Die Gefäßarchitektur der Bauchwand und ihre Stellung in der Plastischen Chirurgie
– eine anatomische Untersuchung

Von der Medizinischen Fakultät
der Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades
eines Doktors der Medizin
genehmigte Dissertation

vorgelegt von
Chukwubikem Akabogu Okafor
aus
Aachen

Berichter: Herr Universitätsprofessor
Dr.med. Dr.univ.med. Prof. h.c. (RC) Norbert Pallua

Herr Professor
Dr.med. Andreas Prescher

Tag der mündlichen Prüfung: 19.02.2008

„Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.“
Die Gefäßarchitektur der Bauchwand und ihre Stellung in der Plastischen Chirurgie
– eine anatomische Untersuchung

von

Chukwubikem Akabogu Okafor
Inhaltsverzeichnis

1. **Allgemeiner Teil** .. 1
 1.1. Einleitung .. 1
 1.2. Zur Geschichte der Leicheneröffnung ... 2
 1.3. Anatomische Einführung ... 6
 1.3.1. Bauchnabel und Nabelring .. 6
 1.3.2. Embryonalentwicklung von Nabelschnur und Nabelring 7
 1.3.3. Embryonalentwicklung der Bauchwandmuskulatur 7
 1.4. Anatomie der Bauchwand ... 8
 1.4.1. Regionen der Bauchwand ... 8
 1.4.2. Schichten der Bauchwand .. 9
 1.4.2.1. Haut, Unterhautfettgewebe und Scarpasche Faszie 10
 1.4.2.2. Bauchmuskulatur, Aponeurosen und Rektusscheide 13
 1.4.2.3. Fascia transversalis und Peritoneum parietale ... 22
 2. **Spezieller Teil I** ... 25
 2.1. Die Bauchwand in der Plastischen Chirurgie ... 25
 2.1.1. Abdominoplastik .. 25
 2.1.2. Lappenplastiken an der Bauchwand .. 29
 2.1.2.1. TRAM (Transverse rectus abdominis myocutaneus)-Lappen 29
 2.1.2.1.1. Der einseitig und doppelseitig gestielte TRAM-Lappen 29
 2.1.2.1.2. Der „freie“ TRAM-Lappen .. 31
 2.1.2.2. VRAM (Vertical rectus abdominis myocutaneus)-Lappen 33
 2.1.2.3. DIEP (Deep inferior epigastric perforator)-Lappen 34
 2.1.2.4. SIEA (Superficial inferior epigastric artery)-Lappen 35
 2.2. Blutversorgung der Bauchwand in der Literatur .. 37
 2.2.1. Ventrale Versorgungsgruppe .. 37
 2.2.2. Dorsale Versorgungsgruppe ... 41
 2.3. Problemstellung und Fragestellung ... 44
 3. **Spezieller Teil II** .. 45
 3.1. Einleitung .. 45
 3.2. Material und Methode.. 46
 3.2.1. Präparation I: Vorbereitung und Durchführung .. 46
 3.2.2. Präparation II: Makroskopische Präparation .. 47
 3.2.3. Präparation III: Radiologische Darstellung .. 48
 3.3. Ergebnisse ... 52
 3.3.1. Gefäßarchitektur der Bauchwand / Bauchnabel 52
 3.3.2. Bauchwandpräparate nach makroskopischer Präparation 56
 3.3.3. Radiologische Darstellung der Bauchwandpräparate 62
 3.4. Diskussion ... 74
 4. **Schlußfolgerung** .. 79
 4.1. Anatomie der A. epigastrica inferior et superior ... 79
 4.2. Der Bauchnabel in der Plastischen Chirurgie ... 81
 5. **Klinische Relevanz und Schlußwort** .. 82
 6. **Zusammenfassung** ... 85
 7. **Summary** .. 87
 8. **Literaturverzeichnis** .. 89
 9. **Danksagung** .. 95
 10. **Curriculum vitae** ... 96
1. Allgemeiner Teil

1.1. Einleitung

Eine detaillierte Kenntnis und chirurgische Beachtung der anatomischen Gegebenheiten liefert jedoch die Grundvoraussetzung für den Erfolg und die Stabilität operativer Eingriffe.

In der vorliegenden anatomischen Untersuchung soll die Vaskularisation der humanen Bauchwand unter besonderer Berücksichtigung des Bauchnabels untersucht werden. Ziel dieser Untersuchung ist es vaskularisationsbedingte Gefahrenzonen an der Bauchwand zu erkennen, um operative Vorgehensweisen optimal anzupassen.

Der große Umschwung, angetrieben durch ein neues wiederaufflammendes Interesse an der Naturbeobachtung, erfolgte in der Renaissance. Sorgfältige Sektionen und der kritische Vergleich der Schriften Galens mit dem was sich tatsächlich auf dem Sektionstisch fand, prägen diese Epoche. Andreas Vesalius (1514-1564 n. Chr.), erster Professor der Anatomie an der Universität zu Padua und gleichzeitig bedeutendster Anatom des 16. Jahrhunderts, stellte in seinem Werk „De humani corporis fabrica libri sephem“ viele Thesen Galens richtig, die sich auf den fälschlichen Analogieschluß von der Tieranatomie auf die Menschenanatomie
stützten (vgl. Abbildung 2). Während Vesal jedoch noch versuchte einen Kompromiss mit den Schriften Galens zu schließen, so in etwa die Poren der Herzscheidewand nicht bestätigen konnte und dieses sich so erklärte, dass sie „so winzig sind, dass das menschliche Auge sie nicht mehr zu erkennen vermag“, lehnten andere wichtige Anatomen seiner Zeit wie z. B. Miguel Serveto (1511-1553 n. Chr.) die alten Texte konsequent ab. Anatomische Erkenntnisse, welche präparatorisch nicht zur Darstellung kamen, wurden verworfen. Eine neue Ära der Medizin war angebrochen, welche Gelehrten wie Studenten neue bahnbrechende Erkenntnisse des menschlichen Körpers lieferten.

1.3. Anatomische Einführung [Eisler 1912, Beck 2003]

1.3.1. Bauchnabel und Nabelring

Der Nabelring stellt klinisch die Bruchpfotente für die Herniae umbilicales dar.

Abbildung 3: Bauchnabel (B) und Hautfalte auf Höhe der äußeren Begrenzung des Nabelringes (Pfeil).
1.3.2. Embryonalentwicklung von Nabelschnur und Nabelring

1.3.3. Embryonalentwicklung der Bauchwandmuskulatur

In der Embryonalzeit ab dem 2. Entwicklungsmonat unterteilt sich das Myotom in einen ventralen und einen dorsalen Abschnitt. Der ventrale Abschnitt bildet das Hypomer (Pars hypaxialis), der dorsale das Epimer (Pars epaxialis). Während das Epimer, welches an seiner Entstehungsstelle verbleibt, Material für die autochthone primäre Rückenmuskulatur liefert, wandern Zellen des Hypomers in die Somatopleura ein und differenzieren sich im Laufe der Embryonalentwicklung in die vordere und seitliche Rumpfwandmuskulatur. Des weiteren wandern die Myoblasten auch in die vier Extremitätenknospen aus und beteiligen sich an Teilen der sekundären Rückenmuskeln und der sogenannten ventrolateralen Rumpfmuskulatur. Das Hypomer wird von den Rr. ventrales, das Epimer von den Rr. dorsales der Spinalnerven innerviert, was die späteren Innervationsverhältnisse der Rumpfmuskulatur erklärt.

1.4.1. Regionen der Bauchwand

- Regio hypochondriaca dextra et sinistra – Sie liegt auf beiden Seiten lateral der Medioklavikularlinie im proximalen Teil.
- Regio lateralis dextra et sinistra – Sie liegt auf beiden Seiten lateral der Medioklavikularlinie zwischen unterstem Teil der Rippenbögen und höchstem Punkt der Darmbeinkämme.
- Regio umbilicalis – Sie liegt zwischen den beiden Medioklavikularlinien und beinhaltet den Bauchnabel.
- Regio inguinalis dextra et sinistra – Sie liegt auf beiden Seiten lateral der Medioklavikularlinie und wird nach distal von den Leistenbändern begrenzt.
- Regio pubica – Sie liegt zwischen den beiden Medioklavikularlinien distal der Regio umbilicalis und wird ebenfalls distal von den Leistenbändern begrenzt.
1.4.2. Schichten der Bauchwand

Die Bauchwand gliedert sich in 3 Schichten:

- Haut mit Unterhautfettgewebe, Fascia subcutanea (Campersche Faszie) und Fascia abdominalis superficialis (Scarpasche Faszie)
- Bauchmuskulatur mit den stark ausgeprägten Aponeurosen → Rektusscheide
 M. rectus abdominis, M. pyramidalis, M. obliquus externus abdominis, M. obliquus internus abdominis, M. transversus abdominis, M. quadratus lumborum, Vagina musculi recti abdominis
- Fascia transversalis und Peritoneum parietale
1.4.2.1. Haut, Unterhautfettgewebe und Scarpasche Faszie

Haut

Unterhautfettgewebe

Campersche Faszie (Fascia subcutanea)

Die Fascia subcutanea ist eine verdichtete, wabenartig durchlöcherte, elastische zur Subkutis gehörende Schicht aus elastischem Gewebe. Sie liegt ventral der Rektusscheide auf. Kranial des Bauchnabels löst sie sich allmählich auf, wohingegen sie kaudal ein oberflächliches und ein tiefes Blatt bildet. Das oberflächliche Blatt verstreicht in der Fascia lata, das tiefe Blatt endet am Lig. inguinale. Im medialen Abschnitt teilt sie sich ebenfalls in mehrere Blätter auf. Die oberflächlichen Blätter durchflechten sich mit gleichartigem kontralateralen Gewebe über die Medianebene.

Scarpasche Faszie (Fascia abdominalis superficialis)
1.4.2.2. Bauchmuskulatur, Aponeurosen und Rektusscheide

Vordere Bauchmuskulatur (vgl. Abbildung 6)

M. rectus abdominis

M. pyramidalis

Dieser dreieckige inkonstante Muskel entspringt am Schambein und setzt nach oben ziehend an der Linea alba an. Er liegt zwischen M. rectus abdominis und vorderem Blatt der Rektusscheide.
Abbildung 6: M. rectus abdominis und M. transversus abdominis.

1: M. rectus abdominis, 2: Intersectio tendinea, 3: Linea alba (Partie rubannée), 4: Linea alba (Partie linéaire), 5: Lamina posterior der Rektusscheide mit Linea arcuata (Douglas), 6: M. transversus abdominis, 7: Linea semilunaris (Spieghel), R5: 5. Rippe

Seitliche Bauchmuskulatur (vgl. Abbildung 6-8)

M. obliquus externus abdominis
Der äußere schräge Muskel entspringt an den Außenflächen der 5.-12. Rippe, wobei er Dentationen ausbildet, die sich mit dem M. serratus anterior und dem M. latissimus dorsi verzahnen. Dieses Verhalten führt charakteristischerweise zur Bildung einer gezackten Ursprungsline (Gerdy-Linie). Die Muskelfasern des M. obliquus externus abdominis verlaufen divergierend von lateral-kranial nach medial-kaudal, wobei die oberen Fasern dabei noch annähernd horizontal verlaufen, und setzen an der Vorderfläche des Labium externum des Darmbeinkammes, am Tuberculum pubicum und an der Linea alba an. Die Muskelfasern ziehen nach ventral, vereinigen sich zur breitflächigen Aponeurose und überqueren die Medianebene. Im kranialen Abschnitt kommt es zu einer Durchflechtung mit kontralateralen Fasern, im kaudalen Abschnitt bilden sich eine oberflächliche und eine tiefe Schicht aus. Die oberflächliche Schicht strahlt in die Fascia lata aus, die tiefe Schicht setzt am Tuberculum pubicum an und bildet dabei das Lig. reflexum (Colles).

Die kaudalen Muskelfasern des M. obliquus externus abdominis, die an der Spina iliaca anterior superior bis hin zur Muskelecke entspringen und am Tuberculum pubicum ansetzen, bilden einen straffen Faserzug aus, der auch als Lig. inguinale (Poupart-Band) bezeichnet wird.

M. obliquus internus abdominis
Der innere schräge Muskel entspringt von der Linea intermedia des Darmbeinkammes, von der Spina iliaca anterior superior, vom oberflächlichen Blatt der Fascia thoracolumbalis und vom lateralen Teil des Leistenbandes. Er verläuft divergierend nach kranial und medial, teilweise auch horizontal. Er hat die Gestalt

M. transversus abdominis

Abbildung 7: M. obliquus externus abdominis.
1: M. obliquus externus abdominis, 2: M. serratus anterior, 3: M. latissimus dorsi,
4: Gaupp-Muskelecke, 5: Gerdy-Linie

Abbildung 8: M. obliquus internus abdominis.

Vagina musculi recti abdominis (Rektusscheide)

Im kaudalen Abschnitt des hinteren Blattes der Rektusscheide ist die Fascia transversalis in der Mittellinie mit der Linea alba festgewachsen, setzt sich auf die Hinterfläche des Adminiculum lineae albae fort und inseriert am Os pubis. Dieser charakteristische Verlauf des hinteren Blattes der Rektusscheide führt zur Ausbildung eines Fettlagers (Cavum submusculare) dorsal des M. rectus abdominis von bis zu 1cm Tiefe.

Innerhalb der Rektusscheide unterscheidet man einen frontalen und einen dorsalen Raum. Der frontale Raum liegt vor dem M. rectus abdominis und wird durch

Die Rektusscheide weist gelegentlich schlitzförmige oder auch großflächigere Lücken auf. Dieses Phänomen beschreibt man als Dehiszenzen.

Linea alba

Im kaudalen Bereich der Linea alba bildet sich das Adminiculum lineae albae aus, welches als dreieckige Faserplatte beschrieben werden kann. Es liegt dorsal der Mm.

Hintere Bauchmuskulatur

M. quadratus lumborum

1.4.2.3. Fascia transversalis und Peritoneum parietale

Fascia transversalis

In der Inguinalregion liegen bemerkenswerte Verhältnisse vor. Hier ist die Fascia transversalis besonders dick und kleidet die gesamte Region aus. Als Fascia spermatica interna setzt sie sich am Annulus inguinalis profundus auf den Funniculus spermaticus fort.

Kaudal ist die Fascia transversalis mit dem Tractus iliopubicus an der dorsalen Fläche des Leistenbandes verwachsen und geht im lateralen Drittel des Leistenbandes in die Pars iliaca der Fascia iliopsoas über.
Peritoneum parietale

Bei den angeborenen und erworbenen Nabelbrüchen stellt der Anulus umbilicalis die Durchtrittspforte dar.
Abbildung 9: Ansicht der Bauchdecke von dorsal.

2. Spezieller Teil I

2.1. Die Bauchwand in der Plastischen Chirurgie

2.1.1. Abdominoplastik

I. Fettdeformität ohne Hautüberschuß, keine Rektusdiastase

II. Leichter Hautüberschuß mit / ohne Fettdeformität, keine Rektusdiastase

III. Leichter Hautüberschuß mit / ohne Fettdeformität, infraumbilikale Rektusdiastase

IV. Leichter Hautüberschuß mit / ohne Fettdeformität, komplette Rektusdiastase

V. Starker Hautüberschuß mit / ohne Fettdeformität, komplette Rektusdiastase mit / ohne Hernien

bilaterale Stichinzisionen in der äußeren Leistengegend wird schließlich noch im Hüftbereich überschüssiges Fett abgesaugt.

Bei Patienten des Typ IV liegt ein leichter Hautüberschüß im Abdominalbereich, gegebenenfalls mit vermehrtem Fett, und eine sich vom Xiphoid bis zur Mons pubis erstreckende Rektusdiastase vor. Zur operativen Sanierung wird, wie bereits bei Typ II + III erläutert, eine Kombination aus ellipsenförmiger Hautresektion der Regio pubica mit SAL angewandt. Der Bauchnabel wird bei Patienten des Typ IV nicht umschnitten, sondern nach ventral am Ansatz von der Aponeurose losgelöst [Bozola & Psillakis 1987]. Nach Korrektur der Rektusdiastase mit 1/0 Nahtmaterial werden
anschließend die Mm. obliqui externi et interni nach medial kaudal verlagert, um eine möglichst naturgetreue Formung der Taille zu bewirken. Letztlich wird der Bauchnabel wieder an seiner ursprünglichen Position eingenäht. Alternativ kann man den Bauchnabel auch transkutan von außen mit Stichen befestigen.

Das weitere operative Vorgehen gestaltet sich wie folgt. Zunächst wird der Bauchnabel, entsprechend der Wahl des Patienten z. B. in v-förmiger Variante,

Das Wundkomplikationsrisiko von Abdominoplastiken liegt bei Männern mit 64,3% deutlich höher als bei Frauen 15,3%, wobei es sich um kleinere Komplikationen wie z. B. Wundinfektionen, Serome und kleinere Hämatome handelt [van Uchelen et al. 2001]. Gelegentlich kann es auch zu Sensibilitätsstörungen im Oberschenkelbereich durch Schädigung des N. cutaneus femoris lateralis kommen, die bei Männern mit 7,1% und bei Frauen mit 9,7% beschrieben sind [van Uchelen et al. 2001]. In den Arbeiten von Hensel et al. [2001] wird das Komplikationsrisiko mit 32% angegeben. Schwerwiegende Komplikationen wie z. B. Perforation des Magens mit Sepsis geben sie mit 1,4% an, ähnlich den Studien von van Uchelen et al. [2001], die das Auftreten von Lungenembolien und tiefen Beinvenenthrombosen mit 2,8% angeben.

Mayr et al. [2004] bestimmten die Durchblutung der Bauchwand intraoperativ mittels Indocyaningrün-Fluoreszenz. Sie beschreiben Durchblutungsmin derungen der Zone 1 nach Huger [1979], die sich vom Xiphoid bis zur Mons pubis erstreckt und lateral den äußeren Rand der Rektusscheide einschließt. Der durchschnittliche
Perfusionsindex wird mit 17,2% bezogen auf das umliegende nichtoperierte Gewebe angegeben.

2.1.2. Lappenplastiken an der Bauchwand

2.1.2.1. TRAM (Transverse rectus abdominis myocutaneus)-Lappen

2.1.2.1.1. Der einseitig und doppelseitig gestielte TRAM-Lappen

Am Unterbauch wird ein ellipsenförmiges Hautsegment mit Unterhautfettgewebe von lateral nach medial präpariert. Die Begrenzungen der Ellipse sind kranial unmittelbar oberhalb des Bauchnabels, lateral die vordere Axillarlinie auf Höhe der Spinae iliaca anteriores superiores und kaudal die Symphyse, wobei die Breite ca. 10-16cm und die Länge ca. 30-40cm betragen sollte. Die Schnittrichtung der kranialen Begrenzung sollte nach schräg oben gerichtet sein um möglichst viele perforierende Gefäße zu integrieren.

Sekundär kann die bisher nicht operierte Brust an die rekonstruierte Seite mittels Mammareduktionsplastik, Mastopexie oder Mammaaugmentation angeglichen werden.

2.1.2.1.2. Der „freie“ TRAM-Lappen

Eine weitere mittlerweile als Standardverfahren angesehene Lappentechnik zur Brustrekonstruktion ist der „freie“ TRAM-Lappen.

Bei Erreichen der Rektusscheide im kranialen Teil des Lappens wird diese eröffnet und die Schnittführung schräg nach lateral unten geführt bis die Vasa epigastricae inferiores zum Vorschein kommen. Diese werden bis zum Abgang aus den Vasa iliaca externae frei gelegt, um einen möglichst langen ca. 10cm messenden Gefäßstiel mit entsprechend großem Durchmesser von ca. 2-3mm zu gewährleisten.

Der ipsilaterale kaudale Lappenteil wird bis zur Mittellinie dargestellt. Im Anschluß wird auf der kontralateralen Seite ebenfalls die Haut mit Unterhautfettgewebe bis zur Mittellinie frei präpariert, so dass jetzt der Lappen nur noch am kranialen Teil einseitig am M. rectus abdominis befestigt ist.

Daraufhin wird der Lappen von der Bauchwand gehoben und maximal 5cm x 5cm des M. rectus abdominis bauchnabelnah umschnitten und herausgetrennt.

Nach Präparation der Anschlußgefäße und erfolgter Anastomose wird der Muskelteil des Lappens an der Pektoralisfaszie fixiert und der Lappen entsprechend der gesunden Brust geformt.

Auf Grund der aufwendigen Operationstechnik werden zur Zeiterübersetzung häufig zwei OP-Teams eingesetzt. Das eine widmet sich der Lappenhebung, während das andere die Anschlußgefäße präpariert.

In der Regel werden Brustrekonstruktionen mittels freier Lappenplastik an Zentren für Plastische Chirurgie mit entsprechender Kapazität und Erfahrung durchgeführt.

In einer weiteren Studie von Ducic et al. [2005] zum gestielten TRAM-Lappen wirkt sich Adipositas hingegen als Risikofaktor für Komplikationen der Bauchwand signifikant aus.
Trotz des relativ geringen Komplikationsrisikos ergibt der Eingriff als solcher eine Schwachstelle der Bauchwand und kann zu Krafteinbußen führen, da Muskelgewebe entfernt wird.

2.1.2.2. VRAM (Vertical rectus abdominis myocutaneus)-Lappen

Im nächsten Schritt werden die Vasa epigastricae inferiores dargestellt und ligiert. Nach Tunnelierung der Bauchdecke kann nun der Insellappen bestehend aus Haut, Unterhautfettgewebe und Teilen des M. rectus abdominis, um 90° am kontralateralen M. rectus abdominis gestielt, in die Brustregion verlagert werden. Daraufhin wird der Lappen entsprechend der gesunden Brust geformt.

2.1.2.3. DIEP (Deep inferior epigastric perforator)-Lappen

In den Studien von Munhoz et al. [2005] werden leichtere Komplikationen der Bauchwand nach Durchführung des DIEP-Lappens zu 22,7% beschrieben, wobei hypertrophe Narben 6,8%, Serome 4,5% und „dog-ears“ mit 4,5% angegeben werden.

2.1.2.4. SIEA (Superficial inferior epigastric artery)-Lappen

Durch die Schonung des M. rectus abdominis samt Rektusscheide werden postoperative Komplikationen der Bauchwand wie Hernien, Ausbuchtung oder Schwäche minimiert und das Ziel der schnellen Genesung eher erreicht [Chevray 2004].

Reardon et al. [2004] beschreiben das Vorkommen der A. epigastrica superficialis mit 90,9% und der V. epigastrica superficialis mit 95,4%, wobei der Ursprung der Arterie stark variierte. Die A. epigastrica superficialis zeigte im Mittel einen Durchmesser von 1,9mm.

Der Plastische Chirurg entscheidet intraoperativ ob auf Grund zu kleiner Gefäßdurchmesser nicht doch besser ein DIEP-Lappen präpariert werden sollte.
Sowohl der DIEP-Lappen als auch SIEA-Lappen werden in der Regel an Zentren für Plastische Chirurgie operiert, da für die Präparation der Anschlußgefäße sowie die Mikroanastomosen entsprechende Erfahrung vorhanden sein sollte.
2.2. Blutversorgung der Bauchwand in der Literatur

2.2.1. Ventrale Versorgungsgruppe

Die Endäste der A. epigastrica superior bilden in der ventralen Bauchregion Anastomosen mit Ästen der A. epigastrica superficialis. In der lateralen Bauchregion kommt es zu Anastomosen mit Endästen der Aa. intercostales posteriores VII-XI.

Aus der A. iliaca externa gehen kurz oberhalb des Leistenbandes die A. epigastrica inferior und weiter distal, lateral des Leistenbandes die A. circumflexa iliaca profunda hervor:

Äste der A. circumflexa iliaca profunda bilden Anastomosen aus mit Ästen der A. iliolumbalis, die der A. iliaca interna entstammt [Beck 2003].
Die A. femoralis gibt folgende zwei Arterien oft gemeinsamen Ursprungs zur arteriellen Versorgung der Bauchdecke ab; die vorne medial liegende A. epigastrica superficialis und die A. circumflexa iliaca superficialis, die weiter lateral verläuft.

2.2.2. Dorsale Versorgungsgruppe

- Aa. lumbales – Die oberen 4 Aa. lumbales entspringen beidseits dorsal aus der Pars abdominalis aortae, die untere aus der A. sacralis mediana. Sie verlaufen kurz horizontal und teilen sich dann zwischen den Querfortsätzen der Lendenwirbel (Aa. lumbales I-IV) bzw. zwischen dem Querfortsatz des 5. Lendenwirbels und des Os sacrum (Aa. lumbales V) in die Rr. ventrales, Rr. dorsales und Rr. spinales auf. Die Rr. ventrales ziehen vor dem M. quadratus lumborum entlang und teilen sich in einen oberflächlichen und einen tiefen Ast zur Versorgung der seitlichen Bauchmuskulatur. Die Rr. dorsales und Rr. spinales versorgen Rückenhaut und Lumbalwirbel.

Die Aa. lumbales bilden Anastomosen aus nach ventral mit Ästen der A. epigastrica superior, A. epigastrica inferior und A. subcostalis und nach kaudal
mit Ästen der A. circumflexa iliaca profunda, A. circumflexa iliaca superficialis und A. iliolumbalis.

Den Arterien der Bauchwand folgen die gleichnamigen Begleitvenen mit Ausnahme der Vv. paraumbilicales, die vom Bauchnabel aus mit dem Lig. teres hepatis zur Pfortader ziehen [Beck 2003].

Tabelle 1: Die versorgenden Arterien der Bauchwand.

<table>
<thead>
<tr>
<th>Ventrale Versorgungsgruppe</th>
<th>Dorsale Versorgungsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. thoracica interna</td>
<td>Aa. intercostales posteriores VII-XI</td>
</tr>
<tr>
<td>-> A. epigastrica superior</td>
<td>A. subcostalis</td>
</tr>
<tr>
<td>-> A. musculophrenica</td>
<td>Aa. lumbales</td>
</tr>
<tr>
<td>A. iliaca externa</td>
<td></td>
</tr>
<tr>
<td>-> A. epigastrica inferior</td>
<td></td>
</tr>
<tr>
<td>-> A. circumflexa iliaca profunda</td>
<td></td>
</tr>
<tr>
<td>A. femoralis</td>
<td></td>
</tr>
<tr>
<td>-> A. epigastrica superficialis</td>
<td></td>
</tr>
<tr>
<td>-> A. circumflexa superficialis</td>
<td></td>
</tr>
<tr>
<td>-> A. pudenda externa superior</td>
<td>superficialis</td>
</tr>
</tbody>
</table>

(*Die Arterie gibt zwei Bauchwandäste zur Versorgung der inferio-medialen Bauchwand ab. Sie erhält Zuflüsse aus der A. femoralis [Manchot 1983].*)
2.3. Problemstellung und Fragestellung

Es stellt sich die Frage, ob sich vaskularisationsbedingte Gefahrenzonen definieren lassen, um so gegebenenfalls die operativen Vorgehensweisen zu optimieren.
3. **Spezieller Teil II**

3.1. **Einleitung**

Die Blutversorgung der Bauchwand wird in der bisherigen Literatur insbesondere in Bezug auf den Bauchnabel reichlich, aber auch kontrovers diskutiert. Stokes et al. [1998] beschreiben arterielle Zuflüsse zum Bauchnabel aus dem tiefen Gefäßplexus, der aus Ästen der A. epigastrica inferior, dem Lig. teres hepatis und dem Lig. umbilicale medianum gespeist wird. Wir widmen den Schwerpunkt unserer Untersuchungen dem Versorgungsweg über Äste der A. epigastrica inferior, da es sich bei dem Lig. teres hepatis und dem Lig. umbilicale medianum auf Grund des postnatalen Shuntverschlusses um obliterierte Strukturen handelt, und sie deshalb unter physiologischen Umständen keinen nennenswerten Blutfluß erwarten lassen.

Es bestehen diverse Möglichkeiten, die Gefäßarchitektur am Lebenden sowie an der Leiche zu untersuchen. Die Kombination aus makroskopischer Präparation sowie der röntgenologischen Darstellung der Gefäße mittels Injektion eines Gemisches aus Bariumsulfat (BaSO₄), Blei-Mennige (Pb₃O₄) und gepulverter Gelatine erweisen sich in der vorliegenden Untersuchung als zuverlässige Verfahren, welche sich gegenseitig ergänzen.
3.2. Material und Methode

3.2.1. Präparation I: Vorbereitung und Durchführung

Für die Untersuchung werden 12 frische unfixierte Bauchwände von Leichen beiderlei Geschlechts (70-91 Jahre), die vor nicht mehr als 72 Stunden verstorben sind, verwendet (s. Tabelle 2+3, vgl. Abbildung 10). Die Leichen weisen keine relevanten Narben im Bereich des Bauchnabels und seiner Umgebung auf.

Nach einer Auskühlungs- und Härtungszeit von etwa zwei Stunden erfolgt die Resektion der Bauchwände en bloc beginnend vom unteren Sternumrand entlang der unteren Rippenbögen tief nach lateral zum seitlichen Beckenkamm, und über diesen von der Spina iliaca anterior superior über die Symphysis pubica zur Spina iliaca anterior superior der Gegenseite.
Anschließend werden die Präparate in 4%iges Formalin fixiert, in Plastik-Folie eingeschweißt und sowohl konservativ als auch mammographisch geröntgt. Die Stärke der Röntgenstrahlen wird anhand von Pilotversuchen evaluiert. Da die unterschiedliche Dicke der untersuchten Bauchwände keine standardisierte Justierung der Strahlenstärke gestattet, werden optimale Parameter (kV/mAs) individuell bestimmt (s. Tabelle 2).

3.2.2. Präparation II: Makroskopische Präparation

Bei der makroskopischen Präparation werden insbesondere die periumbilikalen sowie umbilikalen Regionen der in formalinfixierten Bauchwände der Präparate 1-6 untersucht (s. Tabelle 6). Hierbei wird entlang der Stammgefäße von dorsal nach ventral in Lupenvergrößerung (3,5x) präpariert und die jeweiligen Gefäßverläufe verfolgt. Nach Entfernung des Peritoneum parietale sowie der dorsalen Rektusscheide erfolgt die Präparation auf der dorsalen Fläche des M. rectus abdominis, transmuskulär durch die ventrale Rektusscheide sowie die Scarpasche Faszie.

Im Bereich des Bauchnabels wird die Linea alba disseziert um die Gefäßverläufe der Rr. umbilicales darzustellen.
3.2.3. Präparation III: Radiologische Darstellung

Zur radiologischen Darstellung der Gefäßverläufe werden zunächst alle 12 Bauwandpräparate en bloc mit einem Film-Fokus Abstand von 1,1m im anterior-posterioren Strahlengang konventionell bei 35/8 kV/mAs geröntgt (s. Tabelle 6, 7). Daraufhin werden zur Darstellung der Perforatorgefäße der A. epigastrica inferior die Präparate 7-12 in 5cm breite longitudinale Streifen geschnitten und mammographisch mit einem Film-Fokus Abstand von 0,4m im lateralen sowie anterior-posterioren Strahlengang bei 25/160 kV/mAs geröntgt (s. Tabelle 7).
Tabelle 2: Auflistung der Bauchwandpräparate

Die Präparate stammen aus dem Institut für Anatomie des Universitätsklinikums der RWTH Aachen.

(Erläuterung: a.p.=anterio-posteriores Strahlengang, lat.=lateraler Strahlengang, Rr.=Rami, m=männlich, w=weiblich, konv.=konventionelles Röntgen, mammogr.=mammographisches Röntgen)

<table>
<thead>
<tr>
<th>Präparat / Geschlecht / Alter</th>
<th>Präparationsart</th>
<th>Röntgen: konventionell / mammographisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.1 / w / 89 Jahre</td>
<td>1. en bloc</td>
<td>1. en bloc a.p. bei 35/8 kV/mAs -> konv.</td>
</tr>
<tr>
<td></td>
<td>2. entlang der</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stammgefäße → Rr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>umbilicales (Lupenbrille)</td>
<td></td>
</tr>
<tr>
<td>P.2 / m / 91 Jahre</td>
<td>1. en bloc</td>
<td>1. en bloc a.p. bei 35/8 kV/mAs -> konv.</td>
</tr>
<tr>
<td></td>
<td>2. entlang der</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stammgefäße → Rr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>umbilicales (Lupenbrille)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. entlang der</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stammgefäße → Rr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>umbilicales (Lupenbrille)</td>
<td></td>
</tr>
<tr>
<td>P.4 / w / 84 Jahre</td>
<td>1. en bloc</td>
<td>1. en bloc a.p. bei 35/8 kV/mAs -> konv.</td>
</tr>
<tr>
<td></td>
<td>2. entlang der</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stammgefäße → Rr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>umbilicales (Lupenbrille)</td>
<td></td>
</tr>
<tr>
<td>P.5 / m / 75 Jahre</td>
<td>1. en bloc</td>
<td>1. en bloc a.p. bei 35/8 kV/mAs -> konv.</td>
</tr>
<tr>
<td></td>
<td>2. entlang der</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stammgefäße → Rr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>umbilicales (Lupenbrille)</td>
<td></td>
</tr>
<tr>
<td>P.6 / w / 82 Jahre</td>
<td>1. en bloc</td>
<td>1. en bloc a.p. bei 35/8 kV/mAs -> konv.</td>
</tr>
<tr>
<td></td>
<td>2. entlang der</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stammgefäße → Rr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>umbilicales (Lupenbrille)</td>
<td></td>
</tr>
</tbody>
</table>
(Fortsetzung Tabelle 2)

(Erläuterung: a.p.=anterio-posteriorer Strahlengang, lat.=lateraler Strahlengang, Rr.=Rami, m=männlich, w=weiblich, konv.=konventionelles Röntgen, mammogr.=mammographisches Röntgen)

<table>
<thead>
<tr>
<th>Präparat / Geschlecht / Alter</th>
<th>Präparationsart</th>
<th>Röntgen: konventionell / mammographisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.7 / w / 71 Jahre</td>
<td>1. en bloc</td>
<td>1. en bloc a.p. 35/8 kV/mAs -> konv.</td>
</tr>
<tr>
<td></td>
<td>2. Streifen (longitudinal)</td>
<td>2. Streifen lat. + a.p. 25/160 kV/mAs -> mammogr.</td>
</tr>
<tr>
<td>P.8 / w / 78 Jahre</td>
<td>1. en bloc</td>
<td>1. en bloc a.p. 35/8 kV/mAs -> konv.</td>
</tr>
<tr>
<td></td>
<td>2. Streifen (longitudinal)</td>
<td>2. Streifen lat. + a.p. 25/160 kV/mAs -> mammogr.</td>
</tr>
<tr>
<td>P.9 / m / 80 Jahre</td>
<td>1. en bloc</td>
<td>1. en bloc a.p. 35/8 kV/mAs -> konv.</td>
</tr>
<tr>
<td></td>
<td>2. Streifen (longitudinal)</td>
<td>2. Streifen lat. + a.p. 25/160 kV/mAs -> mammogr.</td>
</tr>
<tr>
<td>P.10 / w / 88 Jahre</td>
<td>1. en bloc</td>
<td>1. en bloc a.p. 35/8 kV/mAs -> konv.</td>
</tr>
<tr>
<td></td>
<td>2. Streifen (longitudinal)</td>
<td>2. Streifen lat. + a.p. 25/160 kV/mAs -> mammogr.</td>
</tr>
<tr>
<td>P.11 / m / 90 Jahre</td>
<td>1. en bloc</td>
<td>1. en bloc a.p. 35/8 kV/mAs -> konv.</td>
</tr>
<tr>
<td></td>
<td>2. Streifen (longitudinal)</td>
<td>2. Streifen lat. + a.p. 25/160 kV/mAs -> mammogr.</td>
</tr>
<tr>
<td>P.12 / w / 89 Jahre</td>
<td>1. en bloc</td>
<td>1. en bloc a.p. 35/8 kV/mAs -> konv.</td>
</tr>
<tr>
<td></td>
<td>2. Streifen (longitudinal)</td>
<td>2. Streifen lat. + a.p. 25/160 kV/mAs -> mammogr.</td>
</tr>
</tbody>
</table>

Tabelle 3: Geschlechts- und Altersverteilung der Bauchwandpräparate.

<table>
<thead>
<tr>
<th></th>
<th>Bauchwände en bloc</th>
<th>Alter (x); x = 70-91 Jahre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Männer</td>
<td>5</td>
<td>83</td>
</tr>
<tr>
<td>Frauen</td>
<td>7</td>
<td>82,86</td>
</tr>
<tr>
<td>Gesamt</td>
<td>12</td>
<td>82,92</td>
</tr>
</tbody>
</table>
Abbildung 10: Geschlechts- und Altersverteilung der Bauchwandpräparate.
3.3. Ergebnisse

3.3.1. Gefäßarchitektur der Bauchwand / Bauchnabel

Grundlage der Untersuchung sind 12 Bauchwandpräparate (P.01-P.12) von Leichen beiderlei Geschlechts (s. Tabelle 3, vgl. Abbildung 10). Die Präparate weisen keine relevanten Narben im Bereich des Bauchnabels und seiner Umgebung auf.

In der Röntgenübersicht weisen 7 (58,4%) der 12 präparierten Bauchwandpräparate einen konvergierenden und 5 (41,6%) einen divergierenden Verlauf der Aa. epigastricae in Bezug auf den zentral gelegenen Bauchnabel auf (vgl. Abbildung 20, 25).

Es stellt sich heraus, dass die Aufteilung der Aa. epigastricae inferiores et superiores zweifach dichotom erfolgt (vgl. Abbildung 12, 13, 15, 22, 26).

Die Präparationen der Bauchnabelregion zeigen eine separate Versorgung des Bauchnabels über Rr. umbilicales aus den Rr. mediales der Aa. epigastricae inferiores (vgl. Abbildung 14, 15, 16, 17). Die Rr. umbilicales verlaufen an der dorsalen Seite des M. rectus abdominis, durchziehen das Scherengitter der Linea alba und verlaufen dann axial divergierend über die Bauchnabelbasis den Nabelstiel
entlang zur Haut (vgl. Abbildung 14, 16, 17). In 5 (83,3%) der 6 Bauchwandpräparate (P.01, 02, 03, 04, 06) können 4 Nabelstielgefäße (2 je A. epigastrica inferior) nachgewiesen werden. In 1 (16,7%) der 6 Bauchwandpräparate (P.05) können 2 separate Nabelstielgefäße (1 je A. epigastrica inferior) nachgewiesen werden (s. Tabelle 4).

<table>
<thead>
<tr>
<th>Tabelle 4: Gefäßarchitektur der A. epigastrica inferior et superior.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. epigastrica inferior et superior</td>
</tr>
<tr>
<td>A. epigastrica inferior</td>
</tr>
<tr>
<td>-> R. medialis</td>
</tr>
<tr>
<td>-> R. lateralis</td>
</tr>
<tr>
<td>A. epigastrica superior</td>
</tr>
<tr>
<td>-> R. medialis</td>
</tr>
<tr>
<td>-> R. lateralis</td>
</tr>
</tbody>
</table>

Es kommt zu Anastomosenbildungen zwischen Endästen der Aa. epigastricae inferiores und Endästen der Aa. epigastricae superiores deutlich oberhalb des Bauchnabels (vgl. Abbildung 12, 22, 23, 26, 27, 28). In der Röntgenübersicht kann bei allen 12 Präparaten die Anastomose im Durchschnitt ca. 4,3cm + / - 0,211cm oberhalb des Bauchnabels festgestellt werden (s. Tabelle 5, vgl. Abbildung 11).
Tabelle 5: Lage der Anastomose zwischen A. epigastrica inferior und A. epigastrica superior oberhalb des Bauchnabels.

<table>
<thead>
<tr>
<th>Präparat</th>
<th>Lage der Anastomose oberhalb des Bauchnabels [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.01</td>
<td>4,2</td>
</tr>
<tr>
<td>P.02</td>
<td>4,5</td>
</tr>
<tr>
<td>P.03</td>
<td>4,6</td>
</tr>
<tr>
<td>P.04</td>
<td>4,4</td>
</tr>
<tr>
<td>P.05</td>
<td>4,1</td>
</tr>
<tr>
<td>P.06</td>
<td>3,8</td>
</tr>
<tr>
<td>P.07</td>
<td>4,4</td>
</tr>
<tr>
<td>P.08</td>
<td>4,3</td>
</tr>
<tr>
<td>P.09</td>
<td>4,4</td>
</tr>
<tr>
<td>P.10</td>
<td>4,4</td>
</tr>
<tr>
<td>P.11</td>
<td>4,2</td>
</tr>
<tr>
<td>P.12</td>
<td>4,4</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>4,31</td>
</tr>
<tr>
<td>Standardabweichung (+ / -)</td>
<td>0,211</td>
</tr>
</tbody>
</table>

Ferner können röntgenologisch Anastomosenbildungen zwischen Endästen der Aa. epigastricae inferiores et superiores mit Endästen der kaudalen Interkostalgefäße dargestellt werden (vgl. Abbildung 27, 28).

Abbildung 11: Lage der Anastomose zwischen der A. epigastrica inferior und A. epigastrica superior oberhalb des Bauchnabels.
3.3.2. Bauchwandpräparate nach makroskopischer Präparation

<table>
<thead>
<tr>
<th>Präparat</th>
<th>Makroskopische Präparation (bei Lupenvergrößerung 3,5x)</th>
</tr>
</thead>
</table>

Abbildung 12:
<table>
<thead>
<tr>
<th>Präparat</th>
<th>Makroskopische Präparation (bei Lupenvergrößerung 3,5x)</th>
</tr>
</thead>
</table>

Abbildung 13:
<table>
<thead>
<tr>
<th>Präparat</th>
<th>Makroskopische Präparation (bei Lupenvergrößerung 3,5x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.03</td>
<td>Der Bauchnabel wird axial durch Rr. umbilicales des R. med. der A. epigastrica inf. mit arteriellem Blut versorgt.</td>
</tr>
</tbody>
</table>

Abbildung 14:
(IM: R. med. der A. epigastrica inf., Pfeile: Rr. umbilicales, B: Bauchnabel, Stern: M. rectus abdominis)

Abbildung 16:
<table>
<thead>
<tr>
<th>Präparat</th>
<th>Makroskopische Präparation (bei Lupenvergrößerung 3,5x)</th>
</tr>
</thead>
</table>

Abbildung 17:
3.3.3. Radiologische Darstellung der Bauchwandpräparate

Tabelle 7: Auflistung der Röntgenaufnahmen der Bauchwandpräparate in der Ansicht von dorsal.

<table>
<thead>
<tr>
<th>Präparat</th>
<th>Röntgenaufnahme (konventionell bei 35/8 kV/mAs im a.p. Strahlengang)</th>
</tr>
</thead>
</table>

Abbildung 18:
<table>
<thead>
<tr>
<th>Präparat</th>
<th>Röntgenaufnahme (konventionell bei 35/8 kV/mAs im a.p. Strahlengang)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.07 Detail</td>
<td>Der R. med. der A. epigastrica inf. zieht kranialwärts und versorgt den Bauchnabel durch Rr. umbilicales axial mit Blut. Der R. lat. verläuft diagonal aufsteigend und verzweigt zunehmend.</td>
</tr>
</tbody>
</table>

Abbildung 19:
<table>
<thead>
<tr>
<th>Präparat</th>
<th>Röntgenaufnahme (konventionell bei 35/8 kV/mAs im a.p. Strahlengang)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.08</td>
<td>Übersicht</td>
</tr>
</tbody>
</table>

Abbildung 20:
<table>
<thead>
<tr>
<th>Präparat</th>
<th>Röntgenaufnahme (mammographisch bei 25/160 kV/mAs im lateralen Strahlengang)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.08 Streifen (longitudinal)</td>
<td>Die A. epigastrica inf. zieht kranialwärts und gibt im Verlauf Seitenäste (Perforatorgefäße) v-förmig ab. Die Seitenäste bilden subkutan einen Gefäßplexus aus, der die ventrale Bauchhaut arteriell vaskularisiert.</td>
</tr>
</tbody>
</table>

Abbildung 21:
(Pfeil: A. epigastrica inf., P: Perforatorgefäße, PP: Gefäßplexus, B: Bauchnabel)
Präparat

Röntgenaufnahme (konventionell bei 35/8 kV/mAs im a.p. Strahlengang)

P.09 Übersicht

Abbildung 22:

<table>
<thead>
<tr>
<th>Präparat P.09</th>
<th>Röntgenaufnahme (konventionell bei 25/160 kV/mAs im a.p. Strahlengang)</th>
</tr>
</thead>
</table>

Abbildung 23:
<table>
<thead>
<tr>
<th>Präparat</th>
<th>Röntgenaufnahme (mammographisch bei 25/160 kV/mAs im lateralen Strahlengang)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.09 Streifen (longitudinal)</td>
<td>Die A. epigastrica inf. zieht kranialwärts und gibt im Verlauf Seitenäste (Perforatorgefäße) v-förmig ab. Die Seitenäste bilden subkutan einen Gefäßplexus aus, der die ventrale Bauchhaut vaskularisiert.</td>
</tr>
</tbody>
</table>

Abbildung 24:
(Pfeil: A. epigastrica inf., P: Perforatorgefäße, PP: Gefäßplexus, B: Bauchnabel)
Übersicht

Die Aa. epigastricae inf. verlaufen kranialwärts und teilen sich unterhalb des Bauchnabels in die Rr. med. et lat. auf. Die Rr. med. et lat. verzweigen sich in ihrem Verlauf zunehmend.

Im unteren Teil der Abbildung sind Bauchwandäste der A. pudenda externa superior [superficialis] zur arteriellen Blutversorgung der inferio-medialen Bauchwand zu erkennen.

Abbildung 25:

Abbildung 26:
<table>
<thead>
<tr>
<th>Präparat P.12</th>
<th>Röntgenaufnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streifen (longitudinal)</td>
<td>(mammographisch bei 25/160 kV/mAs im a.p. Strahlengang)</td>
</tr>
</tbody>
</table>

Abbildung 27:
Präparat P.12
Streifen (longitudinal)
rechts lateral

Röntgenaufnahme (mammographisch bei 25/160 kV/mAs im a.p. Strahlengang)

Abbildung 28:
<table>
<thead>
<tr>
<th>Präparat</th>
<th>Röntgenaufnahme (mammographisch bei 25/160 kV/mAs im lateralen Strahlengang)</th>
</tr>
</thead>
</table>

Abbildung 29:
(Pfeil: A. epigastrica inf., P: Perforatorgefäße, PP: Gefäßplexus, B: Bauchnabel)
3.4. Diskussion

Die eigene Untersuchung zeigt gleichsam Übereinstimmungen und Unterschiede zu den Ausführungen anderer Untersuchungen.

Es stellt sich heraus, dass die Gefäßarchitektur der A. epigastrica inferior et superior einer Regelmäßigkeit unterliegt. Die Aufteilung erfolgt streng zweifach dichotom (vgl. Abbildung 12, 13, 15, 22, 26).

Der Bauchnabel erhält auf Grund seiner separaten Gefäßversorgung eine besondere Position. Es kann eine separate Blutversorgung über Rr. umbilicales aus den medialen Ästen der Aa. epigastricae inferiores dargestellt werden (vgl. Abbildung 14, 15, 16, 17). Die Anzahl der Rr. umbilicales variiert zwischen 2-4 Gefäßen pro Bauchwand. Die Rr. umbilicales bilden feine Äste mit sehr geringem Durchmesser, denen zur Vermeidung von durchblutungsbedingten Komplikationen Beachtung geschenkt werden sollte (s. u.).

Die Präparation des Bauchnabels im Zuge einer Abdominoplastik oder dessen Isolierung im Zuge der Hebung von Bauchwandlappenplastiken kann die Durchblutungsverhältnisse des Bauchnabels beeinträchtigen. Die suffiziente

Eine breite Basis des präparierten Bauchnabelstieles wird zur Stabilität des Bauchnabels beitragen können. Eine verbesserte Vaskularisation des Bauchnabels
läßt eine breit gewählte Basis des Stieles auf Grund der axialen Blutversorgung jedoch nicht erwarten.
4. Schlußfolgerung

4.1. Anatomie der A. epigastrica inferior et superior

Die Rr. umbilicales verlaufen axial aufsteigend und divergierend zur Nabelhaut. Die Anzahl der Rr. umbilicales variiert zwischen 2-4 Gefäßen pro Bauchwand. Bei der Präparation (Isolierung) des Bauchnabelstieles sollte unbedingt auf eine Schonung dieser feinen Gefäße geachtet werden.

Die A. epigastrica superior ist die Fortsetzung der A. thoracica interna. Sie zieht nach kaudal und teilt sich in zwei Nebenäste, den R. medialis et lateralis, auf. Beide Äste sind gleichen Kalibers und verzweigen sich im Verlauf zunehmend. Es kommt zu Anastomosenbildungen zwischen den Nebenästen der A. epigastrica inferior et superior ca. 4,3 cm +/− 0,21 cm oberhalb des Bauchnabels.

Bei Einteilung der Bauchwand in vier Quadranten mit zentral gelegenen Bauchnabel zeigen die lateralen Bereiche der unteren Quadranten eine geringere Vaskularisation seitens der A. epigastrica inferior. Dadurch kann es in diesem Bereich eher zu relevanten Durchblutungsstörungen nach operativen Eingriffen wie Abdominoplastiken, TRAM-Lappen etc. kommen, insbesondere bei zusätzlicher
4.2. Der Bauchnabel in der Plastischen Chirurgie

Operative Eingriffe an der Bauchwand wie z. B. Abdominoplastiken, TRAM-Lappen etc. können zu vaskularisationsbedingten Komplikationen im Bereich des Bauchnabels führen. Die Präparation des Bauchnabelstieles samt seiner versetzten Refixierung können die Durchblutungsverhältnisse des Gewebes beeinträchtigen.

Die suffiziente Vaskularisation des Bauchnabels wird hierbei auf die Probe gestellt, nicht zuletzt auf Grund der kleinkalibrigen bauchnabelversorgenden Rr. umbilicales. Eine mechanische Beeinträchtigung des axial vaskularisierten Bauchnabels durch übermäßige Traktion oder Verdrehung kann zu insuffizienter Vaskularisation mit konsekutiver Wundheilungsstörung und Nekrosen im Bereich der Hautinsel führen. Der postoperative vertikale Zug wird umso ausgeprägter sein, desto stärker die Fettschicht der Restbauchwand ist.

Eine breit gewählte Basis des präparierten Bauchnabelstieles wird mehr zur Stabilität des Bauchnabels beitragen können. Eine bessere postoperative Vaskularisation läßt dies jedoch auf Grund der dominanten axialen Gefäßlage der Rr. umbilicales nicht erwarten.
5. Klinische Relevanz und Schlußwort

Zusammenfassend läßt sich im Rückblick auf die zu Grunde liegende Untersuchung feststellen, dass der Bauchnabel auf Grund der separaten, axialen Vaskularisation über die Rr. umbilicales aus den medialen Ästen der Aa. epigastricae inferiores eine besondere Beachtung hinsichtlich plastisch chirurgischer Eingriffe an der Bauchwand genießen sollte. Die Kenntnis der Topographie sowie die Berücksichtigung selbiger bei der Präparation (Isolierung) des Bauchnabels sollten potenziell Wundheilungsstörungen und / oder Nekrosen vorbeugen, wenn nicht sogar vermeiden können.

Die SAL (suction-assisted lipectomy) wird das Risiko einer beeinträchtigenden vertikalen Traktion verringern, sowie die Körperkontur verbessern können. Jedoch kann dieses Verfahren die suffiziente Vaskularisation der Restbauchdecke empfindlich stören. Daher sollte dosiert in den tiefen Fettsschichten (dorsal der Camperschen Faszie) zur Schonung des subkutanen Gefäßplexus abgesaugt werden.

Die Nahttechnik PTS (progressive tension sutures) wird sich ebenfalls positiv auswirken. Sie eliminiert den „toten Raum“ und verlagert dazu noch die distale Wundspannung auf die Scarpasche Faszie.

Eine breite Basis des präparierten Bauchnabelstieles wird zur Stabilität beitragen können. Eine verbesserte Vaskularisation des Bauchnabels läßt sie jedoch nicht erwarten.

Die gezielte Wahl der Vorgehensweise bei plastisch chirurgischen Eingriffen an der Bauchwand wie Abdominoplastiken, TRAM-Lappen etc. fordert vom Operateur ein geschultes und umfassendes Verständnis der Anatomie sowie Interesse daran, welches Ausmaß der iatrogen zugefügte Weichteilschaden annehmen kann. Dadurch lassen sich Prognosen hinsichtlich des Erfolges der Operation zuverlässiger einschätzen.
Souveränität im richtigen Umgang mit Lappenplastiken erfordert demnach ein umfangreiches anatomisches Wissen und viel Erfahrung.
6. Zusammenfassung

Die Gefäßarchitektur der Bauchwand und ihre Stellung in der Plastischen Chirurgie – eine anatomische Untersuchung

Ergebnisse: Der Verlauf der epigastrischen Gefäße stellt sich in Bezug auf den zentral gelegenen Bauchnabel teils konvergierend teils divergierend dar. Die Hauptstäme der Gefäße teilen sich jeweils in zwei Nebenstäme auf. Die Rr. laterales der Aa. epigastricae inferiores haben einen größeren Durchmesser als die Rr. mediales. Die Nebenstämme der Aa. epigastricae superiores sind etwa gleichen Kalibers. Die Endaufzweigungen der Nebenstämme beider Arterien anastomosieren bilateral deutlich oberhalb des Bauchnabels, im Mittel ca. 4,3cm +/- 0,2cm. Der
Zusammenfassung

Schlüsselwörter: Bauchwand • A. epigastrica inferior et superior • Bauchnabel • Rr. umbilicales • Anatomie
7. Summary

Vascular anatomy of the abdominal wall and its position in Plastic Surgery
– an anatomical study

Background and Aim: Wound healing complications and / or necrosis of the umbilicus, due to decreased vascularisation as a result of plastic surgical interventions as in abdominoplasty or abdominal flap surgery e.g. TRAM-flaps, VRAM-flaps, DIEP-flaps and SIEA-flaps are frequent. Aim of this study is to define territories of the abdominal wall which run the risk of decreased vascularisation in order to optimise plastic surgical techniques.

Methods: Twelve fresh and unfixed human corpses of either sex (70-91 years old) are investigated. The inferior epigastric artery is dissected and cannulated bilaterally above the inguinal ligament. A mixture of barium-sulfate, lead-mennige and pulverised gelatine is then injected. All the abdominal walls are dissected en bloc. Afterwards some specimens are partially dissected in longitudinal stripes. Finally x-rays, both in standard and mammography technique are taken.

Results: In respect of the centrally situated umbilicus, the epigastric vessels show either a converging or diverging orientation. The epigastric arteries divide into medial and lateral branches. The lateral branches of the inferior epigastric arteries show a stronger diameter than the medial branches. The side-branches of the superior epigastric arteries are of the same diameter. The terminal branches of the inferior and superior epigastric arteries anastomose on an average of 4,3cm + / - 0,2cm above the umbilicus. The umbilicus itself receives blood supply by separate axial
vessels (umbilical branches) of the medial inferior epigastric branches. Terminal branches of both the inferior and superior epigastric arteries as well as the caudal intercostal arteries anastomose in the lateral regions of the abdominal wall.

Conclusions: Surgical intervention of the umbilicus and its positioning in abdominoplasty or abdominal flap surgery e.g. TRAM-flaps, VRAM-flaps, DIEP-flaps and SIEA-flaps can affect the vascularisation of the tissue. Sufficient blood supply by the umbilical branches (small caliber vessels) is being tested. Mechanical stress of the umbilicus in abdominoplasty or abdominal flap surgery can lead to post-surgical wound healing complications and / or necrosis. Therefore excessive traction and torsion should be avoided while positioning the umbilicus. The larger the remaining fat layer of the abdominal wall the greater the vertical traction. Additional liposuction around the umbilicus can reduce vertical traction, so might SAL (suction-assisted lipectomy) and PTS (progressive tension sutures). A broadly dissected basis of the umbilical stalk will contribute to stability but will not result in increased vascularisation regarding the axial position of the umbilical vessels.

Key Words: Abdominal wall • Inferior and superior epigastric artery • Umbilicus • Umbilical branches • Anatomy
8. Literaturverzeichnis

9. Danksagung

An dieser Stelle sei es mir gestattet meinen Dank auszudrücken.

Danken möchte ich meinem Doktorvater Herrn Univ.-Prof. Dr. Dr. Prof. h.c. (RC) N. Pallua, Direktor der Klinik für Plastische Chirurgie, Hand- und Verbrennungschirurgie am Universitätsklinikum der RWTH Aachen, für die Erlaubnis uneingeschränkt an seiner Klinik arbeiten zu dürfen. Zudem war es immer möglich bei aufkommenden Fragen ein aufmerksames und wohlwollendes Gehör seinerseits zu finden.

Ganz besonders danken möchte ich meinem Dissertationsbetreuer Herrn Dr. med. D. m. O’Dey, Oberarzt an der Klinik für Plastische Chirurgie, Hand- und Verbrennungschirurgie am Universitätsklinikum der RWTH Aachen, für die freundliche Überlassung des Themas, die großzügige Unterstützung bei den anatomischen Präparationen, die Beratung und Betreuung während meiner Doktorandenzeit und darüber hinaus.

Weiterhin gilt mein Dank Herrn Prof. Dr. med. A. Prescher, am Institut für Neuroanatomie des Universitätsklinikums der RWTH Aachen, für seine uneingeschränkte und großzügige Beratung und Unterstützung während meiner Doktorandenzeit.

Allen Damen und Herren Professoren, Oberärzten und Assistenzärzten der Institute und Kliniken der RWTH Aachen danke ich für das bei Ihnen Erlernte.

Ganz besonders danken möchte ich meiner Familie. Ihre Unterstützung ist unaufwertbar.
10. Curriculum vitae

Chukwubikem Akabogu Okafor

- **Persönliche Angaben**
 - Geburtsdatum: 15.11.1980
 - Geburtsort: Aachen
 - Familienstand: ledig
 - Konfession: evangelisch
 - Sprachkenntnisse: igbo, deutsch, englisch, latein
 - Nationalität: deutsch

- **Schulbildung**
 - 1986 - 1990: Grundschule Gut Kullen Aachen
 - 1990 - 1995: Couven - Gymnasium Aachen
 - 1995 - 1997: Anne - Frank - Gymnasium Aachen
 - 1997 - 2000: Geschwister - Scholl - Gymnasium Aachen; Abschluß mit der allgemeinen Hochschulreife

- **Zivildienst**
 - 03.07.2000 - 01.01.2001: Chirurgie - Abteilung des Krankenhaus Alten Eichen Hamburg
 - 02.01.2001 - 18.03.2001: EDV - Abteilung des Krankenhaus Alten Eichen Hamburg
 - 19.03.2001 - 31.05.2001: Technischer Dienst des Krankenhaus Alten Eichen Hamburg

- **Hochschulstudium**
 - Beginn des Humanmedizinstudiums im Oktober 2001 an der Medizinischen Fakultät der Universität Ulm
 - Ärztliche Vorprüfung: August 2003
 - Hochschulortswechsel im Oktober 2003 an die Medizinische Fakultät der RWTH - Aachen
 - Zweiter Abschnitt der Ärztlicher Prüfung: voraussichtlich Oktober 2007

- **Praktisches Jahr**
 - Beginn im August 2006
 - 1. Tertial: Herz-, Thoraxchirurgie
 Universitätsklinikum Aachen
 - 2. Tertial: Allgemeinchirurgie Kliniken Maria Hilf Mönchengladbach
3. Tertial: Innere Medizin Kliniken Maria Hilf
Mönchengladbach

- Dissertation
 Thema: Die Gefäßarchitektur der Bauchwand und ihre Stellung in der Plastischen Chirurgie – eine anatomische Untersuchung
 Doktorvater: Univ.-Prof. Dr. Dr. Prof. h.c. (RC) N. Pallua, Direktor der Klinik für Plastische Chirurgie, Hand- und Verbrennungschirurgie am Universitätsklinikum der RWTH Aachen

- Tätigkeiten neben dem Studium
 Seit 2003 Anlernung in praktisch-ärztlicher Tätigkeit in der Praxis für Allgemeinmedizin des Vaters Dr. med. Okwudili Okafor in Niederzier; regelmäßige Begleitung bei Hausarztbesuchen

- Sonstiges
 Seit 2004 Mitkoordinator in verwaltungstechnischen Angelegenheiten in der Praxis für Allgemeinmedizin des Vaters Dr. med. Okwudili Okafor in Niederzier

Chukwubikem Akabogu Okafor

Aachen, im Sommer 2006