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Introduction

In his Fundamenta nova theoriae functionum ellipticarum [12], C.G.]. Jacobi studied the classical
theta function, i.e.

O(z,w) =Y pri(mz2mw) e gy e
meZ

as it is written nowadays. It obeys two substantially different transformation laws, namely

mtiw?
o (_1,E> —e¢: - \/% 8(z,w), d(z+2,w)="70(zw),

of modular type as well as
Nz, w+az+b) = p—i(a?z42aw) ¥(z,w), a,beZ,

of elliptic type. The latter can be interpreted as a certain invariance property of ¢(z, w) with
respect to the lattice Z = (Z,x?), i.e. the abelian group Z with underlying quadratic form
x?,x € Z. Higher dimensional generalizations of such forms were studied for example by
G. Shimura [24]. The upper half-plane H is replaced by an analog of higher degree, namely
the Siegel upper half-space H,, and C by a matrix space C"*". The invariance property of
elliptic type will then be considered with respect to a lattice in Q"*". In the casen = r =1,
a systematic treatment of functions ¢ : H x C — C being holomorphic and satisfying both
a transformation law of modular and elliptic type, so-called Jacobi forms, was initiated by
M. Eichler and D. Zagier in their monograph [8]. V.A. Gritsenko [9] studied the case n =1
and arbitrary r and lifting constructions to orthogonal modular forms. C. Ziegler [27] took up
again the work of Shimura in order to develop a theory of Jacobi forms of higher degree in
the spirit of [8]. In this thesis we will drop the modularity condition and focus on functions
satisfying a transformation law of elliptic type. Therefore we introduce the general setting:

Let L = (L,Q) be a positive definite and even lattice, i.e. L is a free Z-module of finite
rank and Q : L — INj denotes some definite quadratic form on L. Let L") := L1*" and
ng) := L") ®7 C together with

QWL — sym}(z), QM ():=3(B(1)),;.
forl = (Iy,...,1y) € L") where B is the bilinear form associated to (L, Q). We will study

complex-valued holomorphic functions ¢ : H,, X LO(:n) — C satistying the elliptic transforma-

tion law

¢(Z,W—|—ZZ—{—Z,) _ efzﬂ'l-tr(Q(ﬂ)(l).Z+B(7l>(l,W)) '¢(Z’ W), l, I c L(n),
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for (Z,W) € H, x Lo(:n). These functions are called elliptic of degree n and index L and the set
of such functions is denoted by £ (L). The generic case is given by L = (Z’, S[x]), where S
denotes some even and positive definite matrix. Then Q) (X) = S[X] for X € L(") = zr»
and we recover exactly the second transformation law as in [27, 1.1.] or [24, (3.11), p. 47]. Let
Lo = (Lo, Qo) be an another lattice and ¢ : Ly — L a homomorphism satisfying Q o1 = Qp.
In this case, ¢ is called an embedding. Then the pullback

o] (ZWo) =9 (2,4 (Wo)), (2, Wo) € Ha x (Lo),

where (") is defined componentwise, belongs to £ (") (Lo). The aim of this thesis is to study

the pullback operator [t(”)] concerning the following aspects:
i) injectivity, surjectivity, bijectivity,
ii) dependency of the pullback operator on the choice of the embedding,

iii) extent of determination of the embedding by the knowledge of certain values of the pull-
back operator.

We will take up these issues frequently within this thesis. In the following, we provide an
overview of each chapter:

In chapter one, we summarize the theory of lattices with all its necessary terms, where we
attach great importance to a basis independent description in order to keep the notation clean
and handy. After that we deal with the theory of embeddings of lattices. The chapter ends
with the construction of some irreducible root lattices of small rank, which will be utilized
later.

Chapter two is devoted to elliptic functions of lattice-index. We introduce matrix-valued
quadratic forms and define the real Heisenberg group H]gi ) (L). This group acts on a certain
space associated to L, the Jacobi half-space HJ,(L). The elliptic functions of index L turn out to
be invariants with respect to the integral Heisenberg group H")(L), which is characterized
by certain integrality conditions. As a prototype we consider the well-known Jacobi theta
functions associated to L, which provide a free basis for the O(H,)-module of elliptic func-
tions of index L, cf. also [27]. In order to have a notion of boundedness at the cusps for such
a class of functions, we define regularity and cuspidality conditions. We introduce the meta-
plectic group Mp,, (Z), which acts upon E£M(L). The transformation law of modular type
then exactly correspond to a certain invariance property with respect to this group. Jacobi
forms will be defined as invariants of both the modular and the elliptic action together with
certain conditions of boundedness. We end the chapter by calculating certain determinant
characters of Weil representations associated to lattices of small rank.

In chapter three we introduce the main object of our studies, namely the aforementioned pull-
back operator. It transforms elliptic functions of index L into elliptic functions of index Lg. In
matrix language, this operator already occured in [27, 3.5. Lemma], but for a different pur-
pose. It commutes with the modular action and behaves well with respect to regularity. The
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question that arises naturally in this context is in what cases the pullback operator can be an
isomorphism. In order to give an answer to this question, we will take the algebraic point of
view, i.e. we consider the pullback operator as a homomorphism of free modules. It will turn
out that its representation matrix, which we call automorphic transfer, is as a vector-valued
modular form with respect to some tensor product representation. In the equidimensional
case we can consider its determinant which turns out as a (scalar-valued) modular form. This
leads to the astonishing result that the pullback operator is an isomorphism if and only if
n = 1 and the determinant is a nonzero multiple of a certain power of Dedekind’s #-function.
We proceed further by an explicit determination of the automorphic transfer and the modu-
lar determinant in the case n = 1 for distinguished lattices of small rank. As a by-product
of the theory developed in this chapter, we prove - by using a tensor product construction -
the existence of an infinite family (x3.27),eN, of nontrivial Siegel cusp forms of degree n and
weight 3 - 2", satisfying xs = 17'2 together with a remarkable recurrence relation

Z 0 n—j ‘
X2m.3 < ()] anj) = ij.3(Zj)2 . X2"*1.3(Zn—j)2]

for 0 < j < n. Especially, these forms do not vanish on the diagonal H" C H,. We end
this chapter by formulating and proving some sufficient ad-hoc criteria for injectiveness of
restrictions of the pullback operator to submodules as well as by formulating and proving
certain separation theorems regarding embeddings. In both cases we will restrict only to
n=1.

The fourth chapter is a short one and deals with isomorphisms between spaces of Jacobi
forms of degree 1 with respect to certain lattices of small rank. Here we derive benefit from
the explicit determination of some automorphic transfer matrices in chapter three. These
allow to construct explicit lifts from Jacobi forms of rank-1-index to Jacobi forms of higher
rank index by using matrix-vector multiplication on the basis of the attached space of vector
valued modular forms. Partly, such isomorphisms were also known before, cf. [15, 16].

From chapter five on, we draw attention to modular forms. Here we take up again a theory
of G. Kohler [18], who considered embeddings of paramodular groups I'(T), also known
as "Siegelsche Stufengruppen", into hermitian modular groups U, (0k), where ox denotes the
integral closure of Z in some imaginary-quadratic number field K. He focused on the problem
in what cases I'(T) can be conjugated into U, (ox) via some matrix M € U,(C). In this case,
M is called a modular embedding. Kohler gave a necessary and sufficient criterion for the
existence of such embeddings. We start by briefly recapturing the basic terms in the theory
of orders, where we include also the noncommutative case. Then we define the modular
group associated to an order O as well as the paramodular group of polarization T, where
T is an elementary divisor matrix. After having all necessary terms at hand, we consider
modular embeddings. We extend Kohlers work by defining a notion of equivalence in order
to measure substantially different embeddings. Under reasonable prerequisits we can adapt the
proof of his main result in order to fit also into the noncommutative setting. As a by-product,
we obtain some sort of normal form for an embedding M, what we will call a embedding of
principal type. They are connected to the representability of T by a diagonal matrix over O,
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what we will call O-models. Due to [17], I'(T) admits a maximal discrete extension and if
O is a principal ideal domain, this group acts on the set of equivalence classes of O-models.
We end the chapter by defining a pullback theory for modular forms with respect to modular
embeddings, which will turn modular forms into paramodular forms and is compatible with
the equivalence relation.

The sixth and final chapter is conducted by the question to what extent the modular embed-
ding M is determined - up to equivalence - by the family of functions F|, [M], F € [U,(O), k.
Already in the case n = 2, the equivalence relation on Mod(I'(T), U2(Q)) is to restrictive in
the sense, that there are inequivalent embeddings which induce the same pullbacked func-
tions. In order to handle this, we develop a notion of equivalence in the extended sense. We
approach the problem by shortly introducing hermitian and quaternionic Jacobi forms as cer-
tain constituents of modular forms. We can solve the aforementioned question at least for
certain orders and under certain divisibility assumptions on the polarization. Here we make
use of the seperation theorems given in chapter three.

This thesis was developed and written at Lehrstuhl A fiir Mathematik, RWTH Aachen Uni-
versity. The work on this topic was initiated and supervised by Prof. Dr. Aloys Krieg. He
suggested revisiting the theory of modular embeddings again. I am indebted to him for his
valuable suggestions and encouragement.

Furthermore, I would like to thank Prof. Dr. Bernhard Heim from GUtech in Oman for ac-
cepting to act as second referee. While creating this thesis, I was associated member of the
DFG research training group "Experimental and constructive algebra". For the covering of
travel expenses, I would like to thank its speaker, Prof. Dr. Gabriele Nebe.

Moreover, I thank all my present and former colleagues at Lehrstuhl A for the pleasant work-
ing atmosphere, in particular my former office mate Jorg in the Karmanstrafle as well as my
present office mate Martin for the fruitful and inspiring discussions we had. It was him who
drew my attention to the theory of lattices.

Finally, my deepest gratitude is expressed to my family for their continued support and en-
couragement and to my wife Cornelia for her patience und unconditional love.



O Basic Notation

N is the set of positive integers, Ny is the set of non-negative integers and Z is the ring of
integers. Q,R and C denote the fields of rational, real and complex numbers, respectively.
Without exception, i will always denote the imaginary unit. Given z = x + iy € C, then x is
the real part and y the imaginary part of z. By H we denote the upper half-plane in C, i.e.
H = {z = x+iy € C:y > 0}. The unit circle in C is denoted by S!,ie. S' = {{ € C: |{| =
1}. The principal branch of the square root on C is denoted by , /. The symbol H denotes the
skew field of real Hamilton quaternions with standard basis 1, i1, 12,i3 = ijip. The symbol F
will be utilized as a placeholder for a (possibly skew-)field.

For a set X we denote its cardinality by |X|, which will be finite throughout this thesis. For
n,m € N we denote by X"*™ the set of n-by-m matrices with entries in X'. Given X € X"*™
use the convention X" := X"*1 for the set of column vectors over X as well as X' (") ;= x1xn
for the set of row vectors over X'. Note that the latter notation will be a priori double assigned.
Unless specified otherwise, the meaning should be clear from context. For X = (x;;) € A"
we denote by X := (xj;) € X" its transposed matrix. The diagonal matrix with diagonal
entries x,...,x, € X is denoted by diag(xy,...,x,). Given matrices Xy,..., X, with X; €
X" we extend the definition by writing diag(Xj, ..., Xy,) for the quadratic block-diagonal
matrix of size k X k, where k = ny + - - - + ny,.

Let n € IN. We denote by Z,, := Z/nZ the cyclic group of order n and by S,, the symmetric
group on n points. Let G be a group. If H is a subgroup of G, we will write H < G and
H <G if H is a normal subgroup of G. For ¥ C G we denote by (X) the subgroup of G
generated by the elements of X. In the case X = {g1,...,¢m} we write (g1,...,gm) = (X).
If G is abelian, we will sometimes write (X) instead of (X). For a subset X’ of G we denote
by Ng(X) the normalizer of X in G. The center of G is denoted by C(G) := Ng(G). The
commutator subgroup of G is written as G’ and G®° := G /G’ is the commutator factor group
of G, which is implicitly identified with the group of abelian characters G — C*. If p is a
homomorphism of groups, we will denote its kernel by ker f. For an abelian group A with
a,b,c € A and a subgroup H of A we writea = bmod Hifa—b € Handa = bmod c, if
a = b mod (c). Furthermore, Hom(A, B) denotes the set of homomorphisms A — B.

Let V be a finite-dimensional [F-vector space. The dimension of V over F is denoted by
dimp(V), which will be always finite throughout this thesis. GL(V') denotes the general lin-
ear group of V. The orthogonal and unitary group of V are denoted by O(V) and U(V),
respectively.



2 0 Basic Notation

Let R be a ring with 1, not necessary commutative. By I, € R"*" we denote the identity
matrix of size n x n and by J,, the block-matrix

R 0 _In 2nx2n . _ 0 -1

For i,j € {1,...,n} let IZ.(].”) denote the matrix whose (i, j)-entry is 1 and 0 otherwise. We
suppress the superscript if the size is clear from the context. By GL, (R ) we denote the general
linear group over R"*", i.e.

GL,(R)={U e R"™":UV =VU = I, forsome V € R"™"}.

We set R* := GL{(R), the so-called unit group of R. We write U~! for the inverse matrix of
U € GL,(R). The definition is extended by U~ := (U~!)’. In the case if R is commutative,
we denote by SL, (R) the special linear group in R"*". Let A € R"*". Then det(A) stands
for the determinant of A and - unless specified otherwise - tr(A) for the usual matrix trace
of A. The subset of symmetric matrices in R"*" is denoted by Sym, (R). Let B € R"*™.
If R admits - possibly trivial - involution —, we define B by applying — pointwisely on each

entry of B. In this case, Her,(R) will denote the subset of hermitian matrices in R"*", i.e.

Her,(R) = {A € R"™" . A = A}. Note that Her,(R) = Sym,(R) in the case of the

trivial involution. Furthermore, we set A[B] := B'AB € Her,,(R). If the involution satisfies
{r e R:7=r} CR, then we call A positive definite, written A > 0, resp. positive semi-
definite, written A > 0, if A[x] > Oresp. Alx] > Oforall 0 # x € R". By Pos,(R) we
denote the set of positive definite matrices over R. For A, B € Her,(R) we write A < B, if
B—A>0,and A<B,ifB—A>0.

If a set X admits a complex structure, we denote by O(X’) the ring of holomorphic functions
X — C and by Bih & the group of biholomorphic automorphism of X'

For finite X C R we denote by max X the maximum of & with the convention max @ := —co.
Finally, for m,n € IN we write m|n if m divides n and m||n, if m|n and ged (£, 1) = 1, where
ged denotes the greatest common divisor. For k > 0, we set oy (m) := Yy, d*, where d runs
through the positive divisors of m. By By we denote the k-th Bernoulli number.



1 Lattices and Embeddings

1.1 Lattices

We repeat the basic notions in the theory of lattices and quadratic forms, where we refer to
[7], [22] or [3].

Definition 1.1.1. A lattice L is a pair (L, Q), where
o L is a free Z-module of finite rank,

e Q: L — Risa quadratic form, i.e.

Q(al) = a®Q(1) (Homogeneity)
QU+1"Y+ QI —=1") =2Q(I) +2Q(I") (Parallelogram law)

holds for all 1,1" € Land « € Z.

The rank of L is defined as the rank of the underlying Z-module and denoted by ry.

If L = (L,Q) is a lattice and Q is known from the context, we will sometimes refer to the
lattice L instead of L.

A direct verification yields the following

Lemma 1.1.2. Let L be a free Z-module of finite rank and Q : L — R. Define B: L x L — R by
B(LI")=Q(+!)—Q()—Q() (Polarization identity)

for 11" € L. Then the following statements are equivalent:

a) Q is a quadratic form on L, i.e. (L, Q) is a lattice,

b) B is a Z-bilinear form on L.

In this case, B is called the bilinear form associated to (L, Q).

We introduce some constructions of lattices, namely orthogonal sums and scaling;:
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Definition 1.1.3. a) Letm € Nand Ly, ..., Ly, be lattices with underlying quadratic forms Q1, ..., Qm.
The orthogonal sum L := @ L; is the lattice L = (L, Q), where

ie. Q(ly, ... L) = Y"1 Qi(ly) forl; € Li,i = 1,...,m. For a lattice L = (L, Q) we define

b) Let L = (L, Q) be a lattice. For t € IN we define L(t) := (L, tQ). In thise case we say that L(t)
arises from L by scaling with t.

We repeat some lattice-theoretic terms:

Definition 1.1.4. Let L = (L, Q) be a lattice with associated bilinear form B.
a) L is called non-degenerate, if B(I,-) £ 0 forall0 #1 € L,

b) Lis called integral, if B(1,1") € Z forall1,I' € L,

c) Liscalled even, if B(l,1) € 2Z foralll € L,

d) L is called positive definite, if B(I,1) > 0 forall 0 # 1 € L.

Unless specified otherwise, L = (L, Q) will always denote a positive definite and even lattice,
ie.Q:L — Npand Q(I) = 0if and only if | = 0.

Definition 1.1.5. Let L = (L, Q) be a lattice and F € {Q, R, C}. The FF-vector space
L :=L®yF,

arising from L by extension of scalars of IF, is called the ambient space of L over IF. By [F-linearity,
the bilinear form B associated to L extends uniquely to Ly and is again denoted by B. By polarization,
the quadratic form Q extends uniquely to a quadratic form on Ly and is again denoted by Q. The pair
Lg = (LF, Q) is called the quadratic space of L over .

Note that dimp Ly = r1 for F € {Q,R,C}.
The structure-preserving maps between lattices are described in the following
Definition 1.1.6. Let L = (L, Q) and Lo = (Lo, Qo) be lattices.

a) Anisometry o : Lo — L is an isomorphism o : Lo — L of abelian groups satisfying Q o o =
Qo. In this case, L and Ly are called isometric.

b) An isometry ¢ : L — L is called orthogonal transformation or automorphism of L. The
group of orthogonal transformations of L is denoted by O(L), called the orthogonal group of L.
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Note that O(L) is a finite group.

Remark 1.1.7. Let L be a latticeand F € {Q,R}. Since L contains a F-basis of Ly, every orthogonal
transformation of L extends in a unique way to an orthogonal transformation of the quadratic space
L. Hence, the orthogonal group O(L) is characterized by

O(L) ={c:Lg — Lg : 0 F-linear , Qoo = Qand o(L) =L} .
Definition 1.1.8. Let L = (L, Q) be a lattice.
a) The pair L* := (L*, Q|L+), where
L*:={velg:B(v,l) € Zforalll € L},
is called the dual lattice of L.

b) The quotient group L* /L is called the discriminant group of L.
Similarly, if L = (L, Q) is a lattice and Q is given in the context, we will sometimes to refer to
L* as the dual lattice of L.

Remark 1.1.9. Let L = (L, Q) be a lattice.

a) Every ¢ € Hom(L,Z) can be uniquely extended to a Q-linear functional Lo — Q, which is
again denoted by ¢. Since B is non-degenerate, there is a unique yu € Lg such that ¢(I) = B(p,1)
holds for all | € Lg. Hence, u € L*. Consequently, the map

L* — Hom(L,Z), u+— B(u,-)

is an isomorphism.

b) Let (by,...,by) denote some Z-basis of L. Then (by,...,b,) is also a Q-basis of Lg. It is easily
seen that the dual basis (b5, ..., b)) of the vector space Lg provides a free basis for L*. Hence, L*
is again a lattice. Note that L* = (L*, Q|r+) may not be integral in general.

c) In view of b), the level of L is defined as
Np:=min{g € N :qQ(y) € Zforallyp € L*},
i.e. N is the smallest natural number q, such that L*(q) is an even lattice.
Definition 1.1.10. Let L = (L, Q) be a lattice and (by, ..., b,) a basis of L. The matrix
S(by,) (L) = (B(bi b)), ., € Sym,(Z)

is called the Gram matrix of L with respect to (by,...,b;).

The generic case is described in the following
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Remark 1.1.11. Let S € Sym,(Z) be positive definite and even, i.e s;; € 2Z fori = 1,...,r. Then
the map
Qs(x) == 35[x], xeZ,

is a quadratic form on Z" and the pair (Z',Qs) is a lattice. The dual lattice is given by (S™1Z’, Qs).
Conversely, let L = (L, Q) be a lattice and S denote its Gram matrix with respect to some basis
bi,...,byof L. Let k : L — Z" be a coordinate system for L with respect to by, ..., b,. Then one has

B(LI") = x(1)!Sx(l') forall 1,I' € L,
i.e. k is an isometry of the lattices (L, Q) and (Z',Qs). Hence,
L*/L=S 7' /7" =7 /SZ’

and the cardinality |L*/L| = det S is finite and independent from the choice of S.

This justifies the following
Definition 1.1.12. Let L be a lattice. The finite number detL := |L*/L| is called the determinant

or discriminant of L.

The identity
Q(u) — Q) = Qu — ') = B(' — . )
for u, u' € LR gives rise to the following
Definition 1.1.13. Let L = (L, Q) be a lattice. Then the map
Q:LY/L—Q/Z, Qu+L):=Q(u)+2, nel’,
is well-defined called the discriminant form of L.
Remarks 1.1.14. Let L = (L, Q) be a lattice.

a) The pair L* /L = (L*/L,Q) is called the finite quadratic module associated to L. It is easy to
see, that the discriminant form takes its values in N 17/7.

b) Since O(L) acts naturally on L*, it also acts on L* / L via the assignment
(c,uy+L)—o(u)+L, pel’ocecO(L).
This action respects the discriminant form, i.e. Qoo = Q.

c) The action given in b) induces a homomorphism O(L) — O <L* / L) , where

o) (L*/L) = {o:L*/L — L*/L : o isomorphism, Qo o = Q}

is the finite orthogonal group of L* /L.
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Definition 1.1.15. Let L = (L, Q) be a lattice. The kernel of the homomorphism given in 1.1.14 c) is
called the discriminant kernel of L and is denoted by O4(L).

Definition 1.1.16. Let L = (L, Q) be a lattice.

a) Anelement | € L is called a root of L, if Q(I) = 1. The set of roots of L is denoted by R(L).
b) L is called a root lattice, if L is generated by R(L).

Definition 1.1.17. Let L = (L, Q) be a lattice.
a) Forl € R(L) the reflection s; € O(L) along | is defined as

s;:L— L, s('):=1"-B(Il, I¢€lL.

b) The Weyl group of L is defined as
W(L) := (s 1 € R(L)) < Oq(L),
with the convention W(L) := {1}, if R(L) = @.

Definition 1.1.18. A lattice L is called irreducible, if it does not split into an orthogonal sum of two
lattices.

Ll /L detL| |R(L)]
A | r 7,1 r+1]| r(r+1)
D, | ¢ {Zz X Zy, reven A 2r(r —1)
- Zy, r odd

Es | 6 Z3 3 72
E; | 7 Z; 2 126
Es | 8 {0} 1 240

Table 1.1: Classification of the irreducible root lattices

Theorem 1.1.19. (cf. [7, Thm. 1.2])
a) Table 1.1 classifies the irreducible root lattices completely up to isometry.

b) Every root lattice is the orthogonal sum of irreducible root lattices given in table 1.1.

For concrete realizations confer [7, p. 14, p. 23ff]. Note that in the following we will use the
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Remark 1.1.20. a) Table 1.2 classifies the irreducible root lattices, the structure of their discriminant
groups and representatives for Q.

L |r.| L*/L | representatives Q N
(
‘I,[O = O O
i(r41—i +1 r =0 mod 2
A . 7 ' i(r+1—i) r ’ s
= Ak _yl 2(r+1) 2(r+1), r=1mod?2
\ Hr \ 2(r1:0—1)
=0 (0
o . 1, r=0modS§,
r(%en v | Zy X Zy gl i 2, r=4modS§,
3 4, r=2mod8
(M3 = p1+ 2 L8
(119 := 0 (0
D H1 §
=L r Z4 8
r odd Hy 1= 2‘141 %
(K3 = 311 kg
4 (
Ho = 0
Ee | 6| Zs M 3 3
e 2
(H2 =~ L3
=0 0
E 7| 2z {“0 {3 4
H1 !
Eg | 8 {0} Ho =0 0 1

Table 1.2: Structure of L* /L and values of Q.

b) Table 1.3 classifies the irreducible root lattices, representatives for the quotient group
O(L)/ O4(L) and the corresponding orbits on L* /L.
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L O(L)/ Oy4(L) | representatives orbits on L* /L |lorbits|
A1 {0} id {0}, {1} 2
Apr>1 Z; +id {0} {pi, —piy 1 <i< |55 |1+ |
Dy S3 ((1,2,3),(1,3)) {0}, {1, p2, 3} 2
Dy, r#4 Zy ((1,3)) {0}, {2}, {11, s} 3
Ee Z> +id {0}, {1, —1} 2
E {0} id {0}, {1} 2
Es (0} id (0} 1

Table 1.3: Irreducible root lattices, representatives of the discriminant kernel and orbits

1.2 Embeddings

In this section, we define the fundamental object of our studies:

Definition 1.2.1. Let L = (L, Q) and Ly = (Lo, Qo) be lattices. An embedding:: Ly — L of Lo
into L is a Z-homomorphism 1 : Lo — L such that Q o1 = Q.

Definition 1.2.2. Let L = (L, Q) be a lattice. A lattice Ly = (Lo, Qo) is called a sublattice of L, if
Lo < L and QO = Q’Lo'

Conversely, since subgroups of free abelian groups are free itself, (Lo, Q|r,) is a sublattice of
L for every subgroup Lo < L.

We give a useful connection between embeddings and sublattices:

Proposition 1.2.3. Let L = (L,Q) and Ly = (Lo, Qo) be lattices. Then there is an one-to-one
correspondence between the embeddings of Lo into L and the sublattices of L, which are isometric to
Lo. More precisely, if 1 : Lo — L is an embedding, then 1(Lo) = (:(Lo), Ql,r,)) is a sublattice of L
which is isometric to Lo. Conversely, if L is a sublattice of L and 1 : Lo — L' is an isometry, then
t: Lo — L is an embedding.

Some trivial observations are contained in the following

Remark 1.2.4. Let L = (L, Q) and Ly = (Lo, Qo) be lattices.
a) Since Qq is definite, any embedding 1 : Lo — L is necessarily injective.
b) The surjective embeddings of Lo into L are exactly the isometries Ly — L.

c¢) Every orthogonal transformation o € O(L) is an embedding of L into L.
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We introduce orthogonal complements:

Definition 1.2.5. Let L = (L, Q) be a lattice.

a) For a subset K C L, the Q-vector space
Kt ={l€Lg:B(l,x) =0forall x € K}
is called the orthogonal complement of K in L.

b) For a sublattice Ly = (Lo, Qo) we define Ly"" := Lg- N L. The pair

Lot = (44,0l

is called the orthogonal complement of Lg in L.

Remark 1.2.6. Let L = (L, Q) be a lattice and Lg a sublattice of L. Then EL'L is a sublattice of L
and one has
rp = 1’@4— T’LOL,L.

Remark 1.2.7. Let L = (L, Q) and Ly = (Lo, Qo) be lattices and 1+ : Ly — L an embedding. For
u € L* we consider the map

Lo —Z, Iy B([(lo),‘u), ly € Ly,
which belongs to Hom(Ly, Z). By 1.1.9 there is a unique py € L§ such that

B(«(lp), u) = Bo(lo, po)

forall ly € Ly. The assignment yu — g yields a Z-homomorphism L* — L.

1.2.7 justifies the following

Definition 1.2.8. Let L = (L, Q) and Ly = (Lo, Qo) be lattices and 1 : Ly — L an embedding.
Then the map 1* : L* — L defined by the identity

B(i(lp), 1) = Bo(lo, 1" (p)) forall ly € Lo, u € L,
is called the dual of 1.

Remark 1.2.9. Let L = (L, Q) and Ly = (Lo, Qo) be lattices and 1 : Ly — L an embedding. For
F € {Q,R,C} the dual 1* : L* — L} is uniquely extended by F-linearity to a map Lg — (Lo)F,
which will again be denoted by 1*. It is uniquely determined by the identity

B(«(lo), u) = Bo(lo, " (1)), 1o € (Lo)r, p € L.

Obviously, 1* o1 = id].
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For later use we need the following

Lemma 1.2.10. Let L = (L, Q) and Lo = (Lo, Qo) be lattices and 1 : Ly — L an embedding. Then
for u € L the following assertions hold:

a) Qo(* (1)) < Q(u),
b) Qo(r*(n)) = Q(u) ifand only if u = 1(g) for some & € Lg.

Proof. a) There is nothing to prove in the case Qo(¢*(#)) = 0. Otherwise, we apply the
Cauchy-Schwarz inequality in order to obtain

Bo(¢* (1), " (1))? = B(u* (), p)?
< B(u*(p), w0 (1)) B(p, 1)
= Bo(¢"(p), " (1)) B(p, ).
This yields

1

Qo(t"(p)) = 5Bo(t" (), " (n)) < 5B(p, 1) = Q(w).

N[~

b) If /() = p, then one has *(y) = ¢ and
Qo(r* (1)) = Qo(&) = Q(w).

holds. Assume that Qo(¢*(u#)) = Q(p). Since there is nothing to prove in the case u = 0,
we suppose y # 0. Hence, ¢ := 1*(i) # 0. Due to the Cauchy-Schwarz inequality in a),
1(¢) and p must be linearly dependent over Q. Thus, ((¢) = ap for some a € Q. We apply
1* in order to obtain

ile.a =1. ]
Proposition 1.2.11. Let L = (L, Q) and Ly = (Lo, Qo) be lattices and 1 : Ly — L an embedding.
Then the kernel of 1* : L* — L equals L* N 1(Lo)~*.
Proof. Since Ly contains a Q-basis of (Ly)g, one has *(u) = 0 if and only if

B(u,1(lo)) = B(&*(p),lo) = 0

forall [y € Lo, i.e. if and only if u € L* N 1(Lo)*. O

The generic case is treated in the following

Example 1.2.12. Let S € Sym,(Z), Sy € Sym, (Z) be positive definite and even. For A € Z'*'0
we define
g 20— 7', 1(N):=AA A e 2.

Then the following statements are equivalent:
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i) 14 is an embedding (270, Qs,) — (27, Qs),

ii) S[A] = So.
In this case, the dual %, is given by

S'\7Z" — Sy'z,  i(us) =Sy A'Sus, us € Sz’
and one has
ker(i) = G ! - ker(A").

Definition 1.2.13. Let L = (L, Q) be a lattice.
a) A sublattice Lo of L is called primitive in L, if L/ Ly is a free Z-module.

b) Anelement | € L is called primitive, if (I) is primitive in L.

A characterization of primitive lattices is given in the next

Lemma 1.2.14. Let L = (L, Q) be a lattice.
a) For a sublattice Ly of L the following statements are equivalent:
i) Lo is primitive in L,
it) there is a sublattice Ly of L, such that L = Ly & Ly as an inner direct sum.
b) Forl € L the following statements are equivalent:
i) 1 is primitive,
ii) d11 € Lfor0+#d € Zimpliesd = +1,
i) QINL = ZI,
iv) B(I,L*) = Z.

Proof. a) Its obvious that ii) implies i). Hence assume that L/L is free and let I,...,l,; € L
such that

m

L/Ly = & (i + Lo).

i=1
Let Ly :=(I3,...,lm)z. By construction, L1 N Ly = {0} and L = Ly + L;.
b) The equivalence of i) and ii) follows from a) and ii), iii), iv) are simple reformulations. Note

in iv) that L™ = L. O

Lemma 1.2.15. Let L = (L, Q) be a lattice and Ly < L. Then the following assertions hold:

a) The sublattice QL'L is primitive.
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b) If Ly is primitive in L, then one has ( > =

&

c) There is a unique lattice L1, such that L > Ly > Lo with Ly primitive in L and L1/ Ly finite.

Proof. a) Let ! denote the inclusion Ly — L. We consider the restriction
) L — Lg,

whose kernel equals Lé’L . Hence, the quotient L/ Lé’L is isomorphic to a subgroup of the
free abelian group Lj and thus is free itself.

L,L
b) Let L := (LO 7> . The inclusion Ly C L; holds by definition. L; splits Ly as a direct
summand, since Lo is also primitive in L;. From Ly =L, We conclude Ly = L.

c) Since L1/ Ly is finite we have r;, = r1,. Thus L; and Ly span the same Q-space, hence

1,L 1,L
L= (Lt) "= ()

if we apply b) on L. This proves both existence and uniqueness. O

In view of 1.2.15 c) we give the following

Remark 1.2.16. If L1 > Lo and |L1/Ly| < oo, we call L1 an overlattice of Ly. Note that the
finiteness condition is equivalent to ry, = ry,.

Definition 1.2.17. Let L = (L, Q) and Ly = (Lo, Qo) be lattices and 1 : Ly — L an embedding.
We call | primitive or a primitive embedding, if 1(Ly) is primitive in L.

Lemma 1.2.18. Let L = (L, Q) and Ly = (Lo, Qo) be lattices and 1 : Ly — L an embedding. Then
there exists a unique overlattice Lyy > Lo in (Lo)q such that the extension ¢ : Ly — L is a primitive
embedding. o o

Proof. By 1.2.15 there is a unique overlattice L; of ((Lp) such that L; is primitive in L. Let

L{ :=1"1(L1). Then L} is an overlattice of Ly and ¢(L{)) = L; is primitive in L, in other words,

1 : Ly — L is a primitive embedding. The uniqueness follows from the previous lemma. [

Lemma1.2.19. Let L = (L,Q) and Ly = (Lo, Qo) be lattices. If 1 : Ly — L is a primitive
embedding, then its dual 1* : L* — L; is surjective.

Proof. Let L' < L such that L = ((Lg) ® L' as an inner direct sum. For jiy € L§ we consider the
Z-linear functional

fﬂo Ly — Z, fyo(lo) = Bo(]/lo, lo), lp € Ly.
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We extend this to a Z-linear functional ﬁ:o : L — Z by defining

= fu (CHD) 1€ u(Lo),
fﬂo(l) T {0’ lel

Let 4 € L* such that ﬁ,vo(l) = B(u,1) for all I € L. Especially we obtain

B(p,1(lo)) = fuo(t(l0)) = fuo(lo) = Bo(pto, lo)

for all Iy € Lo and thus * (i) = po. O

Remark 1.2.20. Let L = (L, Q) and Ly = (Lo, Qo) be lattices. If 1 : Ly — L is an embedding, then
the map ¢ o1 : Ly — L for o € O(L) is also an embedding. Hence we obtain a natural action of
O(L) on the set of embeddings {1 : Lo — L}.

This gives rise to the following

Definition 1.2.21. Let L = (L, Q) and Ly = (Lo, Qo) be lattices. Two embeddings 1,x : Ly — L
are called equivalent, if 1 = 0 o k for some o € O(L). Furthermore, 1,k are called stably equivalent,
ift =0 ox for some o € Oy4(L).

We illustrate the theory by an

Example 1.2.22. Let L = (L, Q) be a lattice. Then for every t € IN there is an one-to-one correspon-
dence
{leL:Q(l)=t}+—{1:Z(t) — L}.

More precisely, if | € L and Q(I) = t, then the map

y:7Z —~L w—lw, weZ
is an embedding of Z(t) into L. Conversely, if t € N and 1 : Z(t) — L, then one has 1 = 1; where
I = 1(1). The dual 1} is given by

L —>2tZ, Ll(y)—ztB(pt,l), pelL.

One has 0 o 1) = 1,y for all o € O(L). Hence, two embeddings 1y and vy for 1,1" € L are equivalent,
ifand only if o(1) = I’ for some orthogonal transformation o € O(L).

Concerning irreducible root lattices, the special case t = 1 leads to the following

Corollary 1.2.23. Let L = (L, Q) be an irreducible root lattice and 1,x : Z — L embeddings. Then
1 and x are stably equivalent.

Proof. The Weyl group W(L) < Oy4(L) of L acts transitively on the roots of L, cf. [7, Lemma
1.10]. The claim follows then from 1.2.22. H
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1.3 Irreducible root lattices of low rank

In this section we will consider explicit realizations of certain irreducible root lattices of small
rank in the quadratic space R® equipped with the quadratic form

Q(x) :=x'x, xeRS
The standard basis of IR® will be denoted byes,...,es. Fori=1,...,8let m;: R® — R denote
the projection on the i-th coordinate with respect to the standard basis.

The following construction will have the advantage of a simple determination of the pull-
backs of the Jacobi theta functions as we will see later.

The irreducible root lattice Eg

The irreducible root lattice Eg is realized as the underlying lattice of Coxeter’s integral Cayley
numbers, cf. [4, p. 101f]. To this end we define

ay = S(e2+es+eg+es), ar:=(e1+es+es+eg),

a3 = —(e;+ex+es+es), ag:==(e1+ex+e3+ey)

NI DN =
NI DN =

and
Eg := (eq,e2,€3,04,01, 42,43, 04) 7.

The quadratic form Q restricted to Eg is integer-valued, hence Eg := (Eg, Q|g,) is a positive
definite and even lattice of rank 8. Hence, Eg is a root lattice and a direct calculation shows
that det Eg = 1. The underlying Z-module Eg decomposes as a disjoint union

16
Es =S
i=1

of sets S;,i =1,...,16, which are defined according to table 1.4 at the end of this section.

The irreducible root lattice E;

The irreducible root lattice E7 is constructed as the orthogonal complement of eg in Eg, i.e.
Ey = (eg) 5.

Hence, E; = (E7, Q|E,) is a positive definite and even lattice of rank 7. As a module we have

E7 — <ell €r,€3,64,%1, K3, 0‘4>Z
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i.e. Eyis a root lattice and a direct calculation shows that det E; = 2. The underlying Z-
module decomposes as a disjoint union

8
E; = U SN <€8>J‘.
i=1

A complete set of representatives of the discriminant group E7/E7 is given by

{0 €1+€2+€3+€4+€5+€6+€7}
7 2 .

The irreducible root lattice Eg

The root lattice Eg is constructed as the orthogonal complement of e; + e3 + e5 in Ey, i.e.
& = <€1 +e3+ €5>L’§.
Hence, Es = (Eg, Q|E, ) is a positive definite and even lattice of rank 6. As a module we have

E6 - <62/ €4,66,000 —€3,03 — €1,K4 — €1>Z
e +eq+eg+ey
2

,063—31,064—61> ’

= <€2, €4, €6,
Z

i.e. Eg is a root lattice and a direct calculation shows that det Es = 3. The underlying Z-
module decomposes as a disjoint union

8
Ee = |JSiN(es e1 +e3+es)™.
i=1

A complete set of representatives of the discriminant group E; /Eg is given by

0 e1 +e3 — 2es _61—|—€3—2€5
7 3 7 3 .

The irreducible root lattice Dy

The root lattice Dy is constructed as the orthogonal complement of {e; — e3,e3 — e5} in Eg,
ie.

Dy = (e — e3,e5 — e5) e,
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Hence, D4y = (D4, Q|p,) is a positive definite and even lattice of rank 4. As a module we
have

ex+eq+eq+ey
Dy = ( ey, eq4,¢6, ,
z

2

i.e. Dy is a root lattice and a direct calculation shows that det Dy = 4. The underlying Z-
module decomposes as a disjoint union

D4 - U Slm <€1,€3,€5,€8>L.
ie{14}

A complete set of representatives of the discriminant group Dy /Dy is given by

0 e +e4 ex+eg €+ ey
o207 2 72 '

The irreducible root lattice Ay

The root lattice A is constructed as the orthogonal complement of {e4 — es, €4 — €7} in Dy,
ie.

Ay = (eg —ep,04 — €7>L’&.
Hence, Ay := (A, Q|4,) is a positive definite and even lattice of rank 2. As a module we
have
Ay = <62’€2+€4+€6+€7> ’
2 z

i.e. A is a root lattice and a direct calculation shows that det A, = 3. A complete set of
representatives of the discriminant group A3/ A; is given by

0G4 Ter estester
’ 3 ’ 3 '

The irreducible root lattice ﬂ

The root lattice A; is constructed as the orthogonal complement of e4 + €5 + €7 in Ay, i.e.
ﬂ = <€4 + e + €7>J"Q.
Hence, A; is a positive definite and even lattice of rank 1. As a module,

Al - <62>Z/
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i.e. Apisaroot lattice and a direct calculation shows that det A; = 2. Note that A; is iden-
tified with Z = (Z, x?), whenever it is convenient. A complete set of representatives of the

discriminant group Aj /A is given by {0, les }

S | m(S) | m(S) | m3(S) | ma(S) | m5(S) | me(S) | mr(S) | mg(S)
S1| Z z z z z z z z
S |sz\z| z |iz\z|}z\z| Z |}Z\Z| Z z
Ss |3Z\Z| Z z \|\iz\z|z\z| 7 |3Z\Z| Z
S| Z |lz\z| z |}z\z| zZ |3Z\Z|}zZ\Z| Z
Ss| 2z |iz\z|3z\7Z|}Z\Z|}Z\Z| Z z z
Se | 3Z\Z | 3Z\Z |3Z\Z| Z z z |3Z\Z| Z
S; | 3Z\Z|}z\z| Z z |lz\z\|lz\z| Z z
Ss | z z |}z\zZ| Z |}Z\Z|3iZ\Z|3Z\Z| Z
So | Z zZ z \|\iz\z|}z\z|lz\Z| Z |iz\Z
S| Z z \|iz\z|}lz\z| Z z |lz\z|lz\Z
Su|3Z\Z|3Z\Z| Z |3Z\Z| Z z z |3Z\Z
S| z |iz\Z| Z Z |3Z\Z| Z |3Z\Z)|3Z\Z
S| 2z |iz\zZ|}lz\zZ| Z z |lz\z| z |}z\Z
Su|3Z\Z| Z |3Z\Z| Z |3Z\Z| Z z |3Z\Z
Si5 | 3Z\Z | Z z z Z |3Z\Z|3Z\Z|3Z\Z
S |1z\z|lz\z|iz\z |lz\z | z\2z |iz\z |}z \2 | 2\ Z

Table 1.4: Distribution of the integral and half-integral components of Eg with respect to the
standard basis e, . . ., eg of R®




2 Elliptic Functions of Lattice-Index

2.1 Quadratic forms of higher degree and the Heisenberg
group

Let Sym’ (Z) denote the dual lattice of Sym, (Z) with respect to the trace bilinear form, i.e.

Sym?(Z) := {M € Sym,(Q) : tr(SM) € Z forall S € Sym, (Z)} .

Definition 2.1.1. Let L = (L, Q) be a lattice. The map

QW LMW — sym?(z), Q™ (I):=}(B(l;1;))

1<i,j<n
forl=(Iy,...,1n) € L") is called the quadratic form of degree n associated to L.

Lemma 2.1.2. Let L = (L, Q) be a lattice. Define B™ : L") x L1 — Sym# (Z) by

BU(L1) = QM (1 +1) — Q" (1) — Q" (1)
for1,1' € L"), Then one has

BM(1,1') = 1(B(1;, z]’.) + B(L,, lj))lgi,jgn.
We call B the bilinear form of degree n associated to (L, Q). The identity
QU (1) =3B (1)

holds for all I € L,

The generic case is treated in the following

Remark 2.1.3. Let S € Sym, (Z) positive definite and even. Then (Z") ") can be naturally identified
with Z"™". and we have

QM (x) = 1s[x], BY(X,Y) = L(X'SY +Y'SX), X,YezZ ™"
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Conversely, let L = (L, Q) be a lattice and S denote its Gram matrix with respect to some basis
(by,...,by) of L. Let x : L —> Z" denote the coordinate system with respect to (by,...,by). Let
k() - L) — Zr¥1 denote the map defined by

k(1) = (k(h),..., k), 1=(L,...,1,) e LM,

Then the identity
Q1) = 3x (1)t sk (1) = 38 [x (1)

holds for all I € L),

We will implicity assume that B") and Q) are extended by F-linearity. All aforementioned
identities are also valid in L]%") X L]%n) resp. LI(F”) forF € {Q,R,C}.

By a direct verification, we obtain the following

Lemma 2.1.4. Let L = (L,Q) be a lattice and 1 < j < n. Then for all | € L](; ) the following
assertions hold:

a) QU (1X) = Q(1)[X] for all X € R"*,
b) tr(B(”)(l,l’)S> - tr(B(”)(l,l’S)> - tr(B<">(zs,z'))for all S € Sym, (R),
¢) QU (1) > 0and QU(1) > 0 ifand only if dimg(ly,...,1,) = n, where | = (I1,...,1,).

Remark 2.1.5. Let L = (L, Q) be a lattice. Then the lattices (L(”),tr o Q(”)> and nL are isometric.

Definition 2.1.6. Let L = (L, Q) be a lattice. The real Heisenberg group of degree n with respect
to L is the group

HY(L) == LW x L x §?

with underlying group law
(/\/ M, C) ’ ()\// V// C/) = <A + )\I/ Y+ lull g ’ C/ : eﬂitr(B(”)()\,y/),B(”) (/\/,l/l))>
or A, € L and 7,7 € St. Furthermore, for A, u € L™ we define
fi wow € Ly pe Ly

o = (e 800 € 1 (1)

Remark 2.1.7. Let L = (L, Q) be a lattice.

a) S is identified in HI%")(L) via

st — HI(L), ¢~ (0,0,0).
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b) L](Ig) X Lﬁ;) is identified in H]gl)(L) via (A, u) — [A, u]. Note that the map [-,-] is no group
homomorphism, in contrast to its restrictions

¢) For (A, ), (\V,1') € L x L) we have
ot ] = (e 0D (1, e (50040)
_ <)L 4 N:P‘ i ‘u/’em’tr(B(”)(/\,]/t)JrB(”)(A’,y’)) .enitr(B(")(A,y’)fB(”)()\’,y))>

— [/\_i_/\/,]/[_i_y/]’

since 2 (B (V) — 1, Consequently, the restrictions of [-,-] to L*") x L0V and L0 x L*(")
are monomorphisms of the groups.

We introduce the integral Heisenberg group:
Definition 2.1.8. Let L = (L, Q) be a lattice.

a) The integral Heisenberg group of degree n with respect to L is defined as

HM™(L) := [L(”),L(”)] .

b) The extended integral Heisenberg group of degree n with respect to L is defined as

HOL) = { (A, ,0) € HY (L) : 2BV OZB00D) 1 for gl 1,1 € 100

Remark 2.1.9. Let L = (L, Q) be a lattice.

a) Foreach (A, u,Q) € H]%n)(L) the map
Xt H(n)(L) —Cx, LI~ p27tite(BM (A1) =B (1))
is an abelian character of H") (L) and the map
Hy (L) — HO(L®, (L 1,0) = X

is @ homomorphism of the groups with kernel H™ (L)*.
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b) The identity
(A, Q) - 1117 (7\ wO = Xapg (L) - [LT]
for [1,I' € H®W(L) and (A, 1,Q) € )( L) shows that H™ (L)* is precisely the centralizer of
HM (L) in HY(L).

¢) H™(L) - S' is a normal subgroup of H"™ (L)* and one has
H(n)(L)*/ (H(n)(L) . 51) >~ (L*/L)®.

d) We will see later, that H(") (L)* is the precise invariance group of elliptic functions of index L and
degree n.

Definition 2.1.10. Let L = (L, Q) be a lattice.

a) The Siegel upper half-space of degree n is defined as
Hy={Z=X+iY €Sym (C): X=X, Y =Y">0}.
We have H1 = H.
b) The Jacobi half-space of degree n with respect to L is defined as

HA(L) == Ho x LY = {(Z W) : Z € Hoy W e L}

Some identifications are contained in the following

Remark 2.1.11. The Siegel upper half-space H, is implicitely identified with H, x {0} inside H), (L).
Furthermore, we will identify O(H,) as a subring of O(HL(L)) in a natural way.

Definition 2.1.12. Let L = (L, Q) be a lattice. Let ¢ € O(HL(L)) and (A, 1, ) € H]gl)(L). Then
the function
9, (A, Q) s Hh(L) — C

is defined pointwisely by
‘P’L(Af 10, O(Z,W) = eZT[itr(Q(ﬂ)(A)-ZJrB(")(/\,W)+%B(")(A,V)) “P(Z,W+AZ + 1)

for (Z,W) € HL(L).
Remarks 2.1.13. Let L = (L, Q) be a lattice.

a) The assignment
(A1) 9) = ¢ (A w0),  (AuQ) € HY' (L), ¢ € OHI(L)),
defines an action ofH]%n) (L) on O(HJ(L)).
b) For (A, ) € L*™ x L0 or (A, 1) € L™ x L*" one has
ol [ 112, W) = Fr QU ZEBIOW) g7 W 4 27 4 p)
for (Z,W) € HL(L).
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2.2 Elliptic functions of lattice-index

Definition 2.2.1. Let L = (L, Q) be a lattice. A function ¢ € O(HL (L)) is called elliptic of index
L and degree n, if

o[, [L1]=¢
forall [1,I') € H®™(L). The set of elliptic functions of index L and degree n is denoted by € (L).

Regarding the structure of £ (L), we have the following

Remark 2.2.2. Let L = (L, Q) bea lattice. £ (L) carries a canonical module structure over O (H,,)
via multiplication defined pointwisely by

(h-@)(Z, W) :=h(Z)-$(Z,W), (Z,W) € Hpu(L)

for ¢ € EM(L) and h € O(H,).

Again we treat the generic case:

Remark 2.2.3. Let L = (L, Q) be a lattice and S denote its Gram matrix with respect to some basis

(b1,...,by) of L. Let x : L — Z denote the coordinate system with respect to (by, ..., b;). Then the
assignment

¢ <4~>: oy x T 5 C, (Z,W) s ¢<Z,K<”>*1(W)>>

is an O(H,)-module isomorphism €M™ (L) — £ (Z7, Q).

Some functorial constructions are explained in the following
Definition 2.2.4. Let L, L' be lattices.

a) Forp € O(H(L)), ¢ € O(Hi,(L’)) we define its tensor product

g ¢ € OHL(L) x HL,(L")

pointwisely by
¢ ¢'(Z,W), (2, W) := ¢(Z,W) - ¢'(Z', W)
for (Z,W) € H)(L) and (Z',W') € H/,(L").

b) Let p € EM (L) and ¢' € E(L'). Then the function
PR |,y (Z,(W,W)) = p@¢ (Z,W),(Z,W))

belongs to £ (L @ L').
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A first nontrivial example is given by the Jacobi theta functions of degree n associated to a
lattice L, cf. [27, § 3] or [24, (3.26) p. 49].

Definition 2.2.5. Let L = (L, Q) be a lattice. Then the Jacobi theta function 19 of degree n

associated to L and y € L](Ig ) is defined by

o (Z,W) = Y 1[,[L0)(Z,W)
ley+Lm

_ Z ezmtr(Q<“>(z)z+B<">(l,W))’ (Z,W)GH{Z(L),
lep+Ln)

where we suppress the superscript if n = 1. The definition only depends on the coset y + L. The
series converges absolutely and uniformly on each vertical strip

{(Z,W) e HL(L) : Y > 61, tr(B(W, W)) < 5—1}, 5> 0.

For y € L we will sometimes simply write 192") instead of ﬁgﬁ Furthermore, by a slight abuse of
notation, we define B

80"(2) == 8")(2,0), Z € Hy

(n)

Basic transformation properties of 9," L

are given in the following

Proposition 2.2.6. Let L = (L, Q) be a lattice and u € L](; ). Then the following assertions hold:

W o) 1L1] =@ 0o forall 1,1 € L) and 8}%) € E)(L) ifand only i e € L.
b) 1.9 (Z + S W) 27‘Citr(Q<”)(V)S) . ﬂgﬁfor S e Symn(z) such that VS c L*(n),
o) 8")(Z[U], WU) = ") .(Z, W) for all U € GL,(Z).

Proof. All properties follow from a straightforward calculation. Note in b) that the assertion
tr(B™(1,11)S) € Z holds for all | € L™ if and only if uS € L*™ . In ¢) use that LU = L
for U € GL,(2). O

Remark 2.2.7. Let L = (L, Q) be a lattice and yu € L* ), In view of the Fourier expansions, we have

dimc <19<L’f;(z,.),y e (L* /L)<">> — (detL)"

for every Z € ‘H, as functions of W.

The algebraic structure of £ (L) is revealed in the following theorem, cf. [24, Proposition
3.5] or [27,3.1. Lemmal]:
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Theorem 2.2.8. Let L = (L, Q) be a lattice. Then the space £ (L) of elliptic functions of degree n
and index L is a free O(H,, )-module of rank (det L)" and decomposes as a direct sum

ML) = @ omn)-(j-
pe(L*/L)n

Proof. Let ¢ € £ (L) and Z € H,,. The function ¢(Z, ) is periodic in W with respect to L")
and therefore has a Fourier expansion of the form

PZW) = T c(u2) B W), w e 1
]JEL*(")

for certain functions c(y, -) : H, — C. For | € L") we apply | . [1,0] on ¢ in order to obtain

§l,[1,01(2, W) = 2T QUZEBN W (7, W 1 17)
— p2nite(QM(1)Z) | p2mite(BM (LW)) | Z c(u,2) 27ite (B (u,W+12))

peL*
2 27t (B (1) Q" (1))Z) | C(V,Z).eZNitr(B(”>(;4+l,W))
yEL*
_ Y (@) -0 )Z) oy, 7). AT (L))
yeL*>

A comparison of the Fourier coefficients yields
c(u+1,2) = ¢2ite ((Q™ (u+1)-Q™ (4))Z) c(u,2), Z€Hnpuc LM e L.

Hence, by a simple rearrangement we deduce

PZW) = X clp,z) @ W)
yGL”“

_ Z Z c(l, Z)€27ritr(B(”) (LW))

pe(L* /L) 1eLt) 4y

_ eZm’tr((Q(”)(l)—Q(”)(y))Z)C(‘u, Z)ezmtr(B(”) (LW))

pe(L*/L)m [eLm) 4

c(y,z)eZHitr(QW(y)Z)( y eZnitr(Q<”)(l)Z—i—B(”)(l,W)))

pne( ) leL(m) 4y

L*/L)(”

= Y w28 zZw),

ue(L* /L)

where .
1,(Z) = c(p, 2)e 2w(QW7Z) 7 € 9,

The uniqueness and holomorphicity of the functions /4, follows from 2.2.7. For the latter fact
confer also [24, Lemma 3.4]. o
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2.2.8 gives rise to the following

Definition 2.2.9. Let L be a lattice and ¢ € £ (L). The decomposition

p= ) hﬂﬂgﬁ

ue(Lx/L)m

according to 2.2.8 is called the theta decomposition of ¢.

We revisit the centralizer H")(L)* of H™ (L) in H]gl ) (L) and prove the following
Theorem 2.2.10. Let L = (L, Q) be a lattice. Then the following assertions hold:

a) £ (L) is invariant under H™ (L)*. More precisely, H"™ (L)* is the maximal invariance group
of (L) in HI%")(L), ie for0+#¢ € EM(L)and (A, 1, Q) € H]}{”)(L) one has

¢, (A p,0) € EM(L) if and only if (A, i, §) € H™ (L),

b) For (A,v,7) € H®(L)* and u € L*") the transformation formula

" mritr (B iy n
ﬁ(L/Z/)“L(A’ v,{) = { - 2B r2A0)) .ﬂip)tﬂ

holds.
Proof. a) For (A,v,0) € H]%")(L) and [1,I') € H" (L) we have

()L, v, g) ’ [l/ ll] = X\ ul ([l’ l/]) ’ [l/ l/] ’ (/\, v, g)

Then both assertions follow immediately from

(PlL()\,U,g)‘L[l,l/] = X\ ug ([l,l/]) '(PlL()‘/v/g)'

b) For u € L*" and I € L(") we obtain
[n+1,0]-(Av,0) = (V +A+1Lv,C- e”itr(B(n)(”J’Z’”))) = (V +A+1Lv,{- e”itr(3<”)("'v))>

from v € L*"), Hence,

(1l [ +1,01) | (A 0,8) = ¢- @m0 1 [y A1 0], -
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2.3 Siegel operators, regularity and cuspidality

In this section we define a generalization of the Siegel operator considered in [27, 1.9. Defini-
tion].

Definition 2.3.1. Let L = (L, Q) be a lattice, 0 < j < nand ¢ € O(HL(L)).
a) We define W\ ¢ € O(H]](L) X ’HL_].(L)> pointwisely by
Dep((Z: W, weon—a( (% O W,
w ¢((Z]/ W])r (Zn—]/ Wn—])) =¢ 0 Zn—j ’ (I/V], Wn—])

for (Z;,W;) € H]I(L), (Zn—jyWy—j) € H{l_j(L) with the convention

WO = w —iq.
We call WU) the global Witt operator of degree j.

b) ForY,_; € Pos,_;(R) we define Sg )7 ¢ pointwisely by

j

Sy 0(Z, W) := lim W ((Z;, W), (itY,,_;,0))

—J t—so00

for (Z;, W;) € ”H]] (L), whenever this limit exists and is finite. We treat Sl(fg)gb as a constant and

define S = id. Note that existence and value of the limit above in the case j = n — 1 do not
depend on the choice of Y1 = y1 > 0. In this case we will suppress the subscript Y1 and simply

write S, We say that 81(/{;) ¢ exists, ifS}(/i)ijqb(Zj, W) is defined for all (Z;, W;) € H]I(L).

' =]
The partial operator Sl(/],, )_j is called the Siegel operator of degree jat Y, ;.

Definition 2.3.2. Let L = (L, Q) bea latticeand 0 < j < n. Let ¢ € £ (L).

a) We say that ¢ satisfies the cusp condition of degree > j with respect to H (n) (L), if
S (91,100, 2w, (0,1t

exists forallm = 0,...,j, Yy—m € Posp—m(R) and Ay_m, hn—m € Lgfm). In this case,

deg,..(¢) := max{j > 0 : ¢ satisfies the cusp condition w.r.t. H"™ (L) of degree > j}

is called the degree of regularity of ¢. We call ¢ regular, if deg,.(¢) > 0. The space of regular
elliptic functions of index L and degree n is denoted by 81,(: ) (L).
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b) Wecall ¢ € £ (L) cuspidal of degree > j with respect to H™ (L), if deg o, (¢) = jand

Sl(/’:,)m <¢|L[(0/)‘n—m)r (0, P‘n—M)D =0
forallm=0,...,7, Yy—m € Posp—m(R) and Ay_m, n—m € Lg_m). In this case,

deg s (¢) :=max{j > 0: ¢ is cuspidal wr.. H" (L) of degree > j}

is called the degree of cuspidality of ¢. We call ¢ cuspidal, if deg ., (¢) = 0. The space of
cuspidal elliptic functions of index L and degree n is denoted by Sc(gs)p (L).

Remark 2.3.3. Let L = (L, Q) be a lattice. Then both Er(:g (L) and SC({}QP (L) carry a natural module
structure over the subring O(Hn)reg of O(Hn), defined by

O(Mu)reg == {f € O(Hy) : deg,(f) = 0}.
Furthermore, the subring O(Hy)cusp, defined by

O(Hu)eusp = {f € O(Han) : degcusp(f) > 0},

is an ideal in O(Hy)reg and one has

O(Hn)eusp - ELI(L) € L (L),

Before we prove the main structure theorems, we need the following

Lemma 2.3.4. Let L be a lattice and 0 < j < n. Let y € L™ and A0 € L](Ig). We write
po= (Hjrpn—j)s A = (A Apj), v = (U],Un,])for uj € L* (),,un,]- e L*") and Aj,vj €
L](lé),)\n_], Up—j € L](R D Then the following assertions hold:

el) = (80, ] o) @ (o) |,

(A U]) = {ﬂi)“ ’ [Aj’vj]’ if u,_j = —A,—j mod L=,
0

0w (of) )]

b s (o6,

, else,

c) degreg( (ﬂﬁ) =n.

Proof. a) Follows from a straightforward calculation.
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b) In view of a), it suffices to prove the assertion in the case j = 0. For (Z,W) € H](L) we
have

19(”)

itr(Q () (n) itr(B(")
Ly L[A/ U](Z, W) _ Z ethr(Q (I4+A)Z+B"™ (I+A,W)) ‘Ethr(B (l—i—)\,v))'

lep+L1n)

Evaluating this expression at (itYy,,0) for t > 0,Y,, > 0 yields

o L[/\, U](ltYn,O) _ Z e—27‘[tr(Q(”>(l+A)tYn) _627Titr(B(")(l+)\,v)).

lep+LM
We have tr(Q" (I +A)Y;) > 0, whenever QU (1 +A) > 0and QU (I +A) # 0. Ast — oo,

all coefficients for | # —A vanish. This proves the second part of the statement. In the
other case only the coefficient for I = —A remains and equals 1.

c) Follows immediately from b). O

Some useful identities are stated in the next
Lemma 2.3.5. Let L = (L,Q)bea lgttice. Let A, u € L](If). Write A = (Aj, Ay—j) and p = (pj, pin—j)
for Aj, uj € L](é), Ap—jrMn—j € L](;_]). Then for (Zj, W;) € H]I(L) the following assertions hold:

& WO (], [0 u]) (2, Wy),) = (WO (9],[(A;,0), <u]~,o>1) ((Z W), ) | o ttai]

0
o S (o0, (2, W) = S (WO (110100, (15 00) (23 W), ) | oo ).
Proof. Part a) is a verification and b) follows immediately from a). We omit the details. O

Proposition 2.3.6. Let L be a lattice. Let ¢ € £ (L) with theta decomposition
_ (n)
¢ = Z My ﬁ;y'

ue(L* /L)

Then the following assertions are equivalent:

1) 5 (¢\ [(0, Au—i), 0)]) exists for all A,_; € L)
ii) S Iy exists for all p (L*/L))

In this case, S <¢| A v ) exists forall A, v € L( ) Asa special case, we have

SY,H- <¢|L[(O’ _V”—]')’OD - Z Sl(/i),jh(ﬂjzﬂnfj)ﬁgilj
pje(L* /L)W

for p,—j € L* ("=1). The degrees of reqularity and cuspidality are given by
deg,., ¢ = min {degreg hy:pe (L*/L)(”)} ,
deg s, ¢ = min {degCuSlO hy p € (L*/L)(”)} :
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Proof. We prove the nontrivial direction of the equivalence. At first, we treat the case j = 0.
In this case, let A1,..., A denote a system of representatives for (L*/L) (") where d := det L.
We consider the holomorphic, matrix-valued function

Z— A(Z) = (ﬂénk [—Ai,O](Z,O)) , Z€Hy,
~IL 1<ij<dn
which satisfies the identity
9, [~11,0(2,0) n,
: =AZ)|
8|, [~ A, 0](Z,0) I,

We evaluate both sides at Z = itY,, for t > 0,Y,, > 0. The limit of the left hand side as t — oo
exists by assumption on ¢. Furthermore we have lim;_,o A(itY;) = Ijn by 2.3.4. This shows
that A(itY,) is invertible for all + > <, where v is sufficiently large. As a consequence, the
limit lim 1, (itY;) exists for all u € (L*/L)") and one has

t—o0

SOhy = lim hy(itY,), pe (L*/L)".

t—o0

Hence, the formula stated above is valid in the case j = 0. For j > 0 we apply W) on ¢ in
order to obtain

W(j)(P((erWj)/'): Z Z W(f)h(yj,ynfj)(zj ')ﬂgzﬁ(zﬁwj) ﬁgy_n],)]
pn—j€(L* /L)1) \ pye(L* /L))

By assumption as well as by application of 2.3.5, the function
((Woet(zi W, 1) | 0501

exists forall A, ; € L* ("=) Hence we are reduced to the case j = 0. We apply the part proven

Sy

=
previously on W) ¢( (Z;, W), -) in order to obtain that the function

0 ' ‘

Sl(/n)fj Z W(])h(l”jlﬂnfj) (Z] )ﬂg)}t] (Z]’ I/v])
}l]‘E(L*/L)(j)

exists for all W; € ’H]]-(L) and all y,,; € (L*/L)"=)). The functions ﬂg)ﬂj(zj’ ) Ui € (L*/L)D)

are linearly independent for Z; € ;. Hence a simple argument shows, that

SV (2 =82 (WOmi(z;,)), 7€ H;
exists for all u € (L*/L)(™. The identity
SUL, (9110 = 0l) = X SY g, 0L,

follows from 2.3.4. O
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As a direct consequence of 2.3.6, we obtain the following
Theorem 2.3.7. Let L = (L, Q) be a lattice. Then the following assertions hold:
a) é’r(:g) (L) is a free O(Hy)reg-module of rank (det L)" and decomposes as a direct sum

SR = D OMu)g O
ue(Lx/L)n)

b) Scusp( ) decomposes as a direct sum

gc(gs)p (L) = @ O(Hn)cusp ’ 19(;2
ue(Lx/L)m

We consider regularity and cuspidality conditions in a more familiar scenario, cf. also [27, 1.6.
Lemmal.

Proposition 2.3.8. Let L = (L, Q) be a lattice and ¢ € £ (L) with theta decomposition

o= ) hﬂ‘ﬁgﬁ'

VG(L*/L)(”)

Suppose that ¢ has an absolutely and locally uniformly convergent Fourier expansion of the form

AUV M C (SZEBUWWD, (7, W) € HA(L).
Sel Sym (Z) peL*m

for some q € IN. Then the following statements hold:

a) For u € (L*/L)™ one has

m(z)= ¥ (s p)ermul5-QVm2) 7 ¢ x,,
SezSyms(2Z)

b) The following assertions are equivalent:
i) ¢ € E (L) resp. ¢ € ELL (L),
ii) forall w € L*"™: ¢(S, 1) # 0 implies Q) (1) < S resp. QU (u) < S.

In this case one has deg,., () = n and the formula

s ezw)= ¥ ¥ e <<S O)I(Vj,0>>ezmtr(sf'ZﬁB‘”(foWf”

56 Sym( )yGL*

holds forall j = 0,...,nand Y, _; > 0. As a special case one has 81(/2)4’ =¢(0,0).
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c) If n > 2 and ¢ satisfies the transformation property
P(Z[U],WU) = $(Z,W), (Z,W) € Hy(L)

forall U € GL,(Z)]q), then the Koecher principle holds, i.e. ¢ € 55;2 (L).

Proof. a) In the notation given in the proof of 2.2.8, we have

C(}l, Z) _ Z C(S, ‘u)eZm'tr(SZ).
SG%Symg(Z)

b) From 2.2.8 b) we conclude, that ¢ € Sr(eng) (L) if and only if i, € O(Hp)reg for all u €
(L*/L)(™). The latter is equivalent to the existence of lim_,c 1y, (itYy) for all u € (L* /L))
and all Y;, > 0, hence to tr((S — Q™ (u))Y,) > 0 forall Y, > 0, ie. to Q" (u) < S,
whenever ¢(S, 1) # 0. The claim for cuspidal functions follows from Q) (u) < § if and
only if tr((S — Q) (u))Y;) > 0 for all Y,, > 0. The supplement follows from the fact, that
every principal minor of a positive semidefinite matrix is again positive semidefinite.

c) Let n > 2 and assume without loss of generality that N |q. The transformation laws of ¢

imply
h(Z+8) =h(Z), hu(Z[U])) =hu(Z), we(L/L)M,ZcH,,

forall S € Sym, (gZ) and U € GL,(Z)[q]. Then the claim follows from the classical
Koecher principle applied on each function h, separately. O

2.4 Metaplectic group and the Weil representation

In this section, we introduce the metaplectic group of as double cover the symplectic group,
cf. [1,§2Sec. 1, § 3 Sec.]. Furthermore, we define the modular action on elliptic functions of
lattice-index and discuss the Weil representation of higher degree.

Definition 2.4.1. The real symplectic group of degree n is defined as

5p, (R) := {M € R¥>2: J,[M] = ], } .

Definition 2.4.2. The integral symplectic group of degree n is defined as

Sp,(Z) = Sp,(R) N Z2" = {M € Z2"2" : J,[M] = J, } .
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We collect basic facts:

Remark 2.4.3. a) M € Sp,(R) will always be written in the form M = <
blocks A,B,C,D € R"*",

4; B

G Dj

product M; x M,,_; by

A B . )
c D) with matrix

> € Spi(Z), My = (An—j Bn—j> € Sp,_;(Z) we define its cross

b) For M; = (
! Cp-j Dn-j

A; 0 B 0

. e 0 n n—j
MpxMj=1c 0" b o0
0

¢) The matrices
I, S ut o
T, (0 In) ,S €Sym, (Z), ( 0 Ul) ,UeGL,(Z)
belong to Sp,,(Z).

0 I

e) The determinant det(CZ + D) is nonvanishing for Z € H, and M € Sp,(R). Furthermore,
Sp,, (R) acts on H,, via fractional-linear transformations

d) Sp,(Z) is generated by ], and (I" S) ,S € Sym, (Z).

M(Z):= (AZ+B)(CZ+ D)™ !, MeSp,(R),Z € Hy.

f) Since Hy, is a convex domain, the function Z — det(CZ + D) for M € Sp,,(IR) has two holomor-
phic holomorphic square roots on H,,. We denote by j the distinguished branch, which is uniquely

determined by the value
jm(il,) = y/det(Ci+ D).

Definition 2.4.4. The metaplectic group of degree n is the group

Mp,,(Z) = {(M,emjm) : M € Sp,(Z),em € {£1}}

with underlying multiplication
(M, SM]M) . (M/, SM/jM/) = (MM,, €M€M/€(M, MI)]MM/) ,

where

) , .
jmm (Z)
independent of Z € H,. For M € Sp,,(Z) we write M = (M, jm) € Mp,,,(Z).
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We give some
Remarks 2.4.5. a) By definition one has MN = MN if and only if (M, N) = 1.

b) In Mp,, (Z) we distinguish the elements

Jn = <]n,vdetZ> , (I(’)“ ISn)S € Sym, (Z).

c) The kernel of the covering map
Mp,,(Z) — Sp,(Z), (M, emjm) — M
is cyclic of order two and the generated by the element (1o, —j1,,). Hence,

Mp,,(Z) /{(L2n, —j1,)) = Sp,(Z).

By an explicit calculation we obtain the following

Lemma 2.4.6. Let 1 < j < n. Then the following assertions hold:

", n =0mod 2,

"1 n=1mod?2,

D (s Jn) = {
b) T = {<_I2mi” ‘j-B,), n=0mod2,

(=D, i"t-j_1,), n=1mod?2,

~4 )
c) ]n = (1211/ (_1)71 ']IZn)’
d) E(M] X Izn_2]‘, M], X IZn—Zj) = E(M]" M;)for Mj’ M], € Sp](Z)'

4 .
e) (Jj X ly—aj) = (Lon, (=1)) - ji,)-
Theorem 2.4.7. Mp,, (Z) is generated by the elements

—_—

T, (I” S),SGSymn(Z).
0 I

Proof. Let A, denote the group generated by the elements stated above. From the surjectivity
of the covering map and the corresponding result for Sp, (Z) we deduce that Mp,, (Z) is
generated by A, and the central element (I, —jp,,). In the case n = 1 we are done using the

identity J* = (I, —j1,). Let n > 2 and consider the element (] x L,_,). Then exactly one of
two the cases

(Izn’ _]IZn)é(] X 12(1’[—1)) E E;/ 5 - O/ ]-/
occurs. But both already imply

4 __
(1271/ _j12n) = ((IZHI _].Izn)(s(] X I2(n—1))> € Ny o
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We introduce the modular action:

Definition 2.4.8. Let L = (L, Q) be a lattice. For ¢ € O(HL(L)), (M, emjm) € Mp,, (Z) and
ke %Z the function
¢l L (M, emjum) : Hh(L) — C,

is defined pointwisely for (Z, W) € H} (L) by
Pl (M, €aajan) (Z, W) 1= (epajaa(2)) % e 2@ I0(CZEDI10) o (01 7), W(CZ 4 D))

We define (P‘kLM = cp}k L]\7I for M € Sp,(Z). The operator |k | is called the slash operator of
weight k and index L. .

Remark 2.4.9. a) One has ¢|, (M, epmjm) = ¢|, M for (M, epjm) € Mp,,,(Z) and k € Z.

b) A straightforward calculation shows that for k € %Z the assignment
(M, emijm), @) = @[, (M, emjm), (M, emjm) € Mp,,(Z),¢ € O(Ha(L))

defines an action of Mp,, (Z) on O(H}(L)). For k € Z this action factors through an action of
Sp,,(Z), while for half-integral k it factors through a projective action of Sp,,(Z), whose 2-cocycle
equals (M, M")* for M, M’ € Sp, (Z).

Definition 2.4.10. Let V be some finite-dimensional complex vector space. For a holomorphic func-
tion Hy — V and (M, epjm) € Mp,, (Z) we define the function f|, (M, epja) pointwisely by

FleM emjm)(Z) = (emjm(2))*fF(M(Z)), Z € Ha.

We define | M := ¢| M for M € Sp,,(Z). The operator |, is called the slash operator of weight k.

Proposition 2.4.11. Let I < Sp (Z) and k € 1Z. Foramap v : T — C* the following assertions
are equivalent:

i) V(MM jpar (Z2)% = v(M)v(M') jast (M (Z) 2 jap (Z)%* for all M, M' € T, Z € H,,
i) v(MM') = e(M, M')*v(M)v(M') for all M, M’ €T,
iii) v(MM')~1- 1| MM’ = (v(M)v(M'))~1- (1| M) | M’ forall M, M €T.

In this case, v is called a multiplier system of I" of weight k and the assignment

(M, ¢) = v(M) '], M, MEeT,¢eOHL))

defines an action of T on O(H),(L)) for every lattice L. If k € Z, then v € T2,

A direct verification yields
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Corollary 2.4.12. Let T < Sp (Z) and T < Mp,, (Z) denote the pre-image of T under the covering
map. Then there is a one-to-one correspondence between the abelian characters of I and the multiplier
systems of I'. More precisely, if v is a multiplier system of I' of weight k %Z, then the map

v(M), kez,

7:T — C%, (M, epmiy) =
(M, emjm) {st(M), kelz\z,

is an abelian character of T satisfying V(M) = v(M) for M € T and ¥(Loy, —jp,,) = (—1)%.
Conversely, if U € T, then the map

v:T —C*, v(M):=7(M), MEeT,

is a multiplier system of T'. Furthermore, v € T2 if and only if V(Ion, —j1,,) = 1. Otherwise, v is a
multiplier system of weight % and hence of weight % for all odd k.

Proposition 2.4.13. Let n > 2. Then the following elements belong to Mp,, (Z)':
i) M?for M € Sp, (Z),
it) (Ln, —j1,,)
iii) (—Ion, j-1,)-
Proof. i) Let M € Sp,(Z)’. By surjectivity of the covering map exactly one of the two cases
(I, —jn,,)’M € Mp,, (Z)', 6=0,1,

occurs. But both already imply M2 € Mp,, (Z)'.
ii) In the case n = 2 consider My := diag(—1,1, —1,1), which belongs to Sp,(Z)’. By 1),

—_—~— 2

. . —~ 2
(Is, —ji,) = diag(—1,1,-1,1) =M, € Mp,(Z)'.

In the case n > 3 we obtain My x I,_4 € Sp,(Z)" and hence

2
(Lu, —jn,) = Mo X Ly_s € Mp,,(Z)".

iii) From J, € Sp,, (Z)" we obtain ]712 = (—DLn,e(Ju, Jn)j-1,) € Mp,,(Z)' by i). In the case
€(Ju, Jn) = 1 we are done. In the case (], J,) = —1 we can multiply by (L., —jp,,) €
MpZn(Z)/' L

Remark 2.4.14. Note that in view of 2.4.12, the fact (Ipn, —j1,,) € Mp,,(Z)" is the algebraic justifi-
cation, that there exist no multiplier systems of half-integral weight of Mp,, (Z) for n > 2.

We discuss an example:
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Example 2.4.15. a) The Dedekind eta function 7 : H — C, defined by

”—;Z lo—o[ ( 27‘[1nz> = H,

is a cusp form (cf. 2.5.11) of weight % with respect to Mp, (Z) and multiplier system vy, which is
uniquely determined by the values

. —_~—
e}

u() =%, v(§i) =et.
Furthermore, vy is an abelian character of Mp,(Z) of order 24 and satisfies v, (I, —jr,) = —1.

b) It is well known that Sp,(Z) has a unique nontrivial abelian character Vygaag. Since (Ipn, —j1,,)
belongs to Mp,(Z)', the character V\paag extends uniquely to Mp, (Z) where it is again denoted
by VMaag. Furthermore,

—_—

VMaaB(] X IZ) = -1, VUMaag (% ISZ> = (_1)511+512+522/ S= (:; z;§> € SymZ(Z)

This is enough to determine Mp,  (Z)2" in the following way:

Lemma 2.4.16.
<V77>’ n=1,
MpZn (Z)ab = <VMaaB>/ n= 2;
{1}, n>3

Proof. First we consider the case n = 1. Since SL,(Z)?" is cyclic of order 12, we conclude that

Mp,(Z)2 has order at most 24. The characters ¥ induced from SL,(Z) are characterized by

the condition v (I, —jj,) = 1. Since vy (I, —j,) = —1, we obtain exactly 24 distinct characters.
Let n > 2. Since (I, —j1,,) belongs to Mp,, (Z)', every character of Mp,, (Z) is induced by a
character of Sp, (Z) and the claim follows. O

Definition 2.4.17. Let G bea group and p : G — GL(V') a representation on some finite-dimensional
complex vector space V. Then the map

detp: G — C*, g+ det(p(g))

is called the determinant character of G with respect to p.

Lemma 2.4.16 restricts the possible determinant characters arising from finite-dimensional
representations of Mp,, (Z):
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Corollary 2.4.18. Let V be a finite-dimensional vector space and p : Mp,, (Z) — GL(V) a repre-
sentation. Then

1/,‘; forsomed € {0,...,23}, n=1,
detp = ¢ v, . forsomed € {0,1}, n=2,

1, n

The compatibility of the actions of H™ (L) and Mp,, (Z) on O(H} (L)) is explained in

Proposition 2.4.19. Let L be a lattice. Let [1,1' € H" (L), (M,epmjm) € Mp,,(Z) and ¢ €
O(H%(L)) Then the following assertions hold:

a) Mp,, (Z) acts from the right on H")(L) as automorphisms via

[l,ll] : (M,EMjM) = [(l, l,) M]

b) (cp‘k,L(M,eMjM)> ‘L<[z,1/] . (M,sM]’M)> - ((/)‘L[l,l/]) ‘k,L(M,eMjM).

¢) £ (L) is invariant under the slash operator ’k .

This justifies the following

Definition 2.4.20. The metaplectic Jacobi group of degree n associated to L is defined as the semidi-
rect product

Mp},(Z)(L) := Mp,,(Z) x H"(L).

The definition is extended for arbitrary subgroups T < Mp,, (Z) by setting

I/(L) :=Tx H™(L).

Remark 2.4.21. The groups H") (L) and Mp,, (Z) are identified as subgroups of Mpén (Z)(L) via

HO(L) — Mp},(Z)(L), (11 = (L, [1,1]),
Mpy,(Z) — Mp), (Z)(L), (M, emjna) = (M, emjna), 0).

From the commutation relation in 2.4.19 we derive
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Proposition 2.4.22. Let L be a lattice and k € 3Z. Then Mpén(Z) (L) acts on O(HL(L)) by

L1,
L

‘Ib‘k’L((MrijM)/ [L,1]) := (¢‘k,L(M/€M]'M)>

where (M, epjm) € Mp,, (Z),1,1' € L™, ¢ € O(H),(L)). Explicitly one has
(P‘kLg(Z’ W) :(SMjM(Z))_zk . o2ttt (QU(WHIZ+1)(CZ+D) '+ QM (1 Z+B (IW))

- p(M(Z),(WHIZ+1')(CZ+D)Y), (Z,W)eH)(L),

where g = (M, emjum), [L,1']) € Mp},(Z)(L).

Definition 2.4.23. Let L be a lattice. The complex vector space spanned by the Jacobi theta functions
of degree n associated to L is defined as

o = <19§”]3 e (L*/L)(”)>C.

=

Note that dim¢ @in) = (detL)".

We apply the identification 2.2.3 on the Jacobi theta functions of degree n associated to L in
order to obtain

—_—

19(52(2/ W) = ®K<n)(y),5W(Z,S), (Z,W) € H, x C"™*",

where ©p (Z, S) stands for the classical theta series in Z, S and characteristic (P, Q). By use
of the general transformation formula for theta functions with characteristics, we obtain

Theorem 2.4.24. Let L = (L, Q) be a lattice. Then the restriction of

representation

(n) . .
%’L on ®L induces an unztary

ol : Mp,,(2) — U (0]"),

which is uniquely determined by the transformation laws

Vit \"
/L det L ve( =

L*/L)(n)

o () - 81" := o}

() (In S\ om)._ o)
PL (O In) 19L;4' ﬂLy

for u € (L*/L)". The representation p(L") is called the Weil representation of Mp,, (Z) associated
to L. In the case n = 1 we suppress the superscript and simply write py.

(In 5) = 2mitr(Q" (WS 9" g e gym (2),
%,L 0 I, '

We give some
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Remarks 2.4.25. Let L be a lattice.

a) By a slight abuse of notation we extend the definition by p(;) (M) := g (M) for M € Sp,(Z).

b) pL (IZn/ —jp,) = (1)L id@é’”' Hence, p(;)factors through a representation of Sp,,(Z) if and

only if rp = 0 mod 2. Otherwise, p(;) factors through a truly projective representation.

(n) ;
c) pL (_121’!/]*1271) 'ﬂgy - —rLl9( ) n=1mod 2.

n) 19(Ln) W n=0mod 2,
L~y

Definition 2.4.26. Let L be a lattice. ¢ € £")(L) is called symmetric, if
¢ (2,0 (W) = ¢(2,W)

holds for all o € O(L) and all (Z, W) € HL,(L). The submodule of symmetric elliptic functions of
degree n and index L is denoted by £ (n )( L)sym,

Regarding the Jacobi theta functions we immediately obtain the following

Proposition 2.4.27. Let L be a lattice and o € O(L). Then the following assertions hold:
@) 0/")(Z,c" (W) = 8)") ., (Z,W) forall (Z,W) € H}(L),

b) @in) is invariant under O(L).

2.4.27 gives rise to the following

Definition 2.4.28. Let L be a lattice and

@én)’sym = {(,b € G)(Ln) (s symmetric} .

The induced subrepresentation
o™ : Mp,,(Z) — U (©

)

is called the symmetric Weil representation of degree n associated to L.

\h’-‘

Explicit formulas are contained in the following
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Proposition 2.4.29. Let L be a lattice and By, . .., By, denote the orbits of O(L) on (L* /L)) given
by diagonal action. Then a basis of @i”)’sym is given by

{zﬂg;,..., y ﬂg;}.
HeEBy UEB,

Foreachj=1,...,m fix some yp, € B;. Then for B € {By,..., By} one has

(n) sym ) \/;—r ”. i efZHitr(B( vyB
im0 (58) = (o) £ () (5

p(;),sym (161 i) ) (Z 19812{) _ eZTEitr(Q(”)(VB)) <Z 1982) , Se Symn(Z)

UEB

Lemma 2.4.30. Let L be a lattice and 0 < j < n. Then the global Witt operator W) induces an
isomorphism

wi el — oY ocey"

of vector spaces.

Proof. The (detL)"” = (detL)/ - (detL)"~/ maps

WOl = o, 050 k= () € (/1)
are easily seen to be linearly independent. O

Proposition 2.4.31. Let L be a lattice, d := det L and 0 < j < n. Then one has
Wi ool (M; x My_j) o W = o) (M) @ p" (M, _;)

for all Mj € Sp;(Z), My, € Sp,,_(Z). Furthermore, the determinant identity

. . dn=i di
det (p(L )(Mj X Mn,j)> = det (p(L])(M]-)) - det (p(L ])(Mn,]')>
holds.
Proof. Let u = (pj, pn—j) with p; € (L*/L)(j),yn_j € (L*/L)"=)). Then one has

o) (n=j)\ _ q(n)
w- ] < .”] ® ﬂLrVﬂﬁ') =0,

Hence, the claim follows from

WO (o (M) x M) = (o ()80, ) @ (o' (Mo 7))

The supplementary identity is then seen from the determinant formula for Kronecker prod-
(7)

ucts of matrices as well as dimp;” = d/ and dim p(;_j ) — g, O
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2.5 Jacobi forms and vector-valued modular forms

We define metaplectic Jacobi forms as invariants of the modular action on £(")(L):

Definition 2.5.1. Let L be a lattice, T < Mp,, (Z) of finite index and k € LZ. Let ¥ be an abelian
character of T/ (L) of finite order, which acts trivially on H™ (L). A holomorphic function

¢:H(L) —C
is called metaplectic Jacobi form of degree n, weight k, index L and character v, if
i) ¢l .8 =V(g)¢pforallg € T/(L),

ii) forall g € Mpén (Z), the function 4>| i 1.8 has a Fourier expansion of the form

|, 8(Z, W) = y Y (S, j)e2iSZHEY (u W)
- OSSE%Symﬁ(Z) yEL*<”)
QM (p)<s

for some q = q(T,7,g) € N.

We call ¢ a cusp form, if c(S, 1) # 0 in ii) already implies Q) (1) < S. The space of metaplectic Ja-
cobi forms of degree n, weight k, index L and character v is denoted by ],EHL) (T, ). The subspace of cusp

forms is denoted by IIE”L) (T, 7)<USP. The space of symmetric Jacobi forms is denoted by IIEHL) (T, 7)sym,

Consideration of the generators of I'/ (L) yields

Proposition 2.5.2. Let L be a lattice, T < Mp,, (Z) of finite index, k € %Z and v € T of finite
order. Then one has ¢ € ],EnL) (T, V) if and only if the following assertions hold:

i) (Hk,L(M'EM]‘M) = U(M, epmjm)@ for all (M, epmjm) €T,
i) ¢ [1,1') = ¢ forall [I,I'] € HM(L),

iii) forall (M, enmjm) € Mp,, (Z), the function ¢|, , (M, epmjm) has a Fourier expansion of the form

Ol Memim)(ZW) = ) S (S, )RSz B ()
- 0<SeiSym}(Z) peL*
Q" (u)<S$

for some q = q(T, 7, (M, epjm)) € N.

From 2.3.8 we obtain the following characterization:

Lemma 2.5.3. Let L be a lattice, T < Mp,, (Z) of finite index, k € %Z and U € T of finite order.
Then the following assertions hold:
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- M, emim) = V(M, epmi orall (M, epinm) €T,
) 8 TR o {Shalin) Tt ugg - fral Ot
= ¢, (M, emjm) € EM(L)™8 for all (M, epjm) € Mp,,(Z).
i) ¢ € ]]Enl,)(f, V)P = {(P‘k’L(M,sM]:M) —UMei)g - oral (MIEM]:M) <
= ¢|k,L(M/€M]M) c £ (L)eusp forall (M, epmjm) € Mp,, (Z).

Remark 2.5.4. Loosely speaking, 2.5.3 states that a function ¢ € £")(L) is a Jacobi form if and only
if it satisfies a modular translation law with respect to I and all transformed functions ¢ | v (M, emjm)

for (M, epmjm) € Mp,, (Z) satisfy the cusp condition with respect to the Heisenberg group.

Definition 2.5.5. Let L be a lattice, T < Sp,,(Z) of finite index, k € %Z and v a multiplier system of
I of finite order. Then we define

~—

Jep (@) = I 0, v = g0 (E 9y, (v = ) (@ m)m,

where T denotes the pre-image of T under the covering map and v is the abelian character of T according

to 2.4.12. The elements of ]]EHL)(I’,V) are called Jacobi forms of degree n, weight k, index L and
multiplier system v. We will write

~—

) = 1w, 0 w) = 1 6p, @), v), 1 = 1)

Lemma 2.5.6. Let L be a lattice, T < Sp, (Z) of finite index, k € %Z and v a multiplier system of T
of finite order. Then the following assertions hold:

a) dimg ],E,”L)(l",v) < 00,

b) dime ") (T,v) =0, ifk <0,

¢) dim¢ ],E”L)(v) =0, if n > 2 and k is half-integral.

Proof. For a) and b) confer [27, Thm. 1.8]. The assertion c) follows from the fact that (Ip,, —1) €

Mp,,(Z)"if n > 2. O

For g € Z we define congruence subgroups

Sp,,(Z)olg] := {M € Sp,(Z) : C =0 mod g},
Sp,(Z)[q) :={M € Sp,(Z) : M = I, mod q}.

From [1, IL., § 4, Theorem 2.2] we adopt
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Example 2.5.7. Let L = (L, Q) be a lattice. Then one has

)

80 € Iiy)

==

(Sps(@)o[NLL A,

N

where )C(Qn ) is defined in [1, I., § 4, Thm. 4.10, Thm. 4.12]. Additionally,

e

[

' (Sp,(Z)INL))

N

holds for all y € (L* /L)),

We construct Jacobi-Eisenstein series:

Remark 2.5.8. Let L = (L, Q) be a lattice and u € (L*/L)" such that QU (u) € Sym? (Z). Let
Ut (2) denote the orbit of u under the right action of GL,,(Z) on (L*/L)(™). From

Q) (ull) = Q) (u)[U] € Sym(Z), U € GLy(2),

and 2.2.6 we conclude that the averaged function

1
(1S (@)] N Y. O

HGLVI (Z)

is invariant under | M for M = (4 B) € Sp,(Z) and k € Z. even.

This motivates the following

Example 2.5.9. Let L be a lattice. Let k > n+ry + 2 even and u € (L* /L) such that Q) (u) €
Sym? (Z). Let uS(2) denote the orbit of u under the action of GL,(Z) on (L*/L)™). The Jacobi-
Eisenstein series of degree n, weight k and index L with respect to y is defined by

m . 1 (n)
BrLy = |G @)| L L0 kL

@ M,
‘ M:Sp, (Z)O\Spn (2) )\GVGL”<Z) B

where Sp,(Z)y := {M = (4 B) €Sp,(Z)}. The series converges absolutely and uniformly on
each vertical strip

Via(6) = {(z, W) € H(L) : Y > 01, tr(X2) < 6L, tr (B (W, W)) < 5—1}, 5> 0.

By construction, E,E”L) " is invariant under both Sp,,(Z) and H (")(L), hence E,E"L) u € J ,E”L)

The Jacobi-Eisenstein series EIEnL) = E,E”L)O was studied in [27, p. 200f]. By using standard

methods, cf. the proof of [27, 2.8 Theorem], we obtain:
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Proposition 2.5.10. Let L be a lattice. Let k > n+4rp 42 even and u € (L*/L)" such that
QM (4) € Symi(Z). Let0 < j < nand u; € (L*/L)D,p, ; € (L*/L)") such that y =
(yj, ]/tn,j). Then the following assertions hold:

a) 35?,j (E,E?L),V‘L[(O, —,un]-),O]) = Elgiyjfor all Y,,_; > 0 with the convention El(cfzyo =1

b) EISZ " does not vanish identically.
(n)

¢) The Jacobi-Eisenstein series Ek,g W

of GL,(Z) on

where y runs through a system of representatives of the orbits

{we @ /n: QM) e symi(2)},
are linearly independent.
Definition 2.5.11. Let I < Mp,, (Z) of finite index. Let V be a complex vector space of finite
dimension and p : I — GL(V) a finite representation and k € %Z. A holomorphic function

f:Hy — Vis called vector-valued modular form of degree n and weight k with respect to T and
o, if the following assertions hold:

i) f] (M, epmjm) = p(M, epjm) f for all (M, emjm) €T,
ii) forall (M, epmjm) € Mp,, (Z), the function f‘k(M’ emjm) has a Fourier expansion of the form

dlmc(V) )
f‘k(M,SMjM) (Z) = Z Z C](S) . e27r1tr(SZ) ’0]’ , Z e Hn
=1 OSSG%Symﬁl(Z)

for some basis v;,j = 1,...,dimc (V) of Vand g = q(T, p, (M, emjm)) € N.

In thise case f a cusp form, if St~ (f’k(M,ijM)> = 0 holds for all (M, epjm) € Mp,,,(Z). If
V = C, we will we suppress the term "vector-valued’ and simply call f a modular form. The space
of vector valued modular forms of degree n and weight k with respect to p is denoted by [Tk, o], the
subspace of cusp forms by [T, k, p]UsP.

We end this section by briefly reviewing the well known correspondence between Jacobi
forms and vector-valued modular forms, cf. [24, Proposition 3.5.].

Let L be a lattice and d := det L. Let y, ..., usn denote a complete system of representatives
for (L*/L)"). We define

of = (
Let ¢ € £(")(L) with theta decomposition

d;’l
¢ = Z%hf"ﬂj = <h5§>
j=

(n) (n)
Ol O
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where h = (hy,..., hgn)t : Hy — c? is holomorphic and (-, -) denotes the standard scalar
product on C%". Let p(;) denote the matrix representation of the Weil representation with re-
spect to the basis of @(L”) given by the Jacobi theta functions associated to the system (i1, . .., pgn).
Hence, for (M, epmjm) € Mp,, (Z), we obtain

Pl L (M emjm) <h\k (M, emjm), © ?

<h‘k (M, emjm), P(n)(MrSMfM) '®(Ln >
= <P(Ln)(M,5M]M h’k (M, ijM)'®(Ln >

and thus the connection between Jacobi forms and vector-valued modular forms:

Theorem 2.5.12. Let L be a lattice, T < Sp, (Z) of finite index, k € %Z and v a multiplier system

of T of finite order. Let jiy,. .., ugn denote a complete system of representatives for (L* /L)) and pg)

denote the matrix representation of the Weil representation with respect to the basis of ®(L”) given by
the Jacobi theta functions associated to the system (y1, ..., an). Then the assignment

h— <h C:)E’:; >
induces isomorphisms of vector spaces

L ]~
i {r,k %7 (o)) ] = @),
cusp

= r, o~ n —t ~ n
i) [F,k — %,v . (p(L ) |f) } — ]IEL) (T, v)cusp,

where T denotes the preimage of T under the covering map and v is the abelian character of T in
accordance to 2.4.12.

(n)

As an example we return to the Jacobi-Eisenstein series E; %

Example 2.5.13. Let L be a lattice. Letk > n+r 42 evenand u € (L* /L) such that Q) (u ) €
Sym’ (Z). Let d := detL and py, . .., pn denote a complete system of representatives for (L* /L)("

)
and p(L ") denote the matrix representation of the Weil representation with respect to the basis of ®( )
given by the Jacobi theta functions associated to the system (uy, ..., ian ). By a slight abuse of notation
we denote by e) the standard basis vector e; of C¥,if A = ujfor 1 <j < d". By definition ofp(L") we
have B

ﬂgl; %,LM = <P(Ln)(M)(94(Ln§’eV> = Z <P(Ln)(M)ev/e;l> . 1983

ve (L /L)®
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Hence the theta decomposition of ElgnL) ” is given by

(n) 1 MO
E = M
oL h’lGLn(Z)‘ M:Spn(Z§\Spn( )\ey§n L/\
1
G B >-1 -
‘V ‘MSpn( Z)o\Sp,(Z AeyGL” ‘k_é’L
1 n (n)
- (M)ey, ey ) -0 v) 10, M
WGLH(Z)‘ Msp, (Z%\Spn A@GLn < (L) L > L ‘kg,L

1 n n
~ G2 B )3 B <p(L)(M)eU'€A> '1‘ n M ﬂig
“/l ‘ UE(L*/L)(”) M:Spn(Z)O\Spn(Z) /\gyan(Z) k=7 .L
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2.6 Determinant characters of Weil representations of

Utilizing a case-by-case study for the irreducible root lattices of small rank constructed in
section 1.3, the tables 2.1 and 2.2 present the matrix representations of p (M) and p}" (M)
for the canonical elements M € {J, (1)} with respect to suitable bases. In each case we

degree 1

determine the exact v;-power of the corresponding determinant character of Mp,(Z).

L oL(J) detpL(J) oL (01) detpr (51) | detpr
—1
A Vi 1 ; 10 i y
_ V2 -1 0 i 4
(111 100
—1
A Wl R 1 0p 0 0 vl6
L pop 00 p
1 1 1 1 1 0 0 0
D, -1t 1 -1 -1 3 0 -1 0 0 . e
— 211 -1 1 -1 0 0 -1 0
1 -1 -1 1 00 0 -1
(111 100
Z - —
E|  sl1ee 1 0p 0 o vy
1 p p 00 p
(1 1 1 0
E, ﬁ —q i 1/%8
— V2 \1 -1 0 —i
Eg 1 1 1 1 vt =1

Table 2.1: Weil representations and their determinant characters
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L er (J) detp/"(J) | pp " (§1) | detpp™ (§1) | detpp™
-—1
A Vi (11 i Lo i Ve
—= v2 \1 1 0 i d
(11 1 10 0
241 | 5|2 0 -2 i 0 i 0 i vi8
1 -1 1 00 —1
L1 11 1 0 0
Vi : :
A | ——[2 0 -2 Vi 0 Vi 0 —/i vl
1 -1 1 00 -1
) i1 1 ) 10 .
2 —= P v
T V3 2 -1 0 p g
1 1 1 100
—1
24 | 5[4 1 2 1 0 p O 1 1
4 -2 1 007
D, YA -1 1o 1 v
— 2\3 41 0 —1
i (1 1 10
E6 R 1 ‘(—) 1/16
- VvV3la 1 (0 p) 1
E7 ﬁ b —1 Lo — V%s
- v2 i1 1 0 —i
Eg 1 1 1 1 vt =1

Table 2.2: Symmetric Weil representations and their determinant characters






3 Pullback Theory

3.1 The pullback operator

Definition 3.1.1. Let Lo, L be lattices and 1 : Lo — L an embedding. Then the map
(L s Ly, L) = (), (L)

forly,..., 1, € Lis called the diagonal embedding of degree n associated to 1. Its unique IF-linear
n)

extension (LO)](F — L](F") will again be denoted by (). In the case n = 1 we will supress the
superscript.

Every embedding  : Ly — L induces a series of further embeddings:

Remarks 3.1.2. Let Lo, L be lattices and 1 : Ly — L an embedding. Then the following assertions
hold:

a) The map
) M (Lo) — HA(L), (2, Wo) = (2, (W)
is a holomorphic embedding of the corresponding Jacobi half-spaces.
b) The map
() 1Y (L) — HR' (L), (Ao 10, 0) = (l(”)(/\o),l(”)(ﬂo)/{:>

is a monomorphism of the Heisenberg groups and one has

‘(")\H(M(LO) t H"(Ly) — H(L).

We may now introduce the main operator of our studies:
Definition 3.1.3. Let Lo, L be lattices and 1 : Ly — L an embedding. For a holomorphic function
¢ € O(HL(L)), we define
¢ [z(”)] : H)(Ly) — C
pointwisely by
(n) — (n) ]
¢ [l } (Z,Wo) = ¢ (z,l (wo)) (2, Wo) € HL(Lo).
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The function ¢ [l(”)] is called the pullback of ¢ with respect to ("), As an abbreviation we set

where 1) : Z(t) — L, t = Q(I),as in 1.2.22.

Regarding compatibility of the Heisenberg-action and the pullback operator, we obtain

Proposition 3.1.4. Let Ly and L be lattices and 1 : Ly — L an embedding. Let g € H]gl)(ﬂ) and
NS O(HJ(L)). Then one has

i.e. the diagram

o) —L - o (Lo))
Jes e
o)) — - o (Lo))

is commutative for all ¢ € ngi) (Lo).

As a by-product we obtain

Corollary 3.1.5. Let Lo, L be lattices and 1 : Ly — L an embedding. Then the pullback operator

0] E(L) — £ (Lo)

is a homomorphism of O (H,)-modules.

The next aim is to prove that the pullback operator is compatible with respect to regularity
and cuspidality. To this end we need the following technical lemma, which can the proved by
a straightforward calculation.

Lemma 3.1.6. Let Lo and L be lattices, 1 : Ly — L an embedding and 0 < j < n. Let O(HL(L)),

Yy,—j € Pos,_;(R), (Ao)u—j, (Ho)n—j € (Lo)g_j) and suppose that

sy (‘PL (0,4 D ((A)a)) (0,t<”‘f>((uo)n—j>>])
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exists. Then

exists and one has

Furthermore,

deg,s (¢ [1]) > degpey (¢),
degep (¢ [17)] ) > degoyep ()

3.1.6 immediately implies

Theorem 3.1.7. Let Lo and L be lattices, 1 : Ly — L an embedding. Let ¢ € EM(L). If ¢ is reqular

resp. cuspidal, then ¢ [t(”)} is regular resp. cuspidal of degree at least deg, . () resp. deg, ().
The operators

0] 2 EB(L) — 8 (Lo),

[[(n)} : gc(gs)p(L) — 5c(gs)p(LO)-

are well defined and homomorphisms of O(H)reg-modules.

The commutation relation between [L(”)} and the slash action is explained in the following

Proposition 3.1.8. Let Lo, L be latticesand 1 : Ly — L an embedding. For (M, emjm) € Mp,,(Z), ¢ €
O(HL(L)) and k € 37 one has

o []],, Mewi) = (o], (Moeian)) [17],
i.e. the diagram
o) — 06 (1)
|, (Meaing) |1 (Mening)
o) —L 0@ (1)

is commutative for all (M, epmjm) € Mp,, (Z).



54 3 Pullback Theory

From 3.1.8 we immediately obtain

Theorem 3.1.9. Let Lo, L be lattices and 1+ : Ly — L an embedding. Let T < Mp,,(Z) of finite
index, v € T2 of finite order and k € %Z. Then the pullback operator [1(”)] induces a homomorphism

] < D7) — g (T9)
of vector spaces of metaplectic Jacobi forms. Furthermore, [t(”)} restricts to Jacobi cusp forms.

The pullback operator is functorial in the following sense:

Lemma 3.1.10. Let L, Lo and Ly be lattices and 1 : Lo — L,x : L — Ly embeddings. Then for all
¢ € O(H)(Ly)) one has

From 3.1.10 we obtain the following

Corollary 3.1.11. Let L and Lo be lattices and 1,x : Ly — L embeddings. Then the following
assertions hold:

a) If 1 and «x are stably equivalent, then one has ¢ [L(”)} =¢ [K(”)] forall p € EM(L).

b) If 1 and x are equivalent, then one has ¢ [z(”)] = [ } forall ¢ € £ (L)™,

We determine the effect of the pullback operator on Fourier expansions:

Proposition 3.1.12. Let Lo, L be lattices and 1 : Ly — L an embedding. Let ¢ € £ (L) such that
¢ has a Fourier expansion of the form

pZW)= Y Y oS, )2 Sz eW) (7 W) € H)(L)
Se= Symﬁ( ) peLx

for some q € IN. Suppose that the finiteness condition
Hy e t*(”)(y) =Candc(S,u) # OH < o0

is satisfied for all S € %Sym,ﬁ1 (Z) and ¢ € Lg(”). Then the Fourier expansion of ¢ [1(”)] is given by
the formula

¢ [t(”)} (Z, WO) — Z Z ( Z C(S,]/l)) 27rztr(SZ+B ((j Wo))
¢

selsymi(z) poerLy™ \peL, ) (u)=
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Proof. Let (Z, W) € H)i(Lo). Then one has

¢ [\ (2, Wo) = ¢ (2,47 (Wo))

_ Z Z 27ite(SZ4 B (11,11 (W) )
Selsymi(z )ueL*()
_ Z Z Q27ite(SZ-+B (1* (1) (11),Wo))

Se. Symﬁ( )yEL*()

Due to the finiteness condition we obtain the desired result after a rearrangement. O

We give some sulfficient criteria:

Remark 3.1.13. Let Lo, L be lattices and 1 : Ly — L an embedding. Let ¢ € £ (L) such that ¢
has a Fourier expansion of the form

pZW) = L (s p) @, (7, W) € Hi(L)
Se= Symﬁ( ) peL*™

for some q € IN. Then the finiteness condition in 3.1.12 holds for ¢ € 5r(eng) (L). Especially, the
finiteness condition holds if the Fourier coefficients c(S, ) satisfy the symmetry

c(S[U], pU) = c(S, p)
forall S € 1Syrn (Z), 1 € L*™ and U € GL,(Z)][q).

Proof. The symmetry condition implies ¢ € 5r(eg)( L) by the Koecher pr1nc1ple cf. [1,1I, § 3,
Sec. 2]. Fix S € ;Symi( ). Then ¢(S, ) # 0 for u € L) implies QU () < S. Since Q is

positive definite, the set { U e Lx( . o) (n) < S} is finite. Hence, the finiteness condition is
trivially satisfied. O

3.2 Automorphic transfer and modular determinant

In this section we will study the pullback operator from an algebraic point of view and inves-
tigate its modularity properties. As a motivational example we discuss

Example 3.2.1. Let Lo, L be lattices and 1 : Ly — L an embedding. According to 3.1.7 we define
holomorphic functions

Mg, Ho — C, pe L™, gers®,

via the theta decomposition
() _ (n)  4(n)
o= X g P

Then the following assertions hold:
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a)
h%l(z) = Z ’{l cEu+ () . Q(”)(l) =S+ Q(()n)(é)/ l*(n)(l) _ CH p2itt(SZ)
5=Q" (1) -Qy" (¢)
mod Symg(Z)

forall Z € Hy.
b) Let Sgé) [1] = {l € u+ L0 0y = C}. Then one has

s%) ] = (M(g) I (t(Lo)i)(”)> Ayt L

and
n 2rtitr ) (1 —ow Z —omite QW (&) n
BR(Z)= Y e w((QM0-0"@)2) _ ,-2min(0g" @ >'19_E;<3>[4(Z)-
lesi] .
As a special case,
W(z)=0" | (2), pel®W,ceLl”,zen,

(Lo)

i.e. the theta series of degree n associated to the orthogonal complement of 1(Ly) in L.
c) Letj=1,...,nand p = (yj, p_;), where y; € L*(j),yn,j e L*""=_ Then one has

h’i])gj . (n=]) (Cn—]) S0 mod L(n—j),
0, else.

(1) 4, (n)
S Y, ]hllgl

Proof. a) Let I € L* and S > 0. The coefficient of (27t (SZHBM (LW)) iy 19( ) is given by
) (1), where ¢ denotes the Kronecker delta. Due to 3.1.12 we have

— (). oM (1) = g+ 1y —
g (S0 = {1 €p+ 102 QW) = 5,0(1) = ¢}
forall ¢ € Lg(") . Hence, from 2.3.8, we obtain

‘ué‘l Z C (S + QO (é)/ g) eZnitr(SZ)

$>0 Lﬂ

_ y {1 n L5 Q1) = 54 QY (g), # (1) = g} | s

520

5=QM (1) —Qy" (&)
mod Symfl(Z)

Note that the congruence

holds for all I € p + L.



3.2 Automorphic transfer and modular determinant 57

b) Follows immediately from a) by a rearrangement. The equality of the sets in question
follows from the identity *) (:(1) (7)) = ¢.

c) Follows from b) or can be seen from 2.3.6 together with 3.1.6. O

Definition 3.2.2. Let L be a lattice. For a subspace V. < ®(L”) we denote by O(H,,)V the module
generated by V over O(Hy). N

In order to define the pullback operator in a more general setting we need

Lemma 3.2.3. Let L be a lattice and V < @i”).

a) Let ¢1,...,¢m belinearly independent in V. Then the functions ¢1(Z,-), ..., ¢m(Z,-) are linearly
independent for every Z € H,.

b) O(Hn)V is free of rank dime (V') and every C-basis of V is an O(Hy,)-basis of O(Hn)V.

Proof. a) Letd := det L. By definition of G)(;) we have

4)1 ﬂg;)q
L =Al
(n)

Pm 19‘L "

for some A € C"™*" if we fix a complete system of representatives ji1, . . ., g of (L* /L)),
By assumption on ¢y, . . ., ¢y, the matrix A has rank m. The functions

8")(Z,), e (L7/L)"

are linearly independent for Z € H,. Since the matrix identity is also valid for Z € H, as
an identity of W, we conclude that

$1(Z,) s Pm(Z,0)
must be linearly independent.

b) This follows immediately from a). O

We come to the main definition, which covers the cases we are interested in:

Definition 3.2.4. Let Lo, L be lattices and 1 : Ly — L an embedding. Assume that the following
setup holds:

i) V< @gl) resp. Vo < 6(? are p(;)— resp. p(;)—invariant subspaces,

ii) p : Mp,,(Z) — GL4(C) and pg : Mp,,(Z) — GL4,(C) are matrix representations of

p(;) ‘V resp. P(LI;) with respect to certain bases of V resp. Vp,

wl,,
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iii) V [M} C OHa)Vo.
In this setting we define
Hio [L(n),p,po] € O(H,)

as the transposed O (H,,)-representation matrix of the restricted map

[M)} L O(Hn)V — O(H) Vo

with respect to the bases in ii) according to 3.2.3. We call H%O [L(”), 0, po} the automorphic transfer

from L to Lo with respect to 1M, 0, 00. In the equidimensional case d = dy, the determinant
det Hi [1(”),p,p0} :H, — C

is well-defined and called the modular determinant with respect to ("), p, po.

Remark 3.2.5. Let Lo, L be lattices and 1 : Ly — L an embedding. Assume that we are in the setting
of 3.2.4.

a) For bases (¢1,...,¢q) of V resp. (Y1,...,q,) of Vo in 3.2.4 ii) the automorphic transfer from L
to Lo with respect to 1M, 0, po is uniquely characterized by the identity

$1 P
. L .
: [t(”)} = Hp, [t(”), 0, po} :
$a 1Pd0
b) With respect to the bases given by the Jacobi theta functions associated to L resp. Lo the automorphic

transfer H%O (), p(;), p(L’;) } was determined explicitly in 3.2.1.

¢) There are matrices A € Céx(detl)" g B e C(detlo)"<do gy ch that

] = 0] 5.

d) Provided existence, the modular determinant det H%O [t(”), 0, po} obviously depends on the choice
of the bases of V resp. Vy and hence is uniquely determined only up to some nonzero complex scalar.

Functoriality of the automorphic transfer is explained in the following

Proposition 3.2.6. Let Lo, L1, L be lattices and 1 : Ly — Lyx:L; — L embeddings. Assume
that we are in the setting of 3.2.4, such that

are defined. Then one has

b [(x00,0] = 4 [<, 1] -8 10,

with respect to suitable bases.
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Proof. Follows directly from 3.1.10. O
Corollary 3.2.7. Let Ly, Ly and L be lattices and
' Lg— Ly, 1, L4 — L

embeddings. Assume that we are in the situation of 3.2.4. If
L L
Hf, [(KO!)(”),p,po} = Hf, [(K’Ot’)“),p,po} , Hi [l("),PLPo} = Hy, [t’(”),m,po} -
and H% [1(”),p, pg] has full row-rank, then Hi [K(”),p, pl] = H%l [K’("),p,pl}.

(n)

Proof. Due to 3.2.6 and by assumption on (") and /" one has

Due to the condition on the rank we can cancel H% [t(”), 01, po} from the right and obtain the
desired result. o ]

We repeat some representation theoretic constructions:

Remark 3.2.8. Let G be a group, V a complex vector space and p : G — GL(V') a representation.

a) The dual or contragredient representation of G with respect to p is defined as
p*:G—GL(V"), p"(8)=p(g )", 8 €G,

where V* denotes the dual space of V and ' means taking the transposed endomorphism. If V.= C™
we can identify ! with the usual matrix transpose.

b) Let p' : G — W be another representation on some complex vector space W. Then there is a
unique representation p ® p' : G — GL(V ® W), such that

(p@p)(g)(vew)=p(grep(Qw, gecGreV,weW.

The representation p ® p’ is called the tensor product of p and p'. If V.= C",W = C™, we can
identify GL(V') resp. GL(W) with GL,,(C) resp. GL,,(C) and V @ W with C"*™ via the dyadic
product v ® w — vw'. In this case one has

(p®p) ()X =p(g)Xp'(g)!, XeC™™geG.

Now we can state the precise modularity properties of the automorphic transfer and the mod-
ular determinant provided its existence:
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Theorem 3.2.9. Let Lo, L be lattices and + : Ly — L an embedding. Assume that we are in the
setting of 3.2.4. Then the following assertions hold:

a) The transformation formula

01

i, (Moemim) = (M, emjm) - H, [‘(")rPrPO} -po(M, emjm) !
L™y —

2
holds for all (M, epmjm) € Mp,,(Z), i.e.

YL — Ty N
HE [47,p,p0) € [Mpzn(z), — ®Po} :
b) Suppose that dim p = dim py. In this case

rL—r
detHi0 [L(”),p,po] € [MpZn(Z), L > Lo-dimp,detp'(detpo)ll-

Proof. a) The assertion is clear for (I, —jp,, ). We fixbases (¢1,...,¢4) of Vand (¢1,...,¢4,)
of Vj that correspond to p resp. pp. For reasons of readability we will simply write H

instead of H%O [t(”), 0, po] . The main idea is to apply the slash operator ‘,L . M for every
=2 2 /L0

2240

M € Sp, (Z) on the defining equation

P 2
| ] =H|
Pa Ya,
Considering the left-hand side we obtain
$1 N $1 N (P N %}
], M= M| =p(my | 5| [0] = o) H |
L l
b e \ge) P b4 Y
On the right-hand side we obtain
%} %} N %}
H " M = <H rL—rLOM> . o M = (H rL—rLOM> pO(M)
by, TR 2 ¥g,) 2R 2 Vi,

Hence, by linear independency, H

rL—rLjM = p(M) -H- pQ(M)il.

2

b) We use the notation as in a) and apply the determinant on the transformation formula. By
the Leibniz formula, the identity

- M, enmi
VLZVLiodlmp( 7 M]M)

det (H LTy (M,€M]M)) = (detH)

2

holds for all (M, eprjp) € Mp,, (Z). By the Koecher principle, holomorphicity at the cusps
of Mp,,,(Z) is only to prove for n = 1. Here we note V < Sr(el) (L) and V) < Er(el) (Lp). O
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We need several lemmas:

Lemma 3.2.10. Let v € Mp,(Z)® and f € [Mp,(Z),k, V). Then the following assertions are
equivalent:

i) fis nonvanishing on H,i.e. f € O(H)*,
i) feCry,
Hence, we have

CX* 2k, U:V%k,

O(H)* N [Mp,(Z),k,v] = {@, else.

Proof. Clearly, ii) implies i). Let v = 1/,17’ for some 0 < b < 24. We consider the function

g = 1724_bf € {Mpz(Z),k — g + 12] ,

which is still nonvanishing on H, but vanishes at infinity of some order m > 0. Since
n** € [Mp,(Z),12] vanishes at infinity of order 1, we obtain that g7 ~2*" is a modular form,
nonvanishing on H including infinity. By the valence formula g - 724" has weight zero and
hence is constant. It follows that ¢ € C*7?4". Consequently, f is a nonzero multiple of some
n-power and due to the weight one has f € C* 5. O

In view of surjectivity we give a negative result:

Lemma 3.2.11. Let Lo, L be lattices and + : Ly — L an embedding. Assume that we are in the
setting of 3.2.4. Suppose that n > 2,r;, < rp and dimp = dim pg. Then the following assertions
hold: N

a) The modular determinant det H%O [t(”), [ po} has a zero in H,, and H%O [t(”), [ po] is singular.

b) The pullback [t(”)} : O(Hn)V — O(Hnu)Vy is not surjective.

Proof. a) Let F := det H%O [L(”), 0, po] . By assumption on the ranks of L resp. Ly, we conclude
that F is a modular form of degree n > 1 and positive weight. Hence, by the Koecher prin-
ciple, F has some zero Zy € H,. Consequently, the matrix H%O [[(”), 0, pO] is not invertible
over O(H,).

b) Otherwise [1(")} would extend to an epimorphism of equidimensional vector spaces by

passing to the quotient field of the integral domain O(#,). Hence, [1(”)] would be a
monomorphism of vector spaces, thus an isomorphism. This contradicts a). O

We prove a surprising necessary and sufficient criterion for isomorphy:
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Theorem 3.2.12. Let Lo, L be lattices and 1 : Ly — L an embedding. Assume that we are in the
setting of 3.2.4. Suppose that r1,, < rp. Then the following assertions are equivalent:

i) [t(”)} : O(Hn)V — O(Hn)Vy is an isomorphism,

ii) det H%O [t(”),p, po] is nonvanishing on H,,

iii) n =1 and det H%O [t(”),P, po] =c- ﬂ(rL_rL—O)'dimpfor some ¢ € C*.
In this case, the determinant characters are related by the formula

_ .di
detp = 1/,7(rL rL*O) T et 00-

Proof. The equivalence of i) and ii) is immediate by linear algebra over O (). Furthermore,
iii) obviously implies ii). In the remaining case we conclude n = 1 from 3.2.11 and F =

_ .di — di
c-y (ri=rup)-dimp for some ¢ # 0 from 3.2.10. Then one has det p - (detpg) ! = 1/,7(rL o) o

We state necessary conditions for the existence of nontrivial modular determinants:

Proposition 3.2.13. Let Lo, L be lattices and 1 : Ly — L an embedding. Assume that we are in the
setting of 3.2.4. Suppose that n > 2 and dim p = dim pg. Then the following assertions hold:

a) If (rL — 7’1;0) - dim p is odd, then det H%O [1(”),,0, Po} =0.

b) Ifnisodd and (rp —ryy) - dimp # 0 mod 4, then det Hi [t(”),p,po} =0.
In all these cases, the pullback operator

[M} L O(Ha)V — O(Hn) Vo
is not injective.

Proof. a) Follows from the fact that for n > 2 every modular form with respect to Mp,, (Z)
of half-integral weight is trivial.

b) Let F = det H%O [L(”),p, po] . Note that F has trivial character, since n > 3. Then the claim
follows from

F=F|nn, (—Ln) = (rrg)-dime p

>—-dimp O

We study the behaviour between the automorphic transfer and the Witt operator W),
Given X = (x1,...,xy) and YV = (y1,...,ym) we define X ® ) as

XY= ((x,v1), -, (x1,ym), -, (X2, 1), -, (X0, Ym)) -
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Theorem 3.2.14. Let Lo, L be lattices, d = detL, dy = detLg and 1 : Ly — L an embedding. In
the case n = 1 we distinguish complete systems of representatives

’R(Ll):(.ulzll/‘d)/ Rg()):(gl”édo)

of L*/L resp L5/ Lo. In the case n > 1 we define systems of representatives of (L*/ L)) resp.
(L§/Lo)™ recursively by

n 1 n—1 n 1 n—1
Ry =R @R, R =R R,

Let p(;) resp. p(L';) denote the Weil representations with respect to the bases of ®(L resp. G)( ") given

by the Jacobi theta functions labeled by R(Ln) resp. R(L';) Then one has

i) 7L n n n L i ] ] L i i
me;O [A >,p<L>,p§i>} - HE [An,pg),pg} ®HE [gn ]>,p<; >,p<LO ])},

where & denotes the Kronecker product of matrices. In the equidimensional case d = dy one has

wl) (detHi0 [t(”),p(;),p(i)b = (detHi [t(f),pg),pgbd

Proof. By an inductive argument we obtain natural identifications

(n—j) © (det Hi) [[(”*j),pi”*]‘),pg*j)} )dj .

R(Ln) _ Rg) ® R(Ln_j)’ R(Lz) — Rg ® ’R’(Ll)_j)

for 0 < j < n. Then it is easy to see that

wo (8 [d0]) = o), [10) @ ol D 0], e = ) € RYY.

The claim follows by considering the corresponding representation matrices. The supplemen-
tary follows from the determinant formula for Kroneckers products of matrices. O
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3.3 Examples of automorphic transfer and modular
determinant of degree 1

In this section we shall determine H%O (4, p, po] explicitly for some examples of embeddings of
lattices of small rank and low-dimensional subrepresentations.

L | representation basis
Es OEs (19& )
E O,
_7 p& lgﬁ/%(€1+€2+€3+€4+€5+66+g7)
OF
6
— e Eg,} (e1+e3—265) T VEg— L (e1+e3—2e5)
Op
sym Dy
& p& ( 19&’ 6242%'4 +l9&/ 624586 +l9&, 62;1’7 )
Oa
2
A sym A2
_2 IOQ ﬂﬁ/w«kﬁﬁ/_w
024,
2o || [ ) ) ) o)
B 0 g atster )Ty atester o )T, caresrer )P0, earester g,
024,
Sym 0 T
24, Pz}qu 241,(30) T0241,(03)
o 0
241(3%
94;(2)
A1(2) sym 8, 10 1
A1 P A, 2) A l’f 421
A12)3
840
Ay PA, o
o A1
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In order to fix some notation, we let for the rest of this section 9y and ¢#; denote the classical
theta functions, i.e.

Bo(z,w) := a0 = 2: eZnﬂnﬂz+2muﬁl O (z,w) = ﬁA — z: eZnﬂnﬂz+2mw)
julla? Y4 Ay,

mezZ mezZ+3%

N—=

for (z,w) € H x C with the conventions dy(z) := 9y(z,0) and ¢;(z) := 91 (z,0) for z € H.
Example 3.3.1. Let 1 : Ay — E7 be an embedding.

a) The automorphic transfer Hf‘ll [z, PE;/ P A, } is given by

Er ~ (80(2)® +38(2)*01(2)* 400 (2)%01(2)?
Ha, [vpez o] 2) = < 4002012 ﬁ1<z>60+3z90<1z>4ﬁ1<z>2>

forz € H.

b) The modular determinant det HETZ [l, PE;/ LA, } is given by

det Hi [l,p&, pﬁ} = 309(2)%01(2)? (00 (2)* — 01(2)*)? = 12 17(2)"?
forz € H.

Proof. a) Since E7 is an irreducible root lattice it suffices to consider the embedding ¢ = &,.
By a detailed analysis of table 1.4, we can determine the theta decomposition of 9, ge1],
namely

8r,0le1])(z,wo) = (B0(2)° +380(2)%91 (2)* ) 0z, wo) + 480(2)*01 (2)°01 (z, wo).
By using the identity

19&,1 [61] (Z, ZU()) =—i- \/219&,0 [61]

7 4 J(z,wo) — Vg, 0le1](z,wo), (z,wo) € H xC,
A

as well as the transformation formulas of ¢y and ¢, a straightforward calculation shows
81,1 [e1] (2, wo) = 480(2)01 (2)°80(z, wo) + (81(2)° + 380 (2)*81(2)?) 81 (z, wo).

Note that the latter identity can also be seen from table 1.4.
b) Due to 3.2.9 one has

detHi [l,p&,pﬂ} € [MpZ(Z),6,v,1]2] = Cn'2.

By expanding the determinant we see that its first nontrivial Fourier coefficient equals 12,
hence

E
detHi1 [l,p&,pﬁ} =122 .
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Example 3.3.2. Let 1 : Ay — Eg be an embedding.

a) The automorphic transfer HfTé1 [L, pSE};m, PA, } is given by
Hye oo™ o] (2) =

)
(1 o>< 94,(22)83(2) + 39(2) %0 (2) 92 (2) 9.4,(22)83(2) + 39 (2)93(2) %1 (2) >
—1 1) \9*(2)8(2) + 380(2)% (2)81(2)01(3) ¥*(2)85(2) + 303(2)81(2)1(2) 81 (3) )7

where
P(z) == 01(3)91(F) — 00(3)%0(5) +94,(22)
and
" (2) = 00(3)00(8) — 391(3)01(3)
forz € H.

sym

b) The modular determinant det HfT [l PE, /P ﬁ] is given by

Eg m
det Hy [0, 04, (2) = 12:710(2)
forz € H.

Proof. a) Using the notation from table 1.4 we have

8
= |JSiN (es,e1 +e3+e5)™".
i=1

Since Eg is an irreducible root lattice, it suffices to consider the embedding given by ¢ = .
In order to determine the theta decomposition of 9, g[ez], we consider the pullbacks
l95jﬂ<€8,€1+63+€5>l [62], i=1,...8

separately. For [ € Eglet!y,...,Ig denote the coordinates of | with respect to the standard
basis ey, . . ., eg of R. By definition we have l € Egifand only ifIs = 0and [y + I3+ 5 = 0.
In this case, I3 + 15 + [2 = 2(I2 + 113 + I3). With respect to this coordinates we have

Q) =B+ +12+12+2(13+11l3+13), B(l,ep) =2l,, 1€ Eg.

Considering the sets S; and S4 we immediately obtain

y 2 (QUz+B(le2)0) = 9, (22)00(z)30(z, wp),
1€S1N{eg,e1+e3+es) L
y 2i(Q(Nz+B(Lex)wo) _ 84,(22)% (2)*%1(z, wo).

lES;}ﬁ<88,€1-|—€3-|-e5>L
Forl € Sy N {eg, e + e3 +e5) - we have 214,23 € 2Z + 1 and
211)%+(211)(213)+(213)?
l%—i—l%—l—l%:( 1) +( 1)2( 3)+( 3)'
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This yields
Z P2ty +yt)z _ Z 2P +xy+y?)z _ Z o2 (P +xy+y?)z
x,y€2Z+1 x€Z,ye2Z+1 x€27Z,ye2Z+1
= 01(2)0;(32) — Z P2y +y*)z _ Z P2mi(X+xy+y?)z
x€2Z x€27Z
yeZ ye27Z
= 01(2)%1(32z) — 90(2)00(32) + ¥a,(42)
— p(22).
Consequently,
Z e2ni(Q(l)z+B(l,ez)wo) _ 4](2)190(2)191 (2)2190(2’ w())

l€520<6g,€1+€3+€5>L

and analogously

19520<€8,€1+€3+€5>L[62] - 1953ﬁ<€8,€14-6‘34-6‘5%[ez] - 0580<38/€1+€3+€5>L[€2]'

A similar calculation yields

y 2 QUzHBe)w0) — y(2)82(2)8: (2) 9 (2, wp)

lES5|’W(e,g;,€1-|-€3-i-€5>L

as well as

1955ﬂ<eg,el+63+e5)i[62] = ﬂséﬂ(eg,el+eg+e5>i[82] = ﬂ57ﬂ(eg,el+63+e5>i[82]'

In summary, we obtain the decomposition

Ok, le2] (z, wo) = [(ﬂAz(2Z)ﬂo(Z)3 +31P(Z)l90(2)191(2)2} o (z, wo)
+ |(84,22)01(2)° + 39 (2) 83 (2) 01 (2) | 61 (2, o).

In order to determine (Og,; + O, —y)le2] for p = (e1 + e3 — 2e5) we make use of the
identity

Or, uled] + Op, —ulea] = —iV30g[ea]| ] — O, [ea].
! ! 2 3,& Y

Using the transformation properties of ¢y and ¢, an extensive calculation - which is omit-
ted - finally yields the decomposition
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b) Due to 3.2.9 one has
det H2 [1,09™ .| € [Mp,(2),5,v1°] = cyl®
ety |V PE, PAL Po\£),9,Vy /A
It remains to determine the constant. Expanding the determinant, we obtain

det Hyg [1,p2™, 04, | (2) = 380(2)81(2) (0(2)* - 81(2)")
1(2) (80(3)80(3) + 91 ()1 (3)) + 3281 (3) 81 (3)]

where
h(z) := —80(62)80(22) — 81(62)81(22) + %(3)00(F) — %1 (3)01(F)
and
g(z) = 400 (62)80(22) + 401 (62)01(2z) — 30 (3) 00 (32) + 301 (3) 01 (3).

A closer look at the Fourier expansions of the auxiliary functions & and g yields

h(z) = —4™ + ... and g(z) =1+ ....

. ) E
Hence the Fourier expansion of det Hfl [t, p?;m, 1Y Al] starts by

iz iz

detHi [t,pzm,pi} (z) =3-2-¢7 - % .2eT

107riz

e 4 =120

i.e. the constant equals 12. O

Example 3.3.3. Let 1 : Ay — Dy be an embedding.

a) The automorphic transfer H% [t, pg:n, PA } is given by

Dy, oym (2P 81(2)°
Ha, {"Pi '%} (z) = (3190(2)191(2)2 3190(;)2191(2))

forz € H.

b) The modular determinant det H%[L, pSD};m, pa,] is given by

det H%[L, pam,pﬂ] (z) = 380(2)01(z) (Bo(2)* — %1 (2)*) = 6-1°(2)
forz € H.

Proof. a) Since Dy is an irreducible root lattice, it suffices to consider the embedding given by
| = le,. By definition one has

€y +eq+ e+ ey
Dy = <ez, e4, €6, :
z

2
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If I, 14, I, I7 denote the coordinates of | € Dy with respect to ey, ey, €6, €7, then one has

l € Dyifandonlyifl; € Z,i=1,...,4 or [;€ Z-I—%,i =1,...,4,
which immediately yields
Op,[e2](z, wo) = 90(2)300(z, wo) + 81(2)301 (2, wp).

From

(19&4:1 + 0Dy, + 19&%) le2] (z,wo) = —20p, | Jlea|(z,w0) — Bp,[e2] (z, wo),

21 T

with pp 1= 2%,y 1= 27% and p3 := 25, we derive

(‘9&441 + 0Dy, + l@m) [e2] (2, w0) = 380(2) 81 (2) 00 (2, wo) + 380(z)*81 (2)81(z, wp),
where we again used the transformation properties of ¢ and t.

b) Due to 3.2.9 one has
detHy* [1,03™" pa,| € [Mp,(2),3,05] = Cyf.
Expanding the determinant, we obtain
det Hy* [1,03", pa, | (2) = 300(2)81(2) (80(2)* = 91(2)*).

Hence the first Fourier coefficient equals 6. O

Example 3.3.4. Let 1 : Ay — Aj be an embedding.

a) The automorphic transfer H%f [t, p;};m, 0A, ] is given by
Ay sym . 190 (32) 191 (32)
His [0l oa] ()= (19()(;;) —80(32) 81(3) — 61(32)

forz € H.
b) The modular determinant det H%f [l, pSA?'zm, PA, } is given by

detHﬁ [l,pzm,pﬂ] (z) = 90(32)% <§> — %1(32)9 (g) =2-12(2)

forz € H.



70 3 Pullback Theory

Proof. a) Since A; is an irreducible root lattice, it suffices to consider the embedding given by
I = le,. This time we shall use the explicit formulas given in 3.2.1. Thus we have

19&[62] (Z, wo) = hQ/Q(Z)ﬂo(Z, ZUQ) + ho,%ﬂo(z, wo),

where
hoo(z Z {1 € Ay : Q(I) = m, B(I,e5) = 0}| - e¥m=
Z rs EZ 12+ sr + §2 =m, 27_|_S_0}| . p2rimz
Z |{7’EZ 32 _m}‘Emez
2190( z)
as well as
hy,1(2) = Y [{l€Ay:QU)=m+1B(le) =1} &rim
me—i+7Z
= Z {(r,s) e Z: r? + sr + 52 _1’l—|—4,27’+S:1}’,827ﬁmz
me—i+7Z
= Y Hrez:3(r+3%)*=m} &
me—i+2
2191(32)

In order to determine (19 Ao T 0 Az,—u) lez] for u = W we use the identity

(Oasin + Bas4) leal(z,w00) = iV3Opsleal | J(zw0) = Bsleal(z,w0)

Ar

and a straightforward calculation yields

(Bayn + Oay 1) e2] (2, w0) = [80(5) — 80(32)] Bo(z, wo) + [81(3) — ¥1(32)] $1(z,wo),
where we again used the transformation properties of ¢y and .

b) Due to 3.2.9 one has
A
det Hzlz [1, pzm, pﬂ} € [Mpz(Z), 1,1/,ﬂ = C172.
Expanding the determinant, we obtain
detH [l p;yzm,pAl]( ) = 190(32)1.91(%) — 191(32)190(%) = 26% + ...

Hence the constant equals 2. O
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Regarding equivalence of embeddings of direct sums we give the following

Proposition 3.3.5. Let L be an irreducible root lattice and m € IN. Then the following assertions
hold:

a) The semidirect product S, x W(L)™ < O(mL) acts m-fold transitively on R(mL).
b) All embeddings 1 : mA, — mL are equivalent.

Example 3.3.6. Let 1 :2A1 — 2A; be an embedding.

sym

a) The automorphic transfer H;:: [l P2, 05 AL ] is given by

Hygt |05 P | (2) =
19%(32) 99 (32)81(32) 9? (32)
(2190(32)(190 (%) — 190(32)) 190(32)191(%) + 191 (32)190 %) — 2190(32)191 (32) 2191 ( ( ) )
(80(3) — %0(32)) (80(5) — 80(32))(81(3) — 1(32)) 91(5) — 1 ( 3z

forz € H.

sym

b) The modular determinant det H;i [z P2, oy Ay } is given by

det i [uo3im o] () = (det g [ pa] () =8 -1°(2)
forz € H.

Proof. a) In view of 3.3.5 all embeddings ¢ : 2A; — 2A; are equivalent. Hence we write
[2A;] instead of [1]. With the decomposition wy = (w;, w;) € C?) we have

B4, [2A1](z,w0) = 04,[A1](z, w1) - B4, [A1](z, w2).

From the identities

B24,,0(z, wo) = Bo(z,w1)00(z, w2),

0 )(Z wp) = V1(z, w1)01(z, w2),

2A1,(3,

1
’2
<l92ﬂ/(% 0) +l92A1 0,1) ) z, ZUo) = 191( )190(Z,ZU2) + 190(Z,ZU1)191(Z,ZU2)

I\)\»—I

we derive the theta decomposition

B4, [2A1](z, wo) = ﬂ%(Bz)ﬂzﬂlo(z, wo) + 90(3z)0%1(3z) (0 241,(10) T 192&’(0%)) (z,wo)
+87(32)0,,

Ay (b (5 @0)
Let y := “F=%*% In a similar way, the identities

O24,,(1,0)[2A1)(z, w0) = B4, u[A1](z,w1) - B4, [A1](z, w2),
O24,(—,0)[2A1] (2, w0) = B4, —u[A1] (2, w1) - B, [Ad] (2, w2)
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yield

(92, 00) + B2t () + D200 B2ty 0, ) [2A41] (2, w0)
= 209(3z) (80 (5big) — B0(32)) V24, ,0(2, wo)

)+ 61(32) 8 (Z) — 200(32) % (32)] (ﬁzﬂ,(%lo) + 19%(0,%)) (z, wo)
) —1(32)) 934, (1.1)(z, wo).

11
272

Completely analogous, by using the identities

192& (mm) 2A1](z,wo) = By [A1](z,w1) - Bay [A1](z, wy),
B4y, (5, — ) [2A1] (2, w0) = B4, u[A1](z,w1) - 4y —u[Ad] (2, w2),
B2, (— ) [2A1](2, w0) = B ay,—p[A1](z, w1) - Oy, [Ad] (2, w2),

025, (—,—0) [2A1](2,W00) = By, [A1] (2, w1) - By, [A1] (2, w2),

we obtain the theta decomposition of

(9245, (ug0) T P25, (- p0) T P25, (—u0) T P29, (—u0) ) [241]

and finish the proof.
b) Due to 3.2.9 one has

2A
det szf [l,p;g,ng] € [Mpz(Z),C’),v,ﬂ = Cn°.

A straightforward calculation yields

2A sym sym
det HZEf ["922'922} (z) = [00(32)%1(3) — 191(32)190@)}3 =8-1%(2),

if we use the result of 3.3.4. O

Example 3.3.7. Let 1 : A1(2) — 2A1 be an embedding.

sym

a) The automorphic transfer Hi%lz) [t, P2, 1 pzr?z)] is given by

" 190(22) 0 191 (22)
Hit [l,p;g,pzf?z)} (2) = [ 201(22) 8, (5)1(22) 200(22)

% (2z) 0 ¥0(22)

W=

forz € H.

b) The modular determinant det Hi

A sym sym . .
T(lz) {l, ng,p Ai (2)} is given by

2A sym sym
detHing) t,ng,piyl(z)} (z) = 04,051 (22) (19%(22) _ 19%(22)> — P (2)

forz € H.
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Proof. a) ltis easy to check that every embedding ¢ : A;(2) — 2A; is equivalent to /(1 7). A
system of representatives of (2A1)*/2A is given by

¢:(0,0),(50),(0.3),(33)

and a system of representatives for A;(2)*/A(2) is given by

In view of 3.2.1 it suffices to determine the theta series of the sets S,z (1 1) for the given
representatives. In all cases, an elementary calculation yields the desired result.

b) Due to 3.2.9 one has
241 Sym _Sym 3,3 _ 3
detHi o) (13 | € [MP2(2),3,75] = €.
By expanding the determinant, we obtain

2A sym _sym
det Hﬂ(lz) [L,ng,piyl(z)] (z) = 19&(2)1%(22) : (19%(22) - ﬂ%(Zz)) .

Hence the constant equals 1. O

We summarize the above results in the following

Theorem 3.3.8. Let ((L,p), (Lo, po)) be a pair, such that the following assumptions hold:
i)

0,00 € {pay, 03 OB 0ROy 5 05
it) thereis an embedding 1 : Lo — L,
iii) d := dimp = dimpo =: do,
iv) [t] : O(H)V — O(H )V, is well-defined,

where V resp. V) denote the corresponding subspaces of O, resp. @, associated to p resp. pg. Then
the pullback operator in iv) is an isomorphism, which does not depend on the choice of the embedding
in ii). With respect to suitable coordinates for V, the inverse map [1] =" is given by

fi fi
OH)! — OH)!, | i | = HE bppo " | :
fa fa
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3.6.2. For the subset {A;(2),2A1,2A,} the independence is a direct consequence of 3.3.5.
The fact that the corresponding maps [¢] in iv) are actually isomorphisms follows from the
concrete examples in this section as well as from 3.2.6 and 3.2.12. O]

Remark 3.3.9. Note that 3.2.6 allows to evaluate H%O [1, 0, 0] in all possible cases of 3.3.8, which

were not considered yet. For reasons of readability, we will not present these here, since the matrix
entries are very longish.

3.4 A distinguished infinite family of Siegel cusp forms

In this section we will utilize the embedding A; — E7 and 3.2.14 in order to construct an
infinite series of nontrivial Siegel cusp forms of weight 3 - 2", n € IN satisfying a distinguished
recurrence relation under the Witt operator.

Let A* := 5?* denote the normalized modular discriminant of weight 12. For formal reasons
we define (A*)% = 512,

Theorem 3.4.1. There exists an infinite family of nontrivial Siegel cusp forms

12
e [P
Mp,, (2),2"-3]F, n>1,

cusp
] , n=1,

such that x¢ = (A*)% and the following assertions hold:

2n=j

Zi 0 '
Xon3 ( 0 zn,]-) = X03(Z)*" " xan15(Znj)?

holds for all Zj € H]', Zn_]- € ”Hn_]- and 0 <j<mn,

n—2
b) xon3 (diag(zi, ..., z)) = (A*(z1) - - - A*(z))*  forallzy,...,z, € H,
c) xon3(zly) = A*(z)”'znfzfor allz € H,

d) xon.3 does not vanish on the diagonal H" C H,,.

Proof. For n = 1 we choose the systems of representatives of E; / Ey resp. A]/Aj used in 3.3.1.

According to 3.2.14, we consider the systems of representatives R(’;) of (E3/Ey) (") resp. Rxll)

of (Aj/ A), Let pg;) resp. p(nl) denote the corresponding Weil representations with respect

to the bases of @g;) resp. ®(n1), given by the Jacobi theta functions labeled by R(Z) resp. Rgﬁ).

For n € IN we define

Xon3 1= detHi t(”),pi’?,p@} .
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Since Mp,, (Z) is perfect for n > 3, we derive that .3 has trivial character in this case. In
the case n = 2 the unique nontrivial abelian character v,z of Mp,(Z) is determined by the
value Vppaag(J X I) = —1. From 2.4.31 we obtain

detpl?) (] x I) - (detps)(J x b)) = detp, (J)?- detpu, ()2
=’ (1) vy () = vt () = 1.

Hence the character of xpn.3 is trivial for all # > 2 and the claim follows from 3.2.9. The
identity x¢ = (A*)% is due to 3.3.1. Since 5 vanishes at infinity, we obtain S~V yz: = 0
from a) in the case j = n — 1.

a) Follows from 3.2.14. Note that the normalization factors v, = 122" satisfy the identity
'y]." ! ~'y%]_j =q,forj=0,...,n.
b) Follows from a) by induction on #.

¢) Follows from b) withz; = --- =z, = z.

d) Follows from b) and the fact that # is nonvanishing on H. O
Corollary 3.4.2. Let 1 : Ay — E7 be an embedding. Then the pullback operator

[[(n)] . £M(Ey) — EM(4y)
is a monomorphism for all n € IN and an isomorphism if and only if n = 1.

For the spaces of Jacobi forms we immediately obtain

Corollary 3.4.3. Let 1 : Ay — E7 be an embedding. Then the pullback operator
) (n)
) i — i,

is a monomorphism for all n € IN and an isomorphism in the case n = 1.

3.5 Ad-hoc criteria for injectivity in degree 1

Let L be an unimodular lattice. Then £ (L) is a module of rank one, i.e.
EM(L) = O(Hn) - 9.

Hence it is easy to see that for all embeddings : : Ly — L, where Lpis a lattice, the corre-
sponding pullback operator

1]+ £00(1) — £0(1y)
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is clearly injective. In this section we will formulate and prove certain ad-hoc criteria for injec-
tiveness of pullback operators induced by embeddings into non-unimodular lattices, where
we restrict to the case of degree n = 1 only.

We start by a simple

Lemma 3.5.1. Let L and Lg be lattices, L non-unimodular, and 1 : Ly — L an embedding. Suppose
that there is some & € L such that 1(§) € L* \ L. Then the pullback operator

(1] O(H) - (0, 8)c — E€(Lo)
is a monomorphism.

Proof. 1f suffices to show that the functions 9 [:] and @;+[:] are linearly independent over
O(H). To this end, let h, ¢ € O(H) such that

h-Op[t] +g-0p[1] =0.

We apply L (¢, 0] on this equation in order to obtain

h- 19L,l((:) [t] + g 19L* [l] = (.
by 2.2.10 and 3.1.4. Note that the map y — p + 1(¢) is a permutation of L*. Hence,

B (0l = Oy, []) = 0.
But 0[1] — 81 [ =1+...,since () & L. Hence h = g = 0. O

The following lemma is rather technical:

Lemma 3.5.2. Let L and Ly be lattices, L non-unimodular, and 1 : Ly — L an embedding. Suppose
that there is a vector u* of minimal quadratic form in L* \ L such that u* ¢ 1(Lg)>%. Then the
pullback operator

[ : OH) - {81, 8-)c — E(Lo)
is a monomorphism.

Proof. Since L is non-unimodular, the value
m* ;= mi
yrerig\lLQ(ﬂ)
is well-defined in Q*. We show that the functions 9. [s] and (9, — 91) [1] are linearly inde-
pendent over O(H). By 3.1.12 we have Fourier expansions

0#£meQ4 éeLg

dll(zwo) =1+ ) ( Y {peLl:Qu) =mi(u) =&} .esz@,wo)) g2rimz

Ol (z,wo) = ( Y Hpel —L:Q(u)=m"r(u)=c} 'esz@’wO)> eI

- geLg
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Hence, we obtain a local representation

(ﬁL* B ﬁL) [l] _ Z |{]4 cL* \ I - Q(l/‘) _ m*/l*(]/l) _ §}| _ean‘B(é’,wo) '627'[1'711*2 4o
ﬁL[l] el

By assumption, Q(u*) = m* and ¢*(pu*) # 0. Hence the function %;L;[ﬁm depends nontrivially

on wq and thus can not be the quotient of two functions f,g € O(H) O

We apply this on irreducible root lattices:

Corollary 3.5.3. Let L and Ly be lattices, L a non-unimodular irreducible root lattice, and 1 : Ly —
L an embedding. Then the pullback operator

[]: OH) - (81, 8-)c — E(Lo)
is a monomorphism.

Proof. Since L is non-unimodular, the set of elements of minimal quadratic form in L* \ L is
nonempty. As a consequence, the Q-vector space spanned by this set is nontrivial, W(L)-
invariant and consequently must equal Lg, since W(L) acts irreducibly. Hence, there must be
some element of minimal quadratic form p* in L* \ L, which is non-perpendicular to ¢(Ly).
The claim follows then from 3.5.2. O]

We summarize our results in the following

Theorem 3.5.4. Let L and L be lattices, L non-unimodular,and 1 : Ly — L an embedding. Suppose
that one of the three assertions holds:

i) 1(¢) € L*\ L for some ¢ € L;,
i) u* ¢ 1(Lo)>E for some u* € L*\ L of minimal quadratic form,
ii1) L is an irreducible root lattice,

Then the pullback operator
= OH) - (8L, 8-)c — E(Lo)

is injective.

With a bit more effort, we can formulate and prove a further criterion for injectivity of the
pullback operator:

Theorem 3.5.5. Let L be a lattice and 0 # pq € L* /L be a fixed-point of O(L). Assume that O(L)
acts transitively on the remaining non-zero cosets. If 1(¢) = pu1; mod L for some { € L§, then the
pullback operator

1 E(L)Y™ = £(Lo),

is injective.
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Proof. Under the assumptions on L, a basis of £(L)*Y™ is given by

{ﬂL,ﬁM, Y ﬂw}.

V#Oll/ll

Let ¢ € £(L)%Y™ with theta decomposition

¢ =ho -0, +hy- ﬂLHl +h Z 19L,]U ho, hy,h € O(H)
V%O/ﬂl
such that
0= (P[L] = I’lo . ﬁL[l] -|-]’l1 . ﬁLﬂl[[] -|-h Z ﬁgy[l].
w0,
From —id; € O(L), we conclude ord; -, (1) = 2. We apply ‘Lo [€, 0] on the previous equation
in order to obtain o
hy - ﬂL[t] ~+ hy - 19LH1[L] +h Z ﬂlelM =0,
V#Or]’ll
since the map p +— p + pq is a permutation of the subset {y : 4 # 0, 11 }. Substraction of both
equations yields
(ho = M) (8L = Bpp,)[1] = 0.

Since (8, — ¥1,,)[t] = 1+ ... does not vanish identically, we obtain hg = hy. Thus

I’lo . (ﬁL—FﬁLm) [l] +h Z ﬂLyM =0.
p#0, 1

Since 1 has order 2 in L*/L, we have B(uy, 1) € {0,3} mod Z for all 4 € L*/L. By as-
sumption, the set {y : u # 0, 41} is an O(L)-orbit and the coset y is a fixed point of O(L).
Hence the value 6 := ¢2™B(1#) ¢ {+1} is independent of the choice of i ¢ {0, 1 }. We apply
|L0 0, ¢] on the previous equation in order to obtain

ho - (ﬁL‘F ezm‘B(m,ﬂl)ﬁL#l) [‘] +6-h Z ﬁL,u [1] =0.
w0, 11

In the case § = —1 we add the two equations and conclude that
ho - (200 + (1+ 2 B0 9, ) [i] = 0,

The same argument as in the beginning shows that the second factor does not vanish iden-
tically. Thus hg = h; = h = 0, hence ¢ = 0. We consider the remaining case § = 1. Since
i ¢ L = L**, we necessarily have e2™B(#1#1) — _1, This time we substract both equations
from each other and obtain

2-]’10-19L]/,1[l] =0.

Hence, hp = h; =0and h =0, i.e. ¢ = 0. ]
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3.6 Separation theorems in degree 1

As a consequence of 3.1.11 and 1.2.23, we obtain the following simple
Lemma 3.6.1. Let L be an irreducible root lattice. Then for all roots 1,I' € R(L) and all ¢ € E(L)
one has ¢[l] = ¢[l'].

For embeddings of irreducible root lattices, we can derive a result of independency of the
pullback operator - restricted to submodules of small rank - of the choice of the embedding:

Proposition 3.6.2. Let L and Lg be irreducible root lattices and 1,x : Lo — L embeddings. Assume
that the pullback operators

4,16 - O(H) - (1,81 ) — O(H) - (1, 81,)

are well-defined. Then one has [1] = [k].

Proof. Fix some arbitrary root Iy € R(Lg). Let ! := (lyp) € R(L) and I’ := «(ly) € R(L). The
corresponding embeddings ¢; : Z — L and (;, : Z — L then satisfy

lr = 10 Lyy and Ly = K O Ly,.
Since L is an irreducible root lattice, the pullbacks
(] ] = O(H) - (8L, Bp-)c — E(Z)
coincide by 3.6.1. Furthermore, the map
[tro] : O(H) - (Bry, ﬂﬁ%ﬁ — E(Z)
is injective due to 3.5.4 and the result follows from 3.2.7. O

Theorem 3.6.3. Let L and Lg be lattices and 1y, ..., : Lo — L embeddings. Suppose that there is
some ¢ € Ly such that

(&) e L*\ Lforalli=1,...,m, Qo(&) #0,
hold. Then for all (ay, ..., a,) € C™ the following assertions are equivalent:
m
l) 2 (o 19L[li] = O,
i=1

if) f ;- p[i;] = 0 for some 0 # ¢ € O(H) - (O, O1+)c,
i=1 -

iii) ¥ ;- 1] = 0 forall g € O(H) - (9, 9+)c.
i=1
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In this case, the dimension formula
dimc <q§[li],i = 1,. . .,11’1>C = dimC <19L[li]/i = 1,. . .,m>C
holds for all 0 # ¢ € O(H) - (9, O+ )c.

Proof. From the identity

Vit
01| = —— U=
Ly = e

we obtain the equivalence of i) and iii) as well as that i) implies ii). It suffices to show the
nontrivial direction, i.e. that ii) implies i). To this end we write

By assumption on ¢ at least one of the functions & and g does not vanish identically. We
consider the auxilliary functions

m
=Y a-0fu], Dg —Z‘Xz Op el Z‘Xz Op- [

i=1

m
In this notation, Y ;- ¢[1;] = 0 implies
i=1

h-D+g-D*=0.
We apply the operator ‘Lo [¢,0] on this equation. By 3.1.4 and 2.2.10 we obtain

h-Dg+g-D*=0,
since the maps pt — p +;(§) fori =1,...,m are permutations of L* /L. From this we deduce

h- (D - Dg) =0.
In the case i # 0 we obtain D = D¢ and the transformation z + z + 1 yields

D(z) = D(z+1) = Dg(z +1) = &™) . D(z),

since Q(1;(&)) = Qo(&) fori =1,...,m. From e?™Q0(¢) -£ 1 we obtain D = 0. In the case h = 0
the function g does not vanish identically. This implies D* = 0, hence D = 0. O
As a corollary we specify the case Ly = Z(t) for t € IN:

Corollary 3.6.4. Let L be a lattice and N denote the exponent of the discriminant group L* /L. Let
li,..., Iy € NL*\ NL such that

Q(h)=---=Q(m)=t, N*tt.

Then for all (ay,...,ay) € CY™ the following statements are equivalent:
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a) ¥oa;-9[] =0,
i=1

b) ﬁ w; - [l;] = 0 forsome 0 # ¢ € O(H) - (8, 9r+)c,
i=1

m
c) L oai-¢p[li) =0forallp € O(H) - (0L, O+)c-
i=1
In this case, the dimension formula
dim¢ <‘P[lz]/l =1,.. .,m)C = dim¢ <19L[li]ri =1,.. .,m>C

holds for all 0 # ¢ € O(H) - (0L, O1+)c.

Proof. The embeddings . : Z(t) — Lfori=1,...,mand { := N~ satisfy the assumptions
of 3.6.3, since

Li(C):%liEL*\Lfori:L...,m, QO((;‘):%%Z. -






4 |somorphisms of Spaces of Jacobi
Forms

We apply the results of section 3.3 and theorem 3.3.8 on Jacobi forms of degree 1.

Therefore we fix the notation Jj ,,, := ]lglz) (m) for k € Z and m > 0 in accordance to [8, p. 10].

4.1 The A,, A,, Eg, E;-tower

Theorem 4.1.1. Let 1 : Ay — E7 be an embedding.

a) Forall k > 0 even, the pullback
1] Jg, — Jka
of Jacobi forms is an isomorphism of the vector spaces. On the corresponding space of vector valued
modular forms, the inverse map
(7" Je1 — Ik
is given explicitly by

h 1 91(2)® + 30 (2)*81 (2)? —48(2)%01(2)? h
(h(1)> T 2() ( 1 —4190(2)0319‘1(2)13 (2)° -53190(21)2191(2)4) <h(1)) '

b) For all k € INg the following dimension formula holds:

LHTZJ , keven,

dim¢ ]k,& = dim¢ [Mp2(z)’k - %’@] - {0 k odd

Proof. a) Let (fo, f1)! denote the image of (hg, k)" under []~1. By definition, (fo, f1)! trans-
forms correctly with respect to the dual representation of pg,. Hence it suffices to show,

that both fy and f; are holomorphic at the cusp. But this follows immediately from the
Fourier expansions

2 (z) =™ 4 ...,
9(z) = 4™ 4 ..,
h(z) =c-e2/2 4

for some ¢ € C.
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b) Follows from a) and the well-known dimension formula for Jj 1. O

For k > 4 let G; € [SLy(Z), k] denote the classical normalized Eisenstein series of weight k,
i.e.

2k & '
Gi(z)=1—F Y o (m)e*™, zecH.
Bk m=1
Furthermore, let
Ejp := E

k,Z(m),0
for k > 4 even and m € IN denote the Jacobi-Eisenstein series of weight k and index m as in
[8, § 2]. From the structure theorem for the graded vector space @ J2 1 in [8, Thm. 3.5] we
obtain the following

Corollary 4.1.2. The graded vector space
Jox gy = D Jak E,
k=0
is a free C[Gj, G;]-module with basis ([t] 'Ey1, 1] ' Ee1) and one has [1] " Eq1 = O [E7).

The corresponding result for Ay and Eg, where in the latter case we use the same notation as
in 3.3.2, is stated in the following

Theorem 4.1.3. a) Let 1 : Ay — Eg be an embedding. Then for all k > 0 even, the pullback
1] Jkgg — Ta

of Jacobi forms is an isomorphism of the vector spaces. On the corresponding space of vector valued
modular forms, the inverse map

(7" k1 — Tk

is given explicitly by
ho 1 11
hq 12 1710( ) 01
P (2)80(2) + 305(2)01(2) 81 (3) 91 (5)  —¢*(2)95(2) + 300(2) 82 (2) 81 ()01 (5) | (o
—19A2(22)193( ) +3 ( ) 6(2)1(2) 84, (22)85(2) + 39 ()60 (2) 83 (2) I

b) Let1: Ay — A be an embedding. Then for all k > 0 even, the pullback

1] 2 Jka, — Tka

of Jacobi forms is an isomorphism of the vector spaces. On the corresponding space of vector valued
modular forms, the inverse map

7" k1 — T,

is given explicitly by

() = 2 ("o ) ()
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Regarding the graded vector space of Jacobi forms, we obtain the following

Corollary 4.1.4. a) The graded vector space

[e )
Jos,Eg = €D Jax ks
k=0

is a free C[Gj, Gg]-module with basis ([t] ' Ea, [t] ' Ee,1) and one has [1] " Eqy = Ogy[Ee).
b) The graded vector space

o
Jos, 4y = €D Jok 4,
k=0

is a free C[G}, G¢]-module with basis ([1] "'Eq1, [] ' Ee1) and one has [1] " E41 = 0g[Aa].

From the dimension formula for Ji 1 in [8, p. 105] we obtain the following
Corollary 4.1.5. For all k > 0 even, the following dimension formulas hold:

k+2

dime Jyg, = dime Ji g, = dime Ji,4, = dimc Ji1 = {TJ '

Remark 4.1.6. For all k > 0 even and all defined embeddings 1 : Lo — L for lattices Lo, L €
{A1, Ag, Eg, E7}, the pullbacks
[ T — JLg

of Jacobi forms are isomorphisms of the vector spaces and independent of the choice of 1.

4.2 The A4y, Ay, Ds-tower

Theorem 4.2.1. Let 1 : Ay — Dy be an embedding.

a) Forall k > 0 even, the pullback

[] - ZYDj — Jka

of Jacobi forms is an isomorphism of the vector spaces. On the corresponding space of vector valued
modular forms, the inverse map

[t e — ];/y,i

is given explicitly by

(1) = s (o™ ) ().
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b) Forall k € INg the following dimension formula holds:

t k+2 , k ,
dim 73 = dime [Mps(2) 2, (637) | = {ﬁ e

Proof. a) Let (fo, f1)! denote the image of (ho, h1)" under [1]_1 By definition, (fo, f1)" trans-
forms correctly with respect to the dual representation of o} D . Hence it suffices to show,

that both fy and f; are holomorphic at the cusp. But this follows immediately from the
Fourier expansions

iz /2 +.

=
(o)}
—~
N
~—
x

« ey

O (z) =2e™2/2 4 .,
h(z) =c-e3™2/2 4

for some ¢ € C.

b) Follows from a) and the well known dimension formula for Ji 1, cf. [8, p. 105]. O]

Corollary 4.2.2. Forall k > 0 even and all embeddings 1 : Ap — Dy, the pullback
sym
1+ Tgp, — Joas

of Jacobi forms is an isomorphism of the vector spaces and independent of the choice of 1.

4.3 The A1(2),2A1,2A,-tower

Theorem 4.3.1. Let 1 : 2A1 — 2A, be an embedding. Then for all k > 0 even, the pullback

sym sym
[ ] k 2A5 —J k2Aq

of Jacobi forms is an isomorphism of the vector spaces. On the corresponding space of vector valued

modular forms, the inverse map
-1. sym sym
L7 2 ) DA, T 7 Jx 24,

is given explicitly by

ho .
| = 5
Iy 4-n*(z)

(81(5) - 91(32))° —2(81(3) = 81(32)) - (9(5) — % (80(3) = 0(32)" | (Mo
*191(32) (191(%) 191(32)) 190(32)19 (%) +191 3Z 190(%) -2 0(32)191(32) *190(32) (190(% *190(32)) hl .
) —~209(32)61(32) 83(32)
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Proof. Let (fo, f1, f2)! denote the image of (ho, h1,ho)! under []~1. By definition, (fo, f1, f2)!
transforms correctly with respect to the dual representation of p?ﬁ?. Hence it suffices to show,

that fo, f1 and f, are holomorphic at the cusp. But this follows immediately from the Fourier
expansions

for some cq, ¢ € C. o

Theorem 4.3.2. Let 1 : A1(2) — 2A; be an embedding. Then for all k > 0 even, the pullback

1] : Z};Z — Jk2

of Jacobi forms is an isomorphism of the vector spaces. On the corresponding space of vector valued
modular forms, the inverse map
7" Jk2 — Jiaa,

is given explicitly by

ho ) ¥ (22) - 19141(2),31 (22) 0 —01(22) - 19141(2),31 (22) ho
(hl) > ) 0 02(2z) — 62(22) 0 : (hl) .
ha T2\ 6, (22) - 8,021 (22) —2(83(22) = 83(22)  90(22) -8, 1 (22) ha

Proof. Let (fo, f1, f»)! denote the image of (ho, h1,ho)! under []~1. By definition, (fo, f1, f2)!
transforms correctly with respect to the dual representation of p?ﬁ?. Hence it suffices to show,

that fy, f1 and f, are holomorphic at the cusp. But this follows immediately from the Fourier
expansions

1) =i+
hi(z) = clem74 +...,
hy(z) = ce™ + ...,
for some cq,cr € C. O]

From the dimension formula for Ji, in [8, p. 105] we obtain the following

Corollary 4.3.3. Forall k > 0 even, the following dimension formulas hold:

. . : k
dim¢ ]Z,};z =dim¢ | Z};z =dim¢ Jio = L_LJ .






5 Modular Embeddings of Paramodular
Groups

5.1 (Non-)commutative orders

Unless specified otherwise let F € {IR,C,H}. Denote by — : IF — T the standard involution
on IF. This involution is uniquely determined by the condition ¥ = x if and only if x € R. For
x € F we call ¥ the conjugate of x, N(x) := xX the (reduced) norm of x and tr(x) := x + ¥ the
(reduced) trace of x. The norm form

N:F — Ry

turns F into a positive definite quadratic space satisfying the composition law
N(xy) = N(x)-N(y) forallx,y € F.

The associated bilinear form obtained by polarization is called the trace bilinear form and is
given by tr(xy), x,y € F, i.e.

tr(xy) = N(x+y) — N(x) —N(y) forallx,y € [F.
It is easy to see that every x € [ satisfies the quadratic equation

x? —tr(x)x + N(x) = 0.

We compare norm and trace with norm and trace with respect to field extensions:

Remark 5.1.1. Let x € IF\ R. The algebra R[x]|, generated by x over R, is a commutative subfield of
IF and one has R[x] = R @ Rx. The matrix of the left-multiplication y — xy,y € R|[x] with respect

to the basis (1, x) then equals
0 1
—N(x) tr(x)/~

Hence, usual norm and trace of x with respect to the field extension R[x]/R are given by N(x) and

tr(x).

We will introduce the notion of an order in [F:
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Definition 5.1.2. A subset O C F is called an order in IF, if the following assertions hold:
i) O is a discrete subring with 1 € O,
ii) O generates F as a R-vector space, i.e. OR = F.

An order is called maximal, if it is a maximal element in the set of orders in IF.

For basic references in the theory of orders in non-necessary commutative rings confer the
books of Reiner [23] or Vignéras [26].

It is well-known, that every discrete additive subgroup of a finite-dimensional real vector
space is a free abelian group over Z. Hence we obtain another characterization given in the
following

Lemma 5.1.3. For a subring O C F with 1 € O the following assertions are equivalent:
a) OisanorderinF,

b) O is a free abelian group and generated by a R-basis of FF.

Regarding integrality of norm and trace we have to following

Proposition 5.1.4. Let O be an order in IF. Then the following assertions hold:
a) ONR =27,

b) N(a),tr(a) € Zforalla € O,

c)aec Oforallac O.

Proof. a) Since O is discrete in [F, the intersection O N R is a discrete additive subgroup of R,
hence cyclic, i.e. equals Zv for some v € R. From 1 € O we can assume that v = % for
some s € IN. From lim,, ,. " = 0 for s > 1 we obtain s = 1 from the discreteness of O.

b) The claim is immediate for 2 € Z. For a € O \ R consider the subfield R[a] = R & Ra,
generated by a over R. Let O, := O NR[a]. Then O, is a discrete subring of R[a] with 1 €
O,. Since O, contains the R-basis (1, a) of R[a], we conclude that O, is an order in R[a], i.e.
O, = Zx + Zy for some R-basis (x,y) of R[a]. Hence the usual norm and trace of a € O
with respect to the field extension R[a] /R lie in Z. Since norm and trace are independent
from choice of the basis of R[a], we can apply 5.1.1 and obtain N(a), tr(a) € Z.

c) Follows from @ = tr(a) — a and b). O

Corollary 5.1.5. Let O be an order in F. Then (O, N|p) is a positive definite, even lattice. In the
case F € {C,H}, the map a — a is a nontrivial automorphism of (O, N|o) and Z is the largest
sublattice of O, on which the standard involution of IF acts trivially.
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We repeat some ring-theoretic terms:

Definition 5.1.6. Let O be an order in TF.

a) An element ¢ € O is called a unit, if there is some 6 € O such that ¢ = 1. In this case, ¢ is
uniquely determined and one has d¢ = 1. The set of units O is a group and one has

O*={aeO:N()=1}.
b) Leta,b € O,a # 0. Then a is called a left resp. right divisor of b, ifa~'b € O resp. ba~! € O.

In this case we write a|;b resp. a|,b.

c) Let I be an additive subgroup of O. We call I a left resp. right ideal, if OI C I resp. IO C I. We
call I a two-sided ideal, if I is both a left and right ideal. We call I a left resp. right principal
ideal, if there is a € O such that I = Oa resp. I = aQ. For a,b € O one has bO C aQ resp.
Ob C aQ if and only if a|;b resp. al,b.

d) We call O a principal ideal domain, if every left and every right ideal of O is principal.

e) We call O norm-euclidean, if for every a € IF there exists ¢ € O such that N(a — g) < 1.

Remark 5.1.7. Let O be a norm-euclidean order in IF. Then O admits a left resp. right euclidean
algorithm. Hence, every nontrivial left resp. right ideal 1 is principal and is generated by an element
of nonzero minimal norm in 1. Every norm-euclidean order is a principal ideal domain.
We need some identifications:
Example 5.1.8. We consider the skewfield of quaternions H, i.e.

H = R + Ri; + Rip + Ri3
with multiplication linearly extended via the defining relations

i

= i2 = —1,i3 = i1i.

Every a € H has a unique representation a = ag + ajiy + agip + aziz with ag, ..., a3 € R. The
complex field C will be identified in IH via C := R + Riy. It is the maximal commutative subfield of
H and hence a splitting field for H. Via this identification, H carries a natural structure of a left
C-vector space with basis 1,1i,. Explicitly one has

ag + ayiq + arip + aziz = (llo + (Zlil) + ((12 -+ a3i1)i2 e C ¢ Cis.

Right multiplication by a = a + Bip, &, B € C induces a monomorphism of R-algebras

ViH— C¥?% a4 Bip (_"‘B g),(x,ﬁeC,
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where the definition is implicitly extended to matrices componentwisely. The map
“—tH—MH, a— ayg—ajiqy —azip — asis

is the unique standard involution on H. For a € IH, we call @ its conjugate. It is straightforward to
check that reduced trace resp. norm are given by

tr(a) = 2a9, N(a) :aﬁ:ﬁa:g%+a%+a%+a%

for a € H. The map
HxH-—R, (a,b)+— tr(ab)

is a symmetric, positive definite R-bilinear form on H. The decomposition H = C & Ciy is orthogonal
with respect to this bilinear form.

We describe some lattice-theoretic objects in the new setting;:
Definition 5.1.9. Let O be an order in IF.

a) The dual lattice
O% .= {x € F : tr(aX) € Z foralla € O}

with respect to the trace bilinear form is called the inverse different of O.
b) The finite abelian group O%/ O is called the discriminant group of O. The number
d(0) := |0/ 0] < o
is called the discriminant of O.

¢) The two-sided ideal
D(O) := {x €0 :x0 C (9}

is called the different of O.

Examples 5.1.10. a) Let K be an imaginary-quadratic number field of discriminant — Dk, i.e.
K=Q(v/-Dx) CC, Dk >0,
such that
e Dx = 3 mod 4 and Dx squarefree or

e Dx =0mod 4,Dg/4 = 1,2 mod 4 and Dg /4 squarefree.
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Let ok denote the integral closure of Z in K, i.e.

Z+27YP%, Dy =0mod 4,
0 —
T\ Z+ 20 Dy =3mod 4.

The inverse different o§< is given by

. i 5 Z+3Z, Dg = 0 mod 4,
KT D KT Y iz i1 (14 i)z Dy =3mod 4

and d(og) = Dx. The different D(ox) is the principal ideal generated by i1~/Dx. The unit groups
og are given by

{£1,+0,4p}, Dx=23,0:= 2(-1+11V/3),
og =< {£1,+i1}, Dy = 4,
{£1}, Dy > 4.

b) Let K as in a) and define Ok := og + okip. From iyw = Wiy for all w € ox we conclude that O
is an order in H. The inverse different is given by

Oﬂ :0ﬁ +0ﬁi2: i Ok
K K K \/D_K

and d(Ok) = D2. The different D(Ok) is the two-sided principal ideal generated by i1/Dx. The
unit groups Of are given by
{:I:l, :i:p, :t‘(_), :i:iz, :i:piz, :i:‘(_)lz}, DK = 3,
Og = S {£1, +iy, +ip, +i3}, Dk =4,
{£1, xir}, Dk > 4.

c) The ring of Hurwitz quaternions

1dii it

= 5 ,

is a maximal order in H. The inverse different of O is given by OF = (1+i1) 71O and d(O) = 4.

The different D(O) is the two-sided principal ideal generated by 1 + iy and is denoted by . It can
be shown that

O =7+ Ziy + Zir + Zw,

po={a€ O:N(a) =0mod 2}.

We call ¢ the ideal of even quaternions. The elements 0,1, w, w form a complete set of represen-
tatives for o in O. The unit group of O is given by

OX::{iLiﬁgHLi@,ili”j”Zi%}

5 = <w,i1>.
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It is a noncommutative group of order 24. The identities
=1, (i+i)?=-2 (~w)i=1
show that the orders 00 (v=1) °Q(v=2) and ogy J/—3) can be naturally embedded into O.
d) The ring of Lipschitz quaternions
N:=7Z +7Ziy + Ziy + Zi3

is an order in IH. Indeed, A = OQ( v=1)- The inverse different of A\ is given by AY = 1A and
d(A) = 16. The different D(A) is the two-sided principal ideal generated by 2. It is easy to see
that o C A C O and that the index of each inclusion equals two. Especially, A is a non-maximal
order. The elements 0,1 form a complete system of representatives for @ in . Furthermore one has

A={a€eO:a=0,1mod p}

as well as
O=AUwAUWA = AUAwU Aw.
e) Oy J3)sa maximal order in H.
1) (’)Q( J/—2) I8 not maximal. Indeed, (’)Q( J=2) 18 strictly contained in the order
14 +V2i  _1+ip+/2i3
5 +Z > ,

which is seen to be isomorphic to Hurwitz order O in c) via the map

02 ::Z+Zi1+Z

14 i1 + /2y n 14i1+ip+i3 14i;+V2i3 N 141i +iy— i3
2 2 ’ 2 2 '

Hence, O, is a maximal order.

i1 — il,

In order to deduce a suitable description of the orthogonal group of the lattice (O, N|p), we
introduce the notion of invariant elements:

Definition 5.1.11. Let O be an order in H. An element 0 # a € O is called invariant, if it generates
a two-sided ideal in O, i.e. a0 = Oa. In other words, a is invariant, if and only if the map u — a lua
is a Z-automorphism of O. The set of invariant elements of O carries the structure of a multiplicative
semigroup, which will be denoted by Z(Q). For formal reasons we extend the definition for orders O
in C by setting T(O) := {1} in this case.

An explicit determination of Z(Q) for certain orders is given in the following

Lemma 5.1.12. a) Let O denote the Hurwitz order. Then one has

I(O) =IN- <1—|—11,8 < OX>
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b) Let K = Q(\/—Dk). Then one has

(/3,6 € OF), Dk =3,
I(OK):N <2w,1—|—i1,s€(’)1§>, Dg =4,

<i1\/DK,€E OE) Dk > 4.
Proof. a) Confer [11, p. 29] or [14, I. Lemma 1.5].
b) For 0 # a € Z(Ok) consider the automorphism

¢a: Ok = Ok, wr a lwa.

Since Ok contains a R-basis of H and O "R = Z, we have ¢, = id for a € Z(0O) if and
onlyifa € Z\ {0}. Of course, ¢,(+1) = £1. In the case Dx = 3 one has

ord(1) =1,ord(—1) = 2,ord(p) = ord(p) = 3,
ord(#+ip) = ord(%piy) = ord(£piz) = 4,
ord(—p) = ord(—p) = 6.

Hence, ¢.(p) € {p,p} and ¢, (i) € {£ip, +pia, £piz}. The value ¢,(piz) is uniquely de-
termined by ¢,(i2) and ¢,(p). Consequently, the number of different maps ¢, is less or
equal than 12. A direct verfication shows that any map of the form above is induced by
conjugation by ¢ or i;1/3¢ for e € O < - In the case Dg = 4, it is easily seen that every auto-
morphism of determinant 1 of the lattice (A, N, ) is given by a signed permutation of sign
1. This group has order 192. A direct verification shows that it is generated by the maps

¢a, a € {2w,1+1iy,+iy, +ip, iz}

In the case D > 4 we obtain @,(ip) = =iy, since ¢ restricts to units. Furthermore,

9a(in/Dx/2) € {:l:ilx/DK/Z,:ti;;\/DK/Z}

is due to norm reasons and the fact that —Dg is a discriminant. Again a direct verification
shows that ¢, is a product of maps of the form

w— a ‘wa, ac {ip, i1/ Dk} ]

The following result is well-known. For sake of completeness we include a proof:

Proposition 5.1.13. Let K = Q(v/—3). Then the following assertions hold:
a) {u € og : N(u) = 0mod 3} = iv/3og,
b) {u € Og:N(u) =0mod 3} = iv/30k.
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Proof. a) The trivial inclusion follows from N(i;1/3) = 3 and the multiplicativity of the norm
form. For the nontrivial inclusion let u = a + bp € ok such that N(#) = 0mod 3. By
definition,

2
N(u) = (a+g) +Zb2:g2+ab—|—b25a2—2ab+b2:(a—b)2m0d3.

Hence, a = b mod 3. We conclude u = b+ 3] + bp = 31+ b(1 + p) for some | € Z. Hence
it suffices to show 1+ p € i1/30k. This is seen from the identity 1+ p = i1v/3(—p + 1).

b) Let u = uq + uyip, uq1, Uy € og such that
N(u) = N(u1) + N(up) = 0 mod 3.

In the proof of a) it was shown that both N(u1) and N(uy) are quadratic residues mod 3
and hence congruent to 0,1 mod 3. Thus, N(#) = 0 mod 3 already implies N (u1), N(up) =
0 mod 3. From a) we deduce 11,1y € i1\v/30g and thus u € i1v/30k. O

We cite a classical theorem of Cayley, cf. [6, 7 §3, p. 215], that characterizes the orthogonal
groups of the quadratic spaces (FF, N) in the following manner:

Theorem 5.1.14 (Cayley). Let [Fy := {w € F : N(w) = 1}. Then one has

(w— —w), F =R,
O(F) = (w — ew : e € C1) x (w — W), F=C(,
({w—dw:6eH} - {w—ewe:e € Hy} ) x (w—w), F=H.

We describe the normalizer of an quaternionic order O in terms of its invariant elements:

Lemma 5.1.15. Let O be an order in H. Then the following assertions hold:

a) OQ is a central simple Q-algebra.

b) Ng, (0) = { u_ .y EI((’))}.

N(u)

Proof. a) For0 # u € O one has u~! = N(u)~'z € OQ. Hence OQ is a skewfield over Q
and trivially simple. In order to prove that OQ is central with center Q, note that we have

C(0Q) = C(H)NOQ =RNOQ,

since OQ contains a R-basis of IH. Thus it suffices to show that R N OQ = Q. But for
xe€ RNOQwefindr € Zsuchthatrx e ONR =7Z,ie. x € Q.
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b) Letx € N, (O),ie. x € F, N(x) = 1and x 1Ox = O. Hence, conjugation by x extends to
a Q-automorphism of the central simple algebra OQ. Due to the Skolem-Noether theorem,
cf. [23, Chap. 1, § 7d, Thm. (7.21)], this automorphism is inner, i.e. thereis 0 # u € OQ,
such that x tax = u~lau for all a € OQ. Since this equation also holds for the multiples
m-u for 0 # m € Z, we can assume that u € O, i.e. u € Z(0O). Since O contains a R-basis
of H, the element xu~! is central in H and consequently there is 7 € R such that x = ru.

From N(x) = 1 we obtainr = +———. O
N(u)

From 5.1.14 and 5.1.15 we derive an explicit description of the orthogonal group of the lattice
(O, N|p) in terms of the multiplicative structure of the order and its invariant elements:

Theorem 5.1.16. Let O be an order in IF. Then the structure of O(O) is given by

(w— —w), F=R,
O(0) = {wréw:6 € O} x (w— W), F=C,
{w—ow:6€ 0%} {w— uwu:ueZ(0)}) x(w—w), F=H.

Proof. The claim is obvious in the case IF € {IR,C} and for the left-multiplications if F = H,
since 1 € O. In the remaining case let ¢, 6 € H; such that §Oe = O. This implies de € O™, i.e.
0 = 0’ for some &' € O*. As a consequence,

O =¢e06 =e0e = eOF,

since ¢’ € O*. Thus e € N, (O) and by 5.1.15, ¢ = \/ﬁ for some u € Z(0O). O

We give some explicit

Examples 5.1.17. Let O denote the Hurwitz order and 7 := 1+ 1.

1) O(0) = ({wr éw,6 € O} (w— ulwu:u e O*U{n})) x (w— ),
b) O(A) = ({fw— 6w, 6 € A} - (w— ulwu :u € AXU{m,w})) x (w— @),

¢) O(0k) = ({wr— éw,6 € OF} - (w— utwu :u € Of U{iy/Dg})) x (w — @)
for Dxg = 3 or Dx > 4.

Regarding the discriminant kernel of the lattice (O, N|p) we obtain the following

Proposition 5.1.18. Let O be an order in IF. Then the map (w — —w) belongs to O4(O).

Proof. Follows from y — (—f) = p+f = tr(u-1) € Zforall y € O O
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5.2 Unitary symplectic groups

Definition 5.2.1. The unitary symplectic group of degree n over IF is defined as

Un(F) i= {M € B2 ), [M] = J, }.

Note that U, (R) = Sp,,(R). In order to avoid ambiguities, we will use the term unitary only
in the case F = C or F = H.

Asin [14, II. § 2 Lemma (1.1)] we obtain the following characterization of Uy, (F):

Theorem 5.2.2. The unitary symplectic group Uy (F) is a subgroup of GLy, (F). For M = (4 B)
with blocks A, B, C, D € IF"*" the following assertions are equivalent:

i) M € U,(F),

i) M' € Uy(F),
iii) AC-CA=BD-DB=0AD-CB=1,
iv) AB' —BA' =CD' - DC' =0,AD' — BC' = I,.

—t =t
_ D -B
M 1 — —t —t .
—-C A

As a generalization of the Siegel modular group Sp,(Z) we introduce the modular group
with respect to an order O in [F:

In this case, one has

Definition 5.2.3. Let O be an order in IF. Then the modular group of degree n with respect to O is
defined as

Un(O) := U, (F) N O — {M € O [ IM] = ]n}.

We distinguish certain elements in the modular group:

Remarks 5.2.4. Let O be an order in TF.

a) The matrices

—t
u 0 L, S
In, ( 0 U‘1> ,U e GL,(0), (0 In) ,S € Her,(O)

belong to U, (O).
b) U1(O) = O -SLy(Z).
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This gives rise to the following
Definition 5.2.5. Let O be an order in F. The modular group U, (O) is called standardly gener-

ated, if
—t
U, (0) = <]n, (Lé u0—1> U € GL,(0), (10 IS) Se Hern(0)> .

A class of examples is contained in the following

Theorem 5.2.6. Let O be an order in IF. If O is a principal ideal domain, then U, (O) is standardly
generated.

Proof. Let x € O". As a special case of the elementary divisor theorem for principal ideal
domains, where we refer to [25] in the noncommutative case, yields the existence of a matrix
U € GL,(0O) such that Ux = (,0,...,0)f, where 7 is a greatest common right divisor of the
entries of x. Then rest of the proof is along the same lines as in [14, II. §2, Prop. 2.2, Thm.
2.3]. ]

Under more rigid assumptions on the order one can determine a smaller set of generators
of U,(O). By utilizing the euclidean algorithm, one can show that GL,(O) is generated by
elementary matrices. Hence, we obtain

Corollary 5.2.7. Let O be a norm-euclidean order in IE. Then the following assertions hold:
a) U, (O) is generated by

In S Ut O B . "
Jns (0 In),SEHern(O), (0 u_l),U—dlag(s,l,...,l),ge(’),

b) U, (O) is generated by

I, S o o
]2 X IZTl—2/ (61 In) /S e Hern(o)/ ( O u_1> 7

where U = diag(e, 1,...,1),e € O* or U is a permutation matrix.

5.3 Paramodular groups

Definition 5.3.1. A matrix T € Z™*" is called elementary divisor matrix, if

T = diag(ty,...,tn), tltizifori=1,...,n—1
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Definition 5.3.2. The integral paramodular group of polarization T is defined as
= 0 -T 0 —-T
2nx2n . pqt
T(T)—{MEZ .M(T O)M_<T 0)}

Of course one has T'(I,,) = Sp,(Z).
The content of [2, § 2] is summarized in the following

Theorem 5.3.3. For M = (4 B) € Z?"*" with blocks A, B,C, D € Z"*" the following assertions
are equivalent:

i) MeT(T),

ii) A'TC,D'TB € Sym (Z), A'TD — C'TB =T,
iii) IrMIz! € Sp,,(Q), where It := diag(I,, T),

iv) [rMIr ' € Sp, (Q), where It = diag(T, I,) = J; 'ItJa,

o) (§9)7 M (§9) eT(D).
In this case, one has

M- = ( T*iDtT —TlBtT) .
—T-IC!'T  T1A'T

In view of 5.3.3 iii) we have the following

Definition 5.3.4. The group
O(T) := 1D(T)I; = {M € 8p,(Q) : I MIy € 7221}

is called the paramodular group of polarization T. For t € IN we will simply write

T(f):=T ((1) ‘Z) .

Remark 5.3.5. a) In view of 5.3.3 iv) one has IN;rf(T)INT_l =T(T)%

b) T(T) and T(T)" are conjugate as subgroups of Sp, (Q). Explicitly one has
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c) From b) we obtain, that the assignment

-1
T 0 (T 0
Mo (o ) # (o 1)

is a nontrivial involutive automorphism of T(T).

Generators of T'(T) were determined in [13, Thm. 1.12]. A translation yields
Theorem 5.3.6. The group I'(T) is generated by

(0 —-T! I, Gj L
]T'_<T 0 ) (0 )i

'Iii/ l:]/
. (Il“ + I]‘i), i< ]

Ir= I =

The paramodular group admits nontrivial discrete extensions in Sp, (R). From [17, Satz 4']
we cite the following

Theorem 5.3.7. The group
L(T)™ = Nep, () (T(T))

is the maximal discrete extension of I'(T) in Sp,,(R).

5.4 Modular embeddings of paramodular groups

In the following let O always denote an order in F and T = diag(#y, ..., ) an elementary
divisor matrix.

In the spirit of [18] we give the following

Definition 5.4.1. Let M € U, (IF). We say that M is a modular embedding of I'(T) into U, (O),
if MTIT(T)M C Uy, (O). In this case, we define

Oy T(T) — Uy(0), ®m(H):=M'HM, HecT(T).
Furthermore, we set

Mod (T(T), Up(0)) := {M € Up(F) : M7IT(T)M C Un(O)} .

Some facts are contained in the following
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Remarks 5.4.2. a) The map
-1
Vi 0 Vil 0
N(T) — (), He (V" ) H{Y " 1
Vi Vi

is an isomorphism of paramodular groups. Hence the map

-1
t1I, O
Mod(T(T), Uu(O)) — Mod (T (t;'T), Un(0)), M+ (Jg 1 ) -M
Jhn
is a bijection.

b) Modular embeddings of T'(T)" are defined in the same manner of 5.4.1. Indeed, the map
Mod (I'(T), Us(0)) — Mod(T(T)!, Us(0)), M > (g T‘L) M

is a bijection.
c) The group F1 x U, (O) acts on Mod(T(T), U, (O)) via the assignment

M w— eMR, ¢e€F,ReU,(O).

Part c) of 5.4.2 gives rise to

Definition 5.4.3. Let M, M’ € Mod(T'(T), U,(O)). We call M, M’ equivalent, if there is (¢, R) €
IF1 x Uy (O) such that M' = eMR. In this case, we write M ~ M'. The equivalence class of M is
denoted by [M]~. and the set of equivalence classes by Mod(T'(T), U, (O)/ ~.

Definition 5.4.4. Let ay,...,a, € O. The matrix A := diag(ay, ay,...,a,) is called an O-model

of T, if B
AA =Tand a;| aj 1 fori=1,...,n—1.

We define a notion of equivalence for O-models:

Definition 5.4.5. Let A, B be O-models of T. We call A, B equivalent, if thereare 6y, ...,0,,€ € O
and
B = diag(dy,...,0n) - A-E,

ie. bi = (5ial-§for i = 1,...,n.

In view of the constructing O-models of T, we state the following easy

Lemma 5.4.6. Let ay,...,a, € O and A = diag(ay,ay,...,a,). Then the following assertions are
equivalent:
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i) Aisan O-model for T,
ii) thereare yq,...,vn € O such that vy = 1 and

akal_l =972, N(y) = tktk_fl fork=2,...,n.

In this case, 71, . .., yn are uniquely determined by A and one has

Yk = akak__ll fork=2,...,n.
In [18] the set Mod(T(T)!, U, (0k)) was studied and some prototype was introduced, which
is also suitable in the noncommutative setting:

Proposition 5.4.7. Letay,...,a, € Oand A := diag(ay, ..., a,). Define

My = <A0_1 %) € U, (F).

Then the following assertions are equivalent:
i) Aisan O-model of T,
i) Mg € Mod(I'(T),U,(O)).

Proof. In view of 5.3.6 it suffices to show, that the condition

M, 'TrMy4 € Uy (O) and M,! <o ;
n

)MAeUn((’)), 1<i<j<n,

is equivalent to A being an O-model for T. The assertion

1 0 —AT 1A
M, JrMa = T a1 0 c U,(0)

is equivalent to t;|N(a;) and N(a;)|t; i.e. N(a;) =t;fori =1,...,n. The assertion

M (10 Cfff') My €UL(0), 1<i<j<mn,
n

is equivalent to

1 — 1 .
t—AI]‘iA = t—a]-a_ilji = aja._llji e QM 1< <j<m,
] i

1
1

ie. to ai\ra]- for1<i<j<nm. O

Proposition 5.4.7 leads to the following
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Definition 5.4.8. Let M € Mod(I'(T),U,(O)). We say that M is of principal type, if M =
My for some O-model A of T. The set of modular embeddings of principal type is denoted by
PMod(T'(T),U,(O)).

Remark 5.4.9. Let T, T’ be elementary divisor matrices with O-models A resp. A’. Then AA' is an
O-model of TT' if and only if

roo=1 1 :
ajp1a;qa; a; €0, i=1,...,n—1

Note that this condition is trivially fulfilled for F{IR, C}, while in the case F = H it is more restrictive.

In the proof of [18, Satz 2], Kohler gave an implicit classification of Mod(I'(T)!, U, (0k)) in the
case, where K has class number one. Therefore it is reasonable to assume that O is a principal
ideal domain. To this end we will analyse his proof carefully and ensure that the arguments
used there also hold in the noncommutative case. As a by-product it turns out, provided
t; = 1, that the embeddings of principal type contain a complete system of representatives of
the equivalence classes of Mod(I'(T), U, (O)).

We introduce coprime matrix pairs:
Definition 5.4.10. Let C,D € O"*" and (C,D) € O"*?" the corresponding matrix pair.
a) (C,D) is called coprime, if for all V € F"*" one has V(C, D) € O™*?" ifand only if V € O™*",

b) (C,D) is called hermitian, if CD' € Her, (0).

Remark 5.4.11. It is easy to see, that the group GL,(O) x GLy,(O) acts naturally on the set of
coprime pairs (C, D) via U(C,D)V~! for U € GL,(0),V € GLy,(0).

Proposition 5.4.12. Let O be a principal ideal domain and C,D € O™*". Then the following asser-
tions hold:

a) There is some coprime matrix pair (Cy, D7) € O™ and some G € O™ " such that (C,D) =
G(Cll Dl)

b) (C, D) is the second block row of some M € U, (O) if and only if (C, D) is coprime and hermitian.

Proof. a) Due to [25] the elementary divisor theorem also holds for noncommutative princi-
pal ideal domains, i.e. we find U € GL,(O) and V € GL,,(0O) such that

(C,D) = U(F,0)V = UF(I,,0)V,

where F = diag(fi1,..., fun) € O"" and f;; is a two-sided divisor of f;; for all i < j. The
claim follows then with G := UF and (Cy,Dy) := (I,,0)V.
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b) Assume that (2 B) € U,(O) holds for some A,B € O"*". From 5.2.2 iv) we conclude
DA —CB' = I, and CD' € Her,(O). Hence, the pair (C, D) is coprime and hermitian.
Conversely, using the elementary divisor theorem, we find U € GL,,(O) and V € GL,,(O)
such that

U(C,D)V = (C;,0), C;i = diag(c11,.-.,cnn), cii # 0.

Since (C1,0) is necessarily coprime, we have ¢;; € O* fori = 1,...,n. Hence we can
assume C; = I,,. With the definition

we obtain

CX + DY = (C,D) (};) _ (C,D)V (g) — 1.

Finally, we set
A=Y +XYC, B:=-X +XYD

and an explicit calculation shows that the matrix (4 B) satisfies 5.2.2 iv). O

Now we are able to prove the main classification theorem for modular embeddings. The proof
is adapted from [18]. The assertions in the theorem are formulated accordingly in order to fit
into the new setting.

Theorem 5.4.13. Let O be a principal ideal domain and M € U, (IF). Then the following assertions
are equivalent:

i) M € Mod(T'(T),U,(0)),
i) there exist (¢,R) € Fy x Uy, (O) and some O-model A for t; ' T such that

—1
hl, O
(G” LIH) M = eMyR.

NG
. VAl 0\ 7!
Proof. Let M € Mod(I'(T),U,(O)). After replacing M by ( 0 \17 Iﬂ) M we can as-
f
sume that t; = 1. Furthermore, after replacing M by (g Tgl ) M we can assume that M €

Mod(T(T), U, (0)), i.e.
M™II(T)'M C U, (0). (1)

By [17, Hilfssatz 1’], the Z-lattice T(T)z over Z, generated by T(T), is a free abelian group
with basis fx I, 1 < k,I < 2n, where

1, for1 <I<k<mn,
ttl, forl1<k<l<n.

frsnttn = ferng = fepn = feg = {
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Hence we have
M GT(T) 2l "M C oxon, 2)
Considering the generators fi;Iy; in (2), we obtain that the numbers

fatkt; ‘dguar, fatet; by fated; i fatkt] b

fkltkld_kyclv fkltkfiicydlv sztklﬁky% fkltkfkydlv 3)
fklt;_bkyalv fklt;_bkyblv fklt; ﬁkyalv fklt; akyblv
frabrucr frabrudny fraxucry fraxudry

belong to O forall k, I, i, v € {1,...,n}. From M € U,(FF) we obtain that there is at least one
nonzero entry of M, say p. Hence (3) implies, that the product of p with every entry of M
belongs to OQ, i.e. we can write

M=p"'M, peF*N(p)eQM eQ- O
After multiplying p and M’ by some suitable rational number, we can assume

_ 1 (A B .
M=p 1M’:p1<C D)’ r1:=N(p) €N

with blocks A = (ay), B = (b)), C = (cx1), D = (dig) € O™*". The matrix /7 - (4 B) belongs
to U, (IF). The identity

p~lxply =Tp~lp~ly = 1Ty,
valid for arbitrary x,y € IF, shows that the numbers

rfuatet tdigan rfatit; b 7 fatet g fatkt] Trbr

rfatedepcry  Thatdigdn rfatiCgen T fatiCrudny )
t1b t b, b t1a t G, b
rfat; “bipa  tfaty biubw o ity G rfat; b
rfklbkyclv rfklbkydlv rfklﬁkyclv rfklﬁkydlv

belong to O forall k, I, u,v € {1,...,n}. Due to 5.4.12 a), we can write
(A,B) = G(Ay,By), G € O"™",(Ay,B;) € O"" coprime.

Part b) of 5.4.12 yields the existence of Ry = (‘éll gll > € Uy,(O). The matrix MR; ! has the

form (% 9). After substitution of M by MR, ! we can assume that M is of the form

M=ol (é‘ g) N(p) = €N. (5)

Inductively, the elementary divisor theorem yields the existence of U € GL,(O) such that
AU is of lower triangular shape. Then

u-t o
Ry := — U,(0).
2 (o uf>€ (0)
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By construction, the A-block of MR, ! is of lower triangular shape and the D-block of MR, !

is of upper triangular shape, since rA'D = I,,. Now rA D = I, implies
gde =11, e a,&l =rdy  forl <k<n. (6)
From (6) and (4), we obtain
g gy = rdigeag, = rfdgag, € O forl <p<k<n,

that is ay | ax, for 1 < pu < k < n. As a consequence,

1 0 --- 0
U := diag(ayy, ..., am) ‘A = * ‘ O € GL,(0).
>;< *. 1
Hence .
R3 = (uo_ U0t> € U,(O)

and we observe that the corresponding A- and D-block of MR3 are diagonal matrices. Thus
we can assume A and D in (5) have diagonal form, say

A :diag(all,...,ann), D - diag(dll,...,dnn),
which satisfy (6). From (4) we obtain
d;ﬁcw = 1auuCpy = 1 fupluucuy € O.

This implies H := —D~!C € O"*", and CD' € Her,(O) implies H € Her, (O). Therefore

Ry := (Z IO) € Un(O)

By construction, MRy is a diagonal matrix. Now (4) implies
T’tk_lﬁkkakk €O, (T’fk_lﬁkkakk)_l = rtk_lﬁkkdkk €0, 1<k<n.
Therefore, N (ay;) = r~'t;. Especially, N(a11) = r~!. Again, (4) implies

1 = _ -1
By o1k = Tdk-1k-10kk = 7 fr—1ktk-1t; " dk-1k-10k € O,
e

thus ag_1 x—1|jaxx fork =2,..., n. Finally, we set € := p~laj;. Then

N(e) = N(p)"IN(a;1) =1, ie. e € ;.
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Using the notation a; := ailakk fork=1,...,n, we can write
A 0 .
M=c¢ 0 A-1) A =diag(1,ay,...,a,),N(ay) = t;, N(e) = 1.

Recapitulating the proof, we have constructed

e € IF;, A = diag(1,ay,...,a,) € O""and R € U,(O)

such that B

T 0 (vhl, 0 mMee(d 0\

0 T! 0 -l —“\lo A1)
i.e. .

t1 0
¢g” 1 M = eM4R
UL

and A is an O-model of t;° T, O

A reformulation of 5.4.13 and the fact that the number of O-models of T is finite yields:

Corollary 5.4.14. Let O be a principal ideal domain and M € Mod(I'(T), U, (Q)). Then the follow-
ing assertions hold:

-1

ViL 0

a) ( t& 1 Iﬂ) M is equivalent to some modular embedding of principal type.
vh

b) The set of equivalence classes Mod(I'(T), U, (O))/ ~ is finite.
The dependency of T on some modular embedding M of I'(T) is revealed in the following
Corollary 5.4.15. Let O be a principal ideal domain. Then the following assertions hold:
a) Mod(T(T),U,(O)) # @ if and only if t; ' T has an O-model.
b) Let T' be another elementary divisor matrix and t; = t;. Then
Mod(I'(T), U, (O)) "1Mod(T(T'), U, (0)) # @

implies T = T'.
Proof. a) Follows from 5.4.13,5.4.7 and 5.4.2.
b) Let M € U, (F) be a modular embedding of both I'(T) and I'(T”). By 5.4.13,

-1

CYM

\/g L] M ~ Mg
Vi

for some O-model A of t, IT. From t1 = t’1 and 5.4.7 we obtain, that A is also an O-model
of t 1T Asa consequence,

T =AA=1t'T,
ie. T=T. O
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The equivalence relation between embeddings of principal type is characterized in the fol-
lowing

Theorem 5.4.16. Let A and B be O-models of t; YT, Then the following assertions are equivalent:

i) Ma and Mg are equivalent as modular embeddings,

ii) A and B are equivalent as O-models.
Proof. Let e € Fy. Then we have R := My'eM, € U, (O) if and only if
BeA™! = diag(dy,...,6,) € GL,(O)
for certain units 61,...,0, € O*. From ay,b; € O* we derivee € O*. O
As a consequence of the classification theorem 5.4.13, 5.4.14 and 5.4.16 we can express the
number of nonequivalent modular embeddings:

Corollary 5.4.17. Let O be a principal domain. Then the number of nonequivalent modular embed-
dings of I'(T) into Uy, (O) equals the number of orbits of the group O* (F1) o the set

{a € o . N(a;) = titl_l,i =1,...,n}

via the action

(all- . .,ﬂn) — ((51611, .. .,5,1&”)5, (51,52’ . ’(5”,8) c Ox(n+1)'

In view of [18], we give the following

Definition 5.4.18. Let M € Mod(T'(T), U,(O)). We call M maximal, if

I(T) = MU,(O)M 'nSp, (R).

Remark 5.4.19. Maximality of M € Mod(T'(T), U,(O)) only depends on its equivalence class.

A characterization of maximality is explained in the following

Proposition 5.4.20. Let M € Mod(I'(T), U, (Q)). Then the following assertions are equivalent:
i) M is a maximal modular embedding,
ii) forall H € Sp, (R) one has H € T(T) if and only if M—1HM € U,(0O),

iii) forall T < Sp, (R) such that M—'TM C U,(O), one has T < T'(T).

In this case, T'(T) is the maximal subgroup of Sp,,(R), which embeds into U, (O) via P ;.
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From [18, pp. 75-76] we adapt a correspondence between maximal modular embeddings of
principal type and primitive lattice embeddings Z(tut; ') — (O, N|p).

Proposition 5.4.21. Let A = diag(ay,...,a,) be an O-model for T. Then the following assertions
are equivalent:

i) My is a maximal embedding,
i) akal_l is primitive fork =1,...,n,
iii) anpa; Lis primitive.
Corollary 5.4.22. Let O be a principal ideal domain and t,t; v squarefree. Then every embedding
M € Mod(I'(T),U,(O)) is maximal.
In order to study the effect of the maximal discrete extension I'(T)™?* on the set of modular
embeddings of I'(T) we obtain the following
Theorem 5.4.23. The following assertions hold:
a) T(T)™> acts on Mod(T'(T), U, (O)) by multiplication from the left.

b) The action defined in a) respects the equivalence relation on Mod(T'(T), U, (O)) and hence induces
an action of T(T)™® on Mod(T'(T), U, (O))/ ~.

c) I(T) lies in the kernel of the action defined in b) and this induces an action of T(T)™® /T (T) on
Mod(T(T), U, (O))/ ~.

Proof. Let M € Mod(T'(T),U,(O)).
a) Let H € T(T)™ = Ngp, (r)(T(T)). Then one has
(HM)'T(T)HM = M~ 'HIT(T)HM = M~ 'T(T)M C U, (0O),
i.e. HM € Mod(T(T), U, (0)).

b) M’ = eMR for some (¢,R) € F1 x U,(O) implies HM' = ¢(HM)R, since ¢ and H com-
mute.

c) For H € T(T) one has R := M~'HM € U,(O) by assumption on M. Hence, trivially
HM = MR and thus HM ~ M. O

Corollary 5.4.24. Let t; = 1. If O is a principal ideal domain, then the action of T'(T)™® /T(T)
on Mod(T'(T),Uy,(O))/ ~ induces an action of T'(T)™* /T(T) on the set of equivalence classes of
O-models of T.

Proof. Let H € T(T)™®/T'(T) and A be an O-model for T. By 5.4.13, we find some O-model
B of T such that HM 4 ~ Mp. Since H respects the equivalence relation, this induces an action
on the equivalence classes of O-models of T. O

We will determine this action in section 6.1 explicitly.
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5.5 Pullback theory for modular forms

We develop a pullback theory for modular forms with respect to modular embeddings of
paramodular groups.

First we briefly define the basic concepts and terms in the theory of hermitian and quater-
nionic modular forms. For a general reference confer [14].

Definition 5.5.1. The half-space of degree n over IF is the set
H,(F) = {X+iy EF " @rC:X=X,Y=Y > 0}.

The set H,,(C) is called the hermitian half-space and H,,(IH) is called the quaternionic half-space.

Clearly, H,(R) = H, and H1(F) = H.
Definition 5.5.2. Letk € Z and M = (4 B) € U, (F), where we assume k = 0 mod 2 if F = H.
a) For Z € H,(FF) we define

det(CZ + D)k, F € {R,C},

k._
(det M{Z})" := {(det(CZ +D))?, F=H,

where V' denotes the embedding H"*" —s C?"*2" qs in [14, 1., § 2, p.14]. The map
(M, Z) — (detM{Z})*, M € U,(F),Z € H,(F)

defines a factor of automorphy for U, (FF), cf. [14, II. Theorem 1.7 and p.77f].
b) For Z € H,(F) we define M{Z) := (AZ + B)(CZ + D)~L.
¢) For a holomorphic function F : H,(IF) — C we define F| M pointwisely by

F| M(Z) := (detM{Z})™*-F(M(Z)), Z € H,(FF).

Again, we call | . the slash operator of weight k.

We introduce modular forms:

Definition 5.5.3. Let k € Z, where k = 0 mod 2 in the case F = H. Let T < U, (O) of finite index
and v an abelian character of T of finite order. A function F : H,,(IF) — C is called a modular form
of weight k and degree n with respect to I and v, if the following conditions are satisfied:

i) F is holomorphic,

ii) F|,M = v(M)F forall M €T,
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iii) in the case n = 1, the functions F | kM’ M € Uq(0O), are bounded on each set

{zeH:y>6}, 6>0.

In this case, F is called a Siegel modular form if F = R, 2 hermitian modular form if F = C and
a quaternionic modular form if F = H. The space of modular forms of weight k and degree n with
respect to I and v is denoted by [T, k, v].

For S,Z € Her,(F) @ C we define tr(SZ) := jtrace(SZ + ZS) € C, where in this case, trace

denotes the usual matrix trace. Let Her},(©) denote the dual lattice of Her, (©) with respect
to the trace form, i.e.

Her}, (0) = {M € Her,(F) : tr(SM) € Z for all S € Her,,(0)}.

From [14, III., §1, Thm. (1.2)] we cite the following

Theorem 5.5.4. Let k € Z, where k = 0 mod 2 in the case F = H. Then every modular form
F € [U,(0O), k] has a Fourier expansion of the form

F(Z)= Y ap(S)e¥™2), 7 € H,(F).
OgSeHerf,(O)

The Fourier series converges absolutely and uniformly in every domain

{ZeHy(F):Y >6L,}, 06>0.

We introduce paramodular forms:

Definition 5.5.5. Let k € Z,T' < I'(T)™® of finite index and v an abelian character with respect to
I of finite order. A function F : H, — C is called a paramodular form of weight k and polarization
T with respect to I and v, if the following conditions are satisfied:

i) F is holomorphic,
i) F|,M=v(M)f forall M €T,

ii1) in the case n = 1, the functions F { kM' M € T(T)™2, are bounded on each set

{zeH:y>6}, 6>0.
The space of paramodular forms of weight k with respect to T and v is denoted by [T, k, v].

Modular embeddings transform modular forms into paramodular forms:
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Proposition 5.5.6. a) Let F € [U,(O),k,v|. Then the map

Mod (I(T), Up(O)) — [[(T),k,vody], M s <F|kM—1)

Hn
is well-defined.
b) Let M € Mod(T'(T),U,(O)). Then the map

[Un(0),k,v] — [[(T),k,vody], F+s (F‘kM—l)

Hn

is a homomorphism of the vector spaces.

Proof. This follows from the identity

(F| MY H = (P\kch(H)) M= (vody)(H) - F| M

k

for He I'(T) and M € Mod(I'(T), U, (O)). O

In view of the equivalence relation on Mod(I'(T), U,(O)), we motivate our definition of a
pullback theory for modular forms with respect to modular embeddings in the following

Remark 5.5.7. Let M € Mod(T'(T),U,(O)) and (¢,R) € Fy x U,(O). Then for every modular
form F € [U,(O), k| one has

" (F.MT1) |, Fe{R,C},
_ y ( x > ’H,, {R,C}

(FlyeMr)™) | (FM)| , FoH
Hn

Hence, except the case F = H, the map

Mo (Pl |

is not compatible with the equivalence relation on Mod(I'(T), U, (O)).
Definition 5.5.8. Let M € Mod(I'(T),U,(O)) and k = 0 mod 2. For a holomorphic function

F : 1, (F) — C, the pullback F|, [M] : H, — C of F with respect to M and weight k is defined
pointwisely by

N(detM~Yz})~*2.F(M~1(Z)), F e {R,C},

F’k[M](Z) = {F’kM—l(Z), F = ]I‘I,

for Z € Hy. Here, the norm form N is extended to IF @R C by C-linearity.
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Definition 5.5.9. We define wo := |C(IF) N O, i.e.

‘OX|/ F € {IR/C}’
wop =
2, F =H.

Lemma 5.5.10. Let F € {R,C} and k = 0 mod 2. Assume that U, (QO) is standardly generated.
Then the two factors of automorphy

(M, Z) — N(det M{Z}¥'2, (M, Z) — (det M{Z})¥
coincide on U, (O) x Hy.
Proof. Due to the multiplicativity of the norm form N, the map
(M, Z) — N(det M{Z})¥/?

satisfies the cocycle condition. Hence it suffices to prove that for fixed Z € H, both maps
coincide for matrices of the type

I S u o
T, (5 In> ,S € Her,(0), < 0 U_1> ,U € GL,(0).
For the translations this is obvious and for the inversion J, it follows from the identity

N(det Z)¥/2 = ((det 2)%)""* = (det Z)*.

For the rotations, we obtain
k/2 k
N <det u—l) = N(detU)*2 =1 = (detU)~* = (det u—l) ,

sincedetU € O* = {u € O : N(u) =1} and k is divisible by |O*|. O

Now we are in charge to prove the following

Theorem 5.5.11. Let F € {R,C,H}, where in the case F = C the group U, (O) is assumed to be
standardly generated. Let k = 0 mod we. Then the following assertions hold:

a) Let F € [U,(O),k,v]. Then the map
Mod(I'(T), Uu(0O)) — [I(T),k,v o ®y], M F|, [M],
is well-defined.

b) Let F € [Uy(O),k]. Then M ~ N implies F| [M] = F|,[N]. In other words, the map

|
k
Mod(I(T), Uy(©)) /. — [[(T),K], [M] — F|,[M],

is well-defined.
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Proof. There is nothing to prove in the case F = H.
a) Let H€ I'(T),R := M—'HM € U, (O) and Z € H,,. From 5.5.10 we obtain
F| [M]| H(Z) = detH{Z} ¥ - F| [M](H(Z))
=detH{Z} % N(det M Y{H(Z)})*2. F(M~'H(Z))
= N(detH{Z})™¥2. N(det M~ {H(Z)})"¥2 . F(M~'H(Z))
= N(detM_lH{Z})_k/z F(M™'H(Z))
— N(detRM~Y{z})"*2. F(RM~1(Z))
= N(detR{M~1(Z > )K/2 . N(detM~{Z})™¥2. F(RM~1(Z))
= detR{M~Y(2Z)} . N(det M~1{Z})*2. F(R(M~1(Z)))

= (F[,R)[,l ]( )

:(I/OCI)M) P}k

b) Let (¢, R) € F; x U,(O) and Z € H,,. From 5.5.10 and e~ '(Z) = Z we obtain

F|,[eMR](Z) = N(detR " 'M e 1{Z}) 2. F(R'M e 1(2))

= N(detR"H{M e (Z)} - det M~ e H{z})*2. F(RTIM1e71(Z))
= N(detR"YM Z)} - det M e 1 {Z}) 2. F(RT'M1(Z))
= N(detM e~ 1{z})7F/2. (N(detkfl{M*1<z>})*k/2-F(R*1M71<z>))
= N(detM '{e(2)})*2. N(dete 'I,{Z})"*? . F| R(M(Z))

= N(e7") 2. N(det M~ {Z}) ¥ F| R(M~(Z))

= N(e)"™/- (F|,R)|,[M]

= F| [M]. O

In view of the construction of paramodular forms with respect to the maximal discrete exten-
sion of I'(T) we obtain the following corollary by a simple averaging argument:

Corollary 5.5.12. Let O be a principal domain and k = 0 mod wep. Then one has

Y. F| [M] € [[(T)™,k].
[M]~eMod(T(T),U,(0))/ ~

forall F € [U,(O),k].
Proof. Follows directly from 5.5.11, 5.4.23, 5.4.14. l

Example 5.5.13. Let A be an O-model for T. Then one has Mf(Z) AZA = Z[A] for Z € H,.
Evaluation of the corresponding factor of automorphy yields in both cases

(detT)k/2 _ N(dethl{Z})fk/zl F ¢ {R,C},
(det M ' {Z})~F, F = H.
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Thus for a holomorphic function F : H,(IF) — C and k € 2Z we obtain
F| [Ma](Z) = (detT)"2. F(AZA), Z € Ha.

Definition 5.5.14. Let A be an O-model for T. For a holomorphic function F : H,(F) — C we
define the pullback F[A] : H,, — C with respect to A pointwisely by

F[A](Z) := F(AZA) = F(Z[A]), Z € H,.



6 Separation Theorems for Modular
Embeddings of Degree 2

In this chapter we will restrict to the degree two case only and assume that the elementary
divisor matrix T is given by
10
T = t .
(o 1) ten

Up to equivalence every O-model A of T has the form

10
A—(O E)’ a€ O,N(a) =t

By a slight abuse of notation, we define

1 0 0O
0a!loo0

M, _M<(1)%> =lo o0 1 0 EPMOd(F(t),Uz(O)).
0O 0 O a

Definition 6.0.15. Let a € O. For a holomorphic function F : Hy(IF) — C we define the function
Fla] : Hy — C pointwisely by

Fla)(Z) == F [(})] (Z)zF(EZw N‘Z&,), Z = (;} ;‘f) € Hy.

We call F|a] the pullback of F with respect to a.

6.1 Modular embeddings and maximal discrete extensions

In 5.4.23 and 5.4.24 we have seen that I'(T)™® /T'(T) acts naturally on the set of equivalence
classes Mod(T'(T), U, (O))/ ~, which induces an action of I'(T)™®/T'(T) on the set of equiv-
alence classes of O-models for T, if we assume O to be a principal ideal domain. In this
section, we will determine an explicit description of this action in the case n = 2. Suprisingly,
the result is deeply connected to factorization theory in the order O.

To proceed, we briefly develop factorization theory in non-necessary commutative orders.
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Definition 6.1.1. We say that O has the exact factorization lifting property, if for every a € O
and every exact divisor d||N(a), there are a, B € O such that N(x) = d and a = ap.

The existence of such orders is shown in the following

Proposition 6.1.2. Let O be a principal ideal domain. Then O has the exact factorization lifting
property.

Proof. For a € O consider the right ideal 20 + dO. Since O is a principal ideal domain, there
isa € O such that a0 = a0 +dO. Let B,y € O such thata = af and d = a+y. Then

N@)|d, N@)|N(@) = d-é, ocd (dé) —1

imply N(a)|d. Conversely,

x=ax+dy forsomex,ye€ O,
N(a) = N(a)N(x) +d - tr(axy) + d*N(y)

imply d|N(a) and N(«) > 0 yields N(a) = d. Then N(B) = £ follows necessarily. O
Example 6.1.3. A = OQ( V=) has the exact factorization property.

Proof. Let A := Qg /=7). Let O denote the Hurwitz order and ¢ the ideal of even quater-
nions. Let a € A. Since O is a principal ideal domain, it suffices to show, that every factoriza-
tion a = af with a, B € O can be migrated to a factorization in A. In the case a € p we can
assume «a € p, since g is a prime ideal. Furthermore, there is ¢ € {1,w, @} such that ¢ € A.
The claim follows then from ag € p C A. In the remaining case a ¢ p, we have a = 1 mod g,
since a € A. This implies « = B mod p and hence that there is some ¢ € {1,w, @} such that
ne, €f € A. O]

In view of uniqueness, we give the following

Definition 6.1.4. Let «, B € O. The product af3 is called unique up to unit-migration, if
xp=«'f, N(&)=N(@&), N(B)=N(@p),

for some o/, B’ € O implies o' = we and p' = €B for some unit ¢ € O*.

Lemma 6.1.5. Let o, € O such that gcd(N(a), N(B)) = 1. Then af is unique up to unit-
migration.
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Proof. First we prove that for o, p € O and m € IN, the conditions
mlaB, ged(m,N(a)) =1,
already imply m|pB. But this follows from

rN(a) +sm =raa+sm =1 forsomer,s € Z,
raaf +smp = .

For the rest of the proof assume that

af=a1p1;, N(a1) =N(a), N(B1)=N(p),

for some a1, 31 € O. Then the assertions

ap = w11, aN(B) =app =wmpip

imply N(B)|x181B. From gcd(N(B), N(a1)) = 1 we obtain N(B)|B18 and hence the existence
of ¢ € O such that

eN(B) = epp = P1p,¢p = P1.
From N(B) = N(pB1) we obtain N(¢) = 1,i.e. ¢ € O* and a1 = aE. O

Lemma 6.1.6. Let a,a1,p € O and N(a) = N(ay). Then one has a1| ap if and only if x| aqp.

Proof. Let v € O. Then one has af = va; if and only if « = ya;8~! if and only if ya =
N(y)a1p~" = a1, since N(7) = N(B) = pB. =
From [10] we cite

Theorem 6.1.7. Let t € IN with prime factor decomposition t = [T, pr). For every exact divisor
d||t let ty := & denote its complementary divisor. Choose x,y € Z such that xd — yt; = 1 and define
matrices Vj € Sp,(R) by

L Ud 0 L L dx —t
V= < 0 Ud_t) , Uz:= ( y d ) S SLz(]R)

Vd

Then T(t)* := (T(t), V4, d||t) < Sp,(R) is a discrete extension of T(t) of index 2V("), where v(t)
denotes the number of distinct prime divisors of t. If t is squarefree, one has

L(8)™ = (T(t), Vi, dl]t) -

Now we are in charge to describe to action of Vj, d||t explicitly:
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Theorem 6.1.8. Let o, € O,t := N(af) and d := N(w). Suppose that d||t and that there are
o, B’ € O such that

ap =p'a’, N(a)=N('), N(B)=N()
Then one has
Vi - [sz/S]N = [Mﬁﬁ’]w

Furthermore, the following special cases hold:
i) Vi [Mgp]~ = [MBE]N ,
ii) Vg~ [Mapl~ = [Mgpl~ , if B 'ap € O,
iii) V- [Mgl~ = [Mgz]~, ifapat € O,

iv) if B~ 'ap € O and B~1O*B = O, then one has Vy - [Myg|~ = [Mag)~, if and only if x and &
are associated.

Proof. Let

.: xx —B _ (= ,3’_
. (—yF @)3‘1)' . (ﬂ x@awl)'

From f/| ;& we obtain E‘rﬁﬁ and 6.1.6 implies BLE&(. Hence, U,V € O?*2. The assumptions
xd —yt =1,N(x) = N(«') and N(B) = N(p') imply

uv=vu=1,

by an explicit calculation. Hence, U,V € GLy(O) and U~! = V. We define ¢ := &/+/d. Then
N(e) = 1 and from the four identities

o Vidxe = Vdxx/Vd = x&,

B =—B,since N(B) =4,

o« —Lape=—L(Fa) L = —yprH = —yp, since N(a) = d,

[uy

1 0 1 0 [ —B B
6 a)eslo 5) = (5 apr) ~uecmr

1 0 1 1 0
elly — U= — 1.
0 ap 0 wp
From this we obtain

u-t o u-lt o
sverxﬁ | = M&,B’/ —t ] € U2(O),€ € IF;.

i.e.

0 u 0 u
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Hence, V;M,p is equivalent to Mgg, i.e. V; - [Myp]~ = [Mzg/]~. For i) we choose g’ = B = 1.
For the proof of ii) write a = B(B'apB), i.e. we can choose B’ = B. For the proof of iii) write
af = (aBa~1)a, ie. we can choose B’ = aBa~!. Note that zaxpa~! = Ba. Finally, to prove iv)
note that in view of ii) one has [M,g]~ = [Mgg]~ if and only if expd = ap, i.e. eafép' =«
for certain units §,& € O*. The claim follows then from BO*p~! = O*. O]

If O is a principal ideal domain, then action of I'(#)™®* /T'(t) can be described as follows:

Corollary 6.1.9. Let O be a principal ideal domain. Let t € IN squarefree and M € Mod (T (t), U2(O)).
According to 5.4.13 let a € O, N(a) = t such that M ~ M,. Let d||t and o, o', B, B’ € O such that
af =a=p'a’ and N(o) =d = N(a'). Then one has

Vi M) = [Map].-

and this does only depend on d and not on the choice of a, o, o, B, B

From 6.1.8 we obtain the behaviour of pullbacks under the matrices V;:

Theorem 6.1.10. Let o, € O,t := N(af) and d := N(«). Suppose that d||t and that there are
o, B € O such that

ap = p'a’, N(a)=N(a), N(B)=N(p).
Let k = 0 mod we. Then for every F € [Up(O), k| one has
Flap]| Vo = Flap'].
Furthermore, the following special cases hold:
i) Flap]|, Vi = F[pa],
ii) Flup)|, Vi = F[B] , if p~'up € O,
iii) Flap)| Vq = F[pa] ,ifapa—t € O,

iv) if plap € O, 1O*Bp = O and «, & are associated, then one has Fap]| Vy = Flap].

6.2 Equivalence in the extended sense

In this section we introduce an extension of the projective modular group PU,(O) by certain
biholomorphic automorphisms of the half-space H(IF), that are induced by elements of the
orthogonal group of the positive definite lattice (O, N|p).
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Remark 6.2.1. It is well known, that there is a monomorphism of groups
PUQ_(IF) = Uz(]F)/C(]Fl) Iy — Bih H2(]F)

induced by the fractional-linear action of Uy (IF) on Hy(IF). For sake of simplicity, we will identify
M € U,y (F) with its image in PU,(IF), whenever it is convenient. Due to 5.1.14, every o € O(F) is
either of the form

= ewd or w — o(w) = ewd, ¢,6 € Fy.

Fore 6 € Fyset Uy 5 := ( ) Then for Z = (;u w) € Hy(FF) one has

( 851> Z) = Z|U.y) = <U(Z—w) Ui@)

in the first case, as well as

(%2 )en) = 2= (5 )

in the second case. Here, Iy : Z +— Z' denotes the exceptional automorphism of H (IF) in the case
F € {C,H}. Hence we obtain a monomorphism of groups

O(F) —> Bih H,(F).
Thereby we will identify O(IF) as a subgroup of Bih H, (IF). Indeed,

PSp,(R), F =R,

Bih #(F) = {PUz(lF) (I,), F e {C H}.

For more details confer [14, I1., § 1].

It is easy to see, that the group U, (O) is normalized by the matrices Iy € Uy(F) for

u
v/ N(u)

u € Z(0O). This gives rise to the following

Definition 6.2.2. The special modular group U; (O) is defined as

UE(O) = <U2(O), Ii]l(u) Iy:u e I(O)> < Uz(]F)

We give some trivial

Remarks 6.2.3. a) By construction, Uy(Q) is a normal subgroup of U5 (O). Furthermore,

U3(0) =U2(c9)-{ 14:uez(0)}.

N (u)
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b) IfF = C, then one has U5(O) = Uy (O).
Definition 6.2.4. a) The projective modular group PU,(O) is defined as

U,(0)/0*L,, Fe {R,C},

PU,(O) :=U(0)/(C(F1)NO) - Iy = {Uz(O)/{iI4} F = H.

b) The special projective modular group PU;(O) is defined as

PU;(0) := U3(0)/(C(F) N O) - I = {Ezég;;fﬂfj} i f]{;’ﬂ:},
2 ’ = .

Definition 6.2.5. Let O be an order. Then the extended modular group I'(O) is defined as

T(0) = <PU§((’)),Itr> = (Iy, Z — M(Z) : M € U3(0)).

Remark 6.2.6. From the explicit description of O(O) in 5.1.16 and the identification of O(QO) in
Bih H; (IF) according to 6.2.1 we obtain

r(0) = <PU2(O),O((’))>.

Proposition 6.2.7. Let O be an order. If F = H assume additionally that Uy(O) is generated by the
matrices

]2’ (82 IS) ’S < Herz(o)’ dlag(gl 1/ 811)18 € OX.
2

Then both PU,(O) and PU5(O) are normal subgroups of I'(O). Furthermore, one has

F(O) . PUZ(O) X <Itr>r F = C/
| PUS(0) x (Iy), F=H.

Proof. Tt suffices to show that PU,(Q) is normalized by Ii. In the case F = C this follows
from the identity M(Z!)! = M(Z) for all M € Up(C) and Z € H,(C). In the case F = H it
suffices to demonstrate the properties on the generators quoted above. Trivially, I, fixes the
maps Z — u~ ' Zu for u € Z(0). O

Examples 6.2.8. a) Let o be an order in C. Then T'(o) is an extension of index 2 of PU; (o).

b) Let O denote the Hurwitz order. Since O is norm-euclidean, I'(O) is a normal extension of index
4 of PUy(O) and index 2 of PU5 (O). Explicitly one has

r(0)= (PUQ(O) : <1:/“§il -14>) 1 (I).
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c) Let K be an imaginary-quadratic number field of discriminant — Dy for Dg € {3,4}. Then T (Ok)
is a normal extension of PU,(Ok) of index

41 DK:3/

[T(Ok) : PUo(Ok)] = {12 Dy = 4.

From the explicit description in 5.1.12 we obtain

r( ) o (PUz(OK) . <11[4>) X <Itr>/ D]( = 3,
N (PUZ(OK)-<wI4,%I4>> x (Iy)), Dy = 4.

Note that it can be shown by using a weak version of the euclidean algorithm that the order A =
OQ( V=) satisfies the assumptions of 6.2.7

In order to motivate definition 6.2.10, we give the following

Remark 6.2.9. Let O be an order and assume that PU,(QO) is normalized by the automorphism I.
Let M € Mod(T(T),U(O)). Then the element M* := Iy Ml is determined in Uy (IF) up to some
multiplicative constant ¢ € C(IFy). Hence, the matrices

M*THM*, H eT(T) < Sp,(R)
are uniquely determined in Uy (IF). Furthermore, we have
M 'HM* = [eM ' IxHIxMIy = I[eM~'"HMI; € PU,(0O),

since IyHIy = H holds in PUy(F) and M—"HM € Uy(O). Thus, M* " 'HM?* is uniquely deter-
mined in Uy (O), i.e. every representative of M* is an element of Mod(I'(T), U(O)). In other words,
M* can be considered as an element of Mod(I'(T), Uz(O))/ ~.

6.2.9 gives rise to the following

Definition 6.2.10. Let O be an order and assume that PU,(Q) is normalized by Iyy. Let M, N €
Mod(T(T),Uy(O)). We call M and N equivalent in the extended sense, written M ~. N, if there
is (¢,R) € Fy x U3(O) such that N = eMR or N = eM*R. Note that in the second case, the
condition is independent from the choice of the representative of M* modulo C(IF1). The equivalence
class of M is denoted by [M]~., and the set of equivalence classes by Mod(T'(T), Ux(O))/ ~..

We characterize equivalence in the extended sense between embeddings of principal type:

Lemma 6.2.11. Leta € O and u € Z(O). Then the following assertions hold:
a) Mﬁ ~x M{Z/
b) MM ~x Mﬂ.

~lau
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Proof. a) Lett = N(a). For arbitrary Z = (; Zj) € Hy(F) we have

z W z  wal z alw
i = 2 ) =5 T )

Hence,
a ., a z  wa !
TMi2) = TheMaelz) = (G U ) = Mat2),
b) Follows from M, 1,, = \/;‘](M)Ma( \/;‘](u)u). O

Now we can characterize equivalence in the extended sense of principal embeddings:

Theorem 6.2.12. Let O be an order and assume that PU,(QO) is normalized by Iiy. Let a,b € O such
that N(a) = N(b). Then the following assertions are equivalent:

i) M, ~ Mb/

ii) o(a) = b for some o € O(O).
Proof. The assertion o(a) = b for some 0 € O(O) is equivalent to the existence of § € O* and
u € Z(O) such that a = u~16bu or a = u~'6bu. The first case is equivalent to M,,,-1 ~ M,

in the usual sense, the second equivalent to M,,,-1 ~ Mj in the usual sense. Then the claim
follows from 6.2.11. O

Concerning embeddability of the Fricke-involution V;, we give the following

Remark 6.2.13. Let u € O such that N(u) = t and u> € N(u) - O. Then one has

1000\ /0100
1 _uf0s00]]1 000 . o «
M, VtMu—ﬂ oo1ollooo1 ceU3(0), 6:=u uecO.
0009/ \0OO10O0
Consequently,

M, (T (t), Vi)M,, C U3(0).
Examples 6.2.14. a) Let O denote the Hurwitz order. Then one has

M—l

LT M, C U3(O0).

b) Let Dx > 0 be a prime discriminant. Then one has

-1 max *
Mil\/D7K -T'(Dx) ' Mil\/ﬁK < UZ(OQ(\/—DK))’
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6.3 Hermitian and quaternionic Jacobi forms

We introduce Fourier-Jacobi expansions:

Definition 6.3.1. Let F € [Uy(O), k] with Fourier expansion

F(Z) = Z aF(S)eZm'tr(SZ), 7 = (i aj) € Ho(TF).
OSSI(g,;)eHerg(O) w =z
The rearrangement
0= £ e, 2= (5 %) enam
m=0

is called the Fourier-Jacobi expansion of F. For m € Ny the function

Pmp(zw) =Y Y. ap (;l r) g2rilnzttr(rw)) 2 9w e Fe := F®R C,

m
n=0 re(jﬁ
N(r)<nm

is called the m-th Jacobi form associated to F.

Definition 6.3.2. The parabolic subgroup U, 1(O) is defined by

Uz/l(O) =(MEe Uz(O) M=

S ¥ ¥ X
S ¥ % X
O %k X X
R

For My = (25) € SLo(Z) and A, p, v € O with v — A € Z we distinguish the special elements

a 0b O 100 u
0100 Ar 1t Eow
Mixb=1.9 40| Wwd=10071 _a
0001 000 1

OfUzll(O).

The next lemma is folklore:

Lemma 6.3.3. Every M € U, 1(O) has a unique representation of the form
M = diag(e, d,¢,0) - (My x I) - [A, i, 0],

with §,e € O*, My € SLyo(Z) and A, u,v € O such that v — Ay € Z.



6.3 Hermitian and quaternionic Jacobi forms 127

We introduce hermitian and quaternionic Jacobi forms. Basically they obey the same trans-
formation laws as Jacobi forms considered in Chapter 4, but have some additional behaviour
under the maps w +— dwe for units ¢, 6 € O

Definition 6.3.4. Let k,m € N, where k = 0 mod 2 in the case F = H. A holomorphic function
¢ : H1 x Fc — C is called hermitian Jacobi form in the case F = C resp. quaternionic Jacobi
form in the case IF = H of weight k and index m with respect to O, if the associated function

P HaF) = €, 93(2)i= 9tz )™, 2= (2 1) e ()

satisfies the following conditions:
i) g | M = 3, for all M € Uz 1(O),

ii) ¢ has an absolutely and locally uniformly convergent Fourier expansion of the form

— Z Z C(Yl, 1,)627ri(n2+tr(?w)), (Z,ZU) € H x Fe.

n=0 rcOt
N(r)<nm

The space of hermitian resp. quaternionic Jacobi forms of weight k and index m with respect to O is
denoted by ],Em((’)) resp. ]}{I’{m(O).

Considering the action of generators quoted in 6.3.3 on the associated function ¢;,, we obtain
the following characterization of Jacobi forms:

Lemma 6.3.5. Let k,m € Ny, where k = 0 mod 2 in the case F = H. A holomorphic function
¢ : H1 x Fe¢ — C is a hermitian Jacobi form resp. quaternionic Jacobi form of weight k and index m
with respect to O if and only if the following assertions hold:

—cmN(w)

i) ¢(z,w) cp}kt — (cz+d)~F P ¢ (Mz, Cz+d) forall M € SLy(Z),

i) ¢(z,w) = cp} A ul(z,w) := zmm(N(A)ZHr(Xw))cp (z,w+Az+u)  forall A,y € O,
iii)
¢(z,ew) = ép(z,w) foralle € O, F=C,
¢(z,ewd) = p(z,w) foralle,6 € O, F=H,

iv) ¢ has absolutely and locally uniformly convergent Fourier expansion of the form

_ i Z C(n, r)ezm(nz—}—tr(?w)) )
n=0 ,cot
N(r)<nm
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We sort hermitian and quaternionic Jacobi forms into the context of Jacobi forms of lattice-
index:

Remark 6.3.6. Let k, m € INg, where k = 0 mod 2 in the case IF = H. Then one has

Jen(O) € Tuomy, Q= (O,N|o).

Every modular form induces a family of Jacobi forms:

Example 6.3.7. Let k,m € INg, where k = 0 mod 2 in the case F = H. Let F € [U(O),k|. Then
¢mr € JE (O), where ¢y, p denotes the m-th Jacobi form associated to F.

We introduce the operator V};, defined in [8, I. § 4] in the general setting;:

Definition 6.3.8. Let m € IN and T (m) := {M € SLy(Z) : detM = m}. For a holomorphic
function ¢ : H x Fc — C we define

¢l Vm(z,w) = mz1 Y ( )¢|k,t {%M} (z,vVmw), (z,w) € H x Fc.

M:T (m)\SLy(Z

From [8, I. § 4] we cite
Theorem 6.3.9. Let m,t € IN. Then V,, induces a linear operator
PAZE JE(O) — T (0).

For ¢ € Ji,(O) with Fourier expansion

4)(Z’w) _ i Z C(n’r)eZNi(anrtr(?w))

one has

‘P‘k Vin(z, w) i 2 ( 2 gk-1 <@’1> )eZNi(nz+tr(rw))’
t n=0 rcotf d|(n,r,m) d*"d
N(r)<nmt

where d|(n,r,m) means d~'(n,r,m) € Ny x O x Nj.
We consider Jacobi theta functions associated to the lattice (O, N|p):
Definition 6.3.10. Let O be an order. For u € O%/ O define

00 u(z,w) := 1952 Nlo) = ) e2M(N(@)zHtr(gw)) (7 ) € H x PFe.
g€u+(’)
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Some immediate transformation laws are given in the following

Lemma 6.3.11. Let u € O /O and e,6 € O*. Then the following assertions hold:
a) 80,u(z, ewd) = By, 5(z,w),

b) %0.,(z,w) = o y(z,w),

c) %0 ,(z, —w) = 00 ,(z,w).

Proof. Note that by 5.1.18, the map w +— —w belongs to the discriminant kernel O;(0), i.e.
u+0=-u+0. O

A reformulation of 2.3.7 yields that every ¢ € JF,(O) has a unique theta decomposition of
the form

= Y fu@)Vou(z,w), (z,w)e H xFe.
u:01/0

From 6.3.11 we obtain the following

Lemma 6.3.12. Let k € Ngand ¢ € ],IS 1(O). Then one has
a) ¢(z,—w) = ¢(z,w),

b) ¢(z, @) = (—1)*¢(z,w).

Especially, ¢ is invariant under the map w — w, if k is even.

We use the explicit description of O(o) for orders o in C:

Corollary 6.3.13. Let o be an order in C. Let k € Ny such that k = 0 mod |0 |. Then one has

Jea(o) = Jiy -

In general, a characterization as in 6.3.13 does not hold for quaternionic orders, since the
orthogonal group O(O) contains conjugations by invariant elements u € Z(O). But in the
cases we are dealing with, the invariance of quaternionic Jacobi forms under the maps w +—
u~lwu is already implied by the invariance under w — ewé for e, 6 € O*.

We need the following lemma, which is easy to prove:

Lemma 6.3.14. Let k € Ny. Let G < O(O) and ¢ € JF,(O) invariant under G. If G acts
transitively on the sets

Ay :={uce O%/O : N(u) =dmodZ}, deQ,

then one has ¢ € ]]F 0).
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Proof. By definition, the sets A; for d € Q are O(O)-invariant. From the assumption on G,
also O(O) acts transitively on A, for d € Q. Since these sets are pairwise disjoint, the set
{A; : Ay # @} is exactly the orbit space of O(O) on the discriminant group Of/O. By
assumption, ¢ is invariant under G. Hence the function u > f, is constant on the sets A; and

thus on all O(Q)-orbits, i.e. ¢ € ],]S’lsym(O). O

We apply the lemma in the proof of

Theorem 6.3.15. Let k € Ng and k = 0 mod wp. Let O be the Hurwitz order or O = Ok for
K =Q(v/—D) for D = 3,4. Then forall F € [Up(QO), k] one has ¢1 p € ],E’sym((’)).

Proof. The invariance under w — w follows from 6.3.12, since k is necessarily even. First let
O be the Hurwitz order. The group generated by w — www acts transitively on the set

{ue O%/O : N(u) E%modZ},

which is directly verified by considering the representatives 131‘1 , 1451'2 and 1‘;i3. Since N (u) mod

Z takes its values in {0, ; }, the claim follows from 6.3.14. For Dx = 3 a system of representa-

tives of O}i( / Ok is given by

0, £u, £pip, £p =+ pip, o

1=

A direct verification shows that the group generated by w — wij, acts transitively on both sets
{u € (’)Iﬁ</(9K : N(u) = % mod Z}, {u € (9?(/(’)1( :N(u)=3 modZ}.

In this case the claim again follows from 6.3.14. For Dx = 4 a system of representatives of
(9?( / Ok is given by the sixteen elements

1 I 1_2 1_3 1+4+iy 1+ip 1+1i3 i1+1ip 11+1i3 ip+13
4 2/ 2 4 2 4 2 7 2 7 2 7 2 7 2 4 2 4 2 7

14i1+ip 1+i1+i3 1+ix+1i3 i3 +ip+i3 y
2 ’ 2 ’ 2 ’ 2 ’

A direct calculation shows that the group generated by the transformations w — wi; and
w — wip acts transitively on

0

{u € OL/Ok : N(u) = £ mod Z}, k=1,2,3.

Hence, these sets are O(Ok) orbits. The class w + Ok is a fixed point of O(Ok) and thus a
single orbit. Together with the zero class Ok, we have determined all O(Ok)-orbits and the
claim follows. Note that 6.3.14 is not applicable in this case. O

The compatibility of the pullback operator with respect to modular embeddings and the pull-
back operator with respect to Jacobi forms is explained in the following
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Proposition 6.3.16. Let k € Ny, where k = 0 mod 2 in the case F = H. Let a,b € O and
F € [Up(0), k]. Then the following assertions hold:

a) Fla](Z) = Yor_o ¢m.Fla] (z,w)e2miN@mz

b) Fla] = F[b] implies ¢y, p[a] = ¢ p[b] for all m € No.

Proof. Let F € [Uy(O), k] with Fourier-Jacobi expansion

F(z) = io%f(zzw)ezmmzl, Z = (; Z) € Ho(F).

Hence,

= z aw — S 27tiN (a)mz'
Fla](2) F(ﬁw N(a)z/) n;oqu,p(z,aw)e , Z

Il
N
ISE
N 8§
N——
Mm
R

Part b) follows from the uniqueness of the Fourier-Jacobi expansion. O

6.4 Maall spaces and lifting constructions

Letk € Z, where k = 0 mod 2in the case F = H. Then F € [U,(O), k| has a Fourier expansion
of the form
F(z)= Y ap(S)e¥™™52), 7 € Hy(F).
OSSeHerg(O)

We introduce an arithmetically motivated subspace of [Ux(O), k], cf. [19, 20, 21]:

Definition 6.4.1. Let k € INg, where k = 0 mod 2 in the case F = H. The Maafl space My (O)
with respect to O consists of all F € [Uy(O), k] such that

_ /d* r/d
ap(S)= Y dlap (miq )
deN,d|e(S) r/d 1

holds forall0 # S = (% ,),S > 0, where

e(S) := max {m cN:m 1S ¢ Herg((’))} .

Note that Mj(Z) is the space which was considered initially by H. MaaS8.

Basic facts are collected in the following
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Remarks 6.4.2. Let k € Ny, where k = 0mod 2 in the case F = H. Let F € M(O) with
Fourier-Jacobi expansion

a ! z w

F(2)= ), P p(z,0)2 M, 7 = <w z’) € Ha(TF).
m=0

a) If k is odd or k = 2, then ¢o,r = 0. Furthermore,

$or(z,w) = ar (8 (1)> Gi(z), (z,w) e H xFc,

forall even k > 4 and
O r(z,w) = (Pl,p‘kllvm(Z,ZU), (z,w) € H x Fc,
for all m > 0. For odd k or k = 2, the space M (O) consists of cups forms only and one has
Mp(0O) =C.
b) The map Mi(O) — Ji1(O), F i ¢1 F is injective.

c) F € My(O) satisfies
F|Iy = (-1)*F(Z), Z € H,(F).

Hence, if k is even, My (O) consists of symmetric modular forms only. If k is odd and F = C,
the space My (QO) consists of skew-symmetric forms only. If k is odd and F = R, then M (O) is
trivial.

d) O(O) acts on My(O) via

Fo(Z) :=F< z 0"1@), z:(; Z‘f),an(O).

o~ Hw) z
Furthermore, ¢, pe = ¢y, plo] for all m € WNo.

Remark 6.4.3. Let k € INg such that k = 0 mod we. For a holomorphic function F : H(IF) — C
and M € U,(O) the function F|, M only depends on M mod C(IFy). Hence, the slash operator

(M,F) = F| M

is well-defined and defines an action of the extended modular group I'(O) on the set of holomorphic
functions {F : Hy(IF) — C}, where the definition is extended by

[l Ie(Z) = f(Zh, Z € Ha(F).

Definition 6.4.4. Let k € INg such that k = 0 mod wp. A function F : Hp(FF) — C is called a
modular form of weight k with respect to T(Q), if the following assertions hold:
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i) F is holomorphic,
ii) F|,M = F forall M € T(O).
The space of modular forms of weight k with respect to I'(O) is denoted by [T (O), k|.

As a direct consequence of 5.5.11 we obtain:

Proposition 6.4.5. Let O be an order and assume that PUy(O) is normalized by Iy. If F = C,
suppose additionally that Uy(O) is standardly generated. Let k = 0 mod wo,F € [I'(O), k] and
M,N € Mod(I'(T), U (O)). Then M ~, N implies F|,[M] = F|,[N]. In other words, the map

Mod(I'(T), U2(0))/~, — [[(T),k],  [M]~, = F|,[M]
is well-defined.

Remark 6.4.6. Note that the assumptions of 6.4.5 hold for example if F = C and O is a principal
ideal domain or O = o for some imaginary-quadratic number field K (cf. [5, Lemma (1.1)]) or if
F = H and O is norm-euclidean.

Remark 6.4.7. Modular forms with respect to subgroups of T(QO) and characters are defined in the
same manner. Note that [PUp(O), k] = [U(O), k] holds for all k = 0 mod we. Hence the theory of
modular forms with respect to the extended modular group contains the one for Up(Q) in this case.

Remark 6.4.8. Let o be an order in C and k = 0 mod |o*|. Then [['(0),k] = [Uz(0), k]sY™.

Corollary 6.4.9. Let k € INg such that k = 0 mod wp. Let O denote the Hurwitz order or let
[(?(C:)) (Z]Q(m) for D = 3,4 0r O = ok for K = Q(v/—Dk). Then My (O) is contained in

Proof. Let F € My(O) and 0 € O(O). From 6.3.15 we obtain ¢; rc = ¢1 p[0] = ¢ . Since the
map F — ¢y r is injective, we conclude F” = F,i.e. F € [['(O),k]. O

Under certain assumptions on U,(Q), the projection onto the first Jacobi form has a right
inverse, namely the Maaf3 lift:

Theorem 6.4.10. Suppose that U, (O) is generated by the parabolic subgroup U, 1 (O) and diag(P, P),
where P = (9 ). Let k > 4 such that k = 0 mod we. For ¢ € Ji;(O) with constant Fourier coeffi-
cient cy(0,0) define

(0¥ G, z= (2%

gk

M—Lift(([)) (Z) = —%C(p(o, O)Gi(k (Z) + ) S 7‘[2(11:")

m=1

Then the following assertions hold:
a) M-Lift(¢) € [U2(O), k]| forall ¢ € ],]El((”)).
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b) M-Lift : ]El((’)) — [Ua(0O), k] is injective.
c) For¢ € ],]S 1(O) the Fourier coefficients of M-Lift(¢) are given by the formula

—Dcy(0,0), S=0,
tnpLift(g) (S) = C¢(0,02(711<—1(n), S=(40) n>0,
Y odk e, (M) S = (1T im0
41o6) ¢ (dz d) (r m)

d) M-Lift : JF, (O) — My(O) is an isomorphism.

The operator M-Lift is called the Maaf3 lift with respect to O.

Proof. We give a sketch of the proof, since the methods are similar to the literature. Injectivity
follows from V; = id. The invariance of M-Lift(¢) under the parabolic subgroup U;1(O)
follows from construction. The explicit formula for the Fourier coefficients is a direct conse-
quence of 6.3.8. Finally, part c) together with the invariance of ¢ under the transformation
w — w implies, that M-Lift(¢) is invariant under Z — Z[P]. By assumption on U, (O) this

proves a). For part d) let F € M (O) with first Jacobi form ¢; r. Then F and M-Lift(¢; r) have
the same first Jacobi form. Hence, F = M-Lift(¢; r) by injectivity. This proves surjectivity. [

Let t € IN. Since I'(f) contains the transformation

z w\  (z w
w Z' wz’—|—%'

we obtain that any F € [I'(¢), k| has a Fourier expansion of the form

F(Z) = Z ap(s)e%ritr(SZ)’ /Z = (;} Z) € Hz.
Sesymj(z),5=(" ;r )>0

The Maafs space with respect to the paramodular group is then defined in a similar way:

Definition 6.4.11. Let k € INg and t € IN. The Maafs space M ; of polarization t consists of all
F € [['(t), k] such that

d? d
S F -t (" 710
dle(S)

holds forall 0 # S = (% ,,) > 0.

Some basis facts are collected in the following

Remark 6.4.12. Let k € Ngand t € N. Let F € My ; with Fourier-Jacobi expansion

> i / zZz W
F(Z) =Y ¢mr(z,w)e?™, Z = (w z') € Ha
m=0
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a) If kis odd or k = 2, then ¢ r = 0. Furthermore,

¢o,r(z,w) = ar (8 (t)) Gi(2)

for all even k > 4 and
Pmt,F(2,w) = |, Vin(z, 0)

forall m > 0. For odd k or k = 2, the space My ; consists of cups forms only and one has
My =C.

b) The map My ; — Ji1, F — ¢y r is injective.
c) F| Vs = (—1)*F.
Under certain assumptions on the weight, the projection onto the t-th Fourier-Jacobi coeffi-

cient has a right inverse, the so-called Gritsenko lift. From [10, Hauptsatz 2.1] we cite:

Theorem 6.4.13. Let t € N and k > 4. For ¢ € i, with constant Fourier coefficient c4(0,0) define

B ad -
G-Lifti(9) (2) = —5£cp(0,0)Gi (2) +m; <4>|k,th) (2, )2 7 — (; w) -

Z/
Then the following assertions hold:
a) G-Lift;(¢) € [[(t),k] for all ¢ € Ji; and G-Lifty ()| Vi = (—1)KG-Lift;(¢).
b) G-Lifty : J; — [I'(t), k] is injective.

c) For ¢ € Ji; the Fourier coefficients of G-Lift;(¢) are given by the formula

—c4(0,0), S=0,
__ (n0
“G-Liftt(4>)(5) = C‘i’(o'o)a’;—i(”)'mn r 5= (2 Or) >0,
d|(n,r,m)

d) G-Lift; : Jx; — My is an isomorphism.

The operator G-Lift; is called Gritsenko lift of index t.

We end this section by proving a commutation relation between the two lifting constructions
and the pullback operator:
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Theorem 6.4.14. Let O be an order. Suppose that Uy(QO) is generated by the parabolic subgroup
U1 (0O) and diag(P, P), where P = (9 1). Let a € O,k > 4 and k = 0 mod we. Then one has

G-Lifty o) (¢[a]) = M-Lift(¢)[a]
forall ¢ € ],IE 1(O) and the pullback operator [a] maps My (O) into My ;. In other words, the diagram

JE(0) —YEE M (0)

ml j ]
G—LiftN(a)

Jin@ — Mg N
is commutative.

Proof. Let Z € H,. Then one has

M-Lift(¢)[a](Z) =

— GrLifty,) (¢la]) (2),
since the operators [a] and V;, commute. Note that cg(, (0,0) = c4(0,0). Since G-Lifty,) and
M-Lift are isomorphisms, we conclude that the diagram commutes. O

From 4.2.1, 4.3.1 and 4.3.2 we derive the following isomorphisms of Maaf$ spaces, which can
partly be found already in [15, Sec. 4, Theorem 2 a)] and [16, Sec. 9, Corollary]. Note that the
methods developed in Chapter 4 allow to construct the inverse maps on the basis of the theta
decomposition of the first Jacobi form.

Corollary 6.4.15. Let k € INg and O denote the Hurwitz order.
a) Mi(O) = My, ifk = 0 mod 2 and My(O) = My (oq,/=3)), if k = 0 mod 6.

6.5 Separation theorems

Let F € [Uy(O),k] and M, N € Mod(I(T),U,(O)]. In 5.5.11 we saw that F|, [M] = F|,[N]
if M ~ N. In this section we consider the converse problem, i.e. the question if a mod-
ular embedding M is determined up to equivalence by the family of pullbacked functions
F| [M], where F € [U,(O),k]. Already in the case n = 2, the usual equivalence relation on
Mod(T'(T), Uy (O)] is to restrictive as one has Fla] = Fla] for a € O and symmetric forms F,
but in general M, 7 Mz. By retaking the up concept of equivalence in the extended sense, we
can solve the converse problem at least for certain orders and under divisibility conditions on
the polarization .
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6.5.1 OQ(\/jl)

Regarding pullbacks of the Jacobi theta functions we need the following

Lemma 6.5.1. Leta,b € 0Q(v/=1)" Then the following statements are equivalent:

D Bog 018 = Bagy,010)
ii) a and b lie in the same O(oQ(m))—orbit,

e . >< _ _ 7

iii) thereis € € 00(vT) such that a = eb or a = ¢€b.
Proof. First note that in all cases one has N(a) = N(b). The equivalence of ii) and iii) is clear
from the explicit description of O(OQ( \/jl)). Furthermore, ii) implies i). Hence we are left to
prove that i) implies ii). By comparing the Fourier coefficients of the index (1,s),s € Z, we
obtain

ctr(ax) =s}H = [{x € 0 :tr(bx) = s}

X
{x €0 Q(vT)

Q(v-1)
- H{x € {£1,£i1} : tr(ax) = s}| = |{x € {£1,£i1} : tr(bx) = s}|

for all s € Z. Write a = ag + ayi;, b = by + b1i; and assume without loss of generality that
ai,az,by, by > 0 after some simple orthogonal transformation. Considering s = 0, we obtain

2-{j€{0,1} :a; =0} =2-|{j € {0,1} : b; = 0}
and
e {01} q=s)=[{e{01}:b=5)
for s > 0. Hence, a and b have the same set of components with respect to 1,7; including

multiplicity. Thus, there must be a permutation o, which can be realized in O(og (V=) ), such
thato(a) = b. O

We characterize certain elements in o, Nasit
Lemma 6.5.2. a) {a € ogy/=7): N(a) = 0mod 2} = (1+ il)“@(ﬁ)-
b) {a € og=1):a = (1+i1) mod 2} = {a € oqy /=7 : V2(N(a)) = 1 mod 2}.
Theorem 6.5.3. Let a,b € og(, /=) such that N(a) = N(b) and v2(N(a)) = 1 mod 2. Let k € N
and k = 0 mod 4. For 0 # ¢ € ]lgl(oQ( ﬁ)) the following assertions are equivalent:
i) ¢la] = p[b],
ii) aand b lie in the same O(og /—1))-orbit,

X

o(v=T) such that a = eb or a = b,

1ii) there exists e € o
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iv) 1, and 1y are equivalent.

Proof. The equivalence of ii), iii) and iv) is obvious from the explicit description of O(OQ( ﬁ))
and 1.2.22. Each of them implies i). Hence it remains to show, that i) implies one of the
remaining assertions. The theta decomposition of ¢ is of the form

0= fobon+ 3 (803 + 803q) + frsa®rca

Let
DO = 190,0 [ll] — 1.90,0[10], D1 = 190/0 [a] — 190,() [b], D2 = 190,# [a] — 190,# [b]

Then ¢[a] = ¢[b] implies
foDo+f%D1 + f1+iy Dy = 0.
2
We apply the elliptic transformatiqn |N (@) [%, 0} on both sides of this equation. By assumption
on N(a) and 6.5.2 we have § = HT” mod o. Hence, by 2.2.10 and 3.1.4,

foD2 + fiD1+ frei Do = 0.
2

We substract both equations from each other in order to obtain

(fo—fnzﬁ) - (Do — D7) = 0.

From ¢ # 0 we obtain fy # 0, hence fo — fi1y; # 0, since fi1i (z+1) = —f14;, (z). Conse-

2 2 2
quently, we have Dy = D,. But the identities Dy(z + 1) = Dy(z) and Dy(z + 1) = —D5(z)
already imply Dy = 0. By 6.5.1 this proves ii). O]

The corresponding result for modular forms is given in the following

Theorem 6.5.4. Let a,b € o /=) such that N(a) = N(b) and vo(N(a)) =1 mod 2. Let k € N
and k = 0 mod 4. Then the following assertions are equivalent:

i) Fla] = F[b] for some F € [UQ(OQ(M)),]{] and ¢1r # 0,
ii) Fla] = F[b] forall F € [I'(oq/=1)) k|,
iii) a and b lie in the same O(UQ(M))-orbit,

iv) there exists e € 0% such that a = eb or a = &b,

Q(v-1)

v) M, and My, are equivalent in the extended sense.
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Proof. The equivalence of iii), iv) and v) follows from the explicit description of the group
O(OQ( ﬁ)) and 6.2.12. Each of them implies ii). Assume that ii) holds. Since k = 0 mod

4, there exists a hermitian Jacobi form 0 # ¢ € ]Igl(oQ( /~1))- Hence, i) holds with F =
M-Lift(¢). Note that ¢; r = ¢ # 0. Furthermore, i) implies iii) by 6.3.16 and 6.5.3. O

Theorem 5.4.13 directly implies

Theorem 6.5.5. Let t € IN such that v»(t) = 1 mod 2. Let M, N € Mod(F(t),Uz(oQ( m))).
Let k € N and k = 0 mod 4. Then the following assertions are equivalent:

i) F| [M] = F| [N] for some F € [Uz(0q =), k] and ¢1,r # 0,
i) F| [M] = F|[N]for all F € [[(oq.,/ )k,

iii) M and N are equivalent in the extended sense.



140 6 Separation Theorems for Modular Embeddings of Degree 2

Letp := —% +i1§.
Lemma 6.5.6. a) Z[i1\/3] = {x+yp € 0q(y=3) X € Z,y € 2Z},
b) ogy3) = ZIiV310 (p+2[iV3)),

c) forallw € o /=3 there is some e € 08(@) such that we € Z[i\/3].

Proof. a) Follows from 2p € Z[i;v/3] and x + yi;/3 = (a + 1) + 2bp.
b) Follows directly from a).

¢) Letw = x 4+ yp. In the case y = 0 mod 2 the claim follows from ii). In the case
x=0mod 2,y =1mod 2

one has

wp=xp+y=—x—xp+y=(y—x)—x0 € Z[1V3].
Let both x, y be odd. Then

wp=xp+yp’ =xp+yp=xp+y(—1—p) = —y+ (x —y)p € Z[i1V3]. O

We characterize the elements of even norm in 0Q(y=3)"
Lemma 6.5.7.

20q(,/=3) = {w € 0g(y=3) : N(w) = 0 mod 2}
={w€oQ(m):N(w)EOmod4}.

Proof. The value N(x +yp) = x?> — xy + y? for x,y € Z is even, if and only if all summands
are even, i.e. if and only if x +yp € 204, v/—3)- Note that in this case one necessarily has
N(x+yp) = 0 mod 4. O

Lemma 6.5.8. Let a € Z[iy\/3] such that N(a) = 1 mod 2. Then tr(ab) = 1 mod 2 forall b €
o+Z[i1V3].

Proof. Leta = x +yp € Z[iv/3]. Theny € 2Z and from N(a) = 1 mod 2 we obtain x =
1 mod 2. As a consequence, tr(adp) = —x +2y = 1mod 2. The claim follows then from
tr(ab) = 0 mod 2 for all b € Z[i\/3]. O
Regarding pullbacks of the Jacobi theta functions we need the following

Lemma 6.5.9. Let a,b € o /=3)- Then the following assertions are equivalent:
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i) o al =0 b,

e e
ii) a and b lie in the same O(UQ(\/_—B,))—orbit,

e . X _ _ 5
i11) thereise € UQ(\/TB) such that a = eb or a = ¢b.

Proof. First note that in all cases one has N(a) = N(b). The equivalence of ii) and iii) is clear
from the explicit description of O(OQ( m)). Each of them implies i). Hence we are left to

prove that i) implies ii). By 6.5.7 and 6.5.6 we may substitute a,b by 27 "¢,a resp. 27 "¢,b for

suitable ¢,, ) € oa(m) and r € INy. Hence we can assume a,b € Z[iv/3] and N(a) = N(b) =

1 mod 2. By comparing the Fourier coefficients of index (1,s),s € Z, we obtain
X . — _ _ X . 7, —

{w €053 str(aw) = SH = ‘{w €053 ctr(bw) = s} .

By 6.5.8 we obtain

{w e Z[iV3]* : tr(aw) = s}‘ = Hw e Z[iV3] : tr(bw) = s} ,

thus
Hw € {1} : tr(aw) = s}| = [{w € {£1} : tr(bw) = s}|

forall evens. Writea = x 4 yiy V3andb = u+ viy /3. After some orthogonal transformations
applied on a and b we can assume that x,y, u,v > 0. Then we have J;x = Js,, forall s > 0,
which implies x = u. From N(a) = N(b) we conclude y* = v?, thus y = v. O

Theorem 6.5.10. Let a,b € oq, /=3, such that N(a) = N(b) and v3(N(a)) =1 mod 2. Let k € N
and k = 0 mod 6. For 0 # ¢ € ]l‘gl(oQ( \/53)) the following assertions are equivalent:

i) ¢lal = p[b],
ii) aand b lie in the same O(og /=3 )-orbit,

iii) there exists e € 0 such that a = eb or a = &b,

Q(v-3)
iv) 1, and 1, are equivalent.

Proof. The equivalence of ii), iii) and iv) is obvious from the explicit description of O(oQ ( m))
and 1.2.22. Each of them implies i). Hence it remains to show, that i) implies one of the

remaining assertions. The exponent of the discriminant group oé /3) / = is 3 and one
has
300v=3) \ a3 = {” € 0g(,/=3) : N(a) =0 mod 3,N(a) # 0 mod 9}

by 5.1.13. By assumption,
v3(N(a)) =v3(N(b)) =2r+1

for some r > 0. After replacing a resp. b by 37"a resp. 37"b, we can assume that

f
ﬂ,b € 30@(\/773) \30Q(\/j3)
Then the claim follows from 3.6.4 together with 6.5.9. O
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The corresponding result for modular forms is given in the following

Theorem 6.5.11. Let a,b € oq, /=3 such that N(a) = N(b) and v3(N(a)) =1 mod 2. Letk € N
and k = 0 mod 6. Then the following assertions are equivalent:

i) Fla] = F[b] for some F € [Uz(oQ(\/j)),k] and ¢1r # 0,
ii) Fla] = F[b] for all F € [T (0 —3)).K,
iii) a and b lie in the same O(UQ(\/ja))-Orbit,

iv) there exists € € 0 such that a = eb or a = b,

Q(v=3)
v) M, and My, are equivalent in the extended sense.

Proof. The equivalence of iii), iv) and v) follows from the explicit description of the group
O(OQ( \/_—3)) and 6.2.12. Each of them implies ii). Assume that ii) holds. Since k = 0 mod

6, there exists a hermitian Jacobi form 0 # ¢ € ],i:l(oQ( \/53)). Hence, i) holds with F =
M-Lift(¢). Note that ¢; r = ¢ # 0. Furthermore, i) implies iii) by 6.3.16 and 6.5.10. O

Theorem 5.4.13 directly implies

Theorem 6.5.12. Let t € IN such that v3(t) = 1 mod 2. Let M, N € Mod (F(t),Uz(oQ(m)))
Let k € N and k = 0 mod 6. Then the following assertions are equivalent:

i) F’k[M] = F|k[N]for some F € [UZ(OQ(\/T?,))/k] and 1 p # 0,
ii) F| [M] = F|[N] for all F € [[(ogy/—3)), k],

iii) M and N are equivalent in the extended sense.
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6.5.3 Hurwitz order
Let O denote the Hurwitz quaternions and 77 := (1 + i1) a slight abuse of notation.
Lemma 6.5.13. Let a € O and r € Ny. Then for all (z,w) € H x Hc one has

dola](z,2/? - w), r =0 mod 2,
—2. 190[a]|2N(a)](2z,2%+1 ‘w), r=1mod?2.

dolr'a)(z,w) = {

Proof. Assume that 7 = 0 mod 2. Then one has 7" = 2"/2¢ for some ¢ € O*. Hence,
8o [ a)(z,w) = do(z, Taw) = 8o (z,2" *eaw) = dpea) (2,2 *w) = dola)(z, 2" *w).

.. . _ r—1
In the remaining case, ¥ — 1 is even and 77 L' = 272 ¢ for some ¢ € O, that means m'a =
r—1
27 erta. Hence,

do[r"a)(z,w) = B0 [2%sna} (z,w) = Op[ma(z, 2T w).

Therefore it suffices to prove the claim in case r = 1. In this case, we calculate

do 7m] z, w Z eZm Q)z+tr(gma)w)
ge0
Z 627'51 Q)z+tr(TTga)w)
ge0o
Z eZm( (A7g Zz—&—tr(%a)-Zw)’
ge0

since N (%ﬁ) = % From %ﬁ(’) = Of we deduce, that the last sum equals

Y NG 2020 = g gl (2, 20),
geot O]

Corollary 6.5.14. Let a,b € O and r € INg. Then the following assertions are equivalent:
i) Bola] = Bolb],
ii) dp[n'a] = dp[n"D].

Regarding pullbacks of the Jacobi theta functions we need the following
Lemma 6.5.15. Let a,b € O. The following assertions are equivalent:

i) dola] = do[b],

ii) aand b lie in the same O(O)-orbit,
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iii) thereare ,e € O* and r € {0,1} such that a = 7t~ "ebbert” or a = T "ebbent’,

iv) 1, and 1y are equivalent.

Proof. First note that in all cases one has N(a) = N(b). The equivalence of ii), iii) and iv) is
obvious from the explicit description of O(O) and 1.2.22. Each of them implies i). Hence we
are left to prove that i) implies ii). First assume that N(a) = N(b) is odd. After multiplication
with some suitable unit, we can assume that a,b € A, say

a=ag+ ajiy + axip + azis, b = by + byiy + bair + bsis.

Furthermore, tr(wa) = 1 mod 2Z. Consequently, tr((g + w)a) = 1 mod 2Z for all ¢ € A. By
comparing the Fourier coefficients of index (1,s),s € Z, we obtain

Hw € O : tr(aw) = s}| = [{w € O : tr(bw) = s}|.
Consequently, we deduce
{x e A :tr(aw) = 2s}| = |{g € A* : tr(aw) = 25} |

for all s € Z. Since O(A) contains all signed permutations, we can assume a;,b; > 0 for all
i =0,...,3. In this case, the previous identity simplifies to

1{i€{0,1,2,3) :a; = s} = |{i € {0,1,2,3} : b; = s}|

for all s > 0. Hence the sets of coefficients of a and b with respect to 1,1y, 1,13 coincide
including multiplicity. Since O(A) contains all permutations we have ¢(a) = b for some
o € O(A), which can also be considered as an element of O(O). In the remaining case, we
assume that both N(a) and N(b) are even. Let r = v5(N(a)) = v2(N(b)). From 6.5.14 and the
first part, there is ¢ € O(O) such that c(7t1~"a) = 7~ "b or equivalently

m'o(n~"a) =0, ie. (Iol;")(a) =b,
if I; denotes the left-multiplication by 7. Since
7O ={gec0:1(N(g)) >r}

and 7w € Z(O) we have
Iz"0(0)I; = 0(0)
due to the finiteness of O(O). Thus, I,cl;" € O(O). O

Theorem 6.5.16. Let a,b € O such that N(a) = N(b) and v2(N(a)) = 1 mod 2. Let k > 4 and
k =0mod 2. For 0 # ¢ € ]}f’{l((’)) the following assertions are equivalent:

i) ¢la] = ¢[b],
ii) a and b lie in the same O(Q)-orbit,
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iii) thereare 6,6 € O and r € Nq such that a = 7 "edben” or a = 7w "edbent’,

iv) 1, and 1, are equivalent.

Proof. The equivalence of ii), iii) and iv) is obvious from the explicit description of O(O) and
1.2.22. Each of them implies i). Hence it remains to show, that i) implies one of the remaining
assertions. The exponent of the discriminant group O/ O is 2 and one has

208\ 20 = {g € O:N(g) =0mod 2,N(g) # 0 mod 4}.

By assumption,
12(N(a)) =1p(N(b)) =2r+1

for some r > 0. After replacing a resp. b by 27"a resp. 27"b, we can assume, that
a,b € 208\ 20.

Then the claim follows from 3.6.4 together with 6.5.15. O

The corresponding result for modular forms is given in the following

Theorem 6.5.17. Let a,b € O such that N(a) = N(b) and vp(N(a)) = 1 mod 2. Let k > 4 and
k = 0 mod 2. Then the following assertions are equivalent:

i) Fla] = F[b] for some F € [Up(O, k| and ¢1 r # 0,
ii) Fla] = F[b] forall F € [T(0O),k],
iit) a and b lie in the same O(QO)-orbit,
iv) thereare 6,e € O* and r € {0,1} such that a = w~"edbent” or a = 7w "edbern’,

v) M, and My, are equivalent in the extended sense.

Proof. The equivalence of iii), iv) and v) follows from the explicit description of the group
O(0O) and 6.2.12. Each of them implies ii). Assume that ii) holds. Since k = 0 mod 2and k > 4,
there exists a quaternionic Jacobi form 0 # ¢ € ]12,{1 (O). Hence, i) holds with F = M-Lift(¢).
Note that ¢; r = ¢ # 0. Furthermore, i) implies iii) by 6.3.16 and 6.5.16. O

Theorem 5.4.13 directly implies

Theorem 6.5.18. Let t € IN such that v»(t) = 1 mod 2. Let M,N € Mod (T'(¢),U(O)). Let
k > 4 and k = 0 mod 2. Then the following assertions are equivalent:

i) F| [M] = F| [N] for some F € [Uy(O), k] and ¢1r # 0,
ii) F|,[M] = F|,[N] forall F € [[(O),k],

iii) M and N are equivalent in the extended sense.
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