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Zusammenfassung

Sei F ein Korper und o ein Automorphismus auf F'. Eine (lineare) Dif-
ferenzengleichung tiber F ist eine Gleichung der Form o(y) = Ay, wobei A
ein Element in GL,,(F) und y einen Vektor mit n Unbestimmten bezeichnet.
Man kann dann Loésungen in Erweiterungskorpern von F' betrachten und so
genannte Picard-Vessiot Ringe definieren, welche ein maximal unabhéangiges
System von Losungen enthalten und gleichzeitig auf eine gewisse Weise min-
imal mit dieser Eigenschaft sind. Falls ein solcher Picard-Vessiot Ring zu
der gegebenen Differenzengleichung existiert, kann man ihm eine lineare al-
gebraische Gruppe, die Differenzen-Galoisgruppe, zuordnen.

Sei nun F' = F,(s,t) und o der Automorphismus auf F, der [F,(¢) punktweise
fixiert und s auf s? abbildet. Das Hauptresultat der vorliegenden Disserta-
tion besagt, dass folgende Gruppen als Differenzen-Galoisgruppen iiber F'
vorkommen: die speziellen linearen Gruppen SL,,, die symplektischen Grup-
pen Spyy,, die speziellen orthogonalen Gruppen SO,, (wobei hier ¢ ungerade
vorausgesetzt wird) und die Dickson Gruppe G,. Fiir all diese Gruppen
werden explizite Differenzengleichungen angegeben. Weiterhin wird gezeigt,
dass jede halbeinfache, einfach zusammenhangende Gruppe G, die tiber I,
definiert ist, fiir ein geeignetes i € N als o;-Differenzen-Galoisgruppe iiber
F; = F(s,t) vorkommt, wobei 0;(s) = s7. Da alle betrachteten Gruppen
zusammenhdngend sind, kénnen diese Ergebnisse von F,(s,t) bzw Fi(s)(t)
nach F,(s)(t) geliftet werden. Dies fiihrt zu so genannten rigid analytisch
trivialen Pra-t-Motiven mit denselben Galoisgruppen. Die Kategorie der
rigid analytisch trivialen Pra-{-Motive enthalt die Kategorie der ¢-Motive,
welche in der Arithmetik von Funktionenkorpern von Interesse ist.

Um die besagten Gruppen realisieren zu konnen, werden verschiedene Krite-
rien entwickelt, die Schranken an Differenzen-Galoisgruppen geben. Zunéchst
wird gezeigt, dass ein Picard-Vessiot Ring zu o(y) = Ay existiert, falls A
gewisse Konvergenzbedingungen erfiillt. Sei nun o(y) = Ay eine solche
Differenzengleichung mit Differenzen-Galoisgruppe H und sei G < GL,, eine
gegebene lineare algebraische Gruppe. Wenn A in G(F') enthalten ist, so gilt
H < G, d.h. 'H kann nach oben beschrinkt werden. Um H = G zeigen zu
konnen, wird folgendes Kriterium bewiesen: Sei o € F, derart, dass das Er-
setzen von s durch a die Matrix A € GL,,(F,(s,t)) auf ein wohldefiniertes El-
ement A, € GL,(F,(t)) abbildet. Dann enthélt H ein gewisses Konjugiertes
von A,. Mithilfe dieser Kriterien kann nun wie folgt vorgegangen werden,
um die Gruppe G zu realisieren. Man konstruiere die Matrix A derart, dass
die Konvergenzbedingungen erfiillt sind und sodass beliebige Konjugierte
der Familie {4, | a € F,} die Gruppe G erzeugen. Um dies entscheiden
zu konnen, befasst sich die vorliegende Arbeit auch mit der Erzeugung von
linearen algebraischen Gruppen. Zum einen werden explizite Erzeuger der
klassischen Gruppen konstruiert, die auch nach gewisser Konjugation noch
die Gruppe erzeugen. Zum anderen wird ein etwas allgemeineres Resultat
fiir reduktive Gruppen, welche iiber F, zerfallen, bewiesen.



Abstract

Let F' be a field with an automorphism o on F. A (linear) difference
equation over F' is an equation of the form o(y) = Ay with A € GL,,(F') and
y a vector consisting of n indeterminates. There is the notion of a Picard-
Vessiot ring which is in some sense a “ smallest” difference ring extension
R of F such that there exists a full set of solutions with entries in R to
the given difference equation. If there exists a Picard-Vessiot ring, one can
assign a difference Galois group to the Picard-Vessiot ring, which turns out
to be a linear algebraic group (in the scheme theoretic sense).

Let F = Fy(s,t) with o defined to be the automorphism that fixes Fq(¢)
pointwise and maps s to s?9. The main result of this thesis is that the fol-
lowing groups occur as difference Galois groups over F: the special linear
groups SL,, the symplectic groups Sps,, the special orthogonal groups SO,
(here we have to assume ¢ odd), and the Dickson group Go (in both cases ¢
odd and even). We give explicit difference equations for all of these groups.
As another result, we show that every semisimple and simply-connected
group G that is defined over F, occurs as a o;-difference Galois group over
F; = F,i(s,t) for some i € N, where o;(s) = s7'.

We also lift our difference equations from Fy(s,t) to Fy(s)(t) using the fact
that all of our constructed Galois groups are connected. As a result we
obtain rigid analytically trivial pre-t-motives with the same Galois groups.
The category of rigid analytically trivial pre-t-motives contains the category
of t-motives, which occurs in the arithmetic of function fields.

For an outline of the approach, suppose we are given a linear algebraic group
G < GL,. Assume that we have fixed a difference equation o(y) = Ay over
F' for which we would like to show that there exists a Picard-Vessiot ring
with difference Galois group equal to G. For the existence of a Picard-Vessiot
ring, we use a Henselian type of argument to show that under certain as-
sumptions, there exist enough solutions inside a suitable extension L of F.
If moreover A is contained in G(F'), we deduce that the difference Galois
group H is contained in G. In order to be able to show that H > G holds,
we develop a lower bound criterion as follows. Let o € F, be an element
such that the matrix A, obtained from A € GL,(F,(s,t)) by substituting
s by « is a well-defined element of GL,,(F,(t)). Then H contains a certain
conjugate of A,.

With these criteria at hand, we construct a matrix A that meets the as-
sumptions on our criterion for the existence of a Picard-Vessiot ring, and
such that any conjugates of the elements A, (a € Fy) generate G. The latter
condition leads us to questions on generating linear algebraic groups. We
construct explicit generators of the classical groups that generate the group
even up to a certain conjugacy. We also present a more general result for
arbitrary reductive groups that split over IF,.
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Introduction

In analogy to the Galois theory of polynomials (or differential equations),
difference Galois theory studies extensions generated by solutions to differ-
ence equations with respect to a fixed automorphism o of the base field F.
A (linear) difference equation is an equation of the form

o(y) = Ay

with A € GL,(F) and y a vector consisting of n indeterminates. There is
the notion of a Picard-Vessiot ring which is in some sense a “ smallest” ring
extension R of F' together with an extension of o such that there exists a
full set of solutions with entries in R to the given difference equation. In
case the constants C of F' (the elements fixed by o) are algebraically closed,
there always exists a unique Picard-Vessiot ring (up to isomorphism). The
difference Galois group can then be defined as the group of automorphisms
of R that leave F' (pointwise) invariant and commute with o; it turns out to
be a linear algebraic group defined over C. This can be generalized to the
case of an arbitrary field of constants C, leading to difference Galois groups
that are affine group schemes defined over C provided that there exists a
Picard-Vessiot ring. Similar to the inverse problem in classical Galois the-
ory, it is a natural question to ask which affine group schemes defined over
C occur as Galois groups of some difference equations over the fixed base
field F' with fixed automorphism o.

Let F' = F,(s,t) be a function field in two variables over the finite field F,
with o acting trivially on [, (¢) and mapping s to s?. In other words, o is the
Frobenius homomorphism on F,(s) extended to F by setting o(t) = t. Then
the constants of F' are C' = F,;(¢). The main result of this thesis is that the
following groups occur as difference Galois groups over F: the special linear
groups SL,, the symplectic groups Spy,, the special orthogonal groups SO,,
(here we have to assume ¢ odd), and the Dickson group G2 (in both cases ¢
odd and even). We give explicit difference equations for all of these groups.
See Theorems 5.4.4, 5.5.4, 5.6.4, 5.7.7 and 5.8.4, respectively. As another
result, we show that every semisimple and simply-connected group G that
is defined over [, occurs as a o;-difference Galois group over F; = Fi(s,t)

for some i € N, (Theorem 6.4.1), where oy(s) = s7.
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For an outline of the approach, suppose we are given a linear algebraic
group G. Assume that we have fixed a difference equation o(y) = Ay for
which we would like to show that there exists a Picard-Vessiot ring with
difference Galois group equal to G. For the existence of a Picard-Vessiot
ring, it is sufficient to show that there exists a fundamental solution matrix
Y € GL,(L) (ie., o(Y) = AY) for some field extension L of F' such that
o extends to L without giving rise to new constants. We always work with
L being the field of fractions of the ring of power series in ¢ that converge
in a certain sense (with coefficients in a field extension K of F,(s)). Using
a Henselian type of argument, it can be deduced that if the representing
matrix A is contained in GL, (F;(s)[t])) and the coefficient matrices in its
t-adic expansion can be bounded in a certain way, we always have a fun-
damental solution matrix Y € GL,,(L), (Theorem 3.1.3). If moreover A is
contained in G, then Y can be chosen inside G(L), (Theorem 3.2.4). Let
H denote the difference Galois group. Then Y € G(L) implies that H is a
closed subgroup scheme of G defined over F,(t). The Picard-Vessiot ring R
will turn out to be separable over F' and it can be deduced that H is geo-
metrically reduced; that is, it is a linear algebraic subgroup of G. In order to
be able to show that H > G holds, we develop a lower bound criterion as fol-
lows. Let o € [, be an element such that A is specializable modulo the ideal
(s — a), that is, A € G(o[t](;)), where 0 = F[s](;_q) denotes the valuation
ring corresponding to s — . Then H(IF[[t]]) contains a certain conjugate of
the specialized matrix A, € G(I[[t]]), (see Corollary 3.3.11). The criterion
developed here actually works in the more general case F' = k(t) D F,(¢)
with k& a (not necessarily discretely) valued field with finite residue field.
The idea to work with specializations to obtain elements of the Galois group
up to conjugacy is inspired by finite Galois theory. Every finite Galois exten-
sion of F,(s) is the Picard-Vessiot ring of a difference equation o(y) = Aoy
with Ay € GL,(F,(s)) and with oy the ordinary Frobenius homomorphism
on F,(s). In [Mat04], Matzat gave a lower bound criterion for these kind of
difference equations using specializations of Ay from F;(s) to F,, which led
to the explicit realization of various finite groups of Lie type over F,(s), (see
[AM10]).

In our context of difference Galois theory, we are able to obtain elements
inside H < G up to a certain conjugacy. Hence we need to choose A so that
it specializes to elements that generate G up to conjugacy. In case G is a
classical group, we lift a result due to Malle, Saxl and Weigl concerning gen-
eration of G(I,), and construct explicit maximal tori 77 and 75 defined over
F, such that any G(F, + tF,[[t]])-conjugates of them generate G, (Theorem
4.2.5). We then build A in such a way that it specializes to elements t1, t2
that generate dense subgroups of T} and 75. In case G = G2, we proceed in
a similar way.



To show that every semisimple and simply-connected group G that is defined
over F; occurs as a oy-difference Galois group over F; = F;(s,t) for some
i € N, (Theorem 6.4.1), we use a result of Nori asserting that G(F,) itself can
be realized over F,;(s). We can extend the matrix Ay € GL,,(F,;(s)) coming
from Nori’s result to an A € GL,,(F;(s)[t]()) with constant coefficient matrix
Ap. This implies that G(If;) is contained in H(F,[[t]]), and we choose A such
that it specializes to an element generating a dense subgroup of a maximal
torus T that splits over ;. Using our lower bound criterion, it then suffices
to show the following: If G is an [F-split reductive group with split maximal
torus 7', any G(F, + tF,[[t]])-conjugate of T together with G(IF,) generates a
dense subgroup of G, (Theorem 4.3.1).

It should be mentioned that in case F' = F,(s)((t)) with o acting coefficient-
wise as the Frobenius homomorphism on F,(s) (hence the constants of F
equal F,((t))), the inverse problem has been solved by Matzat. Namely,
Theorem 2.3 in [Mat09] implies that any linear algebraic group defined over
F,((t)) occurs as a difference Galois group over F,(s)((t)). However, this
result is based on taking t-adical limits, so it cannot be transferred to our
non-complete base field F,(s)(¢) or even F,(s)(t).

There is a certain class of difference equations that occurs in the number the-
ory of function fields. In 1974, Drinfeld introduced a class of F,[t]-modules
which are today called Drinfeld modules, (see [Dri74]). These modules can
be regarded as a function field analog of elliptic curves. An important ex-
ample is the Carlitz module, which Carlitz had already introduced in 1935,
[Car35], in order to study class field theory over the rational function field.
As when passing from elliptic curves to abelian varieties, one can step up
from Drinfeld modules to a category of higher dimensional objects, called
t-modules, which were introduced by Anderson in 1986, (see [And86]). An-
derson also introduced the category of so-called t-motives which is anti-
equivalent to the category of t-modules, (more precisely, to the category of
so-called abelian ¢t-modules). A t-motive gives rise to a unique difference
equation over (F,(s)(t), o), where o(a) = af for all a € F;(s) and o(t) = t,
that posseses a Picard-Vessiot ring inside a certain field. In this way, one
can assign a difference Galois group to a t-motive. It has been shown by Pa-
panikolas, (see [Pap08, Theorem 4.5.10]), that this difference Galois group
coincides with the so-called t-motivic Galois group assigned to a t-motive
using the fact that the category of t-motives is a Tannakian category. Dif-
ference Galois theory has proved very powerful in transcendence theory over
function fields, due to the fact that the dimension of the difference Galois
group equals the transcendence degree of the Picard-Vessiot ring. For more
details on the theory of t-motives, we refer the reader to the survey articles
[BP11] and [Chal0] and the references listed there.




We lift our difference equations with Galois groups SL;,, Spag, SOy, G2 from
F,(s,t) to F,(s)(t) using the fact that all of these groups are connected. As
result we obtain rigid analytically trivial pre-t-motives with these Galois
groups. The category of rigid analytically trivial pre-t-motives contains the
category of t-motives.

This thesis is organized as follows. The first chapter provides some back-
ground on the Galois theory of difference equations (with not necessarily
algebraically closed fields of constants) treating all statements used later.
In Chapter 2, we set up some notation and conventions that will be used
throughout all following chapters. In Chapter 3, we develop techniques to
guarantee that a difference equation has a certain difference Galois group.
Specifically, Section 3.1 is concerned with the existence of Picard-Vessiot
rings, while Sections 3.2 and 3.3 provide upper and lower bounds for differ-
ence Galois groups. Chapter 4 deals with finding generators that generate a
linear algebraic group even after certain conjugacy. In Chapter 5, we then
combine the results from Chapters 3 and 4 to construct difference equations
with Galois groups SL,, Spyy, SO, and G, whereas Chapter 6 is devoted
to the case of arbitrary semisimple simply-connected groups. In the last
chapter, we give a short introduction to t-motives and translate our results
to this setting.

Acknowledgments

I am deeply grateful to my advisor Prof.J. Hartmann for offering me the
opportunity to pursue this project, for introducing me to lots of interesting
mathematics, for her kind and useful advice, and for her constant support
and encouragement.

I would like to thank Prof. B.H. Matzat for being available for my questions
and for donating his time to write a report of this thesis. Prof. D. Harbater,
Dr. L. Taelman and Dr. M. Wibmer have my appreciation for multiple fruit-
ful discussions.

My thanks also go to everyone from Lehrstuhl A, especially my office mates,
for the friendly and productive atmosphere. Finally, I would like to express
my gratitude to all my friends and family for their encouragement through-
out this project, with a special thank you to Katha and Max.



Chapter 1

Basics of Difference Galois
Theory

In this chapter, we collect some basic facts about difference modules. Al-
though most of it is well known, the literature seems to focus either on alge-
braically closed fields of constants (such as in [vdPS97]) or on a much more
general (non-linear) theory of difference equations (such as in [Wib10b]), re-
sulting in Galois groupoids. Therefore, we give a self-contained introduction
to the theory of (linear) difference modules over difference fields with not
necessarily algebraically closed field of constants.

1.1 Difference Rings and Difference Equations

Definition 1.1.1. A difference ring (R, ¢) is a commutative ring R equipped
with a ring homomorphism ¢: R — R. A difference field is a difference ring
which is a field. The constants Cr of a difference ring R are the elements
of R fixed by ¢. A difference ring S > R such that the homomorphism ¢
on S extends that on R is called a difference ring extension. A difference
ideal of a difference ring R is a ¢-stable ideal of R and R is called a simple
difference ring if its only difference ideals are (0) and R. If R and S are
difference rings, a homomorphism o: R — S commuting with the difference
structure on R and S is called a difference homomorphism. The set of all
such is denoted by Hom?(R, S).

Remark 1.1.2. Other than in [vdPS97], we do not assume ¢ to be an
automorphism, as the following examples will demonstrate.

Example 1.1.3. e Fiz an element ¢ € C*. Then C(t) together with ¢
given by ¢(t) = qt is a so-called q-difference field with constants C if
q s not a root of unity.

e Let now q be a prime power. Then F;(s) together with the ordinary
Frobenius homomorphism ¢4: Fy(s) — F,(s),z +— 27 is a difference

)
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field with constants F,. This is an example where the difference homo-
morphism is not surjective.

o Let g again be a prime power and consider F,(s,t). Let ¢4 be the homo-
morphism on F,(s,t) fizing t and restricting to the ordinary Frobenius
homomorphism on F,(s). Then F,(s,t) is a difference field extension
of F,(s), with constants F,(t).

Proposition 1.1.4. Let (R, ¢) be a simple difference ring (e.g. a difference
field). Then Cg is a field.

Proof. If 0 # a € R is constant, then the principal ideal generated by a is a
non-zero difference ideal and is thus all of R. Hence a is invertible inside R
and clearly, the inverse is also constant. O

Definition 1.1.5. Let (R, $) be a difference ring and A € GLy,(R). Then
o(Y) = AY is called a (linear) difference equation over R. Let S/R be an
extension of difference rings. A matriz Y € GL,(S) satisfying ¢(Y) = AY
(where ¢ is applied coordinate-wise to Y ) is called a fundamental solution
matrix (or fundamental matrix, for short) for ¢(Y) = AY. The solution
space Solg(A) is the set of all elements y € S™ with ¢(y) = Ay.

Lemma 1.1.6. Let (S,¢)/(R, $) be an extension of difference rings and let
o(Y) = AY be a difference equation given by a matrix A € GLy,(R). Assume

that there exist two fundamental matrices Y1 and Ya contained in GL,,(S).
Then Yy 'Y is contained in GL,(Cs).

Proof. We have ¢(Y, 'Y1) = (AY)"TAY; = Y, 'Yy, hence Y, 'Y; € GL,(S)
has constant entries. It follows that the determinant is constant and as it is
invertible inside S, it is also invertible inside C'g. Thus Y2_1Y1 is contained
in GL,,(Cg). O

Lemma 1.1.7. Let (E,¢)/(F,¢) be an extension of difference fields with
field of constants C = Cp = Cg. Let further ¢(Y) = AY be a difference
equation over F' for a matric A € GL,(F) and let yi1,...,ym be contained
in Solg(A). Then y1,...ym are linearly independent over E if and only if
they are linearly independent over C.

Proof. Suppose yi, ..., ym are linearly independent over C' but not over E.
m

Choose ay,...,a, € E such that Y a;y; = 0 is a non-trivial zero combi-
i=1

nation of minimal length. We may assume a; = 1. We apply ¢ and get
0= ¢la;)p(yi) = 3. #(a;)Ay;. We can now multiply with A~ from
i=1 i=1

m
the left to obtain >~ ¢(a;)y; = 0. Since ¢(a1) = 1 = a1, we get a shorter
i=1

m m
zero combination by subtracting 3 ¢(a;)y; = 0 from 3 a;y; = 0. Thus,
' =1

=1
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by minimality, a; = ¢(a;) for all i. Hence all a; are contained in C, a
contradiction. ]

Corollary 1.1.8. Let E/F be an extension of difference fields and let
o»(Y) = AY be a difference equation over F (for a matric A € GL,(F)).
Let C be the field of constants of E. Then Solg(A) is a vector space over C
of dimension less than or equal to n. We have equality if and only if there
exists a fundamental solution matriz Y € GL,(E).

Proof. 1t is clear from the definition that Solg(A) is a vector space over C.
Any C-basis consists of elements in E™ that are linearly independent over
E, by Lemma 1.1.7. Hence the dimension is at most n. The dimension
equals n if and only if there exist n solutions, that are linearly independent
over E (again by Lemma 1.1.7). This is equivalent to the existence of a
fundamental matrix inside GL,(F), since the columns of such matrix are
contained in the solution space. ]

Example 1.1.9. Let (F, ¢) be a difference field and consider an n-th order
scalar difference equation

I(z) := ¢"(x) + an_16" H(x) + - + ar1d(z) + gz =0

for ag € F* and aq,...,an € F. This is equivalent to the linear difference
equation given by the matriz

0 1 0 0
0 0 1 0
A=
-y —Oo1 ... —Op—1

Indeed, any solution y of  (i.e., I(y) = 0) contained in a difference field ex-
tension E gives rise to a solution vector (y, ¢(y),...,¢" 1(y))" € Solg(A)
and vice versa. In this way, the concept of scalar difference equations is
covered by the theory of linear difference equations. In the situation of dif-
ferential equations, the converse is also true, that is, every matriz is dif-
ferentially equivalent to a matrix coming from a linear differential operator.
This follows from the existence of cyclic vectors, a result usually referred to
as cyclic vector lemma. The analog statement for difference equations has
been proven for char(F) = 0 in [HS99, Thm. B.2] under the assumption
that ¢ is an automorphism and that there exist non-periodic elements.

Difference equations naturally arise in the study of difference modules:

Definition 1.1.10. Let (F,¢) be a difference field. A difference module
(or ¢-module, for short) over F is a finite dimensional F-vector space M
together with a ¢-semilinear map ®: M — M, (i.e., ® is additive and for
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any A € F and © € M we have ®(Ax) = ¢(A\)P(x)) such that there exists
a representing matriz D contained in GLp(F), where n = dimp(M). A
representing matrix D is defined as follows: With respect to a fixed basis
of M, the action of ® is completely described by the images of the basis
elements. The representing matriz D (with respect to this basis) collects
these images in its columns. Conversely, every D € GL,(F) gives rise to
an n-dimensional difference module.

A fundamental (solution) matrix for M in some ring extension R > F is
defined to be a fundamental matriz for D=' contained in GL,(R).

Remark 1.1.11. Let (M, ®) be a difference module over (F, ¢) and fix a ba-
sis B={e1,...,en} of M over F. We write xg € F™ for the representation
of an element x € M with respect to B. Let x = Y i1 \ie; be an element
in M. Then ®(z) = S0, d(X\i)®(e;), hence ®(x)g = D - p(M,..., )" =
Do(zp).

Now if (R,®) is a difference ring extension of (F,¢), then every element
y = (A, )" € Solg(D™Y) represents an element x = S0, Aie; €
M ®p R. We can extend the action of ® naturally to M ®p R by & ® ¢.
We have ¢(y) = D~ 'y, hence ®(z)p = Dé(y) = DD 'y = y = xp, that
is, ®(x) = x. Thus the elements of M Qp R fized by ® are exactly those
r € M ®F R such that xg is contained in Solg(D~1). We conclude that
there exists a ®-invariant basis of M ®p R if and only if there exists a fun-
damental solution matriz Y € GLy(R) of the difference equation given by
D1

Remark 1.1.12. Not every injective, ¢p-semilinear map gives rise to a dif-
ference module. For instance, endow F = F,(s) with the ordinary Frobenius
map ¢ and let M = F? with basis e1,ea. Now consider the ¢-semilinear
map given by ®(e1) = e1 and ®(ez) = sey. Then @ is injective since no
non-trivial linear combination ¢q4(c) + ¢4(B)s can be zero, as s is not con-
tained in the image of ¢4. Hence ® is injective, but the representing matrix

D equals <(1) 8), and is thus not contained in GL,(F).

1.2 Picard-Vessiot Rings

We now establish the notion of Picard-Vessiot rings of difference equations
(which do not necessarily exist, and in case there exists one, it is not neces-
sarily unique up to isomorphism, either).

Definition 1.2.1. Let (F,¢) be a difference field with constants C and let
A be an element in GL,(F). An extension of difference rings R/F is called
a Picard-Vessiot ring for A if the following holds:

o R is a simple difference ring.
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o The field of constants of R is C.
o There exists a fundamental matriz Y € GL,(R), i.e., p(Y) = AY.
e R is generated as F-algebra by {Y;;,det(Y)™ | 1 <4,j <n}.

We will use the notation F[Y,Y 1] := F[Y;;,det(Y)™! | 1 <4,5 <n].

Remark 1.2.2.  a) In the literature, sometimes the second condition is
dropped in the definition of a Picard-Vessiot ring in order to guarantee
the existence of Picard-Vessiot extension.

b) The last condition implies that R is minimal in the sense that no
proper difference subring satisfies the first three conditions. Indeed,
the second condition asserts that two fundamental matrices differ by
an element in GL,(C) so there can be no smaller difference ring R’
with fundamental matriz contained in GL,(R).

Definition 1.2.3. If (M, ®) is a difference module over (F,$) with repre-
senting matriz D € GL,(F'), a Picard-Vessiot ring of M is defined to be a
Picard-Vessiot ring for the equation ¢(Y) = AY with A := D=1 € GL,(F).

Proposition 1.2.4. Let R be a simple difference ring. Then R is reduced.

Proof. Clearly, the radical of a difference ideal is again a difference ideal and
since 1 is not contained in 1/(0), we have 4/(0) = (0) by simplicity of R.
Thus there are no nilpotent elements in R other than zero. O

Remark 1.2.5. Other than in the differential theory, a simple difference
ring is not necessarily integral, even if the field of constants is algebraically
closed. For a simple example in any characteristic not equal to 2, see

[vdPS97, 1.6].

Theorem 1.2.6. Let F be a difference field with constants C' and let R/ F
be an extension of difference rings such that R is a finitely generated F'-
algebra. Assume that R is a simple difference ring. Then the constants Cr
of R are algebraic over C.

Proof. We skip the proof, as we won’t actually use this theorem. In case C
is algebraically closed, a proof can be found in [vdPS97, 1.8] and the proof
can be carried over to the case of arbitrary constants. Alternatively, we refer
the reader to [Wib10a, 2.11], where the theorem is proven in a much more
general situation (i.e., for constrained extensions of o-pseudofields). The
proof there makes use of a difference version of a Chevalley theorem which
is proven in the same paper. O
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Remark 1.2.7. It is worth noticing that the converse is not true. That is,
there can be elements that are separable algebraic over C' but not constant.
Take for example R = F = E with ¢ = ¢4 the Frobenius homomorphism.
Then Cr = ;. This is different from the differential case where there is a
unique extension of a derivation to any separable algebraic extension.

Example 1.2.8. Let F' be a field of characteristic p > 0, q a power of p
and let ¢ = ¢4 be the ordinary Frobenius homomorphism on F. Let M be
a difference module over F'. Then M 1is called a finite Frobenius module
over F. It can be shown that there always exists a unique (up to isomor-
phism) Picard-Vessiot ring for M which is then a finite Galois extension
of F. Conversely, every Galois extension of F' can be derived in this way
(using additive polynomials). If the representing matriz of a finite Frobenius
module M is of “sufficiently nice shape”, it is also possible to derive a poly-
nomial describing the corresponding Galois extension. We refer to [Mat04]
for details.

The objective of this section is to guarantee the existence of Picard-
Vessiot rings provided there exists a fundamental matrix contained in a
difference field extension with no new constants (see Theorem 1.2.11 below).
As in the differential theory, we use the following correspondence of ideals
for the proof.

Lemma 1.2.9. Let (R, ¢) be a simple difference ring with field of constants
C and let S be a C-algebra. Equip R Q¢ S with the structure of a difference
ring via ¢@cid. Let I(S) denote the set of ideals inside S and let T(R®¢S)?
denote the set of difference ideals in R ®c S. Then there is a bijection

:Z(S) - I(R®cS)?, I— R®I=1-R®c S,
A:I(R®c 8)? — I(S), J— JNS.

Proof. There is a short proof in [Wib10b, Prop.1.4.15] for this correspon-
dence in a slightly different setting. The proof also works in our setup as we
will now make sure. First note that I' is well defined since every element in
S C R®c S is ¢-stable. Let I be an ideal in S. Choose a vector space basis
B=1{b;|ieZ}of Rover C. Then {b;®1 |i €I} is a basis of R®c S as
S-module. Thus I'(I) consists of all finite sums > ;c7b; ® s; with all s; € T
and hence A(T'(1)) = I.

Let now J be a difference ideal inside R®@¢ S. We will show that I'(A(J)) =
J holds. Clearly, T'(A(J)) € J. For the converse, let {e; | i € J} be a
C-basis of A(J) and extend to a C-basis {e; | i € JUJ'} of S (such that
JNJ =2). Then {1®e; | i € JUJT'} is also an R-basis of the free R-
module R®¢ S and {1®e; | i € J} is an R-basis of R@c A(J) = T'(A(J)).
Suppose that I'(A(J)) € J and let a € J\I'(A(J)) be an element of shortest
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length, ie, a = Y a;®e and J, = {i € JUJ'a; # 0} is of mini-
€eJuI _

H~1al cardinality. We set J = J, and the minimality implies that we have

J CJ'. Fixanig € J. Then

{rip € R|Vie T\{ig} I € R: D ri®e; € J}
i€
is a difference ideal inside R, which is non-zero (since it contains a;, # 0).

As R is difference simple, this ideal contains 1 and we may therefore assume
that a;, = 1 holds. But then

a—¢la)= > (ai—d(a)®e;
i€ \{io}
is of shorter length than a and has thus to be zero. We conclude that

a; — ¢(a;) = 0 holds for all i € J and thus a is contained in (C ®¢ S)NJ =
A(J) CT(A(J)), a contradiction. O

Corollary 1.2.10. Let (E, ¢) be a difference field with field of constants C
and let further Z = (Z;j); j<n consist of n? indeterminates. Equip E[Z,Z ]
with the difference homomorphism extending the given one on E and act-
ing trivially on Z, i.e., ¢(Z) = Z. Then there is a bijection between
I(C[Z,Z7Y)), the set of ideals in C[Z,Z7], and T(E[Z,Z7'])?, the set
of difference ideals in E[Z, Z~'] given by:

:2(C[1Z, 2 Y) - Z(E[Z,Z ),  — I - E[Z,Z71],
A:T(E(Z, 27 - 1(C|2,Z7Y), J— JNC[Z,Z7Y.

Proof. This follows directly from Lemma 1.2.9 by setting R = F and S =
Clz,Zz71]. O

Theorem 1.2.11. Let (F,¢) be a difference field with field of constants C
and let A be contained in GL,(F). Assume that E/F is a difference field
extension such that

a) The field of constants of E is C,
b) There exists a fundamental matriz Y € GLy,(E), i.e., p(Y) =AY,

Then R := F[Y,Y ™| C E is a Picard-Vessiot ring for A and R is the only
Picard-Vessiot ring for A that is contained in E.

Proof. Any Picard-Vessiot ring contained in E is generated by a fundamen-
tal matrix in GL,(FE) and its inverse, so the uniqueness (inside E) follows
from Lemma 1.1.6 together with Cp = C C F.

To see that R is a Picard-Vessiot ring it is sufficient to show that R is dif-
ference simple. Let X be a matrix consisting of n? indeterminates. Equip
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F[X, X~!] with the difference homomorphism extending that on F' such that
#(X) = AX holds. Then the natural homomorphism v: F[X, X" !] — E
given by X;; — Y;; is a difference homomorphism with image R. Set [ =
ker(v). Then R is difference isomorphic to F[X, X ~!]/I and we have to show
that I is a maximal difference ideal inside F[X, X 1]. Let P C F[X, X ]
be a maximal difference ideal in F[X, X ~!] containing I.

Define a set of n? new variables (Z;;) by Z =Y 'X. Then

E® F[X,X Y= E[X,X ! = E[Z, Z71], since Y has entries in E. Note
that F ® F[X, X 1] becomes a difference ring via ¢(e ®@ f) = ¢(e) @ o(f)
and this is compatible with the difference structure on E[Z, Z7!] given
by ¢(Z) = Z. Indeed, ¢(Z) = Y'A71AX = Z. Hence we can ap-
ply Corollary 1.2.10 to the difference ideal Pr := P - E[X, X '] inside
E[Z,Z7'] which is therefore generated by p := Pg N C[Z, Z~!]. Note that
E[Z,27Y)/Pp = (E@p FIX,X'])/(E®r P) = E®p (FIX,X]/P) £0,
where we used that E/F is free and thus flat. Hence Pg is a proper ideal
of E[Z,Z~!] and so p is a proper ideal of C[Z, Z~!]. We can thus choose a
maximal ideal m D p inside C[Z, Z~!] containing p. Then L := C[Z, Z~]/m
is a finite field extension of C' (see [AM69, Cor. 7.10]). (This is, by the way,
the moment where it gets slightly more complicated because we do not as-
sume our constants to be algebraically closed and thus in general L # C'.)

Let : C[Z,Z7'] — L be the residue map modulo m. Now E/F is flat,
and thus

Eor (FIX,X'|/P)= E[X,X'|/Pg=E[Z,Z7']/Pg
= E®c (C[2,27Y/p)48" E® (C[Z,27")/m) = E®c L,

where all homomorphisms are difference homomorphisms. Denote the re-
sulting difference epimorphism F ®@p (F[X, X !]/P) - E ®c L by v. We
then have the following commutative diagram of difference homomorphisms:

E@F F[X,Xfl] M)E@)C C[Z, Zfl]

| -

E®rp (F[X,XY/P) E®cL

where we write Y ® Z short for the matrix product (Y ®1)-(1®Z). Let now
Z denote the image of Z inside C[Z, Z~!]/m = L. We tensor the diagram up
with ®cL and extend it to the following commutative diagram of difference
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homomorphisms:

FIX, X Y ®cL
X®1'—>1®X®Z1l
E®p FIX, X 1®cL E®cCl|Z,Z Voc L
i iid@n@id
E®r (F[X,X 1/P)®c L E®cL®c L
iid@u

E@CL

I XR1I—-YRZ®1
_

YR®id

where p: L ®c L — L denotes the multiplication map. Let now v denote
the resulting composition difference homomorphism
Y: FIX,X Y1 ®c L — E®c L. We choose the upper path to compute

¢:X®cln—>1®FX®CZ_1n—>Y®cZ®cZ_1»—>Y®07®07_1»—>Y®cl

We conclude that ¢ = v ®¢ idy, and thus ker(y) = ker(v) ®¢c L = I ®¢ L,
since L/C' is flat. On the other hand, if we choose the lower path, it is clear
that P ®¢ L is contained in ker(¢). Hence P ®¢c L C I ®¢ L and thus
P C I, since L/C is free and thus faithfully flat. We conclude that [ = P is
a maximal difference ideal in F[X, X 1]. O

Definition 1.2.12. In the situation as in Theorem 1.2.11, i.e., if R is an
integral domain that is Picard-Vessiot for A, we call Quot(R) a Picard-
Vessiot extension for A.

Remark 1.2.13. Other than in differential theory, the existence of a Picard-
Vessiot ring does not imply the existence of a Picard-Vessiot extension, since
a difference Picard-Vessiot ring is not necessarily a domain. It is therefore
more natural to work with the total quotient rings of Picard-Vessiot rings
instead of the field of fractions. However, the (explicitly constructed) Picard-
Vessiot rings of the difference modules considered later on will always be
domains, so Theorem 1.2.11 will be sufficient for our purpose.

1.3 Galois Theory

We now give a construction of the Galois group scheme G of a Picard-
Vessiot ring R, which turns out to be a linear algebraic group under certain
separability assumptions. Other than in [Pap08], we will not assume our
Picard-Vessiot ring to be integral. Also, our construction is more intrinsic
as we are working with torsors. The Galois group scheme is then represented
by the constants of R ®p R.
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Lemma 1.3.1. Let (R, ¢) be a simple difference ring with field of constants
C. Let further S and S’ be C-algebras and equip R®c S and R®¢c S’ with the
structure of a difference ring via ¢ ®cid. Then Crg.s = C ®@c S and there
is a natural bijection between Home (S, S) and Hom%(R ®@c S, R®c S).

Proof. Since C' is a field, we can choose a basis {s,|a € A} of S over C. Let
Y ra ® Sq € R®c S be a constant. Then Y. ¢(rq) @ sq = > 7o ® Sq, hence
all 7, are contained in C' and thus Crg,s = C®c S = S. Similarly, we have
Creos = S'. Now if ¢ is contained in Hom%(R ®c S, R ®c S), it maps
constants to constants and hence restricts to a homomorphism contained in
Hom¢ (S, S). This yields a map Hom‘g(R ®c S, R®c S) — Home(5,5)
with inverse given by base extension. O

Proposition 1.3.2. Let (F, ¢) be a difference field with constants C' and let
R/F be a Picard-Vessiot ring for a matriz A € GL,(F). Then we have an
R-linear isomorphism of difference rings

R®r R= R®c Crgpr,

where RQp R and R®c Cre,r are considered as difference rings via ¢ Qp ¢
and ¢ ®c id, resp. Furthermore, we have

Creopr 2 ClY '@pY, (Y '@rY)

where we again use the notation Y ' @p Y for the matriz product Y 1 @1 -
1®Y.

Proof. Let
V: R®c Cropr — ROr R

be the ring homomorphism given by R - R®pr R, a — a ® 1 on the
left and the natural inclusion Crg,r € R®p R on the right. Then v is
a difference ring homomorphism. All entries of Y™ ' @ Y and Y ®p Y !
are constant and we have 1 ®r Y = (Y ®@p 1) - (Y ! ®@r Y) as well as
1@rY = (Y "1®rl) - (Y ® Y™ !). As R is generated over F' by the
entries of Y and Y ! we conclude that 1 is surjective. The kernel of 1 is
generated by its intersection with Crg, r, by Lemma 1.2.9. As 1) is injective
on CRre R, it is injective overall, so we proved the first statement.

To see that Creg,r = C[Y 1 @Y, Y 1Y) =CY 1Y,y ® Y
holds, we first observe that the very same proof as above yields a difference
ring isomorphism

V:RcClY '@V, Y ®Y '] - Rorp R.

Hence we get a difference ring isomorphism

vi=¢ ot ROp Cropr — RRcCY 'Y, Y @Y.
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A difference ring homomorphism maps constant elements on constant ele-
ments, hence 7(Crg ) is contained in the constants of RecC[Y 1QY, Y ®
Y~ 1. These are exactly C[Y ! ®Y,Y ® Y 1] by Lemma 1.3.1. Hence =y
induces an injective ring homomorphism

v: Creopr — C[Y ' @Y,Y @Y !].

Clearly, this is surjective, as both Y™! ® Y, Y ® Y ! are constant inside
R ®F R and they are fixed by ~. O

Definition 1.3.3. Let (F,¢) be a difference field with field of constants C
and let R be a Picard-Vessiot ring for a matriz A € GL,(F). We write
Aut(R/F) for the functor from the category of C-algebras to the category
of groups sending a C-algebra S to the group Aut¢(R ®c S/F ®c S) of
difference automorphisms firing F @c S. Note that we consider R @c S as
difference ring via ¢ ® id.

Next, we would like to show that Aut(R/F') is representable, i.e., it is
an affine group scheme. We start with a preliminary lemma.

Lemma 1.3.4. Let (F, ¢) be a difference field with field of constants C' and
let R be a Picard-Vessiot ring for a matric A € GL,(F'). Then for every
C-algebra S (considered as constant difference ring), we have

Aut?(R®c S/F ®c S) = End®(R ®c S/F @c S).

Proof. Let 0: R®c S — R®c S be a difference homomorphism acting triv-
ially on ' ®¢ S. We have to show that o is bijective. Let I be the kernel of
0. Then [ is a difference ideal of R ®¢ S and is thus generated by I NS, by
Lemma 1.2.9. But as o restricts to the identity on S, we have I N.S = (0)
and o is thus injective.

Let Y € GL,(R) be a fundamental matrix. Then det(Y') is contained
in R C (R®c S)* and hence det(o(Y)) = o(det(Y)) is also invertible
inside R ®c S. We conclude that o(Y') is contained in GL,(R ®c S).
Also, ¢p(a(Y)) = a(¢(Y)) = 0(AY) = Ac(Y). Hence both Y and o(Y)
are fundamental matrices for A contained in R ®¢ S, so there exists a
B € GL,(Crgs) such that o(Y) = Y B, by Lemma 1.1.6. Now Crg.s = S
holds by Lemma 1.3.1, thus B € GL,(S). Recall that R is a Picard-Vessiot
ring, hence we have R = F[Y,Y 1] and thus R ®¢ S is generated by the
entries of Y and its inverse determinant over F ®¢ S. As Y = o(Y ® B™1),
we conclude that o is surjective. O

Theorem 1.3.5. The group functor Aut(R/F') is represented by the C'-
algebra Crg g, and is thus an affine group scheme over C.
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Proof. We abbreviate Rg := Crg,r. Let S be a C-algebra. We have to
show that Aut(R/F)(S) = Homc(Rg,S) holds. We have

Home (Rg, S) = Hom%(R ®¢ Rg, R©c S) = Hom%(R ©F R, R®¢ S),

where we use Lemma 1.3.1 for the first equality and the second equality
follows from Proposition 1.3.2. It is well known (and easy to see) that there
is a natural bijection between Homp(R®p R, R®¢ S) and Homp (R, R®¢c S)
given by restriction and base extension. This bijection obviously preserves
difference homomorphisms, and we get

Hom% (R ®r R, R®c S) = Homp(R, R ®¢ S).
Similarly,

Homy(R,R®c S) = Hompy ¢(R®r (F®cS),Rec S)
= Homjg s(R®c S,R®c S).

Finally, we use Lemma 1.3.4 to conclude
Hom%y, ¢(R®c S, R®c §) = Authy (R ®c S) = Aut(R/F)(S).
O

Definition 1.3.6. Let (F,¢) be a difference field with field of constants C
and let R be a Picard-Vessiot ring for a matric A € GL,(F). We define
the Galois group scheme of R/F to be Gg/p = Awt(R/F). Similarly, if
(M, ®) is a difference module over (F,¢) with a Picard-Vessiot ring R, we
call Gy.r = Aut(R/F) the Galois group scheme of M (with respect to R,
which is not unique, in general). In case E is a Picard-Vessiot extension of
M with Picard-Vessiot ring R C E, we set Gu.p = Gum,R-

Remark 1.3.7. In case C is algebraically closed, the C-rational points of
G are usually called the Galois group Gal(R/F) = Aut®(R/F) of R over
F. However, if C' is not algebraically closed, G(C) may not contain enough
information to recover G.

Theorem 1.3.8 (Torsor-theorem). Let (F,¢) be a difference field with field
of constants C' and let R be a Picard-Vessiot ring for a matrizx A € GL,(F).
Then Spec(R) is a Gr/p-torsor, i.e., Spec(R) is a Gr/p-variety via the mor-
phism

[': Spec(R) Xc Gr/r — Spec(R)

such that
id xT': Spec(R) x¢ Gr/p — Spec(R) x r Spec(R)

s an isomorphism.
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Proof. We have Spec(R) x¢ Gr/r = Spec(R ®c Crepr) and Spec(R) xr
Spec(R) = Spec(R ®p R). By Proposition 1.3.2, there exists an R-linear
isomorphism R ®r R — R ®c Crgpr and the claim follows. O

As a corollary, we get the well-known identity between transcendence
degree of Picard-Vessiot extensions and dimension of their Galois group
scheme.

Corollary 1.3.9. Let (F,¢) be a difference field with field of constants C
and let R be a Picard-Vessiot ring for a matriz A € GL,,(F) with Galois
group scheme G = Gr/p. Then

a) Rop F 2 C[G] ®@c F, where F denotes an algebraic closure of F.

b) trdeg(R/F) = dim(G), where trdeg(R/F) denotes the transcendence
degree of R as F-algebra.

Proof.  a) Abbreviate X = Spec(R). Theorem 1.3.8 implies that X is a
G-torsor. We have R ®@p F = C[G] ®c F if and only if X xp F =
G x¢ F, which is equivalent to X having an F-rational point (as for
any x € X(F), g +— g -z yields an isomorphism G x¢ F = X xp F).
Now X(F) = (X xp F)(F) # @ as X xp F is an affine scheme of
finite type over F, so its F-rational points are exactly its closed points
(which correspond to the maximal ideals of R @ F).

b) follows directly from a).
0

Theorem 1.3.10. Let (F,¢) be a difference field with field of constants C
and let R be a Picard-Vessiot ring for a matrix A € GL,,(F'). Assume further
that R is separable over F. Then the Galois group scheme G := Gg/p of
R/F is a linear algebraic group over C, that is, an affine group scheme of
finite type over C, such that G x¢ C is reduced (i.e., G is "geometrically
reduced”).

Proof. By Theorem 1.3.5, G is an affine group scheme, represented by Rg :=
Crepr- By Proposition 1.3.2, we have Rg 2 ClY @p Y1, (Y @p Y 1)71],
so Rg is finitely generated over C. It follows that G is of finite type over C.
Now G x¢ C is reduced if and only if Rg ®¢ C is reduced. It is therefore
sufficient to show that Rg ®¢ F is reduced which is isomorphic to R ®@p F,
by Corollary 1.3.9a). We assumed that R is separable over F, hence R@p F
is reduced. O

As in classical Picard-Vessiot theory, an explicit linearization of Gg/p
can be given using a fundamental solution matrix:
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Proposition 1.3.11. Let R be a Picard-Vessiot ring over a difference field
(F,¢) for a matrizx A € GL,(F). Let C be the field of constants and let G be
the Galois group scheme. Assume further that R is separable over F. Then
there is a closed embedding p: G — GL,, of linear algebraic groups such that
for any C-algebra S, we have

ps: G(S) = Awt?(R®@c S/F ®@c S) — GL,(S), 0+ Y o (Y).

Proof. Again, we set Rg := CRrg, R, the coordinate ring of G. We know that
G is a linear algebraic group by Theorem 1.3.10. Recall that the coordinate
ring Rg of G is the image of the homomorphism pu: C[Z, Z~!] = C[GL,] —
R®rR, Z+— Y 1®Y. Hence we have a surjection on the coordinate rings
C[GL,] — C[G] which induces a closed embedding p: G — GL,. Now let
o be an element in Aut®(R ®c S/F ®¢ S). We have to figure out which
element in G(5) = Homc(Rg, S) corresponds to o, explicitly. Therefore, we
have to take a close look at the proof of Theorem 1.3.5. The homomorphism
contained in Hom%(R ®@r R, R®c S) that corresponds to o maps a @ b to
a®1-0(b®c1). Now the isomorphism R ®c Rg — R ®p R constructed in
Proposition 1.3.2 maps 1®Z to Y "' ®Y, where Z denotes the image of Z in
Rg = C|Z, Z71]/ ker(u). Hence the homomorphism in Hom%(R@CRg, R®c
S) corresponding to o maps 1®@¢ Z to (Y '®@c1)-0(Y ®c1) € R®cS. We
have already seen in the proof of Lemma 1.3.4 that (Y '®c1)-0(Y ®c 1) is
contained in GL,(C®¢S) = GL,(S), and thus o corresponds to the element
in Hom¢g(Rg, S) = G(S) given by Z + Y lo|g(Y), which corresponds to
the element Y ~'o(Y) inside GL,(.9). O

Proposition 1.3.11 becomes particularly useful in order to obtain up-
per bounds on Gg/p: Let R/F be a separable Picard-Vessiot ring for an
A € GL,(F') with Galois group scheme Gg/p. Assume that there exists a
fundamental solution matrix Y that is contained in G(R) for some closed
subgroup G < GL,, defined over C. Then for all v € Aut(R ®¢ S/F ®@¢ S),

7(Y) is contained in G(R®¢ S) and Gr/r = p(Gr/r) is thus contained in G.

Recall that the definition of the Galois group scheme of a linear difference
equation depends on a fixed Picard-Vessiot ring. The following Corollary
implies that distinct Picard-Vessiot rings lead to Galois group schemes that
become isomorphic over C'.

Corollary 1.3.12. Let (R1,¢1) and (Ra, ¢2) be Picard-Vessiot rings over a
difference field (F, @) for the same matriz A € GL,(F). Let C be the field
of constants and let C denote an algebraic closure of C. Assume further
that Ry and Ro are both separable over F'. Then the Galois group schemes

Gr,/r and Gg, p are conjugate by an element in GL,(C).

Proof. We only sketch the proof as we won’t actually use this result.
As Gg,/r and Gg, /p are both linear algebraic groups by Theorem 1.3.10, it
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suffices to show that Gr, /p(C) and Gg, ,p(C) are conjugate inside GL,(C).
Let I be a maximal difference ideal inside R; ® p Ro with respect to the
difference structure given by ¢1 ® ¢o on R1 @ Rs. As Ry and Ry are differ-
ence simple, we obtain inclusions from R; and Ry into R := (R; ®F Ra)/I.
Now the constants of R will be contained in C, by Theorem 1.2.6 (which we
didn’t prove). As both Y7 and Y5 are fundamental matrices of A € GL,,(F),
Lemma 1.1.6 implies that B := Yfl ®@p Ye € GL,(R) has constant entries.
This implies that Ry ®c C and Ry ®c C are isomorphic as difference C-
algebras and Gg, /r(C) and Gg, /r(C) are conjugate via B € GL,(C), which
can be seen using Proposition 1.3.11. O

Proposition 1.3.13. Let (R, ¢) be a Picard-Vessiot ring over a difference
field (F, ¢) with Galois group scheme G. Let ¢ be an element in the total
quotient ring of R (the localization at the set of all non zero divisors inside
R). If § is functorially invariant under the action of G, i.e., for every
C-algebra S and every o € Aut®(R®¢c S/F ®¢ S) we have

ocla®c 1) - (b®cl)=(a®cl)- obecl),
then % 18 contained in F.

Proof. Consider S = Rg := Cgrg,r and consider the following F-linear
difference homomorphism

R*™®* Ror R %R ®c Rg,

where we use the isomorphism py: R ®p R — R ®c Rg of difference R-
modules from Proposition 1.3.2. This induces an (F'®¢ Rg)-linear difference
homomorphism

0: R®c Rg — R®c Rg.

By Lemma 1.3.4, this is an element in Aut®(R ®¢ Rg/F ®c¢ Rg). By as-
sumption, we thus have

ocla®c 1) - (b®cl)=(a®cl)- obecl).

We apply 1! on both sides (note that p='(z ®c 1) =x®@p 1 for all x € R
since ! is R-linear) to get (1®pa)- (b@pr1) = (a®p1)- (1 ®pb). Hence
b®r a=a®prband we conclude that % is contained in F. ]

We just proved the easy direction of a Galois correspondence for differ-
ence modules. We refer the reader to [AMO05, Thm. 3.9] and [Wib10b, Thm.
3.10.7] for full proofs of the Galois correspondence in the general setting.
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1.4 Base Change

An F-algebra is called reqular if R @p F is an integral domain for every
field extension F /F. By Corollary 1 in [Bou90, V.5.17], this is equivalent to
R ®p F being an integral domain for an algebraic closure F of F. If R is a
field extension of F' such that R is a regular F-algebra, R is called a reqular
extenston of F.

Proposition 1.4.1. Let (F, ¢) be a difference field and let R/F be a Picard-
Vessiot extension for a matrix A € GL,(F) such that its Galois group
scheme G is a connected linear algebraic group, that is, it is geometrically
reduced and absolutely irreducible. Then

a) R is a regqular F-algebra. In particular, R is an integral domain.

b) Quot(R) is a reqular extension of F'. In particular, F' is relatively alge-
braically closed in Quot(R) and Quot(R)/F is a separable extension.

Proof. a) As G is a connected linear algebraic group, C[G] = C[G] @c C
is an integral domain which implies that C[G] is a regular C-algebra.
Hence C[G] ®¢ F is an integral domain and it is isomorphic to R®p F
by Corollary 1.3.9. It follows that R is regular as an F-algebra.

b) As R is a regular F-algebra, its field of fractions Quot(R) is a regular
extension of F' (see [Bou90, V.17.4 Corollary]). By Proposition 9 in
[Bou90, V.17.5], this is equivalent to F' being relatively algebraically
closed inside Quot(R) and Quot(R)/F being separable.

O

Theorem 1.4.2. Let (F,¢) be a difference field and let R/F be a Picard-
Vessiot ring for a matriz A € GL,,(F) such that its Galois group scheme G
is a connected linear algebraic group.

If (F, g @) is an algebraic difference field extension of F' such that F and R are
both contamed in some common difference field E without new constants,
then R ®p F is a Picard-Vessiot ring over (F,¢) for A with Galois group
scheme G.

Proof. By Proposition 1.4.1, R is an integral domain and Quot(R) is regular
over F, so Quot(R) ®p F is an integral domain. Also, as F' is an algebraic
extension of F', Quot(R) and F are linearly disjoint over F by Proposition
9 in [Bou90, V.17.5]. So they are in particular algebraically disjoint over F'
(see [Bou90, V.14.5, Corollary 1] ) and F' is relatively algebraically closed
inside Quot(R), so we can apply Proposition 1 in [Bou90, V.17.2] and get
that the natural map Quot(R) ®p F — E given by 2 ® y — xy is injec-
tive, since its kernel consists of the nilpotent elements inside Quot(R) @ F.
Clearly, this homomorphism is a difference homomorphism. So we can con-
sider R®p F C Quot(R) @ F as a difference subring of E.
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Let Y € GL,(R) be a fundamental solution matrix for A. Then Y ® 1 €
GL,(R®F F ) is a fundamental solution matrix for A, as well, and R®p Fis
generated by the entries of Y ® 1 and (Y ®1)"! = Y~ !®1 as an F-algebra,
since R = F[Y,Y~1]. As E has no new constants, Theorem 1.2.11 now im-
plies that R ®p F is a Picard-Vessiot ring for A over F.

We abbreviate R = R®p F and denote the Galois group scheme of R/ F by
G. Let S be a C-algebra. Then

G(S) = Aut®(R®c S/F @¢ S) = Hom}é@cs(ﬁ ®c S, R®c S),
where the last equality follows from Lemma 1.3.4. Now
Hom? (R®c S,R®¢S)

F®cS

= Hom?@F(F(@CS)(F @r (R®c S),F @r (R®¢ S))

= Hom}@@CS(R ®c S, F @p (R&c S))
D Homfy, g(R@c S,R@c S) = G(S).

On the other hand, every v € Aut?(R®¢ S/F ®¢ S) restricts to an element
in Aut?(R®c S/F®¢ S). Indeed, Y @ 1 € GL,(R®F F) is a fundamental
matrix for R, hence (Y ™! @p 1) ®@c Dy((Y @p 1) ®c 1) € GLL(C ®¢ S)
by Proposition 1.3.11. Therefore, v((Y ®r 1) ®c 1) € GL,(R ®c S), so v
restricts to an automorphism of R ®¢ S and we get G(S) C G(S). Hence
Q(S) 2 G(S) holds for all C-algebras S, so =N ]
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Chapter 2

Notation and Conventions

2.1 Difference Fields

In this section, we define difference fields k(t) C K(t) C L with field of
constants ().

a prime number.
a power of p.

an algebraically closed field containing I, that is complete with
respect to a fixed non-archimedian absolute value | - | on K.

the valuation ring in K corresponding to | - |.

the maximal ideal inside O),).

the ring of power series that converge on the closed unit disk:
K{t) = {£%0ut' € K[1] | Jim Jos| = 0}.

the field of fractions of K{t}: L = Quot(K{t}).

on K, the homomorphism ¢4: K — K, A+ A is the ordinary
Frobenius automorphism. The field of constants then equals
Ck =F,.

on K{t}, the homomorphism ¢, is defined by ¢(32, a;t?) =
%00 dg(ci)t! and ¢, extends uniquely to L. The field of con-
stants then equals Cf, = F,(t) (see Lemma 2.1.3).

a difference subfield of K containing F,. Note that ¢, is not
necessarily surjective on k.

an algebraic closure of k£ contained in K.

a separable algebraic closure of k contained in k.

: the difference structure on k() is induced by that on K(t) C L,

i.e., ¢4 only acts on the coefficients of a rational function. Then
Ck(t) = [f,(¢) holds.

23
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Example 2.1.1. The standard example one should keep in mind is k =
F,(s), a function field in one variable with an s-adic absolute value | - |.
(Of course, one might also consider function fields Fy(s1,...,s,) in several
variables with | - | for instance an si-adic absolute value.) Then we let K be
the completion of an algebraic closure of the completion of k, an algebraically
closed field that is complete with respect to the unique extension of | -| on
K.

Remark 2.1.2.  a) Note that L/k(t) is usually not a separable extension
(as K/k might not be separable), and thus (F,(t), k(t), L) is not a ¢q-
admissible triple as defined in [Pap08, 4.1.]. However, in all applica-
tions we will consider a difference module over k(t) with Picard-Vessiot
extension E contained in L and we will explicitly show that E is sep-
arable over k(t).

b) Sometimes people work with the inverse o of ¢4 instead of ¢4, but since
this is not defined on our base field k(t) if k is not perfect, we prefer
to work with ¢4, instead. Note that in case o is well-defined, there is a
1-1 correspondence between fundamental solution matrices Y with re-
spect to o, (i.e., o(Y)=D-Y for a D € GL,(k(t))) and fundamental
solution matrices Y with respect to bq, (i.e., Y=D- ¢q(}7)), given by
Y =¢,(Y) and Y = o(Y).

Lemma 2.1.3. The constants of (L, ¢q) are Cr, = F,(t).

Proof. Consider first a constant element g = S22 a;t' € K{t}. Then we
have ¢4(g) = g, i.e., ¢4(a;) = o holds for all i € N. As ¢, is the ordinary
Frobenius homomorphism on K, this means that all a; are contained in F,.
In particular, each non-zero «; is of value 1. As («y;); converges to zero, this
implies that g is contained in I, [¢].

Elements in K{t} can be regarded as functions O — K. It follows from
Lemma 2.2.3 together with Corollary 2.2.4 of [FvdP04] that every non-
zero element f € L has only finitely many zeroes and poles inside O)|.
More precisely, there exist unique elements A\ € K*, ai,...,aq € O,
ay,. .. ay € O (d,d" € N) with a; # a; for all i, j, and a; € m (i € N) such
that

S SR YA e
=0

ay) -~ (t = ag)

0 .
holds and Y «;t" is contained in K{t}. We have
=0

QZ al) (t_alc]l)
oq(f 1—|—Zat t—al)--(t—aff,)
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so if f is constant, the unique factorization immediately implies that A(1 +
o0 .
> ait') € K{t} is also constant, hence is contained in F;[t] by what we

=0
proved above. Therefore,

(t—a1) - (t — ag)
(t=a)) - (t—dy)

is constant too and thus contained in F,(¢) (of course, not all a; and a} have
to be contained in [, but they are permuted by the action of ¢;). O

2.2 Algebraic Groups and Matrix Conventions

We use the term linear algebraic group defined over a field F to denote an
affine group scheme of finite type over I that is geometrically reduced (that
is, it is reduced over an algebraic closure of F). We consider linear algebraic
groups G over F as functors from F-algebras to groups. We occasionally write
things like # € G, by which we mean that z is contained in the F-rational
points of G for a suitable algebraically closed field F which should be clear
from the context. If we write G < GL,,, we are given a closed embedding of
G into GL,, and we will work with the coordinates inside GL,,. In particular,
for any F-algebra S, G(5) is identified with a subgroup of GL,(S).
Normalizers, centralizers, and root subgroups are taken inside an algebraic
closed field if not stated otherwise.

n: a natural number
M,,: for a ring R, M,,(R) denotes the ring of n X n matrices over R.
AB: for a ring R, A € M,,(R) and B € GL,(R), AP denotes the

conjugate B~'AB.

Sn € GL,,: we use the following convention for permutation matrices: the
permutation matrix A, corresponding to a ¢ € S, is the matrix
with entries A;; = §; ,(;- We say that a matrix A € GLj, is
monomial with respect to a permutation o € S, if the entry
A;; is non-zero if and only if ¢ = o(j) holds. In other words,
there exists a diagonal matrix d € GL,, such that A = dA,.
Note that then A~ diag(A1,..., \y)A = diag(Ag(1), - -+ 5 Aa(n))
holds for all diagonal matrices diag(A1, ..., An).

SPagt the symplectic group, where we are working with the symplec-
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tic form given by

1

i.e., Spog = {A € GLog|A"JA = J}.

SO,: the orthogonal group in non-even characteristic:
SO, = {A € SL, |A"" JA = J} with respect to



Chapter 3

Bounds on Difference Galois
Groups

3.1 Existence of Picard-Vessiot Extensions

We start with a multidimensional version of Hensel’s Lemma. For m € N,
let || - || denote the maximum norm on K™ induced by |- |:

[|(a1y...,am)|| == max{|a;| | 1 <i < m}.

Lemma 3.1.1 (Hensel's Lemma). Let fi,..., fm € O [X1,...,Xpn] be a
system of m polynomials in m variables with coefficients in O|,|. Assume that
there exists a vector b = (by,...,bm) € O such that |[(f1(b), ..., fm(b))]| <

| det(Jp)|?, where J, = (ngj (b))i,; denotes the Jacobian matriz at b. Then
there is a unique a € (’)m satisfying fi(a) =0 for all 1 <i <m and

T - (F1(0), -, fm ()]
| det(Jp)] ’

where J; denotes the adjoint matriz of Jp.

lla —0]| =

This version of Hensel’s Lemma is sometimes also called multi-dimensional
Newton’s Lemma. It holds for all henselian fields (note that K is henselian
as it is complete with respect to a rank one valuation). For a proof, see
Theorem 23 and 24 of [Kuh10].

Corollary 3.1.2. Let A and B be contained in My,(O).|) and consider the
system of polynomial equations

AY9—-Y + B =0,

where Y = (Yi;)ij<n consists of n* indeterminates and Y7 := (Yi1)iyj- As-
sume that there exists a Y’ € M, (O),) such that |[A(Y")? =Y’ + B|| < 1.
Then there exists a unique solution Y € My(O)) of AYY—Y + B =0 such
that ||Y = Y'|| = ||A(Y")? =Y’ + B]|.

27
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Proof. This is an immediate consequence of Lemma 3.1.1. Indeed, let f,.s €
OlYij | 1 <4,5 <n], 1 <r,s <n be the system of polynomials defining
AY?—Y + B =0 and let A,s, Bys be the coordinates of A and B (1 <r,s <
n). Then

n
frs - Z ArmYn%s - Y;"s + B’I‘87
m=1

hence g{,’; = —0(ij),(rs)- This means that J, equals the negative of the

n? x n? identity matrix for all b € M,,(K), so Y’ meets the assumptions of
the element b in Lemma 3.1.1. Also, up to a sign, Jy. equals the identity
matrix, so the claim follows. O

Theorem 3.1.3. Let D = Y72, Dytt € GL,,(O,[[t]]) (with Dy € Myp(O)))
be such that there exists a 6 < 1 with

D] < &'

for all I € N. Then there exists a fundamental matriz Y € GLy (L) for
D, i.e., Dgg(Y) =Y. More precisely, Y = 720 Vit! € GLn(O).([[t]]) with
Y, € My, (Oy,)) satisfying ||Yi]] < 6t for all 1 € N.

Proof. Observe that D¢,(Y) =Y is equivalent to
DoY)+ DY) +---+ DY/ =Y, forallleN.

We define (Y});>0 inductively. For [ = 0, we need to solve Dyg4(Yp) = Yp.
The Lang isogeny (see [Bor91, V.16.4]) asserts that such a Y exists in-
side GL,(K), as K is algebraically closed. Then Y = Dy 'Yy holds,
hence O, [(Yo)i; | 1 < i < n] is finitely generated as an O);-module, since
Do € GL,(O)). Therefore, all entries of Yy are integral over O, (see for
example [AM69, Prop. 5.1]) and as O}, is integrally closed inside K, we
conclude that ||Yp|| < 1 =6 holds. On the other hand, Dy¢y(Yp) = Yy im-
plies det(Dy) det(Y()? = det(Yy), hence det(Yp) ™! is integral over O|| which
implies det(Yp) € O and therefore ¥y € GLy(O)).

Now suppose that Yj,...,Y;_1 have been chosen such that for all 1 < i <
[—1, ||Y;]] <6 and DoY'+ D1Y1 | +---+ D;Yy =Y; holds. We claim that
we can find ¥; € M,,(O),|) such that DoY) ! + D1Y,' | + -+ DYy =Y and
1] < 6% Set

A:=Dg € Mn(0||)

and
B .= D1YEI£1 + -4 DZYE)q € Mn(0||)

We have to find a solution to the polynomial system of equations

AY?—-Y + B =0.
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We have
IBIl = (DY) + -+ DY
< max{|[DY]| 1< <)
< max{|[Dil| - [[Vi-[[* [ 1 < <1}
< max{8 -6 | 1<i<l}
< 4,
where we used that the maximum norm || || coming from a non-archimedian

absolute value is sub-multiplicative with respect to the matrix multiplica-
tion. Let 6 € O} be an element such that [§] < and set Y} = 6' - I,,, where
I,, denotes the identity matrix. Then we have

|A(Y)? =Y/ + B < max{[[A]| - [|[Y/[|%, [[Y/]],[| BI[} < &' < 1.

Hence by Corollary 3.1.2, there exists an element Y; € M, (O|,|) such that
AY{ —Y + B =0 and ||Y; — /|| = [A(Y)" — Y/ + Bl < oL As ||Y{]| <,
we conclude |[Yj|| < 6.

The resulting matrix Y = 3222, Vi#! € M,,(K{t}) C M,,(L) satisfies
D¢g(Y) =Y and ||Yj|| < &' for all I € N. In particular, Y € M,(O}.([[t])
and we have seen above that Yy € GL,,(O),), hence Y € GL,(O}[[t]). O

Lemma 3.1.4. a) Let f =S fit' € O)[t] be such that fo € OG and

fi €m for alli > 0. Then there exists a 6 < 1 such that |f;| < &° holds
for all 1.

b) Let f € O[[t]]* and assume there exist a § < 1 such that the absolute
value of the i-th coefficients of f is less than or equal to 8 for all i.
Then the same is true for the i-th coefficient of f~1.

c) Let f,g € O|[[t]] and assume there exist a § < 1 such that the absolute
value of the i-th coefficients of f and g are both less than or equal to
8t. Then the same is true for the i-th coefficient of fg and f + g.

Proof. a) Set 6 =max{|f;| |1 <j < m}% <1

b) Let a; € O be the coefficients of f: f = S, q;t* € O[[t]]. Then
ag € O and |o;| < & for all i. Let 3; € O denote the coefficients of
f~1. Then |Go| = \aal\ = 1and fori > 1, we have G;ap+- - -+8ya; = 0,
hence |B;] < max{|Bjoi—;| | 0 < j < i — 1} and the claim follows
inductively.

c) Let §; and ~; denote the i-th coefficients of f and g, resp. Then the
i-th coefficient of fg equals Bov;+B17vi—1+ - -+ Biyo which is obviously
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bounded from above by ¢’ and the same is true for the i-th coefficient

Bi + i of f+g.
O

Example 3.1.5. Set k = F,(s) with the s-adic absolute valuation | - | satis-
fying |s| = % Let (K,|-|) be the completion of the algebraic closure of the
completion of (k,|-|).

We take a look at the difference module (k(t)%, ®) over (k(t), ¢,) where ® is

given by
f -1
1 0

f_2t2+25t+52—2
24 st+1

over k(t), where

If we alter f to
2517142 4 25t + 52 — 2
s 12 4 st +1

f= :
f is contained in O\ [[t]] and by Lemma 3.1.4 its i-th coefficient can be
bounded from above by §° for a suitable § < 1 (more precisely, we can set
6= % in case ¢ > 3 and 0 := % for ¢ = 2). Consider a new difference

f -1

1 0
over k(t). This matriz meets all assumptions of Theorem 3.1.3, so there
exists a fundamental solution matriz inside GL,(L) for this module. By

Theorem 1.2.11, Y generates a Picard-Vessiot extension for this difference
module.

module with representing matric

Furthermore, if one considers specializations s — ', f and f both spe-
cialize to the same element in F,(t), as s7' — 1. In Section 5.3, we will
show how to deduce information on the Galois group scheme of a difference
module from such specializations.

A further class of examples covered by Theorem 3.1.3 is given in the
following Corollary.

Corollary 3.1.6. Suppose we are given a scalar difference equation

n

> gi(t)di(x) =0 (3.1)

=0

with g; € Oy|[t], satisfying:
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a) the constant coefficient of g, has absolute value 1,
b) the constant coefficient of go has absolute value 1,

c) For all 0 < i < n, all coefficients of g;, except (possibly) the constant
coefficient, are contained in m.

Then there exist n Fy(t)-linearly independent solutions x in K{t} C L.

Proof. Note that g, and go are invertible inside O|.|[[t]], by assumptions a)
and b). For 0 <i<mn—1, set o; := g—; € O)4[[t]]- Then the solutions to the
given scalar difference equations are exactly the first coordinates of solution
vectors to the linear difference equation ¢4(Y) = AY given by

A= € M, (O)[[t]]),
1
-y —O1 ... —Qp—1

as explained in Example 1.1.9. We calculate D := A~!

_a _%n-1 1
7)) «@Q @0
1
D= 1 € M, (O}, [[t]])-
1 0

We have det(D) = :l:o%0 = +2 which is invertible inside O} [[t]], hence
De GLn(O|.|HtH).

Now assumption c¢) together with Lemma 3.1.4 asserts that for all entries
D;; of D, there exists a §;; < 1, such that |(D;;);| < |6;;|' holds for all I € N.
Let 0 denote the maximum of all 6;;. Then ||D,|| < &' holds for all I € N,
where D; denotes the coefficient matrix at t! of D. Theorem 3.1.3 then gives
us a fundamental solution matrix Y € GL, (L) for D with entries in K{t}.
Each column of Y is of the form (y, ¢4(y), ... ,qbg_l(y))tr with y a solution
to the given scalar difference equation and it follows that these have to be
linear independent over Cr, = I, (t). O
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3.2 Upper Bounds

Let F be a difference field with field of constants C'r and let G be a connected
linear algebraic group defined over Cr. For algebraically closed fields of
constants it is well known that the Galois group of a difference module is
contained in @G if its representing matrix is contained in G(F') (see for example
[vdPS03, Prop. 1.31]). In our setup of difference fields with a valuation and
fields of constants F,(¢), we prove such a criterion under certain assumptions
(see Theorem 3.2.4 below). The strategy is to show that there exists a
fundamental matrix contained in G if there exists one in GL,,. This implies
that the Galois group scheme is contained in G (see Prop. 1.3.11).

The fundamental matrix inside G is constructed by multiplying the given
fundamental solution matrix ¥ € GL,, (which could be one coming from
Theorem 3.1.3) by a constant matrix C' € GL,(Cp) from the right hand
side. The transformation Y — Y C maps a fundamental solution matrix on
a fundamental solution matrix which is contained in the same Picard-Vessiot
extension.

3.2.1 An Upper Bound Theorem

Theorem 3.2.1. (Chevalley, see [Spr09, Theorem 5.5.3])

Let G be a linear algebraic group over the algebraically closed field K and 'H
a closed subgroup, both defined over the subfield k of K. Then there erists
an m € N and a closed embedding p: G — GL,,,, which is defined over k,
such that there is a non-zero element w € k™ satisfying

H(K) ={9 € 6(K) | p(9)w € Kw}.

Note that the rational representation given in [Spr09] might not be a closed
embedding itself, but it can be turned into one by taking the direct sum
with an arbitrary closed embedding defined over k.

Lemma 3.2.2. Let A be contained in O[[t]]*. Then there evists a p €
O[] satisfying
¢q(#)ﬂ_1 = A

Proof. Let A\ = S.°5 \it? with \g € C’)m. Set p = 32°, u;t’ and define p;
inductively. We have ¢4(p) = A if and only if

ug = pjAo + pj—1A1 + -+ HoA; (3.2)

holds for all j € N. As K is algebraically closed, we can fix a ug € K*
satisfying ud = Aopo. Then |po|971 = [Ag| = 1, hence g is contained in Om.
Now assume that pg,...,ui—1 € Ol'\ have been fixed such that Equation
(3.2) holds for all 0 < j < i — 1. Take any p; € K satisfying Equation (3.2)
for j =4. Then y; is integral over O and is thus contained in O|.,. O
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Definition 3.2.3. Assume that O |/m embeds into K. Then we can extend
the canonical homomorphism k| : O — O|/m to a ring homomorphism

k1 O] — (O /m)[[t]] — K[[t]],

by setting k(3720 ait’) = 372 kp.(ai)t" for any a; € O). Note that k.
commutes with the action of ¢4 since ¢4 is the ordinary Frobenius automor-
phism on K.

In Section 3.1 we constructed fundamental matrices ¥ € GL,(L) N
M, (K{t}) (where L is as defined in Section 2). We will eventually need
Y to be contained in G(K[[t]]). Of course we still want to stay inside L (to
ensure that we have no new constants) so we are looking for fundamental so-
lution matrices contained in G(L N K[[t]]). Note that LN K][[t]] = {g | f,g €
K{t},t 1 g} 2 K{t}, for instance (1 — t)~! is contained in L N K[[t]] but
(1 —t) is not invertible inside K{t}.

Theorem 3.2.4. Assume that OH/m embeds into K. Let G < GL,, be a
connected linear algebraic group defined over ;. Let further D € G(O,[[t]])
be such that k)| (D) is contained in G(K) (i.e., not appears!). Assume that
there exists a matriz Y € GLyn(O)[[t])) "M, (O),{t}) satisfying Dog(Y) =Y.
Then there exists a Y' € G(L N O [[t]]) with Dgy(Y') =Y.

Proof. For any matrix A € M, (O|[[t]]), we set A= k1.|(A) and similarly
for vectors over O[[t]] and scalars in O[[t]].

By assumption, we have Deg (K). As K is algebraically closed, the Lang
isogeny (see [Bor91, V.16.4]) asserts that there exists an X € G(K) sat-
isfying D¢,(X) = X. Now Y is contained in GL,(O)[[t]]) N M, (O}, {t}),
hence Y € GL,(K[[t]]) N My,(K[t]) € GLn(K(t)). As x| and ¢, com-
mute, we have l~?¢q(i~/) — Y. By Lemma 1.1.6, C := Y !X is contained in
GLn(CK(t)) = GLan(ﬂ)-

We set Y/ := Y C. Clearly, Dp,(Y') = Y’ holds since C' has constant entries.
We claim that Y is contained in G(L N Oy[[t]]). First of all, Y has entries
in O {t} € L and C has entries in F,(t) C L, hence YC € GL,(L). Also,
Y € GL,(O)[[t]]). Y € GL,(K[[t]) and X € GL,(K), hence C' =YX €
GL,(K[[t]). We conclude C € GL,(F,(t)) N GL,(K[[t]) € GL.(F[[t]]) €
GL, (O [[t]), thus Y’ = Y C is also contained in GL,(O|,[[t]]). Therefore,
it suffices to show that Y’ := Y C' is contained in G(K((¢))).

By the Chevalley Theorem 3.2.1, there exists a closed embedding p: GL,, —
GLy, defined over F; and a non-zero element w € " such that

G(K((1) = {g € GLa(K((1))) | plg)w € K((t)) - w}. (3-3)
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By multiplying w by a suitable element in F, we may assume that there
exists a j < m such that w; = 1.

Note that p commutes with both ¢, and £, as these both act trivially on
If,. Also note that whenever a matrix A is contained in GL, (Oy[[t]]), p(A)
will be contained in GLy,(Oy([[t]]), as p is defined over F, C O).|, hence both
p(A) and p(A~') have entries in Oy,[[t]].

We will show that there exist v € [[t]]™ and p € O}[[t]]* such that
PV = o (3.4)
holds. If this is true, we will have

oY Hw = V=K.

where we repeatedly used that || acts trivially on I, [[¢]]. Now X! € G(K),
hence
p(X Hw e Kw

by (3.3). Also, i € K[[t]]* (as p € O[[t]]*) so we conclude
p(Y' ™ Mw = pfi " p(XHw € K[[t]w
which implies that (Y’)~! and hence Y” is contained in G(K((t))) (see (3.3)).

It remains to show that there exist v € F[[t]]™ and u € O [[t]]* satisfying
Equation (3.4). First note that as D € G(O}([[t]]) € G(K((t))), Equation
(3.3) implies that there exists a A € K((t)) satisfying
p(D)w = \w.
We have p(D) € GLp,(O)[[t]]), hence A = Aw; = (p(D)w); € Oy [[t]], as
(

w; =landw € F" C Of. Similarly, \™! = XA~ 1w; = (p(D)'w); € Op[[t]],

hence ) is contained in O |[[t]]*. We set
v = p(Y'"Hw € O)[[t]]™ and compute
$q(v) = q( (Y""Hw)
Pq( (Y/_l))w
p(dg(Y' 1))
p(Y' ' D)w
p(Y' 1) p(D)w
= . (3.5)

P
P
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By Lemma 3.2.2, there exists a p € O [[t]]* satisfying gt = X We
define

vi=p W = p (Y Hw.
Then v € O |[[t]]™, and by Equation (3.5), we have

Pq(v) = (™M) Bg(v) = pg(uH M = v,
hence v € F[[t]]™ and (v, ) satisfy Equation (3.4) by definition. O

Example 3.2.5. Let k, K, f be as in Example 3.1.5. We again consider
the difference module (k(t)?, ®) over (k(t), ¢q), where ® is given by

D ({ —01).

We have seen in Fxample 3.1.5 that there exists a fundamental solution
matriz Y € GLa(L) N M2(O).{t}) for this difference module. We would like
to use Theorem 8.2.4 to show that there also exists a fundamental matriz
in G := SLy. (Of course, for G = SLy this could also easily be seen without
using Theorem 3.2.4 - see Theorem 3.2.6).

However, we have O).|/m = F, which can be naturally embedded into K. The
determinant of D equals one and we have seen in Example 3.1.5 that f 18
contained in O[[t]], hence D € G(O|,[[t]]). Furthermore, k|| maps s — 0,

o o= (7 ) o

i.e., no t appears in /iH(D). Therefore, all assumptions of Theorem 3.2./
are satisfied.

3.2.2 An Upper Bound for Linear and Symplectic Groups

For G = SL, and Spy,, it is quite easy to get an upper bound criterion
for general difference fields and without any further assumptions on the
representing matrix D apart from D € G(F).

Theorem 3.2.6. Let G be one of the following connected linear algebraic
groups:

a) the special linear group SL,,
b) the symplectic group Spy, for n = 2d even,

Let (F, ¢) be a difference field with field of constants Cr and let D € G(F).
Let further E/F be a difference field such that Cp = Cp. Assume that there
erists a Y € GL,(E) with D¢y(Y) =Y. Then there exists a Y' € G(E)
satisfying Dog(Y') =Y.
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Proof. We have to construct a matrix C' € GL,(Cp) with Y’ :=YC € G(E).
a) Note that Y = D¢(Y) implies det(Y) = det(p(Y)) = ¢(det(Y)), since
D € SL,(F). Hence det(Y") is contained in Cr = Cr and we can define

1
det(Y)
1

—1

1

ie., Sp,={AcGL,|A"JA=J}. Define B=Y"JY. Weuse Y = D¢(Y)
to compute

¢(B)

oY) Jo(Y)
Yy (DY JD Y
- Y"JY

= B,

where we used that D~! is symplectic in the third step. Hence B is con-
tained in GL,,(Cr) and B is skew-symmetric, since J is. Multiplying Y from
the right hand side by C transforms B into C” BC. Every skew-symmetric
matrix can be transformed into J by simultaneous row and column transfor-
mations (in other words, there is only one symplectic form), so there exists
a C € GL,(CF) satisfying C"" BC = J, i.e., Y is contained in Spyy(E). [

Remark 3.2.7. Note that the same kind of argument also works for differ-
ential modules. To wit, let (M, 0) be a differential module over a differential
field F with not necessarily algebraically closed field of constants and denote
the corresponding matriz differential equation by A € F™ ™. Assume that
there exists a fundamental solution matriz Y, i.e., (Y) = AY. Then

AY"JIY) = o) JY +Y"JO(Y)
= Y A"Jy +Y"JAY
Y (A" T+ JAYY,
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so the matriz Y JY is constant if A is contained in the Lie-Algebra

{A | A"J+ JA = 0} corresponding to the symplectic group and the same
kind of transformations Y — Y C as above can be applied to get a symplectic
fundamental solution matriz.
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3.3 Lower Bounds

3.3.1 Setup for Specialization
In addition to the notation established in Chapter 2, we will use the following
notation in this section.

d: a fixed number d € N.

(0,p): a valuation ring o inside k£ with maximal ideal p such that the
residue field o/p is isomorphic to F,«. We do not assume o to
be discrete.

I: the corresponding ordered abelian group I' = k* /o*.

(0,P): an extension of (0,p) to k" .

I the corresponding ordered abelian group I := (k)% /O*.

v: the corresponding valuation v: k" — I U {oo}. Note that
v restricts to v: k — I'U {oo}.

Kt the residue homomorphism x: O — F,. (We have O/P > F,,

as we assumed o/p = [ 4.) Note that r restricts to x: 0 — Fa.

7% the Gauss extension v;: k(t) — I' U {oo} of v, defined by
(X gait’) = min{v(a;) | 0 <i < r} fora; € kand r € N
and extended to fractions of polynomials.

(0¢, pr): the valuation ring o; of v; inside k(t) with maximal ideal p;.
The residue class field equals o¢/p; = Fa(t) (see [EP05, Cor.
2.2.2)).

O((t)): the ring of formal Laurent series over O:
O((t) == {L%, ait' | r € Z,a; € O} = O[H]][t™"].

Oy: the subring of k°%((t)) generated by o; and O((t)), see Defi-
nition 3.3.6.

(K((t)), ¢q): we define ¢4 on K((t)) (and any subring thereof) by setting
QZ)Q(Z?ET aiti) = Z?ir qbq(ai)ti = Zfir a?ti for r € Z and
a; € K. This is compatible with the definition on the subfield
L of K((t)) made in Chapter 2.

Example 3.3.1. Note that o/p = Fa includes restrictions on k which had
been an arbitrary subfield of K, before. For instance k cannot equal F(s)
anymore, since B, can be embedded into the residue field of any valuation
on F,(s). In all of our applications, k = F,(s) with p a place of degree d (in
most cases actually d = 1). However the results from this chapter could also
be applied in more general situations such as:

e k a finite extension of Fy(s) with k NF, < Fa.
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o k=TF,(s1,...5,) with s1,...,s, algebraically independent. We give an
example of a rank r valuation on k with o/p = F, (i.e., d =1): Choose
ai,...,ap € F; and consider

v: Fo(s1,...,s1) —>Zlu{oo}, 0# fr (vi(f),...,v-(f)),

with 7! ordered lexicographically and vi(f),...,v.(f) defined as fol-
lows. The first component vi(f) is the (s1 — ai)-adic valuation of

f. Let o1 = Fy[s1,...,8:](s,—ay) e the corresponding discrete valua-
tion ring in k with valuation ideal p1 = (s1 — a1)o1. Then we have
ki :=o01/p1 =2 F,(s2,...,s;) with projection k1 : 01 — ki. We can now

define vo(f) to be the (s2 — a)-adic valuation of

ki(f - (51— ar)™1 )

inside k1. Let o9 and p2 be the corresponding valuation ring and val-
uation ideal inside ki. Then kg := 02/p2 = Fy(s3,...,s1). The compo-
nents v3, ..., are defined inductively in the same way. Let o be the
(non-discrete) valuation ring inside k that corresponds to v and p the
valuation ideal. By construction we have o/p = F,.

3.3.2 Specializing Fundamental Matrices

We start with a Lemma on the separability of solutions to systems of alge-
braic equations.

Lemma 3.3.2. Let n € N and let K1 C K be fields. Consider a system
Ayl +y+a=0

of polynomial equations over Ky for an A = (A;;) € GL,(K1) and a =
(a1,...,an)" contained in K7, where y = (y1,...,yn)" consists of n in-
determinates. Let y € K3 be a solution to Ay? +y + a = 0. Then all
coordinates of y are separable algebraic over K.

Proof. Let f1,..., fn be the n polynomial equations in y1,...,y, given by
Ay?+y+ a =0. Then we have

afi _ (X1 Aijyl + i + a;)
Ay, Iy,

= 5. (3.6)

Hence the Jacobian matrix (gg’ L);,; is constant and equals the identity ma-
J

trix. It is therefore everywhere invertible and Proposition VIIL.5.3. in

[Lan02, Part II] implies that all solutions are separable and algebraic over

K. O

The following proposition allows us to specialize a fundamental matrix
Y in a compatible and well-defined way:
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Proposition 3.3.3. Let (M, ®) be an n-dimensional ¢q4-difference module
over k(t) with representing matriz D € GLy(k(t)) C GLn(k((t))) with re-
spect to a fized basis of M. Let further k be a field containing k. Assume

that there exists a fundamental matriz Y € GL,(k((t))) for M. Then the
following holds:

a) If D is contained in GLy(k[[t]]), then Y is contained in GL, (k" P ((t))).
b) If D is contained in GLy,(0[[t]]), then Y is contained in GL,(O((t))).

¢) If D € GL,(o[[t]) and if Y € GL,(k[[t]]), then Y is contained in
GL, (O[[t]])-

Proof. We can write D = $.%°, D;t' with

a): Dy € GL, (k) and D; € M, (k) for all i > 0
b), ¢): Dy € GL,(0) and D; € M,,(0) for all i > 0.

and Y = "%, Vit! with

a), b): l€Z,allY; € M,,(k) and Y] # 0.
c): 1 =0, Yy € GL, (k) and all Y; € M,,(k) for i > 0.

Now Y is a fundamental matrix for M, hence D¢q(Y) = Y holds, which
implies

(Do+ Dyt + .. )V + YLt + ) =Wt + Vit + ), (3.7)

where Y;? denotes the coordinate-wise application of the ordinary Frobenius
homomorphism.
Comparing the coefficients of the lowest term t! in (3.7), we get

DY =Y.

We conclude that the entries of all columns of Y; are separable algebraic over
k by Lemma 3.3.2, hence Y; € M, (k). In case b) and c), we moreover have
Dy € GLy(0). Hence we have Y} = Dy'V; and it follows that o[(Y);; | 1 <
i,j < m] is finitely generated as an o-module. Therefore, all entries of V;
are integral over o (see for Example [AM69, Prop. 5.1]). As they are also
contained in %%, they are contained in the integral closure of o inside &*",
which is contained in . So all entries of Y] are contained in O, in these
cases.

We can now use induction on i to see that Y; has entries in k™ (and
moreover in O, in case b), ¢)) for all ¢ > [. For an i > [, we evaluate the
coefficients of ¢! in (3.7) to get the following equation:

DoYi, + DiY + -+ DY) = Yiqa. (3.8)
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By induction hypothesis, Y, ..., Y; have entries in k*" and so Lemma 3.3.2
(applied to K; = E*P and A = —Dy) implies Yj4+1 € Mn(k:sep). Moreover, in
case b) and ¢), Y}, ...,Y; have entries in O by induction and so we multiply

Equation (3.8) by D! € GL,(0) € GL,(O) to get an equation of the form
Y, = D3'Yier + A, (3.9

for A= —Dg (DY + -+ Diy11Y;%) € M,,(O). As above, it follows that
Yit1 is contained in M, (Q). Altogether, we proved that Y is contained in
CGL,(E*P((t))) and moreover Y € GL, (k" ((t))) N M, (O((t))) in case b)
and Y € GL,(E*"[[t]) N M, (O[[t]]) in case c).

For the cases b) and c), resp., it remains to show that det(Y) € O((¢))*
and det(Y) € O[[t]]*, resp. We set y = det(Y)~! and d = det(D)~!. Then
the equality Y = D¢y (Y) implies

y = dog(y).

The one-dimensional ¢,-difference module over k(t) given by d € GL1(k(t))
itself conforms to all assumptions of this Proposition. In fact, d = det(D)™*
is contained in o[[t]]* = GLj(o[[t]]) as D is contained in GLy,(o[[¢]]) and y
is a fundamental matrix contained in k((t))* = GLy1(k((t))). In case c) we
moreover have y € k[[t]]* = GLy(k[[t]]), as Y is contained in GL,,(k[[t]])).
By what we have proven above, we know that the fundamental matrix y =
det(Y)~!is contained in My (O((t))) = O((t)) in case b) and y = det(Y) ! is
contained in M1 (O[[t]]) = O[[t]] in case c¢). Thus det(Y) = y~! is invertible
inside O((t)) in case b) and det(Y) = y~! is invertible inside O[[t]] in case
c). O

Lemma 3.3.4. The following holds:
a) o, and O((t)) are ¢,-stable.
b) o C Quot(olt]) € Quot(O[f]])  k*((¢))-
¢) k(t) No[[t] C o.
d) GLy(k(t)) N GLy(o[[t]) € GLa(0r).

Proof.  a) Since ¢, is just the ordinary Frobenius map on o C k, it follows
that v(¢4(a)) = qv(a) for all a € o, and thus also v4(¢q(x)) = qu(x) for
all z € 0;. In particular, o is stable under ¢,. Similarly O is ¢4-stable,
so O((t)) is also ¢4-stable, as ¢, acts coefficient-wise on O((t)).

b) The valuation ring o; equals

S ait
S it

ai,b; € k: min{v(a;) | i <n} >min{v(h) | i < m}} .
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Let 0% be such an element. Let Jj < m be such that v(b;) is

Z;lo bit?
minimal among v(by),...,v(by). Dividing both numerator and de-
nominator by b;, we obtain that o; equals
gt
% ai, by € 0: min{v(a;) | i <n}>min{v(b) | i <m};.
2 i%o bit!

Thus o; C Quot(o[t]) and the other inclusions are immediate.

c) Now let Z%O—le be an element in k(t) N o[[t]], i.e., there exist A\; € o

i=0 it
such that =20t — 5729 \;fi. Let i < n. Then a; = Aibo + Ai1b1 +
=0 "¢

-+ -+ Aob;, where we set b; = 0 for j > m. Since all \; are contained in o,
we conclude that v(a;) > min{r(b;) |0 < j < i} = min{r(b;) | 7 < m}.
Hence min{r(a;) | ¢ < n} > min{v(b;) | j < m} and so o[[t]]Nk(t) C o,
holds.

d) follows from the previous point, as k(t) N o[[t]] C o; implies
k(t)* Nol[t]]* C o).
]

Remark 3.3.5. Note that o; is not contained in O((t)). Indeed, a%rt is
contained in o; but not in O((t)), if a € p = o\o*.

Definition 3.3.6. From now on, we let O; be the subring of k*((t)) gen-
erated by O((t))Uoy. Since both O((t)) and o; are ¢g-stable inside k™ ((t)),
Oy is ¢q-stable, as well. Also, note that Fy(t) C O((t)) C O.

Proposition 3.3.7. There exists a homomorphism
k: Oy — F((1))

extending the residue class homomorphism k: O — T, such that the following

holds:
a) K commutes with ¢g.

b) k restricted to O((t)) equals the coefficient-wise application of the

residue map O — O/P =2 F, to a Laurent series over O.
c) k restricts to the residue map oy — o¢/py = Fa(t) on 0.
d) Kk induces specializations
e 5(Y) € GLa(Fy((1))) of Y € GL(O((1)))
F, ]

o #(Y) € GLn(Iy[[t]) of Y € GLn(O[[t]])

o k(D) € GLy(Fultl4)) of D € GLy(k(t) N o[[4]]).
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Proof. As the residue class homomorphism x: O — F, is a homomorphism,
it commutes with ¢, which is the ordinary Frobenius homomorphism on O.
We can extend & to a ring homomorphism

R O((1) — By ((4)

by applying & to the coefficients of the Laurent series over O. Since ¢, acts
on O coefficient-wise as well, we find that £ commutes with ¢, on O((t)).

On o;, we let & be the residue map o; — o;/p; = Fa(t) on o;. We have
seen in the proof of Lemma 3.3.4 that an element in 0; can be written

7.1: aiti
as r = z";(())bltl
min{v(b;) | i < m}. Now k|, = k|, and thus

for some a;,b; € o such that min{v(a;) | i < n} >

Yo R(bi)t Yo (bt '
and we conclude that £ commutes with ¢,. It is also immediate from Equa-

tion (3.10), that x and & agree on O((t)) No; and that we can glue k and &
to a homomorphism on O; satisfying a),b) and c).

For the last part, note that s restricts to of[t]] — Fa[[t]] and thus also
to of[]]* — Fullf]]*. Y € GL,(O((t) (or Y € GL,(O[[t])) and
D € GLy(o[[t]]), we get well-defined matrices (YY) € GLy,(I((t))) (or
k(Y) € GLn([[t]])) and x(D) € GLy(F[[t]), by applying # coordinate-

wise. OJ

Remark 3.3.8. In Section 3.1 we constructed fundamental matrices Y €
GLn(L) € GL,(K((t))). If we set k = K, then Y € GLy,(k((t))) and also
Y C € GL,(k(())) for all C € GLy(F,(t)) (C will be chosen such that Y C is
contained in a given group, see Chapter 3.2). If the corresponding difference
module (M, ®) is given by a representing matrix D € GL, (k(t) N o[[t]]), we
can thus apply Proposition 3.53.3 and 3.3.7 to specialize Y C.

3.3.3 A Lower Bound Theorem

The Chevalley Theorem 3.2.1 has played an important role in solving the
inverse problem in differential Galois theory (with algebraically closed con-
stants). It has been used in characteristic zero (see [MS96]) as well as in the
iterative differential case (see [Mat01]).

We will apply Theorem 3.2.1 to difference Galois group schemes H and get
the following lemma as a consequence for the module structure:

Lemma 3.3.9. Let (M,®) be an m-dimensional difference module over a
difference field (F, ¢), with Picard-Vessiot extension E, fundamental matrix
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Y € GL,(E) and Galois group scheme H < GL,,. Suppose that there
exists a 0 # w € CF that spans an H-stable line, i.e., for any Cp-algebra
S, we have H(S)-w C S -w. Then there exists an o € E* such that
vi=aYw e F" =2 M and N := F-v defines a ®-stable submodule of M.

Proof. Note that M has been identified with F™ by fixing a basis.
Let y1,...,Ym € E™ be the columns of Y. Then Sol%(M) is spanned by
Y1, ---,Ym as a Cp-vector space and Y-w is contained in Sol%(M ) < E™.
We fix an ¢ < m such that the ¢-th coordinate of Y-w is non-zero and
we set a = (Y-w);! € EX. We first show that v := aY-w is contained
in ™. Let R = F[Y,Y ] C E be the Picard-Vessiot ring inside E (see
Theorem 1.2.11). Let S be any Cp-algebra and let o be an element in
Auwt®(R ®¢, S, F ®c, S). We have H(S) -w C S - w, hence there exists a
Ao € S such that Y~ 1o(Y)-w = A,w, by Proposition 1.3.11. For any j < m,
(Y-w); is contained in R C R ®c¢, S and we have o((Y-w);) = (¢(Y)w); =
Ao - (Y-w);. Therefore,

o((Yw)j)(Yw)i = As(Yw)j(Yw)i = (Yw);o((Yw);)
holds for all j < m. The j-th coordinate of v equals v; = %, so Propo-
sition 1.3.13 implies that v; is contained in F.
To see that ®(N) C N holds, recall that Yw is a solution. Thus ®(Yw) =
Yw holds, where D € GL,,(F') denotes the representing matrix of M. Hence

O(v) = p()®(Yw) = ¢(a)atv. Now ¢(a)at = ¢(((};f£)21) and another ap-

plication of Proposition 1.3.11 yields that ¢(a)a~! is contained in F, hence
®(v) is contained in Fv = N. O

For difference modules over (k, ¢4) (so-called finite Frobenius modules)
there exists a lower bound criterion due to Matzat (see Theorem 4.5. in
[Mat04]), leading to finite Galois extensions over k. This criterion asserts
that conjugates of specializations of certain twists of the representing matrix
are contained in the Galois group. The following theorem generalizes this
criterion to difference modules over (k(t), ¢q).

Theorem 3.3.10. Let G < GL,, be a linear algebraic group defined over
F,(t). Let (M, ®) be an n-dimensional ¢4-module over k(t) with representing
matriz D € G(k(t) No[[t]]) and let k be a field containing k°°. Assume that
there exists a fundamental matriz Y € G(k((t))) for M generating a separa-
ble Picard-Vessiot extension E/k(t) of M. Let H < G be the Galois group-
scheme of M corresponding to the Picard-Vessiot ring R := k(t)[Y,Y 1| C E
(see Theorem 1.2.11). Then H(F,((t))) contains a G(F,((t)))-conjugate of
K(Dgy(D) ... by (D)). B

(More precisely, the conjugating matriz can be chosen as k(Y') € G(F,((t)))).

Proof. We abbreviate F' := k(t) throughout this proof.
First of all, note that Y is actually contained in G(k**((t))), by Proposition
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3.3.3, hence the Picard-Vessiot extension F, which is generated over F' by
the entries of Y, is contained in k*7((t)).

By Theorem 1.3.10, ‘H is a linear algebraic group and it is a subgroup of
G by Proposition 1.3.11. We apply Theorem 3.2.1 to G and get a closed
embedding

p: G — GL,

defined over F,(t) and a non-zero w € [, (t)" such that H(F,(t)) = {g €
G(E,()) | p(g)w € Fy(t) - w} holds. The stabilizer of the line spanned by w
defines a closed subvariety of G defined over F,(t) and it follows that

H(S) ={9€G(9) | pg)w € S w} (3.11)

also holds for all [, (t)-algebras S. We now blow up M to an m-dimensional
version M in order to be able to apply Lemma 3.3.9. Let M be an m-
dimensional difference module over F' such that its representing matrix with
respect to a fixed basis is given by p(D) € GLy,(F). Then Y := p(Y) is a
fundamental solution matrix for M, since p is defined over F,(t) and thus
$q(p(Y)) = p(¢y(Y)). All entries of Y are contained in R and furthermore,
the entries of Y are contained in F[Y,Y 1], since p is a closed embedding
defined over F,(t) C F. Hence R = F[Y,Y~!] is also Picard-Vessiot ring
for M and the Galois group scheme Gyrr 18 p(H) < GLy, in its natural
representation as given in Proposition 1.3.11. By construction, w spans a
Gy p-stable line (see Equation (3.11)) and thus there exists an o € E* such
that

v=aYw (3.12)

is contained in F™ and N = Fu is a ®-submodule of M, by Lemma 3.3.9.
This means that there exists a A € F' such that p(D)¢p,(v) = Av.

The third part of Lemma 3.3.4 asserts that D is contained in GLy,(0;). Since
p is defined over F,(t) C o, p(D) and p(D~!) both have coefficients in o,
and thus p(D) is contained in GL,, (o).

Now fix an ¢ < m such that the i-th coordinate v; of v has minimal valuation
among all coordinates of v (with respect to 14 and the order on I'). Recall
that v # 0, thus v; # 0 and we can define v' = U%_v. Then v = (v),...,v],)
is contained in of" with v, = 1. Note that p(D) - ¢4(v') = ¢q(vi) " 1v; 0/, so
we define N = ¢,(v;)"lv;A € F and we get

p(D)py(v') = N (3.13)

Thus X = X - v} = (p(D)pq(v')); is contained in o; since o; is ¢g-stable (see
Lemma 3.3.4). Also, (XN)™! = (X)71¢,(v"); = (p(D~1)v'); is contained in
0¢, so X is in fact contained in 0. Overall, we got p(D) € GL,,(04), v/ € o}"
and X € o/, hence we may specialize them to k(p(D)) € GLy(Fa(t)),
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w(v') € Fa(t)™ and w(XN') € Fa(t)*, by Proposition 3.3.7. We apply & to
both sides of Equation (3.13) coordinate-wise:

K(p(D))k(¢q(v) = K(N)K(v"). (3.14)

We denote from now on the (coordinate-wise) application of k to a matrix
A with entries in Oy by A and similarly for vectors with entries in O; and
scalars in O;. Hence Equation (3.14) translates to

(D)6,() = X -7, (3.15)

where we used that £ and ¢, commute (see Proposition 3.3.7) to get ¢4(v') =

¢q(v"). Note that p commutes with the coordinate-wise application of £ to
an element in G(O;), since p is defined over F;(¢) and & restricts to the

identity on F,(¢). In particular, p(D) = p(D) holds and we get

p(D) - g(v'

=N-v.

~—

Inductively, we get
p(D)dg(p(D)) - da-1(p(D)) v = N¢g(N) -+ dpga-s(XN) -/, (3.16)
where we used ¢,a(v') = v'. We set p = cEekEC E*P((t)) and get
V=pep(Y)w (3.17)

(see Equation (3.12)). Proposition 3.3.3 implies that Y has entries in O((¢)),
hence p(Y) is contained in GL,,(O((t))) € GL,,(O%), as p is defined over
F,(t) C O((t)). Recall that v' € of* C O, v; =1 and 0 # w € F,;(¢)™ holds,
hence there exists a j < m such that w; € F,(t)* C Of. Then Equation
(3.17) implies

L= =p- (p(Y) w)
and

(V)™ )y = i,
and we deduce that p is contained in O;. It can thus be specialized to an
element 1 = k() € F,((t))*. We may apply ~ to both sides of Equation
(3.17) to get

T=pp¥) w=pp(¥) w. (3.18)

(Note that at this point we applied x simultaneously to elements in O((t))
and o0; which is why we had to construct x on the somewhat peculiar ring
O, in Proposition 3.3.7.)

Abbreviate D = D¢g(D) -+ @1 (D) and X' = Ng(N) -+ ¢ga—1(N). Then
Equation (3.16) translates to

~

p(D) = N (3.19)
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We now consider Y - DY = x(Y~1DY’) which is contained in G(F,((1)),
since G is defined over [F,(t) and s acts trivially on [F,(t). We use Equation
(3.18) and (3.19) to compute

p(Y1)p(D)p(Y)w

p¥ DY) w
= @ 'p(Y (DY
= *-%'( IoZ
— N

- contained in H(i ((t))) (see (3.11)). It remains

It follows that YV
to show that Y has entries in F,;((¢)). To see this, recall that
D¢y(Y) = Y holds, hence D¢y(Y) = Y and ¢,(Y)™! = YD We

compute

D.Yis
".D.Y

$(Y DY) = ¢,(Y )y(D)-- (D) q(Y)
= 0g(Y )g(D) -~ bya-1(D)Depy(Y)
= Y 'Doy(D)-- ¢q @?

- vl DV,

where we used that D € GL,(F(t)). Hence Y '. DY has entries in
Fy((6))% = Fy((t))- O

We immediately get the following power series version of Theorem 3.3.10
under the further assumption that Y is contained in G(k[[¢]]).

Corollary 3.3.11. Let G < GL, be a linear algebraic group defined over
F,(t). Let (M,®) be an n-dimensional ¢4-module over k(t) with repre-
senting matriz D € G(k(t) No[[t]]) and let k be a field containing k™.
Assume that there exists a fundamental matriz Y € G(k[[t]]) for M gen-
erating a separable Picard-Vessiot extension E/k(t) of M. Let H < G
be the Galois group-scheme of M corresponding to the Picard-Vessiot ring
R = k@)[Y,Y Y C E. Then H(E,[[t]) contains a G(F,[[t])-conjugate of
K(Dgg(D) ... pga-1(D)). B

(More precisely, the conjugating matriz inside G(F;[[t]]) can be chosen as
r(Y).)

Proof. Tt follows from the third part of Proposition 3.3.7 (together with
Proposition 3.3.3) that Y = x(Y) is contained in GL,,(F,[[t]]). On the other
hand, Y is still contained in G, since G is defined over F,(t). Hence Y is
contained in G(F,[[t]]). Also, D is contained in GLy,(0[[t]]), hence D = (D)
is contained in GLy(Fa[[t]]) and we just proved in Theorem 3.3.10 that

H(F,((t))) contains v '.D. ?thich has entries in F,((t)) NF,[[t] = F,[[t]]
and is a G(F,[[t]]) conjugate of D = k(Dg¢,(D).. - Pga-1(D)). O
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Example 3.3.12. If k = [F,(s) and p = (s — «) is a finite place of degree
1 (a € ), then the Galois group scheme H contains a conjugate of the
specialized matrix D, obtained by replacing each s by a.



Chapter 4

Generating Reductive
Groups

Using the lower bound criterion Corollary 3.3.11, we obtain elements con-
tained in the Galois group up to conjugacy over F,[[t]]. Therefore, we need
to find generators such that any conjugates thereof still generate the given
group G that we would like to realize as difference Galois group. For the
classical groups, we make use of known results on generators of the finite
parts G(F,) due to Malle, Saxl and Weigel ([MSW94]).

4.1 Finite Groups of Lie Type

We start with some basic facts on maximal tori in the finite parts of a linear
algebraic group. Let G be a linear algebraic group defined over a finite field
F,. Then G(IF)) is a so-called finite group of Lie type. Let further T' be a
maximal torus of G that is defined over F,. Then T'(I) is called a mazimal
torus of G(F,;). Two maximal tori T'(F,) and Typ(F,) in G(IF;) are usually not
conjugate but we can use the fact that 7' and Tj are conjugate over G(I,)

to identify T'(F;) with some subgroup of Tp(F,). We think of Tj as a fixed,
well known maximal torus such as the diagonal torus in GL,,.

Proposition 4.1.1. Let G be a linear algebraic group defined over F, and let
Ty be a fized mazimal torus defined over F,. Then a mazimal torus T = T3
for a g € G(F,) is defined over F, if and only if w := go,(g)~" is contained
in the normalizer Ng(Ty) of To. In this case, we have

T (%) = {to € To(Fy) | dq(to) =15}

Proof. All of this is well known. However, for the convenience of the reader,
we state the proof:
As g is contained in G(F,;) and F, is perfect, T' is defined over the separable

49
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closure F, of ;. Let I" be the absolute Galois group of F;/F,. Then T is de-
fined over F, if and only if T'(F,) is I-stable (see [Bor91, AG.14.4]). Since I' is
generated by the Frobenius automorphism ¢,, we know that 7" is defined over
F, if and only if ¢, (T(F,)) = T(F,) holds. Now ¢,(T(F,)) = b4(To(F,))%9)
and ¢,(To(F,)) = To(F,), as Tp is defined over F,. We conclude that T is
defined over F, if and only if

TO(E)%(Q) — TO(E)Q

holds which is the case if and only if w = g¢,(g)~! normalizes Ty. For the
second part of the statement, we compute

T(F,) = {t§ | to € To(Fy), ¢q(t]) =t}

— {t] | to € To(F,), dq(to) = 3%}
= {to € To(Fy) | pq(to) = t5'}?.

Example 4.1.2. Let G = SLs and let Ty be the diagonal torus. Set

(0 ).

The Lang-isogeny (see [Bor91, V.16.4]) assures that there exists a g € G(IF,)
such that gog(g)~" = w holds. As w normalizes Ty, we have that T =T§ is
defined over F,. Let tg = diag(A\, A7) be an element in To(F;). Then t is
contained in T( ) if and only if

diag(A%, A7%) = ¢g(to) = tf' = diag(A~', )

holds, that is, if and only if X is a (q+ 1)-th root of unity. We conclude that
T(F,) is cyclic of order q + 1, generated by (diag(¢,(1))9 for a primitive
(g +1)-th root of unity ¢ € F 2

A semisimple element ¢ in a linear algebraic group G of rank r is called
reqular if its centralizer is of minimal dimension (that is, of dimension r).
This means that the connected component of the centralizer consists only
of the maximal torus that g is contained in (which in this case is unique).

g n&(@) n2(q)

SL,, Qq:ll qnfl -1

SPag ¢"+1 ¢’ -1

SO24+1 ¢" +1 ¢’ —1

SOyy, d odd (qd_1 +1)(g+1) ¢¢—1

SOs4, d even | (¢7 1+ 1)(g+1) | (¢¥%+ (—1)%2)?

Table 4.1: Definition of n;(q) and n2(q)
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In [MSW94] it is shown that any finite group of Lie type can be generated
by any two regular elements that are contained in maximal tori of prescribed
order. As the order is invariant under conjugation over G(I;), any G(I,)-
conjugates of these elements still generate G(IF;). For the groups that are of
interest to us, we collect these prescribed orders n;(q) in Table 4.1.

Theorem 4.1.3 (Malle, Saxl, Weigel). Let G be one of the following groups
e SL,, n>3
e Spyy, d > 2 such that (d,q) # (2,2)
e SO, n>7

and assume that T1 and Ty are mazimal tori of G defined over I, such that
|Ti(F,)| = ni(q) holds for i = 1,2, where n; is as defined above. Then for
any elements Ay, Ay € G(F,) we have

< Tl(Fq)AlaTZ(Fq)AQ >=G(F,).

Proof. In [MSW94], the authors prove that any finite group of Lie type can
be generated by three involutions. In the course of the proof, they show
that for any two regular elements x; and x5 contained in T (F,) and T»(I,),
resp., the conjugates 3:’141 and 1:512 generate G(IF;). This clearly implies that
Ty (F)*t and Ty(F,)*? generate G(F,), as T1(F,) and Ty(F,) always contain
regular elements. (See Proposition 4.1.8 and its proof for explicit regular
elements z1 € T1(F,) and o € T5(EF,).)

We now give further instructions on how to find the desired results in
[MSWO94]. Starting on page 96, the authors treat each group separately.
To be precise, for G = SL,, and G = Spy,; they prove the statement for
the simple counterpart G = G/Z(G) of G with maximal tori Ty = T1/Z(G)
and Ty = Ty/Z(G). But as Z(G) is contained in T} (F,)41, this implies that
< Ty (F)A, Ty(F,)42 >= G(F,). Now for G = SO, they consider the com-
mutator subgroups G(F;)" with maximal tori T;(F,)" := T;(F,) NG(F,)". Then
they prove the statement for the simple counterpart of G(IF;)" which in turn
implies that any G(IF;)"-conjugates of T1(F,)" and T>(F,)" generate G(IF,)". As
G(IF,)" is normal in G(I,), this is in fact also true for any G(IF,;)-conjugate
of T1(F,) and T»(F,)’ (as these are maximal tori contained in G(I;)" of the
same order). It follows that < T} (F,)4t, To(F,)*2 > contains G(IF,)’ which is
a normal subgroup of G(IF;) of index at most two. It is therefore sufficient
to show that < T1(F,)4, T»(F,)*2 > is bigger than G(F,) if G(F,) # G(F,)'.
Assume that < T1(F,)4, Ty(F,)42 >= G(F,)’ < G(F,) holds. This implies
T (F,) = T1(F,)" which can not be the case by Table I in [MSW94]. O

Remark 4.1.4. Note that the Dynkin diagram of SOs (type Bz ) is the same
as that of Spy (type C2) and that of SOg (type Ds3) is the same as that of
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SLy (type As). Therefore, the restriction n > 7 for SO, is not essential.
The group SLo will be treated separately in Chapter 5.4.

Before we can construct the maximal tori of order nj(q) and n2(q)
we need to examine the normalizer of the fixed maximal torus Ty of G €
{SL,,, Spyg, SO, }. For these groups, we let Ty be the torus consisting of the
diagonal matrices contained in G. It is well known that its normalizer is the
group of all monomial matrices that are contained in G.

Lemma 4.1.5. Let o € S,, be a permutation.

a) Let n = 2d be even and G = Spyy. Then there exists a monomial
matriz A = (A;j) € G(F,) corresponding to o (i.e., Aij is non-zero iff
i=0(j)) if and only if

ocn+1l1—i)=n+1-—0(i)
holds for all i <n.

b) Letn =2d+1 be odd and G = SOsqy1. Then there exists a monomial
matriz A € G(F;) corresponding to o if and only if

ocn+1l—i)=n+1-0(i)
holds for all i < n.

c) Let n = 2d be even and G = SOoq. Then there exists a monomial
matriz A € G(I,) corresponding to o if and only if the sign of o equals
one and

ocn+1l1—i)=n+1-—0(i)

holds for all i < n.

Proof. In all three cases, let 7 = (1,n)(2,n —2)---(d,n — d). Recall that
the matrices J defining the symplectic and orthogonal forms were chosen
monomial with corresponding permutation 7. If A is monomial with cor-
responding permutation o and A" JA = J then 076 = 7. We conclude
that o(n+1—14) = o(7(1)) = 7(0(i)) =n+1—0c(i) forall 1 <i<nisa
necessary condition.

a) Let 0 € S, be a permutation such that o(n +1 —14) = n+ 1 —
o(i) for all i < n and let B € GL,(F,;) be the permutation matrix
corresponding to o, i.e., Bij = 0q(j); for 1 <i4,5 < 2d. We set A =
B-diag(z1,...,xy,), where we will later specify x; = £1 in such a way
that A becomes symplectic. Recall that J;; = —doq41—;; for 1 <i < d
and Jij = 62d+1—i,j for d+1 <7 < 2d. Hence (JA)” = *AQd—i—l—z’,j =
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—2j0g(2d41—j),; if 4 < d and (JA)ij = 2j05(24+1—j),i, Otherwise. We
compute

(A"TA); = (Ao (T Aoty s = Astiyi(TA)o)
_ { —TiTj00(2d+1-j),0(i), if 0(i) <d
Ti7j0g(2d41—j) o), i 0(i) >d+1
—TiT2d+1—i» if O‘(Z) <d, j=2d+1—1
= TiTo2d+1—1iy if U(l) Zd—F 1, j:2d+1—i
0, if j#£2d+1—1.

<
>

Taking into account that o (i) < d holds if and only if 0(2d + 1 —1i) >
d 4+ 1 holds, it is now easy to see that A" JA = J holds if we set

-1, ifi<dando(i)>d
x; = 1, ifi<dando(i) <d
1, ifi>d.

For both cases G = SO,, with n = 2d or n = 2d + 1, let ¢ be a permu-
tation such that o(n+1—14) =n+1—0(i) for all 1 <14 <n. Again,
we start with a generic monomial matrix A = B - diag(x1,...,z,) as-
sociated to o (with B;j = d,(j),;). Now we have J;; = 0y 41,5 for all
1,7 < n and so we compute

(A" JA)ij = zixj0ns1ij,
hence A" .JA = J holds if and only if
TiTpi1—i = 1

holds for all 1 < i < n. The determinant of A equals det(A) =
sign(o) -1 ...xn. If x;2541—; = 1 holds for all 7, we have

| sign(o)zger ifn=2d+1
det(4) = { sign(o)  if n = 2d.

If the sign of o equals one, we are done by setting z; =--- ==z, =1,
i.e., A = B is already contained in G. If the sign of ¢ equals —1 and
n = 2d, it is immediate that there cannot exist a monomial matrix of
determinant 1 that is orthogonal. Now if n = 2d 4+ 1 and o is of sign
—1, we can set 411 = —1 and all other x; = 1. Then xflﬂ =1, hence

A" JA = J holds and A is of determinant 1.
O

Corollary 4.1.6. There exist monomial matrices w1 and ws contained in
G(E,) corresponding to the following permutations:
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SLy, o1=(1,2,...,m)
o2 =(1,...,n—1)
Spag o1=(1,...,d,2d,...,d+1)
o2 =(1,....d)2d,...,d+1)
SO24+41 0'12(1,...,d,2d,...,d+2)
o2 = (L,....d)(2d,....d+2)
SOaqq4, d odd o1=(d,d+1)(1,...,d—1,2d,...,d+2)

o2 =(1,...,d)(2d,...,d+ 1)

SOsq, d=2m, modd | o1 =(d,d+1)(1,....d—1,2d,...,d 1 2)
oo=(1,...,m)(m+1,...,2m)(3m,...,2m+ 1)(4m,...,3m + 1)
SOszq, d=2m, m even | o1 = (d,d+1)(1,...,d—1,2d,...,d+ 2)
o2=(1,...,m4m,...,.3m+1)(m+1,...,2m,3m,...,2m + 1)

Table 4.2: Definition of o1, o9

Proof. For G = SL,,, there is nothing to show as there exists a monomial
matrix w, € SL, for any element ¢ € S,,. For all other groups this is an
immediate consequence of Lemma 4.1.5. Indeed, it is readily checked that
oj(n+1—14) =n+1—0;(i) holds for all 1 < i <mn and j = 1,2. In case
G = S044, 01 and oy are moreover both of positive sign. O

Definition 4.1.7. Let G be one of the groups SLy, Speg or SO, and fix
monomial matrices wy,wy € G(I;) with respect to 01,02 as described in
Corollary 4.1.6. Fiz g; € G(F,) such that gi¢,(g:)~' = w; holds for i = 1,2
(the Lang isogeny assures that such elements exist). Then we set T; = T§",
1 =1,2, where Ty denotes the diagonal torus inside G.

Proposition 4.1.8. Let G, T and T> be as in Definition 4.1.7. Then T}
and Ty are defined over I, and we have

Proof. As wy and wy normalize Ty, it follows from Proposition 4.1.1 that T3
and T3 are defined over F, with [,-rational points

Ti(EF) = {to € To(Fy) | ¢4(to) = 15"}
= {diag()\l, R ,)\n) | dlag()\(f, .. ,)\%) = diag()\ai(l), R 7)‘0'1'(11))}‘%'

a) Let G = SL,, and let diag(A1,...,\,) € To(F,;). Then
diag()\al(l), ces 7)‘01(71)) = diag()\g, ey /\n; )\1),

hence diag(\!,...,\2) = diag(Ag,(1)s - - - » Aoy (n)) holds if and only if we

have diag(A1, ..., \n) = diag(A, A%, ..., AY" ) and AY" = Ay, that is,
A1 € Fgn. Additionally, we need that diag(Aq,. .., A,) has determinant

1

e -1
one, which is the case if and only if 1 = A\; 79" - A%7Y holds.
Overall, we conclude

Ty(F) = {diag(¢,(%,...,c7" ) | (5 = 1391,
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In particular, 71 () is cyclic of order q”:11 =n1(q).
For i = 2, we have diag(Ayy (1), - - s Ago(n)) = diag(Az, ..., Adn—1, A1, An),

hence diag(X{,..., A1) = diag(As,(1),- -+ Agy(n)) holds if and only if
we have diag(\1,. .., \n) = diag(A, A%, ... AL A) and AT =\
(that is, Ay € Fyn-1) as well as A}, = A, (that is, A, € ;). Additionally,

to ensure that diag(Aj,...,A,) has determinant one, we need A\, =
71—171

q

= )\1_ =1 Note that for any \; € ]F;n717 we have

Cl—g—-— n—2
)\1 q q

_qn—171

A ' €FS. Therefore, we get

qnfl_

Ty(F,) = {diag(¢, Y, ..., ¢0" ¢t ) | (01 = 1),

In particular, 75(F,) is cyclic of order ¢"~! — 1 = na(q).

If G = Spyy, To(F,) consist of all diagonal matrices of the form
diag(Aq, . .. ,)\d,)\gl, .. .,)\fl) with \; € E;. For such an element we
have diag(A], ..., AL) = diag(Ag (1) - - -, Agy(n)) if and only if
diag(Af, ..., A A% AT = diag(Ag, -, Aa AT AL AT A,
We conclude

T1(Fy) = {diag(¢,¢% ... ¢* ¢, ¢ [ ¢ = 1o
In particular, 71(F,) is cyclic of order ¢¢ + 1 = ny(g). Similarly, we
compute

Ty(F,) = {diag(¢,¢%,..., ¢ ¢, ¢ ¢ | ¢ = 1),

In particular, T5(F,) is cyclic of order ¢? — 1 = na(q).

1

For G = S03441, the diagonal torus Tj consists of all elements of the
form diag(A1, ..., a, 1, A7 % ... A7), Then T1(F,) and T(F,) can be
computed in the very same way as for G = Spy,:

Ti(F) = {diag(¢,¢%....¢""

Ty(F) = {diag(¢,¢%,...,¢" ", 1,¢70 7T | ¢ = 1),

In particular, 71 (F,) and T»(F,) are both cyclic of order ¢* +1 = n1(q)
and ¢? — 1 = na(q), resp.

1 1

LT ey | gt = e

1

Now assume G = SOy4 for an odd d. The diagonal torus T consists
of all elements of the form diag(\1,..., Aqg, )\;1, ce Afl). The torus
T1(F,) can be computed similarly to the first torus for the symplectic
group Spy4_s, only that we have an extra transposition in the middle.
We deduce that T7(IF;) consists of all elements of the form

diag(C, ¢y, ¢0 T T

2
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such that (97" +1 =1 and pdt! = 1, so this time T} (F,) is not cyclic.
Its order equals (¢%~! +1)(q¢+1) = n1(g). Similarly to the symplectic
case, we get

T5(F;) = {diag(¢, (%, .. -,quil,ﬁ_qdi e Nea N qu—l =1}

In particular, T5(F,) is cyclic of order ¢? — 1 = na(q).

1

e) If G = SO94 for an even d = 2m, the first torus is the same is in the
previous case so its order equals (¢%~!' + 1)(¢ + 1) = n1(q). If m is
odd, similar computations as before yield that T5(IF,) consists of all
elements of the form

1—1 m—1 n—1

. m—1 m _ — —q"” —
dlag(<7<q7"'?cq 7”7/’(’(17"",“/(1 s 1 yeees b 1’C 4 7"'?C 1)_‘]2

with (4”71 = 1 = p?" =1 if m. If m is even, T»(FF,) consists of all
elements of the form

diag(g’cq".'7<q7”717u7uq7""uq7,t71’u_q7y"717""/’L_I’C_q’,”717""<_1)g2
with ¢¢"F1 = 1 = pa"+1. We conclude T2(F,) = (¢™ + (-1)™)% =
n2(q).-

O

4.2 Generating Classical Groups

We start with a more or less obvious statement, that will be used repeatedly.

Lemma 4.2.1. a) Let G < GL,, be a linear algebraic group defined over
F, and let A be contained in G(F,[[t]]). Then the constant part Ay €
M,,(F,) is contained in G(F,).

b) Let A, B be elements contained in GLy,(F[[t]]) with constant parts Ao,
By € GL,(F,). Then the constant part of the conjugate B4 equals

B,
Proof.  a) This is true for any affine variety V' C A™ defined over [, where
in our case, m = n?+1, as GL,, is an affine subset of AP Indeed, let

a = (a1,...,am) be contained in V(F,[[t]]) and let ajq, . . ., amo € F; de-
note the constant parts of ai, ..., an,. Then for any f € F,[X1, ..., X)
contained in the vanishing ideal of V', the constant part of f(a1,...,am)
equals f(ajo, ..., amo) which is thus zero. We conclude that (aiq, . .., amo)

is contained in V.

b) The constant part of A~! equals Ay 1 and as the constant part of a
product of matrices equals the product of their constant parts, hence
the constant part of A~'BA equals Ay 1By Ap.

O
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The objective of this section is to prove that certain conjugates of the max-
imal tori 77 and 75 constructed in the previous section generate G. The key
ingredient is the following proposition.

Proposition 4.2.2. Let K; be an infinite field and let G < GL,, be a con-
nected linear algebraic group defined over Ky such that either K is perfect or
G is reductive. Let further Ko/ Kj be a field extension and consider the field
of formal Laurent series Ko((t)) over Ko. If H C G is a closed subvariety de-
fined over K5((t)) such that for all g € G(K7) there exists an h € H(K2[[t]])
of the form h = g+ Myt + Mat®> + ... for some M; € M, (K3), then H =G
holds.

Proof. First of all, note that G(K1) is dense in G, as we assumed that either
K is perfect or G is reductive (see [Bor91, 18.3]).

Set m = n? + 1. Then G is a closed subvariety of affine m-space, since G <
GL,, holds. Let K; := K»((t)) be an algebraic closure of K2((t)). We con-
sider the vanishing ideals I(G) and I(H) of G and H inside K[ X1, ..., X,,].
Assume that H is strictly contained in G, i.e., I(H) 2 I(G). Now I(H)
is generated by finitely many elements inside Ka((¢))[X1,...,Xm] and we
conclude that at least one of them cannot be contained in I(G). Let f €
Ks((t)[X1,-..,Xm] be such an element, i.e., f € I(H)\I(G). After mul-
tiplying by a suitable power of ¢, we may assume that f is contained in
K[t [ X1, ..., Xm] C K2[Xq, ..., Xn][[t]]. Hence there exist elements f; €
Ks[Xy, ..., X;n] such that

F=Yfit
j=0

As G(K) is dense in G, there exists a g € G(K1) with f(g) # 0. It follows
that there exists a j € N such that f;(g) # 0. Let jo € N be minimal such
that there exists a g € G(K1) with fj,(g) # 0. Hence fo,..., fj,—1 vanish
on all G(K) and are thus contained in I(G). Now consider
fr=tm0(f = 3 fit)) = fio + Fiorat + figvat® + -
7=0

As f € I(H)\I(G) and YU fi#7 € 1(G), we have f' € I(H)\I(G), as well.
By definition of jo, there exists a g € G(K7) such that f;,(g9) # 0. By
assumptions, there exists an h = g+ Myt + Mat? + - - - € H(K3[[t]]) for some
M; € My(K3), i.e., g occurs as the constant term of an element contained
in ‘H. We compute

0= F/(h) = 3" fyesa(W)00 € Kall]
=0

and compare the constant terms of both sides. The constant term of the
right hand side equals the constant term of fj, (k) which in turn equals f;,(g),
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hence 0 = fj,(g), a contradiction. Hence H cannot be strictly contained in
g. O

In order to be able to apply this proposition, we first have to generalize
the result G(F,) =< Ti(F,)", Ty(F,)42 > (Theorem 4.1.3) from F, to an
infinite field F.

Lemma 4.2.3. Let lyp € N and consider

F:= UE: CcE.
leN: [=1 mod Iy

Then I is a field of infinite order.

Proof. For any i, j € N, the compositum of F iig+1 and F ji;+1 inside F, equals
]Fqlcm(ilo+1,jlo+1) - Fq(uo+1)(jlo+1) = ]Fq(ijlo+i+j)l0+1. Hence ]Fqilo+1 and ]qul0+1 are
both contained in another field F, with [ = 1 (mod lyp) which is therefore
contained in F. It follows that F is a field and as F contains Fquo+1 for all
1 € N, F cannot be finite. O

Proposition 4.2.4. Let G be one of the following classical groups
e SL,, n>3
® Spoy, d > 2
e SO,,n>7

and let the monomial matrices wi, we € G(I,) (corresponding to the permu-
tations o1, 02) and the mazximal tori Ty, T be as defined in Definition 4.1.7.
Let ly be the least common multiple of the order of o1 and os. Then for

F:= U E, CF, as in 4.2.3 and any A1, A € G(F,), we have
1eN: [=1mod lg

< Ty (F)A, Ty(F)42 >= G(F).

Proof. Recall that g; and go where chosen in such a way that ¢4(g;)g; b= wy
holds. Hence for an | with [ = 1 mod ly we have ¢,i(g;) = ¢gu-1(wigi) =
cee = wﬁ -gi, where we used that wj is contained in G(IF), for i = 1,2. Now wﬁ
is again monomial with respect to aﬁ = ¢;. It thus follows from Proposition

4.1.8 that
I T3(Ey)| = ni(q')
holds for ¢ = 1,2. Let A; and Ay be contained in G(F,). Then Theorem
4.1.3 implies that
< T1 ()™, To(Bp) ™2 >= G(Ey)

holds for all  with I =1 mod lyp. Now let g = (g,s) be contained in G(F).
Then there exist numbers i,; € N such that g, is contained in Fqirslo+1 for
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all 1 <r s <n (where we set n = 2d in case G = Spyy). Let [ be the product
of (ipslp + 1) over all 1 <r;s <n. Then [ =1 mod [y holds and all entries
grs are contained in qu. Hence

9 € G(F,) =< Ty (F)™, Ty(Fy) ™ >C< Ty(F)™M, To(F)* >
and we conclude G(F) C< Ty (F)41, To(F)42 >. O
Theorem 4.2.5. Let G be one of the following classical groups
e SL,, n>3
® Spog, d > 2
e SO, n>7

and let the mazimal tori T, Ty be as defined in Definition 4.1.7. Then for
any A, B € G(F, + tF[[t]) (i-e., A and B are contained in G(F[[t]]) such
that the constant term of any coordinate is contained in F,), we have

<TH TP >=g.

Proof. As TIA and T are closed, connected subgroups of G that are defined
over T, ((t)), we have that H :=< T{}, T > is a closed subgroup of G that
is defined over F,((¢)) (see [Spr09, 2.2.7]). Let F C F, be as defined in
Proposition 4.2.4. By Proposition 4.2.2 (with K1 = F and Ky = F,), it is
sufficient to show that for any g € G(F) there exist an element h € H(F,[[t]])
with constant part g. Let Ag, By € GL,(IF,) be the constant parts of A, B,
resp. As G is defined over [, and A, B are contained in G, it follows that
Ap and By are contained in G(I,), by the first part of Lemma 4.2.1. By
Proposition 4.2.4, we thus have G(F) =< Ty (F)40, To(F)Bo >. Let g € G(FF).
Then there exist an r € N and elements x; € T1(F) and y; € T»(F) such that

Ao, B Ao, B
g=x7y; ... 2.y,

Then
hi=aiyl . alyP e< V), To(F)P >C H(F([H)

has constant term g (by Lemma 4.2.1, b)) which concludes the proof.  [J

In order to show that a closed subgroup H of G (e.g. the Galois group of
a difference module) is all of G, we may thus show that certain conjugates
of the maximal tori 77 and 75 are contained in H. It is therefore suffi-
cient to show that H contains elements that are dense in T and T5, resp.
Fortunately, a maximal torus contains quite a lot of dense elements, as the
following (well-known) lemma demonstrates.
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Lemma 4.2.6. Let G be a linear algebraic group over the algebraically closed
field K. Let T < G be a torus of G. Assume that there exists an element
s € T such that x(s) # 1 holds for all non-trivial characters x € X*(T).
Then s generates a dense subgroup of T .

Proof. Let S < T be the closure of the cyclic group generated by s. Its
coordinate ring K[S] is a quotient space of K[T]. As T is diagonizable, its
characters X*(T') form a K-basis of the coordinate ring 7" (see [Spr09, Thm.
3.2.3]). Let x, X' be two distinct characters of T. Then x !y’ is non-trivial
and thus x(s) # x/(s), by assumptions. It follows that X*(7T') injects into
X*(S) via restriction. As S is also diagonizable, we have that its characters
form a K-basis of K[S]. In particular, the basis X*(7T") of K[T'] projects on
a system of linearly independent elements in the quotient space K[S]. It
follows that K[S] = K[T] and thus S = T holds. O

Example 4.2.7. Let G = SL3g and T the diagonal torus inside G. Its charac-
ters are generated by the standard characters x1 and xo that project diagonal
matrices on the first or second diagonal entry, resp. Then a diagonal ma-
triz s = diag(A1, A2, (A A2)™1) generates a dense subgroup of T if for all
(e1,e2) € Z2\{(0,0)} we have X' x52(s) # 1, that is, if A{'A\5? # 1. Over C,
any element s = diag(p1, p2, ﬁ) with distinct prime numbers p1 and py is

thus dense in T'. Similarly, over I, (t), every element s = diag(p1, p2, prz)
with coprime polynomials p1,p2 € F[t] generates a dense subgroup of T'.

4.3 Generating Split Reductive Groups

We proceed with another application of Proposition 4.2.2 leading to a re-
sult on generating arbitrary connected reductive linear algebraic groups in
positive characteristic.

Theorem 4.3.1. Let G be a connected and reductive linear algebraic group
defined over ;. Assume further that G splits over I, i.e., there exists a
mazimal torus T of G that is defined over I, and splits over IF,. Let 'H
be a closed subgroup of G defined over Fy((t)) that contains T for some
A € G(F,+1tF,[[t]]) and such that every g € G(F,) occurs as the constant part
of an element inside H(F,[[t]]). Then H = G. In particular, < T, G(F,) >
is dense in G for any A € G(F, + tF[[t]]).

Proof. By Proposition 4.2.2 (applied to K1 = Ky = F,), it is sufficient to
show that for any g € G(IF,), there exists an element h € H(F[[t]]) with
constant part g.

As the constant part Ay of A is contained in G(F,), the maximal torus
T4 is defined over F, and also splits over F,. Let ®(G,T4°) denote the
set of roots with respect to 740 and for a € ®(G,T40), let U, be the root
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subgroup corresponding to a. Since T4¢ splits over [, all root subgroups
are defined over I, and we moreover have isomorphisms

U : Gg — U,

defined over T, for all a € ®(G,T4°) (see [Bor91, V.18.7] for a proof). Now
G is generated by T4 together with all root subgroups (see [Spr09, 8.1.1])
and as all of these are defined over F, C F;, we obtain

GF) = <TY(F),Ua(F) | acd(G,T) >
— < T(E)",Ua(F) | a€D(G,TY) >

Let now g be contained in G(F,). Then there exist an r € N, roots
at,...,a, € ®(G, T4) (not necessarily pairwise distinct), sq,...,s, € F, as

well as z1,..., 2,41 € T (L) such that g can be written as

A A
g =21 Ua, (s1) - xfouar (sr)@7 9y
Any root a € ®(G, T4) is a non-trivial character a: T40 — G,,, hence it is
surjective. As uq(0) = 1 holds for all a € ®(G, T40), we may assume that all
$1,..., Sy are contained in [, so there exist elements yfo, oy yfo e 7o ()

(that is, y1,...,y, are contained in T'(I;)) such that
si = ai(y)
for 1 < ¢ < r. The root subgroup isomorphisms u, are subject to the
relation
ua((y)s) = ua(s)
for all elements y in the maximal torus and field elements s. Therefore, we
A
have uq,(s;) = uai(ai(yle) 1) = uq, (1)% ’for all 1 <i<r and thus

g = 210 (y1) g, (V)i - - 20 (yA0) "Lu,, (1)ydoaido,.

As all isomorphisms u,, are defined over [, we have uq,(1) € G(I,;) for all
i < r. By assumptions, there exist elements hy, ..., h, € H(F[[t]]) such that
the constant part of h; equals uq, (1) for 1 < i <r. Now consider

he=af ) byt 2t o) T heytat ) € HEE ().

It is immediate from the second part of Lemma 4.2.1 that the constant part
of h equals g (recall that z; and y; are contained in G(F,)). Hence H = G
holds.

As a special case, let H C G be the Zariski closure of < T4, G(F) > As A
is contained in G(T,((¢))), we deduce that T4 UG(F,) is a closed subset of G
defined over F,((t)). Therefore, H is defined over F,((t)) as well (see [Bor91,
1.2.1(b)]). Hence H conforms to the assumptions made in this Theorem,

and H = G follows. O
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4.4 Conjugacy over Power Series

In the previous sections, we found maximal tori such that any G(F,+t-F,[[t]])-
conjugates generate the given classical group G. The lower bound criterion
Corollary 3.3.11 provides us with G(IF,[[t]])-conjugates of certain elements
that are contained in the Galois group. Therefore, we have to descend from
G (,[[t]])-conjugacy to G(F, + ¢ - F,[[t]])-conjugacy.

Lemma 4.4.1. Let G be a linear algebraic group defined over IF,. Let g,h
be two semisimple elements in G(I;) and assume that the centralizer of g
is connected. If g and h are conjugate over G(F,) then they are already
conjugate over G(IF,).

Proof. Let x € G(F,) be such that g* = h. As g and h are both F,-rational,
we have

9" = h = dg(h) = ¢(g)%") = g%(*).

Hence gi)q(x)x_l is contained in the centralizer C of g. By assumptions, C is
connected and it is defined over [f,. Hence we can apply the Lang isogeny to C
to get an element y € C(F,) with ¢,(y)y~t = ¢g(z)z~1. It follows that y 1z

is contained in G(IF;) and as y and g commute, we have h = ¢* = gy_l"” . O

Remark 4.4.2. In case G is a reductive, connected linear algebraic group
such that the commutator subgroup G' is simply-connected, all centralizers
of semisimple elements are connected (see [Car85, 3.5.6]).

Proposition 4.4.3. Let G < GL,, be a linear algebraic group defined over
F,. Let g,h be contained in G(F, +t - F,[[t]]). Assume that g is contained in
a mazimal torus T' of G that is defined over [, and that the centralizer of
the constant part go € T(F,) of g equals T. If g and h are conjugate over
G(F,[[t]]) then they are already conjugate over G(F, + t - F,[[t]]).

Proof. Let A € G(F,[[t]])) be such that g4 = h. As G is defined over F,, the
constant part Ag of A is contained in G(F,) (by Lemma 4.2.1, a)). Similarly,
g and h are contained in G (F,+t-F,[[t]]), so their constant parts go and hg are
contained in G(F,). Then g4 = h implies 9640 = ho (see Lemma 4.2.1, b)).
Now Lemma 4.4.1 (and its proof) implies that there exists an element y in
the centralizer C of gy inside G(F,;) such that y~1 Ag is contained in G(F,). By
assumptions, C =T, so y € T(E). We conclude that y also commutes with
g. Hence h = g% = gyflA holds. The constant part of y~!1A equals y~ !4y

which is F,-rational. Hence h and g are conjugate over G(F, +t - F[[t]). O



Chapter 5

Applications

5.1 Our Fields of Definition

We keep up the notation set up in Chapter 2, but make further specifications
that will be effective throughout Chapter 5.

(k7¢q>

(K7 ¢q)

(KA{t}, )5 (Ly &)

(Fa gbl])

k = [, (s) with the ordinary Frobenius homomorphism
Oq: Fq(s) — ]Fq(s), T +— x4,

on k, |- | is the s-adic absolute value [;(s) — R,

0# f s (%)”S(f), where vs(f) € Z denotes the s-adic
valuation of f.

K denotes the completion of the algebraic closure of the
completion of (k, | -|); an algebraically closed field that
is complete with respect to the unique extension of || to
K. Again, ¢, is the ordinary Frobenius homomorphism
on K.

are as defined in Chapter 2, with respect to |- | and K
as above. In particular, L C K ((t)) is a difference field
with field of constants C, = F,(¢).

the base field of our difference modules: F' = F,(s,t)
with ¢g4(s) = s? and ¢,4(t) = t. The field of constants
CF equals F,(t).

5.2 Auxiliary Material

We would like our Galois group schemes to be (geometrically) reduced, so

we will have to ensure that the Picard-Vessiot extensions are separable (see

Theorem 1.3.10). The Picard-Vessiot extensions constructed will eventually
p—— S

be contained in F,(s) "((t)) which is separable over [, (s)(t) by the following
Proposition, where we prove the statement for the slightly more general case

F,(s) with s = (s, ..

., 51) finitely many algebraically independent elements.

63
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Proposition 5.2.1. Fq(g)sep((t)) is a separable field extension of Fy(s)(t).

Proof. By [Mat89, 26.4], it suffices to show that F,(s)" ((t)) and (F,(s)(t))"/?
are linearly disjoint over F,(s)(t). Now (F,(s)(t))"/? is a finite extension of
F,(s)(t) with basis

{51 sYPEIP e = (e1,... ) € {0,1,...,p—1}, f € {0,1,...,p—1}}.

We have to show that these elements are linearly independent over F, ()" (1))

Assume they are linearly dependent, so there exist elements a(. r)(t) €
F,(s)" "((t)) such that

2. agp(t)(s7 ... s PP =0 (5.1)
(e,f)e{0,...,p—1}1+1 B

is a non-trivial combination of zero. After multiplying by a suitable power
. . — Y
of ¢, we may assume that all a( r)(t) are contained in F,(s) "[[t]] and at

least one of them is contained in Fq(g)sep[[t]]x. We now take both sides of
Equation (5.1) to their p-th powers and get

Z sThos)! (a(e,0)(1)F + Z s{! ...sfl(a(gl)(t))pt
ee{0,...,p— 1} e€{0,...,p— 1}

o Z s sle‘(a(gp_l)(t))ptp_l =0. (5.2)
e€{0,...,p—1}!

Now the first sum is a power series in tP over Fq(g)sep, the second sum is a
power series over Fq(g)%p where only tP*1-terms occur (i € N) and so on.
We conclude that every single sum in Equation (5.2) equals zero. Now let

—— S

0 <i < p—1 be such that a(;(t) is contained in [F,(s) Pl for some e.

Then ‘
Z Sil NN Slel (a(g,i) (t))ptz =0
e€{0,....p—1}!
holds, as we just saw and we can divide by ¢'. The resulting power series on
the left hand side has constant term

> (st s1')af, 0 =0

e€{0,....p—1}!

where one of the a( ;) o is non-zero (a(,) o denotes the constant term of
(e, (t)). Taking the p-th root on both side, we thus get a non-trivial linear

combination of {(s* -+~ s7)'/P | e = (eq,...,e) € {0,1,...,p—1}'} equalling
>sep.

zero, which means that these elements are linearly dependent over F,(s
But {(s§* - s/)/P | e = (e1,...,e;) €{0,1,...,p—1}} is a basis of F,(s)'/?
over Fy(s), so Fy(s)" " and F,(s)'/? are not linearly disjoint over F,(s), a
contradiction to the separability of [, (s)°"" over I, (s). O
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Proposition 5.2.2. Let F be a field. Let A, B € GL,,(F[[t]]) have the same
characteristic polynomial and assume that their eigenvalues Ai,... )\, are

contained in F[[t]] with pairwise distinct constant terms A1, ..., Apo € F*.
Then A and B are conjugate over GL, (F[[t]]).

Proof. Note that A and B are diagonalizable over F((¢)) since their eigen-
values are pairwise distinct. Hence there exist C,C' € GL,(F((t))) with
C~1AC = diag(\1,...,\n) = C7'BC. By multiplying C' from the right
with diag(t',...,t°") for suitable ej,...,e, € Z we may assume that all
entries of C' are contained in F[[t]] and that at least one entry in every col-
umn is contained in F[[¢]]*. We claim that C is contained in GL,,(F[[¢]]).
Write C' = >332, C;t* for some C; € M,,(F). Then Cj has a non-zero entry
in every column. We have to show that Cj is contained in GL,(F). Note
that AC = C'diag(Ai, ..., \,) implies AgCy = Cpdiag(Ai 0, ..., An0), where
Ap € GL,(IF) denotes the constant coefficient matrix of A. Hence the i-th
column of Cjy is an eigenvector of Ay with respect to A;o. As all these eigen-
values are pairwise distinct, the columns of Cj are linearly independent.
Similarly, C' can be transformed to a matrix inside GL,, (F[[t]]), hence A and
B are conjugate via CC~! € GL,(F[[t])). O

5.3 The Method

5.3.1 How to Choose the Representing Matrix

Given a difference module M over F' with representing matrix D (such that
there exists a separable Picard-Vessiot extension), we know that the Ga-
lois group contains conjugates of all permissible specializations of D, by
Theorem 3.3.10. On the other hand, Theorem 4.2.5 provides elements that
generate a given classical group G even after certain conjugations. So the
question is: How to choose a representing matrix D that allows sufficient
specializations?

(Of course, D has also to be chosen in such a way that there exists a sepa-
rable Picard-Vessiot extension for M and such that we can apply the upper
bound Theorem 3.2.4. All these issues will be dealt with in the next para-

graph.)

We start with a Theorem due to Steinberg, a proof can be found in [Ste65,
Theorem 1.4]. We note that the Steinberg cross section X¢ (as introduced in
the following theorem) has already proved useful to construct polynomials
over [F,(s) with finite classical Galois groups (see [AM10]).

Theorem 5.3.1 (Steinberg). Let G be a semisimple linear algebraic group of
rank r over an algebraically closed field. Let T be a maximal torus of G and
fix simple roots {c; | 1 < i < r} with respect to T'. For each i, let X; denote
the root subgroup with respect to «; and fix elements wy, ..., w, € Ng(T)
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corresponding to the reflections relative to aq, ..., o,. Set Xg = [[i—; X;w;.
If G is simply-connected, then Xg is a cross section of the collection of reqular
classes in G. In particular, Xg contains an element in every semisimple
regular conjugacy class.

Remark 5.3.2. In case G splits over I, it follows from [Ste65, Theorem
9.2] that Xg is defined over , (for a suitable choice of X; and w;).

Example 5.3.3. For G = SL3 we let T be the diagonal torus with standard
characters x1,x2 and x3. We choose the simple roots a; = xlxgl and
Qg = nggl. Then the Steinberg cross section is easily computed to be

fi f2 1
Xs,={| 1 0 0| | fi,fe}
0 1 0
If we want to construct a difference module with Galois group SLs, it would
fi o1
be a good choice to start with a matriz Dy, r,y == | 1 0 0 | where fi
0 1 0

and fo have to be chosen inside F in a suitable way.

In general, let z;: G, — U,, be isomorphisms of the additive group onto
the root subgroups. As all classical groups split over [,, we can choose a
split maximal torus 7" (the diagonal torus) and isomorphisms z; defined over
[F,. Then we let

Dgy.py = ri(fo)wr ...z (fr)wr € GE(fr,.. . fr)

be a “generic element” of the cross section. The elements fi,...f, will
be chosen inside F' in a suitable way. Consider specializations s — a €
F,. Assume that fi,...f, € F = F,(s,t) have been fixed and that they
specialize to elements fy,..., f, € F,(¢) (i.e., no coefficient of f; € F,(s)(t)
has denominator divisible by (s — «), for 1 < ¢ < r). As the entries of D
are polynomials in f1,..., f; over [}, we have that Dy, ;) specializes to
D3, .7 an element in the cross section over F,(t). Now Theorem 5.3.1
asserts that

{D(fh_,_jT) ‘ flv s 7fr € E](t)}

contains elements in every regular conjugacy class of G (m) Hence the
elements {f1,..., fr} have to be chosen in such a way that they specialize
to the finitely many sets of {f;,..., f,.} corresponding to conjugates of the
desired generators. Of course, here we have to check that these {f;,..., f,}
provided by Theorem 5.3.1 are actually contained in F,(¢) and not just in
[F,(t). Another issue is that not all of the groups treated later on are simply-
connected (SO, is not), so Theorem 5.3.1 doesn’t apply. However, this
doesn’t affect us much as we won’t actually apply the theorem but only use
it as starting point how to choose the matrix D.
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5.3.2 An Outline of the Procedure

So far, we have worked out different tools as to construct separable Picard-
Vessiot extension with predetermined Galois group. We now give a quick
overview of how these tools will be combined in our applications to classical
groups.

Given a classical group G of rank r, proceed as follows:

(1)

(2)

Determine the Steinberg cross section Xg and start with a generic
matrix D(fl,...,fr) € Xg(IFq(fl, o fr)-

Choose f1,..., fr € F' =, (s)(t) such that D, . ) can be specialized
(via specializations s — « € F,) to G(F,[[t]])-conjugates of regular
elements t; € T1(F[[t]]) and t2 € To(F[[t]]) (where the maximal tori
Ty and T are defined in 4.1.7) that are dense in 77 and T3, resp. Dense
elements in maximal tori can be easily determined using Lemma 4.2.6.
The procedure now is to check that the characteristic polynomial of
D specializes to the (separable) characteristic polynomials of ¢; and
ta. It follows that the corresponding specializations of Dy, . ) are
conjugate to t; and to over GL,, (I, ((t))). However, it has to be checked
by hand that they are also conjugate over G(F,[[t]]).

Use Theorem 3.1.3 to get a fundamental solution matrix ¥ € GL, (L)
for the difference module M over F' that is given by Dy, r). In
order to meet the assumptions of this theorem, the elements fi,..., f.
might have to be altered a little bit. This can be done for example by
multiplying certain coefficients of fi,..., f, by terms of small enough
absolute value which do not change anything on the things we arranged
in the previous point. For example, s9~! might be a good candidate
as it specializes to 1 whenever s is specialized to a non-zero element
of F, and it has valuation ()71 < 1.

It follows from Theorem 1.2.11 that E := F(Y) is a Picard-Vessiot
extension for M. Our fundamental matrix Y provided by Theorem
3.1.3 is contained in GL,(E N K[[t]]) and should thus be contained in
GLy,(F,(s)""[[t]]), by Proposition 3.3.3. In particular, E C F,(s)  ((t))
is separable over F' by Proposition 5.2.1. Hence the Galois group
scheme H := Gy, g of M is a linear algebraic group (defined over F,(t)),
by Theorem 1.3.10. Now use Theorem 3.2.4 to obtain that Y can be
chosen inside G(E N K[[t]]). In particular, H is a closed subgroup of G

by Proposition 1.3.11.

As Y is contained in G(K[[t]]), the lower bound criterion 3.3.11 (ap-
plied to k := K) asserts that H contains a G(F,|[[t]])-conjugates of T}
and T (as D specializes to G(F,[[t]])-conjugate of ¢; and ¢y which are
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dense in T7 and T%, resp., and H is a closed subgroup of G). By Propo-
sition 4.4.3, H even contains G(F, + tF,[[t]])-conjugates of T} and T
if t; and t9 were chosen such that the centralizers of their constant
parts consists only of 77 and 75, resp. These conjugates generate G,
by Theorem 4.2.5, so we have H = G.
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5.4 Special Linear Groups

For any elements fi,..., fo_1 € F =F,(s,t), we set

fiooo famr (1)
Difrrfur) = . € SLy(F).
1 0

This is by the way a generic element of the Steinberg cross section of SL,,
with respect to the diagonal torus and the standard set of simple roots and
root subgroups.

It is well known (and easy to check) that the characteristic polynomial of a
matrix of this shape equals

— AXT X+ ()™ (5.3)
Remark 5.4.1. It is straightforward to compute that the equation

D(fl,...,fn,l)qu(Y) =Y

corresponds to the scalar difference equation
( n 1¢n _|_ Z fz(lsz

We proceed with a preliminary Lemma that will enable us to specialize
D(f,....fn_y) to a SLy,(F[[t]])-conjugate of a regular diagonal matrix.

Lemma 5.4.2. Let py,...,p, be elements in F[[t]] such that their product
equals 1 and their constant terms A1, ..., Ay are pairwise distinct. Let further
hi,..., hn—1 € F[[t]] be defined via

n

[IX —pi) = X" = X"" — o — hy 1 X+ (—1)"
i=1

Then D, .. h,_,) and diag(pi,...,pn) are conjugate over SL,, (K, [[t]])-

Proof. By construction, D, . p. ) and diag(pi,...,pn) have the same
characteristic polynomial (see (5.3)). Note that all p; are invertible in-
side [ [[t]], since their product equals 1. By Proposition 5.2.2, there ex-
ists a C € GL,(F[[t]) with D(C;Zl hyy = diag(p1,....pn). Then B :=

C - diag(det(C)~1,1...,1) is contained in SLn(F[[t]]) and Dy, 5,y and
diag(pi,...,pn) are conjugate via B.
O
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5.4.1 Dense Elements in 77 and 715

Recall that we fixed maximal tori 77 and 75 inside SL,, that are defined over
F,. These were defined in 4.1.7 as T; = Tgi, where Ty denotes the diagonal
torus inside SL,, and g; are contained in SL,(F,) such that g;¢,(g:)~" = w;
holds, where w; and ws were defined in Chapter 4 to be monomial matrices
inside SLy,(F,;) corresponding to the permutations

o1 = (1,2,...,n)
oa = (1,2,...,n—1).

Proposition 5.4.3. Letn > 2 and assume (n,q) # (2,2) and (n,q) # (2,3).
Set

G €Fgn primitive (¢" — 1)-th root of unity
(2 € Fpna primitive (¢"~! — 1)-th root of unity
7—1
AR

ER [, 1<i < ;= .
pi qH(t) TSNP e 2

PRty 1<i<n |pr:=t+C, pr=t+{],..., Pp_1:=t+CF
P = (Pr- Pn1)”"

t t1 := diag(p1, ..., pn)%

to to 1= diag(ﬁl, e ,ﬁn)gz

Then for i = 1,2, t; is contained in T;(I[[t]]) and the centralizer of its con-
stant part equals T;. Moreover, t; generates a dense subgroup of T; (i =1,2).

Proof. First of all, note that diag(ps,...,p,) and diag(pi,...,pn) are both
of determinant one, so they are contained in 7. The constant parts of the
numerators and denominators of all p; and p; are non-zero hence p,...,p,
as well as pi,...,p, are contained in F,[[t]]*. Therefore, diag(pi,...,pn)
and diag(p1, ..., Pn) are both contained in Ty(F,[[¢]]) which implies that ¢;
and to are contained in Ty (F,[[t]]) and T2(F,[[t]]) (as g1, g2 € SLn(F,)).

Note that ¢¢(p1) = p2. .- ., Sg(Pa1) = Dns dg(pn) = p1 holds, as ¢f = ¢;.
Hence

. . —1
bo(t1) = diag(pa,...,pn,p1)?19) = diag(p2, ..., pn,p1)*r
= diag(p1,...,pn)? =t1.

Similarly, ¢q4(t2) = t2 holds, as ¢¢(p1) = P2, - - ., @g(Pn—1) = P1 and ¢¢(Pn) =
Pn. Hence t; is contained in T;(I[[t]]) for i =1, 2.

Now the constant part of ¢; equals
n—1

. Cl Cq . 1— _q2 n—2_ n—1 n—1_1
t10 :dlag(fq,...,lcil)gl = diag(¢, 9, ¢, T ] )9t
1

-1
As (; is a primitive (¢" — 1)-th root of unity, all entries of tilo are pairwise
distinct which implies that only diagonal matrices can commute with it and
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so the centralizer of t1 o equals T§' = T3.
The constant part of ¢ equals

. n-2 1 _g—.—q"2
t2,0 = dla‘g(c27 Cg7 cee C2q » 52 I I )92

qn71—1

n—2 -
= diag((s, Cg, e ng , G e

n—1_
As (y is a primitive ("1 —1)-th root of unity, all elements (o, (2, ..., ¢4 ~*

. . . . . n_2 . . . .
are pairwise distinct. In particular, {3,(4,...,{] = are pairwise distinct and

every single one of them is a primitive (¢" ! — 1)-th primitive root of unity,

qn—171

while ¢, ' is contained in ;. Thus all entries of tg?ol are pairwise dis-
tinct in case n > 3. If n = 2, we have too = diag(Ce, (5 1)%? and G # (5
since we assumed (n,q) # (2,3),(2,2). We conclude that the centralizer of
120 equals T5.

It remains to show that ¢; generates a dense subgroup of T; for ¢ = 1,2.
-1

For ¢ = 1,2, t; generates a dense subgroup of 7; if and only if tfi gen-
-1
erates a dense subgroup of Tigi = Ty which is the case if and only if no

-1

non-trivial character of Ty maps tfi to 1, by Lemma 4.2.6. Any character
of Ty is of the form xi'...x; ' for an (eq,...,en—1) € Z" !, where y; de-
notes the projection on the i-th diagonal entry. Assume that X(tglil) =1,
ie. 1= x(diag(p1,...,pn)) = p*...py" . By definition of py,...,py,, this
implies

(4 G (E 4 C)2 e (E4 0 etz (7)o = 1 (5.4)

Now F,[t] is a factorial ring and the factors (¢ + Cfl) are pairwise coprime for
0<i<n-—1,as( isa(¢"—1)-th primitive root of unity. We conclude that
Equation (5.4) can only hold for e; = --- = e,_1 = 0, hence t; generates
a dense subgroup of Tj. Similarly, to spans a dense subgroup of 75, as
D1, Pn—1 are pairwise coprime polynomials in F,[t]. O

5.4.2 A Difference Module for SL,

The aim is now to define suitable fi,..., fo—1 such that D¢y ;) gives
rise to a difference module with Galois group scheme SL,.
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n n>2
q prime power such that ¢ # 2 and (n,q) # (2, 3)
a a fixed element in FF\{1} (e.g. a = —1if ¢ is odd)
G €Fgn primitive (¢" — 1)-th root of unity
G2 € Fgn primitive (¢"~! — 1)-th root of unity
G .t _

pi € Fq[t](t) p1:= trcd p2 = H_ng,..., Pn = gy

o n—2
pi €[ty |Pri=t+C, p2i=t+0,. .., Poo1:=t+C
ﬁn = (ﬁl e 'ﬁn—l)il
n n—1 .
hi € Fq [t](t) defined via H (X — pi) = X" — Z han_Z + (fl)n
i=1 =1

>

n n—1 . .
i € F[t]py | defined via il;ll(X —pi)=X"— Z;I hi X0 4 (=1)"

aij, bij € F, | coefficients of h;: h;(t) = =0t bio # 0 for all i

n Y
j=0 b”tJ

~ ~ 2n—2 aiitd  ~ .
aij,bij € By | coefficients of h;: hi(t) = ﬁ; big # 0 for all 4
j=0 Vi

S no ai-tj .
HZEFq(t,S) Hl:lw%%’ IS’LS’I’L—l

i eF, [ Vi L I
i € q(tvs) i'—m, <:1<n-—

v

fieF fi=31=gHi+

—Q

L, 1<i<n-—1

«

—

Table 5.1: Definition of fi,..., fn—1.

Note that h; and h; are contained in I, [t]+) by the choice of ¢;. Indeed,
h; are the coefficients of the characteristic polynomial of ¢1 € T1(I[[t]]) as
in Proposition 5.4.3 and similarly for h;.

Theorem 5.4.4. Assume q > 2 and n > 2 such that (n,q) # (2, 3).
Let M = (F™,®) be the ¢q-difference module over F' = F,(s,t) given by
Dy,.....fn_1), where fi € F' are as defined in Table 5.1. Then there exists a

———

Picard-Vessiot ring R C Fy(s) "(t)) N L for M such that R/F is separable
and the Galois group scheme Gy g of M with respect to R is isomorphic to
SLy, (as linear algebraic group over Fy(t)).

Proof. We abbreviate D := Dy, ). Let O C K denote the valu-
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ation ring corresponding to | - | with maximal ideal m C O),. All non-
constant coefficients of the numerators and denominators of H; and f]i
(1 < i < n—1) are contained in m and the constant coefficients of the
denominators are contained in Y C O‘ﬁ, so it follows from Lemma 3.1.4

that all H; and H; are contained in O,[[t]] and their j-th coefficients can
be bounded by §’/ for a suitable § < 1. Hence the same is true for all
fi, 1 <i<n—1. We conclude D = Y72 Ditt € SL,(O)([[t]) satisfies
|Dy|| < 6 for all [ € N. By Theorem 3.1.3, there exists a fundamental
solution matrix Y = 2900 Vit! € GL,,(L N K[[t]]) satisfying ||Y;|| < &', i.e.,
Y € My (O} {t}). Let E = F(Y') be the field generated by the entries of Y.
Then E C L, hence Cp = Cr and R := F[Y,Y '] C E is a Picard-Vessiot
ring for M by Theorem 1.2.11.

Consider 0 := O Nk = Fjs],) and O := O N E°P (with respect to a
fixed embedding of ° = F,(s)" " into K). Let p = (s) denote the maximal
ideal inside 0. Then o/p = F,. Therefore, 0 and O conform to all assump-
tions made in 3.3.1 hence we can apply Proposition 3.3.3 ¢) (with k := K)
to conclude that Y is contained in GL,,(O[[t]]). In particular, all entries of Y’
are contained in Wep((t)), hence R/F is separable by Proposition 5.2.1.
Also, Y is contained in GL, (O [[t]]) "M, (O.[{t}), so we may assume that Y
is contained in SL, (LN K[[t]]), by Theorem 3.2.4. Indeed, O)/m =F, C K,
D e SLn(OH[[tH) and /{H(D) = D(07.__70) € SLn(Fq) - SLn((’)H/m) (the lat-
ter follows from k.| (H;) = /ﬂ.|(f~Ii) =0foralli<n-—1).

We conclude that the Galois group scheme H := Gy g of (M, ®) is a lin-
ear algebraic group (see Theorem 1.3.10) defined over F,(¢) that is a closed
subgroup of SL,, (see Proposition 1.3.11). We will now use the lower bound
criterion 3.3.11 to show that H is all of SL,,.

Consider p; = (s — 1) C 01 := F[s](s_1) and pa = (s — @) C 02 := F[s](5_a)-
Then o0; and oy are valuation rings inside k = F,(s) with o1/p; = [, and
09/p2 = F,. Fix extensions (O, P;) of (0j,p;) to k™" =F,(s)" " (j = 1,2).
These valuation rings conform to all assumptions made in 3.3.1 and we
may thus apply the results from Section 3.3. Note that H; € o;[[t]] for all
1 <i<n-—1,j=1,2since the numerators are contained in o;[t] and the

denominators are contained in o;[t] with constant coefficient by € Fy C ojx.
Similarly, all H; and thus all f; are contained in o;[[t]]. Hence D is con-
tained in SLy,(0;[[t]]) for both j = 1,2. Therefore, we can apply Corollary
3.3.11 (with G := SL, and k := K) to conclude that H(F,[[¢]) contains
SL,, (F[[t]])-conjugates of k1(D) and ro(D), where r;: o;[[t]] — F,[[t] de-
notes the coefficient-wise reduction mod p;.
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Specializing s +— 1 maps f; to h; (1 <i <n—1), thus k1(D) = D, .

n—l)'
Similarly, ko(D) = D(ﬁ1,...,fzn_1) as specializing s — « maps f; to h;. Set

dy = diag(p1,...,pn)
dy := diag(pi,...,Pn)-

and t; = df*, to = d* with g1,¢92 € SL,(F,) as in Proposition 5.4.3.

The constant parts of p1,...,p, are pairwise distinct by Proposition 5.4.3,

hence r1(D) is conjugate to dy over SL, (F[[]]), by Lemma 5.4.2. Similarly,

k2(D) is conjugate to dy over SL,, (F[[t]]). It follows that H(F,[[t]]) contains
-1 1

SL,, (T [[t]])-conjugates of d; = t{* and dg = t{> . Therefore, H(T,[[t]]) also
contains SLy, (F,[[t]])-conjugates =1 and x5 of t; and ty which are both con-
tained in SLy, (I,[[t]]) (see Proposition 5.4.3). By Proposition 4.4.3 together
with Proposition 5.4.3, there exist A; and As contained in SLy, (F, + tF,[[t]])
with z; = tfj (j =1,2). Now H is a closed subgroup of SL,, and ¢; and ¢y
generate dense subgroups of 77 and T» by Proposition 5.4.3, so H contains
< T, T35 >. For n > 3, Theorem 4.2.5 implies < T{, T5'2 >= SL,,,
hence ‘H = SL,,.

In case n = 2, we either have < T7 Ty >= SLy or < T/, T4 > is
solvable (since < TlA1 , TQAQ > is connected and every two dimensional Lie al-
gebra is solvable). Assume that < T, T5* > is solvable. Then there exists
a C € GLa(F,((t))) such that < TlAl,TQA2 > is contained in Bs, the group
of upper triangular matrices inside SLs. Note that up to conjugacy over
SLy(F,), T> equals the diagonal torus T inside SLg since o9 € Sy is trivial
in case n = 2. By multiplying As from the left with a suitable element in
SLy(F,), we may assume 75 = T and conclude that TGAZC is contained in Bs.
Hence T6420 is a maximal torus of Ba, so there exist a b € Ba(F,((t))) such
that T 64 2C = Té’ . Therefore, ACb~! is a monomial matrix inside GLy and
can thus be written as AoCb™1 = wty for a monomial matrix w € SLa(F,)
and a diagonal matrix tg € GLa(F,((t)). Hence C' = A; 'wtob and it follows

“loy : bt . A1 A
that < T1‘41,T2A2 >42 ¥ is contained in B, ° = By. In particular, t; 2

is contained in Bs, and as Ay, Ay € SLo(F, + tF[[t]]), w € SLy(F,) and
—1 .
t1 € SLa(IF[[t]]), we conclude that tflAz ¥ is contained in Ba(F, + tF,[[t]]).

-1
It follows that the constant part of tflAz “ is contained in B2 (F,). Now

the constant term of tflAQ w is conjugate to the constant term of ¢; (see
Lemma 4.2.1 b)) and the constant term of ¢; equals diag(¢ %, ¢; T9)9 (see
the proof of Proposition 5.4.3). Hence Bz (F,) contains an element of order
q + 1 since (; is a primitive (¢? — 1)-th root of unity. This contradicts the
fact that the order of Ba(IF;) equals ¢ - (¢ — 1). O

Remark 5.4.5. We have to assume q # 2, since otherwise there are only
two possible specializations s — 1 and s — 0 and the latter would only
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give us an element of finite order (as D has to specialize to an element in
GL,(F,) to conform to the assumptions of Theorem 3.1.3).
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5.5 Symplectic Groups

In this section we let n = 2d be even and consider the symplectic group
G = Spyy with respect to the symplectic form given by

-1

For any elements fi,..., fq € F =F,(s,t), we set

fi oo faer fa |1
1
1 0
D(fl,...,fd) = fa1]0 1
fi |0 1
-1 10 0

It is easily seen that Dy, is symplectic (in fact, it is a generic element
in the Steinberg cross section of Spy; with respect to the diagonal torus)
and its characteristic polynomial equals

d—1 d—1
g(X) =X 3" fx% XN X+ (5.5)
i=1 -1
(A proof can be found in [AM10, 4.2.]).

5.5.1 Specializations of Dy, . )

Recall that the diagonal matrices contained in Spy,; are exactly those of the
form diag(\q, ..., Aq, )\51, R /\1_1) for non-zero elements A1, ..., \¢q. The co-
efficients of the characteristic polynomial of such an element are palindromic
in the following way:

Lemma 5.5.1. Let F be a field and let M1, ..., q be non-zero elements in
F. Consider the diagonal matriz

A= diag( i, .., A Mgt AT € SLgg(TF).
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Then the characteristic polynomial of A is of the form
X%y X2 gy XM Xt ag X g X+ 1
for some ay,...,aq € F.

Proof. Let a; € F denote the coefficient of X in the characteristic polyno-
mial of A, for 1 <i < 2d — 1. We have to show that

a; = A2d—;

holds for all 1 < i < d — 1. Now (—1)a; = (—1)*"%q; is the sum of all
products of 2d — i elements out of Ay,..., Ay, )\;1, e )\1_1. By multiplying
by 1 = A- ~)\d)\;1 . --)\fl, it is easy to see that this is also the sum of
all products of i elements out of \1,..., Ay, )\;1, cee )\1_1, that is, (—1)'a; =
(—1)agq_i, so we have a; = agq_;. d

X

Lemma 5.5.2. Let p1,...,pq be elements in F[[t]]* such that the constant
terms of p1,... ,pd,pgl, . ,pfl are pairwise distinct elements in ¥ . Let
hi,...,hq € F[[t] be defined via

d d—1 d—1
[1(X —p)(X —pit) = X2 = 3" X2 - pyX = 3" X'+ 1. (5.6)
i=1 i=1 i=1
Thenp(hl,-~-7hd) and diag(p1, .. . ,pd,pgl, ... ,pl_l) are conjugate over
Spaa(Fy[[t]])-

Proof. We abbreviate G = Spyy. The elements hy, ..., hy exist inside F,((t))
by Lemma 5.5.1, and as they are constructed as sums of products of the
elements p1, ... ,pd,pgl, .. ,pl_l, they are also contained in [F[[t]].

By the choice of h; together with Equation (5.5), the characteristic polyno-
d

mial of Dy, . pn,) equals [T (X —p;)(X —p; 1) and is thus separable. Hence
i=1

D,.....hy) 18 a semisimple element of G(I,(())). It follows that there ex-

ists a maximal torus 1" containing Dy, . 5,)- All maximal tori of G(F,((%)))

are conjugate, hence there exists an element g € G(I,((¢))) such that 79
equals the diagonal torus Ty inside G. It follows that tg := D(gh1 ha) is di-

agonal. We relabel p1, ... ,pd,pgl, e ,pfl as P1, ..« ,Dd,Pd+1s - - - s P2qg- Then
P1,--.,P2q are the 2d pairwise distinct eigenvalues of tg. It follows that
there exists a permutation o € Syg such that to = diag(ps(1);-- -, Po(24))

holds. Now ¢ is symplectic, so we have p, ;) = p;(12 d+1—3) forall 1 <i<d.
On the other hand, p1,...,poq are pairwise distinct and p; = p;dlﬂ_i holds

for all 1 < i < d. It follows that o(2d +1 — i) = 2d + 1 — o(i) holds for
all 1 <4 < d. Therefore, o gives rise to a symplectic permutation matrix
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A, € G(F,), by Lemma 4.1.5. By multiplying g with A! from the right, we
may assume that ¢y equals diag(py, . .. ,pd,pgl, P,

So far, we have seen that there exists a g € G(F,((¢))) satisfying D(gh17-~~7hd) =

diag(pl,...,pd,pgl,...,pl_l) =: tg. We would like to show that g can
be chosen inside G(E[[t]]). Proposition 5.2.2 implies that there exists a
C € GL,(I[[t]) with D(C;n,...,hd) = diag(p1, . .. ,pd,pgl, .., prY) = to, since
Ply .- ,pd,pgl, . ,pl_1 have pairwise distinct constant terms. Hence C g
is contained in the centralizer of ¢y inside GL,, which only consists of di-
agonal matrices (since the diagonal entries of ¢y are pairwise distinct). Let
Ti,...,Toq € IF};,((IE))X be such that g = C - diag(x1, ..., z24) holds.

By multiplying g from the right with diag(zagq, . .., 2411, $g_|1_1, e x;dl) €
G(F,((t))), we may assume that C' = g - diag(a,...,aq4,1...,1) holds for

some elements a; € Fq((t))x. We now use that g is symplectic to compute

tr

c JC = diag(al,...,ad,l...,1)gtrJgdiag(a1,...,ad,l...,l)
= diag(ay,...,aq,1...,1)Jdiag(a,...,aq,1...,1)

—o

_ad

aq

aq

so all entries of C""JC away from the “reversed diagonal” (by which we
mean the (i,2d + 1 — i)-th coordinates, 1 < i < 2d) are zero, that is, C is
already quite close to being symplectic. Equation (5.7) implies that all «;
are contained in F,[[t]], as all entries of C' and J are. On the other hand,
g has determinant 1 (as Spyy; < SLog), so C = g - diag(aq,...,aq,1...,1)

implies oy - - - ag = det(C) € F[[t]]*. Hence ay,...,aq are all contained in
F,[[t]*. Tt follows that all entries of g = C - diag(ay !, ..., a5, 1,...,1) are
contained in F[[t]], thus g € G(F,[[t]]). O

5.5.2 Dense Elements in 7 and 715

Proposition 5.5.3. Let n = 2d > 4 such that (n,q) # (4,2). Let Ty < Spyg
be the diagonal torus and let Ty = T§" and To = T§> be the mazimal tori of
Spog defined over I, as in Definition 4.1.7. Consider
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G €Fpa primitive (¢>% — 1)-th root of unity
G EF. primitive (¢¢ — 1)-th root of unity

d—T1
pi €Fltl, 1<i<d| p:= %, 2 1= %7 ooy Pd = :_rgqu
ﬁZGE[t](t)71SZ§d ﬁ1::t+427 ﬁQ::t+C§7"'7ﬁd::t+<2qd71
t1 t1 = diag(pla"-vpdapd_17'"7p1_1)gl
t2 t? = diag(ﬁla"'7ﬁdaﬁ;1)"'7ﬁl_l)g2

Then t; is contained in T;(I[[t]]) and the centralizer of its constant part
equals T;. Moreover, t; generates a dense subgroup of T; (i =1,2).

Proof. First of all, note that diag(pi, ... ,pd,pgl, . ,pl_l) and

diag(py, . - . ,ﬁd,ﬁgl, e ,]5;1) are both contained in Ty < Spy,. For i = 1,2,
g; is contained in Sp2d(Fq) and p1,...,pq as well as p1,...,pq are contained
in F,[[t]]* (as the constant parts of numerators and denominators are all
non-zero) hence ¢; is contained in T;(F,[[t]]).

Recall that giqbq(gi)_l = w; holds, where wy and wsy were defined in Chapter

4 to be monomial matrices inside Spy,(IF;) corresponding to the permutations

o1 = (1,...,d,2d,...,d+1)
oo = (1,...,d)(2d,...,d+1).

d
Relabel p, ... ,pd,pgl, e ,pl_l by p1,...,p2q. Then CfQ = (1 implies
Gq(p1) = P2, -+, Gq(Pa—1) = Pd, Pq(Pa) = P2d> Pq(P2d) = P2d—1,- - -,
Gq(Pd+2) = Par1, dq(par1) = p1. Hence

¢q(t1) = diag(p27 ---yDPd,P2d,P1,Pd+15 - - - 7p2d—1)¢q(g1)

. -1
= dlag(p01(1)7 s 7p0'1(2d))w1 9
= diag(ps, ..., pn)”

= 1.

Similarly, ¢, (t2) = t2 holds, as ¢, permutes the entries of
diag(p1, - - . ,ﬁd,ﬁgl, e ,]5;1) as indicated by o9. Hence t; is contained in
Ty(F[[]) for i — 1,2.

Now the constant part of ¢; equals

. 1—gd _d+1 d—1_ _2d—1 2d—1_ ,d—1 d_q
tl,OZdlag(l qv(f 1 7"'agf 1 7Cf 1 7"'7Cq )91_
Using that (; is a primitive (¢?? —1)-th root of unity, it is easy to see that all

17qd qd717q2d71 qufliqdfl d_l . . . .
elements ¢; * ,...,(] NG NG are pairwise distinct,

-1
hence only diagonal matrices commute with tilo which implies that the
centralizer of ¢ o equals 77.
The constant part of t9 equals

. -1  _ d—1 _
t2,0:d1ag(<2a<-§7""<g aCQq )""CQ 1)92'



80 CHAPTER 5. APPLICATIONS

As (y is a primitive (¢%—1)-th root of unity, all eigenvalues of t5 o are pairwise
distinct (here we used (n, q) # (4,2)), hence the centralizer of ¢ o equals T5.

It remains to show that t; generates a dense subgroup of T; for ¢ = 1,2.
—1

For i = 1,2, <t;> is dense in T} 1famd0nly1f<7ﬁZ >1SGlense1nTZ =Ty

-1
which is the case if and only if no non-trivial character of Ty maps t‘gi

to 1, by Lemma 4.2.6. Any character of Ty is of the form x{'... x5 for an

(e1,...,eq) € 74, where y; denotes the projection on the i-th diagonal en-
-1

try. Assume that (&' ) =1, i.e., 1 = x(diag(p1,...,Pa, Dy -+ 07 ")) =

Pt ... pg'. By definition of py,. .., pq, this implies

(G ()™ o () ) e (] )7 g )T =L

' (5.8)
Now F,[t] is a factorial ring and (¢ + sz) are pairwise coprime for 0 < ¢ <
2d — 1, as (; is a (¢®? — 1)-th primitive root of unity. We conclude that

Equation (5.8) can only hold for ey = --- = ¢4 = 0, hence t; generates
a dense subgroup of Tj. Similarly, to spans a dense subgroup of 75, as
D1, ..., Dq are pairwise coprime polynomials in I, [¢]. O

5.5.3 A Difference Module for Sp,,

We can now define the elements fi,..., fy € F in a similar way as in the
special linear case:

n n=2d>4

q prime power such that ¢ > 2

a a fixed element in F\{1} (e.g. a = —1if ¢ is odd)

G €EFpua primitive (¢> — 1)-th root of unity

G2 € Fa primitive (¢¢ — 1)-th root of unity

— 144 ¢ g7 T
pi € Fq[t]é) p1 = tt_:_c?dv D2 ‘= %7 cevy Pd = t:élz;z_i
Pi € Rlt]yy | Pri=t+C Pai=t+(3,..., Par=t+(

h; € F, [t](t) defined via H (X —pi)(X — pi_l)
i=1 A
_ X2d glfll h X2d—z h Xd El;ll hin +1
h; € Fy[t]s) | defined via H (X —p)(X —p; Y
=1 ~ .
= X2 — gl:f hi X% — hy X4 — S h X+ 1
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2d i
a;j,bij € F, | coeflicients of h;: h;(t) = %éio Z”tﬂ ; bio # 0 for all 4

aij, Bi_j €F, | coefficients of h;: hi(t) = %J OZ” by # 0 for all 4
j=0 it

H; e F Hy = S 2ai=0%7 Z?do i 1 d
. . = - <<
i € (J(ta S) i biots 2511 byt , ST

~ ~ J
i, € By(t, s) Hi;:M 1<i<d

fielF fi=0H + =L, 1<i<d

Table 5.2: Definition of fi,..., fg.

Note that the elements h; and h; exist inside F, [t] (ty by Lemma 5.5.1 and
they are contained in [F,[t] ;) as they are the coefficients of the characteristic
polynomials of t; € T (F[[t]]) and to € T>(I,[[t]]) as in Proposition 5.5.3.

Theorem 5.5.4. Assume ¢ > 2 and n = 2d > 4.
Let M = (F™,®) be the ¢q-difference module over F' = F,(s,t) given by
Dy, ....1a), where fi € F' are as defined in Table 5.2. Then there exists a

—— &

Picard-Vessiot ring R C Fy(s) "(t)) N L for M such that R/F is separable
and the Galois group scheme Gy g of M with respect to R is isomorphic to
Spagq (as linear algebraic group over Fy(t)).

Proof. We abbreviate D := Dy, . ry. We proceed along the same line as
in the proof of Theorem 5.4.4. By replacing every occurrence of “SL,” and
n — 17 by “Spyy” and “d” in the first three paragraphs of the proof of
Theorem 5.4.4, we conclude that there exists a fundamental matrix Y €
Spag(L N K[[t]]) for M such that R := F[Y,Y 1] is a Picard-Vessiot ring
for M contained in F,(s)" ((t)) (and thus separable over F') and the Galois
group scheme H := G r < Spyy is a linear algebraic group (defined over

Fy(t))-

As in the proof of Theorem 5.4.4, we now consider the valuation rings

01 := Fy[s]s—1) and o2 := Fy[s]s_q) inside k = F;(s) with maximal ide-

als py = (s — 1) and p2 = (s — a), resp., and we fix extensions (Oj, P;) of
sep  T~sep ,. .

(0j,pj) to k" =T,(s) " (j =1,2). The same argument as in the proof of
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Theorem 5.4.4 then yields that all entries of D are contained in o;{[t]], and
as Spyy < SLag, we thus have D € Spyy(o;{[t]]) for both j = 1,2. Therefore,
we can apply Corollary 3.3.11 (with G := Spy, and k := K) to conclude

that H(IF;[[t]]) contains Spyy(I[[t]])-conjugates of x1(D) and k2(D), where
kj: 05][t]] — F[[t]] denotes the coefficient-wise reduction mod p;.

Specializing s — 1 maps f; to h; (1 < i < d), thus k1(D) = D, )
and similar%r k2(D) =D, .- By Proposition 5.5.2, H(IF,[[t]]) thus con-
tains Spoy(IF[[t]])-conjugates of ¢; and ¢y as in Proposition 5.5.3 (we used
that g1 and g2 are contained in Spy;(F,;) and that their constant parts have
pairwise distinct eigenvalues by 5.5.3). Applying Proposition 4.4.3 together
with Proposition 5.5.3, we conclude that there exist Ay and Ao contained
in Spyy(F, + tF,[[t]) such that 1 and #4? are contained in H(E,[[t]]). Now
t1 and to generate dense subgroups of 77 and T by Proposition 5.5.3, and
< TlAl,TzA2 >= Spy, holds by Theorem 4.2.5, so we conclude H = Spy,;. [
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5.6 Special Orthogonal Groups in Odd Dimension

In this section we let n = 2d + 1 be odd and we are only working in charac-
teristic # 2. Consider the special orthogonal group G = SOg441 with respect
to the orthogonal form given by
1
J =
1

For any elements fi,..., fq € F =F,(s,t) with fj # 0, we set

fi oo far fa | —2fa| —2fa
1

1 0

D — 1 -1
(fl)--'vfd) fd—l

2fa

o '

27 1

— 5 0
2fa

It is easily seen that Dy, . ry is orthogonal and of determinant 1 and its

characteristic polynomial equals

d

d
X(frrnf)(X) = X2 (fit fim) X2 LN (fi+ fim) X =1, (5.9)
=1 =1

where we set fo = —1. (A proof can be found in [AM10, 4.3.]).

5.6.1 Specializations of D, . )

Recall that the diagonal matrices contained in SOq411 are exactly those of
the form diag(A,..., A\, 1, /\Jl, e ,)\1_1) for non-zero elements Aq, ..., Aq.
They form a maximal torus T which we call the diagonal torus. The coef-
ficients of the characteristic polynomial of such an element are palindromic
in the following way:

Lemma 5.6.1. Let F be a field and let A1, ..., g be non-zero elements in
F. Consider the diagonal matriz

Ac=diag(M, - A LA AT,
Then the characteristic polynomial of A is of the form
X2 g XM g X g X ey X 4 X — 1

for some ay,...,aq €F.
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Proof. This can easily be deduced from Lemma 5.5.1 by multiplying the
characteristic polynomial of diag(A1, ..., A4, )\;1, e )\fl) by (X —1). O

X

Lemma 5.6.2. Let py,...,pq be elements in F, [t](t) such that the constant
terms of p1,...,pd, l,pgl, .. ,pl_1 regarded as power series in t are pairwise
distinct elements in F;\{—1}. Then there exist unique elements hy, ..., hq €

F,[t] () with hg € Fylt] (Xt) such that

d

(X = DT = )X =07 Y) = X(hr, ) (X)- (5.10)
=1

Moreover, D, ... 1y and diag(p1, - .., Pd, l,pgl, .. ,pfl) are conjugate over

SOaq41(Fy[[t]]).

Proof. We abbreviate G = SOg4y1. There exist elements ay,...,aq inside
F,(t) for which

d

d d
(X_pi)(X—pi_l):X2d+1—ZaiX2d+1_Z+Zain—1
=1 =1 =1

=

(X -1

by Lemma 5.6.1, and as they are constructed as sums of products of the
elements p1, ..., pd, 1,p;1, . ,pfl, they are contained in [,[t] (t)- Equation
(5.9) implies that we are looking for solutions hq,...,hg of the following
system of equations

h1 -1 = al
ha +h1 = a2
hg+hg—1 = aq
which is equivalent to
hi = a1+1
h2 = (ag—al—l)
h3 = (ag—ag—i—al—l—l)
he = (ag—ag—1+---+ (—1)da1+ (—1)d). (5.11)
Hence there exists a unique solution (hy, ..., hq) € (F[t]4)%. It remains to

show that hg is contained in [, [t] (Xt). Abbreviate

d d
(X—pi)(X—p;l) _ X2d+1—zaiXQdH_Z—I—ZaiXZ—l.
i=1 =1 =1

=

f(X)=(X-1)
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Equation (5.11) implies f(—1) = 2hq. Since we assumed that none of the p;’s

has constant term —1, it follows that f(—1) € F,[¢] (Xt) and thus hy € E[t](xt).

We have found elements hq, ..., hq such that the characteristic polynomial
d

of Dy, .hy equals (X — 1) TT(X — pi)(X — p; ') and is thus separable.
i=1

he) is a semisimple element of G(IF,(t)). It follows that there

Hence D,

exists a maximal torus 7" containing Dy, . 5,)- All maximal tori of G(IF,(t))
are conjugate, hence there exists an element g € G(IF,(¢)) such that 79

equals the diagonal torus Ty inside G. It follows that ¢y := DE]hly-whd) is

diagonal. We relabel p1, ..., pq, 1,p;1, e ,101_1 as Ply .-y Pdy Ddtly -« -5 P2d+1-
Then py, ..., pag+1 are the 2d+1 pairwise distinct eigenvalues of #y. It follows
that there exists a permutation o € Sa441 such that tg = diag(py(1), - - - s Po(24+1))
holds. Now ty is orthogonal, so we have p,y1) = 1 and p,(;) = p;édﬂ_i)
for all 1 <i < d. On the other hand, py,...,pog+1 are pairwise distinct and
pi = p;d1+27i holds for all 1 <i < d. It follows that o(2d+2—i) = 2d+2—0(i)
holds for all 1 < ¢ < d. Therefore, o gives rise to an orthogonal permutation
matrix A, € G(F,), by Lemma 4.1.5. By multiplying g with A;! from the

right, we may assume that ¢y equals diag(p1, ..., pd, l,pgl, P,

So far, we have seen that there exists a g € G(F,(t)) satisfying D?hl

s )
diag(pl,...,pd,l,pgl,...7pf1) =: t5. We would like to show that ¢ can
be chosen inside G(F,[[t]]). Proposition 5.2.2 implies that there exists a
C € GL,(F,[[t]]) with D((;n,..-,hd) = diag(p1,.-.,pa, 1,pg 5,01 ") = to,
since

Pls---»DPds 1,p;1, - ,pl_1 have pairwise distinct constant terms. Hence C~1g
is contained in the centralizer of ¢y inside GL,, which only consists of diag-
onal matrices (since the diagonal entries of ¢y are pairwise distinct). Let

X1, ...,Toge1 € IF'q((t))X be such that g = C - diag(z1, ..., z24+1) holds.

By multiplying ¢ from the right with

diag($2d+1, sy Td41, 17 x;ila s 71:2_d1+1) € g(E]((t)))’

we may assume that C' = g - diag(aq,...,a4+1,1...,1) holds for some ele-
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ments «; € Fq((t))x. We now use that ¢ is orthogonal to compute

cJCc = diag(aa, ..., aq41,1..., l)g“Jgdiag(ozl, ceoyagyr, oo, 1)
= diag(ag,...,aq41,1...,1)J diag(aq,...,aq41,1...,1)
aq
aqd
= o . (5.12)
Qq
aq

Equation (5.12) implies that a,...,aq and a3, are contained in F[[t]],

as all entries of C' and J are. On the other hand, g has determinant 1, so
C = g-diag(ai,...,aq41,1...,1) implies o1 - - - agay,, = det(C) € Fy[[t]]*.
Hence ay,...,aq as well as o, are contained in F[[t]]*. Now F[[t]]* is
closed under taking square roots (recall that we are working in characteristic
# 2), 80 g1 is contained in F,[[t]], too. It follows that all entries of g = C'-

diag(ey ..., a7}y, 1,...,1) are contained in F[[t]], thus g € G(F[[]])). O

Proposition 5.6.3. Let n =2d+1 > 3. Let Ty < SO9q+1 be the diagonal
torus and let Ty = Ty and Ty = T? be the mazimal tori of SOgq41 defined
over I, as in Definition 4.1.7. Consider

C1 €Fjpa primitive (¢>* — 1)-th root of unity
G EFu. primitive (¢¢ — 1)-th root of unity

d—T1
pZEE][t](t)7 1§Z§d p1 = %7 = %7"'7 Pd ‘= tt:§2d—l
plqu[t](t);lglgd ﬁ1:2t+<27 1521:t+<§7---,15d1:t+§§d_1
t1 t1 = diag(plv'"apd,17p;17"'?pfl)gl
ts ty := diag(pr, ..., Pa, L,y s, 51 )"

Then t; is contained in T;(I[[t]) and the centralizer of its constant part
equals T;. Moreover, t; generates a dense subgroup of T; (i =1,2).

Proof. Note that the elements p1,...,pqs and pi,...,pq are the same as in
the symplectic case. The proof is then almost identical to the proof of
Proposition 5.5.3. O
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5.6.2 A Difference Module for SOy,

We can now define the elements fi,...
symplectic case:

n n=2d+1>7
q an odd prime power
C1 € Fpua primitive (¢°? — 1)-th root of unity
G EFu. primitive (¢¢ — 1)-th root of unity
, x G t+¢ _
JZRS F, [t](t) b1 = t+<1qd7 = t+<‘11d1+1 N R t+<§2d71
ﬁiGF[t]Xt) p1 =1+ (o, ﬁ2¢:t+C§,---,ﬁd'*t+Cz
h; € F[t]py | defined via (X —1) [] (X pi)(X —p; )
7,_
= X(h1,..h (X)
~ d
hi € Fy[t]y | defined via (X — 1) [ (X — i) (X — p; ')
i=1
h17 ’ <X)

2d j
> im0 it

coefficients of h;: hi(t) = S o
j=0 "4

Qij, bz‘j S Fq

U Zjdo th
a;j,bij € F, | coefficients of hi: hi (t) = S5 wE
J=

bio # 0 for all 4

bio % 0 for all ¢

2d i
Y
s§j Oa”t

Hi € ]Fq(t78) -H’L = W, 1 S
7 j=1Y

_ey2d G
H; € F(t,s) | H; := T80 bit

7 d 7 : =
bijo—s Zj:l bijtj ’

fieF fir= 1+ 550, 1<i<d-1

for="5Hy+ 5 Hy + (s + 1)(1 - s)

Table 5.3: Definition of fi,..., fg.

87

,fa € F in a similar way as in the

Note that the elements h; and h; exist inside F, [t] ) by Lemma 5.6.1 and

they are contained in [F[t] () as the coefficients of (X —1) H (X —p)(X—p; 1)

=1

d
and (X —1) TT (X —pi)(X —p; ') are contained in T, [] () by Proposition 5.6.3.
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Theorem 5.6.4. Assume q odd andn=2d+1> 7.

Let M = (F™,®) be the ¢q-difference module over F' = F,(s,t) given by
Dyy,.....10), where fi € F are as defined in Table 5.3. Then there exists a
Picard-Vessiot ring R C Wep((t)) N L for M such that R/F is separable
and the Galois group scheme Gy r of M with respect to R is isomorphic to
SO24+41 (as linear algebraic group over Fy(t)).

Proof. We abbreviate D := Dy, . Let O C K denote the valuation
ring corresponding to | - | with maximal ideal m C O),|. All non-constant co-
efficients of the numerators and denominators of H; and H; (1<i<n-1)
are contained in m and the constant coefficients of the denominators are
contained in ]F;< C OI%I’ so it follows from Lemma 3.1.4 that all H; and H;
are contained in Oy, [[t] and their j-th coefficients can be bounded by &7 for
a suitable § < 1. Hence the same is true for all f;, 1 < i < d. Note that
%Hd+%ﬁd is contained in m[[t]], so fy = StLHy+ %f]d+ (s+1)(1—s)
is contained in O,([[t]]*, since we added the extra term (s +1)(1—s) € Of‘.
We conclude that D = Y2720 Dyt" € SO, (O).([[t]]) satisfies ||Dy|| < &' for
all I € N. By Theorem 3.1.3, there exists a fundamental solution matrix
Y =20 Vit € GLn (L N K[[t]]) satisfying [|Vi]] < 6, ie., Y € Mu(O) {t}).
Let E = F(Y) be the field generated by the entries of Y. Then E C L,
hence Cr = Cr and R := F[Y,Y '] C E is a Picard-Vessiot ring for M by
Theorem 1.2.11.

Consider 0 := O Nk = Fs]) and O := O, N kP (with respect to a
fixed embedding of k*% = msep into K). Let p = (s) denote the maximal
ideal inside 0. Then o/p = F,. Therefore, o and O conform to all assump-
tions made in 3.3.1 hence we can apply Proposition 3.3.3 ¢) (with &k := K)
to conclude that Y is contained in GL,,(O[[t]]). In particular, all entries of Y’
are contained in Fq(s)sep((t)), hence R/F is separable by Proposition 5.2.1.
Also, Y is contained in GL, (O|.([[t]]) "M, (O|./{t}), so we may assume that ¥’
is contained in SO, (LNK[[t]]), by Theorem 3.2.4. Indeed, Op/m = F, C K,
D e SOn(OHHt]]) and HH(D) = Do,..01) € SO, (F,) < SOn(OH/m) (the
latter follows from k. |(H;) = /1|.|(I:I¢) =0foralli<n-—1).

We conclude that the Galois group scheme H := Gy g of (M, ®) is a lin-
ear algebraic group (see Theorem 1.3.10) defined over F,;(t) that is a closed
subgroup of SO,, (see Proposition 1.3.11). We will now use the lower bound
criterion 3.3.11 to show that H is all of SO,,.

Consider p1 = (s — 1) C o1 := F[s](s_1) and p2 = (s + 1) C 02 := Fy[s](s41)-
Then o0 and o are valuation rings inside k = F,(s) with o;/p; = F, and
02/pa = F,. Fix extensions (O;,P;) of (0j,p;) to k°F =F,(s) " (j =1,2).
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These valuation rings conform to all assumptions made in 3.3.1 and we
may thus apply the results from Section 3.3. Note that H; € o;[[t]] for all
1 <i<n-—1,j=1,2 since the numerators are contained in o;[t] and the
denominators are contained in 0;[t] with constant coefficient b;o € Fyf C 0.

Similarly, all H; and thus all f; are contained in o;[[t]]. Therefore, all
fi,..., fa are contained in o;[[t]] (j = 1,2). We claim that f; is more-
over contained in o;[[t]]*. The reduction of f; modulo p; equals hy and
the reduction modulo ps equals hg. As hg and hy are both contained in
F, [t](xt) by Lemma 5.6.2, the claim follows and we conclude that D is con-
tained in SOy, (0;[[t]) for both j = 1,2. Therefore, we can apply Corollary
3.3.11 (with G := SO,, and k := K) to conclude that H(F,[[t]) contains
SO, (F,[[t]])-conjugates of k1(D) and ka(D), where r;: o;([t]] — F[[¢] de-
notes the coefficient-wise reduction mod p;.

Specializing s + 1 maps f; to h; (1 < i < d), thus k1(D) = D, hy)-
Similarly, ke(D) = D(ﬁl,.‘.,
stant parts of p1,...,p4, 1, pgl, e pfl are pairwise distinct and not equal
to —1, hence r1(D) is conjugate to t; over SO, (F,[[t]), by Lemma 5.6.2.
Similarly, k2(D) is conjugate to t2 over SO, (I[[t]]). Therefore, H(F,[[t]])
contains SO, (F,[[¢]])-conjugates z1 and x5 of {1 and 2 which are both con-
tained in SO,,(I[[t]]) (see Proposition 5.6.3). By Proposition 4.4.3 together
with Proposition 5.6.3, there exist Ay and As contained in SO, (F, + tF,[[t]])
with ; = tj-‘j (j = 1,2). Now H is a closed subgroup of SO,, and ¢; and t9
generate dense subgroups of 71 and 75 by Proposition 5.6.3, so H contains
< TN T3 >, Finally, Theorem 4.2.5 implies < T, T5'2 >= SO,,, hence
H = SO,,. O

hy) 88 specializing s — —1 maps f; to h;. The con-
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5.7 Special Orthogonal Groups in Even Dimension

In this section we let n = 2d be even and we are only working in characteristic
# 2. Again, we consider the special orthogonal group G = SOs4 with respect
to the orthogonal form given by

1
J =
1

For any elements fi,..., fqg € F =F,(s,t) with f; # 0, we set
fi oo faa1 fa | fa-r —fa
1

1 0 1

Dgy,..ta) = “fa

i |
_1 0

It is easily seen that Dy, . )y is orthogonal and of determinant 1 and its
characteristic polynomial equals

d—1 9
X(frot) X) = X204 Dyt [im2) X274 (< fa+ 2faca — %)Xd
=1
d—1
+3 (—fi+ fi2) X+ 1, (5.13)
=1

where we set fo = —1 and f_; = 0. (A proof can be found in [AM10, 4.4.]).

5.7.1 Specializations of D, . ¢

Recall that the diagonal matrices contained in SOy4 are exactly those of the
form diag(A1, ..., Ag, )\;1, el )\fl) for non-zero elements Aq,..., A4
Lemma 5.7.1. Let py,...,pq be elements in F, [t](xt) such that the constant
terms of p1,... ,pd,pgl, .. ,pl_1 regarded as power series in t are pairwise
distinct elements in T \{£1}. Then

a) there exist elements hy, ..., hg € Fy[t]) with hg € Fyt] é) such that

d

[T =)(X =57 = Xty (X). (5.14)
=1
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b) For any such elements hy, ..., hq, Dn,,...ny) s conjugate to one of the

following diagonal matrices over SOqq(I[[t]]):

diag(plv e 7pd7p;17 e 7p1_1)
or
di -1 1 1
lag(pla <o sPd—1sPg sPdsPg_15---5P1 )

d
¢) If moreover il;ll(X —pi)(X —p;t) is contained in T,[t] @t [X] and

d
TI(1—pi)(1 +p; 1) is contained in Fy[tl ), all ha, ..., hq are contained

z.zl
in By [t] -
Proof.  a) We abbreviate G = SOy4. There exist elements ay, . . ., a4 inside
F,(t) with
d d—1 ' d—1 '
[T —p)(X —p7") = X2+ 3 ;X% 4 agX?+ Y ;X +1
i=1 i=1 i=1

by Lemma 5.5.1, and as they are constructed as sums of products
of the elements pq,... ,pd,pcjl, ...,p1}, they are contained in F,[t] (t)-
Equation (5.13) implies that we are looking for solutions hy,. .., hq of
the following system of equations

—h = a
—h2 -1 = a9
*hg + hl = as
—hg1+hg3 = az
h2
—ha+2hgs— L = a4
ha
which is equivalent to
h1 = —a]
h2 = —ag — 1
h3 = —a3z3— a
hy = —ag—az—1
1452
has1 = — Y, ag-1-9;
§=0

g+ (—2ha—2 + ag)ha+hi_, = 0, (5.15)
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where we set ag = 1. Hence (hi,...,hg—1) are uniquely determined
inside F,[t](;). It remains to show that Equation (5.15) can be solved
inside E[t]é). Equation (5.15) is quadratic with discriminant

(—2hd,2 +ad)2 —4h3_1 = (—th,Q —|—ad—|—2hd,1)(—2hd,2 +ag— thfl).

Abbreviate
d d—1 A d—1 A
FXO) =[x —-p)(X —p;") = a;X* "+ ag X+ a; X"
=1 i=0 i=0
Then

—2hg_2+aq—2hg1 = aq+ 2%% = f(1)
—2hg_o+tag+2hy_1 = ag— 2;:: 4+ 2a4-2F...

—1
(—D)*(—=1)%aq +2 2(—1)iai)
Cnifen.

Hence the discriminant equals

(1+p)(L+p; )

=R

1—p)(1—p; ")

=R

s
I
—
s
I

DW= = (-1

1

d d
ot A =p) (e — 1) 7 (L p)?
= b Zzl_ll i Z:Hl i
_ (d <1—pi><1+pi>>2

i=1 pi

We set .
A=T] (1 —pi)(1 +p;)
i=1 pi

Note that A is contained in F,[¢] (Xt), as we assumed that the constant

parts of p; are distinct from +1. Then at least one of the two solutions

th_g — a4 + A
2

(5.16)

of Equation (5.15) is contained in F,[¢] ;.
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b) We have found elements hq, ..., hg such that the characteristic poly-
d

nomial of D, . p,) equals [T (X —p;)(X —p; ') and is thus separable.
i=1

Hence Dy, . n,) is a semisimple element of G(F;(t)). It follows that

there exists a maximal torus T" containing Dy, . p,)- All maximal tori

of G(F,(t)) are conjugate, hence there exists an element g € G(F,(t))
such that TY9 equals the diagonal torus Ty inside G. It follows that
to = D€h1,~~~,hd) is diagonal. We relabel pi,...,pa,p;",...,p;" as
D1y .-+ 3DPdy Pd+1y---,D24- Then pi,...,paq are the 2d pairwise distinct
eigenvalues of ¢y3. It follows that there exists a permutation o € Soq4
such that tg = diag(ps(1), - - - » Po(24)) holds. Now tg is orthogonal, so we
have p,(;) = p;(12d+1_2.) forall 1 < ¢ < d. On the other hand, p1, ..., pag

are pairwise distinct and p; = p;(}+1_i holds for all 1 < i < d. It fol-
lows that o(2d +1 — i) = 2d + 1 — o(¢) holds for all 1 < i < d.
If o0 has sign 1, it gives rise to an orthogonal permutation matrix
A, € G(F,), by Lemma 4.1.5. By multiplying g with A1 from the
right, we may assume that ¢y equals diag(py, ... ,pd,pgl, e ,pfl). If
o has sign —1, ¢/ := o - (k,k + 1) gives rise to an orthogonal permuta-
tion matrix A,» € G(IF,), by Lemma 4.1.5 and we may assume that t
equals diag(pi, . .., Pa—1.Pg " Pds D1+ D1 )

So far, we have seen that there exists a g € G(If;(t)) satisfying

D(ghhm’hd) = tg, where either

to = diag(p1, . .. ,pd,pgl, ... ,pl_l)
or
to = diag(p1, - -+, Pa—1,0; " Pds Py 1s- s P10
We would like to show that g can be chosen inside G(IF,[[t]]). Proposi-
tion 5.2.2 implies that there exists a C' € GL,,(IF[[t]]) with D(C;Ll,...,hd)

to, since p1, ..., Dd, pgl, el pfl have pairwise distinct constant terms.
Hence C~!g is contained in the centralizer of tq inside GL,, which
only consists of diagonal matrices (since the diagonal entries of tg

are pairwise distinct). Let x1,...,29q4 € IFq((t))>< be such that g =
C- diag(wl, ce ,l’Qd) holds.

By multiplying ¢ from the right with diag(za4, . . ., g+1, a:gil, cee xQ_dl) €
G(I((t))), we may assume that C = g - diag(a1,...,aq,1...,1) holds

for some elements «; € Fq((t))x. We now use that g is orthogonal to
compute

cjc = diag(oq,...,ozd,1...,1)gtrJgdiag(o<1,...,ad,l...,l)
= diag(a,...,aq,1...,1)Jdiag(ag,...,aq,1...,1)
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aq

_ aq
= ” . (5.17)

a1

Equation (5.17) implies that a1, ..., aq are contained in F,[[t]], as all
entries of C' and J are. On the other hand, g has determinant 1, so
C = g-diag(ai,...,ag,1...,1) implies oy - - - ag = det(C) € F[[t]]*.

Hence ay,...,aq are contained in F,[[t]]*. It follows that all entries
of g =C - diag(al_l, . ,a;_&l, 1,...,1) are contained in F[[t]], thus
g € G([[t]))-

d
¢) If moreover .HI(X_pi)(X_pfl) is contained in I [t] [ X], all a1, ..., aq

are contained in I, [t](+) and it follows that Ay, ..., hq_1 are contained in

IF,[t](+) (see the block of equations above Equation (5.15)). If moreover
d

[1(1—p)(1+p;t) = F is contained in F,[t](¢), ha is contained in

i=1

F,[t]/;, by Equation (5.16).

()
O]

5.7.2 Another Maximal Torus

In Chapter 4 we constructed maximal tori T and 7> defined over F, (cor-
responding to permutations o7 and o2) such that any conjugates generate
SOqq. In this section, we introduce a third maximal torus T4 in SOgq de-
fined over F, that corresponds to a permutation o5 conjugate to 0. Hence T
has very similar properties as Tp but they are not conjugate over SOq4(IF,).
Eventually we will only know that Dy, ., specializes to a conjugate of
an element that generates a dense subgroup of either T or Tj. Therefore
we need to show that also any conjugates of T} and T generate SOo4. This
peculiar situation reflects the fact that SO, is not simply-connected and
hence not every regular element has to be conjugate to an element inside
the Steinberg section.

Definition 5.7.2. We set 05 := (k,k+1)o2(k, k+1) where o3 is defined as
in Table 4.2 on page 54. By Lemma 4.1.5 there exists a monomial matriz
wh € SO94(F,) that corresponds to the permutation oy. We fix an element
gh € SO24(F,) with ghoy(gh)™" = wh. Then Ty := Ty? is a mazimal torus
defined over F, (where Ty denotes the diagonal torus inside SOg4(IF;) ).

Proposition 5.7.3. The order of T5(F,) equals na(q), where na(q) is as
defined in Table 4.1.
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Proof. The Fj-rational points of T3 can be computed using Proposition 4.1.1.
If d is odd,
oy=(1,...,d—1,d+1)(2d,...,d+2,d)

and we get

2 d—1 d—1 d—2

TY(E) = {diag(¢, ¢, ... ¢ LT [¢T = 1y,
Hence |T4(F,)| = ¢% — 1 = na(q).

If d = 2m is even and m is odd, na(q) = (¢™ — 1)? and
oh=1,...,m)(m+1,....,2m—1,2m+1)(3m,...,2m + 2,2m)(4m, ..., 3m + 1).

We conclude that T5(IF,) consists of all elements of the form

1 2 - m—2 —1 /

diag(C, .. €1 e T T T T

for (¢™ — 1)-th roots of unities ¢ and p, so [T5(F,)| = (¢™ — 1)? = na(q).

Finally, if d = 2m for an even m, na(q) = (¢™ + 1)? and
oh=(1,...,m,4m,...,3m+1)(m+1,...,2m—1,2m+1,3m,...,2m+2,2m).

Therefore, T5(F,) consists of all elements of the form

diag(C? A ’qun_l ) l’l" M 7/“’l/qm_27 /’Liqm_l7ﬂqm_l7uiqm,_27 A 7/1’717 Ciqm,_l LA 7471)9/2
for (g™ + 1)-th roots of unities ¢ and p, hence |T4(F,)| = (¢™ + 1) =
na(q). O
Theorem 5.7.4. Let q be an odd power of a prime and assume n = 2d > 8.

Then for any A, B € SO (F, + F,[[t]]) we have
< TlA,TQIB >= S09qq.

Proof. Now that we know that T5(F,) = na(q) = T>(F;) we can prove this
in the same way as we proved < TlA,TQB >= S0O9y in Chapter 4. Let [
denote the least common multiple of the order of oy and o). As o2 and )
are conjugate by (k,k + 1), this is the same as the least common multiple
of the order of o; and o9. Set
F = UE: CcE,.
leN: [=1 mod g

Then F is a field of infinite order by Lemma 4.2.3. Using Proposition 5.7.3,
the same proof as that for Proposition 4.2.4 implies that

< Ty (F)A0, T3P0 >= SO94(F)

holds for any Ao, By € SO24(F,). The claim then follows similarly as in the
proof of Theorem 4.2.5. ]
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5.7.3 Dense Elements in 77,75 and T,

Lemma 5.7.5. Let m > 2 € N and assume q odd such that (m,q) # (2, 3).
a) There exist primitive (¢ — 1)-th roots of unity o and 3 such that

m—1

+1 + +qm 1 okl ot +
a ) a q7 AR a q ) ﬁ ) ﬁ q? ) ﬂ q
are pairwise distinct.

b) There exist primitive (¢>™ — 1)-th roots of unity o and 3 such that

_ _gm+1 —1_ 2m—1
aF(1=a") oFla=a™T) T =)

m—+1

)
2m—1)

A=) gEla—a™t) o gE@" T g

are pairwise distinct.

Proof. If ¢ runs through all (¢*™ —1)-th roots of unities, (*~¢" runs through
all (¢™ 4+ 1)-th roots of unities. Hence in both cases the claim is that there
exists a (¢ £+ 1)-th primitive root of unity « and a (¢ £ 1)-th primitive
root of unity 3 such that

m—1

+1 + +gm—1 +1 =t +
o e T SN ek BTG N S SN B

9

are pairwise distinct. This has been proven in [AM10, p.10]. For the con-
venience of the reader, we sketch the proof: Fix a primitive (¢ + 1)-th
root of unity . Then o', a®9,. " are pairwise distinct. We have
to show that there exists a primitive (¢™ & 1)-th root of unity 3 such that
aT? £ 39 for all 0 < 4,j < m — 1 which is equivalent to 3 # o™ for all
0 <i<m—1. It is therefore sufficient to show that the number p(¢™ £ 1)
of primitive (¢ =+ 1)-th roots of unity is greater than 2m. As m > 2 and
q > 3 it follows that ¢™ £ 1 > 6 hence p(¢™ +1) > /g™ £ 1. We first treat
the case (m,q) = (3,3). Then ¢(¢"™ £ 1) € {26,28} and is clearly greater
than 2m. If (m,q) # (3,3), v/¢™ £ 1 > 2m always holds. O

ey

Proposition 5.7.6. Let n = 2d > 8 and q odd such that (n,q) # (8,3).
Let Ty < SOgq be the diagonal torus and let Ty = T3" and Ty = T§ be the

mazimal tori of SOsq defined over ¥, as in Definition 4.1.7 and Ty = Tog2 as
before. We define elements t1 € Ty, t) € Th, ta € Ty and th, € T4 as follows.
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if d=1 mod 2
CeFp primitive (¢> — 1)-th root of unity
C1 € F a2 primitive (241 — 1)-th root of unity
G2 € Fa primitive (¢¢ — 1)-th root of unity
7—1
= t+¢7 ,
piEFq[t](t) pi::ﬁ, 1<i<d-1
= t+
Pa € Fq[t](t) Pa ‘= t4Ca -
pi € Blt] pi=t+¢ , 1<i<d
if d=2m =2 mod 4
CEFp primitive (q> — 1)-th root of unity
(1 € Fpoa primitive (¢*@=1) — 1)-th root of unity
a, € Fym primitive (¢™ — 1)-th roots of unity
as in Lemma 5.7.5a)
T—1
= t+¢f .
pi € Fyltl Pz‘i:ﬂr;ﬁy 1<i<d-1
= ot
Pa efq[t](t) Pa = t+Ca -
ﬁiEFq[t](t) pi=t+al {1§i§m
Poi i =t+ 07, 1<i<m
if d=2m =0 mod 4
CE€F, primitive (q> — 1)-th root of unity
C1 € Fjpoar primitive (q2(d_1) — 1)-th root of unity
a,B €Fpom primitive (¢*™ — 1)-th roots of unity
as in Lemma 5.7.5b)
—1
= t+¢ .
pi € Fltlw pizztﬂiﬁ, 1<i<d-1
= t
pa € ] Pd = figr 1
~ = ~ @~ .
Pi € Fy[t] ) Di = %,1 I1<i<m
Bmei = e, L<i<m
7‘:1 tl = diag(pb”'7pdapd_1)'1"7p1_1)lgl 1
t,l tll = diag(pla .- 7pd—17p; apdap(z_la v 7p1_ )gl
to to 1= diag(ﬁla cee 7]5daﬁd_17 '1' . 7151_1)1512 L
t,2 t/2 = diag(ﬁla e 7]5d—17ﬁ; 7ﬁd7ﬁ(§_1a s 7]51_ )92

Then

a) t1 and ty are contained in Ti(Fy[t]w), t2 is contained in To(Fy[t]())
and ty is contained in Ty(Fy[t] ).

b) The centralizers of the constant parts of t1 and t) both equal Ty, and
t1 and t) both generate dense subgroups of Th. The centralizers of
the constant parts of ta and th equal Ty and T, resp., and ta and t)
generate dense subgroups of Ty and Tj.
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¢) There exist hy, ..., hq € F[t]y) with hq € IFq[t]X) such that D, . p,)

t
is conjugate to either ty orty over SO, (F[[t]). Similarly, there ewist
hi,... ha € Fy[t] ) with hq € F[t] (Xt) such that D, 5 is conjugate

to either ty or th over SO, (F[[t]).

Proof.  a) First of all, note that the diagonal matrices corresponding to

t1,t),t2 and t}, are all contained Ty < SOs4. Now g1, g2 and gh are
contained in SOg4(I;) and p1, ..., pq as well as p1, ..., pq are contained

in Fy[t] ;) hence t1 € T1(F[t]()), t1 € T1(E[t]r), t2 € T2(E[t])) and

th € T5(F,[t] (). It remains to show that all of them are F [t](;)-rational.
Recall that giqﬁq(gi)_l = w; holds for 7 = 1,2, where w; and wy were
defined in Chapter 4 to be monomial matrices inside SOqq(F;) corre-

sponding to the permutations

d odd o1 =(d,d+1)(1,...,d—1,2d,...,d+ 2)

o2 =(1,...,d)(2d,...,d+1)
d = 2m, m odd o1 =(d,d+1)(1,...,d—1,2d,...,d+2)

oo =(1,....m)(m+1,...,2m)(3m,...,2m + 1)(4m,...,3m + 1)
d=2m, meven | o1 =(d,d+1)(1,...,d—1,2d,...,d+2)

o2 =(1,...,m,4m,...,.3m+ 1)(m+1,...,2m,3m,...,2m + 1)

Besides, we have gho,(g5)~ = w) where w) corresponds to the per-

mutation o} = (k, k + 1)oa(k, k 4+ 1). We use the following labels:

b1,--.,DP2d lew-wpdapgla" . 7pfl

and also
pI17 o 7p/2d < Ply---yPd—15Pd+15Pds Pd+25 - - -y P2d
and similarly pi,...,paq and py, ..., ph,. It is now straight-forward to
check that
Gq(p1,- -, p2a) = (Poy(1)s - -+ > P (2d))
as well as

Gq(D1s -+ -3 Do) = Dy 1)+ -+ Py (2a))

holds and similarly
d)q(ﬁh oo 7ﬁ2d) = (ﬁag(l)a s aﬁo‘g(Qd))

Gq(Brs - P2a) = By 1)y - - > Doy (2a))

(this has to be checked for all three cases of d). Hence ¢4(t1) =

. . 71
dq(diag(p1, . .. ,pzd))d)q(gl) = dlag(pal(l)a e 7p01(2d))w1 9t = 1 and
similarly for ¢}, to and .
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b)

The centralizers of the constant parts of ¢; and ¢} equal Tj if and
only if pq,..., pd,pgl, . ,pfl have pairwise distinct constant terms,
which can be proven similarly as in the symplectic case (see Propo-
sition 5.5.3). The same proof shows that py, ... ,ﬁd,ﬁgl, . ,ﬁl_l have
pairwise distinct constant terms in case d is odd. If d is even, this
follows from Lemma 5.7.5. Hence the centralizer of the constant part
of to equals T in both cases and the centralizer of the constant part
of t}, equals T4.

It remains to show that t1, ¢}, t2 and t, generate dense subgroups of
the corresponding maximal tori Ty, T5 and T% which is the case if and
only if no non-trivial character of Ty maps the corresponding diagonal
matrices to 1, by Lemma 4.2.6. Again, this can be shown very similar
as in the proof of Proposition 5.5.3.

By Lemma 5.7.1, there exist elements hy, ..., hq € Fj[t]y) with hy €

Fq[t](xt) such that D, . p,) is conjugate to either

diag(pla . '7'7pd?p517 s 7p1_1) or diag(pla L] 7pd717p¢;17pd7p5_11 .. 7p1_1)
over SO, (I [[t]). We first show that all h; are contained in [, [t] ;). Ac-

d
cording to Lemma 5.7.1¢), it is sufficient to show that [] (X —p;)(X —
i=1
d
p; 1) is contained in T, [¢] @ [X]and A := ] (1—pi)(14p; ) is contained
i=1
d
in I [t] ). Clearly, JT(X — pi)(X — p; 1) is contained in F,[t] [ X] as

i=1
this is the characteristic polynomial of 1 € T (IF[t];)). Then

Pq(A) = (L —p1)(L+pr") (1 —pa)(1+ps")

= (L—p2)(A+ps") (1 —pa1)(T+pzty)-
(1=p (A +p)(1—pg )1+ pa)

(1—pr (A +p)(1 —p (1 + pa)

(L=p)(A+p1 )1 =pa)(1+p5")
_ A= DA +p1)(pa = 1)(1 + pa)
(1 =p1)(pr +1)(1 = pa)(pa+ 1)

= A,
hence A is contained in F[t];). We conclude that there exist elements
hi,...,hq € Fylt]lw (with hg invertible) such that Dy, 4, is con-
jugate to either diag(pi,...,p2q) or diag(p,...,ph,;) via an element
g € SOL(F,[[t]]). As g1 is contained in SO, (F,), we conclude that
Dp,....ny) is conjugate to either ¢; or ] via gg1 € SO, (F[[t]]).

Similarly, it can be shown that there exist hi, ..., hq € Fy[t] ) with
hg € T, [t}(xt) such that D~ ; is conjugate to either diag(p1, ..., P2q)

oy
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or diag(p}, . .., Phy) via an element g € SO, (F[[t]]) (where the compu-
tation ¢4(A) = A has to be done separately for all three cases of d).
Hence Dj,, ~ ; y is conjugate to either ¢y or th via gga € SO, (F[[t]]).

O

5.7.4 A Difference Module for SOy,

According to Proposition 5.7.6, we can now fix t; € {t1,¢]} and ta € {t2,15}
such that there exist (hi,...,hq) € Fj[t]y and (h1,...,hq) € Fy[t]y) with
h, hg € Fq[t]é) such that D, 5y is conjugate to t; over SO, (F[[t]]) and
D, ., 18 conjugate to ty over SO, (F,[[t]]). We can nodeeﬁne Ehe ele-
ments fi,..., fqg € F using these elements (hq,...,hq) and (hy,..., hg):

. 24 agti .
a;j,bij € F, | coefficients of h;: hi(t) = %; bip # 0 for all ¢

- . =z 2 aigtd .
aij,bij € B, | coeflicients of h;: h;(t) = %; bip # 0 for all ¢

HieBy(ts) | Hy w2zt ooy
sER(ts) | Him g s, LS s

H; € F,(t,s) | H; := St oy
i € q\l, S i = 5i0_523115i.7tj’ ST S

fie F fi="FH +13°H;, 1<i<d-1

fd = %Hd =+ %ﬁd =+ (S + 1)(1 — 8)

Table 5.4: Definition of fi,..., fg.

Theorem 5.7.7. Assume q odd and n = 2d > 8 such that (n,q) # (8,3).
Let M = (F™,®) be the ¢q-difference module over F' = F,(s,t) given by
Dyy,.....5.), where fi € F are as defined in Table 5.4. Then there exists a
Picard-Vessiot ring R C Wep((t)) N L for M such that R/F is separable
and the Galois group scheme Gy g of M with respect to R is isomorphic to
SO2q (as linear algebraic group over Fy(t)).

Proof. Having at hand Proposition 5.7.6, this can be proven in exactly the
same way as Theorem 5.6.4. Indeed, the first three paragraphs of that
proof provide a Picard-Vessiot ring R C F,(s) “P((t)) with Galois group H =
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G, a closed subgroup of SOg4 such that H(F,[[¢]]) contains SOqq(F,[[t]])-
conjugates of the specializations Dy, . ,) and D(El,...,izd)‘ By Proposition
5.7.6 together with Proposition 4.4.3, H(I,[[t]]) then contains SOqq(F, +
tF,[[t]])-conjugates t;* and tF of t; and to. Now t; generates a dense subgroup
of T and t2 generates a dense subgroup of T or T4 (depending on whether
ty = to or to = t,), by Proposition 5.7.6. Hence H 2O< TlA,TQB > or
HDO< TIA,TéB >. We have < TIA,TQB >= SO0yy by Theorem 4.2.5 and also
< TlA,TQ’B >= SO9yq by Theorem 5.7.4. We conclude ‘H = SOy4 in both
cases. O
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5.8 The Dickson Group G-

Let © be the octonion algebra over F,. Then the automorphism group of
O ®g, F, is a connected, simple linear algebraic group of type Ga, defined
over F, (with [F,-rational points Aut(Q)). Details can be found in [SV00,
2.3]. We denote this linear algebraic group simply by Ga. After choosing a
suitable basis of O (see [Wil09, 4.3.4]), G2 is contained in SOg, where SOg
denotes the special orthogonal group with respect to the quadratic form

tr

Fqg — Fq, (x1,...,28) > X178 + Tox7 + T3xe + T4T5
(note that this also works for even ¢). Then G2 acts on the hyperplane de-
fined by x4 = x5 which gives rise to a faithful representation Gy — SO7
which is irreducible in case char(F,) # 2. In the characteristic 2 case,
(0,0,0, 1,0,0,0)tr spans a (Ga-stable subspace of this latter representation
and the action on the quotient yields an irreducible faithful representation
G9 — SOg. In both cases, the diagonal matrices contained in G2 define a
maximal torus Tj. In the odd characteristic case, we have

Ty = {diag(A\, s, Au™ L LA AT A p e B Y
Similarly,
To = {diag(\, o, Au™ " A, A A p e B}
if ¢ is even. The root subgroups corresponding to the two simple roots «

and [ of Gy with respect to Tj are described explicitly in [Mal03] and it is
easy to compute the corresponding reflections:

L f
0 1
1 f —f?
2§V () = 0 1 —2f
00 1
1 —f
1
0 1
-1 0
0 0 -1
w(edd) — 0 -1 0
-1 0 0
0 —1
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1
L f
dd !
w54 (f) = 1 ,
L —f
0 1
1
1
0 1
(odd) -1 0
O
wg = 1
-1
1 0
1
We now choose a generic element DE;?C})Q) = g0 ( fl)w((fdd)xg)dd) ( fg)wéeven)
in the Steinberg cross section and compute
-fi —f2 1 0 0O 0 O
-1 0 0 0 0 0 O
o) 0 —f£ 0 —fi fo 1 0
D(fl,fz) =10 -2ff 0 -1 0 0 O
0 1 0 0 0 0 O
0 o 0 0 —-fi 0 —1
0 0 0 0 1 0 0
.. . (odd) .
The characteristic polynomial of D( Fifa) 180
odd
XD (X)) = (X = D(XC+ (f1 +2)X° + 2+ 21 — f)X*
+2+2f - 2f— [1)X°
+(2+2f1 — f) X2+ (L +2)X +1). (5.18)
Similarly, for even ¢, we have
1 f 0 1
0 1 10
2
(even) — 1 f (even) _ 0 1
1 f 0 1
0 1 10
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1 1

S =
— s
)
O =

(even)

x(ﬁeven) (f) _

S =
S =

1 1

Again, we define Dé;f};)) =z Ven)( fl)w&even)x(ﬁeven)( fg)wéeven) and compute

fi 2 1.0 00

1 0 0 0 0O

D(even) _ 0 12 0 fo 10
(f1.f2) 0 1 .0 0 0O
0 0 0 fi 01

0 0 01 00

The characteristic polynomial of DE;I?};)) equals

X (X)) = X0+ X7+ X4 X4 X2 4 AX 41 (5.19)

Proposition 5.8.1. Let H < G2 be a linear algebraic group defined over
F,((t)) such that for each | € 1+ 6N there exist elements hy, by € H(E,:[[t])
such that their constant parts hy g, fzm € G2(F,) are of order ¢?'+q'+1 and
=g +1. Then H = Gs.

Proof. Set _
F:= UE: CE,.
leN: [=1 mod 6
By Lemma 4.2.3, F is a field of infinite order. We apply Proposition 4.2.2 to
K1 =T and K3 = F, to conclude that it suffices to show that each g € G2(F)
appears as the constant part of an element inside H(F,[[t]]).

Let g be contained in G2(F). Then each coordinate of g is contained in
some F; for an integer [ =1 mod 6, so by taking the product of these [,
we find that g is contained in G(FF:) for some I € N, I =1 mod 6. We
may further assume that ¢' > 8 holds by replacing [ with 71 if this is not the
case. By assumption there exist hy and hy € H(E,[[t]) < G2(F;[[t]]) with
constant parts hy g, }Nzl,o € G(F,) of order ¢? +¢ +1and ¢ —¢' +1. (Note
that ;o and hyg are contained in G2(F,) since Gy is defined over F, C IF:.)

Let ¢ be an odd prime power with ¢’ > 3. Then it follows from the list
of maximal subgroups of Ga(F,) in [Kle88, Thm.A] that any pair of ele-
ments of order ¢* + ¢’ + 1 and ¢ — ¢’ + 1 generates Go(F,). Similarly,
if ¢ > 8 is a power of 2, it can easily be seen from the list of maximal
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subgroups in [Coo81, 2.3-2.5.] that no proper subgroup of Ga(F,) contains
elements of order ¢>+¢ +1 and ¢'? — ¢’ + 1. Therefore, h; o and h; o generate
Go(FF,1), so there exist 7, ¢;, u; € N such that g can be written as

T

g =TT hioht's:

i=1
Then .
h= [ hi'hf" € H(Eu[[t]])
i=1
has constant part g which concludes the proof. ]

5.8.1 Specializations of Dy, ,)

We will work with maximal tori splitting over Fs, so we take a look at
FF,s[[t]]-conjugacy.

Lemma 5.8.2. Let g be odd.
Let p1,p2 € Fgl[t]]* be such that the constant terms of

p17p2ap1p51> 17pflp27p517p;1

are pairwise distinct. Then there exist unique hy, ho € F|[[t]] such that
— — — — dd
(X —p1) (X —p2) (X —p1p3 )X —1)(X —p7 ' p2) (X —p7 )X —p1") = x50 (X)

dd . _ _ 1 .
holds and DEZhh)Q) and diag(p1,p2, p1p; L 1,p; 1p2,p2 1,p1 1) are conjugate
over GL7(Fs([t]]).

Proof. By Lemma 5.5.1, there exist hy, ho, hg € [ [[t] such that

(X —p1)(X = p2)(X —p1py )X = 1)(X = py 'p2)(X —py )X —pi )
= (X —1)(X®+ X5+ hoX? + ha X3 + ho X%+ h1 X +1)
holds. We define
hl = iLl -2
hy = —hg+2+2(h1 —2).

Using a computer algebra system such as magma ([BCP97]), it is now easy
to compute that 3
hy =2+ 2hy — 2hy — h?

holds, and Equation (5.18) implies

(X =p1)(X—=p2)(X —p1p3 ) (X =1) (X —p; 'p2) (X —p3 ) (X —p1 1) = X{7p) (X)
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and hip, ho are uniquely determined by this equality. Now DEZTC}BQ) and

diag(pl,pg,plpz_l,l,pflpg,pz_l,pfl) have the same characteristic polyno-
mial and their eigenvalues pi,p2, p1py L 1,pf1p2,p5 1,pf1 are contained in
(odd)

Fyo[[t] with pairwise distinct constant terms, hence Dy . ) and

diag(pl,pg,plpgl, 1,pf1p2, pgl,pfl) are conjugate over GL7(FF([[t]]), by Propo-
sition 5.2.2.

O]

Lemma 5.8.3. Let q be a power of 2.
Let p1,pa € Fg|[t]]* be such that the constant terms of

D1, D2, P1P3 s DY D2, Py Py

are pairwise distinct. Then there exist unique hy, ha € F[[t]] such that
(X —p1)(X —p2) (X —p1pz ) (X = p7 ' po) (X —p3 ) (X —pih) = x50 (X)

holds and Dgf:e;li) and diag(pl,pg,plpgljpflpg,pgl,pfl) are conjugate over
GLg (Fyo[[£]])-

Proof. By Lemma 5.5.1, there exist hi, ha, hg € F[[t]] such that

(X = p1)(X — p2)(X — pipg ) (X — pT 'p2) (X = p (X —p1 )
= XS4 mXP+ o X+ hsXP 4+ o X2+ X +1

holds. Clearly, h; and hy are uniquely determined by this equation. It can
now readily checked by hand that hs = h? holds, hence we have

(X —p1) (X —p2) (X —p1py ) (X —p7 ' p2) (X —p3 (X —p7!) = x{jrom (X),

(even)

by Equation (5.19). Again, it follows from Proposition 5.2.2 that D(h1 h2)

and
diag(p1, p2, p1py . Py D2, 3 ' py ') are conjugate over GLg(Fys[[t]]). O
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5.8.2 A Difference Module for G,

q prime power > 3

o' fixed element in ;'\ {1}

C1 € B primitive (¢° — 1)-th root of unity
(2 € Fe primitive (¢ — 1)-th root of unity

D1,p2 € ]Fqc‘ [t](t)

P1,D2 € Fslt] s

4 3 3 2
Py = “in%ﬁiiﬁﬂa _ (] >(t+<q§5 )
1 (t+C1)(t+C1 )
- t+¢ - t+<§2
Pr= 5 P27 3G

hi,he € Fq [t] (t) ()

defined via

XG0 () = (X = p1)(X = p2)(X — pipy )

(X — 1)(X = py'p2)(X —pa )X —prt) if ¢ is odd

and x {5 (X) = (X = p1)(X — p2) (X — p1p3")-
(X —p'p2) (X —po (X —prt) if g is even

hi,hy € [t ) ()

defined via
odd ~ N o
A (X) = (X = 5)(X )X — fud ")

(X — 1)(X = p1 ' p2) (X — P (X — prt) if ¢ is odd

and X0 (X) = (X = p1)(X = p2)(X —pupy ")

(X — ﬁf1ﬁ2)(X —ﬁ;l)(X —]5;1) if ¢ is even.

Qij, bij S Fq

(le‘j, bz‘j S Fq

12 it
coefficients of h;: h;(t) = 2:3:&

Y iobitd] bio 70

fficients of hu: hu(t) = 242222 f0 20
coefficients of h;: Z()—m, i0 7

Hl,HQ (S Fq(t, 8)

ﬁl, f[g (S Fq(t, S)

12 1

S E j=0 aijtﬂ
12 ;
bio+s E =1 bijtj

sN\M2 g
L aZj:Oawt

=il
! biot35 Y ;2 bijt?

J1, f2 € Fy(t, s)

s—1 17,
oz—lI{Z

fi=1=aHi+

11—«
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Table 5.5: Definition of f, fa.
) hy, hg exist inside E 6[[75]] by Lemma 5.8.2 and 5.8.3. As ¢, permutes

P1, P2, P1Py ,pl Yo, pytiprt € e[t ](t) they are contained in [, [t]. Simi-
larly, hy and hy are contained in F,[t I

Theorem 5.8.4. Assume q > 3 and setn := 7 in case q is odd andn := 6 in
case q is even. Let M = (F™, ®) be the ¢,-difference module over F' = F,(s, t)

with representing matriz D, where D := D ;fd if ¢ is odd and D := DE;:?;;))
if q is even and f1, fo € F are as defined in Table 5.5. Then there exists a
Picard-Vessiot ring R C F,(s) s) ((#)) N L for M such that R/F is separable
and the Galois group scheme Gy g is isomorphic to Gy (as linear algebraic

group over [ (t)).

Proof. Again, with the very same reasoning as in the first three paragraphs
of the proof of 5.4.4 we first get a fundamental matrix inside GL,,(K[[t]])
with entries in O),{t} and then a fundamental matrix Y inside Go(K[[t]|NL),
where L is as defined in Section 5.1. Then R := F[Y,Y 1] C mgep((t)) isa
separable Picard-Vessiot extension for M with ‘H := Gy r a linear algebraic
group contained in Gs.

Similar to the fourth paragraph of the proof of 5.4.4, we find that H(I[[t]])
contains Ga(F,[[t]])-conjugates of Dy := Dy, 5,) (via the specialization s —
1) and of Dy := D, .y (via s — a), where Dy, p,) is understood to equal

either D := DEZ?C;L)Q) r D = D(even)) depending on the parity of ¢q. Let
Ty be the diagonal torus inside Go and let di and do denote the following

elements of Ty (IFs[[t]]):

dy = dlag(pl,pg,ppo ,1,101 ]02,p2 ,pl 1) for odd ¢
dy = diag(p1, P2, P13 ' LBy B2, By Py ) for odd g
d = dlag(pl,pg,plpz_l,pl_lpz,pgl,pl_l) for even g
dy = diag(p,pa, P1Py Py ‘P2, Py Py ") for even g.

The constant parts of d; and dy have pairwise distinct eigenvalues. In-

4 3__ _ 0 3 2_
deed, the constant part of d; has diagonal entries ¢} troe 1, ¢! ot 1,

Cif"+q“‘—t12—q7 1, Cl—q5—q4+q2+q7 Ci]5_q3_q2+1, Cl—q4—q3+q+1 (where the 1 in the
middle only occurs if ¢ is odd). Since (; is a primitive (¢5 — 1) = (¢ —
g+ 1)(¢* + ¢ — ¢ — 1)-th root of unity, p; := Cf4+q3_q_1 is a primitive
q*> — ¢+ 1 root of unity and the diagonal entries of the constant part of dy
are ,u1,ul_q+1,u(f, 1, ul_q,uq_l,,ul_l so they are all pairwise distinct (since
q > 3). Similarly, s := ¢§ " is a primitive (¢> + ¢ + 1)-th root of unity and
the constant part of ds has pairwise distinct diagonal entries s, py @ , g L,

2 —
17 Mga Mg ) /’LZI'
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Hence we can apply Lemma 5.8.2 and 5.8.3 and obtain matrices A1, Ay €
GL, (E;s[[t]]) satistying

Dy =Dgypy = di

A
DQZD(iLL;Q) = dy”°.

Hence H(F,[[t]]) (which contains G2 (F,[[t]])-conjugates of Dy and Ds) con-
tains also GL,,(F,[[t]])-conjugates of d; and dy. On the other hand, the
centralizers of the constant parts of d; and ds inside GL9 equal the diagonal
torus (as their eigenvalues are pairwise distinct), hence H(I[[¢]]) even con-
tains GLy (Fs + F,[[t]])-conjugates of d and dg, by Proposition 4.4.3 applied
to G = GL,,. Let By, By € GLy(Fs + F[[t]]) be such that dfi is contained

in H (I [[£]])-

The character group of Tj is generated by x1 and 2, so no non-trivial char-
acter can map dy or dy to 1 since (t+¢?') are pairwise coprime (inside e [t])
for 0 < i <5 and similarly (t—i—Cgl) for 0 <7 < 2. We conclude that both d;
and dy generate dense subgroups of Ty, by Lemma 4.2.6. Therefore, df ‘ gen-
erates a dense subgroup of 7, OB ¢ C GL, with respect to the Zariski topology
inside GL,,. As dlB ¢ is contained in H, we conclude that H < (G2 contains
< T(Fl , TOB2 >. In particular T} := T(fgl and Ts := T({BQ are both contained in
G, so they are maximal tori of G (even though B; and By may not be con-
tained in G2). The subgroup generated by d?" consists of [, ((t))-rational
points and is dense in 7 f ‘, hence T(F " is defined over F,((t)) (see [Bor9l,
AG.14.4]). We use B; € GL,(F,(((t))) to get T;(F,((t))) = To(F,((t)))P and
deduce

To (B, (1)) = 6Ty (Fy((1)))) = To(Fy((2))) %5 (5.20)
where we also used that Tj is defined over F, C F,((¢)). Now To(F,((¢)))
is dense in Tp (see [Bor91, Cor.18.3]), hence w; := B;¢,(B;)~* is contained
in the normalizer of T inside GL,. As Ty contains diagonal matrices with
pairwise distinct entries such as d; and dso, this normalizer consists of certain
monomial matrices inside GL,,. Let 01,09 € S,, be the permutations corre-
sponding to w; and wy. We can now describe the [, ((t))-rational points of
T; (i = 1,2) explicitly:

T ((1) = {g€ T( (1)) | ¢q(9) = g}
= {9=90" € HE(W))" | 4(90") = 95"}
= {90 € To(B((1))) | dqlg0) = g5'}"".
Now d ' is contained in T;(F,((¢))), hence ¢4(d;) = d7* and we can determine

oy We relabel the entries of d; and dy as

dl = diag(pl’p27p3a(17) p737p727p71)
dl = diag(ﬁl)ﬁ??ﬁ?ﬂ(lv) ﬁ737ﬁ725ﬁ*1)a



110 CHAPTER 5. APPLICATIONS

i.e., p3 :=p1py 1, p—i := p; * and similarly for p;. We compute ¢,(p1) = p3,

bq(p3) = P—2, Oq(P—2) = -1, Pq(P-1) = P-3, dq(P—3) = D2, Pq(P2) = p1,
hence
o1 = (1,3,-2,-1,-3,2).

Similarly, ¢q(p+1) = D3, ¢q(P3) = Dx2, ¢g(Dr2) = P41, i-e.,
oo = (1,-3,-2)(~1,3,2).

For I =1 mod 6, we have Jf = g; and Bi¢qz(Bi)*1 = Bi¢qu1(Bi_1wi) =

c = Qg-1(w;) ... pg(wi)w;. As each ¢y(w;) is monomial with respect to
i, the product ¢gi-1(w;) ... ¢g(w;)w; is monomial with respect to ol = o;.
Hence Biquz(Bi)_l is monomial with respect to o; for both i = 1,2 and we
get

Ti(Eu(lt) = {9 € TEIHD) | 64(9) =g}
= {9=9" € L@ | dgl90") = 9"}
= {90 € To(F[[t]) | bq1(90) = g5} (5.21)

for all I = 1 mod 6. Fix primitive (¢* — ¢! + 1)-th roots of unity v; and
(¢% + q + 1)-th roots of unity & inside F, for all =1 mod 6 and set

‘ 2 . ! 13

;= diag(y, (@) A (1) = )’%(q) 771((1) )
. 2 I _

o= diag(e, g D g (1) € € ey,

(@) _ -1 () _
Then ~; =, and § = &, hence

¢ql (x1) = x;n
bqr (Y1) =y

and z; and y; are both contained in Ty C G2. Hence Equation (5.21) implies
that 27 € T1(F,[[t]) and y,? € To(Ey[[t]]) for all =1 mod 6. Note that
x; and y; have order ¢% — ¢! + 1 and ¢ + ¢ + 1, resp. As T} and Ty are
contained in H, we conclude that H(F,[[t]]) contains the elements 27" and
le 2 whose constant terms are of order q2l + ql + 1 (as they are conjugate to
x; and y;). Therefore, H = G2 by Proposition 5.8.1. O



Chapter 6

A General Result

In this chapter, we prove that every semisimple, simply-connected group
defined over F; can be realized as a difference Galois group over (F;:(s, ), ¢,:)
for some ¢ € N. This number ¢ has to be chosen in such a way that the
following holds:

e G splits over an intermediate field F, C F, C [

e there exists a regular element gy € G(F,) contained in a maximal torus
that splits over [

e a certain place p of Fy(s) (depending on go) splits into places of degree
1 inside F(s).

The strategy is to use a Theorem due to Nori that provides us with a fi-
nite Galois extension of F(s) with Galois group G(I/) and then lift this to
a difference module over F(s,t) with Galois group scheme G using Theo-
rem 4.3.1.

6.1 Galois Coverings of the Affine Line

The following result due to Nori can be found in [Nor94].

Theorem 6.1.1 (Nori). Let G be a semisimple and simply-connected linear
algebraic group defined over a finite field ;. Then there is an absolutely
wrreducible unramified Galois covering of the affine line with Galois group

G(F,)-

Recall that a ¢4-difference module over (I, (s), ¢4) is called a finite Frobe-
nius module over (I, (s),¢,). Any finite Frobenius module has a unique
Picard-Vessiot ring inside Fq(s)sep. The Picard-Vessiot ring E is then a fi-
nite Galois extension of [F,(s) which we call the Picard-Vessiot extension.
The F,-rational points of the corresponding (finite) Galois group scheme

111
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G < GL,, are isomorphic to Gal(E/F) via identifying v € Gal(E/F) with
Y~14(Y) € G(F,), where Y € GL,(FE) denotes a fixed fundamental solu-
tion matrix (see Proposition 1.3.11). Every finite Galois extension can be

obtained in this way using additive polynomials. Details can be found in
[Mat04].

Corollary 6.1.2. Let G be a semisimple, simply-connected linear algebraic
group defined over IF,. Then there exists a finite Frobenius module over
(F,(s), ¢q) with representing matriz contained in G(F,(s)), Picard-Vessiot
extension E[F,(s) linearly disjoint from F, over F,, and Galois group G(F,).

Proof. By Theorem 5.2. in [Mat04], there exists an effective, finite Frobenius
module corresponding to the Galois covering provided by Theorem 6.1.1, i.e.,
the representing matrix can be chosen inside G(F,(s)). The Picard-Vessiot
extension F is linearly disjoint from F, over F, since the corresponding Galois
covering is absolutely irreducible. O

6.2 The Finite Part

The following lower bound criterion for finite Frobenius modules due to
Matzat can be found in [Mat04, Thm 4.5]. It also holds over finite extensions
of F,(s).

Theorem 6.2.1. Let M be a finite Frobenius module over (IF;(s), ¢q) with
representing matriz D € GLy,(F,(s)) and Picard-Vessiot extension E/F,(s).
We fix a fundamental solution matrizY € GLy,(E). Let p be a place of degree
d of F,(s) with corresponding valuation ring o C F,(s). If D is contained in
GLy,(0) then the following holds:

o E/F,(s) is unramified at p.
e For any extension (O, P) of (o,p) to E, Y is contained in GL,(O).

o The Galois group Gal(E/F,(s)) < GLy(F,) of M contains the reduction
of Y™ 'D¢g(D) - - - ¢ga-1(D)Y modulo P.

The following Proposition provides a converse to Theorem 6.2.1:

Proposition 6.2.2. Let M be a finite Frobenius module over (F,(s),¢q)
with representing matriz D € GLy, (I (s)), Picard-Vessiot extension E [F(s),
and Galois group G < GL,(F,). We fix a fundamental solution matriz
Y € GL,(E). Then there exist finitely many finite places p1,...,p; of F(s)
of degree dq,...,d;, resp., such that the following holds:

e For 1 < j < I, D is contained in GL,(0j), where o; denotes the
valuation ring corresponding to p;.
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e For every g € G there exists an j <1 and an extension P; of p; from
F,(s) to E such that g equals

Y™ 'D¢y(D) - ¢ a,-1(D)Y  mod Pj.

The number I can be chosen as the number of conjugacy classes inside G.

Proof. Whenever we have a place p or P, we denote the corresponding val-
uation rings by o and O, resp.

Every entry of D has only finitely many poles and det(D) has only finitely
many zeroes, hence D € GL,,(0) for all but finitely many places p of F,(s).

Let g € G < GL,(F,). Then g is of the form g = Y ~14(Y) for an el-
ement v € Gal(E/F,(s)). The Chebotarev Density Theorem (see [FJOS,
Thm 6.3.1]) implies that there exist infinitely many places p such that ~
equals the Frobenius automorphism at some extension P of p. Hence there
exists an (unramified) finite place p of F,(s) with an extension P to E such
that D € GLy,(0) and such that  is contained in the decomposition group of
P/p and acts as ¢,a on O/P where d denotes the degree of p. We abbreviate
the reduction modulo P of an element € O by Z. We use g € GL,(F,) and
compute

g =9
= V)
= Y 1q(Y)
= V7). (6.1)
where we used that Y is contained in GL,,(O) by Theorem 6.2.1. Now Y is
a fundamental solution matrix, hence ¢,(Y) = D~1Y. Inductively, we get

¢g(Y) = ¢g1(D71) - dy(D"HD™Y
= (D¢g(D) - ¢ga-1(D))"'Y.

Evaluating Equation (6.1), we get

g=Y '(D¢g(D) -+ ¢,a-1(D))'Y.
Replacing g by ¢~ !, we see that ¢ equals the reduction of
Y 1D¢¢(D) - ¢ga—1(D)Y modulo P. As P ranges over the extensions of
p, the reductions of Y "1 D¢y(D) - - ¢qa-1(D)Y range over the conjugates of
v € Aut(E/F). Let Cy,...,C; denote the conjugacy classes of G. Then for
each j <, we can choose a place p; as above. O
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We can now describe our approach to realize a semisimple, simply-
connected group G defined over F, as a difference Galois group over F,(s, t):
First, we use Nori’s result 6.1.1 to obtain a matrix Dy € G(I,(s)) with finite
Galois group G(IF;). We will extend this to a matrix D € G(F;(s)[t])) with

D =Dy modt.

We choose D such that Theorem 3.1.3 and Theorem 3.2.4 can be applied,
i.e., D has to meet certain assumptions on convergence. Then there exists a
Picard-Vessiot extension for the difference equation given by D with Galois
group H < G. We make sure that D is contained in GLy(o[t])) for all
valuation rings o corresponding to pi,...,p; as in Proposition 6.2.2 (applied
to Dy and G = G(F;)). Our lower bound criterion 3.3.11 then asserts that
H(F,[[t]]) contains the reduction modulo P; of

Y~ Dgg(D) - ¢ 4,1 (D)Y

for all 1 < j <1 and all extensions P; of p;. The constant term of Y is
a fundamental solution matrix for Dy, hence the constant terms of these
reductions range over G(I,), by Proposition 6.2.2. Therefore, every element
in G(F;) occurs as the constant term of some element in H(I[[t]]). If we
moreover assume that G splits over [, Theorem 4.3.1 then asserts that it is
sufficient to choose D in such a way that it specializes to an element which
generates a dense subgroup of a split torus 7". In order to be able to do that,
we will have to assume that T'(F,) contains a regular element and that the
corresponding place p; given by Proposition 6.2.2 is of degree 1. This can
be achieved after passing to a finite extension of F,, since T'(F,) contains a
regular element.

Proposition 6.2.3. Let M be a finite Frobenius module over (I,(s), ¢q) with
representing matriz D € GLy(F,(s)), Picard-Vessiot extension E/F,(s) and
Galois group G. Assume that E and F, are linearly disjoint over F,. Then
for any i > 1, the finite Frobenius module M; over (F,i(s), ¢,i) given by

D; := D¢y(D)...¢s-1(D)
has Picard-Vessiot extension EF:, and Galois group G.

Proof. Let Y € GL,(F) be a fundamental solution matrix for M. Hence
D¢q(Y) =Y which inductively implies

Di¢qi (Y) = Y7

so that Y is a fundamental solution matrix for M; as well. As E is generated
over If,(s) by the entries of ¥, we conclude that E; := EF; is generated
over F (s) by the entries of Y. Hence E; is a Picard-Vessiot extension of
M; and as E and F, are linearly disjoint over F, by assumption, we have
Gal(E;/F,i(s)) = Gal(E/F,(s)) = G. O
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Corollary 6.2.4. Let G be a semisimple and simply-connected linear alge-
braic group defined over I, and let go € G(IF;). Then there exists an element
D € G(Fy(s)), a number i € N, and a place p of degree 1 of F,i(s) such that

e the finite Frobenius module M; over (F;(s), ¢,i) given by
D; = D¢y(D)...¢s-1(D) has Galois group G(F;), and D; is contained
in GLy(0), where o denotes the valuation ring inside Fi(s) correspond-
mng to p.

e there exists a fundamental solution matrizY € G(F,(s) Py for M; such

that the reduction of Y "1D;Y modulo some extension of p from F,i(s)

to a (non-discrete) valuation on Fq(s)sep equals go.

Proof. Corollary 6.1.2 provides us with a finite Frobenius module M over
(I, (s), ¢q) with representing matrix D € G(IF,(s)), Picard-Vessiot extension
E/F,(s) linearly disjoint from F, over F,, and Galois group G(F,). Fix a
fundamental solution matrix ¥ € G(E) for M (which exists thanks to the
Lang isogeny, see [Bor91, V.16.4]). By Proposition 6.2.2, there exists a finite
place po of If;(s) of some degree d € N such that D € GL,,(09) and such that
the reduction of Y "1 D¢, (D) .. - ¢4a-1(D)Y modulo some extension Py of pg
from [,(s) to E equals gg. Set i := d. Then M; has Galois group G(If;), Y
is a fundamental solution matrix for M;, and the Picard-Vessiot extension
associated to M; equals E; = EF., by Proposition 6.2.3. Let P be an
extension of Py from E to msel) and set p = P NI(s) 2 po. Then p is
of degree 1, since pg is of degree d and thus splits into d places of degree
1 inside F;(s) = Fa(s). Note that D; is contained in GL;,(F(s)), hence
Y~ 1D;Y € GL,(FE) and reducing Y ~'D;Y modulo P yields the same as
reducing it modulo Py, that is, go. O

6.3 The Infinite Part

Proposition 6.3.1. Let G be a connected, reductive linear algebraic group
defined over F, of rank r. Assume that there exists a mazimal torus T that
splits over I, with F;-isomorphism ~v: G, — T. Then there exist irreducible
polynomials p1, . ..,pr € Fy[t] such that if we set g = y(p1,...,pr) € T(F, (1))
the following holds:

e g is contained in T ([t])) and g =1 mod t.

e Forany go € T(F,), gog generates a dense subgroup of T'. In particular,
the centralizer of gog inside G equals T.

Proof. Choose pairwise distinct irreducible polynomials pi,...,p, € Ft]
with constant terms 1 and set

g:=7vP1,-..,pr).
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Since 7y is given [F-polynomially in plil,...,p}1 and every p; has non-
zero constant term (and is thus contained in (I [t]4))*), g is contained in
T'(F,[t]()). Hence we can consider the constant part go € T'(I;) of g which
equals v(1,...,1) = I, as we assumed that the constant parts of pi,...,p,
are all equal to 1. Now let go be an arbitrary element inside T'(I,), say
go = Y(p1, ..., pr) with p; € Ff. Then pipy,..., pup, are pairwise co-
prime polynomials inside F,[¢t] and Lemma 4.2.6 asserts that the element
(u1p1, - - -, prpr) generates a dense subgroup of G/ .. Hence

gog = Y(p1p1, ..., urpr) generates a dense subgroup of 7. In particular,
every element x in the centralizer of gpg centralizes all of T' (since the cen-
tralizer of z is a closed subgroup of G containing gpg). We assumed G
reductive, hence the centralizer of T" equals T'. O

6.4 The Result

Theorem 6.4.1. Let G < SL, be a semisimple, simply-connected linear
algebraic group defined over F,. Then for a suitable i € N there exists an n-
dimensional difference module M over (F,(s,t), ¢,i) with a separable Picard-
Vessiot ring R/F:(s,t) and corresponding Galois group scheme isomorphic
to G (as linear algebraic group over F(t)).

Proof. Let ¢’ be a power of ¢ such that there exists a maximal torus T of
G that splits over Iy and such that T'(IF,) contains a regular element go.
Then the dimension of the centralizer Cg(gg) equals r, the rank of G. As G
is semisimple and simply-connected, all centralizers of semisimple elements
are connected (see [Car85, Thm 3.5.6]), hence

Cg(go) =T. (6.2)

Let Dy € G(Ey(s)), i' € N, and p a finite place of degree 1 in I, (s) be as
in Corollary 6.2.4 and let i be such that ¢* = q’i/ holds. We set

Do = D()qu(D()) s d)qi/_l(DE)) € G(Fy (s))-

Then by Corollary 6.2.4, the finite Frobenius module My over (Fi(s), ¢,:)
given by Dy has Galois group G(Fy). Let Yy € G (Wep) be a fundamental
solution matrix of My as in Corollary 6.2.4, that is, we can fix an extension
P of p from F(s) to msep such that the reduction of YOADOYO modulo
P equals go € G(F). Denote the reduction of Dy modulo p by Do € G(F:).
Then Dy is conjugate to go over G(IF,;) and we can use Equation (6.2) together
with Lemma 4.4.1 to obtain an element z € G(F,:) with

Do = gt (6.3)

Fix irreducible elements py,...,p, € Fy[t| as in Proposition 6.3.1 and set
g = vP1,.--,pr) € T(Ey[t]w) (with v: G, =T defined over Fy). Then
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gog generates a dense subgroup of T and ¢ = I mod t. Fix a finite place
q # p of F,i(s) such that Dy is contained in GLj,(04), where 04 denotes the
corresponding valuation ring inside F,:(s). Let f; € F,i[s] be a generator of
g. Recall that p is of degree 1 in [F(s), hence there exists an o € F;; such
that p = (s — o). Then fy(a) € IF;, as we assumed q # p. Let p; € Fy
denote the coefficients of pj, i.e.,

5
pi =y pat € Fylt],
=0

forall 1 <j <r. We set

N (s
n=Ye (710) R

for all 1 < j <r. Note that pi,...,p, are invertible inside Fi(s)[t](;), hence
we can define

g =71, 0r) € T(E;(s)[t]r))-

Also, p; = p; mod t, hence we can use that v is defined over Fy to conclude
that the constant term of g equals the constant term of g, that is,

g=1 modt.

We can now define the representing matrix D € G(F,(s,t)) of the desired
difference module as

D = Dog® € G(Fu(s)[t] )

with
D =Dy modt.

Let M be the corresponding difference module over (F:(s,t), ¢ )-

We first show that there exists a Picard-Vessiot extension for M. Let | - |
be the absolute value on F(s) corresponding to q with |fq| = 1 and let K
be the completion of an algebraic closure of the completion of F(s) with
respect to |- |. We use the corresponding notation (such as O}, m and L)
set up in Section 2.1 with & = F,(s). By construction, the absolute value

~ . l —
of the [-th coefficient of p; is at most (%) and the same holds for p; ! (see
Lemma 3.1.4b)). Every entry of § = v(p1,...,p,) is given Fy-polynomially
in P1,...,pr and their inverses, hence every entry of the [-th coefficient ma-

trix g of g is bounded by (%)l, as well (see Lemma 3.1.4c)). We conclude

N 1!
lall < (5)
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for every | € N (with || - || denoting the maximum norm on a matrix). As
r is contained in G(F,), conjugating g with z is given [F-linearly in the
entries of § and thus doesn’t affect the convergence. Finally, we assumed
Dy € GLy(0q), hence

[|1Dol| =1

and we conclude
1

l
1Dl = 1Dl < ()

for all I € N (where D; € M,,(F,:(s)) denotes the I-th coefficient matrix of
D). We can now apply Theorem 3.1.3 (with § = ) and obtain a fundamen-
tal solution matrix Y € GLy, (O, [[t]) "My (O {t}). We would like to apply
Theorem 3.2.4. Note that Op;/m = F, embeds into K. The reduction of
any p; mod m is contained in F; C K, as all non-constant coefficients of p;
are divisible by fq € m. As « is defined over F, C F, it commutes with the
reduction modulo m and we conclude that the reduction of g is a constant
matrix. The constant part of § equals the identity matrix, so the reduction
of g modulo m actually equals the identity. Therefore, the reduction of D
equals the reduction of Dy and is thus contained in G(F,:) C G(K) and all
assumptions to Theorem 3.2.4 are satisfied. We obtain another fundamental
solution matrix Y’ that is contained in G(L N O[[t]]). Then the constant
part Y of this new fundamental solution matrix is contained in G(K) and
it is a fundamental solution matrix for Dy. After multiplying Y’ from the
right with Yy~ 'Yy € G(F,), we may thus assume that the constant part of Y”
equals our previously chosen Y. From now on, we simply denote Y’ by Y.
Then R :=Fi(s,t)[Y,Y '] C L is a Picard-Vessiot ring for M by Theorem
1.2.11. All entries of Y are contained in m%p((t)), by Proposition 3.3.3 a)
(with & = K), hence R/F,(s,t) is separable by Proposition 5.2.1. We con-
clude that the Galois group scheme H := Gy; g of M is a linear algebraic
group (see Theorem 1.3.10) defined over F(¢) and it is a closed subgroup
of G by Proposition 1.3.11.

We will now use the lower bound criterion 3.3.11 to show that H is all of G.
By Theorem 4.3.1, it suffices to show that every element inside G(IF,) occurs
as a constant term inside H(F,[[t]]) and that H contains a G(F, + tF,[[t]])-
conjugate of the F,-split torus T'. The key point is to show that this is really
a G(Fy + tI,[[t])-conjugate and not just a G(F, + tF,[[t]])-conjugate.

First of all, note that for any finite place q" of F:(s) with valuation ring
o' C F,i(s), the polynomials p1, ..., p, are contained in (o’[t](;))*, since their
constant coefficients are contained in qu, C 0’* and all higher coefficients are
F,i-polynomials in s. Hence § = v(p1,...,pr) and also §g* are contained in
GL,(0'[[t]). We conclude that D is contained in GLy,(0’[[t]]) if and only if
Dy is contained in GL,(0’).
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Consider ¢’ = p with corresponding valuation ring o. Then Dy is con-
tained in GL,,(0) by the choice of p. Let O be the (non-discrete) valuation
ring inside Wep corresponding to the fixed extension P of p coming from
Corollary 6.2.4 and let x: O[[t]] — F,[[t]] denote the coefficient-wise reduc-
tion modulo P. By Corollary 3.3.11 (with k = F,i(s) and k=K), H (I, [[t]])
contains h := k(Y 'DY) (since o/p = F,i, hence d = 1). We use x(s) = a,
hence x(p;) = p; for all j to compute

k(D) = k(Do)k(g)"
= Doy(k(p1), - - - 6(pr))"
= 907155 pr)"
= (909)",

where we also used Equation (6.3). Therefore, h is conjugate to gog via
z-k(Y) € G(F[[t]]). On the other hand, the constant term of h equals the
reduction of YO_IDOYO at P, which equals gy by construction. Hence h is
contained in G(IF + tF;[[t]]) and is thus conjugate to gog € G(Fy[[t]) not
only over G(I[[t]) but also over G(IF, + tI,[[t]]), by Proposition 4.4.3. Let
A € G(Fy + tF,[[t]]) be such that (gog)” equals h. Recall that gog generates
a dense subgroup of 7. Hence (gog)A generates a dense subgroup of T4,
and H thus contains 7.

For the finite part, let p1,...,p; be the finite places of F:(s) provided by
Proposition 6.2.2 applied to the finite Frobenius module My over (F,:(s), ¢ )-
Let o01,...,0; denote the corresponding valuation rings inside ]Fqi(S) and
di,...,d; € N the degrees of p1,...,p;. Then Dy € GL,(0;) and thus
D € GL,(0j[[t]]) for all 1 < j < I. Let further Pi,...,P; be arbitrary
extensions of py,...,p; from F(s) to msep. Then by Corollary 3.3.11,

H(F,:[[t]]) contains

kj(Y " Dy(D) ... ¢ 4,1 (D)Y)

for all 1 < 5 <1, where r; denotes the coefficient-wise reduction modulo
P;. Looking at constant parts, we deduce that the reduction of

Yy ' Dogg(Dy) - . ¢ 4,-1(Do)Yo  mod P

occurs as a constant term in H(F;[[t]]). These reductions range over all of
G(IF,) (which is the Galois group of the finite Frobenius module M), by
Proposition 6.2.2. Hence every element in G(IF,/) occurs as a constant term
inside H (I,:[[t]]) which concludes the proof. O
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6.5 Example

Let now G = SL,,, assume ¢ > n(n + 1)/2, and let T' be the diagonal torus
inside SL,,. If ¢ € F, is a (¢ — 1)-th primitive root of unity, then T'(If))
contains the regular element
. 1 _nn=D)
go ‘= dlag(CaC27"'aCn laC 2 )
It was shown in [AM10] that there exists f; € F,[s] of the form f; = sa; +
(1 — s)B; for some «;, 5; € F; such that the finite Frobenius module over

(Fy(s), ¢q) given by

f1 fn—l (_1)11—1
1
Dy =

1 0

has Galois group SLy,(F,). Let v1,...,79m—1 be the coefficients of the char-
acteristic polynomial of go. Fix an element a € F,\{0,1}. Then it is easy to
see that if we alter f; to

s(s—1)

fizsa¢+(1—8)ﬂi+a

m(%’ —ac; — (1= a)B;),

the corresponding Frobenius module My over (F,(s), ¢4) has the same Galois
group. For this new Frobenius module, there exists a place p of degree 1
of F,(s), namely p = (s — «), such that the specialization of Dy at p is
conjugate to go over G(F,). Hence the number ¢ in Theorem 6.4.1 can be
chosen as @ = 1. The elements p; in Proposition 6.3.1 can be chosen as
pj = (1+¢t) for 1 < j <n—1. (Note that v : G 5T, (A1,..., Ap_1) —
diag(A1, -5 A1, (A1 A1) 1).) Following the proof of Theorem 6.4.1,
we obtain that the difference module M over (F,(s,t), ¢4) given by

D = -DO . diag(ﬁla s aﬁnflv (ﬁl e 'ﬁnfl)_l)x

has Galois group SL,, where the elements p; € F,[s,t] and z € G(I,) can also
be chosen explicitly: We fix the finite place q = (s), hence f; = s and we
can define p; as

.S
ﬁj =14 Cj —t
a
for 1 < j <n—1. Finally, z € SL,(F,) is a matrix such that the reduction
of Dy of Dy at p = (s — ) equals g§. We have

Yoo Yn—1 (_1)n—1
o 1
Dy =
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and it is easy to see that x can be chosen as

det(A4)~1

1

with A the Vandermonde-matrix corresponding to

n(n—1)

(L2 ).
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Chapter 7

t-Motives

7.1 The Category of t-Motives

Following [Pap08] and [Tae09], we give the basic definitions of ¢-motives
which were originally introduced by Anderson in [And86]. Although t-
motives can be defined over any field K containing [, (see [Tae09]), we
restrict ourselves to the following situation:

k: k =TF,(0), a rational function field.

|+ oot the oo-adic valuation on k with |0 = q.

(K,||oo): the completion of an algebraic closure of the completion of k
with unique extension | - |s from k to K.

k: the algebraic closure of k inside K.

T: the ring of restricted power series over K, i.e., power series
>0 a;t' such that lim; s |ai|eo = 0.

L: fraction field of T'.

on k and K, ¢ is the inverse of the Frobenius and ¢ extends to

k(t), T and L by acting coefficient-wise, i.e., o(t) = t.

Compared to our previous setup from Chapter 5, we renamed the vari-
able s by =1 (hence we consider the co-adic valuation instead of the s-adic
one) and we work with o = ¢! instead of ¢,. Note that L7 = k7 = Fy(t)
holds by Lemma 2.1.3 (or [Pap08, 3.3.2]).

Definition 7.1.1. [Pap08, 3.2.1]

A pre-t-motive is a left k(t)[o,o~']-module that is finite dimensional over
k(t). In other words, a pre-t-motive is a difference module (P, o) over
(k(t),0) as defined in Definition 1.1.10. Let B be a basis of an n-dimensional
pre-t-motive (P, o) over k(t). Then the matriz ® € GL,(k(t)) collecting the
1mages of the elements of B in its rows is said to represent multiplication
by o on P and we call it the representing matrix, for short.

123
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Remark 7.1.2. Previously, we defined the representing matrix of a differ-
ence module to be the matriz collecting the images of a basis in its columns
and not its rows. In this chapter, we use the row-convention instead to
conform to the notation in [Pap08], i.e., we transpose our representing ma-
trices.

Example 7.1.3. The Carlitz pre-t-motive C is the pre-t-motive (k(t), o)
with o given by o(f) = (t —0)o(f). Then ® = (t — 6) represents multipli-
cation on C with respect to the basis {1} of C.

Definition 7.1.4. [Pap08, 3.3.1]
A pre-t-motive (P, o) is called rigid analytically trivial, if P Dxet) L has a
o-invariant L-basis.

Proposition 7.1.5. [Pap08, 3.3.9]
A pre-t-motive P is rigid analytically trivial if and only if there exists a rigid
analytic trivialization of P, i.e., a matrix W € GL,, (L) satisfying

o(W) = DU,

In particular, P is rigid analytically trivial if and only if there exists a
Picard-Vessiot ring of P contained in L.

Proof. Recall that ® was chosen with respect to a fixed basis B. We use
this basis to write any element in P Dkt L as element in L™, where n =

dimg ) (P). For any such element p € P®y ;) L we then have o(p) = d%a(p).

Set Y = UL, Then o(¥) = ®V if and only if ®"o(Y) = Y which holds if
and only if the columns of Y form an o-invariant basis of P Dxe) L. Hence
P is rigid analytically trivial if and only if such a ¥ exists.

In other words, P is rigid analytically trivial if and only if there exists
a fundamental solution matrix ¥ € GL,(L) for the difference equation
3" ¢(Y) =Y. By Theorem 1.2.11, k(¢)[Y,Y '] C L is then a Picard-Vessiot
extension for P. O]

Theorem 7.1.6. [Pap08, 3.5.15]

The category R of rigid analytically trivial pre-t-motives is a neutral Tan-
nakian category over I, (t) with fiber functor mapping a pre-t-motive to the
vector space of solutions inside P Qp L.

Definition 7.1.7. [Tae09, 2.1.1]
An effective t-motive of rank n is a pair (M, o) consisting of a free and
finitely generated k[t]-module M of rank n together with a o-semilinear map
o: M — M such that the determinant of the representing matrix of o with
respect to some basis of M is of the form u(t —6)" for ani € N and u € k.
(Note that i = 0 is not excluded).
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Example 7.1.8. Consider C = (k[t], o) with o given by o(f) = (t—0)o(f).
Then C' is an effective t-motive, called the Carlitz motive.

Definition 7.1.9. [Tae09, 3.2.8]
An effective t-motive (M, o) is called rigid analytically trivial, if M kg T
has a o-invariant T-basis.

Proposition 7.1.10.  a) An effective t-motive (M, o) is rigid analyti-
cally trivial if and only if the corresponding pre-t-motive M ®k k(t)
1s rigid analytically trivial.

b) An effective t-motive (M, o) is rigid analytically trivial if and only if
there exists a rigid analytic trivialization ¥ € GL,(T) of M.

Proof. This was proven in [Pap08, 3.3.9] and [Tae09, 3.2.8]. O

Example 7.1.11. The Carlitz motive is rigid analytically trivial with rigid
analytic trivialization

Q= (T=0) ﬁu —t/07) e T.
=1

Details can be found in [Pap08, 3.3.4].

The category of effective t-motives can be considered as subcategory of

P by identifying M with M @, E(t) (see [Pap08, 3.4.9] for details).

Definition 7.1.12. [Pap08, 3.4.10]

The category T of t-motives is defined to be the strictly full Tannakian
subcategory of R generated by the rigid analytically trivial effective t-motives
up to isogeny.

Remark 7.1.13. In [Pap08, 3.4.10], T is actually defined to be the Tan-
nakian subcategory of R generated by the those rigid analytically trivial effec-
tive t-motives (up to isogeny) that are finitely generated over k[c]. However,
these generate the same Tannakian category. More precisely, it is shown in
[Tae09, 5.3.2] that if M is an rigid analytically trivial effective t-motive,
then for allr >> 0, M gy C®" is finitely generated over k[o].

Definition 7.1.14. Let M be a t-motive. Then there exists a unique Picard-
Vessiot extension of M inside L. The corresponding difference Galois group
scheme G defined over Fy(t) (see Definition 1.5.6) is called the Galois group
of M.

Remark 7.1.15. The Galois group of M is F,(t)-isomorphic to the Galois
group scheme assigned to M wusing the Tannakian formalism. This was
proven in [Pap08, Thm 4.5.10].
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Example 7.1.16. The Carlitz t-motive has Galois group G,, (see [Pap08,
3.5.4]).

Difference Galois theory has proved very powerful in transcendence the-
ory over function fields, due to the fact that the dimension of the difference
Galois group equals the transcendence degree of the Picard-Vessiot ring.
In 2008, [Pap08], Papanikolas proved a function field analog of the classi-
cal conjecture on logarithms of algebraic numbers, namely that they are
algebraically independent over Q if they are linearly independent over Q.
The function field analog of the exponential function is the so-called Carlitz
exponential function exp., which again is similar to the exponential func-
tion expp: C — E(C),z — (p(z) : ¢'(2) : 1) assigned to an elliptic curve
E. There is also a function field analog of the Riemann (-function and in
[CYO07], Chang and Yu proved a classical conjecture concerning algebraic re-
lations among ((2),((3),((4),... in the function field case using difference
Galois theory.

It would be interesting to know whether there are difference equations aris-
ing from questions in transcendence theory where our lower bound criterion

3.3.11 might be helpful.

7.2 Pre-t-Motives with Semisimple Galois Groups

We can now lift our results from Chapter 5 and 6 where we realized certain
semisimple groups as difference Galois groups over k(t) to k(t) to get pre-t-
motives with interesting Galois groups.

Theorem 7.2.1. a) Let n > 2 and q > 2 be such that (n,q) # (2,3).

Consider the pre-t-motive P = (k(t)", o) with o given by

¢1 oor o1 (1)

where ¢; == fi(1/0,t) € k(t) for fi(s,t) € F,(s,t) as defined in Table
5.1 on page 72. Then P is rigid analytically trivial and has Galois
group SLy,.

b) Let n = 2d > 4 and assume q > 2. Consider the pre-t-motive P =
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(k(t)", o) with o given by

¢1 .. Qg1 Pa |1

1
1 0
b —
$a—1 |0 1
¢1 |0 1
-1 10

where ¢; :== fi(1/0,t) € k(t) for fi(s,t) € F,(s,t) as defined in Table
5.2 on page 81. Then P is rigid analytically trivial and has Galois
group Spog-

c) Let n = 2d+ 1 > 7 and assume q odd. Consider the pre-t-motive
P = (k(t)", o) with o given by

$1 oo Ga—1 Pa | =204 | —2¢q
1

where ¢; = fi(1/0,t) € k(t) for fi(s,t) € Fy(s,t), fa € Fy(s,t)* as
defined in Table 5.8 on page 87. Then P is rigid analytically trivial
and has Galois group SOoq.1.

d) Let n = 2d > 8 and assume q odd. Consider the pre-t-motive P =
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(k(t)", o) with o given by

O1 oo Pi-1 Pd | Pa—1 —Pa
1

where ¢; == fi(1/0,t) € k(t) for fi(s,t) € F(s,t), fa € F(s,t)* as
defined in Table 5.4 on page 100. Then P is rigid analytically trivial
and has Galois group SOaq.

e) Assume q odd. Consider the pre-t-motive P = (k(t)", o) with o given

by
b~ 1 0 0 0 0
-1 0 0 0 0 0 O
0 —¢7 0 —¢1 ¢2 1 0
o= 0 —26, 0 -1 0 0 0
0 1 0 O 0O 0 O
0 0 0 0 —¢ 0 —1
0 0 0 0 1 0 O

where ¢; == fi(1/0,t) € k(t) for fi(s,t) € F,(s,t) as defined in Table
5.5 on page 108. Then P is rigid analytically trivial and has Galois
group Gs.

f) Assume q > 2 even. Consider the pre-t-motive P = (k(t)%,0) with o
given by

o1 ¢2 1 0 0 0
1 0 0 0 0O
o |0 ¢7 0 ¢2 1 0
0O 1 0 0 00
0 0 0 ¢ 0 1
0O 0 0O 1 00

where ¢; == fi(1/0,t) € k(t) for fi(s,t) € Fy(s,t) as defined in Table
5.5 on page 108. Then P is rigid analytically trivial and has Galois
group Go.

Proof. We proved in Theorem 5.4.4, 5.5.4, 5.6.4, 5.7.7, 5.8.4, resp., that the
¢q-difference module M over k(t) given by ® (this time with respect to the
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column-convention) has a fundamental solution matrix Y € GL, (L) with
Picard-Vessiot ring R := k(¢)[Y,Y '] C L with Galois group SL,, Spsy,
SO24+1, SOaq, Ga, resp. Hence R and k(t) are both contained in L and the
corresponding Galois group is connected, so we can apply Theorem 1.4.2 to
conclude that M ®j, k has Picard-Vessiot ring R ®; k = k(¢)[Y,Y 1] C L
over k(t) and the same Galois group. Set ¥ = ¢,(Y) € GL,(L). As Y is a
fundamental solution matrix for M, we have

(I)%(Y) =Y

which translates to
OV = o(0).

Hence ¥ is a rigid analytic trivialization of P and
R ®j k= E(t) [Yv Y_l] = E(t) [\Ija \Ij_l]

is also a Picard-Vessiot ring for P. Hence the Galois group schemes of P
and M ®y, k coincide (they both equal Aut(R ®y k/k(t))). O

Note that the notion “pre-t-motive” depends on g, since o = qﬁ;l. When
considering pre-t-motives with respect to different ¢’s at the same time, we
will clarify this by calling a pre-t-motive corresponding to o = gbq_l a
pre-q-t-motive. If ¢ has been fixed, a pre-¢‘-t-motive is sometimes called a
pre-t-motive of level i.

Theorem 7.2.2. Let G < SL,, be a semisimple and simply-connected linear
algebraic group defined over I,. Then there exists an i € N and a pre-q'-t-
motive that is rigid analytically trivial and has Galois group isomorphic to
G as linear algebraic group over F(t).

Proof. Again, this is just Theorem 6.4.1 together with Theorem 1.4.2. [

7.3 t-Motives

Proposition 7.3.1. Let M be an n-dimensional t-motive. Then there ex-

ists a k(t)-basis of M such that the corresponding representing matriz ® is
contained in GL,((t — 0)"NE[t]).

Proof. As M is contained in the Tannakian category generated by rigid
analytically trivial effective ¢{-motives, it can be constructed from finitely
many effective t-motives using direct sums, subquotiens, tensor products,
duals, and internal Hom’s. The representing matrix ®. of an effective t-
motive with respect to a k[t]-basis has entries in k[t] and its determinant
equals u(t — 0)" for some u € k* and i € N. Hence det(®,) is invertible
inside (t — 0)~Nk[t] and ®, is thus contained in GL,((t — 0)"Nk[t]). The
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representing matrix of the dual equals ®~1 € GL,((t — 0)"Nk[t]). Let P
and @ be pre-t-motives. Then the internal Hom is the pre-t-motive R =
Homg, ) (P, Q) with o(y) = oyo~!. Tt is easy to see that the representing

matrix of R with respect to the canonical basis equals (®p7, ® Q)E\Z;l) - w,
where w denotes a permutation matrix. That is, the matrices remain inside
GL,((t — 0)"Nk[t]) under taking duals and internal Hom’s. If P and Q are
pre-t-motives such that their representing matrices ® p and ®¢ are contained
in GL,,((t — 6)"NE[t]), then the same is true for the representing matrix
Op @ g of P @ Q, for the representing matrix ®p @ &g of P ®  and for
the representing matrix of any subquotient of P (using base extension). [

The only explicit examples of Galois group schemes of t-motives known
to the author are extensions of one copy of G, by several copies of G, such
as those occuring in transcendence theory (see [Pap08], [CY07]). One cannot
expect every linear algebraic group over F,(t) to occur as the Galois group
of a t-motive, as the following Proposition demonstrates.

Proposition 7.3.2. Letn > 2. Then G}, does not occur as t-motivic Galois
group.

Proof. The following argument was communicated to the author by Lenny
Taelman.

Assume that M is a t-motive with Galois group Gj,,. Then the Tannakian
subcategory 73s of 7 generated by M is equivalent to the Tannakian cat-
egory of finite dimensional representations of G}, over F,(t) ([Pap08, Thm.
4.5.10.]). As GJ, is an [F,(t)-diagonalizable group, any IF,(t)-representation
splits into a direct sum of one-dimensional [F,(t)-representations. It follows
that M is isomorphic to a direct sum of one-dimensional ¢-motives. Let
(N,o) be a one-dimensional t-motive. By Proposition 7.3.1, there exists a
basis of N consisting of 0 # v € N such that o(v) = ®v with ® invert-
ible inside (t — 0) NE[t]. Hence ® is of the form u(t — 6)™ for an u € k
and n € Z. By multiplying v by a solution y € %™ of the algebraic equa-
tion o(y) = v 'y, we may assume u = 1. Hence N = C®" if n. > 0 or
N = (CV)®(=) if n, < 0, where C" denotes the dual of the Carlitz t-motive
C (recall that CV has representing matrix (t — 0)®~1 = (t —6)~1). We con-
clude that N is contained in the Tannakian category 7o generated by C'. As
a direct sum of such objects, M is contained in 7¢, as well. Therefore, the
Galois group G}, of M is a quotient of the Galois group G,, of C' ([Pap08,
3.5.2]), a contradiction. O

On the other hand, it is very easy to construct pre-t-motives with Galois
group G}, as the following example demonstrates.

Example 7.3.3. Let P be the pre-t-motive (k(t),o) given by

® = diag(1 + 0t, 1+ 6t%,..., 1+ 6t™).
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By Theorem 3.1.3 together with Theorem 3.2.4, there exists a rigid analytic
trivialization ¥ € G)}(L) (this can actually be seen very easily by hand
without using Theorems 3.1.3 and 3.2.4). The corresponding Galois group
scheme 'H s therefore contained in GJ,,. The lower bound criterion 3.3.10
asserts that H(F,[[t]]) contains a conjugate h of

O =diag(1+t,14+t%...,1+1t"),

the specialization of ® via 0 — 1. As h is diagonal and has the same
eigenvalues as ®, we conclude that there exists a permutation o € S, such
that h equals ®°. Hence h generates a dense subgroup of Gy, by Lemma
4.2.6 and we conclude H = G}},. To be more precise, we should note that
we cannot apply the lower bound criterion 3.3.10 directly to P but only to
the corresponding difference module over k(t) given by ®. We then lift the
result to k(t) using Theorem 1.4.2.
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