The technological advancements of recent years led to a pervasion of all life areas with
information systems and allows to conveniently and affordably gather large amounts
of data. The key to our information society is the transformation of the mere data in
these comprehensive databases into information and knowledge. One research area
committed to this goal is the one of data mining, where the task is to automatically or
semi-automatically extract previously unknown patterns from such data sources. The
subject of this thesis is the mining task of clustering, which aims at grouping objects
based on their similarity such that similar objects are grouped together, while dissimilar
ones are separated.

Since modern storage systems are not subject to practical limitations anymore, data can
be captured in its full complexity without restriction to a small selective set of aspects.
For such complex data, just identifying a single clustering is often not sufficient. Instead,
multiple, alternative, and valid clusterings can be identified for a single dataset, each
highlighting different aspects of the data. The paradigm of multi-view clustering, also
referred to as alternative clustering, is dedicated to explicitly discover such a diverse set
of multiple, alternative clusterings in order to find all hidden patterns in the data.

A second observation for complex data sources, where usually many characteristics are
stored for each object, is the inability to find similar objects by considering all of these
characteristics. While clustering based on all attributes, in the full-space, is futile, va-
luable cluster patterns can be found for subsets of attributes, in subspace projections.
This problem is tackled by approaches of the subspace clustering paradigm, which aim
at uncovering clustering structures hidden in subspace projections, such that for each
cluster a set of relevant attributes is determined automatically.

In this thesis, we want to highlight fundamental parallels between the two paradigms of
multi-view clustering and subspace clustering, since both account for the possibility of
objects belonging to multiple clusters simultaneously. Consequently, we present several
approaches exploiting synergy effects by combining both paradigms to find multiple,
alternative clusterings in subspace projections of the data.

ISBN 978-3-86359-368-1

3681 ||

9 "783863"59

Alternative Clustering in Subspace Projections

Ines Farber

=

ERGEBNISSE AUS DER INFORMATIK

Ines Farber

Alternative Clustering in Subspace
Projections

@Ednm \\"\slser\sthah
Apprimus

Alternative Clustering in Subspace
Projections

Von der Fakultét fiir Mathematik, Informatik und Naturwissenschaften der RWTH
Aachen University zur Erlangung des akademischen Grades eines Doktors der
Naturwissenschaften genehmigte Dissertation

vorgelegt von
Diplom-Informatikerin

Ines Farber
aus Jena

Berichter: Universitédtsprofessor Dr. rer. nat. Thomas Seidl
Universitatsprofessorin Dr. rer. nat. Ira Assent

Tag der miindlichen Priifung: 04.12.2014

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek
online verfiigbar.

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet

Uber http://dnb.ddb.de abrufbar.

Ines Farber:
Alternative Clustering in Subspace Projections

1. Auflage, 2015

Gedruckt auf holz- und saurefreiem Papier, 100% chlorfrei gebleicht.

Apprimus Verlag, Aachen, 2015

Wissenschaftsverlag des Instituts fur Industriekommunikation und Fachmedien
an der RWTH Aachen

Steinbachstr. 25, 52074 Aachen

Internet: www.apprimus-verlag.de, E-Mail: info@apprimus-verlag.de

Printed in Germany

ISBN 978-3-86359-368-1

D 82 (Diss. RWTH Aachen University, 2014)

Acknowledgements

I want to thank all my mentors, colleagues, collaborators, friends, and family who
have encouraged, guided, and inspired me these last years. I enjoy to think back
to many creative discussions, amazing conference trips, nightly working sessions
with lots of pizza, and the many won friendships.

My first and foremost thanks go to my advisor, Prof. Thomas Seidl, who has
stirred my interest in data mining and was always available to give advice and
encouragement. [am very grateful for the opportunity to work in his group;
a place of great individual freedom, noncompeting collaboration, and inspiring
discussions concerning a wide area of data mining questions.

I also want to thank my second advisor, Prof. Ira Assent. I very much appreci-
ate her effort in reviewing this document and her valuable feedback.

The ideas and algorithms of this thesis mostly have been developed in a team.
My special thanks go to Sergej Fries (for his deep friendship and his collabora-
tion in the funded projects BioKeyS and Theseus), Brigitte Boden (for her col-
laboration on graph topics and the warm atmosphere in our joint office), Em-
manuel Miiller (for his pathbreaking guidance in the beginning of my research),
Stephan Giinnemann (for his tireless creativity), and Hardy Kremer (for some-
times putting things into the right perpective), who all had a major influence on
my research. I also highly value the inspiring discussions with the other team
members: Anca Zimmer, Marwan Hassani, Christian Beecks, Philipp Kranen,
Philip Driessen, Roland Assam, Seran Uysal. They all provided a very friendly
and enjoyable atmosphere. The realization of many ideas has only been possi-
ble with the help of our motivated and skilled thesis students and student assis-
tants. Although not everything made it in this thesis, I want to thank Simon Woll-
waage, Matthias Hannen, Patrick Gerwert, Sebastian Raubach, Grzegorz Stepien,
Thomas Mausbach, Matthias Riidiger, Kittipat Virochsiri, and Tamer Alkhouli.

I also gratefully remember the collaborations with other research groups dur-
ing diverse projects, and especially name Andrada Tatu, Michael Hund, Tobias
Schreck, Enrico Bertini, Prof. Oliver Deussen, Prof. Daniel Keim, Annahita Os-
wald, Bianca Wackersreuther, and Prof. Christian B6hm.

My sincerest gratitude I want to express to my family. I will be forever grateful
for your unconditional love and support. Mom, I do not know who I would be
without you. Flo, thanks for keeping me grounded in stressful times and for
proofreading all this. BO, thank you for patiently letting me finish this thesis.

During the work for this thesis I received financial support from the Ger-
man Research Society (DFG) under the research grant DFG-611 within the DFG
Priority Program “Scalable Visual Analytics: Interactive Visual Analysis Systems
of Complex Information Spaces” (SPP 1335), from the Federal Ministry for Eco-
nomic Affairs and Energy (BMWi) under the Research Program “THESEUS Mittel-
stand - Machinet - Machine Intelligence Network”, and for the project “BioKeyS”
by the Federal Office for Information Security (BSI).

Contents

Abstract / Zusammenfassung

I Introduction

1.1
1.2
1.3

2.1
2.2
2.3

II

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

Introduction
Multi-View and Alternative Clustering
Subspace Clustering

Contributions and Structure of this Thesis

Related Work

Multi-View Clustering v v v v v v i
Subspace Clustering
Bridgingthe Gap

Transfering Multi-View Principles to the Subspace Clus-
tering Paradigm

The Relation of Multi-View Clustering and Subspace Clustering
Redundancy Avoidance for Subspace Clustering
Dissimilarity Criteria for Multi-view Clustering
Basic Idea for Combining Both Paradigms

Detection of Orthogonal Subspace Clustering Concepts

Introduction
Orthogonal Concepts in Subspaces
The OSCLU Algorithm
EXperiments v v v v v it e e e e e e e e e e e e

Conclusion v v it e e e e e e

10
11
12

19
19
26
29

31

33
35
36
38

41
42
44
52
57
62

ii CONTENTS
5 Detection of Alternative Subspace Clustering Concepts 65
5.1 Introduction 66
52 RelatedWork L 67
5.3 Alternative Subspace Clusters 68
54 Experiments 74
55 Conclusion. 77
III Transfering Subspace Principles to the Multi-View Clus-
tering Paradigm 79
6 Introduction to Simultaneous Multi-View Clustering in Subspaces 81
7 Multi-View Clustering Using Mixture Models in Subspace Pro-
jections 85
7.1 Introduction 86
7.2 Generative Multi-View Model 89
7.3 The MVGen Algorithm 95
74 RelatedWork o 100
7.5 Experimental Analysis 102
7.6 Conclusion. 108
8 Semi-Supervised Multi-View Clustering in Subspace Projections 109
8.1 Introduction 110
8.2 Bayesian Framework 112
8.3 TheSMVCAlgorithm 116
84 RelatedWork 123
8.5 Experimental Analysis 125
8.6 Conclusion. 132
IV Constraint-Based Alternative Clustering in Subspace
Projections 133
9 Introduction to Alternative Clustering 135
9.1 Motivation and Challenges 135
9.2 RelatedWork 137
9.3 Idea of a Graph-Based Framework 139

CONTENTS iii

10 Spectral Subspace Clustering for Graphs with Feature Vectors 147

10.1 Introduction e 148
10.2 RelatedWork 149
10.3 Model 150
10.4 Algorithm 160
10.5 Experimental Analysis, . 162
10.6 Conclusion. i i e 170

11 Modularity for Subspace Clustering in Multi-Dimensional Graphs 171

11.1 Introduction 172
11.2 RelatedWork 174
11.3 Subspace Modularity 175
11.4 Algorithm 179
11.5 Experiments v v v i i it i 186
11.6 Conclusion.o i 190
12 Evaluation of Graph Techniques for Alternative Clustering 191

V Evaluating and Visualizing Alternative Clustering So-

lutions in Subspace Projections 195
13 External Evaluation Measures for Subspace Clustering 197
13.1 Introduction 198
13.2 Subspace Cluster Evaluation 199
13.3 Evaluation Measures 203
13.4 Experiments o oo oo 210
13.5 Conclusion.o e 219

14 Subspace Search and Visualization for Alternative Clusterings 223

14.1 Introduction 224
14.2 Subspace Analysis. 225
14.3 Proposed Analytical Workflow 227
14.4 Application 234
14.5 Discussion and Possible Extensions 239
14.6 RelatedWork 242

14.7 Conclusions 244

iv CONTENTS

15 Interactive Analysis of Multiple Views 247
15.1 Introduction 248
15.2 A Tool for Concept Determination and

Analysis 249
15.3 Exploring Multiple Clustering Solutions 256
154 Conclusion. o e 262
VI Summary and Outlook 265
16 Conclusion and Future Work 267
16.1 Conclusion.ot e 267
16.2 FutureWork 270
VII Appendices I
Derivation of Update Equation 7.U1 III
Bibliography VII
Statement Of Originality XXI1X

List of Publications XXXI

Abstract

The technological advancements of recent years led to a pervasion of all life ar-
eas with information systems and allows to conveniently and affordably gather
large amounts of data. The key to our information society is the transformation
of the mere data in these comprehensive databases into information and knowl-
edge. One research area committed to this goal is the one of data mining, where
the task is to automatically or semi-automatically extract previously unknown
patterns from such data sources. The subject of this thesis is the mining task
of clustering, which aims at grouping objects based on their similarity such that
similar objects are grouped together, while dissimilar ones are separated.

Since modern storage systems are not subject to practical limitations any-
more, data can be captured in its full complexity without restriction to a small
selective set of aspects. For such complex data, just identifying a single clustering
is often not sufficient. Instead, multiple, alternative, and valid clusterings can be
identified for a single dataset, each highlighting different aspects of the data. The
paradigm of multi-view clustering, also referred to as alternative clustering, is ded-
icated to explicitly discover such a diverse set of multiple, alternative clusterings
in order to find all hidden patterns in the data.

A second observation for complex data sources, where usually many char-
acteristics are stored for each object, is the inability to find similar objects by
considering all of these characteristics. While clustering based on all attributes,
in the full-space, is futile, valuable cluster patterns can be found for subsets of
attributes, in subspace projections. This problem is tackled by approaches of the
subspace clustering paradigm, which aim at uncovering clustering structures hid-
den in subspace projections, such that for each cluster a set of relevant attributes
is determined automatically.

In this thesis, we want to highlight fundamental parallels between the two
paradigms of multi-view clustering and subspace clustering, since both account
for the possibility of objects belonging to multiple clusters simultaneously. Con-
sequently, we present several approaches exploiting synergy effects by combining
both paradigms to find multiple, alternative clusterings in subspace projections
of the data.

Zusammenfassung

Der bisherige technologische Fortschritt fiihrte zu einer Durchdringung aller Le-
bensbereiche mit Informationssystemen und ermdglicht das einfache und giin-
stige Erfassen grof3er Datenmengen. Fiir unsere Informationsgesellschaft ist es
jedoch entscheidend aus diesen reichhaltigen Datenquellen niitzliche Informa-
tionen und Wissen zu generieren. Diesem Ziel hat sich der Forschungsbere-
ich des Data Mining gewidmet, dessen Aufgabe es ist automatisiert oder semi-
automatisiert vorher unbekannte Muster aus Daten zu extrahieren. Diese Arbeit
beschéftigt sich mit der Aufgabe des Clusterings, welche Objekte anhand ihrer
Ahnlichkeit gruppiert.

Da moderne Speichertechnologien keine ernsthaften Grenzen mehr aufzei-
gen, konnen Daten meist in ihrer vollen Komplexitdt ohne eine Beschrankung
auf lediglich ausgewéhlte Aspekte erfasst werden. Fiir solch komplexe Daten
stellt jedoch ein einziges Clustering oft keine ausreichende Charakterisierung dar.
Stattdessen lassen sich fiir einen Datensatz oft mehrere, unterschiedliche und
sinnvolle Clusterings identifizieren. Das Paradigma des Multi-View Clusterings,
auch als Alternative Clustering bezeichnet, hat sich dem Ziel verschrieben explizit
nach einer solch diversen Menge mehrerer, alternativer Clusterings zu suchen um
alle versteckten Muster der Daten aufzudecken.

Eine zweite Beobachtung fiir komplexe Daten, bei welchen iiblicherweise
fiir jedes Objekt eine Vielzahl von Eigenschaften erfasst wurde, ist eine sehr
schwach ausgeprigte Ahnlichkeit zwischen Objekten bei Beriicksichtigung all
ihrer Merkmalsausprdgungen. Wahrend ein Clustering unter Beriicksichtigung
aller Attribute nicht zielfiihrend ist, lassen sich bei Betrachtung einzelner At-
tributteilmengen, d.h. in Teilraumprojektionen, durchaus sinnvolle Clusterstruk-
turen identifizieren. Dieser Problemstellung haben sich Ansétze des Subspace
Clustering Paradigmas angenommen, welche Clusterstrukturen in Teilraumpro-
jektionen identifizieren, sodass fiir jeden Cluster automatisch auch die Menge
der relevanten Attribute bestimmt wird.

In dieser Arbeit wollen wir die grundsatzlichen Parallelen beider Paradig-
men, Multi-View Clustering und Subspace Clustering, hervorheben, da beiden die
Eigenschaft der gleichzeitigen Zugehorigkeit einzelner Objekte zu mehreren Clus-
tern gemein ist. Entsprechend stellen wir verschiedene Ansétze vor die durch die
Kombination beider Paradigmen Synergieeffekte nutzen um mehrere, verschie-
dene Gruppierungen in Teilraumprojektionen zu identifizieren.

Part 1

Introduction

The opposite of a correct statement is a false statement. But the
opposite of a profound truth may well be another profound truth.

NIELS BOHR

Introduction

HE digitalization of our society combined with the increasing potential of
T technologies for storing and collecting data leads to an explosive growth of
data sources. Efficiently and reliably storing and managing data in such massive
databases is just the first challenge accompanying this trend. To unfold the full
potential of the gathered data, the mere data has to be transformed into useful
information. In science, engineering, and economy, data analysis is nowadays a
necessity and enables the discovery of valuable patterns, trends, or anomalies in
the data. Given the vast amount of data, human capabilities for manual anal-
ysis are quickly overstrained which generates an urgent need for techniques to
automatically analyze and evaluate the collected raw data.

The multidisciplinary research field of data mining, as an essential part of the
process for knowledge discovery in databases (KDD) [HKP11], is devoted to de-
velop automatic or semi-automatic algorithms for detecting previously unknown
and useful patterns in the data. The KDD process is a sequence of several im-
portant steps, which can be processed iteratively until the discovered patterns
and the resulting insights meet the user’s requirements (cf. Fig. 1.1). Before data
mining techniques can be applied, the collected raw data usually needs to be pre-
processed. This step can include the integration of data from several sources into
one big data warehouse. Often the data quality needs improvement through data
cleaning techniques to treat missing values, data inconsistencies, or noise sus-
tained during data acquisition. Given the trend of unrestrainedly collecting all
available data without targeting a specific analysis question, it is often inevitable
to confine the consideration to only a selection of the data relevant to the anal-
ysis task and also to transform the data such that according mining techniques
can be applied successfully. Among the various data mining principles one or
several techniques can be applied on the task relevant data in order to extract
useful patterns and characteristics of the data or to determine predictive models

7

Introduction

& - i N
B § waiona €9
. £ evaluation
preprocessing l I data mining N S
cleaning relevant clustering “
raw data integration data classification patterns knowledge
selection regression
transformation outlier analysis

Figure 1.1: The knowledge discovery process in databases (KDD process)

to anticipate future trends. To help the user in interpreting and understanding
the discovered patterns, the mining results are evaluated and visualized to trans-
late the patterns into knowledge. Many data mining techniques involve user
interaction, such that data mining and visualization are often coupled in a unify-
ing, interactive framework. To influence or to enhance future mining results, the
gathered knowledge as well as the discovered patterns of the KDD process can
be integrated into a knowledge base as part of the relevant data for subsequent
mining techniques.

In this thesis we will concentrate on the data mining, evaluation, and visual-
ization steps of the KDD process with a special focus on data mining techniques.
Furthermore we will consider the possibilities to utilize user knowledge or discov-
ered patterns for subsequent mining processes. Out of the various data mining
principles, we will restrict this thesis to the descriptive mining task of cluster
analysis, which aims at grouping the data objects into clusters such that objects
within each cluster are similar, while objects located in different clusters are dis-
similar. Since clustering traditionally operates without given prior information,
such as, e.g., partial information about class labels, but autonomously identifies
the hidden aggregation structure of the data, it is ranked among the unsuper-
vised mining principles. In contrast to clustering, the predictive mining task of
classification needs partial information about the class structure in order to learn
a model based on which unknown objects can be classified. As we will see in
the context of this thesis, such a clear differentiation between unsupervised and
supervised learning tasks does not apply to modern mining techniques anymore.
Instead, different paradigms such as clustering and classification contribute to
each other such that in both fields various so-called semi-supervised techniques
exist. Also, the integration of previously detected patterns and user knowledge
can be understood as semi-supervision as it is able to guide a clustering pro-
cedure in addition to the data itself. In this thesis, we will therefore consider
unsupervised as well as semi-supervised clustering techniques.

Clustering analysis is widely studied in the data mining and machine learning
community to detect patterns in the data, helping to identify structures and rela-
tionships in complex data as well as to summarize the data. Clustering techniques
are also often applied as intermediate step for other data mining paradigms such
as classification or outlier analysis, exploiting the summarizing characteristic of
such a descriptive structural analysis. The research field of clustering is very di-
verse and the presented solutions highly depend on the targeted data domain
(text, multimedia, networks, timeseries, numeric vector data, etc.) and the ap-
plication’s problem setting (streaming data, uncertain data, pattern type, seg-
mentation, summarization, trend detection, etc.). In this thesis we will focus on
numeric vector data but will also strive the topic of clustering within network
data. Typical applications for those data domains can, for example, be :

e Customer segmentation: Here, the goal is to find groups of customers
with similar buying, behavioral, or personal characteristics in order to find
groups with common needs and priorities to enhance targeting and recom-
mendation strategies.

e Sensor data analysis: By detecting sensor groups showing similar measure-
ments, a compression of the data into cluster information can help in re-
ducing the power consumption for long-distance transmissions of mobile
sensors. It can also help to detect global events, trends, or anomalies.

e Gene expression data analysis: If represented as microarray, one goal is to
find genes with homogeneous expression levels, which indicates that they
share a common function. If gene interactions are additionally taken into
account in a network representation, then a goal is to find genes that show
similar expression levels and are densely connected to identify functional
modules.

Network analysis: Clusters in networks, also referred to as communities, are

groups of densely connected vertices. Clusters in the World Wide Web, e.g.,
comprise web pages with topical similarities or identify link farms. In so-
cial networks, clusters correspond to social groups, e.g., different research
divisions in a scientific co-authorship network.

Instead of just a small selection of relevant information, the grown poten-
tial of data storing and data recording techniques enables us to capture data
from such different applications in its full complexity. For such complex data,
traditional clustering methods are often incapable of detecting a meaningful or
all-encompassing clustering structure. Therefore, several specialized areas have

10 Introduction

formed within the research field of cluster analysis, among which we will con-
centrate on the one of multi-view or alternative clustering and on the one of
subspace clustering.

1.1 Multi-View and Alternative Clustering

The process of clustering is commonly known to be very subjective and that there
does not exist the one true clustering approach to solve all clustering problems.
Instead many different cluster concepts exist, such as e.g., arbitrarily shaped clus-
ters, compactness-based clusters, or distribution-based clusters. The clustering
result, thus, strongly depends on the chosen clustering algorithm but also on the
selected parameter setting for this algorithm. While the instability of clustering
results has encouraged the research field of ensemble clustering to develop meth-
ods to find the one, unifying consensus clustering, the awareness of the inherent
subjectivity of the clustering task motivated several researchers to go the opposite
direction and explicitly uncover the diverse set of hidden clusterings within the
data. The research area of alternative clustering, also referred to as multi-view
clustering! follows the philosophy that some datasets, especially if they are com-
plex, can allow for multiple valuable, alternative clusterings. Each one of these
groupings has its justification and might present a reasonable view or perspective
on the data’s nature. A toy example that, in variations, is commonly used in the
literature (e.g., [DQO8]) to visualize the validity of concurring alternative cluster-
ings is depicted in Fig. 1.2. For such data, there is no indication to prefer the left
over the right clustering as both partitionings fulfill similar quality requirements.

Besides the exploratory curiosity of scientists, we can find various reasons to
extract all clusterings hiding in the considered data. A user often does not know
in advance which data characterization is the most useful one for an application.
In such a scenario the presentation of different available alternatives helps to
evaluate the different options. For different applications, different clustering so-
lutions might be suited best, such that a single clustering will not be sufficient. In
some applications there might already exist a strong hypothesis on the clustering
structure of the data and it is necessary to verify that there does not exist another
strong, competing clustering structure.

IThe term multi-view clustering is also commonly used for the clustering paradigm which
searches for a single clustering of data represented by multiple different sources. For clarity
will call this paradigm multi-source clustering in the remainder of this thesis.

1.2. Subspace Clustering 11

dimension 2
dimension 2

dimension 1 dimension 1

Figure 1.2: Alternative clusterings for a single dataset

1.2 Subspace Clustering

In our information society, we can observe the trend to collect all available in-
formation just in case of any potential future application. On the one hand,
such rich data repositories represent treasures for data miners and might allow
to reveal complex new patterns, such as, e.g., alternative clusterings. On the
other hand, such unfiltered data sources possess the unfortunate characteristic
that patterns are obfuscated by irrelevant information. Traditional clustering ap-
proaches consider the full attribute space to assess the similarity between objects,
i.e., all of the objects’ characteristics are taken into account. With an increasing
number of characteristics, it becomes, however, more and more unlikely that two
objects share similar values with respect to all attributes. Thus, we observe an
increasing distance for an increasing dimensionality of the attribute space. While
distance values grow with increasing dimensionality, the variance of the distances
becomes nearly a constant. As a consequence, the discrimination power of dis-
tance functions deceases with increasing dimensionality of the data space, such
that all objects seem equally similar. As an effect of this so-called “curse of di-
mensionality” [BGRS99], we can observe that in high-dimensional spaces nearest
neighbor queries become instable and that it becomes increasingly difficult to es-
timate distributional parameters such as, e.g., the mean. The effects of the curse
of dimensionality are especially strong if we have a high proportion of irrele-
vant features. Due to such irrelevant features, it is very unlikely for traditional
clustering methods to discover reasonable clustering structures in the full-space.

One possible solution to diminish the effects in high-dimensional spaces are
techniques for global dimensionality reduction, e.g., the Principal Component
Analysis (PCA [Jol02]). All objects are projected into a single low-dimensional

12 Introduction
<
;“é TE
— s
o

z E o
> 73
5 5}
= o Q@
> o ©
5 o o = A
5 o o o
g &) B ©
[A AA Sl a o o
1 YN
)3 hel

A A A
ot A~ A A A pan 8lo o ©9*4 o

blood pressure [mmHG] money spent on technology [mTlnnJ

Figure 1.3: Exemplary subspace clusters in three different subspaces

space, where the influence of irrelevant attributes is weakened. Unfortunately,
for complex datasets, different clusters may have different sets of relevant at-
tributes, such that global dimensionality reduction techniques do not provide a
satisfying solution. This problem of locally relevant dimensions for each cluster is
explicitly tackled by the paradigm of subspace clustering [PHL04, KKZ09]. Sub-
space clustering is not restricted to a single data projection but detects clusters
in arbitrary subspace projections of the data. For each cluster it automatically
detects the set of relevant features for which the cluster’s objects are similar. The
relevant features of a cluster support a semantic reasoning about the data’s clus-
tering structure. The example in Fig. 1.3 shows a clustering consisting of three
clusters each in a different subspace projection. Cluster C is located in subspace
{blood pressure, sportive activity}, while for the grouping of cluster C only the
attribute {sportive activity} is relevant and cluster Cj is located in the disjoint
subspace {money spent on technology, read technical articles}. Since different
subspaces represent different characteristics of the data and, thus, might reveal
clusters in a different semantic context, each object can naturally belong to mul-
tiple clusters simultaneously. Therefore, all three clusters of the example in Fig.
1.3 are potentially meaningful and should be reported as result.

1.3 Contributions and Structure of this Thesis

In this thesis, we want to present new models and algorithms for effectively com-
bining the two paradigms of subspace clustering and multi-view clustering. Both
paradigms share the fundamental belief that just a single partitioning of the data
is often insufficient and that, instead, objects can be clustered differently depend-
ing on the context or view. While for multi-view or alternative clustering the term

1.3. Contributions and Structure of this Thesis 13

“view” is not clearly defined and it is often hard to analyze the semantic behind
discovered alternative clusterings, subspace clustering provides a natural intu-
ition of a view on the data, as different subspace projections provide a different
semantic perspective on the data. The two different 2-dimensional subspaces in

olusmir\g view for “heatth status" olusmir\g view for Faste of mausic"

A B love
éO
0808 Rock

attended rock concerts
Q
0
4
Iy

sport activity

consumption of fruit attended classic concerts

Figure 1.4: Different subspaces providing different clustering views on the data

Fig. 1.4 show two differing clusterings of a single dataset. Each set of character-
istics represents a different view on the data, which enables to find such a diverse
set of clusterings. Taking a perspective focused on health aspects, different in-
dividuals will be grouped together than when taking a perspective focused on
musical or professional interests. Furthermore, the relevant attributes for each
clustering support the identification of a semantic context for each clustering.
A clustering based on the attributes “fruit consumption” and “sport activity” is
likely related to the “health status” of a person, while the type of favored music
concerts reveals a person’s “taste of music”.

A transfer of the principles of subspace clustering to multi-view clustering
cannot only help in defining a view and a semantic background for alternative
clusterings, it will also properly address the problem of irrelevant dimensions and
account for the curse of dimensionality. Similarly, an adaption of the idea of clus-
tering views and of the diversity of these views for subspace clustering can help
in conquering one of the main challenges of subspace clustering, which is the
avoidance of redundant clusters in the result set. Since the cluster definition of
subspace clustering methods is often (nearly) anti-monotone w.r.t. the subspaces,
each subspace projection of a valid cluster is a valid cluster as well. To avoid an
overwhelming result set with redundant information, subspace clustering algo-
rithms usually rely on a special redundancy modeling.

14 Introduction

Part I: Introduction

In Chapter 1 of this first part of the thesis, we provided a short introduction for the
two major data mining paradigms this thesis will cover: multi-view clustering and
subspace clustering. In Chapter 2 we will continue with a discussion of the related
work for both paradigms in order to capture the general approaches tackling both
clustering problems. In addition to a formal problem formulation, we will also
highlight the main challenges for each paradigm.

Part II: Transferring Multi-View Principles to the
Subspace Clustering Paradigm

In the second part of this thesis, we take the perspective of subspace clustering
and adapt an important principle of multi-view clustering to improve the cluster-
ing result. We start in Chapter 3 with a thorough discussion of the relation be-
tween multi-view clustering and subspace clustering to analyze similarities and
differences.

In Chapter 4, we introduce the OSCLU approach which integrates the simi-
larity of subspace perspectives into the model to handle redundancy in the result
set. The redundancy of clusters is evaluated based on their similarity regarding
objects and subspaces. The underlying idea is that only almost orthogonal sub-
spaces are able to provide diverse clusterings. The OSCLU approach presents a
general and flexible solution for detecting subspace clusters in different views of
the data without relying on a specific cluster definition. Due to the NP-hard com-
plexity of finding the globally optimal final solution, we propose an efficient al-
gorithm to compute an approximate solution for the density-based cluster model.

The OSCLU approach finds a globally optimal set of alternative clusters re-
garding interestingness and redundancy. However, it cannot take prior informa-
tion into account to determine a subspace clustering that represents a good al-
ternative for already known subspace cluster information. In Chapter 5, we will
present our ASCLU approach, which is a natural extension of the OSCLU model
incorporating the information of a previously known subspace clustering into the
global optimization process. The new clustering produced by ASCLU exhibits no
redundancy to the apriori given clustering but complements its information to an
overall optimal solution.

1.3. Contributions and Structure of this Thesis 15

Part III: Transferring Subspace Principles to the
Multi-View Clustering Paradigm

In the third part of this thesis, we take the perspective of multi-view clustering
and transfer the idea of searching for clusters in subspace projections to the task
of finding alternative clusterings. The two approaches OSCLU and ASCLU, pre-
sented in the previous part, focus on the clustering as a whole but views are only
considered implicitly and are not mined explicitly. The views do not manifest
themselves by assigning clusters to views and by determining which attributes
are characteristic for which view. In Chapter 6, we will introduce the general
idea for determining multiple alternative subspace clusterings simultaneously, to
overcome these limitations. With generative models, we assume the data to be
the result of a generative process depending on different mixture distributions
for different subspaces, representing the clustering views.

In Chapter 7, we introduce our MVGen method which couples the detection of
subspace clusters and their aggregating views. The generative model of MVGen
considers classical subspace clustering scenarios, where a cluster has locally irrel-
evant dimensions for the view it is assigned to and where global noise dimensions
can occur. To determine the relevant dimensions for each view and their subspace
clusters, we perform Bayesian model selection, where we allow for overlapping
subspaces for each view. Since learning the model variables through exact infer-
ence is intractable, we approximate the optimal solution using the principle of
iterated conditional modes.

The generative model SMVC introduced in Chapter 8, is motivated by the suc-
cess of the MVGen model. The subspace clustering scenario modeled with our
SMVC model is simplified and the focus is directed towards a meaningful integra-
tion of user defined partial prior information regarding the clustering structure in
the multi-view scenario. Via instance level must-link and cannot-link constraints
the user is enabled to guide the complex clustering process towards a more sat-
isfying result. Besides the difficulty of learning the clustering and the relevant
subspaces for each view, a new task is to learn the association of the provided
instance level constraints to the views. For efficient learning of the model vari-
ables, we use variational inference and mean field approximation techniques to
approximate the optimal solution.

16 Introduction

Part IV: Constraint-Based Alternative Clustering in Subspace Projections

Part III presented techniques to simultaneously find multiple clustering views
hidden in the data. Most techniques for the multi-view clustering paradigm,
especially if incorporating data transformations, instead, search for clustering
alternatives iteratively. This has the advantage that based on the knowledge of
previously found clusterings, the search for a new clustering is not completely
uninformed but can be steered towards promising directions. In this part, we
want to introduce a new concept for finding alternative clusterings in subspace
projections based on methods for combined graph clustering of graph data and
attribute data. Chapter 9 gives an introduction to the problem reformulation
and thoroughly discusses the main challenges for this task. By encoding known
clusterings as relational information between objects, the vector data and the
known clusterings can be represented together as either vertex labeled graph or
as edge labeled graph. In the chapters 10 and 11, we will present two techniques
for performing subspace clustering in graphs annotated with feature vectors.

In Chapter 10, we propose the novel clustering method SSCG for graphs with
vertex labels based on the principle of spectral clustering. Following the idea
of subspace clustering, our method detects for each cluster an individual set of
relevant features. Since spectral clustering is based on the eigendecomposition of
the affinity matrix, which strongly depends on the choice of features, our method
simultaneously learns the grouping of vertices and the affinity matrix.

In Chapter 11, we present the novel clustering method SuMo for graphs with
edge labels. We extend the widely used modularity measure, used to express
the strength of communities, for multi-dimensional edge weights by following
the principles of subspace clustering. Some of the existing algorithms for ap-
proximating the optimal solution with respect to the traditional modularity can
already be adapted for our extension of the modularity. To deal more effectively
with the extended search space due to the variance of the dimensions relevance,
we propose the efficient clustering algorithm SuMo for clustering networks based
on the subspace modularity.

Part V: Evaluation and Visualization for Alternative Subspace Clustering

In this part of the thesis we will discuss measures and techniques for evaluat-
ing and visualizing clustering algorithms in the context of multiple views and
subspace projections. We will consider post-processing techniques as well as in-
process techniques for supporting the user in confining the clustering result.

1.3. Contributions and Structure of this Thesis 17

In Chapter 13, we discuss the possibilities for a systematic evaluation of sub-
space clustering results. We formalize general quality criteria for subspace clus-
tering measures and compare the existing external evaluation methods based on
these criteria and pinpoint limitations. We propose a novel external evaluation
measure which meets the requirements of the proposed quality properties. Over-
all, we provide a set of evaluation measures that fulfill the general quality criteria
as recommendation for future evaluations.

Decoupling the process of subspace search from the actual clustering process
provides more flexibility for the task of subspace clustering, e.g., regarding the
choice of the cluster model. The choice of interesting subspaces is, however, cru-
cial and for the choice of a proper clustering paradigm the user needs some ana-
lytical foundation. In Chapter 14, we propose an interestingness-guided subspace
search method for facilitating the choice of subspaces by using the principles of
different views. We provide visualization and navigation possibilities to interac-
tively explore large sets of subspaces. Our approach allows users to effectively
compare and relate subspaces with respect to involved dimensions and clusters of
objects and facilitates the choice of appropriate clustering paradigms for selected
subspaces.

In Chapter 15, we present two tools that help in bridging the gap between sub-
space clustering and multi-view clustering. Although subspace clustering meth-
ods generate concept-based patterns, the user has to provide domain knowledge
to gain reasonable concepts or views out of the data. The first tool CoDA supports
the user in the final step of view definition. More concretely, the user is guided
through an iterative, interactive process in which views are suggested, analyzed,
and potentially refined. Based on the views defined with CoDA or for the several
alternative clustering solutions generated by multi-view approaches, our second
tool, MCExplorer, allows for an interactive exploration, browsing, and visualiza-
tion of multiple clustering solutions on several granularities.

Part VI: Summary and Outlook

In the last part, we conclude this thesis by summarizing all contributions and by
presenting interesting open challenges in the context of multi-view clustering in
subspace projections.

Related Work

HIS chapter will provide a rough overview of published clustering methods
T that are related to the task of finding multiple alternative clustering solu-
tions in subspace projections. We will mainly focus on the two paradigms multi-
view clustering (Section 2.1) and subspace clustering (Section 2.2).

2.1 Multi-View Clustering

The research field of multi-view clustering, which is also commonly referred to
as alternative clustering, comprises various approaches applying different tech-
niques and different assumptions concerning the data. Before discussing the dif-
ferent approaches, we start by formalizing the general mining task for finding
multiple alternative clusterings.

Problem Definition 2.1 Generalized Multi-View Clustering Problem

Given a set of objects O = {o1,...,0,} and a set of m > 0 known clusterings
Known = {C,...,Cy} as background knowledge, generate | > 1 alternative clus-
terings Alt = {Cy,...Cy} such that

1. the quality of the generated clusterings .. ,,, Qual(C) is maximized and

2. the similarity of all clusterings 3 ¢ . knownuainc, zc, S1m(Ci; C;) is minimized.

Like the solutions we will present in the next chapters, most approaches are
developed for numerical vector data O C Rl with Dim being a set of dimen-
sions. However, some approaches present general frameworks for discovering
alternative clusterings and are independent of a specific cluster model such that
they are not restricted to one data domain. Usually a clustering, for the set
Known as well as the set Alt, is considered to be a hard clustering and presents
a partitioning of the data O.

19

20 Related Work

2.1.1 Naive Approach

An intuitive approach to achieve a multi-view clustering is to randomly gener-
ate a variety of clustering solutions of which then a set of diverse clusterings
is extracted in a post-processing step. The set of base clusterings can either be
generated by using different clustering approaches, by using different parameter
settings, or by exploiting the non-determinism or the trap of local minima of cer-
tain optimization algorithms. The post-processing step of selecting informative
alternative clusterings will be a mining task itself. In [CENS06], the selection of
clustering alternatives is solved through a meta clustering approach, where simi-
lar clusterings are grouped based on a similarity metric for clusterings. Represen-
tatives for the clusters at the meta level present the desired alternative clustering
solutions. Besides of the inefficiency of the generation step, it also carries the
risk of generating highly similar clusterings as well as clusterings of bad qual-
ity. Instead of such an undirected and independent generation of solutions, more
systematic approaches would promise clusterings of higher quality and diversity.
Following the true meaning of multi-view clustering, we can find multiple,
differing categorizations of the approaches for this paradigm. In the following,
we will focus on just one categorization and differentiate between two processing
schemes to systematically generate alternative clusterings. The first approach
uses the knowledge of previous clusterings to iteratively generate new clustering
alternatives. The second approach produces multiple alternatives simultaneously
such that each clustering influences the others and a diversity can be realized.

2.1.2 TIterative Approach

Approaches that work iteratively assume a set of m > 0 known clusterings
Known = {C,...,C,} based on which a single alternative clustering C,;; is gen-
erated (I = 1, cf. Problem Definition 2.1). Regarding the new clustering C,;; as
known information Known U {C.;}, a further clustering alternative can be pro-
duced in a subsequent iteration, and so on. Most of the existing approaches have
been designed to incorporate just a single known clustering (0 < m < 1, cf. Prob-
lem Definition 2.1). These approaches carry the risk that previously discovered
clusterings are revisited in later iterations since the dissimilarity of new cluster-
ings is just ensured for the one clustering of the previous iteration but not for all
known clusterings. For some approaches a naive extension to incorporate m > 1
clusterings is easily possible, as we will discuss in the following.

2.1. Multi-View Clustering 21

The first approaches presented for this category find alternative clusterings
based on the information bottleneck principle. The general idea of the infor-
mation bottleneck principle is to find the best trade-off between accuracy and
complexity (compression) when clustering data objects X (random variable rep-
resenting object IDs) w.r.t. their attribute values Y (relevant variable representing
the objects’ attribute values). A (probabilistic) clustering C' (random variable rep-
resenting a clustering) should compress the information of X as much as possible
(minimize mutual information (X, C)) while preserving the information of the
features Y (maximize the mutual information (Y, C)). Overall, this trade-off can
be realized via miny . [/ (X,C) — 3 -I(Y,C)], where {3 is the Lagrange multi-
plier realizing the trade-off. This variational problem formulation can be solved
via a generalization of the Blahut-Arimoto algorithm [TPB99].

The information bottleneck objective, as defined above, represents the qual-
ity criterion for Definition 2.1. To incorporate the dissimilarity constraint for a
given clustering D this objective has to be extended. Here, different ideas for
using the information bottleneck with side information, i.e., a known cluster-
ing D, exist in the literature [CT02, GHO3, GHO04]. In [CT02] the main idea
is to minimize the similarity of D and C' by minimizing the mutual information
I(S,C), which is integrated as a third trade-off component into the objective
function: ming(.) [[(X,C) =B -1(Y,C)+~-1(D,C)]. To avoid a third trade-
off parameter, in [GHO3] the redundancy of C' and D is considered within the
conditional mutual information I(Y,C'|D) of variables Y and C' when already
knowing clustering D. Maximizing this term ensures that the new clustering C'
provides novel knowledge: min,.) [(X,C) — 3 -I(Y,C|D)]. The authors in-
troduce a relaxation in [GHO4] and focus mainly on the diversity of the two clus-
terings while enforcing only a minimal quality threshold: maw,.) [I(Y,C |D)]
such that /(X,C) < cand I(Y,C) > d. Other similar techniques exploiting in-
formation theoretic principles can be found in the literature, e.g., [DB10a] which
optimizes the objective maz. [I[(C,Y) — - I(C, D)].

The information theoretic approaches presented so far are designed to incor-
porate just a single known clustering. Here, for a new clustering the dissimilarity
is just guaranteed for this single other clustering. A straightforward solution
for considering multiple clusterings as prior information is to replace the occur-
rence of the redundancy term (e.g., I(D, (') in the objective function with the
sum of dissimilarities (e.g., Y- ¢ gnown 1 (D. C)). Approaches following this idea
are for example [GVGO5, VE10, DB13a]. For binary data, [GVGO5] presents a

22 Related Work

method for likelihood maximization with model-level constraints to encode the
known clustering information. [VE10] optimizes the same objective as [DB10a]
based on conditional entropy and kernel density estimation. [DB13a] presents
an elegant way to combine the minimization of the summarized mutual entropies
> peknown L (D, C) and the likelihood maximization of the variables for the den-
sity mixture model: maxe [L(©[X) = 83 pe genown 1 (D, C)], where L(©]X) is
the log-likelihood function for determining optimal distribution parameters ©.
All approaches presented so far use information theoretic principles for the
quality and dissimilarity constraint of Definition 2.1 [CT02, GH03, GH04, DB10a,
VE10, DB13a] or just to model the dissimilarity requirement [GVGO5, DB13a].
Aside from information theory, various other techniques for ensuring the dissim-
ilarity of the generated clustering have been published [GHO05, BB06, BBD10].

[GHO5] uses a heuristic approach that is based on ensemble clustering meth-
ods and can only incorporate a single known clustering Crpown- The presented
CondEns algorithm operates in three stages. First, the objects O; of each known
cluster C; € Crpnoun are clustered separately with an arbitrary traditional cluster-
ing method. Since for each of the k = |Crcpown| many newly generated clusterings
{C¢y,...,Cc,} only the objects of one cluster C; have been considered, the re-
maining objects O\ O; will be properly assigned to the clusters for each clustering
Cc,. In a final step, a single alternative clustering is generated out of these & base
clusterings by using ensemble clustering techniques. A crucial assumption for the
success of CondEns is that each of the known clusters C; € Cgxpown has to contain
information about many or even all of the alternative clusters.

The Coala algorithm, presented in [BB06], encodes a known clustering with
instance-level cannot-link constraints and uses an agglomerative hierarchical clus-
tering to realize a trade-off between quality and dissimilarity. For each object
pair, it introduces a cannot-link constraint if both objects appear together in one
of the known clusters, indicating that those two objects should not be grouped
together again in order to achieve a novel clustering structure. For the merg-
ing steps of the hierarchical clustering, a trade-off is realized between quality
merges dg,, and dissimilarity merges dy;, i.e., dguq is the distance of the two
closest clusters and d ;. is the distance of the two closest clusters such that no
cannot-link constraints are violated. Only if the quality merge is significantly bet-
ter (dguar < w - dg;ss) according to the trade-off parameter w, it will be preferred
over the dissimilarity merge. Although this principle can be easily adapted to
multiple known clusterings algorithmically, it becomes very likely that already

2.1. Multi-View Clustering 23

for few known clusterings the quality merge will always dominate and thus a
single clustering will constantly be reproduced.

For the MAXIMUS approach in [BBD10], Bae et al. even develop the new
similarity measure ADCO for clusterings that emphasizes structural dissimilarity
(w.r.t. the clusters’ density profile) and can deal with non-overlapping cluster-
ings. Used as an objective, the optimization problem for minimizing ADCO w.r.t.
multiple known clusterings can be encoded as an integer linear program, whose
localized clustering solutions are combined with a consensus clustering process.

All approaches we presented so far for the category of iterative multi-view
clustering, cluster in just a single data space and explicitly consider the dissim-
ilarity of the generated clustering solutions as part of their objective. The al-
gorithms in [CFD07, DQ08, QD09, DB13b] follow a different approach, where
different data representations are considered for each clustering. The general
principle is to learn an “orthogonal” transformation of the data based on a previ-
ous clustering result. The idea is that the new data representation can highlight
novel clustering structures, which is strongly related to the subspace clustering
paradigm. These techniques do not explicitly check for the dissimilarity of the
generated clusterings but only implicitly account for the diversity through dif-
fering space transformations. The general aim for these approaches is to find a
transformation of the data that is independent of the known clustering but at
the same time preserves quality characteristics of the data to avoid its complete
distortion. Therefore, they are usually restricted to linear space transformations.
A big advantage of the transformation-based approaches is their independence of
a specific clustering model. For each of the determined data transformations an
arbitrary (preferably partitioning) clustering model can be applied.

The oldest approach based on data transformations [CFD07] exploits dimen-
sionality reduction techniques. For a given clustering the main factors (principal
components) leading to this clustering are identified. By removing these main
factors characterizing the previous clustering, only the residual, orthogonal space
is considered for the next clustering. Thereby, previously weak principal compo-
nents are highlighted, which can support alternative clustering structures. By
iteratively generating new space transformations based on the previously gener-
ated ones, this approach incorporates all previously known clusterings. However,
the repeated projection of the data into reduced spaces can quickly merge the
data into a single cluster. Furthermore, this approach might not be appropriate
for lower-dimensional datasets [DQO8].

24 Related Work

The approach of [DQO8] uses instance level constraints to characterize an
existing clustering Cr,ouwn- Based on a metric learning algorithm for these con-
straints, a transformation 7¢,. . is determined such that the known clustering
is easily observable. Via a singular value decomposition 7¢,, = L-A- R an
“inverse” transformation T;, = L-A~'. R is determined which rules out
the previously found clustering but maintains the inherent structure of the data.
Although, this procedure can be applied iteratively like [CFDO7], there is no
guarantee for the dissimilarity of the transformations and correspondingly the
dissimilarity of the resulting clusterings.

The approach of [QD09] solves a constrained optimization problem to find a
good transformation of the data based on a single known clustering. It minimizes
the Kullback-Leibler divergence between the distribution of the original data and
the one of the transformed data without overly distorting the data properties.
For the optimization process, the authors also propose a trade-off possibility such
that the user is able to favor either alternativeness or quality. This approach
additionally offers the nice opportunity to specify certain parts of the known
clustering which should be retained. Similar to [DQO08], a naive extension for
multiple known clusterings does not guarantee a new data transformation which
is dissimilar to previous ones.

In [DB13b], a globally optimal subspace is learned using regularized PCA
such that the new subspace is independent from a given clustering and at the
same time naturally preserves the characteristics of the data. To achieve the in-
dependence of subspaces, the authors employ the Hilbert Schmidt Independence
Criterion (HSIC), which, in combination with PCA, can lead to an eigendecom-
position problem for which a globally optimal solution can be derived. For more
complex data structures, an alternative way to compute a subspace projection
based on graph theory is proposed, which aims to preserve the neighborhood
proximity of the data objects. Again, a naive extension for multiple known clus-
terings does not guarantee alternative subspace projections.

2.1.3 Simultaneous Approach

While the previous paradigm iteratively searches for alternative clusterings, ap-
proaches of the simultaneous paradigm try to determine all clustering solutions
in parallel. This has the advantage that all clustering solutions influence each
other such that the overall quality of the generated alternatives). ,, Qual(C)

2.1. Multi-View Clustering 25

can be maximized. Approaches with an iterative clustering detection scheme,
instead, perform a greedy selection of the best available clusterings. Only sub-
sequent clustering solutions are to be adapted to guarantee a diverse set of clus-
terings but already generated clusterings cannot be modified. An affiliated effect
is that mistakes in previous iterations leading to bad clusterings can negatively
influence subsequent clusterings. Approaches simultaneously detecting multiple
clusterings typically do not incorporate any given clustering (m = 0, cf. Prob-
lem Definition 2.1) and the number of generated alternatives (I > 1) is usually
defined by the user.

In [JMDO8] two approaches are proposed which use the notion of decorrela-
tion between clusterings, which quantifies the ”orthogonality” between the mean
vectors corresponding to different clusterings. The first approach modifies the
k-means algorithm to find compact clusterings, where the representatives of dif-
ferent clusterings should be mostly orthogonal to each other such that the cluster
labels generated by nearest-neighbor assignments are independent. The second
approach presents a generalized expectation maximization algorithm for learning
the convolution of multiple independent mixture distributions.

The CAMI approach [DB10b] exploits a regularized expectation maximization
technique, which maximizes the likelihood of each alternative clustering over the
data and simultaneously minimizes the similarity between them based on the
mutual information. As for the approach in [JMDO08], the different clusterings
are learned as a convolution of multiple independent mixture distributions.

The work of [HTW'10] focuses on non-homogeneous data, where two dif-
ferent object domains are considered, whose instances can additionally be con-
nected through relational information (bipartite graph). The task is to find a base
clustering for the objects of each data domain such that either the according con-
tingency table shows a strong diagonal (dependent clustering, relations between
the two clusterings are strong) or such that the according contingency table is
uniformly distributed (disparate clustering, relations between the two cluster-
ings are weak). The minimization or maximization of an integrated objective
function leads to a disparate or a dependent clustering. Although this approach
can only generate two alternative clusterings, it provides a very general frame-
work by considering two different databases and relational information.

The information theoretic model presented in [KdB13] follows the principle
that clusters are more interesting if their probability is small under some prior
beliefs. The prior beliefs can be simple distributional assumptions regarding the

26 Related Work

data but can also include already known clusters. The probability of clusters or
a set of clusters is derived based on a maximum entropy model of prior beliefs.
However, optimizing a set of alternative clusters is NP-hard, such that the au-
thors propose a greedy approximation algorithm where clusters are generated
iteratively and integrated into the prior belief for subsequent cluster generations.
Although this shall approximate the simultaneous computation of multiple, in-
dependent clusters, we can also argue to assign this approach to the iteratively
operating multi-view clustering paradigm. It is also important to note that this
approach does not produce a set of clusterings, but a set of non-disjoint clusters.

So far, [NDJ10] is the only approach aiming at simultaneously learning all
clustering views based on multiple data representations. By augmenting the ob-
jective for spectral clustering views to incorporate multiple views, dimensionality
reduction, and a penalization for similarity of the views, multiple clustering so-

lutions in subspace projections of the data are determined.

2.2 Subspace Clustering

Since the first subspace clustering approach [AGGR98] has been published in
1998 , numerous new methods have been proposed for which roughly two dif-
ferent paradigms can be distinguished: subspace clustering [AGGR98] and pro-
jected clustering [AWY99]. Both paradigms tackle the general problem of find-
ing clusters in subspace projections of the attribute space. The most general prob-
lem formulation for subspace clustering also includes non-axis-parallel subspaces
and can be formalized as follows:

Problem Definition 2.2 Generalized Subspace Clustering Problem

Given a set of objects O = {0y, ..., 0,} C RP™ with Dim being a set of dimensions
Dim = {1,...,d}, find a subspace clustering C C 2°, such that for each cluster
C; = (0;) € C a linearly transformed space S; = fo,(Dim) exists such that C; is of
high quality in this projected space S;.

The linear space transformation can for example be the result of a PCA trans-
formation. For these arbitrary subspace projections the search space of potential
clusters becomes infinitely large, such that heuristics are applied to confine the
search. In this thesis the focus, however, will be on approaches for clustering in
axis-parallel subspaces for which a cluster can be understood as a pair consisting
of the set of its clustered objects and the set of its relevant attributes.

2.2. Subspace Clustering 27

Problem Definition 2.3 Generalized Axis-Parallel Subspace Clustering Problem
Given a set of objects O = {01, ..., 0,} C RIP™ with Dim being a set of dimensions
Dim = {1,...,d}, find a subspace clustering C C 2° x 2P such that each cluster
C; = (04, 8;) € C has a high quality in its respective subspace S;.

While there is no generally accepted definition for the quality of a cluster-
ing, all existing measures somehow consider the proximity or similarity of the
clustered objects.

2.2.1 Subspace Clustering

Subspace clustering approaches base on a formal definition of what constitutes a
cluster based on the similarity of an object set for a subset of attributes. Among
the various presented approaches different definitions for subspace clusters exist
[PHLO4, KKZ09]. The general idea, as introduced by [AGGR98], is to find all
pairs of object sets and subspaces that match this definition. The object sets
usually have to fulfill a maximality criterion, i.e., for a given pair (O, S) there
should not exist a superset O’ O O such that (0’, S) also is a valid cluster.

The first challenge of subspace clustering clearly is the computational com-
plexity. Given the exponential number of potentially interesting subspaces, most
subspace clustering algorithms have very high runtimes. Often the problem is
slightly diminished by exploiting heuristics to approximate the result.

An important characteristic of subspace clustering results is that the clusters
are allowed to overlap with respect to objects as well as attributes. On the one
hand, this allows that each object can participate in multiple clusters and, thus,
enables us to find multiple concepts hidden in the data. On the other hand,
one has to cope with the potentially tremendous amount of all possible clus-
ters in the exponential number of axis-parallel subspaces. Typically, the cluster
definition fulfills an anti-monotonicity criterion such that a set of objects form-
ing a valid cluster in subspace S also represents a valid cluster in all subspaces
S’ C S. Therefore, the result size of subspace clustering algorithms can be huge
and quickly become unmanageable [MGAS09]. Usually, the projected versions
of a cluster in its subspaces do only comprise little novel objects and, therefore,
can be regarded as redundant information. The second challenge of subspace
clustering, thus, is the redundancy of resulting clusters. Some approaches have
been proposed that explicitly incorporate a redundancy pruning of the result
[AKMS07a, AKMS08a, AKMS08b, MAG"09b, MS08]. In addition to the clus-
ter definition, they often define an optimal clustering to report only the most

28 Related Work

interesting clusters, which provide novel knowledge about the data. In addition
to the exhaustive search of the exponentially many subspaces, thus, typically a
complex optimization task has to be solved.

A third challenge for subspace clustering is to adequately consider the effects
of the curse of dimensionality. By considering subspace projections, the negative
influence of irrelevant dimensions can be avoided. The decreasing density of ob-
jects with increasing dimensionality, however, also applies to clustered objects in
subspaces. Using just a single cluster definition for all subspaces, independent
of the subspace cardinality, might prevent the detection of meaningful clusters.
Some approaches like [SZ04, AKMS07a, MS08] explicitely account for the prob-
lem of a decreasing density and use a dimensionality unbiased subspace cluster
definition, e.g., by involving statistical significance thresholds [SZ04, MS08] or
by normalizing the density w.r.t. the null model [AKMS07a].

Most of the approaches presented for subspace clustering evolved from tradi-
tional clustering models like grid-based approaches [JD88], DBSCAN [EKSX96],
K-Means [Mac67], or EM-based techniques [MKO8]. Besides these approaches
aiming for clusters that excel by a high compactness or density, some approaches
aim for object groupings that describe correlations of different attributes, so
called correlation clustering methods (e.g., [AYOOa, BKKZ04, ABK"07b, ABK"07a,
AR10, ABD*08, HHO7]). Since the clusters’ dimensions are not restricted to sub-
sets of the original attributes but correspond to arbitrarily oriented subspaces,
correlation clustering is often denoted as generalized subspace clustering. This,
however, is inaccurate because of two reasons: First, existing correlation cluster-
ing methods are not able to find multiple overlapping clusters, since they are lim-
ited to find only disjoint or, in the case of [AR10], nearly disjoint clusters. Even
more serious is the ignorance of the obfuscation provoked by highly overlap-
ping clusters in different subspaces, causing most approaches to fail in detecting
the true correlation clusters. With our SSCC approach presented in [GFVS12],
we adequately transfer the principles of subspace clustering to the problem of
finding correlation clusters by analyzing subspace projections to find correlated
dimensions supported by a subset of objects.

2.2.2 Projected Clustering

The paradigm of projected clustering, introduced by [AWY*99], aims at parti-
tioning the data into disjoint clusters such that with each group its relevant di-
mensions are discovered simultaneously. Each object is assigned to exactly one

2.3. Bridging the Gap 29

cluster, which is the major difference to the subspace clustering paradigm dis-
cussed before. Focusing on a partitioning of the data addresses two of the three
main challenges for subspace clustering. First, the search space is decreased by
considering a partitioning, which results in a better efficiency of approaches of
this paradigm. Second, limiting the result to only disjoint clusters can be re-
garded as maximal redundancy elimination, such that the result size is manage-
able. However, by enforcing disjoint clusters, several meaningful clusters are only
detected incompletely or are even lost entirely. In general, projected clustering
methods are not able to detect multiple clustering views per object.

2.3 Bridging the Gap

Summarizing the related work for multi-view clustering (cf. Table 2.1), we have
seen that most of the presented approaches focus on the iterative processing
scheme for clustering in just a single data space. Comparably, few approaches
deal with space transformations or a simultaneous detection of multiple cluster-
ing alternatives. Here, we will present new approaches in this thesis.

‘ iterative . simultaneous
single space: 2 alternatives v | v
> 2 alternatives v I v
" transformed spaces: 2 alternatives | VR T x

> 2 alternatives | (v) just [CFDO7] ' (V) just [NDJ10]

Table 2.1: Overview over the related work for multi-view clustering approaches

Searching for multiple clustering alternatives in just a single data space is not
very promising. Since only a single data representation is considered, the de-
tected clusterings, which depend on this single data distribution, will not differ
to a high extent. Approaches working with a single data representation are forced
to trade-off quality and diversity of the detected clusterings. A more promising
approach is to use different data representations, where novel structures of the
data might be hidden. Although agreeing that strong data distortions should be
avoided to guarantee a meaningful clustering, approaches presented for this cat-
egory use arbitrary linear transformations, such that results are often difficult to
interpret. We argue that alternative clusterings can be expected especially for
high-dimensional data, where different explanations of the data can be discov-
ered through different characteristics of the data, i.e., distinct subspaces of the
data. Within this thesis we will present approaches for detecting multiple alter-
native clusterings simultaneously (Part II & III) as well as iteratively (Part IV).

Part 11

Transfering Multi-View Principles to
the Subspace Clustering Paradigm

All truths are easy to understand once they are discovered;
the point is to discover them.

GALILEO GALILEI

31

The Relation of Multi-View Clustering
and Subspace Clustering

ESIDES the similarities of subspace clustering and multi-view clustering, we
B can also identify inherent differences which clearly distinguish both para-
digms from each other. They both agree that for most data just a single parti-
tioning of the data is not sufficient but that different perspectives on the data can
reveal multiple, differing clusters for the same objects. A large customer data-
base, for example, allows for different groupings depending on whether personal
or professional preferences form the basis of clustering. Multi-view clustering
algorithms usually do not focus on defining or finding a meaningful perspective
on the data to reveal a new clustering. Instead they try to enforce, e.g., by using
constraints, to find highly differing clusterings. Subspace clustering, on the con-
trary, offers a nice intuition of a perspective on the data. The belief here is that
different sets of attributes highlight different characteristics of the data which, as
a consequence, can lead to different clustering solutions. This not only provides a
possibility for searching for new clustering alternatives but also enables a seman-
tic interpretation of the resulting clusters that is often not possible for multi-view
approaches. In Fig. 3.1 the attributes “average fruit consumption” and “sport ac-
tivity” provide a different clustering perspective than the attributes “attendance
to rock concerts” and “attendance to classic concerts”. We observe for each cus-
tomer multiple possible behaviors which should be detected as clusters. Each be-
havior of a customer is described by specific attributes. Thus, meaningful clusters
appear only in these specific subspace projections of the data. While the attribute
“attendance to rock concerts” is useful for the distinction of musical interests, the
attribute “fruit consumption” is irrelevant for grouping musical interests of cus-
tomers. Furthermore, the relevant attributes for each clustering strongly support
the semantic reasoning about found clusters and their views. Thus, we might
label the customers showing high values for fruit consumption and sport activity

33

34 The Relation of Multi-View Clustering and Subspace Clustering

as “healthy” and those with low values as “unhealthy”. The respective clustering
perspectives can thus be labeled as, e.g., “health status” and “taste of music”.

concept: “heatth status” oor\wpl—: “taste of music”
= - A —
<(§ 000 5 5 .o (uv?zs
5 (00988 o B (630 Ruk
= n] 00 6P | \o% g'
s hen20 60 5
HE g i oo °
" °
g - 8l .
= [] ~ [} L] [
,8_- . 8 ove,S
2
b ’\SSI:_
g LS
&r
©
o . L] g ‘@..} Musjc
5 g le%8)
average consumption of fruit Lﬁj attended classic concerts [yea,}

Figure 3.1: Different subspace projections reveal different views on the data

While approaches for multi-view clustering always search for multiple parti-
tionings of the data, subspace clustering algorithms do not enforce partitionings
but identify clustered regions in subspace projections of the data. This way, we
believe subspace clustering to be better guided by the data itself than partition-
ing approaches. In this chapter, we want to take the perspective of subspace
clustering and explore the possibility to integrate the underlying goal of multi-
view clustering. Thereby, we want to preserve the beneficial characteristics of
subspace clustering, namely:

e every cluster might have its individual set of relevant dimensions

e objects might belong to multiple clusters

e not every object needs to be clustered, i.e., there might exist outliers
o the final result clusters are determined simultaneously

Although both paradigms aim at revealing the multifaceted nature of the data
by allowing objects to be clustered multiple times, they both also try to limit the
result to a manageable size. Multi-view clustering limits the result set to only
those clusterings that are of high quality and that are dissimilar to each other.
For subspace clustering a cluster definition implicitly comprises a certain quality
demand. The actual pruning of the result set is realized by filtering out redundant
clusters. The underlying goal is, thus, the same for both paradigms and, put in a
nutshell, the objective is to maximize the gained information while keeping the
result size as small as possible.

3.1. Redundancy Avoidance for Subspace Clustering 35

What is called dissimilarity for multi-view clustering is called avoidance of re-
dundancy for subspace clustering. While both intend to restrict the result set to
only informative clusters, we can observe that the term dissimilarity has a broader
conception than redundancy. While redundancy-avoidance is commonly consid-
ered to retain complete information and only to resolve duplicate information,
dissimilarity is a very subjective term and, as we will see, has various interpre-
tations in the literature. In the following, we will provide a brief overview over
techniques to constrain the result size of both, subspace clustering and multi-view
clustering.

3.1 Redundancy Avoidance for Subspace Clustering

Subspace clustering automatically detects clusters in arbitrary subspace projec-
tions. These clusters might overlap object and dimension-wise, i.e., objects can
be part of various clusters in different subspaces. As a consequence, subspace
clustering techniques have to cope with an exponential number of subspace clus-
ters. Many of these clusters detect more or less the same groups of objects in sim-
ilar projections of the data and, thus, provide no additional information. Given
the typically huge result size of subspace clustering algorithms (cf. [MGAS09]),
which might even exceed the number of objects to be clustered, the obfuscation
of the actually interesting cluster information by redundant clusters becomes a
severe problem. Therefore some approaches have been proposed that explicitly
address this redundancy problem. Besides a definition of what constitutes a sub-
space cluster, they formulate a redundancy definition to confine the set of all
possible subspace clusters to only the most interesting ones. We can divide these
redundancy models into those with local and global scope.

Representatives of the first category [AKMS07a, AKMS08a, AKMSO08b] base
the redundancy definition on local cluster properties. Clusters are compared
pairwise, such that a subspace cluster is redundant if it shares a user-specified
fraction of objects with another cluster. Among the redundant clusters those with
maximal information, i.e., the ones with more relevant dimensions, are chosen
for the final result set. These maximal subspace clusters tend to contain less
noise and thus represent the inherent clustering structure more accurately. The
restriction to only pairwise comparisons of clusters fail to detect the redundancy
of clusters that are covered by combinations of high dimensional subspace clus-
ters. Reconsidering our toy example in Fig. 3.2, the additional benefit of knowing

36 The Relation of Multi-View Clustering and Subspace Clustering

cluster (1 is almost negligible if we already know clusters C7 and Cs. A pairwise
comparison of Cjy to C; or to Cs, however, indicates a high fraction of newly
clustered objects which is, in fact, not true.

- Cs Cy Cio Cia
-]
00 O 5 Yo
.. (e88o Solsc,
O ocP o0
C Q0 50 i o Cio
" [CS ° °
= n
L] <| e °
‘; - CG c C
2 2 ° 9 Ci3
= c C Opa®
° 3 °
dimension 2 dimension 3

Figure 3.2: Redundancy introduced by subspace projections of clusters

Acknowledging this shortcoming of local redundancy models, global redun-
dancy models [MAG"09b, MS08] compare the information of single clusters
against the set of all known clusters. For the redundancy model of RESCU
[MAG"09b], a cluster is non-redundant to a given set of clusters if it can con-
tribute with a sufficient coverage of beforehand unclustered objects. While this
definition solves the problem of detecting the redundancy of cluster Cy, with
respect to clusters {C;, Cs} in Fig. 3.2, it also easily expels the alternative clus-
tering {C+, Cs, Cy} as redundant if the clustering {C4, Cs} is already known. The
StatPC approach [MS08] defines a cluster as redundant if its support can already
be approximately estimated with the information provided by the set of known
clusters. The goal is to find all and only those clusters that are statistically inter-
esting. While this approach allows to detect alternative subspace clusterings in
general, it exhibits some flaws hindering its broad application. First, it is based on
the assumption of uniform distribution inside a cluster. Second, the redundancy
model is limited to the fixed cluster definition of StatPC.

3.2 Dissimilarity Criteria for Multi-view Clustering

The prevailing goal of multi-view and alternative clustering approaches is to find
multiple clusterings that highly differ and are of high quality. Since the second
requirement of a high quality holds for all clustering paradigms and various ob-
jective functions have already been presented, the clou of the multi-view clus-

3.2. Dissimilarity Criteria for Multi-view Clustering 37

tering paradigm clearly is the simultaneous realization of high quality and high
diversity. Among the various presented solutions for the clustering problem of
multiple views, we can identify two main categories regarding the technique for
attaining disparate clusterings.

Approaches of the first category directly ensure the dissimilarity of clusterings
via dual optimization techniques to simultaneously optimize the quality and the
dissimilarity of the new clustering. The most popular approach is to integrate an
according dissimilarity measure as constraint into the objective function. Here,
mainly information theoretic measures have been applied [CT02, GHO3, GHO04,
DB10a, VE10, DB13a, GVGO5] but in [BBD10] Bae et al. also develop the new
measure ADCO that emphasizes structural dissimilarity and can deal with non-
overlapping clusterings. Besides the approaches directly involving a similarity
measure for clusterings, in [BB06] Bae and Bailey use instance-level constraints
and integrate their degree of violation into the objective function. The problem
of such dual optimization approaches is the trade-off between quality and dissim-
ilarity of the generated clusterings, which is usually realized by a user specified
trade-off parameter. Enforcing a higher degree of dissimilarity is, thus, typically
accompanied by a loss of the clustering quality. Since all the above approaches
work in a fixed data space, there is no possibility to circumvent this trade-off.

For the second category, the approaches do not directly enforce the dissim-
ilarity of the clusterings but use different perspectives on the data based on
previous clusterings and certain assumptions in order to find novel clustering
structures. The most common approach is to use a previous clustering to deter-
mine an orthogonal data space either through distance matrix transformations
[DQO8, QD09] or through subspace projections [DB13b, CFD07]. A different
technique is the one of [GHO5], where Gondek and Hofmann propose a general
framework that is based on data subsets and ensemble techniques. Approaches
of this second category do not search just in the original data space but iteratively
transform and cluster the data. The transformation of the data, which is learned
based on the clustering structure of a previous result, is supposed to highlight
novel structures and presents an opportunity to find a novel clustering of high
quality. All approaches share the advantage that for the transformed data space
any clustering method can be applied depending on the data properties. A com-
mon disadvantage of all approaches is, however, the solely implicit consideration
of quality and dissimilarity of the new clustering based on certain assumptions.
The orthogonal space transformations do not ensure that the new space reveals

38 The Relation of Multi-View Clustering and Subspace Clustering

a good clustering structure. Similarly also the dissimilarity of a new clustering
to previous results is based on certain assumptions but cannot be guaranteed.
This problem becomes most apparent with the two approaches of [CFD07] and
[GHOS5]. In [CFDO7] the data space is iteratively projected into non-paraxial sub-
spaces based on the clustering of the previous iteration. Thereby, the data quickly
collapses into a single cluster or even a single coordinate [DQO8] such that no
meaningful cluster structure exists anymore. In [GHO5] the underlying assump-
tion is that, given a known clustering each new cluster label is present in each
of the known clusters. If this assumption does not hold, the clustering quality as
well as the dissimilarity of the new result is questionable. Furthermore, especially
for the approaches [GHO5, DQO08, QD09, CFDO07], a global diversity of multiple
clusterings is uncertain since only one clustering can be taken into account for
the transformation.

3.3 Basic Idea for Combining Both Paradigms

While those approaches that solely cluster in the full-space are restricted with
respect to the diversity of the clusterings and are bound to a trade-off between
quality and diversity, those approaches that rely on space transformations share
the philosophy of subspace clustering that new perspectives on the data can re-
veal new clustering structures. In the following Chapters 4 and 5, we want to
present two approaches that try to transfer the general idea of finding alternative
clusterings based on data transformations to the paradigm of subspace clustering.
Thereby we want to inherit the advantages leading to the discovery of multiple
alternative clustering concepts and help to tackle the redundancy problem for
subspace clustering, whose benefits can in return help to overcome the concep-
tional problems of alternative clustering solutions.

The alternative clustering algorithms relying on space transformations assume
that different space projections naturally contain different clusterings. They
do not involve other techniques to guarantee the difference of the iteratively
generated clusterings. While subspace clustering techniques look at the differ-
ence of clusters more carefully by comparing the set of covered objects, they
do not incorporate the idea of the difference of space transformations. Either
they compare clusters only against clusters in superspaces (local redundancy:
[AKMS07a, AKMS08a, AKMS08b]), or they compare a cluster against the entire
set of clusters (global redundancy: [MAG*09b]). While local redundancy cri-

3.3. Basic Idea for Combining Both Paradigms 39

teria are considered to be too weak and global criteria are often too restrictive,
the additional consideration of the subspace similarity instead of only the object
coverage can present a solution to this problem.

The quality of subspace clustering results is mainly determined by the struc-
tural quality of the detected clusters as well as the completeness and the redun-
dancy of the set of clusters. The quality of the clusters is completely determined
by the underlying subspace cluster definition. Given the evolution of subspace
clustering methods, where the difficulty of redundancy has been discussed and
explored only since the last decade, we can say that the quality of the cluster-
ing is the main focus of subspace clustering approaches. By remaining faithful
to these principles of subspace clustering, we are not endangered of resulting in
low quality results as multi-view approaches typically do.

In Chapter 4, we will present a new subspace clustering approach that simul-
taneously searches for all clusters of different clustering views. In Chapter 5, we
will extend this model in order to incorporate an existing, known subspace clus-
tering into the process to which an alternative subspace clustering needs to be
found. The general idea of using the subspace similarity in order to avoid redun-
dancy in the subspace clustering result will also reappear in Chapter 14, where
we will present an interactive visual approach for decoupling the processes of
subspace search and clustering.

Detection of Orthogonal Subspace
Clustering Concepts

4.1 Introduction 42
4.2 Orthogonal Concepts in Subspaces 44
4.2.1 Almost Orthogonal Concepts 45
4.2.2 Global Interestingness 47
4.2.3 Optimal Orthogonal Clustering 49
4.2.4 Local Interestingness and Cluster Definition 50
4.2.5 Proof of NP-Hardness 51
4.3 The OSCLU Algorithm 52
4.3.1 Orthogonal Subspace Selection 54
4.3.2 Incremental Result Construction 55
4.3.3 Efficient Initialization 56
4.4 Experiments 57
4.4.1 Scalability o 0L 58
4.42 RealWorldData 60
4.4.3 Parametrization 61
4.5 Conclusion 62

INCE multi-view clustering and subspace clustering share the fundamental

belief that objects might not belong only to a single cluster but can belong

to multiple clusters simultaneously, it lends itself to combine both paradigms. In

this chapter, we want to transfer the ideas of multi-view clustering to subspace

clustering. We will see that the concept of clustering alternatives can help to

tackle one of the main challenges of subspace clustering, namely to identify only
the relevant clusters.

In this chapter, we propose the novel clustering method OSCLU (Orthogonal
Subspace CLUstering) which aims at the detection of orthogonal concepts in sub-
space projections of the data. OSCLU reveals the clusters of (almost) orthogonal
concepts described by different attribute subsets and prunes clusters of concepts
that are too similar. Thereby, OSCLU is able to detect all interesting clusters in
different views of the data while simultaneously avoiding redundant information.

41

42 Detection of Orthogonal Subspace Clustering Concepts

4.1 Introduction

As thoroughly discussed in Chapter 3, one of the main challenges for subspace
clustering, besides the efficiency, is the avoidance of redundant clusters in the re-
sult. Since most subspace cluster definitions fulfill at least a weak anti-monotonic-
ity criterion, most approaches face the problem that a valuable cluster C' = (O, S)
is also detected in most of its exponentially many subspaces S’ C S without fur-
ther information value. The local ([AKMS07a, AKMS08a, AKMS08b]) or global
([MAG*09b, MS08]) redundancy criteria to tackle this problem proposed so far,
are often considered to be too weak or too restrictive respectively. The most com-
mon approach is to compare the objects newly covered by a cluster compared
to either all clusters or single clusters in superspaces. A new perspective for this
problem is given by alternative clustering approaches that rely on data transfor-
mations [DQO08, QD09, DB13b, CFD07]. The underlying idea of these approaches
is that a new clustering structure can be revealed if the data is transformed or-
thogonally to the information of a given, known clustering. This transformation
does not ensure a good or different clustering structure compared to the known
one, but it shares the observation of subspace clustering, that new perspectives
(e.g., subspaces) can reveal new clustering structures, where the same objects
can appear in different clusters than before.

The idea of the model presented in this chapter is to combine the two para-
digms of subspace clustering and alternative clustering by integrating the differ-
ence or orthogonality of subspaces into the redundancy criterion, i.e., we allow
clusters to overlap with respect to their objects if they are located in different
subspaces. In general, we call these multiple orthogonal concepts that provide
different views on the data. For the general case of high dimensional data, a con-
cept is described by a subset of attributes and by the set of clusters located in
this or a similar subspace. The concept’s dimensions provide the semantic back-
ground why specific objects are grouped together. Focusing on axis-parallel sub-
spaces makes such a semantic interpretation easier compared to the approaches
of [DQO8, QD09, DB13b, CFD07]. In Fig. 3.1, some healthy and unhealthy cus-
tomers group together in a 2-dimensional subspace and describe the concept
“health status” and we can detect the orthogonal concept that represents the cus-

Iq G

tomer’s “taste of music” in a 2-dimensional subspace that is orthogonal to the first
one. Apart from our example of customer segmentation, similar observations can

be made in the other scenarios as well: Genes are controlling multiple functions

4.1. Introduction 43

(concepts) expressed only under specific conditions (relevant attributes for the
concept), or sensors are measuring multiple concurrent environmental events
(concepts) specified by different sensor measurements (relevant attributes).

A concept can contain several groups that are clearly separated in the relevant
dimensions of the concept, like customers loving Rock or customers loving Classic
in our previous example. While in similar subsets of relevant attributes clusters
that have many objects in common introduce redundancy, for different sets of
attributes objects can be clustered in multiple orthogonal concepts. Considering
the concept “health status”, a “Rock Fan” can be clustered with other customers
to form a new grouping. There might exist multiple meaningful groups for each
object as it can be interpreted in multiple different ways. Unlike the approaches
for multi-view or alternative clustering, OSCLU, as a subspace clustering method,
does not enforce each object to be clustered. As we can see in Fig. 3.1, within
each concept there exist some outliers that do not belong to any of the concept’s
clusters. Our novel OSCLU (Orthogonal Subspace CLUstering) approach detects
for each object multiple orthogonal concepts. Each detected cluster provides
novel information, as we aim at detecting only clusters in orthogonal subspaces.

Summing up, in our approach, we aim at the detection of only the orthogonal
concepts fulfilling the following properties:

e subspaces and subspace clusters represent the concepts in the database

e objects might be present in multiple clusters if the subspaces of their con-
cepts differ (to a high extent)

e each cluster provides novel information for its concept

Following these properties, we propose a method for selecting orthogonal
subspaces by using a similarity measure on subspace projections. According to
this similarity our novel approach OSCLU chooses only the clusters in orthogonal
subspaces for the result set. In addition, we propose a relaxation of the orthogo-
nal subspaces to “almost orthogonal subspaces”. This generalization allows us to
detect concepts sharing a certain amount of common dimensions. The attribute
“gender” for example could belong to several concepts. A relaxation to almost
orthogonal subspaces admits more concepts to the result.

As each object might be present in multiple clusters, we have to ensure that
each cluster adds sufficiently novel information within its concept. Unlike most
subspace clustering techniques, we prevent redundant information. For this pur-
pose, we introduce an interestingness measure for choosing only sufficiently dis-
tinct clusters from similar concepts. Furthermore, to select the most interesting

44 Detection of Orthogonal Subspace Clustering Concepts

clusters, we present an objective function that is based on multiple properties like
size, dimensionality, and density of the subspace clusters. Using both properties
of orthogonal subspaces and most interesting clusters, OSCLU performs a global
optimization of the result set. It ensures to include overlapping clusters to detect
multiple concepts. Furthermore, it prunes similar subspaces and non-interesting
clusters to ensure all patterns in the result are meaningful.

4.2 Orthogonal Concepts in Subspaces

In this section, we present our model for the detection of orthogonal concepts
in subspaces of high dimensional data. Formally, we map our contributions to
an optimization problem based on detected subspace clusters in the database.
In contrast to subspace clustering, where all clusters are selected for the result
set, we choose only a subset of most interesting clusters based on orthogonal
subspaces. For this, we make a distinction between the cluster definition and
the clustering definition. While the cluster model defines the properties that a
set of objects O C DB and a set of dimensions S C Dim have to fulfill to be
a valid cluster C' = (O, S), the clustering model determines a set of clusters
M = {Cy,...,C,} to be a valid clustering. The valid clustering for traditional
subspace clustering is simply the set containing all subspace clusters (All). This
set is highly redundant and hence in our model it is not a valid clustering.

We want to generate a highly informative clustering Opt C All such that the
clusters in the result set represent the multiple concepts of the data without ob-
fuscating this structure by redundant information. As motivated before, each
object might be present in multiple clusters if the clusters describe different con-
cepts and each cluster C' € Opt has to provide novel information within its similar
concepts. In short, it is not allowed to group the same objects in similar concepts
by several clusters. Therefore, we have to define

e if a concept is similar to another one or if it describes a different concept
e and if a cluster identifies a new grouping within its similar concepts.

As a consequence overlapping clusters between different concepts are pos-
sible, in contrast to projected clustering. We solely have to check if the same
objects are already described within similar concepts to filter out uninteresting
clusters and to steer our cluster detection to the orthogonal subspaces. Thus, in a
first step, in Section 4.2.1, we define the notion of (almost) orthogonal concepts,

4.2. Orthogonal Concepts in Subspaces 45

to determine which concepts are similar to a selected one. In Section 4.2.2, we
present the interestingness criterion, that each cluster has to fulfill to be an infor-
mative cluster within its similar concepts. In Section 4.2.3, we define our overall
model for the optimal orthogonal clustering and show, in Section 4.2.4, how the
user can influence the clustering result. In Section 4.2.5, we prove that solving
this model is NP-hard.

4.2.1 Almost Orthogonal Concepts

The data collected in today’s applications, are often generated by different con-
cepts which are mixed together. In an optimal setting, the concepts, described
by subspaces, share no dimensions and we can clearly distinguish between them.
If we identify a concept in the subspace S all other subspaces 7', which share at
least some dimensions 7' N S # 0, are similar to it and we can prune them. T
cannot characterize a different concept because a dimension d € SN 7T is already
covered by the concept in S and hence T does not detect a novel concept in this
scenario. Hence, all subspaces that are similar to S are excluded from further
consideration by the identification of S. This can be formalized by:

coveredSubspacesy(S) = {T'C Dim | TNS # 0}
={T' C Dim||TNS|>0}

A concept with the relevant subspace 7' is orthogonal to a concept in S if T ¢
coveredSubspacesy(S). The dimensions of T" and S are disjoint and hence we can
detect novel information in 7. So our clustering model only has to identify clus-
ters in subspaces which are orthogonal and prune the already covered subspaces.

However, this orthogonality definition is too restrictive for our clustering mod-
el. Many subspaces are prohibited for selection and hence the resulting clustering
contains only low information. By definition, each dimension appears in at most
one concept. However, overlapping concepts are useful and expected in real life
scenarios, e.g., the attribute “gender” in a customer database could appear in
multiple concepts. For subspace clustering, we need a relaxation of the orthogo-
nality property.

A less hard restriction is realized by the idea of excluding lower dimensional
projections of S. The subspace S is more meaningful for the representation of
a concept than using the projections which contain fewer attributes. Hence, if
we identify S as the relevant subspace for a concept, each projection is already

46 Detection of Orthogonal Subspace Clustering Concepts

described by this subspace. The subspaces similar to S can be defined by:

coveredSubspaces,(S) = P(S) ={T C Dim | T C S}
={T'CDim|TNS=T}
={TCDm||TNnS|=|T}

By this definition, we can find overlapping concepts, e.g., characterized by S; =
{1,2} and S, = {2, 3}. Neither of them is similar to the other concept and hence
both of them could appear in the result set together. This definition is related
to the maximality property in other subspace clustering approaches [AKMS07a,
AKMSO08a], resulting in the same problems. Even if two subspaces share a high
fraction of dimensions, e.g., 9 out of 10, they represent different concepts. Thus,
similarity of subspaces is not yet modeled in an adequate way so far.

Our model of almost orthogonal concepts integrates the advantages of both
models. We allow overlapping concepts, but we also avoid concepts with too
many shared dimensions. Thus, we only include (almost) orthogonal concepts in
the result and obtain a flexible model by generalizing both definitions to:

coveredSubspacess(S) ={T C Dim | |TNS| >3- |T|}

with 0 < 8 < 1. For 8 — 0 we get the first, for 3 = 1 the second definition.

The idea of our clustering model is to avoid the grouping of the same objects
in similar concepts by several clusters. Given a cluster C' we have to determine
the set of clusters that are in similar concepts. Because we use orthogonal sub-
spaces for the orthogonal concept detection, we can determine these clusters by
checking if their subspaces cover the subspace of C. We call this set the concept
group of C' which can be formalized by the following definition.

Definition 4.1 Concept group
The concept group of C' = (0O, S) with respect to a set of clusters M = {C4,...,C,}
is defined as

conceptGroup(C, M) = {C; € M\{C} | S € coveredSubspacess(S;)}

The concept group of C' = (O, S) contains all clusters that share at least a
(-fraction of the dimensions of S. Checking the grouped objects O of C' against
the objects of its concept group is required to provide novel information within

4.2. Orthogonal Concepts in Subspaces 47

dimensionality | subspaces

5-dim 1cpst o348 2<B<l

4-dim 245 [235 | [1234

3-dim 14,5
2-dim 4,5
1-dim ol 2 3 4

Figure 4.1: Concept group with variation of

similar concepts. All other clusters, not in the concept group of C, do not need
to be considered because they belong to other concepts. We permit such multiple
concepts in our result.

Let us consider the Figure 4.1 where the selected cluster C' is in the subspace
{2, 3,4}. For § — 0 we have to compare C with all clusters in subspaces sharing at
least one dimension. C has to group new objects w.r.t. these clusters because they
all characterize similar concepts. The higher /3, the less subspaces are considered
as similar and hence the more concepts are possible in the final clustering. The
choice of 5 = 1 results in comparing C' only to higher dimensional clusters C’,
which project to the subspace of C. For example, the concept described by the
subspace {1,2,3,4} subsumes the concept of C' and thus C has to be checked
against this subspace. Thereby, we see that the concept group is not symmetric
but it tends to include more higher dimensional clusters. The concept group
of a low dimensional cluster, that is in general less interesting, usually contains
more clusters compared to the one of a higher dimensional cluster. Thus, for
a low dimensional cluster it is more difficult to provide novel information and
consequently to be included in the result set.

4.2.2 Global Interestingness

After defining the clusters which characterize similar concepts as C', we have to
ensure that the cluster is interesting enough compared to these clusters. For our
resulting clustering Opt C All, each cluster C' € Opt has to fulfill this property.
According to our motivation a cluster C' = (O, S) has to group new objects within
the similar concepts. Hence, we use the coverage of objects as a criterion for
interestingness. For a clustering M = {C}, ..., C,} the coverage is defined as:

48 Detection of Orthogonal Subspace Clustering Concepts

n
Coverage(M) = U 0;
i=1
A strict partitioning of the clusters in similar concepts, where we enforce that each
object of C'is in no other cluster, would be too restrictive. Even in similar concepts
it might be possible for individual objects to be part in multiple clusters, e.g., a
person attending classic and rock concerts for the example in Fig. 3.1. Therefore,
we relax this property and calculate the relative fraction of objects which are not
covered by other clusters in similar concepts w.r.t. the whole cluster size.

Definition 4.2 Global interestingness
Given a cluster C' = (0, S) and a set of clusters M = {C},...,C,}. The global
interestingness of C' with respect to M is

|O\Coverage(conceptGroup(C, M))|
0]

[_(]lobal (C~ Al) =

First, we determine the clusters in similar concepts to the one of C' and af-
terwards their objects are removed from O to obtain the newly covered objects
of C. Only if Iy (C, M) is larger than a given threshold «, the cluster adds
sufficiently new information to this concept.

Figure 3.2 illustrates this interestingness check. Let us assume that M con-
tains the clusters C7 to (o and possible further clusters in other subspaces (not
within dimension 3). If we choose C' = (', the concept group corresponds
to {C7,Cs,Cy}. The remaining clusters are not considered because they repre-
sent other concepts. C, has to group new objects within the concept. However,
most of the objects (29 out of 32) from (), are already covered by the other
clusters and, hence, the information obtained by C, in this concept is small
Ugiobat (C, M) = 22229) For a threshold o >
redundant with respect to M.

3‘7‘2, the cluster Y is regarded as

The user is able to control the required interestingness of a cluster by variation
of a. If the fraction of newly clustered objects is smaller than «, we do not choose
the cluster. For the extremal value o« = 1, the clusters in similar concepts must
not overlap. For o — 0 a cluster is selected as long as not all objects are covered
by other clusters. Consequently, a high overlap is possible.

An important aspect of this model is that the interestingness of a cluster is
checked against several clusters within similar concepts. Unlike other models
[AKMS07a, AKMSO08a], that make only a pairwise comparison of the object cov-
erage, in our model all clusters from a similar concept are considered at the same

4.2. Orthogonal Concepts in Subspaces 49

time to evaluate the interestingness of the new cluster. If we did not check against
several clusters, the cluster Cy, in Fig. 3.2 would get a misleadingly high interest-
ingness value. A pairwise comparison of Cyy to C; or Cy indicates a high fraction
of newly clustered objects which is in fact not true.

Let us choose a clustering M C All. The global interestingness ensures that
each cluster C' € M results in an information gain within its concept by covering
new objects. Varying concepts are possible in M and considered by the definition.
Thus, the proposed properties for a good clustering, mentioned at the beginning
of the section, are guaranteed.

Definition 4.3 Orthogonal clustering
The clustering M = {C4,...,C,} is orthogonal iff

vC €M : [globa[(c, A\f\{c}) Z (03

The clustering M = {C, Cs, C7, Cs, Cy} in our example from Fig. 3.2 is an or-
thogonal clustering, while the clustering M U{C},} is not. However, the proposed
definition alone is not yet sufficient to determine an optimal clustering Opt C All.
Several clusterings could fulfill the definition, e.g., the trivial clustering M = 0.
The user wants to get an overview of the clustering structure and seeks for the
most informative clusters. We have to ensure that these clusters are selected.

4.2.3 Optimal Orthogonal Clustering

While the global interestingness Iy;,,q/(C, M) always rates the cluster C' with re-
spect to a clustering M, we now assess the interestingness of the cluster C' on its
own. This so called local interestingness should correspond to the user-specific
notion of interesting clusters. Formally, we have to define a function ., which
maps each cluster C' to the value [j,.,;(C). This function could include different
aspects, as the dimensionality or the size of the clusters. A discussion of this
function is presented in Section 4.2.4.

Both, the global and local interestingness, are used to define our optimal or-
thogonal clustering. With the global property, we ensure that only informative
clusters within similar concepts are selected. At the same time, we want to maxi-
mize the sum of the local interestingness for the resulting clusters. By maximizing
the local interestingness, we get the most interesting clusters but also as many
interesting clusters as possible (taking the orthogonal clustering constraint into
account).

50 Detection of Orthogonal Subspace Clustering Concepts

Definition 4.4 Optimal orthogonal clustering (OOC)
Given the set All of all possible subspace clusters, a clustering Opt C All is an
optimal orthogonal clustering iff

Opt = a y

=g g, { 2 fw@}
ceM

with

Ortho = {M C All | M is an orthogonal clustering}

In Fig. 3.2, we show an overall example with o = 0.5 and 8 = 0.5. The cluster-
ing M, = {Cy,Cy, C7,Cs,Cy} is a valid orthogonal clustering, because each clus-
ter covers a sufficient amount of new objects within its concept. Although ' and
('y contain similar objects, the overlap is permitted because different concepts are
realized. The clustering M;U{C}, for example, is not valid, because as shown in

__ 32-29

our previous example 7o (Cho, M) = = < Q. Obviously, each subset of M is

also an orthogonal clustering but less informative than M. Hence, these subsets

cannot be optimal clusterings. If we assume that the user is more interested in
high dimensional clusters and chooses I;,.,; accordingly, the sum ECE e Lot (C)
will be maximal out of all orthogonal clusterings. Another orthogonal clustering,
like My = {C}, Cy, Cho, . .., C13} which contains the one-dimensional projections
of the second concept, would, therefore, result in a lower sum value. As a conse-
quence, M, is preferred over M, and M, is the optimal clustering in this example.
Our model provides a selection of only interesting clusters in different and
novel concepts. An overwhelming result size is prevented. As we use subspace
clusters in our model, the interpretabiliy of the result set and the identification of
the relevant attributes for each concept are guaranteed. Unlike other orthogonal
clustering models, we keep the original dimensions and we use them for the
orthogonality check. We steer the cluster selection to orthogonal subspaces.

4.2.4 Local Interestingness and Cluster Definition

Before we present our local interestingness function, we set up our cluster def-
inition. We use density-based clustering because it detects arbitrarily shaped
clusters even in noisy data [EKSX96]. The idea is to define clusters as dense
areas separated by sparse areas. The density density®(p) of an object p in a sub-
space S is the number of objects in its e-neighborhood around it. To identify
clusters based on this density, we follow the definition from [KKKO04], with the

4.2. Orthogonal Concepts in Subspaces 51

modification that the e-range is adjusted according to the dimensionality of the
subspace. Therefore, we adapt the optimal bandwidth for density estimation
[Sil86] to our clustering model. The value of € in a subspace with dimensionality

dise = [%] ey [£2.7(¢ + 1)]% where ¢, denotes the s-range in the 1d
subspace, n the database size, and I' the gamma function.

With the cluster definition, we can define our user-specific local interesting-
ness function. Three main properties characterize a subspace cluster C' = (O, S)
in our cluster instantiation. The dimensionality |S|, the size |O|, and the density.
A very dense cluster shows small variation in the attribute values of the rele-
vant dimensions and, hence, is more interesting than a sparse cluster. We use
the mean density 5; 3°

criterion.

€0 density®(p) over all objects within the cluster for this

Maximizing all measures at the same time is in general not possible, e.g., low
dimensional clusters are usually larger than high dimensional clusters. There-
fore, our local interestingness function subsumes all measures and gives the user
the flexibility to weight the measures dependent on the application. The local
interestingness function used in our experiments is

1 R
Toeat(C) = |S]% - O] - (O Zdensztyé(p)>

peO

with C = (0,S)anda +b+c=1.

4.2.5 Proof of NP-Hardness

In this section, we prove the NP-hardness of our optimal orthogonal cluster-
ing problem (OOC). For this we reduce the NP-complete SetPacking problem
[GJ79] to our model, i.e., SetPacking <p OOC. Given several finite sets O; the
SetPacking problem seeks for the maximal number of disjoint sets.

Theorem 4.1 Computing the optimal orthogonal clustering OOC' (Definition 4.4)
is NP-hard.

Proof 4.1
We show that SetPacking <, OOC.

A. Input mapping: Each set O; is mapped to the cluster C; = (O;,{1}). Fur-
thermore we set 5 € [0,...,1], « = 1 and IL,(C) = |S| (c¢f. Section 4.2.4,
a=1,b=c=0).

52 Detection of Orthogonal Subspace Clustering Concepts

B. OOC generates a valid SetPacking solution:
1) The concept group contains all clusters:

conceptGroup(C, M\{C})
={C; € M\{C} | S € coveredSubspacess(S;)}
={C; € M\{C} | {1} € coveredSubspacess({1})}
= M\{C}

2) Each orthogonal clustering M contains only disjoint sets:
M is orthogonal clustering

S VC € M : Iypa(C, M\{C}) > 1

e vYo e M : \()\(]oUerags((;once‘}g‘(;rvup((),ﬂf\{C}))‘ >1

< VO € M : |O\Coverage(M\{C})| > |0]
S VC € M : OnUgerney Oi =

3) Opt contains maximal number of such disjoint sets:
Opt = arg maxareorthol Y cenr Liocat (C) }
& Opt = argmaxreortnol Yo cens 1{1H}
& Opt = arg maxreorthol Y cens 1}
< Opt = argmaxyeortnof | M|}

(2) and (3) = Opt is a valid Set Packing solution = OOC' is NP-hard

4.3 The OSCLU Algorithm

The optimal orthogonal clustering has global properties, which increases the
computational complexity. As we have already proven, the problem is NP-hard
and, hence, we cannot expect that an efficient algorithm exists. Furthermore,
we cannot generate the huge set of all subspace clusters All in a first step and
select the optimal subset afterwards. We develop an approximation algorithm
(OSCLU), that incrementally adds further clusters to the result set. For an effi-
cient calculation, we integrate the clustering process into the concept and cluster
selection process. This means that not all clusters in all subspaces are generated
but many subspaces are pruned based on already detected concepts/clusters. An
important question is which subspaces should be clustered first and hence which
clusters should be added at the beginning to the result set to prune many other
subspaces.

Traditional bottom-up approaches, that start with the low dimensional clus-
ters, are not useful for pruning based on our global interestingness criterion. As

4.3. The OSCLU Algorithm 53

already mentioned, the concept group of a cluster contains mainly higher dimen-
sional clusters (cf. Fig. 4.1). Thus, a low dimensional cluster has to compare its
object coverage against more clusters than a high dimensional cluster. A low di-
mensional cluster is more likely to be excluded from the result set than a high
dimensional cluster. For this reason, we use a top-down approach to add clusters
to the final clustering.

Our algorithm, summarized in Algorithm 4.1, comprises three major contri-
butions to avoid clustering of all subspaces. First, we develop a ranking of the
subspaces (all with the same dimensionality) without clustering them (lines 4-
6). The ranking accounts for the similarity of the current subspace with already
detected concepts. The greater the number of already detected similar concepts,
the less interesting is the subspace. In a second step, the ranking considers the
possibility for a good clustering in a subspace based on efficient estimation. After
ranking the subspaces, we use the first subspace for clustering (line 8). If clus-
ters were identified, we incrementally update the result set (line 10). We have
to consider the global interestingness so that redundant clusters are not selected.
Furthermore, a high local interestingness of the selected clusters should be en-
sured. Resorting the ranking and the possible pruning of further subspaces (line
11) based on the new clusters is performed in order to push novel concepts to
the top. If all subspaces with the dimensionality dim are pruned or selected for
clustering, we decrease the dimensionality to realize the top-down approach.

Algorithm 4.1: OSCLU (Orthogonal Subspace CLUstering)
1 result set M := ()

2 find initial dimensionality dim (Sec. 4.3.3)
3 while dim > 0 do

4 rank and prune subspaces based on (Sec. 4.3.1)
5 1) subspace orthogonality score
6

7

8

9

2) subspace quality score
while ranking not empty do
choose best subspace for clustering
if clusters found then
10 update result set M (Sec. 4.3.2)
11 resort ranking and prune

12 dim=dim-1

13 return result set M

54 Detection of Orthogonal Subspace Clustering Concepts

As an additional step, we present an efficient method that approximately iden-
tifies the highest dimensionality (of a subspace) in which clusters are expected
(line 2). This avoids to start our ranking in the full-space, where clusters are in
general not present.

4.3.1 Orthogonal Subspace Selection

Clustering each subspace is not efficient since many subspaces can be pruned
because of already detected, similar concepts. We use two techniques to rank
subspaces without clustering. The aim is to cluster only interesting and orthogo-
nal subspaces. In our first approach, we use the similarity of already discovered
concepts for pruning and ranking. The greater the number of similar subspaces
in the result set, the higher is the possibility that new clusters in the current
subspace cover the same concept and, hence, provide no novel information. We
define the orthogonality score of a subspace S w.r.t. the current result set M as

orthogonality_score(S, M) =
{T C Dim | S € coveredSubspacess(T) N3O, T) € M}|

The definition is similar to the concept group, but considers only the subspaces.
The higher the score, the worse is a subspace, because many similar concepts are
already in the result set. The orthogonality score is the first criterion for ranking.
Furthermore, all subspaces with a score greater than maxzOrth are removed from
the ranking. This parameter can be controlled by the user and intuitively defines
how detailed a concept is analyzed.

During the algorithm, the result set M changes and hence the orthogonality
score does so too. By this, only the most informative subspaces are ranked top
and, hence, are clustered. The clustering is concentrated to the orthogonal and
novel concepts.

Our second approach makes use of subspace search [CFZ99, KKKW03] for
measuring the quality of subspaces. Usually subspace search is a stand-alone
technique for identifying interesting subspaces. Each subspace is mapped to a
quality value, where a high value corresponds to a high possibility for a good
clustering structure. we use this technique within the clustering task. We guide
our algorithm to cluster only the most interesting subspaces based on the calcu-
lated qualities. Therefore, our ranking is extended such that all subspaces with
the same orthogonality score are ranked again based on these qualities. In to-

4.3. The OSCLU Algorithm 55

tal, our ranking concentrates not only on novel concepts but also on high quality
subspaces.

The subspace search method within our framework is easily exchangeable and
we can use techniques like RIS [KKKWO03] or ENCLUS [CFZ99]. For efficiency
reasons, we develop an own technique which is able to exploit our density-based
cluster definition (cf. Sec. 4.2.4). To have clusters in a subspace, several objects
must have a high density according to our density-based clustering model, i.e.,
for an object p the value of density®(p) is large. We use a strategy that randomly
selects points and calculates their mean density. This method is efficient and a
good indicator for the existence of clusters. Let Seeds be the set of randomly
selected points, the quality score is then defined as

1 8
quality_score(S, M) = [Seeds] Z density® (p)
eeds

pESeeds

The higher the quality, the better the subspace. As for the orthogonality score,
we introduce a minimum score minQual that each subspace has to fulfill to be
maintained.

4.3.2 Incremental Result Construction

After ranking the subspaces based on the two scores, we select the first one and
cluster it according to our model. We get a list of resulting clusters New. We now
have to check which clusters C' € New should be included in our result set M/. In
a first step, we analyze the global interestingness of the new clusters. For each
cluster C' € New, we calculate [0, (C, M). We distinguish two cases.

If Ijopa(C, M) > o, we directly add the cluster to M, i.e., the new result set
is M := M U{C}. The cluster C' adds sufficiently new information. By this, we
ensure that in each step of the algorithm only informative clusters are selected.
Please note that this procedure is a relaxation of Def. 4.3. We do not check the
global interestingness of the remaining clusters in M which could be changed
by selection of C'. This recalculation would be too costly. However, due to our
top-down approach, higher dimensional clusters are added first to M and these
clusters are rarely removed by low dimensional clusters. Additionally, within the
same dimensionalities, our ranking tries to rank the best subspaces on top and,
hence, these clusters are selected first.

If Iyiopat(C, M) < «, we do not reject the cluster immediately but we perform
an additional improvement heuristic. We want to maximize the local interest-

56 Detection of Orthogonal Subspace Clustering Concepts

ingness in our model. Hence, we check if it is possible to remove some clusters
from M such that C' is afterwards globally interesting and the sum of the local
interestingness is increased. The algorithm which decides if C' is included and
which subset of M should be removed is presented in Alg. 4.2. First, we rank the
clusters from conceptGroup(C, M) in decreasing order based on their local inter-
estingness values. Second, we select the most interesting clusters which do not
result in redundancy for C' (set N). The clusters which induce the redundancy are
stored in R. At the end, it holds that I, (C, M\R) > «, i.e., C' provides novel
information with respect to the new set. If the local interestingness of C'is greater
than the one of R, it is better (for maximizing the interestingness) to select C' and
remove R from the result set M. The new result set is then M := (M\R) U {C'}.
Otherwise, C' is rejected and the set M remains unchanged.

Algorithm 4.2: Cluster selection procedure
1 (C4,...,C,) 1= ranking of conceptGroup(C, M)

2 N := () //clusters inducing the redundancy of C'

3 R := () //clusters not inducing redundancy of C'

4 fori:1...ndo

5 if[glabal(CaN @] {CL}) >« then N :=NU {Cl}
6 else R:=RU{C;}

if Iloml(c) > ZC’ER Ilnml(C’) then

¢ | add C to M and remove R from M

~

Through the incremental result construction, we add only informative clusters
to our set and additionally try to maximize the interestingness of all selected
clusters.

4.3.3 Efficient Initialization

In general, full dimensional clusters are not identified in high dimensional data-
bases. If we started our top-down approach in full-space, we would analyze many
uninteresting subspaces which are filtered out by our quality score criterion. For
an efficiency boost, we identify the first layer with interesting subspaces based
on the idea of binary search. We start with the “half-dimensional” spaces (e.g.,
5d spaces in a 9d database) and use our subspace search estimator to calculate
the qualities. If we identify a subspace with sufficiently high quality, we directly
jump up to the dimensionality between half and full-space (e.g., from 5 to 7). If

4.4. Experiments 57

no interesting subspaces are found, we accordingly jump to lower dimensional
spaces (e.g., 5 to 3). For this new dimensionality, we repeat the “check-and-jump”
procedure (with a half jump range) until we identify the highest dimensionality
with interesting subspaces. This corresponds to a binary search procedure.

Overall, our algorithm comprises three contributions to obtain a good ap-
proximation of the optimal orthogonal clustering. The binary search technique
supports the top-down approach by an efficient initialization. The ranking of
subspaces yields a preference of orthogonal and interesting subspaces. By re-
calculating the ranking, further subspaces can be pruned without clustering and
novel concepts advance to the top. At last, the meaningful selection of new clus-
ters to M results in an informative clustering. In the next section, we confirm this
with an experimental analysis.

4.4 Experiments

We evaluate the quality and efficiency of the OSCLU approach compared to three
variants of orthogonal clustering techniques (Multi-View 1 and Multi-View 2 pro-
posed in [CFDO7], and Altern. Clus. [QD09]), a recent non-redundant subspace
clustering technique (StatPC [MS08]), and a projected clustering approach (P3C
[MSEO06]). For fair comparison, we use a recent evaluation framework [MGAS09],
additionally reimplement both Multi-View approaches in this framework, and use
the original implementation for the alternative clustering [QD09]. Furthermore,
for all algorithms we tried to find the optimal parameter settings for each dataset.

In general, we perform our evaluation on data with multiple hidden concepts.
For both, synthetic and real world data, we extend single concept data used in tra-
ditional clustering approaches such that each object is part of multiple concepts.
Thus, for a high quality clustering, each object has to be detected in multiple
clusters. While traditional clustering approaches are well suited for data with
only one hidden concept, we compare our approach against recent techniques
designed for multiple hidden concepts. For scalability experiments, we generate
synthetic data following a method proposed in [KKK04, AKMS08a] to generate
density-based clusters in arbitrary subspaces. In addition, our generator takes
into account that objects can belong to multiple concepts. Thus, for each object,
we concatenate attribute values of different subspace clusters to a higher dimen-
sional space with multiple hidden concepts per object. Further on, we show the

58 Detection of Orthogonal Subspace Clustering Concepts

performance of OSCLU on two extended real world datasets (original iris and
liver disorders are provided by the UCI repository [FA10]). We use the class labels
in these datasets as one hidden concept of the data. In addition, we create mul-
tiple concepts per object by randomly concatenating objects of different classes,
resulting in one high dimensional dataset.

To ensure comparability of evaluations, we measure runtimes on identical
machines with 2.33GHz Intel XEON CPU, 2 GB of main memory and JAVA 1.6
runtime environment. Furthermore, for comparable quality measurements we
use the F'1 value that is used in evaluation of subspace and projected clustering
[AKMS08a, MS08, MSE06, MGAS09]. In our case, it computes for each hid-
den cluster the harmonic mean of recall (“are all objects of the hidden cluster
detected?”) and precision (“how accurately is the cluster detected?”) values,
respectively. Therefore, each hidden cluster is evaluated against one of the de-
tected clusters which provides the highest F1 value. The F1 value of the whole
clustering is simply the average of the F1 values for each hidden cluster.

4.4.1 Scalability

Database size. In Fig. 4.2(a), we analyze the quality of the clustering results with
respect to the database size. While increasing the number of objects, we keep the
number of concepts fixed to three. We generate concepts with five relevant at-
tributes such that, overall, we obtain a 15-dimensional data space. Our OSCLU
algorithm yields the highest quality compared to all other algorithms, as we de-
tect all hidden clusters in various concepts. The quality of OSCLU is independent
of the database size and very robust. StatPC and P3C show good quality results,
but also high fluctuating values, which cannot reach the quality of OSCLU. All
three orthogonal clustering approaches, show only low and decreasing quality
with respect to the database size. Their underlying k-means model tries to par-
tition the data in each iteration of orthogonal cluster detection. Thus, it cannot
cope with the fixed noise ratio in the data which is always assigned to some of
the detected clusters and, hence, resulting in low quality clusterings.

The runtime with respect to the database size is presented in Fig. 4.2(b).
The slopes of all curves are in the same range and the influence of the size on
all algorithms becomes apparent. The two top quality approaches, our OSCLU
model and StatPC, result in similar runtimes. Our redundancy checks and also
our density-based model are very complex, but these aspects account for the high

4.4. Experiments 59

-+-0SCLU ~&-StatPc -&-P3C —-0SCLU ~&-StatPc -&-P3C
~o-Multi-View 1 Multi-View 2 -:&-Altern. Clus. ~o-Multi-View 1 Multi-View 2 --a-Altern. Clus.

runtime [sec]

0 01 &
1500 3500 5500 7500 9500 1500 3500 5500 7500 9500
database size database size
(a) Quality of clustering (b) Runtime

Figure 4.2: Scalability w.r.t. database size

quality. The remaining algorithms are faster but we believe, that our runtime is
still acceptable considering our high quality results. Especially with increasing
concept number, as presented in the next experiment, our model outperforms all
other approaches.

~-0SCLU -#-Multi-View 1 Multi-View 2
«# Altern. Clus. ~ =&-StatPc -4-P3C

08

0,6

F1value

04

0,2

number of concepts

Figure 4.3: F1 vs. number of concepts

Number of concepts. The aim of our model is the detection of multiple con-
cepts, which arise in real scenarios. Thus, in the next experiment, we analyze the
performance of the algorithm by increasing the number of concepts hidden in a
database. To scale the number of concepts, we use a simple dataset with only
1000 objects, as most of the algorithms showed comparable quality values in this
range in the previous experiment. We vary the number of hidden concepts in Fig.
4.3 from 1 to 5.

We show that OSCLU is able to detect clusters even if objects cluster in mul-
tiple concepts. It shows high quality even for a high number of hidden concepts.
While traditional clustering approaches aim at clustering single concept data, the
alternative clustering approach is designed for two concepts and the multi-view

60 Detection of Orthogonal Subspace Clustering Concepts

approaches should detect even more than two. However, even these approaches
cannot compete with our model. For the subspace and projected clustering ap-
proaches, increasing the number of concepts makes it very hard to detect the
hidden clusters. Especially the projected clustering approach P3C shows decreas-
ing quality, as each object belongs to at most one concept. Overall, StatPC and
P3C are not able to detect the multiple hidden concepts per object, while OSCLU
yields very high clustering quality.

Noise percentage. In the previous experiments, we showed that we out-
perform subspace and projected clustering approaches as they cannot cope with
multiple hidden concepts. Thus, in the following experiments, we focus on a
more detailed comparison of OSCLU against the orthogonal clustering techniques
detecting multi-view and alternative clusterings. First, we analyze the effect of
noisy data especially for high concept numbers. For the next experiment, illus-
trated in Fig. 4.4, we generate data with five hidden concepts and vary the noise
percentage. On such a difficult data setting, our OSCLU approach outperforms
the other techniques. It can detect the clusters hidden in different concepts even
in very noisy datasets. Both multi-view algorithms and the alternative clustering
approach show, again, decreasing qualities.

~-0SCLU -e-Multi-View 1 Multi-View 2 -&-Altern. Clus.

Akl A A%
04 K-A-“‘,KA'A»A,‘M‘\ VYN
Tt ST

°

3

S 2o
N

- 1

@

YT IS LY

Aahahd

0 5 10 15 20 25 30 35 40
noise percentage

Figure 4.4: F1 vs. noise

4.4.2 Real World Data

As we aim at detection of multiple concepts, we focus our evaluation for real
world data also on scalability w.r.t. number of concepts. We use single concept
data from the UCI repository [FA10] and extend them to multi concept datasets.
As described in the experiment set-up, similar to synthetic data, we can vary the
complexity of datasets by including more and more hidden concepts. However,

4.4. Experiments 61

in contrast to the previous experiments, we use real world data distributions for
the single concepts. We evaluate the effect of variable concept counts on the
clustering quality, as for an increasing number of concepts, it is more difficult for
all algorithms to identify the hidden structure of the data.

~-0SCLU -e-Multi-View 1 -=-Multi-View 2 --Altern. Clus. ~-0SCLU -o-Multi-View 1 -=-Multi-View 2 -&-Altern. Clus.
0,9 % 07

£y
~.

0,65

0,6

F1value

0,55

04 05

number of concepts number of concepts

(a) Dataset: multi-concept iris (b) Dataset: multi-concept liver disorder

Figure 4.5: Quality on extended real world datasets with increasing number of
concepts

In Fig. 4.5 we show the clustering quality on the iris and the liver disorder
dataset. For the very simple case of only one concept (original UCI datasets),
the quality is high for all algorithms. However, for an increasing number of
hidden concepts, the quality dramatically drops for all competing approaches.
Especially, the quality of the alternative clustering approach drops with more
than two concepts, as it is designed for up to two concepts only. OSCLU shows
significantly better performance as it still achieves a high quality, outperforming
the competing approaches for multiple concept data. Although we set for higher
number of concepts the optimal parameter value & such that the number of found
clusters corresponds to the number of hidden clusters, the competing approaches
are not able to detect all hidden concepts. Thus, our OSCLU approach clearly
outperforms all competing algorithms even for an increasing number of concepts
per object.

4.4.3 Parametrization

Additional to the experiments that compare OSCLU to existing methods, we ana-
lyze the flexibility of our model. As presented in Section 4.2.2, the user can con-
trol the output by changing the required interestingness. In Fig. 4.6, we present

62 Detection of Orthogonal Subspace Clustering Concepts

the variation of the parameter « which controls the interestingness of each clus-
ter in the result set. As intended by this parameter, higher values of « increase
the required interestingness and, hence, less clusters are in the result. By varying
the «, parameter one can control the overall result set based on our global inter-
estingness Iy,,,. We include a cluster only if the fraction of its newly clustered
objects is at least « (cf. Def. 4.3). Furthermore, our OSCLU algorithm is not only
able to detect orthogonal concepts, but in addition it is very flexible by using a
local interestingness Ij,..;. It allows the user to control the output dependent on
the application or the current interestingness.

80 200
o 180
160
£ 60 £ 140 f
3 2120]
‘5 50 /\/ ‘5 100]
3 3 80
- E-3
£ 40 E 60 |
2 2 4 /
30
20/
20 : : : : : 0 : : : : :
0 0.2 0.4 0.6 08 1 0 0.2 0.4 0.6 0.8 1
B
a

Figure 4.6: Variation of parameter « Figure 4.7: Variation of parameter
for the global interestingness for the concept group

In Fig. 4.7, we examine the influence of the parameter $, which determines
the similarity of two subspaces and, thus, the size of the concept groups, on
the average result size. For small values of 3, concepts are only dissimilar if they
share nearly no dimension. Higher values for § accordingly allow for bigger over-
laps between different concepts. Thus, the concept group of a cluster is biggest
for § = 0 and smallest for 3 = 1 (cf. Def. 4.1). Since the global interestingness,
i.e., the redundance, of a cluster is determined in relation to its concept group, we
obtain an increasing size of the result set for increasing values of 3 (cf. Fig. 4.7).

4.5 Conclusion

In this chapter, we introduced the OSCLU (Orthogonal Subspace CLUstering) ap-
proach. It provides a general solution, independent of the chosen cluster defini-
tion, for detecting clusters in multiple views and overcomes major drawbacks of
existing approaches in the detection of multiple concepts hidden in arbitrary sub-

4.5. Conclusion 63

space projections of the data. Our novel clustering model detects multiple con-
cepts per object. It computes an optimal orthogonal clustering by ensuring non-
redundancy and maximal interestingness of the resulting clustering. We show
that our clustering model is NP-hard and propose an efficient approximative algo-
rithm. We approximate the optimization problem by pruning similar subspaces,
ensuring efficient cluster detection in only the orthogonal subspaces. Thus, our
OSCLU approach is the first method for detection of multiple orthogonal concepts
in subspaces of high dimensional data. Thorough experiments demonstrate that
OSCLU clearly outperforms existing subspace clustering and orthogonal cluster-
ing algorithms, while automatically reducing the output to only the clusters of
orthogonal concepts hidden in the data.

An important difference of OSCLU compared to multi-view approaches is its
focus on clusters instead of views. For OSCLU, the views do influence but not
completely determine the individual groupings, which also depend on the clus-
ter definition. Therefore, OSCLU does not explicitly mine the underlying views
but only their clusters depending on the subspace cluster definition. The iden-
tification of clusters that belong to a common view can be achieved in a post-
processing step, for which we will present an interactive, visual approach in
Chapter 15.

Detection of Alternative Subspace
Clustering Concepts

5.1 Introduction 66
52 RelatedWork 67
5.3 Alternative Subspace Clusters 68
5.3.1 Valid alternative subspace clustering 69
5.3.2 Optimal alternative subspace clustering 71
5.3.3 Instantiation and algorithm 73
5.4 Experiments 74
55 Conclusion 77

HE goal of clustering is to detect new, hidden patterns in the data. In many
T cases, the users are already aware of certain patterns in the data. Simply
rediscovering such existing knowledge is not of interest. Instead, users hope to
find further, so far undiscovered patterns that reveal new insights of the data.
The idea of alternative clustering approaches is to use the existing patterns to
guide a clustering process towards new cluster constellations. In this chapter, we
will present an approach to transfer this principle to subspace clustering. With
just minor adaptions of the previously presented OSCLU approach, we will be
able to incorporate a known subspace clustering into the clustering process and
to steer the algorithm towards novel clusters in different subspaces.

65

66 Detection of Alternative Subspace Clustering Concepts

5.1 Introduction

Traditional clustering and subspace clustering methods are not based on the as-
sumption that there exists some prior knowledge about groupings in the data.
However, we might already know some trivial or already detected groupings in
the data. If the user is not satisfied with the existent knowledge, either because
it does not meet her application needs, or because she assumes that there must
exist further patterns in the data, then she aims for an alternative, yet compa-
rable good clustering. In such scenarios the user is not willing to re-detect the
already known clusters. As a general objective for recent alternative clustering
techniques, it is important to acquire novel knowledge (not known in advance)
by alternative clusters representing different views on the same database. The
detection of such alternative clusters describing different views on each object is
still an open challenge in recent applications.

In the previous Chapter 4, we presented the OSCLU approach, which is able
to detect orthogonal concepts, i.e., differing clusters in orthogonal subspace pro-
jections of the data. In this chapter, we present how the OSCLU model can be
easily extended for the task of alternative clustering. Given a (subspace) cluster-
ing as prior knowledge, the task of alternative (subspace) clustering is to detect
further alternative groupings hidden in different views of the given database. For
example, in sensor analysis one aims at detecting sensor groups showing simi-
lar measurements. Each sensor might be grouped in multiple alternative clus-
ters. One object might be clustered due to its high temperature and low humidity
measurements in the “hot and dry region” cluster, while the same object might be
clustered in the “light region” cluster considering only the illumination attribute.
Assuming these two clusters as given prior knowledge, further interesting al-
ternative clusters might be hidden in the database, e.g., a grouping of sensors
representing a “dark and humid region”. Such an alternative cluster might be of
great importance in addition to the given two clusters. However, there might also
be some trivial useless clusters, like objects clustered in both a “dry region” and
in a “hot region”. Obviously these two clusters only provide redundant informa-
tion to the given “hot and dry region” cluster. As illustrated in this toy example,
the detection of alternative clusters is of great importance, especially in recent
applications where clusters are hidden in any possible attribute combination.

In general, we detect clusters hidden in subspace projections of the database
to identify multiple views on the data. However, several new challenges arise for

5.2. Related Work 67

the research area of alternative subspace cluster detection. As one searches for
clusters in arbitrary subspaces, each cluster might be detected in multiple redun-
dant views. Similarly, the knowledge of already given clusters might be repeated
in similar subspace clusters. In both cases the OSCLU approach provides a nice
solution for detecting new clusters not yet detected by other subspace clusters
and not yet represented by the given clusters. Thus, our main contributions in-
clude:

e Detection of alternative subspace clusters
e Non-redundant clusters (dissimilar to each other)
e Alternative clusters (dissimilar to given clusters)

5.2 Related Work

Recent extensions of traditional clustering techniques try to detect clusters that
are alternative to a given, known clustering. The techniques of [CFD07, DQOS,
QDO09, BB06, DB13b] base on a given clustering and iteratively transform the
data space to force the underlying traditional clustering algorithm to find new,
alternative clusters. Other techniques, like [GHO5], follow the idea of using the
conditional information bottleneck approach to find alternative clusterings. All
these techniques are not able to detect clusters hidden in arbitrary subspace pro-
jections of the data and consider in each step only one fixed space. Furthermore,
their input clustering has to be a partition of the data in a fixed space, whereas
we allow a subspace clustering as input, which has multiple locally relevant sub-
spaces. Only two of these approaches briefly refer to subspace clustering.

Although the method presented in [QD09] searches for clusters in the full-
space, it can be adapted to handle subspace clusters (of a single fixed subspace)
as input by simply setting the values in the relevant attributes to zero. These
dimensions therefore loose their influence in the following iterations. However,
this complete elimination of covered attributes leads to an orthogonal subspace,
which is a too strong restriction for the choice of relevant dimensions.

The approach in [CFD07] has originally not been introduced to find alter-
natives for a given clustering but can easily be adapted by replacing the initial
k-means clustering through the known clustering solution. Since this approach
projects the data into an orthogonal space to find alternative clustering views, it is
also not a subspace clustering and suffers from the problems already mentioned
for [QD09].

68 Detection of Alternative Subspace Clustering Concepts

Although these methods are, with large restrictions, able to find clusters in a
(fixed) subspace, they are mostly not aware of the relevant subspaces and can
therefore not annotate them to the clusters. The reason why objects group in a
certain manner, however, originates from the respective subspace, which makes
the relevant attributes an essential aspect to the clusters information. Further-
more, they are not able to guarantee that a new clustering solution is truly al-
ternative if we consider multiple known clusterings. As they are designed to
consider only partitionings of the data, it is not possible to integrate a subspace
clustering, where clusters overlap object-wise, as knowledge base.

5.3 Alternative Subspace Clusters

In this section, we describe our model for finding alternative subspace clusterings.
To achieve this goal, our model adapts techniques of the OSCLU model (Chapter
4) that finds orthogonal subspace clusterings in the data. With our novel method,
however, we specifically address the problem of finding an alternative subspace
clustering given a previously known subspace clustering. Thereby, we achieve
that the user can steer the clustering algorithm to patterns not yet detected and
the generation of already known clusters is prevented.

In general, a subspace cluster C' = (O, S) is a set of objects O C DB and
a set of dimensions S C Dim. The objects O are similar within the relevant
dimensions S, while the dimensions Dim\S are irrelevant for the cluster. In
Fig. 5.1, the cluster C corresponds to a 2-dimensional cluster, while C; is a 1-
dimensional one. The input of our model is an already known subspace clustering
Known = {K;,...,K,,} where K; is a subspace cluster. The task is to identify
another subspace clustering within the database that differs from the given one.
For our example in Fig. 5.1, we assume Known = {C}, Cy}. A possible alternative
solution is {Cj, Cs, Cs}. This solution is interesting because we detect clusters in
novel subspaces of the database. We designed our model to be independent of
the actual cluster definition, i.e., we assume a set All = {C',...,Cy} of possible
subspace clusters is given (cf. Sec. 5.3.3 for our instantiation). In Fig. 5.1, we
assume All = {C4,...,C7}. The set All is also a subspace clustering; however,
it is not an (good) alternative to Known. Beside other criteria, this set contains
clusters very similar to clusters in the input clustering. Thus, the overall goal of
our model is to select a meaningful subset Res C All as the result presented to
the user.

5.3. Alternative Subspace Clusters 69

&

n
n
n
dimension 4
e m

dimension 2

dimension 1 dimension 3

Figure 5.1: Exemplary subspace clusters

Problem statement: Given an already known subspace clustering Known =
{K\,...,K,}, the aim of alternative subspace clustering is to determine a mean-
ingful subset Res C All of all possible subspace clusters All = {C,...,Cy}, such
that Res differs from the input clustering.

In the following, we discuss the criteria a meaningful alternative clustering
solution has to fulfill and we define the overall result.

5.3.1 Valid alternative subspace clustering

Given the clustering Known, we want to detect a valid alternative clustering Res.
Which properties must hold true for Res to be a valid alternative? Apparently,
each cluster C' € Res should considerably deviate from the clusters in Known.
The cluster C' should provide us with novel knowledge. For subspace clustering,
we have two possibilities to realize a deviation to already known clusters. First,
our novel subspace cluster comprises a “different” (i.e., novel) subspace or, sec-
ond, it covers “different” (i.e., novel) objects in already known subspaces. Thus,
a cluster C' is not a valid alternative if the subspace as well as the objects are
already clustered.

Alternative w.r.t. subspaces. If the subspaces of two clusters differ substan-
tially, both are interesting, even if their clustered object sets are nearly identical.
Different subspaces mean different relevant attributes and, hence, a valid alter-
native. However, it is problematic to deduce that a cluster C' = (O, S) is a valid
alternative to C" = (O', S’) only based on the fact S # S’. It is a well known
observation in the area of subspace clustering that similar object groupings ap-
pear in very similar subspaces several times: this is one aspect of the redundancy
problem in subspace clustering [MAG"09b, MS08, AKMSO08b]. Considering for
example the clusters C; and Cs in Fig. 5.1, their subspaces are unequal but very

70 Detection of Alternative Subspace Clustering Concepts

similar. Thus, a grouping of similar objects is expected. For our task of finding
alternatives, we have to ensure that the subspaces of our novel clusters differ
to a high extend compared to the ones of the given input clusters. If a cluster
C € Res and a cluster K € Known have highly deviating subspaces, we, thus,
do not have to enforce deviating object sets for these two clusters: C is already
a good alternative with respect to the single cluster K. We use Definition 4.1 of
a conceptGroup of the OSCLU model and define the subset of clusters of Known
that are already different enough due to their subspaces:

Definition 5.1 Clusters in alternative subspaces.
Given a cluster C' € Res, the subset of clusters of Known that belong to an alterna-
tive subspace w.r.t. C = (0O, S) is defined by

InAltSubsp(Known, C) = {(0;,S;) € Known | |[SNS;| <3-|S|}
with 0 < 8 < 1.

Definition 5.1 and Definition 4.1 are similar in that InAltSubsp(Known,C) =
Known\ConceptGroup(C, Known). If the fraction |S N S;| of the joint dimen-
sions compared to all dimensions of C' is small enough, the clusters represent
different concepts and, hence, alternative information of the data. Thus, to de-
cide whether C is a valid alternative to all clusters in Known, we can already
neglect all clusters contained in InAltSubsp(Known,C). In Fig. 5.1, we get
InAltSubsp(Known,Cy) = {Cy,Cs}, because all of the input clusters were de-
tected in completely alternative subspaces. For C3 and with 3 = 0.5, however, we
get InAltSubsp(Known, Cs) = 0.

Keep in mind that this relation is not symmetric. Assuming an input cluster
K from Known in the subspace {1,2,3} and a novel identified cluster C' in the
subspace {2, 3,4, 5,6}, then K € InAltSubsp(Known, C') for § = 0.5. The clusters
share just two dimensions, which is significantly smaller compared to all five
dimensions of C'. Thus, C'is already an alternative to K because there are enough
new dimensions in C' to provide novel information. However, assuming C' is in
Known and K is the newly identified cluster, then C' ¢ InAltSubsp(Known, K).
There are still two common dimensions but these are now compared to just the
three dimensions of K. With respect to the subspace, K is not an alternative to
C because K mainly has dimensions already being included in C.

Alternative w.r.t. objects. For the possible case of InAltSubsp(Known,C) #
Known, we have given some clusters that were detected in subspaces similar to
C. Thus, for these clusters, we have to ensure a grouping of different objects

5.3. Alternative Subspace Clusters 71

compared to C. The other clusters are already neglected because of deviating
subspaces. Analogously to Definition 4.2 of the OSCLU model, we use the cover-
age of objects as a criterion for a deviating object representation. Given a cluster
C, the set of objects already covered by Known is defined as:

Covered(Known, C') = U {0 | K ¢ InAltSubsp(Known,C)}

(0,5)=KeKnown

If the covered objects of C' = (O, S) sufficiently differ from the covered objects of
the clusters in Known, the cluster C' is a valid alternative.

Definition 5.2 Valid alternative subspace clustering
Given a cluster C' € Res, C' = (O, S) is a valid alternative cluster to Known iff

|O\Covered(Known,C')|
0] -

a

with) < a < 1.
Given a clustering Res C All, Res is a valid alternative clustering to Known iff all
clusters C' € Res are valid alternative clusters to Known.

In Fig. 5.1, the set Covered(Known, C) already contains nearly all objects of C5.
Since the fraction of novel objects of Cj is very low, e.g., for a = 0.4 the cluster
is not a valid alternative (less than 40% of the objects are novel). However,
choosing Known = {C5, C5}, cluster Cj is a valid alternative. Cj is located in a
different subspace, hence, irrelevant for Cs, and C, covers different objects.

5.3.2 Optimal alternative subspace clustering

With Definition 5.2, we are able to find meaningful alternatives to a given input
clustering. However, among the set of possible clusterings, we can find multiple
valid alternatives. For Known = {C5, C5}, e.g., the results Res = {C3,Cy, Cs},
Res' = {C,C3,Cy, Cs}, or Res” = {Cs,Cy, C7} would be among the valid alter-
native clusterings for Known. Since these solutions are not equally interesting
for the user, the task is to find the most interesting alternative clustering. The
main criteria for the interestingness of a clustering are the degree of redundancy
among the clusters and local characteristics of the clusters.

Redundancy. Since for subspace clustering a partitioning of the objects is not
enforced, the solution could contain very similar clusters. The solution Res’ =
{C1,C5,C4, Cs} is a valid alternative, although the clusters C; and C; are very

72 Detection of Alternative Subspace Clustering Concepts

similar to each other and, therefore, introduce redundancy into the result. OS-
CLU provides an elegant and easy way to solve this problem through the Def-
inition 4.3 of an orthogonal clustering which is related to the Definition 5.2
of a valid alternative clustering. According to Defintion 4.3 Res’ would not
be an orthogonal clustering since Iy (Ci, Res’\C1) # «. Contrarily, the set
Res = {C3,Cy, Cs} is not only a valid alternative to Known but also an orthogo-
nal and, thus, redundancy-free clustering.

Local interestingness. Although by avoiding redundant clusterings we reduce
the number of possible clustering solutions, many clusterings are still possible.
For example, both sets {C3,Cy,Cs} and {C,Cy, Cs} are valid alternatives and
orthogonal clusterings. To decide between those solutions, we utilize the idea of
OSCLU to take local characteristics of the clusters into consideration. For differ-
ent applications different local characteristics can be of interest. Among others,
possible choices can be the density, size, extension, or dimensionality of a clus-
ter. According to these characteristics, each cluster is annotated with a certain
interestingness value. By selecting those clusters that maximize this interesting-
ness, we get the desired result. For the OSCLU approach, a local interestingness
function Ij,.,; maps each subspace cluster C' to the interestingness value [;,.q;(C').
Our instantiation is presented in Section 5.3.3. The overall interestingness of
a clustering Res is obtained by summing up the individual values of each clus-
ter: quality(Res) = 3 ccpes liocat(C). Assuming higher dimensional clusters to
be more interesting in our example, the quality of {C4, Cyy, Cs} is higher than the
one of {5, Cy, Cs}.

Accounting for the redundancy and the local interestingness, we are now able
to define our overall clustering solution:

Definition 5.3 Optimal alternative subspace clustering.

Given a previously known subspace clustering Known and the set of all possible
subspace clusters All, a clustering Res C All is an optimal alternative subspace
clustering iff

a) Res is a valid alternative to Known

b) VC € Res : {C} is a valid alternative to Res\{C'}

¢) Res is the most interesting clustering, i.e., VRes' C All that also fulfill a & b:
quality(Res) > quality(Res")

With this new model, we are able to determine a subspace clustering result
that differs from the input clustering to a high extent: either by representing

5.3. Alternative Subspace Clusters 73

novel objects or by comprising novel subspaces. At the same time, we avoid gen-
erating redundant clusters for the result, focusing again on deviating subspace
clusters.

5.3.3 Instantiation and algorithm

Instantiation. The instantiation of our ASCLU approach (Alternative Subspace
Clustering) is identical to that of OSCLU, which allows us to reuse the algorithm
designed for OSCLU. The cluster definition is based on the density-based clus-
tering paradigm because it allows for arbitrarily shaped clusters even in the
presence of noise [EKSX96]. A cluster is determined via dense areas in the
data space [KKKO4]. As in OSCLU, the density density®(p) of a point p in sub-
space S is determined by the cardinality of its e-neighborhood where the vari-
able ¢ is adjusted to the dimensionality of the subspace. The local interesting-
ness function / follows the definition of OSCLU and incorporates the dimen-
sionality, size, and density of the corresponding subspace cluster C' = (O, S):
Lot (C) = |S]" - O] - (ﬁ Yo densitys(p))c witha +b+c= 1.

Brief overview of the algorithm. The OSCLU model was proven to be NP-
hard. Since for Known = {} the ASCLU model corresponds to the OSCLU model,
we cannot expect that an efficient algorithm, exactly solving our model, exists.
Instead, we slightly adapt the approximation algorithm of OSCLU that avoids
generating the set of all possible subspace clusters by pruning several subspaces
based on already detected patterns and using the knowledge of the input cluster-
ing. We incrementally add clusters to the current result set Res and we possibly
refine this set if better clusters are detected. Technically, we use a top-down ap-
proach starting in high-dimensional spaces and traversing the subspace lattice in
breadth-first order. During this traversal, the subspaces with the same dimension-
ality are processed in the order of their possible benefit for the clustering result.
Subspaces that are highly different to subspaces already present in the input clus-
tering K'nown and different to the ones in the current result Res set are analyzed
first. Too similar subspaces are pruned. The best ranked subspace is analyzed for
its clustering structure using the density-based clustering model.

If clusters are identified in a certain subspace, we check if these clusters can
be added to the set Res based on two criteria: First, the novel cluster C' needs
to be a valid alternative to Known. Second, the cluster C' must not introduce
redundancy into the current result set Res. If both criteria are fulfilled, we can

74 Detection of Alternative Subspace Clustering Concepts

directly add this cluster to the result, i.e., Res = Res U {C'}. If C is an alternative
to Known but redundant w.r.t. Res, clusters M C Res have to exist that are
responsible for the (current) redundancy. If we removed M from Res, we could
add C to the result. To maximize the interestingness of our clustering solution,
we determine the values quality(Res\M U {C}) as well as quality(Res) and we
select the more interesting clustering. After updating the result set, the order
of the subspaces, not yet analyzed, is potentially adapted. Overall, we steer our
algorithm only to those subspaces where alternative clusters are expected and we
avoid analyzing all subspaces.

5.4 Experiments

In this section, we evaluate the quality of the ASCLU (Alternative Subspace Clus-
tering) approach and investigate whether it can provide a reasonable and non-
redundant subspace clustering compared to a given set of input subspace clus-
ters. For this goal, we start by applying ASCLU to synthetic data to get a better
intuition of the main principle. The generation method for synthetic datasets
corresponds to the one used in OSCLU. It produces density-based clusters in arbi-
trary subspaces, where each object can belong to multiple clusters with differing
relevant subspaces. This generation method takes into account that objects can
be relevant for several clusters in multiple views.

Furthermore, we demonstrate the performance of ASCLU on two real world
datasets (iris and pendigits) provided by the UCI repository [FA10]. Since the
motivating assumption for alternative clustering is the presence of multiple views
in the data, traditional class-based evaluation, where each object is assigned to
exactly one class, is not reasonable in this case. We, therefore, examine clus-
tering results for the pendigits dataset visually, similar to [CFDO7]. For the iris
dataset, we concatenate the original data with random permutations of itself,
which results in one high dimensional dataset containing several views: the con-
catenations. For the quality assessment we use the Fl-value, as it can handle
overlapping clusters and classes and is used for evaluation of subspace clusters
[AKMS08b, MS08].

Experiments on synthetic data The first experiment serves to examine the
ability of ASCLU to calculate a real alternative Res to a given clustering Known.
An alternative clustering should yield new information compared to the given

5.4. Experiments 75

00! oal
eeiseoile!

objects

Figure 5.2: Data matrix for synthetic data with given clustering (black) and al-
ternative clustering (red)

clustering. This can be characterized by clusters that either group similar objects
compared to the given clusters but in different subspaces or simply group other
objects than the given ones. A small synthetic dataset with 300 objects and 16
dimensions, where 16 clusters are hidden in five different subspaces, allows an
easy visual examination. Fig. 5.2 depicts a representation of the data matrix,
where the given clusters (black boxes) and all clusters found by ASCLU (red
circles) are plotted. Each column of the matrix represents a database object, each
row represents a dimension. For a clear presentation, the objects and dimensions
have been permuted, such that the given clusters and several categories of new
information types become apparent. The black rectangular area represents the
previously known information. New clusters should preferably avoid this area
of given clusters and concentrate on new information. The black area is only
sparsely populated with circles, which indicates that the newly found clusters
do not provide the same information. To gain new knowledge, a cluster has to
cover a sufficient amount of new objects or/and different subspaces. Fig. 5.2
also shows that ASCLU does not block the given cluster area completely for the
new clustering, like other approaches do for dimensions [QD09], but allows for
clusters to overlap regarding dimensions or objects of the given clusters. The
potential information content of the new clustering is, thus, extended.

Experiments on UCI datasets In the following, we focus on the effectiveness
of ASCLU for real world datasets. We start using the pendigits dataset to show
that ASCLU reveals new patterns compared to some given ones. The pendigits
dataset is very rewarding for clustering analysis, since cluster results are very
descriptive and visualizable. This dataset is suitable to examine, whether ASCLU
is able to find valuable alternatives for given subspace clusters in real world data.
As input for ASCLU, we use three clusters: digit O and digit 6, each clustered

76 Detection of Alternative Subspace Clustering Concepts

in the first 3 xy-coordinates, and digit 9 clustered in the last 3 ones. Given this
input, ASCLU determines subspace clusters with deviating properties and thus
novel information. The first indicator is that the given three digits appear in
less clusters than the other digits, which shows, that ASCLU is more interested
in the unknown (not given) digits. A second observation is that the given digits
appear mainly in clusters that cover nearly all digits, thus representing novel
object groupings. In Fig. 5.3 such an identified cluster is illustrated, where all
digits have similar values for the marked y-coordinates. Only in very few clusters
the three digits are again clustered individually; though, these clusters yield novel
attribute information of the digits.

Y, Jo)) R B e

J@ RN S

/ b / / @ ®\ i
)l c o % e
@\@/’/ e e E N '

/,/QE—J‘ﬂ B ~a E“’_/@\ ,/@\\@ @//@\\‘

1 T P& -7
%"ﬂ \ Siﬁ KE//Q%ED e }@*/ @*//ME/
e g Ew? AV, LN, i /

Figure 5.3: Alternative subspace cluster for pendigits

The next experiment, on the iris data, evaluates the influence of the input
clustering on the quality of ASCLU’s results. As described, we extend the iris
dataset to multiple views per object. This way, we are able to determine a sub-
space clustering as input, which will in this case be the first view. We, therefore,
only consider the classes of the other views, the latter concatenations, as ground
truth to compare the results with. In Fig. 5.4, we compare the results of ASCLU
with and without this first view as input clustering for three different datasets,
which differ in the number of concatenated views. The results show, that a high
quality input clustering, like one view in this example, has a positive effect on
the quality of the alternatively found clusters in the other views. This effect is
explainable by the fact that due to the given clusters, ASCLU already excludes
several clusters with similar informations to avoid redundancy. These avoided
similar clusters do, obviously, not belong to the ground truth and do often lead
to the redundancy and thus the exclusion of valuable clusters in other views. As
Fig. 5.4 shows, this effect is best traceable if there is only one view besides the
given one. Nonetheless, the given information has also a positive effect on more
than just one view.

5.5. Conclusion 77

- ASCLU (no input) =e~ASCLU (first view as input)

number of views

Figure 5.4: Quality of ASCLU on the iris dataset

5.5 Conclusion

In this chapter, we proposed a method that extended the principles of the pre-
viously presented OSCLU approach (Chapter 4) for detecting an alternative sub-
space clustering to a given input clustering. In contrast to previous approaches
that determine alternative groupings, we specifically consider the relevant di-
mensions of each subspace cluster to identify different views within the data.
Besides generating deviating clusters compared to the given input clustering, our
model ensures that each resulting cluster provides novel knowledge by pruning
redundant results. The experimental evaluation confirms that our model success-
fully detects meaningful alternative subspace clusters based on the given input
clustering. Analogous to the OSCLU approach, also ASCLU does not explicitly
mine views but focuses on clusters. Accordingly, also for ASCLU a separation of
clusters according to views needs to be done in a post-processing step, such as
the one proposed in Chapter 15.

Part 111

Transfering Subspace Principles to
the Multi-View Clustering Paradigm

It is the theory which decides what can be observed.
ALBERT EINSTEIN

79

Introduction to Simultaneous
Multi-View Clustering in Subspaces

OTH techniques presented in Part II are aiming at transferring the principles
B of multi-view clustering for achieving dissimilar clustering results to the sub-
space clustering paradigm. The proposed approaches present general solutions
for detecting clusters hidden in different attribute subspaces representing views
on the data. The result in each case is, however, a single set of clusters, such that
the views and the association of clusters to views are not determined explicitly.
As we will see in Chapter 15, a post-processing of such subspace clustering results
to obtain views and according alternative clusterings is not trivial and requires
interaction with a domain expert. In this part, we will present two approaches
to overcome these limitations by integrating the cluster definition and the view
detection into a single model.

As already argued in the previous chapters, the detection of multiple cluster-
ing solutions in just a single space has limitations. Finding truly novel clustering
structures by just considering a single data distribution is not very promising. In-
stead different characteristics of the data have to be highlighted to enable differ-
ent views on the data. If we cluster, e.g., movies, we will easily achieve a different
grouping based on their ‘genre’ compared to a clustering based on attributes like
‘location’, ‘cast’, ‘budget’, or other characteristics. As discussed in Chapter 2, some
approaches already consider different data representations for the task of multi-
view clustering [CFD07, DQO08, QD09, NDJ10, DB13b]. However, most of these
techniques consider data distortions leading to non-axis-parallel subspaces, e.g.,
based on PCA transformations, which are difficult to interpret semantically. By
considering axis-parallel subspaces, we have a direct indication which data char-
acteristics led to the observed cluster structures, which supports the semantic
reasoning. If we, e.g., find a very compact cluster for the characteristics ‘cast’ and
‘budget’, which represents high-budget movies with certain actors which have no

81

82 Introduction to Simultaneous Multi-View Clustering in Subspaces

other joint characteristics, we might start reasoning whether these are VIP actors
whose salaries are causing the high expenses.

While in the next Part IV, we will use the subspace clustering principle to dis-
cover multiple clustering views iteratively, for the approaches proposed in this
part, we will focus on the simultaneous generation of multiple clustering alter-
natives. A simultaneous detection of all hidden clustering alternatives has the
advantage that the global interestingness, i.e., quality and diversity of all cluster-
ings, can be optimized. Iterative approaches, instead, greedily choose the best
available clustering in each iteration based on the previous knowledge. While
the first detected clusterings probably will have a high clustering quality, in sub-
sequent iterations bad clusterings might be preferred for the sake of diversity.
Since in addition to the mere partitionings, we want to learn the according clus-
tering perspectives, i.e., subspaces, for each clustering, the simultaneous consid-
eration of all clusterings and their subspaces is beneficial as well. Not only the
different clusterings can help to refine each other, also the chosen subspaces for
each clustering, can be influenced by those of others. Although subspaces of
different clusterings might share some characteristics, it is unlikely that highly
overlapping subspaces support clusterings which are highly different. If the pro-
portion of common characteristics is too high, the two subspaces will contain a
very similar distribution of the data, such that truly deviating clusterings are not
to be expected. Taking this assumption into consideration, the subspaces can
help each other to define their clustering ‘profile’ more precisely.

An important criterion for the new approaches is furthermore, that the detec-
tion of an arbitrary number of alternative clusterings should be possible in order
to detect all hidden concepts in the data. For the methods that we will present in
the following Chapters 7 and 8, we use probabilistic generative models to solve
the problem of finding multiple alternative clustering solutions in subspace pro-
jections of the data. These models can be nicely depicted by graphical models
and capture the assumed causal process by which the data has been generated.
In our case, each alternative clustering will be represented by a multivariate mix-
ture distribution for the relevant attributes. For the approach in Chapter 7, we
will focus on transferring the principles of subspace clustering to the paradigm of
multi-view clustering. Here, we will explicitly consider local noise dimensions of
clusters as well as overlapping subspaces for the different clustering views. For
the second approach, that we will present in Chapter 8, we will simplify the con-
sidered generative model in order to focus on the integration of user constraints.

83

Often the user has some prior belief about the clustering structure and wants
to guide the clustering process in a certain direction. So-called semi-supervised
clustering techniques have shown to be able to drastically improve the clustering
quality if such prior knowledge of the user is used as support. With our SMVC
approach of Chapter 8, we want to examine a possibility to integrate such prior
user knowledge into the complex clustering process of multi-view clustering in
subspace projections.

Multi-View Clustering Using Mixture
Models in Subspace Projections

7.1 Introduction 86
7.2 Generative Multi-View Model 89
7.2.1 Generating Multi-View Data 89
7.2.2 Learning Objective 93
7.3 The MVGen Algorithm 95
7.3.1 Update Equations 95
7.3.2 Recommended Update Sequence 98
7.3.3 Determining Components and Subspaces 99
74 RelatedWork 100
7.5 Experimental Analysis 102
7.5.1 Evaluation on SyntheticData. 103
7.5.2 Evaluation on Real World Data 105
7.6 Conclusion e .. 108

N this chapter, we present a Bayesian framework to tackle the problem of simul-
I taneous multi-view clustering in subspace projections of the data. We provide
multiple generalizations of the data by using multiple mixture models. Each mix-
ture describes a specific view on the data by using a mixture of Beta distributions
in subspace projections. Since a mixture summarizes the clusters located in sim-
ilar subspace projections, each view highlights specific aspects of the data. In
addition, our model handles overlapping views, where the mixture components
compete against each other in the data generation process. For efficiently learn-
ing the distributions, we propose the algorithm MVGen that exploits the principle
of iterated conditional modes and uses Bayesian model selection to trade-off the
cluster model’s complexity against its goodness of fit. With experiments on var-
ious real-world datasets, we demonstrate the high potential of MVGen to detect
multiple, overlapping clustering views in subspace projections of the data.

85

86 Multi-View Clustering Using Mixture Models in Subspace Projections

7.1 Introduction

Mixture models have proven to be well suited for adequately modeling and learn-
ing the characteristics of complex probability distributions of given observations
in various applications [MKO08]. In particular in the presence of an underlying
clustering structure, multivariate mixture models are widely used as a compact
representation of the data’s distribution. Given a parametric family K, e.g., the
set of all Gaussian distributions, a mixture model describes the data by a set of
components (each selected from K) and a set of mixture weights. Intuitively, each
component represents a cluster (more precisely: its distribution of the attribute
values) and the mixture weight represents the number of objects belonging to
this cluster.

Key to a reasonable data representation is an appropriate modeling of the un-
derlying data structure. Traditional mixture models work with only a single mix-
ture distribution, i.e., each observation is assumed to follow a single component’s
distribution. However, as the research areas of subspace clustering [KKZ09] and
multi-view clustering [MGFS10] have taught us, for many data collections mul-
tiple, differing aspects of the observations are captured. This aspect has already
been touched by approaches like [SJR10, FBO8, BKG™05], that allow for a mixed
membership in different components. Thus, they realize an overlapping cluster-
ing and, e.g., allow for a movie to participate in the ’humor’ as well as in the
’action’” genre [BKGT05]. These approaches still only realize a single clustering
(i.e., one mixture model) and, therefore, are able to present only one view on the
data, e.g., the view ’genre’ for the movie example. For many scenarios, however,
a more complex clustering structure, where different views on the data (i.e., con-
sidering different characteristics of the observations) reveal different clustering
structures, has to be expected [NDJ10, CFD07, QD09]. Movies cannot only be
clustered according to their ’genre’ but also based on ’location’, ’cast’, ’budget’,
or other characteristics. Since data is rarely collected pursuing only one defined
goal, the multi-view hypothesis is very likely for various databases, e.g., customer
data, sensor data, biological records but also for data with various heterogeneous
characteristics, like images or multimedia in general.

Just summarizing the data by a single global view, which considers all charac-
teristics simultaneously, does not do such data justice. Instead, a generalization
of the data by a mixture model for each view and its specific characteristics, re-
veals more insight in the data. Given the toy example in Fig. 7.1, we can easily

7.1. Introduction 87

view 1 view 2
..I.]
A% °]
W ATA 0,040 e
e Bl e e
e .: oo S e .;; t
IR el g)]
1= ‘ulz .) £
= ee, J L) = A
© T T asla A AL
ke ..((\(b X :?AAAAA‘A“AAT‘\\Q’
[(&
dim 1 dim 4

Figure 7.1: Example for the multi-view scenario

identify two different but valuable clusterings: characterizing the observations’
color (first view: subspace {1,2,3}) and the observations’ shape (second view:
subspace {4,5,6}). If a single partitioning of this data in the full-space {1,...,6}
is enforced, the result will be very small, specialized clusters, e.g. ’blue rectan-
gles’. For the purpose of generalization, 3 clusters in 2 views are preferable over
9 clusters considering all attributes. Especially for data with many attributes a

mixture distribution in the full-space does not generalize the data well.

Taking a generative perspective, we can assume each object to be generated by
multiple mixture distributions, each referring to a different view of the data. Con-
sequentially, each object follows multiple components, each in a different mixture
model, each defining a distribution only for a certain view (i.e., subspace) of the
data, and each representing a different role of the object. This poses several
challenges:

Challenge 1: Multiple Groupings. In the most simple scenario of multi-view
data, the views do not share any characteristics (disjoint subspaces). A schematic
representation of this case for a database with 6 dimensions, 2 views, each with
3 clusters, is given in Fig. 7.2(a). Intuitively, we can model this scenario by
"concatenating’ several traditional mixture models. The question remains, how
to appropriately model the relevant dimensions of each view.

Challenge 2: Subspace Clusters. Usually, the solution via traditional mix-
ture models, discussed above, is too restrictive for the characteristics of real world
data. While for a certain view a set of attributes is relevant in general, we cannot
expect that each cluster covers exactly the same set of dimensions as its view
(subspace cluster w.r.t. the view). While the dimension 'viewers age’ might be
relevant for the view ’genre’ in general (e.g., 'Horror’ movies target only adults),
some genres like, e.g., ’3D Animations’ show no certain characteristic in this di-
mension. This scenario corresponds to Fig. 7.1 and is illustrated in Fig. 7.2(b).

88 Multi-View Clustering Using Mixture Models in Subspace Projections

~ d1 d2 d3 d4 d5 d6 dl d2 d3 d4 d5 d6
& IIIHHHxﬁ\HH_
Co, MM L[] G
Co, HEE 1] G H H
Co;] G
(a) Disjoint views
ndl d2 d3 d4 d5 d6 dl d2 d3 d4 d5 d6
& IIWHH\Qﬁ\HHMII
I R | I |
0 G M |:|
0 G O

(b) Disjoint views & subspace clusters

N, d1 d2 d3 d4 d5 dé dl d2 d3 d4 d5 d6

© IIWHH\gl [/N

efy I | ey mnan | |
Cia 0] G

Cos I T Gos [T

(c) View overlaps & subspace clusters

Figure 7.2: Different scenarios of multi-view data (the shading represents the
relevance of the dimensions; white: irrelevant dimensions; the darker the shade
the more relevant the dimension)

Subspace clusters cannot be represented by traditional mixture models. While in
the relevant dimensions of a subspace cluster, the attribute values are distributed
according to, e.g., a Gaussian distribution, irrelevant dimensions follow a com-
pletely different model, e.g., a uniform distribution. That is, depending on the
dimension’s relevance a different parametric family is used. Thus, to model data
containing subspace clusters, we encounter the challenge of model selection, i.e.,
before we can estimate the actual mixture model parameters, we first have to
determine the parametric families that are used for each cluster.

Challenge 3: Overlapping Views. So far, we just discussed non-overlapping
views. In general, however, dimensions can occur in multiple views (Fig. 7.2(c)).
e.g., the dimensions ’gender’ and ’age’ might be characteristic for the two views
’hobby’ and ’profession’ of a customer database. This scenario is particularly chal-
lenging as several components might compete with each other for generating an
object in one or more dimensions (e.g., clusters C; ; and C, 3 in dimension four).
Obviously, the dominant view (and, hence, dominant distribution) might vary
for each dimension and each object: while in dimension ’gender’ some objects
rate the view ’hobby’ as dominant, other objects use the view "profession’ in this
dimension; in the dimension ’age’, completely different views might be consid-
ered as dominant. This observation is even intensified by considering subspace

7.2. Generative Multi-View Model 89

clusters: some clusters might not be relevant in the overlapping dimensions. Ac-
cordingly, it is not sufficient to consider only the views, but we need to consider
the actual subspace clusters to determine the dominant view. Since each object
might be located in different subspace clusters, different overlap scenarios can
occur.

To tackle all these challenges, we propose a Bayesian framework modeling
data with an inherent multi-view clustering structure. Our model:

e provides multiple generalizations of the data by modeling individual mix-
ture models, each representing a distinct view

e handles individual sets of relevant dimensions for each cluster by perform-
ing Bayesian model selection

e tackles the ambiguity of the objects’ memberships regarding multiple, com-
peting components

7.2 Generative Multi-View Model

In this section, we introduce a Bayesian framework modeling the process of gen-
erating data containing multiple clustering views. An overview of our framework
is given by the graphical model depicted in Fig. 7.3. We start in Section 7.2.1
by describing our model from a generative perspective, i.e., we show how our
model generates data containing multiple views. The inverse process where a set
of observations is given and the model’s components are learned, is introduced
in Section 7.2.2. Following convention, we do not distinguish between a random
variable X and its realization X = X if it is clear from the context. As an abbre-
viation, we denote sets of random variables with the index *, e.g., Y, 4 is the set
of random variables {Y; ,} with ¢ in the corresponding index domain, and Y" is an
abbreviation for the set Y, ..

7.2.1 Generating Multi-View Data

In our model, we explicitly differentiate between the relevant dimensions of the
clusters and the relevant dimensions of the views. The relevant dimensions of a
view provide a concise description for the relevant dimensions for a set of clusters.
That is, the clusters belonging to the same view are located in similar subspace
projections. Since the clusters’ relevant dimensions might slightly vary, the rel-
evance of dimensions for the view can also vary. In Figure 7.2(b), for example,

920 Multi-View Clustering Using Mixture Models in Subspace Projections

Ms=set of views) Ogel Brel Non-informative
K=set of clusters per view
D=set of dimensions
N=set of observations

non-informative

neN)

Figure 7.3: Graphical model of our method. Rectangles denote discrete random
variables, circles continuous random variables, and black dots (deterministic)
hyperparameters of the prior distributions.

dimension 1 has a high relevance for view 1 since all of its represented clusters
use this dimension; dimension 1 is a good descriptor for the whole set of clus-
ters. Dimension 3, in contrast, has a slightly smaller relevance since one of the
clusters does not require this dimension. Thus, to reflect the differing relevances
of dimensions d € D = {1,...,d..} for each view m € M = {1,..., My}, OUr
model includes the (continuous) latent variables V}, ; on (0, 1).

Based on this relevance information, the actual relevant dimensions of each
subspace cluster can be generated. We model this aspect by the (discrete) random
variable S,, 4 on {0,1} ford € D, k € K and m € M.! The latent variable is
1 if the dimension d is relevant for the k-th cluster of view m, and O otherwise.
The higher the relevance of a view’s dimension, the more likely is the dimension
relevant for the cluster. This property can be realized by a Bernoulli process. With
probability V}, 4, the dimension d is relevant for the cluster, and with probability
1— V.4 it is not. Formally, the distribution of the latent variable S,,, ;. 4 is given by

P(Smpa =1 Va=r)=r
p(Sm,k,d =0 | Vm,d = 7') =(1— 7”)

(7.1

If the value of V}, 4 is either close to 1 or close to 0, then the clusters in this
view m are likely to have the same value for S,, 4. Thus, if the value of V;, 4 is
either close to 1 or close to O for all dimensions d € D, then the subspaces of the
clusters in this view are very similar. If V},, 4 is close to 0.5, we do not have a clear
presetting, and, thus, the subspaces of the clusters may differ stronger.

To simplify our model description, we assume that each view m € M describes ko,
clusters, i.e. K ={1,..., kmaz}-

7.2. Generative Multi-View Model 91

Prior distributions. To allow a fully Bayesian approach, we specify prior distri-
butions for the variables V;, ;. We select the prior according to a Beta distribution,
i.e., Vina ~ Beta(ape, Bre) With hyperparameters ap. € R and S € Rog. A
Beta distribution is suited due to the following reasons: First, since V,, ; simulates
a Bernoulli process, the Beta distribution corresponds to its conjugate prior. Sec-
ond, based on the hyperparameters, the user can control the views’ purity. That
is, one can control the similarity between the clusters’ subspaces originating from
the same view. As mentioned above, high similarity between the subspaces can
be realized by choosing V;, 4 close to 1 or close to 0. This issue can be modeled
by selecting ar.; = Sra < 1. If no knowledge about the views’ purity is given, we
can simply choose ap, = fra = 1, leading to a non-informative prior.

Generating the membership information After generating the relevant di-
mensions of each cluster, we now aim at generating observations that follow
multiple overlapping views. More precisely, in each of the views each object shall
belong to a single cluster; thereby, we realize a single grouping within a single
view and multiple overlapping groupings among different views.

This idea can be modeled by the latent variable Sel,, ,,, on K = {1,..., ks }
that models which of the £,,,, clusters an object n follows in view m. The dis-
tribution of Sel is governed by the (relative) weights ,,, of the clusters, i.e.,

p(Selpm =k | Tms) = Tk
As usual for mixture models, the larger the weight of a cluster, the more objects
belong (in expectation) to the cluster. Please note that in contrast to traditional
mixture models, in our model each view represents a certain grouping of all
objects. Thus, we have), _, 7, =1 for each view m € M, while in traditional
mixture models the overall weight of all clusters is normalized to 1.

As discussed in challenge 3 (and illustrated in Fig. 7.2(c)), different views
compete with each other. An object might belong to two clusters which both are
marked as relevant in a specific dimension d. To solve the ambiguity about the
object’s membership in this dimension, we specify one of the views as dominant
(for this object and dimension). This aspect is modeled by the latent variable
Domy,gon M ={1,..., M., }. Here, a view m € M can only be dominant in d if
the selected cluster is also relevant in d. Thus, let M, , = {m' € M

Sm’ JSel, ,.rd —
1} be the set of views that are potentially dominant for object n in dimension d,

n,m

the distribution of Dom,, 4 is modeled by

92 Multi-View Clustering Using Mixture Models in Subspace Projections

IM, 4 ifme M,
p(Dom,q = m | Sely.,Scva) = {0 ifm¢g M, ,AM,,#0
1/|M else

That is, we randomly select a view from the potentially dominant views (case 1),
while the remaining views cannot be selected (case 2). The third case just occurs,
if none of the selected clusters of an object is relevant in this dimension. In this
case, an arbitrary view can be selected as dominant since any cluster represents
just noise in this dimension.

Generating Observations Finally, we specify the distributions from which the
attribute values of a cluster are sampled, i.e., we model the actual components of
the multiple mixture models. However, keep in mind that for subspace clustering
we have two different parametric families: C; for the relevant dimensions and
Ky for irrelevant ones.

In our model, we select the parametric family ; according to the set of Beta
distributions, i.e., we consider a mixture of Beta distributions. This is advanta-
geous compared to the frequently used Gaussian distributions since Gaussian
distributions have an infinite support, which usually does not match the ob-
served data. In many applications, we have a finite attribute domain that can
be normalized to the range (0, 1); this is exactly captured by the Beta distribution
(cf. Fig. 7.4). Additionally, the Beta distribution is able to model distributions
near the border of the data space. These Beta distributions are modeled by the
two random variables «,, ;4 and f3,, ;4 on R, providing the necessary shape pa-
rameters of each distribution (for each view m, each cluster k, and each dimen-
sion d). For the parametric family Ky, we simply use the uniform distribution on
(0,1) since this corresponds to a noisy dimension. Thus, |K,| = 1 holds.

Which parametric family a mixture component in dimension d belongs to was
modeled by the latent variable S. Thus, finally, the attribute values of each object
can be modeled by the random variable X,, ; with distribution:

Bet(L((Xiyj1d7 ‘Bi,j,d) lf Si,jyd =1

Xn,d | D07nn7d7 Selm*y S*,*,d-, Qs ds ﬁ*,*,d ~
Uni(0,1) else

where Dom,, 4=i and Sel,, ;=j. Thus, for each dimension d, an object follows the
distribution given by the selected cluster in the dominant view.

7.2. Generative Multi-View Model 93

w

pdf Beta(x)
N

Beta(z; o, f) =
F(a+p)
[(a)T'(5)

.xafl.(l_x){ﬂ‘—l

0 0.2 04 06 0.8
Figure 7.4: Probablity density function of the Beta distribution

Prior distributions. Again, we choose appropriate prior distributions to enable
inference. We select non-informative priors since usually no further knowledge
is provided about the data’s clustering structure. A non-informative prior for the
cluster weights m,,, is simply realized by choosing p(m,,1, ..., T kn..) = const
for each view m.

For the variables oy, 4 and f,, 4.4, We suggest a non-informative prior p(«,)
that ensures a uniform distribution over the mean and variance of the resulting
Beta distributions Beta(a, 3). Intuitively, this way the cluster centers are uni-
formly selected from the domain (0, 1) and the variance from the domain (0,).
Thus, the prior fulfills

/Ap(a, B) - 1(E(Beta(a, 8)) = z) dadB ~ Uni(0, 1)

regarding the mean « of the resulting Beta distribution (same for the variance
with Uni(0,)). We can approximately? achieve these properties by selecting
the priors according to exponential distributions with rate parameter 0.1, i.e.,

A~ Exp(0.1) | Buga~ Exp(0.1)

7.2.2 Learning Objective

In the following, we describe our learning objective if a set of observed data
points X is given. Usually, the learning objective would be to maximize the a
posteriori probability p(V, S, a, 5, Dom, Sel, 7 | X =X).

2Indeed, the distribution of the mean is exactly captured since the Beta distribution’s

mean is given by %, and for any A it holds: XY ~ Exzp(\) = XLJFY ~ Uni(0,1)

94 Multi-View Clustering Using Mixture Models in Subspace Projections

For our model, however, this idea is not meaningful since in this case usually
all dimensions of a cluster are relevant: the data’s likelihood is always higher
when selecting a (certain) Beta distribution in contrast to selecting a uniform
distribution. This is obvious since a uniform distribution is a special case of a
Beta distribution with shape parameters « = 5 = 1 and, hence, K, C K;. Thus,
simply determining the maximum a posteriori (MAP) estimate as given above
leads to the problem of overfitting since a complex model obviously fits the data
better than a simple one®; one would only choose relevant dimensions.

To overcome this problem, we first perform a model selection before learning
the subspaces S and the shape parameters of the Beta distributions. That is,
we balance the models’ goodness of fit and their simplicity*. Thus, our learning
objective is separated in two phases:

First, we perform Bayesian model selection [Bis06] by finding the best real-
ization for V', Dom, Sel, and 7. That is, we determine the MAP estimate

(V*,Dom*, Sel", 7*) = argmax p(V =V, Dom=Dom, Sel=Sel, 7= | X =X)
(V,Dom,Sel,)
These variables are illustrated in our graphical model with solid lines. Since
learning these variables involves a marginalization over S, «, and 3, we realize
the balancing of the model’s complexity and its goodness of fit. Thus, due to
this model selection step, some dimensions might be irrelevant for certain views,
corresponding to a more simple model.

Since after the first phase the cluster model is determined, we can estimate
in the second phase the actual mixture components and the clusters’ subspaces.
That is, we can now determine the MAP estimate for the variables S, o and 3:

(S*, ", B") = argmaxp(S=S,a=a, =0 | X=X, V=V*,
(S.c,8)
Dom=Dom"*, Sel =Sel", r=n")

Overall, our model allows to learn the clustering structure of data contain-
ing multiple overlapping views by using multiple mixture models. Clusters, i.e.,
mixture components, are located in individual subspace projections and are sum-
marized by views through a concise description of their relevant dimensions.

3A similar example is polynomial interpolation: since the set of polynomials with
degree x is a subset of the ones with degree z + 1, the interpolation error decreases with
increasing degree.

4In the example of polynomial interpolation, one balances the degree of the polyno-
mial against its regression error.

7.3. The MVGen Algorithm 95

7.3 The MVGen Algorithm

In this section, we introduce our MVGen (Multi-View Generative Model) algo-
rithm that learns the multi-view clustering structure given a set of observed data
points. Since exactly computing the MAP estimate p(V, Dom, Sel,7 | X) is in-
tractable, we compute approximations that can be efficiently determined. In
general, we exploit the principle of iterated conditional modes (ICM [Bes86]),
which can be regarded as a greedy variant of the Gibbs sampling method [Bis06].
Instead of considering a complex joint distribution p(A4,..., A,), we iteratively

maximize a set of conditional probabilities p(A; | Ay, ..., Ai_1, Ait1,..., A,) until
the process converges. This way, the random variables A; are updated sequen-
tially. The traditional k-means processing scheme can be seen as an instance of
the ICM principle with just two easily computable update steps: recomputation

of means and reassignment of points to clusters.

7.3.1 Update Equations

We briefly present the update equations required in our algorithm; they are sum-
marized in Equation (7.U1)-(7.U4).

Updating the views I/ We start with the variable V},, 4, i.e., foreach m € M,d €
D we aim at maximizing

P(Vina | V\{Vina}, Dom, Sel, m, X)

O(Z//])(V7 Dom, Sel, 7, S,a, 5, X) dadfp (7.2)
S aJp

The most important aspect here is that we have to marginalize over the vari-
able S, a, and 3, as stated in Section 7.2.2. Only if the model selection step is
performed, we can estimate «, 3, and S.

In the appendix on page VII, we show the detailed derivation for the following
Equation 7.U1 of the optimal realization of V], 4:

Vi = arg max ¢, - logz + ¢, - log(1 — x)+
z€(0,1)

. -log(z + ¢q) + Z log(c, -z +1) (7.U1)

keK

where the ¢, are constant values given by

96 Multi-View Clustering Using Mixture Models in Subspace Projections

Ca:aﬂelfl“r‘Nm,d Cb:/jkelfl Cc:7|]\[|
Cqg = Zmleh,ﬁm,#m Vm’,d Cp = Bet(ld(Nmyde) -1

Here, N,, s = {n € N | Dom,, 4 = m} is the set of all observations that choose the
view m in dimension d as dominant, and N, ;4 = {n € Ny, 4 | Sel,,, = k} are
those observations which additionally select the cluster k. The term Betaq(N, j.4)
is computed based on the following equation

Betay(I) == [HBeta(Xn,d;OzMAPﬁMAP)] /II\ (7.3)

nel

where I is an index set denoting which observations are considered, and a;4p
and [y ap are the MAP estimates of the Beta distribution’s shape parameters
using the set I of observations. The function Beta,(I) approximates the term

//ﬂp(a)p(ﬁ)HBcta(Xn,d;a,ﬁ) dadfs

nel

which has to be solved during the derivation of our update equations. Betay(I)
exploits the Bayesian Information Criterion (BIC, or Schwarz criterion [Sch78,
Bis06]) in combination with the observation that in our case the Beta distribution
is controlled by two free parameters.

Overall, Equation 7.U1 describes a simple univariate function in the variable
x whose optimization can, for example, be done by Brent’s algorithm [Bre73].

Updating = We perform a block update for the variables =, .. Since we use a
non-informative prior, maximizing
DT | V, Dom, Sel, m\{m.}, X) is simply obtained by

Tk = |{n € N | Selpn =k} - IN|7" Vke K (7.02)

Updating Dom and Sel Finally, we derive the update equations for the vari-
ables Dom and Sel. We perform a block update of the variables Sel, ,, and
Dom,, ., i.e., for each observation n, we simultaneously update its selected clus-
ter in view m and its dominant views over all dimensions. Formally, we aim at
maximizing: p(Sel,, ,, Domy, . | V. Dom\{Dom,, .}, Sel\{Sel, »}, 7, X)

7.3. The MVGen Algorithm 97

x zs:/oé/ﬂp(s [V)p(Selym | m) H [p(Dom,,,d | S, Sel)

deD
p(@p(8) [p(Xuva | Dom, Sel, $,0,8)| dads (7.4)
n'eN
We first resolve the integral over o and 8 by again using the BIC approxi-
mation (cf. Eq. 7.3). We assume that the MAP estimates o™4” and A" deriv-
able from the current grouping change only marginally when reassigning a single
point n to a different cluster. Similarly, the cluster sizes change only marginally,
i.e., the sets N,,;q differ by at most one element when reassigning observa-
tion n to a different cluster. By using this idea, we can substitute the part
(0)p(8) Tyen P(Xu.a | Dom, Sel, S, a, B) by Beta(X,,4; aMAP, BMAP)If S, 4 = 1
and by 1 (uniform distribution) if S; ;4 = 0.> This simplification stems from the
fact that with given, constant MAP estimates also the densities p(X, 4 | ...) for
n' # n are constant. Thus, Eq. 7.4 simplifies to:
o Zp(S | V)p(Selym |) H {])(Domn,d | S, Sel)
s

deD

Beta(X,L,d;a%flP,ﬁ,{f%P) if S;ja= 1] 7.5)
1 else

Due to the integration over all possible realizations of .S, the term p(Dom,, 4 |
S, Sel) can well be approximated by the expected dominance of a view m in
dimension d. The expected dominance is given by

Vm d

EDy(m) i= =————
Zm'eM Vm’-,d

Thus, the above equation simplifies to
o 3 p(S [V)p(Selm |)]| [EDd(Domn,d)
s deD
Beta(Xn?d; al\y;:\iP 71}]1:;‘}3) if S’i,j,d =1 (76)
1 else
Since the S, are independent given V, the summation over S is effective
only for the variable .5; ; 4. Thus, the summation vanishes when making the two
cases of S ;4 explicit. That is, we introduce the term

ADg(m, k) == p(Smpa =11]V) - Beta(X, 4; (12{‘,?1; ﬂﬁ;{ﬁg) +p(Smpa=0]V)-1

*We use the abbreviations i:=Dom,, 4 and j:=Sel, pom,, ,

98 Multi-View Clustering Using Mixture Models in Subspace Projections

and Equation 7.6 simplifies to

p(Selym |) - H EDg(Domy,q) ADg(Domy g, Seln pom,,.,)
deD

Please note that the functions £ D, and AD, are independent of Sel and Dom
and fully specified by the values of V, o4” and AP (which are given!). Thus,
while updating the values of Dom and Sel, we do not have to recompute the
functions Dy and AD,.

Based on the above equation, it becomes apparent that Dom,, , can be opti-
mized for each dimension individually. Especially, if the variable Sel is given, we
can efficiently compute the optimal realization of Dom,, 4 by

Dom,, 4 = arg max EDy(m)ADy(m, Sel,,) (7.U3)
meM

As shown, the optimal realization of Dom depends on Sel in a simple way.
Thus, we can focus on finding a good solution for Sel,, ,,,. The optimal solution of
Sel,, ,, can efficiently be computed by

Sely, n, = arg max {Wm’k dl;!) max {EDg(m) - ADg(m, k), (Jm‘d}} (7.U4)

where ¢, 4 = maXpyerrmgm EDg(m’) - ADg(m, Sel,, ;). The value of ¢, 4 is
constant since it neither depends on Sel,, ,, nor on Dom,, .. Please note that the
update of Sel,,, directly uses the best solution for Dom,, .. Thus, we do not
have to optimize Dom,, . separately but the optimal values are computed while
updating Sel,, .

7.3.2 Recommended Update Sequence

Given the derived update equations, any sequence that recurrently invokes each
of these equations is possible to determine a desired clustering solutions. How-
ever, based on the dependencies as given by our graphical model and the par-
ticular role of the model selection phase, we recommend the following update
sequence for the random variables:

1. We sequentially update the variables V}, ; for each m € M,d € D until the
views are stable. [Eq. (7.U1)]

7.3. The MVGen Algorithm 99

2. For each object n € N, we sequentially update the variables Sel,, , and Dom,, .

until Sel and Dom are stable.
(a) To update Sel, . and Dom,, ., we sequentially update Sel,, ,,, for each m €

M until Sel, .. is stable. [Eq. (7.U3) & (7.U4)]

3. Update of m,,. for each m € M [Eq. (7.U2)]; goto step (2) until the process
has converged.

4. goto step (1) until the process has converged.

Thus, overall, we exploit the ICM principle in a nested fashion. The outer
loop iterating over steps 1 and 2/3 represents the alternation between learning
the views and learning the groupings. For the inner loop, iterating over 2 and
3, the views are given and we try to optimize the cluster assignments as good as
possible. Note that implicitly also the mixture components « and 3 are optimized
since based on the BIC approximation their MAP estimates are considered.

Initialization To complete the above algorithm, we describe a straightforward
initialization. We simply initialize Sel by the following method: For each dimen-
sion d € D, we apply the k-means method with ¥ = |K|. Thus, leading to |D|
many clusterings. Since, however, Sel requires just | M| different views, we follow
an approach inspired by traditional agglomerative clustering methods: To reduce
the number of clusterings, we successively determine those clusterings that are
most similar to each other, and we merge these clusterings to a single one. Thus,
in each step the number of clusterings is reduced by one until the required num-
ber | M| is reached. To merge two clusterings, we simply union the corresponding
sets of dimensions and we recompute the k-means result in the novel space. As
similarity measure between the clusterings, we use the F-measure [WXC09].

After initializing Sel, the variable 7 is determined based on Equation 7.U2.
Since no information about the views is given, Dom is initialized randomly. The
variable V' is also initialized randomly based on its prior distribution.

7.3.3 Determining Components and Subspaces

According to Section 7.2.2, the second phase of our learning objective is to de-
termine the MAP estimate of p(S,«a, 5 | X,V, Dom, Sel,).

Since the variables Dom and Sel are given, the set of observations that con-
tribute to the Beta distribution of cluster & in dimension d and view m is known,
and was denoted by the set N,, ;4 = {n € Ny, 4 | Sel,., = k}. Thus, the shape

100 Multi-View Clustering Using Mixture Models in Subspace Projections

parameters a,,jq and [, of each mixture component simply correspond to
their MAP estimate given the set of observations N,,, j 4.

In general, however, determining the MAP estimate for the shape parameters
of a Beta distribution is not possible in closed form; one has to iteratively solve
systems of equations [BT78]. Since this is highly inefficient, we refer to the com-
monly used approach of moment matching: the shape parameters are computed
based on the mean and variance values of the observations. This approach is in
line with the non-informative prior distributions of o and 3, which do not favor
certain means or variance values. Thus, we get:

2 2 2
U ke d = (1*/1),1?%/1‘7 and S, a = % +p—1
where 4 denotes the mean of the observations {X, 4 | n € Ny, 4}, and o? the
variance, respectively. Note that these equations are also used for the MAP esti-
mates required in Section 7.3.1. Thus, the estimates for o4” and 4" can be
efficiently computed in these steps.

Finally, an estimate for the random variables S can be obtained by testing

which model - relevant or irrelevant dimension - is more likely. That is, if

P(Smra =11V)ILien,,.. Beta(Xn g tmpa: Brpa) > P(Smua=0]V)-1

, the dimension d of cluster k in view m, will be relevant. Here, we do not have to
refer to the BIC approximation but can use the likelihood of the Beta distribution.
Since the view V' is already learned, i.e., the model selection is done, the trade-off
between the models’ complexities and their goodness of fit is already reflected in
the term p(S,, k. | V).

7.4 Related Work

Our MVGen exploits a Bayesian framework to model the generation of data with
an underlying multi-view clustering structure. We discuss three paradigms re-
lated to this topic:

Subspace clustering: In contrast to traditional full-space clustering, subspace
clustering (co-clustering/bi-clustering) [KKZ09] assumes that for each cluster an
individual subset of attributes might be irrelevant. These locally irrelevant at-
tributes cause an obfuscation of the clustering structure in the full-space, which
makes full-space approaches futile. The consideration of attribute subsets is

7.4. Related Work 101

highly related to our multi-view scenario, where different views of the data are
most likely reflected by different attributes. However, subspace clustering does
neither realize a grouping of clusters to reflect partitionings under several views
nor is it aware of the varying competition and dominance of multiple clusters
concerning the attribute values of the data. Therefore, it does not meet the re-
quirements for multi-view clustering.

Multi-view clustering: The paradigm of multi-view or alternative clustering
meets our goal of revealing the cluster structure of multi-faceted data. Three dif-
ferent categories are identified in [MGFS10]. The first category’s representatives,
e.g., [JMDO8, BB06, DB10a], operate in the full-space and, therefore, suffer from
similar problems as traditional clustering. Furthermore, they are usually focused
on determining just two alternative clusterings, whereas for complex datasets
multiple views can be expected. Approaches from the second category detect
clusters in subspace projections ([NDJ10], OSCLU, ASCLU). However, [NDJ10]
cannot handle overlapping views and does not allow individual subspaces per
clusters, and our OSCLU and ASCLU approaches (cf. Chapters 4 & 5) do not pro-
vide a grouping into views, i.e., the views remain unknown. Approaches of the
last category iteratively determine an alternative clustering based on the previ-
ous one via space transformations such as PCA ([CFD07, DB13b]) or distortion
of the distance function ([DQ08, QD09]). Distortions of the original space like
this, usually hinder an intuitive interpretation of the clustering result. Contrarily,
axis-parallel projections of the data, as for our approach, directly refers to the
originating attributes for each cluster.

Model-based clustering: This general paradigm assumes the considered data
to be sampled from a statistical model. Several approaches for estimating the
parameters of the underlying probability distributions, e.g., to maximize the
log-likelihood of the data, were proposed including the EM algorithm and ICM
[Bis06, Bes86]. Model-based clustering is very flexible as the modeled distri-
butions can be arbitrarily complex. Traditionally, such approaches use a sin-
gle mixture distribution (which spans across all dimensions of the data space).
Even though each observation might be associated with a membership degree
(e.g., the likelihood of belonging to a cluster), such a principle of soft cluster-
ing does not support the idea of generating objects through multiple compo-
nents as for the multi-view scenario. To overcome this issue, a few models
([SJR10, FB0O8, BKG'05]) try to represent such multi-component membership
(i.e., overlapping clusters). However, they are still not suited for multi-view clus-

102 Multi-View Clustering Using Mixture Models in Subspace Projections

tering: They do not consider a grouping of clusters into views, i.e., they do not
model that an object takes a single role within a single view but different roles
among different views. Instead, these models lead to results where an object
might take multiple roles within a single view. Note that global dimensionality
reduction and feature selection [PZCW10] also do not solve our task: First, we
consider multiple views in multiple different subspaces. Second, in our model
each cluster is associated with an individual subspace projection.

Overall, none of the existing methods is able to handle multiple views that
compete against each other in overlapping dimensions and containing clusters
with individual sets of relevant dimensions. Our novel statistical model handles
all these aspects.

7.5 Experimental Analysis

Setup We compare MVGen with the multi-view clustering techniques Multi-
View 1 and Multi-View 2 proposed in [CFD07] and with two variants of the Alter-
native Clustering method proposed in [QD09]. These approaches best reflect the
demands for multi-view clustering as discussed in Sec. 7.4. Additionally, we use
two variants of the k-means method.

For case studies on real world data we use the CMUFaces, liver disorders,
diabetes, iris and vowel data (all from the UCI repository [FA10]), and Escher
images. Synthetic data containing multiple views is generated based on our gen-
erative model. The default dataset contains 2 disjoint views, each with 5 clusters,
10 dimensions, 1000 objects, and the clusters’ subspaces deviate to the views’ di-
mensions by 5%.

The methods of [CFD07] and MVGen are provided with the number m,,,,, of
views and the number £,,,, of clusters per view. Since [QD09] just detects two
groupings, we use two variants: 1) The true number of clusters per view is set.
In this case the method detects 2 - k., clusters. 2) We parametrize the method
With Koz - Mimax/2. In this case, kaz - Mimas clusters are detected, which matches
the overall number of clusters hidden in the data. Similarly, we use for k-means
k = kpmaz aswell as k = ke - M. Runtime is measured on 2.33GHz Intel XEON
CPU with 8 GB main memory. Quality is assessed based on the £45C measure
(cf. Chapter 13) used in evaluation of subspace clustering. Since MVGen is the
only method performing multi-view subspace clustering, we do not evaluate the
subspaces of the competing methods but just concentrate on their detected object

7.5. Experimental Analysis 103

—MVGen +++MVGen (obj.) =&=Multi-View 1 - Multi-View 2 <Alt. Clus. (k) -= Alt. Clus. (k-m/2) - k-Means (k) -+ k-Means (k-m)

.......... 1
. L —0.8
'308 R Ty (%) PN i
2 ‘ 2 --r:.-m.«'"--_.g. N o
06 s T §06 T2 “ -
> | O e oo, =
=04 S TA =04 NN ITPP-PPPY
© ©
3 3
02 e 02
0 T T T T T T T T) 0 T T T T T |
1 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10 12
number of views number of overlapping dimensions

Figure 7.5: Varying number of views Figure 7.6: Effects of overlapping views

groupings. To enable a direct comparison of MVGen with these approaches, we
also include the results of MVGen if we ignore the subspaces in its evaluation,
denoted with '"MVGen (obj.)’.

7.5.1 Evaluation on Synthetic Data

In Fig. 7.5, we vary the number of hidden views in the data. The overall di-
mensionality of the data is 30. As depicted, MVGen is the only approach able to
detect the clustering structure in the case of many views. The clustering quality is
very high, even if we incorporate the detected subspaces in our evaluation (solid
line of MVGen). Obviously, the quality is even higher if we evaluate the object
groupings only (dashed line). The competing methods behave differently: while
for single-view data the quality is relatively high, their quality heavily decreases
with an increasing number of views. Interestingly, for a high number of views,
the quality of the two multi-view techniques (depicted by triangles) is not much
larger than the one of the k-means method with & = k,,,,. These methods are
not well suited to analyze data containing multiple views.

Next, we analyze the potential of our method to detect overlapping views. In
Fig. 7.6, we use a dataset with 12 dimensions containing 3 views. We vary the
number of overlapping dimensions, i.e., dimensions that occur in more than one
view, until each dimension occurs in two views. As shown, the methods are nearly
not influenced by overlapping dimensions. The reason might be that none of the
views is completely contained in another one. One is still able to detect the clus-
ters of each view. MVGen detects the object groupings almost perfectly; some of
the clusters’ relevant dimensions are missed for high overlapping degrees. Note:
The good quality of the competing methods is only observed because we just have
3 views in this experiment.

104 Multi-View Clustering Using Mixture Models in Subspace Projections
D
—0.8 —MVGen «+«MVGen (obj.)
b A A —A
@ A Ao S o UL
R — g “Multi-View 1 -AMulti-View 2
>
=04 Alt. Clus. (k) Alt. Clus. (k-m/2)
3.02
. k-Means (k) k-Means (k-m)
0 : : : : : :
70% 75% 80% 85% 90% 95% 100%
purity of view
Figure 7.7: Effects of the views’ purity
—MVGen <&Multi-View 1 -A Multi-View 2 Alt. Clus. (k) Alt. Clus. (k-m/2) k-Means (k) k-Means (k-m)
100 100
T 10 T 10
2 &
£ - £
=1 /‘\.‘ =
50107 = Sot e At
001 001 %"
1 2 3 4 5 6 7 8 9 10 5 10 15 20 25 30 35 40 45 50

database size (x 1000) number of dimensions

Figure 7.8: Runtime vs. database size Figure 7.9: Runtime vs. dimensionality

In Fig. 7.7, we show that MVGen is able to find subspace clusters (located
in subspace views). In our model, we allow a certain deviation of the clusters’
subspaces to the relevant dimensions of their views; here, denoted as the purity.
In this experiment, we vary the purity from 70% to 100%. Since each view
covers 5 dimensions, a purity of 70% leads to subspace clusters covering now
only 3 relevant dimensions. As shown, MVGen succesfully detects the relevant
dimensions of each cluster. Since we use a model selection approach, we trade-
off the simplicity of the model against its goodness of fit. For the competing
method, no conclusion can be drawn since for their evalution, we do not consider
subspaces.

Scalability Even though our focus is on clustering quality, we briefly analyze
MVGen’s efficiency. In Fig. 7.8, we increase the number of objects in the data-
base. All methods show increasing runtime and the slopes of the curves are in a
similar range. Please note that the two approaches Multi-View 1 & 2 have almost
identical runtimes, and, since we use 2 views, the two Alt. Clus. approaches are
also identical in their runtimes. Apparently, the absolute runtime of our method is
the highest due to the complex model selection phase that trades off relevant and
irrelevant dimensions. However, the absolute runtime of MVGen is still low. Fur-

7.5. Experimental Analysis 105

thermore, as we believe, the higher runtime is compensated by the significantly
higher clustering quality of MVGen. In Fig. 7.9, we increase the dimensionality
of the dataset. We observe a similar behavior as in the previous experiment.

Overall, MVGen shows good scalability and it is the only method simultane-
ously achieving high clustering qualities.

7.5.2 Evaluation on Real World Data

For evaluation on real world data, we use different evaluation principles, all fo-
cusing on the aspect of detecting multiple views. In our first experiment, we
extend the datasets iris and vowel to data containing multiple views: for this, we
randomly concatenate the attribute values of different objects to a higher dimen-
sional space. The original datasets have dimensionalities of 4 and 10, respectively,
while the extension to multi-view data leads to dimensionalities up to 9 - 4 = 36
(iris) and 6 - 10 = 60 (vowel), respectively. Figures 7.10 & 7.11 show the results:
For a small number of views, the quality of some competing approaches is sim-
ilar to the one of MVGen. However, increasing the number of views leads to a
decreasing clustering quality for all competing approaches. In contrast, MVGen
shows constant quality values; MVGen is not affected by an increasing number of
views but detects the different object groupings even for a high number of views.
These results for real world data are consistent with the observations made for
the synthetic data.

—MVGen <&Multi-View 1 -4 Multi-View 2 Alt. Clus. (k) Alt. Clus. (k-m/2) k-Means (k) k-Means (k-m)
1

o g
g g
z z
= ... ™ Tg
304
T e ™ i
0.2 0.1
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6
number of views number of views
Figure 7.10: Quality on iris data Figure 7.11: Quality on vowel data

In the next experiment, we analyze the clustering result of MVGen on the
CMUFace data. This data is interesting for multi-view clustering since it consists
of images taken from persons showing varying characteristics as their facial ex-
pressions (neutral, happy, sad, angry), head positions (left, right, straight), and

106 Multi-View Clustering Using Mixture Models in Subspace Projections

eye states (open, sunglasses). As also done in [DB10b], we randomly select 3
persons with all their images and applied PCA retaining at least 90% of the data’s
variance as a pre-processing. The result of MVGen for two views each with three
clusters is illustrated in Fig. 7.12. The images correspond to the means of each
detected cluster. By visual inspection, we can easily find the reason for detecting
these two views: The first view, describes the grouping based on the different
persons, while the second view, corresponds to a grouping based on their head

positions.

Figure 7.12: Result of MVGen on face data

View 1

View 2

Next, we perform an experiment as introduced in [QD09]. They propose to
perform image segmentation on Escher images, which are known to have multi-
ple interpretations to the human eye. For clustering, each pixel is regarded as an
object with RGB and HSV values as features. In Fig. 7.13 (left), such an image is
depicted (followed by the three views detected by MVGen). Focusing on the dark
regions, there is a segmentation of the image as given by the first view of MV-
Gen. This segmentation is dominant since the dark parts clearly deviate from the
orange/yellow parts. However, MVGen is also able to discover the more subtle
view where the yellow parts are decoupled from the others. Most interesting is
the third view detected by MVGen: it corresponds to only the background of the
image. For the other methods we observed the following: The work of [QD09]
was only able to detect groupings similar to MVGen’s first and second view (as
also shown in [QD09]). Interestingly, the work of [CFDO07], which is designed to
detect more than 2 views, was only able to find view 1. The detected ’alternative’
groupings were all similar. None of the competing methods was able to detect
the third, background view.

7.5. Experimental Analysis 107

TR Sad AR =y Aol) g’ . ¥ s
Original image View 1 View 2 View 3

Figure 7.13: Result of MVGen on an Escher image

In our last case study, we want to highlight the benefit of explicitly model-
ing the relevant subspace for each view, as done by MVGen. Knowing the rel-
evant attributes, enables us to reason about the views’ context and to explain
the clusters. Table 7.1 depicts for the liver disorders and diabetes data the de-
tected subspaces of each view. The number of clusters per view was chosen as
2. As shown for the liver disorders data, the two views/clusterings clearly differ
from each other (small rand index), and the views do not correspond to the full-
dimensional space, i.e., for each view some dimensions are irrelevant. For liver,
we observe disjoint views. The first view clearly describes the relation between
alcohol consumption and the mean corpuscular volume, while the second view
represents the weaker indicators. On the diabetes data, the detected views match
well to some factors causing diabetes of type 1 or type 2 (adult-onset diabetes;
also caused by high blood glucose levels during pregnancy). Here, a further inter-
esting observation can be made: Besides finding dissimilar groupings in subspace
projections, we now also get slightly overlapping views. For example, the dimen-
sion ’body mass index’ is relevant for both clusters in view 1 and for a single
cluster in view 2. This result also confirms our hypothesis that the clusters of the
same view may slightly differ in their relevant dimensions.

Liver Disorders Data (rand index between views: 0.25)

V1 | mean corpuscular volume, number of half-pint equivalents of alcoholic bever-
ages drunk per day

V2 | alkaline phosphotase, alamine aminotransferase, aspartate aminotransferase,
gamma-glutamyl transpeptidase

=

Diabetes Data (rand index between views: 0.51)

V1 | body mass index, diabetes pedigree function, triceps skin fold thickness, 2-
hour serum insulin; (for one cluster: plasma glucose concentration)

age, diastolic blood pressure, # of times pregnant, plasma glucose concentra-
tion; (for one cluster: body mass index)

Vi

N

Table 7.1: Subspace views on liver and diabetes

108 Multi-View Clustering Using Mixture Models in Subspace Projections

Overall, our experiments show that MVGen successfully detects the multi-
view clustering structure on a variety of real world datasets.

7.6 Conclusion

Our MVGen approach successfully exploits the model-based clustering paradigm
for the multi-view context. Our Bayesian framework accounts for the challenges
of multiple, overlapping, and competing mixture distributions for differing views.
Since each view reflects specific characteristics of the data, each mixture com-
ponent is defined in an individual subspace. The comparison of MVGen with
competing approaches demonstrated the strengths of detecting views in multiple
subspace projections. Our MVGen approach was able to discover multiple clus-
tering views for various real world datasets. Especially the explicit modeling of
the views’ relevant subspaces has proven to be very valuable for interpreting the
final clustering results.

Semi-Supervised Multi-View Clustering
in Subspace Projections

8.1 Introduction 110
8.2 Bayesian Framework L L. 112
8.3 The SMVC Algorithm 116
8.3.1 \Variational Inference 116
8.3.2 Update Equations 119
8.3.3 Complexity and Summary 123
84 RelatedWork 123
8.5 Experimental Analysis 125
8.5.1 Evaluation on SyntheticData. 125
8.5.2 EvaluationonReal WorldData. 128
8.6 Conclusion 132

FTEN users are able to provide partial prior information regarding the clus-
O tering structure. Semi-supervised clustering techniques have shown to sub-
stantially improve clustering results for single-view clustering by integrating such
prior knowledge into the clustering process. In this chapter, we want to present
an approach to join the research areas of multi-view and semi-supervised cluster-
ing to integrate prior knowledge in the process of detecting multiple clusterings.

We propose a Bayesian framework modeling multiple clusterings of the data
by multiple mixture distributions, each responsible for an individual set of rele-
vant dimensions. In addition, our model is able to handle prior knowledge in the
form of instance-level constraints indicating which objects should or should not
be grouped together. Since a priori the assignment of constraints to specific views
is not necessarily known, our technique automatically determines their member-
ship. For efficient learning, we propose the algorithm SMVC using variational
Bayesian methods. With experiments on various real-world data, we demon-
strate SMVC'’s potential to detect multiple clustering views and its capability to
improve the result by exploiting prior knowledge.

109

110 Semi-Supervised Multi-View Clustering in Subspace Projections

8.1 Introduction

Semi-supervised clustering techniques [BDWO8] try to incorporate the user’s pref-
erences by exploiting prior knowledge during the clustering process. For tradi-
tional single-view clustering, these techniques have shown to substantially in-
crease the clustering results. Motivated by the success of both research areas,
multi-view clustering and semi-supervised clustering, we propose a semi-super-
vised multi-view clustering technique. Our goal is to exploit user provided prior
knowledge to enhance the results of multiple, alternative clusterings.

For semi-supervised clustering, it is crucial that the user can provide super-
vision in an easy and understandable way. While cluster level constraints, such
as the clusters’ sizes, positions, or distributions, usually require an abstract un-
derstanding of the desired clustering structure, instance level constraints, which,
e.g., indicate partial information about cluster memberships, are much more in-
tuitive. A popular way of modeling such prior information is via equivalence
constraints, which indicate for pairs of instances whether they should belong
to the same cluster (must-link constraint) or to different clusters (cannot-link
constraint). Even though lacking a full understanding of the clustering structure,
this allows the user to partly specify her intuition by indicating for selected object
pairs their pairwise cluster relation. Since in many cases these user constraints ex-
press a belief rather than certainty, we use the concept of soft constraints, where
mistakes (e.g., disagreeing constraints) are possible and a complete compliance
of the clustering result with all constraints is not enforced.

The transfer of the semi-supervised clustering principle to the multi-view case
poses a severe challenge, particularly regarding the multi-faceted nature of the
data. One user might, for example, see the similarity of two movies based on their
cast, while another user might foreground their dissimilarity based on differing
genres. It, therefore, might remain unclear to which view specific constraints
refer to. In particular, when naively assigning all constraints to a single view, a
large proportion of the constraints might be conflicting such that even a relax-
ation to soft constraints will not be sufficient anymore. Therefore, the challenge
with semi-supervised multi-view clustering is not only to optimize the cluster-
ing such that constraints are optimally fulfilled but also to learn the affiliation of
constraints to views.

It has to be highlighted that some of the sequentially working multi-view clus-
tering approaches (which iteratively find one clustering at a time) (e.g., [BBO6,

8.1. Introduction 111

Figure 8.1: Example for the multi-view scenario

QDO09]) already work based on instance level constraints to incorporate the feed-
back of rejected prior clusterings via cannot-link constraints. These constraints,
however, are used for a different goal: they guide the clustering method to find a
single new clustering. Thus, all constraints need to refer to this single clustering,
and none of the previous clusterings can be affected by these constraints. In con-
trast, our aim is to incorporate instance level constraints which might improve the
overall result of all clusterings. It becomes apparent, that in this case, we have to
rely on a clustering technique which detects all clusterings/views simultaneously.

Only few approaches for simultaneous multi-view clustering have been pro-
posed (e.g., [NDJ10, JMD08, GMFS09, GFS12]). Here, the inevitable connec-
tion of multi-view clustering and subspace clustering has been observed first
[NDJ10, GMFS09, GFS12], which later also influenced sequentially working ap-
proaches like [DB13b]. Subspace clustering assumes each cluster to have an
individual set of relevant data attributes, which corresponds well with the moti-
vation of multi-view clustering that different views on the data (i.e., considering
different characteristics of the data) might reveal different clustering structures.

In this work, we join the three paradigms of simultaneous multi-view cluster-
ing, subspace clustering, and constraint-based clustering. We present a Bayesian
framework that models the different clustering views via several multivariate
mixture distributions located in subspace projections (cf. Figure 8.1). Each ob-
ject follows multiple components, each in a different mixture model, each defin-
ing a distribution only for a certain view (i.e., subspace) of the data, and each
representing a different role of the object. We integrate the optimal fulfillment of
user provided instance level constraints into the Bayesian learning process, where
we tackle the challenge of automatically learning the responsibility of views for
specific constraints. Our contributions are:

112 Semi-Supervised Multi-View Clustering in Subspace Projections

9
Am non-informative

b
Trm,k Z

L keK) meM
L meM) ieN)

foe] | @
o [Y
Koo B

X<

G0 | L+ i.d

|+

BAleWIOJUI-UOU

0
B.o|
deD

KeK deD

meM TN

Figure 8.2: Graphical model of our method. Rectangles denote discrete random
variables, circles continuous random variables, and black dots (deterministic)
hyperparameters of the prior distributions.

e Multiple clusterings: We propose a sound Bayesian model which represents
multiple clusterings via individual mixture models, each representing a dis-
tinct view.

e Semi-supervision: Our model incorporates prior knowledge in form of (soft)
must-link and cannot-link instance level constraints. Our method automat-
ically learns the assignment of these constraints to specific views if their
responsibility is not explicitly specified.

e Algorithm design: We present an efficient algorithm based on the principle
of variational inference for learning our model.

e Effectiveness: We analyze the effectiveness of our method and show its po-
tential to increase the clustering quality by using prior knowledge.

8.2 Bayesian Framework

In this section, we introduce a Bayesian framework for semi-supervised multi-
view clustering. An overview of our framework is given by the graphical model
depicted in Fig. 8.2. While this section introduces the generative process of our
model, we describe in Section 8.3 how to learn the model’s parameters given
a set of observations. Following convention, we do not distinguish between a
random variable « and its realization « = x if it is clear from the context. As an
abbreviation, we denote sets of random variables with the index x, e.g., y. 4 is the
set of random variables {y; .} with 7 in the corresponding index domain, and Y’
is an abbreviation for the set v, ..

8.2. Bayesian Framework 113

The number of objects is denoted with N, the number of dimensions with
D, the number of clusters/components with K, and the number of alternative
views/clusterings with M. We write k € K, as a shortcut for k € {1,..., K}.

Multiple Mixture Models The general idea of our method is to represent the
multiple clusterings of the data by multiple mixture models, each located in a
different subspace projection (cf. Fig. 8.1). In this work, we focus on Gaussian
mixture models; extensions to other distributions are straightforward. Following
standard principles, each of the M mixture models is based on K components,
where each of these components is associated with a mean and a covariance/-
precision matrix. To reduce the number of parameters to be estimated, we focus
on diagonal precision matrices. Thus, for a Bayesian treatment, we introduce the
random variables
(Bmgesds Tmged) ~ NG(fta, ka, Qg Sd) (8.1)

where i, 1 4 is the mean of component £ in dimensions d for clustering m, and
Tin k. the corresponding precision. We select the normal-gamma distribution N'G
as a prior since it represents the variables’ conjugate prior. The hyperparameters
denoted by % can be used to control the mixture models’ components if some
prior knowledge is available. Per default, we choose least informative priors by
selecting 7y, &g — 0 and setting ji4/3, to be the sample mean/sum of squared
deviations in dimension d.

Besides the components parameters, each mixture model is associated with
a corresponding random variable representing the mixture weights. Obviously,
since we want to find multiple different clusterings, these weights can be differ-
ent for each view. We use the random variable

Tm ~ Dir(X\) (8.2)
where 7, is the weight of component & in clustering m. Due to conjugate
properties, we use a Dirichlet distribution as its prior. Again, in our study, we use
a non-informative prior by selecting A = 1 since a priori no knowledge about the
cluster sizes is given.

Integrating Subspaces To detect the data’s multiple views, we refer to the prin-
ciple of subspace clustering. Our goal is to assign each mixture model to a specific
subspace projection, which it describes well. Since the relevant dimensions of the
mixtures are a priori not known, we learn them with our method. Therefore, we
introduce the random variable

v ~ Categorical (Ty) (8.3)

114 Semi-Supervised Multi-View Clustering in Subspace Projections

to indicate which of the M clusterings is responsible for a specific dimension
d. The vector 7% € [0...1]M (with > 74, = 1) can be used to give some prior
knowledge which dimension belongs to which view. Again, we use a constant
non-informative prior, i.e., 7, = 1/M.

Knowing about the subspaces as well as the mixture models’ parameters, we
are now able to generate observations which show multiple clustering structures:
We denote with z,,; the random variable indicating to which cluster an object 4
belongs to in clustering m, i.e.,

Zm,i ~ Categorical(T,,) (8.4)

Note that for each view m, the object might follow a different cluster, i.e., z,,; #
zm; 18 possible. Thus, in each view the object might be grouped together with
different objects. This idea is illustrated in Figure 8.1: the grouping on the left
differs from the one on the right. Given z,,,, the attribute value of object ¢ in
dimension d is drawn according to

Tid ~ Nt e.ds Ty;}kﬁd) withm =v; and k = z,,; (8.5)

That is, we use the clustering m which is responsible for dimensions d and the
corresponding component £ the object belongs to in this view.

Integrating User Constraints So far, our model corresponds to a completely
unsupervised technique for finding multiple clusterings. As a major advance-
ment, we now integrate user provided prior-knowledge. As discussed, we aim
at supporting the concept of instance level constraints. More precisely, we sup-
port the idea of soft constraints between pairs of objects that indicate whether
the objects should or should not be grouped together. We selected this type of
semi-supervision since it reflects an intuitive understanding of clustering and is
easy to specify for the user.

The user can provide a constraint between the objects i and j via a weight
w; ;. If the weight is positive, the user indicates that there should exist a cluster-
ing where the objects are grouped together. If the weight is negative, the user
indicates that there should exist a clustering where 7 and j are not grouped to-
gether. Different magnitudes of the weights can be used to indicate the different
importance or relevance of the constraints.

At this point, it is crucial to keep in mind that we are interested in finding
multiple, alternative clusterings: A constraint between ¢ and j means that there

8.2. Bayesian Framework 115

exists a view where the constraint is fulfilled. We do not require that 7 and j are
grouped together in all views, which actually would contradict the fundamental
assumption for multi-view scenarios that clusterings of different views differ and
contain alternative knowledge. Forcing constraints to be valid for all views would
be too restrictive. Furthermore, we argue that the user is generally not aware of
the details of all possible groupings. Thus, the user constraints should not be
able to restrict views that the user does not yet understand. Accordingly, for
each constraint, we are interested in finding (at least) one clustering fulfilling
this constraint.

Resulting from this principle, another challenge of our method becomes ap-
parent: we have to determine the clustering which is responsible for a specific
constraint. In the following, we show how to model all these aspects.

As mentioned, the constraints are modeled via weights. In our model, we
represent them via a symmetric matrix 1V of size N x N, where entries with
weight zero indicate no prior knowledge about the corresponding pairs of objects.
In practice, we can use a sparse representation of the matrix which only encodes
the given constraints and allows for an efficient processing. Interesting to note
is that the (observed) matrix 1V appears in our grapical model as one of the root
nodes (cf. Fig. 8.2), and not as a leaf like X. As shown, the weights influence the
grouping Z of the objects.

Additionally, we introduce the categorical random variables c¢;; (due to the
symmetry of the weights, we only need to consider i < j). These variables indi-
cate which view is responsible for a specific constraint. That is, we have

Cij ~ Categorical(ﬁ(i'j)) (8.6)
where 109 € [0..1]M with 3, _,, hi) = 1. The user can use (/) to express
some further prior knowledge about the constraint between object i and j. If the
user, for example, knows that a set of constraints should most likely belong to
one view, the h vectors can be selected accordingly. Per default, we assume that
no knowledge about the assignment of constraints to views is known, i.e., we use
R = 1/M.

Given W and C, how can we use their values to influence the clustering
structure of the data? Our idea is to add a bias to the probability distribution
of the z, ;. The probability of generating a clustering that matches the con-
straints should be higher than the probability of a clustering which violates the
constraints. Particularly, this results in a dependency between the variables z,, .

116 Semi-Supervised Multi-View Clustering in Subspace Projections

which is guided by the constraints. We define

N N N
p(zvn,* | ﬁ:m: VV’ O) X Hﬂ'm,zmi . H H ewz’j.&(zm’i’zMJ) (87)
i=1 i1 j>i
cij=m

Here, (2, 2m,;) denotes the Kronecker delta, which evaluates to 1 if both ob-
jects are located in the same cluster (in view m), and 0 otherwise. Please note
that Equation 8.7 is the joint distribution for all z,, ..

The first part of the equation corresponds to the mixture weights as used in
standard mixture models. If all w;; = 0, Equation 8.4 and 8.7 are equivalent.
The second part models the bias to specific groupings: As one can see, if w; ; is
positive and the objects are located in the same cluster, the probability of selecting
this grouping increases. Accordingly, if w; ; is negative, one would decrease the
probability of clusterings where 7 and j are grouped together. A similar principle
was used in [LLO4, BBM04b] for single-view clustering.

Important to mention is that the second part of the equation incorporates the
automatic assignment of constraints to views. The constraint between i and j
adds a bias to the clustering structure in view ¢; ; = m only. In accordance to our
discussion above, the other views are not affected.

Given the new definition for the distribution of Z, the actual observations are,
as before, generated according to Equation 8.5. Overall, our model combines the
principle of multiple clusterings in subspace projections with the paradigm of
semi-supervised clustering and automatically assigns constraints to their respon-
sible views.

8.3 The SMVC Algorithm

While the previous section has focused on the model’s generative process, we
now present our learning technique. That is, given a set of observations X and
a set of constraints W, we infer the model’s parameters. Our method is called
SMVC (Semi-Supervised Multi-View Clustering).

8.3.1 Variational Inference

The general inference problem we have to solve is to determine the distribution
p(Y|X, W), where Y={V, Z, C, 7, u,7} is the set of all latent variables. Based

8.3. The SMVC Algorithm 117

on this distribution, we can, e.g., pick the realizations of the latent variables
leading to the highest likelihood given the data. Since computing p(Y|X, W)
is intractable, we compute an approximation based on the principle of varia-
tional inference [Bis06]: we approximate p(Y'|X, W) by a tractable family of
parametrized distributions ¢(Y|V). The parameters U are the free variational
parameters. These parameters are optimized such that the best approximation
between ¢ and p is obtained. Technically, one minimizes the Kullback-Leibler di-
vergence between ¢ and p by optimizing W. Using Jensen’s inequality, minimizing
the KL divergence is equivalent to maximizing the following lower bound on the
log marginal likelihood [Bis06]:

LX,W;0) =E,[Inp(X,W,Y)] — E;[lng(Y|T)] (8.8)
where E,[.| denotes the expectation w.r.t. the ¢ distribution.

Following primarily the idea of mean field approximation, we assume the
function ¢ to factorize in

o1 69) = av1) = [T o) [T T o)

m i

. H H qs Ci,j . H Q4 7Tm . H H H q5(l’/m,k’,d7 Tm,k,d)
d

i g>i m m k

As we will later see, assuming the above factorization, the optimal variational
distributions have the form

¢1(vg) = Categorical(vq| dan, ..., Panrr)
G2(2mi) = Categorical(Zpm; | Ymits o Ui k)
qs3(cij) = Categorical(cij| &y i)
1(n) = Dir(ms| S
(Mm kds Tm.k d) Ng(,um,k,m Tm,k.,d \

o kds Fomesds Qtmds Bmoesd)

where ¥ = {¢,¢,¢&, X, fi, 7, &, B} are the variational parameters to be optimized.
Note that each distribution has its own variational parameters [Bis06]. Thus, e.g.,
the functions ¢, (v,) and ¢; (va), are not necessarily identical. This extra degree of
freedom allows to find a good approximation between ¢ and p. As discussed in
Section 8.2, for ¢, j, i.e., the function ¢3;, we only need to consider pairs i, j with

w; # 0.

118 Semi-Supervised Multi-View Clustering in Subspace Projections

For the variational distributions, the following holds:

Eq[[zm,i = k]] = 'L/}m,i,k' Eq [[Ci,j = m]] = éi,j,m Eqﬂvd = mﬂ = ¢d,m

E,[mmi] = 7;\"1[]6] E,[log Tmi] = ¥(Am[k]) — z/)(szj\ [i])
qltm,k] — { X R q m,k] — % m m
Zi[\:] Amli] i=1
- - a
Eq[ﬂm,k,d] = Hm,k,d Eq[ﬂm,k,d . Tm‘k.,d} = Hm,k,d " E
&))
Eq[/rm,k,d} = ?]Eq[log Tm,k,d] = w(a) - IOg(sﬁ)
f
1 a
E ; S = o2 - =
q[/“tm,k,d T JC»d] /%m,k,d + Mm,k,d B

General Processing Scheme We use an iterative coordinate ascent method to
maximize Equation 8.8 w.r.t. the parameters ¥ (the update equations follow in
Section 8.3.2). The processing scheme is as follows:

1 while not converged do

2 fori,je N:j>iAw;;#0doupdate¢; ;. Eq.8.10
3 for d € D do update ¢ Eq. 8.11

4 for m € M,i € N do update), ; . Eq. 8.12

5 fori € N,m € M do update Xon Eq. 8.13

6 form e M,k € K,d € D do ~ Eq. 8.14

7 update iy, ks Km k,ds Qm,k,d> B, k,d

Note that due to the properties of variational inference [Bis06], it is guar-
anteed that the method converges. In practice, we assume convergence if the
change in the lower bound on the marginal likelihood is below 0.01. Addition-
ally, to avoid the problem of local minima, we enhance the processing scheme by
gradually increasing the importance of the constraints. That is, starting with low
weights, we linearly increase the values w; ; until they reach the user specified
scores. This way, the constraints do not force the undeveloped clustering in mis-
leading directions but the constraints’ influence increases gradually to guide the
clustering as it evolves. For initializing our method, we exploit the same principle
as described in [GFS12]. The random variable C/g¢s is initialized randomly based
on its prior distribution.

8.3. The SMVC Algorithm 119

8.3.2 Update Equations

We briefly present the update equations required for the coordinate ascent method.
We primarily follow the principle of [Bis06]: The optimal distribution for ¢, (B)
can be determined by

Ing;(B) = Epp[lnp(X,Y,W)] +C (8.9)

Here, the constant C absorbs all terms which are independent of B and, thus, do
not affected the optimal distribution of ¢,. E, 5[.] denotes the expectation w.r.t.
the distribution ¢ taken over all variables Y except of B. To avoid cluttering the
notation, we simply write E, in the following (it is clear from the context which
variable is excluded).

Updating the constraint responsibility Let [.] denote the Iverson bracket. We
can rewrite Equation 8.7 as follows

N K N N K
i=1 k=1 i=1 j>i k=1

This formulation makes it easier to derive the following results. Accordingly, we
can rewrite the remaining equations.

The optimal distribution for ¢3(c, ;) (with a < b) can be obtained via Equation
8.9. Removing all terms which are independent of ¢,;, and using the above refor-
mulation, we get

log ¢3(cap = y)
= E,[log (P(c; ;)P (leOW))]

+
Eq[log 7 ! 7]+ Eallog H <H =5 I

C

m=1 \i=1 k=1 i=1 j>i
. H eWii [zm.i=k][zm,;=Fk] HC1,J:7'LH)] +C
k=1
M K
= Eq[z Z]og eﬂ?a,b[[zm,a:k]] [2m,b=k] [[Ca,b:"L]]} +C
m=1 k=1
K

= Wy Z E lzy0 = k] - Ezyp = k] +C
k=1

120 Semi-Supervised Multi-View Clustering in Subspace Projections

Since ¢,;, has a finite domain, the distribution ¢; is a categorical distribution.
Renaming the variables, the optimal hyperparameters of the distribution gs(c; ;)
are given by

gi,j,m o Gl‘p(w” lec(:l Eq[zm,i=k]-Eq [[z,,,,,J:k]]) (810)

where)~ & ., = 1. The occurring expectations can be replaced by the known
expectations of the variational distributions. Intuitively, the parameter ¢, ;,, re-
flects the probability of assigning the constraint between i and j to the view m.

Updating the views Computing Equation 8.9 for ¢;(vs) and removing all terms
which are independent of v, leads to

Ingi(vg=1y)
=]Eq[lOg (P(I*,dhjdﬁ Z, K, T)P(vd))] +C

- — vg=m][zm.i=k 1
= E,[log H H HN(ILd‘ﬂm,k,dv T =Ml =R 4 B [log ﬂ] +C

m=1i=1 k=1
N K
=E, [lOgH HN(xi,dl/ly,k,dy Tyj}i,d)ﬂzl’“:k]]} +C
i=1 k=1
N K
=2 Y Bz =K fly.kodi) +C
i=1 k=1

Here, we used the definition

f(m kv d7 Z) = Eq [N(mi-,d‘ﬂm,k,% Trﬁ}k,d)]

2
Tykd —(Fid"Hykd) Tykd
=E,[log ykd, 5]
2

— IEI qllo Tykd] + E o[= (@ia = g 1,) Ty]

1
=3 (Eq[log 7y al — 3 4 - Bylrymal +2 - Tia - Bglityra - Tyndl

- E, [/‘;,k,d Ty kd] — Egllog 27])

Thus, ¢ is a categorical distribution and the optimal hyperparameters for
¢1(vq) are given by

(rﬁd,m X eg;pZ;‘\il Zl?:l Eq[2m,i=k]-f (m,k,d.i) (81 1)

where >~ &g = 1.

8.3. The SMVC Algorithm 121

Updating the cluster indicator The same principle can be applied for the clus-

ter indicator variable. We obtain:

log ¢3(2m,a = y)
= Eyllog (P(va |V, Z, pu,) P(Z|7,C, W) + C

D K
=]Eq[l()g H H N(xa,d Hm k.d> T’;,lk’d)[[vd=m]] Ilzm’"=k]]]+
d=1k=1
K N N N
E,[log H H ka;;":kﬂ H H eWiilom =] lzm, ;=Hller j=ml}

k=1i=1 i=1j>i

D
= Z El[H?«’d = m]]]El) [IOg N(Ia,dlllm‘y,dv T,:L_ly7d)] +]Eq [IOg W'm,y]""

N N
SO wiEylzmi = yl Bglzm,; = yl Bglei; = m] +C

i=1 j>i

D
= ZEQ[[Ud :m]] : f(m7y7d7a)+

N
Eq[log mm.y] + Z Wa,j Bqlzm,; = y] Bqlca; =m] +C
i#a

Here, we exploit the symmetry of w;; and the definition of f as given above.
Note again, that we do not actually need to sum over all j # a when using a
sparse encoding of the matrix . It is sufficient to iterate over those j for which
a constraint with « is given. Similar as before, the optimal hyperparameters for
¢2(2m,;) are given by

D
Ui X exp(z Eyfva =m] - f(m,k,d,i)
d=1
N
+ E,[log mm] + Z Wi j Bylzm; = k] Eglei; = mﬂ) (8.12)
I

with Zk wm,i,k =1.

122 Semi-Supervised Multi-View Clustering in Subspace Projections

Updating the mixing weights The mixing weights are continuous. Since we
selected a conjugate prior in our model, it follows:

log ¢4 (7m)
= Ey[log (P(mm) P(2m,

N+c¢

I(AK N K S N
—]Eq[l()g<r((:\)K) H mk>]+E [log<HH L ”” k]]H
k= i=1k=1 i=1
N K
TIIT e [[Zm,1:k]][[Zm,]:k]][[z;ly]:m]]>} L

J>i k=1

N K
()‘ - I)Eq[bgﬂm kl+ Z ZEq Zmgi = k [IOg 7Tm,k] +C
i=1 k=1

((A —1)+ Z Eql2m,; = k]]) E,[log Ty k] +C

i=1

M»E‘M»

=~
I

1

As seen, the optimal distribution for ¢4 is a Dirichlet distribution, where the

hyperparameters are given by

N
Anlk] = A+ Eylzm = k] (8.13)

i=1

Updating the mixture components Updating the mean and precision of each
mixture component follows the standard principle of variational inference in a
conjugate setting.

Let w1, = Zi]\i 1 Eq[#m,: = k] be the unnormalized weight of a cluster and Z,,, .4 =
1
U,k

the expectation w.r.t. ¢). Using conjugacy, it follows that the optimal hyperpa-

Zf; 1 %idBq[2m,i = k] its weighted mean in dimension d (when considering

rameters of the distribution g5 are given by

~ kg Ha + Um im,k,d ~ o ~ e U,k
Hom ke, d = o Rmk,d = Rd + Uk U kd = Qd =+
Fd + U,k 2

(8.14)

N

_ .1
Bma = Ba + 5 Z (Tig — Tmpa)? +

i=1

o - o \2
Rd Um, k (Im,k‘d - /Ld)
Ka + U, e 2

8.4. Related Work 123

8.3.3 Complexity and Summary

Inspecting the individual update equations, it becomes apparent that each iter-
ation of our algorithm runs in time O(M - N - K - (D + W)), where W denotes
the number of constraints. Thus, we obtain a linear complexity in all important
parameters.

Overall, our method efficiently computes an approximation of the posterior
distribution p(Y'|X, W) which shows us the multiple clustering structures, their
relevant subspaces, and the assignment of constraints to views.

8.4 Related Work

Our approach is related to four main paradigms in the field of cluster analysis:
subspace clustering, multi-view clustering, model-based clustering, and semi-
supervised clustering. Since the first three paradigms have already been dis-
cussed in Chapter 2 and in the related work section of Chapter 7, we will mainly
focus on the most related approaches presented in the field of semi-supervised
clustering. Table 8.1 shows an overview of the related work and their corre-
sponding properties.

In Chapter 2, we differentiated between two paradigms for multi-view clus-
tering: iterative and simultaneous approaches. Approaches that iteratively de-
termine a new clustering based on previous results can partially be categorized
as semi-supervised, since previous clustering solutions serve as guidance for the
discovery of new clustering structures. However, the constraints affect only the
solution of the single, next clustering and, thus, already detected solutions can-
not benefit from them. Furthermore, all approaches presented for the iterative
paradigm utilizing space transformations [CFD07, DQO8, QD09, DB13b] suffer
from distortions of the original space, which hinder an intuitive interpretation of
the clustering result.

Semi-supervised clustering The detection and usefulness of multiple cluster-
ing solutions strongly depends on the user’s preferences. For different users and
applications, different clusterings might prove to be useful. Semi-supervised clus-
tering [BDWO08] provides a possibility to accommodate these preferences as ad-
ditional information or domain knowledge into the clustering process. For tra-
ditional single view, full-space clustering (e.g., k-Means) a popular solution is to
use instance level constraints: the objective function is extended by penalizing

124 Semi-Supervised Multi-View Clustering in Subspace Projections

& A
.y S TN
SO
DR c,‘JQ{QJQ S O‘Q
S ST LA
A S
Subspace clustering - v v - -
Multi-view clustering
—» iterative v - - o fixed
< simultaneous v* v vV - -
Semi-supervised clust. - v - v fixed
Our method v v v v learned

Table 8.1: Overview of related paradigms

violated constraints [BBMO04a] or one learns a distance metric that best repre-
sents the constraints [BBMO04c]. For model-based clustering, few extensions for
equivalence constraints exist. [SBHHWO03] introduces a closed form EM based on
the transitive closure of must-link constraints and proposes a Markov network for
handling cannot-link constraints. Since it neither can incorporate both constraint
types simultaneously nor cope with conflicting constraints, [LL04, BBM04b] pro-
pose to integrate negative and positive pairwise constraints as priors into Gaus-
sian mixture models, which allows for modeling soft as well as hard constraints.
These approaches have shown to substantially improve the clustering result in the
single view case. Since in the multi-view case, we are uncertain which constraints
refer to which view, these existing solutions cannot easily be transferred.

Methods such as [Agg04] use supervision (e.g., human interaction) to en-
hance the clustering in a single given subspace. In contrast, we exploit supervi-
sion to enhance the clustering result across all views simultaneously. Works such
as [GBS12a] combine subspace clustering with graph clustering. The underlying
graph might be regarded as a certain type of supervision. These methods do not
focus on finding alternative groupings in the attribute space.

Overall, none of the existing approaches is able to incorporate prior informa-
tion for a multi-view clustering solution, where constraints may refer to different
clustering views. Our new statistical model handles different clustering views in
different attribute subspaces and learns responsibilities of views for the provided
equivalence constraints.

8.5. Experimental Analysis 125

8.5 Experimental Analysis

Setup We compare SMVC with representatives from all three paradigms: multi-
view clustering, subspace clustering, and semi-supervised clustering. For multi-
view clustering, we choose the four approaches Multi-View 1 and Multi-View 2
proposed in [CFDO7], the Alternative Clustering method proposed in [QD09],
and our MVGen [GFS12] approach. These approaches best reflect the demands
for multi-view clustering as discussed in Section 8.4. As subspace clustering
approaches, we choose the partitioning approach Proclus and StatPC, which al-
lows for overlapping clusters. Furthermore, we compare against the two semi-
supervised approaches PCKMeans [BBMO04a] and MPCKMeans [BBM04c], both
using instance level constraints.

For case studies on real world data, we use the CMUFaces, Iris, and Wine
data (all from the UCI repository [FA10]), and drawn stick figures. Synthetic
data containing multiple views is generated based on our generative model. The
default dataset contains 2 disjoint views, each with 4 clusters, 20 dimensions,
and 5000 objects.

Each method is provided with the number m,,,, of views and the number £,,,,.
of clusters per view. If the algorithm does not allow for setting these parameters,
we choose the default parameter setting.

Runtime is measured on 4GHz AMD FX-8350 CPU with 16 GB main memory.
Quality is assessed based on the E4SC measure (cf. Chapter 13), which is a
symmetric and subspace aware variant of the popular F1 measure. Since most of
the competing approaches do not determine axis parallel subspaces, we refrain
from evaluating the subspaces and just concentrate on the object groupings (for
clarity, we rename the measure to 'E4FC’). For all quality experiments, we average
the results over ten executions.

8.5.1 Evaluation on Synthetic Data

Varying number of constraints We start our evaluation by examining the in-
fluence of a varying number of constraints in Figure 8.3. Here, we tested three
different variants of the semi-supervised clustering approaches: We either used
only must-link constraints (SMVC-ML), only cannot-link constraints (SMVC-CL),
or a combination of 50% from both (SMVC-Comb). Note that in this experiment,
we randomly generated constraints based on the ground truth clusters known for
synthetic data. These constraints might not help to improve the clustering and,

126 Semi-Supervised Multi-View Clustering in Subspace Projections

SMVC: —SMVC ——SsMVC-ML —O—SMVC-CL —x—SMVC-Comb

multi-view: ——MVGen ====Alt. Clus. — - Multi-View 1 — =Multi-View 2

subspace: = eeeeee Proclus ~ eeeees StatPC

semi-supervised: === PCKMeans —{1-PCKMeans-ML —O - PCKMeans-CL —A - PCKMeans-Comb

===-MPCKMeans =1{F-MPCKMeans-ML =O--MPCKMeans-CL = 7r - MPCKMeans-Comb

0.8 ® 08 |

o o

e e

2 506 -

£ Z

S S04 -

T T

o
)

o

0% 0.04% 0.08% 0.12% 0.16% 0.20% 1 2 3 4 5 6 7 8 9 10

constraints (% of all possible constraints) number of views
Figure 8.3: Quality vs. # constraints Figure 8.4: Quality vs. # views

thus, represent only very weak supervision. In practice, the user might provide
better constraints, e.g., via the principles of active learning [BBM04a], where the
object pairs to be constrained are actively selected based on their impact for the
clustering quality. This way, usually fewer constraints are required to achieve a
better clustering result than with random constraints.

Figure 8.3 shows the results for an increasing number of constraints: Here,
we generated a challenging dataset with clusters having a large variance to study
the benefit of semi-supervision. Most approaches fail to identify a meaningful
clustering structure for this difficult clustering scenario. SMVC is not only the ap-
proach showing the best clustering results without the help of prior knowledge,
it is also the only approach able to improve its clustering based on additional
constraints. For the two other semi-supervised approaches PCKMeans and MPCK-
Means, we even observe a decreasing clustering quality with increasing amount
of prior knowledge! This indicates, that they cannot deal with the potentially
disagreeing constraints of the two views.

We furthermore can see the varying influence of the different constraints
(100% must-link constraints, 100% cannot-link constraints, or 50% must-link +
50% cannot-link). The higher the proportion of must-link constraints, the higher
is the influence. The reason is that cannot-link constraints a priori have a higher
possibility to be fulfilled than must-link constraints (for m views, each with %
clusters, the probability to fulfill a cannot-link constraint is m - (’;), whereas for
must-link constraints it is m - k). Therefore, we will focus on must-link constraints
in the following experiments.

8.5. Experimental Analysis 127

multi-view: —SMVC ——— MVGen ====Alt. Clus. — - Multi-View 1 = =Multi-View 2
subspace: = eeeees Proclus ~ eeeees StatPC semi-supervised: === PCKMeans = ==-MPCKMeans
10,000.0 10,000.0

10000 R 1,000.0

$ 100.0 - " $ 100.0

K e 2

2 10.0 = ¢ 10.0

£ T E

=1 s

§ 1.0 ! § 1.0

0.1 0.1 T
1 2 4 10 20 30 40 50
database size (x 1000) dimensionality

Figure 8.5: Runtime vs. database size ~ Figure 8.6: Runtime vs. # dimensions

10,000.0
1,000.0

1
=
o
o
S
)
4|
\

100 Y
1.0 "/

7
01 ==z

runtime [sec

0.0 T T T |

1 5 25 125 625
number of constraints (x 100)

Figure 8.7: Runtime vs. # constraints

Another interesting observation, also stated in [Dav12], is that more con-
straints do not necessarily result in a better quality. They can even decrease
the clustering quality. In Figure 8.3, we can observe this slightly for cannot-link
constraints (SMVC-CL); other experiments showed similar effects for must-link
constraints. We kindly refer to [Dav12] for a discussion about these effects. Un-
fortunately, the principles discussed in [Dav12] for wisely choosing the set of
constraints are not easily transferable to our scenario.

Varying number of views In the next experiment, we study the potential of
using SMVC as an unsupervised technique in a multi-view setting. In Figure 8.4,
we vary the number of hidden views in the data. The dimensionality of each view
is five, i.e., with increasing number of views, the data’s overall dimensionality
increases as well. As depicted, SMVC and MVGen are the only approaches able
to detect the clustering structure in the case of a large number of views. Their
clustering quality is very high and proves to be robust against a varying number
of views. The competing methods behave differently: while for single-view data
the quality is relatively high, their quality heavily decreases with an increasing
number of views.

128 Semi-Supervised Multi-View Clustering in Subspace Projections

Scalability Even though the focus for SMVC lies on its clustering quality, we
briefly analyze its efficiency. As already discussed in Section 8.3, SMVC scales
linearly in the number of objects (Figure 8.5), linearly in the number of dimen-
sions (Figure 8.6), and linearly in the number of constraints (Figure 8.7). Please
note the logarithmic scaling of both axes in all three plots. For a varying database
size (Figure 8.5), all algorithms show an increasing runtime. The approaches
that represent adaptations of the simple and efficient KMeans algorithm (which
also includes Proclus) clearly show the lowest runtimes. The runtime of SMVC
is comparable to the other algorithms analyzing subspace projections (MVGen,
StatPC) and even manages to outperform them thanks to the efficient variational
inference techniques.

The benefit of SMVC becomes apparent for a high data dimensionality (Figure
8.6). Due to the exponential number of subspaces, most subspace clustering
algorithms (e.g., StatPC) suffer from a tremendously increasing runtime for an
increasing number of dimensions. Also MVGen cannot compete with our SMVC
due to the complex model selection process. Contrarily, for SMVC, we observe
a moderate increase in runtime. This enables us to apply SMVC also on high-
dimensional data, as we will see in the experiments on real world data.

Figure 8.7 shows the runtimes of the semi-supervised methods for a varying
number of constraints. Here, it is hard to verify the linear runtime of SMVC be-
cause constraints support the clustering procedure and, thus, help decreasing the
number of iterations. For a small number of constraints, the two KMeans-based
approaches can maintain a low runtime. For an increasing number of constraints,
however, their runtime eventually even meets the one of SMVC. Of course, such
a high number of constraints might not be realistic for most applications.

8.5.2 Evaluation on Real World Data

For evaluation on real world data, we use different evaluation principles, all fo-
cusing on the multi-view aspect.

Case study A In Figures 8.8 and 8.9, we extend the datasets Iris and Wine to
data containing multiple views: for this, we randomly concatenate the attribute
values of different objects up to five times to a higher dimensional space. The
original datasets have dimensionalities of 4 and 13, respectively, while the ex-
tension to multi-view data leads to dimensionalities up to 5 - 4 = 20 (Iris) and
5-13 = 65 (Wine).

8.5. Experimental Analysis 129

SMVC: —SMVC ~———SMVC-100ML ~——— SMVC-500ML
multi-view: ——MVGen ====-Alt. Clus. — - Multi-View 1 — = Multi-View 2
subspace: = eeeeee Proclus ~ eeeees StatPC
semi-supervised: === PCKMeans PCKMeans-100ML —— =PCKMeans-500ML
====-MPCKMeans ===-MPCKMeans-100ML ===-MPCKMeans-500ML
1 Jb 1 4
0.8 0.8
g g
206 S06
Z z
% 0.4 g 0.4

o
N

o

2 3 4 5 1 2 3 4 5
views (# of concatenations of the Iris data set) # views (# of concatenations of the Wine data set)

Figure 8.8: Quality on iris data Figure 8.9: Quality on wine data

For just one view, the quality of some competing approaches is similar to
the one of SMVC. However, for an increasing number of views the clustering
quality for almost all competing approaches decreases. Only MVGen and SMVC
are nearly not affected by an increasing number of views but detect the different
object groupings even for multiple views.

To study the effects of semi-supervision, we additionally provided for both
datasets 100 and 500 constraints. For just a single view, SMVC is able to improve
the cluster quality. On iris, for example, the quality increases from 0.94 over
0.97 to 1.0. The full potential of our approach, however, can bee seen in the
case of multiple views: While it is still able to benefit from prior knowledge, the
clustering quality of the competing approaches dramatically decreases.

It is noticeable, that with increasing number of views, the constraints seem to
have less positive effect on the result of SMVC. This phenomenon can, however,
easily be explained by the fact that the constraints have to be distributed among
the views, i.e., the proportion of prior knowledge decreases with increasing num-
ber of views.

Summarizing, the results for real world data are consistent with the observa-
tions made for the synthetic data.

Case study B For our next study, we created a dataset consisting of 900 20x20
images of ’dancing stick figures’. This dataset allows an easy visual interpretation
of the clustering results. We drew 9 basic stick figures (Figure 8.10(a)) and
built 900 samples by randomly introducing noise. Since the subspace clustering
and single-view clustering approaches have proven to be not applicable for the
multi-view scenario, we applied only the multi-view clustering approaches in this
experiment. We provide this dataset on our website.

130 Semi-Supervised Multi-View Clustering in Subspace Projections

MEGIFEGIRGS

(a) Samples of the stick figures data

[Algorithm [[E4FC |
SMVC 0 constraints 0.700
K SMVC 100 constraints 1

MVGen 0.760

Alt. Clus. 0.585

~ Multi-View 1 0.735

E Multi-View 2 0.781
& 2

(

b) SMVC with 0 constraints (¢) SMVC with 100 constraints (4 lMultl view algorithm
results

Figure 8.10: Evaluation of multi-view algorithms on the stick figures dataset

Although this data does not seem to be very complex, all approaches are chal-
lenged in identifying two meaningful views as shown by their clustering results
(cf. Figure 8.10(d)). Even the initial result of our SMVC approach is not convinc-
ing as it produces the clustering depicted in Figure 8.10(b), which is very similar
to those of the other approaches. The illustrated images correspond to the means
of each detected cluster. In contrast, if we provide SMVC with 100 must-link
constraints, it is able to perfectly identify the two clustering views as depicted in
Figure 8.10(c). These two views differentiate between the stick figures’ top po-
sition (view 1) and their leg position (view 2). Please note that we only choose
100 random constraints out of the 269,100 (=2 - (3 - (320))) possible constraints.
By exploiting this small amount of prior knowledge, our SMVC approach clearly
outperforms all competing methods.

Case study C To show that the findings of the stick figures data also apply to
more complex scenarios, we next analyze the clustering result of all multi-view
approaches on the CMUFace data. This data is interesting for multi-view cluster-
ing since it consists of images taken from persons showing varying characteristics
such as their facial expressions (neutral, happy, sad, angry), head positions (left,
right, straight, up), and eye states (open, sunglasses). As also done in [DB10b],
we randomly select 3 persons with all their images and applied PCA retaining at
least 90% of the data’s variance as a pre-processing.

The result of SMVC without prior knowledge for two views each with three
clusters is illustrated in Figure 8.11(a). The images correspond, again, to the
clusters’ means. By visual inspection, we can easily identify that the first view
partitions the images based on the 3 different persons. The second view, in con-
trast, cannot be explained easily.

8.5. Experimental Analysis 131

View 1

View 2

(a) SMVC result with O constraints (b) SMVC with 100 constraints

‘ Algorithm | E4FC |

SMVC 0 constraints 0.691
SMVC 100 constraints || 0.780

MVGen 0.720
Alt. Clus. 0.667
Multi-View 1 0.623
Multi-View 2 0.666

(c) Multi-view algorithm results

Figure 8.11: Evaluation of multi-view clustering algorithms on the faces data

If we provide 100 constraints in order to find one view for partitioning w.r.t.
the persons and another view to partition w.r.t. the head position (in total 2,592
(=3 (322) +4. (224)) possible constraints), SMVC gets the result depicted in Figure
8.11(b). Here, we can easily identify the different head positions straight, side
(left and right), and up (note that we have four head positions but only search
for 3 clusters). Using the original labels provided by the dataset as ground truth,
i.e., the groupings based on the different persons and the grouping based on
different head positions, we obtain the clustering results of Figure 8.11(c). We
can see, that the unsupervised multi-view approaches all yield similar clustering
qualities. They were only able to identify the first view. For SMVC, we can
observe a noticeable quality improvement if we integrate prior knowledge into
the clustering process.

Overall, our experiments show that SMVC is able to detect the multi-view
clustering structure on a variety of datasets. It successfully solves the challenge
to learn the assignment of user constraints to views such that it is able to improve
its clustering results based on this prior knowledge.

132 Semi-Supervised Multi-View Clustering in Subspace Projections

8.6 Conclusion

We have presented the semi-supervised clustering method SMVC, that detects
multiple clustering solutions in subspace projections and that exploits prior knowl-
edge by incorporating instance level constraints. Our method is based on a
sound Bayesian framework which models the data via multiple mixture distri-
butions. The model uses the instance level constraints to guide the clustering of
objects, and it automatically determines which views are responsible for which
constraints. For learning the clustering, we use the principle of variational infer-
ence. Our experimental study has shown the high potential of SMVC to detect
multiple clustering views and its capability to use the prior knowledge for im-
proving the clustering results.

Part IV

Constraint-Based Alternative
Clustering in Subspace Projections

We seldom think of what we have, but always of what we lack.
ARTHUR SCHOPENAHAUER

133

Introduction to Alternative Clustering

9.1 Motivation and Challenges

While the previous Part III focused on the simultaneous generation of diverse
clusterings, this part will present approaches which iteratively detect new clus-
terings. Thereby, the knowledge of previous clusterings is used to steer the al-
gorithm towards a novel clustering that is highly deviating from the previous
clusterings but, at the same time, is of comparable quality. Since not only the
data, but also the information of previous clusterings is used, approaches of this
category are related to the research area of semi-supervised clustering, where
additional information is supposed to guide the clustering process.

If the number of views, i.e., clustering alternatives, is known in advance, al-
gorithms that search for all clusterings simultaneously have the advantage that
the information of all clusterings can help to refine the alternatives. As a con-
sequence all clusterings are influencing each other. In contrast, for algorithms
that iteratively generate new clusterings, clustering results are only influenced
by those alternatives that are detected before, but not vice versa. Especially for
the semi-supervised approach SMVC (Chapter 8), a simultaneous detection of all
alternatives is necessary in order to assign constraints to the correct view.

The advantage of algorithms that iteratively produce clustering alternatives
is that the number of views does not necessarily have to be known in advance.
Contrarily, the presented simultaneously working approaches require the number
of views as an input, which clearly limits their application since for most data the
number of hidden views is likely unknown and part of the knowledge discovery
process. Furthermore, for many scenarios a certain knowledge base where ex-
perts have labeled or categorized the data is already available. Instead of a good
algorithm for rediscovering this known information, the question whether alter-
native categorizations are possible is of greater interest. To answer this question
it is necessary to incorporate the given knowledge into the clustering process.

135

136

Introduction to Alternative Clustering

In the following, we will discuss the main challenges regarding approaches

that iteratively generate alternative clusterings:

Multiple alternatives: Since for some applications with complex data it is
possible that more than just two alternative clusterings are hidden, it should
not only be possible to generate more than one alternative for one given
clustering but also to incorporate more than one clustering as previous
knowledge into the clustering process.

Global diversity: For each iteration, the newly generated clustering should
provide new insights into the data and, therefore, should deviate from all
previously found clusterings.

Quality: For each iteration, the newly generated clustering should provide
valuable information and therefore should be of high clustering quality.
Termination: Since for most data it is unknown how many alternative clus-
terings are hidden in the data, we need a certain indication factor identify-
ing whether further alternative clusterings of high quality can be expected
in the data.

Error tolerance: Although previously detected clusterings are supposed to
guide and influence the clustering process, it is desirable that mistakes of
previous clusterings do not prevent the detection of valuable alternatives in
subsequent iterations.

Semantic interpretability: The discovered alternatives should not represent
random object regroupings but should allow for a semantic interpretation
by domain experts.

The last criterion of semantic interpretability complements the demand for a

high quality of the clustering alternatives. Depending on the applied quality cri-

terion, the presented solutions may seem arbitrary and are lacking the possibility

for a semantic reasoning of experts.

We want to tackle all these challenges by a framework for alternative cluster-

ing that is based on instance level must-link constraints and searches for alter-

natives in subspace projections. Since pairwise instance level constraints can be

modeled as a graph structure, the framework is oriented towards graph cluster-

ing methods. Before we present further details of the framework, we will discuss

the existing related work in the area of iterative alternative clustering methods

W.I.t.

the above proposed challenges.

9.2. Related Work 137

9.2 Related Work

In Chapter 2, the different approaches for alternative clustering have been in-
troduced in detail. In this section, we want to present a categorization of those
alternative clustering approaches that iteratively produce new clusterings based
on the solutions discovered before. We will not go into algorithmic details but in-
stead discuss the advantages and disadvantages w.r.t. the six challenges described
in the previous section.

Approaches working in the original data space: The first approaches pro-
posed in the literature focus on finding just one alternative to a given clustering
[BB0O6, CT02, GHO3, GHO04, GHO5, DB10a, BBD10]. They usually try to realize
a trade-off between the clustering quality of the new clustering and its dissim-
ilarity to the already known clustering. As a naive extension towards multiple
alternatives, one could use the newly generated alternative as input for the same
algorithm and hope to find a second alternative. But since there is no mechanism
enforcing the dissimilarity to the originally provided clustering, it is very likely
that the second alternative is highly similar to this first clustering. Thus, these
approaches do not fulfill the first challenge of finding multiple alternative clus-
terings. A more promising extension of this trade-off based principle has been
presented in later publications [GVG05, VE10, DB13a], where the combined dis-
similarity of the new clustering to all previous clusterings is integrated into the
objective function.

The fundamental problem of all approaches that are restricted to search for
alternatives only in the original data space is that the number of meaningful al-
ternatives is very limited. If just this single data representation is considered,
the fixed proximity of the objects does not allow for a good diversity of the gen-
erated alternatives. Furthermore, these approaches have to rely on a trade-off
between clustering quality and dissimilarity of the alternatives, which implies
that the quality of the generated clusterings decreases with each iteration. Ap-
proaches of this first category are lacking a proper indication factor for stopping
the search for further alternatives. Depending on the trade-off parameters, the
only possible indication that no further alternatives are to be expected is an un-
satisfying quality of the last found alternative or the high similarity of the last
found alternative to one of the previous clusterings. Misled clusterings as input
do not pose a severe problem to these algorithms since producing a high quality
clustering that deviates from a bad one is not conflicting. Thus, the mentioned

138 Introduction to Alternative Clustering

approaches of this category are error tolerant. The last criterion is satisfied as
well. Since all clusters are discovered in the original data space, experts should
be able to discover the semantic interpretation w.r.t. the data distribution in the
original space if the clustering quality is not degenerated.

In summary, approaches working only in the full-space, so far, only manage
to properly tackle three of the introduced six challenges (cf. Table 9.1).

Approaches working with orthogonal space transformations: Approaches of
this second category do not search just in the original data space but iteratively
transform and cluster the data [DQ08, DB13b, QD09, CFD07]. The transforma-
tion of the data, which is supposed to highlight novel structures, is learned based
on the clustering structure of a previous result. For the transformed data space
any clustering method can be applied to achieve an alternative clustering.

Although some of the methods are presented mainly for just one alternative
clustering [DQO08, QD09], they can naively be extended by proceeding each it-
eration based on the transformed data and the new clustering of the previous
iteration like [CFDO7]. However, this way, previous clusterings are only taken
into account implicitly and it cannot be guaranteed that the next transformation
will not produce a data space similar to one that has already been clustered.
Only [DB13b] presents two approaches where multiple clusterings can directly
be taken into account for the data transformation.

While techniques of the first category explicitly model the dissimilarity of new
alternatives to the given clusterings in their objective function, approaches of the
second category only implicitly account for the dissimilarity through transforming
the data space ”orthogonally” to the given clustering structure. The dissimilarity
of the clustering in the transformed space to the previous clustering is, however,
not ensured. And especially for the approaches [DQ08, QD09, CFD07], a global
diversity of all clusterings is uncertain since only one clustering can be taken into
account for the transformation.

The quality of the alternative clusterings is solely realized by the applied clus-
tering technique in the transformed space. The transformation itself is focused
on generating a data space where a new clustering structure can be expected.

All algorithms lack a useful termination indicator. Similar to the first cate-
gory’s approaches, the generation of alternatives that are too similar to already
discovered solutions is a sign for termination. A bad quality of a discovered al-
ternative, however, is not a good indicator, since the next transformation might
produce a space revealing a high quality clustering. Except for one of the ap-

9.3. Idea of a Graph-Based Framework 139

Q
S S5 L
&) }
N N S ¢ F&
S 2 & F & S
TF Fs ¥ SE S
SN g & SN S
Ty «F I & ey
original data space -/v° -/o o —/o v 4
transformed data space -/v - o -/ =/o -

Table 9.1: Overview of how well the approaches of two presented categories treat
the six challenges

proaches in [CFDO7], which reduces the space’s dimensionality in each iteration,
all approaches need to be terminated by the user.

Since in [CFDO7] each transformation is applied to the transformed space of
the previous iterations, a misleading transformation based on a bad clustering
cannot be reversed later. Thus, mistakes also affect later iterations for this ap-
proach and might prevent the discovery of valuable alternatives. Contrarily, for
both approaches of [DB13b], the transformation is applied to the original space
in each iteration and depends on the input clusterings. Although it has not been
examined, a bad input clustering might negatively influence the transformation
w.r.t. the resulting clustering.

Although the approaches try to avoid a complete distortion of the original
data by focusing on linear data transformations, the interpretability of the results
in the transformed spaces is often limited and becomes especially difficult after
multiple iterations of transformations.

Summarizing the above discussion, also approaches that search in space trans-
formations for new clustering alternatives do not account for at least three of the
proposed six challenges (cf. Table 9.1).

9.3 Idea of a Graph-Based Framework

In this part, we want to present a general framework that tackles all six challenges
to iteratively generate alternative clusterings. The new framework will not fall
into one of the categories discussed before, since it neither is restricted to the
original space, nor is it transforming the data space just based on the known
clusterings. As for the previously presented approaches OSCLU, ASCLU, MVGen,
and SMVC, the key idea for this framework is, again, to search for alternative
clusterings in subspace projections. For the reason of a better interpretability,

140 Introduction to Alternative Clustering

we will, again, focus on axis-parallel subspaces instead of general linear space
transformations as do the approaches in [DQ08, DB13b, QD09, CFD07]. Unlike
the approaches [DQO08, DB13b, QD09, CFD07], we do not want to determine a
space transformation solely based on the given clusterings but will also take into
account the clustering structure in this new space. Furthermore, we will not rely
just on this new data representation for finding a new clustering but will actively
incorporate the previous clustering as constraints into the clustering process.

Problem Definition 9.1 Alternative Subspace Clustering Problem

Given a set of objects O = {0y, ..., 0,} € RIP™ with Dim being a set of dimensions
and a set of known clusterings Known = {C,...,Cy}, find a subspace clustering
C C 29 x 2P that is dissimilar to all clusterings C; € Known and whose clusters
have a high clustering quality in their respective subspaces.

Technically, we realize this by integrating each given clustering C; € Known
through pairwise instance level constraints into the clustering. While the COALA
approach [BB06] focuses on cannot-link constraints, which define that two ob-
jects should not be grouped together again in the next clusterings, we will use
must-link, or in our case of soft constraints more precisely named as should-link
constraints, which define that two objects should be assigned to the same cluster:

Definition 9.1 Should-Link Constraints

Given a set of objects O and a set of known clusterings Known = {Ci,...,C,}, with
clusterings C; = {C1, ..., Cy, } and clusters C; C O, the set of should-link constraints
is defined as the set ShouldLinks C O x O where

(0i,05) € ShouldLinks <= VC € Known : -3C € C:0,€ C Noj € C

Only object pairs that have not yet been grouped together in one of the known
clusterings are assigned towards the set of should-link constraints. The idea is
then to find a new clustering of high quality that fulfills as many should-link
constraints as possible. Such a clustering will group many objects together that
have not yet been grouped together.

Problem Definition 9.2 Alternative Subspace Clustering based on Should-Links
Given a set of objects O = {oy,...,0,} C RIP"™ with Dim being a set of dimen-
sions and a set of should-links ShouldLinks C O x O, find a subspace cluster-
ing C C 29 x 2P that fulfills as many should-link constraints as possible, i.e.,
Uo.s)ec (O x O N ShouldLinks)| should be high, and whose clusters have a high
clustering quality in their respective subspaces.

9.3. Idea of a Graph-Based Framework 141

Such pairwise constraints for objects can be interpreted as graph structure. By
enriching this relational graph information with the vector information of the
original data, e.g., by vertex labels, we can formulate the alternative clustering
problem as graph clustering task, which allows to use approaches of the popular
and wide research area of graph mining.

Definition 9.2 Vertex Labeled Graph

Given a set of objects O = {oy,...,0,} and a set of should-links ShouldLinks C
O x O, with o; € RP™ and Dim being a set of dimensions with |Dim| € Ny,
then the according vertex labeled graph is defined as a triple G = (V, E, fy) with a
set of n vertices V- = {vy,...,v,}, a set of edges E C M :=V x V, and a function
fv : V= RIP™l such that:

(vi,v;) € E <= (0;,05) € ShouldLinks N Yv, €V : fy(v) = o

In order to find a good alternative clustering of the data O w.r.t. the given clus-
terings Known, the task would be to find a grouping of the graph’s vertices
which achieves a good quality regarding the vertices’ label structure and at the
same time achieves a good grouping regarding the graph structure. While for
the first requirement, we are focusing on traditional subspace clustering criteria,
the second requirement will be tackled by traditional graph clustering methods.
Although there is no universal definition of what constitutes a good clustering
of vertices within one graph, the unifying idea is that the vertices should be
densely connected within each group but only sparsely connected between dif-
ferent groups. Like the other approaches for alternative clustering, we will con-
centrate on the problem of finding partitioning clusterings in the following.

Problem Definition 9.3 Alternative Graph-Based Subspace Clustering

Given a vertex labeled graph G = (V, E, fv) that is inferred from a set of objects
O = {o1,...,0,} € RIP"™ (Dim being the set of dimensions) and a set of given
clusterings Known = {Ci,...,Cy} via the according should-link constraints, then
find a clustering C C 2V x 2P™ such that

e Cisapartitioning of V: VC;,C; € C,C; # C : VinVy ={} AN UgeeVi=V

o All clusters C; € C are of high quality w.rt. their feature labels and their
respective subspaces in the feature space

e For all clusters C; € C the grouped vertices are densely connected to each other
but only weakly connected to the vertices of other clusters C; € C with C; # C;

142 Introduction to Alternative Clustering

d1| d2 | 93] da
o1| 8| 2]1]|8]~
2| 8|1 282
03| 1] 7|6 a|c
4| o7 03],
| 7812y
6| 2| 1] 5] 9|2
7| 23|59

data and known clustering

transformation
into a graph
3 Q«()

Clustering2=
{({01, 02, 04, 05}, {d1, d3}),
({03, 06, 07}, {d1, d3})}

Clustering3=
{({01, 02, 06, 07}, {d2, d4}),
({03, 04, 05}, {d2, d4})}

application of a
subspace graph
clustering

application of a
subspace graph
clustering
method

transformation
into a graph

transformation
into a graph

Figure 9.1: Workflow for alternative clustering with graph clustering techniques

Given the above Problem Definition 9.3, the plausible idea for the iterative
computation of alternative clusterings is to transform all available information
of existing clusterings into a vertex labeled graph structure and to apply a graph
clustering method that is able to partition the vertices such that the both remain-
ing requirements are fulfilled: the vertices of each partition are densely connected
as well as similar w.r.t. a subset of their feature values. After each iteration the
edges of the graph are updated w.r.t. the newly discovered clustering, such that
the graph becomes more sparse after each iteration.

The general workflow of this iterative framework is depicted in the example
of Fig. 9.1. Here, we start with just one given clustering which is transformed into
the relational information of the graph through should-link constraints. Since we
only know one clustering in advance, the graph is very densely connected and
provides good potential to find good alternative clusterings. On this graph, we
apply a graph clustering technique that is able to detect densely connected groups
of vertices which show similar feature values for a subset of attributes. Although
in this simple toy example the subspaces for the two discovered clusters of the
new clustering are identical, our framework is not restricted to find a global
relevant subspace for each clustering, which distinguishes it further from the
approaches [DQO08, DB13b, QD09, CFD07]. Given the new subspace clustering
result provided by the graph partitioning algorithm, we update the graph infor-

9.3. Idea of a Graph-Based Framework 143

Figure 9.2: Example of transforming multi-dimensional vertex labels into multi-
dimensional edge weights

mation accordingly and delete all edges (should-links) between objects that now
have been clustered together: {(o1,04), (01,05), (02,04), (02, 05), (03, 06), (03, 07) }.
Based on the resulting new graph, we can iteratively repeat this procedure un-
til either the graph is too sparse to guarantee a certain minimal density of the
groups or the graph has been decomposed into too many connected components
to find a desired number of clusters. In our example of Fig. 9.1, after the second
iteration, the pruning of the new clustering information already leads to a graph
without any edges. No edges indicate that all object pairs have already been
clustered together in one of the previous clusterings and we can, thus, not expect
to find a highly deviating grouping anymore. Of course, this just holds for our
toy example due to the small example size and we cannot expect such an ideal
termination indicator of a graph without any edges to be the usual case.

Comparing the two generated alternative clusterings and the a priori given
clustering, we see that they indeed cluster different sets of objects/vertices. In
their respective graphs the vertices of each cluster are densely connected, already
indicating the novel clustering structure. But not only the object groupings dif-
fer, also the relevant subspaces of the found alternative clusterings are different,
providing new insights into the data. While the first alternative’s cluster show a
good clustering quality for features d; and ds, the graph structure in the second
iteration steered the graph clustering algorithm towards the relevant features d,
and d, to find a clustering of high quality. Looking for an alternative clustering
structure in a fixed data space is not very promising. Instead different feature
subspaces can highlight different clustering solutions. Furthermore, the discov-
ered relevant features highlight the main characteristics for this clustering and
present a first indication for the semantic background of the object groupings.

Although the described framework and the workflow depicted in Fig. 9.1 just
mention graphs with vertex labels, algorithms partitioning graphs with multi-
dimensional edge weights can also be applied. In this case, the feature informa-
tion of the objects that are represented by vertices just have to be transformed

144 Introduction to Alternative Clustering

into similarity vectors for the edges. A simple example for such a transformation
is depicted in Fig. 9.2, where for two vertices v;,v; and each feature dimen-
sion d, a similarity value is calculated as the difference of the maximal possi-
ble distance and the absolute difference of the two vertices in that dimension:
similarity(v, vj, d) = distyme, — |vi[d] — v;[d]| where we set dist,,., = 8.

We will now revisit the six main challenges for approaches that iteratively
generate alternative clusterings and discuss how our new graph-based framework
helps to tackle each of them:

e Multiple alternatives: Through the flexible graph encoding of should-link
constraints, our framework is able to integrate the knowledge of multiple
given clusterings simultaneously. Furthermore, the iterative framework al-
lows to generate multiple alternative clusterings, each based on the knowl-
edge of the previously discovered solutions.

e Global diversity: Since the clustered vertices should exhibit a high density
regarding the edges, which corresponds to a high degree of fulfillment of
the should-link constraints, the newly generated clustering deviates to all
previously found clusterings as it groups new objects together.

e Quality: The graph clustering method is a crucial part of this framework
as it accounts for the quality of the novel clusterings. Besides the connect-
edness of the clusters’ vertices, it also has to ensure their similarity in a
subspace of the feature space. The latter of the two requirements ensures a
high quality of the newly generated alternative clusterings.

e Termination: The sparsity of the generated graph, as well as the number of
connected components provide a good indication regarding the potential of
finding novel clustering structures.

e Error tolerance: Unlike other approaches, our framework does not itera-
tively transform the original data such that the original information is ir-
reversibly lost. Instead, each iteration will have the feature information of
the original data together with previous clusterings as side information. If
bad clusterings are used to prune the graph’s edges, i.e., remove should-
link constraints, this can even help steering the clustering towards good
solutions instead. If some of the removed edges belong to high-quality al-
ternatives, this will still not prevent their discovery since graph clustering
techniques usually do not enforce clustered vertices to be completely con-
nected (i.e., they do not solely find cliques). The absence of just a few of
the valuable edges will still allow to discover proper alternative clusterings.

9.3. Idea of a Graph-Based Framework 145

e Semantic interpretability: Since, unlike the other transformation based ap-
proaches, we work with axis-parallel subspaces, a semantic interpretation
of the results is much more intuitive. For each generated alternative, each
cluster is associated with a relevant subspace. This specific set of relevant
characteristics for each cluster eases a semantic reasoning.

Key to the presented framework is a properly working graph clustering al-
gorithm, that is able to discover densely connected groups and accounts for the
principles of subspace clustering for either multi-dimensional vertex labels or
multi-dimensional edge weights. The clustering quality as well as the global di-
versity of the generated alternative clusterings only depends on the performance
of the chosen graph clustering method (besides the data itself, of course). Only
if the clusters are densely connected and show a good similarity structure w.r.t.
a certain feature subset, we have found a valuable alternative. Therefore, the
choice of the graph clustering method is very crucial.

With the increasing popularity and availability of network data over the last
years, its analysis has gained much attention. The task of graph clustering, or
more precisely the task of community detection in networks [For10], is an estab-
lished mining technique and of interest for the analysis of, e.g., social networks,
sensor networks, gene interaction networks, or the web. As for traditional clus-
tering of vector data, the goal of graph clustering is to group similar vertices.
Among the multiple cluster definitions, the common objective is to group the
vertices into clusters such that many edges are present within each cluster but
relatively few edges are existent between different clusters.

Unfortunately, the literature provides only few graph clustering approaches
that are able to deal with multi-dimensional vertex labels or with multi-dimen-
sional edge weights. Consequentially, approaches that additionally tackle the
problems arising with the curse of dimensionality and noisy feature values are
very rare. Existing partitioning approaches in this research area do not satis-
fyingly account for the problems of locally relevant feature subspaces for each
cluster but instead deal only with global subspace selections or deal with the sub-
space determination only as post-processing step. In the following two chapters,
we will present two approaches that extend the most widely used graph cluster-
ing paradigms for the problem of subspace clustering. Chapter 10 will present
an according extension for spectral graph-clustering methods which is based on
vertex labels. In Chapter 11, we will extend the famous modularity measure that
is based on edge weights for the subspace clustering problem.

10

Spectral Subspace Clustering for
Graphs with Feature Vectors

10.1 Introductiont 148
10.2 RelatedWork L 149
103 Modelo 150
10.3.1 Preliminaries 151
10.3.2 Normalized Cut in Subspace Projections 152
10.3.3 Subspace Unbiased Cut Computation 155
10.3.4 Complexity Analysis. 158
104 Algorithm L o 160
10.5 Experimental Analysis 162
10.6 Conclusion 170

HE goal of clustering graphs annotated with feature vectors is to detect groups
T of vertices that are densely connected in the graph as well as similar with
respect to their feature values. While early approaches treated all dimensions of
the feature space as equally important, more advanced techniques consider the
varying relevance of dimensions for different groups.

In this chapter, we propose a novel clustering method for graphs with fea-
ture vectors based on the principle of spectral clustering. Following the idea of
subspace clustering, our method detects for each cluster an individual set of rel-
evant features. Since spectral clustering is based on the eigendecomposition of
the affinity matrix, which strongly depends on the choice of features, our method
simultaneously learns the grouping of vertices and the affinity matrix. To tackle
the fundamental challenge of comparing the clustering structures for different
feature subsets, we define an objective function that is unbiased regarding the
number of relevant features.

147

148 Spectral Subspace Clustering for Graphs with Feature Vectors

10.1 Introduction

Besides vector data, which has been the focus in the previous parts, numerous ap-
plications nowadays produce or handle network data. Besides the mere structural
information, in many domains additional information for the objects is available
(e.g., feature vectors annotated to the vertices). In a social network, for example,
the relationships among people as well as the peoples’ individual characteristics
such as age or occupation might be given. Analyzing these enriched graphs re-
garding feature similarity and regarding the topological structure is challenging,
though, has shown to substantially enhance clustering results [GEG*08].

The particular difficulty of clustering graphs with multi-dimensional vertex
labels is that some of the features associated to the vertices might not sup-
port or even disagree with the clustering structure. It can be very futile to ac-
commodate, e.g., private music preferences instead of research preferences to
the relations shown in a co-authorship network. As known for traditional clus-
tering of vector data, the presence of such noisy or irrelevant features is able
to mask the underlying clustering structure. A solution to this problem is the
paradigm of subspace clustering, which identifies clusters only in the context
of their relevant features. Among the graph clustering methods that analyze
graphs with feature vectors, only few methods account for irrelevant features
[ZCY09, MCREQ9, GFBS10, GBS12b]. Their experimental evaluation has shown
that not necessarily all features exhibit a (strong) correlation with the network
and that these non-correlating features can hinder a proper cluster identification.

We want to propose a novel clustering method that tackles the problem of
irrelevant attributes when clustering graphs with feature vectors by extending the
principle of spectral clustering. Spectral clustering is an established and widely
used clustering paradigm which exploits the ideas of (normalized) graph cuts
[VLO7]. It is applicable to graph data as well as to vector data and it enjoys
great popularity. For spectral clustering, the k eigenvectors belonging to the &
smallest eigenvalues of, e.g., the graph’s normalized Laplacian matrix, are used
as cluster indicator vectors. In this setting the feature similarity is incorporated
into the clustering process only as a weighting for the graph’s edges. Bach and
Jordan [BJ06] already pointed out that the choice of the similarity metric strongly
influences the success of spectral clustering. They furthermore have shown that
the presence of irrelevant features has a high impact on the clustering quality and
propose a (semi-)supervised approach to learn a proper affinity matrix.

10.2. Related Work 149

In this chapter, we present a fully unsupervised approach for clustering graphs
with feature vectors. Our method simultaneously learns the grouping of vertices
as well as the affinity matrix used for spectral clustering. We follow the principle
of subspace clustering where for each cluster an individual set of features might
be relevant. Thus, our method excludes locally irrelevant features which hinder
the detection of good clustering results. Our contributions are:

e We present a solution for adapting spectral clustering to the problem of
subspace clustering for graphs with feature vectors; for each cluster an in-
dividual set of relevant features is detected.

e We propose a computation of our objective function that is unbiased w.r.t.
the number of relevant features.

e We develop the algorithm SSCG solving our objective.

10.2 Related Work

Our approach tackles the problem of clustering graph/network data in the mean-
ing of finding homogeneous sets of vertices in a single graph. This task is also
known as community detection or dense subgraph mining [Sch07].

Clustering of graphs with feature vectors. While traditional graph clus-
tering methods concentrate on the mere structural information, there is an in-
creasing interest in also considering complementary information such as vertex
features for the clustering process. Methods for this problem setting generally
assume that clusters based on the graph’s topology and the vertices’ features are
more meaningful than those based only on one characteristic. In [HZZ1.02] struc-
tural and feature information are combined into a single distance function, which
can result in clusters with neither a specific graph nor a specific feature pattern.
[GEG'08] tackles the problem from the features’ perspective and extends the k-
center problem by an internal connectedness constraint. The authors of [STMO07]
use a normalized modularity definition where vertex features are incorporated as
edge weights. For minimizing this normalized modularity, a spectral clustering
approach is used. [ATMF12] introduces a parameter-free approach following the
idea of compression. All the above approaches are not able to detect similar-
ities among vertices based on feature subsets. Similar to traditional full-space
clustering for vector data, their results will become less meaningful in the pres-
ence of irrelevant features. For vector data, the paradigm of subspace clustering
[KKZ09, AWYT99] reduces the influence of irrelevant features.

150 Spectral Subspace Clustering for Graphs with Feature Vectors

Varying relevance of dimensions. Only few approaches were presented
so far that attend to the clustering of feature labeled graphs from a subspace
clustering perspective. The approach of [ZCY09] defines a feature augmented
graph, where features are modeled as additional vertices linked to those orig-
inal vertices showing the specific value for this feature. For the final clusters,
objects are only pairwise similar and no particular relevant features can be de-
fined for each cluster. The principle of detecting an individual subset of rel-
evant dimensions for each cluster is, so far, only fulfilled by three approaches
[MCREOQ9, GFBS10, GBS12b]. While [MCRE09, GFBS10] exploit the notion of
quasi-cliques, which poses strong restrictions regarding the clusters’ feature range
and their diameter, the method of [GBS12b] follows a density based cluster no-
tion for subgraphs as well as for the feature space. The work of [MCREOQ9] gen-
erates a huge amount of overlapping clusters leading to high redundancy in the
clustering result. To control the level of redundancy, [GFBS10, GBS12b] propose
models for redundancy handling, introducing additional parameters the user has
to specify. Our approach based on spectral clustering determines a partitioning
of the vertices and, thus, does not suffer from redundancy.

Spectral clustering. Spectral clustering [vLO7] is suitable for vector data
[YHJ09, BJO6] and graph data [STMO7]. Even though the strong influence of
the affinity matrix on the clustering result has already been noted, so far, no
approach exists that considers the affinity matrix as part of the unsupervised
learning process. [BJ0O6] confirms the detrimental effect of irrelevant features
for spectral clustering. They provide a method for learning the affinity matrix
in a (semi-)supervised fashion. Besides assuming a given partition, [BJO6] de-
termines a global weighting of the features. As shown for vector data, it might
be the case that for different clusters different features prove to be irrelevant.
In such cases no feature subset will help to uncover all clusters, which makes
it desirable to find clusters with individual sets of relevant features. Our method
simultaneously learns the partition and the underlying affinity matrix, where one
important goal is to diminish the influence of irrelevant features for each partition
individually.

10.3 Model

In this section, we present our model to cluster feature labeled graphs in subspace
projections. The input for our method is a vertex labeled graph G = (V, F,) with

10.3. Model 151

vertices V = {1,..., N}, edges E C V x V, and a labeling function [: V — RP,
where Dim = {1,..., D} is the set of dimensions. We assume normalized feature
vectors in the range [0, 1] per dimension.

10.3.1 Preliminaries

Among the multitude of different cut definitions, we focus on the frequently used
normalized cut because of its strength in avoiding unbalanced cuts [SMO0O]. Intu-
itively, the goal of clustering based on normalized cuts is to find a K-partitioning
of the nodes that minimizes the inter-cluster connectivity while at the same time
maximizing the intra-cluster connectivity. For this purpose, let PN/ be the set of
all possible (complete and disjoint) K -way partitionings of the set V. It can be
represented by the set of binary matrices:

X
PVE = {A {0, 1}V KN ay =1y AVE:ag # ON}
k=1

where a;, is the k-th column of the binary matrix A, 1y is the vector containing
only entries equal to 1, and Oy contains only entries equal to 0. Each A €
PV-K represents one possible partitioning and each column vector a,, stands for
one specific group of this partitioning. This definition automatically ensures the
orthogonality of the vectors a,. We denote by V(a;) the vertices belonging to
group k.

Let W = (w,.)},_, be the adjacency matrix of a graph G. The cut-value
between two groups V'(a,) and V' (ay) is defined as:

Cutw(v(ak) V(ak’)) = Z Wy = ag - W - ay

ueV (ar),veV (ay)

The goal of the normalized cut problem is to find a partitioning A € PV:X that
minimizes the following function:

K T-W-(leak)

a;
nCutw(A) = z: - al' "W -1y
i ‘

k=1

(10.1)

The numerator calculates the sum of weights over outgoing edges of cluster k,
while the denominator calculates the sum of weights over internal and outgoing
edges of cluster k. Thus, the normalized cut trades off low inter-cluster connec-
tivity and high intra-clustering connectivity.

152 Spectral Subspace Clustering for Graphs with Feature Vectors

Since optimizing Equation 10.1 is intractable [SMO0O0], spectral clustering aims
at solving a relaxed problem. By substituting the binary-valued cluster indicator
vectors a;, with real-valued vectors, the above problem transforms into a tractable
eigenvector problem based on the normalized graph Laplacian L = I — D™'W.
Here, we use D = diag(dy,...,dy) with d,, = Z,{.V:l wy,,. The K-way partitioning
of the nodes can finally be obtained by determining the first K eigenvectors of
L, considering each of the N rows as a K-dimensional vector, and by clustering
them based on, e.g., k-means. We refer to [vL0O7] for more details.

Integrating feature vectors using kernels. Since for the normalized cut and
spectral clustering the data is represented by the matrix W, it is easy to incorpo-
rate additional aspects into the process of clustering. For example, by applying
a kernel transformation k(z,y) on the feature vectors, we can enrich W by the
similarity of these features:

Wy = k(x,y) - I((u,v) € E) (10.2)

where x = I(u) and y = I(v) are the feature vectors of vertices v and v, and I is
the indicator function.

In the following, we focus on radial basis function kernels (RBF kernels)
where the kernel value k(x,y) just depends on the norm of x — y, i.e., k(x,y) =
k(|[x — y||).} Furthermore, in our scenario, it is natural to restrict the considera-
tion to kernels having a non-negative derivative, i.e., %k(z) > 0 for x > 0. Thus,
increasing the ’dissimilarity’ between two feature vectors, decreases the kernel
value. These properties hold for a variety of kernels such as, e.g., the Gaussian,
Rational quadratic, or Exponential kernel [Gen02].

10.3.2 Normalized Cut in Subspace Projections

As mentioned in the introduction, one cannot expect to find clusters in the full
dimensional space but in subspace projections of the data. For example, the
graph depicted in Figure 10.1 exhibits no group of vertices being similar w.r.t.
all three dimensions. Thus, instead of considering the (unweighted) Euclidean
norm between two feature vectors, we use the weighted Euclidean norm

I = ylls = /x—y) diag®)x—y) st-s € {017 | > s,=1}

i=1

To simplify the notations, we will overload the function symbol k. It can either be a binary
function or an unary one. The actual use will be clear from the context.

10.3. Model 153

weightmatrix

,
Vll 79 0 4414 1 0 0 0 V2
14 0 1 14 0 0 0 ST |%

5 51 J14 1 014 0 0 o© 0
8 9) |1 14144 0 03014 o 0
0 0 0020141 |

0 0 0 02/14 0 14 S»= |/

%} 0.0 0 0 114 0 Y

Figure 10.1: Weight matrix for subspaces s; and s, belonging to partitioning
{{v1, v2, v3, 04}, {vs, v6, V7 }

Based on the subspace vector s, we can weight the importance of individual di-
mensions. Noisy or uninteresting dimensions can be excluded by choosing s; — 0.

Since we do not know a priori in which subspaces the clusters are located,
unlike most approaches, we cannot assume the matrix W to be a priori given or
static anymore. In our method, we simultaneously learn the matrix W as well as
the object grouping A.

Let s be a subspace vector, the matrix Wy = (,,,)Y,_, is defined by

W = k(||I1(w) = 1(v)|s) - I((u,v) € E) (10.3)

The matrix Wy represents the graph when projected to a single subspace. Con-
sequently, it corresponds to a global dimensionality reduction. We, however,
are interested in finding locally relevant subspaces: each cluster is associated
with an individual subspace. In our toy example of Figure 10.1, for the group
{v1, vg,v3,v,} features 1 and 2 are relevant, while for group {vs, v, v7} features 2
and 3 are interesting. Thus, instead of considering a single subspace vector s, we

DxK

are interested in finding a matrix S € [0, 1]”**, where each column represents a

(possibly different) subspace vector. Technically, it has to hold S € SP*¥ where

SPE = {S € [0, 1)K | Vk : ||si|1 = 1}

and s; denotes the k-th column of S.

Using individual subspaces introduces a further challenge. The weights be-
tween the vertices do not solely depend on S but they depend on A, too. What is
the weight between two vertices u and v? In the case that both nodes belong to
the k-th cluster, u, v € V(ay), it is clear that the weight is determined by (Wi,), ..
Though, how to handle the case where the nodes belong to different clusters? A
principled answer to this question can be given by exploiting the relation between
random walks and the normalized cut [MS01].

154 Spectral Subspace Clustering for Graphs with Feature Vectors

Considering the graph as a Markov Chain, the problem of minimizing the
normalized cut can be interpreted as finding a partitioning such that a random
walk (using the stationary distribution of the Markov Chain) stays long within the
same cluster and seldom moves between clusters. More technically, in [MS01]
the following is shown: Let Pr[A — B|A] denote the probability of the random
walk to transition from vertex set A to vertex set B in a single step given that the
walk starts in a vertex from A. Then, the normalized cut is equal to Zf:l Pr[Oy —
(V\Oy)|Ox] where Oy, denotes the vertices belonging to the k-th cluster.

The conditional probability in the equation above provides us with the answer
to our original question: Let be v € V(a;) and v € V(ay), the weight between
vertex u and v is (W,)., while the weight between v and v is (Ws,,)uu- One
has to condition on the subspace s; where the random walk starts. The effects
can be nicely observed for the weight matrix of Figure 10.1 (for simplicity, we
used k(z) = 1/x in the toy example). Here the i-th row contains the weights
based on the subspace of the cluster the vertex v; belongs to. Thus, in the fourth
row, for example, the subspace s; is used, while s, is used in the fifth. As a
consequence, inter-cluster edges (e.g., (vs,vs) and (vy, vg)) might have different
weights in different rows. Intuitively, when measuring the ’goodness’ of cluster
k, we project the whole graph to the subspace s, and analyze how well cluster &
is separated. From the k-th cluster’s point of view it does not matter how well it
is separated in other subspaces s .

Summarizing, given the subspace matrix S and the object groupings A, the
weight matrix is formalized as:

Definition 10.1 Subspace Dependent Weight Matrix
Let S € SP*X be a matrix representing K subspace vectors and A € PNX a K-way
partitioning. The subspace dependent weight matrix is defined as

K
WS,A = ZWsk o (ak . 1%)
k=1
where sy, (a.) is the k-th column of S (A), Wy, as defined in Equation 10.3, and o
is the Hadamard product.

By using the term ay, - 1%, we ensure that the whole graph is projected to the
subspace s; when considering the vertices V'(a;). Note that in general the weight
matrix Wg 4 might not be symmetric even if the underlying graph is undirected
(see Figure 10.1). However, assuming an undirected graph, the matrix shows a

10.3. Model 155

certain kind of (a)symmetry: each subblock of Wg induced by a single cluster
k, ie., each block a; - al, is symmetric. This follows since all objects of the
same cluster are projected to the same subspace. The asymmetry of Wy 4 is only
caused by edges connecting different clusters.

We are now ready to formalize our overall objective. Our goal is to find a
partitioning A and individual subspaces S such that the normalized cut based
on the matrix Wg is minimized. Thus, we aim at simultaneously optimizing
multiple objectives: a) we maximize the intra-cluster connectivity and the intra-
cluster similarity of the feature vectors w.r.t. the individually selected subspaces,
b) we minimize the inter-cluster connectivity and inter-cluster similarity of the
feature vectors in the corresponding subspaces.

Definition 10.2 Minimum Normalized Subspace Cut
Given the graph G = (V, E, 1) and the number of clusters K, the minimum normal-
ized subspace cut (MNSC) is the problem of finding S* € SP'X, A* € PN¥ such that

(A*,S*) = argmin {NSCut(A,S)}

AcPN.K 8esh.K

K
where NSCut(A,S) := Z

k=1

al - Wga-(1y —ay)
a{ . WS,A . 1N

10.3.3 Subspace Unbiased Cut Computation

When considering the unweighted Euclidean norm, the distance between objects
increases with increasing subspace dimensionality. Thus, comparing the cut-
value in, e.g., a 1-dimensional subspace with the cut-value in a 5-dimensional
subspace is not revealing at all. Since our goal, however, is to pick the best sub-
space among all possible subspaces, we have to realize a fair comparison of the
cut values. The cut values should not be biased to specific dimensionalities of the
subspaces.

While solutions to this problem have been proposed in the subspace clustering
community (e.g., [AKMS07a]), in our scenario two aspects are worth mention-
ing: (1) We consider the normalized cut. Computing the fraction of cut values
might appear to be unbiased; though, it is not. Consider, e.g., the case that the
second derivative of the kernel function is negative (e.g., the Gaussian and Expo-
nential kernel). In this case, the cut would be biased to low-dimensional clusters.
The reason is that the kernel values drop quicker for small norm values than for

156 Spectral Subspace Clustering for Graphs with Feature Vectors

larger ones. Thus, informally, when adding a further dimension, the edges within
a cluster (high feature similarity) loose much of their kernel value while the edges
between clusters (dissimilar features) receive almost the same value. Thus, we
loose discrimination power between the inter-cluster and intra-cluster edges. (2)
We consider the weighted Euclidean norm where the weights have to sum up to
1. However, even in this case we observe an increase of the distance values with
increasing dimensionality. Thus, overall, also for our objective function we have
to realize an unbiased computation.

Our solution. A simple solution to avoid dimensionality bias would be to
introduce a regularization parameter that controls the sparsity/density of the
vectors s;. This frequently used principle of regularization, however, is rather ad
hoc and introduces additional regularization parameters which are often hard to
set. We do not want to introduce additional parameters. Instead, we extend the
results known from the area of subspace clustering [AKMS07a].

The basic idea of our principle is to adapt the computation of the norm such
that we obtain an unbiased estimation, i.e., the expected distance (and its vari-
ance) between the feature vectors should be constant and, thus, independent of
the selected subspace. For this purpose, we first formalize:

Definition 10.3 Unbiased parametric family
Given a parametric family F = {f. | s € O} of functions f; : R? x R? — R and a
(multi-dimensional) probability density function T over R%. F is called unbiased if

Vs,s' € 0 :E[f(X,Y)] = E[fs(X,Y)] < 0
Vs,s' € O : Var [fs(X,Y)] = Var [f¢(X,Y)] <
where X and Y are i.i.d. with X ~1,Y ~ T

The family F might, for example, be the set of functions computing the
weighted Euclidean norm, i.e., we would have fi(x,y) = |x — y|ls where ©
consists of all valid subspace vectors. The probability density function 7 corre-
sponds to the null model the feature vectors are generated from. Intuitively, it
corresponds to the distribution when expecting no clusters in the data. Based on
our setting, it corresponds to the uniform distribution over the hypercube [0, 1]7,
ie., 7(x) =1ifx € [0,1]”, 0 otherwise.

If a family F of functions is unbiased, we can do a fair comparison between
the function values of fs(x,y) and fs(x,y). As mentioned above, the weighted
Euclidean norm is not unbiased. Though, we can show the following:

10.3. Model 157

Theorem 10.1 Let O, be the set of all possible D-dimensional subspace vectors and

= ylle ~Elx =yl . Ellx—yls]
Varllx—yl] #<ony/Varllx — yli]

Ix=ylls=

The parametric family F={|[x — y1|s| s € Op} is unbiased.

Proof 10.1 Using the abbreviations us:=E [||x —y||s] and os:=+/Var [||x —y||s],
then for all s € ©p it holds
by

Elllx - =LE[x- b = =
o Blirx—yils] = 5 (Blllx — ylls] —) + min s = min 7 = c,

o Var[llx —yll = E[(IIx — ylls —c1)?] = E [(w) |-
gig El(lx = ylls = ps)?] = Ué Var[|lx —yls] = [Tlé oi=l=c
Since ¢, and c, are independent from s € O p, the parametric family F is unbiased.

Intuitively, | . 1| is the z-score normalized version of ||.||s. Thus, instead of
measuring the absolute norm between two features, we measure the deviation to
the expected value. Since || .|s is guaranteed to be non-negative, it is possible
to replace the value of ||.|s in Equation 10.3 by the unbiased measure || . 1|s.
The question remains whether k(|| x — y |s) still corresponds to a valid kernel
transformation [Gen02]. While in general the use of || . 1|s does not lead to a
valid Mercer kernel, we can show:

Theorem 10.2 Given the exponential kernel kq(t) = e & with scaling parameter
0. When solving the MNSC problem, replacing ||.||s in Equation 10.3 by || . 1|s is
equivalent to using the (original!) norm |.||s in combination with the exponential
kernel based on the scaling parameter 05 := 6 - \/\m

Proof 10.2 Let W be the weight matrix according to Eq. 10.3 using the (unbiased
but potentially invalid) kernel values k(|| . 1|s), and let W, be the weight matrix
using the (valid) kernel values ko, (||.||s). We show that using W, is equivalent to
using W, when solving the MNSC problem.
e We first reformulate the objective function' Since A is a partitioning, for all
k, k' with k # k' it holds a] - (ay - 1§) = 0%. Thus, the objective function in
Def. 10.2 can be written as

K af (S Way o (an - 1F)) - (v)
NSCut(A,S) = :
Z ol - (S5 Wa o o m) y

i . ak 11\)) 1]\ —ak iaf . ak)
W o (ay-1%)) ‘1N

Sk k=1 sk

Here, Wy, is used as a placeholder for either Wsk or Wsk.

158 Spectral Subspace Clustering for Graphs with Feature Vectors

e Using the abbreviations from the proof of Theorem 10.1, the kernel functions
can be reformulated as

Ils=ps .
os Tl ps__c1 II-lls

ko(Il1ls) =€ 7 =em77 - em et = - kg, (. [|s)

s

where c; := e77 7 is a constant depending on the subspace s. It follows:
W, =c¢- Ws
e Plugging this result into the reformulated objective function, we get:

T W T X T . \X
Zak 'WSA-‘<1N7a)\") 7231« -{"S}c‘WSk-(lNiak) 7Zak 'Wsk'(1N73k>

T T.c. W, - T W, -
* ak<Wsk~1N I3 a; - Csy, Wsk 1y " ag Wsk 1y

= using W, or Wy is equivalent.

Thus, using || . 1|s will still lead to a valid Mercer kernel. Furthermore, to
realize an unbiased computation of the cut, we can simply adapt the scaling
parameter of the exponential kernel. We actually do not have to compute || .1]s;
particularly, the term E [||x — y||s] vanishes completely.

Overall, when using the exponential kernel, we can obtain a subspace un-
biased cut computation while still preserving the properties of a valid Mercer
kernel. Interestingly, the exponential kernel does not only show these nice the-
oretical properties, it also has outperformed all other kernels in our empirical
studies (Figure 10.2). Unlike many methods with artificial regularization param-
eters, our subspace unbiased cut computation does not introduce any additional
parameters.

10.3.4 Complexity Analysis

Statements like “the normalized cut problem is NP-complete” have to be regarded
carefully. Since usually these problems are formulated as optimization problems,
the classical definitions of complexity classes — which were designed for decision
problems — cannot be applied straightforward [Kan92]. Thus, we consider the
decision problem version of MNSC.

Definition 10.4 Decision problem version of MNSC

The decision problem version to the MNSC optimization problem is: Given a graph
G = (V,E,l), the number of groups K, and a constant C. Is there a normalized
subspace cut with value < C?

10.3. Model 159

Theorem 10.3 The decision problem version of MNSC is NP-complete if the kernel
function can be evaluated in polynomial time w.r:t. G, K, and C.

Proof 10.3 a) MNSC is NP-hard: We provide a polynomial reduction of the ‘usual’
normalized cut problem NCUT (which does not handle feature vectors) to our MNSC
problem, i.e., NCUT <p MNSC.

e Input mapping: The input G=(V, E) of NCUT is mapped to an input G' =
(V' E"I")y of MNSC with V' =V, E' = Eand l'(v) = 0 for all v € V (i.e.,
each node has the same feature vector). This transformation can be done in
polynomial time.

e MNSC generates a valid NCUT solution: Let X denote the adjacency matrix
used for NCUT. Since all feature vectors in G’ are identical, it holds Wg o =
k(0) - X. The constant value k(0) does not affect the resulting optimal cut.
Thus, the solution of MNSC corresponds to the solution of NCUT. Since NCUT
is NP-complete [SM0O], MNSC is NP-hard.

b) MNSC is in NP: We use the verifier-based definition of NP. Given a certificate
(A,S), we prove that its correctness, i.e., the equation NSCut(A,S) < C, can be
verified in polynomial time. The following complexities hold:

e computing the norm: T,, := O(d)

e computing the kernel: T}, := O(p), with p is a polynomial
e computing Wg o (Def 10.1): T,, := O(|E| - (T,, + T}.))

e computing NSCut (Def. 10.2): T. := O(k - |E|)

For T, and T, we exploited the sparsity of the weight matrix and the fact that
each vertex belongs to a single cluster. Overall, computing NSCut(A,S) is in class
O(|E| - (d + p + k)) € P. Since the verification is in P, MNSC is in NP.

¢) combining a) and b) = MNSC is NP-complete.

Thus, even though our model uses an adaptive W depending on S and A, its
complexity class is identical to the one of the normalized cut where W is assumed
to be static. However, two aspects have to be noted: First, the input for our model
is more complex since we consider feature labeled graphs. Second, these results
apply for the decision problem version. It does not necessarily follow that the
optimization problems are equally complex, i.e., the degrees of approximability
might be different [Kan92]. This study is left for future work.

160 Spectral Subspace Clustering for Graphs with Feature Vectors

10.4 Algorithm

As shown by Theorem 10.3, we cannot expect to find an efficient algorithm com-
puting an exact solution to the MNSC problem. Alternatively, we design an algo-
rithm computing an approximate solution based on the following observations:
(1) When keeping the matrix W fix, determining the optimal partitioning A is
independent of S and reduces to the traditional normalized cut problem. (2) As
shown in the proof of Theorem 10.2, the objective function can be written as

al "W, (1y —a)

K
Zgak (sk) with ga(s) := T W, Ly

k=1

Thus, if the matrix A is given, the subspaces s, can be optimized for each

cluster independently. This independence drastically reduces the hardness. Since

for given A and S, the matrix W is completely determined, these observations

naturally lead to an iterative algorithm where we optimize one variable while

keeping the others fix. Such a procedure of alternating optimization is well es-

tablished for many tasks. Our method works as follows:

1: initialize W(©)
2: for(t=1,...)

3: compute normalized Laplacian L") =T — D~'W (-1

4: compute first k eigenvectors u, ..., u; of L(®)
5: determine A(®) by performing k-means clustering on U = [uy, ..., u;] € RV*F
6: determine S® = [s1,...,sx] by minimizing g, (s;)

(can be done for each cluster i independently)
7: compute W (cf. Def. 10.1) based on A(*) and S(*)
8: stop if cut-value has converged

We continue by briefly discussing each step of the method.

Initialization & update of W Since a priori no information about the rele-
vance of dimensions is given, we initialize W (line 1) using non-informative
weights, i.e., implicitly each entry of S is assumed to be 1/D. Since in this case
the subspaces for all clusters are identical, the dependency of W on A vanishes.
Consequently, we can apply Def. 10.1 even without the knowledge of an initial
partitioning A. For the recomputation of the weight matrix (line 7), the sub-
spaces per cluster might differ and we have to incorporate the actual partitioning
A. The complexity of this step is O(| E|- D) since we have to recompute the weight
for each edge, which is dominated by the computation of the norm (O(D)).

10.4. Algorithm 161

Update of A As mentioned, the update of A reduces to a traditional normalized
cut problem. Note that the matrix W and, thus, the Laplacian L are sparse when
the underlying graph is sparse (which holds for most real graphs). Thus, we can
use efficient sparse eigenvalue solvers. Additionally, multiple techniques to speed
up the computation of spectral clustering for large matrices have been proposed
(e.g., [YHJ09]). All these techniques can be combined with our method.

While spectral clustering has been successfully applied in many applications,
it is fair to mention that this relaxation does not provide any theoretical bound
on the error of the cut value [vLO7]. That is, in theory, there is no guarantee
that the determined cut value is close to the optimal solution. Consequently, the
new partitioning might not lower the previously obtained cut value. Thus, it
might be useful to add an additional termination criterion to the above algorithm
as, e.g., checking whether the best cut value obtained so far has been decreased
during the last m iterations or using an optimization scheme based on simulated
annealing.

Update of S Even though updating s, can be done for each cluster individually,
the function g,(s) is still hard to minimize since it is neither convex nor concave
in s. We analyzed multiple different strategies for finding local minima of this
function, such as gradient descent and different greedy approaches. Here, we
present only the final solution used for our approach. We selected this princi-
ple based on the following observations: a) it is very efficient to compute, b) it
has obtained good normalized subspace cut values in a variety of experiments,
c) the results allow an intuitive interpretation as required in many application
domains. The last aspect is realized as follows: While our general model allows
to use arbitrary subspace vectors, we follow the principle of most traditional sub-
space clustering approaches [KKZ09, AWY"99], where the relevant dimensions
show uniform importance (i.e., we consider vectors as (1/3,0,0,1/3,1/3)). Since
each dimension is either non-relevant or equally important for a cluster, an easy
interpretation is possible. Formally, we consider the set

L={s€[0,1]” | (s4>0« sy = |{i € Dim

5> 0)7)}

Even though the set L is finite, its size grows exponentially in D. Since it is
intractable to enumerate and evaluate all of its members, we restrict to a mean-
ingful subset. To ensure the selection of the most expressive dimensions, we
traverse L starting with low-dimensional subspaces and successively expanding
the best subspace with further dimensions:

162 Spectral Subspace Clustering for Graphs with Feature Vectors

2 s1g = 0P, d = 0 // current subspace and dimensionality
:L={sel|3_1z € Dim:s, >0} //1-d subspaces

: select subspace s* = argmin__; {ga(s)}

* Snew = (Soid - d+ %) /(d+ 1)

:if ga(Snew) < Ga(Sbest) then Spest = Sucw
setd=d+1and L = L\{s*}

: goto 3 until L = ()

N O AW =

This method ranks based on the set 11, which represents the 1-dimensional sub-
spaces. In line 4, we increase the dimensionality of the subspace vector s,.,, by
’adding’ the next best 1-dimensional subspace s*. The dimensionality of s,,.,, in-
creases in each iteration; thus, guaranteeing termination. Since the ranking in
line 3 needs to be done only once, the function g, needs to be evaluated only
D times. Thus, the overall complexity for updating the subspace of a cluster is
O(D - t,) = O(D?-|E|), where t, is the complexity to evaluate the function g, (.).

10.5 Experimental Analysis

Setup We compare SSCG with a variety of other partitioning clustering tech-
niques: OptiComb [STMO07], CoClus [HZZL02], SA-Clustering [ZCY09], and PICS
[ATMF12] are methods using graph and feature information. We denote with
SpectGraph the traditional spectral clustering using only the structural informa-
tion. SpectVecl&?2 is spectral clustering using only feature information. The first
one uses the complete similarity graph, the second one uses the kNN similarity
graph (cf. [VLO7]). Proclus [AWY199] is a subspace clustering technique for vec-
tor data. The number of clusters K and the scaling parameter ¢ are chosen to be
identical for each method. Since SA-Clustering can only handle categorical data,
for this method we discretize each numerical dimension into 10 bins. Accord-
ingly, for PICS, which handles only binary data, numerical data is discretized into
two bins. To ensure a fair evaluation, we only consider partitioning clustering
approaches for our evaluation. Since overlapping clustering approaches as, e.g.
[MCREQ9, GFBS10] follow a completely different objective, a comparison with
the methods mentioned above would always be biased to one of the paradigms.
All experiments were conducted on 2.3 GHz Opteron CPUs with Java6 64-bit.
For case studies on real world data, we use graphs extracted from the DBLP
database, the arXiv database, the Internet Movie Database, the German soccer

10.5. Experimental Analysis 163

league, patent data, and gene interaction networks. We provide all datasets and
their descriptions on our website. Furthermore, we generate synthetic data based
on the planted partitions model [CKO1]. Intuitively, given the desired number of
clusters and the vertices belonging to each cluster, we randomly add edges be-
tween and within clusters according to a specified density. To generate the feature
vectors, given the overall dimensionality, we randomly select a given number of
relevant dimensions for each cluster. For each cluster, an individual set of dimen-
sions is used. By default, we generate 20 dimensional data with 10 clusters, each
with 100 vertices and 10 relevant features. The average density is 0.4.

For synthetic data, clustering quality is measured via the F1 value [GFM*11].
For real world data, where no ground truth is given, we use internal evaluation
metrics: the normalized subspace cut (NSCut), the usual NCut considering only
graph information, and the within cluster sum of squares (total distance, TD)
considering only the feature information. To ensure comparability, the internal
measures are always computed w.r.t. the input graph (since some approaches
perform graph transformations).

Comparison on Synthetic Data We start by analyzing the effect of different
kernels (Fig. 10.2). Since different kernels lead to different cut values (for the
same cut), comparing the obtained cut values is unfair. Instead, we compare the
clustering quality. As shown, the exponential kernel (leftmost bars) leads to the
highest quality and simultaneously obtains the lowest runtime. Thus, besides
being theoretically sound (Sec. 10.3.3), the exponential kernel also empirically
performs best. It is therefore used for all further experiments.

1000
800 g
600 5
a00 £
< c

200 2

clustering quality
o o o o
o N B OO 00 -

D D @ S
AN\
(+ @- \/,;k— \,X-\-

& R

3
N
NN &

Figure 10.2: Effect of kernels

Even though our focus is on evaluating the clustering quality of SSCG, we
briefly analyze the methods’ efficiency. In Fig. 10.3, we increase the number of
vertices in the graph. Since most methods use eigenvalue-decomposition, the
slopes of their curves are in a similar range. Here, we determined the eigenvec-

164 Spectral Subspace Clustering for Graphs with Feature Vectors

—SSCG — -SpectGraph - SpectVecl = -SpectVec2 ==--OptiComb
----- CoClus —Proclus — =Pics -++-:SA-Clustering

1E+05 1E+05

1E+04 == 1E+04

— 1E+03
o

— 1E+03
o

Q L
2 1E+02 2 1E+02
[/ (]
Eapvor | Lt £ 1kv01
c c
2 1E400 - é = 2 1E+00
1E-01 T T T T 1 1E-01 T T T T 1
0 0.5 1 15 2 2.5 5 10 15 20 25 30
database size (x 1000) number of dimensions

Figure 10.3: Runtime vs. database size Figure 10.4: Runtime vs. # dimensions

tors using QR-decomposition; as mentioned in Sec. 10.4, more efficient methods
can be used instead. Two algorithms differ from the common shape. PICS scales
slightly better than the other methods since it does not use eigenvalue decompo-
sition. It is, however, restricted to binary data. Proclus is very efficient but, as we
will see in Fig. 10.5, its clustering quality is very low.

In Fig. 10.4, we increase the dimensionality of the data. The only slight
increase of the methods’ runtimes indicates that the eigenvalue-decomposition
(which is independent of the data’s dimensionality) dominates the overall run-
time. Our optimization of the subspace is very efficient.

In Fig. 10.5, we show the methods’ clustering quality for an increasing data-
base size. Only SSCG is able to detect the clustering structure. The competing
approaches cannot handle data where some features are irrelevant since these
features obfuscate the clustering structure in the full-space.

In Fig. 10.6, we increase the number of irrelevant dimensions per cluster.
Starting with almost full-space clusters (16d), we successively lower the clusters’
dimensionality (down to 2d clusters). While SSCG shows almost perfect quality,
most of the other approaches decrease in their quality; the more irrelevant fea-
tures, the harder to detect the clusters. SpectGraph is not affected by irrelevant
features since it only uses the graph structure; though, the absolute quality is low.
Interestingly, although involving feature information, OptiComb obtains almost
the results of SpectGraph.

While the previous experiment has shown the effects when varying the ’qual-
ity’ of the feature vectors (i.e., increasing the fraction of irrelevant features),
we now analyze the methods’ behavior when the structural information is dis-
torted. In Fig. 10.7, we randomly relocate a certain number of edges. SSCG

10.5. Experimental Analysis 165

—SSCG — =SpectGraph - SpectVecl = -SpectVec2 =--OptiComb
----- CoClus —Proclus — =Pics -++=:SA-Clustering
1 1
g Zos
Z Z
= T 06
3 3
o o
£ go4
3 3
_g 0.2 g 0.2
S S
0 T T T T | 0 T T T T T T |
0 500 1000 1500 2000 2500 20 30 40 50 60 70 80 90
database size per: of irrel, di i

Figure 10.5: Quality vs. database size Figure 10.6: Quality vs. feature noise

is only slightly affected. By additionally exploiting the features, the results are
almost stable. In contrast, the other graph based methods show a strong de-
crease. Obviously, the methods using only feature information are not affected
(for illustration, only SpectVec2 is plotted).

—SSCG — -SpectGraph — SpectVecl = -SpectVec2 =-=--OptiComb
----- CoClus ——Proclus ~ ~Pics «++-:SA-Clustering
1
g 0.8
)
® 0.6
3
o
E" 0.4
g
E 0.2
Cl
0 T T T |
0 2000 4000 6000 8000

number of edge swaps

Figure 10.7: Quality vs. edge noise

Overall, SSCG’s runtime is comparable to all other methods using spectral
clustering and it is the only method simultaneously achieving high clustering
qualities even in the presence of many irrelevant features.

Evaluation on Real World Data Since for real world data no ground truth
is given, our following case studies should show two aspects: 1) The clusters
found by SSCG are meaningful. We solve this issue by presenting interesting
results detected by our method and by analyzing internal characteristics of the
clustering result (e.g., the cut values). 2) While not being able to discuss the
results of all competitors, we can examine whether a similar result than that of
SSCG can already be determined by competing methods. This issue is solved by

166 Spectral Subspace Clustering for Graphs with Feature Vectors

Table 10.1: Results on DBLP Table 10.2: DFB data

NMI TD NCut NSCut NMI TD NCut NSCut
=8 SSCG 1.000 451.350 4.063 1.774 1.000 117.448 9.313 9.313
e CoClus 0.097 456.554 20.789 20.750 0.200 173.977 12.661 12.445
28 OptiComb 0.083 461.724 21.190 22.177 0.483 175.953 10.507 10.548
£ SA-Clustering 0.194 444.440 13.860 13.810 0395 171.361 11.515 11.500
RS PICS 0.103 460.138 19.234 19.943 0.223 162.488 12.236 11.966
oo SpectVecl 0.142 432416 17.008 10.151 0.184 107.954 13.291 11.581
£ 5 SpectVec2 0.135 436.255 17.195 9.806 0.209 107.482 13.038 11.098
> Proclus 0.104 557.686 20.984 18.465 0.202 21.3495 13.576 12.365
55 SpectGraph 0.395 454.823 4.355 5.848 0.576 171.646 10.639 10.565

computing the normalized mutual information ([VEB10], NMIL,,;,;) between the
competitors’ results to the one of SSCG. A low NMI value indicates, that SSCG
is able to produce novel cluster insights, while not implying that the result of
the particular competitor is bad or meaningless. An extended analysis with a
pairwise comparison of all clustering results can be found on our website. To
handle missing values occurring in some of the datasets due to their sparsity, the
distance between features with a missing value is set to the maximal possible
distance. Since this principle cannot be applied for OptiComb and PICS, missing
entries are imputed here with zero values.

DBLP. In our first experiment, we analyze the DBLP data. Authors are rep-
resented by vertices and co-authorships by edges. The features consist of 20
keywords extracted from the titles of papers. The keywords are chosen to repre-
sent four different fields of research: Data-Mining, Computer Graphics, Artificial
Intelligence, and Databases. They include terms like: “classification”, “cluster”,
“graphic”, and “human”. We used the largest connected component (774 nodes
and 1757 edges). The number of clusters is set to 24.

An interesting cluster found by SSCG is a group of 18 scientists from Max
Planck Institute, TU Graz, and ETH Zurich, all established in the field of computer
vision and motion capturing (left ellipse in Figure 10.8). The relevant dimensions
are “motion”, and “3d”. Another interesting cluster is a set of 20 authors from
the field of machine learning and data mining (right ellipse in Figure 10.8). They
are clustered in the dimensions “cluster”, “pattern”, and “learning”.

Table 10.1 compares all methods based on internal measures. The methods
above the dashed line are the ones considering graph and feature information.
As expected, SSCG leads to the lowest value for the NSCut. Surprisingly, even
though SSCG does not minimize the (usual) NCut value, its result is better than
the one of SpectGraph (which tries to optimize the NCut). Among the meth-

10.5. Experimental Analysis 167

Figure 10.8: Visualization of the DBLP graph and coloring of SSCG’s clusters.
Two clusters are highlighted.

ods considering graph and feature information, SSCG obtains the second best TD
value, while clearly outperforming these methods w.r.t. the NCut value. As indi-
cated by the low NMI values of the competing methods, SSCG is able to reveal a
novel clustering structure.

German soccer league. For our next experiment, we extract the top 100
goal getters from the German soccer league. Each node represents a player. Two
players are connected if they played in the same soccer club (not necessarily at

”

the same time). As features, we choose “number of games”, “number of goals”,

“number of penalty kicks”, “average number of goals per game”, and “number of
soccer clubs”. The number of clusters is set to 14.

One interesting cluster is a subset of players from “Borussia Dortmund” being
tightly located in the dimensions “number of clubs” (values are spread within a
range of 40%) and “number of goals” (range 20%). All the other dimensions
are spread across a range of at least 75%. Similarly, a subset of players from “I.
FC Nuernberg” are clustered in the dimensions “number of goals” (range 8%),
“number of goals per game” (range 18%), and “number of penalty kicks” (range
12%). The remaining dimensions show a spread of at least 35%. None of the
competing methods was able to detect such a meaningful clustering structure.

The values of SSCG for the NSCut and the NCut are the overall best (Table
10.2). Among all approaches that use the graph structure, SSCG obtains the best
feature compactness (TD). Again, the NMI value indicates that the competing
methods detect different results than SSCG.

168 Spectral Subspace Clustering for Graphs with Feature Vectors

Table 10.3: arXivl data Table 10.4: arXiv2 data

NMI TD NCut NSCut NMI TD NCut NSCut
=8 SSCG 1.000 6.027 1.617 1.420 1.000 18.730 1.546 0.179
g2 CoClus 0.079 5.306 16.623 16.606 0.006 15.437 8.445 8.443
28 OptiComb 0.050 5.396 17.752 17.744 dnf dnf dnf dnf
£9 SA-Clustering 0.145 9.366 11.900 11.900 dnf dnf dnf dnf
RS PICS 0.177 5.504 15.154 15.150 0.030 22.383 6.881 6.880
Lo SpectVecl 0.080 5080 16733 16700 dnf dnf dnf dnf
5 SpectVec2 0.089 5.044 16.118 16.073 0.020 15.408 7.537 7.505
> Proclus 0.067 4.081 16.962 16.955 0.008 17.346 8.228 8.056
5§ SpectGraph 0.813 5413 1.988 1.977 0.145 15493 2358 2.340

arXiv. In the arXiv data, papers are represented by nodes, citations by edges,
and features denote how often a specific keyword appears in the abstract of the
paper. In our first experiment (arxivl), we use the top 30 keywords and removed
nodes showing no keyword, resulting in 856 nodes and 2660 edges. The number
of clusters is set to 19.

SSCG found a cluster of 20 papers concerning quantum gravity, especially
Lorentzian and Euclidean Quantum Gravity. The relevant dimensions of this clus-

” ”

ter are: “space-time”, “geometry”, “gravity”, and “integral”. Another cluster con-
sists of 16 papers concerning String Theory or more general M-Theory. The pa-
pers are about different dimensional branes, dualities and supersymmetry. The
relevant dimensions are: “duality”, “point”, “dimension”, and “equation”. Here
SSCG is especially meaningful since clusters contain well-known (often cited)
and also highly topic relevant papers (same keywords) which makes them core
papers in their fields.

As shown in Table 10.3, SSCG, again, shows the best cut values, while main-
taining a reasonable distance to the competing approaches regarding TD. Con-
sidering the NMI values, most approaches find different clusters than SSCG. Only
SpectGraph achieves a similar result (NMI of 0.813).

We also extract a larger citation-graph having 11,989 nodes, 119,258 edges,
and 300 dimensions (arxiv2, Table 10.4). The results are in line with the observa-
tions made for the smaller dataset. While some approaches are not applicable on
this data due to their extreme memory usage (larger than 7GB), SSCG can exploit
the sparsity of the network which leads to a tractable eigenvalue-decomposition.

Genes. In our next experiment (Table 10.5), we analyze a gene interaction
network (2,900 nodes; 8,264 edges) where genes are additionally enriched by ex-
pression values (115 dim.). While all approaches could be applied on this data,
SSCG clearly outperforms them w.r.t. the NSCut value, and only SpectGraph was

10.5. Experimental Analysis 169

Table 10.5: Gene data Table 10.6: IMDb data

NMI TD NCut NSCut NMI TD NCut NSCut
=8 SSCG 1.000 47.939 6.702 5.539 1.000 5.963 18.650 0.563
s'3 CoClus 0.026 50.462 15.445 15.406 0.053 7.812 28.516 28.516
=& oOptiComb 0.017 45.163 16.546 16.135 0.125 7.776 28.169 27.924
£ SAClust. 0.014 46.944 16.201 16.107 0.182 9.351 22.169 22.169
38 PICS 0.017 44.627 16.033 15950 0.149 7.768 26.257 26.255
oo SpectVecl 0.014 47.458 16.995 16.936 0.161 7.648 27.813 27.374
gE: SpectVec2 0.018 47.960 16.734 16.110 0.168 7.624 27.684 27.217
By Proclus 0.013 20.744 17.214 16.631 0.166 5.278 27.839 27.486
5 SpectGraph 0.044 48.089 8.187 8.391 0.282 7.816 16.349 16.256

able to realize a similar NCut score. For this data, we observe the largest differ-
ences in the clustering results. A pairwise analysis of all clusterings reveals that
none of them can be considered similar, indicating that this dataset is particular
challenging to cluster.

Internet Movie Database. The next dataset is an extract of the IMDb. We use
movies with at least 200 rankings and an average ranking of at least 6.5 as nodes.
Two movies are connected if they share actors or if there exists a reference (e.g.,
spoofs or follow ups) to each other. As features, we choose all 21 movie genres.
To allow good interpretation, we focus on movies produced in USA, Canada, UK,
or Germany. We use the largest connected component (862 nodes and 4388
edges) and look for 30 clusters.

SSCG found a cluster of 19 movies including “Evil Dead II”, “Poltergeist”, and
“Predator” based on the relevant dimensions: “Horror”, “Mystery”, and “Thriller”.
Another interesting cluster contains 19 movies concerning Jimi Hendrix, Chuck
Berry, and U2. All movies are either biographies or movies about music. Conve-
niently, the relevant dimensions are: “Biography” and “Music”. Finally, there is a
cluster of 20 romantic comedies containing movies like “10 Items or Less”, “Driv-
ing Miss Daisy”, and “Feast of Love”. These three movies are connected through
the actor Morgan Freeman. “Comedy”, “Romance”, and “Drama” are the relevant
dimensions. As shown in Table 10.6, SSCG obtains the overall best NSCut value.
Considering all methods that are using the network structure and the feature
information, SSCG also achieves the best values for TD and NCut.

Patents. Finally, we want to show the applicability of SSCG on a large citation
network of patents with 100,000 nodes, 188,631 edges, and 5 dimensions. Most
of the methods were not applicable on this data. Particularly, from the methods
considering graph and feature information, only SSCG and PICS could be applied.
The clustering of SSCG showed the following properties (TD: 22534, NCut: 1.04,

170 Spectral Subspace Clustering for Graphs with Feature Vectors

NSCut: 0.70), which clearly outperforms the result of PICS (TD: 24411, NCut:
10.18, NSCut: 9.94) w.r.t. all measures. This difference of the clustering results
is also indicated by a low NMI value of 0.060.

Overall, as shown by all experiments, SSCG is able to detect meaningful clus-
ters on a variety of real world datasets. The competing approaches generate
highly different results. The internal evaluation measures show that the clusters
of SSCG are very compact in the feature space (low TD) and also well separated
in the graph (low cut values).

10.6 Conclusion

In the proposed spectral clustering method for graphs with feature vectors, we
integrated the subspace clustering principle, where we tackle the problem of irrel-
evant features that possibly differ for each cluster. As a consequence, the affinity
matrix is not given a priori but depends on the partition as well as the determined
features and is, thus, part of the learning process. To tackle the fundamental
challenge of comparing the clustering structures for different feature subsets, we
defined an objective function that is unbiased w.r.t. the number of relevant fea-
tures. For efficiently approximating our objective, we developed the algorithm
SSCG based on spectral clustering. SSCG was applicable on large datasets and
was the only method achieving high clustering qualities in the presence of many
irrelevant features. For a variety of real-world datasets, SSCG was able to detect
meaningful clusters which are very compact in the feature space and, simultane-
ously, well separated in the graph.

11

Modularity for Subspace Clustering in
Multi-Dimensional Graphs

11.1 Introduction i ittt 172
11.2 RelatedWork L 174
11.3 Subspace Modularity 175
11.3.1 The Existing Modularity Measure. 176
11.3.2 The Subspace Modularity Measure. 176
11.3.3 Subspace Modularity Complexity Analysis. 179
114 Algorithm L L 179
11.4.1 The SuMo Algorithm 182
11.5 ExXperiments v vvi 186
11.6 Conclusion 190

N contrast to the previous chapter, where we considered graphs with multi-
dimensional vertex labels, in this chapter, we will focus on graphs with multi-
dimensional edge weights, i.e., the same vertices can share different types of rela-
tions. While traditional clustering approaches for graphs with multi-dimensional
edge information consider all dimensions as equally important, recent advances
indicate a varying relevance of dimensions for different clusters. Especially in the
presence of many different relations, it is crucial to be able to detect clusters of
vertices that are densely connected in only a subset of the relation types.
Modularity is one of the most sensitive and best known quality functions to
express the strength of communities. In this work, we extend this widely used
optimization criterion for multi-dimensional edge weights by following the prin-
ciples of subspace clustering. Our modularity extension can already be adopted
by some of the existing optimization approaches. To deal more effectively with
the extended search space due to the variance of the dimensions’ relevance, we
propose the efficient clustering algorithm SuMo for clustering networks based on
the subspace modularity.

171

172 Modularity for Subspace Clustering in Multi-Dimensional Graphs

11.1 Introduction

For real-world applications, besides the mere relational information, additional
information for the graph data is available and is useful to consider for clustering
the vertices. In the previous chapter, we proposed a new partitioning approach
for graphs with additional vertex information. In this chapter, we will instead
consider graphs with additional information on the edges. It is important to note,
that for most cases it is not possible to transfer an edge labeled graph into a
vertex labeled one (Section 6.3 in [Bod14]), such that we cannot simply use the
technique presented in Chapter 10 to solve the problem at hand. For graphs with
annotated edge information, we can differentiate between two types of edge la-
bels. They can either represent characteristics, e.g., common interests for two
individuals in a social network, or edge labels can represent edge weights denot-
ing the strength of the relation between two vertices. In a social network, the
ties between two individuals can be of different strength, similarly, the collabora-
tion between two scientists in a co-authorship network might be weighted by the
number of co-authored papers. In the following, we will focus our considerations
to edge weights.

Acknowledging that the ignorance of available edge weights abandons a lot
of potentially useful information, various approaches have already been adjusted
to handle edge weights [New04a]. For similar reasons of maximally utilizing the
offered information, the community recently launched mining problems for net-
works with multiple types of edges or simply multi-dimensional edge weights. In
complex systems, the entities’ relations are usually multifaceted, with different
aspects potentially leading to different weightings. In a social network, rela-
tions between the individuals can be weighted according to their proximity, the
number of mutual interests, the intensity of communication, or the number of
shared friends. In a co-author network, the co-authorship can be differentiated
for different research areas, the relation can also be weighted based on mutual
citations, or whether the two individuals have been co-workers. In the simple co-
author network depicted in Fig. 11.1, each dimension corresponds to a certain
keyword and weights represent the number of co-authored papers of two authors
containing this keyword.

Often the number of potential edge weight dimensions is large and while us-
ing multiple information sources is meaningful in general, it also entails the risk
that some of the weight dimensions might not support or even disagree with the

11.1. Introduction 173

Keywords:
Clustering
Classification

Indexing

Figure 11.1: Example co-authorship network

underlying clustering structure. For example, for a co-author network such as in
Fig. 11.1, we do not expect to find clusters of authors that have common papers
containing all the keywords, especially if we have a large set of keywords. In-
stead, each author cluster will only have a certain set of relevant keywords, char-
acterizing the group’s main research field. The problem of a high proportion of
irrelevant, misleading information is well documented in the context of the curse
of dimensionality [BGRS99], especially for the task of clustering [HKK"10]. To
avoid the obfuscation of the clustering through irrelevant dimensions for tradi-
tional vector data, the paradigm of subspace clustering identifies clusters only
in the context of their relevant features. In our scenario with multi-dimensional
edge weights, the goal is to group vertices such that for each group a subset of
relevant dimensions exists for which the sum of internal edge weights is high and
edges between clusters are sparse and only lowly weighted.

In this work, we extend one of the most widely used quality functions for
graph clustering ([For10]) to handle multi-dimensional edge weights with lo-
cally irrelevant dimensions. The most popular and established techniques for
graph clustering are spectral clustering methods and techniques optimizing the
modularity. Since methods for detecting community structures usually assume
that the network naturally divides into subgroups, the number and size of clus-
ters is inherently determined by the network and is not known a priori. This
characterizes the superiority of modularity-based techniques over spectral clus-
tering, where the number of clusters has to be known in advance. We, therefore,
present an adaptation of the modularity optimization criterion to handle locally
irrelevant dimensions. We show how certain existing algorithms can already be
used to approximate the optimal clustering w.r.t. our adapted modularity. In ad-
dition, we present our algorithm SuMo which exploits a more informed search
strategy based on the eigendecomposition of the modularity gain matrix. We
evaluate our solution on synthetic and real-world data.

174 Modularity for Subspace Clustering in Multi-Dimensional Graphs

11.2 Related Work

For clustering graph data, various models and techniques have been developed.
An overview of these techniques is given by Fortunato [For10]. Many graph clus-
tering techniques were developed for simple graph data (without multiple di-
mensions). Established approaches include algorithms minimizing cuts (e.g., the
Kernighan-Lin algorithm [KL70]), spectral clustering algorithms (e.g., [ST96]),
and modularity-based approaches. Many of those approaches consider weighted
graphs. While the aforementioned approaches partition the graph, there also
exist approaches detecting overlapping dense subgraphs.

The modularity measure was first introduced for unweighted graphs by New-
man and Girvan [NG04]. They also proposed a first top-down algorithm based
on edge-centrality. In [New04a], the modularity measure was generalized to also
consider weighted networks. A multitude of algorithms for modularity optimiza-
tion have been proposed since, e.g., [New04b, CNM04, New06]. An efficient
two-step algorithm detecting good modularity maxima was proposed by Blondel
et al. [BGLLO8]. Based on a first clustering determined by the first step, the next
step creates a new graph by replacing the clusters with vertices. The two steps are
iterated as long as the clustering changes, which results in a clustering hierarchy
where each level represents a certain resolution level.

Recently, several approaches for clustering graphs with several dimensions
were proposed. In some cases, such networks are addressed as multi-dimensional
[TWL12] networks. The approach of [CZ09] clusters each graph separately and
combines the clusterings in a post-processing step using an ensemble approach.
The basic idea of other approaches [DFVN12, TLD09, KRDI10, BCG11] is to
combine the information from the different graphs and to apply existing clus-
tering methods (for one-dimensional graphs) to the combined representation.
A modularity-based spectral algorithm was proposed by Tang et al. [TWL12].
Although some approaches enable a global weighting of each dimension, none
of these approaches considers clusters in subspaces of the dimensions. As the
approaches combine the information of the different graphs before the actual
clustering, it is not straight-forward to extend them to detect subspace clusters.
In [BGHS12, BGHS13], approaches for clustering graphs with multi-dimensional
edge attributes are proposed, which also consider subspaces. However, in this
case the edge attributes are not weights, but feature vectors of the relation. Thus,
the task is to find clusters with similar attribute values. This solution cannot be

11.3. Subspace Modularity 175

transferred to our problem of finding clusters with high edge weights. Similarly,
in the method by Qi et al. [QAH12], labels represent “edge content” (feature vec-
tors extracted from text). In this approach, the edges of the graph are clustered
by a partitioning approach based on connectedness and similarity of the edge
content, without considering subspaces. From these edge clusters, overlapping
communities of nodes are obtained. So far, there exists no approach tackling
the challenge of detecting clusters with varying locally irrelevant dimensions in
graphs with multi-dimensional edge weights.

11.3 Subspace Modularity

Modularity is the most popular quality function for evaluating the strength of
communities and partitions in graphs. In this section, we introduce a straightfor-
ward extension of the modularity measure to include the evaluation of subspace
projections. For the following discussions, we consider undirected graphs without
multi-edges, whose edges are associated with multi-dimensional weight vectors.

Definition 11.1 (Graph) A graph G is defined as a triple G = (V, E, fg) with a set
of n vertices V.= {vy,...,v,}, aset ofedges E C M :=V x V, a set of dimensions
D and a function fr: M — RQ., |D| € Ny such that:

fe(B)CRY A Yee M\ E: fgp(e) =0p)

The function fg assigns a |D|-dimensional vector w; ; := fg(v;, v;) with non-
negative components to each adjacent vertex pair v;,v; and the zero-vector to
each non-adjacent vertex pair. For this edge weight vector the d-th component is
the edge weight in the d-th dimension (d € D) and denoted by u,‘l] W.lo.g., we
assume that there is at least one non-zero edge weight in each dimension and
therefore at least one edge in the graph. (Dimensions without edges have no
clustering structure and can be excluded from further consideration.)

A clustering for a graph G is commonly defined as a partitioning of the graphs’
vertices. Since we consider clusters in subspace projections, we additionally as-
sign an individual set of dimensions to each cluster:

Definition 11.2 (Clustering) For a graph G = (V, E, fg), VK e N,1 < K < |V]:
(C,8) with C := (cl, Ok | O O SV U o=V, N G = {}),

S :=(S1,....8 | S1,...,Sx CDA Si,...,Sk #{}) is a clustering of G and
each C, € C is called a cluster.

176 Modularity for Subspace Clustering in Multi-Dimensional Graphs

Since obviously not every partitioning is a good clustering, we need an objec-
tive function to assess the quality of a graph clustering. The most widely used
one is the modularity [For10], which we briefly discuss before extending it to
consider subspaces.

11.3.1 The Existing Modularity Measure.

While there exist multiple definitions of what constitutes a good clustering within
a graph, the unifying idea is that a good clustering should have a relatively high
density of edges inside each cluster and a low edge-density between different
clusters. The modularity helps to quantify low and high density by measuring the
degree to which the arrangement of edges identified by the clustering is statis-
tically surprising compared to a null model, i.e., an equivalent graph (same size
and vertex degrees) where edges are placed at random. For unweighted graphs,
the modularity corresponds, up to a normalization factor, to the number of intra-
cluster edges minus the expected number of intra-cluster edges in the null model.
The weighted version of the modularity measure for a clustering C is defined as

1 w; - w]‘ n L .
Q) :=— g E w; ; — where w; := Y w;; and w :=)" w;. This
w ’ w — " =
CreC v eCy J=1 i=1

generalization of the modularity for weighted edges favors clusterings with a

high density of high-weighted edges inside each cluster and a low density of such
edges between clusters. Modularity values lie in (—1, 1), where positive values
indicate a possible presence of a clustering structure and the larger the values,
the more significant is the clustering.

11.3.2 The Subspace Modularity Measure.

In the following, we aim to further extend the modularity to multi-dimensional
edge weights and, more importantly, to enable the evaluation of clusters in the
context of only the relevant edge weight dimensions. Especially when the weight-
vector is high-dimensional, the probability of all weight-dimensions being rele-
vant for each cluster decreases. A high proportion of irrelevant or noisy dimen-
sions can obfuscate the clustering structure and an otherwise meaningful clus-
tering result will achieve misleadingly low quality values when evaluating the
modularity with respect to all dimensions. To avoid this misinterpretation of
clusterings due to dominating irrelevant dimensions, it is crucial to restrict the
evaluation only to relevant dimensions.

11.3. Subspace Modularity 177

A further important aspect is that for each cluster a different set of dimen-
sions can be relevant. For example, in our example from Fig. 11.1, each group
of authors works on a different topic and thus different keywords are relevant
for each cluster. Intuitively, a dimension should be relevant for a cluster if and
only if its edge weights in this dimension are larger than expected. In Fig. 11.1,
we intuitively have three different clusters: cluster C; = {a,b, ¢, d} with the rel-
evant dimensions 1 and 2, Cy = {e, f, g} in dimension 3, and C3 = {h,,j,k} in
dimension 1. However, if we simply summed up the weights of each edge to a
single edge weight in order to use the existing modularity measure, the clusters
(5 and C5 would be merged into a single cluster, even though this cluster would
not be well connected in any of the single dimensions. In contrast, with our
subspace modularity measure, we are able to detect all three clusters and their
corresponding subspaces.

To incorporate multi-dimensional edge weights into the modularity, we in-
tuitively simply sum up the modularity contributions of every edge-dimension in
the subspace of the corresponding cluster. To ensure comparability of the weights
in different dimensions, we assume the weights in each dimension to be normal-
ized to [0, 1].

Definition 11.3 (Subspace Modularity) Let G be a graph and C a clustering of
G. The subspace modularity Qp is defined as follows:

weso-tEE 3[4

CkGC deSy vi,v;€C

Dl n
where w; :== Y > wi; and w := Z w;.
d=1j=1
For each Cluster Cy, we compare all edge weights w¢ ; in each relevant dimen-
sion d € S, against their expected weight Nz‘,j' At this pomt, one could argue that
the expected weight should be determined based on each dimension individually,

ie., ul;=w! - wi/ Z w¢. Although this would be a formally correct extension of
i=1
the modularity, given the subspace clustering perspective, we run into the follow-

ing problem. Since each cluster can have its individual set of relevant dimensions,
some dimensions might be important for more clusters than others. This results
in different weight distributions for each dimension and prevents a comparability
of the modularity contributions in different dimensions. If, e.g., for one edge we

d2 dl

have wf} = w?, wf* = wi?, and wi' = w, then, in the world of subspace clus-

178 Modularity for Subspace Clustering in Multi-Dimensional Graphs

Figure 11.2: Graph with two clusters

tering, we expect that both dimensions, d1 and d2, are equally important for this
cluster, independent of their weights in other clusters. For example, the graph
in Fig. 11.2 consists of the two clusters C; = {a,b,c} and C; = {d, e, f}, both
having the relevant dimensions {1,2}. As the edges in C) have equal values in
both dimensions, we argue that they also should have the same influence in both
dimensions. However, if we determined ;L;{j based on each dimension individu-
ally, the influence in d1 would be lower than in d2, as the sum of all edge weights
in d1 is higher. Therefore, in our definition the expected edge weight is the same
for every dimension, and depends on the sum of the edge weights for all dimen-
sions. It is important to remember, that the edges’ weights in each dimension
are normalized to [0, 1]. The expected edge weight is normalized by the number
of dimensions and the overall weight w. Through the overall normalization fac-
tor i, we guarantee that the subspace modularity only reaches values in (-1, 1).
This allows a comparison among clusterings for different graphs or with different
cluster counts.

With this adaption of the modularity measure, it is possible to evaluate a set
of partitions and their associated subspaces for a graph with multi-dimensional
edge weights. The question at hand is how to determine the optimal clustering
(C*,S8*), i.e., the clustering for which the subspace modularity Qp (C*,S*,G) is
maximal. We call it the Maximum Subspace Modularity (MSM) problem.

Definition 11.4 (Maximum Subspace Modularity) Given a graph G = (V, E, fg)
the maximum subspace modularity (MSM) is the problem of finding a clustering
(C*,S*) out such that

(C*,8") = argmax {Qp (C,S)}
(€.8)ee(G)

where €(Q) is the set of all possible clusterings of G according to Definition 11.2.
Since already the decision problem version of the traditional unweighted

modularity is known to be NP-complete [BDG"06], we cannot expect a gener-
alization of this problem to be optimized efficiently.

11.4. Algorithm 179

11.3.3 Subspace Modularity Complexity Analysis.

For analyzing the complexity of optimizing the subspace modularity measure of
Definition 11.3, we first formulate the according decision problem version of our
optimization problem MSM. By showing that the decision problem version of the
classical modularity for weighted graphs can be reduced to our decision problem
in polynomial time, we can show that our problem is NP-hard. The decision
problem version to the MSM optimization problem is formalized by:

Definition 11.5 (Decision problem for MSM) Given a graph G = (V, E, fr) and
a constant c, is there a clustering (C,S) with Qp (C,S) > ¢ ?

Theorem 11.1 The decision problem version of MSM is NP-complete.

Proof 11.1 a) The input for the maximal modularity problem for weighted graphs
(MWM) is a graph G = (V, E, fg) with one-dimensional edge weights fr(E) € R.
Since we only have 1-dimensional weights and each subspace must have a cardinality
of > 1, the subspace modularity of Definition 11.3 corresponds to the traditional
weighted modularity. Thus, since MWM is NP-complete [BDGT06], MSM is NP-
hard.

b) MSM is in NP: For a given clustering (C,S), we can check in polynomial time
O (|V|? - |D|) whether Qp (C,S) > c. Since the verification is in P, MSM is in NP.

¢) combining a) and b) = MSM is NP-complete.

11.4 Algorithm

Although our MSM problem has the same complexity class as the original weight-
ed modularity problem, it seems to be more complex since the search space is
enlarged exponentially by considering possible subspaces. A closer look, how-
ever, reveals, that, in order to maximize the subspace modularity, a subspace S,
for a cluster C} should contain all and only those dimensions whose modularity
contributions are positive. For a given clustering C, the optimal subspaces can
directly be derived for each cluster Cj, € C by:

S(C) ={deD| Y (wh, - T

ij
vi,v;€C ‘D|U7

)>0} (11.1)

Accordingly, we will denote by S(C) the tuple of subspaces containing for
each cluster C; € C a subspace S; := S(C;) € S(C). Since the subspaces can now

180 Modularity for Subspace Clustering in Multi-Dimensional Graphs

directly be inferred from a given partitioning of the vertices, the search space
reduces to that of the original modularity problem, namely finding the optimal
partitioning. Numerous optimization approaches for the modularity have been
proposed over the years. Spectral methods (e.g., [New06]) work on a “modular-
ity” matrix based on the adjacency matrix of the graph. These approaches can
not easily be adapted for our problem as a single adjacency matrix does not well
represent a multi-dimensional graph. An aggregation of all matrices into a single
one would hinder the detection of clusters in subspaces. However, several greedy
approaches for modularity can be adapted to our problem. Often the idea is to
generate a hierarchical sequence of clusterings, either agglomerative or divisive,
and to stop if there is no further modularity gain or to choose the clustering with
maximal modularity score out of the complete sequence in the end. In each it-
eration, the decision for merging or splitting clusters is based on the modularity
gain of the different alternatives. Other approaches (e.g., [BGLL08]) iteratively
move single vertices to other clusters such that the modularity is increased. Such
local reassignments are also part of approaches based on simulated annealing or
extremal optimization.

While these approaches prove to be very effective in the case of just a single
weight per edge, the subspace determination for multi-dimensional edge weights
complicates their direct adaption for our problem. The difficulty here is that for
the initially very small clusters (in case of an agglomerative approach), or the
initially very large clusters (in case of an divisive approach), or simply just the
bad clusters of initial random partitionings, the modularity contribution of all di-
mensions is usually negative. According to our straight-forward subspace deter-
mination in Equation 11.1 all subspaces would be empty, resulting in a subspace
modularity score of zero. As a consequence, there is no basis for decision-making
to merge or split clusters in the first iterations, which are then performed com-
pletely at random. Since in this preliminary state of the hierarchical clustering
there is no meaningful basis for choosing a set of relevant dimensions, the de-
cision for the hierarchical sequence initially has to be guided by all dimensions.
With continuing iterations, the relevant dimensions become more apparent, and
should have a stronger influence on the clustering sequence. For utilizing hier-
archical clustering approaches to optimize the subspace modularity, we need an
objective function initially incorporating all dimensions, increasing the influence
of the relevant dimensions with progressing iterations, and thus converging to
the actual subspace modularity function:

11.4. Algorithm 181

Definition 11.6 (a-Modularity) Let G be a graph, C be a clustering of G, t € Nx,
the number of iterations, and o : N>o — [0, 1]. The a-modularity Q% is defined as

the following clustering objective function:
o ! 1117‘"[1)]'
WO 3 T 3 altr (- \D‘w)
W Gt viyec aesic
a Wi W
fz >3 - (vh-Ti)

CEC v;,v;€C dES(C)

Basically, this a-Modularity introduces a weighting of relevant and irrelevant
dimensions. Since the initial influence of the irrelevant dimensions should fastly
be diminished such that the objective function fastly converges to the original
subspace modularity, the exponential function is perfectly suited for weighting:

a(t)=1-05-eP"V peRsg

This a-function ensures that we start with «(t = 0) = 0.5 in the first iteration
and then converge relatively fast to 1 («(t — oo) = 1). Since the length of the
hierarchical clustering sequence and, thus, the number of iterations after which
we yield meaningful subspaces strongly depends on the size of the underlying
graph, «(t) also depends on the number of vertices |V|. The constant p influences
how fast «(t) converges against 1 and is called the convergence speed factor of a.
In experimental results the value of p = 1.5 has shown good results and is used
as default value for our evaluation.

With the help of the a-Modularity of Definition 11.6, we can simply apply the
greedy clustering procedures based on iterative reassignments of vertices that are
already available in the literature. In the following, we exemplarily describe how
we can adapt the approach from [BGLLO8] and a simple hierarchical bottom-up
approach. Algorithm 11.1 describes the general greedy workflow adapted from
[BGLLO8]. We iteratively perform a hierarchical clustering step based on the a-
Modularity (line 3), until the clustering quality measured as subspace modularity
does not improve any more. In this case, we collapse the graph (line 7), according
to the second phase described in [BGLLO8], which constructs a new graph, where
nodes represent the clusters of C' and edges and weights are adapted from G'.
Based on this new graph, we continue the iterative clustering update until neither
the clustering nor the graph changes anymore. The function for the clustering-
update(Ct, G, Q%,t) can be any greedy iterative clustering method guided by the
a-Modularity objective function. In [BGLLO8], this step is designed as a greedy

182 Modularity for Subspace Clustering in Multi-Dimensional Graphs

Algorithm 11.1: Framework for hierarchical clustering
input : A graph G
output: A partitioning C of the graph G

t = 0; G' = G; C! = singleton clusters of V
while true do
Ct*! = clustering-update(Ct, G, Q% t)
if Qp(C1,8(CH),G) > Qp(C, S(CH),G) A CH! #£ CP then G =G
else
Ct+1 — Ct
G = collapse(G?, C") /* see [BGLLOS8] */
if G == G'*! then break

L t=t+1

® N U AW N =

o

Algorithm 11.2: clustering-update(Ct, G*,Q%,,t) as local reassignment of
vertices according to [BGLLOS8]
input : A clustering C, a graph G, an objective function @,
an iteration counter ¢
output: An updated partitioning C* of G
1C*=C
2 forall the v € V do
3 Find cluster C' incident to v with highest quality gain if v is
transferred to C'
4 | fQ(C .G, 1)>Q(C G, t) then C*=Cl, oy,

local approach (Algorithm 11.2) where one vertex v is reassigned to a neighbor-
ing cluster C' if this leads to a positive a-Modularity gain out of all choices for C.

A corresponding adaption of a traditional hierarchical bottom-up approach
is depicted in Algorithm 11.3. Here, we iteratively combine the cluster pair
(C;, C;) € € x C, whose union yields the highest positive a-Modularity gain.

11.4.1 The SuMo Algorithm

Although the presented simple greedy heuristics are already able to find a good
clustering solution with respect to the subspace modularity, we want to introduce
a new clustering — update function SuMo, incorporating in each step all of the
available information. We will see in the experimental section that SuMo is more
robust against noise dimensions than Algorithms 11.2 and 11.3, which is a neces-

11.4. Algorithm 183

Algorithm 11.3: clustering-update(C', G*, Q% t) as pairwise merge of clus-
ters

input : A clustering C, a graph G, an objective function @),

an iteration counter ¢

output: An updated partitioning C* of G
1C*=C
2 while true do
3 choose argmaz(c, c;yecxc-Q(Cé, ¢, G t)
4 | ifQ(Clc, G1) 2Q(C",G,t) then C* = C¢, ¢,
5 else break

sary property for the task of subspace clustering. While Algorithm 11.2 just tries
to move any vertex v to an incident cluster, SuMo tries to find the “most promis-
ing” vertex-cluster pair in each step. Instead of just deciding based on the quality
gain of moving one vertex v into a cluster C, the key idea for SuMo is to addition-
ally consider the tendency of neighboring vertices to follow into cluster C' in later
iterations. Based on the definition of the modularity, the contribution of a vertex
to the modularity of a clustering strongly depends on the cluster membership of
its incident vertices. Thus, moving a vertex v; whose majority of neighbors will
later join its cluster choice might be preferable compared to a node v; whose
neighbors will keep their current cluster assignments, even if the actual quality
gain by just moving v; is larger than that of moving v;. Of course, this preference
is also influenced by the quality gain expected from the neighbors of v;.

First, we consider for each cluster C}, and each vertex v; the quality gain of
moving v; into Cj, and for each neighbor v; of v; the additional quality of moving
v; as well. We represent this as a quality gain matrix:

Definition 11.7 (Quality Gain Matrix of a Cluster) Given a graph G, a cluster-
ing C of G, a cluster C), € C, and a quality function). The quality gain matrix Gy,
is then defined as:

Q(C(/‘ke{ui}) - Q(C) ’:f7 =7
Grij =4 - [QCoptfvin) — QCoptuy)] If v;EN(v7)
0 else

where N(v;) ={v; € V|3{v;,v;} € E} is the neighborhood of v;, Cc, s represents
the clustering C, where all vertices M C V are moved to cluster Cj, and md =

max deg(u) is the maximal degree of neighboring vertices of C,.
u€EUy; ey, N(vi)\Cr

184 Modularity for Subspace Clustering in Multi-Dimensional Graphs

A row Gy; of the quality gain matrix represents the quality gains of mov-
ing v; in combination with its neighbors N(v;). Since we are actually moving
just the vertex v;, the quality gains of its neighbors are only of secondary im-
portance, which requires the weighting by -L.. Otherwise, the beneficial im-
pression of a vertex could mainly originate from its neighbors. At this point
one could simply choose the vertex v; and the cluster C} for which Cj,v; =
argmarc,ecv,ev (21,1,ev Gy,ij). This would be a valid choice given two condi-
tions: a) all of v;’s neighbors actually follow into cluster C}, and b) it is beneficial
for cluster C), to absorb all of v;’s neighbors. Since, intuitively, these two con-
ditions do not necessarily hold, our objective function needs to incorporate two
different perspectives: the preferences of each vertex to join the different clusters
and the preferences of each cluster to absorb the different vertices.

For the perspective of the vertices, the preference of a vertex v; for a clus-
Gyii

chgc Gii®
capture the desirability for cluster C), to include a vertex v;, we define a prefer-

ter C, € C can simply be represented by the relative quality gain To
ence vector t;. Intuitively the preference for a vertex v; depends on the quality
improvement gained by including v; (Gy;,), on potential further improvements
achieved by including its neighbors v; (Gy,;), and on the cluster’s preference
of including these neighbors (t; ;). Expressed formally, we have the following
eigenvector problem:

At =Gy - ty,

For a better comparability of the preference values for different vertices, we want
to ensure that each entry of t, has the same sign. By slightly adapting the quality
gain matrix Gy, to a positive matrix, we can ensure that there exists a positive
eigenvector corresponding to the largest eigenvalue (Perron-Frobenius theorem
[Mey00]). Therefore, we adapt G, as follows:

Gk,i,j + |m\ if Vj S N(UL)U {U,}
XN
! € else

where m = miny;; {Gy;;,0} and e € R*, e <« 1 is an arbitrarily small positive
number. The eigenvector t; corresponding to the largest eigenvalue of Gy ; ; rep-
resents the vertices’ desirability for one cluster C,. To enable a comparability
between the preference vectors of different clusters, we normalize each vector t;

such that its largest entry is 1. We combine the clusters’ and the objects’ prefer-
ences into one “probability” vector p,, € [0,1]'V! for each cluster:

11.4. Algorithm 185

Algorithm 11.4: clustering-update(Ct, G*,Q%,,t) as local reassignment of
vertices according to SuMo
input : A clustering C, a graph G, an objective function Q,
an iteration counter ¢

output: An updated partitioning C* of G
cr=C
forall the C), € C do Compute ty, p,, j,
while P = {(v;, C}) | v; not moved yet,v; ¢ Cy} # () do

Choose pair (v;, Cy) € P for which j, ; is maximal

if Q(C*c,ns, G,) > Q(C*, G, t) then

L Cr = C*Ck«—n
Py = 1 and p,; = 0 VI # k, recompute j,’s

N ohs w N =

8 else break

* K
P, — Gpii i
k — * *
ZCLEC Gl,i,i : tl,i =1V

In p,, we have an entry for each vertex v; representing the tendency that v;
will actually move to cluster Cy. This tendency is determined as the preference
of cluster C), for this object, weighted by the actual quality gained by v;, and
normalized by the overall tendency of v; for all clusters. While a decision for the
best cluster-vertex pair solely based on the gain matrix G, was a too optimistic
simplification of the problem at hand, a weighting with the tendency vector p,,
allows a more realistic assessment. An entry j, , of our indicator vector j, for
cluster C}, describes the expected quality gain if the vertex v; is transferred to
cluster Cj..
Je =GPy

Since the vertex-cluster pair with the highest entry j;; is expected to be most
beneficial with respect to later reassignments, we reassign v; to cluster C}, (Algo-
rithm 11.4 line 4). If the quality of the clustering has not improved, we stop our
clustering-update (line 8), else we search for the next promising, so far uncon-
sidered vertex to be reassigned (line 3).

Since the eigendecomposition for determining the clusters’ preference vectors
t, is the computational bottleneck of this update function, we try to decrease
effort and frequency of recomputing t,. Instead of recalculating all vectors t
after assigning vertex v; to cluster C), we directly update the overall preferences

186 Modularity for Subspace Clustering in Multi-Dimensional Graphs

Py,» such that p;; = 1 and all other probabilities p; ; = 0 for k#/ and recompute
all j, vectors before continuing the update step (line 7). A further enhancement
concerns the size of the gain matrices Gy, for each cluster. Since the reassignment
of a vertex to a non-adjacent cluster can only decrease the cluster’s modularity,
we can restrict our computations to pairs (v;, C) such that v; € U, ec, N(vy), i.e.,
v; is connected to at least one vertex from C}. Further efficiency improvements
like the exploration of the gain matrices’ sparsity for the eigendecomposition are
left for future work.

11.5 Experiments

In this section, we evaluate the effectiveness of our subspace modularity model
and the performance of the different algorithms for its optimization described in
Section 11.4 using synthetic and real-world data.

Experimental setup. We compare our subspace modularity measure Qp to a
‘full-space modularity’ variant () which simply sums up the edge weights of
all dimensions and computes the modularity on the resulting graph. Our SuMo
algorithm is compared to the adapted algorithms described in Section 11.4: the
local reassignment function according to [BGLLO8] (denoted by LR), cf. Algo-
rithm 11.2 and the hierarchical clustering (denoted by H), cf. Algorithm 11.3.
For both approaches, we apply the full-space objective function Q) as well as the
subspace modularity ()p. As further competitor, we choose the popular approach
of Newman [New06], which works on just a single weight and is not easily trans-
ferable to multi-dimensional weights. We therefore apply it as full-space variant
with just a single weight as sum of the weights of all dimensions. All experiments
were conducted on 2.33 GHz Intel Xeon CPUs with Java6 64-bit. We provide all
used datasets on our website. For the experiments on synthetic data, we compare
the detected results to the ground truth using the NMI measure (Normalized Mu-
tual Information). As for the real-world datasets no ground truth is available, we
can only compare key characteristics of the clustering results such as the achieved
modularity scores, as well as the number K of detected clusters, and the runtime.
Furthermore, we compute the NMI value of the results of SuMo to those of all
other approaches, thereby evaluating the similarity of the results. Please note
that the NMI does not correspond to a clustering quality here. Low NMI val-
ues indicate, however, that SuMo produces novel clustering results that cannot
already be detected using the other objective functions or approaches.

11.5. Experiments 187

=——SuMo =—lR-QD ==-LR-QF =—H-QD ==-H-QF ==-Newman

= 1 = 1

s o A= J_/\\] /./V

H “Xzs-n v H /

£ 08 s £ o038 =

z 1 \ *-\\x \ z / / B

= 3 \ 2 __ |1 | _eefm=== ———>T0

s 0.6 S N s 06 — >

ORI NN S W SRR ey

w 0.4 S N, < w 0.4 - '

c 1 ~< \ ~o < 1 P / ——

\ AN\ e £, L S

5% S §02 L

= = =

S 0 - S 0 T T T T T T T T T 1
10 20 30 40 50 60 70 80 90 1.0 1.5 2.0 2.5 3.0 3.5 40 45 5.0 55 6.0

number of irrelevant dimensions intra-cluster weights

Figure 11.3: Quality vs. irrelevant dim. Figure 11.4: Quality vs. intra-weights

Experiments on synthetic data. We start by analyzing the different approach-
es in combination with each objective function for varying characteristics of the
input datasets. Therefore, we generated a series of synthetic datasets. Each
generated graph is 15-dimensional and consists of 4 clusters, each containing 30
to 50 vertices, and having 2 to 3 relevant dimensions.

In Fig. 11.3, we increase the number of irrelevant dimensions. Newman’s
approach behaves as expected for the full-space scenario and shows decreasing
quality scores. LR-QF shows better results for few irrelevant dimensions and its
robustness can be improved by the subspace modularity (). For the H-algorithm,
using @Qp has no noteworthy positive affect, also confirmed by the other experi-
ments. Since hierarchical algorithms explicitly relinquish any backtracking, mis-
takes in the first iterations have a massive impact on the later clustering decisions.
This counteracts with the Q* idea of iteratively converging to the @, modularity.
SuMo clearly proves to be more robust against irrelevant dimensions and can ex-
ploit the Qp modularity more effectively than the other algorithms. If optimized
successfully, the subspace modularity massively diminishes the negative effect of
irrelevant dimensions.

In Fig. 11.4, we examine the impact of the actual weights on the clustering re-
sults. While for intra-cluster edges irrelevant dimensions have an average weight
of 1, we vary the average weight of relevant dimensions from 1.0 to 6.0 (before
normalization). Inter-cluster edges have an average weight of 1 for all dimen-
sions. This experiment shows that SuMo is best capable of capturing the cluster-
ing structure if it is only weakly indicated by the weight-distribution. Also the
LR-approach benefits from the subspace modularity). Full-space approaches
only detect meaningful clusters if the intra-clusters draw a glaring picture.

188 Modularity for Subspace Clustering in Multi-Dimensional Graphs

=—=SuMo ==—LR-QD ==-LR-QF =—=H-QD ==-H-QF ==-Newman
1

0.8 ::\\ AN
o6 R

\ \\\
BT
\] ~
0.4 v N N
~, \
N
N

0 — T T
0 100 200 300 400 500 600 700 800 900
number of noisy edges

clustering quality (NMI)

Figure 11.5: Quality vs. noise

For the experiment shown in Fig. 11.5, we increase the amount of noisy edges,
which affects the graph structure and the weights as well. Again, we observe that
LR performs better by using @)p than with its full-space counterpart. With SuMo
we can observe that the concentration on important information though subspace
clustering helps balancing off the negative effects of noise.

=——SuMo =—|R-QD ==-LR-QF =—H-QD ==-H-QF ==-<Newman
1E+03 1E+08
1E+07 —
3 16402 T 1E+06 //
¢ ror PIE05 | ="
£ — ——== B 16404 - —
N R -l 21E+03 — _e====T
1E+00 S ot I
/ 1E+02 Lo= -==
1E-01 T o TTTTSSssmsmsseem—eoossooos 1E+01 : :
100 800 80 160 320
number of edges graph size (vertices & edges)
Figure 11.6: Runtime vs. # edges Figure 11.7: Runtime scalability

Although our focus is on evaluating the cluster quality, we briefly discuss the
methods’ efficiency. In Fig. 11.6, we increase the number of edges of the graph.
All algorithms scale linearly (note the logarithmic scaling of both axes) and we
see that the application of Qp only marginally affects the runtime. While SuMo
and the hierarchical algorithm show a similar runtime, the algorithm of [BGLLO8]
and Newman clearly outperform them both. In Fig. 11.7, we increase the number
of nodes in a graph, which is accompanied by a quadratic increase of the number
of edges (logarithmic scaling of both axes). Accordingly, the runtimes of all al-
gorithms increase super-linearly. Newman is the overall most efficient algorithm.
However, only solving the full-space clustering problem.

11.5. Experiments 189

NMI (@p Qr K runtime NMI @p Qr K runtime
SuMo (@Qp) 1 0.69 0.22 22 54,5945 1 076 0.70 25 7,449s
LR (Qp) 049 0.69 020 4 1,057s 0.77 0.77 0.73 18 115s
LR (QF) 0.42 0.59 0.52 31 235s 0.79 0.77 0.75 40 67s
H (Qp) 0.45 0.67 0.50 88 20,039s 0.8 0.78 0.74 50 8,467s
H (Qr) 0.41 0.64 0.53 84 15,564s 0.79 0.78 0.74 48 7,518s
Newman 0.33 0.58 0.46 39 25s 0.72 0.73 0.70 54 34s

Table 11.1: Clustering results on IMDB Table 11.2: Clustering results on arXiv

Experiments on real-world data. Our first real-world dataset is an extract of
the IMDb movie database (www.imdb.com). The vertices represent movies pro-
duced in USA, Canada, UK, or Germany, which are connected to each other if
they share actors or if there exists a re