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Zusammenfassung

Sei F ein Körper und σ ein Automorphismus auf F . Eine (lineare) Dif-
ferenzengleichung über F ist eine Gleichung der Form σ(y) = Ay, wobei A
ein Element in GLn(F ) und y einen Vektor mit n Unbestimmten bezeichnet.
Man kann dann Lösungen in Erweiterungskörpern von F betrachten und so
genannte Picard-Vessiot Ringe definieren, welche ein maximal unabhängiges
System von Lösungen enthalten und gleichzeitig auf eine gewisse Weise min-
imal mit dieser Eigenschaft sind. Falls ein solcher Picard-Vessiot Ring zu
der gegebenen Differenzengleichung existiert, kann man ihm eine lineare al-
gebraische Gruppe, die Differenzen-Galoisgruppe, zuordnen.

Sei nun F = Fq(s, t) und σ der Automorphismus auf F , der Fq(t) punktweise
fixiert und s auf sq abbildet. Das Hauptresultat der vorliegenden Disserta-
tion besagt, dass folgende Gruppen als Differenzen-Galoisgruppen über F
vorkommen: die speziellen linearen Gruppen SLn, die symplektischen Grup-
pen Sp2d, die speziellen orthogonalen Gruppen SOn (wobei hier q ungerade
vorausgesetzt wird) und die Dickson Gruppe G2. Für all diese Gruppen
werden explizite Differenzengleichungen angegeben. Weiterhin wird gezeigt,
dass jede halbeinfache, einfach zusammenhängende Gruppe G, die über Fq

definiert ist, für ein geeignetes i ∈ N als σi-Differenzen-Galoisgruppe über
Fi = Fqi(s, t) vorkommt, wobei σi(s) = sqi

. Da alle betrachteten Gruppen
zusammenhängend sind, können diese Ergebnisse von Fq(s, t) bzw Fqi(s)(t)
nach Fq(s)(t) geliftet werden. Dies führt zu so genannten rigid analytisch
trivialen Prä-t-Motiven mit denselben Galoisgruppen. Die Kategorie der
rigid analytisch trivialen Prä-t-Motive enthält die Kategorie der t-Motive,
welche in der Arithmetik von Funktionenkörpern von Interesse ist.

Um die besagten Gruppen realisieren zu können, werden verschiedene Krite-
rien entwickelt, die Schranken an Differenzen-Galoisgruppen geben. Zunächst
wird gezeigt, dass ein Picard-Vessiot Ring zu σ(y) = Ay existiert, falls A
gewisse Konvergenzbedingungen erfüllt. Sei nun σ(y) = Ay eine solche
Differenzengleichung mit Differenzen-Galoisgruppe H und sei G ≤ GLn eine
gegebene lineare algebraische Gruppe. Wenn A in G(F ) enthalten ist, so gilt
H ≤ G, d.h. H kann nach oben beschränkt werden. Um H = G zeigen zu
können, wird folgendes Kriterium bewiesen: Sei α ∈ Fq derart, dass das Er-
setzen von s durch α die Matrix A ∈ GLn(Fq(s, t)) auf ein wohldefiniertes El-
ement Aα ∈ GLn(Fq(t)) abbildet. Dann enthält H ein gewisses Konjugiertes
von Aα. Mithilfe dieser Kriterien kann nun wie folgt vorgegangen werden,
um die Gruppe G zu realisieren. Man konstruiere die Matrix A derart, dass
die Konvergenzbedingungen erfüllt sind und sodass beliebige Konjugierte
der Familie {Aα | α ∈ Fq} die Gruppe G erzeugen. Um dies entscheiden
zu können, befasst sich die vorliegende Arbeit auch mit der Erzeugung von
linearen algebraischen Gruppen. Zum einen werden explizite Erzeuger der
klassischen Gruppen konstruiert, die auch nach gewisser Konjugation noch
die Gruppe erzeugen. Zum anderen wird ein etwas allgemeineres Resultat
für reduktive Gruppen, welche über Fq zerfallen, bewiesen.



Abstract

Let F be a field with an automorphism σ on F . A (linear) difference
equation over F is an equation of the form σ(y) = Ay with A ∈ GLn(F ) and
y a vector consisting of n indeterminates. There is the notion of a Picard-
Vessiot ring which is in some sense a “ smallest” difference ring extension
R of F such that there exists a full set of solutions with entries in R to
the given difference equation. If there exists a Picard-Vessiot ring, one can
assign a difference Galois group to the Picard-Vessiot ring, which turns out
to be a linear algebraic group (in the scheme theoretic sense).

Let F = Fq(s, t) with σ defined to be the automorphism that fixes Fq(t)
pointwise and maps s to sq. The main result of this thesis is that the fol-
lowing groups occur as difference Galois groups over F : the special linear
groups SLn, the symplectic groups Sp2d, the special orthogonal groups SOn

(here we have to assume q odd), and the Dickson group G2 (in both cases q
odd and even). We give explicit difference equations for all of these groups.
As another result, we show that every semisimple and simply-connected
group G that is defined over Fq occurs as a σi-difference Galois group over
Fi = Fqi(s, t) for some i ∈ N, where σi(s) = sqi

.
We also lift our difference equations from Fq(s, t) to Fq(s)(t) using the fact
that all of our constructed Galois groups are connected. As a result we
obtain rigid analytically trivial pre-t-motives with the same Galois groups.
The category of rigid analytically trivial pre-t-motives contains the category
of t-motives, which occurs in the arithmetic of function fields.

For an outline of the approach, suppose we are given a linear algebraic group
G ≤ GLn. Assume that we have fixed a difference equation σ(y) = Ay over
F for which we would like to show that there exists a Picard-Vessiot ring
with difference Galois group equal to G. For the existence of a Picard-Vessiot
ring, we use a Henselian type of argument to show that under certain as-
sumptions, there exist enough solutions inside a suitable extension L of F .
If moreover A is contained in G(F ), we deduce that the difference Galois
group H is contained in G. In order to be able to show that H ≥ G holds,
we develop a lower bound criterion as follows. Let α ∈ Fq be an element
such that the matrix Aα obtained from A ∈ GLn(Fq(s, t)) by substituting
s by α is a well-defined element of GLn(Fq(t)). Then H contains a certain
conjugate of Aα.
With these criteria at hand, we construct a matrix A that meets the as-
sumptions on our criterion for the existence of a Picard-Vessiot ring, and
such that any conjugates of the elements Aα (α ∈ Fq) generate G. The latter
condition leads us to questions on generating linear algebraic groups. We
construct explicit generators of the classical groups that generate the group
even up to a certain conjugacy. We also present a more general result for
arbitrary reductive groups that split over Fq.
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Introduction

In analogy to the Galois theory of polynomials (or differential equations),
difference Galois theory studies extensions generated by solutions to differ-
ence equations with respect to a fixed automorphism σ of the base field F .
A (linear) difference equation is an equation of the form

σ(y) = Ay

with A ∈ GLn(F ) and y a vector consisting of n indeterminates. There is
the notion of a Picard-Vessiot ring which is in some sense a “ smallest” ring
extension R of F together with an extension of σ such that there exists a
full set of solutions with entries in R to the given difference equation. In
case the constants C of F (the elements fixed by σ) are algebraically closed,
there always exists a unique Picard-Vessiot ring (up to isomorphism). The
difference Galois group can then be defined as the group of automorphisms
of R that leave F (pointwise) invariant and commute with σ; it turns out to
be a linear algebraic group defined over C. This can be generalized to the
case of an arbitrary field of constants C, leading to difference Galois groups
that are affine group schemes defined over C provided that there exists a
Picard-Vessiot ring. Similar to the inverse problem in classical Galois the-
ory, it is a natural question to ask which affine group schemes defined over
C occur as Galois groups of some difference equations over the fixed base
field F with fixed automorphism σ.

Let F = Fq(s, t) be a function field in two variables over the finite field Fq

with σ acting trivially on Fq(t) and mapping s to sq. In other words, σ is the
Frobenius homomorphism on Fq(s) extended to F by setting σ(t) = t. Then
the constants of F are C = Fq(t). The main result of this thesis is that the
following groups occur as difference Galois groups over F : the special linear
groups SLn, the symplectic groups Sp2d, the special orthogonal groups SOn

(here we have to assume q odd), and the Dickson group G2 (in both cases q
odd and even). We give explicit difference equations for all of these groups.
See Theorems 5.4.4, 5.5.4, 5.6.4, 5.7.7 and 5.8.4, respectively. As another
result, we show that every semisimple and simply-connected group G that
is defined over Fq occurs as a σi-difference Galois group over Fi = Fqi(s, t)
for some i ∈ N, (Theorem 6.4.1), where σi(s) = sqi

.
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For an outline of the approach, suppose we are given a linear algebraic
group G. Assume that we have fixed a difference equation σ(y) = Ay for
which we would like to show that there exists a Picard-Vessiot ring with
difference Galois group equal to G. For the existence of a Picard-Vessiot
ring, it is sufficient to show that there exists a fundamental solution matrix
Y ∈ GLn(L) (i.e., σ(Y ) = AY ) for some field extension L of F such that
σ extends to L without giving rise to new constants. We always work with
L being the field of fractions of the ring of power series in t that converge
in a certain sense (with coefficients in a field extension K of Fq(s)). Using
a Henselian type of argument, it can be deduced that if the representing
matrix A is contained in GLn(Fq(s)[t](t)) and the coefficient matrices in its
t-adic expansion can be bounded in a certain way, we always have a fun-
damental solution matrix Y ∈ GLn(L), (Theorem 3.1.3). If moreover A is
contained in G, then Y can be chosen inside G(L), (Theorem 3.2.4). Let
H denote the difference Galois group. Then Y ∈ G(L) implies that H is a
closed subgroup scheme of G defined over Fq(t). The Picard-Vessiot ring R
will turn out to be separable over F and it can be deduced that H is geo-
metrically reduced; that is, it is a linear algebraic subgroup of G. In order to
be able to show that H ≥ G holds, we develop a lower bound criterion as fol-
lows. Let α ∈ Fq be an element such that A is specializable modulo the ideal
(s − α), that is, A ∈ G(o[t](t)), where o = Fq[s](s−α) denotes the valuation
ring corresponding to s−α. Then H(Fq[[t]]) contains a certain conjugate of
the specialized matrix Aα ∈ G(Fq[[t]]), (see Corollary 3.3.11). The criterion
developed here actually works in the more general case F = k(t) ⊃ Fq(t)
with k a (not necessarily discretely) valued field with finite residue field.
The idea to work with specializations to obtain elements of the Galois group
up to conjugacy is inspired by finite Galois theory. Every finite Galois exten-
sion of Fq(s) is the Picard-Vessiot ring of a difference equation σ0(y) = A0y
with A0 ∈ GLn(Fq(s)) and with σ0 the ordinary Frobenius homomorphism
on Fq(s). In [Mat04], Matzat gave a lower bound criterion for these kind of
difference equations using specializations of A0 from Fq(s) to Fq, which led
to the explicit realization of various finite groups of Lie type over Fq(s), (see
[AM10]).
In our context of difference Galois theory, we are able to obtain elements
inside H ≤ G up to a certain conjugacy. Hence we need to choose A so that
it specializes to elements that generate G up to conjugacy. In case G is a
classical group, we lift a result due to Malle, Saxl and Weigl concerning gen-
eration of G(Fq), and construct explicit maximal tori T1 and T2 defined over
Fq such that any G(Fq + tFq[[t]])-conjugates of them generate G, (Theorem
4.2.5). We then build A in such a way that it specializes to elements t1, t2
that generate dense subgroups of T1 and T2. In case G = G2, we proceed in
a similar way.
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To show that every semisimple and simply-connected group G that is defined
over Fq occurs as a σi-difference Galois group over Fi = Fqi(s, t) for some
i ∈ N, (Theorem 6.4.1), we use a result of Nori asserting that G(Fq) itself can
be realized over Fq(s). We can extend the matrix A0 ∈ GLn(Fq(s)) coming
from Nori’s result to an A ∈ GLn(Fq(s)[t](t)) with constant coefficient matrix
A0. This implies that G(Fq) is contained in H(Fq[[t]]), and we choose A such
that it specializes to an element generating a dense subgroup of a maximal
torus T that splits over Fqi . Using our lower bound criterion, it then suffices
to show the following: If G is an Fq-split reductive group with split maximal
torus T , any G(Fq + tFq[[t]])-conjugate of T together with G(Fq) generates a
dense subgroup of G, (Theorem 4.3.1).

It should be mentioned that in case F = Fq(s)((t)) with σ acting coefficient-
wise as the Frobenius homomorphism on Fq(s) (hence the constants of F
equal Fq((t))), the inverse problem has been solved by Matzat. Namely,
Theorem 2.3 in [Mat09] implies that any linear algebraic group defined over
Fq((t)) occurs as a difference Galois group over Fq(s)((t)). However, this
result is based on taking t-adical limits, so it cannot be transferred to our
non-complete base field Fq(s)(t) or even Fq(s)(t).

There is a certain class of difference equations that occurs in the number the-
ory of function fields. In 1974, Drinfeld introduced a class of Fq[t]-modules
which are today called Drinfeld modules, (see [Dri74]). These modules can
be regarded as a function field analog of elliptic curves. An important ex-
ample is the Carlitz module, which Carlitz had already introduced in 1935,
[Car35], in order to study class field theory over the rational function field.
As when passing from elliptic curves to abelian varieties, one can step up
from Drinfeld modules to a category of higher dimensional objects, called
t-modules, which were introduced by Anderson in 1986, (see [And86]). An-
derson also introduced the category of so-called t-motives which is anti-
equivalent to the category of t-modules, (more precisely, to the category of
so-called abelian t-modules). A t-motive gives rise to a unique difference
equation over (Fq(s)(t), σ), where σ(α) = αq for all α ∈ Fq(s) and σ(t) = t,
that posseses a Picard-Vessiot ring inside a certain field. In this way, one
can assign a difference Galois group to a t-motive. It has been shown by Pa-
panikolas, (see [Pap08, Theorem 4.5.10]), that this difference Galois group
coincides with the so-called t-motivic Galois group assigned to a t-motive
using the fact that the category of t-motives is a Tannakian category. Dif-
ference Galois theory has proved very powerful in transcendence theory over
function fields, due to the fact that the dimension of the difference Galois
group equals the transcendence degree of the Picard-Vessiot ring. For more
details on the theory of t-motives, we refer the reader to the survey articles
[BP11] and [Cha10] and the references listed there.
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We lift our difference equations with Galois groups SLn, Sp2d, SOn, G2 from
Fq(s, t) to Fq(s)(t) using the fact that all of these groups are connected. As
result we obtain rigid analytically trivial pre-t-motives with these Galois
groups. The category of rigid analytically trivial pre-t-motives contains the
category of t-motives.

This thesis is organized as follows. The first chapter provides some back-
ground on the Galois theory of difference equations (with not necessarily
algebraically closed fields of constants) treating all statements used later.
In Chapter 2, we set up some notation and conventions that will be used
throughout all following chapters. In Chapter 3, we develop techniques to
guarantee that a difference equation has a certain difference Galois group.
Specifically, Section 3.1 is concerned with the existence of Picard-Vessiot
rings, while Sections 3.2 and 3.3 provide upper and lower bounds for differ-
ence Galois groups. Chapter 4 deals with finding generators that generate a
linear algebraic group even after certain conjugacy. In Chapter 5, we then
combine the results from Chapters 3 and 4 to construct difference equations
with Galois groups SLn, Sp2d, SOn and G2, whereas Chapter 6 is devoted
to the case of arbitrary semisimple simply-connected groups. In the last
chapter, we give a short introduction to t-motives and translate our results
to this setting.
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Chapter 1

Basics of Difference Galois
Theory

In this chapter, we collect some basic facts about difference modules. Al-
though most of it is well known, the literature seems to focus either on alge-
braically closed fields of constants (such as in [vdPS97]) or on a much more
general (non-linear) theory of difference equations (such as in [Wib10b]), re-
sulting in Galois groupoids. Therefore, we give a self-contained introduction
to the theory of (linear) difference modules over difference fields with not
necessarily algebraically closed field of constants.

1.1 Difference Rings and Difference Equations

Definition 1.1.1. A difference ring (R,φ) is a commutative ring R equipped
with a ring homomorphism φ : R→ R. A difference field is a difference ring
which is a field. The constants CR of a difference ring R are the elements
of R fixed by φ. A difference ring S ≥ R such that the homomorphism φ
on S extends that on R is called a difference ring extension. A difference
ideal of a difference ring R is a φ-stable ideal of R and R is called a simple
difference ring if its only difference ideals are (0) and R. If R and S are
difference rings, a homomorphism σ : R→ S commuting with the difference
structure on R and S is called a difference homomorphism. The set of all
such is denoted by Homφ(R,S).

Remark 1.1.2. Other than in [vdPS97], we do not assume φ to be an
automorphism, as the following examples will demonstrate.

Example 1.1.3. • Fix an element q ∈ C×. Then C(t) together with φ
given by φ(t) = qt is a so-called q-difference field with constants C if
q is not a root of unity.

• Let now q be a prime power. Then Fq(s) together with the ordinary
Frobenius homomorphism φq : Fq(s) → Fq(s), z 7→ zq is a difference

5



6 CHAPTER 1. BASICS OF DIFFERENCE GALOIS THEORY

field with constants Fq. This is an example where the difference homo-
morphism is not surjective.

• Let q again be a prime power and consider Fq(s, t). Let φq be the homo-
morphism on Fq(s, t) fixing t and restricting to the ordinary Frobenius
homomorphism on Fq(s). Then Fq(s, t) is a difference field extension
of Fq(s), with constants Fq(t).

Proposition 1.1.4. Let (R,φ) be a simple difference ring (e.g. a difference
field). Then CR is a field.

Proof. If 0 6= a ∈ R is constant, then the principal ideal generated by a is a
non-zero difference ideal and is thus all of R. Hence a is invertible inside R
and clearly, the inverse is also constant.

Definition 1.1.5. Let (R,φ) be a difference ring and A ∈ GLn(R). Then
φ(Y ) = AY is called a (linear) difference equation over R. Let S/R be an
extension of difference rings. A matrix Y ∈ GLn(S) satisfying φ(Y ) = AY
(where φ is applied coordinate-wise to Y ) is called a fundamental solution
matrix (or fundamental matrix, for short) for φ(Y ) = AY . The solution
space SolS(A) is the set of all elements y ∈ Sn with φ(y) = Ay.

Lemma 1.1.6. Let (S, φ)/(R,φ) be an extension of difference rings and let
φ(Y ) = AY be a difference equation given by a matrix A ∈ GLn(R). Assume
that there exist two fundamental matrices Y1 and Y2 contained in GLn(S).
Then Y −1

2 Y1 is contained in GLn(CS).

Proof. We have φ(Y −1
2 Y1) = (AY2)−1AY1 = Y −1

2 Y1, hence Y −1
2 Y1 ∈ GLn(S)

has constant entries. It follows that the determinant is constant and as it is
invertible inside S, it is also invertible inside CS . Thus Y −1

2 Y1 is contained
in GLn(CS).

Lemma 1.1.7. Let (E, φ)/(F, φ) be an extension of difference fields with
field of constants C = CF = CE. Let further φ(Y ) = AY be a difference
equation over F for a matrix A ∈ GLn(F ) and let y1, . . . , ym be contained
in SolE(A). Then y1, . . . ym are linearly independent over E if and only if
they are linearly independent over C.

Proof. Suppose y1, . . . , ym are linearly independent over C but not over E.

Choose a1, . . . , am ∈ E such that
m∑

i=1
aiyi = 0 is a non-trivial zero combi-

nation of minimal length. We may assume a1 = 1. We apply φ and get

0 =
m∑

i=1
φ(ai)φ(yi) =

m∑
i=1

φ(ai)Ayi. We can now multiply with A−1 from

the left to obtain
m∑

i=1
φ(ai)yi = 0. Since φ(a1) = 1 = a1, we get a shorter

zero combination by subtracting
m∑

i=1
φ(ai)yi = 0 from

m∑
i=1

aiyi = 0. Thus,
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by minimality, ai = φ(ai) for all i. Hence all ai are contained in C, a
contradiction.

Corollary 1.1.8. Let E/F be an extension of difference fields and let
φ(Y ) = AY be a difference equation over F (for a matrix A ∈ GLn(F )).
Let C be the field of constants of E. Then SolE(A) is a vector space over C
of dimension less than or equal to n. We have equality if and only if there
exists a fundamental solution matrix Y ∈ GLn(E).

Proof. It is clear from the definition that SolE(A) is a vector space over C.
Any C-basis consists of elements in En that are linearly independent over
E, by Lemma 1.1.7. Hence the dimension is at most n. The dimension
equals n if and only if there exist n solutions, that are linearly independent
over E (again by Lemma 1.1.7). This is equivalent to the existence of a
fundamental matrix inside GLn(E), since the columns of such matrix are
contained in the solution space.

Example 1.1.9. Let (F, φ) be a difference field and consider an n-th order
scalar difference equation

l(x) := φn(x) + αn−1φ
n−1(x) + · · ·+ α1φ(x) + α0x = 0

for α0 ∈ F× and α1, . . . , αn ∈ F . This is equivalent to the linear difference
equation given by the matrix

A =

à
0 1 0 . . . 0
0 0 1 . . . 0
...

. . .

−α0 −α1 . . . −αn−1

í
.

Indeed, any solution y of l (i.e., l(y) = 0) contained in a difference field ex-
tension E gives rise to a solution vector (y, φ(y), . . . , φn−1(y))

tr ∈ SolE(A)
and vice versa. In this way, the concept of scalar difference equations is
covered by the theory of linear difference equations. In the situation of dif-
ferential equations, the converse is also true, that is, every matrix is dif-
ferentially equivalent to a matrix coming from a linear differential operator.
This follows from the existence of cyclic vectors, a result usually referred to
as cyclic vector lemma. The analog statement for difference equations has
been proven for char(F ) = 0 in [HS99, Thm. B.2] under the assumption
that φ is an automorphism and that there exist non-periodic elements.

Difference equations naturally arise in the study of difference modules:

Definition 1.1.10. Let (F, φ) be a difference field. A difference module
(or φ-module, for short) over F is a finite dimensional F -vector space M
together with a φ-semilinear map Φ: M → M , (i.e., Φ is additive and for
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any λ ∈ F and x ∈ M we have Φ(λx) = φ(λ)Φ(x)) such that there exists
a representing matrix D contained in GLn(F ), where n = dimF (M). A
representing matrix D is defined as follows: With respect to a fixed basis
of M , the action of Φ is completely described by the images of the basis
elements. The representing matrix D (with respect to this basis) collects
these images in its columns. Conversely, every D ∈ GLn(F ) gives rise to
an n-dimensional difference module.
A fundamental (solution) matrix for M in some ring extension R ≥ F is
defined to be a fundamental matrix for D−1 contained in GLn(R).

Remark 1.1.11. Let (M,Φ) be a difference module over (F, φ) and fix a ba-
sis B = {e1, . . . , en} of M over F . We write xB ∈ Fn for the representation
of an element x ∈ M with respect to B. Let x =

∑n
i=1 λiei be an element

in M . Then Φ(x) =
∑n

i=1 φ(λi)Φ(ei), hence Φ(x)B = D · φ(λ1, . . . , λn)
tr

=
Dφ(xB).
Now if (R,φ) is a difference ring extension of (F, φ), then every element
y = (λ1, . . . , λn)

tr ∈ SolR(D−1) represents an element x =
∑n

i=1 λiei ∈
M ⊗F R. We can extend the action of Φ naturally to M ⊗F R by Φ ⊗ φ.
We have φ(y) = D−1y, hence Φ(x)B = Dφ(y) = DD−1y = y = xB, that
is, Φ(x) = x. Thus the elements of M ⊗F R fixed by Φ are exactly those
x ∈ M ⊗F R such that xB is contained in SolR(D−1). We conclude that
there exists a Φ-invariant basis of M ⊗F R if and only if there exists a fun-
damental solution matrix Y ∈ GLn(R) of the difference equation given by
D−1.

Remark 1.1.12. Not every injective, φ-semilinear map gives rise to a dif-
ference module. For instance, endow F = Fq(s) with the ordinary Frobenius
map φ and let M = F 2 with basis e1, e2. Now consider the φ-semilinear
map given by Φ(e1) = e1 and Φ(e2) = se1. Then Φ is injective since no
non-trivial linear combination φq(α) + φq(β)s can be zero, as s is not con-
tained in the image of φq. Hence Φ is injective, but the representing matrix

D equals
Ç

1 s
0 0

å
, and is thus not contained in GLn(F ).

1.2 Picard-Vessiot Rings

We now establish the notion of Picard-Vessiot rings of difference equations
(which do not necessarily exist, and in case there exists one, it is not neces-
sarily unique up to isomorphism, either).

Definition 1.2.1. Let (F, φ) be a difference field with constants C and let
A be an element in GLn(F ). An extension of difference rings R/F is called
a Picard-Vessiot ring for A if the following holds:

• R is a simple difference ring.
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• The field of constants of R is C.

• There exists a fundamental matrix Y ∈ GLn(R), i.e., φ(Y ) = AY .

• R is generated as F -algebra by {Yij , det(Y )−1 | 1 ≤ i, j ≤ n}.

We will use the notation F [Y, Y −1] := F [Yij , det(Y )−1 | 1 ≤ i, j ≤ n].

Remark 1.2.2. a) In the literature, sometimes the second condition is
dropped in the definition of a Picard-Vessiot ring in order to guarantee
the existence of Picard-Vessiot extension.

b) The last condition implies that R is minimal in the sense that no
proper difference subring satisfies the first three conditions. Indeed,
the second condition asserts that two fundamental matrices differ by
an element in GLn(C) so there can be no smaller difference ring R′

with fundamental matrix contained in GLn(R).

Definition 1.2.3. If (M,Φ) is a difference module over (F, φ) with repre-
senting matrix D ∈ GLn(F ), a Picard-Vessiot ring of M is defined to be a
Picard-Vessiot ring for the equation φ(Y ) = AY with A := D−1 ∈ GLn(F ).

Proposition 1.2.4. Let R be a simple difference ring. Then R is reduced.

Proof. Clearly, the radical of a difference ideal is again a difference ideal and
since 1 is not contained in

»
(0), we have

»
(0) = (0) by simplicity of R.

Thus there are no nilpotent elements in R other than zero.

Remark 1.2.5. Other than in the differential theory, a simple difference
ring is not necessarily integral, even if the field of constants is algebraically
closed. For a simple example in any characteristic not equal to 2, see
[vdPS97, 1.6].

Theorem 1.2.6. Let F be a difference field with constants C and let R/F
be an extension of difference rings such that R is a finitely generated F -
algebra. Assume that R is a simple difference ring. Then the constants CR

of R are algebraic over C.

Proof. We skip the proof, as we won’t actually use this theorem. In case C
is algebraically closed, a proof can be found in [vdPS97, 1.8] and the proof
can be carried over to the case of arbitrary constants. Alternatively, we refer
the reader to [Wib10a, 2.11], where the theorem is proven in a much more
general situation (i.e., for constrained extensions of σ-pseudofields). The
proof there makes use of a difference version of a Chevalley theorem which
is proven in the same paper.
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Remark 1.2.7. It is worth noticing that the converse is not true. That is,
there can be elements that are separable algebraic over C but not constant.
Take for example R = F = Fq with φ = φq the Frobenius homomorphism.
Then CR = Fq. This is different from the differential case where there is a
unique extension of a derivation to any separable algebraic extension.

Example 1.2.8. Let F be a field of characteristic p > 0, q a power of p
and let φ = φq be the ordinary Frobenius homomorphism on F . Let M be
a difference module over F . Then M is called a finite Frobenius module
over F . It can be shown that there always exists a unique (up to isomor-
phism) Picard-Vessiot ring for M which is then a finite Galois extension
of F . Conversely, every Galois extension of F can be derived in this way
(using additive polynomials). If the representing matrix of a finite Frobenius
module M is of “sufficiently nice shape”, it is also possible to derive a poly-
nomial describing the corresponding Galois extension. We refer to [Mat04]
for details.

The objective of this section is to guarantee the existence of Picard-
Vessiot rings provided there exists a fundamental matrix contained in a
difference field extension with no new constants (see Theorem 1.2.11 below).
As in the differential theory, we use the following correspondence of ideals
for the proof.

Lemma 1.2.9. Let (R,φ) be a simple difference ring with field of constants
C and let S be a C-algebra. Equip R⊗C S with the structure of a difference
ring via φ⊗C id. Let I(S) denote the set of ideals inside S and let I(R⊗CS)φ

denote the set of difference ideals in R⊗C S. Then there is a bijection

Γ: I(S) → I(R⊗C S)φ, I 7→ R⊗ I = I ·R⊗C S,

∆: I(R⊗C S)φ → I(S), J 7→ J ∩ S.

Proof. There is a short proof in [Wib10b, Prop.1.4.15] for this correspon-
dence in a slightly different setting. The proof also works in our setup as we
will now make sure. First note that Γ is well defined since every element in
S ⊆ R⊗C S is φ-stable. Let I be an ideal in S. Choose a vector space basis
B = {bi | i ∈ I} of R over C. Then {bi ⊗ 1 | i ∈ I} is a basis of R ⊗C S as
S-module. Thus Γ(I) consists of all finite sums

∑
i∈I bi ⊗ si with all si ∈ I

and hence ∆(Γ(I)) = I.

Let now J be a difference ideal inside R⊗C S. We will show that Γ(∆(J)) =
J holds. Clearly, Γ(∆(J)) ⊆ J . For the converse, let {ei | i ∈ J } be a
C-basis of ∆(J) and extend to a C-basis {ei | i ∈ J ∪ J ′} of S (such that
J ∩ J ′ = ∅). Then {1 ⊗ ei | i ∈ J ∪ J ′} is also an R-basis of the free R-
module R⊗C S and {1⊗ ei | i ∈ J } is an R-basis of R⊗C ∆(J) = Γ(∆(J)).
Suppose that Γ(∆(J)) ( J and let a ∈ J\Γ(∆(J)) be an element of shortest
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length, i.e., a =
∑

i∈J∪J ′
ai ⊗ ei and J̃a = {i ∈ J ∪ J ′|ai 6= 0} is of mini-

mal cardinality. We set J̃ = J̃a and the minimality implies that we have
J̃ ⊆ J ′. Fix an i0 ∈ J̃ . Then

{ri0 ∈ R | ∀i ∈ J̃ \{i0} ∃ri ∈ R :
∑
i∈J̃

ri ⊗ ei ∈ J}

is a difference ideal inside R, which is non-zero (since it contains ai0 6= 0).
As R is difference simple, this ideal contains 1 and we may therefore assume
that ai0 = 1 holds. But then

a− φ(a) =
∑

i∈J̃ \{i0}

(ai − φ(ai))⊗ ei

is of shorter length than a and has thus to be zero. We conclude that
ai− φ(ai) = 0 holds for all i ∈ J̃ and thus a is contained in (C ⊗C S)∩ J =
∆(J) ⊆ Γ(∆(J)), a contradiction.

Corollary 1.2.10. Let (E, φ) be a difference field with field of constants C
and let further Z = (Zij)i,j≤n consist of n2 indeterminates. Equip E[Z,Z−1]
with the difference homomorphism extending the given one on E and act-
ing trivially on Z, i.e., φ(Z) = Z. Then there is a bijection between
I(C[Z,Z−1]), the set of ideals in C[Z,Z−1], and I(E[Z,Z−1])φ, the set
of difference ideals in E[Z,Z−1] given by:

Γ: I(C[Z,Z−1]) → I(E[Z,Z−1])φ, I 7→ I · E[Z,Z−1],

∆: I(E[Z,Z−1])φ → I(C[Z,Z−1]), J 7→ J ∩ C[Z,Z−1].

Proof. This follows directly from Lemma 1.2.9 by setting R = E and S =
C[Z,Z−1].

Theorem 1.2.11. Let (F, φ) be a difference field with field of constants C
and let A be contained in GLn(F ). Assume that E/F is a difference field
extension such that

a) The field of constants of E is C,

b) There exists a fundamental matrix Y ∈ GLn(E), i.e., φ(Y ) = AY ,

Then R := F [Y, Y −1] ⊆ E is a Picard-Vessiot ring for A and R is the only
Picard-Vessiot ring for A that is contained in E.

Proof. Any Picard-Vessiot ring contained in E is generated by a fundamen-
tal matrix in GLn(E) and its inverse, so the uniqueness (inside E) follows
from Lemma 1.1.6 together with CE = C ⊆ F .
To see that R is a Picard-Vessiot ring it is sufficient to show that R is dif-
ference simple. Let X be a matrix consisting of n2 indeterminates. Equip
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F [X,X−1] with the difference homomorphism extending that on F such that
φ(X) = AX holds. Then the natural homomorphism ν : F [X,X−1] → E
given by Xij 7→ Yij is a difference homomorphism with image R. Set I =
ker(ν). Then R is difference isomorphic to F [X,X−1]/I and we have to show
that I is a maximal difference ideal inside F [X,X−1]. Let P ( F [X,X−1]
be a maximal difference ideal in F [X,X−1] containing I.

Define a set of n2 new variables (Zij) by Z = Y −1X. Then
E ⊗ F [X,X−1] ∼= E[X,X−1] ∼= E[Z,Z−1], since Y has entries in E. Note
that E ⊗ F [X,X−1] becomes a difference ring via φ(e ⊗ f) = φ(e) ⊗ φ(f)
and this is compatible with the difference structure on E[Z,Z−1] given
by φ(Z) = Z. Indeed, φ(Z) = Y −1A−1AX = Z. Hence we can ap-
ply Corollary 1.2.10 to the difference ideal PE := P · E[X,X−1] inside
E[Z,Z−1] which is therefore generated by p := PE ∩ C[Z,Z−1]. Note that
E[Z,Z−1]/PE

∼= (E ⊗F F [X,X−1])/(E ⊗F P ) ∼= E ⊗F (F [X,X−1]/P ) 6= 0,
where we used that E/F is free and thus flat. Hence PE is a proper ideal
of E[Z,Z−1] and so p is a proper ideal of C[Z,Z−1]. We can thus choose a
maximal ideal m ⊇ p inside C[Z,Z−1] containing p. Then L := C[Z,Z−1]/m
is a finite field extension of C (see [AM69, Cor. 7.10]). (This is, by the way,
the moment where it gets slightly more complicated because we do not as-
sume our constants to be algebraically closed and thus in general L 6= C.)

Let κ : C[Z,Z−1] ³ L be the residue map modulo m. Now E/F is flat,
and thus

E ⊗F (F [X,X−1]/P ) ∼= E[X,X−1]/PE = E[Z,Z−1]/PE

∼= E ⊗C (C[Z,Z−1]/p) ³id⊗κ E ⊗ (C[Z,Z−1]/m) = E ⊗C L,

where all homomorphisms are difference homomorphisms. Denote the re-
sulting difference epimorphism E ⊗F (F [X,X−1]/P ) ³ E ⊗C L by γ. We
then have the following commutative diagram of difference homomorphisms:

E ⊗F F [X,X−1]

����

1⊗X 7→Y⊗Z // E ⊗C C[Z,Z−1]

id⊗κ
����

E ⊗F (F [X,X−1]/P ) γ
// // E ⊗C L

where we write Y ⊗Z short for the matrix product (Y ⊗1) ·(1⊗Z). Let now
Z denote the image of Z inside C[Z,Z−1]/m = L. We tensor the diagram up
with ⊗CL and extend it to the following commutative diagram of difference



1.3. GALOIS THEORY 13

homomorphisms:

F [X,X−1]⊗C L

X⊗17→1⊗X⊗Z
−1

��
E ⊗F F [X,X−1]⊗C L

����

1⊗X⊗17→Y⊗Z⊗1// E ⊗C C[Z,Z−1]⊗C L

id⊗κ⊗id
����

E ⊗F (F [X,X−1]/P )⊗C L γ⊗id
// // E ⊗C L⊗C L

id⊗µ
����

E ⊗C L

where µ : L ⊗C L ³ L denotes the multiplication map. Let now ψ denote
the resulting composition difference homomorphism
ψ : F [X,X−1]⊗C L→ E ⊗C L. We choose the upper path to compute

ψ : X ⊗C 1 7→ 1⊗F X ⊗C Z
−1 7→ Y ⊗C Z ⊗C Z

−1 7→ Y ⊗C Z ⊗C Z
−1 7→ Y ⊗C 1

We conclude that ψ = ν ⊗C idL and thus ker(ψ) = ker(ν)⊗C L = I ⊗C L,
since L/C is flat. On the other hand, if we choose the lower path, it is clear
that P ⊗C L is contained in ker(ψ). Hence P ⊗C L ⊆ I ⊗C L and thus
P ⊆ I, since L/C is free and thus faithfully flat. We conclude that I = P is
a maximal difference ideal in F [X,X−1].

Definition 1.2.12. In the situation as in Theorem 1.2.11, i.e., if R is an
integral domain that is Picard-Vessiot for A, we call Quot(R) a Picard-
Vessiot extension for A.

Remark 1.2.13. Other than in differential theory, the existence of a Picard-
Vessiot ring does not imply the existence of a Picard-Vessiot extension, since
a difference Picard-Vessiot ring is not necessarily a domain. It is therefore
more natural to work with the total quotient rings of Picard-Vessiot rings
instead of the field of fractions. However, the (explicitly constructed) Picard-
Vessiot rings of the difference modules considered later on will always be
domains, so Theorem 1.2.11 will be sufficient for our purpose.

1.3 Galois Theory

We now give a construction of the Galois group scheme G of a Picard-
Vessiot ring R, which turns out to be a linear algebraic group under certain
separability assumptions. Other than in [Pap08], we will not assume our
Picard-Vessiot ring to be integral. Also, our construction is more intrinsic
as we are working with torsors. The Galois group scheme is then represented
by the constants of R⊗F R.
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Lemma 1.3.1. Let (R,φ) be a simple difference ring with field of constants
C. Let further S and S′ be C-algebras and equip R⊗CS and R⊗CS

′ with the
structure of a difference ring via φ⊗C id. Then CR⊗CS = C ⊗C S and there
is a natural bijection between HomC(S′, S) and Homφ

R(R⊗C S
′, R⊗C S).

Proof. Since C is a field, we can choose a basis {sα|α ∈ A} of S over C. Let∑
rα ⊗ sα ∈ R⊗C S be a constant. Then

∑
φ(rα)⊗ sα =

∑
rα ⊗ sα, hence

all rα are contained in C and thus CR⊗CS = C⊗C S ∼= S. Similarly, we have
CR⊗CS′

∼= S′. Now if σ is contained in Homφ
R(R ⊗C S′, R ⊗C S), it maps

constants to constants and hence restricts to a homomorphism contained in
HomC(S′, S). This yields a map Homφ

R(R ⊗C S′, R ⊗C S) → HomC(S′, S)
with inverse given by base extension.

Proposition 1.3.2. Let (F, φ) be a difference field with constants C and let
R/F be a Picard-Vessiot ring for a matrix A ∈ GLn(F ). Then we have an
R-linear isomorphism of difference rings

R⊗F R ∼= R⊗C CR⊗F R,

where R⊗F R and R⊗CCR⊗F R are considered as difference rings via φ⊗F φ
and φ⊗C id, resp. Furthermore, we have

CR⊗F R
∼= C[Y −1 ⊗F Y, (Y −1 ⊗F Y )−1]

where we again use the notation Y −1⊗F Y for the matrix product Y −1⊗ 1 ·
1⊗ Y .

Proof. Let
ψ : R⊗C CR⊗F R → R⊗F R

be the ring homomorphism given by R → R ⊗F R, a 7→ a ⊗ 1 on the
left and the natural inclusion CR⊗F R ⊆ R⊗F R on the right. Then ψ is
a difference ring homomorphism. All entries of Y −1 ⊗F Y and Y ⊗F Y −1

are constant and we have 1 ⊗F Y = (Y ⊗F 1) · (Y −1 ⊗F Y ) as well as
1 ⊗F Y −1 = (Y −1 ⊗F 1) · (Y ⊗F Y −1). As R is generated over F by the
entries of Y and Y −1 we conclude that ψ is surjective. The kernel of ψ is
generated by its intersection with CR⊗F R, by Lemma 1.2.9. As ψ is injective
on CR⊗F R, it is injective overall, so we proved the first statement.

To see that CR⊗F R = C[Y −1 ⊗ Y, (Y −1 ⊗ Y )−1] = C[Y −1 ⊗ Y, Y ⊗ Y −1]
holds, we first observe that the very same proof as above yields a difference
ring isomorphism

ψ̃ : R⊗C C[Y −1 ⊗ Y, Y ⊗ Y −1] → R⊗F R.

Hence we get a difference ring isomorphism

γ := ψ̃−1 ◦ ψ : R⊗F CR⊗F R → R⊗C C[Y −1 ⊗ Y, Y ⊗ Y −1].
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A difference ring homomorphism maps constant elements on constant ele-
ments, hence γ(CR⊗F R) is contained in the constants of R⊗CC[Y −1⊗Y, Y ⊗
Y −1]. These are exactly C[Y −1 ⊗ Y, Y ⊗ Y −1] by Lemma 1.3.1. Hence γ
induces an injective ring homomorphism

γ : CR⊗F R → C[Y −1 ⊗ Y, Y ⊗ Y −1].

Clearly, this is surjective, as both Y −1 ⊗ Y, Y ⊗ Y −1 are constant inside
R⊗F R and they are fixed by γ.

Definition 1.3.3. Let (F, φ) be a difference field with field of constants C
and let R be a Picard-Vessiot ring for a matrix A ∈ GLn(F ). We write
Aut(R/F ) for the functor from the category of C-algebras to the category
of groups sending a C-algebra S to the group Autφ(R ⊗C S/F ⊗C S) of
difference automorphisms fixing F ⊗C S. Note that we consider R ⊗C S as
difference ring via φ⊗ id.

Next, we would like to show that Aut(R/F ) is representable, i.e., it is
an affine group scheme. We start with a preliminary lemma.

Lemma 1.3.4. Let (F, φ) be a difference field with field of constants C and
let R be a Picard-Vessiot ring for a matrix A ∈ GLn(F ). Then for every
C-algebra S (considered as constant difference ring), we have

Autφ(R⊗C S/F ⊗C S) = Endφ(R⊗C S/F ⊗C S).

Proof. Let σ : R⊗C S → R⊗C S be a difference homomorphism acting triv-
ially on F ⊗C S. We have to show that σ is bijective. Let I be the kernel of
σ. Then I is a difference ideal of R⊗C S and is thus generated by I ∩S, by
Lemma 1.2.9. But as σ restricts to the identity on S, we have I ∩ S = (0)
and σ is thus injective.
Let Y ∈ GLn(R) be a fundamental matrix. Then det(Y ) is contained
in R× ⊆ (R ⊗C S)× and hence det(σ(Y )) = σ(det(Y )) is also invertible
inside R ⊗C S. We conclude that σ(Y ) is contained in GLn(R ⊗C S).
Also, φ(σ(Y )) = σ(φ(Y )) = σ(AY ) = Aσ(Y ). Hence both Y and σ(Y )
are fundamental matrices for A contained in R ⊗C S, so there exists a
B ∈ GLn(CR⊗CS) such that σ(Y ) = Y B, by Lemma 1.1.6. Now CR⊗CS = S
holds by Lemma 1.3.1, thus B ∈ GLn(S). Recall that R is a Picard-Vessiot
ring, hence we have R = F [Y, Y −1] and thus R ⊗C S is generated by the
entries of Y and its inverse determinant over F ⊗C S. As Y = σ(Y ⊗B−1),
we conclude that σ is surjective.

Theorem 1.3.5. The group functor Aut(R/F ) is represented by the C-
algebra CR⊗F R, and is thus an affine group scheme over C.



16 CHAPTER 1. BASICS OF DIFFERENCE GALOIS THEORY

Proof. We abbreviate RG := CR⊗F R. Let S be a C-algebra. We have to
show that Aut(R/F )(S) = HomC(RG , S) holds. We have

HomC(RG , S) = Homφ
R(R⊗C RG , R⊗C S) = Homφ

R(R⊗F R,R⊗C S),

where we use Lemma 1.3.1 for the first equality and the second equality
follows from Proposition 1.3.2. It is well known (and easy to see) that there
is a natural bijection between HomR(R⊗F R,R⊗CS) and HomF (R,R⊗CS)
given by restriction and base extension. This bijection obviously preserves
difference homomorphisms, and we get

Homφ
R(R⊗F R,R⊗C S) = Homφ

F (R,R⊗C S).

Similarly,

Homφ
F (R,R⊗C S) = Homφ

F⊗CS(R⊗F (F ⊗C S), R⊗C S)

= Homφ
F⊗CS(R⊗C S,R⊗C S).

Finally, we use Lemma 1.3.4 to conclude

Homφ
F⊗CS(R⊗C S,R⊗C S) = Autφ

F⊗CS(R⊗C S) = Aut(R/F )(S).

Definition 1.3.6. Let (F, φ) be a difference field with field of constants C
and let R be a Picard-Vessiot ring for a matrix A ∈ GLn(F ). We define
the Galois group scheme of R/F to be GR/F = Aut(R/F ). Similarly, if
(M,Φ) is a difference module over (F, φ) with a Picard-Vessiot ring R, we
call GM,R = Aut(R/F ) the Galois group scheme of M (with respect to R,
which is not unique, in general). In case E is a Picard-Vessiot extension of
M with Picard-Vessiot ring R ⊆ E, we set GM,E = GM,R.

Remark 1.3.7. In case C is algebraically closed, the C-rational points of
G are usually called the Galois group Gal(R/F ) = Autφ(R/F ) of R over
F . However, if C is not algebraically closed, G(C) may not contain enough
information to recover G.

Theorem 1.3.8 (Torsor-theorem). Let (F, φ) be a difference field with field
of constants C and let R be a Picard-Vessiot ring for a matrix A ∈ GLn(F ).
Then Spec(R) is a GR/F -torsor, i.e., Spec(R) is a GR/F -variety via the mor-
phism

Γ: Spec(R)×C GR/F → Spec(R)

such that

id×Γ: Spec(R)×C GR/F → Spec(R)×F Spec(R)

is an isomorphism.
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Proof. We have Spec(R) ×C GR/F
∼= Spec(R ⊗C CR⊗F R) and Spec(R) ×F

Spec(R) ∼= Spec(R ⊗F R). By Proposition 1.3.2, there exists an R-linear
isomorphism R⊗F R→ R⊗C CR⊗F R and the claim follows.

As a corollary, we get the well-known identity between transcendence
degree of Picard-Vessiot extensions and dimension of their Galois group
scheme.

Corollary 1.3.9. Let (F, φ) be a difference field with field of constants C
and let R be a Picard-Vessiot ring for a matrix A ∈ GLn(F ) with Galois
group scheme G = GR/F . Then

a) R⊗F F ∼= C[G]⊗C F , where F denotes an algebraic closure of F .

b) trdeg(R/F ) = dim(G), where trdeg(R/F ) denotes the transcendence
degree of R as F -algebra.

Proof. a) Abbreviate X = Spec(R). Theorem 1.3.8 implies that X is a
G-torsor. We have R ⊗F F ∼= C[G] ⊗C F if and only if X ×F F ∼=
G ×C F , which is equivalent to X having an F -rational point (as for
any x ∈ X(F ), g 7→ g · x yields an isomorphism G ×C F ∼= X ×F F ).
Now X(F ) ∼= (X ×F F )(F ) 6= ∅ as X ×F F is an affine scheme of
finite type over F , so its F -rational points are exactly its closed points
(which correspond to the maximal ideals of R⊗F F ).

b) follows directly from a).

Theorem 1.3.10. Let (F, φ) be a difference field with field of constants C
and let R be a Picard-Vessiot ring for a matrix A ∈ GLn(F ). Assume further
that R is separable over F . Then the Galois group scheme G := GR/F of
R/F is a linear algebraic group over C, that is, an affine group scheme of
finite type over C, such that G ×C C is reduced (i.e., G is ”geometrically
reduced”).

Proof. By Theorem 1.3.5, G is an affine group scheme, represented by RG :=
CR⊗F R. By Proposition 1.3.2, we have RG ∼= C[Y ⊗F Y

−1, (Y ⊗F Y
−1)−1],

so RG is finitely generated over C. It follows that G is of finite type over C.
Now G ×C C is reduced if and only if RG ⊗C C is reduced. It is therefore
sufficient to show that RG ⊗C F is reduced which is isomorphic to R⊗F F ,
by Corollary 1.3.9a). We assumed that R is separable over F , hence R⊗F F
is reduced.

As in classical Picard-Vessiot theory, an explicit linearization of GR/F

can be given using a fundamental solution matrix:
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Proposition 1.3.11. Let R be a Picard-Vessiot ring over a difference field
(F, φ) for a matrix A ∈ GLn(F ). Let C be the field of constants and let G be
the Galois group scheme. Assume further that R is separable over F . Then
there is a closed embedding ρ : G ↪→ GLn of linear algebraic groups such that
for any C-algebra S, we have

ρS : G(S) = Autφ(R⊗C S/F ⊗C S) → GLn(S), σ 7→ Y −1σ(Y ).

Proof. Again, we set RG := CR⊗F R, the coordinate ring of G. We know that
G is a linear algebraic group by Theorem 1.3.10. Recall that the coordinate
ring RG of G is the image of the homomorphism µ : C[Z,Z−1] = C[GLn] →
R⊗F R, Z 7→ Y −1⊗Y . Hence we have a surjection on the coordinate rings
C[GLn] ³ C[G] which induces a closed embedding ρ : G ↪→ GLn. Now let
σ be an element in Autφ(R ⊗C S/F ⊗C S). We have to figure out which
element in G(S) = HomC(RG , S) corresponds to σ, explicitly. Therefore, we
have to take a close look at the proof of Theorem 1.3.5. The homomorphism
contained in Homφ

R(R⊗F R,R⊗C S) that corresponds to σ maps a⊗F b to
a⊗ 1 · σ(b⊗C 1). Now the isomorphism R⊗C RG → R⊗F R constructed in
Proposition 1.3.2 maps 1⊗Z to Y −1⊗Y , where Z denotes the image of Z in
RG ∼= C[Z,Z−1]/ ker(µ). Hence the homomorphism in Homφ

R(R⊗CRG , R⊗C

S) corresponding to σ maps 1⊗C Z to (Y −1⊗C 1) ·σ(Y ⊗C 1) ∈ R⊗C S. We
have already seen in the proof of Lemma 1.3.4 that (Y −1⊗C 1) ·σ(Y ⊗C 1) is
contained in GLn(C⊗CS) = GLn(S), and thus σ corresponds to the element
in HomC(RG , S) = G(S) given by Z 7→ Y −1σ|R(Y ), which corresponds to
the element Y −1σ(Y ) inside GLn(S).

Proposition 1.3.11 becomes particularly useful in order to obtain up-
per bounds on GR/F : Let R/F be a separable Picard-Vessiot ring for an
A ∈ GLn(F ) with Galois group scheme GR/F . Assume that there exists a
fundamental solution matrix Y that is contained in G̃(R) for some closed
subgroup G̃ ≤ GLn defined over C. Then for all γ ∈ Aut(R⊗C S/F ⊗C S),
γ(Y ) is contained in G̃(R⊗C S) and GR/F

∼= ρ(GR/F ) is thus contained in G̃.

Recall that the definition of the Galois group scheme of a linear difference
equation depends on a fixed Picard-Vessiot ring. The following Corollary
implies that distinct Picard-Vessiot rings lead to Galois group schemes that
become isomorphic over C.

Corollary 1.3.12. Let (R1, φ1) and (R2, φ2) be Picard-Vessiot rings over a
difference field (F, φ) for the same matrix A ∈ GLn(F ). Let C be the field
of constants and let C denote an algebraic closure of C. Assume further
that R1 and R2 are both separable over F . Then the Galois group schemes
GR1/F and GR2/F are conjugate by an element in GLn(C).

Proof. We only sketch the proof as we won’t actually use this result.
As GR1/F and GR2/F are both linear algebraic groups by Theorem 1.3.10, it
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suffices to show that GR1/F (C) and GR2/F (C) are conjugate inside GLn(C).
Let I be a maximal difference ideal inside R1 ⊗F R2 with respect to the
difference structure given by φ1⊗φ2 on R1⊗F R2. As R1 and R2 are differ-
ence simple, we obtain inclusions from R1 and R2 into R := (R1⊗F R2)/I.
Now the constants of R will be contained in C, by Theorem 1.2.6 (which we
didn’t prove). As both Y1 and Y2 are fundamental matrices of A ∈ GLn(F ),
Lemma 1.1.6 implies that B := Y −1

1 ⊗F Y2 ∈ GLn(R) has constant entries.
This implies that R1 ⊗C C and R2 ⊗C C are isomorphic as difference C-
algebras and GR1/F (C) and GR2/F (C) are conjugate via B ∈ GLn(C), which
can be seen using Proposition 1.3.11.

Proposition 1.3.13. Let (R,φ) be a Picard-Vessiot ring over a difference
field (F, φ) with Galois group scheme G. Let a

b be an element in the total
quotient ring of R (the localization at the set of all non zero divisors inside
R). If a

b is functorially invariant under the action of G, i.e., for every
C-algebra S and every σ ∈ Autφ(R⊗C S/F ⊗C S) we have

σ(a⊗C 1) · (b⊗C 1) = (a⊗C 1) · σ(b⊗C 1),

then a
b is contained in F .

Proof. Consider S = RG := CR⊗F R and consider the following F -linear
difference homomorphism

R −→x 7→1⊗x R⊗F R→µ R⊗C RG ,

where we use the isomorphism µ : R ⊗F R → R ⊗C RG of difference R-
modules from Proposition 1.3.2. This induces an (F⊗CRG)-linear difference
homomorphism

σ : R⊗C RG → R⊗C RG .

By Lemma 1.3.4, this is an element in Autφ(R ⊗C RG/F ⊗C RG). By as-
sumption, we thus have

σ(a⊗C 1) · (b⊗C 1) = (a⊗C 1) · σ(b⊗C 1).

We apply µ−1 on both sides (note that µ−1(x⊗C 1) = x⊗F 1 for all x ∈ R
since µ−1 is R-linear) to get (1⊗F a) · (b⊗F 1) = (a⊗F 1) · (1⊗F b). Hence
b⊗F a = a⊗F b and we conclude that a

b is contained in F .

We just proved the easy direction of a Galois correspondence for differ-
ence modules. We refer the reader to [AM05, Thm. 3.9] and [Wib10b, Thm.
3.10.7] for full proofs of the Galois correspondence in the general setting.
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1.4 Base Change

An F -algebra is called regular if R ⊗F F̃ is an integral domain for every
field extension F̃ /F . By Corollary 1 in [Bou90, V.5.17], this is equivalent to
R⊗F F being an integral domain for an algebraic closure F of F . If R is a
field extension of F such that R is a regular F -algebra, R is called a regular
extension of F .

Proposition 1.4.1. Let (F, φ) be a difference field and let R/F be a Picard-
Vessiot extension for a matrix A ∈ GLn(F ) such that its Galois group
scheme G is a connected linear algebraic group, that is, it is geometrically
reduced and absolutely irreducible. Then

a) R is a regular F -algebra. In particular, R is an integral domain.

b) Quot(R) is a regular extension of F . In particular, F is relatively alge-
braically closed in Quot(R) and Quot(R)/F is a separable extension.

Proof. a) As G is a connected linear algebraic group, C[G] = C[G]⊗C C
is an integral domain which implies that C[G] is a regular C-algebra.
Hence C[G]⊗C F is an integral domain and it is isomorphic to R⊗F F
by Corollary 1.3.9. It follows that R is regular as an F -algebra.

b) As R is a regular F -algebra, its field of fractions Quot(R) is a regular
extension of F (see [Bou90, V.17.4 Corollary]). By Proposition 9 in
[Bou90, V.17.5], this is equivalent to F being relatively algebraically
closed inside Quot(R) and Quot(R)/F being separable.

Theorem 1.4.2. Let (F, φ) be a difference field and let R/F be a Picard-
Vessiot ring for a matrix A ∈ GLn(F ) such that its Galois group scheme G
is a connected linear algebraic group.
If (F̃ , φ) is an algebraic difference field extension of F such that F̃ and R are
both contained in some common difference field E without new constants,
then R ⊗F F̃ is a Picard-Vessiot ring over (F̃ , φ) for A with Galois group
scheme G.

Proof. By Proposition 1.4.1, R is an integral domain and Quot(R) is regular
over F , so Quot(R)⊗F F̃ is an integral domain. Also, as F̃ is an algebraic
extension of F , Quot(R) and F̃ are linearly disjoint over F by Proposition
9 in [Bou90, V.17.5]. So they are in particular algebraically disjoint over F
(see [Bou90, V.14.5, Corollary 1] ) and F is relatively algebraically closed
inside Quot(R), so we can apply Proposition 1 in [Bou90, V.17.2] and get
that the natural map Quot(R) ⊗F F̃ → E given by x ⊗ y 7→ xy is injec-
tive, since its kernel consists of the nilpotent elements inside Quot(R)⊗F F̃ .
Clearly, this homomorphism is a difference homomorphism. So we can con-
sider R⊗F F̃ ⊆ Quot(R)⊗F F̃ as a difference subring of E.
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Let Y ∈ GLn(R) be a fundamental solution matrix for A. Then Y ⊗ 1 ∈
GLn(R⊗F F̃ ) is a fundamental solution matrix for A, as well, and R⊗F F̃ is
generated by the entries of Y ⊗ 1 and (Y ⊗ 1)−1 = Y −1⊗ 1 as an F̃ -algebra,
since R = F [Y, Y −1]. As E has no new constants, Theorem 1.2.11 now im-
plies that R⊗F F̃ is a Picard-Vessiot ring for A over F̃ .

We abbreviate R̃ = R⊗F F̃ and denote the Galois group scheme of R̃/F̃ by
G̃. Let S be a C-algebra. Then

G̃(S) = Autφ(R̃⊗C S/F̃ ⊗C S) = Homφ

F̃⊗CS
(R̃⊗C S, R̃⊗C S),

where the last equality follows from Lemma 1.3.4. Now

Homφ

F̃⊗CS
(R̃⊗C S, R̃⊗C S)

∼= Homφ

F̃⊗F (F⊗CS)
(F̃ ⊗F (R⊗C S), F̃ ⊗F (R⊗C S))

∼= Homφ
F⊗CS(R⊗C S, F̃ ⊗F (R⊗C S))

⊇ Homφ
F⊗CS(R⊗C S,R⊗C S) = G(S).

On the other hand, every γ ∈ Autφ(R̃⊗C S/F̃ ⊗C S) restricts to an element
in Autφ(R⊗C S/F ⊗C S). Indeed, Y ⊗F 1 ∈ GLn(R⊗F F̃ ) is a fundamental
matrix for R̃, hence ((Y −1 ⊗F 1) ⊗C 1)γ((Y ⊗F 1) ⊗C 1) ∈ GLn(C ⊗C S)
by Proposition 1.3.11. Therefore, γ((Y ⊗F 1) ⊗C 1) ∈ GLn(R ⊗C S), so γ
restricts to an automorphism of R ⊗C S and we get G̃(S) ⊆ G(S). Hence
G̃(S) ∼= G(S) holds for all C-algebras S, so G̃ ∼= G.
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Chapter 2

Notation and Conventions

2.1 Difference Fields

In this section, we define difference fields k(t) ⊆ K(t) ⊆ L with field of
constants Fq(t).

p: a prime number.

q: a power of p.

K: an algebraically closed field containing Fq that is complete with
respect to a fixed non-archimedian absolute value | · | on K.

O|·|: the valuation ring in K corresponding to | · |.
m: the maximal ideal inside O|·|.
K{t}: the ring of power series that converge on the closed unit disk:

K{t} := {∑∞
i=0 αit

i ∈ K[[t]] | lim
i→∞

|αi| = 0}.

L: the field of fractions of K{t}: L = Quot(K{t}).
(K,φq): on K, the homomorphism φq : K → K, λ 7→ λq is the ordinary

Frobenius automorphism. The field of constants then equals
CK = Fq.

(L, φq): on K{t}, the homomorphism φq is defined by φq(
∑∞

i=0 αit
i) =∑∞

i=0 φq(αi)ti and φq extends uniquely to L. The field of con-
stants then equals CL = Fq(t) (see Lemma 2.1.3).

(k, φq): a difference subfield of K containing Fq. Note that φq is not
necessarily surjective on k.

k: an algebraic closure of k contained in K.

k
sep: a separable algebraic closure of k contained in k.

(k(t), φq): the difference structure on k(t) is induced by that on K(t) ⊆ L,
i.e., φq only acts on the coefficients of a rational function. Then
Ck(t) = Fq(t) holds.

23
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Example 2.1.1. The standard example one should keep in mind is k =
Fq(s), a function field in one variable with an s-adic absolute value | · |.
(Of course, one might also consider function fields Fq(s1, . . . , sn) in several
variables with | · | for instance an s1-adic absolute value.) Then we let K be
the completion of an algebraic closure of the completion of k, an algebraically
closed field that is complete with respect to the unique extension of | · | on
K.

Remark 2.1.2. a) Note that L/k(t) is usually not a separable extension
(as K/k might not be separable), and thus (Fq(t), k(t), L) is not a φq-
admissible triple as defined in [Pap08, 4.1.]. However, in all applica-
tions we will consider a difference module over k(t) with Picard-Vessiot
extension E contained in L and we will explicitly show that E is sep-
arable over k(t).

b) Sometimes people work with the inverse σ of φq instead of φq, but since
this is not defined on our base field k(t) if k is not perfect, we prefer
to work with φq, instead. Note that in case σ is well-defined, there is a
1-1 correspondence between fundamental solution matrices Y with re-
spect to σ, (i.e., σ(Y ) = D · Y for a D ∈ GLn(k(t))) and fundamental
solution matrices Ỹ with respect to φq, (i.e., Ỹ = D ·φq(Ỹ )), given by
Y = φq(Ỹ ) and Ỹ = σ(Y ).

Lemma 2.1.3. The constants of (L, φq) are CL = Fq(t).

Proof. Consider first a constant element g =
∑∞

i=0 αit
i ∈ K{t}. Then we

have φq(g) = g, i.e., φq(αi) = αi holds for all i ∈ N. As φq is the ordinary
Frobenius homomorphism on K, this means that all αi are contained in Fq.
In particular, each non-zero αi is of value 1. As (αi)i converges to zero, this
implies that g is contained in Fq[t].

Elements in K{t} can be regarded as functions O|·| → K. It follows from
Lemma 2.2.3 together with Corollary 2.2.4 of [FvdP04] that every non-
zero element f ∈ L has only finitely many zeroes and poles inside O|·|.
More precisely, there exist unique elements λ ∈ K×, a1, . . . , ad ∈ O|·|,
a′1, . . . , a

′
d′ ∈ O|·| (d, d′ ∈ N) with ai 6= a′j for all i, j, and αi ∈ m (i ∈ N) such

that

f = λ(1 +
∞∑
i=0

αit
i)

(t− a1) · · · (t− ad)
(t− a′1) · · · (t− a′d′)

holds and
∞∑
i=0

αit
i is contained in K{t}. We have

φq(f) = λq(1 +
∞∑
i=0

αq
i t

i)
(t− aq

1) · · · (t− aq
d)

(t− a′q1 ) · · · (t− a′qd′)
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so if f is constant, the unique factorization immediately implies that λ(1 +
∞∑
i=0

αit
i) ∈ K{t} is also constant, hence is contained in Fq[t] by what we

proved above. Therefore,

(t− a1) · · · (t− ad)
(t− a′1) · · · (t− a′d′)

is constant too and thus contained in Fq(t) (of course, not all ai and a′i have
to be contained in Fq, but they are permuted by the action of φq).

2.2 Algebraic Groups and Matrix Conventions

We use the term linear algebraic group defined over a field F to denote an
affine group scheme of finite type over F that is geometrically reduced (that
is, it is reduced over an algebraic closure of F). We consider linear algebraic
groups G over F as functors from F-algebras to groups. We occasionally write
things like x ∈ G, by which we mean that x is contained in the F̃-rational
points of G for a suitable algebraically closed field F̃ which should be clear
from the context. If we write G ≤ GLn, we are given a closed embedding of
G into GLn and we will work with the coordinates inside GLn. In particular,
for any F-algebra S, G(S) is identified with a subgroup of GLn(S).
Normalizers, centralizers, and root subgroups are taken inside an algebraic
closed field if not stated otherwise.

n: a natural number

Mn: for a ring R, Mn(R) denotes the ring of n×n matrices over R.

AB: for a ring R, A ∈ Mn(R) and B ∈ GLn(R), AB denotes the
conjugate B−1AB.

Sn ⊆ GLn: we use the following convention for permutation matrices: the
permutation matrix Aσ corresponding to a σ ∈ Sn is the matrix
with entries Aij = δi,σ(j). We say that a matrix A ∈ GLn is
monomial with respect to a permutation σ ∈ Sn if the entry
Aij is non-zero if and only if i = σ(j) holds. In other words,
there exists a diagonal matrix d ∈ GLn such that A = dAσ.
Note that then A−1 diag(λ1, . . . , λn)A = diag(λσ(1), . . . , λσ(n))
holds for all diagonal matrices diag(λ1, . . . , λn).

Sp2d: the symplectic group, where we are working with the symplec-
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tic form given by

J =



−1

. .
.

−1
1

. .
.

1


,

i.e., Sp2d = {A ∈ GL2d |A
tr
JA = J}.

SOn: the orthogonal group in non-even characteristic:
SOn = {A ∈ SLn |AtrJA = J} with respect to

J =

Ü
1

. .
.

1

ê
.
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Bounds on Difference Galois
Groups

3.1 Existence of Picard-Vessiot Extensions

We start with a multidimensional version of Hensel’s Lemma. For m ∈ N,
let || · || denote the maximum norm on Kn induced by | · |:

||(a1, . . . , am)|| := max{|ai| | 1 ≤ i ≤ m}.

Lemma 3.1.1 (Hensel’s Lemma). Let f1, . . . , fm ∈ O|·|[X1, . . . , Xm] be a
system of m polynomials in m variables with coefficients in O|·|. Assume that
there exists a vector b = (b1, . . . , bm) ∈ Om

|·| such that ||(f1(b), . . . , fm(b))|| <
|det(Jb)|2, where Jb = ( ∂fi

∂yj
(b))i,j denotes the Jacobian matrix at b. Then

there is a unique a ∈ Om
|·| satisfying fi(a) = 0 for all 1 ≤ i ≤ m and

||a− b|| = ||J∗b · (f1(b), . . . , fm(b))
tr ||

|det(Jb)|
,

where J∗b denotes the adjoint matrix of Jb.

This version of Hensel’s Lemma is sometimes also called multi-dimensional
Newton’s Lemma. It holds for all henselian fields (note that K is henselian
as it is complete with respect to a rank one valuation). For a proof, see
Theorem 23 and 24 of [Kuh10].

Corollary 3.1.2. Let A and B be contained in Mn(O|·|) and consider the
system of polynomial equations

AY q − Y +B = 0,

where Y = (Yij)i,j≤n consists of n2 indeterminates and Y q := (Y q
ij)i,j. As-

sume that there exists a Y ′ ∈ Mn(O|·|) such that ||A(Y ′)q − Y ′ + B|| < 1.
Then there exists a unique solution Y ∈ Mn(O|·|) of AY q − Y +B = 0 such
that ||Y − Y ′|| = ||A(Y ′)q − Y ′ +B||.

27



28 CHAPTER 3. BOUNDS ON DIFFERENCE GALOIS GROUPS

Proof. This is an immediate consequence of Lemma 3.1.1. Indeed, let frs ∈
O|·|[Yij | 1 ≤ i, j ≤ n], 1 ≤ r, s ≤ n be the system of polynomials defining
AY q−Y +B = 0 and let Ars, Brs be the coordinates of A and B (1 ≤ r, s ≤
n). Then

frs =
n∑

m=1

ArmY
q
ms − Yrs +Brs,

hence ∂frs

∂Yij
= −δ(i,j),(r,s). This means that Jb equals the negative of the

n2 × n2 identity matrix for all b ∈ Mn(K), so Y ′ meets the assumptions of
the element b in Lemma 3.1.1. Also, up to a sign, J∗Y ′ equals the identity
matrix, so the claim follows.

Theorem 3.1.3. Let D =
∑∞

l=0Dlt
l ∈ GLn(O|·|[[t]]) (with Dl ∈ Mn(O|·|))

be such that there exists a δ < 1 with

||Dl|| ≤ δl

for all l ∈ N. Then there exists a fundamental matrix Y ∈ GLn(L) for
D, i.e., Dφq(Y ) = Y . More precisely, Y =

∑∞
l=0 Ylt

l ∈ GLn(O|·|[[t]]) with
Yl ∈ Mn(O|·|) satisfying ||Yl|| ≤ δl for all l ∈ N.

Proof. Observe that Dφq(Y ) = Y is equivalent to

D0Y
q
l +D1Y

q
l−1 + · · ·+DlY

q
0 = Yl for all l ∈ N.

We define (Yl)l≥0 inductively. For l = 0, we need to solve D0φq(Y0) = Y0.
The Lang isogeny (see [Bor91, V.16.4]) asserts that such a Y0 exists in-
side GLn(K), as K is algebraically closed. Then Y q

0 = D−1
0 Y0 holds,

hence O|·|[(Y0)ij | 1 ≤ i ≤ n] is finitely generated as an O|·|-module, since
D0 ∈ GLn(O|·|). Therefore, all entries of Y0 are integral over O|·| (see for
example [AM69, Prop. 5.1]) and as O|·| is integrally closed inside K, we
conclude that ||Y0|| ≤ 1 = δ0 holds. On the other hand, D0φq(Y0) = Y0 im-
plies det(D0) det(Y0)q = det(Y0), hence det(Y0)−1 is integral over O|·| which
implies det(Y0) ∈ O×|·| and therefore Y0 ∈ GLn(O|·|).

Now suppose that Y0, . . . , Yl−1 have been chosen such that for all 1 ≤ i ≤
l− 1, ||Yi|| ≤ δi and D0Y

q
i +D1Y

q
i−1 + · · ·+DiY

q
0 = Yi holds. We claim that

we can find Yl ∈ Mn(O|·|) such that D0Y
q
l +D1Y

q
l−1 + · · ·+DlY

q
0 = Yl and

||Yl|| ≤ δl. Set
A := D0 ∈ Mn(O|·|)

and
B := D1Y

q
l−1 + · · ·+DlY

q
0 ∈ Mn(O|·|).

We have to find a solution to the polynomial system of equations

AY q − Y +B = 0.
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We have

||B|| = ||D1Y
q
l−1 + · · ·+DlY

q
0 ||

≤ max{||DiY
q
l−i|| | 1 ≤ i ≤ l}

≤ max{||Di|| · ||Yl−i||q | 1 ≤ i ≤ l}
≤ max{δi · δ(l−i)q | 1 ≤ i ≤ l}
≤ δl,

where we used that the maximum norm || · || coming from a non-archimedian
absolute value is sub-multiplicative with respect to the matrix multiplica-
tion. Let θ ∈ O|·| be an element such that |θ| ≤ δ and set Y ′l = θl · In, where
In denotes the identity matrix. Then we have

||A(Y ′l )q − Y ′l +B|| ≤ max{||A|| · ||Y ′l ||q, ||Y ′l ||, ||B||} ≤ δl < 1.

Hence by Corollary 3.1.2, there exists an element Yl ∈ Mn(O|·|) such that
AY q

l − Y +B = 0 and ||Yl − Y ′l || = ||A(Y ′l )q − Y ′l +B|| ≤ δl. As ||Y ′l || ≤ δl,
we conclude ||Yl|| ≤ δl.

The resulting matrix Y =
∑∞

l=0 Ylt
l ∈ Mn(K{t}) ⊆ Mn(L) satisfies

Dφq(Y ) = Y and ||Yl|| ≤ δl for all l ∈ N. In particular, Y ∈ Mn(O|·|[[t]])
and we have seen above that Y0 ∈ GLn(O|·|), hence Y ∈ GLn(O|·|[[t]]).

Lemma 3.1.4. a) Let f =
∑m

i=0 fit
i ∈ O|·|[t] be such that f0 ∈ O×|·| and

fi ∈ m for all i > 0. Then there exists a δ < 1 such that |fi| ≤ δi holds
for all i.

b) Let f ∈ O|·|[[t]]× and assume there exist a δ < 1 such that the absolute
value of the i-th coefficients of f is less than or equal to δi for all i.
Then the same is true for the i-th coefficient of f−1.

c) Let f, g ∈ O|·|[[t]] and assume there exist a δ < 1 such that the absolute
value of the i-th coefficients of f and g are both less than or equal to
δi. Then the same is true for the i-th coefficient of fg and f + g.

Proof. a) Set δ = max{|fj | | 1 ≤ j ≤ m}
1
m < 1.

b) Let αi ∈ O be the coefficients of f : f =
∑∞

i=0 αit
i ∈ O[[t]]. Then

α0 ∈ O× and |αi| ≤ δi for all i. Let βi ∈ O denote the coefficients of
f−1. Then |β0| = |α−1

0 | = 1 and for i > 1, we have βiα0+· · ·+β0αi = 0,
hence |βi| ≤ max{|βjαi−j | | 0 ≤ j ≤ i − 1} and the claim follows
inductively.

c) Let βi and γi denote the i-th coefficients of f and g, resp. Then the
i-th coefficient of fg equals β0γi+β1γi−1+· · ·+βiγ0 which is obviously
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bounded from above by δi and the same is true for the i-th coefficient
βi + γi of f + g.

Example 3.1.5. Set k = Fq(s) with the s-adic absolute valuation | · | satis-
fying |s| = 1

2 . Let (K, | · |) be the completion of the algebraic closure of the
completion of (k, | · |).
We take a look at the difference module (k(t)2,Φ) over (k(t), φq) where Φ is
given by Ç

f −1
1 0

å
over k(t), where

f =
2t2 + 2st+ s2 − 2

t2 + st+ 1
.

If we alter f to

f̃ =
2sq−1t2 + 2st+ s2 − 2

sq−1t2 + st+ 1
,

f̃ is contained in O|·|[[t]] and by Lemma 3.1.4 its i-th coefficient can be
bounded from above by δi for a suitable δ < 1 (more precisely, we can set
δ := 1

2 in case q ≥ 3 and δ := 1√
2

for q = 2). Consider a new difference
module with representing matrix Ç

f̃ −1
1 0

å
over k(t). This matrix meets all assumptions of Theorem 3.1.3, so there
exists a fundamental solution matrix inside GLn(L) for this module. By
Theorem 1.2.11, Y generates a Picard-Vessiot extension for this difference
module.

Furthermore, if one considers specializations s 7→ F×q , f and f̃ both spe-
cialize to the same element in Fq(t), as sq−1 7→ 1. In Section 3.3, we will
show how to deduce information on the Galois group scheme of a difference
module from such specializations.

A further class of examples covered by Theorem 3.1.3 is given in the
following Corollary.

Corollary 3.1.6. Suppose we are given a scalar difference equation

n∑
i=0

gi(t)φi
q(x) = 0 (3.1)

with gi ∈ O|·|[t], satisfying:
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a) the constant coefficient of gn has absolute value 1,

b) the constant coefficient of g0 has absolute value 1,

c) For all 0 ≤ i ≤ n, all coefficients of gi, except (possibly) the constant
coefficient, are contained in m.

Then there exist n Fq(t)-linearly independent solutions x in K{t} ⊂ L.

Proof. Note that gn and g0 are invertible inside O|·|[[t]], by assumptions a)
and b). For 0 ≤ i ≤ n− 1, set αi := gi

gn
∈ O|·|[[t]]. Then the solutions to the

given scalar difference equations are exactly the first coordinates of solution
vectors to the linear difference equation φq(Y ) = AY given by

A =


1

1
. . .

1
−α0 −α1 . . . −αn−1

 ∈ Mn(O|·|[[t]]),

as explained in Example 1.1.9. We calculate D := A−1

D =


−α1

α0
−αn−1

α0
− 1

α0

1
1

. . .

1 0

 ∈ Mn(O|·|[[t]]).

We have det(D) = ± 1
α0

= ±gn

g0
which is invertible inside O|·|[[t]], hence

D ∈ GLn(O|·|[[t]]).
Now assumption c) together with Lemma 3.1.4 asserts that for all entries
Dij of D, there exists a δij < 1, such that |(Dij)l| ≤ |δij |l holds for all l ∈ N.
Let δ denote the maximum of all δij . Then ||Dl|| ≤ δl holds for all l ∈ N,
where Dl denotes the coefficient matrix at tl of D. Theorem 3.1.3 then gives
us a fundamental solution matrix Y ∈ GLn(L) for D with entries in K{t}.
Each column of Y is of the form (y, φq(y), . . . , φn−1

q (y))tr with y a solution
to the given scalar difference equation and it follows that these have to be
linear independent over CL = Fq(t).
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3.2 Upper Bounds

Let F be a difference field with field of constants CF and let G be a connected
linear algebraic group defined over CF . For algebraically closed fields of
constants it is well known that the Galois group of a difference module is
contained in G if its representing matrix is contained in G(F ) (see for example
[vdPS03, Prop. 1.31]). In our setup of difference fields with a valuation and
fields of constants Fq(t), we prove such a criterion under certain assumptions
(see Theorem 3.2.4 below). The strategy is to show that there exists a
fundamental matrix contained in G if there exists one in GLn. This implies
that the Galois group scheme is contained in G (see Prop. 1.3.11).
The fundamental matrix inside G is constructed by multiplying the given
fundamental solution matrix Y ∈ GLn (which could be one coming from
Theorem 3.1.3) by a constant matrix C ∈ GLn(CF ) from the right hand
side. The transformation Y 7→ Y C maps a fundamental solution matrix on
a fundamental solution matrix which is contained in the same Picard-Vessiot
extension.

3.2.1 An Upper Bound Theorem

Theorem 3.2.1. (Chevalley, see [Spr09, Theorem 5.5.3])
Let G be a linear algebraic group over the algebraically closed field K and H
a closed subgroup, both defined over the subfield k of K. Then there exists
an m ∈ N and a closed embedding ρ : G → GLm, which is defined over k,
such that there is a non-zero element w ∈ km satisfying

H(K) = {g ∈ G(K) | ρ(g)w ∈ Kw}.

Note that the rational representation given in [Spr09] might not be a closed
embedding itself, but it can be turned into one by taking the direct sum
with an arbitrary closed embedding defined over k.

Lemma 3.2.2. Let λ be contained in O|·|[[t]]×. Then there exists a µ ∈
O|·|[[t]]× satisfying

φq(µ)µ−1 = λ.

Proof. Let λ =
∑∞

i=0 λit
i with λ0 ∈ O×|·|. Set µ =

∑∞
i=0 µit

i and define µi

inductively. We have φq(µ) = λµ if and only if

µq
j = µjλ0 + µj−1λ1 + · · ·+ µ0λj (3.2)

holds for all j ∈ N. As K is algebraically closed, we can fix a µ0 ∈ K×

satisfying µq
0 = λ0µ0. Then |µ0|q−1 = |λ0| = 1, hence µ0 is contained in O×|·|.

Now assume that µ0, . . . , µi−1 ∈ O|·| have been fixed such that Equation
(3.2) holds for all 0 ≤ j ≤ i− 1. Take any µi ∈ K satisfying Equation (3.2)
for j = i. Then µi is integral over O|·| and is thus contained in O|·|.
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Definition 3.2.3. Assume that O|·|/m embeds into K. Then we can extend
the canonical homomorphism κ|·| : O|·| → O|·|/m to a ring homomorphism

κ|·| : O|·|[[t]] → (O|·|/m)[[t]] → K[[t]],

by setting κ|·|(
∑∞

i=0 ait
i) =

∑∞
i=0 κ|·|(ai)ti for any ai ∈ O|·|. Note that κ|·|

commutes with the action of φq since φq is the ordinary Frobenius automor-
phism on K.

In Section 3.1 we constructed fundamental matrices Y ∈ GLn(L) ∩
Mn(K{t}) (where L is as defined in Section 2). We will eventually need
Y to be contained in G(K[[t]]). Of course we still want to stay inside L (to
ensure that we have no new constants) so we are looking for fundamental so-
lution matrices contained in G(L∩K[[t]]). Note that L∩K[[t]] = {f

g | f, g ∈
K{t}, t - g} ) K{t}, for instance (1 − t)−1 is contained in L ∩ K[[t]] but
(1− t) is not invertible inside K{t}.

Theorem 3.2.4. Assume that O|·|/m embeds into K. Let G ≤ GLn be a
connected linear algebraic group defined over Fq. Let further D ∈ G(O|·|[[t]])
be such that κ|·|(D) is contained in G(K) (i.e., no t appears!). Assume that
there exists a matrix Y ∈ GLn(O|·|[[t]])∩Mn(O|·|{t}) satisfying Dφq(Y ) = Y .
Then there exists a Y ′ ∈ G(L ∩ O|·|[[t]]) with Dφq(Y ′) = Y ′.

Proof. For any matrix A ∈ Mn(O|·|[[t]]), we set Ã := κ|·|(A) and similarly
for vectors over O[[t]] and scalars in O[[t]].

By assumption, we have D̃ ∈ G(K). As K is algebraically closed, the Lang
isogeny (see [Bor91, V.16.4]) asserts that there exists an X ∈ G(K) sat-
isfying D̃φq(X) = X. Now Y is contained in GLn(O|·|[[t]]) ∩ Mn(O|·|{t}),
hence Ỹ ∈ GLn(K[[t]]) ∩ Mn(K[t]) ⊆ GLn(K(t)). As κ|·| and φq com-
mute, we have D̃φq(Ỹ ) = Ỹ . By Lemma 1.1.6, C := Ỹ −1X is contained in
GLn(CK(t)) = GLn(Fq(t)).

We set Y ′ := Y C. Clearly, Dφq(Y ′) = Y ′ holds since C has constant entries.
We claim that Y ′ is contained in G(L ∩ O|·|[[t]]). First of all, Y has entries
in O|·|{t} ⊆ L and C has entries in Fq(t) ⊆ L, hence Y C ∈ GLn(L). Also,
Y ∈ GLn(O|·|[[t]]), Ỹ ∈ GLn(K[[t]]) and X ∈ GLn(K), hence C = Ỹ −1X ∈
GLn(K[[t]]). We conclude C ∈ GLn(Fq(t)) ∩ GLn(K[[t]]) ⊆ GLn(Fq[[t]]) ⊆
GLn(O|·|[[t]]), thus Y ′ = Y C is also contained in GLn(O|·|[[t]]). Therefore,
it suffices to show that Y ′ := Y C is contained in G(K((t))).

By the Chevalley Theorem 3.2.1, there exists a closed embedding ρ : GLn →
GLm defined over Fq and a non-zero element w ∈ Fm

q such that

G(K((t))) = {g ∈ GLn(K((t))) | ρ(g)w ∈ K((t)) · w}. (3.3)
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By multiplying w by a suitable element in F×q , we may assume that there
exists a j ≤ m such that wj = 1.
Note that ρ commutes with both φq and κ|·|, as these both act trivially on
Fq. Also note that whenever a matrix A is contained in GLn(O|·|[[t]]), ρ(A)
will be contained in GLm(O|·|[[t]]), as ρ is defined over Fq ⊆ O|·|, hence both
ρ(A) and ρ(A−1) have entries in O|·|[[t]].

We will show that there exist v ∈ Fq[[t]]m and µ ∈ O|·|[[t]]× such that

ρ(Y ′−1)w = µv (3.4)

holds. If this is true, we will have

µ−1ρ(Y ′−1)w = v = κ|·|(v)

= κ|·|(µ
−1ρ(Y ′−1)w)

= µ̃−1ρ(Ỹ ′−1)w̃
= µ̃−1ρ(C̃−1Ỹ −1)w
= µ̃−1ρ(C−1Ỹ −1)w
= µ̃−1ρ(X−1)w,

where we repeatedly used that κ|·| acts trivially on Fq[[t]]. Now X−1 ∈ G(K),
hence

ρ(X−1)w ∈ Kw
by (3.3). Also, µ̃ ∈ K[[t]]× (as µ ∈ O|·|[[t]]×) so we conclude

ρ(Y ′−1)w = µµ̃−1ρ(X−1)w ∈ K[[t]]w

which implies that (Y ′)−1 and hence Y ′ is contained in G(K((t))) (see (3.3)).

It remains to show that there exist v ∈ Fq[[t]]m and µ ∈ O|·|[[t]]× satisfying
Equation (3.4). First note that as D ∈ G(O|·|[[t]]) ⊆ G(K((t))), Equation
(3.3) implies that there exists a λ ∈ K((t)) satisfying

ρ(D)w = λw.

We have ρ(D) ∈ GLm(O|·|[[t]]), hence λ = λwj = (ρ(D)w)j ∈ O|·|[[t]], as
wj = 1 and w ∈ Fm

q ⊆ Om
|·| . Similarly, λ−1 = λ−1wj = (ρ(D)−1w)j ∈ O|·|[[t]],

hence λ is contained in O|·|[[t]]×. We set
v′ := ρ(Y ′−1)w ∈ O|·|[[t]]m and compute

φq(v′) = φq(ρ(Y ′−1)w)
= φq(ρ(Y ′−1))w
= ρ(φq(Y ′−1))w
= ρ(Y ′−1D)w
= ρ(Y ′−1)ρ(D)w
= λv′. (3.5)
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By Lemma 3.2.2, there exists a µ ∈ O|·|[[t]]× satisfying φq(µ)µ−1 = λ. We
define

v := µ−1v′ = µ−1ρ(Y ′−1)w.

Then v ∈ O|·|[[t]]m, and by Equation (3.5), we have

φq(v) = φq(µ−1)φq(v′) = φq(µ−1)λv′ = v,

hence v ∈ Fq[[t]]m and (v, µ) satisfy Equation (3.4) by definition.

Example 3.2.5. Let k, K, f̃ be as in Example 3.1.5. We again consider
the difference module (k(t)2,Φ) over (k(t), φq), where Φ is given by

D :=
Ç
f̃ −1
1 0

å
.

We have seen in Example 3.1.5 that there exists a fundamental solution
matrix Y ∈ GL2(L)∩M2(O|·|{t}) for this difference module. We would like
to use Theorem 3.2.4 to show that there also exists a fundamental matrix
in G := SL2. (Of course, for G = SL2 this could also easily be seen without
using Theorem 3.2.4 - see Theorem 3.2.6).
However, we have O|·|/m ∼= Fq which can be naturally embedded into K. The
determinant of D equals one and we have seen in Example 3.1.5 that f̃ is
contained in O|·|[[t]], hence D ∈ G(O|·|[[t]]). Furthermore, κ|·| maps s 7→ 0,
hence

κ|·|(D) =
Ç
−2 −1
1 0

å
∈ G(Fq),

i.e., no t appears in κ|·|(D). Therefore, all assumptions of Theorem 3.2.4
are satisfied.

3.2.2 An Upper Bound for Linear and Symplectic Groups

For G = SLn and Sp2d, it is quite easy to get an upper bound criterion
for general difference fields and without any further assumptions on the
representing matrix D apart from D ∈ G(F ).

Theorem 3.2.6. Let G be one of the following connected linear algebraic
groups:

a) the special linear group SLn,

b) the symplectic group Sp2d for n = 2d even,

Let (F, φ) be a difference field with field of constants CF and let D ∈ G(F ).
Let further E/F be a difference field such that CE = CF . Assume that there
exists a Y ∈ GLn(E) with Dφq(Y ) = Y . Then there exists a Y ′ ∈ G(E)
satisfying Dφq(Y ′) = Y ′.
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Proof. We have to construct a matrix C ∈ GLn(CF ) with Y ′ := Y C ∈ G(E).
a) Note that Y = Dφ(Y ) implies det(Y ) = det(φ(Y )) = φ(det(Y )), since
D ∈ SLn(F ). Hence det(Y ) is contained in CE = CF and we can define

C =

à 1
det(Y )

1
. . .

1

í
.

b) Recall that we are working with the symplectic group corresponding to

J =



−1

. .
.

−1
1

. .
.

1


,

i.e., Spn = {A ∈ GLn |A
tr
JA = J}. Define B = Y

tr
JY . We use Y = Dφ(Y )

to compute

φ(B) = φ(Y )
tr
Jφ(Y )

= Y
tr
(D−1)

tr
JD−1Y

= Y
tr
JY

= B,

where we used that D−1 is symplectic in the third step. Hence B is con-
tained in GLn(CF ) and B is skew-symmetric, since J is. Multiplying Y from
the right hand side by C transforms B into C

tr
BC. Every skew-symmetric

matrix can be transformed into J by simultaneous row and column transfor-
mations (in other words, there is only one symplectic form), so there exists
a C ∈ GLn(CF ) satisfying C

tr
BC = J , i.e., Y C is contained in Sp2d(E).

Remark 3.2.7. Note that the same kind of argument also works for differ-
ential modules. To wit, let (M,∂) be a differential module over a differential
field F with not necessarily algebraically closed field of constants and denote
the corresponding matrix differential equation by A ∈ Fn×n. Assume that
there exists a fundamental solution matrix Y , i.e., ∂(Y ) = AY . Then

∂(Y
tr
JY ) = ∂(Y )

tr
JY + Y

tr
J∂(Y )

= Y
tr
A

tr
JY + Y

tr
JAY

= Y
tr
(A

tr
J + JA)Y,
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so the matrix Y
tr
JY is constant if A is contained in the Lie-Algebra

{A | Atr
J + JA = 0} corresponding to the symplectic group and the same

kind of transformations Y 7→ Y C as above can be applied to get a symplectic
fundamental solution matrix.
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3.3 Lower Bounds

3.3.1 Setup for Specialization

In addition to the notation established in Chapter 2, we will use the following
notation in this section.

d: a fixed number d ∈ N.

(o, p): a valuation ring o inside k with maximal ideal p such that the
residue field o/p is isomorphic to Fqd . We do not assume o to
be discrete.

Γ: the corresponding ordered abelian group Γ = k×/o×.

(O,P): an extension of (o, p) to k sep.

Γ′: the corresponding ordered abelian group Γ′ := (k sep)×/O×.

ν: the corresponding valuation ν : k sep → Γ′ ∪ {∞}. Note that
ν restricts to ν : k → Γ ∪ {∞}.

κ: the residue homomorphism κ : O → Fq. (We have O/P ∼= Fq,
as we assumed o/p ∼= Fqd .) Note that κ restricts to κ : o → Fqd .

νt: the Gauss extension νt : k(t) → Γ ∪ {∞} of ν, defined by
νt(
∑r

i=0 ait
i) = min{ν(ai) | 0 ≤ i ≤ r} for ai ∈ k and r ∈ N

and extended to fractions of polynomials.

(ot, pt): the valuation ring ot of νt inside k(t) with maximal ideal pt.
The residue class field equals ot/pt

∼= Fqd(t) (see [EP05, Cor.
2.2.2]).

O((t)): the ring of formal Laurent series over O:
O((t)) := {∑∞

i=r ait
i | r ∈ Z, ai ∈ O} = O[[t]][t−1].

Ot: the subring of k sep((t)) generated by ot and O((t)), see Defi-
nition 3.3.6.

(K((t)), φq): we define φq on K((t)) (and any subring thereof) by setting
φq(
∑∞

i=r ait
i) =

∑∞
i=r φq(ai)ti =

∑∞
i=r a

q
i t

i for r ∈ Z and
ai ∈ K. This is compatible with the definition on the subfield
L of K((t)) made in Chapter 2.

Example 3.3.1. Note that o/p ∼= Fqd includes restrictions on k which had
been an arbitrary subfield of K, before. For instance k cannot equal Fq(s)
anymore, since Fq can be embedded into the residue field of any valuation
on Fq(s). In all of our applications, k = Fq(s) with p a place of degree d (in
most cases actually d = 1). However the results from this chapter could also
be applied in more general situations such as:

• k a finite extension of Fq(s) with k ∩ Fq ≤ Fqd.
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• k = Fq(s1, . . . sr) with s1, . . . , sr algebraically independent. We give an
example of a rank r valuation on k with o/p ∼= Fq (i.e., d = 1): Choose
α1, . . . , αr ∈ Fq and consider

ν : Fq(s1, . . . , sl) → Zl ∪ {∞}, 0 6= f 7→ (v1(f), . . . , vr(f)),

with Zl ordered lexicographically and ν1(f), . . . , νr(f) defined as fol-
lows. The first component ν1(f) is the (s1 − α1)-adic valuation of
f . Let o1 = Fq[s1, . . . , sr](s1−α1) be the corresponding discrete valua-
tion ring in k with valuation ideal p1 = (s1 − α1)o1. Then we have
k1 := o1/p1

∼= Fq(s2, . . . , sl) with projection κ1 : o1 → k1. We can now
define ν2(f) to be the (s2 − α2)-adic valuation of

κ1(f · (s1 − α1)−ν1(f))

inside k1. Let o2 and p2 be the corresponding valuation ring and val-
uation ideal inside k1. Then k2 := o2/p2

∼= Fq(s3, . . . , sl). The compo-
nents ν3, . . . , νl are defined inductively in the same way. Let o be the
(non-discrete) valuation ring inside k that corresponds to ν and p the
valuation ideal. By construction we have o/p ∼= Fq.

3.3.2 Specializing Fundamental Matrices

We start with a Lemma on the separability of solutions to systems of alge-
braic equations.

Lemma 3.3.2. Let n ∈ N and let K1 ⊆ K2 be fields. Consider a system

Ayq + y + a = 0

of polynomial equations over K1 for an A = (Aij) ∈ GLn(K1) and a =
(a1, . . . , an)

tr
contained in Kn

1 , where y = (y1, . . . , yn)
tr

consists of n in-
determinates. Let y ∈ Kn

2 be a solution to Ayq + y + a = 0. Then all
coordinates of y are separable algebraic over K1.

Proof. Let f1, . . . , fn be the n polynomial equations in y1, . . . , yn given by
Ayq + y + a = 0. Then we have

∂fi

∂yj
=
∂(
∑n

i=1Aijy
q
j + yi + ai)

∂yj
= δij . (3.6)

Hence the Jacobian matrix ( ∂fi
∂yj

)i,j is constant and equals the identity ma-
trix. It is therefore everywhere invertible and Proposition VIII.5.3. in
[Lan02, Part II] implies that all solutions are separable and algebraic over
K1.

The following proposition allows us to specialize a fundamental matrix
Y in a compatible and well-defined way:
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Proposition 3.3.3. Let (M,Φ) be an n-dimensional φq-difference module
over k(t) with representing matrix D ∈ GLn(k(t)) ⊆ GLn(k((t))) with re-
spect to a fixed basis of M . Let further k̃ be a field containing k. Assume
that there exists a fundamental matrix Y ∈ GLn(k̃((t))) for M . Then the
following holds:

a) If D is contained in GLn(k[[t]]), then Y is contained in GLn(k sep((t))).

b) If D is contained in GLn(o[[t]]), then Y is contained in GLn(O((t))).

c) If D ∈ GLn(o[[t]]) and if Y ∈ GLn(k̃[[t]]), then Y is contained in
GLn(O[[t]]).

Proof. We can write D =
∑∞

i=0Dit
i with

a): D0 ∈ GLn(k) and Di ∈ Mn(k) for all i > 0

b), c): D0 ∈ GLn(o) and Di ∈ Mn(o) for all i > 0.

and Y =
∑∞

i=l Yit
i with

a), b): l ∈ Z, all Yi ∈ Mn(k̃) and Yl 6= 0.

c): l = 0, Y0 ∈ GLn(k̃) and all Yi ∈ Mn(k̃) for i > 0.

Now Y is a fundamental matrix for M , hence Dφq(Y ) = Y holds, which
implies

(D0 +D1t+ . . . )(Y q
l t

l + Y q
l+1t

l+1 + . . . ) = (Ylt
l + Yl+1t

l+1 + . . . ), (3.7)

where Y q
i denotes the coordinate-wise application of the ordinary Frobenius

homomorphism.
Comparing the coefficients of the lowest term tl in (3.7), we get

D0Y
q
l = Yl.

We conclude that the entries of all columns of Yl are separable algebraic over
k by Lemma 3.3.2, hence Yl ∈ Mn(k sep). In case b) and c), we moreover have
D0 ∈ GLn(o). Hence we have Y q

l = D−1
0 Yl and it follows that o[(Yl)i,j | 1 ≤

i, j ≤ n] is finitely generated as an o-module. Therefore, all entries of Yl

are integral over o (see for Example [AM69, Prop. 5.1]). As they are also
contained in k sep, they are contained in the integral closure of o inside k sep,
which is contained in O. So all entries of Yl are contained in O, in these
cases.
We can now use induction on i to see that Yi has entries in k

sep (and
moreover in O, in case b), c)) for all i > l. For an i ≥ l, we evaluate the
coefficients of ti+1 in (3.7) to get the following equation:

D0Y
q
i+1 +D1Y

q
i + · · ·+Di+1−lY

q
l = Yi+1. (3.8)
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By induction hypothesis, Yl, . . . , Yi have entries in k sep and so Lemma 3.3.2
(applied to K1 = k

sep and A = −D0) implies Yi+1 ∈ Mn(k sep). Moreover, in
case b) and c), Yl, . . . , Yi have entries in O by induction and so we multiply
Equation (3.8) by D−1

0 ∈ GLn(o) ⊆ GLn(O) to get an equation of the form

Y q
i+1 = D−1

0 Yi+1 + Ã, (3.9)

for Ã = −D−1
0 (D1Y

q
i + · · ·+Di+1−lY

q
l ) ∈ Mn(O). As above, it follows that

Yi+1 is contained in Mn(O). Altogether, we proved that Y is contained in
GLn(k sep((t))) and moreover Y ∈ GLn(k sep((t))) ∩ Mn(O((t))) in case b)
and Y ∈ GLn(k sep[[t]]) ∩Mn(O[[t]]) in case c).

For the cases b) and c), resp., it remains to show that det(Y ) ∈ O((t))×

and det(Y ) ∈ O[[t]]×, resp. We set y = det(Y )−1 and d = det(D)−1. Then
the equality Y = Dφq(Y ) implies

y = dφq(y).

The one-dimensional φq-difference module over k(t) given by d ∈ GL1(k(t))
itself conforms to all assumptions of this Proposition. In fact, d = det(D)−1

is contained in o[[t]]× = GL1(o[[t]]) as D is contained in GLn(o[[t]]) and y
is a fundamental matrix contained in k̃((t))× = GL1(k̃((t))). In case c) we
moreover have y ∈ k̃[[t]]× = GL1(k̃[[t]]), as Y is contained in GLn(k̃[[t]])).
By what we have proven above, we know that the fundamental matrix y =
det(Y )−1 is contained in M1(O((t))) = O((t)) in case b) and y = det(Y )−1 is
contained in M1(O[[t]]) = O[[t]] in case c). Thus det(Y ) = y−1 is invertible
inside O((t)) in case b) and det(Y ) = y−1 is invertible inside O[[t]] in case
c).

Lemma 3.3.4. The following holds:

a) ot and O((t)) are φq-stable.

b) ot ⊆ Quot(o[t]) ⊆ Quot(O[[t]]) ⊆ k
sep((t)).

c) k(t) ∩ o[[t]] ⊆ ot.

d) GLn(k(t)) ∩GLn(o[[t]]) ⊆ GLn(ot).

Proof. a) Since φq is just the ordinary Frobenius map on o ⊆ k, it follows
that ν(φq(a)) = qν(a) for all a ∈ o, and thus also νt(φq(x)) = qνt(x) for
all x ∈ ot. In particular, ot is stable under φq. Similarly O is φq-stable,
so O((t)) is also φq-stable, as φq acts coefficient-wise on O((t)).

b) The valuation ring ot equals®∑n
i=0 ait

i∑m
i=0 bit

i

∣∣∣∣∣ ai, bi ∈ k : min{ν(ai) | i ≤ n} ≥ min{ν(bi) | i ≤ m}
´
.
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Let
∑n

i=0
ait

i∑m
i=0 biti

be such an element. Let j ≤ m be such that ν(bj) is

minimal among ν(b1), . . . , ν(bm). Dividing both numerator and de-
nominator by bj , we obtain that ot equals®∑n

i=0 ait
i∑m

i=0 bit
i

∣∣∣∣∣ ai, bi ∈ o : min{ν(ai) | i ≤ n} ≥ min{ν(bi) | i ≤ m}
´
.

Thus ot ⊆ Quot(o[t]) and the other inclusions are immediate.

c) Now let
∑n

i=0
ait

i∑m
i=0 biti

be an element in k(t) ∩ o[[t]], i.e., there exist λi ∈ o

such that
∑n

i=0
ait

i∑m
i=0 biti

=
∑∞

i=0 λit
i. Let i ≤ n. Then ai = λib0 + λi−1b1 +

· · ·+λ0bi, where we set bj = 0 for j > m. Since all λi are contained in o,
we conclude that ν(ai) ≥ min{ν(bj) | 0 ≤ j ≤ i} = min{ν(bj) | j ≤ m}.
Hence min{ν(ai) | i ≤ n} ≥ min{ν(bj) | j ≤ m} and so o[[t]]∩k(t) ⊆ ot

holds.

d) follows from the previous point, as k(t) ∩ o[[t]] ⊆ ot implies
k(t)× ∩ o[[t]]× ⊆ o×t .

Remark 3.3.5. Note that ot is not contained in O((t)). Indeed, 1
a+t is

contained in ot but not in O((t)), if a ∈ p = o\o×.

Definition 3.3.6. From now on, we let Ot be the subring of k sep((t)) gen-
erated by O((t))∪ot. Since both O((t)) and ot are φq-stable inside k sep((t)),
Ot is φq-stable, as well. Also, note that Fq(t) ⊆ O((t)) ⊆ Ot.

Proposition 3.3.7. There exists a homomorphism

κ : Ot → Fq((t))

extending the residue class homomorphism κ : O → Fq such that the following
holds:

a) κ commutes with φq.

b) κ restricted to O((t)) equals the coefficient-wise application of the
residue map O → O/P ∼= Fq to a Laurent series over O.

c) κ restricts to the residue map ot → ot/pt
∼= Fqd(t) on ot.

d) κ induces specializations

• κ(Y ) ∈ GLn(Fq((t))) of Y ∈ GLn(O((t)))

• κ(Y ) ∈ GLn(Fq[[t]]) of Y ∈ GLn(O[[t]])

• κ(D) ∈ GLn(Fqd [t](t)) of D ∈ GLn(k(t) ∩ o[[t]]).
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Proof. As the residue class homomorphism κ : O → Fq is a homomorphism,
it commutes with φq which is the ordinary Frobenius homomorphism on O.
We can extend κ to a ring homomorphism

κ : O((t)) → Fq((t))

by applying κ to the coefficients of the Laurent series over O. Since φq acts
on O coefficient-wise as well, we find that κ commutes with φq on O((t)).

On ot, we let κ̃ be the residue map ot → ot/pt
∼= Fqd(t) on ot. We have

seen in the proof of Lemma 3.3.4 that an element in ot can be written
as x =

∑n
i=0

ait
i∑m

i=0 biti
for some ai, bi ∈ o such that min{ν(ai) | i ≤ n} ≥

min{ν(bi) | i ≤ m}. Now κ̃|o = κ|o and thus

κ̃(x) =
∑n

i=0 κ̃(ai)ti∑m
i=0 κ̃(bi)ti

=
∑n

i=0 κ(ai)ti∑m
i=0 κ(bi)ti

, (3.10)

and we conclude that κ̃ commutes with φq. It is also immediate from Equa-
tion (3.10), that κ and κ̃ agree on O((t))∩ ot and that we can glue κ and κ̃
to a homomorphism on Ot satisfying a),b) and c).

For the last part, note that κ restricts to o[[t]] → Fqd [[t]] and thus also
to o[[t]]× → Fqd [[t]]×. If Y ∈ GLn(O((t))) (or Y ∈ GLn(O[[t]])) and
D ∈ GLn(o[[t]]), we get well-defined matrices κ(Y ) ∈ GLn(Fq((t))) (or
κ(Y ) ∈ GLn(Fq[[t]])) and κ(D) ∈ GLn(Fqd [[t]]), by applying κ coordinate-
wise.

Remark 3.3.8. In Section 3.1 we constructed fundamental matrices Y ∈
GLn(L) ⊆ GLn(K((t))). If we set k̃ = K, then Y ∈ GLn(k̃((t))) and also
Y C ∈ GLn(k̃((t))) for all C ∈ GLn(Fq(t)) (C will be chosen such that Y C is
contained in a given group, see Chapter 3.2). If the corresponding difference
module (M,Φ) is given by a representing matrix D ∈ GLn(k(t) ∩ o[[t]]), we
can thus apply Proposition 3.3.3 and 3.3.7 to specialize Y C.

3.3.3 A Lower Bound Theorem

The Chevalley Theorem 3.2.1 has played an important role in solving the
inverse problem in differential Galois theory (with algebraically closed con-
stants). It has been used in characteristic zero (see [MS96]) as well as in the
iterative differential case (see [Mat01]).
We will apply Theorem 3.2.1 to difference Galois group schemes H and get
the following lemma as a consequence for the module structure:

Lemma 3.3.9. Let (M,Φ) be an m-dimensional difference module over a
difference field (F, φ), with Picard-Vessiot extension E, fundamental matrix
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Y ∈ GLm(E) and Galois group scheme H ≤ GLm. Suppose that there
exists a 0 6= w ∈ Cm

F that spans an H-stable line, i.e., for any CF -algebra
S, we have H(S) · w ⊆ S · w. Then there exists an α ∈ E× such that
v := αY ·w ∈ Fm ∼= M and N := F ·v defines a Φ-stable submodule of M .

Proof. Note that M has been identified with Fm by fixing a basis.
Let y1, . . . , ym ∈ Em be the columns of Y . Then SolΦE(M) is spanned by
y1, . . . , ym as a CF -vector space and Y ·w is contained in SolΦE(M) ≤ Em.
We fix an i ≤ m such that the i-th coordinate of Y ·w is non-zero and
we set α = (Y ·w)−1

i ∈ E×. We first show that v := αY ·w is contained
in Fm. Let R = F [Y, Y −1] ⊆ E be the Picard-Vessiot ring inside E (see
Theorem 1.2.11). Let S be any CF -algebra and let σ be an element in
Autφ(R ⊗CF

S, F ⊗CF
S). We have H(S) · w ⊆ S · w, hence there exists a

λσ ∈ S such that Y −1σ(Y ) ·w = λσw, by Proposition 1.3.11. For any j ≤ m,
(Y ·w)j is contained in R ⊆ R⊗CF

S and we have σ((Y ·w)j) = (σ(Y )w)j =
λσ · (Y ·w)j . Therefore,

σ((Y w)j)(Y w)i = λσ(Y w)j(Y w)i = (Y w)jσ((Y w)i)

holds for all j ≤ m. The j-th coordinate of v equals vj = (Y w)j

(Y w)i
, so Propo-

sition 1.3.13 implies that vj is contained in F .
To see that Φ(N) ⊆ N holds, recall that Y w is a solution. Thus Φ(Y w) =
Y w holds, where D ∈ GLm(F ) denotes the representing matrix of M . Hence
Φ(v) = φ(α)Φ(Y w) = φ(α)α−1v. Now φ(α)α−1 = (Y w)i

φ((Y w)i)
and another ap-

plication of Proposition 1.3.11 yields that φ(α)α−1 is contained in F , hence
Φ(v) is contained in Fv = N .

For difference modules over (k, φq) (so-called finite Frobenius modules)
there exists a lower bound criterion due to Matzat (see Theorem 4.5. in
[Mat04]), leading to finite Galois extensions over k. This criterion asserts
that conjugates of specializations of certain twists of the representing matrix
are contained in the Galois group. The following theorem generalizes this
criterion to difference modules over (k(t), φq).

Theorem 3.3.10. Let G ≤ GLn be a linear algebraic group defined over
Fq(t). Let (M,Φ) be an n-dimensional φq-module over k(t) with representing
matrix D ∈ G(k(t)∩ o[[t]]) and let k̃ be a field containing k sep. Assume that
there exists a fundamental matrix Y ∈ G(k̃((t))) for M generating a separa-
ble Picard-Vessiot extension E/k(t) of M . Let H ≤ G be the Galois group-
scheme of M corresponding to the Picard-Vessiot ring R := k(t)[Y, Y −1] ⊆ E
(see Theorem 1.2.11). Then H(Fq((t))) contains a G(Fq((t)))-conjugate of
κ(Dφq(D) . . . φqd−1(D)).
(More precisely, the conjugating matrix can be chosen as κ(Y ) ∈ G(Fq((t)))).

Proof. We abbreviate F := k(t) throughout this proof.
First of all, note that Y is actually contained in G(k sep((t))), by Proposition
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3.3.3, hence the Picard-Vessiot extension E, which is generated over F by
the entries of Y , is contained in k sep((t)).

By Theorem 1.3.10, H is a linear algebraic group and it is a subgroup of
G by Proposition 1.3.11. We apply Theorem 3.2.1 to G and get a closed
embedding

ρ : G → GLm

defined over Fq(t) and a non-zero w ∈ Fq(t)m such that H(Fq(t)) = {g ∈
G(Fq(t)) | ρ(g)w ∈ Fq(t) · w} holds. The stabilizer of the line spanned by w
defines a closed subvariety of G defined over Fq(t) and it follows that

H(S) = {g ∈ G(S) | ρ(g)w ∈ S · w} (3.11)

also holds for all Fq(t)-algebras S. We now blow up M to an m-dimensional
version M̃ in order to be able to apply Lemma 3.3.9. Let M̃ be an m-
dimensional difference module over F such that its representing matrix with
respect to a fixed basis is given by ρ(D) ∈ GLm(F ). Then Ỹ := ρ(Y ) is a
fundamental solution matrix for M̃ , since ρ is defined over Fq(t) and thus
φq(ρ(Y )) = ρ(φq(Y )). All entries of Ỹ are contained in R and furthermore,
the entries of Y are contained in F [Ỹ , Ỹ −1], since ρ is a closed embedding
defined over Fq(t) ⊆ F . Hence R = F [Ỹ , Ỹ −1] is also Picard-Vessiot ring
for M̃ and the Galois group scheme GM̃,R is ρ(H) ≤ GLm in its natural
representation as given in Proposition 1.3.11. By construction, w spans a
GM̃,R-stable line (see Equation (3.11)) and thus there exists an α ∈ E× such
that

v = αỸ w (3.12)

is contained in Fm and N = Fv is a Φ-submodule of M̃ , by Lemma 3.3.9.
This means that there exists a λ ∈ F such that ρ(D)φq(v) = λv.
The third part of Lemma 3.3.4 asserts that D is contained in GLn(ot). Since
ρ is defined over Fq(t) ⊆ ot, ρ(D) and ρ(D−1) both have coefficients in ot

and thus ρ(D) is contained in GLm(ot).
Now fix an i ≤ m such that the i-th coordinate vi of v has minimal valuation
among all coordinates of v (with respect to νt and the order on Γ). Recall
that v 6= 0, thus vi 6= 0 and we can define v′ = 1

vi
v. Then v′ = (v′1, . . . , v

′
m)

is contained in om
t with v′i = 1. Note that ρ(D) · φq(v′) = φq(vi)−1viλv

′, so
we define λ′ = φq(vi)−1viλ ∈ F and we get

ρ(D)φq(v′) = λ′v′. (3.13)

Thus λ′ = λ′ · v′i = (ρ(D)φq(v′))i is contained in ot since ot is φq-stable (see
Lemma 3.3.4). Also, (λ′)−1 = (λ′)−1φq(v′)i = (ρ(D−1)v′)i is contained in
ot, so λ′ is in fact contained in o×t . Overall, we got ρ(D) ∈ GLm(ot), v′ ∈ om

t

and λ′ ∈ o×t , hence we may specialize them to κ(ρ(D)) ∈ GLm(Fqd(t)),
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κ(v′) ∈ Fqd(t)m and κ(λ′) ∈ Fqd(t)×, by Proposition 3.3.7. We apply κ to
both sides of Equation (3.13) coordinate-wise:

κ(ρ(D))κ(φq(v′)) = κ(λ′)κ(v′). (3.14)

We denote from now on the (coordinate-wise) application of κ to a matrix
A with entries in Ot by A and similarly for vectors with entries in Ot and
scalars in Ot. Hence Equation (3.14) translates to

ρ(D)φq(v′) = λ′ · v′, (3.15)

where we used that κ and φq commute (see Proposition 3.3.7) to get φq(v′) =
φq(v′). Note that ρ commutes with the coordinate-wise application of κ to
an element in G(Ot), since ρ is defined over Fq(t) and κ restricts to the
identity on Fq(t). In particular, ρ(D) = ρ(D) holds and we get

ρ(D) · φq(v′) = λ′ · v′.

Inductively, we get

ρ(D)φq(ρ(D)) · · ·φd−1(ρ(D)) · v′ = λ′φq(λ′) · · ·φqd−1(λ′) · v′, (3.16)

where we used φqd(v′) = v′. We set µ = α
vi
∈ E ⊆ k

sep((t)) and get

v′ = µ · ρ(Y ) · w (3.17)

(see Equation (3.12)). Proposition 3.3.3 implies that Y has entries in O((t)),
hence ρ(Y ) is contained in GLm(O((t))) ⊆ GLm(Ot), as ρ is defined over
Fq(t) ⊆ O((t)). Recall that v′ ∈ om

t ⊆ Om
t , v′i = 1 and 0 6= w ∈ Fq(t)m holds,

hence there exists a j ≤ m such that wj ∈ Fq(t)× ⊆ O×t . Then Equation
(3.17) implies

1 = v′i = µ · (ρ(Y ) · w)i

and
(ρ(Y )−1 · v′)j = µ · wj

and we deduce that µ is contained in O×t . It can thus be specialized to an
element µ = κ(µ) ∈ Fq((t))×. We may apply κ to both sides of Equation
(3.17) to get

v′ = µ · ρ(Y ) · w = µ · ρ(Y ) · w. (3.18)

(Note that at this point we applied κ simultaneously to elements in O((t))
and ot which is why we had to construct κ on the somewhat peculiar ring
Ot in Proposition 3.3.7.)

Abbreviate D̂ = Dφq(D) · · ·φqd−1(D) and λ̂′ = λ′φq(λ′) · · ·φqd−1(λ′). Then
Equation (3.16) translates to

ρ(D̂)v′ = λ̂′v′. (3.19)
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We now consider Y −1 · D̂ · Y = κ(Y −1D̂Y ) which is contained in G(Fq((t))),
since G is defined over Fq(t) and κ acts trivially on Fq(t). We use Equation
(3.18) and (3.19) to compute

ρ(Y −1 · D̂ · Y ) · w = ρ(Y −1)ρ(D̂)ρ(Y )w

= µ−1ρ(Y −1)ρ(D̂)v′

= µ−1λ̂′ρ(Y −1)v′

= λ̂′ · w.

It follows that Y −1 · D̂ ·Y is contained in H(Fq((t))) (see (3.11)). It remains
to show that Y −1 · D̂ · Y has entries in Fq((t)). To see this, recall that
Dφq(Y ) = Y holds, hence Dφq(Y ) = Y and φq(Y )−1 = Y

−1 · D. We
compute

φq(Y
−1
D̂Y ) = φq(Y

−1)φq(D) · · ·φqd(D)φq(Y )

= φq(Y
−1)φq(D) · · ·φqd−1(D)Dφq(Y )

= Y
−1
Dφq(D) · · ·φqd−1(D)Y

= Y
−1 · D̂ · Y ,

where we used that D ∈ GLn(Fqd(t)). Hence Y
−1 · D̂ · Y has entries in

Fq((t))φq = Fq((t)).

We immediately get the following power series version of Theorem 3.3.10
under the further assumption that Y is contained in G(k̃[[t]]).

Corollary 3.3.11. Let G ≤ GLn be a linear algebraic group defined over
Fq(t). Let (M,Φ) be an n-dimensional φq-module over k(t) with repre-
senting matrix D ∈ G(k(t) ∩ o[[t]]) and let k̃ be a field containing k

sep.
Assume that there exists a fundamental matrix Y ∈ G(k̃[[t]]) for M gen-
erating a separable Picard-Vessiot extension E/k(t) of M . Let H ≤ G
be the Galois group-scheme of M corresponding to the Picard-Vessiot ring
R := k(t)[Y, Y −1] ⊆ E. Then H(Fq[[t]]) contains a G(Fq[[t]])-conjugate of
κ(Dφq(D) . . . φqd−1(D)).
(More precisely, the conjugating matrix inside G(Fq[[t]]) can be chosen as
κ(Y ).)

Proof. It follows from the third part of Proposition 3.3.7 (together with
Proposition 3.3.3) that Y = κ(Y ) is contained in GLn(Fq[[t]]). On the other
hand, Y is still contained in G, since G is defined over Fq(t). Hence Y is
contained in G(Fq[[t]]). Also, D is contained in GLn(o[[t]]), hence D = κ(D)
is contained in GLn(Fqd [[t]]) and we just proved in Theorem 3.3.10 that

H(Fq((t))) contains Y −1 · D̂ · Y , which has entries in Fq((t))∩ Fq[[t]] = Fq[[t]]
and is a G(Fq[[t]]) conjugate of D̂ = κ(Dφq(D) . . . φqd−1(D)).
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Example 3.3.12. If k = Fq(s) and p = (s − α) is a finite place of degree
1 (α ∈ Fq), then the Galois group scheme H contains a conjugate of the
specialized matrix Dα obtained by replacing each s by α.



Chapter 4

Generating Reductive
Groups

Using the lower bound criterion Corollary 3.3.11, we obtain elements con-
tained in the Galois group up to conjugacy over Fq[[t]]. Therefore, we need
to find generators such that any conjugates thereof still generate the given
group G that we would like to realize as difference Galois group. For the
classical groups, we make use of known results on generators of the finite
parts G(Fq) due to Malle, Saxl and Weigel ([MSW94]).

4.1 Finite Groups of Lie Type

We start with some basic facts on maximal tori in the finite parts of a linear
algebraic group. Let G be a linear algebraic group defined over a finite field
Fq. Then G(Fq) is a so-called finite group of Lie type. Let further T be a
maximal torus of G that is defined over Fq. Then T (Fq) is called a maximal
torus of G(Fq). Two maximal tori T (Fq) and T0(Fq) in G(Fq) are usually not
conjugate but we can use the fact that T and T0 are conjugate over G(Fq)
to identify T (Fq) with some subgroup of T0(Fq). We think of T0 as a fixed,
well known maximal torus such as the diagonal torus in GLn.

Proposition 4.1.1. Let G be a linear algebraic group defined over Fq and let
T0 be a fixed maximal torus defined over Fq. Then a maximal torus T = T g

0

for a g ∈ G(Fq) is defined over Fq if and only if w := gφq(g)−1 is contained
in the normalizer NG(T0) of T0. In this case, we have

T (Fq) = {t0 ∈ T0(Fq) | φq(t0) = tw0 }g.

Proof. All of this is well known. However, for the convenience of the reader,
we state the proof:
As g is contained in G(Fq) and Fq is perfect, T is defined over the separable

49
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closure Fq of Fq. Let Γ be the absolute Galois group of Fq/Fq. Then T is de-
fined over Fq if and only if T (Fq) is Γ-stable (see [Bor91, AG.14.4]). Since Γ is
generated by the Frobenius automorphism φq, we know that T is defined over
Fq if and only if φq(T (Fq)) = T (Fq) holds. Now φq(T (Fq)) = φq(T0(Fq))φq(g)

and φq(T0(Fq)) = T0(Fq), as T0 is defined over Fq. We conclude that T is
defined over Fq if and only if

T0(Fq)φq(g) = T0(Fq)g

holds which is the case if and only if w = gφq(g)−1 normalizes T0. For the
second part of the statement, we compute

T (Fq) = {tg0 | t0 ∈ T0(Fq), φq(t
g
0) = tg0}

= {tg0 | t0 ∈ T0(Fq), φq(t0) = t
gφq(g−1)
0 }

= {t0 ∈ T0(Fq) | φq(t0) = tw0 }g.

Example 4.1.2. Let G = SL2 and let T0 be the diagonal torus. Set

w =
Ç

0 1
−1 0

å
.

The Lang-isogeny (see [Bor91, V.16.4]) assures that there exists a g ∈ G(Fq)
such that gφq(g)−1 = w holds. As w normalizes T0, we have that T = T g

0 is
defined over Fq. Let t0 = diag(λ, λ−1) be an element in T0(Fq). Then tg0 is
contained in T (Fq) if and only if

diag(λq, λ−q) = φq(t0) = tw0 = diag(λ−1, λ)

holds, that is, if and only if λ is a (q+1)-th root of unity. We conclude that
T (Fq) is cyclic of order q + 1, generated by (diag(ζ, ζ−1))g for a primitive
(q + 1)-th root of unity ζ ∈ Fq2.

A semisimple element g in a linear algebraic group G of rank r is called
regular if its centralizer is of minimal dimension (that is, of dimension r).
This means that the connected component of the centralizer consists only
of the maximal torus that g is contained in (which in this case is unique).

G n1(q) n2(q)
SLn

qn−1
q−1 qn−1 − 1

Sp2d qd + 1 qd − 1
SO2d+1 qd + 1 qd − 1
SO2d, d odd (qd−1 + 1)(q + 1) qd − 1
SO2d, d even (qd−1 + 1)(q + 1) (qd/2 + (−1)d/2)2

Table 4.1: Definition of n1(q) and n2(q)
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In [MSW94] it is shown that any finite group of Lie type can be generated
by any two regular elements that are contained in maximal tori of prescribed
order. As the order is invariant under conjugation over G(Fq), any G(Fq)-
conjugates of these elements still generate G(Fq). For the groups that are of
interest to us, we collect these prescribed orders ni(q) in Table 4.1.

Theorem 4.1.3 (Malle, Saxl, Weigel). Let G be one of the following groups

• SLn, n ≥ 3

• Sp2d, d ≥ 2 such that (d, q) 6= (2, 2)

• SOn, n ≥ 7

and assume that T1 and T2 are maximal tori of G defined over Fq such that
|Ti(Fq)| = ni(q) holds for i = 1, 2, where ni is as defined above. Then for
any elements A1, A2 ∈ G(Fq) we have

< T1(Fq)A1 , T2(Fq)A2 >= G(Fq).

Proof. In [MSW94], the authors prove that any finite group of Lie type can
be generated by three involutions. In the course of the proof, they show
that for any two regular elements x1 and x2 contained in T1(Fq) and T2(Fq),
resp., the conjugates xA1

1 and xA2
2 generate G(Fq). This clearly implies that

T1(Fq)A1 and T2(Fq)A2 generate G(Fq), as T1(Fq) and T2(Fq) always contain
regular elements. (See Proposition 4.1.8 and its proof for explicit regular
elements x1 ∈ T1(Fq) and x2 ∈ T2(Fq).)

We now give further instructions on how to find the desired results in
[MSW94]. Starting on page 96, the authors treat each group separately.
To be precise, for G = SLn and G = Sp2d they prove the statement for
the simple counterpart G = G/Z(G) of G with maximal tori T1 = T1/Z(G)
and T2 = T2/Z(G). But as Z(G) is contained in T1(Fq)A1 , this implies that
< T1(Fq)A1 , T2(Fq)A2 >= G(Fq). Now for G = SOn, they consider the com-
mutator subgroups G(Fq)′ with maximal tori Ti(Fq)′ := Ti(Fq)∩G(Fq)′. Then
they prove the statement for the simple counterpart of G(Fq)′ which in turn
implies that any G(Fq)′-conjugates of T1(Fq)′ and T2(Fq)′ generate G(Fq)′. As
G(Fq)′ is normal in G(Fq), this is in fact also true for any G(Fq)-conjugate
of T1(Fq)′ and T2(Fq)′ (as these are maximal tori contained in G(Fq)′ of the
same order). It follows that < T1(Fq)A1 , T2(Fq)A2 > contains G(Fq)′ which is
a normal subgroup of G(Fq) of index at most two. It is therefore sufficient
to show that < T1(Fq)A1 , T2(Fq)A2 > is bigger than G(Fq)′ if G(Fq) 6= G(Fq)′.
Assume that < T1(Fq)A1 , T2(Fq)A2 >= G(Fq)′ ( G(Fq) holds. This implies
T1(Fq) = T1(Fq)′ which can not be the case by Table I in [MSW94].

Remark 4.1.4. Note that the Dynkin diagram of SO5 (type B2) is the same
as that of Sp4 (type C2) and that of SO6 (type D3) is the same as that of
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SL4 (type A3). Therefore, the restriction n ≥ 7 for SOn is not essential.
The group SL2 will be treated separately in Chapter 5.4.

Before we can construct the maximal tori of order n1(q) and n2(q)
we need to examine the normalizer of the fixed maximal torus T0 of G ∈
{SLn, Sp2d,SOn}. For these groups, we let T0 be the torus consisting of the
diagonal matrices contained in G. It is well known that its normalizer is the
group of all monomial matrices that are contained in G.

Lemma 4.1.5. Let σ ∈ Sn be a permutation.

a) Let n = 2d be even and G = Sp2d. Then there exists a monomial
matrix A = (Aij) ∈ G(Fq) corresponding to σ (i.e., Aij is non-zero iff
i = σ(j)) if and only if

σ(n+ 1− i) = n+ 1− σ(i)

holds for all i ≤ n.

b) Let n = 2d+ 1 be odd and G = SO2d+1. Then there exists a monomial
matrix A ∈ G(Fq) corresponding to σ if and only if

σ(n+ 1− i) = n+ 1− σ(i)

holds for all i ≤ n.

c) Let n = 2d be even and G = SO2d. Then there exists a monomial
matrix A ∈ G(Fq) corresponding to σ if and only if the sign of σ equals
one and

σ(n+ 1− i) = n+ 1− σ(i)

holds for all i ≤ n.

Proof. In all three cases, let τ = (1, n)(2, n − 2) · · · (d, n − d). Recall that
the matrices J defining the symplectic and orthogonal forms were chosen
monomial with corresponding permutation τ . If A is monomial with cor-
responding permutation σ and A

tr
JA = J then σ−1τσ = τ . We conclude

that σ(n + 1 − i) = σ(τ(i)) = τ(σ(i)) = n + 1 − σ(i) for all 1 ≤ i ≤ n is a
necessary condition.

a) Let σ ∈ Sn be a permutation such that σ(n + 1 − i) = n + 1 −
σ(i) for all i ≤ n and let B ∈ GLn(Fq) be the permutation matrix
corresponding to σ, i.e., Bij = δσ(j),i for 1 ≤ i, j ≤ 2d. We set A =
B · diag(x1, . . . , xn), where we will later specify xi = ±1 in such a way
that A becomes symplectic. Recall that Jij = −δ2d+1−i,j for 1 ≤ i ≤ d
and Jij = δ2d+1−i,j for d+ 1 ≤ i ≤ 2d. Hence (JA)ij = −A2d+1−i,j =



4.1. FINITE GROUPS OF LIE TYPE 53

−xjδσ(2d+1−j),i if i ≤ d and (JA)ij = xjδσ(2d+1−j),i, otherwise. We
compute

(A
tr
JA)ij = (A

tr
)i,σ(i)(JA)σ(i),j = Aσ(i),i(JA)σ(i),j

=
®
−xixjδσ(2d+1−j),σ(i), if σ(i) ≤ d

xixjδσ(2d+1−j),σ(i), if σ(i) ≥ d+ 1

=


−xix2d+1−i, if σ(i) ≤ d, j = 2d+ 1− i
xix2d+1−i, if σ(i) ≥ d+ 1, j = 2d+ 1− i

0, if j 6= 2d+ 1− i.

Taking into account that σ(i) ≤ d holds if and only if σ(2d+ 1− i) ≥
d+ 1 holds, it is now easy to see that A

tr
JA = J holds if we set

xi =


−1, if i ≤ d and σ(i) > d
1, if i ≤ d and σ(i) ≤ d
1, if i > d.

b), c) For both cases G = SOn with n = 2d or n = 2d+ 1, let σ be a permu-
tation such that σ(n+ 1− i) = n+ 1− σ(i) for all 1 ≤ i ≤ n. Again,
we start with a generic monomial matrix A = B · diag(x1, . . . , xn) as-
sociated to σ (with Bij = δσ(j),i). Now we have Jij = δn+1−i,j for all
i, j ≤ n and so we compute

(A
tr
JA)ij = xixjδn+1−i,j ,

hence AtrJA = J holds if and only if

xixn+1−i = 1

holds for all 1 ≤ i ≤ n. The determinant of A equals det(A) =
sign(σ) · x1 . . . xn. If xixn+1−i = 1 holds for all i, we have

det(A) =
®

sign(σ)xd+1 if n = 2d+ 1
sign(σ) if n = 2d.

If the sign of σ equals one, we are done by setting x1 = · · · = xn = 1,
i.e., A = B is already contained in G. If the sign of σ equals −1 and
n = 2d, it is immediate that there cannot exist a monomial matrix of
determinant 1 that is orthogonal. Now if n = 2d + 1 and σ is of sign
−1, we can set xd+1 = −1 and all other xi = 1. Then x2

d+1 = 1, hence
A

tr
JA = J holds and A is of determinant 1.

Corollary 4.1.6. There exist monomial matrices w1 and w2 contained in
G(Fq) corresponding to the following permutations:
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SLn σ1 = (1, 2, . . . , n)
σ2 = (1, . . . , n− 1)

Sp2d σ1 = (1, . . . , d, 2d, . . . , d + 1)
σ2 = (1, . . . , d)(2d, . . . , d + 1)

SO2d+1 σ1 = (1, . . . , d, 2d, . . . , d + 2)
σ2 = (1, . . . , d)(2d, . . . , d + 2)

SO2d, d odd σ1 = (d, d + 1)(1, . . . , d− 1, 2d, . . . , d + 2)
σ2 = (1, . . . , d)(2d, . . . , d + 1)

SO2d, d = 2m, m odd σ1 = (d, d + 1)(1, . . . , d− 1, 2d, . . . , d + 2)
σ2 = (1, . . . , m)(m + 1, . . . , 2m)(3m, . . . , 2m + 1)(4m, . . . , 3m + 1)

SO2d, d = 2m, m even σ1 = (d, d + 1)(1, . . . , d− 1, 2d, . . . , d + 2)
σ2 = (1, . . . , m, 4m, . . . , 3m + 1)(m + 1, . . . , 2m, 3m, . . . , 2m + 1)

Table 4.2: Definition of σ1, σ2

Proof. For G = SLn, there is nothing to show as there exists a monomial
matrix wσ ∈ SLn for any element σ ∈ Sn. For all other groups this is an
immediate consequence of Lemma 4.1.5. Indeed, it is readily checked that
σj(n + 1 − i) = n + 1 − σj(i) holds for all 1 ≤ i ≤ n and j = 1, 2. In case
G = SO2d, σ1 and σ2 are moreover both of positive sign.

Definition 4.1.7. Let G be one of the groups SLn, Sp2d or SOn and fix
monomial matrices w1, w2 ∈ G(Fq) with respect to σ1, σ2 as described in
Corollary 4.1.6. Fix gi ∈ G(Fq) such that giφq(gi)−1 = wi holds for i = 1, 2
(the Lang isogeny assures that such elements exist). Then we set Ti = T gi

0 ,
i = 1, 2, where T0 denotes the diagonal torus inside G.

Proposition 4.1.8. Let G, T1 and T2 be as in Definition 4.1.7. Then T1

and T2 are defined over Fq and we have

|Ti(Fq)| = ni(q), i = 1, 2.

Proof. As w1 and w2 normalize T0, it follows from Proposition 4.1.1 that T1

and T2 are defined over Fq with Fq-rational points

Ti(Fq) = {t0 ∈ T0(Fq) | φq(t0) = twi
0 }

gi

= {diag(λ1, . . . , λn) | diag(λq
1, . . . , λ

q
n) = diag(λσi(1), . . . , λσi(n))}gi .

a) Let G = SLn and let diag(λ1, . . . , λn) ∈ T0(Fq). Then

diag(λσ1(1), . . . , λσ1(n)) = diag(λ2, . . . , λn, λ1),

hence diag(λq
1, . . . , λ

q
n) = diag(λσ1(1), . . . , λσ1(n)) holds if and only if we

have diag(λ1, . . . , λn) = diag(λ1, λ
q
1, . . . , λ

qn−1

1 ) and λqn

1 = λ1, that is,
λ1 ∈ Fqn . Additionally, we need that diag(λ1, . . . , λn) has determinant

one, which is the case if and only if 1 = λ1+q+···+qn−1

1 = λ
qn−1
q−1

1 holds.
Overall, we conclude

T1(Fq) = {diag(ζ, ζq, . . . , ζqn−1
) | ζ

qn−1
q−1 = 1}g1 .
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In particular, T1(Fq) is cyclic of order qn−1
q−1 = n1(q).

For i = 2, we have diag(λσ2(1), . . . , λσ2(n)) = diag(λ2, . . . , λn−1, λ1, λn),
hence diag(λq

1, . . . , λ
q
n) = diag(λσ2(1), . . . , λσ2(n)) holds if and only if

we have diag(λ1, . . . , λn) = diag(λ1, λ
q
1, . . . , λ

qn−2

1 , λn) and λqn−1

1 = λ1

(that is, λ1 ∈ Fqn−1) as well as λq
n = λn (that is, λn ∈ Fq). Additionally,

to ensure that diag(λ1, . . . , λn) has determinant one, we need λn =

λ−1−q−···−qn−2

1 = λ
− qn−1−1

q−1

1 . Note that for any λ1 ∈ F×qn−1 , we have

λ
− qn−1−1

q−1

1 ∈ F×q . Therefore, we get

T2(Fq) = {diag(ζ, ζq, . . . , ζqn−2
, ζ
− qn−1−1

q−1 ) | ζqn−1 = 1}g2 .

In particular, T2(Fq) is cyclic of order qn−1 − 1 = n2(q).

b) If G = Sp2d, T0(Fq) consist of all diagonal matrices of the form
diag(λ1, . . . , λd, λ

−1
d , . . . , λ−1

1 ) with λi ∈ F×q . For such an element we
have diag(λq

1, . . . , λ
q
n) = diag(λσ1(1), . . . , λσ1(n)) if and only if

diag(λq
1, . . . , λ

q
d, λ

−q
d , . . . , λ−q

1 ) = diag(λ2, . . . , λd, λ
−1
1 , λ1, λ

−1
d . . . , λ−1

2 ).
We conclude

T1(Fq) = {diag(ζ, ζq, . . . , ζqd−1
, ζ−qd−1

, . . . , ζ−q, ζ−1) | ζqd+1 = 1}g1 .

In particular, T1(Fq) is cyclic of order qd + 1 = n1(q). Similarly, we
compute

T2(Fq) = {diag(ζ, ζq, . . . , ζqd−1
, ζ−qd−1

, . . . , ζ−q, ζ−1) | ζqd−1 = 1}g2 .

In particular, T2(Fq) is cyclic of order qd − 1 = n2(q).

c) For G = SO2d+1, the diagonal torus T0 consists of all elements of the
form diag(λ1, . . . , λd, 1, λ−1

d , . . . λ−1
1 ). Then T1(Fq) and T2(Fq) can be

computed in the very same way as for G = Sp2d:

T1(Fq) = {diag(ζ, ζq, . . . , ζqd−1
, 1, ζ−qd−1

, . . . , ζ−q, ζ−1) | ζqd+1 = 1}g1

T2(Fq) = {diag(ζ, ζq, . . . , ζqd−1
, 1, ζ−qd−1

, . . . , ζ−q, ζ−1) | ζqd−1 = 1}g2 .

In particular, T1(Fq) and T2(Fq) are both cyclic of order qd +1 = n1(q)
and qd − 1 = n2(q), resp.

d) Now assume G = SO2d for an odd d. The diagonal torus T0 consists
of all elements of the form diag(λ1, . . . , λd, λ

−1
d , . . . , λ−1

1 ). The torus
T1(Fq) can be computed similarly to the first torus for the symplectic
group Sp2d−2, only that we have an extra transposition in the middle.
We deduce that T1(Fq) consists of all elements of the form

diag(ζ, ζq, . . . , ζqd−2
, µ, µ−1, ζ−qd−2

, . . . , ζ−q, ζ−1)g1
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such that ζqd−1+1 = 1 and µq+1 = 1, so this time T1(Fq) is not cyclic.
Its order equals (qd−1 + 1)(q+ 1) = n1(q). Similarly to the symplectic
case, we get

T2(Fq) = {diag(ζ, ζq, . . . , ζqd−1
, ζ−qd−1

, . . . , ζ−q, ζ−1) | ζqd−1 = 1}g2

In particular, T2(Fq) is cyclic of order qd − 1 = n2(q).

e) If G = SO2d for an even d = 2m, the first torus is the same is in the
previous case so its order equals (qd−1 + 1)(q + 1) = n1(q). If m is
odd, similar computations as before yield that T2(Fq) consists of all
elements of the form

diag(ζ, ζq, . . . , ζqm−1
, µ, µq, . . . , µqm−1

, µ−qm−1
, . . . , µ−1, ζ−qm−1

, . . . , ζ−1)g2

with ζqm−1 = 1 = µqm−1, if m. If m is even, T2(Fq) consists of all
elements of the form

diag(ζ, ζq, . . . , ζqm−1
, µ, µq, . . . , µqm−1

, µ−qm−1
, . . . , µ−1, ζ−qm−1

, . . . , ζ−1)g2

with ζqm+1 = 1 = µqm+1. We conclude T2(Fq) = (qm + (−1)m)2 =
n2(q).

4.2 Generating Classical Groups

We start with a more or less obvious statement, that will be used repeatedly.

Lemma 4.2.1. a) Let G ≤ GLn be a linear algebraic group defined over
Fq and let A be contained in G(Fq[[t]]). Then the constant part A0 ∈
Mn(Fq) is contained in G(Fq).

b) Let A,B be elements contained in GLn(Fq[[t]]) with constant parts A0,
B0 ∈ GLn(Fq). Then the constant part of the conjugate BA equals
BA0

0 .

Proof. a) This is true for any affine variety V ⊆ Am defined over Fq where
in our case, m = n2+1, as GLn is an affine subset of An2+1. Indeed, let
a = (a1, . . . , am) be contained in V (Fq[[t]]) and let a10, . . . , am0 ∈ Fq de-
note the constant parts of a1, . . . , am. Then for any f ∈ Fq[X1, . . . , Xm]
contained in the vanishing ideal of V , the constant part of f(a1, . . . , am)
equals f(a10, . . . , am0) which is thus zero. We conclude that (a10, . . . , am0)
is contained in V .

b) The constant part of A−1 equals A−1
0 and as the constant part of a

product of matrices equals the product of their constant parts, hence
the constant part of A−1BA equals A−1

0 B0A0.
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The objective of this section is to prove that certain conjugates of the max-
imal tori T1 and T2 constructed in the previous section generate G. The key
ingredient is the following proposition.

Proposition 4.2.2. Let K1 be an infinite field and let G ≤ GLn be a con-
nected linear algebraic group defined over K1 such that either K1 is perfect or
G is reductive. Let further K2/K1 be a field extension and consider the field
of formal Laurent series K2((t)) over K2. If H ⊂ G is a closed subvariety de-
fined over K2((t)) such that for all g ∈ G(K1) there exists an h ∈ H(K2[[t]])
of the form h = g +M1t+M2t

2 + . . . for some Mi ∈Mn(K2), then H = G
holds.

Proof. First of all, note that G(K1) is dense in G, as we assumed that either
K1 is perfect or G is reductive (see [Bor91, 18.3]).
Set m = n2 + 1. Then G is a closed subvariety of affine m-space, since G ≤
GLn holds. Let Kt := K2((t)) be an algebraic closure of K2((t)). We con-
sider the vanishing ideals I(G) and I(H) of G and H inside Kt[X1, . . . , Xm].
Assume that H is strictly contained in G, i.e., I(H) ) I(G). Now I(H)
is generated by finitely many elements inside K2((t))[X1, . . . , Xm] and we
conclude that at least one of them cannot be contained in I(G). Let f ∈
K2((t))[X1, . . . , Xm] be such an element, i.e., f ∈ I(H)\I(G). After mul-
tiplying by a suitable power of t, we may assume that f is contained in
K2[[t]][X1, . . . , Xm] ⊂ K2[X1, . . . , Xm][[t]]. Hence there exist elements fj ∈
K2[X1, . . . , Xm] such that

f =
∞∑

j=0

fjt
j .

As G(K1) is dense in G, there exists a g ∈ G(K1) with f(g) 6= 0. It follows
that there exists a j ∈ N such that fj(g) 6= 0. Let j0 ∈ N be minimal such
that there exists a g ∈ G(K1) with fj0(g) 6= 0. Hence f0, . . . , fj0−1 vanish
on all G(K1) and are thus contained in I(G). Now consider

f ′ := t−j0(f −
j0−1∑
j=0

fjt
j) = fj0 + fj0+1t+ fj0+2t

2 + · · · .

As f ∈ I(H)\I(G) and
∑j0−1

j=0 fjt
j ∈ I(G), we have f ′ ∈ I(H)\I(G), as well.

By definition of j0, there exists a g ∈ G(K1) such that fj0(g) 6= 0. By
assumptions, there exists an h = g+M1t+M2t

2 + · · · ∈ H(K2[[t]]) for some
Mi ∈ Mn(K2), i.e., g occurs as the constant term of an element contained
in H. We compute

0 = f ′(h) =
∞∑

j=0

fj+j0(h)t
j ∈ K2[[t]]

and compare the constant terms of both sides. The constant term of the
right hand side equals the constant term of fj0(h) which in turn equals fj0(g),
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hence 0 = fj0(g), a contradiction. Hence H cannot be strictly contained in
G.

In order to be able to apply this proposition, we first have to generalize
the result G(Fq) =< T1(Fq)A1 , T2(Fq)A2 > (Theorem 4.1.3) from Fq to an
infinite field F.

Lemma 4.2.3. Let l0 ∈ N and consider

F :=
⋃

l∈N: l≡1 mod l0

Fql ⊆ Fq.

Then F is a field of infinite order.

Proof. For any i, j ∈ N, the compositum of Fqil0+1 and Fqjl0+1 inside Fq equals
Fqlcm(il0+1,jl0+1) ⊆ Fq(il0+1)(jl0+1) = Fq(ijl0+i+j)l0+1 . Hence Fqil0+1 and Fqjl0+1 are
both contained in another field Fql with l ≡ 1 (mod l0) which is therefore
contained in F. It follows that F is a field and as F contains Fqil0+1 for all
i ∈ N, F cannot be finite.

Proposition 4.2.4. Let G be one of the following classical groups

• SLn, n ≥ 3

• Sp2d, d ≥ 2

• SOn, n ≥ 7

and let the monomial matrices w1, w2 ∈ G(Fq) (corresponding to the permu-
tations σ1, σ2) and the maximal tori T1, T2 be as defined in Definition 4.1.7.
Let l0 be the least common multiple of the order of σ1 and σ2. Then for
F :=

⋃
l∈N: l≡1mod l0

Fql ⊆ Fq as in 4.2.3 and any A1, A2 ∈ G(Fq), we have

< T1(F)A1 , T2(F)A2 >= G(F).

Proof. Recall that g1 and g2 where chosen in such a way that φq(gi)g−1
i = wi

holds. Hence for an l with l ≡ 1 mod l0 we have φql(gi) = φql−1(wigi) =
· · · = wl

i ·gi, where we used that wi is contained in G(Fq), for i = 1, 2. Now wl
i

is again monomial with respect to σl
i = σi. It thus follows from Proposition

4.1.8 that
|Ti(Fql)| = ni(ql)

holds for i = 1, 2. Let A1 and A2 be contained in G(Fq). Then Theorem
4.1.3 implies that

< T1(Fql)A1 , T2(Fql)A2 >= G(Fql)

holds for all l with l ≡ 1 mod l0. Now let g = (grs) be contained in G(F).
Then there exist numbers irs ∈ N such that grs is contained in Fqirsl0+1 for
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all 1 ≤ r, s ≤ n (where we set n = 2d in case G = Sp2d). Let l be the product
of (irsl0 + 1) over all 1 ≤ r, s ≤ n. Then l ≡ 1 mod l0 holds and all entries
grs are contained in Fql . Hence

g ∈ G(Fql) =< T1(Fql)A1 , T2(Fql)A2 >⊆< T1(F)A1 , T2(F)A2 >

and we conclude G(F) ⊆< T1(F)A1 , T2(F)A2 >.

Theorem 4.2.5. Let G be one of the following classical groups

• SLn, n ≥ 3

• Sp2d, d ≥ 2

• SOn, n ≥ 7

and let the maximal tori T1, T2 be as defined in Definition 4.1.7. Then for
any A,B ∈ G(Fq + tFq[[t]]) (i.e., A and B are contained in G(Fq[[t]]) such
that the constant term of any coordinate is contained in Fq), we have

< TA
1 , T

B
2 >= G.

Proof. As TA
1 and TB

2 are closed, connected subgroups of G that are defined
over Fq((t)), we have that H :=< TA

1 , T
B
2 > is a closed subgroup of G that

is defined over Fq((t)) (see [Spr09, 2.2.7]). Let F ⊆ Fq be as defined in
Proposition 4.2.4. By Proposition 4.2.2 (with K1 = F and K2 = Fq), it is
sufficient to show that for any g ∈ G(F) there exist an element h ∈ H(Fq[[t]])
with constant part g. Let A0, B0 ∈ GLn(Fq) be the constant parts of A,B,
resp. As G is defined over Fq and A,B are contained in G, it follows that
A0 and B0 are contained in G(Fq), by the first part of Lemma 4.2.1. By
Proposition 4.2.4, we thus have G(F) =< T1(F)A0 , T2(F)B0 >. Let g ∈ G(F).
Then there exist an r ∈ N and elements xi ∈ T1(F) and yi ∈ T2(F) such that

g = xA0
1 yB0

1 . . . xA0
r yB0

r .

Then
h := xA

1 y
B
1 . . . x

A
r y

B
r ∈< T1(F)A, T2(F)B >⊆ H(Fq[[t]])

has constant term g (by Lemma 4.2.1, b)) which concludes the proof.

In order to show that a closed subgroup H of G (e.g. the Galois group of
a difference module) is all of G, we may thus show that certain conjugates
of the maximal tori T1 and T2 are contained in H. It is therefore suffi-
cient to show that H contains elements that are dense in T1 and T2, resp.
Fortunately, a maximal torus contains quite a lot of dense elements, as the
following (well-known) lemma demonstrates.
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Lemma 4.2.6. Let G be a linear algebraic group over the algebraically closed
field K. Let T ≤ G be a torus of G. Assume that there exists an element
s ∈ T such that χ(s) 6= 1 holds for all non-trivial characters χ ∈ X∗(T ).
Then s generates a dense subgroup of T .

Proof. Let S ≤ T be the closure of the cyclic group generated by s. Its
coordinate ring K[S] is a quotient space of K[T ]. As T is diagonizable, its
characters X∗(T ) form a K-basis of the coordinate ring T (see [Spr09, Thm.
3.2.3]). Let χ, χ′ be two distinct characters of T . Then χ−1χ′ is non-trivial
and thus χ(s) 6= χ′(s), by assumptions. It follows that X∗(T ) injects into
X∗(S) via restriction. As S is also diagonizable, we have that its characters
form a K-basis of K[S]. In particular, the basis X∗(T ) of K[T ] projects on
a system of linearly independent elements in the quotient space K[S]. It
follows that K[S] = K[T ] and thus S = T holds.

Example 4.2.7. Let G = SL3 and T the diagonal torus inside G. Its charac-
ters are generated by the standard characters χ1 and χ2 that project diagonal
matrices on the first or second diagonal entry, resp. Then a diagonal ma-
trix s = diag(λ1, λ2, (λ1λ2)−1) generates a dense subgroup of T if for all
(e1, e2) ∈ Z2\{(0, 0)} we have χe1

1 χ
e2
2 (s) 6= 1, that is, if λe1

1 λ
e2
2 6= 1. Over C,

any element s = diag(p1, p2,
1

p1p2
) with distinct prime numbers p1 and p2 is

thus dense in T . Similarly, over Fq(t), every element s = diag(p1, p2,
1

p1p2
)

with coprime polynomials p1, p2 ∈ Fq[t] generates a dense subgroup of T .

4.3 Generating Split Reductive Groups

We proceed with another application of Proposition 4.2.2 leading to a re-
sult on generating arbitrary connected reductive linear algebraic groups in
positive characteristic.

Theorem 4.3.1. Let G be a connected and reductive linear algebraic group
defined over Fq. Assume further that G splits over Fq, i.e., there exists a
maximal torus T of G that is defined over Fq and splits over Fq. Let H
be a closed subgroup of G defined over Fq((t)) that contains TA for some
A ∈ G(Fq + tFq[[t]]) and such that every g ∈ G(Fq) occurs as the constant part
of an element inside H(Fq[[t]]). Then H = G. In particular, < TA,G(Fq) >
is dense in G for any A ∈ G(Fq + tFq[[t]]).

Proof. By Proposition 4.2.2 (applied to K1 = K2 = Fq), it is sufficient to
show that for any g ∈ G(Fq), there exists an element h ∈ H(Fq[[t]]) with
constant part g.

As the constant part A0 of A is contained in G(Fq), the maximal torus
TA0 is defined over Fq and also splits over Fq. Let Φ(G, TA0) denote the
set of roots with respect to TA0 and for α ∈ Φ(G, TA0), let Uα be the root
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subgroup corresponding to α. Since TA0 splits over Fq, all root subgroups
are defined over Fq and we moreover have isomorphisms

uα : Ga → Uα

defined over Fq for all α ∈ Φ(G, TA0) (see [Bor91, V.18.7] for a proof). Now
G is generated by TA0 together with all root subgroups (see [Spr09, 8.1.1])
and as all of these are defined over Fq ⊆ Fq, we obtain

G(Fq) = < TA0(Fq), Uα(Fq) | α ∈ Φ(G, TA0) >
= < T (Fq)A0 , Uα(Fq) | α ∈ Φ(G, TA0) > .

Let now g be contained in G(Fq). Then there exist an r ∈ N, roots
α1, . . . , αr ∈ Φ(G, TA0) (not necessarily pairwise distinct), s1, . . . , sr ∈ Fq as
well as x1, . . . , xr+1 ∈ T (Fq) such that g can be written as

g = xA0
1 uα1(s1) · · ·xA0

r uαr(sr)xA0
r+1.

Any root α ∈ Φ(G, TA0) is a non-trivial character α : TA0 → Gm, hence it is
surjective. As uα(0) = 1 holds for all α ∈ Φ(G, TA0), we may assume that all
s1, . . . , sr are contained in F×q , so there exist elements yA0

1 , . . . , yA0
r ∈ TA0(Fq)

(that is, y1, . . . , yr are contained in T (Fq)) such that

si = αi(yA0
i )

for 1 ≤ i ≤ r. The root subgroup isomorphisms uα are subject to the
relation

uα(α(y)s) = uα(s)y

for all elements y in the maximal torus and field elements s. Therefore, we
have uαi(si) = uαi(αi(yA0

i ) · 1) = uαi(1)y
A0
i for all 1 ≤ i ≤ r and thus

g = xA0
1 (yA0

1 )−1uα1(1)yA0
1 · · ·xA0

r (yA0
r )−1uαr(1)yA0

r xA0
r+1.

As all isomorphisms uαi are defined over Fq, we have uαi(1) ∈ G(Fq) for all
i ≤ r. By assumptions, there exist elements h1, . . . , hr ∈ H(Fq[[t]]) such that
the constant part of hi equals uαi(1) for 1 ≤ i ≤ r. Now consider

h := xA
1 (yA

1 )−1h1y
A
1 · · ·xA

r (yA
r )−1hry

A
r x

A
r+1 ∈ H(Fq[[t]]).

It is immediate from the second part of Lemma 4.2.1 that the constant part
of h equals g (recall that x1 and y1 are contained in G(Fq)). Hence H = G
holds.

As a special case, let H ⊆ G be the Zariski closure of < TA,G(Fq) >. As A
is contained in G(Fq((t))), we deduce that TA ∪G(Fq) is a closed subset of G
defined over Fq((t)). Therefore, H is defined over Fq((t)) as well (see [Bor91,
I.2.1(b)]). Hence H conforms to the assumptions made in this Theorem,
and H = G follows.
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4.4 Conjugacy over Power Series

In the previous sections, we found maximal tori such that any G(Fq+t·Fq[[t]])-
conjugates generate the given classical group G. The lower bound criterion
Corollary 3.3.11 provides us with G(Fq[[t]])-conjugates of certain elements
that are contained in the Galois group. Therefore, we have to descend from
G(Fq[[t]])-conjugacy to G(Fq + t · Fq[[t]])-conjugacy.

Lemma 4.4.1. Let G be a linear algebraic group defined over Fq. Let g, h
be two semisimple elements in G(Fq) and assume that the centralizer of g
is connected. If g and h are conjugate over G(Fq) then they are already
conjugate over G(Fq).

Proof. Let x ∈ G(Fq) be such that gx = h. As g and h are both Fq-rational,
we have

gx = h = φq(h) = φq(g)φq(x) = gφq(x).

Hence φq(x)x−1 is contained in the centralizer C of g. By assumptions, C is
connected and it is defined over Fq. Hence we can apply the Lang isogeny to C
to get an element y ∈ C(Fq) with φq(y)y−1 = φq(x)x−1. It follows that y−1x

is contained in G(Fq) and as y and g commute, we have h = gx = gy−1x.

Remark 4.4.2. In case G is a reductive, connected linear algebraic group
such that the commutator subgroup G′ is simply-connected, all centralizers
of semisimple elements are connected (see [Car85, 3.5.6]).

Proposition 4.4.3. Let G ≤ GLn be a linear algebraic group defined over
Fq. Let g, h be contained in G(Fq + t · Fq[[t]]). Assume that g is contained in
a maximal torus T of G that is defined over Fq and that the centralizer of
the constant part g0 ∈ T (Fq) of g equals T . If g and h are conjugate over
G(Fq[[t]]) then they are already conjugate over G(Fq + t · Fq[[t]]).

Proof. Let A ∈ G(Fq[[t]])) be such that gA = h. As G is defined over Fq, the
constant part A0 of A is contained in G(Fq) (by Lemma 4.2.1, a)). Similarly,
g and h are contained in G(Fq+t·Fq[[t]]), so their constant parts g0 and h0 are
contained in G(Fq). Then gA = h implies gA0

0 = h0 (see Lemma 4.2.1, b)).
Now Lemma 4.4.1 (and its proof) implies that there exists an element y in
the centralizer C of g0 inside G(Fq) such that y−1A0 is contained in G(Fq). By
assumptions, C = T , so y ∈ T (Fq). We conclude that y also commutes with
g. Hence h = gA = gy−1A holds. The constant part of y−1A equals y−1A0

which is Fq-rational. Hence h and g are conjugate over G(Fq + t · Fq[[t]]).



Chapter 5

Applications

5.1 Our Fields of Definition

We keep up the notation set up in Chapter 2, but make further specifications
that will be effective throughout Chapter 5.

(k, φq) k = Fq(s) with the ordinary Frobenius homomorphism
φq : Fq(s) → Fq(s), x 7→ xq.

| · | on k, | · | is the s-adic absolute value Fq(s) → R,
0 6= f 7→ (1

2)νs(f), where νs(f) ∈ Z denotes the s-adic
valuation of f .

(K,φq) K denotes the completion of the algebraic closure of the
completion of (k, | · |); an algebraically closed field that
is complete with respect to the unique extension of |·| to
K. Again, φq is the ordinary Frobenius homomorphism
on K.

(K{t}, φq), (L, φq) are as defined in Chapter 2, with respect to | · | and K
as above. In particular, L ⊆ K((t)) is a difference field
with field of constants CL = Fq(t).

(F, φq) the base field of our difference modules: F = Fq(s, t)
with φq(s) = sq and φq(t) = t. The field of constants
CF equals Fq(t).

5.2 Auxiliary Material

We would like our Galois group schemes to be (geometrically) reduced, so
we will have to ensure that the Picard-Vessiot extensions are separable (see
Theorem 1.3.10). The Picard-Vessiot extensions constructed will eventually
be contained in Fq(s)

sep
((t)) which is separable over Fq(s)(t) by the following

Proposition, where we prove the statement for the slightly more general case
Fq(s) with s = (s1, . . . , sl) finitely many algebraically independent elements.

63
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Proposition 5.2.1. Fq(s)
sep

((t)) is a separable field extension of Fq(s)(t).

Proof. By [Mat89, 26.4], it suffices to show that Fq(s)
sep

((t)) and (Fq(s)(t))1/p

are linearly disjoint over Fq(s)(t). Now (Fq(s)(t))1/p is a finite extension of
Fq(s)(t) with basis

{(se1
1 · · · sel

l )1/ptf/p | e = (e1, . . . , el) ∈ {0, 1, . . . , p−1}l, f ∈ {0, 1, . . . , p−1}}.

We have to show that these elements are linearly independent over Fq(s)
sep

((t)).
Assume they are linearly dependent, so there exist elements a(e,f)(t) ∈
Fq(s)

sep
((t)) such that∑

(e,f)∈{0,...,p−1}l+1

a(e,f)(t)(s
e1
1 . . . sel

l )1/ptf/p = 0 (5.1)

is a non-trivial combination of zero. After multiplying by a suitable power
of t, we may assume that all a(e,f)(t) are contained in Fq(s)

sep
[[t]] and at

least one of them is contained in Fq(s)
sep

[[t]]×. We now take both sides of
Equation (5.1) to their p-th powers and get∑

e∈{0,...,p−1}l

se1
1 . . . sel

l (a(e,0)(t))
p +

∑
e∈{0,...,p−1}l

se1
1 . . . sel

l (a(e,1)(t))
pt

+ · · ·+
∑

e∈{0,...,p−1}l

se1
1 . . . sel

l (a(e,p−1)(t))
ptp−1 = 0. (5.2)

Now the first sum is a power series in tp over Fq(s)
sep

, the second sum is a
power series over Fq(s)

sep
where only tip+1-terms occur (i ∈ N) and so on.

We conclude that every single sum in Equation (5.2) equals zero. Now let
0 ≤ i ≤ p − 1 be such that a(e,i)(t) is contained in Fq(s)

sep
[[t]]× for some e.

Then ∑
e∈{0,...,p−1}l

se1
1 . . . sel

l (a(e,i)(t))
pti = 0

holds, as we just saw and we can divide by ti. The resulting power series on
the left hand side has constant term∑

e∈{0,...,p−1}l

(se1
1 . . . sel

l )ap
(e,i),0 = 0

where one of the a(e,i),0 is non-zero (a(e,i),0 denotes the constant term of
a(e,i)(t)). Taking the p-th root on both side, we thus get a non-trivial linear
combination of {(se1

1 · · · sel
l )1/p | e = (e1, . . . , el) ∈ {0, 1, . . . , p−1}l} equalling

zero, which means that these elements are linearly dependent over Fq(s)
sep

.
But {(se1

1 · · · sel
l )1/p | e = (e1, . . . , el) ∈ {0, 1, . . . , p−1}l} is a basis of Fq(s)1/p

over Fq(s), so Fq(s)
sep

and Fq(s)1/p are not linearly disjoint over Fq(s), a
contradiction to the separability of Fq(s)

sep
over Fq(s).
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Proposition 5.2.2. Let F be a field. Let A,B ∈ GLn(F[[t]]) have the same
characteristic polynomial and assume that their eigenvalues λ1, . . . λn are
contained in F[[t]] with pairwise distinct constant terms λ1,0, . . . , λn,0 ∈ F×.
Then A and B are conjugate over GLn(F[[t]]).

Proof. Note that A and B are diagonalizable over F((t)) since their eigen-
values are pairwise distinct. Hence there exist C, C̃ ∈ GLn(F((t))) with
C−1AC = diag(λ1, . . . , λn) = C̃−1BC̃. By multiplying C from the right
with diag(te1 , . . . , ten) for suitable e1, . . . , en ∈ Z we may assume that all
entries of C are contained in F[[t]] and that at least one entry in every col-
umn is contained in F[[t]]×. We claim that C is contained in GLn(F[[t]]).
Write C =

∑∞
i=0Cit

i for some Ci ∈ Mn(F). Then C0 has a non-zero entry
in every column. We have to show that C0 is contained in GLn(F). Note
that AC = C diag(λ1, . . . , λn) implies A0C0 = C0 diag(λ1,0, . . . , λn,0), where
A0 ∈ GLn(F) denotes the constant coefficient matrix of A. Hence the i-th
column of C0 is an eigenvector of A0 with respect to λi,0. As all these eigen-
values are pairwise distinct, the columns of C0 are linearly independent.
Similarly, C̃ can be transformed to a matrix inside GLn(F[[t]]), hence A and
B are conjugate via CC̃−1 ∈ GLn(F[[t]]).

5.3 The Method

5.3.1 How to Choose the Representing Matrix

Given a difference module M over F with representing matrix D (such that
there exists a separable Picard-Vessiot extension), we know that the Ga-
lois group contains conjugates of all permissible specializations of D, by
Theorem 3.3.10. On the other hand, Theorem 4.2.5 provides elements that
generate a given classical group G even after certain conjugations. So the
question is: How to choose a representing matrix D that allows sufficient
specializations?
(Of course, D has also to be chosen in such a way that there exists a sepa-
rable Picard-Vessiot extension for M and such that we can apply the upper
bound Theorem 3.2.4. All these issues will be dealt with in the next para-
graph.)

We start with a Theorem due to Steinberg, a proof can be found in [Ste65,
Theorem 1.4]. We note that the Steinberg cross section XG (as introduced in
the following theorem) has already proved useful to construct polynomials
over Fq(s) with finite classical Galois groups (see [AM10]).

Theorem 5.3.1 (Steinberg). Let G be a semisimple linear algebraic group of
rank r over an algebraically closed field. Let T be a maximal torus of G and
fix simple roots {αi | 1 ≤ i ≤ r} with respect to T . For each i, let Xi denote
the root subgroup with respect to αi and fix elements w1, . . . , wr ∈ NG(T )
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corresponding to the reflections relative to α1, . . . , αr. Set XG :=
∏r

i=1Xiwi.
If G is simply-connected, then XG is a cross section of the collection of regular
classes in G. In particular, XG contains an element in every semisimple
regular conjugacy class.

Remark 5.3.2. In case G splits over Fq, it follows from [Ste65, Theorem
9.2] that XG is defined over Fq (for a suitable choice of Xi and wi).

Example 5.3.3. For G = SL3 we let T be the diagonal torus with standard
characters χ1, χ2 and χ3. We choose the simple roots α1 = χ1χ

−1
2 and

α2 = χ2χ
−1
3 . Then the Steinberg cross section is easily computed to be

XSL3 = {

Ö
f1 f2 1
1 0 0
0 1 0

è
| f1, f2}.

If we want to construct a difference module with Galois group SL3, it would

be a good choice to start with a matrix D(f1,f2) :=

Ö
f1 f2 1
1 0 0
0 1 0

è
where f1

and f2 have to be chosen inside F in a suitable way.

In general, let xi : Ga → Uαi be isomorphisms of the additive group onto
the root subgroups. As all classical groups split over Fq, we can choose a
split maximal torus T (the diagonal torus) and isomorphisms xi defined over
Fq. Then we let

D(f1,...,fr) := x1(f1)w1 . . . xr(fr)wr ∈ G(Fq(f1, . . . , fr))

be a “generic element” of the cross section. The elements f1, . . . fr will
be chosen inside F in a suitable way. Consider specializations s 7→ α ∈
Fq. Assume that f1, . . . fr ∈ F = Fq(s, t) have been fixed and that they
specialize to elements f1, . . . , f r ∈ Fq(t) (i.e., no coefficient of fi ∈ Fq(s)(t)
has denominator divisible by (s − α), for 1 ≤ i ≤ r). As the entries of D
are polynomials in f1, . . . , fr over Fq, we have that D(f1,...,fr) specializes to
D(f1,...,fr), an element in the cross section over Fq(t). Now Theorem 5.3.1
asserts that

{D(f1,...,fr) | f1, . . . , f r ∈ Fq(t)}

contains elements in every regular conjugacy class of G(Fq(t)). Hence the
elements {f1, . . . , fr} have to be chosen in such a way that they specialize
to the finitely many sets of {f1, . . . , f r} corresponding to conjugates of the
desired generators. Of course, here we have to check that these {f1, . . . , f r}
provided by Theorem 5.3.1 are actually contained in Fq(t) and not just in
Fq(t). Another issue is that not all of the groups treated later on are simply-
connected (SOn is not), so Theorem 5.3.1 doesn’t apply. However, this
doesn’t affect us much as we won’t actually apply the theorem but only use
it as starting point how to choose the matrix D.
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5.3.2 An Outline of the Procedure

So far, we have worked out different tools as to construct separable Picard-
Vessiot extension with predetermined Galois group. We now give a quick
overview of how these tools will be combined in our applications to classical
groups.
Given a classical group G of rank r, proceed as follows:

(1) Determine the Steinberg cross section XG and start with a generic
matrix D(f1,...,fr) ∈ XG(Fq(f1, . . . , fr)).

(2) Choose f1, . . . , fr ∈ F = Fq(s)(t) such thatD(f1,...,fr) can be specialized
(via specializations s 7→ α ∈ Fq) to G(Fq[[t]])-conjugates of regular
elements t1 ∈ T1(Fq[[t]]) and t2 ∈ T2(Fq[[t]]) (where the maximal tori
T1 and T2 are defined in 4.1.7) that are dense in T1 and T2, resp. Dense
elements in maximal tori can be easily determined using Lemma 4.2.6.
The procedure now is to check that the characteristic polynomial of
D specializes to the (separable) characteristic polynomials of t1 and
t2. It follows that the corresponding specializations of D(f1,...,fr) are
conjugate to t1 and t2 over GLn(Fq((t))). However, it has to be checked
by hand that they are also conjugate over G(Fq[[t]]).

(3) Use Theorem 3.1.3 to get a fundamental solution matrix Y ∈ GLn(L)
for the difference module M over F that is given by D(f1,...,fr). In
order to meet the assumptions of this theorem, the elements f1, . . . , fr

might have to be altered a little bit. This can be done for example by
multiplying certain coefficients of f1, . . . , fr by terms of small enough
absolute value which do not change anything on the things we arranged
in the previous point. For example, sq−1 might be a good candidate
as it specializes to 1 whenever s is specialized to a non-zero element
of Fq and it has valuation (1

2)q−1 < 1.

(4) It follows from Theorem 1.2.11 that E := F (Y ) is a Picard-Vessiot
extension for M . Our fundamental matrix Y provided by Theorem
3.1.3 is contained in GLn(E ∩K[[t]]) and should thus be contained in
GLn(Fq(s)

sep
[[t]]), by Proposition 3.3.3. In particular, E ⊆ Fq(s)

sep
((t))

is separable over F by Proposition 5.2.1. Hence the Galois group
schemeH := GM,E ofM is a linear algebraic group (defined over Fq(t)),
by Theorem 1.3.10. Now use Theorem 3.2.4 to obtain that Y can be
chosen inside G(E ∩K[[t]]). In particular, H is a closed subgroup of G
by Proposition 1.3.11.

(5) As Y is contained in G(K[[t]]), the lower bound criterion 3.3.11 (ap-
plied to k̃ := K) asserts that H contains a G(Fq[[t]])-conjugates of T1

and T2 (as D specializes to G(Fq[[t]])-conjugate of t1 and t2 which are
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dense in T1 and T2, resp., and H is a closed subgroup of G). By Propo-
sition 4.4.3, H even contains G(Fq + tFq[[t]])-conjugates of T1 and T2

if t1 and t2 were chosen such that the centralizers of their constant
parts consists only of T1 and T2, resp. These conjugates generate G,
by Theorem 4.2.5, so we have H = G.
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5.4 Special Linear Groups

For any elements f1, . . . , fn−1 ∈ F = Fq(s, t), we set

D(f1,...,fn−1) =

à
f1 . . . fn−1 (−1)n−1

1
. . .

1 0

í
∈ SLn(F ).

This is by the way a generic element of the Steinberg cross section of SLn

with respect to the diagonal torus and the standard set of simple roots and
root subgroups.
It is well known (and easy to check) that the characteristic polynomial of a
matrix of this shape equals

Xn − f1X
n−1 − · · · − fn−1X + (−1)n. (5.3)

Remark 5.4.1. It is straightforward to compute that the equation

D(f1,...,fn−1)φq(Y ) = Y

corresponds to the scalar difference equation

(−1)n−1φn
q (y) +

n−1∑
i=1

fiφ
i
q(y)− y = 0.

We proceed with a preliminary Lemma that will enable us to specialize
D(f1,...,fn−1) to a SLn(Fq[[t]])-conjugate of a regular diagonal matrix.

Lemma 5.4.2. Let p1, . . . , pn be elements in Fq[[t]] such that their product
equals 1 and their constant terms λ1, . . . , λn are pairwise distinct. Let further
h1, . . . , hn−1 ∈ Fq[[t]] be defined via

n∏
i=1

(X − pi) = Xn − h1X
n−1 − · · · − hn−1X + (−1)n.

Then D(h1,...,hn−1) and diag(p1, . . . , pn) are conjugate over SLn(Fq[[t]]).

Proof. By construction, D(h1,...,hn−1) and diag(p1, . . . , pn) have the same
characteristic polynomial (see (5.3)). Note that all pi are invertible in-
side Fq[[t]], since their product equals 1. By Proposition 5.2.2, there ex-
ists a C ∈ GLn(Fq[[t]]) with DC

(h1,...,hn) = diag(p1, . . . , pn). Then B :=
C · diag(det(C)−1, 1 . . . , 1) is contained in SLn(Fq[[t]]) and D(h1,...,hn) and
diag(p1, . . . , pn) are conjugate via B.
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5.4.1 Dense Elements in T1 and T2

Recall that we fixed maximal tori T1 and T2 inside SLn that are defined over
Fq. These were defined in 4.1.7 as Ti = T gi

0 , where T0 denotes the diagonal
torus inside SLn and gi are contained in SLn(Fq) such that giφq(gi)−1 = wi

holds, where w1 and w2 were defined in Chapter 4 to be monomial matrices
inside SLn(Fq) corresponding to the permutations

σ1 := (1, 2, . . . , n)
σ2 := (1, 2, . . . , n− 1).

Proposition 5.4.3. Let n ≥ 2 and assume (n, q) 6= (2, 2) and (n, q) 6= (2, 3).
Set
ζ1 ∈ Fqn primitive (qn − 1)-th root of unity
ζ2 ∈ Fqn−1 primitive (qn−1 − 1)-th root of unity

pi ∈ Fq[t](t), 1 ≤ i ≤ n pi := t+ζqi−1

1

t+ζqi

1

p̃i ∈ Fq[t](t), 1 ≤ i ≤ n p̃1 := t+ ζ2, p̃2 := t+ ζq
2 , . . . , p̃n−1 := t+ ζqn−2

2 ,

p̃n := (p̃1 · · · p̃n−1)−1

t1 t1 := diag(p1, . . . , pn)g1

t2 t2 := diag(p̃1, . . . , p̃n)g2

Then for i = 1, 2, ti is contained in Ti(Fq[[t]]) and the centralizer of its con-
stant part equals Ti. Moreover, ti generates a dense subgroup of Ti (i = 1, 2).

Proof. First of all, note that diag(p1, . . . , pn) and diag(p̃1, . . . , p̃n) are both
of determinant one, so they are contained in T0. The constant parts of the
numerators and denominators of all pj and p̃j are non-zero hence p1, . . . , pn

as well as p̃1, . . . , p̃n are contained in Fq[[t]]×. Therefore, diag(p1, . . . , pn)
and diag(p̃1, . . . , p̃n) are both contained in T0(Fq[[t]]) which implies that t1
and t2 are contained in T1(Fq[[t]]) and T2(Fq[[t]]) (as g1, g2 ∈ SLn(Fq)).
Note that φq(p1) = p2, . . . , φq(pn−1) = pn, φq(pn) = p1 holds, as ζqn

1 = ζ1.
Hence

φq(t1) = diag(p2, . . . , pn, p1)φq(g1) = diag(p2, . . . , pn, p1)w−1
1 g1

= diag(p1, . . . , pn)g1 = t1.

Similarly, φq(t2) = t2 holds, as φq(p̃1) = p̃2, . . . , φq(p̃n−1) = p̃1 and φq(p̃n) =
p̃n. Hence ti is contained in Ti(Fq[[t]]) for i = 1, 2.

Now the constant part of t1 equals

t1,0 = diag(
ζ1
ζq
1

, . . . ,
ζqn−1

1

ζ1
)g1 = diag(ζ1−q

1 , ζq−q2

1 , . . . , ζqn−2−qn−1

1 , ζqn−1−1
1 )g1 .

As ζ1 is a primitive (qn − 1)-th root of unity, all entries of tg
−1
1

1,0 are pairwise
distinct which implies that only diagonal matrices can commute with it and
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so the centralizer of t1,0 equals T g1
0 = T1.

The constant part of t2 equals

t2,0 = diag(ζ2, ζ
q
2 , . . . , ζ

qn−2

2 , ζ−1−q−···−qn−2

2 )g2

= diag(ζ2, ζ
q
2 , . . . , ζ

qn−2

2 , ζ
− qn−1−1

q−1

2 )g2 .

As ζ2 is a primitive (qn−1−1)-th root of unity, all elements ζ2, ζ2
2 , . . . , ζ

qn−1−1
2

are pairwise distinct. In particular, ζ2, ζ
q
2 , . . . , ζ

qn−2

2 are pairwise distinct and
every single one of them is a primitive (qn−1− 1)-th primitive root of unity,

while ζ
− qn−1−1

q−1

2 is contained in Fq. Thus all entries of tg
−1
2

2,0 are pairwise dis-
tinct in case n ≥ 3. If n = 2, we have t2,0 = diag(ζ2, ζ−1

2 )g2 and ζ2 6= ζ−1
2

since we assumed (n, q) 6= (2, 3), (2, 2). We conclude that the centralizer of
t2,0 equals T2.

It remains to show that ti generates a dense subgroup of Ti for i = 1, 2.

For i = 1, 2, ti generates a dense subgroup of Ti if and only if tg
−1
i

i gen-

erates a dense subgroup of T g−1
i

i = T0 which is the case if and only if no

non-trivial character of T0 maps tg
−1
i

i to 1, by Lemma 4.2.6. Any character
of T0 is of the form χe1

1 . . . χ
en−1

n−1 for an (e1, . . . , en−1) ∈ Zn−1, where χi de-

notes the projection on the i-th diagonal entry. Assume that χ(tg1
−1

1 ) = 1,
i.e. 1 = χ(diag(p1, . . . , pn)) = pe1

1 . . . p
en−1

n−1 . By definition of p1, . . . , pn, this
implies

(t+ ζ1)e1(t+ ζq
1)e2−e1 · · · (t+ ζqn−2

1 )en−1−en−2(t+ ζqn−1

1 )−en−1 = 1. (5.4)

Now Fq[t] is a factorial ring and the factors (t+ ζqi

1 ) are pairwise coprime for
0 ≤ i ≤ n−1, as ζ1 is a (qn−1)-th primitive root of unity. We conclude that
Equation (5.4) can only hold for e1 = · · · = en−1 = 0, hence t1 generates
a dense subgroup of T1. Similarly, t2 spans a dense subgroup of T2, as
p̃1, . . . , p̃n−1 are pairwise coprime polynomials in Fq[t].

5.4.2 A Difference Module for SLn

The aim is now to define suitable f1, . . . , fn−1 such that D(f1,...,fn−1) gives
rise to a difference module with Galois group scheme SLn.
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n n ≥ 2
q prime power such that q 6= 2 and (n, q) 6= (2, 3)
α a fixed element in F×q \{1} (e.g. α = −1 if q is odd)
ζ1 ∈ Fqn primitive (qn − 1)-th root of unity
ζ2 ∈ Fqn−1 primitive (qn−1 − 1)-th root of unity

pi ∈ Fq[t](t) p1 := t+ζ1
t+ζq

1
, p2 := t+ζq

1

t+ζq2

1

, . . . , pn := t+ζqn−1

1
t+ζ1

p̃i ∈ Fq[t](t) p̃1 := t+ ζ2, p̃2 := t+ ζq
2 , . . . , p̃n−1 := t+ ζqn−2

2 ,

p̃n := (p̃1 · · · p̃n−1)−1

hi ∈ Fq[t](t) defined via
n∏

i=1
(X − pi) = Xn −

n−1∑
i=1

hiX
n−i + (−1)n

h̃i ∈ Fq[t](t) defined via
n∏

i=1
(X − p̃i) = Xn −

n−1∑
i=1

h̃iX
n−i + (−1)n

aij , bij ∈ Fq coefficients of hi: hi(t) =
∑n

j=0
aijtj∑n

j=0
bijtj

; bi0 6= 0 for all i

ãij , b̃ij ∈ Fq coefficients of h̃i: h̃i(t) =
∑2n−2

j=0
ãijtj∑n−1

j=0
b̃ijtj

; b̃i0 6= 0 for all i

Hi ∈ Fq(t, s) Hi :=
s
∑n

j=0
aijtj

bi0+s
∑n

j=1
bijtj

, 1 ≤ i ≤ n− 1

H̃i ∈ Fq(t, s) H̃i :=
s
α

∑2n−2
j=0

ãijtj

b̃i0+ s
α

∑n−1
j=1

b̃ijtj
, 1 ≤ i ≤ n− 1

fi ∈ F fi := s−α
1−αHi + s−1

α−1H̃i, 1 ≤ i ≤ n− 1

Table 5.1: Definition of f1, . . . , fn−1.

Note that hi and h̃i are contained in Fq[t](t) by the choice of ζi. Indeed,
hi are the coefficients of the characteristic polynomial of t1 ∈ T1(Fq[[t]]) as
in Proposition 5.4.3 and similarly for h̃i.

Theorem 5.4.4. Assume q > 2 and n ≥ 2 such that (n, q) 6= (2, 3).
Let M = (Fn,Φ) be the φq-difference module over F = Fq(s, t) given by
D(f1,...,fn−1), where fi ∈ F are as defined in Table 5.1. Then there exists a
Picard-Vessiot ring R ⊆ Fq(s)

sep
((t)) ∩ L for M such that R/F is separable

and the Galois group scheme GM,R of M with respect to R is isomorphic to
SLn (as linear algebraic group over Fq(t)).

Proof. We abbreviate D := D(f1,...,fn−1). Let O|·| ⊆ K denote the valu-
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ation ring corresponding to | · | with maximal ideal m ⊆ O|·|. All non-
constant coefficients of the numerators and denominators of Hi and H̃i

(1 ≤ i ≤ n − 1) are contained in m and the constant coefficients of the
denominators are contained in F×q ⊆ O×|·|, so it follows from Lemma 3.1.4

that all Hi and H̃i are contained in O|·|[[t]] and their j-th coefficients can
be bounded by δj for a suitable δ < 1. Hence the same is true for all
fi, 1 ≤ i ≤ n − 1. We conclude D =

∑∞
l=0Dlt

l ∈ SLn(O|·|[[t]]) satisfies
||Dl|| ≤ δl for all l ∈ N. By Theorem 3.1.3, there exists a fundamental
solution matrix Y =

∑∞
l=0 Ylt

l ∈ GLn(L ∩K[[t]]) satisfying ||Yl|| ≤ δl, i.e.,
Y ∈ Mn(O|·|{t}). Let E = F (Y ) be the field generated by the entries of Y .
Then E ⊆ L, hence CE = CF and R := F [Y, Y −1] ⊆ E is a Picard-Vessiot
ring for M by Theorem 1.2.11.

Consider o := O|·| ∩ k = Fq[s](s) and O := O|·| ∩ k
sep (with respect to a

fixed embedding of k sep = Fq(s)
sep

into K). Let p = (s) denote the maximal
ideal inside o. Then o/p ∼= Fq. Therefore, o and O conform to all assump-
tions made in 3.3.1 hence we can apply Proposition 3.3.3 c) (with k̃ := K)
to conclude that Y is contained in GLn(O[[t]]). In particular, all entries of Y
are contained in Fq(s)

sep
((t)), hence R/F is separable by Proposition 5.2.1.

Also, Y is contained in GLn(O|·|[[t]])∩Mn(O|·|{t}), so we may assume that Y
is contained in SLn(L∩K[[t]]), by Theorem 3.2.4. Indeed, O|·|/m ∼= Fq ⊆ K,
D ∈ SLn(O|·|[[t]]) and κ|·|(D) = D(0,...,0) ∈ SLn(Fq) ⊆ SLn(O|·|/m) (the lat-
ter follows from κ|·|(Hi) = κ|·|(H̃i) = 0 for all i ≤ n− 1).

We conclude that the Galois group scheme H := GM,R of (M,Φ) is a lin-
ear algebraic group (see Theorem 1.3.10) defined over Fq(t) that is a closed
subgroup of SLn (see Proposition 1.3.11). We will now use the lower bound
criterion 3.3.11 to show that H is all of SLn.

Consider p1 = (s− 1) ⊆ o1 := Fq[s](s−1) and p2 = (s− α) ⊆ o2 := Fq[s](s−α).
Then o1 and o2 are valuation rings inside k = Fq(s) with o1/p1

∼= Fq and
o2/p2

∼= Fq. Fix extensions (Oj ,Pj) of (oj , pj) to k sep = Fq(s)
sep

(j = 1, 2).
These valuation rings conform to all assumptions made in 3.3.1 and we
may thus apply the results from Section 3.3. Note that Hi ∈ oj [[t]] for all
1 ≤ i ≤ n − 1, j = 1, 2 since the numerators are contained in oj [t] and the
denominators are contained in oj [t] with constant coefficient bi0 ∈ F×q ⊆ o×j .
Similarly, all H̃i and thus all fi are contained in oj [[t]]. Hence D is con-
tained in SLn(oj [[t]]) for both j = 1, 2. Therefore, we can apply Corollary
3.3.11 (with G := SLn and k̃ := K) to conclude that H(Fq[[t]]) contains
SLn(Fq[[t]])-conjugates of κ1(D) and κ2(D), where κj : oj [[t]] → Fq[[t]] de-
notes the coefficient-wise reduction mod pj .
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Specializing s 7→ 1 maps fi to hi (1 ≤ i ≤ n−1), thus κ1(D) = D(h1,...,hn−1).
Similarly, κ2(D) = D(h̃1,...,h̃n−1) as specializing s 7→ α maps fi to h̃i. Set

d1 := diag(p1, . . . , pn)
d2 := diag(p̃1, . . . , p̃n).

and t1 = dg1
1 , t2 = dg2

2 with g1, g2 ∈ SLn(Fq) as in Proposition 5.4.3.
The constant parts of p1, . . . , pn are pairwise distinct by Proposition 5.4.3,
hence κ1(D) is conjugate to d1 over SLn(Fq[[t]]), by Lemma 5.4.2. Similarly,
κ2(D) is conjugate to d2 over SLn(Fq[[t]]). It follows that H(Fq[[t]]) contains

SLn(Fq[[t]])-conjugates of d1 = t
g−1
1

1 and d2 = t
g−1
2

1 . Therefore, H(Fq[[t]]) also
contains SLn(Fq[[t]])-conjugates x1 and x2 of t1 and t2 which are both con-
tained in SLn(Fq[[t]]) (see Proposition 5.4.3). By Proposition 4.4.3 together
with Proposition 5.4.3, there exist A1 and A2 contained in SLn(Fq + tFq[[t]])
with xj = t

Aj

j (j = 1, 2). Now H is a closed subgroup of SLn and t1 and t2
generate dense subgroups of T1 and T2 by Proposition 5.4.3, so H contains
< TA1

1 , TA2
2 >. For n ≥ 3, Theorem 4.2.5 implies < TA1

1 , TA2
2 >= SLn,

hence H = SLn.

In case n = 2, we either have < TA1
1 , TA2

2 >= SL2 or < TA1
1 , TA2

2 > is
solvable (since < TA1

1 , TA2
2 > is connected and every two dimensional Lie al-

gebra is solvable). Assume that < TA1
1 , TA2

2 > is solvable. Then there exists
a C ∈ GL2(Fq((t))) such that < TA1

1 , TA2
2 >C is contained in B2, the group

of upper triangular matrices inside SL2. Note that up to conjugacy over
SL2(Fq), T2 equals the diagonal torus T0 inside SL2 since σ2 ∈ S2 is trivial
in case n = 2. By multiplying A2 from the left with a suitable element in
SL2(Fq), we may assume T2 = T0 and conclude that TA2C

0 is contained in B2.
Hence TA2C

0 is a maximal torus of B2, so there exist a b ∈ B2(Fq((t))) such
that TA2C

0 = T b
0 . Therefore, A2Cb

−1 is a monomial matrix inside GL2 and
can thus be written as A2Cb

−1 = wt0 for a monomial matrix w ∈ SL2(Fq)
and a diagonal matrix t0 ∈ GL2(Fq((t)). Hence C = A−1

2 wt0b and it follows

that < TA1
1 , TA2

2 >A−1
2 w is contained in Bb−1t−1

0
2 = B2. In particular, tA1A−1

2 w
1

is contained in B2, and as A1, A2 ∈ SL2(Fq + tFq[[t]]), w ∈ SL2(Fq) and

t1 ∈ SL2(Fq[[t]]), we conclude that tA1A−1
2 w

1 is contained in B2(Fq + tFq[[t]]).

It follows that the constant part of tA1A−1
2 w

1 is contained in B2(Fq). Now

the constant term of tA1A−1
2 w

1 is conjugate to the constant term of t1 (see
Lemma 4.2.1 b)) and the constant term of t1 equals diag(ζ1−q

1 , ζ−1+q
1 )g1 (see

the proof of Proposition 5.4.3). Hence B2(Fq) contains an element of order
q + 1 since ζ1 is a primitive (q2 − 1)-th root of unity. This contradicts the
fact that the order of B2(Fq) equals q · (q − 1).

Remark 5.4.5. We have to assume q 6= 2, since otherwise there are only
two possible specializations s 7→ 1 and s 7→ 0 and the latter would only
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give us an element of finite order (as D has to specialize to an element in
GLn(Fq) to conform to the assumptions of Theorem 3.1.3).
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5.5 Symplectic Groups

In this section we let n = 2d be even and consider the symplectic group
G = Sp2d with respect to the symplectic form given by

J =



−1

. ..

−1
1

. ..

1


.

For any elements f1, . . . , fd ∈ F = Fq(s, t), we set

D(f1,...,fd) =



f1 . . . fd−1 fd 1
1

. . .

1 0
fd−1 0 1
...

...
. . .

f1 0 1
−1 0 0


.

It is easily seen that D(f1,...,fd) is symplectic (in fact, it is a generic element
in the Steinberg cross section of Sp2d with respect to the diagonal torus)
and its characteristic polynomial equals

g(X) = X2d −
d−1∑
i=1

fiX
2d−i − fdX

d −
d−1∑
i=1

fiX
i + 1. (5.5)

(A proof can be found in [AM10, 4.2.]).

5.5.1 Specializations of D(f1,...,fd)

Recall that the diagonal matrices contained in Sp2d are exactly those of the
form diag(λ1, . . . , λd, λ

−1
d , . . . , λ−1

1 ) for non-zero elements λ1, . . . , λd. The co-
efficients of the characteristic polynomial of such an element are palindromic
in the following way:

Lemma 5.5.1. Let F be a field and let λ1, . . . , λd be non-zero elements in
F. Consider the diagonal matrix

A := diag(λ1, . . . , λd, λ
−1
d , . . . , λ−1

1 ) ∈ SL2d(F).
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Then the characteristic polynomial of A is of the form

X2d + a1X
2d−1 + · · ·+ ad−1X

d+1 + adX
d + ad−1X

d−1 + · · ·+ a1X + 1

for some a1, . . . , ad ∈ F.

Proof. Let ai ∈ F denote the coefficient of Xi in the characteristic polyno-
mial of A, for 1 ≤ i ≤ 2d− 1. We have to show that

ai = a2d−i

holds for all 1 ≤ i ≤ d − 1. Now (−1)iai = (−1)2d−iai is the sum of all
products of 2d − i elements out of λ1, . . . , λd, λ

−1
d , . . . , λ−1

1 . By multiplying
by 1 = λ1 · · ·λdλ

−1
d · · ·λ−1

1 , it is easy to see that this is also the sum of
all products of i elements out of λ1, . . . , λd, λ

−1
d , . . . , λ−1

1 , that is, (−1)iai =
(−1)ia2d−i, so we have ai = a2d−i.

Lemma 5.5.2. Let p1, . . . , pd be elements in Fq[[t]]× such that the constant
terms of p1, . . . , pd, p

−1
d , . . . , p−1

1 are pairwise distinct elements in F×q . Let
h1, . . . , hd ∈ Fq[[t]] be defined via

d∏
i=1

(X − pi)(X − p−1
i ) = X2d −

d−1∑
i=1

hiX
2d−i − hdX

d −
d−1∑
i=1

hiX
i + 1. (5.6)

Then D(h1,...,hd) and diag(p1, . . . , pd, p
−1
d , . . . , p−1

1 ) are conjugate over
Sp2d(Fq[[t]]).

Proof. We abbreviate G = Sp2d. The elements h1, . . . , hd exist inside Fq((t))
by Lemma 5.5.1, and as they are constructed as sums of products of the
elements p1, . . . , pd, p

−1
d , . . . , p−1

1 , they are also contained in Fq[[t]].

By the choice of hi together with Equation (5.5), the characteristic polyno-

mial of D(h1,...,hd) equals
d∏

i=1
(X − pi)(X − p−1

i ) and is thus separable. Hence

D(h1,...,hd) is a semisimple element of G(Fq((t))). It follows that there ex-
ists a maximal torus T containing D(h1,...,hd). All maximal tori of G(Fq((t)))
are conjugate, hence there exists an element g ∈ G(Fq((t))) such that T g

equals the diagonal torus T0 inside G. It follows that t0 := Dg
(h1,...,hd) is di-

agonal. We relabel p1, . . . , pd, p
−1
d , . . . , p−1

1 as p1, . . . , pd, pd+1, . . . , p2d. Then
p1, . . . , p2d are the 2d pairwise distinct eigenvalues of t0. It follows that
there exists a permutation σ ∈ S2d such that t0 = diag(pσ(1), . . . , pσ(2d))
holds. Now t0 is symplectic, so we have pσ(i) = p−1

σ(2d+1−i) for all 1 ≤ i ≤ d.
On the other hand, p1, . . . , p2d are pairwise distinct and pi = p−1

2d+1−i holds
for all 1 ≤ i ≤ d. It follows that σ(2d + 1 − i) = 2d + 1 − σ(i) holds for
all 1 ≤ i ≤ d. Therefore, σ gives rise to a symplectic permutation matrix
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Aσ ∈ G(Fq), by Lemma 4.1.5. By multiplying g with A−1
σ from the right, we

may assume that t0 equals diag(p1, . . . , pd, p
−1
d , . . . , p−1

1 ).

So far, we have seen that there exists a g ∈ G(Fq((t))) satisfying Dg
(h1,...,hd) =

diag(p1, . . . , pd, p
−1
d , . . . , p−1

1 ) =: t0. We would like to show that g can
be chosen inside G(Fq[[t]]). Proposition 5.2.2 implies that there exists a
C ∈ GLn(Fq[[t]]) with DC

(h1,...,hd) = diag(p1, . . . , pd, p
−1
d , . . . , p−1

1 ) = t0, since
p1, . . . , pd, p

−1
d , . . . , p−1

1 have pairwise distinct constant terms. Hence C−1g
is contained in the centralizer of t0 inside GLn which only consists of di-
agonal matrices (since the diagonal entries of t0 are pairwise distinct). Let
x1, . . . , x2d ∈ Fq((t))

×
be such that g = C · diag(x1, . . . , x2d) holds.

By multiplying g from the right with diag(x2d, . . . , xd+1, x
−1
d+1, . . . , x

−1
2d ) ∈

G(Fq((t))), we may assume that C = g · diag(α1, . . . , αd, 1 . . . , 1) holds for
some elements αi ∈ Fq((t))

×
. We now use that g is symplectic to compute

C
tr
JC = diag(α1, . . . , αd, 1 . . . , 1)g

tr
Jg diag(α1, . . . , αd, 1 . . . , 1)

= diag(α1, . . . , αd, 1 . . . , 1)J diag(α1, . . . , αd, 1 . . . , 1)

=



−α1

. ..

−αd

αd

. ..

α1


, (5.7)

so all entries of C
tr
JC away from the “reversed diagonal” (by which we

mean the (i, 2d + 1 − i)-th coordinates, 1 ≤ i ≤ 2d) are zero, that is, C is
already quite close to being symplectic. Equation (5.7) implies that all αi

are contained in Fq[[t]], as all entries of C and J are. On the other hand,
g has determinant 1 (as Sp2d ≤ SL2d), so C = g · diag(α1, . . . , αd, 1 . . . , 1)
implies α1 · · ·αd = det(C) ∈ Fq[[t]]×. Hence α1, . . . , αd are all contained in
Fq[[t]]×. It follows that all entries of g = C · diag(α−1

1 , . . . , α−1
d , 1, . . . , 1) are

contained in Fq[[t]], thus g ∈ G(Fq[[t]]).

5.5.2 Dense Elements in T1 and T2

Proposition 5.5.3. Let n = 2d ≥ 4 such that (n, q) 6= (4, 2). Let T0 ≤ Sp2d

be the diagonal torus and let T1 = T g1
0 and T2 = T g2

0 be the maximal tori of
Sp2d defined over Fq as in Definition 4.1.7. Consider
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ζ1 ∈ Fq2d primitive (q2d − 1)-th root of unity
ζ2 ∈ Fqd primitive (qd − 1)-th root of unity

pi ∈ Fq[t](t), 1 ≤ i ≤ d p1 := t+ζ1

t+ζqd

1

, p2 := t+ζq
1

t+ζqd+1

1

, . . . , pd := t+ζqd−1

1

t+ζq2d−1

1

p̃i ∈ Fq[t](t), 1 ≤ i ≤ d p̃1 := t+ ζ2, p̃2 := t+ ζq
2 , . . . , p̃d := t+ ζqd−1

2

t1 t1 := diag(p1, . . . , pd, p
−1
d , . . . , p−1

1 )g1

t2 t2 := diag(p̃1, . . . , p̃d, p̃
−1
d , . . . , p̃−1

1 )g2

Then ti is contained in Ti(Fq[[t]]) and the centralizer of its constant part
equals Ti. Moreover, ti generates a dense subgroup of Ti (i = 1, 2).

Proof. First of all, note that diag(p1, . . . , pd, p
−1
d , . . . , p−1

1 ) and
diag(p̃1, . . . , p̃d, p̃

−1
d , . . . , p̃−1

1 ) are both contained in T0 ≤ Sp2d. For i = 1, 2,
gi is contained in Sp2d(Fq) and p1, . . . , pd as well as p̃1, . . . , p̃d are contained
in Fq[[t]]× (as the constant parts of numerators and denominators are all
non-zero) hence ti is contained in Ti(Fq[[t]]).
Recall that giφq(gi)−1 = wi holds, where w1 and w2 were defined in Chapter
4 to be monomial matrices inside Sp2d(Fq) corresponding to the permutations

σ1 := (1, . . . , d, 2d, . . . , d+ 1)
σ2 := (1, . . . , d)(2d, . . . , d+ 1).

Relabel p1, . . . , pd, p
−1
d , . . . , p−1

1 by p1, . . . , p2d. Then ζq2d

1 = ζ1 implies
φq(p1) = p2, . . . , φq(pd−1) = pd, φq(pd) = p2d, φq(p2d) = p2d−1, . . . ,
φq(pd+2) = pd+1, φq(pd+1) = p1. Hence

φq(t1) = diag(p2, . . . , pd, p2d, p1, pd+1, . . . , p2d−1)φq(g1)

= diag(pσ1(1), . . . , pσ1(2d))
w−1

1 g1

= diag(p1, . . . , pn)g1

= t1.

Similarly, φq(t2) = t2 holds, as φq permutes the entries of
diag(p̃1, . . . , p̃d, p̃

−1
d , . . . , p̃−1

1 ) as indicated by σ2. Hence ti is contained in
Ti(Fq[[t]]) for i = 1, 2.

Now the constant part of t1 equals

t1,0 = diag(ζ1−qd

1 , ζq−qd+1

1 , . . . , ζqd−1−q2d−1

1 , ζq2d−1−qd−1

1 , . . . , ζqd−1)g1 .

Using that ζ1 is a primitive (q2d−1)-th root of unity, it is easy to see that all
elements ζ1−qd

1 , . . . , ζqd−1−q2d−1

1 , ζq2d−1−qd−1

1 , . . . , ζqd−1 are pairwise distinct,
hence only diagonal matrices commute with tg1

−1

1,0 which implies that the
centralizer of t1,0 equals T1.
The constant part of t2 equals

t2,0 = diag(ζ2, ζ
q
2 , . . . , ζ

qd−1

2 , ζ−qd−1

2 , . . . , ζ−1
2 )g2 .
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As ζ2 is a primitive (qd−1)-th root of unity, all eigenvalues of t2,0 are pairwise
distinct (here we used (n, q) 6= (4, 2)), hence the centralizer of t2,0 equals T2.

It remains to show that ti generates a dense subgroup of Ti for i = 1, 2.

For i = 1, 2, <ti> is dense in Ti if and only if <tg
−1
i

i > is dense in T g−1
i

i = T0

which is the case if and only if no non-trivial character of T0 maps tg
−1
i

i

to 1, by Lemma 4.2.6. Any character of T0 is of the form χe1
1 . . . χed

d for an
(e1, . . . , ed) ∈ Zd, where χi denotes the projection on the i-th diagonal en-
try. Assume that χ(tg1

−1

1 ) = 1, i.e., 1 = χ(diag(p1, . . . , pd, p
−1
d , . . . , p−1

1 )) =
pe1
1 . . . ped

d . By definition of p1, . . . , pd, this implies

(t+ζ1)e1(t+ζq
1)e2 · · · (t+ζqd−1

1 )ed(t+ζqd

1 )−e1(t+ζqd+1

1 )−e2 · · · (t+ζq2d−1

1 )−ed = 1.
(5.8)

Now Fq[t] is a factorial ring and (t + ζqi

1 ) are pairwise coprime for 0 ≤ i ≤
2d − 1, as ζ1 is a (q2d − 1)-th primitive root of unity. We conclude that
Equation (5.8) can only hold for e1 = · · · = ed = 0, hence t1 generates
a dense subgroup of T1. Similarly, t2 spans a dense subgroup of T2, as
p̃1, . . . , p̃d are pairwise coprime polynomials in Fq[t].

5.5.3 A Difference Module for Sp2d

We can now define the elements f1, . . . , fd ∈ F in a similar way as in the
special linear case:
n n = 2d ≥ 4
q prime power such that q > 2
α a fixed element in F×q \{1} (e.g. α = −1 if q is odd)
ζ1 ∈ Fq2d primitive (q2d − 1)-th root of unity
ζ2 ∈ Fqd primitive (qd − 1)-th root of unity

pi ∈ Fq[t]×(t) p1 := t+ζ1

t+ζqd

1

, p2 := t+ζq
1

t+ζqd+1

1

, . . . , pd := t+ζqd−1

1

t+ζq2d−1

1

p̃i ∈ Fq[t]×(t) p̃1 := t+ ζ2, p̃2 := t+ ζq
2 , . . . , p̃d := t+ ζqd−1

2

hi ∈ Fq[t](t) defined via
d∏

i=1
(X − pi)(X − p−1

i )

= X2d −∑d−1
i=1 hiX

2d−i − hdX
d −∑d−1

i=1 hiX
i + 1

h̃i ∈ Fq[t](t) defined via
d∏

i=1
(X − p̃i)(X − p̃−1

i )

= X2d −∑d−1
i=1 h̃iX

2d−i − h̃dX
d −∑d−1

i=1 h̃iX
i + 1
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aij , bij ∈ Fq coefficients of hi: hi(t) =
∑2d

j=0
aijtj∑2d

j=0
bijtj

; bi0 6= 0 for all i

ãij , b̃ij ∈ Fq coefficients of h̃i: h̃i(t) =
∑2d

j=0
ãijtj∑d

j=0 b̃ijtj
; b̃i0 6= 0 for all i

Hi ∈ Fq(t, s) Hi :=
s
∑2d

j=0 aijtj

bi0+s
∑2d

j=1
bijtj

, 1 ≤ i ≤ d

H̃i ∈ Fq(t, s) H̃i :=
s
α

∑2d
j=0

ãijtj

b̃i0+ s
α

∑d
j=1

b̃ijtj
, 1 ≤ i ≤ d

fi ∈ F fi := s−α
1−αHi + s−1

α−1H̃i, 1 ≤ i ≤ d

Table 5.2: Definition of f1, . . . , fd.

Note that the elements hi and h̃i exist inside Fq[t](t) by Lemma 5.5.1 and
they are contained in Fq[t](t) as they are the coefficients of the characteristic
polynomials of t1 ∈ T1(Fq[[t]]) and t2 ∈ T2(Fq[[t]]) as in Proposition 5.5.3.

Theorem 5.5.4. Assume q > 2 and n = 2d ≥ 4.
Let M = (Fn,Φ) be the φq-difference module over F = Fq(s, t) given by
D(f1,...,fd), where fi ∈ F are as defined in Table 5.2. Then there exists a
Picard-Vessiot ring R ⊆ Fq(s)

sep
((t)) ∩ L for M such that R/F is separable

and the Galois group scheme GM,R of M with respect to R is isomorphic to
Sp2d (as linear algebraic group over Fq(t)).

Proof. We abbreviate D := D(f1,...,fd). We proceed along the same line as
in the proof of Theorem 5.4.4. By replacing every occurrence of “SLn” and
“n − 1” by “Sp2d” and “d” in the first three paragraphs of the proof of
Theorem 5.4.4, we conclude that there exists a fundamental matrix Y ∈
Sp2d(L ∩ K[[t]]) for M such that R := F [Y, Y −1] is a Picard-Vessiot ring
for M contained in Fq(s)

sep
((t)) (and thus separable over F ) and the Galois

group scheme H := GM,R ≤ Sp2d is a linear algebraic group (defined over
Fq(t)).

As in the proof of Theorem 5.4.4, we now consider the valuation rings
o1 := Fq[s](s−1) and o2 := Fq[s](s−α) inside k = Fq(s) with maximal ide-
als p1 = (s − 1) and p2 = (s − α), resp., and we fix extensions (Oj ,Pj) of
(oj , pj) to k sep = Fq(s)

sep
(j = 1, 2). The same argument as in the proof of
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Theorem 5.4.4 then yields that all entries of D are contained in oj [[t]], and
as Sp2d ≤ SL2d, we thus have D ∈ Sp2d(oj [[t]]) for both j = 1, 2. Therefore,
we can apply Corollary 3.3.11 (with G := Sp2d and k̃ := K) to conclude
that H(Fq[[t]]) contains Sp2d(Fq[[t]])-conjugates of κ1(D) and κ2(D), where
κj : oj [[t]] → Fq[[t]] denotes the coefficient-wise reduction mod pj .

Specializing s 7→ 1 maps fi to hi (1 ≤ i ≤ d), thus κ1(D) = D(h1,...,hd)

and similarly κ2(D) = D(h̃1,...,h̃d). By Proposition 5.5.2, H(Fq[[t]]) thus con-
tains Sp2d(Fq[[t]])-conjugates of t1 and t2 as in Proposition 5.5.3 (we used
that g1 and g2 are contained in Sp2d(Fq) and that their constant parts have
pairwise distinct eigenvalues by 5.5.3). Applying Proposition 4.4.3 together
with Proposition 5.5.3, we conclude that there exist A1 and A2 contained
in Sp2d(Fq + tFq[[t]]) such that tA1

1 and tA2
2 are contained in H(Fq[[t]]). Now

t1 and t2 generate dense subgroups of T1 and T2 by Proposition 5.5.3, and
< TA1

1 , TA2
2 >= Sp2d holds by Theorem 4.2.5, so we conclude H = Sp2d.
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5.6 Special Orthogonal Groups in Odd Dimension

In this section we let n = 2d+ 1 be odd and we are only working in charac-
teristic 6= 2. Consider the special orthogonal group G = SO2d+1 with respect
to the orthogonal form given by

J =

Ö
1

. ..

1

è
.

For any elements f1, . . . , fd ∈ F = Fq(s, t) with fd 6= 0, we set

D(f1,...,fd) =



f1 . . . fd−1 fd −2fd −2fd

1
. . .

1 0
1 −1

fd−1

2fd
0 1

...
. . .

f1

2fd
1

− 1
2fd

0



.

It is easily seen that D(f1,...,fd) is orthogonal and of determinant 1 and its
characteristic polynomial equals

χ(f1,...,fd)(X) = X2d+1−
d∑

i=1

(fi +fi−1)X2d+1−i +
d∑

i=1

(fi +fi−1)Xi−1, (5.9)

where we set f0 = −1. (A proof can be found in [AM10, 4.3.]).

5.6.1 Specializations of D(f1,...,fd)

Recall that the diagonal matrices contained in SO2d+1 are exactly those of
the form diag(λ1, . . . , λd, 1, λ−1

d , . . . , λ−1
1 ) for non-zero elements λ1, . . . , λd.

They form a maximal torus T0 which we call the diagonal torus. The coef-
ficients of the characteristic polynomial of such an element are palindromic
in the following way:

Lemma 5.6.1. Let F be a field and let λ1, . . . , λd be non-zero elements in
F. Consider the diagonal matrix

A := diag(λ1, . . . , λd, 1, λ−1
d , . . . , λ−1

1 ).

Then the characteristic polynomial of A is of the form

X2d+1 − a1X
2d − · · · − adX

d+1 + adX
d + ad−1X

d−1 + · · ·+ a1X − 1

for some a1, . . . , ad ∈ F.
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Proof. This can easily be deduced from Lemma 5.5.1 by multiplying the
characteristic polynomial of diag(λ1, . . . , λd, λ

−1
d , . . . , λ−1

1 ) by (X − 1).

Lemma 5.6.2. Let p1, . . . , pd be elements in Fq[t]×(t) such that the constant
terms of p1, . . . , pd, 1, p−1

d , . . . , p−1
1 regarded as power series in t are pairwise

distinct elements in F×q \{−1}. Then there exist unique elements h1, . . . , hd ∈
Fq[t](t) with hd ∈ Fq[t]×(t) such that

(X − 1)
d∏

i=1

(X − pi)(X − p−1
i ) = χ(h1,...,hd)(X). (5.10)

Moreover, D(h1,...,hd) and diag(p1, . . . , pd, 1, p−1
d , . . . , p−1

1 ) are conjugate over
SO2d+1(Fq[[t]]).

Proof. We abbreviate G = SO2d+1. There exist elements a1, . . . , ad inside
Fq(t) for which

(X − 1)
d∏

i=1

(X − pi)(X − p−1
i ) = X2d+1 −

d∑
i=1

aiX
2d+1−i +

d∑
i=1

aiX
i − 1

by Lemma 5.6.1, and as they are constructed as sums of products of the
elements p1, . . . , pd, 1, p−1

d , . . . , p−1
1 , they are contained in Fq[t](t). Equation

(5.9) implies that we are looking for solutions h1, . . . , hd of the following
system of equations

h1 − 1 = a1

h2 + h1 = a2

...

hd + hd−1 = ad

which is equivalent to

h1 = a1 + 1
h2 = (a2 − a1 − 1)
h3 = (a3 − a2 + a1 + 1)

...

hd = (ad − ad−1 ± · · ·+ (−1)da1 + (−1)d). (5.11)

Hence there exists a unique solution (h1, . . . , hd) ∈ (Fq[t](t))d. It remains to
show that hd is contained in Fq[t]×(t). Abbreviate

f(X) = (X−1)
d∏

i=1

(X−pi)(X−p−1
i ) = X2d+1−

d∑
i=1

aiX
2d+1−i+

d∑
i=1

aiX
i−1.
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Equation (5.11) implies f(−1) = 2hd. Since we assumed that none of the pi’s
has constant term −1, it follows that f(−1) ∈ Fq[t]×(t) and thus hd ∈ Fq[t]×(t).

We have found elements h1, . . . , hd such that the characteristic polynomial

of D(h1,...,hd) equals (X − 1)
d∏

i=1
(X − pi)(X − p−1

i ) and is thus separable.

Hence D(h1,...,hd) is a semisimple element of G(Fq(t)). It follows that there
exists a maximal torus T containing D(h1,...,hd). All maximal tori of G(Fq(t))
are conjugate, hence there exists an element g ∈ G(Fq(t)) such that T g

equals the diagonal torus T0 inside G. It follows that t0 := Dg
(h1,...,hd) is

diagonal. We relabel p1, . . . , pd, 1, p−1
d , . . . , p−1

1 as p1, . . . , pd, pd+1, . . . , p2d+1.
Then p1, . . . , p2d+1 are the 2d+1 pairwise distinct eigenvalues of t0. It follows
that there exists a permutation σ ∈ S2d+1 such that t0 = diag(pσ(1), . . . , pσ(2d+1))
holds. Now t0 is orthogonal, so we have pσ(d+1) = 1 and pσ(i) = p−1

σ(2d+2−i)
for all 1 ≤ i ≤ d. On the other hand, p1, . . . , p2d+1 are pairwise distinct and
pi = p−1

2d+2−i holds for all 1 ≤ i ≤ d. It follows that σ(2d+2−i) = 2d+2−σ(i)
holds for all 1 ≤ i ≤ d. Therefore, σ gives rise to an orthogonal permutation
matrix Aσ ∈ G(Fq), by Lemma 4.1.5. By multiplying g with A−1

σ from the
right, we may assume that t0 equals diag(p1, . . . , pd, 1, p−1

d , . . . , p−1
1 ).

So far, we have seen that there exists a g ∈ G(Fq(t)) satisfying Dg
(h1,...,hd) =

diag(p1, . . . , pd, 1, p−1
d , . . . , p−1

1 ) =: t0. We would like to show that g can
be chosen inside G(Fq[[t]]). Proposition 5.2.2 implies that there exists a
C ∈ GLn(Fq[[t]]) with DC

(h1,...,hd) = diag(p1, . . . , pd, 1, p−1
d , . . . , p−1

1 ) = t0,
since
p1, . . . , pd, 1, p−1

d , . . . , p−1
1 have pairwise distinct constant terms. Hence C−1g

is contained in the centralizer of t0 inside GLn which only consists of diag-
onal matrices (since the diagonal entries of t0 are pairwise distinct). Let
x1, . . . , x2d+1 ∈ Fq((t))

×
be such that g = C · diag(x1, . . . , x2d+1) holds.

By multiplying g from the right with

diag(x2d+1, . . . , xd+1, 1, x−1
d+1, . . . , x

−1
2d+1) ∈ G(Fq((t))),

we may assume that C = g · diag(α1, . . . , αd+1, 1 . . . , 1) holds for some ele-
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ments αi ∈ Fq((t))
×
. We now use that g is orthogonal to compute

C
tr
JC = diag(α1, . . . , αd+1, 1 . . . , 1)g

tr
Jg diag(α1, . . . , αd+1, 1 . . . , 1)

= diag(α1, . . . , αd+1, 1 . . . , 1)J diag(α1, . . . , αd+1, 1 . . . , 1)

=



α1

. ..

αd

α2
d+1

αd

. ..

α1


. (5.12)

Equation (5.12) implies that α1, . . . , αd and α2
d+1 are contained in Fq[[t]],

as all entries of C and J are. On the other hand, g has determinant 1, so
C = g · diag(α1, . . . , αd+1, 1 . . . , 1) implies α1 · · ·αdα

2
d+1 = det(C) ∈ Fq[[t]]×.

Hence α1, . . . , αd as well as α2
d+1 are contained in Fq[[t]]×. Now Fq[[t]]× is

closed under taking square roots (recall that we are working in characteristic
6= 2), so αd+1 is contained in Fq[[t]], too. It follows that all entries of g = C ·
diag(α−1

1 , . . . , α−1
d+1, 1, . . . , 1) are contained in Fq[[t]], thus g ∈ G(Fq[[t]]).

Proposition 5.6.3. Let n = 2d + 1 ≥ 3. Let T0 ≤ SO2d+1 be the diagonal
torus and let T1 = T g1

0 and T2 = T g2
0 be the maximal tori of SO2d+1 defined

over Fq as in Definition 4.1.7. Consider
ζ1 ∈ Fq2d primitive (q2d − 1)-th root of unity
ζ2 ∈ Fqd primitive (qd − 1)-th root of unity

pi ∈ Fq[t](t), 1 ≤ i ≤ d p1 := t+ζ1

t+ζqd

1

, p2 := t+ζq
1

t+ζqd+1

1

, . . . , pd := t+ζqd−1

1

t+ζq2d−1

1

p̃i ∈ Fq[t](t), 1 ≤ i ≤ d p̃1 := t+ ζ2, p̃2 := t+ ζq
2 , . . . , p̃d := t+ ζqd−1

2

t1 t1 := diag(p1, . . . , pd, 1, p−1
d , . . . , p−1

1 )g1

t2 t2 := diag(p̃1, . . . , p̃d, 1, p̃−1
d , . . . , p̃−1

1 )g2

Then ti is contained in Ti(Fq[[t]]) and the centralizer of its constant part
equals Ti. Moreover, ti generates a dense subgroup of Ti (i = 1, 2).

Proof. Note that the elements p1, . . . , pd and p̃1, . . . , p̃d are the same as in
the symplectic case. The proof is then almost identical to the proof of
Proposition 5.5.3.
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5.6.2 A Difference Module for SO2d+1

We can now define the elements f1, . . . , fd ∈ F in a similar way as in the
symplectic case:
n n = 2d+ 1 ≥ 7
q an odd prime power
ζ1 ∈ Fq2d primitive (q2d − 1)-th root of unity
ζ2 ∈ Fqd primitive (qd − 1)-th root of unity

pi ∈ Fq[t]×(t) p1 := t+ζ1

t+ζqd

1

, p2 := t+ζq
1

t+ζqd+1

1

, . . . , pd := t+ζqd−1

1

t+ζq2d−1

1

p̃i ∈ Fq[t]×(t) p̃1 := t+ ζ2, p̃2 := t+ ζq
2 , . . . , p̃d := t+ ζqd−1

2

hi ∈ Fq[t](t) defined via (X − 1)
d∏

i=1
(X − pi)(X − p−1

i )

= χ(h1,...,hd)(X)

h̃i ∈ Fq[t](t) defined via (X − 1)
d∏

i=1
(X − p̃i)(X − p̃−1

i )

= χ(h̃1,...,h̃d)(X)

aij , bij ∈ Fq coefficients of hi: hi(t) =
∑2d

j=0
aijtj∑2d

j=0
bijtj

; bi0 6= 0 for all i

ãij , b̃ij ∈ Fq coefficients of h̃i: h̃i(t) =
∑2d

j=0
ãijtj∑d

j=0
b̃ijtj

; b̃i0 6= 0 for all i

Hi ∈ Fq(t, s) Hi :=
s
∑2d

j=0
aijtj

bi0+s
∑2d

j=1 bijtj
, 1 ≤ i ≤ d

H̃i ∈ Fq(t, s) H̃i :=
−s
∑2d

j=0
ãijtj

b̃i0−s
∑d

j=1
b̃ijtj

, 1 ≤ i ≤ d

fi ∈ F fi := s+1
2 Hi + 1−s

2 H̃i, 1 ≤ i ≤ d− 1

fd := s+1
2 Hd + 1−s

2 H̃d + (s+ 1)(1− s)

Table 5.3: Definition of f1, . . . , fd.

Note that the elements hi and h̃i exist inside Fq[t](t) by Lemma 5.6.1 and

they are contained in Fq[t](t) as the coefficients of (X−1)
d∏

i=1
(X−pi)(X−p−1

i )

and (X−1)
d∏

i=1
(X−p̃i)(X−p̃−1

i ) are contained in Fq[t](t) by Proposition 5.6.3.
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Theorem 5.6.4. Assume q odd and n = 2d+ 1 ≥ 7.
Let M = (Fn,Φ) be the φq-difference module over F = Fq(s, t) given by
D(f1,...,fd), where fi ∈ F are as defined in Table 5.3. Then there exists a
Picard-Vessiot ring R ⊆ Fq(s)

sep
((t)) ∩ L for M such that R/F is separable

and the Galois group scheme GM,R of M with respect to R is isomorphic to
SO2d+1 (as linear algebraic group over Fq(t)).

Proof. We abbreviate D := D(f1,...,fd). Let O|·| ⊆ K denote the valuation
ring corresponding to | · | with maximal ideal m ⊆ O|·|. All non-constant co-
efficients of the numerators and denominators of Hi and H̃i (1 ≤ i ≤ n− 1)
are contained in m and the constant coefficients of the denominators are
contained in F×q ⊆ O×|·|, so it follows from Lemma 3.1.4 that all Hi and H̃i

are contained in O|·|[[t]] and their j-th coefficients can be bounded by δj for
a suitable δ < 1. Hence the same is true for all fi, 1 ≤ i ≤ d. Note that
s+1
2 Hd + 1−s

2 H̃d is contained in m[[t]], so fd = s+1
2 Hd + 1−s

2 H̃d +(s+1)(1−s)
is contained in O|·|[[t]]×, since we added the extra term (s+1)(1− s) ∈ O×|·|.
We conclude that D =

∑∞
l=0Dlt

l ∈ SOn(O|·|[[t]]) satisfies ||Dl|| ≤ δl for
all l ∈ N. By Theorem 3.1.3, there exists a fundamental solution matrix
Y =

∑∞
l=0 Ylt

l ∈ GLn(L ∩K[[t]]) satisfying ||Yl|| ≤ δl, i.e., Y ∈ Mn(O|·|{t}).
Let E = F (Y ) be the field generated by the entries of Y . Then E ⊆ L,
hence CE = CF and R := F [Y, Y −1] ⊆ E is a Picard-Vessiot ring for M by
Theorem 1.2.11.

Consider o := O|·| ∩ k = Fq[s](s) and O := O|·| ∩ k
sep (with respect to a

fixed embedding of k sep = Fq(s)
sep

into K). Let p = (s) denote the maximal
ideal inside o. Then o/p ∼= Fq. Therefore, o and O conform to all assump-
tions made in 3.3.1 hence we can apply Proposition 3.3.3 c) (with k̃ := K)
to conclude that Y is contained in GLn(O[[t]]). In particular, all entries of Y
are contained in Fq(s)

sep
((t)), hence R/F is separable by Proposition 5.2.1.

Also, Y is contained in GLn(O|·|[[t]])∩Mn(O|·|{t}), so we may assume that Y
is contained in SOn(L∩K[[t]]), by Theorem 3.2.4. Indeed, O|·|/m ∼= Fq ⊆ K,
D ∈ SOn(O|·|[[t]]) and κ|·|(D) = D(0,...,0,1) ∈ SOn(Fq) ⊆ SOn(O|·|/m) (the
latter follows from κ|·|(Hi) = κ|·|(H̃i) = 0 for all i ≤ n− 1).

We conclude that the Galois group scheme H := GM,R of (M,Φ) is a lin-
ear algebraic group (see Theorem 1.3.10) defined over Fq(t) that is a closed
subgroup of SOn (see Proposition 1.3.11). We will now use the lower bound
criterion 3.3.11 to show that H is all of SOn.

Consider p1 = (s− 1) ⊆ o1 := Fq[s](s−1) and p2 = (s+ 1) ⊆ o2 := Fq[s](s+1).
Then o1 and o2 are valuation rings inside k = Fq(s) with o1/p1

∼= Fq and
o2/p2

∼= Fq. Fix extensions (Oj ,Pj) of (oj , pj) to k sep = Fq(s)
sep

(j = 1, 2).
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These valuation rings conform to all assumptions made in 3.3.1 and we
may thus apply the results from Section 3.3. Note that Hi ∈ oj [[t]] for all
1 ≤ i ≤ n − 1, j = 1, 2 since the numerators are contained in oj [t] and the
denominators are contained in oj [t] with constant coefficient bi0 ∈ F×q ⊆ o×j .
Similarly, all H̃i and thus all fi are contained in oj [[t]]. Therefore, all
f1, . . . , fd are contained in oj [[t]] (j = 1, 2). We claim that fd is more-
over contained in oj [[t]]×. The reduction of fd modulo p1 equals hd and
the reduction modulo p2 equals h̃d. As hd and h̃d are both contained in
Fq[t]×(t) by Lemma 5.6.2, the claim follows and we conclude that D is con-
tained in SOn(oj [[t]]) for both j = 1, 2. Therefore, we can apply Corollary
3.3.11 (with G := SOn and k̃ := K) to conclude that H(Fq[[t]]) contains
SOn(Fq[[t]])-conjugates of κ1(D) and κ2(D), where κj : oj [[t]] → Fq[[t]] de-
notes the coefficient-wise reduction mod pj .

Specializing s 7→ 1 maps fi to hi (1 ≤ i ≤ d), thus κ1(D) = D(h1,...,hd).
Similarly, κ2(D) = D(h̃1,...,h̃d) as specializing s 7→ −1 maps fi to h̃i. The con-
stant parts of p1, . . . , pd, 1, p−1

d , . . . , p−1
1 are pairwise distinct and not equal

to −1, hence κ1(D) is conjugate to t1 over SOn(Fq[[t]]), by Lemma 5.6.2.
Similarly, κ2(D) is conjugate to t2 over SOn(Fq[[t]]). Therefore, H(Fq[[t]])
contains SOn(Fq[[t]])-conjugates x1 and x2 of t1 and t2 which are both con-
tained in SOn(Fq[[t]]) (see Proposition 5.6.3). By Proposition 4.4.3 together
with Proposition 5.6.3, there exist A1 and A2 contained in SOn(Fq + tFq[[t]])
with xj = t

Aj

j (j = 1, 2). Now H is a closed subgroup of SOn and t1 and t2
generate dense subgroups of T1 and T2 by Proposition 5.6.3, so H contains
< TA1

1 , TA2
2 >. Finally, Theorem 4.2.5 implies < TA1

1 , TA2
2 >= SOn, hence

H = SOn.
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5.7 Special Orthogonal Groups in Even Dimension

In this section we let n = 2d be even and we are only working in characteristic
6= 2. Again, we consider the special orthogonal group G = SO2d with respect
to the orthogonal form given by

J =

Ö
1

. ..

1

è
.

For any elements f1, . . . , fd ∈ F = Fq(s, t) with fd 6= 0, we set

D(f1,...,fd) =



f1 . . . fd−1 fd fd−1 −fd

1
. . .

1 0 1
fd−1

fd
1 0

fd−2

fd
0 0 1

...
. . .

f1

fd
1

− 1
fd

0



.

It is easily seen that D(f1,...,fd) is orthogonal and of determinant 1 and its
characteristic polynomial equals

χ(f1,...,fd)(X) = X2d +
d−1∑
i=1

(−fi + fi−2)X2d−i + (−fd + 2fd−2 −
f2

d−1

fd
)Xd

+
d−1∑
i=1

(−fi + fi−2)Xi + 1, (5.13)

where we set f0 = −1 and f−1 = 0. (A proof can be found in [AM10, 4.4.]).

5.7.1 Specializations of D(f1,...,fd)

Recall that the diagonal matrices contained in SO2d are exactly those of the
form diag(λ1, . . . , λd, λ

−1
d , . . . , λ−1

1 ) for non-zero elements λ1, . . . , λd.

Lemma 5.7.1. Let p1, . . . , pd be elements in Fq[t]×(t) such that the constant
terms of p1, . . . , pd, p

−1
d , . . . , p−1

1 regarded as power series in t are pairwise
distinct elements in F×q \{±1}. Then

a) there exist elements h1, . . . , hd ∈ Fq[t](t) with hd ∈ Fq[t]×(t) such that

d∏
i=1

(X − pi)(X − p−1
i ) = χ(h1,...,hd)(X). (5.14)
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b) For any such elements h1, . . . , hd, D(h1,...,hd) is conjugate to one of the
following diagonal matrices over SO2d(Fq[[t]]):

diag(p1, . . . , pd, p
−1
d , . . . , p−1

1 )

or
diag(p1, . . . , pd−1, p

−1
d , pd, p

−1
d−1, . . . , p

−1
1 ).

c) If moreover
d∏

i=1
(X − pi)(X − p−1

i ) is contained in Fq[t](t)[X] and

d∏
i=1

(1−pi)(1+p−1
i ) is contained in Fq[t](t), all h1, . . . , hd are contained

in Fq[t](t).

Proof. a) We abbreviate G = SO2d. There exist elements a1, . . . , ad inside
Fq(t) with

d∏
i=1

(X − pi)(X − p−1
i ) = X2d +

d−1∑
i=1

aiX
2d−i + adX

d +
d−1∑
i=1

aiX
i + 1

by Lemma 5.5.1, and as they are constructed as sums of products
of the elements p1, . . . , pd, p

−1
d , . . . , p−1

1 , they are contained in Fq[t](t).
Equation (5.13) implies that we are looking for solutions h1, . . . , hd of
the following system of equations

−h1 = a1

−h2 − 1 = a2

−h3 + h1 = a3

...

−hd−1 + hd−3 = ad−1

−hd + 2hd−2 −
h2

d−1

hd
= ad

which is equivalent to

h1 = −a1

h2 = −a2 − 1
h3 = −a3 − a1

h4 = −a4 − a2 − 1
...

hd−1 = −
b d−1

2
c∑

j=0

ad−1−2j

h2
d + (−2hd−2 + ad)hd + h2

d−1 = 0, (5.15)
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where we set a0 = 1. Hence (h1, . . . , hd−1) are uniquely determined
inside Fq[t](t). It remains to show that Equation (5.15) can be solved
inside Fq[t]×(t). Equation (5.15) is quadratic with discriminant

(−2hd−2+ad)2−4h2
d−1 = (−2hd−2+ad+2hd−1)(−2hd−2+ad−2hd−1).

Abbreviate

f(X) =
d∏

i=1

(X − pi)(X − p−1
i ) =

d−1∑
i=0

aiX
2d−i + adX

d +
d−1∑
i=0

aiX
i.

Then

−2hd−2 + ad − 2hd−1 = ad + 2
d−1∑
i=0

ai = f(1)

−2hd−2 + ad + 2hd−1 = ad − 2ad−1 + 2ad−2 ∓ . . .

= (−1)d((−1)dad + 2
d−1∑
i=0

(−1)iai)

= (−1)df(−1).

Hence the discriminant equals

(−1)df(1)f(−1) = (−1)d
d∏

i=1

(1− pi)(1− p−1
i )

d∏
i=1

(1 + pi)(1 + p−1
i )

= (−1)d
d∏

i=1

(1− pi)(pi − 1)
pi

d∏
i=1

(1 + pi)2

pi

=

(
d∏

i=1

(1− pi)(1 + pi)
pi

)2

We set

∆ =
d∏

i=1

(1− pi)(1 + pi)
pi

.

Note that ∆ is contained in Fq[t]×(t), as we assumed that the constant
parts of pi are distinct from ±1. Then at least one of the two solutions

2hd−2 − ad ±∆
2

(5.16)

of Equation (5.15) is contained in Fq[t]×(t).
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b) We have found elements h1, . . . , hd such that the characteristic poly-

nomial of D(h1,...,hd) equals
d∏

i=1
(X−pi)(X−p−1

i ) and is thus separable.

Hence D(h1,...,hd) is a semisimple element of G(Fq(t)). It follows that
there exists a maximal torus T containing D(h1,...,hd). All maximal tori
of G(Fq(t)) are conjugate, hence there exists an element g ∈ G(Fq(t))
such that T g equals the diagonal torus T0 inside G. It follows that
t0 := Dg

(h1,...,hd) is diagonal. We relabel p1, . . . , pd, p
−1
d , . . . , p−1

1 as
p1, . . . , pd, pd+1, . . . , p2d. Then p1, . . . , p2d are the 2d pairwise distinct
eigenvalues of t0. It follows that there exists a permutation σ ∈ S2d

such that t0 = diag(pσ(1), . . . , pσ(2d)) holds. Now t0 is orthogonal, so we
have pσ(i) = p−1

σ(2d+1−i) for all 1 ≤ i ≤ d. On the other hand, p1, . . . , p2d

are pairwise distinct and pi = p−1
2d+1−i holds for all 1 ≤ i ≤ d. It fol-

lows that σ(2d + 1 − i) = 2d + 1 − σ(i) holds for all 1 ≤ i ≤ d.
If σ has sign 1, it gives rise to an orthogonal permutation matrix
Aσ ∈ G(Fq), by Lemma 4.1.5. By multiplying g with A−1

σ from the
right, we may assume that t0 equals diag(p1, . . . , pd, p

−1
d , . . . , p−1

1 ). If
σ has sign −1, σ′ := σ · (k, k+ 1) gives rise to an orthogonal permuta-
tion matrix Aσ′ ∈ G(Fq), by Lemma 4.1.5 and we may assume that t0
equals diag(p1, . . . , pd−1, p

−1
d , pd, p

−1
d−1, . . . , p

−1
1 ).

So far, we have seen that there exists a g ∈ G(Fq(t)) satisfying
Dg

(h1,...,hd) = t0, where either

t0 = diag(p1, . . . , pd, p
−1
d , . . . , p−1

1 )

or
t0 = diag(p1, . . . , pd−1, p

−1
d , pd, p

−1
d−1, . . . , p

−1
1 ).

We would like to show that g can be chosen inside G(Fq[[t]]). Proposi-
tion 5.2.2 implies that there exists a C ∈ GLn(Fq[[t]]) with DC

(h1,...,hd) =
t0, since p1, . . . , pd, p

−1
d , . . . , p−1

1 have pairwise distinct constant terms.
Hence C−1g is contained in the centralizer of t0 inside GLn which
only consists of diagonal matrices (since the diagonal entries of t0
are pairwise distinct). Let x1, . . . , x2d ∈ Fq((t))

×
be such that g =

C · diag(x1, . . . , x2d) holds.

By multiplying g from the right with diag(x2d, . . . , xd+1, x
−1
d+1, . . . , x

−1
2d ) ∈

G(Fq((t))), we may assume that C = g · diag(α1, . . . , αd, 1 . . . , 1) holds
for some elements αi ∈ Fq((t))

×
. We now use that g is orthogonal to

compute

C
tr
JC = diag(α1, . . . , αd, 1 . . . , 1)g

tr
Jg diag(α1, . . . , αd, 1 . . . , 1)

= diag(α1, . . . , αd, 1 . . . , 1)J diag(α1, . . . , αd, 1 . . . , 1)
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=



α1

. ..

αd

αd

. ..

α1


. (5.17)

Equation (5.17) implies that α1, . . . , αd are contained in Fq[[t]], as all
entries of C and J are. On the other hand, g has determinant 1, so
C = g · diag(α1, . . . , αd, 1 . . . , 1) implies α1 · · ·αd = det(C) ∈ Fq[[t]]×.
Hence α1, . . . , αd are contained in Fq[[t]]×. It follows that all entries
of g = C · diag(α−1

1 , . . . , α−1
d+1, 1, . . . , 1) are contained in Fq[[t]], thus

g ∈ G(Fq[[t]]).

c) If moreover
d∏

i=1
(X−pi)(X−p−1

i ) is contained in Fq[t](t)[X], all a1, . . . , ad

are contained in Fq[t](t) and it follows that h1, . . . , hd−1 are contained in
Fq[t](t) (see the block of equations above Equation (5.15)). If moreover
d∏

i=1
(1 − pi)(1 + p−1

i ) = F is contained in Fq[t](t), hd is contained in

Fq[t]×(t) by Equation (5.16).

5.7.2 Another Maximal Torus

In Chapter 4 we constructed maximal tori T1 and T2 defined over Fq (cor-
responding to permutations σ1 and σ2) such that any conjugates generate
SO2d. In this section, we introduce a third maximal torus T ′2 in SO2d de-
fined over Fq that corresponds to a permutation σ′2 conjugate to σ2. Hence T ′2
has very similar properties as T2 but they are not conjugate over SO2d(Fq).
Eventually we will only know that D(f1,...,fd) specializes to a conjugate of
an element that generates a dense subgroup of either T2 or T ′2. Therefore
we need to show that also any conjugates of T1 and T ′2 generate SO2d. This
peculiar situation reflects the fact that SOn is not simply-connected and
hence not every regular element has to be conjugate to an element inside
the Steinberg section.

Definition 5.7.2. We set σ′2 := (k, k+1)σ2(k, k+1) where σ2 is defined as
in Table 4.2 on page 54. By Lemma 4.1.5 there exists a monomial matrix
w′2 ∈ SO2d(Fq) that corresponds to the permutation σ′2. We fix an element

g′2 ∈ SO2d(Fq) with g′2φq(g′2)
−1 = w′2. Then T ′2 := T

g′2
0 is a maximal torus

defined over Fq (where T0 denotes the diagonal torus inside SO2d(Fq)).

Proposition 5.7.3. The order of T ′2(Fq) equals n2(q), where n2(q) is as
defined in Table 4.1.
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Proof. The Fq-rational points of T ′2 can be computed using Proposition 4.1.1.
If d is odd,

σ′2 = (1, . . . , d− 1, d+ 1)(2d, . . . , d+ 2, d)

and we get

T ′2(Fq) = {diag(ζ, ζq, . . . , ζqd−2
, ζ−qd−1

, ζqd−1
, ζ−qd−2

, . . . , ζ−1) | ζqd−1 = 1}g′2 .

Hence |T ′2(Fq)| = qd − 1 = n2(q).

If d = 2m is even and m is odd, n2(q) = (qm − 1)2 and

σ′2 = (1, . . . ,m)(m+ 1, . . . , 2m− 1, 2m+ 1)(3m, . . . , 2m+ 2, 2m)(4m, . . . , 3m+ 1).

We conclude that T ′2(Fq) consists of all elements of the form

diag(ζ, . . . , ζqm−1
, µ, . . . , µqm−2

, µ−qm−1
, µqm−1

, µ−qm−2
, . . . , µ−1, ζ−qm−1

, . . . , ζ−1)g′2

for (qm − 1)-th roots of unities ζ and µ, so |T ′2(Fq)| = (qm − 1)2 = n2(q).

Finally, if d = 2m for an even m, n2(q) = (qm + 1)2 and

σ′2 = (1, . . . ,m, 4m, . . . , 3m+1)(m+1, . . . , 2m−1, 2m+1, 3m, . . . , 2m+2, 2m).

Therefore, T ′2(Fq) consists of all elements of the form

diag(ζ, . . . , ζqm−1
, µ, . . . , µqm−2

, µ−qm−1
, µqm−1

, µ−qm−2
, . . . , µ−1, ζ−qm−1

, . . . , ζ−1)g′2

for (qm + 1)-th roots of unities ζ and µ, hence |T ′2(Fq)| = (qm + 1)2 =
n2(q).

Theorem 5.7.4. Let q be an odd power of a prime and assume n = 2d ≥ 8.
Then for any A,B ∈ SO2d(Fq + Fq[[t]]) we have

< TA
1 , T

′B
2 >= SO2d .

Proof. Now that we know that T ′2(Fq) = n2(q) = T2(Fq) we can prove this
in the same way as we proved < TA

1 , T
B
2 >= SO2d in Chapter 4. Let l0

denote the least common multiple of the order of σ1 and σ′2. As σ2 and σ′2
are conjugate by (k, k + 1), this is the same as the least common multiple
of the order of σ1 and σ2. Set

F =
⋃

l∈N: l≡1 mod l0

Fql ⊆ Fq.

Then F is a field of infinite order by Lemma 4.2.3. Using Proposition 5.7.3,
the same proof as that for Proposition 4.2.4 implies that

< T1(F)A0 , T ′B0
2 >= SO2d(F)

holds for any A0, B0 ∈ SO2d(Fq). The claim then follows similarly as in the
proof of Theorem 4.2.5.
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5.7.3 Dense Elements in T1,T2 and T ′
2

Lemma 5.7.5. Let m ≥ 2 ∈ N and assume q odd such that (m, q) 6= (2, 3).

a) There exist primitive (qm − 1)-th roots of unity α and β such that

α±1, α±q, . . . , α±qm−1
, β±1, β±q, . . . , β±qm−1

are pairwise distinct.

b) There exist primitive (q2m − 1)-th roots of unity α and β such that

α±(1−qm), α±(q−qm+1), . . . , α±(qm−1−q2m−1),

β±(1−qm), β±(q−qm+1), . . . , β±(qm−1−q2m−1)

are pairwise distinct.

Proof. If ζ runs through all (q2m−1)-th roots of unities, ζ1−qm
runs through

all (qm + 1)-th roots of unities. Hence in both cases the claim is that there
exists a (qm ± 1)-th primitive root of unity α and a (qm ± 1)-th primitive
root of unity β such that

α±1, α±q, . . . , α±qm−1
, β±1, β±q, . . . , β±qm−1

are pairwise distinct. This has been proven in [AM10, p.10]. For the con-
venience of the reader, we sketch the proof: Fix a primitive (qm ± 1)-th
root of unity α. Then α±1, α±q, . . . , α±qm−1

are pairwise distinct. We have
to show that there exists a primitive (qm ± 1)-th root of unity β such that
α±qi 6= βqj

for all 0 ≤ i, j ≤ m − 1 which is equivalent to β 6= α±qi
for all

0 ≤ i ≤ m− 1. It is therefore sufficient to show that the number ϕ(qm ± 1)
of primitive (qm ± 1)-th roots of unity is greater than 2m. As m ≥ 2 and
q ≥ 3 it follows that qm ± 1 ≥ 6 hence ϕ(qm ± 1) ≥

√
qm ± 1. We first treat

the case (m, q) = (3, 3). Then ϕ(qm ± 1) ∈ {26, 28} and is clearly greater
than 2m. If (m, q) 6= (3, 3),

√
qm ± 1 > 2m always holds.

Proposition 5.7.6. Let n = 2d ≥ 8 and q odd such that (n, q) 6= (8, 3).
Let T0 ≤ SO2d be the diagonal torus and let T1 = T g1

0 and T2 = T g2
0 be the

maximal tori of SO2d defined over Fq as in Definition 4.1.7 and T ′2 = T
g′2
0 as

before. We define elements t1 ∈ T1, t′1 ∈ T1, t2 ∈ T2 and t′2 ∈ T ′2 as follows.
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if d ≡ 1 mod 2
ζ ∈ Fq2 primitive (q2 − 1)-th root of unity
ζ1 ∈ Fq2d−2 primitive (q2(d−1) − 1)-th root of unity
ζ2 ∈ Fqd primitive (qd − 1)-th root of unity

pi ∈ Fq[t](t) pi := t+ζqi−1

1

t+ζqd+i−2

1

, 1 ≤ i ≤ d− 1

pd ∈ Fq[t](t) pd := t+ζ
t+ζq

p̃i ∈ Fq[t](t) p̃i := t+ ζqi−1

2 , 1 ≤ i ≤ d

if d = 2m ≡ 2 mod 4
ζ ∈ Fq2 primitive (q2 − 1)-th root of unity
ζ1 ∈ Fq2d−2 primitive (q2(d−1) − 1)-th root of unity
α, β ∈ Fqm primitive (qm − 1)-th roots of unity

as in Lemma 5.7.5a)

pi ∈ Fq[t](t) pi := t+ζqi−1

1

t+ζqd+i−2

1

, 1 ≤ i ≤ d− 1

pd ∈ Fq[t](t) pd := t+ζ
t+ζq

p̃i ∈ Fq[t](t) p̃i := t+ αqi−1
, 1 ≤ i ≤ m

p̃m+i := t+ βqi−1
, 1 ≤ i ≤ m

if d = 2m ≡ 0 mod 4
ζ ∈ Fq2 primitive (q2 − 1)-th root of unity
ζ1 ∈ Fq2d−2 primitive (q2(d−1) − 1)-th root of unity
α, β ∈ Fq2m primitive (q2m − 1)-th roots of unity

as in Lemma 5.7.5b)

pi ∈ Fq[t](t) pi := t+ζqi−1

1

t+ζqd+i−2

1

, 1 ≤ i ≤ d− 1

pd ∈ Fq[t](t) pd := t+ζ
t+ζq

p̃i ∈ Fq[t](t) p̃i := t+αqi−1

t+αqm+i−1 , 1 ≤ i ≤ m

p̃m+i := t+βqi−1

t+βqm+i−1 , 1 ≤ i ≤ m

t1 t1 := diag(p1, . . . , pd, p
−1
d , . . . , p−1

1 )g1

t′1 t′1 := diag(p1, . . . , pd−1, p
−1
d , pd, p

−1
d−1, . . . , p

−1
1 )g1

t2 t2 := diag(p̃1, . . . , p̃d, p̃
−1
d , . . . , p̃−1

1 )g2

t′2 t′2 := diag(p̃1, . . . , p̃d−1, p̃
−1
d , p̃d, p̃

−1
d−1, . . . , p̃

−1
1 )g′2

Then

a) t1 and t′1 are contained in T1(Fq[t](t)), t2 is contained in T2(Fq[t](t))
and t′2 is contained in T ′2(Fq[t](t)).

b) The centralizers of the constant parts of t1 and t′1 both equal T1, and
t1 and t′1 both generate dense subgroups of T1. The centralizers of
the constant parts of t2 and t′2 equal T2 and T ′2, resp., and t2 and t′2
generate dense subgroups of T2 and T ′2.
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c) There exist h1, . . . , hd ∈ Fq[t](t) with hd ∈ Fq[t]×(t) such that D(h1,...,hd)

is conjugate to either t1 or t′1 over SOn(Fq[[t]]). Similarly, there exist
h̃1, . . . , h̃d ∈ Fq[t](t) with h̃d ∈ Fq[t]×(t) such that D(h̃1,...,h̃d) is conjugate
to either t2 or t′2 over SOn(Fq[[t]]).

Proof. a) First of all, note that the diagonal matrices corresponding to
t1, t

′
1, t2 and t′2 are all contained T0 ≤ SO2d. Now g1, g2 and g′2 are

contained in SO2d(Fq) and p1, . . . , pd as well as p̃1, . . . , p̃d are contained
in Fq[t]×(t) hence t1 ∈ T1(Fq[t](t)), t′1 ∈ T1(Fq[t](t)), t2 ∈ T2(Fq[t](t)) and
t′2 ∈ T ′2(Fq[t](t)). It remains to show that all of them are Fq[t](t)-rational.
Recall that giφq(gi)−1 = wi holds for i = 1, 2, where w1 and w2 were
defined in Chapter 4 to be monomial matrices inside SO2d(Fq) corre-
sponding to the permutations

d odd σ1 = (d, d + 1)(1, . . . , d− 1, 2d, . . . , d + 2)
σ2 = (1, . . . , d)(2d, . . . , d + 1)

d = 2m, m odd σ1 = (d, d + 1)(1, . . . , d− 1, 2d, . . . , d + 2)
σ2 = (1, . . . , m)(m + 1, . . . , 2m)(3m, . . . , 2m + 1)(4m, . . . , 3m + 1)

d = 2m, m even σ1 = (d, d + 1)(1, . . . , d− 1, 2d, . . . , d + 2)
σ2 = (1, . . . , m, 4m, . . . , 3m + 1)(m + 1, . . . , 2m, 3m, . . . , 2m + 1)

Besides, we have g′2φq(g′2)
−1 = w′2 where w′2 corresponds to the per-

mutation σ′2 = (k, k + 1)σ2(k, k + 1). We use the following labels:

p1, . . . , p2d ↔ p1, . . . , pd, p
−1
d , . . . , p−1

1

and also

p′1, . . . , p
′
2d ↔ p1, . . . , pd−1, pd+1, pd, pd+2, . . . , p2d

and similarly p̃1, . . . , p̃2d and p̃′1, . . . , p̃
′
2d. It is now straight-forward to

check that
φq(p1, . . . , p2d) = (pσ1(1), . . . , pσ1(2d))

as well as
φq(p′1, . . . , p

′
2d) = (p′σ1(1), . . . , p

′
σ1(2d))

holds and similarly

φq(p̃1, . . . , p̃2d) = (p̃σ2(1), . . . , p̃σ2(2d))

φq(p̃′1, . . . , p̃
′
2d) = (p̃′σ′2(1), . . . , p̃

′
σ′2(2d))

(this has to be checked for all three cases of d). Hence φq(t1) =
φq(diag(p1, . . . , p2d))φq(g1) = diag(pσ1(1), . . . , pσ1(2d))w−1

1 g1 = t1 and
similarly for t′1, t2 and t′2.
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b) The centralizers of the constant parts of t1 and t′1 equal T1 if and
only if p1, . . . , pd, p

−1
d , . . . , p−1

1 have pairwise distinct constant terms,
which can be proven similarly as in the symplectic case (see Propo-
sition 5.5.3). The same proof shows that p̃1, . . . , p̃d, p̃

−1
d , . . . , p̃−1

1 have
pairwise distinct constant terms in case d is odd. If d is even, this
follows from Lemma 5.7.5. Hence the centralizer of the constant part
of t2 equals T2 in both cases and the centralizer of the constant part
of t′2 equals T ′2.
It remains to show that t1, t′1, t2 and t′2 generate dense subgroups of
the corresponding maximal tori T1, T2 and T ′2 which is the case if and
only if no non-trivial character of T0 maps the corresponding diagonal
matrices to 1, by Lemma 4.2.6. Again, this can be shown very similar
as in the proof of Proposition 5.5.3.

c) By Lemma 5.7.1, there exist elements h1, . . . , hd ∈ Fq[t](t) with hd ∈
Fq[t]×(t) such that D(h1,...,hd) is conjugate to either
diag(p1, . . . , pd, p

−1
d , . . . , p−1

1 ) or diag(p1, . . . , pd−1, p
−1
d , pd, p

−1
d−1 . . . , p

−1
1 )

over SOn(Fq[[t]]). We first show that all hi are contained in Fq[t](t). Ac-

cording to Lemma 5.7.1c), it is sufficient to show that
d∏

i=1
(X−pi)(X−

p−1
i ) is contained in Fq[t](t)[X] and ∆ :=

d∏
i=1

(1−pi)(1+p−1
i ) is contained

in Fq[t](t). Clearly,
d∏

i=1
(X − pi)(X − p−1

i ) is contained in Fq[t](t)[X] as

this is the characteristic polynomial of t1 ∈ T1(Fq[t](t)). Then

φq(∆) = φq((1− p1)(1 + p−1
1 ) · · · (1− pd)(1 + p−1

d ))
= (1− p2)(1 + p−1

2 ) · · · (1− pd−1)(1 + p−1
d−1) ·

(1− p−1
1 )(1 + p1)(1− p−1

d )(1 + pd)

= ∆
(1− p−1

1 )(1 + p1)(1− p−1
d )(1 + pd)

(1− p1)(1 + p−1
1 )(1− pd)(1 + p−1

d )

= ∆
(p1 − 1)(1 + p1)(pd − 1)(1 + pd)
(1− p1)(p1 + 1)(1− pd)(pd + 1)

= ∆,

hence ∆ is contained in Fq[t](t). We conclude that there exist elements
h1, . . . , hd ∈ Fq[t](t) (with hd invertible) such that D(h1,...,hd) is con-
jugate to either diag(p1, . . . , p2d) or diag(p′1, . . . , p

′
2d) via an element

g ∈ SOn(Fq[[t]]). As g1 is contained in SOn(Fq), we conclude that
D(h1,...,hd) is conjugate to either t1 or t′1 via gg1 ∈ SOn(Fq[[t]]).

Similarly, it can be shown that there exist h̃1, . . . , h̃d ∈ Fq[t](t) with
h̃d ∈ Fq[t]×(t) such that D(h̃1,...,h̃d) is conjugate to either diag(p̃1, . . . , p̃2d)
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or diag(p̃′1, . . . , p̃
′
2d) via an element g̃ ∈ SOn(Fq[[t]]) (where the compu-

tation φq(∆) = ∆ has to be done separately for all three cases of d).
Hence D(h̃1,...,h̃d) is conjugate to either t2 or t′2 via g̃g2 ∈ SOn(Fq[[t]]).

5.7.4 A Difference Module for SO2d

According to Proposition 5.7.6, we can now fix t1 ∈ {t1, t′1} and t2 ∈ {t2, t′2}
such that there exist (h1, . . . , hd) ∈ Fq[t](t) and (h̃1, . . . , h̃d) ∈ Fq[t](t) with
hd, h̃d ∈ Fq[t]×(t) such that D(h1,...,hd) is conjugate to t1 over SOn(Fq[[t]]) and
D(h̃1,...,h̃d) is conjugate to t2 over SOn(Fq[[t]]). We can now define the ele-

ments f1, . . . , fd ∈ F using these elements (h1, . . . , hd) and (h̃1, . . . , h̃d):

aij , bij ∈ Fq coefficients of hi: hi(t) =
∑2d

j=0 aijtj∑2d
j=0

bijtj
; bi0 6= 0 for all i

ãij , b̃ij ∈ Fq coefficients of h̃i: h̃i(t) =
∑2d

j=0
ãijtj∑2d

j=0
b̃ijtj

; b̃i0 6= 0 for all i

Hi ∈ Fq(t, s) Hi :=
s
∑2d

j=0
aijtj

bi0+s
∑2d

j=1
bijtj

, 1 ≤ i ≤ d

H̃i ∈ Fq(t, s) H̃i :=
−s
∑2d

j=0 ãijtj

b̃i0−s
∑2d

j=1
b̃ijtj

, 1 ≤ i ≤ d

fi ∈ F fi := s+1
2 Hi + 1−s

2 H̃i, 1 ≤ i ≤ d− 1

fd := s+1
2 Hd + 1−s

2 H̃d + (s+ 1)(1− s)

Table 5.4: Definition of f1, . . . , fd.

Theorem 5.7.7. Assume q odd and n = 2d ≥ 8 such that (n, q) 6= (8, 3).
Let M = (Fn,Φ) be the φq-difference module over F = Fq(s, t) given by
D(f1,...,fd), where fi ∈ F are as defined in Table 5.4. Then there exists a
Picard-Vessiot ring R ⊆ Fq(s)

sep
((t)) ∩ L for M such that R/F is separable

and the Galois group scheme GM,R of M with respect to R is isomorphic to
SO2d (as linear algebraic group over Fq(t)).

Proof. Having at hand Proposition 5.7.6, this can be proven in exactly the
same way as Theorem 5.6.4. Indeed, the first three paragraphs of that
proof provide a Picard-Vessiot ring R ⊆ Fq(s)

sep
((t)) with Galois group H =
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GM,R a closed subgroup of SO2d such that H(Fq[[t]]) contains SO2d(Fq[[t]])-
conjugates of the specializations D(h1,...,hd) and D(h̃1,...,h̃d). By Proposition
5.7.6 together with Proposition 4.4.3, H(Fq[[t]]) then contains SO2d(Fq +
tFq[[t]])-conjugates tA1 and tB2 of t1 and t2. Now t1 generates a dense subgroup
of T1 and t2 generates a dense subgroup of T2 or T ′2 (depending on whether
t2 = t2 or t2 = t′2), by Proposition 5.7.6. Hence H ⊇< TA

1 , T
B
2 > or

H ⊇< TA
1 , T

′B
2 >. We have < TA

1 , T
B
2 >= SO2d by Theorem 4.2.5 and also

< TA
1 , T

′B
2 >= SO2d by Theorem 5.7.4. We conclude H = SO2d in both

cases.
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5.8 The Dickson Group G2

Let O be the octonion algebra over Fq. Then the automorphism group of
O ⊗Fq Fq is a connected, simple linear algebraic group of type G2, defined
over Fq (with Fq-rational points Aut(O)). Details can be found in [SV00,
2.3]. We denote this linear algebraic group simply by G2. After choosing a
suitable basis of O (see [Wil09, 4.3.4]), G2 is contained in SO8, where SO8

denotes the special orthogonal group with respect to the quadratic form

F 8
q → Fq, (x1, . . . , x8)

tr 7→ x1x8 + x2x7 + x3x6 + x4x5

(note that this also works for even q). Then G2 acts on the hyperplane de-
fined by x4 = x5 which gives rise to a faithful representation G2 ↪→ SO7

which is irreducible in case char(Fq) 6= 2. In the characteristic 2 case,
(0, 0, 0, 1, 0, 0, 0)

tr
spans a G2-stable subspace of this latter representation

and the action on the quotient yields an irreducible faithful representation
G2 ↪→ SO6. In both cases, the diagonal matrices contained in G2 define a
maximal torus T0. In the odd characteristic case, we have

T0 = {diag(λ, µ, λµ−1, 1, λ−1µ, µ−1, λ−1) | λ, µ ∈ F×q }.

Similarly,

T0 = {diag(λ, µ, λµ−1, λ−1µ, µ−1, λ−1) | λ, µ ∈ F×q }

if q is even. The root subgroups corresponding to the two simple roots α
and β of G2 with respect to T0 are described explicitly in [Mal03] and it is
easy to compute the corresponding reflections:

x(odd)
α (f) =



1 f
0 1

1 f −f2

0 1 −2f
0 0 1

1 −f
0 1



w(odd)
α =



0 1
−1 0

0 0 −1
0 −1 0
−1 0 0

0 −1
1 0


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x
(odd)
β (f) =



1
1 f
0 1

1
1 −f
0 1

1


,

w
(odd)
β =



1
0 1
−1 0

1
0 −1
1 0

1


.

We now choose a generic element D(odd)
(f1,f2) = x

(odd)
α (f1)w

(odd)
α x

(odd)
β (f2)w

(even)
β

in the Steinberg cross section and compute

D
(odd)
(f1,f2) =



−f1 −f2 1 0 0 0 0
−1 0 0 0 0 0 0
0 −f2

1 0 −f1 f2 1 0
0 −2f1 0 −1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 −f1 0 −1
0 0 0 0 1 0 0


.

The characteristic polynomial of D(odd)
(f1,f2) is:

χ
(odd)
(f1,f2)(X) = (X − 1)(X6 + (f1 + 2)X5 + (2 + 2f1 − f2)X4

+(2 + 2f1 − 2f2 − f2
1 )X3

+(2 + 2f1 − f2)X2 + (f1 + 2)X + 1). (5.18)

Similarly, for even q, we have

x(even)
α (f) =



1 f
0 1

1 f2

0 1
1 f
0 1

 , w(even)
α =



0 1
1 0

0 1
1 0

0 1
1 0


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x
(even)
β (f) =



1
1 f
0 1

1 f
0 1

1

 , w
(even)
β =



1
0 1
1 0

0 1
1 0

1

 .

Again, we define D(even)
(f1,f2) = x

(even)
α (f1)w

(even)
α x

(even)
β (f2)w

(even)
β and compute

D
(even)
(f1,f2) =



f1 f2 1 0 0 0
1 0 0 0 0 0
0 f2

1 0 f2 1 0
0 1 0 0 0 0
0 0 0 f1 0 1
0 0 0 1 0 0

 .

The characteristic polynomial of D(even)
(f1,f2) equals

χ
(even)
(f1,f2)(X) = X6 + f1X

5 + f2X
4 + f2

1X
3 + f2X

2 + f1X + 1. (5.19)

Proposition 5.8.1. Let H ≤ G2 be a linear algebraic group defined over
Fq((t)) such that for each l ∈ 1 + 6N there exist elements hl, h̃l ∈ H(Fql [[t]])
such that their constant parts hl,0, h̃l,0 ∈ G2(Fql) are of order q2l + ql +1 and
q2l − ql + 1. Then H = G2.

Proof. Set
F :=

⋃
l∈N: l≡1 mod 6

Fql ⊆ Fq.

By Lemma 4.2.3, F is a field of infinite order. We apply Proposition 4.2.2 to
K1 = F and K2 = Fq to conclude that it suffices to show that each g ∈ G2(F)
appears as the constant part of an element inside H(Fq[[t]]).

Let g be contained in G2(F). Then each coordinate of g is contained in
some Fql for an integer l ≡ 1 mod 6, so by taking the product of these l,
we find that g is contained in G2(Fql) for some l ∈ N, l ≡ 1 mod 6. We
may further assume that ql ≥ 8 holds by replacing l with 7l if this is not the
case. By assumption there exist hl and h̃l ∈ H(Fql [[t]]) ≤ G2(Fql [[t]]) with
constant parts hl,0, h̃l,0 ∈ G2(Fql) of order q2l + ql +1 and q2l− ql +1. (Note
that hl,0 and h̃l,0 are contained in G2(Fql) since G2 is defined over Fq ⊆ Fql .)

Let q′ be an odd prime power with q′ > 3. Then it follows from the list
of maximal subgroups of G2(Fq′) in [Kle88, Thm.A] that any pair of ele-
ments of order q′2 + q′ + 1 and q′2 − q′ + 1 generates G2(Fq′). Similarly,
if q′ ≥ 8 is a power of 2, it can easily be seen from the list of maximal
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subgroups in [Coo81, 2.3-2.5.] that no proper subgroup of G2(Fq′) contains
elements of order q′2+q′+1 and q′2−q′+1. Therefore, hl,0 and h̃l,0 generate
G2(Fql), so there exist r, εi, µi ∈ N such that g can be written as

g =
r∏

i=1

hεi
l,0h̃

µi
l,0.

Then

h :=
r∏

i=1

hεi
l h̃

µi
l ∈ H(Fql [[t]])

has constant part g which concludes the proof.

5.8.1 Specializations of D(f1,f2)

We will work with maximal tori splitting over Fq6 , so we take a look at
Fq6 [[t]]-conjugacy.

Lemma 5.8.2. Let q be odd.
Let p1, p2 ∈ Fq6 [[t]]× be such that the constant terms of

p1, p2, p1p
−1
2 , 1, p−1

1 p2, p
−1
2 , p−1

1

are pairwise distinct. Then there exist unique h1, h2 ∈ Fq6 [[t]] such that

(X−p1)(X−p2)(X−p1p
−1
2 )(X−1)(X−p−1

1 p2)(X−p−1
2 )(X−p−1

1 ) = χ
(odd)
(h1,h2)(X)

holds and D
(odd)
(h1,h2) and diag(p1, p2, p1p

−1
2 , 1, p−1

1 p2, p
−1
2 , p−1

1 ) are conjugate
over GL7(Fq6 [[t]]).

Proof. By Lemma 5.5.1, there exist h̃1, h̃2, h̃3 ∈ Fq6 [[t]] such that

(X − p1)(X − p2)(X − p1p
−1
2 )(X − 1)(X − p−1

1 p2)(X − p−1
2 )(X − p−1

1 )
= (X − 1)(X6 + h̃1X

5 + h̃2X
4 + h̃3X

3 + h̃2X
2 + h̃1X + 1)

holds. We define

h1 := h̃1 − 2
h2 := −h̃2 + 2 + 2(h̃1 − 2).

Using a computer algebra system such as magma ([BCP97]), it is now easy
to compute that

h̃3 = 2 + 2h1 − 2h2 − h2
1

holds, and Equation (5.18) implies

(X−p1)(X−p2)(X−p1p
−1
2 )(X−1)(X−p−1

1 p2)(X−p−1
2 )(X−p−1

1 ) = χ
(odd)
(h1,h2)(X)
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and h1, h2 are uniquely determined by this equality. Now D
(odd)
(h1,h2) and

diag(p1, p2, p1p
−1
2 , 1, p−1

1 p2, p
−1
2 , p−1

1 ) have the same characteristic polyno-
mial and their eigenvalues p1, p2, p1p

−1
2 , 1, p−1

1 p2, p
−1
2 , p−1

1 are contained in
Fq6 [[t]] with pairwise distinct constant terms, hence D(odd)

(h1,h2) and
diag(p1, p2, p1p

−1
2 , 1, p−1

1 p2, p
−1
2 , p−1

1 ) are conjugate over GL7(Fq6 [[t]]), by Propo-
sition 5.2.2.

Lemma 5.8.3. Let q be a power of 2.
Let p1, p2 ∈ Fq6 [[t]]× be such that the constant terms of

p1, p2, p1p
−1
2 , p−1

1 p2, p
−1
2 , p−1

1

are pairwise distinct. Then there exist unique h1, h2 ∈ Fq6 [[t]] such that

(X − p1)(X − p2)(X − p1p
−1
2 )(X − p−1

1 p2)(X − p−1
2 )(X − p−1

1 ) = χ
(even)
(h1,h2)(X)

holds and D(even)
(h1,h2) and diag(p1, p2, p1p

−1
2 , p−1

1 p2, p
−1
2 , p−1

1 ) are conjugate over
GL6(Fq6 [[t]]).

Proof. By Lemma 5.5.1, there exist h1, h2, h3 ∈ Fq6 [[t]] such that

(X − p1)(X − p2)(X − p1p
−1
2 )(X − p−1

1 p2)(X − p−1
2 )(X − p−1

1 )
= X6 + h1X

5 + h2X
4 + h3X

3 + h2X
2 + h1X + 1

holds. Clearly, h1 and h2 are uniquely determined by this equation. It can
now readily checked by hand that h3 = h2

1 holds, hence we have

(X−p1)(X−p2)(X−p1p
−1
2 )(X−p−1

1 p2)(X−p−1
2 )(X−p−1

1 ) = χ
(even)
(h1,h2)(X),

by Equation (5.19). Again, it follows from Proposition 5.2.2 that D(even)
(h1,h2)

and
diag(p1, p2, p1p

−1
2 , p−1

1 p2, p
−1
2 , p−1

1 ) are conjugate over GL6(Fq6 [[t]]).
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5.8.2 A Difference Module for G2

q prime power ≥ 3
α fixed element in F×q \{1}
ζ1 ∈ Fq6 primitive (q6 − 1)-th root of unity
ζ2 ∈ Fq6 primitive (q3 − 1)-th root of unity

p1, p2 ∈ Fq6 [t](t) p1 := (t+ζq4

1 )(t+ζq3

1 )

(t+ζq
1 )(t+ζ1)

, p2 := (t+ζq3

1 )(t+ζq2

1 )

(t+ζ1)(t+ζq5

1 )

p̃1, p̃2 ∈ Fq6 [t](t) p̃1 := t+ζq
2

t+ζ2
, p̃2 := t+ζq2

2
t+ζ2

defined via
χ

(odd)
(h1,h2)(X) = (X − p1)(X − p2)(X − p1p

−1
2 )·

h1, h2 ∈ Fq[t](t) (∗) (X − 1)(X − p−1
1 p2)(X − p−1

2 )(X − p−1
1 ) if q is odd

and χ(even)
(h1,h2)(X) = (X − p1)(X − p2)(X − p1p

−1
2 )·

(X − p−1
1 p2)(X − p−1

2 )(X − p−1
1 ) if q is even

defined via
χ

(odd)

(h̃1,h̃2)
(X) = (X − p̃1)(X − p̃2)(X − p̃1p̃

−1
2 )·

h̃1, h̃2 ∈ Fq[t](t) (∗) (X − 1)(X − p̃−1
1 p̃2)(X − p̃−1

2 )(X − p̃−1
1 ) if q is odd

and χ(even)

(h̃1,h̃2)
(X) = (X − p̃1)(X − p̃2)(X − p̃1p̃

−1
2 )·

(X − p̃−1
1 p̃2)(X − p̃−1

2 )(X − p̃−1
1 ) if q is even.

aij , bij ∈ Fq coefficients of hi: hi(t) =
∑12

j=0
aijtj∑12

j=0
bijtj

; bi0 6= 0

ãij , b̃ij ∈ Fq coefficients of h̃i: h̃i(t) =
∑12

j=0
ãijtj∑12

j=0
b̃ijtj

; b̃i0 6= 0

H1, H2 ∈ Fq(t, s) Hi :=
s
∑12

j=0
aijtj

bi0+s
∑12

j=1
bijtj

H̃1, H̃2 ∈ Fq(t, s) H̃i :=
s
α

∑12
j=0

ãijtj

b̃i0+ s
α

∑12
j=1

b̃ijtj

f1, f2 ∈ Fq(t, s) fi := s−α
1−αHi + s−1

α−1H̃i
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Table 5.5: Definition of f1, f2.
(∗) h1, h2 exist inside Fq6 [[t]] by Lemma 5.8.2 and 5.8.3. As φq permutes

p1, p2, p1p
−1
2 , p−1

1 p2, p
−1
2 , p−1

1 ∈ Fq6 [t](t), they are contained in Fq[t](t). Simi-
larly, h̃1 and h̃2 are contained in Fq[t](t).

Theorem 5.8.4. Assume q ≥ 3 and set n := 7 in case q is odd and n := 6 in
case q is even. Let M = (Fn,Φ) be the φq-difference module over F = Fq(s, t)
with representing matrix D, where D := D

(odd)
(f1,f2) if q is odd and D := D

(even)
(f1,f2)

if q is even and f1, f2 ∈ F are as defined in Table 5.5. Then there exists a
Picard-Vessiot ring R ⊆ Fq(s)

sep
((t)) ∩ L for M such that R/F is separable

and the Galois group scheme GM,R is isomorphic to G2 (as linear algebraic
group over Fq(t)).

Proof. Again, with the very same reasoning as in the first three paragraphs
of the proof of 5.4.4 we first get a fundamental matrix inside GLn(K[[t]])
with entries inO|·|{t} and then a fundamental matrix Y insideG2(K[[t]]∩L),
where L is as defined in Section 5.1. Then R := F [Y, Y −1] ⊆ Fq(s)

sep
((t)) is a

separable Picard-Vessiot extension for M with H := GM,R a linear algebraic
group contained in G2.

Similar to the fourth paragraph of the proof of 5.4.4, we find that H(Fq[[t]])
contains G2(Fq[[t]])-conjugates of D1 := D(h1,h2) (via the specialization s 7→
1) and of D2 := D(h̃1,h̃2) (via s 7→ α), where D(h1,h2) is understood to equal

either D := D
(odd)
(h1,h2) or D := D

(even)
(h1,h2) depending on the parity of q. Let

T0 be the diagonal torus inside G2 and let d1 and d2 denote the following
elements of T0(Fq6 [[t]]):

d1 := diag(p1, p2, p1p
−1
2 , 1, p−1

1 p2, p
−1
2 , p−1

1 ) for odd q
d2 := diag(p̃1, p̃2, p̃1p̃

−1
2 , 1, p̃−1

1 p̃2, p̃
−1
2 , p̃−1

1 ) for odd q
d1 := diag(p1, p2, p1p

−1
2 , p−1

1 p2, p
−1
2 , p−1

1 ) for even q
d2 := diag(p̃1, p̃2, p̃1p̃

−1
2 , p̃−1

1 p̃2, p̃
−1
2 , p̃−1

1 ) for even q.

The constant parts of d1 and d2 have pairwise distinct eigenvalues. In-
deed, the constant part of d1 has diagonal entries ζq4+q3−q−1

1 , ζ−q5+q3+q2−1
1 ,

ζq5+q4−q2−q
1 , 1, ζ−q5−q4+q2+q

1 , ζq5−q3−q2+1
1 , ζ−q4−q3+q+1

1 (where the 1 in the
middle only occurs if q is odd). Since ζ1 is a primitive (q6 − 1) = (q2 −
q + 1)(q4 + q3 − q − 1)-th root of unity, µ1 := ζq4+q3−q−1

1 is a primitive
q2 − q + 1 root of unity and the diagonal entries of the constant part of d1

are µ1, µ
−q+1
1 , µq

1, 1, µ
−q
1 , µq−1

1 , µ−1
1 so they are all pairwise distinct (since

q ≥ 3). Similarly, µ2 := ζq−1
2 is a primitive (q2 + q+ 1)-th root of unity and

the constant part of d2 has pairwise distinct diagonal entries µ2, µ
−q2

2 , µ−q
2 ,

1, µq
2, µ

q2

2 , µ−1
2 .
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Hence we can apply Lemma 5.8.2 and 5.8.3 and obtain matrices A1, A2 ∈
GLn(Fq6 [[t]]) satisfying

D1 = D(h1,h2) = dA1
1

D2 = D(h̃1,h̃2) = dA2
2 .

Hence H(Fq[[t]]) (which contains G2(Fq[[t]])-conjugates of D1 and D2) con-
tains also GLn(Fq[[t]])-conjugates of d1 and d2. On the other hand, the
centralizers of the constant parts of d1 and d2 inside GL2 equal the diagonal
torus (as their eigenvalues are pairwise distinct), hence H(Fq[[t]]) even con-
tains GLn(Fq6 +Fq[[t]])-conjugates of d1 and d2, by Proposition 4.4.3 applied
to G = GLn. Let B1, B2 ∈ GLn(Fq6 + Fq[[t]]) be such that dBi

i is contained
in H(Fq[[t]]).

The character group of T0 is generated by χ1 and χ2, so no non-trivial char-
acter can map d1 or d2 to 1 since (t+ζqi

1 ) are pairwise coprime (inside Fq6 [t])

for 0 ≤ i ≤ 5 and similarly (t+ ζqi

2 ) for 0 ≤ i ≤ 2. We conclude that both d1

and d2 generate dense subgroups of T0, by Lemma 4.2.6. Therefore, dBi
i gen-

erates a dense subgroup of TBi
0 ⊆ GLn with respect to the Zariski topology

inside GLn. As dBi
i is contained in H, we conclude that H ≤ G2 contains

< TB1
0 , TB2

0 >. In particular T1 := TB1
0 and T2 := TB2

0 are both contained in
G2, so they are maximal tori of G2 (even though B1 and B2 may not be con-
tained in G2). The subgroup generated by dBi

i consists of Fq((t))-rational
points and is dense in TBi

0 , hence TBi
0 is defined over Fq((t)) (see [Bor91,

AG.14.4]). We use Bi ∈ GLn(Fq(((t))) to get Ti(Fq((t))) = T0(Fq((t)))Bi and
deduce

T0(Fq((t)))Bi = φq(TBi
0 (Fq((t)))) = T0(Fq((t)))φq(Bi) (5.20)

where we also used that T0 is defined over Fq ⊆ Fq((t)). Now T0(Fq((t)))
is dense in T0 (see [Bor91, Cor.18.3]), hence wi := Biφq(Bi)−1 is contained
in the normalizer of T0 inside GLn. As T0 contains diagonal matrices with
pairwise distinct entries such as d1 and d2, this normalizer consists of certain
monomial matrices inside GLn. Let σ1, σ2 ∈ Sn be the permutations corre-
sponding to w1 and w2. We can now describe the Fq((t))-rational points of
Ti (i = 1, 2) explicitly:

Ti(Fq((t))) = {g ∈ Ti(Fq((t))) | φq(g) = g}
= {g = gBi

0 ∈ T0(Fq((t)))Bi | φq(gBi
0 ) = gBi

0 }
= {g0 ∈ T0(Fq((t))) | φq(g0) = gσi

0 }
Bi .

Now dBi
i is contained in Ti(Fq((t))), hence φq(di) = dσi

i and we can determine
σi: We relabel the entries of d1 and d2 as

d1 = diag(p1, p2, p3, (1, ) p−3, p−2, p−1)
d1 = diag(p̃1, p̃2, p̃3, (1, ) p̃−3, p̃−2, p̃−1),
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i.e., p3 := p1p
−1
2 , p−i := p−1

i and similarly for p̃i. We compute φq(p1) = p3,
φq(p3) = p−2, φq(p−2) = p−1, φq(p−1) = p−3, φq(p−3) = p2, φq(p2) = p1,
hence

σ1 = (1, 3,−2,−1,−3, 2).

Similarly, φq(p̃±1) = p̃∓3, φq(p̃∓3) = p̃∓2, φq(p̃∓2) = p̃±1, i.e.,

σ2 = (1,−3,−2)(−1, 3, 2).

For l ≡ 1 mod 6, we have σl
i = σi and Biφql(Bi)−1 = Biφql−1(B−1

i wi) =
· · · = φql−1(wi) . . . φq(wi)wi. As each φqj (wi) is monomial with respect to
σi, the product φql−1(wi) . . . φq(wi)wi is monomial with respect to σl

i = σi.
Hence Biφql(Bi)−1 is monomial with respect to σi for both i = 1, 2 and we
get

Ti(Fql [[t]]) = {g ∈ Ti(Fq[[t]]) | φql(g) = g}
= {g = gBi

0 ∈ T0(Fq[[t]])Bi | φql(gBi
0 ) = gBi

0 }
= {g0 ∈ T0(Fq[[t]]) | φql(g0) = gσi

0 }
Bi (5.21)

for all l ≡ 1 mod 6. Fix primitive (q2l − ql + 1)-th roots of unity γl and
(q2l + q + 1)-th roots of unity ξl inside Fq for all l ≡ 1 mod 6 and set

xl := diag(γl, γ
−(ql)

2

l , γql

l , (1, ) γ
−(ql)
l , γ

(ql)
2

l , γ
(ql)

3

l )

yl := diag(ξl, ξ
−(ql)

2

l , ξ−ql

l , (1, ) ξql

l , ξ
(ql)

2

l , ξ−1).

Then γ(ql)
3

l = γ−1
l and ξ(q

l)
3

l = ξl, hence

φql(xl) = xσ1
l

φql(yl) = yσ2
l

and xl and yl are both contained in T0 ⊆ G2. Hence Equation (5.21) implies
that xB1

l ∈ T1(Fql [[t]]) and yB2
l ∈ T2(Fql [[t]]) for all l ≡ 1 mod 6. Note that

xl and yl have order q2l − ql + 1 and q2l + ql + 1, resp. As T1 and T2 are
contained in H, we conclude that H(Fql [[t]]) contains the elements xB1

l and
yB2

l whose constant terms are of order q2l ± ql + 1 (as they are conjugate to
xl and yl). Therefore, H = G2 by Proposition 5.8.1.



Chapter 6

A General Result

In this chapter, we prove that every semisimple, simply-connected group
defined over Fq can be realized as a difference Galois group over (Fqi(s, t), φqi)
for some i ∈ N. This number i has to be chosen in such a way that the
following holds:

• G splits over an intermediate field Fq ⊆ Fq′ ⊆ Fqi

• there exists a regular element g0 ∈ G(Fq′) contained in a maximal torus
that splits over Fq′

• a certain place p of Fq′(s) (depending on g0) splits into places of degree
1 inside Fqi(s).

The strategy is to use a Theorem due to Nori that provides us with a fi-
nite Galois extension of Fqi(s) with Galois group G(Fq′) and then lift this to
a difference module over Fqi(s, t) with Galois group scheme G using Theo-
rem 4.3.1.

6.1 Galois Coverings of the Affine Line

The following result due to Nori can be found in [Nor94].

Theorem 6.1.1 (Nori). Let G be a semisimple and simply-connected linear
algebraic group defined over a finite field Fq. Then there is an absolutely
irreducible unramified Galois covering of the affine line with Galois group
G(Fq).

Recall that a φq-difference module over (Fq(s), φq) is called a finite Frobe-
nius module over (Fq(s), φq). Any finite Frobenius module has a unique
Picard-Vessiot ring inside Fq(s)

sep
. The Picard-Vessiot ring E is then a fi-

nite Galois extension of Fq(s) which we call the Picard-Vessiot extension.
The Fq-rational points of the corresponding (finite) Galois group scheme

111
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G ≤ GLn are isomorphic to Gal(E/F ) via identifying γ ∈ Gal(E/F ) with
Y −1γ(Y ) ∈ G(Fq), where Y ∈ GLn(E) denotes a fixed fundamental solu-
tion matrix (see Proposition 1.3.11). Every finite Galois extension can be
obtained in this way using additive polynomials. Details can be found in
[Mat04].

Corollary 6.1.2. Let G be a semisimple, simply-connected linear algebraic
group defined over Fq. Then there exists a finite Frobenius module over
(Fq(s), φq) with representing matrix contained in G(Fq(s)), Picard-Vessiot
extension E/Fq(s) linearly disjoint from Fq over Fq, and Galois group G(Fq).

Proof. By Theorem 5.2. in [Mat04], there exists an effective, finite Frobenius
module corresponding to the Galois covering provided by Theorem 6.1.1, i.e.,
the representing matrix can be chosen inside G(Fq(s)). The Picard-Vessiot
extension E is linearly disjoint from Fq over Fq since the corresponding Galois
covering is absolutely irreducible.

6.2 The Finite Part

The following lower bound criterion for finite Frobenius modules due to
Matzat can be found in [Mat04, Thm 4.5]. It also holds over finite extensions
of Fq(s).

Theorem 6.2.1. Let M be a finite Frobenius module over (Fq(s), φq) with
representing matrix D ∈ GLn(Fq(s)) and Picard-Vessiot extension E/Fq(s).
We fix a fundamental solution matrix Y ∈ GLn(E). Let p be a place of degree
d of Fq(s) with corresponding valuation ring o ⊆ Fq(s). If D is contained in
GLn(o) then the following holds:

• E/Fq(s) is unramified at p.

• For any extension (O,P) of (o, p) to E, Y is contained in GLn(O).

• The Galois group Gal(E/Fq(s)) ≤ GLn(Fq) of M contains the reduction
of Y −1Dφq(D) · · ·φqd−1(D)Y modulo P.

The following Proposition provides a converse to Theorem 6.2.1:

Proposition 6.2.2. Let M be a finite Frobenius module over (Fq(s), φq)
with representing matrix D ∈ GLn(Fq(s)), Picard-Vessiot extension E/Fq(s),
and Galois group G ≤ GLn(Fq). We fix a fundamental solution matrix
Y ∈ GLn(E). Then there exist finitely many finite places p1, . . . , pl of Fq(s)
of degree d1, . . . , dl, resp., such that the following holds:

• For 1 ≤ j ≤ l, D is contained in GLn(oj), where oj denotes the
valuation ring corresponding to pj.
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• For every g ∈ G there exists an j ≤ l and an extension Pj of pj from
Fq(s) to E such that g equals

Y −1Dφq(D) · · ·φ
qdj−1(D)Y mod Pj .

The number l can be chosen as the number of conjugacy classes inside G.

Proof. Whenever we have a place p or P, we denote the corresponding val-
uation rings by o and O, resp.

Every entry of D has only finitely many poles and det(D) has only finitely
many zeroes, hence D ∈ GLn(o) for all but finitely many places p of Fq(s).

Let g ∈ G ≤ GLn(Fq). Then g is of the form g = Y −1γ(Y ) for an el-
ement γ ∈ Gal(E/Fq(s)). The Chebotarev Density Theorem (see [FJ08,
Thm 6.3.1]) implies that there exist infinitely many places p such that γ
equals the Frobenius automorphism at some extension P of p. Hence there
exists an (unramified) finite place p of Fq(s) with an extension P to E such
that D ∈ GLn(o) and such that γ is contained in the decomposition group of
P/p and acts as φqd on O/P where d denotes the degree of p. We abbreviate
the reduction modulo P of an element x ∈ O by x. We use g ∈ GLn(Fq) and
compute

g = g

= Y −1γ(Y )
= Y −1 · γ(Y )

= Y
−1
φqd(Y ), (6.1)

where we used that Y is contained in GLn(O) by Theorem 6.2.1. Now Y is
a fundamental solution matrix, hence φq(Y ) = D−1Y . Inductively, we get

φqd(Y ) = φqd−1(D−1) · · ·φq(D−1)D−1Y

= (Dφq(D) · · ·φqd−1(D))−1Y.

Evaluating Equation (6.1), we get

g = Y
−1(Dφq(D) · · ·φqd−1(D))−1Y .

Replacing g by g−1, we see that g equals the reduction of
Y −1Dφq(D) · · ·φqd−1(D)Y modulo P. As P ranges over the extensions of
p, the reductions of Y −1Dφq(D) · · ·φqd−1(D)Y range over the conjugates of
γ ∈ Aut(E/F ). Let C1, . . . , Cl denote the conjugacy classes of G. Then for
each j ≤ l, we can choose a place pj as above.
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We can now describe our approach to realize a semisimple, simply-
connected group G defined over Fq as a difference Galois group over Fq(s, t):
First, we use Nori’s result 6.1.1 to obtain a matrix D0 ∈ G(Fq(s)) with finite
Galois group G(Fq). We will extend this to a matrix D ∈ G(Fq(s)[t](t)) with

D ≡ D0 mod t.

We choose D such that Theorem 3.1.3 and Theorem 3.2.4 can be applied,
i.e., D has to meet certain assumptions on convergence. Then there exists a
Picard-Vessiot extension for the difference equation given by D with Galois
group H ≤ G. We make sure that D is contained in GLn(o[t](t)) for all
valuation rings o corresponding to p1, . . . , pl as in Proposition 6.2.2 (applied
to D0 and G = G(Fq)). Our lower bound criterion 3.3.11 then asserts that
H(Fq[[t]]) contains the reduction modulo Pj of

Y −1Dφq(D) · · ·φ
qdj−1(D)Y

for all 1 ≤ j ≤ l and all extensions Pj of pj . The constant term of Y is
a fundamental solution matrix for D0, hence the constant terms of these
reductions range over G(Fq), by Proposition 6.2.2. Therefore, every element
in G(Fq) occurs as the constant term of some element in H(Fq[[t]]). If we
moreover assume that G splits over Fq, Theorem 4.3.1 then asserts that it is
sufficient to choose D in such a way that it specializes to an element which
generates a dense subgroup of a split torus T . In order to be able to do that,
we will have to assume that T (Fq) contains a regular element and that the
corresponding place pi given by Proposition 6.2.2 is of degree 1. This can
be achieved after passing to a finite extension of Fq, since T (Fq) contains a
regular element.

Proposition 6.2.3. Let M be a finite Frobenius module over (Fq(s), φq) with
representing matrix D ∈ GLn(Fq(s)), Picard-Vessiot extension E/Fq(s) and
Galois group G. Assume that E and Fq are linearly disjoint over Fq. Then
for any i ≥ 1, the finite Frobenius module Mi over (Fqi(s), φqi) given by

Di := Dφq(D) . . . φqi−1(D)

has Picard-Vessiot extension EFqi, and Galois group G.

Proof. Let Y ∈ GLn(E) be a fundamental solution matrix for M . Hence
Dφq(Y ) = Y which inductively implies

Diφqi(Y ) = Y,

so that Y is a fundamental solution matrix for Mi as well. As E is generated
over Fq(s) by the entries of Y , we conclude that Ei := EFqi is generated
over Fqi(s) by the entries of Y . Hence Ei is a Picard-Vessiot extension of
Mi and as E and Fqi are linearly disjoint over Fq by assumption, we have
Gal(Ei/Fqi(s)) = Gal(E/Fq(s)) = G.



6.3. THE INFINITE PART 115

Corollary 6.2.4. Let G be a semisimple and simply-connected linear alge-
braic group defined over Fq and let g0 ∈ G(Fq). Then there exists an element
D ∈ G(Fq(s)), a number i ∈ N, and a place p of degree 1 of Fqi(s) such that

• the finite Frobenius module Mi over (Fqi(s), φqi) given by
Di = Dφq(D) . . . φqi−1(D) has Galois group G(Fq), and Di is contained
in GLn(o), where o denotes the valuation ring inside Fqi(s) correspond-
ing to p.

• there exists a fundamental solution matrix Y ∈ G(Fq(s)
sep

) for Mi such
that the reduction of Y −1DiY modulo some extension of p from Fqi(s)
to a (non-discrete) valuation on Fq(s)

sep
equals g0.

Proof. Corollary 6.1.2 provides us with a finite Frobenius module M over
(Fq(s), φq) with representing matrix D ∈ G(Fq(s)), Picard-Vessiot extension
E/Fq(s) linearly disjoint from Fq over Fq, and Galois group G(Fq). Fix a
fundamental solution matrix Y ∈ G(E) for M (which exists thanks to the
Lang isogeny, see [Bor91, V.16.4]). By Proposition 6.2.2, there exists a finite
place p0 of Fq(s) of some degree d ∈ N such that D ∈ GLn(o0) and such that
the reduction of Y −1Dφq(D) . . . φqd−1(D)Y modulo some extension P0 of p0

from Fq(s) to E equals g0. Set i := d. Then Mi has Galois group G(Fq), Y
is a fundamental solution matrix for Mi, and the Picard-Vessiot extension
associated to Mi equals Ei = EFqi , by Proposition 6.2.3. Let P be an
extension of P0 from E to Fq(s)

sep
and set p = P ∩ Fqi(s) ⊇ p0. Then p is

of degree 1, since p0 is of degree d and thus splits into d places of degree
1 inside Fqi(s) = Fqd(s). Note that Di is contained in GLn(Fq(s)), hence
Y −1DiY ∈ GLn(E) and reducing Y −1DiY modulo P yields the same as
reducing it modulo P0, that is, g0.

6.3 The Infinite Part

Proposition 6.3.1. Let G be a connected, reductive linear algebraic group
defined over Fq of rank r. Assume that there exists a maximal torus T that
splits over Fq with Fq-isomorphism γ : Gr

m → T . Then there exist irreducible
polynomials p1, . . . , pr ∈ Fq[t] such that if we set g = γ(p1, . . . , pr) ∈ T (Fq(t))
the following holds:

• g is contained in T (Fq[t](t)) and g ≡ I mod t.

• For any g0 ∈ T (Fq), g0g generates a dense subgroup of T . In particular,
the centralizer of g0g inside G equals T .

Proof. Choose pairwise distinct irreducible polynomials p1,. . . ,pr ∈ Fq[t]
with constant terms 1 and set

g := γ(p1, . . . , pr).
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Since γ is given Fq-polynomially in p±1
1 , . . . , p±1

r and every pi has non-
zero constant term (and is thus contained in (Fq[t](t))×), g is contained in
T (Fq[t](t)). Hence we can consider the constant part g0 ∈ T (Fq) of g which
equals γ(1, . . . , 1) = I, as we assumed that the constant parts of p1, . . . , pr

are all equal to 1. Now let g0 be an arbitrary element inside T (Fq), say
g0 = γ(µ1, . . . , µr) with µi ∈ F×q . Then µ1p1, . . . , µrpr are pairwise co-
prime polynomials inside Fq[t] and Lemma 4.2.6 asserts that the element
(µ1p1, . . . , µrpr) generates a dense subgroup of Gr

m. Hence
g0g = γ(µ1p1, . . . , µrpr) generates a dense subgroup of T . In particular,
every element x in the centralizer of g0g centralizes all of T (since the cen-
tralizer of x is a closed subgroup of G containing g0g). We assumed G
reductive, hence the centralizer of T equals T .

6.4 The Result

Theorem 6.4.1. Let G ≤ SLn be a semisimple, simply-connected linear
algebraic group defined over Fq. Then for a suitable i ∈ N there exists an n-
dimensional difference module M over (Fqi(s, t), φqi) with a separable Picard-
Vessiot ring R/Fqi(s, t) and corresponding Galois group scheme isomorphic
to G (as linear algebraic group over Fqi(t)).

Proof. Let q′ be a power of q such that there exists a maximal torus T of
G that splits over Fq′ and such that T (Fq′) contains a regular element g0.
Then the dimension of the centralizer CG(g0) equals r, the rank of G. As G
is semisimple and simply-connected, all centralizers of semisimple elements
are connected (see [Car85, Thm 3.5.6]), hence

CG(g0) = T. (6.2)

Let D′
0 ∈ G(Fq′(s)), i′ ∈ N, and p a finite place of degree 1 in Fq′i′ (s) be as

in Corollary 6.2.4 and let i be such that qi = q′i
′
holds. We set

D0 = D′
0φq(D′

0) . . . φqi′−1(D′
0) ∈ G(Fq′(s)).

Then by Corollary 6.2.4, the finite Frobenius module M0 over (Fqi(s), φqi)
given by D0 has Galois group G(Fq′). Let Y0 ∈ G(Fq(s)

sep
) be a fundamental

solution matrix of M0 as in Corollary 6.2.4, that is, we can fix an extension
P of p from Fqi(s) to Fq(s)

sep
such that the reduction of Y −1

0 D0Y0 modulo
P equals g0 ∈ G(Fq′). Denote the reduction of D0 modulo p by D0 ∈ G(Fqi).
ThenD0 is conjugate to g0 over G(Fq) and we can use Equation (6.2) together
with Lemma 4.4.1 to obtain an element x ∈ G(Fqi) with

D0 = gx
0 . (6.3)

Fix irreducible elements p1, . . . , pr ∈ Fq′ [t] as in Proposition 6.3.1 and set
g = γ(p1, . . . , pr) ∈ T (Fq′ [t](t)) (with γ : Gr

m→̃T defined over Fq′). Then
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g0g generates a dense subgroup of T and g ≡ I mod t. Fix a finite place
q 6= p of Fqi(s) such that D0 is contained in GLn(oq), where oq denotes the
corresponding valuation ring inside Fqi(s). Let fq ∈ Fqi [s] be a generator of
q. Recall that p is of degree 1 in Fqi(s), hence there exists an α ∈ Fqi such
that p = (s − α). Then fq(α) ∈ F×

qi , as we assumed q 6= p. Let pjl ∈ Fq′

denote the coefficients of pj , i.e.,

pj =
nj∑
l=0

pjlt
l ∈ Fq′ [t],

for all 1 ≤ j ≤ r. We set

p̃j =
nj∑
l=0

pjl

Ç
fq

fq(α)

ål

tl ∈ Fqi(s)[t],

for all 1 ≤ j ≤ r. Note that p̃1, . . . , p̃r are invertible inside Fqi(s)[t](t), hence
we can define

g̃ := γ(p̃1, . . . , p̃r) ∈ T (Fqi(s)[t](t)).

Also, p̃i ≡ pi mod t, hence we can use that γ is defined over Fq′ to conclude
that the constant term of g̃ equals the constant term of g, that is,

g̃ ≡ I mod t.

We can now define the representing matrix D ∈ G(Fqi(s, t)) of the desired
difference module as

D = D0g̃
x ∈ G(Fqi(s)[t](t))

with
D ≡ D0 mod t.

Let M be the corresponding difference module over (Fqi(s, t), φqi).

We first show that there exists a Picard-Vessiot extension for M . Let | · |
be the absolute value on Fqi(s) corresponding to q with |fq| = 1

2 and let K
be the completion of an algebraic closure of the completion of Fqi(s) with
respect to | · |. We use the corresponding notation (such as O|·|, m and L)
set up in Section 2.1 with k = Fqi(s). By construction, the absolute value

of the l-th coefficient of p̃i is at most
Ä

1
2

äl
and the same holds for p̃−1

i (see
Lemma 3.1.4b)). Every entry of g̃ = γ(p̃1, . . . , p̃r) is given Fq′-polynomially
in p̃1, . . . , p̃r and their inverses, hence every entry of the l-th coefficient ma-
trix g̃l of g̃ is bounded by

Ä
1
2

äl
, as well (see Lemma 3.1.4c)). We conclude

||g̃l|| ≤
Å1

2

ãl
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for every l ∈ N (with || · || denoting the maximum norm on a matrix). As
x is contained in G(Fqi), conjugating g̃ with x is given Fqi-linearly in the
entries of g̃ and thus doesn’t affect the convergence. Finally, we assumed
D0 ∈ GLn(oq), hence

||D0|| = 1

and we conclude

||Dl|| = ||D0g̃
x
l || ≤

Å1
2

ãl

for all l ∈ N (where Dl ∈ Mn(Fqi(s)) denotes the l-th coefficient matrix of
D). We can now apply Theorem 3.1.3 (with δ = 1

2) and obtain a fundamen-
tal solution matrix Y ∈ GLn(O|·|[[t]])∩Mn(O|·|{t}). We would like to apply
Theorem 3.2.4. Note that O|·|/m ∼= Fq embeds into K. The reduction of
any p̃j mod m is contained in Fq′ ⊆ K, as all non-constant coefficients of p̃j

are divisible by fq ∈ m. As γ is defined over Fq′ ⊆ Fq, it commutes with the
reduction modulo m and we conclude that the reduction of g̃ is a constant
matrix. The constant part of g̃ equals the identity matrix, so the reduction
of g̃ modulo m actually equals the identity. Therefore, the reduction of D
equals the reduction of D0 and is thus contained in G(Fqi) ⊆ G(K) and all
assumptions to Theorem 3.2.4 are satisfied. We obtain another fundamental
solution matrix Y ′ that is contained in G(L ∩ O|·|[[t]]). Then the constant
part Y ′0 of this new fundamental solution matrix is contained in G(K) and
it is a fundamental solution matrix for D0. After multiplying Y ′ from the
right with Y ′−1

0 Y0 ∈ G(Fq), we may thus assume that the constant part of Y ′

equals our previously chosen Y0. From now on, we simply denote Y ′ by Y .
Then R := Fqi(s, t)[Y, Y −1] ⊆ L is a Picard-Vessiot ring for M by Theorem
1.2.11. All entries of Y are contained in Fq(s)

sep
((t)), by Proposition 3.3.3 a)

(with k̃ = K), hence R/Fqi(s, t) is separable by Proposition 5.2.1. We con-
clude that the Galois group scheme H := GM,R of M is a linear algebraic
group (see Theorem 1.3.10) defined over Fqi(t) and it is a closed subgroup
of G by Proposition 1.3.11.

We will now use the lower bound criterion 3.3.11 to show that H is all of G.
By Theorem 4.3.1, it suffices to show that every element inside G(Fq′) occurs
as a constant term inside H(Fq[[t]]) and that H contains a G(Fq′ + tFq[[t]])-
conjugate of the Fq′-split torus T . The key point is to show that this is really
a G(Fq′ + tFq[[t]])-conjugate and not just a G(Fqi + tFq[[t]])-conjugate.

First of all, note that for any finite place q′ of Fqi(s) with valuation ring
o′ ⊆ Fqi(s), the polynomials p̃1, . . . , p̃r are contained in (o′[t](t))×, since their
constant coefficients are contained in F×q′ ⊆ o′× and all higher coefficients are
Fqi-polynomials in s. Hence g̃ = γ(p̃1, . . . , p̃r) and also g̃x are contained in
GLn(o′[[t]]). We conclude that D is contained in GLn(o′[[t]]) if and only if
D0 is contained in GLn(o′).
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Consider q′ = p with corresponding valuation ring o. Then D0 is con-
tained in GLn(o) by the choice of p. Let O be the (non-discrete) valuation
ring inside Fq(s)

sep
corresponding to the fixed extension P of p coming from

Corollary 6.2.4 and let κ : O[[t]] → Fq[[t]] denote the coefficient-wise reduc-
tion modulo P. By Corollary 3.3.11 (with k = Fqi(s) and k̃ = K), H(Fqi [[t]])
contains h := κ(Y −1DY ) (since o/p ∼= Fqi , hence d = 1). We use κ(s) = α,
hence κ(p̃j) = pj for all j to compute

κ(D) = κ(D0)κ(g̃)x

= D0γ(κ(p̃1), . . . , κ(p̃r))x

= gx
0γ(p1, . . . , pr)x

= (g0g)x,

where we also used Equation (6.3). Therefore, h is conjugate to g0g via
x · κ(Y ) ∈ G(Fq[[t]]). On the other hand, the constant term of h equals the
reduction of Y −1

0 D0Y0 at P, which equals g0 by construction. Hence h is
contained in G(Fq′ + tFqi [[t]]) and is thus conjugate to g0g ∈ G(Fq′ [[t]]) not
only over G(Fq[[t]]) but also over G(Fq′ + tFq[[t]]), by Proposition 4.4.3. Let
A ∈ G(Fq′ + tFq[[t]]) be such that (g0g)A equals h. Recall that g0g generates
a dense subgroup of T . Hence (g0g)A generates a dense subgroup of TA,
and H thus contains TA.

For the finite part, let p1, . . . , pl be the finite places of Fqi(s) provided by
Proposition 6.2.2 applied to the finite Frobenius moduleM0 over (Fqi(s), φqi).
Let o1, . . . , ol denote the corresponding valuation rings inside Fqi(s) and
d1, . . . , dl ∈ N the degrees of p1, . . . , pl. Then D0 ∈ GLn(oj) and thus
D ∈ GLn(oj [[t]]) for all 1 ≤ j ≤ l. Let further P1, . . . ,Pl be arbitrary
extensions of p1, . . . , pl from Fqi(s) to Fq(s)

sep
. Then by Corollary 3.3.11,

H(Fqi [[t]]) contains

κj(Y −1Dφq(D) . . . φ
qdj−1(D)Y )

for all 1 ≤ j ≤ l , where κj denotes the coefficient-wise reduction modulo
Pj . Looking at constant parts, we deduce that the reduction of

Y −1
0 D0φq(D0) . . . φqdj−1(D0)Y0 mod Pj

occurs as a constant term in H(Fqi [[t]]). These reductions range over all of
G(Fq′) (which is the Galois group of the finite Frobenius module M0), by
Proposition 6.2.2. Hence every element in G(Fq′) occurs as a constant term
inside H(Fqi [[t]]) which concludes the proof.



120 CHAPTER 6. A GENERAL RESULT

6.5 Example

Let now G = SLn, assume q > n(n + 1)/2, and let T be the diagonal torus
inside SLn. If ζ ∈ Fq is a (q − 1)-th primitive root of unity, then T (Fq)
contains the regular element

g0 := diag(ζ, ζ2, . . . , ζn−1, ζ−
n(n−1)

2 ).

It was shown in [AM10] that there exists fi ∈ Fq[s] of the form fi = sαi +
(1 − s)βi for some αi, βi ∈ Fq such that the finite Frobenius module over
(Fq(s), φq) given by

D0 =

à
f1 . . . fn−1 (−1)n−1

1
. . .

1 0

í
has Galois group SLn(Fq). Let γ1, . . . , γn−1 be the coefficients of the char-
acteristic polynomial of g0. Fix an element α ∈ Fq\{0, 1}. Then it is easy to
see that if we alter fi to

fi = sαi + (1− s)βi +
s(s− 1)
α(α− 1)

(γi − ααi − (1− α)βi),

the corresponding Frobenius module M0 over (Fq(s), φq) has the same Galois
group. For this new Frobenius module, there exists a place p of degree 1
of Fq(s), namely p = (s − α), such that the specialization of D0 at p is
conjugate to g0 over G(Fq). Hence the number i in Theorem 6.4.1 can be
chosen as i = 1. The elements pj in Proposition 6.3.1 can be chosen as
pj = (1 + ζjt) for 1 ≤ j ≤ n− 1. (Note that γ : Gn−1

m →̃T, (λ1, . . . , λn−1) 7→
diag(λ1, . . . , λn−1, (λ1 · · ·λn−1)−1).) Following the proof of Theorem 6.4.1,
we obtain that the difference module M over (Fq(s, t), φq) given by

D = D0 · diag(p̃1, . . . , p̃n−1, (p̃1 · · · p̃n−1)−1)x

has Galois group SLn where the elements p̃j ∈ Fq[s, t] and x ∈ G(Fq) can also
be chosen explicitly: We fix the finite place q = (s), hence fq = s and we
can define p̃j as

p̃j := 1 + ζj s

α
t

for 1 ≤ j ≤ n− 1. Finally, x ∈ SLn(Fq) is a matrix such that the reduction
of D0 of D0 at p = (s− α) equals gx

0 . We have

D0 =

à
γ1 . . . γn−1 (−1)n−1

1
. . .

1 0

í
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and it is easy to see that x can be chosen as

x =

à
det(A)−1

1
. . .

1

í
·A

with A the Vandermonde-matrix corresponding to

(ζ−1, ζ−2, . . . , ζ−n+1, ζ
n(n−1)

2 ).
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Chapter 7

t-Motives

7.1 The Category of t-Motives

Following [Pap08] and [Tae09], we give the basic definitions of t-motives
which were originally introduced by Anderson in [And86]. Although t-
motives can be defined over any field K containing Fq (see [Tae09]), we
restrict ourselves to the following situation:

k: k = Fq(θ), a rational function field.

| · |∞: the ∞-adic valuation on k with |θ|∞ = q.

(K, | · |∞): the completion of an algebraic closure of the completion of k
with unique extension | · |∞ from k to K.

k: the algebraic closure of k inside K.

T : the ring of restricted power series over K, i.e., power series∑∞
i=0 ait

i such that limi→∞ |ai|∞ = 0.

L: fraction field of T .

σ: on k and K, σ is the inverse of the Frobenius and σ extends to
k(t), T and L by acting coefficient-wise, i.e., σ(t) = t.

Compared to our previous setup from Chapter 5, we renamed the vari-
able s by θ−1 (hence we consider the ∞-adic valuation instead of the s-adic
one) and we work with σ = φ−1

q instead of φq. Note that Lσ = kσ = Fq(t)
holds by Lemma 2.1.3 (or [Pap08, 3.3.2]).

Definition 7.1.1. [Pap08, 3.2.1]
A pre-t-motive is a left k(t)[σ, σ−1]-module that is finite dimensional over
k(t). In other words, a pre-t-motive is a difference module (P,σ) over
(k(t), σ) as defined in Definition 1.1.10. Let B be a basis of an n-dimensional
pre-t-motive (P,σ) over k(t). Then the matrix Φ ∈ GLn(k(t)) collecting the
images of the elements of B in its rows is said to represent multiplication
by σ on P and we call it the representing matrix, for short.

123
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Remark 7.1.2. Previously, we defined the representing matrix of a differ-
ence module to be the matrix collecting the images of a basis in its columns
and not its rows. In this chapter, we use the row-convention instead to
conform to the notation in [Pap08], i.e., we transpose our representing ma-
trices.

Example 7.1.3. The Carlitz pre-t-motive C is the pre-t-motive (k(t),σ)
with σ given by σ(f) = (t − θ)σ(f). Then Φ = (t − θ) represents multipli-
cation on C with respect to the basis {1} of C.

Definition 7.1.4. [Pap08, 3.3.1]
A pre-t-motive (P,σ) is called rigid analytically trivial, if P ⊗k(t) L has a
σ-invariant L-basis.

Proposition 7.1.5. [Pap08, 3.3.9]
A pre-t-motive P is rigid analytically trivial if and only if there exists a rigid
analytic trivialization of P , i.e., a matrix Ψ ∈ GLn(L) satisfying

σ(Ψ) = ΦΨ.

In particular, P is rigid analytically trivial if and only if there exists a
Picard-Vessiot ring of P contained in L.

Proof. Recall that Φ was chosen with respect to a fixed basis B. We use
this basis to write any element in P ⊗k(t) L as element in Ln, where n =
dimk(t)(P ). For any such element p ∈ P⊗k(t)L we then have σ(p) = Φtrσ(p).

Set Y = Ψ−1,tr. Then σ(Ψ) = ΦΨ if and only if Φ
tr
σ(Y ) = Y which holds if

and only if the columns of Y form an σ-invariant basis of P ⊗k(t) L. Hence
P is rigid analytically trivial if and only if such a Ψ exists.
In other words, P is rigid analytically trivial if and only if there exists
a fundamental solution matrix Y ∈ GLn(L) for the difference equation
Φ

tr
σ(Y ) = Y . By Theorem 1.2.11, k(t)[Y, Y −1] ⊆ L is then a Picard-Vessiot

extension for P .

Theorem 7.1.6. [Pap08, 3.3.15]
The category R of rigid analytically trivial pre-t-motives is a neutral Tan-
nakian category over Fq(t) with fiber functor mapping a pre-t-motive to the
vector space of solutions inside P ⊗F L.

Definition 7.1.7. [Tae09, 2.1.1]
An effective t-motive of rank n is a pair (M,σ) consisting of a free and
finitely generated k[t]-module M of rank n together with a σ-semilinear map
σ : M →M such that the determinant of the representing matrix of σ with
respect to some basis of M is of the form u(t− θ)i for an i ∈ N and u ∈ k×.
(Note that i = 0 is not excluded).
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Example 7.1.8. Consider C = (k[t],σ) with σ given by σ(f) = (t−θ)σ(f).
Then C is an effective t-motive, called the Carlitz motive.

Definition 7.1.9. [Tae09, 3.2.8]
An effective t-motive (M,σ) is called rigid analytically trivial, if M ⊗k[t] T
has a σ-invariant T -basis.

Proposition 7.1.10. a) An effective t-motive (M,σ) is rigid analyti-
cally trivial if and only if the corresponding pre-t-motive M ⊗k[t] k(t)
is rigid analytically trivial.

b) An effective t-motive (M,σ) is rigid analytically trivial if and only if
there exists a rigid analytic trivialization Ψ ∈ GLn(T ) of M .

Proof. This was proven in [Pap08, 3.3.9] and [Tae09, 3.2.8].

Example 7.1.11. The Carlitz motive is rigid analytically trivial with rigid
analytic trivialization

Ω := (q−1
√
−θ)−q

∞∏
i=1

(1− t/θqi
) ∈ T.

Details can be found in [Pap08, 3.3.4].

The category of effective t-motives can be considered as subcategory of
P by identifying M with M ⊗k[t] k(t) (see [Pap08, 3.4.9] for details).

Definition 7.1.12. [Pap08, 3.4.10]
The category T of t-motives is defined to be the strictly full Tannakian
subcategory of R generated by the rigid analytically trivial effective t-motives
up to isogeny.

Remark 7.1.13. In [Pap08, 3.4.10], T is actually defined to be the Tan-
nakian subcategory of R generated by the those rigid analytically trivial effec-
tive t-motives (up to isogeny) that are finitely generated over k[σ]. However,
these generate the same Tannakian category. More precisely, it is shown in
[Tae09, 5.3.2] that if M is an rigid analytically trivial effective t-motive,
then for all r >> 0, M ⊗k[t] C

⊗r is finitely generated over k[σ].

Definition 7.1.14. Let M be a t-motive. Then there exists a unique Picard-
Vessiot extension of M inside L. The corresponding difference Galois group
scheme G defined over Fq(t) (see Definition 1.3.6) is called the Galois group
of M .

Remark 7.1.15. The Galois group of M is Fq(t)-isomorphic to the Galois
group scheme assigned to M using the Tannakian formalism. This was
proven in [Pap08, Thm 4.5.10].
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Example 7.1.16. The Carlitz t-motive has Galois group Gm (see [Pap08,
3.5.4]).

Difference Galois theory has proved very powerful in transcendence the-
ory over function fields, due to the fact that the dimension of the difference
Galois group equals the transcendence degree of the Picard-Vessiot ring.
In 2008, [Pap08], Papanikolas proved a function field analog of the classi-
cal conjecture on logarithms of algebraic numbers, namely that they are
algebraically independent over Q if they are linearly independent over Q.
The function field analog of the exponential function is the so-called Carlitz
exponential function expC , which again is similar to the exponential func-
tion expE : C → E(C), z 7→ (℘(z) : ℘′(z) : 1) assigned to an elliptic curve
E. There is also a function field analog of the Riemann ζ-function and in
[CY07], Chang and Yu proved a classical conjecture concerning algebraic re-
lations among ζ(2), ζ(3), ζ(4), . . . in the function field case using difference
Galois theory.
It would be interesting to know whether there are difference equations aris-
ing from questions in transcendence theory where our lower bound criterion
3.3.11 might be helpful.

7.2 Pre-t-Motives with Semisimple Galois Groups

We can now lift our results from Chapter 5 and 6 where we realized certain
semisimple groups as difference Galois groups over k(t) to k(t) to get pre-t-
motives with interesting Galois groups.

Theorem 7.2.1. a) Let n ≥ 2 and q > 2 be such that (n, q) 6= (2, 3).
Consider the pre-t-motive P = (k(t)n,σ) with σ given by

Φ =

à
φ1 . . . φn−1 (−1)n−1

1
. . .

1 0

í
where φi := fi(1/θ, t) ∈ k(t) for fi(s, t) ∈ Fq(s, t) as defined in Table
5.1 on page 72. Then P is rigid analytically trivial and has Galois
group SLn.

b) Let n = 2d ≥ 4 and assume q > 2. Consider the pre-t-motive P =
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(k(t)n,σ) with σ given by

Φ =



φ1 . . . φd−1 φd 1
1

. . .

1 0
φd−1 0 1
...

...
. . .

φ1 0 1
−1 0 0



where φi := fi(1/θ, t) ∈ k(t) for fi(s, t) ∈ Fq(s, t) as defined in Table
5.2 on page 81. Then P is rigid analytically trivial and has Galois
group Sp2d.

c) Let n = 2d + 1 ≥ 7 and assume q odd. Consider the pre-t-motive
P = (k(t)n,σ) with σ given by

Φ =



φ1 . . . φd−1 φd −2φd −2φd

1
. . .

1 0
1 −1

φd−1

2φd
0 1

...
. . .

φ1

2φd
1

− 1
2φd

0



where φi := fi(1/θ, t) ∈ k(t) for fi(s, t) ∈ Fq(s, t), fd ∈ Fq(s, t)× as
defined in Table 5.3 on page 87. Then P is rigid analytically trivial
and has Galois group SO2d+1.

d) Let n = 2d ≥ 8 and assume q odd. Consider the pre-t-motive P =
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(k(t)n,σ) with σ given by

Φ =



φ1 . . . φd−1 φd φd−1 −φd

1
. . .

1 0 1
φd−1

φd
1 0

φd−2

φd
0 0 1

...
. . .

φ1

φd
1

− 1
φd

0


where φi := fi(1/θ, t) ∈ k(t) for fi(s, t) ∈ Fq(s, t), fd ∈ Fq(s, t)× as
defined in Table 5.4 on page 100. Then P is rigid analytically trivial
and has Galois group SO2d.

e) Assume q odd. Consider the pre-t-motive P = (k(t)7,σ) with σ given
by

Φ =



−φ1 −φ2 1 0 0 0 0
−1 0 0 0 0 0 0
0 −φ2

1 0 −φ1 φ2 1 0
0 −2φ1 0 −1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 −φ1 0 −1
0 0 0 0 1 0 0


where φi := fi(1/θ, t) ∈ k(t) for fi(s, t) ∈ Fq(s, t) as defined in Table
5.5 on page 108. Then P is rigid analytically trivial and has Galois
group G2.

f) Assume q > 2 even. Consider the pre-t-motive P = (k(t)6,σ) with σ
given by

Φ =



φ1 φ2 1 0 0 0
1 0 0 0 0 0
0 φ2

1 0 φ2 1 0
0 1 0 0 0 0
0 0 0 φ1 0 1
0 0 0 1 0 0


where φi := fi(1/θ, t) ∈ k(t) for fi(s, t) ∈ Fq(s, t) as defined in Table
5.5 on page 108. Then P is rigid analytically trivial and has Galois
group G2.

Proof. We proved in Theorem 5.4.4, 5.5.4, 5.6.4, 5.7.7, 5.8.4, resp., that the
φq-difference module M over k(t) given by Φ (this time with respect to the
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column-convention) has a fundamental solution matrix Y ∈ GLn(L) with
Picard-Vessiot ring R := k(t)[Y, Y −1] ⊆ L with Galois group SLn, Sp2d,
SO2d+1, SO2d, G2, resp. Hence R and k(t) are both contained in L and the
corresponding Galois group is connected, so we can apply Theorem 1.4.2 to
conclude that M ⊗k k has Picard-Vessiot ring R ⊗k k = k(t)[Y, Y −1] ⊆ L
over k(t) and the same Galois group. Set Ψ = φq(Y ) ∈ GLn(L). As Y is a
fundamental solution matrix for M , we have

Φφq(Y ) = Y

which translates to
ΦΨ = σ(Ψ).

Hence Ψ is a rigid analytic trivialization of P and

R⊗k k = k(t)[Y, Y −1] = k(t)[Ψ,Ψ−1]

is also a Picard-Vessiot ring for P . Hence the Galois group schemes of P
and M ⊗k k coincide (they both equal Aut(R⊗k k/k(t))).

Note that the notion “pre-t-motive” depends on q, since σ = φ−1
q . When

considering pre-t-motives with respect to different q’s at the same time, we
will clarify this by calling a pre-t-motive corresponding to σ = φ−1

q a
pre-q-t-motive. If q has been fixed, a pre-qi-t-motive is sometimes called a
pre-t-motive of level i.

Theorem 7.2.2. Let G ≤ SLn be a semisimple and simply-connected linear
algebraic group defined over Fq. Then there exists an i ∈ N and a pre-qi-t-
motive that is rigid analytically trivial and has Galois group isomorphic to
G as linear algebraic group over Fqi(t).

Proof. Again, this is just Theorem 6.4.1 together with Theorem 1.4.2.

7.3 t-Motives

Proposition 7.3.1. Let M be an n-dimensional t-motive. Then there ex-
ists a k(t)-basis of M such that the corresponding representing matrix Φ is
contained in GLn((t− θ)−Nk[t]).

Proof. As M is contained in the Tannakian category generated by rigid
analytically trivial effective t-motives, it can be constructed from finitely
many effective t-motives using direct sums, subquotiens, tensor products,
duals, and internal Hom’s. The representing matrix Φe of an effective t-
motive with respect to a k[t]-basis has entries in k[t] and its determinant
equals u(t − θ)i for some u ∈ k

× and i ∈ N. Hence det(Φe) is invertible
inside (t − θ)−Nk[t] and Φe is thus contained in GLn((t − θ)−Nk[t]). The
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representing matrix of the dual equals Φtr,−1
e ∈ GLn((t − θ)−Nk[t]). Let P

and Q be pre-t-motives. Then the internal Hom is the pre-t-motive R =
Homk(t)(P,Q) with σ(γ) = σγσ−1. It is easy to see that the representing

matrix of R with respect to the canonical basis equals (ΦM2 ⊗ Φtr,−1
M1

) · w,
where w denotes a permutation matrix. That is, the matrices remain inside
GLn((t− θ)−Nk[t]) under taking duals and internal Hom’s. If P and Q are
pre-t-motives such that their representing matrices ΦP and ΦQ are contained
in GLn((t − θ)−Nk[t]), then the same is true for the representing matrix
ΦP ⊕ ΦQ of P ⊕Q, for the representing matrix ΦP ⊗ ΦQ of P ⊗Q and for
the representing matrix of any subquotient of P (using base extension).

The only explicit examples of Galois group schemes of t-motives known
to the author are extensions of one copy of Gm by several copies of Ga such
as those occuring in transcendence theory (see [Pap08], [CY07]). One cannot
expect every linear algebraic group over Fq(t) to occur as the Galois group
of a t-motive, as the following Proposition demonstrates.

Proposition 7.3.2. Let n ≥ 2. Then Gn
m does not occur as t-motivic Galois

group.

Proof. The following argument was communicated to the author by Lenny
Taelman.
Assume that M is a t-motive with Galois group Gn

m. Then the Tannakian
subcategory TM of T generated by M is equivalent to the Tannakian cat-
egory of finite dimensional representations of Gn

m over Fq(t) ([Pap08, Thm.
4.5.10.]). As Gn

m is an Fq(t)-diagonalizable group, any Fq(t)-representation
splits into a direct sum of one-dimensional Fq(t)-representations. It follows
that M is isomorphic to a direct sum of one-dimensional t-motives. Let
(N,σ) be a one-dimensional t-motive. By Proposition 7.3.1, there exists a
basis of N consisting of 0 6= v ∈ N such that σ(v) = Φv with Φ invert-
ible inside (t − θ)−Nk[t]. Hence Φ is of the form u(t − θ)n for an u ∈ k

×

and n ∈ Z. By multiplying v by a solution y ∈ k
× of the algebraic equa-

tion σ(y) = u−1y, we may assume u = 1. Hence N = C⊗n if n ≥ 0 or
N = (C∨)⊗(−n) if n < 0, where C∨ denotes the dual of the Carlitz t-motive
C (recall that C∨ has representing matrix (t− θ)tr,−1 = (t− θ)−1). We con-
clude that N is contained in the Tannakian category TC generated by C. As
a direct sum of such objects, M is contained in TC , as well. Therefore, the
Galois group Gn

m of M is a quotient of the Galois group Gm of C ([Pap08,
3.5.2]), a contradiction.

On the other hand, it is very easy to construct pre-t-motives with Galois
group Gn

m, as the following example demonstrates.

Example 7.3.3. Let P be the pre-t-motive (k(t),σ) given by

Φ = diag(1 + θt, 1 + θt2, . . . , 1 + θtn).
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By Theorem 3.1.3 together with Theorem 3.2.4, there exists a rigid analytic
trivialization Ψ ∈ Gn

m(L) (this can actually be seen very easily by hand
without using Theorems 3.1.3 and 3.2.4). The corresponding Galois group
scheme H is therefore contained in Gn

m. The lower bound criterion 3.3.10
asserts that H(Fq[[t]]) contains a conjugate h of

Φ = diag(1 + t, 1 + t2, . . . , 1 + tn),

the specialization of Φ via θ 7→ 1. As h is diagonal and has the same
eigenvalues as Φ, we conclude that there exists a permutation σ ∈ Sn such
that h equals Φσ. Hence h generates a dense subgroup of Gn

m, by Lemma
4.2.6 and we conclude H = Gn

m. To be more precise, we should note that
we cannot apply the lower bound criterion 3.3.10 directly to P but only to
the corresponding difference module over k(t) given by Φ. We then lift the
result to k(t) using Theorem 1.4.2.
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