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Abstract

The further miniaturization of electronic devices is a strong driving force in science.
In the last few decades, devices based on organic materials have been studied. One
goal is to create applications performed nowadays by silicon-based CMOS technology
with organic materials. In these studies the interest is placed upon diverse proper-
ties of the organic molecules, such as their electronic, geometric, thermal, optical, and
electroluminescence characteristics. One of the main problems of these studies is the
lack of geometrical control of the systems during the measurements. As the physical
properties critically depend on the exact geometry, contradictory results are found in
literature.

To overcome this lack of control, this work introduces a new method which enables
transport studies on single molecules with highly controlled junction geometries. The
concept of this method, which is based on scanning probe techniques, will be presented
as well as its realization. The method will be applied to molecule-metal junctions with
molecules of di�erent lengths which are contacted by di�erent metal electrodes. It will
be shown that highly reproducible experiments can be performed. Furthermore, the
physical interpretation of the measurements will be discussed. It will be demonstrated
that the profound knowledge of the geometry in these junctions helps to achieve a better
understanding of the transport properties.
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1 Introduction

The state of the art in the semiconductor industry is a 22 nm CMOS transistor [1]. For

2014 a 14 nm transistor was announced by Intel at their annual investors meeting in

Santa Clara in may 2011 [2]. These transistors are multiple gate �eld-e�ect transistors

(MuGFET), which are build in a 3-D architecture by photolithography [3]. It is believed

that the miniaturization of the CMOS transistors is coming to an end with transistors

of about 10 nm. The main reason for this threshold are leak currents due to quantum

tunneling and thermal excitation, which lead to energy dissipation in the transistors [4,5].

Also the photolithographic fabrication of these devices reaches its limits as the 157 nm

lithography failed in 2003 [6].

In the last decades alternatives to CMOS technology were proposed, such as single

electron transistors (SET) [7], carbon nanotubes (CNT) [8] or single molecule tran-

sistors [9]. Especially in the �eld of organic materials new devices have proven their

applicability, such as the organic photovoltaic cell (OPVC) [10], the organic �eld-e�ect

transistor (OFET) [11] and the organic light emitting diode (OLED) [12]. Their per-

formance was massively improved since then [13�15]. All these devices were built of

thin �lms of organic materials. The advantages of organic semiconductors are their

lighter weight, the mechanical �exibility of organic devices and the simple and low

cost production via ink-jet printing, spin coating, or stamping [16]. Moreover, the

complex structure of molecules and the variety of interactions between them o�ers a

whole bunch of intrinsic functionalities which could be used in a variety of electronic

devices [17].

The ultimate miniaturization can be attained with devices build of single molecules.

In their famous paper, Aviram and Ratner [18] describe the possibility to use single

molecules in electronic circuits. Since then a lot of e�ort was dedicated to investigate

the electron transport through single molecules. One can separate the experiments car-

ried out into the following groups: scanning probe techniques (SPT), �xed electrodes

and mechanically formed molecular junctions [19]. In the SPT a scanning tunneling

microscope (STM) or atomic force microscope (AFM) is used to image, manipulate,
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1 Introduction

contact and probe single molecules [20�23]. Fixed electrodes are made on insulating

substrates by electromigration, electrochemical etching or deposition [19]. Into the gap

between the electrodes molecules are deposited and conductance measurements can be

performed [9, 24, 25]. Mechanically formed break junctions are realized with either me-

chanically controlled break junctions (MCBJ) or by break junctions based on scanning

probe microscopy (SPM) [26�30]. It was found that the control of the exact molecule-

electrode contact geometry on an atomistic level during a measurement is very di�-

cult [31]. As this contact is crucial for the conductance behavior, large variations in

the conductance measurements are observed [32]. As a consequence the transport mea-

surements of di�erent studies vary substantially, even when the same electrode-molecule

system is observed [31, 33, 34]. In this thesis an experimental method will be presented

which overcomes at least partly this di�culty to control the junction. This was done in

the following way:

The metal-molecule-metal junction structure is controlled by attaching the tip of a scan-

ning tunneling microscope (STM) to a speci�c part of the molecule. The structure of the

junction formed in this manner has still a structural improbability. This is mainly caused

by the unde�ned tip structure. To limit the improbability of the junction structure the

noncontact atomic force microscope (NC-AFM) based on a qPlus sensor was used to

monitor the mechanical properties during the transport measurements. Using force-�eld

simulations these mechanical properties are connected to structural information. With

this structural information the transport measurements can be selected and sort into

categories (classes). In this way the structural control is enhanced. Further by scanning

tunneling spectroscopy (STS) the electronic structure of the molecules was probed. This

electronic structure was measured with the tip above the absorbed molecule or with the

tip in contact to the molecule to measure the so-called transport spectroscopy. In chap-

ter 2 the experimental techniques just mentioned are described as well as their speci�c

application in this thesis.

As the control over the junction is achieved, reproducible transport measurements were

carried out. To understand the transport behavior, the concepts of ballistic transport

and double barrier tunneling have to be introduced. It is found that the molecular

orbitals rearrange after contact formation with the metal electrode [32, 35, 36]. This

rearrangement characterizes the transport properties to a large extent. In chapter 3 the

concepts of ballistic transport and double barrier tunneling are presented, it is shown that

the charge transport through the molecule can be described by coherent double barrier

tunneling. Furthermore, the concepts of molecular vibrations and the Kondo e�ect are

2



1 Introduction

introduced.

As mentioned above the transport through the tip-molecule-substrate junction is de-

�ned to large extent by the rearrangement of the molecular orbitals upon contact to

the metal [32, 35, 36]. When the molecule gets into contact, its electronic structure

changes. The orbitals are shifted and broadened [37, 38]. The overlap of the molec-

ular orbitals with the substrate, i.e the coupling, then de�nes the transport behavior.

In chapter 4 a systematic study of the electronic spectra of four di�erent molecules on

two di�erent substrates is presented. Thereby an interesting electronic structure was

observed for the system NTCDA on Ag(111). It was found that the electronic structure

formed by NTCDA is composed of two distinguishable molecules within the submono-

layer. This structure was investigated by STS. It is suggested that the structure is

the result of the Kondo e�ect which was formally observed for the system PTCDA on

Ag(111) [39�41]. By comparing the experimental results to DFT calculations side peaks

in the scanning tunneling spectra were identi�ed as originating from electron-vibrations

coupling.

To investigate the transport through the molecules the experimental approach described

earlier was used. A single molecule was isolated from the molecular island, contacted

with the STM tip with atomistic precision and �nally lifted up and lowered down with

respect of the substrate. This routine is describe in chapter 5. In the �rst experiments

it was shown that one can simultaneously measure the conductance and the force of the

junction during this up and down movement of the molecule [42]. Later this technique

was improved and highly reproducible lifting and lowering cycles were realized [43]. The

highly reproducible transport measurement are remarkable considering that the tip was

oscillating to measure the force in the noncontact AFM mode simultaneously to the

STM measurement. The frequency shift was used to control the junction geometry and to

determine the adsorption energy for the system NTCDA/Au(111) and PTCDA/Au(111).

This was done by comparing the experimental data to simulations. By this the total

adsorption energy as well as the di�erent interactions between the molecule and the

substrate are quantized.

Finally in chapter 6 the results of the transport measurements are presented. The four

π-conjugated molecules NTCDA, PTCDA, TTCDA and QTCDA were probed on the

two metal substrates Ag(111) and Au(111). By performing thousands of molecule ma-

nipulations large statistics for all the systems were collected and analyzed. It was found

that all experimental data can be split basically into two di�erent classes of behavior.

The �rst one called class A is characterized by a strong Kondo resonance at the Fermi

3
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energy when the molecule is contacted by Ag(111) electrodes and a hysteresis in the force

and conductance data. Class B is characterized by a highly stable junction con�guration

which provided maximum reproducibility. It is assumed that the di�erent behavior of

the two classes is the result of a bistable versus a stable junction con�guration, as a

consequence of di�erent tip apex atoms. Apart from this separation into two classes it

was found that the conductance behavior is fundamentally di�erent for the two electrode

materials Ag(111) and Au(111). Further a clear dependency of the conductance behavior

on the length of the molecule is observed. This is a consequence of the di�erent degree of

bending of the molecules during the manipulation process.

4



2 Experimental methods

2.1 Introduction

In this thesis transport measurements on single molecules are presented. The measure-

ments are distinguished by high control and reproducibility. This was achieved by the

use of scanning probe microscopy (SPM).

In this chapter the theoretical concepts of the experimental techniques and the details

of the sample preparation are discussed. In the �rst part scanning tunneling microscopy

(STM), scanning tunneling spectroscopy (STS) and atomic force microscopy (AFM) are

presented. Further their application to our transport measurements is addressed. In

the second part the preparation of the crystal and the deposition of the molecules is

discussed. Finally STM images of the molecular islands are presented and the unit cells

of the investigated systems are determined.

2.2 Scanning tunneling microscopy

The basis of scanning tunneling microscopy (STM) is the tunneling e�ect. The �rst

experimental observation of the tunneling e�ect in the 1960s was on metal/oxide/metal

sandwiches [44�46]. This phenomenon was described by Bardeen's perturbation theory

[47]. In 1981 Binnig and Rohrer invented the STM [48, 49]; its theoretical description

was proposed by Terso� and Hamann in 1983 [50,51].

2.2.1 The tunneling e�ect

If a particle hits a potential wall, and its energy E is inferior to the energy of the

potential wall Φ, it cannot pass through it in a classical mechanics picture. In a quantum

mechanical picture the particle has a �nite probability to pass through the wall (see Fig.

2.1). This phenomenon is called the tunneling e�ect, a consequence of the wave-like
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nature of a particle. The particle is described by a wave function Ψ, which must be

continuous. Inside the barrier the wave function decays exponentially. On the other

side of the barrier the wave function must still be continuous, hence there is a �nite

probability for the particle to tunnel through the barrier.

Figure 2.1: Tunneling barrier and wave function of a particle hitting a barrier. In the
upper part the tunneling barrier with height Φ and width z and the incoming
particle with energy E is sketched. In the lower part the particle's wave
function with the exponential decay inside the barrier is sketched.

The probability to pass a barrier is given by the Schrödinger equation. For a particle of

mass m with an energy E hitting a barrier of energy Φ and width z , the transmission

probability is given by:

T =
1

1 +
Φ2sinh(

√
2m(Φ−E)

~2 z)

4E(Φ−E)

(2.1)

The transmission probability decays exponentially in the tunneling barrier, depending on

the e�ective tunneling barrier height (Φ−E) and the barrier width z. The �rst tunneling

experiments were performed on planar metal/oxide/metal tunneling junctions [44�46].

Applying a bias voltage V the tunneling current was measured. It was found that the

6
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tunneling current I is proportional to e−2κz, with the decay constant κ =
√

2m
~2

ΦL+ΦR−eV
2 ,

where the e�ective barrier height ΦL+ΦR−eV
2 is given by the work functions of the two

metals ΦL and ΦR (see Fig. 2.2).

Figure 2.2: Tunneling barrier of width z between two planar metal electrodes with the
work functions ΦL and ΦR and Fermi level EF. The bias voltage V is applied
between the two metal electrodes.

2.2.2 Bardeen's theory

John Bardeen presented in 1961 a description of the tunneling e�ect between two planar

electrodes [47]. It is based on a time-dependent perturbation theory. The tunneling

current can be expressed as follows:

I =
2πe

~
∑
µ,ν

[f(Eµ)− f(Eν − eV )]|Mµ,ν |2δ(Eµ − Eν) (2.2)

This is a sum over all states Ψµ and Ψν of the electrodes, where f(E) is the Fermi

function, e is the charge of an electron and V is the bias voltage applied to the electrodes.

Mµ,ν is the tunneling matrix element between the two states Ψµ and Ψν , which have

eigenenergies Eµ and Eν . This tunneling matrix is an integral over a surface within the

tunneling barrier, which represents the overlap of the two states Ψµ and Ψν . The matrix

element is given by the following expression:

Mµ,ν = −(
~2

2m
)

∫
d~S ∗ (Ψ∗µ

~∇Ψν −Ψν
~∇Ψ∗µ) (2.3)
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As mentioned above, equation 2.2 is the sum over all states Ψµ and Ψν of the electrodes.

This sum can be substituted by an integral by de�ning the density of states (DOS) ρ(E),

which is the number of states per unit interval of energy. Equation 2.2 can than be

written as:

I =
2πe

~

∫ +∞

−∞
[f(ε)− f(ε− eV )]|M2|ρL(ε)ρR(ε− eV )dε (2.4)

This equation can be simpli�ed as the Fermi function can be represented by a step

function at low temperatures:

I =
2πe

~

∫ eV

0
|M2|ρL(EF + ε)ρR(EF + ε− eV )dε (2.5)

The tunneling current is thus function of the density of states (DOS) of both electrodes

multiplied with the tunneling matrix element, which describes the overlap of the elec-

tronic states.

2.2.3 Terso�-Hamann theory

In 1983 after the advent of the scanning tunneling microscope (STM) the theory of

Bardeen was applied to the system of a tip (a sharp wire) and a sample (planar electrode)

[50, 51]. Taking the limits of low temperatures and small voltages, as are typically used

in STM, the tunneling current is given by:

I =
2π

~
e2V

∑
µ,ν

|Mµ,ν |2δ(Eν − EF)δ(Eµ − EF). (2.6)

By further assuming that the STM tip apex is composed of an s-orbital the tunneling

matrix element can be estimated and the tunneling current can be expressed in the

following way:

I ∝
∫ EF+eV

EF

ρ(~r0, ε)dε (2.7)

with the local density of states (LDOS) ρ(~r0, ε), which is the density of states of the

sample at the position ~r0 of the tip. If the assumptions just mentioned are ful�lled the
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tunneling current is proportional to the local density of states (LDOS) near the Fermi

energy. To get a STM image which only shows the modulus squared of the sample wave

functions at the Fermi energy and none of the spatial derivatives, it is essential to have a

tip with an s-orbital [52�55]. In this way the STM image shows the lateral distribution

of the LDOS at the sample surface.

2.2.4 The scanning tunneling microscope

The scanning tunneling microscope (STM) was invented by Gerd Binnig and Heinrich

Rohrer in 1981 at IBM Zürich [48,49]. It allows the imaging of conducting surfaces with

atomic resolution [56�58].

In Fig. 2.3 a schematic representation of a STM is shown. A sharp metal wire, hence-

forth referred to as the tip, is scanned above the sample surface at a distance of a few

Å. This motion is controlled by three piezoelectric elements. A voltage is applied be-

tween tip and sample and the resulting tunneling current is measured. This tunneling

current depends exponentially on the distance between tip and sample surface. Con-

sidering typical work function values the rule of thumb is that for one additional Å the

current drops by one order of magnitude. Two scanning modes are usually used for

imaging:

constant current mode The feedback loop is set such that the tunneling current between

tip and sample is constant. In this way the tip follows the contour of a constant

density of states (DOS). The signal retrieved from this mode is the vertical position

of the tip, which allows a topographic image to be displayed.

constant height mode The feedback loop is set such that the distance between tip and

sample is constant. The tunneling current measured in this mode as a function of

the lateral tip position is used to make an image.

The STM used for the experiments presented here is the commercial Besocke beetle type

LT-STM/AFM produced by SPS-CREATEC GmbH [59]. It is operated at low temper-

atures (Tsample ≈ 5K) under ultra high vacuum (UHV).

2.2.5 Preparation of the tip

We used a tip made from Pt/Ir wire with a diameter of 15 µm (see Fig. 2.4). The inert

platinum-iridium was chosen instead of tungsten, as it oxidizes much less and is thus
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Figure 2.3: Schematic representation of a scanning tunneling microscope (STM). A sharp
wire (tip) is scanned at a few Å distance above the sample surface. This mo-
tion is controlled by piezoelectric elements. A bias voltage is applied between
tip and sample and the tunneling current is measured. Two scanning modes
are usually used. constant current mode and constant height mode.

more stable over a long period of time [60, 61]. This was especially important as the tip

could not be annealed inside the vacuum chamber once glued to the qPlus sensor. The

tip was prepared by a focused ion beam (FIB) [62�64]. This was done with the help of

D. Park and J. Mayer from RWTH Aachen. The working principle of a focused ion beam

(FIB) is as follows:

Similar to a scanning electron microscope (SEM) a beam of particles is accelerated by

applying a strong electric �eld [65]. In the case of FIB, gallium ions (Ga+) are used,

in contrast to electrons used in SEM. Typically the gallium ion beam energy is in the

range of 10 keV to 50 keV. The FIB can be used for imaging, sputtering and deposition.

A tip which is in a vacuum chamber (≈ 10−7 mbar) can be sputtered by the beam. For

this purpose high beam energies are used. When the ion beam hits the tip, the ions

transfer their energy to the electrons and atoms of the target. By this tip material is

removed.

Before imaging the surface or manipulating a molecule the tip apex structure had to be

re�ned. This was done by dipping the tip carefully into the crystal. Typical parameters

for this vertical manipulation of the tip are a voltage of 0.1V and a displacement from the
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Figure 2.4: SEM image of a Pt/Ir wire with a diameter of 15 µm cut by FIB. This is the
Pt/Ir tip used for the transport measurements presented in this thesis.

stabilization point of 10Å. By this procedure the apex of the tip was covered by the metal

atoms of the sample crystal. This dipping procedure was repeated until the tip was sharp.

Sharp manifesting as superior contrast in STM images.

2.2.6 Imaging and manipulation of single molecules with STM

In the experiments presented in this thesis the STM was used to image and manipulate

molecules on metal substrates. The imaging and manipulation procedure as used in this

work are described in this section.

The samples were prepared for the experiments by deposition of organic molecules onto

metal substrates (see section 2.5). By annealing the sample after the deposition molecular

islands would form. Ideally the molecular islands covered the metal substrate by 10%

to 30%. In this way su�cient molecules and clean metal space for tip preparation were

available. The tip preparation was crucial as only a clean and sharp metal tip would

allow reproducible transport measurements. To measure the transport through single

molecules, �rst the molecule had to be isolated from a molecular island and then secondly
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dragged with the STM tip a few nm away from the island border [42,43]. Furthermore the

single molecule had to be at a su�cient distance from any defects to perform transport

measurements.

After a sample preparation the sample was brought into the STM chamber and the

tip was approached towards the surface. Then the system was given time to �nd its

thermal equilibrium which was around 5 ◦K. This usually took about 12 hours. This

was necessary as the feedback loop was open during the transport measurements and thus

the drift had to be minimized as much as possible. After this the sample was scanned

until an overview scanning image of 3200Å× 3200Å (see Fig. 2.5a) showed the desired

molecular coverage of 10% to 30%.

Within this large overview scan a smaller scanning image of about 200Å× 200Å (see

Fig. 2.5b) was scanned. This smaller scanning image typically showed a molecular island

border and free metal substrate. From this molecular island border a single molecule

could then be isolated. This detaching procedure of the molecule was done by a lateral

manipulation with the tip. For this purpose the feedback loop was closed. Typical lateral

manipulation parameters were:

• tunneling current I = 50 nA

• bias voltage V = 10mV

• preampli�er gain G = 107 V/A

The lateral manipulation was done in the following way:

• molecule S jutting out of the border was chosen within the 200Å× 200Å scanning

image

• two points A and B were chosen

• point A was the position of one of the carboxylic oxygen atoms of molecule S

• point B was the position where to drag molecule S, typically around 100Å to 150Å

away from the molecular island border

• tip displacement in z-direction (vertical to the sample) was chosen

• tip moves laterally to point A, vertically towards the carboxylic oxygen

• by transferring a molecule-substrate bond to the tip the molecule is bound to the

tip
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• tip moves laterally to point B and then vertically to the stabilization height breaking

the tip-molecule bond

After this manipulation procedure the molecule usually was at point B (see Fig. 2.5c).

However this detaching procedure was not always successful. The success rate depended

on the type of molecule and metal substrate. It also happened that the molecule was

not moved at all, broke during the lateral manipulation, jumped onto the tip or sev-

eral molecules were moved to point B. Critical parameters for a successful manipulation

were the atomistic shape of the tip, the extent to which the molecule jutted out of

the island (the more the better) and the lateral manipulation parameters. Of particu-

lar importance were the exact contact point and the height at which the molecule was

dragged.

These manipulation parameters varied for each type of molecule, as well as for the two

metal substrates used, Ag(111) and Au(111). With silver electrodes it was generally

easier to isolate a molecule. The reason is the stronger covalent bond between the silver

and carboxylic oxygen atom, compared to the gold and carboxylic oxygen atom. The

higher success rate for bigger molecules was probably due to the fact that it was less

likely that they jumped onto the tip during the manipulation. The reason could be, that

the aggregate position of the four highly reactive carboxylic oxygen atoms is larger for

a long molecule. Also the shape of the tip in�uenced the manipulation parameters. A

sharp tip, as was also preferable for imaging made a lateral manipulation more likely to

be successful.

When a molecule was successfully detached from the island the system was given �ve

minutes to minimize drifting of the tip because of piezo creep. Then the transport mea-

surement could start by contacting the single molecule with the tip and performing verti-

cal manipulation [39,40,42,43]. The details of this vertical manipulation for the transport

measurements are described in the chapters 4 to 6.
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(a) (b)

(c) (d)

Figure 2.5: Creating a single TTCDA molecule on Ag(111). (a) Large overview scan
with two TTCDA islands in the lower left and center left of the image.
3200Å× 3200Å, 0.1 nA, 278mV. (b) TTCDA island border. The line in-
dicates the path of the lateral manipulation. Point A and B are the starting
and endpoint of the manipulation as described in the text. 200Å× 200Å,
0.1 nA, 278mV. (c) Same TTCDA island border as in (b) and detached
single TTCDA molecule. 200Å× 200Å, 0.1 nA, 278mV. (d) The detached
TTCDA molecule. 50Å× 50Å, 0.1 nA, 278mV.
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2.3 Scanning tunneling spectroscopy

As was shown in equation 2.7 the �rst derivative of the tunneling current, i.e. the di�eren-

tial conductance, is proportional to the local density of states (LDOS):

dI

dV
(ε) ∝ ρ(~r0, ε) (2.8)

at the position ~r0 of the tip with the energy ε = eVbias, where Vbias is the voltage applied

between tip and sample. This proportionality is used in scanning tunneling spectroscopy

(STS) to probe the LDOS of a surface. In comparison to other spectroscopic methods

such as photo emission spectroscopy (PES), with STS it is possible to probe the �lled as

well as the un�lled states of a sample. Also, in STS the sample can be probed locally, i.e.

a single molecular entity can be probed [66�69]. In contrast to this in PES the signal is

integrated over a large area of typically several µm, with some techniques as nano-ESCA

reaching spatial resolution in the order of 100 nm [70,71].

2.3.1 Working principle of the STS

The STS allows to measure current-voltage (I − V ) characteristics. This is done by

measuring the tunneling current I between tip and sample as a function of the bias

voltage V . By STS information about the local density of states (LDOS) at the surface

of a sample is gained [72].

A scanning tunneling spectra is obtained by placing the tip above the spot to be probed,

e.g. a molecular orbital. Then the feedback loop is opened. This allows the tip to remain

in the same position during the measurement. For the measurement the bias is swept

through an interval of typically ±1 eV to ±2 eV. At higher bias voltage the risk of a tip

crash increases and �eld emission might set in [73]. Ideally the tip is prepared such that

it has no features in the DOS of the energy range probed, i.e. its density of states (DOS)

is constant. This has to be checked before probing a molecule by doing a STS on clean

metal. The (111) surfaces of noble metals are known to have a Shockley surface state [74].

Probing such a metal surface, the most prominent feature in the spectra should be the

surface state (see Fig. 2.7).

In Fig 2.6 a schematic representation of a tunneling barrier with an applied bias voltage

Vbias is shown. Electrons tunnel from the tip to the sample. The electrons can only

tunnel into empty states of the sample within the energy range EF to EF + eV . The
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higher the energy di�erence between the electron in the tip and the Fermi energy of the

sample, the higher the probability for the electron to tunnel from the tip to the sample

(indicated by the red arrows).

Figure 2.6: Schematic representation of a tunneling barrier with an applied bias voltage
Vbias. The electrons tunnel from �lled states in the tip to empty states in
the sample in the energy range EF to EF + eV . φs and φt are the work
functions of the sample and the tip, i.e. the energy di�erence between the
Fermi energy EF and the vacuum energy Evac. The di�erential conductance
dI/dV measured in STS is proportional to the local density of states (LDOS)
on the sample at the position of the tip.

2.3.2 Spectroscopy at bare metal surfaces

As discussed before the shape of the tip apex atom orbital in�uences the tunneling current

signi�cantly [52�55]. To minimize this in�uence the apex tip atom orbital desired for STS

should be an s-orbital. To check the shape of the tip apex atom orbital a spectrum is

taken from the (111) surface of the noble metal. The tip is prepared until the STS of the

metal has the Shockley surface state as its most prominent feature. In Fig 2.7 two spectra

measured on the bare Ag(111) and Au(111) samples are shown. The spectra taken on the

Ag(111) sample shows a surface state at −65mV (see Fig. 2.7a) as was found by Burgi

et al. [75]. The measured surface state of the Au(111) sample is with −490mV (see Fig.

2.7b) in the energy range as reported earlier [76,77].
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(a) (b)

Figure 2.7: Scanning tunneling spectra of the bare Ag(111) and Au(111) samples. (a)
The STS of Ag(111) shows the Shockley surface state at −65mV as was found
earlier by Burgi et al. [75]. (b) The STS of Au(111) shows the Shockley surface
state at −490mV which is within the energy range of experiments reported
earlier [76,77].

2.3.3 Electron-vibration coupling in STS

In chapter 4 electron-vibration coupling will be discussed. Therefore its in�uence on

scanning tunneling spectroscopy is worked out here. When a molecule is probed by STS

and electron-vibration coupling is observed, then the LDOS ρ(~r0, ε) at the position ~r0 of

the tip will change. This change is observed at the vibrational threshold ε = εF + ~Ω

which is de�ned by the frequency Ω of the molecular vibration [78]. This can be expressed

by the following equation:

ρ(~r0, ε)→ ρ(~r0, ε) + δρ(~r0, ε) (2.9)

with the change of the LDOS δρ(~r0, ε). This change of the LDOS has a continuously

varying part and a discontinuity at the vibrational threshold ~Ω. When it is assumed

that there is only one vibrational mode Ω, this discontinuous part can be called ∆ρ(~r0).

This discontinuous part of the LDOS results in a discontinuity η(~r0) in the di�erential

conductance:

η(~r0) = ∆σ(~r0)/σ(~r0, ε) (2.10)
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with the di�erential conductance σ = dI/dV at the position ~r0 of the tip at the vibra-

tional threshold ε = εF + ~Ω. The discontinuous part of the change of the LDOS ∆ρ

can be separated into two contributions - an inelastic contribution ∆ρinel (see Fig. 2.8a)

which is characterized by the excitation of a real vibron with energy ~Ω and an elastic

contribution ∆ρel (see Fig. 2.8b) which is characterized by the emission and readsorption

of a virtual vibron:

∆ρ(~r0) = ∆ρinel(~r0) + ∆ρel(~r0) (2.11)

(a) (b)

Figure 2.8: Tunneling processes by electron-vibration coupling. a) In the inelastic process
the electron loses energy by emitting a vibron. b) In the elastic process the
energy of the electron in conserved.

The discontinuous part of the change of the LDOS is responsible for the step in the

di�erential conductance dI/dV at the vibrational threshold ε = ~Ω. This is depicted

in Fig. 2.9. At the vibrational threshold a step in dI/dV is observed, which results

from the additional tunneling channel opening as the vibron of energy ε = ~Ω is ex-

cited.

The LDOS of the electron eigenstate can be expressed as follows:

ρ(~r0, ε) =
∑
µ

|〈µ|~r0〉|2 ∗ δ(ε− εµ) (2.12)

with the initial eigenstate in the tip |~r0〉 and the �nal eigenstate in the sample 〈µ|. If a
transition to a electronic state |λ〉 is allowed because of electron-vibration coupling, then
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Figure 2.9: As the vibrational threshold is reached an additional tunneling channel is
opening, resulting in a step in the di�erential conductance. This step in the
di�erential conductance is determined by the discontinuous part of the change
of the LDOS ∆ρinel(~r0).

the LDOS can be expressed as:

ρ(~r0, ε) =
∑
µ

|〈µ|
∑
λ

∆veff |λ〉〈λ|
εµ − (ελ − ~Ω) + iO+

|~r0〉|2 ∗ δ(ε− εµ) (2.13)

where veff is the e�ective one-electron potential and ελ the energy of the electronic

state. This transition is depicted in Fig. 2.10a. With this, the inelastic contribution

can be expressed as was shown by Lorente et al. [78], based on the work of Caroli et

al. [79]:

∆ρinel(~r0) = δQ2
∑
µ

|
∑
λ

〈µ|v′|λ〉〈λ|~r0〉
εµ + ~Ω− ελ + iO+

|2 ∗ δ(εF − εµ) (2.14)

with the electron-vibration coupling, v′, which is the �rst derivative of the e�ective one-

electron potential, veff , regarding the vibrational displacement Q, and δQ2 = ~/(2MΩ)

the mean-square amplitude of Q and the mass M .

For the elastic contribution Lorente et al. [78] derived the following equation:

∆ρel(~r0) = −2δQ2
∑
µ

|π
∑
λ

〈µ|v′|λ〉〈λ|~r0〉 ∗ δ(εµ + ~Ω− ελ)|2 ∗ δ(εF − εµ) (2.15)
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(a) (b)

Figure 2.10: Electronic transition by electron-vibration coupling. a) The inelastic con-
tribution is characterized by a virtual transition. The electron loses energy
by emitting a vibron. b) The elastic contribution is characterized by a real
transition to an electronic state. The electron loses no net energy between
tip and sample.

This is depicted in Fig. 2.10b. In the elastic contribution the electron loses no energy be-

tween tip and sample. The transition through the electronic state |λ〉 is real.

2.3.4 The lock-in ampli�er

To measure the di�erential conductance a lock-in ampli�er was used. Lock-in ampli�ers

are able to measure very small AC signals down to a few nano volts [80]. These mea-

surements are possible even if the signal is covered by large noise. This is done by a

technique called phase-sensitive detection. Its basic operating principle is to �lter out

parts of the signal at a known reference frequency and phase, the rest of the signal is

then suppressed.

This is done by superimposing a voltage modulation on top of the bias voltage applied

to the tunnel junction (see Fig. 2.11a). The resulting tunneling current through the

junction, the modulation signal, is ampli�ed and multiplied with a reference signal of

the same frequency f as the modulation signal but shifted by the phase φ (see Fig.

2.11b). This product of the signals is integrated by a low pass for the time TC. The

resulting averaged signal is a DC signal proportional to the initial tunneling current if

the frequency f of the modulation and the reference signal are of the same frequency. By

a sensitivity S the gain to amplify this DC signal is de�ned. To get absolute di�erential
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conductance values this resulting signal has to be calibrated using the tunneling current,

this is explained in the next section.

Figure 2.11: Working principle of the Lock-in ampli�er. (a) A voltage modulation is
superimposed to the bias voltage V . The resulting current I is called the
modulation signal. (b) The modulation signal is multiplied with a reference
signal of the same frequency f as the modulation, but shifted by the phase
φ. The multiplied signal is integrated by a low pass which results in a DC
signal.

To get a good signal-to-noise ratio the parameters of the modulation and the reference

signal had to be carefully chosen. The frequency f of the modulation and reference signal

had to be chosen such that it did not match the noise in the tunneling current signal. In

the course of this thesis the frequency was changed several times, as the noise condition

of the whole setup changed. The increasing quality in the transport measurement was to

a great extent a consequence of the ability to use smaller and smaller frequencies. At the

beginning high frequencies of about f ≈ 5 kHz were used. As the noise conditions became
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better smaller frequencies of f < 1 kHz were used. The use of smaller frequencies made

the transport measurements less noisy, as the crosstalk with the qPlus sensor oscillating

at f0 = 30 300Hz was reduced (see section 2.4).

The amplitude A of the modulation was constant during all the measurements. The phase

of the reference signal φ with respect of the modulated tunneling current signal had to

be adjusted each time the preampli�er gain G was changed (typically G = 107 V/A

or 108 V/A), such that the signal-to-noise ratio was maximized. The time constant

TC de�nes the time the signal gets integrated in the low pass �lter. The higher the

frequency was the shorter the time constant could be. It was chosen such that there was

no hysteresis in the resulting signal. The lock-in ampli�er S was chosen in a way that

the resulting signal used the whole range of the DAC.

The commercial Stanford Research Systems SR830 DSP Lock-in Ampli�er was used in

this thesis to measure the di�erential conductance (dI/dV ). To measure the second

derivative of the di�erential conductance d2I/dV 2 a second lock-in ampli�er of the same

type was connected to the �rst lock-in ampli�er in series. The following parameters were

the ones used most of the time for the experiments:

• modulation amplitude A = 5mV

• modulation frequency f = 933.3Hz

• phase φ = −30 with preampli�er gain G = 108 V/A

• sensitivity of �rst lock-in S1 = 500mV

• time constant of �rst lock-in TC1 = 3ms

• sensitivity of second lock-in S2 = 50mV

• time constant of second lock-in TC2 = 30ms

2.3.5 Calibration of the lock-in ampli�er

The lock-in ampli�er puts out the di�erential conductance in DAC values. We want

to display the di�erential conductance data in units of the quantum of conductance

G0 = 2e2/h. This quantum of conductance is derived from the Landauer formalism

[32,81]. To display the data in units of the quantum of conductance a conversion factor

α was derived from spectroscopic measurements.
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This was done by measuring a scanning tunneling spectrum. The measured tunnel-

ing current I was numerically di�erentiated with respect to the applied bias voltage.

This derivative of the tunneling current must be identical to the di�erential conduc-

tance dI/dV from the lock-in ampli�er. With a conversion factor α the two signals

can be matched. This conversion factor α depends on the preampli�er gain G and the

gain of the lock-in ampli�er (sensitivity) S. It can be calculated by following equa-

tion:

α(G,S)[G0/DAC] =
1

219
[V/DAC] ∗ 12900[A/V] ∗ 200[G0/A2] ∗ 1

G
[A/V] ∗ S[V]. (2.16)

With the conversion factor α the conductance values are converted from DAC units to

G0 = 2e2/h units:

dI

dV
[G0] = α(G,S)[G0/DAC] ∗

dI

dV
[DAC]. (2.17)

To rule out other in�uences on the factor α the calibration routine was repeated every few

weeks. Apart from the just mentioned dependency on the preampli�er gain and the gain

of the lock-in ampli�er no �uctuation of α was observed.

2.4 Noncontact atomic force microscopy

The atomic force microscope (AFM) was invented in 1986 by Gerd Binnig, Calvin Quate

and Christoph Gerber [82]. It allows to image conducting as well as non-conducting

surfaces with atomic resolution [83�86]. The surface is probed by measuring the de�ection

of a force sensor.

The setup we use is the combined LT-STM/AFM from SPS-CREATEC GmbH [59]

mentioned earlier. This means that almost all the components are shared by the STM

and the AFM. This is realized by the use of a qPlus sensor as force sensor (see Fig.

2.12(a)), a tuning fork to which the Pt/Ir tip is glued [87].
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2.4.1 Working principle of the AFM

The force sensor is scanned by piezoelectric elements above the sample. In dependency

of the lateral position the force signal is measured. With this force signal an image

can be made. In our setup we use a qPlus sensor, which allows us to perform STM

and AFM measurements simultaneously. In Fig. 2.12b the qPlus sensor setup is shown

schematically [87]. The qPlus sensor consist of a commercial tuning fork with two prongs

of length L = 2.4mm. To one of the prongs (blue electrode) the tip is connected.

The tunneling current is measured at the sample. The de�ection of the force sensor

is measured by piezoelectric detection between the two prongs of the tuning fork [88].

The advantage of this piezoelectric detection in comparison with light detection is the

lower temperature of the setup, as the sensor does not get heated up by photon bom-

bardment. The qPlus sensor is made of quartz material and thus has a high sti�ness

(k0 ≈ 1800N/m) compared to silicon cantilevers [88]. This allows oscillations at small

amplitudes, which in turn enables high resolution measurement of the short-range forces.

Furthermore the small amplitudes allow tunneling current to be measured, next to the

de�ection.

The qPlus sensor de�ection is in�uenced by attractive and repulsive forces [89]. The

attractive forces are van der Waals interaction, electrostatic forces and chemical forces.

The repulsive forces are hard-sphere repulsion, Pauli exclusion interaction and electron-

electron Coulomb interaction. The forces acting on the qPlus sensor result in a frequency

shift ∆f of the tuning fork resonance frequency f0. This frequency shift ∆f is propor-

tional to the derivative of the forces acting on the qPlus sensor. This can be expressed

as follows [42]:

∆f =
d2V

dz2

f0

2k0
= −dFz

dz

f0

2k0
(2.18)

with the potential energy of the junction tip-sample V , the vertical component of the force

Fz, the distance tip-sample z and the spring constant k0.

The resonance frequency f0 depends critically on the weight of the tip attached to the

quartz fork. The tuning forks used for the qPlus sensor have a resonance frequency of

fbare
0 = 32 768Hz [88]. With the Pt/Ir tip the force sensor used for this thesis had a

resonance frequency of f0 = 30 300Hz. The frequency was checked every few weeks, the

observed �uctuation was very small in the order of ±5Hz.
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Figure 2.12: The qPlus sensor. (a) Three qPlus sensors with di�erent tips glued to them.
(b) Schematic representation of the qPlus sensor and the wiring for the
simultaneously measurement in the STM and AFM mode (from reference
[87]).
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2.4.2 Controlling the junction with the AFM

The AFM was used in the experiments to control the geometry of the tip-molecule-

substrate junction. This was done by measuring the frequency shift ∆f of the qPlus

sensor and comparing it to simulations (see chapter 5) [43]. In order to perform the

vertical manipulation of the molecule with an oscillating tip, it was crucial to have a

small oscillation amplitude Areal. On the other hand the oscillation had to be large

enough to get a good signal-to-noise ratio.

In contrast to the tunneling current measured by STM, the forces measured by AFM

are long-ranged. It is therefore even more important to have a sharp tip for force mea-

surements, such that only the local interaction is measured. It is possible that a tip has

good STM properties, but bad AFM properties. The quality of the tip within respect of

the frequency shift measurement was judged upon the frequency shift at the stabilization

point. A tip was considered as good, when its frequency shift ∆f at the stabilization

point was 5Hz or less. To get such a tip, it was sometimes necessary to dip the tip up

to 100Å into the substrate.

To check the performance of the AFM measurement a calibration had to be done at

least each time the sample or the sensor had been moved. This was necessary since

the performance depended critically upon the exact contact geometry between the qPlus

sensor and the body of the LT-STM/AFM. The calibration was made by scanning the

resonance curve of the force sensor. A resonance curve with no side peaks was re-

quired. If there were side peaks, next to the resonance curve, the qPlus sensor had to

be repositioned by the nitrogen cooled manipulator. After repositioning the resonance

curve was checked again. If side peaks appeared again the procedure was repeated once

more.

The amplitude of the oscillation Areal was kept constant during a measurement by the

feedback loop. This amplitude Areal was set in the software with Aset. The relation

between Aset and Areal varied over time, as it depended on uncontrollable parameters.

This made it necessary to carefully determine this relation every time an experiment

was performed by making a calibration as described by Simon et al. [90]. In this way

the real oscillation of the qPlus sensor Areal was known during a measurement. It was

found that a threshold of the oscillation existed under which the frequency shift was not

measured properly during a vertical manipulation. This threshold was at Aset = 0.4mV.

The real amplitude Areal corresponding to this amplitude �uctuated between 0.2Å to

0.4Å.
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The typical AFM parameters set in the software which were used for the manipulation

experiments presented in chapter 6 were:

• oscillation amplitude Aset = 0.4mV

• resonance frequency f0 = 30 300Hz

• resonance phase φ = −150

• maximum frequency shift ∆fmax = 100Hz

2.5 Sample preparation

In this section the experimental details of the sample preparation are presented. First, the

di�erent sample preparation routines for the Ag(111) and Au(111) crystal are discussed.

Then the method used for the molecular deposition, which is based on a deposition from

the sample storage, is presented. In the last part STM images of the molecular islands

are presented and discussed.

2.5.1 Preparation of the crystals

The preparation of the samples was carried out in a preparation chamber at ultra high

vacuum (UHV) which was separated from the STM chamber. The crystals were pre-

pared by sputtering and annealing cycles. The preparation procedure of the Ag(111) and

Au(111) crystals di�ered. In table 2.1 the preparation parameters are listed.

The sputtering was done by bombardment of the crystal with Ar+ ions. For both metals

an energy of 800 eV was used for about 20min. The annealing procedure for the two

metals di�ered. The annealing of the Ag(111) sample was done at a temperature of

820K for 30min. The Au(111) sample had to be annealed �rst for 20min at 700K

and then for a longer period of 60min at 450K. In this way the surface herringbone

reconstruction was rebuilt [91]. These preparation cycles were repeated one or several

times depending on the cleanliness of the sample.
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Sample Stime [min] Senergy [eV] Atime [min] Atemp [K]

Ag(111) 20 800 30 820

Au(111) 20 800
20 700
60 450

Table 2.1: Typical parameters used for the preparation of the Ag(111) and Au(111) sam-
ples. Both samples were sputtered with Ar+ ions for Stime = 20min with an
energy of Senergy = 800 eV. The annealing of the silver sample was done for
Atime = 30min at Atemp = 820K. The gold sample was �rst annealed for
20min at 700K. The long annealing period Atime for the Au(111) sample at
Atemp = 450K afterward is necessary to rebuilt the surface herringbone recon-
struction [91]. These preparation cycles were repeated several times depending
on the cleanliness of the sample.

2.5.2 Deposition of the molecules

Once a sample was cleaned molecules were deposited on it. The molecule deposition

procedure did not depend on which metal it was deposited. The molecules were evapo-

rated from a crucible which was mounted on a sample holder. This sample holder was

placed on the sample storage. The crucible was heated by applying a voltage to the

button heater. To deposit molecules a metal crystal was moved above the crucible with

a manipulator for the deposition time tdepo and then removed. By using a quadrupole

mass spectrometer (QMS) the molecular �ux was controlled during the whole deposition

process.

The crucible on the sample holder had the advantage that the molecular powder in the

crucible could be changed easily by transferring a sample holder with another powder

from the outside into the vacuum chamber. Also it o�ered the ability to work with

a very small molecular �ux, as the crystal could be brought into close proximity of

the crucible (3 cm to 4 cm). This was especially of importance for the deposition of

TTCDA and QTCDA as the total amount of molecular powder available was very lim-

ited.

For the experiments a submonolayer coverage of molecules was needed, with the molecules

assembled in molecular islands. The coverage was controlled by two parameters, the de-

position time tdepo and the crucible temperature Toven. To form molecular islands the

molecules had to di�use on the crystal after they were deposited. This was done by

annealing the sample after the deposition for tann = 60 s to a annealing temperature

Tann = 470K. During the deposition the crystal was kept at room temperature to
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prevent contamination by the adsorption of the residual gas in the preparation cham-

ber.

Another important parameter is the pressure PPC in the preparation chamber during the

deposition. This pressure is an indicator for the molecular �ux as well as the cleanliness

of the molecular powder. In table 2.2 the parameters just described, used for our depo-

sitions, are listed. The pressure PPC in the table refers to the pressure measured at the

end of the deposition process.

Molecule Toven [K] tdepo [s] PPC [mbar]

NTCDA 500 5 6E-10
PTCDA 570 60 1E-09
TTCDA 710 10 3E-08
QTCDA 690 1800 8E-10

Table 2.2: Typical parameters used for the deposition of molecules. The deposition was
realized by moving a metal crystal for the deposition time tdepo above a cru-
cible. The crucible was mounted on a sample holder and heated to Toven by
applying a voltage to a button heater. By long annealing cycles of the cru-
cible, the pressure in the preparation chamber PPC was kept low during the
deposition. By this a clean submonolayer of molecules was prepared.

The deposition of NTCDA and PTCDA was a very clean process, i.e. almost no contam-

ination was found on the sample after deposition. Also almost no defects were found in

the molecular islands. This suggests that the molecules did not decompose upon heat-

ing. The TTCDA islands usually showed more defects. Also the islands borders were

contaminated by other types of particles. But the amount of impurities was still small

enough to perform the experiments described later. In contrast the QTCDA evaporation

was accompanied by the deposition of a large amount of another type of particle. These

particles could be fragments of QTCDA or a contamination in the molecular powder. It

is possible that some of the molecules decomposed during the heating of the crucible.

Also one could imagine that particles in the powder could be a side product of the

synthesis.

To reduce the �ux of this second type of particle the deposition temperature Tdepo was

kept as low as possible. The consequence was a very long deposition time for QTCDA.

Nevertheless, it was not possible to �nd a temperature at which only intact QTCDA

molecules were evaporated. Long annealing cycles of the crucible did not clean the de-

position process. On the Ag(111) crystal the second type of particle could be separated
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from the QTCDA molecules by annealing. Both particle species agglomerated in indi-

vidual islands. This made it possible to investigate QTCDA on Ag(111). In the case of

the QTCDA deposition on Au(111) it was not possible to separate the molecules from

the fragments by annealing (see Fig. 2.14d).

2.5.3 The molecular islands

After the preparation the coverage and the cleanliness of the sample was checked. A good

sample was considered to have a coverage of about 10% to 30% of molecules arranged

in islands. This low coverage was necessary to have enough space of clean metal on

the sample to make tip preparations. A perfect tip shape was the prerequisite for the

molecule manipulations as discussed in chapter 6.

In Fig. 2.13 four molecular structures as they were imaged by STM on Ag(111) are shown.

The red parallelograms depict the unit cells which will be discussed in the following. In

Fig. 2.13a an ordered structure of NTCDA/Ag(111) is show. It is characterized by two

types of molecules with di�erent electronic structures (for more details see chapter 4).

The molecules are arranged in a brick-wall-like structure in this commensurate phase

as was observed earlier [92]. Next to this two more phases were observed which are

not shown here, but discussed in details in section 4.4. The lattice parameters of the

commensurate phase determined by STM are a = 15.1Å, b = 12.1Å and α = 91◦. This

is in good agreement with the lattice parameters found by Stahl et al. [92] with STM and

LEED: a = 15Å, b = 11.6Å and α = 90◦. Fig. 2.13b shows PTCDA/Ag(111) imaged

with a bias voltage of V = −340mV. The two bright lobes, i.e. the highest density of

states (DOS), are in the region of the hydrogen atoms. The contrast seen here is caused

by the lowest unoccupied molecular orbital (LUMO) [66]. This herringbone structure

has the lattice parameters a = 17.8Å, b = 13Å and α = 93◦. This results in a slightly

smaller unit cell than the ones reported of earlier by Glöckler et al. [93], determined by

LEED and Kilian et al. [94], determined by SPA-LEED. They found the following lattice

parameters: a = 19Å, b = 12.6Å and α = 89◦. In Fig. 2.13c an ordered structure of

TTCDA/Ag(111) is shown. The molecules are arranged in a square phase, with four

molecules in the unit cell. The molecular layer is interspersed with defects. The lattice

parameters determined from STM are a = 27.9Å, b = 26.6Å and α = 98◦. Usually the

borders of the TTCDA islands are populated by defects, which had to be removed by

tip manipulation before accessing the TTCDA molecules and performing the experiments

discussed in chapter 6. Fig. 2.13d shows QTCDA/Ag(111) which is forming a herringbone
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structure similar to PTCDA/Ag(111). The amount of defects in the island is smaller than

in the TTCDA islands on Ag(111). This results as QTCDA could be separated from the

defects by annealing on Ag(111). The lattice parameters of the QTCDA/Ag(111) unit

cell are a = 23.3Å, b = 19.4Å and α = 92◦. No earlier measurement with TTCDA or

QTCDA molecules was found in literature.

In Fig. 2.14 four ordered molecular structures as imaged by STM on Au(111) are shown.

The red parallelograms depict the unit cells which will be discussed in the following. In

Fig. 2.14a NTCDA/Au(111) is shown. The herringbone reconstruction of the Au(111)

surface is well visible through the molecular layer. By STM the lattice parameters of

this phase were determined to a = 15Å, b = 9.1Å and α = 96◦. This results in a

area per molecule which is about 25% smaller than in the case of NTCDA/Ag(111), i.e.

the NTCDA molecules are much closer packed on Au(111) than on Ag(111). Fig. 2.14b

shows PTCDA/Au(111) in the herringbone structure as was observed earlier [95, 96].

The lattice parameters of the unit cell determined by STM are a = 18.6Å, b = 12.7Å

and α = 92◦. This results in about the same area per PTCDA molecule as measured on

Ag(111) (see table 2.3). Fenter et al. [97] measured PTCDA/Au(111) by X-ray di�raction

(XRD) and found the following lattice parameters for a rectangular unit cell: a = 19.91Å,

b = 11.96Å and α = 90◦, which is in good agreement with the parameters determined

in this work. In Fig. 2.14c TTCDA/Au(111) is shown. The molecules are oriented

perpendicular to each other in a square phase. The lattice parameters of the unit cell are

a = 27.8Å, b = 26.4Å and α = 97◦. Also for TTCDA the area per molecule is about the

same on both metal substrates (see table 2.3). In Fig. 2.14d the result of the QTCDA

deposition on Au(111) is shown. The QTCDA molecules are oriented in long chains.

In between the QTCDA chains another type of particle is arranged in chains as well.

Di�erent annealing temperatures and annealing times were tried to separate both types

of particles. In contrast to the case of QTCDA/Ag(111) it was not possible to separate

both types of particles. In consequence this smaller type of particle used to stick at the

QTCDA molecules, when they were dragged away from the islands by the STM tip to

perform the experiments discussed in chapter 6. In table 2.3 the lattice parameters and

the area per molecule for each system are summarized.

To check the chemical structure of the molecules TTCDA and QTCDA the well estab-

lished technique scanning tunneling hydrogen microscopy (STHM) was used [98�100].

In Fig. 2.15 two STHM images are shown [98�100]. These images were measured with

the tip functionalized by a CO molecule. In Fig. 2.15a a TTCDA island on Au(111) is

shown. The three naphthalene units which form the carbon backbone of the molecule are
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(a) (b)

(c) (d)

Figure 2.13: STM images of molecular islands on Ag(111). By the red parallelograms the
unit cells as discussed in this section are depicted. (a) NTCDA on Ag(111).
Molecules with two di�erent types of electronic structures (see chapter 4) are
arranged in stripes. They form a brick-wall-like structure. 100Å× 100Å,
0.1 nA, 50mV. (b) PTCDA on Ag(111) in a herringbone structure. The
LUMO contrast is shown, with the two bright lobes, i.e the highest density of
states (DOS), above the hydrogen atoms of the molecules [66]. 50Å× 50Å,
0.1nA, −340mV. (c) TTCDA on Ag(111). The molecules are arranged in a
square phase. The amount of defects is much higher than in the NTCDA or
PTCDA islands. 400Å× 400Å, 0.1 nA, 278mV. (d) QTCDA on Ag(111)
also forms a herringbone structure like PTCDA. The number of defects is
smaller than in the TTCDA islands. 200Å× 200Å, 0.1 nA, 278mV.
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(a) (b)

(c) (d)

Figure 2.14: STM images of molecular islands on Au(111). By the red parallelograms
the unit cells as discussed in this section are depicted. (a) NTCDA on
Au(111) with the well visible herringbone reconstruction of the metal un-
derneath. 100Å× 100Å, 0.1 nA, 1666mV. (b) PTCDA on Au(111) forms
a herringbone structure. 100Å× 100Å, 0.1nA, 300mV. (c) TTCDA on
Au(111), with the molecules arranged perpendicular to each other in a
square phase. 100Å× 100Å, 0.025 nA, −11mV. (d) QTCDA on Au(111)
forms long chains. In between of the QTCDA molecules another type of
particle is also arranged in chains. It was not possible to separate them
from the QTCDA molecules by annealing. Thus the molecule manipula-
tions could not be performed with QTCDA on Au(111). 200Å× 200Å,
0.1nA, 316mV.
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Substrate Molecule a [Å] b [Å] α [◦] Area [Å2] No. of mol. Area
Molecule [Å2/ mol.]

Ag(111)

NTCDA 15.1 12.1 91 183 2 92
PTCDA 17.8 13.0 93 231 2 116
TTCDA 27.9 26.6 98 735 4 184
QTCDA 23.3 19.4 92 452 2 226

Au(111)
NTCDA 15.0 9.1 96 136 2 68
PTCDA 18.6 12.7 92 235 2 118
TTCDA 27.8 26.4 96 729 4 182

Table 2.3: The coordinates of the unit cells of the di�erent systems probed with STM. The
unit cell of the system NTCDA/Ag(111) refers to the commensurate phase, the
other two phases are discussed in section 4.4. QTCDA/Au(111) is not found
isolated from another type of particle, therefore no unit cell was determined.

indicated by red ellipses. In Fig. 2.15b a single QTCDA molecule on Au(111) is shown,

which is characterized by four naphthalene units. The molecule is bound to a defect,

in this way the single molecule did not move when scanned with the functionalized tip.

Because of the defect the STM image was not fully scanned. This had to be done in

order to preserve the tip, as it was found that scanning above such a defect often resulted

in losing the CO molecule on the tip.
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(a) (b)

Figure 2.15: Scanning tunneling hydrogen microscopy (STHM) images made with a CO
molecule bound to the tip [98�100]. (a) STHM image of a TTCDA island on
Au(111). Clearly visible are the three naphthalene units forming the carbon
backbone of the molecule (see red ellipses). 50Å× 50Å, 0.1 nA, −11mV.
(a) STHM image of a single QTCDA molecule on Au(111) bound to a defect.
As defects tend usually to change the tip, the image was not fully scanned.
In this way the CO molecule on the tip was preserved. Also here the four
characteristic naphthalene units are visible. 25Å× 25Å, 0.05 nA, −10mV.

35





3 Theory of transport

3.1 Introduction

In this chapter the theoretical concepts to understand the charge transport through

molecular junctions are worked out. In the �rst part the description of the charge trans-

port through mesoscopic conductors, e.g. a molecule, is described. Introducing the Lan-

dauer formalism the concept of ballistic transport is introduced. In the second part the

concept of double barrier tunneling, as is found in molecular junctions, is discussed. Fi-

nally the vibration-electron coupling and the Kondo e�ect are introduced, as they will

be observed in the experiments discussed in chapter 4.

3.2 Ballistic transport

The conductance of a conductor contacted by two contacts (see Fig. 3.1a) can be ex-

pressed with the material dependent conductivity σ by the following equation [101]:

G = σW/L (3.1)

where W is the width of the conductor and L its length. According to this equation,

the conductance is growing in�nitely as the length of the conductor L is reduced. It is

found however that the conductance is saturating at Gc when the length of the conductor

is much smaller than the mean free path Lm. The resistance limiting the conductance

is resulting from the interface between the conductor and the contacts. Therefore this

resistance is referred to as contact resistance G−1
c . This contact resistance is the conse-

quence of the current, which is carried by in�nite modes in the contacts, having to be

redistributed on a few modes in the conductor (see Fig. 3.1b). Furthermore re�ectionless

contacts have to be assumed, i.e. an electron can move from a narrow conductor to a

wide contact with negligible probability of re�ection.
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Figure 3.1: (a) Ballistic conductor with length L and width W . If the length of the
conductor is smaller than the mean free path L < Lm, the conductance of the
conductor is saturating at a value Gc. This is a result of the contact resistance
G−1

c . (b) The contacts left and right of the conductor have an in�nitely
number of modes. In the ballistic conductor the number of transverse modes
is discrete. The current through the ballistic conductor is carried by the +k
states of the transverse modes in the energy range between µ1 and µ2. (c)
The distribution of the electrochemical potential. The voltage drop occurs at
the interface between contacts and conductor (after [101]).
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The current is carried by a few transverse modes N in the conductor (see Fig. 3.1b). With

the dispersion relation E(N, k) a cut-o� energy εN = E(N, k = 0) can be attributed to

each mode. The number of modesM at a certain energyE is given by

M(E) =
∑
N

ϑ(E − εN ) (3.2)

The current through the conductor can be calculated by summing up the current trans-

ported by each mode N . An electron gas with an electron density n moving with

the velocity v result in the current I = env. The electron density of a +k state

in a conductor of length L is (1/L). With this the current can be expressed as fol-

lows:

I+ =
e

L

∑
k

vf+(E) =
e

L

∑
k

1

~
δE

δk
f+(E) (3.3)

with a function f+(E), which describes the occupation of the +k states and the charge

of an electron e. By replacing the sum
∑

k with an integral 2 (for spin) ∗ L
2π

∫
dk the

current is:

I+ =
2e

h

∫ ∞
ε

f+(E)dE (3.4)

with the Planck constant h and the cut-o� energy ε. With the number of modes M at a

certain energyE (see equation 3.2) the current can be expressed as:

I+ =
2e

h

∫ ∞
−∞

f+(E)M(E)dE. (3.5)

If the number of modes is constant in the energy range between µ1 and µ2 the current

can be expressed as follows:

I =
2e2

h
M
µ1 − µ2

e
(3.6)

The contact resistance can then be written with the voltage (µ1−µ2)/e as:

G−1
c =

h

2e2M
≈ 12.9 kΩ

M
(3.7)
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where the contact resistance is decreasing with the number of modes M . The voltage

drop occurs at the interface of the contacts and the conductor as can be seen in Fig.

3.1c.

3.2.1 Landauer formula

In the previous section an ideal ballistic conductor was considered, i.e. a conductor where

the electrons can move without being scattered in the conductor. To account for the

scattering events the transmission probability T has to be introduced. This transmission

probability T gives the probability an electron has, entering the conductor on one side,

to exit the conductor on the other side.

We can assume that left of the conductor the +kx states are occupied by electrons at

the electrochemical potential µ1 and right of the conductor the −kx states are occupied

by electrons at the electrochemical potential µ2 (see Fig. 3.1b). If the temperature

is zero, than the current is driven by electrons in the energy range between µ1 and

µ2.

If the current from the left side into the conductor is given by:

I+
1 =

2e

h
M [µ1 − µ2], (3.8)

than the current from the conductor out to the right side is equation 3.8 times the

transmission probability T :

I+
2 =

2e

h
MT [µ1 − µ2]. (3.9)

If the transmission probability T is not unity, than part of the current is re�ected at the

right interface of the conductor:

I−1 =
2e

h
M(1− T )[µ1 − µ2]. (3.10)

With this the net current I = I+
1 − I

−
1 = I+

2 through the conductor is given by equation

3.9. Together with the voltage across the conductor µ1−µ2

e the conductance can be

expressed by the Landauer formula [101]:
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G =
I

(µ1 − µ2)/|e|
=

2e2

h
MT. (3.11)

with the number of modesM , the transmission probability T and the conductance quan-

tum 2e2

h . This means the conductance does not depend on the widthW of the conductor,

but instead the conductance is discrete and depends on the number of transverse modes

M . Further the contact resistance is independent of the length of the conductor L. If all

electrons entering from one side exit the other side of the conductor (T = 1), equation

3.7 for the contact resistance is recovered.

3.2.2 Transmission probability

The transmission probability T of a conductor of length L is typically not unity as the

electrons can scatter [101]. Its dependence on the length can be expressed as:

T (L) =
L0

L+ L0
(3.12)

with the characteristic length L0 which is on the order of the mean free path, i.e. the av-

erage distance of an electron between two scattering events.

Considering two conductors connected in series (see Fig. 3.2a) one could assume that the

net transmission T12 through the series is

T12 = T1T2 (3.13)

This is wrong, as it would mean that the transmission is going down exponentially

with the length of the series of conductors T (L) = exp[L/L0] and that Ohm's Law

(see equation 3.1) is not true. To get the real transmission T12, the probabilities of all

path have to be added, i.e. the path which the electrons undergo which are multiply

re�ected by the resistors in the series (see Fig. 3.2b). The phase relation between the

path can be neglected assuming that the phase-relaxation length is much shorter than

the distance between two resistors. The net transmission is then gained by summing

up the transmission with no re�ection, with two re�ections, with four re�ections and so

on:
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Figure 3.2: (a) Two conductors connected in series with transmission probability T1 and
T2 and re�ection probability R1 and R2. (b) When all phase information
are neglected, the net transmission can be calculated by summing up the
transmission with no re�ection, with two re�ections, with four re�ections
and so on. (after [101]).

T12 = T1T2 + T1T2R1R2 + T1T2R
2
1R

2
2 + ...

=
T1T2

1−R1R2

(3.14)

This can be rewritten using T1 = 1−R1 and T2 = 1−R2:

1− T12

T12
=

1− T1

T1
+

1− T2

T2
(3.15)

From this the transmission probability of N conductors in series, each with an individual

transmission probability T is given by:

T (N) =
T

N(1− T ) + T
(3.16)

With the density of scattering events ν = N/L, i.e. the number of scatterers N in a

conductor of length L, equation 3.12 is recovered:
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T (L) =
L0

L+ L0
(3.17)

Finally the total resistance can be written as a combination of the contact resistance and

the resistance of the conductor:

G−1 =
h

2e2M

1

T
=

h

2e2M
+

h

2e2M

1− T
T

(3.18)

3.3 Molecule in a vacuum junction

In chapter 2 the scanning tunneling microscope (STM) was introduced. The working

principle of the STM is based on the tunneling e�ect, i.e. transport which is characterized

by the probability of a particle to cross a potential barrier which is classically forbidden.

It was found that this transmission probability decays exponentially inside the barrier.

The e�ective tunneling barrier height, which is de�ned as the energy di�erence between

the particle energy E and the potential barrier Φ, as well as the barrier width z de�ne

the transmission probability. With the mass of the particle m the tunneling current is

then given as:

I ∝ e−2κz where κ =

√
2m

~
(Φ− E) (3.19)

By introducing a molecule into the vacuum gap we observe the system which was probed

in this thesis. As the molecule is contacted by the electrodes charge �ow, charge rear-

rangement and geometric reorganization takes place [32]. A simpli�ed picture of the elec-

tronic structure after contact formation is given in Fig. 3.3 [102].

In Fig. 3.3a the Fermi level of the metal electrodes is lying in between the lowest unoccu-

pied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO). The

Fermi level can not only lie in the middle of the two orbitals, but anywhere in between

them. The transport through such a junction is de�ned by two properties. The coupling

between the electrodes and the molecule Γ and the charging energy of the molecule U .

When Γ < U than the coupling is weak, for Γ > U strong coupling is observed. In Fig.

3.3a-c the molecule-electrode coupling Γ is increasing from left to right. The increase

of the coupling is re�ected by a broadening of the energy levels of the molecule. This
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happens as the molecular energy levels mix with the metal states. For some coupling a

Kondo resonance (see section 3.5) may be observed.

In Fig. 3.3d-g the transport through a quantum dot (QD) is depicted. This picture can

be used to understand the transport through a metal-molecule-metal junction. This can

be done as the transport properties of a molecule and a QD in the conductance behave

very often similar [102]. To have a signi�cant current �ow the molecular orbitals have to

be brought to the Fermi level EF such that resonant tunneling is enabled. By mechanical

gating or a gate voltage Vg (3.3e) the energy levels can be brought in resonance and hence

electrons can tunnel through the junction. Another possibility is to bring the Fermi

level EF of the electrodes up to a molecular orbital by applying a bias voltage (3.3f).

When vibrational modes appear, resulting from interaction of electrons and molecular

vibrations, additional transport channels can be opened. This is the consequence of

incoherent tunneling (see section 3.4).

3.3.1 Coherent resonant tunneling in a double-barrier

A double-barrier, as will be discussed in this section, consists of two potential barriers

which are separated by a few nanometers [101]. The double-barrier is observed in molec-

ular junction, where the �rst barrier is the tip-molecule contact and the second barrier

is the molecule-substrate contact [103]. One could assume that the current through such

a double-barrier can be understood on the basis of a single-barrier. According to Ohm's

Law to get the same current through a double-barrier as through a single-barrier the

voltage has to be doubled. This is not the case!

The di�erent characteristic between the conductance through a single-barrier and a

double-barrier is the consequence of the energy quantization between the barriers. If

the spacing between the two barriers is small enough, than only a single energy state EΓ

is allowed between the barriers (see Fig. 3.4). This state acts like a �lter and only lets

through electrons at the energy EΓ. By applying a voltage between the two barriers the

energy of this single state can be changed. With this it is possible to probe the density

of states of the right and left electrode at di�erent energies. At some voltage V = VT the

energy of the state between the barriers lies below the conduction band of the electrode.

In consequence the current-voltage (I − V ) curve shows a sharp drop, as no more state

is in the probed energy range. By further lowering the voltage the current can increase

again. This e�ect is called negative di�erential resistance (NDR). It was �rst observed by
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Chang et al. [104] in a double-barrier structure made by a thin GaAs layer sandwiched

between two GaAlAs barriers.

To calculate the I − V characteristics the Landauer formula as given in 3.11 has to

be modi�ed. This has to be done, as the transmission probability can depend on the

energy. In fact it is found, that at non-zero temperature and non-zero bias the trans-

mission has to be described by the transmission function T̄ (E) = M(E)T (E). With the

Fermi functions f1(E) and f2(E) for the two contacts the current can be described as

follows:

I =
2e

h

∫
T̄ (E)[f1(E)− f2(E)]dE (3.20)

by approximating the Fermi functions to step functions equation 3.20 can be simpli�ed

to

I =
2e

h

∫ µ2

µ1

T̄ (E)dE (3.21)

The transmission function is given by:

T̄ (E) =
∑
m

TL(E − εm) =
Γ1Γ2

Γ1 + Γ2

∑
m

A(E − Em) (3.22)

where

Em = EΓ + εm (3.23)

with the longitudinal resonance energy EΓ, the transverse mode m with its energy εm,

the coupling of an electron in the barrier to the left and right contact Γ1 and Γ2, i.e. the

rate at which an electron leaks out from the barrier into the right or left contact. The

Lorentzian function A(ε) is de�ned as follows:

A(ε) =
Γ

ε2 + (Γ/2)2
(Γ ≡ Γ1 + Γ2) (3.24)

The transmission function has now to be integrated as shown in equation 3.21 to get the

current. The integration is done from εm to µ1 as no transmission is possible if the total
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energy is smaller than the energy of the transverse mode (E < εm). With this we get

the current carried by one transverse mode:

Im =
2e

h

∫ µ1

εm

T̄ (E)dE =
2e

h

Γ1Γ2

Γ1 + Γ2

∫ µ1

εm

A(E − Em)dE (3.25)

Thus the current per transverse mode is equal to the area its Lorentzian function is cover-

ing in the energy range between εm and µ1. If the Lorentzian function covers the whole en-

ergy range, than the current is maximized, this is the so-called resonant condition (see Fig.

3.5a). The maximum current per mode is than given by:

IP =
2e

~
Γ1Γ2

Γ1 + Γ2
(3.26)

This means that the current per mode is approximately IP if the mode is resonant and

zero if the mode is non-resonant (see Fig. 3.5b).

3.3.2 Incoherent tunneling

In the previous sections coherent tunneling processes were discussed. This means that

the electrons traveling through the double-barrier did not lose their phase memory. The

prerequisite for coherent tunneling is that the time the electron spends in the double-

barrier is short compared to the scattering time τϕ. In molecular junctions however it

is observed that the tunneling electron interacts with the vibrations of the molecule.

This electron-vibration interaction can change the transport from coherent to incoherent

[105]. In the following the incoherent tunneling processes will be described, a distinction

between the resonant (see Fig. 3.4a) and the o�-resonant (see Fig. 3.4c) transport will

be made.

To distinguish between coherent and incoherent transmission the scattering rate Γϕ is in-

troduced [101]. It is proportional to the scattering time τϕ:

Γϕ ≡ ~/τϕ (3.27)

with ~ = h
2π the reduced Planck constant or Dirac constant. Comparing this scattering

rate to the coupling parameters Γ1 and Γ2 the transport can be characterized as mainly

coherent if:
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Γ1 + Γ2 � Γϕ (3.28)

or incoherent if:

Γ1 + Γ2 ≤ Γϕ (3.29)

3.3.2.1 Resonant current

In Fig. 3.6 the electron paths in a double-barrier are depicted. Only a part of the electrons

can pass the double-barrier coherently. Some electrons get scattered, e.g. by electron-

vibration coupling [105]. The coherent resonant current per mode is given as (compare

with equation 3.26):

Icoh =
2e

~
Γ1Γ2

Γ1 + Γ2 + Γϕ
(3.30)

The scattered current per mode is very similar to the coherent resonant current per

mode. The only di�erence is the replacement of Γ2 by Γϕ. This is reasonable, as the

scattered electrons can be thought of passing through a third barrier with coupling Γϕ.

The scattered current is then given as:

Is =
2e

~
Γ1Γϕ

Γ1 + Γ2 + Γϕ
(3.31)

These scattered electrons are reinjected. This reinjected current gets split and moves to

barrier '1' and '2' with the ratio Γ1 : Γ2. The part of the reinjected current which goes

through barrier '2' is the incoherent current:

Iincoh =
Γ2

Γ1 + Γ2
Is =

Γϕ
Γ1 + Γ2

Icoh (3.32)

The total current through the double-barrier is then given by summing the coherent and

the incoherent current:

I0 = Icoh + Iincoh =
2e

~
Γ1Γ2

Γ1 + Γ2
(3.33)
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This is the same current that was determined in the case of resonant tunneling without

scattering events (see equation 3.26). This means that the scattering has no in�uence on

the current in the case of resonant tunneling.

3.3.2.2 O�-resonant current

The o�-resonant current is very small, as was observed e.g. by Chang et al. [104].

It is found in experiments however that the valley current in NDR is higher than

theory predicts (see e.g. [106]). This is the consequence of electron scattering and

thus incoherent transport [107]. The transport behavior di�ers between the resonant

and the non-resonant condition. The main di�erence is that in the resonant condi-

tion the resonance lies fully in the energy range of the electrons, while in the non-

resonant condition the resonance lies outside the energy range of the electrons (see Fig.

3.5).

If we treat the non-resonant condition as the resonant condition the current can be

described as was shown in equation 3.30 to 3.33. The coherent current is then given

by:

IV,coh =
2e

~
KΓ1 where K ≈

∫ µ1

0

Γ2dE

(E − EΓ)2
(3.34)

And the scattering current is given by replacing Γ2 with Γϕ:

Is =
2e

~
gΓ1 where g ≈

∫ µ1

0

ΓϕdE

(E − EΓ)2
(3.35)

In contrast to the resonant condition, in the non-resonant condition all reinjected elec-

trons (see Fig. 3.6) exit the double-barrier via barrier '2'. This is the consequence of no

states being available at barrier '1' at the energy of the reinjected electrons EΓ. There-

fore the incoherent current is the same as the scattering current in the non-resonant

condition:

IV,incoh =
2e

~
gΓ1 where g ≈

∫ µ1

0

ΓϕdE

(E − EΓ)2
(3.36)

The total o�-resonance current is then given by summing the coherent and the inco-

herent current. This can be done if low temperatures are assumed, as in this case no

48



3 Theory of transport

electron that lost energy by emitting a photon can absorb a photon to gain energy

again:

IV = IV,coh + IV,incoh =
2e

~
[KΓ1 + gΓ1] (3.37)

This equation can not be correct, as it would mean that there is still a current even when

barrier '2' is so thick that the coupling of the resonance to the contact is zero (Γ2 = 0).

To overcome this problem equation 3.36 has to be modi�ed such, that the incoherent

current gets zero ones the resonant level is �lled up with electrons. This is done by

introducing a occupation factor fΓ for the resonant level:

fΓ =
gΓ1

gΓ1 + Γ2
(3.38)

With this factor the occupation of the resonant level in dependence of the coupling

to both contacts can be determined. The occupation of the resonant level is zero if

Γ2 � gΓ1. When Γ2 ≈ gΓ1 the resonant level starts to �ll up and the current is

decreasing. The incoherent current can then be expressed as follows with the occupation

factor fΓ:

IV,incoh =
2e

~
gΓ1(1− fΓ) =

2e

~
gΓ1Γ2

gΓ1 + Γ2
(3.39)

The total o�-resonant current is then expressed as follows:

IV = IV,coh + IV,incoh =
2e

~
[KΓ1 +

gΓ1Γ2

gΓ1 + Γ2
] (3.40)

With this one can compare the peak and the valley current, i.e. the current in the resonant

(see equation 3.33) and in the non-resonant condition (see equation 3.40). The current

depend on the coupling parameters as follows:

Ires ∼
1

Γ1
+

1

Γ2
and Ioff−res ∼

1

gΓ1
+

1

Γ2
(3.41)

This means that the ratio between the resonant and the o�-resonant current critically

depends on the coupling parameters Γ1, Γ2 and Γϕ.
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Figure 3.3: Schematic representation of the energies of a molecule in the tunneling junc-
tion. As the molecule gets into contact with the metal electrodes, charge is
�owing until the Fermi level of the metal is in between the HOMO-LUMO
gap of the molecule. (a)-(c) The HOMO-LUMO gap gets smaller and the
orbitals are broadened when the coupling Γ between molecule and electrodes
is increasing. (d)-(g) To enable the electron transport the energy levels of
the molecule have to be aligned with the Fermi level EF of the electrode.
Vibrational modes µ∗ can create additional transport channels (from refer-
ence [102]).
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Figure 3.4: Double barrier with (a) no bias applied to the contacts, (b) a bias applied,
such that the electrons tunnel through the barrier at the bottom of the con-
duction band and (c) a bias applied, such that the only energy state in the
barrier is o�-resonance (after [101]).
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Figure 3.5: The area under the Lorentzian shaped transmission function gives the current
carried by a mode. (a) In the resonant condition the current is maximized, as
the Lorentzian shaped transmission function covers the whole energy range
from the transverse mode energy εm to the electrochemical potential µ1. (b)
In the non-resonant condition the current is zero (after [101]).

Figure 3.6: Double barrier with scattering events. Barrier '1' and '2' with scattering
matrices. (a) Some of the electrons pass the barrier coherently, some are
scattered. (b) The scattered electrons are reinjected, some of the reinjected
electrons pass through barrier '2'. This is the incoherent current (after [101]).
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3.4 Molecular vibrations

Due to thermal excitation molecules are vibrating. When an electron and a molecular

vibration interact the conductance is typically increased in the tunneling junction [108,

109]. This interaction is measured by inelastic electron tunneling spectroscopy (IETS)

[108]. The signal measured by IETS can help to gain further knowledge about the

molecules adsorption site, orientation and changes in bonding upon adsorption [109,

110].

The �rst time molecular vibrations in tunneling junctions were observed by Jaklevic et

al. [111]. In their experiment a molecular monolayer was deposited on the oxide layer of an

metal-oxide-metal junction. A bias voltage was swept up to 1V and the tunneling current

was measured. In the bias range 0.05V to 0.5V they observed that the di�erential con-

ductance dI/dV is increasing stepwise at certain voltages and thus peaks are observed in

the second derivative of the tunneling current d2I/dV 2 at those voltages. These voltages

were then identi�ed to be resulting from vibrational modes of the molecules in the junc-

tion, namely C-H and O-H bending and stretching modes.

The observed conductance increase is described as follows [68]. When a electron has

su�cient energy it can excite a vibrational mode of the molecule. Depending on the

energy level alignment and the applied bias voltage non-resonant or resonant electron-

vibration coupling may be observed. In the non-resonant case the highest occupied

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are far

away from the applied bias voltage. The molecular vibrations are triggered by inelastic

scattering of the tunneling electrons at the molecule. The electrons loose energy and

by this a new transport channel opens which is observed as a step in the di�erential

conductance dI/dV . This scattering e�ect is very weak, which makes the observation

of the conductance increase di�cult. This picture changes as the molecule has a state

very close to the Fermi level. If the molecular junction is now probed near the Fermi

level, resonant electron tunneling is observed. The electron-vibration coupling opens a

resonant transmission channel. This leads to the observation of peaks in the dI/dV

spectra. The condition for the observation of vibrational modes is given by eV = hΩ,

with Ω the frequency of the vibrational mode, h Planck's constant and eV the energy of

the electron.
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3.5 The Kondo e�ect

The resistance of metals is limited by defects, vacancies and impurities on one side and

the nuclei motion on the other. As a metal is cooled down the motion of the nuclei

gets smaller until it almost disappears at some temperature T . One would expect the

resistance to be constant when cooling further down the metal as defects, vacancies and

impurities are not temperature dependent.

In 1934 however de Haas, de Boer and van den Berg from the Kamerling Onnes Lab-

oratory in Leiden discovered that gold had a resistance minimum at 3.7K [112]. That

implies that there is another scattering mechanism which gets dominant at low tempera-

tures. It was not until 1964 that Sarachik et al. [113] made a relation between this newly

discovered resistance at low temperatures and localized magnetic moments due to impu-

rities in metals. In the same year Jun Kondo [114] published a theoretical description

of this e�ect, which involved a scattering e�ect between the localized magnetic moment

and the delocalized electron cloud of the metal.

The prerequisite for the observation of Kondo physics is the quantization of charge and en-

ergy. This can be achieved by the con�nement of electrons in space. Therefore the Kondo

e�ect can be observed on various systems, as long as the electrons are con�ned, such as

in single atoms, single electron transistors and molecules. The Kondo e�ect was found

in many di�erent systems, e.g. Ce adatoms on a Ag(111) surface [115], single electron

transistors (SET) [116], a Co ion connected by organic linkers to metal electrodes [24],

single-molecule transistors [25] or C60 molecules contacted by Au electrodes in a mechan-

ical break junction (MBJ) [117]. The Kondo e�ect was also observed as the coexistence of

local and non-local Kondo screening in a so-called Kondo lattice formed by O2 molecules

adsorbed along chains on a [Au(111)-1x2] surface [118].

The increase of the resistivity at low temperatures results from the interaction between

a localized unpaired electron, e.g. in a molecule, with the delocalized electron cloud in

metal electrodes. This means the Kondo e�ect results from an interaction between a

single particle with many particles. The unpaired electron is characterized by a spin,

this spin is screened by the delocalized electron cloud, i.e. a spin singlet state is formed

(S = 0). To screen the localized electron spin the delocalized electrons behave as a single

quantum-mechanical object.

In Fig. 3.7 a double-barrier structure is depicted as it is observed in a metal-molecule-

metal junction [116]. The charging or Coulomb energy U is the energy needed to add or
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remove one electron in a molecule. ∆ε is the energy di�erence between two molecular

orbitals. This energy ∆ε increases the smaller the molecule is. Γ is the coupling strength

of the molecular orbital in the barrier to the electrodes. This strength of the coupling

is given by the width of the orbitals electronic state. The larger Γ is, the stronger

the coupling between the orbital and the electrodes. When Γ � ∆ε the energy and

charge quantization is lost as electrons can �uctuate between the molecule and the metal

electrodes.

To observe the Kondo e�ect the energy kBTK must be smaller than the coupling Γ, with

kB the Boltzmann's constant and TK the Kondo temperature. In order to measure the

Kondo e�ect the energy di�erence ∆ε between two orbitals has to be large, as found

e.g. in the π-conjugated molecules probed in the context of this thesis. In this way the

coupling Γ can be large and thus the temperature at which the measurement takes place

is accessible with a LT-STM. Later it will be shown that by lifting the molecule from

the metal substrate the coupling Γ of the electronic state to the electrodes can be tuned.

Further the energy of the lowest unoccupied molecular orbital (LUMO) can be tuned such,

that the orbital is singly occupied at an energy ε0 = 0mV.

The electrons in a molecule occupy orbitals, with an occupancy of two electrons of op-

posite spin per orbital. In consequence the inner energy spacing of an orbital is given by

the charging energy U . The energy spacing between two orbitals is given by the inner

energy spacing and the energy di�erence between two orbitals U+∆ε. When a molecular

orbital at the Fermi energy is singly occupied, then an increase of the zero-bias di�eren-

tial conductance can be observed at low temperatures. This conductance increase results

from the Kondo e�ect. The localized unpaired electron in the orbital is screened by the

conducting electrons in the electrodes to form a spin singlet. This increases the density

of states at the Fermi energy and thus the conductance. Hence the energies have to ful�ll

following criteria so that Kondo physics can be observed:

U

Γ
� ε0 (3.42)
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Figure 3.7: Energy diagram of a double tunneling barrier with a molecule in between the
barriers. The bias voltage between the electrodes is zero. The Fermi energy
is in the conductance minimum between two states of the same molecular
orbital. The charging energy U is needed to add or remove one electron in a
molecular orbital. To add an electron in the lowest excited state the energy
U + ∆ε is needed. The width of a state Γ gives the coupling strength of the
state to the electrodes. To observe the Kondo e�ect at low temperatures the
following energy relation has to be given: U/Γ� ∆ε (after [116]).

3.6 Conclusions

In this chapter an overview about the theoretical concepts of charge transport through

metal-molecule-metal junction was given. The discussion was started by introducing

the Landauer formalism to describe ballistic transport. It was shown that the cur-

rent is discrete and depends on the number of transverse modes. Then double-barrier

tunneling, which is the transport observed in metal-molecule-metal junction, was de-

scribed. Thereby the di�erences between coherent and incoherent tunneling in the

resonant and non-resonant condition were worked out. The transport through the π-

conjugated molecules studied in this thesis seems to be o�-resonant coherent tunneling.

Finally some physical observations of a molecule in a vacuum junction were introduced,

such as the interaction between molecular vibrations and tunneling electrons and the

Kondo e�ect.
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molecules

4.1 Introduction

To obtain an understanding of the charge transport through a molecule it is of great

importance to known its electronic structure. As soon as a molecule gets into contact

with a metal surface, its electronic structure changes [32,35,36]. Therefore it is important

to probe the density of states of each molecule-metal system before performing transport

experiments. The density of states and the coupling strength (see chapter 3) between

the molecule and the electrodes de�ne the charge transport through the junction tip-

molecule-substrate.

Four di�erent molecules were probed on two di�erent metals in this thesis, namely

the four planar π-conjugated molecules NTCDA (1,4,5,8-naphthalene-tetracarboxylic-

dianhydride), PTCDA, TTCDA and QTCDA (see Fig. 4.1) on Ag(111) and Au(111).

These molecules were chosen as they represent a family of wires which allow a systematic

study of the transport as a function of length, the end groups being identical (see chapter

1). It was not possible to prepare clean QTCDA islands on Au(111) since the molecules

were deposited unintentionally together with another, unknown type of particle which

could not be separated from the QTCDA molecules on Au(111). Hence the electronic

structure of QTCDA on Au(111) could not be probed (for more details see chapter 6).

The electronic structure of the other seven systems are presented in this chapter. While

making this investigation, a Kondo resonance was discovered for NTCDA on Ag(111).

This system was then studied in more depth, and the results of this study are discussed

in the second part of this chapter.
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Figure 4.1: The structure models of the four planar π-conjugated molecules investi-
gated. From left to right: NTCDA (1,4,5,8-naphthalene-tetracarboxylic-
dianhydride), PTCDA, TTCDA and QTCDA. The molecules have a carbon
backbone consisting of naphthalene units. On each short side the molecules
are terminated by two carboxylic oxygen atoms and one anhydrate oxygen
atom (red dots). The long sides are terminated by hydrogen atoms (not
shown here).
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4.2 Electronic structure of the seven systems

To measure the electronic structure the molecules were deposited on metal surfaces and

then probed by scanning tunneling spectroscopy (STS). To be able to probe molecules

inside a molecular island and at the same time have areas of clean metal to prepare the

tip a submonolayer coverage was chosen. This is important as the tip should have no tip

states when it is used to measure the di�erential conductance spectrum of a molecule

(see section 2.3.2). This is realized by recording a scanning tunneling spectrum of the

bare metal surface with the tip. If this spectrum exhibits the Shockley surface state as its

most prominent feature, the tip is considered as suitable, because the measured electronic

structure of the surface is barely in�uenced by tip states (see Fig. 2.7). If this is not the

case, the tip has to be cleaned by dipping it slightly into the bare metal substrate and

then check its electronic structure again (see chapter 2.2.5).

4.2.1 Electronic structure of the Ag(111) systems

In Fig. 4.2 the spectra measured for the four molecules on Ag(111) are shown. Each

spectrum was taken with the tip placed above a molecule within a molecular island.

The peaks in the range −500mV to 0mV are the former lowest unoccupied molecular

orbitals (LUMO) of the free molecules (see arrows in Fig. 4.2). Upon adsorption charge

is transferred from the metallic substrate into the LUMO, this shifts the LUMO below

the Fermi energy [66,119,120]. This is known for PTCDA and NTCDA, and we assume

this to be true for TTCDA and QTCDA as well. The second feature, the onset of a

sharp step in the bias voltage range 300mV to 700mV, is the signature of the mixing

of the LUMO+1/LUMO+2 molecular orbitals with the depopulated Ag(111) surface

state [66,120].

In the case of NTCDA on Ag(111) two distinct types of molecules are observed within

the molecular layer. Type A is characterized by a bright contrast in the STM image

and has a sharp resonance at the Fermi level (shown in Fig. 4.2). Type B is char-

acterized by a darker contrast in the STM image and has its LUMO at −30mV (no

sharp feature at the Fermi level). This will be investigated in more detail later in this

chapter.

PTCDA on Ag(111) is characterized by two types of molecules (A+B) in the submono-

layer herringbone phase [39, 66, 67, 119�121]. This is the consequence of the di�erent

alignment of the two types with the Ag(111) substrate [121]. Type A molecules are

59



4 Electronic structure of π-conjugated molecules

Figure 4.2: Scanning tunneling spectra (STS) of the four molecules investigated on
Ag(111). The spectra were taken on molecules within the molecular island
on a substrate with submonolayer coverage. In the range −500mV to 0mV
the former lowest unoccupied molecular orbitals (LUMO) are visible. The
orbitals shift to negative values upon adsorption of the molecules with the
metal surface. Due to the overlap of the wave functions a charge redistribu-
tion occurs [119]. The steps in the range 300mV to 700mV are signatures of
the mixing of the LUMO+1/LUMO+2 molecular orbitals with the depopu-
lated Ag(111) surface state [66, 120]. In the case of NTCDA the electronic
structure of the bright molecule (type A) is shown. It is characterized by
a sharp peak at the Fermi energy. This is the signature of a new transport
channel opening (more details in section 4.4.1). For PTCDA on Ag(111) the
electronic structure of type A is shown [39,66,67,119�121].
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perfectly aligned with the [101̄] Ag lattice direction and type B molecules are rotated by

18± 2◦ within respect of the [01̄1] direction [121]. Both molecules have slightly di�erent

LUMO positions. In Fig. 4.2 the electronic structure of a type A molecule with its LUMO

at −190mV is shown.

For a better representation the position of the LUMOwas plotted against the length of the

molecule (see Fig. 4.3). The longer a molecule is, the more its LUMO is shifted to larger

binding energies. A linear relation between the LUMO position and the molecule length is

observable, with a regression coe�cient of βAg(111) = −41mV/Å.

The behavior can be explained by the in�uence of the electron a�nity (EEA) on the level

alignment. To zero order, the level alignment at the molecule-metal interface can be

predicted by vacuum level alignment. The larger the EEA of the molecule, the larger the

binding energy of this orbital after interface formation and charge transfer. The results

of Fig. 4.3 therefore imply that EEA rises in the sequence NTCDA to QTCDA. This

is to be expected, since the smaller a molecule is the larger is the energy gap between

the orbitals. In consequence the electron a�nity EEA of the �lled lowest unoccupied

molecular orbital increases the longer the molecule is. The same tendency is found when

discussing the delocalization of the electrons. The longer the molecule is the smaller is

the electron con�nement. Hence the electron a�nity EEA is increasing the longer the

molecule is.

Of course adsorption changes the work function Φ0 of the surface, and this will addition-

ally in�uence the energy level alignment. It is know that the work function Φ0 of the

bare Ag(111) surface is increased upon adsorption of PTCDA [122]. Two contributions

in�uence the work function change ∆Φ:

bend dipole Dbend As the PTCDA is adsorbed on the Ag(111) surface its carboxylic

oxygen bend towards the surface [123]. This creates a dipole moment which de-

creases the work function.

bond dipole Dbond Charge is redistributed between the Ag surface and PTCDA upon

adsorption. In consequence a bond dipole Dbond is formed which increases the work

function [122].

As the bond dipole is the more prominent contribution, a net work function increase is

observed for the system PTCDA/Ag(111) [122]. We assume here that a similar situation

prevails for the other molecules. Moreover it is known that the adsorption height of

PTCDA is smaller than the one of NTCDA on Ag(111) [124]. Again, we extrapolate this
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tendency to the adsorption height of TTCDA and QTCDA , i.e. the longer the molecule,

the smaller is the adsorption height. This could be explained by a superlinear increase

of the van der Waals interaction with the molecule size [125, 126]. As a consequence

of a smaller adsorption height, a smaller bond dipole is formed (assuming the same

charge transfer), and thus the work function increase is smaller the longer the molecule

is. This is depicted in Fig. 4.4 (note that the energy scales are largely exaggerated for

a better representation). The vacuum level Evac and the work function Φ0 refer to the

bare Ag(111) surface, with the Fermi energy EF. Upon adsorption of the molecules

the work function is changed, resulting in the new work functions ΦN, ΦP, ΦT and

ΦQ.

We can thus conclude that both the electron a�nity and the adsorption induced work

function change work in the same direction and together can explain the observed energy

level alignments for NTCDA, PTCDA, TTCDA and QTCDA on Ag(111).

4.2.2 Electronic structure of the Au(111) systems

In Fig. 4.5 the spectra measured for three molecules on Au(111) are presented. As for

the spectra taken on Ag(111), these spectra were taken on molecules within a molecular

island on a substrate with submonolayer coverage. The preparation of clean molecular

islands of QTCDA on Au(111) was not possible, therefore no spectrum was measured

for this system. The peaks in the bias voltage range 900mV to 1500mV stem from the

LUMO of the molecules (see arrows in Fig. 4.5). In contrast to the case of Ag(111)

the LUMO is not �lled upon adsorption of the molecules on Au(111). This means that

no charge transfer occurs as the molecule adsorbs on Au(111). It is a physisorption

process, i.e. the molecules are bonding to the surface by van der Waals interaction only

[43].

The LUMO is plotted against the length of the molecule in Fig. 4.6. Also here a linear

dependence between the molecule length and the LUMO position is observable, with a

regression coe�cient of βAu(111) = −79mV/Å. As on Ag(111) the LUMO position moves

to larger binding energies with increasing molecule length.

Since there is no charge transfer, there is no bond dipole. Also, no bending of the

molecule is expected. Nevertheless, combination of energy a�nities and work function

changes can also explain the energy level alignments of NTCDA, PTCDA, TTCDA and

QTCDA on Au(111). The argument based on EEA applies in precisely the same way

as on Ag(111). Regarding the work function change, it is known that even without the
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Figure 4.3: Position of the former lowest unoccupied molecular orbital (LUMO) plotted
versus the length of the molecule in the case of Ag(111). For NTCDA and
PTCDA both observed LUMO positions, as discussed in section 4.2.1, are
plotted. With increasing molecule size the LUMO position shifts to larger
binding energies. Considering only the LUMO positions marked in red a
linear dependency between the LUMO position and the molecule length is
observed. This trend can be explained by the work function increase upon
deposition of the molecules on Ag(111) and the di�erent electron a�nities
(see Fig. 4.4).

63



4 Electronic structure of π-conjugated molecules

Figure 4.4: Sketch of the energy level shifts upon adsorption of molecules on Ag(111).
For a better representation the energy scales are largely exaggerated. The
vacuum level Evac and the work function Φ0 refer to the bare metal surface.
As the molecules are adsorbed, the work function is changed, resulting in the
new work functions ΦN, ΦP, ΦT and ΦQ. The new work functions decrease the
longer the molecule is. This is a consequence of the smaller adsorption height
the longer the molecules is. This in return results in a smaller bond dipole
formation, which is responsible for the work function change. Additionally
the electron a�nity EEA is increasing the longer the molecule is. These two
e�ects together result in the observed LUMO position behavior.
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presence of charge transfer the push-back e�ect in�uences the work function [127]. This

push-back e�ect decreases the electron density at the surface and thus reduces the work

function. This decrease of the electron density is larger the longer and hence closer to

the surface the molecule is because for larger molecules physisorption interaction will be

larger.

Figure 4.5: Scanning tunneling spectra (STS) of the three molecules investigated on
Au(111). The spectra were taken on molecules within the molecular island.
A clean preparation of QTCDA on Au(111) was not possible, therefore no
spectrum was taken for this system. The peaks in the bias range 900mV to
1500mV are signatures of the LUMO of the molecules. In contrast to the case
of Ag(111) the LUMO is at positive values, i.e. upon deposition the molecules
physisorb on the metal, no charge transfer occurs.

In this section it was shown that the electronic structures of the molecules are signi�cantly

di�erent depending on which metal they are deposited. On Ag(111) the LUMO is below

the Fermi energy, i.e. charge is transferred from the metal to the molecular orbital, it
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Figure 4.6: Position of the lowest unoccupied molecular orbital (LUMO) plotted versus
the length of the molecule in the case of Au(111). For QTCDA no mea-
surement was performed. As in the case of Ag(111) the LUMO is at larger
binding energies the longer the molecule is. A linear dependency between the
LUMO position and the molecule length is observed, with a regression coe�-
cient twice as high as in the case of Ag(111). The decrease of the LUMO with
increasing molecule length can be explained by the work function decrease
upon deposition of the molecules on Au(111) due to the push-back e�ect and
the increase of the electron a�nity as was explained for Ag(111) (see Fig.
4.4).
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is a chemisorption process. In the case of Au(111) the LUMO stays at positive values,

i.e. the molecules physisorb, no charge transfer is observed. For both metals a linear

dependency between the LUMO position and the size of the molecule was found. This

was explained by the change of the work function upon adsorption of the molecules on

the dependence of the electron a�nity on the molecule size. In table 4.1 the positions of

the LUMO for all systems are summarized.

substrate molecule VLUMO[mV]

Ag(111)

NTCDA
0
-30

PTCDA
-190
-340

TTCDA -370
QTCDA -500

Au(111)
NTCDA 1500
PTCDA 1140
TTCDA 860

Table 4.1: Position of the LUMO, obtained by scanning tunneling spectroscopy (STS), of
the adsorbed molecules within the molecular layer. For NTCDA and PTCDA
on Ag(111) the �rst value refers to the type A molecule, the second value to
the type B molecule (see section 4.4.1) [39,66,67,119�121].

4.3 Investigation of NTCDA on Ag(111)

The case of NTCDA adsorbed on Ag(111) is particular interesting as the spectrum shows

a sharp peak at the Fermi energy. To get a better understanding of its origin the geometric

and electronic properties of this system were investigated in more detail. By STM in

UHV at low temperatures the system was imaged and by STS the electronic structure

was probed.

In earlier investigations on the system PTCDA/Ag(111) in our group, it was found that

a Kondo-like transport behavior is observable when the PTCDA is lifted up from the

surface [39, 66]. This can be explained by a reversed chemisorption as the molecule

is lifted. As the molecule-surface bond is reduced, the coupling Γs of the molecule to

the surface is lowered. At the same time, as the molecule is lifted the energy of the

molecular bonding orbital ε0 is shifted towards the Fermi energy EF (in accordance with
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the tendency discussed in 4.2.1). The correlation energy U , i.e. the Coulomb repulsion

between two electrons in one orbital (here: the LUMO), will also increase during the

lifting process, because as the molecule is removed from the metal surface, the screening

of the electron-electron interaction by the latter decreases. However with ≈ 0.5 eVto1 eV

this change is smaller than the change in Γ, such that the condition for the Kondo

e�ect,

U

Γ
� ε0 (4.1)

is increasingly ful�lled. With the total coupling Γ = Γt + Γs of the molecule to the two

electrodes tip and surface.

The physics of NTCDA on Ag(111) make the observation of the Kondo e�ect even more

likely. Because of its smaller size the correlation energy U of NTCDA is larger than

the correlation energy of PTCDA, also the coupling Γ to the metal electrodes is smaller

as the molecule is adsorbed at a larger adsorption distance [124]. Considering this, the

equation 4.1 is more likely to be ful�lled, even in the adsorbed state without lifting by

the tip. From this we can expect to observe a Kondo resonance at the Fermi level in the

spectrum of NTCDA on Ag(111).

Another motivation to investigate this system is the still ongoing debate about the

geometric structure of NTCDA/Ag(111). Stahl et al. [92] proposed two superstruc-

tures based on their low-energy electron di�raction (LEED) and STM experiments.

The so called �relaxed monolayer� is found at a low coverage of about 0.8 monolayers.

The molecules are arranged in a slightly twisted brick-wall structure with two NTCDA

molecules per unit cell. The �compressed monolayer� is found at a coverage of 0.9 mono-

layers. In this case the unit cell consists of four molecules which are arranged in a herring-

bone structure. In 2008 Kilian et al. [128] investigated the system with high-resolution

spot pro�le analysis low-energy electron di�raction (SPA-LEED). In contrast to earlier

results, they found three di�erent superstructures named α, α2 and β. α and β are the

structures introduced by Stahl et al. [92], but in contrast to them Kilian et al. [128] sug-

gested β to be incommensurate, while the new structure α2 was found to be uniaxially

incommensurate. The forming of the three structures depends on the coverage (0.9 to 1.0

monolayers) and is reversible by variation of the coverage.
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4.4 Geometric and electronic structure of NTCDA on

Ag(111)

In this section details about the geometric and electronic structures of NTCDA on

Ag(111) are discussed. The technical details of the sample preparation, i.e. the sput-

tering and annealing cycles and the deposition of the molecules are discussed in chapter

2.

Three di�erent geometric structures were found when imaging NTCDA on Ag(111) (see

Fig. 4.7). The di�erent structures were obtained by variation of the sample temperature

Tsample during the molecule deposition, the coverage of the sample and by variation of

the annealing procedure after the deposition of molecules.

4.4.1 The commensurate phase

The most commonly observed structure was the commensurate phase, also known as the

α structure or relaxed monolayer in previous publications [92,128]. This phase (see Fig.

4.7a) is obtained when a submonolayer is deposited with the sample at room temperature

Tsample ≈ 293K. The molecules form a brick-wall-like structure. The unit cell of this

phase consists of two NTCDA molecules. By STM the following lattice parameters were

derived for the unit cell: a = 15.1Å, b = 12.1Å and α = 91◦. In comparison, Stahl et

al. [92] found very similar parameters with LEED and STM: a = 15Å, b = 11.6Å and α =

90◦. The STM image shows di�erent brightnesses for the two molecules in the unit cell.

This can be explained by di�erent electronic structures of the two NTCDA molecules.

Di�erent electronic structures can be the result of di�erent adsorption sites and in-plane

arrangements and thus the consequence of di�erent molecule-substrate and/or molecule-

molecule interactions [120,121].

To probe the electronic structure of the two di�erent molecules, called type A and B

as introduced earlier, STS measurements (see section 2.3) were performed. The elec-

tronic structure was probed on both types of molecules inside molecular islands, i.e.

on molecules with four neighboring molecules. To probe the dependence of the elec-

tronic structure on molecule-substrate and molecule-molecule interactions, additionally

NTCDA molecules with less than four neighbors were probed. For this purpose molecules

were removed from an islands by vertical manipulation with the STM tip. By this a va-

cancy in the island was created (see Fig. 4.8), in which molecules in various di�erent
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Figure 4.7: Constant current images of the three di�erent phases observed for NTCDA
on Ag(111). By the red parallelograms the unit cells as discussed in this
section are depicted. (a) Commensurate phase with the unit cell containing
two molecules. The lattice parameters are a = 15.1Å, b = 12.1Å and α =
91◦. 100Å× 100Å, 0.1 nA, 50mV. (b) Incommensurate phase with a unit
cell which is 2% smaller than the commensurate unit cell (a = 15.3Å, b =
11.8Å and α = 91◦). The yellow line indicates the periodic length of the
superimposed moiré-pattern of about 17 molecules. 400Å× 400Å, 50 pA,
200mV. (c) Compressed phase, which has an unit cell of four molecules
(a = 21.4Å, b = 21Å and α = 121◦). Two molecules in this unit cell
have the same electronic structure, i.e. three di�erent electronic structures
are observed in the unit cell. The compressed phase is observed in stripes
which are incorporated into the commensurate phase. 100Å× 100Å, 0.1 nA,
50mV.
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con�gurations within respect of the neighboring molecules and the substrate were inves-

tigated.

Figure 4.8: Constant current image of a commensurate phase of NTCDA on Ag(111)
(100Å× 100Å, 0.1nA, 50mV). The STM tip was used to remove molecules
from the molecular island to create a vacancy. In the inset the NTCDA
layer is blown up (25Å× 25Å, 0.1 nA, 50mV). By the crosses the position
are indicated where the spectra of Fig. 4.9 were measured. The red cross
shows the position where the STS on the type A molecule (showing a bright
contrast) and the black cross where the STS on the type B molecule (dark
contrast) was recorded.

In the inset of Fig. 4.8 the black and red cross indicate were the STS spectra were

recorded. The bias voltage of the STM measurement in Fig. 4.8 was chosen such that

the LUMO of NTCDA is imaged [129]. The STS spectra shown in Fig. 4.9 were taken

on the outer lobe of the imaged molecule, i.e. in the region of the hydrogen atoms. The

red spectrum shows the measurement with the tip above the type A molecule, the black

spectrum the measurement above the type B molecule. For a better comparison of the

two spectra the red spectrum was normalized such that the broad peaks associated to

the LUMO in both spectra coincide. A remarkable di�erence between the two spectra is

the peak at V = 0mV in the red spectrum (marked by K). This could be the signature

of a Kondo resonance, as NTCDA likely ful�lls the criteria for the observation of Kondo
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physics, similar to the case of PTCA on Ag(111) [39]. The other features are present in

both spectra. The peak of width 400mV at V = −30mV is attributed to the LUMO

of NTCDA. The large step at V = 500mV is the signature of the LUMO+1/LUMO+2,

mixing with the depopulated Ag(111) surface state [66,120]. In the inset of Fig. 4.9 small

side-peak pairs marked by S, which are symmetrical within respect of the Fermi energy,

are visible. These side-peak pairs are signatures of molecular vibrations (see section 3.4)

which will be discussed in more details in section 4.5.

Figure 4.9: Scanning tunneling spectra recorded with the tip above the type A and B
molecules. For a better comparison the red spectrum was normalized. A
remarkable di�erence of the spectra is the peak at V = 0mV (marked by
K). The peak of width 400mV at V = −30mV is a feature of both spectra
and can be associated to the LUMO of NTCDA. The step at V = 500mV
is attributed to the LUMO+1/LUMO+2 and the depopulated surface state
[66, 120]. The side-peak pairs in the inset (marked by S) are signatures of
molecular vibrations (see section 4.5).

All molecules of type A show the peak at V = 0mV. However, these molecules are not

found everywhere. It seems that the appearance of a type A molecule depends crucially on

its environment. In Fig. 4.8 three molecules form a bridge in the vacancy which was made
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by removing single molecules with the STM tip. The two outer molecules in the bridge are

rotated by 90◦ compared to the molecules in the layer, i.e. they have a di�erent orientation

within respect of the substrate. Yet, they show the peak at V = 0mV, characteristic for

type A molecules. The molecule in the middle of the bridge is shifted from its row and

shows no peak at V = 0mV, i.e. it is a molecule of type B discernible also from its dark

appearance. The molecule left of the bridge is of type A showing the peak at V = 0mV,

breaking the symmetry of alternating type A and B rows.

Next to this vacancy other structures were probed. It was found that all single isolated

molecules observed so far, i.e. molecules with no neighbors, were of type B. The smallest

molecular cluster containing both types of molecules was a diamond structure of four

molecules (see Fig. 4.10). The occurrence of one of the two di�erent electronic structure

can be the result of three di�erent mechanism:

(1) The number of neighboring molecules and their position within respect of the probed

molecule determine the electronic structure, i.e. the molecule-molecule interaction.

(2) The adsorption site determines the electronic structure, i.e. the molecule-substrate

interaction.

(3) The electronic structure is de�ned by an interplay of the adsorption site and the orien-

tation within respect of neighboring molecules, i.e. the molecule-molecule and molecule-

substrate interaction.

From the observation made on the system NTCDA on Ag(111) is seems as the electronic

structure of a molecule is determined by the adsorption site. This is in contrast to

the observations made by Kilian et al. [130] on the system PTCDA on Ag(111) and

Willenbockel et al. [131] for the system PTCDA on Ag(110), where the authors showed

that the di�erent electronic structures observed were the result of the intermolecular

interaction.

4.4.2 The incommensurate phase

The incommensurate phase (see Fig. 4.7b) is obtained when the molecules are deposited

at submonolayer coverage. The unit cell of the incommensurate phase is about 2%

smaller than the commensurate unit cell: a = 15.3Å, b = 11.8Å and α = 91◦. The

molecules form a brick-wall-like structure, but with a superimposed moiré-pattern. In

their study on NTCDA/Ag(111) with SPA-LEED, Kilian et al. [128] found an incom-

mensurate phase α2 which had a slightly smaller unit cell than the commensurate phase
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Figure 4.10: Constant current image of four NTCDA molecules forming a diamond. The
upper and lower molecules are of type A, the left and right are of type B. This
was con�rmed by probing the molecules by STS, the red and black crosses
indicate where the spectra were taken. The type A molecules show the
characteristic peak at the Fermi energy, the type B molecules do not. This
is the smallest molecule cluster found which shows both types of NTCDA
molecules. 40Å× 25Å, 0.1 nA, 600mV.

α. It is therefore assumed that the incommensurate phase observed here is the α2 phase

observed by Kilian et al. [128].

The periodic length of the superimposed moiré-pattern is about 17± 2 molecules, indi-

cated by the yellow line in Fig. 4.7b. There was no indication found that the formation

of the commensurate or incommensurate structure depends on the exact submonolayer

coverage, i.e. at similar coverages of about 0.2 monolayers both structures were observed.

But it seems that the formation of an incommensurate or commensurate phase depends

on the thermal energy given to the molecules. The formation of the incommensurate

phase was observed for a deposition at Tsample ≈ 273K and also after heating up a

sample with a commensurate phase to Tsample ≈ 350K. This seems contradictory as on

the one hand the incommensurate phase is observed as the system gets less energy than

in the case of the commensurate phase. On the other hand the commensurate phase

transforms into an incommensurate phase by giving the system additional energy. Thus

the question remains open which mechanism is responsible for the phase transforma-

tion.

As for the commensurate phase a distinction between type A and B molecules can be

made for each molecule in the incommensurate phase. This was veri�ed by taking a

spectrum of each third molecule along a molecular row (see Fig. 4.11). Every spectrum
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can be associated either to a type A (red spectra) or type B (black spectra) molecule. No

intermediate types of molecules where found, either they show the Kondo resonance at

V = 0mV or not. From this one can conclude that very subtle changes in the geometrical

con�guration lead to the formation of the Kondo resonance.

Figure 4.11: On every third molecule along a molecular row in the incommensurate phase
a spectrum was taken. Every spectrum can be associated either to type A
(red spectra) or type B (black spectra), i.e. no intermediate type of molecule
is observed.

4.4.3 The compressed phase

The compressed phase (see Fig. 4.7c) was observed after a deposition at Tsample ≈ 273K

and a coverage close to a full monolayer. This phase is incorporated into the commen-

surate brick-wall structure and forms stripes. It consist of an unit cell of four molecules.

The observed stripes have a width of about 40Å and are not forming a regular pattern
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inside the commensurate phase, but are randomly distributed. Two of the four molecules

inside the compressed phase unit cell have the same electronic structure, i.e. three dif-

ferent electronic structures are found in the unit cell. The unit cell has the following

dimensions: a = 21.4Å, b = 21Å and α = 121◦. A single NTCDA molecule in the

unit cell of the compressed phase occupies in average an area of 96Å2, in comparison in

the commensurate unit cell a single molecule occupies in average an area of 92Å2, i.e. a

single NTCDA molecule has in average about 5% more space in the compressed phase

compared to the commensurate phase.

The coordinates of the three di�erent geometric phases found for NTCDA on Ag(111)

are summarized in table 4.2. The commensurate and incommensurate phases were re-

ported earlier by Kilian et al. [128] with very similar lattice parameters. It was shown

that the molecules in these two phases can be separated into the two types A and B

by their electronic structures. The striking feature of the type A molecules is a peak

around the Fermi energy observed in STS. The origin of this peak is a Kondo resonance

at the Fermi energy EF. The nature of this resonance is studied further in section 4.5

to 4.7. The compressed phase with four molecules in the unit cell was found to show

three di�erent electronic structures, revealed by their di�erent appearance in STM im-

ages.

Phase a [Å] b [Å] α [◦] Area [Å2] No. of mol. Area
Molecule [Å2/ mol.]

commensurate 15.1 12.1 91 183 2 92
incommensurate 15.3 11.8 91 180 2 90
compressed 21.4 21 121 384 4 96

Table 4.2: The coordinates of the unit cells of the three NTCDA phases observed by STM
on Ag(111).

4.5 Mapping the electronic structure within a molecule

In the previous section the di�erences in the scanning tunneling spectra of the two types

of molecules were discussed. It was found that the type A molecule shows a peak at the

Fermi energy, while the type B does not. The appearance of the resonance at the Fermi

energy was related to the Kondo e�ect. However, only spectra taken with the tip at the

position of the highest local density of states, i.e. in the region of the the hydrogen atoms,

were considered. In this section spectra taken on various spots within one molecule are
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discussed. By this the electronic structure of the molecule is mapped. Again, a distinction

between type A and B molecules is found.

4.5.1 Electronic structure within a type A molecule

In Fig. 4.12 four spectra recorded on a type A molecule are shown. Each spectrum was

measured at another position of the tip above the molecule. The arrow in the inset

of Fig. 4.12 indicates at which spatial position these spectra were taken. The �rst one

(black spectrum) was recorded with the tip above the region of the hydrogen atoms of a

type A molecule, i.e. at the position at which the spectra discussed in section 4.4 were

measured. The last spectrum (red) was measured with the tip above the center of the

molecule. The closer to the center of the molecule the spectra were taken, the smaller

the central peak K at the Fermi energy becomes. But even the spectrum taken in the

center of the type A molecule shows a small peak at K = 0mV. While the central peak

K is attenuated, the side-peak pair S1 (and to a lesser extent also S2) gets more and

more pronounced. The inner side-peak pair is found at S1 = ±53± 3mV, the outer at

S2 = ±118± 6mV.

To determine the origin of the side-peaks in the spectra of NTCDA/Ag(111) and their

dependence on the spatial position of the tip above the molecule, density functional theory

(DFT) calculations were performed in collaboration with Prof. Dr. Michael Rohl�ng from

the University of Osnabrück for NTCDA. In Fig. 4.13a the local density of states (LDOS)

of the LUMO of NTCDA is shown at two positions above the molecule. A few Å above

the molecule center, the LUMO has no amplitude. This is the result of the annihilation

of the positive and negative contributions to the LUMO in the region of the center.

This can be seen in Fig. 4.14b in the cutting plane perpendicular to the molecular plane

(solid line: Ψ(r) > 0, dashed line: Ψ(r) < 0). This cutting plane is indicated by a line

in Fig. 4.14a. In consequence of this annihilation elastic tunneling through the LUMO

is only visible when the tip is placed above the region of the hydrogen atoms (Fig.

4.14a).

This picture stays the same for most of the molecular vibrations except of one. The

displacement pattern of this particular vibration, with the phonon energy 50± 5meV, is

depicted in Fig. 4.14d. The particularity of this mode is the di�erent vertical displacement

direction of the atoms in the regions where the LUMO is positive respectively negative

(see Fig. 4.14c). This results in a considerable change of the LUMO LDOS above the

molecule (see Fig. 4.13b), since the earlier described annihilation process of positive and
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Figure 4.12: Scanning tunneling spectra of a type A molecule. The spectra were measured
along a line above the molecule. The black spectrum was taken with the tip
in the region of the hydrogen atoms, this corresponds to the red spectrum
shown in Fig. 4.9. The red spectrum was measured with the tip above the
center, the two other in between (see the arrow in inset with 21Å× 21Å,
0.1nA, 50mV). The closer to the center the spectrum was recorded, the
smaller the peak K at the Fermi energy gets. Contrary to that the side-peak
pairs, which were introduced in the inset of Fig. 4.9, at S1 = ±53± 3mV
and S2 = ±118± 6mV get more and more pronounced. The source of these
side-peaks are replicas of the central Kondo peak by inelastic tunneling due
to electron-vibration coupling [109,132,133].
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negative LUMO contributions gets weaker. This can also be seen in Fig. 4.14b and c,

whereas in Fig. 4.14b the positive and negative contributions are at same height, the

positive contributions in Fig. 4.14c are enhanced in a direction perpendicular to the

molecular plane.

The in�uence of the electron-vibration coupling on the di�erential conductance dI/dV

was introduced in section 2.3.3. It was shown that the electron-vibration coupling changes

the local density of state (LDOS) ρ(~r0, ε) and thus the di�erential conductance. This

change of the LDOS δρ was has a discontinuous part ∆ρ, which could be separated in an

inelastic contribution ∆ρinel and an elastic contribution ∆ρel. The inelastic contribution

was found to be responsible for a step-like increase of the di�erential conductance at the

vibrational threshold ε = ~Ω, with the reduced Planck constant ~ and the frequency of

the vibrational mode Ω.

In the present case the quasistatic limit has to be considered, as the energy of the

vibrational mode is approaching zero (~Ω → 0). In this case the inelastic term of the

LDOS change (see equation 2.14) can be written as [78]:

∆ρinel(~r0) = δQ2
∑
µ

|〈 δµ
δQ
|~r0〉|2δ(εF − εµ) (4.2)

where ∆ρinel denotes the inelastic part of the discontinuity of the change of the local

density of states δρ(~r0, ε) at the vibrational threshold caused by the electron-vibration

coupling. δQ2 = ~/(2MΩ) is the mean-square of the vibrational displacement Q with

the mass M and the vibrations frequency Ω. εµ is the energy of the one-electron state

|µ〉 in the sample and εF the Fermi energy, i.e. the energy of the electron in the tip.

|〈 δµδQ |~r0〉|2 is the change of the wavefunction at ~r0, |δΨµ(~r0)|2, due to the excitation of a

vibrational mode.

This equation explains why side peaks are strong in the center while the peak K is weak.

However, in the spectra of NTCDA/Ag(111) (see Fig. 4.12) peaks are observed. These

peaks can be explained by a replica of the Kondo peak at the vibrational threshold due to

the opening of an inelastic channel. In Fig. 4.15 and 4.16 this scenario is depicted. The

energy diagram in Fig. 4.15a shows the situation with no bias voltage applied (V = 0mV).

Around the Fermi energy at the sample a Kondo state of width ∆K is shown which is

half populated. This Kondo state increases the LDOS of the sample from n0
s to n

K
s . The

LDOS of the tip nt is constant in the relevant energy interval. The tunneling current
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Figure 4.13: DFT calculation on a free NTCDA molecule. (a) Local density of states
(LDOS) ρ(~r) of the LUMO. No density is found at the center of the molecule.
(b) Change of the density of states δρ(~r0, ε) induced by the phonon of energy
50± 5meV. An enhancement of the LDOS at the center of the molecule is
visible. (c) Inelastic tunneling intensity in dependence of the phonon energy
above the center of the molecule.
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Figure 4.14: DFT calculation on a free NTCDA molecule. (a) The LUMO of the free
NTCDA, with positive (solid line: Ψ(r) > 0) and negative (dashed line:
Ψ(r) < 0) contributions. (b) Cutting plane through the molecular plane at
the position indicated by the line in (a). (c) The same cutting plane as in
(b) but for the molecule displaced by the phonon of energy 50± 5meV. (d)
Vibrational displacement of the NTCDA molecule due to the phonon.
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can than be calculated with I = ntnseV , i.e. it only depends on the LDOS in the range

of the applied bias.

When a bias voltage V is applied, the energy diagram looks as shown in Fig. 4.15b. To

calculate the tunneling current the energy interval has to be split into two parts and

the tunneling current has to be calculated for each parts separately. The two parts are

depicted by the blue and red colors. For a bias voltage which is below half the width of the

Kondo state (eV < ∆K

2 ) the tunneling current is given by:

I = ntn
K
s eV (4.3)

As the voltage is increased above half the width of the Kondo state (eV ≥ ∆K

2 ) the

tunneling current has to be separated into two cases. This can be expressed as fol-

lows:

I =

ntn
K
s eV for eV < ∆K

2

ntn
0
s (eV − ∆K

2 ) + ntn
K
s

∆K

2 for eV ≥ ∆K

2

(4.4)

with the LDOS of the sample at the Kondo state nK
s and elsewhere n0

s . This results in the

current I and di�erential conductance dI/dV behavior as shown in Fig. 4.15c. With the

tunneling junction symmetric with respect to the direction of the applied bias the peak

around the Fermi energy in the di�erential conductance can be understood. This process

is determined by elastic tunneling only. The change of the LDOS δρ(~r0, ε) due to the

vibrational displacement is proportional to the contribution of a phonon to the inelastic

tunneling. This can be seen in Fig. 4.13b where the phonon with energy 50± 5meV

changes the LDOS in the center of the molecule. The inelastic tunneling intensity as a

function of the phonon energy with the tip placed above the center of the molecule is

shown in Fig. 4.13c, with the peak at 50meV of the vibration denoted earlier. Assuming

that the energy of the phonon does not change signi�cantly as the molecule is adsorbed

on Ag(111) we can explain the behavior of the Kondo peak K and the side-peak pairs

S1 and S2. If the tip is placed above the region of the hydrogen atoms, K is the most

prominent feature in the measured spectra. This is a result of the density of states of

the LUMO being maximum in this region. The more the tip is moved to the center of

the molecule, the more the intensity of K is attenuating as a consequence of the LUMO

LDOS decreasing.
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Figure 4.15: Elastic tunneling spectra of a sample with a sharp resonance of width ∆K

at the Fermi level. (a) Energy diagram of the tunneling junction with a
Kondo state of width ∆K at the Fermi level. For simplicity, the Kondo
peak is represented by a square function. By nt and ns the LDOS of the
tip and sample are denoted. (b) Energy diagram of the tunneling junction
with an applied bias voltage V . The blue and red colors denote the di�erent
contributions to the tunneling current. (c) The resulting tunneling current
I and di�erential conductance dI/dV .

83



4 Electronic structure of π-conjugated molecules

The energy diagram shown in Fig. 4.16 depicts the situation where the bias voltage is

equal and above the vibrational threshold (eV ≥ ~Ω). As the bias voltage is equal with

the vibrational threshold ~Ω, the tunneling current can be separated into an elastic and

inelastic contribution. The elastic contribution, i.e. when the electron loses no energy

in the vacuum junction, is depicted by the dashed arrow in Fig. 4.16a (this corresponds

to the energy diagram shown in Fig. 4.15b). Next to elastic tunneling inelastic tunnel-

ing is observed, i.e. the electron loses energy by emitting a vibron. This is depicted by

the solid line arrow in Fig. 4.16a. In Fig. 4.16b the bias voltage is above the vibra-

tional threshold. In this case the tunneling current is composed by several elastic and

inelastic contributions. In the following the tunneling current above the threshold ~Ω is

described.

For ~Ω ≤ eV ≤ ~Ω+∆k

2 the total current I = Iel+Iinel is given as:

I = ntn
k
s

∆k

2
+ ntn

0
s (eV − ∆k

2
) + ntn

k
s ηeV (4.5)

with the elastic current Iel = ntn
k
s

∆k

2 + ntn
0
s (eV − ∆k

2 ) and the inelastic current Iinel =

ntn
k
s ηeV . The resulting di�erential conductance is given as:

dI

dV
= ntn

0
se+ ntn

k
s ηe = nte(n

0
s + nk

s η) (4.6)

For ~Ω+ ∆k

2 ≤ eV the total current I = Iel+Iinel is given as:

I = ntn
k
s

∆k

2
+ ntn

0
s (eV − ∆k

2
) + ntn

k
s η

∆k

2
+ ntn

0
sη(eV − ∆k

2
) (4.7)

with the elastic current Iel = ntn
k
s

∆k

2 + ntn
0
s (eV − ∆k

2 ) and the inelastic current Iinel =

ntn
k
s η

∆k

2 +ntn
0
sη(eV−∆k

2 ). The resulting di�erential conductance is given as:

dI

dV
= ntn

0
se+ ntn

0
sηe = ntn

0
s (1 + η)e (4.8)

with the cross-section of the vibrational excitation η. In Fig. 4.16c the di�erent tunnel-

ing current contributions and the di�erential conductance are represented schematically.

With the symmetry with respect of the direction of the tunneling electrons given, the

side-peaks at the vibrational threshold ~Ω for negative and positive bias can be ex-

plained.
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Figure 4.16: Kondo peak replica. (a) Energy diagram of the tunneling junction with a
Kondo state of width ∆K which is half populated. The applied bias voltage
is equal with the vibrational threshold (eV = ~Ω). Elastic and inelastic
contributions to the tunneling current have to be considered. (b) Energy
diagram in the case that the bias voltage is above the vibrational threshold
(eV > ~Ω+0.5∆K). (c) The di�erent contributions to the tunneling current
and the corresponding di�erential conductance. As a result the Kondo peak
around the Fermi energy and the side-peak at the vibrational threshold are
visible.
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Symmetrical peaks or steps in the di�erential conductance or its derivative were observed

by various groups before [68, 109, 110,132�135]. Fernandez-Torrente et al. [133] describe

the observation of a Kondo resonance on TCNQ in a TTF-TCNQ (TTF: tetrathialful-

valene and TCNQ: tetracyanoquinodimethane) monolayer deposited on Au(111). The

LUMO of TCNQ is singly occupied, thus an unpaired electron which interacts very weakly

with the underlying metal substrate leads to an Kondo resonance. As for NTCDA on

Ag(111) they observe side-peaks next to the Kondo resonance. They assign the side-peaks

to the strong coupling of the unpaired electron with molecular vibrations.

4.5.2 Electronic structure within a type B molecule

In Fig. 4.17 �ve STS spectra are shown that have been measured on di�erent positions

on a type B molecule. The position were the spectrum has been recorded is shown by

the arrow in the inset of Fig. 4.17, starting with the tip above the region of the hydrogen

atoms (black spectrum) moving to the center of the molecule (red spectrum). The spectra

are characterized by a broad peak with a width of 400mV with its center around −30mV.

Within this broad peak a �ne structure is observed. As for the type A molecule a

central peak K at the Fermi energy and side-peak pairs around S1 = ±52± 2mV and

S2 = ±114± 5mV are visible. Similar to the observation described before for the type

A molecule, the ratio between central peak and side-peaks K/S is changing. Again the

center peak K is attenuating while the side-peak pairs get more pronounced. Further

an asymmetry is observed between the two side-peaks of pair S1. While the side-peak

at positive bias gets more and more pronounced as the tip is moved to the center of the

molecule, the peak at negative bias shows a step-like behavior. This step-like evolution

was not observed for the type A molecule or at least not as prominent as for the type B

molecule.

The same description used before to understand the side-peaks in the case of type A

molecules is valid for the type B molecule. The mechanism which leads to the formation

of a step at −52mV is not yet understood. Interestingly the side-peaks are found at the

same energies for both molecular types. This suggest that the di�erent electronic struc-

ture of the two types of NTCDA molecule is not the consequence of di�erent molecular

mechanics.
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Figure 4.17: Scanning tunneling spectra on a type B molecule. The spectra were mea-
sured along a line above the molecule. The black spectrum was taken with
the tip in the region of the hydrogen atoms, this corresponds to the black
spectrum shown in Fig. 4.9. The side-peaks introduced in the inset of Fig.
4.9 are again visible. The red spectrum was measured with the tip above
the center of the molecule, the two other in between (see arrow in the inset
with 21Å× 21Å, 0.1 nA, 50mV). The closer to the center the spectrum
was measured, the smaller the peak K at the Fermi energy gets. Contrary
to that the side-peaks at S1 = ±52± 2mV and S2 = ±114± 5mV get more
and more pronounced. The side-peaks are at the same position as for the
type A molecule, i.e. that the molecular mechanics are the same and thus
not responsible for the di�erent electronic structure.
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4.6 Temperature dependence of the Kondo resonance

As shown in section 4.4, the type A NTCDA molecule on Ag(111) is characterized by a

prominent peak K at 0mV in the scanning tunneling spectrum. Based on the knowledge

of the system PTCDA/Ag(111) it was assumed that this peak is a signature of the Kondo

e�ect [39]. To prove that the peak is really originating from the Kondo e�ect further

analysis are done. A well known feature of the Kondo e�ect is that the peak at the

Fermi energy, i.e. the Kondo resonance, is temperature dependent [25,133,134,136�139].

Two di�erent correlations are observed, �rst the dependence of the peak height Kheight

on the temperature and second the dependence of the peak full width at half maximum

KFWHM on the temperature. In principle it is possible to recover the Kondo temperature

TK from these physical quantities. This Kondo temperature TK is the binding energy of

the spin singlet formed between the localized, unpaired electron in the molecule and the

delocalized electron cloud in the sample [137].

To probe these two correlations a series of temperature dependent STS measurements

was performed in the temperature range Tsample = 12.5K to 78K. Therefore the sample

was heated up to a speci�c temperature and than given time to �nd its thermal equi-

librium. After some time spectra were recorded with the tip placed above the region of

the hydrogen atoms of a type A molecule, i.e. the region where the Kondo resonance was

found to be most prominent (see section 4.5). To derive the temperature dependent cor-

relations, i.e. peak height Kheight and peak full width at half maximum KFWHM, the raw

data is �tted [133, 140, 141]. As the central Kondo peak K is accompanied by side-peak

pairs S and underlay by a broad LUMO peak the �t is rather complex. Following terms

are included in the �t:

• Lorentzian �t of the Kondo resonance K

• Lorentzian �t of the side-peak pair S1

• steps at the position of the side-peak pair S1

• Gaussian �ts of the LUMO and LUMO+1

It is assumed that the width of all three peaks (Kondo peak K and the two side-peaks

S1) is the same. Next, the temperature broadening of the steps at the position of the

side-peak pair is included into the �t. The further observed side-peak pairs S2 and S3

(see Fig. 4.9) are not included, as they were not always prominent enough in the raw

data.
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4.6.1 Temperature dependence of the peak height

It was observed earlier that the peak height of the Kondo resonance is decreasing with

increasing temperature [133, 139]. To probe this dependence 34 individual spectra were

measured at di�erent temperatures. In Fig. 4.18a one spectrum for each temperature

measured is shown. To analyze the peak height dependence the individual spectra are

normalized to the o�-resonant background. In Fig. 4.18b the �ts corresponding to the

raw spectra are shown. In the insets the temperature dependence of the peak heights

is shown. As can be seen the predicted temperature dependence of the peak height

is not observed, i.e. the peak height is not decreasing with increasing sample tempera-

ture.

All reasons for not observing the predicted dependence are not fully clear. One reason

is certainly that temperature dependent measurements with STM are characterized by

large drifts between tip and sample and tip instabilities, making it di�cult to record

series of spectra under constant conditions.

4.6.2 Temperature dependence of the peak width

It was found earlier that the full width at half maximum (FWHM) of the Kondo resonance

is increasing with increasing sample temperature, i.e. the peak is broadening as the tem-

perature goes up [24,133,137,139,142,143]. In Fig. 4.19 the peak width is plotted versus

the sample temperature. For each temperature several spectra were measured and then

summarized. As can be seen the standard deviation is increasing with increasing temper-

ature. This is a result of the measurement di�culties as discussed earlier. To determine

the Kondo temperature TK from the peak width a �tting function was derived from the

Anderson impurity model [144,145] by Nagaoka et al. [142]:

KFWHM =
√

(2πkBTsample)2 + 8(kBTk)2 (4.9)

with the Kondo temperature Tk and the Boltzmann constant kB. In another pub-

lication by Ternes et al. [143] a similar function with sightly di�erent pre-factors is

given:

KFWHM =
√

(5.4kBTsample)2 + 4(kBTk)2 (4.10)
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Figure 4.18: Temperature dependent STS on NTCDA on Ag(111). (a) The measured
spectra, normalized to the o�-resonant background to compare the peak
heights. In the inset the peak height is plotted versus the sample tem-
perature. (b) The corresponding �tted spectra. The predicted temperature
dependence of the peak height as discussed in literature is not observed [139].
It is believed that the large drift and the tip changes during the measure-
ment due to thermal instability and the fact that the measurements were
performed on a new STM under construction, not running at optimum con-
ditions, made it impossible to observe the predicted dependence.
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Because of these di�erent functions the function is again determined in our group by

Taner Esat [146] based on the publication by Costi et al. [145]. Once more di�er-

ent pre-factors are obtained. This new function is much closer to the originally pro-

posed function by Nagaoka et al. [142] compared to the one proposed by Ternes et

al. [143]:

KFWHM =
√

(2πkBTsample)2 + 7.2(kBTk)2 (4.11)

This new �t function is now applied to the full width at half maximum data derived

from the 34 �ts as shown in Fig. 4.18b, plus additional four spectra obtained at an even

lower sample temperature (Tsample = 5K) on a di�erent LT-STM/AFM. In Fig. 4.19 the

full width at half maximum of the Kondo peak KFWHM is plotted versus the sample

temperature Tsample. The red line shows the �t with the resulting Kondo temperatures

TK = 236K. As predicted the full width half maximum of the peak is increasing with

increasing sample temperature. Nevertheless the �tting function 4.11 does not �t the

raw data satisfactorily. The same explanation as given earlier for the peak width can be

used here to account for the bad �t, i.e. the di�culties to measure spectra at constant

conditions when operating a STM at high temperature. Note that also the two other

functions by Nagaoka et al. [142] and Ternes et al. [143] did not result in a satisfying

�t.

It was found that the Kondo temperature of a system dramatically depends on the

geometrical con�guration of the magnetic impurity with respect to the electrode [147].

Most of the studies probe system with metal atoms as magnetic impurities [24, 25, 148�

150]. The temperature found for NTCDA on Ag(111) can be compared to studies on

organic molecules. An organic molecule which is probed by several groups is the fullerene.

Scheer et al. [139] contacted C60 by aluminum electrodes and found Kondo temperatures

in the range 35K to 160K, Yu et al. [134] probed the same molecule contacted by Ti/Au

electrodes and reported about Kondo temperatures TK > 100K. The earlier mentioned

study from Fernandez-Torrente et al. [133] found a Kondo temperature of 26K for the

organic molecules TCNQ/TTF on Au(111).
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Figure 4.19: Full width at half maximumKFWHM of the Kondo resonance versus the sam-
ple temperature Tsample. KFWHM was determined by �tting the 34 measured
scanning tunneling spectra as shown in Fig. 4.18, plus four additional spec-
tra obtained at Tsample = 5K. The red line shows the �tting with function
4.11, with the corresponding Kondo temperatures TK = 236K. The �t is
not satisfying which might by a consequence of the experimental di�culties
discussed earlier.
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4.7 Di�erential conductance map of NTCDA on Ag(111)

In section 4.4 and 4.5 it was shown that NTCDA exists on Ag(111) in two con�guration,

distinguished by a brighter or darker contrast in the STM image. The type A molecule

(brighter contrast) is characterized by a Kondo resonance in the STS while the spectrum

of the type B molecule (darker contrast) shows only a small Kondo resonance signature.

In PTCDA it was possible to induce the Kondo e�ect by pulling the molecule, i.e. by

decreasing the coupling to the substrate. It can now be speculated that also the coupling

of the type B NTCDA molecule can be tuned such, that the Kondo e�ect is observed.

Therefore it is now of interest to know how the transport depends on the geometrical

molecule-substrate con�guration. Therefore di�erential conductance maps as described

by Toher et al. [40] were recorded.

A molecule at the edge of a molecular island was contacted by the STM tip at one of the

carboxylic oxygen and lifted up and lowered down 50 times. Each manipulation cycle

was performed with another �xed bias voltage. The probed bias range was −100mV to

100mV, i.e. the �rst manipulation was performed with a bias voltage of −100mV, the

second with −96mV et cetera. The molecule-substrate bond was not ruptured completely

during the lifting. This made it possible to have a very stable and reproducible junction

geometry for each of the 50 lifting. The di�erential conductance dI/dV was measured

with a lock-in ampli�er with a modulation amplitude of V = 4mV and a frequency of

f = 1333Hz.

The pattern of type A and B molecules as described in section 4.4 continues throughout

the whole molecular island in the commensurate phase. Even the molecules at the edge

show the alternating contrast. This made it possible to contact both types of molecules,

lift them and measure the transport through them. Only molecules at the edge of an

island could be manipulated in the way just described. When such an experiment is

performed on a molecule in the layer then typically more than one molecule was con-

tacted during the manipulation. Single molecules could not be probed, as they show no

distinction between type A and type B molecules.

To compare the conductance map with the electronic structure of the NTCDA molecule

in the equilibrium position it is of importance to know the absolute tip height during

the manipulation. In general it is di�cult to estimate the absolute tip-sample distance.

From the exponential decay of the tunneling current I with respect to the tip-surface

distance z in principle one could calculate the absolute distance. The tunneling current

is given by:
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I = I0exp(−2kz) (4.12)

with the decay constant k:

k =

√
2mφ

~
(4.13)

which depends on the work function of the tip and the sample:

φ =
φtip + φsample

2
(4.14)

As we do not know the work function of the tip, the absolute tip-surface distance has to

be derived from geometrical assumptions.

Toher et al. [40] calibrated the absolute tip height by stabilizing the tip above the center

of a PTCDA at a setpoint of V = 340mV and I = 0.1 nA. Then the tip was moved

towards the molecule until contact which was observed by a deviation from the expo-

nential approach curve. No jump into contact was observed as the tip was approached

above the carbon backbone. The height was then calculated using the following equa-

tion:

zsetpoint = hPTCDA + rcarbon
vdW + rsilver

vdW + ∆z (4.15)

where hPTCDA is the height of PTCDA plane within respect of the outermost lattice

plane of Ag(111), rcarbon
vdW and rsilver

vdW are the van der Waals radii of the carbon and silver

atoms and ∆z is the distance between the setpoint and the PTCDA plane as measured

by moving the tip into the molecule. This approach could not be realized for the NTCDA

experiments, as no measurement of the distance ∆z was performed. Therefore another

approach is used. With the following equation the absolute tip-surface distance at which

the tip and the molecule are in contact, i.e. where the molecule is in an equilibrium

position when contacted by the tip can be determined:

zsetpoint = hox + dt−ox (4.16)
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with the distance between the outermost Ag(111) lattice plane and the carboxylic oxygen

hox of NTCDA in the equilibrium position and dt−ox, the bonding distance between

the tip apex atom and the carboxylic oxygen. The former value (hox = 2.747Å) was

measured by Stadler et al. [124] by normal incidence x-ray standing wave (NIXSW),

the latter (dt−ox = 2.16Å) was calculated by Toher et al. [40] with DFT for PTCDA.

With this a tip-surface distance of zsetpoint ≈ 5Å is determined (see Fig. 4.20c). To

compare this with the tip-surface distances recorded during the manipulation, the height

of the tip in the stabilization point (I = 1× 10−10 A and U = 0.05V) has to be known.

This height was measured by crashing the tip into the bare Ag(111) surface, the contact

between tip and surface was identi�ed by a jump in the measured tunneling current. It

was found that the tip is about 9Å above the surface in the stabilization point (see Fig.

4.20a). With this assumption the relative tip-surface distance of 4Å is identi�ed as the

equilibrium position of the molecule. This distance is sketched by a red line in Fig. 4.21

and 4.22.

In Fig. 4.21 the di�erential conductance map of a type A molecule is shown. The z-

scale is plotted relative to the stabilization point (z = 0Å), which was de�ned with

I = 1× 10−10 A and V = 50mV above the clean Ag(111) substrate. The tip is moved

down from this stabilization point, making contact to the molecule and than lifting the

molecule up and lowering it down in the z-interval [5Å, 1Å], with z = 5Å being the

closest the tip approaches to the substrate. The gray scale represents the di�erential

conductance with white being the largest conductance. As there are no discontinuities

in the map it must be assumed that the tip made contact during the �rst cycle and kept

the contact until the end of the manipulation.

When looking at cuts through the map at constant height one can see the following

evolution: When the tip is at z = 5Å there is a broad peak in the di�erential conductance

at negative voltages, this peak can be attributed to the �lled LUMO. The further the

molecule is lifted by the tip the more this peaks shifts towards the Fermi energy (V =

0mV), i.e. the LUMO gets depopulated. The peak gets sharper until it gets pinned at the

Fermi energy at around 4Å. At this z-scale the molecule is in its equilibrium position,

i.e. to the left of the red line in Fig. 4.21 the molecule is pushed towards the surface and

to the right of the red line the molecule is lifted relative to the equilibrium position. This

resonance at the Fermi energy is the signature of the Kondo e�ect as discussed earlier.

As the molecule is lifted further away from the substrate, the peak attenuates until it

vanishes completely. This happens as the molecular orbital at the Fermi energy gets

depopulated and thus the localized electron forming the spin singlet with the delocalized
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Figure 4.20: Absolute tip height derived from geometrical assumptions. (a) The tip is
about 9Å above the sample surface in the stabilization point, as was mea-
sured by crashing the tip into the surface. (b) When tip and molecule are in
contact the tip is about 6.3Å above the sample surface. This can be derived
from the measurement of the distance distance between carboxylic oxygen
and sample surface (hox = 2.747Å [124]), the distance the oxygen atom
�ips up when the tip-molecule contact is formed (dflip = 1.36Å [40]) and
the bonding distance between the tip apex atom and the carboxylic oxygen
(dt−ox = 2.16Å [40]). (c) By pushing the oxygen atom further down until
the molecule is in an equilibrium position the tip is about zsetpoint ≈ 4.9Å
above the sample surface (hox + dt−ox). With this a relative tip-surface dis-
tance of 4Å is given at which the molecule is in an equilibrium position (see
red line in Fig. 4.21 and 4.22).
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electron cloud of the sample disappears.

Figure 4.21: Di�erential conductance map of a type A molecule. The z-scale is relative
to the stabilization point above Ag(111) with 5Å the closest position to-
wards the surface. As the molecule is lifted up, a peak in the di�erential
conductance shifts from negative voltages to the Fermi energy. This peak is
the �lled LUMO which gets depopulated. At the same time the LUMO gets
sharper until it gets pinned to the Fermi energy in the molecules equilibrium
position at z = 4Å. This resonance at the Fermi energy is a signature of
the Kondo e�ect. As the molecule is lifted further, the peak vanishes.

Fig. 4.22 shows the di�erential conductance map of a type B NTCDA molecule. This

measurement was done immediately after the di�erential conductance map of the type

A NTCDA molecule shown in Fig. 4.21 was recorded. No tip preparation was done

in between the manipulations and the STM image has not changed, thus it can be

assumed that both manipulations were done with tips of exactly the same geometry. The

stabilization point was chosen in the same manner as for the conductance map of the type

A molecule, i.e. the same z-scale was used for both maps.

Both maps show a very similar conductance behavior. In contrast, the features in the

di�erential conductance map of the type B molecule are shifted by 1Å with respect to

the di�erential conductance map of the type A molecule. For the tip position z = 5Å

the peak is at a more negative voltage in the case of the type B molecule compared to

the type A molecule. At the molecules equilibrium position at z = 4Å the peak is still

at negative voltage and only gets pinned at 3Å to the Fermi energy (V = 0mV). After
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this the peak vanishes as the molecule is lifted further away from the substrate, as seen

for the type A molecule.

Figure 4.22: Di�erential conductance map of a type B molecule. The conductance map
shows the same features as the conductance map of the type A molecule,
but shifted by 1Å. This means that in the molecules equilibrium position
(red line) no peak at the Fermi energy (V = 0mV) is observed. Only as
the molecule is lifted up to z ≈ 3Å a peak in the di�erential conductance
pinned to the Fermi energy appears.

To get a better understanding of the mechanism responsible for the di�erent behavior

of the type A and B molecule, the maps can be further analyzed by comparing them

to scanning tunneling spectra. In Fig. 4.23 the spectra shown previously in Fig. 4.9

are plotted together with the spectra taken from the conductance maps at the molecules

equilibrium position at the relative tip-surface distance z = 4Å. Note that this represents

two di�erent scenarios. While measuring the scanning tunneling spectra, the tip is not

in contact with the molecule, the spectra from the conductance maps were measured

with the tip contacting the molecule via one of the carboxylic oxygen atoms. Further

the scanning tunneling spectra were measured on molecules inside the layer and the

conductance maps on molecules at the border of an island.

While in the case of the type A molecule both spectra are very similar, the type B spectra

show a signi�cant di�erence. In both cases the conductance of the contact tunneling

(dI/dV map) is about four magnitudes higher than the conductance of the vacuum

tunneling (STS). In the case of type A molecules both spectra show the Kondo peak
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Figure 4.23: Scanning tunneling spectra shown in Fig. 4.9 versus the spectra taken from
the conductance maps at the molecules equilibrium position at z = 4Å.
The conductance of the vacuum tunneling measurement (STS) is about four
orders of magnitude lower than the conductance of the contact tunneling
measurement (dI/dV map). The spectra of the type A molecule show both
the peak at the Fermi level. The STS peak is broader, i.e. the lifetime of the
electron is shorter in the vacuum tunneling case. The LUMO peak of the
type B molecule is at higher binding energies in the spectrum taken from
the conductance map, i.e. the LUMO gets more populated as the molecule
is contacted by the tip. The same tendency was observed earlier for the
system PTCDA/Ag(111) [67].
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at the Fermi level. The peak width measured by STS is larger than the peak width

measured while contacting the molecule. In the case of type B molecules, the LUMO

as measured by STS is closer to the Fermi energy than the LUMO measured when

contacting the molecule, i.e. the LUMO is at higher binding energies ε0 when the molecule

is contacted. This increase of ε0 results in a decrease of the Kondo temperature TK
which is proportional to the width the Kondo resonance. This is in consistency with the

observations made in Fig. 4.23 for both types of molecules.

The contact of the tip to one of the carboxylic oxygen of the molecule shifts the LUMO

to higher binding energies, i.e. the LUMO gets more populated. In consequence the

NTCDA type B molecule has to be lifted from the surface to depopulate the LUMO and

subsequently create a Kondo state. As the lower measuring limit of the dI/dV map was at

−100mV the shift of the LUMO can only be estimated to about 100mV. This result can

be compared to studies of the system PTCDA/Ag(111) [67] were a similar comparison

of spectra was performed. Also there a shift of about 100mV of the LUMO was observed

as the molecule is contacted by the tip of a STM.

4.8 Conclusions

In the �rst part of this chapter the electronic structure of seven systems presented in this

thesis were probed. It was found that in the case of Ag(111) the LUMO shifts to negative

values upon adsorption of the molecule on the metal. Furthermore it was found that the

position of the LUMO and the size of the molecules show a linear dependence. This was

explained by a work function increase upon molecule adsorption. This increase is found

to be larger the smaller the molecule is, as a consequence of the bond dipole being larger

the smaller the molecules is. Further it was argued that the electron a�nity is increasing

the longer the molecule is. These two e�ects create the observed dependency of the

LUMO position on the molecules length. In the case of Au(111) the LUMO is not �lled

upon adsorption of the molecules, i.e. no charge transfer is observed. The molecules

are physisorbed on Au(111), only van der Waals interaction is observed between the

molecules and the Au(111) substrate. Also here a linear dependence between LUMO

position and molecule size was found. This can be explained in a similar picture as

for the Ag(111) case by the change of the work function and the electron a�nity upon

adsorption.

The system NTCDA on Ag(111) was investigated more profoundly as a particular elec-
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tronic structure was observed. Three di�erent geometric phases were found during the

study, two of which were introduced in earlier publications. Their appearance upon the

deposition parameters was discussed and the unit cells were measured. It was found

that the molecular layer is composed of two di�erent types of NTCDA molecules. Every

second molecule shows an electronic signature which was attributed to the Kondo e�ect.

A peak in the di�erential conductance at the Fermi energy and vibrational signatures

were found in the spectroscopic data. By measuring spectra at di�erent positions above

the molecule and by performing DFT calculation the spatial variance of the electronic

structure and the in�uence of vibrations on the inelastic tunneling was explained. Mea-

suring temperature dependent STS the Kondo temperature of the Kondo resonance at

the Fermi energy was determined to TK = 236K by �tting the FWHM of the Kondo

resonance. However, due to experimental di�culties this �t was not satisfying. The re-

quirement for the appearance of the Kondo resonance was investigated and it was found

that it critically depends on the adsorption site. Finally di�erential conductance maps

were measured by lifting NTCDA molecules from the island borders. It was found that

both types of molecules form the Kondo resonance. While the type A molecule shows a

peak in the di�erential conductance in the equilibrium position, the type B molecule has

to lifted by 1Å to show a peak.
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5 Highly reproducible lifting of

π-conjugated molecules

In this chapter a new method is introduced, which was used to probe single molecules.

The main idea of this method is to simultaneously measure the frequency shift and

the zero-bias di�erential conductance through a molecular junction while manipulating

the molecule with a combined LT-STM/AFM. The frequency shift is used to monitor

the geometry in the junction, by comparing the experimental frequency shift measure-

ment to simulations of the frequency shift based on force-�eld calculations. The fea-

tures observed in the zero-bias di�erential conductance can then be assigned to speci�c

junction geometries. This new method is introduced by presenting two published let-

ters [42,43].

In the �rst letter �Force-controlled lifting of molecular wires� by Fournier et al. [42] the

new method was �rst introduced. In contrast to the vertical manipulations discussed in

chapter 6 the tip was moved on a customized trajectory which was chosen to reduce the

lateral force on the tip during the manipulation. It was shown exemplary on the system

PTCDA on Ag(111) that while manipulating single isolated molecules reproducible, the

frequency shift and the zero-bias di�erential conductance can be measured. Further it

was shown that the frequency shift data measured is in very good agreement with the sim-

ulations based on force-�eld calculations. Finally the features A and B in the frequency

shift were introduced and the conductance of the molecule in the wire con�guration was

determined.

In the second letter �Measurement of the Binding Energies of the Organic-Metal Perylene-

Teracarboxylic-Dianhydride/Au(111) Bonds by Molecular Manipulation Using an Atomic

Force Microscope� by Wagner et al. [43] the new method was applied to the two molecules

NTCDA and PTCDA on Au(111). The focus of this paper was on the measured fre-

quency shift. This measured frequency shift was used to identify the individual binding

energy contributions to the total molecule-metal bond. Therefore many simulations were
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generated with a Monte Carlo algorithm. From these simulations the best one was cho-

sen by comparing the simulated frequency shift to the experimental frequency shift by

determining the reduced χ2. From this best simulation the energy contributions were

extracted. It was found that the molecule-metal bond is mostly the result of van der

Waals interaction.
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Force-controlled lifting of molecular wires

N. Fournier, C. Wagner, C. Weiss, R. Temirov,* and F. S. Tautz
Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany and
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Lifting a single molecular wire off the surface with a combined frequency-modulated atomic force and tunneling
microscope it is possible to monitor the evolution of both the wire configuration and the contacts simultaneously
with the transport conductance experiment. In particular, critical points where individual bonds to the surface
are broken and instabilities where the wire is prone to change its contact configuration can be identified in the
force gradient and dissipation responses of the junction. This additional mechanical information can be used to
unambiguously determine the conductance of a true molecular wire, that is, of a molecule that is contacted via a
pointlike “crocodile clip” to each of the electrodes but is otherwise free.

DOI: 10.1103/PhysRevB.84.035435 PACS number(s): 82.37.Gk, 73.63.−b, 81.07.−b

Recently it has been demonstrated that the application
of scanning tunneling microscopy (STM) to single-molecule
transport studies increases the degree of experimental con-
trol considerably, because the conformation and the local
environment of the molecule before and after the transport
measurement can be determined.1–6 In those instances when
the molecule can be contacted in a point-contact-like manner,
essentially like an atom, this degree of control is sufficient to
make transport measurements fully reproducible; examples
are conductance measurements of C60.1,3,5,6 In the more
general cases of ribbonlike or platelet molecules, however, the
molecule must be manipulated into a free-standing configura-
tion in which it remains connected to the junction electrodes
(i.e., substrate surface and STM tip) via the two pointlike
contacts. As no direct methods exist to control and monitor
the molecule during this manipulation, its configuration in the
junction is typically deduced from the transport data itself
or from theoretical simulations.7–9 This approach, however,
often leads to ambiguities with respect to the molecular
conformation and thus cannot yield detailed and reliable
characterizations of molecular junctions.

In this work we propose a new approach to single-molecule
transport measurements based on, first, contacting a surface-
adsorbed molecule with the tip of a combined atomic force
and tunneling microscope (AFM/STM), second, lifting up
the molecule into the free-standing wire configuration on a
trajectory that has been optimized before in a simulation,
and third, verifying the proper execution of the lifting by
monitoring online the AFM signal that measures the junction’s
stiffness. We show that molecular wire junctions formed in
this way can be characterized reproducibly. For our proof-
of-principle experiment we have chosen the well-studied
system of 3,4,9,10-perylene-tetracarboxylicacid-dianhydride
(PTCDA).10 The structure of PTCDA, shown in Fig. 1, can be
understood as a graphene nanoribbon11 with functional groups
attached at both ends. Therefore, PTCDA represents a wider
class of molecular wires which consist of two separated parts:
first, a conducting π -conjugated core and, second, clamps at its
ends which provide a mechanically stable electronic coupling
of the wire’s conducting body to the electrodes.2,12

For our experiments we prepared an atomically clean
Ag(111) surface in UHV by successive cycles of Ar+

sputtering and annealing at 550 ◦C. A submonolayer coverage
of PTCDA molecules was evaporated onto the Ag(111) surface
kept at RT from a home-built Knudsen cell at a temperature of
300 ◦C. Finally, isolated PTCDA molecules on Ag(111) were
produced by detaching them with the STM tip from the edge
of a PTCDA island.2

In detail, we contact the single, isolated PTCDA molecule,
which initially is adsorbed flat on a single-crystal Ag(111)
surface, with the atomically sharp Ag-covered tungsten tip
of a low temperature CREATEC STM/AFM (based on the
qPlus tuning fork design13). Moving the tip into contact with
the molecule and then retracting it away from the surface,
we bring the molecule into the free-standing wire geometry,
in which the molecule is bound to the surface on one side
and to the tip on the other, each via a carboxylic oxygen
atom (Fig. 1). To gain full control over the lifting process, we
retract the tip along a trajectory that minimizes lateral forces
in the junction. Lateral forces can lead to abrupt sliding of
the molecule on the surface and undermine external control of
the junction structure.2,14 The trajectory with vanishing lateral
forces is shown in Fig. 114 and was obtained from force-field
simulations that take into account both the chemical bonding
and the van der Waals interaction between the molecule and the
electrodes.

Force-field calculations have been carried out for the
tip/PTCDA/Ag(111) junction. The tip was modeled by a single
Ag atom. The Ag(111) surface was modeled by one atomic
layer. The interaction between the atoms within the PTCDA
molecule was described by the AMBER15 parameter set. The
tip-molecule interaction is modeled by a Morse potential
(depth 1 eV) acting between the tip atom and one of the car-
boxylic oxygens of PTCDA.12 The molecule-substrate inter-
action is modeled by interaction potentials between individual
atoms constituting the molecule and the surface as a whole.
The interaction potential for each species in the molecule (C,
H, carboxylic O, anhydride O) with Ag is represented by
a one-dimensional z-dependent Morse potential; for each of
these potentials, the position of the energy minimum and the
depth has been chosen separately to reproduce the available
experimental data, namely the adsorption height of PTCDA on
Ag(111),16–18 its deformation,16–18 and the adsorption energy
for PTCDA/Au(111),19 which is taken as a lower boundary
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FIG. 1. (Color) Simulated junction geometries during tip retrac-
tion. (a) PTCDA adsorbed on Ag(111). The molecule is shown in
the adsorption site that is used in the simulation. The tip trajectory
employed in experiment and simulation is shown in red (its projection
into the xy plane is shown as a shadow). An animation of this tip
trajectory is provided in the supplemental material (Ref. 14). Tip
positions corresponding to the four junction geometries in panels
(b) to (e) are marked in blue. The two angles φ and θ describe
the orientation of the molecule in the junction. (b) The second
carboxylic oxygen is detached from the surface. (c) The almost planar
molecule is lifted into the upright configuration. (d) Upright molecule
(φ = 90◦,θ = 0◦) bound to Ag(111) via two carboxylic oxygen
atoms. (e) Molecular wire configuration, that is, φ = 90◦,θ = 15◦.
The coordinate zc.m. describes the motion of the molecule after it is
detached from the surface.

for the adsorption energy for PTCDA/Ag(111). Finally, the
potentials have been fine-tuned to optimize the fit to the
experimental dF

dz
(z) data. The corrugation of the interaction

potential between the carboxylic O atoms and the surface
has been set to 40 meV, according to the activation energy
of PTCDA diffusion that was measured on Ag(100).20 The
force-field simulations have been carried out for a PTCDA
molecule that is aligned along the high symmetry direction of
Ag(111).21 In the simulations the tip is retracted in steps of
0.25 pm. After each step the junction geometry is relaxed. To
define the tip trajectory of Fig. 1(a), the lateral position of the
tip apex atom is adjusted at each tip height ztip such that all
lateral forces on the tip vanish. The thus-obtained tip trajectory
has also been used in the experiments.

To measure the junction stiffness experimentally during tip
retraction, we record the frequency shift �f of the tuning fork
oscillations. In our experiments we have used qPlus sensors
from Createc Fischer GmbH. They consist of a tungsten tip

that is glued to the quartz tuning fork. The tip was etched
electrochemically. Then it was prepared in situ by crashing into
the clean Ag(111) surface at a bias voltage of V = 100 V with
the current limited to 1 mA. The qPlus sensor (k0 = 1800 N/m)
oscillates with its resonance frequency f0 ≈ 20.9 kHz and an
amplitude of A0 ≈ 0.1–0.2 Å. The �f signal can be directly
related to the stiffness (or force gradient) k = dF

dz
≈ − 2k0

f0
�f

of the molecular wire junction, where F is the force acting
on the apex of the tip.22,23 The inset of Fig. 2(a) displays
�f data of a single cycle of tip approach toward the not-yet-
contacted molecule (black) and tip retraction after contacting
the molecule (red). The black curve shows a decreasing
stiffness due to the increasing attraction between the tip
and the substrate (the latter consisting of both the PTCDA
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FIG. 2. (Color) Stiffness of the tip/PTCDA/Ag(111) junction. (a)
Two-dimensional histogram of 121 �f (z) curves recorded while
lifting up single isolated PTCDA molecules. After each manipulation
cycle the molecule remained at the tip. In 65% of the cases it was
possible to redeposit the molecule back onto the surface by having
the tip approach the surface and applying a voltage of +0.6 V to the
sample. The inset shows �f (z) for a single approach/retraction cycle:
Approach is shown in black, retraction in red. For all curves in the
histogram, the �f signal during tip approach was subtracted from
the �f data taken during retraction. (b) Same dataset as in panel
(a), but each curve is shifted on the horizontal axis by individual
values z0 such that the peak belonging to feature B is aligned with
the corresponding peak in the simulated �f curve (dashed line)
(Ref. 24). The inset shows a histogram of shift distances z0. (c)
Averaged dissipation signal for all 121 retractions of panel (b). Before
averaging, each curve was shifted by the same z0 as the corresponding
�f curve in panel (b). The dissipation is a measure of the energy
needed to sustain a constant oscillation amplitude of the tuning fork
sensor.
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molecule and the metal surface). At the end of the approach,
the jump-into-contact of the PTCDA molecule to the tip apex
can be discerned as a sharp kink in the stiffness curve. To
exclude long-range forces that are not related to the lifting
of the molecule from our analysis, we subtract the approach
curves (background) from the retraction curves. The resulting
background-subtracted retraction curves of all 121 approach
cycles that we have performed are shown as a two-dimensional
color-coded histogram in Fig. 2(a).

In the range ztip = 5 to 14 Å,25 Fig. 2(a) exhibits a shallow
dip in the junction stiffness dF

dztip
, which we label as feature

A. When the tip is retracted beyond ztip ≈ 14 Å, the stiffness
curves in Fig. 2(a) scatter more strongly. Nevertheless, it is
evident that most of the curves show a characteristic peak/dip
structure, to which we refer as feature B from now on. In
Fig. 2(b), we have aligned all individual stiffness curves at
feature B, with the result that in the range z = 16 to 24 Å,
the experimental curves collapse onto one. Apparently, the
macroscopically measured ztip does not characterize the con-
figuration of the molecule in the junction unambiguously. This
ambiguity may, for example, arise due to different bonding
positions of the carboxylic oxygen atom of PTCDA on the
tip. In the remainder of the paper, we exclusively discuss the
aligned stiffness curves of Fig. 2(b), because feature B defines
a reference point for the microscopic z coordinate, as will
become clear below. This coordinate z is related to ztip by
z = ztip + z0, where z0 is an offset that varies from experiment
to experiment [inset, Fig. 2(b)].

Before discussing Fig. 2 in detail, it is necessary to analyze
which part of the junction the measured stiffness signal dF

dz
is

related to. Because we have never observed structural changes
of either the tip or the Ag(111) surface in our experiments,
we conclude that the Ag(111) surface and the tip apex are so
stiff that their small deformations occur within the harmonic
limit ( dF

dz
= const). Consequently, any influence of these

deformations on the curves in Fig. 2 can be ruled out. The
three remaining elements which could in principle affect the
dF
dz

curves in Fig. 2 are the molecule itself and its bonds to
the surface and to the tip. According to ab initio calculations12

and our experimental data, which show that at the end of the
approach-retraction cycle the PTCDA molecule nearly always
remains connected to the tip, we conclude that the tip-molecule
bond is the stiffest. Hence, it should deform much less than
the molecule and its bond to the surface. We can therefore
conclude that the measured dF

dz
curves are a property of the

PTCDA molecule itself and of the PTCDA/Ag(111) surface
contact, revealing their response to the chosen tip trajectory.
This illustrates the benefits of using stiff sensors for force
spectroscopy: If the sensor is much stiffer than the probed
object, its properties do not affect the measurement.26 In
particular, unlike traditional force spectroscopy techniques,
which work only until bond ruptures occur,27,28 stiff sensors
like the qPlus offer the possibility to coerce the molecular
junction smoothly through bond rupture processes. This is
vital in the present context, because it allows the stabilization
of the molecular junction in any desired configuration along
the chosen trajectory.

With this knowledge, we are able to interpret the experi-
mental stiffness curves dF

dz
(z) in Fig. 2(b) by comparing them
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FIG. 3. (Color) Force, potential energy, and conductance of the
molecular wire. (a) Histogram of the 35 integrable dF

dz
curves (i.e.,

no abrupt jumps for z > 15 Å) from the dataset in Fig. 2(b). The
solid red line displays the averaged experimental data. The black
dashed line shows the simulated �f curve (Ref. 24). The tip heights
that correspond to the junction geometries in Fig. 1 are indicated
and labeled as b, c, d, and e. The upper horizontal axis (φ, θ , zc.m.)
indicates the coordinates of molecular motion, enforced by the tip
trajectory shown in Fig. 1(a). (b) Black dashed line, force on the tip as
calculated in the force-field simulation; red solid lines, force on the tip
as calculated by integrating the averaged experimental dF

dz
in panel (a)

[red solid line in panel (a)] for z > 16 Å and for z < 15 Å. The branch
for z < 15 Å was shifted along the vertical axis such that it starts at
the value where the left section of the curve ended. (c) Black dashed
line, potential energy of PTCDA in the junction as calculated in the
force-field simulation; red solid lines, potential energy of PTCDA in
the junction as calculated by integrating the experimental F (z) curves
in panel (b) [red solid line in panel (b)]. The integration constant for
z < 15 Å was again chosen to match the value where the left section
of the curve ended. (d) Histogram of the junction conductance dI

dV
(z)

at a bias voltage of V = −0.5 mV for the same dataset as in panels
(a)–(c). At z ≈ 17 Å the last molecule-substrate bond breaks and
the junction enters the tunneling regime. The inset is a line profile
through the histogram parallel to the vertical axis in the corridor
between z = 16.25 Å and z = 17.0 Å.

to a simulated dF
dz

(z) curve [black dashed lines in Figs. 2(b)
and 3(a)], which is obtained from the same force-field model
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that was used to extract the tip retraction trajectory.24 For
this comparison, we remove all curves from the experimental
dataset in which the lifting of the molecule ends prematurely,
for example, because the molecule instantaneously snaps to
the tip. The remaining histogram in Fig. 3(a) is in very good
agreement with the simulation, particularly for z > 16 Å,
indicating that the lifting process in the corresponding
experiments proceeds as predicted by the simulation. This
conclusion is confirmed by the more detailed analysis in the
next paragraph.

Because it is more intuitive to discuss the junction in terms
of its total energy U (z) and the force F (z) = dU

dz
than in terms

of its stiffness dF
dz

= d2U
dz2 , we turn to the simulated F (z) [dashed

line in Fig. 3(b)] and U (z) [dashed line in Fig. 3(c)] with
the aim to understand the origin of features A and B in the
measured stiffness curves. The simulated F (z) and U (z) reveal
that feature A is associated with the molecule being lifted out
of a shallow attractive potential as the tip moves away from
the surface. Considering the corresponding configurations in
Fig. 1, it becomes clear that this attractive potential A is due
to the delocalized π bond between PTCDA and Ag(111),
which is broken gradually as the tip is retracted from 7 to
15 Å. According to Fig. 1 and animation 2 in the supplemental
material,14 in this range the retracting tip essentially changes
the angle φ between the molecule and the surface plane. At
z ≈ 16 Å (point d), the tip trajectory changes [cf. Fig. 1(a)],
and the motion of the molecule is from there on constrained
to a different coordinate when the tip is retracted further.
From Fig. 1 and animation 2 in the supplemental material14

it is clear that the relevant new coordinates are the angle θ

until point e (z ≈ 17 Å), and the z position of the center
of mass of the PTCDA molecule, zc.m., beyond point e (z >

17 Å). The simulated F (z) and U (z) in Figs. 3(b) and 3(c) show
that immediately after the coordinate change φ → (θ,zc.m.)
the molecule is again lifted out of an attractive potential
(potential B). Therefore, we can conclude that feature B in the
experimental stiffness curves originates from the interaction
of the lower end of the vertically upright molecule with the
surface. Outside this potential well the molecule is completely
removed from the surface and both F and U approach zero (at
z ≈ 24 Å).

Summarizing up to this point, we have seen that the shape
of the experimental stiffness curves verifies that the target
trajectory is executed in the experiments as predicted by the
simulation. In other words, starting from the surface-adsorbed
molecule that has been contacted with the STM tip, a free-
standing molecular wire of controlled geometry is created in a
systematic and reproducible manner. Unlike in the simulation,
however, the real junction passes through an instability at
z ≈ 16 Å, as evidenced by the sharp peak in the dissipation
signal of Fig. 2(c). In dynamic AFM, energy dissipation arises
whenever the work

∫
Fds in the downward and upward half

cycles of the tip oscillation is not the same. In the present
case, this indicates that the configuration of the molecule in
the junction changes within one cycle. We have seen in the
previous paragraph that at z ≈ 16 Å, where the maximum in
the dissipation signal appears, the molecule stands upright in
the junction and the change in coordinate φ → θ takes place.
It is clear that in this configuration the oscillations of the tip

(which, incidentally, are not contained in the simulation) may
lead to particularly large compressive or tensile stress in the
junction. This, in turn, makes the molecule prone to change
its configuration in the junction. The presence of the sharp
dissipation maximum at z ≈ 16 Å therefore confirms that at
this distance the molecule in the junction stands indeed upright,
and thereby it also confirms our interpretation of features A
and B to either side of the dissipation maximum.

To compare experiment and simulation quantitatively, we
have integrated the averaged experimental stiffness of Fig. 3(a)
(red line), once to yield the force F [Fig. 3(b), red line]
and twice to yield the potential energy U [Fig. 3(c), red
line]. It is clear that this integration cannot be extended
meaningfully across the dissipative region because here the
molecule traverses different trajectories with different forces
in the upward and downward half cycles of the tip oscillation,
and hence the measured frequency shift �f is not any more
related to a unique stiffness in a well-defined configuration.
The sharp dissipation maximum at the instability therefore
divides the lifting process into two regimes, both of which
must be integrated separately. Starting from z = 24 Å, where
the force and the potential energy can be set to zero to
fix the integration constants, we have integrated the average
experimental curve of Fig. 3(a) up to z = 16 Å. The results for
both F and U agree very well with their simulated counterparts
[cf. dashed lines in Figs. 3(b) and 3(c)]. We can therefore
conclude that the maximal force that has to be overcome to
remove the upright molecule from the surface is 0.6 nN. This
force corresponds to a binding energy in this configuration of
1 eV. This binding energy includes contributions both from
the short-range (chemical) interaction between the carboxylic
oxygen atoms and the surface as well as long-range van der
Waals interaction between the whole of the molecule and
the surface. For the integration from z = 5 Å to z = 14 Å,
there is no experimentally accessible limiting case which can
be used to fix the integration constant. We have therefore
adjusted the integration constant such that the integrated curve
starts at the value where its left section ended. According
to this integration, the maximal force during cleaving of the
delocalized π bond between PTCDA and Ag(111) is 0.5 nN.

Finally, we turn to the electrical conductance measurements
through the PTCDA wire. Figure 3(d) shows the two-dimen-
sional color-coded conductance histogram for the data set of
Fig. 3(a), made with logarithmic bins. For 6 Å < z < 10 Å the
conductance behavior of the PTCDA wire has been reported
and discussed before.2,12 Here we concentrate on the range
z > 16 Å. At z ≈ 17 Å, we observe a sharp turning point
at which the conduction through the molecular wire abruptly
gives way to tunneling, the latter revealed by the characteristic
exponential dependence of the conductance on the distance.
This shows that precisely at the point of largest force across the
wire junction a vacuum gap opens between the molecular wire
and the surface. Through the last angstrom before the transition
to tunneling, we observe a plateau in the conductance, which
should correspond to the conductance of a PTCDA wire that is
contacted by its carboxylic oxygens at one end to the tip and at
the other end to the Ag(111) surface [Fig. 1(e)]. Interestingly,
on this plateau the distribution of wire conductances exhibits
two well-defined peak values, G1 = (1.3 ± 0.3) × 10−5G0
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and G2 = (0.6 ± 0.1) × 10−5G0, where G0 is the quantum
of conductance (12.9k�)−1. This indicates that there exist two
stable configurations of the molecular wire junction. Note that
the two conductances vary by nearly a factor of 2, that is, G1

G2
≈

2.1. One may speculate that these configurations have one or
two (carboxylic) oxygen atoms, respectively, in contact with
the tip electrode.

The method used here for the characterization of a pro-
totypical molecular wire provides independent force-based
control over the conformation of the molecule in the junction.
The large stiffness and the low oscillation amplitudes of
the qPlus sensor make it a unique tool for single-molecule
transport studies. The experimental strategy described here
is directly applicable to the broad class of molecules that
are composed of the nanometer-sized graphene ribbons or
flakes and functionalized with carboxylic or other groups
of sufficient reactivity as contacts to the tip. Since this

type of molecular wire is of practical importance,11 their
systematic study is highly desirable. Furthermore, the case
of PTCDA analyzed here inspires optimism since it demon-
strates that molecular wires can sustain stable electrical
contacts between two macroscopic electrodes even if one
of the leads is subjected to mechanical oscillations with
amplitudes of about 10% of the total length of the wire. At
the same time, the rather low conductance of the present
wire should improve as the size of the conducting nanorib-
bon and/or the number of carboxylic clamps per contact
increases.
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Erratum: Force-controlled lifting of molecular wires [Phys. Rev. B 84, 035435 (2011)]
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In Figs. 2(a), 2(b), and 3(a) the units of dF /dz scale should be nN/nm. In Fig. 3(d) the G scale is incorrect. The corrected
Fig. 3(d) is shown here. The conductance values G1 and G2 are changed accordingly: G1 = (1.3 ± 0.3) × 10−2 G0, G2 =
(0.6 ± 0.1) × 10−2 G0. None of the claims of the paper are affected.
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FIG. 3. (Color online) (d) Histogram of the junction conductance dI /dV (z) at a bias voltage of V = −0.5 mV for the same data set as in
panels (a)–(c). At z ≈ 17 Å the last molecule-substrate bond breaks, and the junction enters the tunneling regime. The inset is a line profile
through the histogram parallel to the vertical axis in the corridor between z = 16.25 Å and z = 17.0 Å.
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Based on single molecule manipulation experiments in a combined scanning tunneling microscope/

frequency modulated atomic force microscope, we quantify the individual binding energy contributions to

an organic-metal bond experimentally. The method allows the determination of contributions from, e.g.,

local chemical bonds, metal-molecule hybridization, and van der Waals interactions, as well as the total

adsorption energy.

DOI: 10.1103/PhysRevLett.109.076102 PACS numbers: 68.37.Ef, 68.37.Ps, 82.37.Gk

The bonding of large organic adsorbates to metal sur-
faces is subject of an intense research effort [1–6]. If the
molecule has functional groups, one may expect different
bonding channels to contribute to the overall bonding of
the molecule to the surface. An example for such a multi-
functional bond is that of the well-studied model molecule
3,4,9,10-perylene-teracarboxylic-dianhydride (PTCDA) to
noble metal (111)-surfaces. According to the established
picture, derived mainly from structural and electronic
structure data, the PTCDA-metal bond consists of three
attractive components [4,7–13]: firstly, local bonds of the
reactive carboxylic oxygen atoms (Ocarb) to metal atoms in
the surface; secondly, weak chemisorption of the perylene
core due to hybridization of delocalized molecular and
metal states; and thirdly, the van der Waals interaction.
The theoretical description of such multifunctional bonds
presents a challenge because individual contributions may
compete against or reinforce each other depending on the
situation at hand. Moreover, the van der Waals interaction
is only now being included into density functional theory
(DFT) [12,14–17], and there is still some uncertainty re-
garding the reliability of the various approaches [18]. In
this situation, it would be helpful if the various contribu-
tions to the total energy of a multifunctional bond could be
determined experimentally.

In this Letter, we present an experimental method which
allows the partitioning of the overall bonding energy be-
tween different bonding channels and apply it to PTCDA/
Au(111). The approach is based on molecular manipula-
tion in a combined scanning tunneling microscope/
frequency modulated atomic force microscope (STM/
FM-AFM) with a qPlus sensor (cf. Fig. 1) [19]. STM is
used for high resolution imaging and location of the func-
tional group at which to dock the tip to the molecule, and
FM-AFM is used to measure the junction stiffness dFz=dz
[20] while manipulating the molecule off the surface by tip
retraction (z ¼ vertical tip coordinate) [21–23]. Because
the stiffness of the surface-molecule-tip junction is mea-
sured throughout the complete removal process, the

strength of all interaction potentials constituting the
PTCDA-Au(111) bond is probed, albeit in a tangled man-
ner. To disentangle the various contributions, we use a
procedure which is based on the hypothesis that the
ðdFz=dzÞðzÞ curve contains enough information to retrieve
the quantitative shape of all relevant interaction potentials.
This hypothesis is fully borne out by our results. The
retrieval, discussed in detail below, proceeds by firstly,
parameterizing the various bonding channels of the
molecule-substrate interaction with generic potentials of
sufficient generality, secondly, simulating the junction stiff-
ness dFz=dz based on these generic potentials throughout
the whole manipulation process, and thirdly, fitting the
simulated junction stiffness to the experiment, thereby ex-
tracting the correct potential parameters, from which the
desired partitioning can finally be calculated.
The experiments are performed with a commercial

STM/FM-AFM (CREATEC) operated at 5 K in ultrahigh

Au(111)

PTCDA

FIG. 1 (color). Scheme of the experimental setup. A single
PTCDA molecule on Au(111) is contacted by a tip attached to a
qPlus sensor. The oscillating sensor is retracted from and ap-
proached to the surface [28]. In this way, the molecule is
repeatedly detached from the surface and brought back.
Changes in the resonance frequency of the sensor reflect changes
in the stiffness of the junction.
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vacuum. The 15 �m diameter PtIr tip wire of the qPlus
sensor was cut and sharpened using a focused ion beam.
The tip was finally prepared at 5 K by indentation into the
clean Au(111) surface. The frequency of the qPlus sensor
was f0 ¼ 30311 Hz, its spring constant k ¼ 1800 Nm�1

[19]. The surface was prepared using Arþ sputtering and
annealing in ultrahigh vacuum. The molecules were de-
posited from a home-built Knudsen cell. Single molecules
were prepared by detaching them from the molecular
islands with the STM/FM-AFM tip in STM mode. The
contact between the tip and one of the Ocarb atoms of
PTCDA was established according to the procedure de-
scribed earlier [20–22]. Note that during contacting and
throughout the experiment the tip is vibrating with an

amplitude of � 0:2 �A [24].
Having established the contact, the tip is retracted ver-

tically from the surface by 27 Å, lifting the molecule and
fully breaking the molecule-surface bond. Then, the tip is
approached back to the surface, restoring the bond between
PTCDA and Au(111). In each of the experiments, the
retraction-approach cycle is repeated 10 times while
dFz=dzðzÞ ¼ �ð2k0=f0Þ�fðzÞ [19] is recorded. As Fig. 2
(a) shows, the gradual breaking of the molecule-surface
bond is reversible and reproducible. The dramatic im-
provement in reproducibility over previous work [20] is
attributed to the low corrugation of the adsorption potential
of PTCDA on Au(111). Hence, during tip retraction the
lower end of the molecule slides smoothly over the surface,
while on Ag(111) its motion is more abrupt and thus less
controlled [20].

In order to extract the desired information from the
histogram in Fig. 2(a), we model the PTCDA-metal bond
by generic potentials for the following four molecule-
substrate interaction channels that are qualitatively well
established for PTCDA on noble metal surfaces [4]: (1) the
local chemical bonds between the Ocarb atoms and the
surface, (2) the chemical interaction due to hybridization
of the delocalized molecular orbitals with substrate states,
(3) the dispersion attraction, and finally (4) the Pauli
repulsion. The delocalized chemical and dispersion inter-
actions are split into interactions of individual atoms in the
molecule with the surface. In this way, three atom-surface
interaction potentials are defined for each atom in PTCDA
(Table I). These potentials are parametrized by a set P of
nine parameters [25]. There is no surface corrugation in
our model, which is a good approximation for PTCDA/
Au(111) [26].

The internal mechanical properties of the molecule itself
are described by a standard molecular-mechanics model
including covalent bonds, valence and dihedral angles, and
van der Waals and electrostatic interactions. Because the
molecule is strongly distorted during the lift-off [23] and
because the distortion determines the precise way in which
the molecule-substrate interaction potentials are sampled
in the experiment, the correct description of the internal

mechanics of PTCDA is essential. We have therefore opti-
mized the setQ of 34 force field parameters for the internal
mechanics of PTCDA by fitting them to DFT calculations
[BLYP/6–31(d)] [27] of molecular geometries that corre-
spond to the 108 vibrational modes of a free PTCDA
molecule. The DFT energies for the different geometries
are reproduced with an average deviation of 18% by our
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FIG. 2. (a) Histogram (
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p
) of 226 �f traces acquired during

lifting and lowering of PTCDA. All curves have been aligned at
feature B. The �f signal during tip approach was subtracted
[20]. The z axis is shifted to match the simulated curves in panel
(b). Dotted lines mark regions 1 and 2 within which the corre-
spondence between experiment and simulation is calculated
(reduced �2). Distinct features of the histogram are labeled A1,
A2, and B. (b) Histogram (

ffiffiffiffi
N

p
) of 4166 �f traces simulated with

different parameter sets P that have passed the preselection
criteria (see text). (c) The energy dissipation of the qPlus sensor
as well as the experimental variance �2 show a peak around
z ¼ 16 �A (see text).

TABLE I. Atom-surface potentials used to describe the
PTCDA-Au(111) interaction. z denotes the atom height above
the surface. Superscript C refers to all atoms except Ocarb, O to
Ocarb.

Potential Parameters (set P)

VPauli ¼ Dp expð�ApzÞ DC
p , D

O
p , A

C
p , A

O
p

Vchem ¼ �Dc expð�AczÞ DC
c , D

O
c , A

C
c , A

O
c

VvdW ¼ �DvdWz
�3 DvdW
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force field. Details of the fitting procedure are given in the
Supplemental Material [28].

The thus specified potentials allow the calculation of the
total energy of the system

EtðP; zÞ ¼ Emol-subðP; zÞ þ EintraðzÞ (1)

as a function of the tip coordinate z that parametrizes the
equilibrium junction geometry, including the molecular
distortion. The equilibrium geometry for each z is deter-
mined by retracting the tip vertically (as in experiment) in
steps of �z ¼ 0:25 pm and relaxing the molecular geome-

try with a force tolerance of 5� 10�4 eV= �A. For each z,
Emol-subðP; zÞ is obtained by summing the potentials of
Table I for each atom in the molecule. EintraðzÞ is the energy
of the distorted molecule in the junction, calculated with
force field parameters Q and the molecule-tip bond [29].
The frequency shift of the qPlus sensor is calculated as
described in Ref. [30]:

�fðP; zÞ ¼ f0
�k0A

2

Z A

�A

d2EtðP; z� qÞ
dz2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � q2

q
dq: (2)

The convolution with a semicircle simulates the experi-

mental tip oscillation amplitude of A ¼ 0:2 �A.
The task is to find the parameter set P which, if inserted

into Eqs. (1) and (2), reproduces the experimental �f
curve in Fig. 2(a). Since each set P requires a separate
simulation of the complete manipulation process (which is
costly in terms of CPU time), a fast preselection routine is
employed which identifies promising parameter sets P and
discards the rest [28]. From a total of 108 parameter sets
that were randomly generated by a Monte Carlo algorithm
[28], we have selected 4166 sets P for which full simula-
tions were carried out.

A histogram of the simulated �fðP; zÞ curves [Eq. (2)]
for the 4166 sets P is shown in Fig. 2(b). Evidently, our
generic potentials simulate the experiment very well. The
features A1, A2, and B are reproduced with remarkable
accuracy [31]. There is, however, a small z shift of

� 1 �A between experiment and simulation for z > 15 �A.

Moreover, the experimental �f peak B at z ¼ 16 �A is
much wider than its simulated counterpart. We suggest
that both the z shift and the broadening of the experimental
�f peak are due to the finite stiffness of the Au covered
PtIr tip resulting in measurable relaxations that occur while
lifting the molecule. Additionally, the spurious vertical
forces that occur when the lower end of the molecule
moves laterally on a corrugated surface also contribute to
the broadening of the �f peak. The occurrence of such
motion is indicated by an increase in dissipation around
16 Å [Fig. 2(c)]. Both of the described effects can, in
principle, be simulated by including a tip of finite stiffness
that oscillates in the direction perpendicular to the surface
in the simulation of the molecule lifting process. The
results of such simulations will be discussed in the forth-
coming publication. Here we account for both effects

(z shift and B broadening) by neglecting the experimental
data between 13.7 and 16.9 Å when quantifying the corre-
spondence between individual simulations and the aver-
aged experiment by calculating a reduced �2. Because of
the discontinuity in the experimental z scale, regions 1 and
2 [as marked in Fig. 2(a)] are aligned separately with each
simulated curve to calculate �2.
We now examine the best parameter sets P with the

lowest �2 values. In Fig. 3(a), �2 is plotted versus the total
binding energy of PTCDA for all sets P with �2 < 3.
While the best fit to the experiment is found for a parameter
set P� with E�

bind ¼ 2:6 eV, the distribution of points in

Fig. 3(a) yields a binding energy of Ebind ¼ ð2:5� 0:1Þ eV
for PTCDA on Au(111). The �fðzÞ curve that was simu-
lated using set P� is shown in Fig. 4(a) [28]. We note the
excellent fit between the experimental �fðzÞ and the cal-
culated �fðP�; zÞ (apart from the issue of the peak width
discussed above).
To identify the nature of the PTCDA-Au(111) bond,

we plot the contributions of the different potentials in
Figs. 3(b) and 3(c). Here, each set P is represented by six
points with identical �2. From the plots a clear picture
emerges. While the van der Waals attraction is in the range

1.5

2.0

2.5

3.0

re
du

ce
d

2

Pauli
chem.
dispers.

c a r b o n

-100 -50 0 50

1.5

2.0

2.5

3.0

Pauli
chem.
dispers.

o x y g e n

re
du

ce
d

2

E per atom (meV)bind

re
du

ce
d

2

a

-3.00 -2.75 -2.50 -2.25 -2.00
E (eV)bind

1.5

2.0

2.5

3.0

b

c
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of 100 meV for C as well as Ocarb atoms, neither of the two
species has any chemical interactions with the Au(111)
surface. The fact that Ocarb atoms tend to bind slightly

stronger is due to their smaller distance (� 0:1 �A less) to
the surface in the equilibrium geometry. To get the net
adsorption energy, the (positive) Pauli repulsion of
� 10 meV has to be added. Comparing our result to the-
ory, we find a good correspondence insofar as also ab initio
calculations, as well as other spectroscopic methods (ul-
traviolet photoelectron spectroscopy, x-ray standing wave,
etc.), suggest pure physisorption of PTCDA on Au(111)
[4,10,32]. However, our experiment yields a significantly
higher adsorption energy than predicted from calculations
(� 2:0 eV [18,26]). This indicates an underestimation of
dispersion interaction in the (semiempirically corrected)
DFT method(s) used. Parameter sets P which yield total
binding energies in the range of 2.0 eV are clearly incon-
sistent with our experimental result [Fig. 3(a)] and, hence,
can be discarded. Recent DFT calculations which include
dielectric screening within the substrate yield an energy of
2.4 eV, which is close to our experimental result [33].

To validate our method further and to check whether the
parameters obtained are meaningful beyond the fitted
example of PTCDA on Au(111), we use the parameter
sets P� andQ to calculate the frequency shift of the smaller

NTCDA (1,4,5,8-naphthalene-tetracaboxylic-dianhydride)
molecule during lift-off from Au(111) [also NTCDA is
known to physisorb on Au(111) [32]]. The comparison
between simulation and experiment is shown in Fig. 4(a),
showing an excellent agreement. Note that this agreement
for NTCDA is not the result of any fitting but just a
consequence of the universal character of our potentials.
The potentials, once fitted properly to yield the correct
parameter set P�, hence have predictive power for systems
which exhibit similar physics. The bonding energy of
NTCDA turns out to be 1.7 eV (compared to 1.3 eV
from DFT calculations [26]).
In conclusion, in this Letter we have reported the—to

our knowledge—first analysis which allows the quantita-
tive identification of different bonding channels of large
organic adsorbates on the basis of experimental data alone.
As a result of this analysis, the precise shape of the total
binding potential can be determined. As an example, we
show the van der Waals-like potential that results if the
distance between a flat and fully relaxed PTCDA molecule
and the Au(111) surface is varied [Fig. 4(b)]. The resulting
curves can be compared to ab initio calculations.
Moreover, the method reported in this Letter represents a
novel way to measure the adsorption energy of molecular
adsorbates on a single-molecule level. Note that this
method is also applicable in cases where the determination
of the adsorption energy by thermal desorption spectros-
copy is impossible because molecules decompose before
desorbing. In the present Letter, we have carried out the
experiments and the corresponding analysis for an
adsorbate-substrate combination which exhibits a small
lateral corrugation potential to demonstrate the principle.
However, we anticipate that our approach is also applicable
to more strongly corrugated substrates, if combined with a
customized tip retraction trajectory [20] which minimizes
sliding as much as possible.
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6 Systematic study of transport through

a homologous series of π-conjugated

molecules

6.1 Introduction

In this chapter the transport through single molecules is investigated. Therefore a sys-

tematic study on the four molecules NTCDA, PTCDA, TTCDA and QTCDA on Ag(111)

and Au(111) was performed. In the previous chapters important preliminary investiga-

tion were performed. In chapter 4 the electronic structures of the four di�erent molecules

adsorbed on the two di�erent electrodes material were investigated. It was found that

the adsorption di�ers signi�cantly, with physisorption on Au(111) and chemisorption on

Ag(111). In chapter 5 a method was introduced to control the con�guration of the wire in

the junction. It was shown that by comparing the frequency shift of the qPlus sensor with

simulations the geometry of the junction can be veri�ed.

In the �rst part of the present chapter the measurement routine is discussed. In the

second part of the chapter the data processing procedure will be explained. Since a

large number of manipulations were performed, a statistical analysis has to be done.

Therefore the single di�erential conductance and frequency shift curves had to be sorted

into di�erent classes. Two main behaviors were observed, one is characterized by a

hysteresis between lifting and lowering curves of the molecule. The second one is char-

acterized by a stable junction con�guration, which allowed very reproducible measure-

ments.

The sorted data was then visualized in 2D histograms. From these histograms generic

behaviors were extracted by calculating arithmetic means or determining the correlation

between each measured curve. With the help of these generic behaviors two di�erent

transport regimes were identi�ed, which were found for all four molecules on both metal
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substrates. The last and main part of the chapter is dedicated to the analysis and inter-

pretation of the generic behaviors. Next to the already mentioned two di�erent classes

of manipulations, the data is analyzed with respect to dependencies of the transport on

the molecule length and the electrodes material.

6.2 Transport measurements on single molecules

In this section the measurement routine is explained. To illustrate the quantities mea-

sured simultaneously, a single data set recorded in one manipulation cycle is shown. The

data set presented is a highly reproducible measurement of QTCDA on Ag(111).

6.2.1 Measurement routine

After a sample preparation (see section 2.5) the STM was given time to �nd its thermal

equilibrium. This was important to reduce the drift, as the feedback loop of the STM

was open up to 40min during a measurement. Then the transport measurement could

be performed. The measurements presented in this chapter are performed in a similar

way as described in chapter 5.

First, a molecule had to be isolated from the molecular island. This was done by dragging

it by a lateral manipulation with the tip a few nm away from the island border (see section

2.2.6). Then the isolated molecule was contacted with atomic precision with the Pt/Ir

tip of the LT-STM/AFM. The molecule was then lifted up and lowered down many times

in a triangle wave-like manner by the tip. Next to the frequency shift ∆f , the zero-bias

di�erential conductance dI/dV and the second derivative of the di�erential conductance

d2I/dV 2 were measured, the latter two by the lock-in technique. For the measurement

of ∆f the tip had to oscillate during the whole manipulation. To remove the molecule

from the tip after the manipulation was over, a voltage pulse was applied. It was not

always possible to detach the intact molecule from the tip. In fact most of the time the

molecule did not stay intact when it was removed. In those cases a new molecule had to

be isolated to perform the next measurement.

In contrast to the experiments reported in chapter 5, one manipulation cycle consisted

of 47 lifting and lowerings (see 6.1 for the de�nition of the expressions manipulation

cycle, approach, lifting curve and lowering curve). The advantage of having more up

and down cycles in one manipulation cycle comes at the price of a larger distance of
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about 0.05Å between two data points. This is the consequence of the employed digital

signal processor (DSP) being only able to store 100 000 data points in one manipulation

cycle.

As more lifting and lowering cycles require more time, the total drift in one manipulation

would have increased. Therefore, to minimize the drift, the manipulation time had to be

reduced. To do this, the moving speed of the tip was increased up to vtip ≈ 2.7Å/ s. The

consequence of the faster moving tip was a hysteresis caused by the propagation delay

of the electronics. It was thus essential to �nd a good balance between this propagation

delay and the drift.

6.2.2 Highly reproducible measurement

More than 600 manipulation cycles (see Fig. 6.1) were performed on the eight systems,

with about 23 500 lifting and lowering curves recorded. Here a particularly reproducible

manipulation will be presented to illustrate the main features of the experiment. It

was found that the most reproducible experiments were performed with QTCDA on

Ag(111).

Fig. 6.2 shows a data set acquired by lifting and lowering a single QTCDA molecule

from Ag(111) 47 times in one manipulation cycle. The di�erential conductance dI/dV

is plotted logarithmically, in this way the features are better visualized. The conversion

of the conductance into units of G0 = 2e2/h was done by the conversion factor α, which

was introduced in section 2.3.5.

The data trace recorded while the tip approaches the �rst time the molecule to make

contact is removed. Also the data of the �rst lifting and of the last lifting and lowering,

when the molecule is detached, is removed (this corresponds to the green and red lines

in Fig. 6.1). This is done as this data always di�ers from the rest as will be discussed in

section 6.3.1.

The data in Fig. 6.2 shows a hysteresis, splitting the curves into two groups. One group

is composed of curves recorded while lifting the molecule up with the tip, the other while

lowering the molecule down. This hysteresis is more pronounced for the frequency shift

∆f measurement than for the di�erential conductance dI/dV measurement. The hys-

teresis is a consequence of the propagation delay, i.e. the delay between the physical action
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Figure 6.1: Tip manipulation procedure depicted by the movement of the STM tip rel-
ative to the surface versus the time. A manipulation starts with the tip in
the setpoint (relative tip-surface distance = 0Å). The tip is moved up to the
maximum distance relative to the surface (red line). Then the tip is moved
towards the molecule until a prede�ned position, this movement is called the
approach (green line). Around the minimum distance to the surface, tip and
molecule make contact by the jump into contact of the carboxylic oxygen
atom (green circle). After the contact is established the tip is moved 47
times up and down (black lines). An up movement is called lifting, with the
corresponding data called lifting curve. A down movement is called lowering,
with the corresponding data called lowering curve. At the end of the ma-
nipulation the tip is lifted up a last time and a voltage is applied to break
the tip-molecule contact at the maximum tip-surface distance (red lines). A
whole manipulation experiment is referred to as manipulation cycle. For the
analysis of the frequency shift and conductance data only the so-called lifting
and lowering curves are used, i.e. the maximum number of curves from one
manipulation cycle is 94.
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and the reaction of the measuring electronics. This means that this hysteresis is depen-

dent on the moving speed of the tip vtip. To eliminate the unphysical hysteresis in the

data the two groups of curves are moved towards each other.

All four physical quantities measured show a very high reproducibility in this data set.

This is especially remarkable, considering that the tip was oscillating with an amplitude

of about 0.4Å during the whole measurement to measure the frequency shift. However,

this high reproducibility is not always observed. The reason is that there are parameters,

such as the exact adsorption geometry of the molecule, the contact point between tip

and molecule and the geometry of the tip, which we do not control. These parameters

together with the unavoidable residual drift between the tip and the substrate a�ect the

reproducibility.

Many features are visible in Fig. 6.2. The interpretation of the physics in the junction

tip-molecule-substrate will be based upon the measurement of the frequency shift ∆f

and the zero-bias di�erential conductance dI/dV . Most of the features visible in those

are found in every manipulation cycle. However, the uncontrolled parameters, drifts

and mechanical instabilities of the setup let to variation of the position and magnitude

of certain features. Therefore a statistical analysis is needed. This was realized by

performing many manipulation cycles for each system. Thereby a total number of about

2000 to 6000 lifting and lowering curves were measured per system. The procedure

applied to process this data is described in the next section.
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Figure 6.2: Lifting and lowering a single QTCDA molecule from Ag(111) 47 times. The
frequency shift ∆f and the damping were measured by the de�ection of the
qPlus sensor. The di�erential conductance dI/dV and its derivative d2I/dV 2

were measured by lock-in technique from the tunneling current. The data
shows a very high reproducibility, which is remarkable as the tip was oscillated
by the qPlus sensor at about 0.4Å during the whole manipulation to measure
the frequency shift. A hysteresis splits the data into two groups, this results
from a propagation delay in the electronics. By shifting the two groups the
hysteresis e�ect can be almost eliminated.
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6.3 Processing the data

The large data volume obtained for each system has to be processed before physical

information can be extracted. The �rst step of this procedure is to assign each lowering

and lifting curve to a certain class. Then a shifting procedure is applied to each curve.

By this the e�ects of some of the uncontrolled parameters, such as, for example, the

vertical drift, are reduced. The resulting curves of a system, assigned to a certain class,

are then plotted in a 2D histogram. This 2D histogram is already a good representation

of the general physical behavior of the quantities measured during the manipulation.

But to make further analysis possible, two di�erent procedures are applied to �nd a

curve which represented best the whole set of lifting and lowering curves of one system

molecule-substrate of each class.

These data processing procedures are described in this section. As an example the data

sets measured by manipulation of QTCDA on Ag(111) are used. The best representing

or generic curves of the other systems will be shown, but their processing will not be

discussed. They were obtained in the same way as shown here for QTCDA/Ag(111). In

Figs. A.1 to A.8 and A.10 to A.48 in chapter A the 2D histograms of all eight systems

are shown.

6.3.1 Sorting the data by classes

It is found that the lifting and lowering curves can be separated into four di�erent classes

(see Fig. 6.3). To the class app are assigned the curves measured while the tip initially

approaches the surface to contact the molecule by the jump into contact (see green

line in Fig. 6.1). Class A is characterized by a strong hysteresis between lifting and

lowering curves especially in the region of the global frequency shift minimum. This

hysteresis is not the earlier mentioned hysteresis due to the propagation delay which is

observed for all classes. The origin of the distinctive class A hysteresis will be discussed

later. Class B is characterized by a smooth peak-dip feature in the frequency shift.

This class of curves is the one of which was reported in the publications by Fournier et

al. [42] and Wagner et al. [43]. The peak-dip feature was labeled feature B as introduced

earlier [42, 43]. To class C, which will not be considered in the analysis, are assigned

all lifting or lowering curves which could not be assigned to class app, A or B. In the

following the four classes are listed, in brackets is given percentage of occurrence of classes

A, B and C:
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• app: the initial approach of the tip towards the molecule before contact

• A: curves characterized by a hysteresis, especially in the region of the global fre-

quency shift minimum, between lifting and lowering (17%)

• B: curves characterized by a smooth peak-dip feature (feature B) in the frequency

shift [42,43] (72%)

• C: all remaining lifting and lowering curves (11%)

All manipulation cycles with at least two curves are used for the statistical analysis. The

�rst curve of a manipulation cycle is always tagged as app, the second one either A, B or

C. This means that in such a manipulation cycle tip and molecule made contact and the

molecule was at least lifted once from the metal surface. Interestingly, this �rst lifting

of the molecule usually showed at the beginning features of class A and then during the

�rst lifting most of the time switched to a class B behavior. It seems that the mechanical

tension which is build up at the beginning of the lifting process leads to a conformational

change in the junction. The switch from class A to class B also happened in the �rst

lifting of the manipulation cycle shown in Fig. 6.2, for a better representation this �rst

lifting curve is removed from the data set used for this �gure. These �rst lifting curves

which showed features of class A and class B are all assigned to class C. The opposite

switching from class B to A is never observed.

Also the last lowering curve always di�ered from the other curves as a voltage pulse of

1V was applied to the molecule to remove it from the tip. This voltage pulse together

with an increased manipulation speed made the last lowering curve di�er and thus all

last lowering curves were assigned to class C. This last lowering curve was removed as

well from the data set used for Fig. 6.2.

Another observation made was that often after the �rst lifting of the molecule the lowering

curve looked similar to the class app curves. This happened when the molecule had

jumped up to the tip as soon as the molecule-substrate interaction was zero. These

manipulations had to be interrupted and the tip had to be cleaned from the molecule to

perform a new manipulation with another molecule.

In Fig. 6.4 all 4112 lifting and lowering curves measured for the system QTCDA on

Ag(111) are plotted in a 2D histogram with the counts, i.e. the density of measurement

points, on a logarithmic scale. To generate a 2D histogram the number of bins and

subsequently the bin size has to de�ned. As the data range varied the number of bins for
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Figure 6.3: The four di�erent classes which were found in all systems investigated, shown
here exemplary for QTCDA on Ag(111). The �rst approach of the bare metal
tip towards the molecule of each manipulation is assigned to class app. Class
A is characterized by a hysteresis between the lifting and lowering curves.
Class B is characterized by a smooth feature B (see chapter 5). To the class
C all remaining lifting and lowering curves are assigned.
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each 2D histogram has to be determined separately. Therefore the following equation is

used:

number of bins = round((max(z)−min(z)) ∗ 10) (6.1)

where max(z) is the maximum relative tip-surface distance and min(z) the minimum

relative tip-surface distance of the data used in this particular 2D histogram. From this

number of bins the bin size can be calculated as follows:

bin size =
max(z)−min(z)

number of bins
(6.2)

This is done for the frequency shift and the conductance data of each 2D histogram.

As the frequency shift is plotted on a linear scale one bin size is given for the z-axis

(relative tip-surface distance [Å]) and one bin size is given for the y-axis (∆f [Hz]). The

conductance is plotted on a semi-logarithmic scale. As for the frequency shift one bin

size is given for the z-axis (relative tip-surface distance [Å]). Because of the logarithmic

conductance scale the bin size of the y-axis is varying. Therefore the smallest and largest

bin size is given for the y-axis (G [2e2/h]). These two bin sizes are determined using

a di�erent approach. To get the smallest bin size the di�erence between the lower and

upper limit of the smallest bin is calculated, to get the largest bin size the di�erence

between the lower and upper limit of the largest bin is calculated. The bin size is given

at the end of the caption of every 2D histogram in the form: bin size of z-axis of ∆f [Å],

bin size of y-axis of ∆f [Hz], bin size of z-axis of G [Å], minimum bin size of y-axis of G

[2e2/h] and maximum bin size of y-axis of G [2e2/h].

The further processing is done by assigning every single one of the lifting or lowering

curves of one system substrate-molecule to a certain class. By this the whole statistics

of one system is split into the di�erent types of behavior. In table 6.1 the total number

of all lifting and lowering curves and the number of lifting and lowering curves assigned

to each class are listed. From this table one can see that curves assigned to class B are

much more often observed than class A curves, which only represent 16% of the total

number of curves.

It is found that the most reproducible data sets were of class B (see Figs. A.11, A.16,

A.21, A.26, A.31, A.36, A.41 and A.46 in chapter A). This high reproducibility is the

result of a stable junction geometry. Apparently, one stable junction geometry leads to

manipulations where the molecule is lifted and lowered over a whole manipulation cycle.
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Figure 6.4: 2D histogram of all 4112 curves measured while manipulating QTCDA on
Ag(111). The counts are plotted on a logarithmic scale, as can be seen
in the legend. In this 2D histogram lifting and lowering curves of all four
classes app, A, B and C are represented. To gain physical information from
these curves they have to be processed. This is done by splitting them into
di�erent classes of behavior. Then shifting each individual curve and �nally
�nding the best representing curve for each class of curves. Bin size of ∆f :
z = 0.1Å, y = 0.4Hz; bin size of G: z = 0.1Å, min(y) = 2.8× 10−21 2e2/h,
max(y) = 5.2× 10−3 2e2/h.

127



6 Systematic study of transport through a homologous series of π-conjugated molecules

Substrate Molecule all class app class A class B class C

Ag(111)

NTCDA 1748 26 135 (8%) 1334 (77%) 253 (15%)
PTCDA 3706 54 305 (8%) 3207 (88%) 140 (4%)
TTCDA 6121 123 1354 (23%) 4138 (69%) 506 (8%)
QTCDA 4111 74 393 (10%) 3441 (85%) 203 (5%)

Au(111)

NTCDA 2362 51 41 (2%) 1912 (81%) 358 (15%)
PTCDA 2156 81 404 (19%) 1504 (72%) 167 (8%)
TTCDA 2384 53 1035 (44%) 796 (34%) 500 (21%)
QTCDA 793 32 116 (15%) 184 (24%) 461 (61%)

Table 6.1: Total number of lifting and lowering curves and number of lifting and lowering
curves assigned to each class. In brackets is denoted the percentage of lifting
and lowering curves of each class from the total number of curves.

The molecule does not jump to the tip before the end of these manipulation cycles. At the

end of these manipulations it was typically possible to detach the molecule from the tip

by a voltage pulse. The tip neither changed its geometry upon contact with the molecule,

nor when the contact to the molecule was broken by applying a voltage. The identical

molecule then could be contacted again and probed once more. This made it sometimes

possible to probe the identical molecule over several days.

In Fig. 6.5 only the curves of the system QTCDA/Ag(111) assigned to class B are shown.

The data set is reduced to 3441 curves. As can be seen the individual curves are scattered

with respect to the relative tip-surface distance. This is a result of the uncontrolled

parameters of the setup, such as the drift, and the hysteresis due to the propagation

delay. To get a better representation of the data the curves have to be aligned. This

aligning eliminates the �uctuations originating from the parameters just mentioned to

some extent.

Next to the class B lifting and lowering curves the curves assigned to class A will be

discussed in this chapter. In Fig. 6.6 the 394 curves of class A of QTCDA on Ag(111) are

plotted in a 2D histogram. The junction con�guration leading to this class of manipula-

tions has a bistable tip-molecule-substrate geometry. The consequence is a hysteresis in

the frequency shift and the di�erential conductance in the region of the global minimum

of the frequency shift.

The characteristic of the lifting or lowering curves can change in one manipulation cycle.

Sometimes a switching from one class to another is observed. This switching behavior

between the di�erent classes is depicted in Fig. 6.7. The segments represent individual
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Figure 6.5: 2D histogram of the 3441 curves measured while manipulating QTCDA on
Ag(111) assigned to class B. The curves are scattered with respect to the
relative tip-surface distance. This happens because some parameters, such as
the drift for example, are uncontrolled. By aligning the data the �uctuations
due to these parameters can be reduced. Bin size of ∆f : z = 0.1Å, y =
0.3Hz; bin size of G: z = 0.1Å, min(y) = 2.8× 10−21 2e2/h, max(y) =
1.9× 10−3 2e2/h.
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liftings or lowerings. By the up arrow a lifting of the tip is symbolized, by the down

arrow a lowering of the tip. In Fig. 6.7a the most often observed scenario is shown.

After the initial approach of the tip towards the molecule and the jump into contact the

molecule is lifted up. In the �rst lifting always a switching from a less stable molecule-tip

con�guration to class B is observed. This switching is characterized by a decrease of

the conductance, which suggests that at the beginning of the �rst lifting always class A

is observed. Most of the time a switch to class B is observed during this �rst lifting.

In the following liftings and lowerings only class B characteristic is observed. The �rst

lifting of such a manipulation cycle, which shows class A and class B characteristic, is

then assigned to class C. The switching behavior shown in Fig. 6.7b is characterized by

the preservation of class A over several liftings and lowerings before switching to class

B behavior. In general those class A phases are much less stable and therefore shorter

than the class B phases. In Fig. 6.7c a switching from class B to class A is depicted.

This switching order was never observed. From these observation it can therefore be

concluded that the geometry leading to class A is less stable than the geometry leading

to class B. More details will be discussed in section 6.4.2.

6.3.2 Aligning the individual curves within class B

In the following the aligning procedure is described. This procedure was only applicable

to the curves tagged with class B. Curves of class A were not shifted, as the alignment

would screen out the e�ects of the hysteresis.

The aligning is done by determining a point (Zshift,Yshift) which de�nes were to shift each

single lifting and lowering curve i of a particular system (see Fig. 6.8). This is done by �rst

choosing a value Yshift which is global for all liftings or lowerings of one system molecule-

substrate. Then the value on the z-scale at which a lifting or lowering curve i cuts this

value zold,i is determined for each curve. By taking the arithmetic mean of all the z-values

determined as just described the value Zshift is de�ned:

Zshift =
1

N

n∑
i=1

zold,i (6.3)

with N the total number of lifting and lowering curves of one system assigned to class

B.
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Figure 6.6: 2D histogram of the 394 curves measured while manipulating QTCDA on
Ag(111) assigned to class A. This class is observed for bistable junction con�g-
uration. This leads to a hysteresis in the frequency shift and di�erential con-
ductance data. More details will be discussed in section 6.4.2. Bin size of ∆f :
z = 0.1Å, y = 0.4Hz; bin size of G: z = 0.1Å, min(y) = 1.6× 10−12 2e2/h,
max(y) = 1.6× 10−3 2e2/h.
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Figure 6.7: Di�erent manipulation scenarios. The segments represent individual liftings
(arrow up) or lowerings (arrow down) of the tip. (a) The most common
scenario observed: After the initial approach and the jump into contact the
molecule is lifted up showing class A characteristic, but switching to class B
characteristic during the �rst lifting (a lifting or lowering which shows the
characteristic of two classes is de�ned as class C and will thus not be used
in the further analysis). In the following liftings and lowerings only class
B characteristic is observed. (b) Sometimes it is observed that the class A
characteristic is stable over several liftings and lowerings. But in most of the
cases this class A phases are short compared to the class B phases. (c) It was
never observed that once the liftings and lowerings show class B characteristic
a switch to class A occurs.
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Then each individual lifting and lowering curve i is shifted along the z-scale by zshift,i

such that the following relation is ful�lled:

znew,i = zold,i − zshift,i (6.4)

After this all curves of one system cross the point (Zshift,Yshift) and are thus aligned. This

is done for the frequency shift ∆f curves of all liftings and lowerings assigned to class

B. Each corresponding di�erential conductance dI/dV curves j are then shifted in the

same way as the frequency shift ∆f curve by zshift,j with:

zshift,j ≡ zshift,i (6.5)

From this an average shifting value zshift,ave can be determined for each system:

zshift,ave =
1

N

N∑
i=1

zshift,i (6.6)

which gives a value for the scattering of the frequency shift data of a system molecule-

substrate at the point where the shifting is performed. Except for the system QTCDA/Au(111)

all systems have a very similar average shifting value. The average shifting value of

QTCDA/Au(111) zshift,ave = 0.80Å is much higher than the average shifting value of

the other systems. This indicates that this measurement was not consistent as will be

discussed later in this chapter. In table 6.2 the values Zshift and Yshift for the alignment

of the lifting and lowering curves of each system and the average shifting value zshift,ave

are listed.

In Fig. 6.8 the 3441 curves, assigned to class B and shifted according to the procedure

just introduced, are shown. The red line indicates the chosen value Yshift and the red

arrow indicates the calculated value Zshift. To the intersection of the red line and the

arrow each individual frequency shift ∆f curve is shifted. The corresponding di�erential

conductance dI/dV curves are shifted by the same values.
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Figure 6.8: 2D histogram of the 3441 curves assigned to class B and shifted according
to the procedure described in section 6.3.2. The red line indicates the value
Yshift chosen to determine the value Zshift. Where both lines cross each in-
dividual frequency shift ∆f curve is shifted. The corresponding di�erential
conductance dI/dV curves are shifted by the same values. The blue lines
indicate in which range the correlation, discussed in section 6.3.3.2, is deter-
mined. Bin size of ∆f : z = 0.1Å, y = 0.3Hz; bin size of G: z = 0.1Å,
min(y) = 2.6× 10−21 2e2/h, max(y) = 1.8× 10−3 2e2/h.
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Substrate Molecule Zshift [Å] Yshift [Hz] zshift,ave [Å]

Ag(111)

NTCDA −1.42 5 0.22
PTCDA −5.58 5 0.36
TTCDA −9.92 5 0.36
QTCDA −14.26 5 0.37

Au(111)

NTCDA −2.66 5 0.30
PTCDA −7.66 5 0.34
TTCDA −11.97 5 0.22
QTCDA −13.26 5 0.80

Table 6.2: The parameters Zshift and Yshift determine the point to which each individual
curve was shifted. Yshift was chosen global to determine the arithmetic mean
Zshift. The value zshift,ave is the average value a lifting or lowering curve is
shifted.

6.3.3 Finding a curve which represents an individual system best

6.3.3.1 Class A: Determine a generic curve

After assigning each lifting and lowering curve to a class, one generic curve is extracted

for all curves of a system assigned to class A. This generic curves of class A are ex-

tracted from the unaligned curves, as an alignment would screen out the e�ects of the

hysteresis.

The generic behavior is extracted by calculating the arithmetic mean of the 2D histogram.

This was done for the frequency shift and the di�erential conductance data. In Fig. 6.9 the

same 2D histogram as shown in Fig. 6.6 is plotted together with the generic curve (blue

curve) of the lifting and lowering curves of QTCDA on Ag(111) assigned to class A. This

procedure to obtain a generic curve was applied to all systems investigated. As there were

eight systems, there are in total 8 pairs (frequency shift and di�erential conductance) of

generic curves which were extracted from the raw data sets.

In Figs. A.10, A.15, A.20, A.25, A.30, A.35, A.40 and A.45 in chapter A all the 2D

histograms together with the generic curves determined as described here are shown. In

section 6.4 and 6.5 these generic behaviors of the frequency shift and di�erential conduc-

tance data of the curves assigned to class A will be used to gain physical information.

As by taking the arithmetic mean information about the individual curves can get lost,

another procedure is applied to �nd the curve which represents the best the class B lifting

and lowering curves.
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Figure 6.9: 2D histogram of the 393 curves assigned to class A. The blue line is the generic
curve obtained by calculating the arithmetic mean of the 2D histogram as
described in section 6.3.3.1. Bin size of ∆f : z = 0.1Å, y = 0.4Hz; bin size
of G: z = 0.1Å, min(y) = 1.6× 10−12 2e2/h, max(y) = 1.6× 10−3 2e2/h.
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6.3.3.2 Class B: Determine the measured curve with the largest correlation with all

other curves

The procedure to �nd the curve which represents the best the lifting and lowering curves

assigned to class B is based on determining the correlation between every lifting and

lowering curve measured. In principle this correlation can be determined for the fre-

quency shift or the di�erential conductance data or for a combination of both. For

this thesis the correlation is determined upon the di�erential conductance curves, as

the di�erential conductance is the main quantity we are interested in the further analy-

sis.

The whole procedure to �nd the best representing curve is a four step process:

step 1 Align the data set as described in section 6.3.2.

step 2 Determine the correlation between each di�erential conductance curve in the data

set. The result of this �rst correlation determination can be plotted in a N ∗ N
matrix (see Fig. 6.10), where N is the number of curves in the data set. Identify

the curve with the best correlation Lbest,1 with all the other curves of the data set.

step 3 Shift every di�erential conductance curve, i.e. multiply, of the data set such that

the correlation with the best curve Lbest,1 is maximized.

step 4 Repeat step 2 with the shifted di�erential conductance, i.e. determine again the

correlation between each curve in the shifted data set (see Fig. 6.15). From this

second correlation determination �nd the curve with the best correlation Lbest,2

with all the other curves of the data set.

In step 1 the shifting is performed as described in section 6.3.2, i.e in the example dis-

cussed here the data set of QTCDA/Ag(111) class B shown in Fig. 6.8 is used. In step 2

the �rst correlation is determined. There are several possibilities to determine the corre-

lation between each curve. One possibility is to determine the correlation cjk between two

curves j and k by calculating the absolute di�erence of every di�erential conductance data

point pair n and then sum up these absolute di�erences:

cjk =
1

n

n∑
i=1

2|Gj(i)−Gk(i)|
Gj(i) +Gk(i)

(6.7)
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where Gj(i) is the di�erential conductance of curve j at point i. With the factor

(Gj(i) + Gk(i))/2 the correlation cjk is normalized to the mean value of the di�eren-

tial conductance at point n. This has to be done as not to weight the correlation on

higher conductance values. By the factor 1
n the correlation cjk is normalized to the num-

ber of points n, which depends on the range used for the correlation determination. In

this way correlations of di�erent systems and therefore di�erent lengths and thus di�er-

ent number of points n can be compared. The number of points are calculated in the

following way:

n =
|min(z)|+ |max(z)|

20
(6.8)

where min(z) is a value chosen next to the noise level of the measured conductance. This

is done to exclude the noise level in the determination of the correlation between two

curves (see blue lines Fig. 6.8). max(z) is the closest distance to the substrate of the curve

which is the farthest away from the substrate. This is necessary since a correlation can

only be determined if both curves have data points in the investigated range. The factor

20 results from calculating the absolute di�erence every 0.05Å. In table 6.3 the three

parameters just discussed are listed for all eight systems.

Substrate Molecule min(z) [Å] max(z) [Å] n

Ag(111)

NTCDA −1.62 3.14 95
PTCDA −5.17 0.82 120
TTCDA −9.28 0.48 195
QTCDA −13.9 0.19 282

Au(111)

NTCDA −2.76 1.76 90
PTCDA −5.29 0.02 106
TTCDA −8.29 0.75 181
QTCDA −13.02 1.49 290

Table 6.3: By the parameter min(z) and max(z) the range used to determine the corre-
lation between two curves is given. With equation 6.8 the number of points n
can be calculated from this range.

Another possibility to determine the correlation cjk between two curves j and k is to

calculate the absolute di�erences of the logarithmic conductance values at every point n

and sum them up:

138



6 Systematic study of transport through a homologous series of π-conjugated molecules

cjk =
1

n

n∑
i=1

|log10
Gj(i)

Gk(i)
| (6.9)

again a factor 1
n is used to normalize the correlation for a better comparison between

di�erent systems. The absolute di�erences of the logarithmic conductance values was

chosen to be used for the correlation determination in this thesis. This was done as it

was found that most of the dependencies observed in the further analysis show an expo-

nential behavior and are thus represented the best on a logarithmic scale. In fact both

ways to determine the correlation, i.e. taking the absolute di�erences of the conductance

values or taking the absolute di�erences of the logarithmic conductance values, result in

twelve out of 16 performed correlation determination in the same curve with the best

correlation.

The correlations between each curve, calculated using equation 6.9, are represented in a

N ∗N matrix (see Fig. 6.10), i.e. each matrix element cjk gives the correlation between

the curves j and k. The correlations are plotted on a gray scale, with white the smallest

value (cjk = 0, largest correlation) and black the highest cjk (smallest correlation). For

the N ∗ N matrix this means that the diagonal line is white, as in the diagonal line

the correlation between the same curve is given, which is always zero. Further each

correlation is represented two times in the matrix as the correlation between curve j and

k is the same as the correlation between curve k and j. Therefore the matrix elements

are mirrored at the diagonal line.

From the correlation matrix the curve with the best correlation Lbest,1 within respect of

all other curves can be determined. This is done by summing up every row of the N ∗N
matrix. This results in a total correlation Ci,1 for every curve i (see Fig. 6.11). The

curve Lbest,1 with the minimum Ci,1 is then considered to be the curve which represents

the best the data set investigated, as the smaller the correlation value the higher the

correlation between two curves. In Fig. 6.12 this best representing curve, called generic

curve 1, is plotted together with the data set QTCDA/Ag(111) of class B investigated

here. See Figs. A.12, A.17, A.22, A.32, A.37, A.42 and A.47 in chapter A for the generic

curves of the other seven systems investigated.

This best representing curve Lbest,1 could already be used for the further analysis. But

it is believed that an additional step gives an even better representing curve for each

system. In Fig. 6.8 in the region 12Å to 15Å three di�erent conductance branches can

be identi�ed. As they all show the same behavior it is assumed that the di�erence in
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Figure 6.10: First correlation matrix of the aligned QTCDA/Ag(111) curves of class B.
Every matrix element represents one correlation value, i.e. the matrix ele-
ment cjk gives the correlation between the curves j and k. The darker the
matrix element the smaller the correlation between the two curves. The
correlation value determined between a curve and itself is zero, therefore
the diagonal line is white. Also every correlation value is represented two
times, as the correlation between curve j and k is the same as the correlation
between curve k and j. This results in the mirroring of the matrix elements
at the diagonal.
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Figure 6.11: Sum of the �rst correlation matrix of the aligned QTCDA/Ag(111) curves
of class B. This sum was calculated summing up the matrix elements of
every column of the N ∗N matrix shown in Fig. 6.10. The curve with the
smallest sum is then considered to be the best representing curve Lbest,1 of
the aligned data set.

141



6 Systematic study of transport through a homologous series of π-conjugated molecules

Figure 6.12: The blue curve is the best representing curve Lbest,1, called generic curve,
of the aligned QTCDA/Ag(111) of class B. This curve is plotted together
with the whole data set used for the correlation determination. It is the
same histogram as shown in Fig. 6.8. Bin size of ∆f : z = 0.1Å, y =
0.3Hz; bin size of G: z = 0.1Å, min(y) = 2.6× 10−21 2e2/h, max(y) =
1.8× 10−3 2e2/h.
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the conductance magnitude is not an intrinsic feature of the junction only. It is rather

believed that other parameters, e.g. the geometry of the contacts, a�ect the conductance

magnitude as well. Therefore, to eliminate the in�uence of these parameters, we multiply

the conductance values by a normalization factor. In the logarithmic plot log dIdV vs. z,

this multiplication corresponds to vertical shifts of the curves. In this way the correlation

with the best correlating curve can be maximized for each di�erential conductance curve.

This new set of conductance curves, determined by multiplication, is shown in the 2D

histogram in Fig. 6.18.

The multiplication factors used to shift each individual curve can be plotted in a his-

togram (see Figs. 6.13 and 6.14). By calculating the normal distribution of each histogram

the full width at half maximum (FWHM) of each system can be determined. It is found

that the average FWHM determined from the manipulations on Ag(111) is 0.079 and thus

substantially higher than the average FWHM found for the manipulations on Au(111)

(0.051). This could be a consequence of the larger coupling between the molecule and the

silver tip compared to the coupling between the molecule and the gold tip. The larger

coupling could allow more transport path and thus a larger spectrum of conductance in

the case of silver.

With this new set of conductance curves step 2 can be repeated. Again aN∗N correlation

matrix can be determined (see Fig. 6.15). In this second correlation matrix every matrix

element has a smaller value as every curve was multiplied such that the correlation to

the best representing curve Lbest,1 is maximized. The smaller correlation values can

be shown by looking at the histogram of all correlation values. This is shown in Fig.

6.16 where the red line denotes the histogram of the correlation values calculated for

the unshifted di�erential conductance and the green line denotes the shifted di�erential

conductance data correlation values histogram. It can be seen that after the shifting the

correlation values are smaller, i.e. the correlation between each pair of curves is higher.

See Figs. A.49 to A.56 in chapter A for the histograms of the correlation values of all

eight systems probed.

From this second correlation matrix the sum of every column can now be calculated,

resulting in the total correlation Ci,2 of every curve with all other curves shown in Fig.

6.17. Finally by choosing the curve with the smallest total correlation value Ci,2 the best

representing curve Lbest,2 of the aligned and shifted QTCDA/Ag(111) curves of class B

is determined. In Fig. 6.18 this best representing curve Lbest,2, called generic curve 2,

is shown together with the 2D histogram of the aligned and shifted QTCDA/Ag(111)

curves of class B. See Figs. 6.19 to 6.25 for the generic curves 2 of the other seven
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Figure 6.13: Histogram of multiplication factors used to shift each individual curve to
maximize the correlation to the generic curve 1 for class B lifting and lower-
ing curves on Ag(111). By �tting this histogram with a normal distribution
the full width at half maximum (FWHM) is determined. An average FWHM
of 0.079 is found for Ag(111).
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Figure 6.14: Histogram of multiplication factors used to shift each individual curve to
maximize the correlation to the generic curve 1 for class B lifting and lower-
ing curves on Au(111). By �tting this histogram with a normal distribution
the full width at half maximum (FWHM) is determined. An average FWHM
of 0.051 is found for Au(111).
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Figure 6.15: Second correlation matrix of the aligned and shifted QTCDA/Ag(111)
curves of class B. Every matrix element is smaller than the correspond-
ing matrix element of the �rst correlation matrix (see Fig. 6.10). This is a
result of the shifting of the conductance curves.

146



6 Systematic study of transport through a homologous series of π-conjugated molecules

Figure 6.16: Comparing the �rst and second correlation values of QTCDA/Ag(111) (class
B). The second correlation values (green) are smaller than the �rst corre-
lation values (red) as every conductance curve was shifted such, that the
correlation with the best representing curve Lbest,1 is maximized.

147



6 Systematic study of transport through a homologous series of π-conjugated molecules

systems investigated. Note that the generic curves of the systems NTCDA/Au(111)

and PTCDA/Au(111) are signi�cantly shorter than the ones for the other six systems.

These two curves are the result of an attempt to get more reproducible manipulations

by not lifting the molecule up completely from the substrate. This procedure was later

not continued as it was found that it had no in�uence on the reproducibility of the

manipulations.

Figure 6.17: Sum of the second correlation matrix of the aligned QTCDA/Ag(111) curves
of class B. This sum was calculated summing up the matrix elements of every
column of the N ∗N matrix shown in Fig. 6.15. The curve with the smallest
sum is then considered to be the best representing curve Lbest,2 of the aligned
and shifted data set.

6.3.4 Exponential decay in the tunneling barrier

After having explained the procedure to extract the best representing curve for class A

(arithmetic mean) and class B (largest correlation), in the following these curves will

used for the further analysis. As shown in chapter 3 the current decays exponentially
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Figure 6.18: The blue curve is the best representing curve Lbest,2 of the aligned and shifted
QTCDA/Ag(111) of class B. This curve is plotted together with the whole
data set used for the correlation determination. In contrast to the data set
shown in Fig. 6.8, the conductance curves are shifted by multiplication as
described in section 6.3.3.2. Bin size of ∆f : z = 0.1Å, y = 0.3Hz; bin size
of G: z = 0.1Å, min(y) = 1.6× 10−21 2e2/h, max(y) = 1.0× 10−3 2e2/h.
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Figure 6.19: NTCDA/Ag(111) lifting and lowering curves of class B aligned with the
generic curve 2. Bin size of ∆f : z = 0.1Å, y = 0.5Hz; bin size of G:
z = 0.1Å, min(y) = 2.6× 10−12 2e2/h, max(y) = 1.2× 10−2 2e2/h.

Figure 6.20: PTCDA/Ag(111) lifting and lowering curves of class B aligned with the
generic curve 2. Bin size of ∆f : z = 0.1Å, y = 0.4Hz; bin size of G:
z = 0.1Å, min(y) = 1.7× 10−13 2e2/h, max(y) = 1.8× 10−3 2e2/h.
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Figure 6.21: TTCDA/Ag(111) lifting and lowering curves of class B aligned with the
generic curve 2. Bin size of ∆f : z = 0.1Å, y = 0.4Hz; bin size of G:
z = 0.1Å, min(y) = 5.7× 10−15 2e2/h, max(y) = 7.0× 10−3 2e2/h.

Figure 6.22: NTCDA/Au(111) lifting and lowering curves of class B aligned with the
generic curve 2. Bin size of ∆f : z = 0.1Å, y = 0.9Hz; bin size of G:
z = 0.1Å, min(y) = 3.4× 10−12 2e2/h, max(y) = 6.9× 10−3 2e2/h.
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Figure 6.23: PTCDA/Au(111) lifting and lowering curves of class B aligned with the
generic curve 2. Bin size of ∆f : z = 0.1Å, y = 0.3Hz; bin size of G:
z = 0.1Å, min(y) = 4.1× 10−14 2e2/h, max(y) = 1.7× 10−3 2e2/h.

Figure 6.24: TTCDA/Au(111) lifting and lowering curves of class B aligned with the
generic curve 2. Bin size of ∆f : z = 0.1Å, y = 0.3Hz; bin size of G:
z = 0.1Å, min(y) = 1.7× 10−21 2e2/h, max(y) = 1.8× 10−3 2e2/h.
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Figure 6.25: QTCDA/Au(111) lifting and lowering curves of class B aligned with the
generic curve 2. Bin size of ∆f : z = 0.1Å, y = 0.2Hz; bin size of G:
z = 0.1Å, min(y) = 1.8× 10−22 2e2/h, max(y) = 1.5× 10−3 2e2/h.

with the barrier width z in a tunneling barrier (see equation 3.19). The conductance G

is the ratio between the current and the voltage (G = I/V ). Therefore a characteristic

decay constant β for the conductance G can be de�ned as:

G ∝ e−βz (6.10)

In the study presented in this chapter this exponential decay constant is analyzed. This

decay constant is de�ned for di�erent scenarios. In Fig. 6.26 all investigated exponential

decay constant β are depicted. The exponential decay constants in Fig. 6.26a-c are

measured for every type of molecule separately. The bare metal tip tunneling decay

constant (βsilver tip and βgold tip) is measured by approaching the bare metal (silver or

gold) tip towards the molecule and record the zero-bias di�erential conductance. The

contact tunneling decay constant βcontact is measured by approaching the tip, with the

molecule in contact to the tip and the substrate, towards the surface and record the zero-

bias di�erential conductance. And �nally the vacuum tunneling decay constant βvacuum

is measured by approaching the tip, with the molecule bonded to the tip, towards the

surface, while the molecule has no contact to the surface.
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Figure 6.26: Di�erent types of decay constants that are determined in the following. (a)-
(c) These decay constants are determined separately for each molecule. (d)-
(e) These decay constants are determined by measuring the conductance for
each molecule at a speci�c geometrical junction con�guration and plotting
the conductance values versus the molecule length.
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The decay constants in Fig. 6.26d-e are determined by measuring a single zero-bias dif-

ferential conductance value for each molecule and than plot it versus the molecule length.

The conductance peak decay constant βpeak is determined by measuring the di�erential

conductance of the molecule at the position where a peak is observed. The wire con�gura-

tion decay constant βwire is determined by measuring the conductance for each molecule

as the molecule is standing upright in the junction.

6.4 Results: Molecular wires on Ag(111)

In the �rst part of this section the manipulations with silver electrodes assigned to class B

are presented. Based on the generic curve 2 of QTCDA on Ag(111) (see section 6.3.3.2) it

is explained how features are identi�ed and quanti�ed. These quanti�ed features are then

used to interpret the generic curves. It will be shown that the transport through molecules

on Ag(111) can be split into two regimes. Then the observation of a conductance peak

will be discussed. Finally the conductance through the molecular wire, i.e. through the

upright standing molecule, will be determined from the data. In the second part of

the section the �ndings regarding manipulations of class A are presented, based on the

generic curves as introduced in section 6.3.3.1. First the origin of the hysteresis will

be discussed. Then the even stronger conductance peak observed in class A will be

discussed. All these discussions will be focused on the comparison of class A and class

B.

The procedure to class, align, calculate the correlations and determine the generic curve

as described in section 6.3.3.2 was applied to the data sets of all four molecules on

Ag(111) assigned to class B. For each of the four molecules all lifting and lowering curves

assigned to class B where used for the determination of the generic curve. The proce-

dure to class, align, and determine the generic curve as described in section 6.3.3.1 was

applied to the data sets of all four molecules on Ag(111) assigned to class A. For each

of the four molecules all lifting and lowering curves tagged as class A where used for the

determination of the generic curve. In table 6.4 the total number of lifting and lowering

curves used are listed.

6.4.1 Manipulations of class B on Ag(111)

The generic curves 2 for all manipulations of molecules on Ag(111) assigned to class B are

shown in Fig. 6.27. The generic curve 2 determined from the NTCDA on Ag(111) lifting
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Molecule class A class B

NTCDA 135 1334
PTCDA 305 3207
TTCDA 1354 4138
QTCDA 393 3441

Table 6.4: Number of lifting and lowering curves of the Ag(111) manipulations used for
the statistical analysis.

and lowering curves reaches to much higher positive z-values. The reason is a slightly

di�erent way to manipulate NTCDA on silver. The tip was moved much closer to the

substrate after the tip-molecule contact was established by the jump into contact. This

was done to observe the dip in the frequency shift and the peak in the conductance close

to the substrate (z ≈ 4Å). The disadvantage of this procedure was a higher instability

in the region close to the substrate, as the forces in the junction increase signi�cantly

in that region. As no features were observed for the other molecules in that region, the

manipulations of them were not carried out so close to the metal. In Fig. 6.28 the generic

curve 2 of QTCDA on Ag(111) of class B is shown, with the di�erential conductance

plotted on a linear scale. In Figs. A.61 to A.64 in chapter A the generic behaviors with the

di�erential conductance on a linear scale of all eight systems are shown for comparison. In

the following of this chapter the logarithmic representation of the di�erential conductance

will be used to interpret the generic behaviors.

The interpretation of the physics in the junction during the manipulation will be done

by the observation of features in the generic curves and their quantitative analysis. Re-

member that the frequency shift can be directly related to the sti�ness k = dF
dz of the

tip-molecule-substrate junction, where F is the force acting on the tip and z is the rel-

ative tip-surface distance [42, 43] (for more details see chapter 5). In the upper panel

of Fig. 6.29 the generic frequency shift of QTCDA/Ag(111) of class B is shown. In the

lower panel the integrated frequency shift, i.e. the force F , is shown. By the arrows

is shown that a peak or a dip in the frequency shift corresponds to an in�exion point

in the force. Note that the force is positive, i.e. repulsive, at the beginning of the lift-

ing process. This positive force is spurious and stems from the combined e�ects of the

surface corrugation, the elasticity of the tip material and the �nite oscillation of the

tip [151].

In Fig. 6.30 the two generic curves of QTCDA on Ag(111) assigned to class B are shown.

The points and arrow indicate some features that were identi�ed and will be used in the
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Figure 6.27: The generic curves 2 of all four molecules on Ag(111) of class B. The upper
panel shows the generic behavior of the frequency shift, the lower panel
shows the zero-bias di�erential conductance behaviors. In section 6.3 the
procedure to calculate these generic curves was described.
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Figure 6.28: The generic behavior of QTCDA on Ag(111) of class B. The same data as in
Fig. 6.27 is shown, but with the di�erential conductance plotted on a linear
scale.
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Figure 6.29: The upper panel shows the generic frequency shift of QTCDA/Ag(111) and
the lower the force acting on the tip determined by integrating the frequency
shift. By the arrows is shown that a peak or a dip in the frequency shift
corresponds to a in�exion point in the force.
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following. The point P2 indicates a peak in the conductance data and is at the position

of the last dip in the frequency shift before feature B as shown by the arrow. With the

points P1, P3, P4 and P5 two di�erent slopes are identi�ed in the di�erential conductance

data. By making two separate linear regressions (purple lines) these two di�erent slopes

are quanti�ed. The point P4 further marks the transition between the two slopes and is

in the region of the global peak of the frequency shift data.

In the following the discussed points are summarized:

P1 Conductance Gstart at the closest z-position relative to the substrate.

P2 The conductance peak Gpeak. This peak matches with a dip in the frequency shift,

as indicated by the arrow.

P3 Conductance selected to determine the �rst slope by making a linear regression.

P4 The knee Gwire in the conductance data. This knee is in the region of the global peak

in the frequency shift.

P5 Conductance Gend at the transition of the conductance data to the noise level.

In Figs. A.57 to A.60 in chapter A all generic curves and the corresponding points, linear

regressions and the arrow are shown. In table 6.5 the coordinates of the points are

listed.

Molecule P1 [Å,2e2/h] P2 [Å,2e2/h] P3 [Å,2e2/h]

NTCDA (4.36,5.80× 10−2) (4.08,6.01× 10−2) (−0.86,9.01× 10−4)
PTCDA (3.62,1.38× 10−2) (1.22,8.81× 10−3) (−3.64,1.10× 10−3)
TTCDA (1.60,4.33× 10−3) (−3.87,1.69× 10−3) (−8.90,2.60× 10−4)
QTCDA (2.81,3.10× 10−3) (−8.66,3.28× 10−4) (−12.47,7.21× 10−5)

Molecule P4 [Å,2e2/h] P5 [Å,2e2/h]

NTCDA (−0.86,8.65× 10−4) (−2.51,7.58× 10−6)
PTCDA (−4.43,1.38× 10−3) (−6.51,3.91× 10−6)
TTCDA (−9.02,3.53× 10−4) (−11.04,5.87× 10−6)
QTCDA (−14.09,1.77× 10−4) (−15.36,1.21× 10−6)

Table 6.5: The coordinates of the points P1, P2, P3, P4 and P5 as de�ned above for the
class B manipulations of all four molecules on Ag(111).
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Figure 6.30: The generic behavior of QTCDA on Ag(111) lifting and lowering curves
assigned to class B. Five points were chosen, which will be used to discuss
the transport through the molecules. P1 indicates the conductance measured
the closest to the substrate. P5 indicates the point of the transition of the
conductance data to the noise level. P2 is at the position of a peak Gpeak in
the conductance. This conductance peak matches with a dip in the frequency
shift, which is indicated by a blue arrow. P4 is at the position of a knee
in the conductance. This knee is in the region of the global peak in the
frequency shift. By making two linear regressions (purple lines) between the
points P1 and P3 and P4 and P5 the two slopes of the conductance data are
quanti�ed. For all eight systems investigated (NTCDA, PTCDA, TTCDA
and QTCDA on Ag(111) and Au(111)) the points P1 to P5 can be found in
chapter A.
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6.4.1.1 Two transport regimes

Having de�ned the points P1 to P5 in the previous section, we can discuss general trends.

The conductance in the beginning of the manipulation is larger the smaller the molecule

is (see P1 in table 6.5). This di�erence in the conductance is a result of the position

of the LUMO at the beginning of the manipulation. In Fig. 4.3 in section 4.2.1 it was

shown that the smaller the molecule is, the closer the LUMO is to the Fermi level.

The larger density of states at the Fermi level for smaller molecules results in a larger

conductance.

Further the generic conductance curve has two distinct branches, P1 to P3 and P4 to P5.

We call these two branches two transport regimes. Both show an exponential drop of

the conductance which suggests tunneling. Note however that exponential behavior of

tunneling follows from exponential drop of wave function tails. Overlap of wave function

tails is the relevant quantity here.

The �rst transport regime takes place as long as the molecule is in contact or overlapping

with the substrate, i.e. as long as the molecule or at least some of its parts are chemically

interacting with the metal. We call it contact tunneling regime. During this regime

the LUMO is sharpened and shifted towards the Fermi level. Wave function overlap

remaining the same, this should increase the conductance at zero bias. However, in the

present case not only the energetic position of the LUMO changes, but also the overlap

with relevant states in the metal. Apparently, this wave function overlap is reduced

exponentially, such that exponential behavior results.

The second transport regime is observed after the contact of the molecule to the substrate

is broken (from P4 to P5). It is obvious that in this regime wave function overlap between

bottom of the molecule and metal surface is reduced exponentially as the tip is retracted.

Therefore it is not surprising to observe tunneling here. We name the second transport

regime vacuum tunneling regime.

These �ndings are summarized in Fig. 6.31. The pictogram show the simpli�ed geometry

of the junction required for the two transport regimes. Note that in the contact tun-

neling regime small deviations from strictly exponential behavior are observed. These

will be discussed in section 6.4.1.2. Moreover, in the transition region between the two

transport regimes a more complex behavior is observed. It is found that the conductance

increases shortly before the contact is broken. From force-�eld simulations (see chapter

5) we know that the molecule is stretched shortly before the breaking of the contact,
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it was found that the molecular diagonal of PTCDA is stretched by 0.5% on Au(111).

As the interaction between Ag(111) and the molecules is stronger a larger stretching is

assumed for the manipulations on silver. This could in principle lead to modi�cations

in the electronic structure of the molecule (at unchanged overlap) with the possible out-

come that the conductance could increase. For example, Bruot et al. [152] observed that

the conductance through a 1,4'-benzenedithiol molecule contacted by gold electrodes in-

creases up to an order of magnitude as the molecule is stretched. They explain this

by a shift of the highest occupied molecular orbital (HOMO) towards the Fermi level

of the gold electrode and thus an enhancement of resonant transport. Further exper-

iments and/or calculations would be necessary to decide whether a similar mechanism

also applies here.

When one looks carefully at the histogram of QTCDA on Ag(111) assigned to class B one

can see that the conductance increase just before the contact rupture is composed of two

peaks in the conductance (see e.g. Fig. 6.8). These two peaks could be signatures of the

removal of the last two oxygen atoms. With this it can be assumed that these two peaks in

the conductance are originating from a stretching of the molecule just before the last and

last but one oxygen atom are detached from the substrate.

Figure 6.31: The two transport regimes as discussed in section 6.4.1.1. The �rst trans-
port regime takes place as long as the molecule is still in contact with the
substrate. Because of its exponential decay it is assumed that tunneling
is observed. The second transport regime takes place after the molecule-
substrate contact is broken, again tunneling is observed.

After identifying the two transport regimes it is now of interest to investigate how these
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two transport regimes depend on the length of the molecule. Therefore the decay constant

β of the conductance is determined (see chapter 3). The decay constant is de�ned as

the change of the conductance G upon electrode separation z by the following relation

G ∼ exp(−βz). This decay constant can be determined by making a linear regression

through the points de�ned earlier. The decay constant of the contact tunneling transport

regime βcontact is determined by the points P1 and P3. The decay constant of the vacuum

tunneling transport regime βvacuum by the points P4 and P5. In order to calculate

the decay constants the points P1 to P5 were measured for all four generic behaviors

measured on silver. In Fig 6.30 the generic behavior of QTCDA/Ag(111) for class B is

shown together with the points P1 to P5. The other three generic behaviors and the

corresponding points for manipulations on silver assigned to class B are shown in Fig.

A.58 in chapter A.

In Fig. 6.32a the βcontact is plotted as a function of molecule length. The length of the

molecules was calculated on the basis of the DFT calculations used for the simulation

of the molecules in the publication of Wagner et al. [43]. By the length of the molecule

the diagonal through the molecule from one carboxylic oxygen to the other is meant.

The diagonal is taken in view of the geometry of the molecule in the junction just before

rupture of the contact, as we know from force-�eld simulations (see chapter 5). It is

found that the decay constant is decreasing with the length of the molecule. To an-

alyze the behavior of βcontact as a function of molecular length lm further, we rescale

the z-axis in Fig. 6.30 from z to z
lm
. This renormalies βcontact to βcontactlm. Plotting

βcontactlm as a function of molecule length (see Fig. 6.32b), we �nd a reduced depen-

dence of the decay constant on molecules. However, the decay constant still decreases

systematically as we go from NTCDA to TTCDA, with the decay constant for QTCDA

increasing slightly. Assuming similar transport orbitals, and assuming that orbital over-

lap determines the decay, this indicates that geometrically the lifting process proceeds

di�erently. Speci�cally a smaller decay constant indicates that the molecule bends more

strongly.

To probe the geometry of the molecule during the lifting process the force-�eld simula-

tions introduced earlier [42,126] are analyzed (see Fig. 6.33). This analysis is done with

the geometric con�gurations of the molecule during the lifting process. By averaging the

position of each atom in the molecule relative to the surface, the average atom position

is determined. This average atom position is determined for di�erent molecular con�gu-

rations during the lifting process from Au(111) for the four molecules NTCDA, PTCDA,

TTCDA and QTCDA. This average atom position is then plotted versus the top atom
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Figure 6.32: Decay constant of the contact tunneling transport regime βcontact. It is de-
termined by measuring a linear regression between the points P1 and P3. (a)
The decay constant plotted versus the molecule length.shows a decreasing of
the decay constant with increasing molecule length. (b) The decay constant
normalized to the molecular length plotted versus the molecule length also
shows a decreasing of the decay constant with increasing molecule length.
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position of this molecular con�guration, i.e. versus the position of the carboxylic oxy-

gen making contact to the tip. The comparison of the results for the four molecules in

Fig. 6.33 shows that the longer the molecule is, the more it is bend towards the surface.

This is consistent with our expectations. The longer molecule is more �exible, bends

more and thus its transport orbital keeps contact (overlap) with the metal for longer.

The bending visualized for Au(111) in Fig. 6.33 should be even more pronounced on

Ag(111), as the interaction between the molecules and the surface is larger on Ag(111)

than Au(111).

The exponential dependence of the conductance upon the electrode separation was ob-

served in several metal-molecule-metal junctions before [153�155]. This exponential de-

pendence of the conductance was explained by coherent electron tunneling through the

molecule [153, 154]. Not surprisingly the decay constant found varied a lot depending

on the investigated system. La�erentz et al. [153] found β = 0.38Å−1 for poly�uo-

rene probed with Au(111) electrodes. Koch et al. [155] studied graphene nanoribbons

on gold and found that the decay constant varied upon the bias voltage applied to the

junction. In the low bias regime (∼ 1.6V) they found β = 0.45Å−1 and in the high

bias regime (1.8V to 2.4V) a smaller β = 0.18Å−1, at negative bias they measured

β = 0.1Å−1.

In Fig. 6.34 the decay constant of the conductance in the vacuum tunneling regime

βvacuum is plotted versus the molecule length. In contrast to the observation made for

the decay constants in the contact tunneling transport regime βcontact no systematic de-

pendence between the molecule length and the decay constant is observed. This seems to

be a consequence of the correlation approach used to determine the generic curves. The

part of the curve which shows the vacuum tunneling regime is not included in the corre-

lation determination (see Fig. 6.8), therefore in these curves this part is not represented

generic. The decay constants of the vacuum tunneling regime βvacuum are independent of

the molecule length, with an average βvacuum = 2.8Å−1. This means that the length of

the molecule bound to the tip is not in�uencing the tunneling behavior. This indicates

that tunneling indeed occurs from the bottom end of the molecule, i.e. the molecule is

contacted to the tip well enough for e�cient charge transfer.

The decay constant measured for the bare silver tip, i.e. the decay constant measured

before tip and molecule get into contact (class app), is in average βsilver tip = 1.93Å−1

(see Fig. 6.35). This means the tunneling current is decaying faster when the tip is

decorated with a molecule with an average βvacuum = 2.8Å−1. This indicates that the

tail of the wave function decays faster into the vacuum for the molecules than for the
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Figure 6.33: From the force-�eld simulations introduced earlier [42, 126] the geometric
con�guration of the molecule during the lifting process is known. With this
information the average atom position relative to the surface can be deter-
mined for the molecule and plotted versus the top atom, i.e. the carboxylic
oxygen atom making contact to the tip, position. This is shown here for
the four molecules on Au(111). The comparison of the four molecules shows
that the longer the molecule is, the more it bends towards the surface dur-
ing the lifting process. In consequence its transport orbital keeps contact
with the metal for longer. This explains the di�erent slopes of the contact
transport regime as seen in Fig. 6.32. On Ag(111) this e�ect is expected to
be even more pronounced as a consequence of the larger interaction.
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tip. This could have geometric or electronic reasons (geometric: sharper tip, electronic:

higher barrier due to vacuum levels). In table 6.6 the decay constants of both transport

regimes observed in the silver junction are listed together with the decay constant of

the bare silver tip and bare gold tip approaching the surface, but without having made

contact to the molecule.

Figure 6.34: Decay constant of the vacuum tunneling regime βvacuum versus the molecule
length. It is determined by measuring a linear regression between the points
P4 and P5. No systematic dependence of the decay constant on the molecule
length is observed. This is a result of the approach used to determine the
generic behavior. An average βvacuum = 2.8Å−1 is found. The decay con-
stant of the bare silver tip, i.e. before the tip makes contact to the molecule,
is smaller (βsilver tip = 1.93Å−1), which could have geometric or electronic
reasons.
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Molecule βcontact [Å−1] βvacuum [Å−1] βsilver tip [Å−1] βgold tip [Å−1]

NTCDA 0.88 2.87 2.02 2.12
PTCDA 0.31 2.74 1.94 2.07
TTCDA 0.19 1.96 1.86 2.11
QTCDA 0.19 3.62 1.89 2.03

Table 6.6: Decay constants of the two tunneling transport regimes for class B manipula-
tions on Ag(111) and decay constant of the bare silver tip and bare gold tip
approaching the surface before making contact to the tip.

Figure 6.35: Decay constant of the tunneling current through the bare metal tip before
making contact to the molecule for the two surfaces Ag(111) and Au(111).
The average decay constant for silver is βsilver tip = 1.93Å−1 and for gold
βgold tip = 2.08Å−1. These values were obtained from the class app his-
tograms (see Figs. A.1 to A.8 in chapter A).

169



6 Systematic study of transport through a homologous series of π-conjugated molecules

6.4.1.2 The conductance peak

We now turn to the discussions of deviations from strictly exponential behavior in the

contact regime, see e.g. Fig. 6.28. Most notably, a peak in the conductance is clearly

visible in the zero bias conductance. This peak coincides with a dip in the frequency

shift. The occurrence of a peak in the conductance upon reverse chemisorption was

observed in earlier experiments when a PTCDA molecule was lifted from Ag(111) (see

section 4.3) [39, 40]. A Kondo resonance was identi�ed, which led to an increase of

the conductance. In those experiments no frequency shift was measured, hence it was

unclear up to this point in which exact geometry the molecule is as the Kondo resonance

is observed.

In Fig. 6.30 the blue arrow at P2 indicates that the conductance peak is observed where

a dip in the frequency shift occurs. By the force-�eld simulation we can attribute this

dip to the lifting of the last naphthalene unit of the molecule from the substrate. This

means that the condition for a conductance peak is given for a junction geometry in

which the molecule is contacted at one side by one carboxylic oxygen to the tip, and on

the other side the molecule is in contact with the substrate with one naphthalene unit

and the carboxylic functional group. For all four molecules this observation is valid (see

Fig. A.58 in chapter A).

To check the origin of the conductance peak observed in the class B manipulations

another type of experiments was performed. A molecule, isolated from the molecular

island, was contacted at one of the carboxylic oxygen atoms and then lifted up stepwise

by 0.2Å. At each step the manipulation was stopped and a di�erential conductance

spectrum was measured with lock-in technique by sweeping the bias voltage in the range

−50mV to 50mV. The results are exemplary discussed on a single measurement of

TTCDA manipulated on silver in Fig. 6.36. In Fig. 6.36a the frequency shift and the zero-

bias di�erential conductance measured while stepwise manipulating TTCDA are shown.

Every 0.2Å a spectrum was recorded, a signature of these spectra are the vertical lines

in the zero-bias di�erential conductance curve. The arrows indicate the position of the

three spectra displayed in Fig. 6.36b. The red spectrum was taken at the beginning of the

manipulation, the green at the conductance peak and the blue at the transition between

the two transport regimes discussed earlier. The spectra were all shifted to a uniform

base and normalized for a better comparison. In absolute scales the red spectrum is at

higher conductance than the green one, and the green one at higher conductance than

the blue one as can be seen by the three axis.
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In the beginning of the manipulation, the minimum in the density of states is at the

Fermi level (red spectrum). As the molecule is lifted up from the surface the zero-bias

di�erential conductance decreases. At a relative tip-surface distance of about 6Å the

zero-bias di�erential conductance shows a peak (see Fig. 6.36a). The corresponding

green spectrum is not changing a lot relative to the earlier measured red spectrum. In

the last spectrum measured before the junction is ruptured a small peak at the Fermi

level is observable (blue spectrum). The behavior observed here is the same for QTCDA

manipulated on Ag(111) (see Fig. A.70 in chapter A). NTCDA (see Fig. A.65 in chapter

A) and PTCDA (see Fig. A.67 in chapter A) on the other side show a peak at the Fermi

level in the spectra recorded when a peak in the di�erential conductance is observed.

This means that the origin of the peak in the zero-bias di�erential conductance is a

Kondo resonance for NTCDA and PTCDA, but not for TTCDA and QTCDA of class

B. Later it will be shown that in manipulations of class A the Kondo resonance is at the

origin of the conductance peak for all molecules measured.

From the simulations we know that the molecules snaps into a linear geometry with the

removal of the last naphthalene unit. This implies that the distortion of the molecule is

maximized just before the snapping, when the molecule is in the geometry in which the

conductance peak appears. It is clear that such snapping events will lead to deviations

from strictly exponential behavior. However, while such discontinuities in the structural

evolution can explain non-uniform rates of decay, they cannot explain the increase of

conductance with z. However, discontinuities in the structural evolution necessarily imply

the build-up of strain. This can modify the electronic structure of the molecule, resulting

in di�erent conductance behavior. Whether this can explain the behavior observed here

needs calculations. It was found earlier that a distortion of the molecule could trigger an

increase of the conductance by Bilic et al. [156]. They investigated the charge transport

through p-phenylene-vinylene molecules contacted by gold electrodes with DFT. Their

results showed that the charge transport through the molecule is enhanced when the

molecule is tilted by a contraction. This was explained by a better band alignment at

the cost of the coupling strength. Also La�erentz et al. [153] observed a conductance

increase in their investigation of poly�uorene on Au(111). This conductance increase was

observed as the molecule was lifted from the Au(111) substrate with the tip of a STM.

They related this conductance increase to the �at adsorption of a monomer unit on the

substrate.

To investigate the conductance peak in the zero bias di�erential conductance as a function

of z further, its dependency upon the molecule length is analyzed. In Fig. 6.37 the
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Figure 6.36: Spectra taken while lifting a TTCDA molecule from Ag(111). (a) The fre-
quency shift and the di�erential conductance of the lifting process. (b) Every
0.2Å the manipulation was interrupted and a spectrum in the bias voltage
range −50mV to 50mV was taken. By the arrows in (a) the position of
the three spectra presented is shown. The spectra show, that the Kondo
resonance, as described earlier for PTCDA/Ag(111) [39], is not the origin
of the conductance peak in TTCDA/Ag(111) of class B.
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conductance of the conductance peak is plotted versus the molecule length. The longer

a molecule is, the smaller is the conductance peak, as a consequence of the overall lower

conductance for longer molecules. Similar to the decay constants of the two tunneling

transport regimes (see section 6.4.1.1) an exponential decay is observed. The decay

constant of this exponential decay is found to be βpeak = 0.43Å−1. Further it can be

noted that the distance between the positions of the conductance peaks relative to the

tip-surface distance show a linear relation, with an average distance of 4.25Å between two

conductance peaks. This is a consequence of the conductance peak always being observed

when the molecules are in the same geometric con�guration within the junction, i.e. in

contact to the substrate with the last naphthalene unit.

Figure 6.37: Conductance of the conductance peaks in class B manipulations with silver
electrodes for all four molecules. The conductance of the peaks show an
exponential decay with the length of the molecule. The decay constant of is
found to be βpeak = 0.42Å−1.
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6.4.1.3 Molecules in wire con�guration on Ag(111) of class B

When the frequency shift shows its global peak the molecules are standing upright in the

junction as we know from force �eld simulations [42,43]. We call this geometry the wire

con�guration. Also in the conductance data this position was identi�ed as the transition

between the two transport regimes. The molecule is only contacted by the carboxylic

oxygen to the silver electrodes tip and surface. The electrons are passing through the

whole molecular backbone. It is now of interest how high the conductance through the

molecules is at this state.

The position of the wire con�guration is marked by point P4 in Fig. 6.30. The con-

ductance measured for the molecules in this junction con�guration contacted by silver

electrodes range between 10−4 G0 to 10−3 G0 (see table 6.5). The conductance is very

low compared to the conductance found in atomic point contacts for example, where

conductance values in the range of the conductance quantum G0 are found [157]. This is

the consequence of the low transmission probability T through the molecule (see chap-

ter 3). By plotting the conductance of the molecular wires versus the molecule length

we �nd a exponential decay for the wire conductance (see Fig. 6.38). We �nd a decay

constant of βwire = 0.15Å−1 assuming the following dependency G ∼ exp(−βL) between

the conductance G and the molecule length L.

Note that this βwire is the intrinsic decay constant of the molecular wire, as here the

contacts are the same for all four molecules, unlike the decay constants βcontact and

βvacuum introduced earlier. The decay constant in the wire con�guration βwire = 0.15Å−1

is smaller than the ones observed for the contact tunneling and vacuum tunneling regime.

This is a result of the superimposition of two contributions to the conductance. First the

decay of the molecular length and second the reduction of the contact. Using this one

can split the decay constant change in Fig. 6.32 and Fig. 6.34 into the two superimposed

contributions.

The exponential decay of the conductance upon molecule length was observed in several

metal-molecule-metal junctions before [22,31,158�167]. This observation of an exponen-

tial decay suggests that tunneling is observed. For molecules of the size investigated

here o�-resonant coherent tunneling (see section 3.3) is often proposed as the underlying

transport mechanism [161,168]. Therefore it is believed that in the systems studied here

also o�-resonant coherent tunneling is observed. Incoherent hopping mechanism is only

observed for molecules longer than ≈ 3 nm [168,169].
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Figure 6.38: Conductance of the molecule in the wire con�guration, i.e. conductance
of the junction tip-molecule-substrate, with the molecule standing upright
between the silver electrodes in class B. The conductance G is plotted versus
the length of the molecules L. We �nd the exponential dependence G ∼
exp(−βL) with the decay constant βwire = 0.15Å−1.
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Most of the systems investigated up to now are thiolated molecules on gold surfaces, which

form a strong Au-S bond [160]. The decay constant found for alkanedithiols and peptides

on gold range from 0.8Å−1 to 0.9Å−1 [22]. The transport mechanism is believed to be

coherent electron tunneling [22,31,159]. Comparable small decay constant (β = 0.16Å−1)

as in our system were found by Peng et al. [162] for amine-terminated thiophene on

gold at zero-bias voltage in density functional calculations. With β = 0.06Å−1 almost

no dependence of the conductance on the molecule length was observed for oligoyne

molecules contacted by gold electrodes [163].

The absolute conductance values vary a lot depending on the system investigated. As

most of the systems investigated are on thiol-terminated molecules and on gold electrodes

it is di�cult to �nd comparable experimental results to our study. Peng et al. [166] probed

the conductance through single alkanedicarboxylic acids of di�erent length contacted

by silver electrodes. They measured conductance values in the range 2.6× 10−5 G0 to

4.1× 10−4 G0. In their study on amine-terminated oligophenyl and alkane molecules of

di�erent length contacted by silver electrodes Kim et al. [167] measured conductance

values in the range 10−5 G0 to 10−3 G0. Compared to these two studies it can be seen

that the π-conjugated molecules we are probing contacted to silver electrodes are good

conductors.

6.4.2 Manipulations of class A on Ag(111)

In this section the lifting and lowering curves assigned to class A are discussed. The statis-

tics acquired for this class of manipulations have a much higher variance (see Figs. A.10,

A.15, A.20 and A.25 in chapter A). This is the result of the junction being less stable

than the one assigned to class B. As mentioned earlier, the class A manipulations are

characterized by a hysteresis between the lifting and the lowering of a molecule in the fre-

quency shift and di�erential conductance data. This is caused by a bistable tip-molecule-

substrate junction con�guration. Bistability in conductance measurements on molecules

were reported in earlier experiments [170�174]. The two states observed in these experi-

ments were attributed to either conformational changes of the molecule or changes of the

contact geometry between the electrodes and the molecule.

In contrast to the analysis done for the class B manipulations on Ag(111), only three

characteristic points P1 to P3 were de�ned. This had to be done as no statement can

be done about the vacuum tunneling regime for the class A manipulations. This is the

consequence of the hysteresis in the region of the vacuum tunneling regime, therefore
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making it impossible to de�ne a slope for the vacuum tunneling regime (see Fig. A.57

in chapter A). As for the class B manipulations two points P1 and P3 are de�ned to

determine the slope of the contact tunneling regime by making a linear regression. The

point P1 denotes the conductance value the closest to the substrate and P3 de�nes the

position at which the transition between the two transport regimes (see section 6.4.1),

i.e. were the molecule is standing upright, is observed. It is determined using features in

the conductance, i.e. where a change of the slope of the generic behavior is observed. As

for the class B manipulations this transition is found in the region of the global peak in

the frequency shift data. This point P3 is then also used to determine the conductance

of the junction in the wire con�guration. The point P2 is the conductance corresponding

to the last dip before feature B in the frequency shift. In table 6.7 the points are listed

which were used for the further analysis. In Fig. A.57 in chapter A these points are

shown together with the generic curves.

In the following the discussed points are summarized:

P1 Conductance Gstart at the closest z-position relative to the substrate.

P2 The conductance peak Gpeak. This peak matches with a dip in the frequency shift,

as indicated by the arrow.

P3 The knee Gwire in the conductance data. This knee is in the region of the global peak

in the frequency shift.

Molecule P1 [Å,2e2/h] P2 [Å,2e2/h] P3 [Å,2e2/h]

NTCDA (4.93,6.49× 10−2) (3.73,9.13× 10−2) (−0.42,9.82× 10−4)
PTCDA (2.84,2.19× 10−2) (1.24,2.50× 10−2) (−4.88,2.87× 10−4)
TTCDA (1.84,5.19× 10−3) (−2.95,3.74× 10−3) (−8.55,2.64× 10−4)
QTCDA (2.93,3.00× 10−3) (−7.16,2.25× 10−3) (−13.76,9.87× 10−5)

Table 6.7: The coordinates of the points P1, P2 and P3 as de�ned above for the class A
manipulations of all four molecules on Ag(111).

6.4.2.1 The hysteresis in class A manipulations

In Fig. 6.39 the 2D histogram of all class A manipulations of QTCDA on Ag(111) is

shown. By the red arrow the group of curves measured while the molecule was lifted

from the surface is indicated. The black arrow indicates the group of curves measured

while the molecule was lowered towards the surface. By the red and black circle the
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signature of the switching from one con�guration to the other is highlighted. As the

molecule is lifted, the switching from junction con�guration C1 to another con�guration

C2 occurs when the molecule-substrate interaction is almost zero (red circle). When the

molecule is lowered the switching back from junction con�guration C2 to C1 happens

at a higher molecule-surface interaction, i.e. when the tip is closer to the surface (black

circle). This characteristic of the hysteresis is the same for all four molecules probed and

can be found in the same way for the experiments performed on Ag(111), as discussed

here, and the experiments performed on Au(111) (see Figs. A.10, A.15, A.20, A.25, A.30,

A.35, A.40 and A.45 in chapter A).

Another di�erence between class A and B manipulations can be seen in Fig. 6.40, where

the unshifted curves assigned to class A and class B manipulations of QTCDA on Ag(111)

are shown. The red lines indicate the distance at which the transition from one transport

regime to the other is observed. For class A manipulations this transition occurs at a

larger tip-surface distance than in the case of class B manipulations. The transport

regime transition in the case of class B occurs at the same relative tip-surface distance at

which the junction switches from con�guration C2 to C1 in the case of class A (see Fig.

6.39). A distance of about 1.4Å is found between the transport regime transitions for

class A and class B. The comparison of the frequency shift and the conductance of both

classes for QTCDA on Ag(111) (see Fig. 6.18 and Fig. 6.39) shows that for class A the

transport regime transition happens at the position of the negative dip in ∆f , while for

class B the transport regime transition occurs on the steep slope before the dip. Further

class A has a larger negative dip in the frequency shift than class B. This indicates

a stronger attraction. Also the negative dip is sharper, which indicates extension and

contraction.

From these observations the following can be concluded. Three di�erent junction con-

�gurations are observed in the manipulations assigned to class A and class B (see Fig.

6.41). The con�guration C3 is the origin of the conductance behavior observed in the

manipulations of class B. The two other con�gurations C1 and C2 are observed for the

lifting and lowering curves in the manipulations of class A. The two con�gurations of

class A have to di�er from the con�guration of class B as the conductance peak observed

in class A is at a di�erent distance and has a di�erent magnitude than the conductance

peak in class B manipulations. The class A tip deforms elastically, shown schematically

by the spring in Fig. 6.41, this results in an extension of the tip in the C1 con�guration

until the switching to the C2 con�guration. Eventually the C1 con�guration deforms

plastically and switches to the C3 con�guration observed for class B. This C3 is stable
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Figure 6.39: Hysteresis in class A manipulations for QTCDA on Ag(111). As the
molecule is lifted, one junction con�guration C1 is switching to another
con�guration C2, when the molecule-surface interaction is almost zero (red
circle). As the molecule is lowered the con�guration C2 switches back into
the �rst con�guration C1 at a higher molecule-surface interaction (black cir-
cle). The two levels in the noise result from di�erent ampli�er gains used
for the experiments. The same behavior is observed for all four molecules
on both metal surfaces Ag(111) and Au(111) investigated. Bin size of ∆f :
z = 0.1Å, y = 0.4Hz; bin size of G: z = 0.1Å, min(y) = 1.6× 10−12 2e2/h,
max(y) = 1.6× 10−3 2e2/h.
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Figure 6.40: The red lines indicate the transition from the contact tunneling to the vac-
uum tunneling regime for both classes A and B. The transition in class B
is observed at the same tip-surface distance as the switching from con�gu-
ration C2 to con�guration C1 in class A (see Fig. 6.39). A distance of 1.4Å
is found between the two transitions, which indicates that the con�guration
change is related to di�erent atomic arrangements on the tip apex.
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and does not switch back to C1 or C2.

A possible explanation for the di�erent junction con�guration could be the tip apex being

decorated either by an silver atom (class B) or an platinum or iridium atom (class A).

A silver atom at the tip apex would lead to an s-orbital. As an s-orbital is spherically

symmetric in space the bonding to the oxygen atom of the molecule would not be under

stress. On the other side a platinum or iridium tip apex would lead to an d-orbital.

The d-orbital is not spherically symmetric in space, as a consequence a force is acting

on the molecule which results in a switching between two di�erent junction con�gura-

tions C1 and C2. This force leads to a conformational change at the tip-molecule bond

as soon as the interaction between molecule and substrate undercuts a certain thresh-

old.

Figure 6.41: Schematic representation of the di�erent junction con�gurations. Class A is
characterized by a hysteresis in the conductance and frequency shift data.
This suggests that two di�erent junction con�guration exist. These two
junction con�gurations C1 and C2 could be the consequence of a platinum
or iridium atom on the tip apex. The resulting unsymmetrical d-orbital on
the tip apex creates a force acting on the molecule which produces a switch-
ing between both con�gurations in dependence of the molecule-substrate
interaction. This switching process is accompanied by an elastic deforma-
tion, represented schematically by the spring. Eventually the tip deforms
plastically and switches to the stable junction con�guration C3 of class B.
This stable con�guration suggests a symmetric s-orbital on the tip apex and
therefore a silver atom making the bond to the molecule.

The in�uence of the exact molecule-metal contact con�guration on the conductance was

observed by several groups before [175�178]. Dulic et al. [177] probed terphenylene

molecules contacted in a mechanical break junction (MCBJ) experiment by Au elec-

trodes. They observed a switching between two conductance. This was explained by

a thermally activated switching between two di�erent molecule-metal contact geome-
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tries.

The in�uence of the binding geometry on the conductance was the subject of many in-

vestigations [163, 164, 179�184]. Binding geometries in�uence the charge distributions,

the spin population, the ionization energy and the electron a�nity of the molecule in

the junction [179]. In consequence the transport behavior is very sensitive to the contact

con�guration. Kameneteska et al. [164] investigated pyridine-terminated molecules elon-

gated by gold electrodes. In their conductance histogram two peaks were observed, which

they attributed to two di�erent pyridine-gold binding geometries. Also they measured

di�erent conductance values, the decay constant β = 0.5Å−1 was not changing upon the

di�erent binding geometries. In their study, Wang et al. [163], investigated the in�uence

of the binding geometry of a pyridyl group on the conductance. They found that the con-

ductance of the molecule could di�er by 150% whether the pyridyl group is bound to a

�at electrode or to a step or a similar high coordination site.

6.4.2.2 Transport in class A manipulations

In Fig. 6.42 the generic behaviors (as de�ned in section 6.3.3.1) of all class A manipula-

tions are shown. The manipulations on Ag(111) of class A are more scattered than the

manipulations of class B. This is a consequence of the bistable junction con�guration and

the resulting hysteresis from the switching events. But nevertheless the generic curves

obtained by calculating the arithmetic mean (see section 6.3.3.1) of the 2D histograms

show a smooth behavior.

Two di�erent transport regimes as introduced earlier are occurring while lifting and

lowering the molecules. By making a linear regression through the points P1 and P3

the decay constants of the contact tunneling transport regime βcontact, as de�ned in

section 6.4.1.1, were calculated for each molecule. A decay constant for the vacuum

tunneling regime βvacuum cannot be de�ned as a consequence of the hysteresis in that

region.

In Fig. 6.43 the decay constants of class A (black dots) are plotted versus the molecule

length together with the decay constants of the molecules of the class B statistics (red

dots) which were already shown in Fig. 6.32. As for the manipulations of class B the

decay constants of the contact tunneling regime of class A is decreasing with the molecule

length. In fact the calculated values are very similar, which indicates similar junction

con�gurations for class A and B. For both classes the decay constant is decreasing with

molecule length and a saturation of the decay constant is observed for longer molecules.
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Figure 6.42: Generic curves of the four molecules probed on Ag(111) assigned to class
A. The di�erential conductance and frequency shift data of class A manip-
ulations is more scattered than the data from class B manipulations as a
consequence of the bistable junction. Nevertheless the generic curves ob-
tained by calculating the arithmetic mean show a smooth behavior.
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For the manipulations of PTCDA and TTCDA the decay constants assigned to class

A are larger than the ones assigned to class B, the decay constant of NTCDA and

QTCDA are the same for both classes. To compare the classes, the decay constants

βcontact of class A and class B and their di�erence class A − class B are listed in table

6.8.

Figure 6.43: Decay constants of the contact tunneling transport regime βcontact of class A
and class B manipulations on Ag(111). The decay constants are calculated
by measuring a linear regression through the points P1 and P3. In both
classes the decay constant is decreasing with molecule length. A saturation
is observed for both classes.

6.4.2.3 The conductance peak

As for class B manipulations a peak is observed in the generic conductance curves of

class A on Ag(111). To investigate its physical origin measurements were performed as

introduced earlier (see section 6.4.1.2). A molecule is isolated from the molecular island.

This isolated molecule is than contacted at one of the carboxylic oxygen atoms and lifted

up. Every 0.2Å the manipulation is stopped and a di�erential conductance spectrum is

measured in the bias voltage range −50mV to 50mV. In this way the electronic structure
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βcontact [Å−1]

Molecule class A class B class A− class B

NTCDA 0.86 0.88 −0.02
PTCDA 0.69 0.31 0.38
TTCDA 0.32 0.19 0.13
QTCDA 0.17 0.19 −0.02

Table 6.8: Decay constants of the contact tunneling regime of class A and class B and
the di�erences between the decay constants of both classes on Ag(111).

of the junction is probed for di�erent geometries and can be compared to the electron

transport through the molecule. In Fig 6.44 the �ndings are exemplary shown for the

lifting of a single TTCDA molecule from Ag(111). In the inset of the �gure the frequency

shift and the zero-bias di�erential conductance measured for the whole manipulation is

shown. By the four arrows the points are indicated at which the spectra shown were

measured. As before, the spectra are shifted to an uniform base and normalized for a

better representation.

The interpretation of the class A manipulation di�ers from the interpretation of the class

B manipulations discussed earlier. Just before the onset of the conductance peak the

spectrum shows a dip at the Fermi level (red spectrum). As the zero-bias di�erential

conductance goes trough a peak, the LUMO shifts to the Fermi level and sharpens (green

spectrum). The level stays pinned at the Fermi level (blue spectrum) and thus increases

the conductance, resulting in the Kondo peak. At the end of the manipulation no more

signature at the Fermi level is observable (light blue spectrum). This behavior observed

here is the same as was reported of earlier by Temirov et al. [39]. By the mechanical

gating of the molecule the LUMO shifts to positive values, the LUMO gets depopulated.

At the same time the coupling to the electrodes Γ is getting weaker. At some point the

LUMO is occupied by one electron which acts as a magnetic impurity. As the energy

gap ε0 between the LUMO and the Fermi level is reduced to zero, the prerequisite for

the observation of a Kondo resonance U/Γ� ε0 is given.

The same observation was also made for PTCDA/Ag(111) of class A (see Fig. A.66 in

chapter A). For NTCDA and QTCDA it was not possible to perform this measurement.

To sum up the results of this measurements the �ndings are summarized in table 6.9.

As PTCDA/Ag(111) shows Kondo behavior in both classes A and B it is unclear which

class of liftings were performed earlier by Temirov et al. [39]. The fact that no hysteresis

was observed in this former publication stems from the simple reason that no manipula-
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Figure 6.44: Spectra taken while lifting a TTCDA molecule from Ag(111). (a) The fre-
quency shift and the di�erential conductance of the lifting process. (b)
Every 0.2Å the manipulation was interrupted and a spectrum in the bias
voltage range −50mV to 50mV was taken. By the arrows in (a) the position
of the four spectra presented is shown. The spectra show, that the Kondo
resonance, as described earlier [39], is the origin of the conductance peak.
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tion was performed where the molecule was lowered. Also note that no frequency shift

measurement were performed at that time.

Molecule class A class B

NTCDA no measurement Kondo
PTCDA Kondo Kondo
TTCDA Kondo no Kondo
QTCDA no measurement no Kondo

Table 6.9: Observation of Kondo physics in class A and class B manipulations on Ag(111).

The position of the conductance peaks relative to the tip-surface distance is di�erent

for class A compared to class B manipulations. The distance between the conductance

peak position relative to the surface for di�erent molecules is in average about 3.63Å in

the case of class A manipulations. For the manipulations of class B an average distance

of about 4.25Å (see table 6.10) is found, i.e. the peaks are further apart in the case of

class B compared to class A. The position at which the conductance peak is found in

the case of NTCDA is about the same in class A and class B. The longer the molecule is

the more the positions di�er between both classes. This means that in the case of class

A the molecule is closer to the surface than in class B when the peak is observed. This

suggests that the formation of the conductance peak in both classes is not exactly the

same.

It is found that also the conductance of the peak di�ers between both classes. In Fig.

6.45 the conductance values are plotted versus the molecule length. For both classes an

exponential decay is observed. The decay constant of the peak conductance in class A is

found to be βpeak = 0.32Å−1, i.e. the conductance peak is decreasing slower than in the

case of the class B (βpeak = 0.42Å−1). For all molecules the conductance of the peak is

higher for class A than for class B. The longer the molecule is, the more the conductance

di�erence increases. This is a consequence of the increasing coupling strength di�erence

between both classes the longer the molecule is.

In table 6.10 the coordinates of the conductance peaks for both classes are listed. Note

that they correspond to P2 of table 6.5 and 6.7.
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Figure 6.45: Conductance of the peak in class A and class B manipulations on Ag(111).
The conductance of the peak shows an exponential decay upon the length
of the molecule for both classes. The decay constant of class A with βpeak =
0.32Å−1 is smaller than the one found for class B (βpeak = 0.42Å−1).

class A class B

Molecule z(P2) [Å] G(P2) [2e2/h] z(P2) [Å] G(P2) [2e2/h]

NTCDA 3.73 9.13× 10−2 4.08 6.01× 10−2

PTCDA 1.24 2.50× 10−2 1.22 8.88× 10−3

TTCDA −2.95 3.74× 10−3 −3.87 1.69× 10−3

QTCDA −7.16 2.25× 10−3 −8.66 3.28× 10−4

Table 6.10: Coordinates of the conductance peaks K in class A and class B on Ag(111).
This are the coordinates of point P2 of table 6.5 and 6.7. The positions of
the conductance peaks Kz refer to the relative tip-surface distance.
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6.4.2.4 Molecules in wire con�guration on Ag(111) of class A

As for class B the conductance of the molecular wire in the wire con�guration was de-

termined for class A. As in class B the position where the molecule is in the upright

standing geometry was determined by a knee in the conductance data, indicating a tran-

sition between two transport regimes. This knee in the conductance data was always

found in the region of the global peak of the frequency shift data. Not surprisingly the

position of the molecule in the wire con�guration relative to the tip-surface distance are

for both classes very similar (see table 6.11). An average distance of 4.45Å between two

molecules is found for the class A manipulations and of 4.41Å for class B manipula-

tions.

In Fig. 6.46 the conductance values of the wires for the four di�erent molecules contacted

by silver electrodes of both classes are shown. The conductance values for both classes

are very similar. For PTCDA, TTCDA and QTCDA the conductance in the wire con-

�guration is smaller than the conductance found for class B. This could be the result of

a weaker tip-molecule coupling in the case of class A, which could also explain the less

stable junction con�guration of class A compared to class B. For both classes an expo-

nential dependence between the conductance and the length of the molecule is found. In

fact the corresponding decay constants are very similar with βwire = 0.17Å−1 for class

A and βwire = 0.15Å−1 for class B.

In table 6.11 the coordinates of the conductance of the molecule in the wire con�guration

for both classes are listed. Note that they correspond to P3 of table 6.7 and P4 of

6.5.

class A class B

Molecule z(P3) [Å] G(P3) [2e2/h] z(P4) [Å] G(P4) [2e2/h]

NTCDA −0.42 9.82× 10−4 −0.86 8.65× 10−4

PTCDA −4.88 2.87× 10−4 −4.43 1.38× 10−3

TTCDA −8.55 2.64× 10−4 −9.02 3.53× 10−4

QTCDA −13.76 9.87× 10−5 −14.09 1.77× 10−4

Table 6.11: Coordinates of the conductance in the wire con�guration in class A and class
B on Ag(111). This are the coordinates of point P3 of table 6.7 and P4 of 6.5.
The positions of the conductance refer to the relative tip-surface distance.
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Figure 6.46: Conductance of the molecule in the wire con�guration for class A (black
dots) and class B (red dots) on Ag(111). The conductance G is plotted
versus the length of the molecules L. The conductance values for class A
and class B are very similar. While for class A an exponential dependence
with the decay constant βwire = 0.17Å−1 is found, for class B the decay
constant is βwire = 0.15Å−1.
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6.4.2.5 Di�erences between class A and B on Ag(111)

The di�erences between class A and B are a result of the di�erent geometric junction

con�gurations (see Fig. 6.41). It was suggested that for class A the molecule is changing

its con�guration relative to the tip when the molecule is far away from the surface, as a

consequence of a force induced by a spherically unsymmetrical d-orbital at the tip apex.

This change of con�guration is not observed for class B and thus it can be speculated

that a spherically symmetric s-orbital is on the tip apex. These di�erent orbitals at

the tip apex could be the result of either a platinum or iridium atom at the tip in case

of class A or a silver atom at the tip in case of class B. The con�gurations of the tip-

molecule contact in the case of class A are less stable than the one in class B, therefore

the con�guration evolves most of the time from class A to class B. The opposite evolution

from class B to class A was not observed.

The di�erent junction con�gurations lead to di�erent electronic properties. Only the

electronic properties of class A show always Kondo physics when the conductance peak is

observed. The in�uence of the junction con�guration on the conductance of the molecule

in the wire con�guration is small.

6.5 Results: Molecular wires on Au(111)

After discussing the results of the molecule manipulations with silver electrodes, in the

following sections will be discussed the manipulations of molecules with gold electrodes.

The sample preparation and the measurement routines were introduced in section 2.5 and

6.2. In principle the experiments were performed in the same way as the ones discussed

earlier for the silver electrodes.

Compared to Ag(111) the adsorption height of the molecules is higher on Au(111) [43,

122, 124, 185]. In Fig. 6.47 the average distance at which the jump into contact, i.e.

the relative tip-surface distance at which the carboxylic oxygen of the molecule formed

a bond with the tip, is plotted versus the molecule length. In the case of the Ag(111)

surface (black dots) this jump into contact occurred on average for zjump values 1.3Å

smaller than on Au(111) (red dots).

The z-axis used for the molecule manipulation data is relative to a stabilization point.

The absolute distance of this stabilization point to the surface is not known and can be

di�erent for Ag(111) and Au(111). Therefore a smaller value of zjump for Ag(111) does
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Figure 6.47: Average distance at which the carboxylic oxygen of the molecule and the
tip formed a bond. This jump into contact occurred 1.3Å closer to the
surface in the case of manipulations on Ag(111) compared to manipulations
on Au(111).
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not necessarily imply that the jump occurs closer to the surface. But it is known from

literature that in fact the gold tip has to be moved closer to the surface to make contact

by about 0.4Å, although the molecule-substrate bonding is weaker on Au(111) than on

Ag(111) [40].

The carboxylic oxygen-tip bond in the case of Au(111) is not as strong as the car-

boxylic oxygen-tip bond in the case of Ag(111). Two di�culties arose from this: First, it

was more di�cult to isolate a molecule from the molecular islands on Au(111) than on

Ag(111). Second, the probability to lift the molecule, after the contact was made, was

smaller. As a consequence the total number of experiments is smaller on Au(111) than

on Ag(111).

QTCDA was deposited together with another type of particles on Au(111). In contrast

to the deposition on Ag(111) it was not possible to separate the two types of particles by

annealing (see Fig 2.14 in section 2.5). This made it very di�cult to isolate single QTCDA

molecules on Au(111). The small data set obtained for QTCDA/Au(111) furthermore

deviates substantially from the statistics of the other systems. It is therefore assumed

that the manipulations measured on QTCDA/Au(111) are of defect QTCDA molecules,

or QTCDA molecules together with the smaller particles.

In table 6.12 the total number of lifting and lowering curves used for the further analysis

are listed. Again the manipulations were separated into class A and class B and will be

discussed separately in the following. All histograms of manipulations on Au(111) are

shown in Figs. A.29 to A.48 in chapter A. The total number of lifting and lowering is

about the same for every molecule. But as the probability to observe manipulations of

class A is increasing the longer the molecule is, the probability to observe manipulations

of class B is decreasing. Such a relation was not observed for the manipulations on

Ag(111).

Molecule class A class B

NTCDA 41 1912
PTCDA 404 1504
TTCDA 1035 796
QTCDA 116 184

Table 6.12: Number of lifting and lowering curves of the manipulations on Au(111) used
for the statistical analysis.
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6.5.1 Manipulations of class B on Au(111)

As for the manipulations with silver electrodes generic behaviors are extracted from the

histograms of the manipulations with gold electrodes. The data is shifted and assigned

to the di�erent classes as it it described in section 6.3. For the class B manipulations

the generic curves are determined by calculating the correlation between each curve

as described in section 6.3.3.2. These generic behaviors are then used for the further

analysis. In Fig. 6.48 the generic curves 2 for the three molecules NTCDA, PTCDA

and TTCDA probed on Au(111) and assigned to class B are shown. The manipulations

of NTCDA and PTCDA on Au(111) were done in a slightly di�erent way than the

manipulations of the other molecules. The molecules were not lifted up until the molecule-

substrate bond was completely broken, but only until the peak-dip feature (feature B)

was measured. By this a higher control of the junction was gained, the molecule was less

likely to jump on the tip. This procedure was not applied to TTCDA and QTCDA as the

junction is more stable for larger molecules. As the manipulations of QTCDA di�er due to

the contamination of the sample, they are not shown here.

Comparing the generic curves of class B on Ag(111) (see Fig. 6.27) to the ones on Au(111)

(see Fig. 6.48) some di�erences can be observed. First of all no peak in the conductance

is observed at the position of the last dip before feature B in the frequency shift. Further

the transition between the two transport regimes as introduced in section 6.4.1.1 is much

smoother.

As on Ag(111) the conductance in the contact tunneling regime is steeper for shorter

molecules. This means that the bending mechanism observed and discussed for Ag(111)

(see Fig. 6.33) is also valid on Au(111). The knee in the conductance data appears always

before the main peak-dip feature. The main-peak dip feature still must correspond to the

�nal removal of the molecule from the substrate [43]. The transition from the contact

tunneling regime to the vacuum tunneling regime occurs after the removal of the last

naphthalene unit, i.e. at a di�erent junction con�guration than on Ag(111). This would

be a good indication for the absence of any electric interaction between oxygen atoms

and the Au(111) substrate. This observation result in two di�erent wire geometries as

shown in Fig. 6.49.

The vacuum tunneling regime is not so clearly distinguishable as in the case of Ag(111).

Therefore, to investigate the in�uence of the electrode material on the conductance of

the molecules only point P1 and P3 are de�ned for Au(111) manipulations. With these

two points the contact tunneling regime decay constant can be determined by making
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Figure 6.48: The generic curves 2 of three molecules manipulated on Au(111) assigned
to class B. The upper panel shows the generic curves of the frequency shift,
the lower panel shows the zero-bias di�erential conductance. In section 6.3
the procedure to determine these generic curves is described. The NTCDA
and PTCDA curves are shorter because of a di�erent manipulation routine
(see section 6.5.1).
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Figure 6.49: The wire con�guration, i.e. the transition between the two transport regimes,
for molecules contacted by silver electrodes is observed when the last oxy-
gen atom is removed from the substrate. For molecules contacted by gold
electrodes the wire con�guration is observed after the removal of the last
naphthalene unit, i.e. before the last oxygen atom is removed from the gold
substrate.

a linear regression. The conductance of the molecule in the wire con�guration can be

calculated by P3 as was done earlier for the manipulations on Ag(111). In Fig. A.60 of

chapter A these points and the linear regression are depicted together with the generic

curves.

The two points P1 and P3 were de�ned by the following criteria:

P1 Conductance Gstart at the closest z-position relative to the substrate.

P3 The conductance Gwire at the knee in the conductance data in the region of the global

frequency shift peak.

Molecule P1 [Å,2e2/h] P3 [Å,2e2/h]

NTCDA (2.13,3.89× 10−3) (0.30,2.00× 10−4)
PTCDA (1.63,2.45× 10−3) (−4.92,4.33× 10−5)
TTCDA (1.87,2.93× 10−3) (−5.42,3.33× 10−5)
QTCDA (3.44,3.07× 10−3) (−10.15,9.79× 10−5)

Table 6.13: The coordinates of the points P1 and P3 for the analysis of the class B
manipulations on Au(111).

The most striking feature in the frequency shift data, next to the earlier discussed peak-

dip feature (feature B), are dips in the beginning of the lifting process (see chapter 5),
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called feature A. In Fig. 6.50 these dips are highlighted by arrows. The number of dips

is equal to the number of naphthalene units the molecule has. To clarify this the dips

are grouped together by the ellipses 1 to 4. The dips in the �rst ellipse correspond to the

removal of the �rst naphthalene units when the molecule is lifted from the substrate, the

dips in the second ellipse correspond to the removal of the second naphthalene units and

so on. If all molecules would be at the same adsorption site, the dips in every ellipse should

be at he same position relative to the tip-surface distance.

Figure 6.50: The dips in the generic curves of the frequency shift are assigned to the
removal of a naphthalene unit. By the arrows the position of the dips is
shown. The �rst ellipses shows which naphthalene unit is removed �rst
from the substrate when lifting up the molecule, the second ellipse shows
which naphthalene unit is removed second and so on.

In the manipulations on Ag(111) these dips are not observed that clearly. Nevertheless

in some of the single individual lifting or lowering curves dips are visible, but much

less pronounced than on Au(111) and at less regular distances and less regular shapes.

The reason that the dips are less pronounced on Ag(111) is the higher corrugation of

Ag(111) compared to Au(111) [186]. This leads to jumps of the molecule as the molecule

slides above the surface when being manipulated by the tip. As a consequence the

frequency shift measured is more scattered than on Au(111). Further in the case of

Ag(111) the molecule is charged in contrast to Au(111). This charging of the molecule

creates additional forces in the junction. These forces are also measured by the qPlus

sensor and thus in�uence the frequency shift observed. These two e�ects could lead

to the less reproducible observation of the dips in the case of Ag(111) compared to
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Au(111).

To probe the electronic structure within the junction the molecule was manipulated

and di�erential conductance spectra were measured by lock-in technique as introduced

earlier. The molecule was lifted up in steps of 0.5Å, at every step the manipulation

was stopped and a di�erential conductance spectrum was measured. This spectrum was

recorded in a bias voltage range from −50mV to 50mV. In Fig. 6.51 three spectra are

shown measured on a PTCDA molecule manipulated by gold electrodes. In the inset

the frequency shift and the zero-bias di�erential conductance measured for the whole

lifting process are displayed. The arrows indicate at which positions the spectra were

measured. For a better representation the spectra are brought to a uniform base and are

normalized such that all three spectra have the same maximum value. In absolute values

the red spectrum shows the highest di�erential conductance and the blue spectrum the

lowest.

The spectra show a dip around the Fermi level. As the molecule is lifted up and the

zero-bias di�erential conductance is decreasing no change in the spectra is observed.

There is no orbital moving across the Fermi level. As no states are at the Fermi level the

electrons are tunneling o�-resonant in contrast to the observation made on Ag(111). In

consequence the conductance through the junction is much lower in comparison to the

molecule junctions with silver electrodes.

6.5.1.1 In�uence of the electrodes material on the conductance of the junction

In section 6.4.1.1 it was shown that we can distinguish between two transport regimes in

the manipulations on Ag(111). This is not the case for the manipulations on Au(111).

There we see a much smoother transition from one regime to the other in comparison

to Ag(111) (compare Fig. 6.27 to Fig. 6.48). As a consequence the position at which

the junction is ruptured is not as clearly visible in the case of gold electrodes. The

reason for the smooth transition is that the molecules are physisorbed on Au(111) and

not chemisorbed as on Ag(111). In the case of Ag(111) the molecule hybridizes with

the substrate, this hybridization is ruptured at the moment of the transport regime

transition. In the case of Au(111) no hybridization occurs and therefore the electronic

structure is not changing so dramatically as the molecule is ruptured from the sur-

face.

As done in section 6.4.1.1 from the two points P1 and P3 de�ned earlier the decay

constants of the contact tunneling regime is determined. Note that the decay constant
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Figure 6.51: Spectra taken while lifting a PTCDA molecule from Au(111). In the in-
set is shown the frequency shift and the zero-bias di�erential conductance
measured during the lifting process. Every 0.5Å the manipulation was in-
terrupted and a spectrum in the bias voltage range −50 50mV was recorded.
By the arrows in the inset the position of the three spectra presented is
shown. The spectra show no changes upon the lifting of the molecule. No
states are at the Fermi level, in contrast to the observation made on Ag(111).
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determined for QTCDA on Au(111) will not be considered in the following discussion,

due to the preparation di�culties mentioned earlier. The decay constants of molecules on

Au(111) are shown in Fig. 6.52 (red dots) together with the decay constants found for the

manipulations on Ag(111) assigned to class B (black dots). The latter decay constants

correspond to the ones shown in Fig. 6.32. For both metals the decay constants are

decreasing with increasing molecule length. The decay constants determined for the

manipulations on Au(111) exceed the ones found on Ag(111) in average by 0.4Å−1.

Further it can be seen that the decay constants of both metals show a similar behavior.

A saturation with increasing molecule length is observed.

A larger decay constant results from a lower transmission probability for the tunneling

electrons. In section 6.4.1.1 it was argued that the work function is increased as a molecule

gets in contact with the tip, in consequence the transmission probability was decreased.

The dependence of the decay constants upon the electrode material can be explained

by the di�erent work function of Ag(111) and Au(111). Romaner et al. [122] calculated

the work function of coinage metals with DFT and found that the work function of

Au(111) (φ = 5.56 eV) is larger than the work function of Ag(111) (φ = 4.91 eV). This

observation is consistent with the decay constants measured for the molecules on the two

metals.

The conductance of the molecule standing upright in the junction, i.e. in the wire con�g-

uration is shown in Fig. 6.53. Next to the conductance of the molecular wire contacted

by gold electrodes (red dots), the conductance of the molecular wire contacted by silver

electrodes, as shown in Fig. 6.38, is presented (black dots). Again the conductance of

QTCDA on Au(111) is neglected in the discussion. As for the wire contacted by silver

electrodes an exponential dependence is observed between the wire conductance and the

molecule length. A decay constant of 0.22Å−1 is determined for gold, in contrast to

0.15Å−1 for class B manipulations on Ag(111). This means in both junctions the decay

constant is similar. The absolute conductance of the molecule in the wire con�guration

is about one magnitude higher in the case of silver electrodes. This is a consequence of

the stronger coupling of the silver electrodes with the carboxylic oxygen of the molecule

and the non-existence of a orbital crossing the Fermi level in the Au(111) case. Therefore

the transport mechanism observed here is believed to be o�-resonant coherent tunneling.

In table 6.14 the wire conductance values for both metals for manipulations of class B

are shown.

The in�uence of the electrodes material on the conductance through molecules was inves-

tigated by several groups [158,166,167,187�190]. Most groups found higher conductance
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Figure 6.52: Decay constants of the contact tunneling transport regime of the manipu-
lations on Au(111) (red dots) and Ag(111) (black dots) assigned to class
B. Both decay constants are decreasing with increasing molecule length in
a similar way. The decay constants determined on Au(111) are in average
about 0.4Å−1 larger than on Ag(111).

Gwire [2e2/h]

Molecule Au(111) Ag(111)

NTCDA 2.00e-4 8.65e-4
PTCDA 4.33e-5 1.38e-3
TTCDA 3.33e-5 3.53e-4
QTCDA 9.79e-5 1.77e-4

Table 6.14: Conductance of the molecular wire Gwire for both metal electrodes of manip-
ulations assigned to class B.
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Figure 6.53: Conductance of the molecular wires for manipulations of class B on Au(111)
(red dots) and Ag(111) (black dots). On both metals an exponential depen-
dence is observed (neglecting QTCDA/Au(111)). The conductance values
measured with molecular wires contacted by silver electrodes are about one
magnitude higher than the ones measured with gold electrodes.
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in the case of gold electrodes contacting the molecules [167,187�189]. Yaliraki et al. [187]

state in their study on dithiols that the Au(111)-thiol bond is weaker than the Ag(111)-

thiol, but in consequence the C-S bond is weaker when the molecule is bond to the silver

electrode. Thus in result the conductance is higher in the case of gold electrodes. Kim et

al. [167] measured the conductance through a 1,4-benzenediamine molecule by scanning

tunneling microscope based break-junction technique. They found a three times higher

conductance when the molecule is contacted by gold electrodes (G = 6.4× 10−3 G0)

compared to silver electrodes (G = 2.1× 10−3 G0). This was explained by the work

function di�erence between the two electrodes. Engelkes et al. [158] investigated self

assembled monolayers of alkanethiol contacted by electrodes of di�erent materials. They

found that the contact transmission is higher for chemisorbed contacts than physisorbed

contacts.

6.5.2 Manipulations of class A on Au(111)

As in the case of manipulations with silver electrodes on gold two di�erent classes of

generic behaviors were observed. The hysteresis that was observed for class A manipula-

tions on Au(111) showed the same features as the hysteresis on Ag(111) (see Fig. 6.39).

This suggests that the interpretation that was given earlier to explain the hysteresis is

the same for both metals. This means that the three tip-molecule con�gurations that

were assumed to be observed while manipulating molecules on Ag(111) are also observed

when the manipulation is done on Au(111).

In Fig. 6.54 the generic behaviors for manipulations assigned to class A on Au(111)

are plotted. No conductance was recorded for manipulations of class A on NTCDA.

Frequency shift measurement of class A exist, as at the beginning of the study a few

manipulations were made where only the frequency shift was measured. From the generic

behaviors of class A it is found that the conductance of PTCDA and TTCDA evolve

remarkably parallel. Further it is found that in comparison to the manipulations with

silver electrodes the di�erences in the conductance behavior between class A and class B

on gold are negligible. This means, that the transport through molecules contacted by

gold electrodes is less in�uenced by the exact geometry of the contact than in the case

of silver electrodes. Again, no peak in the conductance is observed, in contrast to the

observation on Ag(111).

Again, two points P1 and P3 are de�ned and a linear regression is made to get the

decay constants for the contact tunneling regime. As for the manipulations of class B
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Figure 6.54: The generic behaviors assigned to class A for manipulations on Au(111). No
zero-bias di�erential conductance was recorded for manipulations of class A
with NTCDA. The hysteresis shows the same features as were observed with
silver electrodes. The conductance behavior of class A is not very di�erent to
the one observed for class B. This means that in the case of gold electrodes
the transport through the molecule is much less in�uenced by the exact
tip-molecule contact geometry.
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on Au(111) no clear transition is observed between two transport regimes, in contrast

to the observation made on Ag(111). In Fig. A.59 in chapter A the two points and the

linear regression are plotted together with the generic behaviors. The two points P1 and

P3 were de�ned by the following criteria:

P1 Conductance Gstart at the closest z-position relative to the substrate.

P3 The conductance Gwire at the knee in the conductance data in the region of the global

frequency shift peak.

Molecule P1 [Å,2e2/h] P3 [Å,2e2/h]

NTCDA no data no data
PTCDA (1.74,2.52× 10−3) (−6.00,2.35× 10−5)
TTCDA (2.04,3.10× 10−3) (−7.49,1.57× 10−5)
QTCDA (2.53,6.32× 10−3) (−14.00,1.08× 10−5)

Table 6.15: The coordinates of the points P1 and P3 for the analysis of the class A
manipulations on Au(111).

6.5.2.1 Transport in class A manipulations on Au(111)

In Fig. 6.55 the decay constants of the contact tunneling regime of both classes on Au(111)

are plotted versus the length of the molecules. For class A no data was measured for

NTCDA. For the other three molecules probed it is found that the decay constants do

not di�er a lot between both classes. Together with the earlier made observation upon

the generic behavior, that the conductance behavior is very similar for both classes the

following can be concluded: The di�erent geometric tip-molecule con�gurations leading

to the observation of two well distinguishable manipulation behaviors have little impact

on the conductance behavior in the case of Au(111).

In Fig. 6.56 the conductance values of the molecule standing upright in the junction, i.e.

in the wire con�guration for both classes on Au(111) are plotted. Again the conductance

of QTCDA is disregarded as it is unclear if intact single isolated QTCDA molecules

were probed on Au(111). As no conductance data was measured for NTCDA the decay

constant of class A on Au(111) has to be determined by two points. As observed for the

two classes on Ag(111) (see Fig. 6.46) the conductance of the wires assigned to class B are

larger than the ones assigned to class A. A decay constants of βwire = 0.1Å−1 is found for

the wire conductance on Au(111) of manipulations of class A and βwire = 0.22Å−1 for the

205



6 Systematic study of transport through a homologous series of π-conjugated molecules

Figure 6.55: Decay constant of the contact tunneling regime of class A and class B on
Au(111). Both classes show very similar behaviors. This means, that the dif-
ferent tip-molecule geometries observed in�uence the conductance less when
the molecule is contacted by gold electrodes compared to silver electrodes.
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manipulations of class B. This means that both decay constants di�er in contrast to the

observation made on Ag(111). The reason might be, that only two molecules are taken

into account to determine the decay constant of class A.

Figure 6.56: Conductance of the molecule in the wire con�guration of class A and class
B on Au(111). As observed on Ag(111) the conductance of class B is higher
than the conductance of class A.

6.5.2.2 In�uence of the electrodes material on the frequency shift

After discussing the in�uence of the electrode material on the conductance the frequency

shift is investigated. It is observed that the height of the global peak of the frequency

shift on Ag(111) (feature B) is always larger than the corresponding one observed on

Au(111). Further to the absolute height of the peak, the di�erence between the peak

heights of both electrode materials ∆ Ppeak can be determined. In Fig. 6.57 the di�erence

of the peak heights ∆ Ppeak of feature B of manipulations on silver and gold is plotted
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versus the molecule length for class A and class B. The two lines indicate the average

di�erence between the peak heights, while again neglecting the di�erences for QTCDA.

This shows that the peak height di�erence ∆ Ppeak is much more pronounced between

the class B manipulations of both substrates. In table 6.16 the heights of the peaks of

feature B in the frequency shift for the manipulations on Ag(111) and Au(111) are listed

together with the peak height di�erences ∆ Ppeak.

classA

Molecule Ppeak (Au(111)) [Hz] Ppeak(Ag(111)) [Hz] ∆ Ppeak [Hz]

NTCDA 35 43 8
PTCDA 29 50 21
TTCDA 28 35 7
QTCDA 19 55 36

classB

Molecule Ppeak (Au(111)) [Hz] Ppeak(Ag(111)) [Hz] ∆ Ppeak [Hz]

NTCDA 20 68 48
PTCDA 42 73 31
TTCDA 38 84 46
QTCDA 20 53 33

Table 6.16: Height of the peak Ppeak in the frequency shift for both metal electrodes
and the di�erences between both peak heights ∆ Ppeak for all manipulations
assigned to class A and class B.

By integrating the frequency shift two times the potential energy in the junction can be

determined (see chapter 5). The height of the peak in the frequency shift is then related

to the energy needed to remove the molecule from the substrate. Since the height is

always found to be larger on Ag(111) this means that the interaction between the silver

electrode and the molecule is larger than the interaction between the gold electrodes and

the molecule. This is the result of the larger coupling between the carboxylic oxygen and

the substrate in the case of silver.

208



6 Systematic study of transport through a homologous series of π-conjugated molecules

Figure 6.57: Di�erences of the peak heights ∆ peak of feature B between manipulations
on silver and gold assigned to class A or class B. The peak height of manip-
ulations on Ag(111) is always larger than the peak height of manipulations
on Au(111). Further the peak height di�erences are much more pronounced
for class B.
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6.6 Conclusions

In this chapter a systematic study on molecules of di�erent length contacted by two

types of electrodes was presented. A method was introduced which allows highly re-

producible simultaneous measurement of the zero-bias di�erential conductance and the

frequency shift in the junction tip-molecule-substrate during the manipulation of a single

molecule. Further an analysis was presented, which based on the extraction of generic

behaviors of the physical quantities measured. It was found that the total statistic can

be separated into several classes. Two classes named class A and class B were analyzed

in depth. The analysis showed that the transport through the junction not only depends

on the electrode material but also on the geometrical con�guration of the tip-molecule

contact.

In the �rst part of the chapter the measurement routine and data processing was intro-

duced. Manipulations were performed which allowed it to gain large statistic for all eight

systems probed (NTCDA, PTCDA, TTCDA and QTCDA on Ag(111) and Au(111)).

For the analysis every individual lifting or lowering curve was assigned to a class. The

individual curves had to be assigned to di�erent classes, as two very well distinguish-

able behaviors were observed. These classes of curves were then eventually shifted and

histograms were plotted. From these histograms, generic behaviors for the two physical

quantities, the zero-bias di�erential conductance and the frequency shift were extracted

by calculating arithmetic means for class A manipulations and determining the corre-

lation between each curve for class B manipulations. With these generic behaviors the

further analysis was performed. The class A was characterized by a hysteresis between

the data measured while lifting the molecule and the data while lowering the molecule.

This was attributed to a switching event in a bistable junction geometry, which leads to

two di�erent tip-molecule contact geometries for class A. It was assumed that this switch-

ing event is the consequence of a unsymmetrical d-orbital at the tip originating from a

platinum or iridium atom at the tip apex. The second class observed, class B, was char-

acterized by a very stable junction geometry, this was attributed to a symmetric s-orbital

at the tip originating from a silver atom at the tip apex. This stable junction geometry

made it possible to measure highly reproducible data sets.

In the following �rst the result of the manipulations of molecules by silver electrodes

were presented. It was found that the transport through the molecules contacted by

silver can be split into two transport regimes. The �rst transport regime is observed as

long as the molecule or part of it are still in contact with the substrate and was called
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contact tunneling regime. The second transport regime is identi�ed as tunneling through

the ruptured junction and is called vacuum tunneling regime. This separation into two

transport regimes was made upon features found in the frequency shift and di�erential

conductance data. The decay constant of both transport regimes were calculated. It

was assumed that in both regimes tunneling is observed. A dependence of the contact

tunneling decay constant on the molecule length was observed. The longer the molecule

is the smaller is its (normalized) decay constant. This was explained by the bending of

the molecules during the lifting process. This bending was also observed in the force-

�eld simulations. It was further shown that the decay constants of the vacuum tunneling

regime are larger than the decay constants of the conductance of the bare metal tip

approaching the surface before making contact to the molecule. From this it was con-

cluded that the work function of the junction is increased as a molecule is bound to the

tip.

For manipulations of both classes on Ag(111) a conductance peak was observed in the

generic zero-bias di�erential conductance curves. This peak in the conductance always

coincided with a dip in the frequency shift which is a signature of the removal of the last

naphthalene unit. With di�erential conductance spectra in the junction the electronic

structure was probed during the manipulation. For class A manipulations of PTCDA and

TTCDA a Kondo resonance could be identi�ed through a peak at the Fermi level. In class

B NTCDA and PTCDA showed Kondo characteristics, while for TTCDA and QTCDA

no Kondo signature was observed. This means that at least two di�erent mechanism are

responsible for the conductance peak.

The analysis of the manipulations on Au(111) revealed the same two classes A and B.

In contrast to the manipulations with silver electrodes the transition between the two

transport regimes is observed in a di�erent junction con�guration. The transition is

observed after the removal of the last naphthalene unit. This indicates that no electric

interaction is present between the oxygen atoms and the gold substrate. The generic

frequency shift curves showed well pronounced dips, which were assigned to the removal

of the naphthalene units. The conductance behavior of the two classes A and B showed

no signi�cant di�erences. From this it follows, that the exact junction con�guration

has less in�uence on the transport through the molecule when it is contacted by gold

electrodes in contrast to silver electrodes. Further no peak in the conductance was

observed.

The electronic structure of the gold junction was also probed by making di�erential

conductance spectra while lifting the molecule. It was shown that no change is ob-
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servable in the junction upon the manipulation with gold electrodes. No orbital is

crossing the Fermi level. This missing electron density at the Fermi level is responsi-

ble for the about one order of magnitude smaller conductance through molecules con-

tacted by gold in contrast to molecules contacted by silver electrodes. This �nding is

the opposite observation to what was found for many molecular junctions with thiolated

molecules.

In summary in can be stated that a method was developed which allows the highly repro-

ducible probing of the transport through molecular junctions. By comparing this trans-

port information to the geometry recorded by measuring the frequency shift a very de-

tailed analysis of the junction physics is possible. Together with transport spectroscopy a

lot of assumptions about the physics in the junction can be made.

212



7 Summary

In this thesis the quantum transport through molecular wires was systematically inves-

tigated. To this purpose a method was developed which allowed the controlled manip-

ulations of molecules contacted by metal electrodes with a combined LT-STM/AFM.

During these manipulations the frequency shift to monitor the mechanical properties in

the junction was measured with the AFM. To achieve the superior control of the junc-

tion the frequency shift measured by the AFM was compared to force-�eld simulations

which allowed gaining structural information. The zero-bias di�erential conductance to

probe the transport was measured with the STM. Further transport spectroscopy was

performed by STS.

A homologous series of π-conjugated molecules was probed on the two di�erent metals

Ag(111) and Au(111). Before performing the transport measurements some preliminary

experiments were done. First the molecular islands deposited on the two metals were

investigated. In the process it was observed that the QTCDCA molecules were always

deposited together with another type of particle. On Ag(111) this second type of particles

could be separated from the QTCDA molecules which allowed to create pure QTCDA

islands. On Au(111) this separation was not possible. As a consequence only for seven

of the eight systems the unit cells were determined.

Next to the geometrical structure of the absorbed molecules the electronic structure was

investigated. This was done by performing STS measurements. It was found that in the

case of molecules adsorbed on Ag(111) the LUMO of the molecules shifts to negative

energies upon adsorption and that the energy of the LUMO and the size of the molecules

show a linear relation. This dependence between LUMO and molecule size was explained

by the change of the work function when the molecule adsorbs. In the case of adsorption

on Au(111) the LUMO of the molecules is not shifted to negative values. This means

that in the case of adsorption on Au(111) physisorption is observed, contrary to the

chemisorption which is observed on Ag(111). But also on Au(111) a linear dependence

between the LUMO energy and the molecule length was observed. Again the work

function change was used to explain this observation.
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While investigating NTCDA on Ag(111) three di�erent geometric phases were observed.

Thereby it was found that NTCDA molecules on Ag(111) can be distinguished by two

di�erent electronic structures. It was observed that every second molecule, called type

A, showed a Kondo resonance at the Fermi energy, while the type B molecule showed

no Kondo resonance. Next to this resonance signatures of coupling between a molecular

vibration and electrons were identi�ed. By performing DFT calculations this vibration

was identi�ed. Further it was shown that the formation of the Kondo state is determined

by the adsorption site. By measuring di�erential conductance maps it was shown that

the type B molecules can also show the Kondo resonance when they are lifted up by 1Å

from the surface.

The method to control the junction geometry was introduced earlier in the two letters

�Force-controlled lifting of molecular wires� by Fournier et al. [42] and �Measurement of

the Binding Energies of the Organic-Metal Perylene-Teracarboxylic-Dianhydride/Au(111)

Bonds by Molecular Manipulation Using an Atomic Force Microscope� by Wagner et

al. [43]. In the letter by Fournier et al. [42] it was shown that by measuring the frequency

shift with an AFM and comparing these experimental measurements to simulations the

geometry in the junction can be determined at any moment of the manipulation process.

In the letter by Wagner et al. [43] the simulation and the frequency shift measurement

were used to determine the adsorption energies of the systems NTCDA on Au(111)

(1.7 eV) and PTCDA on Au(111) (2.5 eV). This new method allows the measurement of

the adsorption energies of systems which could not be probed with classical methods as

e.g. temperature programmed desorption (TPD).

In the main chapter of this thesis the systematic transport measurement on eight di�erent

molecule-metal systems were presented. Based on the knowledge of the electronic and

geometric structure of the systems an interpretation of the experimental data was given.

Therefore an extensive data processing and statistical analysis had to be developed. It

was found that the manipulations can be split into two main classes. The statistical

analysis was based on generic behaviors which were extracted from 2D histograms of the

measured data. Two approaches were chosen. The �rst one was applied to the manip-

ulations assigned to class A and was based on the determination of generic behaviors

by calculating arithmetic means. The second one was applied to the manipulations of

class B and was based on a correlation analysis. The generic curve was de�ned as the

measured curve with the highest correlation in respect to all other measured curves of

the same class.

First the molecular manipulations with silver electrodes were discussed. It was found that
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7 Summary

the two classes mentioned earlier can be related to di�erent tip-molecule con�gurations.

The class A manipulations are characterized by a hysteresis in the experimental data

between the lifting and lowering of the molecule. This was explained by a geometrical

switching at the tip-molecule contact in a bistable junction triggered by an unsymmetrical

d-orbital on the tip apex resulting from a platinum or iridium atom. In contrast to this the

manipulations of class B are characterized by a stable junction con�guration resulting

from the symmetrical s-orbital of a silver atom at the tip apex. This stable junction

con�guration allowed very reproducible manipulations. The transport through molecules

on Ag(111) is characterized by a sharp transition between two transport regimes. The

�rst one, named contact tunneling regime, is observed as long as the molecule is in contact

with the two electrodes tip and surface. The second transport regime, named vacuum

tunneling regime, was identi�ed as tunneling through the ruptured metal-molecule-metal

junction. Decay constants for both transport regimes were measured. It was found that

the decay constant of the contact tunneling regime decreases the longer the molecule

is. Even when this decay constants are normalized by the length of the molecule they

decrease the longer the molecule is. This was explained by the fact that the longer the

molecule is, the more �exible it is and thus is bending more towards the surface. As a

consequence the transport orbital of the longer molecule is longer in contact with the

surface. The decay constant of the vacuum tunneling regime is found to not depend on

the length of the molecule, with an average βvacuum = 2.8Å−1. This vacuum tunneling

decay constant was compared to the decay constant determined while manipulating the

bare metal tip over the molecules, which was found to be smaller (in average βsilver tip =

1.93Å−1). This di�erence was explained by the change of the work function by the

oxygen-metal bond when the molecule is bound to the tip.

In manipulations of both classes a peak is observed in the conductance data. By trans-

port spectroscopy measurements on the manipulated molecules it was shown that the

peak in class A manipulations on Ag(111) is always originating from a Kondo resonance

at the Fermi level. The peak in the class B manipulation on Ag(111) on the other hand

is not always originating from a Kondo resonance. Only for the two smallest molecules,

NTCDA and PTCDA, the transport spectroscopy measurements revealed Kondo behav-

ior, i.e. a peak at the Fermi level. The reason for this di�erent behavior is not yet clear.

By comparing the conductance of the upright standing molecules in the junction an ex-

ponential dependence between the molecule length and the conductance was found. This

suggests that o�-resonant coherent tunneling is the underlying transport mechanism in

the junction.
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7 Summary

Next to the manipulations on Ag(111) manipulations on Au(111) were discussed. It was

shown that the same geometrical con�gurations as found on Ag(111) are also present

upon manipulation with gold electrodes, i.e. the classes A and B are also observed while

manipulating molecules on Au(111). The distinction between two transport regimes as

observed on Ag(111) is not so well pronounced on Au(111), instead a smooth transition

at the position where the molecule stands upright in the junction is observed. This could

be a consequence of the weaker metal-oxygen bond on Au(111). Further it was shown by

transport spectroscopy measurement that the electronic structure of the junction is not

changing signi�cantly upon manipulation. No orbital is crossing the Fermi level while

lifting the molecule from the substrate and no Kondo behavior is observed. The weaker

metal-oxygen bond on Au(111) explains the about two magnitudes lower conductance

measured on molecules contacted by gold electrodes. In the frequency shift data of the

manipulation on Au(111) oscillations, which were attributed to the removal of the naph-

thalene units, were identi�ed. Further it was shown that the global peak in the frequency

shift data measured on Ag(111) is signi�cantly higher than on Au(111) as a consequence

of the higher interaction of the molecules with the metal.

The most important achievement of this thesis was to introduce a new method which

allows the analysis of molecular wires. It was shown that very reproducible data can be

measured by this method. The knowledge about the junction structure during manipula-

tion was used to interpret the transport characteristics. Now, theoretical calculations are

needed to validate the assumptions made in this thesis. Also a more profound analysis

of single lifting events is desirable, as these show intrinsic features which were not dis-

cussed yet in detail. The new experimental method should be applied further to di�erent

molecule/metal systems. In the context of our study it would be especially interesting

to study the in�uence of di�erent functional groups on the transport behavior through

the molecules.
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In chapter 6 the processing of the data was shown exemplary on the system QTCDA on

Ag(111); in this appendix all the data is shown. The complete 2D histograms of all eight

systems are shown in Figs. A.9, A.14, A.19, A.24, A.29, A.34, A.39 and A.44. Further

the 2D histograms of all lifting and lowering curves assigned to a particular class app, A,

B and C, together with the generic curves are presented (Figs. A.1 to A.8, A.10 to A.13,

A.15 to A.18, A.20 to A.23, A.25 to A.28, A.30 to A.33, A.35 to A.38, A.40 to A.43

and A.45 to A.48). The 2D histograms are plotted with the counts on a logarithmic scale

as can be seen from the corresponding legends. In the caption to each 2D histogram the

bin sizes are given. For the frequency shift the bin size of the z-axis (relative tip-surface

distance) in Å and the y-axis (∆f) in Hz are given. For the conductance the bin size of

the z-axis (relative tip-surface distance) in Å and two bin sizes for the y-axis (G) in 2e2/h

are given. Two bin sizes have to be given, as the conductance is plotted on a logarithmic

size and consequently the size of the bins vary. The �rst bin size min(y) refers to the

smallest bin, the second bin size max(y) to the largest bin.

The histogram of the correlation values as de�ned in section 6.3.3.2 are shown in Figs. A.49

to A.56. Further the points P1, P2, P3, P4 and P5 determined to analyze the transport

through the molecular wires are shown together with the generic curves and the linear

regressions in Figs. A.57 to A.60. The generic curves used for the analysis in chapter

6 are plotted on a linear scale in Figs. A.61 to A.64. Finally the results of the trans-

port spectroscopy experiments described in section 6.4.1.2 are presented in Figs. A.65

to A.72.

217



A Supplemental materials

Figure A.1: Approach and jump into contact of NTCDA/Ag(111). Bin size of ∆f : z =
0.1Å, y = 0.3Hz; bin size of G: z = 0.1Å, min(y) = 4.8× 10−9 2e2/h,
max(y) = 1.2× 10−2 2e2/h.

Figure A.2: Approach and jump into contact of PTCDA/Ag(111). Bin size of ∆f : z =
0.1Å, y = 0.1Hz; bin size of G: z = 0.1Å, min(y) = 6.0× 10−10 2e2/h,
max(y) = 5.9× 10−3 2e2/h.
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Figure A.3: Approach and jump into contact of TTCDA/Ag(111). Bin size of ∆f : z =
0.1Å, y = 0.1Hz; bin size of G: z = 0.1Å, min(y) = 3.9× 10−10 2e2/h,
max(y) = 4.2× 10−3 2e2/h.

Figure A.4: Approach and jump into contact of QTCDA/Ag(111). 0.1Å, 0.2Hz, 0.1Å,
2.0× 10−10 2e2/h, 1.7× 10−3 2e2/h.
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Figure A.5: Approach and jump into contact of NTCDA/Au(111). 0.1Å, 0.2Hz, 0.1Å,
5.2× 10−10 2e2/h, 1.3× 10−3 2e2/h.

Figure A.6: Approach and jump into contact of PTCDA/Au(111). 0.1Å, 0.3Hz, 0.1Å,
2.8× 10−10 2e2/h, 1.4× 10−3 2e2/h.
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Figure A.7: Approach and jump into contact of TTCDA/Au(111). 0.1Å, 0.4Hz, 0.1Å,
3.9× 10−10 2e2/h, 9.7× 10−4 2e2/h.

Figure A.8: Approach and jump into contact of QTCDA/Au(111). 0.1Å, 0.2Hz, 0.1Å,
1.9× 10−10 2e2/h, 4.0× 10−4 2e2/h.
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Figure A.9: All lifting and lowering curves of NTCDA/Ag(111). Bin size of ∆f : z =
0.1Å, y = 0.6Hz; bin size of G: z = 0.1Å, min(y) = 3.0× 10−12 2e2/h,
max(y) = 1.8× 10−2 2e2/h.

Figure A.10: NTCDA/Ag(111) lifting and lowering curves of class A. Bin size of ∆f :
z = 0.1Å, y = 0.5Hz; bin size of G: z = 0.1Å, min(y) = 1.9× 10−11 2e2/h,
max(y) = 2.0× 10−2 2e2/h.
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Figure A.11: NTCDA/Ag(111) lifting and lowering curves of class B. Bin size of ∆f :
z = 0.1Å, y = 0.5Hz; bin size of G: z = 0.1Å, min(y) = 3.6× 10−12 2e2/h,
max(y) = 1.8× 10−2 2e2/h.

Figure A.12: NTCDA/Ag(111) lifting and lowering curves of class B aligned with the
generic curve 1. Bin size of ∆f : z = 0.1Å, y = 0.5Hz; bin size of G:
z = 0.1Å, min(y) = 3.3× 10−12 2e2/h, max(y) = 1.7× 10−2 2e2/h.
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Figure A.13: NTCDA/Ag(111) lifting and lowering curves of class C. Bin size of ∆f :
z = 0.1Å, y = 0.7Hz; bin size of G: z = 0.1Å, min(y) = 2.6× 10−11 2e2/h,
max(y) = 1.9× 10−2 2e2/h.

Figure A.14: All lifting and lowering curves of PTCDA/Ag(111). Bin size of ∆f : z =
0.1Å, y = 0.5Hz; bin size of G: z = 0.1Å, min(y) = 5.4× 10−13 2e2/h,
max(y) = 8.6× 10−3 2e2/h.
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Figure A.15: PTCDA/Ag(111) lifting and lowering curves of class A. Bin size of ∆f :
z = 0.1Å, y = 0.5Hz; bin size of G: z = 0.1Å, min(y) = 5.4× 10−13 2e2/h,
max(y) = 8.6× 10−3 2e2/h.

Figure A.16: PTCDA/Ag(111) lifting and lowering curves of class B. Bin size of ∆f :
z = 0.1Å, y = 0.5Hz; bin size of G: z = 0.1Å, min(y) = 7.4× 10−13 2e2/h,
max(y) = 1.7× 10−3 2e2/h.

225



A Supplemental materials

Figure A.17: PTCDA/Ag(111) lifting and lowering curves of class B aligned with the
generic curve 1. Bin size of ∆f : z = 0.1Å, y = 0.4Hz; bin size of G:
z = 0.1Å, min(y) = 6.9× 10−13 2e2/h, max(y) = 1.6× 10−3 2e2/h.

Figure A.18: PTCDA/Ag(111) lifting and lowering curves of class C. Bin size of ∆f :
z = 0.1Å, y = 0.5Hz; bin size of G: z = 0.1Å, min(y) = 1.6× 10−11 2e2/h,
max(y) = 7.3× 10−3 2e2/h.
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Figure A.19: All lifting and lowering curves of TTCDA/Ag(111). Bin size of ∆f : z =
0.1Å, y = 0.4Hz; bin size of G: z = 0.1Å, min(y) = 3.1× 10−13 2e2/h,
max(y) = 7.2× 10−3 2e2/h.

Figure A.20: TTCDA/Ag(111) lifting and lowering curves of class A. Bin size of ∆f :
z = 0.1Å, y = 0.4Hz; bin size of G: z = 0.1Å, min(y) = 3.3× 10−13 2e2/h,
max(y) = 7.6× 10−3 2e2/h.
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Figure A.21: TTCDA/Ag(111) lifting and lowering curves of class B. Bin size of ∆f :
z = 0.1Å, y = 0.4Hz; bin size of G: z = 0.1Å, min(y) = 4.4× 10−13 2e2/h,
max(y) = 4.0× 10−3 2e2/h.

Figure A.22: TTCDA/Ag(111) lifting and lowering curves of class B aligned with the
generic curve 1. Bin size of ∆f : z = 0.1Å, y = 0.4Hz; bin size of G:
z = 0.1Å, min(y) = 3.9× 10−13 2e2/h, max(y) = 3.6× 10−3 2e2/h.
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Figure A.23: TTCDA/Ag(111) lifting and lowering curves of class C. Bin size of ∆f :
z = 0.1Å, y = 0.4Hz; bin size of G: z = 0.1Å, min(y) = 1.7× 10−12 2e2/h,
max(y) = 4.3× 10−3 2e2/h.

Figure A.24: All lifting and lowering curves of QTCDA/Ag(111). Bin size of ∆f : z =
0.1Å, y = 0.4Hz; bin size of G: z = 0.1Å, min(y) = 2.8× 10−21 2e2/h,
max(y) = 1.6× 10−3 2e2/h.
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Figure A.25: QTCDA/Ag(111) lifting and lowering curves of class A. Bin size of ∆f :
z = 0.1Å, y = 0.4Hz; bin size of G: z = 0.1Å, min(y) = 1.6× 10−12 2e2/h,
max(y) = 1.6× 10−3 2e2/h.

Figure A.26: QTCDA/Ag(111) lifting and lowering curves of class B. Bin size of ∆f :
z = 0.1Å, y = 0.3Hz; bin size of G: z = 0.1Å, min(y) = 2.8× 10−21 2e2/h,
max(y) = 1.9× 10−3 2e2/h.
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Figure A.27: QTCDA/Ag(111) lifting and lowering curves of class B aligned with the
generic curve 1. Bin size of ∆f : z = 0.1Å, y = 0.3Hz; bin size of G:
z = 0.1Å, min(y) = 2.6× 10−21 2e2/h, max(y) = 1.8× 10−3 2e2/h.

Figure A.28: QTCDA/Ag(111) lifting and lowering curves of class C. Bin size of ∆f :
z = 0.1Å, y = 0.4Hz; bin size of G: z = 0.1Å, min(y) = 1.3× 10−12 2e2/h,
max(y) = 2.8× 10−3 2e2/h.
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Figure A.29: All lifting and lowering curves of NTCDA/Au(111). Bin size of ∆f : z =
0.1Å, y = 0.4Hz; bin size of G: z = 0.1Å, min(y) = 3.5× 10−12 2e2/h,
max(y) = 1.7× 10−3 2e2/h.

Figure A.30: NTCDA/Au(111) lifting and lowering curves of class A. Bin size of ∆f :
z = 0.1Å, y = 0.2Hz
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Figure A.31: NTCDA/Au(111) lifting and lowering curves of class B. Bin size of ∆f :
z = 0.1Å, y = 1.0Hz; bin size of G: z = 0.1Å, min(y) = 2.3× 10−11 2e2/h,
max(y) = 5.2× 10−3 2e2/h.

Figure A.32: NTCDA/Au(111)lifting and lowering curves of class B aligned with the
generic curve 1. Bin size of ∆f : z = 0.1Å, y = 0.9Hz; bin size of G:
z = 0.1Å, min(y) = 2.0× 10−11 2e2/h, max(y) = 4.7× 10−3 2e2/h.
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Figure A.33: NTCDA/Au(111) lifting and lowering curves of class C. Bin size of ∆f :
z = 0.1Å, y = 1.2Hz; bin size of G: z = 0.1Å, min(y) = 6× 10−11 2e2/h,
max(y) = 4.9× 10−3 2e2/h.

Figure A.34: All lifting and lowering curves of PTCDA/Au(111). Bin size of ∆f : z =
0.1Å, y = 0.6Hz; bin size of G: z = 0.1Å, min(y) = 3.3× 10−13 2e2/h,
max(y) = 2× 10−3 2e2/h.
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Figure A.35: PTCDA/Au(111) lifting and lowering curves of class A. Bin size of ∆f :
z = 0.1Å, y = 0.5Hz; bin size of G: z = 0.1Å, min(y) = 3.4× 10−12 2e2/h,
max(y) = 9.6× 10−4 2e2/h.

Figure A.36: PTCDA/Au(111) lifting and lowering curves of class B. Bin size of ∆f :
z = 0.1Å, y = 0.4Hz; bin size of G: z = 0.1Å, min(y) = 3.3× 10−13 2e2/h,
max(y) = 2.0× 10−3 2e2/h.
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Figure A.37: PTCDA/Au(111) lifting and lowering curves of class B aligned with the
generic curve 1. Bin size of ∆f : z = 0.1Å, y = 0.3Hz; bin size of G:
z = 0.1Å, min(y) = 3.1× 10−13 2e2/h, max(y) = 1.9× 10−3 2e2/h.

Figure A.38: PTCDA/Au(111) lifting and lowering curves of class C. Bin size of ∆f :
z = 0.1Å, y = 0.6Hz; bin size of G: z = 0.1Å, min(y) = 1.2× 10−12 2e2/h,
max(y) = 1.9× 10−3 2e2/h.
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Figure A.39: All lifting and lowering curves of TTCDA/Au(111). Bin size of ∆f : z =
0.1Å, y = 0.4Hz; bin size of G: z = 0.1Å, min(y) = 1.6× 10−21 2e2/h,
max(y) = 2.7× 10−3 2e2/h.

Figure A.40: TTCDA/Au(111) lifting and lowering curves of class A. Bin size of ∆f :
z = 0.1Å, y = 0.3Hz; bin size of G: z = 0.1Å, min(y) = 5.6× 10−21 2e2/h,
max(y) = 2.6× 10−3 2e2/h.
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Figure A.41: TTCDA/Au(111) lifting and lowering curves of class B. Bin size of ∆f :
z = 0.1Å, y = 0.3Hz; bin size of G: z = 0.1Å, min(y) = 2.9× 10−21 2e2/h,
max(y) = 2.6× 10−3 2e2/h.

Figure A.42: TTCDA/Au(111) lifting and lowering curves of class B aligned with the
generic curve 1. Bin size of ∆f : z = 0.1Å, y = 0.3Hz; bin size of G:
z = 0.1Å, min(y) = 2.7× 10−21 2e2/h, max(y) = 2.5× 10−3 2e2/h.
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Figure A.43: TTCDA/Au(111) lifting and lowering curves of class C. Bin size of ∆f :
z = 0.1Å, y = 0.3Hz; bin size of G: z = 0.1Å, min(y) = 1.3× 10−12 2e2/h,
max(y) = 1.4× 10−3 2e2/h.

Figure A.44: All lifting and lowering curves of QTCDA/Au(111). Bin size of ∆f : z =
0.1Å, y = 0.3Hz; bin size of G: z = 0.1Å, min(y) = 2.1× 10−21 2e2/h,
max(y) = 1.3× 10−3 2e2/h.
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Figure A.45: QTCDA/Au(111) lifting and lowering curves of class A. Bin size of ∆f :
z = 0.1Å, y = 0.2Hz; bin size of G: z = 0.1Å, min(y) = 8.3× 10−13 2e2/h,
max(y) = 6.3× 10−4 2e2/h.

Figure A.46: QTCDA/Au(111) lifting and lowering curves of class B. Bin size of ∆f :
z = 0.1Å, y = 0.2Hz; bin size of G: z = 0.1Å, min(y) = 2.1× 10−21 2e2/h,
max(y) = 8.0× 10−4 2e2/h.
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Figure A.47: QTCDA/Au(111) lifting and lowering curves of class B aligned with the
generic curve 1. Bin size of ∆f : z = 0.1Å, y = 0.2Hz; bin size of G:
z = 0.1Å, min(y) = 1.9× 10−21 2e2/h, max(y) = 7.3× 10−4 2e2/h.

Figure A.48: QTCDA/Au(111) lifting and lowering curves of class C. Bin size of ∆f :
z = 0.1Å, y = 0.3Hz; bin size of G: z = 0.1Å, min(y) = 4.2× 10−13 2e2/h,
max(y) = 6.7× 10−4 2e2/h.
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Figure A.49: Histogram of �rst and second correlation of NTCDA/Ag(111)

Figure A.50: Histogram of �rst and second correlation of PTCDA/Ag(111)
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Figure A.51: Histogram of �rst and second correlation of TTCDA/Ag(111)

Figure A.52: Histogram of �rst and second correlation of QTCDA/Ag(111)
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Figure A.53: Histogram of �rst and second correlation of NTCDA/Au(111)

Figure A.54: Histogram of �rst and second correlation of PTCDA/Au(111)
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Figure A.55: Histogram of �rst and second correlation of TTCDA/Au(111)

Figure A.56: Histogram of �rst and second correlation of QTCDA/Au(111)
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Figure A.57: Generic behavior with points, linear regressions and arrow of class A on
Ag(111)
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Figure A.58: Generic behavior with points, linear regression and arrow of class B on
Ag(111)
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Figure A.59: Generic behavior with points and linear regression of class A on Au(111)
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Figure A.60: Generic behavior with points and linear regression of class B on Au(111)
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Figure A.61: Generic behavior with conductance on a linear scale of class A on Ag(111)
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Figure A.62: Generic behavior with conductance on a linear scale of class B on Ag(111)
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Figure A.63: Generic behavior with conductance on a linear scale of class A on Au(111)
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Figure A.64: Generic behavior with conductance on a linear scale of class B on Au(111)
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Figure A.65: Transport spectroscopy on NTCDA/Ag(111) junction of class B
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Figure A.66: Transport spectroscopy on PTCDA/Ag(111) junction of class A

255



A Supplemental materials

Figure A.67: Transport spectroscopy on PTCDA/Ag(111) junction of class B
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Figure A.68: Transport spectroscopy on TTCDA/Ag(111) junction of class A
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Figure A.69: Transport spectroscopy on TTCDA/Ag(111) junction of class B
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Figure A.70: Transport spectroscopy on QTCDA/Ag(111) junction of class B
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Figure A.71: Transport spectroscopy on PTCDA/Au(111) junction of class A
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Figure A.72: Transport spectroscopy on PTCDA/Au(111) junction of class B
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STM-based quantum transport through molecular wires

Norman Fournier
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