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Abstract
OpenFOAM is a powerful Open-Source (GPLv3) Computational Fluid Dynamics tool box with
a rising adoption in both academia and industry due to its continuously growing set of features
and the lack of license costs. Our previously developed discrete adjoint version of OpenFOAM
allows us to calculate derivatives of arbitrary objectives with respect to a potentially very large
number of input parameters at a relative (to a single primal flow simulation) computational cost
which is independent of that number. Discrete adjoint OpenFOAM enables us to run gradient-
based methods such as topology optimization efficiently. Up until recently only a serial version
was available limiting both the computing performance and the amount of memory available
for the solution of the problem. In this paper we describe a first parallel version of discrete
adjoint OpenFOAM based on our adjoint MPI library.
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1 Introduction

This paper is about coupling discrete adjoint OpenFOAM [27] with the adjoint MPI (AMPI1)
library [26] to achieve robust scaling and a better usage of distributed memory. Following some
motivation in Section 2 we briefly introduce in Section 3 discrete adjoint OpenFOAM and AMPI.
For the original contribution of this paper both are combined in Section 4 to obtain MPI-parallel
discrete adjoint OpenFOAM. Feasibility of the proposed approach is documented in section 5
by a case study including numerical results, scaling behavior, and memory requirements. In
section 6 we close with a conclusion and a summary of other ongoing work.

2 Motivation

Computational Fluid Dynamics (CFD) simulations have over the past decades become a viable
extension of or alternative to experiments (e.g. conducted in wind-tunnels). Simulations are
often less expensive, easily reproducible, and offer a wider range of boundary conditions. They

1https://www.stce.rwth-aachen.de/software/ampi.html
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enable the inspection of flow phenomena in places which are not easily accessible / measurable
(for example, blood flow [1], nano particles [29], combustion inside an engine [23], flow in zero or
low gravity [14]). OpenFOAM features a wide range of applications and a continuously growing
user base in both academia and industry. The source code is available in C++.

Adjoint methods are crucial ingredients of state of the art gradient-based solvers for high
dimensional optimization problems. Their advantage over finite difference approximation is two-
fold. The computational cost of calculating the gradient of some cost function J = J(α) ∈ IR
(see section 5 for an example) with respect to parameters α ∈ IRn is independent of n. An ideally
small constant multiple of the cost of a primal flow simulation followed by the evaluation of the
objective is required. Moreover, the gradient is obtained with machine accuracy. Truncation
is avoided altogether eliminating unwanted numerical effects in finite precision floating-point
arithmetic. The discrete adjoint model uses Algorithmic Differentiation whereas the continuous
adjoint model relies on analytically obtained adjoint equations which have to be solved alongside
the primal (e.g. Navier-Stokes) equations; see also [17]. For a given discretization of the
computational domain (into a potentially very large number of n individual cells) topology
optimization [3, 21] penalizes cells which are undesirable for the flow pattern. This penalization
is realized by adding a source term −αv to the kD (k ∈ {2, 3}) Navier-Stokes equations, thus
blocking cells with high values of impermeability α for the flow:

v · ∇v = ν∇2v− 1

ρ
∇p− αv (1)

∇ · v = 0 , (2)

where v ∈ IRk and ν, ρ, p, α ∈ IR. The discretized [8] equations can then be solved for the
velocity field U ∈ IRk×n and pressure field p ∈ IRn by a suitable method such as the SIMPLE-
Algorithm [22]. Gradient information ∂J/∂α ∈ IRn becomes necessary to determine an α which
minimizes a given cost functional J . Given the gradient one can iteratively refine α from an
initial guess, for example, by applying steepest descent

αn+1 = αn − λ · ∂J

∂αn

with local line search parameter λ.

3 Building Blocks

Discrete adjoint OpenFOAM uses Algorithmic Differentiation (AD) [12, 16] implemented by
our AD overloading tool dco/c++2 [18]. The Adjoint MPI library AMPI extends the implied
data flow reversal [15] to the Message Passing Interface (MPI).3

3.1 Algorithmic Differentiation

We consider the optimization problem argminα J(α) for J : IRn → IR, where each function
evaluation J(α) comprises the solution of the discrete kD Navier-Stokes equations forming
a very large system of parameterized nonlinear equations [19]. Our notation is based on [16].

2https://www.stce.rwth-aachen.de/software/dco_cpp.html
3http://www.mpi-forum.org/
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First-order AD assumes J to be at least once continuously differentiable at all points of interest.4

For a given implementation of the primal objective y = J(α), a corresponding (first-order)
tangent code computes a directional derivative

y(1) = J (1)(α,α(1)) ≡< ∇J,α(1) > ,

with scalar product < ., . > and where α(1) ∈ IRn, y(1) ∈ IR, and ∇J = ∇J(α) ≡ ∂J
∂α ∈ IRn

denotes the gradient of J. A (first-order) adjoint code computes

α(1) = J(1)(α, y(1)) ≡ ∇JT · y(1),

where α(1) ∈ IRn and y(1) ∈ IR. The gradient can be obtained in tangent mode at the com-
putational cost of O(n) · Cost(J), where Cost(J) denotes the computational cost of a single
evaluation of J . The same gradient can be obtained in adjoint mode at O(1) · Cost(J), which
typically amounts to 1− 100 times the cost of a single evaluation of the objective. The actual
factor depends on various parameters including the mode of differentiation (continuous vs. dis-
crete adjoint), the expertise of the adjoint code developer, and the quality of the AD software
tool, if one is used.

For topology optimization we use the adjoint model, because a typically very large number
of inputs (all elements of α ∈ IRn) are mapped onto a single output. Second and higher
derivatives can be obtained by repeatedly applying tangent mode AD to existing tangent or
adjoint code; see [16] for details.

Conceptually, AD is based on the fact that the given implementation of the primal objective
as a computer program can be decomposed at run time into a single assignment code

for j = n, . . . , n+ p

vj = ϕj(vi)i≺j ,

where i ≺ j denotes a direct dependence of the variable vj on vi. The result of each elemental
function ϕj is assigned to a unique auxiliary variable vj . The n independent inputs xi = vi, for
i = 0, . . . , n− 1, are mapped onto the dependent output y = vn+p. The values of p intermediate
variables vk are computed for k = n, . . . , n+ p− 1.

The primal code is augmented with instructions for storing data which is required for the
reversal of the data flow and for the computation of the local partial derivatives

∂ϕj

∂vi
, for

j = n, . . . , n + p and i ≺ j. A data structure commonly referred to as tape is used for this
purpose. This (augmented) forward section of the adjoint code is succeeded by the reverse
section propagating adjoints for all vi in reverse order, that is, for i = n+ p− 1, . . . , 0 :

for j = n, . . . , n+ p+m− 1

vj = ϕj(vi)i≺j

}
forward section (records tape)

for i = n+ p− 1, . . . , 0

v(1)i =
∑
j:i≺j

∂ϕj

∂vi
· v(1)j

⎫⎪⎪⎬
⎪⎪⎭ reverse section (interprets tape)

(3)

Note that the vj computed in the forward section are potentially required as arguments of local

4Generalizations of the theory of AD to non-differentiable functions has been the subject of ongoing research
for several years; see, for example, [12].
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partial derivatives within the reverse section. They are read in reverse with respect to the
original order of their evaluation. The additional persistent memory requirement of the adjoint
code becomes O(n+ p). The efficient reversal of the data flow is among the main challenges in
adjoint AD. It is responsible for black-box adjoint AD typically not being applicable to large-
scale numerical simulations. The available persistent memory may simply not be large enough
[15].

3.2 Discrete Adjoint OpenFOAM

Discrete adjoint OpenFOAM is obtained by application of our overloading AD tool dco/c++
to OpenFOAM (current version 2.3.x); see [27] for details. Recent improvements include the
symbolic differentiation of the linear solvers [9] as well as reverse accumulation [6]. Most im-
portantly, the memory footprint of discrete adjoint OpenFOAM can be adapted to the specifics
of the given compute platform through the use of checkpointing [11].

3.3 Adjoint MPI

MPI is the de-facto standard for writing massively parallel programs on modern distributed
memory high performance computing (HPC) architectures. To ensure performance and scala-
bility the goal of the programmer should be to keep as many computations as possible local and
to communicate the minimal amount data which needs to be shared between two or multiple
processes by passing corresponding messages. Adjoint MPI (AMPI) is a library which wraps
MPI in order to make adjoint AD applicable to numerical simulation programs that contain MPI
communication. Its ongoing development started in 2009 [28] based on theoretical work about
the correctness of adjoint message passing [20] and with various improvements and extensions
added over time [24, 25, 26].

A growing subset of the MPI routines have been overloaded to facilitate the reversal of the
data flow for communication of adjoints. In particular, AMPI supports the message passing
patterns used in OpenFOAM, namely, MPI_Bsend, MPI_Recv, and MPI_Allreduce. It provides
the corresponding routines AMPI_Bsend, AMPI_Recv, and AMPI_Allreduce. Their semantics
depend on their calling context; see Table 1. For example, AMPI_Bsend passes the primal
values from the sender to the receiver in the forward section of the adjoint code by calling
MPI_Bsend. In the reverse section adjoints need to be extracted from the primal receiver by
calling MPI_Recv.

In addition to dco/c++ AMPI can be interfaced with other AD tools such as ADOL-C [10]
and Tapenade [13]. Related work by others includes [2, 4, 5, 7].

Primal Adjoint MPI-Call MPI-Call
MPI-Call AMPI-Call in forward run in reverse run
MPI Bsend AMPI Bsend MPI Bsend MPI Recv

MPI Recv AMPI Recv MPI Recv MPI Bsend

MPI Allreduce AMPI Allreduce MPI Allreduce MPI Allreduce

Table 1: MPI routines used in OpenFOAM, their AMPI versions, and communication patterns
specific to the forward and reverse sections of the adjoint code
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4 MPI-Parallel Discrete Adjoint OpenFOAM

With all the building blocks from Section 3 in place the actual transition to MPI-parallel
discrete adjoint OpenFOAM turned out to be rather straight forward. Nevertheless, dealing
with a highly complex C++ source code always adds a considerable amount of complication at
the technical level. As usual, well designed components and modular software architecture are
crucial for successful and sustained numerical simulation.

4.1 MPI-Parallelism in OpenFOAM

OpenFOAM features a very object oriented design with distributed memory parallelism in
mind. All calls to MPI are encapsulated in the so-called Pstream library. An object to be
passed from the sender to the receiver is serialized into a contiguous block of data stripped
of its type information (the receiver knows what type of data to expect). Hence all data can
be passed as MPI BYTE, thus reducing the complexity of the low-level communication methods.
Unfortunately, communication of dco/c++ data requires type information, as AMPI needs to
know whether the passed data is active (a dco/c++ derivative type) or passive (for example,
int, string).

4.2 Coupling OpenFOAM with AMPI

To enable the communication of active data we augment all calls to MPI send and receive
routines to also include the type information. Thus, we are able to distinguish between active
and passive data being passed. For active data a transfer as MPI BYTE is no longer possible as
the data layout of the primal values is no longer contiguous. Moreover, AMPI needs to track
source and target of each message in order to enable the reversal of the data flow for passing
adjoints from the target back to the source. This functionality is provided by the data type
AMPI DOUBLE.

OpenFOAM uses the previously mentioned set of basic MPI routines. More complex opera-
tions such as broadcasts are implemented in OpenFOAM in terms of these basic MPI routines.
Thus inside the Pstream library only four different source files have to be patched in order to
change all relevant MPI calls into the corresponding AMPI calls:
Pstream/mpi/UPstream.C: MPI Init() → AMPI Init();
Pstream/mpi/UOPwrite.C: MPI Bsend() → AMPI Bsend();
Pstream/mpi/UIPread.C: MPI Recv() → AMPI Recv();
Pstream/mpi/allReduceTemplates.C: MPI Allreduce() → AMPI Allreduce().
As pointed out earlier for the MPI Send / MPI Recv calls it has to be decided if an active or
passive version is to be used. This decision is made depending on the incoming data type
(floating-point data is considered as active; other data, such as int or string, is considered as
passive). Moreover, repeated passive runs of the primal computation are performed if check-
pointing is used. In this case passive floating-point data needs to be communicated.

Feasibility of the proposed solution is illustrated with the help of a case study in the following
Section.

5 Case Study

As a case study we consider a 90-degree duct whose geometry can conveniently be modified by
specifying parameters L1, L2, R1 and R2. The problem is scaled to different mesh sizes by an
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automatic meshing algorithm which depends only on a mesh density parameter. We run the
calculation on different numbers of cores and observe the scaling of run time and peak memory
consumption per process.

5.1 Geometry, Boundary Conditions, and Solver Settings

The geometry of the computational domain is shown in Figure 1. A cost functional J is defined

L1

L2

R
1

R2

In

O
ut

x
y

Figure 1: Sketch of the Geometry. In our case L1 = L2 = 5m, R1 = 1m, R2 = 2m.

to minimize the total dissipation of the system:

J = −
∫
Γ

(
p+

1

2
v2

)
v · n dΓ ,

where Γ ⊂ D denotes the part of the domain boundary corresponding to in- (In) and outlet
(Out) and with the following boundary conditions: on inlet fixed velocity ‖vin‖ = 15m/s and
vanishing change of pressure in x direction ∂p

∂x = 0; on outlet fixed pressure5 pout = 0m2/s2

and vanishing change of velocity in y direction ∂v
∂y = 0; no-slip walls v|Γ\(In∪Out) = 0. The

viscosity is given as ν = 1.5× 10−5 m2/s yielding a Reynolds Number of Re = 106. A total of
300 iterations of the SIMPLE Algorithm were initialized by a potential flow solution. Binomial
checkpointing (using revolve [11]) with 60 checkpoints was used for calculation of the adjoints
yielding 538 passive (primal) and 300 active (adjoint by recording and interpretation of the
corresponding section of the tape) iterations.

Figure 2: Results after 300 iterations of the SIMPLE algorithm (solution fully converged):
Velocity field U on the left and corresponding sensitivities of the objective with respect to the
discrete impermeability parameter ∂J

∂α on the right.

5the pressure in OpenFOAM is scaled by the inverse density of the fluid yielding the unit m2/s2
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5.2 Results on Shared Memory Machine

First we ran the test case on a shared memory machine (2x Intel R© Xeon R© E5-2630 @ 2.30GHz
(12 cores), 128 GB RAM). A 2D mesh consisting of 260,000 hexaedra was build. The resulting
flow field and the corresponding sensitivities are visualized using ParaView6 in Figure 2. Red
regions indicate high sensitivity of the objective with respect to changes in the local imper-
meability. The impermeability in blue regions has less impact on J. Absence of regions with
negative sensitivity indicate missing need for placement of material to obstruct the flow in
the context of topology optimization. The geometry turns out to be optimal for the chosen
objective under the given constraints.

Scaling in terms of run time and memory consumption is observed in Tables 2 and 3. The
overhead of the adjoint varies between 10 and 20 which is a good result considering that the
adjoint run includes 538 additional primal evaluations due to checkpointing and no further
optimizations have been applied. Without checkpointing the total memory requirement of the
adjoint would amount to infeasible 15TB. The speedup for the primal (no adjoints are com-
puted, OpenFOAM version from the official repository) run is comparable with the speedup of
the adjoint run. The adjoint version performs slightly worse than the primal due to the addi-
tional AMPI communications. Moreover, the tape interpretation is usually memory bandwidth
bound. Hence, it cannot scale perfectly because all processes share the same memory bus.

Figure 3 counts the additional MPI calls performed due to adjoint communication. For
one adjoint SIMPLE step the number of communication calls is roughly doubled (for each
MPI statement in the forward section another one is executed in the reverse section). Further
passive MPI calls result from additional runs of primal iterations due to checkpointing. Both the
numbers of passive and active MPI calls triple for each duplication of the number of processes.
For larger numbers of processes the number of MPI calls per process is likely to stagnate as not
every process has to communicate with every other process but with a limited subset only.

Table 3 indicates that the memory consumption per process scales inversely with the number
of processes. The additional memory consumption of the adjoint is dominated by the tape whose
size scales directly with the number of floating point operations. However, the decomposition of
the problem into multiple regions lowers the dimension of the local linear systems to be solved
and hence the number of floating point operations performed per process.

5.3 Results on RWTH Compute Cluster

The same test case with a finer mesh (723,000 cells) was run on the RWTH Aachen Uni-
versity Compute Cluster7. For the purpose of testing, the mesh size was set to enable the
serial execution within the available memory of the target system (one node consists of 2x
Intel R© Xeon R© X5675 @ 3.07 GHz CPUs (12 cores), 96GB of RAM; InfiniBand between nodes).
The number of processes per node was fixed to two in order to investigate a fully distributed
problem. Again, 300 SIMPLE iterations with 60 checkpoints were performed. Larger simula-
tions require some administrative overhead in order to gain exclusive access to a larger partition
of the RWTH Compute Cluster. They are the subject of ongoing work.

Run time and memory consumption for this configuration are illustrated in Figure 4. We
observe a run time scaling behavior of the adjoint which is similar to the primal. Again, the
adjoint increases the run time relative to the primal by a factor between 10 and 20. We believe
that the increased memory bandwidth associated with running on two different cores on the
same node is responsible for the superlinear scaling of the adjoint on two processes. Remember

6http://www.paraview.org
7https://doc.itc.rwth-aachen.de/display/CC/Home
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primal adjoint run time factor
n run time [s] speedup run time [s] speedup primal / adjoint
1 423 1.0 6245 1.0 14.8
2 200 2.1 3030 2.1 15.2
4 134 3.2 2194 2.8 16.4
8 76 5.6 1316 4.7 17.3
12 63 6.7 1085 5.8 17.2

Table 2: Run time scaling of primal and adjoint simulation on our shared memory machine for
increasing numbers of processes n.

primal adjoint
n max. memory [MB] factor max. memory [MB] factor
1 402 1.0 49895 1.0
2 222 1.8 24126 2.1
4 133 3.0 14709 3.4
8 86 4.7 6491 7.7
12 71 5.7 4847 10.3

Table 3: Scaling of memory consumption per rank of primal and adjoint simulation on our
shared memory machine for increasing numbers of processes n.
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Figure 3: Number of MPI calls in primal and adjoint runs of OpenFOAM.

that the run time of the tape interpretation is usually memory bandwidth bound. Scaling in
terms of memory consumption turns out to be near optimal. We observe a 30% rise in total
memory usage when going from 1 to 128 CPUs. The memory consumption of the adjoint is
dominated by the tape. Primal scaling stalls for n ≥ 32 processes. The workload becomes
insignificant and run time and memory consumption are dominated by constant factors due to
startup time, I/O of the mesh, and case setup. The adjoint scales better due to the substantially
higher work load per process. Again, larger tests with higher numbers of processes are the
subject of ongoing activities.
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Figure 4: Run time and memory scaling on RWTH Compute Cluster

6 Conclusion and Outlook

An MPI-parallel discrete adjoint version of the CFD tool box OpenFOAM was presented. Our
test results indicate reasonable scaling in terms of run time and next to ideal scaling in terms of
memory consumption. Ongoing work targets larger instances of real-world applications for in-
creased numbers of processes. Industrial-size problems can only be solved by combining modern
HPC architectures (parallel computation and I/O) with mathematical and structural insight
into the given numerical simulation. Adjoint simulations are likely to remain a considerable
challenge for the foreseeable future. The ongoing rapid evolution of HPC hard- and software
adds a level of technical complication not to be underestimated.
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