
The technological advancements of recent years led to a pervasion of all life areas with 
information systems and allows to conveniently and affordably gather large amounts 
of data. The key to our information society is the transformation of the mere data in 
these comprehensive databases into information and knowledge. One research area 
committed to this goal is the one of data mining, where the task is to automatically or 
semi-automatically extract previously unknown patterns from such data sources. The 
subject of this thesis is the mining task of clustering, which aims at grouping objects 
based on their similarity such that similar objects are grouped together, while dissimilar 
ones are separated.

Since modern storage systems are not subject to practical limitations anymore, data can 
be captured in its full complexity without restriction to a small selective set of aspects. 
For such complex data, just identifying a single clustering is often not sufficient. Instead, 
multiple, alternative, and valid clusterings can be identified for a single dataset, each 
highlighting different aspects of the data. The paradigm of multi-view clustering, also 
referred to as alternative clustering, is dedicated to explicitly discover such a diverse set 
of multiple, alternative clusterings in order to find all hidden patterns in the data.

A second observation for complex data sources, where usually many characteristics are 
stored for each object, is the inability to find similar objects by considering all of these 
characteristics. While clustering based on all attributes, in the full-space, is futile, va-
luable cluster patterns can be found for subsets of attributes, in subspace projections. 
This problem is tackled by approaches of the subspace clustering paradigm, which aim 
at uncovering clustering structures hidden in subspace projections, such that for each 
cluster a set of relevant attributes is determined automatically.

In this thesis, we want to highlight fundamental parallels between the two paradigms of 
multi-view clustering and subspace clustering, since both account for the possibility of 
objects belonging to multiple clusters simultaneously. Consequently, we present several 
approaches exploiting synergy effects by combining both paradigms to find multiple, 
alternative clusterings in subspace projections of the data.
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Abstract
The technological advancements of recent years led to a pervasion of all life ar-

eas with information systems and allows to conveniently and affordably gather

large amounts of data. The key to our information society is the transformation

of the mere data in these comprehensive databases into information and knowl-

edge. One research area committed to this goal is the one of data mining, where

the task is to automatically or semi-automatically extract previously unknown

patterns from such data sources. The subject of this thesis is the mining task

of clustering, which aims at grouping objects based on their similarity such that

similar objects are grouped together, while dissimilar ones are separated.

Since modern storage systems are not subject to practical limitations any-

more, data can be captured in its full complexity without restriction to a small

selective set of aspects. For such complex data, just identifying a single clustering

is often not sufficient. Instead, multiple, alternative, and valid clusterings can be

identified for a single dataset, each highlighting different aspects of the data. The

paradigm of multi-view clustering, also referred to as alternative clustering, is ded-

icated to explicitly discover such a diverse set of multiple, alternative clusterings

in order to find all hidden patterns in the data.

A second observation for complex data sources, where usually many char-

acteristics are stored for each object, is the inability to find similar objects by

considering all of these characteristics. While clustering based on all attributes,

in the full-space, is futile, valuable cluster patterns can be found for subsets of

attributes, in subspace projections. This problem is tackled by approaches of the

subspace clustering paradigm, which aim at uncovering clustering structures hid-

den in subspace projections, such that for each cluster a set of relevant attributes

is determined automatically.

In this thesis, we want to highlight fundamental parallels between the two

paradigms of multi-view clustering and subspace clustering, since both account

for the possibility of objects belonging to multiple clusters simultaneously. Con-

sequently, we present several approaches exploiting synergy effects by combining

both paradigms to find multiple, alternative clusterings in subspace projections

of the data.
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Zusammenfassung
Der bisherige technologische Fortschritt führte zu einer Durchdringung aller Le-

bensbereiche mit Informationssystemen und ermöglicht das einfache und gün-

stige Erfassen großer Datenmengen. Für unsere Informationsgesellschaft ist es

jedoch entscheidend aus diesen reichhaltigen Datenquellen nützliche Informa-

tionen und Wissen zu generieren. Diesem Ziel hat sich der Forschungsbere-

ich des Data Mining gewidmet, dessen Aufgabe es ist automatisiert oder semi-

automatisiert vorher unbekannte Muster aus Daten zu extrahieren. Diese Arbeit

beschäftigt sich mit der Aufgabe des Clusterings, welche Objekte anhand ihrer

Ähnlichkeit gruppiert.

Da moderne Speichertechnologien keine ernsthaften Grenzen mehr aufzei-

gen, können Daten meist in ihrer vollen Komplexität ohne eine Beschränkung

auf lediglich ausgewählte Aspekte erfasst werden. Für solch komplexe Daten

stellt jedoch ein einziges Clustering oft keine ausreichende Charakterisierung dar.

Stattdessen lassen sich für einen Datensatz oft mehrere, unterschiedliche und

sinnvolle Clusterings identifizieren. Das Paradigma des Multi-View Clusterings,
auch als Alternative Clustering bezeichnet, hat sich dem Ziel verschrieben explizit

nach einer solch diversen Menge mehrerer, alternativer Clusterings zu suchen um

alle versteckten Muster der Daten aufzudecken.

Eine zweite Beobachtung für komplexe Daten, bei welchen üblicherweise

für jedes Objekt eine Vielzahl von Eigenschaften erfasst wurde, ist eine sehr

schwach ausgeprägte Ähnlichkeit zwischen Objekten bei Berücksichtigung all

ihrer Merkmalsausprägungen. Während ein Clustering unter Berücksichtigung

aller Attribute nicht zielführend ist, lassen sich bei Betrachtung einzelner At-

tributteilmengen, d.h. in Teilraumprojektionen, durchaus sinnvolle Clusterstruk-

turen identifizieren. Dieser Problemstellung haben sich Ansätze des Subspace
Clustering Paradigmas angenommen, welche Clusterstrukturen in Teilraumpro-

jektionen identifizieren, sodass für jeden Cluster automatisch auch die Menge

der relevanten Attribute bestimmt wird.

In dieser Arbeit wollen wir die grundsätzlichen Parallelen beider Paradig-

men, Multi-View Clustering und Subspace Clustering, hervorheben, da beiden die

Eigenschaft der gleichzeitigen Zugehörigkeit einzelner Objekte zu mehreren Clus-

tern gemein ist. Entsprechend stellen wir verschiedene Ansätze vor die durch die

Kombination beider Paradigmen Synergieeffekte nutzen um mehrere, verschie-

dene Gruppierungen in Teilraumprojektionen zu identifizieren.
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The opposite of a correct statement is a false statement. But the
opposite of a profound truth may well be another profound truth.

NIELS BOHR

Part I

Introduction
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1
Introduction

THE digitalization of our society combined with the increasing potential of

technologies for storing and collecting data leads to an explosive growth of

data sources. Efficiently and reliably storing and managing data in such massive

databases is just the first challenge accompanying this trend. To unfold the full

potential of the gathered data, the mere data has to be transformed into useful

information. In science, engineering, and economy, data analysis is nowadays a

necessity and enables the discovery of valuable patterns, trends, or anomalies in

the data. Given the vast amount of data, human capabilities for manual anal-

ysis are quickly overstrained which generates an urgent need for techniques to

automatically analyze and evaluate the collected raw data.

The multidisciplinary research field of data mining, as an essential part of the

process for knowledge discovery in databases (KDD) [HKP11], is devoted to de-

velop automatic or semi-automatic algorithms for detecting previously unknown

and useful patterns in the data. The KDD process is a sequence of several im-

portant steps, which can be processed iteratively until the discovered patterns

and the resulting insights meet the user’s requirements (cf. Fig. 1.1). Before data

mining techniques can be applied, the collected raw data usually needs to be pre-

processed. This step can include the integration of data from several sources into

one big data warehouse. Often the data quality needs improvement through data

cleaning techniques to treat missing values, data inconsistencies, or noise sus-

tained during data acquisition. Given the trend of unrestrainedly collecting all

available data without targeting a specific analysis question, it is often inevitable

to confine the consideration to only a selection of the data relevant to the anal-

ysis task and also to transform the data such that according mining techniques

can be applied successfully. Among the various data mining principles one or

several techniques can be applied on the task relevant data in order to extract

useful patterns and characteristics of the data or to determine predictive models

7
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preprocessing

raw data relevant 
data

cleaning
integration
selection
transformation

data mining evaluation &
visualization

patterns knowledge
clustering
classification
regression
outlier analysis
...

Figure 1.1: The knowledge discovery process in databases (KDD process)

to anticipate future trends. To help the user in interpreting and understanding

the discovered patterns, the mining results are evaluated and visualized to trans-

late the patterns into knowledge. Many data mining techniques involve user

interaction, such that data mining and visualization are often coupled in a unify-

ing, interactive framework. To influence or to enhance future mining results, the

gathered knowledge as well as the discovered patterns of the KDD process can

be integrated into a knowledge base as part of the relevant data for subsequent

mining techniques.

In this thesis we will concentrate on the data mining, evaluation, and visual-

ization steps of the KDD process with a special focus on data mining techniques.

Furthermore we will consider the possibilities to utilize user knowledge or discov-

ered patterns for subsequent mining processes. Out of the various data mining

principles, we will restrict this thesis to the descriptive mining task of cluster

analysis, which aims at grouping the data objects into clusters such that objects

within each cluster are similar, while objects located in different clusters are dis-

similar. Since clustering traditionally operates without given prior information,

such as, e.g., partial information about class labels, but autonomously identifies

the hidden aggregation structure of the data, it is ranked among the unsuper-

vised mining principles. In contrast to clustering, the predictive mining task of

classification needs partial information about the class structure in order to learn

a model based on which unknown objects can be classified. As we will see in

the context of this thesis, such a clear differentiation between unsupervised and

supervised learning tasks does not apply to modern mining techniques anymore.

Instead, different paradigms such as clustering and classification contribute to

each other such that in both fields various so-called semi-supervised techniques

exist. Also, the integration of previously detected patterns and user knowledge

can be understood as semi-supervision as it is able to guide a clustering pro-

cedure in addition to the data itself. In this thesis, we will therefore consider

unsupervised as well as semi-supervised clustering techniques.
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Clustering analysis is widely studied in the data mining and machine learning

community to detect patterns in the data, helping to identify structures and rela-

tionships in complex data as well as to summarize the data. Clustering techniques

are also often applied as intermediate step for other data mining paradigms such

as classification or outlier analysis, exploiting the summarizing characteristic of

such a descriptive structural analysis. The research field of clustering is very di-

verse and the presented solutions highly depend on the targeted data domain

(text, multimedia, networks, timeseries, numeric vector data, etc.) and the ap-

plication’s problem setting (streaming data, uncertain data, pattern type, seg-

mentation, summarization, trend detection, etc.). In this thesis we will focus on

numeric vector data but will also strive the topic of clustering within network

data. Typical applications for those data domains can, for example, be :

• Customer segmentation: Here, the goal is to find groups of customers

with similar buying, behavioral, or personal characteristics in order to find

groups with common needs and priorities to enhance targeting and recom-

mendation strategies.
• Sensor data analysis: By detecting sensor groups showing similar measure-

ments, a compression of the data into cluster information can help in re-

ducing the power consumption for long-distance transmissions of mobile

sensors. It can also help to detect global events, trends, or anomalies.
• Gene expression data analysis: If represented as microarray, one goal is to

find genes with homogeneous expression levels, which indicates that they

share a common function. If gene interactions are additionally taken into

account in a network representation, then a goal is to find genes that show

similar expression levels and are densely connected to identify functional

modules.
• Network analysis: Clusters in networks, also referred to as communities, are

groups of densely connected vertices. Clusters in the World Wide Web, e.g.,

comprise web pages with topical similarities or identify link farms. In so-

cial networks, clusters correspond to social groups, e.g., different research

divisions in a scientific co-authorship network.

Instead of just a small selection of relevant information, the grown poten-

tial of data storing and data recording techniques enables us to capture data

from such different applications in its full complexity. For such complex data,

traditional clustering methods are often incapable of detecting a meaningful or

all-encompassing clustering structure. Therefore, several specialized areas have
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formed within the research field of cluster analysis, among which we will con-

centrate on the one of multi-view or alternative clustering and on the one of

subspace clustering.

1.1 Multi-View and Alternative Clustering

The process of clustering is commonly known to be very subjective and that there

does not exist the one true clustering approach to solve all clustering problems.

Instead many different cluster concepts exist, such as e.g., arbitrarily shaped clus-

ters, compactness-based clusters, or distribution-based clusters. The clustering

result, thus, strongly depends on the chosen clustering algorithm but also on the

selected parameter setting for this algorithm. While the instability of clustering

results has encouraged the research field of ensemble clustering to develop meth-

ods to find the one, unifying consensus clustering, the awareness of the inherent

subjectivity of the clustering task motivated several researchers to go the opposite

direction and explicitly uncover the diverse set of hidden clusterings within the

data. The research area of alternative clustering, also referred to as multi-view

clustering1 follows the philosophy that some datasets, especially if they are com-

plex, can allow for multiple valuable, alternative clusterings. Each one of these

groupings has its justification and might present a reasonable view or perspective

on the data’s nature. A toy example that, in variations, is commonly used in the

literature (e.g., [DQ08]) to visualize the validity of concurring alternative cluster-

ings is depicted in Fig. 1.2. For such data, there is no indication to prefer the left

over the right clustering as both partitionings fulfill similar quality requirements.

Besides the exploratory curiosity of scientists, we can find various reasons to

extract all clusterings hiding in the considered data. A user often does not know

in advance which data characterization is the most useful one for an application.

In such a scenario the presentation of different available alternatives helps to

evaluate the different options. For different applications, different clustering so-

lutions might be suited best, such that a single clustering will not be sufficient. In

some applications there might already exist a strong hypothesis on the clustering

structure of the data and it is necessary to verify that there does not exist another

strong, competing clustering structure.

1The term multi-view clustering is also commonly used for the clustering paradigm which
searches for a single clustering of data represented by multiple different sources. For clarity
will call this paradigm multi-source clustering in the remainder of this thesis.
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Figure 1.2: Alternative clusterings for a single dataset

1.2 Subspace Clustering

In our information society, we can observe the trend to collect all available in-

formation just in case of any potential future application. On the one hand,

such rich data repositories represent treasures for data miners and might allow

to reveal complex new patterns, such as, e.g., alternative clusterings. On the

other hand, such unfiltered data sources possess the unfortunate characteristic

that patterns are obfuscated by irrelevant information. Traditional clustering ap-

proaches consider the full attribute space to assess the similarity between objects,

i.e., all of the objects’ characteristics are taken into account. With an increasing

number of characteristics, it becomes, however, more and more unlikely that two

objects share similar values with respect to all attributes. Thus, we observe an

increasing distance for an increasing dimensionality of the attribute space. While

distance values grow with increasing dimensionality, the variance of the distances

becomes nearly a constant. As a consequence, the discrimination power of dis-

tance functions deceases with increasing dimensionality of the data space, such

that all objects seem equally similar. As an effect of this so-called “curse of di-

mensionality” [BGRS99], we can observe that in high-dimensional spaces nearest

neighbor queries become instable and that it becomes increasingly difficult to es-

timate distributional parameters such as, e.g., the mean. The effects of the curse

of dimensionality are especially strong if we have a high proportion of irrele-

vant features. Due to such irrelevant features, it is very unlikely for traditional

clustering methods to discover reasonable clustering structures in the full-space.

One possible solution to diminish the effects in high-dimensional spaces are

techniques for global dimensionality reduction, e.g., the Principal Component

Analysis (PCA [Jol02]). All objects are projected into a single low-dimensional
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Figure 1.3: Exemplary subspace clusters in three different subspaces

space, where the influence of irrelevant attributes is weakened. Unfortunately,

for complex datasets, different clusters may have different sets of relevant at-

tributes, such that global dimensionality reduction techniques do not provide a

satisfying solution. This problem of locally relevant dimensions for each cluster is

explicitly tackled by the paradigm of subspace clustering [PHL04, KKZ09]. Sub-

space clustering is not restricted to a single data projection but detects clusters

in arbitrary subspace projections of the data. For each cluster it automatically

detects the set of relevant features for which the cluster’s objects are similar. The

relevant features of a cluster support a semantic reasoning about the data’s clus-

tering structure. The example in Fig. 1.3 shows a clustering consisting of three

clusters each in a different subspace projection. Cluster C1 is located in subspace

{blood pressure, sportive activity}, while for the grouping of cluster C2 only the

attribute {sportive activity} is relevant and cluster C3 is located in the disjoint

subspace {money spent on technology, read technical articles}. Since different

subspaces represent different characteristics of the data and, thus, might reveal

clusters in a different semantic context, each object can naturally belong to mul-

tiple clusters simultaneously. Therefore, all three clusters of the example in Fig.

1.3 are potentially meaningful and should be reported as result.

1.3 Contributions and Structure of this Thesis

In this thesis, we want to present new models and algorithms for effectively com-

bining the two paradigms of subspace clustering and multi-view clustering. Both

paradigms share the fundamental belief that just a single partitioning of the data

is often insufficient and that, instead, objects can be clustered differently depend-

ing on the context or view. While for multi-view or alternative clustering the term
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“view” is not clearly defined and it is often hard to analyze the semantic behind

discovered alternative clusterings, subspace clustering provides a natural intu-

ition of a view on the data, as different subspace projections provide a different

semantic perspective on the data. The two different 2-dimensional subspaces in
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Figure 1.4: Different subspaces providing different clustering views on the data

Fig. 1.4 show two differing clusterings of a single dataset. Each set of character-

istics represents a different view on the data, which enables to find such a diverse

set of clusterings. Taking a perspective focused on health aspects, different in-

dividuals will be grouped together than when taking a perspective focused on

musical or professional interests. Furthermore, the relevant attributes for each

clustering support the identification of a semantic context for each clustering.

A clustering based on the attributes “fruit consumption” and “sport activity” is

likely related to the “health status” of a person, while the type of favored music

concerts reveals a person’s “taste of music”.

A transfer of the principles of subspace clustering to multi-view clustering

cannot only help in defining a view and a semantic background for alternative

clusterings, it will also properly address the problem of irrelevant dimensions and

account for the curse of dimensionality. Similarly, an adaption of the idea of clus-

tering views and of the diversity of these views for subspace clustering can help

in conquering one of the main challenges of subspace clustering, which is the

avoidance of redundant clusters in the result set. Since the cluster definition of

subspace clustering methods is often (nearly) anti-monotone w.r.t. the subspaces,

each subspace projection of a valid cluster is a valid cluster as well. To avoid an

overwhelming result set with redundant information, subspace clustering algo-

rithms usually rely on a special redundancy modeling.
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Part I: Introduction

In Chapter 1 of this first part of the thesis, we provided a short introduction for the

two major data mining paradigms this thesis will cover: multi-view clustering and

subspace clustering. In Chapter 2 we will continue with a discussion of the related

work for both paradigms in order to capture the general approaches tackling both

clustering problems. In addition to a formal problem formulation, we will also

highlight the main challenges for each paradigm.

Part II: Transferring Multi-View Principles to the

Subspace Clustering Paradigm

In the second part of this thesis, we take the perspective of subspace clustering

and adapt an important principle of multi-view clustering to improve the cluster-

ing result. We start in Chapter 3 with a thorough discussion of the relation be-

tween multi-view clustering and subspace clustering to analyze similarities and

differences.

In Chapter 4, we introduce the OSCLU approach which integrates the simi-

larity of subspace perspectives into the model to handle redundancy in the result

set. The redundancy of clusters is evaluated based on their similarity regarding

objects and subspaces. The underlying idea is that only almost orthogonal sub-

spaces are able to provide diverse clusterings. The OSCLU approach presents a

general and flexible solution for detecting subspace clusters in different views of

the data without relying on a specific cluster definition. Due to the NP-hard com-

plexity of finding the globally optimal final solution, we propose an efficient al-

gorithm to compute an approximate solution for the density-based cluster model.

The OSCLU approach finds a globally optimal set of alternative clusters re-

garding interestingness and redundancy. However, it cannot take prior informa-

tion into account to determine a subspace clustering that represents a good al-

ternative for already known subspace cluster information. In Chapter 5, we will

present our ASCLU approach, which is a natural extension of the OSCLU model

incorporating the information of a previously known subspace clustering into the

global optimization process. The new clustering produced by ASCLU exhibits no

redundancy to the apriori given clustering but complements its information to an

overall optimal solution.
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Part III: Transferring Subspace Principles to the

Multi-View Clustering Paradigm

In the third part of this thesis, we take the perspective of multi-view clustering

and transfer the idea of searching for clusters in subspace projections to the task

of finding alternative clusterings. The two approaches OSCLU and ASCLU, pre-

sented in the previous part, focus on the clustering as a whole but views are only

considered implicitly and are not mined explicitly. The views do not manifest

themselves by assigning clusters to views and by determining which attributes

are characteristic for which view. In Chapter 6, we will introduce the general

idea for determining multiple alternative subspace clusterings simultaneously, to

overcome these limitations. With generative models, we assume the data to be

the result of a generative process depending on different mixture distributions

for different subspaces, representing the clustering views.

In Chapter 7, we introduce our MVGen method which couples the detection of

subspace clusters and their aggregating views. The generative model of MVGen

considers classical subspace clustering scenarios, where a cluster has locally irrel-

evant dimensions for the view it is assigned to and where global noise dimensions

can occur. To determine the relevant dimensions for each view and their subspace

clusters, we perform Bayesian model selection, where we allow for overlapping

subspaces for each view. Since learning the model variables through exact infer-

ence is intractable, we approximate the optimal solution using the principle of

iterated conditional modes.

The generative model SMVC introduced in Chapter 8, is motivated by the suc-

cess of the MVGen model. The subspace clustering scenario modeled with our

SMVC model is simplified and the focus is directed towards a meaningful integra-

tion of user defined partial prior information regarding the clustering structure in

the multi-view scenario. Via instance level must-link and cannot-link constraints

the user is enabled to guide the complex clustering process towards a more sat-

isfying result. Besides the difficulty of learning the clustering and the relevant

subspaces for each view, a new task is to learn the association of the provided

instance level constraints to the views. For efficient learning of the model vari-

ables, we use variational inference and mean field approximation techniques to

approximate the optimal solution.
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Part IV: Constraint-Based Alternative Clustering in Subspace Projections

Part III presented techniques to simultaneously find multiple clustering views

hidden in the data. Most techniques for the multi-view clustering paradigm,

especially if incorporating data transformations, instead, search for clustering

alternatives iteratively. This has the advantage that based on the knowledge of

previously found clusterings, the search for a new clustering is not completely

uninformed but can be steered towards promising directions. In this part, we

want to introduce a new concept for finding alternative clusterings in subspace

projections based on methods for combined graph clustering of graph data and

attribute data. Chapter 9 gives an introduction to the problem reformulation

and thoroughly discusses the main challenges for this task. By encoding known

clusterings as relational information between objects, the vector data and the

known clusterings can be represented together as either vertex labeled graph or

as edge labeled graph. In the chapters 10 and 11, we will present two techniques

for performing subspace clustering in graphs annotated with feature vectors.

In Chapter 10, we propose the novel clustering method SSCG for graphs with

vertex labels based on the principle of spectral clustering. Following the idea

of subspace clustering, our method detects for each cluster an individual set of

relevant features. Since spectral clustering is based on the eigendecomposition of

the affinity matrix, which strongly depends on the choice of features, our method

simultaneously learns the grouping of vertices and the affinity matrix.

In Chapter 11, we present the novel clustering method SuMo for graphs with

edge labels. We extend the widely used modularity measure, used to express

the strength of communities, for multi-dimensional edge weights by following

the principles of subspace clustering. Some of the existing algorithms for ap-

proximating the optimal solution with respect to the traditional modularity can

already be adapted for our extension of the modularity. To deal more effectively

with the extended search space due to the variance of the dimensions relevance,

we propose the efficient clustering algorithm SuMo for clustering networks based

on the subspace modularity.

Part V: Evaluation and Visualization for Alternative Subspace Clustering

In this part of the thesis we will discuss measures and techniques for evaluat-

ing and visualizing clustering algorithms in the context of multiple views and

subspace projections. We will consider post-processing techniques as well as in-

process techniques for supporting the user in confining the clustering result.
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In Chapter 13, we discuss the possibilities for a systematic evaluation of sub-

space clustering results. We formalize general quality criteria for subspace clus-

tering measures and compare the existing external evaluation methods based on

these criteria and pinpoint limitations. We propose a novel external evaluation

measure which meets the requirements of the proposed quality properties. Over-

all, we provide a set of evaluation measures that fulfill the general quality criteria

as recommendation for future evaluations.

Decoupling the process of subspace search from the actual clustering process

provides more flexibility for the task of subspace clustering, e.g., regarding the

choice of the cluster model. The choice of interesting subspaces is, however, cru-

cial and for the choice of a proper clustering paradigm the user needs some ana-

lytical foundation. In Chapter 14, we propose an interestingness-guided subspace

search method for facilitating the choice of subspaces by using the principles of

different views. We provide visualization and navigation possibilities to interac-

tively explore large sets of subspaces. Our approach allows users to effectively

compare and relate subspaces with respect to involved dimensions and clusters of

objects and facilitates the choice of appropriate clustering paradigms for selected

subspaces.

In Chapter 15, we present two tools that help in bridging the gap between sub-

space clustering and multi-view clustering. Although subspace clustering meth-

ods generate concept-based patterns, the user has to provide domain knowledge

to gain reasonable concepts or views out of the data. The first tool CoDA supports

the user in the final step of view definition. More concretely, the user is guided

through an iterative, interactive process in which views are suggested, analyzed,

and potentially refined. Based on the views defined with CoDA or for the several

alternative clustering solutions generated by multi-view approaches, our second

tool, MCExplorer, allows for an interactive exploration, browsing, and visualiza-

tion of multiple clustering solutions on several granularities.

Part VI: Summary and Outlook

In the last part, we conclude this thesis by summarizing all contributions and by

presenting interesting open challenges in the context of multi-view clustering in

subspace projections.





2
Related Work

THIS chapter will provide a rough overview of published clustering methods

that are related to the task of finding multiple alternative clustering solu-

tions in subspace projections. We will mainly focus on the two paradigms multi-

view clustering (Section 2.1) and subspace clustering (Section 2.2).

2.1 Multi-View Clustering

The research field of multi-view clustering, which is also commonly referred to

as alternative clustering, comprises various approaches applying different tech-

niques and different assumptions concerning the data. Before discussing the dif-

ferent approaches, we start by formalizing the general mining task for finding

multiple alternative clusterings.

Problem Definition 2.1 Generalized Multi-View Clustering Problem
Given a set of objects O = {o1, . . . , on} and a set of m ≥ 0 known clusterings
Known = {C1, . . . , Cm} as background knowledge, generate l ≥ 1 alternative clus-
terings Alt = {C1, . . . Ck} such that

1. the quality of the generated clusterings
∑

C∈Alt Qual(C) is maximized and

2. the similarity of all clusterings
∑

Ci,Cj∈Known∪Alt∧Ci �=Cj Sim(Ci, Cj) is minimized.

Like the solutions we will present in the next chapters, most approaches are

developed for numerical vector data O ⊆ R|Dim| with Dim being a set of dimen-

sions. However, some approaches present general frameworks for discovering

alternative clusterings and are independent of a specific cluster model such that

they are not restricted to one data domain. Usually a clustering, for the set

Known as well as the set Alt, is considered to be a hard clustering and presents

a partitioning of the data O.

19
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2.1.1 Naive Approach

An intuitive approach to achieve a multi-view clustering is to randomly gener-

ate a variety of clustering solutions of which then a set of diverse clusterings

is extracted in a post-processing step. The set of base clusterings can either be

generated by using different clustering approaches, by using different parameter

settings, or by exploiting the non-determinism or the trap of local minima of cer-

tain optimization algorithms. The post-processing step of selecting informative

alternative clusterings will be a mining task itself. In [CENS06], the selection of

clustering alternatives is solved through a meta clustering approach, where simi-

lar clusterings are grouped based on a similarity metric for clusterings. Represen-

tatives for the clusters at the meta level present the desired alternative clustering

solutions. Besides of the inefficiency of the generation step, it also carries the

risk of generating highly similar clusterings as well as clusterings of bad qual-

ity. Instead of such an undirected and independent generation of solutions, more

systematic approaches would promise clusterings of higher quality and diversity.

Following the true meaning of multi-view clustering, we can find multiple,

differing categorizations of the approaches for this paradigm. In the following,

we will focus on just one categorization and differentiate between two processing

schemes to systematically generate alternative clusterings. The first approach

uses the knowledge of previous clusterings to iteratively generate new clustering

alternatives. The second approach produces multiple alternatives simultaneously

such that each clustering influences the others and a diversity can be realized.

2.1.2 Iterative Approach

Approaches that work iteratively assume a set of m ≥ 0 known clusterings

Known = {C1, . . . , Cm} based on which a single alternative clustering Calt is gen-

erated (l = 1, cf. Problem Definition 2.1). Regarding the new clustering Calt as

known information Known ∪ {Calt}, a further clustering alternative can be pro-

duced in a subsequent iteration, and so on. Most of the existing approaches have

been designed to incorporate just a single known clustering (0 ≤ m ≤ 1, cf. Prob-

lem Definition 2.1). These approaches carry the risk that previously discovered

clusterings are revisited in later iterations since the dissimilarity of new cluster-

ings is just ensured for the one clustering of the previous iteration but not for all
known clusterings. For some approaches a naive extension to incorporate m > 1

clusterings is easily possible, as we will discuss in the following.
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The first approaches presented for this category find alternative clusterings

based on the information bottleneck principle. The general idea of the infor-

mation bottleneck principle is to find the best trade-off between accuracy and

complexity (compression) when clustering data objects X (random variable rep-

resenting object IDs) w.r.t. their attribute values Y (relevant variable representing

the objects’ attribute values). A (probabilistic) clustering C (random variable rep-

resenting a clustering) should compress the information of X as much as possible

(minimize mutual information I(X,C)) while preserving the information of the

features Y (maximize the mutual information I(Y, C)). Overall, this trade-off can

be realized via minp(c|x ) [I (X,C)− β · I (Y, C)], where β is the Lagrange multi-

plier realizing the trade-off. This variational problem formulation can be solved

via a generalization of the Blahut-Arimoto algorithm [TPB99].

The information bottleneck objective, as defined above, represents the qual-

ity criterion for Definition 2.1. To incorporate the dissimilarity constraint for a

given clustering D this objective has to be extended. Here, different ideas for

using the information bottleneck with side information, i.e., a known cluster-

ing D, exist in the literature [CT02, GH03, GH04]. In [CT02] the main idea

is to minimize the similarity of D and C by minimizing the mutual information

I(S,C), which is integrated as a third trade-off component into the objective

function: minp(c|x ) [I (X,C)− β · I (Y, C) + γ · I(D,C)]. To avoid a third trade-

off parameter, in [GH03] the redundancy of C and D is considered within the

conditional mutual information I(Y, C |D) of variables Y and C when already

knowing clustering D. Maximizing this term ensures that the new clustering C

provides novel knowledge: minp(c|x ) [I (X,C)− β · I(Y, C |D )]. The authors in-

troduce a relaxation in [GH04] and focus mainly on the diversity of the two clus-

terings while enforcing only a minimal quality threshold: maxp(c|x ) [I(Y, C |D )]

such that I(X,C) ≤ c and I(Y, C) ≥ d. Other similar techniques exploiting in-

formation theoretic principles can be found in the literature, e.g., [DB10a] which

optimizes the objective maxc [I(C, Y )− β · I(C,D)].

The information theoretic approaches presented so far are designed to incor-

porate just a single known clustering. Here, for a new clustering the dissimilarity

is just guaranteed for this single other clustering. A straightforward solution

for considering multiple clusterings as prior information is to replace the occur-

rence of the redundancy term (e.g., I(D,C)) in the objective function with the

sum of dissimilarities (e.g.,
∑

D∈Known I(D,C)). Approaches following this idea

are for example [GVG05, VE10, DB13a]. For binary data, [GVG05] presents a
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method for likelihood maximization with model-level constraints to encode the

known clustering information. [VE10] optimizes the same objective as [DB10a]

based on conditional entropy and kernel density estimation. [DB13a] presents

an elegant way to combine the minimization of the summarized mutual entropies∑
D∈Known I(D,C) and the likelihood maximization of the variables for the den-

sity mixture model: maxΘ
[
L(Θ |X )− β ·∑D∈Known I(D,C)

]
, where L(Θ |X ) is

the log-likelihood function for determining optimal distribution parameters Θ.

All approaches presented so far use information theoretic principles for the

quality and dissimilarity constraint of Definition 2.1 [CT02, GH03, GH04, DB10a,

VE10, DB13a] or just to model the dissimilarity requirement [GVG05, DB13a].

Aside from information theory, various other techniques for ensuring the dissim-

ilarity of the generated clustering have been published [GH05, BB06, BBD10].

[GH05] uses a heuristic approach that is based on ensemble clustering meth-

ods and can only incorporate a single known clustering CKnown. The presented

CondEns algorithm operates in three stages. First, the objects Oi of each known

cluster Ci ∈ CKnown are clustered separately with an arbitrary traditional cluster-

ing method. Since for each of the k = |CKnown| many newly generated clusterings

{CC1 , . . . , CCk
} only the objects of one cluster Ci have been considered, the re-

maining objects O\Oi will be properly assigned to the clusters for each clustering

CCi
. In a final step, a single alternative clustering is generated out of these k base

clusterings by using ensemble clustering techniques. A crucial assumption for the

success of CondEns is that each of the known clusters Ci ∈ CKnown has to contain

information about many or even all of the alternative clusters.

The Coala algorithm, presented in [BB06], encodes a known clustering with

instance-level cannot-link constraints and uses an agglomerative hierarchical clus-

tering to realize a trade-off between quality and dissimilarity. For each object

pair, it introduces a cannot-link constraint if both objects appear together in one

of the known clusters, indicating that those two objects should not be grouped

together again in order to achieve a novel clustering structure. For the merg-

ing steps of the hierarchical clustering, a trade-off is realized between quality

merges dqual and dissimilarity merges ddiss, i.e., dqual is the distance of the two

closest clusters and ddiss is the distance of the two closest clusters such that no

cannot-link constraints are violated. Only if the quality merge is significantly bet-

ter (dqual < w · ddiss) according to the trade-off parameter w, it will be preferred

over the dissimilarity merge. Although this principle can be easily adapted to

multiple known clusterings algorithmically, it becomes very likely that already
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for few known clusterings the quality merge will always dominate and thus a

single clustering will constantly be reproduced.

For the MAXIMUS approach in [BBD10], Bae et al. even develop the new

similarity measure ADCO for clusterings that emphasizes structural dissimilarity

(w.r.t. the clusters’ density profile) and can deal with non-overlapping cluster-

ings. Used as an objective, the optimization problem for minimizing ADCO w.r.t.

multiple known clusterings can be encoded as an integer linear program, whose

localized clustering solutions are combined with a consensus clustering process.

All approaches we presented so far for the category of iterative multi-view

clustering, cluster in just a single data space and explicitly consider the dissim-

ilarity of the generated clustering solutions as part of their objective. The al-

gorithms in [CFD07, DQ08, QD09, DB13b] follow a different approach, where

different data representations are considered for each clustering. The general

principle is to learn an “orthogonal” transformation of the data based on a previ-

ous clustering result. The idea is that the new data representation can highlight

novel clustering structures, which is strongly related to the subspace clustering

paradigm. These techniques do not explicitly check for the dissimilarity of the

generated clusterings but only implicitly account for the diversity through dif-

fering space transformations. The general aim for these approaches is to find a

transformation of the data that is independent of the known clustering but at

the same time preserves quality characteristics of the data to avoid its complete

distortion. Therefore, they are usually restricted to linear space transformations.

A big advantage of the transformation-based approaches is their independence of

a specific clustering model. For each of the determined data transformations an

arbitrary (preferably partitioning) clustering model can be applied.

The oldest approach based on data transformations [CFD07] exploits dimen-

sionality reduction techniques. For a given clustering the main factors (principal

components) leading to this clustering are identified. By removing these main

factors characterizing the previous clustering, only the residual, orthogonal space

is considered for the next clustering. Thereby, previously weak principal compo-

nents are highlighted, which can support alternative clustering structures. By

iteratively generating new space transformations based on the previously gener-

ated ones, this approach incorporates all previously known clusterings. However,

the repeated projection of the data into reduced spaces can quickly merge the

data into a single cluster. Furthermore, this approach might not be appropriate

for lower-dimensional datasets [DQ08].
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The approach of [DQ08] uses instance level constraints to characterize an

existing clustering CKnown. Based on a metric learning algorithm for these con-

straints, a transformation TCKnown
is determined such that the known clustering

is easily observable. Via a singular value decomposition TCKnown
= L · A · R an

“inverse” transformation T ′
CKnown

= L · A−1 · R is determined which rules out

the previously found clustering but maintains the inherent structure of the data.

Although, this procedure can be applied iteratively like [CFD07], there is no

guarantee for the dissimilarity of the transformations and correspondingly the

dissimilarity of the resulting clusterings.

The approach of [QD09] solves a constrained optimization problem to find a

good transformation of the data based on a single known clustering. It minimizes

the Kullback-Leibler divergence between the distribution of the original data and

the one of the transformed data without overly distorting the data properties.

For the optimization process, the authors also propose a trade-off possibility such

that the user is able to favor either alternativeness or quality. This approach

additionally offers the nice opportunity to specify certain parts of the known

clustering which should be retained. Similar to [DQ08], a naive extension for

multiple known clusterings does not guarantee a new data transformation which

is dissimilar to previous ones.

In [DB13b], a globally optimal subspace is learned using regularized PCA

such that the new subspace is independent from a given clustering and at the

same time naturally preserves the characteristics of the data. To achieve the in-

dependence of subspaces, the authors employ the Hilbert Schmidt Independence

Criterion (HSIC), which, in combination with PCA, can lead to an eigendecom-

position problem for which a globally optimal solution can be derived. For more

complex data structures, an alternative way to compute a subspace projection

based on graph theory is proposed, which aims to preserve the neighborhood

proximity of the data objects. Again, a naive extension for multiple known clus-

terings does not guarantee alternative subspace projections.

2.1.3 Simultaneous Approach

While the previous paradigm iteratively searches for alternative clusterings, ap-

proaches of the simultaneous paradigm try to determine all clustering solutions

in parallel. This has the advantage that all clustering solutions influence each

other such that the overall quality of the generated alternatives
∑

C∈Alt Qual(C)
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can be maximized. Approaches with an iterative clustering detection scheme,

instead, perform a greedy selection of the best available clusterings. Only sub-

sequent clustering solutions are to be adapted to guarantee a diverse set of clus-

terings but already generated clusterings cannot be modified. An affiliated effect

is that mistakes in previous iterations leading to bad clusterings can negatively

influence subsequent clusterings. Approaches simultaneously detecting multiple

clusterings typically do not incorporate any given clustering (m = 0, cf. Prob-

lem Definition 2.1) and the number of generated alternatives (l ≥ 1) is usually

defined by the user.

In [JMD08] two approaches are proposed which use the notion of decorrela-

tion between clusterings, which quantifies the ”orthogonality” between the mean

vectors corresponding to different clusterings. The first approach modifies the

k-means algorithm to find compact clusterings, where the representatives of dif-

ferent clusterings should be mostly orthogonal to each other such that the cluster

labels generated by nearest-neighbor assignments are independent. The second

approach presents a generalized expectation maximization algorithm for learning

the convolution of multiple independent mixture distributions.

The CAMI approach [DB10b] exploits a regularized expectation maximization

technique, which maximizes the likelihood of each alternative clustering over the

data and simultaneously minimizes the similarity between them based on the

mutual information. As for the approach in [JMD08], the different clusterings

are learned as a convolution of multiple independent mixture distributions.

The work of [HTW+10] focuses on non-homogeneous data, where two dif-

ferent object domains are considered, whose instances can additionally be con-

nected through relational information (bipartite graph). The task is to find a base

clustering for the objects of each data domain such that either the according con-

tingency table shows a strong diagonal (dependent clustering, relations between

the two clusterings are strong) or such that the according contingency table is

uniformly distributed (disparate clustering, relations between the two cluster-

ings are weak). The minimization or maximization of an integrated objective

function leads to a disparate or a dependent clustering. Although this approach

can only generate two alternative clusterings, it provides a very general frame-

work by considering two different databases and relational information.

The information theoretic model presented in [KdB13] follows the principle

that clusters are more interesting if their probability is small under some prior

beliefs. The prior beliefs can be simple distributional assumptions regarding the
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data but can also include already known clusters. The probability of clusters or

a set of clusters is derived based on a maximum entropy model of prior beliefs.

However, optimizing a set of alternative clusters is NP-hard, such that the au-

thors propose a greedy approximation algorithm where clusters are generated

iteratively and integrated into the prior belief for subsequent cluster generations.

Although this shall approximate the simultaneous computation of multiple, in-

dependent clusters, we can also argue to assign this approach to the iteratively

operating multi-view clustering paradigm. It is also important to note that this

approach does not produce a set of clusterings, but a set of non-disjoint clusters.

So far, [NDJ10] is the only approach aiming at simultaneously learning all

clustering views based on multiple data representations. By augmenting the ob-

jective for spectral clustering views to incorporate multiple views, dimensionality

reduction, and a penalization for similarity of the views, multiple clustering so-

lutions in subspace projections of the data are determined.

2.2 Subspace Clustering

Since the first subspace clustering approach [AGGR98] has been published in

1998 , numerous new methods have been proposed for which roughly two dif-

ferent paradigms can be distinguished: subspace clustering [AGGR98] and pro-

jected clustering [AWY+99]. Both paradigms tackle the general problem of find-

ing clusters in subspace projections of the attribute space. The most general prob-

lem formulation for subspace clustering also includes non-axis-parallel subspaces

and can be formalized as follows:

Problem Definition 2.2 Generalized Subspace Clustering Problem
Given a set of objects O = {o1, . . . , on} ⊆ R|Dim| with Dim being a set of dimensions
Dim = {1, . . . , d}, find a subspace clustering C ⊆ 2O, such that for each cluster
Ci = (Oi) ∈ C a linearly transformed space Si = fOi

(Dim) exists such that Ci is of
high quality in this projected space Si.

The linear space transformation can for example be the result of a PCA trans-

formation. For these arbitrary subspace projections the search space of potential

clusters becomes infinitely large, such that heuristics are applied to confine the

search. In this thesis the focus, however, will be on approaches for clustering in

axis-parallel subspaces for which a cluster can be understood as a pair consisting

of the set of its clustered objects and the set of its relevant attributes.
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Problem Definition 2.3 Generalized Axis-Parallel Subspace Clustering Problem
Given a set of objects O = {o1, . . . , on} ⊆ R|Dim| with Dim being a set of dimensions
Dim = {1, . . . , d}, find a subspace clustering C ⊆ 2O × 2Dim, such that each cluster
Ci = (Oi, Si) ∈ C has a high quality in its respective subspace Si.

While there is no generally accepted definition for the quality of a cluster-

ing, all existing measures somehow consider the proximity or similarity of the

clustered objects.

2.2.1 Subspace Clustering

Subspace clustering approaches base on a formal definition of what constitutes a

cluster based on the similarity of an object set for a subset of attributes. Among

the various presented approaches different definitions for subspace clusters exist

[PHL04, KKZ09]. The general idea, as introduced by [AGGR98], is to find all

pairs of object sets and subspaces that match this definition. The object sets

usually have to fulfill a maximality criterion, i.e., for a given pair (O, S) there

should not exist a superset O′ ⊇ O such that (O′, S) also is a valid cluster.

The first challenge of subspace clustering clearly is the computational com-

plexity. Given the exponential number of potentially interesting subspaces, most

subspace clustering algorithms have very high runtimes. Often the problem is

slightly diminished by exploiting heuristics to approximate the result.

An important characteristic of subspace clustering results is that the clusters

are allowed to overlap with respect to objects as well as attributes. On the one

hand, this allows that each object can participate in multiple clusters and, thus,

enables us to find multiple concepts hidden in the data. On the other hand,

one has to cope with the potentially tremendous amount of all possible clus-

ters in the exponential number of axis-parallel subspaces. Typically, the cluster

definition fulfills an anti-monotonicity criterion such that a set of objects form-

ing a valid cluster in subspace S also represents a valid cluster in all subspaces

S ′ ⊆ S. Therefore, the result size of subspace clustering algorithms can be huge

and quickly become unmanageable [MGAS09]. Usually, the projected versions

of a cluster in its subspaces do only comprise little novel objects and, therefore,

can be regarded as redundant information. The second challenge of subspace

clustering, thus, is the redundancy of resulting clusters. Some approaches have

been proposed that explicitly incorporate a redundancy pruning of the result

[AKMS07a, AKMS08a, AKMS08b, MAG+09b, MS08]. In addition to the clus-

ter definition, they often define an optimal clustering to report only the most
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interesting clusters, which provide novel knowledge about the data. In addition

to the exhaustive search of the exponentially many subspaces, thus, typically a

complex optimization task has to be solved.

A third challenge for subspace clustering is to adequately consider the effects

of the curse of dimensionality. By considering subspace projections, the negative

influence of irrelevant dimensions can be avoided. The decreasing density of ob-

jects with increasing dimensionality, however, also applies to clustered objects in

subspaces. Using just a single cluster definition for all subspaces, independent

of the subspace cardinality, might prevent the detection of meaningful clusters.

Some approaches like [SZ04, AKMS07a, MS08] explicitely account for the prob-

lem of a decreasing density and use a dimensionality unbiased subspace cluster

definition, e.g., by involving statistical significance thresholds [SZ04, MS08] or

by normalizing the density w.r.t. the null model [AKMS07a].

Most of the approaches presented for subspace clustering evolved from tradi-

tional clustering models like grid-based approaches [JD88], DBSCAN [EKSX96],

K-Means [Mac67], or EM-based techniques [MK08]. Besides these approaches

aiming for clusters that excel by a high compactness or density, some approaches

aim for object groupings that describe correlations of different attributes, so

called correlation clustering methods (e.g., [AY00a, BKKZ04, ABK+07b, ABK+07a,

AR10, ABD+08, HH07]). Since the clusters’ dimensions are not restricted to sub-

sets of the original attributes but correspond to arbitrarily oriented subspaces,

correlation clustering is often denoted as generalized subspace clustering. This,

however, is inaccurate because of two reasons: First, existing correlation cluster-

ing methods are not able to find multiple overlapping clusters, since they are lim-

ited to find only disjoint or, in the case of [AR10], nearly disjoint clusters. Even

more serious is the ignorance of the obfuscation provoked by highly overlap-

ping clusters in different subspaces, causing most approaches to fail in detecting

the true correlation clusters. With our SSCC approach presented in [GFVS12],

we adequately transfer the principles of subspace clustering to the problem of

finding correlation clusters by analyzing subspace projections to find correlated

dimensions supported by a subset of objects.

2.2.2 Projected Clustering

The paradigm of projected clustering, introduced by [AWY+99], aims at parti-

tioning the data into disjoint clusters such that with each group its relevant di-

mensions are discovered simultaneously. Each object is assigned to exactly one
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cluster, which is the major difference to the subspace clustering paradigm dis-

cussed before. Focusing on a partitioning of the data addresses two of the three

main challenges for subspace clustering. First, the search space is decreased by

considering a partitioning, which results in a better efficiency of approaches of

this paradigm. Second, limiting the result to only disjoint clusters can be re-

garded as maximal redundancy elimination, such that the result size is manage-

able. However, by enforcing disjoint clusters, several meaningful clusters are only

detected incompletely or are even lost entirely. In general, projected clustering

methods are not able to detect multiple clustering views per object.

2.3 Bridging the Gap

Summarizing the related work for multi-view clustering (cf. Table 2.1), we have
seen that most of the presented approaches focus on the iterative processing
scheme for clustering in just a single data space. Comparably, few approaches
deal with space transformations or a simultaneous detection of multiple cluster-
ing alternatives. Here, we will present new approaches in this thesis.

iterative simultaneous
single space: 2 alternatives � �

≥ 2 alternatives � �
transformed spaces: 2 alternatives � �

≥ 2 alternatives (�) just [CFD07] (�) just [NDJ10]

Table 2.1: Overview over the related work for multi-view clustering approaches

Searching for multiple clustering alternatives in just a single data space is not

very promising. Since only a single data representation is considered, the de-

tected clusterings, which depend on this single data distribution, will not differ

to a high extent. Approaches working with a single data representation are forced

to trade-off quality and diversity of the detected clusterings. A more promising

approach is to use different data representations, where novel structures of the

data might be hidden. Although agreeing that strong data distortions should be

avoided to guarantee a meaningful clustering, approaches presented for this cat-

egory use arbitrary linear transformations, such that results are often difficult to

interpret. We argue that alternative clusterings can be expected especially for

high-dimensional data, where different explanations of the data can be discov-

ered through different characteristics of the data, i.e., distinct subspaces of the

data. Within this thesis we will present approaches for detecting multiple alter-

native clusterings simultaneously (Part II & III) as well as iteratively (Part IV).





All truths are easy to understand once they are discovered;
the point is to discover them.

GALILEO GALILEI

Part II

Transfering Multi-View Principles to
the Subspace Clustering Paradigm
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3
The Relation of Multi-View Clustering

and Subspace Clustering

BESIDES the similarities of subspace clustering and multi-view clustering, we

can also identify inherent differences which clearly distinguish both para-

digms from each other. They both agree that for most data just a single parti-

tioning of the data is not sufficient but that different perspectives on the data can

reveal multiple, differing clusters for the same objects. A large customer data-

base, for example, allows for different groupings depending on whether personal

or professional preferences form the basis of clustering. Multi-view clustering

algorithms usually do not focus on defining or finding a meaningful perspective

on the data to reveal a new clustering. Instead they try to enforce, e.g., by using

constraints, to find highly differing clusterings. Subspace clustering, on the con-

trary, offers a nice intuition of a perspective on the data. The belief here is that

different sets of attributes highlight different characteristics of the data which, as

a consequence, can lead to different clustering solutions. This not only provides a

possibility for searching for new clustering alternatives but also enables a seman-

tic interpretation of the resulting clusters that is often not possible for multi-view

approaches. In Fig. 3.1 the attributes “average fruit consumption” and “sport ac-

tivity” provide a different clustering perspective than the attributes “attendance

to rock concerts” and “attendance to classic concerts”. We observe for each cus-

tomer multiple possible behaviors which should be detected as clusters. Each be-

havior of a customer is described by specific attributes. Thus, meaningful clusters

appear only in these specific subspace projections of the data. While the attribute

“attendance to rock concerts” is useful for the distinction of musical interests, the

attribute “fruit consumption” is irrelevant for grouping musical interests of cus-

tomers. Furthermore, the relevant attributes for each clustering strongly support

the semantic reasoning about found clusters and their views. Thus, we might

label the customers showing high values for fruit consumption and sport activity
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as “healthy” and those with low values as “unhealthy”. The respective clustering

perspectives can thus be labeled as, e.g., “health status” and “taste of music”.
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Figure 3.1: Different subspace projections reveal different views on the data

While approaches for multi-view clustering always search for multiple parti-

tionings of the data, subspace clustering algorithms do not enforce partitionings

but identify clustered regions in subspace projections of the data. This way, we

believe subspace clustering to be better guided by the data itself than partition-

ing approaches. In this chapter, we want to take the perspective of subspace

clustering and explore the possibility to integrate the underlying goal of multi-

view clustering. Thereby, we want to preserve the beneficial characteristics of

subspace clustering, namely:

• every cluster might have its individual set of relevant dimensions
• objects might belong to multiple clusters
• not every object needs to be clustered, i.e., there might exist outliers
• the final result clusters are determined simultaneously

Although both paradigms aim at revealing the multifaceted nature of the data

by allowing objects to be clustered multiple times, they both also try to limit the

result to a manageable size. Multi-view clustering limits the result set to only

those clusterings that are of high quality and that are dissimilar to each other.

For subspace clustering a cluster definition implicitly comprises a certain quality

demand. The actual pruning of the result set is realized by filtering out redundant

clusters. The underlying goal is, thus, the same for both paradigms and, put in a

nutshell, the objective is to maximize the gained information while keeping the

result size as small as possible.
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What is called dissimilarity for multi-view clustering is called avoidance of re-

dundancy for subspace clustering. While both intend to restrict the result set to

only informative clusters, we can observe that the term dissimilarity has a broader

conception than redundancy. While redundancy-avoidance is commonly consid-

ered to retain complete information and only to resolve duplicate information,

dissimilarity is a very subjective term and, as we will see, has various interpre-

tations in the literature. In the following, we will provide a brief overview over

techniques to constrain the result size of both, subspace clustering and multi-view

clustering.

3.1 Redundancy Avoidance for Subspace Clustering

Subspace clustering automatically detects clusters in arbitrary subspace projec-

tions. These clusters might overlap object and dimension-wise, i.e., objects can

be part of various clusters in different subspaces. As a consequence, subspace

clustering techniques have to cope with an exponential number of subspace clus-

ters. Many of these clusters detect more or less the same groups of objects in sim-

ilar projections of the data and, thus, provide no additional information. Given

the typically huge result size of subspace clustering algorithms (cf. [MGAS09]),

which might even exceed the number of objects to be clustered, the obfuscation

of the actually interesting cluster information by redundant clusters becomes a

severe problem. Therefore some approaches have been proposed that explicitly

address this redundancy problem. Besides a definition of what constitutes a sub-

space cluster, they formulate a redundancy definition to confine the set of all

possible subspace clusters to only the most interesting ones. We can divide these

redundancy models into those with local and global scope.

Representatives of the first category [AKMS07a, AKMS08a, AKMS08b] base

the redundancy definition on local cluster properties. Clusters are compared

pairwise, such that a subspace cluster is redundant if it shares a user-specified

fraction of objects with another cluster. Among the redundant clusters those with

maximal information, i.e., the ones with more relevant dimensions, are chosen

for the final result set. These maximal subspace clusters tend to contain less

noise and thus represent the inherent clustering structure more accurately. The

restriction to only pairwise comparisons of clusters fail to detect the redundancy

of clusters that are covered by combinations of high dimensional subspace clus-

ters. Reconsidering our toy example in Fig. 3.2, the additional benefit of knowing
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cluster C10 is almost negligible if we already know clusters C7 and C8. A pairwise

comparison of C10 to C7 or to C8, however, indicates a high fraction of newly

clustered objects which is, in fact, not true.
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Figure 3.2: Redundancy introduced by subspace projections of clusters

Acknowledging this shortcoming of local redundancy models, global redun-

dancy models [MAG+09b, MS08] compare the information of single clusters

against the set of all known clusters. For the redundancy model of RESCU

[MAG+09b], a cluster is non-redundant to a given set of clusters if it can con-

tribute with a sufficient coverage of beforehand unclustered objects. While this

definition solves the problem of detecting the redundancy of cluster C10 with

respect to clusters {C7, C8} in Fig. 3.2, it also easily expels the alternative clus-

tering {C7, C8, C9} as redundant if the clustering {C1, C2} is already known. The

StatPC approach [MS08] defines a cluster as redundant if its support can already

be approximately estimated with the information provided by the set of known

clusters. The goal is to find all and only those clusters that are statistically inter-

esting. While this approach allows to detect alternative subspace clusterings in

general, it exhibits some flaws hindering its broad application. First, it is based on

the assumption of uniform distribution inside a cluster. Second, the redundancy

model is limited to the fixed cluster definition of StatPC.

3.2 Dissimilarity Criteria for Multi-view Clustering

The prevailing goal of multi-view and alternative clustering approaches is to find

multiple clusterings that highly differ and are of high quality. Since the second

requirement of a high quality holds for all clustering paradigms and various ob-

jective functions have already been presented, the clou of the multi-view clus-
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tering paradigm clearly is the simultaneous realization of high quality and high

diversity. Among the various presented solutions for the clustering problem of

multiple views, we can identify two main categories regarding the technique for

attaining disparate clusterings.

Approaches of the first category directly ensure the dissimilarity of clusterings

via dual optimization techniques to simultaneously optimize the quality and the

dissimilarity of the new clustering. The most popular approach is to integrate an

according dissimilarity measure as constraint into the objective function. Here,

mainly information theoretic measures have been applied [CT02, GH03, GH04,

DB10a, VE10, DB13a, GVG05] but in [BBD10] Bae et al. also develop the new

measure ADCO that emphasizes structural dissimilarity and can deal with non-

overlapping clusterings. Besides the approaches directly involving a similarity

measure for clusterings, in [BB06] Bae and Bailey use instance-level constraints

and integrate their degree of violation into the objective function. The problem

of such dual optimization approaches is the trade-off between quality and dissim-

ilarity of the generated clusterings, which is usually realized by a user specified

trade-off parameter. Enforcing a higher degree of dissimilarity is, thus, typically

accompanied by a loss of the clustering quality. Since all the above approaches

work in a fixed data space, there is no possibility to circumvent this trade-off.

For the second category, the approaches do not directly enforce the dissim-

ilarity of the clusterings but use different perspectives on the data based on

previous clusterings and certain assumptions in order to find novel clustering

structures. The most common approach is to use a previous clustering to deter-

mine an orthogonal data space either through distance matrix transformations

[DQ08, QD09] or through subspace projections [DB13b, CFD07]. A different

technique is the one of [GH05], where Gondek and Hofmann propose a general

framework that is based on data subsets and ensemble techniques. Approaches

of this second category do not search just in the original data space but iteratively

transform and cluster the data. The transformation of the data, which is learned

based on the clustering structure of a previous result, is supposed to highlight

novel structures and presents an opportunity to find a novel clustering of high

quality. All approaches share the advantage that for the transformed data space

any clustering method can be applied depending on the data properties. A com-

mon disadvantage of all approaches is, however, the solely implicit consideration

of quality and dissimilarity of the new clustering based on certain assumptions.

The orthogonal space transformations do not ensure that the new space reveals
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a good clustering structure. Similarly also the dissimilarity of a new clustering

to previous results is based on certain assumptions but cannot be guaranteed.

This problem becomes most apparent with the two approaches of [CFD07] and

[GH05]. In [CFD07] the data space is iteratively projected into non-paraxial sub-

spaces based on the clustering of the previous iteration. Thereby, the data quickly

collapses into a single cluster or even a single coordinate [DQ08] such that no

meaningful cluster structure exists anymore. In [GH05] the underlying assump-

tion is that, given a known clustering each new cluster label is present in each

of the known clusters. If this assumption does not hold, the clustering quality as

well as the dissimilarity of the new result is questionable. Furthermore, especially

for the approaches [GH05, DQ08, QD09, CFD07], a global diversity of multiple

clusterings is uncertain since only one clustering can be taken into account for

the transformation.

3.3 Basic Idea for Combining Both Paradigms

While those approaches that solely cluster in the full-space are restricted with

respect to the diversity of the clusterings and are bound to a trade-off between

quality and diversity, those approaches that rely on space transformations share

the philosophy of subspace clustering that new perspectives on the data can re-

veal new clustering structures. In the following Chapters 4 and 5, we want to

present two approaches that try to transfer the general idea of finding alternative

clusterings based on data transformations to the paradigm of subspace clustering.

Thereby we want to inherit the advantages leading to the discovery of multiple

alternative clustering concepts and help to tackle the redundancy problem for

subspace clustering, whose benefits can in return help to overcome the concep-

tional problems of alternative clustering solutions.

The alternative clustering algorithms relying on space transformations assume

that different space projections naturally contain different clusterings. They

do not involve other techniques to guarantee the difference of the iteratively

generated clusterings. While subspace clustering techniques look at the differ-

ence of clusters more carefully by comparing the set of covered objects, they

do not incorporate the idea of the difference of space transformations. Either

they compare clusters only against clusters in superspaces (local redundancy:

[AKMS07a, AKMS08a, AKMS08b]), or they compare a cluster against the entire

set of clusters (global redundancy: [MAG+09b]). While local redundancy cri-
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teria are considered to be too weak and global criteria are often too restrictive,

the additional consideration of the subspace similarity instead of only the object

coverage can present a solution to this problem.

The quality of subspace clustering results is mainly determined by the struc-

tural quality of the detected clusters as well as the completeness and the redun-

dancy of the set of clusters. The quality of the clusters is completely determined

by the underlying subspace cluster definition. Given the evolution of subspace

clustering methods, where the difficulty of redundancy has been discussed and

explored only since the last decade, we can say that the quality of the cluster-

ing is the main focus of subspace clustering approaches. By remaining faithful

to these principles of subspace clustering, we are not endangered of resulting in

low quality results as multi-view approaches typically do.

In Chapter 4, we will present a new subspace clustering approach that simul-

taneously searches for all clusters of different clustering views. In Chapter 5, we

will extend this model in order to incorporate an existing, known subspace clus-

tering into the process to which an alternative subspace clustering needs to be

found. The general idea of using the subspace similarity in order to avoid redun-

dancy in the subspace clustering result will also reappear in Chapter 14, where

we will present an interactive visual approach for decoupling the processes of

subspace search and clustering.
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SINCE multi-view clustering and subspace clustering share the fundamental

belief that objects might not belong only to a single cluster but can belong

to multiple clusters simultaneously, it lends itself to combine both paradigms. In

this chapter, we want to transfer the ideas of multi-view clustering to subspace

clustering. We will see that the concept of clustering alternatives can help to

tackle one of the main challenges of subspace clustering, namely to identify only

the relevant clusters.

In this chapter, we propose the novel clustering method OSCLU (Orthogonal

Subspace CLUstering) which aims at the detection of orthogonal concepts in sub-

space projections of the data. OSCLU reveals the clusters of (almost) orthogonal

concepts described by different attribute subsets and prunes clusters of concepts

that are too similar. Thereby, OSCLU is able to detect all interesting clusters in

different views of the data while simultaneously avoiding redundant information.
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4.1 Introduction

As thoroughly discussed in Chapter 3, one of the main challenges for subspace

clustering, besides the efficiency, is the avoidance of redundant clusters in the re-

sult. Since most subspace cluster definitions fulfill at least a weak anti-monotonic-

ity criterion, most approaches face the problem that a valuable cluster C = (O, S)

is also detected in most of its exponentially many subspaces S ′ ⊆ S without fur-

ther information value. The local ([AKMS07a, AKMS08a, AKMS08b]) or global

([MAG+09b, MS08]) redundancy criteria to tackle this problem proposed so far,

are often considered to be too weak or too restrictive respectively. The most com-

mon approach is to compare the objects newly covered by a cluster compared

to either all clusters or single clusters in superspaces. A new perspective for this

problem is given by alternative clustering approaches that rely on data transfor-

mations [DQ08, QD09, DB13b, CFD07]. The underlying idea of these approaches

is that a new clustering structure can be revealed if the data is transformed or-

thogonally to the information of a given, known clustering. This transformation

does not ensure a good or different clustering structure compared to the known

one, but it shares the observation of subspace clustering, that new perspectives

(e.g., subspaces) can reveal new clustering structures, where the same objects

can appear in different clusters than before.

The idea of the model presented in this chapter is to combine the two para-

digms of subspace clustering and alternative clustering by integrating the differ-

ence or orthogonality of subspaces into the redundancy criterion, i.e., we allow

clusters to overlap with respect to their objects if they are located in different

subspaces. In general, we call these multiple orthogonal concepts that provide

different views on the data. For the general case of high dimensional data, a con-

cept is described by a subset of attributes and by the set of clusters located in

this or a similar subspace. The concept’s dimensions provide the semantic back-

ground why specific objects are grouped together. Focusing on axis-parallel sub-

spaces makes such a semantic interpretation easier compared to the approaches

of [DQ08, QD09, DB13b, CFD07]. In Fig. 3.1, some healthy and unhealthy cus-

tomers group together in a 2-dimensional subspace and describe the concept

“health status” and we can detect the orthogonal concept that represents the cus-

tomer’s “taste of music” in a 2-dimensional subspace that is orthogonal to the first

one. Apart from our example of customer segmentation, similar observations can

be made in the other scenarios as well: Genes are controlling multiple functions
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(concepts) expressed only under specific conditions (relevant attributes for the

concept), or sensors are measuring multiple concurrent environmental events

(concepts) specified by different sensor measurements (relevant attributes).

A concept can contain several groups that are clearly separated in the relevant

dimensions of the concept, like customers loving Rock or customers loving Classic

in our previous example. While in similar subsets of relevant attributes clusters

that have many objects in common introduce redundancy, for different sets of

attributes objects can be clustered in multiple orthogonal concepts. Considering

the concept “health status”, a “Rock Fan” can be clustered with other customers

to form a new grouping. There might exist multiple meaningful groups for each

object as it can be interpreted in multiple different ways. Unlike the approaches

for multi-view or alternative clustering, OSCLU, as a subspace clustering method,

does not enforce each object to be clustered. As we can see in Fig. 3.1, within

each concept there exist some outliers that do not belong to any of the concept’s

clusters. Our novel OSCLU (Orthogonal Subspace CLUstering) approach detects

for each object multiple orthogonal concepts. Each detected cluster provides

novel information, as we aim at detecting only clusters in orthogonal subspaces.

Summing up, in our approach, we aim at the detection of only the orthogonal

concepts fulfilling the following properties:

• subspaces and subspace clusters represent the concepts in the database
• objects might be present in multiple clusters if the subspaces of their con-

cepts differ (to a high extent)
• each cluster provides novel information for its concept

Following these properties, we propose a method for selecting orthogonal

subspaces by using a similarity measure on subspace projections. According to

this similarity our novel approach OSCLU chooses only the clusters in orthogonal

subspaces for the result set. In addition, we propose a relaxation of the orthogo-

nal subspaces to “almost orthogonal subspaces”. This generalization allows us to

detect concepts sharing a certain amount of common dimensions. The attribute

“gender” for example could belong to several concepts. A relaxation to almost

orthogonal subspaces admits more concepts to the result.

As each object might be present in multiple clusters, we have to ensure that

each cluster adds sufficiently novel information within its concept. Unlike most

subspace clustering techniques, we prevent redundant information. For this pur-

pose, we introduce an interestingness measure for choosing only sufficiently dis-

tinct clusters from similar concepts. Furthermore, to select the most interesting
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clusters, we present an objective function that is based on multiple properties like

size, dimensionality, and density of the subspace clusters. Using both properties

of orthogonal subspaces and most interesting clusters, OSCLU performs a global

optimization of the result set. It ensures to include overlapping clusters to detect

multiple concepts. Furthermore, it prunes similar subspaces and non-interesting

clusters to ensure all patterns in the result are meaningful.

4.2 Orthogonal Concepts in Subspaces

In this section, we present our model for the detection of orthogonal concepts

in subspaces of high dimensional data. Formally, we map our contributions to

an optimization problem based on detected subspace clusters in the database.

In contrast to subspace clustering, where all clusters are selected for the result

set, we choose only a subset of most interesting clusters based on orthogonal

subspaces. For this, we make a distinction between the cluster definition and

the clustering definition. While the cluster model defines the properties that a

set of objects O ⊆ DB and a set of dimensions S ⊆ Dim have to fulfill to be

a valid cluster C = (O, S), the clustering model determines a set of clusters

M = {C1, . . . , Cn} to be a valid clustering. The valid clustering for traditional

subspace clustering is simply the set containing all subspace clusters (All). This

set is highly redundant and hence in our model it is not a valid clustering.

We want to generate a highly informative clustering Opt ⊆ All such that the

clusters in the result set represent the multiple concepts of the data without ob-

fuscating this structure by redundant information. As motivated before, each

object might be present in multiple clusters if the clusters describe different con-

cepts and each cluster C ∈ Opt has to provide novel information within its similar

concepts. In short, it is not allowed to group the same objects in similar concepts

by several clusters. Therefore, we have to define

• if a concept is similar to another one or if it describes a different concept

• and if a cluster identifies a new grouping within its similar concepts.

As a consequence overlapping clusters between different concepts are pos-

sible, in contrast to projected clustering. We solely have to check if the same

objects are already described within similar concepts to filter out uninteresting

clusters and to steer our cluster detection to the orthogonal subspaces. Thus, in a

first step, in Section 4.2.1, we define the notion of (almost) orthogonal concepts,
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to determine which concepts are similar to a selected one. In Section 4.2.2, we

present the interestingness criterion, that each cluster has to fulfill to be an infor-

mative cluster within its similar concepts. In Section 4.2.3, we define our overall

model for the optimal orthogonal clustering and show, in Section 4.2.4, how the

user can influence the clustering result. In Section 4.2.5, we prove that solving

this model is NP-hard.

4.2.1 Almost Orthogonal Concepts

The data collected in today’s applications, are often generated by different con-

cepts which are mixed together. In an optimal setting, the concepts, described

by subspaces, share no dimensions and we can clearly distinguish between them.

If we identify a concept in the subspace S all other subspaces T , which share at

least some dimensions T ∩ S 	= ∅, are similar to it and we can prune them. T

cannot characterize a different concept because a dimension d ∈ S ∩ T is already

covered by the concept in S and hence T does not detect a novel concept in this

scenario. Hence, all subspaces that are similar to S are excluded from further

consideration by the identification of S. This can be formalized by:

coveredSubspaces0(S) = {T ⊆ Dim | T ∩ S 	= ∅}
= {T ⊆ Dim | |T ∩ S| > 0}

A concept with the relevant subspace T is orthogonal to a concept in S if T /∈
coveredSubspaces0(S). The dimensions of T and S are disjoint and hence we can

detect novel information in T . So our clustering model only has to identify clus-

ters in subspaces which are orthogonal and prune the already covered subspaces.

However, this orthogonality definition is too restrictive for our clustering mod-

el. Many subspaces are prohibited for selection and hence the resulting clustering

contains only low information. By definition, each dimension appears in at most

one concept. However, overlapping concepts are useful and expected in real life

scenarios, e.g., the attribute “gender” in a customer database could appear in

multiple concepts. For subspace clustering, we need a relaxation of the orthogo-

nality property.

A less hard restriction is realized by the idea of excluding lower dimensional

projections of S. The subspace S is more meaningful for the representation of

a concept than using the projections which contain fewer attributes. Hence, if

we identify S as the relevant subspace for a concept, each projection is already
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described by this subspace. The subspaces similar to S can be defined by:

coveredSubspaces1(S) = P(S) = {T ⊆ Dim | T ⊆ S}
= {T ⊆ Dim | T ∩ S = T}
= {T ⊆ Dim | |T ∩ S| = |T |}

By this definition, we can find overlapping concepts, e.g., characterized by S1 =

{1, 2} and S2 = {2, 3}. Neither of them is similar to the other concept and hence

both of them could appear in the result set together. This definition is related

to the maximality property in other subspace clustering approaches [AKMS07a,

AKMS08a], resulting in the same problems. Even if two subspaces share a high

fraction of dimensions, e.g., 9 out of 10, they represent different concepts. Thus,

similarity of subspaces is not yet modeled in an adequate way so far.

Our model of almost orthogonal concepts integrates the advantages of both

models. We allow overlapping concepts, but we also avoid concepts with too

many shared dimensions. Thus, we only include (almost) orthogonal concepts in

the result and obtain a flexible model by generalizing both definitions to:

coveredSubspacesβ(S) = {T ⊆ Dim | |T ∩ S| ≥ β · |T |}

with 0 < β ≤ 1. For β → 0 we get the first, for β = 1 the second definition.

The idea of our clustering model is to avoid the grouping of the same objects

in similar concepts by several clusters. Given a cluster C we have to determine

the set of clusters that are in similar concepts. Because we use orthogonal sub-

spaces for the orthogonal concept detection, we can determine these clusters by

checking if their subspaces cover the subspace of C. We call this set the concept

group of C which can be formalized by the following definition.

Definition 4.1 Concept group
The concept group of C = (O, S) with respect to a set of clusters M = {C1, . . . , Cn}
is defined as

conceptGroup(C,M) = {Ci ∈ M\{C} | S ∈ coveredSubspacesβ(Si)}

The concept group of C = (O, S) contains all clusters that share at least a

β-fraction of the dimensions of S. Checking the grouped objects O of C against

the objects of its concept group is required to provide novel information within
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Figure 4.1: Concept group with variation of β

similar concepts. All other clusters, not in the concept group of C, do not need

to be considered because they belong to other concepts. We permit such multiple

concepts in our result.

Let us consider the Figure 4.1 where the selected cluster C is in the subspace

{2, 3, 4}. For β → 0 we have to compare C with all clusters in subspaces sharing at

least one dimension. C has to group new objects w.r.t. these clusters because they

all characterize similar concepts. The higher β, the less subspaces are considered

as similar and hence the more concepts are possible in the final clustering. The

choice of β = 1 results in comparing C only to higher dimensional clusters C ′,

which project to the subspace of C. For example, the concept described by the

subspace {1, 2, 3, 4} subsumes the concept of C and thus C has to be checked

against this subspace. Thereby, we see that the concept group is not symmetric

but it tends to include more higher dimensional clusters. The concept group

of a low dimensional cluster, that is in general less interesting, usually contains

more clusters compared to the one of a higher dimensional cluster. Thus, for

a low dimensional cluster it is more difficult to provide novel information and

consequently to be included in the result set.

4.2.2 Global Interestingness

After defining the clusters which characterize similar concepts as C, we have to

ensure that the cluster is interesting enough compared to these clusters. For our

resulting clustering Opt ⊆ All, each cluster C ∈ Opt has to fulfill this property.

According to our motivation a cluster C = (O, S) has to group new objects within

the similar concepts. Hence, we use the coverage of objects as a criterion for

interestingness. For a clustering M = {C1, . . . , Cn} the coverage is defined as:
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Coverage(M) =
n⋃

i=1

Oi

A strict partitioning of the clusters in similar concepts, where we enforce that each

object of C is in no other cluster, would be too restrictive. Even in similar concepts

it might be possible for individual objects to be part in multiple clusters, e.g., a

person attending classic and rock concerts for the example in Fig. 3.1. Therefore,

we relax this property and calculate the relative fraction of objects which are not

covered by other clusters in similar concepts w.r.t. the whole cluster size.

Definition 4.2 Global interestingness
Given a cluster C = (O, S) and a set of clusters M = {C1, . . . , Cn}. The global
interestingness of C with respect to M is

Iglobal(C,M) =
|O\Coverage(conceptGroup(C,M))|

|O|

First, we determine the clusters in similar concepts to the one of C and af-

terwards their objects are removed from O to obtain the newly covered objects

of C. Only if Iglobal(C,M) is larger than a given threshold α, the cluster adds

sufficiently new information to this concept.

Figure 3.2 illustrates this interestingness check. Let us assume that M con-

tains the clusters C7 to C10 and possible further clusters in other subspaces (not

within dimension 3). If we choose C = C10, the concept group corresponds

to {C7, C8, C9}. The remaining clusters are not considered because they repre-

sent other concepts. C10 has to group new objects within the concept. However,

most of the objects (29 out of 32) from C10 are already covered by the other

clusters and, hence, the information obtained by C10 in this concept is small

(Iglobal(C,M) = 32−29
32

). For a threshold α > 3
32

, the cluster C10 is regarded as

redundant with respect to M .

The user is able to control the required interestingness of a cluster by variation

of α. If the fraction of newly clustered objects is smaller than α, we do not choose

the cluster. For the extremal value α = 1, the clusters in similar concepts must

not overlap. For α → 0 a cluster is selected as long as not all objects are covered

by other clusters. Consequently, a high overlap is possible.

An important aspect of this model is that the interestingness of a cluster is

checked against several clusters within similar concepts. Unlike other models

[AKMS07a, AKMS08a], that make only a pairwise comparison of the object cov-

erage, in our model all clusters from a similar concept are considered at the same
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time to evaluate the interestingness of the new cluster. If we did not check against

several clusters, the cluster C10 in Fig. 3.2 would get a misleadingly high interest-

ingness value. A pairwise comparison of C10 to C7 or C8 indicates a high fraction

of newly clustered objects which is in fact not true.

Let us choose a clustering M ⊆ All. The global interestingness ensures that

each cluster C ∈ M results in an information gain within its concept by covering

new objects. Varying concepts are possible in M and considered by the definition.

Thus, the proposed properties for a good clustering, mentioned at the beginning

of the section, are guaranteed.

Definition 4.3 Orthogonal clustering
The clustering M = {C1, . . . , Cn} is orthogonal iff

∀C ∈ M : Iglobal(C,M\{C}) ≥ α

The clustering M = {C1, C2, C7, C8, C9} in our example from Fig. 3.2 is an or-

thogonal clustering, while the clustering M∪{C10} is not. However, the proposed

definition alone is not yet sufficient to determine an optimal clustering Opt ⊆ All.

Several clusterings could fulfill the definition, e.g., the trivial clustering M = ∅.

The user wants to get an overview of the clustering structure and seeks for the

most informative clusters. We have to ensure that these clusters are selected.

4.2.3 Optimal Orthogonal Clustering

While the global interestingness Iglobal(C,M) always rates the cluster C with re-

spect to a clustering M , we now assess the interestingness of the cluster C on its

own. This so called local interestingness should correspond to the user-specific

notion of interesting clusters. Formally, we have to define a function Ilocal which

maps each cluster C to the value Ilocal(C). This function could include different

aspects, as the dimensionality or the size of the clusters. A discussion of this

function is presented in Section 4.2.4.

Both, the global and local interestingness, are used to define our optimal or-

thogonal clustering. With the global property, we ensure that only informative

clusters within similar concepts are selected. At the same time, we want to maxi-

mize the sum of the local interestingness for the resulting clusters. By maximizing

the local interestingness, we get the most interesting clusters but also as many

interesting clusters as possible (taking the orthogonal clustering constraint into

account).
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Definition 4.4 Optimal orthogonal clustering (OOC)
Given the set All of all possible subspace clusters, a clustering Opt ⊆ All is an
optimal orthogonal clustering iff

Opt = arg max
M∈Ortho

{∑
C∈M

Ilocal(C)

}
with

Ortho = {M ⊆ All | M is an orthogonal clustering}

In Fig. 3.2, we show an overall example with α = 0.5 and β = 0.5. The cluster-

ing M1 = {C1, C2, C7, C8, C9} is a valid orthogonal clustering, because each clus-

ter covers a sufficient amount of new objects within its concept. Although C1 and

C9 contain similar objects, the overlap is permitted because different concepts are

realized. The clustering M1∪{C10}, for example, is not valid, because as shown in

our previous example Iglobal(C10,M1) =
32−29
32

< α. Obviously, each subset of M1 is

also an orthogonal clustering but less informative than M1. Hence, these subsets

cannot be optimal clusterings. If we assume that the user is more interested in

high dimensional clusters and chooses Ilocal accordingly, the sum
∑

C∈M1
Ilocal(C)

will be maximal out of all orthogonal clusterings. Another orthogonal clustering,

like M2 = {C1, C2, C10, . . . , C13} which contains the one-dimensional projections

of the second concept, would, therefore, result in a lower sum value. As a conse-

quence, M1 is preferred over M2 and M1 is the optimal clustering in this example.

Our model provides a selection of only interesting clusters in different and

novel concepts. An overwhelming result size is prevented. As we use subspace

clusters in our model, the interpretabiliy of the result set and the identification of

the relevant attributes for each concept are guaranteed. Unlike other orthogonal

clustering models, we keep the original dimensions and we use them for the

orthogonality check. We steer the cluster selection to orthogonal subspaces.

4.2.4 Local Interestingness and Cluster Definition

Before we present our local interestingness function, we set up our cluster def-

inition. We use density-based clustering because it detects arbitrarily shaped

clusters even in noisy data [EKSX96]. The idea is to define clusters as dense

areas separated by sparse areas. The density densityS(p) of an object p in a sub-

space S is the number of objects in its ε-neighborhood around it. To identify

clusters based on this density, we follow the definition from [KKK04], with the
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modification that the ε-range is adjusted according to the dimensionality of the

subspace. Therefore, we adapt the optimal bandwidth for density estimation

[Sil86] to our clustering model. The value of ε in a subspace with dimensionality

d is ε =
[

4·n
3·Γ(1.5)

] 1
5 · ε1 ·

[
d+2
4·n · Γ(d

2
+ 1)
] 1

5 where ε1 denotes the ε-range in the 1d

subspace, n the database size, and Γ the gamma function.

With the cluster definition, we can define our user-specific local interesting-

ness function. Three main properties characterize a subspace cluster C = (O, S)

in our cluster instantiation. The dimensionality |S|, the size |O|, and the density.

A very dense cluster shows small variation in the attribute values of the rele-

vant dimensions and, hence, is more interesting than a sparse cluster. We use

the mean density 1
|O|
∑

p∈O densityS(p) over all objects within the cluster for this

criterion.

Maximizing all measures at the same time is in general not possible, e.g., low

dimensional clusters are usually larger than high dimensional clusters. There-

fore, our local interestingness function subsumes all measures and gives the user

the flexibility to weight the measures dependent on the application. The local

interestingness function used in our experiments is

Ilocal(C) = |S|a · |O|b ·
(

1

|O|
∑
p∈O

densityS(p)

)c

with C = (O, S) and a+ b+ c = 1.

4.2.5 Proof of NP-Hardness

In this section, we prove the NP-hardness of our optimal orthogonal cluster-

ing problem (OOC). For this we reduce the NP-complete SetPacking problem

[GJ79] to our model, i.e., SetPacking ≤P OOC. Given several finite sets Oi the

SetPacking problem seeks for the maximal number of disjoint sets.

Theorem 4.1 Computing the optimal orthogonal clustering OOC (Definition 4.4)
is NP-hard.

Proof 4.1

We show that SetPacking ≤p OOC.

A. Input mapping: Each set Oi is mapped to the cluster Ci = (Oi, {1}). Fur-
thermore we set β ∈ [0, . . . , 1], α = 1 and Ilocal(C) = |S| (cf. Section 4.2.4,
a = 1, b = c = 0).
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B. OOC generates a valid SetPacking solution:

1) The concept group contains all clusters:
conceptGroup(C,M\{C})
= {Ci ∈ M\{C} | S ∈ coveredSubspacesβ(Si)}
= {Ci ∈ M\{C} | {1} ∈ coveredSubspacesβ({1})}
= M\{C}

2) Each orthogonal clustering M contains only disjoint sets:
M is orthogonal clustering
⇔ ∀C ∈ M : Iglobal(C,M\{C}) ≥ 1

⇔ ∀C ∈ M : |O\Coverage(conceptGroup(C,M\{C}))|
|O| ≥ 1

⇔ ∀C ∈ M : |O\Coverage(M\{C})| ≥ |O|
⇔ ∀C ∈ M : O∩

⋃
Ci∈M\{C} Oi = ∅

3) Opt contains maximal number of such disjoint sets:
Opt = argmaxM∈Ortho{

∑
C∈M Ilocal(C)}

⇔ Opt = argmaxM∈Ortho{
∑

C∈M |{1}|}
⇔ Opt = argmaxM∈Ortho{

∑
C∈M 1}

⇔ Opt = argmaxM∈Ortho{|M |}

(2) and (3) ⇒ Opt is a valid SetPacking solution ⇒ OOC is NP-hard

4.3 The OSCLU Algorithm

The optimal orthogonal clustering has global properties, which increases the

computational complexity. As we have already proven, the problem is NP-hard

and, hence, we cannot expect that an efficient algorithm exists. Furthermore,

we cannot generate the huge set of all subspace clusters All in a first step and

select the optimal subset afterwards. We develop an approximation algorithm

(OSCLU), that incrementally adds further clusters to the result set. For an effi-

cient calculation, we integrate the clustering process into the concept and cluster

selection process. This means that not all clusters in all subspaces are generated

but many subspaces are pruned based on already detected concepts/clusters. An

important question is which subspaces should be clustered first and hence which

clusters should be added at the beginning to the result set to prune many other

subspaces.

Traditional bottom-up approaches, that start with the low dimensional clus-

ters, are not useful for pruning based on our global interestingness criterion. As
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already mentioned, the concept group of a cluster contains mainly higher dimen-

sional clusters (cf. Fig. 4.1). Thus, a low dimensional cluster has to compare its

object coverage against more clusters than a high dimensional cluster. A low di-

mensional cluster is more likely to be excluded from the result set than a high

dimensional cluster. For this reason, we use a top-down approach to add clusters

to the final clustering.

Our algorithm, summarized in Algorithm 4.1, comprises three major contri-

butions to avoid clustering of all subspaces. First, we develop a ranking of the

subspaces (all with the same dimensionality) without clustering them (lines 4-

6). The ranking accounts for the similarity of the current subspace with already

detected concepts. The greater the number of already detected similar concepts,

the less interesting is the subspace. In a second step, the ranking considers the

possibility for a good clustering in a subspace based on efficient estimation. After

ranking the subspaces, we use the first subspace for clustering (line 8). If clus-

ters were identified, we incrementally update the result set (line 10). We have

to consider the global interestingness so that redundant clusters are not selected.

Furthermore, a high local interestingness of the selected clusters should be en-

sured. Resorting the ranking and the possible pruning of further subspaces (line

11) based on the new clusters is performed in order to push novel concepts to

the top. If all subspaces with the dimensionality dim are pruned or selected for

clustering, we decrease the dimensionality to realize the top-down approach.

Algorithm 4.1: OSCLU (Orthogonal Subspace CLUstering)
1 result set M := ∅
2 find initial dimensionality dim (Sec. 4.3.3)
3 while dim > 0 do
4 rank and prune subspaces based on (Sec. 4.3.1)
5 1) subspace orthogonality score
6 2) subspace quality score
7 while ranking not empty do
8 choose best subspace for clustering
9 if clusters found then

10 update result set M (Sec. 4.3.2)
11 resort ranking and prune

12 dim=dim-1

13 return result set M
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As an additional step, we present an efficient method that approximately iden-

tifies the highest dimensionality (of a subspace) in which clusters are expected

(line 2). This avoids to start our ranking in the full-space, where clusters are in

general not present.

4.3.1 Orthogonal Subspace Selection

Clustering each subspace is not efficient since many subspaces can be pruned

because of already detected, similar concepts. We use two techniques to rank

subspaces without clustering. The aim is to cluster only interesting and orthogo-

nal subspaces. In our first approach, we use the similarity of already discovered

concepts for pruning and ranking. The greater the number of similar subspaces

in the result set, the higher is the possibility that new clusters in the current

subspace cover the same concept and, hence, provide no novel information. We

define the orthogonality score of a subspace S w.r.t. the current result set M as

orthogonality score(S,M) =

|{T ⊆ Dim | S ∈ coveredSubspacesβ(T ) ∧ ∃(O, T ) ∈ M}|

The definition is similar to the concept group, but considers only the subspaces.

The higher the score, the worse is a subspace, because many similar concepts are

already in the result set. The orthogonality score is the first criterion for ranking.

Furthermore, all subspaces with a score greater than maxOrth are removed from

the ranking. This parameter can be controlled by the user and intuitively defines

how detailed a concept is analyzed.

During the algorithm, the result set M changes and hence the orthogonality

score does so too. By this, only the most informative subspaces are ranked top

and, hence, are clustered. The clustering is concentrated to the orthogonal and

novel concepts.

Our second approach makes use of subspace search [CFZ99, KKKW03] for

measuring the quality of subspaces. Usually subspace search is a stand-alone

technique for identifying interesting subspaces. Each subspace is mapped to a

quality value, where a high value corresponds to a high possibility for a good

clustering structure. we use this technique within the clustering task. We guide

our algorithm to cluster only the most interesting subspaces based on the calcu-

lated qualities. Therefore, our ranking is extended such that all subspaces with

the same orthogonality score are ranked again based on these qualities. In to-
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tal, our ranking concentrates not only on novel concepts but also on high quality

subspaces.

The subspace search method within our framework is easily exchangeable and

we can use techniques like RIS [KKKW03] or ENCLUS [CFZ99]. For efficiency

reasons, we develop an own technique which is able to exploit our density-based

cluster definition (cf. Sec. 4.2.4). To have clusters in a subspace, several objects

must have a high density according to our density-based clustering model, i.e.,

for an object p the value of densityS(p) is large. We use a strategy that randomly

selects points and calculates their mean density. This method is efficient and a

good indicator for the existence of clusters. Let Seeds be the set of randomly

selected points, the quality score is then defined as

quality score(S,M) =
1

|Seeds|
∑

p∈Seeds
densityS(p)

The higher the quality, the better the subspace. As for the orthogonality score,

we introduce a minimum score minQual that each subspace has to fulfill to be

maintained.

4.3.2 Incremental Result Construction

After ranking the subspaces based on the two scores, we select the first one and

cluster it according to our model. We get a list of resulting clusters New. We now

have to check which clusters C ∈ New should be included in our result set M . In

a first step, we analyze the global interestingness of the new clusters. For each

cluster C ∈ New, we calculate Iglobal(C,M). We distinguish two cases.

If Iglobal(C,M) ≥ α, we directly add the cluster to M , i.e., the new result set

is M := M ∪ {C}. The cluster C adds sufficiently new information. By this, we

ensure that in each step of the algorithm only informative clusters are selected.

Please note that this procedure is a relaxation of Def. 4.3. We do not check the

global interestingness of the remaining clusters in M which could be changed

by selection of C. This recalculation would be too costly. However, due to our

top-down approach, higher dimensional clusters are added first to M and these

clusters are rarely removed by low dimensional clusters. Additionally, within the

same dimensionalities, our ranking tries to rank the best subspaces on top and,

hence, these clusters are selected first.

If Iglobal(C,M) < α, we do not reject the cluster immediately but we perform

an additional improvement heuristic. We want to maximize the local interest-
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ingness in our model. Hence, we check if it is possible to remove some clusters

from M such that C is afterwards globally interesting and the sum of the local

interestingness is increased. The algorithm which decides if C is included and

which subset of M should be removed is presented in Alg. 4.2. First, we rank the

clusters from conceptGroup(C,M) in decreasing order based on their local inter-

estingness values. Second, we select the most interesting clusters which do not

result in redundancy for C (set N). The clusters which induce the redundancy are

stored in R. At the end, it holds that Iglobal(C,M\R) ≥ α, i.e., C provides novel

information with respect to the new set. If the local interestingness of C is greater

than the one of R, it is better (for maximizing the interestingness) to select C and

remove R from the result set M . The new result set is then M := (M\R) ∪ {C}.

Otherwise, C is rejected and the set M remains unchanged.

Algorithm 4.2: Cluster selection procedure
1 〈C1, . . . , Cn〉 := ranking of conceptGroup(C,M)
2 N := ∅ //clusters inducing the redundancy of C
3 R := ∅ //clusters not inducing redundancy of C
4 for i:1 . . . n do
5 if Iglobal(C,N ∪ {Ci}) ≥ α then N := N ∪ {Ci}
6 else R := R ∪ {Ci}
7 if Ilocal(C) >

∑
C′∈R Ilocal(C

′) then
8 add C to M and remove R from M

Through the incremental result construction, we add only informative clusters

to our set and additionally try to maximize the interestingness of all selected

clusters.

4.3.3 Efficient Initialization

In general, full dimensional clusters are not identified in high dimensional data-

bases. If we started our top-down approach in full-space, we would analyze many

uninteresting subspaces which are filtered out by our quality score criterion. For

an efficiency boost, we identify the first layer with interesting subspaces based

on the idea of binary search. We start with the “half-dimensional” spaces (e.g.,

5d spaces in a 9d database) and use our subspace search estimator to calculate

the qualities. If we identify a subspace with sufficiently high quality, we directly

jump up to the dimensionality between half and full-space (e.g., from 5 to 7). If
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no interesting subspaces are found, we accordingly jump to lower dimensional

spaces (e.g., 5 to 3). For this new dimensionality, we repeat the “check-and-jump”

procedure (with a half jump range) until we identify the highest dimensionality

with interesting subspaces. This corresponds to a binary search procedure.

Overall, our algorithm comprises three contributions to obtain a good ap-

proximation of the optimal orthogonal clustering. The binary search technique

supports the top-down approach by an efficient initialization. The ranking of

subspaces yields a preference of orthogonal and interesting subspaces. By re-

calculating the ranking, further subspaces can be pruned without clustering and

novel concepts advance to the top. At last, the meaningful selection of new clus-

ters to M results in an informative clustering. In the next section, we confirm this

with an experimental analysis.

4.4 Experiments

We evaluate the quality and efficiency of the OSCLU approach compared to three

variants of orthogonal clustering techniques (Multi-View 1 and Multi-View 2 pro-

posed in [CFD07], and Altern. Clus. [QD09]), a recent non-redundant subspace

clustering technique (StatPC [MS08]), and a projected clustering approach (P3C
[MSE06]). For fair comparison, we use a recent evaluation framework [MGAS09],

additionally reimplement both Multi-View approaches in this framework, and use

the original implementation for the alternative clustering [QD09]. Furthermore,

for all algorithms we tried to find the optimal parameter settings for each dataset.

In general, we perform our evaluation on data with multiple hidden concepts.

For both, synthetic and real world data, we extend single concept data used in tra-

ditional clustering approaches such that each object is part of multiple concepts.

Thus, for a high quality clustering, each object has to be detected in multiple

clusters. While traditional clustering approaches are well suited for data with

only one hidden concept, we compare our approach against recent techniques

designed for multiple hidden concepts. For scalability experiments, we generate

synthetic data following a method proposed in [KKK04, AKMS08a] to generate

density-based clusters in arbitrary subspaces. In addition, our generator takes

into account that objects can belong to multiple concepts. Thus, for each object,

we concatenate attribute values of different subspace clusters to a higher dimen-

sional space with multiple hidden concepts per object. Further on, we show the
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performance of OSCLU on two extended real world datasets (original iris and

liver disorders are provided by the UCI repository [FA10]). We use the class labels

in these datasets as one hidden concept of the data. In addition, we create mul-

tiple concepts per object by randomly concatenating objects of different classes,

resulting in one high dimensional dataset.

To ensure comparability of evaluations, we measure runtimes on identical

machines with 2.33GHz Intel XEON CPU, 2 GB of main memory and JAVA 1.6

runtime environment. Furthermore, for comparable quality measurements we

use the F1 value that is used in evaluation of subspace and projected clustering

[AKMS08a, MS08, MSE06, MGAS09]. In our case, it computes for each hid-

den cluster the harmonic mean of recall (“are all objects of the hidden cluster

detected?”) and precision (“how accurately is the cluster detected?”) values,

respectively. Therefore, each hidden cluster is evaluated against one of the de-

tected clusters which provides the highest F1 value. The F1 value of the whole

clustering is simply the average of the F1 values for each hidden cluster.

4.4.1 Scalability

Database size. In Fig. 4.2(a), we analyze the quality of the clustering results with

respect to the database size. While increasing the number of objects, we keep the

number of concepts fixed to three. We generate concepts with five relevant at-

tributes such that, overall, we obtain a 15-dimensional data space. Our OSCLU

algorithm yields the highest quality compared to all other algorithms, as we de-

tect all hidden clusters in various concepts. The quality of OSCLU is independent

of the database size and very robust. StatPC and P3C show good quality results,

but also high fluctuating values, which cannot reach the quality of OSCLU. All

three orthogonal clustering approaches, show only low and decreasing quality

with respect to the database size. Their underlying k-means model tries to par-

tition the data in each iteration of orthogonal cluster detection. Thus, it cannot

cope with the fixed noise ratio in the data which is always assigned to some of

the detected clusters and, hence, resulting in low quality clusterings.

The runtime with respect to the database size is presented in Fig. 4.2(b).

The slopes of all curves are in the same range and the influence of the size on

all algorithms becomes apparent. The two top quality approaches, our OSCLU

model and StatPC, result in similar runtimes. Our redundancy checks and also

our density-based model are very complex, but these aspects account for the high
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Figure 4.2: Scalability w.r.t. database size

quality. The remaining algorithms are faster but we believe, that our runtime is

still acceptable considering our high quality results. Especially with increasing

concept number, as presented in the next experiment, our model outperforms all

other approaches.

0,6

0,8

1

F1
va
lu
e

OSCLU Multi View 1 Multi View 2

Altern. Clus. StatPc P3C

0

0,2

0,4

1 2 3 4 5

F

number of concepts

Figure 4.3: F1 vs. number of concepts

Number of concepts. The aim of our model is the detection of multiple con-

cepts, which arise in real scenarios. Thus, in the next experiment, we analyze the

performance of the algorithm by increasing the number of concepts hidden in a

database. To scale the number of concepts, we use a simple dataset with only

1000 objects, as most of the algorithms showed comparable quality values in this

range in the previous experiment. We vary the number of hidden concepts in Fig.

4.3 from 1 to 5.

We show that OSCLU is able to detect clusters even if objects cluster in mul-

tiple concepts. It shows high quality even for a high number of hidden concepts.

While traditional clustering approaches aim at clustering single concept data, the

alternative clustering approach is designed for two concepts and the multi-view
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approaches should detect even more than two. However, even these approaches

cannot compete with our model. For the subspace and projected clustering ap-

proaches, increasing the number of concepts makes it very hard to detect the

hidden clusters. Especially the projected clustering approach P3C shows decreas-

ing quality, as each object belongs to at most one concept. Overall, StatPC and

P3C are not able to detect the multiple hidden concepts per object, while OSCLU

yields very high clustering quality.

Noise percentage. In the previous experiments, we showed that we out-

perform subspace and projected clustering approaches as they cannot cope with

multiple hidden concepts. Thus, in the following experiments, we focus on a

more detailed comparison of OSCLU against the orthogonal clustering techniques

detecting multi-view and alternative clusterings. First, we analyze the effect of

noisy data especially for high concept numbers. For the next experiment, illus-

trated in Fig. 4.4, we generate data with five hidden concepts and vary the noise

percentage. On such a difficult data setting, our OSCLU approach outperforms

the other techniques. It can detect the clusters hidden in different concepts even

in very noisy datasets. Both multi-view algorithms and the alternative clustering

approach show, again, decreasing qualities.
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Figure 4.4: F1 vs. noise

4.4.2 Real World Data

As we aim at detection of multiple concepts, we focus our evaluation for real

world data also on scalability w.r.t. number of concepts. We use single concept

data from the UCI repository [FA10] and extend them to multi concept datasets.

As described in the experiment set-up, similar to synthetic data, we can vary the

complexity of datasets by including more and more hidden concepts. However,
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in contrast to the previous experiments, we use real world data distributions for

the single concepts. We evaluate the effect of variable concept counts on the

clustering quality, as for an increasing number of concepts, it is more difficult for

all algorithms to identify the hidden structure of the data.
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Figure 4.5: Quality on extended real world datasets with increasing number of
concepts

In Fig. 4.5 we show the clustering quality on the iris and the liver disorder

dataset. For the very simple case of only one concept (original UCI datasets),

the quality is high for all algorithms. However, for an increasing number of

hidden concepts, the quality dramatically drops for all competing approaches.

Especially, the quality of the alternative clustering approach drops with more

than two concepts, as it is designed for up to two concepts only. OSCLU shows

significantly better performance as it still achieves a high quality, outperforming

the competing approaches for multiple concept data. Although we set for higher

number of concepts the optimal parameter value k such that the number of found

clusters corresponds to the number of hidden clusters, the competing approaches

are not able to detect all hidden concepts. Thus, our OSCLU approach clearly

outperforms all competing algorithms even for an increasing number of concepts

per object.

4.4.3 Parametrization

Additional to the experiments that compare OSCLU to existing methods, we ana-

lyze the flexibility of our model. As presented in Section 4.2.2, the user can con-

trol the output by changing the required interestingness. In Fig. 4.6, we present
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the variation of the parameter α which controls the interestingness of each clus-

ter in the result set. As intended by this parameter, higher values of α increase

the required interestingness and, hence, less clusters are in the result. By varying

the α, parameter one can control the overall result set based on our global inter-

estingness Iglobal. We include a cluster only if the fraction of its newly clustered

objects is at least α (cf. Def. 4.3). Furthermore, our OSCLU algorithm is not only

able to detect orthogonal concepts, but in addition it is very flexible by using a

local interestingness Ilocal. It allows the user to control the output dependent on

the application or the current interestingness.
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In Fig. 4.7, we examine the influence of the parameter β, which determines

the similarity of two subspaces and, thus, the size of the concept groups, on

the average result size. For small values of β, concepts are only dissimilar if they

share nearly no dimension. Higher values for β accordingly allow for bigger over-

laps between different concepts. Thus, the concept group of a cluster is biggest

for β = 0 and smallest for β = 1 (cf. Def. 4.1). Since the global interestingness,

i.e., the redundance, of a cluster is determined in relation to its concept group, we

obtain an increasing size of the result set for increasing values of β (cf. Fig. 4.7).

4.5 Conclusion

In this chapter, we introduced the OSCLU (Orthogonal Subspace CLUstering) ap-

proach. It provides a general solution, independent of the chosen cluster defini-

tion, for detecting clusters in multiple views and overcomes major drawbacks of

existing approaches in the detection of multiple concepts hidden in arbitrary sub-
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space projections of the data. Our novel clustering model detects multiple con-

cepts per object. It computes an optimal orthogonal clustering by ensuring non-

redundancy and maximal interestingness of the resulting clustering. We show

that our clustering model is NP-hard and propose an efficient approximative algo-

rithm. We approximate the optimization problem by pruning similar subspaces,

ensuring efficient cluster detection in only the orthogonal subspaces. Thus, our

OSCLU approach is the first method for detection of multiple orthogonal concepts

in subspaces of high dimensional data. Thorough experiments demonstrate that

OSCLU clearly outperforms existing subspace clustering and orthogonal cluster-

ing algorithms, while automatically reducing the output to only the clusters of

orthogonal concepts hidden in the data.

An important difference of OSCLU compared to multi-view approaches is its

focus on clusters instead of views. For OSCLU, the views do influence but not

completely determine the individual groupings, which also depend on the clus-

ter definition. Therefore, OSCLU does not explicitly mine the underlying views

but only their clusters depending on the subspace cluster definition. The iden-

tification of clusters that belong to a common view can be achieved in a post-

processing step, for which we will present an interactive, visual approach in

Chapter 15.
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THE goal of clustering is to detect new, hidden patterns in the data. In many

cases, the users are already aware of certain patterns in the data. Simply

rediscovering such existing knowledge is not of interest. Instead, users hope to

find further, so far undiscovered patterns that reveal new insights of the data.

The idea of alternative clustering approaches is to use the existing patterns to

guide a clustering process towards new cluster constellations. In this chapter, we

will present an approach to transfer this principle to subspace clustering. With

just minor adaptions of the previously presented OSCLU approach, we will be

able to incorporate a known subspace clustering into the clustering process and

to steer the algorithm towards novel clusters in different subspaces.

65
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5.1 Introduction

Traditional clustering and subspace clustering methods are not based on the as-

sumption that there exists some prior knowledge about groupings in the data.

However, we might already know some trivial or already detected groupings in

the data. If the user is not satisfied with the existent knowledge, either because

it does not meet her application needs, or because she assumes that there must

exist further patterns in the data, then she aims for an alternative, yet compa-

rable good clustering. In such scenarios the user is not willing to re-detect the

already known clusters. As a general objective for recent alternative clustering

techniques, it is important to acquire novel knowledge (not known in advance)

by alternative clusters representing different views on the same database. The

detection of such alternative clusters describing different views on each object is

still an open challenge in recent applications.

In the previous Chapter 4, we presented the OSCLU approach, which is able

to detect orthogonal concepts, i.e., differing clusters in orthogonal subspace pro-

jections of the data. In this chapter, we present how the OSCLU model can be

easily extended for the task of alternative clustering. Given a (subspace) cluster-

ing as prior knowledge, the task of alternative (subspace) clustering is to detect

further alternative groupings hidden in different views of the given database. For

example, in sensor analysis one aims at detecting sensor groups showing simi-

lar measurements. Each sensor might be grouped in multiple alternative clus-

ters. One object might be clustered due to its high temperature and low humidity

measurements in the “hot and dry region” cluster, while the same object might be

clustered in the “light region” cluster considering only the illumination attribute.

Assuming these two clusters as given prior knowledge, further interesting al-

ternative clusters might be hidden in the database, e.g., a grouping of sensors

representing a “dark and humid region”. Such an alternative cluster might be of

great importance in addition to the given two clusters. However, there might also

be some trivial useless clusters, like objects clustered in both a “dry region” and

in a “hot region”. Obviously these two clusters only provide redundant informa-

tion to the given “hot and dry region” cluster. As illustrated in this toy example,

the detection of alternative clusters is of great importance, especially in recent

applications where clusters are hidden in any possible attribute combination.

In general, we detect clusters hidden in subspace projections of the database

to identify multiple views on the data. However, several new challenges arise for
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the research area of alternative subspace cluster detection. As one searches for

clusters in arbitrary subspaces, each cluster might be detected in multiple redun-

dant views. Similarly, the knowledge of already given clusters might be repeated

in similar subspace clusters. In both cases the OSCLU approach provides a nice

solution for detecting new clusters not yet detected by other subspace clusters

and not yet represented by the given clusters. Thus, our main contributions in-

clude:

• Detection of alternative subspace clusters
• Non-redundant clusters (dissimilar to each other)
• Alternative clusters (dissimilar to given clusters)

5.2 Related Work

Recent extensions of traditional clustering techniques try to detect clusters that

are alternative to a given, known clustering. The techniques of [CFD07, DQ08,

QD09, BB06, DB13b] base on a given clustering and iteratively transform the

data space to force the underlying traditional clustering algorithm to find new,

alternative clusters. Other techniques, like [GH05], follow the idea of using the

conditional information bottleneck approach to find alternative clusterings. All

these techniques are not able to detect clusters hidden in arbitrary subspace pro-

jections of the data and consider in each step only one fixed space. Furthermore,

their input clustering has to be a partition of the data in a fixed space, whereas

we allow a subspace clustering as input, which has multiple locally relevant sub-

spaces. Only two of these approaches briefly refer to subspace clustering.

Although the method presented in [QD09] searches for clusters in the full-

space, it can be adapted to handle subspace clusters (of a single fixed subspace)

as input by simply setting the values in the relevant attributes to zero. These

dimensions therefore loose their influence in the following iterations. However,

this complete elimination of covered attributes leads to an orthogonal subspace,

which is a too strong restriction for the choice of relevant dimensions.

The approach in [CFD07] has originally not been introduced to find alter-

natives for a given clustering but can easily be adapted by replacing the initial

k-means clustering through the known clustering solution. Since this approach

projects the data into an orthogonal space to find alternative clustering views, it is

also not a subspace clustering and suffers from the problems already mentioned

for [QD09].
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Although these methods are, with large restrictions, able to find clusters in a

(fixed) subspace, they are mostly not aware of the relevant subspaces and can

therefore not annotate them to the clusters. The reason why objects group in a

certain manner, however, originates from the respective subspace, which makes

the relevant attributes an essential aspect to the clusters information. Further-

more, they are not able to guarantee that a new clustering solution is truly al-

ternative if we consider multiple known clusterings. As they are designed to

consider only partitionings of the data, it is not possible to integrate a subspace

clustering, where clusters overlap object-wise, as knowledge base.

5.3 Alternative Subspace Clusters

In this section, we describe our model for finding alternative subspace clusterings.

To achieve this goal, our model adapts techniques of the OSCLU model (Chapter

4) that finds orthogonal subspace clusterings in the data. With our novel method,

however, we specifically address the problem of finding an alternative subspace

clustering given a previously known subspace clustering. Thereby, we achieve

that the user can steer the clustering algorithm to patterns not yet detected and

the generation of already known clusters is prevented.

In general, a subspace cluster C = (O, S) is a set of objects O ⊆ DB and

a set of dimensions S ⊆ Dim. The objects O are similar within the relevant

dimensions S, while the dimensions Dim\S are irrelevant for the cluster. In

Fig. 5.1, the cluster C1 corresponds to a 2-dimensional cluster, while C2 is a 1-

dimensional one. The input of our model is an already known subspace clustering

Known = {K1, . . . , Km} where Ki is a subspace cluster. The task is to identify

another subspace clustering within the database that differs from the given one.

For our example in Fig. 5.1, we assume Known = {C1, C2}. A possible alternative

solution is {C4, C5, C6}. This solution is interesting because we detect clusters in

novel subspaces of the database. We designed our model to be independent of

the actual cluster definition, i.e., we assume a set All = {C1, . . . , Ck} of possible

subspace clusters is given (cf. Sec. 5.3.3 for our instantiation). In Fig. 5.1, we

assume All = {C1, . . . , C7}. The set All is also a subspace clustering; however,

it is not an (good) alternative to Known. Beside other criteria, this set contains

clusters very similar to clusters in the input clustering. Thus, the overall goal of

our model is to select a meaningful subset Res ⊆ All as the result presented to

the user.



5.3. Alternative Subspace Clusters 69

dimension 1

di
m

en
sio

n 
2

C1

C2 C3

C4 C5

C6

dimension 3

di
m

en
sio

n 
4

C7

Figure 5.1: Exemplary subspace clusters

Problem statement: Given an already known subspace clustering Known =

{K1, . . . , Km}, the aim of alternative subspace clustering is to determine a mean-
ingful subset Res ⊆ All of all possible subspace clusters All = {C1, . . . , Ck}, such
that Res differs from the input clustering.

In the following, we discuss the criteria a meaningful alternative clustering

solution has to fulfill and we define the overall result.

5.3.1 Valid alternative subspace clustering

Given the clustering Known, we want to detect a valid alternative clustering Res.

Which properties must hold true for Res to be a valid alternative? Apparently,

each cluster C ∈ Res should considerably deviate from the clusters in Known.

The cluster C should provide us with novel knowledge. For subspace clustering,

we have two possibilities to realize a deviation to already known clusters. First,

our novel subspace cluster comprises a “different” (i.e., novel) subspace or, sec-

ond, it covers “different” (i.e., novel) objects in already known subspaces. Thus,

a cluster C is not a valid alternative if the subspace as well as the objects are

already clustered.

Alternative w.r.t. subspaces. If the subspaces of two clusters differ substan-

tially, both are interesting, even if their clustered object sets are nearly identical.

Different subspaces mean different relevant attributes and, hence, a valid alter-

native. However, it is problematic to deduce that a cluster C = (O, S) is a valid

alternative to C ′ = (O′, S ′) only based on the fact S 	= S ′. It is a well known

observation in the area of subspace clustering that similar object groupings ap-

pear in very similar subspaces several times: this is one aspect of the redundancy

problem in subspace clustering [MAG+09b, MS08, AKMS08b]. Considering for

example the clusters C1 and C3 in Fig. 5.1, their subspaces are unequal but very
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similar. Thus, a grouping of similar objects is expected. For our task of finding

alternatives, we have to ensure that the subspaces of our novel clusters differ

to a high extend compared to the ones of the given input clusters. If a cluster

C ∈ Res and a cluster K ∈ Known have highly deviating subspaces, we, thus,

do not have to enforce deviating object sets for these two clusters: C is already

a good alternative with respect to the single cluster K. We use Definition 4.1 of

a conceptGroup of the OSCLU model and define the subset of clusters of Known

that are already different enough due to their subspaces:

Definition 5.1 Clusters in alternative subspaces.
Given a cluster C ∈ Res, the subset of clusters of Known that belong to an alterna-
tive subspace w.r.t. C = (O, S) is defined by

InAltSubsp(Known,C) = {(Oi, Si) ∈ Known | |S ∩ Si| < β · |S|}
with 0 < β ≤ 1.

Definition 5.1 and Definition 4.1 are similar in that InAltSubsp(Known,C) =

Known\ConceptGroup(C,Known). If the fraction |S ∩ Si| of the joint dimen-

sions compared to all dimensions of C is small enough, the clusters represent

different concepts and, hence, alternative information of the data. Thus, to de-

cide whether C is a valid alternative to all clusters in Known, we can already

neglect all clusters contained in InAltSubsp(Known,C). In Fig. 5.1, we get

InAltSubsp(Known,C4) = {C1, C2}, because all of the input clusters were de-

tected in completely alternative subspaces. For C3 and with β = 0.5, however, we

get InAltSubsp(Known,C3) = ∅.

Keep in mind that this relation is not symmetric. Assuming an input cluster

K from Known in the subspace {1, 2, 3} and a novel identified cluster C in the

subspace {2, 3, 4, 5, 6}, then K ∈ InAltSubsp(Known,C) for β = 0.5. The clusters

share just two dimensions, which is significantly smaller compared to all five

dimensions of C. Thus, C is already an alternative to K because there are enough

new dimensions in C to provide novel information. However, assuming C is in

Known and K is the newly identified cluster, then C /∈ InAltSubsp(Known,K).

There are still two common dimensions but these are now compared to just the

three dimensions of K. With respect to the subspace, K is not an alternative to

C because K mainly has dimensions already being included in C.

Alternative w.r.t. objects. For the possible case of InAltSubsp(Known,C) 	=
Known, we have given some clusters that were detected in subspaces similar to

C. Thus, for these clusters, we have to ensure a grouping of different objects
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compared to C. The other clusters are already neglected because of deviating

subspaces. Analogously to Definition 4.2 of the OSCLU model, we use the cover-

age of objects as a criterion for a deviating object representation. Given a cluster

C, the set of objects already covered by Known is defined as:

Covered(Known,C) =
⋃

(O,S)=K∈Known

{O | K /∈ InAltSubsp(Known,C)}

If the covered objects of C = (O, S) sufficiently differ from the covered objects of

the clusters in Known, the cluster C is a valid alternative.

Definition 5.2 Valid alternative subspace clustering
Given a cluster C ∈ Res, C = (O, S) is a valid alternative cluster to Known iff

|O\Covered(Known,C)|
|O| ≥ α

with 0 < α ≤ 1.
Given a clustering Res ⊆ All, Res is a valid alternative clustering to Known iff all
clusters C ∈ Res are valid alternative clusters to Known.

In Fig. 5.1, the set Covered(Known,C) already contains nearly all objects of C3.

Since the fraction of novel objects of C3 is very low, e.g., for α = 0.4 the cluster

is not a valid alternative (less than 40% of the objects are novel). However,

choosing Known= {C2, C5}, cluster C3 is a valid alternative. C5 is located in a

different subspace, hence, irrelevant for C3, and C2 covers different objects.

5.3.2 Optimal alternative subspace clustering

With Definition 5.2, we are able to find meaningful alternatives to a given input

clustering. However, among the set of possible clusterings, we can find multiple

valid alternatives. For Known = {C2, C5}, e.g., the results Res = {C3, C4, C6},

Res′ = {C1, C3, C4, C6}, or Res′′ = {C3, C4, C7} would be among the valid alter-

native clusterings for Known. Since these solutions are not equally interesting

for the user, the task is to find the most interesting alternative clustering. The

main criteria for the interestingness of a clustering are the degree of redundancy

among the clusters and local characteristics of the clusters.

Redundancy. Since for subspace clustering a partitioning of the objects is not

enforced, the solution could contain very similar clusters. The solution Res′ =

{C1, C3, C4, C6} is a valid alternative, although the clusters C1 and C3 are very
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similar to each other and, therefore, introduce redundancy into the result. OS-

CLU provides an elegant and easy way to solve this problem through the Def-

inition 4.3 of an orthogonal clustering which is related to the Definition 5.2

of a valid alternative clustering. According to Defintion 4.3 Res′ would not

be an orthogonal clustering since Iglobal(C1, Res′\C1) � α. Contrarily, the set

Res = {C3, C4, C6} is not only a valid alternative to Known but also an orthogo-

nal and, thus, redundancy-free clustering.

Local interestingness. Although by avoiding redundant clusterings we reduce

the number of possible clustering solutions, many clusterings are still possible.

For example, both sets {C3, C4, C6} and {C1, C4, C6} are valid alternatives and

orthogonal clusterings. To decide between those solutions, we utilize the idea of

OSCLU to take local characteristics of the clusters into consideration. For differ-

ent applications different local characteristics can be of interest. Among others,

possible choices can be the density, size, extension, or dimensionality of a clus-

ter. According to these characteristics, each cluster is annotated with a certain

interestingness value. By selecting those clusters that maximize this interesting-

ness, we get the desired result. For the OSCLU approach, a local interestingness

function Ilocal maps each subspace cluster C to the interestingness value Ilocal(C).

Our instantiation is presented in Section 5.3.3. The overall interestingness of

a clustering Res is obtained by summing up the individual values of each clus-

ter: quality(Res) =
∑

C∈Res Ilocal(C). Assuming higher dimensional clusters to

be more interesting in our example, the quality of {C1, C4, C6} is higher than the

one of {C3, C4, C6}.

Accounting for the redundancy and the local interestingness, we are now able

to define our overall clustering solution:

Definition 5.3 Optimal alternative subspace clustering.
Given a previously known subspace clustering Known and the set of all possible
subspace clusters All, a clustering Res ⊆ All is an optimal alternative subspace
clustering iff

a) Res is a valid alternative to Known

b) ∀C ∈ Res : {C} is a valid alternative to Res\{C}
c) Res is the most interesting clustering, i.e., ∀Res′ ⊆ All that also fulfill a & b:

quality(Res) ≥ quality(Res′)

With this new model, we are able to determine a subspace clustering result

that differs from the input clustering to a high extent: either by representing
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novel objects or by comprising novel subspaces. At the same time, we avoid gen-

erating redundant clusters for the result, focusing again on deviating subspace

clusters.

5.3.3 Instantiation and algorithm

Instantiation. The instantiation of our ASCLU approach (Alternative Subspace

Clustering) is identical to that of OSCLU, which allows us to reuse the algorithm

designed for OSCLU. The cluster definition is based on the density-based clus-

tering paradigm because it allows for arbitrarily shaped clusters even in the

presence of noise [EKSX96]. A cluster is determined via dense areas in the

data space [KKK04]. As in OSCLU, the density densityS(p) of a point p in sub-

space S is determined by the cardinality of its ε-neighborhood where the vari-

able ε is adjusted to the dimensionality of the subspace. The local interesting-

ness function I follows the definition of OSCLU and incorporates the dimen-

sionality, size, and density of the corresponding subspace cluster C = (O, S):

Ilocal(C) = |S|a · |O|b ·
(

1
|O|
∑

p∈O densityS(p)
)c

with a+ b+ c = 1.

Brief overview of the algorithm. The OSCLU model was proven to be NP-

hard. Since for Known = {} the ASCLU model corresponds to the OSCLU model,

we cannot expect that an efficient algorithm, exactly solving our model, exists.

Instead, we slightly adapt the approximation algorithm of OSCLU that avoids

generating the set of all possible subspace clusters by pruning several subspaces

based on already detected patterns and using the knowledge of the input cluster-

ing. We incrementally add clusters to the current result set Res and we possibly

refine this set if better clusters are detected. Technically, we use a top-down ap-

proach starting in high-dimensional spaces and traversing the subspace lattice in

breadth-first order. During this traversal, the subspaces with the same dimension-

ality are processed in the order of their possible benefit for the clustering result.

Subspaces that are highly different to subspaces already present in the input clus-

tering Known and different to the ones in the current result Res set are analyzed

first. Too similar subspaces are pruned. The best ranked subspace is analyzed for

its clustering structure using the density-based clustering model.

If clusters are identified in a certain subspace, we check if these clusters can

be added to the set Res based on two criteria: First, the novel cluster C needs

to be a valid alternative to Known. Second, the cluster C must not introduce

redundancy into the current result set Res. If both criteria are fulfilled, we can
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directly add this cluster to the result, i.e., Res = Res∪ {C}. If C is an alternative

to Known but redundant w.r.t. Res, clusters M ⊆ Res have to exist that are

responsible for the (current) redundancy. If we removed M from Res, we could

add C to the result. To maximize the interestingness of our clustering solution,

we determine the values quality(Res\M ∪ {C}) as well as quality(Res) and we

select the more interesting clustering. After updating the result set, the order

of the subspaces, not yet analyzed, is potentially adapted. Overall, we steer our

algorithm only to those subspaces where alternative clusters are expected and we

avoid analyzing all subspaces.

5.4 Experiments

In this section, we evaluate the quality of the ASCLU (Alternative Subspace Clus-

tering) approach and investigate whether it can provide a reasonable and non-

redundant subspace clustering compared to a given set of input subspace clus-

ters. For this goal, we start by applying ASCLU to synthetic data to get a better

intuition of the main principle. The generation method for synthetic datasets

corresponds to the one used in OSCLU. It produces density-based clusters in arbi-

trary subspaces, where each object can belong to multiple clusters with differing

relevant subspaces. This generation method takes into account that objects can

be relevant for several clusters in multiple views.

Furthermore, we demonstrate the performance of ASCLU on two real world

datasets (iris and pendigits) provided by the UCI repository [FA10]. Since the

motivating assumption for alternative clustering is the presence of multiple views

in the data, traditional class-based evaluation, where each object is assigned to

exactly one class, is not reasonable in this case. We, therefore, examine clus-

tering results for the pendigits dataset visually, similar to [CFD07]. For the iris

dataset, we concatenate the original data with random permutations of itself,

which results in one high dimensional dataset containing several views: the con-

catenations. For the quality assessment we use the F1-value, as it can handle

overlapping clusters and classes and is used for evaluation of subspace clusters

[AKMS08b, MS08].

Experiments on synthetic data The first experiment serves to examine the

ability of ASCLU to calculate a real alternative Res to a given clustering Known.

An alternative clustering should yield new information compared to the given
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Figure 5.2: Data matrix for synthetic data with given clustering (black) and al-
ternative clustering (red)

clustering. This can be characterized by clusters that either group similar objects

compared to the given clusters but in different subspaces or simply group other

objects than the given ones. A small synthetic dataset with 300 objects and 16

dimensions, where 16 clusters are hidden in five different subspaces, allows an

easy visual examination. Fig. 5.2 depicts a representation of the data matrix,

where the given clusters (black boxes) and all clusters found by ASCLU (red

circles) are plotted. Each column of the matrix represents a database object, each

row represents a dimension. For a clear presentation, the objects and dimensions

have been permuted, such that the given clusters and several categories of new

information types become apparent. The black rectangular area represents the

previously known information. New clusters should preferably avoid this area

of given clusters and concentrate on new information. The black area is only

sparsely populated with circles, which indicates that the newly found clusters

do not provide the same information. To gain new knowledge, a cluster has to

cover a sufficient amount of new objects or/and different subspaces. Fig. 5.2

also shows that ASCLU does not block the given cluster area completely for the

new clustering, like other approaches do for dimensions [QD09], but allows for

clusters to overlap regarding dimensions or objects of the given clusters. The

potential information content of the new clustering is, thus, extended.

Experiments on UCI datasets In the following, we focus on the effectiveness

of ASCLU for real world datasets. We start using the pendigits dataset to show

that ASCLU reveals new patterns compared to some given ones. The pendigits

dataset is very rewarding for clustering analysis, since cluster results are very

descriptive and visualizable. This dataset is suitable to examine, whether ASCLU

is able to find valuable alternatives for given subspace clusters in real world data.

As input for ASCLU, we use three clusters: digit 0 and digit 6, each clustered
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in the first 3 xy-coordinates, and digit 9 clustered in the last 3 ones. Given this

input, ASCLU determines subspace clusters with deviating properties and thus

novel information. The first indicator is that the given three digits appear in

less clusters than the other digits, which shows, that ASCLU is more interested

in the unknown (not given) digits. A second observation is that the given digits

appear mainly in clusters that cover nearly all digits, thus representing novel

object groupings. In Fig. 5.3 such an identified cluster is illustrated, where all

digits have similar values for the marked y-coordinates. Only in very few clusters

the three digits are again clustered individually; though, these clusters yield novel

attribute information of the digits.

Figure 5.3: Alternative subspace cluster for pendigits

The next experiment, on the iris data, evaluates the influence of the input

clustering on the quality of ASCLU’s results. As described, we extend the iris

dataset to multiple views per object. This way, we are able to determine a sub-

space clustering as input, which will in this case be the first view. We, therefore,

only consider the classes of the other views, the latter concatenations, as ground

truth to compare the results with. In Fig. 5.4, we compare the results of ASCLU

with and without this first view as input clustering for three different datasets,

which differ in the number of concatenated views. The results show, that a high

quality input clustering, like one view in this example, has a positive effect on

the quality of the alternatively found clusters in the other views. This effect is

explainable by the fact that due to the given clusters, ASCLU already excludes

several clusters with similar informations to avoid redundancy. These avoided

similar clusters do, obviously, not belong to the ground truth and do often lead

to the redundancy and thus the exclusion of valuable clusters in other views. As

Fig. 5.4 shows, this effect is best traceable if there is only one view besides the

given one. Nonetheless, the given information has also a positive effect on more

than just one view.
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Figure 5.4: Quality of ASCLU on the iris dataset

5.5 Conclusion

In this chapter, we proposed a method that extended the principles of the pre-

viously presented OSCLU approach (Chapter 4) for detecting an alternative sub-

space clustering to a given input clustering. In contrast to previous approaches

that determine alternative groupings, we specifically consider the relevant di-

mensions of each subspace cluster to identify different views within the data.

Besides generating deviating clusters compared to the given input clustering, our

model ensures that each resulting cluster provides novel knowledge by pruning

redundant results. The experimental evaluation confirms that our model success-

fully detects meaningful alternative subspace clusters based on the given input

clustering. Analogous to the OSCLU approach, also ASCLU does not explicitly

mine views but focuses on clusters. Accordingly, also for ASCLU a separation of

clusters according to views needs to be done in a post-processing step, such as

the one proposed in Chapter 15.





It is the theory which decides what can be observed.
ALBERT EINSTEIN

Part III

Transfering Subspace Principles to
the Multi-View Clustering Paradigm
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6
Introduction to Simultaneous

Multi-View Clustering in Subspaces

BOTH techniques presented in Part II are aiming at transferring the principles

of multi-view clustering for achieving dissimilar clustering results to the sub-

space clustering paradigm. The proposed approaches present general solutions

for detecting clusters hidden in different attribute subspaces representing views

on the data. The result in each case is, however, a single set of clusters, such that

the views and the association of clusters to views are not determined explicitly.

As we will see in Chapter 15, a post-processing of such subspace clustering results

to obtain views and according alternative clusterings is not trivial and requires

interaction with a domain expert. In this part, we will present two approaches

to overcome these limitations by integrating the cluster definition and the view

detection into a single model.

As already argued in the previous chapters, the detection of multiple cluster-

ing solutions in just a single space has limitations. Finding truly novel clustering

structures by just considering a single data distribution is not very promising. In-

stead different characteristics of the data have to be highlighted to enable differ-

ent views on the data. If we cluster, e.g., movies, we will easily achieve a different

grouping based on their ‘genre’ compared to a clustering based on attributes like

‘location’, ‘cast’, ‘budget’, or other characteristics. As discussed in Chapter 2, some

approaches already consider different data representations for the task of multi-

view clustering [CFD07, DQ08, QD09, NDJ10, DB13b]. However, most of these

techniques consider data distortions leading to non-axis-parallel subspaces, e.g.,

based on PCA transformations, which are difficult to interpret semantically. By

considering axis-parallel subspaces, we have a direct indication which data char-

acteristics led to the observed cluster structures, which supports the semantic

reasoning. If we, e.g., find a very compact cluster for the characteristics ‘cast’ and

‘budget’, which represents high-budget movies with certain actors which have no
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other joint characteristics, we might start reasoning whether these are VIP actors

whose salaries are causing the high expenses.

While in the next Part IV, we will use the subspace clustering principle to dis-

cover multiple clustering views iteratively, for the approaches proposed in this

part, we will focus on the simultaneous generation of multiple clustering alter-

natives. A simultaneous detection of all hidden clustering alternatives has the

advantage that the global interestingness, i.e., quality and diversity of all cluster-

ings, can be optimized. Iterative approaches, instead, greedily choose the best

available clustering in each iteration based on the previous knowledge. While

the first detected clusterings probably will have a high clustering quality, in sub-

sequent iterations bad clusterings might be preferred for the sake of diversity.

Since in addition to the mere partitionings, we want to learn the according clus-

tering perspectives, i.e., subspaces, for each clustering, the simultaneous consid-

eration of all clusterings and their subspaces is beneficial as well. Not only the

different clusterings can help to refine each other, also the chosen subspaces for

each clustering, can be influenced by those of others. Although subspaces of

different clusterings might share some characteristics, it is unlikely that highly

overlapping subspaces support clusterings which are highly different. If the pro-

portion of common characteristics is too high, the two subspaces will contain a

very similar distribution of the data, such that truly deviating clusterings are not

to be expected. Taking this assumption into consideration, the subspaces can

help each other to define their clustering ‘profile’ more precisely.

An important criterion for the new approaches is furthermore, that the detec-

tion of an arbitrary number of alternative clusterings should be possible in order

to detect all hidden concepts in the data. For the methods that we will present in

the following Chapters 7 and 8, we use probabilistic generative models to solve

the problem of finding multiple alternative clustering solutions in subspace pro-

jections of the data. These models can be nicely depicted by graphical models

and capture the assumed causal process by which the data has been generated.

In our case, each alternative clustering will be represented by a multivariate mix-

ture distribution for the relevant attributes. For the approach in Chapter 7, we

will focus on transferring the principles of subspace clustering to the paradigm of

multi-view clustering. Here, we will explicitly consider local noise dimensions of

clusters as well as overlapping subspaces for the different clustering views. For

the second approach, that we will present in Chapter 8, we will simplify the con-

sidered generative model in order to focus on the integration of user constraints.
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Often the user has some prior belief about the clustering structure and wants

to guide the clustering process in a certain direction. So-called semi-supervised

clustering techniques have shown to be able to drastically improve the clustering

quality if such prior knowledge of the user is used as support. With our SMVC

approach of Chapter 8, we want to examine a possibility to integrate such prior

user knowledge into the complex clustering process of multi-view clustering in

subspace projections.
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IN this chapter, we present a Bayesian framework to tackle the problem of simul-

taneous multi-view clustering in subspace projections of the data. We provide

multiple generalizations of the data by using multiple mixture models. Each mix-

ture describes a specific view on the data by using a mixture of Beta distributions

in subspace projections. Since a mixture summarizes the clusters located in sim-

ilar subspace projections, each view highlights specific aspects of the data. In

addition, our model handles overlapping views, where the mixture components

compete against each other in the data generation process. For efficiently learn-

ing the distributions, we propose the algorithm MVGen that exploits the principle

of iterated conditional modes and uses Bayesian model selection to trade-off the

cluster model’s complexity against its goodness of fit. With experiments on var-

ious real-world datasets, we demonstrate the high potential of MVGen to detect

multiple, overlapping clustering views in subspace projections of the data.
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7.1 Introduction

Mixture models have proven to be well suited for adequately modeling and learn-

ing the characteristics of complex probability distributions of given observations

in various applications [MK08]. In particular in the presence of an underlying

clustering structure, multivariate mixture models are widely used as a compact

representation of the data’s distribution. Given a parametric family K, e.g., the

set of all Gaussian distributions, a mixture model describes the data by a set of

components (each selected from K) and a set of mixture weights. Intuitively, each

component represents a cluster (more precisely: its distribution of the attribute

values) and the mixture weight represents the number of objects belonging to

this cluster.

Key to a reasonable data representation is an appropriate modeling of the un-

derlying data structure. Traditional mixture models work with only a single mix-

ture distribution, i.e., each observation is assumed to follow a single component’s

distribution. However, as the research areas of subspace clustering [KKZ09] and

multi-view clustering [MGFS10] have taught us, for many data collections mul-

tiple, differing aspects of the observations are captured. This aspect has already

been touched by approaches like [SJR10, FB08, BKG+05], that allow for a mixed

membership in different components. Thus, they realize an overlapping cluster-

ing and, e.g., allow for a movie to participate in the ’humor’ as well as in the

’action’ genre [BKG+05]. These approaches still only realize a single clustering

(i.e., one mixture model) and, therefore, are able to present only one view on the

data, e.g., the view ’genre’ for the movie example. For many scenarios, however,

a more complex clustering structure, where different views on the data (i.e., con-

sidering different characteristics of the observations) reveal different clustering

structures, has to be expected [NDJ10, CFD07, QD09]. Movies cannot only be

clustered according to their ’genre’ but also based on ’location’, ’cast’, ’budget’,

or other characteristics. Since data is rarely collected pursuing only one defined

goal, the multi-view hypothesis is very likely for various databases, e.g., customer

data, sensor data, biological records but also for data with various heterogeneous

characteristics, like images or multimedia in general.

Just summarizing the data by a single global view, which considers all charac-

teristics simultaneously, does not do such data justice. Instead, a generalization

of the data by a mixture model for each view and its specific characteristics, re-

veals more insight in the data. Given the toy example in Fig. 7.1, we can easily
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Figure 7.1: Example for the multi-view scenario

identify two different but valuable clusterings: characterizing the observations’

color (first view: subspace {1, 2, 3}) and the observations’ shape (second view:

subspace {4, 5, 6}). If a single partitioning of this data in the full-space {1, . . . , 6}
is enforced, the result will be very small, specialized clusters, e.g. ’blue rectan-

gles’. For the purpose of generalization, 3 clusters in 2 views are preferable over

9 clusters considering all attributes. Especially for data with many attributes a

mixture distribution in the full-space does not generalize the data well.

Taking a generative perspective, we can assume each object to be generated by

multiple mixture distributions, each referring to a different view of the data. Con-

sequentially, each object follows multiple components, each in a different mixture

model, each defining a distribution only for a certain view (i.e., subspace) of the

data, and each representing a different role of the object. This poses several

challenges:

Challenge 1: Multiple Groupings. In the most simple scenario of multi-view

data, the views do not share any characteristics (disjoint subspaces). A schematic

representation of this case for a database with 6 dimensions, 2 views, each with

3 clusters, is given in Fig. 7.2(a). Intuitively, we can model this scenario by

’concatenating’ several traditional mixture models. The question remains, how

to appropriately model the relevant dimensions of each view.

Challenge 2: Subspace Clusters. Usually, the solution via traditional mix-

ture models, discussed above, is too restrictive for the characteristics of real world

data. While for a certain view a set of attributes is relevant in general, we cannot

expect that each cluster covers exactly the same set of dimensions as its view

(subspace cluster w.r.t. the view). While the dimension ’viewers age’ might be

relevant for the view ’genre’ in general (e.g., ’Horror’ movies target only adults),

some genres like, e.g., ’3D Animations’ show no certain characteristic in this di-

mension. This scenario corresponds to Fig. 7.1 and is illustrated in Fig. 7.2(b).
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Figure 7.2: Different scenarios of multi-view data (the shading represents the
relevance of the dimensions; white: irrelevant dimensions; the darker the shade
the more relevant the dimension)

Subspace clusters cannot be represented by traditional mixture models. While in

the relevant dimensions of a subspace cluster, the attribute values are distributed

according to, e.g., a Gaussian distribution, irrelevant dimensions follow a com-

pletely different model, e.g., a uniform distribution. That is, depending on the

dimension’s relevance a different parametric family is used. Thus, to model data

containing subspace clusters, we encounter the challenge of model selection, i.e.,

before we can estimate the actual mixture model parameters, we first have to

determine the parametric families that are used for each cluster.

Challenge 3: Overlapping Views. So far, we just discussed non-overlapping

views. In general, however, dimensions can occur in multiple views (Fig. 7.2(c)).

e.g., the dimensions ’gender’ and ’age’ might be characteristic for the two views

’hobby’ and ’profession’ of a customer database. This scenario is particularly chal-

lenging as several components might compete with each other for generating an

object in one or more dimensions (e.g., clusters C1,1 and C2,3 in dimension four).

Obviously, the dominant view (and, hence, dominant distribution) might vary

for each dimension and each object: while in dimension ’gender’ some objects

rate the view ’hobby’ as dominant, other objects use the view ’profession’ in this

dimension; in the dimension ’age’, completely different views might be consid-

ered as dominant. This observation is even intensified by considering subspace
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clusters: some clusters might not be relevant in the overlapping dimensions. Ac-

cordingly, it is not sufficient to consider only the views, but we need to consider

the actual subspace clusters to determine the dominant view. Since each object

might be located in different subspace clusters, different overlap scenarios can

occur.

To tackle all these challenges, we propose a Bayesian framework modeling

data with an inherent multi-view clustering structure. Our model:

• provides multiple generalizations of the data by modeling individual mix-

ture models, each representing a distinct view
• handles individual sets of relevant dimensions for each cluster by perform-

ing Bayesian model selection
• tackles the ambiguity of the objects’ memberships regarding multiple, com-

peting components

7.2 Generative Multi-View Model

In this section, we introduce a Bayesian framework modeling the process of gen-

erating data containing multiple clustering views. An overview of our framework

is given by the graphical model depicted in Fig. 7.3. We start in Section 7.2.1

by describing our model from a generative perspective, i.e., we show how our

model generates data containing multiple views. The inverse process where a set

of observations is given and the model’s components are learned, is introduced

in Section 7.2.2. Following convention, we do not distinguish between a random

variable X and its realization X = X if it is clear from the context. As an abbre-

viation, we denote sets of random variables with the index ∗, e.g., Y∗,d is the set

of random variables {Yi,d} with i in the corresponding index domain, and Y is an

abbreviation for the set Y∗,∗.

7.2.1 Generating Multi-View Data

In our model, we explicitly differentiate between the relevant dimensions of the

clusters and the relevant dimensions of the views. The relevant dimensions of a

view provide a concise description for the relevant dimensions for a set of clusters.

That is, the clusters belonging to the same view are located in similar subspace

projections. Since the clusters’ relevant dimensions might slightly vary, the rel-

evance of dimensions for the view can also vary. In Figure 7.2(b), for example,
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Figure 7.3: Graphical model of our method. Rectangles denote discrete random
variables, circles continuous random variables, and black dots (deterministic)
hyperparameters of the prior distributions.

dimension 1 has a high relevance for view 1 since all of its represented clusters

use this dimension; dimension 1 is a good descriptor for the whole set of clus-

ters. Dimension 3, in contrast, has a slightly smaller relevance since one of the

clusters does not require this dimension. Thus, to reflect the differing relevances

of dimensions d ∈ D = {1, . . . , dmax} for each view m ∈ M = {1, . . . ,mmax}, our

model includes the (continuous) latent variables Vm,d on (0, 1).

Based on this relevance information, the actual relevant dimensions of each

subspace cluster can be generated. We model this aspect by the (discrete) random

variable Sm,k,d on {0, 1} for d ∈ D, k ∈ K and m ∈ M .1 The latent variable is

1 if the dimension d is relevant for the k-th cluster of view m, and 0 otherwise.

The higher the relevance of a view’s dimension, the more likely is the dimension

relevant for the cluster. This property can be realized by a Bernoulli process. With

probability Vm,d, the dimension d is relevant for the cluster, and with probability

1−Vm,d it is not. Formally, the distribution of the latent variable Sm,k,d is given by

p(Sm,k,d = 1 | Vm,d = r) = r

p(Sm,k,d = 0 | Vm,d = r) = (1− r)
(7.1)

If the value of Vm,d is either close to 1 or close to 0, then the clusters in this

view m are likely to have the same value for Sm,k,d. Thus, if the value of Vm,d is

either close to 1 or close to 0 for all dimensions d ∈ D, then the subspaces of the

clusters in this view are very similar. If Vm,d is close to 0.5, we do not have a clear

presetting, and, thus, the subspaces of the clusters may differ stronger.

1To simplify our model description, we assume that each view m ∈ M describes kmax

clusters, i.e. K = {1, . . . , kmax}.
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Prior distributions. To allow a fully Bayesian approach, we specify prior distri-

butions for the variables Vm,d. We select the prior according to a Beta distribution,

i.e., Vm,d ∼ Beta(αRel, βRel) with hyperparameters αRel ∈ R>0 and βRel ∈ R>0. A

Beta distribution is suited due to the following reasons: First, since Vm,d simulates

a Bernoulli process, the Beta distribution corresponds to its conjugate prior. Sec-

ond, based on the hyperparameters, the user can control the views’ purity. That

is, one can control the similarity between the clusters’ subspaces originating from

the same view. As mentioned above, high similarity between the subspaces can

be realized by choosing Vm,d close to 1 or close to 0. This issue can be modeled

by selecting αRel = βRel < 1. If no knowledge about the views’ purity is given, we

can simply choose αRel = βRel = 1, leading to a non-informative prior.

Generating the membership information After generating the relevant di-

mensions of each cluster, we now aim at generating observations that follow

multiple overlapping views. More precisely, in each of the views each object shall

belong to a single cluster; thereby, we realize a single grouping within a single

view and multiple overlapping groupings among different views.

This idea can be modeled by the latent variable Seln,m on K = {1, . . . , kmax}
that models which of the kmax clusters an object n follows in view m. The dis-

tribution of Sel is governed by the (relative) weights πm,k of the clusters, i.e.,

p(Seln,m = k | πm,∗) = πm,k

As usual for mixture models, the larger the weight of a cluster, the more objects

belong (in expectation) to the cluster. Please note that in contrast to traditional

mixture models, in our model each view represents a certain grouping of all
objects. Thus, we have

∑
k∈K πm,k =1 for each view m∈M , while in traditional

mixture models the overall weight of all clusters is normalized to 1.

As discussed in challenge 3 (and illustrated in Fig. 7.2(c)), different views

compete with each other. An object might belong to two clusters which both are

marked as relevant in a specific dimension d. To solve the ambiguity about the

object’s membership in this dimension, we specify one of the views as dominant

(for this object and dimension). This aspect is modeled by the latent variable

Domn,d on M = {1, . . . ,mmax}. Here, a view m ∈ M can only be dominant in d if

the selected cluster is also relevant in d. Thus, let M ′
n,d = {m′ ∈ M | Sm′,Seln,m′ ,d =

1} be the set of views that are potentially dominant for object n in dimension d,

the distribution of Domn,d is modeled by
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p(Domn,d = m | Seln,∗, S∗,∗,d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/|M ′

n,d| if m ∈ M ′
n,d

0 if m 	∈ M ′
n,d ∧M ′

n,d 	= ∅
1/|M | else

That is, we randomly select a view from the potentially dominant views (case 1),

while the remaining views cannot be selected (case 2). The third case just occurs,

if none of the selected clusters of an object is relevant in this dimension. In this

case, an arbitrary view can be selected as dominant since any cluster represents

just noise in this dimension.

Generating Observations Finally, we specify the distributions from which the

attribute values of a cluster are sampled, i.e., we model the actual components of

the multiple mixture models. However, keep in mind that for subspace clustering

we have two different parametric families: K1 for the relevant dimensions and

K0 for irrelevant ones.

In our model, we select the parametric family K1 according to the set of Beta

distributions, i.e., we consider a mixture of Beta distributions. This is advanta-

geous compared to the frequently used Gaussian distributions since Gaussian

distributions have an infinite support, which usually does not match the ob-

served data. In many applications, we have a finite attribute domain that can

be normalized to the range (0, 1); this is exactly captured by the Beta distribution

(cf. Fig. 7.4). Additionally, the Beta distribution is able to model distributions

near the border of the data space. These Beta distributions are modeled by the

two random variables αm,k,d and βm,k,d on R>0 providing the necessary shape pa-

rameters of each distribution (for each view m, each cluster k, and each dimen-

sion d). For the parametric family K0, we simply use the uniform distribution on

(0, 1) since this corresponds to a noisy dimension. Thus, |K0| = 1 holds.

Which parametric family a mixture component in dimension d belongs to was

modeled by the latent variable S. Thus, finally, the attribute values of each object

can be modeled by the random variable Xn,d with distribution:

Xn,d | Domn,d, Seln,∗, S∗,∗,d, α∗,∗,d, β∗,∗,d ∼
⎧⎨⎩Beta(αi,j,d, βi,j,d) if Si,j,d = 1

Uni(0, 1) else

where Domn,d=i and Seln,i=j. Thus, for each dimension d, an object follows the

distribution given by the selected cluster in the dominant view.
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Beta(x;α, β) =

Γ(α + β)

Γ(α)Γ(β)
·xα−1·(1−x)β−1
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Figure 7.4: Probablity density function of the Beta distribution

Prior distributions. Again, we choose appropriate prior distributions to enable

inference. We select non-informative priors since usually no further knowledge

is provided about the data’s clustering structure. A non-informative prior for the

cluster weights πm,k is simply realized by choosing p(πm,1, . . . , πm,kmax) = const

for each view m.

For the variables αm,k,d and βm,k,d, we suggest a non-informative prior p(α, β)

that ensures a uniform distribution over the mean and variance of the resulting

Beta distributions Beta(α, β). Intuitively, this way the cluster centers are uni-

formly selected from the domain (0, 1) and the variance from the domain (0, 1
12
).

Thus, the prior fulfills∫
α

∫
β

p(α, β) · 1(E(Beta(α, β)) = x) dαdβ ∼ Uni(0, 1)

regarding the mean x of the resulting Beta distribution (same for the variance

with Uni(0, 1
12
)). We can approximately2 achieve these properties by selecting

the priors according to exponential distributions with rate parameter 0.1, i.e.,

αm,k,d ∼ Exp(0.1) , βm,k,d ∼ Exp(0.1)

7.2.2 Learning Objective

In the following, we describe our learning objective if a set of observed data

points X is given. Usually, the learning objective would be to maximize the a

posteriori probability p(V, S, α, β,Dom, Sel, π | X = X).

2Indeed, the distribution of the mean is exactly captured since the Beta distribution’s
mean is given by α

α+β , and for any λ it holds: X,Y ∼ Exp(λ) ⇒ X
X+Y ∼ Uni(0, 1)
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For our model, however, this idea is not meaningful since in this case usually

all dimensions of a cluster are relevant: the data’s likelihood is always higher

when selecting a (certain) Beta distribution in contrast to selecting a uniform

distribution. This is obvious since a uniform distribution is a special case of a

Beta distribution with shape parameters α = β = 1 and, hence, K0 ⊂ K1. Thus,

simply determining the maximum a posteriori (MAP) estimate as given above

leads to the problem of overfitting since a complex model obviously fits the data

better than a simple one3; one would only choose relevant dimensions.

To overcome this problem, we first perform a model selection before learning

the subspaces S and the shape parameters of the Beta distributions. That is,

we balance the models’ goodness of fit and their simplicity4. Thus, our learning

objective is separated in two phases:

First, we perform Bayesian model selection [Bis06] by finding the best real-

ization for V , Dom, Sel, and π. That is, we determine the MAP estimate

(V∗,Dom∗,Sel∗,π∗) = argmax
(V,Dom,Sel,π)

p(V =V, Dom=Dom, Sel=Sel, π=π | X=X)

These variables are illustrated in our graphical model with solid lines. Since

learning these variables involves a marginalization over S, α, and β, we realize

the balancing of the model’s complexity and its goodness of fit. Thus, due to

this model selection step, some dimensions might be irrelevant for certain views,

corresponding to a more simple model.

Since after the first phase the cluster model is determined, we can estimate

in the second phase the actual mixture components and the clusters’ subspaces.

That is, we can now determine the MAP estimate for the variables S, α and β:

(S∗,α∗,β∗) = argmax
(S,α,β)

p(S=S, α=α, β=β | X=X, V =V∗,

Dom=Dom∗, Sel=Sel∗, π=π∗)

Overall, our model allows to learn the clustering structure of data contain-

ing multiple overlapping views by using multiple mixture models. Clusters, i.e.,

mixture components, are located in individual subspace projections and are sum-

marized by views through a concise description of their relevant dimensions.
3A similar example is polynomial interpolation: since the set of polynomials with

degree x is a subset of the ones with degree x+ 1, the interpolation error decreases with
increasing degree.

4In the example of polynomial interpolation, one balances the degree of the polyno-
mial against its regression error.
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7.3 The MVGen Algorithm

In this section, we introduce our MVGen (Multi-View Generative Model) algo-

rithm that learns the multi-view clustering structure given a set of observed data

points. Since exactly computing the MAP estimate p(V,Dom, Sel, π | X) is in-

tractable, we compute approximations that can be efficiently determined. In

general, we exploit the principle of iterated conditional modes (ICM [Bes86]),

which can be regarded as a greedy variant of the Gibbs sampling method [Bis06].

Instead of considering a complex joint distribution p(A1, . . . , An), we iteratively

maximize a set of conditional probabilities p(Ai | A1, . . . , Ai−1, Ai+1, . . . , An) until

the process converges. This way, the random variables Ai are updated sequen-

tially. The traditional k-means processing scheme can be seen as an instance of

the ICM principle with just two easily computable update steps: recomputation

of means and reassignment of points to clusters.

7.3.1 Update Equations

We briefly present the update equations required in our algorithm; they are sum-

marized in Equation (7.U1)-(7.U4).

Updating the views V We start with the variable Vm,d, i.e., for each m ∈ M, d ∈
D we aim at maximizing

p(Vm,d | V \{Vm,d}, Dom, Sel, π,X)

∝
∑
S

∫
α

∫
β

p(V,Dom, Sel, π, S, α, β,X) dαdβ (7.2)

The most important aspect here is that we have to marginalize over the vari-

able S, α, and β, as stated in Section 7.2.2. Only if the model selection step is

performed, we can estimate α, β, and S.

In the appendix on page VII, we show the detailed derivation for the following

Equation 7.U1 of the optimal realization of Vm,d:

Vm,d = arg max
x∈(0,1)

ca · log x+ cb · log(1− x)+

cc · log(x+ cd) +
∑
k∈K

log(ck · x+ 1) (7.U1)

where the c∗ are constant values given by
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ca = αRel − 1 + |Nm,d| cb = βRel − 1 cc = −|N |

cd =
∑

m′∈M,m′ �=m Vm′,d ck = Betad(Nm,k,d)− 1

Here, Nm,d = {n ∈ N | Domn,d = m} is the set of all observations that choose the

view m in dimension d as dominant, and Nm,k,d = {n ∈ Nm,d | Seln,m = k} are

those observations which additionally select the cluster k. The term Betad(Nm,k,d)

is computed based on the following equation

Betad(I) :=
[∏
n∈I

Beta(Xn,d;αMAP , βMAP )
] / |I| (7.3)

where I is an index set denoting which observations are considered, and αMAP

and βMAP are the MAP estimates of the Beta distribution’s shape parameters

using the set I of observations. The function Betad(I) approximates the term∫
α

∫
β

p(α)p(β)
∏
n∈I

Beta(Xn,d;α, β) dαdβ

which has to be solved during the derivation of our update equations. Betad(I)

exploits the Bayesian Information Criterion (BIC, or Schwarz criterion [Sch78,

Bis06]) in combination with the observation that in our case the Beta distribution

is controlled by two free parameters.

Overall, Equation 7.U1 describes a simple univariate function in the variable

x whose optimization can, for example, be done by Brent’s algorithm [Bre73].

Updating π We perform a block update for the variables πm,∗. Since we use a

non-informative prior, maximizing

p(πm,∗ | V,Dom, Sel, π\{πm,∗}, X) is simply obtained by

πm,k = |{n ∈ N | Seln,m = k}| · |N |−1 ∀k ∈ K (7.U2)

Updating Dom and Sel Finally, we derive the update equations for the vari-

ables Dom and Sel. We perform a block update of the variables Seln,m and

Domn,∗, i.e., for each observation n, we simultaneously update its selected clus-

ter in view m and its dominant views over all dimensions. Formally, we aim at

maximizing: p(Seln,m, Domn,∗ | V,Dom\{Domn,∗}, Sel\{Seln,m}, π,X)
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∝
∑
S

∫
α

∫
β

p(S | V )p(Seln,m | π)
∏
d∈D

[
p(Domn,d | S, Sel)

p(α)p(β)
∏
n′∈N

p(Xn′,d | Dom, Sel, S, α, β)
]
dαdβ (7.4)

We first resolve the integral over α and β by again using the BIC approxi-

mation (cf. Eq. 7.3). We assume that the MAP estimates αMAP and βMAP deriv-

able from the current grouping change only marginally when reassigning a single

point n to a different cluster. Similarly, the cluster sizes change only marginally,

i.e., the sets Nm,k,d differ by at most one element when reassigning observa-

tion n to a different cluster. By using this idea, we can substitute the part

p(α)p(β)
∏

n′∈N p(Xn′,d | Dom, Sel, S, α, β) by Beta(Xn,d;α
MAP
i,j,d , βMAP

i,j,d ) if Si,j,d = 1

and by 1 (uniform distribution) if Si,j,d = 0.5 This simplification stems from the

fact that with given, constant MAP estimates also the densities p(Xn′,d | ...) for

n′ 	= n are constant. Thus, Eq. 7.4 simplifies to:

∝
∑
S

p(S | V )p(Seln,m | π)
∏
d∈D

[
p(Domn,d | S, Sel)⎧⎨⎩Beta(Xn,d;α

MAP
i,j,d , βMAP

i,j,d ) if Si,j,d = 1

1 else

]
(7.5)

Due to the integration over all possible realizations of S, the term p(Domn,d |
S, Sel) can well be approximated by the expected dominance of a view m in

dimension d. The expected dominance is given by

EDd(m) :=
Vm,d∑

m′∈M Vm′,d

Thus, the above equation simplifies to

∝
∑
S

p(S | V )p(Seln,m | π)
∏
d∈D

[
EDd(Domn,d)⎧⎨⎩Beta(Xn,d;α

MAP
i,j,d , βMAP

i,j,d ) if Si,j,d = 1

1 else

]
(7.6)

Since the Sm,k,d are independent given V , the summation over S is effective

only for the variable Si,j,d. Thus, the summation vanishes when making the two

cases of Si,j,d explicit. That is, we introduce the term

ADd(m, k) := p(Sm,k,d = 1 | V ) · Beta(Xn,d;α
MAP
m,k,d , β

MAP
m,k,d ) + p(Sm,k,d = 0 | V ) · 1

5We use the abbreviations i:=Domn,d and j:=Seln,Domn,d



98 Multi-View Clustering Using Mixture Models in Subspace Projections

and Equation 7.6 simplifies to

p(Seln,m | π) ·
∏
d∈D

EDd(Domn,d)ADd(Domn,d, Seln,Domn,d
)

Please note that the functions EDd and ADd are independent of Sel and Dom

and fully specified by the values of V , αMAP , and βMAP (which are given!). Thus,

while updating the values of Dom and Sel, we do not have to recompute the

functions EDd and ADd.

Based on the above equation, it becomes apparent that Domn,∗ can be opti-

mized for each dimension individually. Especially, if the variable Sel is given, we

can efficiently compute the optimal realization of Domn,d by

Domn,d = argmax
m∈M

EDd(m)ADd(m,Seln,m) (7.U3)

As shown, the optimal realization of Dom depends on Sel in a simple way.

Thus, we can focus on finding a good solution for Seln,m. The optimal solution of

Seln,m can efficiently be computed by

Seln,m = argmax
k∈K

{
πm,k

∏
d∈D

max {EDd(m) · ADd(m, k), cm,d}
}

(7.U4)

where cm,d = maxm′∈M,m′ �=m EDd(m
′) · ADd(m

′, Seln,m′). The value of cm,d is

constant since it neither depends on Seln,m nor on Domn,∗. Please note that the

update of Seln,m directly uses the best solution for Domn,∗. Thus, we do not

have to optimize Domn,∗ separately but the optimal values are computed while

updating Seln,m.

7.3.2 Recommended Update Sequence

Given the derived update equations, any sequence that recurrently invokes each

of these equations is possible to determine a desired clustering solutions. How-

ever, based on the dependencies as given by our graphical model and the par-

ticular role of the model selection phase, we recommend the following update

sequence for the random variables:

1. We sequentially update the variables Vm,d for each m ∈ M, d ∈ D until the

views are stable. [Eq. (7.U1)]
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2. For each object n ∈ N , we sequentially update the variables Seln,∗ and Domn,∗
until Sel and Dom are stable.
(a) To update Seln,∗ and Domn,∗, we sequentially update Seln,m for each m ∈

M until Seln,∗ is stable. [Eq. (7.U3) & (7.U4)]

3. Update of πm,∗ for each m ∈ M [Eq. (7.U2)]; goto step (2) until the process

has converged.

4. goto step (1) until the process has converged.

Thus, overall, we exploit the ICM principle in a nested fashion. The outer

loop iterating over steps 1 and 2/3 represents the alternation between learning

the views and learning the groupings. For the inner loop, iterating over 2 and

3, the views are given and we try to optimize the cluster assignments as good as

possible. Note that implicitly also the mixture components α and β are optimized

since based on the BIC approximation their MAP estimates are considered.

Initialization To complete the above algorithm, we describe a straightforward

initialization. We simply initialize Sel by the following method: For each dimen-

sion d ∈ D, we apply the k-means method with k = |K|. Thus, leading to |D|
many clusterings. Since, however, Sel requires just |M | different views, we follow

an approach inspired by traditional agglomerative clustering methods: To reduce

the number of clusterings, we successively determine those clusterings that are

most similar to each other, and we merge these clusterings to a single one. Thus,

in each step the number of clusterings is reduced by one until the required num-

ber |M | is reached. To merge two clusterings, we simply union the corresponding

sets of dimensions and we recompute the k-means result in the novel space. As

similarity measure between the clusterings, we use the F-measure [WXC09].

After initializing Sel, the variable π is determined based on Equation 7.U2.

Since no information about the views is given, Dom is initialized randomly. The

variable V is also initialized randomly based on its prior distribution.

7.3.3 Determining Components and Subspaces

According to Section 7.2.2, the second phase of our learning objective is to de-

termine the MAP estimate of p(S, α, β | X, V,Dom, Sel, π).

Since the variables Dom and Sel are given, the set of observations that con-

tribute to the Beta distribution of cluster k in dimension d and view m is known,

and was denoted by the set Nm,k,d = {n ∈ Nm,d | Seln,m = k}. Thus, the shape
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parameters αm,k,d and βm,k,d of each mixture component simply correspond to

their MAP estimate given the set of observations Nm,k,d.

In general, however, determining the MAP estimate for the shape parameters

of a Beta distribution is not possible in closed form; one has to iteratively solve

systems of equations [BT78]. Since this is highly inefficient, we refer to the com-

monly used approach of moment matching: the shape parameters are computed

based on the mean and variance values of the observations. This approach is in

line with the non-informative prior distributions of α and β, which do not favor

certain means or variance values. Thus, we get:

αm,k,d =
(1− μ)μ2 − μ · σ2

σ2
and βm,k,d =

μ(μ− 1)2

σ2
+ μ− 1

where μ denotes the mean of the observations {Xn,d | n ∈ Nm,k,d}, and σ2 the

variance, respectively. Note that these equations are also used for the MAP esti-

mates required in Section 7.3.1. Thus, the estimates for αMAP and βMAP can be

efficiently computed in these steps.

Finally, an estimate for the random variables S can be obtained by testing

which model – relevant or irrelevant dimension – is more likely. That is, if

p(Sm,k,d = 1 | V ) ·∏n∈Nm,k,d
Beta(Xn,d;αm,k,d, βm,k,d) > p(Sm,k,d = 0 | V ) · 1

, the dimension d of cluster k in view m, will be relevant. Here, we do not have to

refer to the BIC approximation but can use the likelihood of the Beta distribution.

Since the view V is already learned, i.e., the model selection is done, the trade-off

between the models’ complexities and their goodness of fit is already reflected in

the term p(Sm,k,d | V ).

7.4 Related Work

Our MVGen exploits a Bayesian framework to model the generation of data with

an underlying multi-view clustering structure. We discuss three paradigms re-

lated to this topic:

Subspace clustering: In contrast to traditional full-space clustering, subspace

clustering (co-clustering/bi-clustering) [KKZ09] assumes that for each cluster an

individual subset of attributes might be irrelevant. These locally irrelevant at-

tributes cause an obfuscation of the clustering structure in the full-space, which

makes full-space approaches futile. The consideration of attribute subsets is
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highly related to our multi-view scenario, where different views of the data are

most likely reflected by different attributes. However, subspace clustering does

neither realize a grouping of clusters to reflect partitionings under several views

nor is it aware of the varying competition and dominance of multiple clusters

concerning the attribute values of the data. Therefore, it does not meet the re-

quirements for multi-view clustering.

Multi-view clustering: The paradigm of multi-view or alternative clustering

meets our goal of revealing the cluster structure of multi-faceted data. Three dif-

ferent categories are identified in [MGFS10]. The first category’s representatives,

e.g., [JMD08, BB06, DB10a], operate in the full-space and, therefore, suffer from

similar problems as traditional clustering. Furthermore, they are usually focused

on determining just two alternative clusterings, whereas for complex datasets

multiple views can be expected. Approaches from the second category detect

clusters in subspace projections ([NDJ10], OSCLU, ASCLU). However, [NDJ10]

cannot handle overlapping views and does not allow individual subspaces per

clusters, and our OSCLU and ASCLU approaches (cf. Chapters 4 & 5) do not pro-

vide a grouping into views, i.e., the views remain unknown. Approaches of the

last category iteratively determine an alternative clustering based on the previ-

ous one via space transformations such as PCA ([CFD07, DB13b]) or distortion

of the distance function ([DQ08, QD09]). Distortions of the original space like

this, usually hinder an intuitive interpretation of the clustering result. Contrarily,

axis-parallel projections of the data, as for our approach, directly refers to the

originating attributes for each cluster.

Model-based clustering: This general paradigm assumes the considered data

to be sampled from a statistical model. Several approaches for estimating the

parameters of the underlying probability distributions, e.g., to maximize the

log-likelihood of the data, were proposed including the EM algorithm and ICM

[Bis06, Bes86]. Model-based clustering is very flexible as the modeled distri-

butions can be arbitrarily complex. Traditionally, such approaches use a sin-
gle mixture distribution (which spans across all dimensions of the data space).

Even though each observation might be associated with a membership degree

(e.g., the likelihood of belonging to a cluster), such a principle of soft cluster-
ing does not support the idea of generating objects through multiple compo-

nents as for the multi-view scenario. To overcome this issue, a few models

([SJR10, FB08, BKG+05]) try to represent such multi-component membership

(i.e., overlapping clusters). However, they are still not suited for multi-view clus-
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tering: They do not consider a grouping of clusters into views, i.e., they do not

model that an object takes a single role within a single view but different roles

among different views. Instead, these models lead to results where an object

might take multiple roles within a single view. Note that global dimensionality

reduction and feature selection [PZCW10] also do not solve our task: First, we

consider multiple views in multiple different subspaces. Second, in our model

each cluster is associated with an individual subspace projection.

Overall, none of the existing methods is able to handle multiple views that

compete against each other in overlapping dimensions and containing clusters

with individual sets of relevant dimensions. Our novel statistical model handles

all these aspects.

7.5 Experimental Analysis

Setup We compare MVGen with the multi-view clustering techniques Multi-
View 1 and Multi-View 2 proposed in [CFD07] and with two variants of the Alter-
native Clustering method proposed in [QD09]. These approaches best reflect the

demands for multi-view clustering as discussed in Sec. 7.4. Additionally, we use

two variants of the k-means method.

For case studies on real world data we use the CMUFaces, liver disorders,

diabetes, iris and vowel data (all from the UCI repository [FA10]), and Escher

images. Synthetic data containing multiple views is generated based on our gen-

erative model. The default dataset contains 2 disjoint views, each with 5 clusters,

10 dimensions, 1000 objects, and the clusters’ subspaces deviate to the views’ di-

mensions by 5%.

The methods of [CFD07] and MVGen are provided with the number mmax of

views and the number kmax of clusters per view. Since [QD09] just detects two

groupings, we use two variants: 1) The true number of clusters per view is set.

In this case the method detects 2 · kmax clusters. 2) We parametrize the method

with kmax ·mmax/2. In this case, kmax ·mmax clusters are detected, which matches

the overall number of clusters hidden in the data. Similarly, we use for k-means

k = kmax as well as k = kmax ·mmax. Runtime is measured on 2.33GHz Intel XEON

CPU with 8 GB main memory. Quality is assessed based on the E4SC measure

(cf. Chapter 13) used in evaluation of subspace clustering. Since MVGen is the

only method performing multi-view subspace clustering, we do not evaluate the

subspaces of the competing methods but just concentrate on their detected object
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Figure 7.5: Varying number of views
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Figure 7.6: Effects of overlapping views

groupings. To enable a direct comparison of MVGen with these approaches, we

also include the results of MVGen if we ignore the subspaces in its evaluation,

denoted with ’MVGen (obj.)’.

7.5.1 Evaluation on Synthetic Data

In Fig. 7.5, we vary the number of hidden views in the data. The overall di-

mensionality of the data is 30. As depicted, MVGen is the only approach able to

detect the clustering structure in the case of many views. The clustering quality is

very high, even if we incorporate the detected subspaces in our evaluation (solid

line of MVGen). Obviously, the quality is even higher if we evaluate the object

groupings only (dashed line). The competing methods behave differently: while

for single-view data the quality is relatively high, their quality heavily decreases

with an increasing number of views. Interestingly, for a high number of views,

the quality of the two multi-view techniques (depicted by triangles) is not much

larger than the one of the k-means method with k = kmax. These methods are

not well suited to analyze data containing multiple views.

Next, we analyze the potential of our method to detect overlapping views. In

Fig. 7.6, we use a dataset with 12 dimensions containing 3 views. We vary the

number of overlapping dimensions, i.e., dimensions that occur in more than one

view, until each dimension occurs in two views. As shown, the methods are nearly

not influenced by overlapping dimensions. The reason might be that none of the

views is completely contained in another one. One is still able to detect the clus-

ters of each view. MVGen detects the object groupings almost perfectly; some of

the clusters’ relevant dimensions are missed for high overlapping degrees. Note:

The good quality of the competing methods is only observed because we just have

3 views in this experiment.
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Figure 7.7: Effects of the views’ purity
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Figure 7.8: Runtime vs. database size
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Figure 7.9: Runtime vs. dimensionality

In Fig. 7.7, we show that MVGen is able to find subspace clusters (located

in subspace views). In our model, we allow a certain deviation of the clusters’

subspaces to the relevant dimensions of their views; here, denoted as the purity.

In this experiment, we vary the purity from 70% to 100%. Since each view

covers 5 dimensions, a purity of 70% leads to subspace clusters covering now

only 3 relevant dimensions. As shown, MVGen succesfully detects the relevant

dimensions of each cluster. Since we use a model selection approach, we trade-

off the simplicity of the model against its goodness of fit. For the competing

method, no conclusion can be drawn since for their evalution, we do not consider

subspaces.

Scalability Even though our focus is on clustering quality, we briefly analyze

MVGen’s efficiency. In Fig. 7.8, we increase the number of objects in the data-

base. All methods show increasing runtime and the slopes of the curves are in a

similar range. Please note that the two approaches Multi-View 1 & 2 have almost

identical runtimes, and, since we use 2 views, the two Alt. Clus. approaches are

also identical in their runtimes. Apparently, the absolute runtime of our method is

the highest due to the complex model selection phase that trades off relevant and

irrelevant dimensions. However, the absolute runtime of MVGen is still low. Fur-
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thermore, as we believe, the higher runtime is compensated by the significantly

higher clustering quality of MVGen. In Fig. 7.9, we increase the dimensionality

of the dataset. We observe a similar behavior as in the previous experiment.

Overall, MVGen shows good scalability and it is the only method simultane-

ously achieving high clustering qualities.

7.5.2 Evaluation on Real World Data

For evaluation on real world data, we use different evaluation principles, all fo-

cusing on the aspect of detecting multiple views. In our first experiment, we

extend the datasets iris and vowel to data containing multiple views: for this, we

randomly concatenate the attribute values of different objects to a higher dimen-

sional space. The original datasets have dimensionalities of 4 and 10, respectively,

while the extension to multi-view data leads to dimensionalities up to 9 · 4 = 36

(iris) and 6 · 10 = 60 (vowel), respectively. Figures 7.10 & 7.11 show the results:

For a small number of views, the quality of some competing approaches is sim-

ilar to the one of MVGen. However, increasing the number of views leads to a

decreasing clustering quality for all competing approaches. In contrast, MVGen

shows constant quality values; MVGen is not affected by an increasing number of

views but detects the different object groupings even for a high number of views.

These results for real world data are consistent with the observations made for

the synthetic data.
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Figure 7.10: Quality on iris data
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Figure 7.11: Quality on vowel data

In the next experiment, we analyze the clustering result of MVGen on the

CMUFace data. This data is interesting for multi-view clustering since it consists

of images taken from persons showing varying characteristics as their facial ex-

pressions (neutral, happy, sad, angry), head positions (left, right, straight), and



106 Multi-View Clustering Using Mixture Models in Subspace Projections

eye states (open, sunglasses). As also done in [DB10b], we randomly select 3

persons with all their images and applied PCA retaining at least 90% of the data’s

variance as a pre-processing. The result of MVGen for two views each with three

clusters is illustrated in Fig. 7.12. The images correspond to the means of each

detected cluster. By visual inspection, we can easily find the reason for detecting

these two views: The first view, describes the grouping based on the different

persons, while the second view, corresponds to a grouping based on their head

positions.

Figure 7.12: Result of MVGen on face data

Next, we perform an experiment as introduced in [QD09]. They propose to

perform image segmentation on Escher images, which are known to have multi-

ple interpretations to the human eye. For clustering, each pixel is regarded as an

object with RGB and HSV values as features. In Fig. 7.13 (left), such an image is

depicted (followed by the three views detected by MVGen). Focusing on the dark

regions, there is a segmentation of the image as given by the first view of MV-

Gen. This segmentation is dominant since the dark parts clearly deviate from the

orange/yellow parts. However, MVGen is also able to discover the more subtle

view where the yellow parts are decoupled from the others. Most interesting is

the third view detected by MVGen: it corresponds to only the background of the

image. For the other methods we observed the following: The work of [QD09]

was only able to detect groupings similar to MVGen’s first and second view (as

also shown in [QD09]). Interestingly, the work of [CFD07], which is designed to

detect more than 2 views, was only able to find view 1. The detected ’alternative’

groupings were all similar. None of the competing methods was able to detect

the third, background view.



7.5. Experimental Analysis 107

Original image View 1 View 2 View 3

Figure 7.13: Result of MVGen on an Escher image

In our last case study, we want to highlight the benefit of explicitly model-

ing the relevant subspace for each view, as done by MVGen. Knowing the rel-

evant attributes, enables us to reason about the views’ context and to explain

the clusters. Table 7.1 depicts for the liver disorders and diabetes data the de-

tected subspaces of each view. The number of clusters per view was chosen as

2. As shown for the liver disorders data, the two views/clusterings clearly differ

from each other (small rand index), and the views do not correspond to the full-

dimensional space, i.e., for each view some dimensions are irrelevant. For liver,

we observe disjoint views. The first view clearly describes the relation between

alcohol consumption and the mean corpuscular volume, while the second view

represents the weaker indicators. On the diabetes data, the detected views match

well to some factors causing diabetes of type 1 or type 2 (adult-onset diabetes;

also caused by high blood glucose levels during pregnancy). Here, a further inter-

esting observation can be made: Besides finding dissimilar groupings in subspace

projections, we now also get slightly overlapping views. For example, the dimen-

sion ’body mass index’ is relevant for both clusters in view 1 and for a single

cluster in view 2. This result also confirms our hypothesis that the clusters of the

same view may slightly differ in their relevant dimensions.

Liver Disorders Data (rand index between views: 0.25)
V1 mean corpuscular volume, number of half-pint equivalents of alcoholic bever-

ages drunk per day
V2 alkaline phosphotase, alamine aminotransferase, aspartate aminotransferase,

gamma-glutamyl transpeptidase

Diabetes Data (rand index between views: 0.51)
V1 body mass index, diabetes pedigree function, triceps skin fold thickness, 2-

hour serum insulin; (for one cluster: plasma glucose concentration)
V2 age, diastolic blood pressure, # of times pregnant, plasma glucose concentra-

tion; (for one cluster: body mass index)

Table 7.1: Subspace views on liver and diabetes
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Overall, our experiments show that MVGen successfully detects the multi-

view clustering structure on a variety of real world datasets.

7.6 Conclusion

Our MVGen approach successfully exploits the model-based clustering paradigm

for the multi-view context. Our Bayesian framework accounts for the challenges

of multiple, overlapping, and competing mixture distributions for differing views.

Since each view reflects specific characteristics of the data, each mixture com-

ponent is defined in an individual subspace. The comparison of MVGen with

competing approaches demonstrated the strengths of detecting views in multiple

subspace projections. Our MVGen approach was able to discover multiple clus-

tering views for various real world datasets. Especially the explicit modeling of

the views’ relevant subspaces has proven to be very valuable for interpreting the

final clustering results.
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OFTEN users are able to provide partial prior information regarding the clus-

tering structure. Semi-supervised clustering techniques have shown to sub-

stantially improve clustering results for single-view clustering by integrating such

prior knowledge into the clustering process. In this chapter, we want to present

an approach to join the research areas of multi-view and semi-supervised cluster-

ing to integrate prior knowledge in the process of detecting multiple clusterings.

We propose a Bayesian framework modeling multiple clusterings of the data

by multiple mixture distributions, each responsible for an individual set of rele-

vant dimensions. In addition, our model is able to handle prior knowledge in the

form of instance-level constraints indicating which objects should or should not

be grouped together. Since a priori the assignment of constraints to specific views

is not necessarily known, our technique automatically determines their member-

ship. For efficient learning, we propose the algorithm SMVC using variational

Bayesian methods. With experiments on various real-world data, we demon-

strate SMVC’s potential to detect multiple clustering views and its capability to

improve the result by exploiting prior knowledge.

109
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8.1 Introduction

Semi-supervised clustering techniques [BDW08] try to incorporate the user’s pref-

erences by exploiting prior knowledge during the clustering process. For tradi-

tional single-view clustering, these techniques have shown to substantially in-

crease the clustering results. Motivated by the success of both research areas,

multi-view clustering and semi-supervised clustering, we propose a semi-super-

vised multi-view clustering technique. Our goal is to exploit user provided prior

knowledge to enhance the results of multiple, alternative clusterings.

For semi-supervised clustering, it is crucial that the user can provide super-

vision in an easy and understandable way. While cluster level constraints, such

as the clusters’ sizes, positions, or distributions, usually require an abstract un-

derstanding of the desired clustering structure, instance level constraints, which,

e.g., indicate partial information about cluster memberships, are much more in-

tuitive. A popular way of modeling such prior information is via equivalence

constraints, which indicate for pairs of instances whether they should belong

to the same cluster (must-link constraint) or to different clusters (cannot-link

constraint). Even though lacking a full understanding of the clustering structure,

this allows the user to partly specify her intuition by indicating for selected object

pairs their pairwise cluster relation. Since in many cases these user constraints ex-

press a belief rather than certainty, we use the concept of soft constraints, where

mistakes (e.g., disagreeing constraints) are possible and a complete compliance

of the clustering result with all constraints is not enforced.

The transfer of the semi-supervised clustering principle to the multi-view case

poses a severe challenge, particularly regarding the multi-faceted nature of the

data. One user might, for example, see the similarity of two movies based on their

cast, while another user might foreground their dissimilarity based on differing

genres. It, therefore, might remain unclear to which view specific constraints

refer to. In particular, when naively assigning all constraints to a single view, a

large proportion of the constraints might be conflicting such that even a relax-

ation to soft constraints will not be sufficient anymore. Therefore, the challenge

with semi-supervised multi-view clustering is not only to optimize the cluster-

ing such that constraints are optimally fulfilled but also to learn the affiliation of
constraints to views.

It has to be highlighted that some of the sequentially working multi-view clus-

tering approaches (which iteratively find one clustering at a time) (e.g., [BB06,
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Figure 8.1: Example for the multi-view scenario

QD09]) already work based on instance level constraints to incorporate the feed-

back of rejected prior clusterings via cannot-link constraints. These constraints,

however, are used for a different goal: they guide the clustering method to find a
single new clustering. Thus, all constraints need to refer to this single clustering,

and none of the previous clusterings can be affected by these constraints. In con-

trast, our aim is to incorporate instance level constraints which might improve the

overall result of all clusterings. It becomes apparent, that in this case, we have to

rely on a clustering technique which detects all clusterings/views simultaneously.

Only few approaches for simultaneous multi-view clustering have been pro-

posed (e.g., [NDJ10, JMD08, GMFS09, GFS12]). Here, the inevitable connec-

tion of multi-view clustering and subspace clustering has been observed first

[NDJ10, GMFS09, GFS12], which later also influenced sequentially working ap-

proaches like [DB13b]. Subspace clustering assumes each cluster to have an

individual set of relevant data attributes, which corresponds well with the moti-

vation of multi-view clustering that different views on the data (i.e., considering

different characteristics of the data) might reveal different clustering structures.

In this work, we join the three paradigms of simultaneous multi-view cluster-

ing, subspace clustering, and constraint-based clustering. We present a Bayesian

framework that models the different clustering views via several multivariate

mixture distributions located in subspace projections (cf. Figure 8.1). Each ob-

ject follows multiple components, each in a different mixture model, each defin-

ing a distribution only for a certain view (i.e., subspace) of the data, and each

representing a different role of the object. We integrate the optimal fulfillment of

user provided instance level constraints into the Bayesian learning process, where

we tackle the challenge of automatically learning the responsibility of views for

specific constraints. Our contributions are:
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Figure 8.2: Graphical model of our method. Rectangles denote discrete random
variables, circles continuous random variables, and black dots (deterministic)
hyperparameters of the prior distributions.

• Multiple clusterings: We propose a sound Bayesian model which represents

multiple clusterings via individual mixture models, each representing a dis-

tinct view.
• Semi-supervision: Our model incorporates prior knowledge in form of (soft)

must-link and cannot-link instance level constraints. Our method automat-

ically learns the assignment of these constraints to specific views if their

responsibility is not explicitly specified.
• Algorithm design: We present an efficient algorithm based on the principle

of variational inference for learning our model.
• Effectiveness: We analyze the effectiveness of our method and show its po-

tential to increase the clustering quality by using prior knowledge.

8.2 Bayesian Framework

In this section, we introduce a Bayesian framework for semi-supervised multi-

view clustering. An overview of our framework is given by the graphical model

depicted in Fig. 8.2. While this section introduces the generative process of our

model, we describe in Section 8.3 how to learn the model’s parameters given

a set of observations. Following convention, we do not distinguish between a

random variable x and its realization x = x if it is clear from the context. As an

abbreviation, we denote sets of random variables with the index ∗, e.g., y∗,d is the

set of random variables {yi,d} with i in the corresponding index domain, and Y

is an abbreviation for the set y∗,∗.
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The number of objects is denoted with N , the number of dimensions with

D, the number of clusters/components with K, and the number of alternative

views/clusterings with M . We write k ∈ K, as a shortcut for k ∈ {1, . . . , K}.

Multiple Mixture Models The general idea of our method is to represent the

multiple clusterings of the data by multiple mixture models, each located in a

different subspace projection (cf. Fig. 8.1). In this work, we focus on Gaussian

mixture models; extensions to other distributions are straightforward. Following

standard principles, each of the M mixture models is based on K components,

where each of these components is associated with a mean and a covariance/-

precision matrix. To reduce the number of parameters to be estimated, we focus

on diagonal precision matrices. Thus, for a Bayesian treatment, we introduce the

random variables

(μm,k,d, τm,k,d) ∼ NG(μ̊d, κ̊d, α̊d, β̊d) (8.1)

where μm,k,d is the mean of component k in dimensions d for clustering m, and

τm,k,d the corresponding precision. We select the normal-gamma distribution NG
as a prior since it represents the variables’ conjugate prior. The hyperparameters

denoted by ∗̊ can be used to control the mixture models’ components if some

prior knowledge is available. Per default, we choose least informative priors by

selecting κ̊d, α̊d → 0 and setting μ̊d/β̊d to be the sample mean/sum of squared

deviations in dimension d.

Besides the components parameters, each mixture model is associated with

a corresponding random variable representing the mixture weights. Obviously,

since we want to find multiple different clusterings, these weights can be differ-

ent for each view. We use the random variable


πm ∼ Dir(̊λ) (8.2)

where πm,k is the weight of component k in clustering m. Due to conjugate

properties, we use a Dirichlet distribution as its prior. Again, in our study, we use

a non-informative prior by selecting λ̊ = 1 since a priori no knowledge about the

cluster sizes is given.

Integrating Subspaces To detect the data’s multiple views, we refer to the prin-

ciple of subspace clustering. Our goal is to assign each mixture model to a specific

subspace projection, which it describes well. Since the relevant dimensions of the

mixtures are a priori not known, we learn them with our method. Therefore, we

introduce the random variable
vd ∼ Categorical(
rd) (8.3)
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to indicate which of the M clusterings is responsible for a specific dimension

d. The vector 
rd ∈ [0 . . . 1]M (with
∑

rk,m = 1) can be used to give some prior

knowledge which dimension belongs to which view. Again, we use a constant

non-informative prior, i.e., rk,m = 1/M .

Knowing about the subspaces as well as the mixture models’ parameters, we

are now able to generate observations which show multiple clustering structures:

We denote with zm,i the random variable indicating to which cluster an object i

belongs to in clustering m, i.e.,

zm,i ∼ Categorical(
πm) (8.4)

Note that for each view m, the object might follow a different cluster, i.e., zm,i 	=
zm′,i is possible. Thus, in each view the object might be grouped together with

different objects. This idea is illustrated in Figure 8.1: the grouping on the left

differs from the one on the right. Given zm,i, the attribute value of object i in

dimension d is drawn according to

xi,d ∼ N (μm,k,d, τ
−1
m,k,d) with m = vd and k = zm,i (8.5)

That is, we use the clustering m which is responsible for dimensions d and the

corresponding component k the object belongs to in this view.

Integrating User Constraints So far, our model corresponds to a completely

unsupervised technique for finding multiple clusterings. As a major advance-

ment, we now integrate user provided prior-knowledge. As discussed, we aim

at supporting the concept of instance level constraints. More precisely, we sup-

port the idea of soft constraints between pairs of objects that indicate whether

the objects should or should not be grouped together. We selected this type of

semi-supervision since it reflects an intuitive understanding of clustering and is

easy to specify for the user.

The user can provide a constraint between the objects i and j via a weight

wi,j. If the weight is positive, the user indicates that there should exist a cluster-

ing where the objects are grouped together. If the weight is negative, the user

indicates that there should exist a clustering where i and j are not grouped to-

gether. Different magnitudes of the weights can be used to indicate the different

importance or relevance of the constraints.

At this point, it is crucial to keep in mind that we are interested in finding

multiple, alternative clusterings: A constraint between i and j means that there
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exists a view where the constraint is fulfilled. We do not require that i and j are

grouped together in all views, which actually would contradict the fundamental

assumption for multi-view scenarios that clusterings of different views differ and

contain alternative knowledge. Forcing constraints to be valid for all views would

be too restrictive. Furthermore, we argue that the user is generally not aware of

the details of all possible groupings. Thus, the user constraints should not be

able to restrict views that the user does not yet understand. Accordingly, for

each constraint, we are interested in finding (at least) one clustering fulfilling

this constraint.

Resulting from this principle, another challenge of our method becomes ap-

parent: we have to determine the clustering which is responsible for a specific

constraint. In the following, we show how to model all these aspects.

As mentioned, the constraints are modeled via weights. In our model, we

represent them via a symmetric matrix W of size N × N , where entries with

weight zero indicate no prior knowledge about the corresponding pairs of objects.

In practice, we can use a sparse representation of the matrix which only encodes

the given constraints and allows for an efficient processing. Interesting to note

is that the (observed) matrix W appears in our grapical model as one of the root

nodes (cf. Fig. 8.2), and not as a leaf like X. As shown, the weights influence the

grouping Z of the objects.

Additionally, we introduce the categorical random variables ci,j (due to the

symmetry of the weights, we only need to consider i < j). These variables indi-

cate which view is responsible for a specific constraint. That is, we have

ci,j ∼ Categorical(
h(i,j)) (8.6)

where 
h(i,j) ∈ [0...1]M with
∑

m∈M h
(i,j)
m = 1. The user can use 
h(i,j) to express

some further prior knowledge about the constraint between object i and j. If the

user, for example, knows that a set of constraints should most likely belong to

one view, the h vectors can be selected accordingly. Per default, we assume that

no knowledge about the assignment of constraints to views is known, i.e., we use

h
(i,j)
m = 1/M .

Given W and C, how can we use their values to influence the clustering

structure of the data? Our idea is to add a bias to the probability distribution

of the zm,j. The probability of generating a clustering that matches the con-

straints should be higher than the probability of a clustering which violates the

constraints. Particularly, this results in a dependency between the variables zm,∗
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which is guided by the constraints. We define

p(zm,∗ | 
πm,W,C) ∝
N∏
i=1

πm,zm,i
·

N∏
i=1

N∏
j>i

ci,j=m

ewi,j ·δ(zm,i,zm,j) (8.7)

Here, δ(zm,i, zm,j) denotes the Kronecker delta, which evaluates to 1 if both ob-

jects are located in the same cluster (in view m), and 0 otherwise. Please note

that Equation 8.7 is the joint distribution for all zm,∗.

The first part of the equation corresponds to the mixture weights as used in

standard mixture models. If all wi,j = 0, Equation 8.4 and 8.7 are equivalent.

The second part models the bias to specific groupings: As one can see, if wi,j is

positive and the objects are located in the same cluster, the probability of selecting

this grouping increases. Accordingly, if wi,j is negative, one would decrease the

probability of clusterings where i and j are grouped together. A similar principle

was used in [LL04, BBM04b] for single-view clustering.

Important to mention is that the second part of the equation incorporates the

automatic assignment of constraints to views. The constraint between i and j

adds a bias to the clustering structure in view ci,j = m only. In accordance to our

discussion above, the other views are not affected.

Given the new definition for the distribution of Z, the actual observations are,

as before, generated according to Equation 8.5. Overall, our model combines the

principle of multiple clusterings in subspace projections with the paradigm of

semi-supervised clustering and automatically assigns constraints to their respon-

sible views.

8.3 The SMVC Algorithm

While the previous section has focused on the model’s generative process, we

now present our learning technique. That is, given a set of observations X and

a set of constraints W , we infer the model’s parameters. Our method is called

SMVC (Semi-Supervised Multi-View Clustering).

8.3.1 Variational Inference

The general inference problem we have to solve is to determine the distribution

p(Y |X,W ), where Y={V, Z, C, 
π, μ, τ} is the set of all latent variables. Based
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on this distribution, we can, e.g., pick the realizations of the latent variables

leading to the highest likelihood given the data. Since computing p(Y |X,W )

is intractable, we compute an approximation based on the principle of varia-

tional inference [Bis06]: we approximate p(Y |X,W ) by a tractable family of

parametrized distributions q(Y |Ψ). The parameters Ψ are the free variational

parameters. These parameters are optimized such that the best approximation

between q and p is obtained. Technically, one minimizes the Kullback-Leibler di-

vergence between q and p by optimizing Ψ. Using Jensen’s inequality, minimizing

the KL divergence is equivalent to maximizing the following lower bound on the

log marginal likelihood [Bis06]:

L(X,W ; Ψ) = Eq[ln p(X,W, Y )]− Eq[ln q(Y |Ψ)] (8.8)

where Eq[.] denotes the expectation w.r.t. the q distribution.

Following primarily the idea of mean field approximation, we assume the

function q to factorize in

p(Y | X,W ) ≈ q(Y |Ψ) :=
∏
d

q1(vd) ·
∏
m

∏
i

q2(zm,i)

·
∏
i

∏
j>i

q3(ci,j) ·
∏
m

q4(
πm) ·
∏
m

∏
k

∏
d

q5(μm,k,d, τm,k,d)

As we will later see, assuming the above factorization, the optimal variational

distributions have the form

q1(vd) = Categorical(vd |φd,1, ..., φd,M)

q2(zm,i) = Categorical(zm,i |ψm,i,1, ..., ψm,i,K)

q3(ci,j) = Categorical(ci,j | ξi,j,1, ..., ξi,j,M)

q4(
πm) = Dir(zm,i |
λm)

q5(μm,k,d, τm,k,d) = NG(μm,k,d, τm,k,d |
μ̃m,k,d, κ̃m,k,d, α̃m,k,d, β̃m,k,d)

where Ψ = {φ, ψ, ξ, 
λ, μ̃, κ̃, α̃, β̃} are the variational parameters to be optimized.

Note that each distribution has its own variational parameters [Bis06]. Thus, e.g.,

the functions q1(vd) and q1(vd′), are not necessarily identical. This extra degree of

freedom allows to find a good approximation between q and p. As discussed in

Section 8.2, for ci,j, i.e., the function q3, we only need to consider pairs i, j with

wi,j 	= 0.
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For the variational distributions, the following holds:

Eq[[zm,i = k]] = ψm,i,k Eq[[ci,j = m]] = ξi,j,m Eq[[vd = m]] = φd,m

Eq[πm,k] =
λ̃m[k]∑K
i=1 λ̃m[i]

Eq[log πm,k] = ψ(λ̃m[k])− ψ(
K∑
i=1

λ̃m[i])

Eq[μm,k,d] = μ̃m,k,d Eq[μm,k,d · τm,k,d] = μ̃m,k,d · α̃
β̃

Eq[τm,k,d] =
α̃

β̃
Eq[log τm,k,d] = ψ(α̃)− log(β̃)

Eq[μ
2
m,k,d · τm,k,d] =

1

κ̃m,k,d

+ μ̃2
m,k,d ·

α̃

β̃

General Processing Scheme We use an iterative coordinate ascent method to

maximize Equation 8.8 w.r.t. the parameters Ψ (the update equations follow in

Section 8.3.2). The processing scheme is as follows:

1 while not converged do
2 for i, j ∈ N : j > i ∧ wi,j 	= 0 do update ξi,j,∗ Eq. 8.10
3 for d ∈ D do update φd,∗ Eq. 8.11
4 for m ∈M, i ∈ N do update ψm,i,∗ Eq. 8.12
5 for i ∈ N,m ∈M do update �λm Eq. 8.13
6 for m ∈M,k ∈ K, d ∈ D do Eq. 8.14
7 update μ̃m,k,d, κ̃m,k,d, α̃m,k,d, β̃m,k,d

Note that due to the properties of variational inference [Bis06], it is guar-

anteed that the method converges. In practice, we assume convergence if the

change in the lower bound on the marginal likelihood is below 0.01. Addition-

ally, to avoid the problem of local minima, we enhance the processing scheme by

gradually increasing the importance of the constraints. That is, starting with low

weights, we linearly increase the values wi,j until they reach the user specified

scores. This way, the constraints do not force the undeveloped clustering in mis-

leading directions but the constraints’ influence increases gradually to guide the

clustering as it evolves. For initializing our method, we exploit the same principle

as described in [GFS12]. The random variable C/q3 is initialized randomly based

on its prior distribution.
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8.3.2 Update Equations

We briefly present the update equations required for the coordinate ascent method.

We primarily follow the principle of [Bis06]: The optimal distribution for qx(B)

can be determined by

ln q∗x(B) = Eq\B[ln p(X, Y,W )] + C (8.9)

Here, the constant C absorbs all terms which are independent of B and, thus, do

not affected the optimal distribution of qx. Eq\B[.] denotes the expectation w.r.t.

the distribution q taken over all variables Y except of B. To avoid cluttering the

notation, we simply write Eq in the following (it is clear from the context which

variable is excluded).

Updating the constraint responsibility Let [[.]] denote the Iverson bracket. We

can rewrite Equation 8.7 as follows
N∏
i=1

K∏
k=1

π
[[zm,i=k]]
m,k ·

N∏
i=1

N∏
j>i

K∏
k=1

ewi,j [[zm,i=k]][[zm,j=k]][[ci,j=m]]

This formulation makes it easier to derive the following results. Accordingly, we

can rewrite the remaining equations.

The optimal distribution for q3(ca,b) (with a < b) can be obtained via Equation

8.9. Removing all terms which are independent of ca,b and using the above refor-

mulation, we get

log q∗3(ca,b = y)

= Eq[log (P (ci,j)P (Z|π, C,W ))] + C

= Eq[log
1

M
] + Eq[log

M∏
m=1

( N∏
i=1

K∏
k=1

π
[[zm,i=k]]
m,k ·

N∏
i=1

N∏
j>i

·
K∏
k=1

ewi,j [[zm,i=k]][[zm,j=k]][[ci,j=m]]

)
] + C

= Eq[
M∑

m=1

K∑
k=1

log ewa,b[[zm,a=k]][[zm,b=k]][[ca,b=m]]] + C

= wa,b

K∑
k=1

Eq[[zy,a = k]] · Eq[[zy,b = k]] + C
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Since ca,b has a finite domain, the distribution q3 is a categorical distribution.

Renaming the variables, the optimal hyperparameters of the distribution q3(ci,j)

are given by

ξi,j,m ∝ exp(wi,j
∑K

k=1 Eq [[zm,i=k]]·Eq [[zm,j=k]]) (8.10)

where
∑

m ξi,j,m = 1. The occurring expectations can be replaced by the known

expectations of the variational distributions. Intuitively, the parameter ξi,j,m re-

flects the probability of assigning the constraint between i and j to the view m.

Updating the views Computing Equation 8.9 for q1(vd) and removing all terms

which are independent of vd leads to

ln q∗1(vd = y)

= Eq[log (P (x∗,d|vd, Z, μ, τ)P (vd))] + C

= Eq[log
M∏

m=1

N∏
i=1

K∏
k=1

N (xi,d|μm,k,d, τ
−1
m,k,d)

[[vd=m]][[zm,i=k]]] + Eq[log
1

M
] + C

= Eq[log
N∏
i=1

K∏
k=1

N (xi,d|μy,k,d, τ
−1
y,k,d)

[[zy,i=k]]] + C

=
N∑
i=1

K∑
k=1

Eq[[zy,i = k]] · f(y, k, d, i) + C

Here, we used the definition

f(m, k, d, i) := Eq[N (xi,d|μm,k,d, τ
−1
m,k,d)]

=Eq[log

√
τy,k,d
2π

e
−(xi,d−μy,k,d)

2τy,k,d
2 ]

=
1

2
Eq[log

τy,k,d
2π

] +
1

2
Eq[−(xi,d − μy,k,d)

2τy,k,d]

=
1

2
· (Eq[log τy,k,d]− x2

i,d · Eq[τy,k,d] + 2 · xi,d · Eq[μy,k,d · τy,k,d]
− Eq[μ

2
y,k,d · τy,k,d]− Eq[log 2π])

Thus, q1 is a categorical distribution and the optimal hyperparameters for

q1(vd) are given by

φd,m ∝ exp
∑N

i=1

∑K
k=1 Eq [[zm,i=k]]·f(m,k,d,i) (8.11)

where
∑

m φd,m = 1.
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Updating the cluster indicator The same principle can be applied for the clus-

ter indicator variable. We obtain:

log q∗2(zm,a = y)

= Eq[log (P (xa,∗|V,Z, μ, τ)P (Z|π,C,W ))] + C

= Eq[log

D∏
d=1

K∏
k=1

N (xa,d|μm,k,d, τ
−1
m,k,d)

[[vd=m]][[zm,a=k]]]+

Eq[log

K∏
k=1

N∏
i=1

π
[[zm,i=k]]
m,k

N∏
i=1

N∏
j>i

ewi,j [[zm,i=k]][[zm,j=k]][[ci,j=m]]]

=
D∑

d=1

Eq[[vd = m]]Eq[logN (xa,d|μm,y,d, τ
−1
m,y,d)] + Eq[log πm,y]+

N∑
i=1

N∑
j>i

wi,j Eq[[zm,i = y]]Eq[[zm,j = y]]Eq[[ci,j = m]] + C

=
D∑

d=1

Eq[[vd = m]] · f(m, y, d, a)+

Eq[log πm,y] +

N∑
j �=a

wa,j Eq[[zm,j = y]]Eq[[ca,j = m]] + C

Here, we exploit the symmetry of wi,j and the definition of f as given above.

Note again, that we do not actually need to sum over all j 	= a when using a

sparse encoding of the matrix W . It is sufficient to iterate over those j for which

a constraint with a is given. Similar as before, the optimal hyperparameters for

q2(zm,i) are given by

ψm,i,k ∝ exp
( D∑

d=1

Eq[[vd = m]] · f(m, k, d, i)

+ Eq[log πm,k] +
N∑
j �=i

wi,j Eq[[zm,j = k]]Eq[[ci,j = m]]
)

(8.12)

with
∑

k ψm,i,k = 1.
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Updating the mixing weights The mixing weights are continuous. Since we

selected a conjugate prior in our model, it follows:

log q∗4(�πm)

= Eq[log (P (πm)P (zm,∗|π,C,W ))] + C

= Eq[log

(
Γ(̊λK)

Γ(̊λ)K

K∏
k=1

πλ̊−1
m,k

)
] + Eq[log

( N∏
i=1

K∏
k=1

π
[[zm,i=k]]
m,k

N∏
i=1

·
N∏
j>i

K∏
k=1

ewi,j [[zm,i=k]][[zm,j=k]][[ci,j=m]]

)
] + C

=

K∑
k=1

(̊λ− 1)Eq[log πm,k] +
N∑
i=1

K∑
k=1

Eq[[zm,i = k]]Eq[log πm,k] + C

=

K∑
k=1

(
(̊λ− 1) +

N∑
i=1

Eq[[zm,i = k]]

)
· Eq[log πm,k] + C

As seen, the optimal distribution for q4 is a Dirichlet distribution, where the

hyperparameters are given by

λ̃m[k] = λ̊+
N∑
i=1

Eq[[zm,i = k]] (8.13)

Updating the mixture components Updating the mean and precision of each

mixture component follows the standard principle of variational inference in a

conjugate setting.

Let um,k =
∑N

i=1 Eq[[zm,i = k]] be the unnormalized weight of a cluster and x̄m,k,d =
1

um,k

∑N
i=1 xi,dEq[[zm,i = k]] its weighted mean in dimension d (when considering

the expectation w.r.t. q). Using conjugacy, it follows that the optimal hyperpa-

rameters of the distribution q5 are given by

μ̃m,k,d =
κ̊d μ̊d + um,k x̄m,k,d

κ̊d + um,k

κ̃m,k,d = κ̊d + um,k α̃m,k,d = α̊d +
um,k

2

(8.14)

β̃m,k,d = β̊d +
1

2

N∑
i=1

(xi,d − x̄m,k,d)
2 +

κ̊d um,k

κ̊d + um,k

(x̄m,k,d − μ̊d)
2

2
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8.3.3 Complexity and Summary

Inspecting the individual update equations, it becomes apparent that each iter-

ation of our algorithm runs in time O(M · N · K · (D + W )), where W denotes

the number of constraints. Thus, we obtain a linear complexity in all important

parameters.

Overall, our method efficiently computes an approximation of the posterior

distribution p(Y |X,W ) which shows us the multiple clustering structures, their

relevant subspaces, and the assignment of constraints to views.

8.4 Related Work

Our approach is related to four main paradigms in the field of cluster analysis:

subspace clustering, multi-view clustering, model-based clustering, and semi-

supervised clustering. Since the first three paradigms have already been dis-

cussed in Chapter 2 and in the related work section of Chapter 7, we will mainly

focus on the most related approaches presented in the field of semi-supervised

clustering. Table 8.1 shows an overview of the related work and their corre-

sponding properties.

In Chapter 2, we differentiated between two paradigms for multi-view clus-

tering: iterative and simultaneous approaches. Approaches that iteratively de-

termine a new clustering based on previous results can partially be categorized

as semi-supervised, since previous clustering solutions serve as guidance for the

discovery of new clustering structures. However, the constraints affect only the

solution of the single, next clustering and, thus, already detected solutions can-

not benefit from them. Furthermore, all approaches presented for the iterative

paradigm utilizing space transformations [CFD07, DQ08, QD09, DB13b] suffer

from distortions of the original space, which hinder an intuitive interpretation of

the clustering result.

Semi-supervised clustering The detection and usefulness of multiple cluster-

ing solutions strongly depends on the user’s preferences. For different users and

applications, different clusterings might prove to be useful. Semi-supervised clus-

tering [BDW08] provides a possibility to accommodate these preferences as ad-

ditional information or domain knowledge into the clustering process. For tra-

ditional single view, full-space clustering (e.g., k-Means) a popular solution is to

use instance level constraints: the objective function is extended by penalizing
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Multi-view clustering

↪→ iterative � – – ◦ fixed
↪→ simultaneous � � � – –

Semi-supervised clust. – � – � fixed
Our method � � � � learned

Table 8.1: Overview of related paradigms

violated constraints [BBM04a] or one learns a distance metric that best repre-

sents the constraints [BBM04c]. For model-based clustering, few extensions for

equivalence constraints exist. [SBHHW03] introduces a closed form EM based on

the transitive closure of must-link constraints and proposes a Markov network for

handling cannot-link constraints. Since it neither can incorporate both constraint

types simultaneously nor cope with conflicting constraints, [LL04, BBM04b] pro-

pose to integrate negative and positive pairwise constraints as priors into Gaus-

sian mixture models, which allows for modeling soft as well as hard constraints.

These approaches have shown to substantially improve the clustering result in the

single view case. Since in the multi-view case, we are uncertain which constraints

refer to which view, these existing solutions cannot easily be transferred.

Methods such as [Agg04] use supervision (e.g., human interaction) to en-

hance the clustering in a single given subspace. In contrast, we exploit supervi-

sion to enhance the clustering result across all views simultaneously. Works such

as [GBS12a] combine subspace clustering with graph clustering. The underlying

graph might be regarded as a certain type of supervision. These methods do not

focus on finding alternative groupings in the attribute space.

Overall, none of the existing approaches is able to incorporate prior informa-

tion for a multi-view clustering solution, where constraints may refer to different

clustering views. Our new statistical model handles different clustering views in

different attribute subspaces and learns responsibilities of views for the provided

equivalence constraints.
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8.5 Experimental Analysis

Setup We compare SMVC with representatives from all three paradigms: multi-

view clustering, subspace clustering, and semi-supervised clustering. For multi-

view clustering, we choose the four approaches Multi-View 1 and Multi-View 2
proposed in [CFD07], the Alternative Clustering method proposed in [QD09],

and our MVGen [GFS12] approach. These approaches best reflect the demands

for multi-view clustering as discussed in Section 8.4. As subspace clustering

approaches, we choose the partitioning approach Proclus and StatPC, which al-

lows for overlapping clusters. Furthermore, we compare against the two semi-

supervised approaches PCKMeans [BBM04a] and MPCKMeans [BBM04c], both

using instance level constraints.

For case studies on real world data, we use the CMUFaces, Iris, and Wine

data (all from the UCI repository [FA10]), and drawn stick figures. Synthetic

data containing multiple views is generated based on our generative model. The

default dataset contains 2 disjoint views, each with 4 clusters, 20 dimensions,

and 5000 objects.

Each method is provided with the number mmax of views and the number kmax

of clusters per view. If the algorithm does not allow for setting these parameters,

we choose the default parameter setting.

Runtime is measured on 4GHz AMD FX-8350 CPU with 16 GB main memory.

Quality is assessed based on the E4SC measure (cf. Chapter 13), which is a

symmetric and subspace aware variant of the popular F1 measure. Since most of

the competing approaches do not determine axis parallel subspaces, we refrain

from evaluating the subspaces and just concentrate on the object groupings (for

clarity, we rename the measure to ’E4FC’). For all quality experiments, we average

the results over ten executions.

8.5.1 Evaluation on Synthetic Data

Varying number of constraints We start our evaluation by examining the in-

fluence of a varying number of constraints in Figure 8.3. Here, we tested three

different variants of the semi-supervised clustering approaches: We either used

only must-link constraints (SMVC-ML), only cannot-link constraints (SMVC-CL),

or a combination of 50% from both (SMVC-Comb). Note that in this experiment,

we randomly generated constraints based on the ground truth clusters known for

synthetic data. These constraints might not help to improve the clustering and,
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SMVC: SMVC SMVC-ML SMVC-CL SMVC-Comb
multi-view: MVGen Alt. Clus. Multi-View 1 Multi-View 2
subspace: Proclus StatPC
semi-supervised: PCKMeans PCKMeans-ML PCKMeans-CL PCKMeans-Comb

MPCKMeans MPCKMeans-ML MPCKMeans-CL MPCKMeans-Comb
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Figure 8.3: Quality vs. # constraints
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Figure 8.4: Quality vs. # views

thus, represent only very weak supervision. In practice, the user might provide

better constraints, e.g., via the principles of active learning [BBM04a], where the

object pairs to be constrained are actively selected based on their impact for the

clustering quality. This way, usually fewer constraints are required to achieve a

better clustering result than with random constraints.

Figure 8.3 shows the results for an increasing number of constraints: Here,

we generated a challenging dataset with clusters having a large variance to study

the benefit of semi-supervision. Most approaches fail to identify a meaningful

clustering structure for this difficult clustering scenario. SMVC is not only the ap-

proach showing the best clustering results without the help of prior knowledge,

it is also the only approach able to improve its clustering based on additional

constraints. For the two other semi-supervised approaches PCKMeans and MPCK-

Means, we even observe a decreasing clustering quality with increasing amount

of prior knowledge! This indicates, that they cannot deal with the potentially

disagreeing constraints of the two views.

We furthermore can see the varying influence of the different constraints

(100% must-link constraints, 100% cannot-link constraints, or 50% must-link +

50% cannot-link). The higher the proportion of must-link constraints, the higher

is the influence. The reason is that cannot-link constraints a priori have a higher

possibility to be fulfilled than must-link constraints (for m views, each with k

clusters, the probability to fulfill a cannot-link constraint is m · (k
2

)
, whereas for

must-link constraints it is m ·k). Therefore, we will focus on must-link constraints

in the following experiments.
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Figure 8.5: Runtime vs. database size
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Figure 8.7: Runtime vs. # constraints

Another interesting observation, also stated in [Dav12], is that more con-

straints do not necessarily result in a better quality. They can even decrease

the clustering quality. In Figure 8.3, we can observe this slightly for cannot-link

constraints (SMVC-CL); other experiments showed similar effects for must-link

constraints. We kindly refer to [Dav12] for a discussion about these effects. Un-

fortunately, the principles discussed in [Dav12] for wisely choosing the set of

constraints are not easily transferable to our scenario.

Varying number of views In the next experiment, we study the potential of

using SMVC as an unsupervised technique in a multi-view setting. In Figure 8.4,

we vary the number of hidden views in the data. The dimensionality of each view

is five, i.e., with increasing number of views, the data’s overall dimensionality

increases as well. As depicted, SMVC and MVGen are the only approaches able

to detect the clustering structure in the case of a large number of views. Their

clustering quality is very high and proves to be robust against a varying number

of views. The competing methods behave differently: while for single-view data

the quality is relatively high, their quality heavily decreases with an increasing

number of views.
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Scalability Even though the focus for SMVC lies on its clustering quality, we

briefly analyze its efficiency. As already discussed in Section 8.3, SMVC scales

linearly in the number of objects (Figure 8.5), linearly in the number of dimen-

sions (Figure 8.6), and linearly in the number of constraints (Figure 8.7). Please

note the logarithmic scaling of both axes in all three plots. For a varying database

size (Figure 8.5), all algorithms show an increasing runtime. The approaches

that represent adaptations of the simple and efficient KMeans algorithm (which

also includes Proclus) clearly show the lowest runtimes. The runtime of SMVC

is comparable to the other algorithms analyzing subspace projections (MVGen,

StatPC) and even manages to outperform them thanks to the efficient variational

inference techniques.

The benefit of SMVC becomes apparent for a high data dimensionality (Figure

8.6). Due to the exponential number of subspaces, most subspace clustering

algorithms (e.g., StatPC) suffer from a tremendously increasing runtime for an

increasing number of dimensions. Also MVGen cannot compete with our SMVC

due to the complex model selection process. Contrarily, for SMVC, we observe

a moderate increase in runtime. This enables us to apply SMVC also on high-

dimensional data, as we will see in the experiments on real world data.

Figure 8.7 shows the runtimes of the semi-supervised methods for a varying

number of constraints. Here, it is hard to verify the linear runtime of SMVC be-

cause constraints support the clustering procedure and, thus, help decreasing the

number of iterations. For a small number of constraints, the two KMeans-based

approaches can maintain a low runtime. For an increasing number of constraints,

however, their runtime eventually even meets the one of SMVC. Of course, such

a high number of constraints might not be realistic for most applications.

8.5.2 Evaluation on Real World Data

For evaluation on real world data, we use different evaluation principles, all fo-

cusing on the multi-view aspect.

Case study A In Figures 8.8 and 8.9, we extend the datasets Iris and Wine to

data containing multiple views: for this, we randomly concatenate the attribute

values of different objects up to five times to a higher dimensional space. The

original datasets have dimensionalities of 4 and 13, respectively, while the ex-

tension to multi-view data leads to dimensionalities up to 5 · 4 = 20 (Iris) and

5 · 13 = 65 (Wine).
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SMVC: SMVC SMVC-100ML SMVC-500ML
multi-view: MVGen Alt. Clus. Multi-View 1 Multi-View 2
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Figure 8.8: Quality on iris data
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Figure 8.9: Quality on wine data

For just one view, the quality of some competing approaches is similar to

the one of SMVC. However, for an increasing number of views the clustering

quality for almost all competing approaches decreases. Only MVGen and SMVC

are nearly not affected by an increasing number of views but detect the different

object groupings even for multiple views.

To study the effects of semi-supervision, we additionally provided for both

datasets 100 and 500 constraints. For just a single view, SMVC is able to improve

the cluster quality. On iris, for example, the quality increases from 0.94 over

0.97 to 1.0. The full potential of our approach, however, can bee seen in the

case of multiple views: While it is still able to benefit from prior knowledge, the

clustering quality of the competing approaches dramatically decreases.

It is noticeable, that with increasing number of views, the constraints seem to

have less positive effect on the result of SMVC. This phenomenon can, however,

easily be explained by the fact that the constraints have to be distributed among

the views, i.e., the proportion of prior knowledge decreases with increasing num-

ber of views.

Summarizing, the results for real world data are consistent with the observa-

tions made for the synthetic data.

Case study B For our next study, we created a dataset consisting of 900 20x20

images of ’dancing stick figures’. This dataset allows an easy visual interpretation

of the clustering results. We drew 9 basic stick figures (Figure 8.10(a)) and

built 900 samples by randomly introducing noise. Since the subspace clustering

and single-view clustering approaches have proven to be not applicable for the

multi-view scenario, we applied only the multi-view clustering approaches in this

experiment. We provide this dataset on our website.
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(a) Samples of the stick figures data

(b) SMVC with 0 constraints (c) SMVC with 100 constraints

Algorithm E4FC

SMVC 0 constraints 0.700
SMVC 100 constraints 1

MVGen 0.760
Alt. Clus. 0.585

Multi-View 1 0.735
Multi-View 2 0.781

(d) Multi-view algorithm
results

Figure 8.10: Evaluation of multi-view algorithms on the stick figures dataset

Although this data does not seem to be very complex, all approaches are chal-

lenged in identifying two meaningful views as shown by their clustering results

(cf. Figure 8.10(d)). Even the initial result of our SMVC approach is not convinc-

ing as it produces the clustering depicted in Figure 8.10(b), which is very similar

to those of the other approaches. The illustrated images correspond to the means

of each detected cluster. In contrast, if we provide SMVC with 100 must-link

constraints, it is able to perfectly identify the two clustering views as depicted in

Figure 8.10(c). These two views differentiate between the stick figures’ top po-

sition (view 1) and their leg position (view 2). Please note that we only choose

100 random constraints out of the 269,100 (= 2 · (3 · (300
2

)
)) possible constraints.

By exploiting this small amount of prior knowledge, our SMVC approach clearly

outperforms all competing methods.

Case study C To show that the findings of the stick figures data also apply to

more complex scenarios, we next analyze the clustering result of all multi-view

approaches on the CMUFace data. This data is interesting for multi-view cluster-

ing since it consists of images taken from persons showing varying characteristics

such as their facial expressions (neutral, happy, sad, angry), head positions (left,

right, straight, up), and eye states (open, sunglasses). As also done in [DB10b],

we randomly select 3 persons with all their images and applied PCA retaining at

least 90% of the data’s variance as a pre-processing.

The result of SMVC without prior knowledge for two views each with three

clusters is illustrated in Figure 8.11(a). The images correspond, again, to the

clusters’ means. By visual inspection, we can easily identify that the first view

partitions the images based on the 3 different persons. The second view, in con-

trast, cannot be explained easily.
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(a) SMVC result with 0 constraints (b) SMVC with 100 constraints

Algorithm E4FC
SMVC 0 constraints 0.691

SMVC 100 constraints 0.780
MVGen 0.720

Alt. Clus. 0.667
Multi-View 1 0.623
Multi-View 2 0.666

(c) Multi-view algorithm results

Figure 8.11: Evaluation of multi-view clustering algorithms on the faces data

If we provide 100 constraints in order to find one view for partitioning w.r.t.

the persons and another view to partition w.r.t. the head position (in total 2,592

(= 3 · (32
2

)
+4 · (24

2

)
) possible constraints), SMVC gets the result depicted in Figure

8.11(b). Here, we can easily identify the different head positions straight, side

(left and right), and up (note that we have four head positions but only search

for 3 clusters). Using the original labels provided by the dataset as ground truth,

i.e., the groupings based on the different persons and the grouping based on

different head positions, we obtain the clustering results of Figure 8.11(c). We

can see, that the unsupervised multi-view approaches all yield similar clustering

qualities. They were only able to identify the first view. For SMVC, we can

observe a noticeable quality improvement if we integrate prior knowledge into

the clustering process.

Overall, our experiments show that SMVC is able to detect the multi-view

clustering structure on a variety of datasets. It successfully solves the challenge

to learn the assignment of user constraints to views such that it is able to improve

its clustering results based on this prior knowledge.
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8.6 Conclusion

We have presented the semi-supervised clustering method SMVC, that detects

multiple clustering solutions in subspace projections and that exploits prior knowl-

edge by incorporating instance level constraints. Our method is based on a

sound Bayesian framework which models the data via multiple mixture distri-

butions. The model uses the instance level constraints to guide the clustering of

objects, and it automatically determines which views are responsible for which

constraints. For learning the clustering, we use the principle of variational infer-

ence. Our experimental study has shown the high potential of SMVC to detect

multiple clustering views and its capability to use the prior knowledge for im-

proving the clustering results.



We seldom think of what we have, but always of what we lack.
ARTHUR SCHOPENAHAUER

Part IV

Constraint-Based Alternative
Clustering in Subspace Projections
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9
Introduction to Alternative Clustering

9.1 Motivation and Challenges

While the previous Part III focused on the simultaneous generation of diverse

clusterings, this part will present approaches which iteratively detect new clus-

terings. Thereby, the knowledge of previous clusterings is used to steer the al-

gorithm towards a novel clustering that is highly deviating from the previous

clusterings but, at the same time, is of comparable quality. Since not only the

data, but also the information of previous clusterings is used, approaches of this

category are related to the research area of semi-supervised clustering, where

additional information is supposed to guide the clustering process.

If the number of views, i.e., clustering alternatives, is known in advance, al-

gorithms that search for all clusterings simultaneously have the advantage that

the information of all clusterings can help to refine the alternatives. As a con-

sequence all clusterings are influencing each other. In contrast, for algorithms

that iteratively generate new clusterings, clustering results are only influenced

by those alternatives that are detected before, but not vice versa. Especially for

the semi-supervised approach SMVC (Chapter 8), a simultaneous detection of all

alternatives is necessary in order to assign constraints to the correct view.

The advantage of algorithms that iteratively produce clustering alternatives

is that the number of views does not necessarily have to be known in advance.

Contrarily, the presented simultaneously working approaches require the number

of views as an input, which clearly limits their application since for most data the

number of hidden views is likely unknown and part of the knowledge discovery

process. Furthermore, for many scenarios a certain knowledge base where ex-

perts have labeled or categorized the data is already available. Instead of a good

algorithm for rediscovering this known information, the question whether alter-

native categorizations are possible is of greater interest. To answer this question

it is necessary to incorporate the given knowledge into the clustering process.

135
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In the following, we will discuss the main challenges regarding approaches

that iteratively generate alternative clusterings:

• Multiple alternatives: Since for some applications with complex data it is

possible that more than just two alternative clusterings are hidden, it should

not only be possible to generate more than one alternative for one given

clustering but also to incorporate more than one clustering as previous

knowledge into the clustering process.

• Global diversity: For each iteration, the newly generated clustering should

provide new insights into the data and, therefore, should deviate from all
previously found clusterings.

• Quality: For each iteration, the newly generated clustering should provide

valuable information and therefore should be of high clustering quality.

• Termination: Since for most data it is unknown how many alternative clus-

terings are hidden in the data, we need a certain indication factor identify-

ing whether further alternative clusterings of high quality can be expected

in the data.

• Error tolerance: Although previously detected clusterings are supposed to

guide and influence the clustering process, it is desirable that mistakes of

previous clusterings do not prevent the detection of valuable alternatives in

subsequent iterations.

• Semantic interpretability: The discovered alternatives should not represent

random object regroupings but should allow for a semantic interpretation

by domain experts.

The last criterion of semantic interpretability complements the demand for a

high quality of the clustering alternatives. Depending on the applied quality cri-

terion, the presented solutions may seem arbitrary and are lacking the possibility

for a semantic reasoning of experts.

We want to tackle all these challenges by a framework for alternative cluster-

ing that is based on instance level must-link constraints and searches for alter-

natives in subspace projections. Since pairwise instance level constraints can be

modeled as a graph structure, the framework is oriented towards graph cluster-

ing methods. Before we present further details of the framework, we will discuss

the existing related work in the area of iterative alternative clustering methods

w.r.t. the above proposed challenges.
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9.2 Related Work

In Chapter 2, the different approaches for alternative clustering have been in-

troduced in detail. In this section, we want to present a categorization of those

alternative clustering approaches that iteratively produce new clusterings based

on the solutions discovered before. We will not go into algorithmic details but in-

stead discuss the advantages and disadvantages w.r.t. the six challenges described

in the previous section.

Approaches working in the original data space: The first approaches pro-

posed in the literature focus on finding just one alternative to a given clustering

[BB06, CT02, GH03, GH04, GH05, DB10a, BBD10]. They usually try to realize

a trade-off between the clustering quality of the new clustering and its dissim-

ilarity to the already known clustering. As a naive extension towards multiple

alternatives, one could use the newly generated alternative as input for the same

algorithm and hope to find a second alternative. But since there is no mechanism

enforcing the dissimilarity to the originally provided clustering, it is very likely

that the second alternative is highly similar to this first clustering. Thus, these

approaches do not fulfill the first challenge of finding multiple alternative clus-

terings. A more promising extension of this trade-off based principle has been

presented in later publications [GVG05, VE10, DB13a], where the combined dis-

similarity of the new clustering to all previous clusterings is integrated into the

objective function.

The fundamental problem of all approaches that are restricted to search for

alternatives only in the original data space is that the number of meaningful al-

ternatives is very limited. If just this single data representation is considered,

the fixed proximity of the objects does not allow for a good diversity of the gen-

erated alternatives. Furthermore, these approaches have to rely on a trade-off

between clustering quality and dissimilarity of the alternatives, which implies

that the quality of the generated clusterings decreases with each iteration. Ap-

proaches of this first category are lacking a proper indication factor for stopping

the search for further alternatives. Depending on the trade-off parameters, the

only possible indication that no further alternatives are to be expected is an un-

satisfying quality of the last found alternative or the high similarity of the last

found alternative to one of the previous clusterings. Misled clusterings as input

do not pose a severe problem to these algorithms since producing a high quality

clustering that deviates from a bad one is not conflicting. Thus, the mentioned
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approaches of this category are error tolerant. The last criterion is satisfied as

well. Since all clusters are discovered in the original data space, experts should

be able to discover the semantic interpretation w.r.t. the data distribution in the

original space if the clustering quality is not degenerated.

In summary, approaches working only in the full-space, so far, only manage

to properly tackle three of the introduced six challenges (cf. Table 9.1).

Approaches working with orthogonal space transformations: Approaches of

this second category do not search just in the original data space but iteratively

transform and cluster the data [DQ08, DB13b, QD09, CFD07]. The transforma-

tion of the data, which is supposed to highlight novel structures, is learned based

on the clustering structure of a previous result. For the transformed data space

any clustering method can be applied to achieve an alternative clustering.

Although some of the methods are presented mainly for just one alternative

clustering [DQ08, QD09], they can naively be extended by proceeding each it-

eration based on the transformed data and the new clustering of the previous

iteration like [CFD07]. However, this way, previous clusterings are only taken

into account implicitly and it cannot be guaranteed that the next transformation

will not produce a data space similar to one that has already been clustered.

Only [DB13b] presents two approaches where multiple clusterings can directly

be taken into account for the data transformation.

While techniques of the first category explicitly model the dissimilarity of new

alternatives to the given clusterings in their objective function, approaches of the

second category only implicitly account for the dissimilarity through transforming

the data space ”orthogonally” to the given clustering structure. The dissimilarity

of the clustering in the transformed space to the previous clustering is, however,

not ensured. And especially for the approaches [DQ08, QD09, CFD07], a global

diversity of all clusterings is uncertain since only one clustering can be taken into

account for the transformation.

The quality of the alternative clusterings is solely realized by the applied clus-

tering technique in the transformed space. The transformation itself is focused

on generating a data space where a new clustering structure can be expected.

All algorithms lack a useful termination indicator. Similar to the first cate-

gory’s approaches, the generation of alternatives that are too similar to already

discovered solutions is a sign for termination. A bad quality of a discovered al-

ternative, however, is not a good indicator, since the next transformation might

produce a space revealing a high quality clustering. Except for one of the ap-
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Table 9.1: Overview of how well the approaches of two presented categories treat
the six challenges

proaches in [CFD07], which reduces the space’s dimensionality in each iteration,

all approaches need to be terminated by the user.

Since in [CFD07] each transformation is applied to the transformed space of

the previous iterations, a misleading transformation based on a bad clustering

cannot be reversed later. Thus, mistakes also affect later iterations for this ap-

proach and might prevent the discovery of valuable alternatives. Contrarily, for

both approaches of [DB13b], the transformation is applied to the original space

in each iteration and depends on the input clusterings. Although it has not been

examined, a bad input clustering might negatively influence the transformation

w.r.t. the resulting clustering.

Although the approaches try to avoid a complete distortion of the original

data by focusing on linear data transformations, the interpretability of the results

in the transformed spaces is often limited and becomes especially difficult after

multiple iterations of transformations.

Summarizing the above discussion, also approaches that search in space trans-

formations for new clustering alternatives do not account for at least three of the

proposed six challenges (cf. Table 9.1).

9.3 Idea of a Graph-Based Framework

In this part, we want to present a general framework that tackles all six challenges

to iteratively generate alternative clusterings. The new framework will not fall

into one of the categories discussed before, since it neither is restricted to the

original space, nor is it transforming the data space just based on the known

clusterings. As for the previously presented approaches OSCLU, ASCLU, MVGen,

and SMVC, the key idea for this framework is, again, to search for alternative

clusterings in subspace projections. For the reason of a better interpretability,
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we will, again, focus on axis-parallel subspaces instead of general linear space

transformations as do the approaches in [DQ08, DB13b, QD09, CFD07]. Unlike

the approaches [DQ08, DB13b, QD09, CFD07], we do not want to determine a

space transformation solely based on the given clusterings but will also take into

account the clustering structure in this new space. Furthermore, we will not rely

just on this new data representation for finding a new clustering but will actively

incorporate the previous clustering as constraints into the clustering process.

Problem Definition 9.1 Alternative Subspace Clustering Problem
Given a set of objects O = {o1, . . . , on} ⊆ R|Dim| with Dim being a set of dimensions
and a set of known clusterings Known = {C1, . . . , Cm}, find a subspace clustering
C ⊆ 2O × 2Dim that is dissimilar to all clusterings Ci ∈ Known and whose clusters
have a high clustering quality in their respective subspaces.

Technically, we realize this by integrating each given clustering Ci ∈ Known

through pairwise instance level constraints into the clustering. While the COALA

approach [BB06] focuses on cannot-link constraints, which define that two ob-

jects should not be grouped together again in the next clusterings, we will use

must-link, or in our case of soft constraints more precisely named as should-link
constraints, which define that two objects should be assigned to the same cluster:

Definition 9.1 Should-Link Constraints
Given a set of objects O and a set of known clusterings Known = {C1, . . . , Cm}, with
clusterings Ci = {C1, . . . , Cki} and clusters Ci ⊆ O, the set of should-link constraints
is defined as the set ShouldLinks ⊆ O ×O where

(oi, oj) ∈ ShouldLinks ⇐⇒ ∀C ∈ Known : ¬∃C ∈ C : oi ∈ C ∧ oj ∈ C

Only object pairs that have not yet been grouped together in one of the known

clusterings are assigned towards the set of should-link constraints. The idea is

then to find a new clustering of high quality that fulfills as many should-link

constraints as possible. Such a clustering will group many objects together that

have not yet been grouped together.

Problem Definition 9.2 Alternative Subspace Clustering based on Should-Links
Given a set of objects O = {o1, . . . , on} ⊆ R|Dim| with Dim being a set of dimen-
sions and a set of should-links ShouldLinks ⊆ O × O, find a subspace cluster-
ing C ⊆ 2O × 2Dim that fulfills as many should-link constraints as possible, i.e.,∣∣∣⋃(O,S)∈C (O ×O ∩ ShouldLinks)

∣∣∣ should be high, and whose clusters have a high
clustering quality in their respective subspaces.
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Such pairwise constraints for objects can be interpreted as graph structure. By

enriching this relational graph information with the vector information of the

original data, e.g., by vertex labels, we can formulate the alternative clustering

problem as graph clustering task, which allows to use approaches of the popular

and wide research area of graph mining.

Definition 9.2 Vertex Labeled Graph
Given a set of objects O = {o1, . . . , on} and a set of should-links ShouldLinks ⊆
O × O, with oi ∈ R|Dim| and Dim being a set of dimensions with |Dim| ∈ N>0,
then the according vertex labeled graph is defined as a triple G = (V,E, fV ) with a
set of n vertices V = {v1, . . . , vn}, a set of edges E ⊆ M := V × V , and a function
fV : V → R|Dim| such that:

(vi, vj) ∈ E ⇐⇒ (oi, oj) ∈ ShouldLinks ∧ ∀vi ∈ V : fV (vi) = oi

In order to find a good alternative clustering of the data O w.r.t. the given clus-

terings Known, the task would be to find a grouping of the graph’s vertices

which achieves a good quality regarding the vertices’ label structure and at the

same time achieves a good grouping regarding the graph structure. While for

the first requirement, we are focusing on traditional subspace clustering criteria,

the second requirement will be tackled by traditional graph clustering methods.

Although there is no universal definition of what constitutes a good clustering

of vertices within one graph, the unifying idea is that the vertices should be

densely connected within each group but only sparsely connected between dif-

ferent groups. Like the other approaches for alternative clustering, we will con-

centrate on the problem of finding partitioning clusterings in the following.

Problem Definition 9.3 Alternative Graph-Based Subspace Clustering
Given a vertex labeled graph G = (V,E, fV ) that is inferred from a set of objects
O = {o1, . . . , on} ⊆ R|Dim| (Dim being the set of dimensions) and a set of given
clusterings Known = {C1, . . . , Cm} via the according should-link constraints, then
find a clustering C ⊆ 2V × 2Dim such that

• C is a partitioning of V : ∀Ci, Cj ∈ C, Ci 	= Cj : Vi∩Vj = {} ∧ ⋃
Ci∈C Vi = V

• All clusters Ci ∈ C are of high quality w.r.t. their feature labels and their
respective subspaces in the feature space

• For all clusters Ci ∈ C the grouped vertices are densely connected to each other
but only weakly connected to the vertices of other clusters Cj ∈ C with Cj 	= Ci
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Figure 9.1: Workflow for alternative clustering with graph clustering techniques

Given the above Problem Definition 9.3, the plausible idea for the iterative

computation of alternative clusterings is to transform all available information

of existing clusterings into a vertex labeled graph structure and to apply a graph

clustering method that is able to partition the vertices such that the both remain-

ing requirements are fulfilled: the vertices of each partition are densely connected

as well as similar w.r.t. a subset of their feature values. After each iteration the

edges of the graph are updated w.r.t. the newly discovered clustering, such that

the graph becomes more sparse after each iteration.

The general workflow of this iterative framework is depicted in the example

of Fig. 9.1. Here, we start with just one given clustering which is transformed into

the relational information of the graph through should-link constraints. Since we

only know one clustering in advance, the graph is very densely connected and

provides good potential to find good alternative clusterings. On this graph, we

apply a graph clustering technique that is able to detect densely connected groups

of vertices which show similar feature values for a subset of attributes. Although

in this simple toy example the subspaces for the two discovered clusters of the

new clustering are identical, our framework is not restricted to find a global

relevant subspace for each clustering, which distinguishes it further from the

approaches [DQ08, DB13b, QD09, CFD07]. Given the new subspace clustering

result provided by the graph partitioning algorithm, we update the graph infor-
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Figure 9.2: Example of transforming multi-dimensional vertex labels into multi-
dimensional edge weights

mation accordingly and delete all edges (should-links) between objects that now

have been clustered together: {(o1, o4), (o1, o5), (o2, o4), (o2, o5), (o3, o6), (o3, o7)}.

Based on the resulting new graph, we can iteratively repeat this procedure un-

til either the graph is too sparse to guarantee a certain minimal density of the

groups or the graph has been decomposed into too many connected components

to find a desired number of clusters. In our example of Fig. 9.1, after the second

iteration, the pruning of the new clustering information already leads to a graph

without any edges. No edges indicate that all object pairs have already been

clustered together in one of the previous clusterings and we can, thus, not expect

to find a highly deviating grouping anymore. Of course, this just holds for our

toy example due to the small example size and we cannot expect such an ideal

termination indicator of a graph without any edges to be the usual case.

Comparing the two generated alternative clusterings and the a priori given

clustering, we see that they indeed cluster different sets of objects/vertices. In

their respective graphs the vertices of each cluster are densely connected, already

indicating the novel clustering structure. But not only the object groupings dif-

fer, also the relevant subspaces of the found alternative clusterings are different,

providing new insights into the data. While the first alternative’s cluster show a

good clustering quality for features d1 and d3, the graph structure in the second

iteration steered the graph clustering algorithm towards the relevant features d2
and d4 to find a clustering of high quality. Looking for an alternative clustering

structure in a fixed data space is not very promising. Instead different feature

subspaces can highlight different clustering solutions. Furthermore, the discov-

ered relevant features highlight the main characteristics for this clustering and

present a first indication for the semantic background of the object groupings.

Although the described framework and the workflow depicted in Fig. 9.1 just

mention graphs with vertex labels, algorithms partitioning graphs with multi-

dimensional edge weights can also be applied. In this case, the feature informa-

tion of the objects that are represented by vertices just have to be transformed
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into similarity vectors for the edges. A simple example for such a transformation

is depicted in Fig. 9.2, where for two vertices vi, vj and each feature dimen-

sion d, a similarity value is calculated as the difference of the maximal possi-

ble distance and the absolute difference of the two vertices in that dimension:

similarity(vi, vj, d) = distmax − |vi[d]− vj[d]| where we set distmax = 8.

We will now revisit the six main challenges for approaches that iteratively

generate alternative clusterings and discuss how our new graph-based framework

helps to tackle each of them:

• Multiple alternatives: Through the flexible graph encoding of should-link

constraints, our framework is able to integrate the knowledge of multiple

given clusterings simultaneously. Furthermore, the iterative framework al-

lows to generate multiple alternative clusterings, each based on the knowl-

edge of the previously discovered solutions.

• Global diversity: Since the clustered vertices should exhibit a high density

regarding the edges, which corresponds to a high degree of fulfillment of

the should-link constraints, the newly generated clustering deviates to all

previously found clusterings as it groups new objects together.

• Quality: The graph clustering method is a crucial part of this framework

as it accounts for the quality of the novel clusterings. Besides the connect-

edness of the clusters’ vertices, it also has to ensure their similarity in a

subspace of the feature space. The latter of the two requirements ensures a

high quality of the newly generated alternative clusterings.

• Termination: The sparsity of the generated graph, as well as the number of

connected components provide a good indication regarding the potential of

finding novel clustering structures.

• Error tolerance: Unlike other approaches, our framework does not itera-

tively transform the original data such that the original information is ir-

reversibly lost. Instead, each iteration will have the feature information of

the original data together with previous clusterings as side information. If

bad clusterings are used to prune the graph’s edges, i.e., remove should-

link constraints, this can even help steering the clustering towards good

solutions instead. If some of the removed edges belong to high-quality al-

ternatives, this will still not prevent their discovery since graph clustering

techniques usually do not enforce clustered vertices to be completely con-

nected (i.e., they do not solely find cliques). The absence of just a few of

the valuable edges will still allow to discover proper alternative clusterings.
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• Semantic interpretability: Since, unlike the other transformation based ap-

proaches, we work with axis-parallel subspaces, a semantic interpretation

of the results is much more intuitive. For each generated alternative, each

cluster is associated with a relevant subspace. This specific set of relevant

characteristics for each cluster eases a semantic reasoning.

Key to the presented framework is a properly working graph clustering al-

gorithm, that is able to discover densely connected groups and accounts for the

principles of subspace clustering for either multi-dimensional vertex labels or

multi-dimensional edge weights. The clustering quality as well as the global di-

versity of the generated alternative clusterings only depends on the performance

of the chosen graph clustering method (besides the data itself, of course). Only

if the clusters are densely connected and show a good similarity structure w.r.t.

a certain feature subset, we have found a valuable alternative. Therefore, the

choice of the graph clustering method is very crucial.

With the increasing popularity and availability of network data over the last

years, its analysis has gained much attention. The task of graph clustering, or

more precisely the task of community detection in networks [For10], is an estab-

lished mining technique and of interest for the analysis of, e.g., social networks,

sensor networks, gene interaction networks, or the web. As for traditional clus-

tering of vector data, the goal of graph clustering is to group similar vertices.

Among the multiple cluster definitions, the common objective is to group the

vertices into clusters such that many edges are present within each cluster but

relatively few edges are existent between different clusters.

Unfortunately, the literature provides only few graph clustering approaches

that are able to deal with multi-dimensional vertex labels or with multi-dimen-

sional edge weights. Consequentially, approaches that additionally tackle the

problems arising with the curse of dimensionality and noisy feature values are

very rare. Existing partitioning approaches in this research area do not satis-

fyingly account for the problems of locally relevant feature subspaces for each

cluster but instead deal only with global subspace selections or deal with the sub-

space determination only as post-processing step. In the following two chapters,

we will present two approaches that extend the most widely used graph cluster-

ing paradigms for the problem of subspace clustering. Chapter 10 will present

an according extension for spectral graph-clustering methods which is based on

vertex labels. In Chapter 11, we will extend the famous modularity measure that

is based on edge weights for the subspace clustering problem.
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THE goal of clustering graphs annotated with feature vectors is to detect groups

of vertices that are densely connected in the graph as well as similar with

respect to their feature values. While early approaches treated all dimensions of

the feature space as equally important, more advanced techniques consider the

varying relevance of dimensions for different groups.

In this chapter, we propose a novel clustering method for graphs with fea-

ture vectors based on the principle of spectral clustering. Following the idea of

subspace clustering, our method detects for each cluster an individual set of rel-

evant features. Since spectral clustering is based on the eigendecomposition of

the affinity matrix, which strongly depends on the choice of features, our method

simultaneously learns the grouping of vertices and the affinity matrix. To tackle

the fundamental challenge of comparing the clustering structures for different

feature subsets, we define an objective function that is unbiased regarding the

number of relevant features.

147
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10.1 Introduction

Besides vector data, which has been the focus in the previous parts, numerous ap-

plications nowadays produce or handle network data. Besides the mere structural

information, in many domains additional information for the objects is available

(e.g., feature vectors annotated to the vertices). In a social network, for example,

the relationships among people as well as the peoples’ individual characteristics

such as age or occupation might be given. Analyzing these enriched graphs re-

garding feature similarity and regarding the topological structure is challenging,

though, has shown to substantially enhance clustering results [GEG+08].

The particular difficulty of clustering graphs with multi-dimensional vertex

labels is that some of the features associated to the vertices might not sup-

port or even disagree with the clustering structure. It can be very futile to ac-

commodate, e.g., private music preferences instead of research preferences to

the relations shown in a co-authorship network. As known for traditional clus-

tering of vector data, the presence of such noisy or irrelevant features is able

to mask the underlying clustering structure. A solution to this problem is the

paradigm of subspace clustering, which identifies clusters only in the context

of their relevant features. Among the graph clustering methods that analyze

graphs with feature vectors, only few methods account for irrelevant features

[ZCY09, MCRE09, GFBS10, GBS12b]. Their experimental evaluation has shown

that not necessarily all features exhibit a (strong) correlation with the network

and that these non-correlating features can hinder a proper cluster identification.

We want to propose a novel clustering method that tackles the problem of

irrelevant attributes when clustering graphs with feature vectors by extending the

principle of spectral clustering. Spectral clustering is an established and widely

used clustering paradigm which exploits the ideas of (normalized) graph cuts

[vL07]. It is applicable to graph data as well as to vector data and it enjoys

great popularity. For spectral clustering, the k eigenvectors belonging to the k

smallest eigenvalues of, e.g., the graph’s normalized Laplacian matrix, are used

as cluster indicator vectors. In this setting the feature similarity is incorporated

into the clustering process only as a weighting for the graph’s edges. Bach and

Jordan [BJ06] already pointed out that the choice of the similarity metric strongly

influences the success of spectral clustering. They furthermore have shown that

the presence of irrelevant features has a high impact on the clustering quality and

propose a (semi-)supervised approach to learn a proper affinity matrix.



10.2. Related Work 149

In this chapter, we present a fully unsupervised approach for clustering graphs

with feature vectors. Our method simultaneously learns the grouping of vertices

as well as the affinity matrix used for spectral clustering. We follow the principle

of subspace clustering where for each cluster an individual set of features might

be relevant. Thus, our method excludes locally irrelevant features which hinder

the detection of good clustering results. Our contributions are:

• We present a solution for adapting spectral clustering to the problem of

subspace clustering for graphs with feature vectors; for each cluster an in-

dividual set of relevant features is detected.
• We propose a computation of our objective function that is unbiased w.r.t.

the number of relevant features.
• We develop the algorithm SSCG solving our objective.

10.2 Related Work

Our approach tackles the problem of clustering graph/network data in the mean-

ing of finding homogeneous sets of vertices in a single graph. This task is also

known as community detection or dense subgraph mining [Sch07].

Clustering of graphs with feature vectors. While traditional graph clus-

tering methods concentrate on the mere structural information, there is an in-

creasing interest in also considering complementary information such as vertex

features for the clustering process. Methods for this problem setting generally

assume that clusters based on the graph’s topology and the vertices’ features are

more meaningful than those based only on one characteristic. In [HZZL02] struc-

tural and feature information are combined into a single distance function, which

can result in clusters with neither a specific graph nor a specific feature pattern.

[GEG+08] tackles the problem from the features’ perspective and extends the k-

center problem by an internal connectedness constraint. The authors of [STM07]

use a normalized modularity definition where vertex features are incorporated as

edge weights. For minimizing this normalized modularity, a spectral clustering

approach is used. [ATMF12] introduces a parameter-free approach following the

idea of compression. All the above approaches are not able to detect similar-

ities among vertices based on feature subsets. Similar to traditional full-space

clustering for vector data, their results will become less meaningful in the pres-

ence of irrelevant features. For vector data, the paradigm of subspace clustering

[KKZ09, AWY+99] reduces the influence of irrelevant features.
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Varying relevance of dimensions. Only few approaches were presented

so far that attend to the clustering of feature labeled graphs from a subspace

clustering perspective. The approach of [ZCY09] defines a feature augmented

graph, where features are modeled as additional vertices linked to those orig-

inal vertices showing the specific value for this feature. For the final clusters,

objects are only pairwise similar and no particular relevant features can be de-

fined for each cluster. The principle of detecting an individual subset of rel-

evant dimensions for each cluster is, so far, only fulfilled by three approaches

[MCRE09, GFBS10, GBS12b]. While [MCRE09, GFBS10] exploit the notion of

quasi-cliques, which poses strong restrictions regarding the clusters’ feature range

and their diameter, the method of [GBS12b] follows a density based cluster no-

tion for subgraphs as well as for the feature space. The work of [MCRE09] gen-

erates a huge amount of overlapping clusters leading to high redundancy in the

clustering result. To control the level of redundancy, [GFBS10, GBS12b] propose

models for redundancy handling, introducing additional parameters the user has

to specify. Our approach based on spectral clustering determines a partitioning

of the vertices and, thus, does not suffer from redundancy.

Spectral clustering. Spectral clustering [vL07] is suitable for vector data

[YHJ09, BJ06] and graph data [STM07]. Even though the strong influence of

the affinity matrix on the clustering result has already been noted, so far, no

approach exists that considers the affinity matrix as part of the unsupervised

learning process. [BJ06] confirms the detrimental effect of irrelevant features

for spectral clustering. They provide a method for learning the affinity matrix

in a (semi-)supervised fashion. Besides assuming a given partition, [BJ06] de-

termines a global weighting of the features. As shown for vector data, it might

be the case that for different clusters different features prove to be irrelevant.

In such cases no feature subset will help to uncover all clusters, which makes

it desirable to find clusters with individual sets of relevant features. Our method

simultaneously learns the partition and the underlying affinity matrix, where one

important goal is to diminish the influence of irrelevant features for each partition

individually.

10.3 Model

In this section, we present our model to cluster feature labeled graphs in subspace

projections. The input for our method is a vertex labeled graph G = (V,E, l) with
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vertices V = {1, . . . , N}, edges E ⊆ V × V , and a labeling function l :V → RD,

where Dim = {1, . . . , D} is the set of dimensions. We assume normalized feature

vectors in the range [0, 1] per dimension.

10.3.1 Preliminaries

Among the multitude of different cut definitions, we focus on the frequently used

normalized cut because of its strength in avoiding unbalanced cuts [SM00]. Intu-

itively, the goal of clustering based on normalized cuts is to find a K-partitioning

of the nodes that minimizes the inter-cluster connectivity while at the same time

maximizing the intra-cluster connectivity. For this purpose, let PN,K be the set of

all possible (complete and disjoint) K-way partitionings of the set V . It can be

represented by the set of binary matrices:

PN,K :=

{
A ∈ {0, 1}N×K |

K∑
k=1

ak = 1N ∧ ∀k : ak 	= 0N

}

where ak is the k-th column of the binary matrix A, 1N is the vector containing

only entries equal to 1, and 0N contains only entries equal to 0. Each A ∈
PN,K represents one possible partitioning and each column vector ak stands for

one specific group of this partitioning. This definition automatically ensures the

orthogonality of the vectors ak. We denote by V (ak) the vertices belonging to

group k.

Let W = (wu,v)
N
u,v=1 be the adjacency matrix of a graph G. The cut-value

between two groups V (ak) and V (ak′) is defined as:

cutW(V (ak), V (ak′)) =
∑

u∈V (ak),v∈V (ak′ )

wu,v = aT
k ·W · ak′

The goal of the normalized cut problem is to find a partitioning A ∈ PN,K that

minimizes the following function:

nCutW(A) =
K∑
k=1

aT
k ·W · (1N − ak)

aT
k ·W · 1N

(10.1)

The numerator calculates the sum of weights over outgoing edges of cluster k,

while the denominator calculates the sum of weights over internal and outgoing

edges of cluster k. Thus, the normalized cut trades off low inter-cluster connec-

tivity and high intra-clustering connectivity.
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Since optimizing Equation 10.1 is intractable [SM00], spectral clustering aims

at solving a relaxed problem. By substituting the binary-valued cluster indicator

vectors ak with real-valued vectors, the above problem transforms into a tractable

eigenvector problem based on the normalized graph Laplacian L = I − D−1W.

Here, we use D = diag(d1, . . . , dk) with du =
∑N

v=1 wu,v. The K-way partitioning

of the nodes can finally be obtained by determining the first K eigenvectors of

L, considering each of the N rows as a K-dimensional vector, and by clustering

them based on, e.g., k-means. We refer to [vL07] for more details.

Integrating feature vectors using kernels. Since for the normalized cut and

spectral clustering the data is represented by the matrix W, it is easy to incorpo-

rate additional aspects into the process of clustering. For example, by applying

a kernel transformation k(x, y) on the feature vectors, we can enrich W by the

similarity of these features:

wu,v = k(x,y) · I((u, v) ∈ E) (10.2)

where x = l(u) and y = l(v) are the feature vectors of vertices u and v, and I is

the indicator function.

In the following, we focus on radial basis function kernels (RBF kernels)

where the kernel value k(x,y) just depends on the norm of x− y, i.e., k(x,y) =

k(‖x − y‖).1 Furthermore, in our scenario, it is natural to restrict the considera-

tion to kernels having a non-negative derivative, i.e., d
dx
k(x) ≥ 0 for x ≥ 0. Thus,

increasing the ’dissimilarity’ between two feature vectors, decreases the kernel

value. These properties hold for a variety of kernels such as, e.g., the Gaussian,

Rational quadratic, or Exponential kernel [Gen02].

10.3.2 Normalized Cut in Subspace Projections

As mentioned in the introduction, one cannot expect to find clusters in the full

dimensional space but in subspace projections of the data. For example, the

graph depicted in Figure 10.1 exhibits no group of vertices being similar w.r.t.

all three dimensions. Thus, instead of considering the (unweighted) Euclidean

norm between two feature vectors, we use the weighted Euclidean norm

‖x− y‖s :=
√
(x−y)Tdiag(s)(x−y) s.t. s ∈ {[0, 1]D |

D∑
i=1

si=1}

1To simplify the notations, we will overload the function symbol k. It can either be a binary
function or an unary one. The actual use will be clear from the context.
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Figure 10.1: Weight matrix for subspaces s1 and s2 belonging to partitioning
{{v1, v2, v3, v4}, {v5, v6, v7}}.

Based on the subspace vector s, we can weight the importance of individual di-

mensions. Noisy or uninteresting dimensions can be excluded by choosing si → 0.

Since we do not know a priori in which subspaces the clusters are located,

unlike most approaches, we cannot assume the matrix W to be a priori given or

static anymore. In our method, we simultaneously learn the matrix W as well as
the object grouping A.

Let s be a subspace vector, the matrix Ws = (ŵu,v)
N
u,v=1 is defined by

ŵu,v = k(‖l(u)− l(v)‖s) · I((u, v) ∈ E) (10.3)

The matrix Ws represents the graph when projected to a single subspace. Con-

sequently, it corresponds to a global dimensionality reduction. We, however,

are interested in finding locally relevant subspaces: each cluster is associated

with an individual subspace. In our toy example of Figure 10.1, for the group

{v1, v2, v3, v4} features 1 and 2 are relevant, while for group {v5, v6, v7} features 2

and 3 are interesting. Thus, instead of considering a single subspace vector s, we

are interested in finding a matrix S ∈ [0, 1]D×K , where each column represents a

(possibly different) subspace vector. Technically, it has to hold S ∈ SD,K where

SD,K := {S ∈ [0, 1]D×K | ∀k : ‖sk‖1 = 1}

and sk denotes the k-th column of S.

Using individual subspaces introduces a further challenge. The weights be-

tween the vertices do not solely depend on S but they depend on A, too. What is

the weight between two vertices u and v? In the case that both nodes belong to

the k-th cluster, u, v ∈ V (ak), it is clear that the weight is determined by (Wsk)u,v.

Though, how to handle the case where the nodes belong to different clusters? A

principled answer to this question can be given by exploiting the relation between

random walks and the normalized cut [MS01].
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Considering the graph as a Markov Chain, the problem of minimizing the

normalized cut can be interpreted as finding a partitioning such that a random

walk (using the stationary distribution of the Markov Chain) stays long within the

same cluster and seldom moves between clusters. More technically, in [MS01]

the following is shown: Let Pr[A → B|A] denote the probability of the random

walk to transition from vertex set A to vertex set B in a single step given that the
walk starts in a vertex from A. Then, the normalized cut is equal to

∑K
k=1 Pr[Ok →

(V \Ok)|Ok] where Ok denotes the vertices belonging to the k-th cluster.

The conditional probability in the equation above provides us with the answer

to our original question: Let be u ∈ V (ak) and v ∈ V (ak′), the weight between

vertex u and v is (Wsk)u,v, while the weight between v and u is (Wsk′ )v,u. One

has to condition on the subspace si where the random walk starts. The effects

can be nicely observed for the weight matrix of Figure 10.1 (for simplicity, we

used k(x) = 1/x in the toy example). Here the i-th row contains the weights

based on the subspace of the cluster the vertex vi belongs to. Thus, in the fourth

row, for example, the subspace s1 is used, while s2 is used in the fifth. As a

consequence, inter-cluster edges (e.g., (v4, v5) and (v4, v6)) might have different

weights in different rows. Intuitively, when measuring the ’goodness’ of cluster

k, we project the whole graph to the subspace sk and analyze how well cluster k

is separated. From the k-th cluster’s point of view it does not matter how well it

is separated in other subspaces sk′ .

Summarizing, given the subspace matrix S and the object groupings A, the

weight matrix is formalized as:

Definition 10.1 Subspace Dependent Weight Matrix
Let S ∈ SD,K be a matrix representing K subspace vectors and A ∈ PN,K a K-way
partitioning. The subspace dependent weight matrix is defined as

WS,A =
K∑
k=1

Wsk ◦
(
ak · 1T

N

)
where sk (ak) is the k-th column of S (A), Wsk as defined in Equation 10.3, and ◦
is the Hadamard product.

By using the term ak · 1T
N , we ensure that the whole graph is projected to the

subspace sk when considering the vertices V (ak). Note that in general the weight

matrix WS,A might not be symmetric even if the underlying graph is undirected

(see Figure 10.1). However, assuming an undirected graph, the matrix shows a
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certain kind of (a)symmetry: each subblock of WS,A induced by a single cluster

k, i.e., each block ak · aT
k , is symmetric. This follows since all objects of the

same cluster are projected to the same subspace. The asymmetry of WS,A is only

caused by edges connecting different clusters.

We are now ready to formalize our overall objective. Our goal is to find a

partitioning A and individual subspaces S such that the normalized cut based

on the matrix WS,A is minimized. Thus, we aim at simultaneously optimizing

multiple objectives: a) we maximize the intra-cluster connectivity and the intra-

cluster similarity of the feature vectors w.r.t. the individually selected subspaces,

b) we minimize the inter-cluster connectivity and inter-cluster similarity of the

feature vectors in the corresponding subspaces.

Definition 10.2 Minimum Normalized Subspace Cut
Given the graph G = (V,E, l) and the number of clusters K, the minimum normal-
ized subspace cut (MNSC) is the problem of finding S∗ ∈ SD,K , A∗ ∈ PN,K such that

(A∗,S∗) = argmin
A∈PN,K ,S∈SD,K

{NSCut(A,S)}

where NSCut(A,S) :=
K∑
k=1

aT
k ·WS,A · (1N − ak)

aT
k ·WS,A · 1N

10.3.3 Subspace Unbiased Cut Computation

When considering the unweighted Euclidean norm, the distance between objects

increases with increasing subspace dimensionality. Thus, comparing the cut-

value in, e.g., a 1-dimensional subspace with the cut-value in a 5-dimensional

subspace is not revealing at all. Since our goal, however, is to pick the best sub-

space among all possible subspaces, we have to realize a fair comparison of the

cut values. The cut values should not be biased to specific dimensionalities of the

subspaces.

While solutions to this problem have been proposed in the subspace clustering

community (e.g., [AKMS07a]), in our scenario two aspects are worth mention-

ing: (1) We consider the normalized cut. Computing the fraction of cut values

might appear to be unbiased; though, it is not. Consider, e.g., the case that the

second derivative of the kernel function is negative (e.g., the Gaussian and Expo-

nential kernel). In this case, the cut would be biased to low-dimensional clusters.

The reason is that the kernel values drop quicker for small norm values than for
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larger ones. Thus, informally, when adding a further dimension, the edges within

a cluster (high feature similarity) loose much of their kernel value while the edges

between clusters (dissimilar features) receive almost the same value. Thus, we

loose discrimination power between the inter-cluster and intra-cluster edges. (2)

We consider the weighted Euclidean norm where the weights have to sum up to

1. However, even in this case we observe an increase of the distance values with

increasing dimensionality. Thus, overall, also for our objective function we have

to realize an unbiased computation.

Our solution. A simple solution to avoid dimensionality bias would be to

introduce a regularization parameter that controls the sparsity/density of the

vectors sk. This frequently used principle of regularization, however, is rather ad

hoc and introduces additional regularization parameters which are often hard to

set. We do not want to introduce additional parameters. Instead, we extend the

results known from the area of subspace clustering [AKMS07a].

The basic idea of our principle is to adapt the computation of the norm such

that we obtain an unbiased estimation, i.e., the expected distance (and its vari-

ance) between the feature vectors should be constant and, thus, independent of

the selected subspace. For this purpose, we first formalize:

Definition 10.3 Unbiased parametric family
Given a parametric family F = {fs | s ∈ Θ} of functions fs : Rd × Rd → R and a
(multi-dimensional) probability density function τ over Rd. F is called unbiased if

∀s, s′ ∈ Θ : E [fs(X, Y )] = E [fs′(X, Y )] < ∞
∀s, s′ ∈ Θ : Var [fs(X, Y )] = Var [fs′(X, Y )] < ∞

where X and Y are i.i.d. with X ∼ τ, Y ∼ τ

The family F might, for example, be the set of functions computing the

weighted Euclidean norm, i.e., we would have fs(x,y) = ‖x − y‖s where Θ

consists of all valid subspace vectors. The probability density function τ corre-

sponds to the null model the feature vectors are generated from. Intuitively, it

corresponds to the distribution when expecting no clusters in the data. Based on

our setting, it corresponds to the uniform distribution over the hypercube [0, 1]D,

i.e., τ(x) = 1 if x ∈ [0, 1]D, 0 otherwise.

If a family F of functions is unbiased, we can do a fair comparison between

the function values of fs(x,y) and fs′(x,y). As mentioned above, the weighted

Euclidean norm is not unbiased. Though, we can show the following:
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Theorem 10.1 Let ΘD be the set of all possible D-dimensional subspace vectors and

��x− y ��s:=
‖x− y‖s − E [‖x− y‖s]√

Var [‖x− y‖s]
+ min

s′∈ΘD

E [‖x− y‖s′ ]√
Var [‖x− y‖s′ ]

The parametric family F={��x− y ��s| s ∈ ΘD} is unbiased.

Proof 10.1 Using the abbreviations μs:=E [‖x−y‖s] and σs:=
√

Var [‖x−y‖s],
then for all s ∈ ΘD it holds

• E [��x− y ��s] = 1
σs
(E [‖x− y‖s]− μs) + min

s′∈ΘD

μs′
σs′

= min
s′∈ΘD

μs′
σs′

= c1

• Var [��x− y ��s] = E [(��x− y ��s −c1)
2] = E

[
(‖x−y‖s−μs

σs
)2
]
=

1
σ2
s
· E [(‖x− y‖s − μs)

2] = 1
σ2
s
· Var [‖x− y‖s] = 1

σ2
s
· σ2

s = 1 = c2

Since c1 and c2 are independent from s ∈ ΘD, the parametric family F is unbiased.

Intuitively, �� . ��s is the z-score normalized version of ‖.‖s. Thus, instead of

measuring the absolute norm between two features, we measure the deviation to

the expected value. Since �� . ��s is guaranteed to be non-negative, it is possible

to replace the value of ‖.‖s in Equation 10.3 by the unbiased measure �� . ��s.
The question remains whether k(�� x − y ��s) still corresponds to a valid kernel

transformation [Gen02]. While in general the use of �� . ��s does not lead to a

valid Mercer kernel, we can show:

Theorem 10.2 Given the exponential kernel kθ(t) = e−
t
θ with scaling parameter

θ. When solving the MNSC problem, replacing ‖.‖s in Equation 10.3 by �� . ��s is
equivalent to using the (original!) norm ‖.‖s in combination with the exponential
kernel based on the scaling parameter θs := θ ·√Var [‖x− y‖s].
Proof 10.2 Let W̃s be the weight matrix according to Eq. 10.3 using the (unbiased
but potentially invalid) kernel values kθ(�� . ��s), and let W̊s be the weight matrix
using the (valid) kernel values kθs(‖.‖s). We show that using W̃s is equivalent to
using W̊s when solving the MNSC problem.

• We first reformulate the objective function: Since A is a partitioning, for all
k, k′ with k 	= k′ it holds aT

k · (ak′ · 1T
N

)
= 0T

N . Thus, the objective function in
Def. 10.2 can be written as

NSCut(A,S) =
K∑
k=1

aT
k ·
(∑K

k′=1 Wsk′ ◦
(
ak′ · 1T

N

)) · (1N − ak)

aT
k ·
(∑K

k′=1 Wsk′ ◦ (ak′ · 1T
N)
)
· 1N

=
K∑
k=1

aT
k · (Wsk ◦ (ak · 1T

N)) · (1N − ak)

aT
k · (Wsk ◦ (ak · 1T

N)) · 1N

=
K∑
k=1

aT
k ·Wsk · (1N − ak)

aT
k ·Wsk · 1N

Here, Wsk is used as a placeholder for either W̃sk or W̊sk .



158 Spectral Subspace Clustering for Graphs with Feature Vectors

• Using the abbreviations from the proof of Theorem 10.1, the kernel functions
can be reformulated as

kθ(�� .��s) = e−
‖.‖s−μs

σs
+c1

θ = e
μs
σs·θ−

c1
θ · e− ‖.‖s

σs·θ = cs · kθs(‖.‖s)

where cs := e
μs
σs·θ−

c1
θ is a constant depending on the subspace s. It follows:

W̃s = cs · W̊s

• Plugging this result into the reformulated objective function, we get:

∑
k

aTk · W̃sk · (1N − ak)

aTk · W̃sk · 1N

=
∑
k

aTk · csk · W̊sk · (1N − ak)

aTk · csk · W̊sk · 1N

=
∑
k

aTk · W̊sk · (1N − ak)

aTk · W̊sk · 1N

⇒ using W̃s or W̊s is equivalent.

Thus, using �� . ��s will still lead to a valid Mercer kernel. Furthermore, to

realize an unbiased computation of the cut, we can simply adapt the scaling

parameter of the exponential kernel. We actually do not have to compute �� . ��s;
particularly, the term E [‖x− y‖s] vanishes completely.

Overall, when using the exponential kernel, we can obtain a subspace un-

biased cut computation while still preserving the properties of a valid Mercer

kernel. Interestingly, the exponential kernel does not only show these nice the-

oretical properties, it also has outperformed all other kernels in our empirical

studies (Figure 10.2). Unlike many methods with artificial regularization param-

eters, our subspace unbiased cut computation does not introduce any additional

parameters.

10.3.4 Complexity Analysis

Statements like “the normalized cut problem is NP-complete” have to be regarded

carefully. Since usually these problems are formulated as optimization problems,

the classical definitions of complexity classes – which were designed for decision

problems – cannot be applied straightforward [Kan92]. Thus, we consider the

decision problem version of MNSC.

Definition 10.4 Decision problem version of MNSC
The decision problem version to the MNSC optimization problem is: Given a graph
G = (V,E, l), the number of groups K, and a constant C. Is there a normalized
subspace cut with value ≤ C?
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Theorem 10.3 The decision problem version of MNSC is NP-complete if the kernel
function can be evaluated in polynomial time w.r.t. G, K, and C.

Proof 10.3 a) MNSC is NP-hard: We provide a polynomial reduction of the ’usual’
normalized cut problem NCUT (which does not handle feature vectors) to our MNSC
problem, i.e., NCUT ≤P MNSC.

• Input mapping: The input G=(V,E) of NCUT is mapped to an input G′ =

(V ′, E ′, l′) of MNSC with V ′ = V , E ′ = E and l′(v) = 0 for all v ∈ V (i.e.,
each node has the same feature vector). This transformation can be done in
polynomial time.

• MNSC generates a valid NCUT solution: Let X denote the adjacency matrix
used for NCUT. Since all feature vectors in G′ are identical, it holds WS,A =

k(0) · X. The constant value k(0) does not affect the resulting optimal cut.
Thus, the solution of MNSC corresponds to the solution of NCUT. Since NCUT
is NP-complete [SM00], MNSC is NP-hard.

b) MNSC is in NP: We use the verifier-based definition of NP. Given a certificate
(A,S), we prove that its correctness, i.e., the equation NSCut(A,S) ≤ C, can be
verified in polynomial time. The following complexities hold:

• computing the norm: Tn := O(d)

• computing the kernel: Tk := O(p), with p is a polynomial

• computing WS,A (Def. 10.1): Tw := O(|E| · (Tn + Tk))

• computing NSCut (Def. 10.2): Tc := O(k · |E|)

For Tw and Tc we exploited the sparsity of the weight matrix and the fact that
each vertex belongs to a single cluster. Overall, computing NSCut(A,S) is in class
O(|E| · (d+ p+ k))∈ P. Since the verification is in P, MNSC is in NP.

c) combining a) and b) ⇒ MNSC is NP-complete.

Thus, even though our model uses an adaptive W depending on S and A, its

complexity class is identical to the one of the normalized cut where W is assumed

to be static. However, two aspects have to be noted: First, the input for our model

is more complex since we consider feature labeled graphs. Second, these results

apply for the decision problem version. It does not necessarily follow that the

optimization problems are equally complex, i.e., the degrees of approximability

might be different [Kan92]. This study is left for future work.
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10.4 Algorithm

As shown by Theorem 10.3, we cannot expect to find an efficient algorithm com-

puting an exact solution to the MNSC problem. Alternatively, we design an algo-

rithm computing an approximate solution based on the following observations:

(1) When keeping the matrix W fix, determining the optimal partitioning A is

independent of S and reduces to the traditional normalized cut problem. (2) As

shown in the proof of Theorem 10.2, the objective function can be written as

K∑
k=1

gak
(sk) with ga(s) :=

aT ·Ws · (1N − a)

aT ·Ws · 1N

Thus, if the matrix A is given, the subspaces sk can be optimized for each

cluster independently. This independence drastically reduces the hardness. Since

for given A and S, the matrix W is completely determined, these observations

naturally lead to an iterative algorithm where we optimize one variable while

keeping the others fix. Such a procedure of alternating optimization is well es-

tablished for many tasks. Our method works as follows:

1: initialize W(0)

2: for(t = 1, . . .)

3: compute normalized Laplacian L(t) = I−D−1W(t−1)

4: compute first k eigenvectors u1, . . . , uk of L(t)

5: determine A(t) by performing k-means clustering on U = [u1, . . . , uk] ∈ RN×k

6: determine S(t) = [s1, . . . , sk] by minimizing gai(si)

(can be done for each cluster i independently)

7: compute W(t) (cf. Def. 10.1) based on A(t) and S(t)

8: stop if cut-value has converged

We continue by briefly discussing each step of the method.

Initialization & update of W Since a priori no information about the rele-

vance of dimensions is given, we initialize W (line 1) using non-informative

weights, i.e., implicitly each entry of S is assumed to be 1/D. Since in this case

the subspaces for all clusters are identical, the dependency of W on A vanishes.

Consequently, we can apply Def. 10.1 even without the knowledge of an initial

partitioning A. For the recomputation of the weight matrix (line 7), the sub-

spaces per cluster might differ and we have to incorporate the actual partitioning

A. The complexity of this step is O(|E|·D) since we have to recompute the weight

for each edge, which is dominated by the computation of the norm (O(D)).
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Update of A As mentioned, the update of A reduces to a traditional normalized

cut problem. Note that the matrix W and, thus, the Laplacian L are sparse when

the underlying graph is sparse (which holds for most real graphs). Thus, we can

use efficient sparse eigenvalue solvers. Additionally, multiple techniques to speed

up the computation of spectral clustering for large matrices have been proposed

(e.g., [YHJ09]). All these techniques can be combined with our method.

While spectral clustering has been successfully applied in many applications,

it is fair to mention that this relaxation does not provide any theoretical bound

on the error of the cut value [vL07]. That is, in theory, there is no guarantee

that the determined cut value is close to the optimal solution. Consequently, the

new partitioning might not lower the previously obtained cut value. Thus, it

might be useful to add an additional termination criterion to the above algorithm

as, e.g., checking whether the best cut value obtained so far has been decreased

during the last m iterations or using an optimization scheme based on simulated

annealing.

Update of S Even though updating sk can be done for each cluster individually,

the function ga(s) is still hard to minimize since it is neither convex nor concave

in s. We analyzed multiple different strategies for finding local minima of this

function, such as gradient descent and different greedy approaches. Here, we

present only the final solution used for our approach. We selected this princi-

ple based on the following observations: a) it is very efficient to compute, b) it

has obtained good normalized subspace cut values in a variety of experiments,

c) the results allow an intuitive interpretation as required in many application

domains. The last aspect is realized as follows: While our general model allows

to use arbitrary subspace vectors, we follow the principle of most traditional sub-

space clustering approaches [KKZ09, AWY+99], where the relevant dimensions

show uniform importance (i.e., we consider vectors as (1/3, 0, 0, 1/3, 1/3)). Since

each dimension is either non-relevant or equally important for a cluster, an easy

interpretation is possible. Formally, we consider the set

L= {s ∈ [0, 1]D | (sd>0 ⇔ sd = |{i ∈ Dim|si > 0}|−1)}
Even though the set L is finite, its size grows exponentially in D. Since it is

intractable to enumerate and evaluate all of its members, we restrict to a mean-

ingful subset. To ensure the selection of the most expressive dimensions, we

traverse L starting with low-dimensional subspaces and successively expanding

the best subspace with further dimensions:
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1: sold = 0D, d = 0 // current subspace and dimensionality

2: L̂ = {s ∈ L | ∃=1x ∈ Dim : sx > 0} // 1-d subspaces

3: select subspace s∗ = argmins∈L̂{ga(s)}
4: snew = (sold · d+ s∗)/(d+ 1)

5: if ga(snew) < ga(sbest) then sbest = snew

6: set d = d+ 1 and L̂ = L̂\{s∗}
7: goto 3 until L̂ = ∅

This method ranks based on the set L̂, which represents the 1-dimensional sub-

spaces. In line 4, we increase the dimensionality of the subspace vector snew by

’adding’ the next best 1-dimensional subspace s∗. The dimensionality of snew in-

creases in each iteration; thus, guaranteeing termination. Since the ranking in

line 3 needs to be done only once, the function ga needs to be evaluated only

D times. Thus, the overall complexity for updating the subspace of a cluster is

O(D · tg) = O(D2 · |E|), where tg is the complexity to evaluate the function ga(.).

10.5 Experimental Analysis

Setup We compare SSCG with a variety of other partitioning clustering tech-

niques: OptiComb [STM07], CoClus [HZZL02], SA-Clustering [ZCY09], and PICS

[ATMF12] are methods using graph and feature information. We denote with

SpectGraph the traditional spectral clustering using only the structural informa-

tion. SpectVec1&2 is spectral clustering using only feature information. The first

one uses the complete similarity graph, the second one uses the kNN similarity

graph (cf. [vL07]). Proclus [AWY+99] is a subspace clustering technique for vec-

tor data. The number of clusters K and the scaling parameter θ are chosen to be

identical for each method. Since SA-Clustering can only handle categorical data,

for this method we discretize each numerical dimension into 10 bins. Accord-

ingly, for PICS, which handles only binary data, numerical data is discretized into

two bins. To ensure a fair evaluation, we only consider partitioning clustering

approaches for our evaluation. Since overlapping clustering approaches as, e.g.

[MCRE09, GFBS10] follow a completely different objective, a comparison with

the methods mentioned above would always be biased to one of the paradigms.

All experiments were conducted on 2.3 GHz Opteron CPUs with Java6 64-bit.

For case studies on real world data, we use graphs extracted from the DBLP

database, the arXiv database, the Internet Movie Database, the German soccer
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league, patent data, and gene interaction networks. We provide all datasets and

their descriptions on our website. Furthermore, we generate synthetic data based

on the planted partitions model [CK01]. Intuitively, given the desired number of

clusters and the vertices belonging to each cluster, we randomly add edges be-

tween and within clusters according to a specified density. To generate the feature

vectors, given the overall dimensionality, we randomly select a given number of

relevant dimensions for each cluster. For each cluster, an individual set of dimen-

sions is used. By default, we generate 20 dimensional data with 10 clusters, each

with 100 vertices and 10 relevant features. The average density is 0.4.

For synthetic data, clustering quality is measured via the F1 value [GFM+11].

For real world data, where no ground truth is given, we use internal evaluation

metrics: the normalized subspace cut (NSCut), the usual NCut considering only

graph information, and the within cluster sum of squares (total distance, TD)

considering only the feature information. To ensure comparability, the internal

measures are always computed w.r.t. the input graph (since some approaches

perform graph transformations).

Comparison on Synthetic Data We start by analyzing the effect of different

kernels (Fig. 10.2). Since different kernels lead to different cut values (for the

same cut), comparing the obtained cut values is unfair. Instead, we compare the

clustering quality. As shown, the exponential kernel (leftmost bars) leads to the

highest quality and simultaneously obtains the lowest runtime. Thus, besides

being theoretically sound (Sec. 10.3.3), the exponential kernel also empirically

performs best. It is therefore used for all further experiments.
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Figure 10.2: Effect of kernels

Even though our focus is on evaluating the clustering quality of SSCG, we

briefly analyze the methods’ efficiency. In Fig. 10.3, we increase the number of

vertices in the graph. Since most methods use eigenvalue-decomposition, the

slopes of their curves are in a similar range. Here, we determined the eigenvec-
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Figure 10.3: Runtime vs. database size
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Figure 10.4: Runtime vs. # dimensions

tors using QR-decomposition; as mentioned in Sec. 10.4, more efficient methods

can be used instead. Two algorithms differ from the common shape. PICS scales

slightly better than the other methods since it does not use eigenvalue decompo-

sition. It is, however, restricted to binary data. Proclus is very efficient but, as we

will see in Fig. 10.5, its clustering quality is very low.

In Fig. 10.4, we increase the dimensionality of the data. The only slight

increase of the methods’ runtimes indicates that the eigenvalue-decomposition

(which is independent of the data’s dimensionality) dominates the overall run-

time. Our optimization of the subspace is very efficient.

In Fig. 10.5, we show the methods’ clustering quality for an increasing data-

base size. Only SSCG is able to detect the clustering structure. The competing

approaches cannot handle data where some features are irrelevant since these

features obfuscate the clustering structure in the full-space.

In Fig. 10.6, we increase the number of irrelevant dimensions per cluster.

Starting with almost full-space clusters (16d), we successively lower the clusters’

dimensionality (down to 2d clusters). While SSCG shows almost perfect quality,

most of the other approaches decrease in their quality; the more irrelevant fea-

tures, the harder to detect the clusters. SpectGraph is not affected by irrelevant

features since it only uses the graph structure; though, the absolute quality is low.

Interestingly, although involving feature information, OptiComb obtains almost

the results of SpectGraph.

While the previous experiment has shown the effects when varying the ’qual-

ity’ of the feature vectors (i.e., increasing the fraction of irrelevant features),

we now analyze the methods’ behavior when the structural information is dis-

torted. In Fig. 10.7, we randomly relocate a certain number of edges. SSCG



10.5. Experimental Analysis 165

SSCG SpectGraph SpectVec1 SpectVec2 OptiComb
CoClus Proclus Pics SA-Clustering

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

cl
us

te
rin

g 
qu

al
ity

 (F
1)

 

database size 

Figure 10.5: Quality vs. database size
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Figure 10.6: Quality vs. feature noise

is only slightly affected. By additionally exploiting the features, the results are

almost stable. In contrast, the other graph based methods show a strong de-

crease. Obviously, the methods using only feature information are not affected

(for illustration, only SpectVec2 is plotted).
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Figure 10.7: Quality vs. edge noise

Overall, SSCG’s runtime is comparable to all other methods using spectral

clustering and it is the only method simultaneously achieving high clustering

qualities even in the presence of many irrelevant features.

Evaluation on Real World Data Since for real world data no ground truth

is given, our following case studies should show two aspects: 1) The clusters

found by SSCG are meaningful. We solve this issue by presenting interesting

results detected by our method and by analyzing internal characteristics of the

clustering result (e.g., the cut values). 2) While not being able to discuss the

results of all competitors, we can examine whether a similar result than that of

SSCG can already be determined by competing methods. This issue is solved by
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Table 10.1: Results on DBLP
NMI TD NCut NSCut

us
in

g
gr

ap
h

an
d

fe
at

ur
es SSCG 1.000 451.350 4.063 1.774

CoClus 0.097 456.554 20.789 20.750
OptiComb 0.083 461.724 21.190 22.177

SA-Clustering 0.194 444.440 13.860 13.810
PICS 0.103 460.138 19.234 19.943

on
ly

on
e

da
ta

ty
pe

SpectVec1 0.142 432.416 17.008 10.151
SpectVec2 0.135 436.255 17.195 9.806

Proclus 0.104 557.686 20.984 18.465
SpectGraph 0.395 454.823 4.355 5.848

Table 10.2: DFB data
NMI TD NCut NSCut

1.000 117.448 9.313 9.313
0.200 173.977 12.661 12.445
0.483 175.953 10.507 10.548
0.395 171.361 11.515 11.500
0.223 162.488 12.236 11.966
0.184 107.954 13.291 11.581
0.209 107.482 13.038 11.098
0.202 21.3495 13.576 12.365
0.576 171.646 10.639 10.565

computing the normalized mutual information ([VEB10], NMIjoint) between the

competitors’ results to the one of SSCG. A low NMI value indicates, that SSCG

is able to produce novel cluster insights, while not implying that the result of

the particular competitor is bad or meaningless. An extended analysis with a

pairwise comparison of all clustering results can be found on our website. To

handle missing values occurring in some of the datasets due to their sparsity, the

distance between features with a missing value is set to the maximal possible

distance. Since this principle cannot be applied for OptiComb and PICS, missing

entries are imputed here with zero values.

DBLP. In our first experiment, we analyze the DBLP data. Authors are rep-

resented by vertices and co-authorships by edges. The features consist of 20

keywords extracted from the titles of papers. The keywords are chosen to repre-

sent four different fields of research: Data-Mining, Computer Graphics, Artificial

Intelligence, and Databases. They include terms like: “classification”, “cluster”,

“graphic”, and “human”. We used the largest connected component (774 nodes

and 1757 edges). The number of clusters is set to 24.

An interesting cluster found by SSCG is a group of 18 scientists from Max

Planck Institute, TU Graz, and ETH Zurich, all established in the field of computer

vision and motion capturing (left ellipse in Figure 10.8). The relevant dimensions

are “motion”, and “3d”. Another interesting cluster is a set of 20 authors from

the field of machine learning and data mining (right ellipse in Figure 10.8). They

are clustered in the dimensions “cluster”, “pattern”, and “learning”.

Table 10.1 compares all methods based on internal measures. The methods

above the dashed line are the ones considering graph and feature information.

As expected, SSCG leads to the lowest value for the NSCut. Surprisingly, even

though SSCG does not minimize the (usual) NCut value, its result is better than

the one of SpectGraph (which tries to optimize the NCut). Among the meth-
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Figure 10.8: Visualization of the DBLP graph and coloring of SSCG’s clusters.
Two clusters are highlighted.

ods considering graph and feature information, SSCG obtains the second best TD

value, while clearly outperforming these methods w.r.t. the NCut value. As indi-

cated by the low NMI values of the competing methods, SSCG is able to reveal a

novel clustering structure.

German soccer league. For our next experiment, we extract the top 100

goal getters from the German soccer league. Each node represents a player. Two

players are connected if they played in the same soccer club (not necessarily at

the same time). As features, we choose “number of games”, “number of goals”,

“number of penalty kicks”, “average number of goals per game”, and “number of

soccer clubs”. The number of clusters is set to 14.

One interesting cluster is a subset of players from “Borussia Dortmund” being

tightly located in the dimensions “number of clubs” (values are spread within a

range of 40%) and “number of goals” (range 20%). All the other dimensions

are spread across a range of at least 75%. Similarly, a subset of players from “1.

FC Nuernberg” are clustered in the dimensions “number of goals” (range 8%),

“number of goals per game” (range 18%), and “number of penalty kicks” (range

12%). The remaining dimensions show a spread of at least 35%. None of the

competing methods was able to detect such a meaningful clustering structure.

The values of SSCG for the NSCut and the NCut are the overall best (Table

10.2). Among all approaches that use the graph structure, SSCG obtains the best

feature compactness (TD). Again, the NMI value indicates that the competing

methods detect different results than SSCG.
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Table 10.3: arXiv1 data
NMI TD NCut NSCut

us
in

g
gr

ap
h

an
d

fe
at

ur
es SSCG 1.000 6.027 1.617 1.420

CoClus 0.079 5.306 16.623 16.606
OptiComb 0.050 5.396 17.752 17.744

SA-Clustering 0.145 9.366 11.900 11.900
PICS 0.177 5.504 15.154 15.150

on
ly

on
e

da
ta

ty
pe

SpectVec1 0.080 5.080 16.733 16.700
SpectVec2 0.089 5.044 16.118 16.073

Proclus 0.067 4.081 16.962 16.955
SpectGraph 0.813 5.413 1.988 1.977

Table 10.4: arXiv2 data
NMI TD NCut NSCut

1.000 18.730 1.546 0.179
0.006 15.437 8.445 8.443

dnf dnf dnf dnf
dnf dnf dnf dnf

0.030 22.383 6.881 6.880
dnf dnf dnf dnf

0.020 15.408 7.537 7.505
0.008 17.346 8.228 8.056
0.145 15.493 2.358 2.340

arXiv. In the arXiv data, papers are represented by nodes, citations by edges,

and features denote how often a specific keyword appears in the abstract of the

paper. In our first experiment (arxiv1), we use the top 30 keywords and removed

nodes showing no keyword, resulting in 856 nodes and 2660 edges. The number

of clusters is set to 19.

SSCG found a cluster of 20 papers concerning quantum gravity, especially

Lorentzian and Euclidean Quantum Gravity. The relevant dimensions of this clus-

ter are: “space-time”, “geometry”, “gravity”, and “integral”. Another cluster con-

sists of 16 papers concerning String Theory or more general M-Theory. The pa-

pers are about different dimensional branes, dualities and supersymmetry. The

relevant dimensions are: “duality”, “point”, “dimension”, and “equation”. Here

SSCG is especially meaningful since clusters contain well-known (often cited)

and also highly topic relevant papers (same keywords) which makes them core

papers in their fields.

As shown in Table 10.3, SSCG, again, shows the best cut values, while main-

taining a reasonable distance to the competing approaches regarding TD. Con-

sidering the NMI values, most approaches find different clusters than SSCG. Only

SpectGraph achieves a similar result (NMI of 0.813).

We also extract a larger citation-graph having 11,989 nodes, 119,258 edges,

and 300 dimensions (arxiv2, Table 10.4). The results are in line with the observa-

tions made for the smaller dataset. While some approaches are not applicable on

this data due to their extreme memory usage (larger than 7GB), SSCG can exploit

the sparsity of the network which leads to a tractable eigenvalue-decomposition.

Genes. In our next experiment (Table 10.5), we analyze a gene interaction

network (2,900 nodes; 8,264 edges) where genes are additionally enriched by ex-

pression values (115 dim.). While all approaches could be applied on this data,

SSCG clearly outperforms them w.r.t. the NSCut value, and only SpectGraph was
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Table 10.5: Gene data
NMI TD NCut NSCut

us
in

g
gr

ap
h

an
d

fe
at

ur
es SSCG 1.000 47.939 6.702 5.539

CoClus 0.026 50.462 15.445 15.406
OptiComb 0.017 45.163 16.546 16.135
SA-Clust. 0.014 46.944 16.201 16.107

PICS 0.017 44.627 16.033 15.950

on
ly

on
e

da
ta

ty
pe

SpectVec1 0.014 47.458 16.995 16.936
SpectVec2 0.018 47.960 16.734 16.110

Proclus 0.013 20.744 17.214 16.631
SpectGraph 0.044 48.089 8.187 8.391

Table 10.6: IMDb data
NMI TD NCut NSCut

1.000 5.963 18.650 0.563
0.053 7.812 28.516 28.516
0.125 7.776 28.169 27.924
0.182 9.351 22.169 22.169
0.149 7.768 26.257 26.255
0.161 7.648 27.813 27.374
0.168 7.624 27.684 27.217
0.166 5.278 27.839 27.486
0.282 7.816 16.349 16.256

able to realize a similar NCut score. For this data, we observe the largest differ-

ences in the clustering results. A pairwise analysis of all clusterings reveals that

none of them can be considered similar, indicating that this dataset is particular

challenging to cluster.

Internet Movie Database. The next dataset is an extract of the IMDb. We use

movies with at least 200 rankings and an average ranking of at least 6.5 as nodes.

Two movies are connected if they share actors or if there exists a reference (e.g.,

spoofs or follow ups) to each other. As features, we choose all 21 movie genres.

To allow good interpretation, we focus on movies produced in USA, Canada, UK,

or Germany. We use the largest connected component (862 nodes and 4388

edges) and look for 30 clusters.

SSCG found a cluster of 19 movies including “Evil Dead II”, “Poltergeist”, and

“Predator” based on the relevant dimensions: “Horror”, “Mystery”, and “Thriller”.

Another interesting cluster contains 19 movies concerning Jimi Hendrix, Chuck

Berry, and U2. All movies are either biographies or movies about music. Conve-

niently, the relevant dimensions are: “Biography” and “Music”. Finally, there is a

cluster of 20 romantic comedies containing movies like “10 Items or Less”, “Driv-

ing Miss Daisy”, and “Feast of Love”. These three movies are connected through

the actor Morgan Freeman. “Comedy”, “Romance”, and “Drama” are the relevant

dimensions. As shown in Table 10.6, SSCG obtains the overall best NSCut value.

Considering all methods that are using the network structure and the feature

information, SSCG also achieves the best values for TD and NCut.

Patents. Finally, we want to show the applicability of SSCG on a large citation

network of patents with 100,000 nodes, 188,631 edges, and 5 dimensions. Most

of the methods were not applicable on this data. Particularly, from the methods

considering graph and feature information, only SSCG and PICS could be applied.

The clustering of SSCG showed the following properties (TD: 22534, NCut: 1.04,
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NSCut: 0.70), which clearly outperforms the result of PICS (TD: 24411, NCut:

10.18, NSCut: 9.94) w.r.t. all measures. This difference of the clustering results

is also indicated by a low NMI value of 0.060.

Overall, as shown by all experiments, SSCG is able to detect meaningful clus-

ters on a variety of real world datasets. The competing approaches generate

highly different results. The internal evaluation measures show that the clusters

of SSCG are very compact in the feature space (low TD) and also well separated

in the graph (low cut values).

10.6 Conclusion

In the proposed spectral clustering method for graphs with feature vectors, we

integrated the subspace clustering principle, where we tackle the problem of irrel-

evant features that possibly differ for each cluster. As a consequence, the affinity

matrix is not given a priori but depends on the partition as well as the determined

features and is, thus, part of the learning process. To tackle the fundamental

challenge of comparing the clustering structures for different feature subsets, we

defined an objective function that is unbiased w.r.t. the number of relevant fea-

tures. For efficiently approximating our objective, we developed the algorithm

SSCG based on spectral clustering. SSCG was applicable on large datasets and

was the only method achieving high clustering qualities in the presence of many

irrelevant features. For a variety of real-world datasets, SSCG was able to detect

meaningful clusters which are very compact in the feature space and, simultane-

ously, well separated in the graph.
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IN contrast to the previous chapter, where we considered graphs with multi-

dimensional vertex labels, in this chapter, we will focus on graphs with multi-

dimensional edge weights, i.e., the same vertices can share different types of rela-

tions. While traditional clustering approaches for graphs with multi-dimensional

edge information consider all dimensions as equally important, recent advances

indicate a varying relevance of dimensions for different clusters. Especially in the

presence of many different relations, it is crucial to be able to detect clusters of

vertices that are densely connected in only a subset of the relation types.

Modularity is one of the most sensitive and best known quality functions to

express the strength of communities. In this work, we extend this widely used

optimization criterion for multi-dimensional edge weights by following the prin-

ciples of subspace clustering. Our modularity extension can already be adopted

by some of the existing optimization approaches. To deal more effectively with

the extended search space due to the variance of the dimensions’ relevance, we

propose the efficient clustering algorithm SuMo for clustering networks based on

the subspace modularity.

171
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11.1 Introduction

For real-world applications, besides the mere relational information, additional

information for the graph data is available and is useful to consider for clustering

the vertices. In the previous chapter, we proposed a new partitioning approach

for graphs with additional vertex information. In this chapter, we will instead

consider graphs with additional information on the edges. It is important to note,

that for most cases it is not possible to transfer an edge labeled graph into a

vertex labeled one (Section 6.3 in [Bod14]), such that we cannot simply use the

technique presented in Chapter 10 to solve the problem at hand. For graphs with

annotated edge information, we can differentiate between two types of edge la-

bels. They can either represent characteristics, e.g., common interests for two

individuals in a social network, or edge labels can represent edge weights denot-

ing the strength of the relation between two vertices. In a social network, the

ties between two individuals can be of different strength, similarly, the collabora-

tion between two scientists in a co-authorship network might be weighted by the

number of co-authored papers. In the following, we will focus our considerations

to edge weights.

Acknowledging that the ignorance of available edge weights abandons a lot

of potentially useful information, various approaches have already been adjusted

to handle edge weights [New04a]. For similar reasons of maximally utilizing the

offered information, the community recently launched mining problems for net-

works with multiple types of edges or simply multi-dimensional edge weights. In

complex systems, the entities’ relations are usually multifaceted, with different

aspects potentially leading to different weightings. In a social network, rela-

tions between the individuals can be weighted according to their proximity, the

number of mutual interests, the intensity of communication, or the number of

shared friends. In a co-author network, the co-authorship can be differentiated

for different research areas, the relation can also be weighted based on mutual

citations, or whether the two individuals have been co-workers. In the simple co-

author network depicted in Fig. 11.1, each dimension corresponds to a certain

keyword and weights represent the number of co-authored papers of two authors

containing this keyword.

Often the number of potential edge weight dimensions is large and while us-

ing multiple information sources is meaningful in general, it also entails the risk

that some of the weight dimensions might not support or even disagree with the
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Figure 11.1: Example co-authorship network

underlying clustering structure. For example, for a co-author network such as in

Fig. 11.1, we do not expect to find clusters of authors that have common papers

containing all the keywords, especially if we have a large set of keywords. In-

stead, each author cluster will only have a certain set of relevant keywords, char-

acterizing the group’s main research field. The problem of a high proportion of

irrelevant, misleading information is well documented in the context of the curse

of dimensionality [BGRS99], especially for the task of clustering [HKK+10]. To

avoid the obfuscation of the clustering through irrelevant dimensions for tradi-

tional vector data, the paradigm of subspace clustering identifies clusters only

in the context of their relevant features. In our scenario with multi-dimensional

edge weights, the goal is to group vertices such that for each group a subset of

relevant dimensions exists for which the sum of internal edge weights is high and

edges between clusters are sparse and only lowly weighted.

In this work, we extend one of the most widely used quality functions for

graph clustering ([For10]) to handle multi-dimensional edge weights with lo-

cally irrelevant dimensions. The most popular and established techniques for

graph clustering are spectral clustering methods and techniques optimizing the

modularity. Since methods for detecting community structures usually assume

that the network naturally divides into subgroups, the number and size of clus-

ters is inherently determined by the network and is not known a priori. This

characterizes the superiority of modularity-based techniques over spectral clus-

tering, where the number of clusters has to be known in advance. We, therefore,

present an adaptation of the modularity optimization criterion to handle locally

irrelevant dimensions. We show how certain existing algorithms can already be

used to approximate the optimal clustering w.r.t. our adapted modularity. In ad-

dition, we present our algorithm SuMo which exploits a more informed search

strategy based on the eigendecomposition of the modularity gain matrix. We

evaluate our solution on synthetic and real-world data.



174 Modularity for Subspace Clustering in Multi-Dimensional Graphs

11.2 Related Work

For clustering graph data, various models and techniques have been developed.

An overview of these techniques is given by Fortunato [For10]. Many graph clus-

tering techniques were developed for simple graph data (without multiple di-

mensions). Established approaches include algorithms minimizing cuts (e.g., the

Kernighan-Lin algorithm [KL70]), spectral clustering algorithms (e.g., [ST96]),

and modularity-based approaches. Many of those approaches consider weighted

graphs. While the aforementioned approaches partition the graph, there also

exist approaches detecting overlapping dense subgraphs.

The modularity measure was first introduced for unweighted graphs by New-

man and Girvan [NG04]. They also proposed a first top-down algorithm based

on edge-centrality. In [New04a], the modularity measure was generalized to also

consider weighted networks. A multitude of algorithms for modularity optimiza-

tion have been proposed since, e.g., [New04b, CNM04, New06]. An efficient

two-step algorithm detecting good modularity maxima was proposed by Blondel

et al. [BGLL08]. Based on a first clustering determined by the first step, the next

step creates a new graph by replacing the clusters with vertices. The two steps are

iterated as long as the clustering changes, which results in a clustering hierarchy

where each level represents a certain resolution level.

Recently, several approaches for clustering graphs with several dimensions

were proposed. In some cases, such networks are addressed as multi-dimensional

[TWL12] networks. The approach of [CZ09] clusters each graph separately and

combines the clusterings in a post-processing step using an ensemble approach.

The basic idea of other approaches [DFVN12, TLD09, KRDI10, BCG11] is to

combine the information from the different graphs and to apply existing clus-

tering methods (for one-dimensional graphs) to the combined representation.

A modularity-based spectral algorithm was proposed by Tang et al. [TWL12].

Although some approaches enable a global weighting of each dimension, none

of these approaches considers clusters in subspaces of the dimensions. As the

approaches combine the information of the different graphs before the actual

clustering, it is not straight-forward to extend them to detect subspace clusters.

In [BGHS12, BGHS13], approaches for clustering graphs with multi-dimensional

edge attributes are proposed, which also consider subspaces. However, in this

case the edge attributes are not weights, but feature vectors of the relation. Thus,

the task is to find clusters with similar attribute values. This solution cannot be



11.3. Subspace Modularity 175

transferred to our problem of finding clusters with high edge weights. Similarly,

in the method by Qi et al. [QAH12], labels represent “edge content” (feature vec-

tors extracted from text). In this approach, the edges of the graph are clustered

by a partitioning approach based on connectedness and similarity of the edge

content, without considering subspaces. From these edge clusters, overlapping

communities of nodes are obtained. So far, there exists no approach tackling

the challenge of detecting clusters with varying locally irrelevant dimensions in

graphs with multi-dimensional edge weights.

11.3 Subspace Modularity

Modularity is the most popular quality function for evaluating the strength of

communities and partitions in graphs. In this section, we introduce a straightfor-

ward extension of the modularity measure to include the evaluation of subspace

projections. For the following discussions, we consider undirected graphs without

multi-edges, whose edges are associated with multi-dimensional weight vectors.

Definition 11.1 (Graph) A graph G is defined as a triple G = (V,E, fE) with a set
of n vertices V = {v1, . . . , vn}, a set of edges E ⊆ M := V × V , a set of dimensions
D and a function fE : M → R|D|

≥0 , |D| ∈ N>0 such that:

fE (E) ⊆ R|D|
≥0 ∧ ∀e ∈ M \ E : fE (e) = 0|D|

The function fE assigns a |D|-dimensional vector wi,j := fE(vi, vj) with non-

negative components to each adjacent vertex pair vi, vj and the zero-vector to

each non-adjacent vertex pair. For this edge weight vector the d-th component is

the edge weight in the d-th dimension (d ∈ D) and denoted by wd
i,j. W.l.o.g., we

assume that there is at least one non-zero edge weight in each dimension and

therefore at least one edge in the graph. (Dimensions without edges have no

clustering structure and can be excluded from further consideration.)

A clustering for a graph G is commonly defined as a partitioning of the graphs’

vertices. Since we consider clusters in subspace projections, we additionally as-

sign an individual set of dimensions to each cluster:

Definition 11.2 (Clustering) For a graph G = (V,E, fE), ∀K ∈ N, 1 ≤ K ≤ |V | :
(C,S) with C :=

(
C1, . . . , CK | C1, . . . , CK ⊆ V,

⋃K
k=1 Ck = V,

⋂K
k=1 Ck = {}

)
,

S := (S1, . . . , SK | S1, . . . , SK ⊆ D ∧ S1, . . . , SK 	= {}) is a clustering of G and
each Ck ∈ C is called a cluster.
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Since obviously not every partitioning is a good clustering, we need an objec-

tive function to assess the quality of a graph clustering. The most widely used

one is the modularity [For10], which we briefly discuss before extending it to

consider subspaces.

11.3.1 The Existing Modularity Measure.

While there exist multiple definitions of what constitutes a good clustering within

a graph, the unifying idea is that a good clustering should have a relatively high

density of edges inside each cluster and a low edge-density between different

clusters. The modularity helps to quantify low and high density by measuring the

degree to which the arrangement of edges identified by the clustering is statis-

tically surprising compared to a null model, i.e., an equivalent graph (same size

and vertex degrees) where edges are placed at random. For unweighted graphs,

the modularity corresponds, up to a normalization factor, to the number of intra-

cluster edges minus the expected number of intra-cluster edges in the null model.

The weighted version of the modularity measure for a clustering C is defined as

Q (C) := 1

w

∑
Ck∈C

∑
vi,vj∈Ck

[
wi,j − wi · wj

w

]
where wi :=

n∑
j=1

wi,j and w :=
n∑

i=1

wi. This

generalization of the modularity for weighted edges favors clusterings with a

high density of high-weighted edges inside each cluster and a low density of such

edges between clusters. Modularity values lie in (−1, 1), where positive values

indicate a possible presence of a clustering structure and the larger the values,

the more significant is the clustering.

11.3.2 The Subspace Modularity Measure.

In the following, we aim to further extend the modularity to multi-dimensional

edge weights and, more importantly, to enable the evaluation of clusters in the

context of only the relevant edge weight dimensions. Especially when the weight-

vector is high-dimensional, the probability of all weight-dimensions being rele-

vant for each cluster decreases. A high proportion of irrelevant or noisy dimen-

sions can obfuscate the clustering structure and an otherwise meaningful clus-

tering result will achieve misleadingly low quality values when evaluating the

modularity with respect to all dimensions. To avoid this misinterpretation of

clusterings due to dominating irrelevant dimensions, it is crucial to restrict the

evaluation only to relevant dimensions.
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A further important aspect is that for each cluster a different set of dimen-

sions can be relevant. For example, in our example from Fig. 11.1, each group

of authors works on a different topic and thus different keywords are relevant

for each cluster. Intuitively, a dimension should be relevant for a cluster if and

only if its edge weights in this dimension are larger than expected. In Fig. 11.1,

we intuitively have three different clusters: cluster C1 = {a, b, c, d} with the rel-

evant dimensions 1 and 2, C2 = {e, f, g} in dimension 3, and C3 = {h, i, j, k} in

dimension 1. However, if we simply summed up the weights of each edge to a

single edge weight in order to use the existing modularity measure, the clusters

C2 and C3 would be merged into a single cluster, even though this cluster would

not be well connected in any of the single dimensions. In contrast, with our

subspace modularity measure, we are able to detect all three clusters and their

corresponding subspaces.

To incorporate multi-dimensional edge weights into the modularity, we in-

tuitively simply sum up the modularity contributions of every edge-dimension in

the subspace of the corresponding cluster. To ensure comparability of the weights

in different dimensions, we assume the weights in each dimension to be normal-

ized to [0, 1].

Definition 11.3 (Subspace Modularity) Let G be a graph and C a clustering of
G. The subspace modularity QD is defined as follows:

QD (C,S, G) =
1

w

∑
Ck∈C

∑
d∈Sk

∑
vi,vj∈Ck

[
wd

i,j −
wi · wj

|D|w︸ ︷︷ ︸
=:μd

i,j

]

where wi :=
|D|∑
d=1

n∑
j=1

wd
i,j and w :=

n∑
i=1

wi.

For each Cluster Ck, we compare all edge weights wd
i,j in each relevant dimen-

sion d∈Sk against their expected weight μd
i,j. At this point, one could argue that

the expected weight should be determined based on each dimension individually,

i.e., μd
i,j =wd

i · wd
j /

n∑
i=1

wd
i . Although this would be a formally correct extension of

the modularity, given the subspace clustering perspective, we run into the follow-

ing problem. Since each cluster can have its individual set of relevant dimensions,

some dimensions might be important for more clusters than others. This results

in different weight distributions for each dimension and prevents a comparability

of the modularity contributions in different dimensions. If, e.g., for one edge we

have wd1
i,j = wd2

i,j, w
d1
i = wd2

i , and wd1
j = wd2

j , then, in the world of subspace clus-
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Figure 11.2: Graph with two clusters

tering, we expect that both dimensions, d1 and d2, are equally important for this

cluster, independent of their weights in other clusters. For example, the graph

in Fig. 11.2 consists of the two clusters C1 = {a, b, c} and C2 = {d, e, f}, both

having the relevant dimensions {1, 2}. As the edges in C1 have equal values in

both dimensions, we argue that they also should have the same influence in both

dimensions. However, if we determined μd
i,j based on each dimension individu-

ally, the influence in d1 would be lower than in d2, as the sum of all edge weights

in d1 is higher. Therefore, in our definition the expected edge weight is the same

for every dimension, and depends on the sum of the edge weights for all dimen-

sions. It is important to remember, that the edges’ weights in each dimension

are normalized to [0, 1]. The expected edge weight is normalized by the number

of dimensions and the overall weight w. Through the overall normalization fac-

tor 1
w

, we guarantee that the subspace modularity only reaches values in (−1, 1).

This allows a comparison among clusterings for different graphs or with different

cluster counts.

With this adaption of the modularity measure, it is possible to evaluate a set

of partitions and their associated subspaces for a graph with multi-dimensional

edge weights. The question at hand is how to determine the optimal clustering

(C∗,S∗), i.e., the clustering for which the subspace modularity QD (C∗,S∗, G) is

maximal. We call it the Maximum Subspace Modularity (MSM) problem.

Definition 11.4 (Maximum Subspace Modularity) Given a graph G = (V,E, fE)

the maximum subspace modularity (MSM) is the problem of finding a clustering
(C∗,S∗) out such that

(C∗,S∗) = argmax
(C,S)∈C(G)

{QD (C,S)}

where C(G) is the set of all possible clusterings of G according to Definition 11.2.

Since already the decision problem version of the traditional unweighted

modularity is known to be NP-complete [BDG+06], we cannot expect a gener-

alization of this problem to be optimized efficiently.
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11.3.3 Subspace Modularity Complexity Analysis.

For analyzing the complexity of optimizing the subspace modularity measure of

Definition 11.3, we first formulate the according decision problem version of our

optimization problem MSM. By showing that the decision problem version of the

classical modularity for weighted graphs can be reduced to our decision problem

in polynomial time, we can show that our problem is NP-hard. The decision

problem version to the MSM optimization problem is formalized by:

Definition 11.5 (Decision problem for MSM) Given a graph G = (V,E, fE) and
a constant c, is there a clustering (C,S) with QD (C,S) ≥ c ?

Theorem 11.1 The decision problem version of MSM is NP-complete.

Proof 11.1 a) The input for the maximal modularity problem for weighted graphs
(MWM) is a graph G = (V,E, fE) with one-dimensional edge weights fE(E) ∈ R.
Since we only have 1-dimensional weights and each subspace must have a cardinality
of ≥ 1, the subspace modularity of Definition 11.3 corresponds to the traditional
weighted modularity. Thus, since MWM is NP-complete [BDG+06], MSM is NP-
hard.
b) MSM is in NP: For a given clustering (C,S), we can check in polynomial time
O (|V |3 · |D|) whether QD (C,S) ≥ c. Since the verification is in P, MSM is in NP.
c) combining a) and b) ⇒ MSM is NP-complete.

11.4 Algorithm

Although our MSM problem has the same complexity class as the original weight-

ed modularity problem, it seems to be more complex since the search space is

enlarged exponentially by considering possible subspaces. A closer look, how-

ever, reveals, that, in order to maximize the subspace modularity, a subspace Sk

for a cluster Ck should contain all and only those dimensions whose modularity

contributions are positive. For a given clustering C, the optimal subspaces can

directly be derived for each cluster Ck ∈ C by:

S(Ck) = {d∈D |
∑

vi,vj∈Ck

(wd
i,j −

wi · wj

|D|w )> 0} (11.1)

Accordingly, we will denote by S(C) the tuple of subspaces containing for

each cluster Ci ∈ C a subspace Si := S(Ci) ∈ S(C). Since the subspaces can now
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directly be inferred from a given partitioning of the vertices, the search space

reduces to that of the original modularity problem, namely finding the optimal

partitioning. Numerous optimization approaches for the modularity have been

proposed over the years. Spectral methods (e.g., [New06]) work on a “modular-

ity” matrix based on the adjacency matrix of the graph. These approaches can

not easily be adapted for our problem as a single adjacency matrix does not well

represent a multi-dimensional graph. An aggregation of all matrices into a single

one would hinder the detection of clusters in subspaces. However, several greedy

approaches for modularity can be adapted to our problem. Often the idea is to

generate a hierarchical sequence of clusterings, either agglomerative or divisive,

and to stop if there is no further modularity gain or to choose the clustering with

maximal modularity score out of the complete sequence in the end. In each it-

eration, the decision for merging or splitting clusters is based on the modularity

gain of the different alternatives. Other approaches (e.g., [BGLL08]) iteratively

move single vertices to other clusters such that the modularity is increased. Such

local reassignments are also part of approaches based on simulated annealing or

extremal optimization.

While these approaches prove to be very effective in the case of just a single

weight per edge, the subspace determination for multi-dimensional edge weights

complicates their direct adaption for our problem. The difficulty here is that for

the initially very small clusters (in case of an agglomerative approach), or the

initially very large clusters (in case of an divisive approach), or simply just the

bad clusters of initial random partitionings, the modularity contribution of all di-

mensions is usually negative. According to our straight-forward subspace deter-

mination in Equation 11.1 all subspaces would be empty, resulting in a subspace

modularity score of zero. As a consequence, there is no basis for decision-making

to merge or split clusters in the first iterations, which are then performed com-

pletely at random. Since in this preliminary state of the hierarchical clustering

there is no meaningful basis for choosing a set of relevant dimensions, the de-

cision for the hierarchical sequence initially has to be guided by all dimensions.

With continuing iterations, the relevant dimensions become more apparent, and

should have a stronger influence on the clustering sequence. For utilizing hier-

archical clustering approaches to optimize the subspace modularity, we need an

objective function initially incorporating all dimensions, increasing the influence

of the relevant dimensions with progressing iterations, and thus converging to

the actual subspace modularity function:
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Definition 11.6 (α-Modularity) Let G be a graph, C be a clustering of G, t ∈ N≥0

the number of iterations, and α : N≥0 → [0, 1]. The α-modularity Qα
D is defined as

the following clustering objective function:

Qα
D (C, G, t) =

1

w

∑
C∈C

∑
vi,vj∈C

∑
d∈S(C)

α(t)·
(
wd

i,j−
wi ·wj

|D|w
)

+
1

w

∑
C∈C

∑
vi,vj∈C

∑
d/∈S(C)

(1− α(t))·
(
wd

i,j−
wi · wj

|D|w
)

Basically, this α-Modularity introduces a weighting of relevant and irrelevant

dimensions. Since the initial influence of the irrelevant dimensions should fastly

be diminished such that the objective function fastly converges to the original

subspace modularity, the exponential function is perfectly suited for weighting:

α (t) := 1− 0.5 · e−p·t· 1
|V | , p ∈ R≥0

This α-function ensures that we start with α(t = 0) = 0.5 in the first iteration

and then converge relatively fast to 1 (α(t → ∞) = 1). Since the length of the

hierarchical clustering sequence and, thus, the number of iterations after which

we yield meaningful subspaces strongly depends on the size of the underlying

graph, α(t) also depends on the number of vertices |V |. The constant p influences

how fast α(t) converges against 1 and is called the convergence speed factor of α.

In experimental results the value of p = 1.5 has shown good results and is used

as default value for our evaluation.

With the help of the α-Modularity of Definition 11.6, we can simply apply the

greedy clustering procedures based on iterative reassignments of vertices that are

already available in the literature. In the following, we exemplarily describe how

we can adapt the approach from [BGLL08] and a simple hierarchical bottom-up

approach. Algorithm 11.1 describes the general greedy workflow adapted from

[BGLL08]. We iteratively perform a hierarchical clustering step based on the α-

Modularity (line 3), until the clustering quality measured as subspace modularity

does not improve any more. In this case, we collapse the graph (line 7), according

to the second phase described in [BGLL08], which constructs a new graph, where

nodes represent the clusters of Ct and edges and weights are adapted from Gt.

Based on this new graph, we continue the iterative clustering update until neither

the clustering nor the graph changes anymore. The function for the clustering-

update(Ct, Gt, Qα
D, t) can be any greedy iterative clustering method guided by the

α-Modularity objective function. In [BGLL08], this step is designed as a greedy
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Algorithm 11.1: Framework for hierarchical clustering
input : A graph G
output: A partitioning C of the graph G

1 t = 0; Gt = G; Ct = singleton clusters of V
2 while true do
3 Ct+1 = clustering-update(Ct, Gt, Qα

D, t)
4 if QD(Ct+1,S(Ct+1), G) ≥ QD(Ct,S(Ct), G) ∧ Ct+1 	= Ct then Gt+1 = Gt

5 else
6 Ct+1 = Ct

7 Gt+1 = collapse(Gt, Ct) /* see [BGLL08] */
8 if Gt == Gt+1 then break

9 t = t+ 1

Algorithm 11.2: clustering-update(Ct, Gt, Qα
D, t) as local reassignment of

vertices according to [BGLL08]
input : A clustering C, a graph G, an objective function Q,

an iteration counter t
output: An updated partitioning C∗ of G

1 C∗ = C
2 forall the v ∈ V do
3 Find cluster C incident to v with highest quality gain if v is

transferred to C
4 if Q(C∗

Ck←vi , G, t)≥Q(C∗, G, t) then C∗=C∗
Ck←vi

local approach (Algorithm 11.2) where one vertex v is reassigned to a neighbor-

ing cluster C if this leads to a positive α-Modularity gain out of all choices for C.

A corresponding adaption of a traditional hierarchical bottom-up approach

is depicted in Algorithm 11.3. Here, we iteratively combine the cluster pair

(Ci, Cj) ∈ C × C, whose union yields the highest positive α-Modularity gain.

11.4.1 The SuMo Algorithm

Although the presented simple greedy heuristics are already able to find a good

clustering solution with respect to the subspace modularity, we want to introduce

a new clustering − update function SuMo, incorporating in each step all of the

available information. We will see in the experimental section that SuMo is more

robust against noise dimensions than Algorithms 11.2 and 11.3, which is a neces-
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Algorithm 11.3: clustering-update(Ct, Gt, Qα
D, t) as pairwise merge of clus-

ters
input : A clustering C, a graph G, an objective function Q,

an iteration counter t
output: An updated partitioning C∗ of G

1 C∗ = C
2 while true do
3 choose arg max(Ci,Cj)∈C∗×C∗Q(C∗

Ci←Cj
, G, t)

4 if Q(C∗
Ci←Cj

, G, t) ≥ Q(C∗, G, t) then C∗ = C∗
Ci←Cj

5 else break

sary property for the task of subspace clustering. While Algorithm 11.2 just tries

to move any vertex v to an incident cluster, SuMo tries to find the “most promis-

ing” vertex-cluster pair in each step. Instead of just deciding based on the quality

gain of moving one vertex v into a cluster C, the key idea for SuMo is to addition-

ally consider the tendency of neighboring vertices to follow into cluster C in later

iterations. Based on the definition of the modularity, the contribution of a vertex

to the modularity of a clustering strongly depends on the cluster membership of

its incident vertices. Thus, moving a vertex vi whose majority of neighbors will

later join its cluster choice might be preferable compared to a node vj whose

neighbors will keep their current cluster assignments, even if the actual quality

gain by just moving vj is larger than that of moving vi. Of course, this preference

is also influenced by the quality gain expected from the neighbors of vi.

First, we consider for each cluster Ck and each vertex vi the quality gain of

moving vi into Ck and for each neighbor vj of vi the additional quality of moving

vj as well. We represent this as a quality gain matrix:

Definition 11.7 (Quality Gain Matrix of a Cluster) Given a graph G, a cluster-
ing C of G, a cluster Ck ∈ C, and a quality function Q. The quality gain matrix Gk

is then defined as:

Gk,i,j=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q(CCk←{vi})−Q(C) if i = j

1
md

·[Q(CCk←{vi,vj})−Q(CCk←{vi})
]

if vj∈N(vi)

0 else

where N(vi)= {vj ∈ V |∃ {vi, vj} ∈ E} is the neighborhood of vi, CCk←M represents
the clustering C, where all vertices M ⊆ V are moved to cluster Ck , and md =

max
u∈∪vi∈Ck

N(vi)\Ck

deg(u) is the maximal degree of neighboring vertices of Ck.
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A row Gk,i of the quality gain matrix represents the quality gains of mov-

ing vi in combination with its neighbors N(vi). Since we are actually moving

just the vertex vi, the quality gains of its neighbors are only of secondary im-

portance, which requires the weighting by 1
md

. Otherwise, the beneficial im-

pression of a vertex could mainly originate from its neighbors. At this point

one could simply choose the vertex vi and the cluster Ck for which Ck, vi =

arg maxCk∈C,vi∈V
(∑

vj∈V Gk,i,j

)
. This would be a valid choice given two condi-

tions: a) all of vi’s neighbors actually follow into cluster Ck and b) it is beneficial

for cluster Ck to absorb all of vi’s neighbors. Since, intuitively, these two con-

ditions do not necessarily hold, our objective function needs to incorporate two

different perspectives: the preferences of each vertex to join the different clusters

and the preferences of each cluster to absorb the different vertices.

For the perspective of the vertices, the preference of a vertex vi for a clus-

ter Ck ∈ C can simply be represented by the relative quality gain Gk,i,i∑
Cl∈C Gl,i,i

. To

capture the desirability for cluster Ck to include a vertex vi, we define a prefer-

ence vector tk. Intuitively the preference for a vertex vi depends on the quality

improvement gained by including vi (Gk,i,i), on potential further improvements

achieved by including its neighbors vj (Gk,i,j), and on the cluster’s preference

of including these neighbors (tk,j). Expressed formally, we have the following

eigenvector problem:

λ · tk = Gk · tk

For a better comparability of the preference values for different vertices, we want

to ensure that each entry of tk has the same sign. By slightly adapting the quality

gain matrix Gk to a positive matrix, we can ensure that there exists a positive

eigenvector corresponding to the largest eigenvalue (Perron-Frobenius theorem

[Mey00]). Therefore, we adapt Gk as follows:

G∗
k,i,j :=

⎧⎨⎩Gk,i,j + |m| if vj ∈ N(vi)∪ {vi}
ε else

where m = mink,i,j {Gk,i,j, 0} and ε ∈ R+, ε � 1 is an arbitrarily small positive

number. The eigenvector t∗k corresponding to the largest eigenvalue of G∗
k,i,j rep-

resents the vertices’ desirability for one cluster Ck. To enable a comparability

between the preference vectors of different clusters, we normalize each vector t∗k
such that its largest entry is 1. We combine the clusters’ and the objects’ prefer-

ences into one “probability” vector pk ∈ [0, 1]|V | for each cluster:
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Algorithm 11.4: clustering-update(Ct, Gt, Qα
D, t) as local reassignment of

vertices according to SuMo
input : A clustering C, a graph G, an objective function Q,

an iteration counter t
output: An updated partitioning C∗ of G

1 C∗ = C
2 forall the Ck ∈ C do Compute tk, pk, jk
3 while P = {(vi, Ck) | vi not moved yet, vi /∈ Ck} 	= ∅ do
4 Choose pair (vi, Ck) ∈ P for which jk,i is maximal
5 if Q(C∗

Ck←vi , G, t) ≥ Q(C∗, G, t) then
6 C∗ = C∗

Ck←vi

7 pk,i = 1 and pl,i = 0 ∀l 	= k, recompute jk’s

8 else break

pk =

(
G∗

k,i,i · t∗k,i∑
Cl∈C G∗

l,i,i · t∗l,i

)
i=1...|V |

In pk, we have an entry for each vertex vi representing the tendency that vi

will actually move to cluster Ck. This tendency is determined as the preference

of cluster Ck for this object, weighted by the actual quality gained by vi, and

normalized by the overall tendency of vi for all clusters. While a decision for the

best cluster-vertex pair solely based on the gain matrix Gk was a too optimistic

simplification of the problem at hand, a weighting with the tendency vector pk

allows a more realistic assessment. An entry jk,i of our indicator vector jk for

cluster Ck describes the expected quality gain if the vertex vi is transferred to

cluster Ck.

jk = Gk · pk

Since the vertex-cluster pair with the highest entry jk,i is expected to be most

beneficial with respect to later reassignments, we reassign vi to cluster Ck (Algo-

rithm 11.4 line 4). If the quality of the clustering has not improved, we stop our

clustering-update (line 8), else we search for the next promising, so far uncon-

sidered vertex to be reassigned (line 3).

Since the eigendecomposition for determining the clusters’ preference vectors

tk is the computational bottleneck of this update function, we try to decrease

effort and frequency of recomputing tk. Instead of recalculating all vectors tk
after assigning vertex vi to cluster Cl, we directly update the overall preferences
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pk,i, such that pl,i = 1 and all other probabilities pk,i = 0 for k 	= l and recompute

all jk vectors before continuing the update step (line 7). A further enhancement

concerns the size of the gain matrices Gk for each cluster. Since the reassignment

of a vertex to a non-adjacent cluster can only decrease the cluster’s modularity,

we can restrict our computations to pairs (vi, Ck) such that vi ∈ ∪vj∈Ck
N(vj), i.e.,

vi is connected to at least one vertex from Ck. Further efficiency improvements

like the exploration of the gain matrices’ sparsity for the eigendecomposition are

left for future work.

11.5 Experiments

In this section, we evaluate the effectiveness of our subspace modularity model

and the performance of the different algorithms for its optimization described in

Section 11.4 using synthetic and real-world data.

Experimental setup. We compare our subspace modularity measure QD to a

‘full-space modularity’ variant (QF ) which simply sums up the edge weights of

all dimensions and computes the modularity on the resulting graph. Our SuMo

algorithm is compared to the adapted algorithms described in Section 11.4: the

local reassignment function according to [BGLL08] (denoted by LR), cf. Algo-

rithm 11.2 and the hierarchical clustering (denoted by H), cf. Algorithm 11.3.

For both approaches, we apply the full-space objective function QF as well as the

subspace modularity QD. As further competitor, we choose the popular approach

of Newman [New06], which works on just a single weight and is not easily trans-

ferable to multi-dimensional weights. We therefore apply it as full-space variant

with just a single weight as sum of the weights of all dimensions. All experiments

were conducted on 2.33 GHz Intel Xeon CPUs with Java6 64-bit. We provide all

used datasets on our website. For the experiments on synthetic data, we compare

the detected results to the ground truth using the NMI measure (Normalized Mu-

tual Information). As for the real-world datasets no ground truth is available, we

can only compare key characteristics of the clustering results such as the achieved

modularity scores, as well as the number K of detected clusters, and the runtime.

Furthermore, we compute the NMI value of the results of SuMo to those of all

other approaches, thereby evaluating the similarity of the results. Please note

that the NMI does not correspond to a clustering quality here. Low NMI val-

ues indicate, however, that SuMo produces novel clustering results that cannot

already be detected using the other objective functions or approaches.
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Figure 11.3: Quality vs. irrelevant dim.
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Figure 11.4: Quality vs. intra-weights

Experiments on synthetic data. We start by analyzing the different approach-

es in combination with each objective function for varying characteristics of the

input datasets. Therefore, we generated a series of synthetic datasets. Each

generated graph is 15-dimensional and consists of 4 clusters, each containing 30

to 50 vertices, and having 2 to 3 relevant dimensions.

In Fig. 11.3, we increase the number of irrelevant dimensions. Newman’s

approach behaves as expected for the full-space scenario and shows decreasing

quality scores. LR-QF shows better results for few irrelevant dimensions and its

robustness can be improved by the subspace modularity QD. For the H-algorithm,

using QD has no noteworthy positive affect, also confirmed by the other experi-

ments. Since hierarchical algorithms explicitly relinquish any backtracking, mis-

takes in the first iterations have a massive impact on the later clustering decisions.

This counteracts with the Qα idea of iteratively converging to the QD modularity.

SuMo clearly proves to be more robust against irrelevant dimensions and can ex-

ploit the QD modularity more effectively than the other algorithms. If optimized

successfully, the subspace modularity massively diminishes the negative effect of

irrelevant dimensions.

In Fig. 11.4, we examine the impact of the actual weights on the clustering re-

sults. While for intra-cluster edges irrelevant dimensions have an average weight

of 1, we vary the average weight of relevant dimensions from 1.0 to 6.0 (before

normalization). Inter-cluster edges have an average weight of 1 for all dimen-

sions. This experiment shows that SuMo is best capable of capturing the cluster-

ing structure if it is only weakly indicated by the weight-distribution. Also the

LR-approach benefits from the subspace modularity QD. Full-space approaches

only detect meaningful clusters if the intra-clusters draw a glaring picture.
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Figure 11.5: Quality vs. noise

For the experiment shown in Fig. 11.5, we increase the amount of noisy edges,

which affects the graph structure and the weights as well. Again, we observe that

LR performs better by using QD than with its full-space counterpart. With SuMo

we can observe that the concentration on important information though subspace

clustering helps balancing off the negative effects of noise.
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Figure 11.6: Runtime vs. # edges
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Figure 11.7: Runtime scalability

Although our focus is on evaluating the cluster quality, we briefly discuss the

methods’ efficiency. In Fig. 11.6, we increase the number of edges of the graph.

All algorithms scale linearly (note the logarithmic scaling of both axes) and we

see that the application of QD only marginally affects the runtime. While SuMo

and the hierarchical algorithm show a similar runtime, the algorithm of [BGLL08]

and Newman clearly outperform them both. In Fig. 11.7, we increase the number

of nodes in a graph, which is accompanied by a quadratic increase of the number

of edges (logarithmic scaling of both axes). Accordingly, the runtimes of all al-

gorithms increase super-linearly. Newman is the overall most efficient algorithm.

However, only solving the full-space clustering problem.
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NMI QD QF K runtime
SuMo (QD) 1 0.69 0.22 22 54,594 s
LR (QD) 0.49 0.69 0.20 4 1,057 s
LR (QF ) 0.42 0.59 0.52 31 235 s
H (QD) 0.45 0.67 0.50 88 20,039 s
H (QF ) 0.41 0.64 0.53 84 15,564 s
Newman 0.33 0.58 0.46 39 25 s

Table 11.1: Clustering results on IMDB

NMI QD QF K runtime
1 0.76 0.70 25 7,449 s

0.77 0.77 0.73 18 115 s
0.79 0.77 0.75 40 67 s
0.8 0.78 0.74 50 8,467 s

0.79 0.78 0.74 48 7,518 s
0.72 0.73 0.70 54 34 s

Table 11.2: Clustering results on arXiv

Experiments on real-world data. Our first real-world dataset is an extract of

the IMDb movie database (www.imdb.com). The vertices represent movies pro-

duced in USA, Canada, UK, or Germany, which are connected to each other if

they share actors or if there exists a reference (e.g., spoof or follow up) between

them. The edge weight dimensions represent 21 movie genres. Overall, the net-

work contains 862 nodes and 4388 edges.

For the results of this dataset, shown in Table 11.1, we observe that all ap-

proaches using QD as their objective function obtain similarly good QD values

but lead to highly disagreeing clustering results indicated by the low NMI-values

of maximum 0.49. While the results of the QD-optimizing algorithms achieve the

highest QD scores, the equivalent scores for the modularity in the full-space are

rather low. This disagreement of the measures indicates a notable fraction of ir-

relevant dimensions, correctly treated by the algorithms. Contrarily, approaches

operating in the full-space show similar values for QD and QF . A further ad-

vantage of our subspace modularity is its ability to reveal additional informa-

tion about the relevant dimensions which allows a semantic interpretation of the

Figure 11.8: Clusters in IMDb

clusters. SuMo, e.g., detects a

cluster with relevant dimensions

“Thriller”, “Mystery”, and “Hor-

ror” containing movies like “The

Ninth Gate” or “Lady in White”.

Another cluster’s relevant dimen-

sions are “Biography”, “History”,

and “War”. It contains 18 movies

such as “The Times of Harvey

Milk” or “Winter Soldier”.

Our second real-world dataset, is extracted from the arXiv online archive

(www.arxiv.org). In this network, each vertex represents a paper and each edge

represents a citation between two papers. The edges are annotated with a 30-
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dimensional weight vector, where each dimension represents one of the top 30

keywords. The weight in each dimension denotes the minimum number of oc-

currences of the keyword in the papers’ abstracts. Overall, the dataset contains

856 vertices and 2660 edges.

Figure 11.9: Clusters in arXiv

For this dataset, all approaches reach

quite similar values for all the modular-

ity measures (cf. Table 11.2). To under-

stand this behavior, differing to the IMDB

dataset, we have to take a look at the

structure of the graphs. In Fig. 11.8 and

11.9 we visualized both graphs using the

ForceAtlas2 algorithm on the Gephi plat-

form (www.gephi.org), which arranges the

vertices based on the graph structure. Ver-

tices having the same color, share a cluster

in the result of SuMo. We observe that the

arXiv graph is quite sparse and the clusters fit the graph structure well. As clus-

ters can already be detected looking solely at the graph structure, the additional

consideration of edge weight subspaces is not advantageous. In contrast, the

IMDB graph is very dense and it is hardly possible to detect clusters by looking

just at the graph structure. In this case, detecting clusters considering just the rel-

evant dimensions by using the subspace modularity leads to a clearer clustering

structure than using the traditional modularity. For both graphs, full-space clus-

tering leads to a higher number of clusters than subspace clustering, confirming

the theory that vertices rarely show strong connections for all dimensions.

11.6 Conclusion

For the presented approach of this chapter, we extended the well-known modular-

ity measure to handle graphs with multi-dimensional edge weights by following

the principles of subspace clustering. We have shown how our modularity exten-

sion can be adopted by some of the existing modularity optimization approaches

and proposed the clustering algorithm SuMo for more effectively clustering net-

works based on the subspace modularity. The efficiency of optimizing a cluster-

ing regarding the subspace modularity is so far not satisfactory and, thus, still an

open research problem.



12
Evaluation of Graph Techniques for

Alternative Clustering

THE graph-based framework that we presented in Section 9.3 theoretically

complies with the six challenges for iterative multi-view clustering defined

in Chapter 9. In this chapter, we want to examine in a small study whether

this framework also practically proves to be useful to iteratively search for multi-

ple clustering alternatives. As instantiation for the actual graph clustering algo-

rithms, we will examine the approaches presented in the two previous chapters:

the algorithm SSCG of Chapter 10 which uses a spectral clustering approach, and

the two promising approaches of Chapter 11, LR-QD (local reassignment func-

tion) and SuMo (eigendecomposition of the gain matrix) optimizing the novel

subspace modularity. Since for the subspace modularity the hierarchical cluster-

ing procedure presented in Chapter 11 performed unsatisfyingly in the subspace

scenario, we will not consider it here.

In order to evaluate different characteristics of the algorithms and to be able

to compare results against a ground truth, we will focus on synthetic data. Based

on the generative model SMVC presented for multi-view data in Chapter 8, we

generate a relatively simple dataset, where the clusters are not cluttered together

but are well separated in their respective subspaces. Since we start our evaluation

with the scenario where no prior information about previous clusterings is avail-

able and therefore have to consider a complete graph, we restrict our evaluation

to just a small dataset consisting of 100 objects and 15 dimensions. The num-

ber of views varies for each experiment. Each view contains 3 clusters and the

views’ relevant subspaces are disjoint. The quality is assessed based on the E4SC

measure (Chapter 13), a symmetric, subspace aware variant of the popular F1

measure. We refrain from evaluating the subspaces and just concentrate on the

object groupings (for clarity we rename the measure to ’E4FC’). For all quality

experiments, we average the results over ten executions on different datasets.

191
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Figure 12.1: Quality for a varying number of hidden views and one known view

In the first experiment in Fig. 12.1, we evaluate how the different algorithms

perform for a different number of hidden clustering views when only a single

clustering is provided as prior knowledge. For each algorithm, we execute one

iteration to find the next hidden view, which is compared against the best match-

ing ground truth view based on the E4FC measure. Overall, we observe a slightly

better clustering quality for the approaches optimizing the subspace modularity,

SuMo and LR-QD, where our new approach SuMo performs best. Since, in con-

trast to the SSCG approach, these algorithms are not provided with the correct

number of clusters and, thus, have fewer information available, this is an interest-

ing result. For just a small number of hidden views, the graph based framework

manages to recover a novel hidden clustering to a large extent. However, with an

increasing number of hidden views, the agreement between the newly discovered

clustering and a hidden clustering drops. Given too many hidden clusterings in

the data, the graph clustering algorithms are not able to focus on a single hidden

clustering anymore, but merge the information of several clusterings. Of course,

the appearance of six or more strong clustering views in a single dataset is un-

likely to be the standard scenario. Nonetheless, the observation that partitioning

graph clustering methods struggle with the multi-view scenario indicates a fruit-

ful future research direction of transferring the multi-view clustering principles

to the graph clustering problem.

In the next experiment (cf. Fig. 12.2), we want to examine whether the algo-

rithms can successfully integrate the knowledge of multiple provided clusterings,

i.e., whether the number of given clusterings has an influence on the clustering

result. We compare four scenarios: we try to find a single novel clustering if no

prior information is available (“0 known views”), we try to find a single novel
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Figure 12.2: Quality for a varying number of known views for 3 hidden views

clustering if we know about a single ground truth clustering (“1 known view,

1 iteration”), we try to find the third hidden clustering if we just know a single

ground truth clustering, i.e., we use the clustering detected in the first iteration as

additional prior information for the second clustering iteration (“1 known view, 2

iterations”), and the last scenario where we provide two ground truth clusterings

and try to discover the third hidden clustering (“2 known views, 1 iteration”).

SSCG is the only algorithm that behaves as expected. The more prior informa-

tion SSCG has, the better is the quality of the newly detected clustering. SSCG

also benefits from a higher quality of the given clusterings, indicated by a bet-

ter clustering quality if two ground truth clusterings are given compared to the

third scenario of one ground truth clustering and one clustering that has been

determined by SSCG itself. This second observation also holds for the LR-QD

algorithm. For SuMo, we observe two interesting effects. First, the clustering

quality for no prior information is very bad for three hidden views. Since the full

graph does not provide any support for the clustering, SuMo is conflicted with

the different views in the feature space and detects several views simultaneously,

resulting in too many clusters. With prior information, SuMo discovers the hid-

den clustering structure significantly better. Second, since the quality of the first

detected alternative clustering is already very high, replacing it by a ground truth

clustering does not gain a high benefit for the second iteration.

In summary, if no prior information is available SSCG or LR-QD perform bet-

ter than SuMo. For little prior information the subspace modularity based ap-

proaches SuMo and LR-QD perform better than SSCG. However, all approaches

struggle with the conflicting clustering views hidden in the data and provide po-

tential for future improvements in the multi-view clustering setting.
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IN young research areas where no common objective evaluation measures are

available, researchers are usually unable to provide a fair and comparable

quality assessment of their newly developed methods. Typically, publications glo-

rify the high quality of one approach only justified by an arbitrary evaluation

measure. However, such conclusions can only be drawn if the evaluation mea-

sures themselves are fully understood.

In this chapter, we provide the basis for a systematic evaluation in the emerg-

ing research area of subspace clustering. We formalize general quality criteria for

subspace clustering measures not yet addressed in the literature. We compare

the existing external evaluation methods based on these criteria and pinpoint

limitations. We propose a novel external evaluation measure which meets the

requirements in form of quality properties. In thorough experiments, we empiri-

cally show characteristic properties of evaluation measures. Overall, we provide

a set of evaluation measures that fulfill the general quality criteria as recommen-

dation for future evaluations.
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13.1 Introduction

For knowledge discovery in databases, fair and comparable evaluation of de-

tected patterns is of major importance. For a thorough evaluation of mining

techniques, it is essential to have objective methods that measure the quality of

data mining results. In contrast to the subjective quality assessment by domain

experts, these measures should provide an objective and comparable evaluation.

This evaluation is important for quality assessment of novel methods versus com-

peting approaches but also for knowledge extraction based on the detected pat-

terns. Evaluation completes the knowledge discovery process by providing more

insights than a mere listing of patterns.

In this chapter, we focus on evaluation measures for subspace clustering tech-

niques [PHL04, KKZ09]. In general, subspace clustering and projected clustering
aim at the detection of clusters in arbitrary subspace projections. While tradi-

tional clustering searches for clusters based on object similarity using all available

attributes (full-space), subspace clustering considers object similarity in any sub-

set of the given attributes (subspaces). So far, only few measures were developed

specifically for subspace clustering. Instead, researchers borrowed measures from

other areas, such as information retrieval or classification without discussing their

applicability and characteristics for subspace clustering. Thus, some measures

may not be appropriate for subspace cluster evaluation. Furthermore, the dif-

fering use of measures leads to incomparable results. As illustrated in Fig. 13.1,

comparing the hidden clusters (ground truth) and the detected clusters with two

of these measures might yield contradicting results. Even for a single measure,

users do not know how to interpret the results because they are not aware of its

characteristics. Different evaluation measures, usually focus on different aspects

of a clustering and hardly any of them allows a holistic evaluation.

In this chapter, we bridge the gap between individual evaluation measures.

Besides evaluation challenges inherited by traditional clustering, we highlight

specific core requirements for a systematic evaluation of subspace clustering re-

sults. Based on a given ground truth, traditional clustering measures evaluate the

purity of clusters and the detection of all clustered objects. For subspace cluster-

ing we have further challenges: First, a high quality subspace clustering should

also detect the correct subspaces in which objects are grouped. Second, subspace

clusters might be reported redundantly in several subspaces. Last, objects may

be part of multiple valid clusters.
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Figure 13.1: Enhanced evaluation by insights into characteristics of evaluation
measures [conflicting evaluation (top), meaningful interpretation (bottom)]

As key contributions, we take a systematic approach to characterize the main

quality requirements for subspace clustering. We formalize all of these properties

and we provide an analysis of evaluation measures used in recent publications

[MSE06, PM06, AKMS07a, MS08, AKMS08b, MAG+09b, MGAS09, MZK+09]. In

addition, we propose an enhanced evaluation measure which meets these require-

ments. Based on our systematic comparison, we provide a recommendation of
measures to be used in future evaluations. In conjunction with the derived char-
acteristics in this chapter, these measures can be used not only for evaluation

but also for further knowledge extraction. Knowing about the characteristics of

the measures, the evaluation allows to reflect on the reasons for poor results

(Fig. 13.1 (bottom)). This knowledge can be helpful for better parametrization

or for improvement of the data mining algorithm itself.

13.2 Subspace Cluster Evaluation

Evaluation of clustering as unsupervised learning is challenging since the “cor-

rect” result is usually unknown. Several evaluation types have been proposed.

Evaluation Types Evaluation based on domain experts is one possible type,

used in application oriented evaluations. Here, domain experts are consulted

to manually evaluate each cluster. This evaluation provides more insight into

the detected clusters but it is subjective and does not yield comparable results

on benchmark data. Furthermore, it can only be applied for very small result

sets. As a second evaluation type, internal evaluation measures are defined

based on properties of the cluster definition, e.g., the compactness of clusters
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(cf. k-means [LLX+10]). Such measures only reflect the relative adherence to

the underlying cluster definition. They are, thus, typically used for those clus-

tering paradigms trying to optimize a task specific objective function. For most

clustering paradigms including subspace clustering such a general objective func-

tion is not defined, and thus, no internal measure is equally meaningful for all

methods. Clustering methods adhering to different cluster definitions cannot be

fairly evaluated w.r.t. a single internal measure. As a third type, external eval-

uation measures are used (e.g., for k-means [WXC09]). They assume a ground

truth, as provided by synthetic data or labeled data. External measures com-

pare the detected clusters with this given ground truth, providing an objective

quality assessment, independent of the cluster definition. In this work, we focus

on external evaluation measures for subspace clustering. Before discussing the

novel requirements induced by subspace clustering, we review the general idea

of external evaluation measures.

The “All and Only” Quality Criterion External evaluation measures compare

a given ground truth (ideal clustering) with the detected result set of found clus-

ters. Intuitively, a measure should provide high quality values for a clustering

that detects all hidden clusters, but also detects only the hidden clusters. This all
and only property applies to several aspects in the evaluation of subspace clus-

ters. We distinguish between the cluster level (single cluster) and the clustering

level (overall set of clusters): First, on the cluster level, each found cluster should

contain all and only objects of a single hidden cluster. Furthermore, each found

subspace cluster should be detected in all and only the dimensions of the hidden

subspace cluster. And second, on the clustering level, the overall set of detected

clusters should contain all and only the hidden clusters.

Evaluation characteristics We first introduce some basic notions for subspace

cluster evaluation, before presenting the quality requirements that each measure

should fulfill. An external measure evaluates the subspace clustering result that

contains a set of subspace clusters, each representing a group of objects in a

subset of the dimensions.

Definition 13.1 Subspace clustering result
Given a set of dimensions Dim and a database DB, a subspace cluster C = (O, S)

is a set of objects O ⊆ DB along with a set of relevant dimensions S ⊆ Dim. A
subspace clustering result Res is a set of subspace clusters Res = {C1, . . . , Ck} with
Ci being a subspace cluster.
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In Fig. 13.2, two exemplary subspace clusterings are illustrated. The x-axis de-

notes the dimensions and the y-axis the objects of the database. Each subspace

cluster covers a specific set of objects and dimensions.

Subspace clustering 1: {C1, C2, . . . , C7}
Subspace clustering 2: {Ca, Cb, . . . , Cf}

Figure 13.2: Two exemplary subspace clusterings

External evaluation measures determine the quality of a clustering w.r.t. a

ground truth. This ground truth represents a gold standard that should be recov-

ered by the subspace clustering algorithms to the greatest extent.

Definition 13.2 Ground truth
The ground truth Ground is a subspace clustering representing the perfect result.

In Fig. 13.2, we assume the ground truth to be given by Ground={Ca, . . . , Cf}
and the other clustering to be determined by a clustering algorithm. As indicated

in Fig. 13.2, an object can belong to several subspace clusters. Similarly, the

relevant dimensions of clusters can overlap. Hence, an object can be part of

several clusters in a single dimension in the ground truth or in the clustering

result, e.g., the ones of C4 and C5. Thus, a mandatory requirement for each

measure is to handle overlapping subspace clusters. We denote this criterion as

overlap applicable.

An evaluation measure for subspace clustering can formally be defined by:

Definition 13.3 Evaluation measure
Given a set of dimensions Dim, a database DB, and the ground truth Ground of
this dataset; an evaluation measure is a function M :

M : P(Clus)× P(Clus) → R

where Clus = {(O, S) | O ⊆ DB,S ⊆ Dim} is the set of all possible subspace
clusters. The quality of a clustering Res w.r.t. the ground truth is: M(Ground,Res).
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In general, an external measure can be used as a similarity measure between two

arbitrary clusterings. W.l.o.g., in our work all measures are normalized between

0 and 1, where 1 indicates the perfect quality, e.g., M(Ground,Ground) = 1

holds. Any errors in the result should be reflected in the value of M and, hence,

an optimal value should only be achieved for identical clusterings. As depicted

in Fig. 13.2, the clusters themselves can differ, i.e., the hidden clusters are not

exactly recovered (Cb vs. C2); but also the overall set of clusters can differ, i.e.,

the clusterings disagree (Cc). Overall, we discuss specific characteristics on the

cluster level and on the clustering level. We start with the cluster level.

Object awareness As in traditional clustering, we want to identify the correct

object groupings of the hidden clusters. The found clusters should not mix several

hidden clusters or obfuscate a hidden cluster by other objects, since the purity of a

cluster is crucial. The cluster C2 in Fig. 13.2 has perfect purity w.r.t. Cb regarding

the objects, while the cluster C3 mixes several hidden clusters and noise objects.

Moreover, for a correct object grouping, it is also important to identify as many

objects as possible of the hidden cluster, not just a few, as does the cluster C1

w.r.t. Ca. Overall, for a good detection, it is mandatory to group all and only the

objects of the hidden cluster. If this is not fulfilled by the clustering result Res,

a measure M should determine a lower quality. We denote this property of a

measure as object awareness.

Subspace awareness For subspace clusters, the set of relevant dimensions con-

stitutes a major part of its information content. It is, therefore, important to

identify the correct object group and, at the same time, the correct relevant di-

mensions. It is an indication of poor quality to find the hidden object group but

in a totally different subspace. Consequently, we want to identify all and only the

relevant dimensions of a subspace cluster of the ground truth. In Fig. 13.2, the

cluster C2 does not perfectly reflect the relevant dimensions of Cb. A measure

fulfills the subspace awareness criterion if it penalizes false or missing relevant

dimensions.

Redundancy awareness Both previous criteria are relevant for determining the

quality of single subspace clusters. The following criteria will consider the clus-

tering level. In subspace clustering, we analyze subspace projections of the data.

For any subspace cluster definition fulfilling the anti-monotonicity criterion, all

exponentially many subspace projections of a valid cluster are valid as well. A set

of clusters sharing nearly all objects and relevant dimensions, however, induces
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redundancy and, therefore, obscures the true clustering result. A measure should

penalize clustering results that identify one ground truth cluster several times.

Besides the true hidden cluster Cf/C4, in Fig. 13.2 several redundant clusters are

generated (C5, C6, C7). In traditional clustering, redundancy does not occur due

to full-space clustering. In subspace clustering, however, several approaches suf-

fer from this phenomenon [AGGR98, NGC01, KKK04]. Evaluation measures for

subspace clustering have to take into account that a redundancy polluted cluster-

ing is not the perfect clustering. Adding further clusters not represented by the

ground truth must lead to a lower quality. In extreme words: Simply generating

all possible clusters must not yield the perfect quality. A measure accounting for

this criterion is redundancy aware.

Identification awareness Respectively, it is not optimal to miss some clusters

of the ground truth. In Fig. 13.2, the cluster Cc is not identified at all; a measure

should not determine perfect quality. For subspace clustering, this property is a

challenge which cannot be adapted trivially from traditional clustering. While in

traditional clustering, each object belongs to just one cluster, in subspace clus-

tering, objects can belong to several clusters due to their relevant dimensions.

Missing clusters in traditional clustering can simply be identified by a non cov-

erage of some objects. However, in subspace clustering, all objects could be

covered by the result, even if not all clusters are identified. This problem ap-

pears, e.g., in partitioning approaches that only detect disjoint subspace clusters

[AWY+99, AY00b, PJAM02, YM03]. Overall, to be identification aware, a measure

has to decrease the quality for every missing cluster of the ground truth.

Summarizing, we introduce four criteria that evaluation measures for sub-

space clustering have to fulfill: object, subspace, redundancy, and identification

awareness.

13.3 Evaluation Measures

In this section, we examine existing evaluation measures with regard to the four

criteria. Only if a measure responds to all four respective clustering variations,

substantial conclusions can be drawn out of its quality assessment. For measures

that ignore at least one criterion, a low quality value still indicates a bad cluster-

ing solution. A high quality value, contrarily, does not necessarily indicate a good

clustering result. Clearly, a measure where neither low nor high quality values
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allow any conclusions is inappropriate. This is the case for those, that do not

handle mandatory requirements of subspace clustering such as handling over-

laps. An example is the Entropy measure [AKMS07a, MGAS09]. For a ground

truth with overlapping clusters, the entropy will always indicate a quality below

optimal, even if we compare the ground truth against itself. A clustering that

equals the ground truth should, however, always have optimal quality results.

In the following Section 13.3.1, we only consider those measures that are

overlap applicable. To the best of our knowledge, we include all evaluation mea-

sures in our comparison that are used in recent subspace clustering publications.

For these, we will examine the sensitivity w.r.t. our 4 criteria. As a result, we will

get that none of the existing measures deals fairly with all criteria. We, there-

fore, propose a novel, simple quality measure for subspace clustering in Section

13.3.2.

13.3.1 Analysis of Existing Measures

For our analysis, we assume Res to be the set of found clusters and Ground to be

the ground truth. The objects of a cluster C are denoted with O(C) and the set

of relevant dimensions of C with S(C) respectively.

F1 measures

One method for the evaluation of clustering results is the F1-measure. F1 formal-

izes the requirement that clusters in Res should represent the clusters in Ground.

That is, a cluster Cr ∈ Res should, on the one hand, have many objects in com-

mon with one of the hidden clusters Cg ∈ Ground, but, on the other hand, it

should contain as few objects as possible that are not in this particular hidden

cluster. These two constraints can be formalized by the terms precision and re-

call and represent the all and only constraint of object awareness.

recall(Cr, Cg) =
|O(Cr) ∩O(Cg)|

|O(Cg)| = precision(Cg, Cr)

The F1-measure evaluates the matching of two clusters as the harmonic mean of

precision and recall.

F1(Cr, Cg) =
2 · recall(Cr, Cg) · precision(Cr, Cg)

recall(Cr, Cg) + precision(Cr, Cg)
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Note that the relevant subspaces do not occur in the formal definition of F1,

which is, therefore, not aware of subspaces. However, it is widely used in sub-

space clustering evaluation [MSE06, MS08, MZK+09, AKMS08b, MAG+09b]. For

the overall matching of two clusterings P and Q the F1 measure is defined as:

F1Clus(P,Q) =
1

|P |
∑
Ci∈P

max
Cj∈Q

{F1(Ci, Cj)}

Optimal quality is denoted by a value of 1, whereas 0 indicates the lowest qual-

ity. It is crucial that the function of F1Clus is not symmetric (F1Clus(P,Q) 	=
F1Clus(Q,P )), even though this has not been discussed in the literature yet. The

sum only iterates over clusters in P and thus clusters in Q are only considered if

they match at least one cluster in P best. Besides these matches, clusters in Q

have no influence on the evaluation result at all. The measure is used as

MF1−R(Ground,Res) := F1Clus(Ground,Res)

in [AGAV09], where Res is the clustering that is considered only partially for

the quality evaluation. Thus, this definition is not redundancy aware, since it is

not capable of detecting the presence of false clusters. That is, for all clusterings

Res ⊇ Ground, the quality result will always be optimal: MF1−R(Ground,Res) =

1. Thus, only the obtained recall w.r.t. the clusters in Ground is assessed; hence,

the naming “F1-Recall” (F1-R).

In [MSE06, MS08, MZK+09], results are evaluated by the counterpart defini-

tion
MF1−P (Ground,Res) := F1Clus(Res,Ground)

In this case, the ground truth has only limited influence on the quality assessment

of F1. Therefore, the presented definition of F1 is not identification aware, as

all clusterings Res ⊆ Ground will always have the perfect quality outcome of

MF1−P (Ground,Res) = 1. Since only the obtained precision w.r.t. the clusters in

Ground is assessed, we chose the naming “F1-Precision” (F1-P ).

In [AKMS08b, MAG+09b, MGAS09], a third definition was introduced, where

clusters in Res are merged if their best matching cluster in Ground is identical.

The size of the resulting clustering Res′ is thus adjusted to the size of Ground.

For each cluster C ∈ Ground, we get a new cluster C ′ ∈ Res′, such that:

O(C ′) :=
⋃

C∈Res

{
O(C) | C = argmax

Ci∈Ground

{ |O(C) ∩O(Ci)|
|O(Ci)|

}}
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A solution Res is evaluated based on the ground truth and the novel result Res′:

MF1−Merge(Ground,Res) := F1Clus(Ground,Res′)

Due to the merging of found clusters, this measure does not detect whether found

clusters split hidden clusters and is, thus, not object aware.

Accuracy

Another quality assessment is realized by the Accuracy measure [MAG+09b, BZ07,

MGAS09]. The basic idea is to predict the hidden clusters based on the found

clusters. The more accurate the hidden clusters are predicted, the better the

ground truth is generalized by the identified clusters. For prediction, the method

of classification is used. As the training data, bitvectors are given that represent

the membership of the objects in the hidden clusters Ci ∈ Res. That is, each

object o induces a bitvector of length k = |Res| where the ith entry is 1 if o ∈ Ci.

Based on this training data, a decision tree classifier is built and the accuracy is

determined (usually C4.5 with 10-fold cross validation).

Since classification accuracy depends on the training data, we can infer that

impure clusters affect the quality of the result; the training data contains errors

w.r.t. the ground truth. However, as a classifier tries to countervail these effects,

the object awareness of the measure is questionable: Even if an object was as-

signed to some wrong clusters, the classifier could be able to predict the correct

hidden clusters for the object. Thus, the measure indicates high quality, even in

the presence of errors in the clustering result. Obviously, this measure is also not

subspace aware, because only the object sets are used for training. If a cluster is

completely missed, the classifier cannot assign the objects to this cluster. Thus,

the identification awareness is fulfilled.

RNIA

[PM06] introduced the first measures that fulfill the subspace awareness crite-

rion. The basic idea is to represent a cluster (O, S) as a single set T instead of a

tuple. For this, each object oi ∈ O is not treated as the full-dimensional feature

but for each dimension d ∈ S an object oi,d is constructed. We denote these ob-

jects as micro-objects. Thus, a subspace cluster can be represented by its set of

micro-objects
t(C) = {oi,d | oi ∈ O(C) ∧ d ∈ S(C)}
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An x-dimensional cluster with y objects is represented by x · y micro-objects.

Based on this representation, the RNIA (relative non-intersecting area) measure

assesses whether the micro-objects of the ground truth are all and only covered

by the clustering result. Formally, the union U of the micro-objects of both clus-

terings is determined and their intersection I is subtracted. The assumption is,

that for a good clustering result, U and I are nearly identical. Overall,

MRNIA(Ground,Res) :=
|U | − |I|

|U |
with U=U(Ground)∪U(Res), I=U(Ground)∩U(Res), and U(P )=

[⋃
C∈P t(C)

]
.

To handle overlapping clusters, [PM06] presents a method to adapt the union

and intersection. We use this version in our experiments and we plot the value

1.0−RNIA so that perfect quality corresponds to 1.0.

Obviously, the RNIA measure is subspace aware. The redundancy and iden-

tification awareness are also fulfilled, because errors w.r.t. these criteria have an

influence on the union and intersection respectively. The drawback of RNIA is

its lack of object awareness. The purity or recall of single clusters is not con-

sidered at all. RNIA simply checks whether a micro-object of the ground truth

is also contained in Res and vice versa. If U(Ground) = U(Res) holds, RNIA

returns perfect quality; independent of how the single clusters behave. Splits or

impurities of clusters remain undetected.

CE

The disadvantages of the RNIA measure were addressed by the CE (clustering

error) measure [PM06]. The basic idea is to find a 1:1 mapping between the hid-

den and found clusters. Each cluster Cg of the ground truth is assigned to at most

one cluster Cr of the result, and vice versa. For each mapped pair (Cg, Cr) the

cardinality of their intersecting micro-objects is determined. Overall, only those

1:1 mappings are chosen that result in the highest total sum over all cardinali-

ties. This sum is denoted as Dmax. By replacing the intersection I within RNIA

by Dmax, we formally get the CE measure:

MCE(Ground,Res) :=
|U | −Dmax

|U |
We plot the values of 1.0−CE such that perfect quality equals to 1. CE fulfills

the same quality criteria as RNIA. The object awareness is still not completely

fulfilled. On the one hand, the 1:1 mapping penalizes clusters which split up in
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several smaller ones because the coverage of the cluster decreases. On the other

hand, the impurity of clusters is still not considered; the intersection between

two clusters is not influenced by additional, wrong objects. Thus, the object

awareness is not adequately implemented.

13.3.2 The E4SC Evaluation Measure

The previously reviewed techniques have major drawbacks in at least one of the

4 awareness criteria. The gathered insights on subspace clustering allow us to

define an external evaluation measure, that addresses all 4 criteria, for a holistic

evaluation of subspace clusterings.

The terms of precision and recall assure the awareness of objects with full con-

tentment. Thus, they build the basis of our new E4SC measure. By transforming

subspace clusters to micro-object clusters, the object awareness is extended to

dimensions. The definitions of recall and precision become:

recallSC(Cr, Cg) =
|t(Cr) ∩ t(Cg)|

|t(Cg)| = precisionSC(Cg, Cr)

The harmonic mean of precision and recall now represents the all and only con-

straint for cluster objects as well as for relevant dimensions. On the cluster level,

this measure meets all requirements for subspace cluster evaluation.

F1SC(Cr, Cg) =
2 · recallSC(Cr, Cg) · precisionSC(Cr, Cg)

recallSC(Cr, Cg) + precisionSC(Cr, Cg)

The extension F1Clus
SC (P,Q) of this definition for the clustering level leads to

F1Clus
SC (P,Q) =

1

|P |
∑
Ci∈P

max
Cj∈Q

{F1SC(Ci, Cj)}

This formula exhibits a non-symmetry that we utilize for enhanced quality as-

sessment. The non-symmetry of F1Clus
SC implicates a precision and recall relation

itself – though on the clustering level. F1Clus
SC (Ground,Res) evaluates how well

all of the hidden clusters were found; it can be denoted as the recall of the clus-
tering. Contrarily, F1Clus

SC (Res,Ground) evaluates how well each of the found

clusters represents one of the hidden clusters; thus, it can be seen as precision of
the clustering. The combination of these derived precision and recall values by a

harmonic mean represents the all and only constraint on the clustering level.
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ME4SC(P,Q) :=
2 · F1Clus

SC (P,Q) · F1Clus
SC (Q,P )

F1Clus
SC (P,Q) + F1Clus

SC (Q,P )

The novel measure of E4SC successfully adopts the idea of F1 for subspace

clustering. The central idea of precision and recall has been transferred to the

level of subspace clusters and by means of recurring averaging has also upgraded

F1 to the level of clustering. E4SC stands out due to the complete consideration

of all 4 criteria. Object awareness is realized by using precision and recall on

cluster level. A maximal quality result thus reports pure and complete clusters

in Res compared to Ground. As dimensions are treated as micro-objects, the

same holds for subspace awareness. Through the harmonic mean of F1Clus
SC (P,Q)

and F1Clus
SC (Q,P ), E4SC is able to consider lower quality due to redundant or

missing identification of clusters. The recall F1Clus
SC (Ground,Res) of the clus-

tering decreases if one cluster in Ground is not or insufficiently found by Res.

The precision F1Clus
SC (Res,Ground) is low if clusters in Res are unrelated to the

clusters in Ground. An optimal quality result, thus, also reports a pure and

complete clustering Res with regard to Ground. The maximal quality value of

ME4SC(Ground,Res) = 1 indicates an optimal clustering w.r.t. all characteristics

of subspace clustering.

Furthermore, E4SC fulfills the following useful properties: symmetry, non-

negativity and identity of indiscernibles. The symmetry property ME4SC(P,Q) =

ME4SC(Q,P ) for all clusterings Q and P is valid by design. Since precision and

recall values lie within the range [0, 1], the harmonic mean does so too. Thus,

E4SC fulfills the non-negativity and, more importantly, for all clusterings P and

Q, we get ME4SC(P,Q) ∈ [0, 1]. At last, we prove the identity of indiscernibles,

i.e., P = Q ⇔ ME4SC(P,Q) = 1. This property is especially important since the

perfect quality is only achieved if the two clusterings are identical. Any error

in the clustering result, e.g., splits, redundancy, or inclusion of noise, leads to a

decrease of the E4SC value.

Proof 13.1 ⇒: It holds that recallSC(C,C) = 1 = precisionSC(C,C) since t(C) ∩
t(C) = t(C) and therefore also F1SC(C,C) = 1. If P = Q, we have ∀Ci ∈ P ∃Cj ∈
Q : Ci = Cj and since F1SC(Cr, Cg) ≤ 1 we get

1

|P |
∑
Ci∈P

max
Cj∈Q

{F1SC(Ci, Cj)} =
1

|P |
∑
Ci∈P

1 = 1

Thus, F1Clus
SC (P, P ) = 1 and hence ME4SC(P, P ) = 1.
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⇐: Assuming P 	= Q. W.l.o.g. there exists C ∈ P and C /∈ Q. It holds that ∀Cj ∈
Q : F1SC(C,Cj) < 1 since either recallSC(C,Cj) < 1 or precisionSC(C,Cj) < 1.
Otherwise C ∈ Q would hold. Thus

F1Clus
SC (P,Q) ≤ 1

|P |
(
|P\{C}|+ max

Cj∈Q
{F1SC(C,Cj)}

)

<
1

|P | (|P\{C}|+ 1) = 1

and hence the harmonic mean ME4SC(P,Q) < 1 for P 	= Q.

13.4 Experiments

In our experiments, we highlight the characteristics of the evaluation measures

w.r.t. errors in the clustering result. While all measures provide perfect quality

for a perfect clustering, they show different behaviors on clustering errors. Given

a ground truth Ground of hidden subspace clusters and a clustering result Res

of found subspace clusters, we compare the measures’ performance. In order

to understand all properties of the measures under consideration, we first study

them for different evaluation scenarios with synthetic data, where we are able

to vary the degree of each error separately as illustrated in Fig. 13.3 (right). To

study different characteristics, we emphasize a different error in each evaluation

scenario. Each scenario is motivated by general errors produced by different clus-

tering approaches. The resulting insights subsequently allow us to discuss some

evaluations of real cluster algorithms on real world datasets. These experiments

will reveal the dependency of the assessment of the vanquishing algorithm on the

evaluation measure.

data ground
truth

algorithm

result evaluate with 
measure X

&Given: data ground
truth

insert
errors

result evaluate with 
measure X

&Given:

Figure 13.3: Traditional workflow to evaluate algorithms (left) & our workflow
to evaluate measures (right)
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Evaluation Setup We created a benchmark database with 5000 objects and 30

dimensions. Objects are grouped in 9 subspace clusters, each with 9 dimensions

and covering 500 objects. The ground truth for this synthetic data is given. In

traditional evaluation, to compare different algorithms, one uses each algorithm

to obtain a clustering result and compares this result with the ground truth by

using a specific measure (cf. Fig. 13.3 (left)). In our work, however, we want

to compare the characteristics of different measures. Thus, instead of using an

arbitrary algorithm on the data, we systematically insert specific errors into the

ground truth to obtain an (imperfect) clustering result. This insertion of errors

corresponds to an algorithm that is not able to detect the perfect clustering on the

data. However, we are now able to analyze each type of error separately, leading

to a more insightful analysis. Based on this clustering result, we can apply the

different measures and evaluate their properties (cf. Fig. 13.3 (right)).

We created different clustering results based on our benchmark data, i.e.,

we insert different types of errors. Obviously, the perfect clustering result is

simply the list of hidden subspace clusters (Res = Ground). This is the ideal

baseline for all evaluation measures. However, we construct more realistic sce-

narios to analyze the sensitivity of the measures. For the first experiment, we

split the hidden clusters into multiple found clusters regarding their objects,

i.e., for each hidden cluster, we partition its objects into x parts of equal size,

thus getting x smaller clusters. For grid-based subspace clustering approaches

[AGGR98, NGC01, PJAM02, YM03], this might happen due to the discretization

of the data space. Thus, we get a clustering result Res′ that does not perfectly

represent the ground truth. It is of major importance that evaluation measures

are aware of such phenomena and show significantly lower quality if hidden clus-

ters are split up. For the following experiments, we give short descriptions of the

evaluation setup in the respective paragraph.

Object Awareness Most measures compare the set of hidden objects with the

found objects. Though, there are major differences in their sensitivity to splits
of clusters. As depicted in Fig. 13.4, the measures RNIA and F1-Merge do not

detect these errors and provide constantly perfect values. The merge operation

of F1-Merge is a clear drawback as a split of clusters does not affect the overall

quality. A similar argument holds for RNIA because this measure only assesses the

coverage of the hidden clusters but not whether the objects belong to the correct

clusters. The Accuracy measure can still identify a reasonable generalization for

the data with the split parts; thus, the quality decreases only slightly.
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Figure 13.4: Split of clusters
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Figure 13.5: Merge of clusters

Next, we perform a certain number of merge operations between the hidden

clusters. This is a realistic scenario where clustering algorithms fail to separate

two similar clusters, resulting in a bad purity of clusters. As depicted in Fig. 13.5,

almost all measures detect this bad clustering and show decreasing values with

increasing amount of merges. Only the RNIA measure is not affected by merged

clusters due to the reason described above.

Next, we consider object awareness for results produced by projected cluster-

ing methods [AWY+99, AY00b, PJAM02, YM03], which partition the data. How-

ever, as we have overlapping hidden clusters, a partitioning of the data cannot

be the perfect clustering result. The resulting quality values range from 0.735

(RNIA, CE) to 0.847 (F1 measures, E4SC). Thus, all measures show lower qual-

ity values as each object is assigned to exactly one cluster and not multiple ones.

Overall, the first experiments have shown that most measures are aware of the

most basic properties of clustering quality. Missing objects due to partitioning,

affects the quality of all measures. Splitting or merging clusters affects all but the

RNIA measure due to the simple coverage method.

Subspace Awareness In the following experiments, we consider errors in both,

the detected object set and the dimension set, for each subspace cluster. We re-
move/include objects and dimensions respectively with a certain percentage. As

depicted in Fig. 13.6, the perfect result is at the center of each figure (0% addi-

tionally included objects, 9 dimensions). For the x-axis, ’detected objects’ −p%

means that p% of the objects were excluded from the found clusters and +p%

refers to the amount of included objects. For the y-axis, we added or removed

dimensions compared to the perfect result respectively. We show four different

measures (results of F1-R & F1-Merge are similar to the one of F1-P; the result of

RNIA corresponds to the one of CE).
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Figure 13.6: Removal and adding of clustered objects and relevant dimensions

Obviously, F1-P and Accuracy, as measures without subspace awareness, are

only affected by changes in the object set; however, they react differently. While

F1-P still returns good qualities when adding many objects, the Accuracy mea-

sure is more sensitive and exposes the area of perfect quality more distinctly. Our

novel E4SC measure and CE are also affected by changes in the dimension set.

Beside this subspace awareness of CE and E4SC, we observe interesting charac-

teristics. While in the area of perfect clustering both changes in the object and

dimension set affect the overall quality to the same degree (nearly rectangular

areas), this effect is not observed for extreme cases where, e.g., most of the ob-

jects have been removed. For such extreme cases either the object set or the

dimension set is dominating (rounded areas). Furthermore, the CE measure re-

acts more sensitive in this experiment, i.e., the quality values decrease faster than

for E4SC. This property is especially observed in the first quadrant, where objects

and dimensions are added.

Overall this experiment demonstrates the lack of subspace awareness in F1-P,

F1-R, and F1-Merge. Their use in subspace clustering is at least questionable.

E4SC and CE simultaneously handle subspaces and object groups.
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Figure 13.7: Miss of single clusters
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Figure 13.8: Varying miss of clusters

Set of detected clusters While in the previous experiments, we have analyzed

different effects on the content of clusters, in the following, we consider typical

clustering errors such as completely missing clusters or detecting similar clusters

multiple times.

In our first experiment, depicted in Fig. 13.7, we remove one cluster from the

resulting clustering each time. We generated 9 hidden clusters, each with a dif-

ferent number of objects. By sorting the clusters based on their object size, such

that the smallest cluster is removed to the left of the x-axis and the largest one

to the right, we show the effect of the cluster size. We observe that CE, RNIA, and

Accuracy are affected more by the exclusion of large clusters than by exclusion of

small ones. These measures are biased w.r.t. the cluster size. All other measures

are nearly not affected by the size of clusters; they are unbiased w.r.t. the size.

A special case is F1-P, that shows perfect quality although clusters have not been

detected. As F1-P maps each found cluster to one hidden cluster, it is not affected

by missing clusters (cf. Section 13.3).

Next, we exclude not only one cluster but accumulate the removal of several
clusters, starting by excluding the largest cluster until only one cluster remains

in the found clustering. As depicted in Fig. 13.8, all measures except for F1-P

show decreasing quality values. However, the slopes vary greatly. CE, RNIA,

and Accuracy show steep decrease in the first (large) clusters. Removing large

clusters is more critical for these measures. F1-R and F1-Merge measures show

almost linear decrease; removing one additional cluster results in constant drop

of the quality. Our E4SC measure, however, decreases more quickly with each

additionally excluded cluster. That is, excluding two clusters is more than twice

as bad as the removal of a single cluster; although, we see a constant curve in

Fig. 13.7.
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Figure 13.9: Increasing redundancy
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Figure 13.10: Impurity of clusters

Both, missing a cluster but also detecting similar clusters in redundant pro-

jections, should lead to lower quality values. In the following experiment, we

additionally add redundant clusters in lower dimensional projections, as observed

for several subspace clustering approaches [AGGR98, NGC01, KKK04]. The x-

axis in Fig. 13.9 indicates the amount of redundant clusters. Starting by adding

only the redundant 8-dimensional projections (of the original 9D clusters), we

add more and more lower-dimensional ones. As illustrated, only CE, RNIA, and

E4SC are affected by redundancy; quality decreases while redundancy increases.

However, CE and RNIA show already a significant drop to almost zero quality

for redundancy in 6- to 8-dimensional clusters; we get no discriminable quality

values after this point. Our E4SC measure shows continuously decreasing qual-

ity, down to the 1-dimensional redundant clusters, but remains in high quality

ranges.

Overall, these experiments have shown that F1-P, F1-R, and F1-Merge do not

meaningfully assess the quality of redundancy polluted clusterings. Furthermore,

F1-P is not able to detect a miss of clusters. For the criteria of redundancy and

identification awareness, the measures CE, RNIA, and E4SC are preferable. How-

ever, for the presence of redundancy in the result, RNIA and CE easily assess a

misleadingly low quality value, which the analyst needs to put into perspective.

Sensitivity of measures We create further evaluation scenarios to show the

sensitivity of each measure. First, we create a clustering result where a certain

fraction of the clustered objects is removed. This miss of objects is assessed as low

quality by all measures in Fig. 13.10, as the leftmost values indicate. Afterwards,

we progressively re-add objects to the clusters; however, not from the correct but

different clusters. Thus, we increase the impurity of the clustering results. Most

measures accurately show decreasing quality for impure clusterings in Fig. 13.10.
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Figure 13.11: Noise polluted clusters
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Figure 13.12: Split in unequal parts

CE and Accuracy, however, are almost not affected by this scenario. Because the

largest part of the hidden cluster is still detected, adding incorrect objects does

not influence their quality values. Even worse, the RNIA measure increases in

quality since we cover more objects of the hidden clusters. Thus, these three

measures are not sensitive enough to the impurity of clusterings.

Next, we simulate the effect of algorithms that are not able to detect outliers,
i.e., algorithms enforcing an assignment of each object to a cluster. Thus, be-

sides the hidden clusters, we generate one single cluster that contains all noise
objects and add it to the clustering result. Most of the measures are influenced by

this as the leftmost entries in Fig. 13.11 indicate. In the following, we relocate

more and more objects from the noise-cluster to the hidden clusters. This phe-

nomenon is typically observed for algorithms mixing up noise objects with the

detected clusters. Clearly, the quality of the clustering should decrease because

the true clusters are now polluted by noisy objects. However, CE and RNIA are

not affected by noise as the hidden clusters are still covered and the purity is

incidental. All other approaches show decreasing quality.

In the following experiment, we split each hidden cluster not into equally
large parts but in one half of the cluster and an increasing fraction of further

parts. While the large part seems to be the most valuable representation of the

hidden cluster, the other parts hinder more and more the interpretation of the

overall result set. As depicted in Fig. 13.12, most measures are not affected by

this scenario because the major part of the hidden cluster is still found. F1-Merge

and RNIA even show highest quality, ignoring the splits at all. Only F1-P and

E4SC are aware of a decreasing quality.

Overall, for the core quality criteria, we have shown that measures as F1-P,

F1-R, F1-Merge, and Accuracy are not aware of subspace properties and fail in
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the very core of subspace cluster evaluation. Nevertheless, these measures are

the most widely used ones in subspace clustering publications. They are of in-

terest when only object sets are relevant or given for the evaluation. Enhanced

measures such as CE, RNIA, and E4SC also consider the correct detection of sub-

spaces. However, we have seen major differences in their evaluation. The RNIA

measure is not affected by splits or merges of clusters. The CE measure shows

high sensitivity to redundancy, while E4SC is sensitive to impure clusters, noise

and splits of clusters. In Table 13.1, we provide an overview of the measures and

their characteristics.

F1-P
F1-R

F1-M
er.

Accu
.

RNIA
CE E4SC

object aware + + - - - - +
subspace aware - - - - + + +

redundancy aware + - - - + + +
identification aware - + + + + + +

split + + - + - + +
merge + + + + - + +

size unbiased + + + - - - +
impurity + + + - - - +

noise + + + + - - +

Table 13.1: Characteristics of evaluation measures

Real world data and algorithms The previous experiments aimed at an objec-

tive analysis of all error types separately. Enabled by a systematic transforma-

tion of a presumed set of ground truth clusters for synthetic data, an unaffected

consideration for each error type was possible. The following consideration of

real world data and clustering results of real algorithms will now provide the

opportunity not only to prove but also to apply the newly won insights to the

measures. For these real world experiments, we used the publicly available clus-

tering results of [MGAS09] and applied the discussed measures on them. Notice

that the ground truth of real world data usually consists of a partitioning of the

dataset and provides no subspace information with the partitions. Each table in

Fig. 13.13, Fig. 13.14, and Fig. 13.15 shows the quality values of different sub-

space clustering algorithms for one dataset [MGAS09]. For each measure, we

depict the maximal and minimal values obtained for various parameter settings

[MGAS09]. To quickly grasp the main tendency of the results, we shaded the



218 External Evaluation Measures for Subspace Clustering

quality values (gets darker with increasing quality). We only discuss Fig. 13.13

but similar observations can be drawn for the other datasets in Fig. 13.14 and

13.15. As a first observation, each measure yields different quality values for the

same algorithms. Consequentially, each measure assesses a different algorithm

as vanquisher. This is hard to understand if one is not aware of the underly-

ing characteristics of evaluation measures. Thus, further interpretation requires

information about the measures’ sensitivity as presented in this work.

max min max min max min max min max min
CLIQUE 0.70 0.39 0.72 0.69 0.03 0.01 0.14 0.01 0.4 0.09
DOC 0.71 0.71 0.72 0.69 0.31 0.26 0.92 0.79 0.39 0.12

MINECLUS 0.72 0.66 0.71 0.69 0.63 0.13 0.89 0.58 0.14 0.09
SCHISM 0.70 0.62 0.73 0.68 0.08 0.01 0.36 0.09 0.11 0.08
SUBCLU 0.74 0.45 0.71 0.68 0.01 0.01 0.01 0.01 0.46 0.13
FIRES 0.52 0.03 0.65 0.64 0.12 0.00 0.27 0.00 0.1 0.06
INSCY 0.65 0.39 0.70 0.65 0.37 0.11 0.45 0.42 0.64 0.04

PROCLUS 0.67 0.61 0.72 0.71 0.34 0.21 0.78 0.69 0.45 0.25
P3C 0.39 0.39 0.66 0.65 0.56 0.11 0.85 0.22 0.57 0.57

STATPC 0.73 0.59 0.70 0.65 0.06 0.00 0.63 0.17 0.4 0.01
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Figure 13.13: Results for the measures on diabetes data

The shading of the results reveals the rare differentiation of Accuracy, CE,

and F1 since results only differ slightly and do not allow contrasty comparisons of

different approaches. This effect is mainly due to the insensitivity of the measures

to a variety of errors or, in the case of CE, the excessive punishment of redundancy

and its size-bias. Only RNIA and E4SC show discriminative results between the

approaches.

The evaluation results in Fig. 13.13 point out the importance of redundancy

awareness. On average, the measures F1 and Accuracy, which are insensitive

to redundancy, assign higher quality values to the resulting clusterings than CE,

RNIA and E4SC. The worth of redundancy awareness becomes even more evident

as we see that mainly the partitioning approaches DOC, MINECLUS, PROCLUS,

and P3C, whose results are not redundant by definition, have high values for

CE, RNIA, and E4SC. Only with these measures the benefit of non-partitioning

subspace clustering approaches that successfully try to avoid redundancy, like

INSCY and STATPC, is traceable as they yield better quality values than other

approaches without redundancy model.

Overall, we see that our awareness criteria and the thorough evaluation on

synthetic data helps to interpret quality assessment on real world data based on
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different measures. We also see that only measures fulfilling the majority of our

4 criteria are able to carry out significant quality assertions. The more error cases

a measure is sensitive to (cf. Table 13.1), the higher is the quality assessment,

and, thus, the better the contrast of low and high quality ratings.

13.5 Conclusion

A fair and comparable quality assessment based on objective evaluation measures

is a key component for knowledge discovery in databases. In this chapter, we an-

alyzed the evaluation measures for the research area of subspace clustering. We

could show that novel criteria for a meaningful evaluation of subspace cluster-

ing algorithms are needed and introduced four major criteria each measure has

to fulfill: object, subspace, redundancy, and identification awareness. Based on

these categories, an analysis of existing measures identified their drawbacks for

applicability. As a consequence, we presented a novel evaluation measure that

fulfills our general quality criteria. In an empirical study, we highlighted the

characteristics for each measure in typical clustering scenarios.

As a conclusion, we recommend to use CE and E4SC measures in future eval-

uations as both highlight main subspace clustering properties. In combination

with other measures such as RNIA they also bring out the reasons for a bad clus-

tering quality as depicted in Fig. 13.10, where we observe a significant increase

in RNIA while CE remains constant and E4SC decreases. This divergence in clus-

tering evaluation measures indicates an incorrect assignment of objects to the

detected clusters. With such knowledge about the characteristics of measures,

improvements of the clustering result and the algorithm itself can be fostered.

This evaluation lays the foundation for a fair evaluation of algorithms in the

area of subspace clustering. Besides the analysis of measures, however, it is nec-

essary to provide a set of benchmark data that is annotated with the hidden

clustering structure, which is still a challenge for future studies.
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max min max min max min max min max min
CLIQUE 0.30 0.17 0.96 0.86 0.06 0.01 0.20 0.06 0.2 0.2
DOC 0.52 0.52 0.54 0.54 0.18 0.18 0.35 0.35 0.23 0.13

MINECLUS 0.87 0.87 0.86 0.86 0.48 0.48 0.89 0.89 0.27 0.27
SCHISM 0.45 0.26 0.93 0.71 0.05 0.01 0.30 0.08 0.14 0.06
SUBCLU
FIRES 0.45 0.45 0.73 0.73 0.09 0.09 0.33 0.33 0.22 0.11
INSCY 0.65 0.48 0.78 0.68 0.07 0.07 0.30 0.28 0.17 0.02

PROCLUS 0.78 0.73 0.74 0.73 0.31 0.27 0.64 0.45 0.34 0.32
P3C 0.74 0.74 0.72 0.72 0.28 0.28 0.58 0.58 0.28 0.28

STATPC 0.91 0.32 0.92 0.10 0.09 0.00 0.67 0.11 0.64 0.01Pe
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max min max min max min max min max min
CLIQUE 0.31 0.31 0.76 0.76 0.01 0.01 0.07 0.07 0.2 0.2
DOC 0.90 0.83 0.79 0.54 0.56 0.38 0.90 0.82 0.41 0.29

MINECLUS 0.94 0.86 0.79 0.60 0.58 0.46 1.00 1.00 0.42 0.3
SCHISM 0.51 0.30 0.74 0.49 0.10 0.00 0.26 0.01 0.26 0.15
SUBCLU 0.36 0.29 0.70 0.64 0.00 0.00 0.05 0.04 0.09 0.09
FIRES 0.36 0.36 0.51 0.44 0.20 0.13 0.25 0.20 0.28 0.21
INSCY 0.84 0.59 0.76 0.48 0.18 0.16 0.37 0.24 0.53 0.21

PROCLUS 0.84 0.81 0.72 0.71 0.25 0.18 0.61 0.37 0.31 0.2
P3C 0.51 0.51 0.61 0.61 0.14 0.14 0.17 0.17 0.2 0.2

STATPC 0.43 0.43 0.74 0.74 0.45 0.45 0.55 0.55 0.62 0.62
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max min max min max min max min max min
CLIQUE 0.23 0.17 0.64 0.37 0.05 0.00 0.44 0.01 0.13 0.05
DOC 0.49 0.49 0.44 0.44 0.14 0.14 0.85 0.85 0.25 0.16

MINECLUS 0.48 0.43 0.37 0.37 0.09 0.04 0.62 0.34 0.12 0.12
SCHISM 0.37 0.23 0.62 0.52 0.05 0.01 0.43 0.11 0.11 0.09
SUBCLU 0.24 0.18 0.58 0.38 0.04 0.01 0.39 0.04 0.03 0.03
FIRES 0.16 0.14 0.13 0.11 0.02 0.02 0.14 0.13 0.03 0.03
INSCY 0.82 0.33 0.61 0.15 0.09 0.07 0.75 0.26 0.14 0.11

PROCLUS 0.49 0.49 0.44 0.44 0.11 0.11 0.53 0.53 0.13 0.13
P3C 0.08 0.05 0.17 0.16 0.12 0.08 0.69 0.43 0.25 0.21

STATPC 0.22 0.22 0.56 0.56 0.06 0.06 0.12 0.12 0.28 0.28
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Figure 13.14: Comparison of evaluation measures for the datasets Pendigits,
Shape, and Vowel of the UCI repository [FA10] based on the clustering results
of different subspace clustering algorithms provided by [MGAS09]
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max min max min max min max min max min
CLIQUE 0.68 0.65 0.67 0.58 0.08 0.02 0.38 0.03 0.2 0.05
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max min max min max min max min max min
CLIQUE 0.51 0.31 0.67 0.50 0.02 0.00 0.06 0.00 0.21 0.16
DOC 0.74 0.50 0.63 0.50 0.23 0.13 0.93 0.33 0.18 0.17

MINECLUS 0.76 0.40 0.52 0.50 0.24 0.19 0.78 0.45 0.28 0.15
SCHISM 0.46 0.39 0.63 0.47 0.11 0.04 0.33 0.20 0.15 0.14
SUBCLU 0.50 0.45 0.65 0.46 0.00 0.00 0.01 0.01 0.38 0.26
FIRES 0.30 0.30 0.49 0.49 0.21 0.21 0.45 0.45 0.24 0.24
INSCY 0.57 0.41 0.65 0.47 0.23 0.09 0.54 0.26 0.18 0.14

PROCLUS 0.60 0.56 0.60 0.57 0.13 0.05 0.51 0.17 0.21 0.07
P3C 0.28 0.23 0.47 0.39 0.14 0.13 0.30 0.27 0.29 0.28
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max min max min max min max min max min
CLIQUE 0.67 0.67 0.71 0.71 0.02 0.02 0.40 0.40 0.04 0.04
DOC 0.73 0.61 0.81 0.76 0.11 0.04 0.84 0.07 0.12 0.06

MINECLUS 0.78 0.69 0.78 0.76 0.19 0.18 1.00 1.00 0.12 0.08
SCHISM 0.67 0.67 0.75 0.69 0.01 0.01 0.36 0.34 0.01 0.01
SUBCLU 0.68 0.51 0.77 0.67 0.02 0.01 0.54 0.04 0.02 0.02
FIRES 0.49 0.03 0.76 0.76 0.03 0.00 0.05 0.00 0.02 0.01
INSCY 0.74 0.55 0.77 0.76 0.02 0.00 0.24 0.11 0.02 0.02

PROCLUS 0.57 0.52 0.80 0.74 0.51 0.11 0.65 0.43 0.48 0.16
P3C 0.63 0.63 0.77 0.77 0.04 0.04 0.19 0.19 0.03 0.03

STATPC 0.41 0.41 0.78 0.78 0.16 0.16 0.33 0.33 0.28 0.28
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Figure 13.15: Comparison of evaluation measures for the datasets Liver, Glass,
and Breast of the UCI repository [FA10] based on the clustering results of differ-
ent subspace clustering algorithms provided by [MGAS09]
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FOR subspace clustering methods, the process of identifying interesting sub-

spaces is integrated in the process of clustering. Subspace search approaches

decouple both processes, which provides more flexibility regarding the choice of

the subsequent clustering approach. In this chapter, we propose a novel method

for the visual analysis of high-dimensional data in which we employ an interest-

ingness-guided subspace search algorithm to detect a candidate set of subspaces.

Based on appropriately defined subspace similarity functions, we visualize the

subspaces and provide navigation facilities to interactively explore large sets of

subspaces. Our approach allows users to effectively compare and relate sub-

spaces with respect to involved dimensions and clusters of objects. It supports

the reasoning about the data from different perspectives, effectively yielding a

more complete view on high-dimensional data.
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14.1 Introduction

In this chapter, we propose a visual-analytics workflow for exploring high-dimen-

sional data in subspace projections, making use of algorithmic subspace search in

combination with visual-interactive representations for user-based filtering and

exploration. The analysis of high-dimensional data does not only pose challenges

to the cluster analysis but also to the visual-interactive side of data exploration.

A limited number of available visual variables and limited short-term memory of

human analysts make it difficult to effectively visualize data in high numbers of

dimensions. As for clustering, restricting the visual analysis to only the most rel-

evant feature subset will help to capture interesting data patterns more precisely.

For the clustering analysis, we know that insights may not be hidden in only

one single subspace, such that an analysis should consider multiple subspaces as

well as their interrelations. Especially, for high-dimensional data, we can expect

to have different views on the same data, whose ignorance might abandon use-

ful information. The existence of alternative relevant subspaces may stem from

the data description process when during preprocessing, features (dimensions)

which describe different semantic properties of the data, are combined. For in-

stance, in demographic analysis, households are often described by an array of

many variables, combinations of which constitute different conceptual domains,

such as wealth, mobility, or health. Likewise, it may be the combination of oth-

erwise not semantically related dimensions, which by their combination give rise

to interesting patterns. A class of subspace analysis algorithms has been proposed

to cope with the problem of identifying interesting subspaces and clusters from

a high-dimensional dataset. To date, however, there has been a very limited fo-

cus on the presentation and interpretation of the generated output. Furthermore,

subspace analysis often produces highly redundant results that need to be further

manipulated in order to get meaningful results [MAG+09a].

We propose an initial step towards the use of visual analytics as a way to

explore alternative views generated by subspace analysis algorithms. We define

an analytical pipeline made of algorithmic and visual components that permits

to single out and explore alternative views in the data. After being analyzed

by a subspace search algorithm, the data is structured and further processed in

an interactive visualization environment to reduce redundancy. The main con-

tribution of our approach is the operative definition and implementation of this

multistep pipeline which permits to sift through an exponential number of sub-
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space candidates and to reduce the problem to a handful of relevant views. More

specifically, we (1) introduce a mechanism to deal with subspace redundancy by

defining topological and dimensional subspace similarity and by allowing flexible

and interactive subspace aggregation; (2) we provide a well-reasoned interactive

visualization environment that permits to compare and assess alternative views

by visually comparing topological and dimensional similarities and strike a bal-

ance between the visual complexity and the level of detail.

We evaluate our method through two case studies. The first one is based

on synthetic data to demonstrate the tool’s potential. The second one is based

on real-world data to verify the tool’s usefulness for finding and interpreting

alternative views in high-dimensional data. We believe these results show the

potential of visual analytics in the context of automated mining algorithms for

supporting the understanding of the results, which can lead to new questions

concerning more effective mining algorithms.

14.2 Subspace Analysis

In this section, we discuss the challenges for visual subspace analysis in more

detail and explain how we tackle these with our new interactive, explorative

framework supported by subspace search algorithms.

As is commonly known in subspace clustering, dealing with high-dimensional

data in its subspace projections faces two main challenges. The first, serious

challenge is a reasonable scalability w.r.t. the dimensionality of the dataset. As

for a d-dimensional dataset the number of possible subspaces S ⊆ {1, . . . , d} is∑d
k=1

(
d
k

)
= 2d−1, many subspace clustering approaches do not scale well for very

high-dimensional data. Every algorithm has to employ some strategy and heuris-

tics to cope with such an exponential search space. The second, closely related

challenge is dealing with high redundancy, that stems from the high similarity of

the exponentially many subspaces. If two subspaces share a high proportion of di-

mensions, they are likely to exhibit a very similar clustering structure [GMFS09].

A large search result with high redundancy is, however, not beneficial for the user

as it masks the complete information and is hard to interpret.

A core task in analysis of high-dimensional data is to apply a clustering meth-

od to reduce the data complexity and to identify groups of data for compar-

ison. Different clustering algorithms follow different clustering notions, e.g.,

there exist density-based (e.g., DBSCAN [EKSX96]) or compactness-based (e.g.,
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k-Means) clustering methods, and their outcomes often crucially depend on non-

intuitive parameter settings. Usually several clustering attempts are required

until the user has a useful result. It is obvious that high runtimes of subspace

clustering processes (see Section 14.6.3) are not tolerable for such a workflow.

Consequently, we decided to start the visual data exploration one step before
the actual clustering process and decouple subspace search and the actual clus-

tering. Dedicated subspace search algorithms have been designed to efficiently

filter and rank the possible subspaces according to specific quality criteria (or

interestingness measures). The different subspace search approaches usually de-

pend on the mining task, such as clustering [BPK+04, CFZ99, KKKW03, NMB13]

or outlier mining [KMB12, KMWB13]. Only [BKM+13] presents a more general

framework, able to be adapted for both tasks. After subspace search has taken

place, an arbitrary clustering approach can be used to cluster in the identified

subspaces.

The use of subspace search for our purposes has several advantages: (1) It

helps to effectively filter out those subspaces that, based on a low interesting-

ness, do not need to be considered by the user. (2) Subspace search approaches

are designed to reduce the search space efficiently and they do not need to com-

pute clusters. And (3) although subspace search approaches themselves also rely

on certain assumptions of what makes a subspace interesting for clustering, these

assumptions do not necessarily lead to very different subspaces among different

approaches. Therefore, the results are not as biased as they are for different

clustering algorithms. For example, the quality assessment based on the k-NN

distance [BPK+04] or based on the density within grid cells [CFZ99] both eval-

uate the proximity of objects within a subspace and probably will award similar

subspaces. Furthermore they favor neither the DBSCAN nor the k-Means cluster-

ing notion. This enables the user to already obtain valuable results with a single

subspace search approach. And (4) integrating the subspace search into the high-

dimensional analysis offers the user the opportunity to obtain a visual, intuitive

overview of the clustering structure before even starting the actual clustering.

Thus, the user can assess the potential of the data to deliver valuable clustering

results at all; select the subspaces to cluster in; decide which clustering notion to

follow in each subspace (since the notion does not need to be the same for all);

more easily determine meaningful parameter settings for clustering approaches.

Subspace search methods guide their search process by specific interesting-

ness scores that are defined heuristically. For example, the method proposed in
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[CFZ99] considers the variation of the density of objects across a regular cell-

based partitioning of a given subspace. The underlying assumption is, that a

higher variation of density provides a higher probability that the subspace shows

a meaningful structure. As another example, the SURFING method [BPK+04]

relies on the histogram of the k-nearest neighbor distances for all objects in a

given subspace. It considers subspaces with non-uniform distance distributions

more interesting, as they are an indication of the presence of a strong clustering.

The underlying assumption is that for subspaces that show meaningful structures

(e.g., clusters), different k-NN distances will occur. These and other measures

aim at identifying subspaces that show a high “contrast” with respect to the dis-

tribution of objects, allowing to spot meaningful structures in the subspaces.

Subspace search methods also typically contain heuristic approaches to early

abandon uninteresting subspaces, as exhaustive search would be prohibitively ex-

pensive. SURFING, for example, is based on a bottom-up strategy for searching

subspaces by increasing dimensionality. It is based on testing additional dimen-

sions for subspaces already known to be interesting. The list of currently interest-

ing subspaces is continuously pruned to keep only the most interesting subspaces

and speed up the search. SURFING has no dimensionality bias (i.e., does neither

favor subspaces of lower dimensionality nor subspaces of higher dimensionality),

assumes no specific clustering structure, and in practice, it is parameter free. Due

to these properties, we rely on this method in our proposed approach, using the

implementation provided to us by the original authors, but other subspace search

algorithms could be easily used as well.

Overall, using the results of a subspace search algorithm as a starting point

for our visualization has many advantages. Subspace search methods, such as

SURFING, employ efficient search strategies tackling the efficiency challenge of

subspace analysis. However, they typically do not solve the challenge of high

redundancy, which motivates our proposed visual analytical workflow. Note that

the recently introduced subspace search approaches [NMB13, BKM+13] take the

redundancy explicitly into account algorithmically but have not been published

at the time of this work.

14.3 Proposed Analytical Workflow

We propose a carefully designed visual-analytics workflow for subspace-based ex-

ploration of high-dimensional data, making use of algorithmic subspace search in
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Figure 14.1: Our proposed analysis pipeline. A subspace selection algorithm
is applied to automatically identify a candidate set of interesting subspaces. A
filtering step reduces the potentially large and redundant set of automatically ob-
tained subspaces to a user-selectable number of representing subspaces. Visual-
interactive user exploration then proceeds on the subspace representations. Sub-
space analysis is also supported by comparative cluster views, allowing users to
identify meaningful similar, complementary, or even conflicting clustering struc-
tures in the set of subspaces.

combination with visual-interactive representations for user-based filtering and

exploration. Our approach starts (1) with an automatic subspace search step,

where a large number of interesting subspaces is selected by a subspace search

algorithm. Current subspace search methods provide an algorithmic handling of

the problem of finding interesting subspaces, yet they often produce too many

subspaces that may also be redundant and thereby overwhelm the interactive

analysis (see also Section 14.2). We, therefore, employ a similarity-based group-
ing of subspaces (2) and perform the interactive exploration of interesting sub-

spaces based on a few group representatives. Appropriate visual representations

and interactions support the visual interactive analysis (3) for better understand-

ing the subspace search results, including the support for comparative cluster

analysis.

Figure 14.1 depicts our proposed analytical workflow. Next, we detail the

technical design decisions made for each of the analysis steps, including discus-

sion of alternatives.

14.3.1 Generation of interesting subspace candidates

The advantages for choosing subspace search, and in particular SURFING, have

been already discussed in Section 14.2. We observe that typically subspace search

algorithms output a huge number of subspaces. Since the examination of all

subspaces is infeasible, a common approach is to filter the subspaces based on a

certain threshold for the assigned interestingness value. This, however, ignores

the fact, that the first ranked subspaces might be only slight variations (i.e., high

overlap of dimension sets) of the same subspace and, therefore, are redundant
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to each other. Yet, interesting subspaces with substantially different dimension

sets, as compared to the top ranked results, could be found at much later ranking

positions, and run the risk to be neglected from the analysis. Therefore, we apply

a grouping step based on an appropriately defined notion of subspace similarity.

14.3.2 Similarity-based subspace grouping and filtering

Given a large number of candidate subspaces, we apply hierarchical grouping

and filtering to yield a smaller set of mutually sufficiently different, yet individ-

ually interesting groups of subspaces for interactive analysis. Our filtering and

grouping operation is based on a custom similarity function defined on pairs of

subspaces according to two main criteria: (1) overlap of the sets of dimensions

of the respective subspaces, and (2) resemblance in the data topology of the re-

spective subspaces.

(1) Similarity based on dimension overlap: Subspaces can be similar regard-

ing their constituent dimensions. We use the Jaccard/Tanimoto Coefficient
[RT60] on bit vectors, indicating the contained (active) dimensions in a

respective subspace (1 denotes an active dimension, 0 the converse). The

Jaccard/Tanimoto Coefficient is then computed as the fraction of dimen-

sions contained in both subspaces (AND-ing of the bit vectors), among the

total number of different dimensions occurring in the subspaces (OR-ing of

the bit vectors).
(2) Similarity based on data topology: We also compare subspaces with re-

gard to their data distribution. Specifically, we consider the similarity of

k-NN relationships in the respective subspaces. For efficiency reasons, we

compute the k-nearest neighborhood (k = 20) lists for a sample of 5% of

the contained data points. The similarity between two subspaces is then

evaluated as the average percentage of agreement of k-NN lists in the sub-

spaces. This score measures the similarity of the k-NN topology of the data,

where k is a parameter and can be adapted to the datasets at hand by the

user. Note that, in general, also other similarity measures are possible. For

instance, the data can be clustered and the similarity between subspaces

can be evaluated according to the resemblance of obtained clusterings by

an appropriate measure such as the Rand Index [Ran71].

These two distance functions are the basis for the subspace grouping step in

our analytical workflow:
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(1) Subspace grouping: We apply hierarchical agglomerative grouping of sub-

spaces based on the topologic distance function using Ward’s minimum vari-

ance method [WJ63]. Based on the dendrogram representation of the ob-

tained hierarchical grouping, the user chooses the hierarchy depth level to

select a number of groups. This way the user can easily decide how many

clusters to use for the analysis.
(2) Subspace filtering: Based on the previously achieved grouping of sub-

spaces, we select one subspace from each group as representative: For each

group we consider the subspaces with the lowest dimensionality and choose

the one which exhibits the highest interestingness score. We note that other

rules for filtering representatives are possible, but find this rule to be robust

and effective for users, as it tries to keep the dimensionality as low as pos-

sible.

These steps together with both distance functions take us further towards our

goal of understanding the different kinds of relationships between subspaces.

They can complement, confirm, or contradict each other and the awareness of

these relations can be crucial for further mining tasks.

contained dimensions

similar not similar

data topology
similar truly redundant confirmatory

not similar dominant dimensions truly complementary

Table 14.1: Filtering cases that can be supported by our two defined subspace
similarity functions.

Four basic cases can be identified, each of which might be relevant for a given

subspace analysis task: (1) Subspaces that are similar in both, their dimension

sets and their data topology (truly redundant subspaces); (2) Subspaces that

are dissimilar in both, their contained dimensions and their data topology (truly

complementary subspaces); (3) Subspaces that are similar w.r.t. data topology

but dissimilar regarding their contained dimensions (confirmatory subspaces: we

confirm the same data relationships in different subspaces); and (4) Subspaces

that are similar w.r.t. their contained dimensions, but dissimilar regarding topol-

ogy (this is generally not expected but could indicate the existence of one or a

few dimensions which are by their nature very dominant for the data topology).

Table 14.1 illustrates these four basic filtering cases.
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14.3.3 Visual-interactive design

After hierarchical aggregation and/or filtering of the potentially redundant set of

subspaces, we apply a set of analytical views for exploring and comparing the

subspaces. Our displays are based on (1) scatterplot-oriented representations

of individual subspaces or groups of subspaces, (2) similarity-based or linear

list layouts for sets of subspaces, and (3) additional informative views, such as

parallel coordinates and color-coding for the comparison of groups in the data.

The proposed design is the result of several iterations of alternative solutions

in which we explored and compared several representations. Two design choices

are worth discussing here: (1) the design of a visual representative for subspaces

and (2) their layout. We decided to represent subspaces with scatter plots be-

cause they allow for the identification and comparison of groups in the data.

More abstract representations like simple colored marks would require less space

but would not allow the rich topological comparison provided by the scatter plots.

In contrast, representations that are more complex like, e.g., parallel coordinates

would provide a direct representation of the dimensions included in the subspace

but would make their representation much more cluttered. As for the layout, we

tried several tree and graph layouts to make the relationship between the sub-

spaces and their shared dimensions explicit but we found that this rarely provides

interesting insights and makes the visualization too cluttered to be of any use.

Figure 14.2: Subspace representation by 2D scatterplots with dimension glyph.
We can see two 5D subspaces (left) and one 4D subspace (right) in the visual
representations.

Scatter plots for subspaces can be generated by any appropriate projection

technique, such as PCA [Jol02], MDS [CC94], or t-SNE [vdMH08]. We currently

use MDS, but we experimented with others and any other technique could be

used as an alternative. For a group of subspaces, one representative subspace is

chosen (see below). To convey the involved dimensions, we also add an index

glyph to the respective scatter plot (see Figure 14.2).
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Figure 14.3: (1) Linearly sorted view of subspaces for the 12D synthetical dataset
from [FBT+10] showing the full result of SURFING, consisting of 296 subspaces.
The selected subspace in this view is shown in a (2) single subspace view to enable
interaction and in (3) a parallel coordinates view with the subspace dimensions as
the first axes (highlighted), and all the other data dimension as the last axes.

The analytical views are combined and linked in an application that consists

of the following components:

Linearly sorted view of subspaces. To obtain a first overview of the out-

put of the subspace search algorithm, we present all the subspaces in a linear

view. The MDS scatter plots representing the individual subspaces are sorted

left-to-right and top-down according to the interestingness index provided by the

subspace search method. This view is exclusively used as a detail view for groups

of topologically similar subspaces. Figure 14.3(1) illustrates the subspaces of the

synthetic dataset, which is described also later in Subsection 14.4.1.

Subspace group view. In this view, groups of subspaces that have been

formed by hierarchical agglomerative grouping are shown. Each group is rep-

resented by one selected subspace from that group, using the filtering method as

described in the previous Subsection.

The representative subspaces are each visualized by an MDS plot, and shown

side-by-side (Figure 14.4(1) illustrates). A dimension histogram on top of it in-

dicates the distribution of dimensions contained by the subspaces in the group,
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Figure 14.4: (1) Subspace group view for the 12D synthetic dataset with six sub-
space groups. (2) Single subspace view showing the representative subspace for
the first group. (3) Details-on-demand in the parallel coordinates view for the
selected subspace. (4) The MDS layout of the subspace search results based on
their dimension similarity. (5) Group detail view for the three (orange, green,
purple) subspace groups. (6) Hierarchical navigation buttons.

where the length of the bar encodes the frequency of the respective dimension.

The last bar encodes the percentage of subspaces contained in this group. It

is colored in orange to be easily distinguished from the others. Each group of

subspaces from the preceding view can be expanded and its member subspaces

can be seen and compared in detail (Figure 14.4(5)). This allows a better un-

derstanding of the current similarity threshold, and allows to expand or further

collapse the group structure based on visually perceived similarity between sub-

spaces. The user can investigate how similar the distribution of dimensions is

among different groups of subspaces. To this end, a click on the dimension his-

togram icon of one particular group will cross-highlight the dimensions of the

selected group that are also contained by other clusters. In summary, the sub-

space group view allows a global comparison of non-redundant subspaces and

their similarities concerning the contained data topology.

Dimension-based subspace similarity view. We also support the compar-

ative analysis of all subspaces based on their similarity regarding the set of ac-

tive dimensions. To this end, a global MDS layout, based on the Tanimoto dis-

tances between the subspaces, as described in Section 14.3.2, is generated. Fig-
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ure 14.4(4) illustrates the subspace similarity view. For a high number of sub-

spaces, this view can only provide an impression of the similarity relationships

but by zooming in, more details become visible. The subspace group view (based

on the data topology distance) and the dimension-similarity view (based on the

Tanimoto coefficient) are linked by color-coding (outer frame coloring). Thereby,

we can compare the similarity of subspaces by their topological and dimension-

overlap-based similarity.

Additional views and cluster comparison support. We also integrated a

details-on-demand functionality for each subspace by a parallel coordinates view
(Figures 14.3(3) and 14.4(3)). Highlighting the relevant dimensions helps to un-

derstand the difference of the subspaces in more detail. Furthermore, interactive

exploration of the subspaces is enhanced by a single subspace view, providing an

enlarged view of a selected subspace scatter plot (Figures 14.3(2) and 14.4(2)).

This view also allows to manually select clusters of objects with a lasso tool.

Cross-coloring the selected points among the other subspaces and within the par-

allel coordinates plot allows comparative exploration of grouping structures – a

core problem in making effective use of alternative subspaces.

14.4 Application

We now demonstrate the analytical capabilities of our proposed approach. First,

we use synthetic data as a proof of concept and exemplify the suggested work-

flow. We show how that relevant subspaces can conveniently be identified. Then,

we describe an explorative setting in which interesting findings in alternative

subspaces of a real world dataset are obtained.

14.4.1 Application Scenario 1: Synthetic Data

We used a 750 record sample of the first 12D synthetic dataset presented in

[FBT+10] (dataset No. 2). This dataset consists of four 3D Gaussian clusters

and two 6D Gaussian clusters. The remaining dimensions contain uniformly dis-

tributed random noise. The first step of our approach is to determine the inter-

esting subspaces of the high-dimensional dataset by running automatic subspace

search using SURFING (see Section 14.3). This subspace search returns a total

of 296 subspaces identified as interesting, out of the 4095 possible subspaces.

To get a first impression of these subspaces, we use the linearly sorted view of
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subspaces shown in Fig. 14.3, relying on MDS representations of the data in the

subspaces, and sorted by the interestingness score in decreasing order.

The view shows the diversity of subspaces identified during the automatic

step. The first elements in the first row of the view are very similar in terms of the

point distribution (showing mostly scattered and spherical point distributions).

However, at later positions, we also see other varieties of point distributions,

including parallel stripe patterns, and stripes mixed with spherical patterns. In

a normal (non-visual) analysis case, relying just on the subspaces ranked top by

the interestingness score, the analyst might extract redundant information and

might miss some of these different characteristics of the subspaces.

The overview also confirms that the subspace search did return a lot of re-

dundant subspaces, judging by the shape of the MDS projection representations.

The next step is, therefore, to group the subspaces according to their similarity,

allowing the user to abstract to a smaller number of relevant subspaces to com-

pare them in detail. We used our similarity function based on the data topology,

creating a hierarchal agglomerative clustering. The navigation buttons, as shown

in Fig. 14.4(6), allow the user to move through each dendrogram level and to

find the desired level of redundancy. Here, the dendrogram was cut at 0.73, very

close to the root. As a result, six groups are found and visualized by their repre-

sentatives. Fig. 14.4(1) shows that the number of subspaces can considerably be

reduced in a meaningful way by the user. The number of groups can be varied,

and the user can also investigate different levels in the dendrogram hierarchy. In

this data we quickly found that six groups is the right level of detail for further

investigation.

We investigate the components of each group of subspaces in more detail. Fig.

14.4(5) shows the group detail view of the orange, green, and purple subspace

groups as framed in Fig. 14.4(1). Topologically similar subspaces are grouped

together to give the analyst an overview of the existing groups and, if needed, to

further compare individual group components.

On top of the scatterplots a dimension histogram indicates the distribution of

dimensions for each group. The last bar of the histogram is marked in orange

and represents the percentage of subspaces contained in this group. It is scaled

logarithmically, so that this bar is also visible for groups with few elements. A

click on the dimension histogram of one group representative highlights its di-

mensions in all the other representatives. In Fig. 14.4(1) the green group was

clicked. To understand why the green- and gray-framed groups are split, we can
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consult the additional view in Fig. 14.4(4). It shows an MDS layout of all interest-

ing subspaces based on the dimension overlap (Tanimoto) similarity. In this view,

closeness of two subspaces corresponds to dimension similarity. We see that the

green- and gray-framed cluster groups are located on the far left side in the plot.

This shows us that the subspaces are similar in terms of dimensions, but being in

different groups, they must show different topological similarity according to our

similarity measure. This can be explained as all the subspaces of the gray-framed

group contain dimension d12, while none of the subspaces in the green-framed

group contains this dimension. This is visible by the bars in the dimension his-

togram of the gray-framed group. As it is not highlighted, it is not contained in

the marked green-framed group. This dimension is obviously responsible for a

different data distribution.

We can also go one step further and compare the topological similarity of

subspaces by cross-color-coding clusters of points in the MDS representation.

Our lasso tool allows the user to manually mark clusters of points in the MDS

subspace representation, which allows to cross-compare the groupings among

different subspaces. For example, we manually marked six separate clusters of

points in the pink-framed subspace group (group number two in Fig. 14.4(1))

and assigned distinct colors. By analyzing the distribution of colors among sub-

space group representatives, we see that other subspaces merge some of these

clusters and spread others, highlighting the differing data distributions.

Summing up, we can see how our visual analytics workflow helps to deal with

the extensive number of possibly interesting subspaces in a natural overview-first

based visual analytics workflow. In a first step, the SURFING approach reduced

the number of subspaces of the 12 dimensional dataset from 4095 to 296 interest-

ing ones. Since this set of subspaces still showed a high redundancy, in our next

step, we grouped them using our topological similarity measure. Based on the

grouped subspaces, further investigations can take place to compare the relations

and distributions among points of data within the subspaces.

14.4.2 Application Scenario 2: Exploration/discovery

We will now demonstrate the exploratory functionalities of our proposed ap-

proach based on a real dataset. We analyze the USDA Food Composition Dataset

(http://www.ars.usda.gov/), a full collection of raw and processed foods charac-

terized by their composition in terms of nutrients. The database contains more
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Figure 14.5: (1) Linearly sorted view cutout of subspaces for the 18D USDA Food
Composition Dataset. The full result of SURFING, consisting of 216 subspaces.
We see a rather high level of redundancy. Subspaces exhibiting more structure
are found in particular at the mid and end positions in the ranking. Relying only
on the numerically top ranked results, we would have omitted such interesting
cases from the analysis.

than 7000 records and 44 dimensions. After removing missing values and out-

liers, as well as normalizing, 722 records (foods) remained for which we selected

18 dimensions of the dataset that where interpretable to us.

For this dataset, the application of the SURFING algorithm returned 216 in-

teresting subspaces for further exploration. To get a first impression of this data,

we investigated the linearly sorted view (see Fig. 14.5 for a cutout). Many sub-

spaces, in particular those ranked with a high interestingness index, show a

rather skewed distribution of points in our projection representation, concentrat-

ing along the edges of the diagrams. Only later in the ranking, we start to see the

projections forming out more structure, that could be meaningful. The red color

framed subspace in Fig. 14.5 seems to be very interesting, forming long, clear

stripes. With the help of the single subspace view, we further investigated this

subspace (Iron,Maganase, V itD) by coloring each stripe with a different color

and compared the formation of these clusters across the other subspaces. Most

of them seemed to be overspread by the cyan class (see Fig. 14.5 right).

At the same time, it is clear that a high level of redundancy is still present,

and a further grouping is deemed necessary. Therefore, we continued with our

next analytical step, the subspace grouping by agglomerative hierarchical cluster-

ing. We obtained different groups of subspaces and found out that these clearly

striped clusters only appear in subspaces containing V itD.
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Figure 14.6: (1) Grouped view of subspaces for the 18D USDA Food Composition
Dataset with 12 group representatives. (2) The brown and orange group compo-
nents are shown in the components view. (3) MDS Layout of the total number of
subspaces with cross-colored group representatives.

We therefore reset the coloring and started a new interactive analysis step,

beginning with this stage of our workflow. After testing different filtering thresh-

olds and comparing the topological- and the dimension-based similarity relations,

we obtained a number of 12 groups, and considered this suitable for subsequent

analysis.

From the reduced number of representative subspaces, one particular sub-

space stood out to us (see Fig. 14.6(1) for the group representatives and Fig.

14.7(A) for the interesting spotted one). This subspace shows the most struc-

ture and allows to discern two point clusters (pink and blue). We selected this

specific subspace group (framed brown in Fig. 14.6) for further analysis. Cross-

coloring is used to highlight its group components, that are shown at the bottom

of the figure. It is visible that the group of subspaces are topologically similar,

consequently this subspace is a valid representative.

In addition, we observe that there are some subspaces in this group where

the clustering is changing. One example is shown in Fig. 14.7(B). We assigned

the green color to the outstanding points on the left side, as they seem to form

a different structure. In the group view (see Fig. 14.6(1)) we can see that this

green cluster overspreads on five of the 12 subspace group representatives. Af-

ter a closer look to the components of the orange subspace group, we spotted a
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BA DC

Figure 14.7: (A) Interesting spotted subspace (Carbohydrate, F ibre) presenting
two clusters. (B) Subspace (Carbohydarte, Lipid, Protein) in the same cluster
group of (A) where the cluster structure changes. (C) Green marked third clus-
ter in subspace from (B). (D) Subspace (Fiber, Protein, V itD) of orange color-
framed subspace group, where the alternative clustering of points is visible.

sharply defined green cluster (see Fig. 14.7(D) and highlighted in Fig. 14.6(2)).

By highlighting the dimensions of the orange group, we can see that the brown

group has a dominant dimension (Protein) that is not contained by any subspace

of the orange group. We can therefore assume that this dimension is decisive for

the clustering of the points. In the dimension-based similarity view (MDS Lay-

out in Fig. 14.6(3)) the subspaces of the brown and orange groups are far apart

from each other, which supports our finding that the groups contain different di-

mensions. Likewise we can see that the group components of the brown group

are scattered across the MDS layout. This is due to the fact that the group sub-

spaces are dissimilar in terms of their dimensions, but their topological similarity

is dominated by the shared dimension (Protein).

Summing up, we demonstrated how our interactive, exploratory workflow

can be applied to real data. Compared to the previous scenario, the information

about the clusters is not known in real datasets, meaning that several interac-

tive attempts are needed to investigate the vast number of interesting subspaces

provided by the subspace search algorithm. With the help of the topological sim-

ilarity functionalities, we could group the redundant clusters and have a closer

look in their topological change. Using the different linked views of our approach

helped us to identify different subspaces that present alternative clusterings.

14.5 Discussion and Possible Extensions

We will now summarize the main goal of our system, and discuss limitations and

possible extensions.
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14.5.1 Summarizing the Main Goals of our Approach

Our presented approach supports visual-interactive analysis of high-dimensional

data from multiple perspectives based on the notion of automatic subspace search.

The core assumption for our approach is that useful information could be ex-

tracted in a comparative way from several different subspaces residing in a larger

high-dimensional data space. This assumption is the key driving force behind

subspace search and subspace clustering algorithms developed in the Data Min-

ing community over the past few years. We exploit algorithmic subspace search

in an encompassing visual-interactive system. Our approach is designed around

Shneiderman’s Visual Information-Seeking Mantra [Shn96], applied to the prob-

lem of analyzing potentially large sets of subspaces. Modern subspace search

methods such as SURFING efficiently identify candidate subspaces that are ex-

pected to exhibit informative structure without restriction to a specific nature

of the structure. Specifically, interactively detecting and understanding relevant

structures in subspaces is an explicit goal of our system. Our interactive sup-

port allows users to condense and compare subspaces, and even groups in data.

Thereby, we close the analytical loop from algorithmic search of subspaces to

sense-making by the user. Subspace search algorithms are very useful as a start-

ing point. Since the identification based on interestingness is done heuristically,

the search methods alone cannot solve the analytical problems at hand. To this

end, capable visual-analytic systems need to be designed based on the output of

the subspace search algorithm. We therefore designed, implemented, and applied

an encompassing system design based on a subspace search method (exemplar-

ily we used SURFING). It allows to explore high-dimensional data taking into

account the curse of dimensionality and the possibility to find alternative clusters

in different subspaces.

14.5.2 Limitations and Possible Extensions

We identify the following opportunities to improve our approach.

Computational scalability. We designed and tested our system around data-

sets of moderate dimensionality of tens of dimensions. For higher-dimensional

data, we will have to deal with scalability issues regarding the computational

complexity of the subspace search. To tackle this problem, subspace search algo-

rithms probably need more aggressive filtering mechanisms to keep the number

of searched subspaces in the exponential search space tractable. However, we
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still need to ensure that no relevant results are excluded. The approaches of

[NMB13, BKM+13] provide possible solutions to this problem.

Visual scalability. For higher-dimensional data, we also need scalable visual

representations. We need to scale with the number of subspaces and the repre-

sentation of each subspace. The linearly sorted view, per se, does not scale for

many subspaces, yet it can be restricted to the representative subspaces obtained

from the hierarchical grouping. A visual representation of subspaces is realized

by lower-dimensional projections to show the data points and an index view to

show the relevant dimensions. In particular, the latter will only scale for a limited

number of dimensions. The design of set-oriented views to compare many sets of

dimensions is a challenging problem whose solution would improve our tool.

Projection-based subspace representation. We currently represent the sub-

spaces by MDS projections of the data residing in respective subspaces. However,

projection typically induces loss in information, that could be incorporated in

our visualization, e.g., by showing the stress values in an overlay visualization

[SvLB10]. In our experiments, MDS performed very well compared to using

PCA. Yet, it would be interesting to test other projections. Also, other subspace

representations besides scatterplots could be thought of, in essence similar to

Value-and-Relation displays [YPH+04]. Likewise, many different, useful simi-

larity notions to group and compare subspaces, such as notions based on stress

measures, implicit clustering structures, relations to outliers, Scagnostics features

[WAG05], etc. could be employed. Testing them in different application domains

is considered valuable future work. We note that our analytical approach can

easily accommodate alternative subspace search algorithms, representations, and

filtering options.

Interpretable Dimensions. To relate subspaces and data groups in subspaces,

it is important for the analyst to be aware of the meaning of the dimensions of

the respective subspace. Our index-based glyph does not convey information

about the type of dimension. Detail-on-demand functions could be added to

help the user interpret the involved dimensions and properties of the data points

semantically and efficiently.

Definition of interestingness and sensitivity to noise. Subspace search al-

gorithms heuristically identify subspaces as interesting based on certain proper-

ties of object relations. Based on the user and application, additional interesting-

ness formulations are possible and should be supported. Following best practices

in data analysis, we have applied a data cleaning step (outlier and missing value
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removal) to our tested data before we fed it into our system. The SURFING algo-

rithm is not robust with respect to missing values, whereas it seems to be robust

with respect to outliers. The original paper does not discuss this aspect and we

did not further investigate it. The projections used to represent data distributions

in subspaces are sensitive to outliers and may generate clamped distributions if

not pre-processed. We postpone the analysis of this problem to future work.

Usability and user adoption. Our current system design targets users with

expertise in data mining. End-user applications, e.g., in market segment analysis,

could benefit from subspace analysis. Though, we recognize that for end-users,

the interface of our system would need to be customized, possibly. Our experi-

ence in collaborating with data mining experts showed that the tool can be useful

not only for data exploration but also as an evaluation tool to assess the output

generated by subspace analysis algorithms.

14.6 Related Work

14.6.1 Visualization and Clustering of High-Dimensional Data

Visualization of high-dimensional data is a long-standing research topic. Classic

approaches include parallel coordinates, scatter plot matrices, glyph-based and

pixel-oriented techniques [WGK10]. By appropriately sorting dimensions and

mapping them to visual variables, these methods allow to overview and relate

high-dimensional input data. However, we may experience scalability problems

for large numbers of dimensions or records. Dimensionality reduction methods,

such as PCA [Jol02] or MDS [CC94], can be used for the subsequent visualization.

Identification and relation of groups of data is a key explorative data analysis

task. Often, user interaction is needed to identify and revise the number and

characteristics of data clusters found by automatic search methods. To this end,

visual-interactive approaches are useful. Although, many methods have been pro-

posed, we can only highlight few of them in an exemplary manner. In [Shn02],

interactive exploration of hierarchically clustered data along a dendrogram data

structure is proposed to help users find the right level of clusters for their tasks. In

[YWRH03], the parallel coordinates approach serves as a basic display to show

data clustering results allowing to compare clusters in their high-dimensional

data space. Also, 2D projections, possibly in conjunction with glyph-based repre-

sentation of clusters, are widely employed, a recent example is [CGSQ11].
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These approaches to visualization and clustering in high-dimensional data

spaces all have in common that they are based on a given full (or reduced) di-

mensionality of the input dataset. Thereby, they show only a singular perspective

of the usually multi-faceted high-dimensional data, that might not be the most

relevant one. As we show with our approach, it is also useful to explore high-

dimensional data for patterns in subsets of its full high-dimensional input space

to increase potential data insight.

14.6.2 Automatic and Visual-Interactive Feature Selection

In machine learning, feature selection is the problem of selecting a small number

of features from a larger input feature space such that a measurable criterion,

e.g., the accuracy of a classifier [LM07], is optimized. Most automatic feature

selection methods rely on supervised information (e.g., labeled data) to perform

the selection. Therefore, they are not directly applicable to the explorative analy-

sis problem. In existing works, involving visual-interactive selections or compari-

son of features, the Rank-by-Feature Framework [SS04] provides a sorted visual

overview of the correlation among pairs of features. In [JJ09], the selection of

input features was supported by a measure of the interestingness of the visual

view provided by candidate features. An interactive dimensionality reduction

workflow was presented in [IMI+10], relying on visual approaches to guide users

in selecting features.

In [BvLBS11] and [BvLH+11], interactive visual comparison was proposed

to relate data described in different given feature spaces based on 2D mappings

and tree structures extracted from the different data spaces. Furthermore, in

[LSP+10] a visual design based on network and heat map visualization was pro-

posed to relate clusterings in different subsets of dimensions. In [YWRH03], di-

mensions are hierarchically clustered based on a simple value-oriented similarity

measure. Based on this structure, user navigation can take place to identify in-

teresting subspaces. In a recent work [YWG11], the output of this simple search

method was visualized by tree- and matrix-based views, where each dimension

combination was represented by a single MDS plot.

In summary, many of these methods are applicable to compare data regarding

different criteria. However, most of them assume the feature selection to be

performed globally and do not take the subspace search problem directly into

account.
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14.6.3 Subspace Cluster Analysis and Visualization

The problem of finding clusters in high-dimensional data can be divided into two

sub-problems: subspace search and cluster search. The first one aims at finding

the subspaces where clusters exist, the second one at finding the actual clusters.

The large majority of existing algorithms considers the two problems simultane-

ously. Only few works consider a visualization support for subspace clustering.

The VISA [AKMS07b] system uses visualization to help interpreting the subspace

clustering result. A global view shows the similarity between clusters in terms

of the number of records and dimensions, and a detail view shows properties

of individual clusters. A disadvantage of this approach is that no visualization

or comparison for the data distribution in the respective subspaces is supported.

Heidi Matrix [VK09] uses a complex arrangement of subspaces on a matrix repre-

sentation based on the computation of the kNN in each subspace. The complex

visual mapping scheme may not be easy to use and its effectiveness, to the best

of our knowledge, has not been evaluated yet. [FBT+10] proposes an approach

for finding and visualizing interesting subspaces in astronomical data. Candi-

date subspaces are found from the data and ranked by a quality metric based on

density estimation and morphological operators.

We note that if we apply one of these subspace clustering visualizations, we

immediately inherit two main challenges of this paradigm that are still consid-

ered open research issues, namely: the efficiency challenge (relating to subspace

cluster search) and the redundancy challenge (relating to the typical redundancy

of the outputs generated).

14.7 Conclusions

We presented an encompassing visual-interactive system for subspace-based anal-

ysis in high-dimensional data. Subspace-based analysis can constitute a new

paradigm for high-dimensional data analysis since informative structures in the

data can be found and compared in different subspaces of a larger high-dimen-

sional input space. We defined, implemented, and demonstrated an analytical

workflow based on automatic subspace search. A large set of automatically iden-

tified interesting subspaces is grouped for interactive exploration by the user. A

custom subspace similarity function allows for comparing subspaces. Our ap-

proach is able to effectively pin down several interesting views and helps to come
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up with specific findings regarding similarities of groups in the data. We dis-

cussed a set of possible extensions of the system, which could be addressed as

future work.
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THE research area of subspace clustering is highly related to the research area

of detecting multiple clusterings. Multifaceted data and its clustering results

can often be semantically structured by concepts. Although subspace clustering

methods generate concept-based patterns, the user has to provide domain knowl-

edge to gain reasonable concepts out of the data. The first tool CoDA (Concept
Determination and Analysis) that we present in this chapter supports the user in

the final step of concept definition. More concretely, the user is guided through

an iterative, interactive process in which concepts are suggested, analyzed, and

potentially refined. The core aspect of CoDA is an intuitive, concept-driven pre-

sentation of subspace clusters such that concepts can be visually captured.

Based on the concepts defined with CoDA or for the several alternative clus-

tering solutions generated by multi-view approaches, another interesting task is

to learn how the different solutions are related to each other. Our second tool,

MCExplorer (Multiple Concepts Explorer), allows for an interactive exploration,

browsing, and visualization of multiple clustering solutions on several granu-

larities. MCExplorer is applicable to the output of both full-space and subspace

clustering approaches.
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15.1 Introduction

In the past decades, a multitude of clustering methods were developed to extract

one (’the best’) grouping out of the data. However, data is often multi-faceted:

for a single dataset, multiple valid interpretations and thus different alternative

groupings are possible. Each of these valid views, also called concepts, provides

different insights about the data. Accordingly, extracting these multiple or alter-

native clusterings is an active research area as recent publications in the field of

full-space clustering show [CFD07, DQ08, QD09, BB06, GH05].

In this thesis, we focused on combining the research area of multi-view clus-

tering with the research field of subspace clustering, where the observation of

multiple valid groupings within the data is even more apparent: many subspace

clustering algorithms implicitly detect multiple concepts by their very nature. Of-

ten, a single subspace clustering result corresponds to multiple views and certain

clusters are a manifestation of an abstract concept. In the toy example of Chapter

4 (cf. Fig. 15.1) the subset of clusters “healthy living individuals” and “unhealthy

living individuals” represent the concept “health status”, while the set of clusters

{C3, C4, C5} describes the concept of “taste of music”.
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Figure 15.1: A subspace clustering revealing two different clustering concepts

While traditional subspace clustering techniques [PHL04, KKZ09] simply de-

tect clusters in arbitrary subsets of the dimensions and concepts are only detected

implicitly, some approaches (e.g., OSCLU and ASCLU (Chapters 4 & 5)) explicitly

utilize the idea of concepts to identify clusters in strongly differing subspaces.

The set of clusters generated by subspace clustering approaches is, however,

unstructured and the different underlying concepts have to be determined in a

post-processing step. The first tool CoDA, that we will introduce in Section 15.2,
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helps to determine and analyze concepts for the output of any subspace cluster-

ing method and to assign the detected subspace clusters to their corresponding

concepts. Thereby, CoDA helps in closing the gap between subspace clustering

and multi-view clustering.

Extracting different concepts and their clusters is a first valuable step to-

wards knowledge extraction. The similarly essential and indispensable second

step deals with the analysis of detected patterns. Our tool MCExplorer, presented

in Section 15.3, focuses on this second step and supports the comparison and

analysis of the generated alternative solutions. This tool enables the user to de-

cide on her preferences regarding different solutions but also to understand the

different grouping patterns.

15.2 A Tool for Concept Determination and

Analysis

15.2.1 Introduction

This thesis thoroughly discussed the fundamental parallels between subspace

clustering and multi-view clustering. Although we can interpret the set of de-

tected subspace clusters by one of the various subspace clustering approaches

as manifestations of several abstract concepts, this set is unstructured and the

concepts do not become apparent. Out of the various techniques for subspace

clustering [KKZ09], some approaches as OSCLU (Chapter 4), ASCLU (Chapter

5), or [CFD07, DB13b] already focus on the specific task of grouping objects

according to underlying concept structures: they find clusters in strongly differ-

ing subspace projections, providing the key for discovering the inherent concept

structure. Since the concepts are generative, i.e., they actually induce the clus-

ters, they cannot be automatically concluded out of clusters. Accordingly, the

mentioned subspace clustering techniques achieve concept-based aggregations

of objects but are not capable of abstracting from these aggregations in the sense

of named concepts.

In real-world applications, however, the interest lies in the explicit discovery

and naming of the underlying concepts. This task cannot be solved automatically

by unsupervised learning methods such as subspace clustering but requires the

domain knowledge of an expert. Our tool CoDA supports the user in revealing the
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concepts out of a given subspace clustering. For this purpose, it provides the user

with concept-oriented cluster visualization and interactive exploration to enable

her to uncover the inherent concept structures. The main challenges tackled with

CoDA are:

• Determination of concept structures
• Analysis of single concepts, as well as inter-concept dependencies

Each concept can be described by its occurring clusters on the one hand and

its characteristic attributes on the other hand. Since the related clusters are not

known beforehand, the idea is to capture the concepts through the structure of

relevant attributes of the clustering. The relevant attributes are of particular im-

portance for a semantic labeling of clusters and concepts. The process of concept

determination can be divided into two phases as depicted in Fig. 15.2. Given a

subspace clustering of database objects, in a first determination step, an interim

grouping of clusters representing concepts is calculated based on their relevant

subspaces. In a second determination step, the user sets the significant attributes

for each represented concept. In the analysis phase, the user takes a closer look

at the concept compositions and gives feedback to refine or to recalculate the

concept structures. Thus, the whole process of concept discovery is iterative and

highly dependent on user interaction.

In the following two subsections, we introduce our tool CoDA (Concept Deter-
mination and Analysis). CoDA is integrated into the OpenSubspace framework

[MAG+09a, MGAS09] that adds subspace clustering functionality to the well-

known WEKA Data Mining Software. In this framework, several subspace clus-

tering algorithms are integrated; for CoDA, these algorithms can provide subspace

clusterings to analyze them for concept structures. Fig. 15.3 shows a screenshot

of the framework with the CoDA integration. Subspace clusterings are created in

the SubspaceClusterer tab, and CoDA is realized in the CoDA tab. Since CoDA com-

prises two phases, i.e., concept determination and concept analysis, these phases

are realized by two distinct tabs. The final concepts are determined by a cyclic

usage of the two interdependent phases.

15.2.2 Concept Determination

In the following, we present how concepts are determined with CoDA. Remember,

concepts induce clusters and not vice versa. Since in most application scenarios,

the inherent concepts of the data are unknown, CoDA determines these concepts
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Figure 15.2: 2-phase, iterative workflow of CoDA

for a given subspace clustering by integrating users and their domain knowledge

into the search process. The phase of concept determination has two goals: First,

to assign the given clusters to possible concepts. Second, to determine the signif-

icant dimensions of these concepts.

Clusters that share relevant dimensions are expected to describe the same

concept and are, therefore, automatically grouped together. These groupings,

however, do not consider semantic knowledge; the user has to refine them in

the concept analysis phase. The assigned clusters of a possible concept can have

different relevant dimensions, preventing an automatic determination of the con-

cept’s significant dimensions. It is, therefore, the task of the user to select these

dimensions. This process is called concept shaping. The two steps, cluster group-

ing and concept shaping, are now presented in more detail.

Finding concepts based on cluster grouping.

The first step aims at grouping subspace clusters such that the resulting groups

possibly represent meaningful concepts. This is achieved by grouping the given

subspace clusters according to their relevant dimensions and knowledge that was

obtained in previous iterations of the concept analysis; the latter will be explained

in more detail in Section 15.2.3. The clusters of one group very likely belong to

the same concept and, therefore, represent this concept. In CoDA, the found con-

cepts are displayed in the left part of the concept determination tab (cf. Fig. 15.3).

The details of a concept’s corresponding subspace clusters can be inspected by the

user: by clicking on a cluster the cluster’s objects and the relevant dimensions are

shown. This is a functionality that is already implemented in the OpenSubspace

framework and has shown to be very intuitive.
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Figure 15.3: Concept determination tab of CoDA

Technically, the grouping of clusters to achieve meaningful concepts is real-

ized by constraint-based clustering [WC00, WCRS01, Dav09]. In this clustering,

the similarity between two clusters Ci and Cj is determined solely through their

relevant dimensions, i.e., the similarity of their subspaces Si and Sj. It is formally

defined by (Jaccard/Tanimoto Coefficient): sim(Ci, Cj) = |Si ∩ Sj|/|Si ∪ Sj|.
Knowledge obtained in previous iterations of the concept analysis is included

into the clustering process by encoding this knowledge as constraints. More con-

cretely, we provide must-links and cannot-links, i.e., the user can specify which

clusters belong to the same concept and which do not.

Concept shaping.

In the following, we describe how the preliminary concepts found in the previ-

ous step are concretized by determining the significant dimensions of a concept.

CoDA provides a bar chart for each concept that visualizes the relevance of each

dimension (cf. Fig. 15.3). These dimensions are the basis for specifying the se-

mantics of the final concepts in the preceding concept analysis phase. Since the

corresponding subspace clusters of a concept have different relevant dimensions,

the significant dimensions cannot be determined automatically. Based on a visual

discrimination of significant and non-significant dimensions, the user can specify

a threshold for each concept. Formally, the relevance of a single dimension di
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Figure 15.4: Dimension ordering in parallel coordinates plots and their influence
on visual interpretation

for a concept cpt and its assigned clusters Cj = (Oj, Sj) with object set Oj and

subspace set Sj, is determined by:

rel(di, cpt) =
1∑

Cj∈cpt |Oj|
∑

Cj∈cpt
|Oj| · |{di} ∩ Sj|

The output of this phase is a set of concepts and their selected significant

dimensions.

15.2.3 Concept Analysis

In the previous phase of CoDA, the user determines the concepts; the second

phase, described in the following, allows an in-depth analysis of these results (cf.

Fig. 15.5). First, the analysis enables the user to comprehend the domain-specific

semantic of a concept, e.g., by examining the actual characteristics of the clusters

induced by the concept. Second, the user can improve the concept determination

of subsequent steps by identifying any discrepancies in the current step.

Concept-centric parallel coordinates.

Our CoDA uses parallel coordinates to visualize the concepts and their induced

subspace clusters in an intuitive way. Parallel coordinates are a technique to illus-

trate high-dimensional datasets [ID90]. Because each concept is associated only

with a subset of dimensions, i.e., its significant ones, an intuitive illustration is

challenging. A naive use of parallel coordinates would lead to a representation

where significant and non-significant dimensions are interweaved. The exam-

ple in Fig. 15.4(a) shows a plot of two subspace clusters of the same concepts

and with the relevant dimensions {1, 3, 6, 8}. A visual interpretation of this plot
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and, thus, a knowledge extraction is difficult since the non-significant dimensions

hinder a condensed view of the data. For a clear representation it is important

to group the significant dimensions of a concept together. In Fig. 15.4(b) the

dimensions are permuted such that {1, 3, 6, 8} are adjacent.

With our CoDA the user is able to analyze inter-concept dependencies, i.e.,

several concepts (with different sets of significant dimensions) are visualized si-

multaneously. To facilitate a clear visual impression for the user, CoDA performs

a sophisticated arrangement of the dimensions, such that for each considered

concept its significant dimensions are grouped together as good as possible. The

arrangement of dimensions is easy to realize for each concept individually but

when several concepts are considered simultanously the problem of arranging di-

mensions gets more complicated. Technically, the optimal ordering of dimensions

is solved by using matrix bandwidth minimization techniques [MS00, MCP08].

The concept analysis tab of CoDA is depicted in Fig. 15.5. The user is able

to select a set of concepts to be analyzed with our tool. Based on the selected

concepts and their significant dimensions, the arrangement of the dimensions is

determined automatically. The clusters of the corresponding concepts are plot-

ted within the parallel coordinates diagram. By using color codes, the different

concepts and their induced clusters can be distinguished. To enable a visual in-

terpretation, CoDA describes a cluster by a single representation (e.g., the cluster

mean) instead of all its objects, and we also skip the irrelevant dimensions of

each subspace cluster. However, keep in mind that the relevant dimensions of

the clusters do not necessarily correspond to the significant dimensions of the

concepts. To provide the user with a comparison of these dimension sets and to

give an easy overview for analyzing the inter-concept dependencies, CoDA addi-

tionally shows the significant dimensions of each concept in a bar diagram below

the parallel coordinates.

User interaction for concept improvement.

By comparing the relevant dimensions of clusters and the significant dimensions

of concepts, the user is able to detect any discrepancies in the concept determi-

nation so far. In Fig. 15.5, for example, the cluster C4 fits not very well to its

currently assigned concepts. Adjusting the concept determination based on the

concept analysis is thus crucial for a meaningful overall interpretation.

The easiest way to modify the current concepts is by readjusting the signifi-

cance thresholds in the concept determination tab (cf. Fig. 15.3). Thereby, the

user changes the significant dimensions of the concepts and consistency with the
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Figure 15.5: Concept analysis tab of CoDA

induced clusters can be realized. Note that this interaction does not influence the

cluster grouping. For adjusting these groupings, CoDA implements more complex

interactions such that the user is able to initiate a regrouping of the clusters to

form novel concepts.

Consider the cluster C4 and the other cluster in the same subspace in Fig. 15.5.

Based on the previous analysis and with the knowledge of the application do-

main, the user identifies that these two clusters do not belong to the current

concept but they build an own concept. In CoDA, these clusters can be selected

and the user can enforce this set to represent a new concept (button ’new con-

cept’ in Fig. 15.5). Similarly, the user can resolve conflicts if a cluster is wrongly

assigned to a concept (button ’delete from current concept’): the selected cluster
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has to be assigned to another concept. Even stricter, the user can classify clus-

ters as outliers that do not belong to any concept (button ’is outlier’). The user’s

decision, which interaction is reasonable, can be further confirmed by a detailed

analysis of each cluster individually. By clicking on single clusters, a pop-up ap-

pears that does not just plot the single representative for the cluster but also the

exact object values within the parallel coordinates plot.

After doing several of these interactions, the user can initiate a readjustment

of the current cluster groupings (button ’adjust groupings’). As a result, refined

and more sound concepts are identified. Technically, we realize the interac-

tions and the regrouping by using constraint based clustering [WC00, WCRS01,

Dav09]. The different types of interactions are implemented with particular

must-link and cannot-link constraints between the subspace clusters.

The refined concepts, i.e., the novel grouping of clusters, cause new and re-

fined significant dimensions for each concept. Accordingly, CoDA guides the user

to the concept determination tab where novel thresholds within the bar charts

can potentially be set, realizing a cyclic dependency between the determination

and analysis of concepts to increase the quality of each step. By performing mul-

tiple iterations of this process, the user can gain a deeper understanding of the

concept structure of large databases.

15.3 Exploring Multiple Clustering Solutions

15.3.1 Introduction

The detection of multiple clustering solutions is an active research area for tradi-

tional clustering as well as for subspace clustering. However, all of the presented

methods focus just on the extraction of different concepts and their clusters. So

far, there is no possibility to compare and analyze these alternative solutions.

This, however, is the key for meaningful knowledge extraction. Are the concepts

similar to each other or do they provide novel and interesting patterns? Do struc-

tures of one concept occur also in another one? Is this redundant information?

What are the similarities or differences between individual clusters of multiple

concepts? With MCExplorer (Multiple Concepts Explorer), we present a tool to

close this gap through interactive exploration, browsing, and visualization of al-

ternative clustering solutions. Starting with an overview of the entire structure,

the user can progressively perform more fine-grained comparisons of patterns to
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achieve an in-depth analysis. Focusing on the comparison of multiple concepts,

and not on the individual concepts, MCExplorer comprises a three-level process

that covers the whole cycle of analyzing multiple clusterings:

• Exploration of concepts, to compare multiple hidden groupings in the data.
• Exploration of clusters, to compare the clusters of different concepts.
• Exploration of elements, to compare the objects of different clusters.

With MCExplorer, the user can analyze alternative clustering solutions in an

intuitive and interactive setting. Overall, MCExplorer supports the user in the

knowledge extraction based on multiple valid groupings, completing the KDD

process.

In the following subsections, we introduce MCExplorer that is integrated into

the OpenSubspace [MAG+09a, MGAS09] and the CoDA (Section 15.2) frame-

work, which add subspace clustering and multiple concept functionality to the

well-known WEKA Data Mining Software. This framework provides MCExplorer

with multiple groupings to be analyzed. Fig. 15.6 shows a screenshot of the

framework with the MCExplorer integration.

The interactive exploration of MCExplorer is based on the Visual Exploration

Paradigm [Kei02]: Starting with an overview of all concepts, the user can navi-

gate through the visualization of these patterns and interesting concepts can be

selected for a more detailed analysis. This detailed information can, again, be

browsed and even more fine-grained information can be requested by the user.

The comparison and analysis of multiple groupings, i.e., the coarsest level of the

analysis, can be performed in the main window illustrated in Fig. 15.6, while the

other two levels of MCExplorer are realized in child windows.

15.3.2 Exploring Concepts

At the start of the analysis, the user gets an overview of all multiple concepts, as

shown in the main window of MCExplorer in Fig. 15.6. In this overview, each

concept is represented as a node. Formally, each concept Concepti is a set of

(subspace) clusters {C1, . . . , Cm} = Concepti with Cj = (Oj, Sj) describing the

grouped objects Oj and relevant dimensions Sj. Note that if a full-space cluster-

ing is analyzed, the set Sj is identical for each cluster and only the object grouping

Oj is important. MCExplorer enables the user to quickly assess the concept struc-

ture by visualizing the core properties of single concepts and the relationships

between different concepts. Core properties as the number of clustered objects
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Figure 15.6: Main window of MCExplorer, integrated into WEKA.

and the average dimensionality are represented by the radius and color of a con-

cept’s corresponding node. More informations can be retrieved, when the cursor

is placed over single nodes.

Several aspects are visualized that reflect the relationships between the dif-

ferent concepts. Initially, the user has to select a concept to be the current one

under consideration (centrally displayed in Fig. 15.6). The remaining concepts

are circularly arranged around this concept based on their similarity: Concepts

very similar to the selected one are located near to the center while dissimilar

concepts are at the border of the plot. Simultaneously, MCExplorer arranges the

surrounding concepts along the circular lines such that similar concepts are adja-

cent. Technically, this is achieved by maximizing the pairwise similarity between

adjacent concepts. When the user selects another concept as the central one, an
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automatic rearrangement of the remaining concepts is performed. This visual

approach enables the user to browse through the concept-structure and groups

of (dis)-similar concepts can intuitively be captured. At each time, the user can

select individual concepts to obtain a more detailed comparison between these;

this detailed analysis of two concepts is described in Sec. 15.3.3. Formally, the

similarity between the concepts is determined by the CE measure [PM06], which

is applicable for subspace and full-space clustering solutions.

Each node in the concept structure is enriched with additional information

with respect to the central concept. This enables a different kind of comparison

in contrast to the similarity described above. More concretely, the pie-charts

in the surrounding nodes indicate the degree to which a node’s concept can be

explained by using the central concept (the pie-chart of the central concept is

explained later). If only few objects of the concept are also grouped in the same

way in the central concept, the highlighted sector is small. If the sector is large, a

redundancy of the concept is indicated, because the clusters of a concept can also

be detected by the central concept. Formally, the fraction of a concept X that can

be explained by another concept Y is determined via

explain(X|Y ) =

∑
Cj∈X maxCk∈Y {|Oj ∩Ok| · |Sj ∩ Sk|}∑

Cj∈X{|Oj| · |Sj|}

and, hence, the size of the sector for a surrounding concept Con given the central

concept Central is explain(Con|Central). In contrast to the similarity between

concepts, this information is non-symmetric. Therefore, MCExplorer visualizes

the reverse property explain(Central|Con) with the strength/weight of the edge

connecting these two nodes, i.e., the edge weights indicate the degree to which

the central concept can be explained by the other concepts. For the pie-chart of

the central concept, we select the surrounding concept which explains most parts

of the central one, indicating the highest degree of redundancy. Accordingly, the

edge with the highest weight (maxX∈Concepts{explain(Central|X)}) determines

the size of the sector, where Concepts is the set of all surrounding concepts.

The last feature on the level of exploring concepts allows the user to sepa-

rately visualize the concepts just on the object information, just on the dimension

information, or on both information together. Since relevant dimensions only

occur in subspace clusterings, this visualization is constrained to inputs from

subspace clustering algorithms. The obtainable knowledge is essential for the

user, because two concepts can comprise identical object groupings but in com-
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pletely different dimension sets. In MCExplorer, the user is able to choose which

information to use for determining the similarity between the concepts and for

the pie-chart calculation (cf. Fig. 15.6 top right corner). Overall, three different

plots for the same central concept are possible and can be compared. However,

since the arrangement of nodes is dynamically adjusted based on the similarities,

different plots can show different layouts, which hinders an easy interpretation.

To enable a visual comparison of these different plots, MCExplorer integrates a

synchronization of the layouts. Thus, in MCExplorer, a single plot can be selected

as the source, while the others are automatically synchronized, i.e., the central

concept as well as the arrangement of adjacent nodes are taken over from the

source plot.

15.3.3 Exploring Clusters

In the first level of MCExplorer, the user can obtain an overview of all concepts,

and by selecting any two concepts within the plots a more detailed analysis can

be performed. This analysis is done in the second level of MCExplorer, where the

actual clusters of the selected concepts are compared, as illustrated in Fig. 15.7. If

in the previous step two concepts are identified as similar, the user is now able to

identify the causative clusters for this effect. For example, a cluster of one concept

can be split up in smaller ones in another concept. To visually compare clusters,

MCExplorer uses again an intuitive representation: clusters are represented by

nodes where size and dimensionality are reflected by the node’s radius and color.

A horizontal ordering of the clusters is performed, such that similar clusters are

placed in the same regions of the plot. This ordering is based on all clusters

simultaneously and, hence, the user can easily compare the whole clustering

structure of the two concepts. Redundancy between the clusters is indicated by

a very close grouping of many clusters. The similarity between the clusters is

formally defined by their overlapping elements and the ordering of clusters is

obtained by minimizing the total weighted crossings in weighted bipartite graphs

[cEKS09].

To increase the expressiveness of the visualization, the nodes are again en-

riched by pie-charts. As default, the visualized sector for each cluster indicates

the overlap to its most similar cluster in the other concept (light shaded sectors

in Fig. 15.7). For example, a cluster completely contained in another cluster of

the other concept is enriched by a sector covering the whole node. This repre-
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Figure 15.7: Detailed comparison of two concepts.

sentation is performed for each cluster of both concepts. With the help of this

representation, several aspects, for example a cluster split up, can easily be de-

tected. Furthermore, by selecting an individual cluster, its specific overlap with all

clusters of the other concept can be analyzed (dark shaded sectors in Fig. 15.7).

Analogously to the first level, the user can analyze objects and dimensions simul-

taneously or restrict the analysis to just one property.

Overall, the second level of MCExplorer enables the user to get an overview

of the clustering structure of certain concepts and to understand the reasons for

the similarity and dissimilarity of the detected clustering solutions.

15.3.4 Exploring Elements

The finest analysis in the comparison of multiple concepts can be done in the

last level of MCExplorer: the individual elements of clusters can be compared

by the user. By selecting clusters in the previous level, the user is guided to this

level, as illustrated in Fig. 15.8. MCExplorer visualizes the data matrix and the

embedded clusters. Each row corresponds to one object of the database and each

column to one dimension. The elements contained in the selected clusters of

the first concept are highlighted by rectangular regions within the matrix while

the elements covered by clusters of the second concept are highlighted by cir-

cles. Overlapping and non-overlapping elements can, thus, visually be inspected
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Figure 15.8: Comparison of concepts on the object level.

by the user. To facilitate this impression, MCExplorer permutes the objects and

dimensions, such that the individual highlighted regions are mostly connected.

Thus, outstanding elements which occur in several concepts can be identified.

For a further in-depth analysis of such objects, the user is able to select arbitrary

sets of elements in Fig. 15.8 and their characteristics, as the value-distributions

within the dimensions, can be illustrated.

Overall, MCExplorer provides the user with the opportunity to compare mul-

tiple groupings in an interactive setting. Based on a three level process, the user

is able to browse from an overview to an in-depth analysis: whole concepts, their

corresponding clusters, and their individual elements can be compared and their

properties can be analyzed. Besides the raw patterns determined by the existing

methods, MCExplorer enables the user to infer actual knowledge based on the

given clustering solutions.

15.4 Conclusion

In this chapter, we presented two tools for the visual analysis of subspace cluster-

ing results in the context of multi-view clustering. The first tool, CoDA, helps to

determine and analyze concepts for the output of any subspace clustering method

and to assign the detected subspace clusters to their corresponding concepts.

Thereby, CoDA enables a transformation of any a subspace clustering result into

a multi-view clustering result and, thus, helps in closing the gap between the two

respective research areas.
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The second tool, MCExplorer, focuses on the analysis of multi-view clustering

results and especially those detected in subspace projections, e.g., subspace clus-

tering results that have been post-processed with the CoDA tool, or the results

of the presented approaches MVGen (Chapter 7), SMVC (Chapter 8), the graph-

based framework of Part IV, or the approach presented in [NDJ10]. It supports

the comparison and analysis of the generated alternative clustering solutions and,

thereby, enables the user to decide on her preferences regarding different solu-

tions but also to understand the different grouping patterns.
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16
Conclusion and Future Work

The cluster analysis is a wide research field encompassing different techniques

for different data types and different clustering goals. In this thesis, we focused

on the detection of multiple, alternative clustering solutions for a single vector-

represented dataset in different subspace projections. To this end, we joined the

clustering paradigm of multi-view or alternative clustering, and the paradigm

of subspace clustering. It was our major interest to point out the fundamental

parallels between the two paradigms but also to highlight the different techniques

to solve the two related problems. By combining both paradigms, we tried to

exploit synergy effects of which each paradigm could benefit. In this chapter,

we briefly review the main research contributions and highlight promising future

research directions in this area.

16.1 Conclusion

In the first part of this thesis, we introduced the basic principles for the two

paradigms of multi-view clustering and subspace clustering. We explained the

effects of the curse of dimensionality, which hinder a meaningful cluster detec-

tion in the full-space. We also reviewed the related work for both paradigms,

combined with a first rough categorization of the approaches. As both paradigms

share the philosophy that instances of complex data might belong to multiple

meaningful clusters and that different clustering views for the data exist, we pre-

sented approaches combining both principles in the following parts of this thesis.

The second part started with a thorough discussion of the relation between

multi-view clustering and subspace clustering analyzing similarities and differ-

ences. The tackled challenge for this part was to improve the, so far, insufficient

redundancy models of subspace clustering by using principles of multi-view clus-

tering. Accordingly, this part took the perspective of subspace clustering and

267
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integrated the idea of multiple clustering views into the clustering model. With

the OSCLU model of Chapter 4, we proposed a global optimization of the overall

clustering interestingness and used a redundancy model that evaluates the clus-

ters’ similarities regarding their sets of objects as well as their subspace projec-

tions. We have proven the optimization problem to be NP-hard and proposed an

efficient algorithm to determine an approximate solution. In Chapter 5, we pre-

sented an extension of the OSCLU model to enable the integration of previously

known subspace clusterings into the optimization process. The new clustering

produced by ASCLU exhibits no redundancy to the a priori given clustering but

complements its information to an overall optimal solution.

For the third part of this thesis, we took the perspective of multi-view ap-

proaches and realized different clustering perspectives on the data through dif-

ferent subspace projections and, thereby, incorporated the principles of subspace

clustering. Compared to traditional subspace clustering, the aim was to explicitly

determine multiple views, i.e., multiple partitionings of the data. For this part, we

focused on the simultaneous generation of all clustering views to find an overall

optimal set of clusterings. For our MVGen approach in Chapter 7, we introduced

a novel generative model for data exhibiting multiple clusterings in different sub-

spaces projections. The main focus for MVGen was to model classical subspace

clustering scenarios, such as locally irrelevant dimensions for each cluster w.r.t.

its view’s subspace and shared relevant dimensions of different views. The model

is designed for an arbitrary number of views and determines the relevant dimen-

sions for each view and their subspace clusters by performing Bayesian model

selection. For our generative model SMVC, presented in Chapter 8, we restricted

the problem to a simpler subspace scenario, where views do not overlap regard-

ing their relevant dimensions and where the relevant subspaces of clusters cor-

respond to that of the respective view. This simplification allowed us to focus on

the question of integrating partial information about the clustering structure as

a priori given knowledge into the clustering process. The SMVC model allows

such an integration of prior information via must-link and cannot-link instance

level constraints and simultaneously learns the views, their clusterings, and the

association of constraints to the views, such that the optimal clustering views are

determined based on the provided instance level constraints.

In the fourth part of this thesis, we developed new techniques for the iterative

detection of alternative clustering solutions in subspace projections. An iterative

processing scheme allows to incorporate the knowledge of already present clus-
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terings into the clustering process and, e.g., to steer into promising subspaces.

In Chapter 9, we presented a graph-based framework, where previous cluster-

ings are encoded as relational information of a graph structure. This allows the

application of combined graph clustering methods for graphs annotated with fea-

ture vectors for the problem of finding a new clustering alternative. Since good

alternative clusterings are located in subspace projections of the feature space,

we presented two approaches for combined graph clustering in subspaces. Our

SSCG algorithm of Chapter 10 is designed for graphs with multi-dimensional ver-

tex labels and utilizes the principles of spectral clustering. To integrate the idea

of subspace clustering, allowing each cluster to have an individual set of relevant

dimensions, the affinity matrix for the eigendecomposition is part of the learning

process of SSCG. To compare the clustering structures for different feature sub-

sets, we defined an objective function that is unbiased regarding the number of

relevant features. For graphs with multi-dimensional edge labels, we presented

an extension of the popular modularity quality criterion for the subspace cluster-

ing paradigm in Chapter 11. We showed how existing optimization techniques

can be applied for the new subspace modularity measure and presented a new

clustering algorithm SuMo to deal more effectively with the problem of simulta-

neously determining a grouping and the subspaces based on our new subspace

modularity measure.

The fifth part of this thesis concerns the evaluation and the visualization of

subspace clustering results in the multi-view context. In Chapter 13, we collected

four important requirements for the evaluation of subspace clustering results

based on external evaluation measures, which equally apply for the evaluation

of multi-view clusterings in subspace projections. We thoroughly examined the

most frequently used evaluation measures w.r.t. these four criteria and presented

the new E4SC measure to fulfill the necessary requirements for a fair evaluation

of subspace clustering results. In Chapter 14, we proposed an interactive visu-

alization workflow to support the choice of interesting subspaces for clustering

if the processes of subspace search and clustering are decoupled. For the visual-

ization and navigation of the different subspaces, we applied techniques for the

subspace interestingness, the subspace alternativeness, and the clustering alter-

nativeness and thereby combined the paradigms of subspace search, multi-view

clustering, and subspace clustering. The tools that we presented in Chapter 15

support the user in defining and analyzing the views for a subspace clustering

result. The CoDa tool provides an iterative, interactive process in which views
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for a subspace clustering are suggested, analyzed, and potentially refined. It,

thus, bridges the gap between subspace clustering and multi-view clustering by

integrating users and their domain knowledge. The MCExplorer tool is designed

to interactively explore and compare different clustering views to support a user

in gaining insights into the semantic background of the clustering structure.

All presented techniques aimed at an alliance of the two related paradigms of

subspace clustering and multi-view clustering. The developed techniques bridge

the gap between the two paradigms and the experimental evaluations strongly

support our claim, that meaningful alternative clusterings are to be found in

subspace projections of the data. In several experiments, we demonstrated that

existing techniques are outperformed by our novel methods.

16.2 Future Work

For the research areas of multi-view clustering and subspace clustering, we can

identify further interesting and challenging research questions based on the re-

sults and models presented in this thesis. In recent publications, the research

area of subspace clustering has contributed first techniques that transfer the

principle of subspace clustering to various data domains to properly address the

curse of dimensionality, e.g., time series data (e.g., [KGHS12]), stream data (e.g.,

[HKSS14]), or graph data (e.g., [GFBS14]). In the case of non-partitioning ap-

proaches, i.e., approaches that allow for overlapping clusters w.r.t. the object sets,

these techniques need to take care of a proper redundancy handling. For their

redundancy models the consideration of different concepts, as we proposed with

our OSCLU model, will be a promising solution.

For this thesis, we restricted the consideration to vector data. However, since

data is rarely collected pursuing only one defined analysis goal, the multi-view

hypothesis is very likely for various other data domains as well. Subspace clus-

tering methods might not be sufficient in such a multi-view scenario, as the eval-

uations of our approaches already indicated. In the small evaluation study for

graph clustering methods of Chapter 12, we already encountered the impair-

ment of the clustering results for an increasing number of hidden views. Given

the size and complexity of the available graph data, e.g., for social networks, it is

fair to assume that a single partitioning of the nodes is insufficient. Especially for

graph clustering, the multi-view scenario is interesting as the different informa-

tion sources, relations and vector annotations, might support different clustering
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structures. Often the algorithms realize a trade-off between the density in the

feature space and the relations [GFBS14]. Multi-view clustering can represent

a different solution here, where not only subspaces but also information sources

are emphasized for revealing a clustering view, which is especially interesting if

simultaneously multi-dimensional edge labels and feature labels are considered.

For subspace clustering, designing efficient algorithms is one of the main chal-

lenges, which until now seems not to be solved sufficiently. While we applied our

presented approaches on datasets with several thousand instances and tens of di-

mensions, databases of real-world applications often have millions of data entries

and several hundreds of dimensions. Scalable algorithms for such large databases

are indispensable, but also parallelization techniques need to be developed (e.g.,

[FWS14]).

With our semi-supervised SMVC approach (Chapter 8), we demonstrated the

high potential of user provided prior knowledge regarding the clustering struc-

ture for improving the clustering quality in the multi-view scenario. It would

be worth investigating how such prior information can be incorporated into the

iterative processing scheme for detecting multiple alternatives in addition to the

information provided by previously detected clusterings. Similarly, for subspace

clustering in general, it is very promising to exploit prior information to enhance

the quality of detected clustering solutions.

In this thesis, we presented first solutions to extend the multi-view cluster-

ing paradigm to the consideration of subspace projections. It would be worth to

examine the possibilities to transfer further classical subspace clustering charac-

teristics to the multi-view clustering paradigm, such as, e.g., view outliers (not

every object must be part of a cluster in each view) or overlapping clusters within

a single view (objects can fulfill different roles in a single view). A further chal-

lenging problem to address for the multi-view paradigm, is the question of how

to estimate the number of views hidden in the data.
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Derivation of Update Equation 7.U1
We first introduce two intermediate results.

BIC Approximation During our derivation we have to evaluate the term∫
α

∫
β

p(α)p(β)
∏
n∈I

Beta(Xn,d;α, β) dαdβ

where I is an index set denoting which observations are actually considered.

Using the Bayesian Information Criterion (BIC, or Schwarz criterion [Sch78,

Bis06]), and the observation that in our case the Beta distribution is controlled

by two free parameters, we can approximate the above term by

Betad(I) :=

[∏
n∈I

Beta(Xn,d;αMAP , βMAP )

] / |I| (A1)

where αMAP and βMAP are the MAP estimates of the shape parameters given the

set of observations.

Reformulating the Likelihood Let Nm,d = {n ∈ N | Domn,d = m} be the set of

all observations that choose the view m in dimension d as dominant and Nm,k,d =

{n ∈ Nm,d | Seln,m = k} be those observations which additionally select the

cluster k. Obviously, for each dimension d ∈ D we have N =
⋃

m∈M
⋃

k∈K Nm,k,d.

Given the equation

∏
n∈N

Vi(n),d∑
m′∈M Vm′,d

· p(Xn,d | Dom, Sel, S, α, β)

where i(n) = Domn,d denotes the dominant view of observation n. Instead of

taking the product over each observation n ∈ N individually, we can ’group’ the

observations according to their dominant view and selected cluster. That is, the

above equation is equivalent to

∝
∏
m∈M

⎡⎣( Vm,d∑
m′∈M Vm′,d

)|Nm,d|∏
k∈K

∏
n∈Nm,k,d

⎧⎨⎩Bn,m
k,d if Sm,k,d = 1

1 else

⎤⎦ (A2)

and Bn,m
k,d is an abbreviation for Beta(Xn,d;αm,k,d, βm,k,d).

Derivation of Update Equation 7.U1 Using the above results, we now derive

Equation 7.U1. We aim at maximizing

III
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p(Vm,d | V \{Vm,d}, Dom, Sel, π,X) ∝
∑
S

∫
α

∫
β

p(V,Dom, Sel, π, S, α, β,X) dαdβ

Based on the dependencies given by our graphical model, this is equivalent to

maximizing

∝
∑
S

∫
α

∫
β

p(V )p(S | V )p(α)p(β)p(Dom | S, Sel)p(X | Dom, Sel, S, α, β) dαdβ

Making the individual variables explicit, we obtain

∝
∑
S

∫
α

∫
β

∏
d∈D

( ∏
m∈M

[
p(Vm,d)

∏
k∈K

[
p(Sm,k,d | V )p(αm,k,d)p(βm,k,d)

]]
·

∏
n∈N

[
p(Domn,d | S, Sel)p(Xn,d | Dom, Sel, S, α, β)

])
dαdβ

Due to the summation over all possible realizations of S, the term p(Domn,d |
S, Sel) can well be approximated by the expected dominance of view Domn,d =:

i(n) in dimension d for observation n. The expected dominance is given by

Vi(n),d∑
m′∈M Vm′,d

Thus, the above equation reformulates to

∝
∑
S

∫
α

∫
β

∏
d∈D

( ∏
m∈M

[
p(Vm,d)

∏
k∈K

[
p(Sm,k,d | V )p(αm,k,d)p(βm,k,d)

]]
·

∏
n∈N

[ Vi(n),d∑
m′∈M Vm′,d

p(Xn,d | Dom, Sel, S, α, β)
]

︸ ︷︷ ︸
(∗)

)
dαdβ
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We now substitute part (∗) with the result obtained in Equation A2, and get after

a reordering of the terms:

∝
∑
S

∫
α

∫
β

∏
d∈D

( ∏
m∈M

[
p(Vm,d)

(
Vm,d∑

m′∈M Vm′,d

)|Nm,d|∏
k∈K

[
p(Sm,k,d | V )·

p(αm,k,d)p(βm,k,d)
∏

n∈Nm,k,d

⎧⎨⎩Bn,m
k,d if Sm,k,d = 1

1 else︸ ︷︷ ︸
(∗∗)

]])
dαdβ

The part (∗∗) can be substituted with the result obtained in Equation A1. Thus,

the integration over α and β vanishes and the formula can further be simplified

to:

∝
∑
S

∏
d∈D

( ∏
m∈M

[
p(Vm,d)

(
Vm,d∑

m′∈M Vm′,d

)|Nm,d|
·

∏
k∈K

[
p(Sm,k,d | V )

⎧⎨⎩Betad(Nm,k,d) if Sm,k,d = 1

1 else

]])

The summation over S disappears when making the two cases of p(Sm,k,d | V )

explicit, i.e. we introduce the two cases p(Sm,k,d = 1 | V ) = Vm,d and p(Sm,k,d =

0 | V ) = 1− Vm,d. Thus, the formula simplifies to:

∝
∏
d∈D

(∏
m∈M

[
p(Vm,d)

(
Vm,d∑

m′∈M Vm′,d

)|Nm,d|
·

∏
k∈K

[Vm,d · Betad(Nm,k,d) + (1− Vm,d) · 1]
])

Let cd =
∑

m′∈M,m′ �=m Vm′,d. Since for the update of Vm,d all remaining V \{Vm,d}
are fixed, we have to maximize for each Vm,d:

p(Vm,d)
∏

m′∈M

(
Vm′,d

cd + Vm,d

)|Nm′,d|∏
k∈K

[Vm,d · Betad(Nm,k,d) + (1− Vm,d) · 1]

Note that we still have to consider the terms
(

Vm′,d
cd+Vm,d

)
for all m′ ∈ M since

the variable Vm,d appears in the denominator. Maximizing the above equation is
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equivalent to maximizing

∝ p(Vm,d) · V |Nm,d|
m,d ·

∏
m′∈M

(cd + Vm,d)
−|Nm′,d|

∏
k∈K

[Vm,d · (Betad(Nm,k,d)− 1) + 1]

Since
⋃

m′∈M Nm′,d = N and Vm,d’s prior follows a Beta distribution, we get 5

∝ V αRel−1
m,d · (1− Vm,d)

βRel−1 · V |Nm,d|
m,d · (cd + Vm,d)

−|N | ·∏
k∈K

[Vm,d · (Betad(Nm,k,d)− 1) + 1]

Taking the logarithm of the above equation and substituting Vm,d with x yields

∝ (αRel − 1 + |Nm,d|) · log x+ (βRel − 1) · log(1− x)+

(−|N |) · log(x+ cd) +
∑
k∈K

log((Betad(Nm,k,d)− 1) · x+ 1)

Overall, the above equation corresponds to the update Equation 7.U1, which

leads to a new realization for Vm,d.

Vm,d = arg max
x∈(0,1)

ca · log x+ cb · log(1− x) + cc · log(x+ cd) +
∑
k∈K

log(ck · x+ 1)

where the c∗ are constant values given by

ca = αRel − 1 + |Nm,d| cb = βRel − 1 cc = −|N |
cd =

∑
m′∈M,m′ �=m Vm′,d ck = Betad(Nm,k,d)− 1
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Tamer M. Özsu, editors, Encyclopedia of Database Systems, pages

393–396. Springer US, 2009.

[Dav12] Ian Davidson. Two Approaches to Understanding when Constraints

Help Clustering. In Proceedings of the 18th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD),

pages 1312–1320, 2012.

[DB10a] Xuan H. Dang and James Bailey. A Hierarchical Information The-

oretic Technique for the Discovery of Non Linear Alternative Clus-

terings. In Proceedings of the 16th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD), pages 573–

582, 2010.

[DB10b] Xuan Hong Dang and James Bailey. Generation of Alternative

Clusterings Using the CAMI Approach. In Proceedings of the Tenth
SIAM International Conference on DataMining (SDM), pages 118–

129, 2010.

[DB13a] Xuan H. Dang and James Bailey. A Framework to Uncover Multiple

Alternative Clusterings. Machine Learning, pages 1–24, 2013.

[DB13b] Xuan H. Dang and James Bailey. Generating Multiple Alterna-

tive Clusterings Via Globally Optimal Subspaces. Data Mining and
Knowledge Discovery (DMKD), 28(3):569–592, 2013.

[DFVN12] Xiaowen Dong, Pascal Frossard, Pierre Vandergheynst, and Nikolai

Nefedov. Clustering With Multi-Layer Graphs: A Spectral Perspec-

tive. IEEE Transactions on Signal Processing, 60(11):5820 –5831,

2012.

[DQ08] Ian Davidson and Zijie Qi. Finding Alternative Clusterings Using

Constraints. In Proceedings of the Eighth IEEE International Confer-
ence on Data Mining (ICDM), pages 773–778, 2008.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.

A density-based algorithm for discovering clusters in large spatial

databases with noise. In Proceedings of the Second ACM SIGKDD



XIV BIBLIOGRAPHY

International Conference on Knowledge Discovery and Data Mining
(KDD), pages 226–231, 1996.

[FA10] Andrew Frank and Arthur Asunction. UCI machine learning repos-

itory. http://archive.ics.uci.edu/ml, 2010.

[FB08] Qiang Fu and Arindam Banerjee. Multiplicative Mixture Models for

Overlapping Clustering. In Proceedings of the Eighth IEEE Interna-
tional Conference on Data Mining (ICDM), pages 791–796, 2008.

[FBT+10] Bilkis J. Ferdosi, Hugo Buddelmeijer, Scott C. Trager, Michael H. F.

Wilkinson, and Jos B. T. M. Roerdink. Finding and visualizing rel-

evant subspaces for clustering high-dimensional astronomical data

using connected morphological operators. In Proceedings of IEEE
Symposium on Visual Analytics Science and Technology (VAST), pages

35–42. IEEE CS Press, 2010.

[For10] Santo Fortunato. Community detection in graphs. Physics Reports,
486(3):75–174, 2010.

[FWS14] Sergej Fries, Stephan Wels, and Thomas Seidl. Projected clustering

for huge data sets in mapreduce. In Proceedings of the 17th Interna-
tional Conference on Extending Database Technology (EDBT), pages

49–60, 2014.
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[GFS12] Stephan Günnemann, Ines Färber, and Thomas Seidl. Multi-View

Clustering Using Mixture Models in Subspace Projections. In

Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 132–140, 2012.
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in Chapter 4, was developed, implemented, and evaluated by me during my

diploma thesis, which has been supervised by Emmanuel Müller and Stephan

Günnemann. The extension of OSCLU to the ASCLU approach in Chapter 5 has
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as ASCLU Emmanuel Müller and Stephan Günnemann helped much with the
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in collaboration with Stephan Günnemann and a preliminary implementation
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of the SMVC model was conducted by me and the contents of Chapter 8 were pub-
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Sergej Fries, Johannes Merkle, Claudia Nickel, Alexander Nouak, Annahita

Oswald, Thomas Seidl, Bianca Wackersreuther, Peter Wackersreuther, and

Xuebing Zhou. Biometric Template Protection: Ein Bericht über das Projekt

BioKeyS. In Datenschutz und Datensicherheit (DuD), 35(3):183–191, 2011.

4. Ines Färber. Mining orthogonaler Konzepte in hochdimensionalen Daten-

banken. In Informatiktage 2009 – Fachwissenschaftlicher Informatik-Kongress,
pages 153–156, 2009.
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6. Stephan Günnemann, Brigitte Boden, Ines Färber, and Thomas Seidl. Effi-

cient Mining of Combined Subspace and Subgraph Clusters in Graphs with

Feature Vectors. In Proceedings of the 17th Pacific-Asia Conference on Advances
in Knowledge Discovery and Data Mining (PAKDD), pages 261–275, 2013.

XXXI



XXXII List of Publications
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11. Stephan Günnemann, Ines Färber, Emmanuel Müller, and Thomas Seidl. AS-

CLU: Alternative Subspace Clustering. In First Workshop on Discovering, Sum-
marizing, and Using Multiple Clusterings (MultiClust) in conjunction with the
16th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), 2010.
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20. Emmanuel Müller, Stephan Günnemann, Ines Färber, and Thomas Seidl. Dis-

covering Multiple Clustering Solutions: Grouping Objects in Different Views

of the Data. In Tutorials at the IEEE International Conference on Data Engi-
neering (ICDE), 2012.
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