Simplification Problems for Automata
and Games

Von der Fakultdt fiir Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker
Stefan Repke (geb. Schulz)

aus Cottbus

Berichter: Privatdozent Dr. Christof Loding
Universitétsprofessor Dr. Dr.h.c. Wolfgang Thomas
Dr. habil. Thomas Colcombet

Tag der miindlichen Priifung: 13. Mai 2014

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfiigbar.

Zusammenfassung

Die Vereinfachung von Automaten beschiftigt sich mit der Frage, ob ein gegebener Automat in
ein simpleres Format tiberfiihrt werden kann; d.h., ob im gegebenen Fall ein bestimmtes Merk-
mal des Automatenmodells verzichtbar ist. Wenn ja, so soll ein vereinfachter Automat generiert
werden. Die zugrundeliegende Motivation ist, dass einfachere Automaten bessere theoretische
Eigenschaften besitzen. Vereinfachung kénnen auch fiir Spiele betrachtet werden, die durch
Automaten definiert sind. Dabei lautet die Frage, ob Gewinnstrategien durch Automaten
dargestellt werden konnen, deren Format simpler ist als die Spielspezifikation. Diese Arbeit
widmet sich zwei Aspekten der Vereinfachung: Regularititsproblemen und vorausschauender
Delegierung.

Beim Regularitatsproblem geht es darum, zu entscheiden, ob ein gegebener deterministi-
scher Kellerautomat (DPDA) eine regulédre Sprache erkennt. Diese Frage wurde vor Jahrzehnten
gelost, wohingegen das erweiterte Problem fiir w-DPDAs (welche unendliche Eingaben ver-
arbeiten) seitdem offen geblieben ist. Wir erweitern eine Methode, die es erlaubt, bekannte
Ergebnisse tiber DPDAs zu verallgemeinern auf w-DPDAs mit schwacher Akzeptanz. Fiir diese
schwachen w-DPDAs zeigen wir die Entscheidbarkeit des Regularitatsproblems und zusétzlich
des Aquivalenzproblems. Fiir w-DPDAs im Allgemeinen geben wir eine Kongruenzrelation
an, die Regularitét charakterisiert. Die Entscheidbarkeit bleibt hingegen offen.

Eine verallgemeinerte Variante des Regularitatsproblems beschiftigt sich mit Pushdown-
Spielen (PDGs), d.h., Zwei-Spieler-Spiele welche durch w-DPDAs beschrieben werden und
fiir welche Gewinnstrategien ebenfalls durch DPDAs dargestellt werden konnen. Regularitt
bedeutet entsprechend, dass ein PDG eine reguldre Gewinnstrategie besitzt; d.h., sie ist darstell-
bar durch einen endlichen Automaten. Wir zeigen dass diese Form des Regularititsproblems
bereits unentscheidbar ist fiir PDGs mit Sicherheitsbedingung.

Ein anderer Aspekt der Vereinfachung beschiftigt sich mit vorausschauender Delegierung
fuir nichtdeterministische endliche Automaten (FSAs). Das Problem ist hier, zu entscheiden, ob
Transitionen deterministisch gewéhlt werden konnen, wenn man eine beschrankte Vorschau
auf die Eingabe zugesteht. Eine solche Auswahlfunktion nennt man Delegierer. Nicht-triviale
Komplexititsergebnisse iiber die Existenz von Delegierern sind bisher nur bekannt fiir eine
eingeschrankte Unterklasse von FSAs. Wir erbringen entsprechende Ergebnisse fiir (uneinge-
schriankte) FSAs und zeigen, dass es PSPACE-vollstindig ist, zu entscheiden, ob ein Delegierer
tiir eine beliebige Vorschaubeschrankung existiert und einen solchen zu bestimmen. Wei-
terhin zeigen wir mithilfe von Zwei-Spieler-Spielen, dass die Existenz eines Delegierers in
Polynomialzeit entschieden werden kann, wenn die Vorschaubeschrankung konstant ist.

iii

Abstract

Automata simplification asks whether a given automaton can be converted into one of a simpler
format, i.e., whether a certain feature of the automaton model is avoidable in the given case. If
yes, an automaton of this simpler format shall be synthesized. The idea is that simpler automata
models have better closure and algorithmic properties. Simplification can also be studied
for games that are defined by automata. Then, the question is whether winning strategies
can be implemented by automata of a format that is simpler than the one used for the game
specification. In this thesis, we continue the research on two different aspects of simplifications,
namely regularity problems and lookahead delegation.

The regularity problem is to decide whether a given deterministic pushdown automaton
(DPDA) recognizes a regular language; which means that the pushdown stack is unnecessary
as an equivalent finite state automaton can be found. This problem was solved decades ago for
DPDAs whereas its pendant for w-DPDAs (working on infinite input sequences) remained
open since then. We adapt a technique that allows us to lift some known result from DPDAs to
the restricted class of w-DPDAs with weak acceptance conditions. For those weak w-DPDAs,
we show the regularity problem and further the equivalence problem to be decidable. For
the general case of w-DPDAs, we define a congruence relation that characterizes regularity,
whereas the decidability remains open, unfortunately.

A generalized variant of the regularity problem concerns pushdown games (PDGs), i.e., two-
player games which are specified by w-DPDAs and which omit a winning strategy representable
by a DPDA, too. In this setting, regularity means that there is a ‘regular’ winning strategy,
i.e., one representable by a finite state automaton. We show the regularity problem to be
undecidable even for PDGs with safety acceptance.

The other aspect of simplification deals with lookahead delegation for nondeterministic
finite state automata (FSAs). The problem is to decide whether transitions can be chosen
deterministically when a bounded lookahead on the input word is allowed. Such a choice
function is called delegator. Nontrivial complexity results on the existence of delegators are
only known for a restricted subclass of FSAs, yet. We contribute the corresponding results
for (unrestricted) FSAs. We provide polynomial space upper and lower bounds for deciding
the existence of a delegator with some bounded lookahead (and synthesizing it). By using
two-player games as a tool, we further prove that the existence can be decided in polynomial
time if the length of the lookahead is fixed.

Contents

1 Introduction

2 Preliminaries
21 Automata
22 Games.
2.3 Abbreviations
2.4 Register Machines

3 Regularity Problems for Pushdown Games and w-Automata

3.1 Finite State Strategies for Pushdown Games

3.2 Connecting Games and Automata: Classification Game

3.3 Regularity Test for Weak w-DPDAs
331 NormalForm.........
3.3.2 Normalization
3.3.3 Decidability Results

3.4 Congruences for Strong w-DPDAs .

4 Lookahead Delegation for Nondeterministic Automata

41 Delegation for Finite State Automata
411 Fixed Lookahead
412 Given Lookahead
413 Bounded Lookahead
4.2 Delegation for Pushdown Automata

5 Conclusion
Bibliography

Index

pe

vii

Chapter 1

Introduction

Automata are one of the most classic concepts in theoretical computer science. They first
occurred in the context of neurophysiology [MP43] and soon turned out to be a valuable model
of computation, too. Especially deterministic finite state automata (DFSAs) are natural as
they coincide with many other formalism, and they enjoy outstanding algorithmic and closure
properties (see [HU79] for an overview). In computer science, automata can be found in a
variety of applications, like in compilers or other tasks of text processing and in verification.

The more complex the applications became the more useful extensions arose for classic
DFSAs; e.g., nondeterminism, pushdown stack, or infinite input words to name just a few
standard extensions:

o A (nondeterministic) finite state automaton (FSA) might choose among different
transitions for a given input letter. This allows the automaton to ‘guess’ a run with
respect to the remaining input.

o The finite memory of a pushdown automaton (PDA) is equipped with an addition
stack, which is an unbounded LIFO data structure. It essentially allows a PDA to test
the input for recursive structures.

« Infinite words, so-called w-words, can be handled by automata with a different accep-
tance conditions. For parity acceptance, a number, called color, is assigned to each
state. An w-word is accepted by an w-automaton if it induces a state sequence where
an even number is the lowest one that occurs infinitely often.

All these extensions can be combined; e.g. to obtain a deterministic pushdown w-automa-
ton (w-DPDA). Some of them do not increase the expressiveness (e.g., a DFSA does not
gain any expressiveness when equipped with nondeterminism and e-transitions), whereas in
general, they do. On the other hand, such an increase leads to poorer closure and algorithmic

Chapter 1 Introduction

properties. This is the motivation to consider simplification problems, i.e., to asks whether
certain extensions can be avoided for a given automaton. In positive cases, an automaton of a
simpler format shall be computed.

Many questions of simplification have been studied so far; some of them being:
» “Does a DPDA recognize a regular language?” [Ste67, Val75],
+ “Can the w-acceptance of an w-DFSA be reduced?” [Lan69, CM99],
+ “Can the w-acceptance of an w-DPDA be reduced?” [Lin77, CG78],

» “Does a regular language belong to a certain subfamily of regular languages?” [Str94],
and

« “Can a nondeterministic FSA choose transitions deterministically when using looka-
head?” [RS07].

In this thesis, we continue the research on two of these problems: the first one which is
called regularity problem, and the last one called lookahead delegation. Details on them are
discussed in the following.

Regularity Problems

Based on the regularity problem for DPDAs, we further consider two generalized variants of
the problem, namely for w-DPDAs and pushdown games. We first motivate the basic problem
which explains why determinism is required.

Pushdown automata are popular as they can express the nested structure of program code,
as well as recursive nature of program runs, or they can process data trees in a linearized
form, like XML. PDAs have been studied decades ago and their closure and algorithmic
properties turned out to be much worse in comparison to FSAs (see [HU79]). To demonstrate
the complexity, one can look at the two most fundamental simplification problems which
ask whether the language is empty, or whether it is universal (i.e., every word is accepted),
respectively. For nondeterministic PDAs, emptiness is decidable in polynomial time [EHRS00]
whereas universality is undecidable [HU79, Theorem 8.11]. This undecidability is handed
down to many other important problems; like equivalence (“Do two PDAs recognize the same
language?”) and regularity (“Does a PDA recognize a regular language?”); the latter one being
a simplification problem.

The situation becomes slightly better when turning to deterministic PDAs (DPDAs). Al-
though, they still lack of some important closure properties, the determinism allows the univer-
sality problem to be reduced to the emptiness problem which makes it decidable in polynomial
time, too. Other related problems are known to be decidable, but with a high complexity: there
exists an algorithm testing regularity in doubly exponential time [Ste67, Val75] and decades
later, an involving algorithm was found that decides equivalence with non-elementary running
time [Sén01, Sén02]. For the restricted class of deterministic one-counter automata, where the
stack can only be used as a counter, both problems were recently shown to be NL-complete
[BGIL, BGJ13].

For many modern applications, it is not enough that a program processes a single request and
terminates afterwards. Instead, it is required to run ad infinitum while constantly answering
user requests. This idea is captured by w-automata, which are particularly used in model
checking (see [BK08]). Many theoretical properties of automata on infinite words can be
derived from the case of finite words with more difficult proofs (see [PP04]). When w-DPDAs
(and w-PDAs) were studied in the 1970’s [CG77a, CG77b, CG78], the universality problem
turned out to remain decidable for w-DPDAs, whereas regularity was posed as an open problem
in [CG78], and also the equivalence problem is open up to now.

In this thesis, we tackle the regularity problem for w-DPDAs. We show the decidability of
both the regularity and the equivalence problem for the restricted class of weak w-DPDAs.
An w-automaton (with parity acceptance) is called weak if the colors that occur during a run
never increase. This allows the run to change only a bounded number of times between being
accepting or rejecting (i.e., even and odd) until eventually, the color stabilizes. This coincides
with the boolean combination of reachability and safety conditions. We obtain our results
by extending a normal form for weak w-DFSAs which establishes an interesting connection
between languages of finite and infinite words [L6d01]: the same language of infinite words is
recognized from two states if, and only if, the same language of finite words is recognized from
the same two states (when considering the w-DFSA as DFSA where states with even color
are defined as accepting). This normal form was used in [L6d01] to lift known minimization
results from DFSAs to weak w-DFSAs. With some rather technical effort, we extend this
normal form to the framework of pushdown automata which then allows us to easily lift
regularity and equivalence decision procedures from DPDAs to w-DPDAs. These results were
presented in a shortened version [LRI12].

Unfortunately, we did not solve the open problems for (strong) w-DPDAs. Nevertheless,
we contribute a theoretical result which might be a step towards the solution. Based on the
language recognized by some w-DPDA, we define a congruence relation that has finite index

Chapter 1 Introduction

(i.e., finitely many classes) if, and only if, the language is regular. Similar results for languages of
finite words are the well-known Myhill-Nerode congruence which characterizes regularity, or
another congruence which characterizes whether a language can be recognized by a so-called
visibly PDA [AKMV05]. The problem of deciding whether the index of our congruence is
finite remains as open as for the regularity problem, though.

Infinite two-player games is an important model closely related to w-automata. A classic
motivation to study such games is Church’s synthesis problem [Chu57, Chu63]. For a system
specification given as infinite sequences of pairs (input and output), synthesis means to find
a controller that produces for each input sequence an output sequence according to the
specification. In [BL69], a solution is presented where the specification is assumed to be an
w-DFSA and it was shown that then, a controller can be represented by a finite state device,
too.

From the perspective of games, Church’s problem is a special case of finding a winning
strategy. An infinite two-player game is played on a directed graph where each vertex is
associated with one player. Starting from a certain initial vertex, the player who is in charge of
it has to pick one of its outgoing edges and the play proceeds analogously from this new vertex.
In total, a play corresponds to an infinite sequence of vertices. The winning condition (for
a certain player) is usually defined by a parity condition on the vertices. A winning strategy
advices a player to pick edges such that he wins each resulting play, no matter how his opponent
plays.

A classic approach to finitely represent the (possibly infinitely many) vertices of a game
graph is to use a deterministic automaton and its configuration graph. We then understand
a play as an w-word rather than an infinite sequence of vertices. Consequently, strategies
can be specified by deterministic automata that read the play as an input word. For many
automaton models, it is possible to synthesize a winning strategy (‘controller’) that uses the
same automaton model as the one that describes the game (‘specification’); e.g., for finite state
games [BL69] and for pushdown games [Wal01].

Such results establish games as useful tools, but they can also be subject to simplification
problems themselves. One problem might be to decide whether a winning strategy of a simpler
automaton model exists. An example of this form is the question studied in [SV02, SS07] that
is to decide whether XML documents can be validated against a given DTD by using only
constant memory, i.e., by a DFSA. This problem can be reduced to the simplification problem
of whether a certain pushdown game admits a finite state winning strategy (see Example 3.1.2
for details). Note that this connection does not allow undecidability results for simplification
problems to be transfered back to the validation problem due to the direction of the reduction.

Our contributions to simplification for pushdown games involve firstly, the ‘regularity
problem’ for winning strategies and secondly, we define games that simulate acceptance by
automata and express certain related properties. Regarding winning finite state strategies
(FSSs) for pushdown games, we show that a winning FSS exists as soon as one can win against
a reachability winning condition, whereas the existence becomes undecidable when a safety
winning condition is considered. Further, we present a game construction that is intended
to simulate the input and the acceptance of a given w-DPDA. We show that this so-called
classification game connects regularity for languages and games in the sense that the language
is regular if, and only if, there exists a winning FSS (for the player who is in charge of the
acceptance). The game is further useful to decide simplification problems on the acceptance
component of a w-DPDA; i.e., deciding whether a language can already be recognized with
simpler acceptance, like reachability, safety, Biichi, or co-Biichi. The novelty of our classification
game yields a simpler, less technical, and more general solution to these problems that are
known to be decidable [CG78, Lin77].

Lookahead Delegation

The objective of simplification is not necessarily to represent an automaton in a simpler (i.e.,
restricted) format by introducing new states. A different approach is followed in lookahead
delegation as studied in [RS07]: the problem is to decide whether a nondeterministic automa-
ton can choose transitions deterministically when it is allowed to look some letters ahead on
the input word. The given automaton itself remains unchanged in the sense that no new states
or transitions are added.

This requirement arose from the original motivation based on distributed web services,
called e-services [ACKMO04], which can be formally understood as DFSAs in this context. The
problem of e-service composition [BCG*03, GHIS04, DIS05, MWO08] asks whether a target
specification (given as a DFSA) can be composed of multiple available e-services (given as tuple
of DFSAs). If this is possible, then a lookahead delegator shall be synthesized which assigns
each input letter to one of the DFSAs that has to process it. As established in [GHIS04], the
delegator has to make its decisions based on the current state of each DFSA, the current input
symbol, and abounded lookahead on the further input. It was shown that deciding the existence
of a delegator with a given amount of lookahead is EXPTIME-complete [GHIS04, MW08].

The reformulation of the delegation problem where a single (nondeterministic) FSA is given
instead of multiple DFSAs is obtained by considering the (fully asynchronous) product of all
DFSAs (the specification as well as the available e-services). In fact, this formulation with a
single automaton is more general although it looks simpler. The central decision problem is

Chapter 1 Introduction

hence to decide the existence of a lookahead delegator for a given automaton. Three variants
of that problem were introduced in [RS07]:

« First, where the amount of lookahead is fixed (hard-coded into the algorithm).
« Second, where the amount of lookahead is given (as a part of the input).
« And finally, where the amount of lookahead is arbitrary but bounded.

Further, the complexity of these three problems was studied in [RS07] and the following
non-trivial upper bounds are given only for a restricted class of FSAs called unambiguous
FSAs: PTIME, co-NP, and PSPACE, respectively. The latter problem regarding the existence of
a bounded lookahead delegator was posed as an open problem for the case of FSAs [RS07]
and for the case of a tuple of DFSAs [DIS05].

In this thesis, we tie in with the previous results and contribute bounds for the case of
general FSAs: The first problem is in PTIME, which generalizes the bound from [RS07] and
corrects another result.! The main idea of our construction is to use a game that simulates the
delegation process such that a winning strategy for the delegating player directly corresponds
to a delegator in the automaton. By a non-trivial abstraction of the game representation,
such a strategy can be computed in polynomial time. We further prove that the latter two
problems are PSPACE-complete. For the upper bound, we present a different algorithm that
can store a lookahead of exponential length in polynomial space by using the binary encoding
of this length. We then prove that a maximal useful lookahead is exponential in the size of
the automaton which makes the last problem decidable in polynomial space with the above
algorithm. The latter result solves the open problems due to [DIS05, RS07]. These results have
been presented in excerpts in [LR13]. Finally, we extend the delegation problem to pushdown
automata and show the three problems to be undecidable for PDAs in general. Only for the
restricted class of visibly PDAs, we prove the decidability of the first two problems.

Outline

This thesis is structured as follows. We introduce in Chapter 2 the fundamental concepts
that we need throughout our work; like automata and languages, games and strategies, and
computational machines. In Chapter 3, we present our results regarding the regularity problem
for deterministic pushdown automata. We start with the most complex variant of the problem

Tn [RS07, Theorem 5] is stated that the delegation problem with fixed lookahead is PSPACE-hard for FSAs.
The proof uses a reduction from an inclusion problem of the form “Is the language recognized by a given FSA
a subset of another fixed language?”. However, this problem is not PSPACE-hard.

that asks for the existence of ‘regular’ strategies for pushdown games in Section 3.1. We then
study in Section 3.2 how the classification game can be used to simplify w-DPDAs. A normal
form for weak w-DPDAs is introduced in Section 3.3 to solve the problems of regularity and
equivalence. In Section 3.4, the chapter concludes by a congruence relation that characterizes
regularity for (non-weak) w-DPDAs. In Chapter 4, we consider lookahead delegation for
nondeterministic automata. First, we present decidability results for finite state automata in
Section 4.1, where we give a rather complete picture of the complexities for various formulations
of the delegation problem. In Section 4.2, we extend our studies to pushdown automata and
show decidability in a restricted case but undecidability in general. Finally, we give a conclusion
in Chapter 5, where we also point out aspects that remain open or can be the subject of further
research.

Chapter 2

Preliminaries

This chapter is devoted to the introduction of classic concepts and results that we work with at
several places throughout this thesis. After some preliminary notation, we define automata
which form the basis of our studies. For technical reasons, we start with the most general
definition of pushdown automata. Then, simpler automata models are obtained as restricted
special cases. We proceed with the definition of games and strategies, and how they can both
be represented by automata. We conclude by a short introduction of register machines.

Sets. We define the following integer intervals: the natural numbers IN = {0,1,...}, the
positive natural numbers IN, = IN \ {0}, the interval [n] = {0, ..., n -1} of the first # naturals,
and the binary numbers B = [2]. We write w = IN and use w to denote countable infinity. We
denote the cardinality of a set S by |S|.

Words and Languages. Let X be an alphabet, i.e., a finite set of so-called symbols or letters.
Then, X* (£¢) denotes the set of (w-)words over Z, i.e., finite (countably infinite) sequences of
2-symbols. A subset of £* (2¢) is called (w-)language. For a (finite) word w = a;---a, € £*
with ay, ..., a, € 2, we define |w| = n € IN as its length and wR = g, - - - a; € £* as its reversal.
The empty word ¢ is the unique word of length |¢| = 0.

For languages L, L' € £*, we define the following languages:

Lt = {wl---wn ne]N+andw,-eLforallie{l,...,n}},
L* = L*u{e},

L-L' = {w-w’ weLandW’eL’},

L+L =Lul,
L=3"\L.

Chapter 2 Preliminaries

For a language L ¢ £* and w-languages L', L” € ¢, we analogously define the following
w-languages:

L® {wl-w2-~-|wieLforallie]l\I+},

{W'(X
L'+1" =L ul”,
L' = 3X°\L.

L-L'

weLandoceL’},

We often identify a single word w € X* (or an w-word a € £¢) with the singleton language
{w} c Z* (respectively {a} € 2¢), e.g., in combination with the above operators (like in the
following). An w-word & = uv® that repeats some (nonempty) infix v ad infinitum after some
prefix u is called ultimately periodic.

2.1 Automata

Automata are devices used to accept or reject input words by processing them letter-wise such
that in each step, some memory is updated. We use the notation as it can be found in modern
literature (e.g., [HMUO1]).

Pushdown Automata

Pushdown automata are named after their memory structure. Besides the classic finite memory,
they are equipped with a stack which is a last-in-first-out (LIFO) data structure represented
by a word only growing to the left. When an input letter is processed, it is important in which
state the automaton is and which information is present at the top of the stack, i.e., the leftmost
symbol of the stack word. Based on this triple of letter, state, and stack top, the automaton
can choose a so-called transition which describes how the memory shall be updated, i.e., the
transition defines a new state and a (possibly empty) sequence of stack symbols to be placed
on top of the stack as a replacement for the previous top symbol. An input word hence induces
a sequence of memory updates. This process usually starts at a certain configuration of the
memory, and depending on where it leads to, the automaton accepts or rejects the input.

Machines, Configurations, and Runs. Before issuing the acceptance behavior, we have a
closer look at the update process which forms the core of the automaton called machine.

To extend the finite input alphabet X with the empty word, we write X, = £ U {¢}. Given
a finite stack alphabet I' and a stack bottom symbol 1 ¢ T, the stack content is a word from

10

2.1 Automata

I'*- 1, ie., the bottom symbol occurs at the rightmost position, and only there, while the stack
is growing to the left. Similarly, we abbreviate I, = I' U {1 }. We usually use capital letters for
stack symbols (A, B, C, ... €) and stack words (U, V, W, ... € I'*), whereas lowercase letters
denote input symbols (a, b, c, ... €) and input words (u, v, w,... € Z*).

Definition 2.1.1. A pushdown machine (or PDM for short) M = (Q, 2, T, A, qo, 1) consists
of

« a finite state set Q, and an initial state g, € Q,
« afinite input alphabet X, a finite stack alphabet ', a stack bottom symbol 1 ¢ ', and

« afinite transition relation A € Q xI} xZ, x Q xI'* such that the bottom symbol 1 occurs
at the bottom of the stack and only there, i.e., for each transition (p, A, a, g, W) € A holds
Wel*Lif A=1and W eI'*if A # L. Note that the transitions are nondeterministic.
<

A configuration consists of a state g € Q and some stack content W € I'* 1. We denote a
configuration as a word gW € QT'* 1 instead of a tuple. A transition (p, A, a,g, V') € A reads
the input letter a and replaces the leftmost part of a configuration pAW by gV W for some
stack suffix W e I} (which is empty iff A = 1). We denote this as pAW gV W. A finite

sequence poWy,..., p, W, of configurations is a run of M on some input word w € X* if
poW; N W RN pnW, such that w = g, - - - a, where aq, ..., a, € £,. We then write

Po Wo— pnW,. Further, an infinite sequence po W, piW,, . .. of configurations is called a run
of M on some input w-word « € X¢ if for each finite prefix w of a, there is a prefix of the
sequence that is a run of M on w. Note that in case of a; = ¢, the machine might be able to
perform a so-called e-transition without reading an input letter. However, the definitions do
not allow a run on an w-word to contain an infinite subsequence of e-transitions.

Unless stated otherwise, we assume a run to start at the initial configuration g, L consisting
of the initial state g, and the empty stack 1.

Automata, Acceptance, and Languages. We can now lift machines to automata by intro-
ducing acceptance mechanisms. For finite input words, the resulting runs are finite, too, which
allows us to accept words by the last state that a run leads to. A pushdown automaton (PDA)
A=(M,F)=(Q,2,T,A,qo, L, F) consists of a PDM M as above and a set of accepting states
F ¢ Q. A run is accepting if it leads from the initial configuration to a configuration where
the state is accepting. The set of words having an accepting run is the language L. (A) € X* of
A. A language that is accepted by some PDA is called pushdown language (PDL).

11

Chapter 2 Preliminaries

For w-words, each run is also infinite and has no last state. The acceptance condition
we use considers the states that occur infinitely often. A pushdown w-automaton (w-PDA)
A'=(M,Q)=(Q,Z,T, A, qo, L, Q) consists of a PDM M as above and a coloring function
Q : Q — IN that assigns colors to the states. A run is accepting if it fulfills the (min-)parity
acceptance condition with respect to (): the lowest color that occurs infinitely often in the
run has to be even. Analogously, the set of w-words having an accepting run is the language
L,(A") c 2% of A’. A language is called pushdown w-language (w-PDL) if it is accepted by
some w-PDA.

Restrictions

There are several ways to restrict pushdown automata which lead to other useful automata
models like finite state automata. Some classic restrictions are introduced in the following.
For the following, fix some PDM M = (Q, X, T, A, go, L).

Restricting Stack Usage. We call M a one-counter machine (OCM) if it has a unary stack
alphabet, i.e., |T| = 1. With this restriction, it can use the stack only as a counter for increasing,
decreasing, and testing for zero.

If the stack alphabet is empty, then M is called a finite state machine (FSM). In this case,
we can completely omit all components from the notation that are related to the stack since
the stack content is always 1.

We say that M is visibly (or a VPDM) if the input alphabet is partitioned into three subsets
Y =X wX wX (see [AMO04]). When the input letter is from X, then it is a call and one
symbol has to be pushed onto the stack, whereas a letter from X, indicates a return and the
topmost symbol has to be popped from the stack (if not empty). Finally, ¥, indicates a skip
where the stack remains unchanged, which is also required for e-transitions. Formally, the
following holds for all transitions:

A ifaeX,
A’A ifaeX forsome A’ €T,

(¢-A,a,9', W) e A impliesthata + eand W' =
€ ifaeX, and A+ 1,

L ifaeX and A= 1.

Restricting Transitions. If M has no e-transitions, we call it e-free (in the literature, this is
also called real-time).

12

2.1 Automata

We call M total if for each combination of state, stack symbol, and input letter, there is at
least one applicable transition.

We call M a deterministic PDM (DPDM for short) if for each combination of state, stack
symbol, and input letter, there is at most one applicable transition, i.e., forall pe Q, A€ I},
andac€X,

{(@W) [(e a0, W) eal| + {4 W)] (A eq. W) en)| <1

In this case, we identify A with the (partial) transition function § : Q xI, xZ, - Q xI* where
8(p,A,a) = (g, W) if (p,A,a,q, W) € A. We further extend § to the (partial) transition
function &~ for words: for a finite word w, let §* (w) be the unique configuration g W such that
goL = gW and no further e-transition is possible from gW. To be this definition well-defined,
we forbid infinite sequences of e-transitions for DPDMs since the run, which is uniquely
determined by the input, would get stuck on such a sequence and cannot process further
inputs. Note that in the deterministic setting, e-sequences of unbounded length are useful in
order to retrieve information somewhere lower in the stack within one step. Such sequences
are unproblematic as the stack height is arbitrary but finite. As soon as an arbitrarily long
e-sequence is never popping the stack symbol it started at, it results in a loop. However, such
e-loops can be useful in combination with nondeterminism. We explain in the following how
they can be detected and removed efficiently for DPDMs.

Removal of Infinite e-Sequences. Suppose that from a configuration gAW of a DPDM A,
the unique e-sequence leads to another configuration of lower stack height: gAW <> pW for
some state p € Q. Such behavior cannot be harmful up to this point as the (finite) stack height
is decreased eventually. We hence understand an infinite e-sequence to start at a configuration
where the stack height does not drop below the initial value. This means consequently that the
entire stack content below the top symbol has no impact anymore. It can hence be ignored.

We can effectively detect infinite e-sequences by the following algorithm that is run for
each pair (g,A) € Q x I of state and top stack symbol. Let M, be like M where only ¢-
transitions are retained. We can compute in polynomial time [EHRS00] an FSA (i.e., an FSM
with accepting states) that recognizes the set post}, (qA) of all configurations reachable from
qA in M,. The considered pair induces an infinite e-sequence if, and only if,

a) the initial stack top is never dropped, i.e., p ¢ post}, (qA) for all p € Q, and

b) there is a further e-transition for each reached pair of state and stack top, i.e., for each
(p,B) € Q x I that has no outgoing ¢-transition, there should be no word pBW ¢
post}, (qA) for some W e T

13

Chapter 2 Preliminaries

Whether both conditions hold can be checked by membership tests. In case of a positive
answer, it suffices to redirect the e-transition for the pair (g, A) to some sink state with a
self-loop for every input letter'.

Restricting Parity Acceptance. When restricting the color set Q(Q) of A to {0,1} or {1,2},
we end up with Biichi or co-Biichi acceptance, respectively.
We call A weak if colors never increase during a run. When additionally restricting the color
set of A to {0,1} or {1,2}, we end up with reachability and safety acceptance, respectively.
However, note that some restrictions of the w-acceptance can be bypassed with nondeter-
minism if the automaton can simply guess a suitable acceptance behavior. The w-automata
that we deal with in this thesis are usually deterministic.

All the above restrictions and terminology concerning the type of the underlying PDM or
the acceptance of the PDA carry over to the automata and language classes they characterize. A
complete list of abbreviations for the above models is given in Section 2.3. As usual, a language
or w-language is called regular if it can be accepted by an FSA, or w-FSA, respectively. An
example of an e-free OCA is depicted in Figure 3.8 at page 58, and examples of e-free FSAs
can be found in Figures 4.1a and 4.3 at pages 62 and 73.

Determinization

When applying restrictions to an automata model, it is obvious that the restrictions charac-
terize a subclass of languages which usually is a proper subclass. Due to the various possible
combinations of restrictions, we do not give a complete picture that relates the restricted
language classes. Instead, we point out some prominent cases where determinism does not
affect the expressiveness.

A classic method for determinization is the powerset construction which constructs a
deterministic automaton each state of which indicates all possible states that the nondetermin-
istic automaton could be in. This idea is not applicable to pushdown automata as one also
has to consider different possible stack contents which are possibly of different height. The
powerset construction only extends to PDAs that are visibly because then, the stack height is
determined by the input and is hence the same for all possible runs. With this property, one
can similarly introduce new stack symbols that indicate sets of possible stack symbols.

Proposition 2.1.2 ([AMO04]). For each VPDA, there exists an e-free DVPDA over the same
partition of the alphabet that accepts the same language.

'One might need several sink states depending on the context that M is used in.

14

2.2 Games

When restricting the cardinality of the stack alphabets to one, only the stack height is of
importance as the stack symbols do not differ any more. In this case, the powerset construction
can be applied in the usual way where the stack alphabet is unchanged.

Proposition 2.1.3. For each VOCA, there exists an e-free DVOCA over the same partition of
the alphabet that accepts the same language.

Further, when restricting the stack alphabet to be empty, one is dealing with the class of
regular languages.

Corollary 2.1.4. For each FSA, there exists an e-free DFSA that accepts the same language.

The latter determinization results can be lifted from regular languages to regular w-lan-
guages. The corresponding proof is much more involved in the case of infinite words (using
[McN66, Saf88]; see [L6d98] for details).

Proposition 2.1.5. For each w-FSA, there exists an e-free w-DFSA that accepts the same lan-
guage.

2.2 Games

Throughout this thesis, we directly consider simplification problems for games, but also use
games as a tool to solve other problems. Our terminology concerning two-player games is
based on [Grill].

Formally, a (parity) game G = (V, V;, E, Q) is played between two players and consists of
a) adirected graph (V, E) with vertices V and edges EC V x V,

b) a partition of the vertices into V; € V for Player 0 and V; = V \ 'V}, for Player 1, and

¢) acoloring function Q : V' — IN with bounded codomain.

A finite or infinite path in G is called a play, i.e., a sequence vov,v; - - - of vertices such that
there is an edge (v;, vi+1) € E between each two consecutive vertices. It starts in some vertex
vo € V (thatis usually fixed) and then, for each i, the successor v;,; of v; is chosen by Player 0 if
v; € V, or by Player 1if v; € V}. Player 0 wins an infinite play a € V¢ if « fulfills the min-parity
condition w.r.t. Q. Otherwise, Player 1 wins. We note here that usually a player loses if there are
no outgoing edges from his position. As this behavior bypasses the actual winning condition,
we require that the game graph only consists of non-terminal vertices, i.e., each vertex must

15

Chapter 2 Preliminaries

have at least one outgoing edge. One can obtain this from the standard setting by introducing
sink vertices where the corresponding player loses.

For o € {0,1}, a strategy for Player ¢ is a function s : V*V, — V that chooses a successor
vertex s(vo - -+ v;) = viy; with (v, v41) € E for each finite play vy ---v; € V*V, thatends in a
vertex of Player 0. We say that s is winning from a vertex v, if every infinite play vov; - - - induced
by this strategy is won by Player o, i.e., vov; - - - fulfills the parity condition if s(vq -+~ v;) = viy
for every v; € V,. Finally, we say that Player o wins G from a vertex v, if he has a winning
strategy from there. The winning region of Player o consists of all vertices v, with the above
property. A game is called determined if for every vertex, one player can win, i.e., the set of
vertices is partitioned into the winning regions of the two players.

A strategy s is called positional if its choice only depends on the last vertex, i.e., s(vo -+~ v;) =
s(ug -+~ u;) holds for any two finite plays vo---v;,ug---u; € V*V, with v; = u;. We then
consider a strategy as a function s : V, - V. A game is positionally determined if for every
vertex, one of the players has a positional winning strategy. A fundamental result is that the
games we consider here have this property.

Proposition 2.2.1 ([E]91, Mos91, Zie98]). Parity games are positionally determined.

The various restrictions of parity acceptance carry over to parity games. A portion of a
safety game together with a positional winning strategy is depicted in Figure 4.2 at page 67.
For safety games, winning strategies can be computed easily with an attractor construction
(see [Grall]).

Proposition 2.2.2. A positional winning strategy for a given safety game can be computed in

time linear in the number of vertices.

Games and Automata

Note that game graphs can be infinite. However, we need to represent them finitely in order to
run algorithms on them. One well-known way of doing so is by automata: an w-automaton can
be used to define the graph, the partition, and the winning condition. In detail, a pushdown
game (PDG) G = (A, Q) consists of an w-DPDA A = (Q,X,T, 3, g0, L, Q) and aset Q, € Q.
The game is played on the configuration graph of .4 and can be identified with the game
G=(V,V,E, Q') where

a) the vertices are configurations: V = QI'*Land Vj = Q,I*1L C V,

b) the edges are given by transitions: (W, q'W’) € E if gW 5 q'W’ for some a € X and
such that no further e-transition is possible, and

16

2.2 Games

c) the coloring Q' is induced by Q: Q'(gW) = Q(q).

As mentioned before, e-transitions increase the expressiveness of DPDAs. However, we
additionally require for PDGs that A is e-weak, meaning that the color does never increase
during an e-transition: Q(p) > Q(q) whenever §(p,A,¢) = (¢, V) forsome A eI,V eI
We explain later why this is important. A weak w-PDA is e-weak by definition. Every other
w-PDA can easily be e-weakened by additionally storing the lowest color during an e-sequence.
The game is supposed to start at the configuration v, = §*(¢), i.e., at the target of a possible
e-sequence from the initial configuration g L.

Since the underlying automaton is deterministic, we can identify a (finite or infinite) play
vovi - - - with a (respectively, finite or infinite) word aqa, - - - over X that induces the play as
follows: v; = 8*(ag - - a,;_;) for each position i. Input letters are also called actions in this
context. After a finite play ay - - - a;, the next action a;,, is chosen by Player 0 iff v; € Q,I'* L.
Finally, an infinite play aqa, - - - is won by Player 0 iff aga, - - - € L, (.A). Note that the winning
condition ignores the colors of intermediate states occurring during e-transitions which is not
necessary since A is assumed to be e-weak, i.e., the last state of an e-sequence hence has the
lowest color.

A consequence of the action-based approach is that we can also identify strategies with
functions f : £* — X that read and output actions instead of vertices. We are especially
interested in representing such strategies by automata. A pushdown strategy (PDS) S =
(M, o) consists of a DPDM M’ = (Q',X,1",8',qp, L’) and a function ¢ : Q" — X. The
strategy it defines is f(w) = o(q) where g is the state of the configuration gqW = & (w)
reached by w.

Again, the restrictions of automata and machines (and the corresponding terminology)
carry over to pushdown games and strategies; e.g., FSGs and FSSs for finite state games and
strategies, respectively. An example of a safety DOCA that defines a safety OCG is depicted
in Figure 3.1 at page 23.

Usually, games which are represented by automata can be solved algorithmically. The format
of a winning strategy is usually connected to the format of the game representation.

Proposition 2.2.3. In particular,
a) the winner of an FSG has a winning FSS [BL69], and
b) the winner of a PDG has a winning PDS [Wal01].

It is further possible to synthesize such strategies.

17

Chapter 2 Preliminaries

In this thesis, we only need the connections listed above, although, there exist many more
(see e.g. [RTO07, Fril0, COT12]).

Another interesting property is that the winning region can also be represented by automata.
The winning region forms a language over the alphabet Q U I} since the game vertices are
the configurations of the PDA A. The regularity of the winning region was proven for Biichi
conditions in [Cac02] and independently for parity conditions in [Ser03]. The next result
combines some known tools to obtain a DFSA that recognizes the winning region (read in
reverse for the sake of complexity).

Lemma 2.2.4. Fora given PDGG = (Q,X,T, 6, g0, L, Q, Qo), one can generate a DFSA A" =
(Q", 2", 8", qy, F") such that for each configuration qW € QT* 1,

gW e L.(A")} < Player 0 wins G from gW.

A" is of size |Q"| € 290Q) and the computation takes time 2°(Q<) where ¢ = |Q(Q)| is the
number of colors used by A.

Proor. From [Ser03], we know that each winning region in a pushdown game is a regular
set of configurations. To generate a DFSA of exponential size, we use an algorithm given in
[HOO09]. It yields a so-called ‘alternating multi-automaton’ A’. Before we formally introduce
this automaton model, we want to mention the key properties of A’. It is an alternating
automaton that has same states as G (plus two extra states). In .4, a run from a state g € Q on
aword W e I'* | is accepting iff Player 0 can win from gW in G.

Formally, A’ = (Q’, X', A’, F") is a special case of an alternating automaton and consists of
the following components:

a) states Q" = Qu {p}, p}}, final states F’ € Q’,
b) input alphabet X' =T}, and
c) alternating transition relation A’ € Q' x X’ x 2€".

To define the acceptance of A’,let g = {q'}, and ¢’ A Q/u...uQiff(q9', A {q)>...»qL}) €
A’ and ¢! , Q! forallie{l,...,n}. In this setting, no designated initial states are needed
because we want to ask whether a run starting from q € Q is accepted. Then, the language
accepted by A’ is

L.(A)= {qWe Qr*1

q Y, P’ for some P’ F'}.

18

2.3 Abbreviations

A DFSA for the reversal language L. (A’)R of an alternating automaton A’ can be obtained by
a reversal powerset construction [CKS81]. In the following, we provide such a construction on
A’ to obtain the desired DFSA A" with an exponential blowup. Let A” = (Q", X", 8", q;, F")
be a DFSA with

a) states Q" =22 w{q”, q"}, initial state q] = F', accepting states F"" = {q},
b) input alphabet £ =X’ =T}, and

c) transition function §” : Q” x £ - Q" as follows (where A€ I}, g € Q):

8"(P,A) = {q' € Q'

(49, A, P") € A for some P" ¢ P’},

//, 'f EP,)
8"(P',q) = {q,T, 1 ! ,
ql’ Ifq ¢ P >
8"(q",x) = q, forallq”e{q},q/}andx X"

By construction, we have that:
qW € L (A")" < (qW)* = (W"q) € L.(A")
< g7 = 8" (Whq)
qe 8" (W)
q Y, P’ for some P’ € F’
qW e L.(A")
Player 0 can win G from gW.

A

The claimed running time results from the composition of the two algorithms. |

Concerning the running time, note that c is constant for games with Biichi condition. This
also affects weak conditions as they can be rewritten as Biichi condition by redefining even
colors to 0 and odd colors to 1.

2.3 Abbreviations

Many restrictions of pushdown machines, (w-)automata, (w-)languages, games, and strategies
have been defined up to now. In the following, we give an overview of all abbreviations used
for various applications of pushdown machines (square brackets indicate optional restriction,
curly brackets are choices):

19

Chapter 2 Preliminaries

prefix - infix . postfix

[D][V] - {PD,OC,ES} - {M,A,L}
w-[D][V] - {PD,OC,ES} - {A,L}
[V]-{PD,OC,FS} - {G,S}

The meaning is as follows (letters occurring in the abbreviation are emphasized).
o The prefix indicates optional restrictions: Deterministic, Visibly.
o The infix indicates stack restrictions: PushDown, One-Counter, Finite State.

o The postfix indicates the device: Machine, Automaton, Language, Game, Strategy.

2.4 Register Machines

We conclude the preliminaries with a short introduction of certain computational machines.
Beside the well known model of Turing machines being the reference for decidability, there
exist many other Turing-complete models, i.e., models that can simulate Turing machines
(and vice versa).

A 2-register machine (2RM) is an input-free deterministic machine equipped with two
counters. Each of the counters can be increased, decreased, and tested for zero. This concept
is similar to a two-counter machine, i.e., the product of two DOCMs. The input alphabet does
not matter. It can hence be considered as some singleton set and is omitted from the notation.
Formally, a 2RM M = (Q, 6, 9o, qr) consists of

a) afinite set Q of states, initial state g, € Q, halting state gr € Q, and

b) an input-free deterministic transition function 8 : (Q \ {gs}) x {0,1}> > Q x
{-1,0,+1}2.

The configurations of M form the set Q x IN? where § leads from a configuration (p, 1y, ;)
to another (g, no + do, m + dy) iff 8(p,sgn(no),sgn(m)) = (q,do,d), i.e., depending on
the current state and whether the registers are zero, § leads to another state, and increases
or decreases the registers. W.l.o.g., We require that register values are never negative, i.e.,
n;+d; € Nforallie{0,1}.

The halting problem denotes the problem to decide whether the unique run of M starting
from configuration (¢, 0, 0) leads to the halting state. This problem is undecidable for 2RMs
as they can simulate Turing machines and vice versa (see [HMUOL, Section 8.5.4]).

20

Chapter 3

Regularity Problems for Pushdown
Games and w-Automata

In this chapter, we study regularity problems for several aspects related to pushdown machines
(automata, w-automata, games, and strategies), that is to decide whether the pushdown stack
is unnecessary. The essence of the question is whether a finite state representation exists for
something given by a pushdown representation. Usually, this yields a simplification of the
considered problem since pushdown representations are more expressive at the price of worse
decidability properties in comparison to finite state representations. Depending on the aspect,
the problems read as follows:

a) Can the language of a given pushdown automaton (PDA) be recognized by a finite state
automaton (FSA)?

b) Can the language of a given pushdown w-automaton (w-PDA) be recognized by a finite
state w-automaton (w-FSA)?

c) Does the winner of a given pushdown game (PDG) also have a winning finite state
strategy (FSS)?

Generally, we can restrict the problem to deterministic pushdown machines (DPDMs).
On the one hand, the universality problem (“Does an automaton accept every word?”) is
already undecidable for nondeterministic pushdown automata [HU79]. This is one of the two
‘trivial’ simplification problems and a special case of the regularity problem. As universality is
undecidable for PDA, regularity has to be undecidable for pushdown automata, too. On the
other hand, we need determinism in pushdown games to obtain meaningful definitions and
to use the classic results on strategies.

The benefits of DPDAs are that decision procedures exist for testing regularity [Ste67, Val75]
and equivalence [Sén01, Sén02]. The latter result is mentioned for being a breakthrough in

21

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

this field. These properties of DPDAs are the motivation to study the situation for infinite
words. The regularity and equivalence problem for w-DPDAs remained open, whereas some
basic properties were lifted from finite to infinite words [CG77a, CG77b, CG78].

We give solutions to the regularity problems for pushdown games (Section 3.1) and weak
pushdown w-automata (Section 3.3), and a partial solution for general pushdown w-automata
(Section 3.4). In between, in Section 3.2, we develop a connection between the problems for
games and w-automata. Excerpts of these results were presented in [LR12].

3.1 Finite State Strategies for Pushdown Games

In this section, we study the regularity problem for pushdown games, which is to decide
whether Player 0 can win a given pushdown game with a finite state strategy. According to our
definition of pushdown games and strategies (cf. pages 16 and 17), we understand a play as an
w-word that results from the letters chosen by the players and that uniquely describes a run
of the deterministic automaton defining the game. Analogously, an ‘automaton strategy’ is
reading a finite play prefix as a word such that the reached state indicates the choice of the
strategy.

In this section, we only consider winning conditions that are weak (or subclasses thereof)
since we already show undecidability for safety winning conditions.

Example 3.1.1. Let G = (A, Q) be a safety OCG based on the safety w-DOCA A as depicted
in Figure 3.1. The winning condition is given by the language

L,(A) = {a‘” +a"(b+c)(a"b+a"c)a®

n>m}.

In the game, Player 1 starts by giving a sequence of letters a succeeded by a letter b or c. Then,
Player 0 can either give an a-sequence of the same length proceeded by ba®, or he gives a
shorter a-sequence succeeded by ca®.

In G, Player 0 has a winning FSS although the w-language of A is not regular. Such a
strategy would be to answer a play starting with (b + ¢) by ba®, whereas a play starting with
a*(b + c) is answered by ca®. In fact, Player 0 has to remember only the first letter played by
his opponent. <

As another example, we want to reconsider the claim about XML verification from the
introduction on page 4.

22

3.1 Finite State Strategies for Pushdown Games

b[L—1],

.

alL—$1], a[$'—>s}”
al$~ $$]

otherwise

§

a,b,c

(a) A safety w-DOCA (the stack is ignored if no oper- (b) The configurations yield a safety game graph
ation is given)

Figure 3.1: A safety OCG on the configuration graph of a safety w-DOCA (circled states belong
to Player 0, boxed to Player 1; doubly bordered states have color 2, otherwise color 1)

Example 3.1.2. We want to show that the problem studied in [SV02, SS07] can be reduced to
the regularity problem for pushdown games. The problem asks whether it is possible to verify
an XML documents against a DTD by using only a finite state device.

From a theoretical point of view, a DTD is a finite set of rules that describe a language of
(unranked) trees where each node has a label of some finite alphabet and the root has a certain
fixed label. For each label, a rule specifies the allowed label sequences of the children by a
regular language. E.g., for the alphabet {r, a, b} with root label r, the rules r - L,, a - L, and
b— L,with L, = a*, L, = b, L, = € generate all trees such that

a) ris at the root,

b) below r, there is a finite sequence of a (maybe empty, then the root is the only node),
and

¢) below each a, there is one b.

The linearization of such a derivation tree ¢ is a string lin(¢) defined as follows. If the symbol
at the root is a and below that there are the subtrees t,,. .., t,, then

lin(¢) = [,-lin(#) - - -lin(¢t,) -]a-

The question studied in [SV02, SS07] is the following: Given a DTD D, can the set of
linearizations of its derivation trees be accepted by a finite automaton, provided that only

23

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

correct linearizations are given to this automaton. In other words, if Lin is the set of all
linearizations (for the alphabet of the DTD D), and lin(D) is the set of all linearizations of
derivation trees of D, then the question is whether there is a finite state automaton .4 such that

lin(D) = L.(A)nLin.

This problem can be restated as a regularity problem for a safety pushdown game as follows.
We can build a DPDA over the alphabet for linearizations that recognizes lin(D). Now, we add
the symbols #, Y, N to the alphabet. The idea is that Player 1 plays symbols from the alphabet
for linearizations, and at some point #. After #, Player 0 has to play Y (Yes) or N (No) to
declare that the word played by Player 1 is in lin(D) or not. However, Player 0 only needs to
make this decision in the case that Player 1 played a correct linearization (this can be encoded
in the pushdown game). The game is made such that a wrong decision of Player 0 leads to a
state that is losing (color 1). All other states have color 2.

Now, it is not difficult to see that Player 0 has a finite state strategy in this game if, and only
if, a finite automaton A exists with the required property. Indeed, a finite state strategy for
Player 0 can be used as A and vice versa, A can be used to define a finite state strategy. <

Note that we implicitly follow the perspective of Player 0 when talking about winning condi-
tions because some restrictions of parity acceptance are not self-dual. E.g., a safety condition
corresponds to a reachability condition from the perspective of his opponent, whereas the
roles are exchanged in a reachability game. The results of this section show that the existence
of a winning FSS is not symmetric: it depends on the perspective.

Reachability Winning Conditions

We start with the case of a reachability condition which turns out to be trivially winnable with
an FSS.

Lemma 3.1.3. In a reachability PDG, Player 0 has a winning finite state strategy as soon as he
has a winning strategy.

Proor. LetG = (Q, %, T, 8, qo, L, Q, Q) be areachability PDG (with a weak coloring function
Q only using colors Q(Q) = {0,1}) and let f be a winning strategy for Player 0. We consider
all possible play prefixes where Player 0 plays according to f until a state of color 0 is reached.
Such a state exists on each play since f is winning for Player 0. When arranging these play
prefixes as a tree as depicted in Figure 3.2, we obtain a finitely branching tree in which each
branch is finite. Further, the tree must have finitely many nodes according to Kénig’s Lemma.

24

3.1 Finite State Strategies for Pushdown Games

(a) Tree of play prefixes with a winning strategy for (b) Tree of play prefixes is finite after pruning
Player 0 (a to ab)

Figure 3.2: Pruning the tree of play prefixes of a reachability PDG in Lemma 3.1.3 (circled
states belong to Player 0, boxed to Player 1; doubly bordered states have color 0,
otherwise color 1)

The tree is hence finite and contains enough information for Player 0 to win. Using the nodes
of the tree as states of a finite state machine directly yields a winning strategy. O

In the proof, we only used that each vertex of the game has a bounded number of successors
and that the corresponding edges are labeled deterministically. The result can be lifted to
more general classes of games as soon as this property is fulfilled. For PDGs, we know that
the winner can be determined effectively [Wal01]. The next result is then a consequence of
Lemma 3.1.3.

Corollary 3.1.4. For a reachability pushdown game, it is decidable whether Player 0 has a
winning finite state strategy.

Safety Winning Conditions

To show the asymmetry of the problem, we prove that the existence of a winning FSS for a
safety condition is undecidable. We do this by constructing a safety one-counter game that
encodes the run of a 2-register machine (2RM; cf. Section 2.4). The goal idea is that Player 0
can win the game with an FSS if, and only if, the 2RM halts.

In our game, the counter can simulate only one of the two registers of a 2RM while the
other one is completely ignored. Player 1 chooses the simulated register at the beginning
in such a way that an FSS of Player 0 cannot recognize his choice. Player 1 achieves this by
arbitrarily playing actions that increase and decrease the counter, followed by a distinct action

25

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

that determines which register is simulated depending on whether the counter is zero or not
at this point. Afterwards (starting with empty counter), Player 0 has to play transitions of
the 2RM while the game checks the correctness with respect to the state and the simulated
register. Since an FSS of Player 0 cannot remember which register is simulated, a correctly
played transition sequence corresponds to the run of the 2RM. By (a sequence of) transitions,
we mean domain elements of the deterministic transition function of the 2RM, i.e., a triple of
the state and the signs of the two register values.

A first approach would be to encode the halting problem, which can be achieved by addi-
tionally demanding Player 0 to reach a halting state. The idea of the resulting game is sketched
in Figure 3.3a. The downside of this approach is that the winning condition is not captured by
a safety condition since the acceptance can change twice: in the first part, an infinite play is
good for Player 0, in the second part, it is bad, whereas reaching the halting state is good again.

To overcome this problem, we consider the slightly different approach sketched in Figure 3.3b,
where a play is considered good as long as Player 0 can give an infinite sequence of 2RM
transitions that is correct for the simulated register. Obviously, for each 2RM, Player 0 can win
this game by just playing the transitions of the run as this is correct for both registers. We refer
to the transitions (i.e., triples of state and signs of register values) of the run as run signature.
But, in order to win with an ESS, this run signature must be representable with finite memory,
which means that it has to be ultimately periodic, i.e., the sequence forms an infinite word uv®
for some nonempty finite words u, v. Since 2RM are Turing complete, there are some without
an ultimately periodic run signature.

Example 3.1.5. Consider a 2RM that swaps register values and increases the value after each
swap. The run looks as follows (intermediate configurations are left out):

(¢,0,0),...,(¢,0,1),...,(g,2,0),...,(q,0,3),...,(¢,4,0),...,(q,0,5), ...

In the run signature, the element (g, 0,1) occurs infinitely often (induced by the configurations
(9,0,1),(g,0,3),(g,0,5),...) but the distance in between two consecutive occurrences is
unbounded. It is hence not ultimately periodic. <

Before we proceed with the game result, we show this property of the run signature to be
undecidable as well.

Lemma 3.1.6. It is undecidable whether the run signature of a 2RM is ultimately periodic.

ProoFr. We show the claimed undecidability by a Turing reduction of the halting problem. To
this end, we construct two different 2RM M, M, from a given 2RM M. Both these machines

26

3.1 Finite State Strategies for Pushdown Games

A
Q!
=g
S ﬁ
> | ! n
! o | error?
(=] 10
2
2 sl A o Wep) halting?
1 ©) Tt
| : .
1 ~
oy (@) @Y (o, USSR .
a* b* ¢ to h t @ t; tno actions
good bad good
(a) Reduction of the halting problem of a 2RM to a weak OCG
o4
=
S| ﬁ bad
8, | error?
(=] 10 A
5 1
o I
<

good

(b) Reduction of the ultimately periodic run problem of a 2RM to a safety OCG

Figure 3.3: Simulating the run of a 2RM by a weak OCG

first simulate M until it reaches a halting state. Then, M, continues with a computation that

has an ultimately periodic run, whereas M, continues with one not being ultimately periodic.

By construction, M reaches the halting state if, and only if, the property of having an ultimately
periodic run differs for M, and M;. O

Theorem 3.1.7. For an e-free safety OCG, it is undecidable whether Player 0 has a winning
finite state strategy.

Proor. By using Lemma 3.1.6, it suffices to construct a safety OCG G that simulates a given
2RM M such that Player 0 can win G with an FSS iff M has an ultimately periodic run
signature. As explained before, G is sketched in Figure 3.3b and is divided into two phases.

27

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

First, by increasing and decreasing the counter, Player 1 determines by an empty counter at

a certain position whether register 0 or 1 is simulated by the counter. In the second phase,

Player 0 has to play an infinite transition sequence of M that is correct with respect to the

state and the simulated register. A play is won by Player 0 ift Player 1 never leaves the first

phase or the second phase is reached and Player 0 can give an infinite sequence that is a correct

simulation of M. This corresponds to a safety winning condition.

For a given 2RM M = (Q/, &', q), F’), we formally construct the following e-free safety

OCG g = (Qs Z) r; 8; qO’ 1, Qa QO) Wlth

28

a) states Q - QO ! Ql Where QO = {lh} U (Q, X IB) and Q1 = {qu q1,0> 91,1 qT}’
b) safety coloring Q : Q — {1,2} where Q(q) = 1iff it is the bad state g = g,
c) alphabets £ = {a,b,c} u(Q' xB?)and T = {$},

d) transitions:

i) first phase (for A € I} and i € B):

S(qO’A> a) = (QO, $A)’

5(qos A b) = (qo, W) herew = |+ 1A=L
) > =) whnere =
1o 1o e ifA=S$,
0 ifA=1,
0(q0,A,¢) = (q1,5,A where j =
(qo) (411) J {1 A=
5(qii A,b) = (duss W) herew = |+ TA=L
ir 41, = i whnere =
. G e ifA=8,

8(6]1,1', 1, C) = ((6]6, 1)) J—):
ii) second phase (for &’(p’, so,s1) = (q', do,dy), A€ T}, and i € B):

8((p 1), A, (pys0r51)) = (g i), W)

& if dl’ =-1,
1 ifSi =0,
where A = and W=XA ifd, =0,
$ ifSi = 1,
$A if dl‘ =+1,

3.1 Finite State Strategies for Pushdown Games

iii) all other cases:

3(p,A,x) =(q,A) where g = {fh ifpeQ
qr ifpeQ.

In detail, the construction works as follows. The game is supposed to start at the vertex go L.
In the first phase, Player 1 can play actions a"b™cb®c with n < m + £. This leads to the vertex
(g4, 1)L with i = 0if n = m or i =1 otherwise. In the second phase, the game simulates register
i of M, i.e., the counter mimics all increase and decrease operations and verifies zero-tests
only for register i. Player 0 continues by playing an infinite sequence of transitions of M, i.e., a
sequence over Q'x{0,1}2. Player 0 loses if, and only if, his transition sequence is inappropriate
with respect to the simulated register and state.

If M has an ultimately periodic run signature, then Player 0 has a winning FSS by playing
exactly this signature since all transitions are correct no matter which register is simulated.
For the converse, assume that Player 0 has a winning FSS S with s states. When Player 1 starts
with an action sequence a°, then a state repetition occurs in S. Let §%(a*) = 6%(a”) with
0 < x < y <'s. By continuing from this strategy state with actions b*cb”c, we see that S remains
in the same state §%(a*b*cb’c) = §5(a”’b*cb?c), whereas different registers are simulated in
both cases. Since S is winning although it cannot know which register is simulated, it must
produce an ultimately periodic transition sequence which is correct with respect to the state
and both registers and which hence is the run signature of M. O

Note that the game in the previous undecidability proof does not have the visibly property
(i.e., where input symbols determine the type of the stack operation) although in the first phase,
symbol a always induces a push, b a pop, and ¢ and internal stack operation. The visibility
property is violated in the second phase where the type of the stack operation is not only
determined by the transition played by Player 0, but also by the register that is simulated.

Nevertheless, it is possible to recycle the idea of the previous proof for visibly pushdown
games by introducing additional stack symbols. We will add a new dummy symbol which
prevents an FSS of Player 0 from seeing what is happening on the stack, i.e., whether important

or useless actions are performed.

Theorem 3.1.8. For a safety (e-free) VPDG, it is undecidable whether Player 0 has a winning
finite state strategy.

Proor. The main idea is based on the construction of Theorem 3.1.7. But due to the visibility

property, we now have to prevent Player 0 from knowing the number of counting symbols on

29

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

the stack. We overcome this by introducing an additional dummy symbol # beside the counting
symbol $ to the stack alphabet such that for the simulation of the register, we only count $ and
ignore # on the stack. The first phase of the game proceeds as before. The difference occurs
in the second phase when Player 0 has to play M transitions since he should not directly
control the stack height. Instead, we put Player 1 in charge of verifying the precondition of
the transition and updating the register value on the stack. Player 1 should only enter the
verification mode if he is sure that the transition is not applicable at this point. Otherwise,
he has to update the register according to the chosen transition where he uses the technique
of the first phase to prevent Player 0 from seeing what is happening on the stack. Player 0
continues afterwards by playing the next transition.

For a given 2RM M = (Q’, &', q;, F'), we formally construct the following safety VPDG
g = (Q, 2, T, (S, 0> L, Q, Qo) with

a) states Q = QuuUQ,; with Q, = {qL}u(Q’xIB) and Q; = {qo,qT}U(Q’x]Bzx{—l,O,H})U
(Q' x B x {-1,0, +1}) U {checky, check, },

b) safety coloring Q : Q — {1,2} where Q(q) =1iff it is the bad state g = g,
c) alphabets = = L WX, w2, with = = {a}, =, = {b}, =, = {c} U(Q’ xB?) and T = {$,#},

d) transitions:

i) first phase (for A €I, and i € B):

8(‘]O)A> a) = (qO)#A))
6(qo,#,b) = (qo.)
0 ifA=1,

8 ’A’C = ,)i)o)A Whel”eiz
(90, 4, ¢) = (40, ,0), 4) {1 faos

ii) second phase (ford € {-1,0,+1},s € B, Ae I}, and i € B):

1) choose an M transition &' (p’, so, $1) = (g', do, dy):

6((p’, i), A, (p’,so,sl)) = ((q’, i,Si di),A)

30

3.1 Finite State Strategies for Pushdown Games

2) register update according to the chosen M transition:

8((q’, i,s,d), A, a) = ((q’, i,d),#A) (enter update mode)
8((q'5i,+1),A,a) = ((¢,1,0),$4), (push $ to satisfy d = +1)
8((q’, i,d), A, a) = ((q’, i, d),#,A) ifd #+1 (push # otherwise)
8((q’, i,d),#, b) = ((q', i,d),s), (ignore #)
8((q'5i,-1),$,b) = ((¢,1,0),¢), (consume $ to satisfy d = —1)
8((q’, i,0), A, c) = ((q’, i),A), (end update only if d = 0)

3) verity that the chosen M transition can be performed:

8((q’, i,s,d), A, c) = (check,, A) (enter verification mode)

S(Checks, #, b) = (checks, €), (ignore #)
) (checko, $, b) =(q.,¢€), (counterexample $)
8(check1, 1, b) =(q.,¢€), (counterexample 1)

iii) all other cases:

3(p, 4, x) = (g, W)

i & if di =-1,
€ Qo
where g = {ql Tfp Q and W=1A4 ifd; =0,
ifpeqQ,
ar peQ #A ifd, = +1.

The game is again supposed to start at the vertex g, L. In the first phase, Player 1 can play
actions a"b™c¢ with n > m. This leads to the vertex (qp,i,0)#" ™1 with i = 0if n = m or
i =1 otherwise. At this state, technically phase 2 starts where Player 1 can first add or remove
dummy symbols by playing a second sequence a” b™' ¢ which eventually hands the control
over to Player 0 at the vertex (gj, i)#""+" ="' |. After each M transition chosen by Player 0,
Player 1 has to either update the register accordingly or he can claim a simulation error of his
opponent. For the update mode, Player 1 has again to play a sequence a”"b™" ¢ with arbitrary
n’" > 0 such that exactly one $ is added or removed according to the desired update. Similar
to the first phase, an FSS of Player 0 cannot see whether the stack height was increased. If
Player 1 otherwise claims an error, the game continues at state check; which is to verify that
the sign of the simulated register value is s € B. The stack is popped and Player 1 wins iff a
counterexample is found. By this construction, the arguments of the existence of a winning
ESS for Player 0 are as in the proof of Theorem 3.1.7. O

31

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

In Example 3.1.2, we reduced a problem of finite state XML verification to the regularity
problem for safety PDGs. Although we just showed the latter problem to be undecidable, this
does not necessarily transfer back to the problem of finite state XML verification considered
in Example 3.1.2 due to the direction of the reduction.

3.2 Connecting Games and Automata: Classification Game

In this section, we transfer the regularity problem from pushdown games to pushdown au-
tomata. Instead of finite state strategies, we ask for the existence of finite state automata in the
automata setting. As a useful connection between games and automata, we introduce a game
called ‘classification game’ which mimics the behavior of a given pushdown w-automaton
on possible input w-words. The idea of using this game based approach came from Christof
Loding and appeared in [LR12, Definition 2] in a variant with weak acceptance that we will
introduce later in Definition 3.2.2.

More formally, the game is defined for a given w-DPDA 4 and a set C of colors which can
be different from the colors of the w-automaton. Player 1 gives an infinite input word, whereas
Player 0 has to answer after each input letter by a color. In order to win, the color sequence
given by Player 0 must be accepting (with respect to the parity acceptance) if, and only if, the
input word given by Player 1 is in L, (.A).

One can see from the above description that the winning condition has to express the logical
biconditional of two parity conditions (both conditions must be fulfilled or both must not
be fulfilled) similar to generalized parity conditions (cf. [CHP07]). One condition results
from the simulation of A and the other is for the colors given by Player 0. This could be
stated by a Muller condition over the product of C and the colors used by .A. Here, we rather
stick with parity acceptance and use a standard construction that converts Muller acceptance
into parity. This is realized by a memory structure called latest appearance record (LAR)
[GH82, DJW97]. For a finite set M, let LAR); = M! x [m] consist of all permutations on
M such that one of the m = |M| indices is marked. We define functions for the update
UpLAR,, : LARy xM — LARy and the prefix PreLAR,, : LAR; as follows:

UPLARM((Z(),...,Zn_l,i),x> = (l], lo,...,lj_l, lj+1,...,ln_1,j) Where lj:X,

PI'CLARM ((lo, ey ln—l) l)) = (lo, ey ll)

The update UpLAR,, looks for the given element in the permutation, moves it to the front,
and stores the index of its old position. The prefix PreLAR just returns the first elements of
the permutation up to the marked index.

32

3.2 Connecting Games and Automata: Classification Game

Definition 3.2.1. For a finite set C € IN of colors and an w-DPDA A = (Q, 2, T, J, qo, L, Q)
using colors D = Q(Q), we define the classification game G 4 c = (Q', 2/, 1", 8", g, L', ', Qp)
as follows:

a) states Q" = {q,,q+} U (Q x LARc.p xB) with Q) = {q,} U (Q x LAR¢.p x{0}) and
initial state g} = (o, (0, ...,|C x D| - 1,0),0),

b) alphabets £’ =X w Cand I’ =T,
¢) transitions (for a € ¥ and ¢ € C):

6’((q,€, 0),4,c) = ((q,t”,l),A) where ¢/ = UpLAR ., (t’, (c, Q(q))),

6’((q,€,1),A, s) = ((p, 2,1), W) where §(g, A, €) = (p, W),

6'((q,€,1),A, a) = ((p, ¢,0), W) where 6(q, A, a) = (p, W),
! if p’ /)

8'(p", A x) = (4, A) otherwise, where g’ = {qL ifpheQ
qr ifp'eQy

d) coloring function (for q € Q, £ € LARc«p, and i € B):
Q'((g,¢,i)) = 2%|Cx D| -2 *|PreLARcxp(€)| = ((Cmin + dmin) mod 2)
where ¢, = min {c ‘ (c,d) e PreLARCXD(f)}

and dp, = min{d ‘ (c,d) e PreLARCxD(E)},

0'(q)) = 1,
Q0'(q7) = 0.
W.l.o.g., we assume A to be e-weak. <

To see that the constructed parity condition works as desired (namely, expressing the logical
biconditional of the parity conditions of the two players), note that the relevant color (the
lowest one occurring infinitely often) is given by the longest prefixes that occur infinitely
often. The colors in the tuples of these prefixes are exactly the ones that occur infinitely often.
Player 0 wins iff for all such prefixes, cyin + dmin is even, i.e., either both are even or both are
odd. Hence, the acceptance status of the color sequence played by Player 0 has to correspond
to the acceptance status of the played input word. The e-weakness is required to prevent that
small colors are overseen during e-transitions.

33

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

We further define a simpler version of the classification game that expresses weak parity
acceptance. The memory structure becomes much simpler then since we only have to store
the lowest color played by Player 0.

Definition 3.2.2. For a finite set C € IN of colors and an w-DPDA A = (Q, X, T, d, g0, 1, Q),
we define the weak classification game G', . = (Q', 2/, T", &', qy, L', ', Q;) as follows:

a) states Q' = {q),q}} v (Q x C x IB) with Q) = {¢q } U (Q x C x {0}) and initial state
qo = (qo,maX(C),O),

b) alphabets £’ =X wCand I’ =T,
¢) transitions (for a € ¥ and ¢ € C):

8’((q,c,0),A,d):((q,d,l),A) where ¢ > d,
8'((q,c,1),A,£) = ((p, 1), W) where §(g, A, €) = (p, W),
8'((g,¢,1),A,a) = ((p,c,0), W) where 8(q, A, a) = (p, W),

! if p’ € .
§'(p, Arx) = (¢ A) otherwise, where q,:{q,l if p' € Q
T

qr ifp'eQy,
d) coloring function (for g € Q, c € C,and i € B):
Q'((g,¢,1)) = Q(g) +c+2, '(q) = 1, Q'(q7) = 0.
W.lo.g., we assume A to be e-weak. <

Note that the winning condition is a parity condition in general, although the colors played
by Player 0 correspond to weak acceptance over colors C. The game becomes weak if A is
weak. This is the reason why we have to shift the colors of non-sink states by 2. To see that the
parity condition indeed expresses the logical biconditional of the parity conditions of the two
players, note that the color sequence chosen by Player 0 eventually stabilizes to some color
¢ € C which allows us to shift the original parity condition by ¢ (plus 2). The sum is thus even
if, and only if, the acceptance status of the color sequence played by Player 0 corresponds to
the acceptance status of the played input word.

The main purpose of the (strong and weak) classification games is that a winning strategy
of Player 0 that is implemented by some kind of machine (pushdown, finite state, etc.) can be
transformed directly into an w-automaton (based on the same machine model) for L, (.A) by
using the color output of the strategy as colors for the acceptance. We proceed with a technical
observation before we show the connection between w-automata and winning strategies.

34

3.2 Connecting Games and Automata: Classification Game

Remark 3.2.3. Let A and A’ be two w-DPDAs with L, (A) = L,(A") and let C be a finite set
of colors. Then,

a) the same strategies are winning in G 4 c and G x: ¢ for Player 0, and
b) the same strategies are winning in G'; » and Gy, .. for Player 0.

The claims hold true for Player 1 due to Proposition 2.2.1.

The claim follows easily from the two facts that the definition of a strategy only depends
on the alphabet of the game (i.e., the input alphabet and the color set) and that the winning
condition of the game only depends on the language. Both are independent of the automaton
that the classification game is based on.

This insight is helpful to connect simplifications between the winning strategies in the game
and the language that it classifies.

Connecting Regularity

Theorem 3.2.4. Let A be an w-DPDA that uses the color set C. L, (.A) is regular iff Player 0
can win G 4 ¢ with a finite state strategy.

ProoF. For the left to right implication, suppose L,(.A) is regular which means, due to
Proposition 2.1.5, that there is an w-DFSA A’ with L,,(A) = L,,(A’). Player 0 can clearly win
the FSG G 4/ ¢ by mimicking the transitions and colors of A. By Proposition 2.2.3 (a), Player 0
also has a winning FSS in G 4/ ¢ which is also winning in G 4 ¢ due to Remark 3.2.3 (a).

For the reverse direction, we naturally transform a winning FSS S = (Q,Zw C, &', q{,0)
of Player 0 into an w-DFSA A’ = (Q', %, 8", q;, Q') that recognizes the language. For that
purpose, we define the coloring Q'(q’) = 0(q’) and transitions 6 (¢q', a) = 6’(8’(q’, o(q')),a)
for g’ € Q" and a € 2. A and A’ accept the same (regular) language since S is winning in the
game G 4 ¢ that simulates the acceptance of this language. O

Theorem 3.2.5. Let A be a weak w-DPDA that uses the color set C. L,,(.A) is regular iff Player 0
can win G', - with a finite state strategy.

ProOE. The proof is similar to the one of Theorem 3.2.4. The reverse direction of the claim is
in fact a special case of it since a winning strategy for Player 0 in G, . is especially winning in
G a,c where Player 0 is less restricted in choosing the colors. For the left to right implication,
we additionally have to show that there is a desired strategy which produces a weak sequence
of colors.

35

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

Suppose that L,,(.A) is regular which means, due to Proposition 2.1.5, that there is a (possibly
non-weak) w-DFSA A’ with L,(A) = L,(A’). According to Remark 3.2.3 (b), Player 0
can win G/, .. by the pushdown strategy that simulates the weak acceptance of A. Due to
Proposition 2.2.3 (a), Player 0 has a winning FSS in the FSG G 4/ ¢ which is also winning in
G.a,c due to Remark 3.2.3 (b). O

An observation in the latter proof is that the computational power of the automaton model
(i.e., pushdown or finite state) is in some sense orthogonal to the expressiveness of the ac-
ceptance condition, meaning that the number of colors needed to accept a regular language
cannot be reduced by introducing a stack. This statement can also be derived from the proof
of Theorem 24 in [Sta83]. Here, we obtain it from the proof of the left to right implication by
using an FSS of Player 0 as an equivalent weak w-DFSA.

Remark 3.2.6. If the language of a weak w-DPDA is regular, then there exists a weak w-DFSA
that uses the same colors and accepts the same language.
Simplifying w-Acceptance

Besides the connections concerning regularity, we can use the classification games to express
simplifications in the acceptance conditions. The following result is similar to Theorems 3.2.4
and 3.2.5 but focuses on the colors instead of regularity.

Theorem 3.2.7. Let A be an w-DPDA. Then,
a) L,(A) can be recognized by an w-DPDA with colors C iff Player 0 can win G 4 ¢, and

b) L,(A) can be recognized by a weak w-DPDA with colors C iff Player 0 can win G ..

Proor. The claim is proven analogously to Theorems 3.2.4 and 3.2.5. From left to right, an

(respectively weak) w-DPDA with colors C can be used as a PDS that answers with colors
according to the coloring function of 4. That strategy is winning as it colors input words
according to their membership in L, (.A).

For the reverse direction, the winning player has a winning PDS according to Proposi-
tion 2.2.3 (b). This can be used naturally as an (respectively weak) w-DPDA with colors C that
recognizes L, (A). o

Since PDGs are effectively determined (cf. Proposition 2.2.3 (b)), Theorem 3.2.7 allows
us to decide whether the acceptance can be simplified. The decidability of these problems
were certainly known before. E.g., it was shown how to decide whether an w-DPDL can be

36

3.3 Regularity Test for Weak w-DPDAs

recognized with reachability or safety acceptance in [CG78, Theorem 6.2.4], respectively, with
Biichi or co-Biichi acceptance in [Lin77, Remark 5.1]. The innovation of our approach is rather
to describe the problem in terms of parity games, and that synthesized winning strategies
almost coincide with w-DPDAs with the desired acceptance.

Corollary 3.2.8. It is decidable for any set C of colors whether an w-DPDL can be recognized
by an w-DPDA (respectively, by a weak w-DPDA) with colors C. In particular, this covers Biichi,
co-Biichi, reachability, and safety acceptance.

These problems are known to be undecidable when determinism is omitted [CG78, Propo-
sition 6.2.1].

3.3 Regularity Test for Weak w-DPDAs

In this section, we present a procedure to solve the regularity problem for weak w-DPDAs.
That means to decide, whether the w-language of a given weak w-DPDA is regular, i.e., it can
also be recognized by an w-FSA.

By combining Theorem 3.2.5 with the results from Section 3.1, we already obtain the decid-
ability of the regularity problem for w-DPDLs with reachability acceptance due to Lemma 3.1.3.
This approach fails for other acceptance conditions like safety or weak acceptance in general
due to Theorems 3.1.7 and 3.1.8. Despite to the negative results on games, we give a decision
procedure in this section that works for w-DPDAs with weak acceptance.

Our work is inspired by a normal form for weak w-DFSAs which assigns minimal colors
to each state (without changing the recognized w-language) [L6d01]. Then, certain decision
problems for weak w-DFSAs become trivially related to the respective problem for DFSAs on
finite words. In our case of pushdown automata, we need some more effort to establish the
normal form, as we have to ensure that colors are minimal for each configuration instead of
just states. The normal form finally allows us to apply known algorithms for finite words on
normalized weak w-DPDAs.

This section is subdivided in three parts: First, we define the normal form and prove its
connection to languages of finite words. Then, we show how a weak w-DPDA can be converted
into the normal form. And finally, we combine both results to obtain our algorithmic results.

For the remainder of this section, let A = (Q,Z,T, 8, qo, 1, Q) be a weak w-DPDA with
largest color k = max (Q(Q)). Wlo.g., we assume k > 1.

As a first important step, we define a language of finite words for an w-automaton .A by simply
setting states with an even color as accepting. Since A is weak, this language characterizes
those points where the acceptance changes between accepting and rejecting.

37

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

Definition 3.3.1. The finitary language Ly (.A) € 2* of A (as above) is the language Ly (A) =
L.(A") of finite words accepted by the DPDA A’ = (Q, X, T, 6, qo, L, F) with F = {q €eQ |
Q(q) is even}. 4

By Lg(Agw) and L, (Agw), we denote the respective languages recognized by A starting
from the configuration gW instead of the initial configuration. The following observation is a
direct consequence of the definitions.

Remark 3.3.2. For all configurations qW and pV, if Le(Agw) = Le(Apv), then L,(Aqw) =
Lo(Apy).

If the inverse implication would also be true, then we would have established a strong
relation between the w-language of a weak w-DPDA and its language of finite words. The
following example illustrates that this is unfortunately not true in general.

Example 3.3.3. Foranumber n € IN and alphabet 2 = {a, b, c}, consider the language defined
as follows:

L, = U (x{a, b}*x{a, b}"cZ"’).
xe{a,b}
The language depends on a number # to show a lower bound later on.

By its definition via a regular expression, L, is obviously a regular w-language. It is further
easy to sea that for every w-DFSA recognizing L,, the number of states is at least exponential
in n because before reading the first c, it has to remember the last # + 1 symbols. Nevertheless,
L, can be recognized by a weak w-DPDA with linearly (in n) many states and a constant stack
alphabet. The idea is to write the string w € {a, b} that occurs before the first ¢ onto the stack
(using the initial state go). After the first c, the stack is popped and one can check the property
with ease by reading the reversal w® of w from the stack.

We define a weak w-DPDA A, = (Q, %, T, §, qo, L, Q) with L,(A,) = L, that consists of
states Q = {qo>- - ->qn+1-9a> Gp> 47> 91 > alphabets = = {a,b,c}, T = {$,, %, #,, %, }, and the
following transitions (where A€ [}, x,y € {a,b},ze X, ie{l,...,n}):

(qo, $xA) lfA =1,

e 8(gg, A, x) =
(g0, 4,) {(qo,#xA) A+,

« 8(q0,Asc) = (g1, A),

® S(qi)#yw Z) = (qi+l; 8):

38

3.3 Regularity Test for Weak w-DPDAs

= .

g 5 here g g+ ifzi, =z
= ~ pop #, Wi =

o k— 9

S qn+1 :\ ! q. if Zx_y * 20
iV

g

- # ~

17 2k

‘ .\ \pop $,,
Zk—n

)y x (z)=z (xzv) input

Figure 3.4: Weak w-DPDA 4, from Example 3.3.3 that recognizes L, with O(n) states

S(Qnﬂ)#xa Z) = (qx, 8),

0(gx>#y,2) = (qx> €)>

,e) ifx =y,
6(qx,$y,2) _ (qT) % y
(qu-¢) ifx=#y,

3(q+,A,z) = (qr,A), and for all other transitions: §(q, A,z) = (q.,A),

and reachability coloring Q : Q — {0,1} where Q(q) = 0iff g = g+. A run of A, on an input
word {a, b}*1c32¢ is sketched in Figure 3.4.

Let us further consider the inverse of Remark 3.3.2. For all configurations with a state from
{q1>-->qn+1>9a> qp }» it is already determined whether infinite words are accepted from there
or not as this only depends on the stack content. For example, from configurations g, W$, L
and g, V$, L, all infinite words are accepted whereas the acceptance of finite words (in the
finitary language) depends on the stack height and thus differs if W and V are of different

lengths. Because of this, Lg (A,,) is especially not regular:

Lo(A) = U U(x{ab)x{a, b} estnz).

xe{a,b} ielN <

3.3.1 Normal Form

The key ingredient of our proof is to establish a normal form for weak w-DPDAs such that the
inverse of Remark 3.3.2 holds true. For that purpose, we refine the coloring from only states to
configurations by defining sets K; (see below). The intuition is that each configuration should
be assigned the lowest color possible without changing the accepted language.

39

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

Definition 3.3.4. We partition the configurations of A into classes K; for i € IN, where K; is
the biggest subset of (QI'* L) \ (Uj«; K;) such that:

a) each run that stays in K; forever is accepting iff i is even, and

b) each run that leaves K; goes to Uj; K;. <

From the conditions (a) and (b), one can already see that the class indices form a weak parity
condition as well. However, it is a nontrivial insight that the classes indeed form a well-defined
partition of the set of configurations. On the one hand, it is easy to see that the maximum is
unique because the union of sets fulfilling the two properties still fulfills them. To show that
each configuration is contained in some class, we use the following stronger statement saying
that each configuration is contained a class the index of which does not exceed its color.

Remark 3.3.5. For each configuration qW € QI'* L holds that qW € U;cq(q) K.

PrOOE. We use an induction over the colors.

For the initial case of i = 0, let K| = {qW | Q(q) = O} be the set of all configurations
with color 0. It is easy to see that Kj ¢ K, because Kj fulfills the properties (a) and (b) of
Definition 3.3.4 already.

For the inductive case of i > 0, assume that gW € Uj<q(4) K; holds for each configuration
gW with Q(q) < i. Let all classes K; with lower index j < i already be determined and further,
let K’ = (QT*1) \ (Uj«; K;) be the nonempty set of configurations not being in any class yet
and let K! ¢ K’ contain only those configurations of K’ that have the lowest color:

K = {qweK’

Q(q) = c} where ¢ = min{Q(q) | qWeK'}.

By showing the inclusion K| € K;, it follows that gW € U;<q(4) Kj holds for each configuration
gW with Q(q) < i because i < c. To show the inclusion, we prove that K/ fulfills the prop-
erties (a) and (b) of the definition. The property (b) is obviously fulfilled since we chose all
configurations with the minimal color. For the property (a), we have to show that if there is
a run staying in K/ forever, then ¢ and i have the same parity (i.e., c is even ift i is even). In
fact, from each configuration in K! starts some run staying in K/ forever because otherwise,
the color of such a configuration has no impact on the acceptance and it must belong to some
lower class due to the maximality criterion. However, ¢ and i have the same parity because
otherwise, ¢ and i — 1 would have the same parity and then, the configurations of K! must
belong to K;_; already or even to some lower class with a parity different from c.]

40

3.3 Regularity Test for Weak w-DPDAs

A canonical representation of a weak w-DPDA is, when the minimal coloring of each
configuration corresponds to the coloring of its state.

Definition 3.3.6. A is in normal form if colors correspond to classes, i.e., gW € Kq (g for all
qW € QI* L that are reachable from the initial configuration. <

Example 3.3.7. The classes K; for A, from Example 3.3.3 are (where # = {#,,#,}):

Ko= (¢ 0 U (a#$1°0) U U (qua-#®#8,01),
xe{a,b} xe{a,b}
i{0,...,n}
Kl = (Qr*l) \Ko,

In general, K, are exactly those configurations from where every word is accepted. All other
configurations belong to K; in our example, like the ones with the bottom state (q,I'* 1 € K;)
but also the initial state (goI'* L € K;). Note that the classes also contain configurations that
are not reachable in the automaton, like g.I'* L € K. Further, some states occur in different
classes for different configurations, like q,$,L € K, but q,$,1 € Kj, or q#,#"$,1 € K, but
Q" $pL € K. N

Example 3.3.7 shows that 4, is not in normal form. However, the classes K, and K are
regular sets of words which is true in general and can be used to transform A into normal form
(see the next subsection). In the remainder of this subsection, we want to develop Lemma 3.3.10
which shows that the inverse direction of Remark 3.3.2 holds for our normal form. We start by

exploring some important properties of the classes K; that reflect the idea of representing the

minimal color of each configuration.
Lemma 3.3.8. Properties of K;:
a) For each configuration in K;, there is a run which stays in K; forever.

b) For each configuration in K; with i > 2, there is a run leading to K;_;.

PrROOF. a) Assume contrary that there is a configuration gW ¢ K; such that each run is
eventually leaving it. Then, W and its subsequent configurations in K; are in K; where
j < iis the biggest index of a class K| a path from gW is leading to. This contradicts that
gW is in at most one class.

b) Assume contrary that there is a configuration gW € K; with i > 2 being minimal such
that no run is leading to K;_;. Then, W and its subsequent configurations in K; belong

41

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

to Kj_, as Definition 3.3.4 (a) and (b) are still fulfilled, which again contradicts that
qW is in at most one class. Hence, no run from qW is leaving K;. In this case, qW
and its subsequent configurations belong to K; where j = i mod 2 < 2 contrary to the
assumption. |

The proof of the inverse direction of Remark 3.3.2 is a simple consequence of the following

lemma which generalizes [L6d01, Lemma 7] to pushdown automata.

Lemma 3.3.9. Let A be in normal form. If L,(Agw) = Lo (Apy), then Q(q) = Q(p).

PROOE. Assume contrary that for some configurations L, (Agw) = L, (A,) but Q(q) < Q(p)
and choose the configurations such that Q(q) + Q(p) is minimal. We consider two cases that
lead to a contradiction. If Q(g) + Q(p) is odd, then Lemma 3.3.8 (a) yields an w-word « such
that from pV only color Q(p) is visited. The run on « from gW has the same acceptance
and hence, due to the weakness it stabilizes at a color smaller than Q(q). Let ¢’ W’ and p'V’
be two configurations in the run on a prefix w of « from gW and pV/, respectively, such that
Q(q’) < Q(q) and Q(p’) = Q(p). Since L, (Agwr) = L,(Ayv+), we have a contradiction to
the minimality of Q(q) + Q(p).

Otherwise, Q(q) +Q(p) is even which implies Q(q) < Q(p)-1and Q(p) > 2. Lemma 3.3.8
(b) guarantees that there is a word w leading from pV to p’V’ with color Q(p’) = Q(p) - 1. Let
q' W' be the configuration reached by w from g W, then Q(q’) < Q(q) < Q(p) = Q(p’). Again
L,(Agw) = Lo(Apvr), and we have a contradiction to the minimality of Q(q) + Q(p). O

Based on this, the desired equivalence is straight forward.

Lemma 3.3.10. Let A be in normal form. For all configurations qW and pV, if L,(Aqw) =
Lo(Apv), then Le(Aqw) = Le (Apv).

PROOE. Assume contrary that there exists w.l.o.g. a word w € Lg(Agw) N Lg(A,v). Hence,
Q(q') # Q(p’) for the configurations g’ W' and p’'V’, reached by w from gW and pV/, respec-
tively. Lemma 3.3.9 yields L, (Agw) # Lo(Apv+) which implies L, (Aqw) # Lo(Apy). O

3.3.2 Normalization

This subsection is dedicated to Lemma 3.3.12 which proves that each weak w-DPDA can be
effectively transformed into one in normal form. As observed in Example 3.3.7, each class K;
forms a regular set. By proving this fact, we can extend a weak w-DPDA by annotating the
stack content with the run of a deterministic finite state machine (DFSM) that determines the

42

3.3 Regularity Test for Weak w-DPDAs

class. We can finally assign to each (annotated) state the minimal color of its configuration by
using the information about the class index of the DFSM.

The following lemma is the first half of this normalization where we prove the regularity
of the classes and construct a DFSM that reads a reversed configuration combined with an
output function that yields the index i of the corresponding class K;.

Lemma 3.3.11. For A, one can generate a DFSM Mg = (Qk, Zx, 0, qo.x) over the alphabet
2k = I, and a function fx : Qx Qg — IN that assigns the classes: for each configuration, qW € K;
iff fx(q, 85(WR)) = i. This computation takes time 2°Q1'X) and yields size |Qx| € 20(QI*%)
where k is the largest color.

PrOOF. We show this lemma by using the weak classification game G 4 ¢ (cf. Definition 3.2.2).
The colors chosen by Player 0 naturally represent Definition 3.3.4 meaning that qW € K; ift
i € C is the minimal color such that Player 0 can win from the vertex (g, i,0) W. We justify
this claim in the following. Further, according to Remark 3.3.5, it suffices to use the colors
C ={0,..., k} in the classification game.

An obvious winning strategy for Player 0 from such a vertex (or vertices with larger colors)
is to just play the corresponding index j such that pV' € K; for each game configuration
(p,i,0)V.

For showing the other direction, assume for a contradiction that Player 0 wins from a
configuration (g, i,0) W with gW € K; such that i < j for minimal i + j. If i + j is odd, then
Player 1 can force a play that stays in W; due to Lemma 3.3.8 (a). To win, Player 0 has to stabilize
ata color i’ < i that is even iff j is even, i.e., i’ + jis even. Hence, i’ < j which contradicts the
minimality. If i + j is even, then i < j—1and j > 2. Player 1 can force the play to a configuration
(q',1',0) W’ with ¢’ W’ € K;_; due to Lemma 3.3.8 (b). By assumption, Player 0 can still win
from there which contradicts the minimality since i’ + jol1<i+j-1<i+].

From Lemma 2.2.4, we know that the winning region of Player 0 forms a regular language
when considering those configurations as words. Let A” = (Q"”, X", 6", q;, F"") be the accord-
ing DFSA such that for each configuration (g,i,0) W of G4 ¢,

(g,i,0)W e L, (A")}? < Player 0 wins G 4 ¢ from (q,i,0)W.

As DESM Mg = (Q", %", 8", q) we take A” with out the acceptance. It remains to define
the function fx : Q x Q” - IN:

Faed?) = min{i] (0" qric0)) €)

43

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

Then, we indeed have that gW € K; iff i = f(q, ") with " = §"*(WR) because:

mf . " . . R /
8 (q ,(q,z,O))eF < (WR(q,i,0)) = ((,i,0)W)" e L, (A")
< (g,i,0)WeL, (A"}
< Player 0 wins G ¢ from (g, i,0)W.

This computation takes time 2°(|Q|- k) and yields size |Qx| € 2€(QI-k),

Lemma 2.2.4 yields that | Q| € 2°UQ"k) since we applied it to G 4,¢c which has O(]Q|- k)
many states. To obtain the claimed time complexity, note that the winning condition of G 4 ¢
is a weak PDG since A is weak. This can be rewritten as a Biichi condition by redefining odd
colors as 1 and even colors as 0. For the resulting Biichi game, the running time of Lemma 2.2.4
becomes exponential in O(|Q|- k). i

Example 3.3.7 illustrates that a DESM that reads the configurations in reverse indeed has to
be of size exponential in the size of the weak w-DPDA.

The second half of the construction is to simulate the DFSM M on the configurations
along a run of A by storing states of M on the stack in parallel to the actual stack symbols.
This annotation tells in which state Mk would be after reading the configuration of A from
the bottom up to the respective position. When additionally assigning the colors according to
M, we end up with the normalized weak w-DPDA A’. In constructions following later on,
we are only interested in the finitary language which is the reason why we also construct a
DPDA A” in the previous lemma.

Lemma 3.3.12. For A, one can compute in exponential time a weak w-DPDA A’ in normal
form such that L,(A") = L,(A), and a DPDA A" such that L,(A") = Lg(A"), where A" has
O(|Q|) states and |T|-2°UQ1"%) stack symbols.

PrROOE. Let Mg = (Qk, Zx =11, 8k, qo,x) be a DFSM with function fx as in Lemma 3.3.11. We
define a weak w-DPDA A’ = (Q', %,T7, &, g, L', Q') with coloring Q' : Q" — IN in such a way
that it runs like A and annotates the stack with a simulation of M. Technically, A’ consists
of:

a) states Q' = Q x {0,..., k} with g = (qo, co) where ¢y = fx(qo> Ok (qox> L)), ie., gol €
KC())

b) stack symbols I” = T x Qg with 1" = (1, qox),

c) transitions 8’((q,), (A, pox)s a) = ((p, d),Al - A’l) where

44

3.3 Regularity Test for Weak w-DPDAs

i) 8(q,A,a) = (p, A+ A),
11) A’l = (Ai’pi—l,K) and Pik = 8K(pi—l,KsAi) forie {1, Cees f’l},
iii) d = fx(ps pui);
d) coloring Q'((q,i)) = i.

This construction converts a configuration gA, --- A; of A to an annotated configuration
(g,i)A! -+ A" of A" where

a) foreach € € {1,...,n}, the stack symbol A}, = (A, g x) is annotated by the state that
Mk is in after reading the configuration up to this point, i.e., g¢x = 05 (qgo.x> A1 Ae-r),
and

b) the state is annotated by the minimal color i = fK(q, 0% (qox>Ar - -An)) of the configu-
ration, i.e.,, gA, - - A; € K.

Hence, a bijection between the configurations of A and properly annotated configurations of
A’ is established. From Definition 3.3.4 (a), we get L, (A’) = L, (.A) because the colors in A’
are set according to the classes K; in A. From Definition 3.3.4 (b) follows that A’ is weak and
the claimed complexity follows from the construction and Lemma 3.3.11.

We have already stated that the coloring of A" corresponds to the minimal coloring of A. It
remains to show that A’ is in normal form, i.e., that this coloring also minimal for A’. Let K/
be the classes of A’. We claim that (g,i)A’,--- A] e K] in A" iff qA,, --- A; € K; in A, i.e., that
the classes in A’ did not change in comparison to 4. For an inductive proof, assume that the
correspondence of the classes is already established for indices 0 up to i — 1. Now consider K;
and the case that i is even (the other case is similar). K; contains precisely those configurations
from which all infinite runs are either accepting or are leading to K; with j < i. Since the
correspondence of the classes has been established up to i — 1, we know that for every run of
A’ from (q, i) A}, - - A] that leads to K for j < i, the corresponding run of A from gA,, - - - A,
also leads to K, and vice versa. Furthermore, if all infinite runs from (g, i) A, - - - A that do
not lead to a smaller class are accepting, the same must be true for gA, - - - A; (and vice versa)
because the same language is accepted from both configurations. Hence, the classes K; and K
coincide (under the bijection) and A’ is in normal form.

To obtain the DPDA A”, we relax the additional information attached to the states of A’.
This information only indicates the class K; the configuration is in, whereas it has no influence
on the transitions of A’. For the finitary language, it is enough to know whether the color is
even or odd, which is where we can reduce the information to. It results in only 2 - |Q| many

45

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

states instead of k- |Q|. Each step of the computation can be done in at most exponential
time. O

3.3.3 Decidability Results

An interesting special case of the combination of Remark 3.3.2 and Lemma 3.3.10 arises when

we consider the initial configurations of two weak w-DPDAs.

Remark 3.3.13. Let A and A’ be weak w-DPDAs in normal form. Then, Lg(A) = Lg(A") iff
L,(A) =L,(A).

The following result is an immediate consequence since the equivalence problem for DP-
DAs was shown to be decidable in [Sén01, Sén02]. Although we did not intend to find it, itis a

nice result as it concerns a fundamental decision problem in automata theory.

Corollary 3.3.14. The equivalence problem is decidable for weak w-DPDAs.

Remark 3.3.13 further helps us to also reduce the regularity problem from the case of infinite
words to finite words.

Theorem 3.3.15. Let A be a weak w-DPDA in normal form. Then, Lg(.A) is regular iff L,,(.A)
is regular.

ProoFr. For the implication from finite to infinite words, suppose Lg(.A) is regular, i.e.,
Lg(A) =L,(A") for some DFSA A’. We can view A’ as a Biichi automaton .A” by assigning
color 0 to accepting states and color 1 to rejecting states. Obviously, for each input word, the
state reached in A has even color iff the state reached in .A” has color 0. Since the acceptance
can only change finitely often, it is easy to see that A" can be converted to a weak w-DFSA for
an appropriate coloring. In each run of A, the colors stabilize and hence, L, (A) = L, (.A")
which is a regular w-language.

If L, (\A) is regular, then it is recognizable by a weak w-DFSA A’ according to Remark 3.2.6.
We assume A’ to be in normal form (using our construction or the results in [L6d01]). By
applying Remark 3.3.13, we obtain that Lg(.A) = Lg(.A’) is regular which shows the inverse
implication.]

To obtain our desired decidability result, we use the fact that regularity is decidable for
DPDAs [Ste67, Val75].

Corollary 3.3.16. The regularity problem is decidable for weak w-DPDAs.

46

3.4 Congruences for Strong w-DPDAs

Complexity. Our method to decide the regularity problem for a weak w-DPDA A is the
composition of the following two subroutines:

a) synthesizing a DPDA A" that accepts the finitary language of the normal form of A (see
Lemma 3.3.12), and

b) applying the known regularity test for DPDAs on .A” (see Theorem 3.3.15 and [Val75]).

The first step runs in exponential time whereas the second step has a running time that is
doubly exponential in the size of its input automaton. In total, this yields a triply exponential
upper bound for the running time of Corollary 3.3.16.

Another interesting aspect in terms of complexity is the size of an equivalent weak w-
DEFSA (if one exists). For the regularity test in the second step, we refer to [Val75] rather
than [Ste67] as it gives better complexity bounds. Accordingly, the DPDA A" (recognizing a
regular language) can be transformed into an equivalent DESA with E?(n2logn+logt+logh)
states, where E'(f) = exp’ ((9(f)) denotes an exponentiation tower of height i and .4” has
n states, t stack symbols, and words of at most length h in its transitions. According to
Lemma 3.3.12, A” has O(|Q|) states and |T|- 2902 stack symbols (we assume k € O(|Q|)).
The composition yields a DFSA for the finitary language where the number of states is bounded
by E2(|Q|2 log|Q| +log|T| +log h). This DFSA can be colored appropriately to become a weak
w-DFSA that is equivalent to A.

Hence, in terms of computation time, our regularity test for w-languages is exponentially
more expensive than for languages of finite words. This is due to the exponential blowup in
the normalization step. Nevertheless, this blowup has no impact on the size of the resulting
weak w-DFSA (if an equivalent one exists) since the exact same bound on the number of
states applies as in the case of finite words. It is unclear, whether this bound is tight. From
Example 3.3.7, we see that at least a single exponential blowup is unavoidable for the resulting
weak w-DFSA.

3.4 Congruences for Strong w-DPDAs

In the previous section was shown how one can decide the regularity problem for w-DPDAs
with weak acceptance. Now, we consider regularity for general w-DPDAs (with ‘strong’ ac-
ceptance) which was posed as an open problem decades ago in [CG78]. Unfortunately, we
were not able to solve it either. We nevertheless want to present a congruence relation on finite
words that characterizes regularity, meaning that the language of an w-DPDA is regular iff
the congruence has a finite index, i.e., finitely many congruence classes. The decidability of

47

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

these properties remains open. These results were obtained in collaboration with Wladimir
Fridman.

For languages of finite words, congruences were used by Myhill and Nerode in the late 1980’
to characterize regularity. In [AKMV05], a congruence was developed to characterize whether
a language can be recognized by a VPDA. The domain of our congruence are also finite words,
but it is different in the sense that its characterization property holds for (a restricted class of)
w-languages. The idea is based on a technique called Ramsey decomposition that was used in
[Biic62] and involves Ramsey’s theorem [Ram30]. First, we introduce the basic notations for

congruences.

An equivalence is a binary relation that is reflexive, symmetric, and transitive. In this
section, we consider equivalences over nonempty finite words. For an equivalence ~ € (£*)?
and a word u € X+, let the class [u].. = {v | u ~ v} of u be the set of all equivalent words, and
let index Ind.. = |{[v]. |veZ*}
right congruence (just called congruence in the following) if it is compliant with appending

be the number of classes. We call an equivalence on X* a

words to the right, i.e., if u ~ v, then uw ~ vw forall u,v,w € £*.

Ramsey Decomposition

Our aim is to find a congruence enjoying a certain property that is about periodicity and
depends on the w-language L: forall u, v € * with u ~ uv and v ~ vv, the w-language [u].[v]®
is either entirely contained in L or entirely outside of L. If the index of such a congruence
happens to be finite, it is possible to represent L regularly by periodically repeating classes
as in the above property. In [Biic62], this approach was used to show that Biichi automata
are closed under complementation (which also proved the decidability of the theory of MSO
logic).

The periodic decomposition is based on a combinatorial argument known as Ramsey’s
theorem [Ram30]. It considers a coloring function that assigns finitely many colors to the
subsets of IN that are of some fixed size k. The theorem predicts the existence of an infinite
subset M € IN that is monochromatic, i.e., all its k-size subsets have the same color. For a set S,

let (i) be all its subsets of size k.

Proposition 3.4.1 (Infinite Ramsey Theorem [Ram30]). Lef ¢ : (H,j) — C for some finite C.
Then, there exists an infinite subset M N such that c(u) = c(v) for each u,v € ().

We proceed by giving the details of how this result can be used to obtain a regular represen-

tation.

48

3.4 Congruences for Strong w-DPDAs

Remark 3.4.2. Let L € X£¢ be an w-language and ~ be a right congruence on £+ with finite

index.
a)
b)

c)

Each class [u]. € 2 is regular.

Infinite words can be decomposed as follows:

¢ = U [ul[v]~.

v~vy
u~uv

If for all u,v € * with u ~ uv and v ~ vv, either [u].[v]® € L or [u].[v]¢ € L holds,
then L is regular (and so is its complement) :

L= U[ul[v]? and L= U [u].[v].

vy vy
u~uv U~uv
uv®el uv?¢L

Proor. a) For a right congruence, it holds that [uw]. = [vw]. if [u]. = [v]. for each

b)

u,v,w € *. One can hence construct a canonical e-free DFSM M = (Q, X, 4, q)
with finite state set Q = {qo} v {[u]. | u € £*} and transitions §(go,a) = [a]. and
8([u)-,a) = [ua).. Then, [u]. = L. (A*) where A* = (M, {[u].}) has [u]. as the only
accepting state.

We have to show that for all o € X¢, there exists a decomposition a = uvyv; - - - with
Vi ~Vig ~ Vivig and u ~ uvy (and hence u ~ uvy - - -v;) for all i € IN.

For that, we use Proposition 3.4.1 with k=2 and the coloring function ¢ : (]12\1) - {[u]N ‘
ue Z+} which maps infixes of « to their respective equivalence classes: c({i ,]}) =
[a;---aj1]. where i < j and a, denotes the letter of « at position £ € IN. The Ramsey
Theorem yields a set M € IN of infinitely many word positions m, < m, < ... such that
all infixes in between two such positions are equivalent. Formally, the decomposition
a=u'vyv)---withu' =ag---ay,.1 and v! = a,, - - - ap,,,-1 meets the first property due

to the choice of c: v/ ~ v!,, ~viv! forall i e N.

It remains to additionally establish equivalent prefixes. Based on the above decomposi-
tion, we partition the prefixes of « depending on the classes they belong to:

Iy, = {i eN | w~u'vye- vf_l} for all classes [w]..

By the pidgin hole principle, there must be some class [w]. such that Ij,,). contains
infinitely many indices iy < i; < We can finally define the coarser decomposition
w=u'vg---v qandv; =v ---v; _ whichstill fulfills the first property and additionally
the second one: u ~ uvy.

49

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

S

o
=
<

—
S
S
[S—
2
%

8
=,
:
S
=X
=
=X
=
=
=
=
=
=
=
=
=
=
=
=

T oS oS oS s oS e oS oS oS o o
(balabl[balab]ab]ba] [a] [ab]lab]ba] [a] [a] [ab]

l Q
28

[b].Job
[ba‘i [ba]lab]lba]lab]lab][ba]ab]ab]lab]ba][a][ab]
a,b [ba]lab][ba] ab]lab]lba] ab][ab] ab][ba] ab]

(a) DFSM to de- (b) Decomposition of an w-word (the classes of words in the decomposition are highlighted;
scribe congru- index ~ is omitted for readability)

ence classes

Figure 3.5: Illustrations for Remark 3.4.2 (a) and (b) as explained in Example 3.4.3
c) Direct consequence of (a) and (b).]

Example 3.4.3. Consider a right congruence ~ € (X*)? over the alphabet X = {a, b} consist-
ing of the following classes:

[a]. = a", [b]. = b7, [ab]. = a"bX*, [ba]. = bTaX*.

The e-free DFSM M according to Remark 3.4.2 (a) that can be used to recognize the classes
of ~ is depicted in Figure 3.5a.

In Figure 3.5b, we give an example of a decomposition of the w-word a = ba'ba*ba’ - - - € X¢
in the spirit of Remark 3.4.2 (b). All possible decompositions must pick u ~ ba because [ba].
is the only class that contains infinitely many prefixes of «. For our example, we choose
u = bab ~ ba and further v; = a’*?b ~ ab for all i € IN. This fulfills the desired conditions
Vi~ Vi ~ ViV and u ~ uvy; for all i € IN.

Finally, for Remark 3.4.2 (c), let w-language L = a(b*a)“ +b(a*b)® ¢ X¢. It contains exactly
those w-words where the first letter occurs infinitely often. The following table summarizes
the relation of all w-languages [u].[v]¢ with respect to L (where ‘+” means [u].[v]¢ ¢ L and
‘> means [u].[v]® c L):

50

3.4 Congruences for Strong w-DPDAs

u\via b ab ba
a |+ - + +
b |- + + 4+
ab |+ - + 4+
ba |- + + 4+

Consequently, we obtain another representation of L (column-wise from the table):
L = ([a]. +[ab].)[a]® + ([b). + [bal.)[b]® + ="[ab)® + =" [bal®. 4

Regularity

In order to characterize regularity by using the above techniques, it remains to define a
congruence being compliant with the preconditions of Remark 3.4.2 (c). The congruence that
we consider here is composed of two sub-congruences: one that compares the prefix behavior
of a word, and one that relates the behavior when occurring in a period.

Definition 3.4.4. For alanguage L € X over some alphabet X, we define the following right
congruences over nonempty words (where u,v € X*¥):

u~v ifft umv A ugv,
u~y iff VyeZ‘“:(uyeLc»vyeL),

usv iff Vx,yeX*: (x(uy)“’eL < x(vy)‘”eL). 4

Note that these three congruences depend on L. Nevertheless, we omit this in our notation
as it will be clear which language we are working with. It follows easily from the definition
that ~ and % are reflexive, symmetric, transitive, and compliant with appending words to the
right. Finally, ~ derives these properties.

Since ~ is a conjunction, it holds that Ind. is finite iff Ind, and Ind, are both finite. Further,
if L ¢ X¢ is regular, then Ind.., Ind,, and Ind, are each finite where the following upper bounds
can be obtained easily from an e-free w-DFSA that recognizes L with n states:

a) Ind. < Ind.-Indy holds since each ~-class is characterized by the intersection of a
~-class with a &-class. Some intersections might happen to be empty.

b) Ind, < n holds because u » v follows for two words u, v € X7 if they lead to the same
state, i.e., 0*(u) = §*(v).

51

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

¢) Indy < (n?)" = n?" holds because u & v follows for two words u, v € 2+ if they induce
the same state transformation with the same lowest color, i.e., for all states p, g € Q and
colors ¢ € C (wl.o.g. |C| <|Q|), the run p = g has lowest color c iff the run p <> g exists
and has the same lowest color.

Example 3.4.5. Reconsider the w-language L C X over alphabet ¥ = {4, b} from Exam-
ple 3.4.3. The following table gives the two ~-classes and three ¥-classes of L, and also four
(nonempty) ~-classes that result from the intersection:

n |[als=a* [ble=b* [abl.=3"(ab+ba)z*
[a]. =aZ” at %) atb¥*
[b]. = bZF @ b+ braZX*
The resulting ~-classes happen to coincide with those from Example 3.4.3. <

Before the example, we have seen that the index of ~ is finite when the considered language
is regular. We now show the inverse direction of that implication.

Theorem 3.4.6. Let L € £ be an w-DPDL. The index of ~ is finite iff L is regular.

PrROOF. We just have observed that the index of ~ is finite if L is regular. For the other direction,
we use Remark 3.4.2 (c), where two cases arise:

a) Assume there is an w-word « = uv® € L for some u, v € £+ such that there exists another
w-word o’ € [u].[v]® with a’ ¢ L. Fix some decomposition o = u'v{v; - - - with u ~ v’
and v ~ v/ for all i € IN. Let further L = L,(A) be accepted by an w-DPDA A and
let the class [v]. = L.(A,) € £* be recognized by an ¢-free DFSA A, according to
Remark 3.4.2 (a).

For the proof, we decompose the rejecting run of A on «’. By infinitely pumping a
certain infix of &/, we construct an ultimately periodic w-word a”” = u”'v""® that A still
has a rejecting run on. A contradiction with the definition of ~ will occur since u ~ u”
and v ~ v" holds.

For the decomposition of the run of A on «, consider the stairs of the run, i.e., all
configurations such that in the future, the stack height does not drop below the current
value. There can be multiple stairs at the same height if the stack reaches that height
several times without dropping below later on. The infinite run induces infinitely many
stairs. We refine this sequence as follows:

52

3.4 Congruences for Strong w-DPDAs

i) By the infinite pidgin hole principle, there must be an infinite subsequence of stairs
that share the same state and topmost stack symbol. This allows us to arbitrarily
pump the run in between two such stairs. Some prefix of the run leads to the earlier
stair gAW for g € Q, A€ I\, and W e I*. From there, some input w € Z* leads to
the later stair gAVW for V e I'*. Since the state and the stack top are the same and
the stack content W below the level of the stair is never used again, it is possible to
continue the run in an infinite loop by continuing with the input w. Figure 3.6
depicts the runs and the two stairs as just described.

ii) To retain the acceptance behavior during the loop, we consider a subsequence of
stairs such that the lowest color occurring in between two of them is odd. This
sequence is still infinite since the run is rejecting. When looping between two such
stairs, the run is rejecting.

iii) The word we want to pump has to be in the part where v{v| - - - € [v]¢ is processed.

We hence pick the start of our stair sequence to be somewhere after the prefix u’
has been read.

iv) To understand the final step of the refinement, let for a word a;---a, € 2" of n
letters and k < n

[ai---a,|<k] = a,---a;, and

[ai---a,|>k]

ak--.an

denote its prefix up to position k (exclusively) and its suffix from position k (inclu-
sively) onwards. For each stair, A has processed a prefix u'v - - - vi_[v] | <k] of &’
for some i € N and k € {0,..., |vi|}. We now additionally consider the run of A,
on v/ and especially its state after the first k letters were processed: 6:([1/; | <k])
Again, by the infinite pidgin hole principle, there must be an infinite subsequence

of stairs that share the same state of A, at the respective position of the stair.

For the remainder of the proof, we fix two of these infinitely many stairs. Let i < j be
the indices of the words v{ and v] currently processed at the two stair positions, and let

k, I be the respective positions within v; and v/, i.e., the prefixes u'vg - - - v[_,[v] | <k] and

! [v;|<I] of " have been processed at the two stair positions, respectively.

,/--. DR /
wvy Vi v

The runs of A, and the decompositions of v/ and v’ are also depicted in Figure 3.6.

We construct another w-word a” € £¢ which starts with the prefix u'v - - - vi_ [v!] | <k]
up to the first stair, and is followed by the extension [v; [>k]v,,---v7_ [v}[<I] to the
prefix at the second stair. The latter word is repeated ad infinitum. This ultimately

53

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

\Z)
I3}
67
\Z)
o)
50

H
c
=
)
=8
P

<

------0
=
<

stack height

|

y

() C ey e
i<kl D2k i< [l

Figure 3.6: Selecting stairs for the proof of Theorem 3.4.6

periodic w-word o’ is again not contained in the language by the choice of i, j, k, . We
obtain then representation o’ = u’'(v"")® when rearranging o’ as follows:

w
@ = u' vy v v [<K ()| 2K] Vi [y <1D)

= w'vovig Vi | <k][vi [2k] (via - via v | <1 i Zk])

I
=
<

(=]

=

L
<

]
(

C (v < 2K
(y) ¢L

It follows that u ~ u' since u ~ uv ~ uv'*! ~ u'v}---v! = u”. By the choice of k, I, we
further conclude that [v] | <I][v] | >k] € L.(A,) = [v]. which implies v ~ " since
v ~ vv. We finally see from the definition of ~ that u”(v"")® ¢ L contradicts uv® € L by
Definition 3.4.4 since u ~ u” and v & v". Hence, [u].[v]® C L.

b) Ifuv® ¢ L, then [u].[v]¢ c L follows from the first case for the complement language
since w-DPDLs are closed under complement (see [HU79, Chapter 10.2]). |

54

3.4 Congruences for Strong w-DPDAs

Limitations

Note that ~ can only be used for w-DPDLs to characterize regularity. There are more complex
languages that also have finite index.

Example 3.4.7. Consider the w-language L, € {a, b}“ that contains all words with a-blocks
of unbounded length:

L, = {a”“ba”lbanzb .- | the exponents 19, 1y, ... € IN are unbounded} c {a,b}".

Then, Ind. =1, i.e., all words are congruent with respect to ~, », and ®, respectively. This
is because changing the prefix of a word does not change its membership in L, and further,
periodic words are excluded from L, by definition.

From Theorem 3.4.6 follows that L, cannot be an w-DPDL. In fact, L, as well as its comple-

ment L, are not even recognizable by w-PDAs:

a) The first claim follows since every nonempty w-PDL contains an ultimately periodic
word, which is not the case for L,,. Assume L, = L,,(.A) to be recognized by some w-PDA
A and consider the accepting run of A on some word. As in the proof of Theorem 3.4.6,
there are two stairs in the run that share the same state and stack top and further, the
lowest color occurring in between is even. A repetition of the segment between the two
stairs yields an ultimately periodic word in L,.

b) For the other claim, assume L, to be context-free and recognized by some w-PDA A.
For each w-word « ¢ L,, there exists an integer i € IN such that & does not contain the
infix a’. Consider a word f3 = (a"b)® ¢ L, for some sufficiently large integer n € IN
together with an accepting run of § on A. We show that infinitely many a-blocks in
B can be pumped arbitrarily often. This results in an w-word p’ € L,(A) n L, with
a-blocks of unbounded length when we pump the i-th block i times.

A pumpable a-block can be found as follows. From an arbitrary position in the run on
B, we first go to the next stair and then, we consider the first complete a”-block that
is read afterwards. Four cases arise when the a”-block is processed by A (depicted in
Figure 3.7):

i) The increase and decrease of the stack height is small, i.e., the difference between
the minimal and maximal stack height during the processing of a" is bounded.
Then, two configurations are the same. The part in between these configurations
can be pumped.

55

Chapter 3

Regularity Problems for Pushdown Games and w-Automata

qAW | L O
). input input
(a) Insufficient increase of the stack height (b) Sufficient increase of the stack height with stair
pump up pump down pump up pump down

stack height

stack height

(c) Sufficient increase of the stack height without stair (d) Sufficient decrease of the stack height

Figure 3.7: Distinction of cases while pumping the run of an w-PDA for L, in Example 3.4.7

56

ii)

iif)

iv)

There is a stair and another configuration (with higher stack) later on that share
the same state and stack top. Again, the part in between these configurations can
be pumped.

There are two configurations of increasing stack height that are not stairs that
share the same state and stack top, and later on, when the stack height is first
decreased to the respective levels, these respective popping configurations also
share the same state. The part in between the two pushing configurations can
be pumped to increase the length of the a-block. The part in between the two
popping configurations has to be pumped in the same way to restore the stack
height afterwards.

Opposite of the previous case: There are two configurations of decreasing stack
height that share the same state, and before, when the stack height is last increased

3.4 Congruences for Strong w-DPDAs

to the respective levels (since we started our consideration at a stair), these respec-
tive pushing configurations also share the same state and stack top. The part in
between the two popping configurations can be pumped to increase the length of
the a-block. The part in between the two pushing configurations has to be pumped
in the same way to prepare the stack height before. <

It might not be surprising that Theorem 3.4.6 holds not true for an w-language as complex
as L,. But, there is also an example of a much simpler w-language that admits finitely many

congruence classes.

Example 3.4.8. Consider the w-language L. over X = {4, b} containing all words that either
have only finitely many letters b or have infinitely many a-blocks such that an a-block of the
same length occurs somewhere later on:

L. = (Z*a"’) v NU ((Z"Z*b) ‘@l (b+b2*b)-al- (bz‘”)) c 3¢
ielN jeIN

Then, Ind. = 1 again. On the one hand, the prefix of an w-word is not relevant for the
membership in L. Further, each ultimately periodic w-word is contained in L. because if the
(nonempty) period contains no letter b, then the first case of the definition of L. applies and
otherwise, there is at least one b in the period that induces infinitely many (possibly empty)
a-blocks all having the same length.

It is easy to see that L. can be recognized by an e-free w-OCA that guesses which case
applies, and in the second case, it guesses the a-blocks and where they are repeated while their
lengths are compared with the counter. Such an automaton is depicted in Figure 3.8. <

To summarize, we have introduced a congruence (for a given w-language) that characterizes
regularity, i.e., the index of which is finite if the w-language is regular. The latter example
shows that this characterization only holds for w-PDLs that are deterministic. The decidability
of the regularity problem for w-DPDLs remains open.

57

Chapter 3 Regularity Problems for Pushdown Games and w-Automata

J

Figure 3.8: An e-free w-OCA that recognizes the language L. from Example 3.4.8 (doubly
circled states have color 0, otherwise color 1, and the stack is ignored if no operation
is given)

58

Chapter 4

Lookahead Delegation for
Nondeterministic Automata

This chapter is dedicated to delegation problems for nondeterministic automata. A lookahead
delegator is a function similar to a transition function in the sense that in each step of a run,
the delegator shall deterministically choose the next transition. But, a lookahead delegator
may additionally use some bounded lookahead on the input word to make a decision. If such
a function leads to an accepting state for some input word, then the word is recognized by the
automaton, too, since only transitions of the automaton are chosen. To make such a function
a delegator, we further require it to fulfill the inverse direction, i.e., the function has to lead to
an accepting state for each word accepted by the automaton.

Delegators for nondeterministic automata where first introduced and studied in [RS07].
However, the motivation is based on a different formulation that involves only deterministic
automata and that occurs during the composition problem for so-called e-services [BCG*03].
The question is to decide whether a set of available services can be composed to fulfill a certain
specification. Each service and the target specification are given by deterministic automata.
The composition is made by a function that maps each letter of the input word to one of the
sub-automata. It is demanded that for each word recognized by the specification and for each
sub-automaton, the sub-automaton accepts the letter sequence that is mapped to it. For the
general composition, this function knows the entire input word. A restricted version of the
function is considered in [GHIS04], namely one with bounded lookahead on the input word
suffices during the mapping. Such a function is called a lookahead delegator.

Besides defining lookahead delegators, it was further shown in [GHIS04] that for DFSAs, the
existence of a k-lookahead delegator can be decided in time polynomial in the alphabet and size
of all DFSAs and exponential in k and the number of DESAs. The EXPTIME-hardness of this
problem was shown in [MWO08]. For so-called reversal-bounded one-counter automata, this

59

Chapter 4 Lookahead Delegation for Nondeterministic Automata

problem was shown to be decidable in [DIS05]. Finally, deciding the existence of a bounded
delegator was posed as an open problem in [GHIS04].

This delegation problem for a tuple of (deterministic) automata can be reduced by a product
construction to the delegation problem that we consider, i.e., for a single nondeterministic au-
tomaton. Let x denote the synchronous product and ® denote the fully asynchronous product.
Then, a specification .4 is composable with lookahead k from some services A, ..., A, if, and
only if, there exists a k-lookahead delegator for Ax (A;®...® A,). Note that the asynchronous
products introduce nondeterminism. For a single nondeterministic automaton, the delegation
problem is more general. Hence, only lower bounds can be transfered to this setting. Then,
one must also note that the product automaton might be exponentially larger then the original
tuple of automata. However, the composition of e-services motivates delegators, i.e., why we
want to ‘determinize’ the automaton without changing its states or transitions.

In this chapter, we study the complexity of delegator synthesis for nondeterministic automata.
This means in detail that we reconsider the three versions of the decision problem as they were
defined in [RS07, Section 4]:

a) k-DELEGATOR for a fixed number k € IN: decide for a given automaton A whether A
has a k-lookahead delegator.

b) DELEGATOR: decide for a given automaton A and k € IN whether A has a k-lookahead
delegator.

c) BOUNDED-DELEGATOR: decide for a given automaton A whether A has a bounded
lookahead delegator.

We study these problems for finite state automata (Section 4.1) and for pushdown automata
(Section 4.2). Our results were partially presented in [LR13].

4.1 Delegation for Finite State Automata

In [RSO7], complexity upper bounds were given only for a restricted subclass of FSAs. We
extend this research to FSAs in general and show the decidability of all three problems listed
above, each of them being handled in a separate subsection. Before, we start with some
preliminaries concerning delegators for FSAs.

We restrict our studies to FSAs that are total and e-free. The first property avoids unnecessary
technical difficulties. Regarding e-transitions, it was already mentioned in [RS07, Lemma

60

4.1 Delegation for Finite State Automata

1] that an FSA with e-transitions has a k-delegator if, and only if, its e-free pendant has a
k-delegator where we assume the standard procedure for e-removal.

We proceed with the formal definition of a lookahead delegator. For the sake of readability,
we only consider FSAs and give an extended version later in Definition 4.2.1. For k € N, let
z<k = UL, 2.

Definition 4.1.1. For an ¢-free FSA A = (Q, %, A, qo, F) and a number k € IN, a k-lookahead
delegator (or k-delegator for short) is a function f : Q x £X<k - Q such that

a) f(g,aw) = p implies (q,a,p) € Aforeach g€ Q,a € X, w € 2=k, and

b) f*(qo,w) € F for each w € L,(A), where f*: Q x £* - Q extends f to words and is
defined inductively as follows: let f*(q, ¢) = q for each state g, and let f*(g,a;,---a,) =
f* (f(q, A1 Amin(nk+1))> G2 ° a,,) for each state g and nonempty word a; - --a, of
length n. <

In a sentence, the two conditions express that only transitions are chosen by the delegator and
that it leads to an accepting state for each word accepted by the automaton. We say that A has
a bounded lookahead delegator if it has a k-lookahead delegator for some k € IN.

Note that in our notion of k-lookahead, we follow [GHIS04, DIS05] by counting the ad-
ditional lookahead, whereas in [RS07], the current input symbol counts as a letter of the
lookahead. In our setting, a 0-lookahead delegator can hence be identified with a deterministic
subset of the transitions such that the same language is accepted.

Example 4.1.2. Consider the FSA A over the alphabet X = {4, b} as depicted in Figure 4.1a
which accepts the language L. (A) = {aa} u 2*{b, aaa}. The only nondeterministic choice
of a transition occurs at state g, for symbol a. It is possible to delegate this transition with
lookahead 2; e.g. by the function f: Q x ££<? - Q with f(qo,aa) =1and f(q,aw) = 0 for
allw e 22\ {a}.

A very easy way of showing that f is a delegator is to consider the ‘delegated” automaton
Ay which simulates f on A. Formally, for any e-free FSA A, number k € IN, and function
f:Qx2xk —» Qwith (q,a, f(q,aw)) € A for all (q, aw) € dom(f), we can construct the
e-free DFSA A; = (Q’, %, &', q;, F’) consisting of

a) states Q' = Q x 2, g = (qo, &), and F' = { (g, w) € Q'

f*(qw) e F}, and

b) transitions as follows:

5/((q,w), a) = (q,wg) ifw e Zsk—l,
6/((q)a0-..ak71),ak) = (f(QJlO e ak),al---ak) where a; € 2 for all i € [k].

61

Chapter 4 Lookahead Delegation for Nondeterministic Automata

(a) FSA A (b) DFSA Ay resulting from A and f

Figure 4.1: FSA and its ‘delegated’ DFSA (doubly bordered states are accepting)

By construction, we have that L. (A) = L.(Ay) iff f is a k-delegator. The delegated automaton
of this example is depicted in Figure 4.1b. <

The above construction yields a naive method to decide the existence of a k-delegator.
However, the complexity is far from optimal: it shows DELEGATOR to be in 2EXPSPACE, and
k-DELEGATOR to be in NP. We improve these bounds by using some theoretical insight that is
based on left quotients.

Left Quotients. For w € X* and L € 2%, let the left quotient w™'L = {ve X* |[wve L} of w
with L be the language containing each word that completes w to a word in L. Note that the
composition of left quotients can be written as concatenation: v='(u"'L) = (uv)~'L. Further,
we write L, (A,) for the language of A where q is taken as the initial state.

We now present a technical lemma that occurs as a key ingredient in the proofs and algo-
rithms of the following three sections. A similar statement can be found in [RS07, Lemma 7]
using a notion called blindness. It gives a language-theoretical characterization of the main
property a k-delegator has to fulfill when it selects a transition. That is, whenever a transition
(g, a, p) € A has to be chosen for some lookahead w, then (aw)™L.(A,) = w™'L.(A,), i.e.,
the accepted words are the same before and after the transition is taken. If this is not the case,
one can easily show that the definition of a delegator is not fulfilled by picking a word from
the difference. On the other hand, if this property holds for each transition, then it follows in-

62

4.1 Delegation for Finite State Automata

ductively that the language is preserved. Note that the inclusion (aw)™'L.(A,) 2 w'L.(A,)
holds generally, since (g, a, p) € A.

Lemma 4.1.3. An e-free FSA A has a k-delegator iff there exists a set Q' € Q such that q, €
Q' and for each q € Q', a € X, w € Xk, there exists p € Q' such that (g,a,p) € A and
(aw)™'L.(A;) = w'L,(A,) hold.

Prookr. For the direction from left to right, let f be a k-delegator and Q' be the set of states
reachable by f from g, with full lookahead, i.e., the smallest set such that go € Q"and f(g, aw) €
Q' for each g € Q’, a € X, and w € Z*. For a contradiction, assume there are g € Q’, a € %,
and w € X such that (aw)™'L.(A;) #+ wL.(A,) for all p € Q" with (g,4, p) € A. Since g
is reachable from g, fix a word u € X* such that f leads to g and assume w.l.o.g. that g is
the first state on that run with the above property. Let p = f(g, aw). Then, there is a word
ve (aw)L.(Ag) N wlL,(A,), ie, awv € L.(A,) but wv ¢ L,(A,). Hence, we have that
f*(qo,uawv) = f*(q, awv) = f*(p,wv) ¢ F whereas uawv € L,(A) in contradiction to the
definition of a k-delegator.

For the other direction, we construct a k-delegator f from a set Q' with the above properties.
Foreach g€ Q,a € £, and w € =k, we set f(q, aw) = p as follows.

a) If |w| = kand g € Q’, then p € Q' becomes some state such that (g,a,p) € A and
(aw)'L.(Ay) = w'L.(A,) as directly guaranteed by the property.

b) If|w| < kand aw € L,(A,), then there is an a-successor p € Q of g such thatw € L, (A,).

c) If|w| < kand aw ¢ L.(A,), then fix some arbitrary a-successor p € Q of g.

Note that the case |w| = k and g ¢ Q' cannot occur due to the above property. It easily follows
by the definition of f* that f*(qo,v) € Fifv € L,(A). Hence, f is a k-delegator for A. O

Example 4.1.4. From the perspective of Lemma 4.1.3, let us reconsider the FSA A given in
Example 4.1.2. Since gy is the initial state, a set Q’ satisfying the property of Lemma 4.1.3 must
contain go. The only nondeterministic choice happens at q, with letter a. The two a-successors
of qo are qq itself and q,. The left quotients that are relevant for Lemma 4.1.3 are listed in the
following table for some relevant words w where L; = L. (A,):

w | (aw) 'L, wL, wlL,
€ Lyu L, L L
a | LyuL,ulL, LoulL, L,
aa | LouLiul, LyulLiul, L,
ab L, L, L,
b L Ly Ly

63

Chapter 4 Lookahead Delegation for Nondeterministic Automata

The underlined languages indicate correct choices according to Lemma 4.1.3. In detail, this

means that for w = ¢, one can see that neither the language w='L, nor w™'L, is equivalent to
(aw) 'L, which shows that there is no 0-delegator for .A. The row for w = a shows analogously
that there is no 1-delegator, either. When the lookahead is increased to 2, then the condition
of Lemma 4.1.3 is finally fulfilled. For w = aa, the left quotients are the same if and only if a
delegator chooses g as the a-successor of go. The remaining two lines show that the choice
does not matter for w € {ab, b, ba, bb}.

Note that the choice does also matter for the case w = a. This is not a contradiction, as the
condition in Lemma 4.1.3 only considers a lookahead that is completely filled. For shorter
lookahead at the end of the input, it follows that one can always reach an accepting state if a
word is accepted. In this example, in order to obtain a delegator, one further to go to g in case

ofw=a. <

4.1.1 Fixed Lookahead

In the following, we present for an arbitrary fixed number k € IN an algorithm that solves the
problem k-DELEGATOR, i.e., the algorithm decides the existence of a k-delegator for a given
FSA A and computes one if it exists. The special case 0-DELEGATOR corresponds to deciding
whether a given FSA A can be turned into an equivalent DFSA just by removing transitions.
The polynomial time decidability of this latter special case was shown in [AKLI0, Theorem 4.1]
and independently, it has been mentioned in the survey article [Coll2, Theorem 15] without a
proof. We generalize this result to an arbitrary fixed amount of lookahead.

The rough idea behind our approach is to construct a safety game G 4 x that simulates the
delegation. The two players play a sequence of actions in alternation. Player 1 is in charge of
the input, i.e., he has to choose the letters of an input word. Player 0 is in charge of transitions.
After each letter played by his opponent, he has to choose an appropriate transition. The goal
of Player 0 is to play an accepting run if a word contained in the language L, (.A) is formed by
Player 1.

The key property we want to achieve for this game is to show (later, in Lemma 4.1.7) that
Player 0 has a winning strategy if, and only if, A has a k-delegator. By using a game-based
approach, we obtain an intuitive formulation of the problem on the one hand, while we have
many game-theoretic results available on the other. Here, we especially use the facts that such
games are determined, that winning strategies are positional, and that such a winning strategy
can be synthesized in time linear in the size of the game. Ideally, the positions of G 4 x store
only the following information: the current state of A reached by Player 0, and a lookahead of
k letters (or less if the play goes towards the end of the input word) provided by Player 1. If this

64

4.1 Delegation for Finite State Automata

is the case, then a positional winning strategy for Player 0 directly corresponds to a delegator.

The main challenge is now to create a safety game where the states only store the information
mentioned above (which is also polynomial). The winning condition should express that the
state of Player 0 is accepting if the input word played by Player 1 is in the language. The
latter property does not depend on the current position alone but on the whole play instead.
Naively, one can implement this as a safety condition by additionally keeping track of the set of
reachable states by the input played by Player 1. However, the game vertices contain too much
information then, and it leads to a blowup that is exponential in the size of the automaton.

To solve this problem, we modify our game in such a way that Player 1 also has to choose a
transition for each input, but after Player 0 has chosen one. We show that, since Player 0 has to
make the choice of the transition first, the additional information on the transition chosen by
Player 1 does not help Player 0 (because basically, Player 0 has to choose a transition according
to Lemma 4.1.3, which only depends on the current state of Player 0). This means that in this
modified game, a winning strategy for Player 0 still corresponds to a k-delegator.

To summarize, the game G 4 x goes as follows. First, Player 1 gives the initial content of the
lookahead. Then, both players play in alternation. Player 0 chooses a transition for the next
input letter. Afterwards, Player 1 also chooses a transition for the same letter. Simultaneously,
he removes this letter from the lookahead (as both players have just processed it) and appends
a new letter, or he does not refill the lookahead if the input word should end. Consequently, a
game position encodes the content of the lookahead as well as one state for each player. The
safety condition for Player 0 now simply states that such vertices have to be avoided, where the
state of Player 1 is accepting and the state of Player 0 is non-accepting although the lookahead
is empty.

Definition 4.1.5. Given an ¢-free FSA A and k € IN, we define the k-delegator game to be
the safety game G 4 = (V, Vo, E, Q) where:

a) V={T}u ({O, 1} x 2k % Q x Q), (initial vertex and simulation vertices)
b) Vo= ({0} x 21 xQx Q),

c) E ¢ V x V containing the following edges:

i) (T, (0, w, qo» qo)) for w e Xsk+1 (initiate buffer)

ii) ((0, aw, q, p), (1, aw, q’,p)) for (q,a,q') € Aand w € Z=K,
(Player 0 applying transition)

65

Chapter 4 Lookahead Delegation for Nondeterministic Automata

iii) ((1, aw,q',p), (0, wb, q’,p’)) for (p,a,p’) e A,we XK anda,b €3,
(Player 1 applying transition, removing leftmost symbol, and refilling lookahead)

iv) ((1, aw,q',p), (0, w, q’,p’)) for (p,a,p’) e A,weZk andaceZ,
(Player 1 applying transition and removing leftmost symbol without refilling)

V) ((0, &q,0),(0,¢q, p)) forg,p € Q, (make vertices non-terminal)

if{(O,e,q,p)|q¢F/\peF}

2 otherwise. 4

d) Q(v) =

The number of vertices of G 44 is in (’)((k +1)-|Z[*+1-|QJ?) which is polynomial in |Q| and
|Z| for a fixed k. The game can be constructed in time polynomial in the number of vertices.

Example 4.1.6. Let us reconsider the FSA A of Example 4.1.2. In Figure 4.2, a part of the
1-delegator game G 4, is depicted in such a way that for Player 1, only one edge is enabled
from each vertex whereas for Player 0, all successors are considered. This deterministic choice
corresponds to a positional strategy for Player 1. The strategy always forces the play to an
unsafe vertex, no matter how Player 0 reacts. It hence is a positional winning strategy for
Player 1in G 4, from T. <

We show next that this is because there exists no 1-delegator for A (cf. Example 4.1.4).

Lemma 4.1.7. An e-free FSA A has a k-lookahead delegator iff Player 0 has a positional winning
strategy in G A from T.

Proor. The key observation is that for (a strategy of) Player 0, it is not important to know
which states Player 1 chooses since Lemma 4.1.3 states that left quotients are important rather
than exact states. As long as the property is fulfilled locally, Player 1 can w.l.o.g. be assumed to
just copy the choices of his opponent.

For the direction from right to left, suppose Player 0 has a positional winning strategy s.
We show the existence of a k-delegator for .A by proving that the condition from Lemma 4.1.3
is satisfied. For this purpose, let Q' be the set consisting of all states g € Q such that a vertex
of the form (0, aw, q, q), with a € ¥ and w € Z*, can be reached with s for some sequence of
moves of Player 1. Since trivially gy € Q’, it remains to show that for each such vertex, there is
a successor (1, aw, p, q) with (aw)™'L,(A;) = w'L.(A,). To the contrary, assume that there
exists a state g € Q’ such that (aw)™'L.(A,) # w'L.(A,) for each p € Q with (g, a, p) € A.
Then, no matter which p is chosen by Player 0, there is a word v € (aw) 'L, (Ag) \w™'L.(A,),

66

4.1 Delegation for Finite State Automata

Ol oS
1/, aa,qo,q\o 1/,aa,q1,q\0
e Gage) GOm0 @Ganga) O
l,a,qo,q1| l,a,ql,q1| @@I
0 Gamn) O

1> a, q0> ql

Figure 4.2: The (partial) 1-delegator game G 4, showing a positional winning strategy for

Player 1 (rounded vertices belong to Player 0, boxed ones to Player 1, and doubly
circled vertices are unsafe)

ie,awv e L.(Ay) but wy ¢ L.(A,). Player 1 can win from (1, aw, p, q) by continuing to play
the word v since there is a sequence of states that accepts awv from g but none that accepts
wv from p. This contradicts the property that s is a winning strategy for Player 0.

For the other direction, suppose A has a k-delegator f. We can naturally use it to define a
positional winning strategy s : V; — V for Player 0 where s(0, aw, q, p) = (1, aw, f(q, aw), p).
One can easily see by the construction of G4, and s that g = f*(qo, x) holds whenever a
terminal vertex (0, €, g, p) is reached after Player 1 has played a complete word x € £*. Player 0
wins because p € F implies x € L, (.A) and hence, g € F. O

By combining Lemma 4.1.7 with the linear-time determinacy of safety games from Proposi-
tion 2.2.2, we get the main result of this section. Consequently, the existence of a k-lookahead
delegator can be decided in time O((k +1)-|Z[F*1-|Q|?) for a given FSA A = (Q, 2, A, qo, F)
and a positive number k. This yields polynomial running time for a fixed k that we consider
in this section.

Corollary 4.1.8. For each k € IN, the problem k-DELEGATOR for e-free FSAs can be solved in
polynomial time.

67

Chapter 4 Lookahead Delegation for Nondeterministic Automata

This generalizes [RS07, Theorem 2] where polynomial time decidability of k-DELEGATOR for
each fixed k is shown for unambiguous FSAs. Further, the false statement of [RS07, Theorem 5]
is corrected.

As explained before, we consider the input to be a single FSA whereas in the original
motivation, the input consists of several DFSAs. It is shown in [MWO08] that the problem
0-DELEGATOR is EXPTIME-hard in the original setting were a tuple of DFSAs is given. This
is caused by the fact that the construction of a product of the DFSAs yields an FSA that is
exponentially larger.

4.1.2 Given Lookahead

We now consider the complexity of the problem DELEGATOR (where an FSA and a bound k
are given). Note that for deciding whether A has a k-lookahead delegator, the game-based
algorithm from the previous section yields a running time that is doubly exponential in the
binary representation of k. However, using a different algorithm, we can show that the problem
can be solved in polynomial space. The idea of our algorithm running in polynomial space
is to check whether the property of Lemma 4.1.3 holds. The main problem in checking this
condition with our space restriction is that we cannot enumerate all words w € 2* because
their length is exponential in the binary representation of k.

For that purpose, we introduce transition profiles, which can be used to circumvent this
problem. Intuitively, a transition profile of a word w for a given FSA A describes the possible
state transformations induced by w on 4, i.e., it consists of all pairs of states (p, q) such that
there is a w-labeled path from p to g.

Definition 4.1.9. For an FSA A and a word w € £*, we define the transition profile
A = {(ap)e@|q ™ p} c @ q

The main idea for checking the condition of Lemma 4.1.3 in polynomial space is to use
transition profiles that are induced by words of length k, instead of working directly with the
words. This is justified by the following simple observation that words with the same profile
have the same left quotient, too.

Lemma 4.1.10. Letx, y € X* besuchthat A, = A, foran FSA A. Then, x'L.(A;) = y'L.(A,)
forall g e Q.

68

4.1 Delegation for Finite State Automata

PROOEF. A trivial consequence of Definition 4.1.9 is that A,,, = A,,, for all w € X*. Then,

wexL,(A;) < xweL.(A)
< JpeF:(q,p) e
dpeF:(q,p) ey,

PEN
< yweL,(A)
<~

w ey 'L.(A). O
Theorem 4.1.11. The problem DELEGATOR for e-free FSAs is in PSPACE.

ProOOF. Let an e-free FSA A (with the usual components) and k be given. We show that for
each Q' ¢ Q, there is a nondeterministic PSPACE algorithm that checks whether the property
of Lemma 4.1.3 is satisfied. Savitch's theorem (see [Pap94, Theorem 7.5]) implies that there is
also a deterministic PSPACE algorithm.

Solet Q' ¢ Q with g, € Q. The algorithm tests for each q € Q and each a € %, whether for
each word w € 2 there is an a-successor p of g such that (aw)'L.(A,) = w'L.(A,). As
mentioned above, we cannot enumerate all words w € Z¥ because their length is exponential
in the binary representation of k. Instead, we work with the transition profiles induced by
the words w. Each such transition profile is of size polynomial in .4 and contains sufficient
information to test (aw)'L.(A;) = w'L.(A,). Lemma 4.1.10 allows us to restrict the test to
transition profiles, as words with the same transition profile induce the same left quotient.

We now describe the algorithm. Given Q’, g € Q’, and a € X, the algorithm proceeds as
follows. For each transition profile 7 € 22*Q:

a) Checkif r = A,, for some word w of length k. If it is the case, proceed with the next
point. Otherwise, move on to the next transition profile.

b) Let py,...,p, be the a-successors of g in Q’. Fori € {1,...,n}, let R; = {p €Q ‘
(pip) € T} be the set of states that are reached from p; in the profile 7. Let R = U\<;<,, R;.
Note that Lg, = w™'L,, and Lg = (aw) 'L, (A,), where for S ¢ Q, welet Lg = Uses Ls.

c) Checkif thereisanindex i€ {l,...,n} such that L = Lg,.

If the last test fails (meaning that there is no such index i), then Q' does not satisfy the property
of Lemma 4.1.3. If the test passes for all g, all a, and all the relevant transition profiles (those
passing the first test), then Q’ has the desired property and thus, .4 has a k-lookahead delegator.

It remains to verify that the steps of the algorithm can be carried out in polynomial space.
The first test uses the idea of checking reachability in a directed graph in logarithmic space.

69

Chapter 4 Lookahead Delegation for Nondeterministic Automata

In our setting, we use a counter for counting up to k (note that the number of bits needed
for the counter corresponds to the size of the binary representation of k), and successively
guess k steps to reach the transition profile 7. That is, we start with the transition profile A,
of the empty word. In each step, we guess a letter b € X and extend the current transition
profile A, to A,;,. After k steps, we check whether the resulting profile A,, is equal to 7. At
each moment, we only need to store the counter and the intermediate transition profile, which
requires polynomial space.

The second step just computes (in LOGSPACE) some sets from the transition profile 7.

The third step requires us to test n equivalences Ly = Lg,, where the languages are given by
FSAs with the sets R and R; as initial states, respectively. Since equivalence of FSAs can be
tested in polynomial space (see [AHU74]), this step is also in PSPACE. a

Theorem 4.1.12. The problem DELEGATOR for e-free FSAs is PSPACE-complete.

Proor. The upper bound follows from Theorem 4.L11.

For the lower bound, let M be some polynomially space bounded Turing machine that
solves a PSPACE-hard problem. We show that the word problem for M can be reduced to
the problem of the existence of a bounded lookahead delegator. The word problem for M is
to decide for a given word whether M accepts w, which is clearly PSPACE-hard because M
solves a PSPACE-hard problem.

Let h be the polynomial for the space bound of M. Given a word w, we construct an FSA
A that has a (2h(n) + 2)-lookahead delegator iff M rejects w, where n = |w|.

As usual, we encode configurations of M by words of the form x = usv, where uv is the
content of the tape of M, and s the current control state. The head of M in configuration usv
is on the first position of v. We can assume that [uv| = h(n). A computation of M is then
encoded by a word of the form #xo#x;# - - - k,#, where x, represents the initial configuration
of M on w, each «;,; encodes the successor configuration of x;, and x, encodes an accepting
configuration.

The core of the reduction is an FSA A,, that accepts a word if it does not encode an accepting
computation of M on w (see [AHU74, Lemma 10.2] for such a construction for regular
expressions instead of FSAs). For this purpose, A,, uses a product of automata testing the
following properties:

a) The word is not of the required form #xo#x,# - - - k,# where each «; is of the form u;s;v;
with |u;v;| = h(n).

b) The first configuration is not the initial configuration of M on w.

70

4.1 Delegation for Finite State Automata

c) The last configuration is not an accepting configuration.
d) There is an i such that «;,, is not the M-successor configuration of «;.

The first three properties can be easily checked by DFSAs of size linear in h(n). The last
property can be checked by an FSA that guesses at some symbol # that this corresponds to the
index 7, and then guesses a position j in x; and tests whether «;,, has been updated in a wrong
way at position j (to detect this, the three symbols at positions j -1, j, and j + 1 are sufficient).
The size of such an FSA is also linear in h(#n) (it needs to count up to h(n) for finding the
corresponding cell j in «;,;). All the automata can be constructed in logarithmic space from
M and w. The automaton A, is the product of these four automata that accepts if one of
its components accepts. Note that A, has a (2h(n) + 2)-lookahead delegator because it is
sufficient to know the next two configurations to decide which transition to take in the FSA for
the last property. Further, note that .4,, accepts all words if there is no accepting computation
of M on w. And if there is such an accepting computation, then 4,, does not accept the word
encoding it.

We now embed A,, into an FSA A to obtain the desired reduction. Let X be the alphabet of
A,,and let X, Y, Z be new letters. Define the languages

L = X*-L.(A,) - (Y +2),
L, = X*-3"-Y.

Note that L, ¢ L; iff L. (A,) = Z* iff M rejects w.

We construct A to accept the language X-(L;UL,). For this purpose, A nondeterministically
chooses from its initial state on the first X to either go to an automaton A, for L; or to an
automaton A, for L,. The automaton 4, is a simple extension of A, by an X-loop at the
beginning and transitions for processing the last Y or Z. The automaton .A, just consists of an
X-loop, followed by a Z-loop, followed by a transition for Y into an accepting state.

Now, assume that M rejects w. Then, L, ¢ L,, as noted above, and a lookahead delegator
for A can always choose the transition going to A; from the initial state. We already noted
that A, hasa (2h(n) + 2)—lookahead delegator. Overall, we obtain a (2h(n) + 2)—lookahead
delegator for 4 in this case.

Now, assume that M accepts w and that A has a k-lookahead delegator f for some k.
Consider the decision of f on the input prefix X**! which is the moment that a f has to choose
the first transition. If f moves to 4;, then pick the word v encoding the accepting computation
of M on w, followed by the letter Y. A; does not accept this word and therefore, f cannot be
a k-lookahead delegator because X**vY € L, (A).

71

Chapter 4 Lookahead Delegation for Nondeterministic Automata

If f moves to A,, then consider any word v accepted by A,, followed by Z. Then, X*vZ € L,
but A, only accepts words ending with Y. Hence, also in this case, f cannot be a k-lookahead
delegator.

This shows that 4 has a k-lookahead delegator for some k iff M rejects w. Furthermore, k
can be chosen as 2h(n) + 2. O

We note that in [RS07, Theorem 3], it is shown that the problem DELEGATOR for unambigu-
ous FSAs is contained in co-NP.

4.1.3 Bounded Lookahead

In this last subsection, we study the problem BOUNDED-DELEGATOR that is to decide whether
a given FSA has a k-delegator for some k € IN. The authors of [RS07] showed that this problem
is decidable for unambiguous FSAs and they believed it to be decidable for FSAs in general.
We solve this problem by proving an upper bound on the amount of lookahead that is required
maximally. The combination of this upper bound and the decision procedures of the previous
subsection classifies this problem also to be PSPACE-complete, too. But before that, we provide
an exponential lower bound on the amount of lookahead that is required in the worst case.

Example 4.1.13. Over a fixed alphabet, we give a family of automata each having a bounded
lookahead delegator. But, the required amount of lookahead grows exponentially in the
number of states.

The key to this lower bound is to enumerate all binary numbers with # bits for some fixed
arbitrary number n € IN,. Over the ternary alphabet ¥ = B u {#} we define the word

w, = #0---000#0---001#0---010#---#1---110 # 1---111 #
—_— Y — —_— —
bin, (0) bin, (1) bin, (2) bin, (27-2) bin,(2"-1)
where bin,, : [2"] - B" represents a number binarily with # bits. It is possible to detect an
error in w,, by an FSA with O(n) states. We hence consider the language L, = =* ~ {w,}
which is accepted by the union A = Apgrder U Aplock U Aend U Ainer U Acopy(o) U Acopyry Of the
e-free FSAs depicted in Figure 4.3.

Formally, the FSA A that recognizes the union Aporder U Ablock U Aend U Ainer U Acopy(0) U Acopy()
has states that are the disjoint union of the state sets of the FSAs plus a new initial state and a
sink state. The transition of the FSAs are copied. Further, each transition from an old initial
state can now also be used from the new initial state (with the same letter and target) and,
there is a transition from each state to the sink state for each letter. The property of a state
being accepting is inherited from the FSAs, whereas the new initial state is accepting if one of

72

4.1 Delegation for Finite State Automata

> 1 >
>
B

(@) L (Aborder) = T* N (#0*#2*#17#) (b) Ly (Aeng) = T #1*#25*

reads a word w € B* with |w| = n

(¢) Li (Aplock) = Z*(#Bﬁﬂfl# 4 #Bnﬂ)z*

reads a word w € (1*#B*) with |w| = n

0
1 1 1
0/* \#‘ \%‘f \#i
0,1 0’1 @ﬂ’ s =30 VERD
#
e

(d) Le(Ainer) = Z*{#IB*u#vw ‘ u€01*,v e B* with |uv| =n,we (0+ 10*1)}2*

reads a word w € (B*01*#IB*) with |w| = n

(€) Ly (Acopy(a)) = Z*{#uav#u’(l—a) | u,u’ € B*, v e B*01* with |u| = |u’| and |uav| = n}Z*

Figure 4.3: FSAs accepting L,

73

Chapter 4 Lookahead Delegation for Nondeterministic Automata

the old initial states is accepting (which is the case here as caused by Apoqer). Then, L, (\A) is
the union of the other FSAs.

It is easy to see from the construction that the number of states of A is in ®(n) and the
alphabet is constant. It remains to show that w, is the only word not accepted by A and that
a bounded delegator for .4 needs at least exponential lookahead. Regarding the first point,
consider a word w’ # w,, over X that is not accepted by Aporder U Abiock- We then know that
w' € #0"#(B"#)*1"#, i.e., w' consists of binary blocks of length » starting with 0" and ending
with 1" and that somewhere in between, the increment fails. Incrementing a binary number
(which is not of the form 1*) is simple: the suffix belonging to 01* is replaced by the suffix of
the form 10* of the same length whereas the prefix remains unchanged. Since we have already
fixed the block length, the increment can fail in two ways: Firstly, the suffix is not replaced
correctly or secondly, some letter in the prefix changes. The first error is detected by Ajpc
whereas Acqpy(0) and Acopyy detect whether in the prefix, a 0 turns into a 1 or the other way
around, respectively. A¢,q finally detects when the block #1"# is not the end of the sequence
(since incrementing does not work in this case as described above). Hence, w’ is accepted by
Aena U Ajper U Acopy(O) U Acopy(l)-

When A accepts a word, then it has to guess in the very first transition which error occurs
by entering the respective FSA of the union. The smallest lookahead of a delegator for A is
k =|w,| = 2"(n +1) + 1. In the first transition, a k-delegator for A can check whether the
lookahead is the word w,, itself and chooses to enter A.,q in this case. Otherwise, one of the
error cases described above has occurred already and f can enter the respective FSA. For a
contradiction, suppose A has a (k —1)-delegator f. Let w” € £* be the prefix of w, of length
k—1,ie., w"#=w,. If f chooses to enter Apoqer for the first transition of w” on A, then it fails
to accept the word w,## € L. Otherwise, the delegator cannot accept the word w”’ € L itself.
We can summarize that for each n € IN,, the FSA A has a delegator but its lookahead is at least
exponential in the number of states. <

We now show that if an FSA 4 has some k-delegator, then A also has some K-delegator
for a number K that is singly exponential in the size of A. To establish a bound K, we use a
technique inspired by [HKT12], where two-player games with lookahead for one of the players
are considered (by constructing a variant of the delegator game from Definition 4.1.5 where
Player 0 is allowed to use a delay).

In our setting, the main idea is the following. If the lookahead K is big enough, then it
contains an infix that can be pumped such that the considered lookahead word can be extended
to a word of length k (with k and K as explained above where we assume w.l.o.g. k > K). On
this longer lookahead word of length k, one can query the existing k-delegator and use the

74

4.1 Delegation for Finite State Automata

same decisions to obtain a shorter K-delegator.

The required pumping argument that we just mentioned is formalized by an extension of
Lemma 4.1.10 where we use transition profiles (cf. Definition 4.1.9) again.
Lemma 4.1.14. Let x, y,z € X* be such that A, = Ay, for an FSA A. Then, (xyz)'L.(Ay) =
(xy'z)'L.(Ag) forallqe Q and i e IN.

PROOE. An easy induction shows that A,, = A,,: for all i € N. Consequently, A, = A,
holds and the claim follows directly by Lemma 4.1.10. O

Using a simple counting argument, we can show that each word of a certain length has a
decomposition x yz as in Lemma 4.1.14.
Lemma 4.1.15. For an FSA A, each word w € 3K of length K = 2| can be decomposed as
w=xyzwith y # € and A, = A,,.

PrOOF. A word of length 2/QF° has 2/Q* + 1 prefixes. Two different prefixes must have the same
transition profile since there are at most 2/Q* transition profiles. This implies the existence of
the claimed decomposition. O

We now combine Lemma 4.1.14 and Lemma 4.1.15 to prove that the bound K = 2/ is the

maximal ‘useful’ lookahead.

Theorem 4.1.16. An e-free FSA A has a K-lookahead delegator if it has a bounded lookahead
delegator.

PROOF. Let f be a k-delegator for A where k > K w.l.o.g. We show that the property on the
right hand side of Lemma 4.1.3, which holds for k by assumption, also holds for K for the
same set Q' € Q. To this end, we have to show that for every g € Q’, a € £, and w € ZK,
there is some p € Q' with (g, a, p) € Aand (aw)™'L.(A;) = wL.(A,). We know that there
is a decomposition w = xyz with y # e and A, = A,,. Choose i € IN and a proper prefix
y' of y such that |xy'y’| = k. Let y” be such that y = y’'y". Finally, we pick some p € Q’
with (g, a, p) € A such that (axy’y’)"'L.(A;) = (xy'y")"'L.(A,) the existence of which is
guaranteed by Lemma 4.1.3 for k-lookahead. With Lemma 4.1.14, we can now show that the

75

Chapter 4 Lookahead Delegation for Nondeterministic Automata

desired property holds for K-lookahead:

(axyz)'L.(A;) = (axy™'z)"'L.(A,) (Lemma 4.1.14)
= (axy'y'y"z)'L.(A,) (y=yy"
= (y"z)*((axy'y")'L.(A4;)) (composition of left quotients)
= (»"2)((xy'y")'L.(A,)) (Lemma 4.1.3 for k-lookahead)

= (xy'y'y"2)'L.(A,) (composition of left quotients)
= (xy™2) L. (Ay) (="
= (xyz)"'L.(A,) (Lemma 4.1.14) 0

Since the bound K is singly exponential in the number of states of A and therefore has a
binary representation that is polynomial in the size of A, Theorem 4.1.11 implies that BOUNDED-
DELEGATOR also is in PSPACE. Furthermore, our reduction showing that DELEGATOR is
PSPACE-hard also shows that BOUNDED-DELEGATOR is PSPACE-hard (see proof of Theo-
rem 4.1.12).

Corollary 4.1.17. The problem BOUNDED-DELEGATOR for e-free FSAs is PSPACE-complete.

In [RSO7, Theorem 4], it is shown that BOUNDED-DELEGATOR is in PSPACE for unambiguous
FSAs. This result is generalized by Corollary 4.1.17. However, the FSA constructed in the proof
of Theorem 4.1.12 for the PSPACE lower bound is ambiguous, in general, and therefore, our

completeness result does not extend to unambiguous automata.

4.2 Delegation for Pushdown Automata

The concept of lookahead delegation can also be extended to pushdown automata. The
delegator has to choose a transition based on the current state, stack top symbol, and the
input with lookahead. Note that there is no lookahead on the stack content. This is also the
reason why we have to avoid e-transitions here, although they can be useful for pushdown
automata. Our results get not in touch with e-transitions anyway. We first define delegators
for pushdown automata which extends Definition 4.1.1.

Definition 4.2.1. For an ¢-free PDA A4 and a number k € IN, a k-lookahead delegator (or
k-delegator for short) is a function f : Q x I x £¥<k - Q x [* such that

a) f(g,A,aw) = (p, W) implies (g, A,a,p, W) e Aforeachqe Q,Ael,aec X, we sk
and

76

4.2 Delegation for Pushdown Automata

b) f*(qoL,w) € FT*1 for each w € L,(A), where f*: (QI*1) x £* - QI'* L extends f to
words and is defined inductively as follows: let f*(gW,¢) = gW for each configuration
gW, and let f*(qAV,a;---a,) = f*(pUV, ay---a,) with f(q,A, a1+ Gmin(nks1)) =
(p, U) for a configuration gAV and a nonempty word a; - - - a,, of length n. <

The two conditions again express that only transitions are chosen by the delegator and that
it leads to an accepting state for each word accepted by the automaton.

We first consider the restricted case of visibly pushdown automata. For them, we present
a construction which borrows the idea of the ‘delegated automaton’” from Example 4.1.2 and
thereby, we finally obtain a reduction to the emptiness problem for PDAs.

Theorem 4.2.2. For given k € IN, it is decidable whether a VPDA has a k-lookahead delegator.
When k and X are fixed, the problem lies in NP.

Proor. For a given VPDA A and a delegator candidate f, we want to construct an automaton
Ay that stores the lookahead information in its state space and deterministically simulates the
behavior of f. It then remains to check the language inclusion by reducing it to the emptiness
problem for VPDAs: L.(A) € L.(Ay)iff L.(A) nL.(Ay) = @. The complement of A, can be
computed easily due to the determinism of .A. The problem is rather that A, would not fulfill
the visibly property any longer. The emptiness of the intersection with another pushdown
language is not decidable in general.

We overcome this difficulty by given an explicit product construction for A x Ay, i.e., the
product of A and the complement of A;. The key idea is that both automata take transitions
synchronously, i.e., they process input letters synchronously which implies that the stack
heights are synchronous, too. The stack of the product can hence be implemented by a stack
of symbol tuples. The first component can choose transitions nondeterministically whereas
the second component must stick to f. This yields a PDA (with only e-transitions) which can
be checked for emptiness in P (see [HU79]).

Formally, fora VPDA A = (Q,X,T, A, qo, L, F) and f as above, we define the PDA A’ =
(Q,XZ,1I",A, q), L', F") consisting of:

a) states Q' = (Q x Q x =) w {qy} with F' = F x (Q \ F) x {¢},
b) stack alphabet I'" = T'? with 1’ = (1, 1),

¢) transitions:

i) A3 (q{), 1, & (90> 90, W), L’) where w € 2=k,

77

Chapter 4 Lookahead Delegation for Nondeterministic Automata

11) A5 ((ql) 92> W)) (AI)AZ)) &, (Pl) p2> W,)) (Bl,l) BZ,I) e (Bl,mBZ,n)) for some letter
a € ¥ and decomposition wa = a’w’ such that w,w’ € 2k, a’ € ¥, and where
A> (qb Ala a,) pl) Bl,l e Bl,n) and f((h, AZ) alwl) = (Pz, BZ,] e BZ,n)>

lll) A" > ((ql» q2» aW), (AI)AZ)) &, (pl) pZ) W)a (Bl,l)BZ,l) e (Bl,n) BZ,n)) Where ace Z)
w € ZSk_l) A>s (ql: Ab a’pla Bl,l e Bl,n)’ and f(qZ: AZ) aW) = (P2> BZ,I o 'BZ,VL)'

The three schemes for transitions are motivated as follows. Transitions of the first scheme
are used to initiate the lookahead buffer with a (possibly shorter) word. The second scheme
defines transitions for a completely filled lookahead. This is done by guessing some letter a
to append to the lookahead w, to guess a transition for the first component, and to use the
transition suggested by f in the second component. The transitions of the last scheme are
used at the end of the simulated input, which is when the lookahead is not completely filled
any more. The transitions for the components are chosen analogous to the previous case. By
construction, we obtain that L, (A’) = @iff L,(A) n L.(Af) = @.

Complexity: We construct the PDA A’ with O(k-|Z[F-|QJ?) states over a stack alphabet of
size (9(|F|2). The worst case running time of the emptiness test on A’ dominates the whole

procedure. =

To prove the decidability of k-DELEGATOR in Theorem 4.2.2, we crucially relied on the
decidability of the inclusion problem. However, it is known for decades that language inclusion
is undecidable for DOCAs (recently shown in [BGI1] by using [Min61, VP75]).

Theorem 4.2.3. It is undecidable whether an e-free OCA has a 0-lookahead delegator.

Prookr. We reduce the inclusion problem for e-free DOCAs (which is undecidable [BG11]) to
0-DELEGATOR for e-free OCAs. Let A, and A, be two ¢-free DOCAs over some alphabet =
not containing the symbol #, and let g, and gy, be the initial states, respectively. Figure 4.4
depicts an e-free OCA A that accepts the language L. (A) = #2*# U #L,(A;) U#L,(A,) over
the alphabet 3’ = ¥ v {#}. Note that the only nondeterministic choice occurs with symbol
at the initial state gy of .A. We complete the proof by showing that A has a 0-delegator ift
L.(A) € L,(A,). The idea behind this construction is that in case of L, (A;) € L.(A;), one
can always safely enter A, in the first step. But in the other case, nondeterminism is needed to
be able to accept both ## and #w for some word w € L, (A;) \ L. (A).

Suppose L, (A;) € L.(A,). Since #71L,(A) = L.(Ag,,) = L.(Az) U Z*#, there is no need
to enter .4;. Hence, a 0-delegator f would always choose to go to A,, i.e., f(qo,#) = qo.2-

For the other direction, suppose A has a 0-delegator f. Then, it holds that f(qo, #) = qo.2,
because if f(qo,#) # qo1, then f would not accept the word ## € L, (A). From f(qo, #) = qo

78

4.2 Delegation for Pushdown Automata

Figure 4.4: Automaton accepting the language #>*# U #L, (A;) U #L.(A,)

and #L. (A1) ¢ L.(Ay,) directly follows that L, (A;) € L.(Ay,,) which yields the desired
inclusion when restricting to ¥, i.e., L, (A;) € L. (A,). O

Theorem 4.2.4. It is undecidable whether an e-free OCA has a bounded lookahead delegator.

Proor. The idea is based on the proof of [FLZ11, Theorem 4]. Let M be a 2-register machine
with state set Q. We demand w.l.o.g. that no configuration occurs twice in the unique run
of M (which can be achieved by adding a third register which is incremented every other
step and then, simulating this 3-register machine by a 2-register machine). A configuration
(g, 1o, n1) of M is encoded by the word g$,°$;". Over the alphabet £ = Q U {$, $;, #}, we
consider the language L ¢ X* consisting of exactly those words w € #0#(Q$$, #)* that encode
a sequence of configurations cy, . . ., ¢, starting with the initial configuration c, and containing
a pair c;, cj,; of successive configurations where c;,, is not the successor of ¢; according to M.
Note that the encoding of a configuration and its successor differ in length by at most 1. L is
accepted by an e-free OCA A that guesses at the beginning of each configuration whether its
successor is updated incorrectly. If this is the case, then the update was wrong in one of the
three components of a configuration: the state, register 0, or register 1. The respective case can
also be guessed and checked by A using its counter. Since the halting problem for 2-register
machines is undecidable, it remains to show that A has a delegator iff M halts (cf. Section 2.4).

Suppose M halts after h steps. Consequently, every run coc; - - - ¢4 With h + 1 steps has
to contain an erroneous update. The encoding of such a run has a length of at most k =
(h+3) + X!(i +1). By using a k-lookahead, one can deterministically detect and verify an
error of each type. Hence, A has a k-delegator.

79

Chapter 4 Lookahead Delegation for Nondeterministic Automata

For the other direction, suppose M does not halt. Since the run is infinite and we excluded
a loop in the configurations of its run, we can conclude that the encoded configurations

have unbounded length. Hence, no bounded lookahead can detect an erroneous update of a
sufficiently long configuration.]

Although we achieved decidability results for k-DELEGATOR and DELEGATOR in Theo-

rem 4.2.2, the latter two results prove the undecidability of delegation for pushdown automata
in general.

80

Chapter 5

Conclusion

In this thesis, we have studied various simplification problems for automata and games. First,
we have considered the regularity problem for pushdown automata. Motivated by its decidabil-
ity for finite words, we have tackled the case for infinite words which was an open problem.
We have further generalized the regularity problem to pushdown games as those games are
specified by pushdown w-automata. As a second aspect of simplification, we have considered
lookahead delegation for nondeterministic automata.

Regularity Problems

In Chapter 3, our first contributions are about regular winning strategies for pushdown games.
We have shown that it is impossible in general to decide the existence of a finite state winning
strategy. In fact, the only decidability result we have obtained concerns the very limited case
of games with reachability conditions. We have proven this case to trivially omit very simple
strategies. For the dual case of games with safety conditions, we have proven the regularity
problem to be undecidable. Although the safety condition itself is simple already, we showed
the undecidability even for two different restrictions of the pushdown game specification,
namely for one-counter games and for visibly pushdown games. It seems that the hardness of
the problem is more connected to the winning condition than to the pushdown specification
of a game.

We have proceeded by contributing the classification game. It is designed to express ac-
ceptance of a pushdown w-automaton by a pushdown game. We have proven that various
aspects of simplification of the w-automaton are directly connected to the corresponding
simplifications in the game. We have shown that the classification game can be used to decide
whether an w-language can be recognized by w-automata with certain restricted acceptance
condition; like Biichi, co-Biichi, weak, safety, or reachability. Although these results were
known before, the novelty of our game-based approach is an intuitive understanding and

81

Chapter 5 Conclusion

that it leads to less technical proofs. Regarding regularity, we have shown that the automaton
recognizes a regular language iff the classification game omits a regular winning strategy. This
reveals the regularity problem for pushdown w-languages to be a special case of the one for
pushdown games. However, as we have previously shown the game-based approach to be
undecidable, this tells us that we require specific solutions for w-languages.

As a first contribution regarding regularity of pushdown w-languages, we have presented
a normal form for weak pushdown w-automata. We have proven that it allows us to simply
lift some known decision procedures from finite words to w-words. This way, we have shown
both, the equivalence problem and the regularity problem to be decidable for weak pushdown
w-automata. Regarding the complexity, we have proven our regularity test to run in triply
exponential time and to produce an equivalent finite state w-automaton having a worst case
size between singly and doubly exponential. Surprisingly, our space complexity corresponds
to the one for finite words, although, our normal form induces an exponential blowup of the
automaton.

By a last contribution, we have tackled the case of regularity for pushdown w-automata with
non-weak acceptance condition. We have established a congruence relation and have proven
it to characterize regularity for this class of w-languages. In an example, we have shown that
the characterization property is only obtained when the congruence is applied to this class of
w-languages. Further, the decidability of the regularity problem remains open.

To summarize the regularity problems for pushdown automata and games, the following
table orders the problems by increasing complexity beginning from pushdown automata on
finite words up to games on pushdown w-automata and it gives an overview of our main

contributions:
Known results: Our contributions:
Problem DPDA weak w-DPDA ‘ w-DPDA ‘ PDG
Regularity H 3EXPTIME [Val75] ‘ 3EXPTIME ‘ - ‘ undecidable

For each of the three variants of regularity that we have considered, questions for future
work arise. The most interesting one is surely the old open problem from [CG78] whether the
regularity problem is decidable for pushdown w-automata. For pushdown games, it might be
possible to obtain more decidability results for restricted cases like visibly one-counter games.
For weak pushdown w-automata, there remains a small gap in the size complexity of our
construction. It is further interesting whether the complexity can be improved for restricted
cases; especially for weak one-counter w-automata. This is motivated by the existence of faster

82

algorithms regarding one-counter automata on finite words for the regularity problem [VP75]
and the equivalence problem [BGI1, BGJ13].

Lookahead Delegation

In Chapter 4, we have considered lookahead delegators for nondeterministic automata. Our
research was motivated by [RS07] where the delegator problem was introduced for finite state
automata, subdivided into three different formulations, and upper bounds were given for each
formulation but only for the restricted subclass of unambiguous finite state automata.

We continued these studies and have contributed respective complexity results for finite
automata in general. First, we have given an algorithm based on safety games that shows
how the existence of a delegator can be computed in polynomial time when the amount of
lookahead is fixed. This results further corrects a wrong result from the literature. However,
our algorithms has a rather poor complexity if the amount of lookahead becomes a part of the
input. As a second contribution, we have developed different decision procedure for that case
and have used it to prove that the problem is PSPACE-complete. In our third contribution, we
have provided an upper bound on the maximally required amount of lookahead. Combined
with the previous result, we have shown that deciding the existence of a lookahead delegator
for some bounded lookahead is PSPACE-complete, too. In total, our results have given a
complete picture for the complexities of delegator problems for finite state automata.

We have further generalized the delegator problems to pushdown automata. We have shown
that the naive approach can be applied to visibly pushdown automata which has allowed us the
decide the existence of a delegator for a given amount of lookahead. In fact, this problem is
contained in NP if the lookahead is fixed. Besides this positive result, we have further proven
that for one-counter automata, even the simplest problem is undecidable; namely deciding the
existence of a delegator without lookahead. The undecidability for this very restricted case is
passed on to other less restricted cases.

The following table gives an overview of results about delegation for various classes of
automata (ordered by expressiveness):

Known results: Our contributions:

Problem unamb. FSA FSA VPDA OCA & PDA
Fixed P [RSO7] P NP undecidable
Given co-NP [RS07] PSPACE-complete | decidable undecidable

Bounded PSPACE [RS07] PSPACE-complete - undecidable

83

Chapter 5 Conclusion

The above pictures does not lead to many questions for future work. Although, there are some
problems open that concern restricted cases. We have obtained our PSPACE-hardness results
with finite state automata that are ambiguous. Hence, the upper bounds for unambiguous
automata might be improved. Another open problem remains for a restricted pushdown
case: is it decidable whether a visibly pushdown automaton has a delegator for some bounded
lookahead? It would further be interesting to extend lookahead delegation to w-automata.

84

Bibliography

[ACKMO04]

[AHU74]

[AKLI10]

[AKMV05]

[AMO04]

[BCG+03]

[BGl1]

[BGJ13]

G. ALoNso, E. Casarti, H. A. KuNo, AND V. MACHIRAJU. Web Services - Concepts,
Architectures and Applications. Data-Centric Systems and Applications. Springer,
2004.

A. V. AHo, J. E. HOPCROFT, AND J. D. ULLMAN. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

B. AMINOF, O. KUPFERMAN, AND R. LAMPERT. Reasoning about Online Algo-
rithms with Weighted Automata. ACM Transactions on Algorithms, 6(2), 2010.

R. ALUR, V. KUMAR, P. MADHUSUDAN, AND M. VISWANATHAN. Congruences
for Visibly Pushdown Languages. In L. CAIRES, G. F. ITALIANO, L. MONTEIRO,
C. PALAMIDESSI, AND M. YUNG, editors, ICALP, volume 3580 of Lecture Notes in
Computer Science, pages 1102-1114. Springer, 2005.

R. ALUR AND P. MADHUSUDAN. Visibly Pushdown Languages. In L. BABAIL, editor,
STOC, pages 202-211. ACM, 2004.

D. BERARDI, D. CALVANESE, G. D. GIAcOMO, M. LENZERINI, AND M. MECELLA.
Automatic Composition of E-services That Export Their Behavior. In M. E.
ORLOWSKA, S. WEERAWARANA, M. P. PAPAZOGLOU, AND J. YANG, editors, ICSOC,
volume 2910 of Lecture Notes in Computer Science, pages 43-58. Springer, 2003.

S. BouM AND S. GOLLER. Language Equivalence of Deterministic Real-Time
One-Counter Automata Is NL-Complete. In F. MURLAK AND P. SANKOWSKI,
editors, MFCS, volume 6907 of Lecture Notes in Computer Science, pages 194-205.
Springer, 2011.

S. BOHM, S. GOLLER, AND P. JANCAR. Equivalence of Deterministic One-Counter
Automata is NL-complete. In D. BONEH, T. ROUGHGARDEN, AND J. FEIGENBAUM,
editors, STOC, pages 131-140. ACM, 2013.

85

http://doi.acm.org/10.1145/1721837.1721844
http://doi.acm.org/10.1145/1721837.1721844
http://dx.doi.org/10.1007/11523468_89
http://dx.doi.org/10.1007/11523468_89
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1007/978-3-540-24593-3_4
http://dx.doi.org/10.1007/978-3-642-22993-0_20
http://dx.doi.org/10.1007/978-3-642-22993-0_20
http://dx.doi.org/10.1145/2488608.2488626
http://dx.doi.org/10.1145/2488608.2488626

Bibliography

[BKO08]

[BL69]

[Biic62]

[Cac02]

[CG77a]

[CG77b]

[CG78]

[CHPO7]

[Chu57]

[Chu63]

[CKS81]

86

C. BAIER AND].-P. KATOEN. Principles of model checking. MIT Press, 2008.

J. R. BUcH1 AND L. H. LANDWEBER. Solving Sequential Conditions by Finite-State
Strategies. Transactions of the American Mathematical Society, 138:295-311, 1969.

J. R. BocHI. On a decision method in restricted second-order arithmetic. In
E. NAGEL, P. SuPPES, AND A. TARSK], editors, International Congress for Logic,
Methodology and Philosophy of Science, pages 1-11. Stanford University Press, 1962.

T. CacHAT. Symbolic Strategy Synthesis for Games on Pushdown Graphs. In
P. WIDMAYER, E. T. Ruiz, R. M. BUENO, M. HENNESSY, S. EIDENBENZ, AND
R. ConEjo, editors, ICALP, volume 2380 of Lecture Notes in Computer Science,
pages 704-715. Springer, 2002.

R. S. CoHEN AND A. Y. GoLD. Theory of w-Languages. I. Characterizations of w-
Context-Free Languages. Journal of Computer and System Sciences, 15(2):169-184,
1977.

R. S. CoHEN AND A. Y. GoLD. Theory of w-Languages. II. A Study of Various
Models of w-Type Generation and Recognition. Journal of Computer and System
Sciences, 15(2):185-208, 1977.

R. S. CoHEN AND A. Y. GoLp. w-Computations on Deterministic Pushdown
Machines. Journal of Computer and System Sciences, 16(3):275-300, 1978.

K. CHATTERJEE, T. A. HENZINGER, AND N. PITERMAN. Generalized Parity Games.
In H. SEIDL, editor, FoSSaCs, volume 4423 of Lecture Notes in Computer Science,
pages 153-167. Springer, 2007.

A. CHURCH. Applications of recursive arithmetic to the problem of circuit syn-
thesis. In Summaries of the Summer Institute of Symbolic Logic, volume 1, pages
3-50. Cornell Univ., Ithaca, 1957.

A. CHURCH. Logic, Arithmetic, and Automata. In Proc. International Congress of
Mathematicians, Inst. Mittag-Leffler, Djursholm, Sweden, pages 23-35. Almqvist
and Wiksells, Uppsala, 1963.

A. K. CHANDRA, D. KoZzEN, AND L. J. STOCKMEYER. Alternation. Journal of the
ACM, 28(1):114-133, 1981.

http://dx.doi.org/10.2307/1994916
http://dx.doi.org/10.2307/1994916
http://dx.doi.org/10.1007/3-540-45465-9_60
http://dx.doi.org/10.1016/S0022-0000(77)80004-4
http://dx.doi.org/10.1016/S0022-0000(77)80004-4
http://dx.doi.org/10.1016/S0022-0000(77)80005-6
http://dx.doi.org/10.1016/S0022-0000(77)80005-6
http://dx.doi.org/10.1016/0022-0000(78)90019-3
http://dx.doi.org/10.1016/0022-0000(78)90019-3
http://dx.doi.org/10.1007/978-3-540-71389-0_12
http://dx.doi.org/10.1145/322234.322243

Bibliography

[CM99]

[Col12]

[COTI12]

[DISO5]

[DJW97]

[EHRS00]

[EJ91]

[FLZ11]

[Fril0]

[GHS2]

O. CARTON AND R. MACEIRAS. Computing the Rabin Index of a Parity Automaton.
Informatique Théorique et Applications, 33(6):495-506, 1999.

T. CoLcoMBET. Forms of Determinism for Automata (Invited Talk). In C. DURR
AND T. WILKE, editors, STACS, volume 14 of LIPIcs, pages 1-23. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2012.

N. CHATURVEDI,]. OLSCHEWSKI, AND W. THOMAS. Languages versus w-
Languages in Regular Infinite Games. International Journal of Foundations of
Computer Science, 23(5):985-1000, 2012.

Z.DANG, O. H. IBARRA, AND J. Su. On composition and lookahead delegation of
e-services modeled by automata. Theoretical Computer Science, 341(1-3):344-363,
2005.

S. DzZIEMBOWSKI, M. JURDZINSKI, AND I. WALUKIEWICZ. How Much Memory is
Needed to Win Infinite Games? In LICS, pages 99-110. IEEE Computer Society,
1997.

J. EsparzA, D. HANSEL, P. RossMANITH, AND S. ScHwooN. Efficient Algorithms
for Model Checking Pushdown Systems. In E. A. EMERSON AND A. P. S1STLA,
editors, CAV, volume 1855 of Lecture Notes in Computer Science, pages 232-247.
Springer, 2000.

E. A. EMERSON AND C. S. JuTLA. Tree Automata, Mu-Calculus and Determinacy
(Extended Abstract). In FOCS, pages 368-377. IEEE Computer Society, 1991.

W. FriDMAN, C. LODING, AND M. ZIMMERMANN. Degrees of Lookahead in
Context-free Infinite Games. In M. BEzEM, editor, CSL, volume 12 of LIPIcs,
pages 264-276. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2011.

W. FrRiDMAN. Formats of Winning Strategies for Six Types of Pushdown Games.
In A. MONTANARI, M. NAPOLI, AND M. PARENTE, editors, GANDALF, volume 25
of EPTCS, pages 132-145, 2010.

Y. GUREVICH AND L. HARRINGTON. Trees, Automata, and Games. In H. R. LEwis,
B. B. SIMONS, W. A. BURKHARD, AND L. H. LANDWEBER, editors, STOC, pages
60-65. ACM, 1982.

87

http://dx.doi.org/10.1051/ita:1999129
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.1
http://dx.doi.org/10.1142/S0129054112400412
http://dx.doi.org/10.1142/S0129054112400412
http://dx.doi.org/10.1016/j.tcs.2005.06.009
http://dx.doi.org/10.1016/j.tcs.2005.06.009
http://dx.doi.org/10.1109/LICS.1997.614939
http://dx.doi.org/10.1109/LICS.1997.614939
http://dx.doi.org/10.1007/10722167_20
http://dx.doi.org/10.1007/10722167_20
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.264
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.264
http://dx.doi.org/10.4204/EPTCS.25.14
http://dx.doi.org/10.1145/800070.802177

Bibliography

[GHIS04]

[Grill]

[HKT12]

[HMUOI1]

[HO09]

[HU79]

[Lan69]

[Lin77]

[Lod98]

[L&do1]

[LR12]

[LR13]

88

C. E. GEREDE, R. HuLL, O. H. IBARRA, AND J. Su. Automated Composition of
E-services: Lookaheads. In M. A1eLLo, M. AovyaMA, F. CURBERA, AND M. P.
PapazoGLov, editors, ICSOC, pages 252-262. ACM, 2004.

E. GRADEL. Back and Forth Between Logics and Games. In Lectures in Game
Theory for Computer Scientists, pages 99-145. Springer, 2011.

M. HoLTMANN, L. KAISER, AND W. THOMAS. Degrees of Lookahead in Regular
Infinite Games. Logical Methods in Computer Science, 8(3), 2012.

J. E. HorcrOFT, R. MOTWANTI, AND J. D. ULLMAN. Introduction to Automata
Theory, Languages, and Computation (Second Edition). Addison-Wesley series in
computer science. Addison-Wesley-Longman, 2001.

M. HAGUE AND C.-H. L. ONG. Winning Regions of Pushdown Parity Games:
A Saturation Method. In M. BRAVETTI AND G. ZAVATTARO, editors, CONCUR,
volume 5710 of Lecture Notes in Computer Science, pages 384-398. Springer, 20009.

J. E. HorCROFT AND J. D. ULLMAN. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

L. H. LANDWEBER. Decision Problems for w-Automata. Mathematical Systems
Theory, 3(4):376-384, 1969.

M. LiNNA. A Decidability Result for Deterministic w-Context-Free Languages.
Theoretical Computer Science, 4(1):83-98, 1977.

C. LopING. Methods for the Transformation of w-Automata: Complexity and Con-
nection to Second order Logic. Diplomarbeit, Christian-Albrechts-Universitdt of
Kiel, 1998.

C. LopinG. Efficient minimization of deterministic weak w-automata. Informa-
tion Processing Letters, 79(3):105-109, 2001.

C. LopING AND S. REPKE. Regularity Problems for Weak Pushdown w-Automata
and Games. In B. RovaN, V. SASSONE, AND P. WIDMAYER, editors, MFCS, volume
7464 of Lecture Notes in Computer Science, pages 764-776. Springer, 2012.

C. LODING AND S. REPKE. Decidability Results on the Existence of Lookahead
Delegators for NFA. In A. SETH AND N. K. VisuNol, editors, FSTTCS, volume 24

http://dx.doi.org/10.1145/1035167.1035203
http://dx.doi.org/10.1145/1035167.1035203
http://www.logic.rwth-aachen.de/pub/graedel/backandforth.pdf
http://dx.doi.org/10.2168/LMCS-8(3:24)2012
http://dx.doi.org/10.2168/LMCS-8(3:24)2012
http://dx.doi.org/10.1007/978-3-642-04081-8_26
http://dx.doi.org/10.1007/978-3-642-04081-8_26
http://dx.doi.org/10.1007/BF01691063
http://dx.doi.org/10.1016/0304-3975(77)90058-5
http://automata.rwth-aachen.de/~loeding/diploma_loeding.pdf
http://automata.rwth-aachen.de/~loeding/diploma_loeding.pdf
http://dx.doi.org/10.1016/S0020-0190(00)00183-6
http://dx.doi.org/10.1007/978-3-642-32589-2_66
http://dx.doi.org/10.1007/978-3-642-32589-2_66
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.327
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.327

Bibliography

[McN66]

[Min61]

[Mos91]

[MP43]

[MWO08]

[Pap94]

[PP04]

[Ram30]

[RS07]

[RTO07]

[Saf88]

[Sén01]

of LIPIcs, pages 327-338. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2013.

R. McNauGHTON. Testing and Generating Infinite Sequences by a Finite Au-
tomaton. Information and Control, 9(5):521-530, 1966.

M. L. Minsky. Recursive Unsolvability of Post’s Problem of “Tag” and other
Topics in Theory of Turing Machines. The Annals of Mathematics, 74(3):437-455,
November 1961.

A. W. MosTowskl. Games with Forbidden Positions. Technical Report 78,
Uniwersytet Gdanski, Instytut Matematyki, 1991.

W. S. McCurrocH AND W. P1TTs. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5(4):115-133, 1943.

A. MuscHoLL AND I. WALUKIEWICZ. A Lower Bound on Web Services Composi-
tion. Logical Methods in Computer Science, 4(2), 2008.

C. H. PapapiMITRIOU. Computational complexity. Addison-Wesley, 1994.

D. PERRIN AND J.-E. PIN. Infinite words, volume 141 of Pure and Applied Mathe-
matics. Elsevier, 2004.

E P. RAMSEY. On a problem in formal logic. Proc. London Mathematical Society,
30(3):264-286, 1930.

B. RAvIKUMAR AND N. SANTEAN. On the Existence of Lookahead Delegators for
NFA. International Journal of Foundations of Computer Science, 18(5):949-973,
2007.

A. RaBiNovicH AND W. THoMAS. Logical Refinements of Church’s Problem. In
J. DurPARC AND T. A. HENZINGER, editors, CSL, volume 4646 of Lecture Notes in
Computer Science, pages 69-83. Springer, 2007.

S. SAFRA. On the Complexity of w-Automata. In FOCS, pages 319-327. IEEE
Computer Society, 1988.

G. SENIZERGUES. L(A)=L(B)? decidability results from complete formal systems.
Theoretical Computer Science, 251(1-2):1-166, 2001.

89

http://dx.doi.org/10.1016/S0019-9958(66)80013-X
http://dx.doi.org/10.1016/S0019-9958(66)80013-X
http://links.jstor.org/sici?sici=0003-486X%28196111%292%3A74%3A3%3C437%3ARUOPPO%3E2.0.CO%3B2-N
http://links.jstor.org/sici?sici=0003-486X%28196111%292%3A74%3A3%3C437%3ARUOPPO%3E2.0.CO%3B2-N
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.2168/LMCS-4(2:5)2008
http://dx.doi.org/10.2168/LMCS-4(2:5)2008
http://dx.doi.org/10.1112/plms/s2-30.1.264
http://dx.doi.org/10.1142/S0129054107005078
http://dx.doi.org/10.1142/S0129054107005078
http://dx.doi.org/10.1007/978-3-540-74915-8_9
http://dx.doi.org/10.1109/SFCS.1988.21948
http://dx.doi.org/10.1016/S0304-3975(00)00285-1

Bibliography

[Sén02]

[Ser03]

[SS07]

[Sta83]

[Ste67]

[Stro4]

[SV02]

[Val75]

[VP75]

[Wal01]

[Zie98]

90

G. SENIZERGUES. L(A)=L(B)? A simplified decidability proof. Theoretical Com-
puter Science, 281(1-2):555-608, 2002.

O. SErRE. Note on winning positions on pushdown games with w-regular condi-
tions. Information Processing Letters, 85(6):285-291, 2003.

L. SEGOUFIN AND C. SIRANGELO. Constant-Memory Validation of Streaming
XML Documents Against DTDs. In T. SCHWENTICK AND D. Suctu, editors, ICDT,
volume 4353 of Lecture Notes in Computer Science, pages 299-313. Springer, 2007.

L. Sta1GeR. Finite-State w-Languages. Journal of Computer and System Sciences,
27(3):434-448, 1983,

R. E. STEARNS. A Regularity Test for Pushdown Machines. Information and
Control, 11(3):323-340, 1967.

H. STRAUBING. Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser,
Basel, Switzerland, 1994.

L. SEGOUFIN AND V. ViaNu. Validating Streaming XML Documents. In L. Popa,
S. ABITEBOUL, AND P. G. KoLAITIS, editors, PODS, pages 53-64. ACM, 2002.

L. G. VALIANT. Regularity and Related Problems for Deterministic Pushdown
Automata. Journal of the ACM, 22(1):1-10, 1975.

L. G. VALIANT AND M. PATERSON. Deterministic One-Counter Automata. Journal
of Computer and System Sciences, 10(3):340-350, 1975.

I. WALUKIEWICZ. Pushdown Processes: Games and Model-Checking. Information
and Computation, 164(2):234-263, 2001.

W. Z1ELONKA. Infinite Games on Finitely Coloured Graphs with Applications to
Automata on Infinite Trees. Theoretical Computer Science, 200(1-2):135-183, 1998.

http://dx.doi.org/10.1016/S0304-3975(02)00027-0
http://dx.doi.org/10.1016/S0020-0190(02)00445-3
http://dx.doi.org/10.1016/S0020-0190(02)00445-3
http://dx.doi.org/10.1007/11965893_21
http://dx.doi.org/10.1007/11965893_21
http://dx.doi.org/10.1016/0022-0000(83)90051-X
http://dx.doi.org/10.1016/S0019-9958(67)90591-8
http://dx.doi.org/10.1145/543613.543622
http://dx.doi.org/10.1145/321864.321865
http://dx.doi.org/10.1145/321864.321865
http://dx.doi.org/10.1016/S0022-0000(75)80005-5
http://dx.doi.org/10.1006/inco.2000.2894
http://dx.doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1016/S0304-3975(98)00009-7

Index

+,9,10
K;, 40
L1
L, 12
Lg, 38
[n],9
[u]., 48
A, 68
I,10
I,
2,9
2*,9
%9
2% 9
><k 61
2 10
6,13
6%,13
B,9
N, 9
N,,9
59,10
Ind., 48
~, 48, 51
~, 51
, 51

R

5o
4.1
f*, 61,77
wR, 9
wlL, 62
Ay, 62
Agw, 38
1S], 9
lwl|, 9
&9
free, 12
infinite sequence, 13
transition, 11
weak, 17
w,9
automaton, 12
language, 9
word, 9
DELEGATOR, 60
k-DELEGATOR, 60
BOUNDED-DELEGATOR, 60
2-register machine (2RM), 20

acceptance
Biichi, 14
co-Biichi, 14
parity, 12, 14

91

Index

reachability, 14
safety, 14
weak, 14
action, 17
alphabet, 9
automaton
w, 12
pushdown, 11
strategy, 17
weak, 14

Biichi, 14
co-Biichi, 14
bottom, 10

class, 40, 48
coloring, 12, 15
configuration, 11
initial, 11
congruence, 48
class, 48
index, 48
right, 48

delegator, 61, 76
bounded, 61, 72
fixed, 64
game, 65
given, 68
lookahead, 61, 76
problems, 60

deterministic, 13

finite state
game, 17
machine, 12
strategy, 17

92

game, 15
classification, 33
delegator, 65
determined, 16
finite state, 17
graph, 15
parity, 15
pushdown, 16

weak classification, 34

language, 9
w, 9
finitary, 38
pushdown, 11
regular, 14
left quotient, 62

machine, 10
finite state, 12
pushdown, 11
register, 20
Turing, 20

normal form, 41

one-counter
machine, 12
one-counter, 12

parity, 12
acceptance, 12
game, 15

play, 15

problem
delegation, 60
equivalence, 46
halting, 20
regularity, 21

Index

ultimately periodic run signature, 26
universality, 21
pushdown
automaton, 11
game, 16
language, 11
machine, 11
strategy, 17
visibly, 12

regular
language, 14
regularity problem, 21
run, 11
accepting, 11
signature, 26

stack, 10

stair, 52

state, 11
accepting, 11
initial, 11

strategy, 16
automaton, 17
finite state, 17
positional, 16
pushdown, 17
winning, 16

total, 13

transition, 11, 16
& 11
function, 13
profile, 68
relation, 11

Turing
complete, 20

machine, 20
ultimately periodic, 10

vertex, 15
non-terminal, 15
visibly, 12

weak, 14

& 17
winning region, 16
word, 9

w, 9

empty, 9

93

	Introduction
	Preliminaries
	Automata
	Games
	Abbreviations
	Register Machines

	Regularity Problems for Pushdown Games and ω-Automata
	Finite State Strategies for Pushdown Games
	Connecting Games and Automata: Classification Game
	Regularity Test for Weak ω-DPDAs
	Normal Form
	Normalization
	Decidability Results

	Congruences for Strong ω-DPDAs

	Lookahead Delegation for Nondeterministic Automata
	Delegation for Finite State Automata
	Fixed Lookahead
	Given Lookahead
	Bounded Lookahead

	Delegation for Pushdown Automata

	Conclusion
	Bibliography
	Index

