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1. Introduction

1.1. The role of traditional herbal medicine

1.1.1. Plants as source of drugs

Plants have played a significant role in maintaining human health and improving the quality of

human life for thousands of years. In the prehistoric times, people began to search for herbs from

plants which exert healing effects. Herbal medicine is based on the premise that plants contain

natural substances that can promote health and alleviate illness. The term herbs in herbal

medicine is used loosely to refer not only to herbaceous plants but also to bark, roots, leaves,

seeds, flowers and fruit of trees, shrubs and woody vines, and extracts of the same that are valued

for their savory, aromatic or medicinal qualities. Today we are witnessing a great deal of public

interest in the use of herbal remedies. The World Health Organization estimated that ≈ 80% of

the earth’s inhabitants rely on traditional medicine for their primary health care needs, and most

of this therapy involves the use of plant extracts or their active components. Furthermore, many

Western drugs had their origin in a plant extract. Reserpine, which is widely used for the

treatment of high blood pressure, was originally extracted from the plant Rauwolfia serpentina,

whereas digitalis, used as a heart stimulant, was derived from the foxglove plant (Digitalis

purpurea). The Chinese herb ephedra (Ma huang), which was used early on for the treatment of

asthma, contains the active substance ephedrine, whereas salicylic acid (a precursor of aspirin)

was obtained from willow tree bark (Salix alba) to help relieve fevers [Bruneton J, 1995].

1.1.2. Common herbal remedy

Herbal medicine is widely used today for a host of common ailments and conditions, such as

anxiety, arthritis, colds, coughs, constipation, fever, headaches, infections, insomnia, intestinal

disorders, premenstrual syndrome, stress, ulcers, and weakness. Some of the more popular herbs
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in use today include Echinacea, garlic, ginseng, goldenseal, ginkgo, saw palmetto, aloe vera, and

feverfew. Research continues with respect to the usefulness of ginger for motion sickness;

licorice for treating ulcers; hops, passionflower, and valerian for treating insomnia; feverfew for

relieving migraine headaches; peppermint oil for relieving irritable bowel syndrome; saw

palmetto berries for treating benign prostatic hypertrophy; Echinacea for its immunostimulant

properties; St John's Wort (containing hypericin) for anxiety and depression; and milk thistle

(with its rich content of flavono-lignans) for protecting and restoring liver function [Dew MJ,

1984; Tyler V, 1994 and McNutt K, 1995]. Recently, several commonly used herbs have been

identified as possessing cancer-preventive properties. These herbs include members of the Allium

sp. (garlic, onions, and chives); members of the Labiatae (mint) family (basil, mints, oregano,

rosemary, sage, and thyme); members of the Zingiberaceae family (turmeric and ginger); licorice

root; green tea; flax; members of the Umbelliferae (carrot) family (anise, caraway, celery, chervil,

cilantro, coriander, cumin, dill, fennel, and parsley); and tarragon [Caragay AB, 1992].

1.1.3. Research and new drug development of herbs

Due to the continuous increase of medical costs, many countries provide support to encourage

scientific research on alternative therapies. Furthermore, the putative efficacy of medicinal herbs

relies on empirical or anecdotal data and tradition of use, which frequently cannot satisfy the

requirements of evidence-based medicine. Thus, the step back by the analysis of traditional

herbal medicine and new drug development from herbs are started recently with high effort.

Research interest has focused on various herbs that possess hypolipidemic, antiplatelet,

antitumor, or immune-stimulating properties that may be useful adjuncts in helping reduce the

risk of various diseases. In different herbs, a wide variety of active phytochemicals, including the

flavonoids, terpenoids, lignans, sulfides, polyphenolics, carotenoids, coumarins, saponins, plant

sterols, curcumins, and phthalides have been identified [Tyler V, 1994]. Several of these

phytochemicals either inhibit nitrosation or the formation of DNA adducts or stimulate the

activity of protective enzymes such as the Phase II enzyme glutathione transferase (EC 2.5.1.18)

[Steinmetz KA, 1991; Caragay AB, 1992; Kikuzaki H, 1993; Bisset NG, 1994; Cuvelier ME,

1994; Ho CT, 1994; Huang MT, 1994; Lam LKT, 1994; Robbers JE, 1994; Zheng GQ, 1994;

Smith TJ, 1994 and Haraguchi H, 1995]. Research has centered around the biochemical activity
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of the Allium sp. and the Labiatae, Umbelliferae, and Zingiberaceae families, as well as flaxseed,

licorice root, and green tea. Many of these herbs contain potent antioxidant compounds that

provide significant protection against chronic diseases. These compounds may protect LDL

cholesterol from oxidation [Kleijnen J, 1989; Sharma RD, 1990 and 1991; Warshafsky S, 1993;

Smith TJ, 1994; Cook NC, 1996 and Manach C, 1996], inhibit lipid peroxidation [Dreosti IE,

1996 and Fuhrman B, 1997], or have antiviral or antitumor activity [Caragay AB, 1992 and

Shibata S, 1994].

In the development of medicine from plants, several steps are involved: (1) identification of

suitable plants to investigate; (2) isolation and identification of single chemical entities from the

chosen plant; (3) identification of the pharmacological actions of those entities; (4) conduct of

controlled clinical trials. The rate limiting steps appear to be (3) and (4). Many herbal medicines

are not well analyzed in terms of their mechanisms of actions, toxicity, and clinical effects.

Therein the challenge lies.

1.1.4. Safety of herbal medicine

Whereas some herbal products may be safe and may contain active constituents that have

beneficial physiologic effects, others may be unsafe to use [Tyler V, 1994]. The Food and Drug

Administration has classified several herbs as unsafe, even in small amounts, and hence they

should not be used in either foods or beverages [Larkin T, 1983 and Saxe TG, 1987]. Some herbs

are safe in modest amounts but they may become toxic at higher doses. For example, whereas

licorice root can be used safely for treating duodenal and gastric ulcers, deaths from its excessive

use have been reported. Large amounts of licorice can cause serious side effects such as

hypokalemia, high blood pressure, and heart failure [Nielsen I, 1984]. Other herbs are known to

be lethal. Germander, an herb used in some weight-loss programs, has been reported to cause

fatal hepatitis [Mostefa-Kara N, 1992]. The Chinese herbs caowu and chuanwu are used to treat

rheumatism, arthritis, bruises, and fractures. They may contain highly toxic alkaloids such as

aconitine which produce neurologic, cardiovascular, and gastrointestinal disturbances. Use of

these herbs can even result in death [Chan TYK, 1993].
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1.2. Radix Salviae Miltiorrhizae and its components

Radix Salviae Miltiorrhizae (RSM), an important constituent of Chinese folk medicine, is the

root extract of the plant Salvia Miltorrhizae Bunge (Fig. 1), which belongs to the family of

Labiatae. Both injection solution and tablets made from RSM have been widely used in the

Chinese community for various complaints, particularly cardiovascular and cerebrovascular, such

as ischemia, myocardial infarction and thrombosis.

Fig. 1 The plant Salvia Miltiorrhizae Bunge and its dry root, which is being used as an important Chinese folk
medicine.

Several studies within the last few years showed that RSM exhibits cardioprotective effects [Wu

W, 1992; Zou ZW, 1993 and Kuang P, 1995]. Also the ability of RSM to suppress platelet

aggregation and anti-thrombotic effects may contribute to improve cardio- or cerebral-circulation

[Chen WZ, 1984; Li CZ, 1984 and Kuang PG, 1991]. Our unpublished data showed that RSM

reduced both ischemic brain injury and leukocyte infiltration following cerebral ischemia-

reperfusion, may be partially mediated via an ATP-sensitive potassium channel (KATP)-linked

mechanism. Seven phenolic compounds have been isolated from the water-soluble extract of

RSM by Li et al. [Li NL, 1984] (Fig. 2) and have been reported to employ multiple
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pharmacological activities [Liu GT, 1992]. The activities of scavenging oxygen free radical and

inhibiting lipid peroxidation among the compounds were extensively studied [Li DY, 1995].

These phenolic compounds have a strong protective action against oxygen free radical induced

peroxidative damage [Xi SC, 1994 and Zhang X,1994]. They are the active principle of RSM

responsible for antioxidant activity and at least a part of the pharmacological bases for using

RSM for the clinical treatment of certain diseases. Based on the protective effects, it has been

proposed that RSM and its components may prevent apoptosis in response to pathophysiological

signals. In the next paragraph, an overview about apoptosis will be provided.

Fig. 2 Chemical structures of water-soluble components isolated from Radix Salviae Miltiorrhizae.
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1.3. Apoptosis

1.3.1. Introduction

Death of cells has aroused far less interest than other basic cellular processes such as proliferation

and differentiation. The relative neglect probably results at least in part from the wide prevalence

of an unjustifiably circumscribed and restricted notion of cell death as a degenerative

phenomenon produced by injury. This concept evolved early in the history of cellular pathology

[Virchow R, 1858] and has tended to dominate thinking about both the incidence and the

mechanisms of cell death ever since. In 1972 a new concept of cell death—apoptosis was firstly

proposed by Kerr et al [Kerr JF, 1972]. He described that apoptosis was an active, precisely

regulated, and energy requiring process that seemed to be orchestrated by a genetic program.

Herence the terms apoptosis and programmed cell death were interchangeable. Apoptosis can be

triggered by a variety extrinsic and intrinsic signals [Vaux DL, 1994]. This type of regulation

allows for the elimination of cells that have been produced in excess, that have developed

improperly, or that have sustained genetic damage.

1.3.2. The morphology of apoptosis

The morphology of cellular death is now distinguished into two types, apoptotic cell death and

necrotic cell death. Necrotic cell death is a pathologic form of cell death resulting from acute

cellular injury, which is typified by rapid cell swelling and lysis. In contrast, apoptotic cell death

is characterized by controlled autodigestion of the cells. Cells appear to initiate their own

apoptotic death through the activation of endogenous proteases. This results in cytoskeletal

disruption, cell shrinkage, and membrane blebbing. Electron microscopy shows that the structural

changes in apoptosis take place in two discrete stages (Fig. 3): the first comprises the formation

of apoptotic bodies, the second their phagocytosis and degradation by other cells. Apoptosis also

involves characteristic changes within the nucleus. The nucleus undergoes condensation as

endonucleases are activated and begin to degrade nuclear DNA. In many cell types, DNA is

degraded into DNA fragments the size of oligonucleosomes, whereas in others larger DNA

fragments are produced. Apoptosis is also characterized by a loss of mitochondrial function. The

dying cell maintains its  plasma membrane integrity. However, alterations in the plasma
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membrane of apoptotic cells signal neighboring phagocytic cells to engulf them and thus to

complete the degradation process. Cells not immediately phagocytosed break down into smaller

membrane-bound fragments called apoptotic bodies. An important feature of apoptosis is that it

results in the elimination of the dying cell without induction of an inflammatory response. In

contrast, necrotic cell death is associated with an early loss of  cell membrane integrity, resulting

in leakage of cytoplasmic contents and the induction of an inflammatory response [Wyllie AH,

1980].

Fig. 3 Diagram to illustrate the morphological features of apoptosis.
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1.3.3. Significance of apoptosis in diseases

It is now widely accepted that apoptosis is of central importance for the development and

homeostasis of metazoan animals. For example, apoptosis serves as a prominent force in

sculpting the developing organism [Hammer SP, 1971], as a major mechanism for the precise

regulation of cell numbers [Raff MC, 1992 and 1993], and as a defense mechanism to remove

unwanted and potentially dangerous cells, such as self-reactive lymphocytes [Cohen JJ, 1991],

cells that have been infected by viruses [Vaux DL, 1994 and  Debbas M, 1993], and tumor cells

[Williams GT, 1991]. Not surprisingly, the initiation of apoptosis is carefully regulated. Many

different signals that may originate either from within or from outside a cell have been shown to

influence the decision between life and death. These include lineage information, cellular damage

inflicted by ionizing radiation or viral infection, extracellular survival factors, cell interactions,

and hormones [Raff MC, 1992 and 1993, and Steller H, 1994]. These diverse signals may act to

either suppress or promote the activation of the death program, and the same signal may actually

have opposing effects on different cell types [Truman JW, 1984]. Recent evidence suggests that

the failure of cells to undergo apoptotic cell death might be involved in the pathogenesis of a

variety of human diseases, including cancer, autoimmune diseases, and viral infections [Bursch

W, 1992]. In addition, the inappropriate activation of apoptosis may also cause or contribute to a

variety of diseases, including acquired immunodeficiency syndrome (AIDS) [Banda NK, 1992],

neurodegenerative diseases, and ischemic stroke [Raff MC, 1993 and Martinou JC, 1994 ] (Fig.

4).

Diseases Associated with Inhibition of Apoptosis

1. Cancer
Follicular lymphomas
Carcinomas with p53 mutations
Hormone-dependent tumors

Breast cancer
Prostate cancer
Ovarian cancer

2. Autoimmune disorders
Systemic lupus erythematosus
Immune-mediated glomerulonephritis

3. Viral infections

Herpesviruses
Poxviruses
Adenoviruses
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Diseases Associated with Increased Apoptosis

1. AIDS

2. Neurodegenerative disorders

Alzheimer’s disease
Parkinson’s disease
Amyotrophic lateral sclerosis
Retinitis pigmentosa
Cerebellar degeneration

3. Myelodysplastic syndromes

4. Ischemic injury

Myocardial infarction
Stroke
Reperfusion injury

5. Toxin-induced liver disease

Alcohol

Fig. 4. Diseases associated with the induction or inhibition of apoptotic cell death.

1.3.4. Regulation of cell death: therapeutic potential

The realization that apoptosis represents an active, gene-directed mechanism has fostered

optimism that it may be possible to control apoptosis with the development of drugs that act

against the molecular components of the death machinery. Specific therapies designed to enhance

or decrease the susceptibility of individual cell types to undergo apoptosis could form the basis

for treatment of a variety of human diseases.

1.4. Flow channel technique

A computer controlled flow channel system (Elias-c-) based on photometric light transmission

measurements through cell monolayers was employed to investigate antioxidative capacities of

natural herbal drugs and compounds [Artmann GM, 1995 and 1996]. Reactive oxygen species

such as hydrogen peroxide (H2O2) are highly reactive molecules produced during the course of

normal cellular processes involving oxygen. Oxidants have the potential to create situations of

oxidative stress within cells by reacting with macromolecules causing damage to cellular

structures and functions [de Haan J, 1998]. Nature has established highly effective antioxidative
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defense mechanisms within cells themselves and within the lipid phase of the cell membrane

[Ursini F, 1985]. In addition to these, drugs and natural healing substances, in some cases

prescribed for completely different indications, act as highly effective antioxidative agents. A

flow channel technique was designed to investigate antioxidative capacities of natural herbal

drugs and compounds. In an automated form of flow channel system (analyzer Elias-c-), the

analyzer is highly accurate and sensitive to evaluate RBC-stiffness and -relaxation time as well as

RBC-EC adhesion. When RBC prepared as monolayers on a coverslip were treated with

hydrogen peroxide, the stiffness enhanced time-dependently whereas the relaxation time declined

[Schrier SL, 1992 and Artmann GM 1993]. Also hydrogen peroxide alters the physical state and

function of the plasma membrane of endothelial cells and facilitates RBC adhesion [Block ER,

1991]. Antioxidants as shown in this study counteract these effects. In contrast to other

biochemical or physical techniques to study the antioxidative capacity of drugs [Stern A, 1985

and Pincemail J, 1989], this method enables investigations on living cellular structures, i.e.,

above the molecular and below the animal experiment level.

Two herbs were chosen in the present study. (1) Tetramethylpyrazine (ligustrazine, TMP) is a

mono-molecular metabolically active constituent of a Chinese herb Ligusticum wallichii

Franchat. TMP is available commercially in China for treatment of a variety of vascular diseases,

notable ischaemic stroke disease [Chen KJ, 1992], and pulmonary hypertension secondary to

chronic obstructive pulmonary disease (COPD) [Peng W, 1991 and Liu SM, 1994]. TMP is

known to act as an antioxidant by scavenging free radicals [Zhang ZH, 1994]. The therapeutic

effects of TMP are likely to be via its action as a vasodilator [Sutter MC, 1993], inhibition of

platelet aggregation [Liu SY, 1994], protection of endothelial cells against low density

lipoprotein-induced damage [Li YJ, 1994]. (2) Dhpl (3,4-dihydroxyphenyl lactate), as one

component of RSM was used in RBC-EC adhesion studies. Since RBC and EC could be the

direct damaging targets of oxygen free radical in blood flow, and red blood cell aggregability,

deformability and adherence to endothelial cells play a major role in hemodynamics, particularly

in small blood vessels, as well as their impairment has been linked to microcirculatory disorders

in numerous pathological states [Hovav T, 1999]. Thus RBC and EC were chosen as in vitro

model systems for the flow channel assay. The efficacy of Dhpl to inhibit hydrogen peroxide
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induced damage leading to RBC-EC adhesion was compared with Vitamin E, a well-known

antioxidant.

1.5. Aim and importance of this study

In this thesis, the activities of two components of RSM, PAC and PAL, in cell protection from

apoptosis were investigated. RSM is being used in traditional Chinese medicine as a treatment for

cardiovascular and cerebrovascular diseases. Recent studies have indicated that RSM exhibited

cardio- or cerebro-protective effects. However, how exactly RSM and its components exert their

protective actions and the molecular basis of those effects are not well known yet. Based on the

protective effects, it has been proposed that RSM and its components may prevent programmed

cell death in response to pathophysiological signals. Therefore, the study was to analyze the

effect of PAC and PAL on apoptosis, and to elucidate the molecular basis of their anti-apoptotic

effect. In addition, a computer controlled flow channel system was employed to examine

antioxidative capacity of TMP and Dhpl.
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2. Materials and Methods

2.1. Buffers and Solutions

2.1.1. Routine buffers and solutions

All buffers and solutions were prepared under sterile condition by filters or autoclave.

PBS (10x) 40 g NaCl pH 7.4
1 g KCl
5.8 g Na2HPO4
1 g KH2PO4 in 500ml d H2O

PBS 50 ml 10x PBS in 500ml d H2O

HEPES buffer (10x) 40 g NaCl pH 7.55
1.5 g KCl
11.9 g HEPES
10 g Glucose in 500ml d H2O

HEPES buffer 55.6 ml 10x HEPES buffer in 500ml d H2O

HEPES transport buffer 55.6 ml 10x HEPES buffer in 500ml d H2O
4 ml Fungizone
4 ml penicillin-streptomycin solution

2.1.2. Cell Culture

Collagenase I (0.2%) 0.2 g Collagenase I pH 7.55

Store in –20°C in 100 ml 1x HEPES buffer
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EDTA (0.02%) 0.02 g EDTA pH 7.55

1.5 ml BSA (35%) in 100 ml PBS

Gelatin (0.2%) 0.2 g Gelatin in 100 ml PBS

2.1.3. Transformation

Ampicillin solution 50 mg ampicillin-Na-salt per ml H2O

Sterile filtration, store in –20°C

LB-medium 10 g Bactotrypton

5 g Bacto-Yeast Extract

10 g NaCl in 1 L d H2O

(for LB-plates: 15g Agar per Liter)

Mini prep Solution I 50 mM glucose

25 mM Tris·Cl (pH 8.0)
10 mM EDTA (pH 8.0)

Mini prep Solution II 10 µl 10N NaOH

440 µl d H2O

50 µl 10% SDS

Mini prep Solution III 5 M potassium acetate 60 ml

Glacial acetic acid 11.5 ml

H2O 28.5 ml

2.1.4. Western Blotting

Nonfat milk buffer (10%) 10 g milk powder in 100 ml PBS
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Antibody I (1:1000) 10 µl IκB-alpha in 10 ml 10% milk buffer

Antibody II (1:300) 40 µl anti-rabbit-AP-IgG  in 12 ml d H2O

2.1.5. EMSA

Nucleuprep lysis buffer I 500 µl 1M HEPES-NaOH (pH 7.9)

500 µl 1M KCl

100 µl 0.5M EDTA (pH 8.0)

5 µl 0.1M EGTA in 50 ml d H2O

Nucleuprep lysis buffer II 1 ml 1M HEPES-NaOH (pH 7.9)

4 ml 5M NaCl

10 µl 0.5M EDTA (pH 8.0)

500 µl 0.1M EGTA in 50 ml d H2O

TBE (10x) 54 g Tris

27.5 g Borsäure

40 ml 0.5M EDTA (pH 8.0) in 500 ml d H2O

5xEMSA binding buffer 25 mM HEPES pH 7.8

25 mM MgCl2

250 mM KCl

1 mM EDTA

25 mM DTT

50 % glycerin

Loading buffer 80% Formamid

10 mM NaOH
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1 mM EDTA

0.1% Xylene cyanol blue

0.1% Bromphenolblau

Gel buffer 12 ml 30% PAA

1.5 ml 10x TBE

add 70 ml d H2O

75 µl TEMED

300 µl APS

Running buffer 12.5 ml 10x TBE in 500 ml d H2O

2.1.6. Flow Channel Assay

HEPES+ buffer 0.5 g glucose in 500 ml HEPES buffer

HEPES++ buffer 0.5 g bovine albumin in 500 ml HEPES+ buffer

100µM H2O2 11.4 µl 30% H2O2 in 10ml DMEM

degas for 5 min, then 1:100 dilute

in DMEM

2.2. Chemicals

Plasmids NF-κB Cis-reporter plasmid (Stratagene, Amsterdam,

Netherland) was used in luciferase assay to analyse NF-κB

transcriptional activity. As a control for transfection efficiency

pRL-TK plasmid (Promega, Mannheim) was together used with

NF-κB plasmid.
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Amersham, Braunschweig PolydIdC

Bio Rad, München PVDF membrane

Boehringer Mannheim RIPA buffer set

Chemicon, Hofheim/Ts Sheep anti-rabbit IgG-alkaline phosphatase secondary antibody

Falcon, Heidelberg Cell culture articles, ELISA-plates

Kodak, Rochester (USA) X-Omat imaging film

Macherey-Nagel, Dueren Nucleobond AX Kit for maxi-prep

Merck, Darmstadt APS, Borsäure, EDTA, EGTA

Novex, Frankfurt am Main Bluemarker, running buffer and transfer buffer for western blot

PAA, Martinsried Penicillin-Streptomycin-L-glutamin solution, culture medium

Pierce, Bonn BCA protein assay kit

Promega, Mannheim Dual-Luciferase reporter assay kit

NF-κB Oligonucleotide (5’-AGTTGAGGGGACTTTCCCAGG-

3’)

Roche, Mannheim Cell proliferation kit II (XTT), 10% NP-40, protease-inhibitor-

cocktail tablet
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Santa Cruz, Ismaning IkBα antibody (C-21), NF-κB p50 antibody (C-19), NF-κB p65

antibody (C-20)

Serva, Heidelberg EDTA, Nonfat milk powder, Bovine albumin

Sigma, Deisenhofen Fetal calf serum, Dulbecco’s PBS, TNF-α, ActD, MG 132,

protocatechuic acid, protocatechuic aldehyde, BCIP/NBT, 30%

PAA, TEMED, Vitamin E, 30% H2O2

Upstate, Lake Placid, USA NF-κB inhibitory ligand

2.3. Methods

2.3.1. Cell culture

Jurkat cells (ATCC TIB-152) were maintained in RPMI 1640 supplemented with penicillin (400

U/ml), streptomycin (50 µg/ml), L-glutamine (300 µg/ml) and 10% fetal calf serum (FCS) and

splitted 1:10 every three days.

Human umbilical cord vein endothelial cells (HUVEC) derived from umbilical cord were isolated

as described previously [Jaffe EA, 1973]. In brief, the vein was washed with 20 ml HEPES buffer

to remove the blood. After washing, the vein was incubated for 15 min at 37°C in an incubator

after injecting 10 ml of collagenase solution (1 mg/ml). The vein was then rolled gently and the

collagenase solution containing the cells was washed off with 20 ml Ham’s F-12/IMDM medium

(without serum). The complete 30 ml of cell suspension was centrifuged at 1100 U/min for 10

min without break. The pellet was resuspended and cultivated in a gelatin-coated flask with 4 ml

Ham’s F-12/IMDM medium supplemented with 40,000 units penicillin/streptomycin/L-

glutamine solution and 20% human serum under a humidified atmosphere of 5% CO2 at 37°C.

Cells were detached for subcultivation or assay with 0.2% collagenase, 0.02% EDTA in HEPES-

buffer and only used for experiments at passages 2 to 4.
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Bovine aortic endothelial cells (BAEC) were isolated from aortas of freshly slaughtered cow

[Zink S, 1995]. The lumen of the aortas was washed with PBS under sterile conditions and the

adventitia was removed. The remaining part was immersed completely in 30 ml of dispase

solution (0.5 mg/ml) for 15 min at 37°C. Afterwards the aortas were put on an aluminum tray and

the BAEC were scraped off. The cells were then plated in a gelatin coated 6-well dish. BAEC

were cultivated in 5% CO2 in Dulbecco’s modified Eagle’s medium (Sigma Chemical Co,

Aldrich, Germany) supplemented with 10% fetal calf serum. Subcultures were harvested with

trypsin and splitted at a 1:3 ratio into cell culture flasks. Cells at passage 3-12 were used for

experiments.

2.3.2. Cell stimulation

In the experiments, different stimulators were applied on cells. Their concentration were

respectively:

TNF-α 10 ng/ml

ActD 1 µg/ml

MG132 5 µg/ml

NF-κB inhibitory peptide 50 µg/ml

PAC 100 µM, 1 mM (for XTT HUVEC)

50 µM, 100 µM, 500 µM, 1 mM (for XTT Jurkat)

100 µM (for other experiments except XTT)

PAL Same as PAC

TMP 88.5 µM

Dhpl 50 µM

Vitamin E 50 µM

H2O2 2 mM and 100 µM
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2.3.3. Cell viability Assay (XTT Assay)

For viability assays, cells were seeded into 96-well plates at a density of 7500 cells/well in 2%

serum medium. By the following day, cells had reached 80% confluence and were washed with

serum-free medium. Various concentrations of PAC / PAL as indicated were applied to the cells

either 2 hours before TNF-α treatment (10ng/ml) or simultaneously. PAC/PAL was either left on

the cells during TNF-α treatment or washed away before. For MG132 treatment, MG132 (5

µg/ml) was applied 30 min before PAC/PAL addition. After cell treatment, 50µl of the XTT

labeling mixture (final XTT concentration 0.3mg/ml), prepared as manufacturer’s description,

was added to each well. The microtiter plate was incubated for 4 h in a humidified atmosphere.

The spectrophotometrical absorbance of the samples was measured using a ELISA reader. The

wavelength to measure absorbance of the formazan product was between 450 and 500 nm.

2.3.4. Morphology

NF-κB inhibitory peptide is a cell-permeable peptide which carries a functional cargo

representing the nuclear localization sequence of NF-κB p50. It can be applied to inhibit nuclear

translocation of NF-κB  in a concentration-dependent manner [Lin YZ, 1995]. 45,000 Huvec

cells per slide were plated onto 4-well slide coated with 0.2% gelatin and allowed to attach

overnight. At the following day, the nearly confluent cells were pre-incubated with PAC (100

µM) for 2 hours and then exposed in TNF-α (10 ng/ml) in the presence of ActD (1 µg/ml) for

another 2 hours. NF-κB inhibitory peptide (50 µg/ml) was added to the cells 15 min prior to PAC

stimulation. Morphology of the cells was analyzed under contrast microscope.

2.3.5. Transformation

Bacterial transformation is the process by which bacterial cells take up naked DNA molecules or

plasmid DNA. If the foreign DNA has an origin of replication recognized by the host cell DNA

polymerases, the bacteria will replicate the foreign DNA along with their own DNA. When

transformation is coupled with antibiotic selection techniques, bacteria can be induced to uptake

certain DNA molecules, and those bacteria can be selected for that incorporation. Bacteria which
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are able to uptake DNA are called "competent" and are made so by treatment with calcium

chloride in the early log phase of growth. The bacterial cell membrane is permeable to chloride

ions, but is non-permeable to calcium ions. As the chloride ions enter the cell, water molecules

accompany the charged particle. This influx of water causes the cells to swell and is necessary for

the uptake of DNA. The exact mechanism of this uptake is unknown. It is known, however, that

the calcium chloride treatment can be followed by heat. When E. coli are subjected to 42°C heat,

a set of genes are expressed which aid the bacteria in surviving at such temperatures. This set of

genes are called the heat shock genes. The heat shock step is necessary for the uptake of DNA.

100 µl competent bacteria were combined with 0.3 ~1 µl plasmid (NF-κB -luc plasmid: 1.56

µg/µl, pRL-TK plasmid: 1.99 µg/µl) and first incubated for 30 min on ice and then incubated at

42°C for 90 seconds. After the heat shock step, the mixture was resuspended in 1 ml LB and

incubated at 37°C for 30~60 min in a shaking incubator. The transformed mixture was

centrifuged at 3000 U/min for 5 min. The appropriate volume of the pellet suspension was

spreaded gently over the surface of LB- ampicillin –agar plate and incubated over night.

2.3.6. Mini-Prep

For the isolation of plasmid-DNA the standard alkaline lysis purification method was used

[Sambrook J, 1989]. The standard method for the miniprep isolation of plasmid DNA includes

the same general strategy as the large scale isolation. Generally, smaller aliquots of antibiotic

containing liquid media inoculated with plasmid-containing cell colonies are incubated in a 37°C

shaker for 12-16 hours. After collecting the plasmid containing cells by centrifugation, the cell

pellet is resuspended in a hypotonic sucrose buffer. The cells are successively incubated with an

RNAase-lysis buffer, alkaline detergent, and sodium acetate. The lysate is cleared of precipitated

proteins and membranes by centrifugation, and the plasmid DNA is recovered from the

supernatant by isopropanol precipitation.

To perform mini-prep, a single Bacterial colony was transferred into 5 ml LB-ampicillin medium

in a loosely capped 15 ml tube and incubated overnight at 37°C with vigorous shaking. 1.5 ml of
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the culture was centrifuged at 12000 g for 5 min. The bacterial pellet was resuspended in 100 µl

ice-cold Solution I and incubated no longer than 5 min on ice. 200 µl of freshly prepared Solution

II was added by inverting the tube rapidly 5 times. 150 ml Solution III was immediately added

and the tube was vortexed for 10 seconds, and then stored on ice for 3~5 min. The contents were

centrifuged and the proteins in the supernatant was extracted with an equal volume of

phenol:chloroform (1:1). 900 µl ethanol was used to precipitate the plasmid DNA. The dry DNA

pellet was dissolved in 10 µl H2O with RNAase (100 µg/ml).

2.3.7. Maxi-Prep

Large-scale preparations of plasmid DNA was preformed by using Maxi-Prep-Kit from

Macherey-Nagel (Dueren). The procedure was following the manufacturer’s description. The

concentration of the plasmid DNA was determinated by measuring its OD260 value.

2.3.8. Gel electrophoresis to analyze plasmid DNA

To analyze the DNA by cleavage  with restriction enzymes, 1 µl of the DNA solution was

removed from Mini /Maxi-prep and added to a fresh microfuge tube containing 1 unit of the

desired restriction enzyme, 1µl of the 10x restriction enzyme buffer and water. The total volume

was 10 µl in the microfuge. The reaction was incubated for 1 h at 37°C, and then loaded in a

0.8% Agarose gel. Electrophoresis was carried out at 120 V for 45 min. At the end of the run, the

gel was removed from the tank and soaked in ethidium bromide solution for 20 min staining and

then analyzed.

2.3.9. Transient transfection

2x 106 cells were transiently transfected with 5µg NF-κB -luc plasmid using the electroporation

method according to the manufacturer’s instructions. Briefly, the cells were harvested and

centrifuged at 300g x 10 min. The cell pellet was resuspended in 100 µl PBS to a concentration

of 2x 107 and kept on ice. Each 2x 106 cells were combined with 5 µg NF-κB -luc plasmid and
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0.2 µg pRL-TK as a control for transfection efficiency in 100 µl solution B, then the sample was

transferred immediately into a 2 mm cuvette. The cuvette was inserted into the cuvette holder and

program 3A was applied. After transfection, the cuvette was immediately rinsed with 400 µl

complete medium. Then 2x 106 transfected cells were divided into 2 wells of a 6-well plate. After

transfection the cells were cultivated for 24 hours and then 100 µM PAC was applied for various

periods of time. The cells were harvested by incubation in passive lysis buffer. Firefly and

Renilla luciferase activities were determined using the DualLuc substrates.

2.3.10. Preparation of whole cell lysates

4x105 Huvec or 1x106 cells grown in T-25 flasks were treated with reagents for the times

indicated, washed twice with ice-cold PBS, and harvested in 100µl RIPA cell lysis buffer

containing 50mM Tris-HCl, 150mM NaCl, 1% Nonidet P40, 0.5% Natriumdesoxycholat, 0.1%

SDS and protease-inhibitor-cocktail tablet. The cells were incubated for 15 min on ice and then

centrifuged at 15,000 g for 10 min. The supernatant was recovered. Protein concentration was

determinated by using BCA protein assay kit.

2.3.11. Western blotting

8 µg per each lane of RIPA-cell lysate was separated on a 4-12% SDS-PAGE gradient gels and

subsequently blotted onto a PVDF membrane. After blocking for 1 hour with 10% nonfat dry

milk/ PBS, the membrane was incubated for 16 hours with the specific antibody against IkB-α

(1:1000). Then the membrane was washed three times in PBS, incubated for 1 hour with an

alkaline phosphatase-coupled secondary antibody (anti-rabbit) and then washed again. For

detection NBT / BCIP staining was used.
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2.3.12. EMSA

2.3.12.1. Preparation of nuclear lysates

To analyze nuclear DNA-binding proteins such as transcription factors, nuclear protein need to

be isolated from the cells. After cell stimulation, the cells were collected by scraping from T-75

flasks and washed 2 times with PBS. The cells were then added with 400 µl Lysis buffer I and

incubated for 15 min on ice. 25 µl 10% NP-40 were added to the cells and mixed by short

vigorous shaking. The cells were then centrifuged (10000 U/min, 2 min) and the pellet was

resuspended with 50µl lysis buffer II and incubated with shaking for 15 min at 4°C. Finally the

contents were centrifuged at 4°C 13000 U/min for 10 min and the supernatant containing nuclear

protein (1-2 µg/µl) was aliquoted. Nuclear extracts were either used immediately or stored at –

70°C. The protein content of the extract was measured by using BCA protein assay kit.

2.3.12.2. EMSA

DNA-binding proteins can be measured quantitatively with the electrophoretic mobility shift

assay (EMSA), which also is referred to as the gel-shift or band-shift assay. In this assay, the

electrophoretic mobility of a radiolabeled DNA fragment is determined in the presence and

absence of a sequence-specific DNA-binding protein. Protein binding generally reduces the

mobility of a DNA fragment, causing a shift in the location of the fragment band detected by

autoradiography.

Gel shifts were performed as described previously [Bosserhoff AK, 1996]. 1 ng (10000cpm) 32P-

end-labeled double –stranded NF-κB oligonucleotide was incubated with 4-6 µg nuclear extract,

1 µl ploy-dIdC and 4 µl 5xEMSA buffer in room temperature for 10 min. Samples were loaded in

a 6% native PAA gel. Competition experiments were performed using 50 fold excess of the

unlabeled binding site, for supershifting experiments anti-p50 and anti-p65 antibodies were used.

The gel was dried by Whatman-paper and autoradiographed over night.
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2.3.13. Flow Channel Assay

2.3.13.1. Chinese medicine compounds

Tetramethylpyrazine (ligustrazine, TMP) is the active constituent of the Chinese herb Ligusticum

wallichii Franchat. TMP used in this study was available as injection ligustrazini hydrochloride

(20 mg/ml, sterile injection, M: 226 g/mol, Fourth Pharmaceutical Co., Beijing, China). TMP (20

mg/l equals 88.5 µM) was dissolved in HEPES buffer and it did not affect the osmolarity of the

buffer.

Dhpl (3,4-dihydroxyphenyl lactate, M: 197.17 g/mol) is a water-soluble component of RSM.

Dhpl was synthesized by Shanghai Medical University, Dept. of Pharmacology and purchased as

sterile injection (10 mg/ml). The purity was higher than 95% as quantitated by spectrum analysis.

To study its effect on RBC-EC adhesion, a concentration of 50 µM Dhpl was chosen.

2.3.13.2. Antioxidative capacity of Tetramethylpyrazine to RBC

Blood and RBC monolayer preparation

About 100 µl of blood was withdrawn from the finger tips or ear lobe of young healthy donors

with heparinized micropipettes and dispersed in 10 ml of HEPES. RBC were harvested after

centrifugation at 3500 rpm for 10 min. The RBC sediment was withdrawn and washed for three

times with HEPES. A 20 µl aliquot was re-suspended in 50 µl HEPES. 20 µl of this final RBC

suspension were pipetted onto the bottom of the flow chamber and allowed to settle for 10

minutes. After flushing away non-adhered RBC with HEPES+, the RBC monolayer preparation

was ready for use.

Apparatus

The automated Elias-c-analyzer (Fig. 5) consists of a microscope, a computer-controlled pump, a

flow chamber and a microprocessor unit. The stainless steel flow chamber forms a flow channel

with a rectangular cross-section (width, 14mm; length, 55 mm). The assembly of the chamber

forms a flow channel with a height of 0.228 ± 0.009 mm. A pulsatile reduced suction pump is
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controlled by computer and produced a stationary maximum wall shear stress of 3 Pa. For

relaxation time measurements, flow stoppage is accomplished within 10ms by closure of a micro-

valve [Artmann GM, 1995 and 1996].

Fig. 5 Original photograph of the automated Elias-c-analyzer based on the Microscopic Photometric Monolayer
Technique.

RBC stiffness and relaxation time measurements

RBC stiffness (in Pa) is defined as the ratio of 0.25 Pa wall shear stress to RBC elongation at

0.25 Pa. The relaxation time (in ms) is calculated from the dynamic shape recovery curves after

flow stoppage. The relaxation time is taken when the photometrical signal has declined to 50% of

the previous RBC elongation at 2.0 Pa shear stress [Artmann GM, 1995].

Time sequence and experimental conditions

RBC stiffness and relaxation time were recorded subsequently with the same RBC mono- layer

for each donor. The total investigation time per monolayer was 72 min. Exposure times and

sequences of exposure to H2O2 and TMP, respectively, are given in Fig. 6.
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total time 2’ 22’ 42’ 72’

time per step 2 min 20 min 20 min 30 min

controls HEPES++ HEPES++ HEPES++ HEPES++

H2O2 (2 mM) HEPES++ H2O2 HEPES++ HEPES++

TMP

(88.5µM)

HEPES++ H2O2 TMP TMP

Fig.6 Time protocol and steps of exposure to hydrogen peroxide and TMP, respectively.

2.3.13.3 Effects of Dhpl and Vitamin E on RBC-EC adhesion

Dhpl and Vitamin E preparation and EC treatments

Hydrogen peroxide (H2O2, 30%) and +-α-Tocopherol acetate (Vitamin E) were purchased from

Sigma. Vitamin E was first dissolved in 98% ethanol as stock solution, with a final ethanol

concentration of 0.1% in culture medium. Vitamin E and Dhpl were freshly prepared at 50 µM in

cell culture medium prior to use.

Pre-treatment studies: EC were first incubated with 50 µM Dhpl or 50 µM Vitamin E,

respectively, for 1 h at 37°C at 5% CO2 and then activated by 100 µM H2O2 for 30 min.

Post-treatment studies: EC were first activated with 100 µM H2O2 for 30 min and then incubated

with 50 µM Dhpl or 50 µM Vitamin E, respectively, for 1h.

Before adhesion studies were carried out, the EC were gently rinsed for three times with DMEM

without FCS.

RBC preparation and treatment

Blood samples were withdrawn from the fingertip of healthy human donors. The RBC were

centrifuged, washed 3 times with DMEM and resuspended in DMEM (30% hematocrit). Before

the adhesion test, the RBC were treated with 100 µM H2O2 for 30min.



28

Evaluation of RBC – EC adhesion

The EC which were cultured on microslides, were placed into a flow chamber. 20 µl of H2O2

treated RBC suspension was pipetted on top of the EC monolayer covering the EC layer. RBC

were allowed to settle at no flow for 15 min onto the EC within the closed flow chamber.

Subsequently, a wall shear stress of 0.04 Pa was applied for 5 min to wash away non-adherent

RBC. The remaining RBC were counted in random fields of the EC monolayer. RBC-EC

adhesion was tested at three different modes of exposure to H2O2:

1) only RBC were treated  2) only EC were treated  3) both EC and RBC were treated.



3. Results

3.1. Analysis of PAC on TNF-α induced apoptosis

Acute or chronic ischemia resulting from cardio- and cerebrovascular diseases leads to apoptotic

cell death. Since anti-apoptotic therapies have been proposed to limit tissue damage, we have

therefore investigated whether PAC, a component of the Chinese Herb RSM, could potentially

protect cells from apoptosis.

3.1.1. PAC blocks TNF-α induced cytotoxicity

TNF-α is one of the most potent inducers of apoptosis [Rath PC, 1999]. Whether PAC modulates

TNF-α induced apoptosis is investigated. In the presence of ActD (1 µg/ml), TNF-α (10 ng/ml,

16 hours) profoundly sensitized Huvec cells to apoptosis, whereas 2 hours pretreatment with

PAC partially protected the cells from death (Fig. 7).

Fig. 7 Morphological analysis of the effect of PAC on TNF-α induced apoptosis in Huvec and Jurkat cells.
Pretreatment of Huvec cells with PAC increased resistance to cell death caused by subsequent treatment
with TNF-α (10 ng/ml) in the presence of actinomycin D (1 µg/ml). (a) normal Huvec cells after 16 hours of
incubation in culture medium (magnification, ×170). (b) confluent cells were treated with TNF-α for 16
hours in the presence of actinomycin D. (c) confluent cells were pretreated with 1 mM PAC for 2 hours
followed by TNF-α for 16 hours in the presence of actinomycin D.
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To quantify the number of cells undergoing apoptosis, the XTT dye reduction assay was

performed (Fig. 8).

Fig. 8 Dose-dependent protection of Huvec cells (1) and Jurkat cells (2) from apoptosis was measured using XTT
assays to analyze viability of the cells. PAC was applied to the cells 2 hours before TNF-α treatment (10
ng/ml) and either left on the cells during TNF-α treatment or washed away before or treated with PAC
simultaneously with the TNF-α treatment. As a control non treated cells and cells treated with TNF-α alone
were used. In the case of Huvec cells apoptosis was always induced by adding TNF-α together with
actinomycin D (1 µg/ml). Data indicated the means of 6 and 4 individual experiments in Huvec and Jurkat
cells, respectively, and each experiment was done in triplicate (+ vs. Control, * vs. TNF-α).
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16 hours incubation of Huvec and Jurkat cells with TNF-α (10 ng/ml) resulted in 55% and 37%

cell death, respectively. PAC was shown to inhibit TNF-α induced apoptosis in both cell types.

The protection was seen when PAC was added 2 hours before or simultaneously with the TNF-α

but not when PAC was washed from the cells after two hours before TNF-α treatment. Further,

the effect on Jurkat cells was dose-dependent. Maximal protection by treatment with 1 mM PAC

resulted in 44% more living cells in Huvec and 380% in Jurkat than TNF-α treated cells.

3.1.2. PAC activates DNA-binding ability of NF-κB proteins

Resistance to TNF-α cytotoxicity can be achieved through different signaling pathways [Guo

YL, 1999]. Recently an activated form of NF-κB has been proposed to switch on transcription of

yet unidentified anti-apoptotic genes and therefore in development of resistance to TNF-α [Natoli

G, 19981]. To analyze the molecular mechanism of PAC protection from apoptosis induced by

TNF-α, activation of NF-κB was analyzed. The nuclear extracts from 100 µM PAC-treated

Huvec and Jurkat cells were examined for DNA-binding ability by EMSA. The results revealed

PAC to activate DNA-binding of NF-κB proteins (Fig. 9).

Fig. 9 EMSA analyzed DNA binding of NF-κB after PAC treatment. Huvec (A) and Jurkat cells (B) were treated
with PAC (100 µM) for the indicated times. Then nuclear proteins were extracted and assayed versus a non
PAC treated control.The amount of active NF-κB in the nucleus of the cells was assayed by binding to an
oligonucleotide harboring the conserved NF-κB binding motif.
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Maximal activation of NF-κB bandshift activity was seen within 30 min in both cell types.

Supershift assays using antibodies to either the p50 or p65 subunits of NF-κB verified the

specificity of the shifting NF-κB complex in both Huvec and Jurkat cells (Fig. 10).

A: B:

Fig.10 Supershift assay verified the specificity of the shifting NF-κB complex in both Huvec and Jurkat cells.

3.1.3. Activation of NF-κB controlled reporter gene by PAC

3.1.3.1 Purification of NF-κB luciferase reporter gene by Mini and Maxi prep

NF-κB luciferase reporter gene construct belongs to a cis-reporting system, which is designed for

rapid assessment of the in vivo activation of many intracellular transduction pathways. Each cis-

reporter plasmid contains the luciferase reporter gene driven by a basic promoter element (TATA

box) joined to the tandem repeats of AP-1, CRE, SRE, NF-κB, p53 or SRF binding elements.

Increased luciferase expression indicates either direct or indirect transcripitional activation (Fig.

11).
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Fig.11 Diagram of cis-reporter backbone.

NF-κB cis-reporter plasmid was digested by XbaI after purification by Mini/ Maxi-prep. 2 bands

(about 1.4 kb and 4 kb) appeared on 0.8% agarose gel. pRL-TK plasmid as a control of

transfection efficiency was digested by Bgl II/ Hind III. 2 bands (760 bp and 3285 bp) appeared

on 0.8% agarose gel (Fig. 12).

Fig. 12 Digestion of NF-κB cis-reporter plasmid on 0.8% agarose gel.
4 kb

  1.4 kb
3285bp
760bp
NF-κB
pRL-TK



34

3.1.3.2. Effects of PAC on activation of NF-κB controlled reporter gene

NF-κB activation could be determined in luciferase assays using a trimerized NF-κB site

controlling a luciferase reporter (Fig. 13).

Fig. 13 Activation of NF-κB after PAC treatment was analyzed by luciferase assay. Cells (A: Huvec B: Jurkat cells)
were transfected with 5µg NF-κB -luc plasmid using electroporation. As a control for transfection efficiency
pRL-TK was used. 24 h after transfection, the cells were subsequently treated with PAC (100µM) for 30
min, 1 hour, 2 hours and 4 hours. Non PAC treated cells were used as control. Results show the means of
duplicate in a single experiment and represent three separate experiments.
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Cells were transiently transfected with a NF-κB dependent reporter, and the activity of NF-κB

was then measured after PAC treatment. The results showed that the activity of NF-κB was

significantly enhanced within 30 min of PAC stimulation.

3.1.4. Inhibitor of proteasome function suppresses the protective effect of PAC

The importance of NF-κB activation for PAC protection from apoptosis was further analysed by

the use of MG132, a proteasome inhibitor. MG132 inhibits NF-κB activation by preventing

degradation of IkB, the endogeneous inhibitor of NF-κB. Addition of MG132 in the experiments

led to loss of PAC protection from apoptosis (Fig. 14A and 14B).

Fig. 14A Inhibition of NF-κB activation by MG132 suppressed PAC function in Huvec cells. The protective effect
of PAC on TNF-α induced apoptosis was analyzed in the presence of MG132 (5 µg/ml). In XTT assays
cell viability was measured after adding MG132 to the cells 30 min before PAC treatment. Viability was
expressed as percentage of untreated cells. Data show the means of triplicate in a single experiment and
represent 6 individual experiments (+: vs. Control, *: vs.TNF, $: vs. 2h pretreat+16h TNF).
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Fig. 14B Inhibition of NF-κB activation by MG132 suppressed PAC function in Jurkat cells. The protective effect
of PAC on TNF-α induced apoptosis was analyzed in the presence of MG132 (5 µg/ml). In XTT assays
cell viability was measured after adding MG132 to the cells 30 min before PAC treatment. Viability was
expressed as percentage of untreated cells. Data show the means of triplicate in a single experiment and
represent 4 individual experiments (+: vs. Control, *: vs.TNF, $: vs. 2h pretreat+16h TNF).

3.1.5. Inhibition of NF-κB activation by NF-κB inhibitory peptide blocks PAC
function

NF-κB inhibitory peptide, a cell-permeable peptide bearing a functional domain of NF-κB p50

(Fig. 15), was reported to inhibite nuclear translocation of NF-κB in cultured endothelial cells

stimulated with different agonists [Li YZ ,1995]. Therefore, we examined whether activation of

NF-κB by PAC could be blocked by NF-κB inhibitory peptide.
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1AAVALLPAVLLALLAPVQRKRQKLMP26

Fig.15 Sequence of NF-κB inhibitory peptide (single-letter amino acid code). The nuclear localization sequence of
NF-κB p50 is printed in bold face.

The results indicated that NF-κB inhibitory peptide inhibited PAC protection from TNF-α

induced apoptosis (Fig. 16). Taken together these results provided clear evidence that TNF-α

induced apoptosis was not suppressed by PAC when NF-κB activation was inhibited.

Fig. 16 Inhibition of NF-κB activation by NF-κB inhibitory peptide suppressed the anti-apoptotic effect of PAC.
Nearly confluent Huvec cells were pre-treated with PAC (100µM) for 2 hours and then exposed to TNF-α
(10 ng/ml) in the presence of actinomycin D (1 µg/ml) for 2 hours. NF-κB inhibitory peptide (50 µg/ml)
was added to the cells 15 min prior to PAC stimulation. Morphology of the cells was analyzed under
contrast microscope. (A): non treated Huvec. (B): Huvec cells were treated with TNF-α (10ng/ml) in the
presence of actinomycin D (1 µg/ml) for 2 hours. (C): Huvec cells were pre-treated with PAC (100µM) for
2 hours and subsequently exposed to TNF-α (10 ng/ml) in the presence of actinomycin D (1 µg/ml) for 2
hours. (D): NF-κB inhibitory peptide (50 µg/ml) was added to the Huvec cells 15 min prior to PAC
stimulation, and then the cells were treated as indicated for C.
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3.1.6. PAC activates NF-κB through degradation of IkBα

Next we aimed to analyze the molecular pathway of NF-κB activation by PAC. Translocation of

NF-κB into the nucleus is proceeded by phosphorylation and then ubiquitination-dependent

degradation of IkB. To determine whether the protective action of PAC was due to an effect on

IkBα degradation, Huvec and Jurkat cells were treated with 100 µM PAC for the times indicated

and then subjected to immunoblotting. A 37 kD protein (Fig. 17) was readily detected in

cytoplasmic extracts from unstimulated cells with peptide anti-serum raised against the carboxyl

terminus of IkBα.

IκBα (37KD)

1-72

73-242

243-317

Amino-terminal Central region consisting
of 5 ankyrin domains

Carboxyl-terminal

Origin single-letter amino acid code of IκBα

1 mfqaaerpqe wamegprdgl kkerllddrh dsgldsmkde eyeqmvkelq eirlepqevp

61 rgsepwkqql tedgdsflhl aiiheekalt mevirqvkgd laflnfqnnl qqtplhlavi

121 tnqpeiaeal lgagcdpelr dfrgntplhl aceqgclasv gvltqscttp hlhsilkatn

181 ynghtclhla sihgylgive llvslgadvn aqepcngrta lhlavdlqnp dlvslllkcg

241 advnrvtyqg yspyqltwgr pstriqqqlg gltlenlqml pesedeesyd teseftefte

301 delpyddcvf ggqrltl

Fig. 17 Structure and sequence of IkBα.
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Degradation of IkBα was noted within 10 min of PAC treatment and IkBα almost completely

disappeared within 4 hours and 1 hour of PAC stimulation in Huvec and Jurkat cells,

respectively. IkBα protein reappeared thereafter in the cytoplasm (Fig. 18). These findings

correspond to the increase in DNA binding of NF-κB and suggest that PAC activates NF-κB by

inducing IkBα degradation and thereby leads to rapid translocation of NF-κB from the cytoplasm

into the nucleus.

A

B

Fig. 18 IkBα degradation after PAC treatment was determined by western blotting. 4x105 Huvec (A) and 1x106

Jurkat cells (B) were treated with 100µM PAC for the time indicated and not treated as control. After
treatment, the cells were harvested and whole cell extracts (8 µg/lane) were subjected to immunoblot for
IkBα analysis.
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3.2. Analysis of PAL on TNF-α induced apoptosis

In order to compare with PAC, another component of RSM – PAL was analyzed for its effect on

TNF-α induced apoptosis. In in vitro XTT assay, PAL was shown to protect Huvec and Jurkat

cells from TNF-α cytotoxicity (Fig. 19 A, B). In morphological studies, TNF-α profoundly

sensitized Huvec cells to apoptosis in the presence of ActD, whereas 2 hours pretreatment of

PAL effectively protected the cells from death (Fig. 20).
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Fig. 19A Dose-dependent protection of Huvec cells from apoptosis was measured using XTT assay to analyze
viability of the cells. PAL was applied to the cells 2 hours before TNF-α treatment (10 ng/ml) and either
left on the cells during TNF-α treatment or washed away before or treated with PAL simultaneously with
the TNF-α treatment. As a control non treated cells and cells treated with TNF-α alone were used. In the
case of Huvec cells apoptosis was always induced by adding TNF-α together with actinomycin D (1
µg/ml). Data indicat the means of 6 individual experiments and each experiment was done in triplicate (+:
vs. Control, *: vs. TNF-α).
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Fig. 19B Dose-dependent protection of Jurkat cells from apoptosis was measured using XTT assay to analyze
viability of the cells. PAL was applied to the cells 2 hours before TNF-α treatment (10 ng/ml) and either
left on the cells during TNF-α treatment or washed away before or treated with PAL simultaneously with
the TNF-α treatment. As a control non treated cells and cells treated with TNF-α alone were used. Data
indicate the means of 4 individual experiments and each experiment was done in triplicate (+: vs. Control,
*: vs. TNF-α).

  
(a) (b) (c)

Fig.20 Morphological analysis of the effect of PAL on TNF-α induced apoptosis in Huvec cells. Pretreatment of
Huvec cells with PAL increased resistance to cell death caused by subsequent treatment with TNF-α (10
ng/ml) in the presence of actinomycin D (1 µg/ml) (a) normal Huvec cells after 16 hours of incubation in
culture medium (magnification, ×170). (b) confluent cells were treated with TNF-α for 16 hours in the
presence of actinomycin D. (c) confluent cells were pretreated with 1mM PAL for 2 hours followed by
TNF-α for 16 hours in the presence of actinomycin D.



42

However, the protective effect of PAL was not suppressed by MG132, the inhibitor of IkBα

degradation (Fig. 21), suggesting a different regulatory mechanism.
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Fig. 21 MG132 did not suppress PAL protective effect. The protective effect of PAL on TNF-α induced apoptosis
was further analyzed by the use of MG132 (5 µg/ml). In XTT assay cell viability (Huvec and Jurkat cells)
was measured after adding MG132 to the cells 30 min before PAL treatment. Viability was expressed as
percentage of untreated cells. Data show the means of triplicate in a single experiment and represent 6 and
4 individual experiments in Huvec and Jurkat cells, respectively (+: vs. Control, *: vs.TNF).
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Furthermore, PAL did not induce IkBα degradation (Fig. 22), again suggesting a different mode

of action.

A

B

Fig. 22 PAL did not induce IkBα degradation. 4x105 Huvec (A) and 1x106 Jurkat cells (B) were treated with 100
µM PAL or not treated as control. After treatment, the cells were harvested and whole cell extracts (8
µg/lane) were subjected to immunoblot for analysis IkBα degradation.

Taken together these results suggested that the anti-apoptotic action of PAL may be medicated by

other signaling pathways than activation of NF-κB.
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3.3. Results of flow channel assay

3.3.1. Antioxidative capacity of Tetramethylpyrazine to RBC

When RBC were incubated with HEPES++ buffer over a total period of 72min (control group),

no significant changes of stiffness and relaxation time, respectively, were observed (Fig. 23).

Fig. 23 The effect of HEPES++ buffer on RBC stiffness and relaxation time over 72 min (control group, N=6). No
significant changes of stiffness and relaxation time were observed.
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Previous experiments showed that RBC stiffness and relaxation time did not change due to

exposure to HEPES++ with 88.5 µM TMP. Following the H2O2 treatment at 2 mM for 20 min,

RBC became significantly stiffer and, at the same time, relaxation time was reduced as compared

to control (Fig. 24). RBC stiffening (Fig. 24, upper panel). as well as relaxation time shortening

(Fig. 24, lower panel), could not be reversed by subsequent re-incubation with HEPES++. These

results indicated that the “damaging” effect of H2O2 on stiffness and relaxation time was

irreversible within 50 min of re-incubation in HEPES++ .

Fig. 24 RBC stiffness and relaxation time were markedly changed after exposing RBC to 2 mM H2O2 over a period
of 20 min. Re-incubation of RBC in HEPES++ did not reverse the H2O2-induced changes in stiffness and
relaxation time. (*: p <0.05 vs. control, ***: p<0.001 vs. control. n=13.).
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TMP did not show any effect on RBC stiffness after the RBC had been pre-damaged with H2O2

(Fig. 25, upper panel). However, when “damaged” RBC were post-treated for 20 min with TMP,

the hydrogen peroxide-induced reduction in relaxation time returned to control levels (Fig. 25,

lower panel).

Fig. 25 Tetramethylpyrazine (TMP, 88.5 µM) effectively reverted H2O2-induced relaxation time shortening.
However, it did not reduce H2O2-enhanced RBC stiffening (*: p <0.05 vs. control, +: p <0.05 vs. H2O2.
n=12.).



47

3.3.2. RBC-EC adhesion tests

Prior to the red blood cells (RBC)-endothelial cells (EC) adhesion test, the effects of Dhpl on

RBC stiffness and relaxation time were investigated (Fig. 26). When RBC were incubated with 1

mM Dhpl for 1 hour, only about 2% increase of stiffness was observed. Simultaneously, the

relaxation time was 10% enhanced. Therefore in order to exclude the marginal effects, a

concentration of 50 µM Dhpl was chosen in the RBC-EC adhesion studies.
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Fig. 26 The effect of Dhpl on RBC mechanical parameters (n=3).

In our RBC-EC adhesion studies, the efficacy of Dhpl to inhibit hydrogen peroxide induced

damage leading to RBC-EC adhesion was compared with Vitamin E, a well-known antioxidant.

When only RBC were exposed to H2O2, a significant RBC-EC adhesion was observed. In

contrast, no enhanced adhesion was obtained when only EC were treated with H2O2. When both,

EC and RBC, were treated with H2O2, the adhesion was most pronounced (Fig. 27).
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Fig. 27 RBC adhesion to Endothelial cells (control: untreated; EC and RBC: both RBC and EC were treated with
H2O2; RBC only: only RBC were treated with H2O2; EC only: only EC were treated with H2O2). The
adhesion was expressed as remaining number of RBC after applying a wall shear stress of 0.04 Pa for 5min
to the EC monolayer. The adhesion was remarkably increased when both EC and RBC were treated with
100µM H2O2 for 30min. The data represent the mean of 5 assays (* p<0.05, ** p<0.01vs. control).

For further investigation of RBC-EC adhesion, both cell types were treated with H2O2. As shown

in Fig. 28, Dhpl inhibited the H2O2 –induced RBC adhesion to EC, at about the same molar

efficacy as Vitamin E. The extent of this inhibition was about the same at pre-treatment and post-

treatment conditions.

Fig. 28 Inhibitory effects of 50µM Dhpl or 50µM Vitamin E on H2O2 induced RBC-EC adhesion. Both RBC and
EC were exposed to 100µM H2O2 for 30min. Dhpl and Vitamin E, respectively, were applied to EC only.
Under pre-treatment conditions, the EC were incubated with Dhpl or Vitamin E, respectively, for 1h, prior
to H2O2 treatment. Whereas under post-treatment conditions, the EC were incubated with these compounds
for 1 hour after H2O2 treatment. The data represent the mean of 5 assays (**: p<0.01 vs. control, +: p <0.05,
++: p<0.01 vs. H2O2.).



4. Discussion

New drugs to treat cardio- or cerebrovascular diseases are actually urgently needed. The step

back by analysis of traditional treatments was started recently with high effort. The hope that

drugs will be detected in herbs or extracts which are used for a long time in traditional medicine

for example in china or rain forest populations is great. RSM, a traditional Chinese herb extract,

has been widely used in Chinese community to treat cardio- or cerebrovascular diseases such as

brain and myocardial infarction. In this study, we analyzed PAC and PAL, components of RSM,

for their activities in protecting cells from apoptosis, and the antioxidative effect of TMP and

Dhpl on red blood cells and endothelial cells.

4.1. Role of apoptosis in cardio- or cerebrovascular diseases

Two common vascular-disorders associated with cell death are myocaridal infarctions and stroke.

These diseases arise primarily as a result of an acute loss of blood flow (ischemia). In both

disorders, cells within the central area of ischemia appear to die rapidly as a result of necrosis.

However, outside the central ischemic zone, cells die over a more protracted time period and

morphologically appear to die by apoptosis [Cohen JJ, 1993]. Ischemia of both neurons and

cardiac myocytes in culture results in the induction of apoptosis [Tanaka M, 1994 and

Rosenbaum DM, 1994]. Agents known to be inhibitors of apoptosis in vitro have been shown to

limit infarct size in these disorders [Uyama O, 1992]. So far, the most effective method of

limiting infarct size is restoration of blood flow. Advances in medicine have developed a number

of techniques to restore blood flow rapidly in acutely occluded blood vessels. Unfortunately,

further tissue injury frequently occurs during establishment of reperfusion. Reperfusion is

associated with acute increases in free radical production and increases in intracellular calcium,

both potent inducers of apoptosis. The death of cardiomyocytes that occurs during reperfusion

bears all the hallmarks of apoptosis [Gottlieb RA, 1994].



50

Our unpublished data in a rat model of focal cerebral ischemia indicated that RSM could induce a

pharmacological preconditioning in the brain, thus reduced both ischemic brain injury and

leukocyte infiltration following cerebral ischemia-reperfusion. The neuroprotective effect of

RSM might be partially mediated via an ATP-sensitive potassium channel (KATP)-linked

mechanism. To our best knowledge, a very limited number of pharmacological agents have been

reported to be able to induce pharmacological preconditioning in vivo. We believe that the

preconditioning effects of RSM are not only limited to brain, but also to other organs or tissues.

Based on the protective effects of RSM, we are interested to further investigate several

components of RSM for their protective effect from apoptosis and try to elucidate the possible

molecular mechanism of their anti-apoptotic effects.

4.2. Tumor necrosis factor alpha – mediator of apoptosis

TNFα is a cytokine mainly produced by activated macrophages and in smaller amounts by

several other cell types. It was originally identified through its capacity to suppress hemorrhagic

tumors in mice [Carswell EA, 1975]. After its isolation during the 1980s, considerable efforts

were made to understand the molecular mechanisms of the various biological effects of TNFα

[Aggarwal BB, 1984 and Pennica D, 1984]. In addition to its activity against transformed cells,

TNFα exerts various effects on different normal cell types, including hepatocytes, myocardial

cells, endothelial cells, lymphocytes, thymocytes, macrophages, polymorphonuclear neutrophils,

nephrocytes, enterocytes, and Kupffer cells [Dayer JM, 1985; Gamble JR 1985; Leist M, 1994;

Klosterhalfen B, 1997; Giardino I, 1998; Natoli G, 1998²; Fukuzuka D, 1999; Hase K, 1999;

Messmer UK, 1999 and Niwa M, 1999], and it can elicit different biological responses [Xia P,

1999]. One of these responses is the induction of apoptosis. Although tumor cells, virally infected

cells or damaged cells are frequently sensitive to TNF-α induced apoptosis, the cytotoxic effects

of TNF-α on most cells are only evident if RNA or protein synthesis is inhibited, suggesting that

de novo RNA or protein synthesis protects cells from TNF-α cytotoxicity, probably by induction

of protective genes [Wong GH, 1989; Yonehara S, 1989; Itoh N, 1991 and Karsan A, 1996].

Recent studies have identified the protective genes that are involved in transducing TNF-α death

signals [Cleveland JL, 1995 and Muzio M 1996]. The current hypothesis to explain the relation
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between TNF-α and apoptosis suggests two opposite signaling pathways: TNF-α produces

positive survival signals and simultaneously negative apoptotic signals. The balance of those

pathways will regulate the fate of cells in response to TNF-α stimulation [Nagata S, 1997]. The

molecular mechanisms of TNF-α induced cell death have been extensively studied, and recent

clinical evidence has shown that serum levels of TNF-α are increased after myocardial infarction.

Moreover, TNF-α directly decreases animal and human myocardial contractility in dose-

dependent fashion [Cain BS,1999]. Therefore, TNF-α was used in the present studies to elicit

cytotoxicity, and Huvec as well as Jurkat cells were chosen as an in vitro system to analyze cell

protective action of PAC and PAL.

4.3. PAC and PAL protect cells from induction of cell death

The morphological studies have shown that TNF-α (16 h, 10 ng/ml) resulted in extensive loss of

viability in Huvec cells and less cell death occurred by preincubation with 1mM PAC or PAL for

2 hours. The data provided a first impression that PAC and PAL could protect Huvec cells from

TNF-α induced cytotoxicity. Further, XTT assays were performed to quantify the number of cells

undergoing apoptosis. The assay is based on the cleavage of the yellow tetrazolium salt XTT to

form an orange formazan dye by metabolic active cells [Gerlier D,1986]. In cell viability XTT

assays, PAC and PAL were shown to be potent inhibitors of TNF-α induced apoptosis in both

Huvec and Jurkat cells. Since XTT assays are based on the mitochondrial dehydrogenase activity

of metabolic active cells, an increase in number of living cells results in an increase in the overall

activity of mitochondrial dehydrogenase [Berridge MV, 1997]. These data of cell viability assays

suggested that PAC and PAL may “switch on” positive signals which could protect cells from

death. This positive signals might prevent the induction of apoptosis by reducing the amount or

activity of crucial cell death effector proteins to harmless levels. Alternatively, they may inhibit

cell death by boosting the activity of protective, anti-apoptotic proteins.



52

4.3.1. Transcription factor NF-κB

To a large extent, gene expression is controlled by the frequency of transcriptional initiation at

the promoter. Initiation of transcription is preceded by the formation of a large nucleoprotein

complex containing promoter DNA, basal transcription factors, upstream activator proteins, and a

variety of other proteins. In many cases, the rate at which transcription initiates is limited by the

availability or activity of the DNA-binding upstream activators. One such upstream activator is

the transcription factor NF-κB, whose DNA-binding activity and nuclear/cytoplasmic distribution

are controlled by the IκB inhibitor proteins. In unstimulated cells, NF-κB is held in the

cytoplasm, in a form that is unable to bind DNA, by the inhibitory IκB proteins. Exposure of

cells to a wide variety of stimuli results in release of the transcription factor from the IκB

proteins, allowing the active DNA-binding form of the transcription factor to translocate to the

nucleus, where it binds to its recognition sites in the upstream regions of a wide variety of genes

that respond to immune and inflammatory response [Hay RT,1993 and Liou HC, 1993 ](Fig. 29).

Fig. 29 NF-κB signaling pathway.
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NF-κB is a dimer of proteins that share a highly conserved region known as the Rel homology

domain which contains the sequences responsible for DNA binding, dimerization, and nuclear

localization. The 11-bp binding site of NF-κB is recognized by the protein in an unusual way

involving base and backbone contacts with the DNA over one complete helical turn [Clark L1,2,

1989]. In humans, the family of proteins consists of p50 [Ghosh SA, 1990 and Kieran M, 1990],

p52 [Bours V, 1992; Neri AC, 1992 and Schmid RM, 1991], p65 [Nolan GP, 1991 and Ruben

SM, 1991], c-Rel [Wilhelmsen KC, 1984], and RelB [Ryseck RP, 1992]. Although it appears that

almost all combinations of homo- and heterodimers can exist, the typical form of NF-κB, that is

activated in response to extracellular signals, is composed of a heterodimer of p50 and p65. p50

represents the N-terminal region of a p105 precursor from which it is processed by a pathway

thought to involve ubiquitinylation of the protein [Palombella VJ, 1994]. The C-terminal region

removed from p105 contains multiple repeats of a 30- to 35-aminoacid sequence present in the

erythrocyte protein ankyrin [Lux SE, 1990] and found in all proteins with IκB activity [Gilmore

TD, 1993]. In lymphoid cells, the C-terminal region of p105 has been identified as an

independent entity known as IκB γ [Inoue JI, 1992 and Liou HC, 1992] that preferentially

inhibits the DNA-binding activity of p50 homodimers. In the p105 precursor molecule, the C-

terminal region is thought to function as a cis-acting inhibitor of p105 DNA-binding activity

[Henkel T,1993]. Although p50 does not possess a transcriptional activation domain, its p65

partner does have an acidic activation domain that accounts for the transcriptional activity of the

NF-κB heterodimer [Fujita T, 1992 and Schmitz ML, 1991]. NF-κB activity is regulated by its

association with the inhibitor subunit(s) of IkB [Baeuerle PA, 1988 and Haskill S, 1991]. The IkB

family of proteins is defined by its ability to interact with NF-κB/Rel subunits and by the

presence of between five and seven repeats of a 33 amino acid sequence termed the ankyrin motif

[Beg AA, 19931]. The ankyrin motif mediates sequestration of NF-κB in the cytoplasm, possibly

in association with cytoskeletal proteins [Rosette C, 1995]. IκBα [Haskill S, 1991] is the most

extensively studied protein in this family. When cells are exposed to stimuli which activate NF-

κB, IκBα becomes hyperphosphorylated, detectable in immunoblots as a slowly migrating form,

sensitive to phosphatase treatment [Beg AA, 19931; Brown K, 1993; Cordle SR, 1993; Henkel T,

1993; Mellits KH, 1993 and Sun SC, 1993]. The hyperphosphorylation occurs at the N-terminus

of the molecule and is a signal for subsequent ubiquitination and degradation by the 26S
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proteasome. Neither hyperphosphorylation [Traenckner EB-M, 1994 and Alkalay I, 19951] nor

ubiquitination [Chen Z, 1995] impairs the ability of IκBα to associate with NF-κB. Moreover,

only hyperphosphorylated IκBα is a target for degradation by an in vitro reconstituted ubiquitin-

proteasome system [Alkalay I, 19952]. Phosphorylation and subsequent degradation via the

ubiquitin-proteasome degradation pathway are therefore key elements in NF-κB liberation and

nuclear translocation [Beg AA, 1993²; Brown K, 1993; Traenckner EB-M, 1994; Alkalay I,

199512; Chen Z, 1995].

Recent studies have described a role for NF-κB in blocking apoptosis which is induced by tumor

necrosis factor. For instance, Baltimore’s group treated cells taken from NF-κB knockout mice

with TNF, and compared their response to that of cells from normal mice [Beg AA and Baltimore

D, 1996]. The normal cells survived, but those lacking NF-κB died. Another proof of the

essential role of NF-κB comes from experiments in which NF-κB activity is inhibited by

antibodies or by an inhibitory protein that triggers apoptosis [ Van-Antwerp DJ, 1996; Wang CY,

1996 and Bach FH, 1997]. Baldwin’s and Verma’s groups introduced into a variety of cultured

tumor and nontumor cells a mutant form of IκB that acts as a “super-repressor”, keeping NF-κB

irreversibly shackled in the cell’s cytoplasm. With NF-κB out of the picture, TNF could kill all

the cell types. Therefore, it appears that NF-κB has a general role in preventing apoptosis.

4.3.2. Activation of NF-κB by PAC but not by PAL

NF-κB has been recently described as one survival signaling pathway to counteract the

cytotoxicity of the apoptotic pathway and then suppress apoptotic cascades in diverse cell types.

Thus, an important question was raised: whether activation of NF-κB plays a role in PAC

protective effect against apoptosis? This speculation was supported by our observations in

different experimental approaches.

At first, in Huvec and Jurkat cells the NF-κB pathway was efficiently activated by PAC, as

evidenced by luciferase assays for measuring reporter gene and gel shift assays for measuring
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DNA-binding of nuclear extracts. 30 min incubation of PAC led to strong increase of NF-κB

reporter gene and DNA-binding in both cell types (Fig. 9, 13). Previous studies have

demonstrated that the primary form of NF-κB is retained as a latent form in the cytoplasm by its

inhibitory protein IκB. Thus our western blotting experiment further confirmed that PAC

activated NF-κB due to the degradation of IκBα, the NF-κB endogenous cytosolic inhibitor.

IκBα was rapidly degraded after PAC stimulation and almost completely disappeared within 4 h

and 1 h of PAC stimulation in Huvec and Jurkat cells, respectively. IκBα protein reappeared

thereafter in the cytoplasm (Fig. 18). Since proteolytic degradation of IκBα is essential for

activation of NF-κB [Palombella VJ, 1994; Siebenlist U, 1994; Traenckner EB-M, 1994 and Lin

YC, 1995], when degradation of IκBα is blocked, activation of NF-κB is prevented. Approaches

to inhibit activation of NF-κB include gene therapy delivery of super-repressor IκBα or use of a

variety of agents to block NF-κB function such as proteasome inhibitors. Proteasome inhibitors

inhibit activation of NF-κB by blocking the degradation of IκBα and subsequent nuclear

translocation of NF-κB/Rel protein [Henkel T, 1993 and Marui N, 1993]. To further determine

PAC function when activation of NF-κB is blocked, MG132, a potential proteasome inhibitor,

was used in this study. Treatment of cells with MG132 resulted in failure of PAC to protect from

apoptosis triggered by TNFα (Fig. 14). An alternative approach to block NF-κB in this study is

use of a NF-κB inhibitory peptide, which contains a cell membrane-permeable motif and nuclear

localization sequence of NF-κB p50. It can directly inhibit nuclear translocation of NF-κB /Rel

complexes in intact cells. Addition of NF-κB inhibitory peptide resulted in a loss of PAC

protection from apoptosis (Fig. 16). Taken together, activation of NF-κB was shown to be crucial

for the anti-apoptotic effect of PAC.

Recent studies have shown that NF-κB controls the expression of IκBα by means of an inducible

autoregulatory pathway [Sun SC, 1993] (Fig. 30).
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Fig. 30 Auto-regulatory pathway of the NF-κB/ IkBα. Activators of NF-κB trigger signal transduction cascades that
result in hyperphosphorylation of IkBα (steps 1-2). Hyper-phosphorylation is a signal for IkBα
ubiquitination (step 3) and subsequent degradation by the 26S proteasome (step 4). Following IkBα
degradation, NF-κB translocates to the nucleus and activates NF-κB-dependent cytokine genes. Also
activated are components of the NF-κB pathway such as IkBα, NF-κB1 (p105) and NF-κB2 (p100) (step 5).
Newly synthesized IkBα can retain NF-κB in the cytoplasm or may move to the nucleus and dissociate NF-
κB/DNA complexes, thereby exerting a direct inhibition on gene expression. Newly synthesized p105 and
p100 proteins also retain NF-κB proteins such as Rel A in the cytoplasm (step 6). P105 and p100 are
proteolytically cleaved to generate p50 and p52 respectively (step 7-8), which can localize to the nucleus or
be retained in the cytoplasm, complexed to IkBα.

After degradation of IκBα, active DNA-binding form of NF-κB translocates to the nucleus,

where it binds to DNA recognition sites in the promoter of a wide variety of genes, including

IκBα gene, and activates gene expression. The cytoplasmic reservoir of IκBα is then completely

replenished by NF-κB-induced de novo synthesis of IκBα protein [LeBail O, 1993 and Chiao PJ,

1994]. Newly synthesized IκBα protein appears transiently in the nucleus, where it terminates

DNA-binding and transcription [Arenzana-Seisdedos F, 1995]. Our results of immunoblotting

and gel shifts are in complete agreement with this autoregulatory signal pathway.

In this study, in order to compare it to PAC , PAL as another component of RSM was analysed

for its effect on activation of NF-κB. In in vitro experiment PAL was shown to protect Huvec and

Jurkat cells from cytotoxicity triggered by TNFα. Nevertheless treatment of MG132 could not
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inhibit the PAL protection from apoptosis triggered by TNFα. Additionally PAL did not induce

IκBα degradation (Fig. 20-22). These results imply that the anti-apoptotic action of PAL is

medicated by another molecular mechanism instead of activation of NF-κB. Moreover, from the

structural difference between PAC and PAL, it might suggest that the carboxylic group of PAC

acts as an essential constituent to induce NF-κB activation (Fig. 2).

4.4. Investigation of antioxidative capacity of TMP and Dhpl by flow
channel techniques

Two different applications of flow channel techniques were used to investigate the antioxidative

capacity of natural compounds, plant extracts and in particular Chinese herbs. The Microscopic

Photometric Monolayer Technique is capable to precisely quantitate RBC stiffening and

relaxation time shortening due to hydrogen peroxide damage over time [Artmann GM, 1995].

This tool has been applied to investigate the anti-oxidative protective capacity of TMP. RBC

treated with hydrogen peroxide exhibited significantly attenuated relaxation times.

Simultaneously, the RBC stiffness increased. These changes were irreversible during re-

incubation with HEPES++. Reduced overall RBC elongation after hydrogen peroxide treatment

have been observed earlier based on evaluation of freely suspended RBC sheared in a cone-plate

system [Hebbel RP, 1990]. Even though the cone-plate system is different in many aspects from

the flow channel technique used here, the data support the validity of the hydrogen peroxide

damaging model used in our experiments.

4.4.1. Antioxidative capacity of Tetramethylpyrazine to RBC

TMP, as tested for its antioxidative capacity, reversed the hydrogen peroxide-induced shortening

of relaxation time. Simultaneously the RBC stiffness was not reversed and osmotic effects of

TMP were excluded. Thus, TMP may have partially re-established a normal RBC membrane

viscosity after H2O2 pre-damaging. It is known, that hydrogen peroxide enhances the interactions

of hemoglobin with the RBC cytoskeleton namely with spectrin which in turn leads to an

enhanced overall membrane viscosity [Rice-Evans C, 1986]. As the underlying mechanism we
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hypothesize, that TMP applied to hydrogen peroxide pre-damaged RBC may partially reverse

hydrogen peroxide mediated hemoglobin-spectrin complexes, thus, leading to a normalization of

the membrane viscosity.

RBC stiffening is related to the elasticity of the RBC cytoskeleton. The RBC’s cytoskeleton

represents an extensive and complex self-associating network of proteins. Cross-linking of

cytoskeletal proteins due to peroxidation in particular leads to a decrease of RBC deformability

[Nicolson GL, 1973; Girotti AW, 1984; Schrier SL, 1985; Snyder LM, 1985 and Oroszlan G,

1986]. TMP did not reverse hydrogen peroxide induced RBC stiffening, indicating that TMP did

not reverse hydrogen peroxide cytoskeletal crosslinkings.

4.4 2. Protection of Dhpl from H2O2 induced RBC-EC adhesion

In a further approach the flow channels technique was used to study RBC-EC adhesion as

induced with hydrogen peroxide. A similar hydrogen peroxide based in vitro model was

established previously [Wang L, 1995]. The authors reported on enhanced adhesion of RBC of

patients with cerebral thrombosis to cultured human umbilical vein endothelial cells treated with

H2O2 using a flow chamber system. In our study, the inhibitory capacity of Dhpl was compared

with Vitamin E, a well-known antioxidant. Dhpl is used in Chinese traditional Medicine to cure

ischemic cerebral vascular diseases and ischemic cardiovascular diseases [Zhang ZH, 1994 and

Li DY, 1995]. The exposure of only RBC with hydrogen peroxide led to a significant adhesion

(about two-fold) to cultured EC monolayers. Whereas, no enhanced RBC adhesion occurred

when only EC were treated with hydrogen peroxide. When both EC and RBC were treated with

H2O2 a remarkable (about three-fold) RBC-EC adhesion was observed. The results imply that

modifications in surface properties due to hydrogen peroxide on both RBC and EC were required

to induce a major RBC-EC adhesion. If an oxidative event in vivo occurs, it usually would affect

both cell types. Thus, damaging of both RBC and EC in this in vitro model should fit best to the

in vivo situation. Dhpl as well as Vitamin E both at 50 µM protected from oxidatively induced

RBC-EC adhesion to the same extend. It did not matter whether the compounds were added

before damaging or after, respectively. The mechanism of protection observed when the drugs
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were added before hydrogen peroxide damaging might be addressed to a direct free radical

scavenging effect of antioxidants dissolved in the EC membrane. Although very interesting from

a clinical point of view, the protection mechanism of drugs applied after damaging must be

addressed in future studies.

In summary, flow channel techniques as used here in terms of cellular bioassays could become

useful tools for evaluating antioxidative active substances in particular of Chinese herbs, plant

extracts and other substances. The fact, that extracts do not contain single molecules but a variety

of sub-components rather underlines the need of studies on a cellular level. Of particular

advantage in terms of creating an antioxidative protection scale is the use of drugs (Vitamin E)

known for a specific effect as basis for efficacy comparisons.

4.5. Future perspectives

The present study provides a mechanistic explanation for the anti-apoptotic effect of PAC and

indicates that this effect involves degradation of IkBα and subsequent activation of NF-κB.

Further studies are required to test whether PAC could be useful in preventing apoptotic cell

death in vivo resulting from cardiovascular or cerebrovascular diseases. In addition, efforts could

be made in the following fields to provide futher evidence for PAC induced NF-κB activation.

• Many signal transduction pathways resulting in NF-κB activation culminate in a serine

phosphorylation of IkBα on residues 32 and 36 [Brown K, 1995; Traenckner EB, 1995;

DiDonato JA, 1997; Mercurio F, 1997 and Regnier CH, 1997] and trigger its ubiquitination-

dependent degradation [Alkalay I2, 1995; Chen Z, 1995 and Scherer DC, 1995]. Therefore, it

could be analysed in the future whether PAC induces serine phosphorylation of IkBα.

• A specific serine-protein-kinase activity responsible for IκBα phosphorylation has been

identified as a large cytoplasmic multisubunit complex (700-900 kDa); two kinase subunits

(IKK1/α and IKK2/β) and a structural component (NEMO/IKKγ/IKKAP) have been cloned
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[Scheidereit C and Israël A, 2000]. IKK complex could be then investigated to elucidate the

mechanisms contributing to the exquisite regulation of NF-κB activity.

• Active DNA-binding form of NF-κB translocates to the nucleus, where it binds to its

recognition sites in the upstream regions of a wide variety of genes that respond to immune and

inflammatory signals. Therefore, such NF-κB regulative genes , e.g. ICM-1, VCAM-1 and IL-

8 could be chosen to check if PAC also activates these genes.

Although PAL also shows cell protection from TNF-induced cytotoxicity, the molecular basis of

this effect is not yet clear. In order to identify its mechanism, other anti-apoptotic pathways

except NF-κB need to be analyzed in the future.



5. Summary

The Chinese herb, Radix Salviae Miltiorrhizae (RSM), is being used in traditional Chinese

medicine as a treatment for cardiovascular and cerebrovascular diseases. Several components of

the plant extract from Salvia Mitorrhiza Bunge have been determined previously, two of which

are protocatechuic acid (PAC) and protocatechuic aldehyde (PAL). Since anti-apoptotic therapies

have been proposed to limit tissue damage in cardiovascular and cerebrovascular diseases, PAC

and PAL effects on cell protection from apoptosis were investigated in this thesis. XTT assays

were first used to quantify cell viability. We found that PAC and PAL inhibited TNF-α induced

apoptosis of human umbilical vein endothelial cells (Huvec) and Jurkat cells in a concentration of

100 µM and 1mM respectively, when applied 2 hours prior to TNF-α exposition. To investigate

molecular consequences on cellular signal transduction pathways, NF-κB reporter gene and DNA

binding activities were investigated by luciferase assay and gel shift assay. Degradation of IkBα

was determined by western blotting. The molecular studies revealed that PAC activated NF-κB

with a maximal effect after 30 min of treatment. Inhibition of NF-κB action by MG132 and NF-

κB inhibitory peptide suppressed the anti-apoptotic effect of PAC. Further, degradation of IkBα

occurred in response to PAC treatment. Our results provide evidence that activation of NF-κB

plays an important role in mediating the anti-apoptotic effect of PAC on HUVEC and Jurkat

cells. Nevertheless, PAL protection from apoptosis triggered by TNF-α could not prevented by

the treatment of MG132. Additionally, PAL did not induce IκBα degradation. The results

implied that the anti-apoptotic action of PAL may be mediated by a molecular mechanism other

than activation of NF-κB.

In addition, a computer controlled flow channel system (Elias-c-) was tested in this thesis to

study antioxidative capacities of herbal medicine. Effects of herbal extracts and single

components on oxidatively impaired red blood cell (RBC) stiffness and relaxation time as well as

on oxidative damage (H2O2, 2 mM) induced RBC-endothelial cell (EC) adhesion were
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investigated. Following H2O2 treatment (20 min), RBC became significantly stiffer and the

relaxation time was reduced as compared with control. These changes were irreversible after re-

incubating oxidatively damaged RBC in HEPES buffer. However, when oxidatively damaged

RBC were re-incubated with 88.5 µM Tetramethylpyrazine (TMP), the H2O2-induced reduction

in relaxation time turned back to control levels whereas the RBC stiffening did not. As

mechanism we hypothesize, that TMP applied to hydrogen peroxide damaged RBC may partially

reverse the hydrogen peroxide mediated formation of hemoglobin-spectrin complexes possibly

leading to a normalization of the membrane viscosity. In the RBC-EC adhesion tests, a maximum

(about three-fold as compared to control) increase in RBC-EC adhesion was obtained when both

RBC and EC were treated with H2O2. This increase in adhesion was almost completely inhibited

by 50 µM 3,4-dihydroxyphenyl lactate (Dhpl), when applied either prior to or after treatment with

H2O2. The mechanism of the protection may be addressed in part to a direct free radical

scavenging effect of antioxidants dissolved in the EC membrane. From a methodological point of

view, the Elias-c in combination with appropriate cell types and experimental designs can be seen

as a cellular bioassays to test herbal extracts with high laboratory efficacy.



6. Zusammenfassung

Das in der traditionellen chinesischen Medizin verwendete Extrakt Radix Salviae Miltiorrhizae

(RSM) wird zur Behandlung von Herzkreislauf und zerebrovaskulären Krankheiten benutzt.

Einige Bestandteile des Pflanzenextraktes von Salviae Mitorrhiza Bunge sind bereits extrahiert

und analysiert worden. Zwei dieser Komponenten sind Protocatechuic Säure (PAC) und

Protocatechuic Aldehyd (PAL). Es wird angenommen, daß anti-apoptotische Therapien die

Gewebeschäden bei Herzgefäßkrankheiten sowie zerebrovaskulären Krankheiten reduzieren. In

dieser Arbeit wurde daher die zellprotektive Wirkung von PAC und PAL, im besonderen

Hinblick auf Apoptose, untersucht. XTT-Assays wurden verwendet, um den Prozentsatz lebender

Zellen unter verschiedenen Bedingungen quantitativ zu bestimmen. Menschliche Nabelschnur

Endothelzellen sowie Jurkat Zellen wurden 2 Stunden mit PAC (100 µM) bzw. PAL (1 mM)

inkubiert. Es konnte gezeigt werden, daß PAC und PAL die TNF-α induzierte Apoptose von

menschlichen Nabelschnur Endothelzellen (Huvec) und Jurkat Zellen reduziert. Um molekulare

Effekte auf die zelluläre Signaltransduktion zu untersuchen, wurden NF-κB Reportergen und

DNA Bindungsaktivitäten mittels Luciferase Assays sowie Gel Shift Assays bestimmt. Die

Degradation von IkBa wurde durch Western Blotts untersucht. Die molekularen Studien zeigten,

daß NF-κB durch PAC aktiviert wurde. Der maximalen Effekt trat nach 30-minütiger

Vorbehandlung der Zellen mit PAC auf. Hemmung der NF-κB Aktivität durch MG132 und ein

NF-κB hemmendes Peptid unterdrückten den anti-apoptotischen Effekt von PAC. Weiterhin trat

eine Degradation von IkBα infolge der Behandlung mit PAC auf. Unsere Ergebnisse liefern

Hinweise darauf, daß die Aktivierung von NF-κB bei der anti-apoptotischen Wirkung von PAC

auf Huvec und Jurkat Zellen eine wichtige Rolle spielt. Allerdings wurde die protektive Wirkung

von PAL gegen Apoptose nicht von MG132 beeinflusst. Auch induzierte PAL keinen Abbau von

IκBα in den Zellen. Diese Resultate deuten darauf hin, daß die anti-apoptotische Wirkung von

PAL durch andere molekulare Mechanismen als durch die Aktivierung von NF-κB vermittelt

wird.
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Zusätzlich wurde ein computergesteuertes Flußkanalsystem zur Bestimmung zellulärer

rheologischer Parameter (Elias-c -) verwendet, um die antioxidative Wirkung von chinesischen

Naturheilmitteln zu untersuchen. Dabei interessierten uns die Effekte der Kräuterextrakte sowie

einiger ihrer Bestandteile auf die durch oxidative Schädigung veränderten rheologischen

Parameter der Zellen. Als Parameter wurde die Steifigkeit und die Relaxationszeit roter

Blutkörperchen (RBC) sowie die durch oxidative Schädigung (H2O2, 2 mM) induzierte Adhäsion

von roten Blutkörperchen Endothelzellen gemessen. Nach Inkubation der roten Blutkörperchen

mit H2O2 (20 min), zeigten die Zellen eine signifikant höhere Steifigkeit. Weiterhin war die

Relaxationszeit im Vergleich zu Kontrollversuchen reduziert. Diese Änderungen der

rheologischen Parameter waren irreversibel, nachdem die oxidativ geschädigten RBCs in Hepes

Puffer reinkubiert wurden. Wurden die Zellen jedoch in Puffer mit 88.5 µM Tetramethylpyrazine

(TMP) reinkubiert, ging die Änderung der Relaxationszeit auf das Niveau der Kontrolle zurück,

während sich kein Effekt auf die Steifheit der Zellen zeigte. Als möglichen Mechanismus

nehmen wir an, daß TMP die durch Wasserstoffperoxid verursachte Bildung von Spektrin-

Hömoglobin-Komplexen teilweise aufhebt, was möglicherweise zu einer Normalisierung der

Membranviskosität führen könnte. In den RBC-EC Adhäsionstests wurde eine maximale (über

dreifache verglichen mit der Kontrolle) Zunahme der Adhäsion, bei mit H2O2 behandelten roten

Blutzellen und Endothelzellen festgestellt. Diese Adhäsion wurde fast vollständig durch 50 µM

3,4-dihydroxyphenyl lactate (Dhpl) inhibiert, wenn diese Komponente entweder vor oder nach

der Behandlung der Zellen mit H2O2 zugegeben wurde. Der Mechanismus dieser protektiven

Wirkung könnte teilweise einem Effekt von Dhpl als Radikalfänger von in der Zellmembran

gelösten Oxidantien zugeschrieben werden. Von einem methodischen Gesichtspunkt aus kann der

Elias-c im Verbindung mit bestimmten Zellenarten und experimentellen Designs als zellulärer

Bioassay verwendet werden, um die Wirkung von Kräuterextrakten mit hoher Effizienz im Labor

zu prüfen.
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8. Abbreviations

ActD Actinomycin D

Amp Ampicillin

APS Ammoniumpersulfat

BCIP/NBT 5-Bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium

tablets

d H2O Distilled water

Dhpl 3,4-dihydroxyphenyl lactate

DTT Dithiothreitol

EC Endothelial cells

EDTA Ethylendiamintetraacetat

EGTA Ethylene glycol-O,O’-bis (2-aminoethyl)-N,N,N’,N’,-

Tetraacetic acid

EMSA Electrophoretic Mobility-Shift Assay

H2O2 Hydrogen peroxide

IκB Inhibitor of NF-κB

NF-κB Nuclear transcription factor kappa B

NP-40 Nonidet P40

PAA Polyacrylamid

PAC Protocatechuic Acid

PAL Protocatechuic Aldehyde

PBS Phosphate buffered saline

RBC Red blood cells

RSM Radix Salviae miltiorrhizae

TEMED N,N,N’,N’,-Tetramethylethylendiamin

TMP Tetramethylpyrazine
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TNFα Tumor necrosis factor-alpha
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