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ABSTRACT

Most of today’s scientific data sets are time-varying because they simulate the evolution
of a dynamic system or a specific phenomenon. Examples include blood flow simulations
in artificial blood pumps and geothermical heat flow forecasts 100 years into the future.
Simulations spanning thousands of discrete time steps are common these days; simula-
tions with a much higher resolution exist. The navigation in the temporal dimension of
this scientific data is an essential part of the data analysis process, both for investigation
and integration of insight. However, for this growing problem size, two basic challenges
arise: First, due to the large amount of discrete time steps, a simulation expert needs a
user interface that supports all navigation tasks emerging in the analysis process—e.g.,
finding a specific time step, focusing on a time interval, or choosing a suitable tem-
poral subsampling—in an intuitive and accurate way (”interaction problem”™). Second,
generating an animation from time-varying visualizations produces an enormous compu-
tational load due to the sheer amount of discrete time steps, which impedes interactive
visualization (” computation problem™).

This thesis introduces taxonomies and techniques that address both problems in order to
enable an interactive analysis of large, time-varying data. Because Virtual Reality (VR)
has shown to be an effective tool in the analysis of complex, spatio-temporal phenomena,
we focus our techniques on analysis scenarios within virtual environments.

In order to contribute to the full analysis process, a set of heterogeneous techniques
including direct 3D interaction, multi-objective optimization, and parallel scheduling
techniques is introduced. To build up a formal foundation, we elaborated a time model to
describe time in scientific visualizations. This model enables us to define data structures
that, for instance, are able to hold heterogeneous simulation data and exploit temporal
recurrence. In addition to this formal foundation, we introduce a taxonomy of common
user tasks related to temporal navigation. Using these two foundations, we address the



interaction problem by a novel 3D user interface that relies on direct spatial manipulation
techniques for temporal navigation. The basic idea of this 3D interface is that the user
interactively specifies a spatial point or region of interest and our techniques compute
corresponding time instants or intervals, which are used as travel targets.

In order to ease the computational problem, we follow a two-step approach: we first
subsample the available discrete data and then compute visualizations on the remaining
data concurrently. To this end, we propose a subsampling approach that attempts to
optimize multiple descriptions of temporal importance. Using our algorithm, the user
can provide even conflicting depictions of what is interesting in the simulation data. The
algorithm tries to share out the available time steps to resolve important regions with
more discrete time steps and less important regions with a few time steps only.

In order to enable interactive analysis on the remaining temporal resolution in acceptable
waiting times inside a virtual environment, we employ parallel computing resources.
We present a scalable parallel system to concurrently compute time-varying data. In
addition, we propose novel scheduling techniques that attempt to answer certain analysis
tasks faster by incorporating the user’s interaction into the computational process.

We evaluate the introduced techniques using several real-world data sets and discuss their
impact and restrictions. The heterogeneous techniques proposed in this thesis—applied
individually as well as in combination—enable or ease the analysis of large time-varying
data in an interactive work process.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

With the growing size, availability and performance of parallel computer systems, re-
searchers numerically simulate increasingly complex phenomena. In order to gain insight
into the simulated processes, a human researcher has to analyze the large amount of
data that is generated by numerical simulations. Scientific visualization is an essential
tool in this data analysis process. As a special field of general data visualization, it
is primarily concerned with visualization of 3D phenomena that may change over time
(which is in the following called 4D data). Scientific visualization is often preferable
to other analysis techniques (e.g., statistical analysis) because it exploits the human
visual pattern-recognition skills and therefore strongly contributes to the understanding
of complex or unanticipated correlations. The usage of Virtual Reality (VR) technology
further exploits human perception by incorporating user-centered stereoscopic projec-
tion, multimodal interfaces and direct interaction. For the interactive analysis of highly
complex phenomena, this combination of scientific visualization and VR is gaining more
and more importance (e.g., [69, 80]).

While the spatial resolution of simulation data is increasing, the most complex phe-
nomena are inherently time-varying. This results at the same time in an increase of
the temporal resolution. Simulations described by thousands of discrete time steps are
getting common these days; simulations with a much higher resolution exist.

In this thesis, I will use the term large time-varying data for such data sets with a large
number of discrete time steps (i.e., thousand and multiples thereof), independent of the
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CHAPTER 1. INTRODUCTION

spatial size of a single time step, which is distinct from the same term often used for tera-
or peta-scale computing. When analyzing simulation data with such a high temporal
resolution, two basic problems emerge:

(1) The Interaction Problem: With the growing temporal resolution of simulation data,
the requirement for more efficient and accurate interaction techniques that are used
to organize or to maneuver through time-varying data arises. To efficiently navigate
through a large amount of discrete time steps, a simulation expert needs a user interface
that supports all tasks emerging in the analysis process—e.g., finding a specific time
step, focusing on a time interval or choosing a suitable temporal subsampling—in an
intuitive and accurate way.

(2) The Computation Problem: The standard approach to visualize time-varying data
still is to apply known time-independent visualization techniques to all time steps in
order to generate an animation. For large time-varying data this produces an enormous
computational load due to the sheer amount of discrete time steps. Even for fast visual-
ization of a single time step, the multiplication of computation time by several orders of
magnitude impedes interactive visualization. Particulary for a VR-based data analysis,
maintaining an interactive work flow is of major importance.

To the best of my knowledge, existing visualization systems are oblivious to both prob-
lems. The interaction techniques provided by free or commercial visualization software
are meant to navigate in 10-100 time steps, but are insufficient for large time-varying
data. Computational support for time-varying data is mostly given by efficient algo-
rithms for single time step data, which is still insufficient for large numbers of discrete
time steps, even for moderate single time step sizes.

This thesis proposes and evaluates techniques that tackle these two problems for large
time-varying data. Its goal is to support scientists in their data analysis when investi-
gating simulation data with a large amount of time steps. Because the topic of large
time-varying data—in particular the interaction problem—has not been intensively ad-
dressed by the visualization community in the past, this thesis tries to introduce a con-
ceptual foundation for this field of research. This includes the definition of formalisms
to describe time as well as efficient data structures to represent time-varying data. In
addition, common tasks that users execute to navigate through time are analyzed and
organized in a taxonomy.

These two basic principles—a model to describe time and interaction with time as well as
a classification of temporal navigation tasks—enable the development and evaluation of
new interaction techniques as well as algorithms that support the identified user tasks.
This thesis proposes three such new approaches. In order to address the interaction
problem, a new 3D user interface to navigate through time has been developed. To
resolve the computation problem, two different approaches are introduced. On the one
hand, reducing the shown temporal resolution in a meaningful way reduces the necessary
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computational load. On the other hand, exploiting parallel computing resources with
user-centered scheduling strategies reduces the overall computation time even for a large
number of discrete time steps. Both approaches can be combined to interactively deal
with large time-varying data.

This thesis does not propose new visualization techniques, but supportive techniques
and algorithms that can be integrated in scientific visualization tools and that can be
used in combination with a large number of visualization techniques. The techniques
proposed in this thesis enable the analysis of large time-varying data in an interactive
work process. Such an interactive exploration process will provide a major benefit for
scientists who today are restricted to a cumbersome investigation of a small number of
single discrete time steps.

1.2. Contributions

The contribution of this thesis is a comprehensive set of methods that render an interac-
tive exploration of large time-varying data possible. In summary, the main contributions
of this thesis are:

e A time model as a formalism to describe temporal characteristics and relations in
scientific visualizations in an efficient and consistent way.

e A taxonomy for the user’s temporal navigation task in the scientific data analysis
process.

e Novel 3D interaction techniques that are based on direct manipulation for the task
of temporal navigation.

e A stochastical optimization algorithm that computes a temporal subsampling—by
selecting a subset of the available time steps—for a given set of criteria.

e A scalable parallel software system for computation of time-varying visualization
data, including scheduling strategies that incorporate the user’s temporal naviga-
tion interaction.

1.2.1. Publications

Parts of the research results of this thesis have been discussed in a number of publications.
The time model for scientific visualization was described in [104]. Applications using
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CHAPTER 1. INTRODUCTION

this time model were presented in [52] and [105]. The direct manipulation techniques
were discussed in [109, 111]. The parallel computation system was applied to time-
varying data in several projects [53, 54, 110]. User-centered scheduling strategies were
introduced in [106, 108].

1.3. Outline

This thesis is structured as follows: Chapter 2 gives an overview of related work from
the fields of scientific visualization, human-computer interaction and parallel computing.
Where appropriate, work from different fields of research is discussed. This chapter is
meant to give an overview only, detailed comparisons and differences are discussed in
the respective chapters.

In Chapter 3, a time model that captures the different temporal characteristics occuring
in scientific visualizations is proposed. The goal of this chapter is to provide a terminol-
ogy to describe both interaction and computation techniques as well as to introduce an
efficient data structure on which these techniques are going to build.

Chapter 4 describes an analysis of common temporal navigation tasks that results in
a taxonomy of these tasks. Based on this taxonomy, possible 3D user interfaces for
scientific visualization inside virtual environments are discussed. In the following two
chapters, two identified user tasks are then analyzed in more detail: movement tasks in
the temporal domain as well as the task of modifying the shown temporal resolution.

For efficient execution of movement tasks, a new user interface that follows a 3D direct
manipulation interaction style is proposed and evaluated in Chapter 5. This new in-
terface addresses the interaction problem of large time-varying data by exploiting the
intuitive interaction capabilities provided by VR.

In order to adapt the discrete temporal resolution to the user’s analysis, Chapter 6
proposes a new approach to specify and compute a non-uniform resolution based on
different notions of importance. Besides introducing user interfaces to specify tempo-
ral resolution, this approach mainly addresses the computational problem by means of
reduction of the temporal resolution of large time-varying data.

To further alleviate the computational problem, Chapter 7 describes a distributed sys-
tem that uses hybrid parallelization to handle computations on large time-varying data
within acceptable waiting times—as demanded by VR-based exploration. By exploiting
resources provided by parallel machines, this system provides a scalable solution for the
growing size of large time-varying data. Based on this parallel system, computation
strategies that incorporate the user’s interaction are introduced. These strategies rely
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on the previously proposed task taxonomy and try to exploit assumptions about the
user’s interaction behavior to optimize computations.

Results for the proposed techniques will be shown directly after the techniques’ descrip-
tion. The presented use cases and evaluations utilize simulation data sets from different
fields of research (i.e., medicine, engineering, geophysics). Finally, Chapter 8 summarizes
the thesis and draws conclusions from the achieved results.

The described techniques are realized in the ViSTA FlowLib visualization software [87].
The technical embedding into this Virtual Reality framework allows a straightforward
use of the developed methods within multiple virtual environments. Most technical
details concerning the used VR hardware are encapsulated by ViSTA FlowLib and are
therefore left out in this thesis.

A list of used terms and definitions that are used throughout this thesis is listed in
Appendix A. Technical details that are not necessary to understand the techniques
proposed in this thesis, but which are useful for a technical realization of these techniques,
are given in Appendix B. Appendix C gives a detailed description of the data sets used
in this thesis.

In the following text, I will use the first person plural (we) instead of the first person
singular as in this introduction, because the described work was partially elaborated
in close cooperation with my co-workers, which includes useful discussions, provision of
source code and numerous other support.






CHAPTER 2

RELATED WORK

This chapter discusses selected work from the fields of scientific visualization and Virtual
Reality, in addition to work related to time-varying data from other fields of research.
As each original work possibly discusses multiple aspects of time-varying data at once,
the same work can occur multiple times in different sections. Though, it will only be
discussed with respect to the appropriate topic of this section.

2.1. Time-Varying Visualization Techniques

To analyze different aspects of time-varying scientific data, various scientific visualization
algorithms exist. In this section, a classification for time-varying visualization techniques
is introduced and a selection of techniques is discussed exemplarily.

In the context of this thesis, we propose to distinguish two categories: visualization algo-
rithms that process discrete time steps independently from each other (time-independent
visualization techniques) and algorithms that process time steps in a way that introduces
a dependency between single time steps (time-dependent visualization techniques). This
classification is crucial to identify visualization algorithms that can benefit from the
techniques proposed in Chapters 6 and 7, because these techniques change the order of
time steps. Therefore, only time-independent visualization algorithms are compatible
with the techniques introduced in Chapters 6 and 7.
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2.1.1. Time-Dependent Visualization Algorithms

Time-dependent visualization algorithms are algorithms that require multiple time steps
in order to work and introduce a dependency between single time steps. Two prominent
examples for time-dependent visualization algorithms are particle tracing and tracking
the evolution of identified features. Both techniques require at least two time steps
simultaneously and therefore enforce a dependency between single time steps: in particle
tracing at least two time steps are necessary to interpolate the particle velocity between
discrete time steps, in feature tracking two candidate features in successive time steps
have to be matched.

Particle tracing visualizations try to illustrate time-varying flow structures directly. It
bases on the idea of depicting the movement of matter through the simulated flow (see
Weiskopf and Erlebacher for an overview [103]). Work on particle tracing deals with the
computational effort of interactive particle tracing (e.g., by precomputation [15, 35, 94]
or data reduction [86]), intuitive and efficient depiction of large amounts of particles (e.g.,
by tubelet depiction that show the evolution of a path [88]), and seeding techniques for
particle tracing (e.g., by defining spatial importance functions to decide spatial density
of seed points [19]).

The basic idea behind feature detection and tracking is to automatically extract phys-
ically meaningful time-varying patterns from the raw data and thereby to reduce the
amount of information the user needs to analyze (see Post et al. for an overview of fea-
ture detection and tracking techniques [79]). For time-dependent data sets, one problem
is detecting the correspondence between features in successive time steps that actually
represent the same feature at different times. Post et al. report three approaches to
solve this correspondence problem: direct extraction from the spatio-temporal domain,
region-based, and attribute-based correspondence for extracted features in separate time
steps [79]. Along the tracked evolution of a feature, interesting phenomena of the evolu-
tion can be detected, which are called events [82]. Possible events are, for instance, birth
and death of a feature or interactions between multiple features. This extracted and re-
duced information is presented to the user for further investigation of the underlying
simulation data.

Beside these two common visualization techniques, specialized time-dependent visual-
ization techniques were proposed for special problems. For instance, Janicke et al. [60]
use mutual information to define local statistical complexity as the minimal amount of
information required to determine the causal state of a spatio-temporal point from its
past. To this end, not only the temporal past of a point x, but its past "light cone”—
all points that may influence x given an assumed finite speed—are evaluated. Their
approach automatically extracts rare spatial patterns in the time-varying data. As a
second example, Woodring and Shen introduced a wavelet-based technique to automati-
cally discover trends at different temporal resolutions [112]. Using wavelets, they cluster
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time curves of single data points into curves with similar time activity within the same
scale. To analyze all decomposed curves resulting from a data set, clusters of curves
with similar time activity (within similar scales) are formed.

This is only a selection from the large number of time-dependent visualization algo-
rithms. Time-dependent algorithms that extract some sort of motion like particle traces
or feature tracking are a prerequisite for the direct manipulation interaction techniques
proposed in Chapter 4. As already mentioned, the sampling and scheduling algorithms
introduced in Chapters 6 and 7 are not applicable to these time-dependent algorithms,
as they change the computational order of discrete time steps. These algorithms can
only be used in combination with time-independent visualization algorithms.

2.1.2. Time-Independent Visualization Algorithms

Time-independent visualization algorithms are algorithms that process multiple time
steps independently from each other. These algorithms can be applied to discrete time
steps of a time-varying data set in order to generate a discrete sequence of visualization
objects. This sequence is mostly displayed in an animation, as this corresponds to the
natural perception of time. This is the approach of most visualization systems supporting
time-varying data (e.g., ParaView, Visit, EnSight). In addition, such an animation is
also capable of conveying time-dependent visualization algorithms.

The class of time-independent algorithms includes algorithms operating on scalar data
(e.g., contours or direct volume rendering), vector data (e.g., hedgehogs or glyphs),
tensor data (e.g., tensor ellipsoids) or geometry (e.g., resampling or cutting). Details

on these time-independent visualization algorithms can be found in the Visualization
Handbook [49].

In order to apply time-independent visualization techniques to large time-varying simu-
lation data sets, these algorithms or systems need to be able to cope with the enormous
amount of data. Reducing the amount of data to process by discarding whole time steps
(temporal sampling) is considered in Section 2.4. Systems that use parallelism to process
large time-varying data are discussed in Section 2.5.

Another possible solution is to integrate spatio-temporal data structures that speed up
access to time-varying data by exploiting temporal coherency. The fundamental idea of
these data structures is that, even though proceeding in time is related to changing data,
data changes only slightly or only locally. The Temporal Hierarchical Index Tree is used
to speed up isosurface extraction from time-varying data [91]. For a grid that does not
change over time, cells in a time-varying field are classified according to the temporal
variation of their extreme values and are stored in a binary tree structure. Differential
Time-Histogram Tables (DTHT) introduced by Younesy et al. [113] store 2D (time and
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isovalue bins) histograms. In each bin, the active set and the differentials to adjacent
bins are stored. Differential cells are stored both in the temporal and isovalue direction
of the histogram. Using a DTHT, gradual changes in the query values (both isovalue
and time) can be answered by discarding/adding just the differential cells. Other ex-
amples are the Time-Space Partitioning (TSP) [92] or Temporal Branch-on-Need tree
(TBON) [96], which are based on an octree data structure. All these data structures
provide a satisfactory reduction of the memory access during visualization computation.
While the data structures themselves are time-dependent, they are generally used for
time-independent algorithms. But, as each is optimized to a specific visualization tech-
nique, these data structures are not usable as optimizations for general time-independent
visualization algorithms.

2.2. Time Models

To the best of our knowledge, Bryson et al. [16, 18] were the first to discuss time man-
agement in the context of Virtual Reality applications for scientific visualization. The
authors distinguish six senses of time that correspond to the time stamps of single steps
in the processing of time-varying data. This time model is also used to describe con-
sistent operations on time-varying data, e.g., only the latest computed data is shown.
However, their time management structure is deeply related to their software structure
and therefore not applicable as a general model. Nonetheless, as they address the prob-
lem of visualizing time-varying data in a consistent way, their model of time is closely
related to this thesis.

Several visualization applications that support displaying time-varying data sets exist,
which therefore inherently possess some model of time. However, these time models
are rarely described explicitly but must be deduced from user interfaces or application
programming interfaces (APIs). The commercial EnSight software [25] provides a user
interface for mixing continuous and discrete data. In addition, visualization of data
objects with different temporal information, so-called timesets, is enabled using a com-
posite timeline. Using these timesets, several simulation objects can be integrated in a
single visualization session. However, as the technical realization is embedded in a com-
mercial system, the underlying model is not applicable to other systems. The ParaView
software [67] distinguishes three time frames: an animation time that changes when
animation is playing, a reader time that corresponds to time stamps associated with
data files (all readers must use the same time unit), and an application time that is
used to request data from VTK components (which is typically the same as animation
time, but constant values or keyframes are also possible). Again, this model is strongly
connected to the corresponding VTK modules and inadequate for our requirements (see
Section 3.2).
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In addition, different time models exist in other disciplines, which fulfill requirements
different from the ones we are going to describe in Section 3.2. In the field of information
visualization, Aigner et al. [4] recently introduced a taxonomy for time-dependent visu-
alization. It is more complex than required for scientific visualization, as information
visualization deals with the visualization of abstract data instead of only 3D/4D data.
This data can consist of time points as well as time intervals, or time may branch into
different alternatives. Aigner et al. [4] demand more effort in the research related to
interaction with time-oriented data, a topic we contribute to here.

Even the model of physical time itself—i.e., the time we live in—has been topic of early
philosophical discussions. For instance, Aristoteles’ and Newton’s models of time differ
with respect to the necessity of an external reference:

Aristoteles writes

7It is evident then that neither time is a motion nor can exist without a
motion.”
- (from Aristotle’s Physica, written 350 B.C., translation by Apostle [6])

In contrast, Newton states that

”Absolute, true and mathematical time, of itself, and from its own nature,
flows equably without regard to anything external, and by another name is
called duration; relative, apparent, and common time is some sensible and
external (whether accurate or unequable) measure of duration by the means
of motion, which is commonly used instead of true time; such as an hour, a
day, a month, a year.”

- (from Newton’s Principia, first published in 1686, translated and edited by
Cajori [20])

All these different time models try to capture the properties of time as they are necessary
for specific problems. There are time models in scientific visualization, but these are
strongly related to specific implementations of visualization applications, and do not
consider interaction nor the requirements we identify in Section 3.2.

2.3. User Interfaces for Time-Varying Data

Before discussing user interfaces for time navigation, the users’ tasks done during navi-
gation need to be identified. Several publications provide classifications and taxonomies
for common tasks in scientific data analysis, but none explicitly includes time naviga-
tion. At the first IEEE Visualization conference, Wehrend et al. proposed a list of
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nine general user goals (identify, locate, distinguish, categorize, cluster, rank, compare,
associate, correlate), which were deduced from a review of over 300 visual displays [102].
Springmeyer divides user tasks into three general tasks: managing the data, applying
math and recording ideas [95]. Casner proposes only two general user analysis tasks,
search and computation [22], where computation tasks involve a transformation of the
data, while search tasks do not. Another classification is possible by regarding the scope
of an analysis task. Robertson distinguishes point, local, and global scope [83]—i.e., a
particular location, a small subregion, and the entire data. Haimes and Darmofal use the
scope to classify user analysis tasks: probing a particular location, feature identification
within regions of the data, and scanning through the entire data set [48]. These task
analyses are either general descriptions of the scientific data analysis process or focus on
spatial characteristics of the data. Therefore, they do not address tasks concerning the
temporal aspects of the simulation data, but provide a useful basis for the task taxonomy
we are going to introduce in Section 4.2.

The task of browsing in a large data space, for instance in text documents, has been
researched for different media. According to Hiirst et al., continuous data can be inter-
preted as a stream of single frames [59]. Therefore, browsing in a video or animation is
comparable to scrolling in a text document.

While scrollbars are the predominant interaction technique for browsing, they possess
several drawbacks [116]: their usage shifts the locus of attention away from the target,
and time is required to acquire the wiper element. In addition, they yield only a limited
resolution (e.g., one pixel for 2D scrollbars). This results in the inability of precisely
selecting desired items that are below the provided granularity.

To counteract the latter problem, Ahlberg and Shneiderman [1] proposed the Alphaslider
to navigate in large lists of alphanumeric data. This technique enables the user to select
between fine or coarse movement of the slider thumb. To the best of our knowledge,
techniques such as the Alphaslider are not used in visualization systems. The TimeSlider
technique [68] was designed to select time instants in a long time scale. The user interface
employs a non-linear and moving visible time scale to allow a precise selection of specific
time instants. However, evaluation showed that the performance using the TimeSlider
is comparable to the performance of common slider-based position controls.

In spite of their drawbacks, the user interface techniques most commonly found for
temporal navigation in scientific visualization toolkits are linear time sliders, which are
combined with VCR-like buttons (i.e., play, stop, one step forwards, one step backwards).
For instance, the ParaView software [67] supports interaction within discrete time steps
in the form of VCR-like controls and a linear time slider. Animation speed control
and selection of the visible time interval are possible with textual interfaces. Three
different animation modes are provided: a sequence of a defined number of frames, an
animation of a specific duration, and a sequence of all time steps. As in most other
toolkits, the focus lies on a sequence of discrete time steps and images and not on the
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temporal correlation of the analyzed data. Additionally, no interaction is possible during
animation.

The time slider interface can also be found in VR-based scientific visualization applica-
tions, mostly integrated as adapted 2D graphical user interface (GUI) integrated into
the virtual environment. For instance, the Cloud Explorer [46] provides the user with
VCR-buttons, a slider-based rate control, and a linear time slider. The latter can also
be used to restrict the visible time range. To counteract the problems for ray-based
selection of small objects, the IntenSelect [30] technique is applied for a fast acquisition
of the 3D slider elements. However, this interface still possesses the two mentioned
drawbacks: limited granularity and indirect control.

While the time slider is the predominant interaction technique for time navigation in sci-
entific visualization, some work introduced alternative interaction techniques for certain
time navigation tasks. For geographic information systems (GIS), Monmonier proposed
two techniques to alleviate temporal navigation: temporal focusing and temporal brush-
ing [77]. The former allows restricting the observed time interval (also called range
selection), while the latter enables the user to deselect certain temporal regions (e.g.,
all data from winter in a cyclic seasonal time frame). Later, Harrower et al. [50] found
in a study that students using temporal brushing and focusing showed an improved
understanding of the relationship between climate variables.

The VR-based CAVEvis system [61] applies a clock metaphor both as a time legend
and a widget to manipulate time, i.e., time is manipulated by twisting the clock dial.
However, restricting the time range is only facilitated by offline configuration of files.
As the clock metaphor was not evaluated, it remains open if this metaphor has any
benefits over time sliders. Edsall et al. [34], who investigated the effect of different types
of temporal legends, could not find an effect when comparing linear slider legends and
cyclic clock-like legends.

Hentschel et al. [52] proposed to use a static view of the trajectories of time-varying
particle traces. On these trajectories, sample positions are marked with icons, which
represent the associated time instant. By selecting an icon using a 3D user interface,
the system jumps to the appropriate time instant. To avoid occlusion of these icons,
geometry elements are made invisible when activating the static view. Even though this
technique allows direct selection in the visualization space to navigate in time, the user
is restricted to the selected icons.

For navigation in continuous video media, linear time sliders are also common practice
in most media players or video editing tools. Rate controls in audio and video tools
(e.g., playback speed in QuickTime Player or Windows Media Player, or fast forward
controls) are common practice as well. In scientific visualization tools, they are rarely
used. Time navigation in audio and video media has earlier been recognized as a problem
and therefore has been discussed more extensively. As results from this field possibly
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apply to navigation in scientific visualizations, some selected results are described here.

Lee et al. investigated three user interfaces (a scroll ring, a jog dial, and an iPod touch
wheel) for audio media [70]. Their results showed that users were able to locate a
certain position 90 to 100 seconds away in a continuous audio stream faster using the
two available position control devices (i.e., jog dial and touch wheel) than using the rate
control scroll ring. A rate control interaction technique for video media was proposed
by Hiirst et al. [58]. Here, the distance between mouse and slider knob determines
the scrolling speed, i.e., scrolling is slower when the mouse position is close to the slider
knob and vice versa. In initial user studies the authors did not find significant differences
between the standard slider and their approach.

Recently, several research activities have proposed and evaluated direct manipulation
techniques to browse videos. These methods have in common that a major challenge
is pre-processing of the video to compute trajectories, which can then be interactively
moved to browse the video. Kimber et al. [65] presented the Trailblazing system, which
uses trajectories based on people segmented from the video content. In addition to
control the video directly, it also allows dragging iconic representations of the identified
people on a floor map. The DRAGON system [64] uses an optical flow field technique
to precompute trajectories for each pixel. Using this information, users can drag ob-
jects along their trajectories in the video directly. DRAGON uses a ”closest point”
approach to select a position on the trajectory with a mouse cursor. In an evaluation
of the system, users performed up to 42% faster compared to using a linear time slider.
The Direct Manipulation Video Player (DiMP) proposed by Dragicevic et al. [33] also
uses precomputed pixel trajectories, but provides several optimizations, for instance, a
compensation of background motions for moving cameras. In their experiments, users
performed up to 250% faster than using a time slider. In addition, the authors provide
a methodical background to the design of video dragging tasks. They emphasize, that
these kinds of techniques are very useful when video navigation is performed to solve
tasks involving space. As the latter work shows promising results, the basic idea of using
direct manipulation of objects to change time is followed in Chapter 4.

2.4. Temporal Subsampling

When the existing temporal resolution is too fine to permit an efficient visualization, a
temporal subsampling of the data is inevitable. While spatial downsampling also reduces
the necessary amount of data, for large time-varying data sets even spatially reduced
data can exceed the capabilities of visualization workstations. As spatial data reduction
is not the focus of this thesis, this approach is not discussed here.

A straightforward approach to temporally sample data is a uniform subsampling. For
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instance, the sequence mode provided by the ParaView software [67] generates a prede-
fined sequence of frames that are evenly spaced in the visible time interval. In contrast,
for a non-uniform subsampling, single data items need to be selected from the overall
data set. One possible way is to use a ranking function—i.e., some data items must be
ranked above others, and are therefore more important than others. Therefore, a key
point in the selection of new samples is the definition of the term importance.

Wang et al. [101] define importance by shared mutual information with neighboring
discrete time steps. The idea behind this is that changes in the time-varying data
are of special interest. They compute mutual information for each block of a volume
to obtain importance information of spatial regions. Spatial regions can be clustered
together based on the similarity of their mutual information curves. By accumulating
all blocks in a time step, the importance of a single time step is computed. They adapt
the temporal resolution to show more important time steps using a heuristic algorithm,
which—for each segment of nearly equal importance—selects the discrete time step which
maximizes mutual information with respect to the last chosen time step. We later use
their approach as an example importance function, therefore it is briefly summarized in
Section 6.3.3. They also propose to adapt the animation speed according to importance,
in order to "fast forward” over uninteresting regions, while animating highly important
parts in a "slow motion” fashion. While they address the problem of selecting a suitable
temporal sampling, they incorporate only a single criterion, which is to maximize joint
entropy.

Multiple criteria are used by Lu and Shen to provide the scientist with a storyboard-like
temporal overview [72]. To generate this overview, representative time steps are selected
based on different feature criteria. By using dissimilarity matrices over all combinations
of time steps, this technique allows to incorporate multiple criteria to distinguish time
steps from one another. For each criterion, a dissimilarity matrix over all combinations
of time steps is computed. These matrices are composed into a single dissimilarity
matrix using weighted sums. The final selection of time steps—which is performed on
a lower-dimensional reduction of the dissimilarity data—is done by a greedy selection
algorithm picking the time steps with the highest composed suitability values. Reduction
in dimensionality is done, as the author’s goal is to depict keyframes with a ”pseudo-
distance” showing similarity. While the approach to incorporate multiple criteria is
similar to ours—which is introduced in Chapter 6—, they apply a greedy selection on a
reduced set of criteria only.

A linked combination of value exploration and exploration of temporal behavior was
shown by Akiba and Ma [5]. Multivariate connections can be brushed using a parallel
coordinates interface, which is linked to time histograms for each brushed attribute and
a direct volume rendering of selected attributes and time instants. While this provides a
very explorative way to find interesting points in time, the user can only manually select
single time instants, which is not suitable to define a complete temporal sampling.



CHAPTER 2. RELATED WORK

Another approach that directly includes domain knowledge was presented by Glatter
et al. [44]. Using this system, a domain scientist specifies uncertain temporal patterns
using a description language. Temporal evolutions and multivariate connections can
be formulated as queries using this language, and the system returns data points that
exhibit the specified pattern. While focusing on temporal patterns, this method obtains
a set of spatial points where the given patterns occur. A measure for importance in the
temporal domain is not directly obtained.

The problem to identify important scenes for temporal overviews or navigation was
also addressed in the field of video analysis. Several publications in this field define an
importance measure to select keyframes from video data. As one example, Girgensohn
et al. automatically select important scenes to provide a keyframe-based overview of
the complete video [43]. Video segments are assigned an importance value that depends
on the rarity and duration of the segment—rare and long segments are more important
than repeated or short video scenes. To select a number of these keyframes, video frames
and segments are hierarchically clustered, using the difference of color histograms as a
distance function. Given the hierarchy of clusters, it is straightforward to select a set
of different scenes for a given number of desired keyframes. Other work from this area
exists, but video analysis differs from scientific visualization in the fact that the content
of videos is unmodifiable, while generating and tuning visualizations is an essential part
of scientific visualization.

While there are multiple algorithms that can be used for non-uniform temporal subsam-
pling, no general approach that incorporates the user’s domain knowledge usable in a
visualization system has been introduced yet.

2.5. Parallel Systems for Time-Varying Visualization

Several parallel algorithms and systems have been proposed to cope with the data re-
quired to compute time-varying visualizations. Unless otherwise stated, systems dis-
cussed here follow a client-server paradigm, where a visualization client sends requests
to a server, which then computes the results on a parallel machine. We briefly de-
scribe multiple distributed or parallel systems in order to show the variety of available
systems.

The FAST system manages a central shared memory component called hub, which han-
dles requests from connected programs [9]. These programs are connected to the hub
via network sockets and implement visualization (e.g., isosurfaces or particle traces) or
data manipulation algorithms (e.g., file input, calculations on fields). They manipulate
the data managed by the hub using Unix System V shared memory operations.
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The pV3 system uses Parallel Virtual Machine (PVM) for communication [47]. This
system assumes already split-up and load-balanced tasks, which are handled using a dis-
tributed memory paradigm. On the visualization systems, threads are used to separate
rendering and data collection from a network. Only geometry data is transmitted from
the HPC server to the visualization client. PV3 provides two viewing modes: in the
asynchronous viewing mode data is shown as soon as it is computed, in the lock-step
mode data is presented in a time accurate way.

Chen et al. proposed a visualization system optimized for the EarthSimulator parallel
machine [23]. Their system focuses on parallel volume rendering, but supports iso-
surfaces, hyperstreams, LIC volumes, and particle tracing as well. For direct volume
rendering, a three-level hybrid parallelization approach is used. Here, objects are dis-
tributed via the Message Passing Interface (MPI), image space is distributed using Open
Multi-Processing (OpenMP), and vectorization provides an additional performance in-
crease. This system also provides two viewing modes, asynchronous viewing and offline
generation of images without an active viewer. The work of Yu et al. [114] focuses on
optimizing input and output (I/O) performance. They introduce a distributed memory
parallel system that is partitioned into input processors and rendering processors. Ren-
dering is done using the parallel volume rendering approach of Ma [73]. Two strategies
to use input processors are proposed: in the 1DIP strategy, each input processor reads
one time step, while in the 2DIP strategy, each group of n processors reads one time step
using MPT’s parallel I/O. By reducing the I/O cost, I/O is more efficiently overlapped
with rendering. In all these systems, scheduling of tasks is not addressed.

Scheduling and distribution schemes are a topic in parallel direct volume rendering
(DVR) (e.g., load-balancing strategies for sort-last rendering were proposed by March-
esin et al. [75]). Parallel DVR is particularly useful for spatially large data sets, where the
size of the image space is significantly smaller than the data’s spatial resolution. In a sim-
ilar way, parallel raytracing can be efficiently used to display isosurfaces in spatially large
data [74]. While the literature provides several parallel volume rendering algorithms,
this work focuses on the parallelization of a specific algorithm in contrast to paralleliza-
tion of visualization computations on time-varying data in general. In addition, the
efficient application of remote rendering or raytracing for virtual environments—which
typically possess a large image space while demanding very low latency—is still an open
problem. !

Data-flow oriented visualization toolkits consist of modules, which are the smallest unit
of execution. Independent modules are connected to describe the flow of input data in
order to solve a specific visualization task. By distributing these modules, these data-
flow visualization toolkits can be used to implement three types of parallelism: task
parallel, pipeline parallel, or data parallel [2]. Task parallel approaches distribute suit-

However, first prototypes for raytracing in an immersive virtual environment exist. — Personal com-
munication with Prof. P. Slusallek, April 2009.
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able heterogenous subtasks to processes, pipeline approaches distribute subtasks that
are organized in a sequence, and data parallel approaches execute the same instructions
on different pieces of the data. Parallel data-flow applications do not follow the client-
server approach, unless a module is used as a dedicated server. As an example, the
pipeline-based Visualization Toolkit (VTK) can be used to implement all three types
of parallelism. While task and data parallel processing are used to speed up the com-
putation of single time steps, pipelined processing takes advantage of the known order
in time-varying data sets [2]. Recently, Biddiscombe et al. [10] described the support
of temporal information in VTK. Time-dependent data is supported as discrete and
continuous data, with the possibility to use interpolation to transform a set of discrete
time steps into a temporally quasi-continuous source of data. Special components allow
caching of already requested time steps. Adaptation of different pieces of timing in-
formation is possible with a shift-and-scale operator. This functionality was integrated
in the ParaView software [67], which is based on VTK. While the authors describe an
implementation for time-varying data structures and algorithms in a specific toolkit, we
introduce a semantic model to use such an implementation.

Parallel computing resources have early been brought in to support scientific visual-
ization in virtual environments. The Distributed Virtual Windtunnel (DVW) uses a
network library for remote procedure calls (RPCs) [17]. The parallel DVW backend
dedicates one process to handling communication, one process to file I/O, and the re-
maining processes to compute a visualization on the current time step. This is already
a hybrid parallelization, as vectorization is applied for further optimization. The result-
ing geometry data is transmitted to the DVW frontend, which possesses a dedicated
communication process in addition to the rendering process.

The CosmicWorm system was developed to study astrophysical phenomena in vir-
tual environments [45]. The visualization frontend can display either archived simu-
lation data or data from a running simulation that is connected via a high-performance
Hippi/FDDM network [84]. In contrast to most other systems, the frontend itself is
used for visualization computation and rendering, while the remote backend transmits
simulation data. Time steps of the simulation are processed in a pipelined way: while
time step i + 1 is simulated, time step ¢ is visualized and the visualization for time step
1 — 1 is displayed to the user. The visualization itself uses a parallel isosurface algorithm,
which is executed on a shared memory machine. On the same machine, several processes
manage the virtual environment, that is, rendering, acoustics, and head-tracking.

Gerndt et al. introduced the Viracocha system, which performs computational fluid
dynamics (CFD) post-processing for immersive virtual environments [40]. This system
is applied as parallel backend for scientific visualization using the ViSTA FlowLib [87]
frontend. Viracocha uses MPI for distributed memory parallelization of visualization
algorithms on time-varying data or multi-block data. Main features of Viracocha are
a streaming functionality for certain algorithms and a data management system for
large CFD data. The data management caches already used data and is able to predict
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future data requests using several strategies [107]. Later, a hybrid parallelization to
compute critical points using Viracocha was presented by Gerndt et al. [42]. Here,
MPTI is combined with nested OpenMP loops to achieve a good load balancing. The
Viracocha system as described by Gerndt et al. [40] provides the technical foundation
for Chapter 7.

A large variety of parallel visualization systems exists, some are used for general scientific
visualization, others were designed especially for VR-based visualization. We introduced
only a choice of available systems here. The variety shows that employing parallel
computation to deal with time-varying data is a common approach. Therefore, instead
of introducing a new system, we are going to focus on scheduling strategies to process
large time-varying data. All the systems described here share the goal of computing
visualizations with high performance and are therefore optimized for high scalability.
Though, in Section 7.4.2 we are going to show that while high computing performance
in general supports the user’s analysis, incorporating the user’s interaction into the
computational process can also be beneficial to answer the analysis question faster.
To the best of our knowledge, none of the described systems directly incorporates the
user as a target of the computation by reacting to the user’s interaction or exploration
behavior.
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CHAPTER 3

A TIME MODEL FOR TIME-VARYING
SCIENTIFIC DATA

3.1. Introduction

The visualization of simulation data can comprise objects with heterogeneous and non-
trivial temporal characteristics. This includes objects with different scales, combinations
of simulations into one overall process, or recurring temporal patterns. In addition, the
temporal properties of each visualization object can be described from different frames
of reference: for instance, a user working with a file browser describes data by the
discrete files on harddisk, while a user observing an animation of the same simulation
data describes data with respect to the observed time.

In order to classify and correlate the different time frames occurring in scientific visual-
ization, this chapter proposes a time model for time-varying scientific data. We identify
three major benefits of this model:

e First, a vocabulary of concepts is established. Such a formalism enables the precise
description of time-aware algorithms and temporal interaction.

e Second, the time model is beneficial as a design help for software solutions for time-
varying problems. By allowing non-uniform relations between data and observed
animation, and by exploiting temporal recurrence, an efficient description of time-
varying data is made possible. This is particularly useful for more complex use
cases, where multiple simulations or visualization objects have to be combined into
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one visualization. As this model is independent from a specific implementation, it
can be integrated in other existing visualization tools.

e Third, for the user of such a system, an easy and intuitive interaction with tem-
poral properties in the user’s domain is possible, which is based on consistent
operations. While the input part of the interaction is discussed in Chapter 4, the
model describes the necessary system operations to realize the user’s actions.

This chapter starts with a discussion of requirements for time-varying visualization in
Section 3.2. In Section 3.3, we introduce and explain our time model in detail. Section 3.4
defines consistent operations on the time model, which are applied to two use cases in
Section 3.5.

3.2. Requirements

In order to allow an interactive exploration of time-varying data, a number of require-
ments have to be satisfied. While it is certainly possible to comply with a suitable subset
of these on a case-by-case basis, only a universal solution provides enough flexibility for
coping with arbitrary use cases or even combinations thereof. Along with ensuring the
correctness of the depiction of a given phenomenon, the efficiency of the visualization
process can be drastically increased by sophisticated data reuse schemes.

As simulated and/or measured data can stem from time spans of very different orders
of magnitude, a mapping to time as perceived by the user has to be performed. Thus,
depending on the context of the phenomenon under investigation, centuries and years
as well as milliseconds and microseconds are scaled to manageable and perceivable time
intervals of tens of seconds or minutes (multi-scale requirement). Besides granting the
user full control over time and its progression, correct simultaneity is vital, i.e., all data
displayed at any given time has to correspond to the same instant in the original data
time frame [18] (simultaneity requirement).

In addition, the mapping of data values to time instants or intervals has to be highly flex-
ible, as different time-varying phenomena exhibit a large variety of characteristics. Data
is typically given in the form of discrete time steps, therefore a non-uniform distribution
according to importance or dynamics of their content is desirable as well (flezibility re-
quirement). Furthermore, both simulation results and visualization objects can consist
of a mixture of static, periodic and aperiodic components. This comprises, for example,
a time-varying flow field within a static environment or particle traces over multiple
iterations of a periodic flow phenomenon. Data reuse by exploiting symmetries, e.g.,
spatial symmetry in the simulation or temporal recurrence for periodic phenomena, is
vital for minimizing memory consumption. In addition, symmetry can considerably
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reduce the computational effort required to display and compute visualizations (reuse
requirement).

Finally, in order to combine multiple phenomena into a single expressive visualization,
the results of different simulation runs have to be mapped to a single overall time frame
(combination requirement). In addition, any constraints regarding sampling frequency
(or differences thereof) of individual simulation results have to be removed. This allows
for the comparison of simulation runs with different boundary conditions as well as the
composition of simulation results for different parts of a single process. In the former
case, results of different simulations can be displayed synchronously for a visual compar-
ison regardless of the respective simulation time frame. An example is the simultaneous
depiction of the flow fields in an internal combustion engine for varying revolutions per
minute. In the latter case, multiple simulation results corresponding to different stages
of a given process can be combined into a single meaningful visualization. Examples
include the concatenation of the four phases of operation for a four-stroke engine, i.e.,
air intake, compression, combustion, and exhaust stroke, which are typically simulated
separately due to being focused on different physical phenomena.

3.3. Time model
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Figure 3.1.: Illustration of our time model, classified in continuous and discrete time
frames. Half-loop arrows indicate a cyclic time frame. Fach simulation has its own
simulation time frame and discrete time frames, while visualization time and user time
are global.

In order to satisfy these requirements, our time model incorporates the notion of differ-
ent time frames and mutual conversion schemes, as well as flexible means for mapping
instants and intervals from such time frames to specific data values. We have chosen
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the term time frame in favor over time scale or time perspective as we understand it as
a frame of reference rather than a scale of measurement.

Different time frames are necessary, as data has different temporal properties. For
example, the time frame used to simulate atmospheric processes will be different from
the amount of time needed to visualize this process. In the following, we will use the word
"simulation” interchangeably for all kinds of scientific data, simulated or measured.

Three time frames are fundamental for the time model and implicitly exist in most work
concerning time-varying visualization:

e Of capital importance, but rarely named, is the user time, that is, the real-time we
live in and that we perceive. It is also the time in which user reactions, interactions
and runtimes are measured.

e For all time-varying processes, a simulation time is defined to describe the change
of time in the simulated process.

e Most simulations produce data in form of discrete time steps, which are time
instants of the simulated process. Therefore, each time step has a single simulation
time instant for which it is valid.

Later, we will augment these three fundamental time frames by two auxiliary time
frames which help modeling certain relations. Figure 3.1 depicts the time frames and
their dependencies in our proposed time model. While the three time frames listed above
form the basis of the model, two additional time frames (i.e., the visualization and time
index time frame) are used for flexible interaction with the time model. This allows for
mixing continuous and discrete time as well as cyclic and acyclic processes in a consistent
model. If all data to be visualized is continuous (as it has an analytical description or it
can be interpolated efficiently based on existing data), the discrete frames of our model
may be left out.

In the following sections we will explain the time frames from top (continuous user time)
to bottom (discrete time steps) (see Figure 3.1).

3.3.1. Continuous time frames

Continuous data d is defined as a function of time, that is d = f(¢) for some time-varying
function f and a time instant ¢.

The first time frame is the user time frame U C R*. Like natural human perception,
this time frame is linear, continuous, and does not allow cycles nor running backwards.
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In this time frame, rendering speed, interaction responses and computation runtimes are
measured. Although time in computer systems is always discrete in nature, it can be
perceived as continuous due to a high discrete resolution. However, images are drawn
with a frequency depending on the display device. Visualizations that change time steps
faster than the display frequency will not be shown correctly, as only a non-sufficient
temporal resolution is available on the display.

The visualization time frame V = [0,1] C R is a normalized time frame describing the
complete time-varying process. As the visualization time may be cyclic, that is, the
process is displayed in a cyclic way, we have to store the start point ug and end point
uy (with uwg,uy € U) of the visualization interval [0, 1] in user time. We will denote the
interval [ug, u1] as the user window. Using these time instants, a mapping 4 : U — V' is
defined as a(u) = ;=% with a time instant u € [ug,u1]. The time instants ug and u
change with every repetition of the visualization time, as a cyclic time frame is unrolled
on the strictly non-cyclic user time frame. The length of the user window determines the
time required to show the process once in a dynamic representation. The visualization
time frame allows to combine different simulations with different temporal properties
in a single visualization. In addition, it enables abstract interaction with the process
without knowing the simulation details (see Section 3.4.2).

Visualization time
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Figure 3.2.: Examples for possible relations between different simulations S, S1) S
in a common visualization time frame. (a) In most cases, only a single simulation is
examined. Different simulations may describe parts of a single process and are concate-
nated (b), if they specify consecutive stages, or overlapping (c), if they describe multiple
scales.

The continuous simulation time frame S = [Ssiart, Sena] C R is the time frame used in
the simulation. That means, this time frame determines the units of time used for time-
varying scalar, vector, or tensor data (e.g., time-gradients, velocity, or velocity gradient).
All data derived from a simulation, for instance, context geometry or annotations, are
defined with respect to this time frame. It is obvious that the simulation time frame
may be quite different from the user time frame in terms of measurement scale.

For each distinct simulation k the simulation time S®*) is associated with an interval
of visualization time [vék),vgk)] C V with a mapping function ® : V' — S®) with

ok (U(()k)) = sggrt and o) (v%k)) = sgi)d. Several simulations or visualization objects with

different simulation time frames can be combined together in the shared visualization
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time frame. This allows for concatenated simulations or overlapping simulations (see
Figure 3.2). Examples for these combinations of simulations are stated in Section 3.5.

Other names used in the literature for the simulation time frame are solution time (e.g.,
EnSight [25]) or data time [18]. The simulation time may have an optional associated
domain time frame, which describes the simulation not with a time value, but a domain
specific value or function. This value or function may be more intuitive for the scientist,
for instance degrees crank angle for an engine piston or a date for weather simulations.
In addition, granularities to describe conceptual units [3] can be interpreted as a domain
time frame. A domain time frame is especially useful for communication with experts
from other fields than the simulation experts, as these typically do not have in-depth
knowledge about the simulation specific data such as simulation time.

3.3.2. Discrete time frames

Discrete data D is only defined at discrete time instants t;: D = {(to, do), (t1,d1),. ..,
(tn—1,dn—1)}. Scientific simulation data often comes in this form, where the discrete
data d; are simulation data at specific, possibly non-uniformly distributed time instants
t; of a simulation with a finer time resolution. We assume different discrete data D®*)
for each simulation time frame S®*). Therefore, as each discrete simulation has its own
discrete time frames, we will use the notation without the index k to distinguish different
simulations from now on.

To provide a more flexible handling of time steps (see Sections 3.4.1 and 3.4.2), we intro-
duce an additional time index frame of discrete time indices 1, with I = (ig, ..., 9m_1) :
i; € Nyg. The number of time indices m may be different from the number of available
time steps n. The additional indirection allows for easier reuse and reordering of time
step data. This technique is often used in databases, as changing indices avoids moving
or re-arranging data in memory at the cost of one indirection in main memory.

Mapping the simulation time to time indices closes the gap between continuous and
discrete time frames. The simulation mapping § : S — [ is a mapping with $(Sgert) = o
and $(Sena) = im—1. It is surjective, as all time indices need a valid simulation time, and
monotonically increasing, as both time frames proceed forward in time.

The reversed (not mathematically inverse) function §7! assigns to each time index an
interval of simulation time for which the time index is valid. The codomain of 7! is a
set of time intervals which form a partition of the complete interval [Ssiart, Sena). This
function is a bijection, such that all time indices span the whole simulation range, and
each interval is only valid for a single time index.

One example is to use a nearest neighbor mapping, that is, a time index for a time
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step with simulation time s; is valid for 2251, 25221 For the first and last indices 4

and i,,_1 no predecessor or successor exists, and at the same time the interval is invalid
before Sgyqre OF after se,q, respectively. This results in half-sized intervals [so, 30351) and
[%, Sm—1] for the first and last time index, as we have m time indices, but m — 1

simulation intervals in between.

The time step frame is composed of the simulation data output in the form of a
set of discrete time steps P = {po,...,pn—1} : pi € Ny. FEach time step p; is
valid at a specific time instant s;, which results in the complete discrete data D =
{(s0,P0), -+, (Sn—1,Pn_1)}. Time indices are assigned to time steps by a mapping func-
tion 7 : I — P. This mapping is neither injective, as different indices may point to the
same time step, nor surjective, as not all time steps have to be covered. Though, the
mapping 7 has to respect the correlation between a time step p; and the corresponding
simulation time s;: (i) = p; = s; € § '(i). That is, if the time index i maps the
time step p;, then this time step’s simulation time instant s; must be contained in the
simulation time interval that is covered by i. In general, the other direction <« does
not hold. This is because the simulation time interval associated to a time index can
contain multiple simulation time instants, which are each correlated to a different time
step. The time index however maps to only one of these time steps. This fact is required
in order to enable a coarser temporal resolution (see Section 3.4.2).

The number of time steps determines the necessary size needed on secondary storage
and in main memory. For all time-independent visualization techniques (e.g., isosurfaces,
cutplanes or dynamic geometries), typically one result is produced for each time step.
Therefore, the number of physical time steps n, i.e., the time steps which exist on a
file system, determines the necessary size of buffers for different discrete visualization
data.

The introduced notation is summarized in Table 3.1.

3.4. Time operations

Based on the proposed model, several consistent operations with the time-varying visu-
alization are rendered possible. Consistency is important to maintain coherence between
different visualizations of the same data. Therefore, we define a set of time operations
on our proposed model which does not invalidate the produced visualizations. The oper-
ations are divided into two categories, modeling operations and interaction operations.
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Continuous time frames

User time UcCRT
L U(u) = ;=5
Visualization time V =10,1] C R
. . k k) - k k
| 00 (0f) = s, 00 (0?) = 5L,
Simulation time S = [Sstarts Sena] C RT
l 5 §<Sstart) = iO? g(send) = Z'mfl

Discrete time frames

Time indices I=(ig,...,im-1): 1; €Ny
li 1: 1 — P
Time steps P=Apo,...,pn1}: pi € Ny

Table 3.1.: Summary of the time frame notation with notation and numeric domain
of the five time frames and the corresponding mappings between time frames (denoted
with a hat).

3.4.1. Modeling operations

Modeling operations aid in the design and the setup of visualization applications for
specific simulations. We assume that the simulation data itself—in particular its tempo-
ral characteristics—cannot be changed once it has been computed. From a visualization
point of view, most simulation data can be partitioned into static and dynamic compo-
nents. For instance, the casing of a pump usually defines a non-moving context for the
viewer, whereas impellers or screws change over time, defining the dynamic parts of an
animation. Much of the simulation topology can be exploited for visualization in order
to structure and to speed up the rendering process. For example, a surface mesh can
be extracted from the simulation grid and is afterwards decimated to a fraction of its
original size.

Two of the modeling operations we propose target a low memory footprint and the pos-
sibility to use optimized or cached geometries for rendering. We describe three modeling
operations which have proven useful for several of our applications. However, for other
problem cases, there may be other operations to optimize the visualization setup.

Embedding The index mapping that is defined by ¢ allows the embedding of few discrete
time steps into a larger index scale. For example, when 7 is chosen as Emod(z’j) =
P(jmodm) With m = ||P||, i; € I, a smaller number of physical time steps can be
mapped to a larger index range, for example, to exploit recurrences in the data
set for cyclic processes (see Figure 3.3, both models cover twice the physical time
steps). Increasing the number of time steps by interpolating data as proposed by
Biddiscombe et al. [10] is achieved by insertion of time indices directing to the new
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time steps and adaption of § and §7! to the new discrete simulation time values.

Movement In order to describe the animation of static and dynamic objects, their vi-
sualization state has to be related to the simulation time. To provide a proper
mapping for the visualization state for a given time instant from S, we have to
modify § to §* : S — (I, M), M € R***. This is achieved by an additional auxil-
iary transform function tr : S — M that takes as input a value of S and outputs
a transformation matrix, which can then be applied to the visualization object.
Static components are mapped by §* to a constant index tuple I = (ig) and the
identity matrix M = I***. Basically the same accounts for dynamic components,
however, the tuple I may consist of a number of elements and a more complex ¢r is

needed in order to specify the state of the visualization for a specific time instant
in S.

A general approach is to use a key frame mapping that uses discrete key frames
from the simulation data. Other approaches can take knowledge of the domain
expert into account, for instance, the specification of a rotational axis and angular
velocity.

Events Time instants, which describe the time an event happened (e.g., a feature event
or an annotation by the user), belong to the simulation time frame, as they describe
events related to the simulated process. However, instantaneous time instants
do not have a duration, like Euclidian points do not have a spatial size. To be
observeable by a user, instantaneous events are modeled by small intervals of S
enclosing the time instant of the event, with the size of the interval chosen by the
user.

3.4.2. Interaction operations

Interaction operations allow to describe interactions of the user with the different time
frames. This interaction with simulations and visualization objects should be possible
during the time-varying visualization, to enable the user to interact with the visualized
process, not only to examine it.

Human-computer interaction possesses a system transfer function that transforms the
user’s actions into modifications of the system’s state [14]. The discussed operations are
part of such a system transfer function, that is they modify the current state of the time
model. Chapter 4 discusses possible input devices and interaction techniques to produce
such actions.

Control The most common time operation is changing the flow of time [18]. The user
can stop the flow, speed it up, or slow it down. As this just changes the user’s
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Figure 3.3.: Two of the basic operations on the time model. The time indices in the
depicted models cover twice the physical time steps using an embedding operation. Left:
Shown are three simulation time frames (yellow, orange, red). Selecting a subrange of
visualization time selects from each simulation the appropriate sub-parts. Discrete time
frames are shown for the simulation colored in yellow, only. Right: A stride of two for a
single simulation excludes every second time step and therefore reduces computational
effort.

perception of the simulated data, all these operations can be performed by changing
the user time mapping u. If 4 returns a constant value, the flow of time is stopped.
By changing the user window length w; — wug, the process is displayed slower or
faster. Displaying a process backwards is possible by just changing the mapping @
to proceed backwards from visualization time 1 to 0.

Selection For the selection of specific time instants, two time frames are recommended.

Domain specialists can select a point in time by a simulation time value s € S,
or, if available, by the corresponding value from the domain mapping (e.g., crank
degrees). By using the normalized visualization time v € [0, 1], a more fuzzy time
query is realized (e.g., "somewhere in the first quarter of the process”).

Range To investigate a sub-interval of the whole process, the displayed visualization

time may be restricted to a subset of [0, 1], which is the length of the overall
process. This implies that only a subset of the whole process is displayed, which
affects all different simulation data (see Figure 3.3 left). The user time mapping
@ must be adapted, as its codomain changes. By multiplying the length of the
user window with the length of the sub-interval in visualization time, the process
is displayed in its original speed.

Subset Operations on the time index frame modify the temporal properties of all time-
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discrete visualization objects using this specific mapping. By reducing the set of
time indices, a subset of the original data is displayed. In contrast to the previous
sub-interval operation, this does not have to be a contiguous subset, but may be
some sort of strided subset (see Figure 3.3 right). In addition, this operation affects
a single discrete simulation or visualization object only. It produces a coarser time
resolution, as each time index spans a larger simulation time interval, but at the
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same time fewer time steps are required to be computed. By employing a non-
uniform striding, ”"unimportant” parts of the process require less computing power.
Importance in the context of temporal resolution is a topic discussed in detail in
Chapter 6.

3.5. Application

In this section we will show the benefits of the proposed time model and operations for
two specific use cases. We have chosen two applications for different aspects of the design
consequences. The blood pump application first shows how temporal recurrence can be
used to dramatically reduce the memory footprint of an unsteady visualization. More-
over, it illustrates how visualization primitives with different temporal resolutions can
be integrated in one consistent depiction. The metal forming process chain application
shows the benefits of the time model when creating a visualization comprising several
heterogeneous simulation data sets that in combination describe a complex engineering
process. Multiple simulation data sets with varying scale and temporal resolutions are
combined in a consistent visualization of the overall process.

Both applications were realized using the ViSTA FlowLib [87] toolkit, into which an
implementation of our time model is integrated. We provide details about this imple-
mentation in Section B.1. User interfaces that utilize the model’s interaction operations
are presented in Section 4.3 and Chapter 5.

3.5.1. Blood pump

As an illustrating example for the operations mentioned in Section 3.4.1, we describe
the visualization of the MicroMed DeBakey VAD® (Ventricular Assist Device). Details
on this data set can be found in Section C.3. The device consists of three main com-
ponents: the straightener, the diffusor, and the impeller, as shown in Figure 3.4. These
components are integrated into a cylindrical casing, which is not shown in the figure.

One impeller rotation is described by 200 time steps, i.e., the impeller rotates by 1.8 de-
gree between every two time steps. All other parts of the geometry remain static. The
simulation step size is At =4 -107° s.

As a first visualization technique, we used particle traces, seeded at the device’s inlet.
Assuming symmetry in the flow field after a single rotation of the impeller, the traces
were calculated for a total runtime of 40 rotations as an offline process (see Figure 3.4
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impeller (dynamic geometry)
analytic animation

3 \/ particles (continuous)
/7 high temporal resolution

diffusor/straightener
(static geometry)

isosurfaces (discrete)
embedded

Figure 3.4.: Configuration of the MicroMed DeBakey VAD®. It is an example for
a visualization that comprises different geometries, exploits temporal recurrence of the
simulation, and mixes different types of data. (a) The impeller is realized as a single, an-
alytically animated geometry. (b) Particle traces with history information are rendered
over a continuous time frame. (c) Static geometries are valid over the total time frame.
(d) Discrete isosurfaces are extracted, visualized, and embedded in the total simulation
time frame.

(b)). This results in a simulation time interval of S = [ Sgart, Sena] =[0.0s, ..., 0.32 5]
for the particle visualization.

As an additional, discrete visualization, we included an isosurface over low pressure. The
isosurface was computed for a single rotation (i.e., 200 time steps) and then mapped
USING imoq to 8000 time indices for the entire 40 revolutions (see Figure 3.4 (d)) using the
embedding operation from Section 3.4.1. Without an additional indirection %mod from
time indices to time steps as described in Section 3.3.2, single time steps could not be
valid for multiple simulation time intervals, which would lead to a blow-up of the data
size by factor 40.

Using the operations from Section 3.4.1, the data set’s context information can be re-
duced to single geometries. On the one hand, casing, straightener and diffusor are static
pieces of geometry. Therefore, they can be modeled with a single non-moving geometry
time step using the embedding operation. On the other hand, the impeller is modeled as
a continuously rotating single geometry time step using the movement operation. This
is implemented by an auxiliary transformation ¢r, which calculates a rotation along the
central axis for a given time instant of S based on the impeller’s angular velocity. Using
these mappings, only 3.3 MB of geometry are necessary in contrast to 670 MB, if the
full geometry were duplicated for each of the 200 time steps.
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Continuous time frames

User time uy - ug = 0.32°s
Vis. time V = [0,1]
Simul. time S = [0,0.32]
Discrete time frames
Part. Isosurfaces Geometry

Time indices - I = (ig,...,i7999) I =1

L - imod(J) = P(jmod200) () = Do
Time Steps - P= {pg, . 7p199} P = Po

Table 3.2.: Time frames used in the blood pump application: Particles are continuous,
isosurfaces are available for 200 time steps which repeat 40 times, geometry is either
static or can analytically be rotated.

Table 3.2 summarizes the application of the time model for this use case. The user
window U = [ug, u] is set to [0, 0.32 s], which corresponds to the original speed of
rotation. However, in the analysis process, the flow of time is typically slowed down for
a detailed investigation by the user.

Using interpolation, the particle data can easily be extended to a quasi-continuous rep-
resentation. Therefore, the visualization contains continuous data (particle traces, im-
peller) as well as discrete data (isosurface). The mixing of these types during the visu-
alization can cause noticeable visual artifacts if animated slow enough. Namely, small
jumps in the isosurface display are noticeable whenever the display switches to the next
time index, while the continuous data changes more smoothly. Therefore, the continu-
ously animated impeller will work very well in combination with particle visualization,
but will lag after isosurfaces that are displayed using a nearest neighbor mapping for a
short time as outlined in Section 3.3.2. One solution to this problem is to implement
the auxiliary transformation function #r to respect a nearest neighbor mapping as well,
but this will in turn cause visual artifacts with the particle visualization.

We implemented an interactive switching between different modes of ¢r based on user
preference. Additionally, we consider the visual artifacts that result from the mismatch
between interpolated particles and nearest neighbor mapped context geometry to be
worse compared to the ”jump” artifact from time discrete data such as isosurfaces with
an interpolated rotating context geometry.

The simulation of the DeBakey pump is a good example for mid sized data sets where
temporal recurrence in simulation and visualization must be used in order to work with
and analyze the data. Naive approaches, such as loading all data for all rotations into
main memory, are bound to fail or do not provide real-time interaction even for this
moderate data size.
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3.5.2. Metal Forming Process Chain
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Figure 3.5.: Overview of the virtual process chain to simulate the generation of a gear
wheel. Starting with a steel-alloy blank and after an initial forming process (1), the
workpiece is iteratively heated (2), formed (3) and cooled down (4) again. Finally, a
ring component is laser welded (5) to the work piece. The result is a completed gear
wheel.

In this section we discuss the application of our time model to describe a sequence of
processing steps of a metal forming process (see Section C.4). In material science, the
final material properties are the result of a number of processing steps. Each processing
step is simulated using different simulation tools, where each tool simulates a different
aspect of the processed material. These steps have to be organized in a virtual process
chain that exchanges information about the entire material and its history between the
various tools.

An example of such a virtual process chain is the complete simulation of a gear wheel
construction [105]. The process chain comprises five processing steps, each of which is
simulated using one or two simulation tools. An overview of this process is depicted in
Figure 3.5. Starting with an alloyed steel blank, an initial forming step (1) creates a gear
wheel shape. In the next three processing steps (2-4), this gear wheel is heated, formed,
and cooled again. Steps 2 and 3 are simulated both on a macroscopic level (overall
characteristics of the entire wheel) and a microscopic level (microstructure simulation of
a small region within the wheel). The heating, forming and cooling steps are repeated
several times to improve material properties (a so called annealing process). In this
simple example, we assume two annealing iterations. Finally, in a last step (5), a ring
component is laser welded to the processed gear wheel.

Figure 3.6 shows the arrangement of the individual simulation data in the overall process.
The recurring annealing steps 2-3 are not modelled using the embedding operation, as
each annealing iteration corresponds to new time-varying simulation data. Unlike the
previous blood pump example (cp. Section 3.5.1), the analyzed annealing iterations are
not quasi-stationary. An overview of the time frames used to visualize this process chain
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Figure 3.6.: Overview of the time frames used in the metal forming process chain.
Single processing steps are color-coded, microscopic simulation data is denoted by a
dashed line.

are shown in Table 3.3. The gear wheel’s geometry is ignored in this example, but can
be modeled accordingly to the previous example.

The simulation data to individual processing steps have a varying temporal resolution.
The initial forming is resolved by 21 time steps; the welding simulation data possess a
temporal resolution of 360 time steps. Each step of the macroscopic annealing process
is resolved with 19 discrete time steps, the corresponding microscopic simulation has a
higher temporal resolution consisting of 52 time steps. As the microscopic simulation
requires a complete macroscopic simulation as input data, in the sequential process
chain it is simulated after the corresponding macroscopic simulation. However, in the
visualization it is shown synchronously to the macroscopic data, because it describes the
same process, just on another scale. The microscopic simulation consist of more than
twice as much discrete time steps than the macroscopic data. Therefore, we modeled a
uniform subset sampling of the microscopic data that corresponds to the macroscopic
resolution. Consequently, nearly every second time step is dismissed.

In addition, the time scales of the individual steps vary enormously: forming takes
seconds, laser welding minutes, and heating/cooling hours. More exact simulation time
values for this process chain are currently not known to us. In order to display all steps
in a meaningful way, a non-uniform animation of the process is required to highlight
parts of the process that happen in a smaller time scale. Such an animation is realized
by adapting the mapping 4 depending on the scale of the currently shown processing
step.

This example of the visualization of a virtual process chain shows the capabilities of the
time model to describe complex constructs comprising heterogeneous simulation data.
Both linear sequences and concurrent processes are combined, as well as processes on
multiple temporal scales.
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Continuous time frames

Initial Forming (1) Heat treatment (2) Forming (3) Cooling (4) Laser Welding (5)

User time ul - ug = 60 s
la 4 is chosen such that the heterogeneous time scale is displayed in a scale-independent animation speed

Vis. time V = [0,1]
Simul. time seconds hours seconds hours minutes
Discrete time frames

Initial Forming (1) Heat treatment (2) Forming (3) Cooling (4) Laser Welding (5)
Time indices (Macro) I = (ig,...,%20) I=(i0,...,%18) I=(ig,...,%18) I=(ig,...,%18) I=(i0,-..,%359)
Time steps (Macro) P={po,...,p20} P={po,...,;8}  P={po,...,;1is} P ={po,...,p18} P ={po,...,p359}
Time indices (Micro) - I=(ig,...,%18) I = (ig,...,%18)
Time steps (Micro) - P ={po,....p51} P ={po,...,ps1}

Table 3.3.: Time frames used in the metal forming process chain. For two processing
steps (2,3) a macroscopic as well as a microscopic simulation with a different temporal
resolution exist.

3.6. Summary and Discussion

In this chapter, we have introduced a time model for defining temporal properties in
scientific visualization. The components of the model form a vocabulary for different
temporal aspects of visualization objects. Based on this model, several consistent time
operations for efficiency and navigation have been discussed. The proposed model is
applied in several projects, of which we have described two applications as use cases.

Regarding the requirements listed in Section 3.2, multi-scale, simultaneity, flexibility,
reuse and combination are possible with the proposed model. The blood pump study
shows the ability to mix different time frames of a single simulation, from static geom-
etry to aperiodic and periodic visualizations of different temporal resolution (showing
the simultaneity, flexibility, and reuse requirements). The metal forming process chain
study provides an example for a complex heterogeneous combination of multiple simu-
lation data in a single consistent visualization (showing the multi-scale, flexibility, and
combination requirements).

The described time model is the foundation for time-varying data structures in the
ViSTA FlowLib [87] toolkit and has therefore been applied in numerous projects. While
some projects did not have any special demands regarding temporal characteristics, in
other projects the support of non-uniform discrete data and the movement operation
have turned out to be particularly useful.

The consistent simultaneity of discrete and continuous visualizations in a single pro-
cess visualization remains an open question. The same problem occurs when discrete
data with inhomogeneous temporal resolutions is mixed. Whether visual inconsistencies
disturb the user and if an interpolation of the underlying discrete data to continuous
data or a higher resolution is feasible must be decided depending on the process under
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investigation.

In this thesis, the proposed time model provides the necessary formalism to describe
different temporal characteristics in the following chapters. Using the model, operations
on time-varying data can be described on a higher level than the actual data structures
in which time-varying data is organized.
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CHAPTER 4

USER INTERFACES FOR TIME NAVIGATION

4.1. Introduction

While the time model introduced in the last chapter provides a formalism to describe
temporal navigation for an application programmer, a user of such a system requires a
user interface to execute time operations. As stated in the introduction, a user interface
that ”supports all tasks emerging in the analysis process . ..] in an intuitive and accurate
way” (see Chapter 1) is necessary to address the interaction problem for large time-
varying data. To this end, we first need to identify which tasks actually emerge in
the user’s analysis process. Therefore, the major goal of this chapter is to provide a
taxonomy of temporal navigation tasks.

As already mentioned in Chapter 1, this thesis focuses on a Virtual Reality—based work-
flow. In 2000, van Dam et al. identified Virtual Reality technology as a key technology
to analyze the growing amount of data [99]. They identified the improved perceptional
issues (e.g., user-centered projection, stereo, wide field-of-view) and interactivity as ma-
jor advantages of VR-based scientific visualization. Several case studies have shown
benefits of scientific data analysis inside a virtual environment (e.g., [69, 80]). As the
data sets addressed in this thesis simulate complex time-varying phenomena, we assess
the benefit of a VR setting as substantial. The assumption of a VR-based workplace
influences several aspects such as output representations or interactivity requirements,
but it primarily dictates the feasible interaction style. Therefore, in order to navigate in
time, only 3D interaction techniques are discussed here.

This chapter is structured as follows. In Section 4.2 we elaborate on a task taxonomy for
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temporal navigation. Based on this taxonomy, possible 3D user interfaces distinguished
by the applied input device are discussed in Section 4.3. In Chapters 5 and 6, user
interfaces for two selected navigation tasks are discussed in more detail.

4.2. Task Analysis

The target user group comprises simulation scientists from different fields of research,
e.g., mechanical engineers, physicists, or geoscientists. Our users’ demand for better
time navigation techniques arose from the lack of support to perform particular tempo-
ral tasks, which became clear during several visualization sessions. We start the task
analysis by describing a typical scenario with focus on user interaction concerning the
time dimension. Based on this description and the analogy to spatial navigation, we are
then going to organize time navigation tasks in a taxonomy.

If confronted with new data sets or unknown phenomena, the user typically starts with
building up a general cognitive map of the time-varying data (ezploration phase). At
this point in time the user has not enough information to define specific targets. Hence,
the user interaction is of an exploratory nature and is intended to gather information
required for the following steps. Most user subtasks at this stage involve selection of an-
imation speed or changing the shown temporal resolution to quickly focus on interesting
regions.

Having obtained necessary knowledge of the data set, a user typically performs search
tasks, i.e., the user tries to find specific targets along the time dimension (search phase).
To search data in different levels of detail, temporal resolution of the discrete data set
is adapted. Depending on the user’s knowledge of the target, he will directly jump to
a specific time instant or slowly focus on some dynamic phenomenon by restricting the
visible time interval. Having found an interesting phenomena, this part of the data is
typically analyzed in detail (focus phase). In this phase, beside maneuvering travel tasks,
the user is mainly concerned with adjusting visualization parameters to investigate the
phenomenon.

This characterization is in line with other classifications of the scientific visualization
process. For instance, Schumann and Miiller [90] distinguish the exploratory part of
the analysis (here: exploration phase), during which users advance hypotheses, and the
confirmative analysis (here: search and focus phase), during which these hypotheses are
either confirmed or rejected.

In the scientific visualization process the user often specifies his target not only by a

precise time value, but rather describes it in terms of spatial properties (e.g., ”the point
in time where two vortices meet”). In these cases we use the term space-centered task
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in contrast to a time-centered task.

In Bowman et al. [14] the term navigation in the context of 3D space is defined as
movement in and around an environment. There exists a strong analogy between the
navigation in 3D space and time navigation. Despite the lack of a tangible representation
for time, navigation through the time dimension is similar to navigation in 3D space.
Thus, adapting the task taxonomy of Bowman et al. at a sufficiently high level of
abstraction does make sense to facilitate the analysis of time navigation tasks.

Bowman et al. classify spatial navigation into travel and wayfinding tasks. Whilst travel
is a rather low-level action of navigation, wayfinding is associated with high-level cogni-
tive activity. In an earlier work, Bowman et al. [13] have proposed a taxonomy of travel
techniques. This taxonomy focuses on the following subtasks of travel: direction/target
selection, velocity selection, and input condition. We use these subtasks as a basic struc-
ture for our task analysis of time travel. We prefer this classification over other existing
classifications since it perfectly outlines the similarity of spatial navigation and temporal
navigation. These thoughts have led to the taxonomy we propose for time navigation. *
An overview is given in Figure 4.1.

Maneuver
__ GoToTime
Instant
Target Search Chapter 5

Sl | Select Time
Interval

— Uniform Speed

| Speed
Selection .
Non-Uniform

— Travel ~ Speed

__ Uniform
Resolution
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| Selection - Chapter 6
| Non-Uniform Explicit
Resolution Implicit
__ Start/ Stop
Animation

Navigation

Input
— Conditions
‘— Forward / Backward

— Movement Trajectory

Artifical
Cues

— Wayfinding

L— Marker/Annotations

Figure 4.1.: Overview of our task taxonomy for time navigation tasks in scientific
visualizations. In this thesis, novel techniques for target and resoution selection are
presented in Chapters 5 and 6, respectively.

This taxonomy covers a large portion of the possible design space, but does not cover
it completely. For the tasks travel and wayfinding, only a selection of subtasks is given.
These can of course be further split into more detailed subtasks and technique compo-
nents [12]. In the following text, we are going to discuss the main subtasks of travel and

!This taxonomy was elaborated in equal shares with Irene Tedjo-Palczynski [111].
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wayfinding in more detail. Where appropriate, we are going to explain which operations
on the time model introduced in Chapter 3 are necessary to model the subtasks.

Target Selection As in the original taxonomy, target selection refers to the primary

subtasks in which the user specifies where to move. Single time instants and
time intervals are both relevant targets for travel tasks along the time dimension.
Selection of a time interval can be decomposed into the two subtasks of choosing
the start instant and the end instant of the interval.

To travel to a specific time instant, two subtasks—search and maneuver—can be
distinguished by the distance traveled and by the required accuracy. In maneuver
tasks, the user investigates a specific time instant and its local temporal neighbor-
hood. While the user will primarily adjust visualization parameters, he will also
investigate changes in the temporal neighborhood. Therefore, this task is charac-
terized by small and precise movements. Accuracy is the primary requirement, as
the user accurately navigates within small time ranges. The user’s goal in search
tasks is to navigate to a specific target or time instant in the visualization. Search
and maneuver target selection tasks are evaluated in more detail in Section 5.6.3.
Interaction techniques that change the current time instant or interval and there-
fore the temporal position in the simulation are called position control techniques.

Time model operations: Actions to select targets utilize the selection and range
operations on the time model. That is, selection of a time instant is typically
specified using a simulation or visualization time value, while range operations
modify the visible visualization time range.

Speed Selection describes the control of the flow of time. In the context of time navi-
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gation the best known example for this kind of task is controlling the animation
speed by explicitly defining a constant value. This is an example of a uniform
speed value for the whole animation. To highlight interesting parts or to skip
uninteresting parts of the animation, non-uniform speed selection is also useful.
Non-uniform speed selection that is not user-controlled but determined by the sys-
tem based on data analysis was proposed by Wang et al. [101] and Woodring and
Shen [112]. Interaction techniques that change the travel speed and therefore the
rate at which the user moves through time are also called rate control techniques.

Time model operations: Modifying speed is a control operation in the time model,
which changes the user time mapping @. For uniform speed selection, the user
window size u; — ug is kept at a constant value. A non-uniform speed selection is
achieved by changing the window’s end point u; depending on the current visual-
ization time v, that is, the user window’s end point is a function f of v: u; = f(v).
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Resolution Selection provides the possibility to adjust the resolution of discretely sam-
pled time-varying data. The control over the temporal resolution is not only a
trade-off between quality and computation cost, but also necessary to allow obser-
vation of different levels of details. Again, selecting a uniform and a non-uniform
resolution are distinguished. While a uniform resolution needs only a single pa-
rameter to tune, non-uniform resolutions are superior in resolving interesting and
uninteresting parts of the time-varying data.

Explicit configuration of a non-uniform resolution—i.e., by manual selection of in-
teresting or uninteresting time intervals and adjustment of their discrete resolution—
is a time-consuming task. Therefore, an implicit description of important and less
important temporal regions by the user is a more intuitive approach. Chapter 6
addresses non-uniform subsampling based on multiple notions of importance. This
differentiation is also possible for the speed selection task, but as temporal resolu-
tion is one focus of this thesis, importance-based speed selection is not discussed
in this context.

Time model operations: To choose a possibly non-uniform subsampling of the
available discrete data, the subset operation is applied on the time model. As this
changes only the redirection using the time indices, available visualization data
does not need to be rearranged.

Input Conditions for time navigation have similar meanings as for the spatial travel,
i.e., it refers to how the travel is initiated, continued, and terminated. By using
play/pause controls active travel by animation is enabled/disabled. Another input
condition determines if this animation is played forward or backward.

Time model operations: Modification of the input conditions are modeled in the
proposed time model using the control operation.

The second subtask of navigation—i.e., wayfinding—is only briefly discussed here. Bow-
man et al. [14] grouped wayfinding techniques into user-centered and environment-
centered wayfinding support. When compared with wayfinding in 3D space, wayfinding
along the time dimension covers only a 1D space. In addition, it is less substantial
as arbitrary time travel is currently not possible in our world. Therefore, support for
wayfinding along the time dimension should focus on providing artificial cues. We iden-
tified two basic artificial cues which are crucial to support the user’s wayfinding in the
time dimension. A movement trajectory converts the intangible movement into a tan-
gible object to interact with. Markers are a standard aid of spatial wayfinding and are
also suitable for a 1D environment.
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4.3. 3D User Interfaces

In order to achieve a certain temporal navigation task, the user has to communicate
with the computer. Bowman et al. describe a user interface as the translator between
user and system [14]. Both, input to the system and output from the system need
to be translated (see Figure 4.2). Slightly simplified from the original description of
Bowman et al., the user’s physical actions are translated by the input device into signals
understood by the system. The system processes these signals—in our case using the
interaction operations defined in Section 3.4.2—and generates a display representation.
This digital representation is then translated by the output device into a form the
user can perceive. The translations between input and output device are the software
components of interaction techniques.

Action Perception

Input Input Device Output Device OUtpUt

Display
Representation

System

Figure 4.2.: Translation steps in human-computer communication. The yellow parts
(from input device to display representation) are addressed in this section.

In this section, only components from input device to display representation are dis-
cussed. Section 4.3.1 classifies and discusses display representations for time-varying
data. Sections 4.3.2 to 4.3.5 discuss several input devices that can be used for temporal
navigation inside virtual environments. This section is meant to show the variety of
possible 3D devices and demonstrates exemplary prototype implementations. As these
interaction techniques are not novel but only adopted from state of the art 3D user
interfaces, advantages and disadvantages are discussed informally only. The mentioned
disadvantages and advantages for specific user interfaces are often also valid for other
tasks than temporal navigation. Though, we tried to discuss the special demands on 3D
user interfaces placed by temporal navigation tasks. A comprehensive formal comparison
of these techniques is not reasonable, as their usability highly depends on the utilized
VR-configuration and analysis task. For each interaction style, example implementations
are described briefly.
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Technical Realization The technical implementation of these user interfaces for tem-
poral navigation follow a Model-View-Controller (MVC) design pattern [38]: The im-
plementation of the time model described in Chapter 3 forms the model part, the input
parts of a interaction technique act as controllers, and the output components act as
views. The advantage of this construction is that only one single consistent model for all
user interfaces exists. Multiple controllers can be attached to operate on the same time
model. Additional views that show specific properties of the time model can also be
attached. For instance, a calendar view that displays the simulation time of geophysical
processes in a Gregorian calendar—using domain time values (cf. Section 3.3.1)—instead
of measuring simulation time in days.

4.3.1. Display Representation

Virtual Reality technology provides various output devices. As the primary human
channel is vision, we restrict ourselves to visual output using a ”Fish Tank VR” or room-
mounted display. That is, the display representation consists of stereoscopic, viewer-
centered images. The display representation should be chosen such that it eases the
user’s cognitive task of translating the visual representation into a mental representation
of the time-varying process.

Several representations are feasible to display time-varying data. For example, the field of
information visualization provides several abstract visual representations of time-varying
data. In this thesis only 4D scientific visualization is addressed, that is, the chosen
representation should maintain the spatial (3D) characteristics of the data. Therefore,
only the fourth (temporal) dimension remains as a degree of freedom to model visual
representations.

Of course, in a virtual environment, the term scene instead of image is more appropriate,
as the user can spatially navigate in the scene and modify objects. Nontheless, we use
the term image as this points out the correspondence to non-VR scientific visualization.
Within this restriction, we identified four categories of meaningful visual representations
of time-varying scientific data:

Static image A single static image displays a snapshot of the entire time-varying process.
Together with the information which time instant is represented by the image, the
user can manually inspect multiple snapshots to generate a mental representation.
However, building a mental representation from individual still images is a strenu-
ous cognitive task. An alternative to the classic static visualization was proposed
by Joshi and Reingans [63]. By adding illustrations, dynamic information, such as
movement direction or speed of tracked features, are conveyed in a single image
(see Figure 4.3a).
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@ VicTrails - Spreadsheet Eo&E
e

Figure 4.3.: Examples of static representations for time-varying data. (a) Illustration
of a feature’s movement using flow ribbons (from [63]). (b) Spreadsheet view of multiple
time instants at once using the VisTrails tool (from [21]).

Set of static images A seclected set of snapshots is more suitable to convey a time-

varying process. A popular example are comic strips, where a collection of images
is utilized to convey a sequential narrative. This representation is particularly use-
ful to provide the user with an overview of the entire process in a static scene, as
several time instants are displayed at once. For instance, the VisTrails tool allows
the user to compare a collection of manually selected snapshots in a spreadsheet
view [21] (see Figure 4.3b). How to select a representable set of snapshots is still an
open problem. For video analysis, an image-based solution was proposed by Gir-
gensohn et al. [43]. In scientific visualization, Lu and Shen [72] proposed a method
to automatically compute and display a storyboard-like overview of time-varying
data. While useful for overviews, these static approaches have several drawbacks.
First, a selection of snapshots suitable to the user’s analysis task is crucial but
not trivial. Second, collections of images require a large amount of screenspace,
if the single images are shown with a reasonable resolution. Third, all dynamic
information—e.g., speed—is typically discarded.

Video Videos better correspond to the natural perception of time than static images,
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which eases the construction of a mental representation of the time-varying process.
In addition, speed can be depicted in a natural way. A video provides a changing
sequence of discrete images that is perceived by a human user as a continuous
motion if presented with a suitable frequency (e.g., television formats use 25-30
frames per second). Most available visualization toolkits provide an opportunity
to render time-varying data into a video (e.g., ParaView [67]). From a navigation
point of view, Hiirst et al. remark that in continuous media such as videos only
one smallest unit (i.e., one frame) is shown at a time [59], which is the major
difference to other media such as text documents w.r.t. navigation.
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Video or animation representations have also certain limitations. Pylyshyn found
that observers can visually track a maximum of five independently moving objects
at the same time [81]. The subject’s performance decreases with increased speed
and number of objects. Therefore, following multiple objects in a video quickly
exceeds human perception capabilities.

Interactive animation When viewing rendered videos, interaction with the content is
restricted to navigation in the final video. However, for an exploration of the
scientific data, changing parameters or views during analysis are desirable. In
an interactive animation, the visualization scene is constantly rendered, which
enables the user to interactively modify this scene. However, this imposes high
demands on the applied computational system. To enable an interactive workflow,
modifications of visualization parameters have to be realized very fast. Ideally,
response times of less than 100 ms are desirable [18]. While this goal is often
not achievable for large time-varying data, response times of several seconds are
usually acceptable [76].

The choice of a suitable representation depends on the analysis task. If the user is
only interested in the last state of the simulated system and a visualization showing the
interesting phenomena is known beforehand, depicting a still image is fully sufficient.
However, for large time-varying data describing complex phenomena such knowledge
cannot be assumed—otherwise, the term complex is unfounded. In this context, an
interactive animation representation is preferable, as this display representation supports
an explorative analysis.

4.3.2. Textual interfaces

While commonly not associated with 3D interaction, symbolic input—that is input of
text, numbers, or textual markups—is useful for precise object or parameter manipu-
lation [14]. In the context of time navigation numeric input is beneficial to travel to
a specific and known location, if this location is known by its value in visualization,
simulation or domain time. Textual commands can also be used to execute several nav-
igation tasks, for instance "set time range from 0.42 to 0.66” to select a time interval,
while requiring little screen space (only a single line of text).

Providing symbolic input devices in virtual environments is relatively little studied.
While traditional keyboards are available for desktop VR systems, they are not appli-
cable in fully immersive environments. Alternatives are virtual keyboards (i.e., the user
presses virtual keys, which lack realistic haptic feedback) or speech input.

We assess the necessity of symbolic input for time navigation as only marginal. In our
experience, important targets that are memorized by their exact numerical simulation
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time are rare and can therefore also be defined once, in order to be visited later with
other methods—e.g., a 2D marker on a timeline. Therefore, we recommend to integrate
symbolic input if possible (e.g., a traditional keyboard in desktop VR configurations,
or pen-based virtual keyboards in mobile PCs), but only to augment other interaction
metaphors.

4.3.3. Remote 2D GUI

Ml VilTimeNavigation ] =]

Eile

ViSTA TimeNawgationI

< ] e

Control

™ Keep speed

1.0

L

1.323s

@ ED%/8

& SPHERE /8

Figure 4.4.: Example for a remote 2D GUI that works as a controller for the time
model from Chapter 3. Besides user and visualization time, the discrete time frames for
two simulations (named box and sphere) are shown. Input conditions (i.e., play, stop)
and discrete maneuvering (i.e., time step forward/backward, first/last time step) are
given by VCR buttons, while relative rate control is possible with a slider interface.

Non-VR visualization applications mostly follow the WIMP (Windows, Icons, Menus,
and Pointer) metaphor. Related work from document browsing or video navigation
follows this metaphor, too. In order to directly benefit from interaction techniques
proposed in these research fields (e.g., the Alphaslider [1]), a 2D GUI-based interaction
style needs to be employed.

One way to integrate this interaction style in virtual enviroments are remote 2D GUIs
on a dedicated device. The device should be mobile in order to allow application in
immersive virtual environments. Exemplary devices are tablet PCs or Ultra Mobile PCs
(UMPCs), as well as smaller PDAs or iPhones. The most important benefit of using
a remote GUI is that it utilizes a popular interaction style with which most computer
users are very proficient. Additional benefits are that such a remote GUI is independent
from the performance of the VR-system (i.e., performance drops in the virtual scene do
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not directly influence interaction performance) and that it is suitable for general system
control as well as symbolic input.

However, drawbacks when using a remote GUI are severe: the user has to carry an
additional—perhaps weighty—device and possibly needs to change devices for different
tasks. Remote GUIs are only applicable when the user can see the physical world (i.e.,
not in head-mounted display (HMD)-based systems). Input and output are spatially
separated, that is, to interact with the remote GUI a focus change from the virtual
scene to the 2D display is necessary.

And even the prevailing 2D slider interface has problems when used to navigate in large
time-varying data. The smallest moveable unit of such a slider is constant (e.g., one
pixel), which conflicts with a growing amount of discrete time steps to select. This
granularity problem results in the fact that multiple temporal units are covered for a
minimal slider movement. In addition, the user requires additional time to acquire the
slider handle [116].

Technical Realization: The 2D GUI acts both as controller and view components of
the Model-View-Controller (MVC) concept. However, as the GUI application is typically
connected to the visualization application using a network, all control operations are
transmitted via network to the time model. At the same time, all changes in the time
model are reflected by the GUI due to its role as view component.

4.3.4. 3D GUI

Another possibility to integrate 2D GUIs in a virtual scene are adapted 2D menus and
icons, that is, the 2D GUI exists as part of the 3D scene (see Figure 4.5). The 2D pointer
interface is typically replaced by ray-based 3D interaction.

Q00

Figure 4.5.: Example for a 3D GUI: An adapted 2D GUI in a 3D scene is arranged on
a 2D panel and can be freely positioned in the virtual environment.

One advantage these 3D GUIs have over remote 2D GUIs is that they require less focus
change, as the focus stays within the virtual scene. The usage of free moving 3D input
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devices instead of a mouse is easy to learn and relatively fast.

However, they also possess several disadvantages. As the 3D GUIs are objects of the
virtual scene, they can be occluded by other objects. Interaction with these menus is
hindered when the visualization performance drops for complex scenes. For 2D GUIs,
the utilization of free moving 3D input devices as pointers is associated with a lack of
coordination due to the unnecessary degrees-of-freedom and fatigue effects. In addition,
adapted 2D sliders in 3D scenes exhibit the same problems as traditional sliders. The
performance using a time slider on an adapted 2D GUI shown in Figure 4.5 is compared
to a novel direct manipulation interface in Section 5.6.3.

Technical Realization: The 3D GUI acts both as controller and view component
of the MVC concept. For more details on the used 3D widget concept please refer to
Tedjo-Palczynski et al. [98].

4.3.5. Physical Devices

Instead of using devices to manipulate controls on a screen, physical devices can also
be used inside virtual environments to directly steer certain parameters. That is their
control elements are directly connected to some property or action (see Figure 4.6). As a
simple example, starting and stopping the animation is not achieved by using a joystick
to point at the appropriate 3D widget and confirm the selection with a button, but by
pressing the button directly.

The dropping prices for different kinds of game controllers (e.g., Logitech’s RumblePad ™
or Nintendo’s Wii™) makes these physical devices available for virtual environments.
In addition to buttons, these devices often possess multiple analog or digital joysticks.

Physical devices to navigate in time instead of 2D or 3D GUIs have the advantage that
they do not require a visual focus change in the virtual scene, as the device is controlled
via a different modality than seeing. In addition, as the device is used by touch and
force, it directly provides passive haptic or tactile feedback. Recently, Swindells et
al. [97] compared a mouse, a pen device, and a physical device in their usage to control
visualization parameters (i.e., color values). Their study showed that the subjects spend
95% fewer visual fixations on the physical device than on the controls using a mouse or
pen device. However, this did not have a significant effect on task performance.

Disadvantages of physical devices are that a special device is required and needs to be
carried, and that this device is not as flexible as a graphical user interface. Only a
limited number of physical controls is available on a device, so that a mapping from all
possible actions to buttons is often not possible. In addition, available device controls
need to be matched to interaction operations in a meaningful way, which often depends
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Play/Pause

Previous/next time step

Rate control

Figure 4.6.: Two examples of physical devices for time navigation. Left: The left-hand
side elements of a Logitec Rumblepad™ are used for time control. Play/pause input
conditions are mapped to a single, easily reachable button, one-step maneuvering target
selection is mapped to a digital left-right control (one time step backwards/forward),
and speed selection is mapped to one axis of an analog joystick. Right: One axis of the
isometric 3Dconnexion SpaceNavigator™ is used to control speed.

on the specific application or simulation. For instance, Lee et al. [70] found that subjects
were faster using a position control jog dial or touch wheel than using a self-centering
rate control scroll ring to solve navigation tasks in audio data. In general, Hinckley
et al. [55] suggest that performance of different navigation techniques depends on the
distance traveled. They showed that position control techniques were faster for docu-
ment navigation than rate controls, however, this effect wore off with a growing travel
distance.

Technical Realization: Physical devices are only used to control the central time
model. While it is possible to use output properties—e.g., vibration—as views on the
time model, such multi-modal interfaces are not considered here. In order to avoid
input device—specific implementations, we utilize the data—flow—based approach ViSTA
DataFlowNet (DFN) [7]. In this data-flow architecture, we implemented a ” TimeNaviga-
tion” sink node that provides input ports to control temporal properties (see Figure 4.7).
Using the network components of DFN, the output from various devices can be trans-
formed and attached to these input ports. The benefit of this approach is that input
devices and temporal operations are configured during runtime, and the addition of new
input devices can benefit from existing transformations. An example for a GamePad-like
device is depicted in Figure 4.7. Yellow elements are nodes in the net, blue ports are
input ports, and orange ports are output ports. The GamePad driver provides several
axes and buttons. Axes are encoded with a float in the range of [—1000, 1000], buttons
are encoded by a boolean. In this example, button 1 is directly mapped to a play an-
imation action, while button n triggers a pause animation action. Axis 1 is scaled by
1000—rescaling possible values to [—1, 1]—and used as a relative position control, i.e.,
the current visualization time is added by the rescaled value. A value x provided by axis
n is evaluated as 10” and used as relative rate control, i.e., the current animation speed
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Figure 4.7.: Data-flow net for a GamePad input device. Yellow elements are nodes
in the net, grey nodes transform data, blue ports are input ports, and orange ports are
output ports.

is sped up with a factor within [0.1, 10]; no movement of the axis maps to a speed factor
of 10° = 1.

4.4. Summary and Discussion

In this chapter, we have elaborated on a task taxonomy for temporal navigation in
scientific visualizations. Based on this taxonomy, possible 3D user interfaces for these
tasks have been discussed and exemplary prototypes have been shown. An overview
is given in Table 4.1. The listed advantages/disadvantages correspond to the usual
assessment of these interface types (e.g., by Bowman et al. [14]). However, we named
only items that—in our opinion—influence temporal navigation tasks.

We have presented a set of 3D user interfaces, as a single best user interface rarely
exists for a specific task. For instance, a user who only changes animation speed in his
analysis session may prefer a physical device to control speed, while a different user who
constantly changes between speed selection and other subtasks may prefer another user
interface. As a result, a suitable user interface should be employed depending on the
configuration of the user’s workplace, the frequency of single navigation subtasks, and
individual preference. Therefore, providing a set of user interfaces that operate on a
consistent time model enables a high flexibility for a large number of applications.

The presented interaction techniques are only straightforward examples that are classi-

fied by input device. Based on the well-investigated field of spatial navigation, several
spatial travel techniques could be adapted for temporal travel, too. Examples include
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Interface type Advantages Disadvantages
Textual ¢ accurate input © bad usability in
fully immersive environments

Remote 2D GUI & well-known interface © carrying device

@ performance-independent & requires focus change
3D GUI @ less focus change 6 lack of coordination

@ easy to learn © occlusion
Physical device & no focus change © special device required

@ passive feedback © limited number of controls

Table 4.1.: Summary of identified major advantages and disadvantages for different
user interface types.

target-based techniques like the zoom-back technique by Zeleznik et al. [115], where the
user automatically zooms to a selected target and after investigation zooms back to the
original location.

Furthermore, the task taxonomy permits us to analyze user interfaces from existing
scientific visualization tools—both VR and non-VR-—regarding temporal navigation.
Table 4.2 gives an overview of how and if the identified temporal navigation tasks are
covered by a selected set of existing visualization toolkits. As a result, the tools we
investigated provide only a limited set of interaction techniques and do not cover most
temporal navigation tasks. Some tasks are only covered in a very limited way (e.g.,
select time interval). In particular, non-uniform tasks (i.e., non-uniform speed selection
and resolution selection) are not covered at all by the visualization tools we analyzed. In
almost the same manner, wayfinding is not supported. These ”"empty spots” in Table 4.2
suggest that temporal navigation has not been recognized as a problem. At the same
time, interaction techniques and algorithms for the missing time navigation subtasks
are thus identified as possible topics of emerging or future research work. For instance,
recent work addresses non-uniform speed selection [101, 112]. In this thesis, Chapter 6
proposes user interfaces and algorithms to compute non-uniform temporal resolutions.

Wayfinding tasks are not intensively addressed in this thesis; only movement trajectories
and markers are mentioned in Chapter 5 as wayfinding aids. However, as wayfinding
is a high-level cognitive task, it may gain importance with the increasing temporal
resolution of simulation data. Future research to investigate the effect of wayfinding
aids on understanding time-varying data might be promising.
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vided by four different visualization tools and this thesis.
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CHAPTER 5

TARGET SELECTION USING 3D DIRECT
MANIPULATION

5.1. Introduction

This chapter introduces a novel user interface that in particular addresses target selec-
tion tasks. Our goal is to ease the interaction problem—described in Chapter 1—by
employing more accurate and intuitive interfaces. Target selection tasks are fundamen-
tal for travel inside the temporal domain as they specify where to move. In the last
chapter we already have discussed various interaction techniques to select travel targets.
The predominant time slider interface also solves target selection tasks.

The basic idea of the novel 3D user interface introduced in this chapter is to address
temporal navigation orthogonal to the common time slider: Instead of manipulating an
intermediary for time (e.g., a slider or a clock) and observing the spatial changes of
objects caused by these manipulations, our interface is used by manipulating the spatial
properties of objects, from which the system draws conclusions about the necessary
temporal operations to achieve these manipulations. As an example, we enable the user
to drag an identified visualization object along its three-dimensional trajectory. As each
point of a trajectory is associated with a time value in the animation, this movement
can be used to control time in the visualized simulation.

The proposed user interface consists of a set of three interaction techniques that address
different target selection tasks: search for or maneuver to a time instant, mark and revisit
a time instant, and restrict the visible time interval. For all techniques the extracted
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time-varying movement of visualization objects is required, which is defined by a spatio-
temporal trajectory (see Section 5.2.1). All illustrating images in the following section
originate from the evaluation data set described in detail in Section C.3.

To evaluate the benefit of the proposed interface, several domain scientists participated in
a user study where we assessed user preference (see Section 5.6.2). For a single interaction
technique, we compared quantitative measures (i.e., performance and accuracy) of this
task with the common time slider interface (see Section 5.6).

In summary, the main contribution of this chapter is a novel 3D user interface for time
navigation in scientific visualizations based on direct manipulation techniques.

5.2. Basic Concepts

5.2.1. Trajectories

As scientific visualization deals with representing spatio-temporal phenomena, visualized
objects can exhibit motion, which can be described by trajectories. We understand a
trajectory as the path an object follows when this object moves through space. The
objects occuring in scientific visualization are mostly described by a discrete time frame;
therefore, we assume that trajectories are also representable by discrete sets.

To establish a common vocabulary to describe the interaction techniques, we first define
the term trajectory as it is used in the following text. Let [Ssiart, Sena] C R be the
time range in which the simulated data is valid. This time range is in the simulation
time frame, that is the time scale of the simulated process (see Section 3.3.1). Let
[tstart tend] C [Sstart, Sena) be the life time of a certain visualization object O (e.g., a
tracked feature). In this time interval, the visualization object is typically described by
its discrete evolution states O; with t = tgers,...,leng. A common way to depict this
evolution is to show the trajectory of a specific point p; € O; of the time-varying object.
For particle traces, this is the particle position itself. For features and geometry objects,
this is often the center of the corresponding object. Then, we describe the trajectory
To of an object O by an ordered set of three-dimensional points together with their
time value Tp = {p) = (pg(f), pét) , p,(f)) | p® € R3,t € [tstart, tena)}. In this text, we use
the equivalent notation as a set of 4D points Tp = {p = (pz,py,P=0:) | p € R py €
[tstart; tena]} With p* = ¢. In the latter notation it is easier to distinguish time instants
p; that belong to a trajectory point and general time instants ¢.

By interpolation of the discrete data, this trajectory can also be described by a space
curve y(t) = x, where t € [tyart, tena) and x € R3 is a point in the 3D Euclidean space.
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A point on the trajectory is called a multiple point if there exist two time values t #
t" with y(t)=y(t'). A trajectory is a closed loop trajectory if y(tsiart) = Y(tend). The
connecting point of a loop is therefore a multiple point. If a loop is traversed more than
once, all points on the loop are multiple points.

Obviously, the 3D image of a trajectory is ambiguous, as a segment in the 3D image can
be traced at different speeds and multiple points are correlated to multiple simulation
time instants. For instance, you can not identify from the 3D image of a looped trajectory
how often this loop is traversed.

The techniques introduced in this chapter require such visualization objects with a tem-
poral evolution that can be described by a trajectory. We identified three major visu-
alization techniques that generate objects with a trajectory: particle tracing, feature
tracking and moving geometry.

To depict the time-varying flow of a simulation, computing trajectories of massless par-
ticles is a traditional technique [103]. This visualization corresponds to inserting visible
markers into the simulation which are moved according to the velocity of the flow field.
Large numbers of particles can be used to convey a general understanding of the under-
lying flow field, such as changes in direction and velocity. See Section 2.1.1 for related
work on particle tracing. To show the movement and change of identified phenomena
(i.e., features), feature tracking techniques are employed. An overview of feature extrac-
tion and tracking techniques was given by Post et al. [79]. These techniques construct
trajectories of identified features (similar to object tracking in video browsing), as well
as special events of the temporal development of features (e.g., merging of two features,
birth of a feature). See Section 2.1.1 for related work on feature tracking. In addition,
the movement of geometry objects is known beforehand, as they are part of the sim-
ulation parameters. This includes, for instance, trajectories of rotating screws or the
movement of a piston inside a combustion engine.

The extraction or computation of these trajectories from the time-varying data is not
topic of this thesis, therefore we assume that already computed trajectories exist.

5.2.2. General Interaction

While the proposed interaction techniques address different target selection subtasks,
some general interaction aspects apply to all of them. For all techniques, we assume
the application provides at least a 6 degrees-of-freedom (DOF) input device and three
buttons for state control—select, activate and a special button for the region query. The
select command is used to move objects by direct manipulation with the 6DOF input
device while the button is pressed. Activate is used to explicitly create, activate or
deactivate a technique, depending on the current context. The region query requires an
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Figure 5.1.: Cut-away occlusion management. The selected point is occluded by a
part of the geometry, which is cut out using an irregular jigsaw pattern.

additional next interval system control to switch through a set of intervals, as described
later.

Selection of small or cluttered objects is hard with a standard ray-based metaphor,
therefore we integrated the IntenSelect selection technique [30]. IntenSelect uses a conic
selection volume and a dynamic, time-dependent ranking between objects touched by
this volume. In this way, even moving, small objects—Ilike particles—can be selected
reliably.

If the simulation data contains context geometries, interesting visualization objects can
accidentally be occluded by geometry. Other visualization objects are also possible
distractors. To this end, we incorporated an occlusion management based on interactive
cut-aways [37]. Geometry occluding a selected object is cut away with a jigsaw mask.
We apply an irregular cut mask to better distinguish cutted geometry from unmodified
geometry (see Figure 5.1). The choice of the occlusion management technique was
made using the taxonomy by Elqvist and Tsigas [36]. A detailed argumentation for the
selection of this occlusion management technique can be found in [109].

Based on these general interaction aspects, the following sections describe three direct
manipulation techniques for the target selection travel subtask.

5.3. Technique: Direct Dragging Along Trajectories

In order to travel to target time instants that are defined by spatial characteristics, the
user is interested in spatial positions at which some events occur. Given a visualization
object with a spatio-temporal trajectory describing its development, each spatial point
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on the trajectory is uniquely associated with a corresponding time instant. Therefore,
we transform the task of locating a specific time instant to the task of locating a specific
position of a visualization object. This is done by providing the user with an interaction
technique to drag selected objects along their 3D trajectory. Requirements on such a
dragging technique are identified in Section 5.3.1. An interaction approach that respects
these requirements is then described in Section 5.3.2.

5.3.1. Dragging Requirements

Dragicevic et al. defined four requirements for 2D dragging tasks that are also applicable
to the 3D case: responsiveness, multi-scale, temporal continuity and directional conti-
nuity. A responsiveness of the interaction technique of less than 100 ms is required for
direct manipulation [76]. The user should be able to drag object using fine controlled
movements as well as fast coarse movements (multi-scale, see Figure 5.2 left). If the
dragging movement encounters multiple points, the candidate that preserves temporal
continuity should be chosen (see Figure 5.2 middle). If the dragging has to decide a
direction, the candidate that preserves the previous direction of movement should be
chosen (directional continuity, see Figure 5.2 right). However, single requirements often
conflict with each other. For instance, the temporal continuity requirement generally
prefers temporally near trajectory points. In contrast to that, the multi-scale require-
ment depends on the potential for large temporal jumps to reach a desired position faster.
Hence, one design problem is to create a technique that offers a trade-off between these
conflicting requirements. The interaction technique described in the next section tries
to satisfy these four requirements while finding a compromise between them.

) ) ®3)

Figure 5.2.: Schematic depiction of three requirements: (1) multi-scale dragging, (2)
temporal continuity, (3) directional continuity.
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5.3.2. Interaction

(a) (b) ()

Figure 5.3.: Course of actions for trajectory dragging: (a) First, the user selects a
single visualization object. (b) Upon selection, the object’s trajectory is shown. The
green rubber band connects the input position and the selected object. The input
position stays at constant distance to the input device. (c¢) As the user moves the input
device to the left, he continuously drags the object backwards along its trajectory.

After the initial selection of a visualization object, a focus point with the object’s position
is created (cp. Figure 5.3a). This focus point’s position is displayed by a 3D cursor and
it is attached to the input device retaining the current distance, such that movements of
the user’s input device are applied directly to the distant focus point (cp. Figure 5.3b).
Using a distant cursor has two benefits compared to using the device position directly.
First, manipulation of objects out of reach of the user is enabled. Second, the real
input device does not overlap with the virtual focus point, which causes perceptional
problems.

Based on the focus point’s movement, a new point on the trajectory is selected (cp.
Figure 5.3c). The choice of the selection algorithm has a major impact on the resulting
interaction technique. Omne possible approach is to use a closest point search on the
trajectory. This is done by Karrer et al. [64], who search for the closest point in both,
2D space and time, which is described as (z,y,t). We applied this algorithm to the 3D
dragging case and found the following problem: As the focus point obtained from a
6DOF device in a virtual environment is not as steady as a 2D mouse pointer, the user
frequently deviates from the trajectory. This often leads to ambiguous positions of the
focus point, where the spatio-temporal distance is the same for two or more candidate
points.

Dragicevic et al. [33] proposed to use an adapted distance function. Based on the focus
point, the trajectory point with the smallest distance according to this distance function
is selected. We applied this algorithm to the 3D case as follows. For a candidate
trajectory point p = (ps,py,ps, 1), a focus point f = (fy, fy, f.), and the arc-length
distance AA, between the candidate point and the currently selected point, the distance
function D is

D= \/(px — fo)2+ (py = )2 + (02 — )2 + (k- AAL)? + Kasy (5.1)
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The arc-length distance is included to ensure temporal continuity. As time is mono-
tonically increasing on the trajectory, so is the cumulated arc-length. Directly using
the corresponding time values to a spatial point is not feasible, as time and space are
expressed in different scales. The parameter k influences the effect of arc-length distance
and can be described as ”stickiness” of the dragging algorithm to the current time value.
We assumed a higher value than originally proposed in the method to be more suitable,
as we expected the freely moveable 6DOF input device to be less steady than a desktop
mouse for trajectory dragging tasks. Surprisingly, in the expert reviews, all evaluators
perceived a value of £ = 1—as in the original publication—as comfortable. However,
this value should be adapted to individual preferences. The parameter kg, is chosen as
follows:

k {0 for candidate points in the direction of the current dragging motion,
dir —

¢ >0 else (for a predefined value c).

This is done in order to allow for directional continuity, as movements against the current
direction are penalized by a higher distance. The parameter kg, should be chosen on
the data set’s size, as it is evaluated in data space.

The candidate point with the lowest distance according to D is then selected as the new
current trajectory point, and the system travels to a simulation time value of p;.

rubber band
selected
object 4 n
focus point
trajectory —

(a)

Figure 5.4.: Details of the trajectory dragging technique. (a) Single components of the
interaction technique. The rubber band gives additional depth information of the focus
point by occlusion. (b) Comparison of unicolored trajectories and colored by temporal
distance.

5.3.3. Visual Feedback

Besides a suitable distance function, the direct dragging technique needs to provide
several visual feedback mechanisms. The user cannot drag an object to an arbitrary
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location, but the object must follow its trajectory. However, the user should not be
required to follow the object’s trajectory exactly. To guide the user in this manipulation
task, the selected object’s trajectory is displayed as a hint for possible movement (see
Figure 5.4a). To be effective, this shown trajectory must be perceived in the spatial
context. By drawing only 2D lines, depth information of the trajectory is strongly
reduced. Instead, we propose to use 3D tubes, which provide better depth cues due to
lighting and proper occlusion of each other. To ensure high frame rates even for long
trajectories, user-oriented billboards of these tubes are employed [88].

At the current focus position, a 3D cursor is displayed (see Figure 5.4a). First prototypes
revealed that depth of the 3D cursor compared to the trajectory was badly judged. To
provide the user with additional information, a rubber band between the focus position
and the moved object is shown. The length of the rubber band informs the user about
the distance between focus position and selected object. The occlusion of the rubber
band with visualization objects provides the user with additional depth cues (see Figure
5.4a).

Even a single trajectory might exhibit complex structures, resulting in intricate ”ball of
yarn” views. An example is provided in Figure 5.4b. This does not only impede the
user’s understanding of the trajectory, but also the task of dragging along the trajectory,
as the local position can also be intricated. To counteract this problem, we color the
hint trajectory according to the temporal distance to the selected point. That is, a point
on the trajectory temporally closer to the current selected point gets a more noticeable
color than a point farther away in time. This highlights contiguous segments, which
eases the perception of the local neighborhood around the selected point. Of course, the
drawback of this visual hint is that no other information related to the analysis can be
mapped to the trajectory’s color (e.g., the object’s velocity magnitude). Therefore, we
implemented this visual hint as optional.

5.3.4. Technical Realization

For a fast search for the best candidate with respect to the distance function D, we
employ a k-d-tree. To reduce the memory footprint for a large number of trajectories,
the tree structure is built upon initial selection of a trajectory. Each trajectory point is
stored by four components: the three spatial components p,, p,, p. and its accumulated
arc-length value from the beginning of the trajectory. This allows to encode the stickiness
parameter k into the arc-length value stored in the k-d-tree. Changes of parameter k
are then taken into account with each new selection of a trajectory. However, the
directional parameter kg, can not easily be included in the search tree, as it changes
with every direction change. Therefore, this parameter is evaluated on an intermediate
set of candidate points from the k-d-tree search. Based on this last evaluation step, the
closest candidate point according to the distance function D is selected.
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5.4. Technique: Time Buoy

Providing cues for significant events in the time-varying data supports wayfinding in
navigation tasks. To mark temporal properties of an event, it is sufficient to set a mark
on the 1D timeline. However, in the analysis of spatial data marked events are often
correlated with a spatial region where this event has occured. Therefore, the time buoy
represents a marking mechanism for both, space and time. Besides wayfinding tasks,
the time buoy can also be used for target selection tasks to return to previously marked
positions or time-instants.

5.4.1. Interaction

On request, a buoy-like marker—consisting of a colored flag and a buoy body—is created
that marks the current time instant and can be positioned in space (see Figure 5.5).
The spatial position of the marker can be changed by selecting the base of the buoy and
directly moving the marker. To change the temporal position of the marker, the user
has two options:

First, to mark positions that are not on a trajectory, the user presses the activate button
to turn the time buoy into in a special "time-traveling” state. While in this state, the
time buoy is half-transparent and adopts the current time, as it is changed by other time
navigation methods. When deactivating this state, the time buoy remembers the last
time value.

Second, to mark positions which belong to a trajectory, the buoy can be directly attached
to a trajectory point. When in close proximity to a trajectory, the time buoy is attached
to the spatially nearest point p € R* of the current trajectory. The connection between
buoy and trajectory is made visible to the user (see Figure 5.5). The buoy’s time value
is set to the connected trajectory point’s time value p;. By moving the buoy away from
the trajectory far enough—that is, above a predefined threshold—, the connection is
deleted.

Besides representing markers for certain events, time buoys can be used to directly go
to the time instant of the event (i.e., for target selection tasks). By selecting the flag of
the buoy, the user moves to the point in time represented by the time buoy. Using these
buoys, AB-comparisons for time instants—i.e., comparing a visualization in alternating
time instants—are made easy. Sequences of events can be marked by time buoys and
by selecting the buoys’ flags, the user can jump through this sequence.
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5.4.2. Visualization
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Figure 5.5.: Time buoys marking spatio-temporal positions. (a) The red buoy is
attached to a trajectory (yellow connection), and as the current time value is close to
the marked one, the flag is active. The light green buoy is inactive. (b) The active
green buoy marks the trajectory-independent event that the first particles reach the
straightener.

The spatial position is represented by the buoy’s spherical floating body. Whenever
the marked time is active, the time buoy is animated like a floating buoy in heavy
waves. The marked time is encoded as motion, since motion is well noticeable even
in peripheral vision; this is important for room-mounted displays, where the user is
possibly surrounded by the data. In order to inform the user that a marked event is
close, the animation is activated if the current time is within At of the marked time
instant. At the same time, the distance to the marked event is encoded in the amplitude
of the buoy’s swinging motion. For the current time value t.,.reny and the marked time
instant t,,q-keq, the normalized amplitude A is given by A = 1 — W, that
is the buoy swings faster close to the marked time instant and very slowly when the
distance approaches At. However, as the temporal position of a buoy is not directly
perceivable by the user, information about the marked time instant has to be displayed
to the user. On selection of a buoy, the marked time instant and position is displayed
as text. The marked time instant is additionally shown on a 1D timeline (e.g., on the
3D GUI described in Section 4.3.4). This provides the user with an overview of the
temporal positions of all time buoys, while neglecting the spatial positions.

5.4.3. Technical Realization

As the time buoy represents a marking mechanism, no considerable computational ef-
fort is necessary. The most costly operation is the check for closeness to the selected
trajectory, which is handled by the k-d-tree point search of the trajectory dragging
technique.
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5.5. Technique: Region Query

Selecting a time interval to restrict the range of the animated sequence helps focusing
on interesting time-varying phenomena. Often interesting phenomena lie inside a known
spatial region. For moving visualization objects, this region can be visited multiple times,
depending on the underlying flow. Using a time slider interface, the course of action
comprises manipulation of the slider range until the observed objects move through the
desired region only. Instead of restricting the time range to time intervals where objects
reside in a spatial region, we propose the other way round, that is, to specify the target
spatial region and then to compute the time intervals, in which this region is visited.

5.5.1. Interaction

To specify the target region, we provide the user with a box-shaped widget to describe
a rectangular region. In order to create such a box, the user stretches out the box’s
diagonal while pressing the activate button (see Figure 5.6a). Although directly drawing
a box inside a virtual environment is very intuitive, defining the box’s extents in this
way is often inaccurate. Therefore, an existing box can be reshaped by selecting a single
face and directly dragging this face along the corresponding box’s axis (see Figure 5.6b).
Additionally, the user can select the whole box and reposition it freely. Throughout this
process the previously defined box remains visible for reference. This combination of
coarse but intuitive creation and iterative refinement enables the accurate definition of
a spatial region inside a virtual environment even with freely moveable input devices.
Details on this drag box widget can be found in Hentschel et al. [54].

(a) 1 (b)

Figure 5.6.: Two of the three possible actions of the drag box widget (from [54]):
dragging a new box in 3D space (a) and refining a single face and therefore a single box
axis (b).

}---

Given a set of trajectories for all moving objects and a box widget describing the target
region, we compute the spatio-temporal intersection of these objects and the specified
spatial region. That is, for each object O (where Oy is the spatial description of the
object at time instant ¢) and a spatial rectangular region R we compute the discrete set
of time instants Ip = {t | O; N R # ()} during which the object touches or resides within
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the region. Of course, this approach is not restricted to a rectangular query region—e.g.,
the same approach is possible using a spherical widget.

Based on the discrete temporal resolution of the object, these time instants [ are
transformed into a set of disjunct time intervals Ip = {[t,,t.] | Vt t, <t <t.:t € Ip}
that envelop these time instants (i.e., t € Ip < t N Ip # () holds). We combine these
interval sets I for all objects and determine the minimal set of intervals I spanning
the same time ranges as the union over the sets Ip. The result is a set of time intervals
I, during which movement inside the query region occurs. We call an element of this
minimal set an active interval. By using the next interval button (see Section 5.2.2) on
an active region, the user can switch through the set of active intervals that are shown
in an animation.
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Figure 5.7.: Interaction and effect of the region query technique: (a) After having
selected a spatial region using the box widget, the user refines one face. (b) Points inside
the query region are shown in orange, points outside in light blue. On the timeline, the
trajectory points that reside inside the region correspond to two active time intervals,
separated by a time interval during which the trajectory is outside the query region.
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Figure 5.8.: Example of active intervals obtained from three visualization objects.
Each of the three objects has a set of time intervals (colored lines) within its lifetime
(grey line), in which it resides in the query region. These intervals are combined to three
disjunct active intervals. During each active interval, the region is visited by at least
one object.
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An example is depicted in Figure 5.7. For the data set described in Section C.3, the
user selects using the box widget the transition region between impeller and diffuser
(see Figure 5.7a). Figure 5.7b shows a sketch of the situation: a single trajectory passes
through the query region two times, resulting in two active intervals separated by a time
interval during which the trajectory is outside the query region. Figure 5.8 shows how
the sets I of three objects are combined to the single set of active intervals.

5.5.2. Visualization

Besides the visualization of the drag box widget, additional information for the currently
active interval are displayed. That is, on selection of an active interval, the set of
trajectories that pass the query region in this interval is shown. In order to depict
the relation of active intervals, these intervals are displayed on a 1D timeline legend
for reference (e.g., see Figure 5.8). Such an additional 1D depiction is reasonable, as
it is the commonly used visualization of interval data. By selecting the 1D interval
representations, the user can travel between active intervals. Consequently, the visual
range is restricted to the selected interval.

5.5.3. Technical Realization

The efficient search of active intervals depends on the shape of the query region and the
shapes of the visualization objects. For the example of the DeBakey VAD, we restricted
the region query technique to particle traces, only. That is, the visualization object at
each time instant can be described by a single point, which is why we employ a k-d-tree
data structure. When implementing the region query technique for objects with spatial
extents, other spatial data structures such as an R-tree would be more appropriate.

We employ a single k-d-tree that stores the union of all trajectory points from all tra-
jectories using their three spatial components p,, py,p.. Using this tree, all points that
lie spatially inside the query region are retrieved. For a spherical or box-shaped query
widget, the k-d-tree provides efficient search algorithms. The resulting points are sorted
by their time value p, and partitioned into disjunct intervals, which already are active
intervals. The interval sets I for each object are not explicitly created.

Using the region query technique, the user can easily focus on time-varying phenomena
inside a spatial region of interest.
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5.6. Evaluation

To assess the usability of our 3D user interface, we combined several evaluation tech-
niques. During the design process, we conducted expert reviews (results not shown here),
which were especially helpful to find hidden design flaws and errors. We conducted two
user studies, one study assessing user preference for all techniques (see Section 5.6.2) and
a detailed comparison for a selected technique (see Section 5.6.3). Two separate studies
were conducted to keep the required time for a single study within an acceptable limit
of one hour. Both studies were carried out in a 5-sided CAVE-like environment using
an A.R.T. Flystick as input device. All participants belonged to the target user group,
i.e., all had experience in simulation science, and ranked their experience in simulation
science on a 5-point scale (1 = no experience, 5 = expert) with a median value of 4. To
create a strong reference to scientific visualization, we designed tasks inside a real-world
visualization application. However, the tasks themselves did not incorporate domain-
specific knowledge (i.e., tasks such as ”What effect has shear flow on hemolysis?”). To
analyze the proposed method we selected the visualization of the MicroMed DeBakey
VAD® (Ventricular Assist Device), because this visualization contains a set of non-trivial
trajectories, that are larger and more complex compared to existing trajectories from
the available other data sets. See Section C.3 for details on the DeBakey VAD.

5.6.1. Technical Evaluation

Here, we used a pre-computed set of 75 pathlines that follow 36 revolutions of the im-
peller. The average length of a trajectory was 4900 points, the total of 75 pathlines
comprised 325,621 points. While the longest pathlines had 5200 points, several trajec-
tories needed less revolutions to leave the blood pump or terminated earlier due to low
velocity. All measurements were done on a PC with a Intel Core2 Quad processor at
2.83 GHz, equipped with 4 GB main memory.

For the trajectory dragging technique, the k-d-tree is built on-the-fly, whenever a particle
is newly selected. For this data set, building the k-d-tree took on average average 1.86 ms
(standard deviation 0.18 ms). To search a new trajectory point according to the given
distance function took on average 0.19 ms (standard deviation 0.008 ms). These numbers
show that a good deal larger trajectories can be handled by the trajectory dragging
technique within the desirable response time of 100 ms. Of course this measurements
were collected for a specific implementation and hardware, only. Though, the numbers
represent achievable results on a current computer system.

To evaluate the region query technique, queries with different query sizes were executed.

Table 5.1 shows query runtimes for box-shaped region queries with a side length of 5 %
to 100 % of the data set’s side lengths. Querying 100 %, that is the full data set, was
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Region query size avg. runtime

5% 14.7 ms
10 % 17.5 ms
25 % 31.4 ms
50 % 36.4 ms
100 % 116.4 ms

Table 5.1.: Average runtimes for the region query techniques for regions of varying size
relative to the data set’s size.

done for comparison purposes, as this query trivially returned the full time interval. For
the full query, runtimes above an immediate response time of 100 ms were measured. In
all other cases, response times of the region query technique were clearly below 100 ms.
But in spite of this, these results show that for larger trajectories or a larger number of
trajectories, an immediate response time of 100 ms is easily exceeded. We argue that, as
the user does not have a direct correspondence between input action (i.e. drawing a box)
and result (i.e., a set of active intervals that restrict the animation), such an immediate
response is not essential. The user will anyway need additional time to step through
the intervals and start the animation. For these reasons we argue that a response time
within two seconds will also be acceptable [76] for this interaction technique.

5.6.2. Questionnaire

DO Trajectory Dragging
B Time Buoy
B Region Query

al

1 2

| DOTrajectory Dragging
| BTime Buoy
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Answer Answer

(a) Preference (b) Satisfaction

Figure 5.9.: Participants rated on a 5-point Likert scale if they preferred a direct
manipulation technique to the time slider interface (1=strongly disagree, 5=strongly
agree) as well as overall satisfaction with the technique (1=frustrating, 5=satisfying).

In a user study, all techniques were evaluated concerning qualitative aspects of the
interface. The participating domain scientists explored the user interface given several
specific goals. In a questionnaire, we inquired aspects of the interface’s usability.
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Twelve simulation scientists (2 female, 10 male) between 19 and 30 years of age (mean
25.8) were recruited to compare the interaction techniques.

Procedure — After an introduction into the visualization of the data set and a brief
explanation of the time slider and the four new techniques, the participants explored all
techniques in a free training phase of at most 10 minutes. Thereafter, they were given
four different tasks, which they had to solve with both the time slider and an appropriate
new technique in varying order. Finally, the participants answered a questionnaire to
rate their experiences on a 5-point Likert scale. The experiment took half an hour on
average per participant.

Qualitative Results — Figure 5.9 depicts the subjects’ responses to two questions:
"1 would prefer the technique to the time slider interface for the execution of the task”
(Figure 5.9a) and ”Rate your overall satisfaction with the technique” (Figure 5.9b).
Most subjects clearly preferred the direct techniques to the common time slider interface
(median 5), and perceived the overall satisfaction using these techniques as quite high
(median 4). Operation of the time buoy widget was also rated high: selection of an
existing buoy was rated easy (median 4) and connecting a buoy to the current trajectory
as very easy (median 5). All three operations of the drag box widget—defining a new
box, resizing one face, and moving the whole box—were all rated very easy (median
5). All techniques were also rated as very intuitive (median 5), and the subjects did
not state any problems learning the functions of the new techniques. No participant
reported any signs of sickness during the experiment.

5.6.3. Comparative Evaluation

For a detailed comparative evaluation, we selected the trajectory dragging technique. We
compared the trajectory dragging to the linear time slider commonly used in visualization
applications. Eight simulation scientists (2 female, 6 male) between 22 and 29 years of
age (mean 26.0) were recruited to compare the interaction techniques.

Procedure — After an introduction to the system, a free training phase of at most
10 minutes, and 5 test tasks, each participant conducted a total of 80 tasks using both
interaction techniques (independent variable) — 60 tasks for this study and 20 tasks for
another study [109]. The experiment took one hour on average per participant. These
60 tasks consisted of a equal mixture of search, maneuver and moving target tasks with
varying distances to travel. For both, search and maneuver tasks, the spatial target
to navigate to was non-moving. We defined maneuver tasks as navigation tasks with
a maximal distance of 10 % of the data set’s temporal resolution, and search tasks as
all tasks above 10 %. In mowing target tasks, the navigation target slowly moved on a
straight line in one direction. The latter tasks were included in this study to represent
user goals that incorporate interaction of moving visualization objects (e.g., ”When do
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these two vortices meet?”).

All tasks were space-centered, for instance ”Position a visualization object on a target
plane!”. In all tasks, the start and target positions of visualization objects were not
hidden by geometry, to prevent a disadvantage of the slider technique, which has no
occlusion management. Maximum duration for a task was set to 15 seconds.

Two values were measured for each task (dependent variables), the task performance
time in seconds, and the accuracy of the subject’s navigation. Accuracy is measured as
absolute error in the normalized time scale from 0 % to 100 %. The reported absolute
values are quite small, though it should be noted that an absolute error of 0.019 %
corresponds to one discrete time step. Tasks were carried out using a within-subjects
design, the order of execution for trials was varied using Latin squares. Independent
variables were interaction technique (time slider vs. trajectory dragging). Dependent
variables were task completion time and accuracy of executed task. Participants were
instructed to complete the tasks as fast and as accurately as possible. Hence, outliers in
the data above 15 seconds performance time and above 10 % absolute error were removed.
The observation of subjects during the study and recorded data suggest the assumption,
that these outliers result from erratic behavior of the subjects, that is performance time
outliers are coupled with high accuracy, while accuracy outliers are coupled with fast
performance times.

Two hypotheses were tested: users are both faster (HI) and more accurate (H2) with 3D
trajectory dragging compared to a time slider for space-centered search and maneuver
tasks.

Quantitative Results — We evaluated the task performance and accuracy data and
tested the hypotheses using paired Student’s t-tests. The results are depicted in Fig-
ure 5.10. Subjects were on average 25 % faster with the trajectory dragging than using
the time slider (p=0.01, t(7)=2.967). Concerning accuracy, subjects were on average
48 % more accurate when using direct trajectory dragging (p=0.019, t(7)=2.537). Thus,
we accept both hypotheses H1 and H2.

In the following, the recorded performance and accuracy data is evaluated in more detail.
Figure 5.11 shows a histogram of ocurred absolute error values. This histogramm clearly
shows that subjects using the trajectory dragging (b) frequently achieved very low error
rates (i.e., high accuracy). In contrast, the distribution of error values using the time
slider (a) is much more broader. Figure 5.11b shows, that accuracy outliers can occur in
the usage of the trajectory dragging technique (e.g., peaks at 2 % and 5 %), which shows
that there is room for improvement of the interaction technique. For task performance
data, the histogram shows no such obvious pattern.

Table 5.2 shows a comparison of performance and accuracy differentiated by the task’s
type (i.e., maneuver, search, and moving targets). Subjects performed maneuver tasks
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Figure 5.10.: Comparison of task performance and absolute task error for the time
slider and the trajectory dragging technique.

60 60

Frequency [%]
N w IS @
S 8 8 g
Frequency [%]
N w @
S 8 3

=
o
o

o

OJ”“J‘L“MMWMWWWN%HWWWMW—WWW DMMWWWWWWW%M

Q¥ 0% A A% Y 2 aY 5 Y 80 67 6° 6 o AT A% &Y & oY of ¢° O % AT A% Y a0 Y 5% WY 6Y 6 0¥ 6% AT A% 7 &0 oY o° ¢
Absolute Error [%] Absolute Error [%]
(a) Time slider (b) Trajectory dragging

Figure 5.11.: Histograms of recorded accuracy data (measured in absolute error) for
all subjects using (a) the time slider and (b) the trajectory dragging.

faster than both search tasks for fix and moving targets, that is subjects traveled faster
to closer targets. This was expectable, as target distance is often directly correlated
to task performance (e.g., Fitt’s Law). Using the trajectory dragging technique, users
performed worst (i.e., slow and inaccurate) in search tasks compared to maneuver tasks
and tasks with moving targets. This can be explained by the larger target distance, as
the worsening is in line with the time slider performance results. However, while using
the time slider for search tasks nearly doubles the average absolute error compared to
maneuver tasks, using the trajectory dragging the average absolut error increases by only
17 %, that is trajectory dragging allows for more accuracy even for distant targets.

While trajectory dragging beats the time slider in both performance and accuracy for all
three types of tasks, the difference is largest for tasks involving moving objects: Subjects
performed on average 31 % faster and 68 % more accurate using the direct manipulation
technique than using the slider when they had to travel to a changing target. From that
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Task performance Absolute error
Task Technique Mean  Std.dev. Mean  Std.dev.

Overall Time slider 5.85 s 2.38 s 1.258 % 0.489 %
Traj. dragging 4.37 s 1.1s 0.642 % 0.402 %

Maneuver Time slider 4.61 s 2.25 s 0.897 % 0.207 %
Traj. dragging 3.41s 0.79 s 0.502 % 0.199 %

Search Time slider 7.03 s 3.78 s 1.77 % 0.702 %
Traj. dragging 5.48s  1.45s 0579 % 0.214 %

Moving Time slider 726s  1.89s  1.292% 0.995 %
targets Traj. dragging 4.95s  094s 0402 % 0.404 %

Table 5.2.: Comparison of the trajectory dragging technique with a time slider interface
differentiated by task type. Measures are performance time and absolute error.

we conclude, that trajectory dragging is especially useful to navigate to events where
moving visualization objects interact with each other.

5.7. Summary and Discussion

We have presented a novel 3D user interface for time navigation in scientific visualization.
By directly interacting with the visualization objects, a user can move through time,
focus the animation interval, and insert spatial cues for wayfinding.

In the evaluation of this task-specific 3D user interface, simulation scientists rated it
intuitive and preferable to the commonly used time slider for space-centered tasks. A
more detailed evaluation of the trajectory dragging revealed that users were both faster
and more accurate using direct manipulation using the trajectory dragging for active
travel, in particular when traveling to moving targets. The region query technique
received the highest ratings from all techniques, and was emphasized by single subjects
as especially useful. While users clearly preferred the trajectory dragging, reported
satisfaction for this technique showed a high variance. In addition, single users had
problems applying this technique to solve the given task, and outliers in the accuracy
performance occured. For these reasons, we identified this technique as a focus of future
improvements and research.

While most subjects preferred the new spatial techniques, some subjects made clear that
they would like to use it in combination with the time slider. This affirms the initial
design goal, that this interface is meant to augment, not replace the common time slider
interface.
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One limitation of our approach is, that not all visualizations of scientific data sets possess
objects with extracted trajectories (e.g., as only the color on a fixed object changes).
However, from the obtained results, we conclude that augmenting the traditional time
slider interface with a more direct 3D interface for temporal navigation provides a clear
benefit for the analysis of time-varying scientific data.

Due to the positive feedback and good results of the direct manipulation techniques, we
plan to port this 3D user interface to a non-VR desktop workplace. The renunciation
of stereoscopy and the application of a 2D input device like a mouse will require major
changes and a new evaluation of the interaction techniques. However, if successful, this
will provide a major benefit for domain scientists analyzing their data in daily work.
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CHAPTER 6

IMPORTANCE-BASED TEMPORAL
SUBSAMPLING

6.1. Introduction

Currently, the standard approach to visualize time-varying data still is to apply known
time-independent visualization techniques (cf. Chapter 2) to all time steps in order to
generate individual frames for a continuous animation. Especially for an interactive
exploration of the data, domain scientists often rely on a set of traditional visualization
techniques (e.g., cutplanes or glyph-representations) that are employed in this way.

However, the analysis of scientific data sets by application of time-independent visual-
ization techniques is hindered by the high temporal resolution of the target data sets
(the computation problem, see Chapter 1). Given only limited memory or processing
power, the user is restricted to select only a subset of the entire temporal resolution for
visualization. In addition, the straightforward rendering of a visualization comprising
all discrete time steps results in overly long animations or videos. Especially in an in-
teractive exploration scenario, where the scientist continuously varies parameters, the
examination of an animation running several minutes is not appropriate.

Therefore, using a subset of the available discrete data is inevitable. A common approach
is to use a uniform subsampling of the time-varying data. Though, this often does not
resolve temporal important parts of the data adequately, and at the same time resolves
less important parts with an unnecessary high resolution.
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The goal of this chapter is to compute a non-uniform sampling for a given temporal
resolution, which adapts itself to the temporal importance of time-varying data—i.e.,
more important data is resolved using a high temporal resolution, while less important
parts are shown with a minimal resolution only.

In order to distinguish different degrees of importance, we introduce the term temporal
importance and classify different concepts of importance (see Section 6.2). We will give
examples for different temporal importance functions which are obtained from exist-
ing visualization techniques as well as direct user input (see Section 6.3). Ultimately,
importance should be defined by the user in the context of the current analysis.

Multiple importance functions are necessary to highlight different aspects of a time-
varying process. As these functions are possibly conflicting with each other, we for-
mulate the problem of finding a sampling that optimizes all importance functions as a
multi-objective optimization problem. To solve this problem during an interactive explo-
ration, we propose a selection algorithm that chooses a temporal sampling from a set of
approximated optimal trade-off solutions (see Section 6.4). To compute these trade-off
solutions, we compare two stochastic algorithms—a simulated annealing and an evolu-
tionary algorithm for multi-objective optimization problems. The result of the presented
technique is a sampling for a given temporal resolution which is an (approximated) op-
timal trade-off between all specified importance functions. Finally, we evaluate our
method for three different real-world use cases, which exhibit different temporal char-
acteristics and therefore require different temporal importance functions (see Section
6.5).

We do not propose a new visualization technique, but a technique to select data as input
for other visualization algorithms during the analysis process. As we do not restrict
ourselves to specific visualization algorithms, the resulting temporal subsamplings can
be used as input data for all visualization algorithms operating on independent discrete
data. Therefore, one major benefit of the proposed technique is that it can be integrated
into existing visualization toolkits supporting time-varying data.

To summarize, the contributions of this chapter are:

e We propose a temporal importance model which integrates multiple notions of
importance, in particular user knowledge and known visualization techniques.

e Given a desired temporal resolution, we introduce a technique that computes a
non-uniform sampling of discrete time-varying data that approximates an optimal
solution for all given notions of importance.
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6.2. Temporal Importance

Scientific simulation data often comes in the form of discrete data defined at discrete time
instants of the simulated process. As stated in Section 3.3.2, we assume that simulation
data D consists of an ordered set D = {dy,...,d,_1} of discrete time steps. This set
forms the input for visualization computations. In this chapter, we ignore the structure
and size of the data contained in a time step d;.

We define a temporal sampling of D with temporal resolution k to be a set P of discrete
data P = {d,,,...,d; _,}. In our time model, this sampling is realized by an appropriate
time index frame of size k, which maps k time indices to the selected k time steps within
the complete n — 1 data items. That is, to exchange the temporal sampling only the re-
direction of time indices to time steps has to be changed. The desired size of a temporal
sampling mainly depends on the availability of limited resources (e.g., memory) and
acceptable response and animation duration times. Let Il be the set of all samplings
for a temporal resolution k. The maximum temporal resolution has a single sampling
P, ={dy,...,d,_1} comprising all available discrete data items, that is II,, = {P,}. We
define the minimum temporal resolution to be k = 1, as at least one data item must be
shown. Hence, it is obvious that |II;| = n. In general, the size of Il is |II;| = (}). For
reasonable values of k and n, finding the best sampling from this problem dimension is
a hard task.

In order to compute such a ”"best” sampling, we first define the term importance to
rank possible temporal samplings. As we deal with importance on a set of discrete time
instants only, we introduce the term temporal importance to distance ourselves from work
which deals with both importance in the temporal and spatial domain [19, 100, 101].

More formally, a temporal importance function I(P) : IIjpy — R maps an impor-
tance value to each temporal sampling. This importance value is used as a measure
how well a temporal sampling fulfills some notion of importance. An example for im-
portance functions are accumulated importance functions which are defined by a sum
over the importance values for each discrete time step, i.e., [(P) = Z?;ol I({d;;}) for
P = {d;,...,d;_,}. This property does not hold for every importance function, e.g.,
importance by joint entropy [101] (see Section 6.3.3).

However, defining temporal importance is not trivial. Different scientists have different
interests in their data, different parts of the data may exhibit more or less information,
and the choice of data subsets can influence the efficiency of the visualization system.
Therefore, we propose to classify the term temporal importance into three categories:

Interest This class contains all importance functions directly specified by the domain
scientist who is analyzing the data. This includes interest derived from task-
specific questions as well as domain knowledge or experience. Typically, interest
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is formulated in an imprecise way, e.g., by selecting time intervals, attribute value
ranges [5], spatial regions [19], temporal patterns [44] or combinations thereof.
Interest may change during the analysis session and is possibly frequently adapted
by the user.

Information Time-varying data contains different kinds of information. This data can
be automatically searched for regularity, irregularity or extrema, based both on
information theory [60, 101] or domain-based theory [82, 85]. While these patterns
are clearly describable, they need not exactly match the goal of the analysis process,
but may give useful hints. Information-based importance functions do not change
during the analysis session and are typically computed in a preprocessing step.

Interactivity Selecting certain time steps may be beneficial for the efficiency of the visu-
alization computation. For example, single time steps already residing in memory
are immediately available, required meta-structures are already built up or specific
time steps require less memory than others. While this does not provide the user
with more useful data, it can significantly improve the interactivity of the user’s ex-
ploration. Interactivity information needs to be provided by the used visualization
system and should be automatically collected.

These classes are not orthogonal, that is, a technique might belong to more than one
class. For instance, a feature tracking technique extracts features in an automatic pre-
process (information), but therefore requires an initial feature definition by the user
(interest).

For a given set of importance functions, a temporal sampling should equally optimize
all functions in this set. However, these three classes enable the user to prioritize cer-
tain notions of importance on a high level (e.g., ”I'm more interested in an interactive
work process” or "While precomputed information is helpful, I prioritize my specified
interest.” ), which we will take advantage of in Section 6.4.5. In the next section, we
introduce exemplary importance functions from all three classes.

6.3. Importance Functions

We devised a set of varying techniques to define importance functions, including exam-
ples from each of the three classes. This set is not meant to be complete and is open
for extension by problem-specific importance functions. However, the proposed tech-
niques are applicable to a wide range of domain problems. In addition, some of these
importance functions should give examples, how existing techniques from the visual-
ization community can be integrated into existing applications to influence a suitable
sampling.
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Following the taxonomy presented in Section 4.2, the specification of interest is an im-
plicit way to select a non-uniform resolution. Because interest-based importance func-
tions can be changed by the user during the analysis, we are going to briefly describe
user interfaces when we address interest-based importance functions. Please refer to Sec-
tion 4.3 to a discussion of advantages and disadvantages of certain 3D user interfaces.

6.3.1. Sketching Importance (/nterest)

A very direct way for the domain scientist to express temporal interest is to directly
draw a sketch of an importance curve. This technique is especially useful to express
unclear or imprecise interest of the user, which cannot be formulated in a stricter way
(e.g., "somewhere around this point in time”). In addition, it allows a fast expression
of the user’s mental representation of temporal importance. Figure 6.1 shows a remote
2D GUI (cf. Section 4.3.3) to sketch an importance curve. 3D GUIs are also possible,
but lack the haptic feedback and accuracy of a remote mobile device.

Figure 6.1.: The user directly sketches a temporal importance curve using a remote
mobile device.

6.3.2. Description Language (/nterest)

Inspired by the idea of Glatter et al. to describe temporal patterns by textual pattern
matching [44], we propose to offer the user a textual interface to describe interesting
temporal patterns and relationships. As we search for temporal patterns, only statistical
data (average, standard deviation, histograms, or extrema attributes) within a time step
or within a time-varying pre-extracted spatial region is regarded. The statistical data
is collected in a preprocessing step. Thus, we are able to apply a more expressive
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language such as Linear Temporal Logic (LTL) including future and past operators.
This language is mostly used in model checking; a formal definition of this logic was
given by Lichtenstein et al. [71].

LTL resembles first-order logic extended by temporal operators (the unary operations ”in
the next time instant” X and ”in the previous time instant” P, and the binary operations
“until” U and ”since” S). Other operators can be constructed from these, for instance
F¢ = truelU ¢ means "finally” or "eventually”. As in Glatter et al., multivariate queries
are evaluated at discrete points in time. However, in LTL, queries are not restricted to
range queries, but may consist of classical first-order logic propositions. For instance,
the query for the pattern "after a (possibly empty) period where relative change was
low (between -40% and 40%), the relative change rose above 40%” can be expressed by
7[-.4-.4]*T[.4-max]?*” in the textual language of Glatter et al. or by ”(r>-0.4 A r<0.4)
S (r>0.4)” in LTL.

To specify LTL formulas, we provide the user with a textual scripting language to avoid
the LTL notation which is unknown to most simulation scientists. As an example of this
scripting language, the LTL formula avg(attribute) > 15.0 A F'(max(attribute) > 30.0)
is denoted by

function example (data)
return (data:GetFieldByName ("attribute") :GetAverage () > 15.0)

and EVENTUALLY (data:GetFieldByName ("attribute") :GetMax()> 30.

end

Based on an LTL formula ¢ with future and past operators, we model an accumulated
importance function as follows. For each time step d; we compute the distance D(d;)
to the next time step d; with d; F ¢, where F is the satisfaction of an LTL formula.
These distances D(d;) are normalized to [0, 1]. Then, the importance value for this time
step is I(d;) = e *P(@)  This gives high importance values to time steps which satisfy
the formula (i.e., the value one). Using the exponential function, neighboring time steps
which may have led to the satisfaction are also included depending on the scaling factor

L.

To enter the LTL formula using the scripting language, a textual interface is required
(cf. Section 4.3.2). If the structure of the formula is determined, but only the values
of constants are changed, remote 2D or 3D GUIs can easily be used to modify these
values.
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6.3.3. Joint Entropy (/Information)

Wang et al. proposed to select time step samples which maximize conditional entropy
H(d;;|d;;_,) between neighboring time steps of a temporal sampling [101]. Entropy
H(X) is a measure of content of knowledge and therefore of the uncertainty of a random
variable X. When regarding a certain attribute of a time step (e.g., the temperature)
as a random variable, the conditional entropy H(d;,|d;,_,) determines the amount of
uncertainty about the time step’s data after the previous time step is known. We directly
integrate the approach of Wang and colleagues as a temporal importance function. For
a target resolution of size k, temporal importance of a sampling is given by the joint
entropy of the collection of samples [27, Chapter 2]:
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The idea behind this is to maximize the joint entropy of the chosen temporal sampling
for a certain data attribute. Conditional entropy is computed by the mutual information
between two time steps as described by Wang et al. [101]. For efficiency reasons, for each
attribute mutual information M (X;Y') between two time steps X and Y is computed
within a restricted time window instead of computing mutual information between all
time steps. We chose a time window of size three, which is the same value as used
by Wang et al. That is, for time step d; only mutual information values M (d;;Y") for
Y = di_3,...,di_1,di1,...,div3 are computed. Then, conditional entropy H(X|Y)
equals H(X|Y) = H(X) — M(X;Y), that is the uncertainty in X minus the mutual
information between both time steps.

This importance function is distinguished from other typical importance functions, as
temporal importance cannot be evaluated for a single discrete time step; here, it depends
on the previously chosen sample time steps.

6.3.4. Features (Interest + Information)

The temporal evolution of user-defined features can be tracked [79]. Certain events or
particular stages in the evolution of a feature can also be automatically detected (see,
e.g., Reinders et al. [82]). These events of a user-specified feature represent potentially
important points in time for the domain expert. Therefore, events can be used to
construct an importance function over the set of discrete time steps. Not only the event,
but also the temporal evolution leading to that event are of interest. Providing a higher
resolution around the time instant of the event facilitates an analysis of the causes which
have led to this event as well as what effects this event may have. Therefore, we model
the importance induced by feature events as the union of Gaussian importance functions,
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Feature graph

Importance

time

Figure 6.2.: Left: An importance function derived from a feature graph (using the
notation of Reinders et al. [82]). The blue feature path is selected. For each event
of this feature, a Gaussian curve is added to the importance function. The importance
function equals the sum over all curves. Right: The user selects a feature in an immersive
environment (courtesy of B. Hentschel [51]).

with one Gaussian for each event. The time instant of an event is positioned at the mean
value of the Gaussian curve. This results in a high importance value for each single event
and strongly decreasing importance for the event’s temporal vicinity (see Figure 6.2 left).
Modifying the standard deviation influences the size of this vicinity.

The definition of features as well as the selection of events of interest require a user
interface. We employ the interfaces for feature definition and feature analysis provided
by the work of B. Hentschel [51] (see Figure 6.2 right). The same importance function
can be used to resolve manually defined events, for instance time instants marked by a
scientist using a time buoy (see Section 5.4).

6.3.5. Cached Data (Interactivity)

As most data sets with a high temporal resolution exceed the amount of available main
memory, a visualization system has to constantly load discrete time step data from
secondary storage during the exploration process. Caching of once used data can sig-
nificantly shorten file I/O waiting times. However, if the selection of a new sampling
ignores the currently cached data, this new selection can result in a large number of
cache misses, which increase waiting times for the user. A simple importance function
to avoid cache misses therefore assigns a positive value to time steps residing in cache,
while non-cached data are assigned zero importance, resulting in a binary importance
function:

I(d;) =

1 if d; cached,
0 else.
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In Chapter 7, we describe a parallel computation system that makes use of such a time
step cache.

6.4. Subsampling Algorithm

Our main goal is to devise an algorithm which selects a (possibly) non-uniform sampling
of a given temporal resolution as input for other visualization techniques. A prerequisite
is a set of importance functions that has to be selected and defined by the user. The
last section has shown several examples for importance functions.

Based on this specification of temporal importance, a subsampling algorithm should
compute a sampling that maximizes all given importance functions. Besides computing
a good solution, the algorithm has to meet two additional requirements:

1. The algorithm needs to return a result within acceptable waiting times to support
an interactive exploration process [76]. That is, a new temporal sampling could
be meaningful whenever the user restricts (or widens) the time interval currently
under investigation (a target selection task, see Section 4.2) or focuses on other
attributes of the data—and therefore changes his interest (an implicit resolution
selection task, see Section 4.2). We suggest to compute a new sampling only on
explicit request by the user, as this changes the data currently under investigation.

2. The algorithm should produce results without the need of fine-tuning or too many
algorithm-specific parameters, as these parameters are not directly related to the
user’s task. This is required in the sense of Chen et al. for ”...reducing the burden
on users to acquire knowledge about complex visualization techniques” [24].

In order to fulfill these requirements, we propose an algorithm that first approximates
the set of all optimal trade-offs for a given set of objectives within a predetermined time
budget and then makes the final decision on the basis of these feasible trade-off solutions.
The rationale behind this is, that we enable the user to articulate preference for one of
the three importance classes in the final automatic decision step, but do not demand an
a-priori input to steer the algorithm.

In order to define trade-offs between solutions, we introduce basic terms of multi-
objective optimization (see Section 6.4.1). Following, we describe two different optimiza-
tion algorithms that compute a set of optimal trade-offs: the Multi-Objective Simulated
Annealing (MOSA) algorithm (see Section 6.4.2) and the extended Strength Pareto Evo-
lutionary Algorithm (SPEA2, see Section 6.4.3). Finally, we select a single solution from
this set (see Sections 6.4.5 and 6.4.6).
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In the following sections, we will use the term temporal sampling and solution inter-
changeably, as a temporal sampling is a solution we are searching for.

6.4.1. Multi-Objective Optimization

Because the semantics of importance may highly vary with respect to the underlying
analysis task, multiple importance functions can be combined to describe different as-
pects of what is important or interesting. Therefore, in this section, we formalize the
search for a temporal sampling that optimizes multiple importance functions as a multi-
objective optimization problem [31]. Multi-objective optimization problems are charac-
terized by multiple goals towards which to optimize. As these objectives are usually
competing, it is not always possible to locate a single solution which is better than all
other solutions.

Assume we have 7 objectives 0;(P),i = 0,...,7 — 1, which are temporal importance
functions. Without loss of generality, we assume all objectives are to be maximized
(minimization problems can be formulated as maximization problems by using inverse
or negative values). The multi-objective optimization problem may be expressed as

maximize o(P) = (0g(P), ..., 0,_1(P)).

In addition to a set of objectives, feasible solutions have to respect a set of constraints.
A constraint c¢ is given in terms of a function inequality ¢(P) < g for some threshold
value g. Equality constraints and strict inequality constraints are also possible.

In order to compare two possible solutions P and (), we define the dominance rela-
tion [31]. @ is dominated by P, written Q < P, if P is no worse for all objectives than
(@ and better for at least one objective:

Q<P& Vi=0,...,r—1: 0;(P) > 0;(Q)
ANTj 0<j<r—1: 0;(P)>0;(Q).

A solution P is called Pareto-optimal, if no other feasible solution dominates P. The
set of Pareto-optimal solutions is called the Pareto-front, which represents the optimal
trade-offs between competing solutions. As a consequence, the Pareto-front consists of
solutions that are mutually non-dominating.

A straightforward approach for multi-objective optimization is to optimize an aggregate

function f(P) = Y21_y w; - 0;(P), which weights each objective with a weight factor
w;. This approach has three major drawbacks. First, parts of the Pareto-front are
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inaccessible for fixed weights [29]. Second, this procedure results in a single solution only,
without knowledge about alternative trade-offs. Third, the weights require numerical
input by the user a-priori. However, the semantics of these weights are not intuitive,
because they affect the resulting solution only indirectly.

To this end, we examine two dominance-based algorithms to approximate the Pareto-
front in the following two sections: the Multi-Objective Simulated Annealing (MOSA)
algorithm (see Section 6.4.2) and the extended Strength Pareto Evolutionary Algorithm
(SPEA2, see Section 6.4.3). Both algorithms were chosen for the following four reasons.
First, both are iterative algorithms. That is, they can be stopped after a given time
budget and return a result (requirement 1). However, this result does not need to be
optimal. Second, they avoid fixed weight factors, as they use the dominance relation to
compare different objectives (requirement 2). Third, both require only a small number
of input parameters which can often be determined by best practice heuristics (require-
ment 2). Fourth, both algorithms perform well on standard multi-objective optimization
problems [93, 117].

6.4.2. Multi-Objective Simulated Annealing (MOSA)

Simulated annealing belongs to the class of stochastical algorithms. Essentially it is
an iterative search for improvements using a Metropolis method [66]. Given a current
solution, a possible solution for the next step is created by a slight random change to
the current solution. New solutions that are an improvement are always accepted. To
avoid premature termination in local optima, bad solutions are accepted with a certain
probability, which is continuously lowered during the process according to a so called
annealing schedule. This annealing process—which is inspired by the physical anneal-
ing of condensed matter—is steered by a Boltzman factor depending on a temperature
parameter 7.

To compute an approximated Pareto-front, we selected the multi-objective simulated
annealing algorithm MOSA [93] proposed by Smith and colleagues. The main differ-
ences between MOSA and the standard simulated annealing algorithm are the used
energy difference function and the applied perturbation function. In addition, as MOSA
tries to approximate the Pareto-front, a set of mutually non-dominating solutions is
maintained.

The dominance-based energy function proposed by Smith et al. [93] depends on the
difference in the number of solutions dominated by two solutions. Given the set of (yet)
mutually non-dominating solutions F', the current state x and a new state ', the sets
F:=FU{z}U{a'}, F, ={y € F | x < y} and F,, (analogous) are computed. F} is
the set of elements that dominate x. Now the energy difference between states x and '
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is 0B (x,2') = % ( — |F,

In the perturbation step, a single random position of the temporal sampling is chosen
and changed. While two main parameters are required to steer MOSA (i.e., the starting
temperature and epoch size for equal temperatures), Smith et al. provide heuristic-based
mechanisms to automatically adapt these parameters [93]. The starting solution is either
the uniform sampling of the required size or the previous sampling. The latter is useful,
if not all importance functions are changed at once, as a good starting solution results
in faster convergence. A simplified version of MOSA is depicted in Algorithm 1.

).

D

Algorithm 1 MOSA

1: init feasible starting solution x
2: set of non-dominated solutions F' := {}
3: initialize temperature T

4: while time not exceeded do
5. 2/ := perturb (z)

—SE(z,z)

6: if e 7 > random number(0,1) then
7: X =X

8: if ©x £z Vzée F then

9: F:={zeF|zAz}Ux

10: end if

11:  end if

12:  update T according to annealing schedule
13: end while

6.4.3. Multi-Objective Evolutionary Algorithm (SPEA2)

Evolutionary algorithms belong to a class of stochastical algorithms which try to simu-
late the process of natural evolution. Strongly simplified, a population P, of candidate
solutions (called individuals) is iteratively modified via selection according to a fitness
function and random variation of this selection.

Specifically, we chose the SPEA2 algorithm for multi-objective optimization [117]. Basic
properties of SPEA2 are a domination-based fitness function and an external archive A
with promising solutions to avoid loosing good solutions due to random effects. The
archive A collects the best solutions that occured during the run of the algorithm.

In each step 7, the fitness function F' first assigns each individual a strength value, which
is the number of individuals it dominates, i.e., strength S(z) = |[{z|z € P;UA; Az < x}].
Then, for each individual x fitness is computed by adding up the strength values of all
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Algorithm 2 SPEA2

. initialize starting population F,

archive of promising solutions A, := {}

: Ji=0

while time not exceeded do
assign fitness F'(z) Vo € P; U A;
fill A;4, according to low fitness values
P;1;1 := Variation ( Selection (A,41))
Jji=j+1

end while

N =

individuals which dominate z, i.e.,

Fiz)= > Sy

yEPjUAj Nx<y

Therefore, a high fitness value represents solutions which are dominated by many others,
and a fitness value of zero indicates a non-dominated solution. The new archive is formed
by filling it up with individuals with low fitness values.

Selection is done by binary tournament selection on the archive data only, that is the
population does not participate in mating. For the variation step, mutation of samplings
(i.e., changing a single entry) and recombination of two samplings (i.e., 1- and 2-point
crossover recombination) are chosen with different probabilities. Necessary parameters
for SPEA2 are the population and archive sizes, as well as probabilities for the single
variations. The starting population is filled by variation of both the uniform sampling
of the required size and the previous sampling. A simplified version of the SPEA2 main
loop is depicted in Algorithm 2.

6.4.4. Constraints

In addition to the objective functions as input for the optimization algorithms, several
constraints are also useful. As the optimization algorithms will select the more important
time steps, without further constraints, this results in a sampling where time steps with
high importance are covered very dense, while unimportant ones are not covered at all.
To maintain a certain degree of coverage, a minimal and maximal distance between time
steps should be enforced by means of constraints. However, as the exact value of these
constraints is often not important, they can be determined by a heuristic (e.g., 10% of
the number of time steps as the maximal distance and 0.1% as the minimal distance).
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Interest low J high
Information low o} high
Interactivity lowy J high

Figure 6.3.: 2D user interface to intuitively express preference for the categories in-
terest, information and interactivity. The slider positions control weight factors for all
importance functions that belong to the corresponding category.

6.4.5. Selecting a Trade-off Solution

Both algorithms return a set of mutually non-dominating solutions, which approximates
the Pareto-front. As only a single temporal sampling is required as solution, as a last
step, we have to select a single result from this set of trade-offs. As stated earlier,
leaving this decision a-posteriori is done to avoid the need for exact parametrization of
the algorithms a-priori.

To select a trade-off solution, we utilize the Weighted Metrics Method [31]. The aim of
the Weighted Metrics Method is to minimize the distance between the selected solution
in objective space and the ideal objective vector z*. This ideal objective vector z* =
(28,...,25_) is defined by z} = argmax o;, that is each component of this vector is the
corresponding maximum i-th objective value. Hence, z* defines which quality a solution
can possibly reach. In general, this ideal objective vector does not belong to a feasible
solution, as the objectives are conflicting. However, z* serves as a reference point in
objective space. Before selection, the objective space is normalized according to z* in
order to remove scaling effects of single objectives.

For a set of weights w; with w; > 0 for ¢ = 0,...,r — 1 and ZZ:& w; = 1, and the
ideal objective vector z*, we select from the approximated Pareto-front ¥ a solution P
using

r—1

argminpey Z w; - (25 — 0;(P))?

=0

The weights can be used to emphasize single objectives. A fair trade-off between all
objectives is selected by chosing all w; to be equal. For unequal weights, objective scores
with a higher weight have a stronger influence on the selection. The user can either
choose the weights directly or set a weight for each of the three categories interest, in-
formation and interactivity. The latter influences all importance functions associated
with the category. The benefit of this approach is a more abstract expression of pref-
erence. Figure 6.3 shows an exemplary 2D user interface to control these weights by
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manipulating preference between interest, information and interactivity. Here, weights
are chosen on an abstract "low - high” scale.

Because the decision weights are chosen a-posteriori, they do not influence the algo-
rithm directly. This is contrary to the a-priori weights utilized for a single aggregate
function (see Section 6.4.1), where the numerical input strongly influences the resulting
solution. In addition, for an already computed Pareto-front the user can interactively
modify weight factors and receive immediate feedback of the selected solution without
re-execution of the optimization algorithm.

6.4.6. Varying Resolution

aWw, W, )=0.26

100’ . 105

objective 2

k=100 =
k=101 =
k=102 =
k=105 =
k=107

0 objective 1 1

Figure 6.4.: An example for varying resolution. Depicted are approximated Pareto-
fronts for different temporal resolutions in objective space, spanned by two normalized
dimensionless objectives. In addition to the original resolution of k=100, approximated
Pareto-fronts Wy for k=101,102,105,107 were computed. For k=105, the average minimal
distance a(W1g0, U105) = 0.26 is shown, which corresponds to a gain of g(Wig9, U105) =
0.052.

The target resolution size often is not a strict constraint. That is, to the domain scientist
it is often not important, if for instance 102 instead of 100 discrete time steps are chosen.
The exception is a memory constraint which must not be exceeded. However, a slight
increase of resolution may result in a significant benefit.

In the case of the genetic algorithm, a first approach is to include a possible increase
of resolution in the mutation step. However, individuals with higher resolution quickly
dominate all other individuals, disposing all individuals with the orginally desired reso-
lution. Therefore, increasing resolution needs to be evaluated separately from the opti-
mization step. We propose the following approach: Whenever a sampling for a temporal
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resolution for size k is computed by the selection algorithm, samplings for resolutions
of size m > k are computed concurrently. The number of samplings that are computed
concurrently depends on the parallel computing resources available. To decide if a higher
resolution should be accepted instead of the desired resolution, we quantify the relative
gain of a high resolution as follows. Let d be the distance between two samplings P, ()
in objective space, that is

d(P,Q) = [[(0o(P), .., 0,-1(P))" = (00(Q),- .., 0r-1(Q))" |15-

To remove scaling effects of single objectives, this distance is measured in the normalized
objective space. Given two approximated Pareto-fronts ¥ C II, and © C II,,, the
average minimal distance a(V, ©) between ¥ and © is

a(V,0) = ﬁ " argmingeo(d(P, Q)).

Pev

For k < m, the relative gain from ¥ to © is given by the difference quotient

a(V,0)
g(¥,0) = p——
That is, the relative gain correlates the distance in objective space between two fronts
to their difference in resolution size. Now, a set of approximated Pareto-fronts is
maintained—either computed in a preprocess or a set of previously computed reso-
lutions during runtime— and the average gain g of this set is computed. To decide if an
alternative front © for a higher resolution is beneficial compared to the original front ¥,
g(V,0) > g is evaluated. The fundamental idea of this approach is to accept a higher
resolution only if the gained benefit is larger than the usually expected benefit from an
increase in resolution.

An example for this procedure is illustrated in Figure 6.4. For a desired size of k=100,
four alternatives with up to 7% more time steps are computed. An average relative gain
g = 0.08 is determined from a set of pre-computed Pareto-fronts from k=10 to k=800
(not shown here). This preprocess took approximately two minutes, because 20 Pareto-
fronts were computed with a time budget of five seconds. The described gain of k = 105
is too low to justify a raise in resolution; the front for £ = 101 provides a relatively high
gain g(Wyg0, U101) = 0.16 and is therefore an acceptable variation.

6.5. Results

We apply three use cases from different fields of research to evaluate the proposed method
(see Section 6.5.1). In order to analyze the proposed algorithm, we varied the input
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parameters time budget (see Section 6.5.2), target resolution size (see Section 6.5.3)
and choice of importance functions (see Section 6.5.4). For all three use cases, all other
parameters remained the same. The presented quantitative results are dimensionless
scores for the importance functions; an interpretation of these scores need not be given.
An exception is the score for the cached data importance function, which is equal to the
(average) number of cache hits scored by the chosen sampling.

The presented scores are averaged scores from 20 runs. As the used optimization algo-
rithms are stochastic, scores of single runs can vary. However, from our experiments, the
presented values capture the overall behavior of both stochastic algorithms. To obtain
comparable results, variation was avoided and only the uniform sampling was used as a
starting solution. Results were measured on a workstation equipped with an Intel Core
2 Quad processor at 2.83 GHz and 4 GB of main memory.

6.5.1. Use Cases

In order to evaluate the proposed method we present three use cases from different fields
of research. For each use case, a selection of task-specific importance functions from the
examples given in Section 6.3 was chosen. In addition, we show examples for optimized
samplings achieved with our approach (for a given target subsampling size k).

Nasal Airflow

In this section we discuss as the simulation of the unsteady flow of nasal respiration (see
Section C.1) a use case. The data set resolves a full respiration cycle, i.e., one inhalation
and exhalation period, with a high temporal resolution. For the analysis, the 2nd out
of 4 such cycles with a small overlap to the first and third cycle was chosen, resulting in
5000 discrete time steps and 132 GB of raw data.

For this visualization, we integrated three importance functions:

e The transitions between inhalation and exhalation were identified to be unsteady,
while the periods in between can be considered quasi-steady [57]. Therefore, time
steps with an average pressure value around p = 0.65 (dimensionless) showing this
transition are interesting. This fact is reflected by a formula ¢ =p > 0.95-pAp <
1.05 - p, where p is the static pressure (see Section 6.3.2).

e Interesting features in the data set are vortex structures that are defined by regions

of negative Ay [62]. These features were extracted and tracked in a preprocess. In
the analysis process, two vortices in the left part of the lower and upper turbinate
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Figure 6.5.: Importance functions and selected temporal samplings for the nasal airflow
data set.

MOSA
=

SPEA2

were selected. Events detected in these two features define a second importance
function (see Section 6.3.4). For each feature, the existing birth and death events
are close to one another and therefore add up to a single peak in the importance
function.

e In a preprocess, mutual information over static pressure was computed. Using
the method by Wang et al. [101], the third importance function is integrated to
favor temporal samplings with a high joint entropy. Figure 6.5 depicts mutual
information values for a time window of three (see Section 6.3.3).

A maximum distance between time steps of 300 and a minimum distance of 3 were used
as constraints. The importance functions along the time domain as well as exemplary
temporal samplings (k = 100) are shown in Figure 6.5.

Geothermal Reservoir Simulation

In this geothermal reservoir simulation, a planned deep geothermal installation is fore-
casted using a horizon of 100 years with a nearly weekly time resolution, which results in
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Figure 6.6.: Importance functions and selected temporal samplings for the geothermal
data set.

5000 time steps (see Section C.2). For this visualization, we integrated three importance
functions. The first two are based on discussions with the simulation scientists:

e The user directly sketches an importance curve. The domain scientist knew from
experience, that the system evolves according to the function drawn in Figure 6.6
(see Section 6.3.1).

e For a given monitor point in the simulation—that is, a spatial point within the
reservoir area—, the domain scientists are interested in time steps where the tem-
perature at this monitor point starts decreasing faster, after an initially slow de-
crease, as the cold water front from the injection well passes the monitor point.
This is formulated by an LTL formula ¥ = (AT nonitor < 71) A X (AT wonitor > 12),
where T' is temperature (see Section 6.3.2), T} is the threshold for slow decrease,
and T; is the threshold for fast decrease. Using this formula, the time steps at
which the cold water from the injection hole has reached the monitor point are
assigned higher importance.

e To enable an interactive analysis of the data, cached results should be re-used if

possible whenever a new sampling is computed. Therefore, the binary cached data
importance function is integrated (see Section 6.3.5). The cache was filled with 50
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Figure 6.7.: The first five time steps of a uniform (top) and a non-uniform sampling
(bottom) based on the user’s sketch for the first seven years of the geothermal data set.
Depicted is an isosurface of hydraulic head (a measure of water pressure differences),
colored by temperature. Red dashes on the timeline indicate samples. While the de-
picted contour does not change significantly from the second time step of the uniform
sampling onwards, the non-uniform sampling resolves the development of the contour
more accurately (non-uniform samples after the fifth are not shown here).

random time steps in the range from time step 500 to 1500.

A maximum distance between time steps of 500 and a minimum distance of 5 were used
as constraints. The importance functions along the time domain as well as exemplary
temporal samplings (k = 100) are shown in Figure 6.6. To show the benefit of a non-
uniform sampling, Figure 6.7 compares the results obtained by a non-uniform sampling
to the uniform sampling.

Ventricular Assist Device

The last use case is the visualization of the MicroMed DeBakey Ventricular Assist
Device® (see Section C.3). The used visualization shows 10,000 discrete time steps
for 50 rotations of the rotating impeller.

For this visualization, we integrated three importance functions that are based on dis-
cussions with the simulation scientists:

e The user directly sketches an importance curve. As high hemolysis is assumed

to occur due to rotary motion, the user manually marks the temporal residence
interval of the particle traces in the rotating geometry element (see Section 6.3.1).
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e Interesting parts in the time-varying particle traces are characterized by a high
rate of hemolysis. This function is given by a formula ¢ = AH > ¢, where AH is
the rate of hemolysis and ¢ a user-chosen threshold (see Section 6.3.2). While this
expression does not contain any temporal attributes, it is still a valid LTL formula.

e To correlate a possible effect for these regions of high hemolysis, a temporal pattern
describing time steps with high shear stress after which at later time (i.e., we apply
the "eventually” LTL-operator F') a high hemolysis rate follows is of interest. This
is formulated by an LTL formula ¢ = (¢ > ¢;) A F(AH > ¢), where o is shear
stress and ¢y, ¢y are some user-chosen thresholds (see Section 6.3.2).
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Figure 6.8.: Importance functions and selected temporal samplings for the blood pump
data set.

A maximum distance between time steps of 500 and a minimum distance of 20 were used
as constraints. The importance functions along the time domain as well as exemplary
temporal samplings (k = 100) are shown in Figure 6.8.

6.5.2. Time budget ¢

Both optimization algorithms can be stopped after an arbitrary runtime. While this
ensures a result after a certain waiting time, the retrieved result is possibly an inferior
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solution. To assess the effect of the given time budget on quality, we evaluated the
distance of the generated set of solutions W, after a predefined runtime ¢ to an assumed
global optimal solution ¥* in objective space.

As the optimal solutions for the three use cases are not known, we generated for each use
case an approximated Pareto-front W* that we assume to be near the global optimum
solution. Based on the assumption that the utilized optimization algorithms converge
after a certain runtime towards the optimal solution, we used the following two-step
algorithm to compute U*: First, we repeatedly executed both optimization algorithms
for 5 minutes and collected the resulting sets of solutions. Second, we extracted all
mutually non-dominating solutions from the union of these sets and inserted them into
a single set U*. We assume this set ¥* to be a good approximation of the global Pareto-
front.

In order to analyze the effect of the given time budget, both optimization algorithms
were executed for different runtimes from 100 ms to 5 seconds (i.e., 100 ms, 500 ms, 1 s,
2.5 s, 5 8). These runtimes were selected as they correspond to different categories of
acceptable HCI response times as defined by Miller [76]. For each single runtime ¢ and
each optimization algorithm, we computed 50 approximated Pareto-fronts and merged
these sets again into a single set ¥, of mutually non-dominating solutions. This was
done in order to combine results from multiple repetitions.

The distance of W, for a specific runtime to the assumed optimal solution U* was mea-
sured using the average minimal distance a(W,, ¥*). That is, a distance near to zero
corresponds to a near optimal solution set, while a larger distance corresponds to a less
optimal solution set. All measurements were generated for a fixed target subsampling
of size k = 100.

Table 6.1 shows the measured distances for all three use cases. The distance values are
normalized by the distance of the uniform solution and therefore represent the relative
improvement from the starting solution (value 1.0) to the optimal solution (value 0.0).
Starting with the uniform subsampling as a starting solution, both algorithms provide
improved results even after a short response time of 100 ms. However, while such
an interactive response time would be desirable, the distance to the assumed optimal
solution W* is still large (i.e., > 0.79).

Differences in convergence towards U* can be observed both regarding the optimization
algorithm (i.e., MOSA or SPEA2) as well as the use case. For the nasal airflow data set,
both algorithms converge fast to a good solution set, although MOSA does not improve
much after a runtime of 2.5 s. For the geothermal reservoir simulation, the computed
solutions improve slower than for the nasal airflow data set. After a runtime of 1 s, the
MOSA optimization does not improve significantly and in average even produces worse
results after 5 seconds than after 2.5 seconds. For the ventricular assist device, SPEA2
comes close to ¥* after 5 seconds, while MOSA converges much slower and covers only
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Use case Algorithm 0.1s 05s 1s 25s 55
uniform 1.0 1.0 10 1.0 1.0
Nasal airflow MOSA 0.88 0.5 024 0.19 0.19

SPEA2 0.79 031 0.22 0.07 0.03

uniform 1.0 1.0 1.0 1.0 1.0
Geothermal reservoir MOSA 096 0.81 0.65 0.64 0.66
SPEA2 094 0.7 056 0.31 0.16

uniform 1.0 1.0 1.0 1.0 1.0
Ventricular assist device MOSA 097 0.72 0.61 0.58 046
SPEA2 09 0.53 0.38 0.12 0.05

Table 6.1.: Average minimal distance of the resulting solution sets to an assumed
Pareto-front for varying time budgets. The shown distance values are normalized to the
distance of the uniform solution. Values closer to zero represent solution sets closer to
the assumed global optimum W*.

half the distance from the starting solution to the optimum solution front. The effect of
the slower convergence of MOSA compared to SPEA2 is also apparent in the exemplary
resolutions shown in Figures 6.5, 6.6 and 6.8. These exemplary results computed with a
time budget of 2.5 s show that when using MOSA, unimportant regions are still sampled
by multiple single time steps.

In summary, SPEA2 converges faster than MOSA to towards W*. For the selected target
resolution size k& = 100, good results are achieved within a time budget of 5 seconds.
The influence of the target resolution size on the result quality is analyzed in the next
section.

6.5.3. Subsampling Size &

The size k of a temporal resolution is chosen by the user based on available memory
or computing resources. To analyze the effect of k£ on the quality of the computed
samplings, we computed temporal resolutions using our selection algorithm for a fixed
time budget ¢t = 2 s and equal weights w; for the selection step. We chose a time budget
that is consistent with an acceptable waiting time for the user [76], which corresponds to
the typical interactive usage scenario (see Section 6.4). Measurements were carried out
for four different resolution sizes k£ = 50, 100, 250, 500. The reported scores are averages
from 20 runs.

Figure 6.9 shows the results of these measurements for all three use cases. From these
results, the following general observation can be made. First, both MOSA and SPEA2
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Figure 6.9.: Scores for selected solutions of the importance functions (columns) of all
three use cases (rows) using a uniform subsampling, MOSA, and SPEA2 for varying
subsampling sizes k. The legend is shown in the first chart.

Geothermal simulation

sco

Ventricular assist device

outperform the uniform subsampling. Using the proposed optimization approach, sim-
ilar or even higher scores can be achieved with significantly less time steps. As an
example, when regarding the nasal airflow’s pressure transition importance function,
SPEA2 scores a value of 38.85 with k = 100, while the uniform resolution needs 250
time steps to score a value of 36.65.

Second, for accumulated importance functions the SPEA2 optimization outperforms the
MOSA optimization scores. Only for the non-accumulated importance functions—i.e.,
the cached data importance function and the joint entropy function—MOSA mostly
outperforms SPEA2. This effect is marginal for the joint entropy function, but clearly
visible in the cached data function. This observation is explained by the locality of
changes made by both algorithms: MOSA applies only local changes (i.e., one time
step at a time), while SPEA2 uses in addition a crossover-recombination that mixes two
existing solutions. In particular for the binary cached data importance function, finding
single cached time steps is only possible with local changes.

Third, for a growing resolution size k the relative improvement to the uniform solution
decreases significantly. That is, the smaller the target size, the higher the improvement
to the starting solution after the fixed time budget of two seconds. In particular for the
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non-accumulated importance functions a relatively low performance for £ = 500 can be
observed. The latter effect originates from the higher number of decision variables to
be considered in the optimization algorithms, as each time step of the target resolution
represents a decision variable. To quantify this effect, we measured the time per iteration
of the optimization algorithms. For the SPEA2 algorithm this time increases for k£ = 100
from 8 ms (MOSA 0.04 ms) to 16 ms (MOSA 0.11 ms) for & = 500 (measured using the
geothermal reservoir use case). That is, due to the larger number of decision variables,
the time required for each iteration increases, which for a fixed time budget results
in lesser numbers of optimization iterations. Consequently, within the available time
budget the computed solutions are improved compared to the starting solution, but did
not converge long enough towards the optimum solution. Table 6.2 lists the average
minimal distances of the computed solutions for £ = 500 after 5 and 10 seconds to
the assumed optimal Pareto-front U* for this resolution. Even after 5 seconds, the
normalized distances to the optimal front are quite high, which indicates that additional
runtime is required to converge towards U*. Distances using the MOSA algorithm are
even worse, because MOSA is restricted to changing one decision variable at a time only.
This is a significant disadvantage for temporal resolutions that exhibit a high number
of decision variables.

Use case Algorithm 5s 10s
uniform 1.0 1.0
Nasal airflow MOSA 0.82 0.82

SPEA2 0.21 0.09

uniform 1.0 1.0
Geothermal simulation  MOSA 0.71 0.64
SPEA2 0.48 0.24

uniform 1.0 1.0
Ventricular assist device MOSA 0.83 0.8
SPEA2 0.57 0.36

Table 6.2.: Average minimal distance of the resulting solution sets to an assumed
Pareto-optimal front for £ = 500 and time budgets of 5 and 10 seconds. The shown
distance values are normalized to the distance of the uniform solution. Values closer to
zero represent, solution sets closer to the assumed global optimum W*.

6.5.4. Combination of Importance Functions

To analyze the influence of the choice from a given set of objectives, we selected the
nasal airflow data set. The importance functions defined in this use case are quite dis-
junct, that is they highlight different parts of the time-varying data (cp. Figure 6.5).
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Figure 6.10 shows the obtained scores for all three importance functions when the algo-
rithms optimized only a subset of the available objectives. Measurements were conducted
for a subsampling size £ = 100, a time budget t = 2 s, and equal weights w; for the
selection step. The reported scores are averages from 20 runs.
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Figure 6.10.: Scores for all three importance functions of the nasal airflow dataset
using a uniform subsampling, MOSA, and SPEA2. Only the importance functions that
are marked by an asterik * were optimized by the optimization algorithms. All other
values represented unoptimized scores. The legend is shown in the first chart.

One objective

The results show that an optimization of all three importance functions yields as ex-
pected score improvements for all three objectives. When optimizing only a subset,
unoptimized importance functions achieve similar or even lower scores compared to the
uniform subsampling. At the same time, discarding one or two objectives can result
in higher scores for the remaining importance functions (i.e., the importance functions
that are optimized), because solutions that exhibit low scores in the discarded objec-
tives are not dominated any more. An example in Figure 6.10 is the pressure transition
importance function. When optimized together with the vortex features objective or
the joint entropy objective, SPEA2 scores pressure transition values of 60.86 or 55.24,
respectively. When optimized as a single objective, SPEA2 yields a score of 80.23.

Results for the other two use cases show the same tendency, but the scores do not differ
as noticable as using the nasal airflow data set.
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6.5.5. Discussion

The presented results show that the proposed approach—utilizing both MOSA and
SPEA2—generates samplings which adapt better to multiple objectives, i.e., it achieves
higher scores compared to the uniform subsampling. Expressed differently, similar scores
can be achieved by selecting a smaller number of time steps compared to a uniform
subsampling. Uniform sampling can by chance be a good choice for single objectives—
for instance joint entropy in cyclic phenomena, as seen in the nasal airflow use case.
However, in the majority of cases the uniform subsampling does not adequately resolve
important regions.

Both optimization algorithms adapt well even to non-accumulated or binary importance
functions. However, MOSA seems to have advantages for these special importance func-
tions and achieves better results than SPEA2. The reason is that MOSA manipulates the
current sampling only locally (i.e., one time step at a time), while SPEA2 in addition
uses crossover-recombination that mixes two samplings. For non-accumulated impor-
tance functions, using only local optimization is beneficial. Another advantage of the
MOSA algorithm is, that it has less parameters to tune than SPEA2, where population
sizes and variation probabilities need to be decided.

For accumulated importance functions, SPEA2 mostly reaches higher scores and con-
verges faster to a good solution. This is due to the larger variation in genetic algorithms
compared to the local changes in simulated annealing. We varied the existing parameters
of our SPEA2 implementation—i.e., population sizes and variation probabilities—but
did not find a significant effect on the resulting resolutions’ quality (results not shown
here). Therefore we argue that the higher number of parameters for SPEA2 compared
to MOSA is no crucial disadvantage. On account of the better overall results and faster
convergence, we recommend to use SPEA2 for optimization of importance functions.

However, we identified several limitations to the presented approach. First, due to
the stochastic nature of the optimization algorithms, good results are not guaranteed
within a bounded runtime. Inferior solutions are possible. Nevertheless, the results show
that even these inferior scores typically outperform the uniform solution. Second, the
runtimes of the optimization algorithms depend on the complexity of the importance
functions. If the user integrates a time-consuming importance function, this likely leads
to the computation of inferior results given a limited time budget. Therefore, com-
plex importance functions should be pre-computed if possible (e.g., as done with the
conditional entropy function).

Third, for a high target resolution size k result quality decreases significantly within
interactive response times. Even for a target resolution of size k£ = 500 that corresponds
to 10% of the nasal airflow’s or geothermal reservoir’s entire resolution or only 5% of
the blood pump’s, computation times beyond 5 seconds are required for good results.
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As a consequence, the computation of large temporal resolutions is not possible using
our approach with an immediate response time, but requires computation times of ten’s
of seconds. However, we argue that while an interactive response time is desirable, a
non-interactive response time needs not to be critical, depending on the frequency of
resolution selection tasks (cf. Section 4.2) in the analysis process. During the exploratory
analysis phase, temporal resolution is changed more frequently. Therefore we advise to
explore using a lower temporal resolution (i.e., from 50 up to 250 time steps). During the
search phase, hints for phenomena of interest are already found. We therefore assume
a less frequent changing of temporal resolution, in particular interest-based importance
functions. In particular when the user can proceed with other tasks (e.g., modifying
the shown visualizations in the focus phase) while a temporal resolution is computed, a
response time of above 15 seconds is acceptable [76]. In the focus phase, the investigated
temporal interval is restricted to the focused phenomenon. Here, a temporal resolution
of 50 to 250 time steps is often fully sufficient, as only a fraction of the entire temporal
data is shown. In summary, our approach can be applied in all three phases and we
expect severe restrictions in the search phase only. Still, a selection algorithm that
provides immediate response times with high-quality solutions is desirable and remains
a topic for future work.

Fourth, our approach is not scalable. Algorithm runtime depends on the target reso-
lution £ and not on the available temporal resolution. That is, the shown results and
limitations for fixed target resolutions will be comparable to results that we can achieve
when the large time-varying data consists of 10% or 10° time steps. However, for such
large data, the relative resolution of the target sampling decreases significantly, and com-
puting a resolution comprising 10% of the time steps—which corresponds to a target
resolution & = 10% or k = 105—will not be feasible within acceptable response times.
The significance of this drawback depends on the phenomenon under investigation. If
the phenomenon covers the entire temporal range and a very fine temporal resolution is
necessary to accurately depict the phenomenon, the temporal resolution our approach
computes within short response times will not be sufficient. On the other hand, if the
phenomenon is either temporally short or visible using a coarser resolution, the proposed
approach is still applicable for very large time-varying data.

Fifth, it remains an open problem how to choose importance functions to find a desired
phenomena. The selection algorithm optimizes only the specified objectives. Whether a
phenomenon is resolved by the resulting temporal resolution in a suffient way depends
on the user’s choice and parametrization of the used importance functions. In addition,
our algorithm just selects discrete time steps. Describing and finding the investigated
phenomenon within these time steps by a suitable visualization algorithm is still the
main task of the scientist analyzing data. Therefore, it is hard to evaluate how much
our technique, in general, supports the user in finding phenomena of interest.
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6.6. Summary

In this chapter, we have proposed a technique to select a suitable temporal sampling
for a set of different importance functions. This selection algorithm can be used to exe-
cute resolution selection tasks by an implicit definition of importance (see Section 4.2).
By supporting different notions of importance, a combination of user interest, domain
knowledge, automatic information extraction and interactivity requirements can be in-
tegrated into this process. We have shown examples for possible importance functions
from these domains, and used them in combination in three use cases.

To compute a temporal sampling, we have proposed a selection algorithm that tries to
find an optimal trade-off between all given importance functions. We have evaluated and
have compared two stochastical algorithms to compute the set of approximated optimal
trade-off solutions, MOSA and SPEA2. The manipulation of decision weights—even in
an abstract way—enables the user to select solutions along the computed Pareto-front
that suits his preferences.

Our technique is applicable in an interactive exploration process and tries to reduce the
amount of necessary parameters. In addition, it can easily be integrated in existing
visualizations that operate on independent discrete time steps. The limitations of our
approach have been discussed and significantly depend on the user’s analysis behavior as
well as the phenomenon under investigation. The use cases have shown, that an adapted
temporal sampling is superior to a uniform sampling, but particularly so when multiple
objectives need to be optimized. By using our selection algorithm, the necessary compu-
tational load to compute visualizations can be significantly decreased, while remaining
important temporal regions of the time-varying data.
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CHAPTER 7

A PARALLEL SYSTEM FOR COMPUTATION
OF TIME-VARYING VISUALIZATIONS

7.1. Introduction

The computational problem described in Chapter 1 states that the visualization of large
time-varying data causes a huge computational load, because visualization data has to be
computed for each single time step. The subsampling algorithm proposed in the previous
chapter helps to lessen this computational load by reducing the number of time steps
for which visualization computations have to be executed. However, to achieve a good
subsampling, a significant number of time steps is still required. Even if the phenomenon
of interest can be resolved at 5% or 10% of the data set’s temporal resolution, for large
time-varying data this still amounts to hundreds of time steps.

To compute time-independent visualizations on this reduced resolution within acceptable
waiting times, the remaining computational load has to be dealt with. To this end,
this chapter describes a parallel system which facilitates efficient computation of time-
independent visualizations. We exploit the scalability enabled by parallel computing
as an effective countermeasure against the increasing temporal resolution of simulation
data. In the following, we are going to use the term wvisualization to denote any kind
of visualization primitive or geometric data that are produced during the visualization
process and are used as input for rendering. Thus, we neglect the rendering part of
visualization, which is not handled by the parallel system described here. However, this
restriction enables us to use the brief term ”compute a visualization” to describe the
computational part of visualization (i.e., data loading, filtering, and mapping).
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In order to parallelize the visualization of large time-varying data, the computation has
to be decomposed into a collection of subtasks. Two fundamental approaches for this
decomposition exist: decomposition of the set of time steps into subtasks or decompo-
sition of each single time step. The latter approach is appropriate if the computation
can be sped up to an interactive runtime, that is, parameter changes by the user update
the shown visualization within 100 ms [18] or faster. However, the efficient decomposi-
tion of a set of discrete time steps into subtasks requires knowledge about the specific
visualization algorithm, because the individual subtask’s results have to be combined to
a valid overall result for the discrete time step data. Because our goal is to compute
general, time-independent visualizations, this approach is not applicable. The former
approach—i.e., decomposition of the set of time steps into subtasks—is applicable for
general time-independent visualizations as the subtasks’ results are independently com-
bined in the animation. For this reason, we regard single time steps as subtasks of our
parallelization. It has to be noted though that parallel computation of a single time
step in addition to the time-independent decomposition—for instance using thread-level
parallelization—can significantly improve the overall performance and should therefore
not be altogether ignored. Examples for such hybrid parallelizations are given in previous
work [42, 53, 54, 110].

This chapter is structured as follows. First, we give an overview of the Viracocha par-
allelization system [40] that provides the basic software framework (see Section 7.2).
Second, we describe in detail the enhancements we integrated into Viracocha that in
particular target time-independent visualizations (see Section 7.3). One of these en-
hancements is the possibility to vary the scheduling algorithm that distributes time
steps to processes. On this basis, the third part—=Section 7.4—discusses performance-
improving scheduling strategies as well as new scheduling strategies that incorporate the
task analysis elaborated in Section 4.2.

7.2. Viracocha Architecture

The Viracocha parallelization framework [40] was developed in order to speed-up compu-
tational fluid dynamics (CFD) post-processing, in particular for immersive visualization
within virtual environments. It follows the idea of the Distributed Virtual Windtun-
nel [17] to decouple rendering and computation. The reason for this is, that high ren-
dering performance and high computing performance—combined with large amounts of
memory—was (and typically still is) provided by different kinds of machines. Viracocha
is employed in a client-server paradigm, which is the dominating paradigm for parallel
visualization tools (see Section 2.5). The client part is provided by the ViSTA FlowLib
library [87]. ViSTA FlowLib contains methods and data structures for the analysis of
time-varying scientific data in virtual environments. The FlowLib client’s main purposes
are user interaction (e.g., time navigation) and rendering of visualization data.
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Figure 7.1.. Overview of the Viracocha architecture as described by Gerndt in
2006 [39].

An extensive description of the Viracocha system can be found in the PhD thesis of A.
Gerndt [39]. Here, we are going to briefly outline the existing Viracocha system, which
builds the technical starting point of this chapter. Important system-related terms are
summarized in Appendix A.

Figure 7.1 depicts an overview of the Viracocha architecture. A ViSTA FlowLib appli-
cation acts as a client. Using a high-level socket component (OSI application layer),
the client application sends visualization requests to Viracocha that acts as a computing
server. Each request typically comprises the description and parametrization of an algo-
rithm as well as the description of the algorithm’s input data. TCP/IP is employed as
low-level network protocol (OSI transport and network layers). The requests are received
by the central resource manager or scheduler process. This scheduler is a dedicated man-
agement process that communicates using the Message Passing Interface (MPI) with a
group of computing or worker processes. All requests are stored by the scheduler until
all computing processes specified by the client’s request are available. When enough
computing processes are idle, the scheduler assembles these processes into a work group
by creating an internal communication group within MPI. A request that is currently
handled is called a task, and each work group is designated to compute one task. In
order to manage this work group in a de-centralized way, the scheduler also creates a
task controller instance in its own process that is part of the work group. While this task
controller manages internal communication and state handling, the actual computation
is done on the worker nodes.

Each worker node creates an instance of the same command, which in turn implements
a parallel scheduling strategy, the actual visualization computation algorithm and a
data transmission strategy. This command is executed in a separate thread, which
enables the worker control flow to receive messages and to manage state handling. Each
task is decomposed into a collection of subtasks that can be distributed among the
available worker nodes. The typical sequence of operation is loading data, execution of a
visualization algorithm and transmission of the result data to the ViSTA FlowLib client.
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Two data transmission strategies are typically used in Viracocha, direct transmission
and the Master-Worker strategy [39]. The direct transmission strategy opens a TCP/IP
network connection and transmits the result data directly to the requesting client. The
Master-Worker strategy waits for the first worker to finish computation. This worker
node then collects result data from all worker nodes that finish later and transmits this
data using a single TCP/IP connection to the client.

Because Viracocha typically deals with large data, a data management layer was inte-
grated [40]. This data management layer primarily caches previously loaded data and
tries to prefetch future data requests. Several cache removal strategies and prefetching
strategies are available. Prefetching is implemented in a separate data management
thread, in order to overlap the loading operations with the algorithm execution in the
command thread.

7.3. Improving Computation of Time-Varying Visualizations

Due to its flexible structure, various parallel algorithms can be implemented using Vira-
cocha. In particular, multiple time-independent visualization algorithms have already
been realized based on the basic Viracocha as described in Section 7.2. These time-
independent problems are decomposed in a data parallel scheme where each time step
is a single subtask. The applied scheduling strategy is a static decomposition of the set
of all discrete time steps, which is either a decomposition into equally sized blocks or
a Round-Robin scheme. For each assigned discrete time step, the command loads the
necessary data, executes the visualization algorithm and uses a data transmission strat-
egy to return the computed result to the ViSTA FlowLib client. Because the results for
individual time steps can be computed independently, no interprocess-communication
to compute the visualization is necessary.

Although data parallel computation of independent time steps is conceptually trivial, in
practice a straightforward implementation as implemented in the basic version of Vira-
cocha has multiple drawbacks, which impede software development and performance. We
are going to detail these drawbacks in the following sections and introduce enhancements
that we integrated into Viracocha to remedy these shortcomings for time-independent
visualization tasks.

We separated the description of these improvements into performance-related improve-
ments and flexibility (software construction)-related improvements. The former are ben-
eficial for the visualization user—i.e., the simulation scientist who investigates data—,
while the latter ease code development for the visualization tool developer.
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7.3.1. Improving Performance

The major goal of using a parallel system is to improve performance [28]. In the context
of this thesis, we measure performance by the time taken to compute a certain visualiza-
tion request. In order to achieve high scalability, extra work due to the parallel system
architecture needs to be reduced. This includes the extra effort to initialize the parallel
system, to manage the processors, and to return results in a distributed system. We
identified three major causes for reduced performance when computing time-independent
visualizations using Viracocha: the overhead associated with the creation of a new task,
the overhead due to returning result data in the client-server architecture, and the vi-
sualization algorithm itself. In this section, we describe only the modification to the
existing worker process implementation that targets the first cause. Because the two
latter problems are technical problems and not relevant for the further reading, they are
addressed in Appendix B.2.

The major overhead for task creation and task modification is caused by the fact that
Viracocha’s commands are stateless [41]. This means Viracocha treats each request as
an independent computation that is unrelated to any previous request. Each incom-
ing request creates a new task and therefore new commands on each assigned worker.
In addition, the full information to describe a task is transmitted every time (e.g., a
complete data set description or a non-uniform sampling). If a request differs only in a
minor parameter change to a previous request (e.g., changing the iso-value for a contour
extraction command), this request causes unnecessary computational overhead to create
the work group and instantiate the necessary objects. Moreover, possibly mandatory
metadata like search structures have to be re-generated upon each request. This stateless
execution of commands leads to additional overhead that decreases overall performance
and in particular affects system responsiveness and request latency.

To remedy this shortcoming, we changed the underlying paradigm and transformed the
stateless commands into stateful commands. That is, each command is in a defined
state that determines the commands’ behavior. Four possible states are assigned to a
command: init, processing, wait_for_update and finished. A new command that is created
starts in the wnit state. In this state, object construction and initialization that needs to
be done only once is executed. When the initialization phase is completed, the command
starts processing the task. It stays in state processing as long as uncomputed subtasks
are available or the user explicitly stops the computation. Each worker processes its list
of time steps asynchronously—that is, subtask processing is not synchronized among
workers—, which increases performance. After all assigned time steps are computed, the
command changes into the state wait_for_update. In this state, the command can either
be finished or it receives a new request and returns to state processing. In state finished,
the command is deleted and the work group disbanded. Thereafter, a subsequent request
will again create a new work group and new commands.
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This enhancement of a command by execution states enables a certain degree of per-
sistence of a request. The loop introduced by the transition from wait_for_update back
to processing enables the reuse of initialized objects and metadata. The benefit gained
by stateful commands is based on the following assumption about user behavior: users
more often adjust a small set of parameters than change to a totally different set of
parameters or another visualization method. Several other visualization techniques are
also based on this observation, for instance Differential Time-Histogram Tables [113].

7.3.2. Improving Flexibility

For the integration of new time-independent visualization algorithms or the modifica-
tion of existing commands, we identified the existing command as a major flaw. The
combination of scheduling, visualization algorithm and data transmission into a single
command leads to code duplication. The same scheduling algorithm (e.g., Round-Robin
distribution) or transmission protocol (e.g., MasterWorker strategy) is implemented in
multiple commands, which only differ in the utilized visualization algorithm. Addi-
tionally, in order to change the scheduling algorithm or transmission protocol, a new
command with an identical visualization algorithm has to be created. This approach
leads to unnecessary programming effort and error-prone software maintenance.

To increase flexibility and enable code reuse, we separated the existing command into
exchangeable scheduling, visualization algorithm and data transmission modules (see
Figure 7.2). For the extracted scheduling module we chose a strategy design pattern [38]
to implement different instances—that is, different scheduling strategies—of this module.
A scheduling strategy communicates with the visualization algorithm using a task queue
that contains information about the discrete time steps that have to be computed. The
new scheduling component’s responsibility is to fill this task queue according to the
implemented scheduling behavior and the task description. In Section 7.4 we are going to
describe multiple scheduling strategies. Here, we directly exploit the restriction that only
time-independent visualization algorithm are considered. The visualization algorithm is
executed using the first element (i.e., the first time step) in the task queue as input data,
which is removed from the queue after computation. The execution is repeated until the
task queue is empty.

In order to realize the extracted data transmission module we chose not to use the same
strategy design pattern [38], but to decompose data transmission into smaller compo-
nents. The reason is that we identified several code fragments to occur in multiple
transmission modules, for instance merging and gathering of data or addition of meta-
data. To this end, we model the new data transmission strategy by a Datal.aViSTA
pipeline [8]. DataLaViSTA is a pipes-and-filters architecture that processes data in a
packet-based way in order to transform or aggregate this data. The basic idea of using
this architecture to define the data transmission strategy is to replace the strategy by a
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Figure 7.2.: Changed software structure of the Viracocha command: the scheduling,
visualization algorithm, and data transmission code fragments that were united in a
command (left) have been extracted into own modules (right). A task queue is employed
for communication between scheduling and visualization algorithm. The DataLaViSTA
pipes-and-filters architecture is employed to define transmission strategies. An arbitrary
data flow between the source component (light yellow) and the queue (blue) can be
defined. All data in the queue is transmitted by the sink component to the client.

modifiable pipeline description. This pipeline consists of reusable data transformation
filters (e.g., stamp data packets) and data aggregation filters (e.g., merge data packets).
Data is transported encapsulated in packets from a data producing source component
to a data consuming sink component, with arbitrary filters in-between. The advantage
of this procedure is that frequently occuring steps in the data transmission module are
isolated in filters and can be used in nearly arbitrary combination with other filters.

Figure 7.2 shows the new data transmission structure. The only pre-defined parts of
this pipeline are the data source (which is the interface to the visualization algorithm)
and a queue that finally collects all data packets that need to be sent to the client (after
their processing by the pipeline). Inbetween those two elements an arbitrary data flow
can be defined. The transmission itself is done by a data consuming sink, which actively
sends results to the client when result data is available in the queue. The function of
the data queue and in particular the data sink is going to be detailled in Appendix B.2.
An example to gather data in a single worker node using reusable filters is depicted in
Figure 7.3.

This separation of scheduling, visualization algorithm, and data transmission enables a
flexible combination of all three components. It eases the integration of new visualiza-
tion algorithms into Viracocha, as the visualization developer does not have to deal with
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Figure 7.3.: Example of a possible transmission strategy built from existing filters:
binary gather filters are arranged to gather data in a tree-wise fashion. All collected
data is modified in a time stamp filter, before it is passed on to the data queue. All
other worker nodes do not pass any data to their queue, because it is priorily re-routed
by the binary gather filters.

communication issues (i.e., task scheduling and data transmission). In the same man-
ner, a system developer can add new scheduling algorithms and transmission protocols
without modifying existing visualization algorithms.

7.4. Scheduling Strategies

The assignment of subtasks to processes is a fundamental part in the parallelization
of a computational problem. The primary performance goals of this assignment are to
reduce interprocess communication, to balance the workload and to reduce the managing
overhead for the assignment itself [28]. In the following text, we are going to use the
terms assignment and scheduling interchangeably.

For data parallel computation of independent time steps interprocess communication
between worker nodes is negligible. Therefore we focus on load balancing and overhead
characteristics of scheduling strategies only. Two basic categories of scheduling tech-
niques are distinguished: static and dynamic scheduling strategies. Static scheduling
strategies do not incur much managing overhead during runtime because their assign-
ment is predetermined. Dynamic scheduling adapts the task assignment at runtime and
is therefore able to react to unexpected load imbalance. This dynamic behavior comes
with the cost of higher managing overhead, as additional computation and communica-
tion is required to flexibly assign tasks.
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Figure 7.4.: Computation time for a contour visualization using the nasal airflow data
set, shown for each 20" time step. Two different requests are shown, a balanced and
an unbalanced request. Both requests differ in a single parameter, which describes the
iso-value for which a contour geometry is computed. The balanced task contains an iso-
value that is contained in all time steps and requires similar work on each discrete time
step—only single peaks in the distribution point to small imbalances. The unbalanced
task contains an iso-value that is only contained in a fraction of the time-varying data
set. In the latter case, no computation is necessary for a large amount of time steps,
which can lead to a significant load imbalance.

For certain tasks, static strategies generate a sufficiently good load balancing, but in
general they do not [28]. Because arbitrary visualization algorithms on arbitrary simu-
lation data can be executed using Viracocha, the work distribution in general often is
too unpredictable. Figure 7.4 shows an example of the load distribution among discrete
time steps for two different parameters of the same visualization technique. This exam-
ple illustrates that the amount of work generated by a request may significantly vary
even for small parameter changes.

In order to influence the computational order of subtasks when using a dynamic schedul-
ing, we utilize a non-preemptive priority scheme. The scheduling algorithm assigns a
priority rank to each subtask, and subtasks are arranged in order of their priority. How-
ever, unlike in many operating systems, incoming subtasks with higher priority do not
interrupt running lower priority computations (non-preemptive). In the following, we
are going to denote the rank of a subtask by the ranking function R (or prioritiza-
tion function). Subtasks with a low rank R are assigned before subtasks with a high
rank. Changing the computational order of subtasks is in certain cases useful to improve
performance (see Section 7.4.1). In addition, because computed results are directly dis-
played to the user in an interactive animation, by changing the order of subtasks we can
support the user’s current analysis goal (see Section 7.4.2). Based on the changes in the
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software structure described in Section 7.3, the described scheduling strategies can be
used in combination with arbitrary time-independent visualization algorithms.

7.4.1. Performance-Centered Scheduling

The primary goal of common scheduling strategies is to improve parallel performance,
in particular to reduce the overall computation time. The static scheduling assumes an
already load-balanced task distribution and avoids generating overhead, while dynamic
strategies try to improve performance by an improved load balancing that is adapted
during runtime. The static scheduling already available in Viracocha distributes equally
sized chunks to each worker node. That is, for n time steps and p processors, each worker

node is assigned a consecutive chunk of BJ time steps. The remainder is distributed

among the first processes. In addition to this existing static strategy, we integrated
several dynamic strategies into Viracocha, which are described in the following text.

Multiple strategies to implement a dynamic scheduling strategy are possible. Because a
dedicated task controller already manages a work group, we decided to utilize dynamic
scheduling strategies managed by a centralized unit [78]. Such a centralized unit that co-
ordinates workers has the disadvantage that every process accesses the same task queue,
which potentially causes worker nodes to contend for new subtasks. The alternative are
distributed queues—i.e., each worker has a task queue and ”steals” subtasks from other
workers to balance the computation. Though, a distributed coordination complicates
prioritization strategies such as we are going to introduce in the next section.

That is, our dynamic scheduling strategies operate in the following way: each worker
node that has currently no time steps to compute informs the central task controller.
The task controller assigns the requesting worker a list—called chunk [28]—of m time
steps to compute. After these m subtasks have been computed, the worker asks the task
controller for a new chunk of subtasks to compute. We call such a strategy a dynamic(m,)-
strategy. The choice of m is a trade-off between subtask granularity and generated
overhead. For instance, the dynamic(1)-strategy allows the most fine-grained assignment
of subtasks, but generates substantial overhead because communication between worker
and task controller is necessary for each subtask.

An approach to adapt the chunk size m during scheduling was proposed by Poly-
chronopoulos and Kuck [78]. As part of their guided self-scheduling strategy, they pro-
posed to decrease the amount of work that is assigned to workers continuously. That
is, while at the beginning larger chunks are distributed to the worker nodes, the last
subtasks are assigned in small chunks to achieve a better trade-off between overhead
and subtask granularity. The chunk size m is determined in each assignment step i by
the following operation. Let X; = n, where n is the number of time steps that make-up
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the task, and p the number of worker processes. Then m; = [X?-‘ . After each step i, the

number of remaining tasks X; 1 in the next step is decreased by the amount of assigned
tasks m;: X;41 = X; — m;. In the following, this strategy is denoted by dynamic(g),
where ¢ means guided scheduling.

For computation tasks that involve intensive file I/O, dynamic scheduling exhibits an-
other disadvantage. The Viracocha system’s data management caches once used data
in order to avoid recurring file I/O. Because Viracocha supports distributed memory
systems, the data management stores cached data locally at each process. By dynami-
cally assigning time steps to worker nodes, it is likely that in subsequent tasks the same
time step is assigned to different worker nodes, thereby negating the benefits of the
cache. Therefore, we propose to modify the dynamic(g)-scheduling strategy such that it
respects the cache’s content.

This is done by ranking each subtask according to the content of the distributed caches.
More specifically, when a new list of m subtasks has to be assigned to a worker node,
not the first m subtasks in the task queue are assigned, but a set of m subtasks with the
lowest rank values R. We assume that the task queue contains k subtasks d;,, ..., d
Then, the cache-aware ranking function R for worker w is given by

Tp—1"

J if requesting worker w has d;; in its cache,
R(w,d;;) = ¢ k if d;; is not cached at any worker,

k+1 if another worker v # w has d;; in its cache.

The information of the workers’ cache content is provided by the data management
system. Using this prioritization, first subtasks that require already cached data are
assigned to the requesting worker, and these subtasks remain in their original order in
the task queue. Thereafter, subtasks that require new data, which is not cached at any
other worker node, are chosen. Finally, subtasks that involve data already loaded by
other workers are assigned. This adapted strategy is denoted by dynamic (g,c), where ¢
means cache-prioritization.

An alternative of dynamic (g,c) is to prohibit the last case, that is a worker cannot
"steal” subtasks that require already loaded data from other worker nodes. While this
increases the processing time of such a subtask—because the scheduling will always wait
for a specific worker to be finished—it is beneficial if memory is limited or the data
specified by the subtasks is very I/O-expensive.

These variants of dynamic scheduling target reduction of the overall computation time.
While parallel computation time influences the user’s waiting time significantly, the order
in which subtasks are computed also affects perceived waiting times. In the next section,
we are going to introduce scheduling strategies that in particular target reduction of the
user’s waiting time.

R\NTH 115



CHAPTER 7. A PARALLEL SYSTEM FOR TIME-VARYING VISUALIZATIONS

7.4.2. User-Centered Scheduling

High overall performance is desirable because it decreases the user’s waiting time between
sending the request and receiving the entire result data. But, in this section we are going
to show that the user’s waiting time to answer an analysis question is not equivalent to
the time span required to compute the time-varying visualization.

For the computation of time-varying visualization data, the result data comprises a set
of discrete visualizations, each of which is valid for a single time step. When using the
direct transmission strategy, the resulting visualization for each discrete time step is
immediately sent to the client, that is partial results are already displayed to the user.
The ViSTA FlowLib client utilizes an interactive animation display representation of
the time-varying visualization (cp. Section 4.3.1). That is, at each point in time the
user sees the visualization of a single time step only. This implies that the waiting time
of the user depends on the order in which subtasks are computed. For example, if the
user had stopped the animation and the currently visible time step would be the last
one that is computed, the waiting time equals the overall computation time. If this time
step were computed first, waiting time would obviously be shorter independent of the
overall waiting time—of course, only if more than one time step is requested.

In general, in order to answer a specific analysis question, the user requires a set of
discrete visualization data that sufficiently describes the desired part of the simulation
data w.r.t. the analysis goal. Besides overall response time, we define a more abstract
type of waiting time: the user’s perceived waiting time. The perceived waiting time is
the time span between the time instant the user issues a visualization request and the
point in time the computed (potentially only partial) result is sufficient to decide if the
generated visualization answers the user’s problem. As an example, we describe the
following scenario:

An engineer searches for vortex structures in a time-varying simulation of
the flow around an aircraft. He adapts a single parameter s to visualize
vortex structures and first tries to find a suitable Ay value. Until such a
value is found, the engineer repeatedly requests visualizations for different
Ao values and each time investigates the time-varying visualization if the
chosen parameter clearly defines the vortex structures. Once such a value is
found, the engineer repeatedly observes the time-varying vortex structures
to identify regions of interest, while he will fine-tune the chosen parameter.
Eventually, he finds a vortex shedding, stops the animation, and analyzes
this phenomena with other visualization techniques in combination with ma-
neuver movements.

In this scenario, the user has three goals in a sequence: find a good A\, value, find
interesting regions by fine-tuning this value, and a detailed analysis of a single vortex.
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This scenario matches the task analysis described in Section 4.2. The user’s perceived
waiting time depends on the current analysis goal, which may change during the analysis
process—as demonstrated in the example. Under these assumptions, a scheduling that
reduces the time until a user can achieve his current goal is obviously superior to other
computation schedules. However, a computer cannot directly identify the user’s current
goal (sometimes, even users are unable to identify their goal) and it cannot decide if
a visualization is significant to answer a question. We therefore rely on an explicit
statement by the user about the current analysis goal. We introduce the term wuser-
centered scheduling for all scheduling strategies that incorporate the user’s analysis goals
w.r.t. temporal navigation.

Based on the task analysis elaborated in Section 4.2, in this section we propose three
scheduling strategies: overview, continuous visualization and local investigation. Each
strategy tries to reduce the perceived waiting time for a particular analysis goal that
is linked to some temporal interaction. These strategies are based on the dynamic(1)
strategy in order have a fine-granular control of the computational order. This allows to
adapt the strategies to changing user behavior during computation. Another conceptual
difference is, that these strategies do not rank time steps directly, but the corresponding
time indices. This is because the interactive animation displays time steps in the order
of their indices. A time step is assigned the lowest rank from all time indices that point
to this time step.

7.4.2.1. Overview Strategy

During the exploration phase (see Section 4.2), the goal of the investigating user is to get
an overview of the visualized simulation. One common behavior is to vary visualization
parameters and to observe the overall effect on the animated time-varying visualization.
That is, for each parameter change the user would like to quickly judge if the change
has a desired effect on the entire time-varying visualization.

We assume that the temporal sampling that describes the time-varying data already
resolves important regions sufficiently high, and unimportant regions are resolved only
coarsely. Hence, available importance definitions are not used to determine the com-
putational order. Rather we try to produce a fast overview of the given (possibly non-
uniform) sampling.

In order to support this user task, we subsample the shown time-varying visualization
using a decreasing sample rate. But, instead of subsampling the available discrete sam-
pling as done in Chapter 6, we sample the visible simulation time range. This results in
an equally distributed sampling along the visualized phenomenon instead of an equally
distributed sampling along the available time steps. In particular for a non-uniform
sampled temporal resolution this distinction makes a major difference.
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Let p be the number of available worker nodes. For a simulation interval of size As, we
start with a sample rate sy = 22 and sample continuously along the visible simulation
time interval. We chose a sample rate that is a multiple of the available number of
workers to obtain a good load balancing during the first steps. Now, in each step k, this
rate is decreased by sxy1 = %. We proceed using this algorithm until all time steps are
covered. The time steps corresponding to a sample position obtained by s; are collected

in the set Si. This algorithm is summarized in Algorithm 3.

Algorithm 3 Overview Ranking

Require: size of simulation time interval Se,q — Sstart = AS
Require: number of available worker nodes p
1: init sampling rate so = %

2: init k=0

3: while not all time steps covered do

4:  init sample position s = S0 + 5

5:  while s < s,,q do

6: add time step d = 7 0 §(s) to list S
7. end while

8 Spp1= 7

9: k=k+1

10: end while
11: return So, ..., Sk_1

Now, we apply a ranking function that evaluates the first sample rate at which a time
step d; was touched:

R(d;) = argmin,(d; € S;).

This consecutive sampling forms an order on all discrete time steps of the requested
temporal sampling. The idea is, that the sampling is subsequently refined until the
whole sampling is shown. Figure 7.5 illustrates the desired computing order. At any
point in time, the user can abort the computation and modify his request.

7.4.2.2. Continuous Visualization Strategy

During the search phase (see Section 4.2), a common goal is to analyze the dynamic char-
acteristics of a phenomenon that is possibly of interest. To investigate the time-varying
properties of the phenomenon, the user is interested in a continuous animation of the
time-varying visualization. During the animation, he will fine-tune or modify the visu-
alization’s parameter. Visible gaps in this animation—that is, time steps for which data
has yet to be computed while the animation passes the corresponding time interval—are
undesirable to convey the dynamic qualities of the time-varying visualization.
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Figure 7.5.: Exemplary sequence of the overview scheduling. Colored boxes represent
ranked time steps. The time interval is sampled using a decreasing sample rate, and time
steps are ranked according to the highest sample rate that touched them. The result is
an ordering that first coarsely samples the data (Sp), and then successively refines the
shown resolution (S; — S3), until all time steps are computed (S3).

In order to achieve this goal, two problems need to be solved:

1. How fast can the animation be displayed while continuously computing visualiza-
tion data, limited by the available parallel resources?

2. Which subtasks should be requested when?

Concerning the first question, we are going to examine the request and compute pro-
cesses using a simplified statistical model. To this end, we model the Viracocha system
as a queuing system with a single queue [26]. Queuing systems are characterized by an
arrival process, a service time distribution, the number of servers and the buffer size to
store requests. The arrival process describes how the interarrival times between two sub-
sequent requests are distributed; the service time distribution describes the distribution
of service times, analogously.

To model the arrival process, we describe the following process for this usage scenario:
the animation is running, we assume a uniformally distributed subsampling, and each
discrete time step is shown in the animation for ¢f,4m. seconds. This value ?,4me is not
to be mistaken with the rendering time for a single image. During a display time ¢ f,qme,
this time step’s visualization is typically rendered multiple times. Whenever a new time
step is shown, a new time step is requested from the server. That is, the interarrival rate

of requests is deterministic and is given by A = o L Requests comprise a single time

step only. The server needs in average f..m, to manage and compute each time step; the

service rate is given by y = ——. The service times t.n, for each individual time step

teom
are typically not deterministic but are influenced by task imbalance and system load.
However, here we assume deterministic service times—that is, each time step requires
teomp t0 be computed—for the sake of simplicity. Deterministic service times can be
safely assumed if all time steps require the same amount of time to compute (i.e., the
subtasks are balanced or each subtask is computed with a predefined time budget) and
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random system effects do not influence computation time significantly. We are going to
discuss the non-deterministic cases at the end of this section. The buffer size to store
requests is infinite, because the task queue’s size is not restricted.

Such a serial system can be described using Kendall’s notation [26] by a D/D/1 queue,
that is deterministic arrival, deterministic service, and a single service process. The task
queue’s content of a D/D/1 system constantly grows if A > p [118]. This is intuitive,
as requests arrive quicker than they are computed. In the case A < p, the system is
stable, as either currently a task is computed or the system is idle. This is equal to
t frame > teomp, that is the animation shows visualizations slower than the time required
to compute them.

The parallel Viracocha system can now be characterized using Kendall’s notation by a
D/D/p queue, that is deterministic arrival, deterministic service, and p worker nodes.
This queue is stable if A < pu (this also holds for A = pu in a special case that is not
discussed here) [118].

This model shows, that for a number of processors p and a computation rate of u = - L
comp
1

tframe

time steps per second, the animation rate A = time steps per seconds should be

chosen such that

When a user requests a visualization using the continuous visualization strategy, the
animation rate is adapted by the system to match this requirement (automatic speed
selection, see Section 4.2). Of course, if the current animation speed is sufficient to
provide a continuous visualization given the available resources, no adaption is neces-
sary. On the other hand, a too long animation time ?f,q4m. is unacceptable, because
the resulting animation is no longer perceived as a continuous process. According to
Bryson [16], data should change at least every % seconds. A low number of available
processors p and a long average computation time t.,m,, possibly result in a necessary
animation time ¢4/ that exceeds this threshold. In Wolter et. al. [108], we have pro-
posed to introduce an additional buffer time—a technique similar to buffering in video
streaming. By increasing the waiting time to the first visible result, the difference be-
tween animation and computation time can be reduced to a certain degree. However,
for a computation time of a minute or more, the sufficient amount of parallel resources
is typically not available and the necessary buffer is too long for interactive usage. In
this case, a meaningful continuous vsiualization cannot be provided. The only solution
to this problem is to reduce the computation time for each single subtask, for instance,
by hybrid parallelization [110].

The second question concerns the subtasks that should be requested at a specific point
in time during the animation. Beforehand, we introduce the function @* : U — P
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Figure 7.6.: Sketch of the continuous visualization strategy. The time step that be-
comes visible first, after the estimated computation time, is computed first. Subsequent
time steps are computed by and by.

that is defined by the concatenation of all mappings from user time to time steps:
u*(t) =108000u(t) (see Section 3.3). This function u* maps each specific user time to
the corresponding discrete time step.

Because in general ¢ ¢yqme < fcomp holds, a request issued at user time ¢ should not contain
the time step p = @*(¢). This is because the computation is finished at ¢ + fcomp, but
the time step is shown in the animation just until ¢ + ¢ frqme <t + Zcomp. The produced
data only becomes visible to the user in the next animation loop, which results in an
increased waiting time for this time step.

Therefore, the requested data at user time t should be chosen such that it becomes
immediately visible after ¢ + f.omp. For a request issued at ¢, the time step that is shown
at the arrival time of this request’s result is p = @*(t + fcomp). At the point in time
at which the result data is available, the animation has possibly shown a part of the
simulation time interval associated with p, therefore p is possibly visible shorter than
T frame- In order to present the result time for the entire available animation time ¢ f,qme,
the next time step p + 1 is requested instead of only p. This strategy is depicted in
Figure 7.6.

It should be noted that while this strategy results in a continuous animation, it does
not enable interactive parameter changes. A parameter change has consequences in the
animation after f..,, at the earliest. To enable interactive parameter changes in time-
varying data, we proposed dynamic region-of-interests (DROI) [106], which are based on
this continuous visualization scheduling strategy. Instead of computing the visualization,
the worker nodes compute a simplified region-of-interest that surrounds the user’s input
device and which position is predicted fom, into the future. The data for each time step
arrives before the animation shows this time step, and a visualization based on the user’s
input device (e.g., a cutplane) is computed interactively within the resampled region.
However, this technique is not analyzed in the context of this thesis.

The applied queuing model uses multiple simplifications. A deterministic arrival time
distribution is only a valid assumption for discrete time steps that possess uniform sim-
ulation time values. While this assumption is often correct, the service time distribution
is typically not deterministic. However, using the worst occuring computation time for
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tcomp Tesults in a pessimistic, but deterministic value. Another solution is to use time-
critical computation to keep the computation time on different time steps constant.
Non-deterministic effects from system randomness cannot be eliminated entirely, but
using an idle system reduces random side-effects from other jobs. In addition to a deter-
ministic computation time, the queuing model assumes that scheduling and parallelizing
costs no time, which does not hold in practice. Service time depends on the number of
workers, which should be incorporated by using the measured speed-up as k, and not the
number of available processors. And last, queuing theory describes the average system
state or the system’s state in equilibrium with £ — oo. In the Viracocha system, the
number of received requests is finite. However, for a large number of discrete time steps
we assume that these statements still hold.

In summary, the continuous visualization strategy tries to minimize the additional wait-
ing time between reception and display of a visualization. By automatic adaption of
animation speed based on the available number of worker nodes and prediction of future
result arrival times, this strategy enables a continuous animation of time-varying visu-
alizations. Queuing theory gives us a tool to determine the maximum animation rate
at which a given number of processors can continuously compute visualizations. Visible
gaps in the animation are avoided if the computation time estimations are correct. An
additional benefit of this scheduling technique is, that it does not depend on the number
of discrete time steps. It correlates computation and animation speed and is therefore
usable with an arbitrary number of time steps.

7.4.2.3. Local Investigation Strategy

dc

' T | T T T T T T
‘ ‘ ‘ +]|| ‘ ‘ ‘ animation direction >

Figure 7.7.: Priority of time steps when a user pauses the animation to investigate
a time step and its local neighborhood. The focussed time step obtains highest prior-
ity, neighboring time steps are assigned lower priorities. Time steps in line with the
animation direction receive higher priorities.

Once the domain scientist has found a phenomenon of interest, this temporally local
part of the data is analyzed in the focus phase (see Section 4.2). Maneuvering travel
interaction is generally applied to investigate a point in time or a short sequence in more
detail. That is, the user has stopped the animation to analyze the properties of each
single time step. If the user is also interested in the dynamics of that phenomenon, he
will examine the temporal environment around this time step by slow travel actions to
close targets (e.g., stepping forward or backward in time).
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In order to support this focused investigation on the time step d., we utilize the following
ranking function R:

R(d: ) = |di; — d.| if d;, is in the direction of animation,
Y \di; — do| + kasr  else.

with 0 < kg, < 1 to penalize time steps before the current time step d,. in the animation.
Whenever the animation is stopped, the current time step is assigned the highest priority
(i.e., lowest R). All other time steps are marked with a priority according to their
distance to d. (see Figure 7.7). Time step neighbours in the same direction as the
animation get a higher priority than neighbors in the opposite direction. This ensures
that more time steps are available in the direction of the animation when the animation
is resumed.

Two types of updates are relevant for this strategy: visualization parameter updates and
maneuver movements. When the user changes a visualization parameter that requires a
recomputation of the visualization, only the focussed time step and its neighborhood are
recomputed. The size of this neighborhood m is typically user-determined and depends
on the temporal extent of the phenomenon under investigation. As a default value we
propose to use a multiple of the number of available worker nodes, because this ensures a
good load balancing of the resulting request and exploits the available resources. When
the user executes a maneuver movement—that is, he steps single time steps forward or
backward in time—the currently visible time step is chosen as the focussed one. This
results in a computation of the current visualization for the time steps that are now
within the neighborhood radius m.

In summary, the time a user takes to examine a certain time step is used to compute
the temporal environment around that time step. The (scheduled) computational order
depends on the distance to the current focus time instant. When the user decides
to maneuver forwards or backwards in time, the appropriate data is likely available
depending on the time he spent analyzing the focused time step.

7.5. Results

The main goal of this chapter is to exploit the computational power provided by paral-
lel computing as an effective countermeasure against the increasing temporal resolution
of simulation data (see Section 7.1). Though, the achievable specific scalability signif-
icantly depends on the used visualization algorithm, the analyzed data set, and the
utilized parallel machine, which cannot be evaluated extensively in the context of this
thesis. Therefore, we follow a two-step approach: first, we present previous results that
have been achieved using the improved Viracocha system in Section 7.5.1. Second, in
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Sections 7.5.2 to 7.5.5 we use a single data set and the same visualization technique in
order to compare the characteristics of different approaches we have described.

The used data set is the nasal airflow simulation (see Section C.1). To obtain comparable
results, we apply the same visualization technique on this data set: a contour over a
certain iso-value ¢ was computed using VTK’s contour filter [89]; point normals on
the resulting geometry were determined using the vtkPolyDataNormals filter. In this
evaluation, two parameters of this visualization were varied: the requested iso-value ¢
and the size k of the temporal sampling. Concerning the former parameter, two distinct
iso-values to generate different computational tasks were used. A density contour of the
value ¢ = 0.92 generated a balanced computational load among all time steps, because
this value is contained in all time steps. That is, every time step required a comparable
amount of work with single exceptions only (see Figure 7.4). A pressure contour of value
c = 0.632 produced a highly unbalanced load distribution. This value was only contained
in about a third of the time span, which resulted in a reduced amount of work for two
thirds of the data (see Figure 7.4). While ¢ can be used to vary the subtask balance,
the sampling size k was used to vary the overall computational load.

The results presented in Sections 7.5.2 to 7.5.5 were measured on the same hardware
system. Both the Viracocha application and the ViSTA FlowLib client were executed
on a cluster of twelve Sun Ultra 40 M2 machines, each of which possesses two Dual Core
Opteron 2.6 GHz processors, 8 GB main memory, and an NVIDIA Quadro FX 5600
graphics card. All machines were connected using a dedicated 1 GBit Ethernet. Data
sets were stored on a file server equipped with a RAID-5 storage shared by all machines.
Twelve machines were available; one node is required for the client, one for the scheduler
process. Therefore, scalability measurements could be carried out with up to ten worker
nodes. We used one, two, four and eight processors for scalability measurements, because
this corresponds to the commonly shown double increase in resources.

We are going to use the following numbers to evaluate different aspects of the described
techniques. The overall runtime r,; is the time measured on the client system between
the issueing of the request and the reception of the last result that corresponds to this
request. The time until the first result arrives ;s is the time measured on the client
system between issueing the request and receiving the first result associated to this
request. This number gives an impression of the system’s update latency. The speedup
S for n worker nodes is the ratio of the running time on a single processor 7'(1) to the

running time 7'(n) on the parallel configuration. That is S(n) = % [32]. Similar,

parallel efficiency defined by E(n) = @ is a measure for the exploitation of the used
parallel processors.
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7.5.1. Previous Results

The improved parallel system as described in this thesis has been successfully applied
in a number of scientific visualization studies, whose results are reported here briefly.
In Hentschel et al. [53, 54|, we used Viracocha for brushing of time-varying data. We
measured the overall computation time as well as the computation time until the first
result arrived. Static scheduling was used, as all data was loaded beforehand into the
workers’ cache. A measurement on 48 time steps of an unstructured data set, which
consumes approximatedly 26 GB disk space, achieved parallel efficiencies of around 80%.
To further improve runtime as well as to reduce the waiting time until the first result
appears, we parallelized the selection algorithm using OpenMP (see Section B.2). Using
hybrid parallelization, the overall runtime r,; was reduced for this time-independent
visualization from 24 s using a single processor to 2.7 s using eight processors and
three threads. In another previous work, we have shown a similar parallel efficiency
of 73-81% with up to 64 worker nodes on an SMP machine with 72 processors with a
data set comprising 128 time steps (consuming 4 GB disk space) [108]. Here, overall
runtime of a contour visualization has been reduced from 1044 s (17 minutes 24 seconds)
using a single processor to 21 s using 64 processors. These results exemplarily show
that parallel computation is an effective means to reduce overall runtimes for time-
independent visualizations. In particular, overall runtimes can be reduced in a way that
they belong to a different class of tolerable waiting times as defined by Miller [76]. For
instance, waiting for 17 minutes inside a virtual environment is totally unacceptable,
while 21 seconds is acceptable if the user can turn to other activities in the meantime.
The same holds for a waiting time of 24 seconds, whereas 2.7 seconds is close to the
amount of time users wait for routine requests [76].

7.5.2. Performance-Decreasing Effects

Despite the straightforward parallelization for time-independent visualization techniques,
the measured parallel efficiencies were not optimal. Experience has shown that for com-
putation of time-independent visualizations, file I/O and result transmission to the client
are the most common bottlenecks [53, 54, 108]. Figure 7.8 shows the effects of file I/O
and result transmission for a specific visualization computation. Scalability was mea-
sured for the balanced request comprising £ = 250 time steps of the nasal airflow data
set using static scheduling. The figure shows that scalability is limited even with only
eight worker nodes if the command comprises file I/O, computation, and result trans-
mission. If we omit result transmission to the client (which is of course not possible
in our interactive usage scenario), scalability for computation + file I/O increases. Fi-
nally, omitting file I/O (which is made possible by Viracocha’s data management) gives
a further increase of scalability. For this parallel computation without file I/O and data
transmission, a nearly optimal speed-up was achieved.
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Figure 7.8.: The effect of file I/O and result transmission to the client on scalability.
Speedup was measured with a balanced request comprising £ = 250 time steps of the
nasal airflow data set. Omitting both file I/O and result transmission significantly
improves scalability, which identifies these two algorithm parts as bottlenecks.

Even though these results were obtained by an exemplary visualization computation,
they correspond to measurements obtained by previous work. As a result, although
decomposition of independent time steps is an embarrassingly parallel problem, file I/O
from a shared file system and result transmission to a shared receiver can be identified
as bottlenecks that decrease scalability.

7.5.3. Improving Performance

The performance gain by changing a stateless command into a stateful command de-
pends on the initialization costs of the utilized command. In order to exemplarily show
this effect for a specific command, we executed the balanced request with £ = 100 using
both a stateless and stateful command. Figure 7.9 compares the overall runtime 7,
as well as the time until the first result is received by the client r;5 for a parallel
computation using eight worker nodes. Results show averaged values over ten identical
requests. For the stateful command, the command was initialized before the measure-
ment. Initialization of the used command comprised only the construction of the VTK
pipeline, but no additional metadata. Data management was inactive, such that the
presented runtimes do not include caching effects.

The results show that in this measurement, the stateful command is overall 1.2 s (from
4.9st0 3.7 s, approx. 25%) faster than the stateless command, and the first result arrives
64 ms (from 300 ms to 236 ms, approx. 20%) earlier using the stateful command. Again,
these specific numbers are obtained by an exemplary visualization request. The general
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Figure 7.9.: Improvement of the Viracocha system by changing stateless commands
into stateful commands measured by the overall runtime and the time until the first
result is available.

performance gain significantly depends on the specific implementation of the used com-
mand. However, the results show exemplarily that by exploitation of similarity between
subsequent requests, a considerable performance improvement can be achieved.

7.5.4. Performance-Centered Scheduling Strategies

To evaluate the newly integrated dynamic scheduling strategies, we utilize the described
balanced and unbalanced requests using both £ = 100 and k£ = 250 time steps. Eight
worker nodes were employed to compute the requests. We measured the overall compu-
tation time until all results were received at the client. The shown values are averages
from 20 measurements. In these measurements, the cache provided by Viracocha’s data
management was not utilized in order not to measure any caching effects. The results
are shown in Figure 7.10.

For balanced requests, the static scheduling achieves good results. For small requests
(i.e., k = 100), dynamic (1)-scheduling beats static scheduling for the balanced request.
This is because even the balanced request is not fully balanced (see Figure 7.4), which
is exploited by the dynamic (1)-scheduling. However, for the larger request (i.e., k =
250), the overhead produced by the fine-granular dynamic (1)-strategy leads to inferior
runtimes. For unbalanced requests, the dynamic(1)-strategy clearly dominates all other
strategies, because the additional overhead is compensated by the improved load balance.
In both types of requests, the guided-scheduling provides similar results as the static
scheduling, with slightly better performance in the unbalanced case.

In the previous measurement, we disabled Viracocha’s data management to exclude
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Figure 7.10.: Performance data for multiple scheduling strategies without Viracocha’s
data management.

caching effects and thereby to maintain comparability. However, the data management’s
cache can significantly influence computation time and is commonly used in realistic
usage scenarios. Hence, we analyzed the cache’s efficiency with respect to the used
scheduling strategy and compared overall performance with cached data. To obtain
comparable results, we assumed sufficient memory to keep the whole request data in the
workers’ caches. We computed the request once without measuring in order to fill the
caches and then repeated the same request 20 times. Figure 7.11 shows the averaged
overall runtime with activated cache and the average cache hits as percentage of the
number of total requested time steps.
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Figure 7.11.: Performance data for multiple scheduling strategies with activated
caching. Left: Overall computation time for all time steps. Right: Cache hits in the
Viracocha data management system for subsequent requests on the same data.

If all data fits into caches, the static scheduling that always assigns the same subtasks to
the same workers achieves optimal cache efficiency (see Figure 7.11 right). In addition,
this results in improved overall runtimes using static scheduling even for the unbalanced
request, because the overall load is reduced. As expected, dynamic(1)-scheduling scores
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only a lower number of cache hits—approximately 70%—due to the dynamic assignment
of subtasks to different worker nodes and therefore different cache contents. While still
superior to other strategies for the unbalanced request, performance decreases signifi-
cantly for the balanced request. Here, overall runtime with activated caching is even
inferior compared to the overall runtime without caching. We explain this effect by a
reduced efficiency of harddisk and operating system caching, which could not be disabled
in these measurements. We substantiate this presumption by an increased average file
I/O time that was observed in the measurements with activated caching.

Dynamic (g)-scheduling assigns larger blocks of subtasks and therefore creates larger
overlaps between subsequent requests, which increases the average cache hits to 75-
80%. Nonetheless, the superior caching effects of the static scheduling result in slightly
inferior overall performance for dynamic (g)-scheduling compared to static scheduling.
By including the worker’s cache into the ranking of subtasks using the dynamic (g,c)-
strategy, the number of cache hits in subsequent requests can be increased to 95-98%.
However, in the balanced request this does not have a significant effect, because the
additional cache hits do not compensate the additional scheduling overhead. In the
unbalanced request the benefit of dynamic assignment is higher, which in combination
with a high number of cache hits reduces overall runtime below the time required using
a static scheduling.
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Figure 7.12.: Overall runtimes (left) and cache hits (right) for the blood pump data
set.

In order to analyze the techniques with a different ratio between scheduling time and
file I/O, Figure 7.12 shows the same measurement for a more I/O-intensive request.
This request includes the same visualization technique, but computed with £ = 100
time steps of the blood pump data set (see Section C.3). Caching was enabled for the
measurements. These data set’s time steps are five times larger on harddisk than the
nasal airflow simulation’s time steps, which results in longer file I/O times. Despite the
different 1/0O load, results are similar to the nasal airflow use case.
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7.5.5. User-Centered Scheduling Strategies

To evaluate the usefulness of the user-centered scheduling strategies, one needs to ver-
ify that these scheduling strategies decrease the user’s perceived waiting time. But,
to formulate a measurable hypothesis, such an evaluation requires a user study with
multiple domain-specific tasks in order to measure the achievement of defined analysis
goals. Besides several domain scientists as subjects, several suitable simulation data
sets are required to compare different analysis goals. Tasks have to be designed that do
not significantly depend on knowledge disparities between subjects. Because the design
and conduction of such a study would be extremely expensive, we decided to show only
directly measureable data. While this gives a good indication of the usefulness of the
proposed scheduling strategies, it does not fully replace the need of a comprehensive
user study.

To depict the obtained computational order for each scheduling strategy, we plot the
arrival time at the requesting client. More specifically, for each discrete time step the
plot shows a vertical greyscale line whose color depicts the arrival time.' Darker regions
corresponds to an early arrival time, while brighter regions depict late arrival times.
The resulting greyscale-charts show the entire arrival time distribution along the time
step frame. Because the proposed user-centered strategies are based on the dynamic
(1)-strategy, the same performance values as reported in the last section apply.

4000 4500 5000 5500 6000 6500 7000 7500 8000 8500
time step

Figure 7.13.: Arrival distribution with static scheduling. Darker time steps arrive
earlier than brighter ones.

Figure 7.13 shows the result arrival times for the static scheduling. From this greyscale-
chart, the decomposition of the discrete time steps among the worker nodes is apparent.
We utilized eight worker nodes, and each worker computes a contiguous set of time
steps from left to right. It is apparent that the arrival distribution is solely determined
by the applied computational strategy and does not take the user’s analysis goal into
consideration.

Overview Strategy

Figure 7.14 shows the result arrival times for an overview user-centered scheduling.
Arrival times are distributed over the temporal domain. In particular, the first results

L Greyscales were chosen to retain legibility in non-color print-outs.
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Figure 7.14.: Arrival distribution with overview scheduling. Darker time steps arrive
earlier than brighter ones.

that arrive (shown in black) are uniformally distributed among the simulation time
frame. A slight brightness shift to the right is noticeable, that is later time steps tend to
arrive later. This is explained by the growing size of the sets Sy with growing step number
k. As soon as S, is larger than the number of available worker nodes, a computation
order within Sy is enforced. Because we sample from left to right, this order passes on
to the computational order.

Continuous Visualization Strategy

4000 4500 5000 5500 6000 6500 7000 7500 8000 8500
time step

Figure 7.15.: Arrival distribution with continuous scheduling. Darker time steps arrive
earlier than brighter ones.

Figure 7.15 shows the result arrival times for a continuous user-centered scheduling.
Starting from the point in time the request started, the visualization is continuously
built up from left to right. To evaluate this strategy, we define two additional visibility
measures: waiting time to the first result and the number of visible gaps. The waiting
time for the first visible result Atﬁg;fay is the time span until the first feedback is pre-
sented to the user after a request. This includes the fastest time step’s computation time
as well as the time span between the time instant this result arrives and the point in time
it is shown in the animation. The number of visible gaps gy ;sine in the animation—that
is, the number of discrete time steps whose visualization result is not available when the
animation reaches this time step—is a measure for the continuity of the time-varying

visualization.

A direct comparison of these two visibility measures for ten repeated measurements of the
static scheduling and the continuous visualization scheduling are given in Table 7.1. In
each repetition, we varied the moment in visualization time at which the time-varying
visualization was requested randomized. These measurements were conducted using
eight worker nodes. Input parameters for the continuous visualization strategies were
the speed-up (without caching) depicted in Figure 7.8—which is used as number of
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service stations p — and the worst case computation time from Figure 7.4— which is
used as deterministic computation time fomp. Using these parameters, the continuous
visualization strategy adapted the animation time per time step ¢ f,qme to 0.12 s, that is,
8.3 time steps were shown per second. We employed the same animation speed during
display of the results obtained by the static scheduling.

While the static scheduling produced between 26-40 gaps during animation, the contin-
uous visualization scheduling did not produce any gaps. The high scatter of the number
of gaps using the static scheduling is explained by the fact that we varied the moment in
visualization time at which the time-varying visualization was requested. This resulted
in different starting points in the animation for each measurement, while the computa-
tional order for the static scheduling remained the same. Therefore, each time a different
number of gaps occured. The time instant the request is issued also affects the waiting
time to the first visible result. Depending on the user’s position in visualization time,
the time until the first result is visible to the user when using the static scheduling
varies significantly between 0.63 - 3.97 s, resulting in an average value of 2.39 s. By
employing the continuous visualization strategy, the first visible time step is predicted
and scheduled early, therefore the average waiting time is reduced to 0.3 s.

static continuous

Guisible ) 26‘40 0
avg. AtFmt 9309 g 0.3 s

display

Table 7.1.: Visibility measurements comparing the static and continuous visualization
strategies.

Local Investigation Strategy

—Q
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Figure 7.16.: Arrival distribution with local investigation scheduling for a small tem-
poral neighborhood of size m = p. Darker time steps arrive earlier than brighter ones.

Figure 7.16 shows the result arrival times for a local investigation user-centered schedul-
ing. Starting from the paused position d., results arrive in the neighborhood whose size
m equals the number of available processors p. While the utilized ranking function pri-
oritizes data from left-to-right in the animation direction and right-to-left in the other
direction, Figure 7.16 shows that time steps arrive in a different order. This is explained
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by the small request size. Because each worker node computes a single time step only,
the whole neighborhood is concurrently computed. Waiting times in the task queue due
to the order of the time steps do not occur. Therefore, the individual computation time
of each subtask strongly influences the corresponding result’s arrival time. For instance,
the leftmost subtask in the neighborhood that has been assigned to highest rank value
arrives earlier than results in the animation’s direction, because the individual compu-
tation time for this time step is faster than that of the other subtasks. Nonetheless,
because the visible time step d. is computed in the first distribution phase of the dy-
namic scheduling, the waiting time until a first result is visible is significantly reduced.
For larger m > p, the obtained arrival times show the desired behavior.

7.6. Summary and Discussion

In this chapter, we have presented a parallel system for computation of time-varying visu-
alizations. Based on the Viracocha framework, we have improved both software-technical
usage and performance for time-independent visualizations. We have discussed and
evaluated several dynamic scheduling strategies, one of which was particularly designed
to incorporate Viracocha’s data management. In addition to performance-optimizing
scheduling strategies, we have introduced user-centered scheduling techniques that sup-
port the user’s analysis goal.

The application of parallel computing to the computation of time-independent visual-
izations has shown to be an effective means to deal with time-varying data. Reported
previous work has shown, that overall runtimes can be reduced to a different tolerance
class of waiting times. In particular, for requests that take tens of seconds on a single
processor, an interactive workflow can be maintained using current compute clusters.
Nontheless, for large time-varying data a prior reduction of the data, either by subsam-
pling (see Chapter 6) or by focussing on a selected time interval (see Section 4.2), is
often inevitable.

While a good scalability can be achieved when computing time-independent visualiza-
tion in parallel, file I/O and result transmission remain bottlenecks. Viracocha’s data
management helps to reduce file I/O by caching and prefetching data. Because the vi-
sualization application is the single receiver for the concurrently produced result data, a
high-performance connection to the worker nodes is desirable to remedy this transmission
bottleneck. As an alternative solution, additional transmission channels to transport re-
sults concurrently to the visualization system could be employed. Such a scenario is, for
instance, useful if the visualization application does not run on a single machine, but
is executed on a distributed system itself—e.g., to drive a room-mounted display like a
CAVE or PowerWall. Then, result data can be transmitted to each visualization ma-
chine and put together into a complete animation on the visualization system, perhaps
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avoiding the single system bottleneck.

Regarding scheduling techniques, static scheduling performed well for balanced tasks,
in particular when required data was already cached. However, in realistic scenarios
the caches will not contain the entire data set, which leads to inferior performance of
static scheduling. Here, the dynamic (g,c) strategy provides a good comprimise between
dynamic balancing and cache efficiency. For unbalanced visualization tasks, dynamic(1)
scheduling was superior to all other techniques. Though, in general it is hard to decide
a-priori if a request will be unbalanced or balanced. For this reason, we consider the
guided scheduling techniques as a compromise solution for general tasks whose load
balance is not known beforehand.

The user-centered scheduling strategies represent a new characteristic of scheduling
strategies that is established by the specific use case of parallel computing within an
interactive environment. Instead of targeting high performance, these techniques target
a fast achievement of the user’s analysis goal. While the shown result arrivals intuitively
match to assumed user goals, these scheduling techniques are heuristic approaches. The
identification of the user’s current goal as well as the assessment of a shown visualiza-
tion w.r.t. the achievement of this goal are open problems. However, in our opinion,
including the user’s behavior directly in the computational process is an essential step
in order to analyze large time-varying data.
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CHAPTER 8

SUMMARY AND CONCLUSION

The goal of this thesis, as defined in Chapter 1, has been to address the interaction and
computation problems that occur when analyzing large time-varying data. We have not
proposed new visualization techniques to analyze scientific data. Instead, the techniques
we have introduced support the usage of available visualization techniques by providing
data structures, temporal travel techniques, reduced temporal samplings, or exploitation
of parallel resources. Our goal has not been to replace existing approaches, but to
augment them in order to enable an efficient analysis of large time-varying data.

In the scientific visualization community, visualization of large time-varying data, in
particular interaction with and the analysis process of such data, is a relatively new
topic. Consequently, besides focussing on our primary goals, this thesis fundamentally
contributes to this newly emerging topic by introducing several classifications and tax-
onomies to structure and classify multiple parts of the analysis process.

As a conceptual foundation to describe solutions to both interaction and computation
problems, we have introduced a time model to formalize the term time as it occurs in
scientific visualization. This model has enabled us to define necessary data structures in
order to manage large time-varying data. Modeling operations that allow reuse of data
and mixing of heterogeneous simulations have been presented. Interaction operations
that provide a formalism to describe user interaction on these data structures have been
proposed. To exemplarily show the gained advantages, we have described in detail two
complex visualization applications that significantly benefit from the realization of our
model. The introduced notation is also applied throughout this thesis, which has enabled
a precise description of temporal properties.

In order to address the interaction problem, we first have elaborated a task taxonomy
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that identifies and classifies user interaction with respect to time in the scientific data
analysis process. This taxonomy has enabled us to discuss possible user interfaces that
are applicable in a virtual environment. We have shown several exemplary user interfaces
that can be employed to navigate in time. In addition, the taxonomy exposed ”empty
spots” of temporal navigation subtasks, that is, temporal navigation tasks that are
typically not covered in scientific visualization toolkits. Based on this task taxonomy we
have proposed several novel direct manipulation techniques to solve temporal navigation
tasks. This includes, for instance, dragging a virtual object along its trajectory as
well as selecting a box-shaped region in order to show all active movements inside this
region. In a user study we have conducted, simulation scientists executed certain travel
tasks faster and more accurately by directly interacting in the spatial domain of the
simulation compared to using a common 2D user interface. In addition, the users’
subjective preferences clearly identified this direct manipulation interface as a viable
solution for the target user group.

To conclude the interaction problem, navigation in large time-varying data is eased by
a more intuitive interaction in the spatial domain that does not operate directly on the
highly resolved discrete time steps any more. Similarly, the implicit description of what
the user assesses important is an intuitive way to select a temporal resolution. In both
methods, our approach has been to remove the necessity to operate on the large number
of time steps directly and instead of enabling the user to formulate his goal independently
of the actual time steps (e.g., by using spatial input, temporal patterns or sketches).
Reducing the temporal resolution also contributes to the interaction problem, because
conventional temporal interaction techniques—e.g. a time slider—are again applicable
when the resolution is reduced to a few hundred time steps only.

To reduce the computational problem, we have followed a two-step approach. In the first
step, the high temporal resolution of large time-varying data is sampled down to a lower
resolution. In the second step, visualizations based on the down-sampled resolution are
computed using a parallel system, where discrete time steps are processed concurrently.
By incorporating user preference and experience in the sampling process, the coarser
resolution is non-uniformally adapted to resolve important temporal regions. The users
can describe their preferences for certain phenomena by a combination of importance
functions. We have shown multiple examples for these functions, which include hand-
drawn sketches, information theory, or temporal patterns of simulated attribute data.
Depending on the desired target resolution, our sampling algorithm computes within
acceptable waiting times a trade-off solution that satisfies multiple importance functions.
The evaluation has shown that our approach can achieve the same expressiveness of a
time-varying phenomenon—as defined by the importance functions—using significantly
less time steps compared to using a common uniform subsampling.

In order to manage this down-sampled temporal resolution, we have described the par-

allel computation system Viracocha that is connected as a compute backend to a virtual
environment. We have shown several improvements to concurrently compute time steps,
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which included technical aspects as well as algorithmic aspects. The improved Viracocha
system efficiently exploits available resources and is able to reduce overall runtimes to a
tolerable waiting time. In particular, for requests that take tens of seconds on a single
processor, an interactive workflow can be maintained using current compute clusters.
Furthermore, multiple scheduling strategies, which distribute independent time steps
to processes, have been developed and analyzed. A new class of scheduling strategies
has been introduced that takes the interactive usage scenario into consideration. The
proposed heuristics reorder compute tasks, such that the arrival of visible result data
is arranged in order to achieve certain analysis goals faster. We have shown results
that indicate that these user-centered scheduling strategies provide a further benefit for
interactive analysis of large time-varying data.

To conclude the computational problem, the desired quality of the temporal resolution
and the available parallel resources are the key factors that influence the degree of re-
duction of the computational problem. An arbitrarily large number of time steps can be
subsampled, but the desired target resolution influences both the subsampling time and
the resulting computation time to visualize the data. A scalable system that makes the
most of the available computing resources can reduce waiting time significantly. But
unless a huge amount of processors is available, a prior focussing on selected time steps
using subsampling or a focussing on a temporal interval by the user is still inevitable
to reduce the computational load. The user-centered scheduling strategies further con-
tribute to focus the available computational resources to the user’s current goal. While
faster visualization algorithms are still desirable to deal with large data, our approaches
provide at once a benefit for a large class of algorithms—that is, time-independent vi-
sualization algorithms.

The described techniques have all been realized in the ViSTA FlowLib visualization soft-
ware; the time model is even a core component of this software library. The technical
embedding into this Virtual Reality framework allows a straightforward use of the de-
veloped methods within a variety of virtual environments. This integration facilitates
an easy deployment of the developed techniques into other research projects based on
the same toolkit.

The introduced foundations open up multiple possibilities and problems that could be
topics of future research. Non-uniform approaches to speed selection and resolution
selection will be necessary in order to analyze large time-varying data in a reasonable
time. While some recent publications addressed these topics (e.g., mutual information
based resolution selection [101] or speed selection based on identified trends [112]), in
our opinion substantial research in this area is still required. Besides more effective
computing and interaction techniques, this includes investigation about perceptional
issues and comprehension of time-varying data. The latter topic is related to the question
of effective wayfinding techniques in the temporal domain, that is, ”How can the creation
of a mental map for complex time-varying processes be supported?”
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Besides these general aspects of interaction with time-varying data, our results have
shown that direct interaction approaches provide a major benefit for VR-based scientific
visualization setups. We believe that a similar desktop-based 3D user interface could
be a major improvement in the analysis of dynamic phenomena. However, the efficient
translation from a 3D input used inside an immersive scene to a desktop-setup remains
future work. In addition, other alterations than an object’s movements could be ex-
ploited to navigate in time, for instance, growing movements or alteration of an object’s
scalar attributes.

Regarding temporal resolution, the objective assessment of a sampling’s quality with
respect to the visualized phenomena has not been fully solved. In this thesis, we have
assessed the quality of a sampling by the distance to an assumed optimum in objective
space. Though, this rather technical measure does not reveal if the sampling was suffi-
cient to answer the user’s analysis question. Furthermore, while we have discussed the
design and evaluation of our subsampling approach with domain scientists, the selection
algorithm has not yet been evaluated in daily work. Such an application in real world
use cases may give useful hints to the assessment of temporal resolutions and might
allow a more detailed analysis of the select resolution subtask in temporal navigation.
In addition, while the proposed multi-objective optimization algorithms obtained good
results, the lack of scalability as well as runtimes of several seconds for larger target
resolutions impede the usage of our approach in certain cases. Improving the runtime
behavior by parallelizing the proposed algorithms or the application of a different op-
timization algorithm may avoid this problem. Such algorithms may even be able to
subsample future large time-varying data interactively.

A similar statement holds for interaction-based scheduling strategies. While we have
shown technical measurements and exemplary arrival behavior of result data, for the
assessment of a scheduling’s quality with respect to the analysis goal, user studies with
domain scientists are inevitable. But, such studies are hard to conduct because they
require a well thought-out design, careful selection of test data, and several voluntary
domain scientists. Nontheless, methodically observing the analysis behavior of domain
scientists when investigating time-varying data will provide convincing evaluation of
interaction-related and user-centered techniques and perhaps it will even point out areas
of future research.

To summarize, several interesting topics are left open, which create the need for future
research. Despite these open topics, in this thesis, we have elaborated and evaluated
techniques that provide feasible solutions to the interaction and computational problem
when working with large time-varying data.
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APPENDIX A

TERMINOLOGY

A.1. Overview of the Time Model

Continuous time frames
User time UcCRTt
| a(u) = 2=uo
Visualization time V =1[0,1] C R
D

. k k) - k k
Lo ® () = s, 00 (01) = 5L,
Simulation time S = [Sstarts Sena) C RT
l s §(Sstart) = iOa §(Send) = 7;m—l

Discrete time frames

Time indices I=(ig,...,im-1): 1; €Ny
l’z i — P
Time steps P=Apo,...,pn1}: pi € Ny

Table A.1.: Summary of the time frame notation with notation and numeric domain
of the five time frames and the corresponding mappings between time frames (denoted
with a hat).

As an additional constraint, the mapping ¢ has to respect the correlation between a time
step p; and the corresponding simulation time s;: (i) = p; = s; € §7(i).

In this thesis, we use the following shorthand notation: u* : U — P is defined by the
concatenation of all mappings from user time to time steps: @*(t) = 70500 ou(t). This
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function u* retrieves to a user time the corresponding time step.

A.2. Terms and Definitions

3D interaction Human-computer interaction in which the user’s tasks are performed
directly in a 3D spatial context [14].

interaction technique A method allowing a user to accomplish a task via a user inter-
face (UI). An interaction technique includes both hardware (input/output devices)
and software components. The interaction technique’s software component is re-
sponsible for mapping the information from the input device (or devices) into some
action within the system, and for mapping the output of the system to a form that
can be displayed by the output device (or devices) [14].

Model-View-Controller (MVC) is a design pattern [38], which is often applied to con-
struct user interfaces. This paradigm consists of three objects: model, view, and
controller. The model represents the application object, the view its visual repre-
sentation, and the controller determines the interaction with the model.

position control Interaction that maps user input directly to a position, that is, time
instant or time interval for temporal navigation.

rate control Interaction that maps user input to a movement rate, for instance, anima-
tion speed or stepsize for discrete movement.

request In Chapter 7, the visualization system sends requests for time-varying visual-
ization data to the Viracocha parallel system. A request comprises the description
and parametrization of a visualization algorithm as well as the description of the
algorithm’s input data.

subtask In Chapter 7, each task is decomposed into a collection of subtasks in order to
compute the task concurrently. In this thesis, we regard each discrete time step
that is processed by a time-independent visualization as a single subtask.

task In Chapter 7, a task represents a currently processed request from a visualization
system. A task is computed by a work group, which consists of a group of worker
nodes managed by a task controller.

time-dependent visualization algorithm Time-dependent visualization algorithms are al-

gorithms that require multiple time steps in order to work and introduce a depen-
dency between single time steps (see Section 2.1.1).
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time-independent visualization algorithm Time-independent visualization algorithms are
algorithms that process multiple time steps independently from each other (see
Section 2.1.2).

time-varying data In the context of scientific visualization, in time-varying data at least
one data attribute (e.g., scalar, vector or tensor) varies with time at a discrete
location. In flow simulation, such a flow is often called unsteady or transient flow.
Therefore, in this work, we will use the terms unsteady and transient synonymous
to time-varying.

user-centered scheduling A class of scheduling strategies that uses a ranking function
to decide the order of computation for a list of given time steps. Single time steps
are prioritized based on the user’s current analysis goal with the time-varying
visualization. Examples for these strategies are proposed in Section 7.4.2.

user interface (UI) The medium through which the communication between users and
computers take place. The UI translates a user’s actions and state (inputs) into
a representation the computer can understand and act upon, and it translates the
computer’s actions and state (outputs) into a representation the human user can
understand and act upon [56].

visualization In Chapter 7, we use the term wisualization to denote any kind of visu-
alization primitives or geometric data that are produced during the visualization
process and are used as input for the rendering step. In general, visualization is
often defined as a method of computing that transforms symbolic information into
geometric information [49].
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IMPLEMENTATION DETAILS

This section contains technical and implementation-specific details concerning the time
model (see Section B.1) and further improvements of the Viracocha system for computa-
tion of time-varying visualizations (see Section B.2). The details presented here are not
necessary to understand the corresponding concepts already described in the appropri-
ate chapters. But, they may ease the usage or re-implementation of several techniques
described in this thesis.

B.1. Time Model

The time model described in Chapter 3 is implemented by the ViSTA FlowLib li-
brary [87]. Because ViSTA FlowLib targets visualization of time-varying scientific data,
the described time model represents a core component of this library. The embedding
of the model into the FlowLib software was realized as described in the following sec-
tion: A central visualization controller manages all objects that need to be rendered.
Therefore, it maintains the current user time—using the computer’s system time—and
the current visualization time. Both user and visualization time are independent from
any specific simulation data and are therefore managed in this central component. In
order to ensure that at each point in visualization time the correct objects for this time
value are displayed, each time-varying object is linked to a time mapper. A time mapper
exists for each distinct simulation k£ and contains information about the simulation time
frame S the time indices I®), the time steps P*), and the mapping functions be-
tween those. Using this time mapper, the visualization controller can determine for each
object—which corresponds to a certain simulation—the correct discrete result data.
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The interface of the time mapper is depicted at the end of this section in Figure B.2.
The interface contains methods GetSimulationTime, GetTimelndex, and GetTimeStep,
which implement the necessary mapping functions §#,:®) 5*) for a specific simulation
k. To construct the time mapper, an implicit and an explicit mode are supported. The
explicit construction is done by specifying the set of n time indices {ig = (s4,,d;, ), 91 =
(Siysdiy)y- -y (8i,_,,di, )}, where each time index is described by the corresponding
time step and the midpoint of the corresponding simulation time interval. The implicit
constructor is a convenience method to construct uniform samplings with a fixed time
step stride and time steps that possess uniformally distributed simulation time values.

B.2. Improving Performance

As described in Section 7.3.1, we identified three major causes for serial overhead when
computing time-independent visualizations using Viracocha: the overhead associated
with the creation of a new task, the overhead due to returning result data in the client-
server architecture, and the visualization algorithm itself. The former problem has
already been discussed in Section 7.3.1. The latter problems require technical solutions
that are described in this appendix.

In order to reduce the time required for data transmission, which is necessary to return
data to the client, we overlapped this communication with computation [28]. Because we
separated the command and data transmission code fragments in the software model,
separating the corresponding control flows is straightforward. We implemented this
separation by applying a producer-consumer scheme with a single producer thread and
a single consumer thread. The DatalLaViSTA transmission strategy acts as a data
producer, that is, the visualization algorithm produces result data. This data is collected
in a shared queue (cf. Section 7.3.2) that synchronizes producer and consumer thread.
The data consumer is an active component that sends all data in the shared queue using
a TCP/IP connection to the client and sleeps whenever no result data is available. This
construction enables an overlapping of the computation task (data producer) and the
data transmission task (data consumer).

The optimization of the visualization algorithm itself cannot be realized by the Viracocha
system. Viracocha provides only interfaces (e.g., scheduling strategy, data transmission
strategy, or interprocess communication) that can be utilized in a visualization algo-
rithm’s implementation. Therefore, optimization of this algorithm is the task of the
visualization developer. With the growing availability of multicore computers, thread-
level parallelization has become an efficient way of optimization. Parallelization stan-
dards like OpenMP [11] simplify the development of parallel code. Such a parallelization
has to be part of the algorithm’s implementation and is therefore not discussed here.
However, Viracocha can support parallel visualization algorithms by provision of thread-
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Figure B.1.: UML-like sequence diagram of the worker’s control flow. Left: Three
threads (worker, command, data manager) operate in busy waiting mode. Right: Two
more threads are employed (i.e., messages and data transmission), but all five threads
operate in idle waiting mode reducing CPU time.

safe implementations of offered interfaces as well as by thrifty resource consumption of
the Viracocha system.

Because the improved Viracocha itself employs multiple threads to operate, thread-safety
has been taken care of. However, Viracocha employed a busy waiting scheme for several
threads (see Section 7.2). That is, to check if a condition is fulfilled (i.e., "has a message
arrived?” or ”is the command finished?”) the threads frequently evaluate the condition
(also called spinning). While this is a fine-grain access control, this spinning wastes pro-
cessor CPU cycles [32]. An alternative provided by most systems (e.g., POSIX threads)
are condition variables that enable a thread to wait for a Boolean predicate. While
waiting, the thread does not actively consume processor resources. Figure B.1 shows
the situation before (left) and after the changes (right) in an UML-like sequence dia-
gram. In the initial state, three threads were continuously active. To create well-defined
condition variables, the worker thread’s subtasks of receiving messages and data trans-
mission to the client were extracted into own components. By using condition variables
threads are only active when their particular task is required (e.g., receiving a message
for the messages thread or managing the worker state for the worker thread). Only the
command is continuously active while a task is computed. This deallocation of processor
resources enables a possibly higher speed-up for other thread-level parallelizations, as
available resource are allocated more thriftily.

In Wolter et al. [110], we used OpenMP to resample tetrahedral grids onto Cartesian
grids for efficient particle tracing on a GPU. We showed that this thread-level paralleliza-
tion scaled well up to 16 OpenMP threads within a Viracocha command. In Hentschel
at al. [53, 54], we employed OpenMP to speed-up point selection for brushing multi-
dimensional queries in virtual environments. We reduced the update latency—that is,
the time until the first result arrived—with a parallel efficiency of 83% with up to 8
OpenMP threads.
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class CVveTimeMapper

{
public:

class CImplicitTimings
{

public:
CImplicitTimings () ;
“"CImplicitTimings () ;

int m_iNumberOfIndices; /* number of time indices =*/

int m_iNumberOfSteps; /+* number of time steps =/

int m_iFirstStep; /+ number of the first time step */
int m_iStepStride; /+ stride of the time steps */

float m_fVisStart; /* start time (in visualization time) =/
float m_fVisEnd; /* end time (in visualization time) =x/
float m_fSimStart; /x start time (in simulation time) =%/
float m_fSimEnd; /* end time (in simulation time) =/

}i

CVveTimeMapper (const CImplicitTimings &oImplicitTimings);

/* every time index corresponds to one of these internal structuresx/
struct sExplicitIndexInfo

{

int m_iTimeStep; /* this is the number of this time step */

float m_fSimTime; /* the simulation time value for this time step */
bi

CVveTimeMapper (const std::vector<sExplicitIndexInfo> &oExplicitTimings);

/%%

* Returns the simulation time for the given visualization time.
*/

float GetSimulationTime (float fVisTime) ;

/%%
* Returns the time index for the given simulation time.
*/

int GetTimelIndex (float f£SimTime) ;

/%%

* Returns the time step for the given time index.
*/

int GetTimeStep (int iIndex);

}i
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DATA SETS

C.1. Nasal Airflow
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Figure C.1.: Geometry of the nasal cavity, colored by (dimensionless) density.

The human nasal cavity has to satisfy a variety of different functions. Besides respira-
tion it is responsible for moistening, tempering, and cleaning the air. Impaired nasal
respiration, in particular under normal breathing conditions, i.e., in everyday life situa-
tions, is a common and widespread disease, which makes nose surgery one of the most
often performed operations in the world. The main goal of the interdisciplinary project
underlying this work is to gain better insights into the complex flow inside the human
nasal cavity.

R\NTH 147



APPENDIX C. DATA SETS

The simulation of the unsteady flow of nasal respiration (see Figure C.1) is courtesy of
the Institute of Aerodynamics (AIA) at RWTH Aachen University. The simulation for
this flow field was performed on a multi-block grid, which was later converted into a
tetrahedral grid. The data set resolves a full respiration cycle, i.e., one inhalation and
exhalation period, with a high temporal resolution. For the analysis, the 2nd out of 4
such cycles with a small overlap to the first and third cycle was chosen, resulting in 5000
discrete time steps and 132 GB of raw data. Characteristics of the data set are listed in
Table C.1.

Nasal airflow statistics

vertices per time step 279,181
cells per time step 262,784
size on disk per time step 27.07 MB
time steps 5000

total size on disk 132.15 GB

Table C.1.: Statistics of the nasal airflow data set.

C.2. Geothermal Reservoir Simulation

Injection well

Production well temperature (°C)
84.7

69.8

54.9

40.0

Figure C.2.: Visualization of the geothermal data set. The contour shows a surface of
similar rock characteristics and is colored by temperature. The shown pathlines show
the movement of injected water. Hot water is produced, used for heating, and then
reinjected at lower temperatures. After several tens of years, this injected water reaches
the producer, heated by geothermal energy. Thus the production of warm water is
maintained.

In this geothermal reservoir simulation, a planned deep geothermal installation with one
hot water production well and one cold water injection well is projected (see Figure C.2).
Fluid flow and heat transport through porous rocks during the operation of the instal-
lation are simulated. The study presented here focuses on the prediction of reservoir
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temperatures and production behavior which is crucial for planning a deep geothermal
installation. The forecasting horizon is 100 years with a nearly weekly time resolution,
resulting in 5000 discrete time steps and approximately 55 GB of raw data. This regu-
lar grid data is courtesy of Geophysica Beratungsgesellschaft mbH and the Institute of
Applied Geophysics and Geothermal Energy. Details are listed in Table C.2.

Geothermal simulation statistics

vertices per time step 170,560
cells per time step 161,280
size on disk per time step 11.06 MB
time steps 5000
total size on disk 54.01 GB

Table C.2.: Statistics of the geothermal data set.

C.3. Ventricular Assist Device
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Figure C.3.: Geometry of the DeBakey blood pump. Blood flows from left to right
through the straightener, the rotating impeller, and the diffusor geometries. The device
is implanted to assist the left ventricle.

This use case is the visualization of the MicroMed DeBakey VAD® (Ventricular As-
sist Device). This data set was provided by the Chair for Computational Analysis of
Technical Systems (CATS). Ventricular assists devices help to bridge the waiting time
until a suitable heart transplant is available. The goal of this project is to analyze the
hematologic effect of hemolysis—that is, the release of hemoglobin of red blood cells due
to elevated stress—that can occur within an artifical blood pump.

The device consists of three components: the straightener, the diffusor, and the impeller,
as shown in Figure C.3. These components are integrated into a cylindrical casing, which
is not shown in the figure. The pump is used to transport blood at desired flow rates
between 2 and 5 1/min. For the simulation described in this section the impeller was
set to a constant rate of rotation of 7500 rpm, yielding a flow rate of 2 1/min. All other
parts of the geometry remain static.
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Empirical measurements show a mean velocity of about 0.4414 m/s which results in a
mean residence time of 0.288 s. Consequently, a portion of blood will be transported
from start to end in average in 36 full rotations. The used visualization shows 10,000
discrete time steps for 50 rotations of the rotating impeller. The rotation itself is cyclic,
i.e., 200 discrete time steps are sufficient to depict a single rotation. However, along
the full 10,000 time steps, 2,000 particle traces to evaluate the rate of hemolysis were
computed, resulting in 1 GB of raw data.

Details on the visualization of blood damage inside this simulated VAD can be found in
Hentschel et. al. [52]. Data set characteristics are listed in Table C.3.

Ventricular assist device statistics

vertices per time step 630,693
cells per time step 3,714,611
size on disk per time step 135.54 MB
time steps 200

total size on disk 26.47 GB

Table C.3.: Statistics of the Ventricular Assist Device data set.

C.4. Metal Forming Process Chain

This material science simulation does not consist of a single data set, but multiple data
sets generated by different simulation tools. Each tool simulates a different aspect of the
processed material. The tools are organized in a virtual process chain that exchanges
information about the entire material and its history between the various simulation
tools. Goal of this project is to simulate the final material properties after heteroge-
neous processing steps. This data set describes the complete simulation of a gear wheel
construction [105] and is courtesy of the Cluster of Excellence ”Integrative Production
Technology for High-Wage Countries”.

The virtual process chain comprises five processing steps that are depicted in Figure C.4.
Starting with an alloyed steel blank, an initial forming step (1) creates a gear wheel
shape. In the next three processing steps (2-4), this gear wheel is heated, formed,
and cooled again. Steps 2 and 3 are simulated both on a macroscopic level (overall
characteristics of the entire wheel) and a microscopic level (microstructure simulation of
a small region within the wheel). The heating, forming and cooling steps are repeated
several times to improve material properties (a so called annealing process). Finally, in
a last step (5), a ring component is laser welded to the processed gear wheel.

The metal forming process chain that describes the forming of a gear wheel consists of
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Figure C.4.: Overview of the virtual process chain to simulate the generation of a
gear wheel. Starting with a steel-alloy blank and after an initial forming process (1),
the workpiece is iteratively heated (2), formed (3) and cooled down (4) again. Finally,
a ring component is laser welded (5) to the work piece. The result is a completed gear
wheel.

a set of seven individual data sets. Each data set was simulated by a different simula-
tion tool. The result is not only a mixture of data sets with heterogeneous temporal
characteristics, but also multiple geometrical characteristics.

First, we list the five data sets that are used to simulate the process on the macroscopic
scale. The data set describing the first phase—i.e., the initial forming—represents only %
of the gear’s geometry due to spatial symmetry. The whole gear wheel can be generated
by rotation of this segment. The simulation data is currently under development, there-
fore only small data sets and a low temporal resolution were available (see Table C.4).
The forming, heat treatment and cooling phases utilize the same geometry and tem-
poral resolution, which is described in Table C.5. The used unstructured hexahedral
geometry represents the entire gear wheel because symmetry does not hold for all three
phases. While the different process steps utilize the same spatial and temporal reso-
lution, they differ in the simulated scalar attributes. The last step in the macroscopic
simulation is the laser welding phase. This data set comprises tetrahedral elements and
a high temporal resolution. The statistics of the laser welding data set are listed in
Table C.6.

In the microscopic simulation, both phases—i.e., forming and heat treatment—share the
same spatial and temporal structure like in the macroscopic simulation. However, the
microscopic data set has a finer spatial and temporal resolution. The identical statistics
of the two microscopic data sets are listed in Table C.7.
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Initial forming

vertices per time step 875
cells per time step 615

size on disk per time step 0.19 MB
time steps 21

total size on disk 4 MB

Table C.4.: Statistics of the (macroscopic) initial forming data set.

Forming, heat treatment and cooling, macro scale

vertices per time step 59,608
cells per time step 56,430
size on disk per time step 15 MB
time steps 19

total size on disk 285 MB

Table C.5.: Statistics of the (macroscopic) forming data set. Heating and cooling
simulations use the same data structure.

Laser welding

vertices per time step 256,684
cells per time step 1,370,285
size on disk per time step 69.6 MB
time steps 360

total size on disk 24.5 GB

Table C.6.: Statistics of the (macroscopic) laser welding data set.

Forming and heat treatment micro scale

vertices per time step 23,328,000
cells per time step 23,069,699
size on disk per time step 180 MB
time steps 52

total size on disk 9.1 GB

Table C.7.: Statistics of the micro-scale forming data set. Microscopic heat treatment
utilizes the same data structure.
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