
Simpli�cation Problems for Automata
and Games

Von der Fakultät für Mathematik, Informatik und Naturwissenscha�en der

RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenscha�en genehmigte Dissertation

vorgelegt von

Diplom-Informatiker
Stefan Repke (geb. Schulz)

aus Cottbus

Berichter: Privatdozent Dr. Christof Löding

Universitätsprofessor Dr. Dr.h.c. Wolfgang�omas

Dr. habil. �omas Colcombet

Tag der mündlichen Prüfung: 13. Mai 2014

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Zusammenfassung
Die Vereinfachung von Automaten beschä�igt sich mit der Frage, ob ein gegebener Automat in

ein simpleres Format überführt werden kann; d.h., ob im gegebenen Fall ein bestimmtes Merk-

mal des Automatenmodells verzichtbar ist.Wenn ja, so soll ein vereinfachter Automat generiert

werden. Die zugrundeliegende Motivation ist, dass einfachere Automaten bessere theoretische

Eigenscha�en besitzen. Vereinfachung können auch für Spiele betrachtet werden, die durch

Automaten de�niert sind. Dabei lautet die Frage, ob Gewinnstrategien durch Automaten

dargestellt werden können, deren Format simpler ist als die Spielspezi�kation. Diese Arbeit

widmet sich zwei Aspekten der Vereinfachung: Regularitätsproblemen und vorausschauender

Delegierung.

Beim Regularitätsproblem geht es darum, zu entscheiden, ob ein gegebener deterministi-

scherKellerautomat (DPDA) eine reguläre Sprache erkennt. Diese Fragewurde vor Jahrzehnten

gelöst, wohingegen das erweiterte Problem für ω-DPDAs (welche unendliche Eingaben ver-
arbeiten) seitdem o�en geblieben ist. Wir erweitern eine Methode, die es erlaubt, bekannte

Ergebnisse über DPDAs zu verallgemeinern auf ω-DPDAsmit schwacher Akzeptanz. Für diese
schwachen ω-DPDAs zeigen wir die Entscheidbarkeit des Regularitätsproblems und zusätzlich
des Äquivalenzproblems. Für ω-DPDAs im Allgemeinen geben wir eine Kongruenzrelation
an, die Regularität charakterisiert. Die Entscheidbarkeit bleibt hingegen o�en.

Eine verallgemeinerte Variante des Regularitätsproblems beschä�igt sich mit Pushdown-

Spielen (PDGs), d.h., Zwei-Spieler-Spiele welche durch ω-DPDAs beschrieben werden und
für welche Gewinnstrategien ebenfalls durch DPDAs dargestellt werden können. Regularität

bedeutet entsprechend, dass ein PDG eine reguläre Gewinnstrategie besitzt; d.h., sie ist darstell-

bar durch einen endlichen Automaten. Wir zeigen dass diese Form des Regularitätsproblems

bereits unentscheidbar ist für PDGs mit Sicherheitsbedingung.

Ein anderer Aspekt der Vereinfachung beschä�igt sich mit vorausschauender Delegierung

für nichtdeterministische endliche Automaten (FSAs). Das Problem ist hier, zu entscheiden, ob

Transitionen deterministisch gewählt werden können, wenn man eine beschränkte Vorschau

auf die Eingabe zugesteht. Eine solche Auswahlfunktion nennt man Delegierer. Nicht-triviale

Komplexitätsergebnisse über die Existenz von Delegierern sind bisher nur bekannt für eine

eingeschränkte Unterklasse von FSAs. Wir erbringen entsprechende Ergebnisse für (uneinge-

schränkte) FSAs und zeigen, dass es PSPACE-vollständig ist, zu entscheiden, ob ein Delegierer

für eine beliebige Vorschaubeschränkung existiert und einen solchen zu bestimmen. Wei-

terhin zeigen wir mithilfe von Zwei-Spieler-Spielen, dass die Existenz eines Delegierers in

Polynomialzeit entschieden werden kann, wenn die Vorschaubeschränkung konstant ist.

iii

Abstract

Automata simpli�cation asks whether a given automaton can be converted into one of a simpler

format, i.e., whether a certain feature of the automaton model is avoidable in the given case. If

yes, an automaton of this simpler format shall be synthesized. �e idea is that simpler automata

models have better closure and algorithmic properties. Simpli�cation can also be studied

for games that are de�ned by automata. �en, the question is whether winning strategies

can be implemented by automata of a format that is simpler than the one used for the game

speci�cation. In this thesis, we continue the research on two di�erent aspects of simpli�cations,

namely regularity problems and lookahead delegation.

�e regularity problem is to decide whether a given deterministic pushdown automaton

(DPDA) recognizes a regular language; which means that the pushdown stack is unnecessary

as an equivalent �nite state automaton can be found. �is problem was solved decades ago for

DPDAs whereas its pendant for ω-DPDAs (working on in�nite input sequences) remained
open since then. We adapt a technique that allows us to li� some known result from DPDAs to

the restricted class of ω-DPDAs with weak acceptance conditions. For those weak ω-DPDAs,
we show the regularity problem and further the equivalence problem to be decidable. For

the general case of ω-DPDAs, we de�ne a congruence relation that characterizes regularity,
whereas the decidability remains open, unfortunately.

A generalized variant of the regularity problem concerns pushdown games (PDGs), i.e., two-

player gameswhich are speci�ed byω-DPDAs andwhich omit a winning strategy representable
by a DPDA, too. In this setting, regularity means that there is a ‘regular’ winning strategy,

i.e., one representable by a �nite state automaton. We show the regularity problem to be

undecidable even for PDGs with safety acceptance.

�e other aspect of simpli�cation deals with lookahead delegation for nondeterministic

�nite state automata (FSAs). �e problem is to decide whether transitions can be chosen

deterministically when a bounded lookahead on the input word is allowed. Such a choice

function is called delegator. Nontrivial complexity results on the existence of delegators are

only known for a restricted subclass of FSAs, yet. We contribute the corresponding results

for (unrestricted) FSAs. We provide polynomial space upper and lower bounds for deciding

the existence of a delegator with some bounded lookahead (and synthesizing it). By using

two-player games as a tool, we further prove that the existence can be decided in polynomial

time if the length of the lookahead is �xed.

v

Contents

1 Introduction 1

2 Preliminaries 9
2.1 Automata . 10

2.2 Games . 15

2.3 Abbreviations . 19

2.4 Register Machines . 20

3 Regularity Problems for Pushdown Games and ω-Automata 21
3.1 Finite State Strategies for Pushdown Games . 22

3.2 Connecting Games and Automata: Classi�cation Game 32

3.3 Regularity Test for Weak ω-DPDAs . 37

3.3.1 Normal Form . 39

3.3.2 Normalization . 42

3.3.3 Decidability Results . 46

3.4 Congruences for Strong ω-DPDAs . 47

4 Lookahead Delegation for Nondeterministic Automata 59
4.1 Delegation for Finite State Automata . 60

4.1.1 Fixed Lookahead . 64

4.1.2 Given Lookahead . 68

4.1.3 Bounded Lookahead . 72

4.2 Delegation for Pushdown Automata . 76

5 Conclusion 81

Bibliography 85

Index 91

vii

Chapter 1

Introduction

Automata are one of the most classic concepts in theoretical computer science. �ey �rst

occurred in the context of neurophysiology [MP43] and soon turned out to be a valuablemodel

of computation, too. Especially deterministic �nite state automata (DFSAs) are natural as
they coincide with many other formalism, and they enjoy outstanding algorithmic and closure

properties (see [HU79] for an overview). In computer science, automata can be found in a

variety of applications, like in compilers or other tasks of text processing and in veri�cation.

�e more complex the applications became the more useful extensions arose for classic

DFSAs; e.g., nondeterminism, pushdown stack, or in�nite input words to name just a few

standard extensions:

• A (nondeterministic) �nite state automaton (FSA) might choose among di�erent
transitions for a given input letter. �is allows the automaton to ‘guess’ a run with

respect to the remaining input.

• �e �nite memory of a pushdown automaton (PDA) is equipped with an addition
stack, which is an unbounded LIFO data structure. It essentially allows a PDA to test
the input for recursive structures.

• In�nite words, so-called ω-words, can be handled by automata with a di�erent accep-
tance conditions. For parity acceptance, a number, called color, is assigned to each
state. An ω-word is accepted by an ω-automaton if it induces a state sequence where
an even number is the lowest one that occurs in�nitely o�en.

All these extensions can be combined; e.g. to obtain a deterministic pushdown ω-automa-
ton (ω-DPDA). Some of them do not increase the expressiveness (e.g., a DFSA does not
gain any expressiveness when equipped with nondeterminism and ε-transitions), whereas in
general, they do. On the other hand, such an increase leads to poorer closure and algorithmic

1

Chapter 1 Introduction

properties. �is is the motivation to consider simpli�cation problems, i.e., to asks whether

certain extensions can be avoided for a given automaton. In positive cases, an automaton of a

simpler format shall be computed.

Many questions of simpli�cation have been studied so far; some of them being:

• “Does a DPDA recognize a regular language?” [Ste67, Val75],

• “Can the ω-acceptance of an ω-DFSA be reduced?” [Lan69, CM99],

• “Can the ω-acceptance of an ω-DPDA be reduced?” [Lin77, CG78],

• “Does a regular language belong to a certain subfamily of regular languages?” [Str94],

and

• “Can a nondeterministic FSA choose transitions deterministically when using looka-

head?” [RS07].

In this thesis, we continue the research on two of these problems: the �rst one which is

called regularity problem, and the last one called lookahead delegation. Details on them are
discussed in the following.

Regularity Problems

Based on the regularity problem for DPDAs, we further consider two generalized variants of

the problem, namely for ω-DPDAs and pushdown games. We �rst motivate the basic problem
which explains why determinism is required.

Pushdown automata are popular as they can express the nested structure of program code,

as well as recursive nature of program runs, or they can process data trees in a linearized

form, like XML. PDAs have been studied decades ago and their closure and algorithmic

properties turned out to be much worse in comparison to FSAs (see [HU79]). To demonstrate

the complexity, one can look at the two most fundamental simpli�cation problems which

ask whether the language is empty, or whether it is universal (i.e., every word is accepted),

respectively. For nondeterministic PDAs, emptiness is decidable in polynomial time [EHRS00]

whereas universality is undecidable [HU79, �eorem 8.11]. �is undecidability is handed

down to many other important problems; like equivalence (“Do two PDAs recognize the same

language?”) and regularity (“Does a PDA recognize a regular language?”); the latter one being

a simpli�cation problem.

2

�e situation becomes slightly better when turning to deterministic PDAs (DPDAs). Al-

though, they still lack of some important closure properties, the determinism allows the univer-

sality problem to be reduced to the emptiness problem which makes it decidable in polynomial

time, too. Other related problems are known to be decidable, but with a high complexity: there

exists an algorithm testing regularity in doubly exponential time [Ste67, Val75] and decades

later, an involving algorithm was found that decides equivalence with non-elementary running

time [Sén01, Sén02]. For the restricted class of deterministic one-counter automata, where the

stack can only be used as a counter, both problems were recently shown to be NL-complete

[BG11, BGJ13].

Formanymodern applications, it is not enough that a programprocesses a single request and

terminates a�erwards. Instead, it is required to run ad in�nitum while constantly answering

user requests. �is idea is captured by ω-automata, which are particularly used in model
checking (see [BK08]). Many theoretical properties of automata on in�nite words can be

derived from the case of �nite words with more di�cult proofs (see [PP04]). When ω-DPDAs
(and ω-PDAs) were studied in the 1970’s [CG77a, CG77b, CG78], the universality problem
turned out to remain decidable forω-DPDAs, whereas regularity was posed as an open problem
in [CG78], and also the equivalence problem is open up to now.

In this thesis, we tackle the regularity problem for ω-DPDAs. We show the decidability of
both the regularity and the equivalence problem for the restricted class of weak ω-DPDAs.
An ω-automaton (with parity acceptance) is called weak if the colors that occur during a run
never increase. �is allows the run to change only a bounded number of times between being

accepting or rejecting (i.e., even and odd) until eventually, the color stabilizes. �is coincides

with the boolean combination of reachability and safety conditions. We obtain our results

by extending a normal form for weak ω-DFSAs which establishes an interesting connection
between languages of �nite and in�nite words [Löd01]: the same language of in�nite words is

recognized from two states if, and only if, the same language of �nite words is recognized from

the same two states (when considering the ω-DFSA as DFSA where states with even color
are de�ned as accepting). �is normal form was used in [Löd01] to li� known minimization

results from DFSAs to weak ω-DFSAs. With some rather technical e�ort, we extend this
normal form to the framework of pushdown automata which then allows us to easily li�

regularity and equivalence decision procedures from DPDAs to ω-DPDAs. �ese results were
presented in a shortened version [LR12].

Unfortunately, we did not solve the open problems for (strong) ω-DPDAs. Nevertheless,
we contribute a theoretical result which might be a step towards the solution. Based on the

language recognized by some ω-DPDA, we de�ne a congruence relation that has �nite index

3

Chapter 1 Introduction

(i.e., �nitely many classes) if, and only if, the language is regular. Similar results for languages of

�nite words are the well-known Myhill-Nerode congruence which characterizes regularity, or

another congruence which characterizes whether a language can be recognized by a so-called

visibly PDA [AKMV05]. �e problem of deciding whether the index of our congruence is

�nite remains as open as for the regularity problem, though.

In�nite two-player games is an important model closely related to ω-automata. A classic
motivation to study such games is Church’s synthesis problem [Chu57, Chu63]. For a system

speci�cation given as in�nite sequences of pairs (input and output), synthesis means to �nd

a controller that produces for each input sequence an output sequence according to the

speci�cation. In [BL69], a solution is presented where the speci�cation is assumed to be an

ω-DFSA and it was shown that then, a controller can be represented by a �nite state device,
too.

From the perspective of games, Church’s problem is a special case of �nding a winning

strategy. An in�nite two-player game is played on a directed graph where each vertex is

associated with one player. Starting from a certain initial vertex, the player who is in charge of

it has to pick one of its outgoing edges and the play proceeds analogously from this new vertex.

In total, a play corresponds to an in�nite sequence of vertices. �e winning condition (for

a certain player) is usually de�ned by a parity condition on the vertices. A winning strategy

advices a player to pick edges such that he wins each resulting play, nomatter how his opponent

plays.

A classic approach to �nitely represent the (possibly in�nitely many) vertices of a game

graph is to use a deterministic automaton and its con�guration graph. We then understand

a play as an ω-word rather than an in�nite sequence of vertices. Consequently, strategies
can be speci�ed by deterministic automata that read the play as an input word. For many

automaton models, it is possible to synthesize a winning strategy (‘controller’) that uses the

same automaton model as the one that describes the game (‘speci�cation’); e.g., for �nite state

games [BL69] and for pushdown games [Wal01].

Such results establish games as useful tools, but they can also be subject to simpli�cation

problems themselves. One problemmight be to decide whether a winning strategy of a simpler

automaton model exists. An example of this form is the question studied in [SV02, SS07] that

is to decide whether XML documents can be validated against a given DTD by using only

constant memory, i.e., by a DFSA. �is problem can be reduced to the simpli�cation problem

of whether a certain pushdown game admits a �nite state winning strategy (see Example 3.1.2

for details). Note that this connection does not allow undecidability results for simpli�cation

problems to be transfered back to the validation problem due to the direction of the reduction.

4

Our contributions to simpli�cation for pushdown games involve �rstly, the ‘regularity

problem’ for winning strategies and secondly, we de�ne games that simulate acceptance by

automata and express certain related properties. Regarding winning �nite state strategies

(FSSs) for pushdown games, we show that a winning FSS exists as soon as one can win against

a reachability winning condition, whereas the existence becomes undecidable when a safety

winning condition is considered. Further, we present a game construction that is intended

to simulate the input and the acceptance of a given ω-DPDA. We show that this so-called
classi�cation game connects regularity for languages and games in the sense that the language
is regular if, and only if, there exists a winning FSS (for the player who is in charge of the

acceptance). �e game is further useful to decide simpli�cation problems on the acceptance

component of a ω-DPDA; i.e., deciding whether a language can already be recognized with
simpler acceptance, like reachability, safety, Büchi, or co-Büchi. �e novelty of our classi�cation

game yields a simpler, less technical, and more general solution to these problems that are

known to be decidable [CG78, Lin77].

Lookahead Delegation

�e objective of simpli�cation is not necessarily to represent an automaton in a simpler (i.e.,

restricted) format by introducing new states. A di�erent approach is followed in lookahead
delegation as studied in [RS07]: the problem is to decide whether a nondeterministic automa-
ton can choose transitions deterministically when it is allowed to look some letters ahead on

the input word. �e given automaton itself remains unchanged in the sense that no new states

or transitions are added.

�is requirement arose from the original motivation based on distributed web services,

called e-services [ACKM04], which can be formally understood as DFSAs in this context. �e

problem of e-service composition [BCG+03, GHIS04, DIS05, MW08] asks whether a target

speci�cation (given as a DFSA) can be composed of multiple available e-services (given as tuple

of DFSAs). If this is possible, then a lookahead delegator shall be synthesized which assigns
each input letter to one of the DFSAs that has to process it. As established in [GHIS04], the

delegator has to make its decisions based on the current state of each DFSA, the current input

symbol, and a bounded lookahead on the further input. It was shown that deciding the existence

of a delegator with a given amount of lookahead is EXPTIME-complete [GHIS04, MW08].

�e reformulation of the delegation problem where a single (nondeterministic) FSA is given

instead of multiple DFSAs is obtained by considering the (fully asynchronous) product of all

DFSAs (the speci�cation as well as the available e-services). In fact, this formulation with a

single automaton is more general although it looks simpler. �e central decision problem is

5

Chapter 1 Introduction

hence to decide the existence of a lookahead delegator for a given automaton. �ree variants

of that problem were introduced in [RS07]:

• First, where the amount of lookahead is �xed (hard-coded into the algorithm).

• Second, where the amount of lookahead is given (as a part of the input).

• And �nally, where the amount of lookahead is arbitrary but bounded.

Further, the complexity of these three problems was studied in [RS07] and the following

non-trivial upper bounds are given only for a restricted class of FSAs called unambiguous

FSAs: PTIME, co-NP, and PSPACE, respectively. �e latter problem regarding the existence of

a bounded lookahead delegator was posed as an open problem for the case of FSAs [RS07]

and for the case of a tuple of DFSAs [DIS05].

In this thesis, we tie in with the previous results and contribute bounds for the case of

general FSAs: �e �rst problem is in PTIME, which generalizes the bound from [RS07] and

corrects another result.1 �emain idea of our construction is to use a game that simulates the

delegation process such that a winning strategy for the delegating player directly corresponds

to a delegator in the automaton. By a non-trivial abstraction of the game representation,

such a strategy can be computed in polynomial time. We further prove that the latter two

problems are PSPACE-complete. For the upper bound, we present a di�erent algorithm that

can store a lookahead of exponential length in polynomial space by using the binary encoding

of this length. We then prove that a maximal useful lookahead is exponential in the size of

the automaton which makes the last problem decidable in polynomial space with the above

algorithm. �e latter result solves the open problems due to [DIS05, RS07]. �ese results have

been presented in excerpts in [LR13]. Finally, we extend the delegation problem to pushdown

automata and show the three problems to be undecidable for PDAs in general. Only for the

restricted class of visibly PDAs, we prove the decidability of the �rst two problems.

Outline

�is thesis is structured as follows. We introduce in Chapter 2 the fundamental concepts

that we need throughout our work; like automata and languages, games and strategies, and

computational machines. In Chapter 3, we present our results regarding the regularity problem

for deterministic pushdown automata. We start with the most complex variant of the problem

1In [RS07, �eorem 5] is stated that the delegation problem with �xed lookahead is PSPACE-hard for FSAs.

�e proof uses a reduction from an inclusion problem of the form “Is the language recognized by a given FSA

a subset of another �xed language?”. However, this problem is not PSPACE-hard.

6

that asks for the existence of ‘regular’ strategies for pushdown games in Section 3.1. We then

study in Section 3.2 how the classi�cation game can be used to simplify ω-DPDAs. A normal
form for weak ω-DPDAs is introduced in Section 3.3 to solve the problems of regularity and
equivalence. In Section 3.4, the chapter concludes by a congruence relation that characterizes

regularity for (non-weak) ω-DPDAs. In Chapter 4, we consider lookahead delegation for
nondeterministic automata. First, we present decidability results for �nite state automata in

Section 4.1, wherewe give a rather complete picture of the complexities for various formulations

of the delegation problem. In Section 4.2, we extend our studies to pushdown automata and

show decidability in a restricted case but undecidability in general. Finally, we give a conclusion

in Chapter 5, where we also point out aspects that remain open or can be the subject of further

research.

7

Chapter 2

Preliminaries

�is chapter is devoted to the introduction of classic concepts and results that we work with at

several places throughout this thesis. A�er some preliminary notation, we de�ne automata

which form the basis of our studies. For technical reasons, we start with the most general

de�nition of pushdown automata. �en, simpler automata models are obtained as restricted

special cases. We proceed with the de�nition of games and strategies, and how they can both

be represented by automata. We conclude by a short introduction of register machines.

Sets. We de�ne the following integer intervals: the natural numbers N = {0, 1, . . .}, the
positive natural numbersN+ =N∖{0}, the interval [n] = {0, . . . , n − 1} of the �rst n naturals,
and the binary numbers B = [2]. We write ω =N and use ω to denote countable in�nity. We
denote the cardinality of a set S by ∣S∣.

Words and Languages. Let Σ be an alphabet, i.e., a �nite set of so-called symbols or letters.
�en, Σ∗ (Σω) denotes the set of (ω-)words over Σ, i.e., �nite (countably in�nite) sequences of
Σ-symbols. A subset of Σ∗ (Σω) is called (ω-)language. For a (�nite) word w = a1 . . . an ∈ Σ∗
with a1, . . . , an ∈ Σ, we de�ne ∣w∣ = n ∈ N as its length and wR = an . . . a1 ∈ Σ∗ as its reversal.
�e empty word ε is the unique word of length ∣ε∣ = 0.
For languages L, L′ ⊆ Σ∗, we de�ne the following languages:

L+ = {w1 . . .wn ∣ n ∈N+ and wi ∈ L for all i ∈ {1, . . . , n}},

L∗ = L+ ∪ {ε},

L ⋅ L′ = {w ⋅w′ ∣w ∈ L and w′ ∈ L′},

L + L′ = L ∪ L′,
L = Σ∗ ∖ L.

9

Chapter 2 Preliminaries

For a language L ⊆ Σ∗ and ω-languages L′, L′′ ⊆ Σω, we analogously de�ne the following

ω-languages:

Lω = {w1 ⋅w2 . . . ∣wi ∈ L for all i ∈N+},

L ⋅ L′ = {w ⋅ α ∣w ∈ L and α ∈ L′},

L′ + L′′ = L′ ∪ L′′,
L′ = Σω ∖ L′.

We o�en identify a single word w ∈ Σ∗ (or an ω-word α ∈ Σω) with the singleton language

{w} ⊆ Σ∗ (respectively {α} ⊆ Σω), e.g., in combination with the above operators (like in the

following). An ω-word α = uvω that repeats some (nonempty) in�x v ad in�nitum a�er some
pre�x u is called ultimately periodic.

2.1 Automata
Automata are devices used to accept or reject input words by processing them letter-wise such

that in each step, some memory is updated. We use the notation as it can be found in modern

literature (e.g., [HMU01]).

Pushdown Automata

Pushdown automata are named a�er their memory structure. Besides the classic �nite memory,

they are equipped with a stack which is a last-in-�rst-out (LIFO) data structure represented
by a word only growing to the le�. When an input letter is processed, it is important in which

state the automaton is and which information is present at the top of the stack, i.e., the le�most

symbol of the stack word. Based on this triple of letter, state, and stack top, the automaton

can choose a so-called transition which describes how the memory shall be updated, i.e., the

transition de�nes a new state and a (possibly empty) sequence of stack symbols to be placed

on top of the stack as a replacement for the previous top symbol. An input word hence induces

a sequence of memory updates. �is process usually starts at a certain con�guration of the

memory, and depending on where it leads to, the automaton accepts or rejects the input.

Machines, Con�gurations, and Runs. Before issuing the acceptance behavior, we have a

closer look at the update process which forms the core of the automaton calledmachine.
To extend the �nite input alphabet Σ with the empty word, we write Σε = Σ ∪ {ε}. Given

a �nite stack alphabet Γ and a stack bottom symbol � ∉ Γ, the stack content is a word from

10

2.1 Automata

Γ∗ ⋅ �, i.e., the bottom symbol occurs at the rightmost position, and only there, while the stack
is growing to the le�. Similarly, we abbreviate Γ� = Γ ∪ {�}. We usually use capital letters for
stack symbols (A, B,C , . . . ∈ Γ�) and stack words (U ,V ,W , . . . ∈ Γ∗�), whereas lowercase letters
denote input symbols (a, b, c, . . . ∈ Σ) and input words (u, v ,w , . . . ∈ Σ∗).

De�nition 2.1.1. A pushdown machine (or PDM for short)M= (Q , Σ, Γ, ∆, q0, �) consists
of

• a �nite state set Q, and an initial state q0 ∈ Q,

• a �nite input alphabet Σ, a �nite stack alphabet Γ, a stack bottom symbol � ∉ Γ, and

• a �nite transition relation ∆ ⊆ Q×Γ�×Σε×Q×Γ∗� such that the bottom symbol � occurs
at the bottomof the stack and only there, i.e., for each transition (p,A, a, q,W) ∈ ∆holds
W ∈ Γ∗� if A = � andW ∈ Γ∗ if A ≠ �. Note that the transitions are nondeterministic.
◁

A con�guration consists of a state q ∈ Q and some stack contentW ∈ Γ∗�. We denote a
con�guration as a word qW ∈ QΓ∗� instead of a tuple. A transition (p,A, a, q,V) ∈ ∆ reads
the input letter a and replaces the le�most part of a con�guration pAW by qVW for some

stack su�x W ∈ Γ∗
�
(which is empty i� A = �). We denote this as pAW aÐ→qVW . A �nite

sequence p0W0, . . . , pnWn of con�gurations is a run ofM on some input word w ∈ Σ∗ if
p0Wi

a1Ð→ p1W1

a2Ð→ . . . anÐ→ pnWn such that w = a1 . . . an where a0, . . . , an ∈ Σε. We then write

p0W0

wÐ→pnWn. Further, an in�nite sequence p0W0, p1W1, . . . of con�gurations is called a run

ofM on some input ω-word α ∈ Σω if for each �nite pre�x w of α, there is a pre�x of the
sequence that is a run ofM on w. Note that in case of ai = ε, the machine might be able to
perform a so-called ε-transition without reading an input letter. However, the de�nitions do
not allow a run on an ω-word to contain an in�nite subsequence of ε-transitions.
Unless stated otherwise, we assume a run to start at the initial con�guration q0� consisting

of the initial state q0 and the empty stack �.

Automata, Acceptance, and Languages. We can now li� machines to automata by intro-

ducing acceptance mechanisms. For �nite input words, the resulting runs are �nite, too, which

allows us to accept words by the last state that a run leads to. A pushdown automaton (PDA)
A = (M, F) = (Q , Σ, Γ, ∆, q0, �, F) consists of a PDMM as above and a set of accepting states
F ⊆ Q. A run is accepting if it leads from the initial con�guration to a con�guration where
the state is accepting. �e set of words having an accepting run is the language L∗(A) ⊆ Σ∗ of
A. A language that is accepted by some PDA is called pushdown language (PDL).

11

Chapter 2 Preliminaries

For ω-words, each run is also in�nite and has no last state. �e acceptance condition
we use considers the states that occur in�nitely o�en. A pushdown ω-automaton (ω-PDA)
A′ = (M, Ω) = (Q , Σ, Γ, ∆, q0, �, Ω) consists of a PDMM as above and a coloring function
Ω ∶ Q → N that assigns colors to the states. A run is accepting if it ful�lls the (min-)parity
acceptance condition with respect to Ω: the lowest color that occurs in�nitely o�en in the
run has to be even. Analogously, the set of ω-words having an accepting run is the language
Lω(A′) ⊆ Σ∗ ofA′. A language is called pushdown ω-language (ω-PDL) if it is accepted by
some ω-PDA.

Restrictions

�ere are several ways to restrict pushdown automata which lead to other useful automata

models like �nite state automata. Some classic restrictions are introduced in the following.

For the following, �x some PDMM= (Q , Σ, Γ, ∆, q0, �).

Restricting Stack Usage. We callM a one-counter machine (OCM) if it has a unary stack
alphabet, i.e., ∣Γ∣ = 1. With this restriction, it can use the stack only as a counter for increasing,
decreasing, and testing for zero.

If the stack alphabet is empty, thenM is called a �nite state machine (FSM). In this case,
we can completely omit all components from the notation that are related to the stack since

the stack content is always �.
We say thatM is visibly (or aVPDM) if the input alphabet is partitioned into three subsets

Σ = Σc ⊎ Σr ⊎ Σs (see [AM04]). When the input letter is from Σc, then it is a call and one
symbol has to be pushed onto the stack, whereas a letter from Σr indicates a return and the
topmost symbol has to be popped from the stack (if not empty). Finally, Σs indicates a skip
where the stack remains unchanged, which is also required for ε-transitions. Formally, the
following holds for all transitions:

(q,A, a, q′,W ′) ∈ ∆ implies that a ≠ ε andW ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A if a ∈ Σs,
A′A if a ∈ Σc for some A′ ∈ Γ,
ε if a ∈ Σr and A ≠ �,
� if a ∈ Σr and A = �.

Restricting Transitions. IfM has no ε-transitions, we call it ε-free (in the literature, this is
also called real-time).

12

2.1 Automata

We callM total if for each combination of state, stack symbol, and input letter, there is at
least one applicable transition.

We callM a deterministic PDM (DPDM for short) if for each combination of state, stack
symbol, and input letter, there is at most one applicable transition, i.e., for all p ∈ Q, A ∈ Γ�,
and a ∈ Σ,

∣{(q,W) ∣ (p,A, a, q,W) ∈ ∆}∣ + ∣{(q,W) ∣ (p,A, ε, q,W) ∈ ∆}∣ ≤ 1.

In this case, we identify ∆ with the (partial) transition function δ ∶ Q×Γ�×Σε → Q×Γ∗
�
where

δ(p,A, a) = (q,W) if (p,A, a, q,W) ∈ ∆. We further extend δ to the (partial) transition
function δ∗ for words: for a �nite wordw, let δ∗(w) be the unique con�guration qW such that

q0�
wÐ→ qW and no further ε-transition is possible from qW . To be this de�nition well-de�ned,

we forbid in�nite sequences of ε-transitions for DPDMs since the run, which is uniquely
determined by the input, would get stuck on such a sequence and cannot process further

inputs. Note that in the deterministic setting, ε-sequences of unbounded length are useful in
order to retrieve information somewhere lower in the stack within one step. Such sequences

are unproblematic as the stack height is arbitrary but �nite. As soon as an arbitrarily long

ε-sequence is never popping the stack symbol it started at, it results in a loop. However, such
ε-loops can be useful in combination with nondeterminism. We explain in the following how
they can be detected and removed e�ciently for DPDMs.

Removal of In�nite ε-Sequences. Suppose that from a con�guration qAW of a DPDMA,
the unique ε-sequence leads to another con�guration of lower stack height: qAW εÐ→ pW for

some state p ∈ Q. Such behavior cannot be harmful up to this point as the (�nite) stack height
is decreased eventually. We hence understand an in�nite ε-sequence to start at a con�guration
where the stack height does not drop below the initial value. �is means consequently that the

entire stack content below the top symbol has no impact anymore. It can hence be ignored.

We can e�ectively detect in�nite ε-sequences by the following algorithm that is run for
each pair (q,A) ∈ Q × Γ� of state and top stack symbol. LetMε be likeM where only ε-
transitions are retained. We can compute in polynomial time [EHRS00] an FSA (i.e., an FSM

with accepting states) that recognizes the set post∗
Mε

(qA) of all con�gurations reachable from
qA inMε. �e considered pair induces an in�nite ε-sequence if, and only if,

a) the initial stack top is never dropped, i.e., p ∉ post∗
Mε

(qA) for all p ∈ Q, and

b) there is a further ε-transition for each reached pair of state and stack top, i.e., for each
(p, B) ∈ Q × Γ� that has no outgoing ε-transition, there should be no word pBW ∈
post∗

Mε
(qA) for someW ∈ Γ∗

�
.

13

Chapter 2 Preliminaries

Whether both conditions hold can be checked by membership tests. In case of a positive

answer, it su�ces to redirect the ε-transition for the pair (q,A) to some sink state with a
self-loop for every input letter1.

Restricting Parity Acceptance. When restricting the color set Ω(Q) ofA to {0, 1} or {1, 2},
we end up with Büchi or co-Büchi acceptance, respectively.
We callAweak if colors never increase during a run. When additionally restricting the color

set ofA to {0, 1} or {1, 2}, we end up with reachability and safety acceptance, respectively.
However, note that some restrictions of the ω-acceptance can be bypassed with nondeter-

minism if the automaton can simply guess a suitable acceptance behavior. �e ω-automata
that we deal with in this thesis are usually deterministic.

All the above restrictions and terminology concerning the type of the underlying PDM or

the acceptance of the PDA carry over to the automata and language classes they characterize. A

complete list of abbreviations for the above models is given in Section 2.3. As usual, a language

or ω-language is called regular if it can be accepted by an FSA, or ω-FSA, respectively. An
example of an ε-free OCA is depicted in Figure 3.8 at page 58, and examples of ε-free FSAs
can be found in Figures 4.1a and 4.3 at pages 62 and 73.

Determinization

When applying restrictions to an automata model, it is obvious that the restrictions charac-

terize a subclass of languages which usually is a proper subclass. Due to the various possible

combinations of restrictions, we do not give a complete picture that relates the restricted

language classes. Instead, we point out some prominent cases where determinism does not

a�ect the expressiveness.

A classic method for determinization is the powerset construction which constructs a
deterministic automaton each state of which indicates all possible states that the nondetermin-

istic automaton could be in. �is idea is not applicable to pushdown automata as one also

has to consider di�erent possible stack contents which are possibly of di�erent height. �e

powerset construction only extends to PDAs that are visibly because then, the stack height is

determined by the input and is hence the same for all possible runs. With this property, one

can similarly introduce new stack symbols that indicate sets of possible stack symbols.

Proposition 2.1.2 ([AM04]). For each VPDA, there exists an ε-free DVPDA over the same
partition of the alphabet that accepts the same language.
1One might need several sink states depending on the context thatM is used in.

14

2.2 Games

When restricting the cardinality of the stack alphabets to one, only the stack height is of

importance as the stack symbols do not di�er anymore. In this case, the powerset construction

can be applied in the usual way where the stack alphabet is unchanged.

Proposition 2.1.3. For each VOCA, there exists an ε-free DVOCA over the same partition of
the alphabet that accepts the same language.

Further, when restricting the stack alphabet to be empty, one is dealing with the class of

regular languages.

Corollary 2.1.4. For each FSA, there exists an ε-free DFSA that accepts the same language.

�e latter determinization results can be li�ed from regular languages to regular ω-lan-
guages. �e corresponding proof is much more involved in the case of in�nite words (using

[McN66, Saf88]; see [Löd98] for details).

Proposition 2.1.5. For each ω-FSA, there exists an ε-free ω-DFSA that accepts the same lan-
guage.

2.2 Games
�roughout this thesis, we directly consider simpli�cation problems for games, but also use

games as a tool to solve other problems. Our terminology concerning two-player games is

based on [Grä11].

Formally, a (parity) game G = (V ,V0, E , Ω) is played between two players and consists of

a) a directed graph (V , E) with vertices V and edges E ⊆ V × V ,

b) a partition of the vertices into V0 ⊆ V for Player 0 and V1 = V ∖ V0 for Player 1, and

c) a coloring function Ω ∶ V →N with bounded codomain.

A �nite or in�nite path in G is called a play, i.e., a sequence v0v1v2 . . . of vertices such that
there is an edge (vi , vi+1) ∈ E between each two consecutive vertices. It starts in some vertex
v0 ∈ V (that is usually �xed) and then, for each i, the successor vi+1 of vi is chosen by Player 0 if
vi ∈ V0 or by Player 1 if vi ∈ V1. Player 0 wins an in�nite play α ∈ Vω if α ful�lls the min-parity
condition w.r.t. Ω. Otherwise, Player 1 wins. We note here that usually a player loses if there are

no outgoing edges from his position. As this behavior bypasses the actual winning condition,

we require that the game graph only consists of non-terminal vertices, i.e., each vertex must

15

Chapter 2 Preliminaries

have at least one outgoing edge. One can obtain this from the standard setting by introducing

sink vertices where the corresponding player loses.

For σ ∈ {0, 1}, a strategy for Player σ is a function s ∶ V∗Vσ → V that chooses a successor
vertex s(v0 . . . vi) = vi+1 with (vi , vi+1) ∈ E for each �nite play v0 . . . vi ∈ V∗Vσ that ends in a

vertex of Player σ . We say that s iswinning from a vertex v0 if every in�nite play v0v1 . . . induced
by this strategy is won by Player σ , i.e., v0v1 . . . ful�lls the parity condition if s(v0 . . . vi) = vi+1
for every vi ∈ Vσ . Finally, we say that Player σ wins G from a vertex v0 if he has a winning
strategy from there. �e winning region of Player σ consists of all vertices v0 with the above
property. A game is called determined if for every vertex, one player can win, i.e., the set of
vertices is partitioned into the winning regions of the two players.

A strategy s is called positional if its choice only depends on the last vertex, i.e., s(v0 . . . vi) =
s(u0 . . . u j) holds for any two �nite plays v0 . . . vi , u0 . . . u j ∈ V∗Vσ with vi = u j. We then

consider a strategy as a function s ∶ Vσ → V . A game is positionally determined if for every
vertex, one of the players has a positional winning strategy. A fundamental result is that the

games we consider here have this property.

Proposition 2.2.1 ([EJ91, Mos91, Zie98]). Parity games are positionally determined.

�e various restrictions of parity acceptance carry over to parity games. A portion of a

safety game together with a positional winning strategy is depicted in Figure 4.2 at page 67.

For safety games, winning strategies can be computed easily with an attractor construction

(see [Grä11]).

Proposition 2.2.2. A positional winning strategy for a given safety game can be computed in
time linear in the number of vertices.

Games and Automata

Note that game graphs can be in�nite. However, we need to represent them �nitely in order to

run algorithms on them. One well-known way of doing so is by automata: an ω-automaton can
be used to de�ne the graph, the partition, and the winning condition. In detail, a pushdown
game (PDG) G = (A,Q0) consists of an ω-DPDAA = (Q , Σ, Γ, δ, q0, �, Ω) and a set Q0 ⊆ Q.
�e game is played on the con�guration graph of A and can be identi�ed with the game
G = (V ,V0, E , Ω′) where

a) the vertices are con�gurations: V = QΓ∗� and V0 = Q0Γ∗� ⊆ V ,

b) the edges are given by transitions: (qW , q′W ′) ∈ E if qW aÐ→ q′W ′ for some a ∈ Σ and
such that no further ε-transition is possible, and

16

2.2 Games

c) the coloring Ω′ is induced by Ω: Ω′(qW) = Ω(q).

As mentioned before, ε-transitions increase the expressiveness of DPDAs. However, we
additionally require for PDGs thatA is ε-weak, meaning that the color does never increase
during an ε-transition: Ω(p) ≥ Ω(q) whenever δ(p,A, ε) = (q,V) for some A ∈ Γ�,V ∈ Γ∗

�
.

We explain later why this is important. A weak ω-PDA is ε-weak by de�nition. Every other
ω-PDA can easily be ε-weakened by additionally storing the lowest color during an ε-sequence.
�e game is supposed to start at the con�guration v0 = δ∗(ε), i.e., at the target of a possible
ε-sequence from the initial con�guration q0�.
Since the underlying automaton is deterministic, we can identify a (�nite or in�nite) play

v0v1 . . . with a (respectively, �nite or in�nite) word a0a1 . . . over Σ that induces the play as
follows: vi = δ∗(a0 . . . ai−1) for each position i. Input letters are also called actions in this
context. A�er a �nite play a0 . . . ai , the next action ai+1 is chosen by Player 0 i� vi ∈ Q0Γ∗�.
Finally, an in�nite play a0a1 . . . is won by Player 0 i� a0a1 . . . ∈ Lω(A). Note that the winning
condition ignores the colors of intermediate states occurring during ε-transitions which is not
necessary sinceA is assumed to be ε-weak, i.e., the last state of an ε-sequence hence has the
lowest color.

A consequence of the action-based approach is that we can also identify strategies with

functions f ∶ Σ∗ → Σ that read and output actions instead of vertices. We are especially
interested in representing such strategies by automata. A pushdown strategy (PDS) S =
(M′, σ) consists of a DPDMM′ = (Q′, Σ, Γ′, δ′, q′0, �′) and a function σ ∶ Q′ → Σ. �e
strategy it de�nes is f (w) = σ(q) where q is the state of the con�guration qW = δ′∗(w)
reached by w.
Again, the restrictions of automata and machines (and the corresponding terminology)

carry over to pushdown games and strategies; e.g., FSGs and FSSs for �nite state games and

strategies, respectively. An example of a safety DOCA that de�nes a safety OCG is depicted

in Figure 3.1 at page 23.

Usually, games which are represented by automata can be solved algorithmically. �e format

of a winning strategy is usually connected to the format of the game representation.

Proposition 2.2.3. In particular,

a) the winner of an FSG has a winning FSS [BL69], and

b) the winner of a PDG has a winning PDS [Wal01].

It is further possible to synthesize such strategies.

17

Chapter 2 Preliminaries

In this thesis, we only need the connections listed above, although, there exist many more

(see e.g. [RT07, Fri10, COT12]).

Another interesting property is that the winning region can also be represented by automata.

�e winning region forms a language over the alphabet Q ∪ Γ� since the game vertices are
the con�gurations of the PDAA. �e regularity of the winning region was proven for Büchi
conditions in [Cac02] and independently for parity conditions in [Ser03]. �e next result

combines some known tools to obtain a DFSA that recognizes the winning region (read in

reverse for the sake of complexity).

Lemma 2.2.4. For a given PDG G = (Q , Σ, Γ, δ, q0, �, Ω,Q0), one can generate a DFSAA′′ =
(Q′′, Σ′′, δ′′, q′′0 , F ′′) such that for each con�guration qW ∈ QΓ∗�,

qW ∈ L∗(A′′)R ⇔ Player 0 wins G from qW .

A′′ is of size ∣Q′′∣ ∈ 2O(∣Q∣) and the computation takes time 2O(∣Q∣ ⋅ c) where c = ∣Ω(Q)∣ is the
number of colors used byA.

Proof. From [Ser03], we know that each winning region in a pushdown game is a regular

set of con�gurations. To generate a DFSA of exponential size, we use an algorithm given in

[HO09]. It yields a so-called ‘alternating multi-automaton’A′. Before we formally introduce
this automaton model, we want to mention the key properties of A′. It is an alternating
automaton that has same states as G (plus two extra states). InA′, a run from a state q ∈ Q on
a wordW ∈ Γ∗� is accepting i� Player 0 can win from qW in G.
Formally,A′ = (Q′, Σ′, ∆′, F ′) is a special case of an alternating automaton and consists of

the following components:

a) states Q′ = Q ⊎ {p′1, p′2}, �nal states F ′ ⊆ Q′,

b) input alphabet Σ′ = Γ�, and

c) alternating transition relation ∆′ ⊆ Q′ × Σ′ × 2Q′ .

To de�ne the acceptance ofA′, let q′ εÐ→ {q′}, and q′ AWÐ→ Q′

1∪ . . .∪Q′

n i� (q′,A, {q′1, . . . , q′n}) ∈
∆′ and q′i

WÐ→ Q′

i for all i ∈ {1, . . . , n}. In this setting, no designated initial states are needed
because we want to ask whether a run starting from q ∈ Q is accepted. �en, the language
accepted byA′ is

L∗(A′) = {qW ∈ QΓ∗� ∣ q WÐ→ P′ for some P′ ⊆ F ′}.

18

2.3 Abbreviations

A DFSA for the reversal language L∗(A′)R of an alternating automatonA′ can be obtained by
a reversal powerset construction [CKS81]. In the following, we provide such a construction on

A′ to obtain the desired DFSAA′′ with an exponential blowup. LetA′′ = (Q′′, Σ′′, δ′′, q′′0 , F ′′)
be a DFSA with

a) states Q′′ = 2Q′ ⊎ {q′′
⊺
, q′′

�
}, initial state q′′0 = F ′, accepting states F ′′ = {q′′

⊺
},

b) input alphabet Σ′′ = Σ′ = Γ�, and

c) transition function δ′′ ∶ Q′′ × Σ′′ → Q′′ as follows (where A ∈ Γ�, q ∈ Q):

δ′′(P′,A) = {q′ ∈ Q′ ∣ (q′,A, P′′) ∈ ∆ for some P′′ ⊆ P′},

δ′′(P′, q) =
⎧⎪⎪⎨⎪⎪⎩

q′′
⊺
, if q ∈ P′,

q′′
�
, if q ∉ P′,

δ′′(q′′, x) = q′′
�
, for all q′′ ∈ {q′′

⊺
, q′′

�
} and x ∈ Σ′′.

By construction, we have that:

qW ∈ L∗(A′′)R ⇔ (qW)R = (WRq) ∈ L∗(A′′)
⇔ q′′

⊺
= δ′′∗(WRq)

⇔ q ∈ δ′′∗(WR)

⇔ q WÐ→ P′ for some P′ ⊆ F ′

⇔ qW ∈ L∗(A′)
⇔ Player 0 can win G from qW .

�e claimed running time results from the composition of the two algorithms. ◻

Concerning the running time, note that c is constant for games with Büchi condition. �is
also a�ects weak conditions as they can be rewritten as Büchi condition by rede�ning even

colors to 0 and odd colors to 1.

2.3 Abbreviations
Many restrictions of pushdown machines, (ω-)automata, (ω-)languages, games, and strategies
have been de�ned up to now. In the following, we give an overview of all abbreviations used

for various applications of pushdown machines (square brackets indicate optional restriction,

curly brackets are choices):

19

Chapter 2 Preliminaries

pre�x ⋅ in�x ⋅ post�x
[D][V] ⋅ {PD,OC,FS} ⋅ {M,A,L}

ω-[D][V] ⋅ {PD,OC,FS} ⋅ {A,L}
[V] ⋅ {PD,OC,FS} ⋅ {G,S}

�e meaning is as follows (letters occurring in the abbreviation are emphasized).

• �e pre�x indicates optional restrictions: Deterministic, Visibly.

• �e in�x indicates stack restrictions: PushDown,One-Counter, Finite State.

• �e post�x indicates the device:Machine, Automaton, Language, Game, Strategy.

2.4 Register Machines
We conclude the preliminaries with a short introduction of certain computational machines.

Beside the well known model of Turing machines being the reference for decidability, there

exist many other Turing-complete models, i.e., models that can simulate Turing machines

(and vice versa).

A 2-register machine (2RM) is an input-free deterministic machine equipped with two
counters. Each of the counters can be increased, decreased, and tested for zero. �is concept

is similar to a two-counter machine, i.e., the product of two DOCMs. �e input alphabet does

not matter. It can hence be considered as some singleton set and is omitted from the notation.

Formally, a 2RMM= (Q , δ, q0, qF) consists of

a) a �nite set Q of states, initial state q0 ∈ Q, halting state qF ∈ Q, and

b) an input-free deterministic transition function δ ∶ (Q ∖ {qF}) × {0, 1}2 → Q ×
{−1, 0,+1}2.

�e con�gurations ofM form the set Q ×N2 where δ leads from a con�guration (p, n0, n1)
to another (q, n0 + d0, n1 + d1) i� δ(p, sgn(n0), sgn(n1)) = (q, d0, d1), i.e., depending on
the current state and whether the registers are zero, δ leads to another state, and increases
or decreases the registers. W.l.o.g., We require that register values are never negative, i.e.,

ni + di ∈N for all i ∈ {0, 1}.
�e halting problem denotes the problem to decide whether the unique run ofM starting

from con�guration (q0, 0, 0) leads to the halting state. �is problem is undecidable for 2RMs
as they can simulate Turing machines and vice versa (see [HMU01, Section 8.5.4]).

20

Chapter 3

Regularity Problems for Pushdown
Games and ω-Automata

In this chapter, we study regularity problems for several aspects related to pushdownmachines
(automata, ω-automata, games, and strategies), that is to decide whether the pushdown stack
is unnecessary. �e essence of the question is whether a �nite state representation exists for

something given by a pushdown representation. Usually, this yields a simpli�cation of the

considered problem since pushdown representations are more expressive at the price of worse

decidability properties in comparison to �nite state representations. Depending on the aspect,

the problems read as follows:

a) Can the language of a given pushdown automaton (PDA) be recognized by a �nite state

automaton (FSA)?

b) Can the language of a given pushdown ω-automaton (ω-PDA) be recognized by a �nite
state ω-automaton (ω-FSA)?

c) Does the winner of a given pushdown game (PDG) also have a winning �nite state

strategy (FSS)?

Generally, we can restrict the problem to deterministic pushdown machines (DPDMs).

On the one hand, the universality problem (“Does an automaton accept every word?”) is
already undecidable for nondeterministic pushdown automata [HU79]. �is is one of the two

‘trivial’ simpli�cation problems and a special case of the regularity problem. As universality is

undecidable for PDA, regularity has to be undecidable for pushdown automata, too. On the

other hand, we need determinism in pushdown games to obtain meaningful de�nitions and

to use the classic results on strategies.

�e bene�ts of DPDAs are that decision procedures exist for testing regularity [Ste67, Val75]

and equivalence [Sén01, Sén02]. �e latter result is mentioned for being a breakthrough in

21

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

this �eld. �ese properties of DPDAs are the motivation to study the situation for in�nite

words. �e regularity and equivalence problem for ω-DPDAs remained open, whereas some
basic properties were li�ed from �nite to in�nite words [CG77a, CG77b, CG78].

We give solutions to the regularity problems for pushdown games (Section 3.1) and weak

pushdown ω-automata (Section 3.3), and a partial solution for general pushdown ω-automata
(Section 3.4). In between, in Section 3.2, we develop a connection between the problems for

games and ω-automata. Excerpts of these results were presented in [LR12].

3.1 Finite State Strategies for Pushdown Games
In this section, we study the regularity problem for pushdown games, which is to decide

whether Player 0 can win a given pushdown game with a �nite state strategy. According to our

de�nition of pushdown games and strategies (cf. pages 16 and 17), we understand a play as an

ω-word that results from the letters chosen by the players and that uniquely describes a run
of the deterministic automaton de�ning the game. Analogously, an ‘automaton strategy’ is

reading a �nite play pre�x as a word such that the reached state indicates the choice of the

strategy.

In this section, we only consider winning conditions that are weak (or subclasses thereof)

since we already show undecidability for safety winning conditions.

Example 3.1.1. Let G = (A,Q0) be a safety OCG based on the safety ω-DOCAA as depicted
in Figure 3.1. �e winning condition is given by the language

Lω(A) = {aω + an(b + c)(anb + amc)aω ∣ n > m}.

In the game, Player 1 starts by giving a sequence of letters a succeeded by a letter b or c. �en,
Player 0 can either give an a-sequence of the same length proceeded by baω, or he gives a

shorter a-sequence succeeded by caω.

In G, Player 0 has a winning FSS although the ω-language of A is not regular. Such a
strategy would be to answer a play starting with (b + c) by baω, whereas a play starting with

a+(b + c) is answered by caω. In fact, Player 0 has to remember only the �rst letter played by

his opponent. ◁

As another example, we want to reconsider the claim about XML veri�cation from the

introduction on page 4.

22

3.1 Finite State Strategies for Pushdown Games

q r s

t

a[�↦ $�],
a[$↦ $$]

b, c

a[$↦ ε]

b[�↦�],
c[$↦ ε]

a

a, b, c

otherwise

(a) A safety ω-DOCA (the stack is ignored if no oper-
ation is given)

q �

q $�

q $$�

. . .

r �

r $�

r $$�

. . .

s ...

t ...

a

a

a

b, c

b, c

b, c

a

a

a

b

c a

a, b, c

other-

wise

(b) �e con�gurations yield a safety game graph

Figure 3.1: A safety OCG on the con�guration graph of a safety ω-DOCA (circled states belong
to Player 0, boxed to Player 1; doubly bordered states have color 2, otherwise color 1)

Example 3.1.2. We want to show that the problem studied in [SV02, SS07] can be reduced to
the regularity problem for pushdown games. �e problem asks whether it is possible to verify

an XML documents against a DTD by using only a �nite state device.

From a theoretical point of view, a DTD is a �nite set of rules that describe a language of

(unranked) trees where each node has a label of some �nite alphabet and the root has a certain

�xed label. For each label, a rule speci�es the allowed label sequences of the children by a

regular language. E.g., for the alphabet {r, a, b} with root label r, the rules r → Lr, a → La and

b → Lb with Lr = a∗, La = b, Lb = ε generate all trees such that

a) r is at the root,

b) below r, there is a �nite sequence of a (maybe empty, then the root is the only node),
and

c) below each a, there is one b.

�e linearization of such a derivation tree t is a string lin(t) de�ned as follows. If the symbol
at the root is a and below that there are the subtrees t1, . . . , tn, then

lin(t) = [a ⋅ lin(t1) . . . lin(tn) ⋅]a .

�e question studied in [SV02, SS07] is the following: Given a DTD D, can the set of
linearizations of its derivation trees be accepted by a �nite automaton, provided that only

23

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

correct linearizations are given to this automaton. In other words, if Lin is the set of all

linearizations (for the alphabet of the DTD D), and lin(D) is the set of all linearizations of
derivation trees of D, then the question is whether there is a �nite state automatonA such that

lin(D) = L∗(A) ∩ Lin .

�is problem can be restated as a regularity problem for a safety pushdown game as follows.

We can build a DPDA over the alphabet for linearizations that recognizes lin(D). Now, we add
the symbols #,Y ,N to the alphabet. �e idea is that Player 1 plays symbols from the alphabet
for linearizations, and at some point #. A�er #, Player 0 has to play Y (Yes) or N (No) to
declare that the word played by Player 1 is in lin(D) or not. However, Player 0 only needs to
make this decision in the case that Player 1 played a correct linearization (this can be encoded

in the pushdown game). �e game is made such that a wrong decision of Player 0 leads to a

state that is losing (color 1). All other states have color 2.

Now, it is not di�cult to see that Player 0 has a �nite state strategy in this game if, and only

if, a �nite automaton A exists with the required property. Indeed, a �nite state strategy for
Player 0 can be used asA and vice versa,A can be used to de�ne a �nite state strategy. ◁

Note that we implicitly follow the perspective of Player 0 when talking about winning condi-

tions because some restrictions of parity acceptance are not self-dual. E.g., a safety condition

corresponds to a reachability condition from the perspective of his opponent, whereas the

roles are exchanged in a reachability game. �e results of this section show that the existence

of a winning FSS is not symmetric: it depends on the perspective.

Reachability Winning Conditions

We start with the case of a reachability condition which turns out to be trivially winnable with

an FSS.

Lemma 3.1.3. In a reachability PDG, Player 0 has a winning �nite state strategy as soon as he
has a winning strategy.

Proof. LetG = (Q , Σ, Γ, δ, q0, �, Ω,Q0) be a reachability PDG (with a weak coloring function
Ω only using colors Ω(Q) = {0, 1}) and let f be a winning strategy for Player 0. We consider
all possible play pre�xes where Player 0 plays according to f until a state of color 0 is reached.
Such a state exists on each play since f is winning for Player 0. When arranging these play
pre�xes as a tree as depicted in Figure 3.2, we obtain a �nitely branching tree in which each

branch is �nite. Further, the tree must have �nitely many nodes according to König’s Lemma.

24

3.1 Finite State Strategies for Pushdown Games

ε

a

aa

. . .

a

ab

. . .

b

a
b

ba

. . .

a
bb

. . .

b

b

(a) Tree of play pre�xes with a winning strategy for

Player 0 (a to ab)

ε

a

aa

. . .

a

ab

. . .

b

a
b

ba

. . .

a
bb

. . .

b

b

(b) Tree of play pre�xes is �nite a�er pruning

Figure 3.2: Pruning the tree of play pre�xes of a reachability PDG in Lemma 3.1.3 (circled

states belong to Player 0, boxed to Player 1; doubly bordered states have color 0,

otherwise color 1)

�e tree is hence �nite and contains enough information for Player 0 to win. Using the nodes

of the tree as states of a �nite state machine directly yields a winning strategy. ◻

In the proof, we only used that each vertex of the game has a bounded number of successors

and that the corresponding edges are labeled deterministically. �e result can be li�ed to

more general classes of games as soon as this property is ful�lled. For PDGs, we know that

the winner can be determined e�ectively [Wal01]. �e next result is then a consequence of

Lemma 3.1.3.

Corollary 3.1.4. For a reachability pushdown game, it is decidable whether Player 0 has a
winning �nite state strategy.

Safety Winning Conditions

To show the asymmetry of the problem, we prove that the existence of a winning FSS for a

safety condition is undecidable. We do this by constructing a safety one-counter game that

encodes the run of a 2-register machine (2RM; cf. Section 2.4). �e goal idea is that Player 0

can win the game with an FSS if, and only if, the 2RM halts.

In our game, the counter can simulate only one of the two registers of a 2RM while the

other one is completely ignored. Player 1 chooses the simulated register at the beginning

in such a way that an FSS of Player 0 cannot recognize his choice. Player 1 achieves this by

arbitrarily playing actions that increase and decrease the counter, followed by a distinct action

25

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

that determines which register is simulated depending on whether the counter is zero or not

at this point. A�erwards (starting with empty counter), Player 0 has to play transitions of

the 2RM while the game checks the correctness with respect to the state and the simulated

register. Since an FSS of Player 0 cannot remember which register is simulated, a correctly

played transition sequence corresponds to the run of the 2RM. By (a sequence of) transitions,

we mean domain elements of the deterministic transition function of the 2RM, i.e., a triple of

the state and the signs of the two register values.

A �rst approach would be to encode the halting problem, which can be achieved by addi-

tionally demanding Player 0 to reach a halting state. �e idea of the resulting game is sketched

in Figure 3.3a. �e downside of this approach is that the winning condition is not captured by

a safety condition since the acceptance can change twice: in the �rst part, an in�nite play is

good for Player 0, in the second part, it is bad, whereas reaching the halting state is good again.

To overcome this problem, we consider the slightly di�erent approach sketched in Figure 3.3b,

where a play is considered good as long as Player 0 can give an in�nite sequence of 2RM

transitions that is correct for the simulated register. Obviously, for each 2RM, Player 0 can win

this game by just playing the transitions of the run as this is correct for both registers. We refer

to the transitions (i.e., triples of state and signs of register values) of the run as run signature.
But, in order to win with an FSS, this run signature must be representable with �nite memory,

which means that it has to be ultimately periodic, i.e., the sequence forms an in�nite word uvω

for some nonempty �nite words u, v. Since 2RM are Turing complete, there are some without
an ultimately periodic run signature.

Example 3.1.5. Consider a 2RM that swaps register values and increases the value a�er each
swap. �e run looks as follows (intermediate con�gurations are le� out):

(q, 0, 0), . . . , (q, 0, 1), . . . , (q, 2, 0), . . . , (q, 0, 3), . . . , (q, 4, 0), . . . , (q, 0, 5), . . .

In the run signature, the element (q, 0, 1) occurs in�nitely o�en (induced by the con�gurations
(q, 0, 1), (q, 0, 3), (q, 0, 5), . . .) but the distance in between two consecutive occurrences is
unbounded. It is hence not ultimately periodic. ◁

Before we proceed with the game result, we show this property of the run signature to be

undecidable as well.

Lemma 3.1.6. It is undecidable whether the run signature of a 2RM is ultimately periodic.

Proof. We show the claimed undecidability by a Turing reduction of the halting problem. To

this end, we construct two di�erent 2RMM0,M1 from a given 2RMM. Both these machines

26

3.1 Finite State Strategies for Pushdown Games
c
o
u
n
te
r
v
a
lu
e

actions

good bad good

q′0

q′1
q′2

q′3

q′4 q′n−1

q′n

⊺

a∗ b∗ c

r
0
o
r r
1 ?

t0 t1 t2 t3 . . . tn−1

halting?

�
error?

(a) Reduction of the halting problem of a 2RM to a weak OCG

c
o
u
n
te
r
v
a
lu
e

actions

good

q′0

q′1
q′2

q′3

q′4 q′i

q′i+1
q′j−1

q′j

a∗ b∗ c
r
0
o
r r
1 ?

t0 t1 t2 t3 . . . (ti . . . t j)ω

�
error?

bad

(b) Reduction of the ultimately periodic run problem of a 2RM to a safety OCG

Figure 3.3: Simulating the run of a 2RM by a weak OCG

�rst simulateM until it reaches a halting state. �en,M0 continues with a computation that

has an ultimately periodic run, whereasM1 continues with one not being ultimately periodic.

By construction,M reaches the halting state if, and only if, the property of having an ultimately

periodic run di�ers forM0 andM1. ◻

�eorem 3.1.7. For an ε-free safety OCG, it is undecidable whether Player 0 has a winning
�nite state strategy.

Proof. By using Lemma 3.1.6, it su�ces to construct a safety OCG G that simulates a given
2RMM such that Player 0 can win G with an FSS i�M has an ultimately periodic run

signature. As explained before, G is sketched in Figure 3.3b and is divided into two phases.

27

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

First, by increasing and decreasing the counter, Player 1 determines by an empty counter at

a certain position whether register 0 or 1 is simulated by the counter. In the second phase,

Player 0 has to play an in�nite transition sequence ofM that is correct with respect to the

state and the simulated register. A play is won by Player 0 i� Player 1 never leaves the �rst

phase or the second phase is reached and Player 0 can give an in�nite sequence that is a correct

simulation ofM. �is corresponds to a safety winning condition.
For a given 2RMM = (Q′, δ′, q′0, F ′), we formally construct the following ε-free safety

OCG G = (Q , Σ, Γ, δ, q0, �, Ω,Q0) with

a) states Q = Q0 ∪ Q1 where Q0 = {q�} ∪ (Q′ ×B) and Q1 = {q0, q1,0, q1,1, q⊺},

b) safety coloring Ω ∶ Q → {1, 2} where Ω(q) = 1 i� it is the bad state q = q�,

c) alphabets Σ = {a, b, c} ∪ (Q′ ×B2) and Γ = {$},

d) transitions:

i) �rst phase (for A ∈ Γ� and i ∈ B):

δ(q0,A, a) = (q0, $A),

δ(q0,A, b) = (q0,W) whereW =
⎧⎪⎪⎨⎪⎪⎩

� if A = �,
ε if A = $,

δ(q0,A, c) = (q1, j,A) where j =
⎧⎪⎪⎨⎪⎪⎩

0 if A = �,
1 if A = $,

δ(q1,i ,A, b) = (q1,i ,W) whereW =
⎧⎪⎪⎨⎪⎪⎩

� if A = �,
ε if A = $,

δ(q1,i , �, c) = ((q′0, i), �),

ii) second phase (for δ′(p′, s0, s1) = (q′, d0, d1), A ∈ Γ�, and i ∈ B):

δ((p′, i),A, (p′, s0, s1)) = ((q′, i),W)

where A =
⎧⎪⎪⎨⎪⎪⎩

� if si = 0,
$ if si = 1,

andW =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε if di = −1,
A if di = 0,
$A if di = +1,

28

3.1 Finite State Strategies for Pushdown Games

iii) all other cases:

δ(p,A, x) = (q,A) where q =
⎧⎪⎪⎨⎪⎪⎩

q� if p ∈ Q0,
q⊺ if p ∈ Q1.

In detail, the construction works as follows. �e game is supposed to start at the vertex q0�.
In the �rst phase, Player 1 can play actions anbmcbℓc with n ≤ m + ℓ. �is leads to the vertex
(q′0, i)� with i = 0 if n = m or i = 1 otherwise. In the second phase, the game simulates register
i ofM, i.e., the counter mimics all increase and decrease operations and veri�es zero-tests
only for register i. Player 0 continues by playing an in�nite sequence of transitions ofM, i.e., a
sequence over Q′×{0, 1}2. Player 0 loses if, and only if, his transition sequence is inappropriate
with respect to the simulated register and state.

IfM has an ultimately periodic run signature, then Player 0 has a winning FSS by playing

exactly this signature since all transitions are correct no matter which register is simulated.

For the converse, assume that Player 0 has a winning FSS S with s states. When Player 1 starts
with an action sequence as, then a state repetition occurs in S . Let δ∗

S
(ax) = δ∗

S
(ay) with

0 ≤ x < y ≤ s. By continuing from this strategy state with actions bxcbyc, we see that S remains
in the same state δ∗

S
(axbxcbyc) = δ∗

S
(aybxcbyc), whereas di�erent registers are simulated in

both cases. Since S is winning although it cannot know which register is simulated, it must
produce an ultimately periodic transition sequence which is correct with respect to the state

and both registers and which hence is the run signature ofM. ◻

Note that the game in the previous undecidability proof does not have the visibly property

(i.e., where input symbols determine the type of the stack operation) although in the �rst phase,

symbol a always induces a push, b a pop, and c and internal stack operation. �e visibility
property is violated in the second phase where the type of the stack operation is not only

determined by the transition played by Player 0, but also by the register that is simulated.

Nevertheless, it is possible to recycle the idea of the previous proof for visibly pushdown

games by introducing additional stack symbols. We will add a new dummy symbol which

prevents an FSS of Player 0 from seeing what is happening on the stack, i.e., whether important

or useless actions are performed.

�eorem 3.1.8. For a safety (ε-free) VPDG, it is undecidable whether Player 0 has a winning
�nite state strategy.

Proof. �e main idea is based on the construction of �eorem 3.1.7. But due to the visibility

property, we now have to prevent Player 0 from knowing the number of counting symbols on

29

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

the stack. We overcome this by introducing an additional dummy symbol # beside the counting

symbol $ to the stack alphabet such that for the simulation of the register, we only count $ and

ignore # on the stack. �e �rst phase of the game proceeds as before. �e di�erence occurs

in the second phase when Player 0 has to playM transitions since he should not directly

control the stack height. Instead, we put Player 1 in charge of verifying the precondition of

the transition and updating the register value on the stack. Player 1 should only enter the

veri�cation mode if he is sure that the transition is not applicable at this point. Otherwise,

he has to update the register according to the chosen transition where he uses the technique

of the �rst phase to prevent Player 0 from seeing what is happening on the stack. Player 0

continues a�erwards by playing the next transition.

For a given 2RMM = (Q′, δ′, q′0, F ′), we formally construct the following safety VPDG
G = (Q , Σ, Γ, δ, q0, �, Ω,Q0) with

a) statesQ = Q0∪Q1 withQ0 = {q�}∪(Q′×B) andQ1 = {q0, q⊺}∪(Q′×B2×{−1, 0,+1})∪
(Q′ ×B × {−1, 0,+1}) ∪ {check0, check1},

b) safety coloring Ω ∶ Q → {1, 2} where Ω(q) = 1 i� it is the bad state q = q�,

c) alphabets Σ = Σc ⊎Σr ⊎Σs with Σc = {a}, Σr = {b}, Σs = {c}∪(Q′ ×B2) and Γ = {$, #},

d) transitions:

i) �rst phase (for A ∈ Γ� and i ∈ B):

δ(q0,A, a) = (q0, #A),
δ(q0, #, b) = (q0, ε)

δ(q0,A, c) = ((q′0, i , 0),A) where i =
⎧⎪⎪⎨⎪⎪⎩

0 if A = �,
1 if A = #,

ii) second phase (for d ∈ {−1, 0,+1}, s ∈ B, A ∈ Γ�, and i ∈ B):

1) choose anM transition δ′(p′, s0, s1) = (q′, d0, d1):

δ((p′, i),A, (p′, s0, s1)) = ((q′, i , si , di),A)

30

3.1 Finite State Strategies for Pushdown Games

2) register update according to the chosenM transition:

δ((q′, i , s, d),A, a) = ((q′, i , d), #A) (enter update mode)

δ((q′, i ,+1),A, a) = ((q′, i , 0), $A), (push $ to satisfy d = +1)
δ((q′, i , d),A, a) = ((q′, i , d), #A) if d ≠ +1, (push # otherwise)

δ((q′, i , d), #, b) = ((q′, i , d), ε), (ignore #)

δ((q′, i ,−1), $, b) = ((q′, i , 0), ε), (consume $ to satisfy d = −1)
δ((q′, i , 0),A, c) = ((q′, i),A), (end update only if d = 0)

3) verify that the chosenM transition can be performed:

δ((q′, i , s, d),A, c) = (checks ,A) (enter veri�cation mode)

δ(checks , #, b) = (checks , ε), (ignore #)

δ(check0, $, b) = (q�, ε), (counterexample $)

δ(check1, �, b) = (q�, ε), (counterexample �)

iii) all other cases:

δ(p,A, x) = (q,W)

where q =
⎧⎪⎪⎨⎪⎪⎩

q� if p ∈ Q0,
q⊺ if p ∈ Q1,

andW =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε if di = −1,
A if di = 0,
#A if di = +1.

�e game is again supposed to start at the vertex q0�. In the �rst phase, Player 1 can play
actions anbmc with n ≥ m. �is leads to the vertex (q′0, i , 0)#n−m� with i = 0 if n = m or
i = 1 otherwise. At this state, technically phase 2 starts where Player 1 can �rst add or remove
dummy symbols by playing a second sequence an′bm′c which eventually hands the control
over to Player 0 at the vertex (q′0, i)#n−m+n

′
−m′�. A�er eachM transition chosen by Player 0,

Player 1 has to either update the register accordingly or he can claim a simulation error of his

opponent. For the update mode, Player 1 has again to play a sequence an′′bm′′c with arbitrary
n′′ > 0 such that exactly one $ is added or removed according to the desired update. Similar
to the �rst phase, an FSS of Player 0 cannot see whether the stack height was increased. If

Player 1 otherwise claims an error, the game continues at state checks which is to verify that
the sign of the simulated register value is s ∈ B. �e stack is popped and Player 1 wins i� a
counterexample is found. By this construction, the arguments of the existence of a winning

FSS for Player 0 are as in the proof of �eorem 3.1.7. ◻

31

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

In Example 3.1.2, we reduced a problem of �nite state XML veri�cation to the regularity

problem for safety PDGs. Although we just showed the latter problem to be undecidable, this

does not necessarily transfer back to the problem of �nite state XML veri�cation considered

in Example 3.1.2 due to the direction of the reduction.

3.2 Connecting Games and Automata: Classi�cation Game
In this section, we transfer the regularity problem from pushdown games to pushdown au-

tomata. Instead of �nite state strategies, we ask for the existence of �nite state automata in the

automata setting. As a useful connection between games and automata, we introduce a game

called ‘classi�cation game’ which mimics the behavior of a given pushdown ω-automaton
on possible input ω-words. �e idea of using this game based approach came from Christof
Löding and appeared in [LR12, De�nition 2] in a variant with weak acceptance that we will

introduce later in De�nition 3.2.2.

More formally, the game is de�ned for a given ω-DPDAA and a set C of colors which can
be di�erent from the colors of the ω-automaton. Player 1 gives an in�nite input word, whereas
Player 0 has to answer a�er each input letter by a color. In order to win, the color sequence

given by Player 0 must be accepting (with respect to the parity acceptance) if, and only if, the

input word given by Player 1 is in Lω(A).
One can see from the above description that the winning condition has to express the logical

biconditional of two parity conditions (both conditions must be ful�lled or both must not

be ful�lled) similar to generalized parity conditions (cf. [CHP07]). One condition results

from the simulation of A and the other is for the colors given by Player 0. �is could be
stated by a Muller condition over the product of C and the colors used byA. Here, we rather
stick with parity acceptance and use a standard construction that converts Muller acceptance

into parity. �is is realized by a memory structure called latest appearance record (LAR)
[GH82, DJW97]. For a �nite set M, let LARM = M! × [m] consist of all permutations on
M such that one of the m = ∣M∣ indices is marked. We de�ne functions for the update
UpLARM ∶ LARM ×M → LARM and the pre�x PreLARM ∶ LARM as follows:

UpLARM ((l0, . . . , ln−1, i), x) = (l j, l0, . . . , l j−1, l j+1, . . . , ln−1, j) where l j = x ,

PreLARM ((l0, . . . , ln−1, i)) = (l0, . . . , li).

�e update UpLARM looks for the given element in the permutation, moves it to the front,

and stores the index of its old position. �e pre�x PreLAR just returns the �rst elements of

the permutation up to the marked index.

32

3.2 Connecting Games and Automata: Classi�cation Game

De�nition 3.2.1. For a �nite set C ⊆ N of colors and an ω-DPDA A = (Q , Σ, Γ, δ, q0, �, Ω)
using colorsD = Ω(Q), we de�ne the classi�cation gameGA,C = (Q′, Σ′, Γ′, δ′, q′0, �′, Ω′,Q′

0)
as follows:

a) states Q′ = {q′
�
, q′

⊺
} ∪ (Q × LARC×D ×B) with Q′

0 = {q′
�
} ∪ (Q × LARC×D ×{0}) and

initial state q′0 = (q0, (0, . . . , ∣C × D∣ − 1, 0), 0),

b) alphabets Σ′ = Σ ⊎ C and Γ′ = Γ,

c) transitions (for a ∈ Σ and c ∈ C):

δ′((q, ℓ, 0),A, c) = ((q, ℓ′, 1),A) where ℓ′ = UpLARC×D (ℓ, (c, Ω(q))),

δ′((q, ℓ, 1),A, ε) = ((p, ℓ, 1),W) where δ(q,A, ε) = (p,W),
δ′((q, ℓ, 1),A, a) = ((p, ℓ, 0),W) where δ(q,A, a) = (p,W),

δ′(p′,A, x) = (q′,A) otherwise, where q′ =
⎧⎪⎪⎨⎪⎪⎩

q′
�
if p′ ∈ Q′

0,

q′
⊺
if p′ ∈ Q′

1 ,

d) coloring function (for q ∈ Q, ℓ ∈ LARC×D, and i ∈ B):

Ω′((q, ℓ, i)) = 2 ∗ ∣C × D∣ − 2 ∗ ∣PreLARC×D(ℓ)∣ − ((cmin + dmin) mod 2)

where cmin =min{c ∣ (c, d) ∈ PreLARC×D(ℓ)}

and dmin =min{d ∣ (c, d) ∈ PreLARC×D(ℓ)},

Ω′(q′
�
) = 1,

Ω′(q′
⊺
) = 0.

W.l.o.g., we assumeA to be ε-weak. ◁

To see that the constructed parity condition works as desired (namely, expressing the logical

biconditional of the parity conditions of the two players), note that the relevant color (the

lowest one occurring in�nitely o�en) is given by the longest pre�xes that occur in�nitely

o�en. �e colors in the tuples of these pre�xes are exactly the ones that occur in�nitely o�en.

Player 0 wins i� for all such pre�xes, cmin + dmin is even, i.e., either both are even or both are
odd. Hence, the acceptance status of the color sequence played by Player 0 has to correspond

to the acceptance status of the played input word. �e ε-weakness is required to prevent that
small colors are overseen during ε-transitions.

33

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

We further de�ne a simpler version of the classi�cation game that expresses weak parity

acceptance. �e memory structure becomes much simpler then since we only have to store

the lowest color played by Player 0.

De�nition 3.2.2. For a �nite set C ⊆N of colors and an ω-DPDAA = (Q , Σ, Γ, δ, q0, �, Ω),
we de�ne the weak classi�cation game G′

A,C = (Q′, Σ′, Γ′, δ′, q′0, �′, Ω′,Q′

0) as follows:

a) states Q′ = {q′
�
, q′

⊺
} ∪ (Q × C ×B) with Q′

0 = {q′
�
} ∪ (Q × C × {0}) and initial state

q′0 = (q0, max(C), 0),

b) alphabets Σ′ = Σ ⊎ C and Γ′ = Γ,

c) transitions (for a ∈ Σ and c ∈ C):

δ′((q, c, 0),A, d) = ((q, d , 1),A) where c ≥ d ,
δ′((q, c, 1),A, ε) = ((p, c, 1),W) where δ(q,A, ε) = (p,W),
δ′((q, c, 1),A, a) = ((p, c, 0),W) where δ(q,A, a) = (p,W),

δ′(p′,A, x) = (q′,A) otherwise, where q′ =
⎧⎪⎪⎨⎪⎪⎩

q′
�
if p′ ∈ Q′

0,

q′
⊺
if p′ ∈ Q′

1 ,

d) coloring function (for q ∈ Q, c ∈ C, and i ∈ B):

Ω′((q, c, i)) = Ω(q) + c + 2, Ω′(q′
�
) = 1, Ω′(q′

⊺
) = 0.

W.l.o.g., we assumeA to be ε-weak. ◁

Note that the winning condition is a parity condition in general, although the colors played

by Player 0 correspond to weak acceptance over colors C. �e game becomes weak if A is
weak. �is is the reason why we have to shi� the colors of non-sink states by 2. To see that the

parity condition indeed expresses the logical biconditional of the parity conditions of the two

players, note that the color sequence chosen by Player 0 eventually stabilizes to some color

c ∈ C which allows us to shi� the original parity condition by c (plus 2). �e sum is thus even
if, and only if, the acceptance status of the color sequence played by Player 0 corresponds to

the acceptance status of the played input word.

�e main purpose of the (strong and weak) classi�cation games is that a winning strategy

of Player 0 that is implemented by some kind of machine (pushdown, �nite state, etc.) can be

transformed directly into an ω-automaton (based on the same machine model) for Lω(A) by
using the color output of the strategy as colors for the acceptance. We proceed with a technical

observation before we show the connection between ω-automata and winning strategies.

34

3.2 Connecting Games and Automata: Classi�cation Game

Remark 3.2.3. LetA and A′ be two ω-DPDAs with Lω(A) = Lω(A′) and let C be a �nite set
of colors. �en,

a) the same strategies are winning in GA,C and GA′ ,C for Player 0, and

b) the same strategies are winning in G′
A,C and G′

A′ ,C for Player 0.

�e claims hold true for Player 1 due to Proposition 2.2.1.

�e claim follows easily from the two facts that the de�nition of a strategy only depends

on the alphabet of the game (i.e., the input alphabet and the color set) and that the winning

condition of the game only depends on the language. Both are independent of the automaton

that the classi�cation game is based on.

�is insight is helpful to connect simpli�cations between the winning strategies in the game

and the language that it classi�es.

Connecting Regularity

�eorem 3.2.4. Let A be an ω-DPDA that uses the color set C. Lω(A) is regular i� Player 0
can win GA,C with a �nite state strategy.

Proof. For the le� to right implication, suppose Lω(A) is regular which means, due to
Proposition 2.1.5, that there is an ω-DFSAA′ with Lω(A) = Lω(A′). Player 0 can clearly win
the FSG GA′ ,C by mimicking the transitions and colors ofA. By Proposition 2.2.3 (a), Player 0
also has a winning FSS in GA′ ,C which is also winning in GA,C due to Remark 3.2.3 (a).
For the reverse direction, we naturally transform a winning FSS S = (Q′, Σ ⊎ C , δ′, q′0, σ)

of Player 0 into an ω-DFSA A′ = (Q′, Σ, δ′′, q′0, Ω′) that recognizes the language. For that
purpose, we de�ne the coloringΩ′(q′) = σ(q′) and transitions δ′′(q′, a) = δ′(δ′(q′, σ(q′)), a)
for q′ ∈ Q′ and a ∈ Σ. A andA′ accept the same (regular) language since S is winning in the
game GA,C that simulates the acceptance of this language. ◻

�eorem 3.2.5. LetA be a weak ω-DPDA that uses the color set C. Lω(A) is regular i� Player 0
can win G′

A,C with a �nite state strategy.

Proof. �e proof is similar to the one of �eorem 3.2.4. �e reverse direction of the claim is

in fact a special case of it since a winning strategy for Player 0 in G′
A,C is especially winning in

GA,C where Player 0 is less restricted in choosing the colors. For the le� to right implication,
we additionally have to show that there is a desired strategy which produces a weak sequence

of colors.

35

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

Suppose that Lω(A) is regular whichmeans, due to Proposition 2.1.5, that there is a (possibly
non-weak) ω-DFSA A′ with Lω(A) = Lω(A′). According to Remark 3.2.3 (b), Player 0
can win G′

A′ ,C by the pushdown strategy that simulates the weak acceptance of A. Due to
Proposition 2.2.3 (a), Player 0 has a winning FSS in the FSG GA′ ,C which is also winning in
GA,C due to Remark 3.2.3 (b). ◻

An observation in the latter proof is that the computational power of the automaton model

(i.e., pushdown or �nite state) is in some sense orthogonal to the expressiveness of the ac-

ceptance condition, meaning that the number of colors needed to accept a regular language

cannot be reduced by introducing a stack. �is statement can also be derived from the proof

of �eorem 24 in [Sta83]. Here, we obtain it from the proof of the le� to right implication by

using an FSS of Player 0 as an equivalent weak ω-DFSA.

Remark 3.2.6. If the language of a weak ω-DPDA is regular, then there exists a weak ω-DFSA
that uses the same colors and accepts the same language.

Simplifying ω-Acceptance

Besides the connections concerning regularity, we can use the classi�cation games to express

simpli�cations in the acceptance conditions. �e following result is similar to �eorems 3.2.4

and 3.2.5 but focuses on the colors instead of regularity.

�eorem 3.2.7. LetA be an ω-DPDA. �en,

a) Lω(A) can be recognized by an ω-DPDA with colors C i� Player 0 can win GA,C , and

b) Lω(A) can be recognized by a weak ω-DPDA with colors C i� Player 0 can win G′
A,C .

Proof. �e claim is proven analogously to�eorems 3.2.4 and 3.2.5. From le� to right, an

(respectively weak) ω-DPDA with colors C can be used as a PDS that answers with colors
according to the coloring function of A. �at strategy is winning as it colors input words
according to their membership in Lω(A).
For the reverse direction, the winning player has a winning PDS according to Proposi-

tion 2.2.3 (b). �is can be used naturally as an (respectively weak) ω-DPDA with colors C that
recognizes Lω(A). ◻

Since PDGs are e�ectively determined (cf. Proposition 2.2.3 (b)), �eorem 3.2.7 allows

us to decide whether the acceptance can be simpli�ed. �e decidability of these problems

were certainly known before. E.g., it was shown how to decide whether an ω-DPDL can be

36

3.3 Regularity Test for Weak ω-DPDAs

recognized with reachability or safety acceptance in [CG78, �eorem 6.2.4], respectively, with

Büchi or co-Büchi acceptance in [Lin77, Remark 5.1]. �e innovation of our approach is rather

to describe the problem in terms of parity games, and that synthesized winning strategies

almost coincide with ω-DPDAs with the desired acceptance.

Corollary 3.2.8. It is decidable for any set C of colors whether an ω-DPDL can be recognized
by an ω-DPDA (respectively, by a weak ω-DPDA) with colors C. In particular, this covers Büchi,
co-Büchi, reachability, and safety acceptance.

�ese problems are known to be undecidable when determinism is omitted [CG78, Propo-

sition 6.2.1].

3.3 Regularity Test for Weak ω-DPDAs
In this section, we present a procedure to solve the regularity problem for weak ω-DPDAs.
�at means to decide, whether the ω-language of a given weak ω-DPDA is regular, i.e., it can
also be recognized by an ω-FSA.
By combining�eorem 3.2.5 with the results from Section 3.1, we already obtain the decid-

ability of the regularity problem for ω-DPDLs with reachability acceptance due to Lemma 3.1.3.
�is approach fails for other acceptance conditions like safety or weak acceptance in general

due to�eorems 3.1.7 and 3.1.8. Despite to the negative results on games, we give a decision

procedure in this section that works for ω-DPDAs with weak acceptance.
Our work is inspired by a normal form for weak ω-DFSAs which assigns minimal colors

to each state (without changing the recognized ω-language) [Löd01]. �en, certain decision
problems for weak ω-DFSAs become trivially related to the respective problem for DFSAs on
�nite words. In our case of pushdown automata, we need some more e�ort to establish the

normal form, as we have to ensure that colors are minimal for each con�guration instead of

just states. �e normal form �nally allows us to apply known algorithms for �nite words on

normalized weak ω-DPDAs.
�is section is subdivided in three parts: First, we de�ne the normal form and prove its

connection to languages of �nite words. �en, we show how a weak ω-DPDA can be converted
into the normal form. And �nally, we combine both results to obtain our algorithmic results.

For the remainder of this section, let A = (Q , Σ, Γ, δ, q0, �, Ω) be a weak ω-DPDA with
largest color k =max (Ω(Q)). W.l.o.g., we assume k ≥ 1.
As a �rst important step, we de�ne a language of �nite words for anω-automatonA by simply

setting states with an even color as accepting. Since A is weak, this language characterizes
those points where the acceptance changes between accepting and rejecting.

37

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

De�nition 3.3.1. �e �nitary language L⊛(A) ⊆ Σ∗ ofA (as above) is the language L⊛(A) =
L∗(A′) of �nite words accepted by the DPDA A′ = (Q , Σ, Γ, δ, q0, �, F) with F = {q ∈ Q ∣
Ω(q) is even}. ◁

By L⊛(AqW) and Lω(AqW), we denote the respective languages recognized byA starting
from the con�guration qW instead of the initial con�guration. �e following observation is a

direct consequence of the de�nitions.

Remark 3.3.2. For all con�gurations qW and pV, if L⊛(AqW) = L⊛(ApV), then Lω(AqW) =
Lω(ApV).

If the inverse implication would also be true, then we would have established a strong

relation between the ω-language of a weak ω-DPDA and its language of �nite words. �e
following example illustrates that this is unfortunately not true in general.

Example 3.3.3. For a number n ∈N and alphabet Σ = {a, b, c}, consider the language de�ned
as follows:

Ln = ⋃
x∈{a,b}

(x{a, b}∗x{a, b}ncΣω).

�e language depends on a number n to show a lower bound later on.
By its de�nition via a regular expression, Ln is obviously a regular ω-language. It is further

easy to sea that for every ω-DFSA recognizing Ln, the number of states is at least exponential

in n because before reading the �rst c, it has to remember the last n + 1 symbols. Nevertheless,
Ln can be recognized by a weak ω-DPDA with linearly (in n) many states and a constant stack
alphabet. �e idea is to write the string w ∈ {a, b} that occurs before the �rst c onto the stack
(using the initial state q0). A�er the �rst c, the stack is popped and one can check the property
with ease by reading the reversal wR of w from the stack.
We de�ne a weak ω-DPDA An = (Q , Σ, Γ, δ, q0, �, Ω) with Lω(An) = Ln that consists of

states Q = {q0, . . . , qn+1, qa , qb , q⊺, q�}, alphabets Σ = {a, b, c}, Γ = {$a , $b , #a , #b}, and the
following transitions (where A ∈ Γ�, x , y ∈ {a, b}, z ∈ Σ, i ∈ {1, . . . , n}):

• δ(q0,A, x) =
⎧⎪⎪⎨⎪⎪⎩

(q0, $xA) if A = �,
(q0, #xA) if A ≠ �,

• δ(q0,A, c) = (q1,A),

• δ(qi , #x , z) = (qi+1, ε),

38

3.3 Regularity Test for Weak ω-DPDAs
st
a
ck
c
o
n
te
n
t

input

q0

q0 q1

qn+1
qzk−n

qzk−n
q q . . .

(z0z1 . . . zk) c (Σn) Σ (Σ∗) Σ (Σω)

where q =
⎧⎪⎪⎨⎪⎪⎩

q⊺ if zk−n = z0
q� if zk−n ≠ z0

push $z0#z1
. . . #zk

pop #zk−n

pop $z0

Figure 3.4: Weak ω-DPDAAn from Example 3.3.3 that recognizes Ln withO(n) states

• δ(qn+1, #x , z) = (qx , ε),

• δ(qx , #y , z) = (qx , ε),

• δ(qx , $y , z) =
⎧⎪⎪⎨⎪⎪⎩

(q⊺, ε) if x = y,
(q�, ε) if x ≠ y,

• δ(q⊺,A, z) = (q⊺,A), and for all other transitions: δ(q,A, z) = (q�,A),

and reachability coloring Ω ∶ Q → {0, 1} where Ω(q) = 0 i� q = q⊺. A run ofAn on an input

word {a, b}k+1cΣω is sketched in Figure 3.4.

Let us further consider the inverse of Remark 3.3.2. For all con�gurations with a state from

{q1, . . . , qn+1, qa , qb}, it is already determined whether in�nite words are accepted from there
or not as this only depends on the stack content. For example, from con�gurations qaW$a�
and qbV$b�, all in�nite words are accepted whereas the acceptance of �nite words (in the
�nitary language) depends on the stack height and thus di�ers ifW and V are of di�erent
lengths. Because of this, L⊛(An) is especially not regular:

L⊛(An) = ⋃
x∈{a,b}

⋃
i∈N

(x{a, b}ix{a, b}ncΣ1+i+1+nΣ∗). ◁

3.3.1 Normal Form
�e key ingredient of our proof is to establish a normal form for weak ω-DPDAs such that the
inverse of Remark 3.3.2 holds true. For that purpose, we re�ne the coloring from only states to

con�gurations by de�ning sets Ki (see below). �e intuition is that each con�guration should

be assigned the lowest color possible without changing the accepted language.

39

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

De�nition 3.3.4. We partition the con�gurations ofA into classes Ki for i ∈N, where Ki is

the biggest subset of (QΓ∗�) ∖ (⋃ j<i K j) such that:

a) each run that stays in Ki forever is accepting i� i is even, and

b) each run that leaves Ki goes to ⋃ j<i K j. ◁

From the conditions (a) and (b), one can already see that the class indices form a weak parity

condition as well. However, it is a nontrivial insight that the classes indeed form a well-de�ned

partition of the set of con�gurations. On the one hand, it is easy to see that the maximum is

unique because the union of sets ful�lling the two properties still ful�lls them. To show that

each con�guration is contained in some class, we use the following stronger statement saying

that each con�guration is contained a class the index of which does not exceed its color.

Remark 3.3.5. For each con�guration qW ∈ QΓ∗� holds that qW ∈ ⋃ j≤Ω(q) K j.

Proof. We use an induction over the colors.

For the initial case of i = 0, let K′

0 = {qW ∣ Ω(q) = 0} be the set of all con�gurations
with color 0. It is easy to see that K′

0 ⊆ K0 because K′

0 ful�lls the properties (a) and (b) of

De�nition 3.3.4 already.

For the inductive case of i > 0, assume that qW ∈ ⋃ j≤Ω(q) K j holds for each con�guration

qW with Ω(q) < i. Let all classes K j with lower index j < i already be determined and further,
let K′ = (QΓ∗�) ∖ (⋃ j<i K j) be the nonempty set of con�gurations not being in any class yet
and let K′

i ⊆ K′ contain only those con�gurations of K′ that have the lowest color:

K′

i = {qW ∈ K′ ∣Ω(q) = c} where c = min{Ω(q) ∣ qW ∈ K′}.

By showing the inclusion K′

i ⊆ Ki , it follows that qW ∈ ⋃ j≤Ω(q) K j holds for each con�guration

qW with Ω(q) ≤ i because i ≤ c. To show the inclusion, we prove that K′

i ful�lls the prop-

erties (a) and (b) of the de�nition. �e property (b) is obviously ful�lled since we chose all

con�gurations with the minimal color. For the property (a), we have to show that if there is

a run staying in K′

i forever, then c and i have the same parity (i.e., c is even i� i is even). In
fact, from each con�guration in K′

i starts some run staying in K′

i forever because otherwise,

the color of such a con�guration has no impact on the acceptance and it must belong to some

lower class due to the maximality criterion. However, c and i have the same parity because
otherwise, c and i − 1 would have the same parity and then, the con�gurations of K′

i must

belong to Ki−1 already or even to some lower class with a parity di�erent from c. ◻

40

3.3 Regularity Test for Weak ω-DPDAs

A canonical representation of a weak ω-DPDA is, when the minimal coloring of each
con�guration corresponds to the coloring of its state.

De�nition 3.3.6. A is in normal form if colors correspond to classes, i.e., qW ∈ KΩ(q) for all
qW ∈ QΓ∗� that are reachable from the initial con�guration. ◁

Example 3.3.7. �e classes Ki forAn from Example 3.3.3 are (where # = {#a , #b}):

K0 = (q⊺Γ∗�) ∪ ⋃
x∈{a,b}

(qx#∗$xΓ∗�) ∪ ⋃
x∈{a,b}
i∈{0,...,n}

(qn+1−i#i#x#∗$xΓ∗�),

K1 = (QΓ∗�) ∖ K0,

In general, K0 are exactly those con�gurations from where every word is accepted. All other
con�gurations belong to K1 in our example, like the ones with the bottom state (q�Γ∗� ⊆ K1)
but also the initial state (q0Γ∗� ⊆ K1). Note that the classes also contain con�gurations that
are not reachable in the automaton, like q⊺Γ+� ⊆ K0. Further, some states occur in di�erent
classes for di�erent con�gurations, like qa$a� ∈ K0 but qa$b� ∈ K1, or q1#a#n$a� ∈ K0 but
q1#a#n$b� ∈ K1. ◁

Example 3.3.7 shows that An is not in normal form. However, the classes K0 and K1 are
regular sets of words which is true in general and can be used to transformA into normal form
(see the next subsection). In the remainder of this subsection, we want to develop Lemma 3.3.10

which shows that the inverse direction of Remark 3.3.2 holds for our normal form. We start by

exploring some important properties of the classes Ki that re�ect the idea of representing the

minimal color of each con�guration.

Lemma 3.3.8. Properties of Ki :

a) For each con�guration in Ki , there is a run which stays in Ki forever.

b) For each con�guration in Ki with i ≥ 2, there is a run leading to Ki−1.

Proof. a) Assume contrary that there is a con�guration qW ∈ Ki such that each run is

eventually leaving it. �en, qW and its subsequent con�gurations in Ki are in K j where

j < i is the biggest index of a class K j a path from qW is leading to. �is contradicts that

qW is in at most one class.

b) Assume contrary that there is a con�guration qW ∈ Ki with i ≥ 2 being minimal such
that no run is leading to Ki−1. �en, qW and its subsequent con�gurations in Ki belong

41

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

to Ki−2 as De�nition 3.3.4 (a) and (b) are still ful�lled, which again contradicts that

qW is in at most one class. Hence, no run from qW is leaving Ki . In this case, qW
and its subsequent con�gurations belong to K j where j = i mod 2 < 2 contrary to the
assumption. ◻

�e proof of the inverse direction of Remark 3.3.2 is a simple consequence of the following

lemma which generalizes [Löd01, Lemma 7] to pushdown automata.

Lemma 3.3.9. LetA be in normal form. If Lω(AqW) = Lω(ApV), then Ω(q) = Ω(p).

Proof. Assume contrary that for some con�gurations Lω(AqW) = Lω(ApV) but Ω(q) < Ω(p)
and choose the con�gurations such that Ω(q) +Ω(p) is minimal. We consider two cases that
lead to a contradiction. If Ω(q) +Ω(p) is odd, then Lemma 3.3.8 (a) yields an ω-word α such
that from pV only color Ω(p) is visited. �e run on α from qW has the same acceptance

and hence, due to the weakness it stabilizes at a color smaller than Ω(q). Let q′W ′ and p′V ′

be two con�gurations in the run on a pre�x w of α from qW and pV , respectively, such that
Ω(q′) < Ω(q) and Ω(p′) = Ω(p). Since Lω(Aq′W′) = Lω(Ap′V ′), we have a contradiction to
the minimality of Ω(q) +Ω(p).
Otherwise, Ω(q)+Ω(p) is even which implies Ω(q) < Ω(p)−1 and Ω(p) ≥ 2. Lemma 3.3.8

(b) guarantees that there is a wordw leading from pV to p′V ′ with color Ω(p′) = Ω(p)− 1. Let
q′W ′ be the con�guration reached byw from qW , thenΩ(q′) ≤ Ω(q) < Ω(p) = Ω(p′). Again
Lω(Aq′W′) = Lω(Ap′V ′), and we have a contradiction to the minimality of Ω(q) +Ω(p). ◻

Based on this, the desired equivalence is straight forward.

Lemma 3.3.10. Let A be in normal form. For all con�gurations qW and pV, if Lω(AqW) =
Lω(ApV), then L⊛(AqW) = L⊛(ApV).

Proof. Assume contrary that there exists w.l.o.g. a word w ∈ L⊛(AqW) ∖ L⊛(ApV). Hence,
Ω(q′) ≠ Ω(p′) for the con�gurations q′W ′ and p′V ′, reached by w from qW and pV , respec-
tively. Lemma 3.3.9 yields Lω(Aq′W′) ≠ Lω(Ap′V ′) which implies Lω(AqW) ≠ Lω(ApV). ◻

3.3.2 Normalization
�is subsection is dedicated to Lemma 3.3.12 which proves that each weak ω-DPDA can be
e�ectively transformed into one in normal form. As observed in Example 3.3.7, each class Ki

forms a regular set. By proving this fact, we can extend a weak ω-DPDA by annotating the
stack content with the run of a deterministic �nite state machine (DFSM) that determines the

42

3.3 Regularity Test for Weak ω-DPDAs

class. We can �nally assign to each (annotated) state the minimal color of its con�guration by

using the information about the class index of the DFSM.

�e following lemma is the �rst half of this normalization where we prove the regularity

of the classes and construct a DFSM that reads a reversed con�guration combined with an

output function that yields the index i of the corresponding class Ki .

Lemma 3.3.11. For A, one can generate a DFSMMK = (QK , ΣK , δK , q0,K) over the alphabet
ΣK = Γ�, and a function fK ∶ Q×QK →N that assigns the classes: for each con�guration, qW ∈ Ki

i� fK(q, δ∗K(WR)) = i. �is computation takes time 2O(∣Q∣ ⋅ k) and yields size ∣QK ∣ ∈ 2O(∣Q∣ ⋅ k)

where k is the largest color.

Proof. We show this lemma by using the weak classi�cation game GA,C (cf. De�nition 3.2.2).
�e colors chosen by Player 0 naturally represent De�nition 3.3.4 meaning that qW ∈ Ki i�

i ∈ C is the minimal color such that Player 0 can win from the vertex (q, i , 0)W . We justify
this claim in the following. Further, according to Remark 3.3.5, it su�ces to use the colors

C = {0, . . . , k} in the classi�cation game.
An obvious winning strategy for Player 0 from such a vertex (or vertices with larger colors)

is to just play the corresponding index j such that pV ∈ K j for each game con�guration

(p, i , 0)V .
For showing the other direction, assume for a contradiction that Player 0 wins from a

con�guration (q, i , 0)W with qW ∈ K j such that i < j for minimal i + j. If i + j is odd, then
Player 1 can force a play that stays inWj due to Lemma 3.3.8 (a). To win, Player 0 has to stabilize

at a color i′ < i that is even i� j is even, i.e., i′ + j is even. Hence, i′ < j which contradicts the
minimality. If i+ j is even, then i < j− 1 and j ≥ 2. Player 1 can force the play to a con�guration
(q′, i′, 0)W ′ with q′W ′ ∈ K j−1 due to Lemma 3.3.8 (b). By assumption, Player 0 can still win

from there which contradicts the minimality since i′ + j − 1 ≤ i + j − 1 < i + j.
From Lemma 2.2.4, we know that the winning region of Player 0 forms a regular language

when considering those con�gurations as words. LetA′′ = (Q′′, Σ′′, δ′′, q′′0 , F ′′) be the accord-
ing DFSA such that for each con�guration (q, i , 0)W of GA,C ,

(q, i , 0)W ∈ L∗(A′′)R ⇔ Player 0 wins GA,C from (q, i , 0)W .

As DFSMMK = (Q′′, Σ′′, δ′′, q′′0) we take A′′ with out the acceptance. It remains to de�ne
the function fK ∶ Q × Q′′ →N:

f (q, q′′) = min{i ∣ δ′′(q′′, (q, i , 0)) ∈ F ′′}

43

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

�en, we indeed have that qW ∈ Ki i� i = f (q, q′′) with q′′ = δ′′∗(WR) because:

δ′′(q′′, (q, i , 0)) ∈ F ′′ ⇔ (WR(q, i , 0)) = ((q, i , 0)W)R ∈ L∗(A′′)

⇔ (q, i , 0)W ∈ L∗(A′′)R

⇔ Player 0 wins GA,C from (q, i , 0)W .

�is computation takes time 2O(∣Q∣ ⋅ k) and yields size ∣QK ∣ ∈ 2O(∣Q∣ ⋅ k).

Lemma 2.2.4 yields that ∣QK ∣ ∈ 2O(∣Q∣ ⋅ k) since we applied it to GA,C which has O(∣Q∣ ⋅ k)
many states. To obtain the claimed time complexity, note that the winning condition of GA,C
is a weak PDG sinceA is weak. �is can be rewritten as a Büchi condition by rede�ning odd
colors as 1 and even colors as 0. For the resulting Büchi game, the running time of Lemma 2.2.4

becomes exponential inO(∣Q∣ ⋅ k). ◻

Example 3.3.7 illustrates that a DFSM that reads the con�gurations in reverse indeed has to

be of size exponential in the size of the weak ω-DPDA.
�e second half of the construction is to simulate the DFSMMK on the con�gurations

along a run ofA by storing states ofMK on the stack in parallel to the actual stack symbols.

�is annotation tells in which stateMK would be a�er reading the con�guration ofA from
the bottom up to the respective position. When additionally assigning the colors according to

MK , we end up with the normalized weak ω-DPDAA′. In constructions following later on,
we are only interested in the �nitary language which is the reason why we also construct a

DPDAA′′ in the previous lemma.

Lemma 3.3.12. For A, one can compute in exponential time a weak ω-DPDA A′ in normal
form such that Lω(A′) = Lω(A), and a DPDAA′′ such that L∗(A′′) = L⊛(A′), where A′′ has
O(∣Q∣) states and ∣Γ∣ ⋅ 2O(∣Q∣ ⋅ k) stack symbols.

Proof. LetMK = (QK , ΣK = Γ�, δK , q0,K) be a DFSMwith function fK as in Lemma 3.3.11. We
de�ne a weak ω-DPDAA′ = (Q′, Σ, Γ′, δ′, q′0, �′, Ω′) with coloring Ω′ ∶ Q′ →N in such a way
that it runs likeA and annotates the stack with a simulation ofMK . Technically,A′ consists
of:

a) states Q′ = Q × {0, . . . , k} with q′0 = (q0, c0) where c0 = fK(q0, δK(q0,K , �)), i.e., q0� ∈
Kc0 ,

b) stack symbols Γ′ = Γ × QK with �′ = (�, q0,K),

c) transitions δ′((q, c), (A, p0,K), a) = ((p, d),A′n . . .A′1) where

44

3.3 Regularity Test for Weak ω-DPDAs

i) δ(q,A, a) = (p,An . . .A1),

ii) A′i = (Ai , pi−1,K) and pi ,K = δK(pi−1,K ,Ai) for i ∈ {1, . . . , n},

iii) d = fK(p, pn,K),

d) coloring Ω′((q, i)) = i.

�is construction converts a con�guration qAn . . .A1 of A to an annotated con�guration
(q, i)A′n . . .A′1 ofA′ where

a) for each ℓ ∈ {1, . . . , n}, the stack symbol A′ℓ = (Aℓ , qℓ,K) is annotated by the state that
MK is in a�er reading the con�guration up to this point, i.e., qℓ,K = δ∗K(q0,K ,A1 . . .Aℓ−1),
and

b) the state is annotated by the minimal color i = fK(q, δ∗K(q0,K ,A1 . . .An)) of the con�gu-
ration, i.e., qAn . . .A1 ∈ Ki .

Hence, a bijection between the con�gurations ofA and properly annotated con�gurations of
A′ is established. From De�nition 3.3.4 (a), we get Lω(A′) = Lω(A) because the colors inA′
are set according to the classes Ki inA. From De�nition 3.3.4 (b) follows thatA′ is weak and
the claimed complexity follows from the construction and Lemma 3.3.11.

We have already stated that the coloring ofA′ corresponds to the minimal coloring ofA. It
remains to show thatA′ is in normal form, i.e., that this coloring also minimal forA′. Let K′

i
be the classes ofA′. We claim that (q, i)A′n . . .A′1 ∈ K′

i inA′ i� qAn . . .A1 ∈ Ki inA, i.e., that
the classes inA′ did not change in comparison toA. For an inductive proof, assume that the
correspondence of the classes is already established for indices 0 up to i − 1. Now consider Ki

and the case that i is even (the other case is similar). Ki contains precisely those con�gurations

from which all in�nite runs are either accepting or are leading to K j with j < i. Since the
correspondence of the classes has been established up to i − 1, we know that for every run of
A′ from (q, i)A′n . . .A′1 that leads to K′

j for j < i, the corresponding run ofA from qAn . . .A1
also leads to K j, and vice versa. Furthermore, if all in�nite runs from (q, i)A′n . . .A′1 that do
not lead to a smaller class are accepting, the same must be true for qAn . . .A1 (and vice versa)
because the same language is accepted from both con�gurations. Hence, the classes Ki and K′

i
coincide (under the bijection) andA′ is in normal form.
To obtain the DPDAA′′, we relax the additional information attached to the states ofA′.

�is information only indicates the class Ki the con�guration is in, whereas it has no in�uence

on the transitions ofA′. For the �nitary language, it is enough to know whether the color is
even or odd, which is where we can reduce the information to. It results in only 2 ⋅ ∣Q∣many

45

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

states instead of k ⋅ ∣Q∣. Each step of the computation can be done in at most exponential
time. ◻

3.3.3 Decidability Results
An interesting special case of the combination of Remark 3.3.2 and Lemma 3.3.10 arises when

we consider the initial con�gurations of two weak ω-DPDAs.

Remark 3.3.13. LetA and A′ be weak ω-DPDAs in normal form. �en, L⊛(A) = L⊛(A′) i�
Lω(A) = Lω(A′).

�e following result is an immediate consequence since the equivalence problem for DP-
DAs was shown to be decidable in [Sén01, Sén02]. Although we did not intend to �nd it, it is a

nice result as it concerns a fundamental decision problem in automata theory.

Corollary 3.3.14. �e equivalence problem is decidable for weak ω-DPDAs.

Remark 3.3.13 further helps us to also reduce the regularity problem from the case of in�nite

words to �nite words.

�eorem 3.3.15. LetA be a weak ω-DPDA in normal form. �en, L⊛(A) is regular i� Lω(A)
is regular.

Proof. For the implication from �nite to in�nite words, suppose L⊛(A) is regular, i.e.,
L⊛(A) = L∗(A′) for some DFSAA′. We can viewA′ as a Büchi automatonA′′ by assigning
color 0 to accepting states and color 1 to rejecting states. Obviously, for each input word, the

state reached inA has even color i� the state reached inA′′ has color 0. Since the acceptance
can only change �nitely o�en, it is easy to see thatA′′ can be converted to a weak ω-DFSA for
an appropriate coloring. In each run of A, the colors stabilize and hence, Lω(A) = Lω(A′′)
which is a regular ω-language.
If Lω(A) is regular, then it is recognizable by a weak ω-DFSAA′ according to Remark 3.2.6.

We assume A′ to be in normal form (using our construction or the results in [Löd01]). By
applying Remark 3.3.13, we obtain that L⊛(A) = L⊛(A′) is regular which shows the inverse
implication. ◻

To obtain our desired decidability result, we use the fact that regularity is decidable for

DPDAs [Ste67, Val75].

Corollary 3.3.16. �e regularity problem is decidable for weak ω-DPDAs.

46

3.4 Congruences for Strong ω-DPDAs

Complexity. Our method to decide the regularity problem for a weak ω-DPDA A is the
composition of the following two subroutines:

a) synthesizing a DPDAA′′ that accepts the �nitary language of the normal form ofA (see
Lemma 3.3.12), and

b) applying the known regularity test for DPDAs onA′′ (see �eorem 3.3.15 and [Val75]).

�e �rst step runs in exponential time whereas the second step has a running time that is

doubly exponential in the size of its input automaton. In total, this yields a triply exponential

upper bound for the running time of Corollary 3.3.16.

Another interesting aspect in terms of complexity is the size of an equivalent weak ω-
DFSA (if one exists). For the regularity test in the second step, we refer to [Val75] rather

than [Ste67] as it gives better complexity bounds. Accordingly, the DPDAA′′ (recognizing a
regular language) can be transformed into an equivalent DFSA with E2(n2 log n+ log t+ log h)
states, where E i(f) = expi (O(f)) denotes an exponentiation tower of height i and A′′ has
n states, t stack symbols, and words of at most length h in its transitions. According to
Lemma 3.3.12, A′′ has O(∣Q∣) states and ∣Γ∣ ⋅ 2O(∣Q∣

2
) stack symbols (we assume k ∈ O(∣Q∣)).

�e composition yields a DFSA for the �nitary language where the number of states is bounded

by E2(∣Q∣2 log ∣Q∣ + log ∣Γ∣ + log h). �is DFSA can be colored appropriately to become a weak
ω-DFSA that is equivalent toA.
Hence, in terms of computation time, our regularity test for ω-languages is exponentially

more expensive than for languages of �nite words. �is is due to the exponential blowup in

the normalization step. Nevertheless, this blowup has no impact on the size of the resulting

weak ω-DFSA (if an equivalent one exists) since the exact same bound on the number of
states applies as in the case of �nite words. It is unclear, whether this bound is tight. From

Example 3.3.7, we see that at least a single exponential blowup is unavoidable for the resulting

weak ω-DFSA.

3.4 Congruences for Strong ω-DPDAs
In the previous section was shown how one can decide the regularity problem for ω-DPDAs
with weak acceptance. Now, we consider regularity for general ω-DPDAs (with ‘strong’ ac-
ceptance) which was posed as an open problem decades ago in [CG78]. Unfortunately, we

were not able to solve it either. We nevertheless want to present a congruence relation on �nite

words that characterizes regularity, meaning that the language of an ω-DPDA is regular i�
the congruence has a �nite index, i.e., �nitely many congruence classes. �e decidability of

47

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

these properties remains open. �ese results were obtained in collaboration with Wladimir

Fridman.

For languages of �nite words, congruences were used byMyhill and Nerode in the late 1980’s

to characterize regularity. In [AKMV05], a congruence was developed to characterize whether

a language can be recognized by a VPDA.�e domain of our congruence are also �nite words,

but it is di�erent in the sense that its characterization property holds for (a restricted class of)

ω-languages. �e idea is based on a technique called Ramsey decomposition that was used in
[Büc62] and involves Ramsey’s theorem [Ram30]. First, we introduce the basic notations for

congruences.

An equivalence is a binary relation that is re�exive, symmetric, and transitive. In this
section, we consider equivalences over nonempty �nite words. For an equivalence ∼ ⊆ (Σ+)2
and a word u ∈ Σ+, let the class [u]∼ = {v ∣ u ∼ v} of u be the set of all equivalent words, and
let index Ind∼ = ∣{[v]∼ ∣ v ∈ Σ∗}∣ be the number of classes. We call an equivalence on Σ+ a
right congruence (just called congruence in the following) if it is compliant with appending
words to the right, i.e., if u ∼ v, then uw ∼ vw for all u, v ,w ∈ Σ+.

Ramsey Decomposition

Our aim is to �nd a congruence enjoying a certain property that is about periodicity and

depends on theω-language L: for all u, v ∈ Σ+ with u ∼ uv and v ∼ vv, theω-language [u]∼[v]ω
∼

is either entirely contained in L or entirely outside of L. If the index of such a congruence
happens to be �nite, it is possible to represent L regularly by periodically repeating classes
as in the above property. In [Büc62], this approach was used to show that Büchi automata

are closed under complementation (which also proved the decidability of the theory of MSO

logic).

�e periodic decomposition is based on a combinatorial argument known as Ramsey’s

theorem [Ram30]. It considers a coloring function that assigns �nitely many colors to the

subsets ofN that are of some �xed size k. �e theorem predicts the existence of an in�nite
subsetM ⊆N that is monochromatic, i.e., all its k-size subsets have the same color. For a set S,
let (Sk) be all its subsets of size k.

Proposition 3.4.1 (In�nite Ramsey�eorem [Ram30]). Let c ∶ (Nk) → C for some �nite C.
�en, there exists an in�nite subset M ⊆N such that c(u) = c(v) for each u, v ∈ (Mk).

We proceed by giving the details of how this result can be used to obtain a regular represen-

tation.

48

3.4 Congruences for Strong ω-DPDAs

Remark 3.4.2. Let L ⊆ Σω be an ω-language and ∼ be a right congruence on Σ+ with �nite
index.

a) Each class [u]∼ ⊆ Σ+ is regular.

b) In�nite words can be decomposed as follows:

Σω = ⋃
v∼vv
u∼uv

[u]∼[v]ω
∼
.

c) If for all u, v ∈ Σ+ with u ∼ uv and v ∼ vv, either [u]∼[v]ω
∼
⊆ L or [u]∼[v]ω

∼
⊆ L holds,

then L is regular (and so is its complement) :

L = ⋃
v∼vv
u∼uv
uvω

∈L

[u]∼[v]ω
∼

and L = ⋃
v∼vv
u∼uv
uvω

∉L

[u]∼[v]ω
∼
.

Proof. a) For a right congruence, it holds that [uw]∼ = [vw]∼ if [u]∼ = [v]∼ for each
u, v ,w ∈ Σ+. One can hence construct a canonical ε-free DFSMM = (Q , Σ, δ, q0)
with �nite state set Q = {q0} ⊎ {[u]∼ ∣ u ∈ Σ+} and transitions δ(q0, a) = [a]∼ and
δ([u]∼, a) = [ua]∼. �en, [u]∼ = L∗(Au) whereAu = (M, {[u]∼}) has [u]∼ as the only
accepting state.

b) We have to show that for all α ∈ Σω, there exists a decomposition α = uv0v1 . . . with
vi ∼ vi+1 ∼ vivi+1 and u ∼ uv0 (and hence u ∼ uv0 . . . vi) for all i ∈N.
For that, we use Proposition 3.4.1 with k=2 and the coloring function c ∶ (N

2
) → {[u]∼ ∣

u ∈ Σ+} which maps in�xes of α to their respective equivalence classes: c({i , j}) =
[ai . . . a j−1]∼ where i < j and aℓ denotes the letter of α at position ℓ ∈ N. �e Ramsey
�eorem yields a setM ⊆N of in�nitely many word positions m0 < m1 < . . . such that
all in�xes in between two such positions are equivalent. Formally, the decomposition

α = u′v′0v′1 . . . with u′ = a0 . . . am0−1 and v′i = am i
. . . am i+1−1 meets the �rst property due

to the choice of c: v′i ∼ v′i+1 ∼ v′iv′i+1 for all i ∈N.
It remains to additionally establish equivalent pre�xes. Based on the above decomposi-

tion, we partition the pre�xes of α depending on the classes they belong to:

I[w]∼
= {i ∈N ∣w ∼ u′v′0 . . . v′i−1} for all classes [w]∼.

By the pidgin hole principle, there must be some class [w]∼ such that I[w]∼
contains

in�nitely many indices i0 < i1 < We can �nally de�ne the coarser decomposition
u = u′v′0 . . . v′i0−1 and v j = v′i j . . . v

′

i j+1−1which still ful�lls the �rst property and additionally

the second one: u ∼ uv0.

49

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

q0

[a]∼

[b]∼

[ab]∼

[ba]∼

a

b

b

a

a

b

a, b

a, b

(a) DFSM to de-

scribe congru-

ence classes

b a b a a b a a a b a a a a b . . .

[b] [a] [b] [a] [a] [b] [a] [a] [a] [b] [a] [a] [a] [a] [b]

[ba][ab][ba] [a] [ab][ba] [a] [a] [ab][ba] [a] [a] [a] [ab]

[ba][ab][ba][ab][ab][ba] [a] [ab][ab][ba] [a] [a] [ab]

[ba][ab][ba][ab][ab][ba][ab][ab][ab][ba] [a] [ab]

[ba][ab][ba][ab][ab][ba][ab][ab][ab][ba][ab]

u v0 v1 v2

(b) Decomposition of an ω-word (the classes of words in the decomposition are highlighted;
index ∼ is omitted for readability)

Figure 3.5: Illustrations for Remark 3.4.2 (a) and (b) as explained in Example 3.4.3

c) Direct consequence of (a) and (b). ◻

Example 3.4.3. Consider a right congruence ∼ ⊆ (Σ+)2 over the alphabet Σ = {a, b} consist-
ing of the following classes:

[a]∼ = a+, [b]∼ = b+, [ab]∼ = a+bΣ∗, [ba]∼ = b+aΣ∗.

�e ε-free DFSMM according to Remark 3.4.2 (a) that can be used to recognize the classes

of ∼ is depicted in Figure 3.5a.
In Figure 3.5b, we give an example of a decomposition of the ω-word α = ba1ba2ba3 . . . ∈ Σω

in the spirit of Remark 3.4.2 (b). All possible decompositions must pick u ∼ ba because [ba]∼
is the only class that contains in�nitely many pre�xes of α. For our example, we choose
u = bab ∼ ba and further vi = a i+2b ∼ ab for all i ∈ N. �is ful�lls the desired conditions
vi ∼ vi+1 ∼ vivi+1 and u ∼ uvi for all i ∈N.
Finally, for Remark 3.4.2 (c), let ω-language L = a(b∗a)ω+b(a∗b)ω ⊆ Σω. It contains exactly

those ω-words where the �rst letter occurs in�nitely o�en. �e following table summarizes
the relation of all ω-languages [u]∼[v]ω

∼
with respect to L (where ‘+’ means [u]∼[v]ω

∼
⊆ L and

‘−’ means [u]∼[v]ω
∼
⊆ L):

50

3.4 Congruences for Strong ω-DPDAs

u / v a b ab ba
a + − + +
b − + + +
ab + − + +
ba − + + +

Consequently, we obtain another representation of L (column-wise from the table):

L = ([a]∼ + [ab]∼)[a]ω
∼
+ ([b]∼ + [ba]∼)[b]ω

∼
+ Σ∗[ab]ω

∼
+ Σ∗[ba]ω

∼
. ◁

Regularity

In order to characterize regularity by using the above techniques, it remains to de�ne a

congruence being compliant with the preconditions of Remark 3.4.2 (c). �e congruence that

we consider here is composed of two sub-congruences: one that compares the pre�x behavior

of a word, and one that relates the behavior when occurring in a period.

De�nition 3.4.4. For a language L ⊆ Σω over some alphabet Σ, we de�ne the following right

congruences over nonempty words (where u, v ∈ Σ+):

u ∼ v i� u ≈ v ∧ u ≋ v ,

u ≈ v i� ∀γ ∈ Σω ∶ (uγ ∈ L ⇔ vγ ∈ L),

u ≋ v i� ∀x , y ∈ Σ∗ ∶ (x(uy)ω ∈ L ⇔ x(vy)ω ∈ L). ◁

Note that these three congruences depend on L. Nevertheless, we omit this in our notation
as it will be clear which language we are working with. It follows easily from the de�nition

that ≈ and ≋ are re�exive, symmetric, transitive, and compliant with appending words to the
right. Finally, ∼ derives these properties.
Since ∼ is a conjunction, it holds that Ind∼ is �nite i� Ind≈ and Ind≋ are both �nite. Further,

if L ⊆ Σω is regular, then Ind∼, Ind≈, and Ind≋ are each �nite where the following upper bounds

can be obtained easily from an ε-free ω-DFSA that recognizes L with n states:

a) Ind∼ ≤ Ind≈ ⋅ Ind≋ holds since each ∼-class is characterized by the intersection of a
≈-class with a ≋-class. Some intersections might happen to be empty.

b) Ind≈ ≤ n holds because u ≈ v follows for two words u, v ∈ Σ+ if they lead to the same
state, i.e., δ∗(u) = δ∗(v).

51

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

c) Ind≋ ≤ (n2)n = n2n holds because u ≋ v follows for two words u, v ∈ Σ+ if they induce
the same state transformation with the same lowest color, i.e., for all states p, q ∈ Q and
colors c ∈ C (w.l.o.g. ∣C∣ ≤ ∣Q∣), the run p uÐ→ q has lowest color c i� the run p vÐ→ q exists
and has the same lowest color.

Example 3.4.5. Reconsider the ω-language L ⊆ Σω over alphabet Σ = {a, b} from Exam-
ple 3.4.3. �e following table gives the two ≈-classes and three ≋-classes of L, and also four
(nonempty) ∼-classes that result from the intersection:

∩ [a]≋ = a+ [b]≋ = b+ [ab]≋ = Σ∗(ab + ba)Σ∗
[a]≈ = aΣ∗ a+ ∅ a+bΣ∗
[b]≈ = bΣ∗ ∅ b+ b+aΣ∗

�e resulting ∼-classes happen to coincide with those from Example 3.4.3. ◁

Before the example, we have seen that the index of ∼ is �nite when the considered language
is regular. We now show the inverse direction of that implication.

�eorem 3.4.6. Let L ⊆ Σω be an ω-DPDL. �e index of ∼ is �nite i� L is regular.

Proof. We just have observed that the index of ∼ is �nite if L is regular. For the other direction,
we use Remark 3.4.2 (c), where two cases arise:

a) Assume there is an ω-word α = uvω ∈ L for some u, v ∈ Σ+ such that there exists another
ω-word α′ ∈ [u]∼[v]ω

∼
with α′ ∉ L. Fix some decomposition α′ = u′v′0v′1 . . . with u ∼ u′

and v ∼ v′i for all i ∈ N. Let further L = Lω(A) be accepted by an ω-DPDA A and
let the class [v]∼ = L∗(Av) ⊆ Σ+ be recognized by an ε-free DFSA Av according to

Remark 3.4.2 (a).

For the proof, we decompose the rejecting run of A on α′. By in�nitely pumping a
certain in�x of α′, we construct an ultimately periodic ω-word α′′ = u′′v′′ω thatA still
has a rejecting run on. A contradiction with the de�nition of ∼ will occur since u ∼ u′′
and v ∼ v′′ holds.

For the decomposition of the run of A on α′, consider the stairs of the run, i.e., all
con�gurations such that in the future, the stack height does not drop below the current

value. �ere can be multiple stairs at the same height if the stack reaches that height

several times without dropping below later on. �e in�nite run induces in�nitely many

stairs. We re�ne this sequence as follows:

52

3.4 Congruences for Strong ω-DPDAs

i) By the in�nite pidgin hole principle, there must be an in�nite subsequence of stairs

that share the same state and topmost stack symbol. �is allows us to arbitrarily

pump the run in between two such stairs. Some pre�x of the run leads to the earlier

stair qAW for q ∈ Q, A ∈ Γ�, andW ∈ Γ∗
�
. From there, some input w ∈ Σ∗ leads to

the later stair qAVW for V ∈ Γ∗
�
. Since the state and the stack top are the same and

the stack contentW below the level of the stair is never used again, it is possible to

continue the run in an in�nite loop by continuing with the input wω. Figure 3.6

depicts the runs and the two stairs as just described.

ii) To retain the acceptance behavior during the loop, we consider a subsequence of

stairs such that the lowest color occurring in between two of them is odd. �is

sequence is still in�nite since the run is rejecting. When looping between two such

stairs, the run is rejecting.

iii) �e word we want to pump has to be in the part where v′0v′1 . . . ∈ [v]ω
∼
is processed.

We hence pick the start of our stair sequence to be somewhere a�er the pre�x u′
has been read.

iv) To understand the �nal step of the re�nement, let for a word a1 . . . an ∈ Σn of n
letters and k ≤ n

[a1 . . . an ∣ <k] = a1 . . . ak−1 and

[a1 . . . an ∣ ≥k] = ak . . . an

denote its pre�x up to position k (exclusively) and its su�x from position k (inclu-
sively) onwards. For each stair,A has processed a pre�x u′v′0 . . . v′i−1[v′i ∣ <k] of α′
for some i ∈N and k ∈ {0, . . . , ∣v′i ∣}. We now additionally consider the run ofAv

on v′i and especially its state a�er the �rst k letters were processed: δ∗v ([v′i ∣ <k]).
Again, by the in�nite pidgin hole principle, there must be an in�nite subsequence

of stairs that share the same state ofAv at the respective position of the stair.

For the remainder of the proof, we �x two of these in�nitely many stairs. Let i < j be
the indices of the words v′i and v′j currently processed at the two stair positions, and let
k, l be the respective positions within v′i and v′j, i.e., the pre�xes u′v′0 . . . v′i−1[v′i ∣ <k] and
u′v′0 . . . v′i . . . v′j−1[v′j ∣ <l] of α′ have been processed at the two stair positions, respectively.
�e runs ofAv and the decompositions of v′i and v′j are also depicted in Figure 3.6.

We construct another ω-word α′′ ∈ Σω which starts with the pre�x u′v′0 . . . v′i−1[v′i ∣ <k]
up to the �rst stair, and is followed by the extension [v′i ∣ ≥k] v′i+1 . . . v′j−1 [v′j ∣ <l] to the
pre�x at the second stair. �e latter word is repeated ad in�nitum. �is ultimately

53

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

st
a
ck
h
e
ig
h
t

input

k l

[v′i ∣ <k] [v′i ∣ ≥k] [v′j ∣ <l] [v′j ∣ ≥l]

q0� qAW

qAVW

qv ,0 pv ∈ Fv qv ,0 pv ∈ Fv

run ofA on α′

run ofAv on v′i run ofAv on v′j

(u′)(v′0) . . . (v′i) . . . (v′j) . . .

Figure 3.6: Selecting stairs for the proof of �eorem 3.4.6

periodic ω-word α′′ is again not contained in the language by the choice of i , j, k, l . We
obtain then representation α′′ = u′′(v′′)ω when rearranging α′′ as follows:

α′′ = u′ v′0 . . . v′i−1 [v′i ∣ <k] ([v′i ∣ ≥k] v′i+1 . . . v′j−1 [v′j ∣ <l])
ω

= u′ v′0 . . . v′i−1 [v′i ∣ <k] [v′i ∣ ≥k]
´¹¹¹¸¹¹¶

(v′i+1 . . . v′j−1 [v′j ∣ <l] [v′i ∣ ≥k])
ω

= u′ v′0 . . . v′i−1 v′i
´¹¹¹¸¹¹¹¶

(v′i+1 . . . v′j−1 [v′j ∣ <l] [v′i ∣ ≥k]
´¹¹¸¹¹¶

)
ω

= u′′ (v′′)
ω
∉ L

It follows that u ∼ u′′ since u ∼ uv ∼ uv i+1 ∼ u′v′0 . . . v′i = u′′. By the choice of k, l , we
further conclude that [v′j ∣ <l][v′i ∣ ≥k] ∈ L∗(Av) = [v]∼ which implies v ∼ v′′ since
v ∼ vv. We �nally see from the de�nition of ∼ that u′′(v′′)ω ∉ L contradicts uvω ∈ L by
De�nition 3.4.4 since u ≈ u′′ and v ≋ v′′. Hence, [u]∼[v]ω

∼
⊆ L.

b) If uvω ∉ L, then [u]∼[v]ω
∼
⊆ L follows from the �rst case for the complement language

since ω-DPDLs are closed under complement (see [HU79, Chapter 10.2]). ◻

54

3.4 Congruences for Strong ω-DPDAs

Limitations

Note that ∼ can only be used for ω-DPDLs to characterize regularity. �ere are more complex
languages that also have �nite index.

Example 3.4.7. Consider the ω-language Lu ⊆ {a, b}ω that contains all words with a-blocks
of unbounded length:

Lu = {an0ban1ban2b . . . ∣ the exponents n0, n1, . . . ∈N are unbounded} ⊆ {a, b}ω .

�en, Ind∼ = 1, i.e., all words are congruent with respect to ∼, ≈, and ≋, respectively. �is
is because changing the pre�x of a word does not change its membership in Lu and further,
periodic words are excluded from Lu by de�nition.
From�eorem 3.4.6 follows that Lu cannot be an ω-DPDL. In fact, Lu as well as its comple-

ment Lu are not even recognizable by ω-PDAs:

a) �e �rst claim follows since every nonempty ω-PDL contains an ultimately periodic
word, which is not the case for Lu. Assume Lu = Lω(A) to be recognized by some ω-PDA
A and consider the accepting run ofA on some word. As in the proof of �eorem 3.4.6,
there are two stairs in the run that share the same state and stack top and further, the

lowest color occurring in between is even. A repetition of the segment between the two

stairs yields an ultimately periodic word in Lu.

b) For the other claim, assume Lu to be context-free and recognized by some ω-PDAA.
For each ω-word α ∉ Lu, there exists an integer i ∈N such that α does not contain the
in�x a i . Consider a word β = (anb)ω ∉ Lu for some su�ciently large integer n ∈ N
together with an accepting run of β on A. We show that in�nitely many a-blocks in
β can be pumped arbitrarily o�en. �is results in an ω-word β′ ∈ Lω(A) ∩ Lu with
a-blocks of unbounded length when we pump the i-th block i times.

A pumpable a-block can be found as follows. From an arbitrary position in the run on
β, we �rst go to the next stair and then, we consider the �rst complete an-block that
is read a�erwards. Four cases arise when the an-block is processed byA (depicted in
Figure 3.7):

i) �e increase and decrease of the stack height is small, i.e., the di�erence between

the minimal and maximal stack height during the processing of an is bounded.
�en, two con�gurations are the same. �e part in between these con�gurations

can be pumped.

55

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

st
a
ck
h
e
ig
h
t

input

pump

stair
qAW qAW

. . . (an). . .

(a) Insu�cient increase of the stack height

st
a
ck
h
e
ig
h
t

input

pump up

stair

stair

qAW

qAVW

. . . (an). . .

(b) Su�cient increase of the stack height with stair

st
a
ck
h
e
ig
h
t

input

pump up pump down

stair qAW

qAVW pAVW

pAW

. . . (an). . .

(c) Su�cient increase of the stack height without stair

st
a
ck
h
e
ig
h
t

input

pump up pump down

stair qAW

qAVW pAVW

pAW

. . . (an). . .

(d) Su�cient decrease of the stack height

Figure 3.7: Distinction of cases while pumping the run of an ω-PDA for Lu in Example 3.4.7

ii) �ere is a stair and another con�guration (with higher stack) later on that share

the same state and stack top. Again, the part in between these con�gurations can

be pumped.

iii) �ere are two con�gurations of increasing stack height that are not stairs that

share the same state and stack top, and later on, when the stack height is �rst

decreased to the respective levels, these respective popping con�gurations also

share the same state. �e part in between the two pushing con�gurations can

be pumped to increase the length of the a-block. �e part in between the two
popping con�gurations has to be pumped in the same way to restore the stack

height a�erwards.

iv) Opposite of the previous case: �ere are two con�gurations of decreasing stack

height that share the same state, and before, when the stack height is last increased

56

3.4 Congruences for Strong ω-DPDAs

to the respective levels (since we started our consideration at a stair), these respec-

tive pushing con�gurations also share the same state and stack top. �e part in

between the two popping con�gurations can be pumped to increase the length of

the a-block. �e part in between the two pushing con�gurations has to be pumped
in the same way to prepare the stack height before. ◁

It might not be surprising that �eorem 3.4.6 holds not true for an ω-language as complex
as Lu. But, there is also an example of a much simpler ω-language that admits �nitely many
congruence classes.

Example 3.4.8. Consider the ω-language Le over Σ = {a, b} containing all words that either
have only �nitely many letters b or have in�nitely many a-blocks such that an a-block of the
same length occurs somewhere later on:

Le = (Σ∗aω) ∪ ⋂
i∈N
⋃
j∈N

((ΣiΣ∗b) ⋅ a j ⋅ (b + bΣ∗b) ⋅ a j ⋅ (bΣω)) ⊆ Σω .

�en, Ind∼ = 1 again. On the one hand, the pre�x of an ω-word is not relevant for the
membership in Le. Further, each ultimately periodic ω-word is contained in Le because if the
(nonempty) period contains no letter b, then the �rst case of the de�nition of Le applies and
otherwise, there is at least one b in the period that induces in�nitely many (possibly empty)
a-blocks all having the same length.
It is easy to see that Le can be recognized by an ε-free ω-OCA that guesses which case

applies, and in the second case, it guesses the a-blocks and where they are repeated while their
lengths are compared with the counter. Such an automaton is depicted in Figure 3.8. ◁

To summarize, we have introduced a congruence (for a given ω-language) that characterizes
regularity, i.e., the index of which is �nite if the ω-language is regular. �e latter example
shows that this characterization only holds for ω-PDLs that are deterministic. �e decidability
of the regularity problem for ω-DPDLs remains open.

57

Chapter 3 Regularity Problems for Pushdown Games and ω-Automata

q0

q1

q2

q3

q4b

bb

b[�↦�]

b

a, b

a[�↦ $�],
a[$↦ $$]

a, b

a[$↦ ε]

a a

Figure 3.8: An ε-free ω-OCA that recognizes the language Le from Example 3.4.8 (doubly
circled states have color 0, otherwise color 1, and the stack is ignored if no operation

is given)

58

Chapter 4

Lookahead Delegation for
Nondeterministic Automata

�is chapter is dedicated to delegation problems for nondeterministic automata. A lookahead

delegator is a function similar to a transition function in the sense that in each step of a run,

the delegator shall deterministically choose the next transition. But, a lookahead delegator

may additionally use some bounded lookahead on the input word to make a decision. If such

a function leads to an accepting state for some input word, then the word is recognized by the

automaton, too, since only transitions of the automaton are chosen. To make such a function

a delegator, we further require it to ful�ll the inverse direction, i.e., the function has to lead to

an accepting state for each word accepted by the automaton.

Delegators for nondeterministic automata where �rst introduced and studied in [RS07].

However, the motivation is based on a di�erent formulation that involves only deterministic

automata and that occurs during the composition problem for so-called e-services [BCG+03].

�e question is to decide whether a set of available services can be composed to ful�ll a certain

speci�cation. Each service and the target speci�cation are given by deterministic automata.

�e composition is made by a function that maps each letter of the input word to one of the

sub-automata. It is demanded that for each word recognized by the speci�cation and for each

sub-automaton, the sub-automaton accepts the letter sequence that is mapped to it. For the

general composition, this function knows the entire input word. A restricted version of the

function is considered in [GHIS04], namely one with bounded lookahead on the input word

su�ces during the mapping. Such a function is called a lookahead delegator.

Besides de�ning lookahead delegators, it was further shown in [GHIS04] that for DFSAs, the

existence of a k-lookahead delegator can be decided in time polynomial in the alphabet and size

of all DFSAs and exponential in k and the number of DFSAs. �e EXPTIME-hardness of this
problem was shown in [MW08]. For so-called reversal-bounded one-counter automata, this

59

Chapter 4 Lookahead Delegation for Nondeterministic Automata

problem was shown to be decidable in [DIS05]. Finally, deciding the existence of a bounded

delegator was posed as an open problem in [GHIS04].

�is delegation problem for a tuple of (deterministic) automata can be reduced by a product

construction to the delegation problem that we consider, i.e., for a single nondeterministic au-

tomaton. Let × denote the synchronous product and ⊗ denote the fully asynchronous product.
�en, a speci�cationA is composable with lookahead k from some servicesA1, . . . ,An if, and

only if, there exists a k-lookahead delegator forA×(A1⊗ . . .⊗An). Note that the asynchronous
products introduce nondeterminism. For a single nondeterministic automaton, the delegation

problem is more general. Hence, only lower bounds can be transfered to this setting. �en,

one must also note that the product automaton might be exponentially larger then the original

tuple of automata. However, the composition of e-services motivates delegators, i.e., why we

want to ‘determinize’ the automaton without changing its states or transitions.

In this chapter, we study the complexity of delegator synthesis for nondeterministic automata.

�is means in detail that we reconsider the three versions of the decision problem as they were

de�ned in [RS07, Section 4]:

a) k-Delegator for a �xed number k ∈N: decide for a given automatonA whetherA
has a k-lookahead delegator.

b) Delegator: decide for a given automatonA and k ∈N whetherA has a k-lookahead
delegator.

c) Bounded-Delegator: decide for a given automaton A whether A has a bounded
lookahead delegator.

We study these problems for �nite state automata (Section 4.1) and for pushdown automata

(Section 4.2). Our results were partially presented in [LR13].

4.1 Delegation for Finite State Automata
In [RS07], complexity upper bounds were given only for a restricted subclass of FSAs. We

extend this research to FSAs in general and show the decidability of all three problems listed

above, each of them being handled in a separate subsection. Before, we start with some

preliminaries concerning delegators for FSAs.

We restrict our studies to FSAs that are total and ε-free. �e �rst property avoids unnecessary
technical di�culties. Regarding ε-transitions, it was already mentioned in [RS07, Lemma

60

4.1 Delegation for Finite State Automata

1] that an FSA with ε-transitions has a k-delegator if, and only if, its ε-free pendant has a
k-delegator where we assume the standard procedure for ε-removal.
We proceed with the formal de�nition of a lookahead delegator. For the sake of readability,

we only consider FSAs and give an extended version later in De�nition 4.2.1. For k ∈ N, let
Σ≤k = ⋃k

i=0 Σ
i .

De�nition 4.1.1. For an ε-free FSAA = (Q , Σ, ∆, q0, F) and a number k ∈N, a k-lookahead
delegator (or k-delegator for short) is a function f ∶ Q × ΣΣ≤k → Q such that

a) f (q, aw) = p implies (q, a, p) ∈ ∆ for each q ∈ Q , a ∈ Σ,w ∈ Σ≤k, and

b) f ∗(q0,w) ∈ F for each w ∈ L∗(A), where f ∗ ∶ Q × Σ∗ → Q extends f to words and is
de�ned inductively as follows: let f ∗(q, ε) = q for each state q, and let f ∗(q, a1 . . . an) =
f ∗(f (q, a1 . . . amin(n,k+1)), a2 . . . an) for each state q and nonempty word a1 . . . an of
length n. ◁

In a sentence, the two conditions express that only transitions are chosen by the delegator and

that it leads to an accepting state for each word accepted by the automaton. We say thatA has
a bounded lookahead delegator if it has a k-lookahead delegator for some k ∈N.
Note that in our notion of k-lookahead, we follow [GHIS04, DIS05] by counting the ad-

ditional lookahead, whereas in [RS07], the current input symbol counts as a letter of the

lookahead. In our setting, a 0-lookahead delegator can hence be identi�ed with a deterministic

subset of the transitions such that the same language is accepted.

Example 4.1.2. Consider the FSAA over the alphabet Σ = {a, b} as depicted in Figure 4.1a
which accepts the language L∗(A) = {aa} ∪ Σ∗{b, aaa}. �e only nondeterministic choice
of a transition occurs at state q0 for symbol a. It is possible to delegate this transition with
lookahead 2; e.g. by the function f ∶ Q × ΣΣ≤2 → Q with f (q0, aa) = 1 and f (q, aw) = 0 for
all w ∈ Σ≤2 ∖ {a}.
A very easy way of showing that f is a delegator is to consider the ‘delegated’ automaton
A f which simulates f on A. Formally, for any ε-free FSA A, number k ∈ N, and function
f ∶ Q × ΣΣ≤k → Q with (q, a, f (q, aw)) ∈ ∆ for all (q, aw) ∈ dom(f), we can construct the
ε-free DFSAA f = (Q′, Σ, δ′, q′0, F ′) consisting of

a) states Q′ = Q × Σ≤k, q′0 = (q0, ε), and F ′ = {(q,w) ∈ Q′ ∣ f ∗(q,w) ∈ F}, and

b) transitions as follows:

δ′((q,w), a) = (q,wa) if w ∈ Σ≤k−1,
δ′((q, a0 . . . ak−1), ak) = (f (q, a0 . . . ak), a1 . . . ak) where ai ∈ Σ for all i ∈ [k].

61

Chapter 4 Lookahead Delegation for Nondeterministic Automata

q0

q1

q2

a

a

a, b

b

ba

(a) FSAA

q0

q0a q0b

q0bbq0baq0abq0aa

q2aa q2ab q2ba q2bb

a b

a b a ba
a

a a

b
b

b ba a

a

a

b b

b
b

(b) DFSAA f resulting fromA and f

Figure 4.1: FSA and its ‘delegated’ DFSA (doubly bordered states are accepting)

By construction, we have that L∗(A) = L∗(A f) i� f is a k-delegator. �e delegated automaton
of this example is depicted in Figure 4.1b. ◁

�e above construction yields a naïve method to decide the existence of a k-delegator.
However, the complexity is far from optimal: it shows Delegator to be in 2EXPSPACE, and

k-Delegator to be in NP. We improve these bounds by using some theoretical insight that is
based on le� quotients.

Le� Quotients. For w ∈ Σ∗ and L ⊆ Σ∗, let the le� quotient w−1L = {v ∈ Σ∗ ∣wv ∈ L} of w
with L be the language containing each word that completes w to a word in L. Note that the
composition of le� quotients can be written as concatenation: v−1(u−1L) = (uv)−1L. Further,
we write L∗(Aq) for the language ofA where q is taken as the initial state.
We now present a technical lemma that occurs as a key ingredient in the proofs and algo-

rithms of the following three sections. A similar statement can be found in [RS07, Lemma 7]

using a notion called blindness. It gives a language-theoretical characterization of the main

property a k-delegator has to ful�ll when it selects a transition. �at is, whenever a transition
(q, a, p) ∈ ∆ has to be chosen for some lookahead w, then (aw)−1L∗(Aq) = w−1L∗(Ap), i.e.,
the accepted words are the same before and a�er the transition is taken. If this is not the case,

one can easily show that the de�nition of a delegator is not ful�lled by picking a word from

the di�erence. On the other hand, if this property holds for each transition, then it follows in-

62

4.1 Delegation for Finite State Automata

ductively that the language is preserved. Note that the inclusion (aw)−1L∗(Aq) ⊇ w−1L∗(Ap)
holds generally, since (q, a, p) ∈ ∆.

Lemma 4.1.3. An ε-free FSA A has a k-delegator i� there exists a set Q′ ⊆ Q such that q0 ∈
Q′ and for each q ∈ Q′, a ∈ Σ, w ∈ Σk, there exists p ∈ Q′ such that (q, a, p) ∈ ∆ and
(aw)−1L∗(Aq) = w−1L∗(Ap) hold.

Proof. For the direction from le� to right, let f be a k-delegator and Q′ be the set of states

reachable by f from q0with full lookahead, i.e., the smallest set such that q0 ∈ Q′ and f (q, aw) ∈
Q′ for each q ∈ Q′, a ∈ Σ, and w ∈ Σk. For a contradiction, assume there are q ∈ Q′, a ∈ Σ,
and w ∈ Σk such that (aw)−1L∗(Aq) ≠ w−1L∗(Ap) for all p ∈ Q′ with (q, a, p) ∈ ∆. Since q
is reachable from q0, �x a word u ∈ Σ∗ such that f leads to q and assume w.l.o.g. that q is
the �rst state on that run with the above property. Let p = f (q, aw). �en, there is a word
v ∈ (aw)−1L∗(Aq) ∖ w−1L∗(Ap), i.e., awv ∈ L∗(Aq) but wv ∉ L∗(Ap). Hence, we have that
f ∗(q0, uawv) = f ∗(q, awv) = f ∗(p,wv) ∉ F whereas uawv ∈ L∗(A) in contradiction to the
de�nition of a k-delegator.
For the other direction, we construct a k-delegator f from a setQ′ with the above properties.

For each q ∈ Q, a ∈ Σ, and w ∈ Σ≤k, we set f (q, aw) = p as follows.

a) If ∣w∣ = k and q ∈ Q′, then p ∈ Q′ becomes some state such that (q, a, p) ∈ ∆ and
(aw)−1L∗(Aq) = w−1L∗(Ap) as directly guaranteed by the property.

b) If ∣w∣ < k and aw ∈ L∗(Aq), then there is an a-successor p ∈ Q of q such thatw ∈ L∗(Ap).

c) If ∣w∣ < k and aw ∉ L∗(Aq), then �x some arbitrary a-successor p ∈ Q of q.

Note that the case ∣w∣ = k and q ∉ Q′ cannot occur due to the above property. It easily follows

by the de�nition of f ∗ that f ∗(q0, v) ∈ F if v ∈ L∗(A). Hence, f is a k-delegator forA. ◻

Example 4.1.4. From the perspective of Lemma 4.1.3, let us reconsider the FSA A given in
Example 4.1.2. Since q0 is the initial state, a set Q′ satisfying the property of Lemma 4.1.3 must

contain q0. �e only nondeterministic choice happens at q0 with letter a. �e two a-successors
of q0 are q0 itself and q1. �e le� quotients that are relevant for Lemma 4.1.3 are listed in the
following table for some relevant words w where Li = L∗(Aq i):

w (aw)−1L0 w−1L0 w−1L1
ε L0 ∪ L1 L0 L1
a L0 ∪ L1 ∪ L2 L0 ∪ L1 L2
aa L0 ∪ L1 ∪ L2 L0 ∪ L1 ∪ L2 L0
ab L2 L2 L2
b L2 L2 L2

63

Chapter 4 Lookahead Delegation for Nondeterministic Automata

�e underlined languages indicate correct choices according to Lemma 4.1.3. In detail, this

means that for w = ε, one can see that neither the language w−1L0 nor w−1L1 is equivalent to
(aw)−1L0 which shows that there is no 0-delegator forA. �e row forw = a shows analogously
that there is no 1-delegator, either. When the lookahead is increased to 2, then the condition

of Lemma 4.1.3 is �nally ful�lled. For w = aa, the le� quotients are the same if and only if a
delegator chooses q0 as the a-successor of q0. �e remaining two lines show that the choice
does not matter for w ∈ {ab, b, ba, bb}.
Note that the choice does also matter for the case w = a. �is is not a contradiction, as the

condition in Lemma 4.1.3 only considers a lookahead that is completely �lled. For shorter

lookahead at the end of the input, it follows that one can always reach an accepting state if a

word is accepted. In this example, in order to obtain a delegator, one further to go to q1 in case
of w = a. ◁

4.1.1 Fixed Lookahead

In the following, we present for an arbitrary �xed number k ∈N an algorithm that solves the
problem k-Delegator, i.e., the algorithm decides the existence of a k-delegator for a given
FSAA and computes one if it exists. �e special case 0-Delegator corresponds to deciding
whether a given FSAA can be turned into an equivalent DFSA just by removing transitions.
�e polynomial time decidability of this latter special case was shown in [AKL10,�eorem 4.1]

and independently, it has been mentioned in the survey article [Col12, �eorem 15] without a

proof. We generalize this result to an arbitrary �xed amount of lookahead.

�e rough idea behind our approach is to construct a safety game GA,k that simulates the
delegation. �e two players play a sequence of actions in alternation. Player 1 is in charge of

the input, i.e., he has to choose the letters of an input word. Player 0 is in charge of transitions.

A�er each letter played by his opponent, he has to choose an appropriate transition. �e goal

of Player 0 is to play an accepting run if a word contained in the language L∗(A) is formed by
Player 1.

�e key property we want to achieve for this game is to show (later, in Lemma 4.1.7) that

Player 0 has a winning strategy if, and only if, A has a k-delegator. By using a game-based
approach, we obtain an intuitive formulation of the problem on the one hand, while we have

many game-theoretic results available on the other. Here, we especially use the facts that such

games are determined, that winning strategies are positional, and that such a winning strategy

can be synthesized in time linear in the size of the game. Ideally, the positions of GA,k store
only the following information: the current state ofA reached by Player 0, and a lookahead of
k letters (or less if the play goes towards the end of the input word) provided by Player 1. If this

64

4.1 Delegation for Finite State Automata

is the case, then a positional winning strategy for Player 0 directly corresponds to a delegator.

�emain challenge is now to create a safety game where the states only store the information

mentioned above (which is also polynomial). �e winning condition should express that the

state of Player 0 is accepting if the input word played by Player 1 is in the language. �e

latter property does not depend on the current position alone but on the whole play instead.

Naïvely, one can implement this as a safety condition by additionally keeping track of the set of

reachable states by the input played by Player 1. However, the game vertices contain too much

information then, and it leads to a blowup that is exponential in the size of the automaton.

To solve this problem, we modify our game in such a way that Player 1 also has to choose a

transition for each input, but a�er Player 0 has chosen one. We show that, since Player 0 has to

make the choice of the transition �rst, the additional information on the transition chosen by

Player 1 does not help Player 0 (because basically, Player 0 has to choose a transition according

to Lemma 4.1.3, which only depends on the current state of Player 0). �is means that in this

modi�ed game, a winning strategy for Player 0 still corresponds to a k-delegator.
To summarize, the game GA,k goes as follows. First, Player 1 gives the initial content of the

lookahead. �en, both players play in alternation. Player 0 chooses a transition for the next

input letter. A�erwards, Player 1 also chooses a transition for the same letter. Simultaneously,

he removes this letter from the lookahead (as both players have just processed it) and appends

a new letter, or he does not re�ll the lookahead if the input word should end. Consequently, a

game position encodes the content of the lookahead as well as one state for each player. �e

safety condition for Player 0 now simply states that such vertices have to be avoided, where the

state of Player 1 is accepting and the state of Player 0 is non-accepting although the lookahead

is empty.

De�nition 4.1.5. Given an ε-free FSA A and k ∈ N, we de�ne the k-delegator game to be
the safety game GA,k = (V ,V0, E , Ω) where:

a) V = {⊺} ∪ ({0, 1} × Σ≤k+1 × Q × Q), (initial vertex and simulation vertices)

b) V0 = ({0} × Σ≤k+1 × Q × Q),

c) E ⊆ V × V containing the following edges:

i) (⊺, (0,w , q0, q0)) for w ∈ Σ≤k+1, (initiate bu�er)

ii) ((0, aw , q, p), (1, aw , q′, p)) for (q, a, q′) ∈ ∆ and w ∈ Σ≤k,
(Player 0 applying transition)

65

Chapter 4 Lookahead Delegation for Nondeterministic Automata

iii) ((1, aw , q′, p), (0,wb, q′, p′)) for (p, a, p′) ∈ ∆, w ∈ Σk, and a, b ∈ Σ,
(Player 1 applying transition, removing le�most symbol, and re�lling lookahead)

iv) ((1, aw , q′, p), (0,w , q′, p′)) for (p, a, p′) ∈ ∆, w ∈ Σ≤k, and a ∈ Σ,
(Player 1 applying transition and removing le�most symbol without re�lling)

v) ((0, ε, q, p), (0, ε, q, p)) for q, p ∈ Q, (make vertices non-terminal)

d) Ω(v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if {(0, ε, q, p) ∣ q ∉ F ∧ p ∈ F}
2 otherwise. ◁

�e number of vertices of GA,k is inO((k + 1) ⋅ ∣Σ∣k+1 ⋅ ∣Q∣2) which is polynomial in ∣Q∣ and
∣Σ∣ for a �xed k. �e game can be constructed in time polynomial in the number of vertices.

Example 4.1.6. Let us reconsider the FSA A of Example 4.1.2. In Figure 4.2, a part of the
1-delegator game GA,1 is depicted in such a way that for Player 1, only one edge is enabled
from each vertex whereas for Player 0, all successors are considered. �is deterministic choice

corresponds to a positional strategy for Player 1. �e strategy always forces the play to an

unsafe vertex, no matter how Player 0 reacts. It hence is a positional winning strategy for

Player 1 in GA,1 from ⊺. ◁

We show next that this is because there exists no 1-delegator forA (cf. Example 4.1.4).

Lemma 4.1.7. An ε-free FSAA has a k-lookahead delegator i� Player 0 has a positional winning
strategy in GA,k from ⊺.

Proof. �e key observation is that for (a strategy of) Player 0, it is not important to know

which states Player 1 chooses since Lemma 4.1.3 states that le� quotients are important rather

than exact states. As long as the property is ful�lled locally, Player 1 can w.l.o.g. be assumed to

just copy the choices of his opponent.

For the direction from right to le�, suppose Player 0 has a positional winning strategy s.
We show the existence of a k-delegator forA by proving that the condition from Lemma 4.1.3
is satis�ed. For this purpose, let Q′ be the set consisting of all states q ∈ Q such that a vertex
of the form (0, aw , q, q), with a ∈ Σ and w ∈ Σk, can be reached with s for some sequence of
moves of Player 1. Since trivially q0 ∈ Q′, it remains to show that for each such vertex, there is

a successor (1, aw , p, q) with (aw)−1L∗(Aq) = w−1L∗(Ap). To the contrary, assume that there
exists a state q ∈ Q′ such that (aw)−1L∗(Aq) ≠ w−1L∗(Ap) for each p ∈ Q with (q, a, p) ∈ ∆.
�en, no matter which p is chosen by Player 0, there is a word v ∈ (aw)−1L∗(Aq)∖w−1L∗(Ap),

66

4.1 Delegation for Finite State Automata

⊺

0, . . . , q0, q0 0, aa, q0, q0

1, aa, q0, q0

0, . . . , q0, ⋅ 0, a, q0, q1

1, a, q0, q1

0, ε, q0, q2

1, a, q1, q1

0, ε, q1, q2

0, . . . , q0, ⋅

1, aa, q1, q0

0, . . . , q1, ⋅ 0, aa, q1, q0

1, aa, q2, q0

0, . . . , q2, ⋅ 0, a, q2, q1

1, a, q0, q1

0, . . . , q2, ⋅

0, . . . , q1, ⋅

0, . . . , q0, q0

Figure 4.2: �e (partial) 1-delegator game GA,1 showing a positional winning strategy for
Player 1 (rounded vertices belong to Player 0, boxed ones to Player 1, and doubly

circled vertices are unsafe)

i.e., awv ∈ L∗(Aq) but wv ∉ L∗(Ap). Player 1 can win from (1, aw , p, q) by continuing to play
the word v since there is a sequence of states that accepts awv from q but none that accepts
wv from p. �is contradicts the property that s is a winning strategy for Player 0.
For the other direction, supposeA has a k-delegator f . We can naturally use it to de�ne a

positional winning strategy s ∶ V ′

0 → V for Player 0 where s(0, aw , q, p) = (1, aw , f (q, aw), p).
One can easily see by the construction of GA,k and s that q = f ∗(q0, x) holds whenever a
terminal vertex (0, ε, q, p) is reached a�er Player 1 has played a complete word x ∈ Σ∗. Player 0
wins because p ∈ F implies x ∈ L∗(A) and hence, q ∈ F. ◻

By combining Lemma 4.1.7 with the linear-time determinacy of safety games from Proposi-

tion 2.2.2, we get the main result of this section. Consequently, the existence of a k-lookahead
delegator can be decided in timeO((k + 1) ⋅ ∣Σ∣k+1 ⋅ ∣Q∣2) for a given FSAA = (Q , Σ, ∆, q0, F)
and a positive number k. �is yields polynomial running time for a �xed k that we consider
in this section.

Corollary 4.1.8. For each k ∈ N, the problem k-Delegator for ε-free FSAs can be solved in
polynomial time.

67

Chapter 4 Lookahead Delegation for Nondeterministic Automata

�is generalizes [RS07,�eorem 2] where polynomial time decidability of k-Delegator for
each �xed k is shown for unambiguous FSAs. Further, the false statement of [RS07,�eorem 5]
is corrected.

As explained before, we consider the input to be a single FSA whereas in the original

motivation, the input consists of several DFSAs. It is shown in [MW08] that the problem

0-Delegator is EXPTIME-hard in the original setting were a tuple of DFSAs is given. �is

is caused by the fact that the construction of a product of the DFSAs yields an FSA that is

exponentially larger.

4.1.2 Given Lookahead

We now consider the complexity of the problem Delegator (where an FSA and a bound k
are given). Note that for deciding whether A has a k-lookahead delegator, the game-based
algorithm from the previous section yields a running time that is doubly exponential in the

binary representation of k. However, using a di�erent algorithm, we can show that the problem
can be solved in polynomial space. �e idea of our algorithm running in polynomial space

is to check whether the property of Lemma 4.1.3 holds. �e main problem in checking this

condition with our space restriction is that we cannot enumerate all words w ∈ Σk because

their length is exponential in the binary representation of k.
For that purpose, we introduce transition pro�les, which can be used to circumvent this

problem. Intuitively, a transition pro�le of a word w for a given FSAA describes the possible
state transformations induced by w onA, i.e., it consists of all pairs of states (p, q) such that
there is a w-labeled path from p to q.

De�nition 4.1.9. For an FSAA and a word w ∈ Σ∗, we de�ne the transition pro�le

∆w = {(q, p) ∈ Q2 ∣ q wÐ→ p} ⊆ Q2. ◁

�e main idea for checking the condition of Lemma 4.1.3 in polynomial space is to use

transition pro�les that are induced by words of length k, instead of working directly with the
words. �is is justi�ed by the following simple observation that words with the same pro�le

have the same le� quotient, too.

Lemma 4.1.10. Let x , y ∈ Σ∗ be such that∆x = ∆y for an FSAA. �en, x−1L∗(Aq) = y−1L∗(Aq)
for all q ∈ Q.

68

4.1 Delegation for Finite State Automata

Proof. A trivial consequence of De�nition 4.1.9 is that ∆xw = ∆yw for all w ∈ Σ∗. �en,

w ∈ x−1L∗(Aq) ⇔ xw ∈ L∗(Aq)
⇔ ∃p ∈ F ∶ (q, p) ∈ ∆xw

⇔ ∃p ∈ F ∶ (q, p) ∈ ∆yw

⇔ yw ∈ L∗(Aq)
⇔ w ∈ y−1L∗(Aq). ◻

�eorem 4.1.11. �e problem Delegator for ε-free FSAs is in PSPACE.

Proof. Let an ε-free FSAA (with the usual components) and k be given. We show that for
each Q′ ⊆ Q, there is a nondeterministic PSPACE algorithm that checks whether the property
of Lemma 4.1.3 is satis�ed. Savitch’s theorem (see [Pap94, �eorem 7.5]) implies that there is

also a deterministic PSPACE algorithm.

So let Q′ ⊆ Q with q0 ∈ Q. �e algorithm tests for each q ∈ Q and each a ∈ Σ, whether for
each word w ∈ Σk there is an a-successor p of q such that (aw)−1L∗(Aq) = w−1L∗(Ap). As
mentioned above, we cannot enumerate all words w ∈ Σk because their length is exponential

in the binary representation of k. Instead, we work with the transition pro�les induced by
the words w. Each such transition pro�le is of size polynomial in A and contains su�cient
information to test (aw)−1L∗(Aq) = w−1L∗(Ap). Lemma 4.1.10 allows us to restrict the test to
transition pro�les, as words with the same transition pro�le induce the same le� quotient.

We now describe the algorithm. Given Q′, q ∈ Q′, and a ∈ Σ, the algorithm proceeds as
follows. For each transition pro�le τ ∈ 2Q×Q :

a) Check if τ = ∆w for some word w of length k. If it is the case, proceed with the next
point. Otherwise, move on to the next transition pro�le.

b) Let p1, . . . , pn be the a-successors of q in Q′. For i ∈ {1, . . . , n}, let Ri = {p ∈ Q ∣
(pi , p) ∈ τ} be the set of states that are reached from pi in the pro�le τ. Let R = ⋃1≤i≤n Ri .

Note that LR i = w−1Lp i and LR = (aw)−1L∗(Aq), where for S ⊆ Q, we let LS = ⋃s∈S Ls.

c) Check if there is an index i ∈ {1, . . . , n} such that LR = LR i .

If the last test fails (meaning that there is no such index i), thenQ′ does not satisfy the property

of Lemma 4.1.3. If the test passes for all q, all a, and all the relevant transition pro�les (those
passing the �rst test), thenQ′ has the desired property and thus,A has a k-lookahead delegator.
It remains to verify that the steps of the algorithm can be carried out in polynomial space.

�e �rst test uses the idea of checking reachability in a directed graph in logarithmic space.

69

Chapter 4 Lookahead Delegation for Nondeterministic Automata

In our setting, we use a counter for counting up to k (note that the number of bits needed
for the counter corresponds to the size of the binary representation of k), and successively
guess k steps to reach the transition pro�le τ. �at is, we start with the transition pro�le ∆ε

of the empty word. In each step, we guess a letter b ∈ Σ and extend the current transition
pro�le ∆v to ∆vb. A�er k steps, we check whether the resulting pro�le ∆w is equal to τ. At
each moment, we only need to store the counter and the intermediate transition pro�le, which

requires polynomial space.

�e second step just computes (in LOGSPACE) some sets from the transition pro�le τ.
�e third step requires us to test n equivalences LR = LR i , where the languages are given by

FSAs with the sets R and Ri as initial states, respectively. Since equivalence of FSAs can be

tested in polynomial space (see [AHU74]), this step is also in PSPACE. ◻

�eorem 4.1.12. �e problem Delegator for ε-free FSAs is PSPACE-complete.

Proof. �e upper bound follows from�eorem 4.1.11.

For the lower bound, letM be some polynomially space bounded Turing machine that

solves a PSPACE-hard problem. We show that the word problem forM can be reduced to

the problem of the existence of a bounded lookahead delegator. �e word problem forM is

to decide for a given word whetherM accepts w, which is clearly PSPACE-hard becauseM
solves a PSPACE-hard problem.

Let h be the polynomial for the space bound ofM. Given a word w, we construct an FSA
A that has a (2h(n) + 2)-lookahead delegator i�M rejects w, where n = ∣w∣.
As usual, we encode con�gurations ofM by words of the form κ = usv, where uv is the

content of the tape ofM, and s the current control state. �e head ofM in con�guration usv
is on the �rst position of v. We can assume that ∣uv∣ = h(n). A computation ofM is then

encoded by a word of the form #κ0#κ1# . . . κℓ#, where κ0 represents the initial con�guration
ofM on w, each κi+1 encodes the successor con�guration of κi , and κℓ encodes an accepting
con�guration.

�e core of the reduction is an FSAAw that accepts a word if it does not encode an accepting
computation ofM on w (see [AHU74, Lemma 10.2] for such a construction for regular
expressions instead of FSAs). For this purpose, Aw uses a product of automata testing the

following properties:

a) �e word is not of the required form #κ0#κ1# . . . κℓ# where each κi is of the form uisivi
with ∣uivi ∣ = h(n).

b) �e �rst con�guration is not the initial con�guration ofM on w.

70

4.1 Delegation for Finite State Automata

c) �e last con�guration is not an accepting con�guration.

d) �ere is an i such that κi+1 is not theM-successor con�guration of κi .

�e �rst three properties can be easily checked by DFSAs of size linear in h(n). �e last
property can be checked by an FSA that guesses at some symbol # that this corresponds to the

index i, and then guesses a position j in κi and tests whether κi+1 has been updated in a wrong

way at position j (to detect this, the three symbols at positions j − 1, j, and j + 1 are su�cient).
�e size of such an FSA is also linear in h(n) (it needs to count up to h(n) for �nding the
corresponding cell j in κi+1). All the automata can be constructed in logarithmic space from

M and w. �e automaton Aw is the product of these four automata that accepts if one of

its components accepts. Note that Aw has a (2h(n) + 2)-lookahead delegator because it is
su�cient to know the next two con�gurations to decide which transition to take in the FSA for

the last property. Further, note thatAw accepts all words if there is no accepting computation

ofM on w. And if there is such an accepting computation, thenAw does not accept the word

encoding it.

We now embedAw into an FSAA to obtain the desired reduction. Let Σ be the alphabet of
Aw , and let X ,Y , Z be new letters. De�ne the languages

L1 = X∗ ⋅ L∗(Aw) ⋅ (Y + Z),
L2 = X∗ ⋅ Σ∗ ⋅ Y .

Note that L2 ⊆ L1 i� L∗(Aw) = Σ∗ i�M rejects w.
We constructA to accept the language X ⋅(L1∪L2). For this purpose,A nondeterministically

chooses from its initial state on the �rst X to either go to an automaton A1 for L1 or to an
automaton A2 for L2. �e automaton A1 is a simple extension of Aw by an X-loop at the
beginning and transitions for processing the last Y or Z. �e automatonA2 just consists of an
X-loop, followed by a Σ-loop, followed by a transition for Y into an accepting state.
Now, assume thatM rejects w. �en, L2 ⊆ L1, as noted above, and a lookahead delegator

for A can always choose the transition going to A1 from the initial state. We already noted
thatAw has a (2h(n) + 2)-lookahead delegator. Overall, we obtain a (2h(n) + 2)-lookahead
delegator forA in this case.
Now, assume thatM accepts w and that A has a k-lookahead delegator f for some k.

Consider the decision of f on the input pre�x Xk+1 which is the moment that a f has to choose
the �rst transition. If f moves toA1, then pick the word v encoding the accepting computation
ofM on w, followed by the letter Y . A1 does not accept this word and therefore, f cannot be
a k-lookahead delegator because Xk+1vY ∈ L∗(A).

71

Chapter 4 Lookahead Delegation for Nondeterministic Automata

If f moves toA2, then consider any word v accepted byAw followed by Z. �en, XkvZ ∈ L1
butA2 only accepts words ending with Y . Hence, also in this case, f cannot be a k-lookahead
delegator.

�is shows thatA has a k-lookahead delegator for some k i�M rejects w. Furthermore, k
can be chosen as 2h(n) + 2. ◻

We note that in [RS07, �eorem 3], it is shown that the problem Delegator for unambigu-

ous FSAs is contained in co-NP.

4.1.3 Bounded Lookahead
In this last subsection, we study the problem Bounded-Delegator that is to decide whether

a given FSA has a k-delegator for some k ∈N. �e authors of [RS07] showed that this problem
is decidable for unambiguous FSAs and they believed it to be decidable for FSAs in general.

We solve this problem by proving an upper bound on the amount of lookahead that is required

maximally. �e combination of this upper bound and the decision procedures of the previous

subsection classi�es this problem also to be PSPACE-complete, too. But before that, we provide

an exponential lower bound on the amount of lookahead that is required in the worst case.

Example 4.1.13. Over a �xed alphabet, we give a family of automata each having a bounded
lookahead delegator. But, the required amount of lookahead grows exponentially in the

number of states.

�e key to this lower bound is to enumerate all binary numbers with n bits for some �xed
arbitrary number n ∈N+. Over the ternary alphabet Σ = B ∪ {#} we de�ne the word

wn = #0 . . . 000
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
binn(0)

#0 . . . 001
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
binn(1)

#0 . . . 010
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
binn(2)

. . . # 1 . . . 110
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
binn(2n−2)

1 . . . 111´¹¹¹¹¹¸¹¹¹¹¹¹¶
binn(2n−1)

#

where binn ∶ [2n] → Bn represents a number binarily with n bits. It is possible to detect an
error in wn by an FSA with O(n) states. We hence consider the language Ln = Σ∗ ∖ {wn}
which is accepted by the union A = Aborder ∪ Ablock ∪ Aend ∪ Aincr ∪ Acopy(0) ∪ Acopy(1) of the
ε-free FSAs depicted in Figure 4.3.
Formally, the FSAA that recognizes the unionAborder∪Ablock∪Aend∪Aincr∪Acopy(0)∪Acopy(1)

has states that are the disjoint union of the state sets of the FSAs plus a new initial state and a

sink state. �e transition of the FSAs are copied. Further, each transition from an old initial

state can now also be used from the new initial state (with the same letter and target) and,

there is a transition from each state to the sink state for each letter. �e property of a state

being accepting is inherited from the FSAs, whereas the new initial state is accepting if one of

72

4.1 Delegation for Finite State Automata

q0 q1 q2 q3

q4q5

#
0

0, 1
1

#

0

#
10 0, 1 1

#Σ

(a) L∗(Aborder) = Σ∗ ∖ (#0∗#Σ∗#1∗#)

q0 q1 q2 q3
Σ

Σ 1 Σ

0

(b) L∗(Aend) = Σ∗#1∗#ΣΣ∗

q0

q1 q2 q3 . . . qn qn+1

qn+2

Σ

#

0, 1 0, 1 0, 1 0, 1 0, 1

0, 1

Σ

reads a word w ∈ B∗ with ∣w∣ = n

#
#

(c) L∗(Ablock) = Σ∗(#B≤n−1# + #Bn+1
)Σ∗

q2,n

q0

q1

q2,0 q2,1 q2,2 . . . q2,n−1

q3,1 q3,2 . . . q3,n−1 q3,n

q4

q5Σ

0, 1

#

0

1 1 1 1

#

0,1 0,1 0,1 0,1

1

0
1

0

Σ

reads a word w ∈ (1∗#B∗) with ∣w∣ = n

(d) L∗(Aincr) = Σ∗{#B∗u#vw ∣ u ∈ 01∗, v ∈ B∗ with ∣uv∣ = n, w ∈ (0 + 10∗1)}Σ∗

q2,n−1 q2,n

q0

q1

q2,0 q2,1 q2,2 . . . q2,n−2

q3,1 q3,2 . . . q3,n−2 q3,n−1

q4,2 . . . q4,n−2 q4,n−1 q4,n

q5

Σ

0, 1

#

a
0,1 0,1 0,1 0,1

0 0 0 0 0

1 1 1 1

#

0,1 0,1 0,1 0,1

(1−a)

Σ

reads a word w ∈ (B∗01∗#B∗) with ∣w∣ = n

(e) L∗(Acopy(a)) = Σ∗{#uav#u′(1−a) ∣ u, u′ ∈ B∗, v ∈ B∗01∗ with ∣u∣ = ∣u′∣ and ∣uav∣ = n}Σ∗

Figure 4.3: FSAs accepting Ln

73

Chapter 4 Lookahead Delegation for Nondeterministic Automata

the old initial states is accepting (which is the case here as caused byAborder). �en, L∗(A) is
the union of the other FSAs.

It is easy to see from the construction that the number of states of A is in Θ(n) and the
alphabet is constant. It remains to show that wn is the only word not accepted byA and that
a bounded delegator for A needs at least exponential lookahead. Regarding the �rst point,
consider a word w′ ≠ wn over Σ that is not accepted by Aborder ∪ Ablock. We then know that
w′ ∈ #0n#(Bn#)∗1n#, i.e., w′ consists of binary blocks of length n starting with 0n and ending
with 1n and that somewhere in between, the increment fails. Incrementing a binary number

(which is not of the form 1∗) is simple: the su�x belonging to 01∗ is replaced by the su�x of

the form 10∗ of the same length whereas the pre�x remains unchanged. Since we have already

�xed the block length, the increment can fail in two ways: Firstly, the su�x is not replaced

correctly or secondly, some letter in the pre�x changes. �e �rst error is detected by Aincr
whereas Acopy(0) and Acopy(1) detect whether in the pre�x, a 0 turns into a 1 or the other way
around, respectively. Aend �nally detects when the block #1n# is not the end of the sequence
(since incrementing does not work in this case as described above). Hence, w′ is accepted by

Aend ∪Aincr ∪Acopy(0) ∪Acopy(1).
WhenA accepts a word, then it has to guess in the very �rst transition which error occurs

by entering the respective FSA of the union. �e smallest lookahead of a delegator for A is
k = ∣wn∣ = 2n(n + 1) + 1. In the �rst transition, a k-delegator for A can check whether the
lookahead is the word wn itself and chooses to enterAend in this case. Otherwise, one of the
error cases described above has occurred already and f can enter the respective FSA. For a
contradiction, supposeA has a (k − 1)-delegator f . Let w′′ ∈ Σ∗ be the pre�x of wn of length

k − 1, i.e., w′′# = wn. If f chooses to enterAborder for the �rst transition ofw′′ onA, then it fails
to accept the word wn## ∈ L. Otherwise, the delegator cannot accept the word w′′ ∈ L itself.
We can summarize that for each n ∈N+, the FSAA has a delegator but its lookahead is at least
exponential in the number of states. ◁

We now show that if an FSA A has some k-delegator, then A also has some K-delegator
for a number K that is singly exponential in the size ofA. To establish a bound K, we use a
technique inspired by [HKT12], where two-player games with lookahead for one of the players

are considered (by constructing a variant of the delegator game from De�nition 4.1.5 where

Player 0 is allowed to use a delay).

In our setting, the main idea is the following. If the lookahead K is big enough, then it
contains an in�x that can be pumped such that the considered lookahead word can be extended

to a word of length k (with k and K as explained above where we assume w.l.o.g. k > K). On
this longer lookahead word of length k, one can query the existing k-delegator and use the

74

4.1 Delegation for Finite State Automata

same decisions to obtain a shorter K-delegator.
�e required pumping argument that we just mentioned is formalized by an extension of

Lemma 4.1.10 where we use transition pro�les (cf. De�nition 4.1.9) again.

Lemma 4.1.14. Let x , y, z ∈ Σ∗ be such that ∆x = ∆xy for an FSA A. �en, (xyz)−1L∗(Aq) =
(xy iz)−1L∗(Aq) for all q ∈ Q and i ∈N.

Proof. An easy induction shows that ∆xy = ∆xy i for all i ∈ N. Consequently, ∆xyz = ∆xy iz

holds and the claim follows directly by Lemma 4.1.10. ◻

Using a simple counting argument, we can show that each word of a certain length has a

decomposition xyz as in Lemma 4.1.14.

Lemma 4.1.15. For an FSA A, each word w ∈ ΣK of length K = 2∣Q∣
2 can be decomposed as

w = xyz with y ≠ ε and ∆x = ∆xy.

Proof. A word of length 2∣Q∣
2

has 2∣Q∣
2 + 1 pre�xes. Two di�erent pre�xes must have the same

transition pro�le since there are at most 2∣Q∣
2

transition pro�les. �is implies the existence of

the claimed decomposition. ◻

We now combine Lemma 4.1.14 and Lemma 4.1.15 to prove that the bound K = 2∣Q∣
2

is the

maximal ‘useful’ lookahead.

�eorem 4.1.16. An ε-free FSAA has a K-lookahead delegator if it has a bounded lookahead
delegator.

Proof. Let f be a k-delegator forA where k > K w.l.o.g. We show that the property on the
right hand side of Lemma 4.1.3, which holds for k by assumption, also holds for K for the
same set Q′ ⊆ Q. To this end, we have to show that for every q ∈ Q′, a ∈ Σ, and w ∈ ΣK ,

there is some p ∈ Q′ with (q, a, p) ∈ ∆ and (aw)−1L∗(Aq) = w−1L∗(Ap). We know that there
is a decomposition w = xyz with y ≠ ε and ∆x = ∆xy. Choose i ∈ N and a proper pre�x
y′ of y such that ∣xy i y′∣ = k. Let y′′ be such that y = y′y′′. Finally, we pick some p ∈ Q′

with (q, a, p) ∈ ∆ such that (axy i y′)−1L∗(Aq) = (xy i y′)−1L∗(Ap) the existence of which is
guaranteed by Lemma 4.1.3 for k-lookahead. With Lemma 4.1.14, we can now show that the

75

Chapter 4 Lookahead Delegation for Nondeterministic Automata

desired property holds for K-lookahead:

(axyz)−1L∗(Aq) = (axy i+1z)−1L∗(Aq) (Lemma 4.1.14)

= (axy i y′y′′z)−1L∗(Aq) (y = y′y′′)
= (y′′z)−1((axy i y′)−1L∗(Aq)) (composition of le� quotients)

= (y′′z)−1((xy i y′)−1L∗(Ap)) (Lemma 4.1.3 for k-lookahead)
= (xy i y′y′′z)−1L∗(Ap) (composition of le� quotients)

= (xy i+1z)−1L∗(Ap) (y = y′y′′)
= (xyz)−1L∗(Ap) (Lemma 4.1.14) ◻

Since the bound K is singly exponential in the number of states of A and therefore has a
binary representation that is polynomial in the size ofA,�eorem 4.1.11 implies that Bounded-
Delegator also is in PSPACE. Furthermore, our reduction showing that Delegator is

PSPACE-hard also shows that Bounded-Delegator is PSPACE-hard (see proof of �eo-

rem 4.1.12).

Corollary 4.1.17. �e problem Bounded-Delegator for ε-free FSAs is PSPACE-complete.

In [RS07,�eorem4], it is shown that Bounded-Delegator is in PSPACE for unambiguous

FSAs. �is result is generalized by Corollary 4.1.17. However, the FSA constructed in the proof

of �eorem 4.1.12 for the PSPACE lower bound is ambiguous, in general, and therefore, our

completeness result does not extend to unambiguous automata.

4.2 Delegation for Pushdown Automata
�e concept of lookahead delegation can also be extended to pushdown automata. �e

delegator has to choose a transition based on the current state, stack top symbol, and the

input with lookahead. Note that there is no lookahead on the stack content. �is is also the

reason why we have to avoid ε-transitions here, although they can be useful for pushdown
automata. Our results get not in touch with ε-transitions anyway. We �rst de�ne delegators
for pushdown automata which extends De�nition 4.1.1.

De�nition 4.2.1. For an ε-free PDA A and a number k ∈ N, a k-lookahead delegator (or
k-delegator for short) is a function f ∶ Q × Γ� × ΣΣ≤k → Q × Γ∗

�
such that

a) f (q,A, aw) = (p,W) implies (q,A, a, p,W) ∈ ∆ for each q ∈ Q ,A ∈ Γ�, a ∈ Σ,w ∈ Σ≤k,
and

76

4.2 Delegation for Pushdown Automata

b) f ∗(q0�,w) ∈ FΓ∗� for each w ∈ L∗(A), where f ∗ ∶ (QΓ∗�) × Σ∗ → QΓ∗� extends f to
words and is de�ned inductively as follows: let f ∗(qW , ε) = qW for each con�guration

qW , and let f ∗(qAV , a1 . . . an) = f ∗(pUV , a2 . . . an) with f (q,A, a1 . . . amin(n,k+1)) =
(p,U) for a con�guration qAV and a nonempty word a1 . . . an of length n. ◁

�e two conditions again express that only transitions are chosen by the delegator and that

it leads to an accepting state for each word accepted by the automaton.

We �rst consider the restricted case of visibly pushdown automata. For them, we present

a construction which borrows the idea of the ‘delegated automaton’ from Example 4.1.2 and

thereby, we �nally obtain a reduction to the emptiness problem for PDAs.

�eorem 4.2.2. For given k ∈N, it is decidable whether a VPDA has a k-lookahead delegator.
When k and Σ are �xed, the problem lies in NP.

Proof. For a given VPDAA and a delegator candidate f , we want to construct an automaton
A f that stores the lookahead information in its state space and deterministically simulates the

behavior of f . It then remains to check the language inclusion by reducing it to the emptiness
problem for VPDAs: L∗(A) ⊆ L∗(A f) i� L∗(A)∩ L∗(A f) = ∅. �e complement ofA f can be

computed easily due to the determinism ofA f . �e problem is rather thatA f would not ful�ll

the visibly property any longer. �e emptiness of the intersection with another pushdown

language is not decidable in general.

We overcome this di�culty by given an explicit product construction forA×A f , i.e., the

product ofA and the complement ofA f . �e key idea is that both automata take transitions

synchronously, i.e., they process input letters synchronously which implies that the stack

heights are synchronous, too. �e stack of the product can hence be implemented by a stack

of symbol tuples. �e �rst component can choose transitions nondeterministically whereas

the second component must stick to f . �is yields a PDA (with only ε-transitions) which can
be checked for emptiness in P (see [HU79]).

Formally, for a VPDA A = (Q , Σ, Γ, ∆, q0, �, F) and f as above, we de�ne the PDA A′ =
(Q′, Σ, Γ′, ∆′, q′0, �′, F ′) consisting of:

a) states Q′ = (Q × Q × Σ≤k) ⊎ {q′0} with F ′ = F × (Q ∖ F) × {ε},

b) stack alphabet Γ′ = Γ2 with �′ = (�, �),

c) transitions:

i) ∆′ ∋ (q′0, �′, ε, (q0, q0,w), �′) where w ∈ Σ≤k,

77

Chapter 4 Lookahead Delegation for Nondeterministic Automata

ii) ∆′ ∋ ((q1, q2,w), (A1,A2), ε, (p1, p2,w′), (B1,1, B2,1) . . . (B1,n , B2,n)) for some letter
a ∈ Σ and decomposition wa = a′w′ such that w ,w′ ∈ Σk, a′ ∈ Σ, and where
∆ ∋ (q1,A1, a′, p1, B1,1 . . . B1,n) and f (q2,A2, a′w′) = (p2, B2,1 . . . B2,n),

iii) ∆′ ∋ ((q1, q2, aw), (A1,A2), ε, (p1, p2,w), (B1,1, B2,1) . . . (B1,n , B2,n)) where a ∈ Σ,
w ∈ Σ≤k−1, ∆ ∋ (q1,A1, a, p1, B1,1 . . . B1,n), and f (q2,A2, aw) = (p2, B2,1 . . . B2,n).

�e three schemes for transitions are motivated as follows. Transitions of the �rst scheme

are used to initiate the lookahead bu�er with a (possibly shorter) word. �e second scheme

de�nes transitions for a completely �lled lookahead. �is is done by guessing some letter a
to append to the lookahead w, to guess a transition for the �rst component, and to use the
transition suggested by f in the second component. �e transitions of the last scheme are
used at the end of the simulated input, which is when the lookahead is not completely �lled

any more. �e transitions for the components are chosen analogous to the previous case. By

construction, we obtain that L∗(A′) = ∅ i� L∗(A) ∩ L∗(A f) = ∅.
Complexity: We construct the PDAA′ withO(k ⋅ ∣Σ∣k ⋅ ∣Q∣2) states over a stack alphabet of

size O(∣Γ∣2). �e worst case running time of the emptiness test on A′ dominates the whole
procedure. ◻

To prove the decidability of k-Delegator in �eorem 4.2.2, we crucially relied on the
decidability of the inclusion problem. However, it is known for decades that language inclusion

is undecidable for DOCAs (recently shown in [BG11] by using [Min61, VP75]).

�eorem 4.2.3. It is undecidable whether an ε-free OCA has a 0-lookahead delegator.

Proof. We reduce the inclusion problem for ε-free DOCAs (which is undecidable [BG11]) to
0-Delegator for ε-free OCAs. LetA1 and A2 be two ε-free DOCAs over some alphabet Σ
not containing the symbol #, and let q0,1 and q0,2 be the initial states, respectively. Figure 4.4
depicts an ε-free OCAA that accepts the language L∗(A) = #Σ∗# ∪ #L∗(A1) ∪ #L∗(A2) over
the alphabet Σ′ = Σ ⊎ {#}. Note that the only nondeterministic choice occurs with symbol
at the initial state q0 of A. We complete the proof by showing that A has a 0-delegator i�
L∗(A1) ⊆ L∗(A2). �e idea behind this construction is that in case of L∗(A1) ⊆ L∗(A2), one
can always safely enterA2 in the �rst step. But in the other case, nondeterminism is needed to
be able to accept both ## and #w for some word w ∈ L∗(A1) ∖ L∗(A2).
Suppose L∗(A1) ⊆ L∗(A2). Since #−1L∗(A) = L∗(Aq0,2) = L∗(A2) ∪ Σ∗#, there is no need

to enterA1. Hence, a 0-delegator f would always choose to go toA2, i.e., f (q0, #) = q0,2.
For the other direction, supposeA has a 0-delegator f . �en, it holds that f (q0, #) = q0,2,

because if f (q0, #) ≠ q0,1, then f would not accept the word ## ∈ L∗(A). From f (q0, #) = q0,2

78

4.2 Delegation for Pushdown Automata

q0

q0,1 q0,2

q− q+

.

#

Σ
#

Σ, #Σ, #

A1 A2

Figure 4.4: Automaton accepting the language #Σ∗# ∪ #L∗(A1) ∪ #L∗(A2)

and #L∗(A1) ⊆ L∗(Aq0) directly follows that L∗(A1) ⊆ L∗(Aq0,2) which yields the desired
inclusion when restricting to Σ, i.e., L∗(A1) ⊆ L∗(A2). ◻

�eorem 4.2.4. It is undecidable whether an ε-free OCA has a bounded lookahead delegator.

Proof. �e idea is based on the proof of [FLZ11, �eorem 4]. LetM be a 2-register machine

with state set Q. We demand w.l.o.g. that no con�guration occurs twice in the unique run
ofM (which can be achieved by adding a third register which is incremented every other

step and then, simulating this 3-register machine by a 2-register machine). A con�guration

(q, n0, n1) ofM is encoded by the word q$n00 $
n1
1 . Over the alphabet Σ = Q ∪ {$0, $1, #}, we

consider the language L ⊆ Σ∗ consisting of exactly those wordsw ∈ #0#(Q$
∗

0$
∗

1 #)∗ that encode
a sequence of con�gurations c0, . . . , cn starting with the initial con�guration c0 and containing
a pair c j, c j+1 of successive con�gurations where c j+1 is not the successor of c j according toM.
Note that the encoding of a con�guration and its successor di�er in length by at most 1. L is
accepted by an ε-free OCAA that guesses at the beginning of each con�guration whether its
successor is updated incorrectly. If this is the case, then the update was wrong in one of the

three components of a con�guration: the state, register 0, or register 1. �e respective case can

also be guessed and checked byA using its counter. Since the halting problem for 2-register
machines is undecidable, it remains to show thatA has a delegator i�M halts (cf. Section 2.4).

SupposeM halts a�er h steps. Consequently, every run c0c1 . . . ch+1 with h + 1 steps has
to contain an erroneous update. �e encoding of such a run has a length of at most k =
(h + 3) +∑h+1

i=0(i + 1). By using a k-lookahead, one can deterministically detect and verify an
error of each type. Hence,A has a k-delegator.

79

Chapter 4 Lookahead Delegation for Nondeterministic Automata

For the other direction, supposeM does not halt. Since the run is in�nite and we excluded

a loop in the con�gurations of its run, we can conclude that the encoded con�gurations

have unbounded length. Hence, no bounded lookahead can detect an erroneous update of a

su�ciently long con�guration. ◻

Although we achieved decidability results for k-Delegator and Delegator in �eo-
rem 4.2.2, the latter two results prove the undecidability of delegation for pushdown automata

in general.

80

Chapter 5

Conclusion

In this thesis, we have studied various simpli�cation problems for automata and games. First,

we have considered the regularity problem for pushdown automata. Motivated by its decidabil-

ity for �nite words, we have tackled the case for in�nite words which was an open problem.

We have further generalized the regularity problem to pushdown games as those games are

speci�ed by pushdown ω-automata. As a second aspect of simpli�cation, we have considered
lookahead delegation for nondeterministic automata.

Regularity Problems

In Chapter 3, our �rst contributions are about regular winning strategies for pushdown games.

We have shown that it is impossible in general to decide the existence of a �nite state winning

strategy. In fact, the only decidability result we have obtained concerns the very limited case

of games with reachability conditions. We have proven this case to trivially omit very simple

strategies. For the dual case of games with safety conditions, we have proven the regularity

problem to be undecidable. Although the safety condition itself is simple already, we showed

the undecidability even for two di�erent restrictions of the pushdown game speci�cation,

namely for one-counter games and for visibly pushdown games. It seems that the hardness of

the problem is more connected to the winning condition than to the pushdown speci�cation

of a game.

We have proceeded by contributing the classi�cation game. It is designed to express ac-

ceptance of a pushdown ω-automaton by a pushdown game. We have proven that various
aspects of simpli�cation of the ω-automaton are directly connected to the corresponding
simpli�cations in the game. We have shown that the classi�cation game can be used to decide

whether an ω-language can be recognized by ω-automata with certain restricted acceptance
condition; like Büchi, co-Büchi, weak, safety, or reachability. Although these results were

known before, the novelty of our game-based approach is an intuitive understanding and

81

Chapter 5 Conclusion

that it leads to less technical proofs. Regarding regularity, we have shown that the automaton

recognizes a regular language i� the classi�cation game omits a regular winning strategy. �is

reveals the regularity problem for pushdown ω-languages to be a special case of the one for
pushdown games. However, as we have previously shown the game-based approach to be

undecidable, this tells us that we require speci�c solutions for ω-languages.
As a �rst contribution regarding regularity of pushdown ω-languages, we have presented

a normal form for weak pushdown ω-automata. We have proven that it allows us to simply
li� some known decision procedures from �nite words to ω-words. �is way, we have shown
both, the equivalence problem and the regularity problem to be decidable for weak pushdown

ω-automata. Regarding the complexity, we have proven our regularity test to run in triply
exponential time and to produce an equivalent �nite state ω-automaton having a worst case
size between singly and doubly exponential. Surprisingly, our space complexity corresponds

to the one for �nite words, although, our normal form induces an exponential blowup of the

automaton.

By a last contribution, we have tackled the case of regularity for pushdown ω-automata with
non-weak acceptance condition. We have established a congruence relation and have proven

it to characterize regularity for this class of ω-languages. In an example, we have shown that
the characterization property is only obtained when the congruence is applied to this class of

ω-languages. Further, the decidability of the regularity problem remains open.

To summarize the regularity problems for pushdown automata and games, the following

table orders the problems by increasing complexity beginning from pushdown automata on

�nite words up to games on pushdown ω-automata and it gives an overview of our main
contributions:

Known results: Our contributions:

Problem DPDA weak ω-DPDA ω-DPDA PDG

Regularity 3EXPTIME [Val75] 3EXPTIME – undecidable

For each of the three variants of regularity that we have considered, questions for future

work arise. �e most interesting one is surely the old open problem from [CG78] whether the

regularity problem is decidable for pushdown ω-automata. For pushdown games, it might be
possible to obtain more decidability results for restricted cases like visibly one-counter games.

For weak pushdown ω-automata, there remains a small gap in the size complexity of our
construction. It is further interesting whether the complexity can be improved for restricted

cases; especially for weak one-counter ω-automata. �is is motivated by the existence of faster

82

algorithms regarding one-counter automata on �nite words for the regularity problem [VP75]

and the equivalence problem [BG11, BGJ13].

Lookahead Delegation

In Chapter 4, we have considered lookahead delegators for nondeterministic automata. Our

research was motivated by [RS07] where the delegator problem was introduced for �nite state

automata, subdivided into three di�erent formulations, and upper bounds were given for each

formulation but only for the restricted subclass of unambiguous �nite state automata.

We continued these studies and have contributed respective complexity results for �nite

automata in general. First, we have given an algorithm based on safety games that shows

how the existence of a delegator can be computed in polynomial time when the amount of

lookahead is �xed. �is results further corrects a wrong result from the literature. However,

our algorithms has a rather poor complexity if the amount of lookahead becomes a part of the

input. As a second contribution, we have developed di�erent decision procedure for that case

and have used it to prove that the problem is PSPACE-complete. In our third contribution, we

have provided an upper bound on the maximally required amount of lookahead. Combined

with the previous result, we have shown that deciding the existence of a lookahead delegator

for some bounded lookahead is PSPACE-complete, too. In total, our results have given a

complete picture for the complexities of delegator problems for �nite state automata.

We have further generalized the delegator problems to pushdown automata. We have shown

that the naïve approach can be applied to visibly pushdown automata which has allowed us the

decide the existence of a delegator for a given amount of lookahead. In fact, this problem is

contained in NP if the lookahead is �xed. Besides this positive result, we have further proven

that for one-counter automata, even the simplest problem is undecidable; namely deciding the

existence of a delegator without lookahead. �e undecidability for this very restricted case is

passed on to other less restricted cases.

�e following table gives an overview of results about delegation for various classes of

automata (ordered by expressiveness):

Known results: Our contributions:

Problem unamb. FSA FSA VPDA OCA & PDA

Fixed P [RS07] P NP undecidable

Given co-NP [RS07] PSPACE-complete decidable undecidable

Bounded PSPACE [RS07] PSPACE-complete – undecidable

83

Chapter 5 Conclusion

�eabove pictures does not lead tomany questions for futurework. Although, there are some

problems open that concern restricted cases. We have obtained our PSPACE-hardness results

with �nite state automata that are ambiguous. Hence, the upper bounds for unambiguous

automata might be improved. Another open problem remains for a restricted pushdown

case: is it decidable whether a visibly pushdown automaton has a delegator for some bounded

lookahead? It would further be interesting to extend lookahead delegation to ω-automata.

84

Bibliography

[ACKM04] G. Alonso, F. Casati, H. A. Kuno, and V. Machiraju. Web Services - Concepts,
Architectures and Applications. Data-Centric Systems and Applications. Springer,
2004.

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. �e Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[AKL10] B. Aminof, O. Kupferman, and R. Lampert. Reasoning about Online Algo-

rithms with Weighted Automata. ACM Transactions on Algorithms, 6(2), 2010.

[AKMV05] R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences

for Visibly Pushdown Languages. In L. Caires, G. F. Italiano, L. Monteiro,

C. Palamidessi, and M. Yung, editors, ICALP, volume 3580 of Lecture Notes in
Computer Science, pages 1102–1114. Springer, 2005.

[AM04] R. Alur and P. Madhusudan. Visibly Pushdown Languages. In L. Babai, editor,

STOC, pages 202–211. ACM, 2004.

[BCG+03] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella.

Automatic Composition of E-services �at Export �eir Behavior. In M. E.

Orlowska, S. Weerawarana, M. P. Papazoglou, and J. Yang, editors, ICSOC,
volume 2910 of Lecture Notes in Computer Science, pages 43–58. Springer, 2003.

[BG11] S. Böhm and S. Göller. Language Equivalence of Deterministic Real-Time

One-Counter Automata Is NL-Complete. In F. Murlak and P. Sankowski,

editors,MFCS, volume 6907 of Lecture Notes in Computer Science, pages 194–205.
Springer, 2011.

[BGJ13] S. Böhm, S. Göller, and P. Jancar. Equivalence of Deterministic One-Counter

Automata is NL-complete. In D. Boneh, T. Roughgarden, and J. Feigenbaum,

editors, STOC, pages 131–140. ACM, 2013.

85

http://doi.acm.org/10.1145/1721837.1721844
http://doi.acm.org/10.1145/1721837.1721844
http://dx.doi.org/10.1007/11523468_89
http://dx.doi.org/10.1007/11523468_89
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1007/978-3-540-24593-3_4
http://dx.doi.org/10.1007/978-3-642-22993-0_20
http://dx.doi.org/10.1007/978-3-642-22993-0_20
http://dx.doi.org/10.1145/2488608.2488626
http://dx.doi.org/10.1145/2488608.2488626

Bibliography

[BK08] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.

[BL69] J. R. Büchi and L. H. Landweber. Solving Sequential Conditions by Finite-State

Strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.

[Büc62] J. R. Büchi. On a decision method in restricted second-order arithmetic. In

E. Nagel, P. Suppes, and A. Tarski, editors, International Congress for Logic,
Methodology and Philosophy of Science, pages 1–11. Stanford University Press, 1962.

[Cac02] T. Cachat. Symbolic Strategy Synthesis for Games on Pushdown Graphs. In

P. Widmayer, F. T. Ruiz, R. M. Bueno, M. Hennessy, S. Eidenbenz, and

R. Conejo, editors, ICALP, volume 2380 of Lecture Notes in Computer Science,
pages 704–715. Springer, 2002.

[CG77a] R. S. Cohen and A. Y. Gold. �eory of ω-Languages. I. Characterizations of ω-
Context-Free Languages. Journal of Computer and System Sciences, 15(2):169–184,
1977.

[CG77b] R. S. Cohen and A. Y. Gold. �eory of ω-Languages. II. A Study of Various
Models of ω-Type Generation and Recognition. Journal of Computer and System
Sciences, 15(2):185–208, 1977.

[CG78] R. S. Cohen and A. Y. Gold. ω-Computations on Deterministic Pushdown
Machines. Journal of Computer and System Sciences, 16(3):275–300, 1978.

[CHP07] K. Chatterjee, T. A. Henzinger, and N. Piterman. Generalized Parity Games.

In H. Seidl, editor, FoSSaCS, volume 4423 of Lecture Notes in Computer Science,
pages 153–167. Springer, 2007.

[Chu57] A. Church. Applications of recursive arithmetic to the problem of circuit syn-

thesis. In Summaries of the Summer Institute of Symbolic Logic, volume 1, pages
3–50. Cornell Univ., Ithaca, 1957.

[Chu63] A. Church. Logic, Arithmetic, and Automata. In Proc. International Congress of
Mathematicians, Inst. Mittag-Le�er, Djursholm, Sweden, pages 23–35. Almqvist
and Wiksells, Uppsala, 1963.

[CKS81] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, 1981.

86

http://dx.doi.org/10.2307/1994916
http://dx.doi.org/10.2307/1994916
http://dx.doi.org/10.1007/3-540-45465-9_60
http://dx.doi.org/10.1016/S0022-0000(77)80004-4
http://dx.doi.org/10.1016/S0022-0000(77)80004-4
http://dx.doi.org/10.1016/S0022-0000(77)80005-6
http://dx.doi.org/10.1016/S0022-0000(77)80005-6
http://dx.doi.org/10.1016/0022-0000(78)90019-3
http://dx.doi.org/10.1016/0022-0000(78)90019-3
http://dx.doi.org/10.1007/978-3-540-71389-0_12
http://dx.doi.org/10.1145/322234.322243

Bibliography

[CM99] O. CartonandR.Maceiras. Computing the Rabin Index of a Parity Automaton.

Informatique �éorique et Applications, 33(6):495–506, 1999.

[Col12] T. Colcombet. Forms of Determinism for Automata (Invited Talk). In C. Dürr

and T. Wilke, editors, STACS, volume 14 of LIPIcs, pages 1–23. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2012.

[COT12] N. Chaturvedi, J. Olschewski, and W. Thomas. Languages versus ω-
Languages in Regular In�nite Games. International Journal of Foundations of
Computer Science, 23(5):985–1000, 2012.

[DIS05] Z. Dang, O. H. Ibarra, and J. Su. On composition and lookahead delegation of

e-services modeled by automata. �eoretical Computer Science, 341(1-3):344–363,
2005.

[DJW97] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How Much Memory is

Needed to Win In�nite Games? In LICS, pages 99–110. IEEE Computer Society,
1997.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. E�cient Algorithms

for Model Checking Pushdown Systems. In E. A. Emerson and A. P. Sistla,

editors, CAV, volume 1855 of Lecture Notes in Computer Science, pages 232–247.
Springer, 2000.

[EJ91] E. A. Emerson and C. S. Jutla. Tree Automata, Mu-Calculus and Determinacy

(Extended Abstract). In FOCS, pages 368–377. IEEE Computer Society, 1991.

[FLZ11] W. Fridman, C. Löding, and M. Zimmermann. Degrees of Lookahead in

Context-free In�nite Games. In M. Bezem, editor, CSL, volume 12 of LIPIcs,
pages 264–276. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

[Fri10] W. Fridman. Formats of Winning Strategies for Six Types of Pushdown Games.

In A. Montanari, M. Napoli, and M. Parente, editors, GANDALF, volume 25
of EPTCS, pages 132–145, 2010.

[GH82] Y. Gurevich and L. Harrington. Trees, Automata, and Games. In H. R. Lewis,

B. B. Simons, W. A. Burkhard, and L. H. Landweber, editors, STOC, pages
60–65. ACM, 1982.

87

http://dx.doi.org/10.1051/ita:1999129
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.1
http://dx.doi.org/10.1142/S0129054112400412
http://dx.doi.org/10.1142/S0129054112400412
http://dx.doi.org/10.1016/j.tcs.2005.06.009
http://dx.doi.org/10.1016/j.tcs.2005.06.009
http://dx.doi.org/10.1109/LICS.1997.614939
http://dx.doi.org/10.1109/LICS.1997.614939
http://dx.doi.org/10.1007/10722167_20
http://dx.doi.org/10.1007/10722167_20
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.264
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.264
http://dx.doi.org/10.4204/EPTCS.25.14
http://dx.doi.org/10.1145/800070.802177

Bibliography

[GHIS04] C. E. Gerede, R. Hull, O. H. Ibarra, and J. Su. Automated Composition of

E-services: Lookaheads. In M. Aiello, M. Aoyama, F. Curbera, and M. P.

Papazoglou, editors, ICSOC, pages 252–262. ACM, 2004.

[Grä11] E. Grädel. Back and Forth Between Logics and Games. In Lectures in Game
�eory for Computer Scientists, pages 99–145. Springer, 2011.

[HKT12] M. Holtmann, L. Kaiser, andW. Thomas. Degrees of Lookahead in Regular

In�nite Games. Logical Methods in Computer Science, 8(3), 2012.

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
�eory, Languages, and Computation (Second Edition). Addison-Wesley series in
computer science. Addison-Wesley-Longman, 2001.

[HO09] M. Hague and C.-H. L. Ong. Winning Regions of Pushdown Parity Games:

A Saturation Method. In M. Bravetti and G. Zavattaro, editors, CONCUR,
volume 5710 of Lecture Notes in Computer Science, pages 384–398. Springer, 2009.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata �eory, Languages
and Computation. Addison-Wesley, 1979.

[Lan69] L. H. Landweber. Decision Problems for ω-Automata. Mathematical Systems
�eory, 3(4):376–384, 1969.

[Lin77] M. Linna. A Decidability Result for Deterministic ω-Context-Free Languages.
�eoretical Computer Science, 4(1):83–98, 1977.

[Löd98] C. Löding. Methods for the Transformation ofω-Automata: Complexity andCon-
nection to Second order Logic. Diplomarbeit, Christian-Albrechts-Universität of

Kiel, 1998.

[Löd01] C. Löding. E�cient minimization of deterministic weak ω-automata. Informa-
tion Processing Letters, 79(3):105–109, 2001.

[LR12] C. Löding and S. Repke. Regularity Problems for Weak Pushdown ω-Automata
and Games. In B. Rovan, V. Sassone, and P. Widmayer, editors,MFCS, volume
7464 of Lecture Notes in Computer Science, pages 764–776. Springer, 2012.

[LR13] C. Löding and S. Repke. Decidability Results on the Existence of Lookahead

Delegators for NFA. In A. Seth and N. K. Vishnoi, editors, FSTTCS, volume 24

88

http://dx.doi.org/10.1145/1035167.1035203
http://dx.doi.org/10.1145/1035167.1035203
http://www.logic.rwth-aachen.de/pub/graedel/backandforth.pdf
http://dx.doi.org/10.2168/LMCS-8(3:24)2012
http://dx.doi.org/10.2168/LMCS-8(3:24)2012
http://dx.doi.org/10.1007/978-3-642-04081-8_26
http://dx.doi.org/10.1007/978-3-642-04081-8_26
http://dx.doi.org/10.1007/BF01691063
http://dx.doi.org/10.1016/0304-3975(77)90058-5
http://automata.rwth-aachen.de/~loeding/diploma_loeding.pdf
http://automata.rwth-aachen.de/~loeding/diploma_loeding.pdf
http://dx.doi.org/10.1016/S0020-0190(00)00183-6
http://dx.doi.org/10.1007/978-3-642-32589-2_66
http://dx.doi.org/10.1007/978-3-642-32589-2_66
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.327
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.327

Bibliography

of LIPIcs, pages 327–338. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2013.

[McN66] R. McNaughton. Testing and Generating In�nite Sequences by a Finite Au-

tomaton. Information and Control, 9(5):521–530, 1966.

[Min61] M. L. Minsky. Recursive Unsolvability of Post’s Problem of “Tag” and other

Topics in �eory of Turing Machines. �e Annals of Mathematics, 74(3):437–455,
November 1961.

[Mos91] A. W. Mostowski. Games with Forbidden Positions. Technical Report 78,

Uniwersytet Gdański, Instytut Matematyki, 1991.

[MP43] W. S. McCulloch andW. Pitts. A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

[MW08] A. Muscholl and I. Walukiewicz. A Lower Bound on Web Services Composi-

tion. Logical Methods in Computer Science, 4(2), 2008.

[Pap94] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[PP04] D. Perrin and J.-É. Pin. In�nite words, volume 141 of Pure and Applied Mathe-
matics. Elsevier, 2004.

[Ram30] F. P. Ramsey. On a problem in formal logic. Proc. London Mathematical Society,
30(3):264–286, 1930.

[RS07] B. Ravikumar and N. Santean. On the Existence of Lookahead Delegators for

NFA. International Journal of Foundations of Computer Science, 18(5):949–973,
2007.

[RT07] A. Rabinovich andW. Thomas. Logical Re�nements of Church’s Problem. In

J. Duparc and T. A. Henzinger, editors, CSL, volume 4646 of Lecture Notes in
Computer Science, pages 69–83. Springer, 2007.

[Saf88] S. Safra. On the Complexity of ω-Automata. In FOCS, pages 319–327. IEEE
Computer Society, 1988.

[Sén01] G. Sénizergues. L(A)=L(B)? decidability results from complete formal systems.

�eoretical Computer Science, 251(1-2):1–166, 2001.

89

http://dx.doi.org/10.1016/S0019-9958(66)80013-X
http://dx.doi.org/10.1016/S0019-9958(66)80013-X
http://links.jstor.org/sici?sici=0003-486X%28196111%292%3A74%3A3%3C437%3ARUOPPO%3E2.0.CO%3B2-N
http://links.jstor.org/sici?sici=0003-486X%28196111%292%3A74%3A3%3C437%3ARUOPPO%3E2.0.CO%3B2-N
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.2168/LMCS-4(2:5)2008
http://dx.doi.org/10.2168/LMCS-4(2:5)2008
http://dx.doi.org/10.1112/plms/s2-30.1.264
http://dx.doi.org/10.1142/S0129054107005078
http://dx.doi.org/10.1142/S0129054107005078
http://dx.doi.org/10.1007/978-3-540-74915-8_9
http://dx.doi.org/10.1109/SFCS.1988.21948
http://dx.doi.org/10.1016/S0304-3975(00)00285-1

Bibliography

[Sén02] G. Sénizergues. L(A)=L(B)? A simpli�ed decidability proof. �eoretical Com-
puter Science, 281(1-2):555–608, 2002.

[Ser03] O. Serre. Note on winning positions on pushdown games with ω-regular condi-
tions. Information Processing Letters, 85(6):285–291, 2003.

[SS07] L. Segoufin and C. Sirangelo. Constant-Memory Validation of Streaming

XMLDocuments Against DTDs. In T. Schwentick andD. Suciu, editors, ICDT,
volume 4353 of Lecture Notes in Computer Science, pages 299–313. Springer, 2007.

[Sta83] L. Staiger. Finite-State ω-Languages. Journal of Computer and System Sciences,
27(3):434–448, 1983.

[Ste67] R. E. Stearns. A Regularity Test for Pushdown Machines. Information and
Control, 11(3):323–340, 1967.

[Str94] H. Straubing. Finite Automata, Formal Logic, andCircuit Complexity. Birkhäuser,
Basel, Switzerland, 1994.

[SV02] L. Segoufin and V. Vianu. Validating Streaming XML Documents. In L. Popa,

S. Abiteboul, and P. G. Kolaitis, editors, PODS, pages 53–64. ACM, 2002.

[Val75] L. G. Valiant. Regularity and Related Problems for Deterministic Pushdown

Automata. Journal of the ACM, 22(1):1–10, 1975.

[VP75] L. G. Valiant andM. Paterson. Deterministic One-Counter Automata. Journal
of Computer and System Sciences, 10(3):340–350, 1975.

[Wal01] I.Walukiewicz. PushdownProcesses: Games andModel-Checking. Information
and Computation, 164(2):234–263, 2001.

[Zie98] W. Zielonka. In�nite Games on Finitely Coloured Graphs with Applications to

Automata on In�nite Trees. �eoretical Computer Science, 200(1-2):135–183, 1998.

90

http://dx.doi.org/10.1016/S0304-3975(02)00027-0
http://dx.doi.org/10.1016/S0020-0190(02)00445-3
http://dx.doi.org/10.1016/S0020-0190(02)00445-3
http://dx.doi.org/10.1007/11965893_21
http://dx.doi.org/10.1007/11965893_21
http://dx.doi.org/10.1016/0022-0000(83)90051-X
http://dx.doi.org/10.1016/S0019-9958(67)90591-8
http://dx.doi.org/10.1145/543613.543622
http://dx.doi.org/10.1145/321864.321865
http://dx.doi.org/10.1145/321864.321865
http://dx.doi.org/10.1016/S0022-0000(75)80005-5
http://dx.doi.org/10.1006/inco.2000.2894
http://dx.doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1016/S0304-3975(98)00009-7

Index

+, 9, 10
Ki , 40

L∗, 11
Lω, 12

L⊛, 38
[n], 9
[u]∼, 48
∆w , 68

Γ, 10

Γ�, 11

Σ, 9

Σ∗, 9

Σ+, 9

Σω, 9

Σ≤k, 61

Σε, 10

δ, 13
δ∗, 13

B, 9

N, 9

N+, 9

⋅, 9, 10
Ind∼, 48

∼, 48, 51
≈, 51
≋, 51

aÐ→, 11
wÐ→, 11
f ∗, 61, 77
wR, 9
w−1L, 62
Aq, 62

AqW , 38

∣S∣, 9
∣w∣, 9
ε, 9
free, 12

in�nite sequence, 13

transition, 11

weak, 17

ω, 9
automaton, 12

language, 9

word, 9

Delegator, 60

k-Delegator, 60
Bounded-Delegator, 60

2-register machine (2RM), 20

acceptance

Büchi, 14

co-Büchi, 14

parity, 12, 14

91

Index

reachability, 14

safety, 14

weak, 14

action, 17

alphabet, 9

automaton

ω, 12
pushdown, 11

strategy, 17

weak, 14

Büchi, 14

co-Büchi, 14

bottom, 10

class, 40, 48

coloring, 12, 15

con�guration, 11

initial, 11

congruence, 48

class, 48

index, 48

right, 48

delegator, 61, 76

bounded, 61, 72

�xed, 64

game, 65

given, 68

lookahead, 61, 76

problems, 60

deterministic, 13

�nite state

game, 17

machine, 12

strategy, 17

game, 15

classi�cation, 33

delegator, 65

determined, 16

�nite state, 17

graph, 15

parity, 15

pushdown, 16

weak classi�cation, 34

language, 9

ω, 9
�nitary, 38

pushdown, 11

regular, 14

le� quotient, 62

machine, 10

�nite state, 12

pushdown, 11

register, 20

Turing, 20

normal form, 41

one-counter

machine, 12

one-counter, 12

parity, 12

acceptance, 12

game, 15

play, 15

problem

delegation, 60

equivalence, 46

halting, 20

regularity, 21

92

Index

ultimately periodic run signature, 26

universality, 21

pushdown

automaton, 11

game, 16

language, 11

machine, 11

strategy, 17

visibly, 12

regular

language, 14

regularity problem, 21

run, 11

accepting, 11

signature, 26

stack, 10

stair, 52

state, 11

accepting, 11

initial, 11

strategy, 16

automaton, 17

�nite state, 17

positional, 16

pushdown, 17

winning, 16

total, 13

transition, 11, 16

ε, 11
function, 13

pro�le, 68

relation, 11

Turing

complete, 20

machine, 20

ultimately periodic, 10

vertex, 15

non-terminal, 15

visibly, 12

weak, 14

ε, 17
winning region, 16

word, 9

ω, 9
empty, 9

93

	Introduction
	Preliminaries
	Automata
	Games
	Abbreviations
	Register Machines

	Regularity Problems for Pushdown Games and ω-Automata
	Finite State Strategies for Pushdown Games
	Connecting Games and Automata: Classification Game
	Regularity Test for Weak ω-DPDAs
	Normal Form
	Normalization
	Decidability Results

	Congruences for Strong ω-DPDAs

	Lookahead Delegation for Nondeterministic Automata
	Delegation for Finite State Automata
	Fixed Lookahead
	Given Lookahead
	Bounded Lookahead

	Delegation for Pushdown Automata

	Conclusion
	Bibliography
	Index

