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Abstract

In this work, we discuss two approaches to calculate phonon spectra of crystals within the
all-electron full-potential linearized augmented-plane-wave (FLAPW) method. This method
is one of the most precise implementations of Kohn-Sham (KS) density functional theory
(DFT) due to the inclusion of all electrons into the calculation and the use of the full po-
tential, i.e., no shape approximations are applied to the potential.
The calculation of phonons requires the force-constant matrix (FCM). The FCM is the
second-order derivative of the KS total energy with respect to two atomic displacements.
Its Fourier transform yields the dynamical matrix (DM). The eigenvalues of the DM are the
squares of the phonon frequencies. Its eigenvectors are the polarization vectors.
The first approach to calculate phonons is the finite-displacement (FD) method. In this
method, the FCM is obtained from displacing one atom at a time from equilibrium, calcu-
lating the forces on all atoms, and dividing by the displacement amplitude. This is repeated
for each atom and for each spatial direction. In practice, the number of calculations reduces
significantly by exploiting the symmetry of the crystal lattice. The FCM is transformed
to the DM and the phonon energies and polarization vectors are extracted. A drawback
of this approach is given by the necessity to use supercells. The phonon frequencies are
only correct for phonons whose wave vector q is commensurable with the lattice. Hence,
to correctly calculate phonon frequencies at small wave vectors, large supercells are needed,
because the displacement pattern of such phonons repeats only after many instances of the
primitive unit cell.
Since the FD procedure relies on an analytical derivation of the total energy followed by
a numerical one, precise forces are necessary. Otherwise, the FCM is not symmetric, for
example. We present a reformulation of the FLAPW force formalism which includes the
whole unit cell into the calculation of the atomic force contribution from the core states and
which incorporates additional terms to deal with the slight discontinuity of the LAPW basis
functions and the quantities derived from them. The improvement of the force precision is
demonstrated by the study of different criteria.
We then present phonon spectra for Al, MgO, GaAs, and EuTiO3 obtained by the FD
method from forces calculated in the FLAPW approach using our reformulation.
The second approach to calculate phonon spectra is density functional perturbation theory
(DFPT). In DFPT, the second-order derivative of the KS total energy is directly calculated
via perturbation theory. DFPT allows the determination of phonon frequencies at arbitrary
wave vectors q from calculations involving the primitive unit cell, only, by treating a phonon
of this wave vector as the perturbation. The first-order changes of the basis functions, the
electronic density, and the potential have to be obtained from the Sternheimer equation,
which is the linearized Schrödinger equation. Additionally, the second-order changes of the
external potential, the ion-ion energy, and the LAPW basis functions are required.
We provide formulas which explicitly include adjustments of the general DFPT approach
when used in conjunction with the FLAPW method. These adjustments include Pulay
terms, the correct treatment of the core state contribution, and surface terms which are
analogous to those within the force formalism.
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Zusammenfassung

In dieser Arbeit diskutieren wir zwei Varianten zur Bestimmung von Phononenspektren
in Kristallen mit der all-electron full-potential linearized augmented-plane-wave (FLAPW)
Methode. Diese ist eine der genauesten Realisierungen von Kohn-Sham (KS) Dichtefunk-
tionaltheorie (DFT), denn sie behandelt alle Elektronen und verzichtet auf Näherungen, die
die Form des Potentials betreffen.
Zur Bestimmung von Phononen ist die Kraftkonstantenmatrix (FCM) nötig. Die FCM ist
die Ableitung zweiter Ordnung der totalen Energie des KS Systems bezüglich der Auslenkung
zweier Atome. Ihre Fouriertransformierte stellt die dynamische Matrix (DM) dar. Die
Eigenwerte der DM sind die Quadrate der Phononenenergien. Ihre Eigenvektoren sind die
Polarisationsvektoren.
Die erste Variante zur Phononenberechnung ist die endliche-Verschiebungs-Methode (FD).
In dieser Methode erhält man die FCM durch Verschiebung eines Atoms aus seiner Ruhelage,
anschließende Berechnung der Kräfte auf alle Atome und schließlich durch die Division der
Kräfte durch die Länge der Auslenkung. Dies wird für jedes Atom und für jede Raumrich-
tung wiederholt. Tatsächlich kann die Anzahl der Rechnungen durch das Ausnutzen von
Symmetrien drastisch verringert werden. Die FCM wird zur DM transformiert und man
erhält die Phononenenergien und die Polarisationsvektoren. Ein Nachteil dieser Methode
ist die Notwendigkeit, Superzellen zur Berechnung zu benutzen. Nur diejenigen Phononen,
deren Wellenvektor q mit der Superzelle kommensurabel ist, können korrekt ermittelt wer-
den. Daher müssen zur zuverlässigen Berechnung von Phononenfrequenzen bei kleinen q
große Superzellen herangezogen werden. Solche Phononen erzeugen Verschiebungsmuster,
die sich erst nach vielen primitiven Einheitszellen wiederholen.
Da die FD Methode aus einer analytischen gefolgt von einer numerischen Ableitung der
totalen Energie besteht, sind genaue Kräfte nötig. Andernfalls ist z.B. die FCM nicht sym-
metrisch. Wir präsentieren eine Erweiterung des Kraftformalismus der FLAPW Methode.
Diese schließt die ganze Einheitszelle in die Berechnung des Kraftbeitrags der Kernelektro-
nen ein und berücksichtigt darüberhinaus die Unstetigkeit der LAPW Basisfunktionen und
ihrer abgeleiteten Größen durch Korrekturterme. Die Präzisionsverbesserung durch unseren
Formalismus wird anhand verschiedener Beispiele demonstriert.
Wir zeigen die Phononenbandstrukturen von Al, MgO, GaAs und EuTiO3, welche durch
die FD Methode und FLAPW-Kräfte ermittelt wurden.
Der zweite Ansatz zur Bestimmung von Phononenbandstrukturen ist Dichtefunktional-
Störungstheorie (DFPT). Die zweite Ableitung der KS totalen Energie wird in DFPT di-
rekt durch Störungstheorie bestimmt. Dabei erlaubt DFPT, Phononenenergien beliebiger
Wellenvektoren q zu bestimmen und dabei nur die primitive Einheitszelle zur Berech-
nung heranzuziehen, indem das Phonon als Störung angesehen wird. Es ist nötig, die
Änderungen erster Ordnung der Basisfunktionen, der Elektronendichte und des Poten-
tials durch die Sternheimer Gleichung zu bestimmen. Die Sternheimergleichung ist die
linearisierte Schrödingergleichung. Ausserdem muss die zweite Variation des externen Po-
tentials, der Ionen-Ionen Energie und der LAPW Basisfunktionen berechnet werden.
Wir stellen Formeln zur Verfügung, die explizit die Anpassungen des DFPT Ansatzes an
die FLAPWMethode berücksichtigen. Diese Anpassungen beinhalten Pulay-Terme, die kor-
rekte Behandlung des Beitrags der Kernelektronen, sowie Oberflächenterme, die sich ähnlich
wie bei den Kräften ergeben.
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1. Introduction

Most of the properties of a crystalline material arise from the collective behavior of the
constituent particles, i.e., the atomic nuclei and the surrounding electrons. Examples for
these collective phenomena are plasmons, magnons, and phonons to name but a few. While
plasmons correspond to a collective oscillation of the electron charge density, magnons de-
scribe the collective motion of the electron spins, and phonons the collective vibration of
the atomic nuclei around their equilibrium position. In the course of this thesis, we focus
on the latter.

Phonons are quasi particles of the crystal specified by their crystal momentum q and
their energy in quantums of ℏω. Each phonon corresponds to a displacement pattern of
the atoms, along which the vibration of the atoms takes place. Phonons can be generated
by external perturbations, e.g. by sound, by scattering of particles, e.g. electrons or neu-
trons, or by thermal agitation. Phonons are the main contributors to the specific heat of a
material, starting with a T 3-dependence at low temperatures and saturating at the Dulong-
Petit result of classical mechanics for high temperatures, where each atom amounts for 3kB
to the heat capacity of the material. Phonons are also a pivotal ingredient for explaining
further material properties, like heat conductivity, which is the essential quantity for ther-
moelectrica; thermal expansion of a solid is governed by phonons under consideration of
anharmonic effects; electrical conductivity is reduced by electron-phonon scattering, and
the electron-phonon coupling is the driving mechanism for the BCS theory of superconduc-
tivity. Together with spin-orbit coupling, phonons lead to spin relaxation of a spin-polarized
current passing through a crystal and provide a channel for the relaxation of angular mo-
mentum from the spin-degree of freedom into the lattice. All these items show that the
investigation and understanding of phonons is a central theme of solid state research.

Several experimental techniques are available to measure the phonon dispersion relation.
Common are inelastic neutron scattering [1–3], Raman spectroscopy [4–6], infrared absorp-
tion [7–9], or x-ray diffraction [10–12]. Surface phonons are measured with high-resolution
electron energy loss spectroscopy [13–15]. For crystals with one atom in the unit cell, the
resulting phonon dispersion exhibits one acoustic branch per spatial dimension, which goes
to zero linearly for vanishing crystal momentum. The slope of the acoustic branches defines
the speed of sound in a material. At zero crystal momentum, an acoustic phonon corre-
sponds to a translation of the whole lattice, which does not require energy, as the atoms of
the crystal move rigidly in phase. If more atoms (say Nat) are contained in the primitive
unit cell of the lattice, 3Nat − 3 optical phonons occur and manifest in the phonon band
structure as modes with a finite energy also for vanishing crystal momentum. In contrast to
the acoustic modes, the optical modes represent a vibrational pattern in which the atoms
move against each other.
From a theoretical point of view phonons are oscillatory eigenmodes of the atomic nuclei
in the potential landscape generated by electrons. The eigenmodes and energies of the
phonons are connected to the force-constant matrix, which is the Hesse matrix, i.e., the
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1. Introduction

second-order derivative of the total energy Etot of a solid in the Taylor expansion of Etot

with respect to small atomic displacements. The symmetry of second derivatives (Young’s
theorem) holds for the force-constant matrix, defining it as a symmetric matrix. A Fourier
transformation of the force-constant matrix from real space to momentum space yields the
Hermitian dynamical matrixD(q), whose eigenvalues are the squares of the phonon energies
and whose eigenvectors are the polarization vectors specifying the atomic vibration patterns.
In general, there is a relation between the phonon band structure and the symmetry of a
crystal: If a lattice is subject to stress (or other environmental conditions), the phonon
band structure changes and can become ’soft’ for certain phonon modes, meaning that the
energy necessary to excite this phonon decreases with increasing stress. Once the excitation
energy is critically low, the material gains energy from undergoing a phase transition into
a geometry in which no critically soft mode exists anymore. A more elaborate introduction
into the theoretical description of phonons is given by Born and Huang [16].

Considering the importance of phonons in solids there is a strong motivation to simulate
phonon spectra from first principles, that means the interaction between the atomic nuclei is
determined directly from the laws of quantum mechanics of the interacting electrons. These
calculations do not involve model parameters. In principle, one just has to specify what
kind of atom is placed at which location in the lattice. Basically, the physical properties of
the desired system are accessed by solving the Schrödinger equation describing this system.
The Born-Oppenheimer approximation [17] is commonly employed to separate the solution
of the Schrödinger equation into an electronic part, where the atomic charges and positions
enter as external parameters, and an ionic part, where the atomic nuclei move in the energy
landscape provided by the electronic solution. In many cases this approximation is appro-
priate since the mass difference between the nuclei and the electrons allows to separate the
time scales on which both constituents move. The light and fast electrons instantaneously
adjust to an atomic movement and thus see the atoms as static objects. The direct approach
to generate the electronic solution of the Schrödinger equation is the representation of the
many-electron wave function, which can be expressed for weakly correlated electron systems
in terms of products of non-interacting single-particle wave functions in the Hartree- and
Hartree-Fock methods and their descendants [18–20].
An alternative and highly successful approach is density functional theory [21, 22], which
in the spirit of the Thomas-Fermi model [23, 24] replaces the complex many-electron wave
function as the central quantity of interest by the simple electronic density. Hohenberg and
Kohn showed that the electronic density contains in principle all information to describe the
system. Today, density functional theory is the workhorse for solid state physics, quantum
chemistry, materials and nanosciences. With the availability of increasingly more powerful
computers, its importance will continue to rise. An indication for the popularity of density
functional theory is the total number of publications concerning this topic, which exceeds
250.000 as of July 2015, with over 29.000 publications in 2014.1

The strong interest in density functional theory manifests itself in the various realizations
and in the development of different schemes to calculate phonon spectra.
One of the earliest schemes to determine phonon spectra from first principles is the frozen-
phonon method [25–27]. The frozen-phonon approach enables to compute phonon frequen-
cies at a crystal momentum q, but requires the polarization vector of the corresponding

1Search performed with the phrase “density functional theory”in the title, the abstract, and the keywords
of publications on Web of Science, http://wokinfo.com/.
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phonon as input before one can start the simulation. For simple systems and if high sym-
metry is present, the polarization vector can be deduced from group theoretical consider-
ations. The crystal is then subjected to the phononic displacement and one calculates the
total energy for different displacement amplitudes. The curvature of the resulting energy
versus displacement-amplitude curve corresponds to the phonon energy. For systems with
many atoms per unit cell and patterns belonging to arbitrary wave vectors q, this approach
becomes unfeasible for two reasons: (a) the determination of a polarization vector becomes
drastically more involved and (b) the q-vector defines the size of a supercell required to re-
alize the displacement pattern. A 2×2×2 supercell, i.e., the repetition of the primitive unit
cell in each direction by one, is needed so a high-symmetry q displacement pattern can be
hosted by the larger unit cell while keeping its translational symmetry. A phonon of such a
q-vector is called commensurable with the underlying supercell. The calculation of phonon
energies at small q-vectors, i.e., with a long wavelength, requires very large supercells.
The tedious precalculation of a displacement pattern is avoided in the finite-displacement
method [28–31], in which the force-constant matrix is approximated using atomic forces.
Starting from the equilibrium configuration of the lattice, each atom is displaced in each
spatial direction in a separate calculation. The forces on all atoms are calculated and sub-
sequently divided by the amplitude of the displacement to obtain the force-constant matrix.
The force-constant matrix is then Fourier transformed to get the dynamical matrix and the
phonon energies and polarization vectors are extracted. This approach yields exact energies
for phonons of a q-vector that is commensurable with the unit cell. Thus, a setup of large
supercells is still required if more than just high-symmetry q phonons need to be determined
exactly.
The need for supercells is omitted applying density functional perturbation theory [32–36],
which is used to directly calculate the second-order derivative of the total energy in linear
response. This approach enables to calculate exact phonon energies at arbitrary crystal
momenta q. Starting from an electronic structure calculation, the underlying system is per-
turbed by a phonon of wave vector q. This results in a change of the external potential. The
corresponding first-order responses of the wave functions and the density are constructed
by solving the Sternheimer equation [37–40], which is the linearized Schrödinger equation.
The solution has to be found self-consistently, since the change in the electronic density
implies also a change in the Hartree and the exchange-correlation potential. The under-
lying self-consistent-field procedure is in analogy to the construction of the unperturbed
density in a regular electronic structure calculation. From the first-order change in the wave
functions and density, the dynamical matrix D(q) can be constructed almost immediately,
giving rise to the phonon energies and polarization vectors. The computation of the neces-
sary second-order changes is less involved, since no self-consistency has to be achieved. The
calculation of a phonon band structure along a given path can be performed by repeating
this procedure for every q-point of this path. This can become easily very time consuming.
Alternatively, the construction of the dynamical matrix can be performed for some q only,
and the force-constant matrix is approximated from a backtransformation from reciprocal
space to real space.
In all cases above, the force-constant matrix is then used to Fourier interpolate the phonon
band structure at the remaining q-points of the Brillouin zone.

By far, most of the phonon calculations are carried out using pseudopotential methods [41]
and the projector augmented plane wave method [32].
In this thesis, we focus on phonon calculations employing the finite-displacement and density-
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functional-perturbation-theory schemes with the all-electron full-potential linearized aug-
mented-plane-wave (FLAPW) method [42–45]. This method treats the tightly bound core
states and the valence states on the same footing and without approximating the shape of
the potential. Hence, it is widely considered to be the gold standard of electronic structure
methods and often serves as a benchmark method to which other electronic structure meth-
ods and realizations of Kohn-Sham density functional theory are compared. The ability of
the FLAPW method to treat the Schrödinger equation accurately stems from the choice
of basis functions: plane waves are used in the interstitial region separating the atoms and
numerical radial functions are used in the non-overlapping muffin-tin spheres around the
atoms. The radial functions are solutions to the spherical potential for a given energy pa-
rameter. Quantities like the density or the potential are also represented piecewise in the
muffin-tin spheres and the interstitial region.
Although the FLAPW method is highly accurate, the efficient and intricate basis set is tech-
nically and numerically very challenging if response quantities are required. Quantities like
the force exerted on the atom - this involves the derivative of the wave function - are non-
trivial quantities in the context of this method, because the derivative of the wave function
might not be completely part of the Hilbert space spanned by the basis functions. There-
fore, phonon calculations based on density functional perturbation theory with the FLAPW
method are rare. They are limited to publications of Wang, Yu, and Krakauer [46–49] who
however replace the all-electron aspect by integrating a pseudopotential into the method,
and Kouba et al. [50] as well as Lee [51], who have presented a linear response formalism
for the FLAPW method, whose applicability to real systems is still open at this point.

The interest in merging the calculation of phonon band structures with the FLAPW
method comes from the fact that the FLAPW method is not only accurate, but it is also ap-
plicable to a wide variety of systems. Especially complex magnetic systems or low-symmetry
systems containing many atoms are accurately described. In principle, the FLAPW method
is able to treat solids which contain any element of the periodic table, be it light atoms or
d and f atoms. Therefore, phonon calculations in the context of the FLAPW method will
lead to the availability of reliable phonon band structures of complex materials.

In the finite-displacement method, the construction of the force-constant matrix corre-
sponds to an analytical derivation of the total energy in terms of a force formalism followed
by a numerical derivation of the obtained forces in the finite-displacement method. For
the FLAPW method, a force formalism was introduced in the seminal works of Soler and
Williams [52, 53], and Yu et al. [54] around 1990, approximately ten years after the advent of
the FLAPW method. Both groups report the appearance of Pulay forces [55] in addition to
the Hellmann-Feynman force. The additional Pulay terms arise due to the incompleteness
of the LAPW basis set, which renders the wave functions to be variational and not pointwise
solutions of the Schrödinger equation, and its dependence on the atomic positions. Further
discussions of the atomic forces within the FLAPW method are given by Kohler et al. [56].
Despite this important correction, we have observed that the atomic forces of a practical
calculation can add up to a net drift force in the order of magnitude of mHtr/aB, which
is a contradiction to the fact that the sum of the forces on all atoms of the unit cell must
vanish. Obviously, conjugate entries of the force-constant matrix deviate from each other in
the order of magnitude of mHtr/aB (when the division by the displacement amplitude is not
yet applied), making the force-constant matrix much too unreliable to calculate a phonon
dispersion.
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In this thesis, we present a refined force formalism based on the original work of Yu et al.,
which includes the whole unit cell into the calculation of the force contribution from the core
states. This contribution would otherwisely be calculated using only the muffin-tin sphere
from which the core state originates. Furthermore, our formalism rigorously accounts for the
discontinuity of the LAPW basis function, the density, and the potential at the muffin-tin
sphere boundary. The latter arises from the fact that the muffin-tin representation is limited
to a maximal angular-momentum cutoff lmax in practical calculations, while the interstitial
representation contains all angular-momentum channels, as can be seen from a Rayleigh
expansion of the plane waves. We demonstrate that the drift force is reduced by three or-
ders of magnitude from mHtr/aB to µHtr/aB and that the symmetry of the force-constant
matrix is improved to the same order of magnitude. This makes finally reliable phonon
calculations possible.
The improvement of the forces is demonstrated for the prototype systems Al, MgO, GaAs,
EuTiO3, and VO2. For the former four systems, we also provide phonon band structures cal-
culated in the finite-displacement approach by using forces obtained with the FLEUR code [57]
in conjunction with the finite-displacement code PHON by Alfè [58].

In the final part of this thesis, we derive DFPT in the context of the FLAPW method
starting from the method-unspecific introduction to DFPT by Savrasov in [34], who eventu-
ally provided in this paper the DFPT scheme for the linearized muffin-tin orbital approach,
which is a different all-electron method [59–61]. In our derivation, we draw from the ex-
perience obtained from the force formalism: The dependence of the LAPW basis on the
atomic position leads to Pulay corrections. The discontinuity of the basis functions, the
density, and the potential leads to surface corrections, and we include the whole unit cell
into the calculation of the core-state contribution. These adjustments are included both
in the derivation of the first-order quantities within the Sternheimer equation and in the
derivation of the dynamical matrix.
Since the FLAPW wave functions are described in terms of a basis with corresponding ex-
pansion coefficients, the variation of a wave function results in separate variations of the
basis functions and of the expansion coefficients. In this case, the Sternheimer equation
transforms into a matrix equation defining the variation of the expansion coefficients, while
the variation of the basis functions is calculated directly from the perturbation. In this ma-
trix equation, we observe that the rigid part of the perturbed density and potential cancels
before it has to be evaluated for the Sternheimer equation.
Although our derivation is independent of the FLAPWDFPT derivation of Kouba et al. [50],
we naturally arrive at a Sternheimer matrix equation similar to that in [50]. The difference
between their equation and the one we present in this thesis manifests in the surface terms.
We include also the zeroth and first order discontinuities of the basis functions into our con-
siderations. Kouba et al. on the other hand assume that the basis functions are completely
continuous up to first order. Hence, our Sternheimer matrix equations deviate in the kind
of representation that is to use to evaluate the surface integrals. While we consider the basis
functions to be given in interstitial representation, for example, their Sternheimer matrix
equation uses the muffin-tin representation in the surface integrals. However, in contrast to
their theoretical derivation, Kouba et al. also use the interstitial representation of the basis
functions in practical calculations, since they assume that the basis functions are continuous
and they claim that using the interstitial representation eases the evaluation of the surface
terms. Therefore, our DFPT formalism for calculating phonons within the FLAPW method
validates their implementation.
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We do not only present the first-order variations obtained from the self-consistent solution
of the Sternheimer equation, but also the second-order variations in the wave functions,
in the external potential and in the ion-ion energy. For all variations of the electrostatic
potential terms it holds that the direct evaluation poses a challenge in the FLAPW method
due to the distinction of the unit cell into muffin-tin spheres and the interstitial region.
Instead, we use a procedure developed by Weinert [62] to calculate the first- and second-
order variations of the electrostatic potential. In this procedure, the potential of a charge
density contained in a distant volume is computed purely from the multipole moments in
this volume. Since the relation between charge distribution and multipole moments is not
unique, the original density in the volume can be replaced by a smooth pseudo charge den-
sity that has the same multipole moments. Then, the electrostatic potential outside of the
volume can be expressed by Poisson’s equation in reciprocal space. The potential within
the volume is constructed from a Dirichlet boundary-value problem afterwards, using the
outside potential for the boundary values. In the FLAPW method, the volume is given by
the muffin-tin spheres and the outside region is the interstitial. For the regular electronic
structure calculation, the electrostatic density is used as the charge density in the procedure
of Weinert. For expressing the first- and second-order variations in the Coulomb potential,
the charge density is replaced by the first- and second-order variations of the electrostatic
density.

The manuscript is organized as follows: In chapter 2, a brief introduction to density func-
tional theory and the Kohn-Sham formalism is presented. This introduction includes the
basic equations and quantities. The FLAPW method is discussed with its predecessors in
chapter 3. Also the local orbital extension is introduced, as well as a detailed mathematical
view on the Pulay terms. Chapter 4 introduces the FLAPW force formalism of Yu et al.
and our refinements to yield more precise forces. This refinement is demonstrated for the
prototype systems Al, MgO, GaAs, EuTiO3, and VO2. The construction of the dynamical
matrix from the atomic forces is presented in chapter 5. Phonon spectra for the subset Al,
MgO, GaAs, and EuTiO3 are given. A general introduction to density functional pertur-
bation theory is provided in chapter 6, where it also is applied to the FLAPW method. In
chapter 7, the results from the previous chapter are used to derive the formulas necessary to
treat phonons with density functional perturbation theory in the FLAPW method. Chap-
ter 8 concludes this thesis.

Parts and results presented in chapters 4 and 5 have been published in Physical Review
B [63].
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2. Density functional theory

A molecule or a solid state body consists of a conglomerate system of many atoms, which
in turn consist of the atomic nucleus and one or more electrons. The interplay between all
these particles poses a many-body problem in which the current state and the evolution
of a particular particle are dependent on state and evolution of all the other particles as
well. A solution of this many-body problem provides knowledge on the properties of the
system. These properties include, among others, the stable assembly of the participants
into a molecule or solid in the first place, as well as the formation of electronic bands, con-
ductance, and magnetism, most of which would not occur or not bear meaning if only single
atoms were considered. Unfortunately, the complexity inherent to a full description of all
particles involved and their dependencies on each other deny an analytic treatment of the
problem in all but the simplest cases. Also, a direct numerical approach is unfeasible: To
represent a function dependent on a sole iron atom and its twenty-six electrons on a coarse
mesh of eight mesh points in each spatial direction would require to store the functions
value for (83)27 configurations of the particles. If the function would be stored with double
precision, i.e., with eight bytes of storage per entry, this would amount to 862 exabyte of
memory space, which is an impossible amount of data to store, let alone to operate with or
on it.
Indeed, already in 1929 Paul Dirac foreshadowed that even though “the underlying physical
laws necessary for [...] a large part of physics and the whole of chemistry are thus completely
known, [...] the difficulty is only that the exact application of these laws leads to equations
which are too complicated to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be developed, which can lead to
an explanation of the main features of complex atomic systems without too much compu-
tation.” [64]
After a more formal introduction to the many-body problem, this chapter will provide one
such method in the form of density functional theory (DFT) [21], which has its foundation
in the theorem of Hohenberg and Kohn. Furthermore, the Kohn-Sham formalism [22] is in-
troduced that puts DFT into a practical method and different approximations are discussed
for the exchange-correlation (xc) functional that includes the many-body interactions into
Kohn-Sham DFT. We finalize this chapter by presenting spin-DFT.

2.1. The many-body Hamiltonian

We consider a system of Nat atomic nuclei of charges Zα located at τα, α = 1 . . . Nat.
Furthermore, for each atomic nucleus, there be Zα electrons, Nel in total. Their locations
are denoted by ri, i = 1 . . . Nel. This system is governed by the many-body Schrödinger
equation

Ĥ |ψ〉 = i∂t |ψ〉 , with (2.1)

Ĥ = Tel + Tion + Uel-el + Uion-ion + Uion-el, (2.2)
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where the Hamiltonian Ĥ consists of the kinetic energy as well as the electrostatic attraction
or repulsion between the particles

Tel = −1

2

Nel
∑

i

∇2
i , Tion = − 1

2M̃α

Nat
∑

α

∇2
α,

Uel-el =
1

2

∑

i,j
i 6=j

1

|ri − rj |
, Uion-ion =

1

2

∑

α,β
α 6=β

ZαZβ

|τα − τβ |
, Uion-el = −

∑

i,α

Zα

|ri − τα|
.

M̃α denotes the relative mass of the nuclei with respect to a single electron. We employ
Hartree units1 here and in the following if not stated otherwise. The wave functions that are
solutions to this Hamiltonian depend on the coordinates of each nucleus and each electron.
The problem is cast to that of only the electronic system by the Born-Oppenheimer approx-
imation [17]: The large relative mass of the nuclei as compared to the electrons suggests
that the motion of the nuclei and the motion of the electrons appear on a different time
scale. In the Born-Oppenheimer approximation the atomic positions are hence considered
to be external parameters. Any configuration of nuclei provides an external potential for
the electronic system, to which it adapts instantaneously.
Still, the electronic problem remains to be solved. In the quantum chemistry school of
thought, this is attempted by searching for the many-body wave function. The difficulty to
do so is due to the electron-electron term Uel-el. Without it, the Hamiltonian would be the
sum of single particle Hamiltonians and a product ansatz for the many-body wave function
in terms of single particles would work perfectly fine. Each component of the product could
be handled separately then. However, with the electron-electron interaction in place, such
a product ansatz becomes an approximation and also lacks the antisymmetry which the
many-body wave function has to possess. The easiest way to include this requirement is by
the Hartree-Fock method [18], in which the product of the single particle wave functions
is replaced by a single Slater determinant. Minimization of the total energy then deter-
mines the orbitals. Further refinements are linear combinations of Slater determinants in
the configuration-interaction [19] and coupled-cluster methods [20]. The drawback of these
methods is the increasingly bad scaling with system size. Therefore, they are not well suited
to be used on solid state bodies.
In this work, we use a different approach in the form of density functional theory. In it, the
electron density replaces the many-body wave function as the central quantity.

2.2. The theorem of Hohenberg and Kohn

In 1964, Hohenberg and Kohn published the foundation of density functional theory by two
fundamental statements [21]:

1. The external potential Vext(r) specifying the atomic configuration of a system is a
unique functional of the electronic ground state density ρ0(r) of this system, apart
from a constant shift in the potential. The same is true for the ground-state energy
E[ρ0] and all other ground-state properties.

1In Hartree units, the electron charge e and mass me, the reduced Planck’s constant ~ = h/2π, and
Coulomb’s constant ke = 1/4πε0 are the reference quantities, therefore e = me = ~ = ke = 1 and every
quantity is expressed with respect to these units.
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Vext

ψ

ρ0
DFT

Figure 2.1.: Textbook physics follows the dotted path: From the external potential one
obtains the wave functions, which give the density. DFT closes the loop, the
external potential is uniquely defined by the ground state density.

2. The ground-state density minimizes the total-energy functional among all densities
that reproduce the same number of electrons Nel, i.e.,

E[ρ] > E[ρ0] (2.3)

for all ρ(r) 6= ρ0(r),
∫

ρ(r)d3r = Nel =
∫

ρ0(r)d
3r.

These statements allow to replace the many-body wave function as the central quantity
of interest by the electronic ground-state density: The content of the first statement is
basically that not only the complicated many-body wave function, but also the electronic
ground-state density contains every information on the system; from it, the external poten-
tial can be reconstructed which in turn leads to the wave functions again. At the position
of a positively charged nucleus, the electronic density is higher, and by Kato’s theorem [65],
the atom type of the nucleus can be extracted from the shape of the density. Therefore, any
observable O can be expressed as a functional of the density, O[ρ0]. The second statement
means that the total energy of a system is variational with respect to the ground-state den-
sity. Any density from the same number of electrons that deviates from the ground-state
density will result in a higher total energy of the system. Hence, the density can be made
subject to a minimization procedure.
The advantage of the electronic density over the many-body wave function as the central
quantity from which the properties of a system are determined is that the electronic den-
sity is a scalar, real-valued function of space, i.e., only dependent on one three-dimensional
spatial coordinate r. As such, it is readily manageable in terms of computer storage and
memory.

A comparison between textbook physics and DFT is sketched in Fig. 2.1: Usually, one
starts from the Hamiltonian to find the wave functions. These in turn can be condensed
to the electronic density. With the theorem of Hohenberg an Kohn, the external potential,
being the degree of freedom in the Hamiltonian, can be extracted from the ground state
density again, along with any other observable of interest, either explicitly or implicitly.

While density functional theory is a promising prospect up to this point, the theorem of
Hohenberg and Kohn does not yet lead to a practicable scheme to find the ground-state
density. There exist different approaches to make DFT a working scheme, like the one
by Korringer, Kohn, and Rostoker [66–68], which is a Green function method. We use
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the Kohn-Sham formalism instead, where the electronic density is constructed from wave
functions, not from the imaginary part of the Green function.

2.3. The Kohn-Sham formalism

The importance of the Hohenberg-Kohn theorem does not only arise from a convenience
argument concerning the memory necessary to transfer the task to solve the Schrödinger
equation onto a computing machine, but also from the implication that any way to obtain
the correct ground-state density in principle suffices to find the ground-state properties of
the system at hand. In 1965, Kohn and Sham [22] published a way to exploit this freedom in
obtaining the ground-state density by suggesting an auxiliary set of non-interacting states
ψKS
i , which solve a single-particle Schrödinger equation of the form

(

−1

2
∇2 + Veff(r)

)

ψKS
i (r) = ǫKS

i ψKS
i (r), (2.4)

where the effective, local potential Veff(r) is such that the Kohn-Sham states filled according
to the occupation number fi of the electronic band i reproduce the same density as in the
fully-interacting system,

ρ(r) =
∑

i

fiψ
KS∗
i (r)ψKS

i (r). (2.5)

The motivation behind this equation is the following: The total energy of the electron
system is given by the sum of the kinetic energy Tel[ρ] and the Coulomb terms between the
electrons Uel-el[ρ] and between the electrons and nuclei Uion-el,

Eel[ρ] = Tel[ρ] + Uel-el[ρ] + Uion-el[ρ] (2.6)

This energy can be rewritten in terms of the auxiliary, non-interacting (ni) system as

Eel[ρ] = Tni[ρ] +
1

2

∫ ∫

ρ(r)ρ(r′)

|r − r′| d
3r′d3r −

Nα
∑

α

∫

Zαρ(r)

|r − τα|
d3r + Exc[ρ]. (2.7)

The first three terms are directly obtainable from the non-interacting Kohn-Sham system.
The so-called exchange-correlation energy Exc[ρ] is defined by the difference in energy be-
tween the interacting and the non-interacting system:

Exc[ρ] = (Tel[ρ]− Tni[ρ]) + (Uel-el[ρ]−
1

2

∫ ∫

ρ(r)ρ(r′)

|r − r′| d
3r′d3r)

+ (Uion-el[ρ] +

Nα
∑

α

∫

Zαρ(r)

|r − τα|
d3r) (2.8)

=

∫

ρ(r)ǫxc[ρ](r)d
3r (2.9)

We will discuss the exchange-correlation energy in more detail in the next section. For now
it suffices to know that all effects related to the exchange of electrons and the correlations
between them, which compose the many-body character of the fully-interacting system,

10



2.4. The exchange-correlation functional

are hidden in the exchange-correlation terms. ǫxc[ρ](r) is the exchange-correlation energy
density. Variation of the electronic energy with respect to a Kohn-Sham state ψKS∗

i (r)
under the constraint that the KS states are normalized yields the Kohn-Sham equations
from above, Eq. (2.4), with

Veff(r) = VH(r) + Vext(r) + µxc[ρ](r), and (2.10)

VH(r) =

∫

ρ(r′)

|r − r′|d
3r′, (2.11)

Vext(r) = −
Nat
∑

α

Zα

|r − τα|
, (2.12)

and the exchange-correlation potential

µxc[ρ](r) =
δExc[ρ]

δρ(r)
=
δ(ρ(r)ǫxc[ρ](r))

δρ(r)
. (2.13)

Equations (2.4), (2.5), and (2.10) form a set of self-consistent equations because VH and
µxc[ρ] are dependent on the electronic density.

The total energy as given from the iteratively determined, self-consistent Kohn-Sham
states, including the ion-ion interaction is given by

Etot =
∑

i

fiǫ
KS
i −

∫

ρ0(r)Veff(r)d
3r +

1

2

∫∫

ρ0(r)ρ0(r
′)

|r − r′| d3r′d3r

−
Nat
∑

α

∫

Zαρ0(r
′)

|τα − r′|d
3r′ +

1

2

Nat
∑

α 6=β

ZαZβ

|τα − τβ |
+

∫

ρ0(r)εxc[ρ0](r)d
3r, (2.14)

where the contribution from the non-interacting kinetic energy was rewritten using the
Kohn-Sham equations, Eq. (2.4).

It is important to stress that the Kohn-Sham states and energies are in principle nothing
more than an auxiliary construct to obtain the true electronic density and that they do
not represent any true physical quantity. That said, Exc[ρ] more often than not seems to
provide only a small part to the total energy so that large pieces of the big picture are
already governed by the non-xc part of the energy decomposition. Therefore, by experience,
having the band structure of the Kohn-Sham system can be meaningful and provides an
understanding of certain mechanics such as for example the mechanism behind topological
insulators [69, 70]. We will omit the label KS in the remaining parts of this thesis.

2.4. The exchange-correlation functional

Up to this point, KS DFT is exact. With the correct exchange-correlation functional, the
representation of the electronic density in terms of the auxiliary non-interacting Kohn-Sham
states using a local effective potential is just a valid algebraic transformation. However, while
the xc energy is formally defined in Eq. (2.8), its exact form is unknown. Hence, approxi-
mations are needed.
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2.4. The exchange-correlation functional

A step further on Jacob’s ladder includes meta-GGAs [82–84], where the kinetic energy
density τ(r) defined by Tni =

∫

ρ(r)τ(r)d3r is taken into account in the exchange-correlation
terms, and which is the last of the local approximations of the xc functional. The nonlocal
approximations on the higher rungs include hybrid functionals [85–87] and exact exchange
approaches [88–90], where different amounts of exact exchange energies are mixed to results
from a local approximation and which are orbital dependent in order to construct this exact
exchange.
In this work, however, we will restrict ourselves to the LDA, especially the formulation of
the correlation energy density by Vosko, Wilk, and Nusair [74], whose parametrization we
give in Appendix A.2, and only allow for the exception of LDA+U.

2.4.1. DFT + U

For historical reasons, the method we present in this chapter is also often called ’LDA+U’,
since first LDA calculations were augmented by it [91–93]. In fact, it has also been ap-
plied to GGA calculations [94] and can also have beneficial effects on other choices of the
exchange-correlation functional, which do not properly take into account the self-interaction
of the electrons.

By virtue of the Hartree energy 1
2

∫∫

ρ(r)ρ(r′)/|r − r′|d3r′d3r a Kohn-Sham state un-
physically interacts with itself, because both electron densities contain a contribution from
it. This effect has to be compensated for by the exchange-correlation energy Exc. However,
since we need to employ approximations to the exchange-correlation terms, this compensa-
tion is imperfect for many choices of the exchange-correlation functional. Without a proper
compensation for the self-interaction of the electronic state, the repulsion of this state is
excessive compared to a compensated case. Thus, the state will be overly delocalized.
This effect becomes most prominent in systems with strongly localized electrons like transi-
tion metal oxides or systems where d and f electrons play an important role. The erroneous
delocalization of these states leads to a larger overlap with other electronic states and thus
to an artificial broadening of the electronic bands. Systems that should be insulating thus
are often calculated as being metals due to this broadening of the bands.
To obtain more reliable results, in the DFT+U method the Kohn-Sham states ψik(r) re-
quired to be strongly localized are projected onto localized orbitals ϕα

lm(r) of atom α and
of certain orbital character lm, which are then treated by a Hubbard model using a non-
negative parameter Uα

l to adjust the repulsion of the state from itself. The total energy
then takes the form

EDFT+U[ρ] = EDFT[ρ] + EHub[ρ]− Edc[ρ]

= EDFT[ρ] +
∑

α





Uα
l

2

∑

m 6=m′

nαl
mmn

αl
m′m′ − Uα

l

2
nαl(nαl − 1)



 (2.17)

with the double-counting term Edc[ρ] which subtracts the energy contribution from the
states included in both the regular DFT total energy EDFT[ρ] and the Hubbard addendum
EHub[ρ], such that they are included only once. The nαl

mm are the occupation numbers of
the localized orbitals characterized by the atom index α where they are localized and the
angular and magnetic momentum indices l and m:

nαl
mm′ =

∑

ik

fik 〈ψik|ϕα
lm′〉 〈ϕα

lm |ψik〉 (2.18)
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2. Density functional theory

nαl =
∑

m

nαl
mm (2.19)

We introduced here the bra-ket notation 〈f |g〉 as the scalar product between the functions
f and g:

〈f |g〉 =
∫

f∗(r)g(r)d3r (2.20)

The additional potential obtained from Eq. (2.17) can be calculated by variation with respect
to ψ∗

ik to yield

VU =
∑

α

Uα
l

[

1

2
− nαl

mm

]

|ϕα
lm〉 〈ϕα

lm| . (2.21)

Since Uα
l is positive, this additional potential penalizes less-than-half occupancies of the lo-

calized orbitals ϕα
lm, nαl

mm < 1/2, while it advocates a high occupancy of them, nαlmm > 1/2.
In total, fractional occupations of the localized states are suppressed, leading to a Mott
localization of one state nαl

mm → 1 at the cost of another state nαl
m′m′ → 0.

The choice of an appropriate value for Uα
l is a point of debate. Adjusting it to reproduce

experimental results introduces the Hubbard interaction as an empirical parameter, thus
leaving the realm of ab-initio electronic structure calculations. Two other approaches are
to extract the parameter from constrained DFT calculations or from constrained random
phase approximation (cRPA) calculations [95–100].
Another degree of freedom when using DFT+U is the exact form of the double-counting
term. We introduced here the fully localized limit (FLL), which is appropriate for systems
where the electrons are localized on specific orbitals. There exist other approaches like
the around mean-field (AMF) formulation, which is more suited for systems that feature a
quasi-homogeneous distribution of electrons but fluctuate slightly. We refer the interested
reader to discussions on the choice of the double-counting term to [91, 101, 102].
Finally, the exact form of the orbitals ϕα

lm can be chosen among localized functions, such as
Wannier functions [103, 104] or atomic orbitals [105].

2.5. Spin-density functional theory

While presenting the many-body Hamiltonian, Eq. (2.2), we pointed out that it naturally in-
cludes magnetism by the necessity to comply to the Pauli principle. This is also true for DFT
and the single-particle Kohn-Sham system as introduced in the previous sections 2.2 and 2.3,
since every observable is accessible as a functional dependent on the electronic density. How-
ever, the connection between the electronic density ρ(r) and the magnetic density m(r) is
not known explicitly. Instead, in spin-DFT [106]

m(r) =

Nel
∑

i=1

ψ∗
i (r) · σ ·ψi (r) (2.22)

is incorporated into the variational principle of the Hohenberg-Kohn theorem

E[ρ(r),m(r)] ≥ E[ρ0(r),m0(r)] (2.23)
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2.5. Spin-density functional theory

and by distinguishing between majority and minority spin channels

ψi(r) =

(

ψi↑(r)
ψi↓(r)

)

, (2.24)

ρ(r) = ρ↑(r) + ρ↓(r). (2.25)

σ is the vector of Pauli matrices

σ = (σx,σy,σz), (2.26)

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

, (2.27)

The magnetization density is also included in the exchange-correlation energy Exc[ρ,m],
while the Hartree and external potential are unaffected. Thus, variation of the Kohn-Sham
equations with respect to ψ∗

i (r) yields

(

−1

2
∇2 + Veff(r) + µBgelσ ·Beff(r)

)

ψi(r) = ǫiψi(r) (2.28)

with the Bohr magneton µB = 1/2 in Hartree units and the gyromagnetic ratio of the
electron gel. The effective magnetic field subsumes a possible external magnetic fieldBext(r)
as well as the variation of the exchange-correlation energy with respect to the magnetization
density Bxc(r):

Beff(r) = Bext(r) +Bxc(r) (2.29)

Bxc(r) =
δExc[ρ,m]

δm(r)
(2.30)

The total energy is directly affected by the magnetization density in the exchange-correlation
energy density yielding the contribution Exc to it. However, if we apply analogous steps as
for finding the total energy in the spinless case, Eq. (2.14), by replacing the kinetic energy
contribution with the magnetic Kohn-Sham equation, Eq. (2.28), projected onto ψi and
summed over all states i, we obtain another explicit contribution:

Etot =
∑

i

fiεi −
∫

ρ0(r)Veff(r)d
3r − µBgel

∫

m0(r) ·Beff(r)d
3r

+
1

2

∫∫

ρ0(r)ρ0(r
′)

|r − r′| d3r′d3r −
Nat
∑

α

∫

Zαρ0(r
′)

|τα − r′|d
3r′ +

1

2

Nat
∑

α 6=β

ZαZβ

|τα − τβ |

+

∫

ρ0(r)εxc[ρ0,m0](r)d
3r (2.31)

Much insight already can be gained from the studies of ferromagnetic and antiferromag-
netic systems or other configurations where the magnetic moments are aligned collinearily.
In these important cases, an additional simplification can be applied. If the z-axis is set
to point along the direction of the magnetic field, only σz contributes to the Kohn-Sham
equation, decoupling the differential equations for spin-up and spin-down components of the
wave function ψi. Then the total energy and all quantities derived from it are dependent
only from the absolute value of the magnetization density m(r) = |m(r)|. In this case,
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2. Density functional theory

the constituents of the second and third term of Eq. (2.31) are combined to yield the total
effective potential Veffσ per spin

Veffσ(r) = VH(r) + Vext(r) + µxc[ρ0,m0](r)− σµBgelBeffσ(r) (2.32)

and σ corresponds to ’+’ in the spin up case and ’−’ in the spin-down case. The dependence
of the total energy and the exchange-correlation quantities on ρ(r) and m(r) is sometimes
expressed equivalently in terms of the spin-resolved densities ρ↑(r) and ρ↓(r) in collinear
spin-density functional theory. Another representation uses the Seitz radius rs = rs(ρ) and
the spin polarization ζ = ζ(ρ,m) = m/ρ.

In this work, we will only consider collinear cases. As stated above, both spin channels
can then be treated separately. Thus, we omit a distinction between spins except when
explicitly stated.
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3. Electronic structure methods

With density functional theory and the Kohn-Sham scheme as presented up until now, in
principle any arrangement of atoms can be treated, be it a single atom, a molecule, a cluster,
a slab, a semi-infinite volume with a single surface, or solid state bulk materials. Though,
the different setups all come with particular properties. For example, isolated configurations
like atoms or clusters impose that the wave functions decay far away from the configuration.
On the other hand, a crystal features periodic boundary conditions in any direction. Due to
this variety, many different electronic structure methods have been developed, as sketched
in Fig. 3.1.

[

T̂ + VH(r) + Vext(r) + Vxc(r)

]

ψi(r) = Ei ψi(r)

Relativity

• non-relativistic

• scalar-relativistic

• fully relativistic

Approximation to exchange-correlation

functional

• local density approximation (LDA)

• generalized gradient approximation
(GGA)

• LDA+U

• hybrid functionals

• EXX+RPA

• . . .

Contributions to potential

• pseudopotential

• all electron

Representation of potential

• spherical approximation

• full potential

Representation of wave functions

• linear combinations of
atomic orbitals (LCAO)
– Gaussian orbitals

– numerical orbitals

• plane waves (PW)

• real-space grid

• non-linear methods
– KKR

– augmented plane waves (APW)

• linearized methods
– LMTO

– linearized APW (LAPW)

Figure 3.1.: Electronic structure methods. The figure is a modification of that shown in [107]
and inspired by [108].
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3. Electronic structure methods

The various electronic structure methods differ in a couple of aspects:

• The treatment of the kinetic energy can range from a non-relativistic approach to a
fully-relativistic one, where the former is suited for calculations involving light atoms
while the latter is appropriate if heavy atoms are considered. A scalar relativistic
treatment poses a compromise between both ends of the scale. In it, relativistic effects
are taken into account with the exclusion of spin-orbit coupling, such that different
spin channels of the electron states do not couple [109].

• How the potential is handled is dependent on two choices:
a) Does one wish to find solutions for any state or only for the states that contribute
to chemical bonding? In the latter case, states that are low in energy and have little
overlap with states from neighboring sites are merged with the external potential to
pseudopotentials. Thereby, the states higher in energy are less complex. The price to
pay is that the low energy states are not available and therefore effects that depend on
them are excluded from the calculation. In the former case, all states are calculated
and contribute to the total energy with how they perceive the effective potential.
b) What approximations are done to the representation of the potential? If the physics
one is interested in is governed by the spherical part of the potential near the atomic
nuclei, it is sufficient to only consider it, at least to obtain a qualitative picture. The
inclusion of the full potential leads to a description that is more accurate.

• We addressed already in chapter 2.4 the different approximations available to treat
the exchange-correlation part of the potential.

• Finally, the choice of representing the wave functions depends on the system one
is interested in. Atomic orbitals can be used in the context of isolated structures,
while periodic systems allow for a plane-wave based approach. Furthermore, a Green
function approach can be used instead of wave functions, as is done in the KKR [66–68]
method.

For this thesis, we are interested particularly in bulk materials, which are periodic ar-
rangements of atoms in a crystal structure. For such a setup, the all-electron full-potential
linearized augmented plane-wave (FLAPW) method has proven to be the benchmark choice
of electronic structure methods. We present in the following the historical evolution towards
this methods starting from a plane-wave approach.

For the periodic systems we are interested in, we know by Bloch’s theorem [110] that the
solutions of the Kohn-Sham equations ψik(r) can be decomposed into a part uik(r) periodic
to the crystal and a phase factor containing the Bloch character k of the solution, which is
a reciprocal vector within the first Brillouin zone:

ψik(r) = eik·ruik(r) (3.1)

The periodicity of the uik enables us to apply a Fourier transform to it,

uik(r) =
∑

G

ûik(G)eiG·r, (3.2)

and thus to expand the wave function into plane waves,

ψik(r) =
∑

G

zikGφkG(r). (3.3)
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These plane waves can be used as a basis set

φkG(r) =
1√
Ω
ei(k+G)·r (3.4)

with the expansion coefficients

zikG =
√
Ωûik(G), (3.5)

where G are reciprocal lattice vectors and Ω is the volume of the unit cell, to which we
can restrict ourselves due to periodicity. Using this representation in the Kohn-Sham equa-
tions (2.4) and projecting it onto φkG′ ,

∑

G

HG′G(k)zikG = εik
∑

G

SG′G(k)zikG, with (3.6)

HG′G(k) =

〈

φkG′

∣

∣

∣

∣

−1

2
∇2 + Veff

∣

∣

∣

∣

φkG

〉

Ω

, (3.7)

SG′G(k) = 〈φkG′ |φkG〉Ω , (3.8)

recasts the original differential equation into an algebraic one, where the expansion coeffi-
cients zikG are the solutions of a (generalized) eigenvalue problem. The plane waves defined
in (3.4) are orthogonal and normalized, meaning that the overlap matrix SG′G(k) is δG′G,
while the matrix HG′G(k) decomposes into |k +G|2/2 · δG′G and V̂eff(G

′ −G) since plane
waves are eigenfunctions of the Laplacian and Fourier transform real space quantities.
While these properties advocate the use of plane waves as a basis set to represent the wave
functions, there is a drawback: The 1-over-r character of the external potential produces
wave functions that are heavily oscillating near the atomic nuclei. The reason for this is the
necessity of the wave functions to be orthogonal to each other, thereby the wave functions
higher in energy have to have more nodes than those lower in energy. To describe these
oscillations using plane waves, these also need to be oscillating with a high frequency, re-
sulting in contributions to the Fourier expansion with large reciprocal vectors G. Also, by
Kato’s theorem [65]

Zα = − lim
r→τα

1

2

n′(r)

n(r)
, (3.9)

the electronic density features cusps at the atomic positions, stemming from a discontinuous
first derivative of the wave functions at τα.
Then, the second derivative which is generated from the Laplacian in the Hamilton operator
produces a Dirac-δ which compensates the 1-over-r potential at the nucleus. Of course, also
discontinuities in any order of a quantity to be Fourier transformed impede that a low
reciprocal cutoff for the Fourier transform suffices.
The computational effort to handle such a large expansion is infeasible, which is why different
methods were developed to reduce the amount of plane waves necessary to describe the wave
functions. One way to deal with this problem is to exclude the low lying states from the
description in terms of plane waves, as it is done in the pseudopotential [111] and projector
augmented plane wave methods [112], reducing the amount of states to which the remaining
states need to be orthogonal to. This procedure is justified by the assumption that only
the valence states contribute to chemical bonding and determine the physical properties of
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3. Electronic structure methods

a solid. Another way to reduce the number of plane waves is to change the description of
the wave functions near the atomic nuclei from plane waves to a representation which more
naturally includes the oscillations of the high lying states. This leads to the augmented
plane wave (APW) type of approaches. The full-potential linearized-augmented plane-wave
(FLAPW) method is an all-electron approach. It is implemented in the FLEUR-code [57],
which has been used to produce the results of this thesis. In this chapter, we present the
historical transition from the APW to the FLAPWmethod and elaborate on the treatment of
core states and the local orbital extension. Furthermore, we showcase the Weinert approach
to calculate the Coulomb potential. Lastly, we comment on the inclusion of relativism
into an electronic structure calculation, explain Pulay contributions that can appear when
for example a position dependent basis set such as the one used in the FLAPW method
is differentiated with respect to the atomic positions, and present an extension of the KS
formalism by Weinert and Davenport [113], which restores the variational property of the
energy functional in case of metals.

3.1. The APW method

In the APW approach suggested by Slater [114], the unit cell Ω is partitioned into non-
overlapping spheresBRα

(τα) of radiusRα around the atomic nuclei α at τα, so called muffin-
tin (MT) spheres, and the interstitial region (IR) between these spheres. This partitioning is
sketched in Fig. 3.2. According to the partitioning, the basis functions are defined piecewise
as

φkG(r) =











1√
Ω
ei(k+G)·r , r ∈ IR

∑

lm

aαkGlm0 (Eα
l )u

α
l (rα, E

α
l )Ylm(r̂α) , r ∈ MT(α)

. (3.10)

Thus, plane waves are still used in the interstitial region, while sums of radial functions
uαl (rα, E

α
l ) times spherical harmonics Ylm(r̂α) are employed in the local coordinate frames

rα = r − τα of the muffin-tin spheres up to an atom dependent angular-momentum cutoff
lαmax. The coefficients aαkGlm0 (Eα

l ) are determined by matching the muffin-tin representation
of the basis function to the Rayleigh-expansion of its interstitial representation, yielding

aαkGlm0 (Eα
l ) =

4πil√
Ω
ei(k+G)·ταY ∗

lm(k̂ +G)
jl(|k +G|Rα)

uαl (Rα, Eα
l )

(3.11)

Figure 3.2.: Division of space into muffin-tin spheres and the interstitial region.

MT(α)

MT(β) MT(γ)

MT(δ)

IR

Ω
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3.2. The LAPW method

with the spherical Bessel function jl(r). The index 0 denotes the affiliation of the matching
coefficient to the radial function uαl in anticipation of the extention by the LAPW method,
which we introduce in the next section. The functions uαl are solutions of

{

−1

2

d2

dr2α
+
l(l + 1)

2rα
+ V α

eff,00(rα)− Eα
l

}

rαu
α
l (rα, E

α
l ) = 0 (3.12)

with the spherical (l = 0, m = 0) MT potential V α
eff,00 of atom α (i.e., for rα ≤ Rα). E

α
l is

a predefined energy parameter.

Furthermore, the potential is assumed to be constant in the IR and spherical in the MT
spheres. It turns out that the wave function ψik is only represented well by the APW
basis functions for such a shape approximation to the potential, because only then the
radial functions uαl constructed from energy parameters Eα

l set to the band energy ǫik
can be combined linearly to form an appropriate wave function; the APW basis is not
flexible enough to provide a good description of ψik when constructed from different energy
parameters. However, the band energies are the quantities which one wants to determine
with the electronic structure calculation. Therefore, starting from the lowest state, Hamilton
and overlap matrices constructed from basis functions with an initial guess Eα

l = E for the
band energy lead to the secular equation

∑

G

[HG′G(k, E)− ǫikSG′G(k, E)]zikG = 0. (3.13)

From this equation, a refined guess can be extracted which serves as a foundation for the
next iteration to find ǫik, making the construction of the wave functions a non-linear proce-
dure. Only if E and ǫik coincide, selfconsistency is achieved, but only to represent the state
ψik. The whole procedure has to be repeated for each state.

Also, a bad choice of the muffin-tin radius Rα and the energy parameter Eα
l can result in

a radial function uαl that is zero at the muffin-tin boundary. Then the matching coefficient
aαkGlm0 (Eα

l ) is not well defined any more and the muffin-tin representation of the basis func-
tion decouples from its interstitial representation. This shortcoming of the APW method is
called the asymptote problem.

Both the problem of lacking flexibility and the asymptote problem are avoided by intro-
ducing a linearization in energy of the basis functions, leading to the LAPW method.

3.2. The LAPW method

In the previous section, we discussed how a plane wave basis set could be augmented by
replacing the description of the basis functions in the atom centered muffin-tin spheres by
radial solutions to the Schrödinger equation. We also pointed out the asymptote problem
and the issue of non-linearity when using the APW method, which makes it a computational
demanding scheme. To circumvent these drawbacks, Andersen proposed to further augment
the radial basis functions [59]. This is done in the spirit of a Taylor expansion around the
energy parameter Eα

l

uαl (rα, ε) = uαl (rα, E
α
l ) + (ε− Eα

l )u̇
α
l (rα, E

α
l ) +O

(

(ε− Eα
l )

2
)

, (3.14)
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where an unknown radial function to an energy of ε can be approximated by a sum of
the radial function uαl and its energy derivative u̇αl evaluated at Eα

l . u̇
α
l is obtainable by

differentiating Eq. (3.12) with respect to the energy parameter:
{

−1

2

d2

dr2α
+
l(l + 1)

2rα
+ V α

eff,00(rα)− Eα
l

}

rαu̇
α
l (rα, E

α
l ) = rαu

α
l (rα, E

α
l ) (3.15)

By adding a multiple of the homogeneous Eq. (3.12), u̇αl is usually made orthogonal to uαl ,
as such a procedure eases further operation when a scalar product of both radial functions
is formed. It is not mandatory, though. Using the local coordinate rα = r − τα, the basis
of the linearized-augmented plane-wave (LAPW) approach is given by

φkG(r) =











1√
Ω
ei(k+G)·r , r ∈ IR

∑

lm

[aαkGlm0 u
α
l (rα, E

α
l ) + aαkGlm1 u̇

α
l (rα, E

α
l )]Ylm(r̂α) , r ∈ MT(α)

(3.16)

with the additional matching coefficient aαkGlm1 affiliated to the energy derivative u̇αl of the
radial basis function. The matching between the plane-wave and spherical-harmonic repre-
sentation up to the angular-momentum cutoff lαmax now includes the first spatial derivative
at the muffin-tin sphere boundary, leading to the equation

(

aαkGlm0

aαkGlm1

)

=
4πil√
Ω
ei(k+G)·ταY ∗

lm(k̂ +G)U−1

(

jl(|k +G|Rα)
|k +G|j′l(|k +G|Rα)

)

(3.17)

with

U−1 =
1

Wα
l (Rα, Eα

l )

(

u̇α′l (Rα, E
α
l ) −u̇αl (Rα, E

α
l )

−uα′l (Rα, E
α
l ) uαl (Rα, E

α
l )

)

, (3.18)

Wα
l (Rα, E

α
l ) = uαl (Rα, E

α
l )u̇

α′
l (Rα, E

α
l )− u̇αl (Rα, E

α
l )u

α′
l (Rα, E

α
l ). (3.19)

The LAPW method is not subject to the asymptote problem, because in place of the sole
radial function uαl evaluated at Rα as in the APW method, now the WronskianWα

l appears
in the denominator of the definition of the alm0 and alm1 coefficients. We show that the
Wronskian does not vanish at the muffin-tin boundary. To see this, multiply Eq. (3.12) with
rα times u̇αl and Eq. (3.15) with rα times uαl , subtract both equations from each other and
integrate to the muffin-tin boundary. The left hand side yields:

1

2

∫ Rα

0

[

rαu̇
α
l

d2

dr2α
rαu

α
l − rαu

α
l

d2

dr2α
rαu̇

α
l

]

drα =
1

2
[rαu̇

α
l (rαu

α
l )

′ − rαu
α
l (rαu̇

α
l )

′]Rα

0

=
R2

α

2
[u̇αl u

α′
l − uαl u̇

α′
l ] (3.20)

On the other hand, the right hand side is just

∫ Rα

0

r2α(u
α
l )

2drα = 1. (3.21)

Solved for the Wronskian, we see

Wα
l (Rα, E

α
l ) = − 2

R2
α

6= 0. (3.22)
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3.3. The FLAPW method

Furthermore, the Taylor-like expansion of the radial function around Eα
l provides enough

variational freedom to use this quantity as a parameter that does not need to be set to the
exact band energy, since radial functions with an energy in the vicinity of this parameter
are well approximated by uαl and u̇αl . This allows for the determination of the band energies
and wave functions by a single diagonalization of the Hamilton matrix (3.7). It also gives
enough variational freedom to release the shape approximations to the potential employed
within the APW scheme.

We will denote the zeroth-order energy derivative of the radial function uαl (rα, E
α
l ) by

uαl0(rα) and the first-order energy derivative as uαl1(rα), complying with the enumeration
of the matching coefficients alm0/1 and suppressing the energy parameter. Since it is the
matching coefficients that contain the G-dependence of the muffin-tin representation, we
introduce a similar set of coefficients Almλ, λ ∈ {0, 1}, which belong to the wave functions:

Aαik
lmλ =

∑

G

zikGa
αkG
lmλ (3.23)

ψik(rα) =
∑

G

zikGφkG(rα) =















∑

G

zikG√
Ω
ei(k+G)·r , r ∈ IR

∑

lmλ

Aαik
lmλu

α
lλ(rα)Ylm(r̂α) , r ∈ MT(α)

(3.24)

The inclusion of u̇αl to the basis set dealt with the asymptote problem and the non-linearity
of the APW method. It is tempting to think that the systematic inclusion of üαl or even
higher energy-derivatives of the solution of the radial Schrödinger equation are even more
beneficial. However, these benefits are dampened by the price to pay for them: Two cutoff
parameters define a practical calculation: Gmax, which defines the number of IR plane waves
included in the calculation and lαmax, which limits the spherical harmonics expansion of the
MT basis functions. Gmax sets for the interstitial region that all plane waves are included
into the basis that fulfill |k +G| ≤ Gmax, or that have a kinetic energy less than G2

max/2.
The total radial functions of the muffin-tin spheres are constructed to be continuous to the
plane waves up to first order in the lαmax angular-momentum channels, or up to higher order
if the Taylor expansion would be continued. Therefore, the variational freedom the uαlλ
provide is directly limited by the matching to and thus the number of the plane waves. To
reap additional benefits from systematically adding higher energy-derivatives of the radial
functions to the basis, also the number of plane waves would have to be increased. It is true
that also the step from the APW method to its linearized counterpart already increases the
number of plane waves required, but the omission of the asymptote problem, the possibility
to use the Eα

l as parameters without worrying about non-linearity and the prospect of
including the full potential into the description of the Hamiltonian outweights the additional
cost in this case. The latter will be subject of the next chapter.

3.3. The FLAPW method

In the original APW scheme, the potential is usually set to a constant in the interstitial
region and is assumed to be spherical within the muffin-tin spheres. The latter assumption
is important in view of the choice of the energy parameters Eα

l , which need to be equal
to the band energy corresponding to the spherical potential to give good results. A non-
spherical potential on the other hand could be described by radial basis functions uαlm
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3. Electronic structure methods

dependent also on the magnetic moment m and for an appropriate energy. This is difficult
to achieve in the APW formalism. However, the LAPW method is designed with the
inherent flexibility to cope with an energy region close to the energy parameter. This opens
the possibility to include the full potential into the electronic structure calculation by also
implicitly approximating such uαlm by uαl and u̇αl . This leads to the FLAPW method [42–44].
To that end, we first expand the electronic density ρ and the effective potential Veff similar
to the LAPW basis functions:

ρ(r) =















∑

G

ρ̂(G)eiG·r , r ∈ IR

∑

lm

ραlm(rα)Ylm(r̂α) , r ∈ MT(α)
(3.25)

Veff(r) =















∑

G

V̂eff(G)eiG·r , r ∈ IR

∑

lm

V α
eff,lm(rα)Ylm(r̂α) , r ∈ MT(α)

(3.26)

The density components can be easily obtained using the expansion of the wave functions
ψik in the LAPW basis:

ρ(r) =
∑

ik

fikψ
∗
ik(r)ψik(r) (3.27)

ρ̂(G) =
∑

ik

fik
Ω

∑

G′

z∗ikG′zik(G+G′) (3.28)

ραlm(rα) =
∑

ik

fik
∑

l′m′λ′

∑

l′′m′′λ′′

Aαik∗
l′m′λ′Aαik

l′′m′′λ′′uαl′λ′(rα, E
α
l′ )u

α
l′′λ′′(rα, E

α
l′′)G

m′′mm′

l′′ll′ (3.29)

The product of the three spherical harmonics that appears in the last equation is denoted
by the Gaunt coefficient

Gm′′mm′

l′′ll′ =

∮

Yl′′m′′(r̂)Y ∗
lm (r̂)Y ∗

l′m′(r̂)dS =

∮

Y ∗
l′′m′′(r̂)Ylm (r̂)Yl′m′(r̂)dS, (3.30)

which is a real quantity and is used when expressing the product of two spherical harmonics
as a sum over single spherical harmonics. It is non-vanishing only under the condition that
|l − l′| ≤ l′′ ≤ l + l′, l + l′ + l′′ even, and m′′ = m+m′ are fulfilled.
Because the LAPW basis functions are slightly discontinuous at the muffin-tin sphere bound-
ary, so can be the wave functions, the density, and other quantities derived from it.

3.4. Core states

Chemical bonding is contributed to the valence states, which are delocalized and overlap with
the states of neighboring atoms. The so-called ’core states’ are solutions of the Schrödinger
equation which are localized at an atomic nucleus because they are low in energy and cannot
overcome the potential well from which they originate. This is sketched in Fig. 3.3. Other
states of a similar energy with which they could hybridize are localized in other muffin-tin
spheres, therefore, they take no part in chemical bonding.
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3. Electronic structure methods

This is true since either rα vanishes at the origin or ũ
α(′)
l vanishes at the muffin-tin sphere

boundary. Since (uαl0, ũ
α
l ) is zero, the same procedure yields in the case λ = 1 the orthogo-

nality between ũαl and uαl1.

Since the regular basis functions of the LAPW method are incapable of describing the
core states, they are constructed as solutions of Eq. (3.12) on a radial mesh extended beyond
the muffin-tin radius Rα instead. In FLEUR, the spherical lattice potential is replaced by an
asymptotically decaying potential V α

asympt(rα) outside of the muffin-tin sphere. No energy
parameter Eα

l is used, because in this case, the boundary conditions only allow solutions at
certain energies, the eigenenergies ǫik. The core states are continuously differentiable to any
order. Since they are considered non-overlapping, the energy bands of the core states show
no dispersion over the Brillouin zone. A formal dependence on k is introduced by including
a factor exp(ik ·R) to the description of the core state if it arises in a unit cell R other than
the representative unit cell. The band index i comprises a superindex i = (βplml) consisting
of the atom index β from which the core state stems, the principal quantum number p, the
angular momentum l, and the corresponding magnetic quantum number ml. If the core
states are constructed from a fully relativistic variant of Eq. (3.12), the Dirac equation, l
and ml have to be replaced by the quantum numbers j and mj , which are the total angular
momentum and its projection.
Since the muffin-tin radius is an artificial quantity, it is possible that there are states which
physically behave like core states but which are not completely confined in their native
muffin-tin sphere. Such states are called semicore states and the part of them outside of
their muffin-tin sphere is called their coretail.

Once all (semi)core states are determined, the spherical local core density of atom α is
constructed from the ψik(r) according to

ραcore(rα) =

core
∑

ik

δαβfik|ψik(rα)|2. (3.33)

The total core density then is the sum over all local core densities at their corresponding
locations,

ρtotcore(r) =
∑

α

ραcore(r − τα). (3.34)

It can be added to the valence density in Eq. (3.25) by expressing it similarly as

ρtotcore(r) =















∑

G

ρ̂totcore(G)eiG·r , r ∈ IR

∑

lm

ρtot,αcore,lm(rα)Ylm(r̂α) , r ∈ MT(α)
. (3.35)

The interstitial and nonspherical representations are important in the case of semicore states.
They are found by replacing the spherical muffin-tin charge density of the local core density
by a Gaussian curve which is matched to the resulting coretail density at the muffin-tin
sphere boundary,

ρ̃αcore(rα) =

{

Aαe
−aαr2α , rα ≤ Rα

ραcore(rα) , rα > Rα

, (3.36)
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3.5. Local orbitals

where Aα and aα are degrees of freedom for the matching. They are determined by de-
manding for continuity up to first order and are given by

Aα = ραcore(Rα)e
aαR2

α and (3.37)

aα = − 1

2Rα

ρα′core(Rα)

ραcore(Rα)
, (3.38)

as a simple substitution shows. The sum of the pseudodensities of this type is then easily
Fourier transformed and provides the coefficients for the total core density. For details
regarding the implementation in FLEUR, we refer to Appendix A.1.

3.5. Local orbitals

In contrast to the APW basis, its linearized realization is fit to describe valence states in
an energy region around the parameter Eα

l . It is still possible though that certain states
are just at the border of this energy region and thus fail to be described accurately with
the LAPW basis. These states could for example be semicore states that are not totally
confined to the muffin-tin sphere due to the choice of the muffin-tin radius. Such core states
would not be strictly orthogonal to the basis functions and the part of them that lies within
the space of the LAPW functions could manifest in the band structure, leading to so-called
ghost states. Another possibility are unoccupied states which are energetically far away
from the occupied states, and are thus not the states for whose description the LAPW basis
is optimized. Exemplified by the black solid line in Fig. 3.4 is the ability of a radial LAPW
basis function to fill in for the solution of the radial Schrödinger Eq. (3.12) at a different
energy by means of the linearization error

∆lin
l (E) =

∫ Rα

0

r2α|uαl (rα, E)−
∑

λ

cλu
α
lλ(rα)|2drα/‖uαl (E)‖2. (3.39)

For convenience, we omitted the energy argument of the LAPW radial functions uαlλ.
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Figure 3.4.: Linearization error ∆lin
l (E) employing different kinds of local orbitals (a) of the

Cerium 5d states and (b) of the Vanadium 4p states. (Recreated from data
published in Ref. [115], with permission from Elsevier.)
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3. Electronic structure methods

Small values indicate that uαl (rα, E) can be represented well by the LAPW basis func-
tions, while values close to 1 show near orthogonality of uαl (rα, E) to the LAPW basis
functions. The black lines in the graphs have in common that the representation is good
near the energy parameter Eα

l , while the representation gets worse the further away from
Eα

l the function uαl (rα, E) is sampled. Notable are the core state in the Cerium graph at
−3.8 Htr and the semicore state in the Vanadium graph at −1.4 Htr.

In order to increase the flexibility of the LAPW method to better include the states
into the valence band description which are poorly described by the LAPW basis, further
basis functions can be added locally at an atom α and with a specific angular-momentum l.
Hence, they are called local orbitals (LOs). The radial part Rα,LO

l (rα, E
α
l , E

α,LO
l ) of these

additional basis functions is constructed by adding a third radial function uα,LOl (rα, E
α,LO
l )

to the existing uαlλ of a certain energy Eα
l ,

Rα,LO
l (rα, E

α
l , E

α,LO
l ) =

1
∑

λ=0

aα,LOlλ uαlλ(rα, E
α
l ) + aα,LOl uα,LOl (rα, E

α,LO
l ), (3.40)

such that it vanishes up to first order at the muffin-tin sphere boundary and is normalized.
These radial functions are multiplied by the 2l + 1 spherical harmonics belonging to the
appropriate l-channel; thus by adding a local orbital one adds a set of 2l + 1 functions to
the basis. There are conceptually two promising approaches to chose the energy parameter
of uα,LOl :
a) Following the spirit of the Taylor expansion of the true radial function around the energy
parameter Eα

l that led to the LAPW method in the first place, one increases the order of
derivation of uαl , thus broadening the width of the energy region that is described accurately.
In contrast to the discussion at the end of chapter 3.2, doing so conserves the flexibility of
the LAPW basis without needing more interstitial basis functions. This is true since the
LOs are not matched to the plane waves at the MT sphere boundary. Such LOs are called
higher-derivative LOs (HDLO).
b) One introduces a new energy around which the states can be well approximated by the
augmented LAPW basis by including radial functions at a different energy parameter Ẽα

l

closer to the state that is not well described. If this kind of LO is used to include high
energies into the LAPW description, it is called an higher-energy LO (HELO).
Both approaches can be subsumed as:

uα,LOl (rα, E
α,LO
l ) =

{

üαl (rα, E
α
l )

uαl (rα, Ẽ
α
l )

(3.41)

The latter choice can be obtained from solving Eq. (3.12) at the new energy parameter, while
the former choice (exemplified by the second order derivative of the radial function, higher
orders are possible) needs to be constructed analogous to Eq. (3.15) for higher derivatives.
It is possible to combine the two approaches and to include for example two sets of local or-
bitals, one that features uαl (rα, Ẽ

α
l ) and one that adds its first energy derivative u̇αl (rα, Ẽ

α
l ),

thus simulating the radial part of an LAPW basis function at Ẽα
l . However, the local orbitals

vanish at the muffin-tin boundary. Thereby, they lack a matching to a plane wave in the in-
terstitial and do not automatically inherit the symmetry that the LAPW functions show. To

include it, the coefficients aα,LOlm(λ) are multiplied by −4πilei(k+G)·ταY ∗
lm(k̂ +G)/W (Rα

l , E
α
l ),

which imitates the matching coefficients of a regular basis functions. In contrast to what
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3.6. Evaluation of the exchange-correlation potential

has been proved with Eq. (3.32), the local orbitals are not necessarily orthogonal to the
LAPW basis functions, because the total radial part of the local orbital does not fulfill the
radial Schrödinger equation (3.12) and the radial functions uαlλ and uα,LOl do not vanish at
the MT sphere boundary themselves.

Coming back to Fig. 3.4, the effect of HDLOs and HELOs is demonstrated there. Notably,
in both cases of (a) Cerium and (b) Vanadium, the inclusion of the HDLO best reduces the
linearization error in the vicinity of the LAPW energy parameter, while the inclusion of
one or two HELOs results at their additional energy parameters in new spots where the lin-
earization error vanishes, which also affects the representability of uαl (E) in between those
energy parameters. In the Cerium graph, ∆lin

l is nearly 1 at around −3.8Htr for any LO
setup presented here, meaning that the solution of Eq. (3.12) at this energy is a core state
confined to the muffin-tin sphere of the Cerium atom. At around −1.4Htr, the linearization
error peaks in the Vanadium graph, because there, a semi-core state is present. When using
an HDLO for the Vanadium 4p state, there is still some structure at −1.4Htr, but the small
value of ∆lin

l suggests the appearance of a ghost band in the band structure, since this local
orbital is sensitive enough to describe the semicore state.

A more detailed analysis of different types of local orbitals can be found in the references
[115–120].

Now that we have provided the electronic states from which the density ρ(r) is constructed
by Eq. (3.27), we continue with the construction of the xc and Hartree potential.

3.6. Evaluation of the exchange-correlation potential

As we have pointed out in chapter 2.4, we will limit ourselves to the local density approxima-
tion. Specifically the formulation of Vosko, Wilk, and Nusair for the exchange-correlation
potential µxc[ρ](r) and energy-density ǫxc[ρ](r) will be used. In this case, potential and
energy-density are functions of the electronic density ρ, which also dictates how to obtain
them:
The interstitial representation of the electronic density given as plane-wave coefficients is
put on a real space mesh by a fast Fourier transform, µxc(ρ(r)) and ǫxc(ρ(r)) are applied
to it at each mesh point and the result is transformed back to reciprocal space by another
fast Fourier transform.
To obtain µxc and ǫxc in the muffin-tin spheres, the fast Fourier transform is replaced by a
method more suited for expanding and recollecting quantities from a mesh designed for a
spherical harmonic representation in real space, which for example transfers their orthogo-
nality properties to the mesh point set. Other than that, the procedure is analogous to that
of the interstitial region.

Since the exchange-correlation potential and energy-density are non-linear functions of
the electronic density, see Appendix A.2, the G components of the density will provide
contributions to all other G coefficients of µxc and ǫxc. Therefore, the exchange-correlation
quantities need a larger Gmax-cutoff than the density.
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3. Electronic structure methods

3.7. Evaluation of the Coulomb potential

The calculation method by Weinert [62] to obtain the electrostatic potential that acts on a
Kohn-Sham electron draws from the fact that to compute the potential from a charge distri-
bution contained in a volume away from that volume requires knowledge only of the multi-
pole moments within said volume. Thus, the Coulomb potential in the interstitial region of
the unit cell, which is represented in a plane-wave expansion, can be calculated from a pseu-
dodensity replacing the muffin-tin electronic density and reproducing the same multipoles.
The interstitial potential will later be used as boundary values to find the true Coulomb
potential within the muffin-tin spheres. In contrast to the original pointcharge density of the
nuclei and the cusping electronic density, this pseudodensity can be constructed to be more
easily Fourier expandable. We will proceed in introducing this method with an arbitrary
charge density n(r), which in the case of the FLAPW method is the sum of the electronic
density of Eq. (3.29) and the atomic pointcharge density ρi(r) = −

∑

α Zαδ(r − τα). Such
a charge density produces the multipole moments

qαlm =

∫

MT(α)

Y ∗
lm(r̂ − τα)|r − τα|ln(r)d3r =

∫ Rα

0

rl+2
α nα

lm(rα)drα (3.42)

with the local expansion nαlm(rα) of the density into spherical harmonics. The total pseu-
dodensity nps(r) is constructed from the local components n̄α

ps(rα) as

nps(r) = nPW(r)[1−
∑

α

Θ(Rα − |r − τα|)] +
∑

α

n̄α
ps(rα)Θ(Rα − |r − τα|)

= nPW(r) +
∑

α

[n̄α
ps(rα)− nPW(rα + τα)]Θ(Rα − |r − τα|), (3.43)

where the plane-wave part of the original density is expanded over the whole unit cell and
subtracted again in the muffin-tin spheres. Therefore, using the Rayleigh-expansion for the
plane waves, the total second term of the last equation has the form

qα,pslm = qαlm − qα,PW
lm , (3.44)

qα,PW
lm = 4πil

2Gmax
∑

G 6=0

n̂PW(G)eiG·ταY ∗
lm(Ĝ)

Rl+3
α jl+1(GRα)

GRα
+

√
4π

3
n̂PW(0)R3

αδl0 (3.45)

for l ≤ 2lαmax and only −qα,PW
lm for larger l. The contribution from Rl+3

α jl+1(GRα)/GRα

becomes negligible for larger l, though, by the choice lαmax & GmaxRα and the property of
the spherical Bessel functions to have their first maximum after the value of their argument
passes their index.
In order to obtain a pseudodensity that is easily Fourier transformable, Weinert et al.
suggested the radial part of it to be a power series in rα up to a power of l + 2N with the
parameter N specified after the construction of the pseudodensity. In the muffin-tin sphere
of atom α, it then has the form

nα
ps(rα) =

2lαmax
∑

lm

Qα
lmYlm(r̂α)

N
∑

η=0

aαη r
l+2η
α . (3.46)
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Using formula (3.42) on this equation yields for the multipole moments of this part of the
pseudodensity

Qα
lm

N
∑

η=0

aαη
R2l+2η+3

α

2l + 2η + 3

!
= qα,pslm , (3.47)

thus defining Qα
lm in dependence of the aαη . We will see that we can chose the latter in a way

that they disappear from the equations when the pseudodensity is finally constructed. The
Fourier transform of the pseudodensity, which is the expression we aim for to be described
by a convenient number of expansion coefficients, is

n̂ps(G) =n̂PW(G) +
1

Ω

∑

α

∫

MT(α)

e−iG·rnα
ps(r − τα)d

3r

=n̂PW(G) +
1

Ω

∑

α

2lαmax
∑

lm

Qα
lme

−iG·τα4π(−i)lYlm(Ĝ)Aα
l , (3.48)

n̂ps(0) =n̂PW(0) +

√
4π

Ω

∑

α

qα,ps00 , with

Aα
l :=

N
∑

η=0

aαη

∫ GRα

0

tl+2η+2

Gl+2η+3
jl(t)dt. (3.49)

Exploiting the relation d
dt [t

l+2jl+1(t)] = tl+2jl(t) and integrating η times by parts, we com-
pute for the integral in Aα

l

∫ GRα

0

tl+2η+2

Gl+2η+3
jl(t)dt =

Rl+2η+3
α

GRα

η
∑

ν=0

(−1)ν2νη!

(η − ν)!

jl+ν+1(GRα)

(GRα)ν
. (3.50)

We insert this equation back into Aα
l to find after a rearrangement of the sums into same

powers of GRα:

Aα
l = Rl+3

α

N
∑

ν=0

(−1)ν2ν
jl+ν+1(GRα)

(GRα)ν+1

N
∑

η=ν

aαη η!R
2η
α

(η − ν)!
(3.51)

By choosing

aαη = (−1)N−ηR2(N−η)
α

(

N
η

)

aαN (3.52)

both sums in Aα
l collapse and Eqs. (3.47) and (3.51) yield

Aα
l =

(

(−1)N2NRl+3
α

) jl+N+1(GRα)

(GRα)N+1

(

aαNN !R2N
α

)

and (3.53)

Qα
lm =

(

(−1)N2NRl+3
α

)−1 (2l + 2N + 3)!!

(2l + 1)!!Rl
α

qα,pslm

(

aαNN !R2N
α

)−1
. (3.54)

It becomes apparent that the first and the last factor of both quantities cancel each other
in the product of Eq. (3.48), removing the dependence on the coefficients aαη alltogether.
Thus, the Fourier coefficients of the pseudodensity become

n̂ps(G) = n̂PW(G) +
4π

Ω

∑

α

2lαmax
∑

lm

(−i)l(2l + 2N + 3)!!

(2l + 1)!!Rl
α

jl+N+1(GRα)

(GRα)N+1
× . . .
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3. Electronic structure methods

· · · × qα,pslm e−iG·ταYlm(Ĝ), (3.55)

n̂ps(0) = n̂PW(0) +

√
4π

Ω

∑

α

qα,ps00 . (3.56)

Since the spherical Bessel functions are absolutely bounded by 1 and decay themselves like
1/G, the total coefficients decay like 1/GN+2. Taking arbitrarily large N to increase the
convergence behavior of this part of the Fourier components interferes with the other N -
dependent factor (2l + 2N + 3)!!, though. Instead, Weinert points out that the parameter
N can be chosen for each l and each muffin-tin sphere separately and suggests to take a
value such that jl+N+1(z) has its first zero in the vicinity of 2GmaxRα. In this way, the
largest contribution to the sum from arguments z smaller than the first zero of the spherical
Bessel functions is included. For a more detailed view at the choice of N , the reader may
be referred to the original publication by Weinert [62].

Apart from the approximation that only the first 2lαmax l-channels of the plane-wave
density are subtracted from the muffin-tin representation of the pseudodensity, the Coulomb
potential in the interstitial region is connected to the pseudodensity via the Poisson equation

∆VC(r) = −4πnps(r) = −4π

2Gmax
∑

G

n̂ps(G)eiG·r, or (3.57)

VC(r) = V̂C(0) + 4π

2Gmax
∑

G 6=0

n̂ps(G)

G2
eiG·r =

2Gmax
∑

G

V̂C(G)eiG·r. (3.58)

A constant shift V̂C(0) in the potential is not determined by this equation.

Now that the Coulomb potential is known in the interstitial region, it is explicitly known
on the muffin-tin sphere boundary. We can invert the Poisson equation inside the muffin-tin
spheres using the Green function

G(rα, sα) = 4π
∑

lm

Y ∗
lm(ŝα)Ylm(r̂α)

2l + 1

rl<
rl+1
>

[

1−
(

r>
Rα

)2l+1
]

(3.59)

with r< = min(rα, sα) and r> = max(rα, sα), respectively. Its Laplacian is the Dirac-δ-
distribution −4πδ(rα − sα). Green’s third identity states that

∫

BRα (0)

G(rα, sα)∆sα
g(sα)− g(sα)∆sα

G(rα, sα)d
3sα

=

∮

∂BRα (0)

G(rα, sα)∇sαg(sα)− g(sα)∇sαG(rα, sα)dS (3.60)

and for g(sα) = VC(sα + τα) and thus ∆sα
g(sα) = −4πn(sα) we obtain

VC(rα + τα) =

∫

BRα (0)

nα(sα)G(rα, sα)d
3sα

− 1

4π

∮

∂BRα (0)

VC(sα + τα)∇sαG(rα, sα)dS, (3.61)
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3.8. Constructing the Hamilton and overlap matrices

since G(rα, sα) vanishes at the muffin-tin sphere boundary. The normal derivative of the
Green function (3.59) at the muffin-tin sphere boundary is given by

∇sαG(rα, sα)|sα=Rα
= − 4π

R2
α

∑

lm

(

rα
Rα

)l

Y ∗
lm(ŝα)Ylm(r̂α). (3.62)

This constitutes a Dirichlet boundary-value problem, where the electrostatic potential de-
pends on the local charge density (volume integral) and the potential on the surface of the
volume (surface integral). Inserting the interstitial potential (3.58) for the boundary values,
the electrostatic potential V α

C (rα) in the muffin-tin sphere of atom α is determined by the
radial coefficients

V α
C,lm(rα) =

4π

2l + 1

∫ Rα

0

s2αn
α
lm(sα)

rl<
rl+1
>

[

1−
(

r>
Rα

)2l+1
]

dsα

+

(

rα
Rα

)l

·
2Gmax
∑

G 6=0

eiG·τα V̂C(G)4πilY ∗
lm(Ĝ)jl(GRα). (3.63)

The expansion into spherical harmonics is applied again up to an angular-momentum cutoff
of 2lαmax. It is thus continuous in the first few l-channels, only.

This concludes the construction of the Coulomb potential in the interstitial and muffin-tin
regions. As the multipole moments of the pseudodensity are constructed to reproduce those
of the original density, especially the l = 0 components that give the total charge within a
muffin-tin sphere are given. In the regular case that the input density n(r) is the sum of
the electronic and the ionic density, charge neutrality can be deduced from Eq. (3.57). We
will apply the same scheme in chapter 7, though, where the input density either originates
from only an electronic or a purely ionic source.

3.8. Constructing the Hamilton and overlap matrices

Now that we have defined the LAPW basis functions φkG(r) and the potential Veff(r) in
the interstitial and muffin-tin sphere regions, we provide the formulas for the contributions
to the Hamilton matrix HGG′(k) of Eq. (3.7) and the overlap matrix SGG′(k) of Eq. (3.8).
We set

ϕα
lm,λ(rα) = uαlλ(rα)Ylm(r̂α), (3.64)

λ possibly including local orbitals, knowing that for λ ≤ 1 the spherical part of the muffin-tin
Hamiltonian produces from it

Ĥα
sphϕ

α
lm,λ = Eα

l ϕ
α
lm,λ + δ1λϕ

α
lm,0. (3.65)

The result in case of a local orbital depends on what kind of LO was chosen. We leave it to
the reader to retrace the following steps for an LO basis function.
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3. Electronic structure methods

For the muffin-tin part of the Hamilton and overlap matrices, we have

Hα
G′G(k) =

∑

lmλ

∑

l′m′λ′

aαkG
′∗

lmλ aαkGl′m′λ′

∫

BRα (0)

ϕα∗
lm,λ (rα)Ĥα

MTϕ
α
l′m′,λ′(rα)d

3rα, (3.66)

Sα
G′G(k) =

∑

lmλ

∑

l′m′λ′

aαkG
′∗

lmλ aαkGl′m′λ′

∫

BRα (0)

ϕα∗
lm,λ (rα) ϕα

l′m′,λ′(rα)d
3rα. (3.67)

Apparently, the integrals are independent of the Bloch vector k or the reciprocal vector G
and compute to

tαλλ
′

lml′m′ :=

∫

BRα (0)

ϕα∗
lm,λ (rα)Ĥα

MTϕ
α
l′m′,λ′(rα)d

3rα

=

∫

BRα (0)

ϕα∗
lm,λ (rα)Ĥα

sphϕ
α
l′m′,λ′(rα)d

3rα +

l′′≥1
∑

l′′m′′

Iαλλ
′

ll′l′′m′′Gmm′m′′

ll′l′′

=Eα
l

〈

ϕα
lm,λ

∣

∣ϕα
l′m′,λ′

〉

+ δ1λ′

〈

ϕα
lm,λ

∣

∣ϕα
l′m′,0′

〉

+

l′′≥1
∑

l′′m′′

Iαλλ
′

ll′l′′m′′Gmm′m′′

ll′l′′ , (3.68)

Iαλλ
′

ll′l′′m′′ :=

∫ Rα

0

r2αu
α
lλ (rα)u

α
l′λ′(rα)V

α
l′′m′′(rα)drα (3.69)

with the overlap matrix elements
〈

ϕα
lm,λ

∣

∣ϕα
l′m′,λ′

〉

= δll′δmm′

(

δ0λδ0λ′ + δ1λδ1λ′‖uαl1‖2
)

=: Jαλ
lm . (3.70)

Thus, we have

Hα
G′G(k) =

∑

lmλ

∑

l′m′λ′

aαkG
′∗

lmλ tαλλ
′

lml′m′aαkGl′m′λ′ , (3.71)

Sα
G′G(k) =

∑

lmλ

aαkG
′∗

lmλ Jαλ
lm aαkGlm λ. (3.72)

For the contributions from the interstitial region, we use the unit step function ΘIR(r) to
expand the IR integrals over the whole unit cell. It is

ΘIR(r) = 1−
∑

α

Θ(Rα − |r − τα|), (3.73)

Θ̂IR(G) = δG0 −
∑

α

e−iG·τα
4πR3

α

Ω

j1(GRα)

GRα
. (3.74)

Plugging in the interstitial representation of the wave functions into Eqs. (3.7) and (3.8)
gives the Fourier transforms

SIR
G′G(k) =

1

Ω

∫

Ω

e−i(G′−G)·rΘIR(r)d
3r = Θ̂IR(G

′ −G), (3.75)

HIR
G′G(k) =

1

2
|k +G|Θ̂IR(G

′ −G) + (V̂effΘIR)(G
′ −G). (3.76)

Since the plane waves are effectively only used until a cutoff of Gmax, the Fourier expansion
of the unit step function needs to be generated at least up until 2Gmax. The product be-
tween the effective potential and the unit step function is put onto a real space mesh by a
Fast Fourier transform, evaluated, and then back-transformed onto the reciprocal mesh.
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3.9. Relativism

We wish to explicitly stress once again that the LAPW basis functions within the muffin-
tin spheres are obtained using only the spherical part of the Hamiltonian, but have enough
flexibility to allow that the wave functions are constructed to minimize the total energy
belonging to the total potential.

3.9. Relativism

The derivations presented so far have been strictly non-relativistic. This is a reasonable
approximation for compounds consisting of light atoms, though heavier nuclei imply that
their electrons have a high kinetic energy at the atomic positions and thus require relativity
to be considered within their description. Thus, the wave functions do not need to solve
the single-particle Schrödinger equation (2.4), but instead their relativistic counterpart, the
Kohn-Sham-Dirac equation:

{

cα · p̂+ (β − 1)c2 + V eff(r)
}

ψi(r) = ǫiψi(r) (3.77)

Herein, c ≈ 1/137 is the speed of light in Hartree units and the momentum operator p̂ is
accompanied by the vector of Pauli matrices σi

α =

((

0 σx

σx 0

)

,

(

0 σy

σy 0

)

,

(

0 σz

σz 0

))

=

(

0 σ

σ 0

)

, (3.78)

the relativistic four-component wavefunction ψi, the effective potential V eff(r) = Veff(r)1
with the unit matrix 1, and

β = diag( 1, 1,−1,−1). (3.79)

The Kohn-Sham-Dirac equation, Eq. (3.77), contains all relativistic effects, from mass-
velocity over the Darwin-term to spin-orbit coupling. However, it is a partial differential
equation of first order in each of its four components, the majority and minority spin chan-
nels with their large and small components, which are all coupled. This increases the
computational effort of constructing both core and valence states. The core states are ob-
tained in each iteration of the self-consistency cycle directly from the current potential,
resulting only in a moderate rise of computational effort. But the effort to find solutions
of the Kohn-Sham-Dirac equation self-consistently, as is the case with the valence states,
increases tremendously: To work with four instead of one components of a wave function
leads to 64 times the non-relativistic computation time for diagonalizing the Hamiltonian,
since diagonalization scales to the cube with respect to system size.

3.9.1. The scalar-relativistic approximation

In order to diminish the increment of the computational effort, the valence states can be
treated by the so-called scalar-relativistic approximation [109]. In it, the spin-orbit part of
the relativistic description is neglected. This in turn leads to a separation of the spin coordi-
nates from the spatial coordinates and decouples the spin channels from each other. In this
way, only two times two coupled systems have to be solved, increasing the computational
workload by a factor of two times 8 instead of 64.
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3. Electronic structure methods

To reintroduce the spin-orbit coupling to the valence states in the cases where it is needed,
it can be considered afterwards via perturbation theory as a small variation of the uncoupled
system.

The deviation of a relativistic description from a non-relativistic one is strongest where
the kinetic energy of a state ψi is large, which is most notably the case in the vicinity of
the atomic nuclei. Therefore, the relativistic treatment of the valence states is not only
subject to the scalar-relativistic approximation, but also limited to the muffin-tin spheres,
while in the interstitial the non-relativistic LAPW wave functions are used. This implies
the lack of a small component in the interstitial to which a relativistic radial function from
the muffin-tin can be matched to. Instead, only the large component is matched at the
muffin-tin sphere boundary and dictates its matching coefficients on the small component.

3.10. The origin of Pulay contributions

The FLAPW approach is constructed to provide a very physical, intuitive, and accurate
description of a system given by providing the position dependent representations of basis-
and wave functions, density, and potential that are advantageous in the different regions of
space which the APW method distincts. The quality of this description comes at the price
that similar but slightly different systems are not that well represented anymore when using
the quantities of the original system. In this thesis, we are interested in atomic forces and
phonons, which both are conceptually connected to the displacement of one or more atoms.
It is obvious that in the case of a real displacement τα → τα + δτα, the original functions
cannot be used anymore since parts of them are defined in different regions of space than in
the displaced case. For an infinitesimal displacement, this translates to the observation that
the variation of a Kohn-Sham state is not fully contained in the Hilbert space provided by
the LAPW basis functions. To be more formal, let us assume that the Hamiltonian Ĥ, its
eigenvalues ǫ and eigenfunctions ψ depend on a parameter λ, which could be for example
the atomic positions τα or the effective potential Veff. Let ψ(λ = 0) be normalized to 1.
Applying the derivative with respect to this parameter to the eigenvalue expressed by the
Rayleigh coefficient, we find for its change:

d

dλ
ǫ(λ)

∣

∣

∣

∣

λ=0

=
d

dλ

〈

ψ(λ)
∣

∣

∣Ĥ(λ)
∣

∣

∣ψ(λ)
〉

〈ψ(λ)|ψ(λ)〉

∣

∣

∣

∣

∣

∣

λ=0

=

〈

ψ

∣

∣

∣

∣

d

dλ
Ĥ(λ)

∣

∣

∣

λ=0

∣

∣

∣

∣

ψ

〉

+

〈

d

dλ
ψ(λ)|λ=0

∣

∣

∣

∣

Ĥ − ǫ

∣

∣

∣

∣

ψ

〉

+ c.c. (3.80)

The first term on the right hand side corresponds to the Hellmann-Feynman theorem. The
second term and its complex conjugate would vanish if either (a) the wave function does
not depend on the parameter λ or if (b) ψ is a true (in the sense of pointwise) eigenfunction
of the Hamiltonian. The first statement is not true as pointed out above,

d

dλ
ψ(λ)|λ=0 = ψ′

‖ + ψ′
⊥. (3.81)

The second statement is false because the Kohn-Sham states are variational solutions of the
Schrödinger equation within the Hilbert space spanned by the LAPW basis functions, i.e.,

Ĥψ = ǫψ + δψ⊥. (3.82)
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3.11. Variational total energy for metals

The quantities labeled with ⊥ are orthogonal to the LAPW Hilbert space. Therefore, the
contributions to Eq. (3.80) that exceed the Hellmann-Feynman theorem give

〈

d

dλ
ψ(λ)|λ=0

∣

∣

∣

∣

Ĥ − ǫ

∣

∣

∣

∣

ψ

〉

= 〈ψ′
⊥|δψ⊥〉 6= 0. (3.83)

Such a behavior was first pointed out by Pulay in the framework of molecules [55]. He makes
note of the reduction of this error term when going from an arbitrary test wave function
to a true eigensolution of the molecular Hamiltonian. In the case of solids and the LAPW
basis, the transition from a ’test’ wave function to a true eigensolution corresponds to a
systematic expansion of the LAPW basis space such that δψ⊥ becomes smaller and smaller
in the process. Of course, when only pure plane-waves are used as basis function, the Pulay
contribution also vanishes: The derivative of the wave functions then can be expressed
completely within the space spanned by the same plane waves that constitute the basis.
Within this space, the variational solution of the Schrödinger equation has the character of
a true eigensolution.

3.11. Variational total energy for metals

In the total energy formula (2.14), the factors fik enter, which weight the occupation of
band i at Bloch vector k. In semiconductors and insulators, these occupation numbers are
integer and small changes to the system will not affect them. This is because the occupied
bands are strictly separated from the conduction bands and the Fermi energy lies in be-
tween. For a metal on the other hand, the Fermi energy crosses one or more bands. The
crossing point thus depends sensitively on the exact setup of the system. Furthermore, the
sharp transition from occupancy to unoccupancy with respect to the k-point path makes
Brillouin-zone integration by discretizing the integral to a k-point sum difficult. In order to
cope with this circumstance, usually fractional occupation numbers are introduced, which
are determined as follows:

Occupy each band at each k-point from bottom to top until all N electrons within the
unit cell are distributed,

N =
∑

ik

fik. (3.84)

Next, after having chosen a temperature parameter T for good convergence, the Fermi
energy EF is determined by requiring that the occupation numbers smeared by a Fermi
distribution reproduce the same number of electrons:

N =
∑

ik

fik
1

e(ǫik−EF)/kBT + 1
=:
∑

ik

f̃ik (3.85)

By the shape of the Fermi distribution, the occupancy of bands far away from EF is virtu-
ally not altered, while near the Fermi edge, occupied bands lose a fraction of their electrons,
which are collected by the unoccupied bands. The fractional occupation numbers f̃ik are
then used within k-point sums.
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Weinert and Davenport pointed out however that the total energy is not variational any
more when fractional occupation numbers are employed [113], because the variation of the
occupation numbers provides a first order term to the total energy variation when the density
used deviates by δρ from the optimal density ρ0. To make the total energy variational again,
they suggested to add an entropy like term TS with the same temperature broadening T as
above and the entropy S given for electron-number conserving deviations as

S = kB
∑

ik

[

f̃ik ln(f̃ik) + (fik − f̃ik) ln(fik − f̃ik)
]

. (3.86)

The response of this term to a variation of the density is

δS = kB
∑

ik

[

δf̃ik ln(f̃ik) + δf̃ik − δf̃ik ln(fik − f̃ik)− δf̃ik

]

= kB
∑

ik

δf̃ik ln

(

1

e(ǫik−EF)/kBT + 1− 1

)

= −kB
∑

ik

δf̃ikǫik, (3.87)

which with the factor T corresponds exactly to the negative of the first order term which
would remain with the variation of only the regular total energy. This equation is true in
the case of electron-number conserving deviations as the remaining term kB

∑

ik δf̃ikEF is
the change in the electron number.

By this, we will not consider variations in the occupation number in the forthcoming
chapters, since either they vanish because of the system being semiconducting or insulating,
or because the addition to the total energy introduced above is applied. Furthermore,
knowing that the occupation numbers are fractional, we will denote them without the tilde
as fik again.

38



4. Forces within the FLAPW method

The availability of atomic forces in an ab initio electronic structure code is an important
milestone. Forces are an indispensable tool for geometry optimization, i.e., finding the en-
ergetically optimal atomic position within a given unit cell. Instead of displacing each atom
manually and scanning the resulting total energies for their minimum and thus the geomet-
ric ground state of the system, atomic forces can be used in conjunction with numerical
optimization procedures [121] to efficiently navigate in the energy landscape formed by the
atomic configurations. Starting from an initial configuration, one moves the atoms in the
direction of the atomic forces to obtain a configuration closer to the energetic minimum. At
the energetic minimum, the forces F α vanish, since they are the negative first derivatives
of the total energy Etot with respect to the atomic positions τα,

F α = −dEtot

dτα
. (4.1)

From the advent of the FLAPW method in the 1980’s it took about ten years until the
seminal work of Soler and Williams [52, 53], and Yu, Singh, and Krakauer [54], in which
they independently introduced a force formalism for the FLAPW method. The former
group used a slightly different LAPW basis set as the one we presented in chapter 3.2,
where the plane-wave representation of the basis functions in Eq. (3.16) is extended into the
muffin-tin spheres and the plane-wave parts of the augmented angular-momentum channels
are subtracted again from the radial muffin-tin functions. By this, the basis functions are
truly continuous up to first order, but the generation of the Hamilton and overlap matrices
becomes more involved. The latter group, on whose work the force implementation in the
FLEUR-code is based, started from the regular LAPW basis. Both pointed out the importance
of an additional contribution to the Hellmann-Feynman force stemming from the dependence
of the LAPW basis functions on the atomic position and the property of the wave functions
of being variational solutions to the Schrödinger equation and not pointwise exact solutions.
This leads to the so-called Pulay-terms, which have already been discussed in section 3.10
of the previous chapter.
In both formulations, force calculations in practice often give rise to an unphysical trait, a
violation of the acoustic sum rule, which states that the sum of the forces on all atoms adds
up to zero. We address the resulting spurious force

FD =
∑

α

F α 6= 0 (4.2)

as the drift force. A non-vanishing drift force directly contradicts Newton’s third law of
motion. In addition, it leads to a violation of the Goldstone mode of the acoustic phonons,
which ensures that the acoustic-phonon branches vanish at the Brillouin-zone center. We
will have a more rigorous look into phonons which are collective vibrations of the ions in
the following chapters 5 and 7.
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4. Forces within the FLAPW method

In the current chapter, we present a refined derivation of the force formula within the
FLAPW method, starting from the regular LAPW basis set as did Yu et al. By comparing
their derivation with ours, we identify additional contributions to the forces. Moreover, we
show that our force formalism reduces the drift force by two to three orders of magnitude
by application to a set of prototype systems. Parts of this chapter are already published in
[63].

4.1. Derivative of the total energy

We start the derivation of the atomic force formula by noting that the total energy, Eq. (2.14),
contains a number of integrals over the whole unit cell Ω. In the APW type of methods, Ω
is divided into atom centered MT spheres and the remaining IR. Since thus the constituents
of the total unit-cell volume are dependent on the atomic position, it is important to realize
how such an integral behaves under differentiation with respect to τα. Let f(r) be a generic
function defined piecewise as fMT(r) and f IR(r) on the different regions of Ω. Then the
derivative of an integral containing this function as an integration kernel is

d

dτα

∫

Ω

f(r)d3r =
d

dτα





∑

β

∫

MT(β)

f(r)d3r +

∫

IR

f(r)d3r





=





∑

β

∫

MT(β)

df(r)

dτα
d3r +

∫

IR

df(r)

dτα
d3r



+

∮

∂MT(α)

[fMT(r)− f IR(r)]êdS (4.3)

with the unit normal vector ê = (r − τα)/|r − τα| pointing from the muffin-tin sphere of
atom α into the interstitial region. If the integrand is continuous over the whole domain of
integration Ω, the surface integral vanishes. In a FLAPW calculation in practice, however,
the finite angular-momentum and reciprocal-lattice cutoffs lαmax and Gmax are responsible
for rendering the basis- and wave functions, the density, and the potential discontinuous at
the muffin-tin sphere boundaries. Hence, the surface term

∮

∂MT(α)
[fMT(r) − f IR(r)]êdS

typically does persist.
The derivative of the total energy, Eq. (2.14), with respect to the atomic position τα becomes

F α = −dEtot[ρ]

dτα
=FHF

α −
∑

ik

fik
dǫik
dτα

+

∫

Ω

ρ(r)
dVeff(r)

dτα
d3r

−
∮

∂MT(α)

ρMT(r)
[

εMT
xc (r)− µMT

xc (r)
]

êdS

+

∮

∂MT(α)

ρIR(r)
[

εIRxc (r)− µIR
xc (r)

]

êdS, (4.4)

where we have omitted the variation dfik/dτα of the occupation number according to chap-
ter 3.11.
The Hellmann-Feynman force acting on atom α is the negative derivative of the Coulomb
potential of all charges except the nuclear charge of atom α, evaluated at the position of
atom α,

FHF
α = −Zα





∑

β 6=α

d

dτα

Zβ

|τα − τβ |
−
∫

d

dτα

ρ(r′)

|τα − r′|d
3r′



 . (4.5)
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4.2. Pulay force

The derivative of ǫik can be found using the Rayleigh coefficient [s. Eq. (3.80)]. Considering
also the possible discontinuities leads to

dǫik
dτα

=

∫

Ω

|ψik(r)|2
dVeff(r)

dτα
d3r +

〈

dψik

dτα

∣

∣

∣

∣

Ĥ − ǫik

∣

∣

∣

∣

ψik

〉

+ c.c.

+

∮

∂MT(α)

{

ψMT∗
ik (r)[Ĥ − ǫik]ψ

MT
ik (r)− ψIR∗

ik (r)[Ĥ − ǫik]ψ
IR
ik (r)

}

êdS. (4.6)

After summing over all states ik, the first term of this expression cancels with the last term
of the first line of Eq. (4.4). Then, the total force on atom α can be expressed as the sum
of the three terms

F α = FHF
α − FPulay

α − F surface
α , (4.7)

where in analogy to Eq. (3.80) the Pulay force is

FPulay
α =

∑

ik

fik

〈

dψik

dτα

∣

∣

∣

∣

Ĥ − ǫik

∣

∣

∣

∣

ψik

〉

+ c.c. (4.8)

and the surface contribution reads

F surface
α =

∮

∂MT(α)

{

ρMT
[

εMT
xc + V MT

eff − µMT
xc

]

− ρIR
[

εIRxc + V IR
eff − µIR

xc

]}

êdS

+
∑

ik

fik

∮

∂MT(α)

{

ψMT∗
ik

[

T̂ − ǫik

]

ψMT
ik − ψIR∗

ik

[

T̂ − ǫik

]

ψIR
ik

}

êdS. (4.9)

So far, we did not use the exact form of the LAPW basis functions, the density, or the po-
tential; we solely provided that a) the basis functions are dependent on the atomic position,
b) the partitioning of space is dependent on the atomic position, and c) the wave functions
are only variational solutions of the Schrödinger equation. Therefore, the result is quite
general and applicable to other methods with the same set of qualities, like for example the
linearized muffin-tin orbital approach [59–61].
The importance of the Pulay contribution FPulay

α to the force is one of the central findings
in the publication of Yu et al. in case of the FLAPW method. Moreover, they already
included the second line of the surface force into their consideration, since the LAPW basis
functions are completely discontinuous at second order. In comparison, our surface force
contribution F surface

α naturally includes this term because it specifically accounts for any
discontinuity at the muffin-tin sphere boundary. In addition, our surface contribution in-
cludes a correction due to the discontinuity of the potential terms, the density, and the xc
energy density. Eq. (4.7) with Eqs. (4.8) and (4.9) thus present a generalization of the force
formalism published before.

4.2. Pulay force

The Pulay force arises because the wave functions are dependent on the atomic positions
and solve the Schrödinger equation variationally and not pointwise. The effect of the latter
we already discussed in chapter 3.10. The Pulay force also involves a sum over all occupied
states, which in the FLAPW method are distinguished into core states and valence states.
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4. Forces within the FLAPW method

The former are direct solutions of the scalar-relativistic or fully-relativistic Dirac equation
employing the spherical part of the effective potential, while the latter are represented
through the LAPW basis set. We will first present the Pulay forces for the valence states
and provide the expression for the core states afterwards.

4.2.1. Valence states

The linear combination of the LAPW basis functions φkG according to Eq. (3.24) describes
the valence states ψik. Thus, their derivative with respect to the atomic position τα is given
by

dψik(r)

dτα
=
∑

G

dzikG
dτα

φkG(r) + zikG
dφkG(r)

dτα
. (4.10)

Inserted into the Pulay force (4.8) it can be seen that only the second part of dψik/dτα

contributes, which is the variation of the basis functions. The first part is the product of the
variation dzikG/dτα of the expansion coefficients times the regular basis functions. Within
their Hilbert space, however, the wave functions fulfill the Schrödinger equation exactly, as
explained in section 3.10. The variation of the basis function in the second part of Eq. (4.10)
can be split into a part that lies within the Hilbert space of the basis functions, which does
not add to the Pulay expression, and a part which is orthogonal to the Hilbert space. The
latter has a non-vanishing scalar product with the part of Ĥψik that also reaches out of the
space spanned by the basis functions.
Recalling the definition of the LAPW basis functions (3.16) allows us to see the independence
of their plane-wave representation on the atomic position. In the muffin-tin spheres, the
basis functions depend on τα through the local coordinate frame rα = r − τα,

φ
MT(α)
kG (r) =

∑

lmλ

aαkGlmλ u
α
lλ(rα, E

α
l )Ylm(r̂α), (3.16 revisited)

and through the phase factor contained in the matching coefficients,
(

aαkGlm0

aαkGlm1

)

=
4πil√
Ω
ei(k+G)·ταY ∗

lm(k̂ +G)U−1

(

jl(|k +G|Rα)
|k +G|j′l(|k +G|Rα)

)

. (3.17 revisited)

Therefore, the derivative of the basis function with respect to the atomic position becomes

dφkG(r)

dτα
=

{

[i(k +G)−∇]φkG(r) , r ∈ MT(α)

0 , else
. (4.11)

An implicit dependence of the basis functions on τα is given by the radial functions uβlλ,
which are depend on the spherical part of the local effective potential and are thus subjected
to variations in the effective potential due to atomic displacements. The impact of this
dependence is usually considered to be small compared to the effort necessary to construct
the changes in the radial functions as was stated by Yu et al. [54]. Therefore, we stick
to this frozen-augmentation approximation and continue from Eq. (4.11) above to find the
valence-state contribution to the Pulay force.
Inserting the variation of the basis functions in Eq. (4.8) leads to the Pulay force for the
valence (val) states:

F
Pulay
α,val =

val
∑

ik

fik
∑

GG′

i(G′ −G)z∗ikG zikG′

〈

φkG

∣

∣

∣Ĥ − ǫik

∣

∣

∣φkG′

〉

MT(α)
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4.2. Pulay force

−
val
∑

ik

fik

∮

∂MT(α)

ψMT∗
ik

[

T̂ − ǫik

]

ψMT
ik êdS −

∫

MT(α)

Veff∇ρvald3r (4.12)

Since the basis functions depend on τα only in the muffin-tin sphere of atom α, the bra-ket
is confined to this region. To further elaborate the origin of this equation, we note that the
first line comes from the i(k+G) part of Eq. (4.11), while the gradient part directly produces
the volume integral of the second line. The remaining sum of 〈∇φkG|T̂ − ǫik|φkG′〉α and
〈φkG|T̂ − ǫik|∇φkG′〉α becomes the surface integral in Eq (4.12) by application of Gauss’
theorem, since neither T̂ nor ǫik are affected by the gradient. The surface integral cancels
with the muffin-tin part of the valence term in the second line of the surface force (4.9).

The first line of the Pulay contribution from the valence states contains the Hamiltonian
and the overlap matrix of Eqs. (3.66) and (3.67). Thus, the bra-ket is

〈

φkG

∣

∣

∣Ĥ − ǫik

∣

∣

∣φkG′

〉

MT(α)
= Hα

GG′(k)− ǫikS
α
GG′(k). (4.13)

This does scale unfavorably with the system size, though, because of two sums over reciprocal
lattice vectors, a sum over bands and the evaluation for each atom. Instead, Yu et al.
suggested to precalculate the reciprocal sums by convoluting over G as is done in Eq. (3.23)
for the Aαik

lmλ-matching coefficients:

Aαik
lmλ =

∑

G

GzikGa
αkG
lmλ (4.14)

Splitting the basis function by Eq. (3.64) into the matching coefficients and the radial
functions times spherical harmonics, the first line of Eq. (4.12) can be rewritten as

val
∑

ik

fik
∑

GG′

i(G′ −G)z∗ikG zikG′

〈

φkG

∣

∣

∣
Ĥ − ǫik

∣

∣

∣
φkG′

〉

MT(α)

= i
val
∑

ik

fik
∑

lmλ

∑

l′m′λ′

[

Aαik∗
lmλ A

αik
l′m′λ′

〈

ϕα
lmλ

∣

∣

∣
Ĥα

MT − ǫik

∣

∣

∣
ϕα
l′m′λ′

〉

MT(α)

−Aαik∗
lmλ A

αik
l′m′λ′

〈

ϕα
lmλ

∣

∣

∣
Ĥα

MT − ǫik

∣

∣

∣
ϕα
l′m′λ′

〉

MT(α)

]

= i
val
∑

ik

fik
∑

lmλ

∑

l′m′λ′

[

Aαik∗
lmλ A

αik
l′m′λ′ −Aαik∗

lmλ A
αik
l′m′λ′

][

tαλλ
′

lml′m′ − ǫikδΣΣ′Jαλ
lm

]

(4.15)

with the matrix elements tαλλ
′

lml′m′ and Jαλ
lm from Eqs. (3.68) and (3.70).

To evaluate the integral over the valence-density gradient, we make use of a relation
concerning the gradient in natural coordinates given by:





r−1

r 0

r 1



 =
1√
2





1 −i 0

0 0
√
2

−1 i 0









rx
ry
rz



 (4.16)
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4. Forces within the FLAPW method

Then, for m′′ ∈ {−1, 0, 1}, it is

∇m′′fl′m′(r)Yl′m′(r̂) =

√

4π

3

1,2
∑

l′′=−1

Gm′+m′′,m′,m′′

l′+l′′,l′,1 Yl′+l′′,m′+m′′(r̂)

×
[

f ′l′m′(r)−
(

l′′l′ +
l′′ − 1

2

)

fl′m′(r)

r

]

(4.17)

with the Gaunt coefficients Gm′+m′′,m′,m′′

l′+l′′,l′,1 defined as in Eq. (3.30) and the l′′-sum running
over l′′ = −1 and 1, only. Effectively, the angular momentum is altered by 1 and the sum
in parentheses is either l′ or −(l′ + 1), depending on whether l′′ is 1 or −1. The gradient
transforms like a vector. Therefore, we have to apply the inverse transformation of Eq. (4.16)
in order to obtain the result of the gradient in Cartesian coordinates:





∇x

∇y

∇z



 =
1√
2





1 0 −1
i 0 i

0
√
2 0









∇−1

∇ 0

∇ 1



 =: T





∇−1

∇ 0

∇ 1



 (4.18)

Applied to the integral containing the valence-density gradient, this procedure yields

∫

MT(α)

Veff∇ρvald3r

=
∑

lm

∑

l′m′

1
∑

m′′=−1

∫

BRα (0)

V α∗
eff,lm(rα)Y

∗
lm(r̂α)T êm′′∇m′′ραval,l′m′(rα)Yl′m′(r̂α)d

3rα

=

√

4π

3

∑

lm

∑

l′m′

1,2
∑

l′′=−1

1
∑

m′′=−1

T êm′′δl′,l−l′′δm′,m−m′′Gm,m′,m′′

l,l′,1

×
∫ Rα

0

r2V α∗
eff,lm(r)

[

ρ′val,l′m′(r)−
(

l′′l′ +
l′′ − 1

2

)

ρval,l′m′(r)

r

]

dr. (4.19)

The sum over the primed angular and magnetic momenta contracts due to the Kronecker-
deltas, defining them as l − l′′ or m−m′′.

4.2.2. Core states

The core states ψik(r) are strongly bound states, whose wave function is usually assumed to
be decayed to zero at the muffin-tin sphere boundary and beyond. Since they are considered
to be highly localized at their corresponding atomic nucleus, they are determined only from
the spherical potential at this atom. Also, the core states are ideally non-overlapping and
thus show no dispersion over the Brillouin zone. Their k dependence is only of formal nature
and the band index becomes a superindex i = (βplml), consisting of the atom index β, the
principal and angular quantum numbers p and l as well as the magnetic quantum number
ml. In a practical calculation, however, these prerequisites are only approximately fulfilled,
especially the confinement to the muffin-tin sphere.
In analogy to the frozen-augmentation approximation, we will assume that the dependence
of the core states on the atomic position τα does not manifest itself in an implicit change of
the form of the state due to the change in the effective potential. As they lack a matching
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4.2. Pulay force

to plane waves, the only dependence on τα results from the local coordinate frame and we
obtain

dψik(r)

dτα
= −∇ψik(r)δαβ . (4.20)

Applying this equation to the Pulay force, Eq. (4.8), we have for its contribution from the
core states

FPulay
α,core = −

∑

ik

fikδαβ

[〈

∇ψik

∣

∣

∣Ĥ − ǫik

∣

∣

∣ψik

〉

Ω
+
〈

ψik

∣

∣

∣Ĥ − ǫik

∣

∣

∣∇ψik

〉

Ω

]

. (4.21)

As ψik is a pointwise eigenstate to the spherical Hamiltonian with energy ǫik, only the
non-spherical part of the effective potential as seen from atom α contributes to the bra-kets.
Thus, the wave functions and their gradients can be combined to the density-gradient and
yield

FPulay
α,core = −

∫

Ω

Vnonsph(r)
∑

ik

fikδαβ [∇ψ∗
ik(r) · ψik(r) + ψ∗

ik(r)∇ψik(r)] d
3r

= −
∫

Ω

Veff(r)∇ραcore(r)d3r. (4.22)

We did not limit ourselves to the non-spherical potential in Eq. (4.22), but it is implic-
itly included: The core density ραcore(r) =

∑core
ik δαβfik|ψik(r)|2 is spherical. According

to the comment concerning the gradient in natural coordinates, Eq. (4.17), application of
the gradient produces only contributions to the l = 1 channel, from which only the l = 1
component of the effective potential is selected from the angular integral centered at τα.
Yu et al. also stated a similar term in their Eq. (20). We note that in contrast to Yu et
al., our core contribution is evaluated over the whole unit cell, not only over the muffin-tin
sphere of atom α. In their publication, they assume that the core states are confined within
the atomic sphere of radius Rα.
While it is true that the use of LOs for semi-core states can enforce the remaining core states
to be strictly confined, this approach increases the computational cost to calculate systems
where many semicore states have to be treated due to the additional basis functions. Also,
the inclusion of the whole unit cell in the evaluation of FPulay

α,core makes the force calculation
more robust and user friendly, since a bad choice of the muffin-tin radius Rα does not ex-
clude the coretail density from the calculation anymore.

Figure 4.1 exemplifies in the case of MgO the leakage of the Mg 2s and 2p core states
from the magnesium muffin-tin sphere into the interstitial and even into the neighboring
oxygen sphere.

We evaluate Eq. (4.22) by using the pseudodensity ρ̃αcore introduced in section 3.4 which
exhibits the same coretail density as the true core-state density ραcore outside the muffin-tin
sphere of atom α by construction. In this way we obtain

FPulay
α,core =−

∫

MT(α)

Veff(r)∇ραcore(r)d3r

−
∫

IR

Veff(r)∇ρ̃αcore(r)d3r −
∑

β 6=α

∫

MT(β)

Veff(r)∇ρ̃αcore(r)d3r. (4.23)
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Figure 4.1.: Leakage of core states of MgO.

The pseudodensity is given in terms of a Fourier expansion, so its derivative becomes

∇ρ̃αcore(r) =
∑

G

iG ˆ̃ραcore(G)eiG·r =:
∑

G

̂[∇ρ̃αcore](G)eiG·r. (4.24)

This and the Heaviside step function ΘIR(r) for the interstitial region given in Eq. (3.74)
allow us to express the second term of FPulay

α,core by expanding it over the whole unit cell:

∫

IR

Veff(r)∇ρ̃αcore(r)d3r = Ω
∑

G

̂[ΘIRVeff]
∗
(G) ̂[∇ρ̃αcore](G) (4.25)

It is advisable to calculate the contributions from all other muffin-tin spheres β 6= α by
including the integral over the pseudodensity gradient at α and subtracting it later. Then
the sum over all atoms can be precalculated independently of atom α:

∑

β

∫

MT(β)

Veff(r)∇ρ̃αcore(r)d3r

=
∑

G

̂[∇ρ̃αcore](G)
∑

β

eiG·τβ

∫ Rβ

0

r2β
∑

lm

4πilY ∗
lm(Ĝ)jl(Grβ)V

β∗
eff,lm(rβ)dr (4.26)

What is left to calculate now is the integral over the muffin-tin sphere α, both for its real
contribution to the force FPulay

α and for subtracting the pseudodensity from the equation
above. For the latter, there are two choices: Either use the last formula explicitly for β = α,
or consider only the Gaussian bell replacement from Eq. (3.36) inside the sphere. In case of
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4.3. Surface force

the second approach, the coretails from images of atom α in other unit cells reaching into
the muffin-tin sphere of the representative atom are included into the force formula. Since
the Gaussian bell is completely spherical, it can be found analogous to

∫

MT(α)

Veff(r)∇ραcore(r)d3r =
√

4π

3

1
∑

m′′=−1

T êm′′

∫ Rα

0

r2αρ
α′
core,00(rα)V

α
eff,1m′′(rα)drα,

(4.27)

where we used the gradient in natural coordinates as given in Eq. (4.19) letting l′ =
m′ = 0. The true core-charge density derivative ρα′core,00(rα) then has to be replaced by

−
√
4π2rαaαAαe

−aαr2α .

4.3. Surface force

We proceed by discussing the evaluation of the remaining surface force term

F surface
α =

∮

∂MT(α)

{

ρMT
[

εMT
xc + V MT

eff − µMT
xc

]

− ρIR
[

εIRxc + V IR
eff − µIR

xc

]}

êdS

−
val
∑

ik

fik

∮

∂MT(α)

ψIR∗
ik

[

T̂ − ǫik

]

ψIR
ik êdS, (4.9 revisited)

where we have omitted the vanishing contributions from the continuously differentiable core
states to the last line as well as the muffin-tin contribution from the valence states, since
the latter also appears in the Pulay force term (4.12) with a different sign. This formula
contains sphere surface integrals over quantities expressed in spherical coordinates or in
terms of a Fourier expansion. Given that the unit normal vector ê expressed in Cartesian
basis vectors êi=1,2,3 is

ê =

√

2π

3





Y1−1(ê)− Y11(ê)
iY1−1(ê) + iY11(ê)√

2Y10(ê)



 =:

3
∑

i=1

1
∑

m=−1

ci,mY1m(ê)êi, (4.28)

the first term of Eq. (4.9) containing only muffin-tin quantities yields

∮

∂MT(α)

{

ρMT
[

εMT
xc + V MT

eff − µMT
xc

]}

êdS = R2
α

3
∑

i=1

êi

1
∑

m=−1

c∗i,m
∑

l′m′

∑

l′′m′′

Gm′′,m′,m
l′′,l′,1

× ρα∗l′m′(Rα)
[

εαxc,l′′m′′(Rα) + V α
eff,l′′m′′(Rα)− µα

xc,l′′m′′(Rα)
]

. (4.29)

For the interstitial term of opposite sign, it is useful to express the density, potential, and
xc energy density in spherical coordinates by making use of a Rayleigh expansion around
τα. We exemplify the resulting expressions and abbreviations by means of the density,

ρIR(r)
∣

∣

r∈∂MT(α)
=
∑

l′m′

[

4πil
′ ∑

G

ρ̂(G)eiG·ταY ∗
l′m′(Ĝ)jl′(GRα)

]

Yl′m′(R̂α)

=:
∑

l′m′

ραIRl′m′Yl′m′(R̂α). (4.30)
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4. Forces within the FLAPW method

The contribution from the interstitial is then given analogous to Eq. (4.29) simply by replac-
ing ρα∗l′m′(Rα), ε

α
xc,l′′m′′(Rα), V

α
eff,l′′m′′(Rα), and µα

xc,l′′m′′(Rα) by their interstitial counter-

parts ραIR∗
l′m′ (Rα), ε

αIR
xc,l′′m′′(Rα), V

αIR
eff,l′′m′′(Rα), and µ

αIR
xc,l′′m′′(Rα). The order of the Rayleigh

expansion can be chosen arbitrarily, independent of the angular-momentum cutoff lαmax, to
increase the accuracy of this representation. In this thesis, the order of the Rayleigh expan-
sion is set to 2lαmax. The Gaunt coefficients effectively limit the range of the sum over l′′m′′

to l′′ = l′ ± 1 and m′′ = m+m′.

We also evaluate the remaining surface integral containing the kinetic energy operator
analogously by using a Rayleigh expansion of the interstitial representation of the LAPW
wave functions. The Bloch factor of the wave functions can be separated after applying the
kinetic energy operator. In this way, we obtain:

ψ∗
ik(r)|r∈∂MT(α) = e−ik·r

∑

lm

ψαIR∗
ik,lm(Rα)Y

∗
lm(R̂α) (4.31)

:= e−ik·r
∑

lm

[

4πil
∑

G

zikG√
Ω
eiG·ταY ∗

lm(Ĝ)jl(GRα)

]∗

Y ∗
lm(R̂α)

[

T̂ − ǫik

]

ψik(r)|r∈∂MT(α) = e ik·r
∑

lm

{[

T̂ − ǫik

]

ψik

}αIR

lm
(Rα)Ylm(R̂α) (4.32)

:= e ik·r
∑

lm

[

4πil
∑

G

zikG√
Ω

(

1

2
|k +G|2 − ǫik

)

eiG·ταY ∗
lm(Ĝ)jl(GRα)

]

Ylm(R̂α)

Inserted into the last line of Eq. (4.9), the Bloch factors cancel and it is

val
∑

ik

fik

∮

∂MT(α)

ψIR∗
ik

[

T̂ − ǫik

]

ψIR
ik êdS = R2

α

3
∑

i=1

êi

1
∑

m=−1

c∗i,m
∑

l′m′

∑

l′′m′′

Gm′′,m′,m
l′′,l′,1

×
val
∑

ik

fikψ
αIR∗
ik,l′m′(Rα)

{[

T̂ − ǫik

]

ψik

}αIR

l′′m′′
(Rα). (4.33)

In comparison to Yu et al., our approach differs in a) the existence of the first line of
the surface force term Eq. (4.9), which is attributed to the discontinuity of charge density
and potential terms, and b) a different treatment of the second line. Yu et al. evaluate it
by applying the Laplacian to the interstitial representation of the wave functions first to
obtain the factors |k+G|2/2− ǫik but then compute the surface integral using the muffin-
tin representation of the basis functions. In light of the discontinuity of the LAPW basis
functions at the muffin-tin sphere boundary, this introduces an error to the total force.
The continuity between radial and plane-wave representation at ∂MT(α) is only valid for
the l-channels up to lαmax, so especially when low angular-momentum cutoff parameters are
employed, this difference might be crucial.

4.4. Hellmann-Feynman force

We have found the Hellmann-Feynman force to be the negative gradient of the Coulomb
potential generated by all charges except the positively charged nucleus α evaluated at its
position τα:
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4.4. Hellmann-Feynman force

FHF
α = −Zα





∑

β 6=α

d

dτα

Zβ

|τα − τβ |
−
∫

d

dτα

ρ(r′)

|τα − r′|d
3r′



 (4.5 revisited)

Since we have to evaluate the gradient of the Coulomb potential at the position τα of atom
α, we employ Eq. (3.63) of the Weinert approach to obtain the Coulomb potential in MT(α).
Together with the gradient, we have to compute

FHF
α = Zα lim

r→τα

∇
∫

ρ(r′)−∑β 6=α Zβδ(r
′ − τβ)

|r − r′| d3r′

= Zα lim
r→τα

∇
∑

lm

Ylm(r̂α)

{

4π

2l + 1

∫ Rα

0

s2αρ
α
lm(sα)

rl<
rl+1
>

[

1−
(

r>
Rα

)2l+1
]

dsα

+

(

rα
Rα

)l

V α
C,lm(Rα) +

√
4π
Zα

Rα
δl0

}

. (4.34)

We know already the value of the Coulomb potential at the muffin-tin sphere boundary
expressed in spherical coordinates in the first few l-channels from the determination of
the total energy, so we directly inserted V α

C,lm(Rα). The last term excludes the potential
generated by the nucleus, but is a constant to the gradient and thus does not contribute
to the force. The radial integral has to be split into the ranges from 0 to rα and from rα
to Rα. However, the former integral does not contribute. The gradient generates terms
from application to the integrand as well as from application to the upper border of the
integral, which is a onedimensional analogon to Eq. (4.3). For the integrand, application
of the gradient reduces the order of rα by one, leading to fractions (sα/rα)

l+2. Since sα is
smaller than rα, the integrand is bounded and letting rα → 0 reduces its contribution to
zero. On the other hand, the application of the gradient to the upper border of the integral
is canceled by the application of the gradient to the lower border of the integral from rα to
Rα. Therefore, only the application of the gradient to the integrand of the second integral
has to be considered. It yields

FHF
α = Zα

∑

lm

{

4π

2l + 1

∫ Rα

0

s1−l
α ραlm(sα)

[

1−
(

sα
Rα

)2l+1
]

dsα +
V α
C,lm(Rα)

Rl
α

}

× lim
rα→0

∇
[

rlαYlm(r̂α)
]

. (4.35)

Using the formula for applying the gradient in natural coordinates, Eq. (4.17), on the last
line suggests that for every l except l = 1 the result is zero: For l = 0, a constant is
differentiated and for l ≥ 2, the remaining term is of order ≥ 1 and thus vanishes in the limit
rα → 0. Expressing the Hellmann-Feynman force in terms of the coordinates of Eq. (4.17)
and transforming them back to Cartesian coordinates by the transformation matrix T of
Eq. (4.18) yields

FHF
α = Zα

1
∑

m=−1

(−1)m√
12π

T êm

{

4π

3

∫ Rα

0

ρα1m(sα)

[

1−
(

sα
Rα

)3
]

dsα +
V α
C,1m(Rα)

Rα

}

(4.36)

in agreement to what Yu et al. present in their Eq. (A3).
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4. Forces within the FLAPW method

4.5. Summary of differences to Yu, Singh, and Krakauer

We want to prepare a common ground for the following discussion of the upcoming compu-
tational results. To summarize our derivation of the atomic force, we introduce the following
four levels with which we address our deviations from Yu et al. [54], where at each level the
change made to the previous level is described:

• Level 0 is the force formula as given by Yu and coworkers.

• Level 1 includes the tails of core states leaking out of their muffin-tin sphere into the
force calculation as presented in Eq. (4.22).

• Level 2 describes the evaluation of the surface contribution to the force containing
the kinetic energy operator given in the last line of Eq. (4.9 revisited) in terms of the
interstitial basis functions.

• Level 3 finally adds the remaining surface contributions of Eq. (4.9 revisited) to
the force formula, which explicitly account for the discontinuity of the charge density,
the potential and the exchange-correlation energy density at the muffin-tin sphere
boundary.

4.6. Forces using DFT+U

Apart from the changes we distinguish by the different Levels, additional terms have
to be included when the DFT+U approach is employed. As we already pointed out in
chapter 2.4.1, the inclusion of Hubbard parameters U in the electronic structure calculation
yields an additional contribution

EU[ρ] =
∑

α





Uα
l

2

∑

m 6=m′

nαl
mmn

αl
m′m′ − Uα

l

2
nαl(nαl − 1)



 (4.37)

to the total energy with the occupation numbers of the localized orbitals ϕα
lm defined by

nαl
mm′ =

∑

ik

fik 〈ψik|ϕα
lm′〉 〈ϕα

lm |ψik〉 , (2.18 revisited)

nαl =
∑

m

nαlmm. (2.19 revisited)

Also, the Hubbard interaction occurs in the terms replacing the kinetic energy, namely

ǫik =

〈

ψik

∣

∣− 1
2∇2 + Veff + VU

∣

∣ψik

〉

〈ψik|ψik〉
(4.38)

and

∑

ik

fik

〈

ψik

∣

∣

∣

∣

−1

2
∇2

∣

∣

∣

∣

ψik

〉

=
∑

ik

fik (ǫik − 〈ψik|Veff + VU|ψik〉) (4.39)

with the additional potential

VU =
∑

α

Uα
l

[

1

2
− nαl

mm

]

|ϕα
lm〉 〈ϕα

lm| . (2.21 revisited)
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4.7. Computational results

In the FLAPW method, the projector onto the localized orbitals ϕα
lm(r) is chosen such that

it radially integrates the projected angular and magnetic momentum selection:

〈ψik|ϕα
lm′〉 〈ϕα

lm |ψik〉

=

∫ Rα

0

r2α

∮

ψ∗
ik(rα + τα)Ylm′(r̂α)dS

∮

Y ∗
lm(r̂α)ψik(rα + τα)dSdrα (4.40)

Tran et al. [122] derived the changes to the FLAPW force formula induced by the use of
DFT+U by applying the gradient with respect to the atomic position to all additional terms
and collecting the results. In this way, he arrived at the additional contribution

FU
α = 2

∑

ik

fikIm

{

∑

mm′

vαlmm′

[

∑

λλ′

Aαik∗
lmλ A

αik
lm′λ′

∫ Rα

0

r2αu
α
lλ(rα)u

α
lλ′(rα)drα

]}

. (4.41)

The A and A coefficients are the G-sums over the expansion coefficients zikG and the
matching coefficients aαkGlmλ of the LAPW basis functions defined in Eqs. (3.23) and (4.14)
and vαlmm′ is the variation of the additional DFT+U energy term with respect to the orbital
occupation number,

vαlmm′ =
δEU[ρ]

δnαlmm′

. (4.42)

The term FU
α has to be added only to the force acting on the atom where the Hubbard

parameter U is applied to.

4.7. Computational results

Next, we analyze the precision of the atomic force at the different force Levels summarized
in section 4.5 for a set of prototype systems of varying complexity. The systems considered
are metallic Al, ionically-bound MgO, covalently-bound GaAs, and the perovskite EuTiO3.
Additionally, we provide results for the strongly correlated material VO2 with and without
Hubbard-U . In any case, the comparison will be with respect to Level 0, the original force
formalism of Yu et al. [54]. In detail, we present data on the force calculated analytically by
the force formalism(s) versus the numerical differentiation of the total energy with respect
to a displacement of an atom. We show the influence of the force Levels on the drift force
and provide computation times to estimate the additional workload of using the different
Levels.

Table 4.1 summarizes the default settings of each calculation. These parameters are used
if not stated otherwise.
Aluminum forms a face-centered cubic (fcc) lattice with a single atom per unit cell. Since a
displacement of this atom would correspond to a translation of the whole aluminum lattice
and would therefore not yield any forces, we provide two different setups for this material:
In the first setup, denoted by AlI, we construct the Al unit cell from a simple-cubic (sc)
Bravais lattice by explicitly placing four atoms in the sc unit cell, one at the origin and one
each at the face-centers. In the second setup, labeled as AlII, we stick to the fcc description
of the lattice, but repeat the unit cell once in each direction. Thus, we consider eight atoms
in the setup instead of one. In both calculations, the Al 1s, 2s, and 2p states are treated as
core states.
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4. Forces within the FLAPW method

Magnesium oxide crystallizes in rocksalt structure, i.e., in a fcc Bravais lattice, with one
atom at the origin and the other atom in the center of the unit cell. Again, we discuss two
sets of calculation differing in the treatment of the 2s and 2p Mg semicore states. In one
set, in addition to the Mg 1s state, the Mg 2s and 2p states are considered to be core states,
while in the other set, the 2s and 2p states are treated in the valence window by using local
orbitals. In both calculations, the 1s states of oxygen are set up as core states.
Gallium arsenide is of zinc-blende structure. In an fcc lattice, one atom is placed at the
origin, while the other one resides one quarter along the volume diagonal of the cubic unit
cell. For both atoms, the core states comprise of the [Ar] states. For As, also the 3d states
are described in the core window.
The perovskite europium titanate exhibits a sc lattice structure, where the Eu atom is
located at the origin, the three O atoms are at the face-centers of the unit cell and the Ti
atom sits in the center of the unit cell. The core states of Eu are given by [Kr]4d, the core
states of O by 1s. Also the [Ne]3s states of Ti are treated as core states.
Vanadium dioxide is set up in a simple-monoclinic unit cell, the distorted rutile configuration,
within which in total four V atoms and eight O atoms are placed. Since the setup of
this system is more involved, we refer to Appendix A.3 for an input file for the input-file
generator of FLEUR. The core states are the V [Ne]3s states and the O 1s state. For the
DFT+U calculation, a value of U = 4.0 eV is chosen in accordance to Ref. [123] for the 3d
states.

System AlI AlII MgO
a0 = 7.656 aB 15.311 aB 7.970 aB
R1 = 2.50 aB 2.50 aB 2.35 aB
R2 = - - 1.33 aB
Gmax = 4.0 a−1

B 4.0 a−1
B 5.5 a−1

B

Gdop
max = 24.01 a−1

B 24.01 a−1
B 22.01 a−1

B

lmax = 12 12 14
∆τ = 0.07656 aB 0.05413 aB 0.19925 aB
Direction [100] [011] [100]

System GaAs EuTiO3 VO2

a0 = 10.681 aB 7.370 aB see Appendix A.3
R1 = 1.99 aB 2.60 aB 1.90 aB
R2 = 1.99 aB 2.21 aB 1.10 aB
R3 = - 1.41 aB -
Gmax = 4.2 a−1

B 4.8 a−1
B 5.5 a−1

B

Gdop
max = 12.61 a−1

B 28.81 a−1
B 15.3 a−1

B

lmax = 12 12 12
∆τ = 0.42723 aB 0.02244 aB 0.05353 aB
Direction [100] [100] [100]

Table 4.1.: Default setup parameters for the different systems considered. The numbering
of the muffin-tin radii is according to their appearance in the structure formula.
E.g. VO2 has R1 = RV, R2 = RO.
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4.7. Computational results

4.7.1. Analytic vs. numerical force

Instead of using the (refined) force formalism, atomic forces can also be calculated by a
numerical evaluation of Eq. (4.1), i.e., as the change in energy with respect to a small dis-
placement of atom α. Hence, we displaced for each system the atom located at the origin
within a set of different amplitudes, applied a quadratic fit to the resulting energy vs. dis-
placement data, and calculated the force as the derivative of the curve. The forces computed
by application of the different force Levels are compared to the derivative of the fit in part
(a) of Figs. 4.2, 4.3, 4.4, 4.5, and 4.6 for the five different systems AlI/II to EuTiO3. The
black lines correspond to the derivative of the fits, the black dots to Level 0 of the force
formalism. The red diamonds represent the force values calculated using Level 3. On
the scale of the graphs, Level 1 and Level 2 can not be resolved from Level 3 and are
consequently omitted in the graphs. The insets show the respective energy vs. displacement
data and the quadratic fits.

On the scale of the graphs, we notice in general a good agreement of the different force
Levels to the numerically computed force at small displacements. For very large displace-
ments as for example in the case of GaAs in Fig. 4.5, the agreement becomes worse, since
the harmonic regime is left. In order to analyze the agreement between the force Levels
and the fitted curve in more detail, the difference of the Levels to the fitted curve is shown
in part (b) of Figs. 4.2, 4.3, 4.4, 4.5, and 4.6. The symbols assigned to the different Levels
are black triangles for Level 0, green asterisks for Level 1, blue pluses for Level 2, and
red crosses for Level 3. The insets show specifically the difference of the force Levels to
Level 3.

For almost all systems, Level 0 agrees slightly better with the numerically calculated
force than Level 3 for small displacements. The difference between these Levels is of the
order of magnitude of less than 0.1 mHtr/aB for the largest displacement of each system
other than GaAs, though. For GaAs, depicted in Fig. 4.5, the difference is of the order
of magnitude of 1 mHtr/aB, and Level 0 is closer to the numerical force than Level 3

only for large displacements, while Level 3 is in better agreement for small displacements.
In addition, in the case of GaAs and MgO presented in Figs. 4.5(b) and 4.4(b), also the
force on the second atom is depicted. In these diatomic setups, Newton’s third law and the
acoustic sum rule, Eq. (4.2), identically imply that the force values of one atom have to
be the negative of the force values of the other atom. We realize that this condition is not
fulfilled if the analytical forces are produced from Level 0. Instead, at least Level 1 is
needed to establish forces on the As or Mg atom to be consistent with the forces on the Ga
or O atom, respectively. This can be concluded from the insets which indicate a deviation
of Level 1 and Level 2 from Level 3 in the 10 µHtr/aB-regime in the case of the Mg
atom, but usually in the 1 µHtr/aB-regime or below. Also, Level 1 mainly affects the force
on As and Mg, since these two atoms lose the most core electrons from the MT sphere in
their respective setup.

In conclusion, we consider the good agreement of Level 0 with the numerically calculated
force to be fortuitous, while applying the different Levels of our refined force formalism
enables a consistent description of the atomic force.
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(a) Force on the displaced Al atom. Black dots denote Level 0, red diamonds denote
Level 3. The black line corresponds to the derivative of the quadratic energy fit in
the inset.
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(b) Residual forces with respect to the energy fit (figure) or to Level 3 (inset). Black
triangles denote Level 0, green asterisks denote Level 1, blue pluses denote Level 2,
and red crosses denote Level 3.

Figure 4.2.: Numerical vs. analytical force for AlI.
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(a) Force on the displaced Al atom. Black dots denote Level 0, red diamonds denote
Level 3. The black line corresponds to the derivative of the quadratic energy fit in
the inset.
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(b) Residual forces with respect to the energy fit (figure) or to Level 3 (inset). Black
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and red crosses denote Level 3.

Figure 4.3.: Numerical vs. analytical force for AlII.
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(a) Force on the displaced Mg atom. Black dots denote Level 0, red diamonds denote
Level 3. The black line corresponds to the derivative of the quadratic energy fit in
the inset.
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Figure 4.4.: Numerical vs. analytical force for MgO.
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(a) Force on the displaced As atom. Black dots denote Level 0, red diamonds denote
Level 3. The black line corresponds to the derivative of the quadratic energy fit in
the inset.
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(b) Residual forces on As with respect to the energy fit (figure) or to Level 3 (lower
inset). Black triangles denote Level 0, green asterisks denote Level 1, blue pluses
denote Level 2, and red crosses denote Level 3. Dashed lines in the figure and in
the upper inset denote the corresponding force Level applied to the Ga atom.

Figure 4.5.: Numerical vs. analytical force for GaAs. Due to the large displacement, the
quadratic fit is applied only to the seven inner point.

57



4. Forces within the FLAPW method

-2

-1

 0

 1

 2

-0.02 -0.01  0  0.01  0.02

F
 [

m
H

tr
/a

B
]

∆τ [aB]

EuTiO3

 0

 0.01

 0.02

-0.02  0  0.02

E
to

t-
E

to
t

m
in

 [
m

H
tr

]

(a) Force on the displaced Ti atom. Black dots denote Level 0, red diamonds denote
Level 3. The black line corresponds to the derivative of the quadratic energy fit in
the inset.
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(b) Residual forces on Ti with respect to the energy fit (figure) or to Level 3 (inset).
Black triangles denote Level 0, green asterisks denote Level 1, blue pluses denote
Level 2, and red crosses denote Level 3.

Figure 4.6.: Numerical vs. analytical force for EuTiO3.
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4.7.2. Drift force

As we pointed out at the beginning of this chapter, the total energy of a periodic sys-
tem is invariant under a translation of the whole system by an arbitrary vector T , i.e.,
E[{τα}] = E[{τα + T }]. This prescription implies the acoustic sum rule, which states that
the sum of all forces on all atoms of the system has to vanish. If the acoustic sum rule is
broken, the spuriously remaining force corresponds to an unphysical energy gain by an arbi-
trary translation of the whole lattice. In practical calculations, we found such a spuriously
remaining force, which we introduced as the drift force in Eq. (4.2).
In this section, we study the effect of the different Levels of our force formalism on the
drift force, as well as the dependence of the drift force on the angular momentum cutoff
used in the muffin-tin spheres.

We start by demonstrating the influence of the force Levels on the drift force at a par-
ticular lmax-cutoff in tables 4.2, 4.3, 4.4, 4.5, and 4.6.

(a) AlI

Force on Level 0 Level 1 Level 2 Level 3

Al000 −2.9299 −2.9215 −2.9215 −2.9215
Al0 1

2
1
2

−0.3654 −0.3643 −0.3643 −0.3642

Al 1
2 0

1
2

1.6476 1.6429 1.6429 1.6429

Al 1
2

1
2 0

1.6476 1.6429 1.6429 1.6429

Drift 0.0000 0.0000 0.0000 0.0000

(b) AlII

Level 0 Level 3

Force on Fx Fy Fz Fx Fy Fz

Al000 0.0000 −1.5031 −1.5031 0.0000 −1.4989 −1.4989
Al011 0.0000 0.8892 0.8892 0.0000 0.8865 0.8865
Al101 0.4841 −0.1009 0.4027 0.4826 −0.1007 0.4015
Al112 −0.4841 0.4027 −0.1009 −0.4826 0.4015 −0.1007
Al110 0.4841 0.4027 −0.1009 0.4826 0.4015 −0.1007
Al121 −0.4841 −0.1009 0.4027 −0.4826 −0.1007 0.4015
Al211 0.0000 −0.0407 −0.0407 0.0000 −0.0404 −0.0404
Al222 0.0000 0.0511 0.0511 0.0000 0.0510 0.0510
Drift 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4.2.: Forces (in mHtr/aB) in Al at the different Levels of implementation. (a) Setup
AlI: A single fcc unit cell reconstructed in a sc unit cell. (b) Setup AlII: A
2 × 2 × 2 grid of fcc unit cells. Only Levels 0 and 3 are shown, since the
differences between Level 3 and Levels 1 and 2 are negligible, as suggested
by the data in part (a). The angular-momentum cutoff is chosen as lmax = 10 in
both cases. The forces presented here are rounded to a precision of 0.1 µHtr/aB.
Therefore, the data does not add up exactly to a drift force of zero.
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4. Forces within the FLAPW method

For aluminum in both setups, table 4.2 shows that the drift forces are already converged
to zero with a precision of 0.1 µHtr/aB at Level 0. The application of the higher Levels
does not destroy the precision of the drift force. For the AlII setup we present results only
for Level 0 and Level 3, since Level 1 and Level 2 do not contain any new information.

Magnesium oxide, presented in table 4.3, shows a stronger dependence on the different
Levels of our refined force formalism. The largest drift force of 0.439 mHtr/aB is realized
when the Mg 2s and 2p states are treated as core states at Level 0 in part (a) of the
table. Including the whole unit cell into the calculation of the core state contribution to the
force at Level 1 or lifting the core states into the valence window by application of LOs
to the 2s and 2p states of magnesium reduces the drift force by one order of magnitude to
0.017 mHtr/aB. It is reasonable that the application of Level 1 does not further improve
the drift force in the LO calculation. In this setup, only the 1s states of Mg and O contribute
to the force contribution stemming from the core electrons. These states are well localized
within the muffin-tin sphere of their respective atom and thus the changes of Level 1 are
negligible. By the same argument, the force acting on the Mg atom is subject to the biggest
changes when the Mg 2s and 2p states are treated in the core, while the force acting on
the O atom is affected only slightly. In both setups, the remaining Levels 2 and 3 further
decrease the magnitude of the drift force by one order, each.

(a) Mg core states: [He]2s2p

Force on Level 0 Level 1 Level 2 Level 3

Mg −11.6046 −11.1820 −11.1603 −11.1655
O 11.1652 11.1652 11.1652 11.1649
Drift −0.4394 −0.0168 0.0049 −0.0006

(b) Mg core states: [He]

Force on Level 0 Level 1 Level 2 Level 3

Mg −10.8027 −10.8027 −10.7809 −10.7861
O 10.7857 10.7857 10.7857 10.7854
Drift −0.0170 −0.0170 0.0048 −0.0007

Table 4.3.: Forces (in mHtr/aB) in MgO at the different Levels of implementation. (a) Mg
2s and 2p states are treated as core states. (b) Mg 2s and 2p states are treated
using LOs. The angular-momentum cutoff is set to lmax = 14 for both atoms.

Force on Level 0 Level 1 Level 2 Level 3

Ga −38.2222 −38.0632 −38.0632 −38.0629
As 39.4411 38.0620 38.0619 38.0618
Drift 1.2189 −0.0012 −0.0013 −0.0011

Table 4.4.: Forces (in mHtr/aB) in GaAs at the different Levels of implementation. The
angular-momentum cutoff is set to lmax = 12 for both atoms.
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In the case of gallium arsenide, the data presented in table 4.4 shows an increase in
the precision of the drift forces by three orders of magnitude when Level 1 is applied
from 1.219 mHtr/aB at Level 0 to 0.001 mHtr/aB. The effect on the force acting on the
As atom is strongest, since As loses most core electrons from its core, but also Ga is af-
fected, since in contrast to the oxygen atom in MgO, it also loses core electrons. The higher
Levels of our refined force formalism do not further increase the precision of the drift force.

Table 4.5 summarizes the data on EuTiO3 for an angular momentum cutoff of lmax = 10
and lmax = 12. In both cases, the different force Levels affect mainly the force acting on
the Ti atom. For the lower angular-momentum cutoff lmax = 10, the drift force steadily
decreases by two orders of magnitude in total from 0.135 mHtr/aB to 0.004 mHtr/aB be-
tween Level 0 and Level 3. For the higher cutoff lmax = 12, the drift force decreases by
two orders of magnitude between Levels 0 and 1 already, while the further Levels do not
significantly add to the precision of the drift force anymore.

(a) EuTiO3 with lmax = 10

Force on Level 0 Level 1 Level 2 Level 3

Eu 0.6215 0.6215 0.6213 0.6214
O0 1

2
1
2

0.8866 0.8866 0.8866 0.8865

O 1
2 0

1
2/

1
2

1
2 0

0.2335 0.2335 0.2335 0.2335

Ti −2.1101 −2.0283 −1.9520 −1.9705
Drift 0.1350 −0.0532 0.0229 0.0044

(b) EuTiO3 with lmax = 12

Force on Level 0 Level 1 Level 2 Level 3

Eu 0.6213 0.6213 0.6213 0.6213
O0 1

2
1
2

0.8798 0.8798 0.8798 0.8797

O 1
2 0

1
2/

1
2

1
2 0

0.2330 0.2330 0.2330 0.2330

Ti −2.0501 −1.9686 −1.9664 −1.9680
Drift −0.0830 −0.0015 0.0007 −0.0010

Table 4.5.: Forces (in mHtr/aB) in EuTiO3 at the different Levels of implementation. The
titanium atom Ti has been displaced by 0.022 aB in the [100] direction. The
angular momentum cutoff lmax is set to 10 in (a) and 12 in (b).

Finally, table 4.6 contains the force data of vanadium dioxide for the different Levels of
our force formalism without a Hubbard-U in part (a) and with a Hubbard-U of 4 eV in (b).
Since the structure of VO2 is more involved, displacing an atom along [100]-direction gives
rise to forces in different directions, which is why we include also the force components along
y and z direction acting on each atom. The largest drift force component of 0.601 mHtr/aB
is the drift force in x direction at Level 0 when no Hubbard-U is applied. With the
Hubbard-U , the drift force Fx is of comparable size with 0.584 mHtr/aB. In both cases,
the x component of the drift force is subsequently decreased by three orders of magnitude
when the additional force Levels are included into the calculation, reaching a precision
of below µHtr/aB. The drift force in z direction decreases from around 0.125 mHtr/aB to
0.006mHtr/aB in both cases; including Level 1 already results in this order of precision for
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the drift force Fz. The drift force Fy is already in this regime at Level 0 with and without
introducing a Hubbard-U . We note that the effect of the force Levels is most promi-
nent for the vanadium atoms, which is reasonable considering that the 1s states of oxygen
are well confined within their respective MT spheres. The data contained in table 4.6 indi-
cates that the Levels of our force formalism also improve the force in DFT+U calculations.

The drift forces presented so far have in common that they are reduced to the µHtr/aB-
regime when the forces are calculated at Level 3. This indicates that µHtr/aB is the
precision limit which we can achieve.

We continue our analysis of the drift force by presenting its convergence behavior with
respect to the angular-momentum cutoff lmax in Figs. 4.7, 4.8, 4.10, 4.12 and 4.11 for the
different materials. Since the angular-momentum cutoff directly determines the grade of
discontinuity of the wave functions, the density, and the potential at the muffin-tin sphere
boundary, we expect that the drift force at Levels 2 and 3 will be affected most by chang-
ing lmax, since these two Levels explicitly account for the discontinuities mentioned above.
In agreement to our previous notation used in section 4.7.1, black triangles correspond to
Level 0, green asterisks to Level 1, blue pluses to Level 2, and red crosses to Level 3.

All figures have in common that at Level 0 the drift force converges with increasing
lmax to a constant non-zero value, except for the two aluminum setups. At least Level 1 is
required to reduce the drift force to less than 1 µHtr/aB per atom. Applying both Level 2

and Level 3 in general increases the rate at which the drift force converges. For small
lmax, the application of only one of the last two Levels would result in deviations from the
Level 1 curve which are not beneficial for a small drift force.

We proceed by analyzing the lmax convergence of the drift force for the individual systems
in more detail.
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For the AlI setup, in which the fcc structure of aluminum is reconstructed with four atoms
in a sc unit cell, the drift force at Level 0 converges already at lmax = 10 to a non-zero
value as can be seen in Fig. 4.7, while Levels 1 and 2 remove the offset of the drift force.
However, at Level 3 the drift force converges to zero only at lmax = 12 and shows a larger
deviation at smaller lmax. This larger deviation is only 0.06 µHtr/aB, though, and thus still
within the precision we expect from our calculation. In the AlII setup presented in Fig. 4.8
that describes a 2 × 2 × 2 configuration of the regular fcc unit cell of aluminum, the drift
force vanishes at any Level of our force formalism and for any angular-momentum cutoff.
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Figure 4.8.: lmax convergence of AlII.

The data on MgO shown in Fig. 4.9 includes the drift force calculated with the Mg 2s
and 2p states treated with LOs instead of within the core. The corresponding symbols are
hollow black triangles (Level 0), hollow blue squares (Level 2), and hollow red diamonds
(Level 3). Level 1 with local orbitals is omitted from the graph since this curve lies on
top of the Level 0-LO curve and the Level 1 curve from the calculations where the 2s
and 2p states of Mg are treated as core states. Apparently, the LO curves lie on top of
the corresponding curves from the calculations without LOs from Level 1 onwards. This
is surprising in so far as treating the 2s and 2p states of magnesium either by LOs or by
Level 1 results nearly in the same drift force. However, starting from the same drift force
at Level 1, one can expect that Level 2 and Level 3 have the same effect with or with-
out LOs: The local orbitals vanish at the MT sphere boundary, so they do not alter the
discontinuity of wave functions, density, and potential at the MT sphere boundary. Fig. 4.9
demonstrates that a thorough treatment of the leaking core states by either Level 1 or by
LOs reduces the offset of the drift force significantly for large lmax. A converged drift force
is realized at lmax = 16. Including both Level 2 and Level 3 accelerates the convergence
of the drift force with respect to the angular-momentum cutoff and converged results are
produced at lmax = 12.
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Figure 4.9.: lmax convergence of MgO. Labeled symbols: LO calculations. Unlabeled sym-
bols: Mg 2s and 2p states are core states. They are designated as in Fig. 4.8.

In the case of GaAs, the black curve in Fig. 4.10 corresponding to Level 0 has been
shifted downwards towards the x-axis by 1200 µHtr/aB so that all Levels are visible on
the same scale. At lmax = 12, all Levels are converged, but at least Level 1 is necessary
for the limit to be in the µHtr/aB-regime. Application of Level 2 allows to reduce the
angular-momentum cutoff to 10 to achieve a converged drift force, while at Level 3, the
drift force is already converged for lmax = 8.
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Figure 4.10.: lmax convergence of GaAs.
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Figure 4.11.: lmax convergence of VO2. Labeled symbols: DFT+U calculations. Unlabeled
symbols: Regular LDA calculations. They are designated as in Fig. 4.8.

The convergence behavior of the drift force with respect to lmax in the strongly corre-
lated system VO2 is presented in Fig. 4.11. The figure includes the data obtained from
calculations without a Hubbard-U with the regular symbols, as well as the results from cal-
culations with a Hubbard-U of 4 eV . The symbols corresponding to the latter calculations
are hollow black triangles (Level 0), hollow green circles (Level 1), hollow blue squares
(Level 2), and hollow red diamonds (Level 3). The Level 0 curves have been shifted
downwards towards the x-axis by 550 µHtr/aB each, such that each Level is resolved on
the scale of the graph. Convergence of the drift force is achieved at Level 0 and Level 1 at
lmax = 14, where the latter Level does reduce the drift force to the regime of µHtr/aB per
atom. Applying Level 2 decreases the angular-momentum cutoff necessary for a converged
calculation to 12, while the drift force at Level 3 can be considered to be converged even
at lmax = 10.

For EuTiO3, four separate graphs in Fig. 4.12 depict the drift-force convergence depend-
ing on the atom displaced. Within the figures, a sketch of the EuTiO3 unit cell indicates
which atom is displaced in the respective set of calculations. All graphs have in common
that Level 1 eliminates the offset of the drift force as compared to Level 0. Figs. 4.12(c)
and (d), which correspond to the displacement of the europium atom or of an oxygen atom
within the europium plane, show drift forces which are already in the µHtr/aB-regime. Since
we established this regime as the numerical precision which we can achieve with our for-
malism, it is reasonable that the application of further Levels does not result in the clear
ordering of the Levels which we encountered so far. On the other hand, the ordering is
present in Figs. 4.12(a) and (b), where either the titanium atom is moved towards an oxygen
atom, or an oxygen atom is moved out of the europium plane towards the titanium atom.
There, the angular-momentum cutoff necessary for a converged calculation is reduced from
lmax = 12 at Levels 0 and 1 to lmax = 10 at Level 3.
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4.7. Computational results

4.7.3. Computation time

In this section, we comment on the computational overhead generated by applying the
higher Levels of our force formalism. Since the calculation of the atomic forces is done
after the electronic density is determined self-consistently, we compare in table 4.7 the time
of a single force iteration, i.e., an iteration with activated force calculations, to the averaged
time of a self-consistency iteration without computing the atomic force. In fact, we average
the latter over the number of self-consistency steps required to achieve self-consistency,
whereas the time of a force iteration is averaged over two iterations. The time of the force
calculation is measured for each of the different force Levels. We present the increase
in computation time due to the different force Levels as a relative increase compared to
a single self-consistency iteration. The percentages of the Levels are additive, i.e., the
computation time of each Level increases by the percentage given in the table plus the
percentage of each of the previous Levels. Each system is set up according to the default
settings presented in table 4.1.

System Comp. time Level 0 Level 1 Level 2 Level 3

AlI 61.7 s +6.0% +51.3% +1.3% +4.1%
AlII 243.5 s +5.0% +82.6% +0.7% +3.4%
MgO; [Ne] in core 124.3 s +15.2% +3.4% −0.9% +0.3%
MgO; [He] in core 129.2 s +20.5% +2.7% +1.2% +0.1%
Rel. increase 3.9% 8.8% 8.1% 9.8% 9.7%
GaAs 68.0 s +15.9% +4.3% +1.8% −0.1%

EuTiO3; 28.81 a
−1
B 825.7 s +11.2% +16.7% +5.8% +1.4%

EuTiO3; 19.21 a
−1
B 746.0 s +12.8% +5.3% +6.5% +0.8%

VO2 6923.8 s +10.1% +2.5% +3.5% +0.8%
VO2; DFT+U 7023.7 s +7.3% +5.0% +3.3% −1.0%

Table 4.7.: Computational overhead for computing the atomic force at the different force
Levels for all setups. The percentages are given with respect to the average
time of a single step of the self-consistency cycle listed in the column titled
’Comp. time’. The calculations were performed on a single Intel Xeon CPU
X5670 @ 2.93 Ghz.

From our refinements, in general Level 1 is the most expensive one, whereas Level 2

and Level 3 in total are about as expensive as Level 1, at most, while usually contributing
less to the computation time.
For both Al setups and the EuTiO3 setup at an expansion cutoff of Gdop

max = 28.81 a−1
B for the

electronic density and the potential, the time required for Level 1 exceeds that needed by
Level 0. These systems have in common that the Gdop

max-cutoff is set to six times the plane-
wave cutoff Gmax. Level 3 requires a high Gdop

max-cutoff, because the exchange-correlation
potential and the xc energy density are non-linear in the electronic density. Therefore, their
Fourier expansion contains in principle contributions in all G-channels. In a regular integral
over the unit cell, which involves the multiplication of the xc density or potential with the
electronic density, the Fourier expansion can be restricted to the regular cutoff for Gdop

max

due to the orthogonality of the plane waves. In a surface integral, this argument cannot be
used.
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4. Forces within the FLAPW method

For the other systems presented, the Gdop
max-cutoff is four times Gmax at most. In order to

demonstrate that the drastic increase in computation time at Level 1 for aluminum and
europium titanate stems from the choice of a large Gdop

max, we also provide the computation
time of a EuTiO3 calculation where the setup deviates from table 4.1 only by a reduced
cutoff value of Gdop

max to 19.21 a−1
B , which is four times the plane-wave cutoff. We see that

the increase in computation time is reduced by a factor of three from 16.7% to 5.3%.
For MgO, the computation time is given for both sets of calculations: the one where the
Mg 2s and 2p states are treated as core states and the one where they are lifted into the
valence window by using LOs, which increases the LAPW basis set size. We also include
the relative increase in computation time between both setups for each Level. In the LO
case, each iteration of the density convergence step is more expensive by 3.9% of the time an
average self-consistency step takes when the Mg 2s and 2p states are treated as core states.
When atomic forces are calculated, the calculation using LOs takes close to 10% more time.
Interestingly, the calculation of Level 2 in the case where no LOs are used decreases the
computation time. Since Level 2 replaces the calculation of the kinetic-energy surface-term
as implemented at Level 0 and Level 1 instead of adding a new term on top of it, it is
plausible that we gain performance in some cases.
Level 3 on the other hand does add new code to calculate the remaining surface terms
from Eq. (4.9). We therefore conclude in the case of GaAs, that the additional time needed
for Level 3 is small enough to be hidden within small fluctuations in the performance
time between different calculations. The calculation of the contribution from Level 3 takes
0.25 s. For vanadium dioxide with U = 4 eV in the distorted rutile configuration, this
contribution takes 7.70 s and also vanishes in the fluctuations of performance, as the total
calculation takes more than 7000 s.
Except for the cases of Al and EuTiO3 at an expansion cutoff of Gdop

max = 28.81 a−1
B for

the electronic density and the potential, the relative increase in computation time from
including Levels 1, 2, and 3 add up to similar values as the increase in computation time
from activating a Level 0 force calculation at most. Therefore, we conclude that our
force formalism at most doubles the additional time required for the calculation of atomic
forces compared to the calculation of a single self-consistency step, when a Gdop

max-cutoff
of about four times the plane-wave cutoff Gmax is employed. Since the atomic forces are
usually calculated after a self-consistent density is found, this increase is negligible, especially
compared to the gain of up to three orders of magnitude in the precision of the drift force.

4.8. Summary

The results presented in section 4.7 demonstrate the beneficial effect of the refined force
formalism on the calculation of atomic forces within the FLAPW method, which we derived
in sections 4.1 to 4.5. By comparing the force obtained by the analytical force formula
with the force calculated numerically as the derivative of the total energy with respect to
an atomic displacement, we realize that the force formalism is consistent only at Level 1

and beyond. This can be concluded explicitly from the systems MgO and GaAs, where the
force on one atom can be compared directly to the force on the other atom. At Level 0,
the forces are not the opposite of each other. Hence, the good agreement of some Level 0

curves to the numerical force is considered to be fortuitous. Furthermore, the deviation
of our calculated forces at higher Levels from the numerical force is in the same order of
magnitude as the deviation of Level 0 from the numerical force.
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4.8. Summary

The inclusion of the whole unit cell in the calculation of the force contribution stemming
from the core electrons by Level 1 is required to allow the angular-momentum convergence
of the drift force towards a value significantly closer to zero than the original implementation
suggested by Yu et al. [54]. This value is routinely found to be in the regime of µHtr/aB
per atom. Therefore, drift forces calculated at Level 1 with a high lmax cutoff are in much
better agreement to the acoustic sum rule. The reason for the drift-force offset has been
identified as the coretails of high lying core states, i.e., the part of a core state that is not
contained within its MT sphere. This can be concluded in particular from the MgO system,
where we have shown that the treatment of the leaking core states by local orbitals has a
similar effect on the drift force as Level 1. However, the LOs have to be included into the
calculation during each step of the calculation, also during the self-consistent determination
of the electronic density. In total, this makes the treatment of the core states with local
orbitals computationally expensive in contrast to the simple inclusion of Level 1. Consid-
ering the basis functions to be discontinuous leads to a proper evaluation of the kintic-energy
surface term in terms of an interstitial representation at Level 2. The consequent inclusion
of surface terms accounting for the slight discontinuities of the electronic density and the
potential at Level 3 gives rise to precise atomic forces and a vanishing drift force for a
reduced angular-momentum cutoff. For the systems presented in this thesis, the drift force
is converged to a precision of µHtr/aB per atom for a modest lmax = 12. Sometimes, even a
smaller cutoff value is sufficient. We conclude from our calculation of VO2 that the DFT+U
implementation in FLEUR according to Tran et al. [122] benefits in the same way from our
refined formalism as does the standard FLAPW force. In particular, we achieve converged
drift forces of the same precision, indicating that the DFT+U implementation of the atomic
forces does not lack further terms. Therefore, our force formalism is a robust scheme for
calculating reliable forces which is fairly tolerant to the user input.

Finally, the additional computation time needed for applying the higher Levels of our
force formalism is in general a fraction of the time a force calculation at Level 0 takes.
The additional computation time is only needed when the atomic forces are actually cal-
culated, which is after the self-consistent electronic density has been determined. Thus, in
the perspective of a complete calculation which includes the self-consistency cycle for the
electronic density and the force calculation, the additional computation time our formalism
requires is negligible. To further reduce the computation time, it might be reasonable to
include only Level 2 into the calculation of the atomic forces. This allows to reduce the
Gdop

max-cutoff if the angular-momentum cutoff is increased.

In total, we have presented in this chapter a robust algorithm for calculating precise atomic
forces within the FLAPW method which produces drift forces in the regime of µHtr/aB per
atom. By employing this algorithm, the muffin-tin radius can be chosen more flexible, since
the part of the core states which is lost from the MT sphere is properly taken into account
for the force calculation. Furthermore, by taking into account the slight discontinuities of
wave functions, density, and potential at the MT sphere boundary, the presented scheme
produces reliable results at different MT sphere radii.
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5. Phonons in the finite-displacement

approach

Now that we have solidified our understanding of the atomic forces within the FLAPW
method in the previous chapter, we want to use the atomic force to calculate the phonon
spectrum.
A phononic excitation is a collective displacement of the atomic nuclei of a solid, meaning
that they perform vibrations around their equilibrium positions. Different displacement pat-
terns are possible, which define the phonon modes. These modes can be excited by inserting
energy into the solid. The quantum of this excitation is called a phonon. Experimentally,
phonon spectra can be measured for example by inelastic neutron scattering [1–3], Raman
spectroscopy [4–6], infrared absorption [7–9], and x-ray diffraction [10–12].
Phonons are also excited by thermal energy and represent therefore and important contrib-
utor to the specific heat of a material. This connection between thermal energy and lattice
vibrations directly manifests in the phenomena of thermal expansion and heat conduction.
Furthermore, the coupling between phonons and electrons can lead to superconductivity or
alters the resistivity of metals, for example.

Phenomenologically, the restoring force on an atom displaced from its ideal position in
the crystal is a measure of how tightly it is clamped to its position. If only a small amount of
force is required to displace the atomic nucleus, a mode containing this displacement will be
easy to excite. Generally, the congregation of information on how easy it is to move atoms
in specific directions yields the information needed to determine which phonon modes are
available.

In this chapter, we will introduce the force-constant matrix (FCM) and the dynamical
matrix (DM) as well as their properties. A set of prototype calculations will be presented
to check the fulfillment of these properties and to provide a stock of data to which more
elaborate methods of calculating phonon spectra can be compared. Such comparisons will
be subject of studies subsequent to this doctoral thesis.

Parts of this chapter are already published in Ref. [63].

5.1. The force-constant matrix

We assume a system where all atoms α in all unit cells R are displaced in direction i by
uαRi from their equilibrium positions. The total energy E of this perturbed system as
compared to the total energy E0 of the system in equilibrium is then given in the harmonic
approximation by the Taylor expansion to second order around the optimal positions,

E = E0 +
1

2

∑

αRi

∑

βR′j

ΦαRi,βR′juαRiuβR′j . (5.1)
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5. Phonons in the finite-displacement approach

There is no linear term in the displacements due to the equilibrium condition which states
that the forces on the atoms - being exactly what would appear as the linear term - vanish.
This equation introduces the elements of the force-constant matrix

ΦαRi,βR′j =
∂2E

∂uαRi∂uβR′j
=

∂2E0

∂ταRi∂τβR′j
(5.2)

as the second derivative of the total energy with respect to two atomic displacements, or
in terms of the Taylor expansion as the second derivative of the equilibrium total energy
with respect to two atomic positions, since in the perturbed system, the atomic positions
are given by ταR + uαR instead of just ταR. As long as one operates within the harmonic
regime, the force-constant matrix can be expressed by the force matrix FαRi,βR′j , whose
elements are the force components acting on atom α of unit cell R along direction i due to
a displacement of atom β in unit cell R′ along direction j. In this regime, the connection
between the force matrix and the force-constant matrix is given by the difference quotient
with respect to the unperturbed system, in which no force or displacement occurs:

ΦαRi,βR′j = −FαRi,βR′j − 0

uβR′j − 0
= −FαRi,βR′j

uβR′j
(5.3)

If the displacements are outside of the harmonic regime, the force contains significant an-
harmonic contributions, which are inherited by the FCM as calculated in Eq. (5.3).

The force-constant matrix is tightly entwined with the dynamical matrix by a Fourier
transform as will be demonstrated in the next section. The DM provides the amplitudes
and displacement patterns of the phonons. However, this connection calls upon us to analyze
Eq (5.3) in more detail:
First of all, Eq. (5.3) suggests that the second order derivative of the total energy that is
the FCM is obtained from an analytical first order derivative to calculate the atomic forces
as presented in chapter 4, followed by a numerical derivative represented by the difference
quotient. This is the core of the finite-displacement (FD) method, which requires to set up
a number of displacements and to calculate the force matrix from it. In its purest form,
each atom has to be displaced separately in each of the three spatial directions. In practice
however, one can exploit the lattice symmetry to reduce the number of analytic derivatives
that have to be performed, as we will discuss in more detail in section 5.3. Differentiation
however roughens, numerical differentiation even more so, hence it is sensitive to numerical
noise in the quantity to be differentiated. Therefore, it is important to have access to
accurate forces.
Moreover, R and R′ refer to possibly different images of the unit cell. If we naively set up
a system and displace one atom from its equilibrium position, we simultaneously displace
all of its periodic images by the same amount. Also we would only obtain the force on the
atom inside the same unit cell. Therefore, the forces we calculate would not fit to the force
(constant) matrix as we defined it. To mitigate this deficiency, instead of the primitive unit
cell a supercell needs to be set up. A supercell is an integer repetition of the primitive unit
cell in each direction, so it contains different images of the primitive unit cell, as illustrated
in Fig. 5.1. For example, if an atom is displaced in a 2× 2× 2 supercell, where each integer
refers to the number of repetitions of the primitive cell in each direction, its first image
in particular is not also displaced, because it is part of the supercell setup, but its second
image and all other even images are. Similarly, in a supercell that is 3 × 3 × 3 times the
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Figure 5.1.: (a) 4× 4 supercell and force decay radius with respect to the distance from the
atom displaced. (b) 4×1 supercells with commensurable phonon modes. × and
◦ in the figures denote atomic positions of different atom types.

primitive cell, the displacement of an atom would not occur at its first or second true image,
but at its third and every further third image, and so on. It is sensible to assume that the
force on an atom declines with increasing distance from the atom that is displaced from the
equilibrium position. A good choice for the supercell size in terms of approximating the
correct FCM thus would be to chose it so large that it includes the first atoms of each type
on which the forces due to a displacement have decayed below some small target margin.
Fig. 5.1(a) illustrates this concept.
Unfortunately, advancing to a supercell is a direct modification of the system size, in which
electronic structure calculations typically scale to the cube. This renders the calculation of
forces in a large supercell to be a demanding task. On the other hand, we can interpret
the interplay between forces and supercells in a specific way: a displacement in a 1× 1× 1
supercell (which is equivalent to the primitive unit cell) corresponds to displacing the whole
sublattice of the atom which is displaced with respect to all other sublattices. Therefore,
such a calculation gives information on vibrations of infinite wavelength, often called the
long-wavelength limit in literature. A 2× 2 × 2 supercell allows to decouple an atom from
its first image and thus enables information on vibrations where every second atom of a
kind vibrates in phase while the direct neighbors of the same kind can vibrate opposite to
each other. In this spirit, a given supercell can produce information on those vibrational
modes that ’fit’ into the supercell, i.e., which can be expressed as a periodic object with
respect to the images of the whole supercell. Such phonons are called commensurable with
the supercell. Fig. 5.1(b) exemplifies phonons commensurable with a 4× 1 supercell.
With the supercell (sc) established, the force on an atom in the unit cell addressed by R′

through the displacement of the atom of the same type in unit cell R is accessible within the
same setup. For any system in equilibrium it holds that if every atom β in each unit cell R′

is displaced by the same amount uβR′j = δjku in the same direction k from its equilibrium
position, the force on each atom has to vanish separately:

0 = FαRi = −
sc
∑

βR′j

ΦαRi,βR′jδjku = −u
sc
∑

βR′

ΦαRi,βR′k (5.4)

This is the case because the total energy is translational invariant under a rigid shift of the
system.
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5. Phonons in the finite-displacement approach

Furthermore, the acoustic sum rule, Eq. (4.2), holds, regardless of whether a single unit
cell or a supercell is considered. Hence it is a theoretical prescription that when all atoms
are displaced by a small amount uβR′j , for each i = x, y, and z it has to be

0 =
∑

αR

FαRi = −
sc
∑

αR

sc
∑

βR′j

ΦαRi,βR′juβR′j = −
sc
∑

βR′j

uβR′j

sc
∑

αR

ΦαRi,βR′j . (5.5)

As a last remark on the force-constant matrix, we point out that it has to be symmetric by
Young’s theorem, since the order of differentiation of the total energy with respect to the
displacements uαRi and uβR′j in Eq. (5.2) is arbitrary. Therefore, Eq. (5.5) follows from
Eq. (5.4). Consequently, three columns of the FCM (one for each choice of i) are linearly
dependent from the other columns, leading to a threefold singular matrix. We will elaborate
on the consequences of this prescription in more detail in the next section.

5.2. The dynamical matrix

As was motivated in the introduction of this chapter, the force-constant matrix contains
information on how tightly bound an atom is at its equilibrium position with respect to
displacements in arbitrary directions. Also, we learned during the introduction of the FCM
that when applying the supercell approach, specific phonons can be realized which are
commensurable with the supercell lattice. This we can use to formulate the dynamical
matrix from the classical equation of motion F = mẍ for the atomic nuclei,

M̃αüαRi = −
sc
∑

βR′j

ΦαRi,βR′juβR′j , (5.6)

where M̃α is the mass of atom α relative to the electron mass. By the harmonic ansatz

uαRi =
1

√

M̃α

Qαie
i[q·(τα+R)−ω(q)t] (5.7)

with the polarization vector Qα of atom α modulated with position and time by the phase
factor, the modulation frequency ω(q), and the reciprocal lattice vector q defining the wave
length of the phonon, the equation of motion transforms to

0 =
∑

βj

[

Dαi,βj(q)− δαβδijω
2(q)

]

Qβj . (5.8)

Herein, the dynamical matrix Dαi,βj(q) at wave vector q is related to the discrete Fourier
transform of the FCM by

Dαi,βj(q) =
eiq·(τβ−τα)

√

M̃αM̃β

sc
∑

R

ΦαRi,β0je
−iq·R. (5.9)

We made use of the translational symmetry of the lattice, by which the force on atom α in
unit cell R due to a displacement of atom β in unit cell R′ is the same as the force on atom
α in unit cell R−R′ due to the same displacement of atom β in unit cell 0. Therefore, from
the force-constant matrix we can easily construct the dynamical matrix at a commensurable
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5.2. The dynamical matrix

wave vector q, whose eigenvectors and eigenvalues are the polarization of the atoms and the
squares of the phonon energies at q. The dimension of this matrix is 3Nat × 3Nat. The
phonon band structure at intermediate wave vectors q is approximated by an interpolation
between the q-vectors which are commensurable with the supercell. The quality of this
approximation is dependent on the supercell size, because larger supercells allow for a finer
sampling of the Brillouin zone and thus for more interpolation points. The approximation
is done by inserting a wave vector q into Eq. (5.9) which is not commensurable with the
supercell. For an incommensurable wave vector, the FCM is only approximate if it is not
constructed from a supercell large enough that the forces induced by moving one atom are
declined over its length.

The dynamical matrix is Hermitian due to the symmetry of the force-constant matrix and
the translational symmetry of the lattice:

Dβj,αi(q) =
eiq·(τα−τβ)

√

M̃αM̃β

sc
∑

R

ΦβRj,α0ie
−iq·R =

e−iq·(τβ−τα)

√

M̃αM̃β

sc
∑

R

Φβ0j,α−Rie
−iq·R

=
e−iq·(τβ−τα)

√

M̃αM̃β

sc
∑

R

ΦαRi,β0je
iq·R = D∗

αi,βj(q) (5.10)

Thus, the eigenvalues ω2(q) are real quantities, even though they do not need to be non-
negative. If they are, the corresponding phonon energies are imaginary and indicate an
instability of the system. In nature, such an instability would have led to a phase tran-
sition of the system into a geometry that is more stable. As such, imaginary modes are
only accessible by electronic structure calculations. However, under certain conditions like
increasing or decreasing pressure, the softening of a phonon mode can be observed in ex-
periment [124, 125]. In this case, the phonon band structure deforms such that the value of
a band at a specific phonon wavelength q becomes smaller and smaller.
To elaborate on this concept in case of an electronic structure calculation, we know for
example from the textbook study of the 1D diatomic chain that the acoustic mode at Γ
corresponds to a rigid shift of the unit cell, i.e., both atoms vibrate by the same amount
in the same direction, while the optic mode advocates a vibration of the two atom types
against each other. In the same sense, an imaginary optical mode at Γ in the phonon band
structure of a crystal setup suggests that the setup of the calculation was only a metastable
equilibrium and that a setup where the relative position of the atoms to each other is dif-
ferent is more stable.

In the last section we discussed that the force-constant matrix exhibits a threefold de-
generate eigenvalue of zero due to Eqs. (5.5) and (5.4). A rigid shift of the whole crystal
in any direction in space does not alter the total energy and hence the forces. Such a rigid
shift corresponds to a phonon of infinite wavelength. The invariance of the total energy
translates to the necessity that three of the eigenvalues of the dynamical matrix are zero at
the Γ-point q = 0. The phonon modes fulfilling this condition are called the acoustic modes
and their slope at the Brillouin-zone center determines the speed of sound in the material,

vsound =
∂ω(q)

∂q

∣

∣

∣

∣

q→0

. (5.11)
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5. Phonons in the finite-displacement approach

It is clear that a non-vanishing drift force (5.5) implies that the translational invariance
leading to Eq. (5.4) is artificially violated. Therefore, the constituents of the force-constant
matrix are not guaranteed to be linearly dependent and the dynamical matrix may show
eigenvalues of the acoustic modes that do not vanish at Γ. There are different approaches to
deal with this issue: The drift force usually is distributed over and subtracted from the force
acting on the atoms, either uniformly or weighted by the mass of the nucleus to enforce the
acoustic sum rule. We believe however that in doing so one introduces an uncontrollable
error to the FCM and hence to the DM. In our opinion, the most rigorous way to construct
the FCM is by more accurate forces, for which we provided a recipe in chapter 4.
If there is more than one atom in the primitive unit cell, the phonon dispersion will consist
of 3Nat−3 additional optical phonon modes which are of finite value at the Γ-point. Because
photons are massless, their dispersion is very steep, infact much steeper than the dispersion
of the acoustic phonons near the Γ-point. However, as the optical phonons have finite values
there at Γ, photons can be used to excite these.

5.3. Exploiting lattice symmetry for the FCM

The basic recipe for obtaining the force-constant matrix ΦαRi,βR′j in the finite-displacement
approach is to separately displace each atom β in each image R′ of the primitive unit cell
in each direction j by uβR′j , to compute the forces FαRi,βR′j on every atom and to divide
them by the amplitude of the displacement. The symmetry of the lattice allows to reduce
the number of calculations needed to be performed, as was presented by Kresse et al. [126]
and implemented in the PHON-code by Alfè [58].
We already made use of the translational symmetry of the crystal, by which the force matrix
and thus the force-constant matrix only depends on the relative position of the different
primitive unit cells within the supercell, ΦαRi,βR′j = ΦαR−R′i,β0j . Therefore, it is sufficient
to displace the atoms β within a representative primitive unit cell 0 of the supercell.
Furthermore, if β and β′ within the representative unit cell of the equilibrium supercell
are related by symmetry, i.e., if a transformation B exists that maps β′ onto β and is a
symmetry operation of the crystal, the force-constant matrix generated by displacing β′ can
be constructed from the one where β was displaced by

ΦαR,β′0 = BΦB(αR),β0B
−1, (5.12)

where ΦαR,β0 is the 3×3 part of the force-constant matrix subsuming the Cartesian compo-
nents of the entries which belong to atom α in unit cell R and atom β in the representative
unit cell. B(αR) denotes the image of atom α of unit cell R under the transformation B.
These simplifications do concern the symmetry of the equilibrium lattice. It might also be
useful to consider the symmetry of the system in which an atom is displaced. While the
force-constant matrix is constructed from displacements along the Cartesian axes, it is pos-
sible that a displacement along an axis which is not one of the Cartesian axes keeps intact
more symmetries. Such a setup takes less time to compute. It is therefore favorable. If the
atoms are displaced by uβ0µ(β) along the three linearly independent directions µ(β), which
may be chosen differently for each atom β, the forces from a Cartesian displacement can be
reconstructed using

F αR,β0j =
∑

µ(β)

(

A(β)−1
)

jµ(β)
F̃ αR,β0µ(β) (5.13)
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with

A(β) =

(

uβ0µ(β)=1

|uβ0µ(β)=1|
,
uβ0µ(β)=2

|uβ0µ(β)=2|
,
uβ0µ(β)=3

|uβ0µ(β)=3|

)

(5.14)

relating between Cartesian coordinates and the ones chosen for the displacement of β.
F̃ αR,β0µ(β) are the forces acting on atom α in unit cell R expressed in Cartesian coor-
dinates due to the non-Cartesian set of displacements uβ0µ(β). While the non-Cartesian
displacements need to be linearly independent, they do not need to be orthogonal. There-
fore, the formula above is using the inverse of A(β) and not its transposed.
Finally, if two linearly independent displacements uβ0µ=1 and uβ0µ=2 are related by a point
group symmetry operation U , also the forces from both displacements can be related to each
other:

F̃ αR,β0µ=2 = B(U)F̃B(U)−1(αR),β0µ=1 (5.15)

The matrix B(U) denotes the transformation matrix going along with the symmetry oper-
ation U and B(U)−1(αR) is the atom which is mapped to α in R by U . µ labels any kind
of coordinates here, including Cartesian ones.

Still, since Eq. (5.3) is only an approximation in the case of small displacements within
the harmonic regime, the force-constant matrix obtained this way ususally violates the
prescription of being invariant under the point group symmetry operations belonging to the
crystal lattice. This is the case because anharmonicities contribute to its entries. In order
to mitigate the influence of these anharmonicities and to restore the invariance of the FCM,
it is averaged over all NPG point group symmetry operations U by

ΦαR,β0 =
1

NPG

∑

U

B(U)ΦB(U)(αR),β0B(U−1). (5.16)

Using all these techniques, the amount of displacements to construct the full FCM can
be reduced drastically. Then, the force-constant matrix is used to calculate the dynamical
matrix according to Eq. (5.9). Subsequently, the eigenenergies and displacement patterns
of the phonons are extracted from the DM.

5.4. The LO-TO splitting

If phonons are calculated at a finite wave vector q, the overall displacement pattern is such
that over certain length-scales or repetitions of what would have been the unperturbed unit
cell the displacements nearly average out. This is immediately clear for those q for which
a supercell configuration of the lattice exists to which they are commensurable. Then, the
average displacements for each atom are exactly zero. Even if the crystal is bound ionically,
there will be no macroscopic electric field in it. On the other hand, if q approaches zero,
the lengths at which the displacement patterns repeat increase until at q = 0 sublattices
are completely shifted against each other. Now, an ionically bound crystal produces a
macroscopic electric field, to which the atoms of the crystal also have to respond.
To provide a crude example, imagine the ionically bound magnesium oxide crystal in rocksalt
structure. Along 111-direction, planes of positively charged magnesium atoms alternate
with planes of negatively charged oxygen atoms. If we think of these planes as being
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homogeneously charged, moving the corresponding sublattices in any direction within the
two-dimensional subspace of these planes is the same energetically, but differs from moving
the planes towards each other. In the latter case, the polarization of the system is changed
and an electric field forms.
This corresponds to the splitting of the longitudinal optical (LO) modes from the transverse
optical (TO) modes and is not included into the dynamical matrix for q → 0 presented
here. The former modes propagate along the direction of the phonon momentum q → 0
while the latter modes are transverse to it. For q 6= 0, a splitting between the longitudinal
and transverse modes can typically be observed in the calculations, whereas in the long-
wavelength-limit a non-analytical (na) term

Dna
αi,βj = lim

q→0

1
√

M̃αM̃β

4π

Ω

(q ·Z∗
α)i(q ·Z∗

β)j

q · ǫ∞ · q (5.17)

has to be added to the dynamical matrix to properly account for the LO-TO splitting, which
results in an energy shift of the longitudinal optical mode. The value of the non-analytical
correction depends on the direction from which the Γ-point is approached [127]. Herein,
M̃α is the mass of the nucleus of atom α, Ω is the unit cell volume, and ǫ∞ is the static
dielectric tensor with the components

ǫ∞ij =
∂E0i
∂Ej

=
∂(Ei + 4πPi)

∂Ej
= δij + 4π

∂Pi

∂Ej
(5.18)

evaluated at equilibrium positions u(q = 0) = 0. The field E0 is the macroscopic electric
field and E is the screened field inducing the polarization P . The Born effective charge
tensor Z∗

α is a measure of how much the polarization of the system changes in a particular
direction i if atom α is displaced along direction j at vanishing electric field E = 0,

Z∗
α,ij = Ω

∂Pi

∂τα,j
. (5.19)

The non-analytical term is not included in the finite-displacement results shown later.

5.5. Computational results

In this section, we discuss the effect of our force formalism on the symmetry of the force-
constant matrix of EuTiO3 and provide phonon spectra for aluminum, magnesium oxide,
gallium arsenide, and europium titanate. The meaning of the different force Levels can be
found in chapter 4.5.

5.5.1. The FCM of EuTiO3

We discuss a part of the force matrix of EuTiO3 with respect to Levels 0 and 3 of our
force implementation. In table 5.1, we present in each line the forces in x-direction on every
atom in the system caused by a displacement in x-direction of the atom named in the first
column of the table. In all setups, the respective atom is displaced by 0.02244 aB.
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(a) Level 0

Eu O0 1
2

1
2

O 1
2 0

1
2

O 1
2

1
2 0

Ti Drift

Eu000 −274.4 200.3 −274.6 −274.6 626.7 3.4
O0 1

2
1
2

199.0 −3208.7 1065.5 1065.5 983.0 104.3

O 1
2 0

1
2

−273.0 1067.0 −832.5 −193.4 219.5 −12.4

O 1
2

1
2 0

−273.0 1067.0 −194.2 −831.8 219.6 −12.4

Ti 1
2

1
2

1
2

621.3 879.8 233.0 233.0 −2050.1 −83.0

Total −0.1 5.4 −2.8 −1.3 −1.3 -
Maximal/average deviation from symmetry: 103.2/14.39

(b) Level 3

Eu O0 1
2

1
2

O 1
2 0

1
2

O 1
2

1
2 0

Ti Drift

Eu000 −272.2 200.3 −274.6 −274.6 619.9 −1.2
O0 1

2
1
2

199.2 −3208.7 1065.5 1065.5 876.9 −1.6

O 1
2 0

1
2

−274.3 1067.0 −832.5 −193.4 232.2 −1.0

O 1
2

1
2 0

−274.3 1067.0 −194.2 −831.7 232.3 −0.9

Ti 1
2

1
2

1
2

621.3 879.7 233.0 233.0 −1968.0 −1.0

Total −0.3 5.3 −2.8 −1.2 −6.7 -
Maximal/average deviation from symmetry: 2.8/1.15

Table 5.1.: x-component of the force matrix of EuTiO3 in µHtr/aB. (a) corresponds to
forces obtained at Level 0. (b) corresponds to forces obtained at Level 3.
The first column of a row lists the atom which has been displaced by 0.02244 aB
along x-direction. The component of the force along the same direction is then
shown for each atom in the unit cell. In the last column (row), the force values
of each row (column) are summed up.

We observe that at Level 0, the original force formalism of Yu et al. [54] corresponding
to table 5.1(a), a drift force of up to 0.1 mHtr/aB persists. However, each row, which rep-
resents a different calculation, adds up already to the margin of µHtr/aB per atom. This
demonstrates the systematic error present in each calculation at Level 0, which is due to
the neglect of the coretails. Also, this is an indicator that µHtr/aB per atom is indeed the
precision we can hope to achieve.
Since the applied displacements are of the same amplitude, the x-component of the force-
constant matrix is related to the force matrix of table 5.1(a) by a simple factor. Therefore,
the data shown in the table has to be symmetric, because the force-constant matrix is a
second derivative of the total energy according to Eq. (5.2). The maximal deviation from
the symmetry is given by the titanium row and column. The force on titanium caused by a
displacement of the oxygen atom towards it and the force on the oxygen atom towards which
the titanium is displaced deviate from each other by 103.2 µHtr/aB. This is reasonable,
because the coretail from titanium is affected most strongly by the atoms nearest neighbor,
which is the oxygen octaeder in the equilibrium configuration or a particular oxygen atom
when a displacement is applied.
Application of our refined force formalism at Level 3 results in table 5.1(b). We immedi-
ately see the decrease in the drift force which is in agreement to our results from chapter 4.7.
Also, we observe that the effect on the oxygen atoms is negligible, while the forces on eu-
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ropium exhibit a small correction. Most importantly, though, the forces on the titanium
atom are altered such that not only reliable drift forces are produced, but also that the max-
imal deviation from symmetry in the force matrix is reduced by two orders of magnitude to
2.8 µHtr/aB.
In conclusion, the refined force formalism leads to a force-constant matrix which exhibits
symmetry to a precision of µHtr/aB per atom. The effect on the phonon spectrum will be
analyzed in the next section.

5.5.2. Phonon spectra

We now make use of the atomic force computed with FLEUR to calculate the phonon spectra
of Al, MgO, GaAs, and EuTiO3 employing the finite-displacement method as realized in
the PHON code by Alfè [58]. For calculating the phonon spectra, all systems are set up in
a 2× 2× 2 unit cell, i.e., the primitive unit cells are repeated once in x, y, and z direction.
For Al, this corresponds to the AlII-setup. All other numerical parameters are set according
to table 4.1. The Brillouin zone of the supercell is sampled by a 4× 4× 4 grid.
Depending on the symmetry of the system, the PHON code suggests a minimal set of
atomic displacements as was discussed in section 5.3. For each of the displaced con-
figurations, a FLEUR calculation yields the atomic forces from which the force-constant
matrix is constructed by the PHON code. The resulting phonon spectra are shown in
Figs. 5.2, 5.4, 5.3, and 5.5. In addition, we include results obtained at the different force
Levels we summarized in chapter 4.5. In this context, black lines denote Level 0, and
red lines denote Level 3. Level 1 and Level 2 coincide with Level 3 on the scale of
the graphs and are thus omitted. When available, experimental data is provided as blue
asterisks.

The phonon spectrum of Al (s. Fig. 5.2) shows 3 phonon branches: one longitudinal and
two transversal acoustic modes. Depending on the Brillouin-zone path the two transversal
modes are degenerate or not. Around the Γ point all three branches exhibit a linear behavior,
where the slope of the longitudinal acoustic mode corresponds to the speed of sound in the
lattice. The effect of the different force Levels on the phonon dispersion of Al is negligibly
small, which agrees with our observation that the forces of Al are mostly unaffected by the
higher force Levels. Note that with a 2× 2× 2 supercell only the high-symmetry points Γ,
X, and L are commensurable with the supercell, i.e., the corresponding phonon eigenmodes
exhibit a wavelength that exactly fits in the supercell. This has the consequence that the
phonon frequencies at these points are directly accessible by the finite-displacement method.
At all other points, the spectrum is obtained from a Fourier interpolation. In order to assess
the quality of the interpolation and to demonstrate the effect of the supercell size on the
phonon spectrum, Fig. 5.2 also shows the phonon spectrum (black dotted line) resulting
from a 4× 4× 4 supercell. At the same time the k-point mesh of the underlying electronic
structure calculation has been reduced to 2× 2× 2 to guarantee an equivalent sampling of
the Brillouin zone. With this larger supercell, also the phonon energies in the middle of the
ΓX, X(K)Γ, and ΓL path become accessible without interpolation. The effect on the phonon
spectrum is most prominently visible at the lowest phonon branch on the X(K)Γ path. The
kink in the middle of the path is produced by the intermediate point, which is now com-
mensurable with the supercell. In comparison to experiment (blue asterisks) [128], we find
a good qualitative agreement. However, the computed phonon energies tend to underesti-
mate the experimental measured one. This is in accordance with the general observation
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Figure 5.2.: Phonon spectrum of Al obtained from a 2× 2× 2 supercell at Level 3 of the
force formalism (red solid line) and from a 4×4×4 supercell at Level 3 (black
dashed line). In both cases, Level 3 does not deviate from the other Levels.
Blue asterisks mark experimental data.

that LDA phonon frequencies are usually too soft at the experimental lattice constant [129].
A better agreement with the experimental phonon spectrum is typically achieved if the
calculation is performed at the theoretically (LDA) predicted equilibrium lattice constant.
The latter is usually smaller than the experimental one, which works against the too soft
phonon frequencies at the experimental lattice constant.

In contrast to Al, the phonon spectrum of MgO (s. Fig. 5.3) exhibits 6 branches: 3 acous-
tic and 3 optical modes. The optical branches correspond to a movement of the atoms
against each other. A finite, non-zero energy is required to excite these phonons for every
q, in particular for the Γ point. At this point, all 3 optical modes are degenerate in our
calculation, which is in obvious contraction to the experimental data (taken from Refs. [130–
132]), where one optical phonon band is energetically clearly separated from the rest. This
band corresponds to the longitudinal optical mode, which is related to a collective move-
ment of the atoms causing a polarization of the ionically bound MgO. In contrast to the
transversal ones, this mode requires (significantly) more energy to be excited. As discussed
in section 5.4, one has to go beyond the finite-displacement method to properly account for
the so-called LO-TO splitting. Hence, we cannot expect that experiment and calculation
agree at and in a region around the Γ point, since the interpolation procedure assumes the
optical bands to be threefold degenerate at Γ. By using larger and larger supercells for
calculating the phonon band structure, the band structure in the vicinity of the Γ point can
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Figure 5.3.: Phonon spectrum of MgO obtained from a 2×2×2 supercell at Level 0 (black
solid line) and at Level 3 (red solid line). Respective data from a 4 × 4 × 4
supercell calculation uses dashed lines. Blue asterisks mark experimental data.

be improved, but not at Γ. We demonstrate this behavior by including the phonon band
structure resulting from a 4× 4× 4 supercell calculation (black and red dotted lines). The
k-point mesh of this calculation has been reduced to a 2×2×2 mesh to guarantee an equiv-
alent sampling of the Brillouin zone. In addition to the raise in energy for the longitudinal
optical mode in the middle of the high-symmetry points, we see a splitting of the acoustic
and optical bands in the middle of the X(K)Γ path as well as a kink in the lowest acoustic
band on the same path. Both features result from the additional point in the middle of the
X(K)Γ path at which the phonon frequencies can be calculated exactly with a 4 × 4 × 4
supercell.
For both supercell sizes, the acoustic phonon branches of MgO are in reasonable agreement
with experiment for both supercell sizes. In general, a slight underestimation of the acoustic
and optical phonon energies can be observed, which is again in accordance with the general
observation that LDA leads to too soft phonons at the experimental lattice constant.
The dispersion curves belonging to Level 1 and the higher Levels (represented by the red
line of Level 3, which are indistinguishable from Level 1 and 2) show a small deviation
from Level 0 for both setups. This is expected, because the force formalism at Level 1

adjusts the force acting on the Mg atom, while it keeps the force acting on O unchanged.

The phonon spectrum of GaAs (s. Fig. 5.4) consists of 6 branches as well, from which
3 are acoustic modes while 3 are optical modes. We observe comparably large deviations
between Level 0 and Levels 1 to 3 mainly in the optical bands, which agrees to our results
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Figure 5.4.: Phonon spectrum of GaAs obtained from a 2×2×2 supercell at Level 0 (black
solid line) and at Level 3 (red solid line). Blue asterisks mark experimental
data.

from chapter 4.7. Level 1 changes the force acting on As by about 3% as compared to
Level 0. If the atoms vibrate out of phase, i.e., if an optical mode is excited, the amount
of the coretail of As entering the Ga muffin-tin sphere changes during the vibration. Apart
from the LO-TO splitting at Γ (s. discussion of MgO), our calculation is in good agreement
with the experimental data of Ref. [133]. The features of the experimental band structure
are well reproduced also in between the high-symmetry points Γ, X, and L, at which the
phonon frequencies are directly accessible via the finite-displacement method due to their
commensurability with the 2 × 2 × 2 supercell used for the calculation. Quantitatively, a
slight underestimation of the experimental phonon energies can be observed again.

Having five atoms in the chemical unit cell, EuTiO3 has a phonon band structure which
contains 15 branches (3 acoustic modes and 12 optical modes). The phonon dispersion
exhibits soft modes at the high-symmetry points M and R and on the high-symmetry line
between these points, which reveals a structural instability that breaks the translational
symmetry of the primitive unit cell. Interestingly, we observe negative phonon frequencies
at the Γ, R, and M point of the BZ. These negative frequencies occur mathematically if the
dynamical matrix, which is a Hermitian matrix, has negative eigenvalues. As the eigenvalues
of the dynamical matrix correspond to the phonon frequencies squared, a negative value is
related to an imaginary frequency, which is then depicted as a negative energy in the phonon
band structure. Physically these imaginary frequencies indicate a structural instability of
the system and are called soft modes. The soft modes at the high-symmetry points M and
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Figure 5.5.: Phonon spectrum of EuTiO3 obtained from a 2 × 2 × 2 supercell at Level 0

(black solid line) and at Level 3 (red solid line). The Levels are nearly
indistinguishable.

R and on the high-symmetry line between these points reveal a structural instability that
breaks the translational symmetry of the primitive unit cell. The new distorted geometric
structure exhibits a translational symmetry that is restored in the 2× 2× 2 super cell. The
eigenvectors of the soft modes reveal that these point at configurations where the oxygen
octahedra are tilted and rotated around the titanium atom within the europium planes.
In addition, a threefold degenerate soft mode is present at the Γ point, albeit not as pro-
nounced as those at M and R. This soft mode consists of optical bands, which indicate
a structural instability where the atoms of the primitive unit cell are shifted against each
other but which keeps the translational symmetry of the primitive unit cell intact. Overall,
the perfect cubic perovskite structure is not the ground state of EuTiO3.
The phonon spectrum shows small deviations between the different force Levels.
Our observations agree quite well with those of Rushchanskii et al. [134]. Rushchanskii et al.
performed a detailed study on europium titanate using the vienna ab initio simulation pack-
age (VASP) and the projector augmented-wave method (PAW) [135–138]. They employed
a GGA xc functional, a Hubbard-U of U = 5.7 eV and a Hund’s exchange of J = 1.0 eV.
Despite these differences, the qualitative results are very similar: they found soft phonon
modes at M and R as well as a soft mode at Γ at a lattice constant of a0 = 3.95 Å =̂ 7.47 aB.
By reducing the lattice constant to a0 = 3.90 Å =̂ 7.37 aB the instability at Γ vanishes.
As we already mentioned, LDA is usually considered to overbind atoms and thus to under-
estimate the lattice constant. Therefore, we assume that our LDA calculation is still in the
regime where the instability at Γ can be expected.
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While we observe deviations between the phonon spectra obtained from force constants
at different implementation Levels, these deviations are minor and do not result in a qual-
itatively different interpretation of the spectra. In conjunction with the improvement of the
force-constant matrix demonstrated in table 5.1, this is surprising. Instead of a homoge-
neous change of the force-constant matrix of EuTiO3, a particular column is affected by our
corrections, while the other rows are largely unchanged. Therefore, we would have expected
a more prominent change in the eigenvalues of the dynamical matrix. We assume that the
symmetry exploits and the final symmetrization of the force-constant matrix discussed in
section 5.3 reduces the impact of our refinement of the force formalism.
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and the FLAPW method

So far, we have employed the finite-displacement (FD) method to calculate phonon band
structures. This requires the setup of a supercell and only allows the exact computation
of phonons whose wave vector is commensurable with the supercell. While the FD method
can be used with any electronic structure code that can calculate reliable atomic forces and
in addition it incorporates anharmonic effects if the atomic displacements are outside of the
harmonic regime, the supercell setup increases the computation time of the underlying cal-
culations unfavorably. The need of a supercell makes phonon calculations at small q-vectors
computationally very expensive, nearly impossible.

A different approach to calculate phonon spectra is the usage of density functional per-
turbation theory (DFPT) [34, 36, 139]. In contrast to the FD approach, DFPT allows to
obtain the dynamical matrix (DM) at any wave vector q from computing a single unit cell
in equilibrium. There is no need for a supercell. In DFPT, the linear response of the system
due to a phonon of wave vector q is computed by applying perturbation theory. Since it
can be formulated variationally, the resulting scheme is very robust.

In this chapter, we first present the general theory of DFPT independent of the underlying
electronic structure formalism and irrespective of the applied perturbation. Then, we focus
on the FLAPW method and discuss Pulay and surface corrections that arise from the
properties of the LAPW basis and wave functions. We are interested in phonons, which
are specified by the eigenvectors and eigenvalues of the dynamical matrix. Since the DM is
related to a second-order derivative of the total energy by Eqs. (5.2) and (5.9), we restrict
ourselves to the second order in the responses. However, to keep this chapter as a general
introduction to DFPT within the FLAPW method, the application of the results of this
chapter to a phononic perturbation is presented in the next chapter.

6.1. Density functional perturbation theory

DFPT is the application of perturbation theory to the density functional formalism. Assume
a system described by a Hamiltonian Ĥ0 and a slightly different system Ĥ = Ĥ0+[Vext(r)−
V

(0)
ext (r)], where the potential difference is a small perturbation of the original system. We

will denote quantities belonging to the original unperturbed system with the label (0). In
case of phonons, this perturbation is induced by a collective displacement of the atomic
positions. Then, the external potential and all quantities X of the perturbed system can be
expressed in terms of a small parameter λ that scales the perturbation:

Vext(r) = V
(0)
ext (r) + λV

(1)
ext (r) +

1

2!
λ2V

(2)
ext (r) + . . . (6.1)
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X(λ) = X(0) + λX(1) +
1

2!
λ2X(2) + . . . (6.2)

For example, the expansion of the DFT total energy Etot, Eq. (2.14), reads

Etot,basic = E
(0)
tot,basic + λE

(1)
tot,basic +

λ2

2
E

(2)
tot,basic +O(λ3) (6.3)

with

E
(0)
tot,basic =

∑

i

f
(0)
i ǫ

(0)
i −

∫

ρ(0)(r)V
(0)
eff (r)d3r +

1

2

∫∫

ρ(0)(r)ρ(0)(r′)

|r − r′| d3r′d3r

+

∫

ρ(0)(r)V
(0)
ext (r)d

3r +

∫

ρ(0)(r)ε(0)xc [ρ
(0)](r)d3r + E

(0)
ii , (6.4)

E
(1)
tot,basic =

∑

i

f
(0)
i ǫ

(1)
i −

∫

ρ(1)(r)V
(0)
eff (r)d3r −

∫

ρ(0)(r)V
(1)
eff (r)d3r

+

∫

ρ(1)(r)

∫

ρ(0)(r′)

|r − r′|d
3r′d3r +

∫

ρ(1)(r)V
(0)
ext (r)d

3r

+

∫

ρ(0)(r)V
(1)
ext (r)d

3r +

∫

ρ(1)(r)µ(0)
xc [ρ

(0)](r)d3r + E
(1)
ii

=
∑

i

f
(0)
i ǫ

(1)
i −

∫

ρ(0)(r)V
(1)
eff (r)d3r +

∫

ρ(0)(r)V
(1)
ext (r)d

3r + E
(1)
ii , (6.5)

and

E
(2)
tot,basic =

∑

i

f
(0)
i ǫ

(2)
i −

∫

ρ(2)(r)V
(0)
eff (r)d3r − 2

∫

ρ(1)(r)V
(1)
eff (r)d3r

−
∫

ρ(0)(r)V
(2)
eff (r)d3r +

∫

ρ(2)(r)

∫

ρ(0)(r′)

|r − r′|d
3r′d3r

+

∫ ∫

ρ(1)(r)ρ(1)(r′)

|r − r′| d3r′d3r +

∫

ρ(2)(r)V
(0)
ext (r)d

3r

+ 2

∫

ρ(1)(r)V
(1)
ext (r)d

3r +

∫

ρ(0)(r)V
(2)
ext (r)d

3r

+

∫

ρ(2)(r)µ(0)
xc [ρ

(0)](r)d3r +

∫

ρ(1)(r)µ(1)
xc [ρ

(0)](r)d3r + E
(2)
ii

=
∑

i

f
(0)
i ǫ

(2)
i −

∫

ρ(1)(r)V
(1)
eff (r)d3r −

∫

ρ(0)(r)V
(2)
eff (r)d3r

+

∫

ρ(1)(r)V
(1)
ext (r)d

3r +

∫

ρ(0)(r)V
(2)
ext (r)d

3r + E
(2)
ii . (6.6)

Here, we made use of the fact that the occupation numbers do not contribute to the first-
order change in energy as discussed in chapter 3.11, which is specifically true for phonons of
non-vanishing q-vector in Refs. [34, 36]. We will mostly concentrate on q 6= 0. The energy

contributions E
(i)
ii denote the ith order change in the ion-ion energy part. For E

(1)
tot,basic,

we employed Eq. (2.13) to obtain µ
(0)
xc [ρ(0)](r) from ǫ

(0)
xc [ρ(0)](r) and the integrals explicitly

containing the first order density response ρ(1) cancel. Therefore, only the linear changes in
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6.1. Density functional perturbation theory

the eigenenergy ǫ
(1)
i , in the effective potential V

(1)
eff (r) and external potential V

(1)
ext (r), and

in the ion-ion energy E
(1)
ii have to be calculated. In the same manner, terms containing the

second-order density response ρ(2) in the formula for E
(2)
tot,basic vanish, such that in addition

ρ(1)(r), ǫ
(2)
i , V

(2)
eff (r), V

(2)
ext (r), and E

(2)
ii need to be determined. We use the label ’basic’ in

light of the modifications that will be introduced when we consider the FLAPW method.

In the following, we will construct the first- and second-order changes of the KS eigenvalues
and KS wave functions. The latter are required to construct the corresponding changes in
the density.

6.1.1. First-order changes

From the prescription that the perturbed Kohn-Sham system is governed by the Schrödinger
equation

Ĥψi(r) =
(

T̂ + Veff(r)
)

ψi(r) = ǫiψi(r), (6.7)

and the orthonormalization of the states

〈ψi|ψj〉 =δij , (6.8)

we reconstruct the unperturbed equations as the zeroth-order expansion in λ, when the λ
expansion of all quantities involved is inserted:

(Ĥ0 − ǫ
(0)
i )ψ

(0)
i (r) =0 and (6.9)

〈

ψ
(0)
i

∣

∣

∣ψ
(0)
j

〉

=δij (6.10)

The linearized Schrödinger equation is obtained from Eq. (6.7) by only considering the terms
linear in the parameter λ. In this way, we obtain

(Ĥ0 − ǫ
(0)
i )ψ

(1)
i (r) =− (V

(1)
eff (r)− ǫ

(1)
i )ψ

(0)
i (r). (6.11)

Eq. (6.11) is called the Sternheimer equation. It was first used to calculate atomic polariz-
abilities [37–40].

The first-order change in the eigenvalue ǫ
(0)
i is extracted from this equation by projecting it

onto the state ψ
(0)
i (r),

ǫ
(1)
i =

〈

ψ
(0)
i

∣

∣

∣
V

(1)
eff

∣

∣

∣
ψ
(0)
i

〉

+
〈

ψ
(0)
i

∣

∣

∣
Ĥ0 − ǫ

(0)
i

∣

∣

∣
ψ
(1)
i

〉

=
〈

ψ
(0)
i

∣

∣

∣
V

(1)
eff

∣

∣

∣
ψ
(0)
i

〉

, (6.12)

in accordance to the Hellmann-Feynman theorem. Here, we made use of the fact that ψ
(0)
i (r)

solves the unperturbed Schrödinger equation, Eq. (6.9), and applied the Hamiltonian to the
left. We see now that a sum over all states as present in Eq. (6.5) turns the scalar product

into
∫

ρ(0)V
(1)
eff d3r. Therefore, Eq. (6.5) defining the first-order change in the total energy

simplifies to

E
(1),simple
tot,basic =

∫

ρ(0)(r)V
(1)
ext (r)d

3r + E
(1)
ii . (6.13)
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This formula is reminiscent of Eq. (4.5), the Hellmann-Feynman part of the atomic force
formula, if one considers the perturbation to be an atomic displacement.

The linearization of the orthonormality condition, Eq. (6.8), yields
〈

ψ
(1)
i

∣

∣

∣ψ
(0)
j

〉

+
〈

ψ
(0)
i

∣

∣

∣ψ
(1)
j

〉

= 0. (6.14)

The Sternheimer equation, Eq. (6.11), contains the linear response of the effective poten-
tial, which is the sum of the external, the Hartree, and the xc potential. Because the Hartree
and xc potentials depend on the density, their first-order variations have to be determined
self-consistently.

6.1.1.1. The self-consistent Sternheimer loop

Formally, the first-order change in the effective potential is given by the corresponding
first-order changes of its components,

V
(1)
eff (r) = V

(1)
H (r) + V

(1)
ext (r) + µ(1)

xc (r), (6.15a)

V
(1)
H (r) =

∫

ρ(1)(r′)

|r − r′|d
3r′, (6.15b)

and

µ(1)
xc (r) = ρ(1)(r)

δµ
(0)
xc [ρ](r)

δρ(r)

∣

∣

∣

∣

∣

ρ=ρ(0)

. (6.15c)

Physically, V
(1)
H (r) and µ

(1)
xc (r) describe the screening of the external perturbation due

to a rearrangement of the electrons. The variation of the xc potential δµ
(0)
xc [ρ](r)/δρ(r),

sometimes referred to as the (trace of the) exchange-correlation kernel, is independent of
the actual perturbation. In Appendix A.2 we provide the formulas necessary to calculate the
xc kernel for the LDA functional by Vosko, Wilk, and Nusair, to which we restrict ourselves
in this work.
The first-order change in the electronic density is given by

ρ(1)(r) =

occ
∑

i

f
(0)
i

(

ψ
(1)∗
i (r)ψ

(0)
i (r) + ψ

(0)∗
i (r)ψ

(1)
i (r)

)

. (6.16)

We see from Eq. (6.14) with i = j that the spatially averaged first-order change in density
vanishes.
Together with Eq. (6.11), Eqs. (6.15) and (6.16) form a set of equations that has to be
solved self-consistently, because the linear response of the wave functions depends on the
linear response of the full effective potential, which in turn depends on the linear response
of the density. The effort to obtain the density response is similar to the effort necessary to
find the ground state density of a system.

To solve the Sternheimer equation, we expand the linear response ψ
(1)
i (r) in terms of the

unperturbed wave functions. Then we have for the first-order wave function response

ψ
(1)
i (r) =

∑

j

ψ
(0)
j (r)

〈

ψ
(0)
j

∣

∣

∣ψ
(1)
i

〉

. (6.17)
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6.1. Density functional perturbation theory

In the case of i = j, the linearized orthonormalization condition given in Eq. (6.14) is the
sum of a complex number and its complex conjugate. Hence Eq. (6.14) indicates that the

real part of 〈ψ(0)
i |ψ(1)

i 〉 vanishes. Since ψ
(0)
i (r) is defined only up to a phase factor, we can

set it such that also the imaginary part of 〈ψ(0)
i |ψ(1)

i 〉 is zero. Therefore, we can assume

that ψ
(1)
i (r) and ψ

(0)
i (r) are orthogonal. For i 6= j, the expansion coefficient of the first-

order change in the wave function can be found by projecting the Sternheimer equation onto

ψ
(0)
j (r). In this way, we obtain

ψ
(1)
i (r) =

∑

j 6=i

ψ
(0)
j (r)

〈

ψ
(0)
j

∣

∣

∣
V

(1)
eff

∣

∣

∣
ψ
(0)
i

〉

ǫ
(0)
i − ǫ

(0)
j

, (6.18)

where we assumed non-degenerate states.

As an alternative way of solving the Sternheimer equation, one can invert it. However,

the left-hand side of Eq. (6.11) is singular since ǫ
(0)
i is an eigenvalue of the unperturbed

Hamiltonian Ĥ0. Therefore, the Sternheimer equation has to be modified. To motivate an
appropriate modification, we insert the expansion of the wave function response in terms of
the unperturbed wave functions given by Eq. (6.18) into the density response, Eq. (6.16):

ρ(1)(r) = 2ℜ





occ
∑

i

fi

unocc
∑

j

ψ
(0)∗
i (r)ψ

(0)
j (r)

〈

ψ
(0)
j

∣

∣

∣V
(1)
eff

∣

∣

∣ψ
(0)
i

〉

ǫ
(0)
i − ǫ

(0)
j



 . (6.19)

The part containing the j of the occupied states cancels out, because within the sum over
the i, these terms appear twice, but with different sign. Therefore, the density response
couples only occupied with unoccupied states. The Sternheimer equation consequently can
be modified to generate the wave function response in the unoccupied or conduction bands
by means of projectors P̂c:

P̂c(Ĥ0 − ǫ
(0)
i )P̂cψ

(1)
i (r) = −P̂cV

(1)
eff (r)ψ

(0)
i (r) (6.20)

Since ǫ
(0)
i is the energy of an occupied state according to Eq. (6.19), the restriction of

(Ĥ0 − ǫ
(0)
i ) to the unoccupied states lifts its singularity.

Baroni et al. state though [36], that the iterative algorithms commonly used to solve the
Sternheimer equation, like the conjugate gradient [140–142] or minimal residual meth-
ods [143], maintain orthogonality to the occupied manifold during the iteration process
if the starting solution was already orthogonal to it, regardless of whether the projectors
are employed or not.

6.1.2. Second-order changes

In order to find the second-order change in eigenvalues and wave functions, which are for
example required for Eq. (6.6), we consider the second-order expansion of the perturbed
Schrödinger equation, Eq. (6.7), in terms of the parameter λ, which yields

(Ĥ0 − ǫ
(0)
i )ψ

(2)
i (r) =− 2(V

(1)
eff (r)− ǫ

(1)
i )ψ

(1)
i (r)

− (V
(2)
eff (r)− ǫ

(2)
i )ψ

(0)
i (r). (6.21)
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6. Density functional perturbation theory and the FLAPW method

In analogy to the calculation of the first-order variation ǫ
(1)
i in Eq. (6.12), we project

Eq. (6.21) onto ψ
(0)
i (r) and obtain

ǫ
(2)
i =

〈

ψ
(0)
i

∣

∣

∣V
(2)
eff

∣

∣

∣ψ
(0)
i

〉

+
〈

ψ
(0)
i

∣

∣

∣Ĥ0 − ǫ
(0)
i

∣

∣

∣ψ
(2)
i

〉

+ 2
〈

ψ
(0)
i

∣

∣

∣V
(1)
eff − ǫ

(1)
i

∣

∣

∣ψ
(1)
i

〉

. (6.22a)

The term containing the second-order variation in the wave function vanishes when the
Hamiltonian is applied to the left. A more convenient form can be obtained by introducing

the term 2
〈

ψ
(1)
i

∣

∣

∣
Ĥ0 − ǫ

(0)
i

∣

∣

∣
ψ
(1)
i

〉

+ 2
〈

ψ
(1)
i

∣

∣

∣
V

(1)
eff − ǫ

(1)
i

∣

∣

∣
ψ
(0)
i

〉

into the expression, which is

zero due to the Sternheimer equation, Eq. (6.11), giving rise to

ǫ
(2)
i =

〈

ψ
(0)
i

∣

∣

∣V
(2)
eff

∣

∣

∣ψ
(0)
i

〉

+ 2
〈

ψ
(1)
i

∣

∣

∣Ĥ0 − ǫ
(0)
i

∣

∣

∣ψ
(1)
i

〉

+ 2
〈

ψ
(1)
i

∣

∣

∣V
(1)
eff − ǫ

(1)
i

∣

∣

∣ψ
(0)
i

〉

+ 2
〈

ψ
(0)
i

∣

∣

∣V
(1)
eff − ǫ

(1)
i

∣

∣

∣ψ
(1)
i

〉

. (6.22b)

This form of ǫ
(2)
i is variational with respect to the first-order changes in the wave functions,

ψ
(1)
i (r). Variation of it with respect to ψ

(1)∗
i (r) or its complex conjugate reproduces the

Sternheimer equation for ψ
(1)
i (r) or ψ

(1)∗
i (r). The benefit from having a variational form of

ǫ
(2)
i lies in the fact that small errors in ψ

(1)
i (r) are further dampened when the second-order

variation of the energy eigenvalues is calculated.

Finally, we apply once more the Sternheimer equation to ǫ
(2)
i . Thereby, we transform the

term containing ψ
(1)
i (r) on both sides of the scalar product, 2

〈

ψ
(1)
i

∣

∣

∣
Ĥ0 − ǫ

(0)
i

∣

∣

∣
ψ
(1)
i

〉

, into

−
〈

ψ
(1)
i

∣

∣

∣V
(1)
eff − ǫ

(1)
i

∣

∣

∣ψ
(0)
i

〉

−
〈

ψ
(0)
i

∣

∣

∣V
(1)
eff − ǫ

(1)
i

∣

∣

∣ψ
(1)
i

〉

. In this way, we obtain

ǫ
(2)
i =

〈

ψ
(0)
i

∣

∣

∣
V

(2)
eff

∣

∣

∣
ψ
(0)
i

〉

+

∫

[

ψ
(1)∗
i (r)ψ

(0)
i (r) + ψ

(0)∗
i (r)ψ

(1)
i (r)

]

V
(1)
eff (r)d3r

− ǫ
(1)
i

[〈

ψ
(1)
i

∣

∣

∣
ψ
(0)
i

〉

+
〈

ψ
(0)
i

∣

∣

∣ψ
(1)
i

〉]

. (6.22c)

With the first-order variation in the orthonormality condition, Eq. (6.14), we find that

the last term in the previous equation vanishes. Introducing ρ
(1)
i (r) = ψ

(1)∗
i (r)ψ

(0)
i (r) +

ψ
(0)∗
i (r)ψ

(1)
i (r) we have

ǫ
(2)
i =

〈

ψ
(0)
i

∣

∣

∣V
(2)
eff

∣

∣

∣ψ
(0)
i

〉

+

∫

ρ
(1)
i (r)V

(1)
eff (r)d3r. (6.22d)

Employing this equation in the sum-over-states of Eq. (6.6), the integral containing the
linear response in the effective potential cancels. Thus, the second-order change in the total
energy simplifies to

E
(2),simple
tot,basic =

∫

ρ(1)(r)V
(1)
ext (r)d

3r +

∫

ρ(0)(r)V
(2)
ext (r)d

3r + E
(2)
ii . (6.23)

Therefore, the calculation of E
(2)
tot requires the first-order changes in the density and the

external potential and only the second-order changes in the external potential and in the
ion-ion energy. Specifically, it does not require knowledge of the second-order variation in
the wave functions. This observation is part of a more general theorem, which we discuss
in the next section.
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6.1.3. The 2n+ 1 theorem

When we compare the expressions for the first- and second-order changes in the energy

eigenvalues, Eqs. (6.12) and (6.22b), we observe that ǫ
(1)
i can be determined from the un-

perturbed wave functions ψ
(0)
i (r) alone, while ǫ

(2)
i requires knowledge of the linear response

ψ
(1)
i (r) of the wave functions. This observation condensates in the ’2n + 1 theorem’: The

2n+1st variation in the eigenenergy can be produced from the first n variations in the wave
function corresponding to that eigenvalue [144–147].
This statement is true for any functional dependent on ψi(r) [148], not only for the energy
functional of the KS system. Thus, it holds also for the DFT total energy. The indepen-
dence of Eqs. (6.13) and (6.23) from ρ(1)(r) and ρ(2)(r), respectively, supports the validity
of the 2n+ 1 theorem.

6.2. Adjustment to the FLAPW method

In the following sections, we adapt the DFPT formalism to comply with the properties of
the FLAPW method.
The LAPW basis functions φkG(r) depend on the perturbation. Hence, for the wave func-
tions expressed in terms of the LAPW basis, the expansion into orders of λ introduced
in Eqs. (6.1) and (6.2) holds on the level of the expansion coefficients zikG and the basis
functions. If we allow that the perturbation changes the Bloch character of the unperturbed

state ψ
(0)
ik (r) from k to a linear combination of vectors K, we can write for the perturbed

state

ψik(r) =
∑

G

z
ik(0)
kG φ

(0)
kG(r) + λ

∑

KG

[

z
ik(1)
KG φ

(0)
KG(r) + z

ik(0)
KG φ

(1)
KG(r)

]

+
1

2!
λ2
∑

KG

[

z
ik(2)
KG φ

(0)
KG(r) + 2z

ik(1)
KG φ

(1)
KG(r) + z

ik(0)
KG φ

(2)
KG(r)

]

+O(λ3). (6.24)

We introduced here the uniform notation z
ik(n)
KG for the nth-order variation in the expansion

coefficient of the state ψ
(0)
ik (r). K is a particular Bloch vector, into which the perturbation

scatters the unperturbed wave function. For n = 0, it holds that

z
ik(0)
KG = δkKz

(0)
ikG (6.25)

with the unperturbed expansion coefficient z
(0)
ikG.

The term in Eq. (6.24) which is linear in λ indicates that the first-order change of the wave

function decomposes into a component ψ̂
(1)
ik (r) that is contained within the Hilbert space

spanned by the LAPW basis functions and a component ψ̃
(1)
ik (r) which lives at least partly

outside of the LAPW basis space:

ψ̂
(1)
ik (r) :=

∑

KG

z
ik(1)
KG φ

(0)
KG(r) (6.26a)

ψ̃
(1)
ik (r) :=

∑

KG

z
ik(0)
KG φ

(1)
KG(r) (6.26b)

ψ
(1)
ik (r) =ψ̂

(1)
ik (r) + ψ̃

(1)
ik (r) (6.26c)
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For the moment, we assume ψ̃
(1)
ik (r) to be known already. Its exact form depends on the

perturbation, which we do not specify until the next chapter to keep the generality of this
chapter.

During the derivation of DFPT in the last section we made use of

〈

ψ
(1)
ik

∣

∣

∣
Ĥ0

∣

∣

∣
ψ
(0)
ik

〉

= ǫ
(0)
ik

〈

ψ
(1)
ik

∣

∣

∣
ψ
(0)
ik

〉

. (6.27)

However, this equation does only hold for the part ψ̂
(1)
ik (r) which is contained in the LAPW

basis space. Hence, we need to consider additional Pulay terms as discussed in chapter 3.10
when we apply DFPT within the FLAPW method.

In addition we need to take into account surface terms if the perturbation arises from
a displacement of the atomic positions, as is the case for example for forces or phonons.
The reason for this is that the LAPW basis functions are constructed to be continuous only
up to first order at the muffin-tin sphere boundaries, while the Hamiltonian contains the
Laplace operator and thus generates the second derivative of the wave functions. Also, the
FLAPW method uses a different representation of its functions in terms of radial functions
times spherical harmonics in the atom centered muffin-tin spheres and in terms of a Fourier
expansion in the interstitial region which does only match up to an angular-momentum
cutoff of lαmax. Thus, a slight discontinuity of the functions is also present in zeroth and first
order.
In case of a displacive perturbation, we assume that the displacement is mediated by a shift
of the atoms from their position τα to τα +wα, were wα is a real-valued vector. Also, we
introduce the short hand notation

[f(r)]SF := fMT(r)− f IR(r) (6.28)

for the difference between the muffin-tin sphere and the interstitial representation of a quan-
tity f(r).

As we did in the previous section 6.1, we devote separate subsections to the first-order
changes and the second-order changes.

6.2.1. Additional first-order changes

In contrast to Eq. (6.12), we have to account for Pulay terms when we calculate the first-
order variation in the eigenenergies within the FLAPW method. Since the wave functions
are solutions to the Schrödinger equation only within the LAPW basis space, we have to

calculate ǫ
(1)
ik,FLAPW from the Rayleigh quotient, as we did in Eq. (3.80):

ǫ
(1)
ik,FLAPW =

〈

ψ
(0)
ik

∣

∣

∣V
(1)
eff

∣

∣

∣ψ
(0)
ik

〉

+
〈

ψ
(1)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(0)
ik

〉

+
〈

ψ
(0)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(1)
ik

〉

+
∑

α

wT
α ·
∮

∂MT(α)

ê
[

ψ
(0)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(0)
ik (r)

]

SF
dS (6.29)

The surface integral appears analogously to Eq. (4.3) only in case of a displacive pertur-
bation. ê is the unit normal vector (r − τα)/|r − τα| pointing out of the MT sphere of

96



6.2. Adjustment to the FLAPW method

atom α. The sum-over-states in Eq. (6.5) defining E
(1)
tot,basic, into which we have to insert

Eq. (6.29), transforms the first term of ǫ
(1)
ik,FLAPW into

∫

ρ(0)(r)V
(1)
eff (r)d3r. Thus it cancels

with its counterpart in Eq. (6.5). We extract the other two scalar products from Eq. (6.29)
and define the Pulay correction

E
(1)
tot,Pulay =

∑

ik

f
(0)
ik

[〈

ψ
(1)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(0)
ik

〉

+
〈

ψ
(0)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(1)
ik

〉]

. (6.30)

If the perturbation affects the atomic positions, the complete surface correction follows from
collecting the surface integrals generated by the linear variation of the unperturbed total
energy, Eq. (6.4). The surface term in the variation of the eigenenergies, Eq. (6.29), is
then accompanied by the surface terms which are generated by separating the domains of
integration in the volume integrals of Eq. (6.4) into MT and IR volumes and applying the
variation. This procedure yields

E
(1)
tot,SF =

∑

ik

f
(0)
ik

∑

α

wT
α ·
∮

∂MT(α)

ê
[

ψ
(0)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(0)
ik (r)

]

SF
dS

−
∑

α

wT
α ·
∮

∂MT(α)

ê
[

ρ(0)(r)V
(0)
eff (r)

]

SF
dS

+
∑

α

wT
α ·
∮

∂MT(α)

ê
[

ρ(0)(r)
{

V
(0)
H (r) + V

(0)
ext (r) + ε(0)xc (r)

}]

SF
dS

=
∑

ik

f
(0)
ik

∑

α

wT
α ·
∮

∂MT(α)

ê
[

ψ
(0)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(0)
ik (r)

]

SF
dS

+
∑

α

wT
α ·
∮

∂MT(α)

ê
[

ρ(0)(r)
{

ε(0)xc (r)− µ(0)
xc (r)

}]

SF
dS. (6.31)

In total, starting from the simplified formula for the first-order change E
(1),simple
tot,basic of the

total energy given in Eq. (6.13), its FLAPW counterpart is complemented by a Pulay and
a surface term,

E
(1)
tot = E

(1),simple
tot,basic + E

(1)
tot,Pulay + E

(1)
tot,SF. (6.32)

In case of atomic displacements, the first-order change in the total energy within the FLAPW
method corresponds exactly to the force formulas in Eqs. (4.7)-(4.9).

We also present the form which the linearized orthonormalization condition takes in the
FLAPW method:

〈

ψ
(1)
jl

∣

∣

∣ψ
(0)
ik

〉

+
〈

ψ
(0)
jl

∣

∣

∣ψ
(1)
ik

〉

+
∑

α

wT
α ·
∮

∂MT(α)

ê
[

ψ
(0)∗
jl ψ

(0)
ik

]

SF
dS = 0 (6.33)

Also here, a surface integral has to be added if the perturbation affects the domain of
integration, since the orthonormalization condition is an integral. For (ik) = (jl), the
expression transforms into

2ℜ
(〈

ψ
(0)
ik

∣

∣

∣ψ
(1)
ik

〉)

+
∑

α

wT
α ·
∮

∂MT(α)

ê
[

ρ
(0)
ik (r)

]

SF
dS = 0 (6.34)
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with the (ik) component of the unperturbed density defined by ρ(0)(r) =
∑

ik f
(0)
ik ρ

(0)
ik (r).

We have the liberty to choose the phase of ψ
(0)
ik (r) such that 〈ψ(0)

ik |ψ(1)
ik 〉 is real-valued itself.

The linearized orthonormalization condition then takes the form

〈

ψ
(0)
ik

∣

∣

∣
ψ
(1)
ik

〉

= −1

2

∑

α

wT
α ·
∮

∂MT(α)

ê
[

ρ
(0)
ik (r)

]

SF
dS. (6.35)

Therefore, if the perturbation affects the atomic positions, the first-order change of the wave
function is not orthogonal to the unperturbed wave function anymore. Though we expect
the projection to be small.

6.2.1.1. The Sternheimer loop within the FLAPW method

Since in the FLAPW method the wave functions are variational solutions of the Schrödinger
equation, the derivation of the Sternheimer equation, Eq. (6.11), is more complex. We
start the derivation by projecting the Sternheimer equation onto the LAPW basis function
φLG′(r), since the Schrödinger equation is fulfilled in the LAPW basis space. This yields
the matrix equation

〈

φLG′

∣

∣

∣Ĥ − ǫik

∣

∣

∣ψik

〉

=
∑

KG

〈

φLG′

∣

∣

∣Ĥ − ǫik

∣

∣

∣φKG

〉

zikKG = 0. (6.36)

The linearized form of this equation is the Sternheimer equation for the first-order responses
of the expansion coefficients:

∑

KG

〈

φ
(0)
LG′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
KG

〉

z
ik(1)
KG

=−
∑

KG

{

〈

φ
(0)
LG′

∣

∣

∣
V

(1)
eff − ǫ

(1)
ik

∣

∣

∣
φ
(0)
KG

〉

+
〈

φ
(1)
LG′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
KG

〉

+
〈

φ
(0)
LG′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(1)
KG

〉

+
∑

α

wT
α ·
∮

∂MT(α)

ê
[

φ
(0)∗
LG′(Ĥ0 − ǫ

(0)
ik )φ

(0)
KG

]

SF
dS

}

z
ik(0)
KG , (6.37)

In order to solve the Sternheimer equation, we need knowledge about the variation of the
effective potential and of the electronic density. To this end, we reuse Eqs. (6.15a) and (6.16).
However, in the case of a displacive perturbation, the linear change in the Hartree potential
contributes an additional surface term in the FLAPW framework, since the electronic density
is slightly discontinuous at the MT sphere boundary. Therefore, the adjusted set of equations
is given by

V
(1)
eff (r) = V

(1)
H (r) + V

(1)
ext (r) + ρ(1)(r)

δµ
(0)
xc [ρ](r)

δρ(r)

∣

∣

∣

∣

∣

ρ=ρ(0)

, (6.15a revisited)

V
(1)
H (r) =

∑

α

wT
α ·
∮

∂MT(α)

ê
′
[

ρ(0)(r′)
]

SF

|r − r′| dS′ +

∫

ρ(1)(r′)

|r − r′|d
3r′, (6.38)

ρ(1)(r) =
∑

ik

f
(0)
ik

(

ψ
(1)∗
ik (r)ψ

(0)
ik (r) + ψ

(0)∗
ik (r)ψ

(1)
ik (r)

)

. (6.16 revisited)
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6.2. Adjustment to the FLAPW method

It is instructive to transform Eq. (6.37), the Sternheimer matrix equation, into a form
more reminiscent of the standard perturbation theory expression, Eq. (6.18). In order to do

so, we recall the separation of ψ
(1)
ik (r) into ψ̂

(1)
ik (r) and ψ̂

(1)
ik (r) as introduced in Eq. (6.26).

The component ψ̂
(1)
ik (r) is a linear combination of LAPW basis functions and thus completely

contained in the LAPW basis space. Therefore, it can be expanded purely in terms of the
LAPW wave functions:

ψ̂
(1)
ik (r) =

∑

jl

ψ
(0)
jl (r)

〈

ψ
(0)
jl

∣

∣

∣ψ̂
(1)
ik

〉

(6.39)

The component ψ̃
(1)
ik (r) in general is not confined to the Hilbert space spanned by the LAPW

basis functions.
We now operate with

∑

LG′ z
jl(0)∗
LG′ on Eq. (6.36). A contraction of the sums yields

∑

LG′

∑

KG

z
jl(0)∗
LG′

〈

φ
(0)
LG′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
KG

〉

z
ik(1)
KG

=
〈

ψ
(0)
jl

∣

∣

∣ǫ
(0)
jl − ǫ

(0)
ik

∣

∣

∣ψ̂
(1)
ik

〉

= −
〈

ψ
(0)
jl

∣

∣

∣V
(1)
eff − ǫ

(1)
ik

∣

∣

∣ψ
(0)
ik

〉

−
〈

ψ̃
(1)
jl

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(0)
ik

〉

−
〈

ψ
(0)
jl

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ̃
(1)
ik

〉

−
∑

α

wα ·
∮

∂MT(α)

ê
[

ψ
(0)∗
jl (Ĥ0 − ǫ

(0)
ik )ψ

(0)
ik

]

SF
dS, (6.40)

or equivalently for (jl) 6= (ik):

〈

ψ
(0)
jl

∣

∣

∣ψ̂
(1)
ik

〉

=

〈

ψ
(0)
jl

∣

∣

∣V
(1)
eff

∣

∣

∣ψ
(0)
ik

〉

ǫ
(0)
ik − ǫ

(0)
jl

+

〈

ψ̃
(1)
jl

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(0)
ik

〉

ǫ
(0)
ik − ǫ

(0)
jl

+

〈

ψ
(0)
jl

∣

∣

∣Ĥ0 − ǫ
(0)
jl

∣

∣

∣ψ̃
(1)
ik

〉

ǫ
(0)
ik − ǫ

(0)
jl

+
∑

α

wα ·
∮

∂MT(α)

ê

[

ψ
(0)∗
jl (Ĥ0 − ǫ

(0)
ik )ψ

(0)
ik

ǫ
(0)
ik − ǫ

(0)
jl

]

SF

dS −
〈

ψ
(0)
jl

∣

∣

∣
ψ̃
(1)
ik

〉

(6.41)

In the case (jl) = (ik) we apply Eq. (6.35) and find the relation

〈

ψ
(0)
ik

∣

∣

∣ψ̂
(1)
ik

〉

= −
〈

ψ
(0)
ik

∣

∣

∣ψ̃
(1)
ik

〉

− 1

2

∑

α

wT
α ·
∮

∂MT(α)

ê
[

ρ
(0)
ik (r)

]

SF
dS. (6.42)

Using Eq. (6.39) we can now express the first-order change in the wave function as

ψ
(1)
ik (r) =

∑

jl

ψ
(0)
jl (r)

〈

ψ
(0)
jl

∣

∣

∣ψ̂
(1)
ik

〉

+ ψ̃
(1)
ik (r)

=
∑

jl 6=ik

ψ
(0)
jl (r)

{

CPT
ikjl + CPulay

ikjl + Csurface
ikjl

}

+ ψ
(0)
ik (r)Csurface

ik + ψIBC
ik (r) (6.43)

which dismantles ψ
(1)
ik (r) into four parts:

• The regular perturbation theory coefficients CPT
ikjl we already found in Eq. (6.18) in

chapter 6.1.1,

CPT
ikjl =

〈

ψ
(0)
jl

∣

∣

∣
V

(1)
eff

∣

∣

∣
ψ
(0)
ik

〉

ǫ
(0)
ik − ǫ

(0)
jl

. (6.44)
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• The Pulay contribution CPulay
ikjl discussed in chapter 3.10, which arises because the

LAPW basis is dependent on the perturbation and the wave functions are only varia-
tional solutions of the Schrödinger equation,

CPulay
ikjl =

〈

ψ̃
(1)
jl

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
ψ
(0)
ik

〉

ǫ
(0)
ik − ǫ

(0)
jl

+

〈

ψ
(0)
jl

∣

∣

∣
Ĥ0 − ǫ

(0)
jl

∣

∣

∣
ψ̃
(1)
ik

〉

ǫ
(0)
ik − ǫ

(0)
jl

. (6.45)

• The surface terms Csurface
ikjl and Csurface

ik that take into account the small discontinuities
of the wave functions at the muffin-tin sphere boundary,

Csurface
ikjl =

∑

α

wα ·
∮

∂MT(α)

ê

[

ψ
(0)∗
jl (Ĥ0 − ǫ

(0)
ik )ψ

(0)
ik

ǫ
(0)
ik − ǫ

(0)
jl

]

SF

dS (6.46a)

and

Csurface
ik = −1

2

∑

α

wα ·
∮

∂MT(α)

ê
[

ρ
(0)
ik (r)

]

SF
dS. (6.46b)

• The function ψIBC
ik (r) which results from the explicit response of the LAPW basis

functions which is not contained in the LAPW basis space and which thus compensates
the incompleteness of the basis functions,

ψIBC
ik (r) =

∫



δ(r − r′)−
∑

jl

ψ
(0)
jl (r)ψ

(0)∗
jl (r′)



 ψ̃
(1)
ik (r′)d3r′. (6.47)

The terms Csurface
ikjl and Csurface

ik only arise when the perturbation alters the domains of
integration, which is the case for phonons. Betzinger et al. [149] presented a similar de-
composition in the context of the optimized-effective potential approach. In this method,
the perturbation does not affect the domains of integration, hence the surface terms do not
appear.
Making the basis set more and more complete, the contributions of CPulay

ikjl and ψIBC
ik (r) will

become smaller. If specifically more l-channels are considered in the spherical-harmonics
expansion within the muffin-tin spheres, the surface contributions Csurface

ikjl and Csurface
ik will

diminish and only the result of conventional perturbation theory will persist.

Eqs. (6.35) and (6.43) guarantee that the number of electrons Nel is conserved within the
FLAPW method also by a displacive perturbation. Applying a variation to

Nel =

∫

ρ(0)(r)d3r (6.48)

yields the expression

0 =
∑

ik

f
(0)
ik

[〈

ψ
(1)
ik

∣

∣

∣ψ
(0)
ik

〉

+
〈

ψ
(0)
ik

∣

∣

∣ψ
(1)
ik

〉]

+
∑

α

wT
α ·
∮

∂MT(α)

ê
[

ρ(0)(r)
]

SF
dS, (6.49)

which is true for ψ
(1)
ik (r) as defined in Eq. (6.43).
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6.2.2. Additional second-order changes

The second-order change in the total energy obtained within the FLAPW method is also
affected by Pulay corrections and in case of a displacive perturbation also by surface cor-
rections. The latter are obtained in second order not only from a variation of the response
of the energy eigenvalues and a variation of the volume integrals in Eq. (6.5), but also from

an additional variation of the surface terms E
(1)
tot,SF. To avoid miscounting these terms, we

postpone the calculation of E
(2)
tot,SF to the end of this section.

We first construct the second-order Pulay correction under the assumption that the per-
turbation is non-displacive. To this end, we apply an additional variation to the first-order
variation of the eigenenergies, Eq. (6.29), and omit any surface terms in the original and
resulting equation. In this way, we obtain

ǫ
(2)
ik,FLAPW =

〈

ψ
(0)
ik

∣

∣

∣V
(2)
eff

∣

∣

∣ψ
(0)
ik

〉

+ 2

∫

ρ
(1)
ik (r)V

(1)
eff (r)d3r + 2

〈

ψ
(1)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(1)
ik

〉

+
〈

ψ
(2)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(0)
ik

〉

+
〈

ψ
(0)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(2)
ik

〉

(6.50)

For a more compact notation, we define the contribution ρ
(1)
ik (r) to the total density variation

as

ρ
(1)
ik (r) = ψ

(1)∗
ik (r)ψ

(0)
ik (r) + ψ

(0)∗
ik (r)ψ

(1)
ik (r), (6.51)

so that ρ(1)(r) =
∑

ik f
(0)
ik ρ

(1)
ik (r).

In order to find the second-order Pulay correction to the total energy, we insert Eq. (6.50)
into the second-order variation of the total energy, Eq. (6.6), and compare the resulting
equation with its simplified form in Eq. (6.23). We obtain for the Pulay correction

E
(2)
tot,Pulay =

∫

ρ(1)(r)V
(1)
eff (r)d3r +

∑

ik

f
(0)
ik

[

2
〈

ψ
(1)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(1)
ik

〉

+
〈

ψ
(2)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(0)
ik

〉

+
〈

ψ
(0)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(2)
ik

〉

]

. (6.52)

Apparently, the second-order change in the wave functions is needed to calculate the Pulay

correction E
(2)
tot,Pulay. However, according to Eq. (6.24), the second-order change in the wave

function is given by

ψ
(2)
ik (r) =

∑

KG

[

z
ik(2)
KG φ

(0)
KG(r) + 2z

ik(1)
KG φ

(1)
KG(r) + z

ik(0)
KG φ

(2)
KG(r)

]

. (6.53)

Therein, the only second-order variations are of the expansion coefficients, z
ik(2)
KG , and of

the basis functions φ
(2)
KG(r). The former are factors to the unperturbed basis functions, for

which
〈

φ
(0)
KG

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
ψ
(0)
ik

〉

vanishes. Hence, the 2n + 1 theorem still holds with respect

to the LAPW expansion coefficients.
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Now we turn to the calculation of the second-order surface terms which appear in case of
a displacive perturbation. To this end, we need to apply a variation to the first-order change

in the total energy, Eq. (6.5) using ǫ
(1)
ik,FLAPW without its surface terms in the sum-over-

states, and extract from this the surface terms. These are due to the volume integrals in

E
(1)
tot,basic, not from any surface (nsf) terms subsumed in E

(1)
tot,SF. We obtain the contribution

E
(2),nsf
tot,SF =

∑

α

wT
α ·
∮

∂MT(α)

ê
[

ρ(0)(r)V
(1)
eff (r)

]

SF
dS

+
∑

α

wT
α ·
∑

ik

f
(0)
ik

∮

∂MT(α)

ê
[

ψ
(1)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(0)
ik (r)

]

SF
dS

+
∑

α

wT
α ·
∑

ik

f
(0)
ik

∮

∂MT(α)

ê
[

ψ
(0)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(1)
ik (r)

]

SF
dS

−
∑

α

wT
α ·
∮

∂MT(α)

ê
[

ρ(0)(r)
{

V
(1)
eff (r)− V

(1)
ext (r)

}]

SF
dS. (6.54)

Additionally, we need to apply a variation to Eq. (6.31), which contains the surface terms
that occurred when we constructed the first-order change in the total energy. A variation of
such a surface term will produce two components. One accounts for an additional variation
of the domain of integration, the other one comes from the variation of the integrand. In
general, these two terms can be obtained by applying Gauss’ theorem to the first-order
surface term beforehand:

∑

α

wT
α ·
(

∮

∂MT(α)

ê
[

f (0)(r)
]

SF
dS

)(1)

=
∑

α

wT
α ·
(

∫

MT(α)

∇
[

f (0)(r)
]

SF
d3r

)(1)

=
∑

α

wT
α ·
∮

∂MT(α)

∇
[

f (0)(r)
]

SF
ê
TdS ·wα +

∑

α

wT
α ·
∮

∂MT(α)

ê
[

f (1)(r)
]

SF
dS (6.55)

Using this formula on E
(1)
tot,SF yields for the higher order surface (hosf) terms

E
(2),hosf
tot,SF =

∑

α

wT
α ·
∑

ik

f
(0)
ik

∮

∂MT(α)

ê
[

ψ
(0)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(0)
ik (r)

]

SF
ê
TdS ·wα

+
∑

α

wT
α ·
∮

∂MT(α)

ê
[

ρ(0)(r)V
(1)
eff (r)

]

SF
dS

+
∑

α

wT
α ·
∑

ik

f
(0)
ik

∮

∂MT(α)

ê
[

ψ
(1)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(0)
ik (r)

]

SF
dS

+
∑

α

wT
α ·
∑

ik

f
(0)
ik

∮

∂MT(α)

ê
[

ψ
(0)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(1)
ik (r)

]

SF
dS

+
∑

α

wT
α ·
∮

∂MT(α)

ê
[

ρ(0)(r)
{

ε(0)xc (r)− µ(0)
xc (r)

}]

SF
ê
TdS ·wα

−
∑

α

wT
α ·
∮

∂MT(α)

ê



ρ(0)(r)ρ(1)(r)
δµ

(0)
xc [ρ](r)

δρ(r)

∣

∣

∣

∣

∣

ρ=ρ(0)





SF

dS. (6.56)
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The total surface correction of the second-order total energy formula is now the sum

E
(2)
tot,SF =E

(2),nsf
tot,SF + E

(2),hosf
tot,SF

=2
∑

ik

f
(0)
ik

∑

α

wT
α ·
∮

∂MT(α)

ê
[

ψ
(1)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(0)
ik (r)

]

SF
dS

+ 2
∑

ik

f
(0)
ik

∑

α

wT
α ·
∮

∂MT(α)

ê
[

ψ
(0)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(1)
ik (r)

]

SF
dS

+
∑

ik

f
(0)
ik

∑

α

wT
α ·
∮

∂MT(α)

∇
[

ψ
(0)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(0)
ik (r)

]

SF
ê
TdS ·wα

+
∑

α

wT
α ·
∮

∂MT(α)

∇
[

ρ(0)(r)
{

ε(0)xc (r)− µ(0)
xc (r)

}]

SF
ê
TdS ·wα

+
∑

α

wT
α ·
∮

∂MT(α)

ê
[

ρ(0)(r)
{

2V
(1)
ext (r) + V

(1)
H (r)

}]

SF
dS. (6.57)

Adding the Pulay and surface contributions to the second-order change E
(2),simple
tot,basic in the

total energy in its simplified form, Eq. (6.23), the second-order change in the total energy
obtained from the FLAPW method becomes

E
(2)
tot = E

(2),simple
tot,basic + E

(2)
tot,Pulay + E

(2)
tot,SF. (6.58)

We point out once more that the surface correction only applies in case of a perturbation
which affects the position of the atoms. From all contributions to the surface correction,
we assume that the ones containing the Hamiltonian (more specifically the Laplacian) are
most relevant, since the second derivative of the LAPW basis functions is discontinuous at
the MT sphere boundary in all angular-momentum channels.

6.3. Summary

So far, we discussed the DFPT formalism and provided explicit formulas for the variations
of the total energy up to second order. We presented the Sternheimer equation, which is
the linearized Schrödinger equation. It allows to calculate the first-order change in the wave
functions. The Sternheimer equation has to be solved self-consistently to obtain the change
in the wave functions due to an external perturbation in order to account for a screening of
the external perturbation through a rearrangement of the electrons. Furthermore, we gave
formulas defining the second-order variation of the total energy and identified the necessary

quantities to calculate E
(2)
tot . We made notion of the 2n+1 theorem, by which a given order

of variation in the total energy can be expressed by variations in the wave functions of half
that order. In the last part of this chapter, we extended the DFPT formalism to be applica-
ble to the FLAPW method. The changes to the general DFPT formalism consist of Pulay
and surface terms. With chapter 3.10 in mind, the former have to be included because the
LAPW basis functions are not pointwise solutions to the Schrödinger equation and depend
themselves on the perturbation. The latter take into account the small discontinuities of
the LAPW basis functions and the quantities derived from them, which manifest at the
muffin-tin sphere boundaries due to a different representation of the basis functions in the
IR and MT regions.
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6. Density functional perturbation theory and the FLAPW method

The results of this chapter are employed in the next chapter using specifically a phononic
perturbation. Since we exclusively treat phonons in the FLAPW method there, we omit
any labels ’FLAPW’ in the following.

104



7. Phonons in FLAPW using DFPT

In the last chapter, we introduced DFPT and its adaptation to the FLAPW method. So
far, the perturbation has been quite general. We now focus on a phononic perturbation
and discuss how DFPT can be used to construct the dynamical matrix D(q), which is
related to the second-order derivative of the total energy with respect to the atomic posi-
tions by a Fourier transform of the force-constant matrix as presented in Eqs. (5.2) and (5.9).

Let us assume a finite but large solid consisting of N primitive, unperturbed unit cells,

where the atomic arrangement results in the unperturbed external potential V
(0)
ext (r). In the

end, we will consider the limit N → ∞. Furthermore, we assume a perturbation w where
every atom α in every unit cell R is displaced from its equilibrium position by a vector

wαR = w+
αR +w−

αR := Qαe
iq·R +Q∗

αe
−iq·R. (7.1)

This is a monochromatic perturbation of wave vector q and polarization vector Qα, which
we do not explicitly specify at this point. The dependence of the polarization vector on the
wave vector is implicitly denoted by the capital Q instead of the lower case q. Furthermore,
we omit the argument q for the perturbation vector w since we keep the value of q fixed.
The displacement wαR is real valued and its components obey

w+∗
αR = w−

αR. (7.2)

From this perturbation, we construct the changes in the wave functions, the density
and the potential to first and second order. We follow the structure of chapter 6 and de-

rive equations for the first-order changes in V
(1)
ext (r), φ

(1)
KG(r), z

ik(1)
KG , ρ(1)(r), V

(1)
H (r), and

V
(1)
eff (r) first, which we obtain from the self-consistent solution of the Sternheimer equation,

Eqs. (6.37), (6.15a), and (6.16). Afterwards, we present formulas for the second-order quan-

tities V
(2)
ext (r), E

(2)
ii , and φ

(2)
KG(r). According to Eq. (6.58) and its constituents defined in

Eqs. (6.23), (6.52), and (6.57) of the last chapter, these quantities allow us to calculate the
second-order change in the total energy.

Before we start with the evaluation of the first-order terms, we demonstrate that each
order of perturbation introduces a shift in the Bloch vector of a function by ±q, i.e., that
the response of a Bloch function of wave vector k is a combination of Bloch functions of
wave vector k±q. We do so by expanding the perturbed external potential in orders of the
perturbation:

Vext(r) = −
∑

αR

Zα

|r − (τα +R+wαR)|

= −
∑

αR

Zα

|r − (τα +R)| −
∑

αR

wT
αR · d

dwαR

Zα

|r − (τα +R+wαR)|

∣

∣

∣

∣

w=0

+ . . .
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7. Phonons in FLAPW using DFPT

· · · − 1

2

∑

αR

wT
αR ·

[

(

d

dwαR

)

·
(

d

dwαR

)T (
Zα

|r − (τα +R+wαR)|

)∣

∣

∣

∣

w=0

]

·wαR

+O(w3) (7.3)

By redirecting the differentiation with respect to wαR towards r and by expanding the
displacement vector following its definition, we arrive at

Vext(r) = V
(0)
ext (r) + V

(1)
ext (r) +

1

2
V

(2)
ext (r) +O(w3), (7.4)

where the respective orders are given by

V
(0)
ext (r) = −

∑

αR

Zα

|r − (τα +R)| =:
∑

αR

V αR
ext (r), (7.5)

V
(1)
ext (r) =

∑

α

QT
α ·
∑

R

eiq·R∇ Zα

|r − (τα +R)| +
∑

α

Q∗T
α ·

∑

R

e−iq·R∇ Zα

|r − (τα +R)|

=:
∑

α

QT
α · V (1)α+

ext (r) +
∑

α

Q∗T
α · V (1)α−

ext (r), and (7.6)

V
(2)
ext (r) =

∑

αRij

[

QαiQαje
2iq·R +QαiQ

∗
αj +Q∗

αiQαj +Q∗
αiQ

∗
αje

−2iq·R]

×
[

∂i∂jV
αR
ext (r)

]

. (7.7)

From the definition

V
(1)α±
ext (r) = −

∑

R

e±iq·R∇V αR
ext (r), (7.8)

and the fact that ∇V αR
ext (r) is a real quantity immediately follows that the parts of the linear

perturbation are complex conjugates to each other,
(

V
(1)α+
ext (r)

)∗
= V

(1)α−
ext (r). (7.9)

Moreover, V
(1)α±
ext (r) is a Bloch function of wave vector q or −q:

V
(1)α±
ext (r +R′) = −

∑

R

e±iq·R∇V αR
ext (r +R

′)

= −e±iq·R′ ∑

R

e±iq·(R−R′)∇V α(R−R′)
ext (r) = e±iq·R′

V
(1)α±
ext (r) (7.10)

We made use of the fact that the lattice translations R form a group in the case of the
infinite bulk system by using R−R′ as the summation variable instead of R.

Similarly, the second order perturbation V
(2)
ext (r) is a linear combination of three Bloch waves

of wave vectors 0 and ±2q.

7.1. First-order changes

Because the electronic system will adjust to the external perturbation, the Sternheimer
equation has to be solved self-consistently. In order to calculate the first iteration of the
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7.1. First-order changes

Sternheimer equation, where the linear change in the potential V
(1)
eff (r) is given by the

first-order perturbation V
(1)
ext (r), we need in addition to the unperturbed quantities and the

external perturbation the linear response of the basis functions, φ
(1)
KG(r). This can be seen

from
∑

KG

〈

φ
(0)
LG′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
KG

〉

V
z
ik(1)
KG

=−
∑

KG

{

〈

φ
(0)
LG′

∣

∣

∣V
(1)
eff − ǫ

(1)
ik

∣

∣

∣φ
(0)
KG

〉

V

+
〈

φ
(1)
LG′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
KG

〉

V
+
〈

φ
(0)
LG′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(1)
KG

〉

V

+
∑

αR

wT
αR ·

∮

∂MT(α,R)

ê
[

φ
(0)∗
LG′(Ĥ0 − ǫ

(0)
ik )φ

(0)
KG

]

SF
dS

}

z
ik(0)
KG , (6.37 revisited)

where V = NΩ is the total volume of the large, but finite lattice. The sum overK allows that
the wave function response is a superposition of Bloch waves with different wave vectors. For

the later iterations, we also need the first-order responses of the Hartree potential V
(1)
H (r)

and the xc potential µ
(1)
xc (r), for which we will derive formulas in sections 7.1.4.2 and 7.1.4.3.

Before we discuss the calculation of the basis function response in section 7.1.1, we show
now that the sums over K in Eq. (6.37 revisited) actually collapse to K = k± q (l.h.s.) or

K = k (r.h.s.). We assume for the moment that φ
(1)
KG(r) decomposes similarly to V

(1)
ext (r)

into

φ
(1)
KG(r) =

∑

α

QT
α · φ(1)α+

KG (r) +
∑

α

Q∗T
α · φ(1)α−

KG (r) (7.11)

with φ
(1)α±
KG (r) being Bloch waves of wave vectorK±q. This will be proven in section 7.1.1.

In addition, we concentrate for now on the case q 6= 0 and neglect any contribution from

ǫ
(1)
ik . Then, also the expansion coefficients can be decomposed into q and −q components,
or into components belonging to Qα and Q∗

α, respectively:

z
ik(1)
KG =

∑

α

QT
α · zik(1)α+KG +

∑

α

Q∗T
α · zik(1)α−KG . (7.12)

The Sternheimer equation to determine the response of the expansion coefficients z
ik(1)α±
KG

being factors of a particular Q(∗)T
α consequently takes the form

∑

KG

〈

φ
(0)
LG′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
KG

〉

V
z
ik(1)α±
KG

=−
∑

KG

{

〈

φ
(0)
LG′

∣

∣

∣V
(1)α±
eff

∣

∣

∣φ
(0)
KG

〉

V

+
〈

φ
(1)α∓
LG′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
KG

〉

V
+
〈

φ
(0)
LG′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(1)α±
KG

〉

V

+
∑

R

e±iq·R ·
∮

∂MT(α,R)

ê
[

φ
(0)∗
LG′(Ĥ0 − ǫ

(0)
ik )φ

(0)
KG

]

SF
dS

}

z
ik(0)
KG . (7.13)
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7. Phonons in FLAPW using DFPT

Making use of the fact that the integral over a Bloch function of non-vanishing Bloch
vector is identically zero (and treating the surface integral as a volume integral by Gauss’
theorem), we realize that the right-hand side of Eq. (7.13) only contributes in the case

L = K ± q. Moreover, the definition z
ik(0)
KG = δkKz

(0)
ikG from Eq. (6.25) implies for the

r.h.s. that L = k ± q. For this choice of L, on the l.h.s. also K = k ± q holds and the

Sternheimer equation defining the components of the expansion-coefficient response z
ik(1)α±
KG

becomes
∑

G

〈

φ
(0)
k±q,G′

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
φ
(0)
k±q,G

〉

V
z
ik(1)α±
k±q,G

=−
∑

G

{

〈

φ
(0)
k±q,G′

∣

∣

∣V
(1)α±
eff

∣

∣

∣φ
(0)
kG

〉

V

+
〈

φ
(1)α∓
k±q,G′

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
φ
(0)
kG

〉

V
+
〈

φ
(0)
k±q,G′

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣φ
(1)α±
kG

〉

V

+
∑

R

e±iq·R ·
∮

∂MT(α,R)

ê
[

φ
(0)∗
k±q,G′(Ĥ0 − ǫ

(0)
ik )φ

(0)
kG

]

SF
dS

}

z
ik(0)
kG . (7.14)

For any other choice of L, the first-order change in the expansion coefficients vanishes. This

we see by operating from the left with
∑

G′ z
jl(0)∗
LG′ on Eq. (7.13), where by L = l 6= k ± q

the right-hand side of this equation is zero. We obtain

∑

GG′

z
jl(0)∗
LG′

〈

φ
(0)
LG′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
LG

〉

V
z
ik(1)α±
LG =

∑

G

〈

ψ
(0)
jl

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
lG

〉

V
z
ik(1)α±
lG

=
(

ǫ
(0)
jl − ǫ

(0)
ik

)

∑

G

〈

ψ
(0)
jl

∣

∣

∣φ
(0)
lG

〉

V
z
ik(1)α±
lG = 0. (7.15)

This is true for all j at a chosen l, implying z
ik(1)α±
lG = 0 for all l 6= k ± q.

Furthermore, we can use the periodicity of the integrands in Eq. (7.14) to limit the evalu-
ation of the integrals to the representative unit cell Ω at R = 0. In the picture of the large,
but finite system, the integrals then have to be multiplied by the factor N defining the size
of the system. Since in this picture, the wave functions are normalized with respect to NΩ,
the evaluation of the Sternheimer equation can be performed per unit cell using the regular
LAPW wave functions and thus omitting the factor N alltogether.

The neglect of a contribution from ǫ
(1)
ik does not limit the generality of the results above,

as long as q 6= 0, since for non-vanishing q, ǫ
(1)
ik is zero. In order to prove this statement,

we operate with
∑

G′ z
ik(0)∗
kG′ on Eq. (6.37 revisited). Then, the left-hand side yields zero in

analogy to Eq. (7.15) and the right-hand side gives ǫ
(1)
ik :

∑

GG′

z
ik(0)∗
kG′

〈

φ
(0)
kG′

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
φ
(0)
kG

〉

V
z
ik(1)
kG

=
∑

G

〈

ψ
(0)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
kG

〉

V
z
ik(1)
kG

=
(

ǫ
(0)
ik − ǫ

(0)
ik

)〈

ψ
(0)
ik

∣

∣

∣φ
(0)
kG

〉

V
z
ik(1)
kG = 0 = ǫ

(1)
ik (7.16)
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7.1. First-order changes

For q = 0 on the other hand, the same procedure yields zero for the left-hand side of the

equation again. However, the right-hand side defines ǫ
(1)
ik as

ǫ
(1)
ik =

〈

ψ
(0)
ik

∣

∣

∣V
(1)
eff

∣

∣

∣ψ
(0)
ik

〉

V
+
〈

ψ̃
(1)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(0)
ik

〉

V
+
〈

ψ
(0)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ̃
(1)
ik

〉

V

+
∑

αR

wT
αR ·

∮

∂MT(α,R)

ê
[

ψ
(0)∗
ik (Ĥ0 − ǫ

(0)
ik )ψ

(0)
ik

]

SF
dS (7.17a)

=
∑

α

Q T
α ·

{

〈

ψ
(0)
ik

∣

∣

∣
V

(1)α+
eff

∣

∣

∣
ψ
(0)
ik

〉

V
+
∑

G′

z
ik(0)∗
kG′

〈

φ
(1)α−
kG′

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
ψ
(0)
ik

〉

V

+
∑

G

〈

ψ
(0)
ik

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
φ

(1)α+
kG

〉

V
z
ik(0)
kG

+N

∮

∂MT(α,0)

ê
[

ψ
(0)∗
ik (Ĥ0 − ǫ

(0)
ik )ψ

(0)
ik

]

SF
dS

}

(7.17b)

+
∑

α

Q∗T
α ·

{

〈

ψ
(0)
ik

∣

∣

∣V
(1)α−
eff

∣

∣

∣ψ
(0)
ik

〉

V
+
∑

G′

z
ik(0)∗
kG′

〈

φ
(1)α+
kG′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(0)
ik

〉

V

+
∑

G

〈

ψ
(0)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(1)α−
kG

〉

V
z
ik(0)
kG

+N

∮

∂MT(α,0)

ê
[

ψ
(0)∗
ik (Ĥ0 − ǫ

(0)
ik )ψ

(0)
ik

]

SF
dS

}

(7.17c)

Here, the ± does not denote a shift in the wave vector of a Bloch function, but indicates only
the affiliation to Qα or Q∗

α. Also, the linear response of the eigenenergy can be evaluated
considering only a single unit cell. The integrals are periodic, yielding a factor N when the
domain of integration is reduced to Ω, while the normalization of the wave functions cancels
this factor. We define

ǫ
(1)α±
ik =

〈

ψ
(0)
ik

∣

∣

∣V
(1)α±
eff

∣

∣

∣ψ
(0)
ik

〉

+

∮

∂MT(α)

ê
[

ψ
(0)∗
ik (Ĥ0 − ǫ

(0)
ik )ψ

(0)
ik

]

SF
dS

+
∑

G′

z
ik(0)∗
kG′

〈

φ
(1)α∓
kG′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(0)
ik

〉

+
∑

G

〈

ψ
(0)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(1)α±
kG

〉

z
ik(0)
kG

(7.18)

and include this term into Eq. (7.14). Thus, the Sternheimer equation, which determines
the first-order changes in the wave functions, and thus subsequently in the density, and in
the potential is given by

∑

G

〈

φ
(0)
k±q,G′

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
φ
(0)
k±q,G

〉

z
ik(1)α±
k±q,G

=−
∑

G

{

〈

φ
(0)
k±q,G′

∣

∣

∣V
(1)α±
eff − δq0ǫ

(1)α±
ik

∣

∣

∣φ
(0)
kG

〉

+
〈

φ
(1)α∓
k±q,G′

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
φ
(0)
kG

〉

+
〈

φ
(0)
k±q,G′

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
φ

(1)α±
kG

〉

+

∮

∂MT(α,0)

ê
[

φ
(0)∗
k±q,G′(Ĥ0 − ǫ

(0)
ik )φ

(0)
kG

]

SF
dS

}

z
ik(0)
kG . (7.19)

109



7. Phonons in FLAPW using DFPT

As the next step, we derive the first-order variation of the basis functions in the frozen-
augmentation approximation. Afterwards, we present the linear response of the electronic
density, and the effective potential.

7.1.1. Evaluation of φ
(1)
KG

(r)

The LAPW basis functions are constructed from plane waves in the interstitial region to
which radial functions and spherical harmonics are matched in the muffin-tin spheres. In
the current setting of a large but finite structure containing N unit cells,1 we define the
perturbed basis functions to be normalized over the whole structure. Abbreviating the
positions of the atomic nuclei in the perturbed system by rαRw = τα+R+wαR, the basis
functions take the form

φkG(r) =

{

1√
NΩ

ei(k+G)·r , r ∈ IR
1√
N

∑

lmλ a
αRkG
lmλ uαRlλ (|r − rαRw|)Ylm( ̂r − rαRw) , r ∈ MT(α,R)

, (7.20)

where we explicitly denote the unit cell R in which we evaluate the muffin-tin contribu-

tion. We construct the variation of the basis functions φ
(1)
kG within the frozen-augmentation

approximation. Within this approximation, only the explicit dependence of the basis func-

tions on the perturbation is taken into account for determining φ
(1)
kG. A change in the radial

functions due to an adjustment of the effective potential is neglected. The linear response

in the basis functions in turn leads to the part ψ̃
(1)
ik of the wave function response that is not

completely contained in the LAPW basis space, according to Eq. (6.26). From Eq. (3.17) we
know that the explicit dependence of the matching coefficients aαRkG

lmλ on the perturbation
w is given through the phase factor exp[i(k + G) · rαRw], which characterizes φkG as a
Bloch function of wave vector k. An explicit dependence of the radial function uαRlλ and the
spherical harmonic Ylm exists due to the local coordinate frame. Hence, at the level of the
frozen-augmentation approximation, at which the change in the potential does not affect
the radial functions, the linear response of the basis functions due to a displacive response
w is

φ
(1)
kG(r) =

{

0 , r ∈ IR

wT
αR · [i(k +G)−∇]φ

(0)
kG(r) , r ∈ MT(α,R)

. (7.21)

The MT part of φ
(1)
kG(r) can be rewritten as

φ
(1)
kG(r) =

∑

αR

Θ(Rα − |r − τα −R|)QT
α · [i(k +G)−∇]eiq·Rφ(0)kG(r)

+
∑

αR

Θ(Rα − |r − τα −R|)Q∗T
α · [i(k +G)−∇]e−iq·Rφ(0)kG(r) (7.22a)

=:
∑

α

QT
α · φ(1)α+

kG (r) +
∑

α

Q∗T
α · φ(1)α−

kG (r) (7.22b)

which is a superposition of Bloch waves φ
(1)α±
kG of wave vector k ± q. Rigorously, also the

variation in the shape of the basis function due to the change in the potential has to be
calculated. This corresponds to a lifting of the frozen-augmentation approximation. Such a

1The limit N → ∞ is taken at the end.
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7.1. First-order changes

change of the basis functions has been discussed by Betzinger et al. [149, 150] in the context
of the exact-exchange optimized-effective-potential approach.

We insert the variation of the (unit-cell normalized) basis functions into the Sternheimer
equation, Eq. (7.19), to obtain

∑

G

〈

φ
(0)
k±q,G′

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
φ
(0)
k±q,G

〉

z
ik(1)α±
k±q,G

=−
∑

G

{

〈

φ
(0)
k±q,G′

∣

∣

∣V
(1)α±
eff − δq0ǫ

(1)α±
ik

∣

∣

∣φ
(0)
kG

〉

+ i(G−G′ ∓ q)
〈

φ
(0)
k±q,G′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
kG

〉

α

−
〈

∇φ(0)
k±q,G′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
kG

〉

α
−
〈

φ
(0)
k±q,G′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣∇φ(0)kG

〉

α

+

∮

∂MT(α,0)

ê
[

φ
(0)∗
k±q,G′(Ĥ0 − ǫ

(0)
ik )φ

(0)
kG

]

SF
dS

}

z
ik(0)
kG . (7.23)

Adding and subtracting 〈φ(0)
k±q,G′ |∇V (0)

eff |φ(0)kG〉α to the third line of the right-hand side of
the previous equation allows us to apply Gauss’ theorem. After all surface terms have been
taken into account, this procedure transforms the Sternheimer equation into

∑

G

〈

φ
(0)
k±q,G′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
k±q,G

〉

z
ik(1)α±
k±q,G

=−
∑

G

{

〈

φ
(0)
k±q,G′

∣

∣

∣V
(1)α±
eff − δq0ǫ

(1)α±
ik

∣

∣

∣φ
(0)
kG

〉

+
〈

φ
(0)
k±q,G′

∣

∣

∣∇V (0)
eff

∣

∣

∣φ
(0)
kG

〉

α

− i(G′ ± q −G)
〈

φ
(0)
k±q,G′

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
φ
(0)
kG

〉

α

−
∮

∂MT(α,0)

ê
[

φ
IR(0)∗
k±q,G′(Ĥ0 − ǫ

(0)
ik )φ

IR(0)
kG

]

dS

}

z
ik(0)
kG . (7.24)

In the first line of the right-hand side of this equation, the linear response of the effective

potential V
(1)α±
eff (r) occurs together with the gradient of the effective potential ∇V (0)

eff (r) in
the muffin-tin sphere of the displaced atom α. During the self-consistency cycle to solve the
Sternheimer equation, this can be useful as it avoids the delicacy to numerically calculate
the gradient of the effective potential. Therefore, it is possible to solve the Sternheimer
equation numerically stable. In Eqs. (6.23) and (6.52), which define the contributions to
the second-order variation of the total energy, such a cancellation does not occur, though.

7.1.2. Evaluation of the core state change ψ
(1)
ik (r)

Similar to the frozen-augmentation approximation for the valence states, we employ the
frozen-core approximation for the core states, i.e., the change in the wave functions of the
core states is only due to the explicit dependence of the core states on the perturbation
w, not due to the adjustment of the effective potential caused by the perturbation. This
explicit dependence occurs only by means of the local coordinate system r−rαRw, rαRw =
τα +R +wαR, of the atom the core state is attached to. We remind the reader that the
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7. Phonons in FLAPW using DFPT

multiindex i = (βplml) specifying the core state comprises of the atom index β and the
prime, angular momentum, and magnetic quantum numbers p, l, and ml. Since according
to chapter 3.4 the core states in different unit cells R′ are multiplied by a Bloch factor
exp(ik ·R′), the first-order variation of the core states can be extracted from

ψik(r) =
1√
N

∑

R′

uβl (|r − rβR′w|)Ylm(r̂ − rβR′w)eik·R
′

. (7.25)

The first-order variation of this expression is given by

ψ
(1)
ik (r) = −QT

β · ∇ψ(0)
ik+q(r)−Q∗T

β · ∇ψ(0)
ik−q(r) (7.26)

and defines the vector valued quantities

ψ
(1)α±
ik (r) = −δαβ∇ψ(0)

ik±q(r), (7.27)

which are Bloch functions of wave vector k ± q.

The first-order change ψ
(1)
ik (r) of the core state does contribute to the first-order change in

the density and subsequently in the Hartree and xc potentials. Other than that, it does not
explicitly appear within the Sternheimer equation that determines the first-order variation

of the expansion coefficients z
(1)
KG of the valence states. Moreover, the calculation of the

core state response does not involve the Sternheimer matrix equation, Eq. (7.19), since they
are not represented by a basis. In addition, the response of the core states does not need
to be determined self-consistently within the frozen-core approximation. We proceed by
presenting the first-order change in the electronic density.

7.1.3. Evaluation of ρ(1)(r)

Eqs. (7.15) and (7.22) suggest that just as the response of the expansion coefficients and
the response of the basis functions, the first-order change in the valence wave functions is

separable into two Bloch waves ψ
(1)α±
ik of wave vectors k ± q:

ψ
(1)
ik (r) =

∑

KG

[

z
ik(1)
KG φ

(0)
KG(r) + z

ik(0)
KG φ

(1)
KG(r)

]

=
∑

α

QT
α ·
∑

G

[

z
ik(1)α+
k+q,G φ

(0)
k+q,G(r) + z

ik(0)
kG φ

(1)α+
kG (r)

]

+
∑

α

Q∗T
α ·

∑

G

[

z
ik(1)α−
k−q,G φ

(0)
k−q,G(r) + z

ik(0)
kG φ

(1)α−
kG (r)

]

= :
∑

α

QT
α ·ψ(1)α+

ik +
∑

α

Q∗T
α ·ψ(1)α−

ik (7.28)

Provided that time-reversal symmetry holds, the variation of the conjugated wave function
is connected with the variation of the regular wave function by

(

ψ
(1)α±
ik (r)

)∗
= ψ

∗(1)α∓
ik (r) (7.29)

as is stated for example in Ref. [36].

112



7.1. First-order changes

Consequently, also the density variation decomposes into two Bloch functions of wave
vectors ±q according to

ρ(1)(r) = ρ(1)+(r) + ρ(1)−(r) =
∑

α

QT
α · ρ(1)α+(r) +

∑

α

Q∗T
α · ρ(1)α−(r) (7.30)

with the density response vectors given by

ρ(1)α±(r) =
∑

ik

f
(0)
ik

{

ψ
∗(1)α±
ik (r)ψ

(0)
ik (r) + ψ

(0)∗
ik (r)ψ

(1)α±
ik (r)

}

. (7.31a)

Thus, the ±q-part of the density response has contributions from the ∓q wave functions.
Using time-reversal symmetry, we can simplify this equation to yield

ρ(1)α±(r) =
∑

ik

f
(0)
ik

{

ψ
(1)α±
i−k (r)ψ

(0)∗
i−k (r) + ψ

(0)∗
ik (r)ψ

(1)α±
ik (r)

}

= 2
∑

ik

f
(0)
ik ψ

(0)∗
ik (r)ψ

(1)α±
ik (r). (7.31b)

By inserting the wave function response according to Eqs. (6.26) and (7.22) into Eq. (7.31b)
we obtain

ρ(1)α±(r) = −
core
∑

ik

f
(0)
ik δαβ

∑

R

e±iq·R∇ρ(0)ik (r)

+ 2
val
∑

ik

f
(0)
ik

∑

GG′

{

z
ik(0)∗
kG′ z

ik(1)α±
k±q,G φ

(0)∗
kG′(r)φ

(0)
k±q,G(r)

+
∑

R

Θ(Rα − |r − τα −R|)e±iq·Rzik(0)∗
kG′ z

ik(0)
kG

φ
(0)∗
kG′(r) [i(k +G)−∇]φ

(0)
kG

(r)

}

.

(7.32)

The first term in curly brackets is due to the variation in the expansion coefficients, while
the third line results from the variation in the basis functions. When the summations are
executed, the very last term including the gradient ∇ becomes the gradient of the unper-

turbed valence density. In general, ρ
(0)
ik (r) denotes the part of the density generated by the

state (ik), without the weighting factor f
(0)
ik . In the first line, (ik) refers to the core states.

We explicitly separate the shift in the Bloch wave vector by including
∑

R exp(±iq ·R) in
the formula. Furthermore, to properly consider the coretail in this term, we convolute the

summation over the core states to yield the pseudo core density of atom α, ρ̃
α(0)
core (r − τα),

which we introduced in Eq. (3.36). In this equation, the density of the core states within
their native muffin-tin sphere is replaced by a Gaussian to allow for a rapidly convergent
Fourier expansion of the core density. We undo this replacement when we discuss the den-
sity response within the MT sphere of atom α.
In the following, we develop the explicit formulas for the density response in the IR and MT
spheres by substituting the basis functions by their corresponding IR and MT representa-
tion. Since we can restrict the density times potential integrals over the whole lattice to
a single unit cell by changing the normalization of the LAPW basis function to Ω, we will
only consider the representative unit cell R = 0.
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7. Phonons in FLAPW using DFPT

Interstitial region

In the interstitial region, the density response is composed of the response of the coretail
density and the response of the expansion coefficients, since the last line of Eq. (7.32) is
only non-zero in the MT spheres. The interstitial density response takes the form

ρ(1)α±(r) =−
∑

G

i(G± q)ˆ̃ρα(0)core (G)ei(G±q)·r

+ 2

val
∑

ik

f
(0)
ik

∑

GG′

z
ik(0)∗
kG′ z

ik(1)α±
k±q,G

1

Ω
ei(G±q−G′)·r. (7.33a)

By rearranging the sums such that the reciprocal summation comes first, we find

ρ(1)α±(r) =−
∑

G

i(G± q)ˆ̃ρα(0)core (G)ei(G±q)·r

+
∑

GG′

2
val
∑

ik

f
(0)
ik z

ik(0)∗
kG′ z

ik(1)α±
k±q,G

1

Ω
ei(G±q−G′)·r

=
∑

G′′

ρ̂
(1)α±(G′′)ei(G

′′±q)·r. (7.33b)

We have subsumed the remaining terms in the Fourier coefficient

ρ̂
(1)α±(G′′) =− i(G′′ ± q)ˆ̃ρα(0)core (G

′′)

+
2

Ω

∑

G′

val
∑

ik

f
(0)
ik z

ik(0)∗
kG′ z

ik(1)α±
k±q,G′′+G′ . (7.33c)

Muffin-tin spheres

We calculate first the spherical harmonic expansion of the first-order change in the density
due to a displacement of the atomic nucleus α at an arbitrary muffin-tin sphere β 6= α.
According to Eq. (7.32), it is given by

ρ(1)α±(r) =
∑

lm

ρ
(1)α±
lmβ (rβ)Ylm(r̂β) (7.34a)

with the local coordinates rβ = r − τβ and the expansion coefficients

ρ
(1)α±
lmβ (rβ) =− 4πil

∑

G

i(G± q)ei(G±q)·τβ ˆ̃ρα(0)core (G)Y ∗
lm(Ĝ± q)jl(|G± q|rβ)

+ 2
val
∑

ik

f
(0)
ik

∑

GG′

∑

l′m′λ′l′′m′′λ′′

Gm′′,m,m′

l′′,l,l′ uβl′λ′(rβ)u
β
l′′λ′′(rβ)

× z
ik(0)∗
kG′ z

ik(1)α±
k±q,G aβkG

′∗
l′m′λ′ a

β,k±q,G
l′′m′′λ′′ . (7.34b)
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We introduce the G contraction of the perturbed expansion coefficients with the unper-
turbed matching coefficients in analogy to Eq. (3.23) for the unperturbed expansion and
matching coefficients:

Aαik±
lmλβ =

∑

G

z
ik(1)α±
k±q,G aβ,k±q,G

lmλ (7.34c)

Using these coefficients, the density response simplifies to

ρ
(1)α±
lmβ (rβ) =− 4πil

∑

G

i(G± q)ei(G±q)·τβY ∗
lm(Ĝ± q)jl(|G± q|rβ)ˆ̃ρα(0)core (G)

+
∑

l′λ′l′′λ′′

uβl′λ′(rβ)u
β
l′′λ′′(rβ)

∑

m′m′′

Gm′′,m,m′

l′′,l,l′ 2
val
∑

ik

f
(0)
ik A

βik∗
l′m′λ′A

αik±
l′′m′′λ′′β .

(7.34d)

At muffin-tin sphere α of the representative unit cell R = 0, the expansion coefficients

ρ
(1)α±
lmα have to be further modified. For once, we added the Fourier expansion of the pseudo

core density response at all muffin-tin spheres. This has to be corrected in the muffin-tin
sphere of atom α by replacing the pseudo core density by the original core density. Second,
at the muffin-tin sphere of atom α, the last line of Eq. (7.32) contributes. Therefore, we
have to complement Eq. (7.34d) in the MT sphere of atom α by

{

2
val
∑

ik

f
(0)
ik

∑

GG′

z
ik(0)∗
kG

z
ik(0)
kG′ φ

α(0)∗
kG

(rα) [i(k +G)−∇]φ
α(0)
kG′ (rα)

−∇ρα(0)core (rα) +∇ρ̃α(0)core (rα)

}

lm

= 2i
∑

l′λ′l′′λ′′

uαl′λ′(rα)u
α
l′′λ′′(rα)

∑

m′m′′

Gm′′,m,m′

l′′,l,l′

×
∑

ik

f
(0)
ik A

αik∗
l′m′λ′

[

kAαik
l′′m′′λ′′ +Aαik

l′′m′′λ′′

]

− T
√

4π

3

∑

l′m′

∑

m′′

êm′′

1,2
∑

l′′=−1

Gm,m′,m′′

l,l′,1 δl,l′+l′′δm,m′+m′′

×
[

ρ
α(0)′
l′m′ (rα)−

(

l′′l′ +
l′′ − 1

2

)

ρ
α(0)
l′m′ (rα)

rα

]

− 2rαaαAαe
−aαr2α

3
∑

i=1

êici,mδ1l. (7.34e)

The second term, which includes the transformation matrix T from the natural coordinates
to Cartesian coordinates defined in Eq. (4.18), subsumes the gradient of the valence density
and of the original core density of atom α, while the last term accounts for the gradient of
the pseudo core density.

With the response of the density due to a collective displacement of the atoms modulated
by a wave vector q at hand, we are now in the position to calculate the linear change in the
Hartree and the xc potential.
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7.1.4. Evaluation of the first-order changes of the potential

According to Eq. (6.15a revisited), the first-order change of the effective potential decom-
poses into first-order changes in the external potential, the Hartree potential, and the xc
potential. We will discuss each component separately in the following sections.

7.1.4.1. The first-order change V
(1)
ext(r) of the external potential

The first-order change in the external potential is special for two reasons. First, it is the
pure perturbation and does not change during the iterations of the Sternheimer equation.
Therefore, it has to be calculated only once at the beginning of the calculation. Second, it
represents the starting ’guess’ for the change in the effective potential to initialize the SCF

cycle, i.e., in the first iteration, it is V
(1)
eff (r) = V

(1)
ext (r).

Formally, we have given the first-order change in the external potential in Eq. (7.6). How-
ever, in order to use it in the Sternheimer equation, Eq. (7.24), we need to express it in
terms of radial functions times spherical harmonics in the muffin-tin spheres and in terms
of a Fourier expansion in the interstitial region, as is the common procedure in the FLAPW

method. The respective representations of V
(1)
ext (r) can be obtained using the procedure

by Weinert as introduced in chapter 3.7. In the Weinert scheme, the electrostatic poten-
tial in the interstitial region is constructed from the interstitial charge density and from
a pseudodensity in the muffin-tin spheres which has the same multipole moments as the
original density, but has a rapidly converging Fourier expansion. The MT potential is then
constructed from a Dirichlet boundary value problem using the correct local density in the
MT sphere and the potential from the IR as boundary values.

Construction of the pseudodensity

In order to use the Weinert method, we first need to identify the density in the muffin-tin
spheres from which we construct a smooth pseudodensity with the same multipole moments.
According to Eqs. (7.6) and (7.8), the linear change of the external potential can be written
as

V
(1)α±
ext (r) = −

∑

R

e±iq·R∇V αR
ext (r)

=

∫
∑

R Zαe
±iq·R∇′δ(r′ − τα −R)

|r − r′| d3r′. (7.35)

Similarly, the gradient of the external potential can be expressed by

∇V (0)
ext (r) =

∑

αR

∇V αR
ext (r) = −

∑

α

∫

∇
∑

R Zαδ(r
′ − τα −R)

|r − r′| d3r′

= −
∑

α

∫
∑

R Zα∇′δ(r′ − τα −R)

|r − r′| d3r′. (7.36)

The atomic-density gradients within the integrals deviate from each other by a sign and by
the factor exp(±iq ·R). Therefore, we can define a general ion-density response nαq̃(r) as

nαq̃(r) =
∑

R

Zαe
iq̃·R∇δ(r − τα −R), (7.37)
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which corresponds to the nominator occurring in Eq. (7.36) for q̃ = 0 and in Eq. (7.35)
for q̃ = ±q. It is this expression which we have to replace by a pseudodensity. We use
the symbols n and qlm in analogy to the notation of chapter 3.7, where they denoted
the electrostatic density and its multipole moments, even though nαq̃(r) is technically the
derivative of a δ-density. The multipole moments caused by displacing atom α and its
images according to a perturbation of wave vector q̃ in the muffin-tin sphere of atom β in
unit cell R′ are

q
αq̃
lm(β,R′) =

∫

MT(β,R′)

Y ∗
lm( ̂r − τβ −R′)|r − τβ −R′|lnαq̃(r)d3r

=
∑

R

Zαe
iq̃·R

∫

BRβ
(0)

Y ∗
lm(r̂β)r

l
β∇βδ(rβ − (τα − τβ)− (R−R′))d3rβ

= −Zαe
iq̃·R′

δαβ∇[rlY ∗
lm(r̂)]r=0. (7.38)

We obtained this result by an integration by parts and by realizing that the argument of
the Dirac-δ can only be zero for α = β and for R = R′, since the muffin-tin spheres are
not overlapping. The multipole moments contain a phase factor exp(iq̃ ·R′) corresponding
to the unit cell R′ at which the ion-density response is evaluated. The l = 1 component is
selected because for l = 0, the gradient acts on a constant, while for l ≥ 2 the contribution is
suppressed by the term proportional to rl−1 that remains after application of the gradient,
since the expression is evaluated at the muffin-tin sphere center, i.e., at r = 0. The ion-
density response is zero at every place other than the muffin-tin sphere centers of atom α
and its images, in particular the interstitial contribution to nαq̃(r) is zero. Therefore, no
multipole moments from a plane wave extension into the MT sphere has to be subtracted.
By Eqs. (3.46) and following, the pseudodensity in the muffin-tin sphere of atom α in unit
cell R is given by

nαRq̃
ps (rα) =

1
∑

m=−1

q
αq̃
1m(α,R)Y1m(r̂α)

[

N
∑

η=0

aαη
R2η+5

α

2η + 5

]−1 [ N
∑

η=0

aαη r
2η+1
α

]

= eiq̃·Rnα0q̃
ps (rα) (7.39)

and the Fourier transform of the lattice periodic part over the representative unit cell Ω
(i.e., R = 0) yields

nαq̃
ps (r) = eiq̃·re−iq̃·r

∑

R

nαRq̃
ps (r)Θ(Rα − |r − τα −R|)

= eiq̃·r
∑

G

eiG·r 1

Ω

∫

Ω

e−iG·r′

e−iq̃·r′ ∑

R

nαRq̃
ps (r′)Θ(Rα − |r′ − τα −R|)d3r′

=
∑

G

ei(G+q̃)·rn̂αq̃
ps (G). (7.40)

Following the scheme of Weinert, the Fourier coefficients are given by

n̂
αq̃
ps (G) =

1

Ω

∫

Ω

e−i(G+q̃)·r′ ∑

R

nαRq̃
ps (r′)Θ(Rα − |r′ − τα −R|)d3r′

= −4πi

Ω

1
∑

m=−1

(2N + 5)!!

3Rα

jN+2(|G+ q̃|Rα)

(|G+ q̃|Rα)N+1
qαq̃1m(α,0)e−i(G+q̃)·ταY1m(Ĝ+ q̃). (7.41)
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This can be further simplified by inserting the multipole moment from Eq. (7.38) and sum-
ming over m:

1
∑

m=−1

qαq̃1m(α,0)Y1m(Ĝ+ q̃) = −Zα

1
∑

m=−1

∇ [rY ∗
1m(r̂)]r=0 Y1m(Ĝ+ q̃)

= −Zα∇
[

r

1
∑

m=−1

Y ∗
1m(r̂)Y1m(Ĝ+ q̃)

]

r=0

= −Zα∇
[

r
3

4π
P1(r̂ · (Ĝ+ q̃))

]

r=0

= −Zα
3

4π
∇[r · (Ĝ+ q̃)] = −Zα

3

4π
(Ĝ+ q̃) (7.42)

Here, we used the addition theorem for spherical harmonics Pl(x̂ · ŷ) = 4π/(2l + 1) ·
∑

m Y ∗
lm(x̂)Ylm(ŷ) with the Legendre polynomials Pl(r), P1(r) equaling r. With this, the

Fourier coefficients become

n̂
αq̃
ps (G) =

iZα

Ω
(2N + 5)!!

jN+2(|G+ q̃|Rα)

(|G+ q̃|Rα)N+2
e−i(G+q̃)·τα(G+ q̃). (7.43a)

This expression is undefined for q̃ = G = 0. In this case, we have

n̂
αq̃
ps (0) = 0, (7.43b)

as can be verified by explicitly calculating the Fourier component for G = 0 of nα0
ps (r) and

realizing that the angular integral is only over Y1m(r̂), thus yielding zero, or by showing
that the fraction in Eq. (7.43a) containing the spherical Bessel function is bounded. In this
case, the vector G+ q̃ directly makes the right hand side of the equation zero. In the limit
t→ 0, L’Hôspital’s rule states that

jN+2(t)

tN+2
→ tN+3jN+2(t)

t2N+5
→ tN+3jN+1(t)

(2N + 5)t2N+4
=

tN+2jN+1(t)

(2N + 5)t2N+3

→ tN+2jN (t)

(2N + 5)(2N + 3)t2N+2
→ · · · → 1

(2N + 5)!!
. (7.44)

It is no surprise that the 0-component of the ion-density response vanishes. It contains the
average alteration of ionic charge in the system. However, the phononic perturbation does
not add or remove charges from the system, but only displaces the atoms in the unit cells.

The interstitial contributions

Having knowledge about the Fourier components of the pseudodensity representing the ion-
density response, we can express the interstitial part of the linear change in the external
potential:

V
(1)α±
ext (r) = 4π

∑

G,G±q 6=0

n̂
α±q
ps (G)

|G± q|2 e
i(G±q)·r

=:
∑

G,G±q 6=0

V̂
(1)α±
ext (G)ei(G±q)·r (7.45a)
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∇V (0)
ext (r) = 4π

∑

G 6=0

−∑α n̂
α0
ps (G)

G2
eiG·r =:

∑

G 6=0

̂
[∇V

(0)
ext ](G)eiG·r (7.45b)

We use these results to develop formulas for the muffin-tin parts of V
(1)α±
ext (r) and ∇V (0)

ext (r)
in the following.

The muffin-tin contributions

From the IR representation of the perturbed potential we can calculate the MT part by
making use of the Green function technique as proposed by Weinert. The latter requires
the potential (response) on the surface of the MT sphere, given by Eq. (7.45), and the
true charge density (response) inside the corresponding sphere. In order to make use of

Eq. (3.61), we have to Rayleigh-expand Eq. (7.45). We start the derivation of V
(1)α±
ext (r)

from the Dirichlet boundary-value problem defining the MT change of the external potential
in the MT sphere of atom β in unit cell R′,

V
(1)α±
ext (rβ + τβ +R′) =

∫

BRβ
(0)

nα±q(sβ + τβ +R′)G(rβ , sβ)d
3sβ

− 1

4π

∮

∂BRβ
(0)

V
(1)α±
ext (sβ + τβ +R′)∇sβG(rβ , sβ)dS. (7.46)

Inserting the Green function and its radial derivative defined in Eqs. (3.59) and (3.62), an
integration by parts of the gradient contained in the ion-density response nα±q(sβ+τβ+R

′)
yields

V
(1)α±
ext (rβ + τβ +R′)

= −e±iq·R′

Zαδαβ
4π

3

1

r2α

[

1−
(

rα
Rα

)3
]

1
∑

m=−1

Y1m(r̂α)∇s [sY
∗
1m(ŝ)]s=0

+ e±iq·R′ ∑

G,G±q 6=0

ei(G±q)·τβ V̂
(1)α±
ext (G± q)

×
∑

lm

(

rβ
Rβ

)l

4πilY ∗
lm(Ĝ± q)jl(|G± q|Rβ)Ylm(r̂β). (7.47)

The first part of the equation stems from the volume integral containing the true ion-
density response, while the second part is due to the surface integral. Similarly, we find for
the gradient of the external potential

∇V (0)
ext (rβ + τβ +R′)

= Zαδαβ
4π

3

1

r2α

[

1−
(

rα
Rα

)3
]

1
∑

m=−1

Y1m(r̂α)∇s [sY
∗
1m(ŝ)]s=0

+
∑

G 6=0

eiG·τβ
̂

[

∇V
(0)
ext

]

(G)
∑

lm

(

rβ
Rβ

)l

4πilY ∗
lm(Ĝ)jl(GRβ)Ylm(r̂β). (7.48)
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The gradient of sY ∗
1m can be combined with the sum over m to yield r̂α as was done in

Eq. (7.42). A subsequent expansion of r̂α in terms of spherical harmonics results in the
equality

1
∑

m=−1

Y1m(r̂α)∇s [sY
∗
1m(ŝ)]s=0 =

3

4π
r̂α =

3

4π

1
∑

m=−1

Y1m(r̂α)

3
∑

i=1

êici,m (7.49)

with the Cartesian basis vectors êi and the coefficients ci,m from Eq. (4.28).
When the linear perturbation of the external potential and the gradient of the unperturbed
external potential are combined in Eq. (7.24) for evaluating the muffin-tin sphere contribu-

tion of atom α in the representative unit cell R′ = 0, the contributions from V
(1)α±
ext and

∇V (0)
ext stemming from the volume integral over the local ion-density response cancel, leaving

only the surface terms to be considered. Hence, the numerically delicate step of calculating

the gradient of V
(0)
ext (r) can be completely avoided for evaluating the Sternheimer equation.

7.1.4.2. The first-order change V
(1)
H (r) of the Hartree potential

To obtain all ingredients for the Sternheimer equation, Eq. (7.24), we also need the response
of the Hartree potential, which, according to Eq. (6.38), is given as

V
(1)α±
H (r) =

∫

ρ(1)α±(r′)

|r − r′| d3r′ +
∑

R

e±iq·R
∮

∂MT(α,R)

ê
′
[

ρ(0)(r′)
]

SF

|r − r′| dS′, (7.50)

as well as the gradient of the Hartree potential in the muffin-tin sphere of atom α,

∇VH(r) = ∇
∫

ρ(r′)

|r − r′|d
3r′

=

∫ ∇′ρ(r′)

|r − r′|d
3r′ −

∑

βR

∮

MT(β,R)

ê
′
[

ρ(0)(r′)
]

SF

|r − r′| dS′. (7.51)

We obtained the second line of the right-hand side by an integration by parts. In this form,
it is explicitly visible how the density response ρ(1)α± and the density gradient ∇′ρ interact
when the Hartree response and the gradient of the Hartree potential come together in the
Sternheimer equation, Eq. (7.24); also the density terms add up to ρ(1)α±(r′) + ∇′ρ(r′),
similar to the potential terms. In Eq. (7.32), ρ(1)α±(r′) is shown to contain the negative
gradient of the density in the MT spheres of atom α and its images.

Construction of the pseudodensity

We want to use the Weinert method introduced in chapter 3.7 to construct expressions for
the Hartree response and the gradient of the Hartree potential. Before we do so, we need to
rewrite the surface integrals in terms of a volume integral in order to include them into the
construction of the pseudodensity response. If we denote with q̃ any of 0 or ±q, the surface
terms of the Hartree response and the gradient of the Hartree potential can be written as

∑

R

eiq̃·R
∮

∂MT(α,R)

ê
′
[

ρ(0)(r′)
]

SF

|r − r′| dS′
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=

∫

[

ρ(0)(r′)
]

SF

∑

R e
iq̃·R( ̂r′ − τα −R)δ(Rα − |r′ − τα −R|)

|r − r′| d3r′. (7.52)

Therefore, we define as the density response from the surface integrals the term

nαq̃(r) =
[

ρ(0)(r)
]

SF

∑

R

eiq̃·R( ̂r − τα −R)δ(Rα − |r − τα −R|). (7.53)

In the MT sphere of atom β in unit cell R′, it gives rise to the multipole moments

q
αq̃
lm(β,R′) =

∫

MT(β,R′)

Y ∗
lm( ̂r − τβ −R′)|r − τβ −R′|lnαq̃(r)d3r

= δαβ

∮

∂BRα (0)

Y ∗
lm(r̂α)r

l
α

[

ρ(0)(rα + τα)
]

SF
eiq̃·R

′

êdSα

= δαβe
iq̃·R′

Rl
α

3
∑

i=1

êi

1
∑

m′′=−1

ci,m′′

l+1,2
∑

l′=|l−1|
Gm,m−m′′,m′′

l,l′,1

[

ρ
α(0)
l′,m−m′′(Rα)

]

SF

(7.54)

In addition, the multipole moments from the density terms in the volume integrals of
Eqs. (7.50) and (7.51) have to be constructed. In contrast to the ion-density response,
the electronic density response and the gradient of the electronic density are non-zero in
the interstitial region. Therefore, also the multipole moments of the plane wave terms ex-
tended into the muffin-tin spheres must be included. For the density response ρ(1)α±(r),
the multipole moments in MT sphere β of unit cell R′ are given by

q
α±q
lm,δρ(β,R

′) =

∫

MT(β,R′)

Y ∗
lm( ̂r − τβ −R′)|r − τβ −R′|l[ρ(1)α±(r)− ρ(1)α±PW (r)]d3r

=

∫

BRβ
(0)

Y ∗
lm(r̂β)r

l
βe

±iq·R′

[ρ(1)α±(rβ + τβ)− ρ(1)α±PW (rβ + τβ)]d
3rβ (7.55)

The formula for the MT representation of the density response is given in Eq. (7.34), while
its IR representation is expressed in Eq. (7.33). In order to use the latter in the equation
above, the exp[i(G± q) · r] have to be Rayleigh-expanded to

ei(G±q)·r = ei(G±q)·τβ

∑

lm

4πilY ∗
lm(Ĝ± q)jl(|G± q|rβ)Ylm(r̂β). (7.56)

Then the multipole moments of the density response become

q
α±q
lm,δρ(β,R

′) = e±iq·R′
∫ Rβ

0

rl+2
β ρ

(1)α±
lmβ (rβ)drβ

− e±iq·R′ ∑

G

ρ̂
(1)α±
PW (G)ei(G±q)·τβ4πilY ∗

lm(Ĝ± q)

×
∫ Rβ

0

rl+2
β jl(|G± q|rβ)drβ
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= e±iq·R′
∫ Rβ

0

rl+2
β ρ

(1)α±
lmβ (rβ)drβ − 4πilRl+3

β e±iq·R′

×
∑

G

ρ̂
(1)α±
PW (G)ei(G±q)·τβY ∗

lm(Ĝ± q)jl+1(|G± q|Rβ)

|G± q|Rβ
. (7.57)

Similarly, the multipole moments due to the periodic density gradient are given by

q0lm,∇ρ(β) =

∫

BRβ
(0)

Y ∗
lm(r̂β)r

l
β [∇βρ

(0)(rβ + τβ)−∇βρ
(0)
PW(rβ + τβ)]d

3rβ

=

∫ Rβ

0

rl+2
β

{

[∇ρ(0)]
β

lm(rβ)− [∇ρ
(0)
PW]

β

lm(rβ)

}

drβ , (7.58)

where we abbreviated the gradient of the MT and IR representation of the density evaluated
in the MT sphere of atom β as

[∇ρ(0)]
β

lm(rβ) =

∮

∂B1(0)

Y ∗
lm(r̂β)∇β

∑

l′m′

ρ
β(0)
l′m′(rβ)Yl′m′(r̂β)dSβ

=

√

4π

3

1
∑

m′′=−1

T êm′′

{

Gm,m−m′′,m′′

l,l−1,1

[

ρ
β(0)
l−1,m−m′′(rβ)− (l − 1)

ρ
β(0)
l−1,m−m′′(rβ)

rβ

]

+Gm,m−m′′,m′′

l,l+1,1

[

ρ
β(0)
l+1,m−m′′(rβ) + (l + 2)

ρ
β(0)
l+1,m−m′′(rβ)

rβ

]}

(7.59)

and

[∇ρ
(0)
PW]

β

lm(rβ) =

∮

∂B1(0)

Y ∗
lm(r̂β)∇β

∑

G

ρ̂(0)(G)eiG·(rβ+τβ)dSβ

= eiG·τβ4πil
∑

G

iGρ̂(0)(G)Y ∗
lm(Ĝ)jl(Grβ). (7.60)

The total multipole moments from which the pseudodensities for constructing V
(1)α±
H (r)

and ∇V (0)
H (r) are determined, are the sums of Eqs. (7.54) and (7.57) for q̃ = ±q and of

Eqs. (7.54) and (7.58) for q̃ = 0:

q
α±q
lm,δρ,tot(β,R

′) = qα±q
lm,δρ(β,R

′) + qα±q
lm (β,R′) (7.61)

q0lm,∇ρ,tot(β) = q
0
lm,∇ρ(β)−

∑

α

qα0lm(β,0) (7.62)

Inserting these multipole moments into Eq. (3.55), the Fourier coefficients of the correspond-
ing pseudodensities are given by

ρ̂
(1)α±
ps (G) = ρ̂

(1)α±
PW (G) +

4π

Ω

∑

β

∑

lm

(−i)l(2l + 2N + 3)!!

(2l + 1)!!Rl
β

jl+N+1(|G± q|Rβ)

(|G± q|Rβ)N+1

× qα±q
lm,δρ,tot(β,0)e

−i(G±q)·τβYlm(Ĝ± q) (7.63)

and

̂[∇ρ(0)ps ](G) =
̂

[∇ρ
(0)
PW](G) +

4π

Ω

∑

β

∑

lm

(−i)l(2l + 2N + 3)!!

(2l + 1)!!Rl
β

jl+N+1(GRβ)

(GRβ)N+1
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× q0lm,∇ρ,tot(β)e
−iG·τβYlm(Ĝ). (7.64)

For G = q̃ = 0, we recover an analogon to Eq. (3.56) by applying L’Hôspital’s rule as in
Eq. (7.44).

The interstitial contributions

From the pseudodensity, we construct the response and the gradient of the Hartree potential
in the interstitial by inverting Poisson’s equation:

V
(1)α±
H (r) =

∑

G,G±q 6=0

V̂
(1)α±
H (G)ei(G±q)·r =

∑

G,G±q 6=0

4πρ̂(1)α±ps (G)

|G± q|2 ei(G±q)·r (7.65a)

∇V (0)
H (r) =

∑

G 6=0

̂
[∇V

(0)
H ](G)eiG·r =

∑

G 6=0

4π ̂[∇ρ(0)ps ](G)

G2
eiG·r (7.65b)

Evaluated at the MT sphere boundaries, these expressions define the boundary values to
formulate the response and the gradient of the Hartree potential in the MT spheres in terms
of a Dirichlet boundary-value problem.

The muffin-tin contributions

To construct the spherical-harmonics representation of V
(1)α±
H (r) and ∇V (0)

H (r) within the
MT sphere of atom β of the representative unit cell R′ = 0, we insert the true local
density response ρ(1)α±(r) and the true local density gradient ∇ρ(0)(r) into Eq. (3.63) for
the volume integral. Furthermore, we insert the response and the gradient of the Hartree
potential given in Eq. (7.65) into the part of Eq. (3.63) stemming from the surface integral
and we obtain

V
(1)α±
H,lmβ(rβ) =

4π

2l + 1

∫ Rβ

0

s2βρ
(1)α±
lmβ (sβ)

rl<
rl+1
>

[

1−
(

r>
Rβ

)2l+1
]

dsβ

+

(

rβ
Rβ

)l
∑

G,G±q 6=0

ei(G±q)·τβ V̂
(1)α±
H (G)4πilY ∗

lm(Ĝ± q)jl(|G± q|Rβ)

(7.66)

and

∇V (0)
H,lmβ(rβ) =

4π

2l + 1

∫ Rβ

0

s2β[∇ρ
(0)]

β

lm(sβ)
rl<
rl+1
>

[

1−
(

r>
Rβ

)2l+1
]

dsβ

+

(

rβ
Rβ

)l
∑

G 6=0

eiG·τβ
̂

[∇V
(0)
H ](G)4πilY ∗

lm(Ĝ)jl(GRβ) (7.67)

We remark two things regarding the last two equations. First of all, according to the

Sternheimer matrix equation, Eq. (7.24), ∇V (0)
H,lmβ(rβ) has to be calculated only for β = α.

Second, the density response ρ(1)α±(r) as given in Eq. (7.32) includes the negative gradient
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of the electronic density in the MT sphere of atom α. Therefore, the first line defining

∇V (0)
H,lmβ(rβ) cancels with a part of the first line defining V

(1)α±
H,lmβ(rβ), when the Hartree

response is calculated for solving the Sternheimer equation. From the gradient of the Hartree
potential, only the term stemming from the boundary values has to be evaluated.

7.1.4.3. The first-order change µ
(1)
xc (r) of the xc potential

According to Eq. (6.15c), the variation of the exchange-correlation potential is given by

µ(1)α±
xc (r) = ρ(1)α±(r)

δµ
(0)
xc [ρ](r)

δρ(r)

∣

∣

∣

∣

∣

ρ=ρ(0)

. (7.68)

By applying the chain rule, a similar expression can be found for the gradient of the xc
potential, which we need within the MT sphere of atom α:

∇µ(0)
xc (r) = [∇ρ(0)(r)] δµ

(0)
xc [ρ](r)

δρ(r)

∣

∣

∣

∣

∣

ρ=ρ(0)

(7.69)

We have derived formulas for describing the density response ρ(1)α±(r) in the interstitial re-
gion and in the muffin-tin spheres with Eqs. (7.33) and (7.34), respectively, in section 7.1.3.
Specifically, we remarked for the MT representation at the displaced atom α that the density
response contains the negative gradient of the unperturbed density. Therefore, this contri-
bution cancels with ∇ρ(0)(r) and we do not need to calculate the gradient of the density
explicitly while we solve the Sternheimer equation self-consistently. The exact form of the
xc kernel δµxc[ρ](r)/δρ(r) is dependent on the choice of the xc functional. For the LDA
functional of Vosko, Wilk, and Nusair [74], which has been used throughout this thesis, we
provide an explicit formula for the kernel in Appendix A.2.
The kernel is generated by applying the formula for fxc(r, r) = δµxc[ρ](r)/δρ(r) given in
Appendix A.2 at every point of a real-space mesh and then recollecting the results in terms
of plane waves in the IR and in terms of radial functions times spherical harmonics in the
MT spheres. In other words, the kernel is generated using the same scheme as applied for
constructing the xc energy-density and the xc potential, which is explained in chapter 3.6.
By convoluting the representations of the density response and the xc kernel, the response
of the xc potential finally takes the form

µ(1)α±
xc (r) =

∑

GG′

ρ̂
(1)α±(G)f̂xc(G

′)ei(G+G′)·r (7.70a)

in the interstitial region and

µ(1)α±
xc (r) =

∑

lml′m′

ρ
(1)α±
lmβ (rβ)fxc,l′m′(rβ , rβ)

l+l′,2
∑

s=|l−l′|
Gm+m′,m,m′

s,l,l′ Ys,m+m′(rβ) (7.70b)

in the muffin-tin sphere of atom β.

7.1.5. Solving the Sternheimer equation

In the previous sections, we constructed every quantity needed for the self-consistent solution
of the Sternheimer equation

∑

G

〈

φ
(0)
k±q,G′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
k±q,G

〉

z
ik(1)α±
k±q,G
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=−
∑

G

{

〈

φ
(0)
k±q,G′

∣

∣

∣
V

(1)α±
eff − δq0ǫ

(1)α±
ik

∣

∣

∣
φ
(0)
kG

〉

+
〈

φ
(0)
k±q,G′

∣

∣

∣
∇V (0)

eff

∣

∣

∣
φ
(0)
kG

〉

α

− i(G′ ± q −G)
〈

φ
(0)
k±q,G′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
kG

〉

α

−
∮

∂MT(α,0)

ê
[

φ
IR(0)∗
k±q,G′(Ĥ0 − ǫ

(0)
ik )φ

IR(0)
kG

]

dS

}

z
ik(0)
kG . (7.24 revisited)

We stressed in particular the cancellation of the rigid part ∇f(r) in the density and poten-

tial with the respective responses f (1)α±(r) within the muffin-tin sphere of atom α, which
omits the necessity to explicitly calculate the respective gradient. We therefore expect that
the Sternheimer equation represents a stable algorithm to construct the first-order changes
of wave functions, density, and potential.

In Fig. 7.1 we sketch the program flow to solve the Sternheimer equation self-consistently.
For any perturbation vector q and for any atom α, starting from the external perturbation

V
(1)α±
ext (r) as the first potential response V

(1)α±
eff (r), the wave-function response ψ

(1)α±
ik (r)

is constructed. From the wave-function response, the density response ρ(1)α±(r) follows,
which in turn determines the screening of the external perturbation by the Hartree and

xc potential responses V
(1)α±
H (r) and µ

(1)α±
xc (r). Together with the external perturbation,

these constitute the response of the effective potential V
(1)α±
eff (r) used in any subsequent

steps of solving the Sternheimer equation. The algorithm is repeated until the input and
output density response equal each other within a given numerical precision.

7.2. Second-order changes

In addition to the unperturbed quantities available from a regular electronic structure cal-
culation and the first-order changes which we discussed in the previous section 7.1, the cal-
culation of the second-order change in the total energy within the FLAPW method requires

knowledge of the second-order changes in the external potential, V
(2)
ext (r), in the ion-ion

energy E
(2)
ii , and in the basis functions, φ

(2)
kG(r). This can be seen from the constituents of

the second-order total energy variation E
(2)
tot , Eq. (6.58), which we recapitulate to be

E
(2),simple
tot,basic =

∫

ρ(1)(r)V
(1)
ext (r)d

3r +

∫

ρ(0)(r)V
(2)
ext (r)d

3r + E
(2)
ii , (6.23 revisited)

E
(2)
tot,Pulay =

∫

ρ(1)(r)V
(1)
eff (r)d3r +

∑

ik

f
(0)
ik

[

2
〈

ψ
(1)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(1)
ik

〉

+
〈

ψ
(2)
ik

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
ψ
(0)
ik

〉

+
〈

ψ
(0)
ik

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
ψ
(2)
ik

〉

]

, (6.52 revisited)

where the only relevant second-order change within ψ
(2)
ik (r) is given by φ

(2)
kG(r), and

E
(2)
tot,SF =2

∑

ik

f
(0)
ik

∑

α

wT
α ·
∮

∂MT(α)

ê
[

ψ
(1)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(0)
ik (r)

]

SF
dS

+ 2
∑

ik

f
(0)
ik

∑

α

wT
α ·
∮

∂MT(α)

ê
[

ψ
(0)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(1)
ik (r)

]

SF
dS + . . .
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7.2.1. Evaluation of V
(2)
ext(r)

The evaluation of the second-order variation in the external potential appearing within a
volume integral in Eq. (6.23),

V
(2)
ext (r) =

∑

αRij

[

QαiQαje
2iq·R +QαiQ

∗
αj +Q∗

αiQαj +Q∗
αiQ

∗
αje

−2iq·R]

×
[

∂i∂jV
αR
ext (r)

]

, (7.7 revisited)

can be simplified by realizing that only QαiQ
∗
αj + Q∗

αiQαj from the sum in the square
brackets contributes if q is not 0 or half of a reciprocal lattice vector. Both other terms
then result in Bloch waves of non-vanishing wave vector. In this case, the second-order
change in the external potential can be summarized as

V
(2)
ext (r) =

∑

α

{

QT
α ·
[

∑

R

∇∇TV αR
ext (r)

]

·Q∗
α +Q∗T

α ·
[

∑

R

∇∇TV αR
ext (r)

]

·Qα

}

. (7.71)

In the case that q is 0 or half of a reciprocal lattice vector, the exponentials become 1 and
the periodic second-order change in the external potential is given by

V
(2)
ext (r) = 4

∑

α

{

ℜ(QT
α) ·

[

∑

R

∇∇TV αR
ext (r)

]

· ℜ(Qα)

}

. (7.72)

In both cases, the term involving the sum over R needs to be calculated. We abbreviate it
with

V
(2)α
ext (r) =

∑

R

∇∇TV αR
ext (r) (7.73)

In analogy to the evaluation of V
(1)
ext (r) in section 7.1.4.1, we express the external potential

in terms of a Dirac-δ density, redirect the derivatives to this density and use the Weinert

method. In this way, we have access to interstitial and muffin-tin representations of V
(2)α
ext (r).

The second-order derivative nα(r) of the ion-density is extracted from

V
(2)α
ext (r) = −

∫

∇∇T

∑

R Zαδ(r
′ − τα −R)

|r − r′| d3r′

= −
∫
∑

R Zα∇′∇′Tδ(r′ − τα −R)

|r − r′| d3r′ (7.74)

and yields

nα(r) = −
∑

R

Zα∇∇Tδ(r − τα −R). (7.75)

From this expression, we construct a pseudodensity which exhibits the same multipole mo-
ments, but which has a fast converging Fourier-expansion.
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7. Phonons in FLAPW using DFPT

Construction of the pseudodensity

The multipole moments of nα(r) at the muffin-tin sphere of atom β in unit cell R′ are
determined after two integrations by parts as

qα
lm

(β,R′) =

∫

MT(β,R′)

Y ∗
lm( ̂r − τβ −R′)|r − τβ −R′|lnα(r)d3r

= −Zαδαβ∇∇T
[

rlY ∗
lm(r̂)

]

r=0
. (7.76)

The qα
lm

(β,R′) are independent of R and R′, since nα(r) exhibits the same periodicity as
the unperturbed lattice. Being evaluated at the center of the sphere, r = 0, the multipole
moments vanish for all angular momenta except for l = 2. The second-order ion-density
response nα(r) does not have any contributions in the interstitial region. According to
Eqs. (3.46)-(3.56), the Fourier components of the pseudodensity are

n̂
α
ps(G) = −4π

Ω

(2N + 7)!!

5!!R2
α

jN+3(GRα)

(GRα)N+1
e−iG·τα

2
∑

m=−2

Y2m(Ĝ)qα
2m

(α,0)

=
4π

Ω
Zα

(2N + 7)!!

5!!R2
α

jN+3(GRα)

(GRα)N+1
e−iG·τα

5

4π
∇∇T

[

r2P2(r̂ · Ĝ)
]∣

∣

∣

r=0
. (7.77)

We made use of the addition theorem for spherical harmonics; P2(r) = (3r2 − 1)/2 is a
Legendre polynomial. Performing the derivatives yields

n̂α
ps(G) =

Zα

Ω

(2N + 7)!!jN+3(GRα)

(GRα)N+3
e−iG·τα

[

GGT −G2E 3/3
]

(7.78)

and

n̂
α
ps(0) = 0 3 (7.79)

where E 3 is the 3× 3 unit matrix and 0 3 is the zero matrix of the same dimensions. The
vanishing of the G = 0 component can be confirmed analogously to Eq. (7.44) by realizing
that the fraction in Eq. (7.78) becomes 1 for G → 0 by use of L’Hôspital’s rule, while the
last factor is of order G2. Since no ions are added or subtracted from the system by the
phononic perturbation, it is plausible that the average second-order variation in the ion
density is zero.

The interstitial contribution

The second-order perturbation V
(2)α
ext (r) in the IR takes the form

V
(2)α
ext (r) =

∑

G 6=0

4πn̂α
ps(G)

G2
eiG·r =:

∑

G 6=0

V̂
(2)α

ext (G)eiG·r, (7.80)

which we subsequently use as boundary values on the muffin-tin spheres to construct the

muffin-tin representation of V
(2)α
ext (r).
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7.2. Second-order changes

The muffin-tin contribution

In the muffin-tin sphere of atom β, the second-order change of Vext(r) is composed of a
contribution generated by the local density and the contribution of all other spheres taken
into account by the sphere surface term as seen in Eq. (3.61). The surface contribution is
obtained easily by using Eq. (7.80). The volume contribution on the other hand is found
by redirecting the twofold derivative in the local density towards the Green function, which
we use here in conjunction with the Legendre polynomials:

V
(2)α
ext (rβ + τβ) =− Zα

∫

BRβ
(0)

∑

R

δ(sβ − (τα − τβ)−R)

×∇sβ
∇T

sβ

∑

l

Pl(r̂β · ŝβ)
rl<
rl+1
>

[

1−
(

r>
Rβ

)2l+1
]

d3sβ

+
∑

lm

(

rβ
Rβ

)l

·
∑

G 6=0

eiG·τβ V̂
(2)α

ext (G)4πilY ∗
lm(Ĝ)jl(GRβ)Ylm(r̂β)

We abbreviate the radial part of the last line by

V
(2)α
ext,lm,β(rβ) =

(

rβ
Rβ

)l

·
∑

G 6=0

eiG·τβ V̂
(2)α

ext (G)4πilY ∗
lm(Ĝ)jl(GRβ). (7.81)

Further manipulation of the volume integral then yields

V
(2)α
ext (rβ + τβ) =− Zαδαβ

1

r3α

[

1−
(

rα
Rα

)5
]

∇sα∇
T
sα

[

s2α
2

(

3(r̂α · ŝα)2 − 1
)

]

sα=0

+
∑

lm

V
(2)α
ext,lm,β(rβ)Ylm(r̂β)

=− δαβ
Zα

r5α

[

1−
(

rα
Rα

)5
]

[

3rαr
T
α − r2αE 3

]

+
∑

lm

V
(2)α
ext,lm,β(rβ)Ylm(r̂β). (7.82)

In order to determine a spherical harmonic representation of the volume integral part, we
express the unit vectors r̂α in terms of spherical harmonics by

r̂α =
3
∑

i=1

êi

1
∑

t=−1

ci,tY1,t(r̂α). (4.28 revisited)

We plug this into the dyadic product rαr
T
α and find

rαr
T
α = r2α

∑

ij

êiê
T
j

1
∑

t,t′=−1

ci,tcj,t′
2,2
∑

s=0

Gt+t′,t,t′

s,1,1 Ys,t+t′(r̂α). (7.83)

129



7. Phonons in FLAPW using DFPT

In total, the matrices appearing in the second-order perturbation V
(2)
ext (r) are given by

V
(2)α
ext (rβ + τβ) =− δαβ

Zα

r3α

[

1−
(

rα
Rα

)5
]

2,2
∑

s=0

1
∑

t,t′=−1

Ys,t+t′(r̂α)

×
∑

ij

êiê
T
j

(

3ci,tcj,t′G
t+t′,t,t′

s,1,1 −
√
4πδijδs0

)

+
∑

lm

V
(2)α
ext,lm,β(rβ)Ylm(r̂β) (7.84)

in the muffin-tin sphere of atom β. From the surface term, all l channels contribute, while
the volume term is limited to l = 0 and l = 2.

7.2.2. Evaluation of E
(2)
ii

In order to evaluate the second-order response of the ion-ion energy appearing in Eq. (6.23),
we start from the ion-ion energy of a finite solid consisting of N unit cells that is perturbed
by a phonon of wave vector q. The interaction-energy of each atom with each atom in the
whole solid other than itself is given as

Eii =
1

2

∑

αR

∑

βR′

′ ZαZβ

|τα +R+wαR − τβ −R′ −wβR′ | , (7.85)

where the prime next to the sum indicates the exclusion of (βR′) = (αR). The second-
order variation of this expression can be transformed to yield the ion-ion-contribution to
the dynamical matrix:

E
(2)
ii =

∑

γR′′

∑

δR′′′

wT
γR′′ ·

[

(

d

dwγR′′

)

·
(

d

dwδR′′′

)T

Eii

∣

∣

∣

∣

∣

w=0

]

·wδR′′′ (7.86)

=
1

2

∑

αR

∑

βR′

′ZαZβ

[

wT
αR · ∇α∇T

α

1

|τα +R− τβ −R′| ·wαR

+wT
αR · ∇α∇T

β

1

|τα +R− τβ −R′| ·wβR′

+wT
βR′ · ∇β∇T

α

1

|τα +R− τβ −R′| ·wαR

+wT
βR′ · ∇β∇T

β

1

|τα +R− τβ −R′| ·wβR′

]

(7.87)

∇α denotes the gradient with respect to atomic position τα. Interchanging α with β and
R with R′ in the third and fourth line and inserting the displacements gives rise to:

E
(2)
ii =

∑

αR

∑

βR′

′ZαZβ

[

Q∗T
α · ∇α∇T

α

e−2iq·R

|τα +R− τβ −R′| ·Q
∗
α

+Q∗T
α · ∇α∇T

α

1

|τα +R− τβ −R′| ·Qα
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+Q∗T
β · ∇α∇T

β

e−iq·(R′+R)

|τα +R− τβ −R′| ·Q
∗
α

+Q∗T
β · ∇α∇T

β

e−iq·(R′−R)

|τα +R− τβ −R′| ·Qα

]

+ c.c. (7.88)

By manipulating the equation to create only occurrences of R′′ = R′ −R and R′′′ = R′

and renaming the lattice vectors accordingly, we find

E
(2)
ii =

∑

αβ

ZαZβ

[{

∑

R′′′

e−2iq·R′′′

}

Q∗T
α · ∇α∇T

α

∑

R′′

′ e2iq·R
′′

|τα − τβ −R′′| ·Q
∗
α

+N ·Q∗T
α · ∇α∇T

α

∑

R′′

′ 1

|τα − τβ −R′′| ·Qα

+

{

∑

R′′′

e−2iq·R′′′

}

Q∗T
β · ∇α∇T

β

∑

R′′

′ eiq·R
′′

|τα − τβ −R′′| ·Q
∗
α

+N ·Q∗T
β · ∇α∇T

β

∑

R′′

′ e−iq·R′′

|τα − τβ −R′′| ·Qα

]

+ c.c., (7.89)

where the prime next to the sum now consistently indicates R′′ 6= 0 if α = β, such that the
denominator stays non-zero. The first and third lines contain a factor

∑

R′′′ exp(−2iq ·R′′′),
which contributes only if 2q is a reciprocal lattice vector and then is the number of unit
cells in the solid. In this case, the nominator exp(2iq ·R′′) is 1 and the equation becomes

E
(2)
ii =4N

∑

αβ

ZαZβ

[

ℜ(QT
α) · ∇α∇T

β

∑

R′′

′ 1

|τα − τβ −R′′| · ℜ(Qα)

+ ℜ(QT
β ) · ∇α∇T

β

∑

R′′

′ e−iq·R′′

|τα − τβ −R′′| · ℜ(Qα)

]

(7.90)

due to exp(iq ·R′′) = exp(−iq ·R′′) = ±1 for such a q. Also, by dividing the factor N out
of the equation, we obtain the second-order ion-ion energy response per unit cell.
In any case, we need to express the matrices

∇α∇T
α

∑

R

′ ZαZβe
iq̃·R

|τα − τβ −R| = lim
r→τα

∇∇T
∑

R

′ ZαZβe
iq̃·R

|r − τβ −R|

= Zα lim
r→τα

∫
∑′

R Zβe
iq̃·R∇′∇′Tδ(r′ − τβ −R)

|r − r′| d3r′, (7.91)

∇α∇T
β

∑

R

′ ZαZβe
iq̃·R

|τα − τβ −R| = −∇α∇T
α

∑

R

′ ZαZβe
iq̃·R

|τα − τβ −R|

= −Zα lim
r→τα

∫
∑′

R Zβe
iq̃·R∇′∇′Tδ(r′ − τβ −R)

|r − r′| d3r′, (7.92)

where q̃ is 0 or −q and the sum over lattice vectors excludes R = 0 if α and β refer to the
same atom. We will discuss the case α 6= β first and modify the results for α = β later. We
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make use of the Weinert method of chapter 3.7 to construct IR and MT representations for
these expressions. The quantity taking the role of the density in the Weinert method is the
nominator in the integral of Eqs. (7.91) and (7.92),

nβq̃(r) =
∑

R

′Zβe
iq̃·R∇∇Tδ(r − τβ −R) (7.93)

From this quantity, we construct a pseudodensity with the same multipole moments, which
has a rapidly converging Fourier expansion. This Fourier expansion is used to determine
the integral of Eqs. (7.91) and (7.92) in the IR. Subsequently, the MT representation of the
integrals is generated.

Construction of the pseudodensity & the interstitial contribution

Since the integral common to Eqs. (7.91) and (7.92) is reminiscent of Eq. (7.75), we can
modify the formulas discussed there to express the interstitial representation of the integral.
The density nβq̃(r) inside the MT sphere of an atom α in unit cell R′ gives rise to the
multipole moments

qβq̃
lm

(α,R′) = Zβδαβe
iq̃·R′∇∇T

[

rlY ∗
lm(r̂)

]

r=0
. (7.94)

This leads to the Fourier components of the pseudodensity being

nβq̃
ps(G) =

Zβ

Ω
(2N + 7)!!

jN+3(|G+ q̃|Rβ)

(|G+ q̃|Rβ)N+3

×
[

(G+ q̃)(G+ q̃)T − |G+ q̃|2E 3/3
]

e−i(G+q̃)·τβ (7.95)

= nβ0
ps(G+ q̃) =: nβ

ps(G+ q̃), (7.96)

nβ
ps(0) = 0 3 (7.97)

and finally yields the interstitial representation of the integral

∫
∑

R Zβe
iq̃·R∇′∇′Tδ(r′ − τβ −R)

|r − r′| d3r′

=
∑

G,G+q̃ 6=0

4πnβ
ps(G+ q̃)ei(G+q̃)·τβ

|G+ q̃|2 ei(G+q̃)·(r−τβ). (7.98)

More precisely, we have evaluated the integral whose integrand is generated by atom β and
its images at any point outside of their atomic spheres. This includes the interstitial, but
also any point in a muffin-tin sphere which is not associated with atom β or any of its
images. For α 6= β we can thus let r → τα and we obtain

∇α∇T
α

∑

R

ZαZβe
iq̃·R

|τα − τβ −R| = Zα

∑

G,G+q̃ 6=0

4πnβ
ps(G+ q̃)ei(G+q̃)·τβ

|G+ q̃|2 ei(G+q̃)·(τα−τβ). (7.99)

For the case α = β, we continue with the regular procedure of the Weinert method by
constructing the MT representation of the integral from a Dirichlet boundary-value problem.
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The muffin-tin contribution

In order to find an expression in the muffin-tin sphere of atom β for the integral common
to Eqs. (7.91) and (7.92) for α = β, where the representative atom α in unit cell R = 0
is explicitly excluded from the density response, we apply a technique which has been

suggested by Weinert et al. [43] to calculate the ion-ion energy E
(0)
ii in the first place. In

this technique, it is assumed that the potential still is a Bloch function in order to construct
its IR representation as usual. However, when the MT representation is constructed from
a Dirichlet boundary-value problem, the critical atom is excluded from the local density in
the volume integral of Eq. (3.61) and the potential defining the boundary-values is adjusted
by removing the contribution generated by the local density to it. Applying this technique
yields

∫
∑′

R Zβe
iq̃·R∇′∇′Tδ(r′ − τβ −R)

|rβ + τβ − r′| d3r′

=

∫

BRβ
(0)

∑

R 6=0

Zβe
iq̃·R∇sβ

∇T
sβ
δ(sβ − (R− 0))G(rβ , sβ)d

3sβ

+

∮

∂B1(0)

∫
∑

R Zβe
iq̃·R∇′∇′Tδ(r′ − τβ −R)− Zβ∇′∇′Tδ(r′ − τβ)

|Rβs+ τβ − r′| d3r′

×
∑

lm

(

rβ
Rβ

)l

Y ∗
lm(ŝ)Ylm(r̂β)dS. (7.100)

The volume integral vanishes since the integrand is 0 due to R 6= 0. To completely evaluate
the surface integral, we have to calculate the second term in the second line of the r.h.s. By
expanding the denominator into Legendre polynomials, we obtain with rβ = r′ − τβ

∫

Zβ∇′∇′Tδ(r′ − τβ)

|Rβs+ τβ − r′| d3r′ = Zβ

∑

l

∫

rl<
rl+1
>

Pl(ŝ · r̂β)∇rβ
∇T

rβ
δ(rβ)d

3rβ

= Zβ

∑

l

1

Rl+1
β

∇∇T
[

rlPl(ŝ · r̂)
]

r=0

=
Zβ

R3
β

2,2
∑

s=0

1
∑

t,t′=−1

Ys,t+t′(ŝ)
∑

ij

êiê
T
j

(

3ci,tcj,t′G
t+t′,t,t′

s,1,1 −
√
4πδijδs0

)

. (7.101)

Plugging this and the Fourier transform of Eq. (7.98) into the Dirichlet boundary-value
problem, Eq. (7.100), we find in the case α = β

∇α∇T
α

∑

R

′ ZαZβe
iq̃·R

|τα − τβ −R|

= Zα lim
rβ→0

{

∑

lm

[

∑

G,G+q̃ 6=0

4πnβ
ps(G+ q̃)ei(G+q̃)·τβ

|G+ q̃|2 4πilY ∗
lm(Ĝ+ q̃)jl(|G+ q̃|Rβ)

]

×
(

rβ
Rβ

)l

Ylm(r̂β) + . . .
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· · · − Zβ

R3
β

2,2
∑

s=0

1
∑

t,t′=−1

[

∑

ij

êiê
T
j

(

3ci,tcj,t′G
t+t′,t,t′

s,1,1 −
√
4πδijδs0

)

]

(

rβ
Rβ

)s

Ys,t+t′(r̂β)

}

.

(7.102)

Since technically the denominator of the matrix ∇α∇T
α

∑′
R

ZαZβe
iq̃·R

|τα−τβ−R| is just the lattice

vector |R|, we keep both labels α and β to remind on which part of the denominator the
differential operators act and which parameters have to be used for the calculation of the
matrix value. In the limit rβ = 0, only the l = s = 0 parts of the sums contribute, such
that we have for the matrix elements:

∇α∇T
α

∑

R

′ ZαZβe
iq̃·R

|τα − τβ −R| =Zα

{

∑

G,G+q̃ 6=0

4πnβ
ps(G+ q̃)ei(G+q̃)·τβ

|G+ q̃|2 j0(|G+ q̃|Rβ)

− Zβ

R3
β

1
∑

t=−1

∑

ij

êiê
T
j

(

3

4π
ci,tcj,−t(−1)t − δij

)

}

(7.103)

Reinstating Eqs. (7.99) and (7.103) in the expression for the second-order variation in the
ion-ion energy, Eq. (7.89), we are able to explicitly calculate its contribution to the dynamical
matrix.

7.2.3. Evaluation of φ
(2)
kG

(r)

By the same line of arguments that led to Eq. (7.21) defining the first-order variation of
the basis functions, the second-order variation of the basis functions within the frozen-
augmentation approximation is given by

φ
(2)
kG(r) =

{

0 , r ∈ IR

wT
αR · [i(k +G)−∇] [i(k +G)−∇]

T
φ
(0)
kG(r) ·wαR , r ∈ MT(α,R)

,

(7.104)

because the dependence of the basis functions on the perturbation manifests in the phase
factor exp(i(k +G) · rαRw) of the matching coefficients and in the local coordinate frame
r − rαRw in which the radial functions and spherical harmonics are expressed.

By virtue of the perturbation vectors wαR, φ
(2)
kG(r) consists of components which are Bloch

functions of wave vectors k + 2q, k − 2q and k. However, the second-order change of the
basis functions only occurs within an integral in Eq. (6.50). The rest of the integrand is

a Bloch function of wave vector −k, so that only the k-component of φ
(2)
kG(r) needs to be

known, if 2q is not a reciprocal lattice vector. Therefore, we only consider

φ
(2)α
kG (r)

∣

∣

∣

r∈MT(α,0)
= Q∗T

α · [i(k +G)−∇] [i(k +G)−∇]
T
φ
(0)α
kG (rα) ·Qα

+Q T
α · [i(k +G)−∇] [i(k +G)−∇]

T
φ
(0)α
kG (rα) ·Q∗

α (7.105a)

in the representation of the muffin-tin sphere of atom α for 2q 6= G. Otherwise, we have to
evaluate

φ
(2)α
kG (r)

∣

∣

∣

r∈MT(α,0)
= 4ℜ(QT

α) · [i(k +G)−∇] [i(k +G)−∇]
T
φ
(0)α
kG (rα) · ℜ(Qα).

(7.105b)
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We identify three terms that have to be specified. The first term is

φ(2)α

kG,1
(rα) = −(k +G)(k +G)Tφ

(0)α
kG (rα) (7.106a)

= −
∑

lmλ

(k +G)(k +G)Ta
αkG(0)
lmλ ϕα

lm,λ(rα), (7.106b)

where we used the decomposition of the basis functions into the matching coefficients and
the radial part times spherical harmonics, as introduced in Eq. (3.64).
In the second term, the sum of the reciprocal vectors and the gradient occur. Such a term
appears twice, once in its transposed form. To determine its expression, we use natural
coordinates and Eq. (4.17):

φ(2)α

kG,2
(rα) = −

∑

lmλ

a
αkG(0)
lmλ

1
∑

m′′=−1

(T êm′′)

√

4π

3

1,2
∑

l′′=−1

Gm+m′′,m,m′′

l+l′′,l,1 Yl+l′′,m+m′′(r̂α)

×
[

u
α(0)′
lλ (rα)−

(

l′′l − l′′ − 1

2

)

u
α(0)
lλ (rα)

rα

]

i(k +G)T (7.107)

The Hesse matrix in the third term requires another application of Eq. (4.17). For better
readability, we write out the sums over the angular momentum shifts.

φ(2)α

kG,3
(rα) = ∇∇T

∑

lmλ

a
αkG(0)
lmλ u

α(0)
lλ (rα)Ylm(r̂α)

=
∑

lmλ

a
αkG(0)
lmλ

4π

3

1
∑

m′,m′′=−1

(T êm′)(T êm′′)T

×
{

Gm+m′′,m,m′′

l−1,l,1 Gm+m′+m′′,m+m′′,m′

l−2,l−1,1 Yl−2,m+m′+m′′(r̂α)

×
[

u
α(0)′′
lλ (rα) + (2l + 1)

u
α(0)′
lλ (rα)

rα
+ (l2 − 1)

u
α(0)
lλ (rα)

r2α

]

+Gm+m′′,m,m′′

l−1,l,1 Gm+m′+m′′,m+m′′,m′

l,l−1,1 Yl,m+m′+m′′(r̂α)

×
[

u
α(0)′′
lλ (rα) + 2

u
α(0)′
lλ (rα)

rα
− l(l + 1)

u
α(0)
lλ (rα)

r2α

]

+Gm+m′′,m,m′′

l+1,l,1 Gm+m′+m′′,m+m′′,m′

l,l+1,1 Yl,m+m′+m′′(r̂α)

×
[

u
α(0)′′
lλ (rα) + 2

u
α(0)′
lλ (rα)

rα
− l(l + 1)

u
α(0)
lλ (rα)

r2α

]

+Gm+m′′,m,m′′

l+1,l,1 Gm+m′+m′′,m+m′′,m′

l+2,l+1,1 Yl+2,m+m′+m′′(r̂α)

×
[

u
α(0)′′
lλ (rα)− (2l + 1)

u
α(0)′
lλ (rα)

rα
+ l(l + 2)

u
α(0)
lλ (rα)

r2α

]}

. (7.108)

The sum of the three components gives the q = 0 second-order change of the LAPW basis

φ(2)α

kG
(rα) = φ

(2)α

kG,1
(rα) + φ

(2)α

kG,2
(rα) + φ

(2)αT

kG,2
(rα) + φ

(2)α

kG,3
(rα) (7.109)

in the muffin-tin sphere of atom α.
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7.2.4. Evaluation of the core state change ψ
(2)
ik (r)

To completely evaluate the Pulay contribution to the second-order change in the total en-
ergy, Eq. (6.52), also knowledge of the second-order variation of the core states is required.
Employing the frozen-core approximation, in which the change in the core state is only
induced through the local coordinate frame r − rαRw, rαRw = τα +R +wαR, we obtain
as the second-order variation of Eq. (7.25)

ψ
(2)α
ik (r − τα −R) = δαβQ

T
β · ∇∇Tψ

(0)
ik+2q(r − τβ −R) ·Qβ

+ δαβQ
T

β · ∇∇Tψ
(0)
ik (r − τβ −R) ·Q∗

β

+ δαβQ
∗T
β · ∇∇Tψ

(0)
ik (r − τβ −R) ·Qβ

+ δαβQ
∗T
β · ∇∇Tψ

(0)
ik−2q(r − τβ −R) ·Q∗

β . (7.110)

The second-order variation ψ
(2)α
ik (r−τα−R) contains components that are Bloch functions

of wave vector k+2q (first line), k (second and third line), and k− 2q (fourth line). Seeing

as ψ
(2)α
ik (r) only occurs in a volume integral, only the second and third line contribute if 2q

is not a vector of the reciprocal lattice. If 2q is a reciprocal lattice vector, it is equivalent
to 0, and all lines can be combined to

ψ
(2)α
ik (r − τβ −R) =4δαβℜ(Q T

β ) · ∇∇Tψ
(0)
ik (r − τβ −R) · ℜ(Qβ). (7.111)

We remind the reader that in case of the core states, i = (βplml), is a multiindex consisting
of the atom which the core state belongs to and the prime, angular momentum, and magnetic
quantum numbers.

7.3. The dynamical matrix

In the previous sections, every quantity required for the second-order variation of the total
energy in the FLAPW formalism has been derived and discussed. We have seen that we
can restrict ourselves to the representative unit cell, such that the limit N → ∞ for the
system size is implicitly included. We now bring the different quantities together to find an
expression for the dynamical matrix.
Doing so yields the three components Dbasic(q), DPulay(q), and DSF(q) of the dynamical
matrix, consisting of the basic DFPT term, the Pulay correction and the additional terms
from the muffin-tin sphere surfaces.

7.3.1. Contribution from E
(2),simple

tot,basic

When we introduce ρ(1)(r) from Eq. (7.30), V
(1)
ext (r) from Eq. (7.6), and V

(2)
ext (r) from

Eq. (7.7) into the integrals in

E
(2),simple
tot,basic =

∫

Ω

ρ(1)(r)V
(1)
ext (r)d

3r +

∫

Ω

ρ(0)(r)V
(2)
ext (r)d

3r + E
(2)
ii , (6.6 revisited)

only the combinations of the variational terms remain which have in total a vanishing Bloch
vector. Hence:

E
(2),simple
tot,basic =

∑

αβ

Q∗T
β ·Dbasic

βα (q) ·Qα + c.c. (7.112a)
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=

[

∑

αβ

Q∗T
β ·

∫

Ω

ρ(1)β−(r)V (1)α+T
ext (r)d3r ·Qα (7.112b)

+
∑

αβ

Q∗T
β ·

∫

Ω

ρ(0)(r)δαβ
∑

R

∇∇TV αR
ext (r)d

3r ·Qα (7.112c)

+
∑

αβ

Q∗T
β ·E(2)

iiβα ·Qα

]

+ c.c. (7.112d)

The formulas for the density variation in the interstitial region and within the muffin-tin
spheres are given in Eqs. (7.33b) and (7.34a). The corresponding expressions for the first-
and second-order responses in the external potential are provided by Eqs. (7.45a) and (7.47)
as well as Eqs. (7.80) and (7.84). The second-order ion-ion response matrix is defined in
Eqs. (7.99) and (7.103).
Any volume integrals have to be split into the contribution from the interstitial region and
contributions from the muffin-tin spheres. Using the unit step function ΘIR(r) of Eq. (3.74)
to select the interstitial region, we have

∫

Ω

f(r)g(r)d3r =

∫

Ω

f(r)g(r)ΘIR(r)d
3r +

∑

γ

∫

MT(γ)

f(r)g(r)d3r

= Ω
∑

G

f̂∗(G)[̂ΘIRg](G) +
∑

γ

∑

lm

∫ Rγ

0

r2γf
γ∗
lm(rγ)g

γ
lm(rγ)drγ , (7.113)

which requires the folding of the Fourier components of ΘIR(r) and g(r). The integrals in
Eqs. (7.112b) and (7.112c) are matrices of dimension 3×3, so the evaluation of the integrals
has to be done for each of their components.

7.3.2. Contribution from E
(2)
tot,Pulay

To find the Pulay contribution to the dynamical matrix, we need to insert the first- and
second-order variations of the wave functions into

E
(2)
tot,Pulay =

∑

ik

f
(0)
ik

(〈

ψ
(2)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(0)
ik

〉

+
〈

ψ
(0)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(2)
ik

〉)

+ 2
∑

ik

f
(0)
ik

〈

ψ
(1)
ik

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
ψ
(1)
ik

〉

+

∫

Ω

ρ(1)(r)V
(1)
eff (r)d3r. (6.52 revisited)

The integral is treated as in the previous section:
∫

Ω

ρ(1)(r)V
(1)
eff (r)d3r =

∑

αβ

Q∗T
β ·

∫

Ω

ρ(1)β−(r)V (1)α+T
eff (r)d3r ·Qα + c.c. (7.114)

For evaluating the bra-kets, we have to distinguish between core and valence states.

The core states

The core state responses are derived in Eqs. (7.27) and (7.110). Since the core states

ψ
(0)
ik (r) are pointwise solutions of the spherical Schrödinger equation with eigenvalues ǫ

(0)
ik ,
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the operator Ĥ0 − ǫ
(0)
ik in the bra-kets collapses to the non-spherical part of the effective

potential, V
(0)
nonsph(r). For any core state (ik) of atom α, the bra-kets yield

〈

ψ
(2)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(0)
ik

〉

+
〈

ψ
(0)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(2)
ik

〉

+ 2
〈

ψ
(1)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(1)
ik

〉

= Q∗T
α ·

{

〈

∇∇Tψ
(0)
ik

∣

∣

∣V
(0)
nonsph

∣

∣

∣ψ
(0)
ik

〉

+
〈

ψ
(0)
ik

∣

∣

∣V
(0)
nonsph

∣

∣

∣∇∇Tψ
(0)
ik

〉

+
〈

∇ψ(0)
ik

∣

∣

∣V
(0)
nonsph

∣

∣

∣∇Tψ
(0)
ik

〉

+
〈

∇Tψ
(0)
ik

∣

∣

∣V
(0)
nonsph

∣

∣

∣∇ψ(0)
ik

〉

}

·Qα + c.c.

= −Q∗T
α ·

∫

Ω

∇V (0)
nonsph(r)∇Tρ

(0)
ik (r)d3r ·Qα + c.c. (7.115)

We obtained this result by an integration by parts within the bra-kets containing the second-
order derivative of the core state. Note that the sum in curly brackets represents a matrix.

Therefore, we consider 〈∇Tψ
(0)
ik |V (0)

nonsph|∇ψ〉 also to be a matrix, even though the sequence
of transposed and regular gradients would suggest a scalar valued quantity. We do so to
provide a concise notation.

The summation
∑

ik f
(0)
ik over the core states yields the gradient of the core density in the

integral of Eq. (7.115).

The valence states

The change in the valence states is composed of the response of the expansion coefficients

z
ik(0)
kG and of the basis functions φ

(0)
kG(r) according to Eq. (6.24):

ψ
(1)
ik (r) =

∑

KG

[

z
ik(1)
KG φ

(0)
KG(r) + z

ik(0)
KG φ

(1)
KG(r)

]

(7.116)

ψ
(2)
ik (r) =

∑

KG

[

z
ik(2)
KG φ

(0)
KG(r) + 2z

ik(1)
KG φ

(1)
KG(r) + z

ik(0)
KG φ

(2)
KG(r)

]

(7.117)

The sum overK collapses to k±q in the case of a phononic perturbation. The responses of
the basis functions result from Eqs. (7.21) and (7.104), while the first-order variation of the
expansion coefficients is determined by the Sternheimer equation, Eq. (7.24). The second-

order variation of the expansion coefficients is not needed, because the part of ψ
(2)
ik (r)

containing z
ik(2)
KG completely lies in the LAPW basis space, in which ψ

(0)
ik (r) fulfills the

Schrödinger equation variationally. Every first-order change comprises of a sum over atoms
α or β, such that the product of two first-order changes results in a double sum over atoms
α and β. Thus, the bra-kets in Eq. (6.52) yield for any valence state (ik)

〈

ψ
(2)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(0)
ik

〉

+
〈

ψ
(0)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(2)
ik

〉

+ 2
〈

ψ
(1)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(1)
ik

〉

=
∑

αβ

Q∗T
β ·

[〈

2
∑

G

z
ik(1)β+
k+q,G φ

(1)α−
k+q,G

T
+
∑

G

z
ik(0)
kG φ(2)β

kG

∣

∣

∣

∣

∣

Ĥ0 − ǫ
(0)
ik

∣

∣

∣

∣

∣

∑

G

z
ik(0)
kG φ

(0)
kG

〉

+

〈

∑

G

z
ik(0)
kG φ

(0)
kG

∣

∣

∣

∣

∣

Ĥ0 − ǫ
(0)
ik

∣

∣

∣

∣

∣

2
∑

G

z
ik(1)β−
k−q,G φ

(1)α+
k−q,G

T
+
∑

G

z
ik(0)
kG φ(2)β

kG

〉
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+ 2

〈

∑

G

z
ik(1)β+
k+q,G φ

(0)
k+q,G +

∑

G

z
ik(0)
kG φ

(1)β+
kG

∣

∣

∣

∣

∣

Ĥ0 − ǫ
(0)
ik

∣

∣

∣

∣

∣

×
∣

∣

∣

∣

∣

∑

G

z
ik(1)α+
k+q,G

T
φ
(0)
k+q,G +

∑

G

z
ik(0)
kG φ

(1)α+
kG

T

〉]

·Qα + c.c. (7.118)

Since the variation φ
(n>0)α
kG (r) of a basis function only contributes in the muffin-tin sphere of

atom α, most of the expressions above have to be evaluated only within the corresponding
muffin-tin sphere. We refer to Appendix A.4 for the technicalities of evaluating Eq. (7.118).

7.3.3. Contribution from E
(2)
tot,SF

By using the first-order variations calculated in section 7.1 in Eq. (6.57), we obtain as the
surface correction for the DM the following expression:

E
(2)
tot,SF =

∑

αβ

Q∗T
β ·

[

2
∑

ik

f
(0)
ik

∮

∂MT(β)

ê

[

ψ
(1)α−
ik

∗T
(r)
(

Ĥ0 − ǫ
(0)
ik

)

ψ
(0)
ik (r)

]

SF

dS

+ 2
∑

ik

f
(0)
ik

∮

∂MT(β)

ê

[

ψ
(0)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(1)α+
ik

T
(r)

]

SF

dS

+ δαβ
∑

ik

f
(0)
ik

∮

∂MT(β)

∇
[

ψ
(0)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(0)
ik (r)

]

SF
ê
TdS

+ δαβ

∮

∂MT(β)

∇
[

ρ(0)(r)
{

ε(0)xc (r)− µ(0)
xc (r)

}]

SF
ê
TdS

+

∮

∂MT(β)

ê

[

ρ(0)(r)
{

2V
(1)α+
ext (r) + V

(1)α+
H (r)

}T
]

SF

dS

]

·Qα + c.c.

(7.119)

We will discuss the individual contributions of Eq. (7.119) in the following and focus first

on the last term. With the abbreviation f (1)α+(r) = 2V
(1)α+
ext (r) +V

(1)α+
H (r), the last line

of Eq. (7.119) is

∑

αβ

Q∗T
β ·

∮

∂MT(β)

ê
[

ρ(0)(r) f (1)α+T
(r)
]

SF
dS ·Qα. (7.120)

The density and each component of f (1)α+(r) in their IR representation are expanded
according to

gIR(r)
∣

∣

r∈∂MT(β)
=
∑

lm

[

4πil
∑

G

ĝ(G)eiG·τβY ∗
lm(Ĝ)jl(GRβ)

]

Ylm(r̂β)

=:
∑

lm

gIRlm,β(Rβ)Ylm(r̂β) (7.121)

The angular-momentum cutoff for this expansion can be chosen independently from the
angular-momentum cutoff up to which the LAPW basis functions are constructed in the
muffin-tin sphere of atom α. An analogous expansion was used for the surface term of the
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atomic forces, Eq. (4.30). There, a cutoff of 2lαmax produced good results.
Then, the integral in Eq. (7.120) is evaluated as

∮

∂MT(β)

ê
[

ρ(0)(r) f (1)α+T
(r)
]

SF
dS

=

3
∑

i=1

êi

1
∑

m′′=−1

c∗i,m′′

∑

lm

∑

l′m′

[

ρ
(0)
lm,β(Rβ) f

(1)α+
l′m′,β

T
(Rβ)

]

SF

Gm′′,m,m′

1,l,l′ (7.122)

We decomposed here the unit normal vector ê into its Cartesian components by Eq. (4.28).
Effectively, the Gaunt coefficient limits the sum over the primed quantities to |l−1|, . . . , l+1
and m′ = m′′ −m.

The matrix in Eq. (7.119) containing the xc energy density and the xc potential results
from the variation of a surface term (s. Eq. (6.31)) and is thus diagonal in the atom indices
(it is zero for α 6= β). By using the product rule of differentiation, we obtain

∮

∂MT(β)

∇
[

ρ(0)(r)f (0)(r)
]

SF
ê
TdS

=
3
∑

i=1

1
∑

m′′=−1

c∗i,m′′

∑

lm

∑

l′m′

Gm′′,m,m′

1,l,l′

×
[

(∇ρ)(0)lm,β(Rβ)f
(0)
l′m′,β(Rβ) + ρ

(0)
lm,β(Rβ)(∇f)(0)l′m′,β(Rβ)

]

SF
ê
T
i ,

(7.123)

where f (0)(r) stands here for ε
(0)
xc (r) − µ

(0)
xc (r). Eq. (7.123) applies for both the MT and

IR part of ε
(0)
xc (r) − µ

(0)
xc (r), if the Rayleigh expansion, Eq. (7.121), is applied for its IR

representation. However, the gradient of the IR quantities is best calculated prior to their
lm expansion. Otherwise, it can be calculated analogously to the lm components of the MT
functions: The gradients ∇ρ(0)(r) and ∇f (0)(r) are obtained by means of Eq. (4.17), the
application of the gradient in natural coordinates.

The remaining surface terms of Eq. (7.119) each include the Hamiltonian Ĥ0 and a sum
over all states (ik), in principle. However, since the core states are continuous at the MT
sphere boundaries to any order, only the valence states actually contribute. Furthermore,
the Hamiltonian is applied differently to the wave functions in the IR and the MT spheres.
In the IR, the kinetic energy operator produces factors |k+G|2/2, while in the MT spheres,
the spherical part of the Hamiltonian applied to the radial basis functions yields the energy
parameters Eβ

l . Therefore, the evaluation of these terms is different for their IR and MT
representation. Their calculation is discussed in Appendix A.5 in detail.

7.4. Summary

We have discussed in this chapter all necessary steps and quantities to compute phonons
using density functional perturbation theory within the all-electron FLAPW method. We
repeat the main steps in the following.
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7.4. Summary

Starting from an electronic structure calculation for the primitive unit cell, which pro-

vides the unperturbed density ρ(0)(r), the unperturbed wave functions ψ
(0)
ik (r), and the

unperturbed effective potential V
(0)
eff (r), we subject the system to a phononic perturbation

of an arbitrary wave vector q( 6= 0). This gives rise to a change in the external potential.
Using perturbation theory, we calculate the first-order response of the system using the
Sternheimer equation, which is the linearized Schrödinger equation. This has to be done
self-consistently, because the density and consequently the Hartree and xc potential adjust
to the perturbation, resulting in a first-order change of the effective potential. We include
Pulay terms in this step which arise from the position dependence of the LAPW basis func-
tions in conjunction with the fact that the LAPW wave functions are not pointwise solutions
of the Schrödinger equation. Also, surface corrections are considered which account for the
discontinuity of the LAPW basis functions which they exhibit not only in second order, but
also in zeroth and first order due to the limited lmax-cutoff in their MT representation in
contrast to the inclusion of all angular-momentum channels in the IR representation. In
literature, the former discontinuity is commonly considered, while the latter is ignored.
We discussed the cancellation of the rigid part of the density and potential response in the
muffin-tin sphere of the currently displaced atom when these quantities are used to find the
solution of the Sternheimer equation. The numerically delicate calculation of the density
and potential gradients can thus be omitted while the Sternheimer equation is solved.
Furthermore, the perturbation of wave vector q results in first-order responses whose Bloch
wave vector is shifted by ±q. In particular, the Kohn-Sham states are shifted from k to
k± q. In order to gain access to unperturbed quantities at Bloch vector k± q, the k-point
grid and the perturbation vector q have to be adjusted such that k ± q is a vector of the
k-point grid again. I.e., in a practical application, q should be chosen to be a vector in the
k-point grid.

Afterwards, the second-order changes of the external potential, V
(2)
ext (r), of the ion-ion

energy E
(2)
ii , and of the wave functions ψ

(2)
ik (r) are calculated. For constructing IR and MT

expressions for both the first- and second-order variations in the electrostatic part of the
potential, we apply the scheme introduced by Weinert, which we discussed in chapter 3.7.
From these quantities we then can determine the second-order variation of the total energy,

E
(2)
tot =

∑

αβ

Q∗T
β ·D(q) ·Qα + c.c., (7.124)

where D(q) denotes the dynamical matrix at wave vector q and the polarization vectors
Qα define the atomic displacement pattern associated with the phonon.
The dynamical matrix consists of three components: a standard perturbation theory con-
tribution Dbasic(q), a Pulay correction DPulay(q) compensating the incompleteness of the
LAPW basis in second order, and a surface correction DSF(q) to second order, which again
deals with the slight discontinuities of the LAPW basis functions and the quantities derived
from it. The phonon frequencies and polarization vectors finally result from the eigenvalues
and eigenvectors of the dynamical matrix.

In order to compute a complete phonon bandstructure, the algorithm summarized above
has to be repeated for different q. A backtransformation of D(q) obtained at several q to
the force-constant matrix then allows to Fourier interpolate the phonon spectrum for all q
of the first Brillouin zone.
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8. Summary & Conclusions

The central theme of this thesis has been the intention to calculate the phonon dispersion by
means of the all-electron full-potential linearized augmented-plane-wave (FLAPW) [42–45]
method. The great advantage of the FLAPW method is that the method is universally
applicable with high accuracy to all chemical elements of the periodic table and with no
restriction on the symmetry and the dimension of the solid. This comes with one caveat:
the chosen basis set is methodologically very involved. In pursuit of the theme above, we
have focused on two approaches, namely the finite-displacement (FD) approach and linear
response theory.

The FD method relies on the atomic force, which corresponds to the first derivative of
the total energy with respect to the atomic position. From the atomic force, the force-
constant matrix (FCM), which is the second derivative of the total energy with respect to
the atomic positions, is constructed. This is achieved by separately displacing each atom
from its equilibrium position in each spatial direction and computing the resulting force for
all atoms. By dividing the calculated forces through the amplitude of the employed atomic
displacement the FCM is approximated. The procedure described here corresponds to an
analytical differentiation of the total energy to obtain the atomic forces and a numerical dif-
ferentiation of the forces to finally obtain the FCM. The Fourier transform of the FCM is the
dynamical matrix (DM), whose eigenvalues are the phonon frequencies, squared, and whose
eigenvectors are the polarization vectors defining the displacement pattern of the phonon.
To calculate phonons with a nonzero wave vector q in the FD approach, a supercell, i.e.,
a unit-cell which is a multiple of the minimal chemical unit-cell of the considered material,
is necessary. Phonons with a wave vector q that is commensurable with the supercell, i.e.,
whose periodicity fits in the supercell, are then directly available through the FD method.
Phonons at an arbitrary q-vector are only accessible by Fourier interpolation. The accu-
racy of this interpolation substantially depends on the spatial decay of the FCM with the
distance between the displaced atom and the one to which the FCM connects it.

Due to the numerical differentiation of the atomic force, phonon calculations based on
the FD approach require a high precision of the calculated atomic force. In fact, typically
a much higher precision than for structural optimization is necessary. Therefore, we ana-
lyzed the precision of the atomic force in the all-electron FLAPW method as realized in the
FLEUR [57] code. We observed that the atomic force calculated according to the formalism
of Yu et al. [54] can lead to a violation of the acoustic sum rule and the symmetry of the
FCM. The acoustic sum rule states that the sum of the forces on all atoms of the unit cell
adds up to zero. It is a direct consequence of the translational symmetry of the system. In
practice, we found that the acoustic sum rule is fulfilled only with a precision of mHtr/aB.
Deviations of the symmetry of the FCM, i.e, discrepancies between conjugate entries of
the matrix, occur at the same level of precision. The symmetry of the FCM results from
Young’s theorem: the second-order derivative of a quantity does not depend on the sequence
of differentiation.
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8. Summary & Conclusions

We have been able to trace back these issues to mainly two sources:
(a) energetically high-lying core states whose wave functions exhibit a substantial tail out-
side of their muffin-tin (MT) sphere reaching into the interstitial region (IR) or even into
the MT spheres of other atoms;
(b) an improper treatment of the small discontinuities of the LAPW wave functions, density,
and potential at the MT sphere boundary for finite numerical cutoff parameters.

We suggested a refined force formalism consisting of three adjustments: In comparison to
the formalism of Yu et al., which we defined as Level 0, the whole unit cell is included into
the calculation of the forces arising from the core states at Level 1. Thereby, the evalu-
ation of the core-electron force is not limited to the MT sphere of the particular electron.
For the force contribution of semicore states, which exhibit non-zero value outside of the
artificial MT spheres, our refinement constitutes a more rigorous description. The LAPW
basis functions are constructed such that they are continuous in the low angular-momentum
channels at the MT sphere boundary up to first order. Level 2 correctly evaluates a surface
term containing the second spatial derivative of the basis functions using its representation
from the IR. At Level 0 and Level 1, this surface term uses the MT representation of the
basis functions. Consequently, Level 3 takes into account the discontinuity of the LAPW
basis functions, the density, and the potential in zeroth and first order, which arises because
the IR representation of the basis functions contain all angular momenta in contrast to the
MT representation.

We demonstrated for the systems Al, MgO, GaAs, EuTiO3, and VO2 that the fulfillment
of the acoustic sum rule is improved by three orders of magnitude, i.e., the drift force is
reduced from mHtr/aB to µHtr/aB at Level 3. At the same time, the symmetry of the
FCM is improved significantly, as we have shown for EuTiO3. For this system, the FCM
originally exhibits a deviation from symmetry of 0.1mHtr/aB. This is reduced to 3 µHtr/aB
by our amendments. The additional computation time required for calculating the improved
atomic forces is in the worst case doubled in comparison to the initial implementation. With
respect to the time required for the self-consistency of the underlying DFT calculation this
is still negligible.

Utilizing the improved atomic force we have calculated phonon spectra for Al, MgO,
GaAs, and EuTiO3 by combining the all-electron FLAPW program FLEUR with the PHON
code of Alfè [58]. For all four systems we find a qualitatively good agreement with experi-
ment, except for the splitting between the longitudinal (LO) and transversal optical (TO)
bands at the Γ point in the polar materials MgO and GaAs, which is a consequence of a
macroscopic, electrical field generated in the long-wavelength limit. The proper inclusion
of the LO-TO splitting would require the construction of the static dielectric tensor and
the Born-effective charges of the system. Overall, our calculations, which are based on
the experimental lattice constant and use the local density approximation (LDA) for the
exchange-correlation (xc) functional, have a tendency to underestimate the experimental
phonon frequencies. This is in agreement with observations in the literature [129]: LDA
calculations performed at the experimental lattice constant typically give rise to too soft
phonons. By using the LDA predicted lattice constant, which is usually smaller than the
experimental one, a better agreement with experiment can be achieved.
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In the second part of the thesis we developed a formalism to compute phonons within
the all-electron FLAPW method using linear response theory. In the context of DFT, this
is also known as density-functional perturbation theory (DFPT). The great advantage of
the linear response approach in comparison to the FD method is that it does not require
the setup of supercells. Phonons of any wave vector q can be calculated starting from the
wave functions, density, and potential of the minimal chemical unit cell. The system is then
perturbed by a phononic displacement of the atomic nuclei from their equilibrium position
with a specific q-vector. The resulting change in the external potential due to this dis-
placement is constructed and the linear change of the occupied wave functions is calculated
by solving the differential equation of first-order perturbation theory, which is also known
as the Sternheimer equation. From the response of the wave functions, the change in the
density is calculated. The change in the wave functions and in the density has to be found
self-consistently to account for the screening of the external perturbation due to the Hartree
and exchange-correlation potential. The change in the external and the Hartree potential
is computed using a scheme by Weinert with which originally the unperturbed Coulomb
potential is calculated. Essentially, from these quantities the dynamical matrix is then con-
structed directly as the second-order derivative of the total energy.

The developed linear-response formalism draws from our experience with the atomic forces
and accounts for the specifics of the LAPW approach: (a) the LAPW basis functions are
adjusted to the atomic positions and thus respond themselves to the applied perturbation;
(b) the space is partitioned in atom-centered muffin-tin spheres and the remaining intersti-
tial region; (c) LAPW basis functions, density and potential exhibit a small discontinuity at
the sphere boundaries. These facts give rise to additional terms in the Sternheimer equation
and in the dynamical matrix which are not present in a pure planewave approach. Point (a)
leads to the occurrence of so-called Pulay terms. These correct for deviations of the wave
functions represented in the finite LAPW basis from the exact pointwise solutions of the
Hamiltonian. Point (b) and (c) give rise to additional surface terms, which account for the
discontinuities at the sphere boundaries.

To put our DFPT formulation into perspective, we compare it to the linearized muffin-
tin orbital (LMTO) realization by Savrasov [34] and the FLAPW realization by Kouba et
al. [50], since also the LMTO approach [59–61] constitutes a full-potential scheme.
We recognize the equivalence between our derivation and the one of Savrasov as long as
no basis-set specific contributions are considered. Both the LMTO and the LAPW basis
functions are dependent on the atomic position, thus both yield a rigid part (−∇) in the
change of the basis functions and later in the variation of the density and the potential. In
the case of the LMTO basis functions, Savrasov comments on their discontinuity in second
order at the MT sphere boundary. However, this term is neglected in calculations as it is
assumed to be negligible compared to second-order contributions to the dynamical matrix.
It is unclear from Ref. [34] whether or not the second-order discontinuity of the LMTO
basis functions is considered during the self-consistent solution of the Sternheimer equation,
since no statement is made concerning its inclusion into the Sternheimer loop. In our DFPT
FLAPW formalism, surface terms arising from the discontinuity of the LAPW basis func-
tions are included.
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8. Summary & Conclusions

A comparison between our Sternheimer matrix equation (7.24) and Eq. (2.34) of Kouba et
al. [50] corresponding to the matrix on the right-hand side of our formula yields an apparent
difference in the surface terms:

∑

G

〈

φ
(0)
k±q,G′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
k±q,G

〉

z
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∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
kG

〉

α

−
∮

∂MT(α,0)

ê
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ik(0)
kG (7.24 revisited)

δHk+q+G′,k+G − ǫikδSk+q+G′,k+G

=
∑

K

δ+Veff(K + q)Sint
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∑
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− ǫik
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∣

∣

IR
êdS (2.34 in [50])

In Eq. (2.34 in [50]), δ+Sα corresponds to the polarization vector Qα and V̌eff(r) corre-

sponds to the ’soft’ part of the potential variation, i.e.,
∑

αQ
T
α · {V (1)α+

eff (r)+∇V (0)
eff (r)} in

our notation. The surface terms in Eq. (2.34 in [50]) arise from the rigid change −∇φkG(r)
in the basis functions analogous to how we proceeded in obtaining Eq. (7.24). The surface
term containing the kinetic energy operator is evaluated in both equations using the IR rep-
resentation of the LAPW basis functions. We note that in Eq. (2.34) of Kouba et al. [50],
∇2 must be replaced by T̂ = −∇2 for consistency in their notation. However, the surface
terms containing the potential and the energy eigenvalue (inconsistent sign in Ref. [50] in
case of the latter) is calculated to use the MT representation of the basis functions in [50].
Our formalism rigorously acknowledges the discontinuity of the LAPW basis functions not
only in second order, but also in zeroth and first order due to the finite angular-momentum
cutoff applied in the MT spheres. Therefore, we obtain these two surface terms expressed
in the IR representation of the basis functions in the last line of Eq. (7.24), while the MT
representation cancels out. We refrain from exchanging the MT and IR representation of
the basis functions in the surface terms to compute the surface terms, since a comparison
between Levels 1, 2, and 3 of our force formalism implies a high sensitivity on such an
exchange for low values of the lmax-cutoff parameter. We expect that this sensitivity also
applies in the case of phonon calculations. Kouba et al. [50] report however that they per-
form the exchange of the MT and IR representation of the LAPW basis functions in order
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to calculate the surface terms more conveniently. In terms of a practical calculation, the
Sternheimer matrix equation is thus evaluated identically in [50] and in this thesis. In this
light, we consider our DFPT derivation as a rigorous proof for the validity of the practical
implementation of the formalism presented by Kouba et al. [50], while our formalism cor-
rects their theoretical derivation.

While Kouba et al. concentrate in Ref. [50] on the important step of solving the Stern-
heimer matrix equation and omit to present a formalism for calculating the second-order

variation of the external potential V
(2)
ext (r) and of the ion-ion energy E

(2)
ii , we provide in this

thesis a full discussion of the first- and second-order variations leading to the dynamical
matrix, including the construction of the first- and second-order changes in the Coulomb
potential both in the MT spheres and in the IR.
Based on this discussion, the development of a computer program enabling phonon calcu-
lations within the all-electron FLAPW approach should be straightforward. The computa-
tional cost for the calculation of phonons with a given crystal momentum q is expected to
be comparable with the cost of the underlying self-consistent electronic structure calcula-
tion. However, since the calculations of phonons at different Bloch vectors are completely
independent, the workload can be efficiently distributed over many CPUs. Hence, the com-
putational cost does not pose a fundamental problem.
A widely available all-electron FLAPW code for computing phonons in linear response will
open the vista to study not only quantities directly related to phonons, like the specific heat
of a material, or the temperature dependence of the lattice constant, but also intertwined
effects like the scattering of electrons and phonons and magnons and phonons from first
principles in the highly accurate FLAPW approach.

Finally, we want to note that the considerations concerning the leakage of the core states
from their muffin-tins and the discontinuity of the LAPW basis functions at the muffin-tin
sphere boundaries are valid also for other approaches where the core electrons are treated
separately from the valence electrons and where a separation of space leads to surfaces at
which the representation of functions is discontinuous. This is true for example for the
LMTO method or for the Korringa-Kohn-Rostoker (KKR) [66–68] method.
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A. Appendix

A.1. Implementation of core states

In chapter 3.4 we introduced the core states. These states are localized at the atomic nu-
cleus, do not participate in resonant bonding, and are either not well or not at all represented
by the LAPW basis functions defined in Eq. (3.16). The choice of the muffin-tin radius Rα

determines whether they are partially representable: If it is such that the core state is com-
pletely confined in the muffin-tin sphere of atom α, it is orthogonal to the LAPW basis
functions by Eq. (3.32). Otherwise, the core state is non-vanishing outside of the muffin-tin
sphere and the leaking coretail can be partially sampled by the FLAPW basis functions.
The coretail density produced by all leaking core states in the interstitial and in the muffin-
tin spheres of foreign atoms is of the same periodicity as the lattice and is usually treated
via a Fourier transform for the interstitial region and a reexpansion into spherical harmonics
in the other muffin-tin spheres. In this chapter, we will give details on this procedure.

We already introduced the spherical core density ραcore(rα) of atom α and the total core
density ρtotcore(r) in chapter 3.4 as

ραcore(rα) =

core
∑

ik

δαβfik|ψik(rα)|2, (3.33 revisited)

ρtotcore(r) =
∑

α

ραcore(r − τα). (3.34 revisited)

For the core states, i = (βplml) is a multiindex consisting of the atom β to which the core
state belongs, as well as the principal, angular, and magnetic quantum numbers p, l, and
ml.
To have a good representation of the local core density in the interstitial region, it is replaced
inside its muffin-tin sphere by a Gaussian to allow for a fast converging Fourier expansion
of this pseudo core density

ρ̃αcore(rα) =

{

Aαe
−aαr2α , rα ≤ Rα

ραcore(rα) , rα > Rα

(3.36 revisited)

with the parameters Aα and aα given as

Aα = ραcore(Rα)e
aαR2

α and (3.37 revisited)

aα = − 1

2Rα

ρα′core(Rα)

ραcore(Rα)
(3.38 revisited)
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by a matching of the Gaussian to the coretail density at the muffin-tin sphere boundary up
to first order.
Then the interstitial core density becomes

ρtotcore(r)
∣

∣

r∈IR
=
∑

G

ˆ̃ρtotcore(G)eiG·r with (A.1)

ˆ̃ρtotcore(G) =
1

Ω

∫

ρ̃totcore(r)e
−iG·rd3r

=
∑

α

e−iG·τα
1

Ω

∫

ρ̃αcore(rα)e
−iG·rαd3rα

=:
∑

α

Sα(G)Fα(G) (A.2)

and the structure factor Sα(G) and the form factor Fα(G) are defined by

Sα(G) = e−iG·τα and (A.3)

Fα(G) =
1

Ω

∫

ρ̃αcore(rα)e
−iG·rαd3rα. (A.4)

The local pseudo core density is not periodic, but the superposition with the pseudo core
densities of all images of atom α is. To account for the whole coretail density of ρ̃αcore, which
might as well reach out of the unit cell, the volume of integration is not restricted to Ω but
instead includes whole three-dimensional space.

In the muffin-tin sphere of atom β, the coretail of the pseudo core density of atom α has
to be expanded into the spherical harmonics of the local coordinate system again:

ρ̃αcore(r − τα)|r∈MT(β)

=
∑
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Ylm(r̂ − τβ)
∑

G

Sα(G)Fα(G)
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G

Sα(G)Fα(G)S∗
β(G)Y ∗

lm(Ĝ)jl(Grβ)

]

(A.5)

To be able to calculate both contributions, we still have to evaluate the form factor.

A.1.1. Fα(G) inside the muffin-tin sphere of atom α

In order to obtain the form factor inside of MT(α), we write for the G = 0 component

F in
α (0) =
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BRα (0)

e−aαr2d3r =
Aα

Ω
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, (A.6)
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where we introduced the error function

erf(z) =
2√
π

∫ z

0

e−t2dt, obeying (A.7)

erf(0) = 0 and (A.8)

erf(z∗) = erf∗(z). (A.9)

For the G 6= 0 components, we have
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dr (A.10)

The last integral can be cast into a better form by an integration by parts:
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Using these expressions for the form factor respecting Eq. (A.9) yields
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A.1.2. Fα(G) outside of the muffin-tin sphere of atom α

Since the pseudo core density ρ̃αcore agrees with the real one there, the remaining integral
over threedimensional space without MT(α) is computed numerically as

F out
α (G) =

1

Ω

∫

R3\BRα (0)

ρ̃αcore(rα)e
−iG·rαd3rα =

4π

Ω

∫ ∞

Rα

r2αρ
α
core(rα)j0(Grα)drα, (A.14)

F out
α (0) =

4π

Ω

∫ ∞

Rα

r2αρ
α
core(rα)drα. (A.15)

The total form factor of atom α is then given as the sum Fα(G) = F in
α (G) + F out

α (G).
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A.2. Calculating dµxc/dρ for the VWN-LDA functional

The exchange-correlation LDA functional as formulated by Vosko, Wilk, and Nusair [74] is
presented as

εx(rs, ζ) = εPx (rs) + [εFx (rs)− εPx (rs)]f(ζ)

= εPx (rs)
{

1 + [21/3 − 1]f(ζ)
}

(A.16)

εPx (rs) = − 3

2πrs

(

9π

4

)
1
3

= εFx (rs)2
−1/3 (A.17)

εc(rs, ζ) = εPc (rs) + αc(rs)
f(ζ)

f ′′(0)
(1− ζ4) + [εFc (rs)− εPc (rs)]f(ζ)ζ

4 (A.18)

rs =

(

3

4π

)1/3

ρ−1/3 =: crρ
−1/3 (A.19)

ζ =
ρ↑ − ρ↓

ρ
=
ρ↑ − ρ↓
ρ↑ + ρ↓

(A.20)

f(ζ) =
1

2(21/3 − 1)

{

(1 + ζ)4/3 + (1− ζ)4/3 − 2
}

(A.21)

f ′(ζ) =
2

3(21/3 − 1)

{

(1 + ζ)1/3 − (1− ζ)1/3
}

(A.22)

f ′′(ζ) =
2

9(21/3 − 1)

{

(1 + ζ)−2/3 + (1− ζ)−2/3
}

(A.23)

with the spin dependent exchange energy density εx and correlation energy density εc, the
Seitz radius rs, the spin polarization ζ, and the function f that interpolates in the exchange
case directly between the paramagnetic (ζ = 0, εx(rs, 0) = εPx (rs)) and the ferromagnetic
(ζ = ±1, εx(rs,±1) = εFx (rs)) exchange energy density. The limiting cases εPc and εFc as well
as the spin stiffness αc are obtained from a two-point Padé approximation to the formula

F (x) = A

{

ln
x2

X(x)
+

2b

Q
tan−1 Q

2x+ b

− bx0
X(x0)

[

ln
(x− x0)

2

X(x)
+

2(b+ 2x0)

Q
tan−1 Q

2x+ b

]}

(A.24)

with fitting parameters A, b, x0, and c hidden withinX(x) = x2+bx+c and Q = (4c−b2)1/2.
It is x =

√
rs. A set of these parameters is given in the paper for the limiting cases and the

spin stiffness each. In order to obtain the derivative of the exchange-correlation potential
with respect to the density, we start by constructing the exchange component of the xc
potential:

µxσ =
dρεx(rs, ζ)

dρσ
= εx(rs, ζ) + ρ

∂rs
∂ρσ

∂εx(rs, ζ)

∂rs
+ ρ

∂ζ

∂ρσ

∂εx(rs, ζ)

∂ζ
(A.25)

σ =↑ / ↓ or +/− denotes the spin channel. For the correlation part, we find similarly

µcσ =
dρεc(rs, ζ)

dρσ
= εc(rs, ζ) + ρ

∂rs
∂ρσ

∂εc(rs, ζ)

∂rs
+ ρ

∂ζ

∂ρσ

∂εc(rs, ζ)

∂ζ
. (A.26)
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The constituents of Eqs. (A.25) and (A.26) are:

∂rs
∂ρσ

= ∂ρσ
crρ

−1/3 = − 1

3ρ
rs (A.27)

∂ζ

∂ρσ
= ∂ρσ

ρ↑ − ρ↓
ρ

= ∂ρσ
σ
ρ− 2ρσ̄

ρ
= 2σ

ρσ̄
ρ2

(A.28)

∂εx(rs, ζ)

∂rs
=
dεPx (rs)

drs

{

1 + [21/3 − 1]f(ζ)
}

= − 1

rs
εx(rs, ζ) (A.29)

∂εx(rs, ζ)

∂ζ
= εPx (rs)[2

1/3 − 1]f ′(ζ) (A.30)

∂εc(rs, ζ)

∂rs
=
dεPc (rs)

drs
+
dαc(rs)

drs

f(ζ)

f ′′(0)
(1− ζ4) +

[

dεFc (rs)

drs
− dεPc (rs)

drs

]

f(ζ)ζ4 (A.31)

∂εc(rs, ζ)

∂ζ
= αc(rs)

f ′(ζ)

f ′′(0)
+

[

εFc (rs)− εPc (rs)−
αc(rs)

f ′′(0)

]

{

f ′(ζ)ζ4 + 4f(ζ)ζ3
}

(A.32)

∂F (x)

∂rs
=

∂x

∂rs
F ′(x) =

1

2x

2A

X(x)

{

c

x
− bx0
x− x0

}

(A.33)

We continue with the derivative of the potential µσ with respect to the density, where
we omit the x or c labels for the exchange or correlation parts, since the structure of the
derivative is the same in both cases:

dµσ

dρ
=

∂rs
∂ρ

∂ε(rs, ζ)

∂rs
+
∂ζ

∂ρ

∂ε(rs, ζ)

∂ζ
+
∂rs
∂ρσ

∂ε(rs, ζ)

∂rs
+

∂ζ

∂ρσ

∂ε(rs, ζ)

∂ζ

+ ρ

{

∂2rs
∂ρ∂ρσ

∂ε(rs, ζ)

∂rs
+
∂rs
∂ρσ

∂rs
∂ρ

∂2ε(rs, ζ)

∂r2s
+
∂rs
∂ρσ

∂ζ

∂ρ

∂2ε(rs, ζ)

∂ζ∂rs

}

+ ρ

{

∂2ζ

∂ρ∂ρσ

∂ε(rs, ζ)

∂ζ
+

∂ζ

∂ρσ

∂rs
∂ρ

∂2ε(rs, ζ)

∂rs∂ζ
+

∂ζ

∂ρσ

∂ζ

∂ρ

∂2ε(rs, ζ)

∂ζ2

}

(A.34)

The new constituents within this equation are:

∂rs
∂ρ

= − 1

3ρ
rs,

∂ζ

∂ρ
= −ζ

ρ
,

∂2rs
∂ρ∂ρσ

=
4

9ρ2
rs,

∂2ζ

∂ρ∂ρσ
= −4σ

ρσ̄
ρ3

(A.35)

∂2εx(rs, ζ)

∂r2s
=

2

rs
εx(rs, ζ) (A.36)

d2εx(rs, ζ)

dζ2
= εPx (rs)[2

1/3 − 1]f ′′(ζ) (A.37)

d2εx(rs, ζ)

drsdζ
= − 1

rs
εPx (rs)[2

1/3 − 1]f ′(ζ) =
d2εx(rs, ζ)

dζdrs
(A.38)

∂2εc(rs, ζ)

∂r2s
=
d2εPc (rs)

dr2s
+
d2αc(rs)

dr2s

f(ζ)

f ′′(0)
(1− ζ4)

+

[

d2εFc (rs)

dr2s
− d2εPc (rs)

dr2s

]

f(ζ)ζ4 (A.39)

d2εc(rs, ζ)

dζ2
= αc(rs)

f ′′(ζ)

f ′′(0)
+

[

εFc (rs)− εPc (rs)−
αc(rs)

f ′′(0)

]

×
{

f ′′(ζ)ζ4 + 8f ′(ζ)ζ3 + 12f(ζ)ζ2
}

(A.40)
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d2εc(rs, ζ)

drsdζ
=
dαc(rs)

drs

f ′(ζ)

f ′′(0)
+

[

dεFc (rs)

drs
− dεPc (rs)

drs
− dαc(rs)

drs

1

f ′′(0)

]

×
{

f ′(ζ)ζ4 + 4f(ζ)ζ3
}

=
d2εc(rs, ζ)

dζdrs
(A.41)

∂2F (x)

∂r2s
=

∂x

∂rs

∂

∂x

∂F (x)

∂rs
=

1

2x
∂x

A

xX(x)

{

c

x
− bx0
x− x0

}

= − A

2x2X(x)

[{

1

x
+
X ′(x)

X(x)

}{

c

x
− bx0
x− x0

}

+

{

c

x2
− bx0

(x− x0)2

}]

(A.42)

X ′(x) = 2x+ b (A.43)

Remember that F (x) is used for εFc (rs), ε
P
c (rs), and αc(rs) with a different set of parameters

each.
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A.3. Input file for VO2

We provide the setup for our force calculations on vanadium dioxide (see chapter 4.7) in
terms of an input file for the input-file generator of FLEUR. The data is taken from the
Inorganic Crystal Structure Database (ICSD) [151] hosted by the Fachinformationszentrum
Karlsruhe [152]. Due to how monoclinic lattices are implemented in FLEUR, the b and c axes
and the β and γ angles had to be exchanged. Namelists, which start with an ampersand &
and end with a slash /, are considered to be on one line.

Vanadium dioxide

&input cartesian=f inistop=t oldfleur=f /

&lattice latsys=’moP’ a= 5.3528 b= 5.3825 c= 4.5378

alpha= 90 beta= 90 gamma= 115.208 a0= 1.88972612457 /

12

23 0.2605 0.2870 0.0211

23 -.2605 0.2130 0.5211

23 -.2605 -.2870 -.0211

23 0.2605 0.7870 0.4789

8 0.6062 0.3976 0.2119

8 -.6062 0.1024 0.7119

8 -.6062 -.3976 -.2119

8 0.6062 0.8976 0.2881

8 0.0995 0.3983 0.2974

8 -.0995 0.1017 0.7974

8 -.0995 -.3983 -.2974

8 0.0995 0.8983 0.2026

&factor 1.000 1.000 1.000 /

&atom element="v" id=23 rmt=1.90 jri=687 dx=0.017

lmax=12 lnonsph=12 lo="3p" /

&atom element="o" id=8 rmt=1.10 jri=389 dx=0.026

lmax=12 lnonsph=12 /

&exco xctyp=’vwn’ /

&comp kmax=5.5 gmax=15.3 gmaxxc=12.7 /

&end /
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A.4. Nitty-gritties of DPulay(q)

We want to calculate the constituents of
〈

ψ
(2)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(0)
ik

〉

+
〈

ψ
(0)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(2)
ik

〉

+ 2
〈

ψ
(1)
ik

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ψ
(1)
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〉

=
∑

αβ

Q∗T
β ·

[〈

2
∑

G

z
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T
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z
ik(0)
kG φ(2)β
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∣

∣

∣

∣

Ĥ0 − ǫ
(0)
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∣

∣

∣

∣
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kG φ
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〉
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kG φ
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∣

∣

∣

∣

Ĥ0 − ǫ
(0)
ik

∣

∣

∣

∣

∣

2
∑

G

z
ik(1)β−
k−q,G φ

(1)α+
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T
+
∑

G

z
ik(0)
kG φ(2)β
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〉

+ 2

〈
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G

z
ik(1)β+
k+q,G φ

(0)
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z
ik(0)
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∣

∣

∣

∣
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Ĥ0 − ǫ
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∣
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∣

∣

∣

∣
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z
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T
φ
(0)
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G

z
ik(0)
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T

〉]

·Qα + c.c.,

(7.118 revisited)

where ψ
(0)
ik (r) is a valence state. We will discuss each of the three bra-kets and refer to

results already obtained when necessary.

A.4.1. First bra-ket

By using the basis function responses given in Eqs. (7.21) and (7.104), the first bra-ket
transforms to

〈

2
∑

G

z
ik(1)β±
k±q,G φ

(1)α∓
k±q,G

T
+
∑

G

z
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∣
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∣

∣

∣
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∣

∣

∣

∣
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∣

∣
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∣

∣

∣
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∣

∣
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∣

∣
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∣
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∣
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∣
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∣
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∣

∣
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(A.44)
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We expand the basis functions φ
(0)
kG(r) into expansion coefficients aαkGlmλ and radial functions

times spherical harmonics ϕα
lm,λ(rα) (cf. Eqs. 3.16 and 3.64) and contract the G sums

according to

Aαik
lmλ =

∑

G

z
ik(0)
kG aαkGlmλ , (A.45)

Aαik
lmλ =

∑

G

Gz
ik(0)
kG aαkGlmλ , (A.46)
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∑

G

GGTz
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kG aαkGlmλ , (A.47)
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z
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lmλ , (A.48)

and
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Then we obtain
〈

2
∑

G

z
ik(1)β±
k±q,G φ

(1)α∓
k±q,G

T
+
∑

G

z
ik(0)
kG φ(2)β

kG

∣

∣

∣
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∣

∣

∣

∑

G

z
ik(0)
kG φ

(0)
kG

〉

= −2i
∑
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l′m′λ′α(k ± q)T +Aβik±

l′m′λ′α

]∗
Aαik

lmλ

×
〈

ϕ
α(0)
l′m′,λ′

∣

∣
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∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ϕ
α(0)
lm,λ

〉

α

− δαβ
∑

lmλ

∑

l′m′λ′

[

Aαik
l′m′λ′kk

T + k
(

A
αik
l′m′λ′

)T

+Aαik
l′m′λ′k

T +Aαik
l′m′λ′

]∗
Aαik

lmλ

×
〈

ϕ
α(0)
l′m′,λ′

∣

∣
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. (A.50)

Now the muffin-tin integrals can be calculated exactly as or similarly to Eqs. (3.68)ff.
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A.4.2. Second bra-ket

The second bra-ket of Eq. (7.118) can be transformed similarly to the first one:
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∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣∇Tϕ
α(0)
lm,λ

〉

α

− δαβ
∑

lmλ

∑

l′m′λ′

(

Aαik
l′m′λ′

)∗ [

Aαik
lmλkk

T + k
(

A
αik
lmλ

)T

+Aαik
lmλk

T +Aαik
lmλ

]

×
〈

ϕ
α(0)
l′m′,λ′

∣

∣

∣
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(A.51)

The ϕ
α(0)
lm,λ(r) do not vanish at the muffin-tin sphere boundary. Therefore, Ĥ0 is not self-

adjoint in MT(α). In order to evaluate the MT integrals where the ket consists of the

gradient or the Hessian of ϕ
α(0)
lm,λ(r), we have to add and subtract

[

1
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]∗
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that the Hamiltonian acts on the bra. With f(rα) either being a component of ∇Tϕ
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Ĥ0 − ǫ

(0)
ik

∣

∣

∣
ϕ
α(0)
l′m′,λ′

〉∗

α

+
1

2

∫

BRα (0)

[

∇2ϕ
α(0)
l′m′,λ′(rα)

]∗
f(rα)−

(

ϕ
α(0)
l′m′,λ′(rα)

)∗
[

∇2f(rα)
]

d3rα

=
〈

f
∣

∣
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The derivatives ∂rα are radial derivatives. Using the second term of this equation as cor-
rection, the muffin-tin integrals of the second bra-ket can be evaluated as the complex
conjugates of the first bra-ket.
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A.4.3. Third bra-ket

The third bra-ket decomposes into four terms. The term containing the response of the
expansion coefficients both in the bra and in the ket has to be evaluated over the whole unit
cell. The other terms are limited again to the muffin-tin sphere of atom α or β. For these
terms, we expand the basis functions into spherical harmonics as before and contract the
sums over G and G′. We obtain

2

〈

∑

G

z
ik(1)β±
k±q,G φ

(0)
k±q,G +

∑

G

z
ik(0)
kG φ

(1)β±
kG

∣

∣

∣

∣

∣

Ĥ0 − ǫ
(0)
ik

∣

∣

∣

∣

∣

×
∣

∣

∣

∣

∣

∑

G

z
ik(1)α±
k±q,G

T
φ
(0)
k±q,G +

∑

G

z
ik(0)
kG φ

(1)α±
kG

T

〉

= 2
∑

GG′

(

z
ik(1)β±
k±q,G′

)∗ 〈
φ
(0)
k±q,G′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣φ
(0)
k±q,G

〉

z
ik(1)α±
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T

+ 2
∑

GG′

(

z
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k±q,G′
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φ
(0)
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∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣

[

i(k +G)T −∇T
]

φ
(0)
kG

〉

α
z
ik(0)
kG
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∑

GG′

(

z
ik(0)
kG′

)∗ 〈
[

i(k +G′)−∇
]

φ
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kG′
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∣

∣
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(0)
ik

∣

∣

∣
φ
(0)
k±q,G

〉
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z
ik(1)α±
k±q,G

T

+ 2δαβ
∑
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(

z
ik(0)
kG′
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[
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φ
(0)
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∣
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(0)
ik

∣

∣

∣

×
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∣
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]

φ
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〉

α
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z
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(0)
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)
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T
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∑
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(

A
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∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ϕ
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〉

α
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∑
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A
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[
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βik
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]∗
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}

×
〈

ϕ
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∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣∇Tϕ
α(0)
lm,λ

〉

α

− 2i
∑

lmλ

∑

l′m′λ′

[

kAβik
l′m′λ′ +A

βik
l′m′λ′

]∗
A

αik±
lmλβ

T
〈

ϕ
β(0)
l′m′,λ′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣ϕ
β(0)
lm,λ

〉

β

− 2
∑

lmλ

∑

l′m′λ′

〈

∇ϕβ(0)
l′m′,λ′

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
ϕ
β(0)
lm,λ

〉

β

×
{

(

Aβik
l′m′λ′

)∗
A

αik±
lmλβ

T
+ iδαβ

(

Aβik
l′m′λ′

)∗ [
kAβik

lmλ +Aβik
lmλ

]T
}

+ 2δαβ
∑

lmλ

∑

l′m′λ′

[

kAαik
l′m′λ′ +Aαik

l′m′λ′
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kAαik

lmλ +Aαik
lmλ
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×
〈

ϕ
α(0)
l′m′,λ′

∣

∣

∣Ĥ0 − ǫ
(0)
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∣

∣

∣ϕ
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〉

α

+ 2δαβ
∑

lmλ

∑

l′m′λ′

(

Aαik
l′m′λ′

)∗
Aαik

lmλ

〈

∇ϕα(0)
l′m′,λ′

∣

∣

∣
Ĥ0 − ǫ

(0)
ik

∣

∣

∣
∇Tϕ

α(0)
lm,λ

〉

α
(A.53)
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We already encountered every muffin-tin integral in this equation except for the last one. For

this integral, we make use of the fact that ϕ
α(0)
lm,λ solves the spherical Schrödinger equation

to avoid explicit application of the kinetic energy operator. Acting with ∇T onto the
Schrödinger equation yields

Ĥα
sph∇Tϕ

α(0)
lm,λ(rα) = Eα

l ∇Tϕ
α(0)
lm,λ(rα) + δ1λ∇Tϕ

α(0)
lm,0(rα)− [∇TV α

sph(rα)]ϕ
α(0)
lm,λ(rα).

(A.54)

Using this result in the muffin-tin integral containing the gradient in the bra and in the ket,
it can be evaluated as

〈

∇ϕα(0)
l′m′,λ′

∣

∣

∣Ĥ0 − ǫ
(0)
ik

∣

∣

∣∇Tϕ
α(0)
lm,λ

〉

α

= (Eα
l − ǫ

(0)
ik )

〈

∇ϕα(0)
l′m′,λ′

∣

∣

∣∇Tϕ
α(0)
lm,λ

〉

α
+ δ1λ

〈

∇ϕα(0)
l′m′,λ′

∣

∣

∣∇Tϕ
α(0)
lm,0

〉

α

+
〈

∇ϕα(0)
l′m′,λ′

∣

∣

∣V α
nonsph

∣

∣

∣∇Tϕ
α(0)
lm,λ

〉

α
−
〈

∇ϕα(0)
l′m′,λ′

∣

∣

∣∇TV α
sph

∣

∣

∣ϕ
α(0)
lm,λ

〉

α
. (A.55)

The expressions appearing in this equation can be easily evaluated once the expansions

of ∇V α
sph(rα) and ∇ϕα(0)

lm,λ(rα) in terms of spherical harmonics are known. If not already
present, they can be constructed from Eq. (4.17), the application of the gradient in natural
coordinates.
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A.5. Nitty-gritties of DSF(q)

We want to evaluate the integrals

I 1 =

∮

∂MT(β)

ê

[

ψ
(1)α∓
ik

∗T
(r)
(

Ĥ0 − ǫ
(0)
ik

)

ψ
(0)
ik (r)

]

SF

dS, (A.56)

I 2 =

∮

∂MT(β)

ê

[

ψ
(0)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(1)α±
ik

T
(r)

]

SF

dS, (A.57)

I 3 =

∮

∂MT(β)

∇
[

ψ
(0)∗
ik (r)

(

Ĥ0 − ǫ
(0)
ik

)

ψ
(0)
ik (r)

]

SF
ê
TdS. (A.58)

The last integral occurred from the variation of a surface integral and is thus zero for β 6= α.
In chapter 7.3.3, we established that each IR quantity is processed as far as possible and is
then Rayleigh expanded such that the IR and MT quantities can be treated in one formula
(s. Eqs. (4.30) and (7.121)). Due to the differences in how the Hamiltonian acts on the
LAPW basis functions in the IR and the MT spheres, the terms discussed in this section
need to be evaluated separately in the IR and MT spheres.

Interstitial region

In the IR, the wave function variation decomposes to

ψ
(1)α±
ik (r) =

∑

G

z
ik(1)α±
k±q,G φ

(0)
k±q,G(r). (A.59)

Thus, In each of I 1, I 2, and I 3, the kinetic energy operator is applied either to the plane

wave φ
(0)
kG(r) or φ

(0)
k±q,G(r) and produces factors |k +G|2/2 or |k ± q +G|2/2 which have

to be included in the G-contraction in the Rayleigh expansion. In I 3, the gradient acts
once more on the basis function after the product rule is applied. Therefore, the factor to
be included in the G-contraction is here |k+G|2(k+G)/2. The potential (or the gradient
thereof) also need to be Rayleigh expanded. Then the interstitial part of the integrals are

IIR1 = −
3
∑

i=1

êi

1
∑

t=−1

ci,t

×
{

∑

l′m′

[

ψ
(1)α∓
ik

]IR∗

l′m′,β
(Rβ)

∑

lm

[(

−1

2
∇2 − ǫ

(0)
ik

)

ψ
(0)
ik

]IR

lm,β

(Rβ)G
m′,t,m
l′,1,l

+
∑

l′m′

[

ψ
(1)α∓
ik

]IR∗

l′m′,β
(Rβ)

∑

lm

[(

−1

2
∇2 − ǫ

(0)
ik

)

ψ
(0)
ik

]IR

lm,β

(Rβ)

×
∑

l′′m′′

[

V
(0)
eff

]IR

l′′m′′,β
(Rβ)

l′′+1,2
∑

s=|l′′−1|
Gt+m′′,t,m′′

s,1,l′′ Gm′,t+m′′,m
l′,s,l

}T

, (A.60)

IIR2 = −
3
∑

i=1

êi

1
∑

t=−1

ci,t

×
{

∑

l′m′

[

ψ
(0)
ik

]IR∗

l′m′,β
(Rβ)

∑

lm

[(

−1

2
∇2 − ǫ

(0)
ik

)

ψ
(1)α±
ik

]IR

lm,β

(Rβ)G
m′,t,m
l′,1,l + . . .
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. . . +
∑

l′m′

[

ψ
(0)
ik

]IR∗

l′m′,β
(Rβ)

∑
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[(

−1

2
∇2 − ǫ

(0)
ik

)

ψ
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ik

]IR
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(Rβ)

×
∑

l′′m′′
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V
(0)
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]IR

l′′m′′,β
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s,1,l′′ Gm′,t+m′′,m
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, (A.61)

IIR3 = −
3
∑

i=1

1
∑

t=−1

ci,t

×
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∑
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∇ψ(0)
ik
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2
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lm,β

(Rβ)G
m′,t,m
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2
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(0)
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)
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(0)
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×
∑
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V
(0)
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∑
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∑
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2
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+
∑
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[

ψ
(0)
ik
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∑
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2
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)
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×
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V
(0)
eff

]IR
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l′′+1,2
∑
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s,1,l′′ Gm′,t+m′′,m
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+
∑

l′m′

[

ψ
(0)
ik
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(Rβ)

∑
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[

ψ
(0)
ik
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∇V (0)
eff
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}

ê
T
i

(A.62)

Whenever the potential is involved, we first evaluated the product of its spherical harmonic
Yl′′m′′(rβ) with the spherical harmonic of the unit vector ê, Y1t(rβ).

Muffin-tins

Only in the case β = α, the MT representation of the wave function response is comple-
mented by the variation of the basis function,

ψ
(1)α±
ik (r) =

∑

G

z
ik(1)α±
k±q,G φ

(0)
k±q,G(r) + Θ(r ∈ MT(α))

∑

G

z
ik(0)
kG φ

(1)α±
kG (r). (A.63)
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Therefore, we will evaluate the MT components of I 1, I 2, and I 3 for β 6= α first and
complement the result in the case β = α afterwards. However, I 3 is zero for β 6= α, so we
only need to find expressions for the first two integrals for now. They are given by

IMT
1 =

3
∑

i=1

êi

1
∑

t=−1

ci,t
∑

lmλ

∑

l′m′λ′

×
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Aαik∓∗
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βik
lmλ(E

β
l − ǫ

(0)
ik )uβl′λ′(Rβ)u

β
lλ(Rβ)G

m′,t,m
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+ δλ1A
αik∓∗
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βik
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β
l′λ′(Rβ)u

β
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l′,1,l

+Aαik∓∗
l′m′λ′βA

βik
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β
l′λ′(Rβ)u

β
lλ(Rβ)

×
∑

l′′>0,m′′

V
β(0)
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∑
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Gt+m′′,t,m′′

s,1,l′′ Gm′,t+m′′,m
l′,s,l

}T

, (A.64)

IMT
2 =

3
∑
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êi

1
∑
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ci,t
∑

lmλ

∑

l′m′λ′

×
{

Aβik∗
l′m′λ′A

αik±
lmλβ(E

β
l − ǫ

(0)
ik )uβl′λ′(Rβ)u

β
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+ δλ1A
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β
l′λ′(Rβ)u

β
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β
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β
lλ(Rβ)

×
∑
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V
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∑
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. (A.65)

Both integrals can be combined easily, since they only deviate in the order of perturbed and
unperturbed expansion coefficients.

We continue by considering the special case β = α, where the variation of the wave
function also involves the change in the basis functions. In the MT sphere of atom α of the
representative unit cell, the variation of the basis functions is given by

φ
(1)α±
kG (r) = [i(k +G)−∇]φ

(0)
kG(r). (A.66)

In the MT representation, the first part is simple to evaluate, since the i(k+G) factor can
be combined with the matching coefficients and only the radial basis functions remain to
be considered. For this component of the basis function response, the integrals I 1 and I 2

become

I
MT(α)
1,k+G = −i

3
∑

i=1

êi

1
∑

t=−1

ci,t
∑
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∑
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α
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. . . +
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∑
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, (A.67)

I
MT(α)
2,k+G = i
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∑
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∑
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∑
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∑
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. (A.68)

For I 1 and I 2, only the MT contributions containing the gradient of the basis functions
remain to be calculated. By the product rule of differentiation, such terms also appear for

I 3. Application of the gradient in natural coordinates (Eq. (4.17)) to ϕ
β(0)
lmλ (rβ), shifts the

angular momentum l by one and the magnetic momentumm by at most one. We will denote
the shift in l by p and the shift in m by q in the following. Then, the last component of the
MT part of I 1 can be expressed by

I
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1,∇ = −

3
∑

i=1

êi
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∑
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∑
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. (A.69)

The evaluation of the equivalent expression in I 2 contains the application of the spherical

Hamiltonian Ĥα
sph to the gradient of the basis function ∇ϕα(0)

lmλ (r). Eq. (A.54) supplies the
corresponding result. We obtain
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. (A.70)

In I 3, the gradients of the basis functions appear transposed and with a different sign. In
addition, the product rule of differentiation generates a term involving the gradient of the
potential, which also has to be added:

I
MT(α)
3 = − IMT(α)

1,∇
T
− I

MT(α)
2,∇

T
+

3
∑

i=1

1
∑

t=−1

ci,t
∑

lmλ

∑

l′m′λ′

uαl′λ′(Rα)u
α
lλ(Rα)

×
∑

l′′>0,m′′

1,2
∑

p=−1

1
∑

q=−1

[

∇V α(0)
eff,l′′m′′

]

l′′+p,m′′+q
(Rα)ê

T
i

×
l′′+p+1,2
∑

s=|l′′+p−1|
Gm′′+q+t,t,m′′+q

s,1,l′′+p Gm′,m′′+q+t,m
l′,s,l (A.71)

We note that I 1 and I 2 appear with a factor of 2 in Eq. (7.119). Therefore, there is no
complete cancellation between the gradient terms in them and in I 3.

Now, all terms for the evaluation of the surface integrals I 1, I 2, and I 3 are known. They
are composed of

I 1 = IIR1 + IMT
1 + I

MT(α)
1,k+G + I

MT(α)
1,∇ , (A.72)

I 2 = IIR2 + IMT
2 + I

MT(α)
2,k+G + I

MT(α)
2,∇ , (A.73)

and

I 3 = IIR3 + I
MT(α)
3 . (A.74)
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