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Abstract
A continuous-flow asymmetric organocatalytic photocyclization–transfer hydrogenation cascade reaction has been developed. The
new protocol allows the synthesis of tetrahydroquinolines from readily available 2-aminochalcones using a combination of photo-
chemistry and asymmetric Brønsted acid catalysis. The photocylization and subsequent reduction was performed with catalytic
amount of chiral BINOL derived phosphoric acid diester and Hantzsch dihydropyridine as hydrogen source providing the desired
products in good yields and with excellent enantioselectivities.
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Introduction
Tetrahydroquinolines [1-4] represent a well-known structural
motif found in a large number of biologically active natural
products. Optically active tetrahydroquinolines are important
building blocks for the pharmaceutical and agrochemical indus-
tries. Due to their importance, new and efficient procedures for
their synthesis have been developed. Among the synthetic
protocols developed for the preparation of optically active
tetrahydroquinolines, the asymmetric hydrogenation of substi-

tuted quinolines represents the most widely used and efficient
method to prepare this class of N-heterocyclic compound
[5-17].

In the past years, continuous-flow chemistry has received
considerable attention and microstructured continuous-flow
devices have emerged as useful devices for different chemical
reactions [18-22]. Microreactor technology offers numerous
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Scheme 1: Photocyclization–reduction of 2-aminochalcone.

Scheme 2: Experimental setup of continuous-flow photocyclization–reduction cascade.

practical advantages such as better reaction yield due to
enhanced mixing quality, better control of reaction variables,
reduced safety hazards, reduced reagent consumption, enhanced
heat and mass transfer due to the high surface-to-volume ratio
and rapid experimentation and optimization.

Recently, microreactor devices have been adopted for photo-
chemical applications and microflow photochemistry has
emerged as efficient synthesis tool [23-31]. The narrow inner
dimensions of microfabricated reactors is advantageous for
photochemical synthesis since it allows better light penetration
and uniform irradiation through the entire reactor and the
complete reaction medium, in comparison with reactions
performed in conventional batch systems.

Here we report the development of continuous-flow photo-
chemical reaction in combination with asymmetric Brønsted
acid catalysis for the synthesis of optically active tetrahydro-
quinolines. Readily available substituted 2-aminochalcones
were envisioned to undergo photocyclization to the corres-
ponding quinolines which in the presence of a chiral BINOL-
derived phosphoric acid diester and Hantzsch dihydropyridine
as hydride donor [32-37] could provide the desired enantioen-
riched tetrahydroquinolines (Scheme 1) [38].

Results and Discussion
The continuous-flow microreactor system for the experiment
was set up according to Scheme 2. The flow device was set up
with multiple commercially available glass reactors connected
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Table 1: Optimization of the Brønsted acid catalyzed transfer hydrogenation of quinolines.a

Entry Conc. [mol/L] Temp. [°C] Time [min] Flow rate [mL min 1] Yield [%]b ee [%]c

1 0.1 40 60 0.1 59 93
2d 0.1 40 60 batch 7 95
3 0.1 55 60 0.1 64 96
4 0.05 55 60 0.1 74 94
5 0.05 55 120 0.05 79 88
6 0.03 55 60 0.1 82 94
7d 0.03 55 60 batch 29 96
8 0.03 55 120 0.05 88 83

aReaction conditions: 1a, 4 (2.4 equiv), 3 (1 mol %) in CHCl3, irradiation with a TQ 150 high pressure mercury lamp. bIsolated yields after column
chromatography. cDetermined by chiral HPLC analysis. dPerformed under batch condition.

in parallel and placed in a water bath [39]. The light required to
perform the reaction is supplied from a high-pressure mercury
lamp located outside of the reactor. The lamp consists of a
double-jacketed water-cooled pyrex immersion well. The
reagents were degassed and introduced into the microreactor
using a programmable syringe pump. The product solution was
collected in a flask wrapped with aluminium foil to prevent
further irradiation.

Our initial investigation of reaction conditions involved the
photocyclization–reduction cascade of 2-aminochalcone 1a in
the presence of Hantzsch dihydropyridine 4 as hydrogen source
and catalytic amount of chiral Brønsted acid 3. The effect of
temperature, flow rate and concentration on the reaction yield
and enantioselectivity are summarized in Table 1. As shown in
Table 1, performing the reaction in a pyrex test tube (i.d.:
12 mm;  > 300 nm) with 1 mol % of Brønsted acid 3 at 40 °C
for 60 min afforded the product in 7% isolated yield and 95%
enantioselectivity (Table 1, entry 2). Conducting the reaction
using the same light source and under the same reaction condi-
tions in a single pass flow reaction showed a noticeable impact
on the yield as the product 2a could be isolated in 59% yield
and 93% enantiomeric excess (Table 1, entry 1 vs entry 2).
Improvement of the reaction yield shows the superior perfor-
mance of the microflow reactor since the light penetration
through the microchannels was significantly increased. A slight
improvement of yield was achieved when the reaction was
carried out at 55 °C (Table 1, entry 3).

Noticeable improvement on the chemical yield was observed
when the reaction was conducted at a lower concentration
providing the product in 74% isolated yield and 94% enan-
tiomeric excess (Table 1, entry 4 vs entry 3). Further decrease
of the concentration to 0.03 M gave the best result affording the
product in 82% yield (Table 1, entry 6). It is worth mentioning
that decreasing the flow rate had only a minimum effect on the
yield but resulted in significant loss of enantioselectivity
(Table 1, entry 5 vs 4). This result indicates that the residence
time plays a crucial role in this photocyclization–reduction
cascade. Due to prolonged irradiation of the reaction mixture,
an undesired background reaction initiated by photoexcited
dihydropyridine occurred leading to the loss of enantio-
selectivity [40,41].

With the optimized reaction conditions in hand, the substrate
scope of this new photocyclization–asymmetric transfer hydro-
genation sequence was examined. The results are summarized
in Table 2. In general, different 2-aminochalcones bearing
substituted aromatic residues on both ketone and enone moieties
underwent the desired photocyclization and subsequent asym-
metric reduction to afford the corresponding tetrahydroquino-
lines in good yields and high enantioselectivities.

Conclusion
In conclusion, we have demonstrated the great potential of a
new continuous-flow microreactor system for the photocycliza-
tion–reduction cascade of 2-aminochalcones. Under the contin-
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Table 2: Scope of the continuous-flow photocyclization–asymmetric reduction domino sequence.a

Entrya Substrate 1 Product 2 Yield [%]b ee [%]c

1

1a 2a

82 94

2

1b 2b

88 96

3

1c 2c

73 91

4

1d 2d

71 91

5

1e 2e

63 89

6

1f 2f

73 90

7

1g 2g

75 88

8

1h 2h

64 90
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Table 2: Scope of the continuous-flow photocyclization–asymmetric reduction domino sequence.a (continued)

9

1i 2i

57 91

aReaction conditions: 1, 4 (2.4 equiv), 3 (1 mol %) in CHCl3 (0.03 M) at 55 °C, flow rate 0.1 mL/min, residence time = 60 min, irradiation with a TQ 150
high pressure mercury lamp. bIsolated yields after column chromatography. cDetermined by chiral HPLC analysis.

uous-flow condition a variety of substituted 2-aminochalcones
underwent the photocyclization and the subsequent transfer
hydrogenation to afford a series of differently substituted
tetrahydroquinolines in good yields and with excellent enantio-
selectivities. This efficient protocol for the synthesis of tetrahy-
droquinoline from readily available 2-aminochalcone provides
an attractive alternative to the existing procedures and serves as
a basis for further exploration of this new concept.
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