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Introduction

Group testing is a class of search problems, in which we typically have a
set of n items, each of which is either good or defective. A test on an
arbitrary group (subset) of items reveals either that all items in the group
are good or that at least one of the items is defective, but not how many or
which items are defective. The aim is to identify all items as either good or
defective using as few tests as possible. We focus on the sequential case, in
which the results of preceding tests may be used to determine the next test
group. The nonadaptive case, in which all test groups have to be specified in
advance, is a very different problem with few connections to the sequential
case. We distinguish between probabilistic (average case) and combinatorial
(worst case) group testing problems. In the former, we try to minimize
the expected number of tests under a given probability distribution of the
defectives. In the latter, the aim is to minimize the maximum number of
tests required.

In this thesis, log x always denotes log2 x. Let dxe (bxc) denote the
smallest (largest) integer greater (less) than or equal to x.

The history of group testing begins with the probabilistic problem as-
suming that each item is defective with some probability p independent of
all other items, also called the binomial group testing problem. In 1943,
Dorfman [5] was the first to study group testing, motivated by the need
to screen large populations for infectious diseases economically by testing
pools of several blood samples for antibodies. A detailed account of the
early history of group testing was given by Du and Hwang [6, Section 1.1].

Motivated by applications in industrial testing, Sobel and Groll [19] in-
troduced a restricted class of algorithms called the nested class: if a group
of at least two items is contaminated, that is, known to contain a defec-
tive, a nested algorithm always uses a subset of this group as the next test
group. Sobel and Groll [19] gave a recursive definition of an optimal nested
algorithm for the binomial group testing problem with parameter p, which
was simplified later by Hwang [12]. Sobel [18] improved this algorithm by
using special procedures involving overlapping test groups for contaminated
groups containing 2 or 3 items. Chen, Hsu, and Sobel [3], see also Hsu [9],
gave a construction based on choosing the next test group by one of two
approaches: either trying to achieve a probability of a positive test result
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2 INTRODUCTION

as close to 1
2 as possible or using the Huffman lower bound as a proxy for

the expected number of remaining tests. They showed that the resulting
algorithm is as good as or slightly better than Sobel’s algorithm for selected
values of p and n ≤ 6. However, the optimal solution for binomial group
testing remains unknown.

For the general average case with an arbitrary probability distribution
on the defectives, Triesch [20] gave a construction and a cost estimate of a
very good nested algorithm.

In combinatorial group testing, it is typically assumed that there are
exactly d defectives among the n items, and we try to minimize the worst
case number of tests. This is called the (d, n) group testing problem. It was
first studied by Li [15] to determine which out of a large number of variables
significantly influence the outcome of an experiment. As there are

(
n
d

)
possi-

ble sets of defectives and in t tests at most 2t cases can be differentiated, at
least

⌈
log
(
n
d

)⌉
tests are needed. This is called the information lower bound.

The best upper bound known in the literature was proven by Hwang [11] for
his generalized binary splitting algorithm, which tests groups of size 2a where
the choice of the integer a depends on the proportion of defectives among
the not yet identified items; whenever a test result is positive, a defective is
identified by repeatedly halving the contaminated group. The generalized
binary splitting algorithm belongs to the nested class, and the number of
tests it needs exceeds the information lower bound at most by d − 1. Du
and Hwang [6, Section 2.5] gave the recursive definition of an optimal nested
algorithm.

In practical applications the exact number of defectives is hardly ever
known. The case that d is an upper bound of the number of defectives
was considered first by Hwang [11] and is called the generalized (d, n) group
testing problem. Hwang, Song, and Du [13] showed that this problem can
be solved with at most one additional test compared to the (d, n) group
testing problem.

For the case that nothing is known about the number of defectives, Du
and Hwang [7] formulated the competitive group testing problem. A compet-
itive algorithm requires for every number of items n and number of defectives
d at most a fixed multiple, called competitive ratio, of the number of tests
used by the optimal algorithm for the (d, n) group testing problem plus a
constant. The lowest competitive ratio achieved so far is 1.5 + ε, for which
Schlaghoff and Triesch [17] gave competitive algorithms for all positive ε.

Many variations of these group testing problems and numerous applica-
tions in a wide range of fields have been examined in the literature. Du and
Hwang [6] give a comprehensive overview of the combinatorial side of group
testing in their book.

In the first chapter of this thesis, we introduce a novel representation
of the information obtained by group tests. The representation uses hyper-
graphs, following an idea of Triesch. We examine the cases in which the



3

number of defectives is unknown and in which lower and upper bounds for
the number of defectives are known. For both cases, we analyse under which
circumstances individual items are identified as either good or defective and
under which conditions all items have been identified. The analysis applies
to all group testing problems mentioned above.

In the second chapter, we discuss a new variant of combinatorial group
testing, which we call the complete group testing problem: the number of
defectives among n items is unknown and we try to minimize the worst
case number of tests needed if there happen to be at most d defectives.
This is similar to the generalized (d, n) group testing problem, in which it is
known that there are at most d defectives, with the crucial difference that
the case of more than d defectives is not excluded but has to be detected
as well. This avoids the unfortunate property of the (d, n) and generalized
(d, n) group testing problems that algorithms designed for these problems
typically miss defectives or may even report good items as defective if more
than d items happen to be defective in a practical application. We prove
that the optimal algorithm for the complete group testing problem needs
exactly one additional test compared to the optimal algorithm for the (d, n)
problem. As the proof is constructive, it provides explicit instructions to
transform algorithms between these two problems.

The third chapter contains the major result of this thesis, a new algo-
rithm for combinatorial group testing. The split and overlap algorithm is
defined for the complete group testing problem introduced in the second
chapter, but can easily be adapted to the (d, n) or generalized (d, n) group
testing problem by simply omitting all tests that become predictable due
to the additional information about the number of defectives. In the begin-
ning, the initial test group size m is chosen depending on the ratio n

d . The
algorithm then repeatedly tests groups of size m and whenever a test result
is positive at least one defective is identified in the contaminated group of
size m by splitting it repeatedly, similarly to nested algorithms. However,
unlike in nested algorithms, complex subalgorithms involving overlapping
test groups are used on contaminated groups of certain sizes. These subal-
gorithms make it possible to deal efficiently with arbitrary test group sizes
m, not just with powers of two, as in Hwang’s generalized binary splitting
algorithm.

The following estimates for the number of tests required by the split and
overlap algorithm all refer to its application to the (d, n) group testing prob-
lem. We demonstrate that for the initial test group size m, the algorithm
needs at most 1

m tests for each good item and a constant number of tests per
defective identified plus 4 tests. This is less than 0.255d + 1

2 log d + 5.5 tests
above the information lower bound

⌈
log
(
n
d

)⌉
for n

d ≥ 2. For n
d ≥ 38, the

difference decreases to less than 0.187d+ 1
2 log d+5.5 tests. For d ≥ 10, this

is a considerable improvement over the d − 1 tests given by Hwang [11] for
his generalized binary splitting algorithm. We conjecture that the behaviour
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for large n and d of the difference between the number of tests required by
the split and overlap algorithm and the information lower bound is optimal
for n

d ≤ 4. This implies that the 1
2 − log 32

27 = 0.255 tests per defective given
in the bound above are the best possible. Interestingly, leaving the nested
class and using overlapping test groups seems to yield much bigger gains in
combinatorial than in probabilistic group testing.

This thesis was typeset in LATEX, using pdfTEX to generate portable
output and the convenient graphical front end Scientific Workplace. All
figures were produced with MetaPost, a close relative of the font genera-
tor MetaFont, which generates PostScript images from scripts and includes
support for TEX expressions and cubic splines in PostScript output. The
meta algorithm to find the best group testing algorithms was written in the
advanced functional programming language Haskell, allowing me to concen-
trate on the algorithmic instead of the technical complexities and resulting
in a small fraction of the source code size of a comparable Java program. I
appreciate the efforts of the authors of all these excellent tools.

I wish to thank Prof. Dr. Eberhard Triesch for many fruitful discussions
and helpful hints as well as for having introduced me to the fascinating area
of group testing. I am particularly grateful to my wife Doris Allemann-Bulea
for her steady support and for coping together with the strains and stresses
inevitably linked to the writing of this thesis.



Chapter 1

On the Structure of Group
Testing

This chapter contains an analysis of the precise circumstances under which
items are identified as either good or defective in the common group testing
model. To this end, we introduce a novel representation of the information
obtained by group tests, which is used throughout the whole thesis.

1.1 The Group Testing Model

Consider a set I of n items each being either good or defective. The state of
the items can be determined only by testing subsets of I. A test can yield
a negative result, indicating that all tested items are good, or a positive
result, indicating that the group is contaminated, that is, at least one of the
tested items is defective. All tests are considered to be error-free.

The aim of group testing is to identify all defective items through a
sequence of tests, thereby identifying all other items as good, using as few
tests as possible. In the nonadaptive case all tests have to be specified in
advance. We consider only the sequential (adaptive) case, in which the test
group can be specified depending on the results of all previous tests.

The set of all defectives among the n items is called the defective set. All
possible defective sets constitute the search domain S. In the probabilistic
setting, a probability distribution on S is given, and we aim to minimize the
expected number of tests (average case). In the combinatorial setting, we
aim to minimize the maximum number of tests (worst case). The results in
this chapter apply to both settings.

In the basic group testing problem, all subsets of the set of items I
may be tested. However, it is possible to introduce restrictions on the tests
allowed; for example, the maximum test size can be limited. In the nested
class introduced by Sobel and Groll [19], if a group with at least two items
is known to be contaminated, then the next test has to be performed on a
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6 CHAPTER 1. ON THE STRUCTURE OF GROUP TESTING

subset of this group. These restrictions do not affect the analysis performed
in this chapter.

Most group testing problems are symmetric with respect to the items,
that is, swapping any two items before the first test does not make a differ-
ence. Thus, if the search domain S contains a defective set with d elements,
then all subsets of I with d elements belong to S. Therefore, in the sym-
metric case the only possible restrictions on the search domain are those
concerning the number of defectives.

1.2 The Test Information Hypergraph

A hypergraph H = (V, E) is an ordered pair of a set V of vertices and a set
E of edges each consisting of a non-empty subset of the vertices. A vertex
cover C of the hypergraph H is a set of vertices of H such that each edge of
H contains at least one vertex from C. Denote by C(H) the set of all vertex
covers of H, and by τ(H) the minimum number of vertices forming a vertex
cover of H. The components of H are the blocks of the finest partition of
its vertex set V in which every edge lies completely in one block. We call a
hypergraph (V, E) an antichain if there are no E1, E2 ∈ E with E1 ⊂ E2.

In the following, we assume tacitly that we have chosen an algorithm
and look at the sequence of tests for a fixed defective set.

Then, the information gathered after t tests can be represented as follows:
The set Gt consists of all items that are known to be good because they
belong to a group that has been tested with a negative result. In the test
information hypergraph Ht on the vertex set I \Gt each edge is a group that
is known to be contaminated.

G0 is empty and H0 is the hypergraph on I without any edges. The step
from t − 1 to t works as follows: If the group T is tested with a positive
result, let Gt = Gt−1 and Ht be Ht−1 plus the edge T \Gt−1. In the case of
a negative test result, let Gt = Gt−1 ∪ T and Ht on the vertex set I \Gt be
Ht−1 with all vertices in T removed from all edges. Then, regardless of the
test result, all edges that include another edge are removed from Ht, which
thereby becomes an antichain.

This procedure is based on the fact that a group T contains a defective
if and only if T \ Gt−1 contains a defective. Furthermore, T ⊂ T ′ being
contaminated implies that T ′ is contaminated. Therefore, removing the
edge corresponding to T ′ from the hypergraph Ht simplifies its structure
without losing any information.

The step from t− 1 to t is illustrated by the following example.

Example. Let Ht−1 = ({i1, . . . , i6}, {{i1, i2}, {i2, i3, i4}, {i3, i4, i5, i6}}) and
let {i3, i4} be the next test group. If the test result is positive, then {i3, i4}
is added to the edges of Ht−1, and the edges {i2, i3, i4} and {i3, i4, i5, i6}
are removed, as they contain {i3, i4}, yielding Ht = ({i1, . . . , i6}, {{i1, i2},
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{i3, i4}}). If the test result is negative, {i3, i4} is removed from all edges of
Ht−1, yielding the hypergraph ({i1, i2, i5, i6}, {{i1, i2}, {i2}, {i5, i6}}), from
which {i1, i2} is removed, as it contains {i2}, resulting in Ht = ({i1, i2, i5, i6},
{{i2}, {i5, i6}}).

Ht−1 :
1 2 3 4 5 6

negative

Ht :

1 2 5 6

positive

1 2 3 4 5 6

Denote by Dt the union of all edges of Ht that contain just one item.
All items in Dt are identified as defective. Denote by Ut = I \ (Gt ∪Dt) the
set of all items belonging neither to Gt nor to Dt. Then Gt, Dt and Ut are
always disjoint with Gt ∪Dt ∪ Ut = I.

If T ⊂ Gt−1, then the test result is known to be negative before the test
is carried out; if, on the other hand, T includes an edge from Ht−1, the test
result is known to be positive beforehand. In the following, only reason-
able algorithms shall be considered, that is, those that do not perform any
test whose outcome can be predicted. An algorithm that is not reasonable
can be converted to a better reasonable algorithm by simply removing all
predictable tests.

After t tests, the set Gt of good items and the test information hyper-
graph Ht, whose edges are contaminated groups, contain all information
provided by the tests carried out so far. The defective sets consistent with
the results of the first t tests are exactly the vertex covers C(Ht). Therefore,
an item is identified as defective if and only if it belongs to all vertex covers
of Ht; likewise, it is identified as good if and only if it is not contained in
any vertex cover of Ht.

The following theorem gives the conditions under which two hypergraphs
have the same vertex covers.

Theorem 1.1 Let H = (V, E) be a hypergraph that is an antichain and
H ′ = (V, E ′) a hypergraph on the same vertex set. Then C(H) = C(H ′) if
and only if E ⊂ E ′ and for each E′ ∈ E ′ there is an E ∈ E with E ⊂ E′.

Proof. Suppose first C(H) = C(H ′).
Let E ∈ E . Then V \ E /∈ C(H), whereas (V \ E) ∪ i ∈ C(H) for all

i ∈ E, as H is an antichain. Therefore V \ E /∈ C(H ′), which requires that
there is an E′ ∈ E ′ with E′ ⊂ E. However, if E′ is a proper subset of E,
then for i ∈ E \E′ the set (V \E)∪ i is no vertex cover of H ′, contradicting
C(H) = C(H ′). Hence E ∈ E ′ for all E ∈ E , and thus E ⊂ E ′.

Let E′ ∈ E ′. Then V \ E′ /∈ C(H ′) and therefore V \ E′ /∈ C(H), which
requires that there is E ∈ E with E ⊂ E′.



8 CHAPTER 1. ON THE STRUCTURE OF GROUP TESTING

Now suppose that E ⊂ E ′ and for each E′ ∈ E ′ there is an E ∈ E with
E ⊂ E′.

Then, every set that does not cover an edge of H does not cover the
same edge of H ′, whereas every vertex cover of H covers also all edges of
H ′. Together, this yields C(H) = C(H ′). �

Theorem 1.1 shows that the test information hypergraph Ht is minimal
among the hypergraphs whose vertex covers are the defective sets consistent
with the results of the first t tests.

1.3 Identifying an Unknown Number of Defectives

First we consider the case S = 2I , in which the number of defectives is
unknown. This includes the binomial group testing problem and all other
probabilistic group testing problems in which no defective set in S has prob-
ability zero. On the combinatorial side, the competitive group testing prob-
lem falls under this case.

In the following, we examine under which conditions items are identified
as either good or defective.

Lemma 1.2 After t tests, an item is identified as good if and only if it is
in Gt.

Proof. All items in Gt belong to a group that has been tested with negative
result and are therefore identified as good. All other items may be defective,
as I \Gt is a vertex cover of Ht. �

Theorem 1.3 Items are identified as good by the tth test if and only if the
test result is negative.

Proof. By Lemma 1.2 exactly the items in Gt \ Gt−1 are identified as good
in the tth test. Gt contains items that are not in Gt−1 precisely in the case
of a negative test result. �

Lemma 1.4 After t tests, an item is identified as defective if and only if it
is in Dt.

Proof. Every item i ∈ Dt belongs to all vertex covers of Ht, as this is the
only way to cover the edge {i}. It is therefore identified as defective.

Every edge in Ht contains either one item from Dt or at least two items
from Ut. For every item i /∈ Dt it follows that (Dt ∪Ut) \ i is a vertex cover
of Ht. Thus i may be good. �

Theorem 1.5 Items are identified as defective by the tth test if and only if
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1. the test result is positive and the test group contains exactly one item
from I \Gt−1, or

2. the test result is negative and the test group contains all items but one
of a contaminated group with at least two items.

Proof. If condition 1 holds, then Ht has an edge with one item that is not
present in Ht−1, as the test result must not be predictable. If condition 2
is fulfilled, then an edge in Ht−1 with at least two items is reduced to one
item in Ht. Therefore, in both cases Dt contains an item not contained in
Dt−1, and by Lemma 1.4 this item is identified as defective.

Assume that neither condition 1 nor condition 2 holds. Then Dt = Dt−1,
and by Lemma 1.4 no new item is identified as defective. The conditions
given in the theorem are therefore necessary. �

If condition 1 holds, then just one defective is identified, whereas condi-
tion 2 allows several defectives to be identified by one test, as well as good
items.

The following simple example serves to illustrate the application of The-
orems 1.3 and 1.5.

Example. Let I = {i1, i2}, and let {i1, i2} be the first test group. If the test
result is negative, then G1 = {i1, i2} and H1 = (∅, ∅); i1 and i2 are identified
as good and no items are identified as defective. Now assume the result of
the first test to be positive. Then G1 = ∅ and H1 = ({i1, i2}, {{i1, i2}}); no
items are identified as good or defective. Let the second test be performed
on {i1}. If the test result is positive, then G2 = ∅ and H2 = ({i1, i2},
{{i1}}); no items are identified as good by Theorem 1.3, and i1 is identified
as defective by Theorem 1.5, condition 1. If the result of the second test is
negative, then G2 = {i1} and H2 = ({i2}, {{i2}}); i1 is identified as good
by Theorem 1.3 and i2 as defective by Theorem 1.5, condition 2.

H0 :
1 2

H1 : (∅, ∅) 1 2

H2 :
2 1 2

Now we give the condition under which an algorithm has finished after
t tests if the number of defectives is unknown.

Theorem 1.6 All items are identified as either good or defective after t
tests if and only if Gt ∪Dt = I.

Proof. The statement follows directly from Lemmas 1.2 and 1.4. �
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1.4 Identifying a Bounded Number of Defectives

We consider now the group testing problem for which it is known that there
are at least dmin and at most dmax defectives, with 0 ≤ dmin ≤ dmax ≤ n.
This includes the (d, n) group testing problem with dmin = dmax = d and
the generalized (d, n) group testing problem with dmin = 0 and dmax = d.

The restriction on the total number of defectives translates into a restric-
tion on the cardinality of the vertex covers of H: the remaining defective
sets after t tests, that is, those consistent with the results of the first t tests,
are all vertex covers of Ht that consist of at least dmin and at most dmax

items. This implies that τ(Ht) ≤ dmax for all t. The direct methods of iden-
tifying items in Theorems 1.3 and 1.5 hold as well for a bounded number
of defectives. Yet the restrictions on the number of defectives lead to addi-
tional indirect methods of identifying items, as we describe in the following
theorems.

Theorem 1.7 After t tests, an item i ∈ Ut is identified as good if and only
if τ(Ht) = dmax and no minimum vertex cover of Ht contains i.

Proof. If τ(Ht) = dmax, then the remaining defective sets are just the mini-
mum vertex covers of Ht. Therefore exactly the items given in the theorem
are identified as good.

If τ(Ht) < dmax, then every item i from Ut can be defective. To see this,
add i to a minimum vertex cover, and add further items from Ut to reach
a cardinality of at least dmin, if necessary. The resulting vertex cover of Ht

belongs to the remaining defective sets. �

If the conditions given in Theorem 1.7 are met for one item, then all
items in Ut not contained in any edge of Ht are identified as good, as they
never belong to a minimum vertex cover.

If τ(Ht) = dmax, then τ(Ht′) = dmax for all t′ ≥ t, as τ(Ht) is nonde-
creasing in t and bounded from above by dmax. Then in all remaining tests
items can be identified as good by positive test results using Theorem 1.7.

Theorem 1.8 After t tests, an item i ∈ Ut is identified as defective if and
only if

1. |Gt| = n− dmin, or

2. all vertex covers of Ht without i contain at least τ(Ht) + k + 1 items
where k = dmax − τ(Ht).

Proof. If |Gt| = n−dmin, the only remaining defective set is I \Gt = Dt∪Ut,
in which all items are identified as defective.

From now on suppose |Gt| < n− dmin.
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If an item i satisfies condition 2, then all vertex covers of Ht consisting
of at most τ(Ht)+k = dmax items contain i. Thus i is identified as defective.

If, to the contrary, i does not fulfil condition 2, then there is a vertex
cover of Ht that does not contain i and consists of at most dmax items. If
necessary, add further items from (I \Gt)\ i to reach a cardinality of at least
dmin, which is always possible as |(I \ Gt) \ i| = n − |Gt| − 1 ≥ dmin. The
resulting vertex cover has a cardinality of at least dmin and at most dmax

and does not contain i. Hence i is not identified as defective. �

Each item i that satisfies condition 2 of Theorem 1.8 belongs to at least
k + 2 edges of Ht. Otherwise, a vertex cover of Ht without i with no more
than τ(Ht) + k items could be constructed by removing i from a minimum
vertex cover and adding one item distinct from i from every edge of Ht that
contains i. If the algorithm belongs to the nested class, this condition is
never met, because no two edges of Ht share any item.

Minimum vertex covers can be found by regarding all components of
the hypergraph independently. Each minimum vertex cover is the union
of minimum vertex covers of all components and vice versa. Therefore, if
the condition τ(Ht) = dmax of Theorem 1.7 is fulfilled, then the items not
contained in any minimum vertex cover of Ht and thus known to be good
can be identified separately for each component of Ht. Likewise, in Theorem
1.8, condition 2, the minimum vertex cover without i of the component
containing i has to contain k+1 additional items compared to the minimum
vertex cover including i, as the other components are not affected by the
omission of i from the vertex covers.

The following example demonstrates the use of Theorems 1.7 and 1.8.

Example. Let n = 12, I = {i1, . . . , i12}, dmin = 0, and dmax = 3. Suppose
G5 = ∅ and H5 = (I, {{i1, i2}, {i2, i3}, {i2, i4, i5}, {i6, i7}}), which implies
D5 = ∅. The minimum vertex covers of H5 are {i2, i6} and {i2, i7}, thus
τ(H5) = 2. Since τ(H5) < dmax, by Theorem 1.7 no items are identified as
good. Condition 1 of Theorem 1.8 is not fulfilled, but i2 satisfies condition
2: all vertex covers of H5 without i2 contain i1, i3, at least one of i4 and i5,
and at least one of i6 and i7, thus at least 4 items. Therefore i2 is identified
as defective. The components {i1, i2, i3, i4, i5} and {i6, i7} of H5 can as well
be looked at separately.

H5 :
1 2

3

4 5 6 7 8 9 10 11 12

H6 :
1 2

3

4 5 6 7 11 12 1 2

3

4 5 6 7 8 9 10 11 12
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Let the next test be performed on {i8, i9, i10}. Assume the result to
be positive. Then G6 = ∅ and H6 = (I, {{i1, i2}, {i2, i3}, {i2, i4, i5}, {i6, i7},
{i8, i9, i10}}), which implies τ(H6) = 3. Thus i1, i3, i4, i5, i11, and i12 satisfy
the conditions of Theorem 1.7 and are identified as good, as no minimum
vertex cover of H6 contains them.

Now we can establish exactly under which circumstances the algorithm
has finished after t tests.

Theorem 1.9 All items are identified as either good or defective after t
tests if and only if

1. Gt ∪Dt = I, or

2. |Gt| = n− dmin, or

3. τ(Ht) = dmax and there is exactly one minimum vertex cover of Ht.

Proof. All items in Gt are identified as good, all items in Dt as defective. For
all items to be identified, therefore all items in I \ (Gt ∪Dt) = Ut must fulfil
the conditions of either Theorem 1.7 to be identified as good or Theorem
1.8 to be identified as defective.

Since condition 1 implies Ut = ∅, it is clearly sufficient.
If condition 2 holds, all items in Ut are identified as defective by Theorem

1.8, condition 1. Otherwise, condition 1 of Theorem 1.8 is never met.
If condition 3 holds, all items in Ut that belong to the minimum vertex

cover of Ht are identified as defective by Theorem 1.8, condition 2, whereas
all other items in Ut are identified as good by Theorem 1.7.

Assume now that none of the conditions holds. Then τ(Ht) < dmax or
there are at least two minimum vertex covers of Ht.

First suppose τ(Ht) < dmax. Then no item in Ut is identified as good
by Theorem 1.7. If all items in Ut were identified as defective and therefore
fulfilled condition 2 of Theorem 1.8, then all vertex covers of Ht containing
not all items from Ut and thereby all vertex covers would have at least
dmax + 1 elements, which would leave no defective sets consistent with the
test results. Thus, not all items in Ut are identified as good or defective.

Now suppose the existence of at least two minimum vertex covers of Ht

with dmax elements. Then all items contained in one vertex cover but not
in the other cannot be identified as good or defective. �

The following lemma is a generalization of a lemma by Hwang, Song,
and Du [13] that treated the case dmin = dmax = d. It is used in the proof
of Lemma 2.3 below.
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Lemma 1.10 Suppose dmin < n. If an algorithm identifies a defective set
D after t tests with |Gt| = n − dmin and |Ut| ≥ 1, then there is a defective
set in S for which the first t−1 test results are the same as for D but the tth

test result is positive instead of negative and for which the algorithm needs at
least t+ |Ut|−1 tests if dmin = dmax and at least t+ |Ut| tests if dmin < dmax.

Proof. The condition dmin < n implies t ≥ 1. For the defective set D the
result of the tth test is negative. Otherwise Gt = Gt−1 would hold and
the algorithm would already have finished after t− 1 tests by Theorem 1.9,
condition 2. Furthermore D = I \ Gt = Dt ∪ Ut. For each i ∈ Ut the set
D \ i is a vertex cover of Ht, as D ∈ C(Ht) and all edges of Ht containing i
contain also another element of D. Since C(Ht) ⊂ C(Ht−1), it follows that
D \ i ∈ C(Ht−1) for all i ∈ Ut.

Denote the tth test group by T . Let the set G′
t and the information test

hypergraph H ′
t describe the case that the result of the tth test is positive.

Then G′
t = Gt−1 = Gt \ (T \Gt−1), and H ′

t is Ht−1 plus the edge T \Gt−1.
Choose arbitrarily iT ∈ T \ Gt−1. Then iT /∈ D. For each i ∈ Ut the set
(D \ i) ∪ iT is a vertex cover of H ′

t with dmin elements, as D \ i covers Ht−1

and iT covers the additional edge T \Gt−1.
Now consider the sequence of tests that results if a test result is positive

if and only if the test group contains at least one item from D ∪ iT . Denote
by t′ the number of tests after which the algorithm has finished in this case.
Then by Theorem 1.9 one of the following conditions is fulfilled.

1. Gt′ ∪Dt′ = I.
This implies t′ ≥ t + |Ut|, as the items in Ut cannot be identified as
good and at most one item in Ut can be identified as defective by one
test.

2. |Gt′ | = n− dmin.
This never holds, as Gt′ ⊂ I \ (D ∪ iT ) and therefore |Gt′ | < n− dmin.

3. τ(H ′
t′) = dmax and there is exactly one minimum vertex cover of H ′

t′ .
Therefore, if dmin = dmax, then all but one, else all of the |Ut| vertex
covers (D \ i) ∪ iT for i ∈ Ut belonging to C(H ′

t) have been excluded
by the last t′ − t tests. Of these, at most one can be excluded by each
test, as (D \ i)∪ iT is excluded if and only if the test group contains i
but no other item from D ∪ iT . Thus t′ ≥ t + |Ut| − 1 if dmin = dmax

and t′ ≥ t + |Ut| if dmin < dmax.

�

Hence, condition 2 of Theorem 1.9 does not influence the worst case
number of tests needed by an algorithm.
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Chapter 2

Complete Group Testing

In this chapter, we introduce a new variant of combinatorial group testing,
the complete group testing problem. Drawing on the analysis in the first
chapter, we show that its solution requires exactly one more test than that
of the (d, n) group testing problem.

2.1 Variants of Combinatorial Group Testing

If nothing is known about the number of defectives, the search domain
S = 2I has cardinality 2n. Thus, in the worst case at least n tests are
needed, which can be achieved by simply testing all items individually. To
get a meaningful problem, we therefore have to impose some restrictions on
the number of defectives.

As in the first chapter, only reasonable algorithms A, that is, those
without predictable tests, shall be allowed.

In the (d, n) group testing problem as defined by Du and Hwang [6, Sec-
tion 1.2] the number of defectives is known to be exactly d, with 0 ≤ d ≤ n.
Denote by MA(d, n) the number of tests needed by the algorithm A in the
worst case. Then M(d, n) = minA MA(d, n) denotes the maximum number
of tests needed by a minimax algorithm.

However, the assumption that the number of defectives is known exactly
rarely holds in practical applications. In the generalized (d, n) group testing
problem it is only known that there are at most d defectives. We denote
by M̄A(d, n) the number of tests needed by the algorithm A in the worst
case and by M̄(d, n) the worst case number of tests of a minimax algorithm.
Hwang, Song, and Du [13] proved M̄(d, n) ≤ M(d, n) + 1 for d < n.

If an algorithm designed for the generalized (d, n) group testing problem
encounters more than d defectives in a practical application, it typically
identifies just d defectives and then stops. In this case, it lets pass defective
items as good ones, but it may as well label good items as defective, as in
the following example.

15



16 CHAPTER 2. COMPLETE GROUP TESTING

Example. Consider the test information hypergraph Ht = ({i1, . . . , i7},
{{i1, i2}, {i1, i3, i4}, {i5, i6}}). Under the assumption that there are at most
2 defectives, the item i1 is identified as defective. But allowing for 3 defec-
tives, i1 can as well be good if i2 and either i3 or i4 are defective.

Ht :
1

2

3 4 5 6 7

We address these limitations by formulating the complete group test-
ing problem: The number of defectives is unknown and an algorithm must
identify all items as good or defective. Denote by M̄A(d|n) the maximum
number of tests needed by the algorithm A in those cases in which there
are at most d defectives. Equivalently, A solves the generalized (d, n) group
testing problem, but establishes in addition that there are no more than d
defectives, or states that there are more than d defectives in M̄A(d|n) tests.
Let M̄(d|n) = minA M̄A(d|n) denote the worst case number of tests of a mini-
max algorithm. Similarly, denote by MA(d|n) and M(d|n) = minA MA(d|n)
the maximum number of tests needed by the algorithm A and a minimax
algorithm respectively in those cases in which there are exactly d defectives
instead of at most d defectives. Since M̄(d|n) = M(d|n) by Theorem 2.1
below, we call both M̄(d|n) and M(d|n) the complete group testing problem.

Colbourn [4] formulated a problem called the strict group testing prob-
lem for the nonadaptive case, which is similar to the complete group testing
problem.

2.2 Complete Related to (d, n) Group Testing

The following theorem establishes the relationship between the complete
and (d, n) group testing problems.

Theorem 2.1 For d < n,

M̄(d|n) = M(d|n) = M(d, n) + 1.

The condition d < n is necessary, as complete group testing for d = n
requires individual testing of all items and thus M̄(n|n) = M(n|n) = n, but
on the other hand obviously M(n, n) = 0.

Interestingly, it makes no difference whether the complete group testing
problem is examined for at most d or exactly d defectives.

For the proof of the theorem we need the following lemmas, in which A
always denotes an algorithm for the (d, n) group testing problem, and A′

always denotes an algorithm for the complete group testing problem.
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Lemma 2.2 For all A′,

MA′(d|n) ≤ M̄A′(d|n).

Proof. The lemma follows directly from the definitions of MA′(d|n) and
M̄A′(d|n). �

Lemma 2.3 Suppose d < n. For each A there exists an A′ so that

M̄A′(d|n) ≤ MA(d, n) + 1.

Proof. Let A′ perform the same tests as A. As A′ lacks information about
the number of defectives, it has not necessarily finished when A has. The
additional tests are specified below.

Consider the sequence of tests that A performs for the defective set D
with d elements. Let t be the number of tests needed by A in this case.
Then by Theorem 1.9 at least one of the following conditions is fulfilled.

1. Gt ∪Dt = I.
In this case, no further tests are necessary, as A′ has finished by The-
orem 1.6.

2. |Gt| = n− d.
If |Ut| = 0, refer to case 1. Otherwise, let A′ test all items in Ut

individually unless they are identified as defective in the meantime.
Thus A′ requires at most t + |Ut| tests to identify all items as good
or defective. On the other hand, the application of Lemma 1.10 on A
with dmin = dmax = d < n shows that there is a defective set for which
A needs at least t + |Ut| − 1 tests.

3. τ(Ht) = d and D is the only minimum vertex cover of Ht.
In the (t + 1)th test, let A′ test the group I \ (D ∪Gt).
If the test result is negative, then Gt+1 = I \ D and Dt+1 = D, as
each i ∈ D \ Dt belongs to an edge of Ht with at least two elements
that contains no other items from D, which is reduced to {i} in Ht+1.
Hence Gt+1∪Dt+1 = I, and by Theorem 1.6 A′ has finished after t+1
tests.
If the result of the (t + 1)th test is positive, there are at least d +
1 defectives. This case does not influence M̄A′(d|n), and A′ can be
continued in an arbitrary way till all items are identified as good or
defective.

�

Lemma 2.4 For each A′ there exists an A so that

MA(d, n) + 1 ≤ MA′(d|n).
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Proof. Derive the algorithm A from A′ by simply omitting all tests that
become predictable due to the knowledge that there are exactly d defectives.

Let D be a defective set for which A needs the worst case number
t = MA(d, n) of tests and for which the last test result is positive. This
can always be found, because if A has not finished after t − 1 tests, it fin-
ishes with the tth test regardless of the test result. Then |Gt−1| < n − d,
as otherwise A would have finished after t − 1 tests by Theorem 1.9, con-
dition 2. As the result of the tth test is positive, Gt = Gt−1 and therefore
|Gt| < n− d.

If, for the defective set D, one of the first t tests in A′ has been omitted
in A, then A′ obviously needs at least t + 1 tests. Otherwise, if the first t
tests of A and A′ are the same, the condition Gt ∪Dt = I of Theorem 1.6 is
not fulfilled for A′. Therefore, the algorithm A′ has not finished after t tests
and needs at least t + 1 tests. �

Proof of Theorem 2.1. Lemmas 2.2, 2.3, and 2.4 transfer to the number of
tests needed by minimax algorithms for the same problems. For d < n, this
yields

M(d|n) ≤ M̄(d|n) ≤ M(d, n) + 1 ≤ M(d|n).

�

Hence, solving the complete group testing problem always needs exactly
one more test than solving the (d, n) problem. The proofs of Lemmas 2.3 and
2.4 give explicit instructions for converting algorithms between the complete
and (d, n) problems. Therefore, existing algorithms for the (d, n) group
testing problem can be easily modified to solve the complete problem needing
just one additional test.

Furthermore, nested algorithms remain in the nested class when con-
verted between the complete and (d, n) problems. Hence, Theorem 2.1 holds
as well restricted to the nested class.

As obviously M̄(d, n) ≤ M̄(d|n), the result from Hwang, Song, and Du
[13] for the generalized (d, n) group testing problem can be derived as a
corollary from Theorem 2.1.

Corollary 2.5 For d < n,

M̄(d, n) ≤ M(d, n) + 1.



Chapter 3

The Split and Overlap
Algorithm

The final chapter is devoted to a new algorithm for the combinatorial group
testing problems discussed in the last chapter. We build up the split and
overlap algorithm modularly. After a brief overview, we introduce new ef-
ficient subalgorithms and a general method of scaling up arbitrary subal-
gorithms by powers of two. Using these as building blocks, we construct
algorithms that repeatedly test groups of the same size and always follow
the same procedure if a group is found to be contaminated. The split and
overlap algorithm then works by choosing the best of these algorithms de-
pending on n

d . At each stage, estimates of the maximum number of tests
used are provided, and finally the estimate for the whole algorithm is shown
to be significantly lower than the best upper bound for the (d, n) group
testing problem in the literature.

3.1 Nested Algorithms

The test information hypergraph introduced in Section 1.2 represents the
information gathered by the group tests. The edges of the hypergraph are
the minimal groups known to be contaminated. We call an item free if
it has not been identified as either good or defective and does not belong
to any edge in the test information hypergraph, that means, if there is no
information about the item.

Sobel and Groll [19] introduced the nested class, a subclass of simple
algorithms for the group testing problem with the following property. If
the test information hypergraph has an edge with at least two items, the
next test is performed on a proper subset of this edge. Initially, a nested
algorithm may test arbitrary groups until a test yields a positive result.
Denote the contaminated group by L. We test K ⊂ L next. If the result is
positive, the edge K replaces the edge L in the test information hypergraph.

19
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Otherwise, if the result is negative, removing the items in K from the edge
L results in the new edge L\K. We continue by successively testing subsets
of the resulting edge, until the edge contains only a single item, which is
identified as defective. Now we start again by testing arbitrary groups until
a test yields a positive result.

Chang, Hwang, and Weng [2] gave the following binary splitting algo-
rithm to identify one defective in a contaminated group L of l ≥ 2 items.

Subalgorithm Bl

Let k = max
(
l − 2dlog le−1, 2dlog le−2

)
.

Test a group K ⊂ L of size k.
If the result is positive,

apply Bk to K,
else

apply Bl−k to L \K.

B1 identifies a defective without any further tests. If l is a power of 2,
the algorithm Bl repeatedly halves the size of the contaminated group.

Lemma 3.1 The subalgorithm Bl identifies a defective in at most dlog le
tests. If dlog le tests are actually used, then at least 2dlog le− l good items are
identified as well.

The proof of Lemma 3.1 is by induction and is detailed in [2].
Hwang [11] gave the following generalized binary splitting algorithm for

the (d, n) group testing problem.

Algorithm G

Denote by I the set of n items containing d defectives. Always remove items
from I when they are identified as good or defective.
While d ≥ 1:

If |I| ≤ 2d− 2, test all items in I individually and then stop.
Let k =

⌊
log |I|−d+1

d

⌋
.

Test a group of size 2k.
If the result is positive,

apply B2k to the contaminated group and set d := d− 1.

The only general lower bound that is known for the (d, n) group testing
problem is the information lower bound

⌈
log
(
n
d

)⌉
, which is based on the fact

that each test divides the search domain of cardinality
(
n
d

)
in two.

Du and Hwang [6, Section 2.4] proved that the generalized binary split-
ting algorithm G exceeds the information lower bound by at most d−1 tests
for d ≥ 2. Interestingly, the application of a much more general result for
hypergraphs by Triesch [20] to complete hypergraphs of rank d yields the
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same upper bound. The corresponding algorithm also belongs to the nested
class, but differs considerably from Hwang’s generalized binary splitting al-
gorithm.

Du and Hwang [6, Section 2.5] gave a set of recursive equations that
describe the number of tests required by a minimax nested algorithm and
a procedure to find such an algorithm based on computing the solution to
these equations. This algorithm repeatedly tests a group of some size l
depending on the actual values of n and d and applies Bl if the group is
found to be contaminated. Unfortunately, no estimate of the number of
tests needed by this minimax nested algorithm is provided.

3.2 Overview of the Split and Overlap Algorithm

We formulate the split and overlap algorithm for the complete group testing
problem introduced in Section 2.1. This supposes that there are n items
to be classified as either good or defective and the number of defectives
is unknown; we aim to minimize the maximum number MA(d|n) of tests
needed if there are at most d defectives. The algorithm can be adapted to the
(d, n) and generalized (d, n) group testing problems, in which the number of
defectives is known to be exactly respectively at most d, by simply omitting
all tests that become predictable due to the extra information about the
number of defectives.

At the start of the split and overlap algorithm, we choose the initial test
group size m depending only on the ratio n

d of all items to the defectives.
If we do not know any contaminated group, we always test a group of m

items as long as there are enough free items left. If the test result is negative,
we test the next group of m items. Otherwise, if the result is positive, we
proceed to identify at least one defective in the group of m items. As the
nested algorithms in the last section, we always test subsets of the current
contaminated group. However, contaminated groups of certain sizes are
dealt with by special subalgorithms, which are more efficient due to the use
of overlapping test groups. Some of these subalgorithms identify at least
two or three defectives starting with as many disjoint contaminated groups
of the same size l. For these subalgorithms we collect the required number
of contaminated groups of size l by setting them aside as they occur. After
identifying at least one defective or setting aside a contaminated group of
size l we continue by testing the next group of the same size m as before.

When there are not enough free items left to repeat this procedure, we
use binary splitting till the end in a way specified in Section 3.6.

We show in Section 3.7 that the algorithm with initial test group size
m requires at most 1

m tests for the identification of each good item and a
constant number of tests to identify each defective plus 5 tests.
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Figure 3.1: The subalgorithms O2
3,O

3
3, and O6

6

3.3 Overlapping Subalgorithms

We can represent a subalgorithm as a binary tree in the following way.
Each test is represented by a node that has two subtrees for the cases of
a negative and positive test result, respectively. By convention, we always
depict the negative test result on the left and the positive test result on
the right side. The root corresponds to the start of the subalgorithm, when
there are one or more contaminated groups of size l. Each leaf marks the
end of the subalgorithm, when at least one defective has been identified and
only contaminated groups of size l may be left.

At each node we display the part of the information test hypergraph
that is relevant to the subalgorithm and specifically omit edges containing
just a single item. Additional edges that are disjoint to the displayed edges
can be omitted safely, as they do not interfere with the others as long as
no items from them are included in the test group. The next test group is
always indicated by a dashed line.

The number of good items identified in the case of a negative test result,
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Figure 3.2: The subalgorithm O3
4

which always coincides with the size of the test group, is displayed above
the connection to the left child. An item identified as defective is indicated
by the letter ’d’ above the connection to the corresponding child.

A zero on a leaf of the binary tree indicates that no contaminated group
containing at least two items is left. Subtrees identical to subalgorithms
already shown are represented by the name of the corresponding subalgo-
rithm instead of the contaminated group; for example, B2 indicates that an
edge containing two items is left of which one is tested next. Several sub-
algorithms separated by commas indicate that the corresponding edges are
dealt with independently one after the other. A contaminated group that is
left over is represented by a number indicating its size.

Items from a contaminated group that become free again are reused for
further tests whenever possible to reduce the number of free items required
by the subalgorithms.

The nested algorithms in Section 3.1 use subalgorithm B3 on contami-
nated groups of three items, that is, they first test a single item from the
group. In the worst case, B3 identifies one defective and one good item in
two tests. The subalgorithms O2

3 and O3
3 depicted in Figure 3.1 improve
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Figure 3.3: The subalgorithm O3,3,3

on this by first testing a group of size two respectively three that contains
exactly one of the three items in the original contaminated group. If one
of the first two test results is negative, O2

3 and O3
3 identify one defective in

two tests, like B3, but at least two respectively three good items instead
of one. Otherwise, in the case of two consecutive positive test results, they
need four respectively five tests, but identify two defectives instead of one.
In addition to the contaminated group of size three, O2

3 requires one and O3
3

requires two free items. The technique to derive O6
6 in Figure 3.1 from O3

3

is explained in Section 3.5.
On a contaminated group of four items, nested algorithms always use

subalgorithm B4, that is, they halve the group two times. In the worst case,
B4 identifies one defective and no good items in two tests. The algorithm
that always tests a group of four items and then uses B4 if the test result
is positive needs three tests for the identification of each defective. Surpris-
ingly, we can do better than this. The subalgorithm O3

4 depicted in Figure
3.2 starts by testing a group of size three that contains exactly one of the
four items in the original contaminated group. It typically needs more tests
than B4 to identify a defective, but more than compensates for this by iden-
tifying good items as well. In addition to the contaminated group of size
four, O3

4 requires up to ten free items.
If a subalgorithm is used in an algorithm with the initial test group size

m, the identification of each good item needs 1
m tests. The preceding subal-

gorithms improve on B3 and B4 only by identifying more good items. They
are therefore best for small m. To construct subalgorithms on a contami-
nated group of size l that are good for large m, we have to reduce the number
of tests needed to identify a defective. As we have to distinguish at least the
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Figure 3.5: The subalgorithm O11,11

l cases in which exactly one of the items in the group of size l is defective,
we need at least dlog le tests, which is already achieved by subalgorithm Bl.
To do better, we simultaneously identify at least one defective in each of
k contaminated groups of size l. This requires at least

⌈
log lk

⌉
tests in the

worst case, that is, 1
k dk log le tests per defective.

The subalgorithm O3,3,3 depicted in Figure 3.3 needs five tests to identify
three defectives in three contaminated groups of size three. The 12

3 tests per
defective compare favourably with the two tests needed by B3, O2

3, and O3
3.

Additionally, O3,3,3 identifies at least one good item. If all five test results
are positive, then no good items can be identified, and the subalgorithm
identifies two defectives in one of the groups of size three and leaves the
other two groups unchanged.

It would be even better to use eight tests to identify five defectives in
five contaminated groups of size three, yielding 13

5 tests per defective. This
would require the 35 = 243 cases in which each of the five groups contains
exactly one defective to be split by the first test in such a way that neither
after a positive nor a negative test result more than 27 = 128 cases remain,
which cannot be accomplished by a group test.

Similarly to O3,3,3, the subalgorithm O5,5,5 depicted in Figure 3.4 starts
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with three contaminated groups of size five and typically identifies three
defectives and at least two good items in seven tests. The 21

3 tests per
defective are much better than the three tests required by B5. Alternatively,
O5,5,5 may identify three defectives and at least one good item in nine tests
while leaving one of the original groups of size five unchanged. All other
possibilities are not relevant for the worst case, as we show in the next
section.

The subalgorithm O11,11 depicted in Figure 3.5 needs seven tests to iden-
tify two defectives and at least four good items in two contaminated groups
of eleven items. Again, the 31

2 tests per defective are less than the four
tests required by B11. Alternatively, the subalgorithm may identify two de-
fectives and at least six good items in nine tests while leaving one of the
original groups of size eleven unchanged, whereas all other possibilities turn
out not to be relevant for the worst case. If the results of the first five tests
are positive and of the sixth test negative, only three of the items in the
two groups of size eleven are not contained in any contaminated group, but
subalgorithm O6

6 needs four free items. To avoid requiring the existence of
another free item, O6

6 reuses an item already identified as good in the next
test, which may reduce the number of good items identified by one but does
not affect the worst case behaviour of O11,11.

3.4 Cost Estimate of Subalgorithms

In the binary tree representation, each sequence of test results in the sub-
algorithm corresponds to a path from the root to a leaf. We denote the set
of all these paths by T . From now on, we refer to paths from the root to a
leaf simply as paths.

For the path P ∈ T denote by dP the number of defectives and by
gP the number of good items identified along the path; denote by tP the
number of tests needed; denote by sP the number of contaminated sets of
size l present in the root of the tree but not in the leaf at the end of the
path, that is, the number of groups of size l used up to identify defectives.
Let ḡP = gP

dP
, t̄P = tP

dP
, and s̄P = sP

dP
denote the corresponding values per

identified defective.
In the following, we assume that the main algorithm always tests a group

of size m if no contaminated groups are known and that all contaminated
groups of size l required by the subalgorithm are obtained along the same
path in the algorithm. Denote by tm,l the number of tests needed on this
path until a contaminated group of size l is known including the first test on
m items with positive result and denote by gm,l the number of good items
identified in the process. If we assign a cost of 1

m tests to the identifica-
tion of each good item, then cm,l = tm,l −

gm,l

m describes the cost to get a
contaminated group of size l.
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If the tests follow the path P inside the subalgorithm, then dP defectives
are identified using sP tm,l+tP tests while identifying sP gm,l+gP good items.
Then we get f

(
cm,l,

1
m

)
, the worst case cost to identify a defective, by taking

the maximum over all paths in the subalgorithm.

f
(
cm,l,

1
m

)
= max

P∈T

1
dP

(
sP tm,l + tP −

sP gm,l

m
− gP

m

)
= max

P∈T
s̄P cm,l + t̄P − ḡP

m

= max
P∈T

fP

(
cm,l,

1
m

)
.

Here, let
fP (x, y) = t̄P + s̄P x− ḡP y

be the cost to identify a defective if path P is followed in the subalgorithm
where x = cm,l and y = 1

m are determined by the main algorithm. This can
be depicted as a plane in R3. Then f(x, y) is the maximum over the planes
of every path in the subalgorithm. As m ≥ l and cm,l ≥ 1 always hold, we
are interested only in the domain Dl =

{
(x, y)|1 ≤ x, 0 ≤ y ≤ 1

l

}
.

The following lemma gives the conditions under which the plane belong-
ing to the path Q ∈ T is below the plane of the path P ∈ T on the whole
domain Dl.

Lemma 3.2 fP (x, y) ≥ fQ(x, y) on Dl if and only if s̄P ≥ s̄Q and s̄P + t̄P ≥
s̄Q + t̄Q and s̄P + t̄P − ḡP

l ≥ s̄Q + t̄Q − ḡQ

l .

Proof. s̄P + t̄P ≥ s̄Q + t̄Q is equivalent to fP (1, 0) ≥ fQ(1, 0), and s̄P +
t̄P − ḡP

l ≥ s̄Q + t̄Q − ḡQ

l is equivalent to fP (1, 1
l ) ≥ fQ(1, 1

l ), whereas s̄P

and s̄Q are the gradients of fP (x, y) and fQ(x, y) in x-direction. Therefore
the conditions on the right side are clearly sufficient. Conversely, s̄P ≥ s̄Q

is necessary, as else fP (x, y) ≥ fQ(x, y) would be violated for x sufficiently
large, whereas the other conditions are obviously necessary. �

We call W ⊂ T a worst case set of paths if on the whole domain Dl

max
P∈W

fP (x, y) = max
P∈T

fP (x, y) ,

that is, W shows the same worst case behaviour as T . We represent a path
by the sequence of the test results with 0 standing for a negative and 1 for a
positive test result. Table 3.1 lists paths constituting a worst case set for all
subalgorithms presented in the last section and for B2k with k ≥ 1 together
with the parameters of their planes. This is shown in the following Lemma.

Lemma 3.3 For each subalgorithm the paths given in Table 3.1 constitute
a worst case set.
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path P s̄P t̄P ḡP path Q s̄Q t̄Q ḡQ

B2k 1. . . 1 1 k 0

O2
3 01 1 2 2 1111 1

2 2 0

O3
3 01 1 2 3 11011 1

2 21
2

1
2

O3,3,3 11110 1 12
3

1
3 11111 1

2 21
2 0

O3
4 001 1 3 5 110110001 1

3 3 2

O5,5,5 1011111 1 21
3

2
3 111111110 2

3 3 1
3

O11,11 1101101 1 31
2 2 111111011 1

2 41
2 3

Table 3.1: Worst case costs of subalgorithms

Proof. For each subalgorithm, the application of Lemma 3.2 shows that the
planes of all other paths are below one of the listed paths on the whole
domain. There is only one exception in subalgorithm O5,5,5. Denote by R
the path 11111111101. Then s̄R = 3

4 , t̄R = 23
4 , and ḡR = 1

4 . With y ≤ 1
5

follows fP (x, y) ≥ fR (x, y) for x ≥ 2 and fQ (x, y) ≥ fR (x, y) for x ≤ 2.
Hence, the plane of R is below the maximum of the planes of P and Q from
Table 3.1 on the whole domain D5. �

3.5 Scaling up Subalgorithms

We can get subalgorithms for further test sizes by scaling up known subalgo-
rithms. To do this, we choose a subalgorithm and k ≥ 1. In all group tests
we substitute 2k items for each item. Thus, the size of all test groups and the
overlap with existing contaminated groups is multiplied by 2k. Whenever
the original subalgorithm identifies a defective, the scaled up version uses
B2k to identify a defective in the corresponding group of 2k items using k
tests. If we scale up a subalgorithm on contaminated groups of size l, say Xl,
we get a subalgorithm on contaminated groups of size 2kl, which we denote
by Xl ×B2k . For example, the binary tree representation of O6

6 = O3
3 ×B2

is depicted in Figure 3.1. If P is a path in Xl, we denote by P × B2k the
path in Xl ×B2k represented by the sequence of test results from P with k
positive results inserted for each occurrence of B2k in Xl × B2k . Note that
(Xl ×B2k)×B2j = Xl × (B2k ×B2j ) = Xl ×B2k+j .

The following lemma describes the worst case behaviour of Xl ×B2k .

Lemma 3.4 Let W be a worst case set of paths in the subalgorithm Xl.
Then W ×B2k = {P ×B2k |P ∈ W} is a worst case set of paths in Xl×B2k .
For each path P in Xl the plane of the path P ′ = P ×B2k is determined by
s̄P ′ = s̄P , t̄P ′ = t̄P + k, and ḡP ′ = 2kḡP .
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Proof. Along the path P ′ = P×B2k one defective is identified by the last test
of each B2k that occurs in Xl ×B2k exactly where Xl identifies a defective.
Hence dP ′ = dP . The transition from P to P ′ does not change the number
of contaminated groups of size l and 2kl respectively that are present at the
start and remain at the end of the path. Thus s̄P ′ = sP ′

dP ′
= sP

dP
= s̄P . The

path P ′ contains k additional tests per identified defective compared to P .
Therefore t̄P ′ = tP ′

dP ′
= tP +kdP

dP
= t̄P + k. Good items are identified by tests

with negative results only, whose test group sizes are all multiplied by 2k

in the transition from P to P ′. The additional tests in P ′ all yield positive
test results. Hence ḡP ′ = gP ′

dP ′
= 2kgP

dP
= 2kḡP .

Together, this leads to

fP ′(x, y) = t̄P ′ + s̄P ′x− ḡP ′y

= t̄P + k + s̄P x− 2kḡP y

= fP (x, 2ky) + k.

In this, (x, y) ∈ D2kl if and only if (x, 2ky) ∈ Dl. Denote by T and T ′ the
set of all paths in Xl and Xl ×B2k , respectively. Then for all (x, y) ∈ D2kl

max
P ′∈W×B

2k

fP ′(x, y) = max
P∈W

fP (x, 2ky) + k

= max
P∈T

fP (x, 2ky) + k

= max
P ′∈T×B

2k

fP ′(x, y)

= max
P ′∈T ′

fP ′(x, y).

The last equality is due to the fact that negative instead of positive test
results in a B2k yield additional good items without changing anything else.
Therefore, the cost of a path that contains such negative test results is always
lower than the cost of the path from T ×B2k whose test results in the B2k

are always positive. Hence W ×B2k is a worst case set. �

This method of scaling up Xl is superior to repeatedly halving groups of
size 2kl and applying Xl to the resulting groups of size l, because it requires
the same number of tests but additionally scales up the number of good
items identified.

It is possible to scale up a subalgorithm by multiples other than powers
of two by using some other subalgorithm instead of B2k in the construc-
tion above. However, this seems to result in comparatively less efficient
algorithms.

We indicate the scaling up of one of the subalgorithms introduced in the
last section by multiplying all its indices by the scaling factor, for instance,
O10,10,10 = O5,5,5 ×B2 and O12

12 = O3
3 ×B4.
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A40 : 0
40

0 40
17

23
11

O12,12,12 O11,11

17
8

9
4

O5,5,5 B4

B8

A80 : 0
80

0 80
34

46
22

O24,24,24 O22,22

34
16

18
8

O10,10,10 B8

B16

Figure 3.6: The procedures of A40 and A80

3.6 Fixed Size Algorithms

We can combine subalgorithms in the following way. Assume that a con-
taminated group M of size m is known. Then we test a subset L ⊂ M of
size l < m. If the test result is positive, we continue with subalgorithm
Xl on L. If the test result is negative, we have identified l good items and
proceed with subalgorithm Ym−l on M \ L. We denote this splitting of a
contaminated group of size m by Sm (Xl, Ym−l). By nesting these splittings
we can build procedures for any start size m. If a subalgorithm, for instance,
O3,3,3, requires more than one group of size l, then the contaminated groups
of size l are put aside until enough groups have been collected to execute
the subalgorithm.

We denote by Am an algorithm based on the best procedure with initial
test group size m constructed in this way. Table 3.2 lists the procedures
of Am for selected initial test group sizes m with m ≤ 80. The choice of
these particular values for m is explained in Section 3.8. Procedures for
m ≥ 80 can be obtained by scaling up the procedures from Table 3.2 with
40 ≤ m < 80 in the same way as the subalgorithms in the last section. Then
the procedure of A2km = Am×B2k with k ≥ 1 has the same structure as the
procedure of Am with all test sizes multiplied by 2k and each subalgorithm
Xl substituted by Xl ×B2k .

A procedure can be represented as a binary tree. The root of the tree
corresponds to the start, when no contaminated groups are known. At each
node the size of the only contaminated group is given. Each leaf, except
the one after a negative result in the first test, corresponds to the situation
in which one contaminated group of some size l is known and is marked by
the name of a subalgorithm that works on contaminated groups of size l.
The binary tree representations of the procedures of A40, A77, and A80 are
shown in Figures 3.6 and 3.7.
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A77 : 0
77

0 77
32

45
21

O24,24,24 21
10

O11,11 O10,10,10

32
15

17
8

9
4

O5,5,5 B4

B8

15
7

B8 7
3

B4 O3
3

Figure 3.7: The procedure of A77

We denote the set of all paths from the root to a leaf by T , excluding
the path that consists of one negative test result. For the path Q ∈ T we
denote by tQ the length of the path, that is, the number of tests performed,
and by gQ the number of good items identified in the process. Furthermore
we use the notation defined in Section 3.4. Let W (Q) denote the worst case
set of the subalgorithm at the leaf of path Q that is based on Table 3.1 and
Lemmas 3.3 and 3.4. We define the worst case cost cm to identify a defective
by

cm = max
Q∈T

max
P∈W (Q)

fP

(
tQ − gQ

m , 1
m

)
= max

Q∈T
max

P∈W (Q)
s̄P

(
tQ − gQ

m

)
+ t̄P − ḡP

m .

The values of cm are listed in Table 3.2 for m ≤ 80. The values of cm for
m ≥ 80 can be obtained by the following Lemma.

Lemma 3.5 For m ≥ 40 and k ≥ 1,

c2km = cm + k.

Proof. Denote by Q and Q′ paths in the binary tree representations of the
procedures of Am and A2km = Am×B2k respectively that describe the same
sequence of test results. Then tQ′ = tQ and gQ′ = 2kgQ. For P ∈ W (Q)
and P ′ = P × B2k Lemma 3.4 provides s̄P ′ = s̄P , t̄P ′ = t̄P + k, and ḡP ′ =
2kḡP . Together, this results in fP ′

(
tQ′ − gQ′

2km
, 1

2km

)
= fP

(
tQ − gQ

m , 1
m

)
+ k.

Substitution in the definition of c2km proves the lemma. �
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m cm nm lm procedure of Am

1 1 1 1 B1

2 2 2 2 B2

3 21
2 4 2 O2

3

4 25
6 14 3 O3

4

7 34
7 7 5 S7(O3

3, B4)

12 41
3 12 8 S12(O5,5,5, S7(O3

3, B4))

15 428
45 15 10 S15(O6

6, S9(B4, O5,5,5))

19 5 19 16 S19(B8, S11(O5,5,5, O6,6,6))

24 51
3 24 16 S24(O10,10,10, S14(O6

6, B8))

30 528
45 30 20 S30(O12

12, S18(B8, O10,10,10))

40 6 1
40 40 32 S40(S17(B8, S9(B4, O5,5,5)), S23(O11,11, O12,12,12))

47 625
94 47 32 S47(S20(S9(B4, O5,5,5), O11,11),

S27(O12,12,12, S15(S7(O3
3, B4), B8)))

49 616
49 49 32 S49(S21(O10,10,10, O11,11), S28(O12

12, B16))

54 625
54 54 35 S54(S23(O11,11, O12,12,12),

S31(S14(O6
6, B8), S17(B8, S9(B4, O5,5,5))))

62 641
62 62 43 S62(S25(O12,12,12, S13(O6,6,6, S7(O3

3, B4))),
S37(B16, S21(O10,10,10, O11,11)))

77 675
77 77 62 S77(S32(S15(S7(O3

3, B4), B8), S17(B8, S9(B4, O5,5,5))),
S45(S21(O10,10,10, O11,11), O24,24,24))

80 7 1
40 80 64 S80(S34(B16, S18(B8, O10,10,10)), S46(O22,22, O24,24,24))

Table 3.2: The fixed size algorithms Am for m ≤ 80

We denote the maximum number of free items required by the procedure
of Am by nm. In most procedures in Table 3.2, the free items required by a
subalgorithm like O3

3 can be drawn from items that belong to the m items
of the initial test group but have become free again. This is not affected by
scaling up a procedure. Therefore, in general nm = m. The only exceptions
are A3 and A4, for which n3 = 4 and n4 = 14 according to the description
of O2

3 and O3
4 in Section 3.3.

When less than nm free items are left, the procedure of Am cannot be
executed any more. Therefore, we continue by testing groups of size lm and
using Blm to identify a defective in the case of a positive test result where
lm is the largest integer such that the cost of identifying a defective is at
most cm, that is, not greater than for the procedure of Am. This leads to
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the definition

lm = max(2bcmc−1, 2dcme−1 − d(dcme − cm)me).

The values of lm for m ≤ 80 are listed in Table 3.2. As lm < m for m > 2,
the cost of identifying a good item is greater with this method than by using
the procedure of Am.

In the following, we give a description of the fixed size split and overlap
algorithm Am where m can be any value for which a procedure is given
in Table 3.2 or one of the values greater than or equal 40 from Table 3.2
multiplied by a power of two.

Algorithm Am

Denote by I the set of n items. Always remove items from I when they
are identified as good or defective. Denote by C a collection of contaminated
groups that is initially empty.

Part 1

While I contains at least nm free items,
test a group M of m free items.
If the result is positive,

continue the procedure on M .
If the final subalgorithm requires k ≥ 2 contaminated groups of size l,

add the contaminated group of size l to C.
If C contains k groups of size l,

apply the subalgorithm and remove the k groups from C.

Part 2

For each group L from C,
apply B|L| to L and remove L from C.

Part 3

While |I| ≥ 1,
test a group of size l = min(lm, |I|).
If the result is positive,

apply Bl to the contaminated group.

Part 1 is the main part of the algorithm, in which the procedure is applied
repeatedly as long as enough free items are left. In Part 2, the contaminated
groups left over from Part 1 are used up by identifying a defective in each
group. Finally, Part 3 is just a simple nested algorithm to identify the small
number of remaining items as good or defective.

The fixed size algorithm Am does not use any knowledge about the num-
ber of defectives d.
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3.7 Cost Estimate of Fixed Size Algorithms

The following theorem gives a bound for the number of tests needed by the
fixed size algorithm Am to solve the complete group testing problem.

Theorem 3.6 MAm(d|n) < cmd + 1
m(n− d) + 5.

This means that Am needs a constant number of tests for the identi-
fication of each defective item, 1

m tests for each good item, and at most 5
tests due to restrictions near the end, when the number of unidentified items
becomes small.

We derive an algorithm A′
m for the (d, n) group testing problem from Am

by simply omitting all tests whose result can be deduced in advance from
the knowledge that there are exactly d defectives. Lemma 2.4 states that
A′

m always needs at least one test less than Am, leading to the following
corollary of Theorem 3.6.

Corollary 3.7 MA′
m

(d, n) < cmd + 1
m(n− d) + 4.

For the proof of Theorem 3.6, we fix an arbitrary path S from the root
to a leaf in the binary tree representation of the fixed size algorithm Am.
Denote by S1, S2, and S3 the subpaths of this path that fall into Part 1,
2, and 3 of Am, respectively. Let tSi be the length of Si, and dSi and
gSi the number of defective and good items identified along Si. Denote by
C1 the content of C at the end of Part 1 of Am, that is, the collection of
contaminated groups left over from Part 1.

An inspection of the procedures listed in Table 3.2 reveals that each
subalgorithm used in the procedure of Am that requires at least two groups of
size l occurs only once in the procedure. Therefore there is exactly one path
Q leading to this subalgorithm in the procedure. We denote by cm,l = tQ−

gQ

m
the cost to obtain a contaminated group of size l for this subalgorithm.

Lemmas 3.8, 3.9, and 3.10 estimate the number of tests needed in S1, S2,
and S3. Their proofs are all based on the partition of the path S at the points
at which no contaminated groups except those in C are known. In Part 1 of
Am, each execution of the procedure of Am forms a subpath in this partition
except that each subalgorithm requiring at least two contaminated groups
forms a separate subpath. In Part 2, each execution of a Bl is a subpath of
the partition. In Part 3, each subpath is either a single test with negative
result or a test with positive result together with the following execution
of Bl. On each subpath in this partition the number of tests is estimated
using the number of identified defective and good items and the cost of
contaminated groups added to or removed from C.

Lemma 3.8 tS1 ≤ cmdS1 + 1
mgS1 +

∑
L∈C1

cm,|L|.
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Proof. It suffices to show for all subpaths R in the partition of S1 that

cmdR + 1
mgR + kRcm,l ≥ tR

where kR denotes the number of contaminated groups of size l that are
added to C minus the number that are removed from C along the subpath
R. The estimations of the subpaths follow the description of the fixed size
algorithm Am.

If the first test result in the procedure is negative, m good items and no
defectives are identified in one test. Since 0 + m

m = 1, the above inequality
is satisfied.

The rest of the proof treats the case that the first test result in the
procedure is positive. Denote by Q the path in the binary tree representation
of the procedure that corresponds to the test results.

If the subalgorithm at the end of path Q requires only one contaminated
group, it is executed immediately. Denote by P the path followed in the
subalgorithm, along which the contaminated group is always used up. Then
sP = 1, and dP defectives and gQ+gP good items are identified using tQ+tP
tests. This leads to the estimation

cmdP +
gQ + gP

m
≥
(
s̄P

(
tQ −

gQ

m

)
+ t̄P − ḡP

m

)
dP +

gQ + gP

m

= sP

(
tQ −

gQ

m

)
+ tP − gP

m
+

gQ + gP

m
= tQ + tP .

In this, the inequality cm ≥ s̄P

(
tQ − gQ

m

)
+t̄P− ḡP

m follows from the definition
of cm in the last section.

On the other hand, if the subalgorithm at the end of path Q requires
k ≥ 2 contaminated groups of size l, the contaminated group of size l ob-
tained along Q is added to the collection C of contaminated groups. Then
gQ good items and no defectives are identified using tQ tests. Inserting the
definition cm,l = tQ − gQ

m yields 0 + gQ

m + cm,l = tQ.
If k contaminated groups of size l are present after this, the subalgorithm

is executed. Denote by P the path followed in the subalgorithm and by Q
the path by which all k contaminated groups have been obtained. Then
dP defectives and gP good items are identified using tP tests, while sP

contaminated groups of size l are used up. This leads to the estimation

cmdP +
gP

m
− sP cm,l ≥

(
s̄P

(
tQ −

gQ

m

)
+ t̄P − ḡP

m

)
dP

+
gP

m
− sP

(
tQ −

gQ

m

)
= tP .

This process is repeated as long as enough free items are available. The
addition of the inequalities for all subpaths in the partition of S1 yields the
statement of the lemma. �



3.7. COST ESTIMATE OF FIXED SIZE ALGORITHMS 37

Lemma 3.9 tS2 < cmdS2 + 1
mgS2 −

∑
L∈C1

cm,|L| + 3.25.

Proof. For L ∈ C1 with l = |L| denote by R the subpath of S2 that contains
exactly the tests in Bl on L. By Lemma 3.1 Bl needs at most dlog le tests,
in which case at least 2dlog le − l good items are identified as well. All other
cases lead to a lower overall cost, hence tR − gR

m ≤ dlog le − 2dlog le−l
m . In all

cases, exactly one defective is identified and the contaminated group L of
size l is used up.

Let

am,l = min

(
0, dlog le − 2dlog le − l

m
+ cm,l − cm

)
denote the maximum additional cost incurred by identifying one defective
using Bl on a contaminated group of size l instead of following the procedure
of Am. Summation over all L ∈ C1 yields

tS2 − cmdS2 − 1
mgS2 +

∑
L∈C1

cm,|L| ≤
∑
L∈C1

am,|L|.

It remains to show
∑

L∈C1

am,|L| < 3.25.

Contaminated groups of size l can appear in C1 if and only if the proce-
dure of Am contains a path leading to a subalgorithm that processes k ≥ 2
groups of size l. Then C1 can contain up to k − 1 groups of size l, as k
groups would have been eliminated in Part 1 of Am by the application of
the subalgorithm. For instance, the procedure of A77 depicted in Figure 3.7
uses subalgorithms O5,5,5, O10,10,10, O11,11, and O24,24,24, resulting in the
estimation ∑

L∈C1

a77,|L| ≤ 2a77,5 + 2a77,10 + a77,11 + 2a77,24

= 2 · 7
11 + 2 · 41

77 + 32
77 + 2 · 18

77

= 317
77

< 3.25.

A similar estimation shows
∑

L∈C1

am,|L| < 3.25 for each m listed in Table

3.2. These estimations extend to all scaled up algorithms: For m ≥ 40
and k ≥ 1, Lemma 3.5 states c2km = cm + k, whereas the beginning of
its proof shows c2km,2kl = cm,l. Inserting in the definition of am,l leads to
a2km,2kl = am,l. �

Lemma 3.10 tS3 ≤ cmdS3 + 1
mgS3 + 1.75.
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Proof. If the test on a group of size l = min(lm, |I|) yields a positive result,
denote by R the subpath of S3 that contains this test and the tests belonging
to the following execution of Bl. The estimation of the overall cost of R is
the same as at the beginning of the proof of Lemma 3.9 plus one for the first
test. Together with l ≤ lm this results in

tR − gR

m
≤ dlog le+ 1− 2dlog le − l

m

≤ dlog lme+ 1− 2dlog lme − lm
m

= max

(
bcmc − 1 + 1− 2bcmc−1 − 2bcmc−1

m
,

dcme − 1 + 1− 2dcme−1 − 2dcme−1 + d(dcme − cm) me
m

)

≤ max
(
bcmc , dcme −

(dcme − cm) m

m

)
≤ cm.

On the other hand, denote by R the set of all subpaths of S3 that consist
of a single test of a group of size l = min(lm, |I|) with negative result. All
but the last of the tests in R are on groups of size lm, as for |I| < lm all
remaining items are tested and identified as good. Denote by I1 and I2

the items remaining in I at the end of Part 1 and 2, respectively. Then
|R| ≤ |I2|

lm
≤ |I1|

lm
. The set I1 contains less than nm free items and the items

in the groups in C1. Therefore

|I1| < nm +
∑
L∈C1

|L| ≤
{

3lm for m 6= 4
5lm for m = 4.

It can easily be checked that the last inequality holds for all m in Table 3.2,
which extends to m ≥ 80 because for k ≥ 1

l2km = max
(
2bcm+kc−1, 2dcm+ke−1 −

⌈
(dcm + ke − (cm + k)) 2km

⌉)
= max

(
2k2bcmc−1, 2k2dcme−1 −

⌈
2k (dcme − cm) m

⌉)
≥ 2klm.

The inequality lm > 5
8m can be checked in the same way.

Together this yields |R| ≤ 3 for m 6= 4 and |R| ≤ 5 for m = 4, leading
to ∑

R∈R
tR − gR

m
≤

{
3− 2lm+1

m < 1.75 for m 6= 4
5− 4·3+1

4 = 1.75 for m = 4.

Adding the estimation from above for all subpaths of S3 beginning with
a positive test result yields the statement of the lemma. �
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Proof of Theorem 3.6. For each path S of Am that identifies d defectives in
n items the addition of the inequalities of Lemmas 3.8, 3.9, and 3.10 yields

tS < cmd + 1
m(n− d) + 5.

Maximizing over all paths yields the theorem. �

An analysis of the arguments above for a path that achieves equality in
Lemma 3.8 shows that MAm(d|n) > cmd + 1

m(n − d) − 1 for n
d ≥ m. For

sufficiently small n
d , some algorithms Am need fewer tests than this in the

worst case, as there are not enough good items to follow a path achieving
equality in Lemma 3.8. However, in the main algorithm A in the next section
Am is used only for n

d ≥ m.
A possible modification of Part 2 of the fixed size algorithm Am is to use

subalgorithms that require multiple contaminated groups not necessarily of
the same size to identify several defectives together. This leads to a lower
constant in Lemma 3.9 and therefore in Theorem 3.6.

3.8 Main Algorithm

We suppose d > 0 and denote by r = n
d the initial ratio of all items to

defective items. To find the best fixed size algorithm for a given ratio r, we
compare the number of tests needed by different algorithms in the worst case.
The difference between the upper bounds from Theorem 3.6 for MAm′ (d|n)
and MAm(d|n) with m 6= m′ is

(cm′ − cm) d +
(

1
m′ − 1

m

)
(n− d) = d

(
cm′ − cm − m′ −m

mm′ (r − 1)
)

.

Let

rm,m′ =
mm′

m′ −m
(cm′ − cm) + 1

denote the value of r for which the above expression is zero, that is, the
upper bounds for MAm′ (d|n) and MAm(d|n) are equal.

For r ≥ m the difference between MAm(d|n) and the upper bound from
Theorem 3.6 is less than 6. Thus, if we suppose m′ > m, then for each
r ≥ m there exists d0(r) such that for all d ≥ d0(r) and n = rd

MAm(d|n) < MAm′ (d|n) for r < rm,m′ and
MAm(d|n) > MAm′ (d|n) for r > rm,m′ .

Therefore we can describe the range of ratios r for which Am is best by

rmin
m = max

m′<m
rm′,m and

rmax
m = min

m′>m
rm,m′ ,
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m cm
rmin
m

rmax
m

α(r) ᾱ(r)

1 1

2 2
3 0.246 0.558

3 21
2

4 0.255 0.473

4 25
6

5 0.224 0.391

7 34
7

78
9 0.229 0.329

12 41
3

134
5 0.225 0.280

15 428
45

181
3 0.179 0.220

19 5
2711

12 0.198 0.224

24 51
3

312
5 0.208 0.232

m cm
rmin
m

rmax
m

α(r) ᾱ(r)

24 51
3

30 528
45

352
3 0.199 0.220

40 6 1
40

491
3 0.181 0.196

47 625
94

655
7 0.174 0.185

49 616
49

703
4 0.173 0.184

54 625
54

731
5 0.174 0.184

62 641
62

84 0.174 0.183

77 675
77

100 8
15 0.180 0.187

80 7 1
40

1052
3 0.175 0.181

Table 3.3: Ranges of Am in the main algorithm A for m ≤ 80

except rmin
1 = 0. There is always some m′ > m with rmax

m = rmin
m′ . For

m ≤ 80, the values rmin
m and rmax

m can be found in Table 3.3 together with α
and ᾱ, which are defined in the next section. For m ≥ 40 and k ≥ 1, substi-
tuting c2km = cm+k from Lemma 3.5 leads to r2km,2km′−1 = 2k

(
rm,m′ − 1

)
.

Thus

rmin
2km − 1 = 2k

(
rmin
m − 1

)
for m ≥ 47, and

rmax
2km − 1 = 2k (rmax

m − 1) for m ≥ 40.

This leads to the following split and overlap algorithm A for the complete
group testing problem that always uses the best fixed size algorithm Am for
the actual ratio r. We refer to A in the following as the main algorithm to
highlight the difference to the fixed size algorithm Am.

Algorithm A

If d = 0,
test the group of all items.
If the result is negative, then stop, else set d := 1.

Let r = n
d .

Choose m satisfying rmin
m < r ≤ rmax

m .
Execute Am.

In the main algorithm A the initial test group size m, which is used if no
contaminated group is known, remains constant even if the ratio of good to
defective unidentified items changes during the execution. In contrast, the
generalized binary splitting algorithm G from Hwang presented in Section
3.1 adapts the test group size to the ratio of remaining good to defective



3.9. COST ESTIMATE OF MAIN ALGORITHM 41

items. Surprisingly, this does not seem to be necessary to obtain a good
algorithm for the worst case scenario.

The list of fixed size algorithms Am in Tables 3.2 and 3.3 is the result of
a computation that searches for the best algorithms for each m ≥ 1 using all
subalgorithms and techniques introduced in this chapter, that is, those with
the lowest cost cm for identifying a defective. Then the above definitions
can be extended to all m ≥ 1, and the algorithms listed in Tables 3.2 and
3.3 are just those with rmin

m < rmax
m . For example, A5 with the procedure

S5(B2, O
3
3) and A6 with the procedure O4

6 are made redundant by A4 and
A7. It is possible to continue this process for m > 80 instead of scaling up
algorithms for smaller m, but this yields only minor further improvements.

3.9 Cost Estimate of Main Algorithm

The minimum number of tests needed for the (d, n) group testing problem
is known only for the trivial cases M(0, n) = M(n, n) = 0 and for a large
proportion of defectives, that is, a low ratio r = n

d of all items to defectives.
Presume 0 < d < n. For r ≤ 21

8 = 2.625, Du and Hwang [8] showed
M(d, n) = n − 1, which can be reached by testing all items individually.
Leu, Lin, and Weng [14] extended this to r ≤ 43

16 = 2.687 . . . for d ≥ 193,
Riccio and Colbourn [16] to r < log 3

2
3 = 2.709 . . . for sufficiently large d

depending on r. All these results are based on a Lemma by Hu, Hwang,
and Wang [10], who also conjectured M(d, n) = n− 1 for r ≤ 3 and proved
M(d, n) < n − 1 for r > 3. The latter is achieved by a variant of the fixed
size algorithm A2 omitting all predictable tests, as shown by Du and Hwang
[6, Section 3.5]. However, the proof of the conjecture remains elusive and
calls for a different approach.

These results transfer to the complete group testing problem by Theorem
2.1, which states M(d|n) = M(d, n) + 1 for 0 ≤ d < n. For d = n, all items
have to be tested individually, thus M(n|n) = n.

The main algorithm A is optimal in all these cases: Applied to the
complete group testing problem, it performs only one test on the group of
all defectives for d = 0 and tests all items individually for r ≤ 3.

The only general lower bound that is known for the (d, n) group testing
problem is the information lower bound

⌈
log
(
n
d

)⌉
. Therefore we compare

the number of tests needed by A with log
(
n
d

)
. First we prove some lemmas.

Lemma 3.11 For x > 0,(
x + 1

x

)x

≤ e ≤
(

x + 1
x

)x+1

.

Proof. The statement of the lemma is equivalent to

x ln
(

1 +
1
x

)
≤ 1 ≤ (x + 1) ln

(
1 +

1
x

)
.



42 CHAPTER 3. THE SPLIT AND OVERLAP ALGORITHM

Application of Taylor’s formula yields for some ξ with 1 ≤ ξ ≤ 1 + 1
x

x ln
(

1 +
1
x

)
= x

1
ξx

=
1
ξ
≤ 1

and

(x + 1) ln
(

1 +
1
x

)
= (x + 1)

1
ξx

=
1
ξ

(
1 +

1
x

)
≥ 1.

�

Lemma 3.12 For 0 < d ≤ n
2 ,

log
(

n

d

)
> d log

(
r

(
r

r − 1

)r−1
)
− 1

2
log d− 1.5.

Proof. For d = 1 the application of Lemma 3.11 with x = r − 1 yields

log

(
r

(
r

r − 1

)r−1
)
− 1.5 ≤ log r + log e− 1.5

< log
(

n

1

)
.

For d ≥ 2 the application of Stirling’s Formula k! =
√

2πk
(

k
e

)k
θk with

1 < θk < e
1

12k , see Bollobás [1, Chapter VII §1], results in

log
(

n

d

)
= log

(rd)!
((r − 1)d)!d!

= log

(√
r

2π(r − 1)d

(
rr

(r − 1)r−1

)d θrd

θ(r−1)dθd

)

= d log

(
r

(
r

r − 1

)r−1
)
− 1

2
log d− 1

2
log 2π

+
1
2

log
r

r − 1
+ log θrd − log θ(r−1)d − log θd.

Leaving out the terms 1
2 log r

r−1 and log θrd, which are always positive,
and considering d ≥ 2 and r ≥ 2 in the next step leads to
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log
(

n

d

)
> d log

(
r

(
r

r − 1

)r−1
)
− 1

2
log d− 1

2
log 2π

−
(

1
12(r − 1)d

+
1

12d

)
log e

≥ d log

(
r

(
r

r − 1

)r−1
)
− 1

2
log d− 1

2
log 2π − 1

12
log e

> d log

(
r

(
r

r − 1

)r−1
)
− 1

2
log d− 1.5.

�

It can be shown by similar estimates that the difference between the two
sides of the inequality in Lemma 3.12 is less than one.

We denote by

αm(r) = cm +
r − 1
m

− log

(
r

(
r

r − 1

)r−1
)

the average number of tests per defective by which the fixed size algorithm
Am exceeds the information lower bound for large d, which we call the loss
per defective. Similarly,

α(r) = min
m

αm(r)

denotes the loss per defective of the main algorithm A. Figure 3.8 shows a
graph of α(r) and αm(r).

In addition, let

ᾱ(r) = min
m

(
cm +

r − 1
m

)
− log ((r − 1)e)

denote the upper bound of the loss per defective of all scaled up versions
of the fixed size algorithm used for the ratio r, as shown by the following
Lemma.

Lemma 3.13 For r ≥ rmin
47 and k ≥ 1,

α(2k(r − 1) + 1) ≤ ᾱ(r).

Proof. Choose m ≥ 47 satisfying rmin
m < r ≤ rmax

m . From the last section
follows rmin

2km
< 2k(r − 1) + 1 ≤ rmax

2km
. Inserting in the definition of αm(r)
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Figure 3.8: The loss per defective α(r)

using r
(

r
r−1

)r−1
= (r − 1)

(
r

r−1

)r
then yields

α(2k(r − 1) + 1) = α2km(2k(r − 1) + 1)

= c2km +
2k(r − 1)

2km

− log

(
2k(r − 1)

(
2k(r − 1) + 1

2k(r − 1)

)2k(r−1)+1
)

.

The application of Lemma 3.5, which states c2km = cm + k, and Lemma
3.11 with x = 2k(r − 1) results in

α(2k(r − 1) + 1) ≤ cm + k +
r − 1
m

− log
(
2k(r − 1)e

)
= ᾱ(r).

�

The following theorem gives an upper bound for the loss per defective
α(r).

Theorem 3.14 α(r) ≤ 1
2 − log 32

27 < 0.255 for r ≥ 2 and

α(r) < 0.187 for r ≥ 38.
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Proof. αm(r) is convex, as α
′′
m(r) = log e

r(r−1) > 0 for r > 1. Therefore α(r) is
convex between rmin

m and rmax
m for all m, implying

α(r) ≤ max
(
α(rmin

m ), α(rmax
m )

)
for rmin

m ≤ r ≤ rmax
m .

For m ≤ 80 Table 3.3 lists α(rmin
m ), whereas for 47 ≤ m ≤ 80 and k ≥ 1

by Lemma 3.13 α(rmin
2km

) ≤ ᾱ(rmin
m ), which is also listed in Table 3.3. Since

rmax
m = rmin

m′ for some m′ > m, this extends to α(rmax
m ).

This leads to α(r) ≤ α(4) = 1
2 − log 32

27 . Together with α(38) < 0.185
follows α(r) < 0.187 for r ≥ 38. �

The bounds for α(r) given in Theorem 3.14 are shown in Figure 3.8 as
a dashed line.

A simple calculation shows that αm(r) assumes its minimum at 1

2
1
m−1

+1.

The lowest minimum value of αm(r) with m ≥ 2 is the minimum of α(r) for
r ≥ 2:

min
r≥2

α(r) = α15(22.1) < 0.154.

Now we can estimate the difference between the number of tests required
by the split and overlap algorithm A for the complete group testing problem
and log

(
n
d

)
.

Theorem 3.15 For 0 < d ≤ n
2 ,

MA(d|n)− log
(

n

d

)
< α (r) d +

1
2

log d + 6.5.

Proof. Assume that the main algorithm A chooses the fixed size algorithm
Am with the initial test group size m. Applying Theorem 3.6 and Lemma
3.12 yields

MA(d|n)− log
(

n

d

)
= MAm(d|n)− log

(
n

d

)
< cmd + 1

m(n− d) + 5

− d log

(
r

(
r

r − 1

)r−1
)

+
1
2

log d + 1.5

= αm(r)d +
1
2

log d + 6.5

= α (r) d +
1
2

log d + 6.5.

�

As with the fixed size algorithm Am in Section 3.7, we can derive from A
an algorithm A′ for the (d, n) group testing problem by simply omitting all
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tests that become predictable due to the knowledge that there are exactly d
defectives. From Lemma 2.4 then follows MA′(d, n) ≤ MA(d|n)− 1, leading
to the following corollary of Theorem 3.15.

Corollary 3.16 For 0 < d ≤ n
2 ,

MA′(d, n)− log
(

n

d

)
< α (r) d +

1
2

log d + 5.5.

For d ≥ 10, this is considerably better than the d− 1 additional tests for
Hwang’s generalized binary splitting algorithm G presented in Section 3.1.

The difference between the two sides of the inequalities in Theorem 3.15
and Corollary 3.16 is less than 7, as the corresponding differences in Theorem
3.6 and Lemma 3.12, which are used in the proof of Theorem 3.15, are less
than 6 and 1, respectively. This leads to the following corollary.

Corollary 3.17 For r ≥ 2,

lim
n,d→∞

n
d
→r

1
d

(
MA′(d, n)− log

(
n

d

))
= α(r).

For small r the necessity of integral test sizes restricts significantly the
choice of good algorithms, motivating the following conjecture.

Conjecture 3.18 For 2 ≤ r ≤ 4,

lim
n,d→∞

n
d
→r

1
d

(
M(d, n)− log

(
n

d

))
= α(r).

This implies that the number of tests per defective needed by A2 and
A3 is optimal and that there exists no fixed size algorithm with initial test
group size 4 requiring less than 23

4 tests per defective. Furthermore, the
conjecture implies that the general upper bound 1

2 − log 32
27 for α(r) given in

Theorem 3.14 is the best possible for any group testing algorithm.



Bibliography

[1] B. Bollobás, Graph Theory (Springer, New York 1979).

[2] X. M. Chang, F. K. Hwang, and J. F. Weng, Group testing with two
and three defectives, Ann. N. Y. Acad. Sci. 576 (1989) 86-96.

[3] P. Chen, L. Hsu, and M. Sobel, Entropy-based optimal group-testing
procedures, Probab. Engrg. Inform. Sci. 1 (1987) 497-509.

[4] C. J. Colbourn, Group testing, The CRC handbook of combinatorial
designs (CRC Press, Boca Raton, CA 1996) 564-565.

[5] R. Dorfman, The detection of defective members of large populations,
Ann. Math. Statist. 14 (1943) 436-440.

[6] D. Z. Du and F. K. Hwang, Combinatorial group testing and its appli-
cations, 2nd ed. (World Scientific, Singapore 2000).

[7] D. Z. Du and F. K. Hwang, Competitive group testing, Disc. Appl.
Math. 45 (1993) 221-232.

[8] D. Z. Du and F. K. Hwang, Minimizing a combinatorial function, SIAM
J. Alg. Disc. Methods 3 (1982) 523-528.

[9] L. Hsu, New procedures for group-testing based on the Huffman lower
bound and Shannon entropy criteria, Adaptive Designs (South Hadley,
MA 1992), IMS Lecture Notes Monogr. Ser. 25 (Inst. Math. Statist.,
Hayward, CA 1995) 249-262.

[10] M. C. Hu, F. K. Hwang, and J. K. Wang, A boundary problem for
group testing, SIAM J. Alg. Disc. Methods 2 (1981) 81-87.

[11] F. K. Hwang, A method for detecting all defective members in a pop-
ulation by group testing, J. Amer. Statist. Assoc. 67 (1972) 605-608.

[12] F. K. Hwang, An optimum nested procedure in binomial group testing,
Biometrics 32 (1976) 939-943.

47



48 BIBLIOGRAPHY

[13] F. K. Hwang, T. T. Song, and D. Z. Du, Hypergeometric and gen-
eralized hypergeometric group testing, SIAM J. Alg. Disc. Methods 2
(1981) 426-428.

[14] M. G. Leu, C. Y. Lin, and S. Y. Weng, Note on a conjecture for group
testing, Ars Combin. 64 (2002) 29-32.

[15] C. H. Li, A sequential method for screening experimental variables, J.
Amer. Statist. Assoc. 57 (1962) 455-477.

[16] L. Riccio and C. J. Colbourn, Sharper bounds in adaptive group testing,
Taiwanese J. Math. 4 (2000) 669-673.

[17] J. Schlaghoff and E. Triesch, Improved results for competitive group
testing, Combin. Probab. Comput., to appear.

[18] M. Sobel, Optimal group testing, Proc. Colloquium on Information
Theory (Debrecen, 1967) (János Bolyai Math. Soc., Budapest 1968)
411-488.

[19] M. Sobel and P. A. Groll, Group testing to eliminate efficiently all
defectives in a binomial sample, Bell System Tech. J. 38 (1959) 1179-
1252.

[20] E. Triesch, A group testing problem for hypergraphs of bounded rank,
Disc. Appl. Math. 66 (1996) 185-188.



Lebenslauf

Name: Andreas Allemann

Geburtsdatum: 9.8.1969

Geburtsort: Bonn

Familienstand: verheiratet

Nationalität: schweizerisch

Schulbildung:

08/1975-06/1979 Grundschule Bonn-Venusberg

08/1979-06/1988 Clara-Schumann-Gymnasium Bonn

06/1988 Abitur

Studium:

10/1988-03/1997 Studium der Mathematik mit Nebenfach Informatik an der

Rheinischen Friedrich-Wilhelms-Universität Bonn

03/1997 Diplom

Berufliche Tätigkeiten:

07/1993-09/1994 Werkstudent bei IBM in Köln, Bonn und Böblingen
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	Introduction
	1 On the Structure of Group Testing
	1.1 The Group Testing Model
	1.2 The Test Information Hypergraph
	1.3 Identifying an Unknown Number of Defectives
	1.4 Identifying a Bounded Number of Defectives

	2 Complete Group Testing
	2.1 Variants of Combinatorial Group Testing
	2.2 Complete Related to (d,n) Group Testing

	3 The Split and Overlap Algorithm
	3.1 Nested Algorithms
	3.2 Overview of the Split and Overlap Algorithm
	3.3 Overlapping Subalgorithms
	3.4 Cost Estimate of Subalgorithms
	3.5 Scaling up Subalgorithms
	3.6 Fixed Size Algorithms
	3.7 Cost Estimate of Fixed Size Algorithms
	3.8 Main Algorithm
	3.9 Cost Estimate of Main Algorithm

	Bibliography

