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Abstract
We study a flux qubit made of a superconducting loop interrupted by three
Josephson junctions, which is subject to a temperature gradient. We show that
the heat current induced by the temperature gradient, being sensitive to the
superconducting phase differences at the junctions, depends significantly on the
state of the qubit. We furthermore investigate the impact of the heat current on
the coherence properties of the qubit state. We have found that even small
temperature gradients can lead to dephasing times of the order of microseconds
for the Delft-qubit design.

Keywords: thermoelectrics, Josephson devices, quantum information

1. Introduction

The charge current through a superconducting weak link is sensitive to the phase difference of
the superconductor order parameters on either side of the link. In the absence of a bias voltage, a
dissipationless Josephson current flows through the link, which is proportional to the sine of the
phase difference. The origin of this supercurrent can be traced back to the Andreev reflection of
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incoming electrons, and as such it is an interplay of quasiparticles at the interface and the
superconducting condensate on both sides.

In 1965 Maki and Griffin [1] theoretically predicted that the heat current flowing through a
temperature-biased Josephson tunnel junction is also a periodic function of the phase difference
between the electrodes. Due to the invariance of the heat current under time reversal, it has an
even parity with respect to the phase difference. The phase dependence of the heat current—
carried by quasiparticles residing at energies outside of the energy gap of the superconductor—
comes again from an interplay between these quasiparticles and the superconducting
condensate.

This effect has recently been demonstrated experimentally [2–6]. A superconducting ring,
namely a dc-SQUID (superconducting quantum interference device) with two Josephson
junctions was exposed to a temperature gradient. The measurement of the resulting heat current
as a function of the magnetic flux penetrating the SQUID demonstrated the sensitivity of the
heat current to the phase differences across the junctions. In this way, the SQUID is operated as
a heat modulator.

Heat transport through weak links in superconductors has been theoretically studied in
great detail [7–9]; see also [10] for a review on interference in heat transport and thermoelectric
effects in superconducting weak links. It has been found that the heat current can be modulated
by the applied phase gradient [11], and recent experiments have shown that weak links in
superconductors can be used to refrigerate small islands [12] and trap hot quasiparticles [13].

An altogether different application of the phase sensitivity of the supercurrent in
superconducting rings is the realization of a persistent current flux qubit where the phase
sensitivity of the device is used to implement qubit operations. In particular, the Delft design of
the flux qubit consists of a superconducting loop interrupted by three Josephson junctions. It is
further characterized by the fact that the Josephson coupling of one of the junctions is smaller
by a factor α ≃ 0.75 [14], which in actual implementations is made tuneable by replacing this
third junction with a split Josephson junction [15]. Another important tuning parameter is the
external flux Φ threading the loop. If the flux is close to half a superconducting flux quantum,
Φ = h e/4 , the superconducting system emulates a particle in a (shallow) double-well potential,
where the state in either well corresponds to a circulating persistent current, either flowing
clockwise or counterclockwise around the loop. These two states represent the qubit states of
the device.

In what follows, we will combine these two intriguing studies on the phase-sensitivity in
superconducting rings. We are in particular interested in the dependence of the heat current on
the state of the persistent current qubit. We therefore investigate a superconducting ring with
three Josephson junctions subject to a temperature gradient. We use a microscopic description
of the Josephson junctions in order to investigate the phase-dependent heat current through
them. We will show that the heat current in a temperature-biased Delft qubit is indeed sensitive
to the qubit state, with typical sensitivities of 4%.

Beyond this, the state-sensitive heat current has an impact on the qubit state. With the help
of a master equation approach, we investigate how the temperature gradient influences the
dynamics of the qubit system. We determine the rate of coherence suppression, which is shown
to be given by the rate with which the difference in heat currents at the two qubit states
accumulates an energy difference of approximately the gap energy. The difference in heat
currents due to a thermal gradient depending on the qubit state is hence demonstrated to be a
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qubit-state measurement. Depending on the temperature gradient, the associated typical
dephasing times range from nano- to microseconds, with the proviso that the qubit is detuned
from the ‘sweet spot’ of half a flux quantum, Φ Φ= /20 , threading the superconducting loop, to
a typical ‘operation point’ of Φ Φ= 0.495 0. This adds an additional contribution to the
dephasing, which in general is attributed to non-equilibrium quasiparticles [16–18]. In the
appendix, we give a self-contained and detailed derivation of the results of Maki and Griffin for
the phase-sensitive heat current in a superconducting weak link.

2. Model

2.1. Persistent current qubit (Delft qubit)

We investigate a persistent current qubit as it is sketched in figure 1. Such a qubit consists of a
superconducting loop with three Josephson junctions, which encloses a flux Φ supplied by an
external magnetic field. The three junctions, =i a, b, c, are in general characterized by different
Josephson energies E i

J , with Φ π=E I /2i i
J crit 0 , where I i

crit is the critical current of the junction and
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Figure 1. (a) Sketch of a persistent current qubit realized by a SQUID with three
superconducting links, characterized in general by different phase differences, φ φ φ, ,

a b c
.

The SQUID is penetrated by a magnetic flux Φ. The direction of the supercurrent
circulating in the SQUID characterizes the state of the persistent current qubit. The
different sections of the SQUID are coupled to thermal baths with temperatures T T,1 2

and T3. (b) Potential landscape of the SQUID as a function of the phase differences for
α = 0.75 and Φ Φ =/ 0.4950 . The potential is π2 -periodic in φ

a
and φ

b
and it can be

divided into equal square cells of side length π2 . (c) Cut through the potential in the
central cell of (b) along the line φ φ φ= = −

a b
, visualizing the two minima

corresponding to the qubit states of oppositely circulating currents.



Φ = h e/20 the superconducting flux quantum. Following the Delft qubit design, we choose two
of the junctions to be equivalent, i.e. having the same Josephson coupling energy

= ≡E E EJ
a

J
b

J, and the third junction with a smaller Josephson energy α=E EJ
c

J, where we
have introduced the asymmetry parameter α ⩽ 1. The contrasting phase differences, φ

i
, across

the junctions (the arrows in figure 1 define the direction for a positive phase difference φ
i
) are

related to each other due to the fluxoid quantization around the superconducting loop containing
the junctions5,

φ φ φ π− + = − f2 , (1)
a b c

where we have defined Φ Φ=f / 0. The total Josephson energy of the ring is given by the phase-

dependent expression φ= ∑ −( )U E 1 cos
i

i
iJ . Combining this relation with the flux quantiza-

tion condition in (1), the Josephson energy can be written as

α φ φ α π φ φ= + − − − + −⎡⎣ ⎤⎦( )U E f2 cos cos cos 2 . (2)J a b a b

The potential U is plotted in figure 1(b) for α = 0.75 and f = 0.495, a typical operation point of
the Delft qubit. The plot shows a periodic structure of two nearby minima. These two minima,
indicated by L and R, fulfill the condition φ φ φ= − ≡

a b
and correspond to situations in which

the Josephson current in the loop has opposite signs. Due to the periodicity of the potential, all

other minima are equivalent to L and R. If the magnetic flux is tuned to =f 1

2
, the flux point

usually called the ‘sweet spot’, then the two minima are equal, = − α( )U E2 1min J
1 , and they are

situated at φ α= ∓ ( )arccos 1/2
L/R

. Small deviations δ = −f f 1

2
from this point yield a shift of

the minima by δφ π δ α α= − − −( ) ( )f2 2 1 4 12 2 , such that φ α δφ= ∓ +( )arccos 1/2
L/R

.

Consequently, the potential becomes asymmetric as indicated in figure 1(c). For values
α ⩽ 1/2, the two minima merge into a single minimum; in the following we will hence always
assume α > 1/2.

We are interested in the quantum properties of this system and therefore use a Hamiltonian
description taking φ as a general coordinate. The dynamics of the system is provided by the fact
that each of the junctions adds a small electrical capacitance C. In fact the conjugate momentum
to φ is given by the number of Cooper pairs  φ= − ∂ ∂N i / , which charge the capacitances. We
arrive at the Hamiltonian

φ
α φ α π φ= − ∂

∂
+ + − − +⎡⎣ ⎤⎦( )H E E f4 2 2 cos ( ) cos 2 2 (3)qubit C

2

2 J

where the first term takes account of the charging energy = ΣE e C/2C
2 , where ΣC combines the

capacitive effects of the three junctions, and the second term is the potential energy U as given
in (2) with φ φ φ= = −

a b
. The low-energy physics of this system can be described by the two

metastable states ψ
L

and ψ
R
, corresponding to the ground states of the local minima of the

potential as shown in figure 1(c). They will serve as the two qubit states in the following. In
the vicinity of the local minima, the Hamiltonian can be approximated using
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φ φ φ α π φ φ φ≈ + + + −⎡⎣ ⎤⎦( ) ( ) ( ) ( )U U E f( ) cos 2 cos 2 2
L/R J L/R L/R L/R

2
for φ φ≈

L/R
. The

qubit states are then given by the oscillator ground states

φ ψ
λ
π

λ φ φ
= −

−
⎜ ⎟⎛
⎝

⎞
⎠

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

( )
exp

2
(4)

L/R
L/R

1/4
L/R L/R

2

with the inverse of the variance

λ φ α π φ

α
α

π α Δ

α α

= + +

≈ − ∓
+

−

⎡⎣ ⎤⎦
⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

( ) ( )

( )

E

E
f

E

E

f

2
cos 2 cos 2 2

2
4 1

2

1 2

4 1
. (5)

L/R
J

C
L/R L/R

J

C

2 2

2

These states are shown in figure 2 together with the qubit potential. They are coupled through
possible quantum tunnelling through the potential barrier between the two minima, of which the
height that depends on the values of the asymmetry parameter, α, is tuneable via the Josephson
energy of junction c6. However, as soon as the flux deviates from the value Φ Φ= /20 , then the
qubit eigenstates occur, well-localized in the potential wells, the coupling between the two

states is negligibly small, and they are hence approximately given by ψ
L

and ψ
R
.

2.2. Microscopic model of the Josephson junctions

In order to calculate the heat currents flowing through the SQUID, it is important to consider the
microscopic model of the three junctions. The microscopic Hamiltonian for two super-
conducting arms, which we here choose to be l = 1, 2, connected by a tunnel contact is given by
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Figure 2. Cut through the potential of the SQUID along φ φ φ= = −
a b

, with the two
approximated qubit states ψ

L
and ψ

R
in the phase representation for α = 0.75 and

f = 0.495.

6 This can be done for instance by replacing junction c by an additional two junction SQUID with a separately
tuneable flux [14, 15].



∑∑ ∑∑

∑

ξ Δ= − +

+ +
σ

σ σ σ

σ
σ σ

=

†

=
↑

†
↓

†

′
′

†
′

( )

( )

H c c c c

V c c

H.c.

H.c. (6)

l k
l k l k l k

l k
l l k l k

k k
kk k k

junction
1,2 ,

, , ,
1,2

, ,

, ,

12
1, 2,

where ξ ɛ μ= −σ σl k l k, , 0
is the electron energy relative to the chemical potential, which we take to

be equal for all electrodes, μ μ= ∀ l,
l 0

. The Hamiltonian for the other two junctions of the
SQUID is found equivalently. The creation (annihilation) operators for electrons in reservoir l,

with momentum k and spin σ = ↑ ↓, are given by σ σ
† ( )c cl k l k, , . The two superconductors are kept

at different temperatures Tl and have a superconducting gap Δl, which we here assume to be
independent of k. The gap is characterized by its absolute value Δ| |l and the phase ϕ

l
. This phase

enters the heat current across the junction only in phase differences φ
12
across a junction, with

φ ϕ ϕ= −
12 1 2

. For the SQUID model considered in this manuscript, we have φ φ=
12 a

, etc. The
temperature dependence of the magnitude of the superconducting gap is approximately given

by Δ Δ≈ −( )T T T1 /l l l0 crit with Δ ≃ k T0 B crit the gap of the superconductor at zero

temperature and Tcrit the critical temperature. Here and in the following, we assume that all
the superconductors are built from the same material with equivalent geometries, such that they
share Tcrit and Δ0. Tunnelling between the two superconductors 1 and 2 occurs with the

tunnelling amplitude ′Vkk
12. The resistance of the junction connecting reservoirs 1 and 2 is related

to the normal conducting density of states of the reservoirs at the Fermi level (including spin),

Nl
0, and the tunneling amplitude; the inverse resistance is given by π=−R e N N V /12

1 2
1
0

2
0 12 2

.

2.3. Heat currents in superconducting links

We are in the following interested in the heat currents flowing through the junctions in the
SQUID, when the arms between the junctions are kept at different temperatures, as sketched in
figure 1(a). The ring is supposed to be large enough such that the arms between the junctions
are larger than the quasiparticle coherence length, and we can therefore model the arms as
quasiparticle reservoirs and treat the heat current through the junctions separately. Note that the
phase differences across the junctions are related through the superconducting fluxoid
quantization given in (1). The heat current in electrode l is defined as the flow of energy with
respect to the electrochemical potential of electrode =l 1, 2, 3,


˙ = = − [ ]Q H

i
H H

d
dt

, , (7)
l

l l

where Hl is given by the first line of (6). We are subsequently interested in the weak tunnel
coupling regime [1, 7]; see the appendix for a detailed derivation of the heat current. The heat
current through a junction connecting reservoir l and m due to a difference in temperature,

≠T Tl m, with =l m, 1, 2, 3, can then be divided into a pure quasiparticle contribution to the

heat current, ˙ ( )Q T T,
l

l mqp , and an interference contribution due to an interplay between

quasiparticles and the Cooper pair condensate, ˙ ( )Q T T,
l

l mint , namely

New J. Phys. 16 (2014) 045020 S Spilla et al

6



φ˙ = ˙ − ˙( ) ( ) ( )Q T T Q T T Q T T, , , cos . (8)
l

l m

l

l m

l

l m lmqp int

We find the pure quasiparticle contribution to the heat current to be

∫ ω ω
ω ω

ω Δ ω Δ
˙ =

−

− −Δ| |

∞

( )Q T T
e R

f f
,

2
d

( ) ( )
, (9)

l

l m
lm

l m

l m

qp 2
3

2 2 2 2
max

where ω ω= +
−⎡⎣ ⎤⎦( )f k T( ) 1 exp /

l lB

1
is the Fermi function of electrode l and

Δ Δ Δ= { }max ,l mmax . The interference contribution to the heat current due to the

interplay between quasiparticles and the Cooper pair condensate depends on the phase
difference φ

lm
of the superconducting condensates and yields

∫ ω ω Δ Δ
ω ω

ω Δ ω Δ
˙ =

−

− −Δ

∞

( )Q T T
e R

f f
,

2
d

( ) ( )
. (10)

l

l m
lm

l m
l m

l m

int 2
2 2 2 2

max

We have Δ≲T T k, /l m 0 B, and the square root terms are changing faster than the other factors in
the integrals of (9) and (10). The magnitude of the heat currents can then be estimated as

Δ
Δ Δ

˙ ≃ ˙ ≃ ˙

= −Δ Δ− −⎡⎣ ⎤⎦( )

( ) ( )Q T T Q T T Q

e R
K e e

, ,

/ , (11)

qp

l

l m int

l

l m

lm

k T k T

typ

max

2

2 min max
/ /l mmax B max B

with ∫ ϕ ϕ= −
π −( )( )K k k1 sin d

0

/2 2 2 1/2
the complete elliptic integral of the first kind, and Δmin

the superconducting gap at the larger temperature. The elliptic integral is a monotonously
increasing function, which starts at π /2 for small arguments and has a logarithmic divergence

with ɛ ɛ− ∼( )K 1 ln 1/2 when k approaches 1. Since the contribution of the integrands of (9)

and (10) have a maximum for ω being in the vicinity of the superconducting gap Δmax , the
quasiparticle and the interference contributions to the heat current are generally of the same
order of magnitude.

Before discussing the sensitivities of the heat currents to the qubit state, we here want to
briefly give an estimate of the order of magnitude of the heat currents for the limits of small and
large temperature differences. In the case of a small temperature difference,

δ ≡ − ≪T T T T T,l m l m, we obtain from (11) the typical value Δ˙ ≃Qtyp max

3

δ δ− − Δ−⎡⎣ ⎤⎦ ( )( )/ /K T T T e T e R k T1 2 /k T
lmcrit

2
B

2max B of the heat current. Assuming furthermore

that δ ≪ −T T Tcrit , we obtain the estimate Δ˙ ≃ −⎡⎣ ⎤⎦( )/Q T T Tlntyp max

3

crit cut

δΔ− ( )/e T e R k T/k T
lm

2
B

2max B . The tunneling approximation gives a cutoff temperature δ=T Tcut ,

which leads to a logarithmic divergence of the heat current for small temperature gradients, as
already pointed out in [1]. However, as shown in [7] this is an artifact of the tunneling
approximation, which fails to properly take into account a resonance in the density of states due
to a weakly bound Andreev state. The resonance introduces a new cutoff at the scale

Δ φ= ( )/T D ksin 2
lm Bcut 0

2 , with D the transparency of the tunneling barrier.
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In contrast, in the case of a large temperature difference, we have ≪T Tmin max. Since in
this case Tmin is hence also always much smaller than Tcrit, the heat current only depends on Tmax

and we obtain the estimate Δ˙ ≃ −Δ− ( )/ /Q e K T T e R1/k T
lmtyp 0

2
max crit

20 B max . If we additionally

have ≲T Tmax crit, then the elliptic integral is of order one and the estimate simply reads

Δ˙ ≃ Δ− /Q e e R/k T
lmtyp 0

2 20 B max .

Thermal currents in a system similar to the one we study here were measured in the
experiment by Giazotto and Martinez-Perez reported in [3]. If we use these same experimental
values for an estimate, we have Δ μ≃ 200 eV0 and ≃R 1 kΩ. For =T T0.1 crit and large

temperature gradient we obtain ˙ ≃ −Q 10 Wtyp
11 , while for a small temperature gradient we

obtain the estimate Δ˙ ≃ −( )Q T T/ 10 Wtyp
14 (assuming that the logarithm is of order one).

3. Qubit-state sensitive heat currents

In the following, we want to investigate the sensitivity of the heat current to the state of the
persistent current qubit realized by the three-junction SQUID introduced before. We therefore
propose to study the difference between the heat currents compared to the sum of the two

currents for the qubit being in the state ψ
L

or ψ
R
, characterized by the sensitivity,

ψ ψ=
˙ − ˙
˙ + ˙

˙ = ˙s
Q Q

Q Q
Q Qwith . (12)l

l l

l l

l lR L

R L

L/R L/R L/R

The expectation values are obtained from the usual integral over φ of the product of the heat
currents given in (8) with the wave functions of (4). We evaluate the heat currents in each
electrode due to a temperature gradient induced by = <T T T1 2 3. This yields heat currents in
electrodes 1 and 2 given by the heat flow through the junction with electrode 3 only, while the
heat current in electrode 3 has two contributions. To simplify the notation, we now take as a

reference the heat current into electrode 1, with ˙ ≡ ˙ ( )Q Q T T,int int

1

1 3 and ˙ ≡ ˙ ( )Q Q T T,qp qp

1

1 3 . The

sensitivities then take the simple form

α

α α

=
˙ −

˙ − ˙ +

=
˙ −

˙ − ˙ +

=
˙ − + −

˙ + − ˙ + + +
( )

( )

( )
( )

( )
( )

( ) ( )
( ) ( ) ( )

s
Q C C

Q Q C C

s
Q D D

Q Q D D

s
Q D D C C

Q Q D D C C

2

2

2 1
. (13)

1
int L R

qp int L R

2
int L R

qp int L R

3

int L R L R

qp int L R L R

For a short notation and assuming the two qubit states to be well localized, we here define the
phase-dependent factors
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ψ φ ψ φ

ψ φ ψ φ π

= =

= = +

λ

λ

−

−

( ) ( )
( ) ( )

C e

D f e

cos cos ,

cos cos 2 2 . (14)

( )
L/R L/R a L/R L/R

1/ 4

L/R L/R c L/R L/R
1/

L/R

L/R

We also used the generalized Ambegaokar–Baratoff relations [19, 20] in order to relate the heat

currents Q̇( )i through the junctions =i b, c to each other, when =T T1 2. The heat currents

through the different junctions are furthermore related to the heat currents Q̇
l
into the different

reservoirs, =l 1, 2, 3, by ˙ ≡ ˙=
Q Q

i b 1
, ˙ ≡ ˙=
Q Q

i c 2
and hence ˙ = − ˙ − ˙= =

Q Q Q
i i3 b c

. By comparing
the separate quasiparticle and interference components of these heat currents, see (9) and (10),
we then find

α
˙
˙

=
˙

˙
= = = =

Q

Q

Q

Q

I

I

R

R

R

R
. (15)int

c

int

b

qp

c

qp

b
crit
b

crit
c

c

b

23

13

This finally leads to the compact expressions in (13). The results for these three sensitivities as a
function of the flux, in the vicinity of the sweet spot and the operation point of the Delft qubit, are
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Figure 3. Plot of the sensitivities, sl, for the three electrodes =l 1, 2, 3 as a function of
the flux enclosed in the loop, for α = 0.75 and ≈E E/ 80J C . The vertical dotted line
indicates the flux value of the Delft qubit ‘operation point’ [14].

Figure 4. Coefficient of the linear expansion of the heat currents of the electrodes as a
function of α for = =T T T0.11 2 crit, =T T0.33 crit, and ≈E E/ 80J C .



shown in figure 3. The sensitivity of the heat currents to the qubit state hence yields a possible
measure of the latter. The heat currents in electrodes 2 and 3 are most sensitive to the qubit state
with a sensitivity of about 2% at the ‘operation point’, f = 0.495 [14]. The plot in figure 3 shows a
dependence of the sensitivities as a function of the magnetic flux penetrating the SQUID, which is
very close to a linear function. The slopes of the latter depend on the specific realization of the qubit,
namely on the ratio α, on the electrode temperatures Tl and the applied thermal gradient, as well as
on the ratio of the Josephson and charging energy. This is shown in the approximate result for the

heat currents for small deviations δf from the ‘sweet spot’ =f 1

2
, α δ≈s m f( )l l with the respective

slope ml. The rather complex explicit analytic form of the slopes of the three sensitivities are given
in appendix B, and they are shown in figure 4 as a function of the ratio α, which is tuneable in the
experiment. We find that the slopes of the sensitivities do not in general need to have the same sign.
The slope with the largest absolute value is the one obtained from the heat currents into reservoir 2.
This is related to the fact that the heat currents into this reservoir flow uniquely through the junction
with the weakest Josephson coupling, namely junction c, which consequently has the largest phase
difference and is most sensitive to the qubit state. While for the working point of the Delft qubit, that
is at α ≈ 0.75, the slope of s2 already has a rather large value, and this value can be improved by
lowering α. Note however that with α approaching 0.5, the two valleys of the potential get closer
and the qubit states are not well defined any more. Equivalently for α > 1, the SQUID can not be
used as a qubit any longer.

4. Impact of temperature gradients on qubit dephasing

After having demonstrated the sensitivity of the heat currents to the state of the qubit, the aim of this
section is to study the impact of a temperature gradient—and the resulting heat current—on the
coherence properties of the qubit. Our interest in this point is twofold: on the one hand we want to
find out the behavior of the qubit state under measurement, and on the other we are interested in the
impact of accidental temperature gradients on the dephasing of the qubit. We therefore consider the

two-level system, defined by the states ψ
L

and ψ
R
, namely the qubit states obtained from the low-

energy physics of the SQUID, in contact with two heat baths, resulting in the model Hamiltonian

∑∑

∑

ɛ τ τ ɛ μ

τ τ

= − − + −

+ + +
σ

σ σ

σ
σ σ

=

†

†⎡⎣ ⎤⎦

( )

( )

H
w

a a

a a V V

2 2

H.c. . (16)

l k
l k l l k l k

k q
k q

toy
3 1

1,3 ,
, , ,

, ,
1, 3, 0

0
3

3
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Figure 5. Model of the two-level system with level-spacing ϵ, tunnel-coupled to two
quasiparticle baths at different temperatures, T1 and T3.



The model is depicted in figure 5. Here, the matrices τ =j, 0, 1, 3j are Pauli matrices in the
qubit space. The level splitting between the qubit states is given by ɛ, and the weak coupling
between them is denoted by w. The creation (annihilation) operators of particles with

momentum k and spin σ in lead l are given by σ σ
† ( )a al k l k, , .

In the simplified model (16), we do not explicitly take into account the three
superconducting leads with the heat currents, which depend on all three phase differences,
but rather discuss a simplified microscopic model, which involves only two leads. The idea is to
set the density of states and tunnelling matrix elements such as to reproduce the correct
macroscopic thermal current between the reservoirs at temperature =T T1 2 and T3 in the three-
lead setup. We expect that such a procedure, while being inaccurate for certain microscopic
details, will correctly incorporate the effects of the phase-dependent thermal currents on the
qubit. In linear response, the Hamiltonian (16) leads to a heat current,

 ∫π ω ω ω ω ω ω˙ = ± −
−∞

∞ ⎡⎣ ⎤⎦( )Q V V N N f fd ( ) ( ) ( ) ( ) (17)L/R

toy

0

2

3

2

1 3 1 3

with ωN ( )l the density of states of the electrons in lead l (including spin). If we set the
parameters

α α

α

ω
Δ

ω Δ
θ ω Δ

= + − − − +

= − + −

=
−

−

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )

( )

( )

V V C C D D

V V C C D D

N N

1
2

2 2

1
2

( ) , (18)l l
l

l

l

0

2 13 2

R L R L

3

2 13 2

R L R L

0

2 2

2 2

with θ x( ) the unit-step function, we achieve the goal of reproducing the correct qubit-state

dependent heat current with ˙ = ˙ = − ˙ − ˙Q Q Q Q
toy 3 1 2

; here and below, we assume the
magnitude of the quasiparticle and interference parts of the heat current to be equal.

We are now interested in the dynamics of the qubit state depending on the qubit-state
sensitive heat current induced by the temperature gradient. Starting from the full systemʼs
density matrix, we therefore trace out the lead degrees of freedom and write down a master
equation for the reduced density matrix of the qubit, ρ t( ). If we write the density matrix of the

qubit as ρ τ= + ·[ ]St t( ) ( )1

2
 with

ρ τ ρ ρ ρ ρ ρ ρ= = + − −( )( )[ ]S t t t t i t t t t( ) tr ( ) ( ) ( ), ( ) ( ) , ( ) ( ) ,
LR RL LR RL LL RR

T

we obtain the Pauli rate equation

γ˙ = × − ( )S S ht t S t S t( ) ( ) ( ), ( ), 0 . (19)1 2

T

This equation contains a precession around a pseudo-magnetic field, ɛ= ( )h w, 0,
T
,

determined by the qubit properties, and a relaxation of the coherences of the reduced density
matrix with the rate γ, while the diagonal elements, namely the occupations of the qubit states,
do not decay. This is also appreciable from the solution of the master equation, which for large
detuning ɛ ≫ w with respect to the weak tunneling between the qubit states, is given by
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ρ ρ ρ ρ

ρ ρ ρ ρ

≈ ≈

≈ ≈γ ɛ γ ɛ− + − −

( ) ( )
( ) ( )

t t

t e t e

( ) 0 , ( ) 0 ,

( ) 0 , ( ) 0 . (20)( ) ( )i t i t

LL LL RR RR

LR LR RL RL

The value of the dephasing rate γ reads,

 ∫γ
π

ω ω
ω ω ω ω

ω Δ ω Δ
=

− + −

− −Δ

∞ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦V N N f f f f4
d

1 ( ) ( ) 1 ( ) ( )
. (21)3

2

1
0

3
0

2 1 3 3 1

2
1

2 2
3

2
max

Importantly, this rate equals zero if the sensitivity of the heat current to the qubit state vanishes

and hence α∝ − + − =( )V C C D D 03

2

R L R L . Note that this means that the temperature
gradient leads to dephasing only when the qubit is tuned away from the sweet spot. Indeed, it is
possible to conclude that the qubit-state sensitivity of the heat current represents a measurement
process which is reflected in the time-dependent solution of the master equation given in (20).

The dephasing rate is connected to fluctuations in the electronic subsystem which drive the
qubit. In equilibrium, we would expect a fluctuation–dissipation relation to hold, which relates
the fluctuations to the response coefficient of the system. Naturally, this is not true in the non-
equilibrium situation studied here. It is however interesting to compare the response of the
system to the temperature gradient, namely the heat current depending on the qubit states, to the

related dephasing rate. We therefore introduce the dimensionless ratio Δ γ= ˙ − ˙r Q Qmax L

3

R

3
.

As above, we specialize to the case when Δ≲T T k,1 3 max B. With a similar calculation as the
one following (10), we obtain the estimate

Δ
≃

−⎛
⎝⎜

⎞
⎠⎟r

T T

k TT
coth

2
. (22)max 1 3

B 1 3

This means that r is universal with respect to microscopic details like the normal-state resistance
R13 or the phase difference φ

j
across the junctions, and only depends on thermodynamical

quantities like the temperatures T T,1 3 and the gap Δ0. We see that for small temperature

differences, δ = − ≪T T T T T,1 3 1 3, this ratio becomes Δ δ≃ ( )/r k T TB
2

max .

The dephasing time τ γ=Φ
−1 is in this case given by

τ
Δ δ

≃
−

˙ − ˙ϕ
( )T T T

k T Q Q

1 /
(23)0

2
crit

B
2

L

3

R

3

Δ α
≃

− + −

Δ

⎡⎣ ⎤⎦( ) ( )
e R e

T T C C D Dln /
. (24)

k T2
13

/

max crit cut L R L R

max B

The dephasing time in units of ΔΔe R e /k T2
13

/
0

max B 1 is shown in figure 6 as a function of the
temperature difference ΔT for different values of the minimum temperature T1. The inset (a) of
figure 6 compares the full result (green line) with the approximation of equation (23).

In the opposite regime of large temperature bias, we have ≃r 1, and thus the dephasing

rate is approximately equal to γ Δ≃ ˙ − ˙Q Q /L

3

R

3

max . In particular, we find in this regime that

the dephasing time τϕ of the qubit is given by
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τ
Δ

Δ α
≃

˙ − ˙
≃

− + −ϕ

Δ

[ ]( )Q Q

e R e

C C D D
, (25)

k T
0

L

3

R

3

2
13

/

0 L R L R

0 B max

i.e. the time after which the difference in the energy transported by the heat currents in the two
qubit states equals the gap Δ0 of the superconductor. This is confirmed well by the inset (b) of
figure 6, which shows the dramatic decrease in the dephasing time with increasing temperature
gradient, which in this regime is approximately given by Tmax.

Using the values we applied to estimate the heat currents in this system, we can also
estimate the dephasing time. Taking Δ ≃/e R 10

2
13 THz as in [3], we have τ ≈ϕ 1 ns for large

temperature gradients, δ ≫/T T 1min . For small temperature gradients, it can be shown that a
temperature Tmin of less than T0.1 crit has to be reached in order to avoid a strong limitation of the

dephasing due to the thermal current. Indeed, for δ ≪/T T 1min , ≃ ≲T T T0.1min max crit, and
taking the logarithm to be of order one, we have τ μ≈Φ 1 s. The actual dephasing times of the
Delft qubit range from a few tens of nanoseconds [21] up to a microsecond [22] and thus are of
the same order of magnitude. As the nominal temperatures reached for todayʼs superconducting
persistent current qubits are usually smaller than T0.1 crit [23, 24], it is unlikely that the thermal
currents do constitute the dominant source of dephasing for those qubits. However, it is well
known that quasiparticles in small superconducting structures badly thermalize, leading to
problems in reaching the base temperature in the dilution refrigerator [13, 25], and thus the
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Figure 6. Dephasing time as a function of the temperature gradient δT for different
values of T1 with ⩽T T1 3. The dephasing time was calculated for α = 0.75 and f = 0.495.
In the inset (a) we show an enlargement at Δ ≪T T , for the case of =T T0.11 crit (green
line) together with the approximate function of the dephasing time given in (23) (dashed
black line) multiplied by a numerical factor of order 1. In the inset (b) we show the
enlargement of the plot for δ< <T T0.1 / 0.2crit on a logarithmic scale. Note that this
plot is valid only for temperature differences larger than the cutoff temperature,
δ >T Tcut, which in turn depends on the microscopic details of the Josephson junctions.



effects of the phase dependence of the thermal current on the coherence properties of the Delft
qubit cannot be excluded.

5. Conclusions

We have shown that due to the phase sensitivity of the heat current that flows in the weak links
of a superconducting loop, the heat current due to a temperature gradient applied to a flux qubit
depends on the state of the qubit which is formed when the loop is threaded with a magnetic
flux that is close to half a superconducting flux quantum. We found that the sensitivity of the
heat current to the qubit state can be up to 4%, when the qubit is tuned away from the ‘sweet
spot’ of exactly half a flux quantum threading the loop. This should allow us to identify the state
of the flux qubit in experiments of the type performed in [2, 3].

Moreover, we have found that due to this difference in heat currents at different qubit
states, a thermal gradient leads to a dephasing of the qubit. In particular, we found that the ratio
of the dephasing rate to the difference in the heat currents is universal with respect to
microscopic details, and only depends on the temperature of the reservoirs measured in units of
the superconducting gap at zero temperature. For example, in the case of large temperature
gradients, the dephasing time of the qubit corresponds to the time when the energy difference
transported by the difference in heat currents is of the order of the superconducting gap. We
have shown that the dephasing time of the flux qubit in the Delft design due to the phase-
sensitive heat current can range from microseconds for small temperature differences to
nanoseconds for large temperature differences, thus constituting a potential source of dephasing
given the fact that the qubits are driven by microwave pulses, which may lead to an imbalance
of heating between the different sections of the superconducting loop.
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Appendix A. Derivation of the Maki–Griffin formula for the heat current

In this appendix, we derive in detail the analytic formulae for the heat current, which we use in
(9) and (10) and which were previously found in [1]. The aim of this section is to describe the
heat current in a superconductor–insulator–superconductor Josephson junction, biased with a
temperature gradient δT across it, while no additional voltage is applied so that we have
μ μ μ= =

1 2 0
. We assume that each superconductor (the two electrodes are denoted by l = 1, 2)

is a particle reservoir in equilibrium at temperature Tl and that it is characterized by the mean-
field BCS Hamiltonian
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∑ ∑ɛ μ Δ Δ= − − + *
σ

σ σ
†

↑
†

− ↓
†

− ↓ ↑( ) ( )H c c c c c c . (A.1)l
k

l k l k l k
k

l k l k l k l k l k l k
,

, 0 , , , , , , , ,

In (A.1), σ
†cl k, and σcl k, are single-electron creation and annihilation operators in the momentum k

and spin σ representation, and Δl k, is the superconducting energy gap of the lth electrode.
Tunnelling between reservoirs is described by the tunnelling Hamiltonian

∑= + *
σ σ σ σ σ

† †( )H V c c V c c , (A.2)
k q kq k q kq q kT , ,

12
1, 2,

12
2, 1,

where k and q are the momentum quantum numbers and the tunnelling matrix element is
denoted by Vkq

12. The total Hamiltonian is then written as = + +H H H Htot 1 2 T.

Assuming that the system is sufficiently isolated and that in particular phonons are frozen
out at very low temperatures, the heat current in electrode 1 is carried by electrons entering or
leaving it, accompanied by a change in the overall energy H1, with respect to the
electrochemical potential. According to the quantum-mechanical equation of motion, the heat
current into the first electrode is


= = [ ]Q

t
H

i
H H

d
d

d
dt

, . (A.3)
( )1

1 tot 1

Of the full commutator [ ]H H,tot 1 , only the contribution =[ ] [ ]H H H H, ,Ttot 1 1 is non-zero. Since
we are dealing with fermionic annihilation and creation operators, they must obey the

anticommutation rule δ δ δ=σ σ σσ
†

′ ′ ′ ′{ }c c,l k mk lm kk, from which we can easily derive

δ δ δ δ= = −σ σ σ σσ σ σ σ σ σσ σ
†

′ ′
†

′ ′
† †

′ ′ ′ ′
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦c c c c c c c c, , , . (A.4)l k l k l k kk l k l k l k l k kk l k, , , , , , , ,

Using these commutation relations, the evaluation of [ ]H H,T 1 yields

∑∑

∑

ξ ξ

Δ Δ

ξ Δ Δ

= +

− −

= − + −

*

* *

* *

σ σ
σ σ σ σ σ σ σ σ

σ σ σ σ

σ
σ σ

′ ′
′

†
′ ′

†
′ ′ ′

†
′ ′

†
′ ′

′
†

− ′↓ ′↑ ′
†

′↑
†

− ′↓
†

†
− − ↑ ↓ − ↓ ↑⎪ ⎪

⎪ ⎪

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭

{

}

( )

[ ]H H V c c c c V c c c c

V c c c c V c c c c

i V c c V c c c c

, , ,

, ,

2 Im . (A.5)

T
k q k

kq k k k k q kq k q k k k

kq k k k k q kq k q k k k

k q
kq k k q kq k k q k k q

1
, , ,

12
1, 1, 1, 1, 2,

12
1, 2, 1, 1, 1,

12
1, 1, 1, 1, 2,

12
1, 2, 1, 1, 1,

, ,

12
1, 1, 2,

12
1, 1, 2, 1, 1, 2,

Substituting this expression in (A.3), the heat current is found to be

 ∑ ξ Δ Δ= + −* *
σ

σ σ
†

− − ↑ ↓ − ↓ ↑⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭( )Q

t
V c c V c c c c

d
d

2
Im . (A.6)

( )

k q
kq k k q kq k k q k k q

1

, ,

12
1, 1, 2,

12
1, 1, 2, 1, 1, 2,

The next step is to calculate the expectation values in the general expression for the heat current
(A.6), yielding a Kubo formula, when expanding in the small tunnelling matrix elements. In
general, to first order in perturbation theory, the expectation value of an operator O(t) is

∫= − ′ ′ η

−∞

′−⎡⎣ ⎤⎦( )O t i t O t H t e( ) d ( ), (A.7)( )
t

T
t t

0

where the brackets ·
0
denote the equilibrium average with respect to the Hamiltonian

= +H H H0 1 2 without the perturbation HT, and η is a small parameter which is eventually taken
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to zero. Using (A.7), the heat current can be written as

 ∫ ∑ ξ

Δ Δ

= − +

+ −

′

* * ′

η

σ
σ σ

−∞

′− †
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⎪⎧⎨
⎩
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⎫⎬⎭)

(

( ) ( )

Q

t
dt e V c t c t

V c t c t c t c t H t

d
d

2
Re ( ) ( )

( ) ( ) ( ) ( ) , . (A.8)
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kq k k q

kq k k q k k q T
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0

As a first step, we need to again evaluate the commutator expression in the integrand, which
assumes the form
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Δ

−

− −

+ −

+ −

− −

+ −

′ ′ ′ ′

* ′ ′ ′ ′

* ′ ′ ′ ′

* ′ ′ ′ ′

* ′ ′ ′ ′

* ′ ′ ′ ′

σ σ
σ σ σ σ σ σ σ σ

σ σ σ σ

σ σ σ σ

σ σ σ σ σ σ σ σ

σ σ σ σ

σ σ σ σ

′ ′ ′
′ ′

†
′ ′

†
′ ′ ′ ′

†
′ ′

†

− ↓ ↑ ′ ′
†

′ ′ ′ ′
†

′ ′ − ↓ ↑

− − ↑ ↓ ′ ′
†

′ ′ ′ ′
†

′ ′ − ↑ ↓

′ ′
†

′ ′
†

′ ′ ′ ′
†

′ ′
†

− ↓ ↑ ′ ′
†

′ ′ ′ ′
†

′ ′ − ↓ ↑

− − ↑ ↓ ′ ′
†

′ ′ ′ ′
†

′ ′ − ↑ ↓

⎡⎣

⎤⎦
⎡⎣

⎤⎦

{

}

( )

( )
( )

( )
( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

V V c t c t c t c t c t c t c t c t

c t c t c t c t c t c t c t c t

c t c t c t c t c t c t c t c t

V V c t c t c t c t c t c t c t c t

c t c t c t c t c t c t c t c t

c t c t c t c t c t c t c t c t

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) . (A.9)
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In order to take the equilibrium expectation value of this expression, it is useful to employ the
Greenʼs functions defined in the following way
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The linear-response formula for the heat current, equation (A.8), is then given by
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The next step is to express the Greenʼs functions by their spectral densities

∫
∫
∫
∫

ω
π

ω ω

ω
π

ω ω

ω
π

ω ω

ω
π

ω ω

= − −

=

= −

= −

′

′

′

′

ω

ω

ω

ω

>

−∞

∞
− − ′

<

−∞

∞
− − ′

>

−∞

∞
− − ′

<

−∞

∞
− − ′

( )

( )

( )

( )

( )

( )

G t t i e f A

G t t i e f A

F t t i e f B

F t t i e f B

,
d
2

1 ( ) ( ),

,
d
2

( ) ( ),

,
d
2

1 ( ) ( ),

,
d
2

( ) ( ). (A.11)

( )

( )

( )

( )

l k
i t t

l l k

l k
i t t

l l k

l k
i t t

l l k

l k
i t t

l l k

, ,

, ,

, ,

, ,

Where ωf ( )
l

is the Fermi function of the lth electrode. Substituting these expressions (A.11)
into the equation for the heat current (A.10), the latter simplifies significantly
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. (A.12)
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1, 2, 1, 2,
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Here, since the tunneling matrix element is invariant under time reversal, we used the relation

=− −V V Vkq k q kq
12 12 12 2

. According to microscopic BCS theory, the spectral densities are

ω π δ ω δ ω= − + +⎡⎣ ⎤⎦( ) ( )A u E v E( ) 2l k l k l k l k l k, ,

2

, ,

2

, and ω π=B u v( ) 2l k l k l k, , ,

δ ω δ ω− − +⎡⎣ ⎤⎦( ) ( )E E ,l k l k, , with ξ= +( )u E1/2 1l k l k l k,

2

, , , ξ= −( )v E1/2 1l k l k l k,

2

, , ,

and the quasiparticle energy-momentum relation ξ Δ= +El k l k l k, ,
2

,

2
. To continue the

calculation, it is important to notice that the parameters ul k, , vl k, and Δl k, are not independent,

but that their phases are related by Δ ξ= −* v u E/l k l k l k l k l k, , , , , , such that Δ* v u/l k l k l k, , , must be a real
number. That is, the phase of vl k, relative to ul k, must be equal to the phase of Δl k, . Without loss
of generality we can choose ul k, to be real and positive, so that vl k, and Δl k, must have the same
phase [26]. Finally, we introduce the phase difference φ between the electrodes with the relation

Δ Δ φ=* * ( )v v iexpk q k q1, 2, 1, 2, .

The next stage of the calculation is to substitute the spectral densities, ωA ( )l k, and ωB ( )l k, ,
into the heat current expression (A.12) and to perform the sum over the momenta k and q. To do
that, the sum over the momenta is transformed into an integral over the electronic energies ξl k,

with l = 1, 2, such that [27],
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We denote the normal-state density of states (including spin) of the lth electrode by Nl
0 and

finally assumed an isotropic superconductor with an energy-independent gap. Similarly, we find
for the other terms
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In (A.12) the term depending only on B Bk q1, 2, , which is related to the sole Cooper pair

contribution, vanishes, as it is easy to notice using the last expression in (A.14). If we also use

the relation ɛ πδ− =ε→ { }( )x i xlim Im 1/ ( )0 and substitute the integrals over the spectral

functions (A.13) and (A.14) into the heat current (A.12), we obtain
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In the above derivation we assumed that the normal densities of states and the tunnelling matrix
elements are energy-independent. Evaluating the theta-functions we finally obtain
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where we introduced Δ Δ Δ= { }( ) ( )T Tmax ,max 1 1 2 2 and the normal-state conductance of

the Josephson junction, defined via the inverse of the normal-state resistance,

π=−R e N N V /kq12
1 2

1
0

2
0 12 2

.
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In (A.16), the total heat current through the junction carried by quasiparticles is

( )Q T T td , /d( )
qp

1
1 2 , while ( )Q T T td , /d( )

int
1

1 2 is the interference contribution to the heat current due to

an interplay between quasiparticles and the Cooper pair condensate. It is easy to see that

( )Q T T td , /d( )
int

1
1 2 , which originates from the Josephson effect and is characteristic of weakly

coupled superconductors, vanishes when at least one of the superconductors is in the normal

state Δ =( )( )T 0l l .

Appendix B. Slopes of the sensitivities

In this section of the appendix we provide the analytic formulas for the slopes of the
sensitivities sl, for small δ ≪f 1. We find
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The results are plotted in figure 4.
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