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Introduction

The research work discussed in this thesis deals with the study of superconducting Josephson
qubits. Superconducting qubits are solid-state artificial atoms which are based on lithographi-
cally defined Josephson tunnel junctions. When su�ciently cooled, these superconducting de-
vices exhibit quantized states of charge, flux or junction phase depending on their design pa-
rameters. This allows to observe coherent evolutions of their states. Thanks to their relatively
large size they are easy to manipulate and control experimentally [1–5]. Interestingly, their
behavior can be theoretically analyzed by means of equivalent mechanical models [6] describing
the motion of fictitious particles moving in an e↵ective potential, thus o↵ering the possibility
to realize an e↵ective two-level system [7]. For all these reasons superconducting integrated
circuits represent leading candidates in many applicative emergent areas of physics [8–22] and
furnish, at the same time, an important testbed for investigating fundamental issues of quantum
mechanics, especially in regimes not easily accessible with natural atoms or molecules.

These considerations justify the intense research which has been developed in recent years in
this context. Superconducting quantum circuits have been, for example, exploited to implement
and to control quantum coherences as witnessed by the numerous papers discussing schemes
for the realization of assigned multipartite entangled states [8, 11–13]. At the same time, many
e↵orts have been made for protecting quantum coherences in the context of quantum comput-
ing and information applications [23–28]. The performance of solid state architecture is indeed
unavoidably limited by decoherence and dissipation phenomena related to the presence of dif-
ferent noise sources partly stemming from control circuitry but also having microscopic origin.
It is hence important to understand, and consequently to reduce, the causes of decoherence in
di↵erent superconducting circuits. Generally speaking, there are many channels which a super-
conducting qubit may relax or dephase through, the relevance of each channel depending on
the qubit used, its characterizing parameters and, more generally, on the experimental set up.
In particular, flux qubits are extremely sensitive to flux noise and usually limited to operating
in the two-level system subspace while charge qubits are more versatile but su↵er from charge
noise mostly due to stray quasiparticles. In general, in superconducting devices, quasiparticles
are sources of energy relaxation and being an intrinsic property of superconducting materials,
they could represent an ultimate limit of quantum coherences. The recent technological improve-
ments of the past years have permitted the research on these devices to improve rapidly, starting
with the demonstration of nanosecond-scale coherence in a Cooper pair box by Nakamura et
al [29] in 1999 up to a coherence time above 20µs found by the MIT/NEC group in 2011 [30]
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using a persistent-current flux qubit. Thus superconducting qubits of the last generation have
reached regimes such that quasiparticle tunneling could become a source of decoherence not to
be neglected [31–33].

The research work discussed in this thesis is inscribed in this context. The results presented
can be divided into two parts. In a first part we investigate operations of superconducting qubits
based on the quantum coherence in superconducting quantum interference devices (SQUID).
We explain experimental data which has been observed in a SQUID subjected to fast, large-
amplitude modifications of its e↵ective potential shape. The motivations for this work come from
the fact that in the past few years there have been attempts to interpret the supposed quantum
behavior of physical systems, such as Josephson devices, within a classical framework [34, 35].
Moreover, we analyze the possibility of generating Greenberger-Horne-Zeilinger (GHZ) states,
namely maximally entangled states, in a quantum system made out of three Josephson qubits.
In particular, we investigate the possible limitations of the GHZ state generation due to coupling
to bosonic baths.

In the second part of the thesis we address a particular cause of decoherence of flux qubits
which has been disregarded until now: thermal gradients, which can arise due to accidental non
equilibrium quasiparticle distributions. The reason for these detrimental e↵ects is that heat
currents flowing through Josephson tunnel junctions in response to a temperature gradient are
periodic functions of the phase di↵erence between the electrodes. This phenomenon was theo-
retically predicted in 1965 by Maki and Gri�n [36]. The phase dependence of the heat current
comes from Andreev reflection, namely an interplay between the quasiparticles which carry heat
and the superconducting condensate which is sensitive to the superconducting phase di↵erence.
This e↵ect has been demonstrated experimentally [37–41]. A superconducting ring, namely a
DC -SQUID with two Josephson junctions was exposed to a temperature gradient. The mea-
surement of the resulting heat current as a function of the magnetic flux penetrating the SQUID
demonstrated the sensitivity of the heat current to the phase di↵erences across the junctions. In
this way, the SQUID is operated as a heat modulator. Generally speaking, the flux qubit states
are characterized by di↵erent values of the phase di↵erence through their Josephson junctions.
Consequently, the phase-dependent thermal current through a device subject a temperature
gradient is related to the phase-dependent qubit states. We study how the thermal currents
change according to the state of the qubits hence yielding a measurement of the qubit state.
This in turn leads to an impact of temperature gradient on the dynamics of the system. We
show that flux qubits in the Delft qubit design can have limitations of the decoherence time to
the order of microseconds as a result of this newly discovered source of decoherence. In contrast,
the fluxonium qubit is found to be well protected due to its superinductance.

In this thesis the results I obtained during the three years of my Ph.D. studies, which I spent
between the Dipartimento di Fisica e Chimica at the Università di Palermo and the Institut für
Theorie der Statistischen Physik at the RWTH Aachen University, are presented and discussed.

This thesis is structured as follows: in Chapter 1 Josephson junctions are introduced and
some of the physics of these system is explained. Chapter 2 is devoted to the presentation
of di↵erent types of Josephson qubits. The study of the coherences and of their utilization is
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the main subject of Chapter 3, in which firstly the coherence properties of a rf-SQUID (flux
qubit) are studied when the system is manipulated by fast modification of its energy potential.
Secondly, I explain how it is possible to build an entangled state using Josephson qubit, in
presence of dissipation given by an interaction with bosonic baths. Chapter 4 is devoted to the
study of decoherence e↵ects due to temperature gradients in flux qubits, in particular the e↵ects
of thermal gradients on a persistent current qubit and on a fluxonium qubit is studied.
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Chapter 1

Properties of Josephson Junctions

Superconductivity, which occurs in certain types of materials, consists in the vanishing of the
electrical resistance when their temperature is lowered below a certain characteristic tempera-
ture of the material, called the critical temperature, T

c

. This phenomenon is one of the most
interesting and sophisticated in condensed matter physics, in particular because the e↵ect on
the electrical resistance is not the only remarkable property of superconducting materials: they
also have interesting magnetic properties, for example the famous Meissner e↵ect.

In 1957, John Bardeen, Leon Cooper and J. Robert Schrie↵er developed a microscopic
theory of superconductivity, which is known as the BCS theory. The central feature of the
BCS theory is that two electrons in the superconductor are able to form a bound pair called
a Cooper pair because they experience an attractive interaction between them caused by the
interaction of the electrons mediated by the phonons in the material. The idea is that, in the
superconducting state, all electron pairs adopt the same phase, just like a collective wave. The
quantum mechanical description of superconductivity, given by the BCS theory, models the
whole network of electrons as a Bose-Einstein condensate characterized by one wave function,
called also order parameter,  =

p
⇢ei✓, where ⇢ is the Cooper pair density and ✓ is the phase

of the order parameter. To destroy the superconducting state described above and make the
material normal conducting, an amount of energy is needed. This energy is called the energy
gap �.

From their discovery, superconducting materials have been used in many applicative areas.
The first large scale commercial application of superconductivity was in magnetic resonance
imaging (MRI), but they are also used in scientific research where high magnetic field electro-
magnets are required. In what follows, we refrain from giving a detailed description of the BCS
theory of superconductivity, but instead we will focus on the properties of Josephson junctions.
These junctions are made by superconducting materials and are the basic bricks to build the
superconducting qubits that are the object of our studies.
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1.1 Josephson junction

Figure 1.1: A Josephson junction: two superconducting electrodes S

1/2(⇠100 nm) separated by a thin layer of
insulating material I (⇠1 nm). The two condensates in the superconductors are descrybed by their
wave functions  

1/2.

A Josephson junction is made by two superconducting electrodes (⇠100 nm) separated by a
thin layer of insulating material. If the layer between the two superconductors is su�cienty thin
(⇠1 nm) the electrons can tunnel through the barrier. In the case of equivalent superconductors
at both sides of the barrier, if  i (i = 1, 2) is the wave function of the electrons in the i-th
electrode, such that | i|2 defines the Cooper pair density, and without magnetic field applied to
the barrier, we write [42]

i~@ 1

@t
=U

1

 
1

+K 
2

,

i~@ 2

@t
=U

2

 
2

+K 
1

,
(1.1)

where K is the coupling constant between the electrodes and Ui is the potential energy of each
electrode. If there is a potential di↵erence between the electrodes U

1

� U
2

= 2eV (2e being the
charge of a Cooper pair), (1.1) becomes

i~@ 1

@t
=eV  

1

+K 
2

,

i~@ 2

@t
=� eV  

2

+K 
1

.
(1.2)

Writing explicitly the wave functions, as a function of the phases ✓i and densities ⇢i of Cooper
pairs for the i-th electrode

 
1

=
p
⇢
1

ei✓1 ,

 
2

=
p
⇢
2

ei✓2 ,
(1.3)

we obtain

⇢̇
1

= 2K
~
p
⇢
1

⇢
2

sin',

⇢̇
2

= �2K
~
p
⇢
1

⇢
2

sin',

✓̇
1

= K
~

q

⇢
2

⇢
1

cos'� eV
~ , (1.4)

✓̇
2

= K
~

q

⇢
1

⇢
2

cos'+ eV
~ ,
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where ' is the phase di↵erence ' = ✓
2

� ✓
1

between the two electrodes. Since ⇢̇
1

= �⇢̇
2

, the
current density of Cooper pairs flowing from the first to the second electrode is given by

J = 2
K

~
p
⇢
1

⇢
2

sin' = J
c

sin', (1.5)

where J
c

= 2K⇢
0

/~ and ⇢
0

=
p
⇢
1

⇢
2

. Since we make the hypothesis of equivalent superconduc-
tors we have ⇢

1

= ⇢
2

= ⇢
0

.

From the equations for the phases ✓i we derive

'̇ = ✓̇
2

� ✓̇
1

= 2eV/~ =
2⇡

�
0

V, (1.6)

where �
0

⌘ h/2e is the superconducting flux quantum. Starting from equation (1.6) one gets

'(t) = '(0) +
2e

~

Z t

0

V (t)dt. (1.7)

Equations (1.5) and (1.6) are known as Josephson relations. In particular (1.5) defines the DC
Josephson e↵ect. When a constant di↵erence of phase ' 6= k⇡ with k 2 Z is produced, it is possi-
ble to observe a Cooper pair current, I = I

c

sin', flowing through the barrier without a potential
drop through it. This current is also called supercurrent. The origin of the supercurrent can be
traced back to Andreev reflection of incoming electrons and as such it is an interplay of quasi-
particles at the interface and the superconducting condensate on both sides. The quasiparticles
are the single electrons not arranged in Cooper pairs, which are present in the insulating barrier
and in general also in the superconducting electrodes, when the temperature of the electrodes is
di↵erent from zero [43]. The Andreev reflection is a type of particle scattering which occurs at
interfaces between a superconductor and a normal state material and consists in the transfer of
a charge 2e across the interface, avoiding the forbidden single-particle transmission within the
superconducting energy gap. The Josephson e↵ect was first predicted by Brian Josephson in
1962 [44] and subsequently experimentally confirmed by Anderson and Rowell [45] in 1963. This
chapter will be devoted to see how Josephson junctions can be treated as non linear circuital
elements and the associated Hamiltonian will be introduced. This is necessary to understand
how to use Josephson junctions to build devices based on superconducting Josephson junctions.

1.1.1 RCSJ model

The experimental behavior of a Josephson junction is slightly di↵erent from the ideal case
depicted in the previous section. This results from the fact that in a real setup, the junction
also has a geometrically induced capacitance between its electrodes and a resistance giving
dissipation when there is a finite voltage across it. To find a circuit analogue of a real Josephson
junction, in this section the so-called RCSJ (Resistively and Capacitively Shunted Junction)
model [46, 47] will be introduced. A real Josephson junction (JJ ) can be conveniently modeled
as a parallel of three circuital elements, as shown in figure 1.2: a non-linear Josephson element
which obeys equation (1.5) indicated by the symbol ⇥, in parallel with a capacitor C (which
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Figure 1.2: a) RCSJ model for a Josephson junction b) U(') potential for di↵erent values of I/I
c

.

depends on the geometry and fabrication of the junction) and a resistance R. Assuming that
the junction is current-biased, we can write the Kirchho↵’s current law as

I = CV̇ + I
c

sin'+
V

R
, (1.8)

which exploiting equation (1.6) can be written in the form

I = C
�
0

2⇡
'̈+

1

R

�
0

2⇡
'̇+ I

c

sin'. (1.9)

The behavior of the system can be more easily analyzed by means of an equivalent mechanical
model [6,48–51], describing the motion of a fictitious particle of “mass” m = C(�

0

/2⇡)2. Using
equation (1.9) as an equation of motion for this particle it is possible to put it in the form

m'̈+ �'̇+
@U(')

@'
= 0 (1.10)

where � =
�

�

0

2⇡

�

2

1

R is a viscous damping coe�cient, and the e↵ective washboard potential is of
the form

U(') = �E
J

✓

I

I
c

'+ cos'

◆

, (1.11)

where E
J

⌘ (�
0

I
c

/2⇡) is called Josephson coupling energy. The current I biasing the junction
tilts the potential (figure 1.2.b)), which presents local maxima and minima. The height of the
barrier between a minimum and the next maximum is

�U = 2E
J



q

1�
�

I/I
c

�

2 � I

I
c

arccos
�

I/I
c

�

�

. (1.12)
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It is possible to distinguish qualitatively three di↵erent regimes for the junction. If I < I
c

the

particle remains trapped in a potential well, oscillating with plasma frequency ⌦P =
�

2⇡I
c

�

0

C

�

1

2

around the minimum. Since the phase averages to zero, there is no voltage drop across the
junction and the junction is in the superconducting regime. When I becomes bigger, the particle
remains in the hole until I = I

c

, when the minima become flex points. If I > I
c

, the particle
starts to move with velocity '̇ 6= 0 along the potential, which from equation (1.6) yields a voltage
drop across the junction; the junction is then in the normal regime. When I � I

c

the particle
tends to move with constant velocity '̇ = 2⇡

�

0

IR and has an ohmic behavior V = IR.

1.1.2 Junction Hamiltonian

Figure 1.3: Real Josephson junction in a loop threaded by the magnetic flux �. A real Josephson junction is
indicated with a ⇥ enclosed in a square.

Let us now close the Josephson junction circuit in a loop and imagine that the loop is
threaded by a magnetic flux � as shown in figure 1.3. The superconducting order parameter
must be single valued, and this imposes a quantization condition (fluxoid quantization): the
total phase di↵erence around the loop must be quantized in units of the flux quantum �

0

. This
condition may be expressed as

2⇡n = '� 2⇡
�

�
0

(1.13)

where n is the number of flux quanta �
0

.

If the temperature of the system is su�ciently low it is possible to neglect the dissipative
term in equation (1.8) and write the equation for an isolated junction as CV̇ + I

c

sin' = 0 or as

2⇡�̈

�
0

+ ⌦P sin

✓

2⇡�

�
0

◆

= 0. (1.14)

In the previous equation ⌦P is the plasma frequency that characterizes the phase evolution time.
In order to obtain equation (1.14) as equation of motion of the virtual particle of “mass” C and
generalized coordinate � one can start from the Lagrangian function

L(�, �̇) =
1

2
C�̇2 + E

J

cos

✓

2⇡�

�
0

◆

. (1.15)
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The conjugate momentum to the coordinate � is given by

p
�

⌘ @L

@�̇
= C�̇ = q, (1.16)

namely the charge q = CV and the Hamiltonian of the system can be written as

H(�, p
�

) ⌘ p
�

�̇� L =
q2

2C
� E

J

cos

✓

2⇡�

�
0

◆

. (1.17)

This Hamiltonian is easily quantized substituting the classical variables � and q with the cor-
responding quantum operators �̂ and q̂ = �i@/@�̂, which satisfy the commutation relation
⇥

�̂, q̂
⇤

= i~, such that

Ĥ =
q̂2

2C
� E

J

cos

✓

2⇡�̂

�
0

◆

. (1.18)

Defining the number operator n̂ = q̂
2e and the phase operator '̂ = 2⇡

�

0

�̂, so that ['̂, n̂] = i~, the
Hamiltonian can be put in the form [52]

Ĥ = 4E
C

n̂2 � E
J

cos '̂. (1.19)

This equation shows that the term corresponding to the kinetic energy is proportional to the
Coulomb energy E

C

= e2

2C , which corresponds to the electrostatic energy of an electron on the
capacitor C (this means that a superconducting Cooper pair has charging energy 4E

C

), while
the Josephson energy E

J

is proportional to the potential term. The dynamical behavior of a
junction depends on the competition between these two di↵erent energies. If E

C

� E
J

(charge
regime) the number of Cooper pairs n = q/2e on the capacitor can be considered constant since
the energy required to change this number is big. Consequently, there is a great indetermination
on the phase (�'! 1). In this regime the description of the system can be done using charge
eigenstates (or eigenstates of the number operator), and q (or n) is a “good” quantum number.
If E

J

� E
C

(phase regime) the junction works as an anharmonic semi-classical oscillator and
� (or ') is a “good” quantum number. When E

C

and E
J

are of the same order of magnitude
(mesoscopic regime) neither the charge (or number) nor the flux (or the phase) are good quantum
numbers, and a great indetermination for both the coordinate and its conjugate has to be taken
into account. In what follows it will be shown that di↵erent types of superconducting qubits
built with Josephson junctions correspond to di↵erent operating regimes of the junction.

1.1.3 DC SQUID: a tunable junction

In this section, it will be shown how a device which has the same e↵ective behavior as that of
a Josephson junction can be built, using more than one Josephson junction. The importance
of this device is that the critical current of the e↵ective junction becomes tunable inserting
additional junctions. The Direct-Current Superconducting Quantum Interference Device (DC
SQUID) is a superconducting loop interrupted by two junctions (figure 1.4). A current I flows
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Figure 1.4: DC SQUID: a superconducting loop interrupted by two junctions and threaded by a magnetic flux �.

into the SQUID and then separates into two currents Ij in the arms j = 1, 2. In each arm
of the SQUID there is a Josephson junction with critical current I

cj , phase 'j , and Josephson
inductance Lj in each arm. There is also in general a geometric inductance in each arm which
will be considered small with respect to the Josephson inductances. The total inductance around
the loop is L. The current passing through branch j is given by the Josephson current equation
(1.5), such that the total current is

I = I
c1

sin'
1

+ I
c2

sin'
2

. (1.20)

A external magnetic field is applied to the SQUID, and it yields a flux � penetrating the loop.
The fluxoid quantization may be expressed as

2⇡n = '
2

� '
1

� 2⇡f (1.21)

where n is the number of flux quanta �
0

and f = �/�
0

. If one assumes that the critical currents
are equal I

c1

= I
c2

⌘ I
c

, then equations (1.20) and (1.21) can be combined and yield

I = 2I
c

cos

✓

⇡
�

�
0

◆

sin

✓

'
1

+ '
2

2

◆

(1.22)

which is analogue to the first Josephson equation taking as critical current

I
c,SQ(�) = 2I

c

�

�

�

�

cos

✓

⇡
�

�
0

◆

�

�

�

�

(1.23)

and ('
1

+ '
1

)/2, the symmetric phase of the SQUID, as phase of the equivalent junction . The
critical current of the SQUID I

c,SQ is hence a function of the external flux and it can be tuned
between 0 and 2I

c

. In this way, the DC SQUID acts as a tunable Josephson junction. This
feature is also used to make tunable superconducting qubits. In particular, if the two junctions
in the loop are equivalent, the DC SQUID acts as a junction with internal capacitance which is
twice the one of each junction and with resistance which is half of the one of each junction.

1.2 Microscopic model of the Josephson junctions

For the scope of this thesis it is useful to briefly introduce a microscopic model of the Josephson
junction. Exploiting the Bardeen-Cooper-Schrie↵er (BCS) theory of superconductivity, each
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superconductor (the two electrodes are denoted by l = 1, 2) is assumed to be a particle reservoir
in equilibrium at temperature Tl and to be characterised by the mean-field BCS Hamiltonian

Hl =
X

k,�

("l,k � µ
0

)c†l,k�cl,k� �
X

k

(�l,kc
†
l,k"c

†
l,�k# +�

⇤
l,kcl,�k#cl,k") . (1.24)

In (1.24), c†l,k� and cl,k� are single-electron creation and annihilation operators in the momen-
tum k and spin � =", # representation and �l,k is the superconducting energy gap of the l-th
electrode. Tunnelling between reservoirs is described by the tunnelling Hamiltonian

H
T

=
X

k,q,�

(V 12

kq c
†
1,k�c2,q� + V 12⇤

kq c†
2,q�c1,k�), (1.25)

where k and q are the momentum quantum numbers and the tunnelling matrix element is
denoted by V 12

kq . The total Hamiltonian is then written as H
tot

= H
1

+H
2

+H
T

.
In equation (1.24), "l,k��µ

0

⌘ ⇠l,k� is the electron energy relative to the chemical potential which
is assumed equal for the two electrodes, µ

1

= µ
2

= µ
0

. Assuming the gap to be independent of
k, it is characterized by its absolute value |�l| and by the phase ✓l. As introduced before the
phase di↵erences ' across a junction is given by ' = ✓

2

�✓
1

. The temperature dependence of the
magnitude of the superconducting gap is approximately given by |�l(Tl)| ⇡ �

0

p

1� Tl/Tcrit

with �
0

' k
B

T
crit

the gap of the superconductor at zero temperature and T
crit

the critical
temperature. It will be assumed from now on that all the superconductors are built from the
same material with equivalent geometries, such that they share T

crit

and �
0

.

1.2.1 Thermal current in a single Josephson junction

Using the microscopic model description of the Josephson junction, it is interesting to derive
the heat currents flowing through a Josephson junction, when the arms between the junction
are kept at di↵erent temperatures. Assuming that the system is su�ciently isolated and that
in particular phonons are frozen out at very low temperatures, the heat current in electrode 1
is carried by quasiparticles entering or leaving it, accompanied by a change in the expectation
value of the Hamiltonian in the first electrode as in equation (1.24), namely H

1

, with respect
to the electrochemical potential. According to the quantum-mechanical equation of motion, the
heat current into the first electrode is

dQ(1)

dt
=

⌧

d

dt
H

1

�

=
i

~h[Htot

, H
1

]i. (1.26)

where the brackets h·i denote the equilibrium average with respect to the total Hamiltonian
H

tot

, introduced before as the sum of the Hamiltonians of the electrodes Hl and of the tunneling
Hamiltonian H

T

. Evaluating the commutator in equation (1.26) we derive

dQ(1)

dt
=

2

~ Im

8

<

:

X

k,q,�

D

V 12

kq ⇠1,kc
†
1,k�c2,q� + V 12

kq (�
⇤
1,�kc1,�k"c2,q# ��⇤

1,kc1,�k#c2,q")
E

9

=

;

. (1.27)
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Manipulating equation (1.27) we derive the heat current in the weak tunnel coupling regime [36,
53], see the appendix for a detailed derivation of the heat current. The result for the heat
current through a junction connecting reservoir 1 and 2 due to a di↵erence in temperature,
T
1

6= T
2

, can be divided into a pure quasiparticle contribution to the heat current, Q̇1

qp

(T
1

, T
2

),
and an interference contribution due to an interplay between quasiparticles and the Cooper pair
condensate, Q̇1

int

(T
1

, T
2

), namely

Q̇1(T
1

, T
2

) = Q̇1

qp

(T
1

, T
2

)� Q̇1

int

(T
1

, T
2

) cos' . (1.28)

The pure quasiparticle contribution to the heat current is

Q̇1

qp

(T
1

, T
2

) =
2

e2R
12

Z 1

|�
max

|
d! !3

f
1

(!)� f
2

(!)
p

!2 � |�
1

|2
p

!2 � |�
2

|2
, (1.29)

where fl(!) = [1 + exp(!/k
B

Tl)]
�1 is the Fermi function of electrode l with l = 1, 2 and |�

max

| =
max {|�

1

|, |�
2

|}. R
12

is the normal state resistance of the junction connecting reservoirs 1
and 2 and is related to the normal conducting density of states of the reservoirs at the Fermi
level (including spin), N0

l , and the tunneling amplitude supposed to be independent of the
momenta k and q). The inverse resistance is given by R�1

12

= ⇡e2N0

1

N0

2

|V 12|2/~. The interference
contribution to the heat current due to the interplay between quasiparticles and the Cooper pair
condensate depends on the phase di↵erence ' of the superconducting condensates and yields

Q̇1

int

(T
1

, T
2

) =
2

e2R
12

Z 1

|�
max

|
d! !|�

1

�
2

| f
1

(!)� f
2

(!)
p

!2 � |�
1

|2
p

!2 � |�
2

|2
. (1.30)

We assume T
1

, T
2

. |�
0

|/k
B

; then the square root terms are changing faster than the fermi
functions in the integrals of Eqs. (1.29) and (1.30). The magnitude of the heat currents can
then be estimated as

Q̇l
qp

(Tl, Tm) ' Q̇l
int

(Tl, Tm) ' Q̇
typ

(1.31)

=
|�

max

|2

e2Rlm
K(|�

min

|/|�
max

|)[e�|�
max

|/k
B

Tl � e�|�
max

|/k
B

Tm ] ,

where K(k) =
R ⇡/2
0

(1 � k2 sin2 �)�1/2d� is the complete elliptic integral of the first kind,
and |�

min

| the superconducting gap at the largest temperature. The elliptic integral is a
monotonously increasing function which starts at ⇡/2 for small arguments and has a logarithmic
divergence with K(1�✏2) ⇠ ln 1/✏ when k approaches 1. Since the contribution of the integrands
of (1.29) and (1.30) have a maximum for ! being in the vicinity of the superconducting gap
|�

max

|, the quasiparticle and the interference contributions to the heat current are generally of
the same order of magnitude.

It is insightful to briefly estimate the order of magnitude of the heat currents for the limits
of small and large temperature di↵erences. In the case of a small temperature di↵erence, �T ⌘
|Tl � Tm| ⌧ Tl, Tm, we obtain from (1.31) the typical value Q̇

typ

' |�
max

|3K[1 � �T/2(T
crit

�
T )]e�|�

max

|/k
B

T �T/(e2Rlmk
B

T 2) of the heat current. Assuming furthermore that �T ⌧ T
crit

�T ,
we obtain the estimate Q̇

typ

' |�
max

|3 ln[(T
crit

� T )/T
cut

]e�|�
max

|/k
B

T �T/(e2Rlmk
B

T 2). The
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tunneling approximation gives a cuto↵ temperature T
cut

= �T which leads to a logarithmic
divergence of the heat current for small temperature gradients as already pointed out in [36].
However, as shown in [53] this is an artifact of the tunneling approximation which fails to take
properly into account a resonance in the density of states due to a weakly bound Andreev state.
The resonance introduces a new cuto↵ at the scale T

cut

= D�
0

sin2('lm/2)/k
B

with D the
transparency of the tunneling barrier, which essentially describes a tunneling barrier denoting
its characteristic transmission probability of the modes.

In contrast, in the case of a large temperature di↵erence, we have that T
min

⌧ T
max

. Since
in this case T

min

is hence also always much smaller than T
crit

, the heat current only depends
on T

max

and we obtain the estimate Q̇
typ

' �2

0

e��

0

/k
B

T
maxK(

p

1� T
max

/T
crit

)/e2Rlm. If we
additionally have that T

max

. T
crit

, the elliptic integral is of order one and the estimate simply
reads Q̇

typ

' �2

0

e��

0

/k
B

T
max/e2Rlm.

Thermal currents in a system similar to the one we study here were measured in the
experiment by Giazotto and Martinez-Perez reported in [38]. If we use these same experimental
values for an estimate, we have �

0

' 200µeV and R
12

' 1 k⌦. For T = 0.1T
crit

and large
temperature gradient we obtain Q̇

typ

' 10�11 W, while for a small temperature gradient we
obtain the estimate Q̇

typ

' (�T/T )10�14W (assuming that the logarithm is of order one).

1.2.2 Thermal current in linear response regime

In the case when T
1

= T and T
2

= T+�T with �T ⌧ T we approximate the thermal current in a
power series of �T . In order to do this, since the two superconductors’ energy gaps are assumed
to be dependent only on the temperature, they will considered to be equal �

1

= �
2

= �. In
Ref. [53], the thermal current between the two superconducting electrodes has been calculated.
The result in linear response is given by

Q̇(', T, �T ) = �(', T )�T (1.32)

with

 =
1

2e2R
12

k
B

T 2

Z 1

�

d!
!2

cosh2 (!/2k
B

T )

!2 ��2

(!2 � !2

b

)2



(!2 ��2 cos')�D�2 sin
'

2

2

�

(1.33)

where D is the transparency of the interface barrier. Moreover, !
b

= �[1 �D sin2('/2)]1/2 is
the energy associated with a quasi-bound Andreev state in the interface. There is a dependence
of the thermal current on the phase di↵erence ' across the junction. In the tunneling regime,
that is for D ⌧ 1, the term proportional to D appearing in the right side of equation (1.33) can
be neglected obtaining

 =
1

2e2R
12

k
B

T 2

Z 1

�

d!
!2

cosh2 (!/2k
B

T )

!2 ��2

(!2 � !2

b

)2
(!2 ��2 cos'). (1.34)

The dependence on the phase can be made more explicit when bringing the expression (1.34)
into the form

 = 
0

� 
1

sin2
'

2
ln
⇣

sin2
'

2

⌘

+ 
2

sin2
'

2
(1.35)
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with the coe�cients


0

=
1

2e2R
12

k
B

T 2

Z 1

�

d!
!2

cosh2(!/2k
B

T )
(1.36)


1

=
�3

8e2R
12

k
B

T 2 cosh2(�/2k
B

T )
,


2

=
�3

8e2R
12

k
B

T 2



4k
B

T

�
(1� tanh(�/2k

B

T )) + c

�

� (1 + lnD)
1

,

c = 2

Z 1

0

dx x lnx

"

(�/k
B

T ) sinh
⇣ p

x2

+1

2k
B

T/�

⌘

(x2 + 1) cosh3
⇣ p

x2

+1

2k
B

T/�

⌘

+
1

(x2 + 1)3/2 cosh2
⇣ p

x2

+1

2k
B

T/�

⌘

#

.

In the next parts of the thesis, the results derived in this chapter will be the starting point
to introduce the physical systems, namely the superconducting Josephson qubits, and to study
them exploiting the physical properties of superconducting materials in general and in particular
of the Josephson junctions.
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Chapter 2

Josephson qubits

Josephson qubits are all those qubit realized by electronic circuits made with superconduct-
ing Josephson junctions and other superconducting components. They manifest their quantum
behavior when appropriately cooled. Superconducting qubits have attracted considerable at-
tention since the 1980s until today as they are considered the ideal “two-level systems” to be
exploited for the realization of a quantum computer. All superconducting qubits can be seen as
simple LC-oscillators which have been made anharmonic thanks to the addition of Josephson
elements. The big variety of Josephson qubits introduced in literature in the last years is due to
the variety of exploited circuit architectures as well as to the number and size of the Josephson
junctions used. It is possible to make a first chronological division of these devices distinguishing
between the “first-generation” qubits, including Cooper pair box [29,54–57], Quantronium [58],
RF SQUID [59], phase qubit [1] and persistent-current flux qubit (also called Delft qubit) [60,61]
and the “next-generation” qubits, basically Transmon [62] and Fluxonium [63]. Alternatively
we can distinguish them based on the comparison between the two energies E

C

and E
J

, namely
the charging energy and the Josephson energy, introduced in the previous chapter, character-
izing the system. Depending on the value of the ratio E

C

/E
J

the states of the system will be
described by charge or flux states. This in turn allows to separate the superconducting qubits
in two big classes: charge and flux qubits. The aim of the chapter is to provide an overview of
the superconducting qubits, introducing their Hamiltonian, the fundamentals of their operation,
their similarities and their di↵erences. In particular in view of the results presented in chapter
4, this chapter will concentrate on two di↵erent Josephson flux qubits, namely the Delft qubit
and the Fluxonium.

2.1 Qubit as a quantum two-level system

Qubits are quantum systems where two states have energies close together, while they are very
di↵erent from those of all other states of the system. To a first approximation, if we want to
analyze the dynamics of the two states or the e↵ect of a perturbation on them, we can simply
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Figure 2.1: Variation of the energies E

1

and E

0

with respect to ". If � is zero, the levels cross at the origin
(dashed straight lines). When � is di↵erent from zero we obtain an avoided level crossing.

ignore all the other energy levels of the system. All the calculations can then be performed in a
two-dimensional subspace of the state space. In other words qubits can be treated as quantum
two-level systems. In this section we introduce some mathematical tools to study the dynamics
of a qubit and to understand some of its physical properties.

Let us choose the two lowest energy states |0i and |1i as a basis states for the qubit. Usually
the qubit Hamiltonian will be written as

Ĥ
0

= �~
2
["⌧̂

3

+�⌧̂
1

] (2.1)

with ~" the level splitting of the qubit states, ~�/2 the coupling between them and where ⌧i with
i = 1, 3 are the Pauli spin matrices. The Bohr frequency of the system will take the form [64]

!
01

=
E

1

� E
0

~ =
p

"2 + |�|2. (2.2)

When ✏ varies, E
0

and E
1

describe two branches of a hyperbola which is symmetric with respect
to the coordinate axes and whose asymptotes are the values ±"/2, as it is shown in figure 2.1.
This means that if � is zero, the levels are the dashed straight lines and they cross at the origin.
When � is di↵erent from zero the two levels “repel each other” and we obtain what usually is
called an avoided level crossing.

The state of the qubit is described by the density operator ⇢(t)

⇢(t) =

✓

⇢
00

(t) ⇢
01

(t)
⇢
10

(t) ⇢
11

(t)

◆

(2.3)

and the dynamics of the system are governed by the Liouville-von Neumann equation (~ = 1)

⇢̇(t) = �i
⇥

H, ⇢(t)
⇤

(2.4)
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where H is the Hamiltonian of the complete system which, in general, can take into account
the interaction of the system with its environment. If the qubit is coupled with an external
environment (which could also simply be the measurement device) we can have two kinds of
detrimental e↵ects on its state: relaxation and decoherence. The relaxation a↵ects the diagonal
elements of the density operator, which will ultimately reach the thermal equilibrium value

⇢eq
00,11 =

exp
⇣

± ~!
10

2k
B

T

⌘

tr
n

exp
⇣

ˆH
0

2k
B

T

⌘o . (2.5)

The relaxation time, namely the time it takes for the diagonal terms of the qubit to relax, is
called T

1

. The decoherence a↵ects the non-diagonal terms which are essential to the quantum
operations of the qubit. The coherence time, denoted with T

2

is the time during which the
qubit maintains a given superposition of states. There are two processes that contribute to
decoherence: relaxation and dephasing [52]. The dephasing is the way in which coherence
decays over time. The amount of time that it takes for dephasing to recover classical behavior
from a quantum system is called dephasing time and is denoted with T�. The relaxation time
T
1

and the dephasing time T� combine to yield

1

T
2

=
1

2T
1

+
1

T�
. (2.6)

2.2 Charge qubits

A charge qubit is a qubit whose basis states are charge states (i.e. states which represent the
presence or absence of excess Cooper pairs in a superconducting electrode, called the “island”).
The circuit that paradigmatically represents the charge qubit is the Cooper Pair Box (CPB)
which is formed by a tiny superconducting island coupled by a Josephson junction to a super-
conducting reservoir. The state of the qubit is determined by the number of Cooper pairs which
occupy the box. The other two charge qubits which will be presented in this paragraph are the
Quantronium and the Transmon. These two circuits are modifications of the CPB, which im-
prove dramatically the dephasing times of the original circuit. The reason is that Quantronium
and Transmon manage mostly to better deal with the charge noise, which is the biggest problem
with this kind of circuits.

2.2.1 Cooper pair box

The Cooper pair box was among the first superconducting devices to demonstrate properties
of quantum coherence, including evidence for quantum superposition of charge states [54–57]
and it was the first used to demonstrate coherent control of the quantum states of a qubit in
a solid-state electronic device [29]. This device is composed of a small superconducting island
bounded by a Josephson junction and a capacitor to ground, as shown in figure 2.2. The key
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Figure 2.2: a) Circuit diagram of a single-junction CPB: a small superconducting island isolated by a Josephson
junction and a capacitor to ground. The charge in the island is indicated by n, and this value can
vary due to the tunneling through the Josephson junction or due to variations of the gate voltage.
b) When the charge induced by the gate is n

g

= 1/2, the energy levels of the charge states |ni and
|n + 1i are degenerate. c) The system can tunnel from a state to the other with a strength dictated
by the Josephson energy E

J

.

feature of this island is that it is su�ciently small, such that the charging energy required to
add a Cooper pair to it is much larger than the thermal energy,

4E
C

= 4
e2

2C
⌃

� k
B

T. (2.7)

Here C
⌃

= C
J

+ C
g

is the total capacitance of the island. For typical values of the system
parameters it must be less than a fF. In order to make the CPB work, the amount of charge on
the island is induced by the gate and it is, expressed in number of Cooper pairs,

n
g

=
Q

g

2e
=

C
g

V
g

2e
. (2.8)

The gate charge n
g

is controlled by the voltage source V
g

and is proportional to the gate capac-
itance C

g

, consequently n
g

is continuously tunable. The Hamiltonian of this system is a sum of
two terms, proportional to the charging energy and to the Josephson energy in the island

Ĥ
CPB

= 4E
C

(n̂� n
g

)2 � E
J

cos '̂. (2.9)

For the CPBs we have E
C

� E
J

, and so the number of Cooper pairs on the island is a well
defined variable, it is hence a charge qubit. In particular, the first term in the Hamiltonian is
the electrostatic energy, which plotted versus n

g

gives a series of parabolae, each associated to
a di↵erent discrete value of n. Tuning the gate voltage to the point where the charge induced
by the gate is n

g

= 1/2, the energy levels of the parabolae associated with charge states |ni and
|n + 1i are degenerate. Josephson tunneling between n and n + 1 Cooper pairs on the island
mixes these states and opens an avoided crossing with a strength dictated by the Josephson
energy. This is the second term of the Hamiltonian, and it is the junction energy written in the
phase basis. The mixing of charge states can be seen explicitly writing the Hamiltonian in the
charge basis

Ĥ
CPB

=
X

n



4E
C

(n̂� n
g

)2|nihn|� E
J

2
(|nihn+ 1|+ |n+ 1ihn|)

�

. (2.10)
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Expanding this Hamiltonian around the charge degeneracy point at n
g

= 1/2, the CPB can be
approximated by a two level system, taking the charge states to be |0i and |1i,

Ĥ
CPB

= �1

2
[E

J

⌧̂
1

+ 4E
C

(1� 2n
g

)⌧̂
3

]

⌘ �~
2
[�⌧̂

1

+ "⌧̂
3

] (2.11)

where

~" = 4E
C

(1� 2n
g

)

~� = E
J

. (2.12)

The CPB has a tunable gate charge n
g

and can have also a tunable splitting at the avoided
crossing by replacing the junction in the circuit with the DC SQUID equivalent junction intro-
duced in 1.1.3. In this case, the Josephson energy is a function of the external magnetic field
applied to the SQUID loop

E
J

(�
x

) = E
J,max

�

�

�

�

cos

✓

⇡
�
x

�
0

◆

�

�

�

�

(2.13)

where the previous equation is valid for a symmetric SQUID (a DC-SQUID composed by two
equivalent JJ) and E

J,max

= E
J1

+ E
J2

.

From equation (2.11) we see that the Hamiltonian of the system is diagonal for n
g

= 1/2
and the energy levels are first-order insensitive to charge noise. The CPB is read out using
a single-electron transistor (SET) operated as a sensitive charge electrometer. The SET is a
superconducting island isolated by two junctions. The drain and the source of the SET are the
junction electrodes that connect to the island. When the SET is properly biased, current can
flow from drain to source with a value that depends strongly on the gate-source voltage. The
CPB island is coupled capacitively to the island and modifies the SET gate charge depending on
its state. At the CPB charge-degeneracy point (n

g

= 1/2), the SET cannot distinguish between
|0i and |1i, because their probability of detection are equal. This means that a readout can be
done slightly away from the degeneracy point.

2.2.2 Quantronium and transmon

Quantronium was among the first design modifications of the CPB [58]. Quantronium man-
ages to extend the dephasing times using the charge degeneracy point operation to mitigate
low-frequency fluctuations. To measure the state of the qubit while remaining at the charge
degeneracy point, a large junction is added in parallel to the CPB, forming a loop, as shown in
figure 2.3 a). There is a magnetic flux threading this loop, controlling an additional degree of
freedom and, thereby, a new noise channel. However, the energy of the system along the flux
dimension also has a degeneracy point and the qubit is operated at this “double” charge-flux
degeneracy point. In this way, to first order, the Quantronium is made insensitive to both charge
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Figure 2.3: a) Circuit diagram of the quantronium. In this circuit the single Josephson junction in a CPB is
replaced by two small junctions in parallel that are connected to a larger junction (↵ < 1) to form
a closed loop. The Cooper-pair box (island) is shown in light blue. The two states are now the two
counter-rotating currents in the loop, which are observed by measuring the current I through the
large junction. The system is controlled by a voltage V

g

and the magnetic flux �
x

. b) A transmon is
a capacitively shunted CPB. Adding a large parallel capacitor to the CPB flattens the energy levels
and makes the CPB much less sensitive to the charge fluctuations. The transmon may be realized
either with a single junction or, as shown in the figure, with a tunable junction, namely a DC SQUID.

and flux noise, and dephasing times around 500 ns were enabled by this approach. [58]. Readout
is performed by shifting the qubit away from the flux degeneracy point.

As the quantronium also the transmon is obtained by slightly modifying a CPB. The trans-
mon was developed by scientists at Yale University in 2007 [62,65] and its name is an abbreviation
of the term transmission line shunted plasma oscillation qubit. As shown in figure 2.3 b) a large
capacitor is put in parallel to a Cooper pair box island in order to protect the qubit from fluc-
tuations of o↵set charge of the superconducting island by flattening the transition frequency
dependence on o↵set charge. The large capacitance influences mostly two qubit parameters, the
anharmonicity and the charge dispersion. The anharmonicity is measured by the di↵erence in
energy between excitations of the system. If E

10

and E
21

are the energy di↵erences between
respectively the ground state and the first excited and between the first and second excited, the
anharmonicity is denoted as a = (E

21

/E
10

)� 1: a harmonic oscillator has an anharmonicity of
zero. While a large anharmonicity may not be fully exploitable, a small anharmonicity requires
long qubit pulses in order to selectively excite only one pair of levels. Charge dispersion is the
amount that the energy levels are dependent on the o↵set charge n

g

on the island making up the
qubit. The CPB energy levels become in this way dependent on charge such that the charge in
the island must be kept constant using a gate voltage. The remarkable advantage of the trans-
mon comes from the fact that as the qubit parameter E

J

/E
C

is increased, the charge dispersion
reduces exponentially and the anharmonicity decreases only with a power law. Because of this,
with practical parameters, the charge dispersion can be made negligibly small while maintaining
enough anharmonicity.
Aside from the di↵erent regime of parameters, the transmon Hamiltonian has the same form of
the CPB.
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2.3 Flux and phase qubits

In this section we present the Flux qubits, which are our main object of investigation throughout
this theses. In the majority of the cases flux qubits are micrometer sized loops of superconduct-
ing metal interrupted by Josephson junctions. The junction parameters are engineered during
fabrication so that a persistent current will flow continuously when an external flux is applied.
The computational basis states of the qubit are defined by the circulating currents which can
flow either clockwise or counter-clockwise. These currents screen the applied flux limiting it to
multiples of the flux quantum and give the qubit its name. When the applied flux through the
loop area is close to a half integer number of flux quanta the two energy levels corresponding to
the two directions of circulating current are brought close together and the loop may be operated
as a qubit. Computational operations are performed by pulsing the qubit with microwave fre-
quency radiation which has an energy comparable to that of the gap between the energy of the
two basis states. Properly selected frequencies can put the qubit into a quantum superposition
of the two basis states while subsequent pulses can manipulate the probability amplitudes that
the qubit will be measured in either of the two basis states, thus performing a computational
operation.

In this section, we present also the phase qubit, whose dynamics is described by its phase
states. The phase qubit is closely related to the di↵erent types of flux qubit presented, yet
distinct from them. A phase qubit is a current-biased Josephson junction, operated in the zero
voltage state with a non-zero current bias. The connection between the two kind of qubit, (apart
from the relation between flux and phase presented in paragraph 1.1.2) is given by the fact that
a flux qubit is simply a flux biased phase qubit. For this reason the phase qubit will be the first
qubit presented in this section.

2.3.1 Phase qubit

The phase qubit is a current-biased Josephson junction [1], figure 2.4 a). When the junction is
biased close to its critical current, the washboard potential of equation (1.11) is su�ciently tilted
that a potential well accommodates only a few quantized states, which we will indicate with
|0i, |1i, |2i and so on. In this limit, the local potential well is su�ciently anharmonic that the
|0i ! |1i transition can be distinguished from the |1i ! |2i transition. In this regime, the state
|0i is metastable, state |1i is relatively long-lived and state |2i tunnels rapidly. Qubit readout
is performed by driving the transition |1i ! |2i. If the qubit were in state |1i, it would quickly
tunnel to state |2i if appropriately driven. If such a tunneling event happens there is a junction
voltage which indicates a variation of the junction phase, as it is possible to see from equation
(1.6). Within the two-level system model, the phase qubit Hamiltonian is essentially the one of
a pseudo spin with energy !

01

along ⌧̂
3

with a transverse component related to changes in the
circulating current �I

circ

. Changing the circulating current will also change the frequency !
01

.
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a) Phase qubit b) RF-SQUID qubit

Figure 2.4: a) Single Josephson junction biased near its critical current is a phase qubit. The junction is biased
such that the wells of the washboard potential shown in figure 1.2 have a few quantized states. Driving
the transition from the first excited state to the second excited state constitutes readout, which creates
a voltage if the qubit were in the first excited state, due to the tunneling from the second excited to
the running state. b) Flux-biased phase qubit realizes a RF-SQUID.

As a result, the Hamiltonian is approximately [1, 66]

H
pq

= �1

2

"

~!
01

⌧̂
3

+

r

~
2!

01

C
�I

circ

(⌧̂
1

+ �⌧̂
3

)

#

(2.14)

�U being the height of the barrier in the potential and � =
p

~!
01

/3�U ⇡ 1/4 for typical
parameters [66].

2.3.2 RF-SQUID qubit

The radio-frequency SQUID (RF-SQUID) is made by a Josephson junction placed in a loop of
inductance L, threaded by a magnetic flux �

x

[59] as shown in figure 2.4 b). The qubit potential
energy U is the sum of the junction energy and the inductive energy due to the shunt inductance

U = �E
J

cos�+
1

2
E

L

✓

�+ 2⇡
�
x

�
0

◆

2

(2.15)

with E
L

given by

EL =
(�

0

/2⇡)2

L
. (2.16)

It is possible to redefine � to move the flux dependence to the Josephson term

' = �+ 2⇡
�
x

�
0

(2.17)
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Figure 2.5: The black curve shows the potential energy of the RF SQUID as a function of the superconducting
phase ' for E

L

/E

J

= 0.4 [59] and di↵erent values of the magnetic flux �. In the same plots the wave
functions of the three lowest lying eigenstates (E

C

/E

J

= 10�2) are depicted (red and orange lines)
where the vertical o↵set indicates the corresponding eigenenergy.

The Hamiltonian of the RF-SQUID then becomes

Ĥ
RFS

= 4E
C

(n̂� n
g

)2 � E
J

cos

✓

'̂� 2⇡
�
x

�
0

◆

+
1

2
E

L

'̂2 (2.18)

where n
g

represents fluctuating o↵set charges across the junctions, which can be removed through
a gauge transformation  0(') = eing

' ('). With this change it is possible to rewrite the
Hamiltonian as

Ĥ
RFS

= 4E
C

n̂2 � E
J

cos

✓

'̂� 2⇡
�
x

�
0

◆

+
1

2
E

L

'̂2 (2.19)

From the Hamiltonian in equation (2.19) we see that tuning the external magnetic flux �
x

e↵ectively shifts the cosine wells along the parabola. The RF-SQUID is nominally operated
near �

x

= �
0

/2, the value of the flux for which the potential of the qubit is a symmetric
double well potential configuration. The height of the barrier between the two wells depends on
the value of E

J

. The two wells of the potential correspond to two di↵erent circulating current
states, clockwise and counter-clockwise, and resonant tunneling through the double-well barrier
will open an avoided crossing. For this reason, even if its Hamiltonian is the one of a flux-biased
phase qubit, its mode of operation is most similar to the next qubit that will be presented,
the persistent-current qubit. Even in the case of the RF-SQUID the single junction can be
substituted by a DC-SQUID. The resulting circuit, called double SQUID [67] will be investigated
in chapter 3, concentrating our attention on the modifications of its energy potential depending
on the fast modification of the external flux bias.

The RF-SQUID was among the first flux qubits to demonstrate quantized energy levels and
an avoided level crossing [59]. However, the small loop inductance, and therefore steep inductive
potential, make RF-SQUID qubits very sensitive to flux bias, and therefore strongly susceptible
to flux noise.
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Figure 2.6: (a) Sketch of a persistent current qubit realised by a SQUID with three superconducting links, char-
acterised in general by di↵erent phase di↵erences, '

a

,'

b

,'

c

. The SQUID is penetrated by a magnetic
flux �. The direction of the supercurrent circulating in the SQUID characterises the state of the
persistent current qubit. (b) Potential landscape of the SQUID as a function of the phase di↵erences
for ↵ = 0.75 and �/�

0

= 0.495. The potential is 2⇡-periodic in '

a

and '

b

and it can be divided
into equal square cells of side 2⇡. (c) Cut through the potential in the central cell of figure (b) along
the line ' = '

a

= �'
b

visualising the two minima corresponding to the qubit states of oppositely
circulating currents.
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2.3.3 Persistent current qubit

A persistent current qubit consists of a superconducting loop with three Josephson junctions,
which encloses a flux � supplied by an external magnetic field [60, 61], as it is sketched in
figure 2.6, sometimes this qubit is referred to as Delft qubit. The three junctions, i = a, b, c, are
in general characterised by di↵erent Josephson energies Ei

J

. In the Delft-qubit design, two of
the junctions are equivalent, i.e. they have the same Josephson coupling energy Ea

J

= Eb

J

⌘ E
J

,
and the third junction has a smaller Josephson energy Ec

J

= ↵E
J

, where ↵  1 is the asymmetry
parameter. The di↵erent phase di↵erences, 'i, across the junctions (the arrows in figure 2.6
define the direction for a positive phase di↵erence 'i) are related to each other due to the fluxoid
quantization as in equation (1.13) around the superconducting loop containing the junctions,1

'a � 'b + 'c = �2⇡f . (2.20)

The total Josephson energy of the ring is given by the phase-dependent expression U =
P

iE
i
J

(1�
cos'i). Combining this relation with the flux quantisation condition in (2.20) the Josephson
energy can be written as

U = E
J

[2 + ↵� cos'
a

� cos'
b

� ↵ cos(2⇡f + '
a

� '
b

)] . (2.21)

The potential U is plotted in figure 2.6 (b) for ↵ = 0.75 and f = 0.495, a typical operation point
of the Delft qubit. The plot shows a periodic structure of two nearby minima. These two minima,
indicated by L and R, fulfill the condition '

a

= �'
b

⌘ ' and correspond to situations in which
the Josephson current in the loop has opposite signs. Due to the periodicity of the potential, all
other minima are equivalent to L and R. If the magnetic flux is tuned to f = 1

2

the two minima are
equal, U

min

= 2E
J

�

1� 1

↵

�

, and they are situated at '
L/R = ⌥ arccos(1/2↵). Small deviations

�f = f � 1

2

from this point yield a shift of the minima by �' = �2⇡ �f (2↵2� 1)/(4↵2� 1), such
that '

L/R = ⌥ arccos(1/2↵)+�'. Consequently, the potential becomes asymmetric as indicated
in figure 2.6 (c) when a magnetic flux di↵erent from f = 1/2 is applied. For values ↵  1/2 the
two minima would merge into a single minimum; in the following it will be assumed ↵ > 1/2.

The dynamics of the system is provided by the fact that each of the junctions adds a small
electrical capacitance C. In fact the conjugate momentum to ' is given by the number of Cooper
pairs N = �i~ @/@', which charge the capacitances. So the Hamiltonian takes the form

H
qubit

= �4E
C

@2

@'2

+ E
J



2 + ↵� 2 cos(')� ↵ cos(2⇡f + 2')

�

; (2.22)

the first term takes account for the charging energy E
C

= e2/2C
⌃

, where C
⌃

combines the
capacitive e↵ects of the three junctions, and the second term is the potential energy U as given
in (2.21) with ' = '

a

= �'
b

. The low-energy physics of this system can be described by the
two metastable states | 

L

i and | 
R

i, corresponding to the ground states of the local minima
of the potential as shown in figure 2.6 (c). They will serve as the two qubit states in the
following. In the vicinity of the local minima, the Hamiltonian can be approximated using

1Neglecting loop inductances.
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Figure 2.7: Cut through the potential of the SQUID along ' = '

a

= �'
b

, with the two approximated qubit
states | 

L

i and | 
R

i in the phase representation for ↵ = 0.75 and f = 0.495.

U(') ⇡ U('
L/R) +E

J

⇥

cos('
L/R) + 2↵ cos(2⇡f + 2'

L/R)
⇤

('� '
L/R)

2 for ' ⇡ '
L/R. The qubit

states are then given by the oscillator ground states

h'| 
L/Ri =

✓

�
L/R

⇡

◆

1/4

exp

(

�
�
L/R('� '

L/R)
2

2

)

(2.23)

with the inverse of the variance

�
L/R = E

J

2E
C

[cos ('
L/R) + 2↵ cos(2⇡f + 2'

L/R)]

⇡ E
J

2E
C

h

4↵2�1

2↵ ⌥ ⇡(1+2↵2

)�f

↵
p
4↵2�1

i

(2.24)

These states are shown in figure 2.7 together with the qubit potential. They are coupled through
possible quantum tunnelling through the potential barrier between the two minima, whose height
depends on the values of the asymmetry parameter, ↵, which is tuneable via the Josephson
energy of the junction c. This can be done for instance by replacing junction c by a DC
SQUID with a separately tuneable flux [23, 60]. However, as soon as the flux deviates from the
value � = �

0

/2 the qubit eigenstates occur to be well-localised in the potential wells, coupling
between the two states is negligibly small and they are hence approximately given by | 

L

i and
| 

R

i. Usually the persistent current qubit dynamics is operated for f = 1/2, usually called
“sweet spot”, where the energies of the two states of the qubit are degenerate and the qubit is
first order insensitive to flux noise.

2.3.4 Fluxonium qubit

The fluxonium is a superconducting qubit whose electrical circuit is shown in figure 2.8: a small
Josephson junction with Josephson energy E

J

and capacitance C is shunted by an array of M
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Ju
nct
ion
s

Figure 2.8: The fluxonium qubit consists of a superconducting loop interrupted by M + 1 Josephson junctions
which is threaded by a magnetic flux �

x

. In an e↵ective description only the junction with the
Josephson energy E

J

and the phase di↵erence '
BS

acts as a Josephson junction whereas the remaining
M junctions with a larger Josephson energy E

J

/↵ (↵ < 1) act as a superinductance.

larger JJs characterized by Josephson energy E
J

/↵ with ↵ < 1 [63]. When operated at microwave
frequencies well below its self-resonant frequency

p

E
J

E
C

/↵/~ with the charging energy E
C

=
e2/2C, the array emulates a ‘superinductance’ which is an inductance whose impedance exceeds
the superconducting impedance quantum RQ = ~/(2e)2 ' 1 k⌦. The superinductance has to
be realized with Josephson junctions as it is impossible to realize using a conventional coil due
to stray capacitances between the windings [63]. The Hamiltonian of the system consists of the
kinetic energy T = 4E

C

n̂2

BS

, with the number operator n̂
BS

= �i@/@'
BS

which is the conjugate
variable to the superconducting phase di↵erence '

BS

across the junction with the Josephson
energy E

J

(which from now on will be referred to as the ‘black sheep’). Additionally, the
phase of the black sheep is exposed to the potential energy U

BS

= EJ(1 � cos'
BS

). Assuming
that the M junctions constituting the superinductance are equivalent, they all will have the
same superconducting phase di↵erence 'M . As a result the total potential energy is given by
U = U

BS

+ M(E
J

/↵)(1 � cos'M ). If the size R of the superconducting loop is so small that
�2

0

/R � E
J

the fluxoid quantization takes the form [43]

'
BS

+M'M � 2⇡f = 0. (2.25)

It is convenient to introduce the new variable ' = M'M = �'
BS

�2⇡f which denotes the phase
di↵erence across the superinductance. For large M at fixed ', the phase di↵erence 'M across
each junction in the array constituting the superinductance becomes small. As a result, it is
possible to expand the cosine in the potential energy to second order and obtain

U = EJ cos'BS

+
1

2
E

L

'2 (2.26)

with E
L

given by [63]

EL =
EJ

↵M
=

(�
0

/2⇡)2

L
e↵

(2.27)

where L
e↵

/ M denotes the e↵ective superinductance emulated by the array of Josephson junc-
tions. It is important to observe that it is the expansion of the cosine potential to second order
in ' which removes the 2⇡ periodicity of U as a function of ' and thus makes the device charge



26 2. Josephson qubits

-1.5 0 1-1

5

4

3

2

1

0

-1

En
er
gy

5

4

3

2

1

0

-1

5

4

3

2

1

0

-1

1.5 -1.5 0 1-1 1.5 -1.5 0 1-1 1.50.5 0.5 0.50.5-0.5 -0.5 -0.5

Figure 2.9: The black curve shows the potential energy of the fluxonium device as a function of the supercon-
ducting phase ' for E

L

/E

J

= 5.8 10�2 and di↵erent values of the magnetic flux �x. In the same plots
the wave functions of the three lowest lying eigenstates (E

C

/E

J

= 2.8 10�1) are depicted (rot, orange
and green lines) where the vertical o↵set indicates the corresponding eigenenergy. The specific values
of the energy are taken from Ref. [63].

insensitive, thus it is important to have a large number M of junctions. However, instantons
connecting di↵erent minima of the potential U have to be suppressed and this e↵ectively limits
the maximal value of M which can be employed. The value of M consequently has to be a
compromise between these two limitations [63]. In conclusion, the total Hamiltonian of the
fluxonium is given by

H = T + U = 4E
C

n̂2 +
1

2
E

L

'̂2 � E
J

cos ('̂� 2⇡f) (2.28)

with n̂ = �i@/@' = �n̂
BS

the operator conjugate to '̂.

The Hamiltonian model thus obtained can describe a two level system, namely the so-
called fluxonium qubit, if the conditions E

J

> E
C

> E
L

are satisfied. Figure 2.9 shows the
potential as well as the wavefunctions for the lowest three energy levels of the Hamiltonian
(2.28), evaluated in particular putting E

L

/E
J

= 5.8 10�2 and E
C

/E
J

= 2.8 10�1, which are the
values for the energies used in Ref. [63], in correspondence to three di↵erent value of the flux
control �

x

. Let us observe that for �
x

= 0, the ground (g), first excited (e) and second excited
(d) states form a V system, while a ⇤ system is provided near �

x

= �
0

/2. For intermediate
flux bias, the (g) and (e) states are fluxon modes localized in two di↵erent wells. Moreover
at �

x

= �
0

/2 the potential resembles that of a RF-SQUID qubit, where the g and e states
become the symmetric and antisymmetric superpositions of the degenerate fluxon modes. The
stability of the g–d transition is exploited for reading out the qubit state. By placing the readout
resonator frequency near the g–d transition frequency, the state of the qubit may be observed
over the entire flux tunable range in a dispersive measurement.

For the scope of this thesis it is interesting to observe that if the value of the adimensional
parameter f is not far from 0.5, namely for �f = f � 0.5 < 0.3 the qubit eigenstates are well-
localized in the potential wells. Moreover, another important aspect to underline is that in the
vicinity of a local minimum '̄ of the potential shown in figure 2.9, the energy potential can be
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approximated using U(') ⇡ U('̄) + 1

2

[EL + EJ cos('̄� 2⇡f)] ('� '̄)2, so the oscillator ground
and first excited states can be taken as a good approximation of the qubit states. The qubit
states are then given by

h'| 
g/ei =

✓

�
g/e

⇡

◆

1/4

exp

"

�
�
g/e('� '

g/e)
2

2

#

(2.29)

with

�2
g/e = 1

8EC
[EL + EJ cos('

g/e � 2⇡f)], (2.30)

where '
g/e are the positions of the two minima of the two deepest wells.

2.4 Sources of decoherence

This section will be devoted to introducing the most common sources of decoherence in a su-
perconducting qubit. In general there are many channels through which a qubit may relax or
dephase, ultimately leading to decoherence as we can see from equation (2.6). The strength of
each channel depends on the qubit species, parameters, and experimental setup. At the end
of the section, typical values of decoherence and relaxation times will be given for each qubit
introduced in this chapter.

2.4.1 Relaxation sources

Relaxation of the qubit implies energy loss and thus any material through which an electric field
is set or a current flows as part of the qubit mode, contributes to the total relaxation time of the
qubit, usually indicated with T

1

. In general, there are many sources of relaxation in every qubit,
some of which may be orders of magnitude stronger than others. Important sources of relaxation
are for example capacitive losses, due to each material in which electric field energy resides, and
inductive losses, due to each material through which current travels. Also, the energy that leaves
the qubit by radiation to the outside, introduces a loss by radiation contribution to the total
relaxation term.

An example of a capacitive material loss is dissipation due to two level systems (TLS).
Dielectric materials are often thought to have various defects both in the bulk and especially on
their surface. Some of these defects may have two states with di↵erence in energy close to the
qubit excitation energy. In this case, the qubit may relax while exciting a defect TLS. Eventually
the TLS may dissipate the energy in the form of phonons into the substrate, thus preparing the
TLS to absorb more energy from the qubit.

Another typical relaxation contribution is given by the Purcell e↵ect [68], which is responsi-
ble for radiation loss. The Purcell E↵ect is a relaxation mechanism which arises when the qubit
is coupled to a cavity that is coupled to a microwave line for readout and drive purposes. The
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strength of this coupling is controlled by the qubit-cavity coupling strength, the qubit-cavity
detuning, and the cavity coupling quality factor.

Usually, one can think about these various loss mechanisms considering a resonant circuit
representation in which each element comes with a resistor in parallel representing the loss
associated to that component. The participation ratio of each component to the total loss, in
this view, leads to di↵erent currents in di↵erent arms of the circuit. If there is a component with
no current, its resistance does not add to the total. In this way, for a generic qubit, one must
include the junction inductance and capacitance, the environment capacitance and inductance,
and the Purcell e↵ect, which takes into account the loss by radiation term.

2.4.2 Dephasing sources

In addition, there are many possible sources of dephasing. Any microscopic or macroscopic
process causing the qubit frequency to drift or fluctuate is a source of dephasing. The dephas-
ing time usually is indicated with T� and the sources which can contribute to it are photon
induced dephasing, o↵set charge noise, flux noise, critical current noise and dephasing due to
quasiparticle tunneling, which will be discussed in detail in chapter 4.

Photon induced dephasing [69] is due to the fact that coupling a qubit to a cavity introduces
a term that makes the qubit frequency depend on the number of excitations in the cavity. If the
number of photons in the cavity fluctuates, then so does the qubit frequency, giving a dephasing
contribution.

The o↵set charge noise comes from o↵set charge fluctuations. For example, fluctuations
of the o↵set charge on the island of the CPB induce frequency fluctuations. The sensitivity of
a given qubit design to charge noise is characterized by the slope @E

ge

/@n
g

where E
ge

is the
energy di↵erence between the the ground state and the first excited state

T� ⇠ ~
Aq

�

�

�

�

@E
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@n
g

�

�

�

�

�1

(2.31)

where Aq is a term denoting the amplitude of charge fluctuations, and may be of the order 10�3

or 10�4 e [70]. When the slope @E
ge

/@n
g

goes to zero, small charge fluctuations do not shift the
qubit frequency to first order, in this way a sweet spot for charge noise occurs, meaning that
this situation will be preferred to minimize the dephasing due to the o↵set charge.

Flux noise is another possible dephasing source, and results from flux fluctuations through
a superconducting loop that influences the qubit frequency. The source of these fluctuations may
be either from microscopic spins on the device surface or fluctuations of an externally applied
field, for example. The sensitivity of a given qubit design to flux noise is characterized by the
slope @E

ge

/@� where � is the flux through the loop under consideration

T� ⇠ ~
A

�

�

�

�

�

@E
ge

@�

�

�

�

�

�1

(2.32)
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CPB Quantronium Transmon Phase qubit RF-SQUID Delft Fluxonium
T
1

5 ns 1 µs 50 µs 10 ns 20 ns 1 µs 10 µs
T
2

5 ns 0.5 µs 10 µs 10 ns 20 ns 1 µs 10 µs

Table 2.1: Characteristic relaxation and decoherence times for the qubit in this chapter [1, 29, 58,73–76]

where A
�

is a term denoting the amplitude of flux fluctuations, and may be of the order of 10�5

or 10�6 �
0

[71]. For the flux noise, a sweet spot occurs when the slope @E
ge

/@� goes to zero,
meaning small flux fluctuations do not shift the qubit frequency to first order.

Yet another possible source of dephasing is critical current noise. The Josephson energy
E

J

is calculated using the critical current of the Josephson tunnel junction E
J

= ~I
c

/2e, and
is physically derived from the thickness and area of the insulating layer. Fluctuations in crit-
ical current can then be converted into fluctuations in E

J

, which in turn can be converted to
fluctuations in qubit frequency. Dephasing times can be calculated in general as

T� ⇠ ~
AI

c

�

�

�

�

@E
ge

@I
c

�

�

�

�

�1

(2.33)

where AI
c

is a term denoting the amplitude of critical current fluctuations, and may be of the
order of 10�6 or 10�7 I

c

[72].

In the next chapters the attention will be concentrated on the study of coherences in flux qubits.
In the third chapter the dynamics of a double SQUID when its energy potential is rapidly mod-
ified by flux pulses will be analyzed. This investigation will be based on experimental results
obtained at the IFN-CNR by Chiarello et al. In the fourth chapter, the analysis will be centered
on the Delft qubit and on the Fluxonium qubit, namely the more performant among the flux
qubits presented in this chapter, both for relaxation and decoherence times.
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Chapter 3

Exploiting quantum coherences in
flux qubit systems

In this chapter we present two di↵erent studies exploiting quantum coherences in flux qubit
devices. Starting from an experiment performed at the IFN-CNR by Chiarello et al. [77], we
prove that the interplay of Landau-Zener transitions and quantum tunneling as well as the
presence of quantum coherences in the initial state of a double SQUID can be the origin of an
experimentally observed anomalous behavior. In particular, the population of the states of the
double SQUID under study show a behavior which can be described theoretically using quantum
coherence properties of the system. In other words, this experiment can be used as a witness of
quantum coherences in the system, thus proving the quantum nature of a double SQUID.

In the second part of the chapter we show another important application of quantum
coherence in superconducting qubits, namely the possibility of generating entangled states. In
particular, we propose a generating scheme for a state with specific quantum coherences in a
system composed by three flux qubits, taking into account the interaction of the system with
its surroundings, modeled as bosonic baths.

3.1 Double SQUID manipulated by fast modulation of its en-
ergy potential

Controlling and modifying the e↵ective potential shape of superconducting devices is today
possible with a fast and accurate tuning. This allows for example the observation of very fast
oscillations of the magnetic flux states in a SQUID just by quickly changing its potential shape
from a symmetric double well to a single one and back to the initial potential. For this kind
of manipulation the rapidity of the modification of the e↵ective potential shape is of great
importance. For example, if we consider quantum computing applications, the manipulation
must be fast enough in order to induce non-adiabatic Landau-Zener transitions between the
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first two energy levels, which are used as computational space (namely the space generated by
the states we are interested in). Landau-Zener transitions are non-adiabatic processes which
can take place when a system has a time-dependent Hamiltonian varying such that the energy
separation of the two states is a linear function of time. The Landau-Zener transition can be
explained with an example. Let us put in the situation when the system starts, in the infinite
past, in the lower energy eigenstate. For infinitely slow variation of the energy di↵erence, the
adiabatic theorem tells us that a transition to the upper energy state cannot take place. This
is because the system will always be in an instantaneous eigenstate of the Hamiltonian at that
moment in time. At non-zero velocities, transitions can occur with a probability described by
the Landau-Zener formula [78,79]. The manipulation must also be slow enough in order to avoid
transitions to even higher lying levels (non computational space). Fortunately generally speaking
this is possible thanks to an appropriate energy gap existing between the first couple of levels and
the upper ones. Therefore the transition rate is an aspect that must be accurately considered
and calibrated [80]. In what follows we investigate the e↵ects of the modification speed of the
e↵ective potential of a double SQUID discussing in detail the experimental observations obtained
by Chiarello et al. [77] and the theoretical analysis we made in order to understand the physical
origin of the observed behavior.

3.1.1 Experimental setup

The device considered in the experiment is the so called double SQUID [67], consisting of a super-
conducting loop of inductance L interrupted by a DC SQUID, a second smaller superconducting
loop of inductance l interrupted by two identical Josephson junctions, each of (nominally) identi-
cal critical current i

0

and capacitance c (figure 3.1a). As discussed in chapter 1, the DC SQUID
behaves approximately like a single junction of capacitance C = 2c and tunable critical current
I
0

(�
c

) = 2i
0

cos(2⇡�
c

/�
0

), which is controlled by a magnetic flux �
c

applied to the small loop
(this approximation holds if the loop is small enough, i.e for li

0

⌧ �
0

). The double SQUID
behavior can be controlled by two distinct magnetic fluxes, one applied to the large loop (�

x

)
and the second to the small one (�

c

). As before discussed, it is useful to describe the SQUID dy-
namics by an equivalent mechanical model, with e↵ective mass m = C�2

0

/4⇡2, e↵ective position
corresponding to the total magnetic flux threading the large loop (�), and potential

U =
(�� �

x

)2

2L
� I

0

(�
c

)�
0

2⇡
cos

✓

2⇡
�

�
0

◆

(3.1)

This e↵ective potential can have one or two distinct wells, according to the adimensional
parameter �(�

c

) = 2⇡I
0

(�
c

)L/�
0

: in the particular case �
x

= 0 there will be a single-well
for � > �1 (approximately a harmonic potential with a characteristic frequency controlled by
�
c

, figure 3.1b), and two distinct wells separated by a barrier for � < �1 (with barrier height
controlled by �

c

, figure 3.1c). The flux �
x

controls the potential symmetry: for �
x

= 0 the
potential is symmetric, otherwise it is tilted (figure 3.1c).

During the experiment a fast and large modulation of the potential shape, from the single-
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Figure 3.1: (a) Scheme of the double SQUID. (b) E↵ective potential of the double SQUID in the single-well case,

with relative eigenwaves vertically shifted by the corresponding eigenenergies. (c) Double-well case
with a slight asymmetry.

well to the double-well case is realized. This is just one half of the complete manipulation of the
qubit state presented in ref. [81,82]. Initially the system is maintained in the single-well case for
a rest time t

w

. Then it is moved rapidly to the double-well case, where a high barrier separates
the two minima. This is obtained by changing the control flux �

c

with a characteristic sweeping
rate � = d�

c

dt . Finally, a read out of the SQUID flux state is done, in order to observe which
of the two minima is occupied at the end. This step is performed by an inductively coupled
readout SQUID used as a magnetometer by means of measurements of the switching current [83].
The sequence is repeated many times in order to estimate the occupation probability P of the
final flux state (for example, the probability to obtain a final right flux state). The complete
operation is repeated for di↵erent unbalancing fluxes �

x

. For slow (adiabatic) modifications
we expect that the system remains always in its ground state: the left flux state when the left
minima is the lower one (for �

x

< 0), and the right flux state in the opposite case (for �
x

> 0),
with a smooth transition between these opposite cases around the symmetry point (�

x

⇡ 0). In
this case the probability P as a function of the unbalancing flux �

x

presents a sigmoidal shape.
By increasing the sweeping rate � we expect an excitation of upper levels due to non adiabatic
transitions, with a possible emerging of e↵ects related to this population.

The measurements [77] were performed on devices realized by standard trilayer Nb/AlOx/Nb
technology, with nominal parameters L = 85pH, l = 7pH, I

0

= 8µA and c = 0.3pF, in a dilution
refrigerator with base temperature T = 30mK arranged for ultra low noise qubit measurements
(mu-metal, superconducting and normal metal shields, thermocoax and L-C-L filters on dc lines,
di↵erent attenuator stages on the signal line). A preliminary study of the switching current in
the readout DC SQUID gives an escape temperature of about 250 mK, compatible with the
crossover temperature within the experimental errors. This indicates the absence of an excess
temperature due to noise [83]. The probability P is evaluated by repeating the preparation -
modification - readout cycles for 1000 times at a rate of 10 kHz. The initial preparation is ob-
tained by waiting for a time t

w

= 200ns in the single-well condition (figure 3.2a), for �
c

⇡ �480
m�

0

. In this condition the system is well approximated by a harmonic oscillator with charac-



34 3. Exploiting quantum coherences in flux qubit systems

-0.40-0.41-0.42-0.43-0.44
0

5

10

15

20

25

30

35

n=0

n=0 n=0

n=1

n=1
n=1,2

n=2

n=2
n=3,4

n=3

n=3

LZ transition

sona
Re

nt

a tivac tion

ge r c
De ne a y

-0.2 -0.1 0.0 0.1 0.2-0.2 -0.1 0.0 0.1 0.2

0
10
20
30
40
50

Po
te

nt
ia

l/
le

ve
ls

Le
ve

ls

Flux (  ) Flux (  )

Control flux (  )

(a) (b)

(c)

(G
H

z)
(G

H
z)

Figure 3.2: (a) Energy potential of the system and relative eigenstates in the single-well case (for �
c

= �429 m�
0

).
(b) Energy potential of the system and relative eigenstates in the double-well case (for �

c

= �412
m�

0

), with a slight asymmetry ensuring the degeneracy (for �
x

= 0.543 m�
0

). (c) Variation of the
energy levels positions for di↵erent fluxes �

c

(for �
x

= 0.543 m�
0

). Note that for convenience all
energies are expressed as frequencies in GHz, and are shifted by subtracting the ground state energy.

teristic frequency ⇡ 19GHz, corresponding to a level spacing of about 0.91K, very high with
respect to the thermal bath temperature, so that we expect a negligible thermal excitation.

The potential shape modification is driven by a fast pulse generator, presenting signals with
a typical rise time t

R

= 0.8ns that can be changed by using a tunable L-C-L filter. The modified
pulse is fully characterized thanks to a fast oscilloscope, in particular it is possible to check the
pulse shape and the actual rise time. The fast signal is transmitted to the device thanks to
a 50⌦ matched coaxial cable interrupted by three 20dB attenuators placed at 300 K, 1 K and
30 mK stages. More details on the setup can be found in ref. [81]. The entire line was tested
at room temperature and in the absence of the chip, while the present setup does not allow
to test the entire system (line plus chip) at low temperature. For this reason a large error in
the determination of the real signal shape and rise time at the device level can be expected.
The applied signal modifies the potential from the single-well condition, at �

c

⇡ �480m�
0

, to
the double-well case, at �

c

⇡ �360m�
0

, passing through the critical condition �
c

⇡ �422m�
0

where there is the transition between the single-well and double-well conditions (figure 3.2). At
the end of each cycle the final flux state is measured by the coupled readout DC SQUID. This
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Figure 3.3: Experimental results for the probability P to measure a right flux state for di↵erent unbalancings �
x

at three di↵erent rise times t

R

. Resonance peaks are visible for faster transitions (arrows in second
and third plots) [77]

is done by applying a current ramp to the SQUID and recording the switching current, which is
directly related to the qubit flux. The sequence is repeated for di↵erent unbalancing fluxes �

x

,
ranging from �4m�

0

to +4 m�
0

.

3.1.2 Experimental results

The probability curves obtained after the sequence of measurement for di↵erent unbalancing
fluxes are plotted in figure 3.3. These curves in particular correspond to three di↵erent rise
times, t

R

= 1.55 ns, t
R

= 1.34 ns and t
R

= 1.13 ns. In the top plot we observe the sigmoidal
function expected for a slow rate. In the middle and lower plots two distinct order of peaks
appear, respectively at about ±0.55m�

0

and ±1.1m�
0

. The measurement can be repeated for
di↵erent rise times obtaining the 3-dimensional curve shown in figure 3.4.

In figure 3.4 we observe the following characteristics. First of all the position of peaks
(in �

x

) corresponds to the conditions for which di↵erent levels in the two wells are aligned
(degenerate) (figure 3.2b). This strongly suggest that the presence of peaks is a manifestation
of resonant tunneling between wells. Secondly we note that the appearing of peaks requires rise
times below a particular critical value, namely it is necessary to have a high enough sweep-rate
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Figure 3.4: 3D plot of the experimental results for the probability P to measure a right flux state for di↵erent
unbalancings �

x

at di↵erent rise times t
R

. [77]

in order to observe peaks. Thirdly, there is an alternation of peak sets: when the second set of
peaks appears, the first set disappears. In figure 3.2c the modification of the first nine energy
levels in the passage from the single-well to the double-well condition (in the degenerate case for
�
x

= 0.55 m�
0

) is plotted. This figure can help us in a qualitative explanation of the observed
peaks. In the single-well condition (on the left) it appears reasonable to suppose that only the
ground state is populated. Close to the critical point �

c

⇡ �0.42m�
0

, where the barrier appears
to separate two distinct wells, Landau-Zener transitions lead to a population of the upper levels,
with an e�ciency depending on the sweep-rate d�

c

dt . These excited states can cross the barrier
thanks to a resonant tunneling when the alignment condition is met. The experimental results
thus suggest that these two e↵ects combine and produce the observed peaks, due to an excess
of population in the upper well when the resonant and the non-adiabatic conditions are both
fulfilled. The region, where this e↵ect is active, is small, of the order of 1/10 of the entire span
of the flux �

c

(120 m�
0

), and this region is crossed in a similar fraction of the entire rise time
duration, about 0.1ns. We stress again that the combination of Landau-Zener and resonant
tunneling can explain the first two observations (position of peaks and their appearance only
below a critical rise time), but not the third one, that is the alternation of peak sets. In the
next section we will give a more detailed theoretical analysis of the system, in order to gain
information about possible physical mechanisms and/or properties of the system which may be
responsible for the appearance of the alternation of peak sets as in figure 3.4
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3.1.3 The theoretical analysis

In what follows, we describe a more quantitative analysis we developed [77], exploiting a simple
quantum model useful to describe the system. In order to do this we start considering the
Hamiltonian model relative to the potential (3.1)

H(t) = � 1

2m

@2

@'2

+m⌦2

('� '
x

)2

2
+m⌦2�(t) cos('), (3.2)

where ⌦ = 1/
p
LC, ' = 2⇡�/�

0

, '
x

= 2⇡�
x

/�
0

, and �(t) = �I
0

(�
c

(t)) �

0

2⇡m⌦

2

. The Hamil-
tonian (3.2) is well suited to describe the time evolution of a particle in a one-dimensional
time-dependent potential. In particular, appropriately choosing the function �(t), it is possible
to vary the potential shape from a single to a double-well, in a time interval t̃, thus reproduc-
ing the initial and final conditions of the experiment discussed before. The problem therefore
consists in finding the probability P that, at the end of the process, the particle is found in the
right well as function of both the unbalancing parameter '

x

as well as of the rise time t
R

. Let’s
observe that knowing the state of the system | (t̃)i at the time t̃, this probability can be simply
evaluated as

P (t̃) =

Z

right well

 ⇤(t̃) (t̃)d' (3.3)

Let’s indicate by | n(t)i a set of instantaneous eigenfunctions of the Hamiltonian (3.2):

H(t)| n(t)i = En(t)| n(t)i (3.4)

Exploiting these states, we can write

| (t)i =
1
X

n=0

exp[i

Z t

0

En(t
0)dt0] · sn(t) · | n(t)i (3.5)

where the |sn(t)|2 are the populations of the instantaneous eigenstates | n(t)i. The function
sn(t) are solutions of the following set of integro-di↵erential equations:

ṡn(t) = �
1
X

k=0

Mnk(t) exp[i

Z t

0

(En(t
0)� Ek(t

0))dt0]sk(t). (3.6)

with Mnk(t) = h n(t)| ̇k(t)i. Starting from eqs. (3.3) and (3.5), the probability P can then be
written as

P (t̃) =
1
X

n=0

|sn(t̃)|2
Z

right well

 ⇤
n(t̃) n(t̃)d' (3.7)

⌘
1
X

n=0

|sn(t̃)|2Ln
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,
supposing that at t = 0 it is in its ground state. [77]

with

Ln =

Z

right well

 ⇤
n(t̃) n(t̃)d' (3.8)

Given the di�culties of calculating an exact analytical solution of the coupled integro-
di↵erential equations (3.6), we proceed further by performing numerical simulations of the dy-
namical behavior of the system carefully taking into account both the non adiabadicity in the
system dynamics and the possible emergence of resonant tunneling processes. As first step,
considering �(t) as a parameter, we numerically diagonalize the Hamiltonian (3.2) at a generic
time instant t, finding its instantaneous eigenvectors | n(t)i and the correspondent eigenvalues
En(t).

Considering values of t
R

of interest in the context of this paper, we have evaluated the
quantity Ln, defined in eq. (3.8), for di↵erent values of n. As expected, at least for not too
large n, Ln is either almost equal to one or negligible, witnessing that the first eigenstates are
practically localized for �

x

6= 0. In our simulation however we use the numerical value of Ln

instead of 0 or 1.

To evaluate the probability P we thus need to calculate the populations |sn(t̃)|2 by numer-
ically solving the equations (3.6) explicitly giving the way in which the potential shape modifies
itself going from the initial condition to the final one during the time t̃. In other words, we now
must choose the function �(t) appearing in equation (3.2). We wish to underline that this is
a very delicate point. It is undoubted indeed that the dynamics of the system will be deeply
a↵ected by the way of varying the potential shape. Thus we expect to find di↵erent results for
di↵erent choices of �(t).
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,
supposing that at t = 0 it is in the linear superposition | (0)i = x| 

0

(0)i + e

i✓
p

(1� x

2)| 
1

(0)i of
its ground and first excited states in correspondence to x = 0.95 and ✓ = 0. [77]

3.1.4 Theoretical results and conclusive remarks

Taking into account the considerations presented in section 3.1.3, it appears reasonable fixing
the �(t) shape as a sigmoidal function. In particular we put it as �(t) = �(0)(1�⇣(t))+�(t̃)⇣(t)
with ⇣(t) = Erf((2t/˜t�1)w�s)�Erf(�w�s)

Erf(w�s)�Erf(�w�s) , Erf(x) = 2p
⇡

R x
0

e�t2dt. This function contains two

parameters w and s, which respectively control how much the slope of the sigmoidal function
is shifted in time and how steep its slope is. We stress that varying the value of these two
parameters implies a change in the rise time t

R

. In our simulation the parameters have been
chosen as w = 2 and s = 0.3, in order to obtain a su�ciently steep slope and a correspondent
appropriate rise time.

In order to investigate the appearance of peaks in figure 3.4, we have calculated the prob-
ability of finding the particle in the right well for di↵erent values of �

x

= '
x

�
0

/2⇡ supposing,
as it appears physically reasonable, that at t = 0 the system is in its ground state. This was
supposed as a consequence of the waiting time t

w

in which the system has been put in the single
well condition. In particular we evaluated this probability considering a range of �

x

in which
the peaks appear, as suggested by the experimental data. Considering values of t

R

as in figure
3.4, our simulation does not evidence the existence of significant peaks. However, by taking into
account the fact that the peaks in the probability P arise reducing the rise time, and in view of
the experimental uncertainties before discussed, we have simulated the behavior of the system
exploring smaller t

R

. The results obtained are reported in figure (3.5) where the probability P
is plotted as a function of both �

x

and t
R

. As expected, resonance peaks appear at di↵erent
values of �

x

. However the position of such peaks with respect to the rise time t
R

does not reflect
the experimental observations neither qualitatively nor quantitatively. In other words even if a
dependence of P on t

R

is evident, the function P (t
R

) is very di↵erent from the experimental one.
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In particular the probability P obtained by simulation (see figure 3.5) is not characterized by
the alternation of peak sets as in figure 3.4. This result moreover does not seem to be imputable
to the particular choice of the �(t) we made. We have indeed verified that this is the case by
choosing a linear function and obtaining the same qualitative behavior of that shown in figure
3.5. If it is true that the manner in which we modify the potential shape deeply a↵ects the
dynamics of the system and thus the probability P that the system is found in the right well
at the end of the potential modification, another key ingredients to be considered is surely the
state of the system at t = 0. Taking into account the fact that the temperature at which the
experiment is performed is ⇠ 30mK, it is reasonable to suppose that at t = 0 there is a small,
but not zero (of the order of few percent), probability that the system is in its first excited
state. It could be thus reasonable to assume that the preparation step leaves the system in a
mixture ⇢ = x2| 

0

(0)ih 
0

(0)|+ (1� x2)| 
1

(0)ih 
1

(0)| of the ground and the first excited state.
Performing simulations starting from this mixture instead of the ground state, we have verified
that, considering values of x compatible with T ' 30mK, we do not get significant di↵erences
with respect to the results displayed in figure 3.5. We have also checked that increasing the
relative weight x of the first excited state in the initial mixture worsens the accordance between
theoretical predictions and experimental results. The theoretical prediction instead drastically
changes if we suppose that quantum coherences are present in the initial state of the system.
Such an assumption can be justified by considering the fact that the waiting interval of time t

w

was not long enough to allow the complete destruction of the coherences between the ground and
the first excited state of the double SQUID. If this is the case, it is reasonable to assume that at
t = 0 the system is in a quantum superposition | (0)i = x| 

0

(0)i+ ei✓
p

(1� x2)| 
1

(0)i of the
first two low-lying states, instead of a mixture of the two states as before supposed. Starting
from this initial state the probability P shows a dependence on both �

x

and t
R

as displayed in
figure (3.6) where we have considered a smaller range of t

R

to better appreciate the behavior of
P . As expected, also in view of experimental uncertainties on the function �(t) as well as on
the parameters defining the system, figure (3.6) does not exactly match the experimental results
presented before, even if the qualitative behavior of P seems to be well reproduced. More in
detail the most important aspect of the results shown in figure (3.6) consists in the fact that,
as experimentally observed, there is an alternation of the peak sets determined by both the
asymmetry in the potential governed by the value of the unbalancing parameter �

x

, and on the
rise time t

R

required to go from a single to a double-well.

The theoretical analysis developed in this paper has the merit to disclose the role played
by the persistence of quantum coherences in the initial state of the double SQUID. We wish to
stress indeed that starting from an initial state as the ground state of the qubit or a mixture
of the same ground state and the first excited one, even if leading to the appearance of peaks,
is completely unable to predict the alternance of minima and maxima as requested by the
experimental results. Thus our assumption, that is the persistence of quantum coherences, leads
to predictions in good qualitative agreement with the experimental results. The intriguing point
is that all the alternative seemingly more reasonable assumptions concerning the initial state of
the SQUID predict a behavior not compatible with some aspect of the observed one.

Before concluding this section we wish to spend some words about possible decoherence
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e↵ects in the dynamical behavior of the system. It is important to stress that, as we have
previously discussed, the temporal interval where the physical mechanisms at the basis of the
observed e↵ects are active is a small fraction (of the order of 0.1 ns) of the total duration of the
experiment (about 1 ns). As first approximation it is thus reasonable to neglect decoherence
e↵ects in the system dynamics, which present time scales of the order of nanoseconds. Anyway it
is the case to underline that in this context the source of noise is the 1

f noise [84] that generally
speaking acts modifying the e↵ective control parameter as for example �

x

[85–87]. We thus
expect that the e↵ects of such a noise on the results reported in figure 3.6 would consist at most
in a broadening of the observed peaks.

3.2 GHZ state generation of three Josephson qubits in presence
of bosonic baths

Since its introduction, quantum entanglement has played a central role in foundational discus-
sions of quantum mechanics. More recently, also due to the advent of new more applicative
areas, the concept of entanglement has attracted a renewed interest from the scientific com-
munity. Entangled quantum states in multipartite systems are those states which interact in
ways such that the quantum state of each part of the system cannot be described indepen-
dently, instead, a quantum state may be given for the system as a whole. Entangled states have
indeed proved to be essential resources for example both for quantum information processing
and computational tasks. For this reason, in the last few years many e↵orts have been devoted
to the design and the implementation, in very di↵erent physical areas, of schemes aimed at
generating entangled states [8, 9, 11–13, 15–21]. In this context, in particular, superconductive
qubits turned out to be promising candidates providing their scalability and the possibility of
controlling and manipulating their quantum state in situ via external magnetic field and voltage
pulses [52, 88–90].

Having as final target the realization of states characterized by prefixed quantum corre-
lations, it is obviously important to estimate the e↵ects of the coupling between the system
considered and its surroundings.

Recently Galiautdinov and Martinis [8] have presented a protocol suitable for generat-
ing maximally entangled states, namely GHZ (Greenberger - Horne- Zeilinger state) and W
states [91], of three Josephson qubits. The key idea on which their proposal is based, is that
for implementing symmetric states, as the GHZ and W are, it is convenient to symmetrically
control all the qubits in the system. In particular, making use of a triangular coupling inter-
action scheme and exploiting single qubit local rotations, they demonstrate the possibility of
generating the desired state appropriately setting the interaction time between the qubits. In
their analysis, however, the authors considered the system as an ideal one, without taking into
account in any way its unavoidable coupling with uncontrollable external degrees of freedom.
In the next section, we will present the investigation we did [92], following the idea proposed in
ref. [8], on the e↵ects of the environment on the generation of GHZ states. More in detail, we
concentrated our attention on all the external degrees of freedom that can be e↵ectively modeled
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as independent bosonic modes taking into account their presence from the very beginning. We
moreover exploited the same triangular coupling mechanism envisaged in ref. [8], but we mod-
ified the single qubit rotation protocols with respect to the ones of Galiautdinov and Martinis.
Our analysis clearly proves that the scheme for generating GHZ states is stable enough against
the noise sources we consider.

3.2.1 Ideal generation scheme

3.2.1.1 Galiautdinov - Martinis entangling protocol

In this section we briefly summarize the single step entangling protocol, proposed by Galiautdi-
nov and Martinis in order to generate the three-qubits GHZ states

|GHZi = 1p
2
(|000i+ ei'|111i) (3.9)

being |0i and |1i the ground and excited states of each qubit respectively. In particular we
review only some aspects of the procedure that are of interest for our further investigations.
The Hamiltonian model describing the physical system consisting of three Josephson qubits
with pairwise coupling, is given by

H =
3

X

i=1

⇣!

2
⌧ i
3

+
1

2
[g(⌧ i

1

⌧ i+1

1

+ ⌧ i
2

⌧ i+1

2

) + g̃⌧ i
3

⌧ i+1

3

]
⌘

(3.10)

with ⌧4k = ⌧1k (k = x, y, z). Introducing the collective operators

S =
3

X

j=1

⌧ j

2
(3.11)

we can rewrite equation (3.10) in the following more convenient form

H = !Sz + gS2 � (g � g̃)S2

z (3.12)

within a constant term. Starting from equation (3.12) it is evident that the eigenstates of the

system can be written as common eigenstates |s
12

, s,mi of the operators S2

12

=
⇥

1

2

(⌧ 1 + ⌧ 2)
⇤

2

,
S2 and Sz:

S2

12

|s
12

, s,mi = s
12

(s
12

+ 1)|s
12

, s,mi
S2|s

12

, s,mi = s(s+ 1)|s
12

, s,mi (3.13)

Sz|s12, s,mi = m|s
12

, s,mi

In particular it is immediate to convince oneself that the two states

|000i ⌘
�

�

�

s
12

= 1, s =
3

2
, sz = �3

2

E

and |111i ⌘
�

�

�

s
12

= 1, s =
3

2
, sz =

3

2

E

are eigenstates of
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H correspondent to the eigenvalues �3

2

! + 3

4

(2g + 3g̃) and 3

2

! + 3

4

(2g + 3g̃) respectively. In
view of these considerations it is clear that, if at t = 0 the three qubits are in their respective
ground state, in order to guide the system toward the desired state (3.9) it becomes necessary
to implement some local rotations before turning on the interaction mechanism described by the
Hamiltonian (3.10). This is what Galiautdinov and Martinis do, making thus sure to obtain an
initial condition having both |000i and |111i components. The entanglement is then performed
by switching on, for an appropriate interval of time t

int

= ⇡
2(g�g̃) , the interaction described

by equation (3.10) and finally by realizing an additional single-qubit rotation. The scheme
thus consists of three di↵erent steps: in the first and the third ones, the Josephson qubits are
independent and are driven by external fields in order to appropriately rotate their state. In
the second step instead the three qubits are coupled thus producing the desired entanglement
among them.

3.2.1.2 Single-qubit rotations

As we have underlined in section 3.2.1.1, starting from the initial condition |000i the interaction
mechanism described in equation (3.10) can be usefully exploited for generating GHZ states of
three qubits, only if local rotation operations are realized as first and final steps of the procedure,
whose duration is hereafter indicated by t

1

and t
3

respectively,. These two distinct operations
of the protocol require a total time of realization t

13

= t
1

+ t
3

, which has to add to the length
of the qubit interaction interval t

int

= ⇡
2(g�g̃) , if we wish to estimate the total duration of the

generation scheme. Thus the choice of the physical mechanism able to perform appropriate
single qubit rotations, could be usefully exploited to control the time required to generate the
desired state starting from the state |000i. This aspect is of particular interest especially when
the presence of external degrees of freedom is not negligible. At the light of these considerations
we have chosen rotation mechanisms di↵erent from those envisaged in ref. [8]. In particular we
suppose that in the first, as well as in the last step of the scheme, the system of the three qubits
is described by the following Hamiltonian

H l
rot

=
3

X

j=1

H l
rot

(j) (l = I, III) (3.14)

with
H l

rot

(j) =
!

2
⌧ j
3

+
!

2

⇣

ei�l⌧ j� + h.c.
⌘

(3.15)

where

�I = ⇡
⇣

1p
2

+ 1
⌘

(3.16)

�III = ⇡
⇣

3+

p
2

2

⌘

+ ⇡
⇣

(3+

p
3)!

8(g�g̃)

⌘

.

In ref. [93] it is discussed a possible way to realize a Hamiltonian model like that given by
equation (3.14) is discussed in detail, showing in particular that a full control of qubit rotations
on the entire Bloch sphere can be achieved.
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It is possible to prove that setting t
1

= t
3

= ⇡p
2!

, the sequence of the three steps leads to

the desired GHZ states when the interaction between the system of the three Josephson qubits
and the external world may be neglected. After some calculations indeed we obtain that at
t = t

1

the state of the system is given by

| (t
1

)i = 1p
8

✓

|000i+ |111ie�
3i⇡p

2 +
p
3|W ie�

i⇡p
2 +

p
3|W 0ie�

p
2i⇡

◆

. (3.17)

where

|W i = 1p
3
(|100i+ |010i+ |001i) (3.18)

and

|W 0i = 1p
3
(|011i+ |101i+ |110i). (3.19)

At t = t
1

the interaction mechanism described by equation (3.10) is switched on for a time
t
int

= ⇡
2(g�g̃) . At the end of this second step the state of the system will be

| (t
1

+ t
int

)i =
1p
8

✓

|000i+ |111ie�
3i⇡
2

�

!
g�g̃

+

p
2

�

+ (3.20)

�
p
3|W iei⇡(

(

p
3�3)!

4(g�g̃)
�

p
2

2

) �
p
3|W 0ie�i⇡(

(

p
3+3)!

4(g�g̃)
+

p
2)

◆

.

Thus the last step of the procedure described by HIII
rot

, leads the system into the final state

| (t
1

+ t
int

+ t
3

)i = 1

2



(i+ ei↵)|000i+ ie�i✓(i� ei↵)|111i
�

(3.21)

with

↵ = 3⇡!(
p
3�1)

8(g�g̃)

✓ = 3⇡
p
2

2

+ 3⇡!(
p
3+3)

8(g�g̃) . (3.22)

Starting from equations (3.21) and (3.22) it is immediate to convince oneself that, if the condition

!

g � g̃
=

8k

3(
p
3� 1)

k 2 N (3.23)

is satisfied, the three Josephson qubits are left in the desired GHZ state.
Thus we can say that the time required to generate the state (3.9) starting from the condition
|000i can be estimated as

t
tot

= t
1

+ t
int

+ t
3

=

p
2⇡

!
+

⇡

2(g � g̃)
. (3.24)

This value of t
tot

has to be compared with a time t
tot

= ⇡
⌦

+ ⇡
2(g�g̃) , with ⌦⌧ ! required if the

procedure of Galiautdinov and Martinis is adopted. The proposal of Galiautdinov and Martinis
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requires that in the first and in the last step of the procedure the dynamics of each qubit is
governed by the following Hamiltonian model [8, 94]

HI,III
GM

=
X

j

HI,III
GM

(j) (3.25)

where

HI,III
GM

(j) =
!

2
⌧ jz + ⌦cos(!t+ �I,III)⌧

j
x (3.26)

with ⌦ ⌧ ! and �I = �⇡
2

�III = 0. Thus, changing the way to rotate the state of the
three qubits during the first and the last step of the procedure, it is possible to reduce the
time required to generate the target state. As said before, this aspect is of particular relevance
when the interaction of the system with the external world is not negligible. The price to pay
anyway is that in our case, di↵erently from the scheme of Galiautdinov and Martinis, three
qubit GHZ states can be generated only if the condition given in equation (3.23) is satisfied.
Generally speaking, indeed, at the end of the procedure, the three Josephson qubits are left in
a linear superposition of the two states |000i and |111i with amplitudes A

000

= 1

2

(i + ei↵) and
A

111

= i
2

e�i✓(i�ei↵) respectively. It is important, however, to stress that the condition (3.23) is
compatible with typical values of the free frequency !, that generally speaking can be taken of
the order of 10GHz, and with the values of the coupling constants g and g̃, that reasonably can
be assumed of the order of 1GHz and 10�1GHz respectively [7, 23, 66, 95]. On the other hand,
condition (3.23) is not as restrictive as it appears, since we have verified that variations of ten
percent in the ratio !

g�g̃ are still compatible with the requirement that |A
000

|2 ' |A
111

|2.

3.2.1.3 Microscopic master equation derivation

In a realistic description of the scheme until now discussed, we cannot neglect the presence of
uncontrollable external degrees of freedom coupled to the three Josephson qubits that, generally
speaking, a↵ects in a bad way quantum state generation protocols. These degrees of freedom,
that define the so-called environment, can have di↵erent physical origin and thus di↵erent de-
scriptions. In this section we will focus our attention on all the external degrees of freedom
describable as independent bosonic modes [96–104]. More in detail, we will suppose that during
all the process each qubit is coupled to a bosonic bath and the three baths are independent.

The plausibility of this assumption can be tracked back to the fact that the three super-
conductive qubits are spatially separated so that it is reasonable to suppose that each of them
is a↵ected by sources of noise stemming from di↵erent parts of the superconductive circuit. In
this section we review all the three steps of the procedure discussed before, analyzing the dy-
namics of the system by considering from the very beginning the interaction of each qubit with
a bosonic bath. In order to do this we will construct and solve microscopic master equations in
correspondence to the three di↵erent steps described in section 3.2.1.2 in which the generation
scheme is structured. In each of the three steps the master equation will be derived in the Born
- Markov and Rotating wave approximations. In appendix B a more detailed derivation of the
master equation is given in these two approximations. We wish to stress at this point that the
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use of microscopic master equations instead of more naive and more popular phenomenological
ones, becomes important particularly when structured bosonic baths are considered [105].

3.2.1.4 First step: single-qubit rotation

Let us suppose that the three Josephson qubits are initially prepared in the ground state |000i
and that the Hamiltonian describing the system in the first step of the procedure is given by
equation (3.14) with l = I. Moreover, each qubit is coupled to a bosonic bath and the three
baths are independent. The Hamiltonian model describing the system in the first step can thus
be written as [106]

H
1

= HI
rot

+H
B

+H
int

(3.27)

with

H
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⌘ H
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g2k(a
2
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+ ⌧3
1

⌦
X

k

g3k(a
3

k + a3†k ).

Exploiting a standard procedure [107], briefly illustrated in Appendix B, we now derive the
microscopic master equation suitable to describe the dynamics of the three qubits system. Taking
into account the fact that the qubits, as well as the baths, are, in this case, independent, it is
enough to construct and solve the master equation correspondent to a single superconductive
qubit. Indicating by ⇢j(t) the density matrix of the j-th (j = 1, 2, 3) qubit, it is possible to
prove that during the first step we have

⇢̇j(t) = �i[HI
rot

(j), ⇢j(t)]

+ �
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Aj(!1
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where the Bohr frequencies are respectively !
1

=
p
2! and !

2

= 0. The correspondent operators,
describing the jumps between the eigenstates | ±✏ij (✏ = !p

2

), of the Hamiltonian HI
rot

(j), are
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given by
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Concerning the decay rates �
1

(!
1

) and �
1

(!
2

) appearing in equation (3.30), we will fix their
numerical value in the next section where we explicitly give the spectral properties of the baths.

3.2.1.5 Second step: entangling procedure

As we have previously discussed, the next step requires that the three qubits interact among
them through the coupling mechanism described by the Hamiltonian H, given in (3.12). In
addition each qubit interacts with a bosonic bath. Thus the Hamiltonian describing the total
system in this second step can be written as

H
2

= H +H
B

+H
int

. (3.33)

The master equation for the density matrix of the three qubits during the second step can be
written in the form

⇢̇(t) = �i[H, ⇢(t)] + (3.34)
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where the Bohr frequencies are the following
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whereas the jump operators between the eigenstates of the Hamiltonian (3.12) are given for
convenience in appendix C.2. We wish to underline that equation (3.34) does not contain mixed

terms of the form Aj(!k)⇢(t)A
†
j0(!k)� 1

2

�

A†
j(!k)Aj0(!k), ⇢(t)

 

with j 6= j0 since the three bosonic
baths are independent.

We have solved the master equation (3.34), considering as initial condition the solution of
the master equation (3.30) obtained in the previous paragraph at t = t

1

. More in detail, taking
into account the fact that the ideal scheme provides a dynamics confined in the subspace gener-
ated by the states |000i, |111i, |W i and |W 0i, we have focused our attention on the projection
of ⇢(t) on this subspace. It is possible indeed to prove that the neglected subspace will be at
the most populated with a probability not exceeding the 3%.

3.2.1.6 Third step: local rotations

To complete the analysis of the GHZ state generation procedure in presence of noise, we must
construct the microscopic master equation describing the system in the last step of the scheme.
Actually it can be immediately deduced from the master equation derived in the first step simply
substituting �I with �III in the eigenstates | ±✏i appearing in the jump operators. However, in
this case it is more convenient to write the jump operators exploiting the basis

|g000i = T |000i
|g111i = T |111i

|fW i = T |W i = 1p
3
T (|100i+ |010i+ |001i)

|fW 0i = T |W 0i = 1p
3
T (|011i+ |101i+ |110i)

|f 
1

i = T | 
1

i = 1p
2
T (|100i � |010i) (3.36)
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2
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6
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|f 0
2

i = T | 0
2
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6
T (|011i+ |101i � 2|110i).

instead of the standard one. In this new basis the unitary operator T can be represented as
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0 B
3
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It is possible to demonstrate that in this case the master equation can be written as

⇢̇(t) = �i[HIII
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, ⇢(t)] + (3.38)

+
3

X

j=1

2

X

i=1

�
3

(!i)

✓

Aj(!i)⇢(t)A
†
j(!i)�

1

2

�

A†
j(!i)Aj(!i), ⇢(t)

 

◆

where the Bohr frequencies are the same as those in the first step whereas the jump operators
Aj(!i) between the eigenstates of the HamiltonianHIII

rot

are for convenience given in the appendix
C.3.

3.2.2 Dissipation due to coupling to ohmic bosonic baths

Having at disposal the microscopic master equations (3.30), (3.34) and (3.38), describing the
dynamics of the three-qubit system, we have found the density matrix ⇢(t

tot

) of the system at the
time instant t

tot

= t
1

+ t
int

+ t
3

, supposing that at t = 0 the initial condition was | (0)i = |000i.
Moreover, we have assumed that all the three baths are characterized by the same spectral
density given in particular by the ohmic one

�(!) =

(

�
0

! = 0
↵! ! 6= 0

(3.39)

where �
0

is introduced in order to take into account a non zero decay rate for ! = 0. In my
master thesis work I studied the same problem with the hypothesis of a flat spectrum. Now
we are improving the calculation, since transitions with higher Bohr frequencies are here more
damped. The ohmic spectrum implies that the ratio between the decay rates is equal to the
ratio between the correspondent Bohr frequencies.

To quantify the e↵ects of the bosonic baths we can consider the fidelity F

F = Tr{⇢
exp

⇢(t
tot

)} (3.40)

that gives an idea of the di↵erence existing between the density matrix ⇢
exp

, obtained when the
interaction with the three baths is neglected, and the density matrix ⇢(t

tot

). The results we have
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Figure 3.7: Fidelity F as a function of !/g when we assume that all the three baths are characterized by the same
ohmic spectral density given in (3.39) with �

0

/g = ↵ = 10�3 and the parameters assume the values
g̃/g = 0.1. The inset shows the Fidelity for values 0 < !/g < 0.08.

obtained are given in figure 3.7 where we plot F as a function of the ratio !/g assigning to the
parameters �

0

and ↵ physically reasonable values. In particular we have chosen �
0

/g = ↵ = 10�3

[7, 23, 66, 95] .

The fidelity shown in figure 3.7 slowly decreases for increasing values of !/g, as it is expected
from the form of the dissipation constants given in (3.39). As we can see, at least for ! . 20g the
presence of bosonic baths at zero temperature does not a↵ect in a significative way the dynamics
of the system during the di↵erent steps of the procedure, the fidelity not being less than 0.9.
One should expect that the fidelity F is a monotonically decreasing function of !/g. The model
we have used for the decay rate (see eq.(3.39), however, is discontinuous for zero frequency
because we want to consider also possible dephasing channels. Due to this discontinuity one
is not allowed to perform the limit !/g tending to zero in the fidelity. Anyway this is not a
problem as for ! = 0 our scheme is meaningless since in this limit no rotations are performed.
Moreover, as the inset in figure 1 shows, the increase of F is rapid with respect to !/g.
Let us now observe that increasing the bath decay rates by an order of magnitude, the fidelity
F remains experimentally significative as shown in figure 3.8.

Both figures make evident that the presence of the three independent bosonic baths do not
a↵ect in a dramatic way the results reached under the hypothesis of perfect isolation.

We are interested in the generation of GHZ states as given in equation (3.9), which, as
we have previously seen, can be obtained only if the condition (3.23) is satisfied. Thus it is of
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Figure 3.8: Fidelity F as a function of !/g when we assume that all the three baths are characterized by the same
ohmic spectral density given in (3.39) with �

0

/g = ↵ = 10�2 and the parameters assume the values
g̃/g = 0.1.

interest for us to analyze the fidelity FGHZ defined as

FGHZ = Tr{|GHZihGHZ|⇢(t
tot

)} (3.41)

and reported in figures 3.9 and 3.10 as a function of the ratio !/g.

Figure 3.9 is obtained for realistic bath decay rates generally reported in literature [7, 23,
66,95]. The results shown in figure 3.10 are obtained supposing worse conditions. As expected,
the fidelity FGHZ shows maxima at values of !/g which satisfy condition (3.23). The value of
such maxima moreover decreases increasing the ratio !/g. This circumstance is in turn related
to the fact that the decay rates appearing in the master equations (3.30), (3.34) and (3.38), are
increasing functions of !. However, also considering the worst case we may conclude that it is
possible to choose an interval of values of the ratio !/g for which FGHZ is greater than 0.7. On
the other hand for experimentally reasonable values of the decay rates �

0

and ↵ we can obtain
values of FGHZ greater than 0.9 also fixing !/g in di↵erent intervals, see figure 3.9.

We thus may conclude that the scheme to generate GHZ states discussed here, (3.9) is
robust enough with respect to the presence of noise sources describable as independent ohmic
bosonic baths [92].
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Figure 3.10: Fidelity FGHZ as a function of !/g when we assume that all the three baths are characterized by the
same ohmic spectral density given in (3.39) with �
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3.2.3 Conclusive remarks

Summarizing, we have proposed a new generation scheme for a GHZ entangled quantum state
in a tripartite system. To do this we use a symmetric control of all the qubits in the system
and, in particular, we make use of a triangular coupling interaction scheme and of single qubit
local rotations. We demonstrated the possibility of generating the desired state appropriately
setting the interaction time between the qubits. Moreover, using the mathematical tools of a
markovian master equation, which help us to determine the evolution of the system coupled to
three independent bosonic baths, we found that this generation scheme is robust enough with
respect to the presence of noise sources describable as independent ohmic bosonic baths.
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Chapter 4

Thermal current in superconducting
flux qubits

In chapter 1 we saw that the charge current through a superconducting weak link is sensitive
to the phase di↵erence of the superconducting order parameters on either side of the link. In
the absence of a bias voltage, a dissipationless Josephson current flows through the link which is
proportional to the sine of the phase di↵erence. In section 1.2.1 we saw that also the heat current
flowing through a Josephson junction depends on the phase di↵erence of the two superconductors
separated by the junction. This e↵ect has been predicted over 50 years ago by Maki and
Gri�n [36], and only very recently has been measured experimentally [37–41]. Heat transport
through weak links in superconductors was theoretically studied in [53, 108, 109]; see also [110]
for a review on interference in heat transport and thermoelectric e↵ects in superconducting
weak links. It has been found that the heat current can be modulated by the applied phase
gradient [111]. Recent experiments have shown that weak links in superconductors can be used
to refrigerate small islands [112] and trap hot quasiparticles [113].

As it was introduced in chapter 2, an altogether di↵erent application of the phase sensi-
tivity of the supercurrent in superconducting rings is the realization of flux qubits where the
phase sensitivity of the device is used to implement qubit operations. In what follows, we will
combine these two intriguing studies on the phase-sensitivity in superconducting rings. We are
in particular interested in the dependence of the heat current on the state of the Delft qubit
and of the Fluxonium qubit. Beyond this, we find that the state-sensitive heat current has an
impact on the qubit state. With the help of a master equation approach, we investigate how
the temperature gradient influences the dynamics of the qubit system.
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4.1 Measurement and dephasing of a Delft qubit due to heat
currents

The Delft design of the flux qubit consists in a superconducting loop interrupted by three
Josephson junctions. It is furthermore characterized by the fact that the Josephson coupling
of one of the junctions is smaller by a factor ↵ ' 0.75 with respect to the others [60] (figure
4.1), which in actual implementations is made tuneable by replacing this third junction by a DC
SQUID [23]. Another important tuning parameter is the external flux � threading the loop. If
the flux is close to half a superconducting flux quantum, � = h/4e, the superconducting system
emulates a particle in a (shallow) double-well potential, where the state in either well corresponds
to a circulating persistent current, either flowing clockwise or counterclockwise around the loop.
These two states represent the qubit states of the device.

In what follows we investigate a superconducting ring with three Josephson junctions sub-
ject to a temperature gradient. We use the microscopic description of the Josephson junctions
described in chapter 1 in order to investigate the phase-dependent heat current through them.
We will show that indeed the heat current in a temperature-biased Delft qubit is sensitive to the
qubit state, with typical sensitivities of 4%. We determine the rate of coherence suppression,
which is shown to be given by the rate with which the di↵erence in heat currents at the two qubit
states accumulates an energy di↵erence approximately equal to the gap energy. The di↵erence in
heat currents due to a thermal gradient depending on the qubit state is hence demonstrated to
be a qubit-state measurement. Depending on the temperature gradient, the associated typical
dephasing times range from nano- to microseconds with the condition that the qubit is detuned
from the “sweet spot” of half a flux quantum, � = �

0

/2, threading the superconducting loop,
to a typical ”operation point” of � = 0.495�

0

. This adds an additional contribution to the
dephasing, which in general is attributed to non-equilibrium quasiparticles [114–116].

4.1.1 Qubit-state sensitive heat currents

The system we will investigate in this paragraph is a Delft qubit. In particular, we want to
investigate the sensitivity of the heat current to the state of the Delft qubit realised by the
three-junction SQUID, which was introduced in paragraph 2.3.3. If between the electrodes of
the qubit there is a thermal gradient we expect to have some thermal currents in the system.
Since both the thermal currents and the states of the qubit are dependent on the phase values
across the junctions as it has been pointed out in paragraphs 1.2.1 and 2.3.3, we want to
investigate how the thermal current change according to the state of the qubit and, in the next
section, how much they influence the qubit dynamics.

In order to understand the change in the thermal current depending on the qubit state,
we propose to study the di↵erence between the heat currents compared to the sum of the two
currents for the qubit being in the state | 

L

i or | 
R

i, characterising the sensitivity [32],

sl =
Q̇l

R

� Q̇l
L

Q̇l
R

+ Q̇l
L

with Q̇l
L/R = h 

L/R|Q̇l| 
L/Ri (4.1)
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Figure 4.1: (a) Sketch of a persistent current qubit realised by a SQUID with three superconducting links, char-
acterised in general by di↵erent phase di↵erences, '
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. The SQUID is penetrated by a magnetic
flux �. The direction of the supercurrent circulating in the SQUID characterises the state of the
persistent current qubit. The di↵erent sections of the SQUID are coupled to thermal baths with tem-
peratures T

1

, T

2

and T

3

. (b) Potential landscape of the SQUID as a function of the phase di↵erences
for ↵ = 0.75 and �/�

0

= 0.495. The potential is 2⇡-periodic in '

a

and '

b

and it can be divided
into equal square cells of side 2⇡. (c) Cut through the potential in the central cell of figure (b) along
the line ' = '

a

= �'
b

visualising the two minima corresponding to the qubit states of oppositely
circulating currents.

The expectation values are obtained from the usual integral over ' of the product of the heat
currents given in (1.28) with the wave functions of (2.29). We evaluate the heat currents in
each electrode due to a temperature gradient induced by T

1

= T
2

< T
3

sketched in figure 4.1.
This yields heat currents in electrodes 1 and 2 given by the heat flow through the junction with
electrode 3 only, while the heat current in electrode 3 has two contributions. To simplify the
notation, we now take as a reference the heat current into electrode 1, with Q̇

int

⌘ Q̇1

int

(T
1

, T
3

)
and Q̇

qp

⌘ Q̇1

qp

(T
1

, T
3

). Starting from equation (4.1) the sensitivities then take the simple
form [32]

s
1

=
Q̇

int

�

C
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� C
R

�

2Q̇
qp

� Q̇
int

�
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=
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2Q̇
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� Q̇
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�

D
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� (4.2)

s
3

=
Q̇

int

�

↵(D
L

�D
R

) + (C
L

� C
R

)
�

2Q̇
qp

(1 + ↵)� Q̇
int

�

↵(D
L

+D
R

) + (C
L

+ C
R

)
� .

where, for a short notation and assuming the two qubit states to be well localized, we here define
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Figure 4.2: Plot of the sensitivities, sl, for the three electrodes l = 1, 2, 3 as a function of the flux enclosed in the

loop, for ↵ = 0.75 and E
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⇡ 80 [32]. The vertical dotted line indicates the flux value of the Delft
qubit “operation point” [60].

the phase-dependent factors

C
L/R = h 

L/R| cos('a

)| 
L/Ri = cos('

L/R)e
�1/(4�

L/R),

D
L/R = h 

L/R| cos('c

)| 
L/Ri = cos(2'

L/R + 2⇡f)e�1/�
L/R . (4.3)

We used the generalized Ambegaokar-Barato↵ relations [117, 118] in order to relate the heat
currents Q̇(i) through the junctions i = b, c to each other, when T

1

= T
2

. The heat currents
through the di↵erent junctions are furthermore related to the heat currents Q̇l into the di↵erent
reservoirs, l = 1, 2, 3, by Q̇i=b ⌘ Q̇1, Q̇i=c ⌘ Q̇2 and hence Q̇3 = �Q̇i=b � Q̇i=c. By comparing
the separate quasi-particle and interference components of these heat currents, see (1.29) and
(1.30), we then find

Q̇c

int

Q̇b

int

=
Q̇c

qp

Q̇b

qp

=
Ib
crit

Ic
crit

=
R

c

R
b

=
R

23

R
13

= ↵ . (4.4)

This finally leads to the compact expressions in (4.2). The results for these three sensitivities as
a function of the flux, in the vicinity of the sweet spot and the operation point of the Delft qubit,
are shown in figure 4.2. The sensitivity of the heat currents to the qubit state hence yields a
possible measure of the latter. The heat currents in electrodes 2 and 3 are most sensitive to the
qubit state with a sensitivity of about 2% at the “operation point”, f = 0.495 [60]. The plot in
figure 4.2 shows a dependence of the sensitivities as a function of the magnetic flux penetrating
the SQUID which is very close to a linear function. The slopes of the latter depend on the
specific realisation of the qubit, namely on the ratio ↵, of the electrode temperatures Tl and the
applied thermal gradient, as well as on the ratio of Josephson and charging energy. This is shown
in the approximate result for the heat currents for small deviations �f from the “sweet spot”
f = 1

2

, sl ⇡ ml(↵)�f with the respective slope ml. The rather complex explicit analytic form of
the slopes of the three sensitivities are given in appendix D and they are shown in figure 4.3 as
a function of the ratio ↵, which is tuneable in the experiment. We find that the slopes of the
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sensitivities do in general not need to have the same sign. The slope with the largest absolute
value is the one obtained from the heat currents into reservoir 2. This is related to the fact
that the heat currents into this reservoir flow uniquely through the junction with the weakest
Josephson coupling, namely junction c, which has consequently the largest phase di↵erence and
is most sensitive to the qubit state. While for the working point of the Delft qubit, that is at
↵ ⇡ 0.75, the slope of s

2

has already a rather large value, this value can be improved by lowering
↵. Note however that with ↵ approaching 0.5 the two valleys of the potential get closer and the
qubit states are not well defined any more. Equivalently for ↵ > 1 the SQUID can not be used
as a qubit any longer.

4.1.2 Impact of temperature gradients on the qubit dephasing

After having demonstrated the sensitivity of the heat currents to the state of the qubit, the aim
of this section is to study the impact of a temperature gradient - and the resulting heat current
- on the coherence properties of the qubit. Our interest in this point is twofold: on one hand we
want to find out the behavior of the qubit state under measurement, on the other hand we are
interested in the impact of accidental temperature gradients on the dephasing of the qubit. We
therefore consider the two-level system, defined by the states | 

L

i and | 
R

i, namely the qubit
states obtained from the low-energy physics of the SQUID, in contact with two heat baths,
resulting in the model Hamiltonian [32]

H
toy

= �"
2
⌧3 � w

2
⌧1 +

X

l=1,3

X

k,�

("l,k � µl)a
†
l,k�al,k�

+
X

k,q,�

h

a†
1,k�a3,q�(V0

⌧0 + V
3

⌧3) + H.c.
i

. (4.5)
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Figure 4.4: Model of the two-level system with level-spacing ✏, tunnel-coupled to two quasi-particle baths at
di↵erent temperatures T

1

and T

3

.

The model is depicted in figure 4.4. Here, the matrices ⌧ j , j = 0, 1, 3 are Pauli matrices in the
qubit space. The level splitting between the qubit states is given by " and weak coupling between
them is denoted by w. The creation (annihilation) operators of particles with momentum k and

spin � in lead l are given by a†l,k�(al,k�).

In the simplified model of equation (4.5), we do not explicitly take into account the three
superconducting leads with the heat currents, which depend on all three phase di↵erences, but
rather discuss a simplified microscopic model, which involves only two leads. The idea is to set
the density of states and tunnelling matrix elements such as to reproduce the correct macroscopic
thermal current between the reservoirs at temperature T

1

= T
2

and T
3

in the three lead setup.
We expect that such a procedure, while being inaccurate for certain microscopic details, will
correctly incorporate the e↵ects of the phase-dependent thermal currents on the qubit. In linear
response, the Hamiltonian (4.5) leads to a heat current,
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⇡
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withNl(!) the density of states of the electrons in lead l (including spin). If we set the parameters
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l

|�l|
p

!2 � |�l|2
✓(!2 � |�l|2), (4.7)

with ✓(x) the unit-step function, we achieve the goal of reproducing the correct qubit-state
dependent heat current with Q̇toy = Q̇3 = �Q̇1� Q̇2; here and below, we assume the magnitude
of the quasiparticle and interference parts of the heat current to be equal.

We are now interested in the dynamics of the qubit state depending on the qubit-state
sensitive heat current induced by the temperature gradient. Starting from the full system’s
density matrix, we therefore trace out the lead degrees of freedom and write down a master
equation for the reduced density matrix of the qubit, ⇢(t). If we write the density matrix
of the qubit as ⇢(t) = 1

2

[1+ ⌧ · S(t)] with S(t) = Tr[⇢(t)⌧ ] = (⇢
LR

(t) + ⇢
RL

(t), i(⇢
LR

(t) �
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⇢
RL

(t)), ⇢
LL

(t)� ⇢
RR

(t))T, we obtain the Pauli rate equation

Ṡ(t) = S(t)⇥ h� �(S
1

(t), S
2

(t), 0)T . (4.8)

This equation contains a precession around a pseudo-magnetic field, h = (w, 0, ")T, determined
by the qubit properties, and a relaxation of the coherences of the reduced density matrix with
the rate �, while the diagonal elements, namely the occupations of the qubit states, do not decay.
This is also appreciable from the solution of the master equation, which for large detuning "� w
with respect to the weak tunneling between the qubit states, is given by

⇢
LL

(t) ⇡ ⇢
LL

(0), ⇢
RR

(t) ⇡ ⇢
RR

(0),

⇢
LR

(t) ⇡ ⇢
LR

(0)e�(�+i")t, ⇢
RL

(t) ⇡ ⇢
RL

(0)e�(��i")t . (4.9)

The value of the dephasing rate � reads [32],
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Importantly, this rate equals zero, if the sensitivity of the heat current to the qubit state vanishes
and hence |V

3

|2 / C
R

� C
L

+ ↵ (D
R

�D
L

) = 0. Note that this means that the temperature
gradient leads to dephasing only when the qubit is tuned away from the sweet spot. Indeed, it is
possible to conclude that the qubit-state sensitivity of the heat current represents a measurement
process which reflects in the time-dependent solution of the master equation given in (4.9).

The dephasing rate is connected to fluctuations in the electronic subsystem which drive the
qubit. In equilibrium, we would expect a fluctuation-dissipation relation to hold which relates
the fluctuations to the response coe�cient of the system. Naturally, this is not true in the
non-equilibrium situation studied here. It is however interesting to compare the response of the
system to the temperature gradient, namely the heat current depending on the qubit states, to
the related dephasing rate. We therefore introduce the dimensionless ratio r = |�

max

|�/|Q̇3

L

�
Q̇3

R

|. As above, we specialise to the case when T
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, T
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. With a similar calculation
as the one following 1.30, we obtain the estimate
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This means that r is universal with respect to microscopic details like the normal-state resistance
R

13

or the phase di↵erence 'j across the junctions, and only depends on thermodynamical
quantities like the temperatures T

1

, T
3

and the gap �
0

. We see that for small temperature
di↵erences, �T = T

1

� T
3

⌧ T
1

, T
3

, this ratio becomes r ' k
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T 2/ (|�
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|�T ).

The dephasing time T� = ��1 is in this case given by [32]
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Figure 4.5: Dephasing time as a function of the temperature gradient �T for di↵erent values of T
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with T
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[32]. The dephasing time was calculated for ↵ = 0.75 and f = 0.495. In the inset (a) we show an
enlargement at �T ⌧ T , for the case of T

1

= 0.1T
crit

(full, green line) together with the approximate
function of the dephasing time given in 4.12 (dashed, black line) multiplied by a numerical factor of
order 1. In the inset (b) we show the enlargement of the plot for 0.1 < �T/T

crit

< 0.2 on a logarithmic
scale. Note that this plot is valid only for temperature di↵erences larger than the cuto↵ temperature,
�T > T

cut

, which in turn depends on the microscopic details of the Josephson junctions.

The dephasing times in units of e2R
13

e�max

/k
B

T
1/�

0

are shown in figure 4.5 as a function of the
temperature di↵erence �T for di↵erent values of the minimum temperature T

1

. The inset (a) of
figure 4.5 compares the full result (full green line) with the approximation of equation (4.12).

In the opposite regime of large temperature bias, we have that r ' 1 and thus the dephasing
rate is approximately equal to � ' |Q̇3

L

� Q̇3

R

|/|�
max

|. In particular, we find in this regime that
the dephasing time T� of the qubit is given by [32]
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i.e. the time after which the di↵erence of the energy transported by the heat currents in the two
qubit states equals the gap �

0

of the superconductor. This is well confirmed by the inset (b) of
figure 4.5, which shows the dramatic decrease of the dephasing time with increasing temperature
gradient.

Using the values we applied to estimate the heat currents in this system, we can also
estimate the dephasing time. Taking �

0

/e2R
13

' 1THz as in [38], we have that T� ⇡ 1ns
for large temperature gradients, �T/T

min

� 1. For small temperature gradients, it can be
shown that a temperature T

min

of less than 0.1T
crit

has to be reached in order to avoid a strong
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limitation of the dephasing due to the thermal current. Indeed, for �T/T
min

⌧ 1, T
min

' T
max

.
0.1T

crit

, and taking the logarithm to be of order one, we have T� ⇡ 1µs. The actual dephasing
times of the Delft qubit range from a few tens of nanoseconds [119] up to a microsecond [75]
(as it is possible to see also from table 2.2) and thus are of the same order of magnitude.
As the nominal temperatures reached for today’s superconducting persistent current qubits is
usually smaller than 0.1T

crit

[120,121], it is unlikely that the thermal currents do constitute the
dominant source of dephasing for those qubits. However, it is well known that quasiparticles
in small superconducting structures badly thermalise, leading to problems in reaching the base
temperature in the dilution refrigerator [113, 122] and thus e↵ects of the phase dependence of
the thermal current on the coherence properties of the Delft qubit cannot be excluded.

Looking at figure 4.5 one can notice that for small values of the temperature gradient the
dephasing time presents a maximum for a specific value of �T . In other words, there seems to
be an optimum value of the temperature gradient, di↵erent from zero, for which the dephasing
time would be bigger with respect to its neighboring values. We use the conditional because this
aspect can be an interesting starting point for a more accurate investigation on the problem.
In fact, the investigation done in this section is valid for the tunneling approximation, which,
as was mentioned in section 1.2.1, in the case of small temperature gradient has an expression
for the thermal current that needs a cuto↵ temperature T

cut

= �T . However, the tunneling
approximation does not take properly into account a resonance in the density of states due to
a weakly bound Andreev state. In the linear response derivation of the thermal currents for
�T ⌧ T

c

this resonance introduces a new cuto↵ T
cut

= D�
0

sin2('lm/2)/kB, and in our case it
is important to understand if, depending on the value of the transparency D characterizing the
junction, our derivation is consistent with the properties of the system under study.

4.1.3 Conclusive remarks

In this section we have shown that due to the phase sensitivity of the heat current which flows
in weak links of a superconducting loop, the heat current due to a temperature gradient applied
to a flux qubit depends on the state of the qubit which is formed when the loop is threaded with
a magnetic flux that is close to half a superconducting flux quantum. We have found that the
sensitivity of the heat current to the qubit state can be up to 4%, when the qubit is tuned away
from the “sweet spot” of exactly half a flux quantum threading the loop. This should allow to
identify the state of the flux qubit in experiments of the type performed in [37,38].

Moreover, we have found that due to this di↵erence of heat currents for di↵erent qubit
states, a thermal gradient leads to a dephasing of the qubit. In particular, we have found that
the ratio of the dephasing rate to the di↵erence of the heat currents is universal with respect
to microscopic details and only depends on the temperature of the reservoirs measured in units
of the superconducting gap at zero temperature. For example, in the case of large temperature
gradients the dephasing time of the qubit corresponds to the time when the di↵erence of heat
currents have transported an energy of the order of the superconducting gap. We have shown
that the dephasing time of the flux qubit in the Delft design due to the phase-sensitive heat
current can range from microseconds for small temperature di↵erences to nanoseconds for large
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temperature di↵erences thus constituting a potential source of dephasing given the fact that the
qubits are driven by microwave pulses which may lead to an imbalance of heating between the
di↵erent sections of the superconducting loop.

4.2 Dephasing of the fluxonium qubit due to thermal currents

In the previous section it has been shown that the dephasing time is closely linked to the fact that
the heat current due to quasiparticles flows through Josephson junctions. In this section, we will
concentrate our study on the thermal currents in a fluxonium qubit, which is a more performant
flux qubit system with respect to the Delft design. We will show that even though the fluxonium
qubit is insensitive to charge noise due to quasiparticles it still remains sensitive to quasiparticles
tunneling through the Josephson junction due to the thermal transport that is connected with
the transport of the quasiparticles. We do this by analyzing the thermal currents in a fluxonium
system due to small temperature gradients (�T ⌧ T

c

) in the linear response regime derivation,
studying in particular their dependence on the parameters characterizing the system as well
as their sensitivity to the quantum state of the fluxonium qubit. The reason for this choice is
that it is very interesting to study the properties of parasitic thermal currents originated from
small temperature gradient in the loop, which can have detrimental e↵ects on the coherence of
the qubit system. In fact, we show that thermal current can be at the origin of not negligible
dephasing e↵ects of the qubit. We want to stress that even though we assume that the reservoirs
are in thermal equilibrium our results indicate that a nonequilibrium population of quasiparticles
(which can be roughly modeled by an e↵ective temperature which is larger than the nominal
one) that typically are present in superconducting qubit experiments, leads to dephasing of the
fluxonium qubit.

In what follows we wish to investigate the sensitivity of the heat current to the state of the
fluxonium qubit, supposing in particular that there is a thermal gradient �T = T

1

� T
2

through
the black sheep, see figure 4.6. As mentioned before, being interested to small values of �T , that
is �T/T

c

⇠ 10�2 · · · 10�1, we will evaluate the heat current in the linear response regime.

4.2.1 Thermal current in a fluxonium qubit

We would like to investigate how the phase sensitivity of the thermal current through a Josephson
junction manifests itself in the fluxonium. We are interested in a situation where there is a
temperature gradient applied at the two reservoirs surrounding the black sheep, see figure 4.6.
As the M Josephson junctions of the array are equivalent, the temperature di↵erence �TL across
each of them is also the same. As the temperature di↵erence of the M junctions will add up to
the total temperature di↵erence �T , we have that the temperature di↵erence across each of the
array junctions is �T/M . Thus in the limit of many junctions the temperature gradient across
each of them becomes very small, �TL ⌧ �T ⌧ T .

The task is to evaluate the thermal current Q̇ flowing in the cold reservoir which is held at
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Ju
nct
ion
s

Figure 4.6: The fluxonium qubit consists of a superconducting loop interrupted by M + 1 Josephson junctions
which is threaded by a magnetic flux �

x

. In an e↵ective description only the junction with the
Josephson energy E

J

and the phase di↵erence '
BS

acts as a Josephson junction whereas the remaining
M junctions with a larger Josephson energy E

J

/↵ (↵ < 1) act as a superinductance. In this paragraph
we will suppose that there is a thermal gradient �T between the two electrodes separated by the black
sheep.

temperature T (or equivalently the thermal current flowing out of the hot reservoir at temper-
ature T + �T ). The thermal current is given by the sum of two terms

Q̇ = Q̇('BS , T, �T ) + Q̇('M , TM , �T/M), (4.14)

where the first term is the contribution of the black sheep and the second term is due to the
last JJ of the array.

In the following, we are interested in the e↵ect this heat current has on the coherence
properties of the fluxonium qubit. To this aim, analogously to the previous section, we will
study the di↵erence between the heat current when the qubit is in the state | 

g

i and that when
the qubit is in the state | 

e

i. This is again best characterized by the sensitivity

s
fl

=
Q̇

e

� Q̇
g

Q̇
e

+ Q̇
g

with Q̇
g/e = h 

g/e|Q̇| 
g/ei. (4.15)

A large sensitivity corresponds to a large di↵erence of thermal currents and as we will see later
to a fast dephasing of the qubit. We are interested on the dependence of the sensitivity on
the qubit parameter. As a first step, we will show that the sensitivity only depends on the
e↵ective parameters E

L

, E
C

, and E
J

and not on the number of junctions M with which the
superinductance is emulated.

4.2.2 Independence of the sensitivity on the number of array junctions

Before proceeding in the evaluation of the sensitivity s
fl

, we want to convince ourselves that the
sensitivity only depends on the e↵ective parameters E

L

, E
C

, and E
J

of the qubit and not on the
specific number of junctions M (or the asymmetry factor ↵) with which the superinductance
L
e↵

is emulated. In order to realise a fluxonium qubit modelled by the Hamiltonian given in
equation (2.28), a large amount M of array junctions is needed, which all have a Josephson
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energy larger than the one of the black sheep by a factor 1/↵. To obtain a given value of E
L

,
the number of array junctions and their coupling strength hence need to scale like ↵ / M�1. As
the generalized Ambegaokar-Barato↵ model [40,123] relate the Josephson energy to the normal
state resistance, we find that the ratio of the normal state resistance of a junction in the array to
the one of the black sheep should be given by R

L

/R
BS

= ↵. Using this relation, all coe�cients
i can be expressed in terms of the parameters of the black sheep, only.

The eventual dependence of the sensitivity on M could arise only from the contribution
to the thermal current due to the last junction, Q̇('M , TM , �T/M), in correspondence of which
TM = T � �T/2M and 'M = �('BS � 2⇡f)/M . But for M large enough, 'M ! 0 and,
exploiting equation (1.35), we may state that 

0

(TM ' T ) is the only relevant term for Q̇('M ⇡
0, TM , �T/M). As a consequence, except for the term 

0

(TM ' T ), the thermal current Q̇ will
depend only on the thermal current through the black sheep which is M independent.

It is interesting at this point to investigate which are the physical parameters that contribute
to determine such a behavior. In order to do this, instead of using the sensitivity as numerically
calculated starting from equation (4.15), we consider the value of s

fl

obtained for the black sheep
phase points correspondent to the minima of the potential relative to the excited and ground
state. From the equation of the potential (2.26) we calculate the minima '

e

and '
g

with respect
to ', correspondent to the excited and ground state respectively. From equation (2.25) we find
that the phase di↵erence across the black sheep is given by '

BS

= �' + 2⇡f , so we define the
value of the phase '

BS

in correspondence of the the excited and ground state as

'e/g
BS

= �'
e/g + 2⇡f. (4.16)

Exploiting the values of 'e/g
BS

, the sensitivity s
fl

is given by

s
fl

=

2

F�('e

BS

,'g

BS

)� 
1

G�('e

BS

,'g

BS

)


2

F
+

('e

BS

,'g

BS

)� 
1

G
+

('e

BS

,'g

BS

) + 2(1 + E
L

E
J

)
0

(4.17)

where

F± = sin2
'e

BS

2
± sin2

'g

BS

2
, (4.18)

G± = sin2
'e

BS

2
ln

✓

sin2
'e

BS

2

◆

± sin2
'g

BS

2
ln

✓

sin2
'g

BS

2

◆

.

As mentioned before, the contribution from the junction of the array enters only via 
0

. Further-
more, since the values 'e

BS

and 'g

BS

depend only on the values of the energies E
J

, E
C

and E
L

,
we see from equation (4.17) that, when keeping the ratios of these energies fixed, the sensitivity
is independent of the number M of junctions in the array.

4.2.3 Sensitivity near f = 0.5

In the following we want to show the importance of the superinductance for the heat current
sensitivity. We therefore confine our attention on values of f for the case where the ground and
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first excited state are almost degenerate, namely 0 < �f ⌧ 1. Starting from equation (2.28) it
is easy to convince oneself that for f = 0.5 the potential is symmetric with respect to ' = 0.
In this case let’s indicate by ±'⇤ the position of the two minima '

e

and '
g

. The value of '⇤

cannot be found analytically and when necessary we will evaluate it by a numerical calculation.
Slightly varying f we expect that the two minima are shifted in such a way that '

e/g = ±'⇤+�'
where �', at first order in �f , is given by

�' =
E

J

cos'⇤

E
J

cos'⇤ � E
L

2⇡�f (4.19)

To calculate the sensitivity in equation (4.17) we must calculate F±('e

BS

,'g

BS

) andG±('e

BS

,'g

BS

)
using the relation given in equation (4.16). At first order in �f , we can write

F
+

('e

BS

,'g

BS

) ⇡ 2 cos2
'⇤

2
,

F�('
e

BS

,'g

BS

) ⇡ � tan'⇤EL

E
J

�',

G
+

('e
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,'g
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) ⇡ 2 cos2
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2
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✓

cos2
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2

◆

G�('
e

BS

,'g
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) ⇡ �
h

1 + ln(cos2
'⇤

2
)
i

tan'⇤EL

E
J

�'

(4.20)

Inserting equation (4.20) into equation (4.17), we finally have

s
fl

⇡

h


1

h

1 + ln(cos2 '⇤

2

)
i

� 
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i
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2
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(4.21)
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Figure 4.7 shows the sensitivity s
fl

against T as given by equation (4.17) (in blue) and its
approximation as given in equation (4.21) (in red) in the case for �f = 0.1. Equation (4.21) gives
an analytical expression of s

fl

starting from which we can easily deduce the physical variables
that concur in determining how fast s

fl

decreases increasing the parameter f . It is interesting in
particular to analyze the case E

L

⌧ E
J

in correspondence of which the two states, the ground
and the excited states respectively, become more stable. To this scope let us initially observe
that, putting E

L

= 0 and f = 1

2

we have '⇤ = ⇡. If now we consider the case for E
L

⌧ E
J

, we
expect that the value of the minimum of the two wells will be slightly di↵erent from ⇡ so that
we can write '⇤ = ⇡ + �'⇤ where at first order in E

L

/E
J

we have

�'⇤ = �E
L

E
J

⇡. (4.22)
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Figure 4.7: Comparison between the sensitivity defined in equation (4.17) (blue) and its approximation for �f ! 0
of equation(4.21) (red) in the case for �f = 0.1, D = 10�2, E
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/E

J

= 5.8 10�2, E
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/E

J

= 2.8 10�1 as
the ones used in Ref. [63].

Inserting equation (4.22) into equation (4.21) we finally obtain

s
fl

⇡ �1

0

✓

⇡
E

L

E
J

◆

2

ln

✓

⇡

2

E
L

E
J

◆

2

�f (4.23)

This result shows that the variation of the energy related to the superinductance, E
L

, allows to
change the sensitivity of the heat currents to the qubit state. In particular, in order to decrease
the sensitivity, a suppression of the inductive energy E

L

is required. The approximation of the
sensitivity as a function of the energy is indeed very reasonable for small EL, as can be seen from
figure 4.8. It shows the comparison between the sensitivity defined in equation (4.17) (blue) and
its approximation for �f ! 0 and E

L

/E
J

! 0 obtained from equation (4.23) (red).

4.2.4 Dephasing time

Generally speaking there are many possible sources of dephasing for superconducting qubits
arising, for example, from fluctuations of the o↵set charge, of the critical current, of the flux
and so on. In other words any microscopic and/or macroscopic process that causes a drift or
a fluctuation of the qubit frequency, becomes a sources of dephasing. In the work discussed in
the previous part of this chapter [32] it has been demonstrated that when a Delft-qubit design
is considered, even small accidental temperature gradients can lead to dephasing times of the
order of microseconds. It appears thus reasonable to wonder if also in correspondence of a
fluxonium qubit the presence of thermal gradients can be at the origin of a dephasing and if
such a dephasing is negligible or not with respect to others. In order to investigate on the
impact of possible thermal gradients on the fluxonium qubit dephasing let’s start by writing an
Hamiltonian describing a two level system defined by the states | 

g

i and | 
e

i, correspondent to
the two low-energy levels of the fluxonium, in contact with two heat baths. The Hamiltonian
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model is the following

H
toy

= H
S

+H
I

(4.24)

with

H
S

= �"
2
⌧3 � w

2
⌧1 +

X

l=1,2

X

k,�

("l,k � µl)c
†
l,k�cl,k�, (4.25)

H
I

=
X

k,q,�

(V
0

⌧0 + V
3

⌧3)(c†
1,k�c2,q� +H.c.).

where V
0/3 = (V

e

± V
g

)/2, " represents the level splitting between the qubit states while w is a
weak coupling between them.

Starting from Hamiltonian model (4.25) we will set the density of states and tunneling
matrix elements in such a way to reproduce the correct macroscopic thermal current between
the reservoirs at temperatures T

1

and T
2

in the two leads setup so that we will incorporate
the e↵ects of the phase-dependent thermal currents on the qubit. The heat current obtained
exploiting the Hamiltonian (4.25) is the following

Q̇toy

e/g =
⇡

~

Z 1

�

d! !V 2

e/gN
e/g
1

N e/g
2

[f
1

(!)� f
2

(!)] (4.26)

with the Fermion functions fi = [exp(!/k
B

Ti) + 1]�1 and where we used the local density of
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states as given in Ref. [53]
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To obtain equation (4.26) we made the approximation

h 
e/g|V 2N

1

N
2

| 
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e/giN

e/g
1

N e/g
2

which is justified as the exchange terms are small with respect to the direct terms, i.e.,
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Using this form for the density of states, in the tunneling regime, namely for small values of D,
we have the following expression for the tunneling matrix elements

V 2
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e
� 1

4�
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with V
12

being the tunnelling amplitude of the black sheep, linked to the normal state resistance
by R = ~(⇡e2N0

1

N0

2

|V
12

|2)�1, and �
e/g given in equation (2.30). We are now in condition to

study the dynamics of the qubit state and its dependence on the temperature gradient. Starting
from the full system’s density matrix, we therefore trace out the lead degrees of freedom and
write down a master equation for the reduced density matrix of the qubit, ⇢(t). If we write the
interaction Hamiltonian H

I

as
H

I

= P
e

B
e

+ P
g

B
g

(4.30)

with
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we can write the master equation for the system as follows [107]

⇢̇(t) = �i[H
S

, ⇢(t)] +
X

↵,�=e,g

�↵�
⇣

P�⇢(t)P↵ � 1

2
{P↵P� , ⇢(t)}

⌘

where

�↵� =
1

2

Z

h{B↵(t), B�(0)}idt (4.32)
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Figure 4.9: The figure shows the dephasing time multiplied by the level splitting of the fluxonium anDephasing
time, T�, multiplied by the level splitting of the fluxonium " and by �f (blue) as a function of
temperature in units of T

c

. It is a measure of the possible number of operations performed within the
dephasing time. The transmission of the junction is assumed to be D = 10�2, E
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J

= 5.8 ⇥ 10�2

and e

2

R/� ⇡ 8⇥ 10�13s. The red dashed line shows a fit d⇥ exp(T
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/T ) with d = 1.2⇥ 10�1.

If we write the density matrix of the qubit as ⇢(t) = 1

2

[1+ ⌧ · S(t)] with S(t) = Tr[⇢(t)⌧ ] =
[⇢
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(t) + ⇢
RL

(t), i⇢
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(t)� i⇢
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(t), ⇢
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(t)]T, we obtain from equation (4.32) the Pauli
rate equation
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This equation contains a precession around a pseudo-magnetic field, h = (w, 0, ")T, determined
by the qubit properties, and a relaxation of the coherences of the reduced density matrix with
the rate �, while the diagonal elements, namely the occupations of the qubit states, do not
decay.

The value of the dephasing rate � reads,
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Importantly, this rate equals zero if the wave functions of the states are even functions of the
phase, so that we have V

e

= V
g

and N e

l (!) = Ng

l (!). This is the case only when f = 1/2. We
will now investigate in more detail the dephasing time T�, which is the inverse of the dephasing
rate, T� = 1/�.

The dephasing time can be directly brought into contact with the heat current flowing
through the qubit due to a finite temperature gradient and its sensitivity to the qubit state.
In order to estimate this link, we consider the low temperature regime, T, �T ⌧ T

c

, and write
down the product between dephasing time and the di↵erence in heat currents in the two qubit
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states, �Q̇,
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This function gives us an idea about the energy which is transferred by the di↵erence of heat
currents in the two qubit states in the time, which the qubit needs to dephase. It is thus of
importance to get a clearer understanding of the quantity given in equation (4.36). Since both
integrand functions in equation (4.36) are negligible for ! > �, we obtain a rough estimate by
calculating the integrals for � < ! < �+ � with � ⌧ 1. We obtain
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where we also used the approximation, �

k
B

T
c

⇡ 1, valid in BCS theory. From equation (4.37) it
becomes clear that the dephasing time T� is proportional to the gap � divided by the di↵erence
of heat currents in the two qubit states �Q̇. This in turn is proportional to the heat current
sensitivity to the qubit states, which was investigated in detail in the previous section. In order
to understand the proportionality factor we make use of the results obtained in section 4.2.3.
For small �f we can use equation (4.19) to rewrite the phases at the minima of the fluxonium
potential such that the proportionality factor becomes
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If in addition to �f ⌧ 1, we consider the inductive energy of the superinductance to be very
small, E

L

/E
J

⌧ 1, the factor can be expressed in terms of qubit energies and �f , only,
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With the results obtained in equations (4.39) and (4.37), we can estimate T� for �f ⌧ 1 and
E

L

/E
J

⌧ 1 as
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Exploiting equation (4.23), in the same limit for �f ⌧ 1 and E
L

/E
J

⌧ 1 we can find a relation
between the sensitivity of the fluxonium and the dephasing time

T� ⇡ �T
c

8
0

(T )T 2�f
s�1

fl

. (4.41)

It is of major interest to find out if this dephasing time can limit the number of operations of
the fluxonium qubit substantially.
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The time scale on which the qubit is operated is typically given by the inverse of the level
splitting of the qubit, 1/" (where we set ~ = 1). The latter is found from the di↵erence of the
energies of the ground and excited state from the Hamiltonian given in equation (2.28). It is
this time scale which needs to be compared to T� in order to find out about the typical number
of operations which can be performed before the qubit dephases.

In figure 4.9, we show a plot of the function "T� ⇥ �f . Since with small changes in f ,
the level splitting increases linearly with �f , while T� is proportional to 1/�f2, we choose to
multiply the function of interest with �f in order to get a function which is independent of the
magnetic flux at which the operation is performed. Figure 4.9 a) shows a logarithmic plot of
"T� ⇥ �f for small values of the temperature, T ⌧ T

c

. The ratio between the two time-scales
occurs to be approximately exponentially suppressed with increasing temperature. Figure 4.9 a)
however shows that for small values of the temperature it is possible to perform a great number
of operations on the qubit state before they become unreliable due to dephasing of the two level
system. In particular, the required number of "T� for the fluxonium qubit to work properly is
104, which for �f = 10�2 is obtained as soon as the temperature is smaller than 0.15T

c

.

However, when the temperature gets larger, see figure 4.9, the dephasing can prevent the
system from doing more than a small number of operations.

4.2.5 Conclusive remarks

In this section we have studied the thermal current flowing through an electrode of the fluxonium
architecture in presence of small temperature gradients between the two arms. As expected, the
circumstance that the heat current depends on the phase di↵erence between the two electrodes,
is at the origin of the sensitivity of the thermal current to the quantum state of the system. One
of the most important results we have found is the independence of such a sensitivity on the
number M of junctions realizing the superinductance, provided that the ratio E

C

/E
J

between
the charging energy and the Josephson energy, as well as the ratio E

L

/E
J

between the inductive
energy and the Josephson energy, are kept fixed. As stressed in the text, this M -independence
can be, at least qualitatively, traced back to the fact that considering small values of thermal
gradients determines that the thermal current in the electrode is practically due to the heat
current in the black sheep that does not depend on M . Another relevant aspect consists in the
fact that when the loop is threaded with a magnetic flux that is close to half a superconducting
flux quantum and in correspondence to small values of the ratio between the inductive energy
and the Josephson energy, the sensitivity is proportional to (E

L

/E
J

)2 ln(E
L

/E
J

)2 as clearly
shown by equation (4.23), which gives an approximate analytical expression of the sensitivity
sfl.

Concerning the dephasing induced by the presence of thermal currents in the system we
have found that, in presence of small temperature gradients, there is a dephasing e↵ect which
depends both on the temperature and on the flux threading the loop. An interesting property
we have brought to light is its independence on the number M of junctions in the array realizing
the superinductance. The fact that the sensitivity can be reduced by lowering the ratio E

L

/E
J
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has the important result that the fluxonium qubit is less a↵ected by dephasing due to quasipar-
ticle tunnelling through the Josephson junction when compared to the Delft qubit design. We
furthermore find that the dephasing mechanism is exponentially suppressed with temperature
due to its origin in quasiparticle tunneling. However, we have shown that at moderately low
temperatures the resulting dephasing time is demonstrated to be large enough to easily allow
an excess of 104 operations before the qubit dephases.



Chapter 5

Conclusions

Superconducting flux qubits are superconducting devices based on Josephson junction proper-
ties. In this thesis various phenomena related to quantum coherences in superconducting flux
qubits are investigated.

The first two chapters briefly summarize some properties of the Josephson junctions of
interest in the context of this thesis and discuss the di↵erent kinds of superconducting qubits
recently realized and exploited in di↵erent applicative areas of physics. The original results are
instead contained in chapters 3 and 4.
In the third chapter, quantum coherences in superconducting flux qubit systems have been
exploited in two cases. In the first case, starting from experimental observations obtained by
Chiarello et al. at the IFN-CNR laboratory in Rome, a theoretical analysis of the system’s
behavior has been done. In particular, the experiment investigated the e↵ect of the modification
speed of the potential shape in a double SQUID flux qubit, resulting in an interesting quantum
e↵ect due to the interplay of Landau-Zener transitions and resonant tunneling. Both of them
give rise to the activation of quantum resonance phenomena manifesting themselves as peaks
in the probability of measuring a right flux state of the SQUID at the end of the nonadiabatic
transition. The appearance of such peaks, and the way in which they manifest, was not fully
explained involving ongly Landau-Zener transitions and resonant tunneling. The theoretical
analysis we have performed on this system furnishes an explanation of the experimental data,
relating the behavior of the probability of finding the system in the right flux state to the
presence of quantum coherences in the initial state of the system.
In the second part of the chapter, we have proposed a new generation scheme for a GHZ state,
namely a maximally entangled state, in a tripartite system of three superconducting qubits. This
kind of study is important because entangled quantum states have indeed proved to be essential
resources both for quantum information processing and computational tasks. We have also
investigated the e↵ects of the environment on the generation of GHZ states, concentrating our
attention on all of the external degrees of freedom that can be e↵ectively modeled as independent
bosonic baths. Our analysis proves that the scheme for generating GHZ states is stable enough
against the noise sources we consider.
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In the last chapter of the thesis we concentrated our attention to a cause of dephasing
in superconducting flux qubit which has not been investigated in detail before: dephasing due
to thermal currents. Since these qubit systems are driven by microwave pulses, might occur
an unbalance of heating between the di↵erent sections of the superconducting loop. Moreover,
quasiparticles in small superconducting structures badly thermalize, leading to problems in
reaching the base temperature in the dilution refrigerator. These reasons can even lead to
accidental temperature gradients between di↵erent electrodes of the system and consequently
thermal currents can appear. Thermal currents through Josephson junctions was introduced
in the first chapter of this thesis and in appendix A a detailed derivation of this current in
the tunneling approximation was given. The interesting property of thermal current through
superconducting Josephson qubits is that they are periodic function of the superconducting
phase which characterizes the junction. In general, the flux qubit states are characterized by
di↵erent values of the phase di↵erence through their Josephson junctions. Since the thermal
current through a device subject to a temperature gradient is also phase-dependent, we have
shown that it is related to the phase-dependent qubit states. In particular we have studied the
e↵ect of a thermal gradient in a persistent current qubit and have calculated the sensitivity of the
thermal current on the qubit states, showing that it is a linear function of the flux bias threading
the loop of the qubit. Moreover, we have investigated the impact of a temperature gradient on
the dynamics of the system. We have shown that the thermal currents have a measurement
character on the state of the qubit. In other words, the thermal currents contribute to limiting
the dephasing time of the qubit, according to the thermal gradient and the temperature of the
system. The dephasing due to temperature gradients in a persistent current qubit can range
from nano- to micro-seconds. A comparison with dephasing times imputable to other noise
sources shows that their detrimental e↵ects could be not negligible.
In section 4.2 we have investigated the e↵ects of temperature gradients in the most performant
flux qubit: fluxonium. The reason for this is that this system is particularly well protected
against flux noise thanks to its array of Josephson junctions which acts as a superinductance.
We have studied the e↵ects of very small thermal gradients and to do that we have used the
thermal current in the linear response regime. What we have found is that the sensitivity of the
thermal current to the qubit states is independent on the number of junctions in the array of the
superinductance. The sensitivity only depends on the flux bias threading the loop and on the
ratios E

C

/E
J

between the charging energy and the Josephson energy, as well as the ratio E
L

/E
J

between the inductive energy relative to the superinductance and the Josephson energy. We have
found analytic expressions for the sensitivity as well as the dephasing time. Moreover, we have
shown that when the loop is threaded with a magnetic flux that is close to half a superconducting
flux quantum and in correspondence to small values of the ratio between the inductive energy and
the Josephson energy, the sensitivity is proportional to (E

L

/E
J

)2 ln(E
L

/E
J

)2 and the dephasing
time is inversely proportional to the sensitivity. This means that the superinductance, which
results in a small inductive energy, gives a good protection also to thermal dephasing. However,
we have shown that if the temperature of the system is not su�ciently small (T > 0.15T

c

), the
thermal current can constitute an important source of dephasing in a fluxonium qubit.

The results discussed in this thesis are the content of reference [32, 77,92,124]



Appendix A

Derivation of the Maki-Gri�n
formula for the heat current

In this appendix, will be derived in detail the analytic formulae for the heat current, which it is
used in (1.29) and (1.30) and which were previously found in [36]. Starting from equation (1.26)
the first thing to do is to evaluate the full commutator [H

tot

, H
1

]. In this commatator only the
contribution [H

tot

, H
1

] = [HT , H1

] is non-zero. Dealing with fermionic annihilation and creation

operators, they must obey the anticommutation rule {c†l,k�, cmk0�0} = �lm�kk0���0 from which it
is possible to derive
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Using these commutation relations, the evaluation of [HT , H1
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(A.2)

Substituting this expression in (1.26), the expression in equation (1.27) is found
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The next step is to calculate the expectation values in the general expression for the heat current
(A.3), yielding a Kubo formula, when expanding in the small tunnelling matrix elements. In
general, to first order in perturbation theory, the expectation value of an operator O(t) is

hO(t)i = �i

Z t

�1
dt0h[O(t), HT (t

0)]i
0

e⌘(t
0�t) (A.4)
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where the brackets h·i
0

denote the equilibrium average with respect to the Hamiltonian H
0

=
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without the perturbation H
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, and ⌘ is a small parameter which is eventually taken to
zero. Using (A.4), the heat current can be written as
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As a first step, an evaluation of the commutator expression in the integrand is needed, which
assumes the form
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In order to take the equilibrium expectation value of this expression, it is useful to employ the
Green’s functions defined in the following way
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The linear-response formula for the heat current, equation (A.5) is then given by
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The next step is to express the Green’s functions by their spectral densities
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where fl(!) is the Fermi function of the l-th electrode. Substituting these expressions, (A.8),
into the equation for the heat current, (A.7), the latter simplifies significantly
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Here, since the tunneling matrix element is invariant under time reversal, the relation V 12

kq V
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kq |2 is used. According to microscopic BCS theory the spectral densities are Al,k(!) =
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with |ul,k|2 = 1/2(1 + ⇠l,k/El,k), |vl,k|2 = 1/2(1 � ⇠l,k/El,k), and the quasi-particle energy-

momentum relation El,k =
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⇠2l,k + |�l,k|2. To continue the calculation, it is important to

notice that the parameters ul,k, vl,k and �l,k are not independent, but that their phases are
related by �⇤

l,kvl,k/ul,k = El,k � ⇠l,k, such that �⇤
l,kvl,k/ul,k must be a real number. That is,

the phase of vl,k relative to ul,k must be equal to the phase of �l,k. Without loss of generality
it is possible to choose ul,k to be real and positive, so that vl,k and �l,k must have the same
phase [43]. Finally, the phase di↵erence ' between the electrodes is introduced with the relation
�⇤

1,kv2,q = |�⇤
1,kv2,q| exp (i').

The next stage of the calculation is to substitute the spectral densities, Al,k(!) and Bl,k(!),
into the heat current expression, (A.9), and to perform the sum over the momenta k and q. To
do that, the sum over the momenta is transformed into an integral over the electronic energies
⇠l,k with l = 1, 2, such that [125],
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The normal-state density of states (including spin) of the l-th electrode is denoted by N0

l and
finally is assumed an isotropic superconductor with an energy-independent gap. Similarly, for
the other terms it is found
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1,kB2,q, which is related to the sole Cooper pairs con-

tribution, vanishes, as it easy to notice using the last expression in (A.11). Using the relation
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In the above derivation the normal densities of states and the tunnelling matrix elements are
assumed energy-independent. Evaluating the theta-functions it is finally obtained
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junction, defined via the inverse of the normal-state resistance, is R�1

12

= ⇡e2N0

1

N0

2

|V 12|2/~. In
(A.13), the total heat current through the junction carried by quasiparticles is dQ(1)

qp

(T
1

, T
2

)/dt,

while dQ(1)

int

(T
1

, T
2

)/dt is the interference contribution to the heat current due to an interplay

between quasiparticles and Cooper pair condensate. It is easy to see that dQ(1)

int

(T
1

, T
2

)/dt, which
originates from the Josephson e↵ect and is characteristic to weakly coupled superconductors,
vanishes when at least one of the superconductors is in the normal state (|�l(Tl)| = 0).



Appendix B

Dynamics of an open quantum
system

The aim of this appendix is to give the mathematical tools to study the dynamics of an open
quantum system, when it is coupled to a environment modeled as a reservoir, whose degrees of
freedom, by definition, are much more of that of the system under study.

Let us consider a quantum system S weakly coupled to a reservoir B. The total Hamiltonian
will be

H = H
S

+H
B

+H
I

(B.1)

where H
S

and H
B

are respectively the free Hamiltonian of the system and of the bath (reservoir)
and H

I

describes the interaction between the system and the reservoir. The operator which will
give us the informations on the state of the system will be the density operator ⇢(t), whose
dynamics will be controlled by the Liouville-von Neumann equation (~ = 1)

⇢̇(t) = �i
⇥

H, ⇢(t)
⇤

. (B.2)

It is usually very di�cult to solve equation (B.2) to study the evolution of the system. A possible
solution to this problem is to write a master equation for the density operator of the system.
This approach however requires to perform some approximations.

In order to obtain the master equation let us write the interaction Hamiltonian as [107]

HI =
X

↵

A↵ ⌦B↵. (B.3)

where A↵ are operators which act only on the system, while B↵ are operators of the bath. If
the spectrum of H

S

is discreet, and being ✏ di the eigenvalues of H
S

and ⇧(✏) the projection
operator in the relative eigenspaces, we may define

A↵(!) ⌘
X

✏0�✏=!

⇧(✏)A↵⇧(✏
0), (B.4)
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which are called the eigenoperators of H
S

. Let us also define the Fourier transform of the bath
correlation function hB†

↵(t)B�(t� s)i

�↵�(!) ⌘
Z

+1

0

dsei!shB†
↵(t)B�(t� s)i = 1

2
�↵�(!) + iS↵�(!) (B.5)

with B↵(t) = eiHBtB↵e�iHBt being the bath operators in the interaction picture. The terms
�↵�(!) which will enter in the master equation as dissipative terms can also be written as

�↵�(!) = �↵�(!) + �
⇤
�↵(!) =

Z

+1

�1
hB†

↵(s)B�(0)i. (B.6)

Following the derivation given is Ref. [107], we will perform the Born-Markov approxima-
tion, which require that the coupling between the system and the reservoir is su�ciently weak
that the system does not influences the dynamics of the reservoir and even that the time-scale in
which the system varies appreciably is much bigger that the time scale in which the correlation
function of the bath decay. Moreover, we will also perform the rotating wave approximation,
which can be applied when the system evolution time scales are much bigger than the relaxation
time scales of the open system. Under these circumstances we may write a markovian master
equation for the density operator of the system in the Schrödinger picture as [107]

⇢̇S(t) = �i
⇥

H
S

+H
LS

, ⇢S(t)
⇤

+

+
X

!

X

↵,�
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2
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◆

(B.7)

where

H
LS

=
X

!

X

↵,�

S↵�(!)A
†
↵(!)A�(!) (B.8)

it is usually called Lamb shift Hamiltonian, because simply renormalizes the energy levels of
the free Hamiltonian, as a consequence of the coupling with the reservoir. It is possible to
demonstrate that the Lamb shift Hamiltonian commutes with the free Hamiltonian of the system.
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Appendix to the GHZ state
generation scheme

C.1 Eigensolutions of the Hamiltonian given in (3.12)

The eigenstates of the Hamiltonian given in (3.12) can be written as common eigenstates
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The correspondent eigenvalues are given by

E|000i = �3

2

(! � g̃)

E|111i =
3

2

(! + g̃)

E|W i = �1

2
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E|W 0i =
1

2

(
p
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E| ri = �(g + g̃
2

) for r = 1, 10, 2, 20

C.2 Jump operators between the eigenstates of the Hamiltonian
(3.12)

The Bohr frequencies of the system in the second step are given in (3.35) and the correspondent
jump operators are respectively
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C.3 Jump operators of the Hamiltonian HIII
rot

As far as the third step it is useful to rewrite the jump operators of the first step in the basis
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Appendix D

Slopes of the sensitivities

In this appendix we provide the analytic formulas for the slopes of the sensitivities sl for small
�f ⌧ 1, found in paragraph 4.1. We find
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The results are plotted in figure 4.3.
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