
Zoomable User Interfaces:
Communicating on a Canvas

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker Leonhard Karl Wilhelm
Lichtschlag

aus Köln, Deutschland

Berichter: Professor Dr. Jan Borchers
Senior Researcher Stéphane Huot, PhD

Tag der mündlichen Prüfung: 27. November 2015

Diese Dissertation ist auf den Internetseiten der

Hochschulbibliothek online verfügbar.

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, January 2016

Leonhard Lichtschlag

v

Contents

Abstract xix

Überblick xxi

List of Publications xxiii

Acknowledgements xxv

Conventions xxvii

1 Introduction 1

2 The World on a Canvas 7

2.1 Information Visualization 8

2.1.1 Design Space of Spatial User Interfaces 9

2.1.2 Overview + Detail 10

2.1.3 Focus + Context 12

2.1.4 Zoomable User Interfaces 15

2.1.5 Cue . 16

vi Contents

2.1.6 Transparency 17

2.1.7 Fragmentation and Continuity of the
Information Landscape 18

2.1.8 Review of the Canvas Design Space . 20

2.2 Evolution of Zoomable User Interfaces and
Important Milestones 22

2.2.1 Pad: The Original 22

2.2.2 Portals 23

2.2.3 Semantic Zooming 24

2.2.4 Pad++: Metaphor-free Navigation . . 25

2.2.5 Multi-Level Interaction 26

2.2.6 Early Adaptation: KidPad 27

2.2.7 Limited Application Domains 28

2.2.8 Ubiquitous Use Today 30

2.3 User Interaction of Zoomable User Interfaces 31

2.3.1 Speed Dependent Automatic Zooming 33

2.3.2 Editing Interactions 35

2.4 Implementing Zoomable User Interfaces . . . 36

2.5 Promise of Zoomable User Interfaces 38

2.5.1 What We Already Know about
Zoomable User Interfaces 39

2.6 Research Questions for Zoomable User Inter-
faces . 41

2.6.1 Domain Studies 41

Contents vii

2.6.2 Authoring 41

2.6.3 Scaling of Text 42

3 Presenting on a Canvas 45

3.1 The Task and the User 46

3.1.1 History 48

3.1.2 The Speaker 50

3.1.3 The Author 52

3.1.4 The Audience 55

3.1.5 The Reviewer 56

3.1.6 User Base 57

3.2 Slideware . 58

3.2.1 Blame for PowerPoint 58

3.2.2 Blame for Authors 60

3.2.3 No Significant Difference 60

3.2.4 Analysis From an HCI Perspective . . 61

Content Cutting 63

Time Dominance 63

Detail Trap 65

3.3 Canvas Presentation Software 66

3.3.1 CounterPoint 67

3.3.2 Fly . 69

viii Contents

3.3.3 Prezi 73

3.3.4 DragonFly 74

3.3.5 Comparing and Contrasting 76

3.4 Studies . 77

3.4.1 Authoring Lab Studies 78

More Connected Layouts 79

More Diverse Layouts 80

Incremental Revealing 83

Discussion 83

3.4.2 Investigating the Author in the Field . 85

Study Method 86

Observations 86

Layout Strategies 87

Overviews 88

Zooming 89

Rotation 90

Discussion 90

3.4.3 Investigating the Presenter 91

Study Design 93

Evaluation 96

Discussion 100

Limitations 100

Contents ix

3.4.4 Investigating the Audience 101

Study Design 102

Study Results 106

Discussion 108

3.5 Outlook . 109

4 The Code Base on a Canvas 111

4.1 The Task and the User 112

4.1.1 Physical Analogy 113

4.1.2 The Relation Between Writing and
Coding 115

4.1.3 Why is Reasoning About Code So
Hard? 116

4.1.4 Cognitive Models of Software Design 119

4.1.5 User Tasks 120

Authors of a Code Base 121

Navigation in a Code Base 124

Understanding a Code Base 125

Communicating with Team Members 129

4.2 Visualization Approaches to Improve IDEs . 130

4.2.1 Rich Documentation for Human
Readers 131

4.2.2 Live Coding 131

4.2.3 Leveraging Programmer Activity . . . 132

x Contents

4.2.4 Exploring the History of the Code Base 133

4.2.5 Linguistic Analysis 134

4.2.6 Visual Programming 134

4.2.7 Canvas Visualizations 135

4.3 Our Approach 136

4.3.1 CodeGestalt: Our Vocabulary Based
Design 138

The CodeGestalt Prototype 140

The Tag Overlay 142

The Thematic Relations 143

Study 144

Quantitative Results 144

Qualitative Results 145

Discussion 146

4.3.2 CodeMixer: Our Design Patterns
Based Design 147

Code Mixer Design 151

Study 153

Discussion 154

4.3.3 CodeGraffiti: Our Sketching Based
Design 156

The CodeGraffiti Prototype 158

Navigation Study 163

Contents xi

Quantitative Results 166

Qualitative Results 167

Interview 169

5 Excursus: Writing on a Canvas 173

5.1 Setup . 174

5.2 Observations 175

6 Discussion 179

6.1 What We Learned for Presentations 180

6.2 Next Directions for Presentations 182

6.3 Critique of Our Coding Designs 183

6.4 Next Directions for Sketching 187

6.5 Our Three User Roles Model 190

6.6 Outlook . 192

6.7 ZUIs and the Canvas 193

6.8 Limitations . 195

Bibliography 197

xiii

List of Figures

1.1 A Canvas Overview of this Thesis Document 5

2.1 Focus and Context 9

2.2 Taxonomies 11

2.3 Visualization Techniques Examples 13

2.4 Our Modified Design Space 20

2.5 Pad . 23

2.6 Geometric and Semantic Zooming 25

2.7 Multiple-level Interaction 27

2.8 Features of ZUI Applications 29

2.9 Speed Dependent Automatic Zooming 34

3.1 The Users and Tasks Involved with Presen-
tations . 48

3.2 Reported Authoring Activities 54

3.3 Canvas Presentation Tools 67

3.4 CounterPoint 68

xiv List of Figures

3.5 Workflow of Canvas Presentations 69

3.6 Our Second Fly Iteration 70

3.7 Our Third Fly Iteration 71

3.8 Our Mobile Fly Implementation 72

3.9 Prezi . 73

3.10 DragonFly . 75

3.11 Studies Presented in the Chapter 3. 78

3.12 Fly Paper Prototype 79

3.13 Group Ordering on Slides and Canvas 80

3.14 Fly Layout with Three Groups 82

3.15 Two Common Designs of Canvas Layouts . . 82

3.16 Example of the Revealing Problem in Fly . . 84

3.17 Prezi Canvases with Decorative Layouts . . . 87

3.18 Two Prezi Canvases with Topic Area Structures 88

3.19 Incrementally Developed Presentation 89

3.20 Distribution for Layout Strategies. 89

3.21 Overview of the Presenter Study 94

3.22 SAM Results of the Presenter Study 97

3.23 SD Ratings of the Presenter Study 98

3.24 Audience Study Design 103

3.25 Presentations of the Audience Study 105

3.26 Quantitative Results of the Audience Study . 106

List of Figures xv

4.1 Big Picture Views for Physical Objects 113

4.2 Two Examples of Text Scaling 114

4.3 The Story of “All You Zombies” Visualized . 118

4.4 Canvas Layout of “Strudlhofstiege” 122

4.5 Model of Program Understanding 128

4.6 Diagram Rendered by CodeGestalt 140

4.7 CodeGestalt Class Box Element on the Canvas 141

4.8 CodeGestalt Tag Overlays and Thematic Re-
lations . 142

4.9 CodeGestalt Tag Overlay 143

4.10 CodeGestalt Study Examples 146

4.11 Codelets . 150

4.12 CodeMixer Early Design 151

4.13 CodeMixer Final Design 152

4.14 CodeMixer Study Setup 153

4.15 The Two Concepts of CodeGraffiti 158

4.16 CodeGraffiti Mission Control View 160

4.17 CodeGraffiti Sketchbar View 161

4.18 Editing in the Sketchbar View 162

4.19 CodeGraffiti Study Sketch 164

4.20 Quantitative results 166

4.21 Histogram of Glances 167

xvi List of Figures

5.1 Setup of the Writing Experiment 174

xvii

List of Tables

2.1 Common Input Mappings for ZUIs 32

3.1 The Different Canvas Tools 77

3.2 Qualitative Results of the Audience Study . . 107

xix

Abstract

Zoomable user interfaces (ZUIs) are an interesting alternative to existing interfaces
such as overview + detail designs. ZUIs lay out information on a unified infor-
mation landscape, whereas overview + detail traditionally promotes fragmented
information. The choice of interface paradigm not only influences how the infor-
mation is presented but also how the software affords to be used. Existing studies
of ZUIs have three limitations: They often investigate lab scenarios that do not nec-
essarily translate well to usage domain scenarios. Many studies compare different
ZUI designs, but do not compare them to an established domain baseline. Also,
many studies focus on navigation tasks primarily and learning tasks secondarily,
yet we also have to consider authors. On the side of design, ZUIs have an unad-
dressed problem of integrating textual content.

We present a model of author, navigator, and learner to investigate interfaces with.
We then study ZUIs and traditional overview + detail user interfaces in two do-
mains: presentation support and integrated development environments (IDEs). In
the first, we design a ZUI presentation system, Fly, and find that especially authors
explore more creative designs than with existing baseline software, while presen-
ters and learners perform on par with the baseline. In the second domain, we ex-
plore three design options to project text to spatial information landscapes: vocabu-
lary based, pattern language based, and hand-drawn sketching based designs. We
finally study navigation with sketches compared to a traditional IDE and find it a
viable alternative that is strongly adopted by the testers.

In summary, we explore the field of ZUIs further and present these contributions:
We test ZUIs as the primary metaphor in two practical domains and find them
in parts superior to the baseline. We provide studies that underline that one has
to study multiple user roles with ZUIs to get a complete image of the benefits in
practical applications. Additionally, we show the feasibility to abstract text with
sketches, which opens a new design direction for IDEs.

xx Abstract

xxi

Überblick

Skalierbare Benutzerschnittstellen (ZUIs) sind eine interessante Alternative zu
bestehenden Benutzerschnittstellen mit separaten Übersicht- und Detailansichten.
In ZUIs werden die Informationen zusammenhängend auf einer einzigen Infor-
mationslandschaft ausgebreitet, wogegen klassische Benutzerschnittstellen Infor-
mationen eher fragmentiert darstellen. Die Wahl einer Benutzerschnittstelle beein-
flusst nicht nur den visuellen Eindruck, sondern auch wie sie von dem Anwender
verwendet wird. Bisherige Studien an skalierbaren Benutzerschnittstellen haben
mehrere Einschränkungen: Sie betrachten die Interaktion oft in Laborumgebungen
und nicht mit realitätsnahen Aufgaben der Benutzer, sie vergleichen die Interak-
tion nicht mit einer anwendungsbezogenen Kontrollkondition, und sie betrachten
kaum die Erstellung der Informationslandschaft. Des Weiteren ist es problematisch
Textelemente zu skalieren und somit sind diese schwer in ZUIs einzubauen.

Wir schlagen vor die Benutzerschnittstellen mit drei Blickwinkeln zu betrachten:
der eines Autors, der eines Navigators, und der eines Lernenden. Dann unter-
suchen wir ZUIs und anwendungsnahe Kontrollkonditionen in zwei Domänen: für
Präsentationssysteme und für Integrierte Entwicklungsumgebungen (IDEs). Wir
stellen ein skalierbares Präsentationssystem vor und schlussfolgern, dass Autoren
vielfältigere Präsentationen erstellen als bei der Kontrollkondition, wogegen Navi-
gatoren und Lernende ähnlich zur Kontrollkondition agieren. Für IDEs stellen wir
drei Visualisierungen vor. Diese basieren jeweils auf dem Vokabular des Quell-
textes, auf Entwurfsmustern, und auf handgezeichneten Skizzen. Mit diesen Visu-
alisierungen betten wir Text in Informationslandschaften ein. In einer Studie mit
handgezeichneten Skizzen stellen wir fest, dass diese eine echte Alternative für
Navigatoren in IDEs darstellen.

xxii Überblick

Insgesamt liefern wir drei Beträge zu der Erforschung von ZUIs: Wir testen ZUIs
in zwei Anwendungsdomänen und stellen einige Vorteile gegenüber den Kon-
trollkonditionen fest. Wir führen drei Blickwinkel ein und untermauern mit den
Studien, dass diese Blickwinkel helfen das Benutzerverhalten genauer zu verste-
hen. Zuletzt zeigen wir, dass unser Ansatz mit handschriftlichen Skizzen geeignet
ist, Text in Informationslandschaften einzubetten und dies eröffnet neue Gestal-
tungsmöglichkeiten für IDEs.

xxiii

List of Publications

• Leonhard Lichtschlag, Philipp Wacker, Martina Ziefle, and Jan Borchers. The
Presenter Experience of Canvas Presentations. In INTERACT 2015: Proceedings
of the 15th IFIP TC.13 International Conference on Human-Computer Inter-
action, September 2015.

• Leonhard Lichtschlag, Lukas Spychalski, and Jan Borchers. CodeGraffiti:
Using Hand-drawn Sketches Connected to Code Bases in Navigation Tasks. In
VL/HCC 2014: Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing, pages 65–68, July 2014.

• Leonhard Lichtschlag, Thomas Hess, Thorsten Karrer, and Jan Borchers. Can-
vas Presentations in the Wild. In CHI EA 2012: Proceedings of the 2012 ACM
annual conference extended abstracts on Human Factors in Computing Sys-
tems Extended Abstracts, pages 537–540, May 2012.

• Leonhard Lichtschlag, Thomas Hess, Thorsten Karrer, and Jan Borchers. Fly:
Studying Recall, Macrostructure Understanding, and User Experience of Canvas
Presentations. In CHI 2012: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 1307–1310, May 2012.

• Florian Heller, Leonhard Lichtschlag, Moritz Wittenhagen, Thorsten Karrer,
and Jan Borchers. Me Hates This: Exploring Different Levels of User Feedback for
(Usability) Bug Reporting. In CHI 2011: Extended Abstracts of the CHI 2011
Conference on Human Factors in Computing Systems, pages 1357–1362, 2011.

• Thorsten Karrer, Moritz Wittenhagen, Leonhard Lichtschlag, Florian Heller,
and Jan Borchers. Pinstripe: Eyes-free Continuous Input on Interactive Clothing.
In CHI 2011: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1313–1322, Vancouver, Canada, May 2011.

• Leonhard Lichtschlag and Jan Borchers. CodeGraffiti: Communication by
Sketching for Pair Programming. In UIST 2010: Adjunct Proceedings of the
23nd annual ACM symposium on User Interface Software and Technology,
pages 439–440, New York, NY, October 2010.

xxiv List of Publications

• Thorsten Karrer, Moritz Wittenhagen, Leonhard Lichtschlag, and Jan
Borchers. ExamPen: How Digital Pen Technology Can Support Teachers and Ex-
aminers. In CHI 2010: Workshop on Next Generation of HCI and Education,
Atlanta, USA, April 2010.

• Leonhard Lichtschlag, Thorsten Karrer, and Jan Borchers. Fly: a Tool to Author
Planar Presentations. In CHI 2009: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 547–556, Boston, MA, USA,
April 2009.

• Leonhard Lichtschlag. Fly: An Organic Authoring Tool for Presentations.
Diploma thesis, RWTH Aachen University, Aachen, November 2008.

xxv

Acknowledgements

While there is only one author on the front page of this document, I would not have
been able to finish it, if I had not been supported so generously. Bettina, Michael,
and Karl are my greatest supporters, and I will have more time for you from now
on, I promise!

Prof. Dr. Jan Borchers helped me at all stages of my path to become a researcher. He
first got me interested in Human Computer Interaction with the DIS lecture series
and encouraged me to pursue a PhD thesis topic. He provided invaluable support
in all our publications, from improving my argumentation to relentlessly pointing
out that I have no idea how comma rules work. I also want to thank Prof. Stéphane
Huot for supporting this thesis as a co-advisor.

My colleagues and co-authors at the media computing group are exceptional and I
detail their contributions to this thesis in the respective chapters. Above all, I want
to thank Florian Heller, Thorsten Karrer, Jan-Peter Krämer, Maximilian Möllers,
Chatchavan Wacharamanotham, and Moritz Wittenhagen for the invaluable feed-
back and discussions. Without them, this would be a lesser work. Many student
projects helped shape and realize my ideas—I am still astonished that Claude Be-
mtgen, Christian Corsten, Thomas Heß, Christopher Kurtz, Torben Schulz, Lukas
Spychalski, Ardi Tjandra, and Phillip Wacker have trusted me enough to throw in
their luck with me. Thank you for trusting me and thank you for all your efforts.

All work in HCI relies studying software with potential users. This is a very time-
consuming process that is all to often not adequately rewarded. I am very thankful
to the time and effort poured into this thesis by the testers of the user studies. Their
names remain anonymous, but I have not forgotten them. It is a great gift to get
the time, the resources, and the opportunity by RWTH Aachen University to freely
pursue the topics such as this one. The media computing group is a special place
to work at—and to stay for a late night tabletop session after. It is this great com-
munity that convinced me that this is the right place to plant my roots for a while.
I can only hope that I have adequately returned the favor.

xxvii

Conventions

Some of the software and studies described in this thesis
has been previously published by me and by students that
worked under my instruction—I detail these instances at
the beginning of each chapter. In cases where material was
as a peer-reviewed paper at a conference, I give preference
to this citation.

I use the singular “they” as the gender unspecific pronoun.
Technical terms are set in italics.

1

Chapter 1

Introduction

“I haven’t worked a two-dimensional control
panel in a long time...how did we manage...?”

“We always seemed to muddle through somehow...”

—Julian Bashir talking to Jadzia Jax
Star Trek DS9, Episode 4x03, ”The Visitor”

The quote above comes from a story in which characters
travel back in time and have to interact with (to their eyes)
old computer interfaces. Luckily, nobody sends us back in
time. Most of us have already experienced stark changes in
how one interacts with computers. Even though the history
of human computer interaction is rather short compared
to other disciplines, such as architecture or manufactur-
ing, changes in human computer interaction are plentiful.
The dominant interaction style changed from written inter-
action on terminals to windows/icons/menus/pointer in-
teraction around 1990 and once again began changing to
touch interaction around 2007. Even younger computer
users find themselves in comparable situations: would not
today’s students be alienated by 1980 style command line
interfaces?1 And small children are often learning touch
interaction before ‘traditional’ mouse and keyboard input.
Human computer interaction researchers search for im-

1We invite the reader to search for the respective tests on video shar-
ing websites.

2 1 Introduction

provements to user interfaces, challenge our current work-
ing environments, and look for alternatives. We hope that
in challenging the established interaction paradigms we
find alternatives that will make us look back on today’s in-
terfaces similarly to the characters in the story. In this the-
sis, we document the application of one such challenge to
two user domains, both of which are closely related to ev-
eryday working environments of knowledge workers.

To investigate this challenge we have to be aware of the
metaphors and paradigms that shape our interfaces today
and compare them to other metaphors that could provide
alternatives. The paradigm we work with in this thesis isWe investigate

zoomable user

interfaces.

called zoomable user interfaces (ZUIs) and was put forward
by Perlin and Fox [1993] to reform graphical user inter-
faces (GUIs) in 1993. As the name implies, this metaphor
presents an environment that can be zoomed in and out as
the user moves a camera over the information landscape.
We detail the interaction mechanics in depth in the next
chapter. The reader might be irritated, that we refer to
such an old metaphor—surely its pros and cons have been
investigated in depth already? Also, since we do not see
widespread adoption, can we not conclude that it does not
provide sufficient benefits to warrant adoption? Both ofZUIs are old, but

many questions are

unanswered.

these questions turn out to be unanswered for now. Critical
changes in user interfaces have often had a long incubation
time before they were adopted widely. The most prominent
examples are digital mice ([Engelbart and English, 1968]),
adopted with ∼14 years delay) and touch interaction ([Bux-
ton, 2010], widely adopted with a ∼37 years delay with the
iPhone in 2007). As Buxton [2010] details in great length,
it can take a long time for innovations to reach the mar-
ket and practical applications.2 There is no reason to count
Zoomable User Interfaces out on the basis of age. Instead,
the problems it addresses are still ever present in today’s
interfaces and in recent years, the ZUI paradigm and its re-
lated canvas paradigm have been applied in some domains
and challenges the status quo. We discuss zoomable user
interfaces, the canvas metaphor, their roots, and their rich
history in chapter 2 “The World on a Canvas”. On the ques-

2 If you doubt him, William Buxton will show you a smartwatch with
touch input from 1984 [Casio, 1984], that was 31 years before the intro-
duction of the Apple Watch this year.

3

tion of studies, not all promises of zoomable user interfaces
have been investigated and this thesis does precisely this in
the following areas: The first application in the area of of
presentation support started in [2001]. We present iterations
on the design and an in-depth study from many angles with
our own prototypes. The second application in an integrated
development environment (IDE) is is a design exploration by
us and investigates first steps in applying canvas ideas to
this new domain.

In 2009, we investigated [Lichtschlag et al., 2009] the ques-
tion whether a canvas interface could be an alternative to
the status quo in presentation support software: Microsoft
PowerPoint. Unhappy with the (to our eyes) form-filling
nature of slide show authoring, we found the canvas
metaphor to hold a great opportunity to thinking visually
about arguments in a talk and to visually structure a pre-
sentation. Previously, we restrict the investigation to users Previously, we

investigated

presentation

document authors.

authoring a presentation aid before a talk. This left ques-
tions open, that now this thesis is tackling in chapter 3 “Pre-
senting on a Canvas”: In particular, we are investigating
other actors—presenters and audiences—and their interac-
tion with the canvas metaphor. With the aforementioned
move to touch interactions, we also have a look at interac-
tions on tablet devices for the presenter during a talk. Also, Now, we investigate

presenters and

audiences.

in the timespan of this thesis, the research field has moved
quite a bit: the canvas metaphor has moved out of the lab
environment to commercial software and thus allows us to
confirm our previous findings by investigating real world
use. Chapter 3 “Presenting on a Canvas” presents our first
contribution: iterative designs and a thorough evaluation
of the canvas format in a specific field where it had already
time to mature have market success.

In the next chapter of this thesis, we take the canvas design
and apply it to another domain that complements (quite
self-servingly) the essential software environment of a com-
puter scientist: writing, and in particular writing source
code. When investigating an existing source code base or
planning an implementation, it has always been our first
approach to sketch and visualize the inner workings of the
software in hand written form and to present them visu-
ally. Likewise, the reader will be familiar with the sight

4 1 Introduction

of whiteboards in a software developer’s office on which
they draft outlines of a source base or present their under-
standing of an existing source base to a colleague. That be-
havior is completely unsupported by current IDEs, so it is
a good opportunity to bring the ideas that improved our
communication from presentation software to source code
software: with our prototypes, it is possible to build a can-
vas landscapes that are connected to source code elements.
We design three prototypes based on hand-drawn sketches,
on software design patterns, and on the vocabulary used in
the code base. Our designs are not the only research direc-We investigate

canvas interfaces for

software developers

with three

prototypes.

tion for more canvas layouts of source bases: several ap-
proaches take on the old workflow of reading and editing
source code line by line and provide reference points in a
developing field. Comparing them to our prototype, we
explore future directions with decidedly different working
environments for software developers. Our contribution in
chapter 4 “The Code Base on a Canvas” focusses on differ-
ent design directions for a new field of canvas designs and
includes a study to use our sketching prototype for naviga-
tion.

Armed with the results from our application of the canvas
metaphor to the two domains mentioned above, we can
qualify the promises of zoomable user interfaces in chap-
ter 6 “Discussion”. We present the results broken down
with our model of three usage scenarios: authoring, nav-
igating, and understanding. Users actively engage with
the metaphor and authors construct more diverse layouts.
The findings for navigation and audiences are more com-
plicated. We analyze our designs for abstraction of source
code and find a combination of design patterns and sketch-
ing to be most promising for the next design iteration.
Following that, we appropriated our sketching prototypeWe appropriated our

sketching prototype

to write this thesis.

to write this thesis and imagined it on a canvas from the
beginning. See figure 1.1 for a high level overview of this
thesis as we see it. We tell the whole story of how this can-
vas is constructed in the penultimate chapter 5 “Excursus:
Writing on a Canvas”.

5

F
ig

u
re

1
.1

:
A

ca
n

v
as

o
v

er
v

ie
w

o
f

th
is

th
es

is
d

o
cu

m
en

t
as

cr
ea

te
d

d
u

ri
n

g
th

e
w

ri
ti

n
g

p
ro

ce
ss

.
W

e
d

et
ai

l
h

o
w

w
e

d
es

ig
n

ed
th

is
ca

n
v

as
in

ch
ap

te
r

5
“E

x
cu

rs
u

s:
W

ri
ti

n
g

o
n

a
C

an
v

as
”.

7

Chapter 2

The World on a Canvas

“My imagination makes me human and makes
me a fool; it gives me all the world and exiles me

from it.”

—Ursula Le Guin, Unlocking the Air and Other
Stories, 2005

In the introduction we used a couple of terms—zoomable
user interfaces (ZUIs), canvas interfaces—and we have yet fill
these terms with meaning. These terms are not invented by
us and they have a rich history. We have to understand this
background before we can get to our applications of ZUIs
in the following chapters.

As alluded to in the introduction, ZUIs are quite old with
the first prototype presented in [1993]. But, it is likely that
the reader came into contact with ZUIs only much later,
e.g., with Google Maps in [2005], when fast server to client
turnarounds allowed for interactive responsiveness. To-
day, ZUI applications and the their interaction style are
widespread where ever there is a touch interface, e.g., in
mobile interaction. In this chapter, we also look at the
evolution of zoomable user interfaces from the first pro-
totypes to today’s interactions, how one would go about
implementing them today, and how the interaction styles
changed over time.

8 2 The World on a Canvas

Of course, with such a long history, researchers have pur-
sued variants for ZUIs. Likewise, different domains war-
ranted further developments from the original idea. WeIn this chapter, we

present the

background, the

history, and the

studies on zoomable

user interfaces.

explore a design space of spatial interfaces and how can-
vas interfaces and ZUIs fit into that picture. With this de-
sign space we have the foundation to place our prototypes
and studies in relation to other research and related work.
We then see what makes them particular and how they im-
prove our understanding.

Many claims have been made about the usefulness of ZUIs
for organization and learning, e.g., “[...] the concept is very
natural since it mimics the way we continually manage to
find things by giving everything a physical place.” [Perlin
and Fox, 1993]. Over time, researchers have investigated
some of the claims about ZUIs usefulness and usability, we
have a look at their results in turn. And as it is so often the
case, a close look at the studies is most important: our sum-
mary and a summary by Bederson [2011] show that more
studies are needed. We define a model of segmenting the
user tasks into three fields: authoring, navigating, learning.
This model gives us a framework to guide our studies in
the field of presentations, and outlines how this thesis con-
tributes by filling some of the blanks in the space of studies
on user tasks.

2.1 Information Visualization

One of the most important information visualization prob-
lems is that there is more information to be presented than
fits on the screen. This fundamental problem is here toMany visualization

techniques address

the need to display a

subset of content.

stay: modern displays may have very high resolutions, but
new devices with ever smaller screens are developed all the
time. Even a hypothetical super high resolution, the human
eye sight remains limited to resolve roughly 1mm at a 25cm
distance, and our field of vision is limited.1The problem of

1A current tablet (iPad4) has a screen with a 2048 x 1536 resolution
at a 25cm physical diagonal. This is clearly a multitude of the screen
resolutions that ZUIs were first built for, yet the physical form factor
is very comparable. On the other end of the spectrum, very large wall
sized displays, e.g., Nancel et al. [2011] still run into similar issues.

2.1 Information Visualization 9

Fragmented Information

Context Views

Focus View

Figure 2.1: Selecting a subset of information to display frag-
ments the information. The focus view shows the selected
subset, the context view(s) can show related elements and
reconstruct a part of the landscape.

limited space remains and will remain current for many ap-
plications areas, not just the ones presented in this thesis.

Solutions to the problem of limited screen space employed
in Human Computer Interaction (HCI) include the selec-
tion of subsets of information, transformation the informa-
tion so that is fits in the view, or spreading content over
time. HCI research labels the views on the data as focus Visualizations have

focus and context

views.

views and context views (cf. figure 2.1). The focus is a look
at a (high-resolution) detail of information, the context rep-
resents connected information and embeds the focus in the
environment. Often, research in information visualization
defers the investigation of user interaction [Yi et al., 2007].
Clearly, this is a stance that Human Computer Interaction
researchers cannot take. And we have a wealth of interac- We also have to

consider how one

interacts with these

visualizations.

tions at hand to switch between these subsets and repre-
senting them in the original context (cf. figure 2.1). Below,
we have a look at taxonomies of information visualization
techniques by Leung and Apperley [1994] and by Cockburn
et al. [2008]. These two taxonomies present different strate-
gies to present focus and context in conjunction.

2.1.1 Design Space of Spatial User Interfaces

In 1994, Leung and Apperley [1994] presented their “Re-
view and Taxonomy of Distortion-Oriented Presented
Techniques”. They summarized the approaches that had

10 2 The World on a Canvas

emerged in the graphical user interfaces and especially fo-
cussed on the distortion techniques that had been brought
forward by Furnas [1986]’s seminal paper “Generalized
Fisheye Views”. Their taxonomy (cf. figure 2.2, top) sep-
arates the visualization techniques in four quadrants along
two questions: the first question divides the underlying
data into inherently graphical and non-graphical, the sec-
ond question divides into distorted and non-distorted tech-
niques. They describe the graphical solutions as a dy-Two summary

papers outline the

approaches.

namic selection on a continuous information landscape
(e.g., fisheyes, ZUIs) and the non-graphical solutions as
static separations (e.g., paging).

In 2007, Cockburn et al. [2008] presented their “A Review
of Overview+Detail, Zooming, and Focus+Context Inter-
faces”. This design space summarizes their experiences
with research in spatial interfaces, especially zoomable in-
terfaces. Their design space is close to the one by Leung
and Apperley [1994] as they also organize systems into four
categories according “varying uses of space, time or visual
effect” (cf. figure 2.2, bottom). Three of Cockburn at al.’sBoth papers agree

on many

approaches.

categories closely mirror Leung’s quadrants and describe
similar solutions: focus + context, zoomable, and overview +
detail. They also name cue as a technique to hint at con-
textual elements. Below we have a closer look at the tech-
niques.

HCI authority Shneiderman has also published on visu-
alization techniques [Shneiderman, 1996]. He formulates
an common guideline for approaching Information Visual-
ization with regards to usability. He argues for a “Visual
Information-Seeking Mantra”: first, display an overview,
secondly, zoom and filter, and then, display details on de-
mand. Again we see the same building blocks of differ-
ent views employed to display information in relation to
its context.

2.1.2 Overview + Detail

The overview + detail design is the most straight forward
approach—it just shows two separate views for focus

2.1 Information Visualization 11

Inherently Graphical Data Non-Graphical Data

Large Information Space
(Graphical)

Large Information Space
(Non-Graphical)

Distorted View
Non-Distorted

View

e.g. encoding,
geometric spatial

transformation

e.g. zoomable,
windowing

Distorted View
Non-Distorted

View

data suppression,
abstraction, and

tresholding

e.g. paging,
clipping

e.g. Maps e.g. Text

direct directgraphical abstraction

Overview+DetailZoomableFocus+Context

“temporally
separated”

“spatially
separated”

e.g. Minimap,
Photoshop

e.g. Fly, Pad

“single
continuous view”

e.g. Fisheyes
e.g. search, code

folding

Cue

“highlight and
suppress”

Figure 2.2: Top: taxonomy by Leung and Apperley [1994]
(recreated figure). Bottom: categories described by Cock-
burn et al. [2008]

and context each: “An overview + detail interface design
is characterized by the simultaneous display of both an
overview and detailed view of an information space, each
in a distinct presentation space.” [Cockburn et al., 2008].
These two views are then either shown sequentially or in Overview + detail

separates focus and

context spatially.

parallel, and they are spatially separated (cf. figure 2.3, top
row). They also have no direct spatial relation—the context
view might be placed to the right or to the left of the focus
without change in meaning. Often the overview view gives
the user the possibility to select a focus and gives feedback
on the selected focus. Leung and Apperley [1994] refer to
this with pagination techniques for non-graphical data and
windowing for graphical data.

12 2 The World on a Canvas

Figure 2.3 (top row) shows two examples from common-
place software. The first example shows a map interface
from Bing Maps [Microsoft, 2010] with a large view on the
inner city of Aachen in focus and in the top left, a context
view on the surrounding regions. The context view also
highlights the selected focus region. The second example
show a slide deck in Apple Keynote [Apple, 2003]: here the
overview shows that the second slide out of a collection of
five is selected and viewed in detail on the right side in the
focus view. The overview + detail design is prevalent in all
types of desktop software that has any kind of thumbnail
views. Another example is a navigator window that shows
the whole document in a graphics software (e.g., Adobe
Photoshop) while the user edits the document in the main
view.

Here we can already note that the two examples presented
are different from each other: by nature of the data, the
maps shows the overview as a single continuous display,
while the presentation software segments the data into
slides or pages. Leung and Apperley [1994] made this dis-Overview + detail

can be used for

continuous and for

fragmented

information spaces.

tinction by separating the data into inherently graphical
and non-graphical. We discuss this distinction further in
section 2.1.7 “Fragmentation and Continuity of the Infor-
mation Landscape”.

2.1.3 Focus + Context

Furnas [1986] developed the idea of “Generalized Fisheye
Views” on textual data and influenced many researchers to
adopt this idea to visualizations. A series of prototypes was
developed at Xerox Parc Research trying different strategies
of distortion to show focus and context at the same time in
a single continuous view [Mackinlay et al., 1991, Rao and
Card, 1994]. Card et al. [1999] defines the technique as fol-
lows: “Focus + context starts from three premises: first,
the user needs both overview (context) and detail informa-
tion (focus) simultaneously. Second, information needed
in the overview may be different from that needed in de-
tail. Third, these two types of information can be com-
bined within a single (dynamic) display, much as in human

14 2 The World on a Canvas

vision.”. Leung and Apperley [1994] refer to this design
as “distorted” in both the graphical and non-graphical do-
main.

The focus + context design distorts the information land-
scape, so that the focus region is embedded into the
overview. The focus region reproduces data accurately inFocus + context

integrates focus and

context and distorts

the context.

detail, while concessions are made for the overview region
to fit it to the display. Often this is done by applying a phys-
ical metaphor like a fisheye lens effect or the perspective
rendering of a wall. This is sharp reproduction in the cen-
ter is often compared to the human eye-sight. Other non-
graphical approaches are closer to Furnas’s original paper:
they drop some of the information, e.g. code folding [Jakob-
sen and Hornbæk, 2009] or accordion menus2, yet still keep
the overall form of the overview intact. Leung and Apper-
ley [1994] refers to this as “data suppression”.

Figure 2.3 (second row) shows two examples. The first ex-
ample again shows a mapping application, but this time a
fisheye effect is applied to show the detail as selected by
the user. The second examples shows a research prototype
from [Mackinlay et al., 1991]: here the reader views a large
written document which pages are laid out in a six by three
grid. Again the view is distorted, so that the display can
show all pages simultaneously and give the reader a sense
of place in the document. The focus region remains undis-
torted and renders the text large enough to be readable.

Occurrences of focus + context designs are rare in con-
sumer software: the Apple Dock comes into mind and the
aforementioned code folding, but these are rare exceptions.
Also, common user interface toolkits do seldom provide
widgets for this type of interaction, so that programmers
cannot easily integrate this into their software (e.g., jQuery
UI3 features an accordion widget).

2https://jqueryui.com/accordion/
3https://jqueryui.com/

2.1 Information Visualization 15

2.1.4 Zoomable User Interfaces

Zoomable user interfaces also present content that has a fixed
position in a single unified two-dimensional world—a spa-
tial arrangement of information.4 Zoomable User Interfaces
use zooming to select a window to present a dynamic sub-
set of information (cf. figure 2.3). The size of the viewport
depends on the amount zoomed in: At the highest zoom
level ,one can see the whole information landscape at the
same time. At the lowest level, one can see only a single
information element or only a part of it. Bederson [2011]
defines “ZUIs to be those systems that support the spatial
organization of and navigation among multiple documents
or visual objects”. The reader will note that this definition
neither refers to zooming as the navigation mechanism, nor
differentiates against other techniques with a single spatial
information landscape.

Cockburn et al. [2008] define ZUIs to display information
that is “temporally separated”. That means that ZUIs are Zooming designs

separate focus and

context through time

and interaction.

simpler than the other approaches as there is only one
undistorted viewport at the same time. But, it also means
that all switches between focus and context cost time and
need a user interaction. Another way to view this is to say
that focus and context are separated through user interac-
tion.5

A prominent example given by Cockburn et al. [2005] is
Google Earth [Google, 2001]: Here one can zoom into geo-
graphic information of the world. Depending of zoom level
the camera is either a distant observer in space or very close
and focussed at street level. To move the camera to another
focussed place on the globe, e.g., from Paris to New York,
the user would zoom far out to the level of continents, pan
westwards until the American east coast is in the view and

4 ZUIs have also been called “2.5D” to denote that information can
change its shape based on zoom level. More on that in 2.2.3 “Semantic
Zooming”. This is unrelated, however, to 3D visualizations with sprites
that always orient themselves towards the camera, which is also often
referred to as “2.5D”.

5In practice, software often mixes visualization approaches, e.g., in
Photoshop one can both zoom and pan (ZUI interaction), but also open
a smaller window with an overview map (overview + detail interaction).

16 2 The World on a Canvas

then zoom in again. Would the user only use panning ac-
tions she would have a hard time to do that only on the
focussed level, yet at the zoomed out level, the interaction
can be very fast as the panning is amplified by the zoom
level.

We can already see from the examples that the panning is in
contemporary ZUIs equal in importance to zooming. ThePanning and

zooming are both

needed in ZUIs.

term zoomable user interface has stuck to define the whole
combined interaction. We suspect the reason is historical,
as the first approaches had no panning interaction. The
first mention we found of edge panning interaction was in
Druin et al. [1997], an early application of ZUIs. We investi-
gate the multitude of interactions that a user might be faced
with below.

Bederson [2011] says that there were three core ideas in the
original Pad prototype: zooming, semantic zooming, por-
tals. We have presented zooming as the standout feature
and naming feature, we discuss semantic zooming in 2.2.3
“Semantic Zooming” and portals below in 2.2.2 “Portals”,
as they are not universally adapted in all ZUIs.

2.1.5 Cue

The idea for cue designs is to reserve all of the screen for
the focus view and only “[...] introduce proxies for objects
that might not be expected to appear in the display at all.”
[Cockburn et al., 2005]. These proxies are rendered on the
edges of the focus view, hinting at direction and distance of
the context objects and maybe some of their characteristics.
While Cockburn et al. [2005] gives only graphical examples,Cue design presents

proxies to off-screen

objects.

his description of “highlighting and suppressing” is very
similar to Leung and Apperley [1994] describing distorted
views on non-graphical data. Yet, for direction and distance
to be meaningfully incorporated into the cue display, there
has to exist a distance measure in an information landscape.

Figure 2.3 (fourth row) shows two examples, both research
prototypes. The first shows ‘City Lights’ [Zellweger et al.,
2003], where bars at the edge of the focus view hint at con-

2.1 Information Visualization 17

textual items. The second again shows a mapping appli-
cation and highlights the main motivation to use this tech-
nique: small screens. The Halo prototype [Baudisch and
Rosenholtz, 2003] uses arcs or arrows to indicate search re-
sults on a map, yet the whole screen remains available for
the immediate focus display and interaction.

Cue based techniques are seldomly used in desktop soft- Cue designs are

mostly

non-interactive.

ware, yet at times used in map-based games to indicate
off-screen events. Only some of the implementations re-
fer to user interaction with the off screen proxies. Again,
no implementation support exists in common user interface
toolkits.

2.1.6 Transparency

The transparency design is not classified by Leung et al. or
Cockburn et al., even more, hardly referenced ever in the
HCI literature. Cox et al. [1998] is the only paper that we
are aware of that investigates this pattern. Here, both the Transparent

compositing of focus

and context views is

very rare.

context and the focus view exist at the same time and are
rendered in the same place (cf. figure 2.3, bottom row). The
context view is composited transparently on top of the fo-
cus, each pixel displays a 50/50 mixture of both views to
the user.

One commercial approach we are aware of is in map-based
gaming, e.g., in the game Diablo II [Entertainment, 2000]
where the map of the level is can be permanently repre-
sented as a thin overlay on the game view (cf. figure 2.3,
last row). Here, the focus view takes over all of the screen,
and a grey schematic overlay of the map gives the position
in the level. Sometimes, the overlay is reduced to full trans-
parent in the immediate surrounding of the player charac-
ter as to not falsify the information at the user’s locus of
attention. Also, the second example from [Baudisch and
Gutwin, 2004] gives an example on how one can use hard
blending with the contours of the overview to keep the
color information of the focus intact, albeit at the cost of
a small distortion.

18 2 The World on a Canvas

Picking up on Cockburn et al. [2008]’s naming scheme, one
could say that focus and context are not separated at all. This
comes at the cost of clarity and true representation of the
data, similar to the drawback of distortion in focus + con-
text techniques. The model also has similarities to overview
+ detail, as one could see it as a variation where the two
views just happen to be rendered in the same place.

As each position on the screen has not clear attribution toThe user only

interacts with the

focus layer.

either focus or context, it is not clear how a user would dis-
cern between them in pointing interactions. In the limited
instances that we are aware of this technique, no user inter-
action is possible with the overview layer, all interaction is
always on the focus layer.

2.1.7 Fragmentation and Continuity of the Infor-
mation Landscape

Clearly, the aforementioned design spaces do not include
all types of visualization. We are missing 3D interfaces, lin-
ear interfaces, augmented reality approaches, virtual reality
approaches, and so much more. Why should we limit the
discussion to the ones above, and why are these techniques
the ones that are mentioned in overview papers?

All of the approaches have in common that they present
an “information landscape” (cf. [Robertson and Mackinlay,
1993]). This landscape is two dimensional in nature, each
item in the space has a defined two dimensional position.
This position is either fundamental in the nature of the dataAll of the approaches

present information

landscapes.

(e.g., maps) or is used to convey meaning and relation be-
tween the items (e.g., a mind map). This landscape model
adapts well to most interfaces, not only two dimensional
screens, but also to tables, walls, flip boards, etc.—all two-
dimensional areas to present information on. All of the de-
sign approaches detailed above therefore strive to keep this
two-dimensional information intact, although they might
deform and stretch it.

The aforementioned taxonomies of Cockburn et al. [2005]
and Leung and Apperley [1994] did not include explic-

2.1 Information Visualization 19

itly but alluded to a differentiation between designs that
present a single landscape of a multitude of landscapes.
Leung and Apperley [1994] touch this by differentiating
between geometric and non-geometric data, when they
discuss designs for non geometric data and use paging
as an example with a fragmented space. Also, Cock- We have to

differentiate between

fragmented and

continuous

landscapes.

burn et al. [2005] refer to overview + detail examples from
PowerPoint, a design that features information fragmented
into multiple slides. An interesting observation is that nei-
ther the zooming nor the cue examples use a fragmented
landscape and we are not aware of a zoomable design that
fragments its data.

This now finally brings us be to the title of this chap-
ter: “The World on a Canvas”. We first came across the
term canvas for unfragmented interfaces in PreziMeeting
[Laufer et al., 2011] (where it referred to an adoption of their
zoomable presentation software to note taking in meet-
ings). We liked this term because it moves the discussion The term canvas

describes continuous

landscapes.

from the technology to a human centered approach. Talk-
ing about these interfaces as canvas casts them in the image
of a surface to be creative on. Is not canvas a much better
term to talk about creative interface like image manipula-
tion, vector graphics, and—yes—-presentations? A canvas
asks the user to build, draw, sketch, design something on
it.

Below we see that the act of authoring on canvas interfaces
(as opposed to traditional, fragmented interfaces) is under-
explored. And since this is a main study focus of this thesis,
this differentiation is very important. Therefore, we use the
name canvas from now on to refer to designs of a single
continuous information landscape, differentiating against
fragmented designs. With this definition, canvas includes
map designs, no matter if they are build with a zoomable
user interface, a overview + detail interface, or a mixture of
both. Now, it is opportune to examine if the design space
can be recast with that distinction in mind.

20 2 The World on a Canvas

inherently spatial data (e.g., maps) inherently un-spatial data (e.g., text)

graphical

abstraction
fragmentation

canvas information landscape fragmented information landscape

distorted

Zoomable

Focus +
Context

Cue

Overview +
Detail

Transparency

separated in space

distorted focus and contextdistorted context

separated in time

un-distorted

Figure 2.4: We modified Leung and Apperley [1994]’s design space. Our modi-
fied space differentiates between canvas and fragmented designs and leaves some
designs ambiguous depending on their implementation.

2.1.8 Review of the Canvas Design Space

We first kept Leung and Apperley [1994]’s design space
with the the differentiation between canvas designs and
fragmented designs, and then inserted the approaches as
categorized by Cockburn et al. [2005], adding the rarely
used transparency approach. Zoomable, focus + context,
and cue designs need the focus to be spatially embedded in
the context to build the visualization. Thus, they cannot be
fragmented and are on the left side of the space. As we haveWe differentiate

between fragmented

and canvas designs.

seen before, overview + detail can be used in both frag-
mented (e.g., paginated) information landscapes but also
in continuous information spaces. In most of the applica-
tions it is applied to fragmented or paginated information
spaces. Similarly, transparency designs lend themselves to
both fragmented and canvas spaces, since focus and con-

2.1 Information Visualization 21

text are not embedded there. The few examples we found
were all canvas designs. Thus, we placed both designs on
the border, with a weight on right and left, respectively.

As for distortion, the separation is straight forward for all
but cue and transparency techniques, as we have discussed
before. Since cues abstract the context similarly, we placed We differentiate

between distorted

and undistorted

designs.

it on the border between distorted and undistorted. Both
the rendering techniques presented for the transparency
design falsify part of the information. Accordingly, we
placed it firmly in the distorted lower half of the design
space. To be precise, here both focus and context are dis-
torted, where the focus + context design only falsifies the
context (albeit often quite strongly).

Many of the designs are often mixed in practice. E.g., many
graphics manipulation software (e.g., Photoshop) present
the canvas in both an overview + detail and a zoomable
interaction. Similarly, our Fly prototypes use both zoom-
ing and cues (and even overview + detail for the presen-
ter view). Also, in chapter 4 “The Code Base on a Canvas” Often, designs are

mixed.we visit some prototypes of information landscapes in IDEs
and see that all approaches can be used there. We can sum-
marize that it would be unrepresentative of actual practice
to say that a software belongs to only one of these tech-
niques. Rather, the border between the approaches is very
much fluid and allows for mixtures.

We have to consider the data we want to present: does it al- We consider two

transformations:

projecting un-spatial

data in a graphical

space and

fragmenting spatial

information.

ready come with inherent spatial mappings or not? Conse-
quently, matching designs to the type of data can be straight
forward. As Leung and Apperley [1994] pointed out, one
can consider projecting un-spatial data in a graphical space.
And, one can also consider the reverse: fragmenting a spa-
tial information into pieces.

The investigations in the following two chapters can be
seen as investigations of these two transitions and the dis-
tinction between fragmented and canvas designs. First, in This thesis

investigates these

transformations.

chapter 3 “Presenting on a Canvas”, we investigate designs
to display information on a canvas where traditional soft-
ware fragments it. We then study these designs comparing
them to the traditional fragmented software and estimate

22 2 The World on a Canvas

the costs and benefits of the transition. Second, in chapter 4
“The Code Base on a Canvas”, we investigate how one can
graphically abstract from inherently un-spatial data (text)
and build a information landscape. Here, traditional soft-
ware represents the information in its textual form and
keeps it fragmented, and we explore canvas designs that
allow alternatives.

With this modified design space, we have a way to describe
and categorize the software mentioned in the next chapters
and understand the different approaches in a unified mat-
ter. But, since zoomable user interfaces are such an impor-
tant part of the canvas designs in the coming chapters, we
first have a detailed look at important milestones in zoom-
ing interaction below.

2.2 Evolution of Zoomable User Interfaces

and Important Milestones

In the following, we present a couple of seminal ZUIs with
a focus on the studies that they accompanied and the differ-
ences in interaction styles they brought. When opportune,
we delve deeper into some of the lower level issues and
techniques of zoomable user interfaces as they arise. For a
detailed account of the history of zoomable interfaces up to
2011, we recommend the study of an overview paper [Bed-
erson, 2011] by one of the principal researchers of ZUIs.

2.2.1 Pad: The Original

No investigation of zoomable user interfaces is completePad is the original

zoomable user

interface.

without mentioning Pad [Perlin and Fox, 1993], the paper
and prototype that introduced the idea. Pad is the origi-
nal ZUI implementation, although they never actually re-
ferred to their implementation as a zoomable user interface.
They write: “A good approximation to the ideal depicted
would be to provide ourselves with some sort of system
of ‘magic magnifying glasses’ through which we can read,

24 2 The World on a Canvas

detail on ‘Advertising’ in the left portal. With these portals,
the user can view and interact with objects of varying size
at the same time, and overcome the different levels of mag-
nification. Perlin and Fox [1993] also defines portal filtersPortals open views to

different camera

positions on the

canvas.

that change the appearance of objects in its view: “For ex-
ample, a portal may show all objects that contain tabular
data as a bar chart [...]”. With portal filters, the user can
toggle a mode on the displayed data, e.g., enable editing.

Interestingly, the portal technique is not picked up by the
following zoomable user interfaces, not even by the di-
rect successor Pad++ [Bederson and Hollan, 1994]. Beder-
son [2011] writes: “[N]one of these applications that focus
on zooming as a core organizational and navigation tech-
nique use portals in a way similar to how they were en-
visioned.” We suspect this is because they complicate the
user interaction compared to a system with a single view-
port and because all following systems allowed fluidly ani-
mated zooming, thus allowing the user to overcome differ-
ent levels of magnification easier through zooming.

2.2.3 Semantic Zooming

Again, semantic zooming is introduced in the original sem-
inal Pad paper [Perlin and Fox, 1993]: “As the magnifica-
tion of an object changes, the user generally finds it useful
to see different types of information about that object. For
example, when a text document is small on the screen the
user may only want to see its title. As the object is magni-
fied, this may be augmented by a short summary or out-
line. At some point the, entire text is revealed. We call this
semantic zooming.”. This is an extremely helpful designSemantic zooming

transforms the data

as the camera

moves.

technique to build zoomable user interfaces and is widely
adopted. Its benefits are clear when compared to geometric
zooming (cf. figure 2.6). Geometric zooming treats the items
in an “information landscape” purely physical, but seman-
tic zooming allows the objects to change their shape, vis-
ibility, and representation according to the distance to the
viewer. Perlin and Fox [1993] also envision semantic zoom-
ing to enable mode on the displayed data, e.g., zoom in to
edit.

26 2 The World on a Canvas

efits: familiarity, scalability, but most of all, no reliance on
old metaphors. They write: “Any restrictions that are im-Pad++ presented

zoomable user

interfaces as an

antithesis to

metaphor based user

interfaces.

posed on the behaviors of the entities of the interface to
avoid violations of the initial metaphor are potential re-
strictions of functionality that may have been employed to
better support the users’ tasks and allow the interface to
continue to evolve along with the users increasing com-
petency.”. We certainly felt restricted by the slide model
of mainstream presentation systems and agree wholeheart-
edly.

We used the examples of maps to introduce the reader to
different visualization strategies. There are metaphors hid-
den in the model of a ‘information landscape’ and ‘canvas’
design directly alludes to a physical canvas on an easel. We
can accept that because it promotes the kind of interaction
we want to empower in the user. Attaching physical behav-
ior to digital items cannot be really free of an allegory to a
non-digital element. Bederson and Hollan [1994] clarify:
“There are certainly metaphorical aspects associated with a
physics-based strategy. Our point is not that metaphors are
not useful but that they may restrict the range of interfaces
we consider.”

2.2.5 Multi-Level Interaction

Bederson [2011] introduces the quality multi-level to differ-Multi-level ZUIs allow

content elements to

be presented at

different scales.

entiate between objects that appear on the canvas at signif-
icantly different sizes, even though they might be of com-
parable importance. This requires a user to navigate be-
tween different zoom levels in order compare these objects.
And objects may appear in the current view at ill-suited
sizes (cf. figure 2.2.5 “Multi-Level Interaction”)—this can
happen very easily in presentation documents. This is an
instance where a portal could overcome this problem. But
some ZUIs system avoid the whole problem by adopting
a single level strategy. E.g., Fly [Lichtschlag et al., 2009] is
single-level because every object is either a title or a content
element, but Prezi [Prezi, 2008] and CounterPoint [Good
and Bederson, 2001] are multi-level. Our study in chapter
3.4.2 “Investigating the Author in the Field” looks at the

2.2 Evolution of Zoomable User Interfaces and Important Milestones 27

Single-Level Multi-Level

an element

a summary

another element

title caption

summary

detail

1

2

3

Figure 2.7: ZUIs can be differentiated by whether they al-
low content to be laid out over multiple levels. With con-
tent on multiple levels, content can easily be of inappropri-
ate size to the current viewport. Viewport 1 shows only a
tiny scaling of the detail, viewport 2 shows a text fragment
from the title. Viewport 3 is within the bounds of the scene
but too close to show any content (“desert fog”).

typical amount of levels used in Prezi presentations.

2.2.6 Early Adaptation: KidPad

KidPad [Druin et al., 1997] is an early adoption of the
zoomable interaction paradigm to a practical application.
Young children (aged 8–10) use it at school to train sto-
rytelling skills. This is considered a key metric in educa- KidPad is an early

ZUI for children to

train storytelling

skills.

tion research to investigate children’s cognitive, social, and
emotional development [Boltman, 2001]. In participatory
design with the children, Druin et al. [1997] develop the
first mention of panning in ZUIs and a tool palette called
Local Tools [Bederson et al., 1996] that directly embeds edit-
ing control into the canvas as zoomable elements.

Boltman [2001] picks up on the KidPad investigation and
performs a controlled experiment in which 72 children in
England and Sweden use either pictures in KidPad, pic-
tures on paper, or an un-animated ZUI of the same mate-
rial as reference material to tell stories. Boltman [2001] con- KidPad was

evaluated in a large

scale study.

cludes: “Results illustrated that the spatial computer pre-
sentation assisted in many storytelling areas, with greater
benefits in elaboration than in recall. Children’s stories

28 2 The World on a Canvas

showed more complex story structure and a greater under-
standing of initiating events and goals.” We see that it is
interesting to contrast the role of the storyteller (presenter)
and learner (audience) when investigating the influence of
spatial capabilities of canvas designs. The studies do not
investigate authoring in KidPad.

2.2.7 Limited Application Domains

Perlin and Fox [1993] and Bederson and Hollan [1994] en-
visioned zoomable user interfaces to be full replacements
for window managers, with the potential to augment win-
dows/icons/menus/pointers (WIMP, [Wikipedia, 2015a])
graphical user interfaces in general. E.g., [Bederson andZUIs are rarely used

for window systems. Hollan, 1994] describes a directory browser in Pad++ and
“Raskin” [Raskin, 2015] is a window system replacement
product available today. On mobile devices, zooming tech-
niques are adapted to launch applications, e.g., the spring-
board on iOS9 can be seen as a single-level canvas and users
zoom in and out of applications.

Presentation support software is one of the domains we study
in this thesis and has received considerable attention with
research prototypes. Notable examples from the litera-Many approaches

use presentations as

a lens to study ZUIs.

ture are Good and Bederson [2001]’s CounterPoint, our Fly
[Lichtschlag et al., 2009], Prezi [Prezi, 2008], and Microsoft’s
pptPlex [Microsoft, 2008]. Of course, we discuss them in
more detail in the next chapter. Bederson [2011] reports on
the characteristics of early zoomable user interfaces in ta-
ble 2.8 which we amended with systems important to the
discussion in this theses.

Although (up to now) ZUIs have seen a much stronger rep-
resentation in software than distortion interfaces, they did
not replace window managers as the primary interaction
metaphor or widely bring ‘physical’ interaction to user in-
terfaces. Bederson [2011] writes: “I would argue that ZUIs
have never reached the level of broad use envisioned by
their original creators.” but also “Zooming has been suc-
cessful in that some kind of zooming is commonly used in
a wide range of interfaces”.

2.2 Evolution of Zoomable User Interfaces and Important Milestones 29
Y

e
a

r
N

a
m

e

D
e

s
c

ri
p

ti
o

n

L
a

y
o

u
t

F
le

x
ib

il
it

y

M
u

lt
-l

e
v

e
l

N
a

v
ig

a
ti

o
n

 M
e

c
h

a
n

is
m

 F
o

r
Z

o
o

m
in

g

C
it

a
ti

o
n

1
9
9
3

P
a

d
O

ri
g

in
a

l
fo

rm
u

la
ti
o

n
 o

f
Z

U
Is

U
n

c
o

n
s
tr

a
in

e
d

.
D

ra
w

in
g

s
,
im

a
g

e
s
,
te

x
t
p

o
s
it
io

n
e

d

m
a

n
u

a
lly

.

Y
e

s
M

o
u

s
e

 B
u

tt
o

n
s
 o

r
P

o
rt

a
ls

[P
e

rl
in

 a
n

d
 F

o
x
,1

9
9

3
]

1
9
9
4

P
a

d
+

+
P

o
s
e

s
 Z

U
Is

 a
s
 a

n
 a

lt
e

rn
a

ti
v
e

 t
o

m
e

ta
p

h
o

r
b

a
s
e

d
 U

s
e

r
In

te
rf

a
c
e

s
.

U
n

c
o

n
s
tr

a
in

e
d

.
D

ra
w

in
g

s
,
im

a
g

e
s
,
te

x
t
p

o
s
it
io

n
e

d

m
a

n
u

a
lly

.

Y
e

s
M

id
d

le
 b

u
tt
o

n
 z

o
o

m
s
 i
n

,
ri
g

h
t
b

u
tt
o

n
 z

o
o

m
s

o
u

t
o

r
ri
g

h
t
b

u
tt
o

n
 +

 m
o

v
e

m
e

n
t
d

ir
e

c
ti
o

n

[B
e

d
e

rs
o

n
 a

n
d

 H
o

lla
n

,1
9

9
4

]

1
9

9
7

K
id

P
a

d
U

s
e

s
 “

lo
c
a

l
to

o
ls

”
to

 e
n

a
b

le
 c

h
ild

re
n

 t
o

c
re

a
te

 s
to

ri
e

s
.

U
n

c
o

n
s
tr

a
in

e
d

.
D

ra
w

in
g

s
,
im

a
g

e
s
,
te

x
t
p

o
s
it
io

n
e

d

m
a

n
u

a
lly

.

Y
e

s
H

y
p

e
rl
in

k
s
 f
o

r
p

a
th

.
M

u
lt
ip

le
 Z

o
o

m
 i
n

/o
u

t

m
o

d
e

s
.
C

lic
k
 t
o

 fl
y
 i
n

/o
u

t.

[D
ru

in
 e

t
a

l.
,
1

9
9

7
]

1
9

9
8

P
a

d
P

ri
n

ts
C

re
a

te
s
 a

 v
is

u
a

l
h

ie
ra

rc
h

ic
a

l
m

a
p

 o
f
w

e
b

p
a

g
e

s
 v

is
it
e

d
.

D
y
n

a
m

ic
a

lly
 g

e
n

e
ra

te
d

 t
re

e
-b

a
s
e

d
 n

o
d

e
-l
in

k

d
ia

g
ra

m

N
o

R

ig
h

t
c
lic

k
-a

n
d

-h
o

ld
 fl

ie
s
 i
n

/o
u

t.

[H
ig

h
to

w
e

r
e

t
a

l.
,
1

9
9

8
]

2
0

0
1

C
o

u
n

te
rP

o
in

t
A

 p
lu

g
-i
n

 t
o

 P
o

w
e

rP
o

in
t
th

a
t
e

n
a

b
le

s

p
re

s
e

n
ta

ti
o

n
 a

u
th

o
rs

 t
o

 l
a

y
 o

u
t
s
lid

e
s
 i
n

z
o

o
m

a
b

le
 s

p
a

c
e

.

C
o

n
ta

in
s
 P

o
w

e
rP

o
in

t
s
lid

e
s
.
S

m
a

ll
n

u
m

b
e

r
o

f

la
y
o

u
t
a

lg
o

ri
th

m
s
 w

th
 m

a
n

u
a

l
o

v
e

rr
id

e
.

Y
e

s
C

lic
k
 o

n
 s

lid
e

 f
o

r
n

e
x
t.
 R

ig
h

t
c
lic

k
-a

n
d

-h
o

ld

fl
ie

s
 i
n

/o
u

t.

[G
o

o
d

 a
n

d
 B

e
d

e
rs

o
n

,
2

0
0

1
]

2
0

0
1

P
h

o
to

M
e

s
a

A

 p
e

rs
o

n
a

l
p

h
o

to
 b

ro
w

s
e

r,
 d

e
s
k
to

p
 a

n
d

m
o

b
ile

.

C
o

n
ta

in
s
 p

h
o

to
s
 i
n

 a
 d

y
n

a
m

ic
a

lly
 g

e
n

e
ra

te
d

g
ro

u
p

 o
f
g

ri
d

s
 u

s
in

g
 a

 t
re

e
m

a
p

 a
lg

o
ri
th

m
.

N
o

L
e

ft
 c

lic
k
 z

o
o

m
s
 i
n

.
R

ig
h

t
c
lic

k
 z

o
o

m
s
 o

u
t.

[B
e

d
e

rs
o

n
,
2

0
0

1
]

2
0

0
2

S
e

a
d

ra
g

o
n

C

lie
n

t/
s
e

rv
e

r
h

ig
h

 p
e

rf
.
Z

U
I
fo

r
im

a
g

e
s

o
v
e

r
a

 n
e

tw
o

rk
 (

w
e

b
 a

n
d

 m
o

b
ile

)

C
o

n
ta

in
s
 p

h
o

to
s
 l
a

id
 o

u
t
b

y
 a

 s
m

a
ll

n
u

m
b

e
r

o
f

fi
x
e

d
 l
a

y
o

u
t
a

lg
o

ri
th

m
s
.

N
o

C
lic

k
 t
o

 z
o

o
m

 i
n

.
O

n
-s

c
re

e
n

 b
u

tt
o

n
 z

o
o

m
s

o
u

t.

[M
ic

ro
s
o

ft
 S

e
a

d
ra

g
o

n
.
2

0
0

2
]

2
0

0
2

S
p

a
c
e

tr
e

e

H
ie

ra
rc

h
y
 e

x
p

lo
ra

ti
o

n
 t
o

o
l

D
y
n

a
m

ic
a

lly
 g

e
n

e
ra

te
d

 t
re

e
-b

a
s
e

d
 n

o
d

e
-l
in

k

d
ia

g
ra

m

N
o

R
ig

h
t
c
lic

k
-a

n
d

-h
o

ld
 fl

ie
s
 i
n

/o
u

t.

[P
la

is
a

n
t
e

t
a

l.
 2

0
0

2
]

2
0

0
6

D
y
n

a
p

a
d

S
u

p
p

o
rt

s
 o

rg
a

n
iz

a
ti
o

n
 o

f
p

e
rs

o
n

a
l

c
o

lle
c
ti
o

n
s
.

D
y
n

a
m

ic
,
v
e

ry
 fl

e
x
ib

le
.

N
o

M

u
lt
i-
to

u
c
h

[B

a
u

e
r,

 2
0

0
6

]

2
0

0
7

A
p

p
le

 i
P

h
o

n
e

A

p
p

lic
a

ti
o

n
 l
a

u
n

c
h

e
r

fo
r

A
p

p
le

’s
 m

o
b

ile

p
h

o
n

e
.

C
o

n
ta

in
s
 i
c
o

n
s
 l
a

id
 o

u
t
in

 a
 fi

x
e

d
 g

ri
d

.
N

o
T
a

p
 t
o

 z
o

o
m

 i
n

.
P

h
y
s
ic

a
l
b

u
tt
o

n
 t
o

 z
o

o
m

 o
u

t.

[A
p

p
le

,
2

0
0

7
]

2
0

0
8

M
ic

ro
s
o

ft
 p

p
tP

le
x

A
 p

lu
g

-i
n

 t
o

 P
o

w
e

rP
o

in
t
th

a
t
e

n
a

b
le

s

p
re

s
e

n
ta

ti
o

n
 a

u
th

o
rs

 t
o

 l
a

y
 o

u
t
s
lid

e
s
 i
n

z
o

o
m

a
b

le
 s

p
a

c
e

.

C
o

n
ta

in
s
 P

o
w

e
rP

o
in

t
s
lid

e
s
.
S

m
a

ll
n

u
m

b
e

r
o

f

la
y
o

u
t
a

lg
o

ri
th

m
s
 w

it
h

 m
a

n
u

a
l
o

v
e

rr
id

e
.

N
o

,
b

u
t

w
it
h

m
a

n
u

a
l

o
v
e

rr
id

e

C
lic

k
 o

n
 s

lid
e

 f
o

r
n

e
x
t.
 C

lic
k
 t
o

 z
o

o
m

 i
n

.
E

s
c

to
 z

o
o

m
 o

u
t.
 S

c
ro

ll
w

h
e

e
l
fl
ie

s
 i
n

/o
u

t.

[M
ic

ro
s
o

ft
,
2

0
0

8
]

2
0

0
8

P
re

z
i

W
e

b
s
it
e

 f
o

r
c
re

a
ti
n

g
 a

n
d

 m
a

k
in

g
 f
re

e
-

fo
rm

 p
re

s
e

n
ta

ti
o

n
s
.

U
n

c
o

n
s
tr

a
in

e
d

.
D

ra
w

in
g

s
,
im

a
g

e
s
,
m

o
v
ie

s
,
te

x
t

p
o

s
it
io

n
e

d
 m

a
n

u
a

lly
.

Y
e

s
T
a

b
 f
o

r
n

e
x
t.
 S

c
ro

ll
w

h
e

e
l,
 o

n
-s

c
re

e
n

 b
u

tt
o

n
s

a
n

d
 m

o
u

s
e

/k
e

y
b

o
a

rd
 c

o
m

b
o

 t
o

 fl
y
 i
n

/o
u

t.

[P
re

z
i,
 2

0
0

8
]

2
0
0
9

F
ly

A
p

p
lic

a
ti
o

n
 f
o

r
c
re

a
ti
n

g
 a

n
d

 m
a

k
in

g
 f
re

e
-

fo
rm

 p
re

s
e

n
ta

ti
o

n
s
.

U
n

c
o

n
s
tr

a
in

e
d

.
Im

a
g

e
s
,
m

o
v
ie

s
,
te

x
t
p

o
s
it
io

n
e

d

m
a

n
u

a
lly

.

N
o

M
o

u
s
e

w
h

e
e

l
[L

ic
h

ts
c
h

la
g

 2
0

0
9

]

2
0

0
9

M
ic

ro
s
o

ft
 C

a
n

v
a

s
 f
o

r

O
n
e
N

o
te

P
lu

g
-i
n

 f
o

r
M

ic
ro

s
o

ft
 O

n
e

N
o

te
 s

h
o

w
s

v
is

u
a

l
o

v
e

rv
ie

w
 o

f
a

ll
a

 u
s
e

r’
s
 n

o
te

s
.

D
y
n

a
m

ic
a

lly
 g

e
n

e
ra

te
d

 g
ri
d

 o
f
g

ri
d

s
 c

o
n

ta
in

in
g

im
a

g
e

s
 o

f
n

o
te

s
 f
ro

m
 M

ic
ro

s
o

ft
 O

n
e

N
o

te
.

N
o

,
b

u
t

w
it
h

m
a

n
u

a
l

o
v
e

rr
id

e

C
lic

k
 o

n
 n

o
te

 t
o

 z
o

o
m

 i
n

.
E

s
c
,
ri
g

h
t
c
lic

k
,
o

r

b
a

c
k
g

ro
u

n
d

 c
lic

k
 t
o

 z
o

o
m

 o
u

t.

[M
ic

ro
s
o

ft
,
2

0
0

9
]

2
0
1
0

C
o

d
e

C
a

n
v
a

s

E
x
a

m
p

le
 o

f
a

 z
o

o
m

a
b

le
 m

a
p

 i
n

 a
n

 I
D

E
G

e
n

e
ra

te
d

 L
a

y
o

u
t
is

 h
a

n
d

-t
u

n
e

d
 b

y
 u

s
e

r
N

o
u

n
k
n

o
w

n
[D

e
L
in

e
 a

n
d
 R

o
w

a
n
,
2
0
1
0
]

2
0
1
4

C
o

d
e

G
ra

ffi
ti

H
a

n
d

-d
ra

w
n

 s
k
e

tc
h

e
s
 i
n

 a
 z

o
o

m
a

b
le

m
a

p
 i
n

 a
n

 I
D

E

C
o

n
ta

in
s
 i
m

a
g

e
s
 t
h

a
t
a

re
 p

la
c
e

d
 m

a
n

u
a

lly
 a

n
d

a
n

n
o

ta
te

d
 w

it
h

 h
y
p

e
rl
in

k
s
.

N
o

M
o

u
s
e

w
h

e
e

l
[L

ic
h

ts
c
h

la
g

 e
t
a

l.
,
2

0
1

4
]

F
ig

u
re

2
.8

:
S

o
m

e
Z

U
I

ap
p

li
ca

ti
o

n
s

an
d

th
ei

r
tr

ai
ts

.
R

ep
ro

d
u

ce
d

fr
o

m
[B

ed
er

so
n

,
20

11
]

an
d

am
en

d
ed

w
it

h
n

ew
er

sy
st

em
s.

A
d

d
ed

sy
st

em
s

in
cu

rs
iv

e.

30 2 The World on a Canvas

2.2.8 Ubiquitous Use Today

The navigation of ZUIs is very much adopted in certain do-
mains, even a standard user interface element. The first
of these are maps. Map interaction in a zoomable user in-
terface is almost obvious, maps and the metaphor directly
reference landscapes. Similarly, games often use ZUI ele-ZUIs are often used

for maps and

map-based games,

...

ments when they are map based, e.g., levels in a strategy
game. Interestingly, the most sophisticated user interaction
for navigation is found in games as well. Semantic zoom-
ing is widely used in maps and games, and interfaces are
typically single-level since all objects reside on a ‘ground’.

Digital image manipulation is the second domain in which
ZUIs are almost ubiquitous. Notably, both imaging and
mapping use mostly geometric zooming (e.g., gray text is
an exception, but the reasons to use it may only be perfor-
mance in rendering). Digital imaging software has devel-...in digital image

manipulation, ... oped a model of selection frames, interactions with the cor-
ners of objects, etc. which is almost standardized and out-
liers easily irritate the user. Digital image manipulation is
interesting, because here the authoring of the canvas land-
scape is the primary use case. Again, we see that the user
role is key in investigating ZUIs.

The third domain with much use of ZUIs are mobile de-
vices. As mentioned above, the iOS9 window manager has
zoomable elements (cf. figure 2.8) and many applications
implement zoomable navigation. Also, the calendar and...and especially

touch systems. photos applications on iOS9 zoom to content elements al-
most in the same fashion as outlined by [Perlin and Fox,
1993]. One could argue (cf. [Bederson, 2011]) that the touch
interaction model brought ZUIs into commercial applica-
tions, because touch gestures are an almost natural map-
ping to zoom and pan. In mobile systems, space is very
limited and ZUIs separation of focus and context through
time allows the user to keep a conceptual model of the land-
scape even though they only see a small part. This is also
the first area in that vendor supported user interface toolk-
its included zoomable widgets. Touch interaction on other
larger devices (e.g., tables and wall) also often uses zoom-
ing interactions, which is probably again due to the natu-

2.3 User Interaction of Zoomable User Interfaces 31

ralness of mapping touch to zoom and pan gestures.

2.3 User Interaction of Zoomable User In-

terfaces

In our discussion up to now, we mostly focussed on the
question on how to arrange the views and different tech-
niques to present the information landscape across zoom
levels. We have not discussed how a user navigates or mod-
ifies content in the landscape. This seems to be a second
grade concern in the whole discussion in the literature, as
most papers do not particularly dwell on the issue. The first
paper [Perlin and Fox, 1993] just says “Pad objects receive
events from the user’s mouse and keyboard”.

If we limit ourselves to navigation for a moment, how does
the user exactly move the camera? Let us consider the pos-
sible actions: the user can pan the camera laterally, they can
zoom in and out, they may edit objects in the scene, and very
rarely systems allow rotating the camera. The straightfor- ZUIs require

mappings for

navigation and

editing actions.

ward way is to use on screen buttons (cf. figure 2.3, top).
Similarly, keyboard mappings are mostly used for panning,
sometimes the page up or down buttons zoom in or out.
Almost all systems map mouse events directly to camera
actions. And this is where the interaction becomes ambigu-
ous.

Table 2.1 lists some of the input mappings we encountered
in ZUIs. As one can see, there is no standard of interac-
tion for theses systems. Each mouse buttons is used some-
where as a panning command and the user has to try out
before they can be sure of the mappings. The mouse wheel,
which may feel like a straight forward mapping to the cam-
era zoom, is sometimes mapped to the vertical pan because
this is the typical behavior for a system with a vertical scroll
bar. Some systems map the rate of the camera zoom to Mouse and keyboard

mappings are often

problematic because

of lacking interaction

standards.

the distance of drag with a middle mouse button. Clicking
or double clicking the button to zoom is also problematic,
because the user cannot know resulting amount of zoom.
E.g., in Pad a click halves the zoom distance, but another

32 2 The World on a Canvas

Panning Zooming NoteInput

left click and drag

right click and drag

middle click and drag

double click

M
o

u
s
e

right button double click

cursor keysKeyboard

one finger drag

two finger drag

pinch gesture

double tapM
u
lt
it
o

u
c
h

two finger double tap

scroll wheel

yes

yes yes

yes

yes yes

yes

yes

yesyes

Sometimes rate based

Sometimes only zoom in

Sometimes only zoom in

Sometimes depends on the

click point

yes

yes

yes

yes

yes

yes confused with scrolling

used in Pad for zoom

second tap reverses action

Table 2.1: Table of common input mappings for standard
input devices in ZUIs.

system may chose a different factor. The problem of clear
input mappings is already mentioned in Bederson and Hol-
lan [1994] and has not been standardized since.

But it gets worse when one considers the direction of
change, since some systems have a model of ‘moving the
landscape’ and some system have a model of ‘moving the
camera’. E.g., a simple mouse drag to the right can either
drag the landscape to the right (and thus move the view to
the left), or move the camera to the right (and thus move
the view to the right). On Mac OS X, the default scroll
direction is reversed for the y direction, which may make
sense for a scrolling interaction, but causes problem when
that is mapped to zooming. Even more, some systems map
scrolling forward to ‘moving the camera’ closer, and some
map the same gesture to moving the ‘camera up’ (since the
user ‘pushes the scroll wheel up’). Again, it is an unstan-
dardized mess.

A key problem with zooming with mice is that the action is
hard to undo. Most systems zoom towards the location ofThe reversal of

mouse zooming

actions is difficult to

design.

the cursor, so that the element at the user’s focus of atten-
tion stays under the cursor location, which is understand-
able as the user points on the position they want to zoom
to. To reverse this zoom action, the cursor has to be placed

2.3 User Interaction of Zoomable User Interfaces 33

at the same location again. But this time the user can not
make the connection with the location, and this can have
disorienting effects as the camera begins to pan as part of
the zoom. Another option is to make the camera focus the
screen center during zoom out navigation, but then the ac-
tions are not reversing each other any more. This is a tricky
decision to make as a system designer, and we have some-
times seen this as an option in the settings of the applica-
tion.

The mappings are much better with touch controls. On
touch devices like smartphones and tablets, the pinch ges-
ture has always been mapped to the zoom/rotation inter-
action and there is not ambiguousness in the direction of
the mapping. With touch controls on trackpads and mul- Touch controls map

naturally to zooming

and panning.

titouch mice, this clear mapping is now also available on
desktop systems but less common. Panning gestures are
less clear: the mount of fingers used for panning depends
on the application. Apps that allow editing of canvas el-
ements either reserve the single tap for editing of canvas
elements or decide on the tap location. There are also inter-
esting interaction techniques with post desktop interaction,
e.g., Gummi [Schwesig et al., 2004].

Bederson [2011] refers to another problem that he observed
which he calls “desert fog” The information landscape may
have ‘gaps’ between objects that show nothing, and when
the user navigates there they may lose their orientation
(cf. 2.7). This can be mitigated somewhat by limiting the If not designed

carefully it is easy to

get lost in a ZUI.

navigation to the convex hull of all objects, but on systems
with unrestricted zoom levels (cf. 2.2.5 “Multi-Level Inter-
action”), there are always such positions. Therefore, some
systems (e.g., Prezi) include a patterned background that
the user to orient themselves to.

2.3.1 Speed Dependent Automatic Zooming

Often, a ZUI software performs a camera movement over
a set piece of time, e.g., when clicking a hyperlink or when
advancing to the next stop in a presentation. When the fo-
cus view is at a very detailed level (that is, if the camera is

34 2 The World on a Canvas

t0 t1 t2 t3 t4 t5

t0

t1

t2

t5

t4

t3

t2

zoom distance

t3 t5t0

t2 t3 t5t0

zoom distance

pan distancepan distance

Figure 2.9: Speed dependent automatic zooming (SDAZ,
orange) lifts the camera as part of the pan action. This is
more pleasing to the viewer when compared to straightfor-
ward panning (blue), because the screen elements do not
change so rapidly.

very close), a large panning movement can be quite jarring
to the viewer. Figure 2.9 explains this problem: since the
camera shows only small views on the information space,
the contents scroll by very quickly over the time from t0 to
t5.

Speed dependent automatic zooming (or SDAZ) [Cockburn
et al., 2005] provides a way around this problem by auto-
matically lifting the camera up during the transition (cf. fig-
ure 2.9). To achieve this, the algorithm has to spend someSpeed dependent

zooming

automatically moves

that camera out on

large panning

actions.

of the available time to adapt the camera height, then move
faster on the high level, and then again spend time to lower
the camera before arriving at the destination. This way, the
camera shows a bigger part of the landscape at the middle
of the transition and even moves faster at the apex. Yet, the
movement is more pleasing to the viewer as each part of
the movement seems slower because more of the context is
visible.

2.3 User Interaction of Zoomable User Interfaces 35

Cockburn et al. [2005] studies differentiates between im-
plementations of automatic zooming and performs studies
with users. The evaluation shows that users strongly favor
SDAZ in navigation tasks and also perform faster. SDAZ SDAZ tests well.

ties the lateral and zoom degrees together, thus limiting de-
grees of freedom, but also simplifying the interaction by
automatically choosing a pleasant path. Bederson [2011]
argues that SDAZ is not good in precise and time depen-
dent tasks, e.g., games. He argues that this is hindering the
real time perceive think act loop [Card et al., 1983].

Overall, navigation in zoomable user interfaces has more
freedoms and consequently can be considered more diffi-
cult than traditional user interfaces. This is especially ap-
parent when compared to the pick-one-out-of-n style in-
teraction of overview + detail designs, e.g., a discrete se-
lection from folders. These drawbacks are somewhat miti-
gated with SDAZ and multitouch interaction, but the sys-
tem designer still has to take care to implement clear and
consistent mappings.

2.3.2 Editing Interactions

Many systems do not allow much editing in the scene
(e.g., maps or games), but those that do mostly follow
the standard interactions of graphical manipulations pro-
grams. The editing actions of Adobe Illustrator, Microsoft Editing actions in

ZUIs follow graphics

manipulation

software.

PowerPoint, and Prezi all allow multiple selections, drag-
ging, resizing, etc. of elements with the primary mouse but-
ton. The single touch is mapped similarly on touch sys-
tems. This is a form of direct manipulation of the can-
vas elements [Hutchins et al., 1985]. Notable exceptions to
this are early ZUI systems: the second iteration of KidPad
[Druin et al., 1997] used Local Tools [Bederson et al., 1996],
a tool palette that is integrated as objects on the canvas—a
particularly metaphor heavy implementation.

Interestingly, zooming almost never implies a mode on the
authoring, as suggested by the original Pad paper (cf. chap-
ter 2.2.3 “Semantic Zooming”). Semantic zooming often
transforms the style for fidelity of the elements in the can-

36 2 The World on a Canvas

vas, but does not change the way they are interacted with.
For the systems in which is the case, one has to consider
authoring the objects dependent on the zoom level. Fur-
nas and Zhang [1998] presented the Multi-scale Editor (or
MUSE) for such cases. But, as far as we are aware, no such
implementation has made it to commercial applications.

2.4 Implementing Zoomable User Inter-

faces

While toolkits for classic windows/icons/menus/pointer
(WIMP) widgets exist in many forms, toolkits that include
ZUI elements are very rare. This is unsurprising since ZUI
systems are much younger than the WIMP metaphor, and
we can attribute that the rarer usage of zoomable designs
originates in part in the lack of toolkit support. The first
ZUI system, Pad, was only able to work by being pow-
ered by a predecessor to OpenGL from Silicon Graphics.
In 1993, it had to run on dedicated hardware and yet was
not able to achieve fluid animations during a zoom anima-
tion [Perlin and Fox, 1993]. Luckily, graphics powered ren-
dering OpenGL and similar graphics accelerated hardware
and drivers are ubiquitous today, and even a mobile device
the size of the Apple Watch can now support full screen
redraws animating with 60Hz. So, what options exist to
implement a zoomable user interface today?

In common UI toolkits, ZUI interaction is still a second
grade citizen but a few out of the box solutions exist, or
other widgets can be appropriated with little effort. E.g.,
Apple’s Cocoa UIKit does not contain a dedicated ZUI wid-
get. The NSScrollView is what comes closest to a ZUI wid-Few toolkits help the

developer build ZUIs. get. It added scaling support with Mac OS X 10.8 in 2012 af-
ter UIScrollview on the iOS side (CocoaTouch toolkit) had sup-
ported this for 3 years. In using NSScrollView, the imple-
menter still has to take care to make the zoom animate flu-
idly, rather than changing the zoom level instantaneously.
In the absence of these (partial) solutions, canvas elements
that allow for custom drawing commands are available in
many toolkits, e.g., Pad++ used the TclTk Canvas Widget.

2.4 Implementing Zoomable User Interfaces 37

By nature of potentially changing all pixels on the screen
during a redraw in a non-translation movement, ZUIs are
computationally costly. A service that makes use of accel-
erated graphics is mandatory to achieve interactive results
once the scene becomes a bit more complicated. Luckily, Accelerated graphics

enable ZUIs.technologies like Open GL, Vulcan, DirectX, or other similar
technologies are available on all platforms and even low
end graphics hardware. With shader language support, it is
also straightforward to build distortions for focus + con-
text designs, e.g., Fly makes use of blurring for contextual
views. But, a developer can also appropriate game engines,
e.g., SpriteKit on Apple platforms or 3D engines with or-
thogonal projection, and thus leverage the low-level imple-
mentation of the engine developer.

A problem in common with all these approaches is that
they lack the feel of the widget set. Most of the technolo-
gies take care of presenting the view, but they do not help
with input, e.g., entering text. The developer most likely
needs to implement all the input facilities from basic events
like mouse clicks and touch events. In Fly, we took advan- Input mappings must

be recreated

manually.

tage of our single scale design that allowed editing only at
a particular scale. We then overlaid the scene with a stan-
dard system widget for editing text at the right zoom level.
That allowed for a native feel without taking the user out
of the zoomable scene, but this trick cannot be generalized
to all ZUI interactions.

When planning to deploy on the web, the amount of tech-
nologies available is more limited, but the following build-
ing blocks are still fine options. HTML5 includes a canvas
element which allows drawing primitives, and WebGL al-
lows to tap the graphics power of the hardware directly.
With cascading style sheets (CSS3) many animation primi-
tives are added that can be used to transform conventional
HTML elements to ZUI building blocks.6 And of course,
there is Adobe Flash, which allows Adobe’s multimedia plat-
form to be hosted in the browser. The web and desktop
versions of Prezi are implemented in Adobe Flash.

As only a part of the information landscape is rendered on

6See https://bartaz.github.io/impress.js/ for a particular impressive
implementation. Last accessed April, 2015

38 2 The World on a Canvas

the screen, some form of pruning is necessary and the de-
veloper has to plan for that with appropriate data struc-
tures. Structures have two (competing) desires: pruning
objects in the scene to the needs of the current view and fast
fetch of said objects. Again, one can leverage a data struc-Data structures from

graphics

programming can be

adapted to ZUIs.

tures from graphics programming, where similar problems
arise, e.g., a space partitioning tree. Jazz [Bederson et al.,
2000] implements a framework for ZUIs and shows also
how to introduce nodes into the graph that include seman-
tic meaning, such as the current edited region or semantic
zooming. Some platform technologies, e.g., Code Animation
and SpriteKit on Apple platforms, allow to arrange objects
in a tree structure, so that the engine takes care of some
of the work. Should the designer want to include portals
(cf. chapter 2.2.2 “Portals”) this can be problematic because
they can introduce cycles into the view hierarchy. In this
case, one should limit the amount of times a portal can be
rendered to ensure a timely halt of the rendering loop.

2.5 Promise of Zoomable User Interfaces

Bederson [2011]’s paper “Promise of Zoomable User Inter-
faces” closes with a review and design guidelines based
on his experience. He summarizes three promises of ZUIs:Bederson concludes

that the promise of

ZUIs is only partially

fulfilled.

First, that “ZUIs are engaging”, i.e., that users like the view
them and helps them build a mental map. His opinion is
that this holds, when ZUIs are designed well. Second, that
“ZUIs are visually rich”, i.e., that more degrees of freedom
on the canvas allow more creative expression. His opin-
ion is that this holds, but comes with the drawback of com-
plexity in navigation and understanding. Third, that “ZUIs
offer the lure of simplicity”, i.e., that retrieval and organi-
zation are easier and he concludes this is not true for very
large datasets. Bederson adds guidelines to use of ZUIs,
including the recommendation to only use canvas layouts
when they are meaningful for the user, to keep the land-
scape consistent over time, and to shy away from multi-
level layouts. He also stresses that ZUIs must support a
small representation of all canvas elements, noting that text
and audio recordings are especially problematic to support
in a ZUI.

2.5 Promise of Zoomable User Interfaces 39

A couple of claims have been put forward for ZUIs on
the organizational qualities of ZUIs: Perlin and Fox [1993]
write: “Pad is a good way to store documents with hierar-
chy and multiple narrative pathways.” and “As compared
to standard current window models, this system makes it
easier for the user to exploit visual memory of places to or-
ganize informationally large workspaces”. Bederson and
Hollan [1994] follow: “The ability to make it easier and
more intuitive to find specific information in large datas-
paces is one of the central motivations for Pad++.”

Claims also refer to the ability of audiences to understand Claims have been

made about spatial

representation in

ZUIs and how

audiences and

navigators benefit

from them.

content presented in ZUIs: Good and Bederson [2001]
write: “This spatial layout may provide the audience with
an additional attribute or memory pathway with which to
recall the presentation content.” and “[S]tructure is itself re-
vealed to the audience during the normal course of the pre-
sentation.” and “[A]nimation may improve long-term un-
derstanding of presented material.” and “ZUIs facilitate a
more spatial portrayal of hierarchies.”, concluding: “How-
ever, future empirical studies are needed to verify these ad-
vantages.”.

It is interesting to review the justification of these claims.
The references to the spatial memory and structure do not Most of these claims

could also be formed

for other canvas

designs with the

same justifications.

exclude focus + context designs or overview + detail on
a single continuous information landscape. One sees that
while they are formulated for zoomable user interfaces, the
theory that leads to this claims seldomly excludes the other
canvas designs might have. We can therefore postulate that
the defining feature that entices these promises is not the
primary navigation metaphor of zooming, but rather the
single continuous information landscape—the canvas.

2.5.1 What We Already Know about Zoomable
User Interfaces

The studies on zoomable user interfaces have shed some
light on some of these claims. We know that zooming costs
time, since the animation itself takes time. The promise is
that this cost is outweighed by savings due to better un-

40 2 The World on a Canvas

derstanding or more targeted navigation actions. Hornbæk
et al. [2002]’s studies found that contextual overview (as in
an overview + detail design) result in slower performance,
but higher user satisfaction. Cockburn et al. [2008] addSome studies find

ZUIs beneficial for

navigation.

to that a review of ‘low-level evaluations’ concerned with
simple target acquisition times and ‘high-level evaluations’
closer to real world tasks. In their summary, no clear trend
emerges on completion times, and that the benefit may de-
pend on the domain. For ZUIs, they find that “There is also
evidence that users can optimize their performance with
zooming interfaces when concurrent, unimanual controls
for pan and zoom are supported.”.

On the question of understanding material that is presented
in ZUIs, we have both positive and negative results. E.g.,
a study on storytelling by children with KidPad [Boltman,
2001] found that the KidPad condition children scored bet-
ter for recall of their stories. On the other hand, Good [2003]Zooming is a

cognitive burden for

the audience that

can be lessened with

animation.

found no statistically significant effect on audience recall.
The meta review by Cockburn et al. [2008] concludes that
zooming has benefits because “the spatial separation [be-
tween focus and context] demands that users assimilate the
relationship between the concurrent displays of focus and
context”, yet also that “[t]he temporal separation of zoom-
ing also demands assimilation between pre- and post-zoom
states”. They note that animations are especially importantStudies indicate that

ZUIs improve the

recall of structure,

but not of content.

for ZUI navigations to reduce the problem of reorientation
after zooming and that animations are well worth their cost
in time. Tentatively, there is an indication that ZUIs im-
prove the recall of a structure [Bederson, 2001], yet not the
content of canvas landscape.

When we look at domains and the claims about ZUIs, time
and recall are only some of the outcomes that interest us.
E.g., not only should presentations to be easy to under-Many aspects of the

authoring of canvas

landscapes are

unexplored.

stand, we also want them to be easy to conduct by the
presenter and convincing and engaging for the audience.
And we have little information on how they are authored.
E.g., the time it takes to author one is important, but not as
important as what kind of presentations a zoomable UI af-
fords and how it influences how the author expresses struc-
ture of thought.

2.6 Research Questions for Zoomable User Interfaces 41

In virtually all studies above users reported excitement for ZUIs are very

engaging.ZUIs, underlining Bederson’s first promise above. In HCI
studies, users often voice excitement for the new condi-
tions, a form of novelty bias. Here, this seems to be a par-
ticularly strong feedback—ZUIs are simply exciting.

2.6 Research Questions for Zoomable

User Interfaces

Bederson [2011] reviews studies on zoomable user inter-
faces and notes that most of them deal with navigation in
lab environments, e.g., the different implementations for
speed dependent zooming [Cockburn et al., 2005]. He asks
for more studies considering how different users interact
with ZUIs, better design with standardized controls, and an
exploration of the design space considering a comparison
to non-spatial ground truths. Bederson [2011] also specif-
ically mentioned that ZUIs have problems scaling text el-
ements (cf. chapter 2.1.8 “Review of the Canvas Design
Space”).

2.6.1 Domain Studies

Many of the early papers envisioned ZUIs to be a replace-
ment for fundamental system services, e.g., replacing the
window manager. Our studies in the ‘mundane’ applica- We study ZUIs in two

application domains:

presentation support

software and IDEs.

tion areas of presentation support and IDEs offer us an op-
portunity for more focussed designs with the needs of the
users in that domains in mind. The existing software so-
lutions in this domains are very standardized overview +
detail interfaces and offer us a ground truth to evaluate
against.

2.6.2 Authoring

When considering ZUIs as a helpful technique to build a
UI, the first studies that come to mind investigate naviga-

42 2 The World on a Canvas

tion. And most of the studies mentioned above investigate
this issue. Yet, authoring and learning has always beenWe consider three

main activities with

ZUIs: authoring,

navigating, learning.

brought forward as an argument when talking about user
interfaces that use ZUIs as a guiding concept for the user.
The author is the role that interacts most with a ZUI, e.g.,
in the domain of presentations, audience only experiences
the resulting animation and the presenter does not inter-
act much with the document and their experience is much
shorter.

We can rudimentary segment the user tasks into three
fields: authoring, navigating, understanding. This model
gives us a guide to our studies in the field of presentations,
and outlines how this thesis contributes by filling some of
the blanks in the space of studies on user tasks. We look at
all three different user groups in chapter 3 “Presenting on a
Canvas” and develop this model further.

Of these user tasks, authoring is almost not explored at all,
with the notable exception of Good’s dissertation [Good,
2003] and participatory design of KidPad [Druin et al.,
1997]. Good [2003] found that benefits for organizing in-We study authoring

with presentation

support systems.

formation over folder structures in a lab study with an ab-
stract content. And we know from the KidPad study [Bolt-
man, 2001] that the KidPad condition helped presenters
(“strongly supported the creation of non-linear stories”).
We can hope that ZUIs also help authors plan such stories.
So this looks like an interesting field to study further with
our presentation system to investigate how authors create
content on a canvas and if we can see improvements in the
resulting documents. We do this in chapter 3 “Presenting
on a Canvas”.

2.6.3 Scaling of Text

Another open question is the handling of non-graphical
content in a ZUI. The primary problem involved with that
is that it does not scale well geometrically: large text is irri-
tating in a multi-level ZUI and small text becomes unread-
able and is a poor representative of its content. For presen-
tations this is not all that bad, as a certain dramatic effect is

2.6 Research Questions for Zoomable User Interfaces 43

desirable and text heavy presentations should be shunned
anyway. But in other domains, such as writing or coding,
this bars us from employing ZUI techniques.

Good tried this with automatic text summarization in his We iterate on

designs to abstract

text with our IDE

prototypes.

Niagara prototype [Good, 2003] but did not report on an
evaluation. Another way to approach the problem by also
distorting the text is a reduction the content in another way
to pick the lines that are the most important as done in
fisheye code folding [Jakobsen and Hornbæk, 2009]. In
chapter 4 “The Code Base on a Canvas”, we investigate
the issue further and present three different designs to deal
with bodies of text and evaluate one that is based on hand-
drawn sketches that project the text onto a canvas.

45

Chapter 3

Presenting on a Canvas

Power Corrupts.
PowerPoint Corrupts Absolutely.

—Edward Tufte, 2003

We set out to apply our canvas metaphor as a guiding de-
sign principle to the domain of presentation support soft-
ware. We actually encountered the term canvas first when
it was picked by Laufer et al. [2011] to describe the applica-
tion of the ZUI metaphor in presentation support software.
Presentation support software are a good opportunity to in-
vestigate the promises by ZUI proponents, because it deals
with the core task of ZUIs: the visualization of informa-
tion. We can investigate if indeed ZUIs present structure Studying ZUIs in the

realm of

presentations is a

natural fit.

and hierarchy better and if indeed audiences can hope for
improved learning effects. Also, presentations is one of the
most ubiquitous and most frequent domains that comput-
ers are used for, that alone is reason enough to have a good
look at them. We review data on their use in section 3.1
“The Task and the User”.

From the critical analysis of the most prevalent product of
presentation support software—Microsoft PowerPoint—and
the type of software type it represents—slideware—we de-
velop an analysis of its problems (3.2 “Slideware”). We then
use this analysis to review how this guided our alternative
design (originally presented by this author’s diploma thesis

46 3 Presenting on a Canvas

[Lichtschlag, 2008] and published as a paper [Lichtschlag
et al., 2009]). We called that alternative Fly and its type ofWe present an

iteration of our

original artifact

contribution.

software canvas presentations. Our design builds on previ-
ous designs in alternative presentation software and lim-
its the ZUI principles to a subset applicable to this domain.
Furthermore, we present a design study on mobile use, and
a design study of use for asynchronous reviewers, and we
want to thank Claude Bemtgen [Bemtgen, 2012] and Chris-
tian Corsten [Corsten, 2009] in supporting these projects.
With Fly, we use the greater freedom (compared to slide-
ware) to empower all users of presentation support soft-
ware: authors, presenters, audiences, and reviewers. Or so
we hope—to find out if this really works is the job of the
studies that follow.

We quickly review the two studies from this author’s
diploma thesis [Lichtschlag, 2008, Lichtschlag et al., 2009]
which dealt with the authoring scenario in two lab stud-
ies and found that the canvas condition allowed the au-
thor express a great diversity of designs. In this thesis,We three additional

studies so that we

have an

understanding of all

user roles.

we contribute three new studies (section 3.4 “Studies”) to
this: we revisit the original scenario of authoring again,
but this time use data from real world use and confirm our
results. We then investigate the other two roles, namely
the presenter and the audience. This part has been sup-
ported by Phillip Wacker [Wacker, 2014] and Thomas Hess
[Hess, 2011] respectively, and previously been published
at international conferences [Lichtschlag et al., 2012a,b,
2015]. Together, these five studies look user interaction
with zoomable presentations from all angles.

3.1 The Task and the User

First, we have to establish our model of whom we design
for and what their task is—as it is good practice for work
in the field of Human Computer Interaction [Dix and Fin-
lay, 2004]. While probably all readers have held and heard
many presentations, it is easy to forget tasks that may lie
out of our personal experience.

The presenter is, of course, the first role that comes into

3.1 The Task and the User 47

mind, and has historically received the most attention. If
we have a closer look, we see that the reason to present
can be diverse and has implications on the design of our
software. Giving a presentation is only one aspect: a good
presentation often takes many days to research, structure,
plan, prototype and rehearse. It is this task of authoring a Presenters research,

structure, plan,

prototype and

rehearse talks

presentation that we focussed on in our first study. It may
require handouts for the audience, video recordings for on-
line delivery, and all these materials may need to be reused
at another date for a different audience. These do, however,
not necessarily have to be done in this order or strictly one
after the other—building presentations is often an iterative
process. The presenter and author are often not the same
person, as it is commonplace to present a joint project, to
delegate the production of slides, or to inherit a slide deck
from another employee.

Since most studies on presentations come from a back-
ground of education, improving the experience for audi-
ences has received the most investigations in studies, e.g.,
by looking to software to improve learning. While it is of- Many studies

investigated

audiences in order to

find ways to improve

learning.

ten thought of as passive, attending a live talk allows for
interaction with the presenters, e.g. through question and
answer segments. And, finally, as presentation materials
are often published, be it in the form of recordings or as
slide decks, we have to consider an audience that does not
attend the talk itself, which we call reviewers. An example
for such an audience is a student that views a slide deck
later on to learn the material.

So, we define four tasks for people involved with presenta-
tions: the author, the presenter, the audience, and the reviewer
(cf. figure 3.1). The first three directly correspond to our au-
thor, navigator, learner roles (cf. chapter 2.6.2 “Authoring”).
We understand the reviewer as a mixture of navigator and
learner. Before we have a closer look at them in turn, we
take a short look at the history of presentations and presen-
tations aids.

3.1 The Task and the User 49

was only after the industrialization and the spread of orga-
nized education and literacy, that the form of presentation
visualization emerged. It is this part of the history that we
are interested in this thesis.

We can look at the physical presentation aids as precur-
sors to present digital presentation aids. Several techni-
cal innovations began to support public speaking and all
of them remain in use today: Blackboards were introduced Modern presentation

aids appear in the

second half of the

20th century.

in 1801 and became widespread in the middle of the nine-
teenth century; 35mm physical slides appeared in 1936 and
carousel slide projectors in 1961; overhead projectors were
used by the military in 1945; Television was widespread in
the United States by 1960. This time constitutes a major
change in how public speaking is conducted, Earnest [2003]
writes: “With the advent of mass media and the dawning
of the Information Age, speech teachers would find that
what constituted the ‘available means of persuasion’ was
expanding in new and dramatic ways.”

Today, slide and overhead projectors are diminishing is use
and are replaced by digital technologies. Yet, institution Digital tools are

ubiquitous.with less funds available or extensive existing slide collec-
tions may keep using the existing materials and devices.
This transition started with software solutions to develop
physical sheets for overhead projectors, users designed the
slides digitally and then printed them on physical sheets.
Later, the need to print out on slides vanished, and the
user controlled the digital display directly from the com-
puter. Microsoft PowerPoint [Microsoft, 2015] is not only PowerPoint is the

undisputed market

leader.

the present market leader of such presentation software
and one of the most used programs, it is also the first pro-
gram of its kind [Parker, 2001].1 It was introduced to the
market in 1987 by Forethought for the Apple Macintosh—
Microsoft bought Forethought in the same year and in 1990
PowerPoint was released as part of Microsoft Office for
Windows. PowerPoint is a first generation presentation PowerPoint is the

oldest presentation

software and firmly

rooted in its physical

heritage.

aid software, and is firmly rooted in the model of physi-
cal slides. While we have transitioned slide shows from the
physical to digital, and similarly have copied the software

1A man named Whitfield Diffie was involved in its first prototypes,
luckily for him, he is much better known for his contributions to public-
key cryptography.

50 3 Presenting on a Canvas

from desktop computers to tablets and smartphones, the
interaction style remains the same to this day and firmly
rooted in the slide metaphor.

3.1.2 The Speaker

The speaker’s primary goal is to communicate to the audi-
ence. What she wants to communicate and for what rea-
son is a wide field and the field of presentation styles is
equally wide: E.g., a speech given at a wedding embel-There are many

different ways to

present.

lished with pictures of the couple is fundamentally differ-
ent form a talk asking for funding at a founder’s meet-
ing, which is in turn fundamentally different from a lecture
given at university—the first of these talks seeks to enter-
tain, the second seeks to convince, the third seeks to inform.
Talks can be speaker centered, in extreme cases without vi-
sualizations at all or with very minimalist slide content that
underlines the sentence spoken at the moment, often with
the exact same words.2 Another example is the proverbial
thirty second elevator pitch can determine funding, employ-
ment, or rejection for the speaker’s operation. Or think ofPresentation

performance can

make a difference.

PowerPoint Karaoke, a friendly gathering where presen-
ters give presentations without preparation or knowledge
of the visual aids. One format is called PechaKucha 20x20
[PechaKucha, 2015] that shows 20 images, each for 20 sec-
onds, with images advance automatically. Similarly, ad-
vice on good presentation practice varies greatly: popu-
lar advice includes a rigorous format with 6 bullet points
with 6 words each per slide (or variations thereof with 5
or 7), 10 slides in 20 minutes with 30pt font [Kawasaki,
2005], and presentations that use only headlines with im-
ages [Reynolds, 2011]3

Public speaking is often thought of as very intimidating
and a stressful situation [Moscovich et al., 2004]. Not onlyMany people do not

enjoy public

speaking.

do most people avoid situation where they are judged by
others, but also their career may hinge on her performance.

2This method is sometimes referred to as Lessig method, named for
Lawrence Lessig, who made often use of this style.

3Our personal advice is always that there should be no text on slides
except for headlines, the important data points, or take home messages.

3.1 The Task and the User 51

And this is true before one introduces technology into the
mix by asking the presenter to handle the controls of the
presentation aid. Software commonly allows temporal nav-
igation forwards and backwards, for example, by using the
arrow keys, and random access to points in the planned
presentation, for example, by typing in the slide number.
The speaker can use many interfaces to do this: keyboard, Speakers can dive

the presentation with

a wide array of input

mechanisms.

remote control, touches, laser pointer or gestures [Cao et al.,
2005] are just some of the available means.4 With the added
burden of driving the software they have one more thing to
worry about, and an error in the slide deck—be it an ac-
cidental step backward, or resource that fails to load—can
easily bring a presentation to a halt as the presenter has to
focus all of their attention on fixing the visualization. Han-
dling the controls of the presentation device only adds to
the cognitive load and stress of the situation.

Presenter’s notes are another common feature of presenta-
tion aids: annotations that can be seen on a private screen
by the speaker, but are invisible to the audience. This can
be helpful for the presenter, if she wants to minimize her
memory load, but not distract the audience with too much
information. In software these presenter notes are typically Presenter’s notes are

not used often.shown aside the current visualization on her private screen,
for example, a laptop. Before computer support, this was
often realized with note cards that the presenter held in
her hands or annotations upon the sides of physical slides
[Churchill and Nelson, 2002]. Thielsch and Perabo [2012]
found that only few speakers use this feature: 20% of pre-
senters reported using it often or always, 42% reported to
never use it.

Visualizations are often called visual aids for a reason: they
hold the promise of making the job easier, as any good tech-
nology should. Not only is some data much easier to show Presentation aids

can be a lifeline for

presenters.

with images than to describe in words, also the visualiza-
tion is often used as a guide through the talk, a lifeline for
the presenter, if you will. Excessive appropriation of the
visualization as a guiding help to the presenter, which is
especially often done by beginners, is often criticized (for
example, [Van Pelt, 1950, Tufte, 2003]). Especially in talks

4Let us not forget the obnoxious call to an assistant that interrupts
the flow of the talk: ‘Slide!’

52 3 Presenting on a Canvas

where a speaker is not or hardly visible to the audience it
might questions if the presentation driven by the speaker
or the speaker driven by the software? For example, a talk
at a large conference or a presentation distributed online
might be perceived by the audience like a movie, whose
speaker just so happens to also be in the room and avail-
able for questions after. We can lament the fact that inexpe-
rienced presenters may be looking for an easy way out, but
we should not forget that the presenter is indeed finding
help in technology.

As we see, the presenter has to do many things at the same
time: deliver the speech, present visual aids, drive the pre-
sentation in sync with his talk, engage the audience, and
prepare for the next argument in the talk. All these tasks
at the same time make giving a talk typically a very stress-
ful situation for the presenter and such situations are often
feared among inexperienced presenters. It is therefore ofPublic speaking is

already hard, our

tools must not make

it harder.

utmost importance that we keep in mind that all our de-
sign decisions must not hinder this interaction, especially
not put the presenter under duress. Any software imple-
mentation should prioritize simplicity and error prevention
during presentation delivery. We talk a lot about the visu-
alization, but we should not forget that it is ultimately the
interaction between presenter and audience that makes or
breaks the talk [Farkas, 2009, Garner et al., 2009, Thielsch
and Perabo, 2012]. Any software implementation should
aid the presenter in giving an engaging speech.

3.1.3 The Author

Before a presentation aid can be used in the actual talk, it
has to be built beforehand towards the intent of the talk.
If the author is not familiar with the topic, she has to per-
form research, gather information, and make sense of it.
Then she needs to select a subset of material to include inAuthors select and

arrange the material

in the presentation

aid.

the presentation document, and finally compose the docu-
ment. Johnson and Nardi [1996] report on the use of ani-
mation software, graphics manipulation software, or even
text editors for parts of the editing process, which then are
later combined in the main presentation software. Some-

3.1 The Task and the User 53

times, composing is only a small aspect, for example, if
the presenter is already an expert in the domain, can rely
on existing material, if previous documents exist, or if the
talk is repeated or adapted from previous talks. Often pre-
sentation aids are existing, but they were not prepared by
the person who delivers them, in which case the presenter
has to examine the topic to prepare for the talk [Johnson
and Nardi, 1996]. When authors spend work on the pre-
sentation aids, they often want to reuse them in other for-
mats or other talks. Is is very common to give the same The authors work

may be used more

than once.

or a varied talk about the same subject, maybe in a differ-
ent setting. Then, most parts of the talk can stay the same,
while others might be trimmed, recast, or have new mate-
rials added. Drucker et al. [2006] implemented a sophisti-
cated prototype for version control and comparison among
PowerPoint documents of related talks. For the remainder
of this investigation we concern ourselves with authors that
understand the talk domain well and do not have any false
understandings. Yet, they may not have finalized mindset
on how to present the material.

Similar to the presenting task, the authoring of the pre-
sentation document can be very diverse and individual:
presentation documents are often created by multiple au-
thors or the author is not the speaker [Johnson and Nardi,
1996]. This finding is in line with data gathered with semi- Authors often

collaborate on

presentations.

structured interviews by Spicer and Kelliher [2009], who
also described delegation of parts of the authoring to col-
laborators and strong reuse for presenters in administrative
and academic roles.5 Collaboration and reuse are clearly
the a very common behavior: Thielsch and Perabo [2012]
report that only a third of presenters never reused foreign
presentations, 16% never reused own presentations, and
only 10% never collaborated. Currently most presentation Only web tools

support

collaboration.

software does not support collaboration, with the notable
exception of web tools such as Google Documents [Google,
2007], Apple iCloud [Apple, 2015a], and Prezi [Prezi, 2008].
Figure 3.2 shows the activities of authors during author-
ing: text, tables, and images are the most often used me-
dia types. His study also finds that amateurs tend to use
few programs, whereas experts use a larger set of tools; es-

5For example, often university lecture materials are adapted from
year to year and are authored by the lecturers in turn.

3.1 The Task and the User 55

to consider.” and “In addition, formal structures can in-
troduce modification costs that reduce the chances that an
author will explore alternative organizations.”. Thus, we
arrive at our requirement for presentation authoring: soft-
ware should support this process of exploration and spark
creativity.

3.1.4 The Audience

When we talk about presentations, clearly we cannot for-
get our audience members. Unfortunately, in most talks
they find themselves in a very passive role and one might
ask why we would consider them users of the software in
the first place. With the notable exception such as Classroom
Presenter [Anderson et al., 2003, 2004b,a] contemporary pre-
sentation software does not allow the audience to interact
with or through software. The audience might ask ques- Most audiences do

not get to interact

with the presentation

software.

tions to the speaker during or after the talk. In response
to that question the presenter they may decide to display
a certain position in the visualization, or bring up backup
material that has not been planned to be presented but is
deemed helpful for to answer the question [Spicer and Kel-
liher, 2009]. We will see that this is a use case in which
zoomable interaction metaphors promises to simplify the
task for audience and presenter (cf. section 3.2.4 “Analysis
From an HCI Perspective”).

Presenters often want to give handouts to the audience be-
fore or during the talk. These handouts can be a writ- Audiences may

receive presentation

aids in the form of

printed material or

recordings.

ten script, but increasingly, are print-outs of the presenta-
tion aids. He [2000] explored the usefulness of such hand-
outs and found that students with highlighted transcripts
and video recordings performed better. In contrast, simple
print-out of the slides performed worst and were less ac-
cepted by audiences. This has also been observed by Nor-
man [2005]. Unfortunately, once slides are produced for the
presentation, it is all to easy to just print them out.

The most critical aspect, however, is for the audience to
receive the information in a way that the author and pre-
senter intend to. Most of the literature is concerned with

56 3 Presenting on a Canvas

teaching and therefore considers learning of material the
important aspect of the presentation and the visuals (e.g.,
[Brown, 1992] or [Garner et al., 2009]). Lanir et al. [2008]
and Slykhuis et al. [2005], examine lectures in a classroom
setting as very content oriented presentations: they find
that content in such lectures can be divided into rich con-
tent and support content. Rich content gradually built upMost studies

consider improved

learning for the

audiences to be the

most important

metric.

and referenced throughout the lecture, whereas support
content has only a short time value. Eye-tracking studies
show that students are adept at differentiating the two and
spend significantly more time on the rich content [Slykhuis
et al., 2005]. When audience members are unhappy with
the presentation, technical aspects are named in 41% of the
responses, while 48% of the responses mentioned the per-
formance of the presenter [Thielsch and Perabo, 2012]. This
clearly shows we can hope to improve presentation soft-
ware quite a bit.

3.1.5 The Reviewer

We already decried the use of slides as handout material.
As visualizations become more and more prominent in pre-
sentations, the reuse of presentation aids after the talk be-
comes more prominent as well. A well built presentation
aid can live a second life. It is quite common to expectPresentation aids

can live a long life

after the talk.

slides as learning aids in school and university. Similarly,
the slides from a talk often get retained as a means for doc-
umentation, when composing a written report or an essay
on the matter is deemed too laborious. Hence, we have to
consider an audience that is not present during the actual
talk for which the presentation aid was composed and yet
tries to gain knowledge from it—we call this user the re-
viewer.

It is increasingly common with the development of digitalWe see more

presentations that

are only built for

asynchronous

viewing.

video and increased bandwidths to offer recordings of the
talk itself instead of paper handouts. Additionally, some
talks are built to be viewed without interactions from the
audiences at a later time—they are built for this communi-
cation channel in the first place. For example, Linda.com,
Slideshare.net, Youtube.com are popular online communi-

3.1 The Task and the User 57

ties to not only share talks and materials after they have
been recorded, but also to share the talks only this way in
the first place.

The reviewer cannot ask questions to the presenter or get to
the presentation aids that were not recorded such as backup
slides. But, they can consume the document in their own
time, location, and with the speed that they desires.6 E.g., it
can be useful to rewind to a complicated issue or to speed
up a boring part. In chapter 3.3.4 “DragonFly” we discuss
an adoption of our Fly prototype to the needs of a reviewer.

3.1.6 User Base

Presenting is ubiquitous, so one might like to say: every-
body is a potential user. And that would most likely be
true for anyone who has been to school in a highly devel-
oped nation in recent years.7 Higher education institutions PowerPoint

permeates most

administrative

activities.

and business are similarly completely permeated with pre-
sentation use [Thielsch and Perabo, 2012]. Even the recent
leaks from the NSA and military use are almost completely
in the form of PowerPoint slides [Gallagher, 2014].8

As of 2013, Apple offers its presentation programs for free
with the purchase of new hardware, similarly, Windows
machines often come preinstalled with PowerPoint. Free Slideware is readily

available.software solutions are available for all platforms, e.g., from
OpenOffice Impress [OpenOffice, 2012] or Google Docu-
ments [Google, 2007]. We can summarize without exag-
gerating: if one buys a computer today, it comes with free
access to presentation software.

Thielsch and Perabo [2012] have one of the most re-

6An unfortunate side effect of this is that students often skip class if
they feel that the published presentation aids or recordings will suffice
to learn the material.

7e.g., in Baden-Württemberg, a presentation is scheduled in the syl-
labus at 2nd and 4th grade.

8“One military advisor from Duke University said that the U.S. mili-
tary, instead of getting our allies to use PowerPoint, should give it to the
Iraqis. We’d never have to worry about them again.”, Wall Street Journal,
April 26, 2000.

58 3 Presenting on a Canvas

cent studies and report a detailed look at how pervasive
computer aided presentation use is and they write that
PowerPoint remains an almost undisputed market leader
in 2012, being used by 96% of all participants, and predom-
inantly used by 83% of all participants. Apple Keynote and
OpenOffice.org are used by 10%. Adobe Acrobat (29%) and
Excel (33%) are also often used for handouts or preparation
of parts of the presentation. Simons [2004] concludes: mil-
lions of PowerPoint-based presentations are given around
the globe each day.

3.2 Slideware

PowerPoint has such a bad image that it almost hard to not
find an article that rails against it. And we are sure that
nobody who regularly attends presentations is unaware of
problems such as too much text on slides or presenters that
pay more attention to their private screen than to the au-
dience. But is it justified to blame a piece of software for
bad experiences in the classroom? And furthermore, if itThe reason of bad

talks is very much

debated.

were true that PowerPoint makes talks worse, can we not
follow that there is software that improves them? These
questions are part of a debate that is as old as presenta-
tion aids. We could probably fill the entire thesis with this
debate. In interest of the reader and because we have al-
ready presented this debate in this author’s diploma thesis
[Lichtschlag, 2008] at great length, we will just shortly out-
line the main criticisms and arguments.

3.2.1 Blame for PowerPoint

Presentation literature appears shortly after the first pre-
sentation aids become widespread. And so does the cri-
tique of presentation aids: Van Pelt [1950] writes: “We
have fidgeted, mentally if not physically, as the remarks of
a renowned scientist came to a dead stop while he read-
justed some ill-arranged piece of apparatus or hunted for
a scientific specimen to illustrate his point. The habit of
using bad visual aids is rampant among those who ‘speak

3.2 Slideware 59

to inform”’. This reads like a criticism handed out about Critique of

presentation aids

appears soon after

them.

PowerPoint today, but this quote is from 1950. One al-
most fears that we have achieved nothing with new presen-
tation aids. A contemporary critique by Kaminski [2001]
reads: “[PowerPoint] too easily becomes a replacement for
the presenter, not a reinforcement. Instead of a visual aid
for the speaker, the speaker becomes an audio aid for the
slides. This strips the presentation of some of its most es-
sential appeals.” and “It wastes time. You can suck up pre-
cious time tweaking a presentation”. We can confirm the Much time is spent in

graphics.critique that the creation of presentation aids takes time.
Thielsch and Perabo [2012] report that 36% of preparation
time is spent on graphic design and animation of slides
alone.

The critics of PowerPoint argue that PowerPoint changes
the delivery of presentations—for the worse. Tufte
[2003] approaches the problem humorously and compares
PowerPoint to Stalin, imposing a totalitarian regime on the
presentation: all content must fit into the style of bullet
points, slide after slide and pretty ‘chartjunk’. In his view, Tufte argues that the

design of PowerPoint

degrades

presentation quality.

“PowerPoint style routinely disrupts, dominates, and trivi-
alizes content”, and instead of augmenting the talk, it sub-
stitutes the talk itself. This might even make talks, that
used to employ different styles, look the same after ‘en-
hanced’ with slideware [House et al., 2005]. If the presen-
ter talks about the slide, rather than the slide backing her
arguments, then the slides implicitly set the pace of the
presentation—this can be seen when the presenter has to
orient themselves after a slide change [Farkas, 2005, 2008].
Similarly, Johnson and Sharp [2005] and Craig and Amernic
[2006] argue that PowerPoint creates a finalized mindset,
inhibiting spontaneous discussion or impromptu changes
to the talk. Therefore, slideware is also seen as unfit for
education, because it shows the results rather than the pro-
cess of obtaining them. [Parker, 2001, Johnson and Sharp,
2005] Also an often voiced concern is the ‘perfection fault’:
instead of thinking about high level decisions, the author
is supposedly more inclined to get distracted and beautify
low level content [Wright, 1983, Parker, 2001, Tufte, 2003,
Good, 2003, Li et al., 2003]. The criticism that PowerPoint
diminishes the presenter’s ability to prepare a good talk can
best be summarized by the quote from Tufte [2003] at the

60 3 Presenting on a Canvas

beginning of this chapter.

3.2.2 Blame for Authors

Those who defend PowerPoint against this criticism argue
that PowerPoint is merely a tool—a tool that can be used to
create good and bad slides, but the outcome depends of the
author’s skill. Shwom and Heller respond to Tufte: “Hav-
ing read hundreds of poorly worded business letters in our
consulting practice and teaching, as well as many dense
and impossible-to-decipher engineering reports, would we
be fair in saying that word processing software is just ‘not
serious’?”. Consequently they ask together with HolmesThe responsibility to

deliver a good talk is

with the presenter,

not the software.

[2004], Brown [2007], Norman [2005], and Kjeldsen [Kjeld-
sen, 2006] for proper training of students in presentation
visualizations or “Media Rhetoracy”. Norman [2005] also
argues that personal notes, handouts and slides are differ-
ent documents that should not be mixed, since they have
distinct features that make them not interchangeable. The
view that PowerPoint and other slideware should not be
held responsible for the failings of authors [Hardin, 2007]
is best summarized by Kjeldsen [2006]:“PowerPoint does
not give bad presentations, People do.”.

3.2.3 No Significant Difference

Thielsch and Perabo [2012] write: “As easy as computer-
based presentations are to create, presenters seem to be se-
riously challenged to create good presentation slides and to
deliver a good talk.”, outlining the duality of the problem:
fixing either software or presenter education will not solve
our problems. Unfortunately, this thesis can only tackle the
first problem—or can it?. Well, even this is open to debate.
Over a series of articles especially Clark [1983, 1994, 2001]Many studies show

that different media

to indeed not

influence learning.

and Kozma [1994, 1991] argue about the general possibil-
ity or impossibility that specific media can ever influence
learning beneficially. The discussion reached a pinnacle in
1994 when Clark and Kozma sharpened their respective
views in ‘Educational Technology Research and Develop-

3.2 Slideware 61

ment’. More recent research Hoyt [1999], Russell [1999], Ra-
mage [2002], Joy and Garcia [2000], Clark [2001] strength-
ens Clark’s line of thought: rigorous testing, especially can-
celing the side effects and separating method and media,
has found little evidence of learning benefits with media as
an explanatory variable. Evidence of increased learning are
at best unconvincing and insignificant against a vast body
of studies that do, in fact, find no influence on learning.
Russell [1999] summarizes in his book The No Significant
Difference Phenomenon [1999] 355 studies, of which the vast
majority finds no benefits. A study comparing varying se-
tups of slideware [Earnest, 2003] came to the same result.
We close this view with Clark [1983]’s argument “[...] me-
dia do not influence learning under any conditions.” and
“[...] media are mere vehicles that deliver instruction but
do not influence student achievement any more than the
truck that delivers our groceries causes changes in our nu-
trition.”

This reads like bad news for presentation support software,
slideware or otherwise—until we remember that the learn-
ing outcome based on media is not the only measure here.
Authors and presenters of talks have to build and drive Clark’s argument

predicts that we will

find no evidence of

increased learning.

the presentation well before they can hope to teach well.
If software hinders or helps them in these regards, noth-
ing in the no significant difference debate can argue against
that. And if we empower authors to understand their own
material better or to have more time to spend, then we can
even hope to influence learning outcomes. Finally, when
we consider learners that review material on their own, e.g.,
learning for an exam with the presentation materials of the
course, we already saw that we cannot cast them as passive
audiences anymore. They navigate the materials on their
own—a different method of learning.

3.2.4 Analysis From an HCI Perspective

We see that the criticism of slideware is a heated debate. Ev-
eryone seems to agree that many presentations are bad, but
the opinions differ as to what or who should be to blame.
We do not want to take sides in this fight. Clearly a presen-

62 3 Presenting on a Canvas

ter is ultimately responsible for himself. But that does not
mean that we cannot strive to build better tools for him to
use and to prepare his talks. Hence, below we analyze how
users actually deal with PowerPoint and slideware from an
HCI perspective. And we add to that an outline how the
identified hurdles are overcome with a canvas presentation
tool. We identify three basic problems: content cutting, time
dominance, and detail trap. We first brought this analysis for-We present our own

analysis of slideware

together with an

argument for canvas

presentations.

ward in this author’s diploma thesis [Lichtschlag, 2008] but
since then the basic metaphor of slideware has not changed
and the criticism still holds. Farkas [2008] has since then
formulated a similar argument. Below, we roughly revisit
the three basic problems so that the reader can follow our
design of Fly and the motivation for our studies. The full
argument is published in [Lichtschlag, 2008, Lichtschlag
et al., 2009].

As we saw, slideware has been repeatedly criticized to
be the reason for a degrading the quality in presentations
[Gopal and Morapakkam, 2002, House et al., 2005, Parker,
2001, Tufte, 2003]. So, let us revisit the basic conceptual
model of slideware: is based on the notion of rectangular
slides shown in a linear, predefined sequence. We outlinedThe problem of

PowerPoint is an

outdated metaphor.

in 3.1.1 “History” how this is rooted in the history of slide-
ware aids, it is a continuation of a metaphor for physical
slides. However, the constraining technical possibilities of
traditional slide and overhead projectors that created this
model are no longer valid for computer visualizations—yet
they still shape our understanding of the nature of presen-
tations. An author structures their thoughts around slides
and talks about slides, because that is what the tool affords
them to do [Lovgren, 1994]. Canvas presentations propose
to change this dynamic using an underlying metaphor and
a user interface that allows the author to keep his mental
model intact and reify it without fragmenting it (cf. chap-
ter 2.1.7 “Fragmentation and Continuity of the Information
Landscape”).

3.2 Slideware 63

Content Cutting

Slides separate content into discrete chunks of equal size,
each bucket effectively determined by what can be seen
comfortable from a distance. Apart from the necessities
of presentation delivery, the size of these chunks is arbi-
trary. It does not relate to the shape of the content, more-
over, it would be quite the coincidence if the information
that should be presented came in exactly slide-size chunks.
This leads to common problems in slide preparation when
sizes do not match: When content cannot span boundaries
of slides, the author has to make a choice. Do they reduce The slideware cuts

the content into

pieces.

the amount until it fits, or do they stretch it over multiple
slides by cut it into parts? If content does not fit, it is likely
to be dropped from the talk [Parker, 2001] or the problem is
battled with tiny font sizes. There is no ‘half’ slide for less
content, or a good way to compare two slides next to each
other. When a consistent topic is spread over many slides, it
is an additional burden on the audience to reassemble the
whole from the fragments, and the presenter’s burden to
help them [Good, 2003]. This is why we call our first crit-
icism of the slideware metaphor content cutting: the slide
metaphor acts like a stamping machine that cuts the con-
tent into equal sizes, no matter if it actually fits.

Canvas presentations propose to change this, because this
is actually the way we defined the term ‘canvas’ in chap-
ter 2.1.7 “Fragmentation and Continuity of the Information
Landscape”. A zoomable user interface or a focus + context
interface keeps a single continuous information landscape
intact. An author that arranges the presentation content on Canvas tools

promise to change

this.

the canvas has more degrees of freedom to do so, and no
borders. But this does not solve the problem of presenting
the content. A screen that is driven by the presentation aid
still can only show a certain amount to content before is be-
comes unreadable. Which leads us to the second criticism.

Time Dominance

Astonishingly, is is possible to build a software that aids
presentations no matter what the reason to present. As we

64 3 Presenting on a Canvas

saw slideware is employed to show everything from lec-
tures to wedding photos. The common denominator of all
presentations is makes this possible: talks are given over
a set amount of time, and slideware puts this considera-
tion front and center. Here, the timeline of the talk is hard-
coded into the document at the moment of creation. Any
non-linear content has to be projected onto the timeline,
losing its original shape unless reconstructed via clever
overviews by the presenter. Again, this leads to common
problems: connections other than to the adjacent slides areWith slideware, the

author has to think

about mapping the

objects to time from

the beginning.

lost (unless the author goes to great lengths to define hy-
perlinks). Individual items are either included in the talk
or left out, creating a “finalized mindset” that hinders pro-
totyping and exploration of alternatives [Good, 2003, Gopal
and Morapakkam, 2002]. Optional material has to be put at
the end, rather than close to the topic which it refers to.
Since all slides have exactly one position in time, dupli-
cates are needed to revisit ideas. Arbitrary access to slides
is hard to do for the presenter, and jumping to the other
end of a talk is usually accomplished by the visually rather
jarring experience of rapidly flipping through all slides in
between [Moscovich et al., 2004]. The resulting document
is only valid for its original timeframe: content that is not
anticipated cannot be presented [Anderson et al., 2004b].
Reusing of the document for a different talk will most likely
require projecting the contents onto a new timeline all over
again—even if both share most of their content. We call
this criticism of the slideware metaphor time dominance: the
slide metaphor puts the consideration of timing first.

Instead, we propose to postpone this consideration. In can-
vas presentations we can wait until the last minute before
the talk and not have a mapping from time in the talk to
content. Instead, the presenter can just navigate through
the information landscape according to the presented con-
tent. Since content is laid out according to a structure that
is meaningful to the presenter, most navigations are close,
e.g., zooming or panning to an adjacent item when they
follow the natural hierarchy of the content. Ok, we do notCanvas tools

promise to change

this as well.

really want to burden presenters with closely controlling
the navigation while they give a talk, but this scenario is
helpful to see the difference to slideware: on the canvas no
object has an inherent timing, it is not in a linear sequence.

3.2 Slideware 65

When the author wants to prepare a sequence, they can do
so by preparing a path through the landscape before the
talk. Or more than one when there are different ways or
occasions to present. And if the content comes up again
later in the talk, then the path loops around and follows
the landscape. Following, that the animations between the
items on the landscape are all consistent with each other.
Where in slideware the content swoops in from the right if
the presenter chose this effect, in canvas presentation soft-
ware the landscape moves in from the right, if and only if
the next camera position is to the right. Such considera-
tions are hardly possible in slideware, where each slide is,
in a way, a world of its own—which brings us to our last
criticism.

Detail Trap

Conceptually, each slide acts like a folder into which the au-
thor has to sort their content [Good, 2003] and also their at-
tention. Slides are limited in absolute size dimension, and
the presenter is also implicitly limited in scope to editing
on a detail level. They cannot ‘step back’ meaningfully, Slides are an

overview + detail

view, and the

visualization of

overviews is poor.

as there is no more context on the current slide [Gopal and
Morapakkam, 2002]. Instead, an author is more likely to
beautify the individual slide than to think about its place
in the overall shape of the talk, a common criticism we
have seen above. [Good, 2003, Li et al., 2003, Parker, 2001,
Tufte, 2003]. Current software limits authoring to the small-
est level—there is no support for designing a ‘big picture’
of the topic other than manually drawing it on a special
slide that resides in between the rest. They are effectively
locked in a detail trap of the slideware interface. The only
remaining inter-slide connection is the sequence with its
transition; anything else is suppressed by the format. The
best thing available in slideware are interfaces called slide
sorters, yet they also do not allow the slide to be under-
stood in relation to each other other than a linear list. The
author of a slide deck is required to anticipate the need for
overviews for the audience, they have to generate separate
overview slides or to explicitly name interconnections of
subtopics. It takes experience to know that this is consid-

66 3 Presenting on a Canvas

ered good practice and of great help to the audience [Good,
2003].

With canvas visualizations this problem does not exist, the
context and the surroundings on the unified information
landscape are only a zoom action away. Any scope between
an individual item and the simultaneous view of all items is
possible. Furthermore, it is not only possible, the author is
even afforded to think about the ‘big picture’ when he nav-
igates to a different location in the canvas. Any navigationAgain, canvas tools

promise to change

this.

brings the content back into view and discourages them to
spend time on small details. The net effect is that the shape
of the layout on the canvas is in a structure that follows the
content, and thus a presenter can simply zoom out during a
talk and easily create an overview. They can do so without
previously planning to do so because zoomable user inter-
faces build the overviews by themselves.

3.3 Canvas Presentation Software

There are three main canvas presentation tools that we con-
sider when we reason about the research in this space.
CounterPoint was developed as a research prototype at Xe-
rox Parc by [Good, 2003] and is the earliest approach to
specifically build a tool for presentation support. In 2008,
both Prezi9 as commercial approach and our Fly as a re-
search approach joined the line-up. Both Prezi and FlyHere we look at all

the canvas tools. present a new way to approach presentations, because they
work completely without slides. Both tools then added mo-
bile clients, Prezi added support for concurrent collabora-
tion with PreziMeeting and iterated on their authoring ex-
perience. We developed a new iteration of Fly [Hess, 2011]
and investigated a combination of the canvas with video
recordings with DragonFly [Corsten, 2009]. See figure 3.3
for the heritage of canvas tools. Here, we only present the
design of canvas presentation tools as we need them to un-
derstand the following studies. For a detailed exploration
of the complete related work of presentation support soft-
ware, this author’s diploma thesis [Lichtschlag et al., 2009]

9Formerly, ZuiPrezi.

3.3 Canvas Presentation Software 67

Counterpoint Fly 1

Fly 2

Fly 3

DragonFly

Fly Remote

(Zui)Prezi

Prezi Mobile

Prezi Meeting

Figure 3.3: Canvas presentation tools. Attached figurines
indicate user studies presented in this thesis (orange: au-
thors, green: presenters, blue: audience)

gives an in-depth report. We discuss comparisons to new
hybrid approaches in chapter 6.2 “Next Directions for Pre-
sentations”.

3.3.1 CounterPoint

CounterPoint [Good and Bederson, 2001, 2002, Good, 2003]
approaches the canvas from a practical side: the author
takes an existing PowerPoint presentation as a basis for
their layout and exports each slide as an image. Then, in
CounterPoint, they import these images as the new atomic
elements of the canvas. The authoring is split into two
phases: one for the within-slide layout in PowerPoint, and
one for the inter-slide layout in CounterPoint. The canvas CounterPoint is the

oldest approach to

bring zoomable user

interfaces and

presentations

together.

itself is a multi-level zoomable user interface and slides can
be placed at very varying distances from the camera (cf. fig-
ure 3.4). The user can group the slide elements into a hier-
archy (similar to how Keynote [Apple, 2015a] does it with
slides), and then CounterPoint automatically spreads the
canvas layout based on this hierarchy. When the author
plans for the presentation delivery, they create a path of
camera positions. Each camera position corresponds to a
stop in a traditional slideware presentation, but the cam-
era can also zoom out a bit and show multiple slides next
to each other, or zoom out all the way to show the whole
canvas. To define such a path, the author navigates to the
desired camera position and ‘takes a photo’ of the scene.
This records the location to the path and creates a thumb-

68 3 Presenting on a Canvas

Figure 3.4: The inter-slide authoring view of CounterPoint. Left: sequence of cam-
era stops in the path; right: current camera position. [Good and Bederson, 2001]

nail to the left of the interface (cf. figure 3.4, left). During the
presentation delivery, the camera animates smoothly be-
tween these stops with speed dependent automatic zoom-
ing (cf. chapter 2.3.1 “Speed Dependent Automatic Zoom-
ing”).

Their idea to build a path of camera positions in the
scale space of the ZUI is a new addition to the design of
zoomable user interfaces and is adopted by all of the can-
vas presentation tools. It is a critical innovation because it
allows the user to defer the reasoning about the timeline
of the presentation and it allows the same content to be re-
ferred to again, without replicating the slide. In Fly, weCounterPoint retains

slide elements. also adopted the ‘take a photo’ metaphor to insert a refer-
ence of the current position into the path. We are somewhat
critical of the lingering effects of slideware by the inclusion
of slides at the atomic elements in the canvas. What we are

74 3 Presenting on a Canvas

stop, the stop gets rendered with a frame in the scene and
is visible to the author, presenter, and audience. There arePrezi integrates the

path just like any

other element of the

canvas.

multiple different styles for frames to choose from and they
can also be turned invisible, similar to how the path can be
turned invisible in Fly. The path can be directly interacted
with, e.g., the author can grab the rendered path line and
drag it to another frame and change the flow of the presen-
tation. Similarly, frames can be moved, scaled, and even
rotated just as any other element on the canvas.

As the only purchasable product, Prezi includes support
for many more formats of media: diagram elements, video,
sound, etc. Prezi on the web is built with Adobe Flash, but
also runs on mobile devices (PreziMobile), but there it allows
only very simple interaction: the presenter can log in, select
a presentation, and follow the path. Prezi Meeting shares thePrezi allows for

collaborative editing. same canvas amongst multiple authors and Laufer et al.
[2011] report on their experiences with showing the loca-
tion of each author reified on the canvas. The collaborative
interaction has since been integrated into the main product.
Critical differences to Fly are that Prezi allows multiple lev-
els of content (just as CounterPoint, cf. 2.2.5 “Multi-Level
Interaction”) and they value creative expression by adding
rotations to camera and content elements as well as large
background images that serve as backdrop to the scene.
In contrast to that, Fly was was more focussed on present-The design

differences between

Fly and Prezi lead to

different results.

ing content in relation to each other and in our original Fly
publication [Lichtschlag, 2008], we argued against rotation.
Since we perform authoring studies with both tools below,
we can see the results of these decisions.

3.3.4 DragonFly

We already noted that the reviewer of presentations becomes
more important as more recordings of talks are available
(cf. chapter 3.1.5 “The Reviewer”). We developed Dragon-
Fly together with Christian Corsten [Corsten, 2009] and in-
vestigated how we can support watching video recordings
of talks on a canvas. The video recording of the talk and theDragonFly navigates

video recordings with

the canvas.

canvas document that was presented are displayed jointly
next to each other in DragonFly. But, instead of navigating

76 3 Presenting on a Canvas

the navigating role. A user study with 14 participants who
attended the talk showed that DragonFly users were 1.5
faster when navigating to a specific position in the record-
ing than with a standard video player. The audience mem-
bers remembered the spatial structure of the talk and were
able to use it to improve their performance when review-
ing the lecture. Corsten [2009] reports on the details of the
implementation and the study.

3.3.5 Comparing and Contrasting

Surprisingly, even though all the tools have such a similar
idea of how the canvas should be put to use to support pre-
sentations, each of them is a bit special in their approach.
We compare the differences in table 3.1. We did not men-
tion in the description above that all the tools allow the pre-
senter to quickly get to an overview during a presentation,
even if there is not a stop planned for that. This simply fol-
lows naturally from the canvas metaphor and is built into
all the presenter controls.

We made quite an argument against slideware, but we can
also make an argument for it. Slideware can simulate any of
the tools above10: one simply has to create the presentationSlideware can

simulate canvas

presentations...

as one big high-resolution canvas image (e.g., in a graph-
ics tool) and then place the same image onto each slide. By
scaling and moving the image the audience gets the same
impression as if the the camera were moving in a canvas
tool. This also works the other way around—canvas pre-...and canvas

presentations can

simulate slideware.

sentations can simulate slideware (to a large degree) and as
we see in the studies, some authors do: one simply places
the elements in nice rectangular shapes from left to right,
ignoring one of the dimension of the canvas. The resulting
animation will resemble a slide-in animation from the side.

So, if both tools can simulate each other, why can we as-
sume that the outcome would be any different? If they can
simulate each other, are they not equally powerful? This is
the argument a computer scientist can make, but not one a
researcher in human computer interaction can. We did not

10Which we did for a conference talk to test this argument.

78 3 Presenting on a Canvas

Author Presenter Audience

Paper Prototype Lab Study

Fly Prototype Lab Study

Prezi Software Field Study

Fly Prototype Lab StudyTablet Lab Study

[Lichtschlag 2009]

[Lichtschlag 2009]

[Lichtschlag 2012b]

[Lichtschlag 2015] [Lichtschlag 2012a]

Figure 3.11: The studies presented in this chapter.

sentation tool against a ground truth of a slideware presen-
tation tool in all of the studies except the field study. Since
slideware is the de-facto standard of presentation support
software (cf. 3.2 “Slideware”), this is a good baseline to
evaluate zoomable user interfaces to.

3.4.1 Authoring Lab Studies

In this author’s diploma thesis [Lichtschlag, 2008] and the
accompanying paper [Lichtschlag et al., 2009] we presented
the Fly design and prototype as well as two studies on au-
thoring presentations with the canvas metaphor. Studying
the author is particularly interesting, because we hypoth-
esized (cf. chapter 3.2.4 “Analysis From an HCI Perspec-
tive”) that zoomable user interfaces would be able to over-
come the key drawbacks of slideware. Better visuals do not
necessarily lead to a better talk, since speaker performance
remains the dominating factor of presentation quality. OurWe compared

authors twice during

the initial design of

Fly.

hope was that authors would make use of the canvas for-
mat to build presentations that are more creative, that allow
the content to be presented without fragmentation, and are
able to convey the macrostructure of a talk. During the de-
velopment of Fly, we did two studies to proof this claim:
First, we conducted a simulation of a canvas with a paper
prototype of Fly and slideware, exploring the different pre-
sentation documents that authors create. Then, we did the
same with the finished Fly prototype, comparing it with
PowerPoint. Our two studies looked at both quantitative
and qualitative aspects of the authoring process, of which
we outline the main findings below. We previously pub-

3.4 Studies 79

Figure 3.12: Fly paper prototype. [Lichtschlag et al., 2009]

lished these two studies in [Lichtschlag, 2008, Lichtschlag
et al., 2009].

More Connected Layouts

The most important finding is that we could observe au-
thors change the way they present content on a canvas.
We saw this already when we simulated the user interface
with paper versions of an imaginary typical slideware ap-
plication and Fly respectively (cf. figure 3.12). We asked
testers to prepare visual aids for an two upcoming talks
to the best of their ability with materials we supplied, one
talk for each condition, and then we investigated the result-
ing documents. Testers were not asked to give the actual
talk, but to shortly outline how they would use their doc-
ument. We found that the canvas presentations are more Canvas documents

were more

connected but not

slower to create.

connected that slideware documents, indicating that au-
thors could overcome some of the content cutting draw-
backs of slideware. We evaluated the documents with re-
spect to how many connections in the topic they embod-
ied visually through the layout of elements on the canvas
or slides. At the same time, we did not measure increased
time to author canvas layouts. Authors achieved this by

80 3 Presenting on a Canvas

abandoning the linear structure that is set by the time dom-
inance. Instead, the canvas invited authors to think about
the structure of the talk first, leading to very diverse lay-
outs.

The goal of our second study with the software prototype
was to find out if the concepts that worked in the paper do-
main would carry over to an interactive application. TwoWe found this result

with a low-fidelity and

a high-fidelity

prototype.

major problems make it hard to transport the easy paper
handling to the computer: limited screen space, and the
indirect manipulation through mouse and keyboard. Yet
again, we saw that the topics were more connected with Fly
than with PowerPoint, however, the effect size was smaller
that in the paper prototype.

More Diverse Layouts

Group A Group B

time line

time line

Group B

Group A

Figure 3.13: Top: Time and group ordering conflict in the
linear case. Bottom: The problem solved in a planar layout.
Lichtschlag et al. [2009]

The layouts of the documents in the slide and PowerPoint
conditions were very similar, almost as if normalized. The
only variations in this theme were the position of elements
in the slide frame with practically identical results other-
wise (cf. figure 3.13, top). If one subject spanned two slides,Slide results were

very linear and

looked dull.

the image was often repeated. Users were very observant
of the problems of time dominance and often commented

3.4 Studies 81

accordingly: “It is hard to get a good order”, and “I will
present non-profits first, and then make a jump back in time
and start with Apple’s systems.” Comparing that to how
authors addressed the same task when presenting content
in the canvas condition, we found them to use the second
dimension to avoid the problem. Figure 3.13 shows how
the problem of conflicting order criteria was addressed ele-
gantly: the vertical dimension makes it trivial to group sub-
jects without breaking the timeline into segments, or, as one
tester put it: “The Apple II should go here chronologically,
but it does not fit—I see that’s why we have the plane.”
This was very illuminating to witness how the overview Authors make use of

the canvas in three

different ways.

+ detail nature of the slideware approach afforded users
to fragment their model of the information landscape. We
also observed two other main layout strategies: a second
design (cf. figure 3.15, left) starts by constructing ‘pillars’ of
a common idea and then spreads them out horizontally. A
third design (cf. figure 3.15, right) revolves around a ‘cen-
tral idea’ of the talk, in this case an important computer sys-
tem perceived as the origin of the remainder. We observed
these designs 5, 4, and 3 times during our study respec-
tively and they seem equally capable of communicating the
topic’s features.

The plane visualizations exhibited more variation on the
detail level. Often the whole material for one subject was
not visible simultaneously. For example, testers positioned Authors use small

panning movements

when content does

not fit one screen.

text to the different sides of the image at the same time,
thereby sharing the image between two viewports and
strengthening the context. The more flexible layout facili-
tated dynamic local comparisons with and without zoom-
ing. Nearly all testers saw this possibility, and planned
their layout accordingly.

When we investigated the documents in the software pro-
totype, we one again saw that slideware affords very linear
talks: of the 18 PowerPoint documents, 14 were strictly lin-
ear. Three clustered all content on less than three slides,
and only one created a manual overview slide before se-
quentially discussing each topic in detail. In contrast to We see similar

results in the

software prototype

study.

that, only three Fly presentation documents were linear,
nine divided the topic into two or three clusters (i.e., fig-
ure 3.14), and two structured the characters in two pillars

82 3 Presenting on a Canvas

Figure 3.14: An example document from the high-fidelity
study with three groups. [Lichtschlag et al., 2009]

Group A

Origin

time

line

Group B

Group A Group DGroup CGroup B

time

line

Figure 3.15: Two common designs of canvas layouts. Left: A canvas layout with
groups along the horizontal, and time along the vertical axis. Right: A canvas
layout where the central topic serves as an origin for the talk. [Lichtschlag et al.,
2009]

(cf. figure 3.15, left). Two layouts were circular (cf. figure
3.15, right), discussing the connection of all characters to
the main character in the center. The last two arranged in-
formation like a collage, but without hierarchies, relying on
proximity alone. All fifteen non-linear talks had meaning-
ful overviews, and fourteen presentation documents used
zooming as a to facilitate this in their paths.

We gathered strong feedback considering the three prob-The canvas creates

overviews by itself. lems of slideware: seven testers each stated that they see a
benefit in the creation of overviews over PowerPoint, or, as
one tester put it: “[It] creates overviews by itself.” Seven
testers saw an improvement upon PowerPoint in creativ-

3.4 Studies 83

ity, and six liked the ability to place elements without re-
stricting slide frames, underlining the content cutting prob-
lem. Two stated slideware makes “run-of-the-mill” presen-
tations whereas Fly was considered more flexible. Three
considered the slide framework harmful, one said it helped
them.

Incremental Revealing

When testers used the paper frame in the low-fidelity study
to indicate which path they wanted to take, often snippets
were half visible or information of a subject not currently in
focus could be seen. This is very uncommon in slide pre- This was the first

time we observed the

challenge of

incremental

revealing.

sentations where only immediately relevant information is
shown. On inquiry, our testers stated that they did not con-
sider this to be a problem, as long as the information did
not disorient the audience or was already been presented.

When laying out their path with the software prototype,
four users were concerned this problem of incremental re-
vealing (cf. figure 3.16): They tried to hide the upcoming
parts, but since Fly has no mechanisms for revealing, they
had to place them at greater distance to achieve this. They We saw it again in

the second study.did not perceive this as a problem, if the half-visible in-
formation was part of previously discussed topics. While
some content, such as answers to questions for discussion,
will always require hiding, in many cases the preview of
upcoming content might actually be helpful to the audi-
ence. In any case, if authors want to control the the visi-
bility of the next topic, we do not want them to distort the
information layout on the canvas to achieve this.

Discussion

Users stated that it was easier to express themselves on
the canvas, and the possibility to define paths by demon-
stration was consistently considered positive. When asked Authors accept the

canvas format.whether they were satisfied with their results, testers gave
more positive answers for Fly in the high-fidelity study
and the canvas layout in the low-fidelity study. And when

84 3 Presenting on a Canvas

Figure 3.16: An example of the revealing problem in Fly
where the heroes are presented after another. The path be-
gins at Harry Potter, and leads via Ron to Hermione. Au-
thors often found the half-revealing of upcoming content
(Hermione, bottom) troublesome, but not of already pre-
sented information (Harry Potter, top). [Lichtschlag et al.,
2009]

asked which software it was easier to express themselves
in, and which they preferred for real talks, most testers
chose Fly and the canvas.

In the software prototype we tried out our single-level ZUI
design, restricting object placement to the two topic and de-
tail layers. This model worked well for our users and two
layers turned out to be enough for the scope of the test ma-
terials. But, we could observe them to encounter a problem
with the effective modality of our implementation. SinceWe observed

problems with the

creation of topics and

mouse scrolling.

the level at which new content was created depended on
the current zoom level, sometimes they created a new ele-
ment on the wrong layer. As a result of this observation,
we changed how topics are defined in the following design
iteration. Another recurring problem was mouse-centered
zooming, many users did not see that the position of the
cursor had an influence on the outcome of the zoom oper-

3.4 Studies 85

ation (cf. chapter 2.3 “User Interaction of Zoomable User
Interfaces”).

Our user tests provided strong evidence that users not
only easily understood the new interface but were able
to capture the structure of strongly connected topics in
their presentations much better than when using the tra-
ditional slide interface. We were able observe these results
both with the low-fidelity paper prototype early in the de-
sign of Fly and with the high-fidelity software prototype.
Likewise, users commented positively on the ability to ex- We conclude:

authors benefit from

canvas

presentations.

press their mental models of the material more freely and
generally preferred Fly over interfaces based on the slide
metaphor. These findings support our hypothesis that the
canvas interface is better suited for the task of illustrating
non-trivial topics than slideware.

3.4.2 Investigating the Author in the Field

Our previous published studies already examined the pro-
cess of authoring canvas presentations with Fly compared
to using the traditional slide deck format (cf. section 3.4.1
“Authoring Lab Studies”). And we were happy to find
that the resulting Fly documents tended to be more diversi-
fied and had a better representation of the structure of con-
nected topics. We saw that authors abandon linear struc-
tures and switch to two-dimensional layouts. But these two
studies were conducted in a lab environment, they do not
necessarily represent everyday practice of canvas presen-
tations. The claim could very well be made that authors We revisit our earlier

authoring questions,

but investigate them

under different

circumstances.

would build their documents differently when presenting
their own topics and when they do not know that we eval-
uate the documents. So this is why we follow up with
a field study investigating the authoring again with these
concerns in mind. The following study was done in collab-
oration with Thomas Hess [Hess, 2011] and has been previ-
ously published as a peer-reviewed paper Lichtschlag et al.
[2012b].

86 3 Presenting on a Canvas

Study Method

We examined a pool of publicly available Prezi documentsOn Prezi authors

share canvas

presentations with

the public.

to see how authors use a canvas-based presentation format
for real world tasks. With Prezi, documents that are cre-
ated on their web service can be shared with other and are
are publicly accessible on the ‘Explore’ section of the Prezi
website [Prezi, 2008]. Authors can choose to share them
either as read-only or even available for reuse by others.
For this evaluation, we considered the most popular 73 of
the 308 presentations listed on July 1, 2010. While this may
not be representative for all canvas presentations, it helped
us to concentrate on documents that were considered well-
authored. We excluded documents that were either clearlyWe examined 50

such presentation

documents.

not created as live presentation support, were not finished
yet, or served as instructions for Prezi, and after that 50
presentations remained. We examined these presentations
with regards to their use of layout strategies on the canvas,
overviews in their presentation paths, their use of zooming,
and their use of rotations. It is important to keep in mind
that Prezi follows a multi-level ZUI layout strategy for its
elements and allows for rotation of both documents and the
camera.

Observations

The first thing to note is that every document studied hadAuthors create

unique documents. a unique canvas layout; there were no recurring designs as
it is common with slide presentations. Nearly all authors
used scaling and zooming to achieve varying viewport res-
olutions, like we expected from the lab user study. All pre-Authors use zooming

to emphasize

individual elements.

sentation paths zoomed in on single or very few elements
to focus on the currently relevant information. Other com-
mon focusing practices were to zoom in on details of large
graphics (so that the graphic was larger than the viewport),
such as diagrams and screenshots, or on single words and
phrases of larger texts for emphasis. These presentation
paths are always possible in Prezi because it does not limit
the zoom distance of the camera.

90 3 Presenting on a Canvas

create hierarchies deeper than three levels (e.g., all content,
topics, and subtopics). Among the others, 12 had hierar-
chies between four to six hierarchy levels deep (cf. figure
3.20). Only two of the presentations that developed anMost presentations

use relatively shallow

layouts.

idea had more than six levels as a result of their design ap-
proach. Another recurring pattern we observed is using
unlimited zooming to hide content, such as a footnote to a
text, by scaling it down smaller than a recognizable scale.
Then, a dramaturgic zoom-in-movement in the presenta-
tion path reveals the previously easily overlooked content.

Rotation

Three of the presentations used rotation to follow the se-
mantic structure of the material, e.g., when the content had
circular arrangements. However, 29 presentations used ro-
tation primarily to achieve decorative canvas layouts or to
provoke impressive viewport transitions—elements were
often rotated by 90 degrees or more or in opposed direc-
tions. In decorative layouts, content elements were often
rotated to make them fit into the intended shape (cf. figure
3.17).

Discussion

Compared to our earlier lab studies 3.4.1 “Authoring Lab
Studies”, we found similar results. We again noted a use of
diverse layout strategies grounded in the macrostructure
of the content. We saw that a majority of the presentations
group content into clusters according to topic structure. In
Prezi this can be visually underlined with frames around
the elements. We did not observe the circular layouts ofThe field study

replicates results

from the lab study.

our earlier study, this may be due to the given topics in that
study. Yet, we also saw new layout strategies which we
could not observe in the lab study: decorative layouts and
incremental development of an idea by zooming. We are
a bit concerned that the former overly conforms content to
the graphics of the decoration instead of the content struc-
ture.

3.4 Studies 91

Previously we found that the canvas format facilitates em-
ploying an expressive layout for the purpose of overviews.
We could confirm this observation with our selected body
of presentations and are happy to see this claim about the
affordances of ZUIs validated again. The frequent use of
hierarchies (cf. figure 3.20) indicates that a canvas presenta-
tion tool should allow the nesting of content—either via the
use of zooming or through explicit layers. In our body of We learned how

authors use the

canvas format with

unrestricted

zooming.

presentation documents investigated, we see that the ma-
jority produces a ‘shallow’ multi-level structure. This in-
dicates that authors are conservative in their use of multi-
level designs even when the tool allows unlimited depth.
Rotation, which is not possible in Fly and consequently was
not investigated in the lab studies, was used in the majority
of presentations, but mainly for decorative reasons. This
may come at a cost when presented to the audience, Schac-
ter and Nadel [1991] write that since spatial knowledge ac-
quired from maps is not robust against orientation manip-
ulations.

Overall, this study validates the results from the lab set-
ting. And we show that canvas presentations do, in fact,
influence everyday authoring of presentations.

3.4.3 Investigating the Presenter

Our next study looks at our second user group, the pre-
senter (cf. section 3.1.2 “The Speaker”). When one thinks
about presentations, the presenter (and for many people the
dread of being the presenter), is the most important user.
The presenter gives the talk, they are the arbiter of the in-
teraction. And they also drive the presentation visuals. To One can hypothesize

that presenters

benefit or are

hindered by the

canvas layout.

our knowledge, this is the first investigation of the inter-
action of presenters with canvas presentations. If all goes
well, the presenter can follow the prepared path and just
drive the presentation one step at a time. But when inter-
ruptions occur, the navigation facilities and the metaphor of
the presentation software matter. The canvas format could
be especially helpful for navigations that deviate from the
planned presentation delivery, e.g., in response to a ques-
tion. The presenter can quickly pan-and-zoom to create an

92 3 Presenting on a Canvas

impromptu overview and show the macrostructure of the
talk to the audience. Contrasting that, we can also hypoth-
esize that the freedom of the format may be too demand-
ing for a presenter who is preoccupied on his main job—
talking. Here, we present a lab study with presenters who
gave short talks in both the canvas and the slideware for-
mat to investigate these issues. We measure the emotionalWe study the impact

of canvas

presentations on the

presenter’s emotions

during unforeseen

demands.

state of presenters during a presentation delivery in which
several kinds of interruptions occur. The following study
was done in collaboration with Philipp Wacker [Wacker,
2014] and has been previously been published as a peer-
reviewed paper [Lichtschlag et al., 2015].

Defining emotion is very difficult, and there are numerous
attempts in the literature. A popular approach is to char-
acterize emotion using a component model where expres-
sions, bodily reactions, and the subjective experience have
“long-standing status as modalities of emotion” [Scherer,
2005]. There are different ways to combine these compo-
nents; here we use a dimensional approach (e.g., [RussellValence and arousal

denote the direction

and the intensity of

emotions.

and Mehrabian, 1977]) with valence and arousal as the main
components [Scherer, 2005]. Valence dimension contrasts
pleasure and displeasure, while the arousal describes inten-
sity. The term feelings is defined in the component model asFeelings are

subjective

experiences.

the subjective experience of an emotion and can occur sep-
arate from bodily reactions (e.g., [Frijda, 2000]). As many
people are anxious about public speaking it is the presen-
ter’s feelings that we are interested in. Scherer [2005] writes
that these feelings can only be accessed through a person’s
self-reporting.

The self-assessment manikin (SAM) [Bradley and Lang, 1994]
(cf. figure 3.21, right) is one way to elicit ratings from sub-
jects. Each row represents change along one dimension of
emotion as pictorial depictions of a person. In our study
we used SAM without the dominance domain. While thisThe self-assessment

manikin and the

semantic differential

are techniques to

elicit the emotional

state.

method requires fewer ratings from a person, the two di-
mensional rating does provide little insight into the aspects
that produced the emotion Scherer [2005]. A more detailed
technique is the semantic differential (SD) which is used to
measure the meaning of words [Osgood et al., 1957] (cf. fig-
ure 3.21). A semantic differential consists of point rating
scales with bipolar word pairs on either end of the scale

3.4 Studies 93

(e.g., good–bad). It has been used to measure attitude and
feelings, for example in a classroom scenario [Evans, 1970].
A person rates a concept by indicating for each word pair
where they place the concept between the limits.

Study Design

We conducted a lab study with every tester giving two pre-
sentations for about 7 min each (cf. figure 3.21, left). One
presentation was given with Apple Keynote [Apple, 2003],
representing slideware, and one with Prezi [Prezi, 2008],
representing the canvas condition11. In this format, we Our study tests

presentations in the

canvas and the

slideware format.

were able to have comparable talks for all users and were
also able to to include interesting tasks in the presentations
as well as simulated technological problems. In each pre-
sentation, we first asked the tester to give their presenta-
tion normally by stepping forward through the presentation
to model a successful flow of the talk. Then we interrupted Our study tests

presentations with

and without errors.

them and asked to move to a well defined position in the pre-
sentation (e.g., going back to a specific previous slide as
part of an audience question) and then to skip forward to-
wards the end (e.g., due to time constraints). Finally, we
asked them to search for a loosely defined position (e.g., the
presenter has to find the matching answer in the materi-
als). One of the two talks also included simulated errors:
a misinterpreted input (simulated by a step backwards on
a forward command), and an unresponsive program (simu-
lated by no action on the first command). We were able to
simulate these problems by modifying the slide or canvas
structure. We counterbalanced the delivering software and
the order of the error condition.

Our setup excludes many confounding variables (e.g.,
varying documents, audiences, stakes, presentation occa-
sions, length, etc.). With this restricted setup we build a Our study setup

limits confounding

variables.

baseline understanding in the lab with a high control of ex-
planatory variables. As such, the results of this setup are
limited to a lab setting until a field study can investigate

11During presentation delivery, the differences between the different
canvas tools are negligible, similarly for slideware. We do not expect our
choice of software to impact the study.

3.4 Studies 95

tations lowered the possible differences in interacting with
the different software. Both software animated transitions,
canvas with the inherent flyover, slideware with a slide-in
from right to left between each slide. During the presen-
tation delivery, the input modalities are step forward, step
backward, as well as zoom and pan.

During the presentation, the moderator acted as an inter-
ested audience member that smiles and acknowledges the
information given. Two cameras recorded each talk, this
increased the stakes for our testers as playacting the pre-
sentation in this manner gives similar results to the “real”
situation [Kern et al., 1983, Higgins et al., 1979]. Secondly,
the cameras allowed us to watch the recording afterwards
together with the presenter. Although memory of feelings We recorded all talks

to increase the

stakes for the

presenter and to

review the situations

with them afterwards.

lessens over time [Robinson and Clore, 2002], the partici-
pant could relive the situation and assess their feelings, and
we avoided interrupting the presentation. We used the self-
assessment manikin with a nine-point rating scale [Bradley
and Lang, 1994] (cf. figure 3.21, right) to measure the va-
lence and arousal of the participant in the task situations.
We also used the semantic differential [Osgood et al., 1957]
to ask them to rate twelve feelings on a nine-point rating
scale to measure feedback on specific feelings. To find out We constructed the

SAM dimensions

according to a survey

prior to the study.

which ones to include as these twelve dimensions, seven
weeks before our study, we had asked in an online survey
among presenters which ones they had experienced them-
selves or observed in others. We combined the reported
emotions with directions from literature [Good, 2003] and
produced the dimensions in figure 3.21. Accounting for the
possibility that underlying moods affect the feelings of the
participants, we used the PANAS test, a reliable and valid
method to measure mood over various periods of time
[Watson et al., 1988]. Finally, in the exit questionnaire, we
asked for informal feedback on the experience with the soft-
ware, differences to their regular presentations, and how
their feelings in the study related to feelings in real presen-
tations. To see whether spatial ability influence the expe-
rience of presenting, we measured the participants spatial
ability using a paper folding test [Ekstrom et al., 1976]. We
formulated these hypotheses:

H1: Feelings in canvas presentations are rated differently

96 3 Presenting on a Canvas

than feelings in slide presentations.

H2: Presentations with technical difficulties are rated dif-
ferently than presentations without technical prob-
lems.

H3: Order of presentation and presence of errors does not
influence ratings.

H4: Participants experience the same feelings during the
study compared to a real world presentations.

Evaluation

We recruited 21 participants for the study with varying pro-
ficiency in presentation skills in general and technologi-
cal skills in particular. The participants were 8 teachers, 7
students, 6 other professions, none familiar with the lab,
aged 17–66 (mean=37.09, SD=16.02). To quantify the pre-
sentation experience we calculated a presentation age by
subtracting the age at which a participant had given their
first presentation from their current age. This presentation
age (PAge) had a mean of 18.33 years and standard devia-
tion of 11.73. The technological expertise (TE) was assessed
by calculating the mean between how often the partici-
pant uses canvas tools and slideware respectively (rated
on a five-point scale where higher values mean more of-
ten). TE had a mean of 1.33 and a standard deviation ofWe used the

presenter’s

experience, their

technical expertise,

their mood, their

general stance to

presenting, and their

spatial ability as

explanatory

variables.

0.56. We also asked participants how much they liked to
present (L) on a five-point rating scale (1–5, 1 = most enjoy-
ment, mean=2.19, SD=0.93). Other gathered characteristics
were spatial ability (SA, 0–20, number of correct solutions
in the paper folding test; mean=12.76, SD=4.77) and mood
(PANAS test, separated for positive affect (PA) (mean=31.14,
SD=4.95) and negative affect (NA) (mean=12.57, SD=2.34)).
A correlation of PAge, SA, TE and L showed that the pre-
sentation age and spatial ability of participants had a sig-
nificant negative correlation. Hence, we could not analyze
them separately, and when we report on the experience of
the presenter below, their spatial ability or a combination
of both can also be an explaining factor. We categorized
the PAge, TE and L each into two groups for the evaluation
(e.g., high and low technological expertise).

3.4 Studies 97

Low PAge

High TE

Low TE

b)a) c)Technical Expertise Presentation Age * Program Error Influence

7.11

5.18

Canvas

Slide

High PAge

Canvas

Slide

V

A

5.73

5.47

V

A

7.011

5.012

V

A

5.972

4.297

V

A

5.249

6.263

V

A

7.455

5.729

V

A

Errors

No Errors

6.590

5.048

V

A

6.226

5.575

V

A

V = Valence A = Arousal

Figure 3.22: a) SAM ratings for technical expertise show significant difference. b)
Presentation experience influences emotional response. c) Arousal rating is influ-
enced by presence of errors. [Lichtschlag et al., 2015]

As for the hypothesis of program influence (H1) we con-
ducted two repeated-measures MANCOVAS with the Va-
lence/Arousal ratings (SAM) and the semantic differen-
tial (SD) ratings as dependent variables respectively. PAge,
TE and L were taken as between-subjects factors and pos-
itive affect (PA) and negative affect (NA) as covariates.
For the valence/arousal ratings we found no main effect Technically

experienced

presenters gave

higher valence

ratings.

of the delivery method (F(2,10)=3.00, not significant) but
a significant between-subjects effect of TE (F(2,10)=6.78,
p<.05) and a significant interaction effect of Program*PAge
(F(2,10)=7.82, p<.01). Between-subjects, TE had a signif-
icant effect on the valence ratings (F(1,11)=11.24, p<.01)
with more TE leading to higher ratings (cf. figure 3.22a).
The interaction effect of Program*PAge was significant for Less experienced

presenters gave

higher valence

ratings for the canvas

presentation.

the valence ratings (F(1,11)=14.66, p<.01), and an anal-
ysis of the means showed that less experienced presen-
ters gave higher valence ratings for the canvas presen-
tation (5.97 to 7.01) while more experienced presenters
gave higher ratings for the slideware presentation (5.25
to 7.46) (cf. figure 3.22b). The results from the analy-
sis of SD ratings indicated a main effect of the deliv-
ery method (F(11,1)=825.93, p<.05), an interaction effect
of Program*NA (F(11,1)=1481.85, p<.05), an interaction
effect of Program*PAge (F(11,1)=2249.68, p<.05) and an
interaction effect of Program*TE (F(11,1)=349.55, p<.05).
While the individual SD dimensions did not differ signif- More experienced

presenters rate their

feelings as more

positive in the

slideware condition.

icantly between the programs, the overall trend was that
the slideware presentation received more positive emo-
tional response. The interaction effect of Program*PAge
was significant for pleasantness (F(1,11)=8.4, p<.05), positiv-
ity (F(1,11)=10.11, p<.01), afraid (F(1,11)=14.67, p<.01), sat-
isfaction (F(1,11)=20.38, p<.01), stress (F(1,11)=13.91, p<.01),

98 3 Presenting on a Canvas

Presentation Age * Program (for search task)

Search Task Overall

H
ig

h
 P
A
g
e

L
o

w
 P
A
g
e

b
e
tt

e
r

ra
ti
n

g

Slide

Canvas

Figure 3.23: SD ratings show experienced presenters rated
the search task differently from the trend. [Lichtschlag
et al., 2015]

desperation (F(1,11)=5.81, p<.05), controlled (F(1,11)=6.01,
p<.05), and lost ratings (F(1,11)=16.83, p<.01). More ex-
perienced presenters gave positive ratings for slideware
on all these dimensions, while less experienced presen-
ters showed only minor differences. The interaction effect
of Program*TE was significant for surprise (F(1,11)=9.99,
p<.01), unsatisfied (F(1,11)=9.21, p<.05), and lost ratings
(F(1,11)=5.47, p<.05). Presenters who had less TE gave
higher ratings for slideware on all these dimensions while
presenters with more TE showed only minor differences. In
conclusion, we accept H1.

Exploring the data, we noted that the ratings for the searchMore experienced

presenters rate their

feelings as more

positive in the

slideware condition.

for a loosely defined position task showed a flipped behavior.
An interaction effect Program*PAge occurred once again
and valence values were significantly different for this task
(F(1,11)=9.31, p<.05). Further analysis showed that there
was a great difference between slideware and canvas pre-
sentations for experienced presenters, with canvas presen-
tations having a better rating, while no difference was
found for less experienced presenters (cf. figure 3.23).

To explore the error hypothesis (H2) we conducted
two repeated-measures MANCOVAS with the Va-
lence/Arousal ratings and the semantic differential
(SD) ratings as dependent variables respectively. PAge,
TE and L were taken as between-subjects factors and

3.4 Studies 99

positive affect (PA) and negative affect (NA) as covariates.
The analysis of valence/arousal ratings indicated a main
effect of the error condition (F(2,10)=5.55, p<.05), an
interaction effect of Error*PA (F(2,10)=6.62, p<.05) and
an interaction effect of Error*TE (F(2,10)=5.88, p<.05).
Arousal ratings were significantly different between the Errors had an

influence on the

emotional state.

error conditions (F(1,11)=7.90, p<.05), and examination of
the means showed that arousal was rated higher in the
condition without errors (cf. figure 3.22c). The interaction
effect of Error*PA was significant for the arousal ratings
(F(1,11)=8.19, p<.05), and the plot indicated that while the
positive affect rating had no effect on the arousal rating
in the no-error condition, it had a positive effect on the
arousal ratings in the error condition. The interaction effect
of Error*TE was significant neither for valence nor for
arousal ratings. The results from the analysis of SD ratings
indicated between-subjects effects of negative affect on
stress ratings and of TE on nervousness, pleasantness and
positive-negative ratings. Further analysis showed that
higher NA ratings correlated with more experienced stress,
and that lower TE participants felt more nervous, more
unpleasant and more negative across both conditions. In
conclusion, we accept H2.

Checking the quality of counterbalancing (H3), we com-
pared presentations by order and found no differences be-
tween ratings for the programs (Canvas: F(2,18)<1, ns;
Slide: F(2,18)<1, ns) or the errors (error: F(2,18)=1.73, ns;
no-error: F(2,18)<1, ns). Thus, we accept H3: the order of
error or program condition did not have an influence.

As for H4, almost all (20) participants expressed that they Almost all expressed

that the

presentations felt

real.

felt similar to a real presentation. 14 mentioned that they
felt less pressure since they had less stakes in the presen-
tation, 10 mentioned an additional burden (e.g., the unfa-
miliarity of the topic), while 2 felt that the study was out-
right harder than their own presentations because of that.
With this, we cautiously accept H4: the limitations of the
lab study were manageable, and our setup was compara-
ble to a real presentation.

100 3 Presenting on a Canvas

Discussion

Our evaluation shows that presenters experience canvas
and slide tools differently. Technically experienced presen-
ters report a more positive emotion, independent of tool
used. Furthermore, participants of our study that scored
high on spatial ability or were less experienced preferred
the canvas condition, while experienced or lower spatial
ability presenters preferred classic slideware. Due to theLess technical

expertise and high

spatial ability

preferred the canvas

condition.

strong overlap in our tester population between experience
and lower spatial ability, we cannot attribute this effect to a
single or a combination of these factors. We expected lower
spatial ability to interact with the canvas condition due to
its ZUI nature, but we could also explain that more expe-
rienced presenters are well versed in slideware and hence
feel right at home. Interestingly, this difference is lessened
in the search for a loosely defined position, a task that bene-
fits particularly from the canvas format as the presenter can
quickly zoom out to get an overview and pinpoint their tar-
get. Experienced presenters reported more positive feelings
when using a canvas tool for this task.

In summary, we have improved our understanding of can-
vas presentations and gained insight into the emotional
state of the presenter. We found that the presentation for-
mat is again influencing the user’s experience. The sameThe design of canvas

presentation tools

has to take into

account that not all

presenters prefer

canvas navigation

tools.

freedom of navigation for which we found beneficial effects
for authors turns out to be ambivalent while presenting.
Here, time and attention are limited and, as we have seen, a
simpler linear format can be easier to handle for some pre-
senters (cf. Good [2003]’s concern). One could conclude to
always limit the format during presentation delivery, but
we have also shown that for some presenters this would be
unfavorable. Future design could try to lessen this effect
by giving the presenter a choice to give the presentation
strictly linearly.

Limitations

By design, our study was a lab study, and therefore, it is a
controlled situation that might not be representative of real-

3.4 Studies 101

life use. A field study with presenters presenting their own
presentations, with their own agendas, on their own topic
of expertise, and own audiences could corroborate the re-
sults of this paper or bring new results. We were unable
to attribute the interaction effect of program use to spatial
ability or presentation age, as both independent variables
correlated. Other limitations are the short nature of presen-
tations and the novelty of the canvas condition.

3.4.4 Investigating the Audience

Our next study looks at our last user group, the audi-
ence (cf. section 3.1.4 “The Audience”). All talks are
given because they want to affect the audience an a way—
entertainment, emotional state, knowledge. Here, we in-
vestigate presentations that aim to teach the audience about
a subject. Previous research suggested that canvas presen-
tations may be more beneficial for the the audience than
traditional slideware [Good and Bederson, 2002]. Content
macrostructure is more visible in canvas documents, and
may be easier to grasp. This claim had been investigated by
Good [2003] and he found that there was no significant ef-
fect in audience recall. Since the design of the canvas is Fly
is quite different from CounterPoint, we decided to con-
duct a similar investigation. We compared canvas-based We study the

interaction of the

audience with

presentations

authored in canvas

tools.

presentations and their slideware counterparts, measuring
recall of facts, measuring understanding of macrostructure
among audience members, and gathering results on their
subjective assessment of these presentations. The follow-
ing study was done in collaboration with Thomas Hess
[Hess, 2011] and has been previously published as a peer-
reviewed paper [Lichtschlag et al., 2012a].

There is an argument to be made for improved learning
effects with the canvas layout. Plausible reasons for this
are the increased visibility of the macrostructure, the po-
tential to leverage the spatial abilities of the audience, and
less fragmentation of the material. Content macrostructure
and its relations can be incorporated into the spatial lay-
out, and can be communicated to the audience implicitly
through spatial overviews and animated viewport transi-

102 3 Presenting on a Canvas

tions. The presenter hence does not need to express them
verbally through written or spoken text, as is necessary in
slide-based presentations. This may reduce cognitive load
for the audience [O’Donnell et al., 2002]. In canvas pre-
sentations, successive viewports can overlap, so content
can be presented in a less fragmented way: related topics
stay together, and more relationships are represented spa-
tially. Especially animations between viewports can offloadThere are arguments

for and against

improved learning

effects with different

presentation

software.

some of the viewers cognitive burden to the human per-
ceptual system by exploiting the perceptual phenomenon
of object constancy that enables viewers to track element
relationships without thinking about it [Robertson et al.,
1991]. Good and Bederson [2001] argued that by shifting
load from the verbal to the visual cognitive channel, the
audience can exercise a larger portion of their memory re-
sources, which would be especially useful in a presenta-
tion scenario in which the oral narration must be followed
and processed continuously. On the other hand, there is
an argument to be made against improved learning effects
with the canvas layout. Audience members less skilled in
spatial orientation might be overburdened by a canvas pre-
sentation. Following Clark [1994]’s argument that different
media will not improve learning, a large corpus of studies
exists that has not been able to document significant effects
of different media on learning (cf. chapter 3.2.3 “No Signif-
icant Difference”).

Study Design

In our study, we showed two instructional talks to two au-
diences (cf. figure 3.24). Each group separately attendedWe studied with

slideware and

canvas presentations

on two topics.

two presentations of 15 minutes each on two different top-
ics. One of the presentations used PowerPoint, the other
Fly, representing the slide deck and canvas conditions. We
formulated the following hypotheses:

H1: There will be no significant difference for fact reten-
tion between the canvas and slide deck condition.

H2: In the canvas condition, participants will perform bet-
ter for macrostructure recall and transfer questions.

3.4 Studies 103

Pre-questionnaire

Presentation Delivery

Short Term Knowledge Test

Long Term Knowledge Test

Topic 2 with Fly

Group A

Topic 2 with PowerPoint

Topic 1 with Fly

2nd

1st

Group B

Topic 1 with PowerPoint

4 days

Card Rotation Test

1 week

Attitude, Satisfaction and
Preference Questionnaire

Figure 3.24: Audience study design. All participants
performed the pre- and post-experiment activities (yel-
low). The main experiment (blue) split participants into
two groups, switching the order of tools (not topics).
[Lichtschlag et al., 2012a]

H3: The canvas visuals will provide participants with a
better orientation of talk progression.

H4: Participants will find the structure of the canvas pre-
sentations easier to comprehend.

H5: Participants will find the amount of content shown
on the screen at a time more adequate in the canvas
condition.

We recruited our participants from the students of an intro-
ductory HCI course. Each participant was asked to fill out
a pre-questionnaire and to assess their spatial ability using
the card rotation test [Ekstrom et al., 1979]. According to
this data, students were divided into two groups with a
counterbalanced mix of different ages and spatial vs. ver-
bal learners. Students with prior knowledge in any of the
two topics or those that were not very proficient in the lan-
guage of the presentation were excluded from the experi-
ment. This resulted in 26 participants in total, 23 male, 3
female, 13 per group. Ages ranged from 23 to 35 (median
27).

104 3 Presenting on a Canvas

To understand the talks no prior knowledge about the con-
tent was needed; both topics, “Fixed-Gear Bicycles” andWe made sure that

audiences had no

prior knowledge of

the topics.

“Convergent Evolution”, were uncommon and indepen-
dent from each other. We counterbalanced the order of the
canvas and slideware conditions, but not the order of top-
ics, since the latter was unlikely to create learning effects.

An important factor in the experiment was the authoring
quality of the presentation documents. Since presentation
visuals for each of the two topics were needed in both for-
mats, the challenge was to ensure that the documents on
the same topic contained the same content. Because ofPresentation

documents were

authored to be of

equal quality, yet with

their innate

characteristics.

the fundamentally different formats of Fly and PowerPoint,
there was no exact way to match document content. To re-
duce the risk for bias, an external and experienced presen-
tation author (31 years) who was not otherwise involved
with the study created all four documents.

In the resulting documents, the Fly visuals contained more
unique layouts compared to an image with bullet points,
and were more verbose for some sections. Some layouts
were only possible because of the canvas-based format and
could not be adapted to PowerPoint. The biggest layout
difference occurred in the convergent evolution talk: the
development history and present-day distribution of mar-
supials was integrated into a big timeline layout with an
illustration of geologic eras. In PowerPoint, for the same
topic, the development history was covered with a series
of text-based slides that showed one era each with the il-
lustration on an extra slide (cf. figure 3.25 top). Naturally,Canvas

presentations tended

to be more graphical,

slideware used

textual overviews.

the overviews in Fly used more graphics and were struc-
tured spatially, while the overviews in PowerPoint used
more text and were structured linearly. For example, for the
introductory section of the fixed-gear bicycle presentation,
a large graphic of a bicycle was used for the background
on which the explanations of the basic concepts of bicycle
technology were placed (cf. figure 3.25 bottom). The Fly vi-
suals contained additional overviews that previewed and
recapitulated single topics.

Personality, mood, and performance of a speaker and
the interaction between speaker and audience can have a
strong impact on the quality of a presentation. To mini-

106 3 Presenting on a Canvas

short term test long term test combined tests

macro-
structure

fact
questions

macro-
structure

fact
questions

macro-
structure

fact
questions

tra
n

sfe
r

tra
n

sfe
r

tra
n

sfe
r

∑

80

60

40

20

0

%

Figure 3.26: Percentage of correct answers to questions
by presentation method for the two tests by question cat-
egories, combined tests, and all questions (canvas=dark
blue, slideware=light green, error bars ±1 SE). Both tech-
niques performed equally well in terms of retaining facts,
structure, and transferring knowledge. Only the short-term
knowledge transfer question shows a significant difference.
[Lichtschlag et al., 2012a]

fer questions. To gain insight into the participants’ attitude
towards and satisfaction with the presentations, the ques-
tionnaire asked several Likert scale questions (cf. table 3.2).

Study Results

Figure 3.26 shows knowledge test results for both condi-
tions. For the short term transfer questions, the mean scoreWe found only one

instance of

presentation

condition influence.

is higher in the slide condition (paired t-test, p=.029). How-
ever, this is the only significant difference for all question
categories.

Regarding the differences between short term and long
term recall, the only significant result was that group A per-
formed worse in the long term test for the slide condition
(paired t-test, p=.003). Regarding the comparability of top-
ics, paired t-tests did not show significantly more correct

3.4 Studies 107

answers for any topic in the short term tests (p=.071), long
term tests (p=.352), and in total (p=.145).

Table 3.2 lists the responses to our attitude and satisfaction
questionnaire. A related samples Wilcoxon signed rank test The audience

preferred canvas

presentations.

showed that participants significantly preferred the canvas
over the slide condition in questions A4, S5, S6, and S7. No
other differences were significant.

In the spatial cognitive ability test, participants received
a mean score of 127.32 (SD=21.011) out of 160. An inde- Spatial ability

showed no influence

on learning outcome.

pendent samples t-test showed no significant difference be-
tween the mean scores of both groups (p=.837). We found
no correlation between spatial ability and percentage of
correct answers for any groups, talks, or conditions. Inter-
estingly, the higher spatial cognitive ability, the more indi-
viduals found the amount of content on the screen (S2) too
much (Pearson’s r=.469: p=.003). However, we found no
correlation between spatial ability and format preference.

Table 3.2: The questions (Likert scale 1–5, 1 for strongest
agreement) from the attitude and satisfaction question-
naire. A related samples Wilcoxon signed rank test shows
significant difference in four cases, all in favor of canvas
presentations. [Lichtschlag et al., 2012a]

Although we tried to balance members between groups, a
t-test found group B performed slightly better than group A
in both questionnaires. However, the difference is only sig-
nificant for macrostructure retention (p=.080). Also, group
A found the presentation visuals less distracting (p=.043).

108 3 Presenting on a Canvas

Discussion

Based on the fact recall results, we can accept H1. As
the factual information is represented similarly in both for-
mats, it seems that the presentation form alone does not
influence fact retention. Although we expected the spa-
tial arrangements in the canvas condition to help partici-
pants understand relations between topics (H2), the results
do not support this. Consequently, there is no evidence
to suggest that either canvas presentations or slide based
ones are better suited to convey information to an audience.
This is very similar to Good [2003]’s results with Counter-We replicate Good’s

results. Point. However, the results support H3; there were signif-
icant differences in favor of the canvas condition for the
statements about orientation in content (S6) and temporal
progress (S7). We also accept H4; participants found theWe also find that the

audience preferred

the canvas

presentation.

canvas structures easier to understand (S5). On average,
participants found the amount of content on the screen at a
time more adequate in the canvas condition (H5), but this
result was not significant (S2).

We evaluated the canvas presentation format against a
baseline slide deck format to investigate the effects of can-
vas presentations on the learning performance and prefer-
ences of a student audience. Learning performance was
largely the same in both cases, underlining Clark [1994]’s
stance on learning once again. We found no influence of
spatial ability. As also found that students clearly preferred
the canvas-based presentation. Several limitations have
to be kept in mind when interpreting these results. First,
canvas-based visuals are still new and exciting, which may
have influenced participants. Second, our study used ed-
ucational presentations with a focus on knowledge trans-
fer. Other talks primarily focussed on conveying motiva-
tion, emotion, etc., may benefit even more from a canvas
layout, again partly due to its novelty. Third, the talks
were rather short and author and audience were informed
beforehand of the study design and the knowledge tests.
They may therefore have put more effort into their perfor-
mance (cf. “Hawthorne effect”).

3.5 Outlook 109

3.5 Outlook

Now we have presented the results from five studies on the
effects of canvas presentations on the various users. We re-
view what we have learned about canvas presentations and
zoomable user interfaces in chapter 6 “Discussion”. In the
next chapter, we investigate our second domain, integrated
development environments, and investigate if we can also
find a positive influence from canvas designs on user ac-
tions.

111

Chapter 4

The Code Base on a
Canvas

We have a code annotation tool at work, but the
only thing I ever want to write with it is “See me”

in red ink.

—John Siracusa (@siracusa), 2014

As promised, we also investigate a second domain: inte-
grated development environments or IDEs. IDEs are software
suites that allow the developer to build and investigate soft-
ware. Before we can make suggestions to IDE design, we
must understand what it takes to build and investigate soft-
ware. We need to have a closer look at what code is, and
what is means to work with it.

Source code text is not only used as the language to the ma-
chine. Code is also subject of discussion and communica-
tion between developers. Therefore, code has a dual func-
tion: is communicates our intentions to the compiler and it
also documents our intentions to other humans (or our fu-
ture self). Of course, the communication between humans
is more important to us. And it is our goal of this chapter
to investigate how one can foster this communication on a
canvas.

112 4 The Code Base on a Canvas

Two problems make hard to bring canvas designs to IDEs.
First, the task domain is tough: software design is particu-
larly hard for a number of reasons we outline below. This
problem is constant for all approaches to visualize code
bases and reason about them. Second, text is traditionally
hard to present in zoomable environments. Which makes
IDEs a good testbed for the designs we propose.

We present three approaches with our prototypes to ad-
dress this second problem: Our approaches are a designIn this chapter we

apply canvas designs

to code bases.

based on the vocabulary used in a code base, a design based
on software design patterns, and a design based on hand-
drawn sketching. We base each prototype in the related work
and then present a prototype for each in the following chap-
ter. Finally, we review and evaluate these approaches and
our designs.

4.1 The Task and the User

When we consider programming, is it not curious that the
product of our work is named “source code”? The word
stems from Latin, “code” referring to early books—written
stories. In French, “code” means rules and laws. In mod-
ern use, when not specifying the source of a program, one
would use code to mean something that is ciphered.1 All of
these meanings describe parts of the developers work: it is
a lot of writing in a specific set of rules. And it is also often
very hard to understand and hard to decipher as the work
code suggests.

Reading code can be unsatisfying, even for experts, we can
describe this by an example. We developed a software at
the media computing group, Personal Orchestra. The com-
plete code base has has 845 files and roughly 72000 lines of
code. We are in the process of handing the software over toSource code is often

very

unapproachable.

a new team and training them on the designs embodied in
the code base. When a new team member opens the code
base in the IDE, they will find no entry point, no narrative,

1Or a treasure that can be sought, as in “Indiana Jones and the Crystal
Codex”.

4.1 The Task and the User 113

Figure 4.1: Big picture views for physical objects. On the left, a cross-section from
[Biesty and Platt, 1992], on the right, a technical drawing of the Apple Watch [Ap-
ple, 2015d]. In both cases the reader gets an high-level overview and can get closer
for the details.

and no story that is told to them. The way the software is
presented in the IDE will only reveal the text, not the struc-
ture of its design. Each time one reads the source code one
literally reads a ‘code’ that has to be deciphered, its mean-
ing deconstructed and integrated into a model of the inner
workings of the software in the developers head.

4.1.1 Physical Analogy

We can compare code visibility to physical engineering do-
mains. Consider to a car: A car is a very high tech prod-
uct and it has a visual hierarchy to it. Changing the car
from one generation to the next allows the spectator to im-
mediately see the high-level differences (e.g., shape or seat
configuration). The engineer can also ‘pop the hood’ and Physical objects

have an inherent

form to them.

see that parts of the engine laid out, focus on the part that
interests him, and then look closer at the details. The phys-
ical properties give the product a form and a hierarchy. As
one steps away from a physical part, it scales naturally to a
smaller representation and reveals the parts it is connected
with (cf. figure 4.1). Furthermore, the complexity of con-
nections to other components is bounded to its surface area
and the amount of miniaturization is bounded by the engi-
neering process.

4.1 The Task and the User 115

ceptualized be ‘physical’ according to Bederson and Hol-
lan [1994] (cf. chapter 2.2.4 “Pad++: Metaphor-free Navi-
gation”). Their motivation was to bring the sense of place Zoomable user

interfaces strife for

form through

physical analogy.

and hierarchy to the digital world. They write: “an effective
informational physics might arrange for useful representa-
tions to be a natural product of normal activity”. When we
apply ZUI designs to code bases, we can hope to leverage
some of the physical benefits.

We can also draw a comparison to our investigation of pre-
senting in the previous chapter. Presenting our dear col-
leagues with 845 files is akin to taking the reference mate-
rial to a talk an dumping it to the reader’s feet and say: ‘go
work on that’. Or we can compare it to the author of this
thesis zipping a folder of the related work and say ‘every-
thing is in here’, but not tell a story about it. Very justified, a
reader would be unsatisfied and decry the talk as bad. Why
do we tolerate such behavior for source code, and why have
we not produced better tools to communicate and reason
about software?

4.1.2 The Relation Between Writing and Coding

In investigating how source code and how users inter- Writing is often used

as a reference for

coding.

act with it ‘regular’ written text is often used as a refer-
ence. Détienne [2002] presents an in-depth investigation
and a history of cognitive models for written texts. She
describes how they have been applied to software devel-
opment and reviews studies that evaluate the models. The
structural, functional, mental model explanations how coders
work have been developed for narrative writing before
they were adapted to coding. We present them below to
motivate our work and cross reference with newer studies.

Surface and deep structures are two key concepts from mod-
els about narrative text that are easily adapted to code texts.
Surface structures are the textual structure as it is presented Surface and deep

structure are

concepts to reason

about narrative texts

and code texts.

to the reader, the letters and the paragraphs rendered in the
IDE. This surface structure provides a poor visibility of the
schemas in the code base (cf. figure 4.2). The deep structure
“corresponds to the relations that are not explicit in the sur-

116 4 The Code Base on a Canvas

face structure” [Détienne, 2002]. An example of deep struc-
ture in software is easy to find: control structure such as
a loop. In this case the surface structure is a linear list of
statements, but the deep structure is non-linear. Another
example is a variable that is defined earlier and has has to
be kept in mind for later statements. In these examples, the
flow of the execution and the state of the variable are the
deep structure of the code. Since these terms were defined
for narrative texts first one can find examples there as well,
e.g., one can consider a story that jumps to different loca-
tions (or times) between scenes, or a character that is only
characterized by his actions and the reader has to deduce
his intentions3. This ‘unwritten’ knowledge makes reason-
ing about code and narratives hard and a great deal of work
has been spent on investigating how people approach this
deep structure. We present a short overview of this inves-
tigation below and will continue to draw comparisons to
narrative storytelling.

4.1.3 Why is Reasoning About Code So Hard?

Surface structure in narrative texts (and presenting) ad-
dresses the audience. Not so for code. Here, the surface
structure addresses the computer and human readers alike.
One could hope that with higher level programming lan-
guages and abstraction over machine code, the discourse
might have shifted more to the human side. For example,Code is hard to

understand because

it primarily addresses

machines.

the naming of variables and other natural language text only
addresses to the human reader and not to the compiler. But,
for the developer the main problem is clearly communicat-
ing to the machine. Any concern about communicating to
colleagues or a future self is secondary to a bug-free imple-
mentation.

We can consider an example object in a program. An ob-
ject describes a range of actors and is often rather bland
without customization either by subclassing or by specifi-
cation after instantiation. In writing and reasoning about
the class one has to keep in mind all the ways that the class
might be instantiated at the same time. One does not build

3Often considered a mark of good writing.

4.1 The Task and the User 117

a model of the surface structure (the code text), but the deep
structure (all the ways that the algorithm can be applied).
The user reasons on a very abstract level. Compare this Code is hard to

understand because

it describes abstract

objects.

to a narrative text: a variable actor is boring, even ‘bland’.
A good writer wants to characterize the actor, make him
unique and concrete. Where code has the potential to talk
about whole classes of actors in an abstract way, a story is
most likely dealing with only an instance of that.

We can consider a second comparison: a program that sorts
an array, e.g., ‘sort(array)’. A program has to deal with
the ambitious input variable ‘array’: it can be a short or a
long array, in might be nil, the objects in the array might be
comparable or not. Maybe there are assumptions about the
variable array that are spelled out in the header or the doc-
umentation such as it being not null, only used in certain
contexts. The experienced programmer will undoubtedly Code is hard to

understand because

one has to consider

all the boundary

conditions.

notice a range of possibilities that the use of this function
could go wrong.4 One has to think about a wide field of
input possibilities, hence the name ‘variable’. Comparing
that to telling a story in a talk or writing, the question of
sorting would likely not come up: The author of the talk
or story has already done the work, they present an un-
variable amount of content and they present them in a de-
fined order. Again we see that programming is easily more
abstract than storytelling.

Another important problem for code comprehension is that
it is very multiplexed. Reasoning about objects and oper-
ations often follow multiple paths at the same time, e.g.,
when plans about code intersect and cross over each other.
Any code of relevant size is inherently multiplexed through
the use of classes, jumps between functions, concurrent op-
erations, etc. Such a code ‘tells’ many stories at the same
time. Détienne [2002] gives one example for written texts Code is hard to

understand because

is multiplexed.

where narrative text is similarly multiplexed and that is
murder mysteries. One could also think about time travel
stories, or stories with many actors5 in concurrent story-
lines that could overwhelm a reader. Consider the figure
4.3 of the short story “All You Zombies” by Robert Hein-

4Especially in the JavaScript style we presented the syntax of the
function, lacking crucial information about its assumptions.

5Looking at you, Lord of the Rings and Game of Thrones.

118 4 The Code Base on a Canvas

Figure 4.3: The story for the short story “All You Zombies” by Robert A. Heinlein
[Heinlein, 1959]. A series of time travels happen and three characters turn out to be
the same person. This intentionally overwhelms and confuses the reader. In code
such a call graph would not be uncommon. Explanation from [Pyrotechnics, 2014]

lein: here the story is intentional complex, it is part of the
allure of the story. Many readers of the story or viewers of
the film will want to review it again to get all the details
and this figure is a nice high-level explanation of its events.
But those narrative texts are clearly outliers. The closest
thing available for code bases are call graphs, but based on
the sheer amount of calls these get much out of hand if not
filtered.

Also, in investigating a code base, the reader has to contrast
between important and unimportant information, and then
select the right content to read. Since one has to be diligentCode is hard to

understand because

the interesting parts

are hard to find.

in talking the machine and leave no details undefined, a
huge deal of the surface structure of a code base is often
‘glue code’: architecture that is needed to get to the inter-
esting statements. In investigating a code base, a developer
has to identify the important parts but often the only ap-
proach to do so, is to read everything first. Huge parts of

4.1 The Task and the User 119

understanding code deal with reading boring parts. A nar-
rative does not have this problem, at least when it is ex-
pertly told: the writer will take care to tell about the parts
that are important to the story they want to tell, talk only
about them, and leave the rest to the imagination.6

4.1.4 Cognitive Models of Software Design

Détienne [2002] presents multiple theoretical approaches to
studying software design, each of which is appropriated
from studying the design of narrative texts. We present a
short summary of the results here, and the reader should
look at Détienne [2002]’s excellent analysis for a detailed
discussion.

Central to the formulation of expert knowledge is the term
schematic knowledge, which describes a reusable approach
of solving a problem in the memory of the developer. In
that way, the definition is very similar to the definition
of software design patterns: “a general reusable solution to
a commonly occurring problem within a given context in
software design” [Gamma et al., 1994, Borchers, 2001]. For Knowledge about

schemas describes

an reusable

approach of solving a

problem.

example, a familiarity with a model view controller design
pattern is a schema and allows the developer to formu-
late their software design with that vocabulary, or allows
them spot the schema in an existing code base and quickly
parse larger parts of the code base. But schemas are less
formalized than design patterns, they are not written down
to communicate between developers, and Détienne [2002]
notes that the assumption that multiple developers would
build the same schemas of the same text is false. We can
also interpret much of basic programming teaching in com-
puter science to teaching students about basic schemas as
reusable components of problem solving, e.g., linear lists
or binary trees.

The idea of strategic knowledge builds on that and further de- Strategic knowledge

describes a hierarchy

of solutions.

scribes expert knowledge that extends beyond the individ-
ual schemas. It describes a hierarchy of high level schemas
that group schemas to a strategy towards solving a prob-

6If only we could program this way.

120 4 The Code Base on a Canvas

lem. In that sense the idea is close to the definition of a
pattern language [Gamma et al., 1994, Borchers, 2001], but
again, less codified and not necessarily written down. And
again, it makes a high difference in the model of the cogni-
tive processes of a developer, when one considers an expert
with experience codified in strategic knowledge compared
to a more novice developer without that code knowledge
in their head. For example, this leads to different strate-
gies in software authoring: an expert is more likely to plan
the software top down (strategic schema), a novice is more
likely to start with a part of the solution (a single schema)
and build bottom up from there [Détienne, 2002].

4.1.5 User Tasks

We previously presented three prototypical user groups in
2.6.2 “Authoring” and applied this lens to look at the users
of presentations in 3.1 “The Task and the User”. Similarly,
Détienne [2002] develops the theoretical models for the
three following user groups: design of software, reuse of soft-
ware, and understanding of completed software. LaToza et al.
[2006] investigates the roles that programmers at Microsoft
fill and classifies as six groups: designing, writing, under-
standing, editing, unit testing, and communicating. We see
that the range of tasks is much more complex than with
presenting. In their definition, editing and unit testing re-
fer to the same activities as Détienne’s reuse activities. TheCollaboration

between team

members is an

important task.

highlight of the paper is the focus on collaborative inter-
actions (designing, communicating) in the developer team
and how the team records (or does not record) knowledge
about source bases. These tasks deal with communicat-
ing the mental models of the code base, ensuring the same
schematic and strategic knowledge between collaborators.
These tasks are often done away from the computer, e.g.,
in conversations or with whiteboards and seen little con-
sideration in the earlier literature. The navigation in the
code base happens in all of the tasks that interact with the
code and has been studied extensively for a wide range of
tasks (e.g., LaToza and Myers [2010b], Storey et al. [2007],
Piorkowski et al. [2011]). The amount of time spent on the
activities is very dependent on the state of the software and

4.1 The Task and the User 121

its release state [LaToza et al., 2006].

Comparing to our investigation of presenting, the tasks
one encounters when dealing with a source base are much
more varied. E.g., Ko et al. [2005] studied time spent dur-
ing a change task (reuse, editing categories respectively) and
recorded 28% time spend on reading code or documenta-
tion, 20% on editing, 34% on navigation or searching, and
the rest on other activities. So all three roles (author, naviga-
tor, audience) that we laid out in 2.6.2 “Authoring” are rep-
resented in the observed behavior: users create new con-
tent, navigate in the source base, and reason about exist-
ing content. But, a key distinction between presenters and Our lens of author,

navigator, audience

does not directly map

to the tasks in code

bases.

coders is that we assumed the presenter to have near per-
fect knowledge about the presentation document. Clearly,
we cannot assume the same for coders in a source base ex-
cept for the smallest programs. E.g., a bug-fixing task is
likely to include understanding the code base, navigating
to the problematic section and its references, and author-
ing a solution. We see that a user potentially personifies all
roles during a user task. Below we explore the tasks and
problems in these groups in more detail.

Authors of a Code Base

Authors of a code base build a solution to a translation
problem according to Détienne [2002]: They have to keep
in mind a model of the problem domain and a model of
the computing domain, and translate between them. Of-
ten the problem domain is not completely defined and thus
software design (and narrative writing) is iterative cyclical
between planning, executing, reviewing. All of this is ac- Two cognitive models

describe authoring

code.

companied by note-taking in which the developer or author
of a narrative text externalizes their schematic knowledge
and builds a representation of that knowledge in the world
[Détienne, 2002]. Program design then consists of activat-
ing schemas and applying them, be it individual schemas
in what is called the knowledge centered approach for isolated
problems or the use of strategic knowledge in building a
hierarchy of schemas (strategy centered approach). These cog-
nitive models of developer activity have been verified by a

122 4 The Code Base on a Canvas

Figure 4.4: Canvas layout of “Die Strudlhofstiege Oder Melzer Und Die Tiefe Der
Jahre” by Heimito von Doderer [Von Doderer, 1995] as developed by the author
while writing it.

series of studies (cf. [Détienne, 2002] for more details).

As mentioned above these activities have originally been
studied with narrative texts. Plachta [1997] goes into much
detail how these fragments of externalized knowledge can
be understood to reason about the author’s intention. Au-
thors sometimes leave fragments of their externalized mod-
els for the construction of the narrative and literature sci-
ence studies them to understand the author’s work process.
See figure 4.4 for a canvas layout for a novel depicting char-
acter plot points over time [Von Doderer, 1995, Fetz and
Kastberger, 1998].

LaToza et al. [2006] studied the design of code and foundAuthors externalize

mental models. that “[...] despite the availability of high-level views of code
and visual editors such as tools for UML, developers re-
main focused on the code itself. Developers reported using

4.1 The Task and the User 123

a source code editor the most for design while paper and
whiteboards were perceived most effective”. There is an
interesting contradiction between the fact that developers
clearly spend a great deal of their time externalizing mental
models while authoring code (∼42%), yet the means they
choose are predominantly volatile—–whiteboards draw-
ings, paper drawings, notebooks. They almost never use
UML or similar structured design tools (cf. [Cherubini et al.,
2007]). The developer develops their mental model but the
knowledge is not permanently recorded other than their
memory: “Lots of design information is kept in people’s
heads.”. When performing work on ‘foreign’ existing code, Authors look for the

code ‘owner’.e.g., to fix a bug, the author is often trying to find the
‘owner’ to discuss changes. Rarely do they seek out design
documents, because they are perceived to be out of date.
[LaToza et al., 2006, LaToza and Myers, 2010c]

Détienne [2002] formulates a series of recommendations for
IDEs to better support the design of software. She rec-
ommends tools that are based on the notion of structural
schema, to help structuring programs on both the micro
and macro level. Her second recommendation is the in-
clusion of knowledge schemas that note their precondi-
tions, examples of use, and alternate schemas for the same
problem. And this is almost exactly what design patterns
are. She imagines both these schemas to be visualized in Studies suggest

integration of

schematic

knowledge in the IDE

by hyperlinking

design documents.

the IDE so that is allows “semantically connected but non-
contiguous elements of the code to be grouped together vi-
sually”. This overlaps nicely with LaToza et al. [2006]’s rec-
ommendations. They suggest hyperlinking code to design
documents to promote their use, and a way to capture in-
formal hand drawn designs.

A situation that is studied separately from a clean slate au-
thoring of new code is the reuse of existing code, e.g., as
part of a library or API (cf. [Duala-Ekoko and Robillard,
2012] for a newer investigation). Here, the developer maps
between the model of the target situation and the existing
source situation. In this case, new code reuse describes the Visibility of schemas

in a code base helps

reuse.

development of new code fragments to bridge between the
existing code and the target, when they are not directly
applicable. But how does the developer identify a proper
source solution? Again, Détienne [2002] recommends to

124 4 The Code Base on a Canvas

clearly identify schemas in existing code with precondi-
tions and applicability, and examples to help the developer
pick a source. Object oriented languages allow the devel-
oper to build reusable components in the form of classes.
Studies showed that solutions get more similar when de-
velopers use a common object oriented API and help build
schemas. But, it has also been indicated that objects-oriented
programming leads to more multiplexed code (a more com-
plex deep structure) and that the objects do not map to the
strategic knowledge of the programmer but should rather
be seen as orthogonal to their plans [Détienne, 2002, Davies
et al., 1995].

Navigation in a Code Base

Many studies investigate the way developers navigate
code. We present representative findings from two recent
studies below. Ko et al. [2005] investigate which facilities of
the Eclipse IDE are used to navigate and they report syntac-
tic navigations (e.g., declarations, type definitions) that are
directly supported by the IDE at 24% of all navigations, us-
age of symbols (e.g., where a variable name appear in the
code base) performed with text searches at 22%. A dom-Studies suggest that

IDEs do not aid that

navigation following

schemas or strategic

knowledge.

inant 42% of navigations are unsupported at all because
they follow an indirect relationship, that is a relationship
that represents a deep structure of the code, but is not avail-
able to the IDE to follow. 25% of the recorded navigations
returned to the code they had just navigated from (“there
and back again”) and a total of 35% all time on the task was
spent navigating.

The second set of studies [LaToza and Myers, 2010a,b,c]
clearly identifies that in trying to understand the code
base, developers “ask reachability questions”. They divide
the questions into ‘downstream’ (e.g., “How do calls flow
across process boundaries?”, “How does this code inter-
act with libraries?”) and ‘upstream’ questions (e.g., “What
is the ‘correct’ way to use or access this data structure?”,
“When during execution is this method called?”). In theDevelopers ask

questions about

strategic knowledge.

language of cognitive models these questions correspond
to searches along the structural model of the code base, in-

4.1 The Task and the User 125

vestigating connections between schemas or objects. La-
Toza and Myers [2010b] note that tool support to navigate
to answers to these questions is sometimes lacking. They
recommend that “developers could benefit greatly from di-
agrams that are more focussed on task-relevant items”.

Since developers often reported getting lost when navigat- LaToza et al. [2006]’s

studies suggest to

visualize the task of

the programmer.

ing code, LaToza et al. suggest that the IDE should allow
the context of the task to be externalized—methods they
have examined, decisions in progress, and other informa-
tion. This information then can help the author to resume
their work after interruptions, and also can serve as a start-
ing point for documentation for other team members.

Understanding a Code Base

Again, understanding of narrative texts is used as a tem-
plate for understanding source code. Readers use three
sources to understand source code: the surface structure of
the source code, external representation (e.g., documenta-
tion), and knowledge stored in memory. Détienne [2002]
presents three models adapted from narrative texts: the
functional, the structural, and the mental model approaches.

The functional approach explains understanding code as ap-
plying previous knowledge in the form of schemas to the
code base, either in a top down or bottom up approach.
This model works well to explain expert behavior and rec-
ognizable patterns, and again is a good motivation visual-
izations based on design patterns. Presenting schemas in The functional

approach explains

understanding code

as applying previous

knowledge in the

form of schemas to

the code base.

the IDE would be beneficial to understand the code. In nar-
rative texts, we find these schemas in archetypes of stories,
e.g., a hero’s journey or a formalized way to write papers.
Studies validate this model up to the point where one can
show that the schemas replace the surface structure of the
code as the way they are stored by memory by the devel-
oper. This can lead errors, e.g., when a running variable in
a loop is remembered as ‘i’, even though the real name is
actually different (distorted recall). We should keep in mind
that according to the schema model, one has to understand
the patterns to understand the software. Hence, readers

126 4 The Code Base on a Canvas

have to know the schemas already, otherwise they are not
able to detect them in code. The functional model is apt to
differentiate between novices and experts. [Détienne, 2002]

The structural model approach explains references between
code elements, forms a hierarchical model of structures.
E.g., a developer might follow the input data through entry
to the system, processing on the high level, an processing
algorithm on a middle level, to a method on the low level.
In doing so, they link the schemas of the program togetherThe structural model

approach explains

references between

code elements.

along the lines of communication. This is similar to inves-
tigating a dynamic hierarchy at runtime, rather than the
static class hierarchy. This model of a structure of schemas
has a resemblance to a pattern languages comprised of in-
dividual patterns. In writing, an example of applying this
model would be the formalism of a scientific paper, e.g.,
ways to perform a evaluation, or to reason about limita-
tions, and how keywords communicate references between
the sections. Unfortunately, this model has seen less vali-
dation through studies. [Détienne, 2002]

The mental model is the most complicated model and builds
a series of models for different views of understanding.
Without going into too much detail, it can be easily un-
derstood as a combination and extension of the functional
and structural models. According to it, the developerThe mental model is

a well evaluated

extension and

combination of the

functional approach

and the structure

model.

builds a program model for the schematic structure of the
text (cf. functional model), and a situational model reflect-
ing relationships between entities (cf. structural model).
The program model includes both reasoning about high
and low level schemas, and the situational model includes
the reasoning about dynamic and static relationships be-
tween objects. The mental model is well evaluated, is well
suited to understand reasoning with object oriented lan-
guages, and can take the programmers task into considera-
tion. [Détienne, 2002]

Looking closer at how task and presented structure ease
or hinder understanding, traditional models for narrative
text comprehension name reading-to-recall and reading-to-
do as two tasks [Détienne, 2002]. A person reading-to-
recall wants to understand the whole, e.g., to write a
summary, whereas reading-to-do models tasks where one

4.1 The Task and the User 127

wants to make a change and only reads as far as needed.
Reading-to-do looks for direct relevance (the text that needs
change), the surrounding (what sections are impacted by
the change), strategic relevance (e.g., the closest superstruc-
ture). This works well to understand most of program- Written texts have

temporal, spatial,

and causal

discontinuities.

mer’s tasks, e.g., bug fixing, an extension of functionality,
etc. But since text is linear, yet mental and situational mod-
els are not, three discontinuities have been identified: tem-
poral, spatial, and causal. Temporal discontinuities describe
execution that is not happening in procedural order, such
as call jumps or multithreading, spatial discontinuities de-
scribe calls that leave the view of the reader, like a jump
to another file, and causal discontinuities describe unclear
relations, e.g., a method does two unrelated tasks. All of
these have analogues in narrative text when characters and
locations change or a scene does not causally follow the pre-
vious one. In each discontinuity case, the reader has to de- The reader has to

overcome

discontinuities and

reconstruct the deep

structure.

linearize the text to build the multidimensional model that
is the deep structure of the code base, such as multiple ref-
erences to an instance, handover of data between classes.
Clearly, with complex code and multithreading, there is no
way to avoid this problem, and one has to find ways to deal
with it. Textual structure has been shown in multiple stud-
ies to have an effect on comprehension of code. Both pre-
ceding comments (on file, class, group of procedures) and
indention of control structures help understanding as they
document part of the schemas in code. Unfortunately, ob-
ject oriented programming has found to lead to more dis-
continuities. [Détienne, 2002]

Looking at real world practice, LaToza et al. [2006] also note
the need to overcome the discontinuities and many partic-
ipants in their study agree that they ask “how design deci-
sions are scattered across code”. Their participants remark
that tasks in code understanding are among most problem-
atic: “understanding the rationale behind a piece of code”
(66%), “understanding the impact of changes I make on
code elsewhere” (55%) and “being aware of changes to code
elsewhere that impact my code” (61%). In investigating Studies show that

developers work

according to the

mental model.

these issues developers mainly use the IDE, the debugger.
Especially the quality of the code is often a concern as de-
velopers ask “why the code is implemented the way t is”
(82% agreement) and “if the code was written as a tem-

4.1 The Task and the User 129

together de-localized plans and presents them in a localized
way to the reader.

Communicating with Team Members

One key activity one has to consider when reasoning about
he activities round code bases is how developers interact
with each other to exchange and synchronize their men-
tal models, even though the actual code artifact may not
be part of that process. We mentioned in part already the
results from LaToza et al. [2006] on communication be-
tween team members with regard to design and under-
standing. An interesting observation is that teams have a Teams collect

relevant knowledge

in the minds of

colleagues.

team historian who is the “go-to person for questions about
the code”.7 Finding the right person to talk to is reported
by 39% of participants as a serious problem, and 34% re-
port difficult getting enough time with the senior devel-
oper that is knowledgeable about parts of the code base
(cf. [Kagdi et al., 2008] for an approach to automate this
search for the right person). LaToza et al. [2006] also ob-
serve that new team members in their process of joining
the group (on-boarding) are given jumpstart problems and
documentation that in specifically selected or designed to
introduce them to the group knowledge. We have reported
the same behavior in our investigation with development
teams [Lichtschlag et al., 2014, Schulz, 2014].

Developers are very likely to use written notations to ex-
ternalize their mental models when talking to team mem-
bers, yet these notations are volatile and get quickly wiped
off the whiteboards. A reason stated by the participants is
that overhead of integrating the information into the source
base—even as simple text comments—is to big. Also they Teams often discard

notations of mental

models.

remark that they do not feel confident enough to claim to
be an expert on that issue by providing documentation in
the code base [LaToza et al., 2006]. The practice and need
to seek other team members to understand code combined
with the volatile recording of knowledge is a considerable
drain on the resources of a team. We introduced this chap-
ter with a fitting tweet by John Siracusa, highlighting the

7This is certainly true for all the projects we have been involved in.

130 4 The Code Base on a Canvas

distaste for reifying one’s thoughts.

Pair programming is a newer ‘extreme’ collaboration tech-
nique, where two programmers work very closely on a
task: only one—the driver—interacts with the computer, the
other—the navigator—advises. In discussion they can pro-
duce a higher quality product than if they were working
on their own in parallel. This interaction has been inves-Pair Programming is

exceptional

collaboration

technique.

tigated in great length [Begel and Nagappan, 2008, Bryant
et al., 2008, Chong and Siino, 2006, Chong and Hurlbutt,
2007] although it is not often practiced (LaToza et al. [2006]
reports 16% of the teams at Microsoft use this technique).
We published a design [Lichtschlag and Borchers, 2010] on
how a sketching can give the driver a way to draw and
record hand drawn sketches in the IDE to foster the team
communication—this was a precursor to the sketching de-
sign we outline below.

4.2 Visualization Approaches to Improve

IDEs

Often, a great part of the code base describes user facing ar-
tifacts. Then, advanced IDEs have facilities to build the user
interface with graphical elements, for example, the Visual
Studio Builder or the storyboards in Xcode [Apple, 2015c].
And commonplace in IDEs are static class hierarchies, e.g.,Class hierarchies,

package explorers,

and user interface

builders are

commonplace

commercial

visualizations.

a package browser in Eclipse or the class browser in Xcode.
But, as outlined above, this only brings the deep struc-
ture forward in isolated cases. Some try three-dimensional
views such as Code Cities [Wettel and Lanza, 2007], Met-
ric View [Lange and Chaudron, 2007], or VisMOOS [Fronk
et al., 2006]. But these visualizations are not used widely
[Cherubini et al., 2007, Sensalire and Ogao, 2007]. Develop-
ers refer to code as the “king” [Cherubini et al., 2007] and
the primary object of communication, and suggest that vi-
sualizations should be linked to the code itself [Sensalire
and Ogao, 2007]. Bassil and Keller [2001] and Kurtz [2011a]
both have excellent investigations and studies of the design
space of software visualizations, and Murphy et al. [2006]
investigates their use in the Eclipse IDE. Bassil and Keller

4.2 Visualization Approaches to Improve IDEs 131

[2001] find that time savings, better understanding of code,
and hierarchical representations are the most desired fea-
tures by programmers (cf. [Park and Jensen, 2009]). And
they find that call relations, inheritance relations are ele-
ments of deep structure that are already well visualized in
the evaluated tools.

4.2.1 Rich Documentation for Human Readers

As discussed above, the surface structure of code commu-
nicates the program intent to the machine first, and the hu-
man reader second. Comments alongside can offer a side
channel that only addresses human readers. While many
scorn at such practices (e.g.,[Fowler and Highsmith, 2001]),
a couple of approaches iterate on them. Borchers [1995] Rich documentation

can be integrated

into the source code.

presented a tool to write comments in HTML so that the
code file can also be rendered as documentation directly.
The rich comments of Xcode Swift Playgrounds [Apple,
2015f] bring this idea into a modern mainstream IDE and
also allow adjunct files to be packaged to the code text file,
for example images to be rendered inline with the code.
These approaches also reintroduce headers, emphasis, and
other typographic features to text that is aimed at humans.
Détienne [2002] also notes that rich text comments are more
helpful than plain text comments.

4.2.2 Live Coding

A key feature of source code we outlined above is that it
often operates on abstract data. Thus, another strategy is
to use example inputs in the IDE so that the readers and
designers can closely follow the effect of the code. Victor
[2011]’s article “Ladders of Abstraction” wonderfully de-
scribes how a learner can understand complex systems by
starting on example input first. In research approaches this
design is referred to as ‘live coding’ [Tanimoto, 2013], of-
fering immediate line by line output as if the program was
observed with a variable watcher, yet without ever leaving
the writing environment. Unit tests offer the possibility to

132 4 The Code Base on a Canvas

test fine-grained behavior, and debugging with example in-
put allows the same on the big level. But such execution is
removed from the code itself, the unit test is defined spa-
tially separated, and debugging interrupts the flow of the
developer. Prototype systems for live coding exist, such asLive coding uses

example inputs to

overcome the

abstraction problem

of source code.

[Krämer et al., 2014], and approaches exist that transform
the trace automatically into unit tests for later reference or
testing [Ulmen, 2014]. Again, Apple’s Xcode brings some
of this into the IDE [Apple, 2015f], albeit so far this feature
is only available in playgrounds and for custom interface
builder elements. Another market application is web de-
velopment: often changes to the DOM tree can be rendered
immediately. Tanimoto [2013] defines a hierarchy of live-
ness, and these approaches would be on level 3–4, even
more advanced approaches could try to predict authors ed-
its and provide feedback on these predictions. Krämer et al.
[2014] evaluated a live coding environment and found that
it “significantly decreases the average total fix time of bugs
introduced while creating software” but “no decrease in
task completion time when working live.”.

4.2.3 Leveraging Programmer Activity

A series of prototypes are build around the idea of a work-
ing set of the developer. The assumption is that the salient
parts of the code base and the relationships that are impor-
tant are revealed through the activities of the people that
work on the code base. CodeBubbles [Bragdon et al., 2010]
is the most interesting one and is a major reference point for
our prototypes. Their interface completely forgoes file and
folder structure as an organizing principle, instead func-
tions are laid out in ‘bubbles’ on a canvas and these bub-
bles connected through call relations. The developer opensRecording the

working set of a

developer can

identify related items

and visualize at

schemas.

up new bubbles by following the relations and over time
the canvas displays a working set of their current task. No
function bubbles are laid out that the developer did not ex-
plicitly call up, the display lays out functions according to
their deep structure, and not according to their location in
the files, bridging the spatial discontinuity. In their evalu-
ation they show that navigators are much faster in Code-
Bubbles because of reduced need to navigate to off-screen

4.2 Visualization Approaches to Improve IDEs 133

code locations. Hartmann et al. [2011] has another exam-
ple how the activity of the developer can be leveraged: in
HyperSource, web searches by the developer are observed
and the links inserted as comments in the IDE at the cur-
rent editing position. This way, a future investigation of
that source code has access to the web activity of the author
and use it to explain the code. An evaluation by Fritz et al.
[2007] found that frequency and recency of interaction of a
programmer with parts of the source can be used to iden-
tify experts on these parts (cf. 4.1.5 “Communicating with
Team Members”).

4.2.4 Exploring the History of the Code Base

Software development almost always includes some form
of change tracking with a revision control system so that
concurrent work can be merged and errors recovered. This
offers a wealth of information on the formation of the code
base that can be used to reason about the current state. Wit-
tenhagen [2015] deals with this argument in depth, and
he suggests that one can better understand the deep struc-
ture of the current state of the code base by looking at the
history of how it was created. For example, if one starts
writing the algorithm from the ‘inside out’ starting from
the most salient part of the program and builds the infras-
tructure around it. Then, a look back in the history can Understanding of the

current state of a

code base can be

aided by

investigating its

history.

often reveal that the early check-ins of a repository carry
less cruft and have a better signal to noise ratio (cf. the con-
cern above). An in depth description of the idea is given
in [Wittenhagen, 2015]. Other studies [Atkins, 1998, Yoon
and Myers, 2012, Kuttal et al., 2014, Yoon and Myers, 2014]
and prototypes [Telea and Auber, 2008, Hattori et al., 2011,
Servant and Jones, 2012, Maruyama et al., 2012, Yoon et al.,
2013] of history exploration open a wide field of possible
approaches to deal with the history. Schulz [2014] explored
how their approaches can be adapted to handle visual ele-
ments such as a sketch on a canvas.

134 4 The Code Base on a Canvas

4.2.5 Linguistic Analysis

Since the vocabulary used in variable names are often very
consistent and even subject to conventions (cf. [Détienne,
2002]), one can hope to draw connections to distant code el-
ements (deep structure) if the same vocabulary is used. For
example, if multiple classes are involved interprocess com-
munication, they all might refer to the data passed around
with names like ‘message’ or ‘packet’. The vocabulary prob-
lem [Furnas et al., 1987] is basic problem of HCI work and
points out that often different terms are used to refer to the
same object. Ko et al. [2006] investigated this considerationVocabulary used in a

code base reveals

related code

locations.

with vocabulary used in bug reports, and found that devel-
opers use very consistent naming (cf. [Storey et al., 2007]).
Kuhn et al. [2008, 2010] uses the vocabulary in code bases
to build ‘thematic maps’ of the code base. These maps have
the nice property that the layout is robust for small iter-
ative changes to the code base, therefore, developers can
build a spatial memory of the map and follow call traces
on it (cf. [Speicher and Nonnen, 2010] for another approach
based on vocabulary.). Their study indicated that automatic
layout based on lexical similarity may be confusing because
users cannot map it to their mental model and they recom-
mend user direction in the layout of the map.

4.2.6 Visual Programming

Many approaches take the definition of the program out of
a textual domain and try out ways to define the program vi-
sually (e.g., [Apple, 2015e]). Myers [1990] has a great article
on the early history of these approaches. Scratch [Maloney
et al., 2010] is a very advanced contemporary approach ad-
dressing novices, and see [Asenov and Müller, 2014] and
[Zinenko et al., 2014] for prototypes that address experts.
Visual programming has often been used for the definitionVisual Programming

avoids the problems

of textual

representations.

of the user interface of a program, e.g., Hartmann et al.
[2010] built a prototype that includes visual layout of an-
imations and state changes. Modern IDEs like Xcode in-
clude storyboards [Apple, 2015c] that serve a very similar
function.

4.2 Visualization Approaches to Improve IDEs 135

4.2.7 Canvas Visualizations

The reader surely has noticed that the studies that eval-
uated user tasks often advocate for changes to IDEs that
could be served with canvas user interfaces. We al- Modern visualization

approaches often

include canvas

designs.

ready discussed a couple of software visualizations that are
building a single continuous landscape representing the code
(Kuhn et al. [2008], Bragdon et al. [2010], Apple [2015c])
resulting in visualizations that can be described as a can-
vas interface (cf. chapter 2.1.7 “Fragmentation and Conti-
nuity of the Information Landscape”). Seesoft [Eick et al.,
1992] and CodeThumbnails [DeLine et al., 2006] are two ap-
proaches that scale the text geometrically, with the prob-
lems as discussed before.

Code Canvas [DeLine and Rowan, 2010] is a recent ap-
proach that directly describes itself as a single landscape
zoomable user interface with the intent of supporting spa-
tial memory, rendering debugger traces similar to [Kuhn
et al., 2008]. They contrast that approach against frag-
mented views in most software visualizations, which they
call “bento box designs”, mirroring our argument (2.1.7
“Fragmentation and Continuity of the Information Land-
scape”). Recently, they combined their efforts with the Canvas designs in

code bases promise

to overcome

discontinuities in the

written

representation.

CodeBubbles team and produced a series of refinements
and studies [DeLine et al., 2010, Bragdon et al., 2011, De-
Line et al., 2012], also publishing it as a free expansion to
Microsoft Visual Studio [Microsoft, 2013]. Their approach
has the rare feature that it gives the author or investigator of
a code base to decide how much of the structures should be
included on the canvas. Their studies indicate that the can-
vas is well suited for large code bases and was preferred for
complex call relations. They recommend to use the canvas
as a mode, not as a replacement to standard user experience
(in contrast to [Bragdon et al., 2010]). We also want to high-
light Relo [Sinha et al., 2006] that also allows the creation
of a UML canvas with user directed selection of elements.
Relo was an inspiration for our vocabulary based approach
below 4.3.1 “CodeGestalt: Our Vocabulary Based Design”.

136 4 The Code Base on a Canvas

4.3 Our Approach

The related work has not only produced quality models to
understand programmer behavior, it has furthermore out-
lined directions for future research. We can summarize the
key weaknesses of the tool support that current IDEs pro-
vide: First, current IDEs offer little support for visualizingExisting IDEs can

visualize only parts

of deep structures,...

the deep structures in the code that are not readily parseable by
compilers and model checkers. We have both many and excel-
lent tools at our disposal to model class hierarchies and call
relations, but those tell only ‘part of the story’. Their narra-
tives are founded in the computer specification, which only
addresses the human developer only secondarily. Second,have no big picture

overview of a code

base,...

current IDEs give no visibility to the big picture of the code
base, but users desire such a view [Cherubini et al., 2007].
A programmer can plan a project by outlining views in a
visual editor for the UI, or they can start developing their
class hierarchy in UML. But these are again only the deep
structures that are parseable by the tools, but planning a
project is not primary about defining a specification for a
computer, it is about reifying one’s ideas, iterating on them,
and comparing notes with colleagues. Formalized tools like
UML modeling are hard to change and do not invite exper-
imentation, so it is no wonder many programmers often
use them informally at best [Cherubini et al., 2007]. An
investigator of a code base can get lucky and find a code
base where files and folders structure, a visual database
model, and a visual UI description give a good overview,
but they are more likely to find answers to their questions
from the team historian. Third, current working environ-cannot record

informal notations of

mental models, ...

ments are poor to capture informal notations as they are used
by programmers to reason or communicate about code. All
to often, they are produced outside of the IDE and never
recorded in a permanent way.8 While a developer might
write a rough textual description, our tools offer no way
to capture informal graphical descriptions. Fourth, currentand can only

visualize realized

solutions.

IDEs only capture what is, not what should be. There is no
way to have an informal or unfinished plan in the IDE and
build on that. An author can develop a design document

8An interesting facet of programmer behavior since software devel-
opers are otherwise not known for poor data retention, and build cool
tools like revision control systems.

4.3 Our Approach 137

or a project plan outside of an IDE, but there is no way to
integrate it into their workspace and connect it to the ele-
ments of code that implement it. Only the parts of the men-
tal models and structures are available in the IDE that have
already been realized.

Three PhD thesis projects are currently investigated at the
media computing group: Wittenhagen [2015] explores the
change of the code base over time and explores ways for
investigators to build a mental model by traveling back in
time, thus answering a very commonplace question when
dealing with source code: “How did this code come to
be?”9. The second axis of investigation [Krämer et al., 2014,
Krämer, 2011] explores ways improve our tools to answer
the question “What exactly does this code do?”. With live
coding and stack exploration one can investigate the status
quo of the code base without entering a debugging mode:
the IDE always reasons about the code and gives possible
answers to the author without him specifically asking for
it.

In our approach we try to answer the question about wish-
ful thinking: “What is this code intended to do?”. So how
can we address this question, and how can we build a can-
vas that invites experimentation and informal planning?
We would like to have a ‘pop the hood of the car’ overview
of the code base like one can have it with physical arti-
facts. What if one is not to follow the information already
present in the code base, dominated by technical specifica-
tion language and instead were refer to human communi-
cation as the source to this question? We support the recent Our approach is to

present the mental

model of developers

on a canvas.

exploration of canvas approaches (cf. 4.2.7 “Canvas Visu-
alizations”) to build an ‘pop the hood of the car’ scalable
overview of the code base because we already found the
canvas model is well suited for presentation visualizations.
We essentially try to build presentations about code bases
here—ways for developers to tell stories about the source
code to another (or to oneself if one builds a mental model
while investigating foreign code).

ZUIs offer exactly the physical metaphor of a unified infor-
mation landscape that can provide a summary of parts of

9Feel free to add “What were they thinking/smoking?”

138 4 The Code Base on a Canvas

the landscape or the whole by zooming out. Thus it seems
a good match to bring a ‘big picture’ into the IDE. And asZooming out of the

code brings the ‘big

picture’ of the code

forward.

we have seen in the domain of presenting, authors can pro-
vide rich information about connections between elements
on the canvas and communicate them to an audience. An
investigator trying to building a mental model of a code
base is often best served by talking to the original devel-
oper. Below we formulate three approaches with which
we hope to allow software developers to externalize their
mental models on a canvas and communicate them to their
peers in a language they already use.

In relying on human input to direct the layout of the can-
vas and to define the elements that should be included on
the canvas to tell a story, we avoid any form of ‘one click
solution’ as described by Kurtz [2011a]. The one-click invo-We rely on

developers to author

a canvas

visualization.

cation style is typical for a wide range of software visual-
izations (e.g., [Kuhn et al., 2008, Wettel and Lanza, 2007]),
but these layouts produce always the same visualization for
the same state of the code base. If this does not happen to
be the same as the mental model of the designer, then the
visualization cannot do the job of communicating the men-
tal model between colleagues. Instead we look for ‘human
driven/machine assisted’ designs (cf. [Kuhn et al., 2010]).

We developed three prototypes to explore different ways
to achieve this. First, and approach based on the vocabu-We experiment with

vocabulary in the

code base, software

design patterns, and

hand-drawn sketches

to record the mental

models.

lary of the code base inspired by [Kuhn et al., 2008] but with
human direction to the layout and inclusion of elements to
the canvas. Second, an pattern based prototype that allows
the developer to reify their schematic and strategic knowledge
(cf. 4.1.4 “Cognitive Models of Software Design”). Third,
we developed a prototype that takes hand-drawn sketches,
e.g., from a whiteboard or a sketchbook, and arranges them
on a canvas connecting them to the code base. Below, we
look at each design and prototype in depth.

4.3.1 CodeGestalt: Our Vocabulary Based Design

Our first design is based on using the vocabulary of the
code base to build an abstraction of the code text. We

4.3 Our Approach 139

present CodeGestalt, design for a source code visualization
that uses the vocabulary to assist the developer in build-
ing and recording a mental model. The vocabulary is in- CodeGestalt brings

the vocabulary in the

code base to the

canvas.

teresting to mine because we can use the source code au-
thor’s existing design effort of careful selecting natural lan-
guage identifiers [Ko et al., 2006, Kuhn et al., 2008, Spe-
icher and Nonnen, 2010, Storey et al., 2007] such as vari-
able or method names (cf. 4.2.5 “Linguistic Analysis”). We
designed two user interface elements that amend class dia-
grams (e.g., [Umbrello, 2015]), the tag overlays and thematic
relations. Both display similarities in the vocabulary used
in the underlying source code. Our design goal is to ex-
plore with these elements if one can visualize structures in
the code base and build a graphical representation of the
text base. This design has been supported by Christopher
Kurtz [Kurtz, 2011a] and previously been published at as a
poster [Kurtz, 2011b].

As we discussed before (cf. 4.2 “Visualization Approaches
to Improve IDEs”), numerous tools build software visu-
alizations. We base our design on the Relo editor [Sinha
et al., 2006] which supports the creation of partial class dia-
grams and automatically indicates structural relations such
as method calls and inheritance of existing elements on the
canvas. The user decides which of these relations to ex-
pand by clicking contextual buttons. That way, only code
artifacts the user selects are visible, and the user controls
the layout and scope of the diagram as it grows. Our sec-
ond inspiration is the thematic software map by Kuhn et al.
[2008] for the use of vocabulary to build a canvas. It rep-
resents classes as hills that are placed close to each other
if they share a similar vocabulary. The resulting landscape CodeGestalt values

human driven layout

of the canvas.

produces a recognizable shape of the code, but it is always
generated the same way, the layout is not really authored
by the developer. Our design sits in the middle of the two
approaches above: CodeGestalt uses class diagrams as a
familiar baseline and lets developers create and customize
graph-based visualizations. The developer can then add
more semantic information by adding relations between
the canvas elements with based on the vocabulary of the
underlying source code.

An example workflow could be as follows: a developer

4.3 Our Approach 141

Figure 4.7: Left: A class box element on the canvas with name and package of the
class (1), fields (2), methods (3), and a tag cloud (4). Right: Preview of a call rela-
tion between methods. Clicking the transparent arrow makes it persistent. [Kurtz,
2011a]

the right terms. The final prototype is implemented as an
editor plug-in for the Eclipse IDE [Eclipse, 2015] and uses
the Cultivate API [Speicher and Nonnen, 2010] to obtain the
tag metrics. CodeGestalt canvases are integrated as a new
document type with Eclipse and can be placed anywhere in
the project structure a source code file can. The user can po-
sition the file view just like any other source file in Eclipse
(e.g., side by side). The user generates diagrams via drag
and drop from source file to the canvas. All kinds of code
artifacts (files, classes, methods, etc.) can be dragged to the
canvas from any Eclipse view, and are visualized in a way
similar to class diagrams. Types are represented as boxes,
where fields and methods can be added to a list of mem-
bers (cf. figure 4.7, left). At the bottom of each box is a tag
cloud displaying the ten most frequent terms. When a user
selects a diagram element relations to other classes are dis-
played as context-sensitive ephemeral previews (cf. figure
4.7, right). The user decides on a case-by-case basis if a re-
lation should become persistent and be included in the di-
agram. These informed user decisions avoid uncontrolled
growth and distracting clutter. Double-clicking on an ele-
ment opens the respective code location in Eclipse.

Figure 4.8 shows the workflow of adding vocabulary el-
ements to the canvas. The user starts a new sketch on
the canvas and adds classes to investigate using drag and
drop gestures. These form a class diagram (1) and provide
hints to other connected classes. When searching for spe-

4.3 Our Approach 143

Figure 4.9: A small tag overlay for three classes: Actions,
PaintObject, and PaintCanvas. The user can identify the
‘center of gravity’ for concepts, such as undo, which is an
important term in Actions. The size of each tag is deter-
mined by the mean of the weights assigned by each class
(term frequency in class). Tag size and location indicate
how often and where they are used in the classes shown.

The Thematic Relations

While the tag overlay allows developers to quickly orient
themselves in an unknown code base, they will still want to
record and share insights gained from their exploration us-
ing this filter interface. Hence, the tag overlay allows users
to create persistent thematic relations from their transient tag
results. These augment and extend the traditional class di- A thematic relation is

a recognizable

landmark that add

structure to a class

diagram.

agram and are saved with the diagram file for future ref-
erence. Thematic relations are recognizable landmarks that
add structure to a class diagram. We visualize them as la-
beled fans (cf. figure 4.6). The segments of a fan connect
all classes using the same term with the corresponding tag.
Different transparency levels are assigned to the fan seg-
ments to represent different frequency-based weights.

144 4 The Code Base on a Canvas

Study

To measure authoring with CodeGestalt, we performed a
user study with 16 computer science students and post-
graduates. We prepared four tasks that asked participants
to learn how a specific feature of the Paint source code from
[Ko et al., 2006] is implemented, and to share their find-
ings in a diagram as if do document it for a colleague.
E.g., the first task is “In Paint the user can choose between
three drawing tools: Pencil, Eraser and Line. In order to
enable another programmer to create additional drawing
tools, you need to communicate to them how the software
realizes the support for them.” These tasks cover the ‘toWe performed a

study asking users to

investigate and to

record their mental

modes as if to share

their findings with a

colleague.

ground’ and ‘to share’ and touch the ‘to manipulate’ mo-
tivations to make sketches as noted by Cherubini et al.
[2007]. Each participant created two canvas diagrams us-
ing CodeGestalt and two hand-drawn sketches using pen
& paper. We allotted 10 minutes for each task. To familiar-
ize participants with the tools, we gave them a short intro-
duction and allowed them to interact with the tools before-
hand. The assignment of tools was counterbalanced, as was
the sequence of tasks. We recorded the screen contents and
logged manually any user comments or problems they en-
countered. Kurtz [2011a] reports on the details of the study.

Quantitative Results

Completion rates for sketching and CodeGestalt were not
significantly different. However, sketching was signifi-
cantly faster one of the four tasks (U = 9.0, z = −2.0, p <

.05). We defined a list of elements we deemed useful
(classes, attributes, call relations) for the communication
and scored the artifacts according to this by counting how
many elements they represented (two authors, interrater
reliability κ = .98, p < .001). Since sketches were createdTesters used

thematic relations in

roughly a third of the

cases.

in a multitude of different styles and layouts, we used a le-
nient interpretation of how sketches could comply with the
checklists. In the 20 observed task/error category combina-
tions, CodeGestalt diagrams scored significantly higher in
three cases, while hand-drawn sketches did so in one case.
We also investigated the use of the different ways to de-

4.3 Our Approach 145

scribe the structure of the solution to the tasks. Participants
put thematic relations on 37.5% of the canvases (n=32) with
18 thematic relations in total; they defined inheritance or
call relations in 84.4% of the canvases (n=32) with 76 such
relations in total; on 9.4% of the canvases only classes but
no relations were depicted. In the hand-drawn sketches,
they used relations between elements in all cases, with 97
relations in total (The relations cannot all be classified be-
cause they are in part unlabeled).

Qualitative Results

After the session, we asked testes to fill out a questionnaire
to rate the usefulness of individual features on a five-point
(0–4) Likert scale. Participants agreed with the statement
that CodeGestalt sketches are a practical alternative to pen
& paper (median 4). Similarly, the thematic relation (me- Testers judge

CodeGestalt to be a

practical alternative.

dian 4) was rated very useful. The highlighting features for
classes (median 3) and tags (median 3) were rated useful,
as was the tag overlay (median 3). We received positive re-
marks for them from six participants in open-ended ques-
tions: E.g., “The tag overlay helped to quickly get a grasp of
the overall structure of the program”, “The vocabulary con-
nections between classes are interesting and important for
the understanding”, and “The tag cloud is very expressive
for some classes, e.g., the PaintObject”.

Two weeks after the study, we contacted our participants
again, asking them to complete an online survey. It asked
them to compare four balanced pairs of the previously cre-
ated sketches and CodeGestalt diagrams (one pair per task,
0..6 Likert scale). We received 14 responses; testers pre- Testers preferred

neither condition as

an audience.

ferred neither sketches nor CodeGestalt diagrams with re-
gard to understandability and usefulness for solving the re-
spective tasks (median 3). For clarity and suitability for
documentation, CodeGestalt was slightly preferred over
sketches (median 4). See [Kurtz, 2011a] for the details.

146 4 The Code Base on a Canvas

Figure 4.10: Top: a CodeGestalt document from the study. Bottom: a hand-drawn
sketch result for the same task.

Discussion

Participants rated the usability of our prototype highly andTesters did not use

the vocabulary

elements much.

the results of the two conditions were seen as compara-
ble by authoring and reviewing participants. We see that
the classic class diagram elements make up most of the
elements on the canvas and that thematic relations were
only used in roughly a third of the cases. This suggests

4.3 Our Approach 147

that while they offer another way to express in class di-
agrams, they mostly offer redundant capabilities to cap-
ture mental models. When we look at the hand-drawn
sketches, we see that they are much more informal, use a
mixture of visualization styles at the same time, and have
more character. The hand-drawn sketching allows the au- Hand-drawn

sketches saw more

variability.

thor to quickly switch to a different style without changing
the selected tool or enabling the right mode. They even in-
cluded a human figurine or drawing of a mouse to denote
the user input (cf. figure 4.10). Such flexibility is not possi-
ble with CodeGestalt. CodeGestalt canvases look more pol-
ished, but we think that the hand-drawn sketches capture
the mental models better.

4.3.2 CodeMixer: Our Design Patterns Based De-
sign

Our second design plays with the idea of integrating visu-
alizations based on the design pattern format into a canvas,
with, of course, the same two goals: we want authors be
able to record their mental models and communicate them
to colleges. And we want to see if such a visualization can CodeMixer brings

design patterns to

the canvas.

be a proper graphical abstraction of text for a zoomable
user interface. We present CodeMixer, a low-fidelity proto-
type that was built and iterated by Tjandra [2013] and with
which we investigate this design direction.

When we presented cognitive models of writing (cf. 4.1.4
“Cognitive Models of Software Design”), we already saw
that some have a striking similarity with design patterns,
and we are not the first to make this observation [Détienne,
2002]. Let us review design patterns for a moment. Alexan-
der et al. [1977] invented design patterns as a formal recipe
to capture recurring design solutions in architecture. Each
design pattern solves a problem of conflicting forces and is
described with this background. Each pattern describes the Design Patterns are

built for

communication.

context of its use, the problem it addresses, and then the
solution. Other elements of the format include its name,
a picture of an example solution, a diagram of a general-
ized solution, references to other patterns. Alexander et al.
[1977] write that each pattern “contains only the essentials

148 4 The Code Base on a Canvas

which cannot be avoided if you really want to solve the
problem” and is written down with the intention of foster-
ing communication. Design patterns had their biggest suc-
cess in software engineering with after Gamma et al. [1994]
published “Design Patterns: Elements of Reusable Object-
Oriented Software” and captured essential problems and
solutions in software design. It is very common to hearDesign Patterns are

very commonplace in

the software design.

software developers to talk about Singletons or Factories and
refer to design patterns, even if maybe they do not know
them as design patterns. Lastly, Human Computer Inter-
action has also used design patterns to capture solutions
in interaction design, e.g., Go Back to a Safe Place. Borchers
[2001] gives an overview of these approaches. There are
two differences to keep in mind when we compare design
patterns the schematic knowledge of software developers:
design patterns are formalized descriptions and they are
generalizable. Schematic knowledge is not formalized and
not always generalizable [Détienne, 2002].

We see many situations in which an expert software devel-
oper shares his knowledge with an audience and formu-
lates a solution in a way that it can be reused and adapted
to the context of the reader. Framework vendors do almost
always add to their documentation examples of proper
use, sample code, tutorials, or video tutorials. The high-There are many

reasons to publish

example code.

est rated answers on question and answer sites (e.g., Stack-
Overflow10) often contain detailed descriptions of the steps
involved in a solution and when it might be applied. Many
teachers, be that with in a classroom or on a website for
distance learning, provide adjunct code materials, maybe a
partial solution to continue working on.

We imagine an example interaction with CodeMixer as fol-
lows. Tim is a teacher at university and blogs about mo-
bile development for iOS. He builds an example to teach
about photo filters: the application takes a photo, detects
faces and crops the relevant region, and then replaces the
head with a random photo of Angela Merkel. His idea is
to playfully teach the audience about three tasks: capturing
images and face detection with the built in camera, fetch-
ing Google results for “Angela Merkel”, and image com-
position. He implements the solution, writes a blog post

10https://stackoverflow.com/

4.3 Our Approach 149

about the lesson, and then publishes the blog post linking
to an online repository with the source code. His audience
may have a hard time extracting his mental model from the
written text (for all the reasons outlined in 4.1.3 “Why is
Reasoning About Code So Hard?”) and has connect code
and the blog article to extract the three elements in his so-
lution. In our example, each of the three tasks corresponds
to a schema of his mental model, corresponds to a reusable
design pattern solution, and corresponds to a composition
that we consider supporting with CodeMixer.

Now, lets consider how Tim would publish with
CodeMixer. With CodeMixer, Tim builds three compositions,
one for each pattern. For the two low level schemas, image
capture and fetch results, he drags the relevant code sec-
tions to the canvas. This drag action creates a graphical
element on the canvas and links it to the dragged section of
the codebase. He connects these elements among another We imagine a

workflow in which

example code can

easily be published

with design patterns

explaining the

structure of the

example.

with arrows designating order and data flow (cf. 4.12). He
then gives each solution a title and adds comments that de-
scribe forces and applicability. This way, he reifies his men-
tal model of the two schema, and he records them similar
to the pattern format. Then, he does the same for the high
level schema, the image filtering, but since it gets the in-
puts from the two low level schemas, he links them to their
output instead of code locations. Thereby, he established a
hierarchy between the compositions and schema, and rei-
fies all this on a canvas. He publishes the canvas of com-
positions on blog as a figure and interactive element. Julia
reads his post and wants to build on his composition. She
drags the composition into her IDE. The IDE displays the
same canvas as Tim authored it, but it is not yet connected
to Julia’s code. She then drags a graph element to her code,
and this copies the code from Tim’s example into her code
base to the dragged position, of course, linking to the can-
vas. Julia then experiments with different filters and other
inputs and playfully expands her knowledge about Tim’s
lesson.

A couple of approaches because they also package reusable
solutions visually. Quartz Composer [Apple, 2015e] is a
visual programming language that allows the developer
to define custom graph elements. CodeBubbles [Bragdon

154 4 The Code Base on a Canvas

A web version of the game Minesweeper11 served as the
test code base for the study. We built seven different com-
positions, each explaining a multiplexed structure in the
code base, e.g., a composition connected menu item, its
click function, and its style sheet. For the study, we build anOur study prototype

was built with web

technologies.

interactive version of CodeMixer with HTML and CSS and
presented it in a web browser. Each file of the code base
is loaded as its individual page, changing the text though
typing is not possible. Clicking on a composition icon in
the code base reveals the corresponding composition to the
right side of the window (cf. figure 4.14). Clicking on a
graph elements focuses the text on that linked code text.
Tjandra [2013] has the details on the study and the proto-
type implementation.

Although evaluated without a baseline, the testers re-
marked positively on CodeMixer, agreeing that it would
help them achieve real world tasks. Testers also stated that
the liked the icons and code text highlights, but were di-
vided about the pop-up comments. They remarked mildlyUsers remarked

positively on the

interaction, but had

problems

distinguishing the

visual outline of the

compositions.

positive on their ability to recognize and differentiate com-
positions by their shape, but we observed an opposite be-
havior. On investigation we noted that users particularly
payed attention to the icon to differentiate between compo-
sitions. They suggested to color the whole background of
the graph in order to give it more identity. During the au-
thoring task, we noted that even giving a title to the com-
position is a step that users would rather skip. Users re-
marked positively on the switching between canvas and
code text through the links, and our observations concur.
They also reacted positively to the idea of having a global
view for all the compositions in a code base, and one in-
teresting suggestion was that instead of navigating to the
composition on click, they just wanted to see a quick pre-
view while hovering over the icon.

Discussion

We learned a lot about our initial hypothesis that such
workflows as we described above are worthwhile of sup-

11http://www.chezpoor.com/minesweeper/minesweeper.html

4.3 Our Approach 155

porting. Our HTML prototype received good feedback, in- Using the language

of patterns for

reusable solutions

continues to be

promising.

dicating that users would support this type of interaction,
and indicating that this helps user accomplish their tasks.
The related work approaches, especially Codelets [Oney
and Brandt, 2012], point the way how a high-fidelity im-
plementation can support the search for reusable solutions
directly in the browser while keeping the connection to the
pattern alive. This way, the author does not just have an We recommend

further exploration of

reusable solutions

that link source code

to its origins.

easier time implementing, they also leave the pattern di-
rectly by the code to document their work. However, to
take these pattern approaches to the canvas, they would
have to shed their textual structure.

We did not find an answer to our text abstraction problem.
Our iterative design lead us to a final design for CodeMixer
that only used three elements for the visual identity: the
graph of text snippets, a colored icon, and the title. In the
study we saw that the users mostly use the icon and title
to identify a pattern, not the graph. While participants rec-
ommended our design decision of the graph, we could ob-
serve them having problems to differentiate the graph ele-
ments form another. We have two critiques for our design: We cannot

recommend design

patterns as a way to

abstract text.

first, the design is pretty bland. It lacks ways for the au-
thor to express themselves and all graphs have the same
‘connected text boxes’ look. Second, since text remains the
dominant feature, zooming out makes the designs visually
interchangeable. We see that this design did not build a
visual abstraction of the code—the visual fidelity of the de-
signs of our CodeGestalt approach turned out much better.
We are happy with the independence of class and call re-
lations to build the graph (compared to CodeGestalt), that
gives the author the freedom to build the graph they envi-
sions. We take two design lessons from this: the elements
of a text abstraction should not include code snippets, and
graphs should be built out of diverse elements.

In summary, we see this pattern design direction for the
visual abstraction as a dead end, but not the style of in-
teraction. We continue in our next design, CodeGraffiti, in We keep the

interaction style for

our next design.

which we link to text similarly and iterate on the idea of
having code and a small canvas next to each other. We also
reuse the idea of highlighting linked code sections.

156 4 The Code Base on a Canvas

4.3.3 CodeGraffiti: Our Sketching Based Design

Our third design is based on hand-drawn sketching, an es-
tablished technique for ideation, exploration, and commu-
nication [Schön, 1983, Tversky and Suwa, 2009]. Again, our
approach is to investigate the use of such rather informal
drawings as elements on a canvas and integrate them into
the IDE (cf. figure 4.15). We then connect them to code ar-In this approach we

put hand-drawn

sketches as

elements on the

canvas.

tifacts thus allowing the code to be navigated and under-
stood through the canvas, much as in our previous design,
CodeMixer. A possible workflow could be as follows: a
software designer begins building the project, mocks up
the algorithm on a whiteboard. An engineer takes over the
implementation of the algorithm and uses the sketch as an
high-level overview and as a guideline of tasks to imple-
ment. When they implement the solution, they connect the
code fragments to the sketch, thus referencing a distributed
design with a common calling card—the sketch. The sketch
is part of the team communication and serves as later ref-
erence for maintenance work on the algorithm. This way,
sketches on the canvas fulfill a role additional to generated
visualizations, promising to be more flexible in situations
where generated visualizations do not capture the mental
model. This design has been supported by Lukas Spychal-
ski [Spychalski, 2013] and previously been published as a
paper [Lichtschlag et al., 2014].

As we noted before, one common way to get the needed
information about unfamiliar source code is to ask other
team members in short, but interruptive ad-hoc meetings.
In such meetings mental models about source code often
gets visualized in transient form during short meetings,
e.g., on whiteboards or paper [LaToza et al., 2006]. Cheru-
bini et al. [2007] interviewed developers and found that
these sketches are also important for understanding exist-
ing code, designing, or refactoring. Furthermore, sketchesDevelopers use

sketching techniques

to reify their mental

models.

are found to be valuable after the day of creation [Bran-
ham et al., 2010], but since sketches are rarely recorded and
archived afterwards, the knowledge has to be constantly
rediscovered (cf. [LaToza et al., 2006]). Walny et al. [2011]
found that software developers use sketches frequently in
different phases of the software development process to de-

4.3 Our Approach 157

pict and convey different views and concepts of the system
under development and Détienne [2002] noted that experts
take more notes that novices and that sketching often leads
to a change in plans.

With many reasons to sketch, let us look at how developers
sketch. Luckily a handful of studies investigated sketching
practices recently. In all studies above, the use of hand-
drawn sketches outweighed both tool-based visualizations
and visualizations created with automated tools, often be-
cause sketching is considered unconstrained by formal no-
tations, e.g., UML [Cherubini et al., 2007, Kurtz, 2011a]. De-
velopers depict both microscopic as well as macroscopic
views on the code [Cherubini et al., 2007]. More than 75%
of the surveyed software developers by Cherubini et al.
agreed that hand-drawn, analog sketches are more impor-
tant than automated tools and state that a macroscopic
view cannot be depicted automatically by a re-engineering
tool. Walny et al. [2011] traces the life-cycle of sketches and Developers use

sketch on many

transient materials

and depict schemas

and structural

knowledge.

finds that users make use of paper and whiteboards, as well
as notebooks, printers, scanners, cameras, photocopiers,
hand-held devices, tablet devices and PCs. This indicates
that developers establish their own individual workflows
in dealing with sketches, mostly in paper notebooks or
on tablet devices. The production quality of both digital
and analog sketches changes when sketchers are conscious
about the possibility that their doodles and scribbles might
get reused in the future. Developers might redraw a sketch
multiple times in order to get a cleaner version of the orig-
inal sketch that will be recognizable in the future by others
[Branham et al., 2010].

Several designs have been put forward to integrate
sketches into the IDE: ReBoard [Branham et al., 2010] au-
tomatically captures whiteboard images and archives them
for later reference, so that the images can be accessed
through a calendar interface, thereby they address the lim-
ited space of a physical whiteboard and document sketches
use future use. Calico [Mangano et al., 2010] enhances the Recent related work

has investigated

software solutions to

support sketching.

software design on electronic whiteboards and tablet de-
vices by introducing multiple virtual whiteboards arranged
in a grid, also in order to address limited space. They intro-
duce ‘scraps’, grouped graphical elements, which add the

158 4 The Code Base on a Canvas

Figure 4.15: The two concepts that guided the design of
CodeGraffiti: a, sketch-follows-code: the sketch comments on
a code fragment. b, code-follows-sketch: the sketch refers to
many code fragments in multiple files and reveals a struc-
ture of the code base. [Lichtschlag et al., 2014]

ability to copy selected parts of a sketch for reuse, e.g., ex-
ploring multiple variations of the same initial scrap without
the need to redraw. Codepad [Parnin et al., 2010] explores
interactions with sketches on touch interfaces that are con-
nected to the IDE and is an inspiration to our sketchbar view
described below. Plimmer and Freeman [2007] use sketches
as a user interface description language and in teaching stu-
dents. Previously, we proposed sketching on the code as a
means of expression for the navigator in pair programming
tasks [Lichtschlag and Borchers, 2010].

The CodeGraffiti Prototype

The great strength of sketches is their informality and the
ability cover a wide range of contexts with commonplace
drawing tools. This same quality, however, makes it bothWe conceived two

ideas to present

code and sketches

together.

tricky to parse sketches algorithmically and hard to inte-
grate sketches into a formal environment like an IDE with-
out loosing the very qualities that make them so power-
ful in the first place. Building on designs from the related
work [DeLine and Rowan, 2010, Parnin et al., 2010] and our
CodeMixer exploration, we developed two concepts in an
iterative design process (cf. figure 4.15). In both designs
we integrate sketches into the IDE and connecting them to
source code: We use sketch-follows-code to describe that the

4.3 Our Approach 159

a code fragment is explained by a sketch like it would nor-
mally be explained by a comment (e.g., a small drawing
that explains a recursive step in a sorting method, cf. 4.2.1
“Rich Documentation for Human Readers”). The sketch is Sketch-follows-code

describes a sketch

that comments on

code.

adjunct to the code it describes and provides a concrete ex-
ample or a graphical description, thereby visualizing a low
level schema in the code base. Analogously, we coined the
term code-follows-sketch to describe a sketch that provides a
higher level abstraction or explains a structure of the code
base. Such a sketch may be composed of multiple elements Code-follows-sketch

describes a sketch

that summarizes a

structure of the code

base.

referring to multiple code locations, e.g., a workflow of an
algorithm that spans multiple methods or files. Here, the
sketch brings together parts of a concept and puts them
into a big picture, abstracting from the individual code lo-
cations. We implemented these concepts in our CodeGraf-
fiti plug-in by providing two new views in the IDE for these
two concepts respectively: the mission control view for the
code-follows-sketch concept and the sketchbar view for the
sketch-follows-code concept. In both views, our design em-
bodies connections as color coded one-to-one relations be-
tween a position on the sketched canvas and a range of
code lines or a file in the codebase. Our design does not
constrain the semantics of the connections: positions in a
sketch are independent of drawing style, formalism, or the
IDE’s ability to parse the sketch file. Ranges in code can
indicate many levels: individual lines, methods, uses of a
variable, etc. This way, the user has more freedom to ex-
press meaning though connections.

The mission control view (cf. figure 4.16) is a semi- The mission control

view implements a

code-follows-sketch

view.

transparent, fullscreen zoomable user interface that the
user invokes and dismisses by a menu or a keyboard short-
cut (cf. 2.1.6 “Transparency”). The canvas provides an
overview of the whole project and contains sketches and
connections to the code base. These connections allow the
user to navigate to the source code instead o regular project
navigation (such as its folder structure). The user interface
elements of this view are integrated into the view itself,
since the mission control view overlaps all other areas of
the editor.

The connections between sketch elements and code lines
are implemented as connection dots (cf. figure 4.17), i.e.,

4.3 Our Approach 163

Our CodeGraffiti prototype is build as a plug-in for Adobe
Brackets [Adobe, 2013], an open-source and community-
driven project, and is built with web technologies such as
HTML, CSS and JavaScript. During the implementation CodeGraffiti

prototype is build as

a plug-in for Adobe

Brackets.

process, small feedback loops with participants helped us
to define and create a look and feel for the connections be-
tween sketches and source code and improve the user ex-
perience. Details of the implementation can be found in
Spychalski [2013]’s thesis .

In the current version the focus of the design is on explor-
ing navigation through sketches, the user experience of cre-
ating sketches remains underdeveloped. Great care in in-
teraction design is needed to make authoring of sketches as
hassle-free as sketching with physical pens. With our proto-
type we can integrate any image file, that is digital sketches,
digitalized physical sketches, or just any picture. The user The authoring

experience is crude

in our prototype.

can add image files to the canvas and more them around.
But we see this as a crude method to get our investigation
going that is good enough for now. We imagine the author-
ing much more as Calico [Mangano et al., 2010] outlines:
a digital capture of individual strokes and editing that al-
lows for quick iteration of ideas. Here, we are most inter-
ested in the canvas of the mission control view, and how
it helps users navigate and understand a code base. So we
did a study that excluded the sketchbar and all authoring
actions.

Navigation Study

To test how the design works for developers, we conducted
a between groups user study in which we examined one
navigation and understanding task across two conditions.
We provided a code base with pre-existing sketches for our We studied

understanding and

navigation with

CodeGraffiti.

testers: the source base used in the study is the source code
of the Brackets code editor itself (JavaScript). The sketches
were created without any knowledge of our tool or the task
of this study by an active Brackets developer who works
at Adobe. The connections were created afterwards by us.
The sketches did not indicate the task solution by presence
alone, because the sketches also referred to schema that

164 4 The Code Base on a Canvas

Figure 4.19: The sketch used in the study in the mission control view. [Lichtschlag
et al., 2014]

were not part of the solution.

We asked participants to locate and identify multiple lo-
cations in the code base, to point out the lines of code in
which a change should be made, and to verbally outline
these modifications. This task was divided into three sub-The tasks required

the participants to

build a mental model

of the relevant part of

the code base.

tasks T1–T3, which needed to be accomplished in order
(adding a menu item, adding the corresponding command,
linking both in the controller). These tasks needed the par-
ticipants to build a mental model of the relevant part of the
code base and bridge discontinuities because the solution
spanned multiple files. We counted the tasks as success-
fully completed if the spoken solution would result in a
working implementation, but we did not ask participants
to actually type the solution.

In the control condition (C1), users worked with a standard
installation of the Brackets IDE with the sketches of the or-
ganization of the source base presented on a DIN A3 piece

4.3 Our Approach 165

of paper (The sketch is shown in 4.19). In the connection
condition (C2), users worked with the Brackets IDE and the
mission control view, which showed the same sketch on the
canvas and linked with the code. Both relevant and irrel- We studied a

connection condition

with the prototype

and a control

condition with a

paper printout.

evant sketches were depicted in the mission control view
and the printed version to provide a certain level of realism
and also so that the presence of a sketch did not indicate the
solution. This way, both conditions used the same editor,
code base and sketches, only the sketches were presented
in different ways. We formed five hypotheses:
H1 More programmers solve the task correctly in C2.
H2 Programmers solve the task faster in C2.
H3 Programmers look at sketches more often in C2.
H4 Programmers look at sketches longer in C2.
H5 Programmers (subjectively) find that the connection be-
tween sketches and source code is an additional tool sup-
porting their software comprehension process by helping
them to understand the conceptual model behind the code.

We recruited a total of 32 participants, 5 female, aged 23
to 36 (average age 28). Twelve participants were gradu-
ate and twelve were undergraduate computer science stu-
dents. Another four graduate students were engineers or
physicists with a background in programming and soft-
ware development. The remaining four participants were 32 participants

tested our prototype.professional software developers. Four participants were
familiar with the source code of Adobe Brackets. All par-
ticipants were asked to fill a pre-session questionnaire in
order to assess their prior knowledge. We counterbalanced
the groups with regard to JavaScript proficiency and source
code knowledge. Each participant was given a short intro-
duction to the code editor and its user interface, we intro-
duced shortcuts for Find and Project Wide Search commands,
and we explained the CodeGraffiti plug-in and the shortcut
to toggle the mission control view.

We asked the testers to familiarize themselves with the
tools and condition by working on a pre-task before the ac-
tual evaluation. This pre-task was fixing a bug that was Participants

familiarized

themselves with a

pre-task beforehand.

issued within the Adobe Brackets community after the re-
lease of Sprint 19 and was fixed with Sprint 20. The Brack-
ets community identified this issue to be suitable for begin-
ners task and therefore we deemed it appropriate for get-

166 4 The Code Base on a Canvas

H2: task completion timeH1: successful participants

all
participants

successful
participants

T1 T3T2
connection group (C2) control group (C1)

H3: count of glances to sketches H4: time looking at sketches

Figure 4.20: Quantitative results of the user study for hypothesis H1 to H4.
[Lichtschlag et al., 2014]

ting used to the editor and the code base12. We allottedWe asked about the

application of the

CodeGraffiti plug-in

to participants’ actual

work projects.

20 minutes for this pre-task and 25 minutes for the main
task. Participants were asked to think-aloud during the
study and sessions were videotaped and annotated with re-
spect to H1 to H4. In order to gather qualitative data with
reference to H5, we conducted a semi-structured interview
about the potential application of the CodeGraffiti plug-in
in actual work projects that the participants are or were re-
cently involved in.

Quantitative Results

We reject H1, no subtask showed a significant difference
(Fisher’s, pT1 = 0.48; pT2 = 0.39; pT3 = 0.47). We reject
H2, users did not perform faster in C2 (Fisher’s, p = 0.32).
We accept H3, participants in C2 looked at sketches signif-
icantly more often (t-test, p = 0.003) than in C1. We ac-
cept H4, participants in C2 looked at sketches significantly
longer (t-test, p = 0.001) than in C1 (cf. figure 4.20).

Figure 4.21 shows the difference in behavior and interactionParticipants

interacted more with

the sketches when

integrated into the

IDE.

with the sketches with the task completion times normal-
ized for each of the 32 participants. Consistent with above
observations, the histogram graph depicts that the mission
control view sketches were consulted more frequently in C2

12https://github.com/adobe/brackets/issues/2930

168 4 The Code Base on a Canvas

IDE navigation operations (tabbed browsing, project tree,
scrolling, search, cf. [Ko et al., 2006, Starke et al., 2009]). If
participants reached an impasse, they would take another
look at the sketches to check for missed clues. At the end
of a task, some participants would take another look at the
sketch to check if they might have overseen something, e.g.,
participants pointed out the correct line in the code and de-
scribed the correct changes they would apply verbally and
took a quick look at the sketch to see if they might have for-
gotten something. Testers expressed statements like: “I will
take another look at the sketches, since they have been pro-
vided, ... there should be something on them.” and “Oh,
I completely forgot the sketches, maybe they will help me
now ... No, still not helpful.” All in all, the sketches were
used as a reference, but mainly as a last resort (cf. observa-
tions by LaToza et al. [2006]). Most participants looked at
the sketches since they were provided, not because they felt
the need to. They used standard navigation operations to
understand the code, build a mental model, and solve the
task.

Participants of the connection group (C2) read the task de-
scription and then opened the initially closed mission con-
trol view. Similarly to the control group, participants in the
connection group took the initial glance to get an overview
of all sketches. The behavior of this group then deviated
from C1: participants constantly switched between the mis-
sion control view and the source code in order to navi-
gate the code base. The navigation operations that were
used by the C1 members, however, were in part substituted
by the navigational facilities of the mission control canvas.
Elements of the mission control view turned out to be suit-Participants in the

connection group

used the sketches as

the primary

navigation method.

able even if the names of the elements did not coincide with
the filename or the method names they were connected to.
However, as soon as the participants felt that the sketches
and the connections provided by the mission control view
would not help them, they fell back into old habits for a
short amount of time and, e.g., started to search within files
as well as the whole project or navigated via the file tree,
only to come back to the mission control view and use its
functionality again to continue with the task. Opposite to
C1, testers ‘defaulted’ to sketch based navigation and used
other means as a last resort. A few participants stated that

4.3 Our Approach 169

they would not have created some of the connections pro-
vided, but rather connected different lines of code or files
with the sketches. Interestingly, some of those participants
withdrew their statement during the task by saying: “Now
that I understand the concept, I guess it makes sense to
connect these particular lines of code with that sketch. I’m
not sure if it is the best way to do it, but it’s OK”. A com-
mon observation was that when participants of C1 asked:
“What was I looking for again?”, they immediately opened
the mission control view to find the highlighted connec-
tion dot in order to see where they were with regard to the
sketches, whereas in the same situation most participants
of C1 turned to the task description and not to the sketches
provided on paper. It is particularly noteworthy that most
participants partially or entirely explained the way they un-
derstood the tasks and how they worked together by men-
tally walking through the steps in the sketch to themselves
during the session in order to recapitulate their progress
in some way. Before they gave their final answer in or- Participants in the

control group used

the sketches to build

a mental model.

der to successfully complete the task, they explained their
mental model by walking through their individual steps to
solve the task: “So I added the menu item here in line 128
and provided the Command-ID that I declared in the Com-
mand.js. Now I want to register that Command-ID with the
CommandManager and I obviously have to use the regis-
ter method for that. I have all parameters, but the function
that is executed when I click on the menu item and I don’t
know where this call of the register method has to go”. This
recapitulation of the progress was made with the opened
mission control view, pointing at the canvas and following
the sketched lines as well as clicking onto the connection
dots to get to the corresponding code segments to prove to
themselves, that they had considered every part of the task.
We did not observe reasoning about the mental model with
the sketch in the control group.

Interview

At the time of the interview, 17 participants were working
on a solo project, 17 were working on team projects. We
initiated the interview session by asking testers how they

170 4 The Code Base on a Canvas

would imagine to use the functionality of being able to con-
nect sketches with source code with regard to their projects:
Participants liked the idea of navigation support through
their own projects via the canvas in the mission control
view using the connection dots. Some instantly imagined
their project affiliated sketches and visualizations and were
excited to connect them to the source code. ParticipantsParticipants see

value in using

sketches on a canvas

to navigate, ...

of the control group imagined that the connection dots can
be helpful since most participants reported that the printed
version of the sketches was not very helpful in finding the
correct files or code lines and they had to use the search
function instead. Participants imagined the mission control
view to provide an adequate code base overview of the project
and the software architecture, e.g., to see which other team
members had to be involved in the task or which other
parts of the project had to be considered. Participants of theto get a big picture of

the code base, ... connection group reported that the mission control view,
was a way to not loose track of the task at hand by “zoom-
ing out into a kind of meta view”.

Some participants had the idea that the mission control
view could be used as a manager’s view meaning that a
project leader could capture the development progress of the
project, i.e., new elements that had been added to the view
or changes that had been made. The project leader couldfor team awareness,

... jump into the corresponding part of the code and have an
insight into the work that is already done. Two partici-
pants imagined adding ‘changed since last visit’-indicators
and an overview with a timeline, so that it is possible to
scroll through the progress of the project and see the de-
velopment of new elements and the change of existing el-
ements and their relationships amongst each other. Above
all, participants imagined this functionality to be very help-
ful for on-boarding new team members. They reported that
it is hard for a new team member to catch up with all the
knowledge about the project and the decisions that have
been made during the design process and the implementa-
tion phase. Sketches created during on-boarding meetings
could be an enormous support to get to know the project:
“The sketches were like a road map to me. I think using
such a map is easier than searching because you don’t need
to know exactly what you are looking for. The sketches can
complete the missing parts or even tell you what to look

4.3 Our Approach 171

for. I think I will start sketching more and archive those
sketches.” One professional software developer mentioned
that they had special projects made for new team mem-
bers, that are meant to help the new team members to fa-
miliarize themselves with the test project without being at
risk of generating any damage to the productive version of
the project: “Oh, I can see that implemented in our sam-
ple projects and be helpful to new coworkers. Since we
already spend time creating these sample projects, adding
the connections between sketches and the source code man-
ually wouldn’t be that tragic... as long as the cost-benefit
ratio is right, I guess.” One participant in particular had and for team

communication.recently joined a software development team and was cur-
rently in the on-boarding process. She told of interrupting
her mentor constantly and taking notes during these short
ad-hoc meetings: “The sketches were like a road map to
me. I think using such a map is easier than searching be-
cause you don’t need to know exactly what you are look-
ing for. The sketches can complete the missing parts or
even tell you what to look for. I think I will start sketching
more and archive those sketches. Maybe I can create such a
map for our project at work and it could make things easier
for the next new team member... Is there a way to connect
sketches to source code in the IDE we use at work?” In con-
clusion, we accept H5: there was a consensus among the
participants of C2 that the connections between sketches
and source code had helped them formulate a conceptual
model. In their statements we see that they want to use the
canvas to address problems we identified for code handling
(cf. 4.3 “Our Approach”): the missing overview, team com-
munication, reasoning about structures in the code base.

Participants also identified and confirmed challenges em-
ploying connected sketches within their projects: Despite
the fact that most participants created sketches or visual-
izations as a regular part of their work, they still mentioned
that this is time consuming. Sketches created during team Participants are

concerned about the

costs of integration,

the currentness, and

the fidelity of

sketches.

meetings were seen as valuable byproducts without this
drawback, but the creation of a sketch for the sketches sake
was recognized as an additional burden. It was compared
to documenting the source code by some participants: “I
guess creating sketches for a project is a nice and helpful
thing, but it’s like with documentation: You know you’re

172 4 The Code Base on a Canvas

supposed to do it, but you still don’t do it” (cf. [LaToza
et al., 2006]). Some participants considered the quality of
their own sketches and were concerned about the readability
of sketches. They imagined that every team member of their
project would contribute and provide sketches and they
saw potential problems in how helpful these sketches were
if they came below an acceptable level of quality (cf. [Bran-
ham et al., 2010]). Very few participants reported to re-
sketch their own sketches if out-to-date, the foremost men-
tioned problem was the currentness of sketches and con-
nections. Participants were torn between the fact that they
would like to have the connections as well as the sketches
created automatically and the fact that the informality of
hand-drawn sketches had a “certain charm” of their own
and were a “trove of mental work”, as one participant
phrased it. All testers agreed that maintaining sketches and
connections can be realistic for a rather small team of de-
velopers or a medium-sized project, but larger teams would
have problems to maintain the sketches and their quality.

We see that sketches are useful and become even more use-
ful and immediately useable when integrated into the IDE
with a canvas and connections to the source code. Users
use the canvas to understand and navigate the source code
and use it over the standard controls of the IDE. If connec-
tions are authored well, they provide allow code to be ab-
stracted to a sketch or to be referenced. Thereby a ‘big pic-
ture’ of the code base emerges and discontinuities in the
code base can be overcome. But these benefits are condi-
tional on the cost benefit of integrating the sketches and
connections, and maybe conditional on the currentness of
the sketch.

173

Chapter 5

Excursus: Writing on a
Canvas

“Being a writer is a very peculiar sort of a job:
it’s always you versus a blank sheet of paper (or a

blank screen) and quite often the blank piece of
paper wins”

—Neil Gaiman

In the last chapter we often compared coding practices to
writing of narrative texts. We drew comparisons to in-
stances of both writing and coding when we discussed dif-
ficulties according to the theoretical models. Last chapter
we identified that the authoring is a critical step again for
working with source code, but have little data yet, how
build sustainable solutions. As it so happens, our Brack- This thesis document

was written with our

coding sketching

prototype.

ets prototype presented in the previous chapter is perfectly
fine handling LaTeX texts. So, we decided to write this
thesis document with this authoring environment with the
canvas as a spatial model of the thesis in mind. The figure at
the end of the introduction, 1.1, is the result of this process
and as foreshadowed, we discuss details of its construction
below.

174 5 Excursus: Writing on a Canvas

Diagramming Tool Layers Exported as Image Files

Canvas
AppleScript

IDE connected to canvas

█████████
██████
█████████
████████████
█████████
█████████
██████
█████████

██

LaTeX

ReadsSynchronized

Mobile Client

Figure 5.1: Setup of the writing experiment: the canvas elements were edited in the
diagramming tool and then exported to image files and displayed in the Brackets
IDE.

5.1 Setup

Our toolchain has three components (cf. 5.1): The thesis is
written in LaTeX [Lamport, 1984], a document markup lan-
guage often used for publication of scientific documents.
The Brackets editor treats the LaTeX source files similar soWe authored text and

connections in the

Brackets editor with

the CodeGraffiti

plug-in.

source code, but compiles them to a printable document,
rather than an executable program. In the Brackets editor,
we run our CodeGraffiti plug-in, with the same capabilities
as described in chapter 4.3.3 “CodeGraffiti: Our Sketching
Based Design”.

Our second component is OmniGraffle [OmniGroup, 2015],
a diagramming tool with rich editing options for vector
graphics. We designed a single document for the canvasWe authored

sketches in

OmniGraffle for Mac

and iOS.

and performed all the edits of the objects in the canvas in
the OmniGraffle program. The elements on the canvas are
separated into five layers (one per chapter of this docu-
ment). The diagram was edited on both the iPad and the
Mac, the local documents were connected through a syn-
chronization mechanism.

The last component is a custom AppleScript [Apple, 2015b]
program. It takes the canvas file, iterates over all layers, dis-
plays only the current layer, and exports each into a JPEG
file. The new images overwrite the previous version andAn AppleScript

program exported

images from the

diagramming to to

the IDE.

thus the CodeGraffiti extension displays the new version in
the respective views. A typical workflow involves chang-
ing the canvas in the diagram editor, invoking the script,
reloading the brackets view, and defining connections be-

5.2 Observations 175

tween text elements and the new elements of the canvas.
By separating the image into multiple layers, the net effect
is that each chapter of this document has its own element
on the canvas. Each chapter can be moved by itself and
keeps the connections anchored to itself.

5.2 Observations

The thesis was written in this environment all the time over
a time span of 24 weeks in with the tool setup described
above. With the canvas always ready at hand, we build
all visual elements of this thesis in this place first. All fig- The canvas was a

staging ground for

the figures.

ures in this thesis were built in this program and at first on
the shared canvas. Most figures were kept in the document
because they build an abstraction or representative of the
written sections of the text. Other figures pull together dis-
tant parts of the text, e.g., the figure on the three user roles.
However, it should be noted that we trimmed down the
elements on the canvas a bit, very late in the production,
anticipating the use of the canvas as the figure in the first
chapter. Some figures were exported into image files and
then moved separate diagram document (In OmniGraffle,
it is easy to just export the current selected elements). There
are of course also elements on the canvas that connect to
text, but are not used as figures.

Editing all figures on a shared canvas allowed a couple of
key benefits to the author: First, figures were naturally vis- Editing on the canvas

has similar

considerations

compared to

presentation

authoring.

ible side by side, and thus it was easy develop a common
visual design language and color schemes by reusing ele-
ments or styles. Second, on a canvas the constraints of the
final placement in the text were deferred until export and
therefore kept out of the authors mind until needed. This
‘late refinement’ of the figures is analogue to the argument
against content cutting, cf. 3.2.4 “Content Cutting”. Third,
most of the time the canvas was in quite a ‘rough’ shape
with placeholder graphics that were ‘beautified’ late for the
final version. This workflow relates to another problem we
discussed for presentations, cf. 3.2.4 “Detail Trap”. The can-
vas also included a interactive element that on click directly
invoked the exporting AppleScript.

176 5 Excursus: Writing on a Canvas

Long LaTeX source files are hard to navigate because the
semantic structure is not represented in the editing view
and because the markup, especially in late stages of writ-
ing introduces syntactic artifacts to the text structure. On
longer documents search for known phrases and quick in-
vocations of the ‘mission control view’ of the canvas proved
valuable to navigate to known positions. We experimentedWe added temporary

connections as

bookmarks.

with adding temporary connection dots on the canvas to
‘bookmark’ a location in the document that were of im-
portance to the current task. Then the connections were
removed after that task was done. In some instances the
dot was not anchored to a meaningful location, because we
fully planned to remove it. A better editing environment
could support these ‘ephemeral bookmarks’ by a separate
mechanism.

We planned this as a single scale layout (cf. 2.2.5 “Multi-
Level Interaction”) anticipating its place in the thesis as a
figure. This placed a constraint to the editing that the ele-It is harder to edit a

single-level canvas. ments on a roughly similar visual level, leading to a more
‘flattened’ canvas. It follows that adding new content to the
canvas is harder, as one cannot simply zoom until there is
enough space between existing content. This would lead to
a multi-level layout, which we wanted to avoid. We solved
this by manually moving elements to create space (select-
ing all elements to the right of the anticipated placements
and moving them). A better editing environment could au-
tomatically push elements to the side or ‘reveal a fold the
canvas’ to make room.

In our setup, links mostly stayed in place when moving el-
ements on the canvas, since our export script segmented
the diagram into layers. But, changes to the elements of
a layer needed repositioning of the anchors because the
CodeGraffiti cannot anchor to the elements of the canvas
directly. This is a limitation of the prototype and under-
lines that the full syntactic model of the objects on the can-
vas should be exposed to a more advanced system. ThatThe syntactic model

of the objects on the

canvas should be

exposed to the IDE.

requires either using a more complex (and standardized)
file format and/or moving all editing controls of the can-
vas from the diagramming tool into the IDE. A standard-
ized file format would allow the author to use their digital
imaging tool of choice. The second option would addition-

5.2 Observations 177

ally reduce the need for any context switches between run-
ning applications and is clearly preferable from a usability
standpoint.

Often, a change in the image happens soon after or before a
change in text markup. E.g., the author transcribed some-
thing from a physical notebook to the canvas, and then im-
mediately outlined the text that describes that part. Or,
a new section is added to the text and then a visual el-
ement is introduced to the canvas to represent the argu-
ment. A better editing environment can identify these pairs The IDE can

anticipate

connections.

of editing operations and anticipate that the user plans a
connection between them. This in turn would allow the
program to simplify the definition of connections in two
ways. On invoking the connection operation it could sug-
gest endpoints that are considered likely because they were
recently edited. Or it could suggest tentative connections
on its own, which the author than affirms or rejects.

This examination of the author’s workflows and needs is
hardly a proper evaluation because of the limited sample
size of only one author and one project. Also, the author is
well experienced with ZUIs and canvas layouts and enthu-
siastic about them. Yet, the we have identified a couple of The study has many

limitations.points that give design directions to the next prototyping it-
eration. The prototypical nature of the toolchain is less than
ideal because it introduced friction in the form of context
switches and more user actions needed to move a change
from diagramming tool to canvas. We gained no informa-
tion on the understanding part of our user role model, only
a first time reader of this document will be able to provide
feedback on this. One could imagine to use the canvas fig-
ure with hyperlinks in the beginning of the thesis instead
or adjunct to the table of contents if this thesis document
were to be shipped digitally. It will also be interesting to
see how we might be able to the appropriate the canvas to
the upcoming thesis defense talk.

179

Chapter 6

Discussion

Beware of the man who works hard to learn
something, learns it, and finds himself no wiser

than before. [...] He is full of murderous resentment
of people who are ignorant without having come by

their ignorance the hard way.

—Kurt Vonnegut, “Cat’s Cradle”, 1963

This thesis started with the aim to explore zoomable user
interfaces in practical domains. We presented a model of
author, navigator, learner with which we investigated ZUIs
in these domains. For presentations, we investigated the
drawbacks of overview + detail designs and studied all
three user roles. We then analyzed how traditional in-
tegrated development environments (IDEs) lack support
for communication about code, and designed three can-
vas approaches to remedy that. Our three approaches ex- In this chapter we

summarize our

findings.

plored options to project text to spatial information land-
scapes: vocabulary based, pattern language based, and
hand-drawn sketching based designs. In total, we pre-
sented results from multiple studies and one longterm ex-
ploration of authoring. So let us integrate the results in
our body of knowledge and draw conclusions before we
present an outlook on future work.

180 6 Discussion

6.1 What We Learned for Presentations

So far we see in the domain of presentations that author-Authoring

presentations is

impacted strongly by

canvas affordances.

ing has changed drastically. Users adopt to the possibilities
of the canvas and make use of it. We see that they create
more diverse designs and that they employ the two dimen-
sions to express complexities in the talks. Both in the lab
studies and in the field study, the landscapes are not linear
as in the slideware condition but used expressive layout
facilitating overviews. We also find that the presentation
documents are not simply different but have more qualities
argued for by presentation advice: richer and more memo-
rable presentations with overviews to support understand-
ing. For the authoring role, our canvas design achieved
our design goals and we are able to substantiate the claims
about authoring by Good and Bederson [2001] (cf. chapter
2.5 “Promise of Zoomable User Interfaces”).

We have a good insight into how users actually build with
the tools with our audience field study. The frequent use
of hierarchies indicates that a single-level layout (as with
Fly) leaves users wanting, and instead a multi-level de-
sign (as in Prezi) should be preferred. The explicit content
and topic layer in Fly allowed to build semantic zooming
with images on the topic layer, but that was seldomly used.
The presentations with geometric zooming in Prezi pro-
duce meaningful overviews with less formalism. We canPresentations should

allow a ‘shallow’

multi-level layout,

support grouping,

and decorative layout

strategies.

recommend that a tool should support ∼5 levels of hier-
archy in a multi-scale environment to capture 96% of the
practice by presenters. This value might change for other
domains than presenting, but most of the presentations re-
main at 1–3 levels. With regards to layouts, authors pre-
fer to build groups and decorative layouts, both of them
should be supported by the canvas tool. Prezi already sup-
ports authoring groups and Fly’s third iteration allows the
user to group canvas elements to topics, which automati-
cally creates a label and a visual enclosure. With decora-
tive layouts, the author runs the risk to artificially limit the
space available for content because it has to fit the back-
ground image. It would be interesting to see if content-
aware scaling techniques [Wikipedia, 2015b] can be inte-
grated to an authoring environment so that the image can

6.1 What We Learned for Presentations 181

be retargeted to the presentations needs. In case the author
aims for a single-scale layout and pursues a breath-first lay-
out of content, we observed that tools should be able to re-
veal a free space in between existing content (cf. chapter 5
“Excursus: Writing on a Canvas”).

Then, we investigated the presenter experience with a con-
trolled lab study and find that presenters experience canvas
and slide tools differently. More specifically, participants of
our study that scored high on spatial ability or were less
experienced preferred the canvas condition, while experi-
enced or lower spatial ability presenters preferred classic
slideware. Due to the strong overlap in our tester pop- Presenters

experience canvas

and slide tools

differently.

ulation between experience and lower spatial ability, we
cannot attribute this effect to a single or a combination of
these factors. We expected lower spatial ability to inter-
act with the canvas condition due to its ZUI nature, but
we could also explain that more experienced presenters are
well versed in slideware and hence feel right at home. A re-
peat of the study with a clear distinction between these two
explanatory variables is needed to shed light on this issue.
Interestingly, this difference is lessened in the search for a
loosely defined position, which is a task that benefits par-
ticularly from the canvas format, because the presenter can
quickly zoom out to get an overview and pinpoint her tar-
get. We conclude that the increased degrees of freedom on a Canvas presentation

tools must keep the

degrees of freedom

under control during

presentation delivery.

canvas come with a drawback: a simpler linear format can
be easier to handle for some presenters. One could follow
from that to always limit the format during presentation
delivery, but we have also shown that for some presenters
this would be unfavorable. We suggest that during deliv-
ery, canvas tools should allow the user to limit the naviga-
tion to the linear format until they needs the free format.
Additionally, they should offer an easy way to get back to
the last position on the presentation path.

Finally, we investigated the audience experience with a con-
trolled lab study. We found that learning performance was Audience recall was

not improved through

canvas

presentations.

largely the same in both canvas and slideware conditions,
both in short term and long term recall, and also both for
content and structure recall. On the other hand, students
clearly preferred the canvas-based presentation and felt
that they were more oriented and aware of the structure. In

182 6 Discussion

this, our results closely mirror the results by Good [2003]’s
audience study, even though the layout of content in Fly is
very different from the slide-based canvas of CounterPoint.
And, of course, this result is very much inline with the ex-Audiences preferred

canvas

presentations.

isting evaluations surrounding the ‘media learning debate’
(cf. chapter 3.2.3 “No Significant Difference”). If there is
an effect of canvas presentations on recall by passive au-
diences, it is probably very small. Considering active in-
teractions with canvas documents by the learner, we can
hypothesize a different outcome. We discuss this below in
6.5 “Our Three User Roles Model”.

6.2 Next Directions for Presentations

Canvas presentations are in a good place: they are adopted
in a niche of the market place, and presenters are enthu-
siastic about them. If they were to be integrated into a
mainstream office package, we believe they would be used
much more widely. Based on our experiences and other ap-
proaches in the related work of presentation systems, we
can outline the next challenges and developments.

A particular point of contention among presenters is the
question on whether to hide or show upcoming content in
the presentation path. Some do not mind, some go lengths
to avoid content in the view of the camera before it is men-
tioned in the talk. A common desire is to build up content
into the view, incrementally revealing elements on the can-
vas without moving the camera.1 This could be hypothe-
sized be helpful for learners to not be hit with too much
content a same time. Prezi has a capability for incremen-Some presenters

desire abilities to

animate and

incrementally reveal

content on a canvas.

tal revealing in their software, this introduces ‘mini stops’
to the presentation path that do not move the camera. An-
other desire is to animate elements on the canvas, similar to
animated builds in Apple Keynote. This is a fundamental
challenge to the canvas metaphor, as it breaks with the rule
that a canvas element will be at a defined place all the time.
Both these desires introduce a temporal dependency to the
elements of the canvas. We will discuss the implications

1Similar to bullet points fading in on a click.

6.3 Critique of Our Coding Designs 183

below in 6.7 “ZUIs and the Canvas”.

There are hybrid approaches to presentation tools that com-
bine elements of writing with markup languages and out-
lining of the structure of the talk with canvas layouts for
the presentation [Edge et al., 2013, to appear]. This very in- Hybrid approaches

to presentation tools

combine linear

definition of the

storyline, but present

on a canvas.

teresting approach forgoes the visual layout up to the last
minute. This is motivated by similar concerns that we out-
lined as detail trap and content cutting. The design is very
different and challenging to our interpretation of the bene-
fits of the canvas and we are excited to see how further ex-
perimentation and evaluation can expand the design space.

Apart from the studies that should accompany designs for
incremental reveal or hybrid approaches, we can also ex-
pand on studies to further investigate our existing research
questions. More field studies can affirm our lab results Future studies

should expand on

the field studies.

with presenters and audiences, but since real world pre-
sentations will hardly be comparable, these studies would
most likely be designed as qualitative studies. The next
study could be an interview with experienced presenters
that have held many Prezi presentations about their expe-
rience. Furthermore, we have not investigated how presen-
ters select or switch between paths in a presentation during
delivery, this is an interesting field to study and iterate on
interaction design.

6.3 Critique of Our Coding Designs

‘Code’ is a revealing word, because its linguistic roots hint
at the problem associated with software engineering: it is
an hidden knowledge, hard to decipher, and not a natural
language. This is obviously not what one wants to have a Code is hard to

understand.the basis of one of the most important industries. And, of
course, we want to allow more people to begin program-
ming and to be able to build software. In democratizing
the skills to design software, code is a problem.

Code is free of a gestalt, it is hard to recognize its struc-
ture, and it is hard to identify and bring together the parts
in a code base that are part of a single multiplexed struc-

184 6 Discussion

ture. As with the presentation domain, a linear format of
text is too restricting to foster communication between col-
leagues. This is why software engineers document their
mental models outside of the IDE (in unfortunately volatile
form). We suggest that one needs to make code a communi-
cable artifact by abstracting from the textual structure to a
graphical structure. Our approach closely mirrors how de-
velopers work in practice when they sketch on whiteboard
or paper while they design or investigate code. The can-Introducing a high

level canvas view

promises to make it

easier.

vas also promises to bring a sense of place in the code base
to navigation, placing code in relation to how developers
communicate about it and to related but distant code frag-
ments. We show that variable naming, formalized patterns,
and hand drawn sketches are ways to build a canvas repre-
sentation of code. Thus, we both investigate ZUIs in a new
domain and also experiment with ways to abstract code to
graphical artifacts.

We developed CodeGestalt, a vocabulary based prototype,
and introduced the tag overlay and thematic relations for soft-
ware visualizations. With them, developers can find re-
lated code artifacts and take advantage of the work that
went into the naming of identifiers. But the thematic re-Our vocabulary

approach saw little

user adoption.

lations saw little use by participants in our study, the call
and heritage relations were sufficient in most cases. This
indicates that our vocabulary elements offer little oppor-
tunity to reveal structures that are not already present in
the call relations. The vocabulary elements on the canvas
did abstract from the code, but we saw only few cases of
users reasoning with them to understand the structure of
the code base. A major drawback of this approach is that
the visualization can only be built when there are already
code fragments to parse for vocabulary, thus the canvas
cannot be designed before code exists. Future iterations on
the design should examine different tag cloud metrics and
filters to reduce clutter. The mathematical model behind
tag weights offers room for improvement. Currently it putsOur vocabulary

approach included a

lot of cluttered tags.

too much emphasis on trivial terms such as ‘get’. To avoid
this, weights could be normalized based on frequencies in
the whole code base and considering word stems. Testers
asked for the selection of multiple elements in the tag over-
lay, using the cross-product of the respective weights for
highlighting. This indicates that users expect a combina-

6.3 Critique of Our Coding Designs 185

tion of multiple terms may be better able capture a given
concept better than one. Our users also asked to get rela-
tion previews for elements not yet included in the diagram,
to make the tool a substitute for Eclipse’s call and type hi-
erarchy views, and more useful for exploratory tasks.

Design patterns work well as a conversation piece between
developers, even when they are authored with little for-
malism and have only a graph of code snippets as the
only required feature. They do however have a drawback
that limits their usefulness: since design patterns describe
reusable solutions they require expert knowledge of the
code base to be recorded [Détienne, 2002]. They already
need the author to possess the strategic knowledge of the
structures int he code base, and thus, are not so suited to
capture design that is still being worked on. We also pre-
sented them to be authored by dragging code fragments
into the canvas, but that requires the code to already ex-
ist, much like the drawback we noted for the vocabulary
based approach. We are unhappy with the graphical fi-
delity of the graphs and cannot recommend them as a way
to project text into the canvas. If one desires a more pol-
ished look that hand-drawn sketches, e.g., for a canvas such
as figure 1.1 or for the example described in chapter 4.3.2
“CodeMixer: Our Design Patterns Based Design”, then we
recommend using a graphical sketching tool, with empha-
sis on graphical fidelity and expressiveness, the graph ap-
proach of CodeMixer.

In our third design we presented a way to connect source
code to sketches that depict anything from the low-level de-
tails of the source code to the high-level concepts about the
source code. We presented two designs to integrate the can-
vas into the IDE: a global map (mission control view) and
an assistive view on the side of the code (the sketchbar).
We reasoned how a code base can be navigated through We presented a

sketching prototype

and evaluated it with

a navigation task.

connected visual sketches and how it helps developers to
comprehend the context of source code, to orient within
the context, and to support mental walkthroughs. In a be-
tween groups user study with the mission control view,
participants predominantly used the mission control view
for navigation instead of traditional file and search navi-
gation. They quickly invoked it, selected the target navi-

186 6 Discussion

gation, and dismissed it again. Furthermore, testers made
more use of the sketches and we could observe that they
used the sketches to formulate a conceptual model and fi-
nally solve their task. The results of the evaluation showedTesters adopted the

mission control view

over traditional

navigation.

no significant difference in the task success rates or the task
completion times. Even though participants who used our
prototype were faster on average, this indicates that the ef-
fect size of time savings (if any) is small. Which is a bit
disappointing compared to the clear time savings that the
canvas design of CodeBubbles achieved [Bragdon et al.,
2010]. Testers looked significantly longer and significantly
more frequent at sketches on average, with no adverse ef-
fects on total time needed and success on the task. We can
deduct that the embedding of a sketch in the IDE promotes
it to an immediately available source of documentation,
whereas the printed version remains an additional, but not
directly usable source of information. Hence, this designOur design promotes

retention of

previously discarded

documents.

offers a way to promote sketch use and sketch retention.
Which is quite interesting given that we have a clear find-
ing that presently design documents are often out of date
or discarded. Given that many developers already create
sketches (on paper, whiteboard, or tablets), we can hypoth-
esize that our design can promote not throwing them away
and connecting them to the code base. To achieve this, the
authoring experience needs to be excellent so that design-
ers do not see it as a burden to integrate sketches.

The vocabulary design comes with the drawback that it can
only suggest canvas elements that are already present in the
current state of the code base and that the compiler can an-
alyze. It does not lend itself to designing software before it
is implemented. The design pattern approach also comesThere are trade-offs

between our

approaches with

regard to flexibility of

use and integration

into the code base.

with a problem, namely that developers need to know the
pattern ‘language’ and that they need to be able to iden-
tify them to use them. Since Détienne [2002] reports that
this is far from given, we judge our software pattern design
to be an interface for experts. Comparing the approaches,
sketching proved most flexible. It allows the design of the
canvas independent of prior knowledge of schemas and in-
dependent of the current state of the code base. But sketch-
ing is also hardest of the approaches to integrate into the
code base. All connections are defined ‘by hand’, increas-
ing the work load of an author and discouraging changes

6.4 Next Directions for Sketching 187

to the canvas. In the study, participants were concerned
about the costs of integrating the sketches and concerned
about keeping the sketches up to date. The vocabulary al-
lows the tool to make the connections itself and a pattern
comes with source fragments also brings its own connec-
tions to the table.

We think it is most promising to stay focussed on the flex-
ibility and try to integrate second. After all, compliance
with the rigidity of unnatural language was identified as
a major problem for communication. Picking up develop- We suggest

sketching as the best

design to develop

further.

ers at their current practices of externalizing mental mod-
els, which is sketching, seems like the most promising route
to us. Also our testers expressed more enthusiasm for the
sketching prototype, although we did not perform a formal
comparison between our designs. To overcome the bur-
den of integrating sketching there are some things that one
could try to combine the approaches with a focus on quick
and lightweight creation (see below).

In chapter 2.1.8 “Review of the Canvas Design Space” we
motivated this investigation with the search for a proper
abstraction to text that is scalable. We presented three novel
approaches that produce scalable representations and stud-
ied the navigation with our CodeGraffiti prototype, finding
that hand-drawn sketches can serve as such an abstraction.
Furthermore, we find that users quickly adopted to using
these sketches on a canvas instead of the traditional naviga-
tion methods. They used them to reason about their mental
models when zooming in and out of the text.

6.4 Next Directions for Sketching

We need the experience in all user tasks—authoring, navi-
gating, understanding—to be working well. Our study in-
dicates that navigators and learners are already well sup-
ported, but that we have to improve on the authoring ex-
perience. In the previous chapter we took our CodeGraffiti
plug-in and the Brackets IDE to a test and found a lot of fric-
tion in the authoring experience. This is understandable, We need a better

authoring workflow.since the prototype is a first iteration and was build with a

188 6 Discussion

focus on navigation. Before we can perform a study with
authoring a canvas through sketching, we have to improve
the experience in two critical ways: first, we need a better
capture of sketches, second, we need a more lightweight
way to create the connections. Related work has investi-
gated support for authoring of sketches for software design
[Mangano et al., 2010] and Parnin et al. [2010] presents a
workflow for sketch capture with touch interfaces.

A better capture of sketches is in large parts a hardware prob-
lem, because digital sketching hardware is disappointing.
We tried the design of sketches on an iPad in the previ-The capture of

sketches needs to be

improved.

ous chapter, but it still feels incredibly clumsy2 when com-
pared to a proper pen on a proper surface. Tablet inter-
action promises to get much better once more vendors in-
tegrate pen as a first class interactive device and do not
send events though the touch controls. There is wonderful
work by Hinckley et al. [2010] outlining how touch and pen
interaction together promise a great authoring experience.
Digitalization of non-interactive surfaces (paper sketches,
whiteboards) is possible, but we are not aware of a low
friction solution. Any capture of sketches should record
on the level of the individual stroke, so that the canvas
can identify atomic elements on the canvas (as opposed to
an image with many strokes). With this information one
can automatically detect groups of strokes that are spatially
and temporally close and group them as a semantic unit
(cf. Karrer et al. [2010] for an implementation of this for
written exams). This then allows the IDE to make connec-
tions to these semantic units, improving the resilience of
connections upon modification (cf. chapter 5.2 “Observa-
tions”).

To improve the experience of creating connections, we al-
ready observed that the IDE could predict connections
(cf. previous chapter). This would allow two lightweightThe definition of

connections to the

code should be

lightweight.

ways to create the connections: First, the user simply con-
firms a suggested connection or rejects it. Second, on in-
voking the connection from the current selection the IDE
already could suggest endpoints that are considered likely
and the user does not have to navigate to the endpoint. We
could also try to leverage the benefits of the other two de-

2It feels like finger painting.

6.4 Next Directions for Sketching 189

signs: when designing a label, the IDE could suggest terms
from the linked vocabulary. We can imagine a vision where
patterns could be integrated with hand drawn sketches to
take care of the formal parts that are recognizable building
blocks by the API vendor. Then, when integrating a pattern
with code examples the links are already present.

If authoring the mental models on the canvas is as straight-
forward as drawing on paper and whiteboards, we can
hope to convince engineers to record they documentation
connected to the IDE. We already know that a linked can- Studies could

investigate the claim

of better

documentation.

vas promotes it to be used and brings it into the developers
context. We could hypothesize that a linked documenta-
tion is better maintained than a documentation that is un-
linked and thus easily overlooked. Studies should inves-
tigate if our canvas design actually promotes better docu-
mentation maintenance. Since the currentness of the doc-
umentation was a concern (4.3.3 “Interview”), one could
hope that sketched documentation still provides value un-
less the code has been fundamentally refactored. See [Wit-
tenhagen, 2015] for an exploration of designs to browse the
history of a code base and [Schulz, 2014] for designs to
browse the history of sketches in particular with these con-
cerns in mind. Prause [2013] investigates the use of gami-
fication to promote documentation practices, maybe this is
something that can be playfully combined with sketching.

Since the canvas gives the developer a sense of place in The canvas can

‘visualize’ the

location of a

programmer in the

code base.

the code base, one could investigate designs that trace the
navigation of the developer, e.g., to help them resume their
work after an interruption (cf. [Fouse et al., 2013]) or to in-
crease group awareness by showing the location of collab-
orators on the canvas (cf. [Laufer et al., 2011] and 4.3.3 “In-
terview”). Also, we can imagine other media to be linked
to the canvas such as videos. Videos related to code bases
include tutorials, API developer talks, and recordings pro-
duced for documentation. All these are ways for develop- The canvas can be

used to navigate

adjunct videos, or

vice versa.

ers to communicate and when the video shows or refers to
source code, one can design with this in mind in two ways:
First, the canvas could be used to navigate to positions in
the video that talk about the parts of the canvas (cf. [Karrer,
2013]). Second, the canvas could be presented as adjunct
material to a video an follow the discussion (cf. [Corsten,

190 6 Discussion

2009]) In the latter case, again a case could be made for in-
cremental revealing.

6.5 Our Three User Roles Model

In trying to understand the ways zoomable user interfaces
are interacted with, we formed a simple lens to order our
knowledge: we proposed to study three prototypical user
roles: the author, the navigator, the learner. With this model
we could order our knowledge of the previous studies on
ZUIs and identify that we have little information on how
ZUIs are authored (cf. 2.6.2 “Authoring”). Even though itThe au-

thor/navigator/learner

model guided our

research.

had previously been claimed that this would be an area that
ZUIs would bestow benefits. We applied this model to our
investigation of presentation support systems and it proved
valuable to form three different kinds of studies. The stud-
ies led to results that underlined our claim that ZUIs do ac-
tually influence them differently: e.g., we see that authors
create more diverse layouts, but we cannot show improved
learning for learners. Each prototypical user has different
objective and needs. Following that we can recommend to
other researchers to clearly differentiate between the roles
of users to conduct their studies. In that sense the model is
a success because it guided our studies the right path and
it helped us build an understanding for our observations.

But, by using this model we also detached the users from
another and walled off possible interactions between the
user groups. E.g., in our audience study, we took the au-
thor and the presenter out of the equation in the interest
of comparable conditions. But one can also make the ar-
gument, that proper presentations need the interactions to
truly develop benefits. A very similar argument is made by
Brown [1992] for teaching. If we assume for a moment thatOne could

hypothesize that an

interaction effect

would allow some of

the benefits for

authors translate to

better understanding.

such an interaction exists, which direction would the effect
take? Since we already how authors create different presen-
tations that are closer to what guidelines on good presenta-
tion visualizations suggest, we can make an argument, that
this interaction (should it exist) can only benefit audiences
in the end. We would need a multi stage study to show
such an effect, e.g., starting with a task for presentation au-

6.5 Our Three User Roles Model 191

thors, and then use these potentially biased documents in a
learning study. This would be quite an endeavor.

When looking at the interplay of presentations and video
navigation (cf. chapter 3.3.4 “DragonFly”), we noticed that
we cannot simply treat active learners that navigate a video
on a canvas in the same way that we treat a passive audi-
ence in a talk. The active learner interacts with the medium,
navigates, rewinds, and can build a model through their
own actions. Opposed to that that, the passive learner con-
sumes the medium no different than a movie with a partic-
ular kind of visuals, but has a direct conversation with the
presenter. In our model of presentation users we therefore An active learner

plays by different

rules.

amended the model with an reviewer (cf. chapter 3.1.5 “The
Reviewer”) modeling active learners, but we did not get to
study their interaction with the ZUIs on their own. Also,
when we consider an active learner, we are investigating a
learner that learns with different methods, and that makes
[Clark, 1994]’s claim that media will not influence learn-
ing not applicable in this case. Considering that more and
more students are learning in non-traditional learning en-
vironments, e.g., massive open online courses (MOOCS), this
role should be studied closely.

Then, when studying the roles of software developer, we
saw that the activities surrounding an IDE cannot be cast
into one role at a time. Where we could claim that au-
thors are familiar with the material and reify their model
of the talk, we cannot claim the same software develop-
ment. A programmer is very unlikely to already have a The simple model is

not able to accurately

describe all user

tasks.

formed model of the finished code base, he mixes roles of
authoring, navigation, and learning as he builds a solution.
Similarly, a bug-fix task will involve first an understanding
of the code base, then an authoring task (cf. figure 4.5 and
[Ko et al., 2006]). We need to understand our model roles
as different activities that a user takes on while working on
their task (cf. LaToza et al. [2006]). It is also interesting that
Cherubini et al. [2007] used a three part classification when
organizing the reasons to sketch in IDEs.

192 6 Discussion

6.6 Outlook

We have previously often referenced writing and literature.
In the previous chapter, we detailed how we used our can-
vas tool as authors to write this thesis, so for a moment let
us consider how one could expand on the interplay of liter-
ature and canvas designs.

Often readers desire a high-level overview of the narrative,
not only for non-fictional texts where a good index and ta-
ble of contents are obligatory, but also for fictional stories.
Many stories have strong spatial component to them, e.g.,
because the protagonists travel a lot (e.g., “The Lord of the
Rings” [Tolkien, 1954]). It is not uncommon for those sto-One can imagine the

canvas to function as

an index to a

narrative.

ries to feature a map in the beginning or end of the book to
trace the characters’ travels. Or fan publications build vi-
sualizations of the character interactions on a canvas (e.g.,
[Munroe, 2009]). With digital publications of novels we can
conceive ways for authors to bring these maps to the audi-
ence in an interactive fashion.

A benefit for the reader could be that they has an easier
time resuming reading after a long interruption, e.g., af-
ter waiting for a new installment in the series. (We had a
similar argument before for interrupted work for software
engineers). We can also think about canvases that do not
directly display a geographic map, but rather an network
of complex character interactions (e.g., “Game of Thrones”
[Martin, 1996]). Interacting with the canvas could allow the
reader refresh their memory or reread a particular adven-
ture. But, once again we have to be careful not to revealAgain one has to be

careful not to reveal

to much.

to much about the unexperienced narrative. E.g., consider-
ing “Around the World in Eighty Days” [Verne, 1999], the
reader should not know what path the story takes and how
it concludes. We (again) see that incremental revealing be-
comes a recurring problem in storytelling on a canvas.

Formal investigations of literature are very happy to in-
vestigate [Plachta, 1997, Fetz and Kastberger, 1998] the au-
thor’s adjunct material to texts in order to understand their
mental models and intentions. Just as software engineers,
many authors externalize their mental models. For the au-

6.7 ZUIs and the Canvas 193

thor it is a way to untangle his thoughts and bring structure
to a narrative (Cf. Kurt Vonnegut’s Shapes of Stories [Post,
2015]). Previous or concurrent versions and notebooks are Literature scientists

are very interested in

canvas artifacts by

the author.

of prime interest to the literature scientist. For them, these
artifacts are view onto the work processes and context of
the author at the time of writing (cf. 4.4). So, just as we can
use the canvas to understand the software engineer’s men-
tal model, in narrative texts, we could also use it to shed
light on the question “What was the author’s intention?”.

6.7 ZUIs and the Canvas

We have successfully investigated canvas presentations in
more depth and from more angles than before, we have
gained insight into who benefits from the format. We have The canvas is very

very valuable when

applied to

presentations and

software.

found that the canvas enables authors to be creative, espe-
cially when compared to linear slideware. In coding we
found again that the linearity of the text cannot represent
the multiplexed structure of source code and mental mod-
els. With sketches on the canvas, we can support the de-
veloper to overcome this limitation. Overall, we are quite
positive on the results we achieved with the application of
the canvas metaphor.

When we built these aforementioned prototypes, we first
thought of them as zoomable user interfaces. As we pre-
viously noted, zoomable user interfaces are about much
more than zooming (cf. 2.1.4 “Zoomable User Interfaces”).
In building the prototypes and in proposing the benefits of
ZUIs versus slideware, we noticed that it zooming aspect is
not really the explanatory variable. Instead, what enabled
us to escape the detail trap, railed against content cutting,
we were really making an argument against fragmentation.
And yes, it is nice to zoom on it, but the unbroken continu-
ousness of the information landscape is what gives power
to our designs. Hence, we introduced the term ‘canvas’ Canvas and ZUIs

describe slightly

different concepts.

when we are really talking about this and not a specific
implementation to navigating such a space (even though
it is zooming most of the time). Revisiting the design space
(cf. 2.1.8 “Review of the Canvas Design Space”) allows to
differentiate the two terms and to pivot the canvas against

194 6 Discussion

fragmented designs.

Leung and Apperley [1994] proposed to add a graphical
abstraction to inherently un-graphical data and we did so
in our investigation of canvas prototypes for IDE visualiza-
tions. But we also got to see the effects of the reverse, when
information gets broken up and fragmented onto slides and
the communication gets distorted (cf. 2.1.7 “Fragmentation
and Continuity of the Information Landscape”). Our stud-
ies underline that the author is benefitting from the can-
vas, just as related work claimed, but we have to refute the
claims about improved learning. For us, non-fragmented au-
thoring is the promise of zoomable user interfaces.

We also got to see the limits of canvas metaphors: our
participants ask for incremental revealing and animated
builds. Again, when considering future directions for writ-
ing (code) we see this problem again. Incremental reveal-
ing is potentially a concern that is tied to storytelling on
a canvas and thus something that needs further investiga-
tion to understand the canvas (and by extension zoomable
user interfaces). Implementing a dependency on the ele-
ments of the canvas where they are toggled visible, moved,
or rotated depending on the progression of the narration
extends the two-dimensional quality of the canvas by a
timed component. The spatial memory would be in part
violated, if elements are only sometimes visible or move
around. From a design user experience perspective a pre-
senter would introduce a mode to the presentation docu-
ment depending on whether it was already visited or not.
These modes can easily lead to errors (as they do with in-Incremental

revealing challenges

the spatial layout of

canvas metaphor.

cremental revealing of bullet points). Contrasting this opin-
ion, we have to remember how metaphors can be resistant
to changes that break with the metaphor and this issue is
clearly a point where the metaphor of the canvas is chal-
lenged (cf. section 2.2.4 “Pad++: Metaphor-free Naviga-
tion”). This is an interesting next design direction for can-
vas design tools, and studies should investigate its useful-
ness and a potential impact on user orientation, especially
audiences.

6.8 Limitations 195

6.8 Limitations

Our studies are limited to the framework under which we
present and develop software today. Both domains have
already seen large changes in how users work (e.g., digital
presentation support, object-oriented languages) and will
continue to do so. Many presentations and lectures are
now targeted at later consumption through video record-
ings, online distribution, and online education. This could
lead to different user tasks to which our studies are not ap-
plicable. E.g., Détienne [2002] describes how the reuse of
software changed with the introduction of object oriented
languages.

Canvas presentations are currently often perceived as novel
and this clearly leads to more interest and excitement by
users. We have received very positive feedback on our pre-
sentation and sketching designs and are very happy that
‘users like it’, but we have to keep in mind that qualitative
feedback on novel user interfaces is often swayed towards
the new. And when is comes to engagement with the prod-
uct, Norman [2004] writes that good emotional feedback is
a wonderful thing.

197

Bibliography

Adobe. Adobe Brackets, 2013. URL http://brackets.io/. Last checked: April,
2015.

Christopher Alexander, Sara Ishikawa, and Murray Silverstein. Pattern Languages.
Center for Environmental Structure, 1977.

Richard Anderson, Crystal Hoyer, Craig Prince, Jonathan Su, Fred Videon, and
Steve Wolfman. Speech, Ink, and Slides: The Interaction of Content Channels. In
MULTIMEDIA ’04: Proceedings of the ACM international conference on Multimedia,
pages 796–803, New York, NY, USA, 2004a. ACM.

Richard J. Anderson, Ruth Anderson, Tammy VanDeGrift, Steven Wolfman, and
Ken Yasuhara. Promoting Interaction in Large Classes With a Computer-
Mediated Feedback System. In CSCL 03: Proceedings of the International Conference
on Computer Supported Collaborative Learning, pages 119–123, 2003.

Richard J. Anderson, Ruth Anderson, Beth Simon, Steven A. Wolfman, Tammy
VanDeGrift, and Ken Yasuhara. Experiences With a Tablet PC Based Lecture
Presentation System in Computer Science Courses. ACM SIGCSE Bulletin, 36(1):
56–60, 2004b.

Apple. Apple Keynote for Mac, 2003. URL https://www.apple.com/mac/

keynote/. Last checked: April, 2015.

Apple. iOS Operating System, 2007. URL https://www.apple.com/ios/. Last
checked: April, 2015.

Apple. Keynote for iCloud, 2015a. URL https://www.apple.com/

iwork-for-icloud/. Last checked: April, 2015.

Apple. AppleScript, 2015b. URL https://developer.apple.com/library/

mac/documentation/AppleScript/Conceptual/AppleScriptX/

AppleScriptX.html. Last checked: April, 2015.

198 Bibliography

Apple. Xcode Storyboards, 2015c. URL https://developer.apple.com/

library/ios/referencelibrary/GettingStarted/RoadMapiOS/

SecondTutorial.html. Last checked: April, 2015.

Apple. Apple Watch, 2015d. URL https://www.apple.com/watch/. Last
checked: April, 2015.

Apple. Quartz Composer, 2015e. URL https://developer.apple.

com/library/mac/documentation/GraphicsImaging/Conceptual/

QuartzComposerUserGuide/qc_intro/qc_intro.html. Last checked:
April, 2015.

Apple. Xcode Playgrounds, 2015f. URL https://developer.apple.com/

xcode/. Last checked: April, 2015.

Aristotle. Rhetoric, Book III. self-published, 350 BCE.

Dimitar Asenov and Peter Müller. Envision: A Fast and Flexible Visual Code Editor
With Fluid Interactions. In VL/HCC ’14: Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing, pages 9–12. Citeseer, 2014.

David L. Atkins. Version Sensitive Editing: Change History as a Programming
Tool. In System Configuration Management, pages 146–157. Springer, 1998.

Sarita Bassil and Rudolf K. Keller. Software Visualization Tools: Survey and Anal-
ysis. In IWPC ’01: Proceedings of the International Workshop on Program Comprehen-
sion, pages 7–17. IEEE, 2001.

Patrick Baudisch and Carl Gutwin. Multiblending: Displaying Overlapping Win-
dows Simultaneously Without the Drawbacks of Alpha Blending. In CHI ’04:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 367–374. ACM, 2004.

Patrick Baudisch and Ruth Rosenholtz. Halo: A Technique for Visualizing Off-
Screen Objects. In CHI ’03: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 481–488, New York, NY, USA, 2003. ACM.

Daniel S. Bauer. The Cognitive Ecology of Dynapad, a Multiscale Workspace for Manag-
ing Personal Digital Collections. PhD thesis, University of California at San Diego,
2006.

Benjamin B. Bederson. PhotoMesa: A Zoomable Image Browser Using Quantum
Treemaps and Bubblemaps. In UIST ’01: Proceedings of the ACM Symposium on
User Interface Software and Technology, pages 71–80, New York, NY, USA, 2001.
ACM.

Benjamin B. Bederson. The Promise of Zoomable User Interfaces. Behaviour Infor-
mation Technology, 30(6):853–866, 2011.

Bibliography 199

Benjamin B. Bederson and James D. Hollan. Pad++: A Zooming Graphical Interface
for Exploring Alternate Interface Physics. In UIST ’94: Proceedings of the ACM
Symposium on User Interface Software and Technology, pages 17–26. ACM, 1994.

Benjamin B. Bederson, James D. Hollan, Allison Druin, Jason Stewart, and David
Rogers. Local Tools: An Alternative to Tool Palettes. In UIST ’96: Proceedings
of the ACM Symposium on User Interface Software and Technology, pages 169–170.
ACM, 1996.

Benjamin B. Bederson, Jon Meyer, and Lance Good. Jazz: An Extensible Zoomable
User Interface Graphics Toolkit in Java. In UIST ’00: Proceedings of the ACM Sym-
posium on User Interface Software and Technology, pages 171–180, New York, NY,
USA, 2000. ACM.

Andrew Begel and Nachiappan Nagappan. Pair Programming: What’s in It for Me?
In ESEM ’08: Proceedings of the ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 120–128. ACM, 2008.

Claude Bemtgen. Fly Remote - Reciting Canvas Presentations With an iPad. Bach-
elor’s thesis, RWTH Aachen University, 2012.

Stephen Biesty and Richard Platt. Stephen Biesty’s Incredible Cross-Sections. Dorling
Kindersley, 1992.

Angela Boltman. Children’s Storytelling Technologies. PhD thesis, University of Mary-
land at College Park, 2001.

Jan Borchers. HyperSource: Ein Hypermedia-Ansatz für Programmentwicklung
und -dokumentation. Diploma thesis, University of Karlsruhe, Germany, 1995.

Jan Borchers. A Pattern Approach to Interaction Design. John Wiley Sons, Ltd, 2001.

Margaret M. Bradley and Peter J. Lang. Measuring Emotion: The Self-Assessment
Manikin and the Semantic Differential. Journal of Behavior Therapy and Experimen-
tal Psychiatry, 25(1):49–59, 1994.

Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William Che-
ung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaVi-
ola, Jr. Code Bubbles: A Working Set-based Interface for Code Understanding
and Maintenance. In CHI ’10: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 2503–2512, New York, NY, USA, 2010. ACM.

Andrew Bragdon, Robert DeLine, Ken Hinckley, and Meredith R. Morris. Code
Space: Touch + Air Gesture Hybrid Interactions for Supporting Developer Meet-
ings. In ITS ’11: Proceedings of the ACM International Conference on Interactive Table-
tops and Surfaces, pages 212–221, 2011.

200 Bibliography

Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. Example-
Centric Programming: Integrating Web Search Into the Development Environ-
ment. In CHI ’10: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pages 513–522. ACM, 2010.

Stacy Branham, Gene Golovchinsky, Scott Carter, and Jacob T. Biehl. Let’s Go From
the Whiteboard: Supporting Transitions in Work Through Whiteboard Capture
and Reuse. In CHI ’10: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 75–84. ACM, 2010.

Ann L. Brown. Design Experiments: Theoretical and Methodological Challenges in
Creating Complex Interventions in Classroom Settings. The Journal of the Learning
Sciences, 2(2):141–178, 1992.

Sallyann Bryant, Pablo Romero, and Benedict du Boulay. Pair Programming and
the Mysterious Role of the Navigator. International Journal of Human-Computer
Studies, 66(7):519–529, 2008.

Bill Buxton. A Touching Story: A Personal Perspective on the History of Touch
Interfaces Past and Future. Symposium Digest of Technical Papers, 41(1):444–448,
2010.

Xiang Cao, Eyal Ofek, and David Vronay. Evaluation of Alternative Presentation
Control Techniques. In CHI ’05: Extended Abstracts of the SIGCHI Conference on
Human Factors in Computing Systems, pages 1248–1251, New York, NY, USA, 2005.
ACM.

Stuart K. Card, Allen Newell, and Thomas P. Moran. The Psychology of Human-
Computer Interaction. L. Erlbaum Associates Inc., 1983.

Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings in Information
Visualization: Using Vision to Think. Morgan Kaufmann, 1999.

Casio. Casio AT-550-7 calculator watch, 1984. URL http://research.

microsoft.com/en-us/um/people/bibuxton/buxtoncollection/

detail.aspx?id=227.

Mauro Cherubini, Gina Venolia, Rob DeLine, and Andrew J Ko. Let’s Go to the
Whiteboard: How and Why Software Developers Use Drawings. In CHI ’07: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
557–566. ACM, 2007.

Jan Chong and Tom Hurlbutt. The Social Dynamics of Pair Programming. In ICSE
’07: Proceedings of the ACM/IEEE International Conference on Software Engineering,
pages 354–363, Washington, DC, USA, 2007. IEEE Computer Society.

Bibliography 201

Jan Chong and Rosanne Siino. Interruptions on Software Teams: A Comparison
of Paired and Solo Programmers. In CSCW ’06: Proceedings of the Conference on
Computer Supported Cooperative Work, pages 29–38. ACM, 2006.

Elizabeth F. Churchill and Les Nelson. Tangibly Simple, Architecturally Complex:
Evaluating a Tangible Presentation Aid. In CHI ’02: Extended Abstracts of the
SIGCHI Conference on Human Factors in Computing Systems, pages 750–751, New
York, NY, USA, 2002. ACM.

Marcus T. Cicero. De Oratore. self published, 55 BC.

Richard E. Clark. Reconsidering Research on Learning from Media. Review of Edu-
cational Research, 53(4):445–549, 1983.

Richard E. Clark. Media Will Never Influence Learning. Educational Technology
Research and Development, 42(2):21–29, 1994.

Richard E. Clark. Learning from Media. Information Age Publishing, 2001.

Andy Cockburn, Joshua Savage, and Andrew Wallace. Tuning and Testing
Scrolling Interfaces That Automatically Zoom. In CHI ’05: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 71–80. ACM,
2005.

Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. A Review of
Overview+Detail, Zooming, and Focus+Context Interfaces. ACM Computing Sur-
veys (CSUR), 41(1):2–43, 2008.

Christian Corsten. DragonFly: Reviewing Lecture Recordings with Spatial Navi-
gation. Bachelor’s thesis, RWTH Aachen University, Aachen, 2009.

Donald A. Cox, Jasdeep S. Chugh, Carl Gutwin, and Saul Greenberg. The Usability
of Transparent Overview Layers. In CHI ’98: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 301–302. ACM, 1998.

Russel J. Craig and Joel H. Amernic. PowerPoint Presentation Technology and the
Dynamics of Teaching. Innovative Higher Education, 31(3):147–160, 2006.

Simon P. Davies, David J. Gilmore, and Thomas R. G. Green. Are Objects That Im-
portant? Effects of Expertise and Familiarity on Classification of Object-Oriented
Code. Human–Computer Interaction, 10(2-3):227–248, 1995.

Robert DeLine and Kael Rowan. Code Canvas: Zooming Towards Better Devel-
opment Environments. In ICSE ’10: Proceedings of the ACM/IEEE International
Conference on Software Engineering, pages 207–210. ACM, 2010.

202 Bibliography

Robert DeLine, Mary Czerwinski, Brian Meyers, Gina Venolia, Steven Drucker, and
George Robertson. Code Thumbnails: Using Spatial Memory to Navigate Source
Code. In VL/HCC ’06: Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing, pages 11–18. IEEE, 2006.

Robert DeLine, Gina Venolia, and Kael Rowan. Software Development With Code
Maps. Communications of the ACM, 53(8):48–54, 2010.

Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacobsen, and Steven P. Reiss.
Debugger Canvas: Industrial Experience With the Code Bubbles Paradigm. In
ICSE ’12: Proceedings of the ACM/IEEE International Conference on Software Engi-
neering, pages 1064–1073. IEEE Press, 2012.

Françoise Détienne. Software Design—Cognitive Aspects. Springer Science & Busi-
ness Media, 2002.

Alan Dix and Janet E. Finlay. Human-Computer Interaction. Prentice Hall, 2004.

Steven M. Drucker, Georg Petschnigg, and Maneesh Agrawala. Comparing and
Managing Multiple Versions of Slide Presentations. In UIST ’06: Proceedings of
the ACM Symposium on User Interface Software and Technology, pages 47–56. ACM,
2006.

Allison Druin, Jason Stewart, David Proft, Benjamin B. Bederson, and James D.
Hollan. KidPad: A Design Collaboration Between Children, Technologists, and
Educators. In CHI ’97: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 463–470. ACM, 1997.

Ekwa Duala-Ekoko and Martin P. Robillard. Asking and Answering Questions
About Unfamiliar APIs: An Exploratory Study. In ICSE ’12: Proceedings of the
ACM/IEEE International Conference on Software Engineering, pages 266–276. IEEE
Press, 2012.

William J. Earnest. Developing Strategies to Evaluate the Effective Use of Electronic
Presentation Software in Communication Education. PhD thesis, The University of
Texas at Austin, 2003.

Eclipse. Eclipse, 2015. URL https://eclipse.org/. Last checked: April, 2015.

Darren Edge, Joan Savage, and Koji Yatani. HyperSlides: Dynamic Presentation
Prototyping. In CHI ’13: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 671–680. ACM, 2013.

Darren Edge, Xi Yang, Dan Feng, Bongshin Lee, and Steven Drucker. SlideSpace:
Heuristic Design of a Hybrid Presentation Medium. ACM Transactions on
Computer-Human Interaction (TOCHI), to appear.

Bibliography 203

Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner Jr. Seesoft-a Tool for Visual-
izing Line Oriented Software Statistics. IEEE Transactions on Software Engineering,
18(11):957–968, 1992.

Ruth B. Ekstrom, John W. French, Harry H. Harman, and Diran Dermen. Manual
for Kit of Factor Referenced Cognitive Tests. Educational Testing Service Princeton,
NJ, 1976.

Ruth B. Ekstrom, John W. French, and Harry H. Harman. Cognitive Factors: Their
Identification and Replication. Multivariate Behavioral Research Monographs, 79(2):
84, 1979.

Lee Ellis and Dan Mathis. College Student Learning From Televised Versus Con-
ventional Classroom Lectures: A Controlled Experiment. Higher Education, 14(2):
165–173, 1985.

Douglas C. Engelbart and William K. English. A Research Center for Augmenting
Human Intellect. In Proceedings of the December 9-11, 1968, Fall Joint Computer
Conference, pages 395–410. ACM, 1968.

Blizzard Entertainment. Diablo II, 2000. URL https://blizzard.com/

diablo2/. Last checked: April, 2015.

Glen T. Evans. Use of the Semantic Differential Technique to Study Attitudes Dur-
ing Classroom Lessons. Interchange, 1(4):96–106, 1970.

David K. Farkas. Understanding and Using PowerPoint. In Proceedings of the STC
Annual Conference on Usability and Information Design, volume 3, pages 313–320,
2005.

David K. Farkas. A Heuristic for Reasoning About PowerPoint Deck Design. In
IPCC ’08: Proceedings of the IEEE International Professional Communication Confer-
ence, pages 1–9, 2008.

David K. Farkas. Managing Three Mediation Effects That Influence PowerPoint
Deck Authoring. Technical Communication, 56(1):28–38, 2009.

Bernhard Fetz and Klaus Kastberger. Der Literarische Einfall: Über Das Entstehen Von
Texten. Paul Zsolnay Verlag, 1998.

Adam Fouse, Nadir Weibel, Christine Johnson, and James D Hollan. Reifying Social
Movement Trajectories. In CHI ’13: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 2945–2948. ACM, 2013.

Martin Fowler and Jim Highsmith. The Agile Manifesto. Software Development, 9
(8):28–35, 2001.

204 Bibliography

Nico H. Frijda. The Psychologists’ Point of View. Handbook of Emotions, 2:59–74,
2000.

Thomas Fritz, Gail C. Murphy, and Emily Hill. Does a Programmer’s Activity
Indicate Knowledge of Code? In ESEC-FSE ’07: Proceedings of the the Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages 341–350. ACM, 2007.

Alexander Fronk, Armin Bruckhoff, and Michael Kern. 3D Visualisation of Code
Structures in Java Software Systems. In SOFTVIS ’06: Proceedings of the Interna-
tional Symposium on Software Visualization, pages 145–146. ACM, 2006.

George W. Furnas. Generalized Fisheye Views. In CHI ’86: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 16–23, 1986.

George W. Furnas and Xiaolong Zhang. MuSE: a Multiscale Editor. In UIST ’98:
Proceedings of the ACM Symposium on User Interface Software and Technology, pages
107–116. ACM, 1998.

George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Dumais.
The Vocabulary Problem in Human-System Communication. Communications of
the ACM, 30(11):964–971, 1987.

Ryan Gallagher. Operation Auroragold—How the NSA Hacks Cellphone Net-
works Worldwide, 2014. URL https://firstlook.org/theintercept/

2014/12/04/nsa-auroragold-hack-cellphones/. Last checked: April,
2015.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Pearson Education, 1994.

Joanna K. Garner, Michael Alley, Allen F. Gaudelli, and Sarah E. Zappe. Common
Use of PowerPoint versus the Assertion–Evidence Structure: A Cognitive Psy-
chology Perspective. Technical Communication, 56(4), 2009.

Lance Good. Zoomable User Interfaces for the Authoring and Delivery of Slide Presenta-
tions. PhD thesis, University of Maryland, 2003.

Lance Good and Ben B. Bederson. CounterPoint: Creating Jazzy Interactive Pre-
sentations. Technical report, University of Maryland, 2001.

Lance Good and Benjamin B. Bederson. Zoomable User Interfaces as a Medium for
Slide Show Presentations. Information Visualization, 1(1):35–49, 2002.

Google. Google Earth, 2001. URL https://www.google.com/earth/. Last
checked: April, 2015.

Bibliography 205

Google. Google Maps, 2005. URL https://maps.google.com/. Last checked:
April, 2015.

Google. Google Documents, 2007. URL https://www.google.com/docs/

about/. Last checked: April, 2015.

Kreshna Gopal and Karthik Morapakkam. Incorporating Concept Maps in a Slide
Presentation Tool for the Classroom Environment. In ED-MEDIA ’02: Proceedings
of the World Conference on Educational Multimedia, Hypermedia Telecommunications.
AACE, 2002.

Erin E. Hardin. Technology in Teaching: Presentation Software in the College Class-
room: Don’t Forget the Instructor. Teaching of Psychology, 34(1):53–57, 2007.

Rebecca Harlin and Victoria Brown. Issues in Education: The Power of Powerpoint:
Is it in the User or the Program? Childhood Education, 83(4):231–233, 2007.

Björn Hartmann, Sean Follmer, Antonio Ricciardi, Timothy Cardenas, and Scott R.
Klemmer. d.note: Revising User Interfaces Through Change Tracking, Annota-
tions, and Alternatives. In CHI ’10: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 493–502. ACM, 2010.

Björn Hartmann, Mark Dhillon, and Matthew K. Chan. HyperSource: Bridging
the Gap Between Source and Code-Related Web Sites. In CHI ’11: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages 2207–2210.
ACM, 2011.

Lile Hattori, Marco D’Ambros, Michele Lanza, and Mircea Lungu. Software Evo-
lution Comprehension: Replay to the Rescue. In ICPC’11: Proceedings of the IEEE
International Conference on Program Comprehension, pages 161–170. IEEE, 2011.

Liwei He, Elizabeth Sanocki, Anoop Gupta, and Jonathan Grudin. Comparing Pre-
sentation Summaries: Slides vs. Reading vs. Listening. In CHI ’00: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages 177–184,
New York, NY, USA, 2000. ACM.

Robert A. Heinlein. All You Zombies. Magazine of Fantasy and Science Fiction, March
1959.

Thomas Hess. Fly—Expressive and Conveying Planar Presentations. Master’s the-
sis, RWTH Aachen University, Aachen, 2011.

Raymond L. Higgins, Rene R. Alonso, and Mark G. Pendleton. The Validity of
Role-Play Assessments of Assertiveness. Behavior Therapy, 10(5):655–662, 1979.

Ron R. Hightower, Laura T. Ring, Jonathan I. Helfman, Benjamin B. Bederson, and
James D. Hollan. PadPrints: Graphical Multiscale Web Histories. In UIST ’98:

206 Bibliography

Proceedings of the ACM Symposium on User Interface Software and Technology, pages
121–122. ACM, 1998.

Ken Hinckley, Koji Yatani, Michel Pahud, Nicole Coddington, Jenny Rodenhouse,
Andy Wilson, Hrvoje Benko, and Bill Buxton. Pen + Touch = New Tools. In UIST
’10: Proceedings of the ACM Symposium on User Interface Software and Technology,
pages 27–36. ACM, 2010.

David Holman, Predrag Stojadinović, Thorsten Karrer, and Jan Borchers. Fly: An
Organic Presentation Tool. In CHI ’06: Extended Abstracts of the SIGCHI Conference
on Human Factors in Computing Systems, pages 863–868. ACM, 2006.

Neville Holmes. In Defense of PowerPoint. Computer, 37(7):100–102, 2004.

Kasper Hornbæk, Benjamin B. Bederson, and Catherine Plaisant. Navigation Pat-
terns and Usability of Zoomable User Interfaces with and without an Overview.
ACM Transactions on Computer-Human Interaction (TOCHI), 9(4):362–389, 2002.

Richard House, Anneliese Watt, and Julia Williams. Work in Progress - What is
PowerPoint? Educating Engineering Students in its Use and Abuse. In ICSE
’05: Proceedings of the ACM/IEEE International Conference on Software Engineering,
pages 3–15. IEEE, 2005.

Jeff E. Hoyt. Does the Delivery Method Matter?: Comparing Technologically De-
livered Distance Education With on-Campus Instruction. Technical report, Utah
Valley State College, Department of Institutional Research, 1999.

Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. Direct Manipulation
Interfaces. Human–Computer Interaction, 1(4):311–338, 1985.

Mikkel R. Jakobsen and Kasper Hornbæk. Fisheyes in the Field: Using Method
Triangulation to Study the Adoption and Use of a Source Code Visualization.
In CHI ’09: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 1579–1588. ACM, 2009.

Jeff A. Johnson and Bonnie A. Nardi. Creating Presentation Slides: A Study of
User Preferences for Task-Specific Versus Generic Application Software. ACM
Transactions on Computer-Human Interaction (TOCHI), 3(1):38–65, 1996.

Kathy Johnson and Vicki Sharp. Is PowerPoint Crippling Our Students? Learning
and Leading with Technology, 33(3):6–7, 2005.

Ernest H. Joy and Federico E. Garcia. Measuring Learning Effectiveness: A New
Look at No-Significant-Difference Findings. Journal of Asynchronous Learning Net-
works, 4(1):33–39, 2000.

Bibliography 207

Huzefa Kagdi, Maen Hammad, and Jonathan I. Maletic. Who Can Help Me With
This Source Code Change? In ICSM ’08: IEEE International Conference on Software
Maintenance, pages 157–166. IEEE, 2008.

Steve Kaminski. PowerPoint Presentations: The Good, the Bad and the
Ugly, 2001. URL http://www.shkaminski.com/Classes/MNGT5590/

powerpoint.htm.

Thorsten Karrer. Semantic Navigation in Digital Media. PhD thesis, RWTH Aachen
University, Aachen, 2013.

Thorsten Karrer, Malte Weiss, Eric Lee, and Jan Borchers. DRAGON: A Direct
Manipulation Interface for Frame-Accurate in-Scene Video Navigation. In CHI
’08: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 247–250, New York, NY, USA, 2008. ACM.

Thorsten Karrer, Moritz Wittenhagen, Leonhard Lichtschlag, and Jan Borchers. Ex-
amPen: How Digital Pen Technology Can Support Teachers and Examiners. In
CHI ’10: Workshop on Next Generation of HCI and Education, Atlanta, USA, 2010.

Guy Kawasaki. The 10-20-30 Rule, 2005. URL http://guykawasaki.com/the_

102030_rule/. Last checked: April, 2015.

Jeffrey M. Kern, Cindy Miller, and John Eggers. Enhancing the Validity of Role-
Play Tests: A Comparison of Three Role-Play Methodologies. Behavior Therapy,
14(4):482–492, 1983.

Jens E. Kjeldsen. The Rhetoric of PowerPoint. International Journal of Media, Tech-
nology and Lifelong Learning, 2(1):1–17, 2006.

Andrew J Ko, Htet Htet Aung, Brad A. Myers, et al. Eliciting Design Requirements
for Maintenance-Oriented IDEs: A Detailed Study of Corrective and Perfective
Maintenance Tasks. In ICSE ’05: Proceedings of the ACM/IEEE International Confer-
ence on Software Engineering, pages 126–135. IEEE, 2005.

Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet H. Aung. An Ex-
ploratory Study of How Developers Seek, Relate, and Collect Relevant Informa-
tion During Software Maintenance Tasks. IEEE Transactions on Software Engineer-
ing, 32(12):971–987, 2006.

Robert B. Kozma. Learning with Media. Review of Educational Research, 61(2):179–
211, 1991.

Robert B. Kozma. Will Media Influence Learning? Reframing the Debate. Educa-
tional Technology Research and Development, 42(2):7–19, 1994.

Jan-Peter Krämer. Stacksplorer: Understanding Dynamic Program Behavior.
Diploma thesis, RWTH Aachen University, 2011.

208 Bibliography

Jan-Peter Krämer, Joachim Kurz, Thorsten Karrer, and Jan Borchers. How Live
Coding Affects Developers’ Coding Behavior. In VL/HCC ’14: Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing, pages 5–8,
2014.

Adrian Kuhn, Peter Loretan, and Oscar Nierstrasz. Consistent Layout for Thematic
Software Maps. In WCRE’08: Proceedings of the Working Conference on Reverse
Engineering, pages 209–218. IEEE, 2008.

Adrian Kuhn, David Erni, and Oscar Nierstrasz. Embedding Spatial Software Vi-
sualization in the IDE: An Exploratory Study. In SOFTVIS ’10: Proceedings of the
International Symposium on Software Visualization, pages 113–122. ACM, 2010.

Christopher Kurtz. Code Gestalt: From UML Class Diagrams to Software Land-
scapes. Diploma thesis, RWTH Aachen University, Aachen, 2011a.

Christopher Kurtz. Code Gestalt: A Software Visualization Tool for Human Be-
ings. In CHI ’11: Extended Abstracts of the SIGCHI Conference on Human Factors in
Computing Systems, pages 929–934, New York, NY, USA, 2011b. ACM Press.

Sandeep K. Kuttal, Anita Sarma, and Gregg Rothermel. On the Benefits of Provid-
ing Versioning Support for End Users: An Empirical Study. ACM Transactions on
Computer-Human Interaction (TOCHI), 21(2):1–43, 2014.

Leslie Lamport. LaTeX – A document preparation system, 1984. URL https:

//en.wikipedia.org/wiki/LaTeX. Last checked: April, 2015.

Christian F. J. Lange and Michel R. V. Chaudron. Interactive Views to Improve
the Comprehension of UML Models—an Experimental Validation. In ICPC’07:
Proceedings of the IEEE International Conference on Program Comprehension, pages
221–230. IEEE, 2007.

Joel Lanir, Kellogg S. Booth, and Leah Findlater. Observing Presenters’ Use of
Visual Aids to Inform the Design of Classroom Presentation Software. In CHI
’08: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 695–704, New York, NY, USA, 2008. ACM.

Thomas D. LaToza and Brad A. Myers. Searching Across Paths. In SUITE ’10:
Proceedings of ICSE Workshop on Search-driven Development: Users, Infrastructure,
Tools and Evaluation, pages 29–32. ACM, 2010a.

Thomas D. LaToza and Brad A. Myers. Developers Ask Reachability Questions. In
ICSE ’10: Proceedings of the ACM/IEEE International Conference on Software Engi-
neering, pages 185–194. ACM, 2010b.

Thomas D. LaToza and Brad A. Myers. Hard-to-Answer Questions About Code. In
PLATEAU ’10: Evaluation and Usability of Programming Languages and Tools, pages
1–6. ACM, 2010c.

Bibliography 209

Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining Mental Models:
A Study of Developer Work Habits. In ICSE ’06: Proceedings of the ACM/IEEE
International Conference on Software Engineering, pages 492–501. ACM, 2006.

Laszlo Laufer, Peter Halacsy, and Adam Somlai-Fischer. Prezi Meeting: Collabora-
tion in a Zoomable Canvas Based Environment. In CHI ’11: Extended Abstracts
of the SIGCHI Conference on Human Factors in Computing Systems, pages 749–752.
ACM, 2011.

Timothy C. Lethbridge, Janice Singer, and Andrew Forward. How Software Engi-
neers Use Documentation: The State of the Practice. IEEE Software, 20(6):35–39,
2003.

Ying K. Leung and Mark D. Apperley. A Review and Taxonomy of Distortion-
Oriented Presentation Techniques. ACM Transactions on Computer-Human Inter-
action (TOCHI), 1(2):126–160, 1994.

Yang Li, James A. Landay, Zhiwei Guan, Xiangshi Ren, and Guozhong Dai. Sketch-
ing Informal Presentations. In ICMI ’03: Proceedings of the ACM International Con-
ference on Multimodal Interaction, pages 234–241. ACM, 2003.

Leonhard Lichtschlag. Fly: An Organic Authoring Tool for Presentations. Diploma
thesis, RWTH Aachen University, Aachen, 2008.

Leonhard Lichtschlag and Jan Borchers. CodeGraffiti: Communication by Sketch-
ing for Pair Programming. In UIST ’10: Adjunct Proceedings of the ACM Symposium
on User Interface Software and Technology, pages 439–440, New York, NY, 2010.

Leonhard Lichtschlag, Thorsten Karrer, and Jan Borchers. Fly: a Tool to Author
Planar Presentations. In CHI ’09: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 547–556, Boston, MA, USA, 2009. ACM Press.

Leonhard Lichtschlag, Thomas Hess, Thorsten Karrer, and Jan Borchers. Fly:
Studying Recall, Macrostructure Understanding, and User Experience of Canvas
Presentations. In CHI ’12: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 1307–1310, 2012a.

Leonhard Lichtschlag, Thomas Hess, Thorsten Karrer, and Jan Borchers. Canvas
Presentations in the Wild. In CHI ’12: Extended Abstracts of the SIGCHI Conference
on Human Factors in Computing Systems, pages 537–540, 2012b.

Leonhard Lichtschlag, Lukas Spychalski, and Jan Borchers. CodeGraffiti: Using
Hand-drawn Sketches Connected to Code Bases in Navigation Tasks. In VL/HCC
’14: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing, pages 65–68, 2014.

210 Bibliography

Leonhard Lichtschlag, Philipp Wacker, Martina Ziefle, and Jan Borchers. The Pre-
senter Experience of Canvas Presentations. In INTERACT 15: Proceedings of the
IFIP International Conference on Human-Computer Interaction, pages 289–297, 2015.

John Lovgren. How to Choose Good Metaphors. IEEE Software, 11(3):86–88, 1994.

Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. The Perspective Wall:
Detail and Context Smoothly Integrated. In CHI ’91: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 173–176. ACM, 1991.

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. The Scratch Programming Language and Environment. ACM Transactions
on Computing Education (TOCE), 10(4):1–15, 2010.

Nicolas Mangano, Alex Baker, Mitch Dempsey, Emily Navarro, and André van der
Hoek. Software Design Sketching With Calico. In ASE ’10: Proceedings of the In-
ternational Conference on Automated Software Engineering, pages 23–32. ACM, 2010.

George R. R. Martin. A Game of Thrones. Bantam Dell Publishing Group, 1996.

Kazunori Maruyama, Eijirou Kitsu, Tatsuya Omori, and Shin’ichiro Hayashi. Slic-
ing and Replaying Code Change History. In ASE ’12: Proceedings of the Interna-
tional Conference on Automated Software Engineering, pages 246–249. IEEE, 2012.

Microsoft. Microsoft Seadragon, 2002. URL https://en.wikipedia.org/

wiki/Seadragon_Software. Last checked: April, 2015.

Microsoft. pptPlex, 2008. URL http://www.officelabs.com/projects/

pptPlex/. Last checked: April, 2015.

Microsoft. Microsoft Canvas For OneNote., 2009. URL https://web.archive.

org/web/20100416164157/http://www.officelabs.com/projects/

canvasforonenote/Pages/default.aspx. Last checked: April, 2015.

Microsoft. Microsoft Bing Maps, 2010. URL https://www.bing.com/maps/.
Last checked: April, 2015.

Microsoft. Debugger Canvas, 2013. URL https://visualstudiogallery.

msdn.microsoft.com/4a979842-b9aa-4adf-bfef-83bd428a0acb.
Last checked: April, 2015.

Microsoft. PowerPoint, 2015. URL https://products.office.com/en-us/

powerpoint. Last checked: April, 2015.

Tomer Moscovich, Karin Scholz, John F. Hughes, and David H. Salesin. Customiz-
able Presentations. Technical report, Computer Science Dept., Brown University,
2004.

Bibliography 211

Randall Munroe. Movie Narrative Charts, 2009. URL https://xkcd.com/657/.
Last checked: April, 2015.

Gail C. Murphy, Mik Kersten, and Leah Findlater. How Are Java Software Devel-
opers Using the Elipse IDE? IEEE Software, 23(4):76–83, 2006.

Brad A. Myers. Taxonomies of Visual Programming and Program Visualization.
Journal of Visual Languages Computing, 1(1):97–123, 1990.

Mathieu Nancel, Julie Wagner, Emmanuel Pietriga, Olivier Chapuis, and Wendy
Mackay. Mid-Air Pan-and-Zoom on Wall-Sized Displays. In CHI ’11: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages 177–186.
ACM, 2011.

Donald A. Norman. Emotion Design: Why We Love (or Hate) Everyday Things. Basic
Books, 2004.

Donald A. Norman. In Defense of PowerPoint, 2005. URL http://www.jnd.

org/dn.mss/in_defense_of_p.html. Last checked: April, 2015.

Angela M. O’Donnell, Donald F. Dansereau, and Richard H. Hall. Knowledge Maps
as Scaffolds for Cognitive Processing. Educational Psychology Review, 14(1):71–86,
2002.

OmniGroup. OmniGraffle, 2015. URL https://www.omnigroup.com/

omnigraffle. Last checked: April, 2015.

Stephen Oney and Joel Brandt. Codelets: Linking Interactive Documentation and
Example Code in the Editor. In CHI ’12: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 2697–2706. ACM, 2012.

Apache OpenOffice. OpenOffice Impress, 2012. URL https://www.

openoffice.org/product/impress.html. Last checked: April, 2015.

Charles E. Osgood, George J. Suci, and Percy H. Tannenbaum. The Measurement of
Meaning. University of Illinois Press, 1957.

Yunrim Park and Carlos Jensen. Beyond Pretty Pictures: Examining the Benefits of
Code Visualization for Open Source Newcomers. In VISSOFT ’09: IEEE Interna-
tional Workshop on Visualizing Software for Understanding and Analysis, pages 3–10.
IEEE, 2009.

Ian Parker. Absolute PowerPoint: Can a Software Package Edit Our Thoughts? The
New Yorker, 2001.

Chris Parnin, Carsten Görg, and Spencer Rugaber. CodePad: Interactive Spaces
for Maintaining Concentration in Programming Environments. In SOFTVIS ’10:
Proceedings of the International Symposium on Software Visualization, pages 15–24.
ACM, 2010.

212 Bibliography

PechaKucha, 2015. URL http://www.pechakucha.org/. Last checked: April,
2015.

Ken Perlin and David Fox. Pad: An Alternative Approach to the Computer Inter-
face. In SIGGRAPH ’93: Proceedings of the Conference on Computer Graphics and
Interactive Techniques, pages 57–64, New York, NY, USA, 1993. ACM.

David Piorkowski, Scott D. Fleming, Christopher Scaffidi, Liza John, Christopher
Bogart, Bonnie E John, Margaret Burnett, and Rachel Bellamy. Modeling Pro-
grammer Navigation: A Head-to-Head Empirical Evaluation of Predictive Mod-
els. In VL/HCC ’11: Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing, pages 109–116. IEEE, 2011.

Bodo Plachta. Editionswissenschaft, Eine Einführung in Methode und Praxis der Edition
neuerer Texte. Reclam, 1997.

Catherine Plaisant, Jesse Grosjean, and Benjamin B. Bederson. SpaceTree: Design
Evolution of a Node Link Tree Browser. In INFOVIS ’02: Proceedings of the IEEE
Information Visualization Conference, pages 57–64, 2002.

Plato. Gorgias. self published, around 380 BC.

Beryl Plimmer and Isaac Freeman. A Toolkit Approach to Sketched Diagram Recog-
nition. In Proceedings of the British HCI Group Annual Conference on People and
Computers, pages 205–213. British Computer Society, 2007.

Washington Post. Kurt Vonnegut Graphed the World’s Most Popular Stories, 2015.
URL http://wapo.st/1z4pWtd. Last checked: April, 2015.

Christian R. Prause. Improving the Internal Quality of Software Through Reputation-
Based Gamification. PhD thesis, RWTH Aachen University, 2013.

Prezi. Prezi Presentation Software, 2008. http://www.zuiprezi.com/.

Digestive Pyrotechnics. Predestination: Plot Explained, 2014.
URL http://www.digestivepyrotechnics.com/2014/12/

predestination-plot-explained.html. Last checked: April, 2015.

Thomas R. Ramage. The “No Significant Difference” Phenomenon: A Literature
Review. e-Journal of Instructional Science and Technology, 5(1):1–7, 2002.

Ramana Rao and Stuart K. Card. The Table Lens: Merging Graphical and Symbolic
Representations in an Interactive Focus + Context Visualization for Tabular In-
formation. In CHI ’94: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 318–322. ACM, 1994.

Raskin. Raksin—Beyond Desktop, 2015. URL http://www.raskinformac.

com/. Last checked: April, 2015.

Bibliography 213

Garr Reynolds. Presentation Zen: Simple Ideas on Presentation Design and Delivery.
New Riders, 2011.

George G. Robertson and Jock D. Mackinlay. The Document Lens. In UIST ’93:
Proceedings of the ACM Symposium on User Interface Software and Technology, pages
101–108. ACM, 1993.

George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone Trees: An-
imated 3D Visualizations of Hierarchical Information. In CHI ’91: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages 189–194.
ACM, 1991.

Michael D. Robinson and Gerald L. Clore. Belief and Feeling: Evidence for an
Accessibility Model of Emotional Self-Report. Psychological Bulletin, 128(6):934,
2002.

James A. Russell and Albert Mehrabian. Evidence for a Three-Factor Theory of
Emotions. Journal of Research in Personality, 11(3):273–294, 1977.

Thomas L. Russell. The No Significant Difference Phenomenon: As Reported in 355
Research Reports, Summaries and Papers. North Carolina State University, 1999.

Daniel L. Schacter and Lynn Nadel. Varieties of Spatial Memory: A Problem for
Cognitive Neuroscience. Perspectives on Cognitive Neuroscience, 1991.

Klaus R. Scherer. What Are Emotions? And How Can They Be Measured? Social
Science Information, 44(4):695–729, 2005.

Donald A. Schön. The Reflective Practitioner: How Professionals Think in Action. Basic
Books, 1983.

Torben Schulz. Sketchassisted Development. Master’s thesis, RWTH Aachen Uni-
versity, Aachen, 2014.

Carsten Schwesig, Ivan Poupyrev, and Eijiro Mori. Gummi: A Bendable Computer.
In CHI ’04: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 263–270. ACM, 2004.

Mariam Sensalire and Patrick Ogao. Visualizing Object Oriented Software: To-
wards a Point of Reference for Developing Tools for Industry. In VISSOFT ’07:
IEEE International Workshop on Visualizing Software for Understanding and Analysis,
pages 26–29. IEEE, 2007.

Francisco Servant and James A. Jones. History Slicing: Assisting Code-Evolution
Tasks. In FSE ’12: Proceedings of the ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, pages 43:1–43:11. ACM, 2012.

214 Bibliography

Ben Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for Infor-
mation Visualizations. In Proceedings of the IEEE Symposium on Visual Languages,
pages 336–343. IEEE, 1996.

Tad Simons. Does PowerPoint Make You Stupid? Presentations, 26(1):2010, 2004.

Vineet Sinha, David Karger, and Rob Miller. Relo: Helping Users Manage Context
During Interactive Exploratory Visualization of Large Codebases. In VL/HCC ’06:
Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Comput-
ing, pages 187–194. IEEE, 2006.

David A. Slykhuis, Eric N. Wiebe, and Len A. Annetta. Eye-Tracking Students’
Attention to PowerPoint Photographs in a Science Education Setting. Journal of
Science Education and Technology, 14(5):509–520, 2005.

Daniel Speicher and Jan Nonnen. Consistent Consideration of Naming Consis-
tency. In Proceedings of the Workshop on Software-Reengineering. Citeseer, 2010.

Ryan P. Spicer and Aisling Kelliher. NextSlidePlease: Navigation and Time Man-
agement for Hyperpresentations. In CHI ’09: Extended Abstracts of the SIGCHI
Conference on Human Factors in Computing Systems, pages 3883–3888. ACM, 2009.

SpinelessClassics. SpinelessClassics Posters, 2015. URL www.

spinelessclassics.com/. Last checked: April, 2015.

Lukas Spychalski. Communication Of Source Code Designs Through Sketching.
Diploma thesis, RWTH Aachen University, Aachen, 2013.

Jamie Starke, Chris Luce, and Jonathan Sillito. Searching and Skimming: An Ex-
ploratory Study. In ICSM ’09: IEEE International Conference on Software Mainte-
nance, pages 157–166. IEEE, 2009.

Margaret-Anne Storey, Lap-Tak Cheng, Janice Singer, Michael Muller, Del Myers,
and Jody Ryall. How Programmers Can Turn Comments Into Waypoints for
Code Navigation. In ICSM ’07: IEEE International Conference on Software Mainte-
nance, pages 265–274. IEEE, 2007.

Steven L. Tanimoto. A Perspective on the Evolution of Live Programming. In LIVE
’13: Proceedings of the International Workshop on Live Programming, pages 31–34.
IEEE, 2013.

Alexandru Telea and David Auber. Code Flows: Visualizing Structural Evolution
of Source Code. Computer Graphics Forum, 27(3):831–838, 2008.

Meinald T. Thielsch and Isabel Perabo. Use and Evaluation of Presentation Soft-
ware. Technical Communication, 59(2):112–123, 2012.

Bibliography 215

Ardi Tjandra. Code Mixer: A Visual Approach to Code Comprehension and Infor-
mation Foraging. Master’s thesis, RWTH Aachen University, Aachen, 2013.

John R. R. Tolkien. The Lord of the Rings. Houghton Mifflin Harcourt, 1954.

Edward Tufte. The Cognitive Style of PowerPoint. Graphics Press, Cheshire, Con-
necticut, USA, 2003.

Barbara Tversky and Masaki Suwa. Thinking With Sketches. Tools for Innovation, 1
(9):75–85, 2009.

Tanja Ulmen. Combining live coding and continuous testing. Bachelor’s thesis,
RWTH Aachen University, Aachen, 2014.

Umbrello. Umbrello Project, 2015. URL https://umbrello.kde.org/. Last
checked: April, 2015.

J.R. Van Pelt. Lantern Slides and Such. Quarterly Journal of Speech, 36(1):44–50, 1950.

Jules Verne. Around the World in Eighty Days. Oxford Paperbacks, 1999.

Bret Victor. Up and Down the Ladder of Abstraction, 2011. URL http://

worrydream.com/LadderOfAbstraction/. Last checked: April, 2015.

Heimito Von Doderer. Die Strudlhofstiege Oder Melzer Und Die Tiefe Der Jahre. CH
Beck, 1995.

Philipp Wacker. How Does It Feel? Presenter Experience and Evaluation While
Using Canvas Presentation Tools. Master’s thesis, RWTH Aachen University,
Aachen, 2014.

Jagoda Walny, Jonathan Haber, Marian Dörk, Jonathan Sillito, and Sheelagh
Carpendale. Follow That Sketch: Lifecycles of Diagrams and Sketches in Soft-
ware Development. In VISSOFT ’11: IEEE International Workshop on Visualizing
Software for Understanding and Analysis, pages 1–8. IEEE, 2011.

David Watson, Lee A. Clark, and Auke Tellegen. Development and Validation of
Brief Measures of Positive and Negative Affect: The PANAS Scales. Journal of
Personality and Social Psychology, 54(6):1063–1070, 1988.

Richard Wettel and Michele Lanza. Visualizing Software Systems as Cities. In VIS-
SOFT ’07: IEEE International Workshop on Visualizing Software for Understanding
and Analysis, pages 92–99. IEEE, 2007.

Doug Wightman, Zi Ye, Joel Brandt, and Roel Vertegaal. Snipmatch: Using Source
Code Context to Enhance Snippet Retrieval and Parameterization. In UIST ’12:
Proceedings of the ACM Symposium on User Interface Software and Technology, pages
219–228. ACM, 2012.

216 Bibliography

Wikipedia. WIMP stands for “windows, icons, menus, pointers”, a style of inter-
action using these elements of the user interface., 2015a. URL https://en.

wikipedia.org/wiki/WIMP_(computing). Last checked: April, 2015.

Wikipedia. Seam Carving, 2015b. URL https://en.wikipedia.org/wiki/

Seam_carving. Last checked: April, 2015.

Moritz Wittenhagen. Temporal Navigation in Hierarchically Structured Media. PhD
thesis, RWTH Aachen University, 2015. to appear.

Joan Wright. Notes from Left Field: Corporate Slide Presentations. IEEE Computer
Graphics and Applications, 3(4):39–44, 1983.

Ji Soo Yi, Youn ah Kang, John T. Stasko, and Julie A. Jacko. Toward a Deeper Under-
standing of the Role of Interaction in Information Visualization. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1224–1231, 2007.

YoungSeok Yoon and Brad A. Myers. An Exploratory Study of Backtracking Strate-
gies Used by Developers. In CHASE ’12: Proceedings of the International Workshop
on Co-operative and Human Aspects of Software Engineering, pages 138–144. IEEE
Press, 2012.

YoungSeok Yoon and Brad A. Myers. A Longitudinal Study of Programmers’ Back-
tracking. In VL/HCC ’14: Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing, pages 101–108. IEEE, 2014.

YoungSeok Yoon, Brad A. Myers, and Sebon Koo. Visualization of Fine-Grained
Code Change History. In VL/HCC ’13: Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing, pages 119–126. IEEE, 2013.

Polle T. Zellweger, Jock D. Mackinlay, Lance Good, Mark Stefik, and Patrick Baud-
isch. City Lights: Contextual Views in Minimal Space. In CHI ’03: Extended
Abstracts of the SIGCHI Conference on Human Factors in Computing Systems, pages
838–839, New York, NY, USA, 2003. ACM.

Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. Clint: A Direct Manipu-
lation Tool for Parallelizing Compute-Intensive Program Parts. In VL/HCC ’14:
Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Comput-
ing, pages 109–112. IEEE, 2014.

Typeset February 16, 2016

