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Introduction 

Introduction of anion-π interactions 
 

In 2002, an unprecedented and counterintuitive concept, namely “anion-π interactions”, was 

described by Pere M. Deyà and Antonio Frontera etc.. With quantum chemistry calculation of the 

interactions between anions (H-, F-, Cl-, Br-, CN-, NO3
-, CO3

2-) and hexafluorobenzene, as well as 

exploring existing crystallographic structures in the Cambridge Structural Database (CSD), 

“anion-π interactions” were confirmed that “They Do Exist”.[1] 

Nearly simultaneously (also in 2002), Mark Mascal and Alan Armstrong etc. showed that 

several anions could be close to the aryl centriod of 1,3,5-triazine or trifluoro-1,3,5-triazine, which 

was supported by an ab initio study of the interaction between 1,3,5-triazine and the fluoride, 

chloride and azide anions at the MP2 level of theory.[2] 

  Two years later, Patrick Gamez and Jan Reedijk etc. and Franc Meyer etc. separately observed 

anion-π interactions between anions and electron-deficient arenes in crystal structures (Scheme 

1).[3-4] These were pioneering studies in the field that human intentionally investigate anion-π 

interactions experimentally, although this kind of interactions which had never been focused on 

before was already found in the CSD for a long time. 

 
                                                      1                           2 

Scheme 1. The first two receptors used for the experimental research of anion-π interactions 

by Patrick Gamez and Jan Reedijk etc. (1) and Franc Meyer etc. (2). 

 

  It is not surprising that anion-π interactions did not attract human’s attention until 21st century, 

for it is a kind of attractive effect arising between anions and aromatic rings that are surrounded by 

electron-clouds. This is unimaginable especially relative to “cation-π interactions” existing 

between cations and arenes. In fact, with the deepgoing theoretical study of aromatic 

cyclic-compounds by quantum chemistry calculation, the function of the permanent quadrupole 

moments (Qzz) of benzene and hexafluorobenzene rationalized the counterintuitive 

phenomenon.[5-6] Definitely, anion-π interactions are regarded as favorable non-covalent 

attractions between an anion and an electron-deficient aromatic system, which is generally 

dominated by electrostatics and anion-induced polarization as well as dispersion.[7-8] The 

topological analysis of the electron density showed that, for anion-π interactions, the magnitude of 

the arene Qzz has an obvious correlation with the electrostatic contribution to anion-π interactions, 

specifically, the larger positive Qzz lead to more favorable attraction. Additionally, the 

anion-induced polarization correlates with the arene’s polarizability (αǁ) and has a significant 
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contribution to the anion-π interactions existing in high αǁ aromatic systems.[9-10] For the aromatic 

ring with a high positive Qzz, the electrostatic effect plays a pivotal role in anion-π interactions and 

the polarization makes a dominant role in the low positive Qzz aromatic ring system.[9] 

  Typically, anion-π interaction have been investigated in terms of supramolecular chemistry 

defined as the “chemistry of the intermolecular bond” by Jean-Marie Lehn etc.[11] According to 

theoretical investigation, the bond energies of anion-π interactions are in the range 20-70 kJ/mol,[2, 

12] which is weaker than that of the hydrogen-bond (energy: 12-120 kJ/mol),[13] close to cation-π 

interactions energies (5-80 kJ/mol)[14] and stronger than the energies of π-π stacking (2-10 

kJ/mol).[15] Moreover, some thorough research of the Protein Database (PDB) pointed out that 

only a small number of examples in regard to anion-π interaction were found.[16] Nevertheless, 

these results prove anion-π interaction play an important role to protein structures and the 

activities. 

 

The latest research advances of anion-π interactions 
 

  In recent years, a growing number of investigations on anion-π interaction are in process and 

resulted in dramatic results both in theoretical and experimental fields. In this part, a brief review 

of the literature relating to the research of anion-π interaction published after 2011 was attempted 

displaying the latest advances in the fresh scientific realm. Firstly, several new results of 

theoretical research were selected, due to the particularity of study. Then, development of 

experimental research for anion-π interactions was focused on and summarized with five areas 

emphasized by favorable non-covalent contacts between electron-deficient aromatic systems and 

anions: (a) anion transport; (b) molecular assembly; (c) anion sensors; (d) catalysis with anion-π 

interactions; (e) anion-π interactions in metal-complexes. Because of the significant role of 

anion-π interaction in biochemistry, increased number of research results about interactions 

between anions and aromatic ring moieties in proteins were reported during last several years, 

which are discussed in the third part followed by the quick glance over other advances for anion-π 

interactions in the last part of this introduction. 

 

(1) Selected results of theoretical research 

 

A theoretical NMR study of anion-π or cation-π interactions between 1,3,5-trifluorobenzene 

(TFB) and ions revealed the reverse direction changes of NMR spectra parameters (δH, δF, 1JC-H, 
1JC-F, 1JC-C). When anion-π interaction was induced between TFB and halide anions (F-, Cl-, Br-), 

the coupling constants 1JC-H and 1JC-F decrease while 1JC-C increase. For chemical shifts, both δH 

and δF decreased due to the enhancement of shielding effects. Moreover, the bond length (dC-C, 

dC-H, dC-F) also be influenced by the ion above the plane of TFB. The anions increased the dC-F and 

decreased the dC-C and dC-H, while cation-π interaction led to the reverse changes.[17] 

Checking the X-ray structures showing anion-π interactions existing in CSD, the examples in 

which the anion is located exactly above the center of the ring are few compared to cation-π 

interactions. A. Frontera etc. revealed, in the anion-π complex of hexafluorobenzene and chloride, 

the migration of anion from the center above the ring in either x or y direction did not cause a 

significant interaction energy loss (≤7 %), which explained the fact that the anion could be located 

at any position over the ring.[18] 
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Anion-π interaction is up to now considered to be a favorable contact between anion and 

electron-deficient arene. However, a kind of attractive effect between fluoride and electron-rich 

aromatic hydrocarbons, namely orbital effect-induced anomalous anion-π interactions, was 

reported. With calculations of the adsorption of fluoride to aromatic condensed rings with 

different sizes at the MP2/6-31+G (d, p) and ωB97X-D/6-31+G (d, p) levels of theory, the orbital 

effect-induced anomalous anion-π interactions was found between F- and large π hydrocarbon 

rings (C14H10, C18H12, C24H12, C40H16, C50H18, C66H22), while for the smaller rings, ex. C6H6 and 

C10H8 rings, unfavorable anion-π interactions displayed, which showed the favorable anion-π 

interactions between F- and electron-rich aromatic rings enhance with increasing number of π 

electrons and the size of π rings. The energy decomposition analysis explained the phenomena, as 

the negative charge of fluoride delocalization to the unoccupied π* orbitals of large π rings, the 

orbital effect-induced anomalous anion-π interactions generated.[19] 

 

(2) Selected results of experimental research 

 

  Anion-π interaction, a non-covalent attractive effect, has aroused large research enthusiasm and 

already gained numerous exiting results in recent years both theoretically and experimentally. 

Like other non-covalent bonding contacts including hydrogen-bonds, π-π stacking, CH-π and 

cation-π interactions, anion-π interactions have been explored as a supramolecular tool in 

biochemistry, design of crystal structures, environmental applications and organic synthesis etc.. 

 

(a) Anion transport with anion-π interaction 

A new series of selective transporters, namely “two-wall” aryl-extended calix[4]pyrroles 3 

(Scheme 2), were synthesized and the properties of transporters in binding various anions (F-, Cl-, 

Br-, I-, Ac-, NO3
-, ClO4

-) were studied. Due to the presence of two substituents connecting to the 

α,α-isomers liking “two-wall”, appropriate anion could be bound between the two π-acid moieties 

and carried through lipophilic membranes. Among them, the most active ion transporters, 3c and 

3e, showed a distinct selectivity for the transport of nitrate over other anions tested.[20] 

 
Scheme 2. The structures of α,α-isomers of “two-wall” aryl-extended calix[4]pyrroles 3. 

 

(b) Anion-directed molecular self-assembly  

D-X Wang’s group achieves impressive results involving research of spuramolecular 

assemblies for the past few years. They designed and synthesized some “V-shape” π-receptors 

based on oxacalix[2]arene[2]triazene framework (Scheme 3). Each of the π-acidic molecules 

possesses two electron-deficient triazene rings arranging into a “V-shape” cavity and could tune 

the size of the cavity thereby “swallowing” different anions. 
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Scheme 3. Some “V-shape” molecules used for the research of molecular self-assembly. 

 

The crystal of pure molecule 4a obtained through evaporation of the solution of 

dichloromethane and hexane, formed a cyclic hexamer structure with lone-pair electron-π and 

hydrogen bond in the solid state (Figure 1, a). The co-crystal with chloride and water molecules 

with 4a self-assembled into a rectangular supramolecular cage instead of the foregoing hexamer 

(Figure 1, b). Because of the presence of chloride, anion-π interaction along with lone-pair 

electron-π interactions, hydrogen bonds and π-π stacking induced the formation of the rectangular 

cage structures.[21] 

  
(a)                                (b) 

Figure 1. Crystal structures of the hexamer of 4a (a) and the rectangular cage of 4a (b). 

 

  The design that a hydroxyl group was introduced on each of the phenyl rings of the macrocyclic 

structure rendered the tetraoxacalix[2]arene[2]triazine 5 as an unique donor-acceptor functional 

building block. As found in the X-ray structure with Cl-, cooperative non-covalent bonds guided 

the host-guest system to be an infinite self-assembly motif. Specifically, Cl- positioned above the 

triazine ring with the distance of 3.42 Å to the plane and connected to hydroxyl with hydrogen 

bond (Cl-…H = 2.21 Å). Besides, the intermolecular lone-pair electron-π interaction emerged 

between one oxygen of the hydroxyl group and the triazine plane of another molecule nearby with 

the distance of 3.31 Å.[22] 

 

Figure 2. Infinite self-assembly of the tetraoxacalix[2]arene[2]triazine 5. 
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  Different from the structures 4 or 5, substituted oxacalix[2]arene[2]triazine 6 or 7 are 

amphiphilic molecules which bear hydrophobic groups on the one terminal of the “V-shape” 

structures. Analysis of the structural properties of 6 or 7 indicated that, the lipophilic port 

containing electron-deficient arenes could self-tune to bind different anions. Both of the two 

amphiphilic molecules could self-assemble into size-regulated vesicles separately in water or a 

mixture of THF and water by the influence of anions. For amphiphile 6, the size of vesicular 

entities were responsive to anions and followed the selectivity in the order NO3
- > Cl- >Br- >ClO4

-. 

Similarly, divers anions were also able to affect the size of self-assembled vesicles of 7, following 

the order of NO3
- > Cl- >Br- >BF4

- >SCN- >ClO4
- >F-.[23] 

Normally, because of the complicacy of π-aromatic structures including electronegative atoms 

with lone-pair electrons, π-bond and active hydrogen atoms, the examples that supramolecular 

self-assembly induced only by anion-π interaction are rare. Commonly, the process of molecular 

self-assembly is promoted by synergistic effect of several non-covalent bonds, ex. anion/cation-π 

interaction, lone-pair electron-π interaction, π-π stacking and hydrogen bonds. Moreover, cations 

interacting with the π-systems always can boost the acidity of the arenes and even turn the 

electron-deficient arenes into π+-acid, which are more attractive to anions. 

Two terpyridine derivatives 8a and 8b (Figure 6) were synthesized as π-receptors which could 

produce complex salts, namely [PTPH3]
3+(X)3

3-, with HBr or HClO4 respectively (X = Br or ClO4). 

The aggregation of the complexes in solid state displayed the cooperation of the aforementioned 

non-covalent bonds for the realization of supramolecular self-assembly.[24]  

 

                         8a                       8b 

Scheme 4. The structures of π-receptors 8a and 8b. 

 

Similarly, each of the bis-N-imidazolylpyrimidine salts 9-11 consists of one doubly protonated 

bimipyr molecule, which modify the tricyclic π-receptor to a stronger acceptor (Scheme 5). In the 

X-ray crystal structures of the five salts, hydrogen bonds, anion-π interactions and π-π stacking all 

play significant roles in the construction of three-dimensional supramolecular frameworks.[25] 

 

  
 

                9                  10                 11 

Scheme 5. The structures of the tricyclic complexes 9, 10 and 11. 

 

(c) Anion sensors based on anion-π interaction 

Profits from the attractive property of electron-deficient π-receptors to anions, it is realized that 

π-acids are able to be designed as anion sensors. UV-Vis spectra and fluorescence spectra are the 
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efficient tools in respect to the test of selectivity between the sensor and anions. In recent years, an 

increasing number of π-receptors involving anion sensing were synthesized and this field is 

becoming a promising research area. 

A fluorinated heteroarene 12 was obtained in 19% yield through a one-pot, solid-state reaction 

under an argon atmosphere. This molecule bearing an imidazo[4,5-b]phenazine moiety and a 

tetrafluorophenyl group, due to the existence of string intramolecular hydrogen bonds, adopt a 

plane structure, which was characterized by X-ray single-crystal diffraction. The two 

electron-deficient rings in the molecule rendered the flat π-acid as a multi-response anion sensor. 

Through colorimetric and fluorescent responses, the fluorinated heteroarene can selectively detect 

F- over Cl-, Br-, I-, NO3
-, HSO4

-, ClO4
- and BF4

-.[26] 

 
12 

 

2-(2,6-Diisopropylphenyl)benzo[1’,10’][3,8]phenanthrolino[3’,2’:1,2]imidazo[4,5-b]phenazine- 

1,3,6(2H)-trione 13, which can selectively detect CN- and F- with multiple responses including 

fluorescent, colorimetric and near-infrared absorption signaling among a total of twelve anions 

(BF4
-, PF6

-,Cl-, F-, SO4
2-, NO3

-, I-, H2PO4
-, ClO4

-, Ac-, Br- and CN-). Moreover, Cu2+ or Fe3+ can 

reverse the sensing ability with CN- and F-, that is, when Cu2+ or Fe3+ added into the mixture of 

sensor 13 and CN- or F-, the UV-Vis spectra curves tend to recover the free state without anion.[27] 

 

13 

 

  Bis(phenylcarbamoyl)-functionalized tetraoxacalix[2]arene[2]triazine 14 bearing a “V-shape” 

cavity where an anion could be bound. Among several tested anions (H2PO4
-, Cl-, Br-, NO3

-, 

HSO4
-, SCN-, BF4

-, and PF6
-), only H2PO4

- led to a quench of the original fluorescence emission 

(310 nm for 14a, 308 nm for 14b) and an increased emission at 420 nm and 412 nm respectively 

for 14a and 14b.[28] 

 

14 
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  Under visible light, the complex of calix[4]pyrrole derivatives 15 and fluorides dissolved in 

chloroform was colorless, while the solution turned to dark red in acetonitrile, instead of 

chloroform. Further, it showed that 15 could detect F- among various anions (F-, Cl-, Br-, I-, 

H2PO4
-, HSO4

-, ClO4
-, CH3COO-, NO3

-, CN- and PF6
-) via UV-Vis spectral test. Only fluoride 

decreased the free 15 absorption band at 316 nm and induced two new absorption bands at 337 nm 

and 515 nm. HOMO-LUMO energy level determination indicated that charge transferred from the 

fluoride to the ethene bonds during the complex formation; Besides, 1H NMR spectra also showed 

that the NH did not shift after the F- was added, which proved no hydrogen bonds were formed 

between fluoride and NH. Thus, molecule 15 is a colorimetric sensor for fluoride.[29] 

 

15 

 

(d) Anion-π catalyst 

Catalysis with anion-π interaction is a new research subject about which only one catalyst with 

anion-π interaction was reported up to now, to the best of our knowledge. Matile and co-workers 

designed and synthesized naphthalenediimide (NDI) core catalyst 16a and 16b with π-acidic 

surface (Scheme 6) which catalyzed the Kemp elimination of 5-nitrobenzisooxazole (5NBZ). 

They declared that introduction of electron-withdrawing groups on the π-acidic surface could tune 

the catalytic activity and π-π stacking was less important for anion-π catalysis.[30] 

 

 

                                    16a                                                                        16b 

Scheme 6. The structures of two NDI-core anion-π catalysts. The catalytic activity of 16b is 

higher than that of 16a because of the presence of cyanogroups.[30] 

 

Although the examples on anion-π catalysis are rare, it is a newborn study area which will 

attract more enthusiasm in future.[30] 

 

(e) Anion-π interactions in metal-complexes 

Metal coordination always can strongly increase the π-acidity of the electron-deficient aromatic 

rings. Therefore the adhibition of metal-complexes with aromatic rings is a sensible strategy to 

construct anion-π receptors. These years, numerous metal assisted π-receptors were synthesized 

and used for novel crystals or materials involving anion-π interactions (Scheme 7).[31] 
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Scheme 7. Several examples of metal-complexes which self-assemble induced by anion-π 

interactions in the solid state. 

 

(3) Study of anion-π interaction in protein chemistry 

Up to now, investigation of anion-π interaction related to protein chemistry mainly base on the 

searching for anion-π pairs in the Protein Data Bank, as well as theoretical quantum chemistry 

calculations. For theoretical research, ab initio calculations and Density Functional Theory (DFT) 

are the efficient tools to simulate the position of an anion to the π-ring and calculate the energy of 

anion-π pairs in proteins.[32] In terms of search results in PDB, anion-π pairs were proved not only 

to exist, but probably to influence the activities of certain enzymes.[33-39] 

 

(4) Other advances for the research of anion-π interaction during recent years 

  It is obvious that the investigation of the newfound interaction between anions and π-rings have 

already obtained huge achievements during the last few years in the aforementioned subjects. 

Besides, some dramatic research results were also gained in other areas in regard to anion-π 

interaction. 

  Prof. D-X Wang and Prof. M-X Wang’s group designed and synthesized the “V-shape” 

π-receptors bearing azacrowns via one-pot reactions (Scheme 8). These receptors could efficiently 

recognize different anions and metal ions. With fluorescence titration method, it was found both 

17a and 17b could bind anions (F-, CN-, CH3O
-) and the range of binding constants calculated 

were from 1.11× 103 to 6.59× 103 M-1. Moreover, the receptor 17b could recognize both alkali 

metals and transition and heavy metals tested, while 17a could only complex with transition and 

heavy metals. In addition, the receptors 17a and 17b were able to bind metal ions and anions 

simultaneously by coordination bonds in the azacrown motives and anion-π interaction in the 

π-rings. Thus, it demonstrated that the receptors of anion-π interaction can be used for the 

recognition of ion pairs.[40] 
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Scheme 8. Ion pair receptors 17a and 17b. 

 

Taking advantage of both cation-π and anion-π interations in one receptor 18, namely 

hemicryptophane, selected zwitterions could be recognized in a competitive aqueous medium and 

DFT optimized structure of complex of 18 with each zwitterion showed the zwitterion was 

displaced along the C3 axis of the receptor with the -NH3
+ ion approached to the three 

methoxylated phenyls and the anion (COO- or SO3
-) terminal directed to the tri-carbonylated 

phenyl. The range of association constants between zwitterions and receptor 18, which was 

determined by 1H NMR-titration experiments of NH in 18, was from 1.5× 104 to 5.0× 105 M-1.[41] 

 

                                  18          zwitterions 

 

Not only organic π aromatic systems, but inorganic rings with more or less aromatic character 

also displayed favorable effects with different anions by means of the Bader’s theory of 

“atoms-in-molecules” and the SAPT method (Scheme 9). The range of the interaction energies at 

the RI-MP2/aug-cc-Pvdz level of theory with the BSSE corrections was from -2.5 to -34.4 

kcal/mol. In addition, the experimental example of anion-π interaction between the inorganic ring 

and anion was found by the CSD searching work, which regarded to the interaction of chloride 

with a 1,4,2,3,5,6-dioxatetraborinane-2,3,5,6-tetrol ring.[42] 

 

 

Scheme 9. Several six-membered inorganic rings showed anion-π interaction with anions by 

theoretical ab initio study. 
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  Fruitful achievements are precious gifts to men who are struggling and talented. Prof. 

Albrecht’s group have already obtained huge success concerned to the study of anion-π interaction 

since 2008.[43] Thorough research work based on petafluorophenyl group designed in π-receptors 

systematically discovered dramatic results related to the novel favorable effect between the 

electron-deficient arene and anions.[44] Numerous π-receptors were obtained by Prof. Albrecht’s 

group during the last several years, because design and synthesis of new anion receptors is one of 

the main targets in the investigation of anion-π interaction. For extending the range of research 

area and making the fundamental of anion-π interaction more unambiguous, series of new anion 

receptors, which contained petafluorophenyl groups or perfluorinated arene moieties as well as 

3,5-bis(trifluoromethyl)phenyl groups, were synthesized and studied both in the solid state and in 

solution. Thereinto, the CF3-receptors are the firstly mentioned and investigated to the best of our 

knowledge. 
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Chapter 1 Motivation 

Prof. Albrecht’s group has accumulated prominent progress and gathered luxuriant experience 

involving the research of anion-π interaction focused on pentafluorophenyl-based anion receptors. 

Abundant host-guest complexes of positively charged C6F5-receptors with different anions were 

obtained and analyzed with X-ray single crystal diffraction in the solid state, previously. To shed 

light on the status of different anion-π systems in solution, some new C6F5-type receptors were 

synthesized and tested with 1H/19F NMR-titration experiments as a part of this work. 

  Developing new series of π-receptors is one of the most challenging missions in the 

investigation of anion-π interaction. It is well known that the trifluoromethyl group is a key 

structural block in many biological and pharmaceutical compounds, because of its strong 

electronegativity and the mimic effect.[45] While, to the best of our knowledge, there is still no 

trifluoromethylated aromatics as hosts using anion-π interaction, despite the potential interests of 

this kind of electron-deficient arenes in supramolecuar chemistry and biological properties. Owing 

to the strong electronegativity of the trifluoromethyl group, the aromatic compounds bearing CF3 

may display favorable effect with anions. Trifluoromethylated aromatic rings could probably be 

the candidates of receptors for anion-π interaction. The most attractive is, that these 

trifluoromethylated π-receptors could play significant role in the biological field. 

  Therefore, a series of commercially available CF3-containing compounds 

(3,5-bis(trifluoromethyl)benzyl bromide 19, 3,5-bis(trifluoromethyl)benzyl chloride 20, 

3,5-bis(trifluoromethyl)benzyl amine 21, 3,5-bis(trifluoromethyl)benzoyl chloride 22 or 

3,5-bis(trifluoromethyl)benzamide 23) were introduced as building blocks to construct novel CF3 

π-receptors, which is the original part of the research work (Scheme 10). 

 

 
            19           20            21           22           23  

Scheme 10. Some trifluoromethylated compounds which were used to synthesize π-receptors 

for anions in this work. 

 

  It is reasonable to consider perfluorinated aromatic compounds as potential anion-π receptors, 

due to their electron-deficient property. However, there is rare experimental work about 

perfluorinated arenes as anion-π repcetors reported in spite of the fact that abundant theoretical 

calculations announced about this item. Thus, perfluoro-1,1’-biphenyl 24 and 

perfluoronaphthalene 25 and their derivatives were introduced into our investigation field and 

were found as new receptors of anion-π interaction experimentally. 

 

                             24                   25 
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Chapter 2 The interaction of perfluoro-1,1’-biphenyl or 

perfluoronaphthalene with anions and their derivatives as π-receptors for 

anions 

2.1 Introduction 

  A computational study of interaction of anions with perfluoro-aromatic compounds reported by 

Ibon Alkorta etc. revealed that a favorable effect may be induced between perfluoronaphthalene 

25 and anions with the corrected interaction energies of -17.31, -16.70, -16.51 kcal/mol for the 

complexes with Cl-, Br- and CN-, respectively. The anions were located over the C(4a)-C(8a) bond 

with distances from 3.056 to 2.988 Å relevant to the center of the C(4a)-C(8a) bond.[46] This 

computational work proved that it is possible to design π-receptors with perfluoro-aromatic 

compounds on theory. Moreover, these aromatic compounds are widely used in the areas of 

materials science, environmental science, crystal engineering, fuel cells and supramolecular 

chemistry,[47] which enables the perfluoro-aromatic compounds to be promising π-receptors for 

anions in the future. 

  However, until now these compounds have not been systematically used in the studies of 

anion-π interactions. Thus, we study two of these perfluoro-arenes: perfluoronaphthalene 25 and 

perfluoro-1,1’-biphenyl 24 as π-receptors for anions in solution. In addition, their DABCO 

bromide salts (26 and 27) were synthesized for co-crystal investigation (Scheme 11). 

 

 

Scheme 11. Perfluorinated aromatic receptors compounds (24 and 25) and their derivatives (26 

and 27) studied in this part. 

 

2.2 The anion binding behavior of the perfluoro-1,1’-biphenyl and 
perfluoronaphthalene in solution 

  The status of the electron-deficient arenes 24 and 25 binding anions was investigated in CDCl3 

at room temperature 19F NMR-titrations with various anions as their tertabutyammonium (TBA) 

salts (TBA∙Cl, TBA∙Br, TBA∙F, TBA∙I, TBA∙NO3 and TBA∙BF4). Similar spectra are observed in 

all 19F NMR-titrations for both 24 and 25 (Figure 3 and 4). 
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             (a)                       (b)                        (c) 

 

             (d)                        (e)                       (f) 

Figure 3. 19F NMR-titrations of perfluoro-1,1’-biphenyl 24 with the TBA salts in CDCl3. (298 K) 

 

As shown in Figure 3, the 19F NMR spectra revealed high-field shifting of all fluorine peaks of 

24. Specifically, halide anions induced a little larger high-field shifting of 19F NMR signals than 

nitrate or tetrafluoroborate did (Table 1). The changes of 19F NMR chemical shift values decreased 

in the order of Cl- > Br- > I- (Table 1 Entry 1-2, 4), which is probably because of their different 

volumes, dispersion, polarization and electrostatic properties. Due to the strongest basicity of F-, 

when the quantities of F- were no more than 6.0 equivalents, F- tended to associate with protons in 

solution or generated Meisenheimer-type complexes with 24, whichever situation resulted in the 

de-shielding effect leading to the down-field shifting of F- NMR signal (from -129.076 to 

-128.874 ppm) and no obvious chemical shift change in the 19F NMR spectra of 24 (Figure 3, c). 

Then excess F- added to 20.0 equivalents practically interacted with π-bond and the signals of F- 

peaks shifted high-field from -128.874 ppm to -129.020 ppm (Figure 3, c). As to NO3
- and BF4

-, 

the tiny changes of 19F NMR chemical shifts revealed less interaction with the perfluorinated 

arene 24 (Table 1, Entry 5-6). With the addition of TBA∙BF4, a down-field shifting of the BF4
- 

resonance was observed, which revealed the fluoride resonance of the tetrafluoroborated anion 

was also dependent on the ratio between the electron-deficient aromatic compound and the anions 

(Figure 3, f). 

 

Table 1. The changes of 19F NMR chemical shifts of perfluoro-1,1’-biphenyl 24 * 

Entry anion Δδ(19Fortho) / ppm Δδ (19Fmeta) / ppm Δδ (19Fpara) / ppm 

1 Cl- 0.38 0.59 0.58 

2 Br- 0.35 0.55 0.53 

3 F- 0.29 0.49 0.48 

4 I- 0.23 0.42 0.39 

5 NO3
- 0.19 0.39 0.38 

6 BF4
- 0.14 0.35 0.34 

“*” The values were calculated by 19F NMR-titration experiments. 
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           (a)                        (b)                       (c) 

 

           (d)                        (e)                       (f) 

Figure 4. 19F NMR-titrations of perfluoronaphthalene 25 with the TBA salts in CDCl3. (298 K) 

 

For the situation between perfluoronaphthalene 25 and anions, the 19F NMR spectra displayed 

all fluorine signals of 25 moved to high-field (Figure 4). Cl- or Br- always led to the largest 

chemical shift changes to Fa (α-F) and Fb (β-F) (Table 2, Entry 1-2). NO3
- caused larger shift 

change than F- or I-, which is different from perfluoro-1,1’-biphenyl 24. BF4
- made the middle 

shift change to Fb and the minimum to Fa (Table 2, Entry 4). For all of the different kinds of anions, 

Fa underwent smaller chemical shift changes than Fb. 

 

Table 2. The changes of 19F chemical shifts of perfluoronaphthalene 25 * 

Entry anion Δδ(19Fb) / ppm Δδ(19Fa) / ppm 

1 Cl- 0.667 0.596 

2 Br- 0.588 0.522 

3 NO3
- 0.566 0.473 

4 BF4
- 0.539 0.422 

5 F- 0.514 0.462 

6 I- 0.485 0.431 

“*” The values were calculated by 19F NMR titration experiments. 

 

In conclusion, the 19F NMR signals of both the perfluorinated electron-deficient aromatics 

revealed some high-field shifting with TBA salts added and a more or less linear relation between 

the addition of anions and 19F NMR peak shifting revealed an interaction taking place between the 

perfluoroaryl unit and anions, although it cannot be assigned to a specific binding. 
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2.3 The synthesis and crystal structure of the perfluoro-1,1’-biphenyl or 
perfluoronaphthalene derivatives 

In order to investigate the anion-π interaction of receptors containing perfluoro-1,1’-biphenyl or 

perfluoronaphthalene unit in the solid state, the bromide salts 26 and 27 were prepared (Scheme 

12). The cationic DABCO methylene unit was introduced as a corresponding cationic substituent 

according to our previous research on pentafluorophenyl receptors.[48] 

Complex 26 or 27 were synthesized via a similar substitution reaction route from the starting 

compounds 24 or 25, respectively. The perfluorinated parent compounds were methylated twice 

(for 26) or once (for 27) with methyl lithium at low temperature. Then the methylated derivative 

28 or 30 was brominated by NBS to afford bromomethyl derivative 29 or 31, which produced the 

bromide salts 26 or 27 by nucleophilic substitution reaction with DABCO, respectively.  

 

 

Scheme 12. Synthesis of complexes 26 and 27. 

 

  The dicationic derivative 26 was crystallized by diffusing Et2O into the methanol solution of 26. 

The salt crystallized in the chiral space group C2 with half a molecule in the asymmetric unit. The 

two DABCO methylene substituents were anti-orientated related to the perfluorobiphenyl unit and 

the biphenyl moiety had a torsional angle (49.4o) between the planes of two fluorinated aromatic 

rings. The bromide anions are slightly disordered (92:8) above two rings and are directed to the 

α-hydrogen atoms of the corresponding DABCO parts. As shown in Figure 5 (a), the bromide 

anion was not located above the centroid of the aromatic ring, due to the torsion of the biphenyl 

units. Instead, it was fixed at the rim of the perfluorophenyl unit with distances of 3.62, 3.64, 3.90 

and 3.92 Å to the neighboring CF carbon atoms. Meanwhile, the distances from the bromide anion 

to the centroid of the adjacent ring were 3.66 Å. It indicated that a favorable η4-type anion-π 

interaction was generated between the bromide anion and the perfluorophenyl ring. Besides, each 
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bromide orientated towards hydrogen atoms of the DABCO and methylene moieties in another 

nearby molecule by Br…H interactions with distances of 2.75 to 2.77 Å, respectively (Figure 5, 

b). 

 

                                       (a) 

 

                                        (b) 

Figure 5. X-ray crystal structure of bisbromide salt 26 showing η4-type anion-π interaction (a) and 

intermolecular Br…H interactions (b). The bromide anions are disordered. (black: C, gray: H, 

yellow-green: F, blue: N, brown: Br) 

 

  Crystals of complex 27 were obtained from methanol by slow evaporation as methanol solvate. 

The salt crystallized in the space group pbca with a methanol molecule co-crystallized (Figure 6, 

a). The bromide anion was also not located above the centroid of the perfluoronaphthyl ring but is 

fixed close to the α and β carbon atoms of the ring system bearing DABCO methylene unit 

conforming η4-type anion-π interaction with distances of 3.57, 3.64, 3.74 and 3.87 Å. In addition, 

the anion contacted with the α-hydrogen atoms of the corresponding DABCO unit and the 

methanol nearby with Br…H interactions. 

  Meanwhile, the crystal structure demonstrated a multi intra-/intermolecular interaction motif 

(Figure 6, b). The anion was encompassed with Br…H interactions by four DABCO methylene 

units forming a cavity as well as interacting with the perfluoronaphthyl ring by means of anion-π 

interaction. Moreover, the two perfluoronaphthyl rings adopted a parallel orientation with π-π 

stacking interactions (centriodC(4a-8a)…centroidC(4a-8a) = 3.66 Å). 
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                                        (a) 

 

                                        (b) 

Figure 6. X-ray crystal structure of 27 showing η4-type anion-π interaction (a) and multi 

intra-/intermolecular interaction (b, some bromides and methanol molecules were omitted for 

clarity). (black: C, gray: H, yellow-green: F, blue: N, brown: Br, red: O) 

2.4 Conclusion 

  This work focused on the study of perfluorinated biphenyl or naphthyl units as π-receptors for 

anions. Solution studies demonstrated the 19F NMR peaks of the fluorinated aromatics 24 and 25 

shifted upon the addition of TBA salt with various anions, which may be induced by anion-π 

interaction due to the electron-deficient nature of the aromatic ring systems, although the 

underlying interactions are not specific. Crystal structure analyses of the two bromide salt 

derivatives 26 and 27 obviously revealed the favorable effect between bromide anion and the 

electron-deficient rings. Due to the substituent of the DABCO methylene unit as well as the 

torsion of the biphenyl units, the anion was not located on the top of the center of the aromatic unit, 

thus η4-type anion-π interaction were taken place in both perfluorinated aromatic systems. 
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Chapter 3 The investigation of trifluoromethylated aromatic compounds 

as π-receptors for anions 

3.1 Introduction 

  According to previous investigations, the trifluoromethyl group (CF3) is a highly 

electronegative group[49] and always results in dramatic modification of the physical, chemical and 

biological properties of the organic molecules bearing this group.[50] Therefore, both the synthesis 

and the practical investigation of trifluoromethylated compounds have drawn much attention to 

this functionality.[51] For example, several kinds of drugs containing CF3 groups have been used in 

clinic.[52] Recently, trifluoromethylated organic compounds are also investigated as catalysts for 

asymmetric reactions[53]. 

  It is well known that anion-π interaction is a kind of electrostatic effect combined with 

polarization and London dispersion interactions, resulting in attraction between anions and 

electron-deficient arenes. The study of anion-π interaction has afforded numerous achievements in 

both theoretical and experimental research methodologies in the last several years.[54] The 

electron-withdrawing groups connecting to an aromatic ring reduce the density of the π-cloud of 

the arene, so that a positive permanent quadrupole moment (Qzz) is induced consequently, which 

generates a weak attraction to anions above the electron-deficient aromatic ring. Thus, 

electron-withdrawing groups or electronegative atoms of the aromatics play a significant role in 

the generation of anion-π interactions. 

  However, the trifluoromethyl group, despite the extremely strong electronegativity and the 

important role in medicinal chemistry or organic synthesis, has not been used in the study of 

anion-π interactions. 

  Until now, a large number of electron-deficient aromatic rings containing fluorine, chlorine, 

bromine, nitryl or cyan etc. have been reported as π-receptors for anions.[55] Which is different 

from the aforementioned electron-withdrawing groups, the steric configurational tetrahedron of 

CF3 group probably allows various interactions between anions and trifluoromethylated aromatic 

rings. 

  Our group cooperated with Prof. Raabe and selected several trifluoromethylated aromatic 

compounds (28-32) for calculating the anion binding behavior of them on theory. Both of the 

permanent quadrupole moments (Qzz) and the polarizabilities (αǁ) of the neutral charged aromatic 

compounds increase along with the added degrees of trifluoromethylation (Scheme 13). The 

selected anions (F-, Cl- and Br-) showed different behavior to the CF3-arenes. Specifically, both F- 

and Cl- produce Meisenheimer-type σ-complexes or induce hydrogen bonding interactions with 

these CF3-arenes; in contrast, anion-π complexes are generated from the interaction between 

bromide anion and the trifluoromethylated compounds (30, 31 or 32).[56] 
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Scheme 13. The permanent quadrupole moments (Qzz) and the polarizabilities (αǁ) of the 

selected trifluoromethylated aromatic compounds. 

3.2 The synthesis and crystal structures of trifluoromethylated aromatic complexes 

The quantum chemical calculations abovementioned indicate the theoretical feasibility to design 

novel π-receptors for anions with electron-deficient aromatic compounds bearing CF3 groups. In 

order to test the results of the computational chemistry, some charged CF3-complexes were 

prepared from commercially available materials, namely 3,5-bis(trifluoromethyl)benzyl bromide 

(19) or chloride (20). Then their crystals were cultivated and studied by X-ray single crystal 

diffraction thereby understanding the interactions between anions and CF3-arenes experimentally. 

 

(a) The synthesis of CF3-substituted-aryl compounds 

 

 

Scheme 14. The preparation of L-proline derivative 34 and its HCl adduct 35. 

 

  According to the synthesis of the pentafluorophenylated counterpart,[57] trifluoromethylated 

L-proline derivative 34 was obtained by nucleophilic substitution reaction of 

3,5-bis(trifluoromethyl)benzyl bromide 19 with L-proline 33. The acidification of 34 by ethanol 

solution of HCl at room temperature afforded the co-crystal of chloride salt 35 (Scheme 14). 
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Scheme 15. The synthesis of compound 37 and its chloride complex 38. 
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  Double bis(trifluoromethyl)benzylation of 3-aminobenzoic acid 36 at room temperature 

produced ester 37 bearing two electron-deficient arenes at both terminals. With the similar method 

aforementioned, complex 38 was obtained as crystals from ethanol (Scheme 15). 

 

 

Scheme 16. The preparation of DABCO substituted complexes 41-43. 

 

In previous structure determinations of the pentafluorophenyl systems, 

diazabicyclo[2.2.2]octane (DABCO) has been a sufficient substituent to fix anions on top of the 

aromatic rings through CH…anion interactions. Therefore, for obtaining the CF3-substituted 

research objects and their crystals, derivatives 42 and 43 were prepared from DABCO and 

trifluoromethylated benzyl bromide or chloride. In addition, non-fluorinated salt 41 was 

synthesized as a comparison compound (Scheme 16). 

 

(b) The crystal structures of CF3-substituted-aryl compounds 

The synthesized derivatives 35, 38, 41-43 and commercially available 

3,5-bis(trifluoromethyl)benzamide 44 were selected for structral research (Scheme 17). 
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Scheme 17. Compounds prepared for structure research. 
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Figure 7. The crystal structure of 35. Some fluorine atoms and the L-proline moieties are 

disordered. (black: C, gray: H, yellow-green: F, blue: N, green: Cl, red: O) 

 

  The chloride salt 35 was crystallized in the space group P212121. For each 

3,5-bis(trifluoromethyl)benzylated L-prolin cation, there are two chloride anions adjacent to it, as 

shown in Figure 7. One of the chloride anions approaches to the rim of the CF3-ring and the other 

one is fixed above the aromatic ring (C1-C6) by hydrogen bonds and other CH…Cl interactions. 

The shortest distance from Cl- to the carbon atoms of the ring (C1-C6) is 5.116 Å which is far 

beyond the Van der Waals radii of carbon atom and chloride anion.[18] It demonstrates that the 

hydrogen bonding interactions are the most prominent effects between the chloride anion and the 

organic cations in the solid state. 

    
(a)                                      (b) 

              

(c)                                      (d) 

Figure 8. The structure of 38 in crystals. (a) The chloride anion fixed by NH…Cl and CH…Cl 

interactions; (b) The distances between Cl- and the carbon atoms of the CF3-rings nearby; (c) 

Fixation of chloride in the cleft of the organic cation; (d) The parallel and “zigzag” arrangement of 

the structure of 38 in crystals. Some fluorine atoms are disordered. (black: C, gray: H, 

yellow-green: F, blue: N, green: Cl, red: O) 

Cl

lone‐pair electron‐π 
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  The crystal structure of chloride salt 38 is shown in Figure 8. Even though three 

electron-deficient arenes exist in the molecule, none of the chloride located on the top of π-rings. 

The dominant interaction is hydrogen bonding between chloride and the two ammonium cations 

with NH…Cl = 2.14 and 2.21 Å (Figur 8, a). The closest distance of chloride to a CF3-ring carbon 

atom is 3.48 Å, while it is not classical anion-π interaction due to the large shift of Cl- relative to 

the ring (Figure 8, b). Cooperative effect of NH…Cl and CH…Cl interactions fix the chloride in 

the cleft of the organic cation (Figure 8, c). Additionally, the framework of complex 38 arrange to 

a parallel or “zigzag” conformation in the crystal (space group P21C) with H…Cl and lone pair 

electron-π interactions as linkages (Figure 8, d). 

 

Figure 9. The crystal structure of the 2:1 adduct of 44 with TBA∙Br ( Bu4N
+ is shown as the space 

filling model). Some fluorine atoms are disordered. (black: C, gray: H, yellow-green: F, blue: N, 

brown: Br, red: O) 

 

  Compound 44 is a neutral trifluoromethylated receptor in the tested series. Correspondingly, the 

complex of pentafluorobenzamide with Br- shows the bromide is fixed on top of the aromatic unit 

by the cooperation of anion-π and hydrogen bonding interactions.[58] However, in the 2:1 

co-crystal (space group Pmc2) of 3,5-bis(trifluoromethyl)benzamide with Br-, the anion-π 

interaction cannot be observed. Instead, major interactions are hydrogen bonding of the anion with 

NH- and CH- moieties (NH…Cl = 2.89, 2.61 Å, CH…Cl = 2.82, 2.93 Å). In addition, between the 

two acylamino groups head to head, the hydrogen bonds participate in organizing an 

intermolecular 8-member ring (Figure 9). 

 

Figure 10. The crystal structure of non-fluorinated derivative 41. (black: C, gray: H, blue: N, 

brown: Br, red: O) 

 

  The double benzyl substituted complex 41 does not possess the electron-deficient aromatic ring 

and no anion-π interaction can be found in the solid state. The two Br- are located far away from 
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the aromatic units showing CH…Br short contacts with the DABCO and the methylene units. A 

water and a methanol co-crystallized in the structure and the latter was fixed in the cavity of the 

DABCO with one benzyl unit in the opposite direction which the oxygen atom of methanol points 

to (Figure 10). 

        
(a)                                        (b) 

        

(c)                                         (d) 

Figure 11. The structures of trifluorormethylated derivatives 42 and 43 in crystals. Some 

fluorine atoms are disordered. (black: C, gray: H, yellow-green: F, blue: N, green: Cl, brown: Br, 

red: O) 

 

  Compounds 42 and 43 are two electron-deficient aromatic substituted derivatives with chloride 

and bromide anions, respectively. The crystal structure analyses of 42 and 43 somewhat support 

the results calculated by computational chemistry for 28-32. For the chloride anion complex 42, a 

side-on binding of the chloride has been found as prediction. The Cl- interacts with the aryl unit 

only by CHaryl…Cl bond (2.69 Å), additionally with DABCO and methylene units by CH…Cl 

short contacts as well as hydrogen bonding interaction with the methanol co-crystallized over the 

top of the electron-deficient aromatic ring (Figure 11, b). Differently from the status of the 

methanol co-crystallized in 41, the oxygen of the methanol in 42 points to the plane of the 

3,5-bis(trifluorormethyl)phenyl unit, which reveals lone-pair electron-π interaction between 

oxygen and the electron-deficient ring (Figure 10, a). 

  In terms of the bromide derivative 43, probably because of the higher polarization of Br- than 

that of Cl-, it reveals more obviously favorable interaction between the anion and the π-system. As 

shown in Figure 11 (c), the bromide locates above the π-ring by the additional fixation by 

hydrogen bonds with two DABCO hydrogen atoms (H…Br = 2.83, 3.00 Å). However, the anion is 

not on top of the center of the π-ring but shifting over its rim which can be described as η2-type 
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anion-π interaction showing distances C…Br = 3.64 and 3.77 Å somewhat longer than Van der  

Waals distances. Additionally, the bromide interacts to other two neighboring organic cations with 

hydrogen bonding (CHaryl…Br = 2.81 Å) and short contacts (CHmethylene…Br = 2.83 Å, 

CHDABCO…Br = 2.72 and 2.99 Å) (Figure 11, d). 

3.3 Conclusion 

  In this part, we introduced CF3-substituted arenes into the research of anion-π interactions, 

which is a pioneering work of supramolecular chemistry. Firstly, we calculated the binding 

behavior of several selected trifluoromethylated aromatics (28-32) with fluoride, chloride or 

bromide anion. Only Meisenheimer-type σ-complexes or hydrogen bonding interactions were 

produced between π-system and F- or Cl-. Interestingly, although Br- interacted with CF3 aromatics 

28 or 29 separately by forming σ-complex or hydrogen bonds, anion-π interactions were induced 

between bromide and 30, 31 or 32, separately. It indicated CF3-substituted electron-deficient 

aromatics could be properly designed as π-receptors for anions. Then experimental research 

focused on the 3,5-bis(trifluoromethyl)phenylated aromatic compounds, due to their commercially 

available advantages. Five CF3 π-receptors (35, 38, 42, 43 and 44) and one non-fluorinated 

comparison compound 41 were prepared and the crystal investigation results coincide to the 

conclusion of the computational chemistry, which demonstrates that in the solid state, Cl- always 

interacts to the hydrogen atoms of the 3,5-bis(trifluoromethyl)phenyl units and Br- enables this 

kind of CF3 aromatics to be π-receptors by anion-π interactions. 
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Chapter 4 Study of anion-π interactions by NMR in solution: 

pentafluorophenyl or 3,5-bis(trifluoromethyl)phenyl derivatives as 

π-receptors for anions 

4.1 Introduction 

  Different from the study of anion-π interactions in the solid state which has provided numerous 

results proving the attraction of the electron-deficient aromatics to anions, the investigation of this 

weak effect in solution is still an open question, mainly due to the solvation of anions as well as 

the competition of other non-covalent interactions. The issue which methodology can be used as a 

sufficient tool to detect or calculate anion-π interaction is ambiguous until now. Although 

previously some research work already studied the anion binding behavior of π-receptors with 

UV-Vis spectra, fluorescence spectra or NMR spectra, the results are not always satisfactory.[26, 29, 

41, 59] 

  Because of the attraction, it is not surprising that in solution, the position of anions or the 

binding affinities of π-receptors with anions could be influenced by the properties of 

electron-deficient hosts, ex. the Qzz and London dispersion as well as the polarizability of anions. 

Obviously, the quantity of the electron-deficient units of the π-receptors also effects the binding 

situation of the host-guest systems. An ab initio study on anion-π, anion-π2 and anion-π3 

complexes revealed the additivity of anion-π interactions, that is, the increase of binding energies 

depending on the addition of the electron-deficient units in the receptors.[54] 

  Besides, pentafluorophenyl derivatives have already been reported as ideal π-receptors for 

anions in crystals by our group, anion-π interaction was recently found existing between bromide 

anion and trifluoromethylated aromatic cation in the crystal structure of complex 43 as 

abovementioned. In this chapter, a series of derivatives bearing pentafluorophenyl or 

1,3-bis(trifluoromethyl)phenyl groups were synthesized and studied as π-receptors for anions in 

solution by NMR spectroscopy. 

4.2 The preparation of C6F5/CF3 π-receptors for solution studies 

  To minimize the competitive non-covalent effects which may cover the anion-π interactions in 

solution, structurally simple compounds with mono-, di- or tetra- electron-deficient aromatic units 

were separately prepared. As NH is able to direct the location of the anion to the aromatics,[60] 

amino, acylamino or imide unit was introduced into the prepared π-receptor. 

  Nucleophilic substitution reaction is the dominant strategy to synthesize pentafluorophenyl 

derivatives 46-50 (Scheme 18). From commercially available materials, these receptors were 

obtained at room temperature with moderate to good yields. The structures of 46 and 47 are both 

secondary amines without carbonyl group. As exception, compound 46 contains two 

pentafluorophenyl groups while a phenyl ring is found in 47 instead of one C6F5. Compound 48 is 

an imide with the N,N-bis(pentafluorobenzoyl) unit, so that there is only one residual hydrogen 

atom in the structure. Derivatives 49, 50 and 51 are amides with one carbonyl and at least one 

pentafluorophenyl on different positions.  
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Scheme 18. The preparation of the pentafluorophenylated compounds. 
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Scheme 19. The preparation of the trifluoromethylated compounds. 

 

  The synthetic methods for compounds 53-56 were similar to that of pentafluorophenylated 

derivatives (Scheme 19). However, for preparation of amine 52, the nucleophilic substitution 

reaction was not sufficient. Instead, according to literature,[61] the symmetric amine 52 was 

obtained by reduction of the imine which was produced via condensation reaction of 

3,5-bis(trifluoromethyl)phenylated amine 21 and aldehyde 66.  

  In addition, some electron-deficient tetra-aromatics 57-59 and 69-70 were produced from 

2,4,6-trichloro-1,3,5-triazine 67 or benzene-1,3,5-tricarbonyl trichloride 68 reacting with 3 equiv. 

fluorinated aromatic materials. Therefore, each of the prepared electron-deficient multi-aromatic 

compounds contains three fluorinated electron-deficient moieties as well as an electron-deficient 

aromatic core (Scheme 20). 

  For comparison of additive effect induced by the addition of aromatic units, the two 

commercially available and structurally simple compounds 44 and 45 were also studied by NMR 

spectroscopy as π-receptors for anions. 

 



28 
 

 

N

N

N

Cl

Cl Cl

NH2

F

F

F

F

F

+
DIPEA, K2CO3 / 18-crown-6

toluene, N2, reflux N

N

N

HN

N
H

NH

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

61 6967

HCl

N

N

N

Cl

Cl Cl

NH2

CF3F3C
+

K2CO3 / 18-crown-6

acetone, N2, reflux N

N

N

HN

N
H

NH

CF3F3C

CF3

CF3

F3C

CF3

21 7067  
Scheme 20. The preparation of electron-deficient tetra-aromatic compounds. 
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(a)                                   (b) 

Figure 12. (a) The crystal structure of compound 49. (b) Spacefill mode showing part of the 

crystal lattice of 49. (black: C, gray: H, yellow-green: F, blue: N, red: O) 

 

  Compound 49 was crystallized from MeOH/Et2O in the space group P21/c. As shown in Figure 

12, the amide group and the carbon atom of the methylene unit are in the same plane which forms 

interplanar angles of 46.64° and 80.56° respectively with the planes of two pentafluorophenyl 

rings. T-shaped CF-π interaction can be observed in the crystal lattice (Figure 12, b). In addition, 

the oxygen atom of the carbonyl interacts with the NH of the neighboring molecule with 

intermolecular hydrogen binding effect (CO…HN = 2.84 Å). 

 

(a)                               (b) 

Figure 13. (a) The crystal structure of compound 51. (b) Molecule chains showing 

amide-to-amide hydrogen bonds and π-π stacking interactions in the crystal of 51. (black: C, gray: 

H, yellow-green: F, blue: N, red: O) 

 

  The crystal of compound 51 was obtained from MeOH/Et2O in the space group P21/c and its 

structure is shown in Figure 13 (a). The plane of the amide with the carbon atom of methylene 

forms interplanar angles of 56.75° and 55.95° respectively with the planes of pentafluorophenyl 

and the phenyl rings. The amide NH forms a hydrogen bond to a neighboring amide carbonyl with 

a NH…OC distance of 2.88 Å, resulting in an amide-to-amide hydrogen bonded polymer. The 

polymer is further supported by π-π stacking between pentafluorophenyl and phenyl units with 

center to center distances of 3.54 and 3.80 Å for the intra- and inter-hydrogen-bonding-chain 

interactions, respectively. 
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(a)                              (b) 

Figure 14. (a) The crystal structure of molecule 53 showing a DMSO co-crystallizes by 

hydrogen binding with NH. (b) Part of the crystal lattice of 53 showing the CF-π interaction which 

results in the intermolecular parallel orientation between the 3,5-bis(trifluoromethyl)phenyl rings. 

The co-crystallized DMSO molecules are omitted for clarity. (black: C, gray: H, yellow-green: F, 

blue: N, red: O) 

 

  The crystal of compound 53 was cultivated from DMSO/Et2O with a solvent molecule 

co-crystallized. The single molecule of 53 adopts a conformation with a planar C(=O)-NH-C(=O) 

unit, whereas the aromatic rings are tilted towards this plane with interplanar angles of 7.95° and 

46.94°, respectively (Figure 14, a). Besides the hydrogen binding effect between the oxygen atom 

of DMSO and the NH unit, CF-π interaction can be observed in the crystal lattice with a (C)F…C 

distances from 3.05 to 3.35 Å and induce a parallel arrangement of CF3 aromatic rings. 

 
(a)                                  (b) 

Figure 15. (a) The crystal structure of compound 58. (b) Part of the crystal lattice of 58 

showing non-classical CF…HN and C=O…HN hydrogen bonding. (black: C, gray: H, 

yellow-green: F, blue: N, red: O) 

 

  Compound 58 was crystallized from MeOH/Et2O in the space group P-1. The single molecule 

of 58 is shown in Figure 15 (a) and possesses a plane of the triazine ring which forms interplanar 

angles of 56.37°, 64.64° and 68.25° with each plane of the pentafluorophenyl ring. One of the 

oxygen atoms of the carbonyl groups points to the pentafluorophenyl ring and causes lone-pair 

electron-π interaction with distances from 3.05 to 3.49 Å. The C=O…HN hydrogen bonding (2.35 

Å) results in a dimer which is displayed in Figure 15 (b) and long contacts of 2.89 and 2.95 Å 

between CF and the NH unit of the neighboring molecule were also observed. 
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4.3 The binding behavior of the fluorinated π-receptors for anions in solution 

4.3.1 The stoichiometry of the electron-deficient tetra-aromatic receptors with halide anions 

  Three fluorinated derivatives 57, 58 and 59 bearing four aromatic rings were prepared and 

investigated in this part. The chloride, bromide or iodide anion was introduced to investigate the 

complexation with these receptors in solution. 

 

 

 

  Job-plots are used to calculate the ratio of host to guest in the complex. This work used 

Job-plots by 1H/19F NMR chemical shifts as data to reveal the stoichiometry of the 

electron-deficient multi-aromatic receptors to halide anions (Cl-, Br-, I-). 

 

 

 

(1h) (1f) 

(2h) (2f) 
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Figure 16. Job-Plots of receptor 57 with Cl- (1h, 1f), Br- (2h, 2f) and I- (3h, 3f). The data 

calculated were obtained from 1H/19F NMR spectra in acetone-d6 at room temperature. 

 

  As shown in Figure 16, Job-Plots determined either with Cl- or Br- formed a 1:1 complex with 

receptor 57. However, the stiochiometry of iodide anion with compound 57 is ambiguous. 

Specifically, checking from phenyl-H or NH of the electron-deficient core, the stiochiometry is 

2:1 (host:guest). Differently, the fluorine Job-Plots revealed a 1:1 complex of compound 57 with 

the iodide anion.  

 
Scheme 17. Possible complexation modes of compound 57 with halide anions (Cl-, Br-, I-) in 

acetone-d6 at room temperature. 

 

  Since either Cl- or Br- has a smaller Van der Waals volume than I-, the anion may be packed in 

one receptor’s cavity and fixed by hydrogen bonds with NH of the same receptor (Scheme 17, a 

and b). Due to the large Van der Waals volume as well as the easier polarization, one I- could 

interact with two receptors simultaneously determined by 1H NMR Job-Plots or form a 1:1 

complex with the receptor revealed by 19F NMR Job-Plots (Scheme 17, c).  

 

(3h) (3f) 
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Figure 18. Job-plots of receptor 58 with Cl- (1h, 1f), Br- (2h, 2f). The data calculated were 

obtained from 1H/19F NMR spectra in acetone-d6 at room temperature. 

 

  Stiochiometry clearly shows a 1:1 binding ratio of compound 58 with Cl- or Br- (Figure 18). But 

there is no special ratio for the binding between 58 and iodide anion. Probably because of the short 

length of the pentafluorobenzamide unit, the structure of 58 could not form a cavity of correct size 

to hold an iodide anion (Apendix, Figure S13). 

 

 

 

(1h) (1f) 

(2h) (2f) 

(1h) (1f) 

(2h) (2f) 
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Figure 19. Job-plots of receptor 59 with Cl- (1h, 1f), Br- (2h, 2f) and I- (3h, 3f). The data 

calculated were obtained from 1H/19F NMR spectra in acetone-d6 at room temperature. 

 

  The CF3 π-receptor 59 associates with halide anions (Cl-, Br-, I-) by 1:1 binding ratio (Figure 

19). It is notable that only with 3,5-bis(trifluoromethyl)benzyl instead of pentafluorobenzyl group, 

the I- could be able to bind with the host 59 by 1:1 ratio.  

 

4.3.2 The binding behavior of C6F5-receptors with anions in solution 

  The binding behavior of a series of C6F5 π-receptors with various anions (Cl-, Br-, I-, NO3
-) were 

investigated and the corresponding binding constants (Ka) and Gibbs free energies (ΔG) were 

calculated with 1H/19F NMR-titration experiments. The anions were introduced into the solution as 

tetrabutylammonium (TBA) salts and deuterated chloroform or acetone was used as solvent 

according to the different solubility of receptors. Consequentely, each C6F5-receptor showed the 

similar binding behavior to these different anions (see Appendix 1) and selected 1H/19F 

NMR-titration curves are displayed in this part as representative examples. 

 

(a) The interactions between C6F5-receptors and chloride anions in solution 

 

 

 

(3h) (3f) 

(1h) (1f) 

(2f) (3f) 
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Figure 20. 1H/19F NMR chemical shifts of selected C6F5 receptors (45, 46, 47 and 69) with the 

addition of TBA∙Cl in CDCl3 or acetone-d6. (298 K) 

 

 
Figure 21. 1H NMR chemical shifts of compound 71 with the addition of TBA∙Cl in CDCl3. 

(298 K) 

 

  The 1H/19F NMR-titration curves show the related chemical shifting of C6F5 receptors (45, 46, 

47 and 69) with the chloride anion added (Figure 20). The NHexo of receptor 45 displays a linear 

relation with the addition of Cl-, which cannot reveal any special non-covalent binding effect. The 

similar situations are also found in the compared system of compound 71 with Cl- (Figure 21). In 

addition, the shifting of meta- or para-H in the phenyl group of 71 did not change with the 

addition of anions. Therefore, there is no obvious defined interaction between anions and the 

π-bond of 71. However, the NHendo of 45 binds Cl- obviously with hydrogen bond and the titration 

curve demonstrates a kind of saturated state. Interestingly, in the receptor 46 or 47 without 

carbonyl in the structure, the peaks of 19F NMR shift to high-field with increasing concentration of 

anions showing a linear relation (Figure 20, 2f and 3f). It should be caused by the effect of the 

π-bond with anions, due to the electron-deficient property of pentafluorobenzyl units. The peak 

splitting of the 1H/19F NMR peaks of derivative 69 without carbonyl demonstrate σ-complexes 

may be generated with the addition of chloride anions (Figure 20, 4h and 4f). 

(4h) (4f) 
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Scheme 21. Different binding constants (Ka: M-1) for the complexes of C6F5 π-receptors with 

chloride anions. The binding constants were determined by 1H/19F NMR spectrometric analyses in 

CDCl3 or acetone-d6 at room temperature. Errors are estimated to be lower than 20%. 

 

As shown in Scheme 21, the Ka of either NH or fluorine in 48 is largely increased than that in 

45. The pentafluorobenzamide 45 as π-receptor only displays affinity to chloride with the 

endo-hydrogen Hendo (Ka=24 M-1) of the amide (Figure 20, 1h), as well as the effect between 

anions and pentafluorophenyl units. Especially, the meta- and para-fluorine demonstrate a larger 

influence than ortho-fluorine (meta-F: Ka=18 M-1; para-F: Ka=14 M-1; ortho-F: Ka=6 M-1), which 

show much more obvious chemical shifts of meta- and para-F in NMR spectra (Figure 20, 1f). For 

imide derivative 48 bearing two pentafluorobenzoyl groups and only one active hydrogen atom, 

the binding constant Ka of NH increases to 422 M-1 and of meta- and para-fluorine rise above 90 

M-1. This may have two reasons: 1. the two pentafluorobenzoyl groups largely enhance the acidity 

of the NH, so that the association constant between hydrogen and Cl- is increased; 2. the two 

electron-deficient aromatics (C6F5) afford more affinity to anions with anion-π interaction, which 

is the compensation to the hydrogen bonding. The increase of the Ka of fluorines in 48 reveals the 

interaction existing between chloride and C6F5 units. The absence of one carbonyl (for compound 

49) makes the decrease of Ka both in hydrogen and fluorines, except the large Ka of ortho-fluorine 

in pentafluorobenzyl moiety. The analogue 50 fixes the Cl- with the NH and ortho-H of phenyl as 

well as the attraction of C6F5. As to derivative 51 with a benzyl unit substituting the Hexo of 45, 

both the hydrogen bonding and interactions between anions and C6F5 were enhanced obviously. In 

addition, the Cl- was fixed with NH and ortho-H of the benzyl unit. 

  The compound 57 could be recognized as the tri-substituted derivative of 50. Although 

compound 57 contains four electron-deficient aromatics: one tri-carboxyphenyl unit and three 

pentafluorophenyl groups, the NH does not display stronger affinity to Cl- but also weakens the 

interactions between anions and C6F5 units, which may be induced by the formation of NH…O=C 
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contact nearby. However, the H(phenyl) demonstrats stronger attraction to Cl- which makes the Ka of 

H(phenyl) increase from 37 to 71 M-1. Similarly, the receptor 58 bearing a triazene unit as a core also 

reveals a weaker attraction than that of 51, for either NH or pentafluorophenyl unit. 

 
Scheme 22. Different Gibbs free energies (ΔG: kJ/mol) for the complexes of C6F5 π-receptors with 

chloride anions. The Gibbs free energies were determined by 1H/19F NMR spectrometric analyses 

in CDCl3 or acetone-d6 at room temperature.  

 

  Calculated Gibbs free energies with NH as standard (Scheme 22), the binding affinity (14.98 

kJ/mol) of 48 is two times as that (7.85 kJ/mol) of 45. When one carbonyl was absent, the Cl- 

tends to contact with methylene rather than with NH in compound 49. The different positions of 

C6F5 and carbonyl group make no obvious effect to the binding affinity of receptors with chloride 

anions (see compounds 50 and 51 in scheme 22). When the C6F5 unit in 49 is changed into C6H5 

(structure 51), the affinity is decreased by about 1 kJ/mol for NH. Therefore, both the carbonyl 

and the C6F5 unit made an important influence to the attraction between receptors and anions. 
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(b) The interactions between C6F5-receptors and bromide anions in solution 

 

 

 

  

Figure 22. 1H/19F NMR chemical shifts of selected C6F5 receptors with the addition of 

TBA∙Br in CDCl3 or acetone-d6. (298 K) 

 

  The chloride anion always contributes to lager down-field shifting of the NH in each of the 

receptors with 45 as an example than bromide (Figure 20 and 22). It reveals the higher affinity of 

Cl- to NH, but the binding constants of NH with Cl- in both 57 and 58 are still less than in the Br- 

counterparts (Scheme 21 and 23), which indicats that anion-π interaction makes an important role 

in the anion binding behavior of π-receptors, because of the different polarization of anions. 

 

(1h) (1f) 

(2f) (3f) 

(4h) (4f) 
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Scheme 23. Different binding constants (Ka: M-1) for the complexes of C6F5 π-receptors with 

bromide anions. The binding constants were determined by 1H/19F NMR spectrometric analyses in 

CDCl3 or acetone-d6 at room temperature. Errors are estimated to be lower than 20%. 

 

  The bromide was also attracted by these receptors with hydrogen bonds as well as anion-π 

interactions in solution (Scheme 23). Nevertheless, the association constants of receptors 45 and 

di-cyclic derivatives 48-51with Br- are smaller than with Cl-. The Ka of hydrogen binding in the 

Cl- complexes is generally two or three times as large as Ka in the Br- complexes, which may be 

due to the higher basicity of chloride as well as the larger Van der Waals volume of bromide.  

  On the other hand, in the complexes of tetra-cyclic receptors 57 and 58 with anions, the 

electron-deficient derivatives display favorable effects preferring Br- over Cl-. Due to the huger 

available spaces of tetra-cyclic compounds than those of di-cyclic receptors, the effect induced by 

basicity and Van der Waals volume of anions are covered by the polarization of anions. Therefore, 

the binding constants of pentafluorophenyl units with Br- are obviously increased and even 

surpass the enhancement of hydrogen binding interactions. 
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Scheme 24. Different Gibbs free energies (ΔG: kJ/mol) for the complexes of C6F5 π-receptors with 

bromide anions. The Gibbs free energies were determined by 1H/19F NMR spectrometric analyses 

in CDCl3 or acetone-d6 at room temperature.  

   

  Besides the hydrogen binding effect with NH and ortho-H of C6H5 moieties, the bromide shows 

affinity to CH(methylene) in receptors 49-51with energies of 6.40-9.21 kJ/mol close to the hydrogen 

bond energy in the same host-guest system, respectively (Scheme 24). 

  The hydrogen binding energies of receptor 57 or 58 with Br- are nearly equal to that with Cl-, 

while the affinity between C6F5 and Br- are evidently larger. Moreover, compared to Ka and ΔG of 

receptor 57 and 58 with Cl- or Br-, the bromide interacts more with C6F5 units than with the 

triazene core in 58 and the chloride prefers the tri-carboxyphenyl core in 57. 

 

(c) The interactions between C6F5-receptors and iodide anion in solution 

 

 
(1h) (1f) 
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Figure 23. 1H/19F NMR chemical shifts of selected C6F5 receptors with the addition of TBA∙I 

in CDCl3 or acetone-d6. (298 K) 

 

 
Scheme 25. Different binding constants (Ka: M

-1) for the complexes of C6F5 π-receptors with 

iodide anions. The binding constants were determined by 1H/19F NMR spectrometric analyses in 

CDCl3 or acetone-d6 at room temperature. Errors are estimated to be lower than 20%.  

(2h) (2f) 

(3h) (3f) 
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Scheme 26. Different Gibbs free energies (ΔG: kJ/mol) for the complexes of C6F5 π-receptors 

with iodide anions. The Gibbs free energies were determined by 1H/19F NMR spectrometric 

analyses in CDCl3 or acetone-d6 at room temperature.  

 

  Although the NHendo shows weak affinity to iodide (Ka = 6 M-1), the pentafluorophenyl unit in 

45 does not reveal any obvious interaction with I- and the chemical shifts of 19F NMR peaks do 

not change obviously with the addition of iodide anions (Figure 23, 1f). In fact, the binding 

constants of fluorine with iodide in the receptors shown in scheme 25 are generally smaller than 

that with Cl- or Br-, except the case of compound 48 with I-. With the addition of TBA∙I, the peak 

of NH in 48 was reduced and vanished when the amount of I- exceeded equal equivalents (Figure 

23, 2h). However, the binding constants of pentafluorophenyl unit with I- are extremely bigger 

even than with bromide or chloride anions. Instead one carbonyl of 48 with a methylene unit, the 

binding constants of 19F decreased rapidly shown with 49. Compound 57 with a tri-substitution of 

phenyl core attracts iodide anions much powerfully than mono-substituted 50 do, due to the 

presence of three amides as well as three pentafluorobenzyl units. Comparison with 51, despite 

three pentafluorobenzamide groups and a triazene core inside, the compound 58 affords only a 

little more stabilization energy (6.64 kJ/mol vs. 5.80kJ/mol) to I- with hydrogen bond and 

moderate increase of affinity with anion-π interactions (Scheme 26). Different from chloride or 

bromide anions, neither NH…I- nor I-…π interaction was induced between the iodide and 

compound 69 (Figure 23, 3h and 3f), even though several electron-deficient aromatics present in 

the structure, but the carbonyl groups are absent in contrast to compound 58. 
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(d) The interactions between C6F5-receptors and nitrate anions in solution 

 

 

 

  

Figure 24. 1H/19F NMR chemical shifts of selected C6F5 receptors with the addition of 

TBA∙NO3 in CDCl3 or acetone-d6. (298 K) 

 

(1h) (1f) 

(2f) (3f) 

(4h) (4f) 
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Scheme 27. Different binding constants (Ka: M

-1) for the complexes of C6F5 π-receptors with 

nitrate anions. The binding constants were determined by 1H/19F NMR spectrometric analyses in 

CDCl3 or acetone-d6 at room temperature. Errors are estimated to be lower than 20%.  

 

 

Scheme 28. Different Gibbs free energies (ΔG: kJ/mol) for the complexes of C6F5 π-receptors 

with nitrate anions. The Gibbs free energies were determined by 1H/19F NMR spectrometric 

analyses in CDCl3 or acetone-d6 at room temperature.  
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Nitrate anions interact with NHendo of pentafluorobenzamide 45 by the weakest hydrogen 

bonding (Ka = 5 M-1, ΔG = 3.78 kJ/mol) among the four kinds of anions (Cl-, Br-, I- and NO3
-) and 

the binding constants of fluorine in the complex of 45 with NO3
- are close to the values with Br-. 

In addition, the Ka of NH in complex of 48 with NO3
- is definitely lower than with Cl- (189 vs. 

422 M-1), but the Ka of fluorine are at the same degree of the value with Cl-. Therefore, it is not 

reasonable to estimate the degree of NO3
-…π interaction by the Ka of NH as standard. The effect 

of π-π stacking induced between the π-bond of NO3 anions and the electron-deficient aromatic 

units may cover the attractive anion-π interaction. 

  The hydrogen binding of receptor 49 with nitrate anions is weakened when acetone-d6 is used as 

solvent instead of CDCl3, while the effects of anions with pentafluorophenyl units are enhanced. 

This result may attribute to the affinity between the oxygen atom of acetone and the hydrogen 

atom of receptor 49, combined with the solvation of the nitrate anion.  

 

4.3.3 The binding effect of CF3-receptors for anions in solution 

  Trifluoromethylated aromatic compounds could be investigated as π-receptors for anions, due to 

the strong electronegativity of the CF3 group which may hugely reduce the Qzz of the aromatic unit 

in receptors.  

  Theoretical quantum chemistry calculation demonstrats in gas state, although fluoride or 

chloride anions prefer to form σ-complexes with the CF3-compounds as abovementioned, the 

bromide anions are able to interact with these CF3-receptors by anion-π interaction. Crystal 

structure research of 3,5-bis(trifluoromethyl)phenylated derivatives with chloride or bromide 

anions support these calculation results. For a clear explanation to the fact of CF3 aromatics as 

π-receptors for anions, the solution study of the prepared 3,5-bis(trifluoromethyl)phenylated 

receptors with halide anions (Cl-, Br-, I-) as well as NO3
- was done using 1H/19F NMR-titration 

experiments. 

 

(a) The interactions between CF3-receptors and anions in CDCl3 

  Compounds 21, 44, 52 and 54 were selected to study their binding behavior for anions in 

CDCl3.  
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Figure 25. 1H/19F NMR chemical shifts of selected CF3-receptor (21, 44, 52 and 54) with the 

addition of TBA∙Cl in CDCl3. (298 K) 
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Scheme 29. Different binding constants (Ka: M
-1) for the complexes of selected CF3-receptors 

44 and 54 with anions. The binding constants were determined by 1H NMR spectrometric analyses 

in CDCl3 at room temperature. Errors are estimated to be lower than 20%. 
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Scheme 30. Different Gibbs free energies (ΔG: kJ/mol) for the complexes of CF3-receptors 44 

and 54 with anions. The Gibbs free energies were determined by 1H NMR spectrometric analyses 

in CDCl3 at room temperature. 

 

  As representative examples, Figure 25 shows the selected results of 1H/19F NMR-titration 

experiments of amine (21 and 52) or amide (44 and 54) with Cl- in CDCl3 and others can be found 

in the Appendix 1 (1.2). The proton signals of NH in both amine derivatives are too weak to 

display their chemical shifts with the addition of anions. The chemical shifts of both the ortho-H 

and para-H in the aromatic rings of 21 or 52 show a more or less linear relation with the addition 

of anions. Specifically, the peaks of ortho-H shift to down-field while the para-H shows high-field 

shifting. There is no special binding effect existing between the protons of 21 or 52 and the anions 

in CDCl3. However, the 1H NMR-titration experiments for the amide derivative 44 or 54 reveals 

the binding effect for all protons in the structures with anions. 

  The 19F NMR-titration experiments show some similar results for either amine or amide, with 

the down-field shiftings of 19F NMR peaks initially and then high-field shiftings are revealed 

when the amount of anions exceeded 2 equivalents (for 21 or 52) or 5 equivalents (for 44 or 54). It 

is probably induced by the combined effects from the anion-π interaction to anion aggregation 

with the increased amount of anions. 

  The Hendo shows more affinity with halide anions than the Hexo and the binding constants of 

NHendo of carbonyl groups as well as the hydrogen atoms of the aromatic rings in 44 or 54 with 

anions are enhanced in the order of Cl->Br->I-, which shows an inverse order of the NHexo with 
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halide anions (Scheme 29). The different Van der Waals volumes of halide anions may play a 

dominant role to this situation. Because of the large volume of nitrate anion, it induces higher 

binding constants to Hexo (32 M-1) than to Hendo (18 M-1). Despite that, the π-π effect between NO3
- 

and the π-rings contribute to a favorable attraction of the electron-deficient aromatic rings with the 

nitrate anions. Replacing one hydrogen atom of the amide group in 44 by a 

3,5-bis(trifluoromethyl)benzyl moiety, the binding affinities of all hydrogen atoms with anions are 

improved. Specifically, the ΔG of NH in compound 54 is nearly two times large as that of Hendo in 

44 with respective anions (Scheme 30), which more or less proves the additivity of the CF3 

aromatic ring to the attraction between the π-receptors and anions, because as a linker between the 

NH and the CF3-ring, the methylene unit without electron-withdrawing effect cannot enhance the 

acidity of the hydrogen atom of the NH unit. 

 

(b) The interactions between CF3-receptors and anions in acetone-d6 

  Compounds 21, 44, 52, 53, 54, 55, 56 and 59 were selected to study their binding behavior for 

anions in acetone-d6. 
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Figure 26. 1H/19F NMR chemical shifts of selected CF3-receptors (21 and 44) with the 

addition of TBA∙Cl in acetone-d6. (298 K) 

 

  As a representative example, the results of 1H/19F NMR-titration experiments shown in Figure 

26 reveal the amine derivative 21 does not interact with chloride anion with any special binding 

effect, on the contrary, the amide derivative 44 shows binding effects to Cl- with both hydrogen 

binding and anion-π interaction. In fact, the selected amide derivatives (44, 53, 54, 55, 56 and 59) 

interact with chloride or bromide anions with obvious hydrogen binding or anion-π interaction, 

while only weak binding effect as well as somewhat linear relations of 1H/19F chemical shifts can 

be found with the addition of iodide or nitrate anions (see Appendix, Figure S9-S12). It seems the 

Van der Waals volumes of different anions influence the binding effect in a large degree, that is, 

the larger the volume of anions, the weaker binding effect of the host-guest system. 

  There is a remarkable feature when comparing the 19F NMR-titration curves in the two different 

solvents (CDCl3 and acetone-d6), which is worth mentioning. In CDCl3, the 19F signals shift to 

down-field initially and then to high-field continually when the excessive amount of anions are 

added. However, the 19F NMR chemical shifts keep the trend of down-field shifting with the 

addition of anions in acetone-d6 and even some of them demonstrate the binding effect which is 

probably the anion-π interaction between the CF3 aromatic rings and anions. In case this opinion 

could be able to be accepted, a verdict may be emerged: anion-π interaction could be induced 

much sufficiently in acetone than in chloroform. In fact, the anions can be much more easily 

solvated in acetone, while they tend to aggregate in chloroform. It probably results in the 

high-field shiftings of 19F NMR signals when the amounts of anions are excessive and therefore 

the anion-π interaction will be covered in chloroform. 
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Scheme 31. Different binding constants (Ka: M
-1) for the complexes of selected CF3-receptors 

with chloride anions. The binding constants were determined by 1H/19F NMR spectrometric 

analyses in acetone-d6 at room temperature. Errors are estimated to be lower than 20%.  

 

 
Scheme 32. Different binding constants (Ka: M

-1) for the complexes of selected CF3-receptors 

with bromide anions. The binding constants were determined by 1H/19F NMR spectrometric 

analyses in acetone-d6 at room temperature. Errors are estimated to be lower than 20%.  
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Scheme 33. Different binding constants (Ka: M
-1) for the complexes of selected CF3-receptors 

with iodide anions. The binding constants were determined by 1H/19F NMR spectrometric 

analyses in acetone-d6 at room temperature. Errors are estimated to be lower than 20%.  

 

 
Scheme 34. Different binding constants (Ka: M

-1) for the complexes of selected CF3-receptors 

with nitrate anions. The binding constants were determined by 1H/19F NMR spectrometric 

analyses in acetone-d6 at room temperature. Errors are estimated to be lower than 20%.  

 

  As shown in Scheme 31-34, the binding constants of the amide derivatives (44, 53, 54, 55 and 
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56) except compound 59, which are calculated by either 1H or 19F NMR spectrometric analyses, 

are increased with the order of Cl->Br->I-≈NO3
-. Comparing the two receptors 53 and 54 with 

respective kinds of anions (Cl- or Br-), although the activity of NH in imide 53 is higher than in 

amide 54, all the binding constants of hydrogen atoms with anions in 54 are obviously larger than 

in 53 and the Ka in 54 calculated by 19F NMR spectra are also increased. Therefore, considering 

the interaction of amine derivatives 21 and 52 with anions, although the carbonyl group is 

necessary for the binding between the receptor and anions, more carbonyl groups are needless to 

enhance the binding effect between NH and anions. The corresponding Ka of compound 55 or 56 

with anions show the position of the carbonyl is not influencing the binding behavior of the 

receptor to anions.  

  Different from anion-π interaction which could be induced much sufficiently in acetone than in 

chloroform as abovementioned, the hydrogen binding effect will be weakened in acetone 

comparing the corresponding Ka of receptor 44 in both kinds of solvent, especially with bromide, 

iodide or nitrate anion. 

  The triple-substituted derivative of benzene 59 compared with receptor 55. The corresponding 

Ka of compound 59 with chloride and bromide anions are nearly equal, but the binding constants 

in the complexes of 55 with the two kinds of anions are about a factor 2 different. Possibly 

because of the huge cavity constructed by the four aromatic rings in 59, the differences of the 

volumes between chloride and bromide anions can be offset. Moreover, the Ka of NH in 59 is 

decreased with Cl-, the same with Br- and increased with I-, as well as no binding effect can be 

found between compound 59 and nitrate anions. 

 

Scheme 35. Different Gibbs free energies (ΔG: kJ/mol) for the complexes of selected 

CF3-receptors with chloride anions. The Gibbs free energies were determined by 1H/19F NMR 

spectrometric analyses in acetone-d6 at room temperature. 
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Scheme 36. Different Gibbs free energies (ΔG: kJ/mol) for the complexes of selected 

CF3-receptors with bromide anions. The Gibbs free energies were determined by 1H/19F NMR 

spectrometric analyses in acetone-d6 at room temperature. 

 

 

Scheme 37. Different Gibbs free energies (ΔG: kJ/mol) for the complexes of selected 

CF3-receptors with iodide anions. The Gibbs free energies were determined by 1H/19F NMR 

spectrometric analyses in acetone-d6 at room temperature.  
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Scheme 38. Different Gibbs free energies (ΔG: kJ/mol) for the complexes of selected 

CF3-receptors with nitrate anions. The Gibbs free energies were determined by 1H/19F NMR 

spectrometric analyses in acetone-d6 at room temperature. 

 

  Compound 56 or 54 is the derivative of 3,5-bis(trifluoromethyl)benzamide 44 with one 

hydrogen atom of NH2 substituted by a benzyl group or a 3,5-bis(trifluoromethyl)benzyl group, 

respectively. The binding affinities of the two derivatives with anions (Cl-, Br-, I- and NO3
-) are 

enhanced, especially for the CF3-aromatic substituted derivative 54, the Ka of NH with anions are 

approximate two times larger as that of 44 with respective anions. This reveals the additivity of the 

CF3 aromatic ring as the π-receptor for anions.  

4.4 Conclusion on the interactions between C6F5-/CF3-receptors and anions in 
solution 

  Pentafluorophenylated derivatives could be studied as ideal π-receptors for anions in co-crystal 

structures. Systematic research of anion-π interactions with C6F5-receptors in the solid state led to 

numerous results until now. Trifluoromethylated aromatics, specifically 

3,5-bis(trifluoromethyl)phenylated derivatives, are able to be introduced as novel π-receptors for 

anions in the solid state, which was found firstly by our group and has been already discussed in 

the aforementioned chapter. However, exploration of C6F5-/CF3-compounds as π-receptors for 

anions in solution is still lacking. Therefore, in this section, several derivatives bearing 

pentafluorophenyl/3,5-bis(trifluoromethyl)phenyl groups were synthesized and then investigated 

as π-receptors with various anions in solution. 1H/19F NMR-titration experiments were adopted as 

the significant method with deuterated chloroform or acetone as solvent. 

  To each receptor (45, 48-51) bearing one or two electron-deficient aromatic units, the affinity of 

NH to halide anions are reduced in the order of Cl- > Br- > I-, which is responding to the alkalinity 

of anions. Chloride anion is the most attractive to the pentafluorophenyl units in these receptors, 

although bromide has a higher polarization than chloride. Probably owing to the stronger 
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hydrogen bonding between Cl- and NH, it more efficiently fixes the Cl- close to the top of C6F5. 

The iodide anion, which is the most polarizable halide anion, generally has the similar degree of 

Ka of fluorine as Br-, but obviously smaller than Cl-, except the receptor 48. In the case of 

pentafluorobenzamide 45, the iodide anions do not make any effect to the C6F5 unit, but chloride 

or bromide anions interact with this electron-deficient unit both in solid and in solution. Because 

of the π-π interaction which exists between the nitrate anion and the C6F5 unit, as well as the 

hydrogen bonding, it is complicated to identify anion-π interaction in NO3
-…π complexes. 

  Electron-deficient tetra-aromatics 57 and 58 undergo specific binding with halide anions or 

nitrate anion, respectively. Both 57 and 58 interact with bromide anions by C6F5 units distinctively, 

which are displayed with the largest Ka of fluorine. In addition, the effect between 

electron-deficient tetra-aromatics and chloride or iodide anion are moderate and even nearly no 

interaction can be observed between NO3
- and C6F5 units. 

  In terms of the binding behavior of CF3-receptors, all the kinds of selected anions (Cl-, Br-, I- 

and NO3
-) are able to interact with them by anion-π interaction or the effect induced by the 

electron-deficient property of CF3 rings. Moreover, this weak binding effect between the π-bond 

of electron-deficient aromatics and anions can be observed more distinctly in acetone than in 

chloroform. 

  It is mentionable that two significant features are revealed when comparing these 1H/19F 

NMR-titration spectra for both C6F5- and CF3-receptors with diverse anions. 

  1. The 19F NMR signals (ortho-, meta- and para-F) for C6F5 units, as well as of 1H NMR signals 

(ortho- and para-H) for CF3-aromatic units with the addition of anions, undergo opposite 

directions of high- or down-field shifting. It is probably induced by the uneven-distribution of the 

π-bond electrons generated by the attraction between the aromatic ring and anions and it is 

additionally influenced by the combined effects of hydrogen binding and anion-π interactions in 

CF3-receptor-anion systems. 

  2. With the amine derivative receptors 46, 47 and 69 (for C6F5-receptors) or 21 and 52 (for 

CF3-receptors), which are without carbonyl group in their structures, the 19F shifts or 1H shifts of 

aromatic units change with the addition of anions with linear relations. It is not induced by the 

classical anion-π interactions, but it should be attributed by the effect between anions and 

fluorinated rings because of the electron-deficient property of the aromatics. Thus, two 

assumptions result: 1. Because of the more activity of hydrogen atoms of NH in amide or imide 

receptors than in amine receptors, much sufficient hydrogen binding is generated between anions 

and the receptors and the anions aggregate around the electron-deficient aromatic rings with a 

saturated mode which leads the 1H/19F NMR chemical shifts to steadily change when the amount 

of anions exceed at last. However, in the amine host-guest systems without hydrogen binding 

effect as sufficient as in amide systems, the anions surround the aromatic rings with an unsaturated 

mode and therefore the chemical shifts change continuously with the increase amount of anions. 2. 

The conjugation of the lone-pair electron of nitrogen atom with the carbonyl group in amide 

decrease the electronic repulsion between anions and amide moieties, so that the anions are much 

closer to aromatic rings and consequently a binding effect is induced. While, in amine receptors, 

the electronic repulsion prevents anions to approach the aromatic rings sufficiently. 

  This work is an attempt for exploring the interactions between C6F5-/CF3-receptors and anions 

in solution. To achieve the fundamental revelation of anion-π interactions in solution, much 

additional theoretical and experimental research work is necessary in the future. 



57 
 

Chapter 5 L-Proline zwitterions bearing the C6F5/CF3 electron-deficient 

aromatic ring as π-receptor for anions 

5.1 Introduction 

  With the development of anion-π interactions, an increasing number of new electron-deficient 

aromatic rings have been found as receptors by theoretical studies. Some of them have already 

been used as building blocks to design receptors for anion-π interaction study.[55] While, to the best 

of our knowledge, all the π-receptors known until now are either cations or neutral molecules.  

Zwitterions which offer both cation and anion moieties in one structure could afford adverse 

charges in different acid-base conditions. In the alkaline solution, zwitterions are able to display 

negative charge and become anions, which may induce anion-π interaction; on the contrary, 

zwitterions will turn into cations and provide positive charge, then anion-π interaction is vanished. 

Therefore, it is not unrealistic to control the existence of anion-π interaction induced by 

zwitterions in the variation of acid-base conditions (Scheme 39). 

 

 
       no anion-π interaction                                  anion-π interaction 

Scheme 39. Control the existence of anion-π interaction by acid-base adjustion.  

 

L-proline, which is one of the structurally most simple amphoteric compounds, always plays a 

significant role in scientific research[62]. Therefore, it is reasonable to introduce L-proline into the 

π-receptor and assign it as a pivotal moiety of the zwitterion in this work. 

 

5.2 The synthesis and crystal structure of the C6F5 zwitterion-receptor 

Zwitterion-receptor 72 was synthesized according to a reference with potassium carbonate 

instead of potassium hydroxide as base (Scheme 40)[63]. Because of the presence of the 

pentafluorophenyl group and the carboxylate anion in the structure, X-ray crystal diffraction of the 

compound 72 displays that intermolecular anion-π interaction is induced (Figure 27, a). It is 

probably due to the longer distance between the carboxylate anion and the pentafluorophenyl in 

the one molecule, so that the intermolecular anion-π interaction is preferential (Figure 27, b). The 

carboxyl group is located at the rim of C6F5 unit of the neighboring zwitterion but not on top of 

the center, which reveals a η2-type intermolecular anion-π interaction. In addition, the two oxygen 

atoms of the carboxyl are fixed by the NH of L-proline unit nearby with intermolecular hydrogen 

binding effect.  

 

π π

X 
π
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Scheme 40. Synthesis of zwitterion 72 which may transform into the neutral mode in solution. 

 

  

(a) 

 
(b) 

Figure 27. (a) X-ray crystal diffraction of the crystal structure of 72 showing intermolecular 

anion-π interaction (η2: O…C = 3.076 Å, 3.228 Å; NH…O = 1.782 Å, 2.592 Å). (b) Comparison of 

intra- and intermolecular anion-π interaction in the structure of zwitterions 72. (green: F, gray: H, 

black: C, red: O)  

 

5.3 The adjustment of anion-π interactions existing in the C6F5 zwitterion in solution 

  Because of the similar structures of hexafluorobenzene and pentafluorophenyl unit, the C6F6 

was firstly investigated as a reference compound. As hexafluorobenzene was calculated in large 

scope as a π-receptor for anions by theoretical research of anion-π interactions; however, there are 

only rare experimental results. In this work, initially, C6F6 was introduced as host and L-proline as 

guest. Moreover, tosylic acid (TsOH) or N,N-Diisopropylethylamine (DIPEA) was employed as 

acid or base, separately. Due to the solubility, deuterated DMSO or methanol was used as solvent 

in NMR-titration experiments. Consequently, treating with deuterated DMSO in the presence of 

DIPEA caused the 19F peaks of C6F6 underwent slightly high-field shift, which demonstrated a 

large number of L-proline offered more carboxylate anions that made effect on the π-bond (Figure 

28, c). On the other hand, the chemical shifts of 19F did not suffer on influence either in deuterated 

methanol or in DMSO-d6 with TsOH or not (Figure 28, a-b and e-f). Most noteworthy is that 

DIPEA or TsOH did not induce any obvious electronic effect on C6F6 according to 19F 

NMR-titrations (Figure 29). Due to the similarity, it is reasonable to expand the results 

abovementioned from C6F6 to C6F5 moiety of the zwitterion 72. 
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(a)                                     (b) 

  

                 (c)                                     (d) 

  

                 (e)                                     (f) 

Figure 28. 19F NMR titration of C6F6 with L-proline in different acid-base solution. (298 K)  

(1) C6F6 (0.025 mmol, 0.003 mL, 1.0 equiv.) with increase equivalents of L-proline in DMSO-d6 

(a) and in methanol-d4 (b). 

(2) mixture of C6F6 (0.025 mmol, 0.003 mL, 1.0 equiv.) and L-proline (0,025 mmol, 0.003 g, 1.0 

equiv.) with increase equivalents of DIPEA in DMSO-d6 (c) and in methanol-d4 (d). 

(3) mixture of C6F6 (0.025 mmol, 0.003 mL, 1.0 equiv.) and L-proline (0,025 mmol, 0.003 g, 1.0 

equiv.) with increase equivalents of TsOH in DMSO-d6 (e) and in methanol-d4 (f). 
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(a)                                     (b) 

  

                 (c)                                     (d) 

Figure 29. 19F NMR titration of C6F6 with different equivalents of TsOH or DIPEA in 

DMSO-d6 or in methanol-d4. (298 K) 

(1) C6F6 (0.025 mmol, 0.003 mL, 1.0 equiv.) with increase equivalents of TsOH in DMSO-d6 (a) 

and in methanol-d4 (b). 

(2) C6F6 (0.025 mmol, 0.003 mL, 1.0 equiv.) with increase equivalents of DIPEA in DMSO-d6 (c) 

and in methanol-d4 (d). 

 

Treating zwitterion 72 with the increasing amount of TsOH in deuterated solvent, all the 

fluorine peaks (ortho-, meta- and para-F) showed down-field shifting, which were much more 

obvious in DMSO-d6, due to the alkaline solvent itself. Moreover, in both solutions, all the 

fluorine peaks did not change anymore when the amount of TsOH added exceeds 1.0 equivalent, 

which indicated the carboxylate moieties were all protonated. Consequently, intrinsic 

intermolecular anion-π interaction was weakened (Figure 30). 
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(a)                                    (b) 

Figure 30. The 19F NMR-titration spectra of zwitterion 72 with TsOH in DMSO-d6 (a) or in 

methanol-d4 (b). (298 K) 

 

On the contrary, DIPEA enhanced this weak effect between carboxylate anion and the 

neighbouring zwitterion and this phenomenon was expressed much distinct in methanol-d4. All the 

fluorine peaks shifted to high-field and kept stable after the amount of DIPEA was added more 

than 1.0 equivalent in methanol-d4. While, in DMSO-d6, 
19F NMR peaks maintained high-field 

shifting with the addition of base, but the rate of change would be slow down after the base was 

added excessively (Figure 31). 

  

(a)                                    (b) 

Figure 31. The 19F NMR-titration spectra of zwitterion 72 with DIPEA in DMSO-d6 (a) or in 

methanol-d4 (b). (298 K) 

 

In short, once the acid or base was excess, no matter DMSO or methanol as solvent, the anion-π 

interaction will neither be weakened nor be enhanced anymore; thus, the probability of influence 

caused by solvent to anion-π interaction could be more or less excluded. Moreover, due to the 

large stereoscopic volumes of TsO- anion and DIPEAH+ cation, the big ions could contribute an 

ignorable influence to the π-bonds of pentafluorophenyl moieties, which was also proven by the 

aforementioned NMR experiments between C6F6 and TsOH or DIPEA. It may be that an 

equilibrium between zwitterion 72 and its neutral compound by the protonation and deprotonation 

of carboxylate moieties (Figure 32), as a result, the excess amount of DIPEA cause the 

carboxylates deprotonated completely and intermolecular anion-π interaction was intensified; on 

the contrary, excessive acid protonated carboxyl anions existing in zwitterions, so that it recedes 

this kind of originally weak interaction (Scheme 41). 
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(a)                                   (b) 

Figure 32. 19F NMR spectra of zwitterion 72 in methanol-d4 (a) and in DMSO-d6 (b) (298 K). The 
19F peaks in 144.751 ppm, 156.145 ppm, 165.732 ppm (a) and in 144.555 ppm, 155.052 ppm (b) 

demonstrate the equilibrium for the protonation and deprotonation of carboxylate moieties of 

zwitterion 72 and its neutral molecule in solution. 

 

 

Scheme 41. Control anion-π interaction of zwitterions in solution with acid and base. 

 

The reversibility of anion-π interaction produced by zwitterions, which is caused by different 

acid-base systems, could be observed both in deuterated methanol (Figure 33) and DMSO (Figure 

34). In deuterated methanol for example, introducing some base firstly and then acid or the reverse 

sequence, the 19F peaks can recover like a switch. Respectively, when TsOH was added firstly, the 

anion-π interaction was weakened and then excessive DIPEA enhanced the interaction and kept 

the intensive trend. At last, more TsOH was input to neutralize the previous DIPEA and the 19F 

NMR signals went back to original (Figure 33, a). The relative phenomenon was contributed by 

the inverse order of acid-base added and consequently, the transition to the neutral situation 

occurred (Figure 33, b).  
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(a)                                     (b) 

Figure 33. The 19F NMR-titration spectra of zwitterion 72 with TsOH or DIPEA in 

methanol-d4. (298 K)  

(a): 1) zwitterion 72 as the sample without acid or base; 2) 1.27 equiv. of TsOH was added; 3) 2.21 

equiv. of DIPEA was added in sequence; 4) 1.12 equiv. of TsOH was input to neutralize excessive 

DIPEA.  

(b): 1) zwitterion 72 as the sample without acid or base; 2) 2.09 equiv. of DIPEA was added; 3) 

3.38 equiv. of TsOH was added in sequence; 4) 1.64 equiv. of DIPEA was input to neutralize 

excessive TsOH. 

 

 

(a)                                     (b) 

Figure 34. The 19F NMR titration of zwitterion 72 with TsOH or DIPEA in DMSO-d6. (298 K) 

(a): 1) zwitterion 72 as the sample without acid or base; (2) 1.07 equiv. of TsOH was added; (3) 

1.77 equiv. of DIPEA was added in sequence; (4) 0.79 equiv. of TsOH was input to neutralize 

excessive DIPEA.  

(b): (1) zwitterion 72 as the sample without acid or base; (2) 1.89 equiv. of DIPEA was added; (3) 

3.04 equiv. of TsOH was added in sequence; (4) 1.32 equiv. of DIPEA was input to neutralize 

excessive TsOH. 

 

5.4 The adjustment of anion-π interaction for the CF3 zwitterion in solution 

  Our previous research showed that trifluoromethylated arenes could be designed into a kind of 

π-receptor for anions. For enhancing the zwitterions as π-receptors, analogous CF3-zwitterion 34 

was synthesized via the similar method as the synthesis of zwitterion 72. According to NMR 
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experimental results, DIPEA caused the peaks of protons on the aromatic ring of 34 shifting to 

high-field and 19F NMR signals showed down-field shifting. Excess DIPEA did not exert an 

influence to arenes any more, which indicated all zwitterion 34 were deprotonation and the 

enhancement of anion-π interaction occurred (Figure 35). Oppositely, the anion-π interaction was 

weakened when TsOH existed, due to a growing number of CF3-zwitterion 34 acidized by the 

addition of strong acid (Figure 36). Besides, similar as displayed in zwitterion 72, the reversibility 

of anion-π interaction is also observed for 34 when acid or base is introduced on sequences 

(Figure 37).  

 

  

(a)                                      (b) 

Figure 35. The 1H (a) and 19F (b) NMR-titration spectra of zwitterion 34 with DIPEA in 

DMSO-d6. (298 K) 

 

  

(a)                                       (b) 

Figure 36. The 1H (a) and 19F (b) NMR-titration spectra of zwitterion 34 with TsOH in 

DMSO-d6. (298 K) 
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(a)                                     (b) 

 

               (c)                                      (d) 

Figure 37. The 1H (a, c) and 19F (b, d) NMR-titration spectra of zwitterion 34 with TsOH or 

DIPEA in DMSO-d6. (298 K) 

For (a) and (b): (1) zwitterion 34 as the sample without acid or base; (2) 1.43 equiv. of TsOH was 

added; (3) 2.14 equiv. of DIPEA was added in sequence; (4) 1.38 equiv. of TsOH was input to 

neutralize excessive DIPEA. 

For (c) and (d): (1) zwitterion 34 as the sample without acid or base; (2) 1.39 equiv. of DIPEA was 

added; (3) 2.88 equiv. of TsOH was added in sequence; (4) 1.98 equiv. of DIPEA was input to 

neutralize excessive TsOH. 

 

5.5 Conclusion 

  Anion-π interaction is inside the range of attractive electrostatic effect relative to cation-π 

interaction. Although the research of anion-π interaction has gained large achievement during the 

last several decades, it is the first time to investigate zwitterions as host-guest systems in anion-π 

interaction. This preliminary work focused on the investigation of anion-π interaction both in 

crystal and in solution. Intermolecular anion-π interaction was found in X-ray crystal structure of 

zwitterion 72. Moreover, for both C6F5- and CF3-zwitterion, properly amount of acid or base could 

selectively control anion-π interaction to be weakened or enhanced, separately. Specifically the 

switch of anion-π interaction caused by zwitterion in various acid-base solutions may break the 

reaseach of anion-π interaction into new areas which are waiting for advances deeply in the future. 
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Chapter 6 The binding behavior of the indole derivatives containing 

C6F5/CF3 electron-deficient aromatic units with anions 

6.1 Introduction 

  Indole derivatives are important organic compounds which have been found in many natural 

products and pharmaceuticals (Scheme 42). For example, 5-HT, Melatonin, IAA, Trp and 

Hypaphorine etc. are isolated from animals or plants;[64] DMT and Indometacin etc. are 

synthesized to adjust human’s physiological activities. Probably due to the high reactivity at 

position 3 of the indole molecule, 3-substituted indole compounds are the most widespread of all 

the indole derivatives. 

 

Scheme 42. Some natural products and pharmaceuticals containing indole structures.  

 

Indole, as a good ion-pair receptor and the most general unit in the ion-π interactions existing in 

protein systems, has been investigated as one of the most attractive subjects in chemistry and 

biology for a long history.[65] Recently, the synthesis of new indole derivatives providing 

physiological activities[66] and the study of π-receptors based on indole structures for ions have 

been largely developed.[67] Previously, some C2- or C7-substituted indole derivatives were already 

synthesized and researched as π-receptors for anions in our group.[68] Especially, the 

pentafluorophenyl unit connecting to the C7 of the indole molecule could enhance the affinity of 

the indole derivative to chloride anion in solution, which is probably resulted by 

electron-withdrawing effect of C6F5 unit.[68b]  

In this work, four C3-substituted and two C2-substituted indole derivatives bearing C6F5 or 

3,5-bis(trifluoromethyl)benzyl unit were prepared (Scheme 43) and their binding activity with 

anions (Cl-, Br-, I- and NO3
-) was studied in solution. 
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73a: R2 = H, R3 = (CH2)3COOH; 

73b: R2 = H, R3 = CH2COOH; 

73c: R2 = COOH, R3 = H. 

Scheme 43. The preparation of C2- or C3-substituted indole derivatives bearing fluorinated 

electron-deficient aromatic units. 

 

  The binding analysis of indole or its derivatives with anions in solution was performed by 
1H/19F NMR-titration experiments. Comparison of the different binding constants of indole 

structures with anions could reveal the effect induced by the electron-deficient aromatics to the 

indole unit. Because there is one (for 75 or 78) or three (for 74 or 77) methylene units connecting 

the indole and electron-deficient aromatic ester moieties, the effect should not be caused by 

intramolecular electron-withdrawing and/or conjugated effect of the fluorinated moieties, instead, 

the charge transfer in the indole-anion-π systems may arouse some influence to the indole groups. 

6.2 The binding behavior of indole with anions in solution 

  Initially, indole molecule was employed as receptor to calculate the binding constants of it with 

several kinds of anions (Cl-, Br-, I- or NO3
-) which were introduced as TBA salts. The 1H NMR 

titration results and corresponding Ka values were displayed in Figure 38. 

 

 
(1a) (1b)
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Figure 38. 1H NMR chemical shifts of indole 73 with the addition of Cl- (1a, 1b), Br- (2a, 2b), 

I- (3a, 3b) and NO3
- (4a, 4b) in CDCl3 at 298 K. The binding constants of hydrogen atoms of the 

indole molecule with anions were shown by the corresponding positions, respectively. 

 

  The changes of 1H NMR chemical shifts with the addition of anions demonstrate there is 

non-covalent binding effect aroused between the indole molecule and anions. Especially, the Cl- or 

NO3
- induced much more obvious interactions to the indole than Br- or I-, which was revealed 

from the larger binding constants of indole with the former two kinds of anions. Although the NH 

undergoes the largest down-field shifting, the Ka of NH is not distinctly larger than any other 

hydrogen’s. The 2’-H which has weaker acidity than that of NH generated the highest Ka in all of 

the four indole-anion systems. Analyzing the shifting direction of 1H NMR chemical shifts, it is 

found that the 1H NMR signals of 1’-, 2’- and 7’-H shifted to down-field and 3’-, 4’-, 5’- and 6’-H 

shows high-field shifting. These differences imply there should not be only hydrogen binding 

effect generated in indole-anion systems; otherwise all of the 1H NMR signals would undergo 

down-field shifting. By a cooperative consideration to these experimental results, a possible 

binding model is depicted (Scheme 44). 
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HN

H

HX
 

Scheme 44. Proposed model of indole-anion system. (X = Cl, Br, I, NO3) 

 

  The anion is prior located in the front of the NH group of indole with hydrogen bonds to the 1’-, 

2’- and 7’-H, but it is not fixed on the same plane of the indole aromatic ring. Due to the 

generation of hydrogen bonding combined with the polarization of aromatic π-bond by the 

introduction of anions, 1’-, 2’- and 7’-H shift to down-field and others are high-field shifting 

caused by the decrease of de-shielding. Because of the delocalization of conjugated π-bond which 

is different from that of σ-bond, it is reasonable to deduce the emergence of uneven-distribution of 

π-bond and the change of shielding effect. Therefore, the polarization of π-bond contributed to an 

increase of shielding effect by the side of NH group and made the largest down-field shifting to 

the NH signal, even though it does not associate with anions strongly. 

6.3 The influence of fluorinated substituents on the 1H NMR chemical shifts of 
indole 

  Compounds 74-79 bear various fluorinated moieties connecting to the indole unit. Besides the 

difference of pentafluorobenzyl and 3,5-bis(trifluoromethyl)benzyl groups, compound 74 or 77 

with three methylene units and one ester unit connecting indole to fluorinated benzyl; while only 

one methylene and an ester unit exist between the indole and fluorinated unit as a linker in 

structure 75 or 78. Different from compounds 74, 75, 77 and 78 which are substituted on the C3 

position, derivative 76 or 79 exploits only an ester unit as a linker to bind the fluorinated aromatic 

unit on the C2 position of the indole moiety. 1H NMR spectra of these derivatives show the 

fluorinated aromatics inducing an obvious effect to indole units (Figure 39). 

 

Figure 39. The chemical shift changes of 1H NMR spectra of the indole units in derivatives 

74-79. The NMR experiments were performed in CDCl3 for indole and all derivatives except 76 

which was tested in acetone-d6 (298 K). (Δδ = δderivative – δindole) 
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  Except 5’- and 6’-H of 78, all of other 1H NMR signals of C3-substituted derivatives are 

high-field shiftings. Especially, the NH and 2’-H of 74 or 77 obviously shift to high-field 0.2 ppm 

approximately. On the other hand, C2-substituted derivatives 76 and 79 display down-field 

shiftings and both the NH and 3’-H underwent about 0.8 ppm down-field shifting. 

  It is not surprising for the fluorinated electron-deficient aromatic derivatives bearing different 

linkers to make diverse influences to their indole units. Moreover, the different length linkers 

enable the derivatives to adjust feasible conformations in solution, so that the indole unit can 

interact with the electron-deficient aromatics though spacial electromagnetic field effect. 

Consequently, the indole units of C3-substituted derivatives are located in the shielding zone of 

electron-deficient arenes and high-field shifting can be induced. In compound 76 or 79, due to the 

carbonyl directly connecting to the C2 position, the protons especially the NH and 3’-H of indole 

suffered intramolecular electron-withdrawing induced effect combined with shielding effect of 

fluorinated aromatics. Therefore, all the 1H signals are down-field shifting. 

6.4 The 1H/19F NMR-titration experiments of indole derivatives bearing C6F5/CF3 
electron-deficient aromatic units with anions 

  As indole derivatives are kinds of potential physiological activators, it is significant to study the 

anion binding behavior of indole derivatives in solution. Moreover, with the presence of 

fluorinated electron-deficient aromatic units in the structures, the interaction between indole and 

anions may benefit from some additional effect generated from the introduced fluorinated 

aromatics. Therefore, indole-anion-π system should be turned into an interesting research topic in 

supramolecular chemistry. 

  In this part, 1H/19F NMR-titration experiments were performed to gather the binding 

information in indole-anion-π systems. Different anions (Cl-, Br-, I- and NO3
-) were added as TBA 

salts into the systems and CDCl3 or acetone-d6 were used as solvent depending on the solubility. 

Consequently, similar 1H/19F NMR-titration results occurred for different anions with each indole 

derivative (Appendix, Figure S14-S25). Herein, only indole-chloride-π systems are shown as 

examples. 

 

6.4.1 The binding behavior of compound 74 with anions 

 

 
Figure 40. 1H NMR-titration spectra of the derivative 74 with the addition of Cl- in CDCl3 

(298 K). Only chemical shifts of protons on the indole unit are displayed. The binding constants of 

H/F with anions are shown by the corresponding positions, respectively. 

 

  As shown in Figure 40, although receptor 74 contains a long linker between indole and the C6F5 
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unit, the binding constants of hydrogen atoms with Cl- suffered a distinct influence because of the 

electron-deficient aromatic unit. Comparing with indole 73, all the Ka of hydrogen were reduced 

in regard to each kind of anion and much obviously for Cl- or NO3
- (Appendix, Figure S14). The 

down-field shifting of NH, 2’-H and 7’-H as well as the high-field shifting of 4’-H, 5’-H and 6’-H 

demonstrate the interaction between anions and the π-bond of indole units and this effect was 

weakened, which was revealed from the reduced binding constants. 

 

 
Figure 41. 19F NMR-titration spectra of the derivative 74 with the addition of Cl- in CDCl3. 

(298 K) 

 

  The pentafluorobenzyl unit produced an obvious influence to the indole moiety with anions, but 

the 19F NMR spectra show there is a faint effect between C6F5 and the anion added. The 19F NMR 

chemical shifts display inconspicuous high-field shifting with the addition of anions with a linear 

relation (Figure 41, Appendix Figure S20). 

 

6.4.2 The binding behavior of compound 75 with anions 

 

   
Figure 42. 1H NMR-titration spectra of the derivative 75 with the addition of Cl- in CDCl3 

(298 K). Only chemical shifts of protons on the indole unit are displayed. The binding constants of 

H/F with anions are shown by the corresponding positions, respectively. 

 

  In the structure of receptor 75, the linker is shorter than in receptor 74 and the electron-deficient 

substituent made nearly no effect to the interaction of indole with anions. The binding constants of 

75 with anions were almost equal to those of indole molecule with corresponding anions, although 

only the Ka of 2’-H with Br or Cl anion slightly increased (Figure 42, Appendix Figure S15). 

  Similar to compound 74, the C6F5 unit of 75 did not display any binding effect and the 19F 

NMR signals of 75 underwent high-field shifting with the anion added (Appendix Figure S21). 
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6.4.3 The binding behavior of compound 76 with anions 

 

   

   
Figure 43. 1H NMR-titration spectra of the derivative 76 with the addition of Cl- or I- in 

acetone-d6 (298 K). Only chemical shifts of protons on the indole unit are displayed. The binding 

constants of H/F with anions are shown at the corresponding positions, respectively. 

 

In acetone, the presence of 2’-substituted electron-withdrawing group in receptor 76 somewhat 

disturb the binding effect between the indole unit and anions. All of the 4’- and 5’-H did not show 

any binding effect with anions and others obtained decreased binding constants with Cl-, Br- and 

NO3
-. The iodide anion interacted with NH and 7’-H and did not affect any other hydrogen atoms 

of the indole unit (Figure 43, Appendix Figure S16).  

  The anions interact with the indole unit of 76 with weaker effect, but it displays a micro binding 

effect with the π-bond of the electron-deficient aromatic unit, except iodide anion with which the 
19F NMR chemical shifts show a linear relation (Appendix, Figure S16 and S22).  

 

6.4.4 The binding behavior of compound 77 with anions 

 

   
Figure 44. 1H NMR-titration spectra of the derivative 77 with the addition of Cl- in CDCl3 

(298 K). Only chemical shifts of protons on the indole unit are displayed. The binding constants of 

H/F with anions are shown by the corresponding positions, respectively. 
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  To compound 77, the CF3 aromatic substituent similar with its C6F5 counterpart, reduced the 

affinity of indole unit with corresponding anion in solution. Moreover, the 

3,5-bis(trifluoromethyl)phenyl unit was suffered comprehensive effect with anions. With all kinds 

of anions (Cl-, Br-, I- and NO3
-), the ortho-H shifted to down-field and the para-H performed 

high-field shifting and then displayed the same chemical shift when the anion was added exceed 

10 equivalents (Figure 44, Appendix Figure S17). It is ambiguous that whether anion-π interaction 

exists between the CF3 arene and anions, but it is obvious that there should not be only a hydrogen 

bonding effect be induced. 

 
Figure 45. 19F NMR-titration spectra of the derivative 77 with the addition of Cl- in CDCl3. 

(298 K) 

 

  Initially, when a few chloride anions were added, approximately less than 0.5 equivalents, the 
19F NMR signal of CF3 underwent a slightly down-field shifting. However, excessive amount of 

anions led to a dramatic high-field shifting for the 19F NMR peaks (Figure 45). The similar results 

can also be induced by other kinds of anions (Appendix Figure S23). 

 

6.4.5 The binding behavior of compound 78 with anions 

   
Figure 46. 1H NMR-titration spectra of the derivative 78 with the addition of Cl- in CDCl3 

(298 K). Only chemical shifts of protons on the indole unit are displayed. The binding constants of 

H/F with anions are shown by the corresponding positions, respectively. 

 

  The changes of 1H NMR chemical shifts in receptor 78 with the addition of anions are similar to 

that in 77, but the binding constants are not affected by the substituent and are close to the Ka of 

indole molecule with corresponding anions. In addition, the anions interact with the ortho-H of 

CF3 aromatic unit by hydrogen binding but without influence of the para-H (Figure 46, Appendix 

Figure S18). 

  The initial down-field shifting of 19F in 78 is more obvious than that in 77, which might 

coincide with the hydrogen binding effect of the ortho-H with anions (Appendix Figure S24). 
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6.4.6 The binding behavior of compound 79 with anions 

 

   
Figure 47. 1H NMR-titration spectra of the derivative 79 with the addition of Cl- in CDCl3 

(298 K). Only chemical shifts of protons on the indole unit are displayed. The binding constants of 

H/F with anions are shown by the corresponding positions, respectively. 

 

  The C2-substituted indole derivative 79 shows a reduced affinity to anions. All the 1H 

NMR-titration results display more or less linear relations with the equivalents of anion added 

(Figure 47, Appendix Figure S19). Probably the electron-withdrawing carbonyl group which is 

directly connected to the indole unit plays a significant role in the reduction of the anion binding 

effect. 

  The 19F NMR-titration spectra show an obvious down-field shifting when few equivalents of 

anions are added. A large amount of anions induces the high-field shifting of 19F NMR signals 

(Appendix Figure S25).  

6.5 Conclusion 

  A series of C6F5/CF3 electron-deficient aromatic substituted indole derivatives 74-79 were 

synthesized. The anions (Cl-, Br-, I- and NO3
-) were introduced as TBA salts into the solution of 

these receptors and then these indole-anion-π systems were investigated by 1H/19F NMR-titration 

experiments. The C3-substituent with a longer linker in 74 and in 77 efficiently reduces the 

binding constants of the indole unit with anions and the substituent with a shorter linker in 75 and 

in 78 causes less influence to the indole unit related to the anion binding. The steric conformation 

of the C3-substituted indole derivative probably plays a pivotal role to the anion binding effect 

which existed in the indole-anion-π system, because the flexible methylene linker is not able to 

transfer the electronic effect between the indole unit and the electron-deficient aromatics. The 

C2-substituent in 76 and in 79 is bound to the indole unit directly with an electron-withdrawing 

ester group and reduces, even disturbs the binding effect of the indole unit with anions. Some 

interactions are revealed between the C6F5/CF3 aromatic unit and anions, but they cannot be 

classified to any special non-covalent binding effect. Specifically, the pentafluorophenyl unit of 

receptor 76 demonstrates a weak anion-π binding effect with Br-, Cl- or NO3
- in acetone, which 

shows an anion binding competition between indole unit and electron-deficient aromatic moiety, 

as the binding constants of indole with anions are distinctly reduced in this system. 

  This part of work represents a preliminary exploration, considering indole derivatives are of 

significance in physiological research, additional theoretical and experimental research work are 

valuable to be performed and will obtain much understanding to the indole-anion-π systems. 
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Chapter 7 Other C6F5/CF3 π-receptors for anion binding and their crystal 

structures 

  According to previous research, the pentafluorophenyl group is able to participate in the 

construction of π-receptors for anions. Recently, 3,5-bis(trifluoromethyl)phenylated 

electron-deficient aromatics were studied as a kind of original binding hosts in regard to anion-π 

interactions. Both theoretical and experimental investigation suggest that these CF3 aromatic 

compounds could become potential receptors for anions with favorable attraction by hydrogen 

binding effect and/or anion-π interaction both in the solid state and in solution. For exploring a 

broader scope of π-receptors which are able to be used for anion-π interactions, some compounds 

bearing C6F5 and/or 3,5-bis(trifluoromethyl)phenyl unit were synthesized and characterized by 

X-ray crystal structure diffraction. 

7.1 Synthesis and crystal study of receptors bearing pentafluorophenyl and/or 
3,5-bis(trifluoromethyl)phenyl groups 

  In the aforementioned chapter, some receptors bearing only one kind of electron-deficient 

aromatic unit (pentafluorophenyl or 3,5-bis(trifluoromethyl)phenyl group) were introduced as 

π-receptors and revealed binding effect with anions in solution. In this part, three compounds 

bearing both C6F5 and CF3-aromatic units were synthesized from commercially available products. 

Because of the presence of electron-deficient aromatic units in their structures, they would be used 

as π-receptors for anions. 

 

Scheme 45. The synthesis of compounds containing both pentafluorophenyl and 

3,5-bis(trifluoromethyl)phenyl units in the structures. 
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(a)                                       (b) 

Figure 48. The crystal structure of compound 82. (black: C, gray: H, yellow-green: F, blue: N, 

red: O) 

 

  Figure 48 (a) shows the two fluorinated aromatic units of compound 82 are not in the same 

plane and the C6F5 of one molecule is stacked with the CF3-aromtic unit of the other molecule 

nearby. Moreover, the F atoms of the latter interact with the third molecule by lone-pair electron-π 

interaction (Figure 48, b). 
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Scheme 46. The synthesis of anion receptors based on phenyl/pentafluorophenyl acetamide. 

 

  The methylene unit of the π-receptors shows a distinct influence to binding effect of 
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electron-deficient aromatic unit with anions, which is already discussed in the abovementioned 

chapters. Compounds 85-93 were obtained from prepared phenyl/pentafluorophenyl acetamide, so 

that a methylene unit is introduced between the carbonyl and an aromatic unit of the receptor 

(Scheme 46). The binding behavior of these compounds to anions may be different from the 

analogous structures studied previously, because of the methylene unit. 

  Additionally, some other fluorinated π-receptors 94-117 with ester/ether or amine/amide unit as 

a linker were prepared. Moreover, some of these receptors were investigated with X-ray crystal 

diffraction in the solid state. 
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  Compounds 94-99 were prepared from 3-aminobenzoic acid and fluorinated materials. Besides 

the electron-deficient aromatics, the amino group in the structure could react with anions by 

hydrogen bond which may strengthen the effect between the fluorinated aromatic unit and anions. 

 
(a)                      (b) 

 
(c) 

Figure 49. The crystal structure of compound 96 shown from top (a) or side (b) view and the 

aggregation of molecules in crystals (c). (black: C, gray: H, yellow-green: F, blue: N, red: O) 

 

 The crystals of 96 were cultivated from DCM by slow evaporation of the solvent. As shown in 

Figure 49, the amino benzoic moiety spreads in the same plane and is orthogonal with the two 

C6F5 units. In crystals, two molecules approach to each other thereby forming a dimer with 

lone-pair electron-π interaction. Although C6F5 is proved to be an electron-deficient aromatic, a 

non-classical π-π stacking (4.50 Å) is still found between two pentafluorophenyl units which are 

closed face to face. 

 

Figure 50. The crystal structure and part of the crystal lattice of 101 cultivated from the mixed 

solvent of ethyl acetate and hexane. (a: side view; b: top view) (black: C, gray: H, yellow-green: F, 

blue: N, red: O) 

 

(a) 

(b) 

(c) 
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  As shown in Figure 50, the quinoline unit is perpendicular to the pentafluorophenyl plane with 

an ether unit as a linker in the molecule 101. The solid-state structure reveals π-π stacking of the 

pentafluorophenyl ring with the quinoline moiety of a second molecule. The intermolecular 

distance between the stacking systems is about 3.40 Å (Figure 50, c). 

 

(a)                                    (b) 

Figure 51. (a) The crystal structure of compound 103 with a 3,5-bis(trifluoromethyl)benzoic 

acid co-crystallized. (b) The aromatic plane of the acid molecule stacking over the CF3 aromatic 

plane of 103 which is shown in spacefill mode. 

 

  Quinoline derivative 103 which is bearing an ester unit was dissolved in the mixed solvent of 

ethanol/ethyl acetate (v/v =1:1). Colorless crystals were cultivated and their structure is shown in 

Figure 51. Obviously, some molecules of sample 103 decomposed in the solvent and 

3,5-bis(trifluoromethyl)benzoic acid was produced. The acid is located above the CF3 aromatic 

ring of 103 and fixed by N…H hydrogen bonding effect to a quinoline moiety (N…H = 1.87 Å). 

The quinoline aromatic formed an intramolecular angle of 80.89° to the 

3,5-bis(trifluoromethyl)phenyl plane and the intermolecular angle between the 

3,5-bis(trifluoromethyl)phenyl plane and the 3,5-bis(trifluoromethyl)benzoic acid plane is 16.06°. 

 

(a)                                   (b) 

Figure 52. (a) The structure of 101 chloride salt with a water crystallized. (b) Part of the 

crystal lattice of 102 chloride salt which was cultivated by the dispersion of Et2O into the DMF 

solution. 

 

Compound 101 or 102 was dissolved in ethanol solution of HCl and corresponding chloride 

salts were obtained separately after the solvent was removed. In the crystal of the 

pentafluorophenylated chloride salt obtained from DCM/hexane (V/V = 1:2), the Cl anion is fixed 

over the fluorinated aromatic ring by hydrogen bonding (NH…Cl = 2.27 Å, OH…Cl = 2.38 Å), 

which reveals anion-π interaction induced between the electron-deficient aromatic ring and anions 
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in co-crystals. In contrast, the Cl anion stays far away from the CF3 aromatic ring in co-crystal salt 

of 102 and only contacts water molecules co-crystallized with hydrogen bonds. The solid-state 

structure reveals π-π stacking of two CF3 aromatic rings and lone-pair electron-π effect between 

the CF3 aromatic unit and the fluorine atom of the third cation. 

  Salicylic acid derivatives 104-109 were prepared by the binding of fluorinated benzoyl/benzyl 

chloride to the structure of 2-hydroxybenzoic acid. The fluorinated benzoyl chloride preferred to 

react with the OH group (for 104 and 107), while the connecting of carboxyl group to the benzyl 

counterpart is prefered (for 105 and 108). The di-substituted derivatives 106 and 109 were 

by-products of these reactions. 

 
(a)                                         (b) 

Figure 53. (a) Part of the crystal lattice of 104. (b) Spacefill mode structure of 105 showing 

π-π stacking and T-shaped CF-π interactions in crystals. 

 

Compound 104 was crystallized from DMF/Et2O in the space group P21/c. Its crystal structure 

is shown in Figure 53 (a). Hydrogen bonding is found between two carboxylic acid units, leading 

to a dimerization of the molecules. A dominating lone-pair electron-π interaction can be observed 

between the carbonyl oxygen and the carbon atom in the 4-position of the fluorinated ring, which 

prevents a parallel orientation of the aromatic units between molecules. 

  Compound 105 is the pentafluorobenzyl ester of salicylic acid and was crystallized from 

MeOH/Et2O. Which is different from 104, a parallel intermolecular π-π interaction is observed 

between C6F5 and the salicylic moiety. In addition, because of the distinct torsion between two 

aromatic rings in a molecule, T-shaped CF-π interactions are found between electron-deficient 

aromatic systems. 

  
(a)                                   (b) 

Figure 54. (a) Part of the crystal lattice of 106. (b) Spacefill mode structure showing the 

torsion of the molecule 109. Ball-and-stick plots showing intermolecular π-π interactions between 

aromatic rings. 

 

  The di-substituted derivative 106 was crystallized from DMF/Et2O in the chiral space group 

P212121. The two benzylated oxygen atoms are forced into close proximity instead of repulsing 
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each other. The carbonyl oxygen atom of one neighboring molecule points into the tweezer space 

of the electron-deficient rings, which is undergoing lone-pair electron-π interaction with the 

carbon atoms of the two C6F5 rings. The two C6F5 rings are not in a parallel orientation, with the 

closest distance of corresponding carbon atoms of 3.47 Å and the longest of 4.98 Å. Moreover, the 

pentafluorophenyl group faces to the salicylic acid moiety of the other molecule nearby with 

attractive π-π interaction (Figure 54, a). 

  The molecular conformation of the CF3 analogue 109 in crystals is not a tweezer form, as 

shown in Figure 54 (b). One of the CF3-ring is in the same plane with the salicylic acid unit and 

the other one tilts with the angel of 61.51°. The CF3 aromatic ring undergoes π-π stacking 

interaction with not only the salicylic ester unit of the second molecule but also another CF3 

aromatic ring of the third neighboring molecule. The centroid-to-centroid distances are about 3.73 

Å and 3.69 Å, respectively. 

  The compounds 110-113 were produced though the nucleophilic reaction of 2-aminophenol 

with the fluorinated reactants in the presence of bases. The amino-substituted compound is the 

exclusive product without the phenolic derivatives.  

  

(a)                                      (b) 

Figure 55. (a) Spacefill mode structure showing the CF-π interaction of the electron-deficient 

aromatic rings in 111. (b) Part of the crystal lattice of 113 cultivated from ethyl acetate/hexane 

showing hydrogen bonding and π-π stacking effect in solid state. 

 

  The crystal of compound 111 was obtained from ethyl acetate/hexane in the space group Pb21/a. 

The pentafluorophenyl group forms an interplanar angle of 81.08° with the plane of 

2-aminophenol moiety. Intermolecular rather than intramolecular hydrogen-bonding of NH and 

OH can be observed (OH…NH = 1.93 Å) and the C6F5 ring is not parallel to the aminophenol unit 

of another molecule. The dominant effect is the CF-π interaction which is formed by the CF of 

two C6F5 rings pointing to the third pentafluorophenyl group with the closest distances of 

approximate 3.05 Å and 3.35 Å, respectively. 

  The two aromatic rings of trifluoromethylated compound 113 spread nearly in the same plane 

with the interplanar angle of 5.36°. The two molecules are in parallel arrangement with 

head-to-tail orientation and the centriod distance of this π-π stacking is 3.67 Å. In addition, 

intermolecular H-bond effect can be found between carbonyl oxygen atom and the phenolic 

hydroxyl group (C=O…HO = 1.87 Å). 

  The reaction of 3-aminopyrazine-2-carboxylic acid with pentafluorobenzyl/3,5- 

bis(trifluoromethyl)benzyl bromide generated fluorinated ester derivatives 114 or 115 as the only 

product. The crystal of 114 or 115 was obtained from ethyl acetate/hexane and the XRD structure 

is shown in Figure 56. 
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(a)                                      (b) 

Figure 56. (a) The crystal structure of 114 showing inter- and intramolecular interactions in 

solid state. (b) Part of the crystal lattice of 115 showing non-covalent interactions containing 

H-bonding and non-classical C=O…HC effect and CF-π interaction. 

 

  In the structure of 114, the plane of pentafluorophenyl ring is orthogonal to the pyrazine unit 

with the interplanar angle of 89.92°. The intramolecular hydrogen binding effect can be found 

between the carbonyl oxygen atom and the amino group (C=O…HN = 2.10 Å). As the 

intermolecular H-bond (NH…N= 2.16 Å) exists between NH and the nitrogen atom of the 

pyrazine ring, the pentafluorophenyl unit is not parallel to the pyrazine ring of the neighboring 

molecule, but over the pyrazine unit with the closest distance between the carbon atom in the 

4-position (C4) of the C6F5 and the nitrogen atom in the 3-position (N3) of the pyrazine ring of 

3.24 Å and the longest distance between C1 and N6 of 3.80 Å (Figure 56, a). 

  In the CF3 derivative 115, a CF-π interaction (3.09 Å) between fluorine and C5 of the pyrazine 

ring of the second molecule can be observed rather than the emergence of π-π effect. In addition, 

inter-/intramolecular hydrogen bonding effect as well as short contact between CH of the 

fluorinated aromatic ring and the carbonyl oxygen atom of the neighboring molecule are found in 

the crystal structure (Figure 56, b). 

 

(a)                                   (b) 

Figure 57. (a) The “zigzag” conformation of compound 116 in crystals. (b) Spacefill mode of 

116 showing the CF-π interaction between the neighboring 3,5-bis(trifluoromethyl)phenyl rings. 

 

  Di-substituted derivative 116 was synthesized from the reaction of naphthalene-1,5-diamine 

with 3,5-bis(trifluoromethyl)benzyl bromide. Figure 57 shows the “trans” conformation of the 

structure 116 crystallized from ethyl acetate/hexane with the intramolecular angle between the 

plane of fluorinated ring and naphthalene of 82.50°. Both fluorinated ring and naphthalene unit 

adopt parallel arrangement and π-π interaction can be found between the corresponding C1 or C5 
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of the closed naphthalene units (Figure 57, a). The trifluoromethylated aromatic rings are not only 

parallel to each other but also reveal CF-π interaction with shortest distance between (C)F and the 

carbon atom of the ring of 3.34 Å. 

7.2 The crystal study of tert-amine or tert-amide derivatives bearing three or four 
aromatic rings 

  Pentafluorophenyl group is a significant aromatic unit in the research of supramolecular 

chemistry, as it can participate in the formation of various non-covalent interactions according to 

the previous study. In this part, several amine/amide derivatives 117-123 bearing the 

pentafluorophenyl group(s) were synthesized and their structures were investigated in crystals. 

 
Scheme 48 Several amine/amide derivatives 117-123. 

 

 
(a)                                  (b) 

Figure 58. (a) The crystal structure of 117. (b) Part of the crystal lattice of 117 showing 

lone-pair electron-π and CF-π interactions between pentafluorophenyl ring and oxygen or fluorine 

atom. 

 

  The crystal of compound 117 was cultivated from EtOH/Et2O in the space group P21/c. In the 

crystal structure of a molecule, one of the two pentafluorobenzoyl moieties and the 

pentafluoroaniline unit form a “V-shape” cavity, with an interplanar angle of 73.83°. The third 

plane of the pentafluorobenzoyl unit forms an angle of 68.69° or 52.78° with each plane of the 

“V-shape” cavity (Figure 58, a). Two molecules aggregate into a dimer by lone-pair electron-π 

interaction (C=O…π = 3.06, 3.16 and 3.17Å) between the carbonyl and the pentaflorobenzoyl ring 
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of a neighboring molecule. Every two of the other four electron-deficient rings point into the 

“V-shape” cavity of the third molecule nearby and the closest distance between (C)F of the two 

C6F5 rings and the carbon atom of the “V-shape” cavity is about 3.13 or 3.19Å, respectively 

(Figure 58, b).  

 

(a)                                (b) 

Figure 59. (a) The structure of compound118 in crystals. (b) Part of the crystal lattice of 118 

showing the lone-pair electron-π and CF-π interactions with spacefill mode. 

 

  The compound 118 was crystallized from EtOH/Et2O in the space group P21/c. The positions of 

the three pentafluorophenyl rings in the molecule are fixed asymmetrically and dominantly by the 

intermolecular interactions. As showing in Figure 59, the carbonyl group points to the plane of 

pentafluorophenyl of the second molecule with the closest distance between oxygen of the 

carbonyl and the carbon atom of the C6F5 of 2.90 Å; In addition, this C6F5 unit interacts to another 

pentafluorophenyl moiety of the third molecule with T-shaped CF-π interaction (CF…C = 2.94, 

3.36 and 3.38 Å). 

 

(a)                             (b) 

Figure 60. (a) The crystal structure of 119. (b) Part of the crystal lattice of 119 showing the 

lone-pair electron-π, CF-π and π-π interactions. 

 

  The crystal of compound 119 was cultivated from EtOH/Et2O in the space group P21/c. The 

plane of phenyl unit forms two different angles (83.70° and 56.12°) with each pentafluorophenyl 

plane and an interplanar angle of 53.93° can be found between the two planes of C6F5 rings. Two 

pentafluorophenyl rings are in the parallel position compelled by the lone-pair electron-π 

attraction between the oxygen atom and the carbon atom in the 4-position of the C6F5 ring as well 
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as CF-π interaction. Intermolecular π-π stacking can be observed between the C6F5 unit and the 

C6H5 ring of the neighboring, with the centriod distance of 3.56 Å.  

 

(a)                                 (b) 

Figure 61. (a) The crystal structure of 120. (b) Part of the crystal lattice of 120. 

 

  The crystal of compound 120 was cultivated from ethyl acetate/hexane in the space group P21/n. 

The plane of one C6H5 ring is not only orthometric to the other phenyl plane and the C6F5 ring of 

the molecule with interplanar angles of 73.79° or 89.43° respectively but also parallel to the 

phenyl ring of the neighboring molecule with a longer centriod distance of 3.86 Å. In the crystal 

of 120 (Figure 61, b), the pentafluorophenyl ring is not parallel to the phenyl ring and only short 

contact (C(F)…C(H) = 3.40 Å) can be found between the two carbon atoms in 4-positions of the 

two aromatic rings. 

 

(a)                                (b) 

Figure 62. (a) The crystal structure of 121. (b) Part of the crystal lattice of 121 showing the 

CH-π and CO-π interactions. 

 

  The compound 121 was crystallized from EtOH/Et2O in the space group P21/c. Because of the 

non-classical hydrogen binding effect (CH2…O = 2.33 Å) between the oxygen atom of the 

carbonyl group and the hydrogen atom of the methlyene unit, the plane of pentafluorophenyl ring 

forms a smaller angle of 29.61° with one C6H5 ring and 44.89° with the other. The intermolecular 

CH-π and CO-π interactions as the dominant effects can be observed in the crystal structures 

(Figure 62, b). 
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Figure 63. The crystal structure of the chloride salt of compound 122. 

 

  Non-fluorinated derivative 122 was synthesized as a reference compound and its chloride salt 

was crystallized from EtOH in the space group R3. As shown in Figure 63, the chloride anion does 

not interact with the phenyl groups and only hydrogen bonding can be observed between Cl anion 

and NH as well as the non-classical hydrogen binding with the methylene units nearby.  

 
(a)                                (b) 

Figure 64. (a) The crystal structure of 123. (b) Part of the crystal lattice of 123 showing the 

CF-π and π-π interactions. 

 

  The crystal of 1,1,3,3-tetrakis((perfluorophenyl)methyl)urea 123 was obtained from ethyl 

acetate/hexane in the space group P21/c. Two trans-position pentafluorophenyl rings are parallel to 

each other and other two form an angle of 58.20°. In addition, an interplanar angle of 67.32° can 

be observed between the two C6F5 rings binding to the same nitrogen atom with methylene units. 

Intermolecular CF-π and π-π interactions are the significant binding existing in the solid state of 

compound 123 (Figure 64, b). 

7.3 The synthesis and crystal structure of the trifluoromethylated imine derivative 
126 

  Pyridine-2,6-dicarbaldehyde 125 was obtained by the oxidation of pyridine-2,6-diyldimethanol 

124,[69] and then reacted with (3,5-bis(trifluoromethyl)phenyl)methanamine 21 in methanol to 

afford the condensation product 126. 
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Scheme 49. The preparation of the trifluoromethylated imine derivative 126. 

 
Figure 65. (a) The crystal structure of a single molecule for 126. (b) The stacking of molecules 

in part of the crystal lattice of 126. (c) Non-classical (C)F…H(C) hydrogen binding effect existing 

in the crystal structure. 

 

  Compound 126 was crystallized from MeOH/Et2O in the space group P21/n. The planes of two 

3,5-bis(trifluoromethyl)phenyl rings are not exactly parallel and a minor angle of 2.19° can be 

found between these two planes as well as interplanar angles of 32.04° and 32.83° with the plane 

of the pyridine unit, respectively. The molecules are located in different layers and the orientations 

of H-(C=N) units of two molecules in adjacent layers are opposite resulting in the unequal 

center-to-center distances (3.71, 3.79, 3.79 and 4.18 Å) between the stacking aromatic rings 

(Figure 65, b). The CF interact to the hydrogen atoms of the neighboring molecules with 

non-classical hydrogen bonds ((C)F…H(C4) = 2.63, (C)F…H(C3) = 2.59 and (C)F…H(C=N) = 

2.63 Å), but no CF-π interaction can be observed in the crystal structure. 

7.4 The synthesis and crystal structure of the trifluoromethylated calix[4]arene 
derivative 129 

  The calix[4]arene 128 was synthesized from the commercially available material 

4-tert-butylcalix[4]arene 127 by removing the four tert-butyl groups.[70] Afterwards, the 

3,5-bis(trifluoromethyl)benzyl bromide 19 was introduced into the structure of 128 by substitution 

reaction, so that the trifluoromethylated calix[4]arene derivative 129 was produced sufficiently.[71] 
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Scheme 50. The preparation of the trifluoromethylated calix[4]arene derivative 129. 

 

Figure 66. Capped sticks mode showing the structure of compound 129 in the crystal. 

 

  Compound 129 was crystallized from MeOH/Et2O in the space group P-1. The attempt for 

cultivating co-crystals of 129 with diverse anions failed, because the four 

3,5-Bis(trifluoromethyl)phenyl rings of the molecule cannot tune a cavity which could contain an 

anion due to the steric repulsive force of four CF3 aromatic rings. For realizing the motif of a 

co-crystal with an anion fixed into the CF3-arene cavity, a larger calyxarene should be introduced 

as the basis. 

7.5 Conclusion 

  Some π-receptors bearing fluorinated electron-deficient aromatic rings were synthesized and 

some of their structures were investigated by X-ray crystal diffraction. Lone-pair electron-π and 

π-π interactions are the common effect existing in these crystal structures. Especially, a co-crystal 

containing two different neutral molecules cultivated from compound 103 dissolved in the mixed 

solvent of ethanol/ethyl acetate. It is quite rare that two diverse molecules are co-crystallized and 

the stacking of two 3,5-bis(trifluoromethyl)phenyl rings can be observed in crystals. The Cl- 

co-crystal structures (101, 102 and 122) reveal that anion-π interaction exists between the anion 

and the pentafluorophenyl ring, but it cannot be observed between Cl anion and 

3,5-bis(trifluoromethyl)phenyl or non-fluorinated phenyl ring. Because of the lone-pair electron-π 

binding between the oxygen atom of the carbonyl and the carbon atom of pentafluorophenyl ring, 

the two electron-deficient C6F5 rings are fixed in a parallel position, which could be an interesting 

motif for crystal engineering in the future. 
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Chapter 8 Conclusion and perspective 

  Several kinds of fluorinated electron-deficient aromatic compounds bearing pentafluorophenyl 

or 3,5-bis(trifluoromethyl)phenyl group as well as perfluoro-1,1’-biphenyl or 

perfluoronaphthalene and their derivatives were synthesized and investigated both in crystals and 

in solution as π-receptors for anions. 

  By 19F NMR-titration experiments, 19F high-field shifting of perfluoro-1,1’-biphenyl or 

perfluoronaphthalene with the addition of anions can be found in solution. However, the linear 

relation of 19F NMR chemical shifts with anion added does not reveal anion-π interactions 

between the electron-deficient aromatic unit and anions. In fact, the anion-π interaction has not 

been found between perfluoro-1,1’-biphenyl or perfluoronaphthalene and anions by experimental 

research up to now, although theoretical calculation demonstrate that anion-π interaction can be 

possible between the perfluoronaphthalene molecule and anions. On the other hand, DABCO 

substituted cations show an attractive effect to bromide anion which can be fixed above the 

aromatic ring by Br…H interaction showing η4-type anion-π interactions in the solid state. 

  3,5-Bis(trifluoromethyl)phenylated compounds were firstly studied as π-receptors for anions in 

crystals. The chloride anion interacts with the hydrogen atoms of the 

3,5-bis(trifluoromethyl)phenyl unit by hydrogen binding and no anion-π interaction can be 

observed between Cl- and the aromatic ring in the solid state. Probably because of the larger 

polarizability, the bromide anion can be able to induce anion-π interaction with the CF3 

electron-deficient aromatic ring. 

  The solution research of anion-π interactions demonstrates that only a linear relation of the 19F 

NMR chemical shifts of the amine derivatives with the addition of anions can be observed rather 

than anion-π interaction, while the amide derivatives not only show anion-π interactions with 

diverse anions in solution but also induce a stronger attractive effect in acetone than in chloroform. 

It obviously shows that the active hydrogen can more efficiently fix the anion above the 

electron-deficient ring by hydrogen binding with a saturated mode. In addition, the different 

directions of 19F NMR chemical shifts for the ortho-F (down-field shifting), meta- and para-F 

(high-field shifting) of pentafluorophenyl units as well as of 1H NMR chemical shifts for the 

ortho-H (down-field shifting) and para-H (high-field shifting) of the CF3-aromatic rings reveal the 

uneven-distribution of the π-bond induced by the anion added. 

  Different acid-base systems can adjust the existence and the strength of anion-π interactions in 

solution, which has been confirmed by the research of zwitterions as host-guest systems 

themselves. Moreover, the fluorinated electron-deficient aromatic moieties connecting to the 2’- or 

3’-position of the indole molecule are able to influence the binding behavior of indole to anions in 

solution. These preliminary results provide some possible references for the practical research in 

bio-chemistry or material science etc.. 

  Crystal study is significant in these research subjects. Either pentafluorophenyl ring or 

3,5-bis(trifluoromethyl)phenyl unit not only interact with anions by non-covalent binding effect 

but also induce π-π stacking or T-shaped CF-π interactions with the neighboring aromatic rings. It 

is reasonable for the pentafluorophenyl unit to locate in a parallel position above the electron-rich 

ring nearby because of the electron-deficient property of the pentafluorophenyl ring. Interestingly, 

the parallel motif can also be found between two pentafluorophenyl rings or between two 
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3,5-bis(trifluoromethyl)phenyl rings which are both electron-deficient aromatics. In fact, with the 

crystal structure analysis aforementioned of C=O-π interaction (for pentafluorobenzoyl) or CF-π 

interaction (for CF3 aromatics), consequently, it is feasible to compel the two electron-deficient 

aromatic rings locating in a parallel mode which is counterintuitive but may be interesting in 

crystal engineering. 

  3,5-Bis(trifuoromethyl)phenyl unit has been investigated as a new kind of building block 

related to π-receptors for anions. Because of the presence of both CF3 groups and hydrogen atoms 

in the structure, according to the abovementioned research work, it is not an easy task to 

investigate or separate the pure anion-π interaction or hydrogen binding effect from the 

comprehensive non-covalent effect. Since the CF3 aromatic units can afford diverse binding 

effects simultaneously, why not exploit them as a kind of versatile non-covalent bond donator? 
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Experimental section 

General experiment conditions 
 

All commercially available reagents were used as received. All solvents were distilled and used 

without further purification, except THF which was dried by filtration over activated alumina 

(basic) in a column.  
1H (300 MHz or 400 MHz) and 19F (282 or 376 MHz) NMR spectra were obtained with a 

Varian Mercury 300 or Inova 400 spectrometer in deuterated solvents and 1H or 19F NMR yield 

determination with an internal standerd TMS or CFCl3, respectively. The mass spectrometric data 

were recorded with a Finnigan SSQ 7000 and a Thermo Deca XP system by using EI (70 eV) or 

ESI. The infrared spectra were measured with a PerkinElmer FTIR spectrometer (Spectrum 100) 

and the samples were measured in KBr (4000－650 cm–1). Elemental analyses were performed 

with a CHN-O-Rapid Vario EL system from Heraeus. HRMS were performed with a Thermo 

Scientific LTQ XL system. The melting points were measured with a Büchi B-540 system and 

were not corrected.  

Single crystal X-ray data were collected at 173(2) or 123(2) K using an Agilent SuperNova 

diffractometer or a Bruker-Nonius KappaCCD diffractometer with an APEX-II detector and 

utilizing monochromatized Mo-Kα (λ = 0.71073 Å) or Cu-Kα (λ = 1.54184 Å) radiation. The data 

collection, data reduction and multi-scan absorption correction for samples were made by program 

CrysAlisPro.[72] The program COLLECT[73] or HKL DENZO AND SCALE-PACK were used for 

the data collection (θ and ω scans), DENZO-SMN[74] for the processing and SADABS[75] for 

multi-scan absorption correction for data. The structures were solved by direct methods with 

SIR2004[76] or SHELXS and refined by full-matrix least-squares methods with the OLEX2 or 

WinGX-software,[77] which utilizes the SHELXL-2013 or SHELXL-97 module.[78] (The X-ray 

single crystal diffraction was determined by Prof. Kari Rissanen and co-workers) 

 

 
1H/19F NMR-titration experiments 
  In each group of 1H/19F NMR-titration experiment, the amount of the receptor as hosts was 

0.025 mmol and the amount of each TBA salt was successively increased as guests. The volume of 

the tested solution in each NMR tube was kept for 0.6 mL and all the 1H/19F NMR-titration 

experiments were processed at 298 K. 

 

 

Synthesis of compounds 
 

 

2,2',3,3',5,5',6,6'-Octafluoro-4,4'-dimethyl-1,1'-biphenyl 28. Under nitrogen atmosphere, 

perfluoro-1,1’-biphenyl 24 (2.3 g, 7.0 mmol) was dissolved in THF (7.0 mL) and cooled to 
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0 C. Methyllithium (14.0 mmol, 1.6 M sol. in diethyl ether) was added dropwise into the 

solution. The mixture was stirred overnight at the same temperature and then was allowed 

to warm to room temperature. After completion of reaction, the mixture was washed with 

saturated NaCl aqueous solution (3 × 20 mL) and extracted with ethyl acetate (3 × 15 mL). 

The organic layers were combined and dried with Na2SO4, filtered. Then the organic 

solution was removed under vacuum, finally the residue was obtained and separated by 

column chromatography on a silica gel using Hexane as eluent. Compound 28 was 

obtained as a white solid with yield of 88% (2.021 g, 6.2 mmol). m.p.: 142.3-143.9 °C; 1H 

NMR (300 MHz, CDCl3): δ = 2.29 (t, J = 2.1 Hz, 6H); 19F NMR (282 MHz, CDCl3): δ = 

-140.29 (dd, J = 16.4, 8.2 Hz, 4F), -142.90 (d, J = 9.9 Hz, 4F); EI-MS: m/z: 326.3 

(52.77%), 325.4 (56.73%), 324.3 (63.83%), 162.6 (100%), 160.9 (86.05%); IR(KBr, cm-1): 

2933, 2336, 2072, 1743, 1654, 1593, 1466, 1373, 1251, 1134, 1067, 1009, 941, 906, 717; 

Anal. Calcd. for C14H6F8: C, 51.55; H, 1.85; Found: C, 51.64; H, 2.08. 

 
F F F F

FFFF

Br

Br

29  

4,4'-Bis(bromomethyl)-2,2',3,3',5,5',6,6'-octafluoro-1,1'-biphenyl 29. A mixture of 

compound 28 (1.6 g, 5.0 mmol) and N-bromosuccinimide (1.8 g, 10.0 mmol) in CCl4 (10.0 

mL) was refluxing for 10 h. After completion of reaction, the mixture was washed with 

saturated NaCl aqueous solution (3 × 20 mL) and extracted with ethyl acetate (3 × 15 mL). 

The organic layers were combined and dried with Na2SO4, filtered. The solvent was 

evaporated and the residue was purified by column chromatography on a silica gel using 

hexane as eluent to afford the 29 as a white solid (1.159 g, 48%). m.p.: 146.4-147.6 °C; 1H 

NMR (300 MHz, CDCl3): δ = 4.51 (s, 4H); 19F NMR (282 MHz, CDCl3): δ = -137.45 (dd, 

J = 16.4, 8.5 Hz, 4F), -141.57 (d, J = 8.7 Hz); EI-MS: 405.0 (8.90%), 403.4 (14.96%), 

324.5 (100.00%), 162.0 (30.99%), 161.0 (43.25%), 160.2 (25.52%); IR(KBr, cm-1): 1470, 

1321, 1268, 1222, 1167, 1120, 1068, 1026, 976, 929, 861, 805, 759, 721; Anal. Calcd. for 

C14H4Br2F8: C, 34.74; H, 0.83; Found: C, 35.38; H, 1.18; HRMS (ESI) m/z Calcd. for 

C14H4Br2F8: 481.8547; Found: 481.8536. 

 

 
1,1'-((Perfluoro-[1,1'-biphenyl]-4,4'-diyl)bis(methylene))bis(1,4-diazabicyclo[2.2.2]oct

an-1-ium) bromide 26. Compound 29 (1.0 g, 2.0 mmol) was dissolved in dichloromethane 

(2.0 mL), then DABCO (0.4 g, 4.0 mmol) was added and stirred at room temperature. 

After 10 min, white precipitate was generated from the solution. The mixture was 

continued to stir overnight and the white solid was filtered and dried under vacuum to 

obtain pure compound 26 (1.343 g, 95%). m.p.: > 270 °C decomposed; 1H NMR (300 

MHz, DMSO-d6): δ = 3.05 (t, J = 6.9 Hz, 12H), 3.50 (t, J = 6.9 Hz, 12H), 4.75 (s, 4H); 19F 

NMR (282 MHz, DMSO-d6): δ= -134.04 (d, J = 12.1 Hz, 4F), -138.03 (dd, J = 18.3, 7.9 
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Hz, 4F); ESI-MS: 274.1 [3-2Br-]2+, 627.1 [3-Br-]+; IR(KBr, cm-1): 3417, 2954, 2889, 2798, 

2594, 2317, 2191, 2030, 1971, 1654, 1469, 1381, 1334, 1264, 1188, 1057, 992, 936, 886, 

844, 793, 722, 663. 

The dicationic derivative 26 was crystallized in the chiral space group C2 by diffusing 

Et2O into the methanol solution of the sample. 

 

 

1,2,3,4,5,6,8-Heptafluoro-7-methylnaphthalene 30. Under nitrogen atmosphere, 

perfluoronaphthalene 25 (1.9 g, 7.0 mmol) was dissolved in Et2O (7.0 mL) and cooled to 0 

C. Methyllithium (7.0 mmol, 1.6 M sol. in diethyl ether) was added dropwise into the 

solution. The mixture was stirred overnight at the same temperature and then was allowed 

to warm to room temperature. After completion of reaction, the mixture was washed with 

saturated NaCl aqueous solution (3 × 20 mL) and extracted with ethyl acetate (3 × 15 mL). 

The organic layers were combined and dried with Na2SO4, filtered. Then the organic 

solution was removed under vacuum, finally the residue was obtained and separated by 

column chromatography on a silica gel using hexane as eluent. Compound 30 was obtained 

as a white solid with yield of 82% (1.528 g, 5.7 mmol). m.p.: 53.1-53.9 °C; 1H NMR (400 

MHz, CDCl3): δ = 2.41 (t, J = 2.4 Hz, 3H); 19F NMR (376 MHz, CDCl3): δ = -121.62 (d, J 

= 18.8 Hz, 0.5F), -121.80 (d, J = 18.8 Hz, 0.5F), -137.27 (d, J = 12.8 Hz, 1F), -145.08 (dd, 

J =35.0, 16.9 Hz, 1F), -146.57 (td, J = 17.3, 4.1 Hz, 0.5F), -146.73 (td, J = 17.3, 4.1 Hz, 

0.5F), -150.23 (m, 1F ), -155.11 (t, J = 18.8 Hz, 1F), -156.44 (m, 1F); EI-MS: 268.1 

(12.45%), 85.4 (34.96%), 83.3 (44.68%), 71.5 (53.44%), 57.5 (100.00%); IR(KBr, cm-1): 

3422, 2949, 1653, 1472, 1406, 1262, 1172, 1104, 1056, 1000, 947, 901, 844, 770, 671; 

Anal. Calcd. for C11H3F7·0.5H2O: C, 47.67; H, 1.45; Found: C, 47.68; H, 1.68. 

 

 
2-(Bromomethyl)-1,3,4,5,6,7,8-heptafluoronaphthalene 31. A mixture of compound 30 

(1.3 g, 5.0 mmol) and N-bromosuccinimide (0.9 g, 5.0 mmol) in CCl4 (10.0 mL) was 

refluxing for 6 h. After completion of reaction, the mixture was washed with saturated 

NaCl aqueous solution (3 × 20 mL) and extracted with ethyl acetate (3 × 15 mL). The 

organic layers were combined and dried with Na2SO4, filtered. The solvent was evaporated 

and the residue was purified by column chromatography on a silica gel using hexane as 

eluent to afford the 31 as a white solid (0.677 g, 39%). m.p.: 71.8-73.2 °C; 1H NMR (400 

MHz, CDCl3): δ = 4.65 (t, J = 1.6 Hz, 2H); 19F NMR (376 MHz, CDCl3): δ = -120.01 (d, J 

= 19.2 Hz, 0.5F), -120.19 (d, J = 19.2 Hz, 0.5F), -138.96 (d, J = 16.2 Hz, 1F), -143.29 (t, J 

= 16.9 Hz, 0.5F), -143.47 (t, J = 16.9 Hz, 0.5F), -145.42 (t, J = 16.9 Hz, 0.5F), -145.57 (t, J 

= 16.9 Hz, 0.5F), -147.98 (m, 1F), -151.89 (t, J = 16.9 Hz, 1F), -154.75 (m, 1F); EI-MS: 

347.6 (2.11%), 346.1 (4.10%), 267.0 (32.92%), 265.5 (100.00%); IR(KBr, cm-1): 3422, 
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2946, 2655, 2335, 2098, 1742, 1651, 1473, 1396, 1265, 1217, 1177, 1107, 1055, 1014, 948, 

869, 778, 715. 

 

 

1-((Perfluoronaphthalen-2-yl)methyl)-1,4-diazabicyclo-[2.2.2]octan-1-ium bromide 27. 

Compound 31 (0.5 g, 1.5 mmol) was dissolved in dichloromethane (1.0 mL), then DABCO 

(0.2 g, 1.5 mmol) was added and stirred at room temperature. After 10 min, white 

precipitate was generated from the solution. The mixture was continued to stir overnight 

and the white solid was filtered and dried under vacuum to obtain pure compound 27 

(0.668 g, 97%). m.p.: 260 °C decompose; 1H NMR (300 MHz, DMSO-d6): δ = 3.02 (dt, J 

= 9.3 Hz, J = 5.1 Hz, 6H), 3.47 (m, 6H), 4.79 (s, 2H); 19F NMR (282 MHz, DMSO-d6): δ = 

-112.27 (dd, J = 68.8, 17.5 Hz, 1F), -133.03 (d, J = 17.2 Hz, 1F), -144.04 (dt, J = 68.8, 

17.2 Hz, 1F), -147.18 (dt, J = 55.8, 16.9 Hz, 1F), -149.37 (dt, J = 55.8, 18.3 Hz, 1F), 

-150.92 (t, J = 19.7 Hz, 1F), -154.76 (t, J = 18.3 Hz, 1F); ESI-MS: 379.1 [4-Br-]+; IR(KBr, 

cm-1): 2980, 2893, 2594, 2187, 2017, 1976, 1656, 1614, 1533, 1494, 1404, 1327, 1264, 

1174, 1113, 1058, 1031, 982, 930, 887, 849, 785, 726, 672; HRMS (ESI) m/z Calcd. for 

C17H13N2BrF7 (M-H)-: 457.0145; Found: 457.0153. 

The complex 27 was crystallized in the space group Pbca with a methanol molecule 

co-crystallized by slow evaporation as methanol solvate.  

 

HN
COO

CF3F3C

34  

(2S)-1-(3,5-Bis(trifluoromethyl)benzyl)pyrrolidin-1-ium-2-carboxylate 34. To a dry 100 mL 

flask, L-proline 33 (2.3 g, 20.0 mmol) and potassium carbonate (8.3 g, 60.0 mmol) were dissolved 

in isopropanol (27.0 mL) and heated to 40 oC. 3,5-Bis(trifluoromethyl)benzyl bromide 19 (2.4 mL, 

20.0 mmol) was added dropwise. The reaction mixture was stirred overnight at the same 

temperature and then was allowed to cool to room temperature. Concentrated HCl was added until 

the solution became slightly acidic. Chloroform (40 mL) was added and the reaction mixture was 

allowed to stir at room temperature for 6 h. The reaction mixturewas filtered to remove the white 

precipitate and the precipitate was washed with chloroform (3 × 15 mL). The organic layers were 

combined and washed with brine and dryed with anhydrous Na2SO4. The solvent was removed 

under vacuum and the residual liquid was treated with acetone (25 mL). A large amount of white 

solid appeared. The mixture was further cooled to 0 oC, and then was filtered and the precipitate 

was washed with cold acetone (3×10 mL). The solid was dried under vacuum to give the 

zwitterion 34 (5.456 g, 80%) as a white solid. m.p. : 199.3-200.7 ; ℃ 1H NMR (300 MHz, 

methanol-d4): δ 2.05-2.23 (m, 4H), 2.58-2.68 (m, 1H), 3.68-3.46 (m, 1H), 3.57-3.61 (m, 1H), 

4.33-4.42 (m, 1H), 4.57 (d, J = 13.0 Hz, 1H), 4.73 (d, J = 13.0 Hz, 1H), 8.14 (s, 1H), 8.22 (s, 1H); 
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19F NMR (282 MHz, methanol-d4): δ -64.46 (s, 6F); ESI-MS: 342.09 [M+H]+; IR (KBr, cm-1): 

2952, 2745, 2407, 2103, 1722, 1458, 1371, 1276, 1129, 979, 896, 681; Anal. Calcd. For 

C14H13F6NO2·2H2O: C, 44.57; H, 4.54; N, 3.71; Found: C, 43.63; H, 4.14; N, 3.97. 

The chloride salt 35 was crystallized in the space group P212121 by the acidification of 34 with 

ethanol solution of HCl and the slow evaporation of solvent at room temperature. 

 

 

3,5-Bis(trifluoromethyl)benzyl 3-((3,5-bis(trifluoromethyl)benzyl)amino)benzoate 37. The 

mixture of 3-aminobenzoic acid 36 (0.14 g, 1.0 mmol), 

1-(bromomethyl)-3,5-bis(trifluoromethyl)benzene 19 (0.36 mL, 2.0 mmol) and potassium 

carbonate (0.55 g, 4.0 mmol) in THF (7.0 mL) was stirred at r.t. and monitored by TLC. After 

completion of the reaction, the mixture was washed with saturated NaCl aqueous solution and 

extracted with ethyl acetate, the organic layer were combined and dried with Na2SO4 then filtered. 

The organic solvent was removed under vacuum and the residue was chromatographed on silica 

gel (ethyl acetate/hexane = 1:10) affording pure 37 (0.406 g, 69%) as a white solid. m.p.: 

97.8-99.6℃; 1H NMR (400 MHz, CDCl3): δ 4.37 (s, 1H), 4.52 (s, 2H), 5.42 (s, 2H), 6.81 

(d, J = 8.0 Hz, 1H), 7.23 (s, 1H), 7.30 (s, 1H), 7.32 (t, J = 2.0 Hz, 1H), 7.48 (d, J = 8.0 Hz, 

1H), 7.80 (s, 1H), 7.83 (s, 2H), 7.86 (s, 1H), 7.88 (s, 2H); 19F NMR (376 MHz, CDCl3): δ 

-62.95 (s, 6F), -62.93 (s, 6F); EI-MS: m/z: 589.0 (100%); IR (KBr, cm-1): 3642, 3304, 

3097, 3001, 2869, 2664, 2550, 2052, 1684, 1595, 1560, 1448, 1375, 1274, 1136, 908, 846, 

758, 679; HRMS (ESI) m/z Calcd. for C25H16O2NF12: 590.09839; Found: 590.09930. 

 

 

1,4-Dibenzyl-1,4-diazabicyclo[2.2.2]octane-1,4-diium bromide 41. (Bromomethyl)benzene 40 

(0.342 g, 2.0 mmol) and 1,4- diazabicyclo[2.2.2]octane 39 (0.112 g, 1.0 mmol) were dissolved in 

DCM (1.5 mL). After the mixture was stirred overnight, the white solid was filtered and dried in 

vacuum to give the pure product 41 (0.449 g, 99%). m.p. : 264.2-265.1℃; 1H NMR (400 MHz, 

methanol-d4): δ 3.19 (t, J = 7.5 Hz, 6H), 3.43 (t, J = 7.5 Hz, 6H), 4.01 (s, 4H), 7.52-7.59 (m, 10H); 

EI-MS: m/z: 203.0 (2.12%), 169.8 (4.68%), 90.9 (100.00%), 88.8 (18.54%), 80.7 (14.36%), 78.7 

(12.28%), 64.9 (29.66%), 62.9 (28.74%); IR (KBr, cm-1): 3852, 3443, 2964, 2650, 2482, 2289, 

2177, 2055, 1898, 1741, 1576, 1459, 1375, 1314, 1216, 1065, 1003, 899, 850, 766, 700; Anal. 

Calcd. For C20H26Br2N2: C, 52.88; H, 5.77; N, 6.17; Found: C, 51.41; H, 6.44; N, 7.83. 

The salt 41 was crystallized in the space group Pbca by diffusing Et2O into the methanol 

solution of the sample. 
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1-(3,5-Bis(trifluoromethyl)benzyl)-1,4-diazabicyclo[2.2.2]octan-1-ium chloride 42. 1- 

(Chloromethyl)-3,5-bis(trifluoromethyl)benzene 20 (0.307 g, 1.0 mmol) and 1,4- 

diazabicyclo[2.2.2]octane 39 (0.112 g, 1.0 mmol) were dissolved in DCM (1.0 mL). After the 

mixture was stirred overnight, the white solid was filtered and dried in vacuum to give the pure 

product 42. m.p. : > 240℃ decomposed; 1H NMR (300 MHz, DMSO-d6): δ 3.02 (t, J = 7.5 Hz, 

6H), 3.35 (s, 6H), 4.81 (s, 2H), 8.31 (s, 3H); 19F NMR (282 MHz, DMSO-d6): δ -61.21 (s, 6F); 

EI-MS: m/z: 374.0 (1.94%), 339.1 (7.41%), 337.9 (30.97%), 324.9 (26.25%), 281.9 (29.22%), 

226.9 (100.00%); IR (KBr, cm-1): 3413, 2977, 2805, 2274, 2047, 1993, 1628, 1466, 1372, 1276, 

1122, 988, 899, 845, 790, 701; Anal. Calcd. For C15H17ClF6N2·2H2O: C, 43.86; H, 5.15; N, 6.82; 

Found: C, 43.73; H, 5.38; N, 6.96. 

The salt 42 was crystallized in the space group pbca by diffusing Et2O into the methanol 

solution of the sample. 

 

 

1-(3,5-Bis(trifluoromethyl)benzyl)-1,4-diazabicyclo[2.2.2]octan-1-ium bromide 43. The 

synthesis method was similar with 42. m.p. : > 300℃ decomposed; 1H NMR (300 MHz, 

methanol-d4): δ 3.19 (t, J = 7.5 Hz, 6H), 3.46 (t, J = 7.5 Hz, 6H), 4.73 (s, 2H), 7.90 (s, 1H), 8.22 (s, 

3H); 19F NMR (282 MHz, methanol-d4): δ -64.35 (s, 6F); EI-MS: m/z: 339.1 (62.72%), 338.1 

(32.96%), 227.1 (88.80%); IR (KBr, cm-1): 3037, 2975, 2896, 2312, 1894, 1622, 1538, 1466, 1374, 

1330, 1280, 1177, 1127, 1058, 992, 928, 888, 844, 796, 711, 680; Anal. Calcd. For C15H17BrF6N2: 

C, 42.98; H, 4.09; N, 6.68; Found: C, 42.73; H, 4.46; N, 6.42. 

The salt 43 was crystallized in the space group pbca by diffusing Et2O into the acetonitrile 

solution of the sample. 

 

 

This compound 61 was prepared as reported in the literature.[79] 

 

Compounds 46－51, 53－56 and 71 were synthesized by the similar methods with 2.2 equivalents 

(for 46) or 1.1 equivalents (for 47-51, 71) of NaH (60% in mineral oil) as base, respectively. 

The general synthetic methods are described with the preparation of the compound 46 as a 

representative example. 
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Bis((perfluorophenyl)methyl)amine 46. To a suspension of 

(perfluorophenyl)methanamine hydrochloride 61 (0.23 g, 1.0 mmol), NaH (60% in mineral 

oil, 1.10 g, 2.2 mmol) in anhydrous THF (5 mL), 

1-(bromomethyl)-2,3,4,5,6-pentafluorobenzene 62 (0.26 g, 1.0 mmol) was added dropwise. 

The reaction mixture was stirred at r.t. and monitored by TLC. After completion of the 

reaction, the mixture was washed with saturated NaCl aqueous solution and extracted with 

ethyl acetate, the organic layer were combined and dried with Na2SO4 then filtered. The 

organic solvent was removed under vacuum and the residue was chromatographed on silica 

gel (ethyl acetate/hexane 1:10) affording pure 46 (0.256 g, 68%) as colourless liquid. 1H 

NMR (400 MHz, CDCl3): δ 1.73 (s, 1H), 3.93 (s, 4H); 19F NMR (376 MHz, CDCl3): δ 

-161.70 (td, J = 26.3, 11.3 Hz, 4F), -154.73 (t, J = 26.3 Hz, 2F), -144.17 (d, J = 26.3 Hz, 

4F); EI-MS: m/z: 377.0 (68.94%), 376.0 (42.89%), 210.0 (17.19%), 181.0 (100.00%), 

163.0 (10.97%); IR (KBr, cm-1): 3360, 2945, 2865, 2649, 2327, 2094, 1739, 1654, 1501, 

1361, 1303, 1220, 1115, 944, 778; HRMS (ESI) m/z Calcd. for C14H6F10N: 378.03351; 

Found: 378.03195. 

 

 

N-Benzyl-1-(perfluorophenyl)methanamine 47. Yield: 77% as a pale yellow solid. m.p.: 

39.9-40.4℃; 1H NMR (300 MHz, CDCl3): δ 1.91 (s, 1H), 3.79 (s, 2H), 3.94 (s, 2H), 

7.22-7.36 (m, 5H); 19F NMR (282 MHz, CDCl3): δ -162.12 (t, J = 20.0 Hz, 2F), -155.52 (d, 

J = 20.0 Hz, 1F), -143.90 (s, 2F); EI-MS: m/z: 287.1 (64.87%), 286.0 (100%), 209.9 

(12.58%), 195.9 (23.69%), 180.9 (61.15%), 91.0 (10.51%); IR (KBr, cm-1): 3304, 3032, 

2924, 2853, 2629, 2416, 2058, 1979, 1738, 1656, 1499, 1360, 1297, 1214, 1113, 949, 818, 

739; HRMS (ESI) m/z Calcd. for C14H11F5N: 288.08062; Found: 288.07990. 

 

 

2,3,4,5,6-Pentafluoro-N-(perfluorobenzoyl)benzamide 48. Yield: 70% as a white solid. m.p.: 

157.6-158.1℃; 1H NMR (300 MHz, CDCl3): δ 8.79 (s, 1H); 19F NMR (282 MHz, CDCl3): 

δ -158.91 (td, J = 20.0, 5.0 Hz, 2F), -146.68 (t, J = 20.0 Hz, 1F), -139.56 (d, J = 20.0 Hz, 

2F); EI-MS: m/z: 405.0 (47.91%), 195.0 (100.00%), 167.0 (36.79%), 117.0 (23.78%); IR 

(KBr, cm-1): 3265, 3181, 1745, 1650, 1496, 1415, 1319, 1263, 1196, 1107, 1071, 994, 927, 

811, 761, 728, 689; Anal. Calcd. for C14HF10NO2: C, 41.50; H, 0.25; N, 3.46; Found: C, 

41.54; H, 0.026; N, 3.312. 
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2,3,4,5,6-Pentafluoro-N-((perfluorophenyl)methyl)benzamide 49. Yield: 22% as a white solid. 

m.p.: 154.0-154.6℃; 1H NMR (300 MHz, CDCl3): δ 6.42 (s, 1H), 4.75 (d, J = 6.0 Hz, 2H); 19F 

NMR (282 MHz, CDCl3): δ -140.10 (d, J = 17.6 Hz, 2F), -142.64 (dd, J = 21.8, 7.7 Hz, 2F), 

-149.35 (t, J = 20.7 Hz, 1F), -153.39 (t, J = 20.8 Hz, 1F), -159.58 (qd, J = 11.5, 5.2 Hz, 2F), 

-161.14 (td, J = 21.3, 7.8 Hz, 2F); EI-MS: m/z: 392.0 (72.07%), 391.0 (100.00%), 371.9 

(45.90%), 195.0 (82.00%), 181.0 (22.98%); IR (KBr, cm-1): 3286, 3106, 2924, 1736, 1660, 

1565, 1499, 1416, 1365, 1325, 1259, 1117, 1040, 989, 894, 750, 686; Anal. Calcd. for 

C14H3F10NO: C, 42.99; H, 0.77; N, 3.58; Found: C, 43.16; H, 0.89; N, 3.65. 

The compound 49 was crystallized in the space group P21/c by diffusing Et2O into the methanol 

solution of the sample. 

 

 

N-((Perfluorophenyl)methyl)benzamide 50. Yield: 22% as a white solid. m.p.: 172.7-173.1℃; 
1H NMR (300 MHz, CDCl3): δ 7.90 – 7.64 (m, 2H), 7.52 (ddd, J = 6.5, 3.7, 1.3 Hz, 1H), 7.47 – 

7.38 (m, 2H), 6.58 (s, 1H), 4.75 (d, J = 5.9 Hz, 2H); 19F NMR (282 MHz, CDCl3): δ -142.83 (dd, J 

= 21.9, 7.7 Hz, 2F), -154.55 (t, J = 20.8 Hz, 1F), -161.65 (td, J = 21.6, 8.0 Hz, 2F); EI-MS: m/z: 

302.1 (17.05%), 301.1 (100.00%), 105.2 (43.16%), 104.5 (10.68%), 77.2 (24.09%); IR 

(KBr, cm-1): 3269, 3081, 1741, 1642, 1497, 1365, 1299, 1123, 1063, 1014, 933, 805, 749, 

689; HRMS (ESI) m/z Calcd. for C14H9ONF5: 302.05988; Found: 302.05969. 
 

 

N-Benzyl-2,3,4,5,6-pentafluorobenzamide 51. Yield: 19% as a white solid. m.p.: 

144.6-145.3℃; 1H NMR (300 MHz, CDCl3): δ 7.52 – 7.26 (m, 5H), 6.24 (s, 1H), 4.65 (d, J = 5.7 

Hz, 2H); 19F NMR (282 MHz, CDCl3): δ -140.27 (d, J = 15.8 Hz, 2F), -150.45 (t, J = 20.7 Hz, 1F), 

-159.90 (qd, J = 11.3, 4.7 Hz, 2F); EI-MS: m/z: 302.0 (36.82%), 301.0 (100.00%), 282.0 

(30.77%), 194.9 (40.84%), 166.9 (10.03%); IR (KBr, cm-1): 3848, 3232, 3068, 2918, 2698, 

2501, 2315, 2184, 2086, 2010, 1977, 1901, 1741, 1651, 1570, 1498, 1451, 1329, 1246, 

1118, 1061, 988, 928, 894, 815, 735, 695; HRMS (ESI) m/z Calcd. for C14H8ONF5Na: 

324.04183; Found: 324.04144. 

The compound 51 was crystallized in the space group P21/c by diffusing Et2O into the methanol 

solution of the sample. 

 



99 
 

F3C

CF3

N
H

CF3

CF3

52  

This compound 52 was prepared as reported in the literature.[61] 

 

 

N-(3,5-Bis(trifluoromethyl)benzoyl)-3,5-bis(trifluoromethyl)benzamide 53. Yield: 74% as a 

white solid. m.p.: 132.1-133.3℃; 1H NMR (400 MHz, acetone-d6): δ 11.26 (s, 1H), 8.58 (s, 4H), 

8.34 (s, 2H); 19F NMR (376 MHz, acetone-d6): δ -63.43 (s, 12F); EI-MS: m/z: 498.0 (9.89%), 

496.9 (56.35%), 477.9 (28.44%), 241.0 (100.00%), 213.0 (29.40%); IR (KBr, cm-1): 3846, 

3270, 3180, 3099, 2923, 2693, 2507, 2282, 2099, 1981, 1728, 1623, 1509, 1460, 1372, 

1275, 1211, 1128, 912, 846, 774, 683; HRMS (ESI) m/z Calcd. for C18H7O2NF12Na: 

520.01774; Found: 520.01740. 

The compound 53 was crystallized in the space group P-1 by diffusing Et2O into the DMSO 

solution of the sample. 

 

 
N-(3,5-Bis(trifluoromethyl)benzyl)-3,5-bis(trifluoromethyl)benzamide 54. Yield: 76% 

as a white solid. m.p.: 132.1-133.3℃; 1H NMR (400 MHz, CDCl3): δ 8.25 (s, 2H), 8.04 (s, 1H), 

7.83 (s, 3H), 6.80 (s, 1H), 4.80 (d, J = 6.0 Hz, 2H); 19F NMR (376 MHz, CDCl3): δ -62.95 (s, 6F), 

-63.01 (s, 6F); EI-MS: m/z: 484.1 (36.64%), 483.1 (79.21%), 482.1 (31.59%), 464.1 

(26.06%), 241.0 (100.00%), 213.0 (35.22%); IR (KBr, cm-1): 3848, 3639, 3280, 3087, 

2923, 2704, 2466, 2269, 2023, 1981, 1894, 1738, 1649, 1545, 1455, 1370, 1274, 1117, 900, 

847, 763, 681; Anal. Calcd. for C18H9F12NO: C, 44.74; H, 1.88; N, 2.90; Found: C, 44.80; 

H, 2.03; N, 2.72. 
 

 

N-(3,5-Bis(trifluoromethyl)benzyl)benzamide 55. Yield: 36% as a white solid. m.p.: 

87.5-88.3℃; 1H NMR (300 MHz, Acetone-d6): δ 8.53 (s, 1H), 8.06 (s, 2H), 7.96 (s, 1H), 7.94 (d, 

J = 1.5 Hz, 2H), 7.61 – 7.52 (m, 1H), 7.52 – 7.42 (m, 2H), 4.82 (d, J = 6.1 Hz, 2H); 19F NMR (282 

MHz, Acetone-d6): δ -63.37 (s, 6F); EI-MS: m/z: 348.1 (89.05%), 347.1 (75.90%), 346.1 

(22.67%), 328.1 (12.42%), 105.1 (100.00%), 77.2 (29.30%); IR (KBr, cm-1): 3302, 3074, 

2922, 2856, 2240, 1739, 1643, 1528, 1461, 1377, 1278, 1163, 1117, 999, 890, 846, 683; 
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Anal. Calcd. for C16H11F6NO: C, 55.34; H, 3.19; N, 4.03; Found: C, 55.51; H, 3.24; N, 

3.96. 
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N-Benzyl-3,5-bis(trifluoromethyl)benzamide 56. Yield: 48% as a white solid. m.p.: 

109.3-109.6℃; 1H NMR (400 MHz, acetone-d6): δ 8.71 (s, 1H), 8.56 (s, 2H), 8.23 (s, 1H), 7.41 

(d, J = 7.5 Hz, 2H), 7.37 – 7.30 (m, 2H), 7.29 – 7.23 (m, 1H), 4.66 (d, J = 5.9 Hz, 2H); 19F NMR 

(376 MHz, acetone-d6): δ -63.44 (s, 6F); EI-MS: m/z: 348.1 (35.75%), 347.1 (100.00%), 

346.1 (20.77%), 241.0 (47.18%), 213.1 (22.23%), 106.1 (24.38%), 91.1 (13.43%); IR (KBr, 

cm-1): 3843, 3625, 3289, 3087, 2931, 2706, 2473, 2288, 2051, 1983, 1740, 1648, 1551, 

1456, 1379, 1275, 1124, 1035, 907, 845, 810, 738, 681; HRMS (ESI) m/z Calcd. for 

C16H12ONF6: 348.08176; Found: 348.08176. 

 

 

N-Benzoylbenzamide 71. Yield: 55% as a white solid. m.p.: 131.4-131.8℃; 1H NMR (400 

MHz, CDCl3): δ, 8.97 (s, 1H), 7.86-7.89 (m, 4H), 7.60-7.64 (m, 2H), 7.49-7.54 (m, 4H); 

EI-MS: m/z: 225.0 (6.38%), 105.0 (66.28%), 77.1 (100.00%), 51.1 (68.98%); IR (KBr, 

cm-1): 3241, 3063, 2931, 2719, 2322, 2061, 1912, 1693, 1599, 1468, 1304, 1219, 1109, 

1022, 956, 793, 698; Elemental analysis calcd. for C14H11NO2: C, 74.65; H, 4.92; N, 6.22; found: 

C, 74.77; H, 4.57; N, 5.88. 
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N1,N3,N5-Tris((perfluorophenyl)methyl)benzene-1,3,5-tricarboxamide 57. 

Benzene-1,3,5-tricarbonyl trichloride 68 (0.133 g, 0.5 mmol) and 2,3,4,5,6 -  

pentafluorobenzylamine hydrochloride 61 (0.350 g, 1.5 mmol) were dissolved in 15.0 mL DCM 

and DIPEA (3.0 mmol, 0.52 mL) was used as a base. The reaction was stirred on refluxing for 8 h 

and monitored by TLC. After the end of the reaction, the mixture was washed with saturated NaCl 

aqueous solution and extracted with ethyl acetate, the organic layers were combined and dried 

with Na2SO4, filtered. Then the organic solution was removed under vacuum, finally the residue 

was obtained and re-crystallized in acetone. The target product 57 was obtained with yield of 94% 
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as a white solid. m.p.: > 310℃ decomposed; 1H NMR (300 MHz, acetone-d6): δ 8.66 (s, 3H), 

8.42 (s, 3H), 4.76 (d, J = 5.4 Hz, 6H); 19F NMR (282 MHz, acetone-d6): δ -144.00 (dd, J = 21.05, 

7.61 Hz, 6H), -158.41 (t, J = 21.05 Hz, 3H), -165.41 (td, J = 21.05, 7.61 Hz, 6H); ESI-MS: 782.03 

[M+Cl]-; IR (KBr, cm-1): 3240, 3070, 2966, 1738, 1644, 1554, 1504, 1365, 1294, 1123, 1053, 950, 

801, 679; Elemental analysis calcd. for C30H12F15N3O3: C, 48.21; H, 1.62; N, 5.62; found: C, 

48.00; H, 2.26; N, 5.32. 

 

 
N,N',N''-(1,3,5-Triazine-2,4,6-triyl)tris(2,3,4,5,6-pentafluorobenzamide) 58. 

2,4,6-Trichloro-1,3,5-triazine 67 (0.184 g, 1.0 mmol) and 2,3,4,5,6-pentafluorobenzamide 45 

(0.633 g, 3.0 mmol) were dissolved in anhydrous THF (10.0 mL), NaH (60% in mineral oil, 

0.144 g, 3.6 mmol)was used as a base. The reaction was stirred on refluxing and monitored by 

TLC.  After completion of the reaction, the mixture was washed with saturated NaCl 

aqueous solution and extracted with ethyl acetate, the organic layer were combined and 

dried with Na2SO4 then filtered. The organic solvent was removed under vacuum and the 

residue was chromatographed on silica gel (ethyl acetate/hexane 1:3) affording pure 58 

(0.463 g, 65%) as a white solid. m.p.: 262.9-263.6℃; 1H NMR (400 MHz, acetone-d6): δ 

10.52 (s, 1H); 19F NMR (376 MHz, acetone-d6): δ -144.12 (d, J = 17.7 Hz, 6F), -154.27 (s, 3F), 

-163.49 (dd, J = 19.9, 15.1 Hz, 6F); ESI-MS: 730.99 [M+Na]+; IR (KBr, cm-1): 3747, 3264, 3073, 

2963, 2925, 2855, 2663, 2192, 2088, 2022, 1994, 1963, 1740, 1691, 1659, 1616, 1579, 1499, 1414, 

1319, 1255, 1189, 1108, 1053, 992, 889, 816, 716, 686; Elemental analysis calcd. for 

C24H3F15N6O3: C, 40.70; H, 0.43; N, 11.87; found: C, 40.71; H, 0.44; N, 11.98. 

The compound 58 was crystallized in the space group P-1 by diffusing Et2O into the methanol 

solution of the sample. 
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N1,N3,N5-Tris(3,5-Bis(trifluoromethyl)benzyl)benzene-1,3,5-tricarboxamide 59. 

Benzene-1,3,5-tricarbonyl trichloride 68 (0.265 g, 1.0 mmol) and 

(3,5-Bis(trifluoromethyl)phenyl)methanamine 21 (0.729 g, 3.0 mmol) were refluxed in present of 
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Et3N (0.42 ml, 3.0 mmol) in 15 mL DCM. After completion of the reaction, the mixture was 

washed with saturated NaCl aqueous solution and extracted with ethyl acetate, the organic 

layer were combined and dried with Na2SO4 then filtered. The organic solvent was 

removed under vacuum and the residue was chromatographed on silica gel (ethyl 

acetate/hexane 1:2) affording pure 59 (0.700 g, 79%) as a white solid. m.p.: 241.6-242.3℃; 
1H NMR (400 MHz, acetone-d6): δ 8.86 (t, J = 6.0 Hz, 3H), 8.57 (s, 3H), 8.09 (s, 6H), 7.95 

(s, 3H), 4.86 (d, J = 6.0 Hz, 6H); 19F NMR (376 MHz, acetone-d6): δ -63.35 (s, 18F); 

ESI-MS: 886.14 [M+H]+; IR (KBr, cm-1): 3298, 1646, 1535, 1429, 1378, 1275, 1123, 1016, 

896, 846, 790, 684; Elemental analysis calcd. for C36H21F18N3O3: C, 48.83; H, 2.39; N, 

4.75; found: C, 48.79; H, 2.03; N, 4.69. 

 

 
N2,N4,N6-Tris((perfluorophenyl)methyl)-1,3,5-triazine-2,4,6-triamine 69. The reaction 

of 2,4,6-trichloro-1,3,5-triazine 67 (0.092 g, 0.5 mmol) and 2,3,4,5,6–pentafluorobenzylamine 

hydrochloride 61 (0.350 g, 1.5 mmol) in present of K2CO3 (0.021 g, 1.5 mmol), 18-crown-6 

(0.004 g, 0.015 mmol) and DIPEA (0.26 ml, 1.5 mmol) in 5.0 mL toluene was refluxed under the 

N2 atmosphere. After completion of the reaction, the mixture was washed with saturated 

NaCl aqueous solution and extracted with ethyl acetate, the organic layer were combined 

and dried with Na2SO4 then filtered. The organic solvent was removed under vacuum and 

the residue was chromatographed on silica gel (ethyl acetate/hexane 1:8) affording pure 69 

(0.227 g, 68%) as a white solid. m.p.: 170.7-171.5℃; 1H NMR (300 MHz, acetone-d6): δ 

6.51 (s, 2H), 6.40 (s, 1H), 4.77 (s, 4H), 4.60 (s, 2H); 19F NMR (376 MHz, acetone-d6) δ 

-144.28 (d, J = 16.0 Hz, 3F), -144.64 (d, J = 14.9 Hz, 3F), -158.75 – -159.37 (m, 3F), -165.54 (dd, 

J = 19.6, 12.3 Hz, 6F); ESI-MS: 667.07 [M+H]+; IR (KBr, cm-1): 3469, 3274, 2954, 1739, 

1573, 1495, 1345, 1229, 1163, 1120, 994, 919, 807, 662; Elemental analysis calcd. for 

C24H9F15N6: C, 43.26; H, 1.36; N, 12.61; found: C, 43.28; H, 1.87; N, 11.89. 
 

 

N2,N4,N6-Tris(3,5-Bis(trifluoromethyl)benzyl)-1,3,5-triazine-2,4,6-triamine 70. The 

synthesis method of 70 is similar with that of compound 69. Yield: 58% as a white solid. 
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m.p.: 146.3-147.1℃; 1H NMR (400 MHz, CDCl3): δ 7.76 (s, 6H), 7.70 (s, 3H), 5.58 (s, 

3H), 4.61 (s, 6H); 19F NMR (376 MHz, CDCl3): δ -62.99 (s, 18F); ESI-MS: 805.14 

[M+H]+; IR (KBr, cm-1): 3446, 3264, 3110, 2952, 2180, 1738, 1623, 1536, 1415, 1341, 

1274, 1113, 960, 897, 814, 683; Elemental analysis calcd. for C30H18F18N6: C, 44.79; H, 

2.26; N, 10.45; found: C, 44.90; H, 2.56; N, 10.23. 

 

 
(2S)-1-((Perfluorophenyl)methyl)pyrrolidin-1-ium-2-carboxylate 72. To a dry 100 mL 

flask, L-proline 33 (2.3 g, 20.0 mmol) and potassium carbonate (8.3 g, 60.0 mmol) were dissolved 

in isopropanol (27.0 mL) and heated to 40 oC. pentafluorobenzyl bromide 62 (2.2 mL, 20.0 mmol) 

was added dropwise. The reaction mixture was stirred overnight at the same temperature and then 

was allowed to cool to room temperature. Concentrated HCl was added until the solution became 

slightly acidic. Chloroform (40 mL) was added and the reaction mixture was allowed to stir at 

room temperature for 6 h. The reaction mixturewas filtered to remove the white precipitate and the 

precipitate was washed with chloroform (3×15 mL). The organic layers were combined and 

washed with brine and dryed with anhydrous Na2SO4. The solvent was removed under vacuum 

and the residual liquid was treated with acetone (25 mL). A large amount of white solid appeared. 

The mixture was further cooled to 0 oC, and then was filtered and the precipitate was washed with 

cold acetone (3×10 mL). The solid was dried under vacuum to give the zwitterion 72 (5.13 g, 87%) 

as a white solid. m.p.: > 135℃ decomposed; 1H NMR (300 MHz, methanol-d4): δ 4.44 (m, 2H), 

3.76 (dd, J = 9.6, 6.3 Hz, 1H), 3.50 (m, 1H), 3.06 (dd, J = 17.4, 6.3 Hz, 1H), 2.43 (m, 1H), 1.99 

(m, 3H); 19F NMR (282 MHz, methanol-d4): δ -141.41 (d, J = 16.1 Hz, 2F), -154.79 (t, J = 19.5 

Hz, 1F), -164.29 (td, J = 20.0 Hz, J = 6.2 Hz, 2F); EI-MS: m/z: 296.1 (3.39%), 295.0 (1.79%), 

251.1 (12.61%), 250.1 (100.00%), 181.0 (52.47%); IR (KBr, cm-1): 3035, 3000, 2331, 1612, 1504, 

1447, 1372, 1345, 1296, 1240; Anal. Calcd. for C12H10F5NO2: C, 48.82; H, 3.41; N, 4.74; Found: 

C, 48.60; H: 3.30; N, 4.65. 

The zwitterion 72 was crystallized in the space group P212121 by diffusing Et2O into the methanol 

solution of the sample. 

 

Compounds 74-79 were synthesized with the similar methods. The general synthetic methods 

are described with the preparation of the compound 74 as a representative example. 

 

 
(Perfluorophenyl)methyl 4-(1H-indol-3-yl)butanoate 74. 1-(Bromomethyl)-2,3,4,5,6-penta- 

fluorobenzene 62 (0.14 mL, 1.0 mmol) and indole-3-butyric acid 73a (0.20 g, 1.0 mmol) were 

dissolved in 15.0 mL THF and KOH (0.130 g, 2.4 mmol) was used as base. The reaction was 
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stirred on refluxing and monitored by TLC. After completion of the reaction, the mixture was 

washed with saturated NaCl aqueous solution and extracted with ethyl acetate, the organic 

layer were combined and dried with Na2SO4 then filtered. The organic solvent was 

removed under vacuum and the residue was separated by column chromatography. The 

target product 74 was obtained with yield of 91% (0.349 g). m.p.: 129.6-130.6℃; 1H NMR 

(400 MHz, CDCl3): δ 7.93 (s, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.21 – 7.15 

(m, 1H), 7.13 – 7.07 (m, 1H), 7.00 – 6.94 (m, 1H), 5.18 (d, J = 1.4 Hz, 2H), 2.85 – 2.74 (m, 2H), 

2.40 (t, J = 7.5 Hz, 2H), 2.04 (p, J = 7.5 Hz, 2H); 19F NMR (376 MHz, CDCl3): δ -141.84 – 

-142.09 (m, 2F), -152.69 (t, J = 20.8 Hz, 1F), -161.63 (td, J = 21.3, 7.9 Hz, 2F); EI-MS: m/z: 

384.2 (18.19%), 383.1 (95.66%), 186.1 (19.35%), 180.9 (22.62%), 130.1 (100.00%); IR (KBr, 

cm-1): 3899, 3454, 3336, 2967, 2664, 2324, 2097, 1736, 1507, 1439, 1366, 1218, 1098, 927, 797, 

741; Anal. Calcd. for C19H14F5NO2: C, 59.53; H, 3.68; N, 3.65; Found: C, 59.53; H: 3.68; N, 3.64. 

 

 
(Perfluorophenyl)methyl 2-(1H-indol-3-yl)acetate 75. Yield: 91% as a white solid. m.p.: 

130.8-131.5℃; 1H NMR (300 MHz, CDCl3): δ 8.07 (s, 1H), 7.54 (dd, J = 7.9, 0.6 Hz, 1H), 7.35 

(d, J = 8.1 Hz,1H), 7.20 (d, J = 1.2 Hz, 1H), 7.16 (d, J = 2.4 Hz, 1H), 7.11 (d, J = 0.8 Hz, 1H), 

5.22 (t, J = 1.5 Hz, 2H), 3.80 (d, J = 0.7 Hz, 2H); 19F NMR (282 MHz, CDCl3): δ -141.75 (dd, J = 

21.8, 7.8 Hz, 2F), -152.64 (t, J = 20.8 Hz, 1F), -161.67 (dt, J = 21.3, 7.8 Hz, 2F); EI-MS: m/z: 

356.1 (11.76%), 355.1 (66.43%), 181.0 (11.41%), 130.1 (100.00%); IR (KBr, cm-1): 3866, 3412, 

3146, 2975, 2928, 2648, 2397, 2293, 2106, 2050, 1930, 1730, 1658, 1503, 1429, 1374, 1304, 1245, 

1126, 1058, 992, 944, 812, 743, 667; Anal. Calcd. for C17H10F5NO2: C, 57.47; H, 2.84; N, 3.94; 

Found: C, 57.16; H: 2.86; N, 3.87. 
 

 

(Perfluorophenyl)methyl 1H-indole-2-carboxylate 76. Yield: 86% as a white solid. m.p.: 

199.4-200.6℃; 1H NMR (300 MHz, acetone-d6): δ 10.99 (s, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.53 

(ddd, J = 8.4, 2.6, 1.7 Hz, 1H), 7.30 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.23 (dd, J = 2.9, 1.6 Hz, 1H), 

7.16 – 7.07 (m, 1H), 5.55 (t, J = 1.5 Hz, 2H); 19F NMR (282 MHz, acetone-d6): δ -143.51 (dd, J = 

21.4, 7.4 Hz, 2F), -155.69 (t, J = 20.3 Hz, 1F), -164.52 (td, J = 20.9, 7.5 Hz, 2F); EI-MS: m/z: 

342.1 (17.13%), 341.1 (100.00%), 181.0 (58.90%), 143.1 (68.35%); IR (KBr, cm-1): 3340, 2961, 

2304, 2107, 1907, 1690, 1506, 1438, 1392, 1358, 1308, 1241, 1189, 1129, 1053, 968, 931, 819, 

748, 663; Anal. Calcd. for C16H8F5NO2·0.5H2O: C, 54.87; H, 2.59; N, 4.00; Found: C, 54.55; H: 

2.57; N, 3.99. 
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3,5-Bis(trifluoromethyl)benzyl 4-(1H-indol-3-yl)butanoate 77. Yield: 73% as a yellow solid. 

m.p.: 62.5-63.1℃; 1H NMR (400 MHz, CDCl3): δ 7.96 (s, 1H), 7.83 (s, 1H), 7.78 (s, 2H), 7.58 

(d, J = 7.9 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 7.12 – 7.07 (m, 1H), 6.98 (d, 

J = 1.3 Hz, 1H), 5.15 (s, 2H), 2.90 – 2.77 (m, 2H), 2.47 (t, J = 7.4 Hz, 2H), 2.14 – 2.01 (m, 2H); 
19F NMR (376 MHz, CDCl3): δ -62.92 (s, 6F); EI-MS: m/z: 430.3 (16.14%), 429.3 (66.19%), 

131.2 (12.05%), 130.2 (100.00%); IR (KBr, cm-1): 3356, 3068, 2930, 2875, 2842, 2329, 2087, 

2002, 1816, 1722, 1623, 1460, 1395, 1352, 1321, 1278, 1169, 1122, 1000, 910, 887, 843, 786, 736, 

704, 682; Anal. Calcd. for C21H17F6NO2: C, 58.74; H, 3.99; N, 3.26; Found: C, 58.35; H: 4.06; N, 

2.92. 
 

 
3,5-Bis(trifluoromethyl)benzyl 2-(1H-indol-3-yl)acetate 78. Yield: 67% as a white solid. m.p.: 

114.6-115.6℃; 1H NMR (400 MHz, CDCl3): δ 8.14 (s, 1H), 7.80 (s, 1H), 7.71 (s, 2H), 7.61 – 

7.57 (m, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.24 – 7.19 (m, 1H), 7.18 (d, J = 2.4 Hz, 1H), 7.15 – 7.10 

(m, 1H), 5.23 (s, 2H), 3.88 (d, J = 0.7 Hz, 2H); 19F NMR (376 MHz, CDCl3): δ -62.96 (s, 6F); 

EI-MS: m/z: 402.1 (12.34%), 401.1 (60.99%), 130.1 (100.00%); IR (KBr, cm-1): 3378, 3065, 2916, 

2284, 2039, 1717, 1626, 1460, 1330, 1279, 1121, 982, 892, 840, 803, 748, 682; Anal. Calcd. for 

C19H13F6NO2: C, 56.87; H, 3.27; N, 3.49; Found: C, 56.50; H: 3.18; N, 3.37. 

 

 
3,5-Bis(trifluoromethyl)benzyl 1H-indole-2-carboxylate 79. Yield: 94% as a white solid. m.p.: 

123.9-125.1℃; 1H NMR (400 MHz, CDCl3): δ 8.93 (s, 1H), 7.92 (s, 2H), 7.88 (s, 1H), 7.71 (d, J 

= 8.1 Hz, 1H), 7.43 (dd, J = 8.4, 0.8 Hz, 1H), 7.38 – 7.32 (m, 1H), 7.31 (d, J = 1.3 Hz, 1H), 7.17 (t, 

J = 7.5 Hz, 1H), 5.48 (s, 2H); 19F NMR (376 MHz, CDCl3): δ -62.92 (s, 6F); EI-MS: m/z: 388.2 

(19.14%), 387.1 (100.00%), 227.0 (32.99%), 143.0 (94.38%); IR (KBr, cm-1): 3328, 3068, 2962, 

2290, 2042, 1695, 1624, 1525, 1446, 1393, 1350, 1259, 1114, 1018, 883, 807, 747, 679; Anal. 

Calcd. for C18H11F6NO2: C, 55.82; H, 2.86; N, 3.62; Found: C, 54.17; H: 3.12; N, 3.24. 
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Compound 83 and 84 were prepared as reported in the literature.[80] 

 

Compounds 80-82 and 85-94 were synthesized with the similar methods as compound 46. 

 

 

N-(3,5-Bis(trifluoromethyl)benzoyl)-2,3,4,5,6-pentafluorobenzamide 80. Yield: 35% as a 

white solid. m.p.: 180.6-181.5℃; 1H NMR (400 MHz, acetone-d6): δ 11.53 (s, 1H), 8.63 (s, 2H), 

8.39 (s, 1H); 19F NMR (376 MHz, acetone-d6): δ -63.53 (s, 6F), -143.67 (ddd, J = 8.6, 6.1, 2.9 Hz, 

2F), -153.34 (t, J = 20.2 Hz, 1F), -162.88 – -163.63 (m, 2F); EI-MS: m/z: 452.1 (16.37%), 

451.1 (92.96%), 241.0 (100.00%), 213.0 (30.39%), 195.0 (34.01%); IR (KBr, cm-1): 3846, 

3262, 3177, 2942, 2704, 2486, 2278, 2085, 1736, 1653, 1509, 1380, 1329, 1277, 1244, 

1145, 998, 910, 847, 812, 761, 685; HRMS (ESI) m/z Calcd. for C16H4O2NF11Na: 

473.99586; Found: 473.99585. 
 

 

N-(3,5-Bis(trifluoromethyl)benzyl)-2,3,4,5,6-pentafluorobenzamide 81. Yield: 24% as a white 

solid. m.p.: 82.7-83.0℃; 1H NMR (300 MHz, CDCl3): δ 7.82 (s, 2H), 7.59 (s, 1H), 6.47 (s, 1H), 

4.79 (s, 2H); 19F NMR (282 MHz, CDCl3): δ -62.82 (s, 6F), -140.45 (t, J = 40.8 Hz, 2F), -153.18 

(t, J = 20.5 Hz, 1F), -161.08 – -161.93 (m, 2F); EI-MS: m/z: 438.0 (41.79%), 437.0 (100.00%), 

419.0 (17.03%), 417.9 (95.15%), 227.0 (33.18%), 195.0 (88.78%); IR (KBr, cm-1): 3308, 

3089, 2931, 2652, 2308, 2078, 1896, 1664, 1501, 1360, 1274, 1119, 988, 900, 682; HRMS 

(ESI) m/z Calcd. for C16H6ONF11Na: 460.01660; Found: 460.01666. 
 

 

N-((Perfluorophenyl)methyl)-3,5-bis(trifluoromethyl)benzamide 82. Yield: 53% as a white 

solid. m.p.: 145.2-146.4℃; 1H NMR (300 MHz, CDCl3): δ 8.20 (dd, J = 1.1, 0.5 Hz, 2H), 8.06 – 
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7.97 (m, 1H), 6.75 (s, 1H), 4.78 (d, J = 5.9 Hz, 2H); 19F NMR (282 MHz, CDCl3): δ -63.04 (s, 6F), 

-142.60 (dd, J = 22.0, 7.9 Hz, 2F), -153.61 (t, J = 20.7 Hz, 1F), -161.17 (td, J = 21.5, 7.9 Hz, 2F); 

EI-MS: m/z: 438.1 (25.24%), 437.1 (100.00%), 418.1 (15.48%), 241.0 (96.43%), 213.0 

(31.42%), 177.0 (12.44%); IR (KBr, cm-1): 3848, 3624, 3292, 3093, 2933, 2703, 2482, 

2283, 2042, 1980, 1893, 1740, 1651, 1556, 1509, 1456, 1369, 1275, 1132, 1060, 1020, 951, 

912, 847, 792, 696; HRMS (ESI) m/z Calcd. for C16H6ONF11Na: 460.01660; Found: 

460.01633. 

Compound 82 was crystallized in the space group Cc by diffusing Et2O into the methanol solution 

of the sample. 

 

 
2,3,4,5,6-Pentafluoro-N-(2-(perfluorophenyl)acetyl)benzamide 85. Yield: 23% as a white 

solid. m.p.: 172.9-173.7℃; 1H NMR (300 MHz, CDCl3): δ 8.89 (s, 1H), 4.27 (s, 2H); 19F NMR 

(282 MHz, CDCl3): δ -139.17 (d, J = 17.3 Hz, 2F), -141.98 (dd, J = 21.7, 7.5 Hz, 2F), -146.78 (s, 

1F), -154.14 (t, J = 20.7 Hz, 1F), -158.77 (t, J = 17.6 Hz, 2F), -161.89 (td, J = 21.2, 7.3 Hz, 2F); 

EI-MS: m/z: 420.1 (4.68%), 419.1 (25.60%), 212.1 (10.68%), 208.1 (72.16%), 195.0 

(100.00%), 181.0 (35.73%), 167.0 (30.55%), 117.1 (19.88%); IR (KBr, cm-1): 3841, 3258, 

3179, 2989, 2661, 2433, 2284, 2040, 1895, 1738, 1654, 1497, 1416, 1321, 1215, 1148, 

1091, 987, 909, 804, 763, 713; HRMS (ESI) m/z Calcd. for C15H3O2NF10Na: 441.98963; 

Found: 441.98981. 

 

 

N-(2-(Perfluorophenyl)acetyl)-3,5-bis(trifluoromethyl)benzamide 86. Yield: 29% as a white 

solid. m.p.: 177.7-178.7℃; 1H NMR (400 MHz, CDCl3): δ 9.41 (s, 1H), 8.35 (d, J = 0.5 Hz, 2H), 

8.13 (d, J = 0.7 Hz, 1H), 4.45 (s, 2H); 19F NMR (376 MHz, CDCl3): δ -63.20 (s, 6F), -142.25 (dd, 

J = 21.9, 7.9 Hz, 2F), -154.75 (t, J = 20.7 Hz, 1F), -162.22 (td, J = 21.5, 7.8 Hz, 2F); EI-MS: m/z: 

465.1 (23.37%), 446.1 (12.41%), 241.1 (52.42%), 213.1 (37.23%), 208.0 (100.00%), 181.0 

(31.14%), 180.0 (17.18%); IR (KBr, cm-1): 3842, 3270, 3187, 3017, 2656, 2490, 2184, 2082, 1739, 

1622, 1513, 1379, 1279, 1247, 1134, 1012, 976, 910, 847, 802, 765, 683; Anal. Calcd. for 

C17H6F11NO2: C, 43.89; H, 1.30; N, 3.01; Found: C, 43.65; H: 1.92; N, 2.98. 
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2-(Perfluorophenyl)-N-((perfluorophenyl)methyl)acetamide 87. Yield: 32% as a white solid. 

m.p.: 197.3-197.8℃; 1H NMR (300 MHz, DMSO-d6): δ 8.88 (d, J = 5.1 Hz, 1H), 4.38 (d, J = 

5.1 Hz, 2H), 3.63 (s, 2H); 19F NMR (282 MHz, DMSO-d6): δ -142.66 (dd, J = 23.3, 6.7 Hz, 2F), 

-142.97 (dd, J = 23.2, 7.1 Hz, 2F), -156.09 (t, J = 22.1 Hz, 1F), -156.95 (t, J = 22.1 Hz, 1F), 

-163.27 (td, J = 22.9, 7.4 Hz, 2F), -163.63 (td, J = 22.9, 7.0 Hz, 2F); EI-MS: m/z: 405.1 

(26.55%), 181.0 (100.00%), 161.1 (10.13%); IR (KBr, cm-1): 3847, 3296, 3095, 2928, 

2703, 2431, 2319, 2087, 1922, 1740, 1656, 1561, 1502, 1443, 1349, 1308, 1256, 1189, 

1120, 1051, 1001, 947, 912, 802, 704; HRMS (ESI) m/z Calcd. for C15H5ONF10Na: 

428.01037; Found: 428.01031. 

 

 

N-(3,5-Bis(trifluoromethyl)benzyl)-2-(perfluorophenyl)acetamide 88. Yield: 25% as a white 

solid. m.p.: 126.0-126.4℃; 1H NMR (400 MHz, CDCl3): δ 7.80 (s, 1H), 7.71 (s, 2H), 6.15 (s, 1H), 

4.59 (d, J = 6.1 Hz, 2H), 3.70 (s, 2H); 19F NMR (376 MHz, CDCl3): δ -63.06 (d, J = 9.7 Hz, 6F), -142.31 

(dd, J = 21.9, 8.0 Hz, 2F), -154.63 (t, J = 20.8 Hz, 1F), -161.69 (td, J = 21.4, 7.6 Hz, 2F); EI-MS: m/z: 

451.1 (4.85%), 450.1 (21.16%), 407.1 (15.73%), 242.0 (15.61%), 227.1 (100%), 181.0 

(11.18%); IR (KBr, cm-1): 3845, 3287, 3073, 2898, 2652, 2441, 2286, 2061, 1650, 1509, 

1376, 1279, 1122, 1004, 902, 691; HRMS (ESI) m/z Calcd. for C17H8ONF11Na: 474.03225; 

Found: 474.03229. 

 

N
H

O

F

F

F

F

F
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89  
N-(2-(Perfluorophenyl)acetyl)benzamide 89. Yield: 54% as a white solid. m.p.: 

111.6-112.9℃; 1H NMR (300 MHz, CDCl3): δ 9.45 (s, 1H), 8.13 (ddd, J = 7.2, 2.9, 1.6 Hz, 2H), 

7.70 – 7.52 (m, 1H), 7.52 – 7.43 (m, 2H), 4.49 (s, 2H); 19F NMR (282 MHz, CDCl3): δ -141.99 

(dd, J = 22.1, 7.7 Hz, 2F), -155.78 (t, J = 20.8 Hz, 1F), -162.83 (td, J = 21.7, 7.9 Hz, 2F); EI-MS: 

m/z: 329.0 (35.61%), 208.0 (31.18%), 181.0 (14.62%), 122.1 (24.41%), 105.1 (100.00%), 77.2 

(37.40%); IR (KBr, cm-1): 3849, 3639, 3266, 3074, 2951, 2657, 2497, 2285, 2086, 1917, 1684, 
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1597, 1505, 1359, 1300, 1239, 1201, 1120, 1003, 909, 770, 698; Anal. Calcd. for C15H8F5NO2: C, 

54.72; H, 2.45; N, 4.25; Found: C, 53.87; H: 2.74; N, 4.08. 
 

 

N-Benzyl-2-(perfluorophenyl)acetamide 90. Yield: 24% as a white solid. m.p.: 

164.9-165.3℃; 1H NMR (300 MHz, CDCl3): δ 7.40 – 7.22 (m, 5H), 5.88 (s, 1H), 4.46 (d, J = 5.6 

Hz, 2H), 3.64 (s, 2H); 19F NMR (282 MHz, CDCl3): δ -142.16 (dd, J = 22.0, 7.7 Hz, 2F), -155.22 

(t, J = 20.9 Hz, 2F), -162.05 (td, J = 21.7, 7.9 Hz, 2F); EI-MS: m/z: 316.1 (13.85%), 315.1 

(51.41%), 181.0 (11.07%), 91.1 (100.00%); IR (KBr, cm-1): 3849, 3628, 3287, 3088, 2929, 

2699, 2475, 2289, 2081, 1892, 1740, 1650, 1506, 1446, 1364, 1307, 1193, 1119, 1006, 915, 

800, 738, 702; HRMS (ESI) m/z Calcd. for C15H10ONF5Na: 338.05748; Found: 338.05737. 
 

 
2,3,4,5,6-Pentafluoro-N-(2-phenylacetyl)benzamide 91. Yield: 47% as a white solid. m.p.: 

113.4-114.5℃; 1H NMR (400 MHz, CDCl3): δ 8.82 (s, 1H), 7.42 – 7.26 (m, 5H), 3.96 (s, 2H); 
19F NMR (376 MHz, CDCl3): δ -136.62 (qd, J = 12.2, 6.1 Hz, 2F), -146.75 (tt, J = 20.9, 5.6 Hz, 

1F), -159.96 – -160.16 (m, 1F); EI-MS: m/z: 329.0 (33.33%), 195.0 (43.72%), 181.0 (100.00%), 

91.1 (34.32%), 90.1 (11.11%), 65.1 (10.45%); IR (KBr, cm-1): 3259, 3176, 2994, 2926, 2637, 

2492, 2239, 2113, 1732, 1652, 1494, 1418, 1363, 1320, 1217, 1135, 1093, 995, 915, 805, 733, 698; 

Anal. Calcd. for C15H8F5NO2: C, 54.72; H, 2.45; N, 4.25; Found: C, 54.54; H: 3.11; N, 4.28. 
 

 
N-(2-Phenylacetyl)-3,5-bis(trifluoromethyl)benzamide 92. Yield: 20% as a white solid. m.p.: 

171.7-172.5℃; 1H NMR (400 MHz, CDCl3): δ 9.31 (s, 1H), 8.30 (s, 2H), 8.09 (s, 1H), 7.39 – 

7.27 (m, 5H), 4.28 (s, 2H); 19F NMR (376 MHz, CDCl3): δ -63.04 (s, 6F); EI-MS: m/z: 375.1 

(21.87%), 241.0 (28.60%), 213.0 (20.46%), 118.0 (100.00%), 91.1 (27.78%), 90.1 (15.28%); IR 

(KBr, cm-1): 3268, 3178, 2921, 2858, 2620, 2517, 2317, 1724, 1622, 1511, 1458, 1369, 1279, 

1122, 912, 846, 803, 684; Anal. Calcd. for C17H11F6NO2: C, 54.41; H, 2.95; N, 3.73; Found: C, 

53.91; H: 3.53; N, 3.56. 
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N-((Perfluorophenyl)methyl)-2-phenylacetamide 93. Yield: 26% as a white solid. m.p.: 

151.5-151.9℃; 1H NMR (400 MHz, CDCl3): δ 7.39 – 7.33 (m, 2H), 7.31 (ddd, J = 7.4, 3.6, 1.5 

Hz, 1H), 7.24 – 7.20 (m, 2H), 5.79 (s, 1H), 4.49 (d, J = 6.0 Hz, 2H), 3.57 (s, 2H); 19F NMR (376 

MHz, CDCl3): δ -143.08 (dd, J = 22.4, 8.2 Hz, 2F), -154.73 (t, J = 20.8 Hz, 2F), -161.80 (td, J = 

21.6, 8.1 Hz, 2F); EI-MS: m/z: 316.1 (27.74%), 315.1 (74.55%), 181.0 (66.39%), 105.0 

(16.42%), 91.1 (100.00%), 65.1 (21.90%); IR (KBr, cm-1): 3847, 3628, 3409, 3286, 3080, 

2936, 2650, 2472, 2291, 2025, 1895, 1742, 1650, 1502, 1446, 1333, 1253, 1121, 1053, 953, 

884, 695; HRMS (ESI) m/z Calcd. for C15H10ONF5Na: 338.05748; Found: 338.05719. 

 

 
Compounds 94-99 were synthesized with similar methods.The general synthetic methods are 

described with the preparation of the compounds 94 or 95 as a representative example. 

 

 

3-Aminobenzoic 2,3,4,5,6-pentafluorobenzoic anhydride 94. 3-Aminobenzoic acid (0.137 g, 

1.0 mmol) and 2,3,4,5,6-pentafluorobenzoyl chloride 63 (0.14 mL, 1.0 mmol) were dissolved in 

THF (10 mL). The mixture was tirred at room temperature overnight and some precipitates were 

produced. These precipitates were filtered and then dried under vaccum to obtain the product 94. 

Yield: 69% as a brown solid. m.p.: > 280℃ decomposed; 1H NMR (400 MHz, acetone-d6): δ 

10.21 (s, 2H), 8.44 (s, 1H), 8.05 – 7.98 (m, 1H), 7.90 – 7.84 (m, 1H), 7.56 (t, J = 8.0 Hz, 1H); 19F 

NMR (376 MHz, acetone-d6): δ -142.86 – -143.13 (m, 2F), -154.16 (td, J = 20.3, 8.5 Hz, 1F), 

-162.93 – -163.20 (m, 2F); EI-MS: m/z: 332.2 (11.00%), 331.2 (69.48%), 195.1 (100.00%), 167.1 

(26.83%), 117.1 (10.20%); IR (KBr, cm-1): 3394, 3100, 2935, 2191, 1708, 1609, 1520, 1491, 1377, 

1322, 1277, 1113, 1008, 886, 842, 749, 680; Anal. Calcd. for C14H6F5NO3: C, 50.77; H, 1.83; N, 

4.23; Found: C, 50.52; H: 2.66; N, 4.42. 
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(Perfluorophenyl)methyl 3-aminobenzoate 95. 1-(Bromomethyl)-2,3,4,5,6-penta-fluorobenzene 

62 (0.14 mL, 1.0 mmol) and 3-aminobenzoic acid (0.137 g, 1.0 mmol) were dissolved in 15.0 mL 

THF and K2CO3 (0.552 g, 4.0 mmol) was used as base. The reaction was stirred at r.t. and 

monitored by TLC. After completion of the reaction, the mixture was washed with saturated 

NaCl aqueous solution and extracted with ethyl acetate, the organic layer were combined 

and dried with Na2SO4 then filtered. The organic solvent was removed under vacuum and 

the residue was separated by column chromatography. The product 95 was obtained with 

yield of 40% as a white solid. m.p.: 101.9-102.3℃; 1H NMR (400 MHz, CDCl3): δ 7.42 – 7.36 

(m, 1H), 7.33 – 7.28 (m, 1H), 7.20 (t, J = 7.9 Hz, 1H), 6.87 (ddd, J = 8.0, 2.5, 1.0 Hz, 1H), 5.42 (t, 

J = 1.4 Hz, 2H), 3.80 (s, 2H); 19F NMR (376 MHz, CDCl3): δ -141.67 (dd, J = 22.4, 8.1 Hz, 2F), 

-152.61 (t, J = 20.7 Hz, 2F), -161.58 (td, J = 21.2, 7.7 Hz, 2F); EI-MS: m/z: 318.1 (23.16%), 

317.1 (100.00%); IR (KBr, cm-1): 3853, 3640, 3498, 3396, 3217, 3018, 2929, 2652, 2450, 2292, 

2157, 2058, 1941, 1709, 1658, 1619, 1502, 1460, 1382, 1307, 1228, 1119, 1048, 930, 821, 751, 

682; Anal. Calcd. for C14H8F5NO2: C, 53.01; H, 2.54; N, 4.42; Found: C, 53.02; H: 3.73; N, 4.34. 

 

 
(Perfluorophenyl)methyl 3-(((perfluorophenyl)methyl)amino)benzoate 96. Yield: 36% as the 

second product of the reaction for compound 95. m.p.: 105.4-105.8℃; 1H NMR (400 MHz, 

CDCl3): δ 7.43 – 7.36 (m, 1H), 7.33 – 7.27 (m, 1H), 7.23 (d, J = 7.8 Hz, 1H), 6.86 (ddd, J = 8.1, 

2.5, 0.9 Hz, 1H), 5.42 (t, J = 1.4 Hz, 2H), 4.50 (s, 2H), 4.23 (s, 1H); 19F NMR (376 MHz, CDCl3): 

δ -141.78 (dd, J = 21.8, 8.2 Hz, 2F), -143.77 (dd, J = 22.4, 8.1 Hz, 2F), -152.58 (t, J = 20.7 Hz, 

1F), -154.35 (t, J = 20.8 Hz, 1F), -161.27 – -161.96 (m, 4F); EI-MS: m/z: 498.1 (21.93%), 496.9 

(100.00%); IR (KBr, cm-1): 3640, 3391, 3044, 2950, 2649, 2449, 2196, 2026, 1711, 1656, 1608, 

1496, 1423, 1377, 1322, 1275, 1227, 1104, 1024, 976, 931, 811, 744, 675; Anal. Calcd. for 

C21H9F10NO2: C, 50.72; H, 1.82; N, 2.82; Found: C, 50.27; H: 2.30; N, 3.28. 

Compound 96 was crystallized in the space group P21/c from DCM by slow evaporation of the 

solvent. 

 

3-Aminobenzoic 3,5-bis(trifluoromethyl)benzoic anhydride 97. The synthesis of 97 was similar 

to that of 94. Yield: 92% as a white solid. m.p.: 274.2-274.6℃; 1H NMR (400 MHz, 
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acetone-d6): δ 10.15 (s, 2H), 8.67 (s, 2H), 8.48 (dd, J = 3.4, 1.6 Hz, 1H), 8.30 (s, 1H), 8.15 (ddd, J 

= 8.1, 3.1, 1.9 Hz, 1H), 7.88 – 7.81 (m, 1H), 7.54 (t, J = 7.9 Hz, 1H); 19F NMR (376 MHz, 

acetone-d6): δ -63.38 (s, 6F); EI-MS: m/z: 378.3 (12.58%), 377.2 (71.64%), 241.1 (100.00%), 

213.2 (45.81%); IR (KBr, cm-1): 3305, 3097, 3000, 2866, 2554, 2064, 1831, 1684, 1594, 1560, 

1448, 1376, 1273, 1135, 907, 846, 817, 758, 676; Anal. Calcd. for C16H9F6NO3: C, 50.94; H, 2.40; 

N, 3.71; Found: C, 50.70; H: 2.81; N, 4.00. 

 

 

3,5-Bis(trifluoromethyl)benzyl 3-aminobenzoate 98. The synthesis of 98 was similar to that of 

94. Yield: 43% as a yellow solid. m.p.: 137.5-138.1℃; 1H NMR (400 MHz, CDCl3): δ 7.89 (s, 

2H), 7.86 (s, 1H), 7.46 (d, J = 7.7 Hz, 1H), 7.37 (s, 1H), 7.28 – 7.21 (m, 1H), 6.90 (d, J = 7.9 Hz, 1H), 

5.43 (s, 2H), 3.88 (s, 2H); 19F NMR (376 MHz, CDCl3): δ -62.92 (s, 6F); EI-MS: m/z: 364.1 (25.02%), 

363.1(100.00%), 120.1 (21.70%), 93.2 (11.76%), 92.2 (42.63%), 65.2 (36.86%); IR (KBr, cm-1): 

3448, 3317, 3213, 3099, 2925, 2647, 2202, 2043, 1715, 1626, 1593, 1463, 1369, 1282, 1242, 1163, 

1115, 1011, 909, 881, 843, 808, 747, 681; Anal. Calcd. for C16H11F6NO2: C, 52.90; H, 3.05; N, 

3.86; Found: C, 53.26; H: 3.01; N, 3.62. 
 

 

3,5-Bis(trifluoromethyl)benzyl 3-((3,5-Bis(trifluoromethyl)benzyl)amino)benzoate 99. The 

synthesis of 99 was similar to that of 94. Yield: 35% as a yellow solid. m.p.: 97.8-99.6℃; 1H 

NMR (400 MHz, CDCl3): δ 7.87 (s, 2H), 7.86 (s, 1H), 7.83 (s, 2H), 7.80 (s, 1H), 7.48 (d, J = 7.8 

Hz, 1H), 7.36 – 7.20 (m, 1H), 6.81 (dd, J = 8.1, 1.7 Hz, 1H), 5.42 (s, 2H), 4.52 (s, 2H), 4.37 (s, 

1H); 19F NMR (376 MHz, CDCl3): δ -62.93 (s, 6F), -62.95 (s, 6F); EI-MS: m/z: 590.1 (23.81%), 

589.0 (100.00%); IR (KBr, cm-1): 3642, 3304, 3097, 3001, 2869, 2664, 2550, 2052, 1684, 

1595, 1560, 1448, 1375, 1274, 1136, 908, 846, 758, 679; HRMS (ESI) m/z Calcd. for 

C25H16O2NF12: 590.09839; Found: 590.09930. 
 

 
2-Methylquinolin-8-yl 2,3,4,5,6-pentafluorobenzoate 100. 2-Methylquinolin-8-ol (0.159 g, 1.0 

mmol) and 2,3,4,5,6-pentafluorobenzoyl chloride 63 (0.14 mL, 1.0 mmol) were dissolved in THF 

(15 mL). The mixture was stirred at room temperature overnight and some precipitates were 
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produced. These precipitates were filtered and then dried under vaccum to obtain the product 100. 

Yield: 89% as a yellow solid. m.p.: 206.4-207.5℃; 1H NMR (400 MHz, CDCl3): δ 8.70 (d, J = 

8.6 Hz, 1H), 8.02 (dd, J = 7.5, 2.0 Hz, 1H), 7.90 (d, J = 0.8 Hz, 1H), 7.71 – 7.68 (m, 1H), 7.61 – 

7.56 (m, 1H), 3.38 (s, 3H); 19F NMR (376 MHz, CDCl3): δ -133.85 – -134.78 (m, 2F), -146.40 (tt, 

J = 21.2, 6.4 Hz, 1F), -160.36 – -161.24 (m, 2F); EI-MS: m/z: 353.0 (62.77%), 194.9 (100.00%), 

166.9 (45.81%); IR (KBr, cm-1): 3651, 3106, 3011, 2436, 2313, 2139, 2096, 2033, 1740, 1644, 

1496, 1425, 1370, 1332, 1200, 1097, 1049, 995, 923, 844, 759, 700; Anal. Calcd. for 

C17H8F5NO2·1.3H2O: C, 54.21; H, 2.84; N, 3.72; Found: C, 54.06; H: 3.13; N, 4.34. 
 

 

2-Methyl-8-((perfluorophenyl)methoxy)quinoline 101. 

1-(Bromomethyl)-2,3,4,5,6-penta-fluorobenzene 62 (0.14 mL, 1.0 mmol) and 

2-methylquinolin-8-ol (0.159 g, 1.0 mmol) were dissolved in 15.0 mL THF and KOH (0.067 g, 

1.2 mmol) was used as base. The reaction was stirred at r.t. and monitored by TLC. After 

completion of the reaction, the mixture was washed with saturated NaCl aqueous solution 

and extracted with ethyl acetate, the organic layer were combined and dried with Na2SO4 

then filtered. The organic solvent was removed under vacuum and the residua were 

separated with column chromatography. The product 95 was obtained with yield of 81% as 

a brown solid. m.p.: 164.0-164.4℃; 1H NMR (400 MHz, CDCl3): δ 8.02 (d, J = 8.4 Hz, 1H), 

7.45 (dd, J = 8.2, 1.3 Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.20 (dd, J = 7.6, 

1.3 Hz, 1H), 5.49 (d, J = 1.4 Hz, 2H), 2.76 (s, 3H); 19F NMR (376 MHz, cdcl3) δ -140.97 – 

-141.77 (m, 2F), -153.30 (t, J = 20.8 Hz, 1F), -162.06 (td, J = 22.1, 8.3 Hz, 2F); EI-MS: m/z: 

340.1 (26.91%), 339.0 (100.00%), 338.0 (16.34%), 143.0 (75.56%), 130.0 (39.81%); IR (KBr, 

cm-1): 3027, 2928, 2867, 2649, 2288, 2092, 1740, 1658, 1607, 1564, 1504, 1432, 1373, 1266, 

1169, 1104, 1006, 973, 936, 900, 832, 763, 681; Anal. Calcd. for C17H10F5NO: C, 60.18; H, 2.97; 

N, 4.13; Found: C, 60.28; H: 3.03; N, 4.06. 

Compound 101 was crystallized in the space group Pbca from ethyl acetate/hexane by slow 

evaporation of the solvent. 
 

 
8-((3,5-Bis(trifluoromethyl)benzyl)oxy)-2-methylquinoline 102. The synthesis of 102 was 

similar to that of 101. Yield: 96% as a brown solid. m.p.: 93.9-94.9℃; 1H NMR (400 MHz, 

CDCl3): δ 8.08 (s, 2H), 8.06 (s, 0.5H), 8.04 (s, 0.5H), 7.83 (s, 1H), 7.43 (d, J = 8.2 Hz, 1H), 7.38 – 

7.31 (m, 2H), 7.07 – 7.01 (m, 1H), 5.52 (s, 2H), 2.82 (s, 3H); 19F NMR (376 MHz, CDCl3): δ 

-62.88 (s, 6F); EI-MS: m/z: 386.1 (24.86%), 385.1 (100.00%), 384.1 (66.16%), 366.1 (12.85%), 

172.0 (45.86%); IR (KBr, cm-1): 3028, 2928, 2866, 2289, 2044, 1741, 1611, 1566, 1504, 1469, 
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1361, 1278, 1164, 1108, 1009, 972, 898, 826, 743, 682; Anal. Calcd. for C19H13F6NO: C, 59.23; H, 

3.40; N, 3.64; Found: C, 59.46; H: 4.13; N, 3.67. 

 

 

2-Methylquinolin-8-yl 3,5-bis(trifluoromethyl)benzoate 103. The synthesis of 103 was similar 

to that of 100. Yield: 91% as a pale yellow solid. m.p.: >200℃ decomposed; 1H NMR (400 

MHz, CDCl3): δ 8.86 (s, 2H), 8.71 (d, J = 8.6 Hz, 1H), 8.13 (s, 1H), 8.03 (dd, J = 8.1, 1.3 Hz, 1H), 

7.88 (t, J = 7.9 Hz, 1H), 7.81 (dd, J = 7.7, 1.3 Hz, 1H), 7.70 (d, J = 8.6 Hz, 1H), 3.36 (s, 3H); 19F 

NMR (376 MHz, CDCl3): δ -62.84 (s, 6F); EI-MS: m/z: 399.1 (66.15%), 241.0 (100.00%), 

213.0 (31.26%), 159.0 (18.58%), 131.0 (10.28%); IR (KBr, cm-1): 3612, 3218, 3097, 2922, 

2498, 2061, 1997, 1923, 1752, 1614, 1466, 1376, 1280, 1220, 1128, 913, 849, 758, 683. 

Compound 103 with a 3,5-Bis(trifluoromethyl)benzoic acid was co-crystallized from the mixed 

solvent of ethanol/ethyl acetate (v/v =1:1) in the space group P21/n. 

 

 
Compounds 104-109 were synthesized with similar methods.The general synthetic methods 

are described with the preparation of the compound 104 as a representative example. 

 

 

2-((Perfluorobenzoyl)oxy)benzoic acid 104. 2,3,4,5,6-Pentafluorobenzoyl chloride 63 (0.14 mL, 

1.0 mmol) and 2-hydroxybenzoic acid (0.138 g, 1.0 mmol) were dissolved in 15.0 mL THF and 

KOH (0.067 g, 1.2 mmol) was used as base. The reaction was stirred at r.t. and monitored by TLC. 

After completion of the reaction, the mixture was washed with saturated NaCl aqueous 

solution and extracted with ethyl acetate, the organic layer were combined and dried with 

Na2SO4 then filtered. The organic solvent was removed under vacuum and the residua were 

separated with column chromatography. The product 104 was obtained with yield of 83% 

as a white solid. m.p.: 74.2-75.1℃; 1H NMR (400 MHz, CDCl3): δ 8.20 (dd, J = 7.9, 1.7 Hz, 

1H), 7.76 – 7.67 (m, 1H), 7.46 (td, J = 7.7, 1.2 Hz, 1H), 7.28 (dd, J = 8.1, 1.1 Hz, 1H); 19F NMR 



115 
 

(376 MHz, CDCl3): δ -136.55 (t, J = 22.5 Hz, 2F), -146.42 – -147.18 (m, 1F), -159.62 – -160.52 

(m, 2F); EI-MS: m/z: 332.1 (3.81%), 195.0 (100.00%), 167.0 (26.27%), 121.1 (10.08%), 120.1 

(80.41%), 117.1 (10.69%); IR (KBr, cm-1): 2923, 2642, 2551, 2053, 1704, 1651, 1496, 1418, 1321, 

1261, 1201, 1094, 996, 919, 796, 738; Anal. Calcd. for C14H5F5O4: C, 50.62; H, 1.52; Found: C, 

50.56; H: 1.66. 

Compound 104 was crystallized from DMF/Et2O in the space group P21/c. 

 

OH

O

O

F

F

F

F

F

105  

(Perfluorophenyl)methyl 2-hydroxybenzoate 105. The synthesis of 105 was similar to that of 

104. Yield: 73% as a white solid. m.p.: 105.8-106.1℃; 1H NMR (400 MHz, CDCl3): δ 10.49 – 

10.45 (m, 1H), 7.80 – 7.74 (m, 1H), 7.51 – 7.43 (m, 1H), 7.02 – 6.95 (m, 1H), 6.87 (ddd, J = 8.2, 

7.2, 1.1 Hz, 1H), 5.48 (t, J = 1.4 Hz, 2H); 19F NMR (376 MHz, CDCl3): δ -141.52 (dd, J = 22.5, 

8.3 Hz, 2F), -151.77 (t, J = 20.7 Hz, 1F), -161.19 (qd, J = 10.0, 2.6 Hz, 2F); EI-MS: m/z: 318.1 

(48.93%), 181.0 (100.00%), 120.0 (28.76%); IR (KBr, cm-1): 3225, 2924, 2653, 2282, 2165, 2083, 

1916, 1681, 1610, 1504, 1400, 1301, 1251, 1197, 1133, 1046, 965, 929, 874, 804, 761, 707; Anal. 

Calcd. for C14H7F5O3: C, 52.84; H, 2.22; Found: C, 52.98; H: 2.28. 

Compound 105 was crystallized in the space group P-1 by diffusing Et2O into the methanol 

solution of the sample. 

 

 
(Perfluorophenyl)methyl 2-((perfluorophenyl)methoxy)benzoate 106. Yield: 9% as the 

second product of the reaction for compound 105. m.p.: 93.1-94.3℃; 1H NMR (400 MHz, 

CDCl3): δ 7.81 (dd, J = 7.6, 1.8 Hz, 1H), 7.58 – 7.46 (m, 1H), 7.08 (t, J = 7.7 Hz, 2H), 5.35 (t, J = 

1.5 Hz, 2H), 5.17 (s, 2H); 19F NMR (376 MHz, CDCl3): δ -142.06 (dd, J = 21.8, 8.3 Hz, 2F), 

-142.31 (dd, J = 21.8, 8.2 Hz, 2F), -152.37 (t, J = 20.7 Hz, 1F), -152.60 (t, J = 20.7 Hz, 1F), 

-161.62 (dt, J = 21.8, 8.1 Hz, 2F), -161.82 (dt, J = 21.5, 8.1 Hz, 2F); EI-MS: m/z: 499.2 (66.40%), 

498.2 (43.73%), 317.1 (32.92%), 181.0 (100.00%); IR (KBr, cm-1): 3394, 2925, 2651, 2325, 2079, 

1705, 1659, 1601, 1506, 1453, 1384, 1299, 1238, 1131, 1051, 974, 936, 870, 834, 759, 696, 662; 

Anal. Calcd. for C21H8F10O3: C, 50.62; H, 1.62; Found: C, 50.73; H: 1.81. 

Compound 106 was crystallized from the space group P212121 by diffusing Et2O into the DMF 

solution of the sample. 
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2-((3,5-Bis(trifluoromethyl)benzoyl)oxy)benzoic acid 107. The synthesis of 107 was similar to 

that of 104. Yield: 79% as a white solid. m.p.: 166.1-166.2℃; 1H NMR (300 MHz, CDCl3): δ 

8.66 – 8.63 (m, 2H), 8.16 (dd, J = 7.9, 1.5 Hz, 2H), 7.70 (ddd, J = 8.1, 7.5, 1.8 Hz, 1H), 7.47 – 

7.40 (m, 1H), 7.31 – 7.26 (m, 1H); 19F NMR (282 MHz, CDCl3): δ -63.00 (s, 6F); EI-MS: m/z: 

378.1 (1.15%), 362.1 (15.11%), 361.0 (91.74%), 241.0 (100.00%), 213.0 (36.03%), 120.0 

(31.27%); IR (KBr, cm-1): 3069, 2826, 2662, 2546, 2199, 2077, 1866, 1739, 1696, 1611, 1492, 

1459, 1417, 1280, 1244, 1171, 1118, 918, 844, 801, 743, 683; Anal. Calcd. for C21H8F10O3: C, 

50.81; H, 2.13; Found: C, 50.22; H: 2.14. 

 

 

3,5-Bis(trifluoromethyl)benzyl 2-hydroxybenzoate 108. The synthesis of 108 was similar to that 

of 104. Yield: 21% as a white solid. m.p.: 48.4-48.9℃; 1H NMR (300 MHz, CDCl3): δ 10.54 (s, 

1H), 8.03 – 7.77 (m, 4H), 7.56 – 7.43 (m, 1H), 7.01 (dd, J = 8.3, 0.9 Hz, 1H), 6.96 – 6.83 (m, 1H), 5.48 (s, 

2H); 19F NMR (282 MHz, CDCl3): δ -62.92 (s, 6F); EI-MS: m/z: 364.3 (4.35%), 363.2 (19.04%), 

227.1 (100.00%), 177.1 (13.97%), 121.1 (71.22%), 120.1 (10.06%); IR (KBr, cm-1): 3229, 2955, 

2222, 1977, 1678, 1613, 1475, 1394, 1270, 1120, 1031, 928, 878, 803, 756, 685; Anal. Calcd. for 

C16H10F6O3: C, 52.76; H, 2.77; Found: C, 52.66; H: 3.35. 

 

 
3,5-Bis(trifluoromethyl)benzyl 2-((3,5-bis(trifluoromethyl)benzyl)oxy)benzoate 109. Yield: 15% 

as the second product of the reaction for compound 108. m.p.: 92.1-92.5℃; 1H NMR (400 

MHz, CDCl3); δ 7.99 (s, 2H), 7.93 (dd, J = 7.8, 1.8 Hz, 1H), 7.86 (s, 2H), 7.81 (d, J = 4.9 Hz, 2H), 

7.54 (ddd, J = 8.4, 7.4, 1.8 Hz, 1H), 7.11 (td, J = 7.6, 1.0 Hz, 1H), 7.04 (d, J = 8.4 Hz, 1H), 5.48 

(s,2H), 5.29 (s, 2H); 19F NMR (376 MHz, CDCl3): δ -63.05 (s, 6F), -63.07 (s, 6F); EI-MS: m/z: 

592.3 (11.20%), 591.3 (45.55%), 590.3 (18.86%), 363.1 (33.17%), 347.1 (12.00%), 228.1 

(10.20%), 227.1 (100.00%), 120.9 (21.59%); IR (KBr, cm-1): 3072, 2961, 1719, 1600, 1492, 1450, 

1363, 1274, 1234, 1114, 1062, 891, 843, 803, 760, 691; Anal. Calcd. for C25H14F12O3: C, 50.86; H, 

2.39; Found: C, 51.12; H: 3.43. 
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Compound 109 was crystallized from ethyl acetate/hexane in the space group P-1. 
 

 
 

Compounds 110-113 were synthesized with similar methods.The general synthetic methods 

are described by the preparation of the compound 110 as a representative example. 

 

 

2,3,4,5,6-Pentafluoro-N-(2-hydroxyphenyl)benzamide 110. 2,3,4,5,6-Pentafluorobenzoyl 

chloride 63 (0.14 mL, 1.0 mmol) and 2-aminophenol (0.109 g, 1.0 mmol) were dissolved in 15.0 

mL THF. The mixture was stirred at r.t. and monitored by TLC. After completion of the 

reaction, the mixture was washed with saturated NaCl aqueous solution and extracted with 

ethyl acetate, the organic layer were combined and dried with Na2SO4 then filtered. The 

organic solvent was removed under vacuum and the residua were separated with column 

chromatography. The product 110 was obtained with yield of 81% as a brown solid. m.p.: 

211.5-212.4℃; 1H NMR (300 MHz, acetone-d6): δ 9.44 (s, 1H), 8.16 (dt, J = 8.0, 1.5 Hz, 1H), 

7.06 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.01 – 6.81 (m, 2H); 19F NMR (282 MHz, acetone-d6): δ 

-143.02 – -143.74 (m, 2F), -155.12 (t, J = 20.2 Hz, 1F), -162.96 – -164.28 (m, 2F); EI-MS: m/z: 

303.4 (39.32%), 302.9 (100.00%), 590.3 (18.86%), 363.1 (33.17%), 347.1 (12.00%), 228.1 

(10.20%), 227.1 (100.00%), 302.0 (29.21%), 195.5 (39.84%), 194.3 (58.74%), 80.2 (31.91%); IR 

(KBr, cm-1): 3758, 3290, 3103, 2321, 2171, 2106, 2031, 1976, 1863, 1740, 1663, 1597, 1545, 

1495, 1453, 1342, 1281, 1228, 1188, 1104, 993, 829, 745; Anal. Calcd. for C13H6F5NO2: C, 51.50; 

H, 1.99; N, 4.62; Found: C, 51.03; H:1.93; N, 4.47. 
 

 
2-(((Perfluorophenyl)methyl)amino)phenol 111. The synthesis of 111 was similar to that of 110. 

Yield: 45% as a pale yellow solid. m.p.: 121.4-122.7℃; 1H NMR (300 MHz, CDCl3): δ 6.87 

(ddd, J = 8.0, 6.5, 2.1 Hz, 1H), 6.82 – 6.76 (m, 1H), 6.75 – 6.65 (m, 2H), 4.70 (s, 1H), 4.47 (s, 2H); 
19F NMR (282 MHz, CDCl3): δ -143.67 (dd, J = 22.5, 8.1 Hz, 2F), -154.96 (t, J = 20.8 Hz, 1F), 
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-161.84 (td, J = 22.0, 8.3 Hz, 2F); EI-MS: m/z: 290.7 (19.51%), 289.7 (100.00%), 288.3 (95.17%); 

IR (KBr, cm-1): 3644, 3327, 3029, 2841, 2703, 2596, 2437, 2290, 2051, 1774, 1656, 1600, 1499, 

1355, 1278, 1239, 1186, 1112, 1056, 1018, 926, 865, 748, 684; Anal. Calcd. for C13H8F5NO: C, 

53.99; H, 2.79; N, 4.84; Found: C, 53.86; H:3.66; N, 5.00. 

Compound 111 was crystallized from ethyl acetate/hexane in the space group Pb21/a. 
 

 

2-((3,5-Bis(trifluoromethyl)benzyl)amino)phenol 112. The synthesis of 112 was similar to that 

of 110. Yield: 41% as a red solid. m.p.: 88.1-88.5℃; 1H NMR (400 MHz, CDCl3): δ 7.85 (s, 

2H), 7.79 (s, 1H), 6.81 (td, J = 7.7, 1.4 Hz, 1H), 6.75 (dd, J = 7.8, 1.4 Hz, 1H), 6.66 (td, J = 7.6, 

1.4 Hz, 1H), 6.51 (dd, J = 7.9, 1.4 Hz, 1H), 4.70 (s, 2H), 4.49 (s, 2H); 19F NMR (376 MHz, 

CDCl3): δ -62.84 (s, 6F); EI-MS: m/z: 336.5 (13.67%), 335.5 (97.42%), 334.2 (100.00%); IR 

(KBr, cm-1): 3328, 3103, 2867, 2709, 2599, 2177, 2043, 1976, 1830, 1742, 1599, 1511, 1472, 

1438, 1379, 1279, 1239, 1116, 1048, 994, 946, 895, 841, 794, 749, 707, 676; Anal. Calcd. for 

C15H11F6NO: C, 53.74; H, 3.31; N, 4.18; Found: C, 55.12; H:3.48; N, 4.27. 

 

 
N-(2-Hydroxyphenyl)-3,5-bis(trifluoromethyl)benzamide 113. The synthesis of 113 was 

similar to that of 110. Yield: 96% as a white solid. m.p.: 174.6-175.2℃; 1H NMR (300 MHz, 

acetone-d6): δ 9.79 (s, 1H), 8.65 (s, 2H), 8.31 (s, 1H), 7.76 (dd, J = 8.0, 1.8 Hz, 1H), 7.13 (ddd, J = 8.1, 

7.3, 1.6 Hz, 1H), 7.00 (dd, J = 8.1, 1.4 Hz, 1H), 6.96 – 6.87 (m, 1H); 19F NMR (282 MHz, acetone-d6): δ 

-63.42 (s, 6F); EI-MS: m/z: 349.1 (88.47%), 240.8 (100.00%), 213.4 (30.11%); IR (KBr, cm-1): 

3422, 3197, 2175, 2010, 1904, 1714, 1655, 1601, 1542, 1452, 1363, 1271, 1121, 902, 846, 753, 

684; Anal. Calcd. for C15H9F6NO2: C, 51.59; H, 2.60; N, 4.01; Found: C, 51.46; H:2.96; N, 3.95. 

Compound 113 was crystallized from ethyl acetate/hexane in the space group P21/n. 

 

 

N

N

NH2

O

O F

F

F

F

F

114  

(Perfluorophenyl)methyl 3-aminopyrazine-2-carboxylate 114. To a suspension of 

3-aminopyrazine-2-carboxylic acid (0.139 g, 1.0 mmol), NaH (60% in mineral oil, 0.10 g, 
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1.2 mmol) in DMF (5 mL), 1-(bromomethyl)-2,3,4,5,6-pentafluorobenzene 62 (0.14 mL, 

1.0 mmol) was added dropwise. The reaction mixture was stirred at r.t. and monitored by 

TLC. After completion of the reaction, the mixture was washed with saturated NaCl 

aqueous solution and extracted with ethyl acetate, the organic layer were combined and 

dried with Na2SO4 then filtered. The organic solvent was removed under vacuum and the 

residue was chromatographed on silica gel (ethyl acetate/hexane 1:4) affording pure 114 

(0.254 g, 80%) as a white solid. m.p.: 155.7-156.0℃; 1H NMR (300 MHz, CDCl3): δ 8.22 (d, 

J = 2.1 Hz, 1H), 8.01 (d, J = 2.2 Hz, 1H), 6.48 (s, 2H), 5.49 (d, J = 1.2 Hz, 2H); 19F NMR (282 

MHz, CDCl3): δ -141.09 (d, J = 21.1 Hz, 2F), -152.19 (t, J = 20.2 Hz, 1F), -161.49 (t, J = 16.7 Hz, 

2F); EI-MS: m/z: 320.2 (31.37%), 319.2 (46.76%), 181.1 (100.00%), 123.1 (64.58%), 95.2 

(69.07%), 94.2 (25.30%), 67.3 (27.73%); IR (KBr, cm-1): 3461, 3263, 3151, 2636, 2229, 2078, 

1696, 1609, 1508, 1431, 1386, 1301, 1197, 1107, 978, 925, 839, 737, 662; Anal. Calcd. for 

C12H6F5N3O2: C, 45.15; H, 1.89; N, 13.16; Found: C, 45.23; H:1.78; N, 13.16. 

Compound 114 was crystallized from ethyl acetate/hexane in the space group P21/c. 
 

N

N

NH2

O

O

CF3

CF3

115  

3,5-Bis(trifluoromethyl)benzyl 3-aminopyrazine-2-carboxylate 115. The synthesis of 115 was 

similar to that of 114. Yield: 74% as a white solid. m.p.: 160.6-161.1℃; 1H NMR (300 MHz, 

CDCl3): δ 8.24 (d, J = 2.2 Hz, 1H), 8.04 (d, J = 2.2 Hz, 1H), 7.95 (s, 2H), 7.86 (s, 1H), 6.40 (s, 

2H), 5.52 (s, 2H); 19F NMR (282 MHz, CDCl3): δ -62.92 (s, 6F); EI-MS: m/z: 365.2 (30.41%), 

227.2 (49.66%), 123.1 (69.57%), 95.2 (100.00%), 94.2 (18.76%), 67.3 (15.35%); IR (KBr, cm-1): 

3454, 3275, 3154, 2643, 2231, 2044, 1827, 1684, 1621, 1542, 1467, 1397, 1280, 1161, 1110, 896, 

843, 685; Anal. Calcd. for C14H9F6N3O2: C, 46.04; H, 2.48; N, 11.51; Found: C, 46.02; H:2.59; N, 

11.56. 

Compound 115 was crystallized from ethyl acetate/hexane in the space group P21/n. 

 

 
N1,N5-Bis(3,5-bis(trifluoromethyl)benzyl)naphthalene-1,5-diamine 116. 

1-(Bromomethyl)-3,5-bis(trifluoromethyl)benzene 19 (0.36 mL, 2.0 mmol) and 

naphthalene-1,5-diamine (0.158 g, 1.0 mmol) were dissolved in 7.0 mL THF and NaH (60% in 

mineral oil, 0.20 g, 2.4 mmol) was used as base. The reaction was stirred at r.t. and monitored 

by TLC. After completion of the reaction, the mixture was washed with saturated NaCl 

aqueous solution and extracted with ethyl acetate, the organic layer were combined and 

dried with Na2SO4 then filtered. The organic solvent was removed under vacuum and the 

residua were separated with column chromatography. The product 116 was obtained with 

yield of 61% as a brown solid. m.p.: 215.9-216.4℃; 1H NMR (400 MHz, acetone-d6): δ 8.13 
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(s, 4H), 7.91 (s, 2H), 7.50 (d, J = 8.5 Hz, 2H), 7.19 (t, J = 8.0 Hz, 2H), 6.51 (d, J = 7.6 Hz, 2H), 

6.39 (t, J = 5.8 Hz, 2H), 4.83 (d, J = 5.5 Hz, 4H); 19F NMR (376 MHz, acetone-d6): δ -63.32 (s, 

6F); ESI-MS: 609.12 [M-H]-; IR (KBr, cm-1): 3307, 2930, 2086, 1664, 1547, 1494, 1427, 

1380, 1332, 1277, 1170, 1114, 1061, 988, 902, 845, 811, 757, 704, 679; Elemental analysis 

calcd. for C28H18F12N2: C, 55.09; H, 2.97; N, 4.59; found: C, 55.01; H, 3.10; N, 4.53. 

Compound 116 was crystallized from ethyl acetate/hexane. 
 

 
2,3,4,5,6-Pentafluoro-N-(perfluorobenzoyl)-N-(perfluorophenyl)benzamide 117. 

2,3,4,5,6-Pentafluorobenzoyl chloride 63 (0.14 mL, 1.0 mmol) and 1-(perfluorophenyl)urea (0.226 

g, 1.0 mmol) were dissolved in 4.0 mL THF and NaH (60% in mineral oil, 0.048 g, 1.2 mmol) 

was used as base. The reaction was stirred at r.t. and monitored by TLC. After completion of the 

reaction, the mixture was washed with saturated NaCl aqueous solution and extracted with 

ethyl acetate, the organic layer were combined and dried with Na2SO4 then filtered. The 

organic solvent was removed under vacuum and the residua were separated with column 

chromatography. The product 117 was obtained with yield of 28% as a white solid. m.p.: 

121.6-122.3℃; 19F NMR (282 MHz, CDCl3): δ -139.01 (s, 4F), -141.94 (s, 2F), -145.75 (s, 2F), 

-147.46 (s, 1F), -158.10 – -159.20 (m, 6F); EI-MS: m/z: 570.9 (24.02%), 196.0 (10.17%), 194.9 

(100.00%), 166.9 (38.77%), 116.9 (17.33%); IR (KBr, cm-1): 3745, 3444, 2962, 2651, 2324, 2161, 

2103, 2007, 1956, 1733, 1653, 1508, 1423, 1326, 1254, 1208, 1161, 1114, 1084, 994, 959, 859, 

812, 769, 730, 703; Anal. Calcd. for C20F15NO2: C, 42.05; N, 2.45; Found: C, 41.99; N, 2.33. 
Compound 117 was crystallized in the space group P21/c by diffusing Et2O into the ethanol 

solution of the sample. 

 

 

2,3,4,5,6-Pentafluoro-N,N-bis((perfluorophenyl)methyl)benzamide 118. A white solid; Yield: 

37% as the second product of the reaction for compound 49. m.p.: 159.3-159.7; 1H NMR 

(400 MHz, CDCl3): δ 4.74 (s, 2H), 4.63 (s, 2H); 19F NMR (376 MHz, CDCl3): δ -149.56 (t, J = 

20.9 Hz, 1F), -150.49 (t, J = 20.9 Hz, 1F), -152.88 (t, J = 20.8 Hz, 1F), -159.09 (dt, J = 20.4, 10.2 

Hz, 4F), -159.63 (td, J = 20.4, 6.9 Hz, 4F), -161.20 (td, J = 21.0, 7.2 Hz, 4F); EI-MS: m/z: 572.1 

(18.27%), 570.9 (80.99%), 389.9 (31.91%), 195.0 (100.00%), 181.0 (20.29%), 167.0 (10.73%); IR 
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(KBr, cm-1): 2981, 2786, 2643, 2229, 2086, 2004, 1663, 1501, 1432, 1363, 1320, 1232, 1180, 

1119, 1047, 990, 961, 911, 841, 811, 774, 728, 695; Anal. Calcd. for C21H4F15NO: C, 44.15; H, 

0.71; N, 2.45; Found: C, 44.64; H:0.86; N, 2.55. 

Compound 118 was crystallized in the space group P21/c by diffusing Et2O into the ethanol 

solution of the sample. 

 

 

N-Benzoyl-2,3,4,5,6-pentafluoro-N-(perfluorobenzoyl)benzamide 119.  

2,3,4,5,6-Pentafluorobenzoyl chloride 63 (0.28 mL, 2.0 mmol) and benzamide 65 (0.121 g, 1.0 

mmol) were dissolved in 4.0 mL THF and NaH (60% in mineral oil, 0.096 g, 2.2 mmol) was 

used as base. The reaction was stirred at r.t. and monitored by TLC. After completion of the 

reaction, the mixture was washed with saturated NaCl aqueous solution and extracted with 

ethyl acetate, the organic layer were combined and dried with Na2SO4 then filtered. The 

organic solvent was removed under vacuum and the residua were separated with column 

chromatography. The product 119 was obtained with yield of 51% as a white solid. m.p.: 

139.8-140.6℃; 1H NMR (400 MHz, CDCl3): δ 7.88 – 7.82 (m, 2H), 7.68 – 7.61 (m, 1H), 7.54 – 

7.46 (m, 2H); 19F NMR (376 MHz, CDCl3): δ -138.91 – -139.98 (m, 2F), -146.17 (dd, J = 29.3, 

12.5 Hz, 1F), -159.04 (dd, J = 20.8, 14.6 Hz, 2F); EI-MS: m/z: 509.3 (7.40%), 195.2 (41.19%), 

167.1 (19.78%), 105.2 (100.00%), 77.3 (54.24%), 51.6 (17.12%); IR (KBr, cm-1): 3427, 2927, 

2659, 2479, 2168, 1720, 1654, 1595, 1503, 1424, 1325, 1208, 1120, 1041, 993, 958, 905, 796, 693; 

Anal. Calcd. for C21H5F10NO3: C, 49.53; H, 0.99; N, 2.75; Found: C, 49.77; H:1.21; N, 2.74. 
Compound 119 was crystallized in the space group P21/c by diffusing Et2O into the ethanol 

solution of the sample. 

 

 

N,N-Dibenzyl-1-(perfluorophenyl)methanamine 120. (Bromomethyl)benzene 64 (0.48 mL, 4.0 

mmol) and (perfluorophenyl)methanaminium chloride 61 (0.466 g, 2.0 mmol) were dissolved in 

4.0 mL THF and NaH (60% in mineral oil, 0.300 g, 6.0 mmol) was used as base. The reaction 

was stirred at r.t. and monitored by TLC. After completion of the reaction, the mixture was 

washed with saturated NaCl aqueous solution and extracted with ethyl acetate, the organic 

layer were combined and dried with Na2SO4 then filtered. The organic solvent was 

removed under vacuum and the residua were separated with column chromatography. The 
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product 120 was obtained with yield of 48% as a white solid. m.p.: 85.8-86.2℃; EI-MS: m/z: 

378.3 (35.62%), 377.3 (100.00%), 300.2 (43.17%), 286.2 (69.39%), 181.1 (30.99%), 91.2 

(22.63%); 1H NMR (300 MHz, CDCl3): δ 7.37 (d, J = 7.1 Hz, 4H), 7.30 (t, J = 7.1 Hz, 4H), 7.22 (t, 

J = 6.9 Hz, 2H), 3.73 (s, 2H), 3.59 (s, 4H); 19F NMR (282 MHz, CDCl3): δ -141.29 (d, J = 17.1 Hz, 

2F), -155.57 (t, J = 19.0 Hz, 1F), -162.82 (d, J = 15.9 Hz, 2F); EI-MS: m/z: 509.3 (7.40%), 195.2 

(41.19%), 167.1 (19.78%), 105.2 (100.00%), 77.3 (54.24%), 51.6 (17.12%); IR (KBr, cm-1): 3227, 

3033, 2951, 2803, 2713, 2604, 2322, 2187, 2084, 1997, 1951, 1881, 1810, 1709, 1651, 1601, 1518, 

1491, 1453, 1402, 1370, 1332, 1296, 1248, 1207, 1180, 1105, 1009, 979, 933, 913, 854, 809, 746, 

694; Anal. Calcd. for C21H16F5N: C, 66.84; H, 4.27; N, 3.71; Found: C, 65.61; H:4.53; N, 3.44. 
The crystal of compound 120 was cultivated from ethyl acetate/hexane in the space group P21/n. 

 

 
N,N-Dibenzyl-2,3,4,5,6-pentafluorobenzamide 121. A white solid; Yield: 35% as the second 

product of the reaction for compound 51. m.p.: 94.8-95.6℃; 1H NMR (300 MHz, CDCl3): δ 

7.43 – 7.22 (m, 8H), 7.13 – 7.04 (m, 2H), 4.72 (s, 2H), 4.30 (s, 2H); 19F NMR (282 MHz, CDCl3): 

δ -140.29 (dd, J = 20.9, 6.1 Hz, 2F), -151.71 (t, J = 20.6 Hz, 1F), -159.28 – -159.72 (m, 2F); 

EI-MS: m/z: 392.1 (32.22%), 391.1 (89.50%), 300.0 (100.00%), 195.0 (83.16%), 107.1 (10.91%), 

91.1 (27.84%); IR (KBr, cm-1): 3039, 2924, 2637, 2321, 2082, 1810, 1643, 1449, 1318, 1215, 

1099, 989, 811, 762, 691; Anal. Calcd. for C21H14F5NO: C, 64.45; H, 3.61; N, 3.58; Found: C, 

64.43; H:3.94; N, 3.83. 
Compound 121 was crystallized in the space group P21/c by diffusing Et2O into the ethanol 

solution of the sample. 

 

 
Tribenzylamine 122. (Bromomethyl)benzene 64 (0.24 mL, 2.0 mmol) and phenylmethanamine 

60 (0.11 mL, 1.0 mmol) were dissolved in 5.0 mL THF and NaH (60% in mineral oil, 0.100 g, 

1.2 mmol) was used as base. The reaction was stirred at r.t. and monitored by TLC. After 

completion of the reaction, the mixture was washed with saturated NaCl aqueous solution 

and extracted with ethyl acetate, the organic layer were combined and dried with Na2SO4 

then filtered. The organic solvent was removed under vacuum and the residua were 

separated with column chromatography. The product 122 was obtained with yield of 70% 

as a white solid. m.p.: 91.5-92.3℃; 1H NMR (300 MHz, CDCl3): δ 7.41 (d, J = 7.2 Hz, 6H), 

7.31 (t, J = 7.3 Hz, 6H), 7.23 (dd, J = 12.3, 5.2 Hz, 3H), 3.55 (s, 6H); EI-MS: m/z: 288.2 (33.94%), 
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287.2 (100.00%), 210.2 (63.01%), 196.2 (36.97%), 91.2 (49.92%); IR (KBr, cm-1): 3062, 3030, 

2925, 2883, 2801, 2715, 2325, 2170, 2083, 1996, 1949, 1877, 1811, 1658, 1600, 1492, 1448, 1368, 

1316, 1246, 1203, 1121, 1072, 1027, 972, 906, 880, 808, 739, 694; Anal. Calcd. for C21H21N: C, 

87.76; H, 7.36; N, 4.87; Found: C, 85.32; H, 7.57; N, 4.57. 

 

 
1,1,3,3-Tetrakis((perfluorophenyl)methyl)urea 123. To a suspension of Biuret (0.103 g, 

1.0 mmol), NaH (60% in mineral oil, 0.10 g, 1.2 mmol) in DMF (5 mL), 

1-(bromomethyl)-2,3,4,5,6-pentafluorobenzene 62 (0.14 mL, 1.0 mmol) was added 

dropwise. The reaction mixture was stirred at r.t. and monitored by TLC. After completion 

of the reaction, the mixture was washed with saturated NaCl aqueous solution and 

extracted with ethyl acetate, the organic layer were combined and dried with Na2SO4 then 

filtered. The organic solvent was removed under vacuum and the residua were 

chromatographed on silica gel (ethyl acetate/hexane 1:8) affording pure 123 (0.097 g, 50%) 

as a white solid. m.p.: 115.6-116.3℃; 1H NMR (300 MHz, CDCl3): δ 4.47 (s, 8H); 19F NMR 

(282 MHz, CDCl3): δ -141.10 (dd, J = 21.6, 7.5 Hz, 8F), -152.22 (t, J = 20.7 Hz, 4F), -160.51 – 

-162.76 (m, 8F); EI-MS: m/z: 779.6 (1.24%), 419.7 (10.89%), 375.7 (36.45%), 221.9 (31.04%), 

180.9 (100.00%); IR (KBr, cm-1): 2930, 2648, 2082, 1714, 1682, 1656, 1501, 1424, 1343, 

1307, 1239, 1122, 1045, 1015, 953, 919, 790, 726, 676. 
The crystal of compound 123 was cultivated from ethyl acetate/hexane in the space group P21/c. 

 

 

Compound 125 was prepared as reported in the literature.[69] 

 

 

(N,N'E,N,N'E)-N,N'-(Pyridine-2,6-diylbis(methanylylidene))bis(1-(3,5-bis(trifluoromethyl)p

henyl)methanamine) 126. Pyridine-2,6-dicarbaldehyde 125 (0.135 g, 1.0 mmol) and 

(3,5-Bis(trifluoromethyl)phenyl)methanamine 21 (0.486 g, 2.0 mmol) were dissolved in MeOH (8 

mL). The mixture was tirred at room temperature overnight and some precipitates were produced. 

These precipitates were filtered and then dried under vaccum to obtain the product 126. Yield: 66% 

as a white solid. m.p.: 116.6-117.0℃; 1H NMR (300 MHz, DMSO-d6): δ 8.65 (s, 2H), 8.12 (m, 
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6H), 8.06 – 7.97 (m, 3H), 5.08 (s, 4H); 19F NMR (282 MHz, DMSO-d6): δ -61.29 (s, 12F); 

ESI-MS: 586.1110 [M+H]+; IR (KBr, cm-1): 2878, 2812, 2083, 1998, 1793, 1647, 1567, 

1460, 1421, 1385, 1357, 1276, 1159, 1112, 1043, 995, 959, 902, 872, 843, 808, 733, 702, 

682; Elemental analysis calcd. for C25H15F12N3: C, 51.29; H, 2.58; N, 7.18; found: C, 51.28; 

H, 2.60; N, 7.07. 

Compound 126 was crystallized in the space group P21/n by diffusing Et2O into the methanol 

solution of the sample. 

 

OHOH HOOH

128  

Compound 128 was prepared according to the literature.[70] 

 

 

Trifluoromethylated calix[4]arene 129.[71] A suspension of compound 128 (0.532 g, 1.25 mmol), 

NaH (60% in mineral oil, 0.487 g, 9.75 mmol) in DMF (80 mL) was stirred for 15 min at r.t. 

1-(bromomethyl)-3,5-Bis(trifluoromethyl)benzene 19 (1.34 mL, 7.45 mmol) was added into this 

mixture and the reaction was stirred at -15℃ for 30 min. Then water (180 mL) was added and 

extracted with DCM. The organic layer were combined and dried with Na2SO4 then filtered. 

The organic solvent was removed under vacuum and the residua were chromatographed on 

silica gel (DCM/hexane 1:4) affording pure 129 (1.561 g, 94%) as a white solid. m.p.: 

171.0-171.7℃; 1H NMR (300 MHz, CDCl3): δ 7.83 (s, 4H), 7.60 (d, J = 1.5 Hz, 8H), 6.70 – 6.42 

(m, 12H), 5.08 (s, 8H), 3.88 (d, J = 13.7 Hz, 4H), 2.82 (d, J = 13.8 Hz, 4H); 19F NMR (282 MHz, 

CDCl3): δ -63.10 (s, 24F); ESI-MS: 1351.2421 [M+H]+; IR (KBr, cm-1): 3941, 3220, 3066, 

2981, 2929, 2878, 2576, 2327, 2196, 2088, 1998, 1930, 1806, 1697, 1625, 1586, 1458, 

1383, 1354, 1277, 1164, 1128, 997, 890, 842, 804, 767, 732, 704, 679; Elemental analysis 

calcd. for C64H40F24O4: C, 57.84; H, 3.03; found: C, 57.20; H, 3.18. 
Compound 129 was crystallized in the space group P-1 by diffusing Et2O into the methanol 

solution of the sample. 
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Appendix 

Part 1 1H/19F NMR-titration curves of C6F5/CF3 receptors with anions in solution 

1.1 The interactions between C6F5-receptors and anions in solution 
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Figure S1. 1H/19F NMR chemical shifts of C6F5 receptors with the addition of TBA∙Cl in 

CDCl3 or acetone-d6. (298 K) 
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Figure S2. 1H/19F NMR chemical shifts of C6F5 receptors with the addition of TBA∙Br in 

CDCl3 or acetone-d6. (298 K) 
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Figure S3. 1H/19F NMR chemical shifts of C6F5 receptors with the addition of TBA∙I in CDCl3 

or acetone-d6. (298 K) 
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Figure S4. 1H/19F NMR chemical shifts of C6F5 receptors with the addition of TBA∙NO3 in 

CDCl3 or acetone-d6. (298 K) 
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1.2 The interactions between CF3-receptors and anions in CDCl3 

 

 

 

 
Figure S5. 1H/19F NMR chemical shifts of CF3-receptor 21 with the addition of TBA∙X (X = 

Cl, Br, I and NO3) in CDCl3. (298 K) 
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Figure S6. 1H/19F NMR chemical shifts of CF3-receptor 52 with the addition of TBA∙X (X = 

Cl, Br, I and NO3) in CDCl3. (298 K) 
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Figure S7. 1H/19F NMR chemical shifts of CF3-receptor 44 with the addition of TBA∙X (X = 

Cl, Br, I and NO3) in CDCl3. (298 K) 
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Figure S8. 1H/19F NMR chemical shifts of CF3-receptor 54 with the addition of TBA∙X (X = 

Cl, Br, I and NO3) in CDCl3. (298 K) 
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1.3 The interactions between CF3-receptors and anions in acetone-d6 
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Figure S9. 1H/19F NMR chemical shifts of CF3-receptors with the addition of TBA∙Cl in 

acetone-d6. (298 K) 
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Figure S10. 1H/19F NMR chemical shifts of CF3-receptors with the addition of TBA∙Br in 

acetone-d6. (298 K) 
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Figure S11. 1H/19F NMR chemical shifts of CF3-receptors with the addition of TBA∙I in 

acetone-d6. (298 K) 
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Figure S12. 1H/19F NMR chemical shifts of CF3-receptors with the addition of TBA∙NO3 in 

acetone-d6. (298 K) 

 

 

 
Figure S13. Job-plots of receptor 58 with I-. The data calculated were obtained from 1H/19F 

NMR spectra in acetone-d6 at room temperature. 

(3h) (3f) 
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Figure S14. 1H NMR-titration spectra of the derivative 74 with the addition of anions in CDCl3 

(298 K). Only chemical shifts of protons on the indole unit are displayed. The binding constants of 

H/F with anions are shown by the corresponding positions, respectively. 
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Figure S15. 1H NMR-titration spectra of the derivative 75 with the addition of anions in CDCl3 

(298 K). Only chemical shifts of protons on the indole unit are displayed. The binding constants of 

H/F with anions are shown by the corresponding positions, respectively. 
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Figure S16. 1H NMR-titration spectra of the derivative 76 with the addition of anions in 

acetone-d6 (298 K). Only chemical shifts of protons on the indole unit are displayed. The binding 

constants of H/F with anions are shown at the corresponding positions, respectively. 
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Figure S17. 1H NMR-titration spectra of the derivative 77 with the addition of anions in CDCl3 

(298 K). Only chemical shifts of protons on the indole unit are displayed. The binding constants of 

H/F with anions are shown by the corresponding positions, respectively. 
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Figure S18. 1H NMR-titration spectra of the derivative 78 with the addition of anions in CDCl3 

(298 K). Only chemical shifts of protons on the indole unit are displayed. The binding constants of 

H/F with anions are shown by the corresponding positions, respectively. 
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Figure S19. 1H NMR-titration spectra of the derivative 79 with the addition of anions in CDCl3 

(298 K). Only chemical shifts of protons on the indole unit are displayed. The binding constants of 

H/F with anions are shown by the corresponding positions, respectively. 
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Figure S20. 19F NMR-titration spectra of the derivative 74 with the addition of anions in CDCl3. 

(298 K) 

 

 

 

 

 

 
Figure S21. 19F NMR-titration spectra of the derivative 75 with the addition of anions in CDCl3. 

(298 K) 
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Figure S22. 19F NMR-titration spectra of the derivative 76 with the addition of anions in 

acetone-d6. (298 K) 

 

 

 

 

 

 
Figure S23. 19F NMR-titration spectra of the derivative 77 with the addition of anions in CDCl3. 

(298 K) 
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Figure S24. 19F NMR-titration spectra of the derivative 78 with the addition of anions in CDCl3. 

(298 K). 

 

 

 

 

 

 
Figure S25. 19F NMR-titration spectra of the derivative 79 with the addition of anions in CDCl3 

(298 K). 
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