Derivatives declaration

//Declaration of derivatives
Real[NACTPAR] gp_ vl fwd;
Real[NACTPAR] gp_vl_bwd,;

The equation part describes the sensitivity equation system in a gradient format. Within
the CA mode, an equation may look as follows:

Listing 12.4: Sensitivity equation system in symbolic differentiation mode

equation
for ad_iin 1:NACTPAR loop

gp_v2_fwd[ad_i] = ((((((B_xx_con/v2_km_B)x(((E_xx_con/v2_km_E)x
gp_v2 fwd vmax[PARINDEX[ad_ i]])+(v2 fwd vmaxx(gp E xx con[ad i]/v2 km E))))+
((v2_fwd_vmax*(E_xx_con/v2_km_E))x(gp_B_xx_con[ad_i]/v2_km_B)))x
((1x(1+(E_xx_con/v2_km_E)))*(1+(B_xx_con/v2_km_B))))—
((((1+(B_xx_con/v2_km_B))*(1x(gp_E_xx_con[ad_i]/v2_km_E)))+
((1x(1+(E_xx_con/v2_km E)))x(gp_ B xx con[ad i]/v2 km B)))x
((v2_fwd_vmax*(E_xx_con/v2_km_E))*(B_xx_con/v2_km_B))))/
((1x(1+(E_xx_con/v2_km_E)))*(1+(B_xx_con/v2_km_B)))x*
((1%(14+(E_xx_con/v2_km_E)))x(1+(B_xx_con/v2_km_B)))));

end for;
end ad_ Spirallus;

On the other side, the sensitivity equation system in AD mode is much shorter as follows:

Listing 12.5: Sensitivity equation system in AD mode

parameter Real temp3 = 1.0/v2_km_E;
parameter Real temp4 = 1.0/v2_km_ B;
equation
teq3 = 1.0/((1x(14+(E_xx_ conxtemp3))*(14+(B_xx_conxtemp4))));
for ad_iin 1:NACTPAR loop

gp_ v2 fwd[ad i] = (((B_xx_conxtemp4)*(((E_xx_constemp3)s
gp_ v2 fwd vmax[PARINDEX[ad i]])+(v2_fwd vmaxx(gp_ E xx_ confad i]*xtemp3))))+
((v2_fwd_vmaxx*(E_xx_ conxtemp3))*(gp_ B_ xx_ con[ad__i]*temp4)))*teq3—v2_ fwdxteq3+teq3;

Section [[3.J] demonstrates the way equations in AD mode are efficiently computed. On
both modes, two types of indexes are used:

1. the index ad_¢ with parameter sensitivities and derivative objects

2. the index PARINDEX[ad_i] for enabling only the selected active parameters

At this stage, it looks as if the sparsity of the input Jacobian is not exploited and that
every trivial derivative is represented in the code. In section [I3.2] it is shown that high-
level Modelica compiler techniques manage to exploit the sparsity.
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Chapter 13.
Algorithmic Concepts behind ADModelica

This chapter introduces the algorithmic approach adopted by ADModelica for providing
efficient representation of sensitivity equation systems. The classical AD techniques of
procedural languages summarized in section are not directly applicable for equation-
based languages. Therefore, an alternative approach relying on equation-based compiler
concepts relevant for the Modelica language is adopted. The algorithmic concepts be-
hind this approach are demonstrated through an example in section [3.Il A complete
algorithmic specification of the presented approach is given in (Elsheikhl 201xd). Section
32l emphasizes Modelica-specific compiler techniques with which generated ADModelica
code is subject to optimization.

AD of equations

Equations vs. assignments

Before diving into algorithmic details of computing an efficient representation of sensitiv-
ity equation systems relevant for Modelica, the main differences between equation-based
languages and procedural languages like C/Fortran need to be emphasized. Namely, while
procedural languages are based on assignments (e.g. y := f(z)), Modelica is essentially
based on equations (e.g. fi(z,y) = fr(z,y), cf. chapter 2)). An assignment defines a clear
relationship between an output variable y and a set of input variables x. In contrary,
an equation is a relation among several variables that needs to be fulfilled concurrently
(Fritzson 2003). The notion of causality (i.e. input and output) among these variables
is usually absent. This conceptual difference is considered by the way derivatives are
computed for Modelica. The main idea is based on the fact that for an implicit equation
fi(z) = fr(2), the corresponding sensitivity equation w.r.t. a parameter p is the implicit

equation 9/9p[fi(z)] = 9/9p[fr(2)].

Non-causal equation-based AD

The algorithmic concepts behind the implemented equation-based approach for support-
ing equation-based languages are illustrated on the following example.
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Example 13.1 (AD of equations). Assume that the kinetic equation in (IL4) is viewed as
a Modelica equation (i.e. no causality among variables). With the help of the corresponding
AST in figure [I31], a sensitivity equation subsystem can be computed as:

v = V Tis — vo= V' T+ VT,
Tie = Tio1 Tio — Ty, = Ty Tz +Tizn Tiop
Tior = S Tian = Ty = 8 Tz + S Tlopo
1/Tv22 = (S+Kp) = Tioe = —(S"+K},) Ti21i2 Ti212
Tioo = Ky Tio2 = Tiyy = KjTisoe+ Kr Tigg
1/Ti222 = [+ Ky) - Tlose = — (I'+K7) Tizeo Thoo

where T, are intermediate variables computed within intermediate equations and

X = (dX/dpl,dX/dpg,...,dX/dpm)T YV variables X

Figure 13.1.: AST of the kinetic term from equation (IL4]). Different types of subtrees
are considered classifying different potentials of common subexpressions to
arise. Some non-leave nodes represent intermediate variables which indices
correspond to their position in the AST.

Formal specification for setting up an AST of equations is given in (Elsheikh [201xd).
The following facts need to be emphasized:
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1. Common sub-expressions are computed by using intermediate equations carried out
using intermediate variables T

2. Reusing of intermediate variables as in example[IT.7]is not possible, since the number
of identifiers should be equal to the number of equations

3. Intermediate equations are computed by in-order traversal of the AST since the
order of equations is irrelevant

In the previous example, not every intermediate computation is performed through a
temporary variable. This is done in order to avoid excessive number of intermediate
variables, which increases the dimension of the corresponding sensitivity equation system.
This is realized by viewing the AST concept a bit differently from the standard case. Fach
non-leave node is viewed as a root of a subtree. Three types of subtrees are distinguished:

1. subtrees corresponding to a mathematical expression potentially imposing common
subexpressions with its derivative

2. subtrees with a root "/"
3. subtrees without any potential for common subexpressions

Each subtree virtually corresponds to an intermediate equation which evaluates the un-
derlying subexpression. As demonstrated in example [[3.1], each type of subtree is corre-
spondingly represented by

1. a conventional equation in terms of the next intermediate variables, e.g. v =V Tio

2. symbolically modified intermediate equations for efficient representation, e.g.
Ti21 =S Ti2z1z , 1/Ti212 = (S + Kin)
In this way, the resulting derivatives don’t include any divisions

3. conventional subexpressions, e.g. S + K, is not computed by an intermediate vari-
able

13.1.3. Eliminating derivative objects of intermediate variables

Unfortunately, complete derivative objects need to be declared for intermediate variables.
Consequently, the dimension of the underlying DAE system becomes very large. Addi-
tionally, intermediate variables are considered as state variables rather than help variables
for storing intermediate computations. Therefore, large space of memory is required tak-
ing into account that the complete time profile is stored within a simulation. Runtime
tests corresponding to such representation are of low performance.
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A significant improvement is realized by excluding derivative objects of intermediate
variables within sensitivity equation subsystems (i.e. T)). Instead, they are rather ac-
cumulated within one equation by recursive substitutions until no 7, is present. For
example the sensitivity equation subsystem within example [3.1] can be reduced to the
non-simplified equation:

v'o= VI T+ VI[(S Tie+S (—(S+K,,) Tioie Ti212)) Tize
+ Tio1 (K7 Tizoo + K1 (— (I' + K7) Tioge Thae))] (13.2)

The previous equation can be further optimized by introducing local equations storing
common subexpressions as follows:

li = V Tiog Tio12

la = 11 ST

ls =V Tio Tio2

ly = 13 Ky Ti29o

o=V Tio+ 14 S/—ZQ (S,+K7/n)+l3 K}—l4 (I’—FK})

This representation requires much less FLOPs and is carried out by a reasonable number
of intermediate equations.

Efficiency

Taking into account that the Modelica compiler can exploit the sparsity of the input
Jacobian (i.e. K', V'), the following table summarizes the number of FLOPs for one
evaluation of the sensitivity subsystems w.r.t. m parameters using the presented classical
AD approach and the equation-based AD approach:

# Ops + — X /
Equation (IT.4]) 2 0 2 2
Classical AD, example (I1.7)) 442m m 44+8m 0
Non-causal equation-based AD | 2+2m 3m 10+2m 0

The table shows that the number of required multiplications is reduced with the equation-
based AD approach. However, on the other side, the number of used intermediate variables
are increased. Additionally all these intermediate variables are handled from the Modelica
simulation environments as real DAE state variables. Consequently, additional memory
space is consumed by the equation-based approach. This point is analyzed in more details
in section

Modelica-based compiler optimization

The dimension of sensitivity equation systems of typical high-level Modelica models could
be so high that space and simulation runtime become not reliable any more (cf. chapter
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Therefore, ADModelica performs some additional optimization techniques to reduce
the dimensionality of the underlying DAE systems. Moreover, the generated code from
ADModelica is it self subject to further Modelica-based compiler optimization techniques
with which the dimension of automatically generated DAE-systems can be reduced using
several methods. This section outlines some of these techniques.

Removal of trivial equations

A typical Modelica model with many connections implicitly represents a DAE system
with many trivial equations of the form v = v and u + v = 0 at the flat equation level.
The number of equations get drastically reduced when only one variable instance for each
group of such alias variables is kept (cf. section BII). Therefore, a standard Modelica
compiler attempts to remove such equations in order to pass an optimized form to the
end DAE solver. The derivatives of such equations have also similar alias forms and would
be also removed by the compiler. However, associating complete derivative objects to all
such alias variables would be memory consuming as also end-results for these variables
are tabulated. Therefore, ADModelica removes such equations at the flat model level
in a recursive manner as long as such equations further arise after each removal and
substitution. This is done until an optimized equation subset is obtained. Consequently
derivative objects are associated only to meaningful variables.

Code optimization with the Modelica compiler

The input Jacobian J;;, from equation (II.6]) has usually non-zero elements only at the
diagonal elements. The end-generated code declares J;, as a two-dimensional array of
constants as shown in section [23l The sparsity of J;, is automatically exploited in two
aspects by a standard Modelica compiler:

1. It symbolically simplifies mathematical expressions in which many zero subexpres-
sions are present.

2. Resulting trivial equations are automatically removed from the end optimized DAE
Systems.

These points are examined by inspecting the end-generated C-code resulting from com-
piling an ADModelica generated model.

High-level Modelica-based compiler techniques

Figure demonstrates an abstract equation system sorted by the techniques illustrated
in section B3l The directed bipartite graph of the equation system is composed of SCCs.
The underlying topological sorting of these SCCs corresponds to the causality among the
variables. These sorted equations inherit causality information among variables. Within
a typical Modelica simulation environment, such information is not usually utilized for
improved solution. Instead, they are usually solved together as a whole ODE/DAE system

83



Chapter 13. Algorithmic Concepts behind ADModelica

_[xﬁf](xvxv Pl’t):()]
[(xlzfz(xz’xz’l’vt):()]
—>[x3:f3(x'3’x2,x3,p3,t):0 ]

>[x4:f4(x'4,x3,x4,p4,t):0 ]

=[x5:f5(x'5,x4,x5, ps,t):0]

=[x6:f6(x6’x1, xs,xﬁ,Pﬁ,t):() ]

Figure 13.2.: A DAE system in BLT-format

without using a specialized solver exploiting the underlying structure. However, the BL'T
format is useful for explaining the behavior of parameter sensitivities and providing further
optimization opportunities. When computing parameter sensitivities of such systems,
there is no need to blindly differentiate all equations w.r.t. all parameters as equation
([II2) suggests. Instead, it is enough to consider the derivatives of the intermediate
variables laying in all SCCs of the computational path from the independent variable to
the dependent variable (Elsheikh and Wiechert 2008). For example:

e dis3/dpy can be computed by differentiating only the second and third equations
o diy/dps is zero

e [f all parameters are active, the corresponding sensitivity equation system consists
of 6 x 6 = 36 equations. By exploiting the BLT format, only 1+14+2+3+4+6 = 17
equations are needed
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Chapter 14.

The Index of Sensitivity Equation Systems

A typical Modelica model is represented by finite number of components and connections.
These connections represent algebraic constraints among state variables. Therefore, the
underlying DAE system may have a high differential index requiring special handling as
illustrated in chapter @l By applying ADModelica on such a model, sensitivity equations
including additional algebraic constraints are augmented to represent parameter sensitiv-
ities. Meanwhile, the algebraic constraints remain intact in the augmented model. This
gives rise to question about the differential index of sensitivity equation systems and how
a Modelica compiler handles such large dimensional systems. This chapter presents a
theoretical result concerning the differential index of sensitivity equation systems and its
relationship to the differential index of the original DAE system (Elsheikh and Wiechert
201x). Section [I4.J] motivates the main idea behind this chapter. Section handles
the special case of DAE systems of differential index one. Finally, the more general case
is handled in section [[4.3] using the structural index, introduced in section 4.3l

Motivation

Given a DAE system generated from a typical Modelica model:
F(iaxapat) = 07 .%'(to) = .’L'O(p) (141)

and supposing that this DAE system has a differential index more than one, one way to
compute parameter sensitivities can be done by

1. transforming the DAE system into a numerically integrable DAE system of index
one or zero (i.e an ODE system) using index reduction techniques (cf. section E.3])

2. computing the sensitivity equations of the reduced ODE/DAE system. The sensi-
tivity equation system has an identical differential index (cf. section [[Z.2])

3. integrating the resulting sensitivity equation system
The other way can be done by
1. computing the sensitivity equation system of the DAE system (I4.1))

F(:i:,x,p,t) =0, :C(to) :Cﬂo(p)

. Oz (14.2)
Fiip,+ Fp-xp+F, = 0, xp(to) = (;]gp)
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2. reducing the whole sensitivity equation system to a solvable equations system using
index reduction techniques

3. integrating the resulting solvable equations system

Apparently, the first way could be preferred because the index reduction algorithm is
applied to a smaller system. On the other side, the second way has the advantage that
sensitivities are embedded together with the original DAE system in the higher abstrac-
tion form similar to the way ADModelica follows, cf. section I2.3] However, the index
computation of the sensitivity equation system and the selection process of equations for
the task of index reduction become more time-consuming due to the dimension of the
sensitivity equation system. Nevertheless, in this chapter it is proven that for a wide sub-
set of DAE systems of the form (I4.1]), the process of index reduction of the sensitivity
equation system (I4.2]) is similar to the process of index reduction of the original system

(IZ1) in two aspects:

1. The differential indices of both systems are equal

2. Given which subset of equations is selected for differentiation and algebraic substitu-
tion for index reduction of equation (IZ.1]), selection of equations for index reduction
of equation (IZ2]) becomes straightforward.

The next sections clarify for which kind of DAE systems the above arguments are valid.

DAE systems of differential index one

Two cases regarding the differential index of sensitivity equation systems are distinguished
according to the differential index of the original DAE system. In this section it is shown
that for a wide class of DAE systems of differential index one, the differential index of
the sensitivity equation system is also equal to one. Formally, given the DAE system

F@@),y(t), 2(t),p,t) = 0, y(to) = yo(p)

9(y(t), 2(t),p,t) = 0, z(to) = z0(p)
where f and g correspond to a set of ODE and a set of algebraic equations, respectively.
According to definition (LX) of the differential index, index reduction is realized by at-
tempting to express g as a function in y,z and p. This is done by differentiating the
second equation w.r.t. time to obtain:

(14.3)

9y +9:2+g=0 (14.4)

If g, is non-singular, then the given DAE system has the differential index one. It can be
shown that the differential index of equation (IZ3]) together with its sensitivity subsystem

. 0 0
fy'yp+fy'yp+fz'zp+fp:07 a—y(to):%
P b (14.5)
0z 0z
gy'yp+gz'zp+gp:0a 0_p(t0):3—p
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is also equal to one. By differentiating the algebraic part, 1, and 2, can be expressed as
an explicit function in y,, 2,,y, 2,p and t as follows

. -1
Up=—(fy) fy-yp+ [z 2+ fl

. 1[4 d (14.6)
o= —(0:)" [ (0:) 2+ % (9 Up + 9p)|
Thus, for DAE systems of differential index one, the same numerical techniques mentioned
in section [4.4] can be directly applied for integrating the corresponding sensitivity equation
systems without applying index reduction techniques.

DAE systems of arbitrary differential index

This section handles the more general case of DAE systems with arbitrary differential
index. The approach taken for the proof is influenced by the way a Modelica compiler
handles DAE systems of higher indices. Such DAE systems cannot be solved using com-
mon numerical solvers as clarified in section [£.4l They need first to get transformed into
integrable DAE systems of differential index zero or one. Attempting to apply index re-
duction through the standard definition (@H]) of differential index is not practical from
a computational point of view. Alternatively, another algorithm based on the structural
index definition (49) relevant for generalized domain-independent concepts adopted by
Modelica is utilized (cf. section E3]). In this section, it is proven that the DAE system
(IZ1) and the corresponding sensitivity equation system (I4.2]) have an identical differ-
ential index, in case the structural index successfully estimates the differential index.

Common structural characteristics

In this section, it is shown that the structural index of the sensitivity equation system
([IZ22) is equal to that of the original system (IZI]). This is done by utilizing common
structural characteristics between both equation systems. Namely, their corresponding
bipartite graph representations from definition (BI) are isomorphic. Figure I4.]] shows
an example of the computational graph representation of the sensitivity equation system
of a kinetic equation system of a bi-uni reaction:

S = —w dS81/0a = —0v/da
Sy = —w Sy /0a = —0v/da
P = v OP/da = 0v/da
v = f(S1,5,Pv,«a) /0o = 9/0a[f(S1,S2, P,v,q)]

The following definition is used to prove this argument for the general case.
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N - \ g
(D (2 T
N A — \ .'<\ &
e X N
N0 7N,
<X N X

Figure 14.1.: a) The bipartite graph of the sensitivity equation system
b) The bipartite graph of the original DAE system is isomorphic to the
bipartite graph representation of the corresponding sensitivity equations

Definition 14.7 (The induced subgraph). Given a graph G = (V, E) where V is a set
of vertices and E is a set of edges. Suppose that U C V, then the induced subgraph of G
with the vertex set U is defined as:

G U] = (U, Ev)

where Ey = {(u,v) € E: {u,v} C U}

Theorem 14.8. Let G = (V, E,w) be the bipartite graph representation (cf. definition

B1)) of the DAE system (I4.2]) where w is a weight function defined as in definition (£.9)
and let G* = (V*, E*,w) be the bipartite graph representation of the sensitivity system

@22), where
V¥=VUuV =V, UV,uV, UV,

with Vi, Ve as in definition (31) and

o 8231 81’2 al’n r ro /
V {a—p,a—p7...,a—p}7 ‘/e = {617627...,€n}

where e; correspond to the derivative of equation e; w.r.t. p. Consider the graph

¢ =GV]=(V,E,w

xT
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then G' =2 G.

Proof. Clearly, Va; € Vy, i =1,2,...,n 32'; € V' representing %ﬁj.

Similarly, Ve, € Ve, i =1,2,...,n 3¢, € V' representing derivative of equation e; w.r.t. p.
V(ei, ;) € E & (e}, 7)) € E'. Moreover Y(e;,z;) € E , w(e;, xj) = w(e}, z). The graph

G = (V',E' w) = G*/G = G by definition O

The previous theory is in general a way to conclude how Modelica compiler techniques
understand index reduction algorithms are applied on sensitivity equation systems. Since
the definition (4.9)) of structural index is based on its bipartite graph representation from
definition (3], it is expected that the structural index of the DAE system (IZ1) is equal
to the structural index of the corresponding sensitivity system (I4.2]). This is proven in
the next subsection.

The structural index of sensitivity equation systems

The structural index is based on the weight of maximal matchings, see definition (Z.g]).
Consequently, it can be concluded that the isomorphic mapping of a maximal matching

M?" . (G) is also a maximal matching in G .

Corollary 14.9.

1. if M*(G) is a matching = M *(G') = {(e/, %—?) (e ) € MS(G)} is a matching

2. if M™(G) is a mazimal matching = M ™(G') is a mazimal matching
3. w(M!,..(Q)) =w(M,.(G)).

max max

Proof. Straightforward from theorem [I4.§] O
Remark 14.10. A perfect matching in G* is necessarily of size 2n.

It can be shown that a maximal perfect matching M?2" (G*) is composed of two max-

max
imal perfect matchings M7, (G) and M?,.(G') both of size n in G and G respectively.

Corollary 14.11. M?" (G*) = M. (G)U M",

max max max

().
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Proof. ¥ edge v € M2"_.(G*),v = (e*,2*), e* € E* and o* € V*, there are three cases
concerning v:

First case: Either v € F or v € F'.

In this case, the proof is straight forward using corollary and theorem [I4.8]

Second case: e* € E and z* € V.

Then the variable z* representing a %zi ;1 €1,2,...,n is present in an equation e* € E in
equation (I£2) = (Contradiction)

Third case: e* € E' and z* € V.

Since M2" _(G*) is a perfect matching, |V, | = |V, | and any 2/ € V, must be present exactly

max

in one edge u € M2? _(G*) = Ju € M2" (G*) s.t. u= (e,x ), wheree € V,, 2 € V, =
(Contradiction according to second case) O

Corollary 14.12. 1. w(M2"(G*)) =2 - w(MP2,.(Q))

max max

2. w(MZLH(GY)) = w(M, (@) + w(MiZH(G))

max max max

Proof. Straight forward using corollary [[£9 and corollary [T4T1T] O

Using all results concluded so far, it can be shown that the structural index of the DAE
system (I4.1]) is equal to the structural index of the corresponding sensitivity equation

system (I4.2]).
Theorem 14.13. ind(G*) = ind(G)

Proof. ind(G*) = w(Mziz (G*)) — w(M,(G*)) + 1
= WM (G)) + WMoz (G)) = 2 w(My,,(G)) + 1
= w(Mﬁm;% (G)) - w(Mr?zaJ:(G)) +1

= ind(G) O

With this proof, it is enough to apply Pantelides algorithm only on the original equation
system for selecting the equations to be differentiated. Due to the common structural
characteristics of sensitivity system and original system, if an equation e; € V, is selected
for differentiation towards structural index reduction, the corresponding equations e; €
V;, obtained by differentiating e; w.r.t. p, should be also chosen for index reduction of the
whole sensitivity system. Note that the above argument applies only to a DAE system
which differential index is equal to its structural index.
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Chapter 15.
Accuracy of Finite Difference Methods

This chapter is concerned with the accuracy of ADModelica generated models in com-
parison with FD methods. Section [I5.1] analyzes the problematics of standard FD for-
mulas. The following section demonstrates a benchmark showing that for the type
of models handled in this work, the employment of ADModelica is crucial for provid-
ing accurate results in comparison with FD. A more comprehensive treatment of the
analysis of FD methods and their comparisons with analytical derivatives can be found
(Elsheikh and Wiechert [2012).

Finite difference methods

One way for numerical computation of parameter sensitivities is to employ FD methods.
Assuming that the integration of equation (II.I]) leads to the solution:

Tir(p) = xi(te,p) + Eig, 1€{1,2,....,n}, k=0,1,2,.. (15.1)

where |E; | < Tolg-|z;(t, p)|+ Tola represents the local error controlled by the given rel-
ative tolerance Tolg and absolute tolerance Tol 4. In the Dymola simulation environment,
both tolerances are equal by default. Using Taylor series approximations, the required
parameter sensitivities can be explicitly approximated as:

dz; z; 0j) — T
D) = k%) Z k@) o (15.2)
dp; 0j

for i=1,..n & j=1,..m & k=0,1,2,.

where e; € R™ is a unit vector and J; is a small scaler value proportional to the value p;,
e.g. 0; = 0p;. The advantage of this way is that the implementation is straightforward
and requires m + 1 simulations. However, J; needs to be carefully selected in order to
produce accurate results. From one side, the choice of a big d; leads to large numerical
errors in the order of O(d;). Therefore, a higher-order Central Difference (CD) formula
(Eberly 2001, Levy and Lessman [1992) is recommended

dz; =T (p+2e0;) + 8Tk (p+ €j0;) — 8Tk (p — €;65) + Tik (p — 2€56)
D, 124

+0(5;) (15.3)
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for i=1,..n & j=1,..m & k=0,1,2,.

Applying this formula requires 4m + 1 simulations. From the other side, a very small
0; results in numerical errors resulting by division. Moreover, a relevant choice of J;
should consider the used solver tolerance. The approximated derivatives from FD formulas
as in equation (I5.2) use numerical approximated solutions from equation (I5I]). By
substituting (I5.J]) into equation (I5.2]), the true derivatives values become:

dz; i (ts 0j) — @i (tk, E;
dp; 0;
(15.4)
= )+ 05

This equation implies that numerical errors in FD formulas need to be avoided by choosing
0; which satisfies:

3> |Eik(p)l Vi=1,..m (15.5)

Hence, an ideal choice for §; is different for each variable x;, time step tj, the chosen
tolerance and the parameter values p. Consequently, there are some situations where the
standard FD formula may not accurately reproduce analytical sensitivities since:

e ), is constant through the whole simulation time course
e ), is constant for all variables x;,7i =1,..,n

e For some parameters p;, a slight modification p; &+ §; with 6; = p; - 0 (say with
9 = 0.01) may cause the corresponding simulation to be not possible due to highly
singular Jacobian

This agrees with similar complaints reported in literature (Brenan et al/[1989) concerning
the non-accuracy of the computation of the Jacobian by DAE solvers. This is the case
although more sophisticated algorithms for FD computation with variable step-sizes d; at
each time step ty are performed. Therefore, it is not a surprise to find cases where FD
fails to produce acceptable results as shown in the next section.

Accuracy benchmark

This section compares FD methods against analytical methods for computing parameter
sensitivities in terms of accuracy. Figure [[5.1] shows a comparison between parameter
sensitivities using analytical methods and using FD methods of different order with various
settings for the Coryne model from table [6.4. The values of the chosen parameters and
variables as well as the used settings corresponding to figure [I5.1] are summarized in Table
The following remarks need to be considered
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Table 15.1.: The values of the chosen parameters p; and variables z; as well as the chosen
solver tolerance Tol and the corresponding FD step size d; in the benchmark
corresponding to figure [[5.1]

Cases a b ¢ d e f g h
Tol 107 107* 1072 10° 1072 10712 | 1072 10712
5 1072 1073 107! 107* 107* 1076 | 1073 xp; 1073 xp;
pj 1.0 <1073 > 103
|lz;| € [1072,10?] > 10° <1075

e The results using CA technique are not considered since they are identical to pa-
rameter sensitivities using AD techniqu

e Some parameter sensitivities were not computable using the formula (I53]). For
such cases, specialized handling techniques were performed by inspecting better ¢;
or using only forward or only backward FD rather than centred FD formulas

The chosen benchmark reveals some situations where FD results are not accurate as shown
in all cases except figure [5.Jie)). This behavior can be explained by equation (I5.4))
which imply that most of the parameter sensitivities could be reasonably approximated
by avoiding;:

e big §; (e.g. figure I5dl(a,c))
e §; =~ Tolp (e.g. figure I5.I(b,d))
e small ; (e.g. figure f)

However even with reasonable setting choices, figures [[5.1)(g,h) still show inaccurate be-
havior of FD methods with parameters and variables varying within extremely different
ranges of values, which is a very typical for large biochemical network models. This im-
plies that within badly-scaled DAE systems, there would be boundary cases where an
ideal choice of d; which

e does not violate inequality (I50]) for any variable x; at any time step ¢
e and is not so small or not so large enough for avoiding numerical errors

becomes practically impossible (Elsheikh and Wiechert 2012). This can happen when
some variables are highly sensitive to a certain parameter and other variables are almost
insensitive to p; making an ideal choice of ¢; impossible. This can be clarified as follows:
for two variables say z1, z2 and a parameter p; where z1 = O (log (log (p;))), a large value
for 0; is required while for o ~ O (eepj ) a small value for ¢; is needed. In some cases,
once the physical units of some parameters are relaxed, FD may even behave differently.

Tn general, this has not to be the case since different order of executing arithmetic operations could lead
to different results
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a

b

sensitivity

AD vs. FD RelTol: E-4 Delta: E-2

AD vs. FD RelTol: E-4 Delta: E-3

sensitivity

AD vs. FD RelTol: E-2 Delta: E-1

AD vs. FD RelTol: E-5 Delta: E-4.

sensitivity

AD vs. FD RelTol: E-12 Delta: E-4

AD vs. FD RelTol: E-12 Delta: E-6

sensitvity

-

AD vs. FD RelTol: E-12 Delta: E-3

Figure 15.1.: The accuracy of FD methods of order 1,2 and 4 against analytical derivatives
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Chapter 16.

Efficient Simulation of Sensitivity Equation
Systems

This chapter discusses the performance of ADModelica generated models from a run-
time perspective. It shows that the approach adopted by ADModelica is superior to FD
methods. In section [[6.1], two benchmarks of different size scales for comparing the run-
time performance of ADModelica with FD techniques are presented. In section [I6.2], the
low runtime performance of direct integration of large-size strongly nonlinear sensitivity
equation systems is explained through runtime complexity analysis. Such performance
drawbacks are overcome by the method described in section [[6.3]

Runtime benchmark

In this section, the so far presented approaches for computing parameter sensitivities of
two Modelica models of different size scales are tested for runtime performance. The
considered models are the Spirallus model and the Coryne model from table 6.4l Sensi-
tivity equations are computed by ADModelica using SD and AD techniques. The solvers
DASSL and LSODAR from section [£.4] are used with different relative tolerances. Root
solvers for locating solutions at desired time points were disabled to compare w.r.t. the
integration time alone and reduce the influence of 1/O overhead. Simulations are per-
formed from ¢t = 0 to ¢t = 10s. The benchmarks were performed on a Linux machine with
Intel Xeon processors with a clock rate of frequency 2.93 GHz and cache size of 4096 KB.
The best simulation out of ten simulations for each setting is recorded.

A light benchmark: The Spirallus network

The following table shows the runtime performance of computing parameter sensitivities
of the Spirallus model:

Solver LSODAR DASSL

RelTol | 10°* 10°% 108 107 °]10%* 10% 10® 10710
CD (s) | 049 052 051 052 | 0.51 0.54 0.57 0.64
SD (s) | 0.08 0.08 0.09 011 | 0.17 026 0.37 0.57
AD (s) | 0.05 005 007 0.08 | 009 012 0.18 0.27
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The size of the corresponding sensitivity equation system is 1525 with 24 active parame-
ters. The performance of AD is 2 — 10 times better than CD and twice better than SD.
Given that Np and Nj; correspond to the number of function evaluations and Jacobian
evaluations performed by the Newton-like iteration (EI4]). Similarly, N7, and N, corre-
spond to the same performed by the extended Newton-like iteration (B.3) for integrating
the sensitivity equation system. Each Jacobian evaluation is followed by a factorization.
The following statistics justifies the previous table

Solver LSODAR DASSL
Ny Ny | Np Ny
DAE (ILI) 282 5 | 365 21
CD (I53) X24 x 4 = X24 X 4 =
27072 480 | 35040 2016
N, N, | Np N}
AD eqgs. (ITT) + (IT2) | 1251 4 | 4707 20

These statistics were generated with relative tolerance 10~%. For higher tolerances, similar
behavior concerning the relationship between Np and N} as well as Ny and N/} can be
reported. For this benchmark the following remarks are emphasized:

e Ni < Npcp x m: much less function evaluations for integrating the sensitivity
equation system are needed in comparison with function evaluations by CD

e The underlying Newton-like iteration of the sensitivity equation system has not been
executed m times more, although the dimension is m + 1 times larger

e N/~ Nj: the number of Jacobian factorization needed is almost the same

These remarks are used in the analysis given in the next section.

A strongly non-linear large benchmark: The Coryne network

For the second benchmark, 113 active parameters were selected making the dimension of
the sensitivity equation system equal to 19732 with runtime performance as follows:

Solver LSODA DASSL

RelTol | 107* 107 107® 107°] 107* 107% 10=% 10710
CD (s) | 274 27.8 33 38 286 31.8 376 416
SD (s) | o 00 00 00 00 00 00 00

AD (s) | 95 137 0 oo | 156.9 209 oo 00

Simulations that took more than 300 seconds were terminated. The table shows that
SD is not reliable at all. AD is much worse than CD and is not competitive for small
tolerances. The bad runtime performance can be analyzed through the following statistics
with relative tolerance equal to 10~%:
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16.2. Runtime and space complexity

Solver LSODAR DASSL
Ny N; | Ng N,
DAE (ILI) 907 20 | 1281 33
CD (I53) x113 x 4 x113 x 4

409964 1040 | 579012 14916
Np Ny | Np N
AD eqgs. (ILI) + (ITZ) | 81624 23 | 106243 30

The inefficient runtime performance can be explained by:

1. N =& Npcp x m is very large in comparison with the Spirallus model
2. The factorization of a very large dimensional Jacobian

The first reason implies that the underlying large dimensional Newton-like iteration (B.3))
is executed so often when integrating the sensitivity equation system.

Runtime and space complexity

In this section, an estimation of runtime and space complexity for simulating sensitivity
equation systems is presented. Formally, given that:

e f(n) is the average runtime complexity of performing one step of the Newton-like
scheme (4.I4]) for simulating the DAE system (II.1]) of dimension n

e Similarly, f&p(mn + n) and f),(mn + n) for simulating the DAE system (I1.1))
augmented with the corresponding sensitivity equations (IT.2]) computed by SD
and AD techniques for m active parameters, respectively

and under the assumption that the runtime complexity of a DAE system is dominated
by f, table IZ7.1] shows the runtime complexity of all presented approaches for computing
parameter sensitivities. Determining the complexity of f(n) is complex and depends on:

1. The used ODE/DAE solver, its underlying sparse nonlinear equations solver and
whether excessive re-evaluations and factorizations of the Jacobian are avoided

Table 16.1.: An estimation of runtime and space complexity of sensitivity analysis of DAE
systems. N, N’ correspond to the number of required iterations by the cor-
responding Newton-like schemes. [ is the number of intermediate variables.

DAE System Integration Complexity Space Complexity
DAE (I1.1) O(N f(n)) O(n N)
CD (I=3) O(m N f(n)) O(m n N)

SD DAE (ILI) + (IL.2)
AD DAE (ILI) + (L)

O(N' fép(mn +n))
OWN' fip(mn+n))

O(m n N')
O(m (n+1) N')
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2. The nonlinearity of the underlying DAE system, input parameter values p and
tolerance settings determine N as well as how often the Jacobian needs to be re-
evaluated and factorized (cf. section [£.4))

3. In case no factorization is done: the cost of DAE expression evaluation dominated
by the underlying number of FLOPs

4. Otherwise: the complexity of factorizing the sparse Jacobian

With the assumption that Jacobian factorization dominates functions evaluations, the
following relation is assumed to hold

N f(n) = Nrgn)+Ny (9(n)+h(n)) =~ Nrg(n)+ Ny h(n) (16.1)

where  Np, Nj: # of steps with/without factorization respectively
g : # the average cost of evaluating DAE rhs-expressions/iteration

h : # the average cost of factorizing a sparse Jacobian of size n X n

Similarly, the complexity of direct integration of the sensitivity equation system becomes:

N’ filmn+n) ~ N fi(mn) = Npgi(mn)+Nj (gi(mn)+ h(mn))
~ Npg.(mn)+ N; h(mn) , * € {AD,SD} (16.2)

From table [[7.I] a scenario that makes the complexity of integrating sensitivity equation
systems be of the same order of CD can be formulated as:

O(N' filmn+n)) = O(m N f(n)) <«

N eO(N) A [O(filmn)) = O(m f(n))] , *x€{AD,SD} (16.3)

That is, N’ should be in the same order of N and executing the Newton-like iteration for
a sensitivity equation system should be in the order of executing the iteration m times for

the original DAE system. In general, the ratio of the number of FLOPs of a differentiated
equation to that of the original equations is linear for A. Since,

gap(mn) < 4mg(n) € O(mg(n))

that is, evaluating the expression of a sensitivity equation system computed by forward
AD method is in the same complexity order of evaluating the original DAE system m
times. Thus, using equations (I6.1]) and (I6.2), and assuming Ny = N/, equation (I6.3])
can be relaxed to:

O(N'" fip(mn+n))=0(m N f(n)) <« Np€O(Np)A
[O (h(mn)) = O(m h(n)) VvV Nj h(mn) € O(m Np g(n))] (16.4)

That is, given that Ni. € O(Np), if any of the following two cases is valid:

!By decomposition of an equation into a set of binary equations, the derivative of a binary operator
includes at most 4 operations (i.e. division)
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e cither the integration complexity is dominated by DAE expression evaluations rather
than the few iterations N; where the Jacobian get factorized

e or the factorization complexity of the extended Jacobian is linear in terms of m

then, direct integration of sensitivity equation system becomes at least as efficient as CD.
The presented benchmarks show different behavior: In the Spirallus network benchmark,
Np < N < m Np and the performance shows that at least one of the above conditions
is satisfied. For models like the coryne model, N ~ m Np > Np, the performance
becomes uncompetitive. This is also the type of models where the performance of some
state-of-the-art advanced integrators suffer as explained in appendix [B] (Li_et_al)2000).

For space complexity analysis, assume that s(n) expresses the space complexity re-
quired for one evaluation of a DAE system of dimension n. Then the space complexity of
one evaluation of the corresponding sensitivity equation system with the equation-based
approach becomes s(mn+n+In) where [ is the average number of required local variables
per equation for intermediate expressions. The following conclusion concerning the space
complexity of equation-based AD approach can be implied:

s(mn+n+1In) € O(s(mn)) <= m>1V 1e€0() (16.5)

Formally, with increasing number of active parameters m, the space complexity of the
equation-based AD approaches the order of the space complexity of FD methods as long
as N, ~ Np can be assumed.

Runtime performance improvement

The analysis in the last section shows that the runtime performance of direct integration
of sensitivity equation systems suffers from high-dimensional Jacobian as well as from
high number of iterations for the underlying Newton-like scheme. To avoid or reduce
these drawbacks, the method described in (Dickinson and Gelinas [1976) is implemented.
In this method, the original DAE system (I1.1]) is simulated m times, each time together
with one sensitivity subsystem from equation (IT.2]). Although the original DAE system
is integrated m times in this way, smaller Jacobians need to be factorized and the number
of the required Newton-like iterations gets decreased. Further improvement is done in
this work by simply allowing more sensitivity subsystems to be simulated together rather
than only one sensitivity subsystem. The implementation can be easily realized by the
parameterized code generated from ADModelica in which the set of active parameters
can be specified (cf. section [[23]). The following table shows the improved performance
for the Coryne benchmark:
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Solver LSODA DASSL
RelTol 107* 10% 10® 1071°] 107* 1079 10°% 10710
CD 274 278 33 38 28.6 31.8 37.6 41.6
AD 95 137 oo o | 1569 209 oo 0
1 Pars/Sys | 43 43.3 50.8 541 | 41.9 44 455 57.7
2 251 256 306 351 | 235 265 305 37.6
4 144 154 214 25 158 16.1 233 24.1
8 12.1 13.7 188 23 12.4 142 202 243
16 15 185 322 443 | 153 201 29 405

The result shows that AD is twice better than CD and that simulating 8 sensitivity
subsystems together was the best setting for this model. Under the assumption that Ny, €
O(Np) motivated by the underlying statistics, equation (I6.4]) concerning the runtime
complexity of this way can be relaxed to :

O(N' fap(mn+n))=0(m N f(n)) <«
[m/k O (h(kn)) =O(m h(n)) VvV Njym/k h(kn) € O(m Np g(n))] (16.6)

where k is the number of sensitivity equation subsystems. With a small value of k, small
dimensional Jacobian need to be factorized, whereas for a large value of k less repetitive
computations are performed although the number of iterations of the underlying Newton-
like increases. Hence, with a relevant choice of k, integrating sensitivity equation becomes
at least as efficient as the performance of CD if

e the complexity of factorizing the extended Jacobian of sensitivity equation systems
of smaller dimension has a linear behavior

e the number of DAE expression evaluations dominates the low factorization cost

Consequently, equation (I6.6]) implies that the performance gap between the adopted ap-
proach and using advanced solvers based on utilizing the structure of the Jacobian (cf.
section [B)) vanishes with increasing number of active parameters m. However, the main
drawback is that the structure of the Jacobian of a sensitivity equation system, shown
in equation (B.4), is not utilized for cheap factorization. However, ADModelica benefits
from the advanced solvers used by which Jacobian factorization is performed only for few
iterations. In this case the runtime cost of DAE expression evaluations may dominate the
factorization.

Another advantage of the presented method is that it is easily parallelizable. In (K¢
2009), the sensitivity equation system of the model EMP from table with 334 active
parameters and nearly 500 000 equations were tested. Conventional direct simulation was
not possible any more. By parallelizing the simulation of sensitivity subsystems with one
parameter with 8 processors, it took about two minutes on the mentioned hardware. The
main drawback is that the simulation time required usually differs for each sensitivity
subsystem making the distribution of computationally identical tasks for each processor
non possible. However parallelization behavior is linearly scalable up to 8 processors.
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Chapter 17.

Large-scale Parameter Estimation

In (Mauch et alll1997), it was stated that the practical realization of sensitivity analysis of
large complex metabolic systems might be virtually impossible if the necessary differential
equations were to be created manually due to the tremendous efforts of differentiation. In
this part, it is shown that not only this is possible through automatic differentiation, but
also heavy computational tasks based upon sensitivity analysis and related to ill-posed
inverse problems can be reliably performed. For instance, an example is model selection
introduced in chapter [I0] where the best subset of "valid" models need to be identified
out of combinatorially high number of model candidates. The identified subset of models
needs to best describe available data measurements as well as to accurately predict further
experiments. Consequently, the key issue for ensuring a successful model identification of
high quality is an efficient parameter estimation process in terms of good ratio of accu-
racy to runtime performance as well as good parameter identifiability. Nevertheless, the
underlying parameter estimation problems is known to be ill-conditioned and multimodal
so that traditional optimization algorithms fail to yield satisfactory solutions.

This chapter addresses the main difficulties behind such problems (section [I7.1]) and
efficient strategies for tackling them are presented. Namely, the equivalent optimization
problem of identifying semi-optimal start values with which derivative-based optimization
strategies is considered (section[IT7.2]). Targeting the solution of this problem, standardized
hybrid derivative-based strategies are developed and evaluated against naive derivative-
based multistart strategies (section [[7.3]). A comprehensive specification of derivative-
based hybrid heuristics is given in (Elsheikh 201xa).

Common problems behind large-scale parameter estimation

Typical parameter estimation problems aim at minimizing the distance r : R™ — R
between simulation results (p,t;) € R of a given DAE system of the form (IT.I) and
measurement data Z(t;) € RN at discrete time points t; with j = 1,..,.S in the sense of a
least square problem:

r(p) = (Q7Q) /2,

Q=lq1,1,91,2, -, 91,5: 92,1, -, AN,S
Gy = wij (Ti(t;) — zi(p, tj))

]T c RNS><1 (17,1)

)
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where wj ; is a weight factor derived from standard deviation of errors in the measurements
Zi(t;). In order to assist statistical analysis, these errors are assumed to be independent
and follow a normal distribution. For this type of computational problems, where z(p,t)
represents the simulation results of DAE systems described in the Modelica language,
many difficulties exist of both technical and algorithmic nature. Moreover, the reliability
of the results provided by the underlying parameter estimation algorithm needs to be
questioned and analyzed.

At the algorithmic level the considered parameter estimation problem is hard to solve
due to the nonlinear dynamics of the underlying models. Standard global optimization
algorithms, to which open-source implementations are available, can not claim to solve it
with certainty in finite time (Moles et al.l2003). While some deterministic global optimiza-
tion methods (e.g. branch and bound (Leyffer [2001)) have sound theoretical convergence
properties, the associated computational effort increases exponentially with the prob-
lem size (Schweissgut and Wiechert 2010). Stochastic methods and other metaheuristics
(Talbi 2009) (cf. appendix [D.2]) which have weak theoretical guarantees of convergence,
require excessive computations for finding a nearly global optimum (Mended [2001). On
the other side, derivative-based local optimization methods are not reliable. They have
instable behavior with DAE systems corresponding to reaction networks of practical size
if no constraints are given, i.e. for start-values chosen even very close to the optimum
the algorithm may diverge. This makes the results of constrained optimization very
doubtful as usually optima at boundaries are found. Moreover, in contrast to the pop-
ular common belief, naive multistart strategies of local derivative-based methods (e.g.
Levenberg-Marquardt) are unsatisfactory (Boender and Romeijn [1995).

Most of these problems can be explained by the nature and the structure of the problem
as well as the inaccuracy of data measurements and high correlation among parameters.
Consequently, most of the parameters are poorly identifiable, i.e. they can not be uniquely
estimated. Even for DAE systems corresponding to small reaction networks with optimal
set of well-identifiable parameters and data, derivative-based methods require very good
start values close enough to the global optimum in order to converge as have been done
in Biegler (Tjoa and Biegler [1991). In contrary, if start-values are chosen in a fair way,
without knowing the global optimum a priori, only local optima are going to be identi-
fied (Mendes and Kell 1998). This deficiency to converge to a global minimum may have
dramatic consequences in the context of reaction kinetics (Michalik et all2009).

At the technical level, a practical realization of parameter estimation for Modelica mod-
els was hindered by many difficulties. For instance, parameter values suggested by any
optimization algorithm may cause the Jacobian of the underlying DAE system to become
numerically singular that the simulation time is excessively enlarged. In this way, a single
simulation may hinder the whole parameter estimation process. Without providing solu-
tions to these problems, implementation of strategies for successful parameter estimation
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would not be possible. Appendix [D.1] briefly summarizes these technical difficulties and
presents some solutions to them.

Identification of optimal start values

For the type of models this work is concerned with, derivative-free methods are not reliable
at all in terms of computational power needed. Therefore, derivative-based optimization
methods should be employed in a way or another in order to achieve acceptable results
in a reasonable amount of time. However, derivative-based methods require very good
start values for identifying good optima. The problem of identifying optimal start values
is formally summarized as follows: Given a derivative-based optimization method (e.g. by
a Newton-like scheme method), and assuming that S; C R™ correspond to all subspaces
such that any start point pj € S; converges by the given method to a local optima pfOc
and S; N Sj = ¢ Vj # 1, then in order to locate the global optimummz

{p* € R™:r(x(p",t),z(t)) < T(x(pfgc,t),i“(t)) fori=1,2, }

optimal start values pj € S, converging to p* need to be identified. The determina-
tion of such suitable start values pf; for high dimensional parameter estimation problems
that are located within the global convergence non-convex area Sy« of a derivative-based
optimization algorithm is not trivial because:

1. The space S, C R™ of physically admissible parameter values is typically large.

2. The sensitivity system whose solution is required for computing parameter sensitiv-
ities is usually solvable only in a subspace S, C S according to the chosen solver
and the tolerance input settings.

3. Some parameter values can cause numerical difficulties that are associated with
the numerical solver. The subspace covering such parameter values is denoted by
Sqiff € Sgo)- For instance, it is often the case that suggested parameter values make
simulation time very long due to semi-singular Jacobians.

4. Ideally, global convergence is theoretically guaranteed for start values py € N(p*)
from a convex subspace Sy, (,+) C S, around the global optimum p*.

5. Nonlinear optimization problems usually have numerous local optima. If the under-
lying parameters set is not well-identifiable (i.e. high correlation among parameters
exist), then there are infinite number of local optima.

Hence, start values should ideally be chosen within the subspace:

Scom) = SNe(p*) N (SSOI/Sdiff)

1 . . .
or a global optimum in a numerical sense
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in order to efficiently locate the global optimum p*. Since Scopn, is notably smaller than Sp,
naive multistart optimization strategies are not practical for high dimensional problems.
Most arbitrarily chosen start values either diverge or converge only to a local optimum
as it will be shown in the next section. Moreover, computational efforts are significantly
increased by the computation of parameter sensitivities. The key issue behind global op-
timization methods presented in this work is directed towards locating reasonably good
start values. The trick is to view the problem of identifying the global optimum as an
optimization problem of identifying optimal start values in a reasonable amount of time
with which a local derivative-based method converges to a good solution. In the following
sections, different strategies for improving the search within the space \S), are presented.

A further fundamental improvement for this type of high-dimensional badly-scaled mod-
els was to apply parameter scaling techniques illustrated in standard literatures. As
shown in the next sections, such techniques show significant improvements in the results
since the local convergence area is enlarged (i.e. S Ne(p*))- Moreover, the behavior of
such methods show improved stability and even unconstrained optimization becomes also
possible (Nocedal and Wright 2006). Although applying such techniques is straightfor-
ward to implement (cf. appendix [D.3]), professional software such as LEVMAR (Lourakis
Jul. 2004), IPOPT (Wichter and Biegler 2006) and the Matlab Optimization toolbox
(see www.mathworks.com) don’t provide such opportunity.

Hybrid heuristics

As already mentioned, there is no global optimization algorithm that can find optimal
solutions in acceptable amount of time from a practical perspective. For the considered
parameter estimation problem, it would be advantageous to collectively apply several
types of algorithms in order to utilize the advantages of each algorithm and avoid the
disadvantages of each one as much as possible. This can be achieved by employing hybrid
heuristic strategies which require as inputs the considered optimization problem together
with a set of optimization algorithms and produce best possible solutions as outputs.
Then, this is realized by solving the input optimization problem according to various
mechanisms for hybridizing the given input optimization algorithms. Hybrid heuristics
have been shown to provide the best solutions of many practical and known academic
combinatorial optimization problems (Talbi 2009). This section presents a first study of
the effectiveness of employing hybrid heuristics for the considered type of problems. It
can be considered as an extension of the study presented in (Talbi 2002) in two aspects:

e The same techniques exclusively applied to combinatorial optimization problems
(i.e. discrete search space) are examined with nonlinear programming problems

e The input optimization algorithms may contain non-metaheuristics like derivative-
based methods (cf. appendix [D.2] for the notion of metaheuristics)
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Here derivative-based methods cannot be completely considered as metaheuristics since
additional information (i.e. derivatives) is required and hence are not applied as black-
boxes to input problems. Two modes for applying hybrid heuristics are demonstrated:

1. Relay mode: a set of optimization methods applied in a pipelined way where the
output solutions of one method are the inputs of another

2. Low-level cooperative mode or co-evolutionary hybridization: a cooperative opti-
mization model where an input method performs a search in the solution space of
another method

For the set of input algorithms, out of two families of classes, the following methods are
selected as input methods to the above modes:

e Naive multistart derivative-based methods: Newton-like method with trust-region
approach (e.g. Levenberg-Marquardt)

e Evolutionary population-based methods: Differential evolution method known to be
among the best derivative-free methods in academical competitions (Storn and Price
1997)

17.3.1. Relay mode: Scatter search

Instead of performing naive derivative-based multistart strategy, that is applying com-
putationally expensive derivative-based methods to a randomly generated population of
start values, it is less costly to apply a derivative-based method to start-values generated
by an evolutionary method. Namely, the space S, is first cheaply explored by the chosen
evolutionary-based algorithm. The resulting population of parameters are distributed
along the space S, and are taken as start-values for a derivative-based optimization al-
gorithm. In this way, the resulting start-values are already nearby local optima to which
convergence is fast and computation of sensitivities are not consumed on badly located
start values. If the evolutionary-algorithm finds a solution within the convergence area of
the global optimum p* for a derivative-based method, the global optima (or at least very
nearby) would be found by the derivative-based method.

The method derived by this mode already resembles an existing published method in
literature called Scatter method (Rodriguez-Fernandez et al) 2006). However, the pub-
lished method is more sophisticated and includes more strategies such as generation of
start-values using a logarithmic distribution (to intensify the search near boundaries) and
handling flat regions with deterministic exact strategies (e.g. branch and bound). The
overall method with all these sophisticated strategies can still be characterized as a hy-
brid method since the initialization of populations can be controlled by the initialization
strategy of population-based methods and handling flat regions can be done by inserting
additional methods in the methods pipeline of the relay mode.
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Co-evolutionary hybridization

The scatter search philosophy is to find start points with quality function of low values
for derivative-based algorithms. This implies that such strategy may not be able to find
global optima belonging to very narrow convergence areas not necessarily identifiable
through start values with quality function of low values. The strategy resulting by the
co-evolutionary hybridization mode can overcome such difficulties as it is optimizing the
generation of start values for derivative-based method in the space S,. This is realized
by letting the objective function of an evolutionary-based method start a derivative-
based optimization for few iterations. Namely, for each population of start values, only
parameter vectors with which derivative-based optimization shows a fast convergence
behavior are used for generating the next set of start values. This would be more or less a
directed search in S),. In the first couple of populations, the behavior remains the same as
by a naive multistart strategy. In advanced populations, parameter vectors are generated
out of various mixture of parameter components that contributed to a fast convergence.
As shown by the benchmark in the next subsection, the resulting strategy is significantly
better than naive multistart strategy in terms of computational cost and results quality.

Benchmark

As a benchmark for both modes, the Spirallus model from table [6.4] was chosen to test
the efficiency of parameter estimation against the naive multistart strategy by which
derivative-based optimization is performed on randomly generated start values. The fol-
lowing configuration was used by the benchmark:

e For each kinetic parameter a value in the interval [0,1000] according to a uniform
distribution is generate

e Simulated data are generated out of forward simulation from time ¢t = 0s to t = 15s
using the default parameter values as published in the dissertation (Wahl [2007)

e The simulation results are extracted at equidistant discrete points at every 0.2s

e FEach entry in the simulated data is randomly generated according to a normal
distribution whose mean value is equal to the corresponding simulation result and
standard deviation equal to 0.1

e w; ; in equation [I7.1] were scaled in a way to make r not so small

The implementation of both modes is straightforward using the Matlab optimization tool-
box together with an open-source implementation of the differential evolution algorithm
provided by the author of this method. Figure [7.] shows a comparison between hy-
brid heuristics and naive multistart strategy with and without parameter scaling. The
following table shows also some statistics of the results.

2In (Moles et all [2003), some subsets parameters referred to as hill coefficients are allowed to vary only
in a smaller interval
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Table 17.1.: Outputs of the presented multistart strategies. The term population refers
to the initial number of parameter vectors generated. Only simulations of
sensitivity equations are counted. Runtime of each method is dominated by
the number of required simulations.

Methods Naive Scatter Search Evolutionary
# of populations 1000 250 250
# of DE iteration - 1 10 20 50 100 20
best quality (r) 12.28 | 20.58 8.84 8.74 8.62 8.62 1.75
# of pts < 100 60 18 174 207 206 225 250

# of simulations 57424 | 9829 7525 6210 5647 5253 c.a. 75000
with parameter scaling
best quality (r) 11.33 | 1851 7.49 842 571 5.71 1.25
# of pts < 100 247 55 213 243 248 249 250
# of simulations 50353 | 7555 7386 7059 7180 7305 c.a. 65000

Based on the figure and the statistics, the following conclusions are emphasized:

1. Parameter scaling significantly improves the quality and the stability of parameter
estimation independent of the method used

2. In scatter search, with very few simulations much better results can be achieved

3. In evolutionary-based multistart, with nearly the same number of simulations the
best results can be achieved.

In this work, direct comparisons between scatter search and evolutionary methods is
avoided due to many reasons. First of all, only one type of evolutionary-based strategy
has been examined (i.e. differential evolution). Other various evolutionary algorithms
have not been examined in this work. Moreover, for scatter search only so few simula-
tions have been performed that a direct comparison is not fair any more. For the used
settings, increasing the number of populations does increase the number of simulations
but does not improve the end results. This behavior might not be necessarily the same if
other settings or different type of evolutionary algorithms are used. For these reasons, this
study does not draw any conclusions concerned with direct comparisons of both hybrid
modes.

Appendix [D.4] introduces further global optimization methods that have been imple-
mented and examined in this work. Nevertheless, hybrid heuristics are the recommended
one due to the simplicity of implementation, applicability to this type of models and the
quality of the results.
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Statistical Analysis of Parameter Estimation

Identifiability of model parameters

Determining the parameter values that minimizes a least-square function is only a part
of the parameter estimation problem. An equally important part is to supply measures
for the reliability of the estimated parameters (Johnson 11992). Namely, desired is to de-
termine the identifiability of model parameters and their precisions. This can be done by
examining the presence of dependencies among model parameters and determining confi-
dence regions corresponding to the propagation of measurements errors on the estimated
parameters.

A widely used method for computing such confidence regions is based on an approxi-
mation of the covariance matrix using Fischer Information Matrix (FIM) of the linearized
model in the neighborhood of the best parameter estimates (Marsili-Libelli et al) [2003).
This is done under the assumptions that data measurements errors are independent and
follow a normal distribution. Dependencies among model parameters can be also de-
tected using the approximated covariance matrix. While this method is known to work
precisely with linear models, however the resulting confidence regions might be unrealistic
for nonlinear models. In order to overcome the doubts behind using the linearized sta-
tistical analysis on nonlinear models, more realistic bounds can be determined using the
computationally expensive bootstrap method (Efron1979). In this method, Monte Carlo
simulations of parameter estimation using variated data samples are performed and the
best estimates are recorded in histograms which correspond to preciser confidence regions.

Case study

Figure I8 shows a sample distribution of 20 estimated parameters using the bootstrap
method with 256 samples of variated data for the Coryne-based models with and with-
out labellings for describing the central Metabolism from table Additionally, for
emphasizing the influence of parameter dependencies on parameter identifiability, the
corresponding correlation among parameters based on linearized statistical analysis is
shown in figure 821 The following configuration was used by the bootstrap method:

111



Chapter 18. Statistical Analysis of Parameter Estimation

e In-silico data was generated from time ¢ = Os to ¢t = 30s for only known measurable
metabolites

e For each metabolite (or a label of a metabolite), 5 measurements per second with
standard deviation equal to 0.1 were computed

e For each sample, a multistart derivative-based optimization is performed using the
LEVMAR software written in C and implementing Levenberg-Marquardt algorithm
(Lourakid lJul. 2004)

e 8 start-values were randomly generated in the small interval [0.9p*,1.1p*| in order
to attempt avoiding multiple-local optima, where p* is the parameters set used for
computing in-silico data

e For each data sample, the optimized parameter set corresponding to the best quality
as well as the corresponding linearized variances were recorded in the result

In order to reduce the computational cost, the expensive computations were per-
formed on the supercomputer JUROPA. This supercomputer includes 2208 computing
nodes each of which has 2 Intel Xeon X5570 (Nehalem-EP) quad-core processors of
frequency 2.93 GHz and 24 GB of memory. The total number of cores is 17664 with
total peak performance of 207 Teraflops making this supercomputer in the 10th-23rd
position within the top-500 list of supercomputers within the years 2010 and 2011 (see
http://www.top500.o0rg). For the non-labeled coryne-based model (cf. Table[6.4]), about
2 hours and a half using 32 processors were needed to perform Monte Carlo simulation
with the mentioned configuration whereas the most expensive computations with the la-
beled Coryne-based model with 120 kinetic parameters required about 11 hours using 128
processors.

In order to support performing identifiability tests, a base software supporting parame-
ter estimation as an incremental iterative process has been implemented. This open-source
software, available under https://github.com/AtiyahElsheikh/DecTrees, provides an
implementation of decision trees with which complex hierarchical computational tasks
can be assisted. The overall role of this software in supporting parameter estimation and
identifiability analysis is illustrated in Appendix [E.2] (Elsheikh 2013).

Analysis of the result

According to the histograms of figure [I8.1] resulted from the bootstrap method, different
groups of parameters can be classified:

1. Well-identifiable parameters with small length of confidence intervals
2. Poorly-identifiable parameters with large length of confidence intervals

3. Insensitive parameters which don’t influence the parameter estimation
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By a close investigation on the correlation among parameters in figure 82 the non-
identifiability of some parameters can be explained by the presence of strong correlation
among parameters. In the considered examples, about one third of the parameters have
strong correlation among them selves. For two or more correlated parameters, the influ-
ence of a change in parameter value can be eliminated by a change in another parameter
value making the underlying parameters set poorly identifiable. Improved identifiability
of parameters can be achieved when some of these parameters are fixed to constants.
Consequently, prior to the parameter estimation process, identifiability analysis aiming
at identifying non-uniquely estimated parameters should be performed in order to achieve
reliable confidence regions as well as to overcome many of the troubles arising in the pa-
rameter estimation process.

Another important observation is that the identifiability of kinetic parameters of the
labeled coryne-based model get improved due to the availability of more data measure-
ments. This can be investigated through the following observations:

e For well-identifiable parameters, the length of their confidence intervals from the
bootstrap method get decreased up to the half

e The shape of some distribution of estimated parameters become similar to normal
distributions

e Less presence of dependencies among parameters

The same results have been reported in (Wahl 2007), however using small models like the
Spirallus model.
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Distribution of a sample of estimated parameters
Upper: non-labeled coryne-based model
Lower: labeled coryne-based model




| ‘ [-ale]
gapA

AKGb
CO2e
E4Pb
F6Pb
G6Pb
GA3P
LYSe
OAAb
PEPb
PYRb
R5Pb
aceA
aceA
aceA
aceB
aceB
aspB

. ACCO

Figure 18.2.: The correlation among the parameters of the coryne-based model computed
using the approximated covariance matrix. Light-colored icons refer to a
strongly positive correlation between a pair of parameters. Dark-colored
icons refer to a strongly negative correlation. 115
Upper: non-labeled coryne-based model
Lower: labeled coryne-based model



Chapter 18. Statistical Analysis of Parameter Estimation

116



19.1.

Chapter 19.
Visualization of Parameter Sensitivities

In this chapter, a visualization tool that has been developed within a supervised master
thesis for supporting primary applications in the field of Systems Biology is employed (Ke
2009). With this tool, dynamic control coefficients computed with the help of AD are
visualized. These coefficients can be viewed as a help tool which gives the opportunity
for straightforward identification of significant model parameters subject to modification
and experimentation.

Motivation

For cellular processes, it is very practical to quantify the impact of e.g. environmental
conditions, substrate concentration, enzyme amounts or kinetic properties (controlled by
genetic modifications) on the amount of product or waste, certain cellular activities, side
effects and others. From one side, understanding a biochemical reaction network only
from data measurements is very limited due to the high complexity of a large number of
effectors and hidden back loops (cf. chapter [l). From the other side, even if the applica-
tion of a specific modification was partially successful, it cannot be completely explained
whether the targeted change is the real cause or not. The success might be raised to
global effects caused by a minor change in another hidden variable that is thought to be
insignificant.

A way to quantify the influence of changes of enzyme quantities on fluxes and intra-
cellular metabolites with no or little impact of global effects is to perform small changes
to them and analyze the response of the system. With the availability of a mathematical
model, the influence of infinitesimal changes to inputs can be examined by elementary
simulations. Figure [[9.1] demonstrates an example using the Spirallus network of figure
6.1 The simulation shows that a slight increment on the value of the maximal reaction
rate vgmae results in a decrease of vg and hence a decrease of the production of F,.
Similarly, if engineering methods are viewed as a mean for controlling the concentration
of intracellular metabolites, simulation shows that a slight increase in the concentration
of C results in an increase of the production of F,.

Instead of employing elementary simulations, it would be more practical for large com-
plex network models to employ the tools of sensitivity analysis and visualization tech-
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niques to provide means for quantifying the impact of all important parameters in the
form of comparable visual pools of information. In the field of Systems Biology, these

means are realized by some tools from the field of Metabolic Control Analysis (MCA)
presented in the next section.

Control coefficients

The base for a quantitative analysis of biochemical reaction networks was constructed
by MCA through quantitative measures referred to as control coefficients for measur-
ing the response of system variables to relative infinitesimal small parameter changes
(Kacser and Burns 1973, Heinrich and Rapoport [1974). Initial attempts were done by
experimentally altering enzyme activities and measuring the resulting change in fluxes
(Fell [1992). However, achieving this at experimental level is usually inaccurate since ge-
netic modifications have usually large scope of influence on various enzyme quantities and
large effect on the regulation of effectors (Ehlde and Zacchi1996).
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19.2. Control coefficients

An ideal alternative for quantifying the impact of input changes to a whole biochem-
ical reaction network is promised by computing control coefficients via a model-based
approach. Such coefficients can be directly derived from solving the sensitivity equations
of the network mathematical equation (G.I]):

d Oc ov Odc Ov
aa—a_N-(%xa—a—i—a—a) (19.1)
. Oc e ov Oc or B
with %(0) satisfying : 80(0) X e (0) + Ba(o) =0

The initial conditions guarantee that the computed sensitivities expresses the influence
of inputs around known steady-state conditions (Mauch et all|1997). By eliminating the
physical units in resulting derivatives, dynamic Concentration Control Coefficients (CCC)
are explicitly computed as:
a;  0S;

CYit)y ==L . ZZ@) Vi=1,2,..m & j=1,2,. 19.2

0=2 5artt) ) (19.2)
These coefficients can be fairly compared against each other. In addition to CCCs, dy-
namic Fluzx Control Coefficients (FCCs) are implicitly present in equation (I9.1]) and can
be computed as:

Q n 31)k ({952 %

G ) =t 3| 550 g ) + o

(19.3)

The last equation quantifies the impact of a change in «; on the reaction rate v;. This
magnitude imposes two types of influences:

1. the local influence of the change in «;
2. the global influencd] of the resulting change in a metabolite S; on vy

The resulting coefficients serve as a pool of detailed comparable information from which
the most suitable candidates can be selected for metabolic manipulation as they reveal
vital information not available in data measurements alone like:

e which factors (effectors, parameters, etc.) impose the most influence on desired
outputs and should be considered as modification targets at experimental level?

e which model parameters are insignificant and could be excluded?

e how far the network model describes the considered biochemical system?

!This should not however be mixed with global sensitivity analysis.
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19.3. Visualization of control coefficients

It would be very practical to be able to:
e compare control coeflicients simultaneously against each other
e animate the dynamic FCCs and CCCs along the time axis

through a visualization tool. Techniques and algorithms for visualizing sensitivities have
been comprehensively discussed (Noack et al) 2008, [Qeli et all [2004). Within (Ke 2009),
a prototype tool for visualizing pure Modelica simulation time-dependent results has been
implemented. The tool is based on well-defined architecture based on UML and provide
standardized plug-ins mechanisms for extending further functionalities. The tool is an
ideal base implementation for developing further advanced visualization features:

1. Scaling: emphasizing small sensitivities against dominant ones
2. Filtering: removing variables and parameters to concentrate on important targets

3. Interactivity: performing previous operations interactively without explicit recomputation
from the user side

Within this work, the implemented tool has been employed for visualization of control
coefficients of any differentiated Modelica models. The following are some samples of
dynamic FCCs and CCCs.

As a benchmark, the Spirallus model from table is considered. Parameter sen-
sitivities are computed using ADModelica and scaled to control coefficients in Matlab.
Visualization of pure control coefficients is inappropriate as only the most significant con-
trol coefficients are emphasized due to the large discrepancies among control coefficients.
In order to obtain meaningful results, more scaling techniques are applied to emphasize
important information and handle possible singularities in the visualization process.

The implemented visualization tool can animate dynamic control coefficients. Figure
shows snapshots of animated dynamic FCCs w.r.t. maximal reaction rates V..
The most influential parameter w.r.t. all variables along the simulation time axis have
the darkest color (corresponding to either of value 1 or -1). The rest of the sensitivities
are scaled according to the darkest color. Additionally, the tool provides the feature of
excluding and/or inserting additional parameters (i.e. filtering) and variables as shown in
figure [[9.3] which shows FCCs w.r.t. all kinetic parameters.
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Figure 19.2.: Snapshots of time-dependent flux control coefficients w.r.t. maximal reac-

tion rates
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Another visualization perspective is to reserve one axis for the time as shown in figure
[9.4]in which time-dependent concentration coefficients are provided.
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Figure 19.4.: time-course of the concentration control coefficients of the products F,, Fe,

The same concepts have been applied in m M) for the vertical model from table
for identifying targets for metabolic engineering, however using another visualization

tool (Qeli et al!2005).
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Chapter 20.

Summary, Outlook and Future Perspectives

Summary

Along this work, many computational tools, libraries and conceptual notions have been
implemented. This section highlights the most promising achievements for the Modelica
community within this work. At the level of AD, it is worth to mention that:

1. ADModelica, the first AD tool for Modelica models, has been implemented. It is
used for generating Modelica models in which sensitivity equations are efficiently
represented. By simulating the generated models parameter sensitivities are com-
puted. These quantities are required by a wide range of applications of sensitivity
analysis. The tool is implemented with minimal efforts making use of an already
existing open-source compiler. The AD concepts invented within this work fully
readopt Modelica-based compiler techniques and notions forming a new AD ap-
proach for equation-based languages. The resulting tool supports a subset of Mod-
elica grammar and has been successfully applied on high-level Modelica models in
the field of Systems Biology.

2. It has been shown that computing parameter sensitivities analytically via AD is
superior to numerical finite difference methods in terms of runtime performance
and accuracy. From one side, it is shown that the performance of simulating the
automatically differentiated sensitivity equations achieves the expected theoretical
runtime performance of forward sensitivity analysis. From the other side, analytical
parameter sensitivities of nonlinear badly-scaled DAE systems, a common charac-
teristic of large models, are more accurate and they don’t inherit common problems
arising in finite difference methods.

3. The absolute advantage of having an AD tool for Modelica models, in addition to
the mentioned reasons, is that the generated models are completely platform inde-
pendent and syntactically represented by legal Modelica grammar. Hence, they can
be compiled and simulated within any existing Modelica simulation environment.

Being able to compute parameter sensitivities efficiently, heavy computational tasks
have been performed such as:
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4. The task of realizing parameter estimation of large-scale Modelica models is typi-
cally of a challenging nature due to the poor practicability of conventional methods,
nonlinearity of the underlying DAE systems and the presence of measurement er-
rors. Aiming at achieving stable process of parameter estimation as well as high
result quality, many efforts both at technical and algorithmic levels have been per-
formed. This includes the implementation of parameter scaling techniques found
in standard literature but not usually adopted by common optimization software.
Additionally, many non conventional global optimization methods like multiple-
shooting and cluster algorithms have been examined. The performed study reveals
that among the most promising global optimization methods in terms of high result
quality and low implementation efforts are hybrid heuristics. In this work, some
heuristics, shown to submit the best results to known combinatorial problems in
academic and industry, have been extended to nonlinear optimization problems.
The results are significantly better than those produced by naive derivative-based
multistart optimization strategies.

5. In addition to the task of locating a global minimum of least-square functions, an
equally important task is to examine the validity of the estimated parameters. With
the help of linear and nonlinear statistical methods via FIM and Monte Carlo boot-
strap method correspondingly, the identifiability of parameters and their confidence
regions can be studied. The heavy computational costs have been reduced through
the utilization of high performance computing resources for parallel computing. This
has been done by implementing software with which communication with Modelica
models within C/C++ programs is possible. In this way, it is possible to obtain and
manipulate parameter sensitivities of ADModelica generated models within C/C++
programs and link them with open-source optimization software on supercomputer
clusters.

Additionally some AD-based tools and further contributions have been implemented
some of which are listed as follows:

6. A tool for visualizing scaled parameter sensitivities has been implemented within a
master thesis (Ke 2009)

7. Applications of sensitivity analysis in the domain of Systems Biology has been per-
formed in several previous works (Noack 12009, Tillack et al. 2009) as well as cur-
rently running PhD theses

Within this work some domain-dependent contributions have been achieved as follows:

8. A compact library for various simplified and generalized kinetic formats for mathe-
matical modeling of highly complex biochemical reactions have been implemented.
This library is adequate for applications of automatic model generation.

9. A highly Modelica-based specialized editor for modeling biochemical networks through
cooperative works with colleagues has been implemented.
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20.2. Outlook

Both previous mentioned achievements can be viewed as an extension to a compre-
hensive comparative study between the domain-independent Modelica language and the
specification language SBML, the standard language established by the Systems Biology
community. It has been shown that efficient employment of powerful Modelica language
constructs significantly simplifies the implementation of highly specialized tools in the do-
main of Systems Biology, in a way SBML may not provide. For instance, model families
can be completely specified by utilizing the power of Modelica language constructs, which
is not the case with SBML. Finally, this work also covers a theoretical result concerning
the differential index.

10. The differential index of sensitivity equation systems is equal to the differential
index of the original DAE system in case the structural index of both systems is
identical.

Outlook

Running and future works concerning Modelica-based oriented research should consider
the fact that the Modelica community is continuously getting larger that common prob-
lems not going to remain for ever and standardized solutions will be provided to them.
Open compiler tools are going to get improved in terms of compiler enhancements , en-
hanced numerical solvers and compiler run-time , efficient execution of compiled code
on multi-core platforms and tool interoperability (Blochwitz et al. 2011)). Various Mod-
elica compilers are already subject for comparisons according to standard benchmarks
(Frenkel et all2011). This will simplify the task of developing compiler-based and Modelica-
oriented tools and enhance collaborative works among the community. Consequently,
more specialized Modelica-based tools providing elegant service for special tasks are
emerging, e.g. JModelica as a framework environment for rapid prototyping of opti-
mization problems.

Figure PO summarizes some achievements throughout this work as well as further
future perspectives realizable by implemented tools and already established frameworks.

'The figure is inspired by a presentation of Prof. Wolfgang Wiechert in FH-Bielefeld on January 2010
with the title simulation tools for biochemical networks
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Many of these tools correspond to optimization problems of different classification, e.g.
by their mathematical formulation and constraints. Each type of problem needs to be
solved using its own optimization algorithm possibly using different optimization software.
In order to link a Modelica-based optimization goal function with optimization software,
it should be possible to simulate and process the results of Modelica models ideally within
the same language with which that optimization software is implemented.

While the so far used simulation environment Dymola provides an elementary Matlab
function for this purpose, the underlying optimization problems are typically of compu-
tationally expensive nature. The utilization of high performance computing resources for
some of these computational tasks is not only a luxury service, but also a requirement for
significantly improving the quality of achievable solutions, e.g. model selection. Thus, the
computation processes performed for solving such problems need to ideally utilize com-
putational resources for high performance computing, for which Matlab is not necessarily
the most ideal available programming language.

Communicating with common Modelica simulation environments within classical lan-
guages has been a problem to the whole community due to the absence of standards and
software. Realizing meaningful heavy computational tasks was usually achieved through
individual efforts by which this work is not an exception. Within this work, a compact but
extensible software for communicating with Dymola executables through a well-defined
API suited for the performed tasks has been implemented. Only recently and as a an
expected result of the progressive evolvment of the continuously growing Modelica com-
munity, standard solutions for communicating with Modelica models within the C lan-
guage have been suggested and lately realized by the newest versions of some common
Modelica simulation environments (Blochwitz et al. [2011). First successful experiences
from different parties with these standards have been published (Andersson et all 2011,
Bastian et all2011).

The implemented C++4 software within this work is compacter than the standardized
solution. On one side, its design was oriented for the few completed tasks. On the other
hand, the standardized solution is comprehensive and provides a lot of functionalities that
most probably not need by the scope of planned applications, at least in the short-term
sense. Nevertheless, due to many software engineering reasons, it is recommended to

1. integrate the standardized solution required into the already established framework

From one side, this eliminates the maintenance efforts required for self-implemented soft-
ware. From the other side, relying on standardized software solutions enlarges the life
cycle of implemented software especially within academical institutions where established
tools are largely realized through ad-hoc individual efforts. In this way, the implemented
tools are more tractable along generation of developers due to the availability of well-
written documentation.

127



Chapter 20. Summary, Outlook and Future Perspectives

A distinguished criteria for the self-implemented C++ API realized in this work is that
special handling of Modelica models generated by ADModelica is provided for processing
parameter sensitivities. This simplifies the implementation of derivatives of optimiza-
tion goal functions required by derivative-based optimization algorithms and software.
Therefore, another task is to

2. extend the standardized API with further functionalities for handling ADModelica
generated models with the help of the already implemented API

With the availability of a specialized API for handling generated ADModelica models and
with the availability of high performance computation powers, the way is paved for

3. realizing further useful mathematical tools such as experimental design, identifia-
bility analysis, global sensitivity analysis and model selection

For instance, the task of realizing model selection can be implemented by using already
available tools and following common practice performed throughout this work such as:

e model family specification (cf. chapter [[0]) and model parsing tools (cf. section [0.5])

e the formulation of an optimization goal function as in equation (I0.3]) by which a
model space is browsed according to a discrete optimization strategy

e global optimization strategies with hybrid heuristics (cf. chapter [I7)
e utilization of supercomputers for parallel computing (cf. chapter [I8])

Last but not least, the software appendix [E.2] provides another future work perspectives
concerned with

4. supporting parameter estimation as an incremental process through dynamic inter-
active menus based on decision systems towards identifiability analysis
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Appendix A.

Semantical Advantages of Modelica against
SBML

One of the tasks of a programming language is to enable programmers detecting errors at
the early phase of design. Using official SBML language documents, the following items
show and give some examples, where Modelica is superior to SBML in such contexts.

Impact of the declaration on the Mathematics

Mathematically, as already shown, kinetic formulas impose structural information that
can be utilized for implementing templates for generalized kinetics. These templates can
be then specialized according to the number of reactants, products, activators, effectors
as well as the reaction reversibility and stoichiometry. These structural information can
be utilized in Modelica to implement hierarchies of generalized and specialized kinetic
formulas. On the other hand, there is no mean in SBML to utilize such structures. Addi-
tionally, reaction declaration has no impact on the mathematical structure. For example,
the attributes of Reaction like reversible attribute has no impact on the construction of
the kinetic equations of that reaction which can be freely constructed. The same argu-
ment applies for the stoichiometry attribute. All these attributes are not used in the
corresponding kinetic law.

The completeness of equations

Over- or under-determined system of equations is semantically not a correct SBML-model,
nevertheless such systems remain syntactically a valid SBML model. This requires that
extra/additional analysis from SBML-based simulation tools o examine the solvability of
a system. The same argument applies for system of equations with algebraic loops or
invalid equations. A Modelica compiler needs to perform such tasks as well. However,
Modelica provides many classifications of components where incomplete equation systems
can be specified. For example partial model allows abstract types to correspond to under-
determined equation systems. These abstract types can be then specialized by complete
models. The keyword model represent components which must correspond to a solvable
equation system. If not, then this represents a violation against the Modelica language
and is not syntactically correct model.
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Constants and parameters

The use of the term parameter in SBML sometimes leads to confusion among readers
who have a particular notion of what something called "parameter" should be. In SBML
parameter is used for defining both constants and (additional) variables in a model. In
SBML the state of a parameter is set through the attribute constant. Depending on the
value of this attribute, true or false, an identifier is declared to be constant or a variable.
Nevertheless, it is the mathematical structure of the equation which sets an identifier
to be a constant or a variable. It is possible to set a constant identifier, which values
changes over time according to the system of equations set in the SBML document. Such
a conflict can not happen in Modelica. Syntactical constructs of Modelica does not allow
such situations to appear. Moreover Modelica introduces two types of constants, one is
called parameter (i.e. constant value through a single simulation but can change its value
from a simulation to another) and the other is constant.

Limitation of descriptive power

From the expressibility point of view, the following is an example of using outside to model
a cell membrane. To express that a compartment with identifier “B” has a membrane
that is modeled as another compartment “M”, which in turn is located within another
compartment “A”, one would write:

<listOfCompartments>
<compartment id="A"/>
<compartment id= spatialDimensions= outside= />
<compartment id= outside= />

< /listOfCompartments>

This however neither reflects a real topological hierarchies in the same way Modelica does
nor does the outside attribute affect the mathematical structure of the model. There is
a mechanism in SBML for representing hierarchies of compartment types. One Compart-
mentType object instance cannot be the subtype of another CompartmentType object;
SBML provides no means of defining such relationships.

Start simulation time

Simulation by SBML Model is assumed to begin at time ¢ = 0. This is also the time point
where initial conditions takes place. If the simulation needs to begin before ¢t = 0, this
is only possible using a work-around solution, by resetting a dummy symbol representing
the time to be equals to time — the start time point of the simulation. In Modelica, initial
conditions take place at the user-defined start time of the simulation and not necessarily
at t=0.
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Naming conflicts

An identifier of a local parameter in a reaction can have the same name of an identifier
of a global parameter. This introduces the potential for a local parameter definition to
shadow a global identifier other than a parameter. In SBML’s simple symbol system, there
is no separation of symbols within classes and objects; consequently, within the kinetic law
mathematical formula, the value of a local parameter having the same identifier as a specie
or compartment or other global model entity will override the global value. Modelers and
software developers may wish to take precautions to avoid this happening accidentally.
In Modelica, such situation is naturally avoided. Each identifier has a globally different
dotted notations than other identifiers.

Equation formulation

Rule sections, which enable the listing of additional equations, have a very restrictive
standard explicit form of equations. In Modelica, it is up to the user how equations can
be formulated, and the matter of transforming these equations into standard formats is
left to the compiler. One reason why AssignmentRule was introduced in SBML is to
enable the user to reform the system of equations in a way that make certain numerical
solvers be able to handle the underlying DAE-system. In Modelica, implicit equations are
syntactically valid. The task of transforming the system of equations to a solvable system
of equations is completely left to the compiler. The Modelica user makes his focus remain
on the physical level of system design rather than paying attention at tiny mathematical
details.

Redundancy and conflict among rules

Usually, Species, Variables, Parameters etc. can be initialized to literal values using
special attributes in the corresponding node definitions. However, if the initial value is
represented by a formula, then InitialAssignment construct should be used. Although,
the value computed by the InitialAssigment construct overrides the value stated in the
object definition, this way can be a source of redundant and contradictory information in a
syntactically valid SBML document. Similarly, the value calculated by an AssignmentRule
or InitialAssignement object overrides the value assigned to the given symbol by the object
defining that symbol. This kind of redundant modeling, i.e. the presence of information
conflicts is a bad practice and enhance the chance of making errors.

Further restrictions, dependencies, redundancies and overlapping

A wide set of restrictions, dependencies and overlapping rules exist among SBML-constructs.
Some can be checked syntactically and some are imposed by the semantics. Some exam-
ples are but not limited to:

1. A model must not contain more than one AssignmentRule or RateRule object hav-
ing the same value of variable. Similarly, a model must also not contain both an
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AssignmentRule and an InitialAssignment. The reason is that the semantics of
an AssigmentRule assumes that it this assignment takes place for t>=0, while the
Initial Assignment takes place for t=0

The optional attributes initialAmount and initialConcentration of the Specie con-
struct, both having a data type of double, are used only exclusively to set the
initial quantity of the species in the compartment where the species is located. The
construct InitialAssignment override these attributes

Parameters local to a reaction (i.e. those defined within a reaction’s KineticLaw
object) cannot be changed by rules and therefore are implicitly always constant;
thus, parameter definitions within Reaction objects should not have their constant
attribute set to “false”

. Any species appearing in the mathematical formula of the kineticLaw of a Reaction

instance must be declared in at least one of that Reaction’s lists of reactants, prod-
ucts, and/or modifiers. Put another way, it is an error for a reaction’s kinetic law
formula to refer to species that have not been declared for that reaction

The stoichiometry attribute is used to set the stoichiometry of a reaction using.
However when the stoichiometry is a rational number, or when it is a more compli-
cated formula, stoichiometryMath must be used.



Appendix B.

Specialized ODE/DAE Solvers for
Parameter Sensitivities

Unfortunately, direct integration of sensitivity equation systems could be inefficient, spe-
cially those corresponding to strongly nonlinear DAE systems and large number of active
parameters, w.r.t. which sensitivities are desired. In such cases, the number of iterations
performed within the integration process of sensitivity equation systems get exponentially
increased (see section [[6.1]). Alternatively, many other methods for efficient integration
of sensitivity equation systems exist. The presented methods can be classified into two
categories in which

1. the sensitivity equation system are externally decoupled into smaller DAE systems
for fast successive solution (De Pauw and Vanrolleghem 2003)

2. the Jacobian structure of the whole sensitivity equation system is exploited for
improved integration and factorization. Decoupling, if any, is done internally at
iteration level

An intuitive method from the first category is addressed in (Atherton et al.[1975). Ini-
tially, the solution of the DAE system [IT.1] is stored in a table followed by successive
solutions of the independent sensitivity equation subsystems. Interpolated values are
used at times without tabulated values. Another way is to solve the DAE system [IT.1] to-
gether with only one sensitivity equation subsystem (Dickinson and Gelinas 1976). This
requires the solution of DAE of size 2n for m times. A modification of this method is
reused for efficient simulation in section [I6.3l

For a quick overview of methods from the second category, w.l.g. the explicit ODE
System:

0 = h(v,p,t) , v(to) = v (B.1)

is considered. The corresponding parameter sensitivities can be computed by integrating
the original ODE system together with the corresponding sensitivity subsystems:

oh Oh Ovo(p)
—S8 + =, i(to) =
(%S * op silto) Op;

(B.2)

4 =
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v
Op;

where s; =

As illustrated in section [£4], the problem of solving an ODE system using common solvers
employed by common Modelica simulation environments is transformed to the problem
of solving a nonlinear equation system using the iteration scheme of ({I4]). By solving
the sensitivity equation system, this scheme is extended to:

N o+t — o] = —G(o) (B.3)
Un g[gvn?p? taT;L)
S1 ~ “ “ N 5051+ 35—
where ﬁn = . s G((ﬁn)) = ﬁn_(snﬂn,ohn_&na hn = h(ﬁnapatn) = o . o
Sm S sm +
and d,, analogously. The Jacobian of G becomes:
M .0
- 0G oh oh |/ M ... 0
YJIm .. M

0 'ahSA n oh

ov Lov " Op;

Common methods attempt to provide efficient implementation by exploiting some of the
following characteristics:

where Y = 0nfn0 and J;

e the linearity and structure of sensitivity system (B.2) for problem decomposition,
sequential solution and parallelization

e the structure of the Jacobian M for cheap factorization as only one diagonal block
M need to be factorized when convergence conditions are not satisfied

The following is a list of some these methods and summary of their basic differences:

1. Direct Staggered (Caracotsios and Stewart/[1985): The iteration (£I2]) is solved first
until feasible solution is achieved with a ¢,, that satisfies convergence conditions, then
the iterations for sensitivities is performed. The disadvantage of this method is that
the structure of M is not utilized for cheap factorization.

2. Simultaneous (Maly and Petzold [1995): The whole resulting nonlinear system (B.4])
is solved directly without making use of the linearity of the sensitivity system.
However M is fairly approximated for cheap factorization.
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3. Corrected Staggered (Feehery et all [1997): A combination of both methods above
in the sense that linearity is exploited for sequential solution and meanwhile, a
cheap approximation of the full Jacobian is maintained without the need to perform
factorization at each time step.

Simultaneous and corrected staggered method are considered to be more efficient than
direct staggered since the Jacobian needs not to be evaluated at each time step. This is
apparently clear for large DAE Systems resulting from discretization of time-dependent
PDE/PDAE where the number of unknowns is much more than the number of parameters.
However, in (Li et al. 2000) it is shown that for strongly nonlinear DAE systems where
the number of parameters is more than the number of unknowns (i.e. state variables),
the staggered direct method outperforms the other methods. This is not surprising since
the Jacobian needs to be factorized at many time steps due to the nonlinearity of the
DAE system, and hence the bookkeeping of the Jacobian and its factorization becomes
an excessive load to the computational complexity. In this thesis, the type of considered
models (kinetic modeling) are also similar to those preferable by the direct staggered
method. Software implementing these methods provides different modes for error controls:

e only at state variable level
e at both levels of state variables and sensitivities together
e at both levels but independently (i.e. each s; is controlled independently)

While robust error control leads to more accurate results, performance may suffer as
many backtracking steps with decreasing step sizes J,, are done. The structure of the
sensitivities provides parallelization opportunities, despite of the potentially serial part of
the state variable iteration. Several parallelization modes can be found in literature:

e with repetitive computation and minimal communication overhead
e with minimal repetitive computation and more communication overhead
e A mixture of both

The second and third modes are better when communication is done among processors
within the same core (Hartwich et alll2011). The first mode is more scalable by not being
limited to the number of processors and even further speed up is achieved by cache effects
due to complexity reduction. The third approach has been adopted in the supervised
master thesis (Ké 2009).
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C.1.

Appendix C.

Possible Approaches for Differentiating
Modelica Models

On which level should AD be applied?

Using OMC, it is not only possible to parse a high-level library-based model but also to
access its underlying solvable optimized mathematical formulation. Consequently there
are different abstraction levels of Modelica models each of which have a different repre-
sentation on which AD techniques can be applied. These levels are: high-level descriptive
Modelica code, the underlying pure mathematical formulation as a DAE system (flat
code) and the generated low-level simulation code in C. In order to justify the chosen
approach in this work, all possibilities are first discussed and compared according to the
following criteria:

1. Implementation efforts required
2. The compilation complexity of the augmented model

3. The runtime complexity of the augmented model

AD at library level

Given an input Modelica model based on a high-level Modelica library (e.g. section [72]),
it is possible to augment the library components with generalized gradient equations.
By importing the augmented library within the given input model, parameter sensitivi-
ties automatically become present using additional minimal declaration for specifying the
input Jacobian. Appendix gives an example of this approach for the Modelica lan-
guage. The library ADGenKinetics (chapter [) is another example of an algorithmically
differentiated library. Detailed guidelines for modeling parameter sensitivities within AD-
GenKinetics are given in (Elsheikh 201xb). In (Bischof et all2007), a similar approach
has been adopted for differentiating the XML specification of library components of DAE-
based modern languages. This approach is pretty much similar to the operator overloading
approach for classical languages in the sense that augmented components are overloaded
with the gradients. However, the structure of the underlying DAE system is not avail-
able so that specific code optimization cannot be done. Moreover, the complexity of the
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Modelica language requires large implementation efforts due to the variety of language
constructs that are used by typical Modelica libraries.

AD at flat level

Another alternative is to apply AD at flat equation level. It is straightforward to access
the flattened equations using the OMC compiler. The whole DAE system is accessible for
symbolic manipulation and code optimization. The disadvantage is that the equations at
this level don’t impose any causality information among variables. This makes traditional
AD techniques for classical languages such as C/Fortran not directly applicable. Section
3.1 presents an equation-based approach for computing an efficient representation of
sensitivity equation systems. Another disadvantage is that the compilation complexity
of typically high dimensional sensitivity equation systems is enlarged. However, as it is
shown in several contexts, high-level Modelica compiler techniques can be utilized for
optimizing the generated sensitivity equation systems for improved runtime performance.

AD at C-code level

Another approach is to operate on the lowest level, the generated C-code, by available AD
tools (Andersson et all2010). Specialized solvers introduced in section [Bl can be utilized
for achieving maximal possible runtime performance (Imsland et all2009). In this case,
sensitivities would be computed at background and are not explicitly present as Modelica
code. There are many problems using this approach. First of all, generated C-code does
not only differ from one Modelica vendor to another, but may also vary from one version
to another. Moreover, the generated C-code may utilize some commercial libraries, that
are not easily reachable as a third-party tool as it is the case with the Dymola tool (section
21). In this case, the approach is either to self implement a Modelica compiler which
requires a lot of efforts. Another way is to extend existing developer-oriented compiler
tools. However, this makes the end product reliable on a specific compiler and simulation
environment that are used by a smaller part of the Modelica community.

The following table shows a comparison between the possible approaches according to
the chosen criteria.

Criteria - Levels C-code Flat Library
Implementation efforts - - + ——
Vendor-Independence —-— ++ ++
Potentials for code optimization ++ + ——
Compilation Complexity ++ - ——
Runtime Complexity ++ + —

In summary, the most reasonable approach for the Modelica community is to represent
the derivatives within a Modelica model. This makes the generated Modelica model in-
dependent from Modelica compilers and accessible for common simulation environments.
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C.2. Automatic differentiation of Modelica libraries

In this work the flat model approach is favoured due to the minimal efforts required for
implementation. From one side, compilation complexity is rather much higher than low-
level approaches. From the other side, as shown in chapter [[6] the runtime complexity of
the adopted approach lies in the region of the expected runtime performance of forward
sensitivity analysis is not more expensive than the runtime complexity of FD approach.
Applying AD at the library level provides an attractive alternative. Namely, once indi-
vidual components of a library are algorithmically differentiated, parameter sensitivities
of base models can be provided forever.

Automatic differentiation of Modelica libraries

This subsection presents a different approach for computing parameter sensitivities of
Modelica models. The idea behind this approach is to differentiate the internal models of
the library (eg. Resistor, Capacitor, etc) instead of the top-level model (e.g. a model of
an electrical circuit). This is done by augmenting the internal models with equations for
generalized derivative formulas, while the top-level model remains (virtually) unchanged.
Once a library is differentiated, all models based on this library can represent parameter
sensitivities using minimal changes. In order to illustrate this approach, a simplified
version of the standard electrical Modelica library is taken. All independent components
and connectors of the library are augmented with code for representing the derivatives.
For example, connectors are augmented as follows:

Listing C.1: Connection for electrical circuits

connector ElectricalPin
parameter Integer NG = 0; // augmented
Real v ;
Real g v[NG]; // augmented
flow Real i ;
flow Real g_i[NG]; // augmented
end ElectricalPin;

The gradient of potential and flow variables in a connector are also potential and flow
variables, respectively. Similarly, components are augmented as follows:

Listing C.2: Implementation of a capacitor

model Capacitor
parameter Integer NG = 0; // augmented
parameter Real C = le—6; // augmented
parameter Real g C[NGJ;
Real v ;
Real g v[NG]; // augmented
flow Real i ;
flow Real g_i[NG]; // augmented
ElectricalPin p

(ElectricalPin .NG=this.NG); // augmented

ElectricalPin n
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(ElectricalPin .NG=this.NG); // augmented

equation
p.i + n.i = 0
p.v — nv = v;
p.i = i;

p.i = C % der(v);
// augmented
for ad_iin 1:NG loop
p.g_ilad_i] + n.g_ifad_i] = O0;
p.g _v[ad_i] — n.g_v[ad_i] = g_v[ad_i;
p.g_ilad_i] = g i[ad_i];
p.g_ilad_i] = g_Clad_i] x der(v) + C x der(g_v[ad_i]);
end for;
end Capacitor;

For the electrical circuit model shown in figure 2], minimal changes to its implementation
shown in figure 23] are performed to specify the active parameters as follows:

Listing C.3: Implementation of a simple electrical circuit

model SimpleCircuit

import ADElectrical; // the differentiated library
Resistor R1(R=15,NG=3,g R={0,0,0});
Resistor R2(R=50,NG=3,g_ R={0,0,0});
Resistor R3(R=20,NG=3,g_R={1,0,0});
Capacitor C(C=0.01,NG=3,g_ C={0,1,0});
Inductor L(L=0.1,NG=3,g_L={0,0,1});
VoltageSource VS(NG=3,g_V0={0,0,0});
Ground G(NG=3);

equation
connect(VS.p,R1.p);
connect(R1.p,L.p);
connect(R1.n,R2.p);
connect(R2.p,C.p);
connect(C.n,G.p);
connect(L.n,R2.n);

connect(R2.n,R3.p);

connect(R3.n,G.p);
connect(G.p,VS.p);

end ADSimpleCircuit;

The top model is minimally changed as follows:
1. The augmented library is imported

2. For each declared component, the number of gradients is passed by name as well as
the input Jacobian

By this way the whole configuration assembles the original DAE system together with
the sensitivities w.r.t. the parameters R3.R,C.C' and L.L.
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Appendix D.

A Survey of Optimization Algorithms

Technical difficulties of large-scale parameter estimation

The following issues represented a great obstacle for a practical implementation of pa-
rameter estimation:

e Modelica simulation environments provide no or little common developer-oriented
tools for communication within classical languages by which common optimization
algorithms are implemented

e The Jacobian of DAE systems may often become very ill-conditioned by parame-
ter values suggested through common optimization algorithms. The simulation of
the corresponding DAE systems is so time-consuming that parameter estimation
becomes not reliable at all

e Large-scale parameter estimation requires a lot of settings and configuration proce-
dures that would be tedious if done at code level

Successful parameter estimation was not possible before resolving such problems. Without
going into technical details, the following tools have been implemented for overcoming such
difficulties:

e An API in C++ to Modelica programs with which sensitivities of ADModelica
generated code can be also accessed and simulated in parallel, (cf. appendix [E.])

e Breakable simulators with the help of low-level thread programming

e A dynamic interactive user interface with which large-scale optimization problems
can be easily configured (Elsheikh 2013). The resulting user interfaces can be used
for supporting parameter estimation as an iterative process (cf. appendix [E.2]).

Evenworse, such problems are also common for the Modelica community that a lot of
individual efforts are performed for Modelica-based computational tasks. Only recently,
more standardized protocols have been proposed by the Modelica community for provid-
ing a unified interface by which communication with simulation environments and other
Modelica-based tool is possible within classical programming languages (Blochwitz et al.
2011). Nevertheless, the implemented high-level API are exactly relevant for the type
of tasks needed within this work and can be easily modified for adopting standardized
efforts from the community.
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Metaheuristics

Metaheuristicd (Glover and Kochenberger 2003, [Talbi 2009) are a kind of approximate
algorithms that follow an iterative master process for guiding and modifying the explo-
ration of a search space of an optimization problem for finding near optimal solutions. At
each iteration, a single solution or a population of solutions are manipulated according
to search heuristics (Voss et al) [1999). Metaheuristics can be applied as a black box to
optimization problems as they are not problem-specific.

Metaheuristic algorithms can be classified into two basic categories: evolutionary algo-
rithms and local search methods. Local search methods aim at intensifying the search in
promising regions while evolutionary algorithms aim at better exploration of the search
space by a population of solutions (Holland 1975). At each iteration a population is
initialized, selected, paired and recombined in order to generate new solutions that re-
place other ones and so on. Metaheuristics can be also further characterized according to
whether they (Blum and Roli 2003)

e are nature-inspired or non-nature inspired

are single point or population-based

e have one or various neighborhood structures

have dynamic or static objective function
e are memory-based or memory-less

Examples of popular metaheuristics are simulated annealing (Metropolis et all[1953), tabu
search (Glover 1986) and genetic algorithms (Holland 1975). Metaheuristics have been
basically invented for solving combinatorial optimization problems. However, metaheuris-
tics versions for optimization problems of real-valued search space also exist. These in-
clude particle swarm optimization (Kennedy and Eberhart 1995), differential evolution
(Storn and Pricd 11997) and evolution strategies (Béck et all 1991). Despite of being
widely used, there is no theoretical basis for convergence analysis of metaheuristics, though
some mathematical analysis has been presented in literature, e.g. Holland’s schema theo-
rem for genetic algorithms (Holland 1975) and (Zaharid 2002) for analysis of differential
evolution. For the type of optimization problems handed in this work, metaheuristics are
computationally intensive and hence they are not practical for large models.

!The term metaheuristic is a Greek compound word. The prefix Heuristic comes from heuriskein which
means "search"; while the suffix meta means "beyond"
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D.3. Gradient-based optimization algorithms

Gradient-based optimization algorithms

Given that the considered Modelica model is represented by the parametrized DAE system
formally defined by:

F(&,z,p,t) =0, x(0)=xg (D.1)

where the function F : RZN+M+1 _ RN g sufficiently smooth with respect to the state
variables © € RY and parameters p € RM. Typical parameter estimation problems
aim at minimizing the distance between simulation results z(p,¢) and measurement data
#(t;) € RN at discrete time points ¢; with j = 1..T" in the sense of least squares:

1
reRM > R, r(p) =5 IQIE
Q=1[q,..qr] € RN" (D.2)
q; :i(tj)—m(p,tj), j = 1,..,T.
For start values p® € RM that are chosen sufficiently close to a local optimum Djoe € RM,

Gauss-Newton algorithm (Antoniou and Lu 12007, Nocedal and Wright [2006) converges
to pj,. by iterating over the following scheme:

Pt =p' - (Tpp)_lrpa
, AT o N\Tlr 4T D.3
~ pi — ([%J} x;}u) {%J} Q (D.3)
where 5 o2
_or _ L
Tp—a_p(p ) Tpp—a—pg(p)
and 5
.. N-SxM. .7A . T . .
S x;]—a—p( ty) Yi=1,..,T
represent parameter sensitivities at discrete time points t; = 1,..,7. The Hessian 1},

AT .
is usually approximated by ([x;/} z,;7 | which is often semi-singular. In this case the

inverse can not be exactly computed but is usually approximated by a pseudo-inverse
using singular value decomposition. x, can be solved by solving the sensitivity equations
computed by ADModelica.

Heuristics for Gauss-Newton

The singularity of the Hessian may lead to further negative consequences. The goal
function can increase by the suggested Gauss-Newton step, instead of getting decreased.
Additionally, the new parameter values may lay outside the convergence region, and
consequently causing divergence of Gauss-Newton. The following heuristics can overcome
the mentioned difficulties
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Line Search Algorithm

Even if the suggested Gauss-Newton step does not minimize the goal function, it is rec-
ommended to follow the suggested direction, induced by the Jacobian, though, with a
suitable step length. Common line-search algorithms aim at estimating a A € (0, 1] s.t.

. 4 AT Nl oqT
sg=rtt =g = [a] ai) ] @ (D.4)
minimizes the goal function.

Levenberg-Marquardt

In order to avoid an extreme sloppily direction of optimization, Levenberg-Marquardt sug-
gests manipulation of the diagonal elements of the approximated Hessian. The algorithm
aims at finding A € R s.t.

St =p = p' = (JE T, + ND)THIL Q (D.5)

minimizes the goal function.

Scaling

Physical units of various variables and parameters are usually different. Moreover, pure
magnitudes and values of parameters do not necessarily indicate the respective impor-
tance. Unfortunately, although in theory it does not matter which physical units are used,
the scales used may influence the singularity of the Hessian, and hence, the behavior of
Gauss-Newton. To improve this behavior, dummy physical units can be introduced. This
does not only improve the scaling of the Jacobian, but also improves the corresponding
convergence area of Gauss-Newton. Results within a multistart derivative-based opti-
mization show that more start points converge with scaled parameters.

Parameter Scaling
Scaling a parameter vector p € RM to ¢ € R™ can be realized as follows:
q= Dyp, where D, € RM*M D —[d;;] = {1/mazx(|p;|,¢) if i=j else 0} (D.6)

Here, D, get changed at each iteration (dynamic scaling) and e serves for not being
divided by 0. In this case the scaled objective function (D.2]) and their first and second
derivatives required by typical optimization software are formulated as follows:

r(a) = 11QUD,) DI = 3B
Vylr(@)] = (D) 21 Q) = (D)7, [r(p)] (D.7)

V2[r(q)] = 25 (D) (2E (D)) = (D) )2V [r(p)]
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and the corresponding Gauss-Newton step becomes
Sy = (xT(Dp)_l(xT(Dp)_l) )_195;{(1)17)_1@(17) ~ DpSY (D.8)

P P
In this work, two ways of parameter scaling have been applied:

T

1. Dynamic scaling which lets all parameter equal to one

2. Logarithmic scaling for positive parameters vector p € RM | by letting ¢; = log(p; + 1)
i.e. take the logarithm of each entry added by one.

Some global optimization algorithms

In the context of this work, prototypes of two further global optimization algorithms have
been implemented each has its own way of tackling the complexity of exploring the large
search space of the optimization problem.

Cluster algorithms

The first algorithm, illustrated in figure [D.1lis based on cluster methods in which a large
parameter estimation problem is decomposed into independent smaller clusters (i.e. sub-
problems with less number of parameters and variables), each of which requires fewer
start values and less computation. The resulting local minima are taken as start values
for enlarged subproblems, and so forth until good start values for the original problem
are found. This approach serves to improve global convergence and computational speed
of multi-start optimization strategies independent of the optimization algorithm used.

Usually, the decomposition into clusters can be heuristically performed based on pa-
rameter sensitivities in which strongly sensitive parameters and variables can be clustered
together. Another way is to use domain-knowledge to provide a natural decomposition
based on topological information of the model. For instance in (Hadlich et al.2009) start
values for estimating large biochemical network models was provided by first performing
local parameter estimation for each reaction alone. The locally estimated parameters
were used together as start values for the larger optimization problem.

Alternatively (Elsheikh et all[2009) presents a multistart recursive clustering strategy
that utilizes DAE decomposition algorithms, in particular Tarjan’s and tearing algorithms,
cf. Chapter[3 In this way, a natural decomposition with well-defined dependencies among
clusters is provided. In ideal models with little or no cyclic structure, these heuristics is
much more efficient than the presented hybrid heuristics in Chapter [[7. However, they
become more difficult to apply with biochemical networks with typically many effectors.
For this reason, they have been excluded from the presented benchmark. Nevertheless,
they still remain an ideal choice for initial models suggested by model selection strategies.
The estimated parameters of such initial models serve as ideal start values for further
complicated models generated through a model selection strategy.
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minimize r(."E, I(P))

Y ' Y '

([Gonle))) ([Gord]) — ([Gnlod]] ([

F(x,x,p,1)=0

minimize r (I‘ : I( P))

)

r(}wxu(?hz)) r(iaAstft(Pa,ﬁt

Figure D.1.: General schema of a cluster optimization method

Multiple-shooting

In this work a prototype implementation of multiple-shooting algorithms (Bock and Plitt
1984, Bock et al. 2007) has been implemented. The global convergence area of Gauss-
Newton scheme is effectively improved by reducing the nonlinearity of r by solving z(t, p)
through the DAE-systems:

F(x’x(ya Z)’p,t) = 0’ y(tz) = Sy,i ,Z(ti) = f(sy,i)
where t € [t;,t;41],i =1,..,Ng and t; =0 (D.9)
f guarantees the consistency of initial conditions

In this case, x(t) = z(¢, p, Sy,), © = 1,.., Nsy and hence extra parameters s, ; are introduced
to the minimization problem, i.e. the task becomes to solve
min  r(z(t,p,sy)), i =1,..,Ns (D.10)
D, Sy,i
In the optimal case, measurements corresponding to all y are available and hence suitable
initial guesses for s, ; can be provided. Consistent initial conditions for z (i.e. f(s,,;)) can
be automatically computed by the software Dymola. A solution of the above problem

physically makes sense if the resulting trajectories x(t;, p, s, ;) are continuous. This can
be enforced by attaching the following constraint to the problem (D.10):

Ng—1
1 N .
=3 > Isyis1 — @' (tig1, 0, 8y.0)|15 =0 (D.11)

i=1
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The solution requires the partial derivatives:

Ns—1
s ox
or  _ _y-—1 . T
d(p,s) — by ; [a(p7 S) (tlJrl)] \/Fa
s S0 - %, Ve
a(pys) a( S) Z+1
i=1 ’
where
dz! dz!
811) 88‘271 0
9z? 0 dx?
or op 05y 2
dp,s) — :
DN
gp 0 0

dzNs
asy,Ns

and /1 = SN s, i1 — 2 (tiv1, Py 8y4)], VO similarly defined

(D.12)

(D.13)

These partial derivatives are directly computed via ADModelica by letting start values of
state variables be explicitly declared as parameters. First implementation is done using
nonlinear constrained solver from the Matlab optimization toolbox. Figure[D.2]shows the
trajectories of a multiple-shooting goal function before and after the estimation. Limita-
tions with respect to constraint satisfaction arises with inexact data. Nevertheless, the
resulting optimum can be directly used as a start value for a single shooting optimization.
The main drawback of the implementation is the efficiency of the algorithm. In order to
make multiple-shooting as fast as single-shooting, sparse techniques need to be employed

rather than the standard implementation.
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Figure D.2.: The trajectories of state variables before and after optimization
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C++ software for communicating with Dymola

In order to link Modelica models with external optimization software (e.g. IPOPT, LEV-
MAR, NLOPT, PARADISEO etc.), the process of modifying Modelica models (e.g. with
other parameter values) needs to be automated. A software fulfilling this requirement is
implemented in a way that a client is able to perform the following tasks for anonymous
Modelica models through a well-defined API:

e assign default values or control simulation parameters (e.g. start time, stop time,
tolerance, solver used, the time points at which solution is desired etc.)

e set model parameters and start values

e extract the results of required simulation variables

e generate derivatives w.r.t. desired parameters

e extract parameter sensitivities (including sensitivities w.r.t. start values)

With the help of the mentioned software, further classes expressing Modelica-based goal
functions (eg. weighted sum of squares) were implemented. Optimization with the soft-
ware LEVMAR (a Levenberg-Marquardt implementation in C) was successfully applied.

Listing E.1: A sample of the C++/Dymola Inteface

dym.compileGradient({ ; };
dym.setParameter( ,10.0);
dym.setStopTime(5.0);
dym.simulate({ ; ; 1;
X = dym.getDatal();

gx = dym.getGradData();

Listing E.2: A sample of the C++/Dymola Inteface

ParDymSim dym({ , o , , };
dym.setParameter( ,10.0);
dym.setStopTime(5.0);

dym.simulate();

x = dym.getDatal();
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// Gradient model must be already compiled
GradDymSim gdym({"p1","p2"},{"x1","x2","x3"});
gdym.setParameter ( ,10.0);
gdym.setStopTime(5.0);

gdym.simulate();

X = gdym.getData();

gx = gdym.getGradData();

As a result, software with well-defined API for setting up, compiling, simulating and
extracting results of Modelica models compiled by Dymola has been implemented. Model-
ica models for describing the dynamics of a TCA-cycle and isotopic Coryne-based models
were used as test benchmarks. First simulations on Juropa were done. Software for pa-
rameter estimation of Modelica model was used with an open-source implementation of
Levenberg-Marquardt method (LEVMAR).

Interactive dynamic menus

A dynamically interactive user interface for configuring the optimization framework based
on decision trees concept has been implemented. The easily extendable user interface
assists handling large optimization problems (eg. parameter estimation with large number
of parameters) by supporting:

e Automatic selection of variables and parameters of large models consisting of 100s
of parameters and variables.

e Incremental in-silico investigation by adding/fixing parameters or reinvolving/re-
moving measurements of an optimization to the next.

e Detecting the most optimal problem-dependent settings of the optimization-software
since optimization results are very sensitive to these settings (eg. stopping condi-
tions, different heuristical strategies).

e Specifying box-constraints of the boundaries of start-values / optimization variables.

e Easily extending further configuration aspects, eg. when new optimization prob-
lems, goal functions, algorithms, software are considered.

The platform is used to assist the quantification of the influence of measurement errors
on parameter identifiability. Comparison of the quality of kinetic parameter estimation
with different:

1. Norms or quality functions

2. Optimization software/optimization algorithm settings s.a. parameter scaling strate-
gies

3. Set of parameters and reference variables (eg. Measurements)
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4. values of fixed parameters, start values, ranges of start values, standard deviation
of data samples etc.

Contributions of the Interactive Dynamic User Interface

With the help of the above criteria: the following tasks can be easy investigated:

e Comparison of the optimization results of the dynamics of a metabolic network
with/without marking carbons using the same configuration files.

e Detection of a functioning configuration of the optimization problem under con-
sideration with respect to optimal parameter set, optimization settings ..etc. For
manual setting, this is a very tedious / time-consuming task.

e Flexible switching between different configurations of the same problem, eg. active
parameters, reference variables, goal functions, optimization software, boundary
specification and Dymola-specific configuration, DAE-solver issues etc.

From an optimization algorithm perspective, the following have been concluded with the
help of the established platform:

e Parameter scaling is a fundamental issue (independent of the optimization software
used). Parameter scaling is done on gateway interface between user input model
and the optimization software. Without parameter scaling, no stable results could
be achieved with the used software so far.

e Parameter estimation results are very sensitive to stopping conditions. False settings
lead to instable results. Detecting the optimal setting manually is tedious and time
consuming.
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Fle Edit Options Buffers Tools Help

DEE * E BB & X

HtHE General fE22524

¥ ——help=0 -h : Prints this message

¥ --stopOnUnknownParam=1 # Stop if unkown param entered

# --simdir=/home/elsheikh/workspace/DymolaSimulator/ezample/dynmodel # Path to Modelica Model, default: current director®
sy

FhddtE 1. Configuration fEEEE L3

| # ——optsoft=LEVMAR # The optimization software: [LEVMAR|IFOPT|HNLOPT|PARADISEOD]

i mode=3ingledta # optimization mede: SingleStart / Multiftart / MonteCarleo REQUIRED
——optinize= # Whether to run optimization if conf. complete [0/1] REQUIRED
FEHEEE 2. Dymosim Specification HhEd4E
¥ —-starttime=0 # simulation start time [0Q]

--steptime=5 # simulatien stop time [1.0]
——increment=0.2 # increment of results : [0.2]
# --—algorithm=38 # DRE Algorithm : [1-14]1
— # --tolerance=le-08 # solver tolerance of results : [le-8]
FHEHEE 3. Optimization Specificatiecn FHEEFH
——maxiter=50 # maximum number of iterations
# start lambda for Levenberg-Marguardt
# parameter scaling type : [nomne,leog,pleg,unity,dynunity]
# stop criteria ||J"T e||_{inf} < ?
——stop_Dp=le-10 # stop eriteria change in the scaled opt. wariables ||Dp|| <
¥ ——stop_==0 # stop criteria walue of the goal function ||e2|| <
HE 4. Data Htt4s
——datafile=dsin.start.tzt # input file for generating silice data default dsin.start.tzt REQUIRED
$ --dseed= # seed for silico data generation [0]: totaly random
¥ ——dstddiv=0 # 5td Div. for silico data [0]: Ezact Data
ST 6.a Regular Variables EEEE T3
--reginvars=.*rc # list of regular éexpressions for inactive variables
——ragvars=.*g # list of regular expressions for wariables

FhdH#4 6.b Explicit Variables FhEEEE

¥ ——invars=,A.rec Ml.e; A re M2, e /Bire M3 eiBure M4, e, Bire Plie;Bure PliryB.re P2icsBire. ESie,/Bire Pd,esBire Sl.oe,Bure 82, @
§c,B.re_853.¢,B.re_S4.0,Pl.re_Ml.e,Pl.Te_M2.c,Pl.re M3.c,Pl.re Md.c,Pl.re Pl.c,Pl.re P2.g,Pl.re_P3.c,Pl.rc Pd.c,Pl.rc_Pd.r2
S, Plire 81.¢;P1,.ve 81.1,Pl.re 82,8, Pl.re 83.¢;Pl.rc 84 .6,Plex.re Ml.c,Plex.ro M2, ¢,Plex. re M3.d,Plex.rec M4, 0,Plex.re Pl o
€. Plax.re P2 o, Plaxn.re P3. e, Plex.re PA.a, Plex.re PA.r, Plex.re 8l.a,Plex.re §2.c, Plex.re 83.c, Plex.re 84, a,P2.re M1, o, P2, 12
g7 M2, PR re M3 .8, PRrre MA . 0 PRare Pl.&, P2.rd PL. T, P2.re PR 2, P2 re PR.0, PR.rc Pd.e, P2 re 81,6, P2 re 80 0, P28 S8, 0. P2
§ro_54.0,B2.re_84. ¢, Poex.re Mi.o,B2ex.re M2.o,Plex.re M3.a,Plex.ro MA. o, Plex.ro_Fl.o, Plex.re Pl.r,Plex.re P2. o, Plew. re_Pse
$l, < B2ex. 1o Pd. o, Pleziro 51, d;Plew.ro 88 i, Piex, v& 837¢, PRes , ro 84. 0,8, ro Ml g 8, re M2, 0,8, ra M3, 5, ¢ ME. o, S, To Pl . & 4
Sre P2 o,8.Te P2.r,8.v0 P3.c,8.rc Pd.g,5.r0. 81.¢,8.re_82.0,8.r0_83.¢c,8.rc_84.¢.8.ve_84.r,pulse.re_81.0, 7l .re_Tl.c,rl.ro P2
i eprlire: Slve, rdtire Plie, 2 .re Sl e, vl re_Sl.e p8 ve: Plic,vdive $1l &, pdine_Plie;rdire_Slie,rd.re: 8lip, pE re Plie, vh.re &
$51.¢ # Inactive variables

-—vars=h.c,Pl.c,Plex.c,P2.c,P2ex.c,8.¢c 4 Reference Variables, default: all wariable requiring start walues REQUIRED
—-voand=A.r_net,Pl.r_net,Plex.r _net,P2.r_net,P2ex.r_net,3.r_net,pulse.v,rl.c_Il,rl.c 81,rl.v,r2.¢_Pl,r2.¢_81,r2.v,r3.c_P#
§1,r3.¢ 581, r3.v,rd.c_Pl,rd. ¢ 51,v4.v,r5.c P1,r5.c_351,r5.v §# Reference Variables Candidates

FhdHEd 7.a Regular Paramsters FHEFFH

# --reginpars= # list of regular expressions for inactive parameters
——regpars=. *kl$ # list of regular expressions for parameters

FhddiE 7.b Explicit Parameters FhEE+

¥ ——inpars= # inactive paramsters

——pars=rl.kl,r2.kl,r3.kl,rd. k1, r5. k1 # active parameters REQUIRED

¥ ——pcand=A.c_0,Pl.c 0,Plex.c 0,P2.c_0,PZex.c_0,8.c_0,pulse.n_81,pulse.pulssWidth, pulse.tpulse, pulse.vconst, pulse.vpulse®
%, 71 . K Ta,r1.E Ib,v1.K 51, x1.n Pl,r1l.n 5%, x2 K P1 r2.K 81 12, K eq, ¥3. K 81,3, P1,r3.n 51, v4. K Pl, 74, K 51,74 K eq,.r5.K S1%
%,v5.n_P1l,r5.n_51 # Parameters Candidates

Fadddd 8. Fized Paramesters Values HhEE4
+ —-A.c 0,41

# —Pl.c 0
# ——Plex.c

B e

+ --P2.c_0=0.
[¥] # ——P2exz.c_0=0
——t== current_ param.conf Top L16& (Conf[Unix]} E 3 == == E 3 == = == =4

Figure E.1.: An interactive user interface for configuring large Modelica-based optimiza-
tion problems. It is divided into dependent dynamic menus (i.e. the existence
of a menu depends on the value of another). A menu consists again of de-
pendent dynamic flags.
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