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Abstract

The efficient, computer aided or automatic generation of quad layouts, i.e. the parti-
tioning of an object’s surface into simple networks of conforming quadrilateral patches,
is a task that — despite its importance and utility in Computer Graphics and Geometric
Modeling — received relatively low attention in the past. As a consequence, this task is
most often performed manually by well-trained experts in practice, where quad layouts
are of particular interest for surface representation and parameterization tasks. Deeper
analysis reveals the inherent complexity of this problem, which might be one of the

underlying reasons for this situation.

In this thesis we investigate the structure of the problem and the commonly relevant
quality criteria. Based on this we develop novel efficient solution strategies and algo-
rithms for the generation of high quality quad layouts. In particular, we present a fully
automatic as well as an interactive pipeline for this task. Both are based on splitting the
hard problem into sub-problems with a simpler structure each. For each sub-problem
we design efficient, custom-tailored optimization algorithms motivated by the geomet-
ric nature of these problems. In this process we pay attention to compatibility, such
that these algorithms can be applied in sequence, forming the stages of efficient quad

layouting pipelines.

An important aspect of the quad layout problem is the complexity of the quality
objective. The quality typically is a function of the layout’s structural complexity, its
topological connectivity, and its geometrical embedding, i.e. of discrete, combinatorial,
and continuous aspects. Furthermore, application-specific demands can be quite fuzzy
and hard to formalize. Our automatic pipeline follows a generic set of quality criteria
that are common to most use cases. The best solution to make possible the optimization
with respect to more specific design intents is to include the user in the process, enabling
them to infuse their expert knowledge. In contrast to prevalent manual construction pro-

cesses our interactive pipeline supports the user to a large extent. Structural consistency



is automatically taken care of, geometrically appropriate design operations are automat-
ically proposed, and next steps that should be taken are indicated. In this way the

required effort is reduced to a minimum, while still full design flexibility is provided.

Finally, we present novel methods for the computation of geodesic distances and paths
on surfaces — for standard as well as anisotropic metrics. These play a critical key role
in several parts of our pipelines and shortcomings of available solutions compelled the

development of novel alternatives.

il
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1. Introduction

The physical world surrounding us can be seen as a collection of a large number of
three-dimensional objects and subjects. Besides this physical world, an ever-growing
variety of virtual processes or even entire virtual worlds is leveraged by modern computer
technology. Examples range from systems for computer-aided design and manufacturing
over rapid prototyping to simulation, from e-commerce and product visualization to
games, movies, and other immersive entertainment applications. Not surprisingly, one of
the most fundamental ingredients in such virtual scenarios are three-dimensional objects
— whether virtual reproductions of physical entities or original representations of virtually
generated ones. In any case, these objects need to be represented digitally in some form.
One of the most common types of representation is via for-
mal geometrical description of the object’s surface. While
the detailed internal, volumetric structure and constitution
of an object can well be of interest for certain advanced
applications, the surface is clearly the most prominent fea-
ture of an object: it is what we see of the object, it defines

its shape, it separates interior from exterior, i.e. it defines

the interface between the object and the surrounding world.

For primitive objects like spheres, cylinders, or tori a single

simple parametric expression suffices for its explicit repre- cos fsin ¢
sentation, as depicted on the right for the example of the  p(#,¢) = [ sinfsine
unit sphere. Other objects with more complex geometry or cos ¢

more complex topology, however, typically cannot practi-

cally be expressed in such simple closed form. This led to the development of piecewise
surface representations, where each piece of a partition of a complex surface can be rep-
resented by a simple function. Analogously, this applies to maps from or onto complex

surfaces, which are handled more easily in a piecewise manner.



1. Introduction

This thesis is concerned with the partitioning of an object’s surface into pieces suit-
able for sophisticated forms of such surface and map representations, as detailed in the
following.

Piecewise Surfaces

Examples of very common piecewise surface representations are:

e Triangle meshes (piecewise linear)
e Quad meshes (piecewise bilinear)
e Multiblock grids (piecewise regular quad grid)

e Bézier/Spline/NURBS networks (piecewise polynomial)

In the case of triangle meshes, the pieces (or conforming non-conforming
palches) are trilateral, in all other cases quadrilat-
eral, as illustrated in Figure 1.1. Furthermore, in
all these cases the partition is conforming, i.e. such
that patch corners coincide only with other patch

corners (no T-junctions) as illustrated here.

Building such piecewise representations for an object’s surface obviously involves two
aspects: suitably partitioning the surface into pieces and finding a suitable representation
for the geometry within each piece. For the case of triangle meshes, this is a well-
researched, well-understood problem and solutions have been proposed already some
time ago [AUGAO8]. More recently, a lot of research has been devoted to the automatic
generation of quad meshes and significant advances have been made [BLP*13]. For
the other cases, however, while methods for determining a suitable representation per
piece are available (e.g. on the basis of grid fitting or interval assignment [TA93, Mit00,
BVKO08], spline fitting [EH96, KLI6, MK95, MBVW95, AAB*88], or subdivision surface
fitting [LLS01]), the generation of appropriate partitions in the first place proved to be
a hard problem which commonly implies tedious manual efforts in practice. In these
cases the required partition is a so-called quad layout — which, while formally being
structurally equivalent to a quad mesh, follows quite different geometric objectives. In
particular, this necessitates different generation strategies: while a quad mesh basically



resamples a surface and its quality can be assessed locally, in the case of a quad layout

the structural, topological aspect from a global point of view plays an important role.

It bears noting that there are further types of piecewise surface representation which
do not rely on a quad layout, but on simpler-to-construct partitions with triangular or
polygonal patches. Bézier triangles and certain types of box splines are examples of such
representations. Their popularity in practice and support in software tools, however, is
significantly lower compared to representations based on quadrilateral partitions. There
are multiple reasons for this circumstance. One can argue from a historic point of view
that in the early days of Computer-Aided Geometric Design in the automotive industry
tensor-product Bézier and B-Spline patches with their quadrilateral domains already
set the standard in this field [Far02]. But there are also solid theoretical reasons for
preferring quad structures over triangular structures: for instance, it is well known from
differential geometry that there are two orthogonal principal curvature directions at any
point on a surface, the one of minimal and the one of maximal curvature [dC76]. The
boundaries of quad layout patches can very naturally be aligned to these, with aesthetic
as well as practical advantages [BLP*13].

Also several subdivision surface schemes are able to operate on complexes of arbitrary
polygonal patches, but quadrilateral patches are advantageous for the smoothness of the
resulting surfaces [Rei95] for prominent schemes [CC78, DS78].

Quad mesh

Triangle mesh

Figure 1.1.: Tllustration of different kinds of piecewise surface representations. In the

case of the triangle mesh the pieces are trilateral, in the other three cases quadrilateral.



1. Introduction

Piecewise Maps

Not only for the representation of a surface itself, also for the representation of maps
from or onto the surface (i.e. parameterizations, texture maps, displacement maps, etc.)
is a quad layout of great value. When dealing with surfaces of three-dimensional objects,
one most often deals with 2-manifold surfaces (with or without boundaries), i.e. they
are locally homeomorphic to a disc, thus amenable to (local) parameterization over R2.
The correspondences provided by such maps for instance allow to apply simpler 2D
operations to the surface, although it is embedded in R3.

For such use cases, however, often a global parameterization is necessary, for which
the whole surface needs to be homeomorphic to a disc. Hence, the surface needs to be
cut. While a minimal cut graph [EHP02] is topologically sufficient, the resulting metric

distortion in the map can be a problem for many applications.

Therefore, in practice often a chart atlas is used: the surface is cut (i.e. partitioned)
into multiple charts which can be parameterized with low metric distortion. For var-
ious reasons (domain simplicity, transition simplicity, continuity across chart borders
[RNLL10, MZ12]) it is advantageous if these charts are quads and these quads are con-
forming, i.e. again one is interested in quad layouts. Figure 1.2 illustrates a quad layout

based piecewise map from the plane onto the surface.

Domain Surface

Figure 1.2.: Tllustration of a piecewise map from the plane onto a surface using a quad
layout based chart atlas.



Quad Layouts

The generation of such quad layouts, for purposes like surface or map representation, is
the main topic of this thesis. A major source of motivation for the investigation of this
field comes from the fact that the — often manual or at most semi-automatic — creation of
partitions, in particular quad meshes, multiblock grids, spline networks, or subdivision

base meshes, is an extremely time-consuming task in practice [HCB05, LRLOG].

We will see that the mentioned hardness of the problem of automatic quad layout

generation comes from two facts:

1. the optimization problem for the generation of high quality quad layouts is of
mixed nature: it has continuous, discrete, and combinatorial or topological degrees
of freedom (cf. Chapter 3),

2. the notion of quality of a quad layout is application-dependent, sometimes fuzzy,
thus hard to formalize (cf. Section 2.2).

After we introduced foundations and requisite definitions in Chapter 2, we present our
strategy to tackle this problem in Chapter 3. It is based on dividing the problem into
three sub-problems whose degrees of freedom are more uniform and which can be solved
in a serial manner by specialized, geometrically motivated optimization strategies. In
order to deal with the variable notion of layout quality, we follow two different paths: in
Part I a fully automatic quad layout construction pipeline is described, which relies on a
very general notion of quality. We thus do not target a specific application, but present
a generic method — notwithstanding that based on this fundament also specializations
or adaptations to certain applications with their specific quality measures could be de-
veloped in the future. In some scenarios, however, the desired notion of quality can be
quite fuzzy and hard to formalize — for example it may only exist (subconsciously) in
some experts’ minds based on years of experience, or it may be influenced by aspects of
aesthetics. Therefore, in Part II we describe an interactive quad layout design system
which grants the user the flexibility to incorporate their specific design intents. At the
same time, the system highly supports and guides the user, taking care of consistency

aspects and assessing geometric quality.

Ut



1. Introduction

Thesis Structure and Contributions

Part | An efficient, specialized optimization strategy for each of the three sub-problems
is presented, based on the publications Dual Loops Meshing: Quality Quad Layouts on
Manifolds [CBK12] and Quad Layout Embedding via Aligned Parameterization [CK14b).

The resulting pipeline enables the automatic generation of quad layouts on surfaces.

Part Il Alternative strategies are presented which allow for interactive design of quad
layouts, based on the publication Dual Strip Weaving: Interactive Design of Quad Lay-
outs using Elastica Strips [CK14a]. Putting the user into the loop enables respecting
application-dependent quality criteria which can be hard to formalize but easier to judge
for an expert user. We provide high-level interaction tools and visual guides which keep

the amount of user effort low, while providing full flexibility.

Part Ill  We describe novel strategies for the efficient approximation of (anisotropic)
geodesic distances and paths on surfaces, based on the publications Practical Anisotropic
Geodesy [CHK13] and Walking on Broken Mesh: Defect-Tolerant Geodesic Distances
and Parameterizations [CK11]. Such computations are heavily made use of in our quad
layout generation and optimization algorithms. The shortcomings of existing approaches

compelled the development of novel techniques in this field.

Note The following chapters are largely based on the above mentioned articles
[CK11, CBK12, CHK13, CK14a, CK14b], which have been published before. Excerpts
thereof are used, enriched with additional information, and several aspects are elaborated
in more detail. In all of these works this thesis’ author, Marcel Campen, took the leading

role in developing the concept, performing the implementation, and writing the article.



2. Quad Layouts

Since the early days of Computer-Aided Geometric Design the partitioning of a complex
surface into quadrilateral patches (or conversely: its composition thereof) has been an
essential requirement and fundamental challenge. The tensor product nature of smooth
surface representations like Bézier, B-Spline, or NURBS patches [Far02] once established
the need for such structures. Especially for reverse engineering purposes, the efficient
creation of such partitionings has always been an important problem, as outlined by Li
et al. [LRLOG].

Quad meshes, which have seen an increase in popularity in recent years, sparked
new interest in this problem [TPP*11, BLK11, CBK12]. This is due to the fact that
semi-regular quad meshes (also known as multiblock grids [SB96]), which contain an
underlying coarse quadrilateral base structure, i.e. which are a regular refinement of a
quad layout, provide advantages for various application cases, as detailed in a recent
survey [BLP*13] which deems them “the most important class [of quad meshes] in terms
of applications”. For instance, they enable the application of efficient adaptive and
multi-level solver schemes [BDL10, DHMO09] in the context of quad-based Finite Ele-
ment simulation and the application of degree adaptation techniques in the context of
Isogeometric Analysis [HCB05, Bom12]. Their high level of structuredness is of benefit
for applications like mesh compression [AG03] and Fourier or Wavelet based processing
[AUGAO08]. In the field of character animation designers are interested in quad meshes
with good so-called edge-flow [JLW10] (a concept closely related to a geometry-aware,
simple base structure) as these tend to reduce visualization artifacts and distortions dur-
ing deformation. In this context a simple layout can furthermore directly be exploited

as convenient domain for purposes of texture and detail mapping [Bom12].

From a technical point of view the process of quad layouting, i.e. the partitioning of
a surface into conforming quadrilateral patches, involves determining the layout’s com-
binatorial structure as well as its geometric embedding in the surface. The embedding
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Figure 2.1.: A quad layout on a surface (left) and an iso-parameter line visualization of

the parameterizations which embed its patches (right).

describes the locations of the layout patches’ corners and borders on the surface as well

as parameterizations of the patches. Figure 2.1 shows an example quad layout.

2.1. Foundations

We are going to deal with quad layouts on 2-manifolds, typically surfaces of three-

dimensional objects:

Definition 2.1.1. (Surface) A compact orientable two-dimensional manifold M (with

or without boundary M) we will call a surface.

For the purpose of discretization we will deal with a triangulation of a surface — to

which we refer by M, too, unless the context requires explicit distinction.

Layout Graphs and Embeddings

The notion of a quad layout, a conforming quadrilateral surface partition, is formalized

using the following definitions:

Definition 2.1.2. (Layout graph) A multigraph G = (N, A), which may contain
multiple arcs between pairs of nodes as well as dangling arcs which are incident to only
one node, defines the graph of a layout.



2.1. Foundations

Definition 2.1.3. (Graph embedding) Each node h of G is associated with a map
fn 0 — M that assigns this node to a point on the surface. The image of this map
we call embedded node where distinction from the abstract graph node is necessary —
otherwise we simply call it node. Furthermore, each arc a of G is associated with a
continuous map f, : [0,1,] — M, whose image is called embedded arc where distinction
is necessary. The maps are such that f,(0) = f,(0) and f,(l,) = f,(0) if h and g are
the nodes incident to arc a, i.e. the curve formed by the embedded arc on the surface
starts and ends at the points onto which the incident nodes are embedded. Furthermore,
embedded arcs may only intersect at their endpoints and embedded dangling arcs end
on OM. The set of maps f then defines a graph embedding for G.

Figure 2.2 illustrates this. The embedded arcs partition the surface into regions (called
patches) bounded by embedded arcs, embedded nodes, and possibly segments of M —
such patches bounded partially by dM are called trimmed, all others full. If all patches
are homeomorphic to discs, the graph embedding formally is a 2-cell embedding (with
boundary).

Definition 2.1.4. (Valence) The valence val(h) of a node h is the number of arcs
incident to it. Note that one arc can be incident to a node (and contribute to the
valence) two times. The valence val(p) of a patch p is the number of embedded nodes
along the patch border. Note that one node can occur multiple times along a patch

Figure 2.2.: Illustration of a layout graph (red nodes, black arcs) and an embedding of
this graph on a surface.
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border. Nodes and patches of valence 4 are called regular, otherwise irregular. Trimmed

patches are considered regular if they could be completed to a patch of valence 4.

If all patches are regular, the 2-cell embedding of a layout graph can be extended to
a layout embedding':

Definition 2.1.5. (Layout embedding) In addition to the node and arc maps, each
patch p can be associated with a continuous map f, : [0,w,] x [0,h,] — M (or a
restriction thereof in case of a trimmed patch) such that this map agrees with the maps
of the incident arcs, e.g. f,(z,0) = fo(z) or f,(2,0) = fo(l, — x) (depending on the
orientation). The set of maps f then defines a layout embedding for G.

Figure 2.3 illustrates the embedding of a patch via its associated map f,.

Definition 2.1.6. (Quad layout) A layout graph G together with a layout embedding
f in surface M where all patches are regular is called a quad layout L.

Figure 2.1 shows an example of such a quad layout.

TA layout embedding could also be specified in the presence of irregular patches (using different
domains for the maps), but we do not need this more complex general case here.

Figure 2.3.: Illustration of an individual patch embedding map.

10



2.1. Foundations

Layout components
@@ irregular node

@ regular node
= arc

@—O=@ separatrix
vo=Q=Q=++ chain
patch

Figure 2.4.: Tllustration of a layout’s components.

Let us note that an alternative definition would be via cell complexes with quadrilat-
eral 2-cells [Hat02].

Structural Properties

At regular nodes the four incident arcs can be partitioned into two pairs
(depicted in red and blue on the right) of opposite arcs in the intuitive way.

Based on this, separatrices can be defined:

Definition 2.1.7. (Separatrix) A chain of successively opposite arcs which starts at
an irregular node and ends at a (not necessarily distinct) irregular node or OM is called

(discrete) separatriz.

Note that we will later also deal with separatrices of cross fields and separatrices of
parameterizations — concepts which are closely related but formally different.

Figure 2.4 illustrates the components of a quad layout.
Definition 2.1.8. (Layout minimality) If each arc of a quad layout is part of a

separatrix, the layout is called minimal.

In a minimal layout, there are no chains of arcs which are cyclic or start and end at

OM.

11



2. Quad Layouts

Definition 2.1.9. (Base complex) The largest minimal sub-layout of a layout we call

its base complew.

The base complex of a quad layout (or quad mesh) can be obtained by tracing all

separatrices and then removing all untraced arcs.

Finally, besides the geometric representation of the layout via its embedding, a rep-
resentation of just its topology is of use:

Definition 2.1.10. (Rotation system) A compact representation of the topology of
a quad layout £ is a pair (o, §) of permutations acting on
the set of half-arcs (for each arc there exist two directed
half-arcs, one attached to each incident node). o is an
involution that maps one half-arc to the other one of the
same arc, and 6 maps a half-arc to the next one in the
clockwise (with respect to the orientation of M) cyclic
order of half-arcs incident to the same node. The pair

(0,0) is called the layout’s rotation system.

Dual Layouts

For the description and modification of the layout structure it can be of benefit to
consider the dual layout:

Definition 2.1.11. (Dual) The combinatorial dual D of the cell complex specified by
the quad layout L is called the dual layout.

D contains a verter for each patch of £, an edge for each arc of £, and a region for
each node of £.2 Except for boundary cases, D is a 4-regular cell complex, i.e. every non-
boundary dual vertex has four incident dual edges. Hence, at every non-boundary vertex
there are two pairs of opposite edges. The set of all edges uniquely decomposes into a
disjoint collection of cycles (and, when boundaries exist, boundary-to-boundary chains)

of successively opposite edges. Note that these dual edge cycles (chains) correspond to —

2We use the terms vertex, edge, and region for dual layouts in order to distinguish from nodes, arcs,

and patches of primal layouts.

12
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Primal layout components
@@ irregular node

@ regular node
= arc

@—0—® scparatrix
i +o=O=O=++ chain
patch

/ Dual layout components

vertex

*
= edge
 —

region
loop

Figure 2.5.: [llustration of a layout’s primal and dual components.

possibly non-simple, i.e. self-crossing — cyclic (or boundary-to-boundary) quad strips in
L. Geometrically, these dual edge cycles (chains) correspond to an arrangement of loops
(or boundary-to-boundary curves) on the surface, cf. Figure 2.5; the loop intersections
define the vertices and the loop segments between any two intersections define the edges
of D. The induced partition of M consequently defines the regions of D (cf. Figure
2.5). Note that a specific embedding for D is not inherent to the topological concept of
duality.

2.2. Quality Criteria

As already mentioned, the quality of a quad layout is a measure that, at least to some
extent, depends on the intended application. However, we can identify some generic

aspects which are common to most application scenarios:

e Geometric fidelity: patches should map to planar rectangles with low parametric
distortion

e Structural simplicity: the number of patches should be small

The geometric fidelity generally promotes mapping or representation quality, because
the parametric distortion is a key factor in many applications, while the structural

13
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simplicity gives preference to simpler surface representations, simpler mapping domains,
or more flexibility for hierarchical structures (e.g. in the context of multi-block grids).

Unfortunately, both aspects tend to be opposing objectives. For instance, a genus 1
surface can always be covered with just a single quad patch, but then the parametric
distortion can be arbitrarily high, depending on the geometric shape of the surface. On
the other hand, low distortion can be achieved at the expense of a large number of small
patches, as in the case of quad meshing [BZK09].

The general quality of the layout hence is a function of complexity and distortion,
and an appropriate trade-off needs to be made. How this relation looks like in detail
is application-dependent. Our automatic approach (cf. Part I) yields results where this
trade-off generally seems reasonable or natural — and often even optimal on models where
this can be judged objectively. Our interactive approach (cf. Part II) gives full flexibility
to the user to take application-dependent aspects, even those that are subjective or hard

to formalize, into account and to adjust this trade-off accordingly.

The two layout quality criteria geometric fidelity and structural simplicity imply local
criteria for individual nodes, arcs, and patches. For
instance, a patch corner ideally has an angle of 7.
Thus, a node of valence k ideally lies at a point
where the surface has Gaussian curvature 27 — k5
because around such a point the (cut) surface un-
folds to a sector with inner angle k5 [PS98] as de-
picted here. Furthermore, an arc is ideally embed-

ded as a geodesic curve, and arcs are short and few

in number. It is obvious that these ideal states typ-
ically cannot be achieved, especially not simultane- —

[SE

ously, due to interdependencies between the nodes, _—
arcs, and patches and the surface geometry. These

local criteria can, however, be helpful guides in the
design of optimization strategies which then take the global interdependencies into ac-
count.

One further aspect is quite commonly of relevance for the layout quality:

14
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e Principal direction alignment: the arcs and also the iso-parametric curves of
the embedded patches should follow directions of principal curvature on the surface

with low deviation.

The importance of this aspect for prominent use cases of quad layouts is well known
[LRLOG, ACSD*03, CSADO04]. Depending on the application, it serves maximizing
surface approximation quality [D’A00], minimizing normal noise and aliasing artifacts
[BKO1], optimizing element planarity [LXW*11], or achieving smooth curvature distri-
bution (due to their tensor-product nature common spline surface representations are
prone to ripples (curvature oscillations) if aligned badly). Besides, principal direction
alignment can also be of interest for aesthetic reasons. Due to their specific symmetries
quad layouts and quad meshes have the natural ability to align to the orthogonal princi-
pal directions. In fact, this is one of the main reasons for preferring them over simplicial
layouts [BLP*13].

The alignment of layout arcs or iso-parametric curves of the embedding maps to
feature curves on the surface may be seen as a special case of this principal direction
alignment, but it can be advantageous to consider this in a dedicated, stricter manner

and to take alignment to surface boundaries into account as well.

2.3. Taxonomy

Besides quad layouts there exist several other concepts — quad meshes, subdivision base
meshes, T-meshes — which are closely related but differ in terms of structure or quality

objectives. To clarify our objectives, we here elucidate the distinction between these.

2.3.1. Quad Meshes

Structurally a quad mesh does not differ from a quad layout: it consists of conforming
quadrilateral patches. The fundamental difference is the simplicity objective. When gen-
erating a quad layout the patch dimensions should be chosen automatically such that a
simple layout is achieved. This can lead to patches of arbitrarily varying sizes and aspect
ratios, depending on the geometry of the surface. Methods for generating quad meshes,
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however, typically rely on a a priori specified target quad size and quad anisotropy (pos-
sibly varying over the surface) [RLL*06, DBG*06, KNP07, HZM*08, BZK09, ZHLBI10,
KMZ11, BCE*13, PPTSH14]. This is motivated by the fact that the nodes of a quad
mesh are expected to already sufficiently encode the geometric information of the surface
via their 3D positions because arcs and patches are typically just (bi)linear interpolations
of this information. A quad mesh (e.g. for simulation or animation applications) thus
typically needs to be much finer than a quad layout who’s main purpose is to provide a

partition of the surface but not to immediately represent it geometrically.

Due to these differences, quad mesh generation methods are typically not suited for
the generation of quad layouts (cf. Section 2.4). Vice versa, however, quad meshes (in
particular: highly demanded semi-regular quad meshes) can easily be generated from
quad layouts generated by our algorithms (cf. Section 6.7).

2.3.2. Subdivision Base Meshes

Just like in the case of quad meshes, the complexity of base or control meshes for
subdivision surfaces is mainly mandated by the fact that the nodes are expected to carry
the full geometric information in their positions. However, the patch geometry is defined
via more sophisticated means than simple (bi)linear interpolation, e.g. via bi-quadratic
or bi-cubic splines in the case of the famous Doo-Sabin [DS78] and Catmull-Clark [CC78]
subdivision schemes. Hence, in practice subdivision base meshes are typically coarser
than quad meshes, but this of course depends on the concrete scenario and the underlying

shape.

Furthermore, some subdivision schemes can deal with base meshes that contain irreg-
ular non-quad patches and in this sense allow more flexibility in the construction. These
irregularities, however, lead to singularities with lower smoothness in the subdivision

limit surface [Rei95].

Note that, just like in the above case of quad meshes, a quad layout can easily be
refined (by splitting patches into regular grids of smaller patches) in order to achieve
the patch resolution suitable for a subdivision base mesh application. The opposite,
i.e. given a fine quad mesh, turn it into a coarser quad layout, by contrast, is highly
challenging and requires sophisticated algorithms [DSC09, PPT*11, BLK11, TPP*11],

which do not always manage to preserve a good patch quality and alignment.
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2.3.3. T-Meshes

Dropping the requirement of conformity, i.e. that patch corners coincide only with other
patch corners, we arrive at the class of so-called T-meshes. The name stems from the
fact that a patch corner lying on the interior of an arc forms a T-junction. While such
partitions are not suitable for, e.g., B-Spline surface representations due to continuity
issues, generalized T-splines and T-NURCCs [SZBNO3] build on exactly such meshes.
The option to have T-junctions in the mesh, where chains of arcs just end, allows to
more flexibly adjust the local resolution compared to a quad layout, where chains of
arcs always are either cyclic or fully extend to irregular nodes or boundaries. The
increased sparsity and compactness is an advantage for modeling and editing purposes
[SCF*04, BVKO0S].

It is, however, important to note that this increased flexibility does not simplify the
construction of a T-mesh compared to a quad layout — at least not in the context of
T-spline related techniques. For this use case a T-mesh needs to be globally parameteriz-
able, i.e. the assignment of non-zero knot intervals to edges of the mesh must be possible
in a globally consistent manner [SZBNO03]. This implies certain constraints regarding the
constellation of T-junctions. These can only be fulfilled if the T-mesh can be obtained
from a conforming partition (a quad mesh or a quad layout) by omitting a number
of arcs (and nodes). While we are not aware of an explicit mentioning of this in the
pertinent literature, existing approaches to automatic T-mesh construction respect this
implicitly: they obtain a T-mesh as a subset of a quad mesh [MPKZ10, LRL06, SCF*04],
as a subset of the iso-parametric curves of a surface parameterization [HWW*06], or by
partial regular refinement of a quad mesh or layout [WZXH12, SZBNO03].

Hence it is not unnecessarily expensive to use quad layout construction methods like
ours to generate T-meshes, too, by (possibly after suitable refinement) removing nodes

and arcs from the result where they are not necessary to achieve the desired quality.

2.4. State of the Art

In industrial workflows quad layouting is often performed manually by skilled, well-

trained professionals in the animation and engineering sectors through the construction

17
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of nets of surface curves. More recently, approaches that tackle (variants of) this problem

in a (semi-)automatic manner have been proposed. We discuss them in the following.

An inherent issue is that a good quad layout generally is a compromise balancing
layout simplicity, patch rectangularity, feature and principal direction alignment, and
possibly further objectives, as described in Section 2.2. Existing automatic methods do
not consider all of these aspects adequately, or appear to be strongly biased towards one

particular objective.

2.4.1. Quad Meshing

For the generation of quadrilateral surface meshes a number of methods have been pro-
posed. They are based on various principles, e.g., periodic parameterizations [RLL*06],
Morse-Smale theory [DBG*06, HZM*08], or mixed-integer optimization [KNP07, BZK09,
BCE*13]. These methods are mainly targeted at creating meshes with uniformly sized
elements. While extensions for the incorporation of sizing, skewness, and aspect ratio
fields have been presented [ZHLB10, KMZ11, PPTSH14], allowing to adjust the element
properties to local properties of the input geometry, these fields have to be specified a

priori. A recent survey [BLP*13] gives an overview over all of these techniques.

The base complex of meshes generated with these techniques could potentially be
used as a quad layout. Unfortunately, most of these techniques do not provide means
to control the base complex structure and its simplicity (cf. Figure 2.6); meshes with
a two-level hierarchy, and thus a coarser base complex, are obtained by those mehods
based on spectral surface analysis [DBG*06], but the coarser level is highly uniform by
design, which of course restricts its simplicity. With our recent method [BCE*13]| we
increased the robustness of the quad remeshing process so far that it allows to gener-

¢

ate relatively coarse quad meshes which could effectively be “misused” as quad layouts.
When prescribing a very large target edge length, the correctness constraints implicitly
(anisotropically) reduce the size of the individual elements such that a valid mesh or
layout is obtained. The enforced small patches, however, conflict with the geometric
objective and it can be observed that for large prescribed target edge lengths, the op-
timization is dominated by the aim of fulfilling the involved constraints and geometric
quality occasionally suffers, resulting, e.g., in badly shaped patches and badly aligned

arcs.
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Figure 2.6.: Quad meshes created by a field-guided parameterization approach [BZK09]
and their base complexes. On the left the arcs of the base complex are highlighted. In
the middle the base complex patches are visualized by individual colors — on the right
a very similar quad mesh of this object is depicted (same resolution, same number and
type of irregular vertices) refined from a quad layout created by the techniques presented
herein; it has a much simpler base complex.

2.4.2. Quad Layouting

Eck and Hoppe [EH96] proposed an early quad layout construction method for the pur-
pose of spline patch fitting. Essentially, it is based on pairing the faces of a triangular
layout. A similar approach is chosen by Boier-Martin et al. [BMRJ04]. Control over the
geometric fidelity and alignment is quite limited due to the nature of these approaches.
Daniels et al. [DSC09] propose to convert a triangle mesh to a quad mesh by one step
of Catmull-Clark subdivision and then simplify the result using quad mesh decimation
techniques. Driving this decimation in a way that the resulting coarse mesh is geomet-
rically faithful and irregular vertices end up in plausible locations similarly remains a
problem. In this context Panozzo et al. [PPT*11] use special kinds of pre-computed

sizing fields (called fitmaps) to influence a decimation process.

Due to the complexity of the problem, several researchers proposed or assumed a
manual [BVKO08, KL96, MBVW95, AAB*88] or semi-automatic, assisted [TACSDOG,
TDN*12, JLW10] creation of quad layouts. This means the user (directly or indirectly)
places nodes onto the surface and delineates the patch borders inbetween. This approach
to the problem can be advantageous because layout design decisions might depend on

the intended use of the layout and cannot always be derived from geometry alone.
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However, manually designing a good all-quadrilateral layout turns out to be an intricate
and cumbersome task even for experienced users due to the involved complex global
interdependencies and structural constraints that are to be considered. To cite Takayama
et al. [TPSHSH13] in this regard: “it is often quite challenging even for professional
artists to manually design a perfect quad mesh on the first try. Since the quality [...] is
a global property, the correction of a single mistake might require regeneration of the
entire mesh.”. They hence proposed a system which provides various helpful guides
and automatisms to reduce the user’s workload — for the case of subdivision base mesh

design.

Automatic methods have furthermore been presented for related, simpler variants of
the problem, like quad-dominant layouts [MK04, LKHO8]|, polygonal layouts [CSADO04,
MKO5], feature graph layouts [NSP10], or non-conforming partitions [EGKTOS].

2.4.3. Base Complex Simplification

The problem of obtaining a simple layout has also been approached “reversely”: instead
of creating a layout from scratch, one starts from a fine quad mesh with a possibly very
complex base complex and attempts to successively simplify it by adjusting its structure.
The base complex could then be used as quad layout for various purposes. Bommes et
al. [BLK11] and Tarini et al. [TPP*11] followed this path. The underlying observation
is that the separatrices (which form the base complex, cf. Section 2.1) of quad meshes
generated by the methods discussed in Section 2.4.1 often wind around the underlying
object many times, forming a rather fine base complex with many small patches as shown
in Figure 2.6. Using sets of operators that modify the mesh connectivity while preserving
the quad structure one can attempt to reduce the total length of these separatrices, thus
the complexity of the base complex. Tarini et al. [TPP*11] build such operators from
separatrix removal and re-insertion steps, Bommes et al. [BLK11] focus on eliminating
certain helical configurations, which they identified as most relevant for base complex
simplicity. Using greedy strategies the underlying huge search spaces are then explored
in the search of modified meshes with a simpler base complex. In Section 5.4 we discuss

the respective advantages and disadvantages in comparison to our approach.

General decimation and editing methods for quad meshes, e.g. [DSSC08, PZKW11],

can also be seen as related, but they do not specifically target a coarse base complex.
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The problem of high-quality quad layout generation is hard to tackle using established
standard optimization techniques (“black box solvers”) due to its complicated nature:
there are discrete, continuous, and combinatorial or topological degrees of freedom
(DoFs):

e discrete: number and valence of nodes
e continuous: embedding of nodes, arcs, and patches

e combinatorial/topological: layout graph connectivity

This complexity requires us to design specialized, geometrically motivated strategies

to enable the efficient computation of good solutions.

Our underlying strategy is to split the problem into three sub-problems, each of which
has a simpler, more uniform (in terms of DoF's) structure. These sub-problems are then
solved in three sequential algorithmic stages. The division into sub-problems allows us
to rely on different optimization techniques (e.g. based on a linear equation system,
non-linear gradient descent, combinatorial optimization, or an eigenvalue problem) for

the different aspects of the problem.

If the DoFs were independent in between the sub-problems, the division would be
uncritical — in the sense that sequential optimal solution of the sub-problems would
yield the optimal solution of the entire problem. In the quad layout problem, however,
the DoF dependency graph can typically be assumed to be very dense or even complete
(unless the surface has multiple components). Therefore we have to take care in the
design of the individual optimization stages that the sub-solutions produced by the
early stages can still be completed to a full solution of high quality by the later stages.
To this end we follow two paradigms, a forward and a backward paradigm:
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e forward anticipation: anticipate how well later stages will be able to deal with

the sub-solution which is being produced.

e backward modification: modify a sub-solution of an earlier stage if it cannot
be dealt with well.

Obviously, this anticipation and modification can only be performed to a certain
extent for the sake of efficiency — full anticipation would correspond to solving the entire
problem already in the first stage, complete modification freedom would correspond to
solving the entire problem in the last stage (independent of what the previous stages

delivered).

3.1. Automatic Approach

The design of the individual stages of our automatic quad layout generation and opti-

mization pipeline is outlined in the following.

3.1.1. Stage 1: Nodes

In the first stage (Chapter 4) the discrete degrees of freedom, i.e. an appropriate number
of (irregular) nodes and their valences, are determined. It is based on constructing a
non-standard connection [CDS10] from a smooth, principal curvature guided direction
field on the surface. The irregular nodes and their valences are then derived from this
connection’s curvature distribution (or equivalently: the field’s singularities). Due to
the nature of such fields we achieve node configurations suitable for quad layouts and
due to the nature of the field smoothness functional we achieve node valences that are
geometrically appropriate. These properties have already been exploited in the related
field of quad meshing [KNP07, BZK09].

3.1.2. Stage 2: Connectivity

In essence, our stage 2 (Chapter 5), which determines the combinatorial or topological

degrees of freedom, is based on the careful construction of the combinatorial dual of
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the quad layout from geodesic loops in a way that is sensitive to the input’s geometry
and ensures structural consistency. The process is driven by the objective of separating
the nodes determined in stage 1 by dual loops, such that they eventually lie in regions
with the desired valence. Dualization of the arrangement of dual loops then provides a

connectivity for the nodes which is guaranteed to form only quad patches.
Our key contributions are:

e A novel framework to describe, identify, and manipulate structurally valid and
geometrically faithful duals of quad layouts.

e Efficient methods for the geometry-aware construction of embedded loops that are

the key components of the dual layouts.

e A practical greedy algorithm based on the framework to automatically and effi-

ciently perform the layout construction.

3.1.3. Stage 3: Embedding

In stage 3 (Chapter 6) the continuous optimization is performed, i.e. the embedding of
nodes, arcs, and patches is optimized. As all these individual embeddings interdepend
(cf. Definition 2.1.5), we formulate an optimization problem based on a global, princi-
pal direction aligned parameterization which effectively combines all these embeddings.
This problem is solved using an efficient custom-tailored optimization strategy based on
alternating between global linear optimization and local non-linear optimization. The

individual embeddings can then be extracted from the parameterization.
Our key contributions are:

e a description of how to add structural constraints to established optimization sys-
tems for principal direction fields and parameterizations, such that they can be

used to optimize alignment-aware layout embeddings.

e a novel concept to continuously optimize layout node positions, directly driven by

embedding quality, based on an efficient meta-optimization strategy.
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3.1.4. Forward Anticipation

The paradigm of forward anticipation is implemented in the first two stages as follows:

Stage 1 — Stage 3 In stage 3 the embedding is optimized via a global parameteriza-
tion which is guided by a principal direction field. In stage 1 the nodes are determined
via exactly such a field, promoting suitability for the parameterization that is performed

in stage 3.

Stage 2 — Stage 3 In stage 2 dual loops are constructed based on objectives that
mimick those of the parameterization in step 3. For instance, principal direction align-

ment is taken into account and orthogonal loop crossings are favored.

3.1.5. Backward Modification

The paradigm of backward modification is taken into account as follows:

Stage 1 < Stage 2 In stage 2 the dual loop construction algorithm has the possibility
to merge nodes determined in stage 1 if they turn out to be inseparable, or separable

only in geometrically inappropriate ways.

Stage 1 + 2 «— Stage 3 In stage 3 the algorithm has the possibility to perform so-
called poly-chord collapses, removing arcs and nodes created in the previous stages in a

structurally consistent manner, when they turn out to be superfluous.

3.2. Interactive Approach

Besides the automatic approach, we propose an interactive, computer-aided quad lay-
out design system (Chapter 7). It grants the user the flexibility to incorporate their
application-specific design intents but automatically takes care of consistency aspects
and of assessing the geometric layout quality. Our system features novel interaction
tools and provides guides to effectively support the design process. Just like the auto-
matic approach, it is fundamentally based on a dual perspective with its advantageous

consistency-ensuring aspects.
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The three stage division, however, turns out to be unsuitable for the interactive sce-
nario. Keeping stage 1 automatic and making stage 2 interactive is not an option,
because the topology of the cross field from stage 1 already significantly restricts the
design freedom regarding the dual loops. Making stage 1 interactive, too, i.e. having the

user first create the field manually, would yield a very complicated, impractical workflow.

We thus combine stages 1 and 2, i.e. we derive the nodes as well as their connectivity
from the dual loops constructed by the user. In order to enable this modification, we
model the dual loops based on bending energy-minimizing elastica [BNRO1] instead of
the simpler field guided geodesics used in stage 2 of the automatic approach. This
allows us to automatically propose geometrically and topologically suitable operations
to the user, enabling an efficient workflow. The automatic stage 3 can then be used
to determine an optimal embedding for the designed layout — but we also discuss an

interactive alternative that grants control in this stage, too.

The key contributions can be summarized as follows:

e A fast method for the construction of constrained elastica on surfaces, without any

restrictions on topology or homotopy.
e Support for symmetries in the dual loops/strips framework.

e Interaction tools and metaphors for incremental layout design, supported by au-
tomatic background computations.

e Evaluation of intermediate design states and visualization of the assessment to
guide the user.
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Figure 3.1 illustrates the automatic and interactive processing pipelines schematically.

Nodes Connectivity Embedding
Automatic | Chapter 4 —»| Chapter 5 = Chapter 6
\ Iﬂ
I)\
/X .
Interactive Chapter 7 + 8 »| Section 8.3

Figure 3.1.: Illustration of the automatic and interactive processing pipelines and their
stages. Note that automatic and interactive stages can be combined (dashed arrows),
i.e. the embedding of an interactively designed layout structure can be optimized auto-
matically and vice versa.
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In this first stage of the automatic pipeline a suitable number of layout nodes and
their respective valences are to be determined. As discussed in Section 2.2 the ideal
situation would be that the surface has isolated points s; with a Gaussian curvature that
is an integer multiple of 7 while all other points of the surface have vanishing Gaussian
curvature. Then one could place an irregular node n; of valence val(n;) = k; onto each
point s; with Gaussian curvature 27 — k; 5 (regular nodes could be placed anywhere else
as needed) and obtain developable (actually planar) patches with right angles. Obviously
this is only possible on an extremely restricted class of surfaces, namely those of unions
of boxes (in particular polycubes)!. On general surfaces this point-wise view of curvature
is not very helpful. For instance, on smooth surfaces it is neither scale-invariant nor,
in the discrete case, mesh resolution-invariant. A naive approach in the style of “place
an irregular node of valence k where the Gaussian curvature is in some sense close to
27 — k%" is thus bound to fail. This holds even more due to the following important
observation: we are not entirely free in the choice of nodes and their valences (at least
for surfaces without boundary) — the topology of the surface implies a constraint via
Euler’s well known polyhedron formula, which likewise holds for the special case of quad

layouts (with nodes N, arcs A, and patches P):
Theorem 4.0.1. (Euler’s polyhedron formula)

INI = Al 4P| = x(M) (4.1)

Hn fact, one can try to find a union of boxes which approximates the given surface (together with a
continuous bijection), construct a quad layout on it, and map it onto the surface [HJS*14]. However,
only a very restricted class of quad layouts can be obtained in this way: those whose set of dual
loops can be partitioned into three subsets such that no two loops from the same subset intersect.

Therefore the possibilities of achieving high patch quality and good alignment are limited.
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where y (M) is the surface’s Euler characteristic, a topological invariant related to its
genus. Considering each arc as two directed half-arcs (their number denoted by |H|) and
exploiting the fact that in a quad layout there are exactly four times as many half-arcs
as patches, we arrive at

IN| = [H|/4 = x(M). (42)

This can be restated in form of a sum over all vertices and their outgoing halfedges:

Z 1 —val(n;)/4 = x(M). (4.3)

n;EN

We note that summands corresponding to regular nodes of valence 4 vanish. The sum
over the irregular nodes’ terms, however, needs to match the surface’s Euler character-
istic. This constraint needs to be considered in the optimization because otherwise the

set of nodes does not admit a quad layout.

4.1. Connections

For these reasons a more global, integral view of curvature is necessary. This view is
provided by connections® [CDS10]. A connection defines a notion of parallel transport
on a surface and thus implies a notion of curvature. In particular, the Levi-Civita
connection V¢ — the unique metric connection that transports tangent vectors without
torsion — implies the usual Gaussian curvature. Intuitively, an arbitrary tangent vector
at a point p on the surface, parallel transported along any simple closed curve on the
surface using a connection, leads to another tangent vector at p. The accumulated angle
defect between these two vectors (holonomy) defines the total curvature of the region
enclosed by the curve. In this way the total curvature of any region is encoded in a
connection.

The idea now is to construct a connection V= which A) is (in the least-squares sense)

as close as possible to Levi-Civita while B) implying a curvature which is an integer

2Formally, we are referring to metric connections, which preserve the surface’s metric under parallel

transport, i.e. an orthonormal frame is transported to an orthonormal frame.

30



4.1. Connections

multiple of & everywhere (while it is 0 for all but a finite number of points s;). Note
that in the case of a union of boxes we will obtain Vz = Vic. In any case, due to
condition (B), we can easily derive a set of irregular nodes and their valences from this
connection. Due to condition (A) we can expect that this irregular node configuration,
while not ideal, is in some sense as good as possible for the given surface geometry. Most
importantly, without need for any further measures, the set of irregular nodes derived
from such connections is guaranteed to fulfill (4.3). This is a direct consequence of the
Gauss-Bonnet theorem that states that the total curvature [ K of a surface without

boundary (implied by any connection) is related to its Euler characteristic via

Theorem 4.1.1. (Gauss-Bonnet theorem for closed surfaces)

/ / K = 2mx(M). (4.4)

In the case of Va we thus have x(M) = 5>, K(s;). This turns into (4.3) if
;—ﬂK(si) = 1 — val(n;)/4 for each point s; and its corresponding node n;, and indeed

this is the case for our desired choice of val(n;) = k; for K(s;) = 2m — k;7.

4.1.1. Optimization

In the discrete setting, i.e. on a triangle mesh, a connection can be
expressed via adjustment angles « across the edges [CDS10], which
express the tangential rotation a tangent vector undergoes as it is
transported from one face to a neighboring face across an edge. The

discrete Levi-Civita connection is characterized by all these angles

being zero. As we are interested in a connection as close as possible

to Levi-Civita, our objective is ||a|lz — min, subject to condition
(B).

As detailed in [CDS10] condition (B) can be expressed via constraints for a set of basis
face cycles which enforce that the adjustment angles exactly cancel the curvature of the
Levi-Civita connection +m;3. In that work the integers m; are prescribed, allowing this
optimization to be performed with a simple linear system solve. Here, we end up with a
mixed integer problem because we only have the constraint that the curvature is some
integer multiple of 7, i.e. the m; are free integer variables. Hence, a constrained mixed
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4. Nodes

integer solver is necessary for this optimization. Bommes et al. [BZK12] presented an
efficient greedy solver strategy that could be applied here.

However, we are going to use an alternative formulation for the optimization, based on
tangent direction fields, which is essentially equivalent but provides additional interesting
insights and possibilities (in particular: consideration of principal direction alignment),

as detailed in the next section.

4.2. Cross Fields

Instead of representing the per-edge adjustment angles as explicit
variables, we can represent them implicitly as the angular differences
between variable tangent directions in the incident faces, i.e. ag; =
0; — 0; + K;j, where 6 are the angles of the tangent directions with
respect to a local per-face reference system and the constant x;; aligns

the reference systems.

We could then perform the following optimization:

> (0 — 0; + kij)* — min (4.5)

e €EE

Due to the relation between o and € this is essentially equivalent to the connection
based optimization problem — with one significant difference: constraints for a condition
akin to (B) are inherent to this formulation. The resulting connection obviously trans-
ports vectors to themselves along any curve (just notice that by construction the field 6
— and any constant rotation thereof — is parallel w.r.t. the connection given by o). Hence
the implied curvature must be an integer multiple of 27 everywhere. The multiplicity,
however, is fixed arbitrarily (formally and more precisely, it is implied by the indices of
the field of chosen local reference systems) and we are actually interested in multiples
of 3, not 2r. Both problems can be solved by adding integer variables m to the system

which allow to add any multiple of § to the terms in (4.5):
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4.2. Cross Fields

Z (91 — 0] + Rij + Wl,jj%)Q — min (46)

ei;€EE

Note that adding such a variable for each edge is redundant — just as in Section 4.1.1
it is sufficient to add one variable per cycle of a face cycle basis. This is the case if we
add a variable for each edge of a spanning tree of the edge graph, as also mentioned in
[BZK09].

The connection V= resulting from this optimization then fulfills (A) and (B). In par-
ticular, a vector is not necessarily transported to itself along any curve by this connection
but may be off by a multiple of 5. A cross (a set of four di-
rections invariant to rotations by %), however, is always trans-
ported to itself, so we are in fact optimizing a cross field C
for smoothness — a cross field which by example represents V.

Therefore it comes as no surprise that exactly the same optimiza-

tion problem is used for the construction of smooth cross fields

[HZ00, LVRLO06, PZ07, RVLL08, RVAL09, LJX*10] for quad meshing purposes, e.g.
in [BZK09, MPKZ10, LLZ*11, PTSZ11, ECBK14].

It is worth noting that from this perspective the inherent fulfillment of (4.3) is a
consequence of the Poincaré-Hopf theorem, relating a direction field’s singularities to

the surface’s Euler characteristic:

Theorem 4.2.1. (Poincaré-Hopf theorem) Let C be a direction field on M and s;

its isolated singularities. Then

Zmdexc(s,.) = x(M). (4.7)

= %K(sl) where K is the curvature
implied by Vz. In the case of a cross field it thus is a multiple of i. For details on tangent
direction fields, singularities and their indices we refer to [RVLLO0S, PZ07]. Relating (4.3)

to (4.7) reveals a close connection which implies that the choice of a set of irregular nodes

The index of C at a point s; is given by index¢(s;)

n; which correspond to the singularities s; of a direction field, with valences chosen as
1 —val(n;)/4 = indexc(s;), (4.8)

(which is equivalent to the choice discussed in Section 4.1) will always lead to a config-

uration fulfilling Euler’s polyhedron formula.
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4. Nodes

These beneficial properties of cross fields have already successfully been eploited by
several methods in the related field of quad meshing, e.g. in [KNP07, BZK09, ECBK14],
which similarly derive irregular mesh vertices from cross field singularities — even though
the Euler characteristic relation and its importance have not explicitly been mentioned
in these works.

Note that the particular choice of relation between node valence and singularity index,
which we previously justified by patch corner angle considerations, can also be seen to be
natural in another way: the number sepc(s;) of cross field separatrices [PZ07] emanating

from singularity s; is related to the index in the same way, 1 — sepe(s;)/4 = indexc(s;),

as illustrated in Figure 4.1.

Figure 4.1.: Streamline visualization of a cross field in the neighborhoods of points with
index %, i, 0, —i, —%. Streamlines emanating from a singularity are called separatrices
and their number is related to the singularity’s index via 1 — sepe(s;)/4 = indexc(s;).

In regular regions (middle) streamlines cross orthogonally.

4.2.1. Optimization

The optimization problem (4.6) can be solved using an efficient greedy mixed integer
solver [BZK12] as described in [BZK09]. Recently, different formulations with alternative
optimization strategies that do not require a mixed integer solver have been proposed
[KCPS13, DVPSH14]. In these methods the integer degrees of freedom are essentially
expressed implicitly [PZ07] rather than explicitly [LVRLO6]. This, however, limits the
types of singularities and thus node valences — in the case of a vertex-based formulation
as in [KCPS13] to valence 3 and 5 — while the explicit representation allows for arbitrary
valences. Furthermore, vector based interpolation [DVPSH14] can lead to degeneracies
(zero vectors which cannot be back-transformed to crosses), while the angle based for-
mulation always yields valid results. Hence we use the mixed integer formulation in our
method.
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4.3. Results

Note, however, that indices should always be lower than 1 because otherwise the corre-
sponding (necessarily positive) valence cannot be chosen according to (4.8) in the desired
way. If singularities with index > 1 occur (in pathological situations with Gaussian cur-
vature of nearly 27 concentrated on one vertex) they can easily be split into lower index
singularities [BZK09, PZKW11].

4.2.2. Principal Direction Alighment

The cross field perspective of the node optimization problem allows us to respect the
forward paradigm (cf. Section 3.1.4) in this stage. The cross field can be seen as a kind
of proxy for the parameterization (more precisely: its gradient field) that is going to be
computed in the third stage. As we are going to construct a principal direction aligned
parameterization, it is of benefit to likewise take an additional alignment objective into
account already in the cross field construction. This influences the resulting singularity
structure. In this way the nodes’ suitability for the third stage is already considered
here in the first stage. Specifically, we use the technique described in [BZK09] to select
principal direction constraints based on the local surface anisotropy, and fix the crosses

in the respective faces accordingly.

Note that one could go one step further and optimize a principal direction aligned
parameterization (including free singularities) instead of “just” a principal direction
aligned cross field (for instance in the spirit of [MZ13]). However, this would be more
expensive: a parameterization corresponds to an integrable 4-symmetric vector field,
and the integrability condition leads to a significantly harder problem. But even more
important, the benefit is questionable because a parameterization computed here would
still not match the one computed in stage 3: the connectivity information from stage 2,
which is not yet predictable here, will be taken into account in stage 3, and it often has

a larger effect than the integrability condition.

4.3. Results

Figure 4.2 shows the irregular nodes obtained for various models using the described

method with principal direction alignment constraints.
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4.4. Discussion

Regular Nodes Note that we, so far, only considered the irregular nodes — which play
by far the most important role. In fact, here we can actually neglect regular nodes,
which do not have any effect in (4.3) or on the geometric quality — they can emerge

freely in later steps (basically implied by crossing separatrices, cf. Section 5.2.3).

Node Positions The purpose of stage 1 is to fix the discrete degrees of freedom —
irregular node count and valences. As a by-product we get positions for these nodes.
We can conveniently exploit this information in the next stages, but it is considered
preliminary and we only use it as initialization — actual optimized positions are finally

obtained in stage 3.

Guarantees (4.3) implies a necessary, not a sufficient condition, i.e. a set of nodes
(derived from a cross field) which fulfill (4.3) does not generally admit a quad layout.
However, as shown by Jucovi¢ and Trenkler [JT73] and recently discussed by Myles
et al. [MPZ14] only a single configuration fulfilling (4.3) but not admitting a quad
layout exists: one valence 3 and one valence 5 node on a genus 1 surface. While our
experiments as well as the lack of mention in the pertinent literature in the field-driven
quad meshing area suggest that this is not an issue in practice, one may simply modify
this problematic configuration, should it occur, e.g. by merging the two singularities
[BZK09], thus removing the two nodes.

Noise We assume the input triangle meshes we operate on are free from noise artifacts.
The Gaussian curvature variations on noisy surfaces can lead to an excessively large
number of cross field singularities. The abstraction from such artifacts or small-scale
geometric detail is beyond our scope, but the use of surface smoothing methods or
alternative, scale-aware objectives for the field construction [RVAL09, ECBK14] is surely
possible.
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4.4. Discussion

Figure 4.2.: Irregular nodes computed for various example models. Valence 3 nodes are
displayed in red, valence 5 nodes in blue, and valence 6 nodes in cyan. Note how most
valence 3 nodes lie in regions with positive Gaussian curvature and valence 5+ nodes
in regions with negative Gaussian curvature, but where appropriate or necessary, e.g. in

order to fulfill the Poincaré-Hopf theorem, nodes can also arise in flat regions.
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Note: This chapter is based on [CBK12].

In stage 2 the connectivity of the irregular nodes created in stage 1 is to be determined.
Probably the most obvious attempt to construct a quad layout given a set of nodes
with prescribed valences consists in connecting these by incrementally constructing the
separatrices (i.e. arcs or arc chains) from node to node. It turns out, however, that
the structural consistency requirements (“only regular patches”) are hard to control
and satisfy when proceeding in this local, incremental manner: whenever a cycle in the
graph of nodes and separatrices is closed during the process, strict conditions relating
the valence of its patches to the number and valence of inlying nodes have to be met
— otherwise additional irregular nodes would have to be introduced in order to still be
able to obtain a quad-only layout. Besides the fact that these additional nodes might be
geometrically implausible (causing low geometric fidelity), they further imply additional
separatrices that are to be inserted. Hence, it can become difficult to generate a complete
layout without introducing an excessive number of irregular nodes (causing high layout
complexity). This primal, separatrix-based layout construction approach is furthermore
highly order-dependent: early greedy decisions can render a layout unacceptable long
before this is realized, as already discussed in Section 2.4.2. Takayama et al. [TPSHSH13]

and Bommes [Bom12] likewise note these problems.

The key observation that allows us to avoid the problems of separatrix-based ap-
proaches is the fact that the layout consistency is much easier ensured when not work-
ing in the primal but in the dual setting (cf. Definition 2.1.11). In more detail, this
means we do not directly construct the primal layout graph of separatrices connect-
ing irregular nodes but its combinatorial dual, which we eventually dualize to obtain
the primal. We construct this dual (embedded) graph from the arrangement of a set
of crossing loops (closed curves) on the surface (cf. Figure 5.1 b,c for an example).
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5. Connectivity

Murdoch et al. [MBBM97] already emphasized that the dual view of a quad mesh as
intertwined loops is advantageous because these dual loops, due to their global nature,
directly exhibit the global connectivity constraints involved — in contrast to the local
primal arcs. Note that on surfaces with boundaries a dual layout contains boundary-to-
boundary curves in addition to loops (cf. Section 2.1). To keep our exposition focussed
we concentrate on the case without boundary first and elaborate on the general case in
Section 5.3.

The central question now is how such a dual layout can be generated from the infinitely
dimensional space of loops. In Section 5.1 we explain the theory behind our construction
of arrangements of loops on surfaces that allows us to achieve layouts with geometric
fidelity as well as structural consistency and simplicity. Afterwards, in Section 5.2, we
describe the implementation in a discretized setting on triangulated surfaces.

5.1. Theory

b) c)

Figure 5.1.: Overview of the connectivity determination stage. Guided by a field of
principal directions (a), a collection of transversally crossing loops on the surface is
generated in a geometry-aware manner (b, ¢). These loops partition the surface into
polygonal regions whose valences are intimately related to their total curvature. By

dualizing the graph formed by these loops, we obtain the connectivity of a quad layout

().
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5.1. Theory

5.1.1. Dual Loop Arrangements

First, let us consider which properties an arrangement of loops needs to fulfill in order

to induce a valid dual layout:

D1) loop intersections are transversal (i.e. non-tangential),

D2) no three loops intersect in one point,

(D1)
(D2)
(D3) each region has a valence of at least 1,
(D4)

D4) each region has disc topology.

The first two properties guarantee that each intersection induces a unique valence
4 vertex, the third ensures that no dual region has valence 0, which would imply an
isolated primal node. The fourth point ensures a valid embedding with topologically
simple faces.

If these properties are fulfilled, at least a valid dual graph is induced. Additionally
we are interested in geometric fidelity. For this we need to take into account that a
loose geometric relation between dual loops and the corresponding primal arcs can be
assumed: because a dual loop runs through a strip of quad patches, the strip boundary
arcs are roughly parallel to the dual loop. Considering this the quality criteria listed in
Section 2.2 imply the following for the dual setting:

D5
D6
D7
D8

loop intersections should be close to orthogonal,
loops should follow principal curvature directions,

(D5)
(D6)
(D7) a region’s valence should reflect its total curvature,
(D8)

loops should be short and few in number.

Ttem (D5) encourages rectangular patches, (D6) encourages principal curvature align-
ment, and (D7) states a dual region valence-curvature relation analogous to the primal
node valence-curvature relation (cf. Chapter 4), allowing for low patch-rectangle map-
ping distortion. Item (D8) directly translates into structural simplicity as the total
length of primal arcs and dual edges is closely related in practice. Note that these items
are soft requirements promoting quality while (D1)-(D4) are mandatory conditions.
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5. Connectivity

5.1.2. Principal Curvature Fields

Constructing loops in a way that they are aligned with directions of minimal and max-
imal curvature directly serves fulfilling properties (D1), (D5), and (D6) (and indirectly
also (D7)). Therefore, we base our construction on the cross field C computed in stage
1, cf. Chapter 4. It not only conforms with principal curvature directions in anisotropic
regions, it furthermore is globally consistent and well-defined also in umbilic regions,
which provides benefits for the following considerations. We will see that this cross field
fundament also serves in fulfilling the other requirements because the irregular nodes
appear in the field in the form of singularities, which encode Gaussian curvature infor-
mation, as detailed in Section 4.1. In essence, the relation between node valence and
Gaussian curvature implied by (4.3), (4.7), and (4.8) will ultimately serve to fulfill (D7).
Figure 5.1 illustrates the basic idea of this stage.

5.1.3. Branched Coverings

Locally and away from singularities, the cross field C on M (which from now on we
call F¢ for distinction from a line field Fj, and a direction field Fp) can be decomposed
into four direction fields. This does not hold globally. However, as shown by Kélberer
et al. [KNPO7], we can construct a four-sheeted branched covering surface My of M
with branch points induced by the singularities, and canonically lift the cross field Fe
on M to a single smooth direction field Fp on M,. Analogously, we can construct
a two-sheeted branched covering surface My of M and lift the cross field to a single
smooth line field Fy, on it. Figure 5.2 illustrates this schematically. Note that My is
also a two-sheeted branched covering surface of M. In the following we will deal with
curves and loops on My; note that they project uniquely onto My and M by means
of the respective covering maps — for brevity we will not always mention this projection
explicitly but simply refer to these loops or curves and their projection images by the
same name. These covering concepts significantly simplify our further elaborations by

allowing us to work with cross, line, or direction fields as needed.
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5.1.4. Loops on Branched Coverings

Now consider what happens when we attempt to create a principal direction aligned loop
through a point p on M by tracing. We choose one of the four directions from the local
cross field by lifting p onto one of the four sheets of My, trace a curve through the direc-
tion field Fpp on M, until we get back to the starting point!, and project the curve from
M, to M. The obvious problems are that the curve might never return, and if it does, it
will probably be very long and far too complex to provide a
useful loop for our purpose — we have to trade some devia-
tion from the field for shortness. This is illustrated here on
a cylindrical structure: the blue curve exactly follows the
field and spirals over the surface, whereas the green curve

slightly deviates from the field so as to be able to form a

short loop.

Let [ : [0,b] — M, denote a regular curve in arc-length parameterization which does
not run exactly through a branch point (where the direction field is not defined). We
define a combined measure ¢, that rates such curves based on their direction fidelity

and shortness, balanced by the parameter o € [1,00):

co(l) = /Ob\/c052 0(s) + a2sin®0(s) ds

INote that, by tracing on My, the curve is able to intersect itself on M — this is a highly desired
behaviour, as quad meshes and layouts with non-intersecting dual cycles are only a restricted class.

Figure 5.2.: Illustration of a small region of M with its branched coverings M, and

My and the cross, line, and direction field.
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where 6(s) is the angle between the curves’ tangent and the desired direction Fp(I(s))
at I(s). A similar measure has also been employed by Tarini et al. [TPP*11] in the
primal setting to rate separatrices. We are interested in non-trivial loops (closed curves)
which minimize this measure for a prescribed « (called minimal loops) subject to certain
constraints that we introduce in the following. As extreme cases, a = oo leads to the
abovementioned complex minimal loops, whereas o« = 1 leads to field oblivious geodesics.
Values around 30 proved to provide a good balance for our purpose.

In order to obtain loops which are not only short and field-aligned, but furthermore can
be combined to structurally valid loop arrangements we impose the following constraint:
we restrict the set of non-trivial regular loops on My to the set L of admissible loops

that fulfill 6(s) € [-7, %), i.c. we limit tangent deviations from the principal curvature

directions. This effectively partitions the tangent space at each
point into four “sectors”, each describing the admissible loop g
tangents on one of the four sheets of My. For a > 1 minimal m
loops are very unlikely to violate this anyway, but imposing it as
hard constraint allows us to guarantee important properties in ﬁ
the following. Furthermore, we define an arrangement of loops E

that My-simple arrangements of loops meeting 0 € [—~7, 7) contain no tangential inter-
sections, thus fulfill (D1). This is illustrated in Figure 5.3 and elaborated in the proof

of Theorem 5.1.1.

on M, that have no intersections on My to be Ms-simple. Note

The following two theorems state the further beneficial properties of the (s) € [-7, 7)
constraint in conjunction with My-simplicity. Let index¢(R) denote the sum of singu-

larity indices lying in a region R:

Theorem 5.1.1. (Region valence-index relation) If a region R C M (bounded by
loop segments) with disc topology in an My-simple arrangement of admissible loops has
k loop intersections on its boundary, then indexc(R) =1 — k.

Proof. My-simplicity and 6 € [-7,7) guarantee transversality of all loop intersec-
tions on M: a tangential intersection would imply equal tangent lines of the two loops
at the intersection; as admissible tangent lines are disjunct on the two sheets of My
above each point due to § € [-7, F), this would imply the intersection happens on one

sheet of My, contradicting My-simplicity. Then, considering R is bounded by a cycle
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Figure 5.3.: Left: two loop segments (red, blue) have tangential contact on M; this
is possible as My-simplicity is violated. Middle: the loops are My-simple, but the
0 € [-5,5) constraint is violated allowing for a tangential intersection. Right: My-
simplicity and the f-constraint together only allow for transversal intersections.

formed by loop segments between k intersections (as de-
picted for the case k = 5), we determine the turning number
[RVLLOS] of the cycle to show the relation to indexc(R).
Starting at an arbitrary intersection, we travel along the first

segment to the next intersection. At that point the inter-

mediate turning number ¢ fulfills f% <t< % since, due to

the 6 € [—g, %) constraint, the segment cannot make more
than < %th of a full turn w.r.t. the field. Now turning to the

next segment involves a rotation of the “sector” of allowed tangents by 7, leading to
—% — % <t< i — i along this segment. Repeating this for all k segment switches to get
back onto the start segment, we obtain *i — ik <t< i — ik for the turning number
of the whole cycle. As the turning number of a cycle necessarily is an integer multiple
of 1, we have ¢ = —1k. It is related to indexc(R) by ¢ = indexe(R) — 1 [RVLLOS], hence

indexe(R) =1 — 1k. O

This relation between singularity indices and region valences implies that whenever
only a single singularity lies in a region, the region valence matches that of the node
derived from the singularity in stage 1. It further shows that no further irregular nodes
will be implied by the dual layout because regions with index sum 0 are always regular

(i.e. bounded by four loop segments).
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Now, the idea underlying the dual layout construction is to choose loops from the set
L of admissible loops such that singularities get separated from each other, aiming at
having each singularity lie in a separate irregular region — because then the primal layout
obtained from the dual loops will have exactly the desired irregular nodes as determined

in stage 1. We can achieve this separation in the following sense:

Theorem 5.1.2. (Singularity separation) In an May-simple arrangement of loops
any region R with indexc(R) > i containing multiple singularities of index i or %, and
any region R with index¢(R) < —i containing multiple singularities of index —i can be
split into regions with smaller |index¢(R)| by adding further admissible loops, without

introducing irregular regions outside R and without violating Ms-simplicity.

Proof sketch. Note that we can always add loops that (with infinitesimal distance) run
along existing loops without violating My-simplicity and without introducing any new
irregular regions. The proof is based on the construction of one or more such loops that
are then cut and reconnected within R. Figure 5.4 illustrates these constructions for the
concerned cases. Note that reconnections inside the regions are possible in the shown

ways because each subregion fulfills indexe(R) =1 — 1k.

This means we can guarantee that singularities can suitably be separated by admis-

sible loops for most practically relevant cases. The theorem further extends to several

Figure 5.4.: Schematic illustration of the cases of Theorem 5.1.2: region with
indexe(R) = —3 (a), <=3 (b), 2 (c), 3 (d), 1 (). Numbers indicate the indexc of
the subregions. The green curve is a single loop that splits the region while running
solely along other loops outside the region (a)-(d). In (e) the loop can be connected on

the outside due to symmetry (the outside region has this same boundary loop).
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cases which include multiple higher-order singularities (which generally are quite rare in
practice). But note that even an exceptional case where singularities cannot be sepa-
rated completely does not cause a problem: the dual loops always imply a valid primal
quad layout — in which any non-separated nodes have effectively been merged (cf. Sec-
tion 5.2.3). This can be seen as a form of adjustment of the input which did not well fit

the current stage’s objective, as laid out in Section 3.1.5.

Let us briefly summarize which insights we gained regarding fulfillment of the eight
required/desired properties: (D1) and (D2) are ensured by Ms-simplicity in conjunction
with the 6§ € [-%,7]) constraint, (D5) and (D6) are respected by minimizing ¢, for
a > 1, (D3) can be achieved due to Theorem 5.1.2 if there are no singularities of index
> % (which normally is the case in practice, and can even be ensured by dividing such
singularities), (D7) is fulfilled according to Theorem 5.1.1. The shortness part of (D8)

is governed by using c,-minimal loops.

For (D4) “each region has disc topology” there is no theoretical guarantee that this
can always be achieved on objects of non-zero genus; in fact, one can artificially create
pathological cross fields such that loops with arbitrarily large |0 are necessary to cut the
surface to discs (cf. the cross field depicted in Figure 4 left in [KNP07] or the one depicted
in Figure 5 left in [MPZ14] for basic examples). According to all our experiments these
cases do not arise from the employed principal directions guided field construction in
practice. Nevertheless, holonomy constraints [LJX*10] can be employed in the field

construction process to provide rigorous guarantees.

In conclusion, we know that it should be possible to construct desired dual layouts
from admissible loops, and the remaining question is how this can effectively be done,
i.e. how to choose few admissible loops from the set L that fulfill My-simplicity and
suitably separate singularities. For this we propose a greedy strategy as described in the

following section.

5.1.5. Greedy Loop Selection Strategy

The primary objective for loop selection is the separation of cross field singularities.
In favor of layout simplicity this should be achieved with few loops. We construct the

arrangement of loops in an incremental manner by iteratively adding further loops that

47



5. Connectivity

do contribute to the goal of singularity separation. In this process, to ensure My-
simplicity, a new loop may not intersect the previously constructed ones on My. Let
L(A) denote the subset of loops from L which, on Ms, do not intersect the loops of an
arrangement A.

For the purpose of deciding whether a loop contributes to singularity separation,
imagine the set of all paths on M connecting a pair (a, b) of singularities without crossing
any loop of an arrangement A (cf. Figure 5.5). As separation is a topological concept,
we are not interested in these paths’ geometry but solely in their homotopy classes. Let
H(A, a,b) denote the set of these classes, and H(A) = UgzesH(A, a,b), where S is the
set of all singularities. A loop I € L(A) is said to be (A, h)-cutting if h € H(A) but
h ¢ H(AU{l}). Intuitively, | actively increases the “level of separation” by cutting
all connections of class h when adding it to A. Figure 5.5 illustrates this abstractly on
a simple torus; Figure 5.8 shows a less abstract yet simple example (in the discretized
setting).

Note that H(A) can be infinite (and a single loop can be (A, h)-cutting for an infinite
number of classes h). In Section 5.2.2, which deals with an implementation of the
following algorithm, we describe how this is handled in practice.

h1/2/3€H(®7a,b) hz/gEH({S}JLb) H({s,t}7a7b) =9

Figure 5.5.: Left: three paths py/y/3 of three exemplary homotopy classes h; = [p;]
connecting singularities a and b are depicted. The loop arrangement A is still empty. We
have hy/5/3 € H(@,a,b). Middle: All paths of hy cross the loop s, thus hy ¢ H({s},a,b).
Hence, s is (@, hy)-cutting. Right: All paths of hy and all paths of hs cross loop ¢, thus
hoys ¢ H({s,t},a,b). Hence t is ({s}, ho)- and ({s}, hg)-cutting. Furthermore, now
H({s,t},a,b) is empty, no more paths between a and b not crossing A = {s,t} exist.
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Surely, we are not interested in arbitrary cutting loops but minimal ones: let Ly (A, h)
denote the ¢,-minimal (A, h)-cutting loop. Then, for some arrangement A, Lyin(A) =
Unem(a) Imin(4, 1) is the set of all minimal loops whose addition to A would contribute
to further singularity separation.

Algorithm: We iteratively add such minimal cutting loops to increase the level of

separation based on a greedy approach:

A = o

Ai+1 — A’LU o l
L, -0

The iteration is repeated until H(A?) is empty or [, (A% h) is undefined for each
h € H(A") because there are no further cutting loops (in cases where not all singularities

are separable).

The greedy choice of the maximum instead of a minimum might seem unnatural, but
it typically leads to better results. First notice that even the maximum (with respect to
o) out of the loops of Ly, (A?) is still a minimal cutting loop — for each path homotopy
class the set Ly, (A’) contains only the c¢,-minimal of the loops that cut it. Hence the
choice of the maximum does not lead to unnecessarily long and field-misaligned loops

as it might appear at first sight — it still selects from the best loops that are available

Figure 5.6.: Visualization of the maximum (green) and minimum (red) of all minimal
cutting 1oops Lupin(A°) in the ROCKERARM and FERTILITY examples from Section 5.4.
Notice that the longer loops are typically concerned with the global structure, whereas
the short ones capture rather local features. The maximum-first greedy approach thus,

in some sense, pursues a coarse-to-fine strategy.
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to achieve separation of certain singularities. See Figure 5.6 to get an idea of how such
loops look like.

Consider the class Muax =arg maxyegr(40) Ca(lmin (A%, b)), i.c. the class that, among all
homotopy classes, requires the c,-largest loop to get cut. This 100p is lin (A%, Amax) and
hmax cannot be cut by any c,-smaller loop; in fact, if we first add some loops cutting
other classes, then [, (A7, hiyay) for j > 0, i.e. the best loop available to cut hp.y after
Jj iterations, can easily be c,-larger due to L(A™!) C L(A?) by definition. Following the
maximum-first strategy, the long loops necessary for separation of some singularities are
secured early, in contrast to a minimum-first strategy where other loops already restrict
the space of May-simple loops available to cut Ay., in the end. Hence, as confirmed
in our experiments, this maximum-first strategy typically leads to arrangements with a

smaller total sum as well as lower variance of the loops’ ¢,-values.

The objective of achieving regions with disc topology seamlessly integrates into this
algorithm: for each singularity a the set of homotopy classes of non-contractible paths
connecting a with itself, i.e. H(A,a, a) without the trivial
class of contractible loops, is simply included in the set
H(A). H(A) will then not become empty before in A all
singularities lie in disc topology regions. This is illustrated
here based on the example from Figure 5.5 right: two still

remaining non-contractible paths self-connecting a and b

are depicted.

5.2. Discretization & Implementation

‘We now present the techniques necessary for a practical implementation of the proposed
method on triangulated surfaces M. In this context the terms verter, edge and face
will refer to the triangle mesh M rather than to dual layout components. The field Fe,
with its lifted variants F}, and Fp, is computed and represented discretely per face as
described in Chapter 4. To simplify parts of the implementation by avoiding special
cases, we assume no two singularities are directly adjacent, i.e. incident to a common

mesh edge — this can easily be ensured by splitting the edge, inserting another vertex.
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The branched covering triangle meshes My and M, are constructed as described by
Kiélberer et al. [KNPO7].

5.2.1. Anisotropic Front Propagation

Loops minimizing ¢, are anisotropic geodesics and, given a start point p, can efficiently
be computed by anisotropic front propagation on My. In this setting « plays the role of
a global anisotropy coefficient that, together with the direction field, forms the tensors
defining an anisotropic local surface metric guiding the propagation. This process can
be understood as a “fuzzy” curve tracing: the fuzzy curve travels fast in the principal
direction and slower the more it deviates (cf. Figure 5.7). When the front reaches p

again, the minimal loop is found.

Sethian and Vladimirsky [SV04] presented a method for anisotropic front propagation
with nice convergence properties, but on coarse meshes the relative error as well as the
runtime is rather high for large anisotropy coefficients. Dijkstra’s classical shortest path
algorithm applied to the mesh graph of My, with edge weights computed according to
the metric ¢,, is much faster, but the error is even worse for large anisotropy coefficients.
A detailed analysis of the quality and performance of available algorithms is given in
Chapter 9.

For this reason we created a novel variant, Short-Term Vector Dijkstra, which drasti-
cally increases the accuracy by propagating distances not only along edges, but rather
over vectorial chains of edges up to discrete length k. This conceptually increases the
angular resolution of the propagation process, as illustrated in Figure 5.7 left. We found
k = 4 to be sufficient, working very well for our purposes (cf. Figure 5.7 right). The
algorithm is presented in detail in Chapter 9. We here use a variant of this algorithm
which does not build the edge chains ad hoc. Instead we precompute all edge chains up
to length & and their weights and store these meta-edges in a graph P. On this graph
the algorithm reduces to Dijkstra’s original algorithm. Using this explicit representation
of the graph, we can take care of the propagation constraints more easily, as detailed in
the following. Furthermore, for each meta-edge in P we remember corresponding edges
in My, such that a loop computed in P can then be represented as a cycle of edges in

M.
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Figure 5.7.: Left: 1-, 2-, 3-, and 4-disc edges of a vertex. Right: Distance visualization
of anisotropic propagation on a rounded cube mesh. Since we propagate on M, the
front can cross over itself at the branchings and pursue different courses on the different

covering sheets, according to the respective field directions.

Propagation Constraints The 6 € [—-7,%) constraint is easily im- RAERIS IR
posed by discarding those edges from the propagation graph P which
violate it. Ma-simplicity of the layout is achieved by forbidding the
front to cross existing loops on Msy. Additionally, Ms-simplicity of the
new loop itself is to be ensured. In the continuous case this is guar-
anteed by its minimality, but in the discrete setting constructed loops
could have small local self-intersections on Msy. These can easily be

resolved as depicted: at the intersections, the loop is cut, the parts al- \ \
ternately reversed, and reconnected to a non-intersecting (just grazing) *._ /i .

- ~a

one.

Preventing the front from crossing already existing loops could easily be accomplished
by removing the loops’ underlying vertices (and incident edges) from the propaga-
tion graph. This, however, directly limits the local maximum density of constructed
loops to the resolution of the triangulation. We avoid potential dead-ends in the
propagation by allowing multiple loops to run over the same graph edges locally —
they just may not cross in the sense of My-simplicity: during front propagation each
graph vertex at the front memorizes for each already existing loop whether the path
to this vertex currently runs along the loop on My and whether it moved onto it
from the left or from the right. Propagation may then only proceed further along
the loop or back to the side it came from, effectively preventing crossing. This can

efficiently be implemented by equipping each constructed loop with so-called whiskers:
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two sets of half-edges, those incident to the loops’ vertices from the
one and the other side, respectively, as illustrated on the right in
green and red. The “memory” per front vertex then consists of two
flags per existing loop, that are set or reset whenever propagation
proceeds over a green or red whisker, respectively, depending on the
half-edge orientation. As an example consider the case of the front
propagating from vertex a to b. The green flag is set at b due to
moving over a green whisker. This disallows further propagation ¢ d
over a red whisker to e; propagation to d carries the green flag over

to d, and when propagating to ¢ the flag is not carried on due to b

moving over a green whisker reversely.

5.2.2. Singularity Separation

Being able to construct the loops of L in an Mjy-simple manner, we now implement the
greedy approach presented in Section 5.1.5. Recall that we need to consider an infinite
number of connecting paths in a potentially infinite number of homotopy classes. We
employ two efficient heuristics to make this tractable, and add a simple post-validation
procedure to be able to guarantee correctness even in case they fail. In practice, they
perform so well that post-validation is required to come into action only very rarely.
Even then, the worst case is that the result is not greedy-optimal in the described sense,

but still structurally correct.

In each step of the greedy construction we need to determine loops which cut certain
homotopy classes. To be able to do this efficiently, in the beginning we construct so-
called separation indicators (SIs) for each pair (a, b) of singularities — paths representing a
homotopy class each (discretely embedded in the mesh graph). Based on the intersection
constellation of a loop and an SI we are able to estimate whether the loop cuts the whole
homotopy class (heuristic I). Figure 5.8 shows an example of these SIs. While on genus
0 objects (with trivial homotopy group) we have a single SI for each pair, on objects
of genus g > 0 the homotopy group is infinite; for practicability we restrict ourselves
to 2g + 1 SIs constructed as described by Erickson and Whittlesey [EWO05] for the case
of loop homotopy bases (cf. Figure 5.5 left for the simplest example of such 2g + 1 SIs

between two singularities on a genus 1 object).
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The rationale behind this is the observation that Sls of further homotopy classes
(winding around surface handles multiple times, etc.) are very likely to be cut by loops
that cut their simpler siblings, anyway (heuristic II). The mentioned method [EW05] is
adapted from the loop case to our case of paths by not using the distance field of one loop
root point but two distance fields, one of each path end point, i.e. the two singularities
to be connected, in the maximum spanning tree construction (cf. [EW05] for details on
this). This yields 2¢ SIs. If a # b, an additional one, not crossing the cutgraph involved
in the construction at all, is created simply by Dijkstra’s shortest path algorithm (a step
which is not necessary in the case a =b dealt with by the original method due to the

triviality of this one class).

Given an SI s and a loop [, we estimate whether [ cuts all connections from s’s class [s]
(heuristic I). If I does not cross s, we can be sure that it does not; if it crosses s an odd
number of times, we can be sure it does. In the case of an even number of cross- :
ings, we cannot definitely decide locally — whether [s] is cut completely depends I
on the global interplay of multiple loops. Instead of performing expensive global
checks in this regard, a heuristic, exploiting that [ is created on My, proved to
be highly reliable: we check how many of the four pre-images of s on My are
crossed by [. If only one is crossed we consider s not cut, if more are crossed
we consider s cut. The rationale is that between two crossings, [ has to travel
around multiple singularities for these two crossings to lie on different sheets
— implying intersections of [ with further loops in between. If all crossings are .
on the same sheet, we usually have a situation as depicted on the right, not

signifying a true cut.

Figure 5.8.: Visualization of separation indicators (pink) between 8 singularities on a

cube: all; and those that remain uncut after the addition of the first, second, and final
third loop, respectively.
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Now, for each SI s, we aim at finding the minimal loop [,,;, cutting it. As this loop
necessarily crosses s, we can start a front propagation from each graph vertex v on s
and compute the minimal loop through each of them. More precisely, we start from two
of the four pre-images of v on M, — the two other sheets with opposite directions only
lead to the same loops in reverse. The c,-smallest of those that cut s then is [y, of s,

called the candidate for s.

Instead of computing the candidate for each SI, i.e. the whole set Ly, (cf. Section
5.1.5), we can heavily increase efficiency in the spirit of lazy evaluation by exploiting
the fact that we are always interested in the c,-largest candidate in each greedy step.
If a candidate of s cuts other Sls, their candidate does not (yet) need to be computed
as it can only be equal or smaller. To provide an example of the gain in efficiency
typically provided by this optimization: for instance on model FERTILITY only 30 can-
didates are computed in the beginning, they already cut all 10,152 SIs; 11 more are later
(re)computed (in repetitions of step 4 of the following algorithm).

Algorithm: With the initial set of candidates C' we can then perform an iteration of

the greedy algorithm, starting with an empty arrangement A, in the following manner:

1. Add the largest candidate ¢: A «— AU {c}, C «— C\ {c},
2. remove all Sls that are cut by c,
3. discard candidates from C' that are no longer Mo-simple with respect to A,

4. for SIs that are not cut by any curve from C' compute new candidates (again in a

lazy manner) and add them to C.

These four steps are repeated until no more candidate is available.

To appropriately handle rare cases where in the end some singularities remain un-
separated due to the two heuristics, we perform a post-validation: we iteratively check
whether paths between two singularities still exist by simple flood-filling within the re-
gions of A (not crossing any loop of A), add these paths as new SIs, and perform further
greedy steps (beginning with step 4 to compute new candidates) until no more paths or

candidates exist.

Ut
Ut
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5.2.3. Layout Primalization

The constructed dual layout implies the topological structure of the primal layout: each

dual region corresponds to a primal node, and region adjacency implies node connectiv-
ity.

Note that this connectivity is not of purely combinatorial nature, but in addition
has a topological aspect: two nodes cannot only be connected or not connected, the
connection’s homotopy (with respect to M punctured at the irregular nodes [MPKZ10])
also plays a role. In particular, two nodes can be connected by multiple arcs from
different homotopy classes. This information needs to be encoded properly, such that
the following stage can rely on an unambiguous representation.

To this end we select one arbitrary vertex v(h) per region as representative for the
corresponding primal node h — in irregular regions containing one singularity it is of
course natural to chose the corresponding vertex. Then, for each pair of adjacent regions,
we compute a chain y(a) of successively adjacent mesh faces? connecting the nodes of
these regions, representing the corresponding primal arc a. A simple breadth-first search
on the dual mesh graph, restricted to two adjacent regions and only allowed to cross
the separating dual loop once, is sufficient to generate these face chains — because their
geometric quality does not matter for the subsequent stage, only their homotopy class.
The maps v and v then completely encode the layout’s topological structure — via a
prototypical, discrete embedding of the layout graph in M.

For the purpose of visualization of the layout connectivity, it can be useful to take the
geometry into account in the computation of representative arc paths. Instead of using
the simple breadth-first search, we can compute the connection as a region-restricted
geodesic path with respect to the anisotropic curvature-driven metric (cf. Section 5.1.4).
Furthermore, instead of computing paths for the indi-
vidual arcs, we can compute paths for whole separatri-
ces (sequences of arcs from irregular node to irregular
node) through the corresponding dual corridors as de-

pcited alongside. The regular nodes can then be posi-

2The choice of a face chain instead of a perhaps more intuitive edge chain simplifies the handling of

arcs in the next stage.
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tioned onto the intersections of these separatrix paths, leading to a smoother geometric
representation for visualization purposes. The actual global optimization of the geomet-

ric embedding (based on v and ), however, is dealt with in Chapter 6.

5.3. Extensions

Boundaries On surfaces with boundaries, dual layouts contain dual curves which run
from boundary to boundary in addition to dual loops. In order to enable the automatic
construction of such curves where appropriate we simply modify the loops construction
procedure described in Section 5.2.1: instead of propagating the front on My from the
seed into the field direction until it hits the seed again, we propagate two fronts in
opposite directions (i.e. on two different sheets of My) until they either hit each other
on My or both hit the boundary — whatever happens first. Tracing back through the
two distance fields yields a loop in the former case and a boundary-to-boundary curve
in the latter case. The separation concept that drives the loops selection strategy is
also easily extended to the boundary case: in addition to the separation indicators for
singularities we include boundary separation indicators (shortest paths between each
pair of boundary loops) such that no two boundaries lie within the same region in the

end, as this would topologically merge them in the layout.

Feature Curves For cases where M contains feature curves, we can make a simple
extension to the algorithm to allow for better alignment of arcs to features. Given a set
of curves representing the features (e.g. selected using dihedral angle thresholding for
the simplest case of sharp features) we use them as directional constraints in the cross
field construction as described by Bommes et al. [BZK09] such that the cross field is
aligned with the features. We then lift each curve to the one sheet of My the line field
of which is aligned with the curve tangent, and modify the definition of May-simplicity
to include that loops may also not intersect these lifted feature curves on M. This
prevents loops from crossing feature curves in a manner that these curves would not lie
within a dual corridor in the final loop arrangement — which would make aligning some
separatrix to the feature impossible. After performing the greedy algorithm with this
change, separatrices are then not constructed as geodesics but constrained to features

where applicable.
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It is worth noting that, while this procedure prevents arcs from crossing features
unsuitably, it does not guarantee that each feature segment is captured by a layout arc
in the final layout. In fact, different strategies would be necessary already in the node
determination stage in order to enable complete alignment in the presence of complex
global feature configurations as recently shown by Myles and Zorin [MZ13, MPZ14].
The evaluation of possibilities to combine their ideas with the dual loops concept for
the generation of quad layouts with full control over alignment to complex features and

boundaries is an interesting avenue for future investigation.

Additional Loops The presented algorithm creates layouts A that are topologically
minimal in the sense that no loops are added that do not contribute to singularity
separation. This is a desirable property, allowing us to obtain simple layouts. But
depending on the geometry of M, the addition of some further loops can potentially have
a much larger impact on the improvement of geometric fidelity than on the concomitant
decrease of simplicity as it can alter the node connectivity in the primal layout — which
might allow for better curvature and feature alignment. Loops whose addition to A can
cause such changes can be identified in the following way: each SI lifts to two curves on
My; we say an Sl is doubly-cut if both of these are cut by the loops of A on My. A
further loop causes a change to node connectivity if its addition to A doubly-cuts an SI
that, so far, was only singly-cut. This is based on the observation that singly-cut Sls
might appear in the primal layout as separatrices (in the form of curves homotopic to
the SI), while doubly-cut SIs do not. Figure 5.9 shows a prototypical example of the
situation.

e A

Figure 5.9.: Left: Primal quad layout (black) induced by a loop arrangement (yellow).
Right: Adding a further loop (green) alters the irregular node connectivity: the dashed
connections vanish, caused by the cuts (by yellow and green loops) on both sheets of
M.
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In order to exploit this possibility, after the greedy algorithm has been performed, we
can, where possible, construct candidate loops doubly-cutting the Sls that, so far, are
not. Then the quality improvement can be assessed for each of these loops by rating
the separatrices in the corresponding primal layouts based on their cross field deviation.
Starting with the one providing the highest improvement, loops can then iteratively be
added until no further loop is admissible or no further gain possible. The assessment
can quickly be made based on the initial embedding, or, more accurately, based on the
final improved embedding. Notice that it is also possible to remove a loop from A if, by
the addition of others, it becomes redundant (= all SIs cut by the loop are also cut by
other loops).

5.4. Results

In this section we show some exemplary results obtained by our implementation of
the presented method. Figure 5.11 depicts the result layouts, the statistical facts are

summarized in Table 5.1.

For the mere purpose of comprehensible layout connectivity visualization, the arcs and
nodes shown in Figure 5.11 have been smoothed using a simple variant of the approach
presented in [TPP*11], which is based on iterated parameterizations (cf. Figure 5.10), as
detailed in [CBK12]. In the next chapter our novel, more sophisticated layout geometry

optimization is presented.

Figure 5.10.: A quad layout with initial embedding (shortest paths on the mesh graph),
an initial harmonic per-patch parameterization, and the final optimized parameterization

from which smooth arcs can be derived to more clearly visualize the connectivity.
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Model Singularities Loops Nodes Patches
TETRATHING 24 18 80 84
FERTILITY 48 24 92 98
Brock 48 20 72 76
3HOLES 16 12 16 20
ELk 52 22 86 86
JOINT 24 16 7 79
Guy 40 18 170 168
ROCKERARM 30 15 115 115
Borio 72 36 213 221
LEVER 83 36 269 275

Table 5.1.: Statistics of the constructed quad layouts shown in Figure 5.11.

With our current implementation the processing from the initial construction of the
coverings with the fields, over creation of SIs and execution of the greedy algorithm,
to the primalization of the layout takes from a few seconds to a few minutes on a
commodity PC (model complexities between 20K and 122K faces). The processing is
clearly dominated by the front propagations performed to construct candidate loops —

which can easily be parallelized.

As feature constraints (cf. Section 5.3) only the trivially detectable sharp edges on
JOINT and LEVER have been used — advanced detection techniques for smooth feature

edges were not employed.

Comparison We applied our method to several datasets also taken as input by Tarini
et al. [TPP*11] and Bommes et al. [BLK11] for their simplification methods. While on
model ROCKERARM the patch count of our result is higher by a factor of 1.17 compared
to the result of Tarini et al., on model 3HOLE the same obvious layout was achieved, and
our layouts of models JOINT, BOT1JO, FERTILITY, and LEVER are simpler by factors of
1.4, 2.1, 2.6, and 2.8, respectively (the BOT1JO and LEVER results of Tarini et al. can
be found in their supplemental material). In comparison to Bommes et al. the layout
complexities in terms of patch count achieved by our Dual Loops Meshing approach
are even simpler by factors of 1.5, 3.3, 4.7, and 5.4 on models ROCKERARM, LEVER,
BoTwo, and FERTILITY, respectively. This generally large difference is explained by
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the fact that their method is based on removing only certain helical configurations from

the base complex.

Surely, the possibility cannot be ruled out that the greater layout simplicity might
come at the expense of geometric quality to some extent, but visual inspection and
comparison of the results does not reveal distortions which would generally be considered

intolerable or out of proportion.

The general advantage of the simplification-based methods is their explicit control
of the geometric quality: the deviation from the start configuration can be kept track
of and be limited as desired. Furthermore, any previous state can always be used as
a fallback solution. In this sense such methods can be considered safer than from-
scratch-construction approaches like ours — especially when geometric fidelity is of higher

importance than simplicity.

On the downside, it is not easy to drive such simplification processes in a well-targeted
manner; roll-back mechanisms can be necessary to undo series of previous steps in order
to escape from dead-ends. The robust automatic generation of the quad meshes taken
as input is a further non-trivial subtask. These input meshes’ edge directions are then
implicitly taken as geometrically optimal reference and structural simplification aims
at minimal deviation from that. However, assuming the input mesh is generated in
a common field-guided manner, e.g. driven by principal directions, this reference will
often already deviate from the original field (in the sense that quad mesh edges are not
well-aligned with the field everywhere) as such fields rarely are integrable and can only
be aligned to approximately during meshing. The finite density of the mesh further
contributes to this deviation.

The Parameter o While variation of a could be expected to be useful for controlling
the layout complexity to some extent, it should be mentioned that this relation is not
linear (nor fully monotonic) due to the discrete decisions implicitly made by the routing
of the loops. Especially for small a (<10) loops tend to become too unaligned with
the field, this incompatibility sometimes leading to less plausible, complex loops being
necessary towards the end of the algorithm. On the other hand, increasing a beyond ~ 70
usually does not lead to any more changes due to accuracy limitations of the discrete
propagation process. The setting o = 30 proved to work very well quite generally and

all the presented layouts have been obtained with this fix setting.
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5.5. Discussion

The presented method allows for the creation of simple all-quadrilateral patch layouts
by means of the construction of loop arrangements as duals of these layouts. This dual
perspective beneficially exhibits the global structural implications involved in quad lay-
outs more directly. Our method is built on a theoretical framework based on suitably
restricted loop spaces on branched coverings of the underlying surface induced by princi-
pal curvature cross fields. It allows us to guarantee valid dual layouts which furthermore
show good geometric fidelity. In the end, the primal layout connectivity can easily be

derived from the dual layout.

The proposed approach employs a greedy strategy for practicability. Employing a
non-greedy, globally optimizing loop selection would be very attractive — but is not
straightforward due to the interdependencies caused by the necessary Mo-simplicity.
Further, while control over the simplicity of the primal layout is directly given in the
dual setting, control over the geometric fidelity is, to some extent, indirect due to the

loose relation between dual and primal geometry.
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Figure 5.11.: Quad layout connectivity generated by our method. The inset at example
TETRATHING shows the result before an additional loop which increased separatrix/field
alignment was added after the greedy algorithm (as described in Section 5.3). The
FERTILITY and BOTI1JO insets show bottom views of the models.
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Note: This chapter is based on [CK14b].

In the third and last stage of our method the layout’s geometry, i.e. its embedding in
the surface is to be optimized. As input from the previous stage we take the created
layout graph G with its prototypical discrete embedding given by v and v (cf. Section
5.2.3).

It is worth noting that this input may also be taken from a manual layout construction
process, based on drawing a sketch on the surface, potentially supported by assisting

systems (cf. Section 6.2). With this generic setup, our stage 3 cannot only be used in

Figure 6.1.: Given a rough layout graph partitioning a surface into quadrilateral regions
(top), our stage 3 creates a quad layout embedding and patch parameterization optimized

for low distortion and alignment to principal directions and surface features.
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automatic scenarios, it can likewise support the process of manual layouting, which is
still very common in the industry, as outlined by Li et al. [LRLO6]. Starting from an ini-
tial embedding roughly sketched by the user, who can now focus more on the structural
aspect and less on geometric precision, our method takes on the process of meticulously
positioning the layout’s nodes and routing its arcs across the surface so as to achieve low
overall patch distortion. Figure 6.1 shows an example input layout graph with rough
embedding and the result of our optimization. This is in contrast to simpler aids which
operate in an isolated manner, like automatically straightening jaggy arcs to geodesics
[LRLO6], neglecting the complex consequences for patch distortion. The potential prob-
lems are illustrated in Figure 6.2 on the layout from Figure 6.1. Hence, our method
takes an integrated, global approach, that takes the interdependencies between adjacent
arcs and patches into account. It is based on optimizing a global parameterization of the
surface, structurally constrained by the layout topology. This parameterization can be
seen as the union of the individual node, arc, and patch maps f (with suitable transition
functions) which specify the layout’s embedding as described in Section 2.1. They are
thus optimized in a combined manner. In the end the individual embedding maps can

be extracted from the global parameterization.

The most important, essential difference of our method compared to previous ap-
proaches to layout embedding optimization is the fact that our formulation takes align-
ment to principal curvature directions into account (cf. Figures 6.1 and 6.11). In Section

2.2 we already described the importance of this aspect.

Figure 6.2.: The input layout graph from Figure 6.1 with geodesic arcs. Such isolated

per-arc optimization can clearly lead to problems.
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6.1. Overview

Our method takes as input a quad layout graph with an initial embedding on a sur-
face. The requirements on the initial embedding’s quality are very weak: from the arcs’
embedding we only derive topological properties of the layout, i.e. their routes over the

surface are not crucial, only their homotopy, as detailed in Section 5.2.3.

Guiding Field (Section 6.3) In order to achieve alignment to principal curvature di-
rections (where reliable), we build upon field-guided parameterization. In order to also
support the case where the input layout comes from other sources than our stages 1 and
2 described in the last chapters, we do not rely on reusing the cross field used in these
stages, but describe how to compute one which is compatible with the input layout,
independent of its origin. We examine the structure of the input layout graph and build
a topologically compatible space of cross fields on the surface. In this space we then find

a smooth cross field which aligns to specified directions.

Aligned Parameterization (Section 6.4) Based on this we globally parameterize the
surface subject to connectivity constraints that enforce the given layout structure, such
that an optimized embedding for the layout’s arcs and patch interiors could be extracted

from the parameterization — layout nodes, however, so far remain fixed.

Node Optimization (Section 6.5) A meta-optimization strategy then optimizes the
embedding of the layout’s nodes: these are relocated based on the gradient of the pa-
rameterization’s objective functional with respect to their positions, so as to arrive at a
local optimum of global embedding quality. We describe how this repositioning can be
performed continuously, not restricting node positions by the underlying triangulation.
It is demonstrated that this concept is beneficial for general quad meshing applications,

too.

Gradient Computation (Section 6.6) Compelled by the complexity of the objective
functional’s true gradient, we describe a fast, easy-to-implement estimator and demon-

strate its effectiveness.

In Figure 6.3 these stages of our algorithm are illustrated.
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Figure 6.3.: Given a rough (manually or automatically generated) sketch of a layout
with quadrilateral patches (a), the space of topologically compatible cross fields with
suitable singularities is determined (b). Based on reliable principal curvature directions
(and possibly feature information) a smooth, interpolating cross field is then created
(¢). Guided by this field and constrained by the layout connectivity, an aligned global
parameterization is generated (d). After optimization of the layout node positions by a
non-linear gradient descent strategy (e), the optimized embedding for the layout can be

extracted, including smooth patch parameterizations (f).
6.2. Related Work

So far, the specific problem of optimizing and parameterizing a given layout while con-
sidering alignment to principal directions has not been addressed in the literature. There
are, however, several related works which address either layout parameterization without

alignment or aligned parameterization without underlying layout structure.

Aligned Parameterization

Numerous methods for global surface parameterization have been presented [FHO5].
Most related to our work are more recent methods that aim for alignment (of iso-
parametric curves) to specified directions on the surface. Ray et al. [RLL*06] introduced
a method from this class, which minimizes the deviation between the parameterization
functions’ gradients and a cross field representing principal directions. The same goal
can be achieved based on a Hodge-type decomposition of the field [KNPOT7].

Furthermore, there are concepts for parameterization-based quad meshing; we refer to
a recent survey [BLP*13]. They are related in that they obtain an (aligned) parameter-

ization with conforming quadrilateral patches, but are best suited for the generation of

68



6.2. Related Work

fine quad meshes (except for, to some extent, our recent [BCE*13]) and, even more im-
portant, the structure is a product of the algorithm itself. We strive for parameterization

with a predetermined, potentially coarse layout structure.

Layout Parameterization

While already some time ago approaches to automatic quad layout generation have been
made [EH96, BMRJ04, DSC09], quad layouting is still often performed manually by
skilled professionals in order to inject the subtle domain-specific requirements [LRLO6].
This process involves positioning nodes and connecting them using paths across the
surface, thus specifying the layout graph’s structure and embedding through delineation
of its patch boundaries [AAB*88, MBVW95, KL96, TPSHSH13].

To at least alleviate the burden of having to tediously specify nice arcs which form
patches that can be parameterized with low distortion, several methods for layout pa-
rameterization [TACSD06, DBG*06, BVKO08| allow for the optimization of the layout’s
arcs’ embedding during their parameterization process. More problematic are the nodes:
suboptimal placement not only causes unnecessarily high mapping distortion, it can also

give rise to local non-injectivity.

For improvement, node relocation based on iterated relaxation of local neighborhoods
can be used — for simplicial [GVSS00, PSS01, KLS03, SAPH04, KS04, PTC10] as well as
quad layouts [DBG*06, THCMO04, TPP*11, CBK12]. While this approach is sufficient on
very smooth surfaces, anisotropically curved regions certainly call for explicit alignment
of the parameterization with principal directions as already detailed in Section 2.2. A
comparison of alignment-oblivious and alignment-aware layout optimization is provided
in Section 6.8.1. Note that it is not straightforward to exchange the functionals used
by these local relaxation strategies for alignment-aware ones. For reasons of compu-
tational tractability, auxiliary constructs like guiding fields are necessary to allow for
the efficient formulation of functionals for aligned parameterization [BLP*13], which the
abovementioned frameworks are unprovided for. Hence, the quest for alignment-aware

quad layout embeddings calls for a novel strategy.

In addition to explicitly addressing this, our method further handles (aligned and
unaligned) surface boundaries and can deal with certain partially specified layouts. This

is not immediately possible with most of the above methods.
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6.3. Guiding Field

In order to obtain a guiding field for the subsequent parameterization step, we con-
struct a smooth cross field C on M that topologically conforms with the quad layout £
(Section 6.3.1) and geometrically follows principal directions and sharp features of M
(Section 6.3.2).

Let g denote the genus and b the number of boundaries of M. Further, s is the number

of irregular (valence # 4) nodes in G.

6.3.1. Guiding Field Topology

For each irregular node of £ we need one irregular point (singularity) in C at the position
of the node. The space of cross fields with these singularities has 2g+b+s—1 topological
degrees of freedom [RVLLOS] which we need to fix in order to restrict to cross fields
topologically compatible with £, otherwise no non-degenerate parameterization will be
possible. The degrees of freedom are the turning numbers of C along 2g homology
generator cycles, b boundary cycles, and around s singularities — minus one, which

depends on the others via the Poincaré-Hopf theorem.

In the discrete setting one specifies the turning numbers for cycles of faces (or equiv-
alently dual edges) of M. For an irregular node h, the turning number ¢ necessary for
the face cycle clockwise around v(h) (cf. Figure 6.4 left) is simply determined from the
valence val(h) of h as t = —ival(h). For nodes on boundary vertices no turning number

needs to be prescribed.

A set of 2g homology generator cycles of £ can easily be computed using the homotopy
basis construction algorithm for combinatorial surfaces described in [EWO05]: A spanning
tree T' of the layout graph G and a spanning tree 7% of the dual graph which does not
cross 1" are computed. 2¢g edges of G will then not be contained in 7" nor crossed by
edges of T*. Connecting these 2¢g edges to the root vertex of T through T yields the
2g arc cycles. For a cycle of arcs ¢ = ajas -+ - a, (with consistent orientation of the a;)
we concatenate the corresponding face chains y(a;) (red in Figure 6.4), while inserting
clockwise face fans (blue in Figure 6.4) in between (i.e. at the nodes) to make the

resulting face cycle v(c¢) continuous. As the combinatorial surface £ is homotopic to M,
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these face cycles are homology generator cycles of M. We count the number n, of arcs
(emanating from the n involved nodes) this cycle crosses. The turning number of the
cycle then is fixed to t = i(n —n,); in Figure 6.4 bottom left the depicted face cycle
¢ crosses 2 arcs (dashed) which emanate from the 2 involved nodes, thus ¢t = 0 in this

case.

For each boundary loop d of M we find the cycle of arcs ¢ = ajay - - - a,, closest to d,
i.e., such that no node lies between ¢ and d, and choose its orientation such that d lies
right of ¢ when traveling along ¢ (in order to avoid the need for special case handling
when nodes of the cycle lie on the boundary). We then determine the turning number for
~(c) as in the previous case. Figure 6.4 right illustrates this for the gray mesh boundary
loop d: ¢ = 1(4 — 4) = 0 in this case.

These turning numbers implicitly define the cross field’s topology. It can explicitly
be expressed using period jumps on M’s edges. Ray et al. [RVLLOS8] present a zipping
algorithm (Crane et al. [CDS10] an alternative formulation) that, given the above turning
numbers, determines all period jumps accordingly. Exactly the requested cross field
topology (in particular no additional singularities) arises from this algorithm. Setting
period jumps along the initial arcs according to their continuity type [TACSDO06] is an

oA
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Figure 6.4.: Visualization of the face cycles used for fixing the turning numbers of sin-

gularities (top left), homology generators (bottom left), and of boundaries of the mesh
(right).
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equivalent alternative (which, however, only works for complete layouts, not partial ones,
cf. Section 6.9).

6.3.2. Guiding Field Smoothness

Within this topologically fixed space we now strive to find a smooth C that interpo-
lates sparse directional constraints, corresponding to reliable principal directions, feature
curve directions, or user-specified design intents. Like in Chapter 4 we use the strat-
egy described by Bommes et al. [BZK09] for determining regions with reliable principal

directions.

It is not inherently clear by which of C’s four directions a directional constraint is to be
interpolated. If this information is available, as could be for user-specified constraints,
the smoothest interpolating cross field (i.e. the one with minimal discrete field curvature
energy [RVLLO08]) is obtained by solving a simple linear system as described by [RVLLOS|
(which we modify to use soft constraints [RVAL09], with a high penalty factor of 100
which, while mostly achieving accurate alignment to constraint directions, provides some
freedom around singularities). Otherwise, we have to do the assignment of the field to
the constraints “modulo rotation by multiples of 77, which is easily expressed using
additional integer variables in the system. A mixed-integer solver is then initially used

to obtain a suitable assignment.

6.4. Aligned Parameterization

Now we formulate a global parameterization problem to simultaneously optimize the
embedding maps f, and f, (cf. Section 2.1) of arcs and patches guided by C — the
optimization of the nodes’ embedding is described in Section 6.5. The parameterization
P = (u,v) is represented piecewise linearly using three (u,v) parameter tuples per
triangle — one for each corner. Let u; and v; denote the orthogonal unit tangent vectors
in triangle ¢ which correspond to the first and second direction of the cross field C in ¢.
The objective functional [BZK09] we use to obtain P is

E:Z<\|Vtufut||2+HVLvaLW)AL — min (6.1)

teT
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where T are M’s triangles, A, the area of ¢, and (Mu, Vv) the (per-triangle) gradi-
ents of the sought parameterization. The per-triangle parameterizations are interlinked
via transitions, which we require to be rigid transformations. Across an edge between

triangles s and ¢ we thus have a constraint
(u7 U)t = R("’-‘#)(“: U)s + (jstv kst) (6'2)

with a rotation R by angle ry and a translation (jg,ks). The rotation angles r are
deduced a priori directly from the period jumps [KNPO07], naturally as multiples of 7.
The transitions (6.2) with fixed r and variables (j, %) are then incorporated as linear

constraints into (6.1) using elimination of variables.

Note that in contrast to related quad meshing methods it is unnecessary to impose
integer constraints, which require mixed integer optimization strategies, neither on (j, k)
nor on the singularity parameters. Hence the parameterization P can be obtained using

a single linear system solve.

A parameterization of this kind induces a base complex, which can be extracted by
tracing iso-parametric curves (separatrices) from the nodes (cf. Figure 6.5). With iso-
parametric we mean that either the u or v parameter is constant along the curve when
taking transitions into account. We now further constrain the parameterization problem
(6.1) using node connection constraints, derived from the structure of the layout, to
accomplish that this induced base complex is structurally equivalent to £ (cf. Figure 6.5

right). This ultimately allows us to derive an embedding for £ from P.

6.4.1. Node Connection Constraints

We have to ensure for each arc that the two incident nodes lie on a common iso-
parametric curve of P — the restriction of P to this curve then gives us the arc embedding
map f,. For this we need to consider the transition functions along the face sequence
v(a) representing an arc a. Let y(a)- denote the first face in the sequence, y(a) the
last one. Further, let 7/(a) be the sequence of edges in between the faces of y(a). Let
7(a) be the concatenation of transition functions of the edges in 7/(a), i.e. 7(a) maps

from the patch s = y(a)i- to the patch t = y(a)4 along arc a. Then we need to require

[T(a)(u, U)s])\<a) = [(u v)t} ) (6.3)
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for either A(a) = u or A(a) = v, where this subscript extracts the u- or v-component of
the tuple. This can be incorporated into (6.1) as linear constraint [MPKZ10]; we only
need to determine the arc labeling A, i.e. whether an iso-u or an iso-v constraint should

be used for an arc.

We could make this decision by rating an arc’s alignment to the u- and v-directions
in an unconstrained parameterization [MPKZ10] or based on local angle considerations
[TACSDO06]. While this can be sufficient locally for single arcs, we need to setup con-
straints for all arcs. If even just a single decision is inconsistent with the others, the

constrained problem would admit only degenerate solutions.

Consistent Arc Labeling

In order to ensure global consistency, we do not consider each arc individually, but first
construct a complete, consistent prototypic {%, 7} labeling A of the arcs based solely on
the combinatorial structure of £. Then only one global geometric decision is necessary:
check whether the total alignment of all @-arcs to the u-direction and v-arcs to the v-
direction of C is better than the opposite choice, and exchange the prototypic labels for
{u, v} labels A accordingly.

Figure 6.5.: Left: input layout. Middle: intermediate state of tracing iso-parameter
curves from the singularities in an unconstrained parameterization to obtain the base
complex. Right: base complex of a parameterization with node connection constraints;

now structurally equivalent to the input.
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6.4. Aligned Parameterization

The prototypic arc labeling is a map A : H— {#, 0} which assigns symbols @ and @ to
the set H of half-arcs. The idea is to basically assign the same label to both half-arcs of
an arc (each representing one end of the arc) and alternating labels to half-arcs incident
to the same node in cyclic order. Here the notions of “same” and “alternating” are
again meant to take transitions into account. This is formalized as follows for a half-arc

a using the rotation system (o, 6) of L:

Ao(@) = (@)@ (6.9
A0(a)) = Rot(n/2) p(a) A(a).

where 7, and 75 are the respective transitions: let a™ and a~ be the two half-arcs of
an arc a, a' attached to the node at a’s beginning, a~ attached to the end node. a*
denotes an arbitrary half-arc. Let 7,(a™) = 7(a), i.e. the concatenation of transition
functions of the edges in v/(a), and 7,(a”) = 7(—a). Let 7p(a™) be the concatenation
of the transition functions of the edges between faces v(a¥)- and v(8(a")r in clockwise
order around the incident vertex. We let these transitions act on the symbols u and v
in the intuitive manner: the symbols are mapped to themselves if the rotational part is
an even multiple of 7, and to each other if it is an odd multiple. The translational part

is ignored.

When we now assign A\(a) = @ to one half-arc a (or one half-arc per component if G
is not connected), the labeling can be extended to all half-arcs by recursive application
of equations (6.4) and (6.5). It is due to the intimate connection between the turning
numbers of £, the period jumps of C, the transition functions, and 7, / 7 (which are all
built upon each other) that the resulting labeling is independent of the label propagation
order, thus globally consistent with respect to (6.4) and (6.5).

With constraints (6.3) in effect, we then compute P (6.1) whose base complex is now
structurally equivalent to £ (cf. Figure 6.5 right). Notice that using this particular
setup (global parameterization with layout structure constraints) optimal parametric
extents of the individual patches emerge freely. This is in contrast to all previous layout
parameterization approaches (cf. Section 6.2), which rely on fixed (unit) patch extents
or initial estimates, followed by an iterative adjustment procedure. In particular, we
thus do not depend on the quality of the arcs’ initial embedding; it is only the arcs’
path homotopy classes (with respect to the surface punctured at the singularities) that
matters [MPKZ10].



6. Embedding

6.4.2. Embedding Extraction

A global parameterization P with a base complex structurally equivalent to £ naturally
induces an embedding for £ (cf. Figure 6.5 right). The embedded arcs are found as

iso-parametric curves starting from the nodes until another node is reached.

The individual patch parameterizations, i.e. the maps f,, over rectangular domains
[0, w,] % [0, h,] can be derived easily: if no non-trivial transitions lie in the patch region
it can directly be read from P as the surface between the four bounding iso-parametric
curves emanating from the corner nodes is parameterized over some rectangle [a, b] x [¢, d]
by P, thus only a translation and possibly a scaling is necessary. If transitions are
involved, we need to express all parameter values with respect to a common chart —
as each patch is disc-homeomorphic and contains no singularities in its interior, this is
possible without ambiguity. We start from an arbitrary triangle seed lying within the
patch and from there conquer all others while transferring them to seed’s parameter
system. Let f, be the transition from face s to face t, Id the identity transformation,

s.uv the set of (u,v) parameters of the corners of s, and @ a simple FIFO queue.

Q.push( [seed, 1d])
while not Q.empty
[t, f] < Q-pop()
for s € T | adjacent to ¢ and not yet processed
g — f ° fst
sauv « g(s.uv)
Q-push([s, g] )

Note that if instead of individual patch parameterizations one global parameterization
without transitions within the patches is desired (e.g. for visualization purposes), the
transitions must necessarily be located at the patch borders. This is achieved by making
the mesh conform with the layout by splitting the faces crossed during the arc tracing,
effectively inserting edge strips that coincide with the arcs. Then performing the above
procedure for one seed per patch directly results in all transitions getting shifted to the
patch borders.
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Figure 6.6.: Typical parameterization distortions due to suboptimal node singularity
positions. Most problematic are non-injectivities due to fold-overs, i.e. triangles param-
eterized with reverse orientation (shaded darker). Intuition already suggests that moving
the nodes towards the bottom left would improve parameterization quality.

6.4.3. Optional Extensions

We would like to point out that the functional (6.1) can be extended in several ways.
For instance, an anisotropic norm can be used for improved field alignment [BZK09] —
we generally use an anisotropy ratio of 10. Furthermore, a sizing field, computed so as
to reduce the curl of the sized cross field to allow for better alignment [RLL*06], can be

taken into account — we used this option for all examples.

6.5. Node Optimization

While the described constrained parameterization procedure optimizes the embedding
of arcs and patches, the nodes remain fixed due to the very nature of the setup. This
not only restrains the achievable quality of the resulting embedding, it further gives
rise to large distortions or even local non-injectivities due to fold-overs, i.e. triangles
parameterized with inverse orientation (cf. Figures 6.6, 6.7, and 6.9). This is because
fixed nodes in our setup behave much like isolated point constraints in, e.g., harmonic
parameterizations — which are well known for their problematic effects on distortion and
injectivity [YLY*12].
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Figure 6.7.: Visualization of the trajectory (red) of a node (blue) as it moves in negative
gradient direction d. In the beginning severe distortions and inversions are present which

successively vanish in the course of the movement.

A popular approach to this problem is the use of stiffening [BZK09, MPKZ10]. It
tries to iteratively remove non-injectivities by increasing a penalty factor for the affected
regions in the objective functional. While this reduces the problematic effects, it does
this at the cost of actually increasing the residual, i.e. the parameterization is pushed
away from the least-squares solution deemed optimal by (6.1) — higher overall distortion
is traded for local improvements (cf. Section 6.5.3). We advocate a strategy that instead
moves the nodes so as to arrive at a solution with lower residual. Thus, while taking care
of the distortion problems, this strategy simultaneously optimizes the nodes’ embedding,
basically by exploiting the information the distortion provides. Figure 6.7 demonstrates
this proposition’s reasonability. This basic idea of node relocation has been made use
of in previous methods — however, these are not suited for our setting using an aligned

parameterization as detailed in Section 6.2.

Technically speaking, we are going to optimize (6.1) not only w.r.t. the parameters u
and v (thus the patches’ and arcs’ embedding) but also w.r.t. the geometric positions of
nodes on M. We tackle this non-linear problem using a strategy which optimizes A) with
respect to u and v (with fixed nodes) and B) with respect to the node positions (with
fixed u,v) in an alternating manner. In this way the large problem A (O(|M|) variables)
can still be solved as a simple linear problem as described in the previous sections. The
smaller non-linear problem B (O(|L|) variables) we address using a gradient descent

strategy, as detailed in the following.
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6.5.1. Gradient Descent

In order to locally move a node h in such a way that the residual of (6.1) (which we now

just call E for brevity) decreases, we need to move this node in direction
d(h) = 7( 2 B(he,hy). ZE(h,h) ) (6.6)

i.e. in a gradient descent manner. Here (z,y) are 2D coordinates in some local coordinate
chart of M around h and (hy, h,) expresses the current position of node h accordingly.
Note that E depends on x and y because nodes are embedded in vertices, i.e. node
positions are vertex positions. In Section 6.6 we address the computation of d(h) as well

as of a suitable corresponding descent step length (k) in detail.

Node Movement

Assume node h is currently at position p. To determine the new position p’ on M
we trace a straightest geodesic g of length I(h) starting at p in direction d(h) [PS98]
(stopping if a boundary is reached). If h lies on a feature curve, we first project d(h)

onto it and restrict the tracing to this curve.

Remember that nodes need to be mapped to vertices, but p’ does
in general not lie on a vertex. Snapping the node to the closest
vertex is not a good solution as it provokes discontinuous behavior

and hampers convergence. Instead we enable a virtually continuous

—

movement by (temporarily) relocating one of the vertices incident
to the face on which p’ lies, so as to provide a suitable support for

h. In contrast to the insertion of a new vertex this does not intro-

V N

duce low valence vertices and leaves the mesh structure unchanged.
The choice among the incident vertices is made such that geometric
alteration of M caused by the relocation is minimal. Vertices that
have another node embedded in them and vertices on sharp features
are excluded from the choice.

Let v be the vertex at position p onto which A is mapped before the move and v" be
the vertex chosen to be relocated to p’. If v = ', we simply relocate it to p/. If v # o/,

the original position of v is restored and v" moved to p’. In this case further adjustment
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is necessary: the cross field singularity corresponding to the node needs to be moved
to v'. In detail, we determine an edge chain ¢ connecting v with v’ along the geodesic

g. We then adjust the chain’s edges’ period jumps so as to reflect the new singularity

location.
Furthermore, the connection constraints (6.3), i.e. the compos-
ite transitions 7 and labels A, have to be updated so as to reflect A

the new situation. For simplicity we assume all arcs incident to a A VA
node start in the same face, i.e. 4 of all incident arcs (oriented in mv
outgoing direction) is the same. To now update the current 7 and (

A we select an arbitrary face incident to v’ as new 4y, accumulate “VA
the transitions of the edges (dashed in the inset figure) crossed V“ v

when going from the old to the new face along the edge chain c,

and apply them to 7 and A.

Iteration Strategy

We solve problem A (optimizing cross field and parameterization), determine gradient
and step length for each node, and move them one step as described in the previous
section. This is iterated. We stop when the next step would increase the residual, i.e. we
execute the step, and output the previous solution in case the residual increased. Further
fine-tuning of the node positions can be achieved by repeating this with decreased step
size. We used this option for the shown examples, halving the step size each time and

stopping after max. 5 halvings or 25 total steps.

6.5.2. Selective Optimization

At the user’s discretion (or based on additional information) we can selectively exclude
nodes as well as arcs from the automatic optimization process to keep them in their
intended original state. For a node this is as easy as disregarding it in the gradient
descent. For an arc we need to ensure that the corresponding iso-parametric curve
coincides. We achieve this using constraints similar to the node connection constraints:
we do not just require the arc’s end points to lie on a common iso-parametric curve,

but also all the points where the arc crosses mesh edges. The parameters of these
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crossing points are easily expressed as linear (convex) combinations of the parameters of
the edges’ incident vertices. In a completely analogous manner the parameterization can
also be forced to align to given feature curves, surface boundaries, or other user-specified

curves on the mesh.

6.5.3. Discussion

The key features of our node relocation approach are the largely triangulation-invariant
movement and continuous positioning of nodes. This is in contrast to the discrete singu-
larity relocation mentioned by Bommes et al. [BZK09] which has the “obvious drawback
of heavy computational cost” and can get stuck in situations where all possible moves to
neighbor vertices lead to a higher residual although a continuous path of decreasing resid-
ual exists inbetween. Both aspects can be seen in the following table comparing runtime ¢
and final residual Egna (after max 1h) of

O B s et al.

both relocation methods applied to exam- e OIuES €b &
) . Model t (s) FEfnal t(s) Efnal

ples from Figure 6.10.

TRIHOLE 24 430 742 457
Nieser [Niel2] proposes a variant that ROCKERARM | 75 842 | >3600 1099
efficiently estimates parameterization im- ~ ELK 18 751 | >3600 762
provement based on the cross field’s curl FERTILITY 40 522 >3600 648
improvement. Note that this is not appro- Brock 42 140 | >3600 182

priate for our highly constrained problem

where a major part of the residual is caused by the constraints, not the field’s curl.

Notice that our relocation strategy does not rely on a layout — it can likewise be used
for singularity relocation in general quad meshing scenarios based on energy (6.1). In
this context singularity locations are typically determined a priori [KNP07, BZK09], with
only limited awareness of implications for the parameterization. Figure 6.8 demonstrates
the advantage of relocating them (directly driven by parameterization quality) over the

alternative of using stiffening.

Limitations of Node Movement No matter which node relocation strategy is used,
potentially some fold-overs (i.e. non-injectivities) remain after convergence, especially

when the layout is coarse and ignores significant geometric features, or when nodes or
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with
stiffening

our
relocation

MIQ
result

E=1112, 55 folds E=1289, 0 folds E=507, 0 folds

Figure 6.8.: Left: Parameterization computed using the MIQ approach [BZK09]. The
residual is 1112 and there are 55 fold-over triangles. Middle: Stiffening is able to get rid
of the folds while increasing the residual by 16%. Right: Our relocation is likewise able
to get rid of the folds while beneficially decreasing the residual by 54%.

arcs are fixed by the user in bad positions. Subsequent stiffening proved to often be a
helpful remedy in such case. A more reliable solution, however, is to use strict triangle
orientation constraints, e.g. as in [Lip12] or [BCE*13]. We employ the latters’ linear
tri-sector constraints to get rid of folds in the last iteration.

6.6. Gradient Computation

The gradient (6.6) of (6.1) depends on x and y in multiple ways: they appear directly
in the discrete gradient operator V and in A;, but indirectly also in the cross field,
i.e. in u and v, as well as in the parameterization (u,v). As these dependencies are
via the solution of (constrained) minimization problems, a closed-form expression of
gradient d(h) is not available. One possibility to compute (or approximate) it is to use
numerical differentiation, e.g. using finite differences: L E(h,, hy) ~ (E(h, +¢€,hy) —
E(hy, hy))/e. This amounts to moving vertex v(h) by a small ¢, re-solving the cross
field and parameterization systems, and evaluating the residual. While simple, this
needs to be done two times (Oz and dy) per node in each step, thus clearly is a costly
procedure. Another option is to use exact algorithmic differentiation. Exploiting recent
results which allow for the efficient differentiation of functions involving systems of linear
equations [NL12], we are able to handle our E. This technique only requires the equation
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systems to be solved two times per step (once normal, once adjoint) yielding the gradient

w.r.t. all nodes at once. Implementation, however, is relatively demanding.

As practical alternative we devised a gradient estimator, described in the following,
which is both, easy to implement and very efficient, avoiding additional system solves
altogether.

6.6.1. Efficient Estimator

Let’s consider the energy functional (6.1) again. The position (z,y) of a node appears
directly in V; and A;, but also in the cross field and the parameterization. If we neglect
these indirect dependencies, i.e. consider E where u and v as well as (u,v) are fixed, we

can analytically derive

0 - v \' 9A
£E = Z Q(Ju) <Vtu— ut>At+ Vi — w )P+ -

Jx Jx
teT(h)

where we omitted the second analogous half. Note that the sum is only over triangles
T'(h) incident to node h, as all other terms vanish due to independence from z. The
corresponding approximate gradient a(h) can thus very efficiently be evaluated based

on only the 1-ring neighborhood.

To obtain a local 2D (z,y) coordinate system for A’s 1-ring, we employ the commonly
used geodesic polar map [WW94], effectively flattening the 1-ring to the plane while pre-
serving radial lengths and relative angles by uniformly scaling the inner angles incident

to h such that they sum to 27; origin and axes in the plane can be chosen arbitrarily.

The approximate gradient a(h) is surprisingly well-behaved in terms of gradient direc-
tion, even in configurations with strong distortions and inversions where one could easily
expect the local per-triangle gradients to be severely perturbed and non-informative.
Tests on several hundreds of nodes in numerous layouts showed that the average angular
deviation between d and d is around 4°, with very few outliers (typically rather small
gradients) which showed deviations up to 35°. Figure 6.9 gives an impression of the
amount of deviation. We observed the magnitude of d to be around 1.5 times larger
than that of d (caused by neglecting the dependence of the parameterization on (z,y)).

The average magnitude deviation between %fi and d was only 6% in our tests.
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Figure 6.9.: Visualization of descent directions: negative gradient d (yellow) and our
estimator d (red). The angular deviation is typically very low, even in complicated

regions with severe distortions and inversions (shaded darker).

6.6.2. Step Length

In addition to the gradient direction, we also need to determine an appropriate step
length for the iterative gradient descent procedure. We empirically found that E(hy, hy)
grows roughly quadratically with the geodesic distance of node h from the position where
E(hy,hy) attains a minimum — at least in the range of

relevance, i.e. unless we maliciously move h way beyond [1d(n)]]

its adjacent vertices, twisting the layout. This means
[|[d(h)|| is approximately proportional to the distance of
h from its locally optimal position — as can be seen in the
inset graph for 20 different nodes in an example layout.
Note that the proportionality factor between ||d(h)|| and

the distance is scale independent: if we scale a model by distance

a factor f, its area and the residual E are scaled by f?
— distances and d(h) are both scaled by f. Hence we can directly rely on the gradient
magnitude to determine a suitable step length.

We observe in the graph that there is some variation among the nodes — different
slopes. These are not due to the model’s scale or varying local density of the layout,
but depend on variations in local surface and layout region shape in a complex manner.

As the range of variation is not very large (the graph already shows a rather extreme
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6.7. Quad Mesh Generation

case), we can easily account for this using a conservative global damping factor, i.e. we
use [(h) = a||d(R)|| (respectively: a%||a(h)H) as step length for node h. A value of
« = 0.75 proved to perform very well in practice — we used it in all the examples. As a
safeguard, we limit each node’s movement to its current cell in a simple Dijkstra-based

node Voronoi diagram on M.

6.7. Quad Mesh Generation

One particular use case of quad layouts is the generation of quad meshes via subsequent
refinement, as the block structure of the resulting meshes provides specific advantages
[BLP*13]. One option is a posteriori subdivision of each patch parameterization into an
m X n grid, where m and n comply between neighboring patches. This is the case if we
choose m = [w/q]| and n = [h/q], where (w,h) is the patch’s parametric extent and ¢
the quad mesh target edge length.

Mixed-Integer Option When rather coarse meshes are to be generated it is advan-
tageous for uniformity to require the parameterization to yield patch sizes (w, h) such
that w and h are integer multiples of ¢ (sparing the above rounding) already during the
optimization. This is accomplished by requiring the parameters (u,v) of nodes and the
translations (7, k) of transitions (6.2) to be integer multiples of ¢, resulting in a mixed
integer problem [BZKO09]. It proved advantageous to first optimize node positions in
the relaxed (non-integer) setting, then solve for the integers, and then further optimize
nodes with respect to the fixed integers. This avoids discontinuities during the gradient

descent. Finally, a quad mesh can be extracted from the parameterization [EBCK13].

6.8. Results

We applied the proposed method (using the efficient gradient estimator) to input layouts
computed by stage 1 and 2 described in the previous chapters, as well as to some
manually sketched layouts (FERTILITY A, FACE, MASK, ELEPHANT, and BOTLJO).

Figure 6.10 shows the input and output layouts, Table 6.1 the corresponding statistics.



6. Embedding

The patch parameterizations are visualized using m x n grid textures (as described in
Section 6.7).

We used CHoLMOD [CDHROS] for the equation systems and IPopT [WB06] to handle
the anti-fold constraints. Runtime is dominated by the repeated systems solving
the initial one-time work concerning lay-
out parsing, cross field topology, and con-
nection constraints, as well as the per-step
gradient estimation and node movement

carry no significant weight. The complex-

74 .?l:*‘

i,
3

ity of the layout has only little influence AT A
(cf. Table 6.1, BUNNY), as we move all
nodes at once between two solves.

We observed nice convergence proper-
ties of the node optimization strategy: in every case more than half of the total decrease

in residual happened during the first three steps.

6.8.1. Comparison

Most previous approaches to complete embedding optimization are based on the con-
cept of fixing a node’s 1-link and relaxing the interior [GVSS00, PSS01, KLS03, SAPH04,
KS04, DBG*06, TPP*11]. We compare the results of an implementation of the most
recent one (TPP, the final stage of [TPP*11]) to ours. TPP has some restrictive require-
ments that prevented us from applying it to all examples, e.g. patches must nowhere be
narrow (below 1-2 triangle mesh edge lengths), neither initially nor during the course of

the optimization, unaligned boundaries cannot be handled, etc.

Table 6.2 shows the conformal energy Eeontor = %fM (Z—;Jrg—f) [FHO5] (A being M’s
surface area, oy and oy the singular values of the parameterization’s Jacobian), aver-
age angular deviation E° between Vu and Vv and the principal directions weighted
by squared principal curvature difference (k; — k)%, and conjugacy error Epjana =
ﬁ Sy (Vu/||Vull, Vu/||Vvl|) which, based on the surface’s second fundamental form
II [LXW*11], quantifies how non-planar the (infinitesimal) elements of a quad mesh

generated from the parameterization would be.
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6.8. Results

Figure 6.10.: Input and result layouts. Feature alignment has been used for models

JOINT (yellow) and LEVER (pink), boundary alignment on eyes and mouth of the MASK
model (blue). Trregular nodes are displayed as little spheres for visual orientation.
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6. Embedding

Model faces  patches time (s) Einit FEana folds*
@ TRIHOLE 30K 20 24 1087 430
ELk 18K 86 18 3058 751 1
JoINT 43K 79 31 221 167
ROCKERARM 70K 115 75 2669 842 1
FACE 25K 50 11 1531 588
FERTILITY A 28K 72 40 1889 522
FERTILITY B 28K 98 33 4538 662 5
@ Brock 36K 76 42 1523 140
@ MASK 9K 30 8 3709 2732
@ ELEPHANT 40K 104 69 3336 1398 2
@ LEVER 20K 275 18 2092 1055 2
@ Bortuo 30K 167 37 1946 675
@ BunNy 51K 1063 67 8033 3935

Table 6.1.: Statistics: mesh and layout complexity, total optimization time, residual
before and after node optimization (note the significant decrease in each case), *number
of fold-over faces if orientation constraints would not have been used; with them (or

stiffening) all results are fold-over free.

Ours TPP
Model Econfor Eplzmar E° Ecou[or Eplanar E°
TRIHOLE 2.047 1.40 6.2 | 2.026 212 95

ROCKERARM | 2.069 1.93 58| 2.085 2.62 8.7
FERTILITY 2.049 1.57 4.2 | 2.066 257 7.4

Brock 2.013 1.24 32| 2.022 239 7.2
BELk 2.065 1.29 43| 2.106 2.56 8.6
Botuio 2.060 1.57 33| 2.074 272 56

ELEPHANT 2.145 271 7.4 2.109 4.16 12.0

Table 6.2.: Comparison of the results of our method and TPP of [TPP*11] based on

conformal energy Feonfor, average angular misalignment £°, and conjugacy error Epjanar-

Note that a “random” parameterization would have E° around 22.5°; as the input
layouts have been constructed with principal directions in mind, also TPP shows smaller
deviations, but the alignment-awareness of our method consistently led to lowest E°

(note that non-integrability of the cross field prevents £°=0 in general). In combination
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1 i

Figure 6.11.: Zoom-ins comparing TPP (red) and our method (green). Some isocurves

are highlighted to ease visual alignment quality comparison.

with good conformality (no large difference between both methods) our method also
generally achieved better Epjana: values. Figure 6.11 illustrates the differences.

6.9. Discussion

Our stage 3 simultaneously performs a geometric optimization and parameterization of
quad layouts on surfaces. What sets our approach apart from related methods is its
unique property of yielding aligned layout parameterizations, taking surface anisotropy
and features into account. A key contribution is a novel efficient technique to continu-
ously optimize node positions, directly driven by the objective of minimizing distortion
and misalignment. We have seen that its applicability extends to related areas like

quadrangular remeshing.
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6. Embedding

Alignment

The presented method assumes that the input layout is intended for a principal direction
aligned embedding. While this clearly is the case when our stages 1 and 2 are used, a
designer who manually sketches a layout might arbitrarily (depending on the application
intentionally) deviate from that. In such cases our method might not be the ideal choice,

as demonstrated in the following.

Principal direction conflict  Figure 6.12¢/d shows an input layout which largely
contradicts the principal directions. The conflict between the objectives of layout struc-

ture preservation and alignment leads to large distortions.

High valence nodes  Around nodes with high valence (in regions without corre-
spondingly high Gaussian curvature) there are typically quite some distortions. While
the valence 8 node in Figure 6.12a is surrounded by a distorted but still valid parame-
terization, there are fold-overs around the valence 12 node in Figure 6.12b — fold-overs
which cannot be prevented even by orientation constraints: the six triangles surround-
ing the valence 12 node need to span an angle of 67 in parameter space, but in a valid
piecewise linear (PL) parameterization all inner angles are less than 7. Note that this is
a general problem of PL triangle parameterizations [NP09] (however, only a local one,

restricted to the 1-ring of singularities).

b)

Figure 6.12.: Problematic input configurations: high valence nodes, principal direction

conflicts, overly coarse structure.
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Overly coarse structure  The layout in Figure 6.12¢ is much coarser than the feature
structure of the underlying model. This necessarily causes large alignment deviations,
thus distortions or even fold-overs. In this example still a valid embedding was found,

but there is no general guarantee.

Notice that in these cases it is questionable whether a method aiming for principal
direction alignment is the right choice. It seems unlikely that such layouts are actually
intended to be aligned, or that there even exists a solution with reasonable alignment.

Optimization methods not aiming for alignment (cf. Section 6.2) are then preferable.

Structure Modification

In a few cases we observed adjacent nodes ending up quite close together (cf. the green
FACE model). Typically not only individual pairs move towards each other, but rather
all pairs bordering a dual loop or poly-chord. This is plausible, considering that the
parametric distance of each such pair is equal. As the resulting narrow patches can
be undesirable depending on the application, node spacing constraints — similar to the
node connection constraints (6.3) — can be of value. For each arc a from s to ¢ the
- [(uw)tH with
i € {u,v}, i # Na). If this drops below a desired minimal spacing € (e.g. dictated by

parametric distance of its end nodes can be computed as | ['r(a)(u7 v)sL
the quad mesh target edge length) during the gradient descent, one can add a constraint

[7(a)(u, v)s]i = [(u, v)tL =+ e to ensure that this distance is kept in following iterations.

Alternatively, one could understand the narrowing as indication that merging the
approaching nodes is advanta-
geous. We can constrain the
parametric distance to zero when
it drops below e, effectively en-
forcing a poly-chord collapse.
Like the node merging in Section
5.1.4 this can be seen as a form
of adjustment of the intermediate

result from stage 2, as motivated
in Section 3.1.5. Both options are

illustrated here next to the standard solution (left).
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6. Embedding

Partial Layouts

It is also worth noting that partial layouts, where only a subset of all arcs is
specified (together with irregular nodes and
their valences), can be taken as input, too.
Missing arcs then naturally emerge from the
parameterization (as shown in the inset) and
their routes may indicate suitable layout com-
pletions. Considering this in conjunction with

the fast convergence properties, we imagine

using the presented techniques in an assisted
(primal) layout drawing system with interac-
tive feedback.

Regular Node Optimization

Let us mention an option concerning the optimization of regular nodes in a layout. While
irregular nodes (implying singularities) have an essential influence on the field construc-
tion and parameterization system structure, regular nodes do not. Using a simple modi-
fication, the optimization of the embedding of regular nodes can thus already be achieved
during the parameterization step. We can simply remove a regular node’s

explicit occurrence in the node connection constraints by instead concate- _6_
nating the four involved connection constraints in two pairs (unless this I
concatenates a constraint with itself), just as if the regular node was not

present in the layout, but two arcs crossing in its place. The regular nodes’

embedding is then optimized implicitly in the parameterization process: a

node’s new position can be found at the intersection of the two respective

iso-parametric curves.

As the number of nodes to be moved in the gradient descent procedure does not
significantly affect the total runtime, this option does not necessarily increase efficiency.
It can, however, speed up convergence when the initial embedding of regular nodes is
worse than that of irregular nodes — which can, for instance, be the case if it is a mere
byproduct of the rough initial embedding of crossing arcs — as in our stage 2.
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It is important to notice that when this option is used the structure of the resulting
layout is not guaranteed to be equivalent to the input. One can think of constellations
where the arcs in the final parameterization could cross in another way than they do in
the input (except for layouts involving numerous dangling arcs, we have not come across
such a situation). This can be seen as a form of implicit structure optimization, but can

be undesirable if preservation of the structure is mandatory.

Directional vs. Positional Alignment

Our layout embedding optimization process generally aims for alignment of iso-parametric
curves (hence also arcs and final patch parameterizations) to principal directions on the
surface. Another form of alignment is that of positional alignment: one might want to
fit an arc or a specific iso-curve of the parameterization to a specifically located curve
on the surface. We described how to do this for the cases of fixing arcs to feature curves
(cf. Section 6.5.2).

The optimization does, however, not explicitly aim at specifically positioning arcs
onto non-sharp, smooth features or similar curvature extrema (unless fixed manually).
While such alignment might be desirable from an aesthetic point of view, let us point
out that it would often be suboptimal in terms of isometry and alignment. The inset

demonstrates this on the BLOCK model which has numerous smooth feature curves:

On the left is the result of our op-

timization where some arcs align to

smooth features, some do not — be-

5 B
cause this is the optimum in terms '%ii-"&:{“)
ﬁ“}}*\'\_ B

of isometry and principal direction
alignment (as measured in a combined
form by the parameterization energy
functional). On the right we show a

version where the nodes have manu-

ally been repositioned so as to achieve
further arc-to-feature alignment, in
particular around the holes. While this can be of interest for certain applications, in a

general sense the left result is to be considered better: the parameterization residuum,
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6. Embedding

reflecting isometric distortion and misalignment, is higher by a factor of 2.3 on the right.
In particular, forcing an irregular node and two incident arcs to lie on a smooth feature
curve implies patch corner angles of < 60° at valence 5 nodes and of 180° at valence 3

nodes — far from the general optimum of 90°.
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Part II.

Interactive Design
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6.9. Discussion

Note: This part is based on [CK14a).

In Section 2.2 we discussed the issue of layout quality objectives which can be hard
to formalize, subjective, driven by aesthetics, etc. The related field of quad mesh gener-
ation faces a very similar issue: based on some quality measure a compromise between
alignment, orientation, and element shape needs to be made [BZK09]. A solution which
found success in practice in this field was the inclusion of the user in the process — instead
of aiming for full automation. Major 3D sculpting packages like Pixologic’s ZBrush or
Pilgway’s 3D-Coat have recently been equipped with quad remeshing features which fol-
low this paradigm and rely on high-level user interaction, e.g. regarding the specification
of alignment and element sizing. This allows the user to tune the result to meet the
given requirements — even if no formal description thereof, or no specialized optimization
method therefor is available.

Unfortunately, while methods for quad mesh generation allow for user influence (re-
garding edge flow, irregular vertex configurations, element sizing, element anisotropy,
etc.) [BZK09, ZHLB10, KMZ11], even though not always at interactive rates, this is
not provided for in the automatic pipeline presented in Part I, nor in other methods
targeted at the problem of quad layout generation (e.g. [EH96, BMRJ04, TPP*11]).

In this part we present an interactive quad layout design system that explicitly takes
the user into the loop and grants full flexibility to incorporate application-specific design

intents.
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a)

Figure 7.1.: Overview of our Dual Strip Weaving approach for the design of quadrilat-
eral patch layouts. a) When hovering over the object, the user is immediately presented
with the best elastica strip (visualized using a stripe pattern) at the current pointer
position. It can be selected and fixed with a single click. b) Fixed strips (blue) constrain
the design space; only compatible strips are offered next (green). c¢) Indicators based
on color-coding and stripe patterns guide the user to regions where modifications are
recommended for the benefit of layout quality. d) Finally, a quad layout structure can
be derived from a collection of strips.

7.1. Concept

A design process with a user in the loop necessarily proceeds incrementally. This raises
the question of what nature the increments should be, or in other words:

What should be the atomic operations provided to the user?
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In established modeling tools (mainly for subdivision base meshes) this is often an-
swered like: the user can create nodes, arcs, and patches, and on a somewhat higher level
multiple patches can be created at once using splitting, extrusion, and similar operators.
In these cases, the user deals directly with the individual elements of the layout.

A drawback of this approach is its fine granularity: the operators are very local. Quad
meshes and quad layouts, however, generally have a rather constrained global structure
[MBBMO97]. As this fact is not reflected in the local operators, it is up to the user to
plan ahead such that in the end all the locally constructed elements meet up globally in
a desirable manner. Large parts of the design might have to be redone when the set of
created quads comes to form a non-quad region which cannot be quadrangulated without
adverse side-effects (irregular vertices, excessive refinement, etc.). To cite Takayama et
al. [TPSHSH13]: “it is often quite challenging even for professional artists to manually
design a perfect quad mesh on the first try. Since the quality [...] is a global property,
the correction of a single mistake might require regeneration of the entire mesh.”

For this reason, in stage 2 of our automatic pipeline (cf. Chapter 5) we made use
of global dual loops, which allowed us to ensure layout consistency more easily. We
here propose to use the creation of an entire dual loop as the atomic operation
also for interactive design purposes. In order to make the interaction more intuitive
and comprehensible we, however, equip the topological dual loops with a geometric
dimension, turning them into dual strips. In contrast to the established local operators,
this operator has a kind of built-in global consistency (no non-quad patches are ever

generated), effectively reducing the burden of “planning ahead” for the user.

Figure 7.2.: Basic concepts: quad layout, dual loops, dual strips.
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7.1.1. Dual Strips

A dual loop corresponds to a cyclic chain of quads in the primal layout, cf. Section 2.1.
The union of all the quad patches of such chain we call dual strip, cf. Figure 7.2. We
may say a dual loop is the spine of its dual strip. Note that a quad patch of the primal
layout corresponds to an intersection region of two dual strips, crossing transversally.
From this point of view our goal of partitioning a surface into quad patches is equivalent
to doubly-covering the surface with dual strips where all strip intersections are

transversal.

A practical analogon which illustrates this idea is basketry, i.e. the weaving, or more
specifically plaiting, of baskets from strips of plant
materials like bark, straw, or flax. The figure on the
left (courtesy of Jonas Hasselrot) shows an example.
Notice how every quad is covered by two crossing
strips. At the bottom corners of the basket it can
be observed that irregular “nodes” (here of valence
3) can be formed using this technique, too. In this
sense, the underlying conceptual idea of our system

can be seen as weaving dual strips on a given surface

until it is covered. Note, though, that our strips
are of variable width and the layer-alternation of the
woven strips, which serves stability in practice, is of no meaning in our case. This process
of Dual Strip Weaving is computationally supported in our system, e.g. by proposing
optimal routes or choosing appropriate widths for strips.

Note that building the layout based on dual loops or strips does not restrict the class
of designable layouts in any way — for every quad-only layout there is an equivalent

collection of dual loops/strips.

7.2. Interactive Workflow

We begin by describing the design workflow in order to provide a high-level understand-
ing of the system and its core concepts. As stated above, the creation of a dual strip is
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the fundamental operation in our system. Instead of having the user draw such strips
by hand, the central idea of our system is to compute suitably optimized dual strips
automatically and propose them to the user. Intuitive tools to select, edit, or model
these strips are then made available to provide full flexibility, while still keeping the user
workload low. Technical details of the involved algorithms for dual strip computation

follow in Chapter 8.

7.2.1. Tools and Metaphors

Simply hovering over the surface with the mouse pointer, the user is immediately
presented with the best possible dual strip which runs through this point. This dual

strip is constantly updated as the user moves the pointer. See Figure 7.1a.

Using the mouse wheel the user can furthermore browse good alternative dual strips
which run through the same point but take different routes over the surface, in order of
descending quality.

These automatically proposed strips (computed and rated as described in Section 8.1),
provide a rich fundament already sufficient for the construction of complete dual layouts.
In order to provide full design flexibility to the user we furthermore enable the modeling
and editing of dual strips using the following metaphors. In these manipulation modes
it proved advantageous for clarity to display the strip in form of its representative spinal
loop (the automatically chosen strip extent is not subject to user modification anyway;

it serves purposes of “coverage” visualization).

By clicking, the user creates an anchor point and the best dual strip through this point
is shown (the one which was already shown
when the user hovered over this point).
By dragging a directional anchor is cre-
ated instead, producing a dual strip which
runs through this point, interpolating the
specified direction. The direction can also
be altered interactively in order to explore
the space of possible dual strips through

the anchor point.

102



7.2. Interactive Workflow

By clicking (or dragging) at further points on the surface, additional anchors (of
positional or directional kind) can be placed. The best dual loop interpolating these

anchors is then shown.

Another metaphor that can be used to conveniently edit the shape of a dual loop is
grabbing. The user can grab the current loop at any point and drag it to another
position, implicitly creating an additional anchor to be interpolated. This can be seen
in analogy to modern route planning applications whose interfaces offer similar grab-

and-drag tools to manipulate proposed routes.

When the user begins creating a new dual strip, the existence of already created
strips is taken into account. The best way for two strips to cross is orthogonally; at
least they should be crossing transversally, not touching tangentially, cf. Section 5.1.1.
The system only proposes strips which respect this, favoring orthogonality, and which

are furthermore not topologically equivalent to already existing ones, cf. Figure 7.1b.

7.2.2. Assessment & Feedback

The provided tools enable the flexible design of dual strip collections, which via du-
alization imply a primal quad layout structure (determination of its actual geometric
embedding in detail is considered in Section 8.3). Especially when designing rather
coarse layouts it can, however, be quite hard to visually judge the appropriateness and
quality of the dual strip collection during design, because large patches that wrap around
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the underlying object are not visible in their entirety. We thus equip our system with

visual indicators guiding the user in this regard.

The dual strips are visualized by a pattern of quasi-parallel loops in order to indicate
their orientation (“edge flow”). Where two strips cross, these patterns overlap, forming
a grid. This indicates that the corresponding region is doubly-covered as desired.

The user does not need to doubly-cover every part of the surface — uncovered regions
only hint at sub-optimally shaped quads in the primal layout, but this can be a desired
trade-off for layout simplicity. However, every
region enclosed by loops at least needs to be
homeomorphic to a disc, otherwise no valid pri-
mal layout is implied. Regions with non-disc
topology are hence highlighted in red to indi-
cate that further strips need to be added.

When no region is red anymore, the set of
dual strips is topologically sufficient and implies
a valid primal quad layout. The addition of
further strips is, however, often desired in or-
der to refine the layout and achieve better ge-

ometric layout quality. Our system guides the

=
-
1

==
=

user to those regions where this is particularly
advisable. Regions which contain multiple pro-
nounced local extrema of Gaussian curva-

ture are highlighted in orange, indicating that

it would be beneficial (though not mandatory) to add further strips there. This is moti-
vated by the fact that such extrema are best represented by separate (irregular) nodes of
the quad layout (thus separate dual regions) — having (some of) them lie in the interior

of a quad patch would lead to low geometric patch quality.

In addition, we highlight in yellow those regions with a mismatch between cur-
vature and valence: Ideally, the valence v of a region should be related to its total
curvature K by K = (4 —v)3 for the sake of patch quality, cf. Chapter 4. If the actual
valence differs by more than 1, we indicate this for information. Note that this is mainly
relevant for highly edited strips — the automatically proposed strips rarely lead to such

situations due to the inherent favoring of orthogonality and alignment (cf. Section 8.1).
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The practicality and efficiency of the described interactive workflow depends on the
geometric and structural quality of the automatically generated loops and strips. Given
a surface M, a dual loop on it should ideally (cf. Section 5.1.1)

1) be aligned with principal directions of M and

2) have low geodesic curvature to facilitate a good quad shape.
Furthermore, for the sake of layout coarseness, it should rather

3) be short than wind around the whole object several times.

It should further respect, i.e. interpolate, the specified anchors of positional and di-
rectional kind (cf. Section 7.2). We generate dual strips in two steps: a dual loop is
constructed to serve as spine (Section 8.1) and is then extended to an appropriate dual
strip (Section 8.2).

8.1. Elastica on Surfaces

8.1.1. Field-Guided Geodesic Loops

In stage 2 of our automatic pipeline, cf. Chapter 5, we modeled dual loops as anisotropic
geodesics with respect to a prescribed guiding cross field, which was computed in stage
1. This field is aligned to stable principal directions and smooth otherwise, and in this
way jointly promotes the alignment (1) and low geodesic curvature (2) of the constructed

loops.
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Unfortunately, this approach is not amenable to interactive user-guided design. The
prescribed field already considerably restricts the space of representable layouts: dual
loops constructed by this approach are essentially “bound” to the field. Hence, the user
is not free to create loops as desired — geometrical as well as topological restrictions
apply. While there seems to be enough flexibility to automatically find a reasonable
result layout, chances are that the layout intended by the user is not representable.
In particular, the singularities of the field already completely define the number and
approximate position of the result layout’s nodes (up to local merging). But not only
the number and configuration of nodes is fixed, also the connectivity of these nodes,
i.e. the arcs of the layout, is subject to restrictions induced by the fixed underlying field.
In detail, only those loops along which the prescribed field has zero holonomy can be
created [LJX*10].

For design purposes such broad restrictions are hardly communicable to the designer.
In the following we hence present a field-less approach that allows for arbitrary dual
loops. It is furthermore able to take multiple user design constraints (the specified

anchors) into account.

8.1.2. Elastica Loops

A suitable model for the (closed) curves ¢ : [0, L] — M in arc-length parameterization

we are looking for is the objective

cll) = /0 1+ o qey (£ (1)) + B re(t)*dt — min (8.1)

subject to (positional and directional) constraints. Here the term 1 penalizes length,
q : TM — R penalizes deviation from principal directions (cf. Section 8.1.5), and the
last term penalizes geodesic curvature ry(t). A curve minimizing the bending energy
J re(t)?dt subject to positional and directional constraints is called elastica (or, depend-
ing on the context, spline), going back to Leonhard Euler and Jacob Bernoulli. Our
functional in addition includes means to soft-constrain local direction via ¢, with the

parameters o and 3 expressing the relative weighting of these objectives.

On surfaces, embedded elastica can be found using various methods of variational
nature, like Active Contour and Snake models [LL02, BWKO05] or the constrained spline

optimization of [HP04]. These methods, however, require an initialization and then
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QLOY

Figure 8.1.: Our optimization algorithm for elastica on surfaces has free homotopy:

depending on the orientation of the directional constraint (red dot with arrow), loops
from differing homotopy classes are obtained because the optimum is searched over all
classes.

strive to find a local optimum in the same homotopy class as the initial curve or loop®.
To maximally support the user, we want to avoid the need for an initialization and would

in particular like to find the optimum over all homotopy classes.

Hence, we design an algorithm, based on combinatorial optimization, which is able
to find (approximations of) global optima of certain curve functionals, and this over all
curve homotopy classes, i.e. without prescribed homotopy (cf. Figure 8.1). It is based

on finding constrained minimum weight cycles in special graph structures.

To this end, all metric information must be modeled as graph edge weights. Unfortu-
nately, in the case of a surface graph (e.g. a triangulation of the surface) only first-order
differential quantities can be taken into account in such an approach: the weight of an
edge has to be computed in advance from local information only, i.e. we can at most
build the difference of its two end node positions and compute the weight from this
vector’s length and direction (and the node positions). Curvature, as in our objective

(8.1), obviously is not accessible per-edge in this way.

8.1.3. Elastica Graph

If, however, we take a graph whose nodes are not a sample of the surface M, but of the

tangent bundle TM of M, the nodes already contain first-order information, such that

'The spline method of [PBDSH13] does not require initialization, but is essentially based on (pseudo)
geodesics, leading to similar homotopy class restrictions. In particular, it cannot construct (non-

degenerate) loops from just one constraint point — the most relevant case here.
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second-order properties, i.e. curvature, can be computed per edge: given two adjacent
nodes with position and tangential direction each, we are able to evaluate [ r(t)*d¢ for

an imagined connecting curve interpolating this Hermite data.

We are free to choose any sampling of T’M and a connectivity to construct a graph
approximation of the tangent bundle. A natural and intuitively accessible way is to
take some digraph g approximating M and then form its derivative g’ (also called line
graph or adjoint) [Bei68]. A node of this graph is a directed edge of g and can hence
readily be identified with a point p € M (the edge’s midpoint) and a direction d €
T,M (the directed edge’s direction). Two ¢’-nodes are connected iff the corresponding
directed g-edges are adjacent, forming a directed path of length two. For the special
case of planar regular grid graphs such line graph or related product graph constructions
have successfully been applied for curvature-regularized image segmentation purposes
[SCo7, SMC11].

As underlying graph g we choose an extended neighborhood graph built from a tri-
angulation 7 = (V, E, F') of M, where two nodes are connected (by two directed edges,
realized as geodesics) iff they have graph distance < k in 7. We found k = 4 to
sufficiently increase the angular resolution such that the resulting elastica are visually
smooth. In this case, the cardinality of the node sets is related as follows: |V,| = V],
with an average valence of 60, and |V,/| = 60|V|, with an average valence of 60. Note that
¢'-edges connecting g-edges which form a large geodesic angle can be omitted (e.g. the
red and purple ones in Figure 8.2) — the corresponding curves have large geodesic cur-
vature, thus are expendable in light of the bending energy minimization goal. We use a

generous limit of 30°, reducing the average valence of ¢’-nodes to 10.

Curved Edges The question remains how a g'-edge ¢ = (eg, €1) should be interpreted
geometrically, i.e. which curve’s geodesic curvature should be measured to obtain edge
weights for ¢/. Let’s first assume a planar configuration. One option is to compose a
circular arc of maximal radius and a straight line segment, connecting the midpoints of e
and ¢; (cf. Figure 8.2). For this unique curve we calculate [+ = 27 tan 2/ min(|eo|, |ey|),
where v is the angle between g-edges ep and e; at their common node, | - | the length of
an edge. As for its approximation
2

Y 2/ 1
— = k(e
(e ey )
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8.1. Elastica on Surfaces

Figure 8.2.: Illustration of one directed node’s (black) incoming and outgoing curved
edges in the elastica graph ¢’. The underlying surface graph ¢ is shown dashed. The

g'-nodes lie at g-edge centers.

(using Taylor expansion tan(y) = v+O(y?)) favorable convergence properties have been
proved (i.e. using graph refinement, continuous elastica can be approached) [BNRO1], we
opt for this choice. To generalize to non-planar configurations we only need to measure
v as geodesic angle on M, i.e. in a tangent plane at the common node of g and e;. This
effectively unrolls the configuration to the tangent plane, masking out normal curvature,

such that only the geodesic curvature is measured as intended.

The length of a ¢g’-edge ¢’ realized as described above evaluates to

o] = ’Ymigileol;lell) lleo| — leall
an o 2
The function ¢ from (8.1), promoting principal direction alignment, we evaluate for ¢’
using the trapezoid rule, sampling at the incident ¢g’-nodes ng, n; (midpoints of g-edges

¢p and ¢), leading to

él.

1
0€) = 5 (nfe0) + s (e)
Using these definitions we can build a discrete version of (8.1) for the closed curve formed

by a cyclic chain E of g’-edges:

o(B) =" || +aq(e) +Br() = w(e) (8.2)

e'eE e'eE
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8.1.4. Constructing Discrete Elastica

Minimizers of (8.2) are minimum weight cycles in the elastica graph ¢’. The global op-
timum can hence for instance be found using a variant of the Floyd-Warshall algorithm.
However, we are not interested in this unconstrained optimizer, but would like the loop
to interpolate the specified anchors to account for user influence. Therefore, we design
an algorithm based on nested minimum weight path problems which can very efficiently

be solved using Dijkstra’s algorithm.

In detail, we would like to take into account an arbitrary number of positional and
directional constraints to be fulfilled by a loop ¢. Let ® = (¢o,...,¢,_1) With ¢; =
(pi,d;) € TM be a list of n > 0 constraint points that shall be passed by ¢ in order,
with tangent parallel to d; where d; # 0 (d; = 0 signifies a purely positional constraint).
Let v; be the g-node closest to p; and &; the set containing just the outgoing g-edge of v;
closest to parallel with d; if d; # 0, and the set of all outgoing g-edges of v; otherwise.

For each two subsequent constraints ¢;, ¢;41 (all indices taken mod n), we compute
intermediate elastica curves according to (8.2): for each pair (a,b) € & x & 41 (remember:
a, b are edges in g and nodes in ¢') we compute the shortest path (taking the ¢’-edge
weights w into account) from a to b in ¢’ and record its cost as w(a,b). Note that if
|&] =1 or |&41] = 1, the shortest paths for all pairs can be computed with just one run
of Dijkstra’s algorithm? (being a single-source all-destinations type algorithm). Only if
both constraints have unspecified direction, min(|§;], |&41]) runs are necessary. Being

independent, all runs can conveniently be performed in parallel.

Then we form a metagraph. Its set of nodes is Uy<;<n&;, and the set Up<icn (& X §i41)
specifies its edges (cf. Figure 8.3). These metaedges are weighted by w. In this metagraph
we find the minimum-weight cycle. Due to the special structure of the metagraph, we
can do this more efficiently than by using the Floyd-Warshall algorithm. If at least one
¢ is a singleton, the cycle is found using a run of Dijkstra’s algorithm on the metagraph
from this one element back to itself. Otherwise, this is done for each element of the
smallest ¢ and the minimum taken. In any case, for fixed n and k, the complexity of the
complete elastica construction algorithm is O(]V]log [V]), V being the set of vertices of

M’s triangulation.

2A variant that does not return the empty path if @ = b must be used.
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Y
1
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- =<

Figure 8.3.: Metagraph construction for multi-constraint elastica. Example with 2 po-
sitional (&2, &) and 3 positional+directional (&, &1, &) constraints. The boundary node
0 allows for the construction of dual curves in addition to dual loops.

Concatenation of the intermediate elastica which correspond to the metaedges of the
minimum-weight cycle yields the optimal loop interpolating ®: in case that d; # 0 at each
constraint, the metagraph is a single cycle and the optimal loop trivially composed of all
the pairwise elastica curves; otherwise, if there are constraints with unspecified direction,
this algorithm finds the minimum over all (combinations of) possible directions. In the
case of one positional constraint only, the |§| trivial runs of Dijkstra’s algorithm on the
metagraph yield |&| loops (all crossing the anchor point in different directions), which

can be offered as alternatives to the user.

It is worth noting that there are quad layouts which contain dual loops crossing
themselves. Also such loops can readily be obtained using the described algorithm

without any additional measures.

8.1.5. Principal Direction Alignment

The functional ¢ : TM — R is used to penalize deviation of loop directions from principal
directions. We compute (unit) principal direction vectors dyin, dmax and principal cur-
Vatures Kmin, Kmax from the eigenvectors and eigenvalues of the shape operator [CSMO03].

The alignment of a unit tangent vector ¢ with a principal direction can naturally be
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measured using the inner product [{t,d)| on M, the deviation using the reciprocal. We

measure deviation to either principal direction using
—1
dev, (t) = max (|(t, )yl [{Es )y )™ = 1,
which is zero in case of perfect alignment.

We weight this deviation with the local shape anisotropy factor (|Kmin| — [Fmax|)? as
in [KCPS13] and obtain

qp(t) = (|#min| = |KmaX|)2dcvp(t)>

which suitably vanishes in umbilic regions with ill-defined principal directions.

8.1.6. Feature Curves

It is usually desirable to align patch boundaries of a quad layout to sharp feature
curves on the surface. To enable this, dual loops should not cross such features with
small crossing angles, but ideally orthogonally. We replace dev(p,t) defined above by
dev(p,t) == |{t, dmax)p| ™t — 1 on feature curves to achieve this. Now orthogonally cross-
ing loops are favored, and the penalty increases to infinity as the crossing angle goes to

Zero.

8.1.7. Boundaries

So far we considered dual loops, i.e. closed curves. On surfaces with boundary oM,
we also need to deal with non-closed curves which end at M. For this, we add one
additional node O representing all boundaries to the above metagraph construction.
Edges (a,0) and (0,b) are added for each a € &,_1 and each b € &, weighted by the
cost of the shortest path between a/b and any ¢’-node in Ej, where Ej is the set of
all g-edges incident to a boundary vertex of M’s triangulation 7. Where distinction is

necessary, we call the resulting elastica dual curves instead of dual loops.

The user can choose whether the final quad layout should be aligned to the boundary,
or whether non-aligned (trimmed) patches are acceptable. In the first case, dual curves
should meet the boundary orthogonally. This is achieved by treating the boundary as a

feature curve, using the weighting described in Section 8.1.6.
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8.1.8. Symmetries

In case M has a global (exact or approximate, extrinsic or intrinsic) symmetry, it is likely
that the user wishes to design an accordingly symmetric layout. Global symmetry can be
of reflectional or rotational kind. In the first case, M consists of two, in the latter of two
or more symmetric parts M;. We provide the convenient option to perform the design
on only one part, My, automatically transferring the layout to the other parts. We make
no assumptions about the symmetry transformations 1); mapping M, onto M; except
for continuity; they can be specified by the user or be determined using (semi-)automatic
methods [MPWC13]. Note that the dual curves on M, must meet certain constraints
such that they merge into continuous smooth loops on M. We achieve this as follows,

see also Figure 8.4.

Rotational In case of rotational symmetry, the boundary dM, has two symmetric
parts which are identified by the map ;. In ¢’ we realize this identification by means
of virtual edges, connecting respective g’-nodes adjacent to OM,. A loop found in ¢’
containing one or more of these virtual edges then represents one or more dual curves
on Mg whose ends lie on positions on d M, which are identified by v in a pairwise
manner (cf. Figure 8.4d). Hence, mapped to all parts via ¢, these curves join seamlessly
(cf. Figure 8.4e).

U1(@)

0

E Y 1Y)

a) c) e)

Figure 8.4.: Symmetry: (a) shows one representative half of the reflectionally symmetric

b) d)

object (c), dual curves end orthogonally on its boundary and thus form smooth loops
when mapped to both halves. In (b) one half for another reflectional symmetry is shown,
the blue curve is reflected on the boundary and thus forms two smooth crossing loops
on (c). (d) shows one of four parts of a rotational symmetry, left and right halves of its
boundary are identified, thus technically the two red curves are one loop, as is the blue

curve. Mapped to all four parts, continuous loops are formed (e).
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Reflectional In case of reflectional symmetry we can make the following observation:
a symmetric loop on M must either cross M, orthogonally, or it must cross another
(not necessarily distinct) loop on dM — an analogous property was recently discussed
for symmetric cross fields [PLPZ12]. The orthogonal case can be handled just like
an aligned boundary as described above. For the other case we must ensure the ex-
istence of both crossing curves at once. Conceptually, instead of letting a curve end
at dM, we reflect it at this boundary and let it also form Mo oM, M,
the second curve. Technically, weights of ¢’-edges between
g-edges incident to 0 M, are computed differently: the red
g'-edge (d, e) in the figure on the right is assigned the weight
computed for the blue curve (d,(e)) formed with the re-
flection of the g-edge e. In this way, curves resulting from
the Dijkstra approach are either closed and contained in
M, meet M, orthogonally and end there, or meet OM,

non-orthogonally and are reflected. Mapped to both halves

e

of M via 1, these curves form symmetric loops (or curves), -
smoothly crossing the symmetry’s stationary line.

8.2. From Loop to Strip

While (infinitesimal) dual loops are sufficient to define the layout’s topological structure,
the lack of a geometric dimension may overly stress the user’s imaginative powers. Hence,
we appropriately expand dual loops, constructed as described in the previous section, to
dual strips in order to better visualize the state and to guide the process of interactive

design as described in Section 7.2.

Formally, in analogy to a dual loop (cf. Section 8.1.2), a dual strip is a continuous
map s(u,v) : [-I,r] x [0,L] — M of a rectangle (or a subset thereof in case of surface
boundaries) onto the surface, with s(-,0) = s(-, L) in case of a closed dual strip. Its
dual loop/curve (spine) is its zero-u-isocurve s(0,-). An alternative intuitive view of a
dual strip is as a continuum of adjacent dual loops — which represent the one-parameter
family of u-isocurves of s. The stripe pattern used to illustrate the strips (cf. Figure 7.1)

simply represents a regular sampling of this continuum.
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Conceptually, we build a dual strip by taking a dual loop and broadening it by ex-
tending the map up to appropriate bounds [ and r, i.e. up to the point where the shape
of M causes too large distortions in s. As the acceptable degree of distortion depends
on the user’s intent, the boundaries of the dual strips are to be seen as fuzzy indicators
rather than definite patch borders. Because, a priori, the bounds [ and r are unknown
we compute an unbounded, global, distortion-minimizing map S: M — R? (cf. Section
8.2.1) from which all individual strip maps s can be extracted. This common map S is

recomputed whenever the user inserts a new strip.

Note that one could follow the simpler strategy of expanding strips in a local, in-
cremental manner — until some stopping criterion is met — e.g. based on a geodesic
wavefront emanating from the loop [Sch13]. Besides the difficulty of defining a suitable
local stopping criterion, this would result in u-isocurves with a constant spacing, im-
plied by the constant gradient magnitude of a geodesic distance field. Depending on the
model’s shape this leads to isocurves with high geodesic curvature, thus to unnatural
stripe patterns and strip boundaries (e.g. on the arc of model FIVE or the arms of model
FERTILITY in Figure 8.5). The global map based approach, by contrast, yields stripes
which much better resemble the edge flow of a globally coherent quad mesh by its very

nature.

8.2.1. Global Parameterization

We require the global map S to be aligned with all dual loops, i.e. the loops should
be isocurves of S. This implies that, in general, S needs to have singularities. Such
parameterization with alignment and singularities can automatically be computed using
an instance of cross field based parameterization [KNP07].

For the generation of a suitable globally smooth cross field we make use of the represen-
tation vector concept [PZ07], which allows for smoothness optimization via simple sparse
linear system solves [KCPS13, DVPSH14] - in contrast
to the popular angle-based formulation [BZK09] with-
out any integer constraints. In each triangle of the y RN ++ AN
triangulation 7" of M which is crossed by a dual loop i-é{— .l ++ ++ 53]

we set a unit representation vector which represents a

cross aligned with the loop. These representation vec-
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tors are then harmonically interpolated over 7, a cross for each triangle recovered from
the result, and the field singularities extracted, analogous to the recent description as a
special case (4-RoSy) in [DVPSH14].

Then we compute a global, chart-based parameterization which is optimized for isome-
try and alignment of isocurves to the constructed cross field. This can be done efficiently,
again using a single sparse linear system solve, in a least-squares manner as described
in [KNP07, BZK09] (note that in contrast to these works we do not have to perform
any integer rounding). To achieve exact alignment to the dual loops we add (linear)
alignment constraints to the optimization problem, forcing all edge intersections of a

loop to lie on a common isocurve as described in Section 6.5.2.

By construction, each dual loop is an isocurve® of S. To both sides of a loop ¢
we then conquer the continuum of adja-
cent isocurves, effectively extracting the
strip map s as illustrated on the right. We
stop when a singularity in S is reached
(or, in the extreme case of a singularity-
free field, the entire surface is conquered).
The singularities quite naturally indicate
appropriate bounds for the strips because
they represent portions (+km/2) of total

l

Gaussian curvature, in particular extrema
like corners — which should not come to
lie in the interior of quad patches for the
benefit of patch developability (e.g. en-

abling low-distortion patch parameteriza-
tion). Encountered degeneracies or fold-overs, which can sometimes appear in S, can
gracefully be dealt with by simply stopping there, too. As these appear adjacent to
singularities on principle, the impact is minuscule. Note that the field singularity con-
stellation can also be exploited to easily perform the region coloring related to Gaussian

curvature extrema (cf. Section 7.2.2).

3Formally, the chart-based parameterization S has transition functions across chart boundaries implied

by the cross field. The term “isocurve” is implicitly meant to take these transitions into account.
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Note that the cross field has no influence on the dual loop construction (in contrast
to the approach described in Chapter 5); it merely serves the strip map creation for
visualization purposes — and helps to ensure loop and strip transversality as described

next.

8.2.2. Strip Compatibility

Whenever a strip has been created by the user, it should constrain the design space
appropriately, as already mentioned in Section 7.2. Within the area covered by the strip
we thus remove (i.e. disable) all those nodes from the elastica graph whose associated
direction forms an angle < 45° with the isocurves of the strip map s. Now, when the user
hovers over the area covered by the strip, 1) no strips which are topologically equivalent
are proposed, and 2) the underlying dual loops do only cross transversally, as required
for validity.

8.3. Primalization

The collection of dual strips defined by the user uniquely determines the structure of
the primal quad layout. For the determination of the layout’s detailed geometry, i.e. its

actual embedding in M, we then have multiple (automatic, manual, assisted) options.

The method described in Chapter 6 can of course directly be applied for this task. It,
however, assumes the layout is intended for principal direction alignment. If this is not
the case, a method which does not aim for alignment could be the solution of choice.
For instance, in the final stage of their method, [TPP*11] apply a technique to optimize
the embedding of a quad layout in such a manner. Like our embedding optimization, it
is driven by a quality metric based on parameterization of the layout’s patches. These

approaches proceed in a fully automatic manner.

Alternatively, in order to give control to the user also in this stage, a manual strategy
can be followed: the user positions the layout’s nodes in the regions inbetween the
dual loops and draws layout arcs through the corridors formed by the loops in order to
connect them. Note that no hard topological decisions need to be made in this context,

the question is only where a node should be positioned within a region and where within
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a dual loop corridor a patch boundary should lie. Nevertheless, this can be a tedious
task.

We provide assistance by automatically proposing good node positions and arc routes

which may serve as starting point for adjustments through the user. Each region
(enclosed by dual loops) of valence # 4 contains at least one cross field singularity.
We initially position a region’s primal node onto this singularity if there is just one,
otherwise into the geodesic center of the
region. We then compute elastica curves
within the corridors between the dual
loops and use them as routes for the
connecting arcs. This is illustrated here

schematically. The manipulation tools

from Section 7.2.1 can be applied for these
curves, too. The use of elastica is motivated by the fact that the objectives stated for
dual loops in Section 8.1 often hold for primal arcs, too. Note that in regions of valence
4 two curves cross, implying a natural position for the corresponding regular node. This

latter approach was used for the examples shown in the following.

8.4. Results

Figure 8.5 shows layouts designed by non-expert users with the described system. The

video accompanying the article [CK14a] gives further impressions of the design process.

Parameters We normalized all input models (to bounding box diagonal 1), such that
model-independent parameters can be used. We used a = 1 and 3 = 0.25 in (8.2) for

all examples.

Timings We run our design system on a commodity PC. To get an impression of the
system’s performance, let’s consider the practical scenario of an input mesh with 30,000
faces for example. The elastica loop construction is output sensitive: good dual loops
with low cost are found within a few milliseconds; when multiple anchors induce very high
cost, construction time can increase to around 1 or 2 seconds. The subsequent generation

of the cross field takes around 200 ms, the parameterization and strip extraction around
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400 ms. For optimal responsiveness, we display a loop immediately after its computation,
while the field and strip generation is performed asynchronously in a background thread.
In total, this allows to provide an interactive interface — only expensive loops restrain
fluency to some extent. The user interaction time per model of Figure 8.5 for the design

of all strips was between 10 seconds and 5 minutes.

8.5. Discussion

We proposed a novel, alternative concept for the design of quad layouts. In contrast
to established systems it builds upon global operators based on dual loops and strips.
The core technical component of our approach is a novel combinatorial algorithm for the
constrained optimization of elastica loops embedded in surfaces. We further described
how our system can support the designer in the presence of symmetries, boundaries, and
feature curves.

In our system, optimal dual loops are constructed and then extended to dual strips.
It could be of benefit if the strip geometry, in particular its width, could also already be
considered in the loop optimization: wide strips could be favored over very narrow ones
to the benefit of layout coarseness. However, it is unclear how this problem could be
tackled algorithmically, and currently it seems unlikely that such integrated optimization

could be performed at interactive rates, as desired in our system.

While we ensure that each loop crosses all other loops transversally, favoring orthogo-
nality, a loop can be brought to cross itself with arbitrary angles; there is no mechanism
in the loop optimization algorithm that could provide control over self-crossings and
prevent small angles there. This is not a noticeable hurdle in practice because the prin-
cipal direction alignment term in (8.1) favors orthogonality also in this situation, but
depending on the anchors set by the user, self-crossing with bad angles cannot be ruled
out. However, it is easy to automatically detect such a loop and highlight it accordingly,
asking for adjustment.

Our current implementation offers a fully interactive workflow on models with several
tens of thousands of triangles. In practice sometimes models with hundreds of thousands
or millions of triangles are to be dealt with. The geometric fidelity of these complex

models, however, is not relevant for the layout in many use cases — at least not for
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its topological structure. This opens the door for an efficient employment of simplified
proxies. The layout design could be performed on a decimated model version and the
result mapped back to the detailed original. This could even be done in a transparent
manner, i.e. the elastica construction and strip expansion is performed on a coarse
model in the background but the (interpolated) result displayed to the user on the
original model. The final embedding optimization would be done on the detailed model
again. We leave in-depth investigation of suitable simplification and mapping strategies
(e.g. along the lines of [LSS*98]) and the analysis of the resulting interaction quality
to future research. While, as a sideline, this proxy strategy offers a way to abstract
from small-scale geometric detail, it could also be valuable to investigate ways to offer
scale control for the layout design process independent of the model resolution. For this
the shape operator could be computed with a correspondingly large integration radius,
the curvature of elastica be measured based on analogously smoothed tangent planes,
and scale-aware methods for cross field and parameterization construction [RVAL09,
ECBK14] be employed for the strip expansion on the desired level of detail.
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&

| 20/152

Figure 8.5.: Quad layouts designed with our interactive method. Shown are intermedi-
ate design stages with dual strips and region coloring, followed by the final quad layout.
Next to each layout the number of dual strips and the (typically much larger) number

of primal layout arcs is specified.
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9. Anisotropic Geodesics

Note: This chapter is based on [CHK135].

A fundamental operation made use of in the presented quad layout construction
method is the computation of geodesic distances and geodesic paths. For instance,
it occurs in the computation of separation indicators (cf. Section 5.2.2) or Voronoi re-
gions (cf. Section 6.6.2), but most importantly and fundamentally in the computation
of dual loops (cf. Section 5.1.4). In the latter case, distances are to be measured, and

paths to be constructed, with respect to a non-Euclidean, anisotropic metric.

In the following we show how (and how well) known distance computation methods
proposed for the isotropic standard scenario can deal with such general metrics, analyze
the inherent issues, and discuss the results that can be achieved. For metrics with a
high degree of anisotropy (like the one used in the dual loops construction, cf. Section
5.1.4) it turns out: typically either the runtime gets impractically high or the accuracy
low. This is problematic for our use case because we rely on the anisotropic distance

computation as the most fundamental operation — and it is used a large number of times.

For improvement we propose Short-Term Vector Digkstra: an algorithm that can in-
tuitively be understood as Dijkstra’s classical shortest path algorithm equipped with a
vector-valued short-term memory. It is fast and easy to implement while providing a

practical level of accuracy even for metrics with a high degree of anisotropy.

9.1. Basics

We consider a 2-manifold M (possibly with boundary) equipped with smoothly varying

norms | - ||g, on the tangent spaces T,M. As these norms allow us to infinitesimally



9. Anisotropic Geodesics

measure distances on M, for a continuously differentiable curve ¢ : [0,1] — M we can
define its total length through integration as ¢(¢) = f()l IC"@)lge(,y At With this we can
define the intrinsic metric g measuring geodesic distances between two points p, ¢ € M

as the infimum over the lengths of all curves ¢ on M connecting p with ¢, i.e.
9(p,q) = f{L() : €(0) =p, C(1) =g},

and in this way obtain a so-called length metric space (M, g).

Note that in the special but common case that ||- |4, is induced by some inner product
(-,")z on T, M for each x € M, i.e. ||v,, = \/{v,v)s, g is a Riemannian metric. If M
is further embedded in Euclidean space — as is the case in most geometry processing
scenarios — the Euclidean dot product implies a natural inner product via its restriction
to T, M. We call the corresponding norm standard norm, denoted || - ||, and the induced

Riemannian metric standard metric.

Relative to the standard metric and norm we characterize a metric g and its underlying

norm based on their quotient r(v,x) = ||v||y, /|v|l. (for v # 0) as follows:

o If r(v,z) = r(z), i.e. it is independent of v, we call the metric g isotropic as there

is no directional dependency.
o If r(v,z) = r(z) # 1, we call the metric g weighted by the weight field r(z).

o If r(v,x) # r(x), ie. there is some directional dependency, we call the metric ¢

anisotropic.

The value v(z) = max, r(v, z)/ min, (v, ) defines the local degree of anisotropy or

simply local anisotropy and y = max, y(z) is the mazimum anisotropy.

While the standard norm realizes the intuitive notion of geodesic distance and is
most common in applications, more general anisotropic norms that incorporate di-
rectional dependencies gained increasing interest in recent years. Applications range
from Meshing [BPC08, CBK12] and Segmentation [BPC08, SJC09], over Path Plan-
ning [RR90, LMS99] and Shape Matching [SJC09], to (mainly in 3D) Medical Imaging
[PWKB02, PWT05, BCLC09, BC11]. The anisotropy can be related to principal cur-
vature directions, terrain steepness, surface vector fields, or MRI diffusion tensors, to

name some examples (cf. Section 9.3).
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Figure 9.1.: Visualization of a geodesic distance field with respect to an anisotropic
metric (shown by tensor ellipses on the left; field source on top). Next to a reference
solution, we show the results and approximation errors of various adapted known algo-
rithms applied for the distance computation. Our novel Short-Term Vector Dijkstra on
the far right shows the best results.

Such applications typically operate in a discrete setting, e.g. on triangle meshes ap-
proximating manifolds. Numerous methods for approximate computation of (mainly
isotropic) distances in such settings have been proposed. Their accuracy and efficiency
typically depends on the quality of the triangulation: intuitively, the “rounder” the in-
dividual triangles, i.e. the closer to equilateral, the better. While working with rather
nice triangulations is quite common in the digital geometry processing field (leveraged
by powerful remeshing techniques), a problem emerges when anisotropic distances are
dealt with: the notion of “roundness” is metric dependent! This means a perfectly round
triangle which is equilateral in the standard metric can be a “cap” or “needle” far from

round when viewed under another, anisotropic metric.

Unfortunately, when naively adapting traditional methods to non-standard metrics,
they expect element roundness with respect to these metrics, while the meshes typically
used in applications are optimized with respect to the standard metric — as often favored
by the other processing steps. Hence, in practice anisotropic distance computations
quickly arrive at inacceptably low accuracy with increasing degree of anisotropy, as
illustrated in Figure 9.1 for v = 20.
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9. Anisotropic Geodesics

9.2. Related Work

Exact Distances Sophisticated methods using window propagation or sequence trees
[MMP87, CH90, SSK*05, XW09] allow for the computation of exact geodesic distances
on triangulated surfaces. Note that this exactness is with respect to the piecewise-linear
surface specified by the mesh M. In geometry processing scenarios where M itself is an
approximation of a (piecewise) smooth manifold, the expense of employing such exact
algorithms can be futile depending on the application. This holds even more when we
turn our focus to non-standard metrics which are also specified only approximately,

e.g. discretely per mesh element.

Graph Approximation Dijkstra’s classical shortest path algorithm computes short-
est paths and distances in graphs. By choosing an appropriate graph and suitable
edge weights we can use the corresponding weighted graph distance to approximate dis-
tances on M. In the simplest case this graph is the 1-skeleton, i.e. the edge graph,
of the mesh M, where the edges are weighted by their length. Higher accuracy, and
actually an arbitrary balance between speed and accuracy, can be achieved by construct-
ing a graph with additional Steiner vertices on M'’s edges and edges across M'’s faces
[Lan99, LMS97, KS00]. The addition of edges between non-adjacent but nearby vertices
[CBK12] allows for faster computations and (at comparable graph size) higher accuracy,

but on the downside no arbitrary balancing is possible.

Consistent Approximation In contrast to these Dijkstra-based approaches, so-
called Fast Marching methods compute and propagate distances not only along edges of
a graph, but also “continuously” across the faces of a triangle mesh [KS98, SV00, Tsi95].
By appropriate choices of the per-face propagation rules the approximation can be made
consistent — in the sense that the results could be driven towards the exact solution by
refining the mesh. For this, M needs to be an acute triangulation, no obtuse inner
angles are allowed. As this is hardly ever the case for unstructured meshes in practice,
techniques that add additional virtual edges/triangles to be considered during the com-
putation have been presented as a remedy [KS98, SV04, YSS*12]. Alternative non-linear
propagation rules have been proposed [NK02, TWZZ07], which can typically increase
accuracy in practice — although at the expense of losing consistency [WDB*08].
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9.3. Anisotropic Metrics

Non-Propagative A very different approach has been presented by Crane et al.
[CWW13]. An approximation to the intrinsic distance field of a source is computed by
means of solving two global linear systems instead of explicitly propagating distances
from the source over the surface. An interesting property is leveraged by the infor-
mation about sources appearing only on the right hand side of the system: after a
pre-factorization, distance fields for different sources can be computed very efficiently

(basically in linear time).

9.3. Anisotropic Metrics

We consider a discretized setting where, on a triangle mesh M, an (anisotropic) norm
Il - |l is specified in a sampled manner. The samples can be given per vertex, edge, or
face of M, denoted as || - ||, [ - lg., or || - [lg;, respectively — where necessary, we can

approximate one form from another via averaging/interpolation.

Looking at the application scenarios of anisotropic metrics which appeared in the
literature so far, most often Riemannian metrics are dealt with. In such case, the
corresponding norms can conveniently be expressed through a tensor field G as [|v||,, =
VTG v. Popular examples include:

e Vector field tensor: using the vectors of a tangent vector field as first eigenvector
and given two (global) coefficients to be used as eigenvalues, tensors “aligned” with
the field can be constructed. This is the scenario in the dual loops construction
process (cf. Section 5.1.4).

e Curvature tensor: using the shape operator, tensors whose eigenvectors are
aligned with directions of minimal and maximal curvature of M and whose eigen-
values are related to the magnitude of minimal and maximal curvature can be
constructed. Figure 9.1 exemplarily visualizes such curvature-related tensors us-

ing ellipses.

e Diffusion tensor: the characteristics of the water diffusion process in biological
tissue can be estimated from magnetic resonance imaging (MRI) acquisitions and
be expressed as a tensor field. Note that this is typically applied in 3D volumes.
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9. Anisotropic Geodesics

While we focus on 2-manifolds here, we show in Section 9.6.2 that our novel method

is as well applicable to volumetric meshes or grids.

While such tensor based metrics are widely used, it bears noting that also more gen-
eral metrics, based on non-elliptic norms, are of interest. Examples are terrain steepness
profiles [LMS99], curvature (variation) minimizing metrics [YSS*12], or high angular res-
olution diffusion imaging (HARDI) metrics [PWTO05]. We will hence keep the exposition

general instead of restricting to Riemannian metrics.

9.4. Generic Adaptation

Before elaborating on the possibilities for individual adaptation of the available algo-
rithms to a non-standard norm || - ||, in Section 9.5, we discuss a generic way (with

certain limitations) in the following.

9.4.1. Discrete Metric

Typical implementations of the abovementioned distance computation algorithms use
the vertex coordinates to derive metric dependent properties like edge lengths, angles,
and areas. In this way computations implicitly rely on the standard metric induced by

M’s embedding in Euclidean space.

By not taking any extrinsic vertex coordinates into account, but instead relying on
intrinsic edge lengths, computed according to || - ||, as €4(e) = |[le||s, most distance
computation algorithms can directly be adapted to non-standard norms. To that end
one, where required, computes angles and areas based on the intrinsic edge lengths. The

intrinsic area A of a triangle with edge lengths a, b, ¢ can be computed using Heron’s

formula .
A:Z\/(a+b+0)(fa+b+c)(a7b+c)(a+bfc) (9.1)
and the inner angle « opposing the edge with length a using the half-angle theorem
! (a—=b+c)a+b—2c)
tan — = . 2
Y \/(a+b+c)(—a+b+c) (92)

While being extremely simple, this generic strategy has a few disadvantages:
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9.4. Generic Adaptation

Loss of fidelity The metric information is injected solely via the intrinsic edge
lengths, which specifiy the so-called discrete metric' of the mesh. While such a discrete
metric captures all the information of a (sampled) Riemannian metric, we inevitably

lose fidelity when discretizing a more general (non-elliptic) norm in this way.

Violation of triangle inequality The computed intrinsic edge lengths might not
fulfill the triangle inequality everywhere (strictly speaking, they do not form a discrete
metric in this case). We found this to rather be the typical behavior than the exception,
especially for high degrees of anisotropy, as also described by Kovacs et al. [KMZ11].
For some algorithms this can be unproblematic, for others (which need to derive angles
or areas from these lengths) this is catastrophic. Edge lengths ¢'(¢) fulfilling all triangle
inequalities closest to the desired lengths could in such cases be found via a suitable

inequality-constrained least-squares system:

Z(E’(e) —(e))>—= min st £(e;) < (ej) +(ex) —¢ (9.3)
for all edge triples e;,e;, e, incident to a common face, i.e. we have three inequality

constraints per face.

Low triangulation quality The intrinsic roundness of the triangles is typically very
bad, especially for higher degrees of anisotropy, i.e. there are angles close to 180° as well
as angles close to 0°. For some algorithms this implies a low accuracy, for others a higher
runtime. A remedy can be to retriangulate the mesh by means of an intrinsic Delaunay

triangulation as detailed in the following.

9.4.2. Intrinsic Delaunay Triangulation

Using a Delaunay retriangulation algorithm which is based on an intrinsic discrete metric
[FSSBO7] we can adjust the connectivity of the mesh so as to obtain a mesh whose
elements are nice with respect to this intrinsic metric (cf. Figure 9.2) — to the degree

permitted by the given vertex set. A complete intrinsic remeshing, which not only adjusts

!In literature not related to meshes the term discrete metric by contrast homonymously refers to a

metric which is 0 or 1 everywhere.
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Figure 9.2.: Left: Anisotropic Riemannian metric, visualized through inverse tensor

ellipses (intuitively showing the “speed profile” of the metric). Middle: Isotropic input
mesh. Right: Corresponding intrinsic Delaunay retriangulation.

the connectivity but also redistributes vertices, is a theoretical option that could lead to
even better results but would be rather problematic depending on the application.

While this intrinsic Delaunay Triangulation (iDT) can significantly improve the dis-
tance computation results of several algorithms, there are some drawbacks, too:

e Numerical inaccuracies can hinder the iDT’s correct execution and termination,

thus demand epsilon tweaking,

e The application and underlying data structures must support non-regular meshes
[FSSBO7] (or the algorithm must be relaxed to avoid such configurations),

e The input edge lengths must fulfill the triangle inequality everywhere,

e The worst case runtime complexity is quadratic in the mesh size.

9.5. Individual Adaptation

We now outline the algorithm specific effects when using the generic adaptation pos-
sibilities presented in the previous section and show options for improved, individual

adaptation where possible.

132



9.5. Individual Adaptation

Dijkstra

Clearly, the simplest solution to compute approximations to distances with respect to
non-standard metrics is to apply Dijkstra’s algorithm, taking the intrinsic edge lengths
of the discrete metric into account. Note that, due to the graph nature of the algorithm,
fulfillment of the triangle inequality is not required. Unfortunately, the (already in
the isotropic case relatively high) average approximation error increases with increasing
anisotropy, quickly leading to unacceptably low accuracy. Using the iDT, however,
accuracy can be brought closer to the level of the isotropic case. Figure 9.3 illustrates

this using the setup from Figure 9.2 with anisotropy v = 20.

The Dijkstra-based method of Lanthier [Lan99] which considers additional vertices and
edges across faces can be adapted to the anisotropic case as follows: instead of deriving
the intrinsic lengths of the additional edges from the discrete metric, we calculate the

length of an edge across face f directly using || - This allows for higher fidelity in

llos-
the case of non-Riemannian metrics. Figure 9.4 illustrates the behavior for increasing

numbers of added vertices and edges.

Fast Marching

The Fast Marching approach [KS98] can be applied in the case of a non-standard metric
by relying on the corresponding discrete metric (which must fulfill the triangle inequality
everywhere as we need to derive, e.g., angles from it). The general problem is that in
this metric the number of obtuse triangles is often enormous, requiring the considera-
tion of a vast number of virtual edges. An iDT can be used to avoid this — but has its
own abovementioned shortcomings. Figure 9.5 illustrates the qualities of these options.
Another option is to deal with the inaccuracies due to obtuse angles using recursive im-
provement techniques [KSC*07]; however, this means losing consistency and convergence

properties.

Sethian and Vladimirsky [SV04] proposed a more general Ordered Upwind method
(OUM) which is already specifically designed for non-standard metrics. It is able to
consistently deal with arbitrary anisotropy, i.e. one, in theory, has the possibility to
arbitrarily increase accuracy through mesh refinement. In comparison to the other dis-

cussed algorithms, the implementation is probably the most complex one and runtime

133



9. Anisotropic Geodesics

Reference Dijkstra Dijkstra iDT

Figure 9.3.: Anisotropic distance field (up to a fixed maximum distance, so as to en-
hance clarity). Left: Highly accurate reference solution. Middle: Dijkstra result on an

isotropic mesh. Right: Dijkstra result computed on the iDT.

5 Steiner 10-Steiner 20-Steiner

Figure 9.4.: Lanthier’s method’s distance field (on the iso-tropic mesh). Left: computed

with 5 Steiner vertices per edge. Middle: 10 Steiner vertices. Right: 20 Steiner vertices.

and memory consumption is relatively high (cf. Section 9.7). A main factor is that,
in addition to the actual anisotropic distance propagation, as an ingredient isotropic
distances from every single vertex of the mesh to all of its neighbors within a radius
of ||eémax]|y need to be computed. Here eyax is the longest edge of the mesh and ~ the
anisotropy, i.e. the radius can become quite large for high anisotropies. While simple
extrinsic distances can be used for efficiency, higher accuracy on non-planar meshes is

achieved by computing intrinsic isotropic distances.
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9.5. Individual Adaptation

FM w/o virt. edges

Figure 9.5.: Fast Marching distance field based on the discrete metric. Left: without
virtual edges. Middle: with 13k virtual edges. Right: on the iDT, where only 6k virtual

edges are necessary.

It is worth noting that, while other methods typically
overestimate distances, OUM can also heavily underesti-
mate distances, as can be seen when comparing the inset
figure to the reference solution. This is due to the fact
that distances are propagated over virtual triangles that
span a long distance across the mesh. While the norm
potentially varies on the mesh under these virtual trian-
gles, the propagation across them is computed atomically
using only the norm at one end point, easily allowing for

too long as well as too short results.

Heat Method

Just like the other algorithms discussed so far, the heat method [CWW13] can be adapted
to non-standard metrics by formulating it in terms of the discrete metric, i.e. based on
the intrinsic edge lengths. This amounts to calculating the cotangent weights, element

areas, and divergence values involved in the Laplacian and the Poisson system accord-

ingly.
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Heat iDT tuned time step

Figure 9.6.: Heat Method distance field based on the discrete metric. Left: computed
on the isotropic mesh. Middle: computed on the iDT. Right: computed on the isotropic

mesh but with individually tuned heat integration time step.

Unless the anisotropy is very moderate, the low intrinsic element roundness, how-
ever, does negatively affect robustness. The resulting distance fields then often show
distortions and degeneracies like local minima. We observed that improved results can
be achieved by individually tuning the heat integration time step instead of using the
standard ¢ = 5 proposed in the original publication, but found no general rule for a
good automatic choice. Again, an iDT can be an option to remedy these problems
(cf. Figure 9.6).

9.6. Short-Term Vector Dijkstra

We now present a novel method for the approximate computation of distances with
respect to arbitrary metrics. In order to develop an intuitive understanding of the
underlying principle, let us consider Dijkstra’s classical algorithm again. Due to its
graph nature, the distance approximations resulting from this algorithm are the lengths
of edge paths that meander over the surface (cf. Figure 9.7 left) — not the lengths of true

geodesic paths. They are thus rather inaccurate and also very triangulation dependent.

Instead of first measuring lengths of edges and then (scalarly) summing these, an

interesting alternative is to first (vectorially) sum edges and then measure the length
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9.6. Short-Term Vector Dijkstra

of the sum. This vector-valued Dijkstra algorithm has been employed by Schmidt et
al. [SGWO06] to obtain geodesic distances for the purpose of local surface parameteriza-
tion. Figure 9.7 illustrates the principle in the plane. In this planar case and with the
standard metric the resulting distances are actually exact — as, independent of the path,
the result is the Euclidean length of the vector pointing from source to target point.
The concept can be transferred to 2-manifold meshes by performing vector addition af-
ter transferring the vectors into a common 2D reference system, which can be done in
different ways [SGWO06, Sch13]. In any case, a major problem is that this method is
basically oblivious to holes, obstacles, and, when applied in a non-planar setting, geo-
metric variations in the surface. Figure 9.7 right demonstrates this issue. Hence, while
being adequate and efficient for computations in a local neighborhood, it is unsuitable

for global distance computations on manifolds.

The idea underlying our Short-Term Vector Dijkstra (STVD) is to form a hybrid out
of the classical scalar-valued variant and the vector-valued variant so as to combine the
respective advantages. Conceptually, we equip the scalar-valued variant with a vector-
valued short-term memory. In this way the meanders of the edge paths through the

triangulation can locally be smoothed out without globally disregarding the surface

geometry. The following pseudo code clarifies the details.

Figure 9.7.: Left: distance computation using Dijkstra’s classical algorithm. Middle:
computation using a vector-valued Dijkstra variant. Right: shortcomings of the vector-

valued Dijkstra variant: it is oblivious to holes, obstacles, and geometric variations.
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Algorithm: Short-Term Vector Dijkstra (STVD)
Input: polygon mesh, metric g, a vertex designated source

Output: vertex based field of geodesic distances to source

source.dist < 0 all other distance values initially oo
Q.insert(source) priority queue ) ordered by distance
while not Q).empty
v — Q.extract_minimumy() get min. dist. vertex out of QQ
v.final « true
for all w adjacent to v where not w.final
if update_dist(v,w) < w.dist
w.dist « update_dist(v,w)
w.pred « v
if not w in Q

Q.insert(w)

This looks very much like the standard Dijkstra algorithm and indeed, if we use the

following version of the update_dist function this is exactly what we get.

Function: update_dist(v,w)  original Dijkstra version

return v.dist + (,(v,w) add length of edge (v,w) w.r.t. g

By instead exploiting a vector-valued short-term memory (a window of k preceding
edge vectors), we obtain our STVD algorithm using the following variant of the distance

update function:

Function: update dist(v,w)  our STVD version

tmp <« w.pred
w.pred < v

dist < min¥_; w.pred’.dist + £, ( Z;Zl(w.predj’1 ,w.pred”))
w.pred < tmp

return dist
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9.6. Short-Term Vector Dijkstra

Figure 9.8.: Unfolding of edge chains to the plane. Edge lengths and relative 1-ring

angles are preserved. The sum vector E (red) is then subdivided according to the ortho-
projection of the individual edges. The resulting portions are measured by the respective
norms || - ||g, — here visualized as tensor ellipses (blue) — and their lengths summed to

get {y.

where the predecessor relation is recursively defined as w.pred”™ = w.pred’.pred, with
w.pred’ = w. It remains to be clarified how the edges e = (w.predj ~1 w.pred’ ) are

summed vectorially and how the length ¢, of the sum with respect to g is measured:

The norms || - ||, live in tangent planes, i.e. they allow to measure vector lengths in
2D. We thus unfold the chain of (directed) edges e; into a common plane (R?) while
preserving edge lengths and relative 1-ring angles. Figure 9.8 illustrates this. Note that
no actual embedding of the mesh is required for this. The norms || - ||, (represented
relative to their corresponding edges) now allow us to approximately measure the length
of the sum F = Ej ¢; of the unfolded edge vectors €; in 2D. As these norms can differ,

we decide how large portion of E is measured by which norm based on the edges’ (signed)

orthogonal projections onto E. Concretely, we use £y(3_; ¢;) = >, éjE‘ |E
to R2%), where £ = E/| E||, in the above distance update function.

| o, (clamped

It is worth noting that we can choose between two alternatives regarding the repre-
sentation of the conceptual memory. It can be represented either explicitly by storing
vectors of the last £ — 1 edges (v.predj ,v.pred’ +1) at each front vertex v (in its local 2D
coordinate system), or implicitly by gathering these vectors using a short back-trace via

the predecessor relation when we need them in the distance update function.
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With an appropriate choice of the short-term mem-
ory’s depth k, the accuracy of the results is immensely
improved. The inset illustrates this for £ = 10 (detailed
quantitative results are provided in Section 9.7). Despite
the lack of smoothness in some regions, the result is closer
to the reference than the alternatives from Section 9.5
(except Figure 9.4 middle, right).

Note that for £ = 1 STVD is equivalent to Dijkstra’s
classical algorithm (generally overestimating distances),
while for k& — oo it becomes an all vector-valued vari-

ant (which tends to underestimate unless the surface is

developable and free of holes). This can also be observed in the following histograms
which show the signed relative error distribution over all vertices of all examples from
Section 9.7 (for v = 10):

80%
0%
0% P‘—
—40% | | [

9.6.1. Speed vs. Accuracy

Some of the discussed algorithms allow to trade speed for accuracy at the user’s dis-
cretion. By using a higher number of Steiner vertices in the edge-subdivision approach
[Lan99], or by refining the input triangle mesh using some steps of 1-to-4 splits prior to
the application of the Ordered Upwind method [SV04] (or, in the case of a Riemannian
metric, also the Fast Marching adaptation) higher accuracy can be achieved — at the cost
of quickly increasing runtime. Note that such property is not to be taken for granted:
for instance the accuracy of distance computations using Dijkstra’s algorithm does not

generally increase under mesh refinement.
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We empirically observed that such property can also be established for our STVD. To
this end we need to achieve two seemingly contradicting goals: k needs to be increased
S0 as to increase the angular resolution of the distance propagation, while the lengths
of the used vector sums need to be decreased so as to reduce the approximation errors
of the unfolding-based measurement. We can achieve both by refining the mesh using
1-to-4 splits (reducing edge lengths by a factor of 2) while increasing k by a factor < 2.
The following table shows the decreasing mean error for increasing levels of refinement

on three exemplary models (y = 20):

Level k ‘ ELK GARGOYLE ROCKERARM

0 7198% 25.7% 15.3%
1 10 |51% 13.4% 11.6%
2 14 |25% 8.2% 6.5%
320 | 1.5% 4.3% 3.9%

More interesting than this possibility, however, we deem that, even in the case of
strong anisotropy, STVD achieves reasonable, relatively good results already on unre-
fined meshes of resolutions typically encountered in the Computer Graphics and Geom-

etry Processing field (cf. Section 9.7).

9.6.2. Genericity

Polygonal Meshes It is worth noting that STVD does not rely on the property that
M is a triangle mesh, i.e. it can also be applied to general polygonal meshes. Many other
methods are designed specifically for triangle meshes and would need to be adapted —

or the polygon mesh be triangulated.

3D Meshes While our focus here is on 2-manifold surface meshes, an interesting
fact about STVD is that it can directly be applied also to volumetric meshes in R? —
whether they consist of tetrahedral, hexahedral, or general polyhedral cells. We simply
skip the edge vector unfolding to the plane and sum the 3D edge vectors directly (cf.
Figure 9.9). While also other methods can potentially be generalized to this setting,
this is less trivial. Challenges lie in the correct determination of virtual simplices for the
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Dijkstra STVD Dijkstra STVD

Figure 9.9.: Volumetric distance fields computed in a hexahedra and a tetrahedra mesh
(sliced open to expose the interior). The constant Riemannian metrics used (depicted
by ellipsoids next to the models) have an anisotropy of 12. Just like in the surface mesh
case, Dijkstra’s algorithm heavily overestimates distances, especially in vertical direction

where true distances are shorter due to the anisotropy.

OUM or FMM, establishing an intrinsic Delaunay tetrahedralization or fixing violated
tetrahedra inequalities, or in handling the large number of additional edges, which in
the case of straightforward generalization of Lanthier’s concept to 3D grows quartically

with the number of Steiner vertices per edge.

0.7. Results

In the previous sections we have discussed the qualitative differences of the approaches
that are available for the computation of anisotropic distances. In order to get a quan-
titative understanding for the accuracy and runtime performance of all these options,
we implemented all variants and performed extensive experiments using various kinds of
input meshes (cf. Figure 9.10, 9K-183K triangles), metrics (vector field based as well as
curvature tensor based), anisotropies (uniform as well as varying v(z)), and algorithm

parameters.
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The reference solutions we compare against have been computed using the edge-
subdivision method of Lanthier [Lan99] with 200 Steiner vertices per edge (and runtimes
of up to several hours for a single distance field). In this setting for every single triangle
there are more than 120,000 virtual edges crossing it, resulting in a highly accurate ap-
proximation of the true distances. We show the results using error-over-runtime plots in
Figure 9.11 (and using error histograms in the supplemental material). Intuitively, the
closer a method lies to the bottom left, the better — as this means that a low error (high
accuracy) is achieved in a short time. These plots further allow to quickly see what
other options apart from the “best one” are available, e.g. how much more accuracy can

be achieved by spending how much more time.

Regarding our STVD algorithm, we see that it lies in the bottom left region across the
different levels of anisotropy, i.e. it achieves good results in short time when compared
to the other options — especially for higher anisotropies. Good standard values for k
can also be read from these plots: from around 5 for low anisotropy to around 10 for
anisotropy 50. Note that such high anisotropy is not only of theoretical interest. In
fact, an anisotropy of 30 is the standard we made use of in the dual loops construction

process.

For lower anisotropies, the Fast Marching method applied to the intrinsic Delaunay
triangulation of a subdivided version of the input mesh is very competitive. Note that
this strategy requires several steps of preprocessing: 1) mesh subdivision, 2) discrete
metric computation, 3) reestablishing triangle inequality fulfillment, and 4) iDT con-
struction. This also implies the drawbacks discussed in Sections 9.4.1 and 9.4.2 and can

take a considerable amount of (possibly amortizable) time. By contrast, STVD operates

Figure 9.10.: Models used for the evaluation, depicted with example fields.

143



9. Anisotropic Geodesics

directly on the input mesh without the need for any preprocessing and without implying
additional complexity.

When a higher level of accuracy is required and more time is available, the edge

subdivision method of Lanthier [Lan99] proves to consistently provide a good option.

In isotropic scenarios the advantage of STVD over, e.g., Fast Marching or the Heat
Method diminishes. However, we observed that it is typically still very significant when
dealing with meshes with badly shaped elements. This is illustrated here on an example

mesh (y = 1), where the error (w.r.t. exact geodesic distances [SSK*05]) is visualized:

12%
9%
6%
3%
0%
Dijkstra FM Heat STVD
(tuned time step) (k=5)

9.8. Discussion

We have explored and discussed numerous options for the computation of distance fields
with respect to general anisotropic metrics, based on generic as well as specific adap-
tations of known algorithms. We compared all these in terms of their accuracy and
runtime performance and enriched this zoo of methods with our Short-Term Vector Di-
jkstra. Despite its simplicity, this method proved to provide a very interesting novel
option, allowing to quickly compute results with practical accuracy without the need for

complex optimization or costly preprocessing.

In the future ways to enhance the smoothness of the results could be explored. Pos-
sibilities could be the use of averaging schemes during propagation [Sch13] or of a kind
of “gradually fading memory” instead of a hard limit k. The use of a locally varying k

(based on local feature size, anisotropy, mesh density) is another interesting direction.
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Figure 9.11.: Error-over-runtime plots of the results for various degrees of anisotropy
(7). Shown is the mean rel. abs. error (computed over all vertices) on the vertical axis,
and the summed runtime (sec.) for the computation of a complete distance field per
input test case (14 mesh/metric combinations). Mesh subdivision (1-to-4 split) levels
are indicated by I and II; numbers indicate the STVD parameter k or the number of
edge Steiner vertices, respectively. Preprocessing time (shown by dashed bars) includes
triangle inequality fixing and (where applicable) subdivision and iDT. For the Heat
method the first segment of the bar additionally indicates the time for setup and pre-
factorization of the employed linear systems. Violated triangle inequalities have been
fixed 1) for the heat method as described in Section 9.4.1 using IpopT [WBO06]; 2) for
the FMM using a simpler (not least-squares optimal) strategy of iteratively adjusting

individual triangles, as on the subdivided meshes the solver takes unacceptably long.
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Note: This chapter is based on [CK11].

A basic assumption we made in all the presented algorithmic parts is that the input
surface is given in form of a triangle mesh. When the ultimate goal is to generate a
structured representation for digitized (e.g. scanned) surfaces, for instance in form of a
quad mesh, multiblock grid, or spline network (cf. Chapter 1), one might ask whether
it is reasonable or necessary to first construct a triangle mesh out of a point cloud or
a set of range images. This question has already been asked for the case of quad mesh
generation and solutions been presented [LLZ*11, PTSZ11] that circumvent the triangle
mesh construction by directly operating on a point cloud or range images, i.e. geometry

without complete mesh connectivity information.

While the generalization of the entire ensemble of our pipelines’ algorithmic parts to
such inputs is beyond the scope of this thesis, in the remainder of this chapter we show
how geodesic distances and paths can be computed on point clouds or incomplete meshes
as this is the next most important step towards the goal of being able to perform layout
construction directly on such data: the most common building blocks in our algorithms
are cross field generation, global parametrization, and geodesic computations — where
adaptations of the former two have already been described [LLZ*11, PTSZ11].

Note that this generalization does not only leverage the use of scanned point cloud
data: “real-world” triangle meshes, i.e. meshes that user’s encounter in practice, do
not always fulfill the basic assumptions we made about our methods’ input meshes,
namely that they are well-structured and manifold with complete connectivity informa-
tion. Depending on their origin they may exhibit several kinds of defects — holes, gaps,
(near-)degenerate polygons; or they might even be just a soup of polygons, completely
lacking connectivity information. While a considerable number of methods that aim at

repairing mesh defects have been presented, unfortunately there is no general solution.
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As detailed in our recent survey [ACK13] the automatic repair problem is hard, am-
biguous, and naturally ill-posed in most cases. Hence all repair approaches have certain
advantages and disadvantages and often user interaction and tedious manual effort is
required to obtain a clean mesh in the end. The fact that our adaptation does not
rely on explicit connectivity information enables its application to the general class of
“imperfect meshes” — of which point clouds and range image sets are basically special

cases.

In detail, we present a computational framework that allows for the computation
of meaningful approximate intrinsic distances and geodesic paths on meshes with all
kinds of defects in a way tolerant to these defects (cf. Figure 10.1). We do this without
explicitly repairing the mesh, circumventing the abovementioned problems. In the case
of severe mesh defects, e.g. large missing parts, the computed distance fields might of
course be inconsistent with those of the object that is actually meant to be represented
by the partial data — in particular we do not propose new disambiguation or “defect

hole” — “feature hole” distinction strategies.

Figure 10.1.: An intrinsic distance field and a geodesic path computed on an imperfect

mesh in a defect-tolerant way.
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Figure 10.2.: Overview of our approach: a) Input mesh with defect (large artificial

hole for demonstration), rendered with backface culling. b) Initial cubical complex con-
structed for this mesh (at a low resolution of 16® for illustration). c¢) Complex after
applying topology-sensitive morphological operators; the hole is now bridged. d) Vi-
sualization of a geodesic distance field (with isolines) emanating from a point source,
computed on the complex (at a resolution of 64%), and mapped to the input mesh by
interpolation. e) Application example: defect-tolerant decal textured onto the surface
using a local geodesic parameterization.

The basic idea is to abstract from the mesh structure (and all its potential defects)
and to perform all computations discretely in a crust volume tightly restricted to the
spatial regions occupied by elements of the input. It has been proven that the extrinsic
distance field in such crust volumes converges uniformly to the intrinsic distance field of
the surface they bound with increasing tightness [MS01]. We show ways to perform the
necessary computations in a memory-efficient manner such that tightness can be achieved
by using high resolutions. The discrete structure readily allows for the application of
topology-sensitive morphological operations [BK05] to make computations tolerant to
gaps and holes. The 3D variant of the STVD algorithm described in Section 9.6.2 or
the Fast Marching method [Set95] can then be applied to efficiently generate distance
fields. The examples shown in the following have been generated using the Fast Marching
method. Due to the abstraction from the input, applicability is not limited to polygon
meshes; other representations like point sets, implicit functions, or NURBS patches can
be handled as well.
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10.1. Overview

The framework we present takes inconsistent raw polygon meshes (cf. Figure 10.2 a)
as input and allows for the computation of (1) intrinsic distance fields with point or
polygonal sources, (2) geodesic paths between surface points, and (3) various types of
local surface parameterizations. Independent of which computations are to be performed
for a specific application, the first step is to abstract from the mesh representation to a
cubical complex, i.e. a Cartesian grid tightly restricted to the spatial regions occupied
by the mesh elements (cf. Figure 10.2 b). To make further computations tolerant to
gaps and holes we next apply topology-sensitive morphological operations [BK05] to
this complex. This closes all gaps and holes of sizes up to a user-specified tolerance
threshold and yields the final complex (cf. Figure 10.2 ¢). Details on this construction

are presented in Section 10.2.

Source points or curves for the computation of distance fields and geodesic curves are
mapped into the complex (cf. Section 10.3) to obtain initial conditions for the subsequent
Fast Marching (cf. Section 10.3.1). Finally the mapping of the results back onto the
input mesh is detailed in Section 10.3.3 (cf. Figure 10.2 d). In Section 10.4 we present
several ways to construct local surface parameterizations in defect-tolerant ways using
the introduced framework and show application to texturing of arbitrary meshes (cf.

Figure 10.2 e). Further results and analyses are provided in Section 10.6.

10.2. Mesh Abstraction

Given an input mesh M = (F, E, V) consisting of sets F', E, V of faces, edges, and
vertices respectively. We do not want to make any assumptions about the integrity of
M, i.e. it may contain holes, gaps, singularities, degeneracies, or missing connectivity
information. Hence, we first abstract from this mesh to a cubical complex representa-
tion. The idea of using some kind of discrete abstraction of polygonal geometry has
been applied for the same reason in various fields, from simplification [ABA02] over
vectorization [MZL*09] to model repair [BPK05], to name only a few.
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10.2.1. Initial Complex Construction

The cubical complex we use is essentially a cut-out of a three-dimensional Cartesian grid
such that all elements of F'; F, and V are contained in the union of its cells. It should
be minimal, i.e. restricted to the regions occupied by the mesh elements as tightly as
possible. Hence, the construction of this initial minimal complex C7 basically corresponds
to the three-dimensional rasterization (or “voxelization”) of the mesh elements, since the
obtained voxels directly correspond to the 3-cells of the desired complex Cz. Details on
efficient implementation are postponed to Section 10.5. We base the further description
on the cubical complex notation since also the O-cells and 1-cells of the complex are
involved in the computations. In the following we will refer to the O-cells of the complex
as nodes, to the 1-cells as arcs, to the 2-cells as walls, and to the 3-cells simply as cells.
Further, by N(c), ¢ being a cell of C, we denote the set of nodes incident to ¢, and
N(C) = U.ec N(c) for a set C' of cells.

Some computations can benefit from normal information at the nodes. For each node
we average the normal vectors of the faces (or vertices) intersecting the eight incident
cells to obtain an estimated normal vector. Since this is only meaningful if the set of
normal vectors is coherent at least to some extent, we do only store such an estimated
normal vector at nodes where the cone spanned by the set of normal vectors has a non-
reflex opening angle — which can conservatively be estimated by all pairs of these vectors
spanning angles smaller than 2/3 « for simplicity. For the estimation process the normal
vectors of the input have to be oriented consistently. If this is not the case it can for
instance be enforced by the method of Borodin et al. [BZK04].

10.2.2. Morphological Operations

Bischoff et al. [BK05, BPKO05] successfully applied morphological operations to voxel
representations in the context of 3D model repair. By applying the discrete morphologi-
cal dilation operation to our initial complex Cz we can easily close holes and bridge gaps
up to a user-specified width. In principle holes of any size can be bridged in this way,
however, note that intentional feature holes, constrictions, or tunnels up to the chosen

size are also closed. If these can safely be distinguished from defect holes in a specific
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scenario, dilation can of course be restricted to defect hole boundaries, e.g. as done in
[BPKO5], to alleviate this behavior.

Performing distance computations on the resulting dilated complex Cp would, how-
ever, result in significantly lowered accuracy [MS01, MS05]. Hence we apply a morpho-
logical erosion operation on Cp to obtain the final complex C. To prevent this operation
from tearing closed holes and gaps open again, a topology-preserving variant [BK05] is
employed. This operation removes cubes only if this does not change the digital topol-
ogy (defined via wall-adjacency, or 6-neighborhood) of the complex thereby leaving a
minimal sheet of cubes in holes and gaps. The entire process is illustrated in Figure

10.3, implementation details are given in Section 10.5.

Figure 10.3.: 2D schematic example of the employed morphological operators dilation
(middle) and topology-preserving erosion (right), filling holes up to a specified size.

10.3. Geodesic Computations

Having obtained the computational domain in form of a cubical complex C as described
in the last section, we can now perform approximate geodesic distance computations by
Fast Marching (FM) [Set95, DC00]. This method, applied to the complex, will compute
a distance field d : N(C) — R*.

A distance field d usually emanates from (a set of) source points or curves on the
input surface, i.e. on M (but sources in free space can be handled as well). To set
initial values for the front propagation of the FM method this information needs to be

transferred into C.



10.3. Geodesic Computations

For the set S of all specified point and curve sources of d we determine the set Cg of
cells of C they intersect and initialize the distance values d(n) for all n € N(Cg). We
set d(n) = mingeg dist(n,s). If an averaged normal vector is not available we choose
dist(-, ) to be the Euclidean distance. Otherwise we can enhance accuracy by calculating
dist(n, s) as the Euclidean distance between n and the orthogonal projection of s onto
the tangent plane T, at n. This suppresses the surface-orthogonal distance component
merely introduced by the nodes not lying directly on the surface. The distance value of

all other nodes is yet undefined, i.e. we initially set d(n) = oo for all n ¢ N(Cg).

10.3.1. Fast Marching

Starting from the initialized nodes N(Cs) the FM method [Set95, DC00] can now be
applied to perform a front propagation over all other nodes of C in order to determine dis-
tance values d(n) for all nodes n that closely approximate their defect-tolerant geodesic
distance to the set S of sources. The FM method keeps the nodes that are part of the
current front in a priority queue, sorted by d(-), and always removes the node with low-
est distance while updating the distance values of its adjacent nodes and adding them
(back) to the queue. Since this propagation is done in upwind direction, distance values

of cells removed from the queue can justly be considered final.

In the FM front propagation process a distance value update for a node is computed
from the distance values at up to three adjacent nodes by a form of extrapolation.
Originally, a gradient-based first-order update rule was proposed. Higher-order [Set99,
HF07] rules can be employed to increase accuracy. Especially for the case of circular
distance fields of point sources the first-order rules overestimate distances as pointed out
by Novotni and Klein [NK02]. They show that higher accuracy is achieved by rules that
take the particular circular nature of the front into account. We next extend these rules

to our three-dimensional setting.

On a triangle mesh, given two vertices of a triangle with known intrinsic distances
to the source, [NK02] determine a virtual point source in the plane of the triangle that
maintains these distances. The distance value of the third vertex can then be updated
to its Euclidean distance to this virtual source. In our three-dimensional domain, to
update the distance value d(n) of a node n from three adjacent nodes ng, n1, ny with

already computed distance values, we determine a virtual point source s in space by
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trilateration: the points s; and sp are found as the two points satisfying the three
sphere equations d(n;)? = ||z — n;||%, 0 <4 < 2. Since propagation proceeds in upwind
direction, the one with larger distance has to be chosen, i.e. we apply the update d(n) =
max(||n — s1||, [|n — s2||). When less than three adjacent nodes have distances available

we fall back to lower dimensional lateration.

10.3.2. Polar Angle Propagation

Additionally to computing a distance field d of a point source an angular coordinate field
0 can be constructed to obtain a (local) polar surface parameterization (d, ¢). Schmidt
et al. [SGWO6] construct both fields on meshes approximately by a modified version of
Dijkstra’s shortest path algorithm, essentially unwrapping the surface into the tangent
plane at the source. The accuracy of the radial coordinate computed in this way, how-
ever, usually cannot compete with that of the FM method. We incorporate the general
idea into the FM method to simultaneously construct angular coordinates 6. For this
construction normal vector information must be available (cf. Section 10.2.1). Nodes
that lack normal information simply inherit the normals from their predecessors in the
front propagation process. This proved to be sufficient in our experiments and com-
pared to more sophisticated global normal diffusion methods does not hinder a sweeping

implementation (cf. Section 10.5.2).

Let T be the tangent plane of the surface at the source point s and a the polar axis in
that plane, defining the orientation of angle 0. Furthermore let uv(d, ) = (dcos 0, dsin )
denote the 2D Cartesian vector defined by d and € in T, and angle((u, v)) = arctan(v/u)
the angular coordinate of the vector (u,v) in the polar system defined by T and a.

During an update step of the FM method, updating node n based on the distance
values of one, two, or three adjacent nodes ny, ..., n,, as described in the last section,
O(n) is set as follows: we first choose one of the updating nodes n; and take its so-
called inverse exponential map vector exp;!(n;) = uv(d(n;),f(n;)). The ideal choice
IS Nynin = argmingegy ,1d(n;) since this can be expected to have lowest accumulated
error in its d and 6 values. Then we “unwrap” the vector n — n,,;, into the tangent

plane T by first projecting it orthogonally onto 7, . (to get rid of the orthogonal

min

component merely introduced by n not lying directly on the surface), then rotating it

into T around the axis orthogonal to the normals at s and n, (hinge map), and finally
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transforming it into a 2D vector in the coordinate sys-
tem of T,. By adding these two vectors we obtain an
approximation for the angular component of exp,!(n),
i.e. we set 0(n) = angle(exp, (Nmin) +TRP (N — pin)),
where T, R, and P are the transformation, rotation,
and projection operations. d(n) is computed by the
FM update rules as before for accuracy. The adjacent
figure shows a visualization of such an angular field on
a curved surface, including isolines in radial and axial

directions.

10.3.3. Interpolation

After distance values and possibly angular values have been computed at the nodes of
C we want to transfer this information back onto the input mesh M. Let P be the set
of points on M at which these values shall be made available (in most applications this
is simply the set V' of vertices). While it can be expected that most accurate results are
achieved by integrating the points of P into C as virtual nodes to compute the values
by the described FM update rules, this proved to result in slight discontinuities between
points that are nearby but fall into different cells. By contrast, the application of trilinear
interpolation leads to smooth results due to its very nature. Hence, we interpolate the
values at a point p of P from the eight nodes incident to the cell of C that includes p.

In case a Cartesian (u,v) parameterization is to be constructed from a computed
polar parameterization, it is beneficial to perform the transformation already at the
nodes and then interpolate the (u,v) coordinates. This avoids special case handling
near the singularity at the field’s pole where trilinear interpolation is unsuited for angles
and distances.

10.3.4. Geodesic Paths

Shortest geodesic paths between two points p and ¢ on the surface can be constructed
using a gradient descent procedure. First the distance field for source p is computed.
Then, starting from ¢, a piecewise linear path through C can be constructed by pro-
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ceeding stepwise in direction of the negative gradient of this field. The constructed path
lies in C, i.e. in the surrounding space of M; if a path on M is desired, we perform a
projection where possible — in hole regions the path simply remains in the cell sheet that

survived erosion.

10.4. Parameterization

Geodesic computations have proven to be a valuable tool to constructively generate
local surface parameterizations [ZG04, GGGZ05, SGW06, BMBZ02]. We now present
various methods to construct such parameterizations as they allow us to comprehensibly
visualize the strengths of our method in Section 10.6. Figure 10.4 shows examples for

comparison.

Center Point Parameterization A parameterization around a point can be con-
structed by computing a radial and angular coordinate field for this source. The resulting
polar parameterization can be transformed into a Cartesian (u, v) parameterization with
a user-specified orientation and scale, e.g. for applying decals onto curved surfaces in
an intuitive way [SGWO06]. Due to the defect-tolerance of our approach such decal ap-
plication can be performed across non-connected mesh components, bridging gaps and
holes, thus on a much broader range of meshes. The distortion — necessarily introduced
on surfaces with non-zero Gaussian curvature — is minimal in the center and typically

grows with increasing distance depending on the curvature distribution.

Boundary Curve Parameterization More flexibility and a less center-biased dis-
tortion distribution is achieved by specifying four curves ug, vg, 41, v1 forming a quadri-
lateral on the surface and for each computing the distance field emanating from it. The
distance fields d,, and d,, of opposite curves ug, u; can then be blended into d, by
dy = dyy/(dy, + dy,), analogously for d,, and these two resulting fields d, and d, be
taken as u and v coordinates of a parameterization that is aligned with the surface

quadrilateral, mapping this region to the domain [0, 1]* C R2.

Corner Point Parameterization Specifying desired parameterization boundary
curves on a surface can be tedious. Furthermore, in order to reduce distortions in
the parameterization generated as described in the last section these curves should be

geodesic paths between their endpoints. We can simplify the specification task to choos-
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ing the four corner points of the desired quadrilateral and then automatically determine
geodesic paths between the points (cf. Section 10.3.4) to construct a geodesic quadrilat-

eral as basis for the boundary curve parameterization.

Figure 10.4.: Parameterization examples: center point parameterization (left), bound-
ary curve parameterization from user-specified quadrilateral (middle), and corner point

parameterization from automatically determined geodesics (right).

10.5. Implementation Details

We now provide some details on the efficient implementation of the computations de-
scribed in the last sections. In order to enable broad applicability an implementation
variant optimized for performance as well as one optimized for memory efficiency is
presented.

10.5.1. Cubical Complex Construction

To allow for high resolutions without excessive memory requirements we employ an oc-
tree O that is adaptive in multiple ways. This further allows for the efficient establish-
ment of correspondences between elements of M and C, required to transfer information

between the two representations.

We start by defining the cubical root cell of O to include the bounding box of M.
The elements of M are then “inserted” into O, intersected cells are refined up to a
user-specified maximum level [ and marked as solid. The set of these solid cells then

forms the voxel representation of M. The vertices of V' (or the set P of points for which
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distance field values shall be computed, cf. Section 10.3.3) can optionally be recorded
in the containing leaf cells, allowing for direct access during interpolation. Methods for
the efficient traversal of octrees have been presented [FP02, Sam89], and by installing
so-called ropes to explicitly link neighboring cells [MB90], the computational cost of cell

navigation can be reduced, trading memory requirements for efficiency.

Efficient dilation operators for octrees with on-demand refinement of cells to level [
are presented by Bischoff et al. [BPKO05]. Let A denote the width of a cell on level I.
Given that holes and gaps up to a width of p shall be considered unwanted, we need
to determine how many layers of cells need to be added to close these. Due to the
discrete setting the dilation process has a directional bias. Slowest growth happens in
space-diagonal direction where ~ dilation steps bridge gaps of widths up to 2y A/ V3.
Hence, to ensure closing of all holes of widths up to p we choose v = p/(2 A/V/3).

To now remove all dilated cells except for thin hole and gap bridging sheets we perform
a topology-preserving erosion [BK05]. In contrast to the original description we do not
only apply v erosion steps but keep eroding until no more dilated cells can be removed
without changing the digital topology of the voxel set specified by solid and dilated cells.
This eliminates the “closing” character of the operations. Afterwards the set of solid

and remaining dilated cells corresponds to the desired complex C.

Instead of extracting the desired cubical complex C from O to represent it by a sepa-
rate data structure we directly represent it by the octree. Unfortunately the FM front
propagation operates on the graph of nodes and arcs of C — which are not explicitly
represented in the octree data structure. However, we can establish a graph isomor-
phism between the nodes and a certain set of octree cells. This isomorphism identifies
an octree cell with the node in its upper-right-back corner. The set of octree cells that
is required for this purpose contains the solid cells, the dilated cells, and all cells which
are incident to the lower-left-front corner (any other pair of opposite corners could have
been chosen as well) of a solid or dilated cell (refined to level [ if not yet the case). The
6-neighborhood graph of these cells, directly represented by the ropes, can then be used

instead of the nodes-arcs graph.
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10.5.2. Memory Efficiency

The memory requirements of the entire procedure are mainly determined by the number
of cells that are constructed and hence heavily depends on the resolution chosen for
processing. High resolutions can be desirable since then the cell set bounds the mesh
elements tighter and resolves finer features. The number of cells of the final octree
of course depends on the geometry of the input, but in our experiments we observed
that on average roughly 50 million cells are generated at a resolution of 4096°. Since
about 20-50 bytes need to be stored per cell (for index pointers to the parent cell and
one child, location codes [FP02], state codes, a distance value, optionally a normal
vector, an angle value, and ropes) this allows us to rasterize models at resolutions up
to 4096° without exceeding today’s PCs’ main memories. However, the application of
morphological operations results in a higher peak cell count. For instance, performing a
dilation at the abovementioned resolution of 40963 to close holes and gaps up to a size
of 3% of the bounding box diagonal increases the number of cells from 50 million to over

1000 million, clearly constraining applicability to lower resolutions in such cases.

Tiling

To avoid this high memory peak we can perform the dilation and erosion process in a
tiled fashion. The dilation and erosion operators are local in the sense that they only
affect a local neighborhood of cells they are applied to, i.e. when applying ~ dilation
steps followed by ~ erosion steps, the final state of a cell does not depend on cells
farther away than 2v in the 6-neighborhood graph of the cell set. Hence, when we apply
these operations to one tile (the cell set clipped to an axis-aligned rectangular box)
the resulting state of all cells except those in the outer 27 cell layers of the tile is not
affected by this clipping. By covering the bounding box with tiles overlapping by 4~ cells
layers, the correct cell states can be obtained for all cells by applying the morphological
operations to each tile separately. As pointed out in the last section restricting the
erosion to 7 steps results in a morphological closing of cavities in addition to gaps and
holes, lowering the accuracy of distance computations. By applying v + ¢ erosion steps
(and choosing an overlap of 4y + 20) this can be alleviated to any desired degree. In
our experiments § = 3+ was the maximum encountered that was necessary to achieve

the same results as with unlimited non-tiled erosion.
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Since in each tile cells can be collapsed again after erosion, the peak cell count can be
reduced significantly. Due to the required overlap this reduction is bounded depending on
~ (and §), but since the presence of large holes (requiring large ) introduces significant
uncertainties, the appropriateness of using very high resolutions to achieve high accuracy

seems to be questionable in such cases anyway.

Sweeping

Despite the tiling approach the final cell set still has to fit into memory entirely. To
allow for even higher resolutions we introduce a sweeping variant of our method. In
this implementation variant cells are dynamically created by octree refinement when
they are reached by the FM front propagation process and deleted by collapsing when
the front has passed them. For this purpose we separate the morphological hole filing
from the distance propagation process. We perform the morphological operations in a
tiled fashion as described above but discard the cells of each tile after its construction
— we only record the center point of each non-solid cell that survived the erosion. This
yields a set of points which effectively “fill” gaps and holes of M up to voxel resolution.

The sweeping can then be performed with-

out complex in-line morphological opera-
tions by considering the union of M and
this point set as input. The adjacent fig-
ure shows this sweeping in action: the oc-
tree is visualized at an intermediate state
— only at the current front of propagation
cells are at the finest level, away from it

they are as coarse as possible.

In the following description of this

sweeping, by the term “(octree) cell” we

also refer to the node that is identified

with the respective cell by the underlying
graph isomorphism. In order to directly obtain the set of octree cells that are required to
establish the isomorphism we do not consider cells whose volume is intersected by mesh
elements (or hole-filling points) as solid, but cells whose volume extended by cell size A
in upper, right, and back direction is intersected. This avoids the subsequent additional
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refinement of cells incident to the lower-left-front corner — which would be cumbersome
to manage in this sweeping variant. Cells record contained vertices as described in the

previous section.

Initially only cells containing sources are refined to level [, initialized, and inserted
into the front propagation queue. During the propagation, whenever a value is to be
propagated into a solid neighboring cell (resp. node) this cell is refined to level I. When
a cell ¢ is removed from the queue (i.e. its distance and angle values are final) interpo-
lation has to be performed (cf. Section 10.3.3). Due to the extended virtual cell size
exactly those vertices whose interpolated values depend on the node corresponding to
¢ are recorded at ¢. Hence we can easily add the values computed for ¢, multiplied
by the trilinear interpolation factors, to the (zero-initialized) values of these vertices

(“transposed interpolation”).

Afterwards, since it is not needed for interpolation anymore, ¢ can be marked collapsi-
ble — unless there is a neighboring solid cell that is not yet finalized and hence might
need the values of ¢ for an FM update triggered by another cell. To cover this case we
also call the collapsibility check for neighbor cells of ¢ that are finalized but could not get
marked collapsible so far. Whenever a cell gets marked collapsible its parent cell checks
whether all children are collapsible and performs the collapse by deleting them. The
parent cell is then marked collapsible and this process is invoked recursively to always

obtain a maximally sparse octree.

10.6. Results

We now present some results generated with our implementation including runtime mea-

surements. Experiments have been performed on a PC with 2.8 GHz Intel Core i7 CPU.

Figure 10.5 shows distance fields, geodesic paths, and parameterizations computed on
a scanned model (358K polygons) which contains holes (partly non-simple, with islands).
By choosing the dilation distance such that these holes are bridged the computed intrinsic
distance approximations tolerate these defects. Computation times are presented in
Table 10.1.
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Figure 10.5.: Defect-tolerant computations on a raw scanned mesh FACE containing
holes due to occlusion effects. Left: without morphological operations. Right: with
morphological operations for hole bridging. The results of computations at resolution
2563 are depicted.

Figure 10.6 depicts another mesh as it commonly appears in practice. This mesh was
created by a commercial CAD tool, by inconsistent tessellation of NURBS patches. It
consists of nearly 1 million polygons in more than 11,000 non-aligned connected compo-
nents (see the close-up). Converting such models into manifold one-component meshes
usually requires computationally intensive global repair methods. Using our framework
the model can be handled directly. Timings are presented in Table 10.2. Since the
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Resolution 64 128%  256° 5123 10243

~ 2 4 8 16 32

Voxelize 1.12  1.40 2.0 3.3 6.1
Dilate 0.01  0.07 0.5 4.0 31.4*
Erode 0.02  0.09 1.0 9.4 80.2*

FM 0.02  0.09 0.3 1.4 5.6

Table 10.1.: Timings (in seconds) for distance field computation on model FACE (cf.
Figure 10.5). *) Here tiling has been used (with § = 0; for § = 1.2, which sufficed to
remove every unnecessary dilated cell, morphology took about 20% longer).

Resolution | 2563 5123 1024% 2048 40963 81923
Voxelize | 4.3 58 8.8 184 - -
FM| 02 1.0 47 223 - -
Sweeping | 8.6 12.9 27.1 822 314.1 1370

Table 10.2.: Timings (in seconds) for one distance field computation on model CAR (cf.
Figure 10.6). With the sweeping implementation higher resolutions can be handled (the
peak cell count at 81923 is only 305K).

processing is blind to gaps and holes below leaf cell size the application of morphologi-
cal operators was unnecessary in this case. Note that once rasterization, dilation, and
erosion have been performed the obtained cubical complex (resp. octree) can be used for
the quick computation of multiple distance fields etc. — it does not have to be rebuilt

each time.

Figure 10.7 exemplifies the behavior on a polygon soup and shows how the morpho-
logical operators handle large holes/gaps.

Due to the finite resolution distances computed by our method of course usually
deviate from actual intrinsic distances (on consistent models). Figure 10.8 illustrates
how the deviation decreases with increasing resolution.
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10. Meshless Geodesics

Figure 10.6.: Defect-tolerant texturing of an inconsistently tessellated NURBS model
CAR by a boundary curve parameterization. The insets depict the color-coded individual
connected components. As exemplified in the close-up, lots of non-trivial gaps, double-
walls, and complex self-intersections are contained, essentially disqualifying boundary-
snapping based algorithms for easy repair. The result of computation with resolution
1283 is depicted.

10.7. Discussion

We presented a method that abstracts from the topological structure of a given input
mesh, bridges gaps and holes up to a user-specified width, and thereby allows for the
computation of plausible intrinsic distances and geodesic paths on meshes with all kinds
of defects.
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10.7. Discussion

Figure 10.7.: Inconsistent polygon soup with a slice cut out. Dilated cells that survived
erosion, a distance field, and two geodesic paths are visualized. Increasing the gap
width at some point leads to the morphological operators closing the two holes instead

of bridging the gap, as depicted on the right.

Based on this, the most fundamental operation of our stage 2, the dual loops con-
struction, could be performed also on imperfect meshes. Together with techniques for
the computation of cross fields and parameterization on such meshes, it is imaginable to
extend our whole quad layout generation and optimization pipeline to imperfect meshes.
But also many further existing methods and applications that rely on geodesic distance
computations can be extended to deal with such meshes by employing the presented

framework.

Due to the automaticity and generality of the method, it is naturally not able to
resolve ambiguities that are inherent in the input due to large missing parts. Hence, the
computed distance fields might be inconsistent with those of the object that is actually
meant to be represented by input. Additional knowledge about the represented object
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10. Meshless Geodesics

643
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512°
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Figure 10.8.: Visualization of the error to ground truth distances on an exemplary sur-

face, clearly decreasing with increasing resolution.

or manual interaction would be required to more plausibly handle the hole bridging in

such cases.
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11. Conclusion

To conclude we summarize our findings and contributions and provide an outlook on

open problems and potential future research directions in the field of quad layouting.

Summary

In this thesis we investigated the problem of fully automatic or semi-automatic interac-
tive quad layout generation. After an analysis of the problem structure and the involved
quality criteria, revealing continuous, discrete, and topological degrees of freedom, we
designed strategies for the subsequent optimization of these different aspects of a quad

layout.

In Part I, which was devoted to the automatic pipeline, we specifically contributed a
novel framework to describe and process structurally valid and geometrically faithful du-
als of quad layouts. We developed efficient methods for the geometry-aware construction
of embedded loops that are the key components of the dual layouts in this framework.
Using a practical greedy algorithm based on the topological concept of singularity sep-
aration the quad layout structure could automatically and efficiently be generated. We
then showed how the embedding of nodes, arcs, and patches can be optimized in an
integrated, global manner using an efficient alternating optimization strategy that sep-
arates linear and non-linear aspects of the optimization problem such that they can be
handled using appropriate techniques each. To this end we extended established op-
timization techniques for cross fields and parameterizations by structural constraints,
such that they can be used to optimize quad layout embeddings, with a particular focus
on alignment to principal directions. In this context we furthermore introduced a novel
concept for the quasi-continuous layout node position optimization, whose applicability

extends to related fields such as global parametrization and quad meshing.

167



11. Conclusion

In Part II, where the interactive pipeline was described, we proposed a new quad
layout design operator: the construction of dual strips. To enable its efficient use we
described a novel, fast method for the construction of constrained elastica on surfaces,
without any restrictions on topology or homotopy. Based on this we have been able to
provide intuitive interaction metaphors to the user, granting full design flexibility, while
the system automatically ensures structural consistency and promotes geometric quality
by evaluating the intermediate design states and visualizing the assessment to guide the
user. Furthermore, we developed means to further reduce the user’s interaction efforts,

for instance by automatically ensuring symmetric results on symmetric surfaces.

Finally, in Part III we introduced novel techniques for the efficient computation of
geodesic distances and geodesic paths/loops. Specifically, we described a novel method
for the computation of distance fields with respect to anisotropic metrics as required
by the dual loops construction. We extensively compared its performance to that of
existing options and demonstrated its efficiency in terms of run time and accuracy.
Finally, towards the adaptation of the described algorithms to raw point cloud data or

imperfect meshes, we elaborated on a concept for meshless geodesic computations.

In summary we have developed two pipelines, one for the automatic, one for the in-
teractive, assisted generation of quad layouts on surfaces. All algorithmic parts are built
directly on the three generic layout quality objectives (structural simplicity, geometric fi-
delity, principal direction alignment) and we demonstrated that in this way high-quality
quad layouts can be created, while additional or deviating intents can be infused using
the efficient interaction techniques. The advantages over the few previous approaches
have been discussed and been demonstrated in comparisons. In this sense our work
provides important contributions to the field of quad structures and has been able to

advance the state-of-the-art in this relatively young field.

Outlook

Despite these advances there are still a lot of opportunities for future research in this
field — a field to which, apart from a few early approaches, only very recently deeper
investigation has been devoted. We outline our thoughts about the most promising and

most valuable directions in the following.
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Specialization

The automatic pipeline is based on generic quality criteria assumptions. The special-
ization to specific use cases would of course be very valuable in practice. To this end
a first important step would be the investigation and formulation of concrete quality
measures. For instance, if the target application is NURBS fitting, how does one rate
the quality of the layout? It is most probably a function of fitting accuracy (surface
approximation error, normal approximation error) as well as of layout complexity. But
the concrete nature of this function is not obvious and the trade-off between accuracy
and complexity surely dependent on the specific application scenario. The availability
of such concrete measures would furthermore be of great benefit for the quantitative

comparison of results of future approaches to the quad layout problem.

Sub-Problem Coupling

When splitting the quad layout problem into sub-problems and developing optimization
strategies for these, we followed the paradigms of forward anticipation and backward
modification. It would be interesting to explore further possibilities in this regard, e.g.
enabling a broader range of modification operators (not only merging nodes, but also
splitting them, not only collapsing poly-chords but more general quad decimation or

refinement).

Regarding the forward anticipation, there is a particular lack between stage 1 and 2 of
the automatic pipeline — the node generation stage is not aware of the nodes’ suitability
for a good connectivity. It is actually hard to imagine how this could be estimated at
all in the first stage. For this reason it could be of benefit for the final layout quality
if the first two stages were not separated but integrated. In fact, just this is the case
in our interactive pipeline: nodes and connectivity emerge from the same process. It
would hence be very interesting to investigate whether it would be possible to design
an automatic algorithm based on elastica loops instead of cross field guided loops. The
singularity separation concept that drives the loops selection strategy in stage 2 could
potentially be adapted to rely on the singularities of the dynamically changing cross field

that is used for the strip region computation.
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11. Conclusion

Alignment

In our methods we favored alignment to principal curvature directions. The numerous
advantages of that were outlined in Section 2.2. Depending on the application it can
be interesting to investigate the use of alternative alignment objectives. The alignment
to Langer’s lines (capturing the fiber directions of the human skin) could be of benefit
for character animation purposes, the alignment to (estimates of) characteristic lines of
differential equations could provide advantages for simulation accuracy, and the align-
ment to principal directions of stress or strain tensor fields is of interest for architectural

applications.

Hex Layouts

In this thesis we focussed on quad layouts for surfaces. While the surface indeed is
the most important feature of an object, some applications require a three-dimensional
(piecewise) representation of its solid interior volume — for instance realistic simulations
that involve an object’s stability, rigidity, or conductivity. The representations discussed
in Chapter 1 (quad mesh, multiblock grid, spline net) naturally extend to this volumetric
setting. In this case, we are dealing with hez(ahedral) layouts of volumes, where each
cell of the layout maps to a three-dimensional cuboid. A generalization of our automatic
and interactive pipelines to this hex layout case would be of high value. Unfortunately,
while the final stage (embedding optimization) could be adapted quite easily based on
three-dimensional field-guided parameterization [NRP11], the other stages turn out to

require a different approach — straightforward generalization is not possible.

The first problem is the generation of three-dimensional analogues of cross fields,
sometimes termed frame fields [NRP11] or 3D cross-frame fields [HTWB11]. While
cross fields have isolated point singularities, such fields have an entire network of inter-
connected point and line singularities. Just like in the cross field case, these singularities
can be represented using a generalization of the period jump concept [LVRLO6]. Unfor-
tunately, validity is no longer inherent and additional constraints need to be met such
that a valid singularity network is implied. So far thus manual singularity specification
[NRP11] has been used, or attempts been made to repair invalid configurations in a post-
process [LLX*12, JHW*14]. However, to cite Jiang et al. [JHW*14], “it remains an open
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problem to give a sufficient condition on singularity graphs compatible to non-degenerate

hexahedral meshing”.

The concepts of dual loops and dual strips extend to the three-dimensional case in the
form of dual sheets and dual layers [MBBMO97]. The efficient generation of candidate dual
sheets for the automatic pipeline and of dual layers for the interactive pipeline is another
unsolved problem. While minimal loops can be generated using efficient Dijkstra-type
techniques (cf. Section 5.2.1, Section 8.1, Chapter 9), minimal surfaces (as natural model
for good dual sheets) are not amenable to such efficient generation [Gral0], especially
when only a seed point is given as constraint. A particular challenge is that dual sheets
of unknown topology (arbitrary genus, arbitrary number of boundaries) must be dealt

with, while dual loops are always simple curves.

Another, though less elegant and powerful, option for generalization to the hexahedral
layout case is the use of a technique along the lines of [MH98, KBLK13]. In these works
surface quad meshes are taken as input and extended to volume hex meshes. A similar
approach could be taken to extend surface quad layouts to hex layouts. These techniques
are, however, only applicable to a certain restricted class of quad layouts [Eril3] e.g.
without self-crossing dual loops. The investigation of possibilities to adapt our methods
to such restricted classes of connectivity that are of interest in certain applications is

another interesting avenue for future work.
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