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Abstract

Functional thin films are commonly implemented in many products of our daily life. They

can be transparent and conducting at the same time and show improved mechanical, chem-

ical as well as optical properties. Consequently, they are important constituents of several

state-of-the art technologies like touch screens, solar cells and architectural glazing. The

broad field of applications necessitates a versatile and scalable production process capable

of processing a high number of units within a short time. Among the possibilities for de-

position, magnetron sputtering fulfills these demands, offering versatility, scalability and a

high process throughput, and has therefore become the method of choice for the large area

coating industry.

Carbon and titanium dioxide (TiO2) are widely utilized in various thin film applications, due

to their unique mechanical and optical properties. Carbon based thin films are employed

as low-friction and wear-resistant coatings to increase the life time of e.g. cutting tools,

whereas TiO2 is the material of choice in anti-reflective layers of low-emissivity coatings

as well as the mainly used active material in self-cleaning surfaces. Doping with different

elements allows the improvement of the properties of carbon and TiO2 and to increase the

otherwise very low deposition rates of these materials. However, systematic studies on the

influence of dopants on sputter processes and material properties have so far been compli-

cated, as the production of compound targets is inflexible and expensive.

In this work, a custom-made serial co-sputtering setup, capable of controlling the dopant

content in situ, has been utilized to investigate the influence of different dopants on the

sputter processes and film properties of carbon and TiO2, with respect to deposition rate,

refractive index and phase formation.

To overcome the low sputter yield of carbon, sputter yield amplification by doping with

heavy elements can be employed. In this work, carbon has been doped by two heavier ele-

ments to increase the deposition rate. Both elements result in a tremendous rate increase.
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The results are compared to computer simulations, which are in an excellent agreement to

the experimental data.

Describing the underlying processes upon sputter yield amplification in reactive sputtering

is more complex. In this work, TiO2 has been doped with several heavy elements to in-

crease the deposition rate. The findings presented reveal that thermodynamics play a major

role in determining the strength of the rate enhancement, a result not considered by estab-

lished models so far. Utilizing HiPIMS, the sputter yield amplification effect can be further

enhanced. Experiments, which link the additional enhancement to the ionization of the

dopant, are presented. Additionally, the influence of heavy dopants on the refractive index

is analyzed, revealing a clear concept for high rate, high index TiO2 thin films.

Moreover, various dopants have been analyzed with respect to their capability to modify the

crystallization behavior of TiO2. The results show that the phase transformation of amor-

phous TiO2 can be controlled by use of the right elements. The transformation behavior is

linked to the valence and ionic radius of the dopant as well as to the incorporation of argon

in the growing film. The results presented allow for a deposition of thermally stable amor-

phous TiO2 thin films as well as films which crystallize into either anatase or rutile.

Finally, a novel sputter technique, using a carbon print target sputtered in reactive atmo-

sphere to deposit multi-component thin films with high stoichiometry precision, is pre-

sented.

This work exploits the potential of serial magnetron co-sputtering to tailor the process con-

ditions and film properties of carbon and TiO2. The results presented add to the under-

standing of the sputter yield amplification effect and the crystallization and transformation

behavior of doped TiO2 thin films, allowing for a tailoring of their properties with respect to

the desired field of application. The results presented can be readily used for deposition of

doped TiO2 and carbon based thin films in industrial applications.

ii



Kurzfassung

Übersetzung des englischen Originaltitels:

Erforschung des Potenzials seriellen Magnetron-Co-Sputterns

Funktionelle Dünnschichten sind ein wichtiger Bestandteil vieler moderner Technologien

aus unserem täglichen Leben. Sie bestechen durch die Verknüpfung von Transparenz und

gleichzeitiger elektrischer Leitfähigkeit und haben besondere mechanische, chemische oder

optische Eigenschaften. Durch ihren Einsatz werden z.B. Flachbildschirme, Solarzellen und

funktionelle Architekturverglasung erst ermöglicht. Die vielseitige Einsetzbarkeit stellt hohe

Anforderungen an den Herstellungsprozess, welcher skalierbar sein muss und gleichzeitig

eine hohe Durchsatzmenge ermöglichen sollte. Von den verschiedenen verfügbaren Depo-

sitionsprozessen hat sich das Magnetronsputtern in der Großflächenbeschichtung durch-

gesetzt, da es diese Anforderungen in allen Punkten erfüllt.

Kohlenstoff und Titandioxid (TiO2) sind zwei Materialien, welche auf Grund ihrer besonde-

ren mechanischen und optischen Eigenschaften in einer Vielzahl von Anwendungen Ver-

wendung finden. Kohlenstoffbasierte Dünnschichten werden als verschleißmindernde und

reibungsarme Beschichtungen verwendet, welche unter anderem die Haltbarkeit von Werk-

zeugen verbessern, wohingegen TiO2 als Antireflexschicht in Wärmedämmgläsern und als

aktives Material in selbstreinigenden Oberflächen verwendet wird. Die herausragenden Ei-

genschaften dieser beiden Materialien können durch Dotierung weiter verbessert werden.

Zudem kann durch Dotierung die sonst sehr geringe Depositionsrate gesteigert werden. Die

systematische Untersuchung des Einflusses von Dotanden auf Prozess- und Materialeigen-

schaften war bisher jedoch nur eingeschränkt möglich, da die Herstellung von Sputtertar-

gets mit fester Dotierungskonzentration aufwendig und kostenintensiv ist.

Im Rahmen dieser Arbeit ist ein maßgefertigtes Co-Sputtersystem verwendet worden, wel-

ches in der Lage ist, die Dotierungskonzentration des Targets in situ einzustellen. Es wird ge-

zeigt, wie sich Dotanden auf die Prozess- und Filmeigenschaften von Kohlenstoff und TiO2
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in Sputterprozessen auswirken, wobei der Fokus der Untersuchung auf der Depositionsrate,

dem Brechungsindex und der Phasenbildung liegt.

Die niedrige Depositionsrate von Kohlenstoff kann durch Dotierung mit schweren Atomen,

mit Hilfe der sogenannten Sputterratenverstärkung (sputter yield amplification), gesteigert

werden. Im Rahmen dieser Arbeit ist Kohlenstoff mit zwei schwereren Elementen dotiert

worden, welche beide eine deutliche Verstärkung der Sputterrate, im Einklang mit Compu-

tersimulationen, zeigen.

Die Physik der Ratenverstärkung bei reaktivem Sputtern ist deutlich komplexer. Im Rahmen

dieser Arbeit ist TiO2 mit verschiedenen Elementen dotiert worden um den Einfluss auf

die Depositionsrate zu untersuchen. Eine thermodynamische Betrachtung erlaubt die Er-

klärung der Ergebnisse, welche mit bisherigen Modellen nicht zu interpretieren sind. Unter

Zuhilfenahme eines HiPIMS-Prozesses kann die Ratenverstärkung weiter gesteigert werden,

was auf die Ionisation der Dotierungsatome zurückgeführt werden kann. Desweiteren wird

gezeigt, dass der Brechungsindex sowohl durch Dotierung als auch durch geeignete Pro-

zessparameter kontrolliert werden kann, wodurch ein klares Konzept zur industriellen Her-

stellung hochbrechender Schichten bei gleichzeitig hoher Depositionsrate zur Verfügung

gestellt wird.

Neben der Ratenverstärkung können Dotanden auch dazu eingesetzt werden die Kristalli-

sationseigenschaften von TiO2 zu beeinflussen. Im Rahmen dieser Arbeit wird gezeigt, dass

die Kristallisation mit der Valenz und dem Ionenradius des Dotanden, als auch mit dem

Einbau von Argon in die aufwachsende Schicht verknüpft ist. Die präsentierten Ergebnisse

ermöglichen, bei geeigneter Wahl des Dotanden, die Kristallisationseigenschaften von TiO2

individuell auf die Anwendung anzupassen.

Abschließend wird ein neues Sputterkonzept, basierend auf einem Kohlenstofftarget, wel-

ches in reaktiver Atmosphäre gesputtert wird, vorgestellt. Dieses Konzept ermöglicht die

Herstellung komplexer Oxide mit sehr guter Stöchiometriekontrolle.

Die vorliegende Arbeit nutzt das Potenzial seriellen Magnetron-Co-Sputterns um die Prozess-

und Filmeigenschaften von Kohlenstoff und TiO2 zu verbessern. Die präsentierten Resultate

ermöglichen ein tiefgehendes Verständnis der Ratenverstärkung und der Kristallisationsei-

genschaften von TiO2 und können dazu genutzt werden industrielle Dünnschichtanwen-

dungen zu verbessern.
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Chapter 1

Introduction

The world we live in gets more and more dominated by smart technologies. We use smart-

phones, watch movies on smart TVs and expect even our windows in the living room to act

smart by blocking UV light or changing transparency and color. Functional thin films play

a major role in the development of smart technologies, altering and improving the proper-

ties of several products. They can be transparent and conducting at the same time [Gra93]

and show improved mechanical [VVv+99] as well as optical properties [TPS+94]. Further-

more they can be utilized to produce self-cleaning surfaces [PH97]. The field of products

they are employed in is wide-ranging from smartphones and flat-screen monitors over car

windshields and solar cells to architectural glazing.

The mentioned fields of applications necessitate a versatile and scalable production pro-

cess as the size of the products varies strongly. Additionally, a high number of units has to

be processed within a short time to satisfy the growing demand of modern technologies.

One process which fulfills these demands, offering versatility, scalability and a high process

throughput, is sputter deposition which is therefore favored by the large area coating indus-

try [KA00, BSVB10].

Two materials which are commonly implemented as functional thin films are carbon and ti-

tanium dioxide (TiO2). These materials are of great interest to researchers and industry due

to their unique properties, giving rise to various applications. Often, these films are doped

by different elements to alter and improve their properties [Don98, FHY+05], but systematic

studies on the influence of dopants on sputter processes and material properties have so far

been complicated, as the production of compound targets is inflexible and expensive. Se-

rial co-sputtering offers an unrivaled flexibility and control of the dopant content, separated
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Chapter 1: Introduction

atmospheres for all targets as well as a homogeneous deposition [Bel93, CBBK93, SPSU10].

Consequently, serial co-sputtering has been utilized in this work to investigate the influence

of different dopants on the sputter processes and film properties of carbon and TiO2, sys-

tematically.

Carbon and TiO2 both suffer from a comparatively low deposition rate when deposited by

magnetron sputtering [BE07]. To overcome this disadvantage, sputter yield amplification

can enhance the deposition rate by heavy element doping as has been shown by Austgen et

al. for Al2O3 and TiO2 experimentally [AKZ+11] and by use of TRIDYN simulations for Al2O3

by Kubart et al. [KSA+12]. In this work, their observations and conclusions are extended by

additional dopants and experiments, which give a detailed understanding of the underlying

physics, revealing the best dopant for industrial depositions.

The production of many products requires high temperatures during the fabrication pro-

cess. In the production process of security glasses for example, the glass needs to be an-

nealed to enhance the mechanical properties [SL13]. Functional TiO2 thin films need to be

deposited on such kind of glasses after the annealing process to avoid cracks due to phase

transformations, which give the glass a milky appearance. The crystallization behavior of

TiO2 can be altered by doping [HS11] and hence more stable materials can be produced.

However, investigations of the phase transformation of TiO2 have mainly been performed

using powders [SP65, GM01, HS11, Mac75] and their validity for thin films is unknown. In

this work, the influence of dopants on the phase formation and transformation of TiO2 thin

films is therefore investigated by use of serial co-sputtering. The results presented add to the

understanding of the crystallization and transformation behavior of doped TiO2 thin films

allowing for a tailoring of their properties with respect to the field of application.

1.1 Structure of this work

In the first part of this work, an overview about the materials investigated, sputter technol-

ogy and the utilized analytical equipment is given. The second part outlines the experiments

performed as well as the corresponding results and discussions followed by the third part

containing a final conclusion.

In the first chapter of Part I: Background, the two materials investigated, namely carbon

and titanium dioxide (TiO2), are described, giving an overview of their properties and use

in industrial, especially thin film applications. In the second chapter, different concepts

and techniques for sputtering multi-component thin films as well as a theoretical model

describing the sputtering process are summarized. The analytical tools utilized within this

work as well as their functional principles are subject of the last chapter of this part.
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Part II: Results contains all experiments performed. In the first chapter, sputter yield am-

plification of carbon upon doping with heavy elements is investigated and the results are

compared to computer simulations, whereas the second chapter deals with the sputter yield

amplification of TiO2. Different dopants and discharges are compared and their influence

on the refractive index is analyzed. The third chapter focuses on doping of TiO2 with re-

spect to structure formation and structure transformation upon annealing. A novel sputter

technique, using a carbon print target to deposit multi-component thin films with high stoi-

chiometry precision is introduced in the last chapter of this part.

A summary of the results part as well as an outlook is given in Part III: Conclusion & Out-

look.
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Chapter 2

Materials

Carbon and titanium dioxide (TiO2) are two materials with very unique properties which

make them scientifically fascinating and essential for various industrial applications. In

many cases they are deposited by magnetron sputtering due to its well-known benefits of

versatility and up-scaling [KA00, BSVB10]. In this work, they have been doped with different

elements to increase their sputter rate and in case of TiO2 to influence its crystallization be-

havior, too. This chapter gives an overview of the properties and applications of these two

materials.

2.1 Carbon

Carbon is the sixth element in the periodic table with the element symbol C. It is the fourth

most abundant element in the Milky Way [Cro95] and the chemical basis of organic life,

being the second most abundant element in the human body [Fri72]. Carbon is one of the

most important constituent elements of modern chemicals, drugs and life-style products.

Pure carbon can be stabilized in various molecular configurations called allotropes, from

which diamond, graphite, amorphous carbon and the recently discovered graphene [Nov04]

are the best known. Besides, carbon can exist as fullerenes, which are carbon nanomaterials

in the form of cylinders, spheres and many other shapes. These different molecular configu-

rations are possible due to different hybridizations of the carbon 2s2p2-orbitals [IL09] lead-

ing to significantly differing properties of the allotropes. Diamond for example is transpar-

ent, nearly isolating and the hardest material occurring in nature, whereas graphite shows a

dark gray color, a high conductivity and is one of the softest materials known.
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Figure 2.1 | Schematic sketch of the sp3- and sp2-hybridization of carbon. Upon hy-
bridization the 2s2p2-orbitals of carbon form four sp3-orbitals (left) or three sp2-orbitals
with the same energy (right). Modified with permission [Wik06].

Diamond consists of sp3-hybridized carbon atoms, each tetrahedrally bound to four neigh-

bors, resulting in binding angles of 109.5° between the bonds [IL09] as can be seen in Fig. 2.1.

The strong bonds and the tetrahedral structure are the origin of the high density (3.51 g/cm3)

and outstanding hardness of diamond [Ant95]. Nevertheless, diamond is only a meta sta-

ble phase of carbon, built under high pressure, which irreversibly transforms to graphite at

high temperatures [BBW+96]. Graphite on the other hand is the stable phase of carbon with

a density of 2.09 g/cm3 to 2.23 g/cm3 [Ant95]. It is built up in two dimensional planes of

sp2-hybridized carbon atoms in a hexagonal crystal structure, resulting in binding angles of

120° (see Fig. 2.1). The bonds within the planes are stronger than those of diamond, but in

between the planes only van der Waals forces occur, which give graphite its cleaving prop-

erties – each plane can easily slip past one other [IL09]. If pentagons or heptagons are in-

corporated into a graphite structure the planes will bend building spheres and tubes, called

fullerenes, named after Richard Buckminister Fuller [DDE96]. Most famous fullerenes are

C60 balls, called buckyballs, and carbon nanotubes [Aja99]. Without a crystalline structure,

carbon exists in its amorphous phase, which transforms to graphite at normal pressure. A

recently discovered allotrope of carbon is graphene, which is basically a single-layer sample

of graphite. Graphene shows very unique properties like high stability, great conductivity,

etc. [ATK10].

2.1.1 Carbon based thin films

The expression carbon based thin films describes a set of very thin layers of carbon rich ma-

terials, which are widely used in numerous industrial applications. Carbon is used in many

hard coatings like diamond-like carbon (DLC) [Rob91], carbon nitride, transition metal car-

bides and boron carbide. These materials are mechanically very stable and resistant to

scratching and are traditionally used as low-friction and wear-resistant coatings [EASL11,
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ED06] to increase the life time of e.g. cutting tools [VVv+99]. Those films are often doped by

different elements to improve their properties, e.g. their tribological behavior [Don98]. Ad-

ditionally, it has recently been reported that highly ionized plasma processes are capable of

producing high amounts of sp3-hybridization in carbon coatings [ASL+12, SBZ+12] improv-

ing the mechanical properties further. Not only their mechanical, but also their electrical

properties are remarkable, as they offer the possibility to replace silver as an electrode ma-

terial in electrical contacts [NTL+11, JLR+11] with the advantage of chemical inertness and

wear resistance.

Sputter deposition techniques are often utilized for the deposition of carbon based thin films

due to their well-known benefits of versatility and up-scaling [KA00, BSVB10]. Sputtering of

carbon is, however, hampered by a very low deposition rate due to the low sputter yield of

carbon [BE07], which is addressed in Chap. 5 by heavy element doping using the so called

sputter yield amplification effect [BBG+92, SRP+14].

2.2 Titanium dioxide (TiO2)

Titanium dioxide (TiO2), also known as titania, is the most stable oxide of titanium. It is a

semiconductor, transparent in the visible range, non-toxic and shows a bright white color

in powder form due to its high refractive index, which results in high reflectivity from the

surfaces [HS11]. Due to these properties, TiO2 is heavily used in our daily life, being an

important constituent in nearly all white colors, toothpaste and even food [FE00]. Addi-

tionally, TiO2 shows a pronounced photocatalytic activity, which enables the presence of

radicals at the TiO2 surface due to reaction of adsorped molecules (e.g. O2 or H2O) with

photo-generated charge carriers [LLY95]. This photocatalytic effect allows TiO2 to be used

in several applications like air and water purification [MD01, Mat87, PBC97], self-cleaning

and self-sterilizing coatings [PH97, MHL05, MWC06, CTP+07] and the electrolysis of water

to generate hydrogen [FH72, Wol93].

TiO2 mainly occurs in three different phases, namely anatase, rutile and brookite [LRS12],

from which anatase and brookite are metastable and rutile is stable. Additionally, TiO2 can

exist in five high pressure phases [Pis76, Ren00, DDA+01, MSH02]. However, these high

pressure phases as well as brookite are only of minor interest for research and applications

[LLY95]. Consequently, only anatase and rutile are discussed here.

The anatase and rutile crystal structures consist of Ti4+ ions, each coordinated to six O2- ions,

configured in octahedral chains. In both phases the TiO6 octahedra are slightly distorted,

two Ti–O bonds are slightly larger than the other four, with anatase having the greater distor-

tion [MC95]. The reason for the distortion is the so called Jahn-Teller effect which occurs for
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Figure 2.2 | Crystal structure of rutile and anatase TiO2. The anatase and rutile crystal
structure consist of Ti4+ ions, each coordinated to six O2- ions, configured in octahedral
chains. In both phases the TiO6 octahedra are slightly distorted, two Ti–O bonds are slightly
larger than the other four. In the rutile structure (a), space group P42/mnm, the TiO6 octa-
hedra are tilted by 90° between different chains, with two edges being shared. In the anatase
structure (b), space group I41/amd, all TiO6 octahedra are orientated in the same direction
with four edges being shared [Ant95]. Both schematics were made using the database of
the Diamond 3.2 software [BBB96].

crystals consisting of transition metal compounds, having partially filled d-shells. It states

that orbital degenerated non-linear molecules are not stable [JT37]. In a non-distorted TiO2

crystal the binding electron states would be degenerated due to the symmetrical configura-

tion of the lattice. Hence, according to Jahn and Teller, this leads to a geometrical distortion,

lowering the symmetry and by that removing the degeneracy, which results in a lowering of

the total energy. As a consequence, the conduction band of TiO2 splits into four σ-bonded

eg -like and six π-bonded t2g -like subbands [MNK+00, FFL+07], while the top of the filled

valence band is constituted by oxygen 2p orbitals [GSC00].

In anatase, space group I41/amd, four edges of the TiO6 octahedra are shared, whereas ru-

tile, space group P42/mnm, shares only two edges [Ant95]. In anatase all TiO6 octahedra

are orientated in the same direction, whereas in rutile the TiO6 octahedra are tilted by 90°

between different chains, as can be seen in Fig. 2.2. Due to this tilt, the rutile structure has

a shorter c-axis and a by about 8 % smaller volume, leading to an increased density [SP65]

of 4.250 g/cm3 compared to 3.894 g/cm3 of anatase [LLY95], which also results in a higher

refractive index of no = 2.61 and ne = 2.90 for rutile compared to no = 2.49 and ne = 2.56 for

anatase [Lid97], where no and ne denote the refractive indexes for the ordinary and extraor-

dinary ray, respectively.

Both crystal structures, anatase and rutile, are n-type semiconductors. The Fermi energy
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Table 2.1 | Overview of the main properties of anatase and rutile TiO2.

Property Anatase Rutile Reference

Semiconductor n-type n-type [TPS+94]

Crystal structure Tetragonal Tetragonal [FE00]

Atoms per unit cell 12 6 [MC95]

Molecules per unit cell 4 2 [MC95]

Space group I41/amd P42/mnm [Ant95]

a-axis (Å) 3.785 4.594 [BHM+87]

c-axis (Å) 9.514 2.959 [BHM+87]

Lattice plane distance (Å) 3.52 3.25 [Ant95]

Band gap (eV) 3.3 3.1 [LLY95]

Density (g/cm3) 3.894 4.250 [LLY95]

Refractive index (λ= 589nm) 2.49-2.56 2.61-2.90 [Lid97]

Hardness (Mohs) 5.5-6 6-6.5 [Ant95]

Bulk modulus (GPa) 183 206 [WL06]

Surface energy (J/m2) 1.34 1.93 [ZB98]

Heat of formation (kJ/mol) 938.7 944.0 [Cha98, CWM84]

EF is located near the bottom edge of the conduction band [HDZ76] shifted due to oxygen

vacancies and titanium interstitials [CHA+06]. These defects play a major role in photocat-

alytic effects as well as for the transformation from anatase to rutile. A discussion of the

formation energies of these defects has been performed by Na-Phattalung et al. [NPSK+06].

The Fermi level in anatase is about 0.1 eV higher than in rutile [Wol93] suggesting a higher

defect density. However, Zywitzki et al. reported a significantly higher defect density in the

rutile phase [ZMS+04]. In contrast, the situation at the surface is reversed. Here, anatase is

reported to have 7 % oxygen vacancies, whereas rutile has only 4 % [TFM+07], which is in

line with the higher photocatalytic activity of anatase reported in literature [HMCB95].

An overview about the main properties of anatase and rutile is given in Tab. 2.1. A detailed

discussion of these properties as well as a more detailed discussion of the electric and pho-

tocatalytic properties can be found in the literature [LLY95, HS11, Yat11].

2.2.1 TiO2 thin films

Due to its high refractive index and its photocatalytic activity TiO2 has become the material

of choice in anti-reflective layers of low-emissivity coatings as well as the mainly used active

material in self-cleaning surfaces. These coatings can be deposited using various deposition

techniques including evaporation [MBE+00], chemical vapor deposition (CVD) [BGPM94],

11
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sol-gel processes [Ahn03], ion beam assisted deposition [LZZ+00] and sputter deposition

[ZT02, MHŠ06]. Of these techniques, the latter is favored by the architectural glass industry

due to its well-known benefits of versatility and up-scaling [KA00, AKW10, BSVB10].

As the rutile phase exhibits a higher refractive index and the anatase phase shows a greater

photocatalytic activity, the structure control upon deposition is crucial to ensure the desired

properties for the respective application [AKW10]. Additionally, doping of TiO2 can extend

the usability for applications even further. TiO2:Nb and TiO2:Ta have been reported to be

transparent conductive oxides (TCO) [FHY+05, HFU+05, GvD+07, HYH+08, YHK+09] and

doping of TiO2 can increase the photocatalytic activity. For example, Farahani et al. showed

that the photocatalytic activity of TiO2:W is extended to the visible range [FKW+11].

In industrial applications TiO2 thin films are mostly sputtered using DC discharges [LHM94].

Depending on the deposition parameters, these films are X-ray amorphous (they do not

show any distinct peaks in X-ray diffraction measurements, see Sect. 4.1.2), anatase, a mix-

ture of amorphous/antase or a mixture of anatase/rutile. Pure rutile films, which are ther-

mally stable, can not be sputtered using DC sputter processes [AKW10]. This can only be

achieved using highly ionized plasma deposition processes [ASMW06, SQW+08], in which

the energy transferred into the growing film is much higher (see Sect. 3.4).

Reactive sputtering of TiO2 is, however, hampered by a very low deposition rate, which is

addressed in Chap. 6 by heavy element doping using the so called sputter yield amplification

effect [BBG+92].

2.2.2 The anatase to rutile phase transformation (ART)

The anatase phase is metastable and transforms irreversibly into rutile. Nevertheless, TiO2

crystallizes into anatase first as anatase has the lower surface energy of 1.34 J/m2 compared

to rutile with a surface energy of 1.93 J/m2. Thermodynamic studies of Zhang et al. suggest

that anatase is more stable than rutile below a critical nucleus size of 14 nm [ZB98], which

is another explanation why the anatase structure crystallizes first. However, experimental

studies show stable rutile nanoparticles of sizes below this value [PCKK99]. At room tem-

perature the transformation from anatase to rutile is too slow to be noticed and practically

does not proceed [CHR04]. Depending on raw material, dopants, method of synthesis and

crystal size anatase begins to transform to rutile at measurable speeds in air at temperatures

ranging from 400 ◦C to 1200 ◦C [SP65, GM01, HNO+03, LLBGW05].

The fabrication of many products requires high temperatures during the production pro-

cess, whereas other devices exhibit high temperatures during usage, for example gas sen-

sors [RLS+03]. If a phase transformation of TiO2 occurs during the production process or
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during usage, this will alter the properties or may even destroy the device. In the produc-

tion process of security glasses for example, the glass needs to be annealed to about 630 ◦C

to enhance the mechanical properties [SL13]. If a security glass is planned to be improved

by a functional layer containing TiO2, the deposition of this layer needs to be performed

after the annealing process to avoid a phase transformation of TiO2. Otherwise, the anneal-

ing would result in cracks, which give the glass a milky appearance and make it unusable.

Hence, understanding and tailoring the crystallization of TiO2 is of great interest for several

applications.

The crystallization behavior of TiO2 can be altered by doping [HS11] and hence more stable

materials can be produced. Nevertheless, adding a dopant will also change the properties

of the resulting compound. This includes changes of the band gap and consequently the

refractive index [Ser06]. These changes have to be kept in mind when altering the crystal-

lization behavior by use of dopants with respect to the desired application.

Due to their industrial relevance, the phase transformation of anatase to rutile has been

mainly studied for powders [SP65, GM01, HS11, Mac75]. Hanaor and Sorrell reviewed the

anatase to rutile transformation giving an overview about all important mechanisms in-

cluding cationic dopants, anionic dopants, valance changes and a prediction for non evalu-

ated elements [HS11]. In the following their most important statements, with respect to this

work, will be summarized.

Defects in the oxygen sub-lattice (TiO2-x) are one of the two most important factors affect-

ing the phase transformation [RKD07]. The transformation from anatase to rutile involves

the breaking and reforming of bonds (reconstructive) [BMD06], therefore oxygen vacancies,

which allow an easier rearrangement by lessening the structural rigidity of the oxygen sub-

lattice [SP65], promote the transformation. The number of oxygen vacancies can be altered

by substituting Ti with dopants of valences different to that of Ti (n 6= 4). If a Ti atom in the

lattice is substituted by a dopant atom with valence n < 4 this will increase the number of

oxygen vacancies and Ti interstitials in the lattice:

Ti4+2O2−+Xn+ −→ Xn+ n

2
O2−+

(
2− n

2

)
�+

(
1− n

4

)
O2 +Tin+

interstitial, (2.1)

where � denotes an oxygen vacancy and Tiinterstitial is a Ti interstitial. On the other hand, if

a Ti atom in the lattice is substituted by a dopant atom with valence n > 4 this will, conse-

quently, reduce the number of oxygen vacancies and Ti interstitials.

A dopant will only be able to enter the lattice if its radius is within 15 % of that of the host

lattice, according to the Hume-Rothery rule [HRC88]. Therefore, the second of the two most

important factors altering the phase transformation is the ionic radius of the dopant. The
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Figure 2.3 | Dopants of TiO2 plotted as a function of valence and ionic radius. A valence of
n < 4 and a small ionic radius is necessary for the promotion of the anatase to rutile trans-
formation. All dopants of valence n ≥ 4 inhibit the phase transformation as well as dopants
with large radii. All dopants can be split into dopants inhibiting and dopants promoting
the phase transformation by a boundary line. Taken from [HS11].

larger the dopant radius, the more the TiO2 lattice is constrained and phase transformation

is suppressed. With this argument Ti interstitials formed upon substitution also constrain

the lattice and stabilize it. Hence, the formation of oxygen vacancies and Ti interstitials upon

substitution can be considered as competing phenomena.

Hanaor and Sorrell plotted dopants which have been investigated in literature with respect

to their inhibiting or promoting effect on the anatase to rutile transformation [HS11] as a

function of their Shannon-Prewitt ionic radii in sixfold coordination [Sha76] and most com-

mon valences. For Mn, Fe and Co a valence of 2 was assumed as these species are likely to be

reduced upon heating [HW72, WYMZ97, GP98]. If contradictory effects have been reported

in literature, the most common finding was used. In the resulting graph, which can be seen

in Fig. 2.3, the dopants are divided by a boundary line defined by the equation

r = (−0.0455n +0.2045) nm, (2.2)

where r is the ionic radius and n is the valence of the dopant, into two areas. In the bottom

left area of Fig. 2.3 only promoters of the anatase to rutile transformation are found, whereas

in the top right area only inhibitors are found. It can be seen that only dopants with a valence

of n < 4 are able to promote the rutile phase, but a small radius is necessary as well so that

the lattice is not constrained. As the lattice will also be constrained by Ti interstitials upon
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Figure 2.4 | Summary of the influence of dopants on the TiO2 phase transformation.
Experimental results from literature and theoretical predictions using the boundary line
(Eq. 2.2) in Fig. 2.3 as well as additional considerations discussed in [HS11] have been
used to predict the influence of dopants for which no experimentally obtained data on the
anatase to rutile transformation are available so far. Data taken from [HS11].

doping with elements of valence 2 and 3 it can be concluded that the formation of oxygen

vacancies has a stronger impact than the formation of Ti interstitials.

Using the boundary line (Eq. 2.2) in Fig. 2.3 and additional considerations discussed by

Hanaor and Sorrell [HS11] allows the prediction of the influence of dopants for which no

experimentally obtained data on the anatase to rutile transformation are available so far

[HS11]. By doing this the periodic table can be color-mapped with respect to the behavior of

the individual elements on the anatase to rutile transformation. The periodic table shown in

Fig. 2.4 includes all experimentally reported dopants as well as theoretically predicted pro-

moters and inhibitors. Most dopants inhibit the phase transformation, whereas only a few,

most of them already experimentally proven, promote the transformation from anatase to

rutile.

As the considerations for the influence of dopants on the phase transformation of TiO2 given

so far are based on powders, the substitution of a Ti atom in Eq. 2.1 assumes that the sub-

stitution is performed in an already existent lattice. If doping is achieved upon film growth,

e.g. by serial co-sputtering, interstitials do not necessarily need to be formed. In this case,
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the reaction can be written as:

Ti+X+
(
2+ n

2
O2

)
−→ Ti4+2O2−+Xn+ n

2
O2−+

(
2− n

2

)
�. (2.3)

In serial co-sputtering the effect of doping onto the phase formation and the anatase to

rutile transformation might therefore be different to the results reported by experiments

performed using TiO2 powders.

The influence of dopants on the phase formation and transformation of TiO2 upon doping

by serial co-sputtering is discussed in Chap. 7.
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Chapter 3

Thin film deposition

All samples analyzed within this work have been deposited by magnetron sputtering and, in

some cases, annealed afterwards. This chapter describes the deposition of multi-component

thin films as well as the deposition equipment utilized. Different concepts and techniques

for sputtering multi-component thin films are discussed and a recently published theoreti-

cal model describing the sputtering process is presented. Nevertheless, due to its complex-

ity, many aspects of the sputtering process itself cannot be discussed in this chapter and a

basic knowledge about reactive sputtering is assumed to be known. A detailed discussion of

the sputtering process, the basic principle and the relevant parameters can be found in the

literature [DM08].

3.1 Multi-component thin films

In order to produce multi-component thin films several different deposition techniques can

be used. Concentrating on sputtering techniques, this includes

¦ use of compound targets,

¦ simultaneous sputtering from multiple targets on a stationary or rotating substrate,

¦ layer by layer sputtering from multiple targets on a substrate rotating along the targets

¦ and serial co-sputtering.

To produce metal oxides, the above mentioned techniques can be used utilizing either ce-

ramic targets in inert or metal targets in reactive atmosphere. Reactive processes are more

difficult to handle [Saf00], but ceramic targets, isolating in most cases, need RF (radio fre-

quency; usually 13.56 MHz) or pulsed discharges [KA00]. Conductive targets on the other
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Figure 3.1 | Phase diagram of Bi-Ti. The maximum solubility of Bi in the αTi phase at room
temperature is less than 2 at.%, whereas the solubility at elevated temperatures in the βTi
phase is of about 10 at.%. Taken from [Oka10].

hand can be sputtered using DC (direct current) discharges, which do have a higher de-

position rate at same power compared to the corresponding compounds, and are there-

fore preferred in industrial processes, if available. Substoichiometric targets (e.g. TiO1.8)

combine the advantages of conductivity, gentle process behavior and a high deposition rate

[OTM+01, KDM+08], but are more complicated to produce.

From the above mentioned possibilities to produce multi-component thin films, some are

not favorable for a systematic study of the influence of different dopants. Compound tar-

gets for example, having a fixed stoichiometry, are obviously favored in processes, in which

the optimal composition for the desired films is already known, but a more flexible pro-

cess is needed in this work. Additionally, the production of doped compound targets can

be difficult for specific material combinations due to different melting points and occurring

segregation as can for example be seen in the phase diagram of Ti-Bi in Fig. 3.1. Reactive

sputtering from two planar targets at the same time onto a stationary or rotating substrate

may be challenging due to cross talk between the atmospheres of the targets [MR99].

Therefore, serial co-sputtering has been applied in this work, which offers great flexibility

and control of the dopant content, separated atmospheres for all targets as well as a ho-

mogeneous deposition [Bel93, CBBK93, SPSU10]. The utilized setup as well as the process

parameters are described in the next section.
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dopant silicon substrate 

main material 

primary rotatable 
planar cathode 

auxiliary planar 
cathode Ar Ar+O2 

pump 

Figure 3.2 | Schematic of the principle of serial co-sputtering. The principle of serial co-
sputtering is based on a primary rotating target, which is simultaneously coated with a
dopant material from an auxiliary target in a non reactive atmosphere. Due to the rotation,
the dopant is transported into the primary erosion zone, where the doped target surface
is sputtered in an Ar/O2 environment and doped films are deposited. A gas shielding of
the auxiliary discharge volume allows independent operation at different pressures in each
volume.

3.1.1 COSMOS

Serial co-sputtering of doped carbon and Ti thin films was performed using a custom made

lab coater system called COSMOS (serial co-sputtering for functional multi component thin

films). As summarized in Fig. 3.2, the principle of serial co-sputtering is based on a primary

rotating target, which is simultaneously coated with a dopant material from an auxiliary tar-

get in a non-reactive atmosphere. Due to the rotation, the dopant is transported into the

primary erosion zone, where the doped target surface is sputtered in an Ar/O2 environment

and doped films are deposited. A gas shielding of the auxiliary discharge volume allows in-

dependent operations at different pressures in each volume. By changing either the auxiliary

or primary target power, the O2 flow or the total pressure, the stoichiometry of the deposited

films can be modified. Additionally, the dopant deposition rate can be controlled by insert-

ing different apertures between auxiliary and primary target. Four aperture sizes, named: S,

M, L and XL are available.

For the depositions performed in this study, the rotating primary ring-shaped target had

an inner and outer diameter of 150 mm and 300 mm, respectively, whereas the cylindri-

cal auxiliary targets had a diameter of 75 mm. For the depositions, identical magnetrons

were installed for the primary and auxiliary discharge and constant pressures of 0.4 Pa and

5 Pa were used in the main and auxiliary chamber, respectively. The pressures were moni-
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tored using MKS Baratron capacitance gauges in all volumes. To keep the pressure constant,

an MKS 647C control unit was used for the main chamber, utilizing a computer controlled

feedback loop, while MKS type 250 controllers equipped with proportional valves were em-

ployed for the auxiliary volumes. The gas flows for the sputter atmospheres were controlled

by MKS flow controllers. For all depositions, the target-to-target and target-to-substrate dis-

tances were 65 mm and the rotation speed of the rotary target was 8 rpm. A substrate holder,

capable of holding up to 24 samples, shielding all other samples except the one exposed

to the plasma, was used in order to allow a whole series of samples to be deposited with-

out breaking the vacuum. Prior to the deposition experiments, the lab coater system had

been pumped down to < 2×10−4 Pa by two Pfeiffer turbo-molecular pumps (TMU 521 P

and HiPace 700) backed by a scroll pump (Edwards XDS 10).

Both sputter cathodes were operated simultaneously by an Advanced Energy dual channel

Pinnacle DC power supply (2×10 kW). In the case of HiPIMS deposition (see Sect. 3.4), a

MELEC SPIK 2000 A pulsar was included between the power supply and the target gener-

ating pulses with 50µs on-time and a frequency of 488 Hz. Constant discharge currents at

the rotating primary target of 350 mA and 800 mA were used for the deposition of carbon

and TiO2, respectively. The deposition of the dopants from the auxiliary cathode onto the

rotating target was performed using DC discharges. The power of the auxiliary discharge

was varied to allow for different dopant deposition rates, but was held constant during the

deposition of each sample. A discussion of the deposition rates of the utilized dopants is

given in Appx. B.

A more detailed description of the lab coater design, its equipment and controlling system

is provided in [Aus11, AKZ+11].

3.2 The upgraded Berg-Model

The variable parameters in a sputter process include gas flows, pumping speed as well as

the discharge parameters. Normally, the target stoichiometry is defined by the target itself.

Using serial co-sputtering, the target stoichiometry can be modified in situ, giving rise to a

new way to alter the process conditions. To gain insight into the influence of dopants onto

the process behavior, hysteresis curves can be recorded. Hereby, it is important to have a

fundamental understanding of the participating effects to be able to interpret the changes

of the curves correctly.

The original Berg-model published by S. Berg in 1987 [Ber87] is a powerful way to describe

the hysteresis behavior of a sputtering process with a minimum set of parameters. Even
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though the model uses a rather simple mathematical description and neglects various phe-

nomena, like atom sputtering, the predictions of the model fit experimental results quite

well for a wide range of sputter conditions [BN05]. Recently, an updated version of the orig-

inal model was published by Berg et al. [BSN14]. The upgraded model includes atomic

sputtering instead of compound sputtering, ion implantation and knock-in effects. With

this addition, it is now possible to predict e.g. changes in the hysteresis when changing the

target current, which was not possible with the original model. Here, an overview of the new

model is given based on the recent publication [BSN14].

3.2.1 Poisoning mechanisms

Chemisorption of reactive gas molecules is the only mechanism considered in the original

Berg-model. In contrast, three mechanisms are considered to cause compound formation

in the upgraded Berg-model :

¦ Chemisorption of reactive gas atoms,

¦ bombardment with ionized reactive gas molecules and

¦ knock-in of surface reactive gas atoms by bombardment with Ar ions.

It is assumed that implanted and chemisorbed reactive gas atoms form a homogenous com-

pound layer without a gradient. Besides the dissociative chemisorption of neutral reactive

gas molecules at the target surface, the target will be bombarded by ionized reactive gas

molecules and Ar. The bombardment with reactive gas molecules leads to incorporation

and therefore possible compound formation somewhat below the target surface [DCE+02,

DHG02], whereas the bombardment with Ar may knock-in surface reactive gas atoms deeper

into the target [RKBM05]. There is a probability that these knocked-in atoms do not find

a free metal atom and therefore are released from the target. In equilibrium, the num-

ber of ejected reactive gas atoms needs to be equal to the number of incorporated and

chemisorbed atoms. The mechanisms described here are in contrast to the original Berg-

model, which assumed that compound formation happens at the target surface by dissocia-

tive chemisorption of neutral gas molecules, exclusively.

3.2.2 Preferential sputtering

In the original Berg-model, atoms were either sputtered as metal atoms from the metal re-

gion of the target or as compound molecules from the compound region. The upgraded

model includes atomic sputtering of single atoms and by that preferential sputtering of the,

in general, lighter reactive gas atoms. The following sputtering yields are used:
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¦ sputtering yield of metal atoms from metallic target regions (Ymm)

¦ sputtering yield of metal atoms from compound regions (Ymc)

¦ partial sputtering yield of reactive gas atoms from compound regions (Yc)

Preferential sputtering of reactive gas atoms is achieved by assuming Yc ≥ Ymc.

3.2.3 Equilibrium

In Fig. 3.3, all gas flows and mechanisms altering the metal and compound fractions of target

and substrate are summarized. In equilibrium, all of these contributions form a steady-

state and the fractions of compound and metal regions stay constant. The chemisorption of

reactive gas molecules per unit time and unit area can be described by

2αF (1−Θt), (3.1)

where α denotes the reaction probability of an reactive gas molecule, F denotes the flux of

reactive gas molecules per unit time and unit area andΘt denotes the compound fraction of

the target. As reactive gas molecules consist of two atoms (e.g. O2), the factor 2 is added to

account for the fact that 2 compound molecules will form out of one reactive gas molecule.

Besides chemisorption, compound molecules in the target will be formed due to direct im-

plantation of reactive gas molecules:

2αi
J

q

(
P

PA +P

)
(1−Θt). (3.2)

Here, αi is the probability for a reactive gas ion to be implanted into the bulk target, J is

the total ion current density per unit area, q is the elementary charge and P and PA are

the partial pressure of reactive gas and Ar, respectively. Gas molecules, which do not find a

metal atom to form a compound molecule, desorb when they reach the target surface. The

implantation of reactive gas atoms is only one consequence of the total ion current J . It also

causes removal of reactive target atoms:

J

q
YcΘt. (3.3)

In contrast to the direct removal of reactive gas atoms, some reactive gas atoms get knocked-

in. If these atoms end up in the compound fraction of the target, no additional compound

is formed and the atoms are released. Using the knock-in yield Yk, the rate of released gas

atoms can be written as (
J

q
YkΘt

)
Θt. (3.4)
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Figure 3.3 | Mechanisms and fluxes considered altering surface and bulk composition.
The bombardment with reactive gas molecules (RG) leads to incorporation and therefore
possible compound formation in a certain volume under the target surface, whereas the
bombardment with Ar may knock-in surface reactive gas molecules deeper into the target.
Modified with permission [BSN14].

With the equations previously described, the steady-state equation can be expressed by:(
J

q
YkΘt

)
Θt + J

q
YcΘt = 2αF (1−Θt)+2αi

J

q

(
P

PA +P

)
(1−Θt). (3.5)

Knowing that the reactive gas flux F is a function of the reactive gas partial pressure P and

the absolute temperature T

F = Pp
2kTπm

, (3.6)

where k is the Boltzmann constant and m is the mass of the reactive gas molecule, the frac-

tionΘt can be solved as function of F using Eq. 3.5.

3.2.4 Deposition

All sputtered metal atoms result in a flux Fmc. It consists of the rate of sputtered metal atoms

per unit area from the target Fmt multiplied with the effective sputter erosion zone at the

target At and uniformly distributed at the collecting area Ac:

Fmc = Fmt At

Ac
= J

q
(YmcΘt +Ymm(1−Θt))

At

Ac
. (3.7)

As atomic sputtering is assumed and no compound will be deposited, chemisorption is the

only mechanism for compound formation at the collecting area. The rate of chemisorpted

reactive gas molecules is

Fcc = 2αcF (1−Θc), (3.8)
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where αc denotes the reaction probability of a reactive gas molecule and Θc denotes the

compound fraction of the surface of the deposited film. The factor 2 is again added to ac-

count for biatomic reactive gas molecules. The fraction Θc itself must be equal to the quo-

tient of metal atoms which form a compound by chemisorption and the total flux of arriving

metal atoms at the substrate area:

Θc = Fcc

Fmc
. (3.9)

As reactive gas molecules in this model can either be consumed by compound formation at

the substrate area or pumped out by the system pump, the number of reactive gas atoms

supplied to the chamber Q can be written as

Q = 2αcF (1−Θc)Ac +PS, (3.10)

where S is the pumping speed of the system pump.

Using equations 3.5 - 3.10 the partial pressure P , the compound fraction of the target area

Θt, the compound fraction of the substrate area Θs and the sputter erosion rate Fmc can be

calculated as a function of the reactive gas flow Q. The major difference of these dependen-

cies with respect to the original Berg-model is that these curves will depend on the partial

pressure of Ar, which was previously neglected.

3.3 Sputter yield amplification

Particle removal by sputtering is a relatively inefficient process with only a few of the target

atoms, participating in the collision cascade caused by the impinging Ar+ ions, leaving the

target surface [Beh81]. The majority of the impinging ions’ energy is lost deeper in the target

as thermal heat and, in consequence, sufficient cooling of the targets has to be ensured. In

reactive sputter deposition processes the oxide deposition rate is even smaller, compared to

the deposition of the corresponding metal, since the surface binding energy of the oxide is

higher [Dul84]. To overcome this issue, an addition of nitrogen to the process atmosphere

can be used to lower the surface binding energy, as nitrides have a lower surface binding

energy than oxides, and to enhance the deposition rate [SKK+06]. This approach is obvi-

ously limited to the deposition of oxides and can not be applied for the deposition of carbon

and metals. For these materials, the surface binding energy can be lowered by increasing

the temperature of the target [CHWL96, MLP+99, BMPF99], but sufficient cooling becomes

challenging and the target design has to be modified [MPB06].

For a wide range of metals, ceramics and other materials sputter yield amplification can

be used to increase the deposition rate by utilizing the so called sputter yield amplification
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(SYA) effect, which was first proposed by Berg et al. in 1992 [BBG+92, BBN+92]. In SYA, heavy

atoms in the target act as recoil centers, which reflect the recoiled atoms towards the target

surface. Hence, the depth of the collision cascade is reduced and the number of sputtered

atoms per impinging ion is increased. The mass of the doping element strongly effects the

efficiency of this effect.

Light elements have a higher sputtering yield than heavy elements. In consequence, these

are preferentially sputtered, increasing the concentration of the heavier element at the tar-

get surface until a steady-state is reached. If the atoms are sputtered from a compound tar-

get, the partial sputter yield ratio of different constituents needs to be equal to their relative

abundance in the target [BK99]:

γ1

γ1 +γ2
= C1

C1 +C2
, (3.11)

where γ1 and γ2 denote the partial sputter yields, and C1 and C2 denote the concentrations

of the two target elements, respectively. The partial sputter yields of the target components

are therefore directly dependent on the target stoichiometry. If the masses and densities

of the corresponding parts of the compound are chosen correctly, this effect can increase

the sputter yield of the lighter element above its value sputtered from a pure elemental tar-

get. While it is generally possible to produce doped compound targets, for some material

combinations difficulties arise due to diverging melting points and occurring segregation.

Besides, the use of compound targets is obviously difficult in experimental studies, where

the doping concentration is one of the parameters to be optimized. Fortunately, the SYA ef-

fect also occurs for a target that is only contaminated with an impurity at the target surface

[BBG+92], for example by serial co-sputtering [AKZ+11, KSA+12]. Hence, the deposition of

heavy elements from an auxiliary target onto a primary target can be utilized to increase the

deposition rate of the primary target, as is shown for carbon and TiO2 in Chap. 5 and Chap. 6,

respectively.

As the doping element is sputtered together with the target atoms, this method is inherently

limited to those applications which can tolerate the incorporation of the dopant in the de-

posited coating. The influence of doping on the properties of TiO2 is discussed in Chap. 7.

3.4 High power impulse magnetron sputtering (HiPIMS)

Besides the well-known and frequently applied sputter discharges like direct current (DC),

pulsed direct current (pDC) and radio frequency (RF), a novel technique called high power
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Chapter 3: Thin film deposition

impulse magnetron sputtering (HiPIMS), also known as high-power pulsed magnetron sput-

tering (HPPMS), has drawn major attention in the past years [SAK10].

In ordinary sputter discharges, there is nearly no ion flux towards the growing film as the

degree of ionization of the plasma is comparatively low [CB00]. However, high ion fluxes

may be needed to achieve desired film properties, necessitating high bias voltages applied

to the substrates, which result in a controlled bombardment of the growing film [PBHG03].

Unfortunately, this bombardment of the film is mainly due to Ar+ ions, which cause lattice

defects, implantation of Ar atoms [LKR89], residual stresses [Pau01, Koc94] and weak film

adhesion [Hov88].

In 1999 Kouznetsov et al. [KMS+99] introduced a new sputter technique using a power sup-

ply, which provides short pulses (50µs to 100µs) and a low repetition frequency (50 Hz), re-

sulting in a high degree of ionization of 70 % and the possibility to fill trenches with an aspect

ratio of 1:2. High power impulse magnetron sputtering was born. Today, the range of used

pulse lengths (on-times) are wide, typically ranging from 5µs to 5 ms, while the pulse repeti-

tion frequency spans from 10 Hz to 10 kHz, resulting in high power densities in the range of

kW/cm.

There are several applications in which HiPIMS depositions are favorable. The deposited

films show superior film properties like high density, low roughness [APM+05, SRW+08] and

increased film adhesion [ENM+02]. Complex shaped substrates can be successfully coated

by HiPIMS, for which DC discharges are not sufficient [KMS+99, APM+05]. Besides, HiPIMS

has led to new products like the ice-free windshield [SDG+12].

However, besides its tremendous advantages, HiPIMS suffers from a major drawback: the

deposition rate in HiPIMS is low [HLB+06]. The high degree of ionization in the discharge

[GAH01, KDH06] causes the so called self-sputtering effect [Chr05], in which ionized target

atoms are accelerated back towards the target. In consequence, less target atoms reach the

substrates and the deposition rate is lowered. Additionally, the increased ionization is con-

nected to a larger target voltage, which results in a smaller target current if the power is held

constant. Hence, the deposition rate, which scales with the target current, is further reduced

[ASMW06].

In Sect. 6.4, this drawback is addressed by using the sputter yield amplification effect (see

Sect. 3.3) to increase the deposition rate of HiPIMS sputtered TiO2.
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Chapter 4

Analytical equipment

In this work, thin films have been investigated by use of various analytical tools to determine

their properties. This chapter describes the functional principle of the techniques utilized

as well as the deposition equipment employed.

4.1 X-ray analysis

X-ray measurements are a powerful tool to investigate various properties of thin films. Thick-

ness and density values can be extracted from X-ray reflectivity measurements (XRR) [SS99],

whereas X-ray diffraction (XRD) can be used to investigate the structure, grain size and tex-

ture of the sample under test [Cul78].

A schematic of an X-ray setup and some relevant angles is shown in Fig. 4.1. The sample

under test is exposed to a monochromatic X-ray beam of wavelength λ at an incident angle

ω. The reflected or diffracted beam gets detected by a detector at the angle 2θ with respect

to the incident beam. During the measurement, the detector and/or the sample is moved to

scan the angular range of interest, whereby the utilized scan and sample-to-detector geom-

etry is chosen with respect to the desired information.

In this work, all X-ray measurements were performed with a Philips X’Pert PRO MRD diffrac-

tometer (45 kV, 40 mA) using CuKα radiation with a wavelength of λ= 1.5418Å. A more de-

tailed description of the setup, its measurement techniques, adjustment and accuracy of the

results can be found in [Wei02].
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sample
x-ray tube

detector

ω

2θ

Figure 4.1 | Schematic of beam path and corresponding angles in an X-ray setup. The
sample under test is exposed to a monochromatic X-ray beam of wavelength λ at an inci-
dent angle ω. The reflected or diffracted beam gets detected by a detector at the angle 2θ
with respect to the incident beam. The detector is moved during the measurement to scan
the angular range of interest. Depending on the measurement technique, ω can either be
fixed or the sample may be turned to maintain ω= θ.

4.1.1 X-ray reflectivity (XRR)

In X-ray reflectivity measurements, sample and detector are moved simultaneously to main-

tain the same angle between sample and incident beam as well as between sample and de-

tector. Since ω equals θ in this case, this scan is called θ/2θ-scan or Bregg-Brentano-scan

[Bre24].

The measured intensity is a superposition of all reflected beams from surface and interfaces

of the sample. Below a critical angle θC , the X-ray beam is not capable of penetrating the

sample and the full intensity is reflected. Above this angle, the beam reflected at the surface

interferes with beams reflected at lower interfaces (e.g. layer/substrate) and the measured

intensity will show interference fringes as a function of the incident angle θ. The distance

between two adjacent interference maxima ∆θmax is given by Bragg’s law, so that the film

thickness d is

d = λ

2∆θmax
. (4.1)

As the reflectance of an interface depends on the differences in electron densities ne of the

two materials, the refractive index can be expressed as a function of the density % [Wei02]

ñ = 1− r0λ
2

2π

∑
k

ck
(
Zk + f ′

k − i f ′′
k

) · %∑
k

ckMk
, (4.2)

where Zk is the atomic number, Mk represents the atomic mass, r0 is the Bohr radius and f ′
k

and f ′′
k denote correction terms to the complex atom form factor f̃k. The sum over k takes

into account that a material may consist of different elements, where ck denotes the fraction
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Section 4.1: X-ray analysis

of the individual elements. Using Eq. 4.2, the density can be calculated from the critical

angle θC using Snellius’ Law.

In this work, samples were measured in an angular range from 0° to 1.5°. Subsequently, the

measured data were fitted using the WinGixa software from Philips and film thickness and

density values were extracted.

4.1.2 X-ray diffraction (XRD)

Upon exposing a material to an incoming wave front, each point in the material~r will emit

a spherical wave with a fixed phase relationship between the primary and the emitted wave.

If coherent scattering is assumed, this leads to a superposition of the scattered waves at the

observation point ~B . The intensity which is detected at this point is given by

I (~K ) ∝|AB|2 ∝|
∫
%(~r )e−i~K~r d~r |2, (4.3)

where AB is the amplitude of the detected wave, %(~r ) denotes the complex scattering density,

describing the phase and amplitude of each scattered wave with respect to the primary wave,

and ~K =~k − ~k0 represents the scattering vector, which is the difference in the wave vectors

of the scattered and the primary wave.

For periodic structures the scattering density %(~r ) can be expressed as

%(~r ) =∑
~G

%~G ei~G~r , (4.4)

where ~G is a reciprocal lattice vector and %~G denotes the fourier coefficients of the scattering

density %(~r ). Insertion of Eq. 4.4 in Eq. 4.3 leads to values of the scattered intensity I (~K )

greater zero, resulting in a Bragg reflex, only if the scattering vector ~K equals a reciprocal

lattice vector, which is mathematically equivalent to the Bragg equation

~K = ~G (4.5)

⇔λ=2dhkl sinθ, (4.6)

where dhkl denotes the distance between two lattice planes. X-ray diffraction measurements

can be performed in e.g. Bregg-Brentano (θ/2θ) or grazing incidence (GI) geometry. In graz-

ing incidence geometry, the angle between incident beam and sample ω is fixed to rather

small angles of less than 1.5° and the detector is moved in a 2θ-scan. From Eq. 4.5 and

Eq. 4.6, it can be calculated that a reflex will only occur for lattice planes perpendicular to
~K . A θ/2θ-scan will therefore only probe lattice planes parallel to the substrate surface and
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measurements performed in GI-geometry will show Bragg-reflexes only if the sample con-

sists of randomly orientated crystallites. A more detailed description of the scattering the-

ory, calculation of the measured intensities and determination of phases can be found in the

literature [IL09, Spi08].

In this work, XRD analysis was performed for sputtered TiO2 samples only. These samples

show an amorphous or polycrystalline structure and were therefore analyzed by GI-XRD.

For these samples it is sufficient to probe first order reflexes and therefore an angular range

covering the anatase (101) and rutile (110) peak at 25.4° and 27.5°, respectively, was utilized

[AKW10].

4.2 Optical analysis

One of the most important parameters for industrial applications using TiO2 is its high re-

fractive index [Ric04]. Direct measurements of the refractive index are difficult and indirect

methods which determine the dielectric function, from which the refractive index can be

extracted, are preferred. To analyze the evolution of the refractive index upon doping of

TiO2 with different elements, ellipsometry and UV-VIS-spectroscopy measurements can be

performed and subsequently fitted.

4.2.1 Ellipsometry

In ellipsometry the sample under test is illuminated with light of a wide energy range (IR-

UV), known polarity and known angle to the sample’s normal. The reflected light, gener-

ally elliptically polarized, is detected in an energy dispersive detector and the complex re-

flectance ratio ρ is determined. The reflectance ratio ρ is the ratio of the Fresnel coefficients

of the s- and p-polarized fractions of the reflected light, rs and rp. These two coefficients

can be parametrized by the two ellipsometric angles Ψ and ∆, which denote the amplitude

component and the phase difference, respectively [TI05]:

rp

rs
= ei∆ tanΨ. (4.7)

The angle of the incident light should be close to the Brewster angle of the sample to max-

imize the change in polarization and by that the accuracy of the measurement [TM99]. To

gain access to the refractive index, the values determined for Ψ and ∆ need to be modeled

subsequently (see Sect. 4.2.3), since, in general, a direct conversion to optical constants is

not possible.
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Section 4.2: Optical analysis

For the measurements performed in this work a Woollam M-2000UI variable angle spectro-

scopic ellipsometer was used. Data were recorded in a wavelength range from 240 nm to

1700 nm at angles of 65°, 70° and 75°.

4.2.2 Ultraviolet-visible spectroscopy (UV-VIS spectroscopy)

UV-VIS spectroscopy is performed to measure the transmittance or reflectance of a sample

as a function of the photon energy. The sample under test is illuminated with a light beam

of known wavelength and intensity, and the intensity of the transmitted or reflected light is

measured by a detector. Different light sources and monochromators are used to provide

the wavelengths needed. Some setups are equipped with a beam splitter, which provides a

reference beam that is used to compensate fluctuations in the intensity over time.

A Perkin Elmer Lambda 25 dual beam spectrometer, equipped with a tungsten and a deu-

terium light source, was used for transmittance and reflectance measurements performed

in this work. As this spectrometer is originally designed to gather transmittance data only,

a custom made reflectance unit was used to measure the reflectance at an angle of 8°. In

this unit the intensity is reduced by additional mirrors so that the gathered raw data had to

be subsequently convoluted with a reference spectra of a sputtered aluminum mirror with

known reflectance. Data were gathered for the full spectral range from 190 nm to 1100 nm in

steps of 0.5 nm.

4.2.3 Modeling

To gain access to the refractive index the CODE (Coating Designer) software [The12] can be

utilized. In CODE a sample is described by a layer stack of different materials with individual

dielectric properties. These properties can either be loaded from a database or calculated

using various models. Based on the layer stack, numerous spectra can be simulated and

different properties can be extracted. Among these are ellipsometry, transmittance and re-

flectance spectra as well as the refractive index. Comparing the simulated spectra with mea-

sured data allows the modification of the layer stack and the material properties in CODE to

get a good reproduction of the experimental data and by that access to the material proper-

ties of the sample.

In this work, CODE was used to determine the refractive index at 550 nm as well as the thick-

ness of (doped) TiO2 thin films on glass substrates. The dielectric function of the glass sub-

strates, which was deduced from optical measurements of an uncoated substrate, was held

constant for all simulations, whereas the dielectric function of TiO2 was altered to describe

the measured data. The dielectric function of TiO2 was modeled by an OJL model (named
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OJL2 in CODE), based on the work of O’Leary et al. [OJL97], and a dielectric background

consisting of a constant part as well as an additional harmonic oscillator in the UV to model

a slightly inconstant offset at higher energies [Wei02].

The OJL model describes the density of states (DOS) of the conduction band Nc (E) with

exponential tails in the forbidden region

Nc (E) =
p

2m∗
c

3/2

π2~3


√

E −Vc, E ≥Vc + γc

2√
γc

2 e−
1
2 e

E−Vc
γc , E <Vc + γc

2 ,
(4.8)

where E denotes the energy, m∗
c is a DOS effective mass in the conduction band, Vc repre-

sents the conduction band disorderless band edge, γc is the breadth of the conduction band

tail and ~ is the reduced Planck constant. Accordingly, the density of states of the valence

band Nv(E) is

Nv(E) =
p

2m∗
v

3/2

π2~3


√

γv

2 e−
1
2 e

Vv−E
γv , E ≥Vv − γv

2√
Vv −E , E <Vv − γv

2 .
(4.9)

Here, m∗
v denotes a DOS effective mass in the valence band, Vv represents the valence band

disorderless band edge and γv is the breadth of the valence band tail.

An exemplary fit of the optical data of an undoped TiO2 sample can be seen in Fig. 4.2, the

model describes the experimental data with only minor deviation. For this specimen, a re-

fractive index of 2.46 and a sheet thickness of 102.8 nm is extracted from the simulation.

4.3 Composition

The knowledge of the stoichiometry of multi-component thin films is important to gain in-

sight into the impact on the film and process properties of the involved elements. The sput-

ter yield amplification effect (see Sect. 3.3) for example can be quantified by comparing the

additional sputter yield per dopant atom to the yield of an undoped process.

Although it would be generally possible to calculate the stoichiometry of a deposited sample,

if the rates of all components are known, this is difficult in application as no process drifts

do have to occur during deposition. A more direct approach for the determination of the

stoichiometry is therefore favorable.
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Figure 4.2 | Example of measured and simulated optical data of an undoped TiO2 film.
The CODE Software was used to model ellipsometry, transmittance and reflectance spec-
tra of an undoped TiO2 sample on a glass substrate. The fits are in very good agreement
with the experimental data. Additionally, the absorbance, simulated at 0° and calculated
by A = 1−R −T , where R is the reflectance and T is the transmittance of the whole sample
including substrate, is shown. The absorbance in the visible range is less than 1 %.
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4.3.1 Rutherford Backscattering Spectrometry (RBS)

Rutherford backscattering spectrometry (RBS) is an analytical method, in which the sample

under test is bombarded with high energetic ions of small mass and known energy. After

collision with an atom of the sample the energy of the backscattered ion will depend on the

mass of its collision partner and the energy distribution function of the scattered ions can

be used to gain insight into the structure and the stoichiometry of the sample.

The energy E of a scattered ion can be written as a function of the mass of the target nucleus

M , the scattering angle θ and the penetration depth z [Our03]

E(M ,θ, z) =
(

m cosθ±
√

M 2 −m2 sin2θ

m +M

)[
E0 −

∫ z

0

(
dE

d z

)
d z

]
−

∫ z
cosθ

0

(
dE

d z

)
d z, (4.10)

where E0 is the initial energy of the projectile and m is the mass of the incident nucleus.

Normally, the projectile is lighter than the target and the plus sign has to be taken. If the

projectile is heavier, the minus sign hast to be taken. For the latter, backscattering might

not be possible and the argument of the square root can become negative. The first term in

Eq. 4.10 describes the energy loss due to the collision itself in dependency of the scattering

angle. This term is multiplied with the energy of the projectile at the time of the collision,

which is the initial energy lowered by the energy lost due to the stopping power dE
d z of the

target material. After the collision, the ion passes through the sample back to the surface,

where it leaves the sample with its final energy.

The probability of a scattering event is described by the Rutherford scattering cross section,

from which the technique got its name from [Rut11, Rut12]:

dσ

dΩ
=

(
Z1Z2e2

16πε0E0

)2
1

sin4 Θ
2

. (4.11)

Here, Z1 and Z2 are the atomic numbers of the colliding atoms, e is the charge of an electron

andΘ is the scattering angle in the center of mass frame of reference. As the scattering cross

section depends on the square of the atomic numbers, this method is very sensitive to heavy

atoms, but the detection of light elements as well as the discrimination between elements of

similar weight is difficult.

In the experiment, the scattered ions are detected by an energy resolved detector, which

counts the number of scattered ions per time and energy. This detector can either be moun-

ted at a fixed position or an angle resolved version may be used. In the obtained spectrum,

each element in the sample results in a peak with its high energy flank at a distinct energy,

which reflects the elemental mass. As the ions lose energy during their way through the
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Figure 4.3 | RBS spectrum of a TiO2:Ta film on a silicon substrate. The data were modeled
using a composition of TiO1.9Ta0.045Ar0.04. The Ar content can be attributed to Ar ions,
which have been implanted during sputter deposition.

sample (see Eq. 4.10), the width of the peaks includes information about the depth of the

collision partners (film thickness). Besides, from the height of the peaks the stoichiometry of

the sample can be deduced [CMN78]. RBS is limited to conductive substrates or conductive

films, so that the sample remains uncharged during the measurement.

A typical spectrum of a Ta-doped TiO2 film (TiO2:Ta) on a Si substrate is shown in Fig. 4.3.

It can be seen that the Ti-peak at about 1 MeV (right flank) is only about twice as high as

the Ta-peak at 1.3 MeV, even though there is more than 20 times of Ti compared to Ta in

the sample. This is a good example for the sensitivity of RBS in case of heavy elements (see

Eq. 4.11). In contrast to this, the oxygen peak at about 500 keV, overlapping with the broad

Si background at 570 keV of the substrate, is very small although it is the element with the

highest concentration. The last contribution in the spectrum comes from a small fraction of

Ar. The specimen investigated was deposited by sputter deposition using Ar as an inert gas,

therefore the Ar content in the film originates from Ar ions, which were implanted during

sputter deposition.

In this work, all samples were irradiated with a 1.4 MeV He+-ion beam for a fixed ion dose of

15µC at the Jülich 1.7 MV Tandem Accelerator. The backscattered ions were detected at an

angle of 170° and the resulting spectra were fitted using the RUMP software [Doo85].
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4.3.2 Energy-dispersive X-ray spectroscopy (EDX)

In energy-dispersive X-ray spectroscopy (EDX) and electron probe microanalyzer (EPMA)

spectroscopy, the sample under test is exposed to a high energy electron beam of several keV.

The impinging electrons hit the electron shells of the sample atoms, kicking out electrons of

the inner orbitals. The generated holes recombine with electrons of higher orbitals, emitting

photons of distinctive wavelengths ν. A detector is used to measure the number and energy

of the emitted X-ray photons. As the emitted wavelengths are unique for each element, the

emitted spectrum of a sample can be used to determine the stoichiometry. The wavelength

of the emitted photons can be calculated by Moseley’s law [Mos13]

ν= cR(Z −S)2

1+ me
M

(
1

n2
1

− 1

n2
2

)
, (4.12)

where c is the speed of light, R is the Rydberg constant, Z is the atomic number, M is the

atomic mass, S is the average number of electrons between the nucleus and the electron in

question, me is the mass of an electron, and n1 and n2 are the quantum numbers of the final

and initial energy level, respectively.

The emitted radiation is named by the inner energy level (K, L, M) followed by a greek letter

indicating the difference in principal quantum number to the outer level. Last, a numerical

index may be used to distinguish between different lines due to fine structure splitting. Be-

sides the characteristic lines of the sample elements, the spectrum consists of a continuous

background from bremsstrahlung. This radiation is caused due to the deceleration of the

electrons within the sample and has a sharp cutoff at low wavelengths, corresponding to the

energy of the electron beam used.

For the EDX analysis in this work, a FEI Helios nanolab 650 and a Cameca SX100 EPMA were

used. The energy of the electron beam was set to 10 keV and 5 keV, respectively.

4.3.3 X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) uses the photoelectric effect, first detected by Be-

querel [Bec67] and later explained by Einstein [Ein05], to determine the surface stoichiom-

etry of a sample.

The sample under test is irradiated by an X-ray beam of known energy and the number and

energy of the emitted electrons is measured. The analyzed region is thereby limited by the

attenuation length of the photons λph(ω), where ω is the angular frequency, and the inelas-

tic mean free path of the electron in the solid λe(E ,n), which is a function of the electron
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energy E and the valence electron density n [TPP88]. Using X-ray photons, the analyzed re-

gion is of about 2 nm [TPP88, Son52], limiting this technique to the top most surface region

of the sample.

The absorption of X-rays depends on the atomic number Z of the irradiated material and is

given by the cross section σ [Gil11]

σ∝ Z 5(Eph)−
7
2 , (4.13)

where Eph is the energy of the X-ray photons. Due to the absorbed energy, electrons leave

the surface with a kinetic energy Ekin. The binding energy EB of an electron can thus be

calculated by

EB = Eph − (Ekin +Φ), (4.14)

where Φ denotes the work function of the detector. Resulting spectra show the number of

detected electrons as a function of the binding energy. As the binding energy of the detected

electrons represents the electronic configuration of the involved atoms, the elements can

easily be identified. Furthermore, the number of detected electrons is proportional to the

concentration of the element, which allows the calculation of the stoichiometry of the ana-

lyzed sample.

As XPS is a surface-sensitive technique, a depth profile of the sample stoichiometry can be

recorded by use of an ion gun. The stoichiometry is normally plotted as a function of the

sputter cleaning time, which is a first order approximation for the depth. If the sputter yields

of the materials are known, the corresponding depth profile can be calculated.

For the XPS measurements performed in this work, a Specs Phoibos 100 system using AlKα

radiation (1.4867 keV) installed in a custom-built chamber [Sch12] was utilized. Sputter

cleaning was performed using an IQE-11/35 ion gun, generating an Ar beam with an energy

of 5 keV.

4.4 Optical emission spectroscopy (OES)

Using optical emission spectroscopy it is possible to identify, analyze and quantify different

elements in a plasma. During sputtering, target atoms as well as inert and reactive gas atoms

in the plasma get excited by collisions into an excited electronic state. The excited atoms

relax to a lower or their ground electronic state emitting a photon of distinct energy E = ~ω,

where ~ is the reduced Planck constant and ω represents the angular frequency, giving a

characteristic emission spectrum for each atom and ion.
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Figure 4.4 | Optical emission spectra of DC and HiPIMS sputtered TiO2 in Ar. The spec-
trum of a DC discharge (top) is dominated by the emission of neutral Ar atoms at 811.5 nm
[Nor73]. Using HiPIMS (bottom) the degree of ionization is much higher and the spectrum
is dominated by the emission of ions at lower wavelengths. Here, the Ti II lines at 368.5 nm
and 375.9 nm [Int28, DK80] show the highest intensity.

The energy differences between the electron states of an atom are unique for each element

and therefore the emitted atomic spectral lines are unique for each element as well. This

allows an identification of a plasma composition by recording the spectra emitted. Fur-

thermore, the spectra emitted by neutral atoms differ significantly from spectra emitted by

ionized atoms of the same element as their electronic states are altered due to the removed

electrons. These differences in the emitted spectra allow an identification of different ion-

ization states in the plasma, as can be seen in Fig. 4.4, showing the emission spectra of a DC

and HiPIMS sputtered Ti target using Ar as an inert gas. The DC spectrum is dominated by

the emission of neutral Ar atoms at 811.5 nm [Nor73], whereas the HiPIMS discharge is dom-

inated by emission lines of ions at lower wavelengths due to a higher degree of ionization,

with the Ti+ lines at 368.5 nm and 375.9 nm [Int28, DK80] having the highest intensity.

Spectrometers optimized for very short acquisition times allow for an investigation of plasma

evolutions on very short time scales, e.g. in pulsed discharges like pDC [LZF+05] or HiPIMS

[ASMW06].

The emission lines of an element are typically labeled by its atomic symbol, followed by a

roman numeral, e.g. Ti II. The roman numeral thereby counts the ionization state, where I

denotes the neutral atom and II represents the first ionization state and so on.
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Figure 4.5 | Timings in accumulated digital direct gate (DDG) mode. All spectra shown in
this work were recorded by accumulation of 100 acquisitions in DDG mode, which uses the
intensifier of the ICCD camera as a shutter with ns time-scale. Using gate times which are
similar to the pulse length allows to minimize the noise recorded by the detector. During
the read out the charge-coupled device is read out and cleared for the next acquisition. The
DDG mode is recommended by the manufacturer regardless of pulsed or permanent light
sources are analyzed.

Fiber optics are usually employed to transfer the plasma emission to the spectrometer. Those

fibers can either be mounted on view ports, having a direct line-of-sight to the plasma, or

next to the plasma by use of vacuum feedthroughs. In general, the best results are achieved

if the receiving optics are placed parallel to the magnetron in a way that the line-of-sight

crosses the plasma ring twice. The use of fibers allows to use additional optics. Lenses can

be employed to increase the intensity of the signal, whereas collimators protect fibers and

lenses from being coated.

An Andor Mechelle 5000 spectrometer equipped with an intensified charge-coupled device

(ICCD) camera for optimized signal count was used for the measurements performed in

this work. A glass fiber with a length of 2 m and an inner diameter of 50µm attached to

the spectrometer allowed the transfer of the gathered light into the detector. Prior to the

acquisitions, the spectrometer was calibrated using a mercury lamp placed directly in front

of the fiber. The calibration was started by identifying the Hg I line at 253.652 nm [SSR96]

and adjusting the calibration accordingly. In a second step, the calibration was redone with

a higher accuracy using 6 lines. Finally, a last calibration using 18 lines of the mercury lamp

could be successfully performed ensuring a precise calibration of the spectrometer. After

the calibration the fiber was attached to a vacuum feedthrough at the chamber.

Light emission of the plasma was collected using collimator optics from Plasus attached to

an additional single core fiber inside the chamber connected to the vacuum feedthrough.

The collimator was positioned parallel to the target in a distance of about 2 cm using a cus-

tom made holding attached to the shielding of the main target of the COSMOS chamber.
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Table 4.1 | Settings used for optical emission spectroscopy of TiO2. All spectra shown in
this work were recorded using the digital direct gate mode (DDG). The exposure time, gate
time and gain were adjusted to maximize the measured intensity without saturating the
detector.

Discharge Atmosphere Exposure time (ms) Gate time (µs) Gain

DC Ar 10 3000 200

DC Ar/O2 10 3000 200

HiPIMS Ar 2 50 180

HiPIMS Ar/O2 2 50 200

The second fiber inside the chamber had a length of 2 m and an inner diameter of 400µm.

The use of a fiber with a greater diameter inside the chamber ensured that the fiber outside

the chamber was fully illuminated at the feedthrough and no signal was lost.

All spectra shown in this work were recorded by accumulation of 100 acquisitions in digital

direct gate mode (DDG), which is illustrated in Fig. 4.5. The DDG mode uses the intensifier

of the ICCD camera as a shutter with ns time-scale. Using gate times which are similar to

the pulse length of the discharge allows to minimize the noise recorded by the detector.

To ensure a correct timing of the DDG in case of a HiPIMS discharge an external trigger

was used, which synchronizes the gating with the on-time of the HiPIMS discharge. The

DDG mode is recommended by the manufacturer regardless of pulsed or permanent light

sources are analyzed. As the light falling onto the detector without intensifier is negligible,

the amount of photons can be controlled by adjusting the gate time and by that the detector

can be protected from too high intensities.

The exposure time, gate time and gain of the accumulated acquisitions were adjusted with

respect to the discharge utilized to maximize the intensity of each single aquisition without

saturating the detector. The values used in this work are summarized in Tab. 4.1. A summary

of all spectral emission lines assigned within this work including wavelengths and transition

orbitals is provided in Appx. C.

4.5 Annealing

Post deposition annealing in ambient air can be performed to analyze the influence of do-

pants on the phase transformation of sputtered samples upon annealing (see Chap. 7).

For the annealing performed in this work, a Heraeus M 104 muffel furnace was utilized.

Previous to the annealing procedure, the empty furnace was preheated to the designated

temperature until no further change in temperature could be noticed. Multiple samples
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were put into a metal dish and simultaneously transferred into the hot furnace. After the

annealing time, the dish was taken out of the furnace and the samples were removed from

the dish as soon as possible to avoid subsequent annealing. To ensure that the temperature

inside the furnace was altered only slightly due to the opening, the opening times of the

furnace were kept as short as possible. Samples within this work were either annealed at

300 ◦C for 1 h or at 700 ◦C for 10 min. The annealing temperatures used within this work

were chosen according to tempering processes used in the architectural glazing industry

[SL13].
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Chapter 5

Sputter yield amplification of carbon

The simulation of sputter yield amplification in a reactive sputter process can be difficult,

because suboxides, created due to the presence of dopants at the target surface, may alter

the surface binding energy and by that the deposition rate of the oxide, drastically. If so, a

quantitative prediction of the sputter yield amplification by simulations is nearly impossi-

ble, since the formation of suboxides can not be simulated with present tools and simula-

tions have to be made assuming a target stoichiometry [KDM+08]. For this reason a quan-

titative comparison between experimental and simulated data in a nonreactive atmosphere

has to be used to evaluate the accuracy of the simulation of the sputter yield amplification

effect.

Carbon is hampered by a very low deposition rate due to the low sputter yield of carbon

[BE07] and was therefore chosen to compare experimental and simulation results in a non-

reactive atmosphere, quantitatively. The results in this chapter have already been published

in [SRP+14].

5.1 Deposition rates

Doped carbon thin films were deposited using serial co-sputtering (see Sect. 3.1.1). The dy-

namic deposition rates of the dopants onto the rotating carbon target by use of aperture L

were determined to RW = 0.52nm/Wh for W and RNb = 0.48nm/Wh for Nb. For the deposi-

tion of the doped carbon films auxiliary powers of 100 W, 50 W, 25 W, 75 W, 0 W, 200 W and

300 W, with a pre-sputtering time of 10 min between each deposition, were applied for W,
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Figure 5.1 | Total deposition rate of carbon as a function of the auxiliary power. The small
numbers denote the order of depositions. The order of depositions was chosen in order to
reveal possible systematic effects caused by i.e. unintentional heating or process drifts. The
difference in the deposition rates of the undoped films (at 0 W auxiliary power) is attributed
to W, which remained in the target, after the experiment previously performed at 75 W
auxiliary power, in line with the composition analysis reported in Fig. 5.2.

whereas auxiliary powers of 0 W, 0 W, 50 W, 100 W, 25 W, 200 W, 75 W and 300 W, with a pre-

sputtering time of 15 min in between each deposition, were applied for Nb. The order of

depositions was chosen in order to reveal possible systematic effects caused by i.e. uninten-

tional heating or process drifts. Prior to each series, the target had been sputter cleaned for

1 h.

If no dopant is present, only carbon atoms will be deposited, and the total deposition rate

R equals the deposition rate RC of pure carbon. Adding dopant material to the target will

increase the deposition rate of carbon from RC to G ·RC due to the sputter yield amplification

factor G = γc/YC , whereγc and YC are the partial sputter yield of carbon and the sputter yield

of pure carbon. The dopant will be sputtered together with carbon and the total deposition

rate R can be written as

R =G ·RC +Rd, (5.1)

where Rd is the rate of the dopant from the rotating target. Total deposition rates were cal-

culated from XRR measurements to quantify the sputter yield amplification and are shown

in Fig. 5.1, where the small numbers denote the order of depositions. With increasing aux-

iliary power and thereby increasing dopant concentration in the target, the total deposition
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Section 5.2: Composition

rate increases. It can be seen that Nb doping increases the rate of carbon from 0.15 nm/s to

0.35 nm/s and W doping to 0.52 nm/s for the maximum applied auxiliary powers of 300 W.

It has already been shown that W is able to increase the rate upon serial co-sputtering of

Al2O3 [KSA+12, AKZ+11], whereas Nb would not be effective for SYA of Al2O3, since its mass

is too low. As the deposition rate of Nb onto the rotatory target is about equal to the rate of

W and the Nb atoms have about half of the mass of W, the smaller rate increase of carbon,

if doped with Nb, is expected. There is a noticeable difference between the deposition rates

of pure carbon between the W and the Nb series (see Fig. 5.1). At first, this is surprising as

in both cases identical deposition conditions were used and no dopant was introduced at

0 W auxiliary power. Further analysis revealed that the higher rate in the W series can be

correlated to W atoms, which remained in the target due to recoil implantation [BBG+92].

The pre-sputtering time of 10 min was not sufficient to remove all W after the prior exper-

iment at 75 W auxiliary power. For the Nb doped session, the 0 W samples were sputtered

first, after an initial sputter cleaning of 1 hour. These films were therefore used as a reference

for undoped films in the calculation of the rate enhancement for both experimental series.

The presence of W in the undoped films was also confirmed by the compositional analysis

of deposited films, as discussed below.

5.2 Composition

The resulting film compositions were determined by EPMA and are shown in Fig. 5.2. The

W content is greater than 0.4 % for all samples, as mentioned above, even for the sample

sputtered with no auxiliary power. In contrast, the content of Nb is 0.21 % and 0.17 % for the

two samples sputtered at 0 W auxiliary power showing that the pre-sputter time of 1 hour

removed most of the dopant. This also confirms that a long pre-sputtering time is indeed

necessary to remove all implanted dopants. No W is found in the Nb session as the con-

centration is lower than 0.1 %, which is the resolution limit of the technique utilized. The

Nb content at 75 W is slightly higher than the trend would suggest, which can again be at-

tributed to an effect of the preceding deposition with 200 W. Comparing the W-doped and

the Nb-doped films reveals that the W content in the films is greater than the Nb-content at

the same auxiliary power. In equilibrium, the number of dopant atoms sputtered from the

rotatory cathode ṅrot
d is equal to the number of atoms deposited onto the rotatory cathode

from the auxiliary cathode ṅaux
d

dnd

d t
= ṅd := ṅaux

d = ṅrot
d , (5.2)
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Figure 5.2 | Dopant content of the sputtered films as a function of the auxiliary power.
Film compositions were measured by EPMA. The W content is greater than 0.4 % for all
samples even for the sample sputtered with no auxiliary power. W remained in the target
during the pre-sputtering time of 10 min in between the depositions.

so that a higher dopant content can be directly attributed to a higher rate of dopant atoms

deposited onto the primary cathode. The relation between the number of sputtered Nb and

W atoms per time can be calculated from the dopant deposition rates RNb and RW, the mass

densities %Nb and %W as well as the atomic masses MNb and MW of Nb and W, respectively

ṅW
d

ṅNb
d

= RW%W

RNb%Nb
· MNb

MW
= 1.5, (5.3)

where mass densities obtained by XRR measurements of 13.95 g/cm3 and 5.05 g/cm3 for W

and Nb, respectively, are used. This explains why the dopant content in the W-doped film

is higher than in the Nb-doped films although the deposition rates of W and Nb are similar.

Considering that the number of sputtered carbon atoms per time is amplified from ṅC to

G ·ṅC due to the presence of the dopant, the dopant concentration c in the resulting film can

be written as

c = ṅd

ṅtotal
d

= ṅd

ṅd +G · ṅC
(5.4)

where ṅtotal
d is the total number of atoms sputtered from the rotatory target per time.
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Table 5.1 | Material constants used in TRIDYN model. Default TRIDYN values of the relo-
cation threshold, atomic density and surface binding energy were used [Beh81].

Element Atomic
mass (u)

Relocation
threshold (eV)

Atomic density
(1024/cm3)

SBE (eV)

C 12 25 0.114 7.41

Nb 92.9 28 0.0552 7.6

W 184 38 0.0632 8.68

5.3 Simulation

The sputter process was simulated by the binary collision approximation (BCA) code TRI-

DYN [MEB88] using a model described in detail elsewhere [KNP+10]. In the model, a single

point at the primary target is followed during rotation. Each turn of the primary target is

described within two simulation steps: First, the surface gets coated by a thin layer of the

dopant. Second, in the primary erosion zone, sputter erosion of the target takes place. A car-

bon target sputtered in a pure Ar atmosphere with W and Nb doping elements was assumed.

Material parameters used in the simulations are summarized in Tab. 5.1, other parameters

of the model were treated according to [MG07]. Simulations were performed for a cylindri-

cal rotating magnetron with a diameter of 10 cm and a 6 cm wide erosion zone in a 0.4 Pa Ar

atmosphere. A rotational speed of 8 rpm and a constant discharge voltage of 500 V resulting

in a current density of 0.1 A/cm2 were used, comparable to the experimental conditions.

5.4 Comparing experiment and simulation

To allow a fair comparison of the simulations as well as the experimentally determined rates

and to compensate the different numbers of sputtered atoms per power from the auxiliary

cathodes for the two dopants, the rate enhancement as well as the sputter yield amplifica-

tion factor of carbon can be calculated. The simulations assumed that the density % of the

compound is equal to linear combinations of the elemental densities, providing an estimate

for the expected density

%= %C + (
%d −%C

) · c, (5.5)

where %C is the density of carbon and %d is the density of the dopant. Here, mass densi-

ties of 2.25 g/cm3, 8.57 g/cm3 and 19.3 g/cm3 for the pure elements carbon, Nb and W are

used, respectively. Film densities of the sputtered compound layers were deduced from X-

ray reflectometry measurements. Fig. 5.3 shows the extracted values for different dopant

contents. The heavy W atoms increase the density by up to 1 g/cm3, whereas Nb changes
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Figure 5.3 | Density of doped carbon films as a function of dopant concentration. The
heavy W atoms increase the density by up to 1 g/cm3, whereas Nb changes the density by
0.2 g/cm3 only. The dashed lines show simulated results assuming that the compound den-
sity equals a linear combination of the elemental densities.

the density by 0.2 g/cm3 only. The simulations are included in Fig. 5.3 as dashed lines and

are in an acceptable agreement with the data obtained. For higher dopant concentrations of

W, the measured densities are higher than the calculated values, which is an indication for

densification due to a higher bombardment of the film. Due to the presence of heavy recoil

centers in the target, the impinging Ar ions may get reflected. The reflected Ar neutrals hit

the growing film and could enhance the density [Mül86].

The rate enhancement factor F of the compound is defined as the ratio of the deposition

rates of the doped Rdoped and undoped Rundoped process and is approximately equal to the

sputter yield amplification factor G of carbon if the fraction of sputtered dopant atoms is low

and the densities remain constant

F := Rdoped

Rundoped
= ṅd +G · ṅC

ṅC
≈G = γc

YC
. (5.6)

For large values of ṅd, the approximation ṅd ¿ ṅC is incorrect since the number of sputtered

dopant atoms adds to the total deposition rate significantly. The simulations give direct ac-

cess to all fractional sputter yields allowing a direct calculation of the sputter yield amplifi-

cation factor G . In contrast to this, the rate enhancement factor can not be directly accessed

by the simulation as the density of the resulting film is unknown and has to be calculated

assuming constant elemental densities. For the experimental data, the sputter yield ampli-
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fication factor can be calculated if the stoichiometry and the density of the film is known

G = γc

YC
= ṅSYA

C

ṅC
= Rdoped ·%

Rundoped ·%C
· MC(1− c)

MC(1− c)+Md · c
, (5.7)

where ṅSYA
C is the number of sputtered carbon atoms in the presence of a dopant and Md

and MC are the atomic masses of the dopant and carbon, respectively.

In Fig. 5.4, both values, the rate enhancement factor F and the sputter yield amplification

factor G , are plotted against the dopant concentration. The simulations give a quantitative

reproduction of the experimental results with an excellent agreement up to 2 at.% of dopant

concentration. Above this value the deviation between the simulated and the experimental

data is somewhat larger. It can be seen that W is more effective in increasing the depo-

sition rate of carbon, because it results in a higher rate enhancement factor for the same

dopant concentration. Nevertheless, it is notable that Nb increases the rate substantially,

despite its lower mass. The experimental data shows a steeper increase of the total sput-

ter yield than the simulation in which the slope decreases slowly with increasing dopant

content for higher concentrations. Comparing both plots, one can see that the predicted

additional sputter rate above a concentration of about 5 at.% is mainly due to the addition-

ally sputtered dopant atoms, as the sputter yield amplification factor becomes constant at

this point. At a certain amount of doping, the target surface is saturated with dopant atoms.

Any additional doping atoms will quickly be sputtered away and therefore will not increase

the carbon yield anymore [AKZ+11, KSA+12]. The experimental data shows no saturation in

rate enhancement for the doping concentrations analyzed. Hence, it could be possible to

use even higher dopant concentrations to further increase the deposition rate.
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Figure 5.4 | Rate enhancement factor and sputter yield amplification factor of carbon.
Rate enhancement factor (a) and sputter yield amplification factor (b) of carbon as a func-
tion of the dopant content in the resulting film. The circles (dashed lines) show data gath-
ered from TRIDYN simulations, whereas the squares (solid lines) represent experimen-
tal data gathered from thickness measurements (XRR) and stoichiometry measurements
(EPMA). A good agreement between the experimental data and the simulations is found.
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Sputter yield amplification of TiO2

Upon reactive sputtering, TiO2 suffers from a comparatively low deposition rate. By doping

with heavy elements this issue can be overcome using the sputter yield amplification effect.

Previously, it has been shown by Austgen [Aus11] that Bi is not capable of increasing the

sputter yield, although this was predicted theoretically [SPSU10]. Doping with W on the

other hand results in a significant rate increase of TiO2. Austgen concluded that an effective

sputter yield amplification does not only require a high mass, but also a high surface binding

energy of the dopant. This could be confirmed by Kubart et al. for Al2O3 [KSA+12] by use of

TRIDYN simulations in line with the results from Berg et al. [BBG+92].

In this chapter, the results for sputter yield amplification of TiO2:W are reproduced and ad-

ditional dopants, namely Pb, Ta and Hf are investigated with respect to their capability to

increase the deposition rate of TiO2. It is shown that the surface binding energy is indeed

one of the crucial parameters, nevertheless there are more effects that alter the strength of

the sputter yield amplification effect, which have not been considered by established mod-

els so far.

Using HiPIMS for the deposition of TiO2 reduces the deposition rate even further [HLB+06],

as the high ionization lowers the target current [ASMW06] and self-sputtering reduces the

number of target atoms reaching the substrate [Chr05]. Consequently, sputter yield ampli-

fication was utilized to increase the deposition rate in HiPIMS. The results are shown in the

second part of this chapter. The resulting rate enhancement is significantly higher than in a

DC process. Additional experiments, explaining that the stronger amplification is originated

in a deeper implantation of the dopant, are provided.
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Figure 6.1 | O2 partial pressure hysteresis shift upon doping of TiO2 with Ta. The O2 par-
tial pressure hysteresis is shifted to higher O2 flows upon doping with elements, which
cause sputter yield amplification, in this case Ta. To maintain a fair comparison of the
different rates of these processes, gathered data can be plotted as a function of the O2 flow
after the corresponding transition point (marked by red circles).

6.1 Quantification

In order to be able to compare rates of different reactive sputtering sessions, it is neces-

sary to find a good reference point. High deposition rates are generally favored in industrial

applications and films, sputtered as close as possible to the transition point coming from ox-

ide mode to metal mode, where the rates are at their maximum [BN05], are preferred. This

transition point can act as a reference point, when comparing different sessions, in order to

maintain a fair comparison. Hence, data of this work are plotted as a function of the O2 flow

after the corresponding transition point if reasonable. An example of three hysteresis curves

of a Ti target, sputtered in reactive atmosphere using different Ta deposition rates onto the

rotating target, is given in Fig. 6.1. Due to the sputter yield amplification caused by Ta the

oxygen consumption in the process is higher compared to the undoped process and the hys-

teresis curve is shifted to higher O2 flows. To compare the rates of the three processes, the

last stable point in oxide mode (marked by red circles), called transition point (TP), is used

as a reference, since this point corresponds to the highest deposition rate, which results in

stoichiometric films. At this point, further decrease of the O2 flow results in a metallic depo-

sition, whereas an increase of the O2 flow results in a lower deposition rate.
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Section 6.1: Quantification

For each dopant material investigated, hysteresis curves were recorded and samples were

sputtered at different O2 flows after the transition point. The resulting films were investi-

gated by XRR and deposition rates were calculated from the gathered data. The results for

W-doped TiO2 can be seen in Fig. 6.2a, containing the deposition rates as a function of the

O2 flow after the transition point. An exponential function

R = R0 +a ·ebF , (6.1)

where R is the deposition rate, F is the O2 flow and R0, a and b are independent fit parame-

ters, was fitted to each data set to interpolate the data to the full O2 flow range.

The use of higher auxiliary powers and thereby higher deposition rates of dopant from the

auxiliary cathode onto the primary target, results in a higher TiO2 deposition rate. At the

transition point the deposition rate of TiO2 is amplified from 0.41 nm/s of the undoped pro-

cess to 0.51 nm/s, 0.61 nm/s and 0.87 nm/s for dopant deposition rates onto the primary

target of 13 nm/s, 26 nm/s and 52 nm/s, respectively. To quantify the enhancement, the

rate enhancement factor (see Eq. 5.6) can be calculated. As data points are not available

for the whole plotted O2 range in Fig. 6.2a for all data sets, the interpolated curves are used

to calculate the enhancement. The results can be seen in Fig. 6.2b, which shows a signif-

icant rate enhancement factor of 1.22, 1.47 and 2.10 for a dopant deposition rate onto the

primary target of 13 nm/s, 26 nm/s and 52 nm/s, respectively. With increasing O2 flow, the

rate enhancement increases until it saturates at about 3 sccm after the transition point for

the 13 nm/h and 26 nm/h doped films and at about 4 sccm after the transition point for the

52 nm/h doped films. This is due to the fact that the deposition rate of TiO2 decreases with

increasing O2 flow (see Fig. 6.2a), but the deposition rate of the dopant onto the primary

target remains constant due to gas separation. In consequence, there is a higher dopant

concentration in the target for higher O2 flows, which results in a higher rate enhancement

factor. This can be confirmed by EPMA measurements of the dopant concentration in the

resulting films as a function of the O2 flow plotted in Fig. 6.2c. A clear increase of dopant

concentration can be seen with increasing O2 flow. The dopant content in the film is less

than 3 at.% for all samples at the transition point and increases up to values of 9 at.% at an

O2 flow of 6 sccm after the transition point.

Using the data of Fig. 6.2b and Fig. 6.2c, it is possible to plot the rate enhancement factor as

a function of the dopant concentration, which can be seen in Fig. 6.3. In a first approxima-

tion, the rate enhancement depends linearly on the dopant content and therefore a higher

dopant concentration results in a higher rate enhancement. As the same dopant content for

different O2 flows does not correspond to the same deposition rate, it is favorable to sputter

at low O2 flows and high auxiliary rates, where the rate is generally higher and the dopant
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Figure 6.2 | Deposition rate, dopant content and rate enhancement of TiO2:W. The de-
position rate of undoped and W-doped samples was measured using XRR (a) and the rate
enhancement factor was calculated by normalizing the deposition rates of the doped sam-
ples to the undoped ones (b). EPMA measurements were performed and resulting compo-
sitions are plotted as a function of the O2 flow (c). With increasing O2 flow the deposition
of TiO2 decreases, but the deposition rate of the dopant remains constant (gas separation).
This results in an increasing dopant concentration and consequently in a higher rate en-
hancement with increasing O2 flow.
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Figure 6.3 | Rate enhancement as a function of dopant content. Describing the dopant
content and the rate enhancement as a function of the O2 flow, the rate enhancement can
be plotted as a function of the dopant concentration. In a first approximation, the depen-
dence is linear (dashed trendline), a higher dopant concentration results in a higher rate
enhancement. The dopant content can be used to compare the effectiveness of different
dopants materials quantitatively.

content in the resulting film is minimal. The previously mentioned linear dependency of

the rate enhancement on the dopant content allows the dopant content to be used as a ba-

sis for comparison of the effectiveness of different dopant materials by comparing the rate

enhancement at a specific dopant content.

The way of quantifying the rate enhancement for TiO2:W presented in this work is different

from the way of Austgen [Aus11]. The quantification of the the sputter yield amplification

differs due to the different ways of comparing the data sets. Austgen compared rates at the

same absolute O2 flow, whereas in this work the transition from oxide to metal mode is used

as a reference point. Besides, the dopant concentrations presented here were calculated by

using only the metal fraction of the film, independent of the oxygen content, which allows

for using the results to produce doped targets. This is also different to the work of Austgen,

who plotted dopant concentrations as a fraction of all atoms in the film. Taking these facts

into account, the results in this study are in very good agreement with the data presented

by Austgen, reproducing the effectiveness of W for the sputter yield amplification of TiO2

qualitatively as well as quantitatively.
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Table 6.1 | Comparison of atomic mass, density and SBE of Hf, Ta, W, Pb and Bi. The den-
sity and the surface binding energy (SBE) of Hf are lower than those of Ta and W, although
Hf shows a more pronounced rate increase of TiO2. For the values of the surface binding
energy, values of the sublimation energy are used instead.

Element Atomic mass (u) Density (g/cm3) SBE (eV) [Lid97]

Hf 178.5 13.3 6.41

Ta 181.0 16.7 8.10

W 183.8 19.25 8.80

Pb 207.2 11.3 2.02

Bi 209.0 9.79 2.17

6.2 Dopant comparison

Additionally to W, the dopants Hf, Ta, and Pb were investigated with respect to their rate

enhancement potential and Bi data were included from [Aus11]. For each dopant material,

data were gathered and evaluated in the same way as described above. The resulting curves

for the rate enhancement as function of the O2 flow and the dopant concentration are pre-

sented in Fig. 6.4. Hf and W are the most effective dopants which result in a rate increase

of more than 100 % at the transition point. Ta is also effective showing an increase of 80 %,

whereas Pb and Bi result in nearly no rate increase at the transition point. The rate enhance-

ment factor increases with increasing O2 flow, due to a higher dopant concentration, as has

been discussed before, and ends up in a maximum rate enhancement factor of 3.1, 3.7 and

4.0 for Ta, W and Hf, respectively (see Fig. 6.4a).

Using RBS and EPMA measurements, the results can be plotted as a function of the dopant

concentration, as can be seen in Fig. 6.4b. Knowing that the dopant concentration is in-

dependent of O2 flow and dopant deposition rate, this is the best way to compare different

rate enhancements. Fig. 6.4b shows that the rate enhancement per atom is maximal for Hf,

followed by W and Ta. The ineffectiveness of Pb is in line with the conclusion of Austgen

[Aus11] that suggests a low amplification for materials with low surface binding energy and

T-DYN simulations performed for sputtering of a metallic Al target by Berg et al. [BBG+92],

who correlated the sputter yield amplification with the density of the impurities. Hf, Ta and

W on the other hand, having a somewhat lower mass, result in a much higher rate increase

due to their higher surface binding energy and density. The values for the atomic mass,

density and sublimation energy, which is used in T-DYN [BK99] and other cases [KVGA05]

as surface binding energy, are summarized in Tab. 6.1. For heavy atoms, the surface binding

energy of the pure metal can also be used as the surface binding energy of the corresponding

oxide, since sputtering is dominated by the mass difference between the metal and oxygen
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Figure 6.4 | Rate enhancement of TiO2 as a function of O2 flow and dopant concentration.
Hf, W and Ta result in a major rate increase, whereas Pb and Bi do not increase the rate of
TiO2 significantly, despite having a higher mass (a). By use of RBS or EPMA analysis the
rate enhancement can be plotted as a function of the dopant concentration, decoupling
the enhancement from the auxiliary rate and the O2 flow (b). The rate enhancement of Hf
is higher at each concentration making it the most efficient dopant analyzed. Bi data taken
from [Aus11].
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as has been shown by Baretzky et al. for Ta [BMT92]. In consequence, all dopants, with the

exception of Hf, are in line with the conclusions of Austgen [Aus11] and Berg et al. [BBG+92].

The density as well as the surface binding energy of Hf is lower than those of Ta and W. Con-

sequently, there must be another explanation for the high rate enhancement of TiO2 upon

doping with Hf.

6.2.1 Target hysteresis

To gain a deeper insight into the sputter dynamics, hysteresis curves of doped TiO2 pro-

cesses are shown in Fig. 6.5. In general, the shift of the hysteresis curves to higher O2 flows

can be explained by a higher oxygen consumption due to a higher deposition rate [Aus11].

This is true for all analyzed dopants except Hf, which results in a much smaller shift of only

1.1 sccm compared to Ta and W, which result in a shift of 1.7 sccm and 1.9 sccm, respec-

tively. The width of the hysteresis curve of TiO2:Hf is also broader than that of TiO2:Ta and

TiO2:W.

But not only the O2 partial pressure hysteresis of TiO2:Hf shows a unique behavior, the same

is also true for the voltage hysteresis. The negative target voltage of Hf-doped TiO2 in ox-

ide mode is only about 425 V, which is close to the voltage of an undoped process in metal

mode. The corresponding negative target voltage in oxide mode of all other doped TiO2 pro-

cesses is much higher and has a value of about 455 V. All samples were sputtered using a

constant current and therefore the voltage drop is the result of a lower plasma impedance

caused by a higher secondary electron emission. This, in turn, is an indication for a change

in target chemistry due to the presence of Hf. It is known that HfO2 has a higher secondary

electron emission coefficient than TiO2 [NKMW04]. Still, the voltage should increase upon

increasing the O2 flow since the total secondary electron coefficient would be lowered if Ti

gets oxidized. As the target voltage stays about constant for all O2 flows, this indicates that

the oxygen is bound mainly to Hf instead of Ti. The simulations of Berg et al. are based on

ballistic processes only and assume that no chemical compounds between the species are

formed [BBG+92, BBN+92, BK99], which explains why such behavior could not be simulated

using the model utilized.

In order to show that the lowering of the target voltage in Fig. 6.5b is due to the chemical

behavior of Hf, hysteresis curves were recorded using an isoelectrical dopant, namely Zr,

which has also been shown to have a higher secondary electron emission coefficient than

Ti [NKMW04]. In Fig. 6.6 two hysteresis curves of TiO2:Zr with different dopant deposition

rates as well as an undoped reference are shown. The transition points of the processes are

located at higher O2 flows compared to Fig. 6.5, as all three curves were recorded in a freshly

cleaned (sand blasted) chamber, which shows a more pronounced getter effect [DG04]. It
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Figure 6.5 | O2 partial pressure and voltage hysteresis of TiO2 for different dopants. In
general, the shift of the hysteresis curves to higher O2 flows can be explained by a higher
oxygen consumption due to a higher deposition rate. This is true for all analyzed dopants
except Hf, which results in a much smaller shift compared to Ta and W, but having an even
higher rate. The target voltage of TiO2:Hf in oxide mode is lower than for all other curves.
All samples were sputtered using a constant current, therefore the voltage drop is the result
of a lower plasma impedance caused by a higher secondary electron emission.
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Figure 6.6 | Target voltage hysteresis evolution of TiO2 upon Zr doping. TiO2 was doped
with Zr using an auxiliary power of 100 W and 150 W together with aperture L and XL, re-
spectively. Upon doping of TiO2 with Zr the negative target voltage is reduced substantially
compared to the undoped case. The transition points of all curves are located at higher O2

flows compared to the measurements shown before (see Fig. 6.5) due to a stronger getter
effect of a freshly cleaned chamber.

can be seen that due to the presence of Zr the negative target voltage is reduced substan-

tially compared to the undoped case, like it has been seen before for Hf in Fig. 6.5b. Both

isoelectric elements, Zr and Hf, cause a drop of the target voltage in oxide mode. Never-

theless, the effect is more pronounced for Hf than for Zr. A lower negative target voltage is

connected to a higher secondary electron emission, which can be explained by both, the

higher secondary electron emission coefficient of ZrO2 as well as HfO2 and due to a more

metallic target surface caused by the formation of TiO2−x suboxides.

To explain why TiO2−x suboxides might be formed in the presence of Zr and Hf, it is neces-

sary to understand, whether TiO2 or a dopant oxide Mex Oy is formed at the target surface.

The reaction
y

2
·TiO2 +x ·Me −→ y

2
·Ti+Mex Oy (6.2)

will take place if the total difference in Gibbs energy of the reaction is negative:

∆G =∆G
( y

2
·TiO2 +x ·Me −→ y

2
·Ti+Mex Oy

)
(6.3)

=∆G(Mex Oy )− y

2
·∆G(TiO2) < 0. (6.4)
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Table 6.2 | Properties of metal oxides formed upon doping of TiO2. Standard molar en-
thalpy (heat) of formation ∆fH 0, standard molar Gibbs energy of formation ∆fG

0 and stan-
dard molar Gibbs energy of formation normalized to one oxygen atom ∆fG

0/n(O) at at
298.15 K for different metal oxides [Lid97]. The formation of ZrO2 and HfO2 is favored in
comparison to TiO2. Doping TiO2 with Zr or Hf this leads to a more metallic target surface,
a lower target voltage and a higher sputter yield.

Material ∆fH
0 (kJ/mol) ∆fG

0 (kJ/mol) ∆fG
0/n(O) (kJ/mol)

TiO2 -944.0 -888.8 -444.4

ZrO2 -1100.6 -1042.8 -521.4

HfO2 -1144.7 -1088.2 -544.1

Ta2O5 -2046.0 -1911.2 -382.2

WO3 -842.9 -764.0 -254.7

Eq. 6.2 can also be rewritten as

Ti0.5O+ x

y
·Me −→ 1

2
·Ti+Mex/y O, (6.5)

so that the total difference in Gibbs energy ∆G can be determined by simply subtracting the

Gibbs energy of the two metal oxides normalized to one oxygen atom:

∆G =∆G(Mex/y O)−∆G(Ti0.5O). (6.6)

Tab. 6.2 shows the standard molar enthalpy (heat) of formation ∆fH
0, standard molar Gibbs

energy of formation ∆fG
0 and standard molar Gibbs energy of formation normalized to one

oxygen atom ∆fG
0/n(O) at 298.15 K for the metal oxides of Ti, Zr, Hf, Ta and W. Zr and Hf are

the only analyzed dopants, which lead to a preferred formation of their dopant oxide since

their values for the standard molar Gibbs energy of formation normalized to one oxygen

atom ∆fG
0/n(O) are lower than that of TiO2 and for this reason, the preferred oxidation for

Ta and W will not take place:

TiO2 +Zr −→ Ti+ZrO2 (6.7)

TiO2 +Hf −→ Ti+HfO2 (6.8)

5TiO2 +4Ta 6−→ 5Ti+2Ta2O5 (6.9)

3TiO2 +2W 6−→ 3Ti+2WO3. (6.10)

Note that above discussed equations are only valid if the amount of O2 is limited and the

oxygen atoms have to choose to which material they bond to. Due to the preferential sput-

tering of oxygen [MHS86], the target surface is always oxygen deficient and this requirement
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is likely to be fulfilled. The formation of ZrO2 and HfO2 is then favored in comparison to

TiO2.

Upon doping of TiO2 with Hf this leads to the formation of TiO2−x suboxides and by that a

more metallic target surface, a lower target voltage and consequently a higher sputter yield

amplification of Ti [KDM+08] compared to other heavy dopants, like W and Ta.

6.3 Refractive index evolution upon doping

So far, the influence of heavy dopants on the sputtering process of TiO2 was only analyzed

with respect to the change in deposition rate. For industrial applications, however, it is ob-

viously necessary to maintain the unique properties, especially the high refractive index, of

TiO2.

The evolution of the refractive index of TiO2 upon doping with Hf, Ta and W can be seen

in Fig. 6.7. Without doping the refractive index of TiO2 is independent of the O2 flow after

the transition point and has a value of 2.46-2.47. Upon doping with W the refractive index

decreases with increasing O2 flow, meaning that a higher dopant deposition rate results in a

larger decrease of the refractive index. For a dopant deposition rate of 13 nm/h the refractive

index at the transition point is unchanged and decreases only slightly to a value of 2.42 at an

O2 flow of 4.7 sccm after the transition point. For dopant deposition rates of 26 nm/h and

52 nm/h, the index at the transition point is slightly decreased to values of 2.45 and 2.44 and

decreases further to values of 2.4 and 2.38 at 4.3 sccm and 3.5 sccm after the transition point,

respectively.

For doping with Hf and Ta the results are similar to those for doping with W. At the transi-

tion point the refractive index is only slightly lower than for the undoped process, but with

increasing O2 flow the refractive index is lowered significantly. Doping with Ta decreases

the refractive index at the transition point from 2.48 to 2.44 for a dopant deposition rate of

35 nm/h and to 2.42 for a dopant deposition rate of 70 nm/h, wheras a dopant deposition

rate of 45 nm/h and 99 nm/h lowers the refractive index to 2.44 and 2.43 at the transition

point for doping with Hf, respectively. In the case of doping with Ta, increasing the O2 flows

to 4.4 sccm and 3.6 sccm after the transition point for a dopant deposition rate of 35 nm/h

and 70 nm/h, respectively, results in values of 2.36 for the refractive index in both cases. Hf

doping lowers the refractive index at high O2 flows a to a lesser extent than Ta, resulting in

values of 2.38 for both dopant deposition rates of 45 nm/h at 4.8 sccm after the transition

point and 99 nm/h at 4.7 sccm after the transition point.
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Figure 6.7 | Refractive index evolution of TiO2 upon doping with heavy elements. With-
out doping, the refractive index of TiO2 is independent of the O2 flow after the transition
point. Upon doping with Hf, Ta or W, the refractive index at the transition point is slightly
lowered and decreases significantly with increasing O2 flow (a). There is a clear correlation
between the dopant concentration and the decrease in refractive index. Nevertheless, this
correlation is only valid within a deposition series with a constant dopant deposition rate.
At the same dopant concentration the O2 flow is the parameter determining the refractive
index.
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As usual for reactive serial co-sputtering, the dopant concentration is linked to the O2 flow.

Hence, if the dopant concentration at a certain O2 flow is known, the refractive index can be

plotted as a function of the dopant concentration. From Fig. 6.7b it can be seen that there

is only a correlation between the dopant concentration and the decrease in the refractive

index within one series at a constant dopant deposition rate, but this correlation is lost upon

switching between the series. If the dopant deposition rate is changed, the same dopant

concentration, achieved by using different O2 flows, results in different refractive indexes.

A W concentration of 3.1 at.% for example results in a refractive index of 2.44 for a dopant

deposition rate of 52 nm/h, whereas the same concentration results only in a refractive index

of about 2.41 for the lower dopant deposition rate of 26 nm/h.

Looking at these results from another point of view, the observed correlation between dopant

concentration, O2 flow and refractive index implies that changing the dopant deposition rate

results only in a minor change of the refractive index, as long as the O2 flow is kept as low

as possible. For the refractive index the O2 flow is the determining factor, in contrast to the

previously shown sputter yield amplification, where the dopant concentration is most im-

portant.

In summary, the highest refractive indexes are achieved next to the transition point. For

industrial applications this is ideal as rates and sputter yield amplification are maximal at

this point giving a clear concept to high rate, high index TiO2 thin films.

6.4 Sputter yield amplification using HiPIMS

Additionally to the sputter yield amplification experiments presented so far, the sputter yield

amplification effect was also analyzed for HiPIMS processes (see Sect. 3.4) in this work. The

deposition rate in HiPIMS is generally lower than in a DC process, by use of the same power

[HLB+06, ASMW06], due to a higher ionization [GAH01, KDH06] and self sputtering [Chr05].

Consequently, increasing the deposition rate by sputter yield amplification in HiPIMS is of

great interest.

For the investigation of the sputter yield amplification effect in HiPIMS, two heavy dopants,

namely Ta and W, were chosen. Hysteresis curves of an undoped process and processes

doped with different auxiliary rates were recorded to investigate the influence of the dopant

on the process behavior and are plotted in Fig. 6.8. Due to the generally lower deposition

rate in HiPIMS, the transition point of the undoped process is located at lower flows com-

pared to the transition point of a DC process (see Fig. 6.5). Using HiPIMS, the hysteresis

curves of the doped processes have a different shape compared to the undoped process. Es-

pecially in the partial pressure hysteresis curve (Fig. 6.8a), the transition from metal to oxide
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b | Target voltage hysteresis of HiPIMS sputtered TiO2.

Figure 6.8 | O2 partial pressure and voltage hysteresis of HiPIMS sputtered TiO2. The
undoped target shows a sharp transition between oxide and metal mode for the partial
pressure (a) and negative target voltage hysteresis (b). In contrast, doping with W or Ta
leads to a smooth transition between the two modes. Upon doping, working points in the
transition regime can be accessed without the need for fast feedback loops.
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mode and vice versa is much smoother; there is no sharp transition between the two modes.

Nevertheless, the transition points of the doped processes can be detected by looking at the

voltage hysteresis curves in Fig. 6.8b, where the transition is more distinct.

The smooth transition of the doped processes allows the stabilization of the O2 partial pres-

sure in the transition regime without the need for a fast feedback loop. In doing so, substoi-

chiometric films can easily be deposited. This might be interesting for transparent conduc-

tive oxides (TCO) [Gra93, HOO+02, SRW+08, SDG+12], especially for TiO2:Nb and TiO2:Ta

[GvD+07, YHK+09], which benefit from oxygen vacancies with respect to their conductance.

It should be noted that the negative target voltage in metal mode is larger than the voltage

in oxide mode, which is reversed to a DC process. In a reactive DC process operated at a

constant current, the voltage rises at the transition point from metal to oxide mode in order

to compensate the reduced secondary electron emission yield of the compound formed at

the target surface [DHM+07]. In HiPIMS on the other hand, the rise of the O2 partial pres-

sure in oxide mode, which is due to a less pronounced getter effect, is accompanied by an

increase in the population of oxygen ions (O+
2 and O+), which contribute to the target ion

current [NMD+12]. Additionally, the secondary electron emission is enhanced through po-

tential emission [And11] as the ionization energies of O2, O and Ar are 12.6 eV, 13.6 eV and

15.8 eV [Lid97], respectively, whereas the work functions of Ti and TiO2 are between 4 eV and

4.5 eV [LL05]. Hence, the voltage in oxide mode of a HiPIMS process is lower than in metal

mode.

Upon doping the hysteresis curves are shifted to higher O2 flows, indicating a higher oxygen

consumption. For the samples doped with 70 nm/h and 52 nm/h of Ta and W the transition

point shifts from 2.45 sccm in case of the undoped process to 4.3 sccm and 4.15 sccm, re-

spectively. This should be connected to a higher deposition rate, which could be verified by

modeling the thickness using ellipsometry and UV-VIS-spectroscopy data. The calculated

rates are plotted as a function of the O2 flow after the transition point in Fig. 6.9. Again, data

points were fitted using exponential functions (see Eq. 6.1) to extrapolate the sputter yield

amplification factor to the transition point.

The deposition rate is significantly amplified upon doping with Ta or W, with a higher dopant

deposition rate resulting in a higher amplification. Looking at the transition point the rate of

undoped TiO2 is amplified from 0.34 nm/s to 0.68 nm/s and 0.98 nm/s for Ta auxiliary rates

of 35 nm/h and 70 nm/h and to 0.75 nm/s and 1.20 nm/s for W auxiliary rates of 26 nm/h

and 52 nm/h, respectively. As before, all rates decrease with increasing O2 flow, if the dopant

deposition rate is kept constant.

By use of RBS measurements and the extrapolated curves in Fig. 6.9, the rate enhancement
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Figure 6.9 | Deposition rates of HiPIMS sputtered TiO2 as a function of O2 flow. The rates
are plotted as a function of the O2 flow after the transition point and decrease with increas-
ing O2 flow. Upon doping with Ta or W, the deposition rate is significantly amplified with a
higher dopant deposition rate resulting in a higher amplification.

factor (Eq. 5.6) can be calculated as a function of the dopant concentration, which is the best

way to quantify the sputter yield amplification (see Sect. 6.1). The calculated rate enhance-

ment factors of the samples doped with 70 nm/h and 52 nm/h of Ta and W, respectively, are

plotted in Fig. 6.10. Additionally the sputter yield amplification factor of a corresponding

TiO2:W DC process with identical auxiliary rate is included to compare the sputter yield am-

plification of HiPIMS to DC.

The rate enhancement factors of both HiPIMS processes are higher than the enhancement

factor of the DC process, for all dopant concentrations analyzed. Using W as a dopant the

rate can be enormously amplified by a factor of up to 5, but even Ta-doping is able to in-

crease the rate by a factor of up to 4.2, which is much higher than the amplification in a DC

process, having a maximum of 3.7 using W as a dopant. Even more important are the rate

enhancement factors at the lowest dopant concentration – at the transition point – where

the total rates are maximal. Here, doping TiO2 with W in HiPIMS shows a rate enhancement

factor of 3.5 at 1.0 at.% of dopant concentration in the resulting film, being the most effective

dopant. Doping with Ta in HiPIMS still results in a rate enhancement factor of 2.8 at 2.5 at.%

in the resulting film, whereas doping with W in a DC process results in a rate enhancement

factor of 2.1 at 2.9 at.% only.

The use of a HiPIMS discharge strengthens the sputter yield amplification caused by heavy
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Figure 6.10 | Comparison of sputter yield amplification factors in DC and HiPIMS. The
rate enhancement factors of both HiPIMS processes are higher than the enhancement fac-
tor of the DC process, for all dopant concentrations analyzed. By use of W as a dopant in a
HiPIMS process the rate can be enormously amplified, but even doping with Ta is able to
increase the rate significantly. The enhancement factor in HiPIMS at the transition point
upon doping with W is as high as the maximum enhancement in DC at the highest dopant
concentration. The amplification is significantly higher in a HiPIMS process.

dopants compared to DC. One of the major differences between HiPIMS and DC is the de-

gree of ionization of the plasma [SAK10]. If the dopant is ionized in the plasma, this leads

to an acceleration of the dopant ions towards the target, resulting in a deeper implantation

depth and by that a more effective sputter yield amplification.

6.4.1 Implantation efficiency

To prove that the higher sputter yield amplification of TiO2 using HiPIMS can be explained

by a more effective implantation of the dopant due to an ionization of the dopant in the

plasma, additional experiments were performed.

Upon doping with W, the target voltage increases. This effect can be used to analyze the W

content during sputter cleaning of a previously W-doped Ti target [Aus11]. Here, the Ti target

had been sputtered using a HiPIMS or DC discharge while being simultaneously coated with

W from the auxiliary cathode. The sputter process was kept running until a steady state was

reached, meaning no drift in process parameters (e.g. partial pressure and voltage) could be

observed. Subsequently, sputtering was stopped and the target was sputter cleaned using
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Figure 6.11 | Voltage evolution upon sputter cleaning after using HiPIMS and DC. A Ti
target was sputter cleaned using a low DC current. Previously to the cleaning, the target had
been W-doped by serial co-sputtering. The primary discharge used to implant the dopant
had either been performed using HiPIMS or DC. Data taken from [Wag11].

a low DC discharge current and a high O2 flow (250 mA, 7 sccm) to ensure a slow change in

target voltage, which can easily be recorded. The resulting discharge voltages as a function

of time can be seen in Fig. 6.11. The voltage drop during sputter cleaning after the HiPIMS

sputtering is about 40 V, whereas the voltage drop after DC sputtering is only about 20 V.

Furthermore, the time needed to clean the target after HiPIMS sputtering is longer. Both, a

longer cleaning time and a higher voltage drop, indicate a much higher implantation depth

in the case of HiPIMS.

In order to investigate if the origin of the thicker implantation layer is due to an ioniza-

tion of the dopant, optical emission spectroscopy was performed. Emission spectra were

recorded for a Ti target sputtered in Ar or Ar/O2 atmosphere using various amounts of W

doping with either a DC or a HiPIMS discharge applied. In order to show ionization of W, the

spectral range from 238 nm to 252 nm was chosen including several W II lines (see Tab. C.1

in Appx. C).

The results of the optical emission spectroscopy are summarized in Fig. 6.12. The top four

spectra show the emission of a TiO2 plasma in a HiPIMS discharge with increasing doping

concentration (black and purple lines, from top to bottom). Three Ti II lines at 244.02 nm,

245.04 nm and 251.74 nm [RVC75, PTP01] and an Ar II line at 251.56 nm [WAC+95] can be

identified in all four spectra, underlining the high degree of ionization of all atoms in HiPIMS.
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The W II lines at 239.71 nm, 246.65 nm, 247.78 nm, 248.92 nm, 249.75 nm and 249.97 nm

[EKM00] become stronger with increasing auxiliary power as the intensity increases with

the W content in the plasma, proving the W ionization in the HiPIMS discharge. Even in the

presence of oxygen, shown in the fifth spectrum of Fig. 6.12 (red line) these lines remain visi-

ble showing that the ionization of W also occurs in Ar/O2 atmosphere. In contrast to this, no

emission lines of W+ are found in a DC discharge (Fig. 6.12, bottom spectrum, green line),

even at a very high W concentration due to a high auxiliary power of 400 W. In a DC process,

the degree of ionization is very low [CB00], even the emissions of Ar+ and Ti+ are not visible,

and the emitted spectrum is dominated by the emission of neutral atoms (see Fig. 4.4).

The proof of W ionization in a TiO2:W plasma explains the higher sputter yield amplification

in HiPIMS compared to DC. The W atoms get ionized in the HiPIMS plasma and are acceler-

ated back to the target, resulting in a deep implantation in the Ti target, where they can act

as recoil centers more efficiently.
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Figure 6.12 | Evolution of optical emission spectra of HiPIMS and DC sputtered Ti:W. The
top four spectra show that emission lines of ionized W in Ar atmosphere become stronger
with increasing auxiliary power as the intensity increases with the increasing W content
in the plasma (from top to bottom, black and purple lines). Several strong W II lines can
be identified showing a clear proof of W ionization in the HiPIMS discharge. The same is
true in the presence of oxygen (red line). In contrast to this, no emission lines of W+ are
found in a DC discharge (green line), even for very high W concentrations (400 W). This
result is an explanation for the higher sputter yield amplification in HiPIMS. The W atoms
get ionized in the HiPIMS plasma and are accelerated back to the target, resulting in a deep
implantation within the Ti target.
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Chapter 7

Influence of dopants on structure and
phase transformation of TiO2

In Chap. 6, different dopants have been analyzed with respect to their capability to increase

the deposition rate of TiO2. As outlined in Sect. 2.2.2, dopants can also be used to modify the

crystallization behavior of TiO2. It might even be possible, by use of a well chosen dopant, to

modify the crystallization behavior in such a way that sputtering of a thermally stable TiO2

thin film in either amorphous, anatase or rutile phase could be possible.

Most literature data on the phase transformation of TiO2 are gathered using powders start-

ing in the anatase phase [SP65, Mac75, HS11]. In contrast, sputtered thin films are often

amorphous and thermodynamically far away from equilibrium [DKY+09], making the trans-

formation from amorphous to either anatase or rutile equally important. In this chapter, the

influence of several dopants on the phase formation and phase transformation during an-

nealing is analyzed using serial co-sputtered TiO2 thin films.

7.1 Dopants

Ten dopants, namely V, Cr, Mn, Cu, Zr, Mo, Sn, Hf, Ta and W, were investigated with respect

to their influence on the phase transformation and crystallization behavior of TiO2. Doping

of TiO2 with Hf, Ta and W has already been shown to increase the deposition rate and there-

fore their influence on the crystallization behavior is of great interest. Additionally, Hanaor

and Sorrell predict that these three elements inhibit the phase transformation from anatase

to rutile [HS11], allowing for the deposition of thermally stable TiO2. Two other elements
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inhibiting the phase transformation from anatase to rutile are Zr and Mo, from which Zr has

already been shown to inhibit the transformation experimentally [HNO+03], whereas Mo

has been predicted to inhibit the phase transformation theoretically [HS11].

Inhibiting the phase transformation is one way to produce a thermally stable TiO2 film.

Another way is the deposition of a pure thermally stable rutile film. Unfortunately, a di-

rect deposition of thermally stable rutile films is not possible using a standard DC sput-

ter process [AKW10]. By adding a phase transition-promoting dopant it might be possi-

ble to initialize the formation of rutile already upon film growth. Consequently, V, Cr, Mn,

Cu and Sn, which have been shown to promote the anatase to rutile transformation (ART)

[ZR02, Kar03, Mac75, SP65, KFN+07], were investigated as well.

For each dopant, samples were deposited using different O2 flows after the transition point

(see Sect. 6.1) at a constant auxiliary power (dopant deposition rate). V, Zr, Hf, Ta and W were

sputtered onto the rotating Ti target using 50 W and aperture L (see Sect. 3.1.1), whereas Cr,

Mo and Sn were sputtered onto the rotating Ti target using 25 W, 40 W and 30 W, respec-

tively. For the deposition of Mn and Cu a smaller aperture (M) and powers of 50 W and 25 W

were used, respectively. The deposition rates of Cr, Mo, Mn, Cu and Sn were lowered as

these materials show significantly higher sputter yields [SCGG05]. Deposition times from

the doped Ti target onto glass substrates were adjusted to sputter films with thicknesses of

about 100 nm. For each combination of dopant and O2 flow three identical samples were

deposited, from which one was measured by ellipsometry and UV-VIS spectroscopy to val-

idate the thickness. Afterwards, the remaining two were annealed to either 300 ◦C for 1 h or

700 ◦C for 10 min.

The stoichiometry of the deposited thin films was investigated using either RBS or EDX. EDX

had to be chosen for V, Cr and Mn, as the characteristic peaks of Ti, V, Cr and Mn overlap in

the RBS spectrum due to their similar masses of 47.9 u, 50.9 u, 52.0 u and 55.0 u, respectively,

whereas both methods are suitable for the other elements. Unfortunately, the characteristic

peaks of Ti and V overlap in the EDX spectrum as well and therefore the determined concen-

trations of V have to be used with caution. For the remaining elements, the concentrations

of Cu, Zr, Mo, Hf, Ta and W were investigated by RBS, whereas EDX was utilized for the con-

centration of Sn. The determined dopant concentrations are plotted in Fig. 7.1 as a function

of the O2 flow after the transition point. With increasing O2 flow the deposition rate of TiO2

decreases, but as the deposition rate of the dopant utilized was kept constant, the dopant

concentration in the resulting films increases (see Sect. 6.1). All determined concentrations

are in a range of 0.42 at.% (Zr) to 1.86 at.% (Ta) at the transition point and increase to values

between 1.78 at.% (V) and 6.08 at.% (Sn) at higher O2 flows. The measured V concentration

decreases at the highest O2 flow, which is not reasonable. This deviation is attributed to the
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Figure 7.1 | Dopant concentrations of serial co-sputtered TiO2 thin films. With increasing
O2 flow the deposition rate of TiO2 decreases, but since the deposition rate of the dopant
utilized was kept constant, the dopant concentration in the resulting films increases (see
Sect. 6.1).

overlapping peaks in the EDX spectrum, which complicated a calculation of the stoichiom-

etry. The determined concentration of V can either be too low for this sample or the other

measurements of the samples sputtered at lower O2 flows may be too high. The concentra-

tions of Cu and Zr are the lowest within this study, showing less than 2 at.% for all O2 flows.

Nevertheless, their amount might already be sufficient to alter the phase transformation

behavior, because influences of dopants have already been found for concentrations lower

than 0.2 at.%, for example in the case of Sn-doping [MRS04]. Still, higher concentrations in

the order of several percent have also been reported to have a significant influence [Mac75],

allowing a wide range of possible concentrations.

7.2 Structural properties of as-deposited samples

There are several publications reporting either as-deposited crystalline [MTDR00, HUF+07,

HYH+08, AKW10, MS11, AYR+12] or X-ray amorphous TiO2 films [TPD+02, MS11, GRCVV11],

depending on the sputter parameters utilized. Mráz et al. investigated the structure evolu-

tion of RF and DC sputtered TiO2 thin films upon changing the total pressure and concluded

that the phase formation is linked to the ratio between the ion energy flux to the growing film

and the deposition flux [MS11]. Additionally, Amin et al. showed that the structure forma-
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tion of anatase and rutile upon film growth is heavily dependent on the O2 flow due to the

corresponding energetic bombardment with high energy oxygen ions [AKW10].

The formation of O- ions, which are accelerated towards the growing film due to the negative

target potential, depend on the difference between ionization potential IMe of the metal and

the electron affinity of oxygen E ea
O [Cuo78]. The probability of the formation of O- ions due

to the transfer of an electron from the metal atom to an oxygen atom can hence be written

as

IMe −E ea
O . (7.1)

Ngaruiya et al. stated that metal oxides of group 5 and 6 elements tend to be amorphous

upon magnetron sputtering due to the damage caused by high energy O- ions accelerated

by a high target voltage. The target voltage shows a strong negative correlation to the num-

ber of negative oxygen ions, whose formation is most pronounced for group 4 elements and

decreases for elements of higher groups. Hence, group 5 and 6 elements show less, but more

energetic bombardment [NKMW04], which suppresses crystallization. In contrast to group

5 and 6 metal oxides, the bombardment with energetic O- ions deteriorates the anatase,

but promotes the rutile phase of TiO2 [AKW10]. Accordingly, doping of TiO2 with group 5

and 6 elements might promote the rutile phase upon film growth due to a higher bombard-

ment with O- ions. Zr and Hf on the other hand should lower the energy of the oxygen ions

and, consequently, lead to anatase films. These conclusions, however, are only based on ion

bombardment and do not consider the influence of the dopant in the resulting film itself.

To investigate the structure of the deposited films, grazing incidence X-ray diffraction (see

Sect. 4.1.2) experiments were performed. The resulting diffractograms for as-deposited (a/d)

films are plotted in Fig. 7.2 and Fig. 7.3 for dopants inhibiting and promoting the anatase to

rutile transformation, respectively. All films are X-ray amorphous, no peaks can be detected

in the diffractograms, independent of dopant and O2 flow.

Films investigated within this work were sputtered using similar process conditions (total

pressure, O2 flow, target-substrate distance) as those, which have been used by Amin et al.

[AKW10]. These conditions are likely to result in crystalline films, but still the as-deposited

films within this work exhibit no crystalline structure. Films showing different growth be-

haviors in different publications, normally have been sputtered using different deposition

chambers and target sizes, which is here the case, too. The geometry of the chamber as

well as the fact that for the samples produced within this work a rotating primary target was

utilized are therefore most likely to alter the process window for as-deposited crystalline

films.

78



Section 7.2: Structural properties of as-deposited samples

0

20

40

60
undoped

a/d

 

  A
(1

01
)

 R
(1

10
)

0.0 sccm, 110 nm
0.5 sccm,   92 nm
1.5 sccm,   99 nm
3.5 sccm, 112 nm
5.0 sccm, 112 nm

0

20

40

Zr−doped
a/d

 

 
0.0 sccm, 107 nm
0.5 sccm, 100 nm
1.5 sccm, 108 nm
3.5 sccm, 118 nm
5.0 sccm, 119 nm

0

20

40

Mo−doped
a/d

 

 
0.0 sccm, 111 nm
0.5 sccm, 111 nm
1.5 sccm, 122 nm
3.5 sccm, 140 nm
5.0 sccm, 134 nm

0

20

40

Hf−doped
a/d

 

 
0.0 sccm, 100 nm
0.5 sccm, 115 nm
1.5 sccm, 115 nm
3.5 sccm, 108 nm
5.0 sccm, 105 nm

0

20

40

Ta−doped
a/d

 

 
0.0 sccm, 123 nm
0.5 sccm, 113 nm
1.5 sccm, 127 nm
3.5 sccm, 118 nm
4.4 sccm, 124 nm

22 23 24 25 26 27 28 29
0

20

40

W−doped
a/d

Diffraction angle (°)

 

 
0.0 sccm, 127 nm
0.5 sccm, 116 nm
1.5 sccm, 130 nm
3.5 sccm, 127 nm
4.2 sccm, 122 nm

In
te

ns
ity

 (
cp

s)

Figure 7.2 | GI-XRD measurements of as-deposited TiO2 with ART-inhibiting dopants.
As-deposited (a/d) undoped and with anatase to rutile transformation-inhibiting elements
doped TiO2 thin films sputtered at different O2 flows after the transition point were mea-
sured by grazing incidence X-ray diffraction. All measurements are normalized to a back-
ground of 25 cps. The gray lines indicate the positions of the anatase (101) and rutile (110)
peak. All films are X-ray amorphous, no peaks of either anatase or rutile can be detected.

79



Chapter 7: Influence of dopants on structure and phase transformation of TiO2

0

20

40

60
undoped

a/d

 

  A
(1

01
)

 R
(1

10
)

0.0 sccm, 110 nm
0.5 sccm,   92 nm
1.5 sccm,   99 nm
3.5 sccm, 112 nm
5.0 sccm, 112 nm

0

20

40

V−doped
a/d

 

 
0.0 sccm,   98 nm
0.5 sccm,   97 nm
1.5 sccm, 102 nm
3.5 sccm, 110 nm
5.0 sccm, 103 nm

0

20

40

Cr−doped
a/d

 

 
0.0 sccm, 121 nm
0.5 sccm, 100 nm
1.5 sccm, 102 nm
3.5 sccm, 107 nm
5.0 sccm,   94 nm

0

20

40

Mn−doped
a/d

 

 
0.0 sccm, 108 nm
0.5 sccm,   92 nm
1.5 sccm,   96 nm
3.5 sccm, 116 nm
4.9 sccm, 104 nm

0

20

40

Cu−doped
a/d

 

 
0.0 sccm, 111 nm
0.5 sccm, 105 nm
1.5 sccm,   61 nm
3.5 sccm,   98 nm
5.0 sccm, 101 nm

22 23 24 25 26 27 28 29
0

20

40

Sn−doped
a/d

Diffraction angle (°)

 

 
0.0 sccm,   88 nm
0.5 sccm,   96 nm
1.5 sccm, 114 nm
2.5 sccm, 112 nm
3.5 sccm, 104 nm
4.8 sccm,   95 nm

In
te

ns
ity

 (
cp

s)

Figure 7.3 | GI-XRD measurements of as-deposited TiO2 with ART-promoting dopants.
As-deposited (a/d) undoped and with anatase to rutile transformation-promoting ele-
ments doped TiO2 thin films sputtered at different O2 flows after the transition point were
measured by grazing incidence X-ray diffraction. All measurements are normalized to a
background of 25 cps. The gray lines indicate the positions of the anatase (101) and ru-
tile (110) peak. All films are X-ray amorphous, no peaks of either anatase or rutile can be
detected.
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It might be interesting to investigate the influence of the utilized dopants on the structure

formation of films which exhibit an as-deposited crystalline structure, but unfortunately this

investigation is beyond the scope of this work and, consequently, in the following the focus

is on the structure evolution of as-deposited X-ray amorphous films upon annealing.

7.3 Phase transformation upon annealing

To analyze the influence of dopants on the phase transformation of as-deposited X-ray amor-

phous samples, grazing incidence X-ray diffraction measurements were performed for sam-

ples annealed at 300 ◦C and 700 ◦C with the anatase to rutile transformation-inhibiting and

-promoting dopants. The classification into phase transformation inhibitors and promoters

by Hanaor and Sorrell is based on the influence on the rigidity of the lattice against the cre-

ation or annihilation of oxygen vacancies as well as interstitials or substitutions with large

ionic radii. If the lattice is weakened this allows for a rearrangement of the atoms to trans-

form into rutile [HS11]. For an amorphous film, however, no lattice is available which could

be weakened or strengthened and the influence of dopants on the formation and growth of

grains can be investigated.

7.3.1 Anatase to rutile transformation-inhibiting dopants

The X-ray diffractograms plotted in Fig. 7.4 show the undoped samples as well as the sam-

ples doped with phase transformation-inhibiting elements, both of which were annealed at

300 ◦C. From the diffractograms, the heights of the anatase as well as the heights of the rutile

peaks were extracted, which are plotted in Fig. 7.5 as a function of the O2 flow after the tran-

sition point. Upon annealing of undoped TiO2 at 300 ◦C, a phase transition from amorphous

to anatase occurs. The height of the anatase peak is thereby connected to the O2 flow dur-

ing deposition. At the transition point the anatase peak of the undoped sample has a height

of about 200 cps which increases to about 250 cps at 1.5 sccm after the transition point. In-

creasing the O2 flow further leads to lower peaks, which decrease down to about 130 cps for

the sample sputtered at 5.0 sccm O2 flow after the transition point. For the samples sput-

tered at high O2 flows a broad rutile peak can be noticed, but the peak height is only 40 cps,

hardly visible within the background of 25 cps.

None of the samples could be distinguished by their diffractograms before annealing (see

Fig. 7.2) but tend to form different phases upon annealing. This behavior can be explained

by a different bombardment with high energy ions during film growth. As the phase forma-

tion of TiO2 is linked to the ratio between the ion energy flux to the growing film and the
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Figure 7.4 | GI-XRD measurements of TiO2 ann. at 300 °C with ART-inhibiting dopants.
Undoped and with anatase to rutile transformation-inhibiting elements doped TiO2 thin
films sputtered at different O2 flows after the transition point were annealed at 300 ◦C for
1 h and measured by grazing incidence X-ray diffraction. All measurements are normalized
to a background of 25 cps. The gray lines indicate the positions of the anatase (101) and
rutile (110) peak. The undoped, Zr-doped and Mo-doped films show a pronounced peak
of the anatase phase. Hf and Ta prevent any crystallization in the samples. W suppresses
the crystallization as well, however, a small anatase peak can be found for some W-doped
samples. Extracted peak heights are plotted in Fig. 7.5.
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Figure 7.5 | Peak heights of TiO2 annealed at 300 °C with ART-inhibiting dopants. The
height of the anatase (top) and rutile peaks (bottom), extracted from Fig. 7.4, are plotted as
a function of the O2 flow after the transition point with respect to the utilized dopants.

deposition flux [MS11], a change in O2 flow causes a change in deposition rate and O2 par-

tial pressure and by that a change of this ratio. At about 1.5 sccm after the transition point,

this ratio is ideal for the formation of anatase grains, as the peak height is at its maximum

for this flow. At higher O2 flows, the bombardment with high energetic ions leads to a for-

mation of rutile grains and a deterioration of anatase grains. However, these grains are too

small to cause constructive interference in X-ray diffraction and hence can not be detected

in the as-deposited film. Upon annealing these grains grow to a detectable size.

Doping of TiO2 with Zr and Mo leads to a slightly increased anatase peak compared to un-

doped TiO2 in the diffractograms after annealing at 300 ◦C. The samples doped with Mo

sputtered at high O2 flows are about 20 nm to 30 nm thicker than the undoped and Zr-doped

samples. Nevertheless, the higher peak is attributed to the influence of the dopant, since

the increased height is also found for the samples sputtered at lower O2 flows, which do not

show an increased thickness. For Zr and Mo, the decrease and increase of the anatase peak

height is similar to that of the undoped films as well as the evolution of the hardly visible

rutile peak (see Fig. 7.4 and Fig. 7.5). However, the rutile peak is much smaller for the sam-

ples doped with Mo, whereas the Zr-doped samples show peaks as broad and high as the

undoped ones. Zr is an inhibitor of the anatase to rutile transformation [HNO+03] and Mo

has been predicted to be one [HS11]. The inhibiting character of Zr is due to its ionic radius

of 0.86 Å in sixfold coordination, which constrains the anatase lattice and thereby inhibits a
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Table 7.1 | Comparison of ionic radii in sixfold coordination of ART-inhibiting dopants.
All phase inhibiting dopants used within this work have a larger radius than Ti upon substi-
tution with a valence of 4. From these Zr and Hf are the largest having an up to 15 % larger
radius compared to Ti. Mo, Ta and W are more likely to substitute with a valence greater
than 4, leading to the annihilation of oxygen vacancies and a decrease in radius. Neverthe-
less, Zr and Mo promote a formation of anatase at 300 ◦C, whereas Hf, Ta and W inhibit it.
Data taken from [Sha76].

Dopant Ti Zr Mo Hf Ta W

Radius Me4+ (Å) 0.75 0.86 0.79 0.85 0.82 0.80

Radius Me5+ (Å) 0.75 0.78 0.76

Radius Me6+ (Å) 0.73 0.74

phase transformation from anatase to rutile [Sha76, HS11], whereas Mo has a valence of 6

and therefore is likely to decrease the number of oxygen vacancies, which strengthens the

oxygen sub-lattice. A dopant with a large radius, like Zr, might also inhibit the transforma-

tion from amorphous to anatase, but this can not be observed in Fig. 7.4. The fact that the

rutile peak is smaller for the Mo-doped sample suggests that the valence of the dopant is

more important for the suppression of the rutile phase than the ionic radius. On the other

hand, Zr shows one of the lowest concentrations among all dopants investigated and the less

pronounced influence might also be connected to an insufficient concentration.

In contrast to the samples doped with Zr and Mo, which crystallize into anatase, the sam-

ples doped with Hf and Ta do not show any crystallization. The same is true for the sam-

ples doped with W sputtered at 0.5 sccm, 1.5 sccm and 3.5 sccm after the transition point,

whereas the samples sputtered at 0.0 sccm and 4.2 sccm after the transition point show a

small contribution of a crystalline anatase phase in their diffractograms (see Fig. 7.4 and

Fig. 7.5). As Hf, Ta and W have a valence of n ≥ 4 and ionic radii close to or larger than the ra-

dius of Ti, depending on their actual valence in the lattice (see Tab. 7.1), they should act like

Zr and Mo. In consequence, as the formation of the anatase phase is suppressed by Hf, Ta

and W, this must be due to other properties of the dopants or differences in the deposition

processes. The concentration of Mo and Zr is lower than the concentration of Hf, Ta and W

(see Fig. 7.1), but as the crystallization of the anatase phase is actually enhanced by Mo and

Zr, this is likely not to be the reason.

In Chap. 6, it has been shown that Hf, Ta and W increase the deposition rate of TiO2 by at

least 80 % by the so called sputter yield amplification effect (SYA). Consequently, the ratio

between the ion energy flux to the growing film and the deposition flux is reduced. In SYA,

heavy atoms in the target act as recoil centers, which reflect the recoiled atoms towards the

target surface [BBG+92] (see Sect. 3.3). If target atoms are recoiled, it is also very likely that

84



Section 7.3: Phase transformation upon annealing

Ar atoms, which have been neutralized at the target surface from Ar+, are recoiled as well.

The bombardment of the growing film with these Ar atoms could suppress a nucleation of

anatase grains. Furthermore, Ar atoms which are incorporated in the growing film might

lead to phase transformation-inhibiting Ar interstitials, due to their inertness, and hamper

a crystallization.

In Fig. 7.6, RBS measurements (see Sect. 4.3.1) of TiO2 films doped with Mo, Hf, Ta and W

as well as an undoped reference are shown. The dopant concentrations were determined

to 3.1 at.%, 2.7 at.%, 4.0 at.% and 3.9 at.% for doping with Mo, Hf, Ta and W, respectively. In

Fig. 7.6a a small Ar peak can be seen on the left side of the Ti peak for some of the films. A

magnification of this peak is shown in Fig. 7.6b for a better visibility of details. Upon dop-

ing with Hf, Ta and W the amount of Ar incorporated into the growing film is significantly

increased to values about 4 at.% compared to less than 1 at.% in the undoped sample. In

contrast, doping with Mo does not increase the Ar content in the film, even though the con-

centration of the dopant in the resulting film is higher than that of the Hf-doped film. This

finding is a confirmation of the bombardment with Ar atoms of the growing film, induced

by recoil of Ar+ ions at heavy dopant atoms in the target.

The anatase to rutile transformation-inhibiting dopants strengthen the anatase phase by

reducing the number of oxygen vacancies and constraining the lattice [HS11]. These prop-

erties do not hinder the transformation from amorphous to anatase, they even accelerate

it, as can be seen for Mo and Zr. If the dopants are heavy enough to provoke an Ar bom-

bardment of the growing film, this bombardment suppresses a crystallization of the anatase

phase due to the incorporation of Ar atoms in the resulting film, as can be seen for Hf and Ta.

W provokes an Ar incorporation as well, which reduces the crystallization, but a weak crys-

tallization remains. This can be explained due to the fact that W has the highest valence and

the smallest radius of these dopants and hence promotes the anatase phase strong enough

to allow the growth of some grains.

Additionally to the investigations of the annealing behavior at 300 ◦C, X-ray amorphous sam-

ples doped with phase transformation-inhibiting dopants were also annealed for 10 min at

700 ◦C and measured by grazing incidence X-ray diffraction, subsequently. The resulting

diffractograms are plotted in Fig. 7.7 and the extracted peak heights of the anatase as well as

the rutile peaks are plotted in Fig. 7.8.

Undoped films, which were sputtered using low O2 flows, crystallize to anatase, whereas

films sputtered using high O2 flows crystallize to a mixture of anatase and rutile, during an-

nealing at 700 ◦C. In comparison to the films annealed at 300 ◦C (see Fig. 7.4), the anatase

phase is less pronounced for the films sputtered at low O2 flows, which can be seen from
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a | RBS measurements of TiO2 doped with Mo, Hf, Ta, and W as well as an un-
doped reference.
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b | Zoom on the Ar peak of the measurements shown in (a).

Figure 7.6 | RBS measurements of TiO2 with different dopants. Upon doping with Hf,
Ta and W the amount of Ar incorporated into the growing film is significantly increased.
Without doping and upon doping with Mo, the Ar content is not increased. The heavy
dopant atoms reflect Ar atoms, neutralized at the target surface from Ar+, which bombard
the growing film and thus get incorporated as interstitials.
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Figure 7.7 | GI-XRD measurements of TiO2 ann. at 700 °C with ART-inhibiting dopants.
Undoped and with anatase to rutile transformation-inhibiting elements doped TiO2 thin
films sputtered at different O2 flows after the transition point were annealed at 700 ◦C for
10 min and measured by grazing incidence X-ray diffraction. All measurements are nor-
malized to a background of 25 cps. The gray lines indicate the positions of the anatase
(101) and rutile (110) peak. The transformation to rutile is suppressed for all dopants ex-
cept for the Zr-doped sampes sputtered at 5.0 sccm after the transition point, which can be
attributed to a low dopant concentration. The height of the anatase peak can be correlated
to the valence of the dopant, a higher valence results in a higher anatase peak. Extracted
peak heights are plotted in Fig. 7.8.
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Figure 7.8 | Peak heights of TiO2 annealed at 700 °C with ART-inhibiting dopants. The
height of the anatase (top) and rutile peaks (bottom), extracted from Fig. 7.7, are plotted as
a function of the O2 flow after the transition point with respect to the utilized dopants.

slightly lower peak heights (see Fig. 7.7 and Fig. 7.8), whereas the peak heights of the sam-

ples sputtered at 3.5 sccm and 5.0 sccm after the transition point are higher. The heights of

the anatase peaks of the samples annealed at 700 ◦C are maximal for O2 flows of 1.5 sccm and

3.5 sccm after the transition point, having a value of about 200 cps, whereas the peak height

of the undoped sample at 1.5 sccm after the transition point annealed at 300 ◦C reaches

250 cps. Annealing at either 300 ◦C for 1 h or 700 ◦C for 10 min results in equal anatase phases.

For O2 flows of 3.5 sccm and 5.0 sccm after the transition point, rutile peaks with peak heights

of about 40 cps and 60 cps, respectively, can be seen. As rutile peaks can only be seen for high

O2 flows, this must be connected to the existence of rutile grains in the X-ray amorphous

films induced by energetic bombardment during film growth. At 700 ◦C, existing anatase as

well as rutile grains grow and anatase can be transformed to rutile, whereas at 300 ◦C the

energy mainly provokes the growth of anatase grains. Consequently, a formation of a rutile

phase is more likely at high temperatures.

Zr, Mo, Hf, Ta and W are phase transformation-inhibiting dopants due to their valence and

ionic radii [HS11] (see Tab. 7.1) and therefore the transformation from anatase to rutile is

suppressed by these dopants. Only one small rutile peak can be seen in the diffractogram of

the Zr-doped film sputtered at 5.0 sccm O2 flow after the transition point. For the samples

annealed at 300 ◦C it was already discussed whether the crystallization of a rutile phase in the

Zr-doped samples is due to a low dopant concentration or the valence of 4. Here, Zr can be
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compared to Hf, which also has a valence of 4, but successfully suppresses a crystallization of

rutile. The formation of a rutile phase in the Zr-doped samples can, hence, be explained by

the low dopant concentration, which is still high enough to suppress the transformation to

rutile at 3.5 sccm after the transition point, but incapable of suppressing the transformation

from anatase to rutile as well as the growth of rutile grains at 5.0 sccm after the transition

point.

Doping with Hf, Ta and W leads to a suppression of the anatase phase during annealing at

300 ◦C due to the incorporation of Ar in the growing film. At 700 ◦C these Ar atoms cannot

suppress the formation of anatase any more and the anatase phase supporting character

of the dopant itself dominates the crystallization behavior, leading to pronounced anatase

peaks but no formation of rutile.

The height of the anatase peaks in Fig. 7.7 and Fig. 7.8 for the films sputtered at 1.5 sccm

and 3.5 sccm after the transition point can be linked to the valence of the dopant atoms.

The higher the valence, the higher the anatase peak. The highest peaks are found for films

doped with W, showing higher peaks than the undoped films, followed by films doped with

Mo, both having a valence of 6. The peak height of the anatase peaks of films doped with Ta

are in between the samples doped with Mo and Zr. Ta has a valence of 5, whereas Zr has a

valence of 4, which perfectly fits the peak height to valence correlation. The samples with the

least anatase peaks are the samples doped with Hf, which also has a valence of 4, showing

a peak height lower than 100 cps for all samples except the one sputtered at the transition

point.

The peak heights in a diffractogramm also scale with the thickness of the analyzed specimen,

but as the films doped with Mo, Ta and W are equally thick, this can not be the reason for the

different heights. The films doped with Zr and Hf are about 20 % thinner than those of the

other three dopants, still this is not enough to explain the difference in peak heights, which

are in a range of up to 300 %.

7.3.2 Anatase to rutile transformation-promoting dopants

V, Cr, Mn, Cu and Sn have been shown to promote the anatase to rutile transformation [ZR02,

Kar03, Mac75, SP65, KFN+07, MRS04] and were therefore chosen in this work to investigate

their influence on the phase transformation behavior of sputtered amorphous TiO2 films.

The diffractograms of undoped and with phase transformation-promoting elements doped

samples annealed at 300 ◦C are plotted in Fig. 7.9 and the extracted peak heights of the

anatase as well as the rutile peaks are shown in Fig. 7.10. Doping with V does not seem

to change the crystallization behavior of TiO2 at 300 ◦C, as there is no significant difference
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Figure 7.9 | GI-XRD measurements of TiO2 ann. at 300 °C with ART-promoting dopants.
Undoped and with anatase to rutile transformation-promoting elements doped TiO2 thin
films sputtered at different O2 flows after the transition point were annealed at 300 ◦C for
1 h and measured by grazing incidence X-ray diffraction. All measurements are normalized
to a background of 25 cps. The limits of the intensity scale of the diffractograms of the Sn-
doped samples (bottom) are adjusted to fit the data. The gray lines indicate the positions of
the anatase (101) and rutile (110) peak. Cr, Mn and Sn show a deterioration of the anatase
phase at high O2 flows, whereas Sn also promotes a crystallization of the anatase phase at
low O2 flows. Extracted peak heights are plotted in Fig. 7.10.
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Figure 7.10 | Peak heights of TiO2 annealed at 300 °C with ART-promoting dopants. The
height of the anatase (top) and rutile peaks (bottom), extracted from Fig. 7.9, are plotted as
a function of the O2 flow after the transition point with respect to the utilized dopants.

in the peak heights of undoped and V-doped TiO2. The concentration of V was difficult to

determine (see Sect. 7.1) and hence the missing influence might be due to a low dopant

concentration. The concentration of Cu in the films is low as well and a suppression of the

anatase phase upon doping with Cu can be seen only for the samples sputtered at 0.0 sccm

and 1.5 sccm after the transition point. Further analysis reveales that the Cu-doped film

sputtered at 1.5 sccm after the transition point has a thickness of only 61 nm, reducing the

intensity of the peak. All other films have the desired thickness of about 100 nm, limiting the

suppressing effect of Cu to the film sputtered at the transition point.

Cr and Mn show a deterioration of the anatase phase with increasing O2 flow, which simul-

taneously implies an increasing dopant concentration (see Fig. 7.1). At 5.0 sccm after the

transition point, this suppression leads to a film showing no anatase peak upon doping with

Cr and to a film showing only a weak anatase peak for doping with Mn at 4.9 sccm after

the transition point. With exception of the sample sputtered at 0.5 sccm after the transition

point, which shows only a small anatase crystallization, the peak heights of the Mn-doped

samples show a similar trend as the peak heights of the undoped samples, lowered by about

50-100 cps.

In contrast to all other dopants, Sn promotes the crystallization of the anatase phase at

1.5 sccm after the transition point, but then deteriorates it at higher O2 flows, leading to a
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Table 7.2 | Comparison of ionic radii in sixfold coordination of ART-promoting dopants.
V, Cr, Mn, Cu and Sn will only promote the transformation from anatase to rutile if they
substitute Ti with a valence of 2, according to Eq. 7.2. Data taken from [Sha76], no precise
value is provided for Sn2+ as the coordination is too irregular.

Dopant Ti V Cr Mn Cu Sn

Radius Me1+ (Å) 0.91

Radius Me2+ (Å) 0.93 0.87 0.81 0.87 >1.1

Radius Me3+ (Å) 0.78 0.76 0.72 0.68 1.10

Radius Me4+ (Å) 0.75 0.72 0.69 0.67 0.83

Radius Me5+ (Å) 0.68 0.63

nearly full suppression of the anatase phase at 4.8 sccm after the transition point. To verify

the maximum at 1.5 sccm after the transition point, another sample sputtered at 2.5 sccm

after the transition point was deposited and added to the comparison, showing a slightly

lower peak height.

For none of the dopants a pronounced rutile phase can be observed, however, the highest

rutile peaks can be seen for the Cr-doped samples sputtered at 3.5 sccm and 5.0 sccm after

the transition point. The transformation to rutile is not significantly promoted by V, Mn, Cu

or Sn at temperatures of 300 ◦C.

The anatase to rutile transformation-promoting or -inhibiting character of a dopant is pre-

dicted by Eq. 2.2 in Sect. 2.2.2, which distinguishes between a promoting radius rpromoter and

an inhibiting radius rinhibitor depending on the valence n of the dopant:

rpromoter < (−0.455n +2.045) Å < rinhibitor. (7.2)

As a consequence, an element has to have a radius rn=2 < 1.14Å or rn=3 < 0.68Å, to be an

anatase to rutile phase transformation-promoting dopant. The ionic radii for possible va-

lences of V, Cr, Mn, Cu and Sn upon substitution of Ti can be found in Tab. 7.2. Comparing

their radii reveals, that these elements will only promote the transformation from anatase to

rutile if they occur as Me2+.

Hanaor and Sorrell stated that Cr, Mn, Cu and Sn promote the anatase to rutile transfor-

mation as their most common valence is 2 and therefore increase the number of oxygen

vacancies [HS11], which allow an easier transformation to rutile by weakening the oxygen

sub-lattice [SP65]. From Fig. 7.9 and Fig. 7.10 it can be seen that these dopants do not only

promote a transformation from anatase to rutile in powders, but also suppress a crystal-

lization of the anatase phase in an amorphous sample, which can also be explained by a

weakening of the oxygen sub-lattice.
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Section 7.3: Phase transformation upon annealing

Mn is likely to change its valence from Mn4+ to Mn2+ above temperatures of 400 ◦C as oxygen

is released [WYMZ97, HS11], altering its character from inhibiting to promoting the anatase

to rutile transformation during annealing. In consequence, Mn should support the anatase

formation at 300 ◦C, but the opposite behavior is observed, leading to the conclusion that

Mn2+ already forms during sputtering or during annealing at 300 ◦C.

As Cr and Mn successfully deteriorate a crystallization of the anatase phase at high O2 flows

and V has no influence, it is most likely that Cr occurs in the amorphous film with a valence

of 2, like Mn, whereas V occurs with a higher valence, as long as the concentration of V is

assumed to be high enough to have an influence. XPS measurements can be performed to

investigate this further, but unfortunately this is beyond the scope of this work.

Cu only forms oxides with valences of 2 and 3, which both show radii promoting the phase

transformation from anatase to rutile. The interpretation of the behavior of the Cu-doped

samples is, however, difficult as an influence on the crystallization is only seen at the transi-

tion point. A more detailed analysis using several dopant concentrations and O2 flows would

be necessary to get a better insight into the influence of Cu doping on the crystallization be-

havior of TiO2. Unfortunately, this analysis could not be performed within this work and is

therefore proposed to be investigated in future works.

Although Sn has been reported to promote the anatase to rutile transformation [MRS04],

Chen et al. reported that Sn can substitute Ti in anatase Nb-doped TiO2 films up to concen-

trations of 30 % [CFH+07]. If forming the anatase phase, the substitution is most likely to be

performed as Sn4+, having the smallest ionic radius. Besides, smaller valences would also

weaken the oxygen sub-lattice due to a generation of oxygen vacancies. The strong deteri-

oration of the anatase phase for higher O2 flows suggests that the promotion of the anatase

crystallization only occurs at a specific combination of dopant content and energetic flux to

the growing film, which leads to the formation of more anatase grains. Using different de-

position parameters might lead to the incorporation of Sn as an interstitial or as Sn2+, which

hinders a formation of anatase grains as well as a crystallization of the anatase phase.

Additionally to the investigations of the annealing behavior at 300 ◦C, X-ray amorphous sam-

ples doped with phase transformation-promoting elements were also annealed for 10 min

at 700 ◦C and measured by grazing incidence X-ray diffraction, subsequently. The resulting

diffractograms are plotted in Fig. 7.11 and the extracted peak heights of the anatase as well

as the rutile peaks are shown in Fig. 7.12.

For all samples annealed at 700 ◦C, which were doped with anatase to rutile transformation-

promoting elements, a deterioration of the anatase phase as well as an evolution of a rutile

phase can be observed at high O2 flows.
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Figure 7.11 | GI-XRD measurements of TiO2 ann. at 700 °C with ART-promoting dopants.
Undoped and with anatase to rutile transformation-promoting elements doped TiO2 thin
films sputtered at different O2 flows after the transition point were annealed at 700 ◦C for
10 min and measured by grazing incidence X-ray diffraction. All measurements are nor-
malized to a background of 25 cps. The limits of the intensity scale of the diffractograms
of the Sn-doped samples (bottom) are adjusted to fit the data. The gray lines indicate the
positions of the anatase (101) and rutile (110) peak. Upon doping a deterioration of the
anatase phase is observed and a rutile peak evolves with increasing O2 flow. In contrast to
all other dopants, Sn, which also deteriorates the anatase phase at high O2 flows, promotes
it at 1.5 sccm after the transition point, resulting in the highest anatase peak of all measured
samples. Extracted peak heights are plotted in Fig. 7.12.
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Figure 7.12 | Peak heights of TiO2 annealed at 700 °C with ART-promoting dopants. The
height of the anatase (top) and rutile peaks (bottom), extracted from Fig. 7.11, are plotted
as a function of the O2 flow after the transition point with respect to the utilized dopants.

For Cr this trend is very pronounced starting with a pure anatase film at the transition point.

With increasing O2 flow the anatase peak first increases slightly at 0.5 sccm after the transi-

tion point, as it has already been seen for the undoped films, and then decreases to very low

values already at 1.5 sccm after the transition point, whereas the rutile peak simultaneously

evolves ending in a pure rutile film with a higher peak height and a broader width than the

undoped film sputtered at 5.0 sccm O2 flow after the transition point. For Mn the evolution

of the peak is similar to that of the Cr-doped samples, besides the fact that the deterioration

of the anatase peak and the promotion of the rutile peak are less. Still, the peak height of the

rutile peak is slightly higher than that of the undoped sample. As the concentration of Mn is

higher than the concentration of Cr (see Fig. 7.1), Cr is obviously more effective in promoting

the crystallization of rutile.

For the samples doped with V and Cu, it can clearly be seen that the anatase peaks of the

samples sputtered at 1.5 sccm and 3.5 sccm after the transition point are significantly sup-

pressed. At 1.5 sccm after the transition point this might again be correlated to a decreased

thickness of the Cu-doped sample, whereas all other samples, including the V-doped ones,

are of about 100 nm. At the highest O2 flow of 5.0 sccm after the transition point, however,

the samples doped with V and Cu show a pronounced anatase and rutile peak and no change

to the undoped films can be seen in the diffractograms. Cu shows the least dopant concen-

tration of all anatase to rutile transformation-inhibiting dopants analyzed and the concen-
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Chapter 7: Influence of dopants on structure and phase transformation of TiO2

Table 7.3 | Comparison of rutile structures of different materials. Lattice parameters and
threshold of the crystallization temperature TC . VO2 forms rutile only above 65 ◦C, below it
undergoes a monoclinic deformation to the MoO2-type structure [KN79].

Material a-axis (Å) c-axis (Å) TC (◦C)

TiO2 4.594 [BHM+87] 2.959 [BHM+87] < 600 [HS11]

VO2 4.553 [KN79] 2.849 [KN79] < 400 [MY06]

CrO2 4.423 [SREF09] 2.918 [SREF09] < 260 [EGK+98]

MnO2 4.398 [RSSG69] 2.874 [RSSG69] < 450 [CWW47]

SnO2 4.738 [Lid97] 3.188 [Lid97] < 550 [GK74]

tration of V was difficult to determine. Therefore, the less pronounced trend within these

series is likely to be correlated to the dopant concentration. This has to be kept in mind

during the following discussion.

As it has already been seen for the annealing of the Sn-doped samples at 300 ◦C, doping

with Sn also causes a special behavior for the samples annealed at 700 ◦C. At 1.5 sccm af-

ter the transition point the anatase phase is significantly promoted by Sn, in contrast to all

other dopants, leading to a peak height of about 350 cps. This is the highest anatase peak

measured. The undoped sample sputtered at 1.5 sccm after the transition point for example

only shows a peak height of about 200 cps. This O2 flow has already been shown to be suited

for the formation of anatase grains, but doping with Sn amplifies the formation additionally.

However, for higher O2 flows doping with Sn does not promote the anatase phase, it even

deteriorates it, and the behavior is similar to that of Mn and Cr, leading to the assumption

that Sn substitutes the lattice as Sn4+ only at this specific O2 flow and concentration, whereas

it is incorporated as Sn2+ otherwise. By use of XPS measurements this may be investigated

experimentally, but one has to keep in mind, that different atmospheres as well as the use of

an argon gun, may have a major influence on the valence of Sn.

In general, all anatase to rutile transformation-promoting dopants seem to have an anatase

phase deteriorating character, as could already be seen from the annealing experiments at

300 ◦C. Nevertheless, only Cr shows a real promotion of the rutile phase. The rutile peak

of the Cr-doped sample sputtered at 5.0 sccm O2 flow after the transition point is higher

than the peaks of the samples doped with Mn and Sn sputtered at 4.9 sccm and 4.8 sccm O2

flow after the transition point, respectively, which show about the same peak height as the

undoped sample .

The formation of rutile grains is more likely for a dopant which itself is able to crystallize

into rutile or a crystal structure similar to rutile. Cu occurs as Cu1+ and Cu2+ only and will

not form a crystal with a stoichiometry of CuO2. V, Cr, Mn and Sn on the other hand do form
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Section 7.3: Phase transformation upon annealing

rutile crystal structures with similar lattice parameters to TiO2, as can be seen in Tab. 7.3. The

crystallization temperatures of these phases are lower than the crystallization temperature

of the rutile phase of TiO2, which may allow a rutile grain to form earlier during annealing.

Additionally, anatase grains can be transformed to rutile during annealing, using the mech-

anisms discussed by Hanaor and Sorrell [HS11]. As CrO2 has the lowest crystallization tem-

perature , this dopant will increase the probability of the formation of rutile grains, which is

in line with the promotion of the rutile phase observed in the annealing experiments.

In summary, it has been shown that the phase formation and transformation of serial co-

sputtered TiO2 can be controlled by use of different dopants, even though no dopant has

been found to alter the degree of crystallinity of as-deposited TiO2 samples. Thermally sta-

ble TiO2 thin films can be deposited upon doping with Hf, Ta and W, suppressing any crys-

tallization at 300 ◦C, whereas doping with Mo can be employed to produce films that crys-

tallize to anatase only. In addition, doping with Mo, Hf, Ta, and W inhibits a transformation

to rutile at 700 ◦C. If high refractive indexes are favored, the use of Cr as a dopant allows the

crystallization of films sputtered at high O2 flows into pure rutile films at 700 ◦C.
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Chapter 8

Carbon print target

Multi-component metal oxides can be sputtered using compound targets, reactive co-sput-

tering or reactive serial co-sputtering (see Sect. 3.1). While compound targets are limited

to the stoichiometry of the target used, co-sputtering and serial co-sputtering offer the pos-

sibility to tailor the stoichiometry of the resulting films. Nevertheless, depositing an exact

stoichiometry in those processes is challenging since sputter yields are strongly dependent

on the O2 partial pressure in the chamber (see Chap. 6).

Ordinary co-sputtering of different targets at the same time is usually connected with an ex-

change of atmospheres and thereby a change in deposition rate of a least one of the compo-

nents [MR99]. In serial co-sputtering, where gas separation can be achieved, the stoichiom-

etry will change if the deposition rate of the primary or one of the auxiliary targets changes.

If more material is sputtered onto the primary target this can and will change the oxygen

consumption of the primary process and by this the deposition rate of the primary target

itself, which will result in a nonlinear change of stoichiometry with respect to the deposition

rate of the secondary process. Sputtering multi-component oxides with high stoichiometry

precision therefore needs a lot of calibration work and time.

In this chapter, a new way of sputtering complex oxides by use of a carbon print target is

proposed and the functional capability is proven by sputtering of TiO2 via a carbon target.
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Figure 8.1 | Schematic of sputtering TiO2 using the print target concept. A metal is sput-
tered onto the rotating carbon target in pure Ar atmosphere and the metal covered carbon
target is simultaneously sputtered in reactive Ar/O2 atmosphere in the primary volume.
The sputtered atoms react with oxygen and MexOy as well as CO2 is formed. Some CO2

molecules will be incorporated into the growing film, but the majority will be pumped out
due to their gaseous nature, resulting in a weakly C-doped MexOy film.

8.1 Concept

The carbon print target concept uses serial co-sputtering to deposit a metal oxide via a car-

bon target. The primary carbon target is sputtered in Ar/O2 atmosphere and is simultane-

ously coated by an auxiliary cathode with a metal as is illustrated in Fig. 8.1.

If carbon is sputtered in a reactive O2 atmosphere the deposition rate decreases drastically.

The existence of oxygen enables the reaction

C+O2 −→ CO2. (8.1)

CO2 is mainly pumped out of the chamber and by that the sputtered carbon atoms do not

add to the deposition rate. If metal atoms are sputtered together with carbon, these atoms

react with oxygen as well and non-gaseous metal oxide molecules are formed

x ·Me+C+
(
1+ y

2

)
O2 −→ Mex Oy +CO2. (8.2)

The resulting metal oxide molecules Mex Oy condense on the substrate. Some CO2 molecules

will be incorporated into the growing film, but the majority will be pumped out due to their

gaseous nature, resulting in a weakly C-doped Mex Oy film.

As long as the erosion rate at the main target is high enough to sputter all metal atoms which

are deposited from the auxiliary cathode on the rotating target and the O2 partial pressure is
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Section 8.2: Sputtering carbon in reactive atmosphere

Table 8.1 | Deposition rates of carbon sputtered in Ar/O2 atmosphere. The deposition
time was 3600 s for all samples. For sample number 4 the deposition rate is 100 times lower
than that of pure carbon (0.15 nm/s), indicating that nearly all carbon is oxidized to CO2

and pumped out of the chamber. The decreasing thickness indicates that there was some
residual metal left in the target from prior experiments.

Number Thickness (nm) Rate (nm/s) Density (g/cm3)

1 9.4 0.0026 4.3

2 7.4 0.0021 3.8

3 6.4 0.0018 3.9

4 5.4 0.0015 3.9

high enough to enable the oxidation of all sputtered carbon and metal atoms, the deposition

rate of the metal oxide can be varied in situ by changing the metal deposition rate, being a

linear function of the auxiliary target power.

8.2 Sputtering carbon in reactive atmosphere

To prove the functionality of the print target concept, it is necessary to show that sputtering

of carbon in a reactive atmosphere leads to a drastically lowered deposition rate. All carbon

atoms should be pumped out of the chamber in the form of CO2 as long as enough oxygen

is present for maintaining the complete reaction of all carbon atoms to CO2.

After sputtering Nb-doped carbon films, the auxiliary cathode was switched off and four

films were sputtered onto silicon substrates in oxygen rich reactive Ar/O2 atmosphere using

35 sccm O2 flow. The films were deposited one after each other, for 3600 s each, without any

co-deposition. The resulting films were measured by X-ray reflection (see Sect. 4.1.1) and

subsequently fitted to determine film thicknesses and densities (see Tab. 8.1).

The deposition rate decreases from 0.0026 nm/s to 0.0015 nm/s with increasing sample num-

ber. For the last sample, this is already a 100 times lower deposition rate compared to carbon

sputtered in Ar atmosphere [SRP+14]. The decreasing deposition rate over time indicates

that the deposited films consist of Nb2O5 formed from Nb, which was left in the target from

previous experiments. During sputtering some of the Nb atoms get re-implanted into the

target surface instead of being removed [BBG+92, KSA+12] and the dopant concentration in

the top layer of the target decreases only slowly with time.

The determined density of 4.3 g/cm3 for the first film matches the density of DC sputtered

Nb2O5 thin films [KFRS99]. The remaining films show lower densities of 3.8 g/cm3 and
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Chapter 8: Carbon print target

Table 8.2 | Determined thicknesses of TiO2 sputtered using the carbon print target. The
rate is only dependent on the discharge power used at the auxiliary cathode.

Auxiliary Power (W) Deposition time (s) Thickness (nm) Rate (nm/s)

0 3600 5.4 0.002

200 3600 38.8 0.011

300 3600 53.5 0.015

300 10000 160.1 0.016

3.9 g/cm3. This can either be explained by an increasing carbon content in the resulting

films or might just be originated in the lower thicknesses, as very thin films often show a

decreased density due to their growth behavior in early stage of film formation [Mül86].

The results show that nearly no carbon is deposited upon sputtering a carbon target in re-

active atmosphere. The serial co-sputtering concept is therefore suitable for being used to

sputter a metal oxide using the carbon target as a print target.

8.3 TiO2 via carbon print target

As nearly no carbon reaches the substrates upon sputtering of carbon in reactive atmo-

sphere, the functionality of the print target approach can now be tested by adding metal

atoms to the process. Ti was chosen to be sputtered onto the rotating carbon target, lead-

ing to a deposition of TiO2. As all Ti atoms, which are sputtered from the carbon target in

the primary process, originate from the deposition onto the rotating target in the auxiliary

process, the deposition rate of TiO2 should be a linear function of the auxiliary power.

Titanium was sputtered onto the rotating carbon cathode using aperture L and auxiliary

powers of 200 W and 300 W. Accordingly, Ti and carbon were sputtered in the primary ero-

sion zone transforming to CO2 and TiO2. Deposition times of 3600 s in case of 200 W aux-

iliary power and 3600 s or 10000 s in case of 300 W auxiliary power were used. Deposition

rates were deduced from ellipsometry measurements and are summarized in Tab. 8.2. It can

be seen that the deposition rate of TiO2 changes linearly with the auxiliary power indepen-

dent of the discharge current of the rotating target, which was kept constant, proving the

concept of the print target. The process is considered to be stable since longer deposition

times result in thicker films but unchanged deposition rate.

To analyze the amount of carbon, which was incorporated into the films during deposition,

XPS measurements (see Sect. 4.3.3) of the thickest film were performed and are shown in

Fig. 8.2. The sample was measured as-deposited and after different sputter cleaning times
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Figure 8.2 | XPS stoichiometry measurements of TiO2 sputtered via carbon print target.
The sample was measured as-deposited and after different sputter cleaning times by use of
an Ar gun, to remove residual carbon on the surface and to probe a depth profile and finally
the bulk composition. The sputter cleaning time of the Ar gun is a measure for the depth.
Elemental Ti and oxygen concentrations match the stoichiometry of TiO2.

by use of an Ar gun, to remove residual carbon on the surface and to probe a depth pro-

file and finally the bulk composition. At the surface, the contamination of the film is quite

high, showing a carbon concentration of about 25 at.%, but after 750 s of sputtering a bulk

composition of only 3.1 at.% is determined. Elemental Ti and oxygen concentrations match

the stoichiometry of TiO2. During the deposition process only a small amount of carbon is

incorporated in the resulting TiO2 film.

As this is only a first proof of the carbon print target concept, the oxygen partial pressure and

the auxiliary power were not optimized for a low carbon content. Increasing the auxiliary

power should further decrease the carbon content and thus result in a purer TiO2 film. In the

future, this method can therefore, by use of several auxiliary cathodes, be used to produce

complex multi-component oxides with high stoichiometry precision if a small amount of

carbon can be neglected.
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Conclusion

Serial co-sputtering offers an unrivaled flexibility as well as in situ control of the dopant con-

tent and has therefore been utilized in this work to systematically investigate the influence

of different dopants on the sputter processes and film properties of carbon and TiO2, with

respect to deposition rate, refractive index and phase formation.

Deposition rates of carbon can be significantly increased by target doping with Nb and W.

At a dopant concentration of 3 at.%, Nb increases the deposition rate of carbon by 130 %,

whereas W increases it by 280 %. Due to its higher mass, W is more effective than Nb, even

though Nb can significantly increase the deposition rate of carbon, too. TRIDYN simulations

have been performed which reproduce the experimental data. These simulations indicate

that saturation might occur at higher dopant concentrations, which have not been reached

in the experiments. Additionally, the experiments performed find evidence for very long

residual times of the dopant in the target as a result of recoil implantation.

Doping with Hf, Ta and W increases the deposition rate of TiO2 by 115 %, 80 % and 110 %

at the transition point, respectively, whereas Pb and Bi, due to their low surface binding

energies, are not capable of increasing the deposition rate significantly. The large rate en-

hancement upon doping of TiO2 with Hf can not be predicted by surface binding energies

or densities. Yet, thermodynamic considerations reveal that the formation of TiO2−x subox-

ides, resulting in a more metallic target surface, a lower target voltage and consequently a

higher sputter yield of Ti, is the origin of this impressive effect. Using HiPIMS, the rate am-

plification can be further enhanced. Optical emission spectroscopy reveals that in HiPIMS

the dopant atoms get ionized and are accelerated towards the target resulting in a deeper

implantation depth and by that a more effective sputter yield amplification.

Additionally to the rate enhancement, refractive indexes of TiO2 upon doping with sputter

yield amplifying elements have been analyzed. The refractive index of TiO2 is slightly low-

ered upon heavy element doping. Nevertheless, the highest refractive indexes are achieved

next to the transition point, which is ideal for industrial applications as rates and sputter
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yield amplification are maximal at this point, giving a clear concept for high rate, high index

TiO2 thin films.

The phase transformation of amorphous TiO2 can be controlled by doping with different

elements, even though no dopant has been found to alter the degree of crystallinity of as-

deposited TiO2 samples. The transformation behavior of doped TiO2 can be linked to the

valence and ionic radius of the dopant as well as the incorporation of Ar in the growing film.

Thermally stable TiO2 thin films can be deposited upon doping with Hf, Ta, and W, suppress-

ing any crystallization at 300 ◦C, whereas doping with Mo can be employed to produce films

that crystallize to anatase only. In addition, doping with Mo, Hf, Ta, and W inhibits a trans-

formation to rutile at 700 ◦C, whereas the use of Cr as a dopant allows the crystallization into

pure rutile films, if high refractive indexes are favored.

Finally, the functionality of the carbon print target concept has been proven. Sputtering a

doped carbon target in reactive Ar/O2 atmosphere leads to the deposition of a metal oxide,

matching the stoichiometry of the dopants. Only a small amount of carbon is found in the

resulting film. Using several auxiliary cathodes in serial co-sputtering, this method can be

utilized to produce complex multi-component oxides with high stoichiometry precision.

In this work, the potential of serial magnetron co-sputtering has been used to tailor the pro-

cess conditions and film properties of carbon and TiO2. The results presented add to the

understanding of the sputter yield amplification effect and the crystallization and transfor-

mation behavior of doped TiO2 thin films, allowing for a tailoring of their properties with

respect to the desired field of application. The results can be readily used for deposition of

doped TiO2 and carbon based thin films in industrial applications.
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Outlook

Although the results of this work can be readily used for deposition of doped TiO2 and car-

bon based thin films in industrial applications, the findings give rise to various follow-on

experiments, investigations, considerations and scientific questions.

Target doping by heavy elements has been shown to increase the deposition rate of carbon

and TiO2. While the increase in deposition rate of carbon is as predicted and, hence, should

be similar for other non-oxides, it was necessary to extend the model to explain the increase

in deposition rate of TiO2 by thermodynamic considerations. A major question is whether

this model remains its applicability if transferred to the deposition of other oxides. Conse-

quently, the systematic investigation of sputter yield amplification of other oxides by doping

with Hf in comparison to other heavy element doping is proposed here.

Furthermore, the doping with heavy elements leads to an increased bombardment of the

growing film by neutral Ar ions. These Ar ions are incorporated and inhibit a phase transfor-

mation in case of TiO2 and lead to a densification upon sputtering of carbon. This effect of

densification may alter the mechanical properties of the carbon films, which have not been

investigated in the scope of this work. Additional measurements on hardness and wear re-

sistance of the doped carbon films would complete the picture.

Several dopants have been shown to alter the crystallization behavior of TiO2. Nevertheless,

so far, any information in this work on how these atoms are incorporated as well as their

valance state in the lattice has been derived from literature. X-ray absorption fine structure

(EXAFS) as well as XPS measurements of doped TiO2 thin films would give a deeper un-

derstanding of the underlying microscopic mechanisms and bondings. These results could

then be used to tailor the sputter process and consequently to control the structure forma-

tion of the deposited films to an even higher extend.

All TiO2 films investigated in the frame of structure evolution upon doping in this work ex-

hibit an as-deposited amorphous structure. By use of different discharge parameters, sput-
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ter chamber geometries, target sizes and discharges, the energy transferred to the growing

film and by that the as-deposited crystal structure can be significantly altered. HiPIMS depo-

sition for example offers the possibility to sputter as-deposited rutile films. Combining the

advantages of HiPIMS with the results of this work may increase the degree of crystallinity

and by that the optical and mechanical properties of as-deposited TiO2. Especially the com-

bination of deposition of TiO2 utilizing HiPIMS and Cr-doping, which has been shown to

significantly increase the rutile content upon heating of DC sputtered films, shall be pro-

posed here.

Using several auxiliary cathodes in serial co-sputtering in combination with a carbon target

in reactive Ar/O2 atmosphere, complex multi-component oxides with high stoichiometry

precision can be sputtered. In this work, the basic concept has been proven by sputtering

TiO2, but the sputtering of a multi-component oxide still remains. A good candidate for

future experiments would be Mayenite (Ca12Al14O33).

In summary, serial co-sputtering, which offers a versatile method for the systematic inves-

tigation of dopants, alloys and oxides, will be an important contribution to future mate-

rial research in terms of tailoring optical, structural as well as mechanical properties of thin

films.
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Appendix A

List of acronyms and abbreviations

The following acronyms and abbreviations, listed in alphabetically order, have been used in

this work. Quantity symbols are not listed.

a/d as-deposited

Al2O3 aluminium oxide / alumina

Ar argon

ART anatase to rutile transformation

BCA binary collision approximation

Bi bismuth

C carbon

COSMOS serial co-sputtering for functional multi component thin films

Co cobalt

Cr chromium

CrO2 chromium dioxide

Cu copper

CVD chemical vapor deposition

DC direct current

DDG digital direct gate

DOS density of states

EDX energy-dispersive X-ray (spectroscopy)

EPMA electron probe microanalyzer (spectroscopy)

EXAFS extended X-ray absorption fine structure

III



Appendix A: List of acronyms and abbreviations

Fe iron

Hf hafnium

HfO2 hafnium dioxide / hafnia

HiPIMS high power impulse magnetron sputtering

H2O water

HPPMS high-power pulsed magnetron sputtering

ICCD intensified charge-coupled device

Me metal

Mex Oy metal oxide

Mo molybdenum

MoO2 molybdenum dioxide

Mn manganese

MnO2 manganese dioxide

Nb niobium

Nb2O5 niobium pentoxide

O2 oxygen

OES optical emission spectroscopy

Pb lead

pDC pulsed direct current (magnetron sputtering)

RBS rutherford backscattering spectrometry

RF radio frequency (magnetron sputtering)

Si silicon

Ta tantalum

Ta2O5 tantalum pentoxide

TCO transparent conductive oxide

Ti titanium

TiO2 titanium dioxide / titania

TiO2−x titanium suboxide

TP transition point

UV ultraviolet

UV-VIS ultraviolet-visible

V vanadium

VO2 vanadium dioxide

W tungsten

IV



WO3 tungsten trioxide

SBE surface binding energy

Sn tin

SnO2 tin dioxide

SYA sputter yield amplification

XPS X-ray photoelectron spectroscopy

XRD X-ray diffraction

XRR X-ray reflectivity

Zr zirconium

ZrO2 zirconium dioxide / zirconia
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Appendix B

Dopant deposition rates

In this work, carbon and TiO2 thin films have been doped by various elements using serial

co-sputtering (see Sect. 3.1.1). The amount of dopant incorporated in the resulting film has

been controlled by adjusting the dopant deposition rate R onto the rotating target using

different auxiliary powers Paux and apertures.

R = r ′ ·Paux · fAP = r ·Paux (B.1)

where r ′ is the material specific dopant deposition rate per power and fAP is the geometry

factor of the aperture. Both values are included in the material specific dopant deposition

rate per power and aperture r .

If auxiliary power and aperture are known, an experiment can be reproduced, resulting in

the same dopant deposition rate. However, different apertures can lead to the same dopant

deposition rate onto the rotating target if matching auxiliary powers are used. The dopant

deposition rate is therefore sufficient to describe the doping process, allowing for a repro-

duction of the experiments, without knowing the utilized aperture and auxiliary power.

However, sputtering different dopants with the same deposition rate will not necessarily

lead to the same number of atoms deposited onto the rotating cathode if the atom densities

of the dopants are different. In this case, the densities % and the atomic masses M of the

dopants need to be known to calculate the atom rate (number of deposited atoms per time,

area and aperture) Ṅ .

Ṅ = R · %
M

(B.2)
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Appendix B: Dopant deposition rates

Table B.1 | Density and deposition rates of different dopants onto the rotating target.
Density and thickness values have been determined by XRR and the material specific de-
position rate per power and aperture as well as the number of deposited atoms per time,
area and aperture have been calculated using Eq. B.4 and Eq. B.5.

Material Aperture Deposition rate
(nm/Wh)

Norm. atom rate
(nmol/cm2Wh)

Cu L 1.14 1.59

Nb L 0.48 2.61

Hf L 0.99 5.55

Ta L 0.70 4.45

W L 0.52 3.95

Pb M 0.88 2.59

Bi M 0.58 2.74

Unfortunately the density of a sputtered thin film can be significantly different to that of the

bulk material and densities need to be measured for each dopant.

In practice, deposition rates are calculated by measuring the thickness d of a deposited layer,

since used auxiliary power Paux and deposition time t are known:

R = d

t
(B.3)

r = R

Paux
= d

t ·Paux
, (B.4)

If the density % of the deposited film is known the atom rate Ṅ can then be calculated using

Eq. B.2. For reproduction purposes it is useful to normalize the atom rate to the auxiliary

power Paux used during the experiment:

ṅ = Ṅ

Paux
= d ·%

t ·M ·Paux
(B.5)

The deposition rates of different dopants were determined by exchanging the primary target

with a substrate holder in order to sputter on glass substrates instead of the rotatory target.

The resulting samples were analyzed by XRR (see Sect. 4.1.1) and the material specific depo-

sition rates per power and aperture r as well as the normalized atom rate ṅ were calculated.

Summarized values can be found in Tab. B.1.

VIII



Appendix C

Optical emission lines

Spectral emission lines assigned within this work are summarized in Tab. C.1. The orbital

transitions are given using the Russell-Saunders term symbol [RS25] of multi-electron atoms.

Table C.1 | Spectral emission lines assigned within this work. Wavelenth, species, oribital
transition and reference are provided. Data taken from [KRRN13].

Wavelength Species, Transition Referenz

239.710729 W II, 5d5 6S5/2 −→ 5d4(5D)6p 6F◦
7/2

[EKM00]

244.016470 Ti II, 3d3 b 2D23/2 −→ 3d(2D)4s4p(3P◦) w 2D◦
3/2

[RVC75]

245.043470 Ti II, 3d3 b 2D25/2 −→ 3d(2D)4s4p(3P◦) w 2D◦
5/2

[RVC75]

246.652281 W II, 5d4(5D)6s 6D3/2 −→ 5d4(5D)6p 6F◦
5/2

[EKM00]

247.779535 W II, 5d4(5D)6s 6D9/2 −→ 5d3(4F)6s(5F)6p 6G◦
9/2

[EKM00]

248.923 W II, 5d4(5D)6s 6D7/2 −→ 5d4(5D)6p 6F◦
7/2

[EKM00]

249.747880 W II, 5d4(5D)6s 6D9/2 −→ 3s23p4(3P)5p 2P◦
7/2

[EKM00]

249.968342 W II, 5d5 6S5/2−→ 3s23p4(1D)4d 2F5/2 [EKM00]

251.55932 Ar II, 3s23p4(3P)4p 2P◦
1/2

−→ 3s23p4(1D)4d 2P1/2 [WAC+95]

251.743134 Ti II, 3d3 b 4F7/2 −→ 3d2(3P)4p y 4D◦
7/2

[PTP01]

253.6521 Hg I, 5d106s2 1S0 −→ 5d106s6p 3P◦
1 [SSR96]

368.51921 Ti II, 3d2(3F)4s a 2F5/2 −→ 3d2(3F)4p z 2D◦
3/2

[Int28]

Ti II, 3d2(3F)4s a 2F7/2 −→ 3d2(3F)4p z 2D◦
5/2

375.92915 Ti II, 3d2(3F)4s a 2F7/2 −→ 3d2(3F)4p z 2F◦
7/2

[DK80]

811.5311 Ar I, 3s23p5(2P◦
3/2

)4s 2[3/2]◦2 −→ 3s23p5(2P◦
3/2

)4p 2[5/2]3 [Nor73]
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