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1. Introduction 
Gas monitoring has become a growing demand stemming from strategies for 

intelligent process management, environmental protection, and medical diagnostics 

as well as from the domestic and automotive sectors. The four key parameters 

identifying a good sensor are sensitivity, selectivity, stability, and speed [Ko01]. 

However, the majority of research on the development of fast responding, sensitive, 

and especially highly selective gas sensor materials is restricted to improvement of 

known systems and is not directed towards the search for alternative sensor 

materials. Therefore current commercial gas sensors are based on a few n-type 

conducting semiconductor materials, like SnO2, ZnO, WO3, Fe2O3 or TiO2, or, for 

more demanding applications, on sensor arrays of these materials, enhancing 

selectivity with appropriate complex signal analysis. The sensing properties are 

based on a number of different processes like material synthesis, sample 

preparation, sample treatment, and measuring method. Despite various research 

efforts, sensitivity and selectivity of the materials are not predictable.  

 

The use of high throughput experimentation (HTE) techniques accelerates material 

synthesis and characterisation and thus enables an investigation of a multitude of 

different materials [Am04, Se01]. HTE also allows the application of combinatorial 

strategies, which expedite the time-consuming process of evolutionary optimisation 

of selected material properties. Our group has already developed a high throughput 

impedance spectroscopy (HT-IS) setup for analysis of gas sensing properties of 

metal oxides together with a broad variety of surface doping elements [Fr04, Br05, 

Si05, Ko06]. With selected examples, it was demonstrated that materials with desired 

properties can be found in a variety of different combinations of metal oxides and 

surface dopants [Sa04, Ko06b].  

 

This work reports on the investigation of gas sensing properties of different p-type 

ABO3 compounds by use of high throughput impedance spectroscopy. The methods 

applied should answer the following questions: 

 Is it possible to synthesise a wide range of different p-type ABO3 materials via the 

polyol mediated synthesis which is known for metal and metal oxide nanoparticle 

synthesis [Fi82, Fe04]? 
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 Can substrate plates of diverse metal-doped oxides be rapidly synthesised and 

screened for gas sensing properties? 

 What are the effects of composition changes in the materials on the gas 

sensitivity? 

 Is it possible to improve the gas sensing properties of p-type ABO3 materials by 

doping?  

 Are there trends in gas sensing performance as a function of composition that 

might improve the understanding of structure-property relationships? 

 

The thesis is organised as follows: 

Chapter 1 gives an introduction to the topic of chemical gas sensor research and the 

motivation/aims of this work. 

Chapter 2 discusses the measurement principles of metal oxide semiconductor gas 

sensors and introduces the familiy of ABO3 compounds investigated in this work.    

Chapter 3 details the workflow from synthesis to gas sensing measurements and 

discusses the screening results. 

Chapter 4 summarises the presented work, highlighting the main achievements. 
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2. Basic knowledge 
The use of semiconductors as gas sensing layers goes back to 1953 when Brattain 

and Bardeen first reported gas sensing effects on Germanium [Br53]. This 

observation was followed by the discovery of gas sensing effects on metal oxides by 

Seiyama in 1962 [Se62, Se66]. Finally, Taguchi [Ta62, Fi02] brought metal oxides as 

gas sensors to the commercial market. Nowadays, millions of gas sensors are sold 

every year. The mass market for gas sensors is growing because of increasing 

demand in multiple areas. Chemical sensors are not only used for industrial facilities 

(H2, CH4, etc.) but also in domestic appliances (hydrocarbons [Ja06b]) and air quality 

monitoring (NOx [Tr99], NH3 [Ro05]). Common applications include early fire 

detectors (CO [Ba03]), car cabin air quality monitoring (VOC, hydrocarbons [Ya05]), 

detection of hazardous chemical agents to provide safety in public places, just to 

mention a few examples. The main differences between classical analytical 

instruments and sensors are cost, size, and accuracy. In contrast to classical 

analytical instruments sensors are low-cost small devices with lower lifetime and 

accuracy.  

 

A gas sensor is a device which provides an electrical output in response to a change 

in the ambient gas atmosphere [Fr06]. In general, the field of gas sensors is divided 

into a number of different measuring principles. Gas detection can be performed by 

IR-detectors, electrochemical cells, quartz microbalances, pellistors, and resisitive 

semiconductive metal oxide sensors [Mo97]. This work will focus on the latter ones. 

The gas sensor can be divided into a receptor function and a transducer function. 

Figure 2.1 shows the receptor and transducer function of a semiconductor gas 

sensor. The receptor, in this case the metal oxide surface, interacts specifically with 

the target gas, while the transducer function, accomplished here by the sensor layer 

with its microstructure, transforms the chemical/physical signal into an easily 

measurable electrical one. In addition, an element which enables the detection of a 

change in output resistance of the sensing layer is shown [Fr06, Ya05].  
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Figure 2.1: Sensor device model. 

 

Resisitive semiconductive metal oxide sensors show a change in the concentration of 

conduction species as a result of chemical reactions at the surface with different 

adsorbed gas species. These reactions modify the defect structure of the oxide 

surface layer to a depth of a few µm or less. The operating temperature must be low 

enough to allow sufficient surface adsorption but high enough for surface reaction 

and charge transfer between the surface layer and the bulk interior. The working 

temperature of these sensors is usually lower than that of the bulk conduction based 

gas sensors. Typically values between 200° and 500°C are used, depending on the 

base material and the target application. A high performance gas sensor has a high 

sensitivity to the few selected pollutants and provides a stable and reproducible 

signal over long time periods. 

 

Many investigations in the field of sensor research have been performed on SnO2 

making this material a model system for oxide-based sensors [Ba96]. The following 

paragraphs give an introduction to the working principles of resistive gas sensing 

materials. 

 

2.1  Bulk conductivity and surface states 

The resistance of a homogeneous bulk material with conductivity σ , length l and 

cross section A can be calcutated according to: 

A
lR
⋅σ

=            (2.1) 

CO2 
 
CO 

O- 
O- 

O- 

O- 
O- 

analyte    sensitive material    transducer         sensor signal 
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Semiconductors show conductivities which are located between those of conductors 

and insulators, having an electronic band gap smaller than 5 eV. The conductivity of 

a semiconductor crystal can be described as the sum of electronic ( p,eσ ) and ionic 

conductivity ( j,ionσ ), if the conduction processes are considered to be independent. In 

the temperature range investigated in this work (200-500°C) the ionic contribution 

can be neglected for the materials. Thus,  

)np(e eppei,ionpe µ+µ=σ+σ≈σ+σ+σ=σ ∑        (2.2) 

where µe,p are the mobilities of electrons and holes, e is the elementary charge and n 

and p, the charge carrier concentrations for an intrinsic semiconductor [Me00b]. 

 

In an extrinsic semiconductor additional donor and acceptor levels appear due to 

doping of the material. The extrinsic doping shifts the Fermi level towards the 

conduction band for n-doped semiconductors or towards the valence band for p-

doped semiconductors.  

 

At the surface of a metal oxide material a change of the electronic band structure can 

be observed. Sites of varying reactivity can be found. These so-called surface states 

are localised electronic energy levels at the surface. Surface states can be 

differentiated as intrinsic or extrinsic states. Intrinsic surface states result from non-

ideal stoichiometry, bulk defects like surface atoms with unoccupied or unsaturated 

orbitals (“dangling bonds”) or interstitial defects; extrinsic surface states originate 

from the adsorption of gases or impurities (dopants) on the surface. Surface cations 

provide acceptor-like surface states (electron traps) near the conduction band, while 

surface anions provide donor-like surface states (hole-traps) near the valence band. 

Surface states are able to exchange electrons with the bulk, which makes them 

important for the change in electrical conductivity due to reaction in ambient gas 

atmospheres.  

 

2.2 Physical and chemical adsorption 
If gases interact with a metal oxide surface layer, the adsorpion can be classified as 

physi- or chemisorption. Physisorption is the first step in the interaction between an 

analyte and the solid surface. A gaseous molecule approaching the surface is slightly 

polarised and induces an equivalent dipole in the adsorbent. In case of chemical 

adsorption, a strong interaction involving electron transfer occurs. The binding 
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energies are of similar strength as those of chemical bonds (>0.5 eV). The adsorption 

process is not only dependent on the nature of the adsorbate and adsorbent but also 

on the availability of adsorbate (partial pressure) and the temperature. In gaseous 

environments, there is a state of constant adsorption and desorption in a 

thermodynamic equilibrium situation. 

 

Atoms or molecules adsorbed on a surface can capture electrons from or inject 

electrons into the bulk to form a localized electron energy state at the surface 

(extrinsic surface state).  

Figure 2.2: Band bending model for a) n-type semiconductor and b) p-type semiconductor. 

 

The adsorption of oxygen on an ionic crystal can occur in molecular or atomic form. 

The electrochemical potential of the oxygen adsorbate becomes lower than that of 

the Fermi level causing a transfer of electrons from the bulk to the adsorbed oxygen 

by the process shown below: 
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α−
β

− →+⋅α+
β

)ads()gas(2 O]S[eO
2

         (2.3) 

where [S] is an unoccupied chemisorption site S; 

O2(gas) is an oxygen molecule in the ambient atmosphere; 

e- is an electron, and α−
β )ads(O  is a chemisorbed oxygen species with  

α=1 for singly ionised forms 

α=2 for doubly ionised forms 

β=1 for atomic forms 

and β=2 for molecular forms [Ba01]. 

These charged species are bound via chemisorption to the surface. The presence of 

these species on SnO2 have been analysed by TPD, FTIR and EPR [Ba99, Pa03]. 

The O2
- molecule is predominant at temperatures below 150°C. From 150° to 500°C, 

which is the predominant temperature range in this work, the O- species dominates.  

 

The electrochemical potential of the surface state (µO-) whose level is lower than the 

Fermi level in bulk will capture electrons from the conduction band. This induces a 

hole accumulation layer (Λair) beneath the surface for n-semiconductors and from the 

valence band for p-type semiconductors (as shown in Figure 2.2). The holes in the 

accumulation layer and the associated space charge induce a potential (surface 

band bending) that increase µO-. The negative countercharge (oxygen species) 

balances the excess holes accumulated in the metal oxide. Unlike a metal, a 

semiconducor does not have a large amount of mobile free charge carriers avialable 

at the surface. The positive charge will therfore be formed in the bulk, resulting in the 

mentioned space charge region. The height (eVsurf) and depth (Λair) of the band 

bending depends on the surface charge. At the same time Λair depends on the Debye 

length LD, which is characteristic of the semiconductor material for a particular donor 

concentration: 

d
2

r0
D ne

Tk
L

⋅
⋅⋅ε⋅ε

=            (2.4) 

with the dielectric constant εr, the permittivity of free charge ε0, the Boltzmann 

constant k, the operating temperature T, the electron charge e, and the carrier 

concentration nd, which corresponds to the donor concentration assuming full 

ionisation [Fr06]. The Debye length is high for a low density of free charge carriers in 
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the volume. The decrease of charge carriers near the surface decreases the rate and 

energy for further adsorptions [Gö96]. 

As long as µO- is below EF, electrons are transfered from the metal oxide to the 

surface adsorbates. In equilibrium, the surface Fermi level position is pinned at µO-. 

The effect of oxygen adsorption on n-type semiconductors is a decrease of surface 

conductivity, while in the case of a p-type semiconductor, the band bending results in 

an accumulation of charge carriers (holes) near the surface, which leads to increased 

surface conductivity (as shown in Figure 2.2b).   

 

2.3  Sensing mechanism 
Upon exposure of an n-type metal oxide to a reducing gas such as CO, the gas 

reacts with the adsorbed oxygen species, releasing the trapped electron to the 

conduction band and increasing the conductance (see Figure 2.3). 
−− +→+ eCOOCO )gas(2)ads()gas(          (2.5) 

A lower steady-state surface coverage of the adsorbates is established. The 

conductance is determined by the variation in the barrier height at the intergranular 

contact. An increase in CO concentration decreases the barrier height and 

subsequently increases the conductance [Gö85]. 

 

The mechanism for oxidising gases such as NO2 is not the same as for reducing 

gases. These molecules will be directly chemisorbed on the metal oxide surface. NO2 

occupies additional surface states, and further electrons are extracted from the 

semiconductor: 
−− →+ )ads(2)gas(2 NOeNO           (2.6) 

In addition an intercation with adsorbed oxygen may occur: 
−− →+ )ads(3)ads()gas(2 NOONO          (2.7) 

These reactions result in an increase of the barrier height and in lower conductivity of  

n-type semiconductors.  

 

On p-type metal oxides the adsorbed oxygen acts as surface acceptor state, 

abstracting electrons from the valence band and hence increasing the charge carrier 

(hole) concentration at the grain surface. The consumption of oxygen adsorbates by 

reaction with reducing gases leads to an increase of resistance, which is the opposite 
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of the effect for n-type metal oxides. Conversely, the adsorption of oxidising gases 

results in a decrease in resistance.  
 

Figure 2.3: Band and structural model for n-type semiconductors under reducing, oxidising and 

reference atmosphere. 

 

However, a sintered SnO2 ceramic is likely to incorporate more than one type of 

intergranular contact. Each crystallite is connected to several neighbours by either 

neck-type or barrier-type contacts. Since barrier-type contacts usually show much 

larger resistance than neck-type contacts, it is more favourable for electrons to pass 

through the barrier contacts [Pa03]. Therefore the response characteristics of a real 

sensor are critically dependent on the fabrication method and thermal treatment of 

the ceramic.  
 

Thick film sensors consist of numerous different sintered particles. The conductivity 

of a film of particles is assembled from a bulk part and a surface part. Depending on 

the degree of sintering, the charge carriers have to overcome different heights of 

energy barriers (Figure 2.4). In the case of two particles touching, the charge carriers 

have to overcome eVsurf at the grain boundary. In the case of sinter necks, the 

potential barrier is lower than the energy barrier in the aforementioned case.    
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Figure 2.4: Band bending for different sintered grains. 

 

2.4  Key performances of a Sensor 
Sensors were evaluated for four key performance aspects: sensitivity, selectivity, 

stability and speed.  

 

2.4.1 Sensitivity 

Sensitivity is defined as the ratio of the resistance of a sensing material in the 

presence of an analyte to the baseline resistance measured in air (reference gas).  

Hence, the absolute sensitivity S of a material to a test gas is defined by: 

 
,RR
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>=
           (2.8) 

where Rg is the resistance obtained from the measurement under test gas conditions, 

while Rr is the reference resistance value for a measurement under synthetic air.  

Our group describes the response of a material to a test gas by the relative sensitivity 

S∆, which is defined as 

rg
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where values for S∆ range from 1 to -1. Decrease of resistance while applying a test 

gas gives values between 0 and 1, rise of resistance results correspondingly in 

values for S∆ between -1 and 0. Using S∆ instead of the commonly used sensitivity S 
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including algebraic signs turned out to be beneficial for the data mining process in 

our high throughput workflow. Furthermore it allowes an immediate differentiation 

between n- and p-type semiconducting materials and/or the differentiation between 

oxidising and reducing test gases, respectively.  

 

2.4.2 Selectivity 
Selectivity of a sensor is defined as the ability to differentiate between analytes. A 

high selectivity is desired for different applications of a sensor material. Cross-

sensitivites are drawbacks of the commonly used and well-known materials such as 

SnO2 and ZnO. The selectivity can be calculated by the ratio: 

)cross(

)etargt(

S
S

ySelectivit =                   (2.10) 

where S(target) is the sensitivity of the target gas, and S(cross) is the sensitivity of a 

cross-sensitive gas at a regarded temperature.  

 

To improve the selectivity, different strategies can be used; however, at present, 

sensor selectivity remains, for the most part, empirical. Selectivity can be influenced 

by use of filtration membranes. In this case the sensing material can be protected 

from gases which should not react on the surface. This has been realised by 

covering layers with defined pore size as zeolithes for example [Mo82, Sa05, Tr04]. 

Teflon layers are useful in preventing humidity influences, and barium carbonate can 

be used as a sulphur oxide adsorbant to prevent poisoning of La1-xSrxTi1-yFeyO3 

(LSTF) sensing materials [Re03]. Another possibility is the use of multi-layer sensors 

to enhance selectivity. In recent years, interest has grown in the development of 

“electronic noses" to detect mixed gases. To gain the desired selectivity, such a 

device generally consists of an array of chemical sensors, each one sensitive to a 

specific gas. The signal of such devices is then processed by s multivariate data 

analysis [Co00, Go04, Pa04].  

 

2.4.3 Stability 
Stability of a sensor is determined by evaluating both the baseline conductance and 

the signal response (sensitivity) to various concentrations of analytes over time. 

Complete recovery can be restricted by desorption processes that are very slow or 

by irreversible changes at the surface (poisoning). A gradual change in the baseline 
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signal from the sensor is called baseline drift, while a change in the specific response 

to the analyte is termed as sensitivity drift (span drift). In contrast to the selectivity 

and sensitivity issues, the problem of stability is rarely addressed in the literaure. The 

problem of stability can be overcome by use of high-temperature stable materials like 

the perovskite materials investigated in this work.  

 
2.4.4 Speed 
The speed of a sensor is described by its response and recovery times. The 

response time is the time to reach steady-state conditions in test gas ambience, 

while the recovery time is the time to return to the baseline value. These values 

depend on the adsorption and desorption kinetics of the surface-gas reaction. Since 

most sensors approach the final signal asymptotically, response time is usually 

defined as the time needed to reach 50%(τ50-value) or 90%(τ90-value) of the final 

signal (for a given concentration of gas). The recovery time is usually expressed as 

the time for the signal to fall below 50% or 10% of the maximum response. 

 

2.5 Influences on key performances 
The sensitivity and selectivity of a certain material can be influenced by different 

parameters. Some of these effects are addressed in the following sections. 

 

2.5.1 Temperature 
The sensitivity of a semiconductor gas sensor is a function of the steady state 

surface coverage of oxygen adsorbates relative to that in air.  

 

Figure 2.5. Temperature dependence of the sensitivity, often referred to as a volcano shape [Ya05]. 

 

A sensor shows maximum sensitivity (SMax) at a certain temperature (TMax) 

depending on the gas species to be detected as shown in Figure 2.5. This results 

T TMax 

S 
SMax 
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from the temperature-dependent equilibrium coverage of oxygen adsorbate in air, in 

addition to the temperature-dependent equilibrium and time constant of the reaction 

between the oxygen adsorbate and the target gas, and at least from the diffusivity of 

the gases through the porous medium. 

 

This means that at low temperatures, where the equilibrium coverage of the oxygen 

adsorbate in air is high, the reaction rate between gas and oxygen species is low; the 

sensitivity is low. On the other hand, at high temperatures, where the rate of removal 

of oxygen adsorbate becomes high due to the vigorous reaction between analyte and 

oxygen species, the equilibrium oxygen coverage is low and the sensitivity remains 

low [Pa03]. 

 

2.5.2 Crystallite size 
Films based on metal oxide nanoparticles have attracted great interest in different 

applications such as battery materials, photochromic windows, and solar cells. 

Several nanostructured materials have been used to prepare nanoparticle-based 

sensor films (e. g. SnO2, TiO2). Porous films composed of nanoparticles have a high 

internal surface area, the extent of which is dependent on the size of the nanoparticle 

building blocks. For porous nanoparticle films in the order of 1 µm thickness, the 

internal surface can attain an overall surface area more than 100 times greater than 

the projected area [Be06], as shown in Figure 2.6. A porous nanoparticle film can 

offer much higher sensitivity than a similar compact film with only the top surface 

area available for interaction, which is also of interest when considering surface 

conductivity.  

 

Figure 2.6: Comparison between compact and porous layer. On compact layers the reaction takes 
place on the geometrical surface whereas on porous layers all particle surfaces are included. 
 

analyte gas                  product analyte gas               product 

 
thick layer 
 

electrodes 
substrate 
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If n-type semiconductor grains have a grain radius r<Λair, the band bending will 

extend throughout the complete grain. With further decrease of the radius the 

depleted areas start to overlap, and the electrical properties are predominantly 

determined by surface states. If the surface potential barrier falls below the thermal 

enegy eVsurface<kT, the so called “flat-band condition” will be achieved and no 

difference between surface and bulk will be observed.[Gö95] The effect of reducing 

gases for example can be approximated by a shift in bands relative to the Fermi 

energy (see Figure 2.7). This results in an increase of sensitivity correlated to larger 

particle sizes.   

 

Figure 2.7: Flat-band condition for grain radius r<Λair in air (left) and reducing test gas (right). 

 

Pure SnO2 sensors exhibit drastic changes in resistance as a function of grain size 

combined with change in sensitivity [Sh99]. Also, Yamazoe et al. observed a 

sensitivity increase as the grain size decreased, with an especially drastic increase 

when the diameter of the crystallite was ~ Λair(~6 nm), where total depletion of grains 

occurs. Thus, small particles in porous layers are a crucial factor for high sensitivity 

[Ya03b]. 

 

2.5.3 Surface dopants 

To promote the sensitivity, shorter response times, and possibly the selectivity 

towards certain gases, a small amount of noble metal and oxidic catalysts are added 

to the sensor material in the form of fine dispersions with diameters of a few 

nanometers. The dopants are usually added via impregnation and therefore are 

located mainly at the surface of the grains. Surface impregnation adds new reactive 

sites to the surface of the semiconductor. However, the complex behaviour of 
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dopants and their influence on the gas sensing properties of metal oxides is still not 

completely understood.  

 

Three models for the influence of surface dopants are discussed in the literature and 

are shown in Figure 2.8. The first case is the Fermi level control (electronical 

sensitisation). Oxygen is adsorbed on the dopant clusters and traps electrons from 

the metal. The dopant, in turn, removes electrons from the supporting semiconductor, 

which leads to a shift in the Fermi level and an electron-depleted charge layer near 

the interface. Upon exposure to reducing analytes the doping additive is reduced, 

releasing electrons back to the semiconductor (e. g. Ag2O@SnO2 [Ya91]). 

Figure 2.8: Influences of dopants on the sensing properties of metal oxides. 

 

The second model represents the Spill-over mechanism (chemical sensitisation). 

Deposited clusters of noble metals (e. g. Pt@SnO2 [Ko90], Pt@ZnO [Sa85]) provide 

preferred adsorption sites for the target analyte. Activated fragments are transferred 

(spilled over) onto the semiconductor surface to react with the chemisorbed oxygen 

species. In this case, oxygen spill-over is often an issue [Mo87]. A higher coverage of 

the surface with interacting species is achieved. 

 

The third model describes the catalysis by metal clusters. This reaction takes place 

exclusively on the cluster. The catalytic oxidation of the analyte can be connected to 

a local temperature rise. The temperature increase influences the conductivity in this 

region and may therefore increase the sensitivity. A change of TMax to smaller values 

has been observed [Ca02], and can be ascribed to such catalytic phenomena. 
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However, the real situation is far more complex and the doping influences are widely 

debated [Ar02].  

 

2.5.3 Volume dopants 

Another possibility of doping is the incorporation of metal ions in the synthesis of the 

metal oxides. Volume doping is known to influence the electrical properties of metal 

oxides. Also, changes in gas sensing behaviour due to volume doping have been 

reported. Song et al. reported that Pb-doping can improve sensitivity, selectivity and 

response time of LaFeO3 [So05]. Huang et al. showed an influence on sensitivity 

when doping LaCrO3 with TiO2 [Hu96]. They assert that positively charged ionic-type 

defects created by dopants act as trapping sites to adsorb oxygen. However, the 

mechanism of how these volume dopants enhance gas sensitivity is not fully 

understood.  

 

2.5.5 Film Thickness  
Thicker films have a higher baseline conductance than thinner films because of a 

higher number of conduction pathways as compared to thinner films. The improved 

sensitivity of thicker films is a result of the higher internal area [Be06]. The optimal 

film thickness depends on the degree of interaction between the analyte and the 

sensor material. For a strongly interactive analyte-sensor combination, the optimal 

film thickness is relatively thin since the analyte will never penetrate deeply into the 

porous film before interacting with the sensor surface. For a much less interactive 

system, the optimal film thickness will be larger because the analyte can penetrate 

more deeply into the film before interacting with the surface and producing a sensing 

signal. 
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2.6 ABO3 materials [Ga69, Gi94, Oh74, Zh04b] 
The preparation of specific tailor-made mixed oxides with desired properties is one of 

the main topics of research in catalysis and sensor materials. Among the mixed 

metal oxides, perovskite-type oxides (general formula ABO3) remain prominent 

because of the broad diversity of properties that can be obtained due to the fact that 

around 90% of the metallic elements are known to form perovskite-type oxide 

structures. In addition, the possibility of synthesising multicomponent perovskites by 

partial substitution of cations in the A- and B-site is a great advantage. ABO3 

materials may become the sensing materials of the future [Kh01]. They are already 

developed e. g. for carbon monoxide [La95, Ma05, Ar88], oxygen [Ge91] and NO 

[Tr95] sensing. Perovskite oxides show a high thermal and chemical stability in 

catalytic reactions [Cr02]. Structures of the type A+B5+O3, A2+B4+O3 and A3+B3+O3 

exist depending on the valency of the metals used. Generally, for ABO3 structures, 

two extreme cases exist: 

 A and B cations are approximately of equal size and of a size suitable for 

coordination within the octahedral interstitial site of a close-packed oxide 

framework. 

 A cations are of comperable size to O2- which together with oxygen can form AO3 

close-packed layers with high coordination numbers in the A-site.  

Oxides of the first type tend to adopt sesquioxide structures, such as corundum or 

ilmenite, while oxides of the second group form linked BO6 octahedra and AO3 close-

packed layers, such as perovskite structures. 

 

The ilmenite structure consists of a hexagonal close-packed oxygen framework in 

which the cations are distributed in two thirds of the available octrahedral interstices. 

According to geometric arguments, the octahedral interstices will accomodate ions 

with radii approximately equal to (20.5-1)r, where r ist the radius of O2- (i. e.1.38 Å). 

This relationship, however, is an approximation, and a certain degree of deviation 

from the ideal close-packed state may occur. Figure 2.9 shows the unit cell of CoTiO3 

as an example of an ilmenite structure. 
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Figure 2.9: Unit cell of Co( )Ti ( )O3( ), ilmenite strucutre. 

 

The ideal perovskite structure is cubic with the A cations in 12-fold coordination and 

the B cations in 6-fold coordination. The A-site is situated at the body center of the 

cubic unit cell, the B site at each of the eight corners, and the oxygen atoms at each 

of the centers of the 12 edges as shown in Figure 2.10 for SrTiO3. In the 

orthorhombic distortion the A cations and the oxygen ions are displaced from their 

cubic positions. Consequently the 12 oxygen polyhedra around the A cations are 

quite distorted, so that the 12 A-O distances vary over a large range. Also, the 

oxygen octahedra around the B cations are distorted, but their distortion is far less 

than that of the polyhedra around the A cations.  

 

 
Figure 2.10: Ideal perovskite structure of Sr( )Ti( )O3( ). 
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Figure 2.11: Orthorhombic Gd( )Fe( )O3( ). 

 

Combinations of many trivalent first-row transition-metal oxides and rare-earth oxides 

form orthorhombic perovskites as thermodynamically stable phases.[Ge56] GdFeO3 

is considered the prototype of this series (shown in Figure 2.11); the rare-earth 

orthochromites, orthovanadites, othorhodites and orthoaluminates are isostructural. 

Perovskites and distorted perovskite-type structures are formed for A and B cations 

having a wide range of radii, provided the A cation is large enough to form close-

packed layers with O2-, and the B cation is small enough to adopt an octrahedral 

oxygen coordination environment. As the radius of the A cation decreases, the A and 

B cations will ultimately adopt a different structure, often the ilmenite structure, which 

can accomodate cations that are both smaller and closer in size to one another 

better.  

 

To predict which of the above mentioned structures will be favoured for a given pair 

of cations, the so-called Goldschmidt tolerance factor t [Go26, Ga69] can be used:  

)rr(2
)rr(t
OB

OA

+

+
=                    (2.11) 

with rA, the ionic radius of the larger cation, rB, the radius of the smaller cation and rO 

the ionic radius of the oxygen anion. For 0.99>t>0.77 the perovskite structure is often 

formed, while for t<0.77 the sesquioxide structures appear. The ideal cubic 

perovskite structure appears in a few cases for t-values close to 1 and at high 

temperatures. 
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Classical methods for perovskite oxide preparation include the equimolar oxide 

mixing synthesis and the decomposition synthesis. A newer method is the so called 

polyol mediated synthesis, which will be described in the following paragraph. 

 
2.7 The polyol mediated synthesis 
The increasing demand for oxide nanoparticles in the wide field of nanotechnology 

has motivated considerable research on their preparation. For many purposes, 

synthesis of nanoscale materials exhibiting well-defined properties such as particle 

diameter, particles shape, or pore structure is an important challenge to preparative 

chemistry [Fi00]. In this context a number of novel synthetic routes have been 

described (e. g. ball milling, microwave plasma, co-precipitation in reverse micelles, 

sol-gel synthesis, hydrothermal synthesis, molten salt synthesis, gas phase-based 

methods). Reproducibly controlling simultaneously over particle structure, surface 

chemistry, crystal structure, and assembly remains an elusive goal. The conventional 

reaction technique for the perovskite-type oxides used in this work is the solid-state 

reaction, which has some unavoidable drawbacks like high calcination temperature 

(~1100-1500°C) and a weak control over the particle size distribution. In contrast, 

chemical solution techniques, especially chimie douce solutions, have several 

advantages: the ease of chemical composition control, the low processing 

temperature, and the applicability to substrates of any size and shape. 

 

The polyol mediated synthesis is a suitable reaction method for the preparation of 

metal oxide nanoparticles. Approximately 24 years ago, Figlarz et al. introduced this 

method as a new synthesis strategy that allowed preparation of finely dispersed 

metals with well-defined morphology by reduction of metal cations in a polyol medium 

[Fi82]. In the last years, the method was modified and used for the preparation of 

metal oxides [Me00, Fe01a, Fe01b, Fe04], hydroxy salts [Po00], phosphates [Fe03], 

and sulfides [Fe01c]. The polyol mediated synthesis allows the mixing of the 

reactants at the molecular level. In this procedure, “polyol” stands as a general term 

for polyalcohols with high boiling temperatures and sufficient ability to solve inorganic 

salts at elevated temperature. Liquid polyols are interesting among nonaqueous 

solvents. They are hydrogen-bonded liquids, like water, with a high relative 

permittivity value, and are able to dissolve and complex many ionic inorganic 

compounds. In addition, polyol reactions can be carried out under atmospheric 
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pressure up to 250°C, much higher than reactions in water or monoalcohols. Based 

on this type of synthesis, a metal precursor is heated in a high boiling alcohol. In the 

case of noble metals, the metal cations are easily reduced by the alcohol to form 

particles of the elemental metals [Ch04]. In contrast, while adding a defined amount 

of hydrolysing agent (p. e. water, acid, base), metal cations precipitate to yield 

nanoscaled oxide particles. An agglomeration of the particles is prevented due to the 

chelating effect of the solvent, and the particle growth is limited. To prepare 

phosphates or sulfides, a concentrated solution of (NH4)H2PO4 or (NH2)2CS in water 

is added as a hydrolysing agent ([Fe01c, Fe03]).  

 

The precise reaction mechanism for oxide formation is complex and not fully 

understood or predictable. Poul et al. worked on the reaction of acetate, chloride and 

sulfate precursors [Po03]. The precipitation of the solid depends on the metal salt 

anion, the hydrolysis ratio, and on the reaction temperature. As in the sol-gel method, 

acetate precursors lead to the formation of intermediate alkoxyacetate complexes 

which are stable towards reduction. The complexing agent can act as an unidentate 

or bridging group towards the cation. Oxides or hydroxides are obtained in a polyol 

via hydrolysis and inorganic polymerisation of such intermediate precursors 

(alkoxyacetates). At higher temperatures, forced hydrolysis and inorganic 

polymerisation remove the acetate anion, and oxides are obtained. Using chlorides 

or sulfates, the anion remains in the first shell of the cation, making it difficult to 

control the morphology of the particles. If water (also crystal water) is absent, the 

formation of metal particles is still preferred. Thermal analysis and determination of 

B.E.T.-surfaces has been done by Feldmann [Fe04]. The monodisperse morphology 

as well as the colloidal stability of the particles in diethylene glycol (DEG) prove the 

surface-active role of DEG. Feldmann reported that during synthesis the metal oxide 

nanoparticles are covered with diethylene glycol layers. He also showed that 

admixing of water can collapse the stable suspension because of exchange of DEG 

molecules on the surface with water molecules, which results in agglomeration of the 

particles. Temperature treatment up to 550°C is nessecary to remove and 

degenerate the chelating DEG layer completely. 
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Materials obtained from this method may occur as crystalline or amorphous. A 

treatment at moderate temperatures results in crystalline nanoparticles with 

homogenous phase composition [Si04]. 

 

This method for the synthesis of inorganic materials has a number of advantages 

over more conventional synthetic procedures: ability to obtain high-purity materials, 

low processing temperatures, and homogenous multicomponent systems. An 

advantage of using the polyol mediated synthesis for high throughput and 

combinatorial work is the wide applicability for preparation of various oxides under 

mild reaction conditions. Especially attractive is the possibility of a smart halide-free 

preparation method that avoids contamination of the sensing material with remaining 

halide ions as in other syntheses. The obtained nanostructures offer very high 

surface areas due to the high porosity of the particle layers, which makes them 

suitable for sensing thick films. All in all, the polyol method has received considerable 

attention because of its simplicity and the advantage over most other methods in 

preparing highly pure mixed oxides.  

 

2.8 High throughput and combinatorial approach in sensor material 
synthesis 
Until recently, the scope of materials research has been mostly limited to systems 

with only one or two individual components. With rapidly growing demands for better 

functional materials, complex materials are receiving more and more attention in the 

materials research community [Sc04]. In sensor research, materials are typically 

discovered and optimised by an empirical trial and error process that is both time-

consuming and costly. Obviously, the discovery process gets even more difficult and 

time-consuming when the materials include more elements. This time-consuming 

process inhibits the search for sensing materials with optimal behaviour [Ma99]. 

Success is often restricted to flukes. Compared to the possible combinations of 

ternary or quaternary systems that one might reasonably synthesise and which could 

exibit several phases, it becomes clear that large numbers of compositions have yet 

to be examined for their gas sensing properties. It seems obvious that this challenge 

will not be met if one relys on traditional materials science techniques alone [Li99]. 
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In addition, conventional studies are usually performed on individual samples of 

discrete compositions, often missing important correlations between different 

compositions. Thus, it is not surprising that correlations are missed in light of the 

complexity of modern materials and the importance of defects, dopants etc. in 

controlling properties.  

 

A possible way to overcome these problems is the use of high throughput and 

combinatorial approaches. The use of high throughput experimentation (HTE) 

techniques accelerates material synthesis and characterisation and thus enables an 

investigation of a multitude of different materials compared to a 'one at a time' 

strategy. In addition, HTE allows the application of combinatorial strategies, in which 

algorithms define new material combinations based on previous characterisations. 

These processes are successfully used in the pharmaceutical and biotechnology 

industries. In these fields, automation of the fabrication of multivariate specimen 

arrays, screening, and analysis techniques enabled the development of important 

new drugs and drug variants [Am02, Am04]. 

 

The first experiments using high throughput experimentation in materials science 

were published in the 1960s [Ke65, Mi67, Ha70]. Experimentation in these years was 

limited by the analysis and data reduction equipment, which did not have the speed, 

automation and/or resolution required. More recently, Xiang et al. improved the 

combinatorial approach in material sciences [Xi95, Xi97]. They applied a 

combinatorial method to study superconducting oxide compounds. Since then, HTE 

and combinatorial strategies were established in material sciences, e. g. in the 

development of improved heterogeneous catalysts [Mo96, Ja99, Ha04], phosphors 

[Da98], magnetoresisitive materials [Br95], photochemical materials [Ba02], and 

microwave dielectrics [Ch98]. Van Dover et al. analysed dielectric behaviour of 

materials in response to capacitance measurements [va98]. Reichenbach et al. 

described the combinatorial synthesis of perovskite-type oxide powders and their 

catalytic activity in CO oxidation reactions [Re01]. These high throughput research 

efforts are also extensively discussed in previous reviewing papers [Ja99, Se01, 

Yo02]. Aronova et al. tested combinatorial libraries of semiconductor sensors for the 

application as inorganic electronic noses [Ar03]. However, up to now examples on 

resistive gas sensing materials research are still rare. 
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The materials in HTE approaches are typically combined to create a library with 

common features, like one base material, gaining diversity by addition of dopants or 

additives. High throughput characterisation (screening) can be achieved by using 

sample plates containing several materials under test resulting in parallel processing 

of time consuming steps in the characterisation workflow. HTE methods should allow 

to rapidly screen a large number of solid-state materials and therefore should have a 

dramatic impact on the search for new classes of gas sensing materials with 

enhanced properties. In addition, these methods may help to map structure-property 

relationships, a central goal in materials science [Am02]. 

 

The approach presented here is a search for novel and improved gas sensor 

materials and is focussed on semiconducting ABO3 oxides derived from the polyol 

method using an HTE impedance spectroscopy (HT-IS) system. The starting point of 

this work was a collaborative research project between industrial and academic 

research groups, focussing the development of electrical and optical sensors by use 

of high throughput processes [Br04, KOMB]. In this approach large collections of 

different materials are rapidly processed with the help of laboratory robotic systems 

and screened for specific properties of interest.  

 

The next section briefly describes the high throughput workflow and its corresponding 

steps within.  

 
2.9 Multielectrode array substrate and thick film deposition 
For the high throughput screening in this investigation a multielectrode array 

substrate has been developed, on which 64 different materials can be charactersised 

electrically. This multielectrode array consists of screen-printed platinum leads on an 

Al2O3 ceramic substrate (side length 106 mm) forming 64 interdigital capacitors 

(IDCs) as shown in Figure 2.12. One IDC consists of 12 electrode fingers with width 

of 125 µm. The distance between the electrode fingers is 150 µm. The platinum IDC 

has a structure width of 2.5 mm and each well has a diameter of 5 mm [Si02]. The 

array is applicable for resistive as well as for capacitive measurements. In addition, 

the design allows efficient and automated pipetting, and robot assisted sample 

preparation and coating. Positions on the substrate plates are labeled with numbers: 

each vertical column is labeled from top to bottom, while each horizontal row is 
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labeled from left to right with numbers 1 to 8. In position descriptions the row number 

is followed by the column number. For example, the position on the top left corner is 

termed 11 and the position in the bottom right corner is termed 88. All sample plates 

have a unique inscription composed of two capital letters and a number, for example: 

AC2017. These inscriptions allow identification and efficient searching for different 

wells on every sample plate stored in a data base.    

 

 
Figure 2.12. Scheme (left) and photograph (right) of substrate plate with 8x8 interdigitated electrode 

array. 

 

Sample thick films can be applied directly to the electrode structure. The films were 

deposited in an assembly of individual cells that formed an 8x8 array (Figure 2.13). 

The design is similar to the sol-gel reactor set-up described in [Fr04]. In brief, the 

assembly consisted of a teflon block ( ) 17 mm in thickness with 4 mm diameter 

holes positioned according to the substrate plate design. Each well had a viton fitting 

(O-ring, ) for sealing against the substrate. The block was affixed to the electrode 

substrate ( ), forming 64 wells (volume per well 214 µL). The base ( ) and top plate 

( ) were made of metal. A viton plate ( ) was placed between the substrate plate 

and the metal base to evenly distribute the pressure from the screws ( ). 
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Figure 2.13: Reactor set-up for thick film deposition, a) top view, b) side view. 

 

This design is well-suited for automated synthesis with pipetting robots. Figure 2.14 

shows the commercial laboratory robotic system used here (Lissy, Zinsser Analytic 

GmbH). 

 

Each module of the layout was designed for the desired application. The parallel 

reactor ( ) allows space-saving syntheses of 21 different materials under reflux 

[Ko06b]. In addition the system enables thick film deposition ( ) from suspensions 

( ) and surface doping of materials ( ). All positions are addressed by computer 

software and the layout can be adapted to meet varying demands. 
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Figure 2.14: Laboratory robotic system (Lissy, Zinsser Analytic GmbH).  Robot arm with needles,  
 robot syringes,  coating station,  parallel reactor (21 syntheses under reflux),  temperature 

control,  heater and isolation,  shaker with test tubes (suspensions),  stack for surface dopant 
solutions (adapted from [Ko06b]). 
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2.10 High throughput impedance spectroscopy (HT-IS) setup 
Electrical impedance measurements are crucial in many applications including 

measurements of superconductivity, magnetoresistivity, ferroelectric, and above all, 

in the here shown case, gas sensing properties. A contact probe consisting of a 

matrix of spring-loaded contact pins was used. This system is capable of measuring 

the 2-probe conductivity of 64 samples in one experiment. The multi-sample 

measurement is accomplished by a computer-controlled multichannel switching and 

data acquisition system. Temperature, gas control, and data acquisition are fully 

automated by computer software. Figure 2.15 shows the setup schematically. 

 

 
Figure 2.15: Scheme and photograph of the HT-IS Setup. Only two measuring lines are displayed in 

the scheme to preserve calrity. (adapted from [Si05, Sa04]) 
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Time consuming steps like heating or sample conditioning can be proceeded in 

parallel. Sample plates (coated arrays) are inserted in the measuring head ( ). The 

leads to each IDC are electrically connected via Al2O3-covered platinum wires in the 

measuring head. Constant contact pressure is assured using spring loaded contact 

tips that connect the IDCs via high frequency capable relay matrices (multiplexers, 

) to the measuring instruments( , ). The measuring head is inserted into an oven 

which can heat samples up to 800°C ( ). A set of gas flow controllers ( ) is used to 

compose the different test gases. In addition, the test gases can be humidified by 

bubbling the carrier gas through a water reservoir at room temperature. The test 

gases are led to a quartz glass bell that covers all sample positions on a plate. 

Recently, further developments of the gas inlet have been realised. To prevent a test 

gas gradient on the sample plate, the quartz glass bell was replaced by a dispenser 

of 64 Al2O3-tubes that ensures an individual gas supply for each sample position. For 

technical details see [Si05, Ko06b].  

 
2.11 Impedance spectroscopy 
This chapter presents the fundamentals of impedance spectroscopy which are of 

interest for the understanding and interpreting the performed measurements. A more 

detailed description can be found in [Ma87]. 

 

Impedance spectroscopy (IS) is a powerful method of characterising different electric 

properties of materials and their interfaces. The dynamics of bound or mobile 

charges in the bulk or interface regions of various different solid or liquid materials 

can be investigated. A great advantage is the non-destructive nature of the analysis. 

The general approach is to apply an electrical stimulus to electrodes and observe the 

response. IS measurments can be carried out in the time, or in the frequency 

domain. In our approach impedance is measured in the frequency domain by 

applying a single-frequency voltage to the electrodes-sample-system and measuring 

the phase shift and amplitude of the resulting current. 

 

If an alternating voltage U* is applied to an electrochemical cell (i. e. sensing layer on 

IDC structure) an electrical current I* through the cell will be observed. The occurring 

current may be phase shifted around ϕ in comparison to the applied voltage.  
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With variation of the angular frequency ω, which describes the alternating voltage 

applied, the impedance is given by 

)(''iZ)('Z
)(I
)(U)(Z *

*
* ω+ω=

ω
ω

=ω         (2.12) 

where i is the imaginary number. This impedance is a vector quantity which can be 

visualised in the Gaussian plane with either rectangular or polar coordinates, as 

shown in Figure 2.16: 

 

Figure 2.16: Impedance as vector plot (Argand plot). 

 

The real part and the imaginary part of the complex impedance are given by 

ϕ== cosZ'Z)ZRe( **          (2.13) 

ϕ== sinZ''Z)ZIm( **          (2.14) 

with the phase angle  
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and the absolute value 

22* ''Z'ZZ +=           (2.16) 

In the regarded frequency range (typically 0,1Hz-107Hz) an electrical field can 

interact with a solid material in two principle ways. These are the translatonal motion 

of charge carriers and the reorientation of defects having electric dipole moments. 

The first interaction leads to a (dc) conductivity σ which is in phase with the electric 

stimulus and is given by 

Ei
vv

⋅σ=            (2.17) 

where E
v

 is the electric field. This translational motion of charge carriers can be 

described with an ideal ohmic resistance.  
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The second type of interaction leads to a displacement current 

dt
Ddi
v

v
=            (2.18) 

where D
v

is the electric displacement, which is defined as the total charge density on 

the electrodes: 

PED 0

vvv
+⋅ε=           (2.19) 

where ε0 is the permittivity of free space, and P
v

 is the polarisation of the dielectric 

material. In real material systems both interactions are present and form a discrete 

relaxation process with the time constant τ=RC. Different processes can be analysed 

from the impedance function derived from measurement if their relaxation times are 

in the observed frequency range. 

 

IS measurments can be described with the help of circuit equivalents made up of 

ideal resistors, capacitors, inductances, and theoretically distributed circuit 

equivalents. With the help of these circuit equivalents and taking into account 

Kirchhoffs laws, different processes may be extracted from impedance data of 

complex systems, if their relaxation times differ from each other. By doing so, it is 

possible to investigate the individual processes. 

 

In the following section the circuit equivalents for an ohmic resistance and a 

capacitance are introduced. 

 

 Ohmic resistance R 

Since the impedance is by definiton a complex quantity, the impedance can only be 

real if 0=ϕ  and thus Z*(ω)=Z’=R. In this case Z’ is frequency-independent. Figure 

2.17a shows voltage and current versus time. Figure 2.17b shows the so-called 

Argand plot. In this case the imaginary part is plotted versus the real part of the 

complex impedance. 
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Figure 2.17: a) Voltage and current characterisitics versus time and  

  b) Argand plot of a pure ohmic resistance. 

 

 Capacitance C 

In case of a pure capacitance the real part of the impedance remains zero. The 

impedance is frequency dependent and only imaginary. The current is ahead of the 

voltage ( 2/π=ϕ ). Figure 2.18 a shows the voltage and current behaviour, and b the 

Argand plot. 
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Figure 2.18: a) Voltage and current behaviour versus time and b) Argand plot of a pure capacitance. 

 

Combining R and C to a parallel circuit, the impedance is given by the sum of the 

contributions from resistance and capacitance: 

CiR1
R

Ci
1R)(Z*

ω⋅+
=

ω
+=ω         (2.20) 

This shows a symmetric semicircle in the Argand plot (see Figure 2.19).  
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Figure 2.19: Argand plot and circuit equivalent for a parallel RC circuit. 

 

At lower frequencies the capacitor is shut off and the current flows through the 

resistor. Z is the ohmic resistance; the imaginary part is zero. At high frequencies a 

displacement current passes through the capacitor, and the resistor is shorted out. In 

this case both the real and the imaginary part are zero. In between these frequencies 

the current is running through both the capacitor and the resistor. The maximum of 

the shown semicircle is at the relaxation frequency 11
relax )RC( −− =τ=ω  

 

Another possible graphical depiction is the so-called Bode plot in which the frequency 

response is plotted. Figure 2.20 shows the real and imaginary part of the impedance 

plotted versus the log frequency for a parallel RC circuit.  
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''/Ω
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Figure 2.20: Real and imaginary part of the complex impedance versus frequency (Bode plot). 

 

An advantage of this depiction is the frequency development of the observed values.  

Finally, there are several other quantities related to the impedance that are called 

immittances. The admittance is the corresponding ac electric conductivity, which is 

defined as:  

)(''iY)('Y
)(Z

1)(Y *
* ω+ω=

ω
=ω         (2.21) 
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The modulus function is given by: 

)(''iM)('M)(CZi)(M ** ω−ω=ωω=ω        (2.22) 

The complex dielectric permittivity is the inverse function of the modulus function and 

thus  

)(''i)('
Ci

)(Y
)(M

1)(
*

*
* ωε−ωε=

ω
ω

=
ω

=ωε        (2.23) 

Determination of resistance values and capacities due to data fitting are described in 

chapter 3.2.2. 
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3.  Results and Discussion 
3.1  Material preparation 
The following chapters present the results of the work. First, material preparation and 

characterisation is shown, and sensor preparation and measurements follow. Figure 

3.1 displays the complete workflow. The workflow can be sectioned into powder 

preparation and sensor fabrication.  

 Powder preparation  
Stoichiometric amounts of suitable metal precursors were dispersed in diethylene 

glycol (DEG, Merck, 99.99%). The mixture was heated up to T1 (80 °C-170 °C) while 

stirring until a clear solution was obtained. If necessary, a sufficient surplus of 

hydrolysis agent was added in order to achieve full hydrolysis. The emerging 

suspension was heated for 5 h up to T2 (160 °C-190 °C) and then cooled to room 

temperature. The preparation resulted in stable suspensions with a standard 

concentration in all experiments of typically 1 wt% (solid to DEG). For further 

characterisation the solid material was separated from the suspension via 

centrifugation and washing with acetone. These “as synthesised” samples were dried 

at 60 °C. To obtain crystalline materials the suspensions were dried at 400°C (1h) 

and then annealed at T3 (700-900 °C) for 2-12 h. For each individual synthesis, 

reaction parameters needed to be optimised with respect to particle size, yield and 

purity. The preparation varied depending on the hydrolysis agent, i. e. in some cases 

an extra amount of water, acidic solution (HNO3 or acetic acid) or base (KOH, H2O2 

or NH3 solution) was added. In other cases, the crystal water present in the starting 

compounds was sufficient for hydrolysis. The initial characterisation of the products 

was carried out by transmission powder XRD measurements on thin films. Powder 

morphology of the calcined materials was examined by SEM and TEM analysis.  

 Sensor fabrication 
For thick film fabrication the metal oxide powders were dispersed by mixing in a 

mortar with a solution of polyethylene imine (0.5 wt%) in water. Then the suspension 

was deposited onto microelectrode substrates by the introduced laboratory robotic 

system. Additionally, surface dopants could be deposited by impregnation of the films 

with metal salt solutions via the laboratory robotic system. The substrate was first 

dried for 48 h at room temperature in air. After that it was held for 12 h at 700 °C in 

air to remove the organic residues. Homogeneous thick films were formed, having a 

thickness between 50 and 100 µm. The ready prepared sample plates were 
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characterised by high throughput impedance spectroscopy with respect to their gas 

sensing properties. All results were stored in a data base which allowed data mining 

and helped to design new experiments in comparison to literature [Fr05].  

 

 
Figure 3.1: Flowchart summerising the preparation of ABO3 thick film sensors based on polyol 

mediated synthesis.  
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Figure 3.2. Prepared materials via the polyol mediated synthesis. 
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Figure 3.2 presents all ABO3 materials prepared successfully in this work. They can 

be classified into two main groups: rare-earth containing LnMO3 (M=Co, Cr, Fe) and 

ABO3 materials containing only rare-earth elements as volume dopants. A detailed 

description of the preparation method for each perovskite oxide material is given in 

the experimental section (chapter 6).  

 

In Figure 3.3 the ionic radii of the A and B cations of the prepared materials (without 

volume dopants) from Figure 3.2 are plottet. The solid lines form the perovskite 

region according to the Goldschmidt relation (see equation 2.11). All materials which 

have been revealed to have perovskite structure are indeed located in the defined 

region. Three materials, NiMnO3, FeMnO3 and CoTiO3, form ilmenite compounds and 

can be localised at the left side of the plot, which indicates A and B cations of about 

the same size.   
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Figure 3.3: Ionic radius of A vs. ionic radius of B for the prepared undoped ABO3 compounds. 
(Including 40 ABO3 oxides with bivalent, trivalent and quadrivalent ions of different radii). The solid 
lines (t=0.77 and t=1.0) restrict the area of perovskite-type structure according to the Goldschmidt 
relation. 
 
An example of the prepared materials is shown in Figure 3.4 and 3.5. The SEM 

picture shows the morphology of MnFeO3 nanoparticles prepared by the polyol 
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method and annealed at 700°C for 12 h. The primary particle shape was almost 

spherical. The annealed particle agglomerates appeared as open porous structure 

which allowed good interpenetration of the admixed test gases. The XRD diffraction 

pattern revealed the crystallinity of the material after annealing without formation of 

any by-products. The as synthesised sample appeared as amorphous powder.  

 

 
Figure 3.4: SEM picture of MnFeO3 heated for 12 h at 700 °C. 
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Figure 3.5: X-ray diffraction pattern of MnFeO3 powder after annealing for 12 h at T = 700 °C. 

 

SEM and XRD characterisitics of the ABO3 materials not discussed in the following 

text can be found in the Appendix. 
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All prepared materials have been used for layer preparation and have been 

characterised by impedance spectroscopy with regard to their gas sensing 

properties. The following chapter will concentrate on two p-type material classes. 

CoTiO3 was chosen as the example ilmenite material. On the other hand, LnMO3 

(Ln=rare-earth, M=Fe, Cr) materials are also presented because of the possibility to 

compare 25 materials from the same period of the periodic table of elements.  

 

NiMnO3, BiFeO3, MnFeO3 and the LnCoO3 compounds showed good conductivity but 

only poor sensing characteristics. This could be understood by taking into account 

the sensing mechanism. The percolation path in p-type sensing films goes through 

the surface of the materials. The bulk resistance is not expected to vary much after 

exposure to different gases. The conductance change should primarily come from 

the surface resistance variation. The bulk material is seen to be stoichiometric, which 

means the bulk resistance of the particles is higher than the surface resistance 

(Rbulk>>Rsurf). If the bulk resistance is close to the surface resistance, the sensitivity 

of the material will be diminished. If the bulk resistance is much lower than the 

surface resistance, low gas sensitivity will be expected. The bulk resistance needs to 

be higher than the surface resistance; otherwise the sample will have low or no gas 

sensitivity.  

 

On the other hand, materials like BaTiO3, BaSnO3 and BaBiO3 showed very high 

resitances in the measured temperature range. They were not suitable for the use in 

the HT-IS setup due to instrumental limitations.  

 

Beside the shown ABO3 compounds different Mo-O-Bi complexes [Ro06] were used 

in the polyol mediated synthesis to produce bismuth molybdate (Bi2O3·nMoO3, n=1, 

2, or 3) nanoparticles. Bismuth molybdate phases might find application for example 

in catalysis or gas sensing. However, in the performed experiments the preparation 

of pure phases was not possible. In addition, the chelating effect of DEG seemed not 

to be strong enough for the exclusive preparation of nanoparticles. A detailed 

description of the compounds, syntheses and measurements can be found in [Ro06, 

Ro07].      
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Chapter 3.2 describes the investigations which have been made concerning CoTiO3, 

while chapter 3.3 concentrates on the work corresponding to the different rare-earth 

orthoferrites and orthochromites. 



Results and Discussion 

42 

3.2. CoTiO3 

Ilmenite-type CoTiO3 has earlier been studied for possible applications as catalysts 

[Ka84, Ya03, Br01] or as a high-κ dielectric [Pa01]. The possible application as a gas 

sensing material is restricted on a few examples in literature, namely the suitability 

for humidity detection in combination with Ta2O5 [To84], and ethanol [Ch99] detection 

as a nanocrystalline material.  

 

The polyol method was applied for the synthesis of nanocrystalline CoTiO3 and the 

gas sensing properties of the material have been screened. Figure 3.6 shows the X-

ray diffraction pattern of the sample before and after calcination at 700 °C for 12 h.  
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Figure 3.6: X-ray diffraction pattern of CoTiO3 

 

The material was found to be amorphous right after preparation (as synthesised) 

according to XRD analysis. After annealing at 700 °C for 12 h the material turned out 

to be highly crystalline. The powder X-ray diffraction pattern showed the formation of 

CoTiO3. In some cases up to 10% of TiO2 as by-product could be found. The lattice 

parameters of the trigonal phase were in good accordance with the reference data 

[Ki84]. The XRD lines were broad compared to the bulk material, indicating that 

nanometer sized particles have been formed.  

 

Sharp X-ray interferences of powder samples are achieved if the size of coherent 

lattices is between 10-3 and 5·10-5 cm [Kr94]. Powder samples consisting of 

crystallites smaller than 5·10-5 cm show line broadening, and sharp interferences 

cannot be produced (as shown in Scheme 3.7). Even though nowadays detailed 
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techniques exist to evaluate XRD patterns with respect to the crystallite size and 

strain effects within the crystals, in this work only a basic XRD analysis is used for 

phase identification. Crystallite size is derived from measuring the broadening of a 

particular peak in a diffraction pattern associated with a particular planar reflection 

from within the crystal unit cell. It is inversely related to the full width at half maximum 

B of an individual peak, the more narrow the peak, the larger the crystallite size. In 

addition, the diffractometer used to measure the sample can also introduce a small 

amount of instrumental peak broadening. To achieve the real crystallite size, these 

broadenings have to be corrected. Determination of peak broadness due to the 

Scherrer equation [Sc18, Bi46] without further corrections gives a simple form for the 

range of the crystallite size. This size DS can then be calculated by: 

θ⋅
λ⋅⋅

=
cosB

K3.57DS           (3.1) 

where λ is the wavelength (generally CuKα ray), 57.3 a correlation factor from 

degree to numerical values and θ the position of the peak. K is the shape factor of 

the average crystallite which varies depending on the crystallite shape from 0.89 to 

1.39. 

To obtain a more general idea of the overall crystallite allocation, an average 

crystallite size is determined using multiple peaks. The crystallite size is only 

equivalent to the grain size if the individual grains are perfect single crystals free of 

defects, grain boundaries or stacking faults. In addition, crystallite cores may be 

embedded into amorphous shells. Agglomerated primary particles may form 

secondary particles which may be bigger than the achieved crystallite size.  

Figure 3.7: Line broadening due to small crystallite size. 
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The estimated mean crystallite size was around 96 nm. The particle size of the 

powder material as well as the size distribution was obtained from the SEM 

micrographs (local method). The SEM image of the annealed material is shown in 

Figure 3.8. Agglomerated almost spherical particles with a diameter of 50 to 120 nm 

can be seen; overall the material appeared as a highly porous network of 

interconnected particles.  

 
Figure 3.8: SEM images of CoTiO3. 

 

The synthesised powder was well suited for thick layer preparation on interdigital 

electrode structures (shown in chapter 2, Figure 2.12) of substrate plates. The 

material was dispersed by mixing in a mortar with a solution of polyethylene imine 

(0.5 wt%) in water. The resulting suspension had a concentration of 0.08 mol/L. The 

suspension was deposited into the Teflon wells (see chapter 2, Figure 2.13) by the 

laboratory robotic system (Lissy, Zinsser Analytic, as already shown in chapter 2, 

Figure 2.14). The substrate was first dried for 48 hours at room temperature in air. 

After that it was held for 12 h at 700 °C in air to remove the organic residues. Figure 

3.9 shows that homogeneous thick films were formed.  

 

 
Figure 3.9: Scheme of thick film deposition and photograph of thick film. 



Results and Discussion 

                                                                                                                                                            45

To compensate for possible gradients in gas concentration and temperature as well 

as single failures due to contact defects over the substrate three statistically selected 

positions were equipped with the same material composition. 

 
3.2.1 Electrical characterisation 
Electrical measurements were performed using an impedance analyzer (Agilent 4192 

A) in a frequency range from 10 to 107 Hz (15 measuring points per frequency 

decade) and an amplitude of 100 mV (rms). The measurements were carried out in a 

temperature range between 500 to 200°C in 25°-steps. Reference measurements 

were performed in synthetic air (air), which was also used as carrier gas for the test 

gases H2, CO, NO2, ethanol and propylene; for NO N2 was chosen as the carrier gas 

in order to avoid formation of NO2. For the gas sensing experiments, the test gases 

were mixed with synthetic air to reach a consistent volume flow of 100 sccm. 

Conditioning of the materials was carried out at 500 °C for 240 min under air and at 

the following temperatures for 90 min. The measuring gas sequence was H2 

(25 ppm), air, CO (50 ppm), air, NO (5 ppm), air, NO2 (5 ppm), air, ethanol (40 ppm), 

air, propylene (25 ppm), air. The intermediate measurements in air allow the 

observation of the recovery ability of the sensor material before the next test gas is 

applied. Relative humidity of the gases was 45 % at room temperature in order to 

perform the measurements in a typical humidity range representative for ambient 

conditions. For sample conditioning, a preliminary gas flow was applied over 30 min 

to reach adsorption equilibrium.  

 

The measurement of 64 samples in one gas atmosphere at a fixed temperature took 

about 30 min including impedance measurements with 91 single frequency 

measurements each.  

 

In order to measure the response time of the individual samples, measurements at a 

single frequency (100 Hz) were performed. 100 Hz has been chosen to stay in the 

frequency independent part of the impedance spectra (quasi-dc plateau) but at the 

same time to allow fast measurements. Each measurement took 1.5 s, while the time 

interval between measurements was 4 s.  
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3.2.2 Automated data fitting of impedance spectra 
Figure 3.10 shows the plot of the real part of the complex impedance versus the 

imaginary part for a parallel RC circuit equivalent (Argand plot). A semicircle with its 

centre on the real axis of the complex plane can be seen.  

Figure 3.10: Argand plot and circuit equivalent for a parallel RC circuit. 

Automated data fitting allows describing the impedance spectra as the impedance 

function of a circuit equivalent, e. g. consisting of a resistor and a capacitor in 

parallel. Also other elements like inductances or constant phase elements (CPE) 

could be implemented. The admittance of the parallel RC circuit is just the sum of the 

admittances of the two elements which give the impedance [Ma87]: 

CiR1
R*Z

ϖ⋅+
=            (3.2) 

From this |Z| can be calculated as: 
1

22
2

C
R
1Z

−

ϖ+⎟
⎠
⎞

⎜
⎝
⎛=           (3.3) 

With the phase φ=arc tan (R·ωC) the impedance function used for the real part Z’ and 

the imaginary part Z’’ given by: 
1

2
2
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In this case R is the extrapolated DC-resistance of the material, C the capacitance 

and ϖ the angular frequency. The use of these fit functions reduces the complex 

impedance function describing the electrical properties of each material to one value 
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for the resistance and the capacitance, respectively. While the capacitance can be 

assigned to the geometric capacitance of the IDC, the resistance values under the 

respective measuring conditions are taken for the determination of the material 

sensitivity. 

 

Samples with depressed semicircles have been adjusted with a CPE. The CPE is a 

non-intuitive circuit element. In case of a resistance R and a CPE in parallel we 

observe the arc of a circle with the centre some distance below the x-axis in the 

Argand plot (as shown in figure 3.11). The corresponding circuit equivalent is called a 

ZARC-element [Ma87].  

n)i(QR1
R

*Z
ϖ⋅⋅+

=           (3.6) 

where Rfit is the low frequency real-axis intercept, n is related to the depression 

angle, i is the imaginary number and Q has the numerical value of the admittance Y 

at ω [Or02]. 
n)i(Q*Y ϖ⋅⋅=      for 0 < n < 1         (3.7) 

Ci*Y ⋅ϖ⋅=          for n = 1         (3.8)  

The behaviour of a resistor in parallel with an ideal capacitor (see above) is 

recovered when n is 1 (Q=C). When n is close to 1, the CPE resembles a capacitor, 

but the phase angle is not 90°. The real capacitance can be calculated from Q and n. 

When n is zero, only a resistive influence is found.  

Figure 3.11: Argand plot and circuit equivalent for a ZARC-element. 

 

The admittance of the parallel RCPE circuit is the sum of the admittances of the two 

elements which are used in the fit data.  

1-n=90°
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If the capacitor is replaced by a constant phase element in the analysis of the 

performed measurements, a slight refinement of the fitting results is obtained, 

whereas n is typically larger than 0.9. Thus, for further evaluation we regarded the 

adaptation of a parallel RC-element to be sufficient. 

 
Figure 3.12: Argand plot for a sample where measurement connection compensation is needed. 

 

If materials have small resistances, which causes high currents, a damping of the 

impedance occurs (see figure 3.12). This damping ∆Zf is due to the measurement 

connection and for the used impedance analyser given as: 
2

f fL38.0Z ⋅∆⋅−=∆            (3.9) 

(according to:[Ag91]) 

where f is the measuring frequency, ∆L is the difference between the used 

measurement connection and the already intern compensated measurement 

connection by the impedance analyser. For compensation of damping, the simulated 

impedances are charged with the calculated damping as follows: 

ftotal Z'Z'Z'Z ∆⋅+=                     (3.10) 

ftotal Z''Z''Z''Z ∆⋅+=                    (3.11) 

For small frequencies (f→0) ∆Zf becomes zero. For high frequency ∆Zf comes into 

account, and the semicircle is depressed into a linear function. ∆L was implemented 

as a fit variable whose value lies typically around 3.9 m ± 0.3 m. Finally, analysis of 

the difference between simulated and measured impedance diagrams gives the 

failure value of the fitting. Validation of the fit quality (in %) is included in the fit file. 

For further information see [Sa04].  

The extracted R values are then used to calculate the relative or absolute sensitivity 

of the materials.  
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3.2.3 Electrical characterisation of CoTiO3 
Figure 3.13 shows a plot of the real part of the complex impedance versus the 

imaginary part (Argand plot) for CoTiO3 in synthetic air at 500 °C. The plot, which is 

representative for all other CoTiO3-samples measured, shows a slightly depressed 

semicircle.  
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Figure 3.13: Argand plot of a CoTiO3 sample at 500°C. 

 

The resistance values under the respective measuring conditions were taken for the 

determination of the materials’ sensitivity using equation 2.8 and 2.9. The material 

showed p-type behaviour, i. e. an increase of resistance due to admixing of reducing 

gases. Figure 3.14 shows the fingerprint (bar chart) of CoTiO3, where S∆ for each gas 

at 475 °C is shown. It illustrates that the undoped material showed high sensitivity 

towards propylene and ethanol with a weak cross sensitivity towards other gases. 

However, for undoped CoTiO3, no reliable impedance spectroscopic results could be 

obtained at temperatures below 450°C due to high resistances of the material. For 

lower temperatures, DC measurements using a Keithley 2400 source meter at a 

measuring voltage of 1V have been taken into account; gas sequence and 

preconditioning times remained the same.    



Results and Discussion 

50 

AC1015 74

-1,0

-0,5

0,0

0,5

1,0

 

 

 

S
∆

CoTiO3                                       T=475°C

H2       CO       NO   NO2   C2H5OH  C3H6 

 
Figure 3.14: Fingerprint of CoTiO3 towards different test gases. 

 

In accordance with the literature published by Chu et al., the measured sensitivity to 

40 ppm ethanol was located in between the values found by Chu for 50 and 100 ppm 

ethanol. However, the temperature of maximum sensitivity was shifted by 25°C with 

respect to Chu’s value, as shown in Figure 3.15.  
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Figure 3.15: Temperature dependence of ethanol sensitivity of CoTiO3 in comparison to Chu et al. 

 

The overall low conductivity together with the thermal stability of these materials 

suggested possible sensor applications only at higher temperatures.  
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In the following discussion, it will be illustrated that CoTiO3 was doped with different 

metal ions in order to study the effects of volume doping on the electrical and sensing 

properties. 

 
3.2.4 Volume doped CoTiO3 
CoTiO3 is a potential candidate for use as ethanol sensor. However, the high 

resistance of CoTiO3 is a disadvantage in application. Partial substitution may lower 

the resistance values. 

 

Different metal salts (La(NO3)3 6H2O, K(CH3COO), Sm(NO3)3 6H2O, LiNO3, 

Gd(CH3COO)3 nH2O, Ho(NO3)3 5H2O, Sb(CH3COO)3, Pb(CH3COO)2 3H2O, 

Na(CH3COO) 3H2O) have been introduced as volume dopants (2 at%). The doping 

was inserted in the polyol method described previously. K, Li, Na, Sm, La and Ho 

were inserted in the reaction with a smaller amount of Co, while Gd, Sb, Pb, La, Sm 

and Ho were inserted with less Ti. Indices A and B are used for dopants (La, Sm, Ho) 

wich have been inserted with less Co and less Ti. A detailed description of the 

synthesis can be found in the experimental data. Figure 3.15 shows exemplary the X-

ray diffraction pattern of La-doped CoTiO3.  
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Figure 3.15: X-ray diffraction pattern of CoTiO3:La powder before and after annealing for 12 h at 

T = 700 °C. 

 

All “as synthesised” samples were amorphous right after preparation. The XRD 

values of the calcined samples were in good agreement with those reported in ICSD 
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file number 48107 for CoTiO3. There were no indications of how and where the 

volume dopants were inserted into the CoTiO3 lattice. The amount of dopant was too 

small to see in the by-product of formed oxides or a remarkable shift of lattice 

parameters in the X-ray diffraction. All patterns showed the same structure as 

CoTiO3. 

 

EDX and XRF measurements were able to proof the presence of the volume 

dopants. However, the amount of dopant was in the range of the detection limit that 

means no quantitative information was achieved.   

 

Figure 3.16 gives the scanning electron micrographs (SEM) showing the top view of 

the different volume doped CoTiO3–samples. Table 3.1 shows the calculated 

crystallite sizes and the primary particle size from SEM images respectively. 

CoTiO3:LaA and CoTiO3:SmA showed the smallest crystallite and particle sizes. 

However, in all shown samples the surface morphologies were similar to each other. 

The primary particle sizes resided in the same range and similarities to the thick film 

morphology can be found. All particles were agglomerated due to thermal treatment. 
 

Table 3.1: Crystallite and particle sizes of volume doped CoTiO3 materials. 
 

compound DS(nm) SEM(nm)* 

CoTiO3 85 50-120 

CoTiO3:LaA 61 30-70 

CoTiO3:LaB 83 70-120 

CoTiO3:K 96 80-140 

CoTiO3:Li 106 70-130 

CoTiO3:Na 90 70-100 

CoTiO3:Sb 83 70-100 

CoTiO3:Pb 94 70-100 

CoTiO3:SmA 58 50-90 

CoTiO3:SmB 85 60-100 

CoTiO3:HoA 76 60-90 

CoTiO3:HoB 76 60-90 

CoTiO3:Gd 86 50-90 
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Figure 3.16: SEM pictures of the volume doped CoTiO3 samples. 
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Figure 3.16: SEM pictures of the volume doped CoTiO3 samples. 
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Figure 3.17 shows the Arrhenius plot of the undoped and volume doped samples. 

Almost all materials show an influence on the resistance of the CoTiO3. The undoped 

and the Gd-doped samples show highest resistances in a temperature range from 

500 to 350°C. Below 375°C the antimony doped samples show the lowest 

conductance. All other materials have lower resistances. LanthanumA, potassium and 

lithium doped CoTiO3 have lowest resistances over the whole temperature range. 

The lithium doped sample showed highest current of all, around 65-fold higher at 

500°C and more than 20-fold higher at 375°C than that of the undoped CoTiO3. The 

lanthanumA doped sample gave a 25-fold higher current at 500°C while the Pb-doped 

sample gave a rise in conductivity by about a factor of 5.  
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Figure 3.17: Arrhenius plot of volume doped CoTiO3 samples (AC1015). 

 

Figure 3.18 depicts the sensitvity of the volume doped materials towards ethanol 

over the whole temperature range. The sensitivity is enhanced significantly by the 

dopants. Outstanding is the high sensitivity of CoTiO3:LaA towards the test gas in the 

regarded temperature window. In addition, the temperature of maximum sensitivity 

(Tmax) is influenced by the different volume dopants. For example, the undoped and 

lanthanum doped sample had a Tmax of 350°C while the lithium doped sample 

showed maximum sensitivity towards ethanol at 400°C. In the temperature range 

from 500 to 375°C the undoped sample showed lowest sensitivity. 
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Figure 3.18: Sensitivity towards ethanol of all volume doped samples. 

 

Along with sensitivity changes, the volume dopants also influence selectivity towards 

ethanol, which is depicted in Figure 3.19. Highest selectivity at 425°C was found for 

lead (12) and potassium (10) doped CoTiO3. The undoped material showed no 

pronounced selectivity which was also found for the holmium doped sample. The 

lanthanumA doped sample, which showed highest ethanol sensitivity, is located in the 

middle range, meaning a selectivity of around 6. In addition, a temperature shift of 

maximum selectivity depending on the volume dopant was observed.  
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Figure 3.19: Selectivity towards ethanol. 
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Furthermore, response and recovery ability of the volume doped materials were 

measured at 500°C with different test gases. The undoped material showed a slow 

response and recovery behaviour. In the regarded time scale no saturation was 

achieved (see Figure 3.20). At this temperature no sensitivity towards CO was 

observed. NO acts as a reducing species, i.e. induces a rise in resistance, however 

the reaction is small.  
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Figure 3.20: Response and recovery times of undoped CoTiO3 at 500°C towards CO (25 ppm), 

NO (5 ppm), propylene (20, 40 ppm) and ethanol (40, 60 ppm). 

 

A similar behaviour was observed for the sodium doped sample. In contrast, the 

addition of lead and lanthanum sped up response and recovery, and 

saturation/equilibrium was reached. Figure 3.21 shows a comparison between slow 

and fast responding samples. 
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Figure 3.21a): CoTiO3 and CoTiO3:Pb. Response and recovery times at 500°C towards CO (25 ppm), 

NO (5 ppm), propylene (20, 40 ppm), and ethanol (40, 60 ppm). 
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Figure 3.21b): CoTiO3:LaA and CoTiO3:Na. Response and recovery times at 500°C towards NO (5 

ppm), propylene (20, 40 ppm), and ethanol (40, 60 ppm). 

 

Figure 3.22 depicts the response and recovery behaviour of CoTiO3:SmB. In this case 

the response and recovery times were slow. However, the material was able to reach 

saturation in the given time.  
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Figure 3.22: CoTiO3:Sm. Response and recovery times at 500°C towards NO(5 ppm), propylene (20, 

40 ppm) and, ethanol (40, 60 ppm). 

The materials that showed faster response and recovery abilities also showed higher 

sensitivities. In addition, one also observed that after volume doping, all CoTiO3 

materials showed p-type behaviour with increasing resistance in reducing conditions. 

Further response and recovery plots of volume doped CoTiO3 samples can be found 

in Appendix 7.2.  

 

In summary, the electrical and sensitivity measurements showed that the dopants are 

included and influence the behaviour of the sensing base material. Only speculations 

can be made on the state of ionisation and position of the volume dopants. Different 

results were seen, for exapmle, depending on whether lanthanum is added with an 

understoichiometric amount of cobalt or titanium. Even though one would expect a 

higher conductivity if titanium was displaced, the experiments showed the reverse 

behaviour. In addition the sensing activity of these two samples was not the same. 

These structural particularities were in fact not the question this work was concerned 

about and have to be solved in the future.  

 

Along with the change in resistance, the volume dopants were able, also in only 

small amounts, to enhance the sensitivity and selectivity of the base material. The 

temperature of maximum sensitivity/selectivity may also be shifted by adding of 

volume dopants. In addition, changes in the response and recovery time were 

observed. Materials with higher sensitivities showed faster response and recovery 
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ability. However, the used volume dopants did not create new sensitivities towards 

the admixed test gases.  

 

For further investigations, CoTiO3:LaA (from now on termed CoTiO3:La) was used as 

the base material. This material was chosen from the regarded materials because of 

its 

- highest ethanol sensitivity 

- sufficient conductivity 

- good response and recovery times 

- better sensitivity in comparison to the undoped material. 

 

3.2.5  Further investigations on CoTiO3:La 
3.2.5.1 Characterisation 
The following section will concentrate on CoTiO3:La. The material prepared via polyol 

mediated synthesis was found to be amorphous right after preparation as shown in 

the HRTEM image in Figure 3.23. The material was dried for one hour at 400°C. The 

fast Fourier transformation of the image confirms the absence of crystals.   

 

 

Figure 3.23: HRTEM picture and FFT of CoTiO3:La after drying at 400 °C for 1 h. 

After annealing at 700 °C for 12 h the material turned out to be highly crystalline as 

shown in Figure 3.24. The electron diffraction pattern in the centre shows the 

presence of a polycrystalline sample. The concentric diffraction circles (with radius 

1/dhkl) originate from the high number of statistically arranged crystallites in the 

sample. The powder X-ray diffraction pattern shown in 3.15 showed the formation of 
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a single phase compound with CoTiO3 structure. The lattice parameters 

(a=b=5.068(5) Å, c=13.934(1) Å) of the trigonal phase found from Rietveld refinement 

[Ri69] are in good accordance with the reference data (ICSD 48107). The average 

crystallite size of the sample was determined using Scherrer’s equation. The 

estimated crystallite size (61 nm) is in good agreement with the particle size obtained 

from the SEM picture. The SEM image is shown in Figure 3.25. Almost spherical 

particles with a diameter of 30 to 70 nm can be seen. The annealed material 

appeared as a highly porous network of almost uniform particles. 

 

 
Figure 3.24: HRTEM pictures of CoTiO3:La annealed at 700 °C. The Fourier transformation gives 

evidence of the crystallinity of the particles. 

 
Figure 3.25: SEM pictures of CoTiO3:La heated for 12 h at 700 °C. Primary particles show diameters 

between 30 and 70 nm. 
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Figure 3.26 shows a cut edge of a sensor. The deposited metal oxide material 

remains as an open porous structure, which offers good interaction with the gas 

phase due to the high surface area. 

 

 
 

Figure 3.26: SEM picture of a CoTiO3:La sensing layer on IDC structure. 

 
Because the X-ray diffraction patterns did not show the volume dopants, different 

characterisation methods were used to visualise the volume dopant. From energy-

filtered transmission electron microscopy (EfTEM) measurements, it was seen that 

lanthanum is homogenously dispersed in the material as shown in Figure 3.27.  
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Figure 3.27: EfTEM pictures of CoTiO3:La. 

 

However, the amount of lanthanum was too small to give a quantitative statement. 

Also, XRF measurements showed the presence of lanthanum, but the amount was in 

the range of the device error. Electron probe micro analysis (EPMA) was able to 

show the presence of 2.1 at% of lanthanum in the material. The question remains of 

how the lanthanum ions are inserted in the lattice, since the ion size is much bigger 

than that of cobalt or titanium.  

 

 

 

 

 

 

 

 



Results and Discussion 

64 

3.2.5.2 Electrical and gas sensing properties 
Figure 3.28 shows the plot of the real part of the complex impedance versus the 

imaginary part (Argand plot) for CoTiO3 and CoTiO3:La in synthetic air at 475 °C.  
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Figure 3.28: Argand plot and circuit equivalent. Volume doping with lanthanum enhances the 

conductivity of CoTiO3 (T=475°C). 

 

Figure 3.29 shows the fingerprint (bar chart) of CoTiO3 and CoTiO3:La, where S∆ for 

each material and each gas at 475 °C is shown. It illustrates that the undoped and 

volume doped material showed high sensitivity towards propylene and ethanol with a 

very weak cross sensitivity towards other gases as shown before. The volume doping 

showed an enhanced selectivity towards ethanol.  
 

 
Figure 3.29: Fingerprint of CoTiO3:La  and CoTiO3 at 475 °C. 
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Figure 3.30 shows the Argand plot for synthetic air, propylene (25 ppm) and ethanol 

(40 ppm) at 400 °C. The p-semiconducting material showed an increase of resistivity 

compared to synthetic air when reducing gases like propylene and ethanol were 

applied.  
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Figure 3.30: Argand plot of CoTiO3:La in synthetic air, propylene and ethanol. The p-type 

semiconductor shows an increase of resistance compared to synthetic air when reducing gases are 
applied (T=400°C). 

Figure 3.31 shows the relative sensitivity towards the tested gases versus the 

operating temperature. The material was highly sensitive and selective towards 

hydrocarbons at higher temperatures. At lower temperatures cross sensitivity 

towards other gases increased. 
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Figure 3.31: Relative sensitivity of CoTiO3:La versus operating temperature (300-500°C) for various 

gases. 
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As compared to the results of Chu et al., who introduced the use of nanostructured 

CoTiO3 for the detection of ethanol, this material showed a high sensitivity at 400°C 

only towards 40 ppm ethanol (compared to 1000 ppm ethanol). Figure 3.32 shows 

the temperature dependence of the literature sensitivities in comparison to the 

measured values for undoped and lanthanum doped CoTiO3. At 350°C the 

lanthanum doped sample showed sensitivities towards 40 ppm of ethanol that 

compete with Chu’s values for 1000 ppm at temperature of maximum sensitivity. The 

selectivity S40ppm ethanol/S25ppm propylene was 6.6 in comparison to Chu et al. where 

S200ppm ethanol/S100ppm petrol was 4. Doping with only 2 at% of lanthanum created a highly 

sensitive hydrocarbon sensing material as compared to what is reported in the 

literature.  
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Figure 3.32: Temperature dependence of ethanol sensitivity of CoTiO3:La in comparison to Chu et al. 
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3.2.5.3 Cross-sensitivity towards humidity 
The humidity response of the gas sensitive element was tested. Figure 3.33a) and b) 

show two examples of CoTiO3:La at 500 and 400°C. The resistance varied by ±5% 

when the relative air humidity was shifted from 0 to 90 %. The resistance variation in 

propylene over the same range was less than 1%. This practical insensitivity to water 

vapour can be contrasted with most commercially available tin oxide gas sensors, 

which show a change in conductance as a function of humidity [Ih94]. 

0 45 90
0

5x106

1x107

R
/Ω

rel. humidity / %

 synthetic air
 propylene

 
Figure 3.33a): Sensitivity of CoTiO3:La in humid and dry atmosphere at 400°C (AC1013, Position 57). 
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Figure 3.33b): Sensitivity of CoTiO3:La in humid and dry atmosphere at 500°C (AC1015, Position 52). 
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D.E. Williams’ review described a p-type semiconducting titanium-substituted 

chromium oxide (CTO) that also showed a lack of response to water vapour. This 

has been the key to the successful commercial development of CTO as sensor 

material [Wi99]. Williams suggested that the metal cations associated with the 

oxygen defects determined the effect of water vapour. If these cations were Lewis 

bases like Sn2+ (at SnO2 surface), the effect of water on electrical conductivity 

appears to be large, whereas with cations such as Cr3+ (CTO) at the surface, the 

effects of water vapour were much smaller [Wi99]. Also, the sensitivity of TiO2 was 

much smaller than the sensitivity of SnO2 [Du99]. Fukui et al. showed that 

incorporation of acidic metals like Co and Cr into tin oxide enhanced the stability 

towards humidity changes [Fu98]. The negligible cross sensitivity of CoTiO3:La to 

humidity changes may be caused by the chemical analogy to the systems described 

in the literature. The combination of Co and Ti seems to be promising to prevent 

large effects of water vapour.  

 
3.2.5.4 Gas concentration dependence 
Gas sensitivity as a function of propylene concentration is shown in Figure 3.34 for 

lanthanum doped CoTiO3. After a steep initial increase, the gas sensitivity tended 

towards an asymptote in the range of high concentrations of propylene. The data 

show that the response times decreased as the analyte concentration increased, 

which was attributed to the diffusion of analyte into a porous medium. The response 

times of less than 1 min were comparable to, and in many cases faster than times 

reported for other metal oxide conductometric sensors [Te05]. Sensor recovery times 

were slightly longer than onset times. The longer recovery times were attributed to 

the expected faster diffusion of analyte into as compared to out of the porous network 

[Be06]. Because the signal onset times were dependent on the analyte 

concentration, the response times could provide information that help to quantify the 

amount of analyte, beyond just the sensitivity response [Be06]. 

 

Figure 3.35 shows concentration steps of propylene at 500°C. Concentration was 

changed from 0 to 50 ppm. At the shown temperature a good response and recovery 

behaviour was observed. The cycle of two steps showed that response values were 

reproducible. 
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Figure 3.34: Response behaviour and concentration dependence of CoTiO3:La towards propylene. 

(T=400°C, f=100 Hz, ∆t= 15 min) 
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Figure 3.35: Concentration steps of propylene (T=500°C, f=100 Hz, ∆t= 15 min). 
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3.2.5.5 Long-term stability of CoTiO3:La 
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Figure 3.36: Long-term stability of CoTiO3:La at 400°C. 

 
 

Another important parameter to consider when evaluating a sensor is its stability. It is 

useful to have both a stable baseline resistance and a reproducible signal change to 

a given analyte concentration. The stability of gas-sensitive elements’ characteristics 

was tested over 9 days by periodic measurements of the sample resistance under air 

(45% r. h.) every hour and the response and recovery behaviour towards propylene 

(20 ppm) every 12 hours. This periodicity of stability testing corresponds to the real 

mode of operation of gas sensors working at a fixed temperature. Figure 3.36 shows 

the stability test for CoTiO3:La. The sensitivity deviation (span drift) during 9 days 

was about 20 % of the absolute sensitivity. The main instability was observed during 

the first 3 days. The baseline resistance under synthetic air (45% r. h.) remained 

stable after the first day except a small variation. Therefore, in order to eliminate the 

initial instability, artificial aging of the sensitive element is advised before application. 

Next to these long-term tests, the sample plate was stored for 11 month under air 

and measured again in all applied gases and temperatures. The same sensitivities 

were achieved, showing once again the stability of the material (see Figure 3.37).  
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Figure 3.37: Comparison of sensitivities towards ethanol and propylene after storage (11 months) 

(sample plate AC1015, position 52). 
 

The sample was cahracterised again after the storage and long-term test. Figure 

3.38 shows the X-ray diffraction of the sample. No changes in the crystal structure 

occurred. In addition, no changes in the crystallite size were derived from the X-ray 

pattern. SEM pictures of the sample are shown in Figure 3.39. The open porous 

structure also remained after long term stability tests.    
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Figure 3.38: X-ray diffraction of position CoTiO3:La (scraped off position 52, AC1015) after long-term 

stability tests. 
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Figure 3.39: SEM image of CoTiO3:La after long-term stability tests (position 52, AC1015). 
 
 

3.2.5.6 Surface doped CoTiO3:La [Si06] 
The polyol method was applied for the synthesis of nanocrystalline CoTiO3:La, and 

the use of HT-IS enabled the analysis of surface doping with different amounts of Au, 

Ce, Pd, Pt, Rh and Ru in order to find out the highest selectivity and sensitivity of the 

respective material compositions.  

 

The applied doping elements were Au (as HAuCl4·3H2O), Ce (as (NH4)2Ce(NO3)6), Ir 

(as Ir(C5H7O2)3), Pd (as Pd(NO3)2·2H2O), Pt (as Pt(NH3)4(NO3)2), Rh (as 

Rh(NO3)3·2H2O) and Ru (as Ru(NO)(O2C2H3)3). The doping elements are known to 

increase the sensitivity and/or selectivity of different semiconductor gas sensing 

materials [El04][Sh99]. The distribution of the different material combinations are 

shown in Figure 3.40, which represents an 8x8 array with CoTiO3:La as base 

material; diversity was achieved by variation of the surface doping species and its 

respective concentration. To compensate for possible gradients in gas concentration 

and temperature as well as single failures due to contact defects over the substrate, 

three statistically selected positions are equipped with the same material 

composition.  
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Figure 3.40: Picture of the prepared sample plate and distribution of the doping elements on the base 
material CoTiO3:La (AC1013). 

 
The sample plate was measured with the same procedure described in chapter 3.2. 

Figure 3.41 exemplarily shows the Argand plots from the screening of AC1013. 

Measurements in synthetic air at three different temperatures (400, 375, 350°C) are 

shown.  

 

As mentioned before the material showed approximately the behaviour of a parallel 

RC-circuit. The diameter of the semicircle, which is related to the ohmic resistance of 

the material droped with increasing temperature as expected for semiconductors. 

Positions 16, 17, 24, 26, 35, 54, 66, 68, and 83 showed solely capacitive behaviour. 

This may occur due to insufficient contact between sample and IDC or defect 

conductor paths on the microelectrode array.  
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Figure 3.41: Argand plot of the sample plate AC1013 at 400, 375 and 350°C under synthetic air. 

 
Figure 3.42 shows the fingerprint for the entire sample plate at 400°C. For defect 

positions no sensitivities were achieved. Equally occupied positions show good 

correspondence in the sensitivities. For the majority of the surface dopants no 

significant influence on the sensitivity was observed. The most pronounced effect on 

the sensitivity could be seen for Au and Pd doped materials, whereas almost no 

dependence on the concentration of the surface dopants was found. 
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Figure 3.42: Fingerprint of the sample plate AC1013 at 400°C. Many surface dopants show the same 

sensitivties as the undoped material. Besides the nine fields, which reflect defects in the electrical 
contacts of the respective materials, the measurements show good reproducibility. 

 

Figure 3.43 shows the temperature dependence of S∆ for the samples doped with Au 

and Pd. For both metals high sensitivity towards ethanol and propylene remained like 

in the undoped base material. It is noticeable that platinum showed no significant 

sensitivity change, though it is known as a good supporting surfactant on n-type 

systems like SnO2 [Ko05]. 
 

Au doping caused an increased sensitivity towards CO over the whole temperature 

range with a maximum at 325 °C. At the same time, the sensitivity towards hydrogen 

was increased, which was most pronounced at lower temperatures.  
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Figure 3.43a): Au@CoTiO3: Relative sensitivity versus operating temperature (300-400°C) for various 

gases. 

Remarkable changes also appeared in the sensitivity towards NOx. While the 

undoped material showed an almost temperature independent S∆ between -0.2 and -

0.29 for NO, the sensitivity towards NO2 decreased with increasing temperature from 

0.5 to 0.1 between 300 and 400 °C. The Au-doped material showed a slightly 

increased sensitivity towards NO2 whereas the sensitivity towards NO appeared to be 

suppressed.  
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Figure 3.43b): Pd@CoTiO3: Relative sensitivity versus operating temperature (300-400°C) for various 

gases. 
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Pd doping caused an increase of the sensitivity towards CO and H2 over the whole 

temperature range (as is shown in Figure 3.34b)). In contrast, the sensitivities 

towards NOx showed almost the same behaviour as was observed for the undoped 

material. The NO sensitivity showed a weak maximum at 350 °C while the highest 

sensitivity towards NO2 was observed at 300 °C. S∆ for CO and H2 were significantly 

higher in comparison to the undoped base material. Also, a small maximum of the 

H2-sensitivity was observed at 325 °C, while the sensitivity towards CO decreased 

with increasing temperature. At 300 °C the sensitivity towards CO differed only 

slightly from that towards propylene.  

 

When a doping element is added to the surface, the equilibrium state and/or velocity 

of the surface reactions is modified. Au and Pd, well known as active catalysts for 

e.g. CO oxidation [Ja06, Ka06, Ha97, Sl05], hydrogen peroxide synthesis from H2 

and O2 [So06] or hydrocarbon oxidation, have been confirmed to possess promoting 

effects on many semiconductor gas sensors. The doping element supports the 

catalytic conversion of the reducing gas into its respective oxidation product. This 

may be due to spill-over of activated fragments to the semiconductor surface to react 

with the adsorbed oxygen [Ko05]. On the other hand, the mentioned catalytic effect 

inducing a located temperature change and a change in resistance may cause the 

sensitivity change of the surface doped material. These models may describe the 

increased sensitivity of the Pd- and Au-doped materials towards H2, NO2 and CO 

observed here. The reaction towards the hydrocarbons originated from the metal 

oxide and therefore was not highly influenced by the surface dopant. 

 

Most interesting for practical use is the almost fully suppressed sensitivity towards 

NO with a simultaneously pronounced sensitivity towards NO2 observed for the Au-

doped material. The NO-tolerance has also been seen in [Fi02b] and [Su95]. Sun et 

al. referred to lower NO sensitivity using Au electrodes compared to Pt electrodes 

and α−Fe2O3 thin films.The comparison of different electrode materials showed that 

they were able to promote sensitivities similarly to surface dopants. It was suggested 

that NO was oxidised to NO2 prior to beeing detected and that Pt showed higher 

catalytic activity for spill over [Su95].  
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3.2.5.6.1 Response and recovery behaviour of Au and Pd doped CoTiO3:La 
These two interesting surface dopants were also screened for their response and 

recovery ability. Figure 3.44 shows the response to 5 ppm NO and NO2 of gold 

doped CoTiO3:La at 350°C. As shown in the sensitivity-temperature plot, almost no 

cross-sensitivity towards NO was found at this temperature. The offsets at changing 

the gases can be understood by changing the carrier gas from synthetic air to 

nitrogen and adjusting the test gas flow. When the NO gas flow controller was 

opened the concentration of oxygen slightly deceases, which was shown by the rise 

in resistance. After adjustment of the test gas mixture, the equilibrium value was 

reached, and after changing from test gas to pure synthetic air, the resistance first 

droped (higher oxygen concentration), and after a short adjustment time the base 

value at synthetic air was reached. This offset was only observed when measuring 

NO (the only test gas carried by nitrogen). The response towards NO2 was fast (28 s) 

and equilibrium was reached in the regarded time scale; however, recovery was 

slower (~3.2 min).  
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Figure 3.44: Response of Au@CoTiO3:La to NO and NO2 (T=350°C). 

 

Figure 3.45 shows the response of Au@CoTiO3:La to carbon monoxide at two 

different temperatures. The response time at both temperatures was around 18 s. 

The recovery time was located in the same time scale. At lower temperatures the 

average deviation of the measurement values was higher because of the higher 

resistances. However, at lower temperatures the response change was higher, as 

expected; at 375°C the absolute sensitivity was 5.2 while at 350°C the sensitivity had 
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a value of 8. In comparison, Figure 3.46 depicts the response of Pd-doped CoTiO3:La 

towards 50 ppm of carbon monoxide at 375°C. The response time was 28 s, the 

sensitivity at this temperature around 3.2, and the recovery time corresponds to the 

response time. Both the Au- and Pd-doped materials seemed to be good CO sensing 

materials while the gold doped sample also showed excellent properties for an NO-

tolerant NO2-sensing material at around 350°C. After finding these two interesting 

surface dopant-material combinations, the characterisation of these surface dopants 

was of interest. These characterisation studies are described in the following section.  
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Figure 3.45: Response of Au@CoTiO3:La to CO (T=350, 375°C). 
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Figure 3.46: Response of Pd@CoTiO3:La to CO (T=375°C). 
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3.2.5.6.2 Characterisation of Pd and Au surface dopants on CoTiO3:La 
In preparing metal surface doping one can distinguish three general stages: 

 Formation of the precursor solution (aqueous solution of metal salt) 

 Impregnation 

 Drying and calcination including reduction 

If the pores of the basic material are filled with an aqueous solution containing metal 

ions simply by pouring the solution, and the excess solvent is removed by 

evaporation, there will remain a number of micro crystals of the metal salt on the 

walls of the support, and after calcination/reduction will form separate metal particles. 

This procedure is termed impregnation. The average size of the metal particles 

depends on the concentration of solution and type of metal salt used, so high metal 

loadings tend to give larger particles than low loadings. Recent work has proven that 

surface morphology influences the size and distribution of clusters. For example, the 

presence of stepped-like surfaces in case of small nano-grains provides the 

conditions for good dispersion of additives [Ko05, El02]. The physical 

characterisation of surface dopants is a challenging problem. Transmission electron 

microscopy is able to image particles as small as 1 nm and below. However, the 

loading of the particles is still small so the location of the surface dopants remains 

elusive.  

 

By use of bright and dark field high resolution transmission electron microscopy 

(HRTEM) and additional EDX, the surface doping on CoTiO3:La was analysed. High-

angle annular dark field (HAADF) images are formed by collection of high-angle 

scattered electrons with an annular dark-field detector in convenient scanning 

transmission electron microscopy instruments (STEM). The HAADF image contrast is 

approximately proportional to the square of the atomic number (termed as Z-contrast 

imaging), allowing heavy atoms to be detected directly from the image contrast 

features. Bright field (BF) and HAADF images of palladium dopant particles 

(concentration 1 at%) are shown in Figure 3.47. The particles were between 3 and 10 

nm in diameter. Whereas under BF conditions the surface dopants were difficult to 

find, because of the weak phase contrast of metal oxide and dopant, under HAADF 

conditions the dopants were highlighted. However, the HAADF image resolution was 

not as high as that of BF-HRTEM images. 



Results and Discussion 

                                                                                                                                                            81

 
Figure 3.47: Bright and dark field HRTEM images of 1 at% Pd@CoTiO3:La. 

 

EDX could clearly identify the presence of the metals on the surface. The measured 

EDX peaks are displayed in Figure 3.48 in attendance with HRTEM images. Point 1 

spoted a palladium dopant particle, while point 2 detected the base material. In case 

of the base material no discrete lanthanum peaks were found because they were 

superposed by the cobalt and titanium peaks. Copper and silicon peaks resulted from 

the preparation method on copper grids.  
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Figure 3.48: HRTEM images and EDX analysis of 1 at% Pd@CoTiO3:La. 

 

Figure 3.49 depicts bright and dark field HRTEM images of 0.2 at% dopant 

concentration, which was a realistic concentration of the here prepared sensing 

layers. In this 0.2 at% case, the allocation of palladium particles is much smaller than 

in the 1 at% case. In addition, smaller clusters were found in the BF images (around 

2-4 nm) which could not be identified by HAADF analysis.  
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Figure 3.49: Bright and dark field HRTEM images of 0.2 at% Pd@CoTiO3:La. 

 

Analogue analysis was performed for gold doped samples. Figure 3.50 depicts bright 

and dark field HRTEM images of 1 at% Au@CoTiO3:La. In comparison to palladium, 

gold clusters were rarely found; in addition, large gold islands were noticed, while 

palladium was deposited as homogenous clusters on the oxide. These observations 

were also reported by Arbiol [Ar01, Ar02] and the references therein. Arbiol and 

others found different types of loading depending on the nature of additives. A 

schematic representation of additive distribution ways on tin oxide is shown in Figure 

3.51. In the case of platinum and palladium, metal clusters or nanoclusters on the 

semiconductor surface were seen. The typical size of these nanoclusters range from 

1-8 nm; an example is shown in Figure 3.52. In very low concentrations of these 

metals monoatomic dispersed centres were also present. In contrast, gold not only 

nucleated, forming small nanoclusters, but also formed macro-agglomerated metal 

clusters (islands) with diameters that ranged in the size of the semiconductor grains 

(20-200 nm) [Ba99]. This behaviour was also observed in other systems like on Si 

surfaces on which Au atoms were able to diffuse to nucleated islands at 

temperatures above 340°C [Ro06b].    



Results and Discussion 

84 

 
Figure 3.50: HRTEM images and EDX analysis of 1 at% Au@CoTiO3:La. 
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Figure 3.51: Dispersion examples of different metal additives on SnO2 (taken from [Ar01]). 
Left: Macro-agglomerated metal. Right top) Superficial clustering. Right bottom) Atomically dispersed 

metals. 
 

 
Figure 3.52: Arbiol et al. Palladium cluster on SnO2 (taken from [Ar02]).  

 

3.2.5.6.3 Surface doping of a Pd/Au mixture on CoTiO3:La 
Finally, a mixture of Pd and Au surface dopant was prepared to study the influence 

on the base material. 0.2 at% of each dopant was taken. Figure 3.53 shows the 

temperature dependence of the resistance of CoTiO3:La, Au@CoTiO3:La, and 

Pd/Au@CoTiO3:La. The resistance of Pd/Au@CoTiO3:La was in the same region as 

was seen for the undoped and single doped material. This amount of surface dopant 

did not strongly affect the conductive behaviour of the base material. 
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Figure 3.53: Temperature dependence of the resistance of CoTiO3:La, Au, and Pd/Au@CoTiO3:La. 

 

Figure 3.54 shows the temperature dependence of the sensitivity towards the applied 

test gases. Doping the material with a gold-palladium mixture showed no major 

influence on the sensitivity in comparison to the undoped material (expected for the 

sensitivity towards CO). However, in comparison to the solely Au or Pd doped 

samples, the hydrogen sensitivity was not improved and the CO sensitivity was not 

larger than before. The effects of the single doping elements were not enhanced by 

mixing the two components.  
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Figure 3.54: Relative sensitivity of Pd/Au@CoTiO3 versus operating temperature (300-500°C) for 

various gases. 
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In addition, the response and recovery behaviour of the sample was tested, as 

shown in Figure 3.55. In contrast to the undoped material this sample showed higher 

sensitivity to 40 ppm of propylene than to ethanol (40 ppm). The response and 

recovery times were all fast. The reaction to NO was very small at this temperature.  
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Figure 3.55: Response and recovery times at 500°C to NO (5 ppm), propylene (20, 40 ppm), and 

ethanol (40, 60 ppm). 

 
3.2.5.7 Solid Surface doping of CoTiO3:La 
As we have seen before, surface doping with metal salts enables to change the 

sensing behaviour of a base material. Another interesting question is: how can the 

use of solid metal oxides as surface dopants influence the sensitivity in comparison 

to metal dopings? To investigate this, LaMnO3 and SnO2 were chosen as solid 

surface dopants. Both materials are semiconductors, whereas SnO2 with a band gap 

of 3.6 eV beeing close to that of the base material, LaMnO3 with a band gap of 

1.1 eV shows almost metallic conductivity at elevated temperature. Both materials 

are known to be gas sensitive or catalytically active. Tin dioxide is, as mentioned 

before, the best understood and most frequently used resistive sensing material. 

LaMnO3 proved to be a valuable alternative to the traditional noble metal based 

catalysts, e. g. for the combustion of methane [Fa06], the total oxidation of 

hydrocarbons and their hydrogenation [Li71]. Since LaMnO3 showed promise in 

catalytic applications, this might also be valuable for surface additives in the case of 

sensing studies.  
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Both metal oxides, prepared via the polyol method [Ko06b], were ground with the 

base material (1at% dopant to base material), redispersed in a 

polyethyleneimine/water solution and deposited onto the IDC structure by the 

laboratory robotic system.  

 

Figure 3.56 shows the temperature dependence of the resistance of the undoped 

and surface doped samples. In both cases the resistance of the base material was 

increased by surface doping. LaMnO3@CoTiO3:La showed the highest resistance. 

Below 400°C the measurement limits were exceeded. In comparison to the metal 

surface dopants, the resistance of the base material was higher affected by the metal 

oxides. The admixing of the solid surface dopants creates new adsorption sites for 

the gases. The resistance is influenced by the resistance of both materials and the 

interfacial contacts between base material and dopant particles [Mi92]. Transition of 

charge charriers might be hindered because of different conduction types of the 

compounds. In addition, the admixed metal oxide might influence the microstructure 

of the sample. All these effects might cause the resistance change of the base 

material.     
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Figure 3.56: Temperature dependence of the resistance of CoTiO3:La and the surface doped 

samples. 

 

Figure 3.57 depicts the sensitivity of these materials towards ethanol (40 ppm) and 

propylene (25 ppm). The undoped material showed highest sensitivity to ethanol over 

the whole temperature range. The surface doped samples showed both a high 

sensitivity to propylene. In addition tin dioxide showed highest sensitivity to propylene 
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from 475 to 375°C. With the help of these surface dopants it seemed that the chain 

length and double bond of propylene became more dominant for the reaction than 

the OH-group of ethanol. This could be caused by three reasons. On the one hand, 

the solid surface dopants might act catalytically on the conversion of propylene. On 

the other hand, the reaction of ethanol was restricted on the dopant grains and did 

not change the base materials’ resistance i.e. no sensitivity towards ethanol was 

measured. Third, this might be a simple temperature effect. The maximum 

sensitivities of the surface doped samples might appear at temperatures below 

375°C. For the tin dioxide sample a change in selectivity appeared at 375°C. 

Unfortunately the measurement data below 375°C exceeded the measurement limits, 

so no data could be analysed.   

325 350 375 400 425 450 475 500
0

10

20

30

40

 

 

S

T/°C

ethanol
 LaMnO3@ CoTiO3:La
 SnO2@ CoTiO3:La
 CoTiO3:La

propylene
 LaMnO3@ CoTiO3:La
 SnO2@ CoTiO3:La
 CoTiO3:La

 
Figure 3.57: Temperature dependence of sensitivity to ethanol and propylene. 

 

Figure 3.58 depicts the response and recovery behaviour of the tin dioxide doped 

sample at 475°C. A distinct sensitivity towards propylene was seen. 20 ppm of 

propylene showed higher sensitivity than 40 ppm of ethanol. With the help of tin 

dioxide as a surface dopant, selectivity to the applied hydrocarbons was changed in 

the temperature range between 500 and 400°C. In addition, the overall sensitivity 

towards propylene was the highest in this sample. Normally tin dioxide is known to 

show a good response towards ethanol. In combination with the p-type base 

material, the sensitivity to propylene is enhanced. In this case the second explanation 

might help to understand this behaviour. The reaction of ethanol was restricted on 

the tin dioxide grains and did not influence the resistance of the sensing layer.  
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Figure 3.58: Response and recovery times at 475°C to NO (5 ppm), propylene (20, 40 ppm), and 

ethanol (40, 60 ppm). 

 

Figure 3.59 shows the response and recovery behaviour of LaMnO3@CoTiO3:La at 

500°C. Because of the high resistance of the material, a smaller signal-to-noise-ratio 

was found even at 500°C. The material responded better to propylene than to 

ethanol, i.e. 20 ppm propylene showed a larger increase in resistance than 40 ppm 

ethanol. This selectivity might be caused by the first explanation. LaMnO3 is reported 

as a catalytically active material for the combustion of methane [Fa06] and the total 

oxidation of hydrocarbons [Li71].  
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Figure 3.59: Response and recovery times at 500°C to NO (5 ppm), propylene (20, 40 ppm), and 

ethanol (40, 60 ppm). 
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The use of the chosen solid surface dopants allowed the creation of materials with 

higher propylene selectivity in a temperature range between 500 and 400°C. In 

particular, admixture of tin dioxide showed only small changes in resistance 

compared to the base material and excellent propylene sensitivity.     
 

3.2.6 Summary of CoTiO3-related investigations 
CoTiO3 turned out to be a suitable sensing material especially for hydrocabons. 

Addition of volume dopants in small concentrations was able to influence the 

electrical and gas sensing properties of the base material. All volume dopants 

enhanced the conductivity of the material. The sensitivity and selectivity to ethanol 

and the response ability of the base material was improved. The lanthanum doped 

sample showed highest ethanol sensitivity and a lower resistance than the undoped 

material, therefore it was chosen for further investigations on the influences of 

surface dopants.  

 

Addition of surface dopants in different concentrations was performed. The 

concentration showed no major influences on the sensitivity. Au and Pd were found 

to be the most effective surface dopants. They showed sensitivities towards 

hydrogen and carbon monoxide. In addition, the gold doped material was a suitable 

NO-tolerant NO2-sensing material at around 350°C. SnO2 doping produced only 

small changes in resistance compared to the base material and excellent propylene 

sensitivity and selectivity.  
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3.2.7 Capacitance analysis of doped CoTiO3 

In the literature, gas sensing materials can be found that show a change in 

permittivity in response to test gases or humidity. These changes in permittivity are 

induced by significant changes of the charge carrier densitiy and the displacement 

current.  

 

After discussion of the shown measurements, the question arises whether the 

capacitance that is also achieved from the measurements can be a useful tool to 

quantify the gas sensing properties of the materials. An advantage of using such a 

tool would be the possibility of measuring samples with high resistances.  

 

The conductor pathway to each IDC differs in length and distance because of the 

compact array setup and the central positioning of the 64 wells on the substrate. The 

conductor path is parallel to the IDC, so both capacities are added. A broad 

distribution of capacities is found, as shown in [Si02] and [Sa04]. These parasitic 

effects have to be determined by a compensation measurement. For the 

compensation measurement, an electrode array was measured before deposition of 

thick films. The electrode array has some IDCs that have almost negligible parasitic 

pathway effects, like position 55 (see Figure 2.12) where the conductor pathways are 

perpendicular to each other [Si02]. These positions show the smallest capacities that 

result only from the IDC. These positions are taken to determine the parasitic values 

for the other positions [Sa04]. The achieved parasitic effects (which have to be 

determined every time the substrate array is changed in fabrication) are subtracted 

from the measured capacities. Figure 3.60 shows the comparison between measured 

and corrected capacities of different doped CoTiO3:La samples. After this adjustment, 

the homogeneity of the capacities is obvious. No influence of the surface doping was 

seen.  
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Figure 3.60: Measured and adjusted capacities (RA6351). 

 

To compare a certain influence on the capacity, the different samples, dopants, 

temperatures, and test gases have to be taken into account. Figure 3.61 shows the 

fingerprint for CoTiO3:Sm as an example. The capacities for all test gases are 

depicted. No changes in capacity were observed whereby the resistance changed 

(as described in chapter 3.2.2). 
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Figure 3.61: Fingerprint for CoTiO3:Sm versus all tested gases (AC1015), C from measurement. 

 

Figure 3.62 presents the comparison between undoped and La-volume doped 

material. As one can see on the left hand side, the volume doping had a significant 

influence on the resistance of the material, while in comparison, as presented on the 

right hand side, the influence on the capacity under different atmospheres was 

negligible.  
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Figure 3.62: Capacities of undoped and La-volume doped CoTiO3 under air and propylene (RA4717, 

T=400°C). 
 

In Figure 3.63 the presented features are combined. The corrected capacities are 

plotted versus the logarithm of the resistance of the materials. Capacity values from 

all measured temperatures, dopants, and test gases including synthetic air are 

shown (AC1013).  

 

The resistance of the materials varies over more than two orders of magnitude while 

the capacitance remained around the same value. Capacities of zero indicated defect 

positions. Capacity values that are below the main value indicated partial defect 

electrode structures and/or mended pathways which showed a smaller capacity than 

the calculated ones. For refinement of these values, a compensation measurement 

of every blank single array would have been necessary.  
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Figure 3.63: Capacity versus log resistance of all samples of substrate plate AC1013, at each 
temperature (25° steps) and for all test gases including synthetic air. 

 

While the material resistance was influenced by testing gases and temperature, no 

marginal changes were observed in the capacitance. From these measurements, it 

was assumed that the testing gases showed no significant influence on the material 

permittivity. The capacitance, which resulted from the circuit equivalent, was given by 

the geometric capacitance of the array. This was also supported by the fact that 

different fabricated sample arrays showed different corrected capacities but no 

change on either temperature or test gases. In p-type materials, where the 

conductance is thought to be on the surface, no influences on the capacity were 

found. In addition, in n-type materials, where the change of the depletion zone would 

affect the displacement current, no influences with the same sample geometry were 

found [Sa04].  

 

In summary, the data showed that capacitance cannot be used as a measuring 

quantity for observing the gas sensing behaviour of the samples on the here shown 

electrode arrays. 
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3.3 LnMO3 compounds 
 

In the following chapter the investigations on different LnMO3 materials will be shown. 

 
3.3.1 Preparation and characterisation of LnMO3 compounds 
The rare-earth perovskites (LnBO3) containing transition metal ions (B) show a 

multitude of interesting electrical properties. They are often described as materials for 

catalysts [Mc90, Pe01], photocatalysts [Xi05], electrodes of fuel cells [Yo01, Mi93], 

magneto-optics [Ke01, Ko02] and spin valves [Sa99]. A number of perovskite oxides 

have been proposed as gas sensor materials previously because of their stability in 

thermal and chemically aggressive atmospheres. Many perovskites prepared in air 

show p-type semiconductive behaviour. Obayashi et al. were the first who proposed 

the use of (Ln, M)BO3 (Ln=lanthanoid element, M=alkaline earth metal, and 

B=transition metal) perovskites as potential ethanol sensors [Ob76]. Arakawa et al. 

observed the rise of methanol activity for n-type LnFeO3 (Ln=La, Pr, Nd, Sm, Eu, Gd) 

with decreasing ionic radius; however, that relationship was not clearly seen in 

LnCrO3 (Ln=La, Nd, Sm, Eu, Gd) [Ar81]. In the group of the LnFeO3-perovskites, 

LaFeO3 and SmFeO3 are most regarded as sensing materials for different test gases 

like CH3SH, NO2, ethanol, and CO [Ma99b]. Aono et al. tested and compared the gas 

sensing properties of p-type LaFeO3, SmFeO3, NdFeO3, GdFeO3 and DyFeO3 

towards NO2 [Ao03]. Furthermore, EuFeO3 and GdFeO3 have been tested on 

gasoline and ethanol without any cross-sensitivity towards H2 by Niu et al. [Ni04]. In 

the LnCrO3 group not many investigations towards gas sensitivity have been made. 

LaCrO3 is the most frequently regarded material in terms of gas sensing and 

catalysis e.g. towards hydrocarbons, SO2 and NO [Fi03, Hu96]. As mentioned 

previously, Arakawa tested SmCrO3, NdCrO3, LaCrO3, EuCrO3 and GdCrO3 towards 

their methanol activity [Ar81]. This shows that up to now, no systematic study on the 

effect of Ln-variation over the whole LnMO3 group on the gas sensing properties 

have been made; such a study would finally allow the analysis of structure property 

relations and the development of design principles for highly sensitive and/or even 

selective gas sensors based on these materials. As far as the literature shows, the 

gas sensing characteristics of LnFeO3 (Ln=Tb, Er, Tm, Yb, Lu) and LnCrO3 (Ln=Pr, 

Tb, Dy, Ho, Er, Tm, Yb, Lu)  are not yet published or investigated.  
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All materials (13 LnFeO3 and 12 LnCrO3 compounds) were prepared by the 

described polyol method. Experimental details can be found in the experimental 

section. The materials were found to be amorphous right after preparation. After 

annealing at T3 for 2-12 h the materials turned out to be highly crystalline. The 

powder X-ray diffraction patterns gave evidence about the formation of single phase 

compounds in almost all cases as shown in Figure 3.64. 
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Figure 3.64a): XRD diffraction pattern of LnFeO3 powders obtained by polyol-mediated synthesis. 
 

Only some LnFeO3 (Ln=Tb, Ho, Tm, Yb) show traces of Ln2O3 around 29° 2θ marked 

with an asterisk. The XRD lines of all powders were broad, indicating small particles. 

 * 

 * 

 * 

 * 
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All perovskites show orthorhombic phases and the refined lattice parameters are in 

accordance with the reference data. 
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Figure 3.64b): XRD diffraction pattern of LnCrO3 powders obtained by polyol-mediated synthesis. 
 

As shown in the literature, the deviation from cubic symmetry (like in SrTiO3) 

increased as the Ln3+ ionic radius decreased; it was smallest in LaMO3 and largest in 

LuMO3 [Ly99]. The average crysallite size of the samples was determined using 

Scherrer’s equation. The particle size and morphology of the powder materials was 

estimated based on SEM micrographs. Thermal treatment resulted in agglomerates 

(secondary particles) which were irregularly packed and complicated the estimation 

of the primary particle size in some cases. However, the shape of the primary 

particles was spherical right after preparation. SEM images of all LnFeO3 and LnCrO3 
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are shown in Figure 3.65. Crystallographic data and reference numbers as well as 

particle and crystallite sizes of the prepared compounds are listed in Table 3.2. 
 

Table 3.2: Prepared LnFeO3 and LnCrO3 oxides via polyol mediated synthesis. Literature data have 
been taken from: [Qu63]. 

 

compound space group a(Å) b (Å) c (Å) ICSD/Ref. DS(nm) SEM(nm)* 

LaFeO3 Pbnm 5,555(2) 5,563(0) 7,863(4) 28255 74 30-80 

PrFeO3 Pbnm 5,484(3) 5,572(4) 7,790(7) 27274 42 40-100 

NdFeO3 Pbnm 5,449(9) 5,585(4) 7,763(8) 27275 55 50-70 

SmFeO3 Pbnm 5,387(6) 5,568(4) 7,703(3) 27276 55 30-60 

EuFeO3 Pbnm 5,369(1) 5,590(0) 7,680(3) 27277 62 50-80 

GdFeO3 Pbnm 5,346(5) 5,605(3) 7,663(3) 16644 55 50-80 

TbFeO3 Pbnm 5,317(3) 5,597(1) 7,645(3) 27279 70 40-80  

DyFeO3 Pbnm 5,295(3) 5,589(3) 7,615(3) 27280 71 30-70 

HoFeO3 Pbnm 5,274(4) 5,580(8) 7,627(9) 27281 56 highly 
agglomerate

d
ErFeO3 Pbnm 5,260(5) 5,575(4) 7,602(5) 27282 57 highly 

agglomerate
d

TmFeO3 Pbnm 5,249(3) 5,573(2) 7,585(6) 25658 91 40-100 

YbFeO3 Pbnm 5,230(7) 5,558(3) 7,575(3) 27284 56 30-60 

LuFeO3 Pbnm 5,213(6) 5,556(8) 7,566(2) 27285 120 highly 
agglomerate

d
LaCrO3 Pbnm 5,514(8) 5,487(5) 7,751(5) [Qu63] 84 70-90 

PrCrO3 Pbnm 5,448(7) 5,479(9) 7,719(3) [Qu63] 87 80-100 

SmCrO3 Pbnm 5,367(9) 5,506(6) 7,645(4) [Qu63] 131 highly 
agglomerate

d
EuCrO3 Pbnm 5,345(3) 5,513(7) 7,624(0) [Qu63] 108 60-100 

GdCrO3 Pbnm 5,313(8) 5,528(7) 7,608(4) [Qu63] 101 60-80 

TbCrO3 Pbnm 5,293(3) 5,522(3) 7,578(4) [Qu63] 148 80-100 

DyCrO3 Pbnm 5,268(9) 5,524(6) 7,559(3) [Qu63] 94 50-100 

HoCrO3 Pbnm 5,244(2) 5,522(6) 7,539(5) [Qu63] 132 60-100 

ErCrO3 Pbnm 5,225(1) 5,520(9) 7,523(5) [Qu63] 82 70-90 

TmCrO3 Pbnm 5,209(3) 5,508(6) 7,502(9) [Qu63] 109 50-70 

YbCrO3 Pbnm 5,193(7) 5,507(2) 7,493(2) [Qu63] 77 60-80 

LuCrO3 Pbnm 5,177(6) 5,501(8) 7,483(0) [Qu63] 114 highly 
agglomerate

d*size of visible spherical primary particles 
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Figure 3.65a). SEM images of LnFeO3 compounds. Particles are agglomerated due to the thermal 
treatment. The primary particle size differs with the reaction conditions and the starting compounds. 
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Figure 3.65a). SEM images of LnFeO3 compounds. Particles are agglomerated due to the thermal 
treatment. The primary particle size differs with the reaction conditions and the starting compounds. 
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Figure 3.65b). SEM images of LnCrO3 compounds. Particles are agglomerated due to the thermal 
treatment. The primary particle size differs with the reaction conditions and the starting compounds. 
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Figure 3.65b). SEM images of LnCrO3 compounds. Particles are agglomerated due to the thermal 
treatment. The primary particle size differs with the reaction conditions and the starting compounds. 
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Figure 3.65c). SEM image of LuFeO3. 

 

The prepared materials were well suited for thick layer preparation on inter-digital 

electrode structures. The preparation and deposition of the suspensions was 

performed as described in chapter 3.2, p. 42. The electrical measurements and test 

gas sequence remained the same.  

 

3.3.2 Electrical and gas sensing characterisation of LnFeO3  
Figure 3.67 shows the plot of the real part of the complex impedance versus the 

imaginary part (Argand plot) representative for TbFeO3 in synthetic air, propylene, 

and ethanol at 300 °C. Automated data fitting allows to describe the impedance 

spectra as an impedance function of a circuit equivalent, consisting of a resistor and 

a capacitor in parallel, as described previously. 
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Figure 3.67: Example of an Argand plot and circuit equivalent for TbFeO3 (T=300°C). p-type 
semiconductors show an increase of resistance compared to synthetic air when reducing gases are 

applied. 

A plot of resistivity versus temperature for the prepared compounds is shown in 

Figure 3.68, which indicates that the conductivity was thermally activated, as one 

would expect. However, the conductivity was not simply thermally activated 

according to the Arrhenius-relation, as the thermal activation was superposed by the 

temperature dependent adsorption/desorption equilibrium of oxygen on the metal 

oxide surface. The highest resistance was found for YbFeO3, the smallest for 

LaFeO3. Differences in resistance occured not only from the difference of the Ln-

cation but also from the variation of the microstructure in the prepared films.        
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Figure 3.68: Arrhenius plot of the prepared LnFeO3 materials under synthetic air. 
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Figure 3.69 shows the temperature dependence of the sensitivity of different LnFeO3 

materials, indicating that the operating temperature affected the properties of all 

materials. As one can see, all materials showed almost no cross-sensitivity to H2 over 

the whole temperature range and only a weak sensitivity to CO below 400°C. The 

sensitivity to NO and NO2 was only pronounced at lower temperatures; it was 

noticable that for NO, a characteristic change was observed from oxidising (S∆>0) to 

reducing behaviour (S∆<0) depending on the respective materials. At temperatures 

above 400°C all materials showed solely sensitivity towards hydrocarbons. LaFeO3, 

the material with the biggest lanthanide radius, presented the smallest sensitivity 

towards all gases. It showed almost no sensitivity towards NOx and was only a poor 

hydrocarbon sensing material. Measurements for YbFeO3 could only be evaluated 

above 300°C. At lower temperatures the resistance of the material exceeded the 

measurement limits (R>20 MΩ). This material showed high NO-sensitivity with only a 

weak cross-sensitivity towards NO2, which makes it a suitable material for a NO2-

tolerant NO-sensor at a working temperature of around 300°C. In general, the 

highest sensitivities were seen with SmFeO3, TmFeO3 and LuFeO3. They showed 

highest NO2 sensitivities in the lower temperature range and highest hydrocarbon 

sensitivities for all temperatures below 450°C. All three showed almost no cross-

sensitivities to NO at 300°C, which makes these materials suitable for NO-tolerant 

NO2-sensing materials at this working temperature.  
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Figure 3.69. Sensitivity-temperature behaviour of the prepared LnFeO3 materials. 
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Figure 3.70: Change of the interaction of NO with the semiconducting surface. 

 
As mentioned before, the temperature behaviour of the sensitivity of NO changed 

from oxidising to reducing with increasing temperature. This is shown again in Figure 

3.70 exemplary for TmFeO3 and SmFeO3. A corresponding behaviour is reported 

from Sanders and Koplin for surface doped In2O3 and SnO2 [Sa04, Ko06] and can be 

understood as follows.  

 

At temperatures between 300 and 425°C the oxidation reaction and desorption of 

NO2 actually responsible for the change in resistance were adequately activated. 

Above a temparature of 425°C the sensitivity vanished. According to Lampe et al. it is 

assumed that at temperatures below 300°C the desorption and oxidation reaction 

was not yet activated. The NO molecules were adsorbed on the surface and 

remained there. The important reactions here were the formation of NO2
- or NO-. In 

the first case, a new adsorption site for oxygen was achieved. In the second case, an 

electron was abstracted from the semiconductor. In both cases, an increase of 

conductivity was observed. At around 300°C a transition point emerged. At this point 

the reactions competed resulting in a negligible sensitivity [La95b]. 
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Focussing on overall sensitivity, the sequence of the best sensitivities to different test 

gases over the whole temperature range are listed in Table 3.3. Arakawa et al. found 

that the methanol sensing activity increased as the radius of the rare earth ion 

decreased for n-type LnFeO3 oxides. The sequence of materials with increasing 

activity was Gd>Eu>Sm>Nd>Pr>La [Ar81]. Here, no correlation between the 

sensitivity of the 13 materials studied towards the different gases and the radius of 

the rare-earth ions was observed. 

 
Table 3.3: Sequence of LnFeO3-sensitivities to the test gases over the whole temperature range. 

 

test gas sequence of highest sensitivities 

propylene Sm > Eu > Gd > Dy 

ethanol Tm > Sm > Lu 

NO2 Tm > Lu > Sm 

NO Tm ≈ Sm > Lu 

 
 
3.3.2.1 Response times and concentration dependence 
In this section, the response and recovery ability of the LnFeO3 compounds and 

concentration dependence of TmFeO3, one of the 13 new gas sensing materials 

reported here for the first time, are shown. The response and recovery times are 

important parameters for tailoring sensors for desired applications. Different 

propylene concentrations were applied to study the response and recovery behaviour 

as well as the concentration dependence of TmFeO3. Figure 3.70 shows that the 

resistance of the material increased in a non-linear relation to the propylene 

concentration with an obviously short response time. While concentrations as low as 

5 ppm could be measured well, the resistance seemed to reach saturation at higher 

concentrations. The τ50-value, i.e. the time needed to reach 50 % of the final signal, 

is 23 s, increased slightly at concentrations below 20 ppm. In comparison the 

response time to 40 ppm ethanol was located in the same timescale (see Figure 

3.71). On and off cycles under propylene and ethanol were repeated several times 

without observing major changes in the response. 



Results and Discussion 

110 

0 100 200 300

1x105

2x105

3x105

0

10

20

30

40

50

c 
(C

3H
6)/p

pm
 

 

 

R
/Ω

t/min

 
Figure 3.70: Response ability and concentration dependence (5-50 ppm) of TmFeO3 to propylene. 

(T=375°C, f=100 Hz, ∆t= 15 min) 
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Figure 3.71: Response behaviour of TmFeO3 to ethanol (40 ppm).(T=325°C, f=100 Hz, ∆t= 30 min) 

 
Response and recovery ability of all LnFeO3 materials to 5, 10, 15 and 20 ppm of 

propylene and 60 ppm of ethanol are shown in Figure 3.72. The response times for 

10 and 20 ppm of propylene and 60 ppm of ethanol are given in Table 3.4. Response 

towards ethanol was fast compared to one another, while response towards 
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propylene was slower. PrFeO3 and EuFeO3 showed the slowest response towards 

10 ppm of propylene; however, equilibrium was reached during the expected time 

scale as seen from 3.72. LaFeO3 as well as TbFeO3 showed faster response than 

the above mentioned materials, but both recovered very slowly. ErFeO3 showed the 

fastest response in all cases compared to the other materials. Obayashi et al. 

reported that for Ln0.5Sr0.5CoO3 (Ln=La, Pr, Sm, Gd) the τ90 response ratio became 

slower as the atomic number of Ln increased, meaning as the Ln ionic radius 

decreased [Ob76]. In the case shown here, where all 13 materials were measured, 

no trends could be found. For the four elements studied by Obayashi the trend is 

approximately even reverse for propylene.  

 
Table 3.4: Response times of LnFeO3 to propylene and ethanol at 350°C. 

 

compound τ50(10 ppm propylene)/s τ50(20 ppm propylene)/s τ50(60 ppm ethanol)/s 

LaFeO3 40 24 17 

PrFeO3 67 29 <15 

NdFeO3 47 23 <15 

SmFeO3 30 19 24 

EuFeO3 61 26 26 

GdFeO3 30 16 20 

TbFeO3 47 27 25 

DyFeO3 29 23 19 

HoFeO3 20 19 <15 

ErFeO3 <15 <15 <15 

TmFeO3 26 23 <15 

YbFeO3 26 <15 <15 

LuFeO3 26 <15 <15 
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Figure 3.72a): Response and recovery ability of the prepared LnFeO3 (Ln=La, Pr, Nd, Sm, Eu, and 

Gd) compounds. (5, 10, 15 and 20 ppm of propylene, 60 ppm of ethanol) 
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Figure 3.72b): Response and recovery ability of the prepared LnFeO3 (Ln=Tb, Dy, Ho, Er, Yb, and 

Lu) compounds. (5, 10, 15 and 20 ppm of propylene, 60 ppm of ethanol) 
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3.3.2.2 Influence of humidity on the sensitivity of TmFeO3 
The influence of humidity on the LnFeO3 materials was tested exemplary on 

TmFeO3. In many applications, water is present as an interfering gas. The interaction 

of water with the semiconductor surface is of high interest. Temperature programmed 

desorption (TPD) and infrared (IR) studies of tin dioxide sensing layers showed that 

the adsorption of water vapour resulted in physisorption of hydrogen bonding of 

molecular water and dissociation into hydroxyl groups. Above 200°C no molecular 

water was present. Bârsan and Weimar reported that Heiland and Kohl assumed a 

homolytic dissociation of water resulting in two hydroxyl groups [Ba03]. The two 

mechanisms proposed are shown below. 
−+−+ ++−→++ e)OH()OHSn(OSnOH latlatlatlatgas2      (3.12) 

In this step, at least two different species are formed: a hydroxylated tin ion and a 

protonated oxygen species. There may be an additional mechanism consuming a 

lattice oxygen and creating an oxygen vacancy ([ ]), two hydroxylated tin species and 

two electrons instead. 

[ ] −−+ ++−→++ e2)OHSn(2OSn2OH latlatlatgas2      (3.13) 

Other suggestions on the mechanisms have been made by Göpel, Henrich and Cox 

[He94]. However, they all observed the same macroscopic effect. In the case of the 

n-semiconducting SnO2, a rise in conductivity was observed when humid air is 

admixed. 

 

In the case of the p-type semiconducting TmFeO3, an increase in resistance is 

observed when humid air is admixed, as shown in Figure 3.73. The sensor 

temperature characteristics of Figure 3.73 showed a pronounced decrease in sensor 

conductance from dry air to humid air (45% rh).  
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Figure 3.73: Response of TmFeO3 to dry and humid air and 25 ppm propylene in air. 

 

This shows that the reaction of water with the surface could be similar to the shown 

effect for tin dioxide. The resulting electrons from water adsorption show the opposite 

effect as in the case of the n-type semiconductor. Less charge carriers are present 

after adsorption of water.  

  

The sensor has to work in atmospheres where both combustible gases and water 

vapour is present. Hence, it is desirable to know the effect of water vapour on the 

admixing of test gases. Figure 3.74 shows that humidity can have a remarkable 

effect on the response. In the case of propylene, the resistance increased in humified 

air and the sensitivity was higher than in dry air. A possible explanation for this may 

be that the hydroxyl groups on the surface act like a reducing gas, and the reducing 

character of the hydrocarbons are cumulative, which results in a remarkable humidity 

dependence. An assumption for this is that the water molecules and the test gas 

molecules operate at different sites; otherwise the effect would be relatively small 

[Ih94]. Similar observations and explanations have been reported by Seiyama et al. 

for Sr0.9La0.1SnO3 [Se83].          
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Figure 3.74: Response behaviour of TmFeO3 to 25ppm of propylene in dry and humid air. 

 

The opposite behaviour was found for nitrogen dioxide in humid and dry air. In this 

case, the sensitivity was smaller in humid air than in dry air. This effect can also be 

understood by adopting the assumption described above. The oxidising effect of NO2 

adsorbed on the surface competes with the reaction of water molecules. In addition, 

more active sites for nitrogen dioxide adsorption are present in dry air; hence the 

sensitivity in dry air is pronounced. Table 3.5 shows the sensitivities in dry and humid 

air for NO2 and propylene at different temperatures.  

 
Table 3.5: Sensitivites in dry and humid air. 

 

T/°C test gas concentration/ppm Sdry Shumid 
425 C3H6 25 1.9 2.3 
375 C3H6 25 3.5 4.8 

325 C3H6 25 7.8 8.4 

300 NO2 5 6.9 2.6 

300 NO2 6 7.4 2.9 

 
However, one has to take into account that under real sensing conditions, there is a 

complex mixture of air, humidity and the analyte gas. Therefore, the mechanistic 

picture is still incomplete and lacks applicability to real world gas sensors. Additional 

effects from water can also be involved in aging and unwanted signal drift effects 

over longer time [Ih94]. 
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3.3.3 Electrical and gas sensing properties of LnCrO3 

A plot of the logarithm of the reciprocal resistance versus the temperature (Arrhenius 

plot) for the LnCrO3 compounds is shown in Figure 3.75, which indicates that the 

conductivity was thermally activated as was already mentioned for the previously 

shown materials. However, the conductivity was not simply thermally activated 

according to the Arrhenius-relation, as shown for LnFeO3. The temperature 

dependence of the orthochromites’ resistances was lower compared to the 

orthoferrites. Additionally, the resistances were in the lower range of the orthoferrite 

resistances. The highest resistance was found for YbCrO3, the smallest for LaCrO3 

and PrCrO3. Differences in resistance occured not only due to the difference of the 

lanthanide ion but also because of the variation of the microstructure in the prepared 

films.        
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Figure 3.75: Arrhenius plot of the prepared LnCrO3 materials under synthetic air.  

 

Figure 3.76 shows the temperature behaviour of the sensitivity of the LnCrO3 

materials. In comparison to the LnFeO3 materials, LnCrO3 in general showed smaller 

sensitivities towards hydrocarbons and nitrogen oxides. In both material groups the 

sensitivity towards ethanol was much more pronounced than towards propylene. This 

was presumably caused by the functional OH-group of ethanol, as expected from 

[He00]. The temperature of maximum sensitivity was shifted to lower values. None of 

the materials showed cross-sensitivities towards H2 and CO over the whole 

temperature range. LaCrO3 showed the smallest sensitivity towards all gases, 



Results and Discussion 

118 

whereas DyCrO3 appeared to be the material with the highest sensitivities towards 

the test gases. However, the sensitivity of the LnFeO3 materials was in all cases 

higher than that of the LnCrO3 oxides.  

Figure 3.76. Sensitivity-temperature behaviour of the prepared LnCrO3 materials. 
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3.3.4 Summary of LnMO3-related investigations 
Nanoparticles of LnMO3 (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, 

M=Fe, Cr) have been prepared via polyol-mediated synthesis. Single phases of 

perovskite-type oxides were obtained by thermal treatment. SEM revealed that after 

the thermal treatment materials appeared as sponge-like nanocrystalline networks. 

All LnFeO3 materials showed sensitivity towards hydrocarbons and towards NOx at 

lower temperatures. LaFeO3 showed the smallest sensitivity towards all gases. 

SmFeO3, TmFeO3 and LuFeO3 showed highest NO2 sensitivities in the lower 

temperature range and highest hydrocarbon sensitivities below 450°C with almost no 

cross-sensitivities towards NO at 300°C. This makes these materials suitable for NO-

tolerant NO2-sensing materials. All materials showed good response and recovery 

properties. The LnCrO3 oxides showed less sensitivity than the LnFeO3 materials. 

DyCrO3 was the best sensing material in this group. Its sensitivity towards ethanol 

was highest.  

 

For future applications it would be possible to combine two of these shown sensors 

to detect NO2 and hydrocarbons without cross-sensitivities. Combining LaFeO3 and 

LuFeO3 at a working temperature of 300°C gives a pure hydrocarbon- and 

NO2/hydrocarbon-sensing material which allows differentiation between the two 

gases. 
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3.3.5 Further investigations on SmFeO3 
As mentioned before, SmFeO3 is one of the most described materials of the 

lanthanide orthoferrites. It is known as sensing material for ozone [Ho05], NO2 [To04, 

Tr95], CO [Ca98], volatile organic compounds, and air quality monitoring [Tr02]. 

However, only sparse publications on volume and surface doping of this compound 

can be found. Pd doping was reported by Matsushima et al. to improve the sensitivity 

of SmFeO3 towards C3H6 [Ma00]. Volume doped Sm1-xAxFe1-yBxO3 has been 

prepared and published with exchange at the A-site with Sr, Bi, Ca, Y and Tb or at 

the B-site with Mn, Al, Cr, Co and Al. However, only SmFe1-yCoyO3 (x=0-1.0) were 

shown to have ability to detect ozone and NO2 [Ho05b], and SmFe1-yAlyO3 (x=0.00, 

0.50, 0.95) to have catalytic abilities for the combustion of CH4 [St01]. Therefore 

different additives for SmFeO3 were tested and analysed with regard to their 

influence on the sensing properties of the material.       

 

3.3.5.1 Preparation of volume doped SmFeO3 
The resistance and the sensing behaviour of SmFeO3 may be modified when a 

percentage of the samarium ions at the A-site or the iron ions at the B-site of 

SmFeO3 are replaced by other cations, such as La, Sr, Co, Cr and Mn. In this work, 

different Sm1-xAxFe1-yBxO3 metal oxides were prepared by partially substituting Sm3+ 

or Fe3+ ions as shown schematically in Figure 3.77. 

Figure 3.77: Scheme of volume doping in ABO3 systems due to size corresponding cations. 
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In the case of SmFeO3, higher concentrations of volume dopants (10 and 20 at%) 

have been introduced to allow an easier characterisation of the prepared materials. 

This amount of material should give evidence of any by-products or changes in the 

lattice constants of SmFeO3. Different metal salts (La(NO3)3 6H2O, Sr(CH3COO)2, 

Cr(NO3)3 9H2O, Mn(CH3COO)3 2H2O, Co(CH3COO)2 4H2O) have been used as 

volume dopants. The salts were inserted in the polyol method, described earlier. A 

detailed description of the synthesis can be found in the experimental data (chapter 

6.1.4).  

 

Phase identification based on X-ray diffraction results are shown in Figure 3.78 for 

the lanthanum and cobalt doped samples.  

Figure 3.78: XRD pattern for undoped, lanthanum, and cobalt doped SmFeO3. 

 

It was found that all doped SmFeO3 compounds showed perovskite phase with 

orthorhombic structure. Because the La3+ ion (114 pm) is larger than the Sm3+ ion 

(100 pm), when samarium was replaced by lanthanum at the A-site, the unit cell 

volume became larger with increasing dopant value. The addition of Sr2+ (112 pm) 

yielded the same result. In addition, the replacement of Fe3+ ions (64 pm) by Cr3+ (63 

pm) ions at the B-site influenced the lattice parameters and reduced the size of the 

unit cell. Also the incorporation of Co resulted in a reduced size of the unit cell, as 
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shown in Figure 3.78. While the Co2+ cation was inserted into the reaction, in DEG a 

colour change from pink to blue occurred. This may be explained by the redox 

potential, according to which the formation of Co3+ is preferred. The replacement of 

Fe3+ ions (64 pm) by Co3+ (63 pm) reduced the size of the unit cell, whereas an 

incorporation of Co2+ (72 pm) would have shown an increase of the unit cell volume. 

Negligible changes of the lattice parameters were found when Fe ions were 

exchanged to Mn ions. None of the prepared materials showed formation of by-

products like oxides. The mean crystallite sizes (DS) were calculated from XRD 

peaks based on the Scherrer’s equation. As shown in Table 3.6, the mean crystallite 

size was influenced by the replacement of samarium and iron ions.  

 
Table 3.6: Crystallite sizes of the prepared SmFeO3 materials 

 

However, the SEM images gave no evidence that the volume doping restrained the 

growth of the particle size (see Figure 3.79). The SEM data show particles in the 

same size range for all undoped and doped samples. It is obvious that thermal 

treatment promoted aggregation of the particles. Only a few examples of non 

aggregated particles could be found.  

 

The qualitative presence and homogeneous dispersion of the volume dopants was 

revealed by energy dispersive analysis measurements.  
 

dopant ⎯ La La Sr Sr Cr Cr Co Co Mn 

amount/at% ⎯ 10 20 10 20 10 20 10 20 10 

DS/nm 55 55 47 49 41 72 67 63 54 62 
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Figure 3.79: SEM images of the volume doped samples in comparison to SmFeO3. 

 

The prepared materials were suitable for thick film preparation on IDC structures. A 

sample plate consisting of all volume doped materials and surface doped materials 

was prepared as described for CoTiO3:La (see p.42). Figure 3.80a) shows the 

allocation of the different materials on the sample plate AC2006. The prepared 

sample plate is shown on the photograph (see Figure 3.80b)). The applied surface 

doping elements were Ag (as Ag(NO3)), Au (as HAuCl4·3H2O), Ce (as 

(NH4)2Ce(NO3)6), Ir (as Ir(C5H7O2)3), Pd (as Pd(NO3)2·2H2O), Pt (as Pt(NH3)4(NO3)2), 

Rh (as Rh(NO3)3·2H2O), and Ru (as Ru(NO)(O2C2H3)3), and Sb2O3, WO3, and La2O3 

powders. The doping elements are known to increase the sensitivity and/or selectivity 

of different semiconductor gas sensing material [El04, Sh99]. 
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The measuring procedure and test gas sequence remained as described before. 

Figure 3.81 shows the fingerprints for the measurements at 300°C of the SmFeO3 

sample plate (AC2006). There were two defect positions which are marked with 

cross-lines. The labelling in the first position shows, wether the materials are volume 

doped or not. The second position indicates the possible surface dopant. “ud” stands 

for undoped samples. Position 62, 26 and 57 which are marked with “udud” show the 

base material without any dopants. In the following section the three different kinds of 

doping (volume, surface and solid surface) are treated separately in terms of 

electrical and sensing properties. 

 

 
 

Figure 3.80: Sample plate with different doped SmFeO3 compounds (AC2006). 
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Figure 3.81: Fingerprint of the sample plate (AC2006) at T=300°C. ud=undoped, first index indicates 
volume dopant (at%), second index indicates the surface dopant (at%). Sb2O3, WO3, and La2O3 were 

added with 1at%. 
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3.3.5.2 Electrical and sensing properties of volume doped SmFeO3   
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Figure 3.82: Temperature dependence of the resistance of volume doped materials. 

 

The conductance of all volume doped sensors samples increased with increasing 

temperature in the whole temperature range, which is an intrinsic characteristic of 

semiconductors. It is obvious from Figure 3.82 that the volume doping enormously 

influenced the conductivity of the samples. Sr2+ doping enhanced the conductivity of 

the base material most. For SmFeO3, its charge carriers are holes, which are 

produced by the ionisation of the Sm3+ cation vacancy defect. When Sm3+ is replaced 

by Sr2+, the carrier concentration will depend on the holes produced by the ionisation 

of Sr-point defects, which emerge when Sr2+ occupies the sites of Sm3+ in the crystal. 

As a result, the hole concentration increasesd which resulted in a considerably higher 

conductivity of Sr-doped SmFeO3 than that of SmFeO3. In addition, an influence on 

the amount of volume dopant could be observed. In the case of lanthanum and 

chromium, two cations have been replaced that had the same oxidation state. In this 

case the change in resistance could be understood by taking the ion’s radius and 

formation of new defects into account. However, it remains unclear why the material 

with the lower content of chromium showed a higher resistance. This may be 

explained by a change in microstructure and film formation. The highest resistance 

was found for the manganese doped sample in the temperature range between 500 

and 225°C. However, the temperature dependence was not as strong for Mn as for 

the other samples. The activation energies for these samples were difficult to 
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calculate from the Arrhenius plot of the resistance because the samples, with the 

exception of SmFe0.9Mn0.1O3, showed no simply thermally activated conductivity. For 

the manganese doped sample, the activation energy was calculated as 0.54 eV (see 

Figure 3.83). The figure also shows good reproducibility across different sample 

positions.   
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Figure 3.83: Arrhenius plot of SmFe0.9Mn0.1O3 at two different sample plate positions.  
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Figure 3.84: Sensitivity to ethanol (40 ppm). 

 

The resistance of the samples increased when they were exposed to a reducing gas 

atmosphere, indicating that the p-type characteristics remain even after doping.  
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The effect of the different dopants on the gas sensitivity of SmFeO3 was studied. 

Figure 3.84 shows the relationship between the operating temperature and the 

sensitivity of the sensors with different volume dopants to 40 ppm ethanol. All 

samples were practically insensitive to the applied test gases at temperatures close 

to 400°C. Maximum sensitivity was achieved for the undoped material at an 

operating temperature of 250°C. In contrast to the previously shown CoTiO3 

compounds, volume doping of SmFeO3, did not enhance sensitivity towards ethanol. 

However, the Sr-doped sample showed slightly higher sensitivities at lower 

temperatures (225°C). The manganese doped sample showed no sensitivity at all. In 

addition, the sensitivity decreased with increasing amount of volume dopant, and as 

shown for CoTiO3, the volume dopants were able to shift the temperature of 

maximum sensitivity. The lanthanum doped sample showed the highest sensitivity of 

the volume doped samples.  
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Figure 3.85: Selectivity of the volume doped materials towards ethanol. 

 

Figure 3.85 depicts the selectivity of the volume doped materials to ethanol in 

comparison to propylene over the measured temperature range. The highest 

selectivity was seen for lanthanum doped and undoped samples in a temperature 

range between 300 and 250°C. Above 300°C the cobalt doped sample showed the 

highest selectivity, but even this was relatively low compared to the undoped 

material. The manganese doped sample showed no selectivity, which correlated to 

the negligible sensitivity of the material.  
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The regarded volume doped samples showed comparable sensitivities towards the 

other test gases as the undoped samples except for cobalt doped SmFeO3. This 

material showed high sensitivity towards carbon monoxide, as shown in Figure 3.86. 

In both cases of volume doping, the CO sensitivity was higher than the sensitivity 

towards NOx. The sensitivity towards hydrocarbons was less pronounced than in the 

base material. SmFe0.9Co0.1O3 showed good sensitivity towards NO2 while 

SmFe0.8Co0.2O3 showed almost none. In the literature, various examples can be 

found that describe the enhancement of CO sensitivity by doping with cobalt. 

Different doping methods (volume doping [So05b], impregnation, ball milling, 

sputtering [Le01]) are referred to, all of which enhanced the CO oxidation activity of 

the base material. For example, Song et al. showed that volume doping of 

La0.8Pb0.2FeO3, which is a comparable system to the here used base material, with 

20 at% Co on the B-site, increased the CO gas-sensing properties of the material 

[So05b]. Malavasi et al. proposed a model for the sensing mechanism of Co-

containing perovskites with CO which included adsorbed oxygen on the surface. 

Malvasi suggested that some of the oxygen involved in the gas-solid equilibria are 

adsorbed as O- species. The charge balance requires the oxidation of cobalt ions to 

shift from Co2+ to Co3+. When CO is adsorbed on O- and is oxidised to CO2, one 

electron is released back to the solid and the electrical conductivity is reduced 

[Ma04]. 
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In addition, regarding different SmMO3 (M=Co, Mn, Fe, Cr) compounds, SmCoO3 

was found to have the highest catalytic activity for CO oxidation [Zh91]. 

 

Sensing carbon monoxide is critically important for safety control in gas appliances 

because incomplete combustion of gases can cause serious CO poisoning. The 

material presented here could be used as a CO sensing material without the use of 

noble metal additives. 
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Figure 3.86: Relative sensitivity of the cobalt doped SmFeO3-samples. 

 

Furthermore, response and recovery times were measured at 325°C for SmFeO3-

based sensing layers to different gases as shown in Figure 3.87-3.91. Figure 3.87 

shows the response and recovery behaviour of SmFe0.9Co0.1O3. In this case, 15 to 50 

ppm of carbon monoxide has been admixed. The material showed a fast response 

towards CO, and saturation was achieved in the regarded timescale. In additon step-

wise concentration increases and decreases towards CO were measured at 325°C 

(Figure 3.88). The concentration was changed from 5 to 50 ppm CO. SmFe0.8Co0.2O3 

showed good response times even with small concentrations of CO. The stepwise 

concentration changes showed that the response values were reproducible.  
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Figure 3.87: Response and recovery times for SmFe0.9Co0.1O3 to CO (15, 25, 40 and 50 ppm). 
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Figure 3.88: Response and recovery times for SmFe0.8Co0.2O3 to different CO concentrations. 

 

Figure 3.89 shows response and recovery times for SmFeO3 to NO (5ppm), 

propylene (20, 40 ppm), and ethanol (40, 60 ppm). The undoped sample showed a 

faster response towards ethanol than towards propylene. Only a small response was 

observed to NO at this temperature. La-doped SmFeO3 exhibited slightly slower 

response and recovery times than SmFeO3. However, the material fully recovered in 

the regarded time scale (see Figure 3.90). In addition, its selectivity towards ethanol 

was enhanced.   
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Figure 3.89: Response and recovery times for SmFeO3 to NO (5ppm), propylene (20, 40 ppm), and 

ethanol (40, 60 ppm). 
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Figure 3.90: Response and recovery times for Sm0.9La0.1FeO3 to NO (5ppm), propylene (20, 40 ppm), 

and ethanol (40, 60 ppm). 
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Figure 3.91: Response and recovery times for SmFe0.9Cr0.1O3 to propylene (20, 40 ppm), and ethanol 

(40, 60 ppm). 
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In contrast, the chromium doped sample showed poor recovery behaviour towards 

the admixed gases and its response time to propylene was much slower (see Figure 

3.91). Masurements at different postions deposited with the same material verified 

the effect. 

 

The effect of the volume dopant on the response and recovery ability was also 

reported in other systems [So05, Ch99b]; however, its origin remains unclear at the 

moment. It was observed that materials with high sensitivity also showed fast 

response ability. 

 

3.3.5.3 Electrical and sensing properties of surface doped SmFeO3 
Figure 3.92 shows the Arrhenius plot of SmFeO3 and surface doped SmFeO3 

materials. The resistance of the surface doped materials did not change much in 

comparison to the undoped materials. As known from the literature, the amount of 

dopant must be high enough and the doping clusters must be a few nanometers in 

size to affect the resistance [Ar01]. A remarkable increase in resistance and stronger 

temperature dependence was found for Pt@SmFeO3. This could be a result of 

several factors. On the one hand, the Pt-particles could be placed into defect 

positions, which heals the surface and decreases the number of free charge carriers. 

On the other hand, the Pt-particles on the metal oxide surface could release 

electrons into the material lowering the conductance of the doped material. Sanders 

observed a lowering of the oxygen surface coverage by doping with Rh resulting in a 

decreased conductivity of the base material [Sa04]. However, this case is non-

applicable here since publications report on higher oxygen surface coverage due to 

Pt addition [Sa85].  
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Figure 3.92: Arrhenius plot of the surface doped materials. 

 

The effect of different dopants on the gas sensitivity of SmFeO3 was studied. Figure 

3.93 depicts the relative sensitivity of the different surface doped materials towards 

the test gases over the temperature range. In most of the cases no major changes in 

the sensitivity were observed. All materials responded to hydrocarbons and NOx. The 

response towards CO was influenced by the surface dopants. The gold doped 

sample showed a pronounced sensitivity towards carbon monoxide. Comparable to 

the case of CoTiO3:La, the Au-doped materials were suitable CO sensing materials. 

Another interesting material was the Pt-doped sample. In this case, the material was 

highly sensitive towards hydrocarbons even at higher temperatures, and cross-

sensitivity to other test gases was reduced compared to the undoped material. 
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Figure 3.93 Relative sensitivity of the surface doped samples towards the test gases. 

 

Figure 3.94 shows the relationship between the operating temperature and the 

absolute sensitivity of the sensors towards 40 ppm ethanol. Below 400°C no 

remarkable sensitivity could be observed. Between 350°C and 300°C the platinum 



Results and Discussion 

                                                                                                                                                            137

doped sample showed the highest sensitivity. However, below that temperature the 

undoped material and the gold doped sample showed highest response to ethanol. 

For platinum, the value at 250°C reached the measurement limits, so no sensitivity 

data could be obtained. The ethanol measurements showed that surface dopants 

were able to enhance the sensitivity of the regarded base material. However, there 

were also dopants like ruthenium which depressed the sensitivity the same way the 

volume dopants did.  
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Figure 3.94: Sensitivity to ethanol (40 ppm). 
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Figure 3.95: Sensitivity to propylene (25 ppm). 
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The sensitivity to propylene is shown in Figure 3.95. The overall sensitivity was much 

lower than that to ethanol. As seen before, no sensitivity below 400°C occured. 

Between 350°C and 300°C, the platinum doped material again showed the highest 

sensitivity. Below 300°C, silver and rhodium doped SmFeO3 showed the highest 

sensitivity in contrast to their low sensitivity to ethanol. This resulted in a change of 

selectivity towards ethanol due to surface doping. The selectivity to ethanol in 

comparison to propylene of the surface doped samples is shown in Figure 3.96. 

Between 300 and 350°C, Pt@SmFeO3 showed the highest selectivity. Below 275°C, 

the gold doped sample reached the highest selectivity. The undoped material was 

located in the mid values. Ruthenium and iridium doped samples exhibited the lowest 

selectivity over the shown temperature range. Considering gold doped SmFeO3 as 

the most selective and sensitive material towards ethanol one has to take into 

account that its cross-sensitivity towards CO and NO2 was increased.  

 

Addition of doping elements to the surface modifies the equilibrium state and/or 

velocity of the surface reactions. Au and Pt are known as catalytically active 

materials and have been confirmed to posses promoting effects on many 

semiconductor gas sensors. The doping element supports the catalytic conversion of 

the reducing gas into its oxidation products. As mentioned for Au and Pd, this may be 

caused by spill-over of activated fragments to the semiconductor surface to react with 

the adsorbed oxygen. This model describes the increased sensitivity of the Au-doped 

materials towards CO. The reaction towards hydrocarbons originated from the metal 

oxide in addition to the reaction on the supporting dopant. Depending on the 

temperature, the doped materials showed higher sensitivities towards hydrocarbons. 

The Pt-dopant seemed to suppress the sensitivity to other reducing test gases. This 

may be caused by a fast oxidation of these gases on the Pt surface without a change 

in resistivity of the base material. This was also proposed for CO on Pt@ZnO by 

Saito [Sa85].  
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Figure 3.96: Selectivity to ethanol in comparison to propylene. 

 

Furthermore, response and recovery times were measured at 325°C and 250°C for 

surface doped SmFeO3-sensing layers to different gases as shown in Figure 3.97. In 

contrast to the changes observed due to volume doping and as reported in literature 

for Pt-doped BaSnO3 [Re99], no changes in the response and recovery behaviour of 

the doped SmFeO3 were observed in the here considered time scale. As expected, at 

325°C, the platinum doped sample showed highest response to ethanol, while at 

250°C, the gold doped sample showed improved sensitivity compared to the 

undoped SmFeO3. However, at 250°C, the response and recovery ability was much 

slower than at higher temperatures. Because of the slower processes equilibrium 

states were not reached in the considered time-scale, as shown in Figure 3.98.  
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Figure 3.97: Response and recovery behaviour of Au@SmFeO3, Pt@SmFeO3 and SmFeO3 to 
NO (5ppm), propylene (20, 40 ppm), and ethanol (40, 60 ppm). 
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Figure 3.98: Response and recovery behaviour of Au@SmFeO3 and SmFeO3 to propylene (20, 

40 ppm), and ethanol (40, 60 ppm). 
 

3.3.5.4 Electrical and sensing properties of solid surface doped SmFeO3 
Also in the case of SmFeO3 the question occurs, whether solid surface dopants 

influence the base material in comparison to metal surface dopants. In contrast to 

CoTiO3:La tungsten oxide, antimony oxide, and lanthanum oxide were used as 

promising surface dopants. All three materials are known to be gas sensing materials 

or additives for sensing layers. Lanthanum oxide is an insulator with a band gap of 

5.5 eV in a stable oxidation state. La2O3 was reported to enhance the sensitivity of 
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SnO2 and In2O3 thick films towards e.g. ethanol, and CO2 [Ya91, Pa93]. Sb2O3, a 

semiconductor with a band gap of 3.3 eV and a variable oxidation state, was used as 

additive on different sensing layers like Fe2O3, ZnO, TiO2 and SnO2 to improve the 

sensitivity to reducing gases [Zh04, Ti00]. WO3, with a band gap of 2.6 eV, is the best 

(almost metallic) conductor of the three and owns variable oxidation states. It is an 

interesting material in the field of resistive gas sensors for the detection of e.g. NO2, 

ozone or ammonia [La05, Li02]. The solid powders of dopant and base material 

(1 at% doping concentration) were ground in a mortar and redispersed in a 

polyethylene imine/water solution. Thick films were prepared as described previously. 

 

Figure 3.99 shows the temperature dependence of the resisitance of the solid 

surface doped materials. All dopants increased the resistance of the base material. 

Also as in the case of CoTiO3:La, the influence of the solid surface dopants was more 

pronounced than for the metal dopants. The highest resistance was seen for 

antimony oixde. Lanthanum oxide gave only a small change to the resistance; 

however, it was higher than for the volume doped lanthanum samples (see Figure 

3.82). This indicated that the surface dopant did not act in the same way as the 

volume dopant. As already seen in many other cases, no linear Arrhenius-like 

behaviour was found in this temperature range. The conductivity was not simply 

thermally activated as was also seen for the other SmFeO3 samples. 
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Figure 3.99: Arrhenius plot of the solid surface doped samples. 
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The increase of the resistance might be caused by different effects. On the one hand 

a partial substitution of Sm3+ ions with W6+, Sb5+ and La3+ ions may have occured, 

which changed the number of free charge carriers and the defects of the material. On 

the other hand, the resistance is influenced by the interfacial contacts between the 

dopant and base material and the microstructure of the sensing layer. Finally, the 

intergrain contact of the dopant metal oxide (n-conductor) and the base material (p-

conductor) might affect the overall conductance of the composite material.  

 

The sensitivity of the materials was measured and is shown in Figure 3.100-3.102. 

Due to the lower conductivity of the solid surface doped materials, the measurement 

limits were reached at higher temperatures compared to the undoped material. 

Tungsten oxide and lanthanum oxide doped samples showed no major changes in 

sensitivity compared to the undoped sample. However, antimony oxide doping 

shifted the sensitivity of the material towards higher temperatures. In this case, the 

material was already sensitive towards ethanol and propylene at 475°C. The 

sensitivity of Sb2O3@SmFeO3 to nitrogen oxide was depressed. This material 

seemed to be suitable for high temperature application in regions where the undoped 

material showed no sensitivity at all. In addition, no cross sensitivities were detected 

down to 375°C.      
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Figure 3.100: Relative sensitivity of WO3@SmFeO3. 
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Figure 3.101: Relative sensitivity of Sb2O3@SmFeO3. 
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Figure 3.102: Relative sensitivity of La2O3@SmFeO3. 

 

Figure 3.103 depicts the selectivity of the surface doped materials to ethanol in 

comparison to propylene. 
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Figure 3.103: Selectivity to ethanol in comparison to propylene. 

 

The antimony oxide doped sample was selective towards ethanol at higher 

temperatures. At lower temperatures, the undoped material showed the highest 

selectivity. The selectivity of 1at% of La2O3 on the surface was located in between 

the values achieved for 10 and 20 at% volume doping.  

 

Furthermore, response and recovery times were measured at 325°C for SmFeO3-

based sensing layers to different gases, as shown in Figure 3.104. No changes in the 

response and recovery behaviour of the surface doped and undoped samples were 

observed in the considered time scale.   

 

In contrast to the results achieved for SnO2 and LaMnO3 on CoTiO3:La no selectivity 

changes from ethanol to propylene were observed. The solid surface doping 

increased the resistance to higher values, and except for Sb2O3, no advantages or 

new properties of the materials were found.  
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Figure 3.104: Response and recovery behaviour of the solid surface doped samples to NO (5ppm), 

propylene (20, 40 ppm), and ethanol (40, 60 ppm). 
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3.3.5.5 Summary of investigations on doped SmFeO3 
The volume doped SmFeO3 materials were prepared by the polyol mediated 

synthesis. XRD patterns showed that all compounds were perovskite phase with 

orthorhombic structure. Incorporation of volume dopants to SmFeO3 showed a 

change of the conductivity of the base material, while no improvement of sensing 

properties could be observed. Doping with Co resulted in a CO sensitivity 

improvement of the base material, which makes this material a suitable carbon 

monoxide sensing material.  

 

In many cases, addition of surface dopants showed no changes of the undoped 

materials; however, adding gold and platinum improved the sensing properties. Gold 

was able to enhance the sensitivity towards CO. In addition, the Au-doped samples 

showed the highest sensitivity to ethanol at lower temperatures. Platinum showed 

good hydrocarbon sensing at higher temperatures and was able to depress cross-

sensitivities towards the other test gases. In the case of solid surface dopants, 

antimony oxide was a promising candidate to shift the sensing properties of the base 

material to higher temperatures.          
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3.3.6 Binding energy model 
After presenting and discussing the measurements the question remains whether 

there are trends in gas sensing performance that might improve the understanding of 

structure-property relationships. 

 

The use of sensing materials with a simple perovskite basic structure that can be 

modified in their electronic properties without major changes to geometry may 

elucidate the interaction between surface chemistry and solid state chemistry of the 

sensing material.  

 

Arakawa et al. found that for n-type LnFeO3 oxides, the methanol sensing activity 

increased as the radius of the rare-earth ion decreased. The sequence of the activity 

for LnFeO3 was Gd>Eu>Sm>Nd>Pr>La [Ar81]. However, this correlation between 

the sensitivity of the LnFeO3 materials studied towards the different gases studied 

here could not be verified, when the whole set of compounds was taken into account. 

Aono et al. studied the NO2-sensing behaviour of p-type LnFeO3 (Ln=La, Nd, Sm, 

Gd, Dy) [Ao03]. The sensing was influenced by the Ln species and the surface 

coverage of Ln species. The sequence of NO2-activity was Sm>Dy>Gd≈Nd>La. The 

high sensitivity of SmFeO3 was caused by a higher surface coverage of Sm and 

lower dissociation energy of the Sm-O bond. 

 

Vorhoeve et al. presented the importance of the oxygen binding energy in the lattice 

for the NO catalytic chemistry of perovskites [Vo75]. This has also been proposed by 

Arakawa et al. for methanol sensing activity of rare-earth perovskites [Ar85]. 

According to the different studies in catalysis [Mo66, Mo67], the changes in 

sensitivity of LnMO3 might be explained in terms of changes in the strength of the 

metal-oxygen bond in the oxides. 

 

The binding energy is estimated from [Ar85] with the following equation: 

⎟
⎠
⎞

⎜
⎝
⎛ −⋅−

⋅
=−∆ Osf D

2
nmHH

mCN
1)OM(H ,      (3.15) 

with Hf the molar formation enthalpy of MmOn, Hs the sublimation energy of the 

respective metal, DO the dissociation energy of O2, and CN the coordination number 

of metal ions.  
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This equation expresses the reaction enthalpy for the formation of lattice oxygen on 

an oxygen vacancy [Vo75]:  

 

                                             (3.16) 

 

 

The equation includes a division by the number of oxygen atoms in the molecule 

(given by the coordination number CN). This gives an average value over all metal-

oxygen bonds for one M-O bond. This reaction enthalpy is closely related to the 

ability of a metal cation to ionosorb oxygen on the sensor surface. This means that 

the strength of oxygen binding affects the ability of the oxygen to react with an 

admixed test gas.   

 

Figure 3.105 shows the correlation between the binding energy of Ln-O in LnFeO3 

compounds towards the sensitivity to ethanol, propylene, and NO2.  
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Figure 3.105: Sensitivity versus (Ln-O) binding energy according to [Ar85] at 300°C (without LuFeO3) . 
 

In the LnFeO3 series increasing sensitivity coincided with rank order of decreasing 

binding strength of oxygen. Only LuFeO3 showed higher sensitivities as expected 

from this model. Considering that ∆H(M-O) signifies the bond strength between metal 

cation on the surface and adsorbed oxygen, a weak metal-to-oxygen bond supports 

a reaction of the adsorbed oxygen upon attack of the testing gas species. For 

Og+ M-[]-M → M-O-M

         A  A          A  A 
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stronger metal-oxygen bonds, the surface reaction would be more difficult 

accompanied by a lower sensitivity.  

 

For surface oxygen with neighbours A and B, the total contribution of bonds to the 

reaction enthalpy is the sum of both, ∆H(A-O)+ ∆H(B-O). In accordance to the 

previously proposed model, Figure 3.106 shows the absolute values of ethanol 

sensitivities of LnFeO3 and LnCrO3 oxides versus the (Ln-O) binding energy. In this 

case ethanol was chosen because LnCrO3 showed highest sensitivity to this test gas. 

In addition, the temperatures of maximum sensitivity has been chosen to compare 

the two material classes. 
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Figure 3.106: Ethanol sensitivity of LnFeO3 (300°C = TSMax) and LnCrO3 (225°C= TSMax) versus the 

binding energy. 

 

First, Figure 3.106 depicts that in the case of LnCrO3 the (Ln-O) binding energy also 

had an influence on the sensitivity of the material. However, the sensitivity of the 

LnFeO3 was in all cases higher than of the LnCrO3 oxides. This result can also be 

ascribed to the binding energy, which was higher for Cr-O than for Fe-O, leading to 

lower sensitivity of the orthochromite series. The change of the ion M from Fe to Cr 

depressed the sensitivity of the LnMO3 in accordance to the results reported for 

methanol sensitivity [Ar85]. The pronounced influence of the ion exchange on the B 

position was also observed for the catalytic oxidation of propane and methanol by 

Nitadori et al. [Ni88]. 
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Finally, systematic substitution of La3+ and Cr3+ cations in the dodecahedral and 

octahedral positions of SmFeO3 was used to demonstrate the consistency of the 

model proposed. 

 

SmFeO3 showed lower binding energy than LaFeO3 and thus higher sensitivity. 

Doping SmFeO3 with 10 and 20 at% lanthanum showed a decrease in sensitivity due 

to enhancement of M-O binding energy. Analogous influences could be observed at 

the B-site. SmCrO3 showed higher binding energy and lower sensitivity than 

SmFeO3. Inserting 10 and 20 at% of chromium into SmFeO3 at the B-site resulted in 

a considerable decrease in sensitivity compared to the undoped SmFeO3. The 

experiments showed that in the case of volume doping, exchange at the B-site also 

had a pronounced influence. Figure 3.107 plots the volume dopant concentration 

(at%) versus the relative sensitivity towards ethanol.      
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Figure 3.107: Sensitivity of the trivalent volume doped materials towards ethanol. 

 

Finally, it has to be stressed that the model up to now cannot be transferred to other 

systems of the presented work. Limits of comparison are affected for example by 

different crystallite structures that hold different active sites or valences of the 

participating ions. Nevertheless, the binding energy of a compound seems to be a 

promising parameter for predicting sensing properties. 

 

In conclusion and outstanding for this work, it was found that the strength of the 

metal-oxygen bond in the LnMO3 perovskites was important for understanding the 
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sensitivity of the material. Sensitivity was inversely correlated to binding energy. 

Changes on the B-site had a stronger influence on the sensitivity than changes in the 

A-site. Finally, dopants that increased the strength of the binding energy decreased 

the sensitivity of the base compound.  
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4. Conclusion  
This work describes the preparation and characterisation of thick-film gas sensors. 

The presented results allow to show that the polyol mediated synthesis in 

combination with high throughput impedance spectroscopy is an indispensable tool 

for gas sensor research.  

 

The polyol method enabled the preparation of a wide range of different ABO3 

compounds. The fast and simple reaction method allowed mixing on the molecular 

level and bulk doping of the materials during the preparation. Nanoscaled 

compounds that crystallised after temperature treatment were achieved. The 

prepared ABO3 materials offered various properties and possibilities for gas sensing 

materials, especially for high temperature use.  

 

The prepared materials were used to fabricate active layers on electrode structures 

to form gas sensors. Substrate plates of diverse metal-doped oxides were rapidly 

synthesised and screened with the high throughput impedance spectroscopy setup. 

The measurements were performed between 200 and 500°C and the test gases 

were hydrogen, carbon monoxide, nitrogen oxides, ethanol, and propylene in 

synthetic air. Two different materials systems, CoTiO3 and LnMO3, were presented. 

All prepared materials showed typical p-type semiconduncting behaviour.  

 

Some of the most interesting conclusions drawn from the experiments are 

summarised below. Detailed information can be found in chapter 3, and in the listed 

publications.   

 

Incorporation of various volume dopants into CoTiO3 changed the resistance and 

improved the sensing properties of the base material. Lanthanum doping was found 

to be most effective; it increased the sensitivity towards hydrocarbons and improved 

the response time of the base material. By introducing to CoTiO3:La a number of 

surface and solid surface dopants in different concentrations, the sensitivity was 

influenced. Pd and Au were found to be the most effective dopants. They both 

showed pronounced sensitivity towards carbon monoxide and hydrogen. In addition, 

the gold doped material seemed to be a suitable NO-tolerant NO2-sensing material at 
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around 350°C. SnO2 used as a solid surface dopant showed excellent propylene 

sensitivity and selectivity.   

 

Secondly, the preparation and characterisation of 25 lanthanide orthochromites and 

orthoferrites was described. They all showed hydrocarbon and NO2 sensitivity. One 

of the outstanding materials, SmFeO3, was investigated further towards doping 

influences. By introducing different volume dopants, the resistance and sensitivity of 

SmFeO3 could be influenced. Co-doping produced a remarkable sensitivity towards 

carbon monoxide. In experiments with the addition of surface dopants onto SmFeO3, 

Au and Pt were found to be the most effective dopants. Gold enhanced the sensitivity 

towards carbon monoxide and showed high sensitivity and selectivity towards 

ethanol at lower temperatures, while platinum showed good ethanol sensitivity and 

selectivity at higher temperature and depressed cross-sensitivities towards other test 

gases.  

 

From the measurements on LnMO3 materials, a trend in sensing performance as a 

function of composition was found. The sensitivity of these materials was inversely 

connected to the binding energy of the compounds. Changes of the B-site cation had 

more influence on the sensitivity than changes in the A-site. This was the first 

extensively investigated system that could be described entirely.  

 

The materials shown here have high potential for gas sensing applications. However 

the investigations on these materials is not complete. With the use of high throughput 

impedance spectroscopy, a great number of different compounds were screened in a 

short amount of time. A high throughput approach is crucial for gas sensor research 

in order to answer new problems in this sector on a shorter time span. The most 

important conclusion driven from this thesis is that the strength of the metal-to-

oxygen bond of a compound is a promising parameter for predicting sensing 

possibility. 

 

In the future, the binding energy model could be generalised and transferred to other 

material systems. The characterisation of the surface oxygen binding should be 

expanded on XPS examinations as performed by Aono et al. [Ao03]. Theoretical 

calculations could also help to understand and compare the measured values.     
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6. Experimental Details 
 

Working under protective atmosphere 
All reactions involving air- or moisture-sensitive compounds were performed under 

nitrogen or argon. For handling of dried solvents, liquids, or dissolved substances, 

glass and plastic injections with stainless-steel needles were used. 

 
Chemicals 
Chemicals and solvents were purchased from commercial suppliers (Acros, Aldrich, 

Alfa Aeser, Fluka, Merck, Riedel-de Haen and Strem Chemicals) or were available in 

the group. They were used as purchased without further purification. 

 

Test gases 
Table 6.1 shows the used test gases including carrier gas and purity. 

 
Table 6.1: Test gases. 

analyte purity carrier gas producer concentration/ppm 

H2 3.0 synthetic air Messer-Griesheim 104 ± 2% 

CO 1.8 synthetic air Messer-Griesheim 528 ± 2% 

NO 2.5 nitrogen 5.0 Messer-Griesheim 10 ± 2% 

NO2 1.8 synthetic air Messer-Griesheim 10 ± 5% 

ethanol ⎯ synthetic air Messer-Griesheim 200 ± 1% 

propylene 2.5 synthetic air Messer-Griesheim 502 ± 2% 

 

 
Characterisation of the products 
All prepared materials have been characterised by powder X-ray diffraction and SEM 

measurements.  

 

Powder X-ray diffraction 
The characterisation of the products was carried out by powder XRD measurements 

(CuKα, λ = 1.54059 Å, monochromated by quarz crytal) on thin films with a Huber 

Image Plate (Image Foil Guinier Camera G 670) in transmission. Powder diffraction 

patterns were analysed using Stoe WinXPow 1.06 Software (Stoe&CIE GmbH). 
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Samples were measured for 120 min. In special cases, measurements overnight 

(900 min) have been performed.  

 

SEM measurements 
Powder morphology was examined by SEM analysis using a Zeiss DSM 982 Gemini 

or a LEO Supra 35VP (acceleration voltage 2 to 7 kV). All samples were sputtered 

with carbon. Images were partly taken at the GFE Aachen.  

 

EDX measurements 
Energy dispersive X-ray microanalysis (EDX) spectra were collected in order to 

check the chemical composition of the nanocrystals using a LEO Supra 35VP 

equipped with an EDX system (Inca Energy 200, Oxford).  

 

TEM measurements 
Specimens for TEM investigation were prepared from suspensions of each sample, 

pipetted onto carbon-coated copper grids. Selected area electron diffraction patterns 

(SADP) were obtained from the samples using an FEI Tecani F20 electron 

microscope operated at 200 kV. Images were taken at the GFE Aachen. 

 

XRF measurements 
X-ray fluorescence (XRF) spectra were collected in order to check the chemical 

composition of the nanocrystals using an Eagle µ-Probe II (Röntgenanalytik 

Meßtechnik GmbH).  

 

Software  
For sensor property determination, almost all used software was in-house production, 

further information can be found in [Sa04]. Following programms have been used:  

 Spotfire® - Decision Site Browser: visual Data Mining, information at 

www.spotfire.com 

 Trellis Plot – in-house production: visual Data Mining 

 SQL_Miner - in-house production: pattern recognition 

 Kombis – in-house production: impedance analysis for multielectrode arrays  

 Quick Fit Full- in-house production: automated data fitting 
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6.1 General synthesis procedure 
6.1.1 Synthesis of different ABO3 
Perovskite-type particles have been synthesised according to the polyol process by 

preciptiation from precursors dissolved in diethylene glycol (DEG). According to the 

guidelines given in the text (see section 3.1), the detailed experimental procedure 

was as follows. 

 

Starting compounds were placed in a round-bottomed flask fitted with a reflux 

condenser. The presursors were dispersed in diethylene glycol (Merck, 99.99%). The 

solution containing the reactants was slowly heated up to T1 under mechnaical 

stirring at 700 RPM. Hydrolysing agent was added to the mixture after salt 

dissolution. Afterwards, the temperature was increased to T2 and maintained for 

several hours. The solution was then cooled to room temperature. The preparation 

resulted in a stable suspension (1 wt% solid to DEG).  

 

For further characterisation of the “as synthesised” material, the solid product was 

separated from the suspension via centrifugation in acetone and dried at 90 °C. The 

suspension could be transferred into the crystalline phase by temperature treatment 

at 400°C for one hour and after that at T3. Figure 1 shows two examples of used 

temperature ramps. Temperature treatment was performed in a Nabertherm LHT 

08/17 oven (Nabertherm GmbH).  

 

0 5 10 15 20

200

400
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800

T/
°C

t/h

 
 

Figure 6.1: Temperature ramp for annealing at ▬700°C (12h) and ▬ 900°C (6h). 
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Details for each compound are given in the following tables. 
 
Table 6.2: Synthesis of various ABO3 materials. In all cases 0.4 mL hydolysing agent and 10 mL DEG 

were used, except * where 20 mL DEG were used. Bp means byproduct 
 

compound 
 

precursor T1/°C hydrolysis 
agent T2/°C t/h T3/°C t/h bp 

 
La0.8Sr0.2CoO3

* 
  

0.821 mmol 
La(NO3)3 6H2O 
99% Fluka 
0.205 mmol 
Sr(CH3COO)2 
Aldrich 
1.026 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

 
130 

 
HNO3 65% 
p.a. Merck 

 
180 

 
5 

 
700 

 
12 

 
— 

NdCoO3  0.450 mmol  
Nd(CH3COO)3 nH2O 
99% Alfa Aeser 
0.450 mmol  
Co(CH3COO)2 4H2O 
99% Merck 

120 — 180 5 700 12 — 

SmCoO3  0.437 mmol 
Sm(NO3)3 6H2O 
99,9% Acros 
0.437 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

120 — 180 5 700 12 not 
identified 

GdCoO3  0.428 mmol 
Gd(CH3COO)3 nH2O 
99,9% Alfa Aeser 
0.428 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

120 HNO3 65% 
p.a. Merck 

160 5 700 12 — 

HoCoO3  0.416 mmol 
Ho(NO3)3 5H2O 
99,9% Alfa Aeser 
0.416 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

100 — 170 5 900 10 — 

MnFeO3  0.711 mmol 
Fe(NO3)3 9H2O  
98% Merck 
0.711 mmol 
Mn(CH3COO)3 2H2O 
97% Aldrich 

130 — 180 5 700 12 — 

MnFeO3
*  2 mmol 

Fe(NO3)3 9H2O  
98% Merck 
2 mmol 
Mn(CH3COO)2·4H2O 
98% Merck 
 
 

110 H2O2 30% 
p.a. Fluka 

180 5 700 12 — 
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YFeO3  0.587 mmol 
Fe(NO3)3 9H2O  
98% Merck 
0.587 mmol 
Y(NO3)3 6H2O  
99.9% Aldrich 

80  180 4 900 6 — 

NiMnO3
*  1.4 mmol 

Mn(CH3COO)2·4H2O 
98% Merck 
1.4 mmol 
Ni(CH3COO)2·4H2O 

170 H2O2 30% 
p.a. Fluka 

180 5 700 6 Ni6MnO8 
in traces 

BiBaO3  0.286 mmol 
Bi(NO3)3 3H2O 
99.5% Riedel 
0.286 mmol 
Ba(CH3COO)2 
99% Riedel-de Haen

130 NH3 25% 
p.a. Merck 

180 5 700 12 — 

BiFeO3  0.362 mmol 
Fe(NO3)3 9H2O  
98% Merck 
0.362 mmol 
Bi(NO3)3 3H2O 
99.5% Riedel 

130 — 180 5 700 12 Bi2O3 
in traces 

PbTiO3  0.37 mmol 
Ti[OCH(CH3)2]4  
97% Aldrich 
0.37 mmol 
Pb(CH3COO)2 3H2O 
p. A. Merck 

130 HNO3 33% 
p. a. Merck 

180 5 700 12 TiO2 and 
PbO in 
traces 

Ba0.98La0.02SnO3  0.36 mmol  
Ba(CH3COO)2 
99% Riedel-de Haen 
0.01 mmol 
La(NO3)3 6H2O 
99% Fluka 
0.37 mmol  
Sn(CH3COO)4 

Aldrich 

140 HNO3 65% 
p. a. Merck 

180 5 700 12 SnO2 
in traces 

BaSnO3  0.37 mmol  
Ba(CH3COO)2 
99% Riedel-de Haen 
0.37 mmol  
Sn(CH3COO)4 

Aldrich 

140 HNO3 65% 
p. a. Merck 

180 5 700 12 SnO2 
in traces 

BaTiO3  0.48 mmol 
Ba(CH3COO)2 
99%  Riedel-de 
Haen 0.48 mmol 
Ti[OCH(CH3)2]4  
97% Aldrich 

130 KOH 
solution 

(2M) 

180 5 700 12 — 

CdSnO3  0.405 mmol 
Cd(CH3COO)2·2H2O 
97% Fluka 
0.405 mmol 
Sn(CH3COO)4 

Aldrich 

130 NH3 25% 
p.a. Merck 

180 5 750 12 SnO2 
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SrFeO3  0.590 mmol 
Fe(NO3)3 9H2O  
98% Merck 
0.590 mmol 
Sr(CH3COO)2 
Aldrich 

110 HNO3 65% 
p. a. Merck 

170 5 700 12 - 
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6.1.2 Synthesis of LnCrO3 materials 
 
Materials were synthesised by the general preparation method described above. 

Cr(NO3)3 9H2O (96% Alfa Aeser) was used as the chromium source. In all cases 

10 mL DEG and 0.4 mL hydrolysing agent were added.  

 
Table 6.3: Synthesis of LnCrO3 materials. 

 

compound 
 

Ln-precursor T1/°C hydrolysis 
agent T2/°C t/h T3/°C t/h 

 
LaCrO3 

  
0.473 mmol 
La(NO3)3 6H2O 
99% Fluka 

 
110 

 
— 

 
175 

 
5 

 
700 

 
12 

PrCrO3  0.469 mmol 
Pr(NO3)3 6H2O 
99,9% Aldrich 

100 — 175 5 700 12 

SmCrO3  0.451 mmol 
Sm(NO3)3 6H2O 
99,9% Acros 

100 — 180 5 700 12 

EuCrO3  0.224 mmol 
Eu2(CO3)3 nH2O 
99,9% Alfa Aeser 

130 — 190 5 900 2 

GdCrO3  0.439 mmol 
Gd(CH3COO)3 nH2O 
99,9% Alfa Aeser 

100 HNO3 65% 
p.a. Merck 

170 5 700 12 

TbCrO3  0.436 mmol 
Tb(NO3)3 6H2O 
99,9% Acros 

90 — 190 5 900 2 

DyCrO3  0.430 mmol 
Dy(NO3)3 5H2O 
99,9% Alfa Aeser 

90 — 170 5 700 12 

HoCrO3  0.426 mmol 
Ho(NO3)3 5H2O 
99,9% Alfa Aeser 

80 — 170 5 900 4 

ErCrO3  0.211 mmol 
Er2(CO3)3 nH2O 
99,9% Alfa Aeser 

100 HNO3 65% 
p.a. Merck 

175 5 700 6 

TmCrO3  0.420 mmol 
Tm(CH3COO)3 nH2O 
99,9% Alfa Aeser 

90 — 170 5 900 2 

YbCrO3  0.414 mmol 
Yb(NO3)3 5H2O 
99,9% Strem 

80 — 180 5 700 6 

LuCrO3  0.411 mmol 
Lu(CH3COO)3 nH2O 
99,9% Alfa Aeser 

130 — 170 5 900 2 
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6.1.3 Synthesis of LnFeO3 materials 
 
Materials were synthesised by the general preparation method described above. 

Fe(NO3)3 9H2O (98% Merck) was used as iron source. In all cases 10 mL DEG and 

0.4 mL hydrolysing agent were added.  

 
Table 6.4: Synthesis of LnFeO3 materials. 

 

compound 
 

Ln-precursor T1/°C hydrolysis 
agent T2/°C t/h T3/°C t/h 

 
LaFeO3 

  
0.465 mmol 
La(NO3)3 6H2O 
99% Fluka 

 
120 

 
— 

 
160 

 
5 

 
700 

 
12 

PrFeO3  0.283 mmol 
Pr(NO3)3 6H2O 
99,9% Aldrich 

130 — 180 5 700 12 

NdFeO3  0.455 mmol 
Nd(CH3COO)3 nH2O 
99% Alfa Aeser 

120 — 160 5 700 12 

SmFeO3  0.443 mmol 
Sm(NO3)3 6H2O 
99,9% Acros 

120 — 160 5 700 12 

EuFeO3  0.221 mmol 
Eu2(CO3)3 nH2O 
99,9% Alfa Aeser 

140 — 180 5 700 12 

GdFeO3  0.433 mmol 
Gd(CH3COO)3 nH2O 
99,9% Alfa Aeser 

80 HNO3 
65% Merck 

160 5 700 12 

TbFeO3  0.430 mmol 
Tb(NO3)3 6H2O 
99,9% Acros 

110 HNO3 
65% Merck 

170 5 700 12 

DyFeO3  0.424 mmol 
Dy(NO3)3 5H2O 
99,9% Alfa Aeser 

120 — 160 5 700 12 

HoFeO3  0.420 mmol 
Ho(NO3)3 5H2O 
99,9% Alfa Aeser 

110 — 170 5 700 12 

ErFeO3  0.208 mmol 
Er2(CO3)3 nH2O 
99,9% Alfa Aeser 

105 — 175 5 700 12 

TmFeO3  0.414 mmol 
Tm(CH3COO)3 nH2

O 

110 HNO3 
65% Merck 

160 5 800 12 

YbFeO3  0.408 mmol 
Yb(NO3)3 5H2O 
99,9% Strem 

130 NH3 25% 
p.a. Merck 

160 5 700 12 

LuFeO3  0.414 mmol 
Lu(CH3COO)3 nH2O 
99,9% Alfa Aeser 

100 — 180 5 900 12 
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6.1.4 Synthesis of volume doped SmFeO3 
 
Materials were synthesised by the general preparation method described above. In 

all cases 10 mL DEG and 0.4 mL HNO3 were used. All sampled were annealed for 

12 h at 700°C. 

 
Table 6.5: Synthesis of volume doped SmFeO3 materials. 

 

compound 
 

precursor volume dopant T1/°C T2/°C t/h 

 
SmFeO3 

  
0.443 mmol 
Sm(NO3)3 6H2O 
99,9% Acros 
0.443 mmmol 
Fe(NO3)3 9H2O 
98% Merck 

 

 
110 

 
180 

 
5 

Sm0.9La0.1FeO3  0.399 mmol 
Sm(NO3)3 6H2O 
99,9% Acros  
0.443 mmol 
Fe(NO3)3 9H2O 
98% Merck 

0.044 mmol 
La(NO3)3 6H2O 
99% Fluka 
 

110 160 5 

Sm0.8La0.2FeO3  0.354 mmol 
Sm(NO3)3 6H2O 
99,9% Acros 
0.443 mmol 
Fe(NO3)3 9H2O 
98% Merck 

0.089 mmol 
La(NO3)3 6H2O 
99% Fluka 
 

100 170 5 

Sm0.9Sr0.1FeO3  0.399 mmol 
Sm(NO3)3 6H2O 
99,9% Acros 
0.443 mmol 
Fe(NO3)3 9H2O 
98% Merck 

0.044 mmol 
Sr(CH3COO)2 
Aldrich 
 

110 180 5 

Sm0.8Sr0.2FeO3  0.354 mmol 
Sm(NO3)3 6H2O 
99,9% Acros 
0.443 mmol 
Fe(NO3)3 9H2O 
98% Merck 

0.089 mmol 
Sr(CH3COO)2 
Aldrich 
 

100 170 4 

SmFe0.9Co0.1O3  0.443 mmol 
Sm(NO3)3 6H2O 
99,9% Acros 
0.399 mmol 
Fe(NO3)3 9H2O 
98% Merck 

0.044 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

100 165 4 

SmFe0.8Co0.2O3  0.443 mmol 
Sm(NO3)3 6H2O 
99,9% Acros 
0.354 mmol 
Fe(NO3)3 9H2O 
98% Merck 

0.089 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

120 170 5 
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SmFe0.9Cr0.1O3  0.443 mmol 
Sm(NO3)3 6H2O 
99,9% Acros 
0.399 mmol 
Fe(NO3)3 9H2O 
98% Merck 

0.044 mmol 
Cr(NO3)3 9H2O 
96% Alfa Aeser 

120 160 5 

SmFe0.8Cr0.2O3  0.443 mmmol 
Sm(NO3)3 6H2O 
99,9% Acros 
0.354 mmol 
Fe(NO3)3 9H2O 
98% Merck 

0.089 mmol 
Cr(NO3)3 9H2O 
96% Alfa Aeser 

100 150 5 

SmFe0.9Mn0.1O3  0.443 mmmol 
Sm(NO3)3 6H2O 
99,9% Acros 
0.399 mmol 
Fe(NO3)3 9H2O 
98% Merck 

0.044 mmol 
Mn(CH3COO)3 2H2O 
97% Aldrich 

130 170 5 
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6.1.5 Synthesis of volume doped CoTiO3 
 
Materials were synthesised by the general preparation method described above. In 

all cases 10 mL DEG and 0.4 mL HNO3 were used. All sampled were annealed for 

12 h at 700°C. 

 
Table 6.6: Synthesis of volume doped CoTiO3 materials. 

 

compound 
 

precursor volume dopant T1/°C T2/°C t/h 

 
CoTiO3 

  
0.730 mmol  
Ti[OCH(CH3)2]4  
97% Aldrich 
0.730 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

 

 
130 

 
160 

 
5 

CoTiO3:LaA    
(2 at%) 

 0.730 mmol  
Ti[OCH(CH3)2]4  
97% Aldrich 
0.715 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

0.015 mmol 
La(NO3)3 6H2O 
99% Fluka 
 

130 180 5 

CoTiO3:LaB    
(2 at%) 

 0.715 mmol  
Ti[OCH(CH3)2]4  
97% Aldrich 
0.730 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

0.015 mmol 
La(NO3)3 6H2O 
99% Fluka 
 

130 175 5 

CoTiO3:K      
(2 at%) 

 0.730 mmol  
Ti[OCH(CH3)2]4  
97% Aldrich 
0.715 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

0.015 mmol 
K(CH3COO) 
99% Merck 

130 180 5 

CoTiO3:SmB  
(2 at%) 

 0.715 mmol  
Ti[OCH(CH3)2]4  
97% Aldrich 
0.730 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

0.015 mmol 
Sm(NO3)3 6H2O 
99.9% Acros 

110 170 5 

CoTiO3:SmA  
(2 at%) 

 0.730 mmol  
Ti[OCH(CH3)2]4  
97% Aldrich 
0.715 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

0.015 mmol 
Sm(NO3)3 6H2O 
99.9% Acros 

110 165 5 

CoTiO3:Li      
(2 at%) 

 0.730 mmol  
Ti[OCH(CH3)2]4  
97% Aldrich 
0.715 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

0.015 mmol 
LiNO3 

99.99% Alfa Aeser 

110 160 4 
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CoTiO3:Gd    
(2 at%) 

 0.715 mmol  
Ti[OCH(CH3)2]4  
97% Aldrich 
0.730 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

0.015 mmol 
Gd(CH3COO)3 nH2O 
99.99% Alfa Aeser 

130 180 4 

CoTiO3:HoA   
(2 at%) 

 0.730 mmol  
Ti[OCH(CH3)2]4  
97% Aldrich 
0.715 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

0.015 mmol 
Ho(NO3)3 5H2O 
99.9% Alfa Aeser 

110 180 5 

CoTiO3:HoB   
(2 at%) 

 0.715 mmol  
Ti[OCH(CH3)2]4  
97% Aldrich 
0.730 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

0.015 mmol 
Ho(NO3)3 5H2O 
99.9% Alfa Aeser 

110 160 5 

CoTiO3:Sb    
(2 at%) 

 0.715 mmol  
Ti[OCH(CH3)2]4  
97% Aldrich 
0.730 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

0.015 mmol 
Sb(CH3COO)3 
99.99% Aldrich 

110 180 5 

CoTiO3:Pb    
(2 at%) 

 0.715 mmol  
Ti[OCH(CH3)2]4  
97% Aldrich 
0.730 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

0.015 mmol 
Pb(CH3COO)2 3H2O 
p. A. Merck 

110 160 5 

CoTiO3:Na    
(2 at%) 

 0.730 mmol  
Ti[OCH(CH3)2]4  
97% Aldrich 
0.715 mmol 
Co(CH3COO)2 4H2O 
99% Merck 

0.015 mmol 
Na(CH3COO) 3H2O 
z. A. Merck 

120 180 5 
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7. Appendix 
 
7.1 Charactersitics of ABO3 materials 
 
XRD, SEM and thick film pictures of materials that were mentioned in chapter 3.1  
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La0.8Sr0.2CoO3 
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PbTiO3 
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NdCoO3 
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GdCoO3 
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BaSnO3 and Ba0.98La0.02SnO3 
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YFeO3 
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CdSnO3 
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BiFeO3 
 

20 40 60 80

in
te

ns
ity

/a
.u

.

2Θ/°

BiFeO3

 

 
 
 

 
         2 µm 



Appendix 

                                                                                                                                                            193

7.2 Response and recovery ability of volume doped CoTiO3 

250 300 350 400
8,0x105

1,6x106

2,4x106

3,2x106

4,0x106

R
/Ω

t/min

 Pos 25 CoTiO3:Sb

 
Response and recovery times of CoTiO3:Sb at 500°C to CO (25 ppm), NO (5 ppm), propylene (20, 40 

ppm), and ethanol (40, 60 ppm). 

2300 2350 2400

1,0x107

1,5x107

2,0x107

2,5x107

 

 

R
/Ω

t/min

 Pos 73 CoTiO3:Gd

 
Response and recovery times of CoTiO3:Gd at 500°C to NO (5 ppm), propylene (20, 40 ppm), and 

ethanol (40, 60 ppm). 
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50 100 150 200
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 Pos 81 CoTiO3:HoA

 
Response and recovery times of CoTiO3:HoA at 500°C to CO (25 ppm), NO (5 ppm), propylene (20, 40 

ppm), and ethanol (40, 60 ppm). 
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Response and recovery times of CoTiO3:K at 500°C to NO (5 ppm), propylene (20, 40 ppm), and 

ethanol (40, 60 ppm). 
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1750 1800 1850 1900
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Response and recovery times of CoTiO3:LaB at 500°C to NO (5 ppm), propylene (20, 40 ppm), and 

ethanol (40, 60 ppm). 
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 Pos 82 CoTiO3:Li

 
Response and recovery times of CoTiO3:Li at 500°C to CO (25 ppm), NO (5 ppm), propylene (20, 40 

ppm), and ethanol (40, 60 ppm). 
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7.3 Response and recovery ability of surface doped SmFeO3 

10 11 12
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Response and recovery behaviour of Ru@SmFeO3 to CO (25 ppm), NO (5ppm), propylene (20, 
40 ppm), and ethanol (40, 60 ppm). 
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Response and recovery behaviour of Au@SmFeO3 to CO (25 ppm), NO (5ppm), propylene (20, 

40 ppm), and ethanol (40, 60 ppm). 
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Response and recovery behaviour of Pt@SmFeO3 to NO (5ppm), propylene (20, 40 ppm), and 

ethanol (40, 60 ppm). 
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Response and recovery behaviour of Ag@SmFeO3 to NO (5ppm), propylene (20, 40 ppm), and 

ethanol (40, 60 ppm). 
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Response and recovery behaviour of Ce@SmFeO3 to NO (5ppm), propylene (20, 40 ppm), and 
ethanol (40, 60 ppm). 
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Response and recovery behaviour of Ir@SmFeO3 to NO (5ppm), propylene (20, 40 ppm), and ethanol 

(40, 60 ppm). 
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Response and recovery behaviour of Pd@SmFeO3 to NO (5ppm), propylene (20, 40 ppm), and 
ethanol (40, 60 ppm). 
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Response and recovery behaviour of Rh@SmFeO3 to NO (5ppm), propylene (20, 40 ppm), and 
ethanol (40, 60 ppm). 
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