Herstellung von dünnen Elektrolytschichten mittels Laserablation und Kathodenzerstäubung für Hochtemperatur-Brennstoffzellen

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Physiker
Bert Hobein
aus Versmold

Berichter:
Univ.-Prof. Dr. rer. nat. Reinhart Poprawe M.A.
Univ.-Prof. Dr. rer. nat. Detlev Stöver, Ruhr-Uni Bochum

Tag der mündlichen Prüfung: 15.07.2003

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar
Inhaltsverzeichnis

1 Einleitung und Zielsetzung

2 Grundlagen
2.1 Brennstoffzellenentwicklung und -Typen 3
2.2 Das planare Konzept der SOFC .. 9
2.3 Elektrolytwerkstoffe ... 15
2.4 Pulsed Laser Deposition und Kathodenzerstäubung 21

3 Experimentelle Durchführung
3.1 Substratpräparation ... 31
3.2 Pulsed Laser Deposition .. 32
 3.2.1 Aufbau der Beschichtungsanlage und Prozessparameter 32
 3.2.2 Targetherstellung ... 36
3.3 Kathodenzerstäubung ... 38
3.4 Charakterisierungsmethoden .. 40
 3.4.1 Profilometrie ... 40
 3.4.2 Chemische Analyse .. 41
 3.4.3 Röntgendiffraktometrie .. 41
 3.4.4 Texturanalyse ... 43
 3.4.5 Raster- und Transmissionselektronenmikroskopie 44
 3.4.6 EDX und WDX ... 45
 3.4.7 SNMS .. 46
 3.4.8 He-Leckratentest .. 47
 3.4.9 Elektrochemischer Test .. 49

4 Ergebnisse und Diskussion
4.1 Substrateigenschaften ... 51
 4.1.1 Oberflächenrauhigkeit .. 51
INHALTSVERZEICHNIS

4.1.2 Oberflächen- und Bruchflächenmorphologie 53
4.2 PLD-Targetmaterialien ... 55
4.3 PLD-Schichten aus YSZ ... 56
 4.3.1 Phasenbildung auf Al$_2$O$_3$-Substraten 56
 4.3.2 Schichten auf NiO/YSZ-Anodensubstraten 60
 4.3.2.1 Schichtdicke und Oberflächenrauhigkeit 60
 4.3.2.2 Schichtmorphologie und -defekte 61
 4.3.2.3 Schichtbildende Elemente und Phasenbildung 69
 4.3.2.4 Kristallitorientierung und Textur 75
 4.3.2.5 Gasdichtigkeit 77
 4.3.2.6 Chemische Elementverteilung 80
 4.3.2.7 Elektrochemische Zellenmessung 82
 4.3.3 Diskussion von Abschnitt 4.3 85
4.4 PLD-Schichten: LSGM auf NiO/YSZ-Anodensubstraten 89
 4.4.1 Schichtmorphologie und -dicke 89
 4.4.2 Schichtbildende Elemente und Phasenbildung 90
 4.4.3 Phasenbildung nach thermischer Behandlung in Luft 91
 4.4.4 Phasenbildung nach thermischer Auslagerung in Wasserstoff 95
 4.4.5 Chemische Elementverteilung 96
 4.4.6 Elektrochemische Zellenmessung 101
 4.4.7 Diskussion zu Abschnitt 4.4 101
4.5 Sputter-Schichten: YSZ 104
 4.5.1 Schichten auf Al$_2$O$_3$-Substraten 104
 4.5.1.1 Schichtdicke und Oberflächenrauhigkeit 104
 4.5.1.2 Phasenbildung 105
 4.5.2 Schichten auf NiO/YSZ-Anodensubstraten 108
 4.5.2.1 Schichtmorphologie, -defekte und -dicke 108
 4.5.2.2 Schichtbildende Elemente und Phasenbildung 111
 4.5.2.3 Gasdichtigkeit 114
 4.5.3 Diskussion zu Abschnitt 4.5 115

5 Kapitelübergreifende Diskussion 119

6 Zusammenfassung ... 127

Abkürzungsverzeichnis ... 131
INHALTSVERZEICHNIS

iii

Literaturverzeichnis 135
Kapitel 1

Einleitung und Zielsetzung

erreicht. Für dünnere, vorzugsweise 1-2 µm dicke Elektrolytfilme, stehen bekannte PVD-Verfahren, wie z.B. die Kathodenzerstäubung (DC-Sputtering) und die Abscheidung mit gepulster Laserstrahlung (PLD) zur Verfügung.

Ziel dieser Arbeit ist die Herstellung von einigen µm dünnen YSZ- und LSGM-Elektrolytschichten mit PLD bzw. DC-Sputtering im Hinblick auf ihre Eignung in Hochtemperatur-Brennstoffzellen. Mit PLD bzw. DC-Sputtering werden 8 mol% Y$_2$O$_3$ stabilisierte ZrO$_2$-Schichten auf porösen NiO/YSZ-Anodensubstraten als Grundlage hergestellt. Untersucht werden die Schichteigenschaften in Abhängigkeit der Substrattemperatur und des Prozessgasdrucks. Hierbei werden Phasenbildung, Elementverteilung, Kristallwachstum, Morphologie und Gasdichtigkeit der Schichten charakterisiert. Alternativ werden Lanthangallat-Schichten des Systems La$_{1-x}$Sr$_x$Ga$_{1-y}$Mg$_y$O$_{3-1/2(x+y)}$ mit PLD abgeschieden. Aufgrund der im Vergleich zu YSZ dreifach höheren ionischen Leitfähigkeit, wird die in der Literatur empfohlene Zusammensetzung La$_{0.85}$Sr$_{0.15}$Ga$_{0.85}$Mg$_{0.15}$O$_{2.85}$ angestrebt. Die Phasenbildung in Abhängigkeit der Temperatur und die Elementverteilung der LSGM-Schichten stehen im Mittelpunkt der Untersuchungen. In elektrochemischen Untersuchungen der YSZ- und LSGM-Elektrolytschichten wird abschließend die elektrische Leistungsdichte der Brennstoffzellen gemessen. Die Ergebnisse werden mit Referenzwerten von Standardzellen verglichen und bewertet.
Kapitel 2

Grundlagen

2.1 Brennstoffzellenentwicklung und -Typen

KAPITEL 2. GRUNDLAGEN

2.1. BRENNSTOFFZELLENENTWICKLUNG UND -TYPEN

Abbildung 2.2: Wirkungsgrade von Brennstoffzellen und Brennstoffzellen in Kombination mit Gasturbinen im Vergleich zu konventionellen Kraftwerkstypen [18]

von einer 5 kW AFC vor. Für den täglichen Einsatz ist die AFC wenig geeignet, da die hohen Anforderungen an die Gasreinheit das System stark verteuern. Auch die Langlebigkeit der AFC ist mit einem Spannungsverlust von 15-50 mV pro 1000 Betriebsstunden stark eingeschränkt.

Die Direkt-Methanol Brennstoffzelle - DMFC ist die einzig Zelle, die nicht Wasserstoff sondern Methanol (CH₃OH) als Brennstoff umsetzt. Auf Reformer kann verzichtet werden, da die Zelle selbst Methanol in Wasserstoffprotonen, freie Elektronen und CO₂ umwandelt. Die chemische Gesamtreaktion kann wie folgt beschrieben werden:

\[CH₃OH + 3/2 O₂ \rightarrow CO₂ + 2H₂O \] \hspace{1cm} (2.1)

Durch den fehlenden Reformer ist sie für den Einsatz in Kraftfahrzeugen geeignet, da sie dem Ziel der möglichst einfachen Energiequelle am nächsten kommt. Als Elektrolyt wird eine protonenleitende Polymer-Elektrolyt-Membran eingesetzt. Durch einen Katalysators wird an der Anode Methanol und zugeführtes Wasser bei ca. 100 °C Betriebstemperatur in Kohlendioxid und Wasserstoff umgewandelt:

\[CH₃OH + H₂O \rightarrow CO₂ + 3H₂ \] \hspace{1cm} (2.2)

Die Direkt-Methanol-Brennstoffzelle wird derzeit für kleine, tragbare Anwendungen und für Fahrzeugantriebe entwickelt. Der Vorteil der DMFC liegt in der leichteren Speicherung des flüssigen Methanols im Gegensatz zu Wasserstoff. Wenn Methanol

Abbildung 2.3: Tubulare (links; Siemens/Westinghouse-USA), planare (rechts; Siemens, Daimler-Benz/Dornier) Ausführung der SOFC

KAPITEL 2. GRUNDLAGEN
2.2 Das planare Konzept der SOFC

Das planare Konzept der SOFC des Forschungszentrums Jülich favorisiert im Gegensatz zu konventionellen Konzepten als tragendes Element der Zelle ein ca. 1,5 mm dickes Anodensubstrat [10]. Konventionelle Systeme bevorzugen eine ca. 200 µm dicke Elektrolytfolie als tragendes Element der Zelle (Abb. 2.5). Dünnere Elektrolytfolien sind wegen der mechanischen Instabilität bei den weiteren Fertigungs-

Abbildung 2.5: Konventionelles SOFC-Konzept mit selbsttragendem Elektrolyt (links) und Substrat-Konzept (rechts)

der gasdichte, sauerstoffionenleitende keramische Elektrolyt, sowie die ihn umgebende Anoden- bzw. Kathodenschicht. Die Anoden- wie auch die Kathodenschicht ist porös, elektrisch leitend und bei Betriebstemperaturen von 800-1000 °C unter oxidierender bzw. reduzierender Atmosphäre chemisch stabil. Während des Betriebs wird auf der Anodenseite das Brenngas und auf der Kathodenseite Luft angeboten. Die Differenz des chemischen Potentials des Sauerstoffs ist die treibende Kraft der exothermen Reaktion:

\[2H_2 + O_2 = 2H_2O\] \hspace{1cm} (2.3)

Die für die kathodenseitige Reduktion der Sauerstoffmoleküle benötigten Elektronen werden von den Oxidationsprozessen auf der Anodenseite zur Verfügung gestellt:

\[H_2 + O^{2-} = H_2O + 2e^-\] \hspace{1cm} (2.4)

\[E_k = (R \cdot T / z_k \cdot F) \cdot \ln(p_{K_2O_2}/p_{A_2O_2})\] \hspace{1cm} (2.5)
2.2. DAS PLANARE KONZEPT DER SOFC

Sie beschreibt das Gleichgewichtspotential der Konzentrationen von Ionen, die durch eine semipermeable Membran getrennt sind. Dabei sind \(R := \text{allg. Gaskonstante}, \) \(T := \text{Temperatur}, \) \(z_k := \text{Ladungszahl des Ions}, \) \(p_{K \text{O}_2} := \text{Sauerstoffpartialdruck an der Kathode}, \) \(p_{A \text{O}_2} := \text{Sauerstoffpartialdruck an der Anode}. \) Bei realistischen Betriebsbedingungen, d.h. einer Betriebstemperatur von \(T = 900 ^\circ C \) und einem kathoden- bzw. anodenseitigen Sauerstoffpartialdruck von \(p_{K \text{O}_2} = 0,2 \text{ bar} \) bzw. \(p_{A \text{O}_2} = 10-16 \text{ bar}, \) errechnet sich eine Leerlaufspannung von \(E_k = 1,1 \text{ V}. \)

Um für den Betrieb größere Spannungen zu realisieren, werden die Einzelzellen in Reihe zu Zellenstacks zusammengefaßt. Hierbei werden Interkonnektorplatten zwischen Anode und Kathode zweier Einzelzellen eingesetzt. Die Interkonnektorplatten stellen die elektrische Verbindung der Einzelzellen her und sorgen zusätzlich mit beidseitig eingearbeiteten Gaskanälen für die Gasversorgung der Einzelzellen. Aufgrund der Betriebstemperaturen von 800-1000 °C beschränkt sich die Auswahl auf wenige Werkstoffe, wie die perowskitische Lanthanchromit-Keramik LaCrO\(_3\), metallische Crombasislegierungen sowie ferritische Stähle. Kleinere Betriebstemperaturen verlangsamen die Diffusionseffekte und erhöhen damit die Langzeitstabilität der Stacks. Weiterhin könnten kostengünstigere Materialien als Interkonnektor zum Einsatz kommen.

Das tragende Element der Zellen bildet die Anode. Mit einer Dicke von ca. 1,5 mm und Kantenlängen von bis zu 250\(\times \)250 mm\(^2\) ist sie ein stabiles Substrat der Brennstoffzellenfertigung. Um die notwendige Porosität der gesinterten Anode sowie die mechanische Stabilität des Grünlings zu erhalten, wird das Ausgangspulver mit der Coat-Mix-Methode zu pressbarem Pulver verarbeitet \([16]\). Hierbei werden die Pulverpartikel mit einem organischen Binder (Phenolformaldehydharz) beschichtet, der während der Sinterung ausbrennt. Im Coat-Mix-Verfahren wird der Binder im Lösungsmittel (Ethanol) bei einer Temperatur von 50-60 °C gelöst. Das Gemisch aus NiO- und YSZ-Pulver wird danach unter ständigem Rühren in die Binderlösung gegeben. Die entstandene Suspension wird abgekühlt und danach in angesäuertes Wasser (pH= 4) eingebracht, in dem der Binder nicht löslich ist. Der Binder fällt aus und beschichtet somit homogen jedes Pulverkorn. Um die Lösungsmittelreste aus der Binderschicht zu entfernen, schließt sich eine Wärmebehandlung der Suspension bei 40-60 °C an. Die flüssige Phase wird anschließend durch Dekantation bzw. Filtration abgetrennt und das beschichtete Pulver in einem evakuieren Trockenschrank getrocknet (\([17]\), Abb. 2.6). Das beschichtete Pulver mit einem Massenanteil des NiO von 56% wird zu Anodenplatten warm gepresst. Für die Fertigung wird das
uniaxiale Pressverfahren verwendet, bei dem das Pulvergemisch bei einer Temperatur von 120 °C unter einem Druck von ca. 1 MPa verpresst wird. Beim Pressen wird der Binder zunächst weich und verbindet die Pulverpartikel miteinander, bevor er beginnt auszuhärten. Dabei spaltet sich Wasser vom Phenolformaldehyd ab. In dem anschließenden Sinterschritt werden die Grünlinge in Luft bei 1285 °C für 3 h vorgesintert. Dabei wird der Binder ausgebrannt und hinterlässt somit eine hohe durchgehende Porosität, um den Gastransport während des Betriebs der Brennstoffzelle zu gewährleisten. Nach der Sinterung und anschließender Reduktion der Anodenplatten bei 900 °C in Ar/4%-H₂ stellt sich eine Porosität von ca. 40 Vol% ein [18]. Das Nickloxid wird im Betrieb der Zelle zu Nickel reduziert und verleiht der Anode somit die notwendige elektrische Leitfähigkeit von ca. 650 S/cm [18]. Der thermische Ausdehnungskoeffizient von ca. \(\alpha = 12 \times 10^{-6} \, \text{K}^{-1} \) stimmt annähernd mit denen der anderen Komponenten der Zelle, speziell dem Elektrolyten (\(\alpha = 11 \times 10^{-6} \, \text{K}^{-1} \)) überein [18]. Die dadurch entstehenden geringen Spannungen führen während des Betriebs nicht zur Zerstörung der Zellen. Im Weiteren wird die Dreiphasengrenze, bzw. -oberfläche, wo Ni (Elektronentransport), YSZ (Sauerstoffionentransport) und Poren (Wasserstofftransport) aufeinander treffen, durch die sog. Anodenfunctionsschicht vergrößert, wodurch ein höherer Umsatz von Sauerstoff und Wasser-
stoff und damit ein größerer Elektronenstrom erzielt wird. Die Anodenfunktions-

schicht besteht wie die Anode aus einem Ni/YSZ Cermet. Die Dicke der Schicht

 beträgt ca. 5 µm. Die Porosität beträgt im reduzierten Zustand ca. 15-20 Vol%.

Hergestellt wird die Anodenfunktionsschicht durch das Vakuumschlickergussverfah-

ren [19]. Hierbei wird eine alkoholische Suspension aus NiO- und YSZ-Pulver auf die
gesinterte Anodenplatte gegeben. Anschließend wird auf der Rückseite der Anoden-
platte ein Unterdruck erzeugt, der den Alkohol durch die Poren der Anode von dem
NiO/YSZ-Pulver auf der Anode trennt und eine homogene Pulverschüttung auf der
Anodenoberfläche hinterlässt. In einer anschließenden Temperaturbehandlung wer-

den die Pulverpartikel miteinander und der Anode versintert.

In den SOFC’s des Forschungszentrums Jülich wird YSZ als Elektrolytmaterial
eingesetzt. Hergestellt werden ca. 10 µm dicke Schichten mit dem Vakuumschlicker-
gussverfahren, ähnlich dem Herstellungsprozess der Anodenfunktionsschicht. Hier-
bei wird eine Suspension aus YSZ-Pulver und Alkohol auf die vorgesinterte An-
odenfunktionsschicht eines Anodensubstrats gegossen. Anschließend wird der Alko-
hol durch einen Unterdruck auf der Gegenseite abgesogen und die zurückbleibenden
YSZ-Partikel werden zusammen mit der Anodenplatte gesintert.

Im abschließenden Fertigungsschritt der Zellen wird die Kathodenschicht auf den
Elektrolyten aufgetragen. Die Kathode muss wie die Anode den Gas- und Elektro-
nentransport ermöglichen. Neben ausreichender Porosität und großer elektronischer
Leitfähigkeit sollte der Werkstoff eine hohe katalytische Aktivität für die Sauerstoff-
dissoziation besitzen, chemisch stabil in Kombination mit dem Elektrolyten sein und
einen zum Elektrolytmaterial angepassten thermischen Ausdehnungskoeffizienten
aufweisen. Die hergestellten Zellen beinhalten mit Strontium teilsubstituiertes Lan-
thanmanganit als Kathodenmaterial. LaMnO₃ liegt im Perowskitgitter vor. Durch
partielle Substitution des Lanthans mit zweiwertigen Strontium Kationen wird die
elektronische Leitfähigkeit erhöht. Die Substitution mit niederwertigen Kationen ge-
neriert ionische und elektronische Defekte im Gitter. Dabei hinterlassen nicht mehr
an der Bindung beteiligte Elektronen positiv geladene Löcher, über die der Elek-
tronentransport erfolgt. Man spricht von Halbleitereigenschaften oder p-Leitung, da
sich die Elektronen über die positiv geladenen Löcher fortbewegen. Die Elektro-
nenmobilität wird thermisch aktiviert und kann anhand des Hopping-Transports
beschrieben werden [21]. Neben der durch die Lanthan-Substitution mit zweiwer-
tigen Strontiumatomen erzeugten p-Leitung werden auch Sauerstoffleerstellen ge-
neriert. Über diese Leerstellen können Sauerstoffionen wandern, d.h. das Material
wird ionisch leitfähig. Die Kathodenschichten werden mit dem Wet Powder Spray-
ing (WPS) Verfahren abgeschieden [22]. Hierbei wird eine Suspension aus dem mit
Strontium teilsubstituierten LaMnO$_3$-Pulver, einem Dispergiermittel (Polyethylen-
min) und einem Lösungsmittel (Ethanol) mit einer handelsüblichen, druckluftbetrie-
benen Lackierpistole auf die Elektrolytschicht aufgespritzt. Ein computergesteuertes
X-Y-System ermöglicht ein geführtes und kontrolliertes Spritzen der Lackierpisto-
le (Abb. 2.7). Die Trocknungsduer der Trägerflüssigkeit beträgt wenige Minuten.

Abbildung 2.7: Sprühvorrichtung zur Herstellung von Kathodenschichten durch das
WPS-Verfahren

Wegen der Kapillarkräfte verdampft die Flüssigkeit zuletzt an den Kontaktstel-
en der Pulverpartikel, so dass sich dort der gelöste Binder ansammelt. Die sich
hierdurch bildenden Binderbrücken gewährleisten eine ausreichende Festigkeit der
Grünschicht. In anschließender Temperaturbehandlung bei 1200 °C für 3 h an Luft
wird der Binder ausgebrannt und die Kathodenschicht mit dem Elektrolyten ver-
sinternt. Die weltweite Entwicklung geeigneter Kathodenwerkstoffe beschränkt sich
hauptsächlich auf perowskitische Verbindungen des ABO$_3$-Typs, da sie aufgrund
ihrer Struktur eine große Vielfalt in der Auswahl der Elemente bieten (Abb. 2.8).
Der A-Platz wird meist durch Lanthan belegt, der B-Platz durch Übergangsele-
mente wie Mangan, Eisen, Cobalt oder Nickel [23], [24], [25], [26], [27], [28], [29].
Verbesserungen der elektrischen und ionischen Tansporteigenschaften werden durch
2.3 Anforderungen an Werkstoffe für Elektrolytschichten

KAPITEL 2. GRUNDLAGEN

Fehlstrukturen, Fehlstellen-Cluster oder elektrostatische Wechselwirkungen [38]. Im Allgemeinen kommen als Elektrolytwerkstoffe vollstabilisierte Zirkoniumoxide zum Einsatz, um große ionische Leitfähigkeiten bei Phasenstabilität von Raumtemperatur bis Betriebstemperatur der SOFC zu erhalten. 8 mol% Yttriumoxid stabilisiertes Zirkonoxid (8YSZ) ist aufgrund seiner großen ionischen Leitfähigkeit und relativ niedrigen Materialkosten ein häufig verwendeteter Elektrolytwerkstoff. Er wird zur Zeit als Standardelektrolytwerkstoff eingesetzt. Bei einer Betriebstemperatur von 800 °C weist 8YSZ eine ionische Leitfähigkeit von 0,01 S/cm auf.

Abbildung 2.8: Kubische ABO$_3$-Perowskitstruktur
wandlung von der orthorhombischen in die rhomboedrische Struktur (Abb. 2.9). 1990 ermittelten O’Bryan et al. schon bei 150 °C eine Umwandlung von der orthorhombischen in die rhomboedrische Struktur [40]. Sie stellten fest, dass die von Geller et al. beobachtete Phasenumwandlung bei 875 °C nicht existiert. 1991 bestätigten Kobayashi et al. die Phasenumwandlung bei 150 °C, erkannten aber bei ihren Analysen eine weitere Phasenumwandlung bei 700 °C in die monokline Struktur [41]. Marti et al. führten 1994 neutronendiffraktometrische Untersuchungen an Lanthangallat durch [42]. Sie konnten die Versuche von O’Bryan et al. bestätigen, fanden aber bei Temperaturen >150 °C keine weiteren Phasenumwandlungen. 1998 berichteten Slater et al. anhand ihrer Neutronenbeugungsmessungen von einer Umwandlungstemperatur bei 250 °C von der orthorhombischen in die rhomboedrische Struktur, wobei das Lanthangallat bis 1000 °C keine weiteren Phasenumwandlungen zeigte [43]. Desweiteren führten Slater et al. strukturelle Analysen an teilsubstituiertem Lanthangallat \(\text{La}_{0.9}\text{Sr}_{0.1}\text{Ga}_{0.8}\text{Mg}_{0.2}\text{O}_{2.85} \) durch. Bei Raumtemperatur ermittelten sie die orthorhombische Struktur, welche zwischen 250 °C und 1000 °C zunächst eine Umwandlung in die monokline-pseudo-orthorhombische Struktur zeigte, danach in die Monokline-pseudo-rhomboedrische Struktur und schließlich in die rhomboedrische Struktur überging. Weiterhin konnten sie signifikante Änderungen der \(\text{GaO}_6 \)-Oktaeder des substituierten Materials nachweisen. Die Oktaeder lagen verzerrter vor als im unsubstituierten Lanthangallat, waren jedoch weniger geneigt. Das Material bildet in Abhängigkeit der Anteile von Strontium und Magnesium neben der Perowskitischen auch andere Gitterstrukturen bzw. Phasen, wie \(\text{LaSrGaO}_4 \) und \(\text{LaSrGa}_3\text{O}_7 \) aus [44]. Diese sogenannten Fremdphasen weisen kleinere ionische Leitfähigkeiten auf als \(\text{LS-GM} \) und sind deshalb bei der Herstellung des Materials zu vermeiden. 1971 führten Takahashi et al. Untersuchungen zur ionischen Leitfähigkeit von perowskitischem \((\text{La},\text{Ca})\text{AlO}_3 \) durch. Bei 800 °C erreichten sie eine Leitfähigkeit von \(\sigma = 0.005 \text{ S/cm} \) [45]. 1994 untersuchten Ishihara et al. ein ähnliches System, \((\text{Nd},\text{Ca})(\text{Al},\text{Ga})\text{O}_3 \), bei dem sie eine dem YSZ vergleichbare ionische Leitfähigkeit nachweisen konnten [46]. Weiterhin führten sie Untersuchungen an den Systemen \(\text{La}_{1-x}\text{M}_x\text{GaO}_{3-\delta} \) mit \(M = \text{Ca, Sr, Ba} \) und an \(\text{La}_{0.9}\text{Sr}_{0.1}\text{Ga}_{0.8}\text{Mg}_{0.2}\text{O}_{2.85} \) mit \(M = \text{Mg, In, Al} \) durch [47]. Die ionische Leitfähigkeit konnte deutlich mit der A-Platz Substitution in der Reihenfolge der Elemente \(\text{Sr} > \text{Ba} > \text{Ca} \) verbessert werden. Bei Sr-Konzentrationen von über 10% wurde die Löschlichkeitsgrenze im \(\text{LaGaO}_3 \) überschritten, da in diesen Konzentrationsbereichen zusätzliche Phasen wie \(\text{SrGaO}_3 \) und \(\text{La}_4\text{SrO}_7 \) gefunden wurden. Auf dem B-Platz konnte die Substitution mit Al, In, Mg die ionische Leitfähig-
keit weiterhin vergrößern. Die Verbindung La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{2.85} wies hierbei die höchste ionische Leitfähigkeit von 0,12 S/cm bei 900 °C auf, ein um den Faktor drei größerer Wert als bei YSZ. 1996 untersuchte Petric et al. das perowskische System Nd_{1-x}M_{x}Ga_{1-y}Mg_{y}O_{3-δ} mit M= Sr, Ca [48]. Die größte ionische Leitfähigkeit von 0,035 S/cm wurde bei der Verbindung NdGa_{0.3}Mg_{0.1}O_{2.95} bei 800 °C gemessen. 1997 konnten Stevenson et al. die Ergebnisse von Ishihara bestätigen [49]. Leitfähigkeitsuntersuchungen des Systems La_{1-x}M_{x}Ga_{1-y}Mg_{y}O_{3-δ} mit M= Ca, Sr, Ba zeigten Werte von 0,1 - 0,12 S/cm. Zur gleichen Zeit führten Furutani et al. Untersuchungen an PrGaO_{3} durch, teilsubstituiert mit Ca, Sr, Ba auf dem A-Platz und Al, Mg, In, Zn auf dem B-Platz [50]. Die größte ionische Leitfähigkeit, vergleichbar mit der von LSGM, wurde bei der Verbindung Pr_{0.93}Sr_{0.07}Ga_{0.85}Mg_{0.15}O_{3-δ} gemessen. Ebenfalls 1997 untersuchten Ishihara et al. LSGM-Verbindungen, welche zusätzlich mit Co, Fe, Ni, Cu, Mn auf dem B-Platz dotiert wurden [51]. Sie konnten deutliche Verbesserungen der ionischen Leitfähigkeiten feststellen. Die größte ionische Leitfähigkeit von 0,4 S/cm bei 950 °C wurde bei der Verbindung La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.15}Co_{0.085}O_{3-δ} gemessen. Elektrochemische Tests mit einem 0,5 mm dicken Elektrolyten dieser Verbindung, Ni und La_{0.6}Sr_{0.4}CoO_{3} als Anoden- bzw. Kathodenmaterial, zeigten bei 1000 °C Betriebstemperatur und einer Betriebsspannung von 0,7 V Leistungsdichten.
von 0,57 W/cm². Der Bereich des Phasenraumes von La$_{1-x}$Sr$_x$Ga$_{1-y}$Mg$_y$O$_{3-0.5(x+y)}$ mit 0,05 < x,y < 0,3 wurde 1998 von Huang et al. untersucht [44]. Innerhalb dieses Phasenraumauausschnitts bestimmten Huang et al. die ionischen Leitfähigkeiten der Zusammensetzungen bei 595 °C, 702 °C und 800 °C und die sich ausbildenden Phasen der Materialien (Abb. 2.10). Nur ein kleiner Teil des untersuchten Phasenraums kristallisierte fremdphasenfrei im kubisch-perowskitischen Gitter. Die größten ionischen Leitfähigkeiten von 0,026 S/cm bei 595 °C, 0,079 S/cm bei 702 °C und 0,166 S/cm bei 800 °C ermittelten sie bei der kubisch, einphasigen Zusammensetzung La$_{0.8}$Sr$_{0.2}$Ga$_{0.83}$Mg$_{0.17}$O$_{2.85}$ (Abb. 2.11). Bei der LSGM-Schichtherstellung ist eine große ionische Leitfähigkeit bei gleichzeitiger Einphasigkeit im Bereich der Betriebstemperatur anzustreben. Untersuchungen der Phasenstabilitäten von LSGM in Kontakt mit Anodenmaterial (NiO/YSZ) wurden von Ahmad-Khanlou durchgeführt [52]. Hierbei zeigten sich Phaseninstabilitäten von La$_{0.9}$Sr$_{0.1}$Ga$_{0.8}$Mg$_{0.2}$O$_{2.85}$ und La$_{0.8}$Sr$_{0.2}$Ga$_{0.9}$Mg$_{0.1}$O$_{2.85}$ in Kontakt mit NiO/YSZ Anodenmaterial unter Bildung von Fremdphasen, wie z.B. La$_2$Zr$_2$O$_7$ und La$_2$NiO$_4$ nach Sinterung bei 1490 °C an Luft. Die Fremdphasenbildung verstärkte sich während der Auslagerung der
Abbildung 2.11: Leitfähigkeit in S/cm bei 595 °C (links) und 800 °C (rechts) des Systems La_{1-x}Sr_xGa_{1-y}Mg_yO_{3-δ} [44]

Proben bei 700 °C unter reduzierenden Bedingungen. 1998 konnten Huang et al. erste SOFCs mit einem LSGM-Elektrolyten vorstellen [53]. Basierend auf einem 500 μm dicken La_{0,8}Sr_{0,2}Ga_{0,83}Mg_{0,17}O_{2,815}-Elektrolyten, einer porösen LSGM/Ni-Anode und einer porösen La_{0,6}Sr_{0,4}CoO_{3-δ}-Kathode, konnten Huang et al. bei 800 °C und 0,7 V Betriebsspannung Leistungsichten von 0,27 W/cm² messen. Unter Verwendung einer diffusionshemmenden Schicht zwischen Elektrolyt und Anode aus 20-mol%-Sm_2O_3 dotiertem CeO_2, erreichten Huang et al. bei 800 °C und 0,7 V Leistungsichten von 0,55 W/cm². In einem Langzeitversuch, bei 800 °C Betriebstemperatur und 250 mA Laststrom, zeigten die Zellen über 1500 h eine konstante Zellspannung von ca. 0,8 V. Inagaki et al. demonstrierten 1999 eine SOFC basierend auf einem tragenden, 0,5 mm dicken LSGM-Elektrolyten (La_{0,9}Sr_{0,1}Ga_{0,8}Mg_{0,2}O_{2,85}). Mit einer La_{0,6}Sr_{0,4}CoO_{3-δ}-Kathode und einer Ni-(CeO_2)_{0,8}(SmO_{1,5})_{0,2}-Cermant Anode erreichten Inagaki et al. bei 800 °C Betriebstemperatur und 0,7 V eine max. Leistungsichte von 0,47 W/cm² [54]. Die Lebensdauer der Zellen war jedoch beschränkt, schon nach 300 Betriebsstunden zeigte sich eine Verfünffachung der Polarisation an der Kathode. Verantwortlich hierfür schien Interdiffusion von Elementen an der Elektrolyt/Kathoden-Grenzfläche.
2.4 Pulsed Laser Deposition (PLD) und Kathodenzerstäubung zur Elektrolytschichttherstellung

Beim thermischen Verdampfen stellt die Laserstrahlung eine Wärmequelle dar, die den Festkörper aufschmilzt und verdampft lässt.

Photoablation findet statt, falls die Photonenenergie gleich oder größer als die
Bindungsenergie der Atome im Gitter ist. Hierbei werden Atombindungen durch Einphotonenprozesse zerstört.

Der *dielektrische Durchbruch* beschreibt einen Prozess bei dem aufgrund hoher elektrischer Feldstärken, die im Festkörper durch Laserstrahlung induziert werden, interatomare Bindungen aufgebrochen werden und dadurch ein atomares Gas ausbilden.

Einige für die SOFC-Forschung und -Entwicklung wichtige Materialien wurden bereits erfolgreich mit dem PLD-Verfahren abgeschieden. Kathodenmaterialien, wie La$_{0.5}$Sr$_{0.5}$CoO$_{3-\delta}$ (LSC) auf YSZ-Einkristallen [59] und La$_{0.5}$Sr$_{0.5}$MnO$_{3-\delta}$ (LSM) auf Al$_2$O$_3$- und Si$_3$N$_4$/Si-Substraten [60] sowie Elektrolytmaterialien, wie YSZ auf Si [61], PMMA- und PC-Substraten [62] und La$_{0.8}$Sr$_{0.2}$Ga$_{0.85}$Mg$_{0.15}$O$_{2.825}$ (LSGM) auf Quarz- und Si-Substraten [63].

Als Reaktionsgasbehälter diente eine Lederblase, angeschlossen an die Vakuum-Luftpumpe (Abb. 2.12). Während Experimenten mit einer polierten Silberfolie als Anode, beobachtete Grove dunkle Verfärbungen auf der Glaszylinderinnenseite. Folgerichtig vermutete Grove einen Transferprozess des Anodenmaterials auf die Glaszylinderinnenseite, das Sputtering. Während des Sputterprozesses treffen Ionen auf eine Festkörpereoberfläche, wobei bei hinreichender Energie der eintreffenden Ionen Atome oder Moleküle des beschossenen Materials emittiert werden. Dieses Zerstäuben oder Sputtern ist die Grundlage des Beschichtungsprozesses. Üblicherweise wird zur Ionenerzeugung eine in inertem Gas, meistens Argon, befindliche planare Diode benutzt, welche bei Anlegen einer Gleich- oder HF-Spannung (500...5000 V) eine Glimmentladung zwischen den Elektroden generiert. Nahezu jede Substanz kann...
zerstäubt werden, da das Targetmaterial durch Impulsübertrag und nicht thermisch verdampft wird. Metalle können mit Gleichstrom- und nichtleitende (aber auch leitende) mit HF-Entladungen gesputtert werden. Der Sputterprozess setzt bei einer Schwellenenergie der Ionen E_{thres} von ca. 10...30 eV ein, die für die jeweilige Target-Ion-Kombination charakteristisch ist. Die Sputterausbeute Y gibt die mittlere Anzahl der Targetatome an, die pro auftreffendes Ion emittiert werden [66]. Die Sputterausbeute ist abhängig vom Targetmaterial, der bombardierenden Ionenart, deren Energie sowie Einfallswinkel (Abb. 2.13, 2.14, 2.15 und 2.16).

Abbildung 2.13: Sputterausbeute Y verschiedener Materialien in Abhängigkeit von der Ordnungszahl Z der Targetelemente

Y abhängig von der Ionenart: Y wird dann maximal wenn die Masse M_i der Ionen annähernd mit der Masse M_t der Targetatome übereinstimmt.
2.4. PULSED LASER DEPOSITION UND KATHODENZERSTÄUBUNG

Abbildung 2.14: Sputterausbeute Y verschiedener Materialien in Abhängigkeit von der molaren Masse der einfallenden Argon-Ionen

Y abhängig von der Ionenenergie E_i: Y steigt zunächst annähernd linear an, erreicht bei Ionenenergien von einigen 10 keV ein Maximum und fällt aufgrund zunehmender Eindringtiefe und Implantation der Ionen wieder ab.

Abbildung 2.15: Sputterausbeute Y verschiedener Materialien in Abhängigkeit von der Energie E_i der einfallenden Argon-Ionen

Y abhängig von dem Ionen-Einfallswinkel: Y als Funktion von dem Einfallswinkel
\(\theta\) der bombardierenden Ionen nimmt zunächst mit \(\cos^{-1} \theta\) zu und bei größeren \(\theta\) aufgrund dominierender Ionenreflexion wieder ab.

![Diagramm der Sputterausbeute Y verschiedener Materialien in Abhängigkeit von dem Einfallswinkel \(\theta\) der einfallenden Argon-Ionen](image)

Abbildung 2.16: Sputterausbeute Y verschiedener Materialien in Abhängigkeit von dem Einfallswinkel \(\theta\) der einfallenden Argon-Ionen

Ein Teil der kinetischen Energie der einfallenden Ionen verteilt sich in einem begrenzten Volumen auf die Gitteratome durch eine Folge quasielastischer Zweierstöße. Ein Bruchteil angeregten Atomes im Gitter wird zur Oberfläche gestreut. Wenn ihre Energie die Oberflächenbindungskraft übersteigt können sie den Festkörper verlassen. Die übrige Energie des einfallenden Ions wird an die Elektronen im Target abgegeben und trägt damit bei Metallen nicht zur Zerstäubung bei, kann aber bei Nichtleitern von Einfluss sein. Der Radius einer Stoßkaskade (ca. 10 nm groß) ist abhängig von der Ionenenergie. Die Kollisionsdauer beträgt ca. \(10^{-14}\) s und die Abklingzeit ca. \(10^{-11}\) s.

2.4. PULSED LASER DEPOSITION UND KATHODENZERSTÄUBUNG

1. Bildung von Molekülen an der Oberfläche des Targets und Zerstäuben dieser Moleküle

2. Bildung der Verbindung in der Gasphase — ein Prozess, dessen Wahrscheinlichkeit wegen des zur Abfuhr der Reaktionsenergie notwendigen Dreierstosses gering ist.

Das Schichtstrukturmodell von Movchan und Demchishin beschreibt phänomenologisch den Zusammenhang zwischen der Substrattemperatur T_{Sub} und der sich ausbildenden Schichtstruktur bei PVD Verfahren [69]. Von Raum- bis Schmelztemperatur beobachteten Movchan und Demchishin drei verschiedene Schichtstrukturen. In Strukturzone 1, in der die relative Substrattemperatur $T_{Sub}/T_{Schmelz} < 0,3$ ($T_{Schmelz}$: Schmelztemperatur) beträgt, wird die Schicht aus einzelnen oben abgerundeten und nach unten spitz zulaufenden Kristalliten gebildet. Mit steigender Substrattemperatur nimmt der Durchmesser der Kristallite zu. In Strukturzone 2 beobachteten Movchan und Demchishin bei relativen Substrattemperaturen von $0,3 < T_{Sub}/T_{Schmelz} < 0,5$ säulenförmige, durch Korngrenzen getrennte Kristallite. In Strukturzone 3, in der die relative Substrattemperatur bis zum Schmelzpunkt des Werkstoffes erhöht wird ($0,5 < T_{Sub}/T_{Schmelz} < 1$), bildete sich eine Schicht von gleichachsigen ausgerichteten Körnern aus. In diesem Temperaturbereich finden während der Abscheidung Prozesse wie Rekristallisation und Volumendiffusion statt. Dieses Modell wurde von Thornton um die Abhängigkeit der Schichtstruktur vom
Prozessgasdruck erweitert (Abb. 2.17, [70]). Mit steigendem Prozessgasdruck beobachtete Thornton eine Verschiebung der Strukturzonen zu größeren Temperaturen. Große Prozessgasdrücke bei kleinen relativen Substrattemperaturen \(\frac{T_{\text{Sub}}}{T_{\text{Schmelz}}} \) bedingen eine Vergrößerung der Kristallitzwischenräume der aufwachsenen Schichten. Eine Übergangszone T zwischen den Strukturzonen 1 und 2 definiert Schichten aus dichtgepackten, faserigen Kristalliten. Die Strukturzonen gehen aus der Überlagerung von physikalischen Prozessen hervor. Zunächst geben die auftreffenden Teilch en ihre Energie an das Substrat ab und werden zu schwach gebundenen Adatomen. Sie diffundieren über die Oberfläche bis sie entweder desorbieren oder in energetisch günstige Gitterpositionen eingebaut werden. Ihre Position im Gitter kann durch Oberflächen- und Volumendiffusion verändert werden, falls die notwendige Temperatur zur Aktivierung erreicht wird. Da die Wachstumsprozesse, wie Ad- und Desorption, Oberflächen- und Volumendiffusion temperaturabhängig und die zugehörigen Aktivierungsgenergien proportional zur Schmelztemperatur sind, können die Strukturzonen wiederum mit der relativen Substrattemperatur \(T_{\text{Sub}}/T_{\text{Schmelz}} \) beschrieben werden. Strukturzone 1 entsteht durch Abschattung hervorgerufener Fehlstellen (substratinduziert) oder durch angelagerte Prozessgasteilchen, die die Oberflächen-diffusion behindern (gasinduziert). In dieser Strukturzone entstehen kolumnare Kristallite, getrennt durch offene Poren. Die Übergangszone T wird als Grenzstruktur der Strukturzone 1 bei glatter Substratoberfläche und \(\frac{T_{\text{Sub}}}{T_{\text{Schmelz}}} = 0 \) definiert. Hierbei reicht die Diffusion der Adatome aus, um die entstandenen Fehlstellen teilweise auszugleichen. Die Form der Kristallite ist faserig, wenig definiert. Die kolumnaren Kristallite wachsen den einfallenden Teilchen entgegen. Ist \(\alpha \) der Einfallswinkel und \(\beta \) der Winkel zwischen den Kristalliten und der Substratnormalen, so gilt die empirisch ermittelte Tangensregel [71]:

\[
\tan \alpha = 2 \tan \beta
\]

(2.6)

Abbildung 2.17: Strukturzonenmodell nach Thornton [70]
KAPITEL 2. GRUNDLAGEN
Kapitel 3

Experimentelle Durchführung

3.1 Substratpräparation

Für die PLD-Versuche wurden bei 1285 °C vorgesinterte Anodenplatten mit ca. 5 µm und ca. 15 µm dicken NiO/YSZ-Funktionsschichten (Vakuumschlickergussverfahren, siehe Kapitel 2.2 S. 13) beschichtet. Anschließend wurden die mit den Funktionsschichten versehenen Anodenplatten bei 1400 °C für 5 h an Luft endgesintert. Die 100×100 mm² großen endgesinterten Anodenplatten wurden in 10×10 mm² große Stücke gesägt. Für die elektrochemischen Tests der Elektrolytschichten wurden zusätzlich 25×25 mm² große Stücke mit abgesägten Ecken präpariert. Ein Teil der Substrate wurde poliert, um die Schichteigenschaften in Abhängigkeit der Oberflächenrauhigkeit zu studieren. Hierbei wurden die Anodenfunktionsschichto-

Für die Sputtering-Versuche wurden bei 1285 °C vorgesinterte Anodenplatten mit einer ca. 5 µm dicken Funktionsschicht (Vakuumschlickergussverfahren siehe S. 13) beschichtet und anschließend bei 1400 °C für 5 h endgesintert. Die 100×100 mm² großen endgesinterten Anodenplatten wurden in 50×50 mm² und 25×25 mm² große Anodenplatten gesägt.

3.2 Pulsed Laser Deposition

3.2.1 Aufbau der Beschichtungsanlage und Prozessparameter

Die PLD-Versuche wurden mit einer Excimer-Laserstrahlquelle der Firma Lumonics vom Typ Excimer 600 durchgeführt. Als Lasergas wurde eine KrF-Mischung verwendet, bei der eine Laserstrahlung mit der Wellenlänge \(\lambda_L = 248 \text{ nm} \) emittiert wird. Andere Laserstrahlquellen wie z.B. Nd:YAG (\(\lambda_L = 1064 \text{ nm} \)) oder TEA-CO\(_2\) (\(\lambda_L = 10,6 \mu\text{m} \)) weisen größere optische Eindringtiefen und Wechselwirkungsvolumina aufgrund ihrer größeren Wellenlängen auf. Dies kann zum Anschmelzen der Targetoberfläche und damit zum Abtragen der Schmelze führen. Sogenannte `Droplets` auf der Substratoberfläche können die Folge sein. Kurzwellige Excimer-Laserstrahlung kann diesen unerwünschten Effekt reduzieren oder ganz vermeiden. Des Weiteren ist der Reflexionsgrad der Targetmaterialien kleiner als bei Benutzung von langwelliger Laserstrahlung, und ermöglicht dadurch eine effektivere Energieeinkopplung.

Die Halbwertsbreite der Laserpulse beträgt ca. 20 ns bei einer maximalen Pulsenergie \(E = 400 \text{ mJ} \) und einer maximalen Repetitionsrate von 400 Hz. Der Querschnitt der Laserstrahlung ist rechteckig mit einer Ausdehnung von ca. 15×30 mm². Die Energiedichteerteilung ist näherungsweise gaußförmig (Abb. 3.2). Mit einer Blende werden Randbereiche des Rohstrahls ausgeblistet, da dort die Energiedichte unterhalb dem Wert für das Materialabtragen (Sublimation) liegt. Ohne Ausblendung...
3.2. PULSED LASER DEPOSITION

dieser Randbereiche könnte dort die kleine Energiedichte das Targetmaterial aufschmelzen und somit zur unerwünschten Dropletbildung auf dem Substrat beitragen. Die Blende (16×8 mm²) wird durch ein auf unendlich eingestelltes Teleskop, gebildet aus einer Sammel- (f= 500 mm) und einer Zerstreuungslinse (f= -200 mm), im Verhältnis 2:1 verkleinert (Abb. 3.1). Das virtuelle Bild der Blende wird durch eine Sammellinse (f= 234 mm) verkleinert auf das Target abgebildet. Da der Einfallswinkel der Laserstrahlung zur Targetoberfläche 45° beträgt, wird die vertikale Achse des Bildes um √2 gestreckt. Die Energie der Laserstrahlung des Rohstrahls wird durch Reflexion, Absorption und Transmission an den optischen Elementen (Linsen und Spiegel) sowie der Blende im Strahlengang um ca. 70% reduziert, d.h. ca. 30% der ursprünglichen Energie der Laserstrahlung erreichen die Targetoberfläche. Bei einer maximalen Pulsenergie von E= 400 mJ und einer resultierenden Blendenabbildung auf der Targetoberfläche mit den Abmessungen 1,2×1,7 mm², stehen auf dem Target Energiedichten von maximal 6 J/cm² zur Verfügung. Die Pulsenergie wurde entlang der Laserstrahlung mit einem pyroelektrischen Joulemeter der Firma Gentec vom Typ ED-500 gemessen.

Abbildung 3.1: PLD-Beschichtungsanlage: Strahlführung und -formung
KAPITEL 3. EXPERIMENTELLE DURCHFÜHRUNG

Abbildung 3.2: Energeidichteverteilung der Laserstrahlung auf der Targetoberfläche, links ohne, rechts mit Blende

Der Beschichtungsprozess findet in einer UHV-Kammer statt, die in Form eines Kugelreaktors ausgelegt und über sechs CF 100 und mehrere CF 35 Flanschanschlüsse zugänglich ist. Die Flansche sind so angeordnet, so dass sich ihre Flächennormalen im Kugelmittelpunkt treffen. Im Kugelmittelpunkt befindet sich das Target. Die Laserstrahlung tritt durch ein an einem CF 35 Flansch angebrachtes Fenster aus Quarzglas in die Kammer und trifft das Target unter einem Winkel von 45 Grad. Das Target rotiert während des Beschichtungsprozesses, so dass die von der Laserstrahlung generierte Abtragsspuru ringförmig ist. Die Targethalterung ist an einer metallischen Achse angebracht, welche durch eine Magnetkopplung auf der Kammeraußenseite durch einen Elektromotor in Rotation versetzt wird. Zu Beginn einer Beschichtungsserie wurde das jeweilig verwendete Target 'eingefahren', d.h. bevor das Substrat beschichtet wurde, wurden zuvor ca. 10000 Laserpulse unter Prozessbedingungen auf das rotierende Target abgegeben. Ziel war, locker gebundene Agglomerate auf der Oberfläche des Targets mit der Laserstrahlung abzutragen, da diese während des Beschichtungsprozesses zu Droplets auf der Schichtoberfläche führen könnten. Unterhalb des Targets ist der Substralthalter waagerecht an einen in alle drei Raumrichtungen verstellbaren Manipulator angebracht. Er besteht aus einer 20×30 mm² großen Siliziumcarbidplatte, welche durch eine Widerstandsheizung im Vakuum Temperaturen bis zu 900 °C erreicht. Die große Wärmeleitfähigkeit von 35 W m⁻¹K⁻¹ und der für Halbleiter typisch negative Temperaturkoeffizient
3.2. PULSED LASER DEPOSITION

des elektrischen Widerstands, sorgen für eine gleichmäßige Temperaturverteilung. Ein Einfarben-Pyroskop der Firma Kleiber vom Typ 120-0213, das in einem Wellenlängenbereich von 1,1 - 1,8 µm detektiert, misst die Substrattemperatur im Bereich von 300-900 °C durch ein Glasfenster (Bk7) der Vakuumkammer. Die Substrattemperatur kann bis auf ±2 °C reproduzierbar eingestellt werden. Die Vakuumkammer wird durch eine Drehschieber- und eine nachgeschaltete Turbomolekularpumpe innerhalb einer Stunde auf einen Druck von 10⁻⁵ mbar evakuiert. Über Gasflussregler können definiert Prozessgase in die Kammer einströmen. Verwendet wurden zwei Gasflussregler der Firma MKS mit einstellbaren Durchflussmengen von 0-20 sccm (Standard cm³; gemessen bei Standardbedingungen: Raumtemperatur und atmosphärischem Druck) und 0-50 sccm. Der Kammerdruck wird mit Baratron-Absolut-Druckaufnehmern (10⁻³ bis 1000 mbar), einer Pirani- (10⁻³ bis 100 mbar) und einer Kaltkathodenmessröhre (< 10⁻³ mbar) gemessen (Abb. 3.3). Bei Prozessgasdrücken oberhalb von 1×10⁻¹ mbar wird über ein Bypass nur mit der Drehschieberpumpe gepumpt. Um die Beschichtung des Eintrittfensters der Laserstrahlung zu verhindern wird dieses mit einem konstanten Gasfluss gespült. Die Beschichtungsversuche wurden mit Sauerstoff als Prozessgas durchgeführt. Die Sauerstoffflasche wurde über einen Druckminderer an die Gaszuführung des PLD-Systems unter einem Druck von ca. 2 bar angeschlossen. Um eine reproduzierbare Platzierung der 10×10 mm² großen und ca. 1,5 mm dicken Substrate zu gewährleisten, wurde ein Substratpositionierhalter aus 8YSZ angefertigt. Der Positionierhalter beschreibt im Querschnitt ein U-Profil mit 20 mm Innenmaß und kann auf der Oberseite durch eine quadratische Vertiefung mit den Abmessungen von 10×10 mm² und ca. 1 mm Tiefe ein Substrat während der Beschichtung aufnehmen. Der Positionierhalter wird während der Beschichtungsprozesse unsverschiebbar auf die Siliziumcarbidplatte des Substrathei-zers gesetzt, so dass eine reproduzierbare Substratpositionierung gewährleistet ist. Nach dem Beschichtungsprozess wird das Substrat mit einer Abkühlrate von ca. 15 K/min bis auf unter 300 °C abgekühlt, um evtl. Rissbildungen in der abgeschiedenen Schicht, verursacht durch temperaturinduzierte Spannungen des Substrats, zu vermeiden. Anschließend wird die Kammer mit Sauerstoff bis auf Normaldruck geflutet und das Substrat entnommen.
Beschichtungen wurden auf Al$_2$O$_3$- und NiO/YSZ-Anodensubstraten durchgeführt. Die Beschichtungstemperatur T_{Sub} wurde zwischen 300 °C und 800 °C und der Sauerstoff-Prozessgasdruck p_{O_2} zwischen 0,01 mbar und 0,5 mbar variiert.

3.2.2 Targetherstellung

Die YSZ-Targets wurden aus 8YSZ-pulver gepresst und gesintert. Das verwendete sprühgetrocknete Pulver von der Firma Tosoh besteht aus Primärteilchen mit einer Teilchengröße von ca. 0,4 μm. Sie liegen in kugelförmigen Agglomeraten von 50 μm Durchmesser vor. Ohne Zusätze von Presshilfen konnten Pellets von ca. 4 mm Dicke und 32 mm Durchmesser mit einem Druck von 12 MPa uniaxial gepresst werden. Die Grünlinge wurden bei 1500 °C für 10 h gesintert und anschließend vermessen
3.2. PULSED LASER DEPOSITION

und gewogen. Für die PLD-Versuche wurden sie auf der Targethalterung befestigt und in die Beschichtungskammer eingebracht.

Für die Abscheidung von LSGM-Elektrolytschichten mit dem PLD-Verfahren auf Anodensubstraten wurde ein LSGM-Target hergestellt. Die prinzipielle Vorgehensweise war zunächst die Herstellung von LSGM-Pulver definierter Stöchiometrie mit einphasiger perowskitischer Zusammensetzung. Dabei wurden die Anteile an Strontium und Magnesium so gewählt, so dass laut Literatur eine große ionische Leitfähigkeit des Pulvers zu erwarten war [44]. Anschließend wurde das Pulver zu einem Target verpresst und in Luft gesintert. Als Ausgangsmaterial wurde ein kommerzielles LSGM-Pulver der Firma Praxair verwendet. Die Zusammensetzung des Ausgangspulvers konnte anhand chemischer Analysen zu La$_{0.81}$Sr$_{0.2}$Ga$_{0.89}$Mg$_{0.1}$O$_{2.85}$ (Reinheit: 99,9%) bestimmt werden. Unter Zugabe von Lanthanoxid (La$_2$O$_3$; ChemPur, Reinheit: 99,99%), Galliumoxid (Ga$_2$O$_3$; ChemPur, Reinheit: 99,99%) und Magnesiumoxid (MgO; ChemPur, Reinheit: 99,99%) wurde die stöchiometrische Zusammensetzung geändert, um eine rein perowskitische Phase mit großer ionischer Leitfähigkeit zu erhalten. Hierbei wurden die Ergebnisse von Huang et al. [44], d.h. die Löslichkeitsgrenzen von Strontium und Magnesium im Lanthangallatgitter sowie die ionischen Leitfähigkeiten für unterschiedliche Anteile von Strontium und Magnesium im Lanthangallatgitter berücksichtigt (Abb. 2.11)[44]. Favorisiert wurde die Zusammensetzung La$_{0.85}$Sr$_{0.15}$Ga$_{0.85}$Mg$_{0.15}$O$_{2.85}$ aufgrund der großen ionischen Leitfähigkeit (0,023 S/cm bei 595 °C, 0,069 S/cm bei 702 °C, 0,141 S/cm bei 800 °C) und der stabilen einphasigen perowskitischen Umgebung im Phasenfelddiagramm für La$_{1-x}$Sr$_x$Ga$_{1-y}$Mg$_y$O$_{3-(x+y)/2}$. Folgende Mengen an La$_2$O$_3$- und Ga$_2$O$_3$- und MgO-Pulver wurden auf 1 mol Praxairpulver zugesetzt: 0,15 mol La$_2$O$_3$-Pulver, 0,11 mol Ga$_2$O$_3$-Pulver und 0,1 mol MgO-Pulver. Die Oxide wurden vor der Einwaage bei 1000 °C für 4 h in Luft behandelt, um Wasseranlagerungen und organische Verunreinigungen zu beseitigen. Das Pulvergemisch wurde in Aceton für 2 h in einer PE-Flasche mit YSZ-Mahlkugeln im Taumelmischer homogenisiert. Nach dem Abdampfen des Acetons wurde das Pulvergemisch gesiebt und in einem Al$_2$O$_3$-Tiegel bei 1300 °C für 4 h in Luft kalziniert. Nach anschließendem Aufmahlen des kalzinierter Pulvers in einem Mörser wurden jeweils 1 Massen% Polyvinylalkohol und Glycerin bezogen auf die Pulvermasse in wässriger Lösung zugegeben und homogen durchmischt. Diese Presshilfsmittel vermeiden die Haftung des Pulvers am Pressgesenk und garantieren eine ausreichende Festigkeit des Grünslings nach dem Pressvorgang. Der entstandene 'Schlicker' (Mischung aus Pulver und der wässrigen PVA-
und Glycerin-Lösung) wurde anschließend gefriergetrocknet, so dass sich die Presshilfsmittel homogen um die Pulverpartikel verteilen konnten. Aus dem pressfähigen Pulver wurde ein Pellet von 25 mm Durchmesser uniaxial mit einem Druck von 48 MPa gepresst und bei 1470 °C für 10 h in Luft gesintert. Das Pellet wurde nach dem Sintervorgang im Mörser aufgemahlen und röntgenographisch auf seine Phasenzusammensetzung untersucht. Nach dem selben Verfahren wurde das PLD-Target hergestellt. Jedoch wurde ein größeres Pressgesenk mit einem Durchmesser von 60 mm verwendet. Alternativ wurde eine weitere LSGM-Pulver mit der Zusammensetzung La$_{0.8}$Sr$_{0.2}$Ga$_{0.83}$Mg$_{0.17}$O$_{2.815}$ hergestellt, da bei dieser Stöchiometrie die größte ionische Leitfähigkeit gemessen wurde [44]. Eine Schwierigkeit bei der Herstellung des Pulvers, war die exakte Erzielung der Stöchiometrie, da die umliegenden Bereiche im Phasendiagramm zweiphasig sind und somit kleinere ionische Leitfähigkeiten aufwiesen. Zur Herstellung wurden 1 mol Praxair-Pulver mit 0,015 mol La$_2$O$_3$-Pulver und 0,075 mol MgO-Pulver versetzt. Die weitere Vorgehensweise erfolgte nach der beschriebenen Methode.

3.3 Kathodenzerstäubung

Ar-Ionen ihre notwendige Energie, um den Sputterprozess zu starten. Die elektrische Leistung des Sputterstroms auf dem Target betrug 60 W/cm². Während aller Depositionen wurde ein kommerziell gefertigtes, metallisches ZrY-Target (80:20 At.%) mit 90 mm Durchmesser benutzt. Der O₂ Prozessgaspartialdruck wurde zwischen pO₂ = 0.65 - 6×10⁻⁴ mbar variiert. Die Substrate konnten mit Halogenlampen bis auf 700 °C geheizt werden. Die Substrathalterung fasste ein 50×50 mm² und zwei 25×25 mm² große NiO/YSZ-Anodensubstrate. Zusätzlich wurden 10×10 mm² große, polierte Al₂O₃-Plättchen mit einer Dicke von 0,3 mm am Substrathalter (auf der Oberfläche der Anodensubstrate) befestigt und während der Abscheidungsversuche beschichtet. So konnte der Einfluss des NiO/YSZ-Substrates auf die abgeschiedenen

Tabelle 3.1: DC-Sputtering-Beschichtungsparameter von YSZ-Schichten auf Al₂O₃-Substraten

<table>
<thead>
<tr>
<th>pO₂ (10⁻⁴mbar)</th>
<th>T_{sub} (°C)</th>
<th>t_{Dep}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>176</td>
<td>25</td>
</tr>
<tr>
<td>0</td>
<td>700</td>
<td>160</td>
</tr>
<tr>
<td>0,5</td>
<td>500</td>
<td>240</td>
</tr>
<tr>
<td>0,65</td>
<td>600</td>
<td>240</td>
</tr>
<tr>
<td>2,3</td>
<td>700</td>
<td>240</td>
</tr>
<tr>
<td>3,8</td>
<td>600</td>
<td>240</td>
</tr>
<tr>
<td>5</td>
<td>700</td>
<td>240</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>240</td>
</tr>
</tbody>
</table>

3.4 Analysemethen zur Charakterisierung der Substrate und der Elektrolytschichten

3.4.1 Profilometrie zur Bestimmung der Schichtdicke und Oberflächenrauhigkeit

\[R_a = \frac{|y_1| + |y_2| + \ldots + |y_n|}{n} \] (3.1)
3.4. CHARAKTERISIERUNGSMETHODEN

wobei y_i die vertikale Auslenkung der Nadel bezogen auf die Nulllinie und n die Anzahl der gemessenen Punkte ist. Zur Bestimmung der Schichtdicke wurde der Bereich auf den beschichteten Substraten vermessen, der zum Teil durch den Substrathalter abgeschattet wurde. Hier gab die Höhe der Kante vom abgeschatteten zum beschichteten Bereich des Substrats die Schichtdicke wieder. Die durchschnittliche Rauheit der Oberfläche R_a wurde an unbeschichteten und beschichteten Anodensubstraten sowie an den Al_2O_3 Substraten gemessen und miteinander verglichen.

3.4.2 Chemische Analyse

3.4.3 Röntgendiffрактометрия

ihre vorhandenen Phasen untersucht.

Im Falle der mit dem PLD- und dem Sputteringverfahren abgeschiedenen YSZ-Elektrolytschichten auf Anodensubstrat konnten Phasenausbildungen in Abhängigkeit des Prozessgasdrucks und der Substrattemperatur studiert werden. Der Phasenraum der auf Anodensubstrat abgeschiedenen Sputterschichten konnte mit dem der auf Al_2O_3-Substrat abgeschiedenen Schichten verglichen werden, um Einflüsse des Anodensubstrats auf die Phasenausbildung zu charakterisieren.

Im Falle der LSGM-Schichten wurde die Phasenausbildung in Abhängigkeit der Temperatur dokumentiert. Hierbei wurden die beschichteten Substrate nachträglich von 700-1500 °C im Ofen thermisch behandelt und anschließend die Phasenbildung überprüft. Das zur LSGM-Beschichtung notwendige Targetmaterial wurde zuvor ebenfalls auf Phasenreinheit überprüft. Hierbei wurde das gesinterte Target in einem Mörser zermahlen und in Pulverform röntgenographisch untersucht. Wichtig war die Generierung von perowskitisch einphasigem Targetmaterial, um eine große ionische Leitfähigkeit zu garantieren.

Verwendet wurden zwei Röntgendiffraktometersysteme:

1. *Bruker-AXS (früher Siemens AG, Karlsruhe) vom Typ D-5000*: Gemessen wurde in Bragg-Brentano-Geometrie mit Cu-K$_\alpha$ Strahlung der Wellenlänge $\lambda=0,154$ nm und im Winkelbereich von $2\theta=20-70^\circ$, in Schritten von $0,01^\circ$. Hierbei wird die Probe um θ und der Detektor um 2θ gedreht (Abb. 3.5). Bei dieser Messgeometrie werden ausschließlich Informationen von den schichtbildenden Körnern, deren Netzebenen parallel zur Probenoberfläche ausgerichtet sind, gemessen. Die Eindringtiefe der Röntgenstrahlung, und damit die Informationstiefe, ist eine Funktion des Einfallwinkels θ [74].

2. *Huber vom Typ 653*: Gemessen wurde in Seeman-Bohling-Geometrie mit Cu-K$_\alpha$ Strahlung der Wellenlänge $\lambda=0,154$ nm, einem konstanten Einfallswinkel auf die Probe von $\gamma=6^\circ$ und einem variablen Detektorwinkel von $\theta=11-35^\circ$, in Schritten von $\triangle\theta=0,02^\circ$ bei einer Zählzeit von 2 s. Bei dieser Geometrie bleibt der Einfallswinkel γ während der Messung konstant, wobei der Detektor um $\triangle\theta$ auf dem Diffraktometer- bzw. Fokuskreis verfahren wird. Unterschiedlich ausgerichtete Netzebenen, auf denen der Beugungsvektor orthogonal steht, werden analysiert. Die Eindringtiefe der Röntgenstrahlung, und damit auch die Informationstiefe, bleiben aufgrund des konstanten Einfallswinkel konstant [74].
3.4. CHARAKTERISIERUNGSMETHODEN

Abbildung 3.5: Röntgenbeugungs-Geometrien: Bragg-Brentano-Geometrie (oben) und Seemann-Bohlin-Geometrie (unten) [75]

3.4.4 Röntgendiffрактометрия zur Bestimmung der Kristallorientierung bzw. Textur

Zur Bestimmung der Vorzugsorientierung der schichtbildenden Kristallite wurde ein Vier-Achsen-Röntgendiffрактометр der Frima Philips vom Typ X’Pert MRD verwendet. Bei dieser Messmethode konnte die Probe über zwei Achsen in alle Raumrichtungen gekippt und zusätzlich um 360° gedreht werden, wobei ω den Winkel
zwischen der einfallenden Röntgenstrahlung mit der Probenoberfläche, 2θ den Winkel zwischen einfallender und gebeugter Röntgenstrahlung, ϕ den Rotationswinkel um die Probennormale und ψ den Neigungswinkel der Probe definiert. Zunächst wurde die Probe im Probenhalter fixiert und anschließend auf den zu untersuchenden Reflex eingestellt, d.h. der Ein- und Ausfallswinkel der Röntgenstrahlung wurde, gemäß der Bragg’schen Bedingung

$$n \cdot \lambda_{Cu-K\alpha} = 2 \cdot d_{hkl} \cdot \sin \alpha$$ \hspace{1cm} (3.2)

(d_{hkl}: Netzebenenabstand und α: Winkel zwischen einfallender Röntgenstrahlung und (hkl)-Netzene) auf das Maximum der Intensität des Reflexes eingestellt. Diese geometrische Bedingung wurde für jede Texturmessung eines Reflexes ‘eingefroren’. Nachfolgend wurde die Probe um einen definierten Winkel $\Delta\psi$ in eine Raumrichtung gekippt und um $\phi = 360\degree$ gedreht, während in Schritten von $\Delta\phi$ die Intensitäten der Röntgenstrahlung vom Detektor gemessen wurden. Dies wurde solange wiederholt, bis der gesamte Raumwinkel 2π durchlaufen war. Die Messwerte wurden schließlich in einem Poldiagramm dargestellt. Gemessen wurde mit Cu-Kα Strahlung der Wellenlänge $\lambda_{Cu-K\alpha} = 0,154$ nm. Untersucht wurden ausgewählte YSZ-Schichten, welche mit dem PLD-Verfahren auf Anodensubstraten bei unterschiedlichen Prozessgasdrücken abgeschieden wurden, um Wachstumsorientierungen der schichtbildenden Kristallite in Abhängigkeit des Prozessgasdrucks zu untersuchen.

3.4.5 Raster- und Transmissionselektronenmikroskopie zur Bestimmung der Schichtmorphologie und -dicke

Mit der Rasterelektronenmikroskopie (REM) wurden Sekundärelektronenbilder der abgeschiedenen Schichten und des Anodensubstrats aufgenommen, um die Morphologie der Schichten zu erfassen. Bruchflächen-, Oberflächen- und Querschliffaufnahmen wurden untersucht. Prinzipiell rastert ein auf die Probenoberfläche fokussierter Elektronenstrahl mit Energien von 0,1 keV bis mehrere 10 keV das zu untersuchende Gebiet im Vakuum ab. Dabei werden Sekundärelektronen (<50 eV) oberflächennah (ca. 10 nm Austrittstiefe bei 20 keV Beschleunigungsspannung) emittiert und detektiert. Die Anzahl der detektierten Sekundärelektronen pro Zeiteinheit werden in einem Graustufenbild dargestellt und erzeugen damit ein stark vergrößertes Abbild der Probenoberfläche. Auflösungen von Strukturen im Bereich von einigen nm sind möglich. Die benutzten REMs waren Geräte der Firmen Jeol vom Typ T-300 und Leo vom Typ 1530. Untersucht wurden Anodensubstrate, die zuvor anhand des PLD-
3.4. CHARAKTERISIERUNGSMETHODEN

3.4.6 Energiedispersive Röntgenbeugung (EDX) zur Bestimmung der schichtbildenden Elemente

3.4.7 Massenspektroskopie zerstäubter Neutralteilchen zur Bestimmung der schichtbildenden Elemente

\[S_{rel} = \frac{I_A \cdot c_R}{I_R \cdot c_A} \]

(3.3)

Für diese Methode wird die Kenntnis der Konzentration von wenigstens einem Element des Standardmaterials, dem Referenzelement, verlangt. I_A und I_R bezeichnen die Sekundärionenzählraten des Referenzelements und des zu analysierenden Elements. c_R kennzeichnet die Konzentration des Referenzelements und c_A die des zu analysierenden Elements. Die Umstellung der Gleichung 3.3 führt zu [77],[78]:

\[c_A = \frac{I_A \cdot c_R}{S_{rel} \cdot I_R} \]

(3.4)

Anhand der Gleichung 3.4 konnten somit die Konzentrationen in den zu analysierenden LSGM- und YSZ-Schichten bestimmt werden.

3.4.8 Helium-Leckratentest zur Bestimmung der Gasdichtigkeit

Ein wichtiges Kriterium zur Funktionalität einer Elektrolytschicht ist seine Gasdichtigkeit. Als Prüfgas wurde Helium verwendet. Das beschichtete Substrat wurde in einer speziell dafür entwickelten Halterung fixiert, so dass eine definierte Prüffläche auf der Elektrolytseite mit Helium unter atmosphärischem Druck gespült werden
konnte. Ein kommerzielles System der Firma Balzers vom Typ QualiTest HLT-260 detektierte das durch die Fehlstellen des Elektrolyten strömende Helium und gab in Echtzeit die Durchflussmenge pro Zeiteinheit bezogen auf den Druckunterschied \((\Delta p= 1013 \text{ mbar})\) der ein- zur ausströmenden Seite der Elektrolytschicht an. Unter Berücksichtigung der Prüffläche \((38,5 \text{ mm}^2)\) wurden die Messwerte in \(\text{mbar} \cdot \text{l/cm}^2 \cdot \text{s}\) angegeben. Das QualiTest HLT-260 System besteht prinzipiell aus einem für Helium geeichten Massenspektrometer, einem Pirani Druckmesssensor, einer Turbo- molekularpumpe und einer Drehschiebervorpumpe. Die Gasdichtigkeit wurde von YSZ-Schichten, abgeschieden mit dem PLD- und dem Sputterverfahren überprüft. Gemessen wurden die beschichteten Anodensubstrate vor und nach Reduzierung bei \(900 \, ^\circ\text{C}\) in \(4 \, \%\text{H}_2\) in \(\text{Ar}\). Die gemessenen Leckraten wurden mit den Leckraten der standardmäßig hergestellten Elektrolytschichten vom IWV-1 des Forschungszentrums in Jülich verglichen und bewertet. Eine angepasste Substrathalterung wurde direkt an das QualiTest System angeflanscht (Abb. 3.6). Der Substrathalter wurde so konstruiert, dass eine Silikonblende mit \(7 \, \text{mm}^{\text{Durchmesser}}\) auf die zu messende Elektrolytschicht gepresst wurde und somit die Gasräume trennte. Helium wurde aus einer Gaspistole unter atmosphärischem Druck über die Messfläche geleitet und der sich nach einigen Sekunden einstellende Endwert der Leckrate am Qualitest-System notiert.

Abbildung 3.6: Schematische Zeichnung vom Helium Lecktest[75]
3.4.9 Elektrochemischer Test zur Bestimmung von Strom-Spannungskennlinien

KAPITEL 3. EXPERIMENTELLE DURCHFÜHRUNG
Kapitel 4

Ergebnisse und Diskussion

4.1 Substrateigenschaften

4.1.1 Oberflächenrauhigkeit

Die Polierschritte nach jeweils zehnminütiger Politur wurden mit lichtmikroskopischen Aufnahmen festgehalten. Ohne Politur war deutlich die rauhe, körnige Struktur der Funktionsschichtoberfläche zu erkennen, die mit zunehmender Polierdauer in eine glatte Oberfläche überging. Mit zunehmender Polierdauer der Anodensubstrate wurde die Funktionsschicht am Rand von ‘außen’ nach ‘innen’ abgetragen. Abb.4.1b zeigt die polierte Substratoberfläche nach 150 min Polierdauer.
Abbildung 4.1: Anodensubstratoberfläche, a) unpoliert und b) poliert

Die Profilometriemessungen der unpolierten und polierten Substratoberflächen sind in Abb.4.2 wiedergegeben.

Abbildung 4.2: Profilometrie an a,b) unpolierten und c,d) polierten Substratoberflächen; a) $R_a = 370$ nm und c) $R_a = 44$ nm
4.1. SUBSTRATEIGENSCHAFTEN

Bei einer Messstrecke von 2 mm wurden auf der unpolierten Substratoberfläche ein Mittenrauhwert von \(R_a = 370 \text{ nm} \) gemessen. Die polierte Funktionsschichtoberflächen hingegen wies einen Mittenrauhwert von \(R_a = 44 \text{ nm} \) auf. Auffällig ist die Reduzierung der maximalen Amplitudendifferenz nach der Politur. Unpoliert wies das Substrat einen \(\text{R}_{y_{\text{max}}} \)-Wert von \(1,4 \mu\text{m} \) auf, im polierten Zustand hingegen wurden \(\text{R}_{y_{\text{max}}} = 60 \text{ nm} \) gemessen. Im unpolierten Zustand zeigten sich ausgeprägte Profilkuppen, mit Höhenunterschieden im Bereich der abzuscheidenden Schichtdicke von 0,5 \(\mu\text{m} \) auf einer Bezugsstrecke von 5 \(\mu\text{m} \) (Abb. 4.2b). Hingegen wurde bei polierten Substratoberflächen auf einer Bezugsstrecke von 5 \(\mu\text{m} \) Höhenunterschiede von 10 nm gemessen (Abb. 4.2d). Unpolierte Substratoberflächen wiesen z.B. nach PLD-Beschichtungen Bereiche auf, die nur mangelhaft beschichtet wurden und dadurch zu Gasundichtigkeiten führten. Dies konnte auf sog. Abschattungseffekte zurückgeführt werden, da die schichtbildenden Teilchen, einfallend um 45° zur Oberfläche, zum Teil Bereiche hinter den Profilkuppen nicht erreichen konnten. Auf polierten Anodensubstraten hingegen treten keine Abschattungseffekte auf.

4.1.2 Oberflächen- und Bruchflächenmorphologie

Abbildung 4.3: Unpolierte NiO/YSZ-Anodensubstrate a) ohne Funktionsschicht, und b) mit Funktionsschicht

Die bei 1400 °C für 5 h gesinterte Funktionsschicht (Abb. 4.3b) deckt das poröse Substrat ab und ist dicht, bis auf eine Restporosität von ca. 1-2% [79]. Die zusammengesinterten Körner bzw. Kuppen der Körner bilden eine homogene, rauhe und lochfreie Oberfläche. Während der Politur können die Kuppen der oberflächenbildenden Körner geglättet werden, so dass eine überwiegend ebene Oberfläche entsteht (Abb. 4.4a). Jedoch wird die polierte Oberfläche regelmäßig von Bereichen unterbrochen, in denen die Funktionsschicht aufgrund von Vertiefungen ihre ursprüngliche, rauhe Oberflächenstruktur beibehält (Abb. 4.4b).

Abbildung 4.4: Poliertes NiO/YSZ-Anodensubstrat mit Funktionsschicht a) im Überblick und b) eines ungenügend polierten Bereichs
4.2 PLD-Targetmaterialien

Die aus 8YSZ-Pulver verpreßten PLD-Targets wiesen nach Sinterung bei 1500 °C für 10 h an Luft einen Durchmesser von 24 mm und einer Dicke von 3 mm auf und hatten eine geometrisch bestimmte Dichte von 96% (5.7 g/cm³) der theoretischen Dichte.

Zur Herstellung von LSGM-Targets wurde als Ausgangsmaterial ein kommerzielles LSGM-Pulver der Firma Praxair mit der Zusammensetzung La₀.₈₁Sr₀.₂₁Ga₀.₈₈Mg₀.₁₄O₅ verwendet. Beugungsuntersuchungen dieses Pulvers zeigten nach Sinterung bis 1400 °C an Luft neben der perowskitischen die LaSrGa₄O₇- und LaSrGaO₄-Phase [52]. Unter Zugabe von La₂O₃-, Ga₂O₃- und MgO-Pulver wurde die Stöchiometrie dahingehend eingestellt, um kubisch einphasiges LSGM mit großer ionischer Leitfähigkeit zu erhalten. Nach Huang et al. [44] wurde die La₀.₈₅Sr₀.₁₅Ga₀.₈₅Mg₀.₁₅O₂.₈₅ Zusammensetzung favorisiert, die diese Eigenschaften erfüllt. Bei Temperaturen von 595 °C, 702 °C und 800 °C konnten Huang et al. Leitfähigkeiten von 23 mS/cm, 69 mS/cm und 141 mS/cm nachweisen [44].

Um La₀.₈₅Sr₀.₁₅Ga₀.₈₅Mg₀.₁₅O₂.₈₅ zu synthetisieren wurden auf ein Mol Praxair Ausgangspulver 0,15 mol La₂O₃-, 0,11 mol Ga₂O₃- und 0,1 mol MgO-Pulver zugegeben. Das Pulvergemisch wurde nach Homogenisierung bei 1300 °C für 4 h kalziniert, anschließend zu Pellets verpreßt und bei 1470 °C für 10 h in Luft gesintert (genauere Beschreibung des Herstellungsverfahrens siehe S. 37). Anschließend wurden die Pellets aufgemahlen und mittels Röntgenbeugungsanalysen die Phasen bestimmt. Abb. 4.5a zeigt den Phasenbestand des kalzinierten Pulvers, indem neben der kubisch-perowskitischen Phase des LaGaO₃ die Nebenphasen SrLaGa₄O₇ und SrLaGaO₄ detektiert wurden. Durch die anschließende Sinterung konnten die Nebenphasen reduziert werden (Abb. 4.5). Lediglich der Hauptreflex bei 2θ = 30° der SrLaGa₄O₇-Phase ist mit geringer Intensität zu erkennen. Chemische Analysen des gesinterten Pulvers ergaben die angestrebte Stöchiometrie La₀.₈₆Sr₀.₁₃Ga₀.₈₄Mg₀.₁₅O₂.₈₅ mit Abweichungen vom La- und Ga-Gehalt, die im Bereich der Messgenauigkeiten der chemischen Analysen lagen.

Das LSGM-Material konnte somit phasenrein mit gewünschter Stöchiometrie hergestellt und daher für die PLD-Versuche als Targetmaterial eingesetzt werden.
Abbildung 4.5: Röntgenbeugungsdiagramme von synthetisiertem La\(_{0.85}\)Sr\(_{0.15}\)Ga\(_{0.85}\)Mg\(_{0.15}\)O\(_{2.85}\)-Pulver zur PLD-Targetherstellung a) nach Kalzination bei 1300 °C für 4 h, und b) nach Kalzination und Sinterung bei 1470 °C für 10 h

4.3 PLD-Schichten aus YSZ

Alle durchgeführten Beschichtungen, es sei denn es wird explizit darauf hingewiesen, wurden mit einer Laserstrahlleistungsichte auf dem Target von \(\varepsilon_{\text{Laser}} = 3.7\) J/cm\(^2\) und einem mittleren Target-Substratabstand \(d_{\text{Target-Substrat}} = 30\) mm durchgeführt.

4.3.1 Phasenbildung auf Al\(_2\)O\(_3\)-Substraten

Mit Beschichtungen auf Al\(_2\)O\(_3\)-Substraten wurde der Einfluß der Beschichtungsparameter auf die Phasenbildungen in der abgeschiedenen YSZ-Schicht untersucht. Al\(_2\)O\(_3\) wurde als Substratmaterial ausgewählt, weil bei den angewandten Beschichtungsparametern keine Wechselwirkungen mit der aufwachsenden YSZ Schicht zu erwarten waren. Die Phasenbildung der auf Al\(_2\)O\(_3\) abgeschiedenen Schichten wur-
de mit der auf NiO/YSZ-Substraten verglichen, um Einflüsse des Anodensubstrats auf die Phasen der Schichten zu verifizieren. Beugungsdiagramme der bei 400 °C abgeschiedenen Schichten zeigen die Ausbildung der kubischen YSZ Phase (im Weiteren c-YSZ genannt) mit zunehmendem Sauerstoffdruck (Abb. 4.6, Abb. 4.7). Es wurde eine Reflexverschiebung mit zunehmendem Sauerstoffdruck von ca. 0,5 ° in 2 Theta gemessen. Bei einem Sauerstoffdruck während der Beschichtung von 0,2 mbar und größer wird keine Änderung der Reflexlage beobachtet. Dabei entsprechen die gemessenen Beugungswinkel der c-YSZ Phase. Von 0,01 mbar bis 0,1 mbar Sauerstoffdruck werden die Reflexe schmaler und höher, was durch eine Zunahme der Kristallitgröße bzw. Abnahme der Fehlordnung im Kristallgitter zu deuten ist. In Abb. 4.7 sind die YSZ-Reflexe der (111) Orientierung vergrößert dargestellt.

Abbildung 4.6: Beugungsdiagramme von YSZ-Schichten auf Al₂O₃-Substraten in Abhängigkeit des Prozessgasdrucks; abgeschieden bei 400 °C Substrattemperatur

Die Fläche unterhalb der Kurve wurde normiert, so daß messbedingte Abweichungen bzgl. der Größe der Reflexe korrigiert wurden. Die zu kleineren Beugungswinkeln verschobenen Reflexe bei kleinen Sauerstoffdrücken wurden einer fehlgeordneten
kubischen YSZ-Struktur (im Weiteren c-f-YSZ genannt) zugeordnet, bei der vermehrt Sauerstofffehlstellen im Gitter entstanden (siehe Kapitel 4.3.2.3). Bei größeren Sauerstoffdrücken tritt eine Sauerstoffsättigung während der Beschichtung ein. Des Weiteren macht sich der Einfluß des Sauerstoffdrucks auf die kinetische Energie der Plasmateilchen bei Auftreffen auf die Substratoberfläche bemerkbar. Kleine kinetische Energien der auftreffenden Teilchen senken die Beweglichkeit und Diffusion der Teilchen in der aufwachsenden Schicht, so daß sich nur bedingt eine Kristallstruktur ausbilden kann. Deshalb zeigen die Diffraktogramme bei Sauerstoffdrücken > 0,1 mbar eine Abnahme der Reflexhöhe und Zunahme der Reflexbreite.

Abbildung 4.7: Ausschnitt aus den Beugungsdiagrammen von YSZ-Schichten auf Al₂O₃-Substraten in Abhängigkeit des Prozessgasdrucks; abgeschieden bei 400 °C Substrattemperatur

Die Erhöhung der Substrattemperatur zeigte keinen Einfluss auf die Reflexlage und -höhe bei Prozessgasdrücken von pO₂ ≥ 0,1 mbar. Bei kleinerem Prozessgasdruck pO₂= 0,01 mbar und Substrattemperaturen < 600 °C ist andeutungsweise eine Verschiebung des YSZ(111)-Reflexes zu kleineren Beugungswinkeln von Δ2θ < 0,1°
gemessen worden (Abb. 4.8). Die Verschiebung der Reflexe zu kleineren Beugungswinkeln ist gleichbedeutend mit einer Vergrößerung der kubischen Einheitszelle des YSZ. Niedrige Substrattemperaturen und niedrige Prozessgasdrücke induzierten die fehlgeordnete c\textsubscript{f}-YSZ-Struktur mit einer größeren Einheitszelle (siehe S. 69).

Abbildung 4.8: Ausschnitt aus dem Beugungsdiagrammen von YSZ-Schichten auf Al\textsubscript{2}O\textsubscript{3}-Substraten in Abhängigkeit der Substrattemperatur T_{Sub}; abgeschieden bei pO\textsubscript{2} = 0,01 mbar Prozessgasdruck
4.3.2 Schichten auf NiO/YSZ-Anodensubstraten

4.3.2.1 Schichtdicke und Oberflächenrauhigkeit

Aufgrund der räumlich begrenzten Ausdehnung des bei dem PLD-Prozesses entstehenden Plasmas werden auf der Substratoberfläche unterschiedliche Schichtdicken in Abhängigkeit vom Ort abgeschieden. Zur Verifikation wurde ein poliertes 10×10 mm² großes Anodensubstrat mit \(N_{\text{pulse}} = 30000 \) Laserpulsen, bei \(T_{\text{Sub}} = 500 ^\circ \text{C} \) Substrattemperatur und einem Sauerstoffdruck \(p_{\text{O}_2} = 0,05 \text{ mbar} \) beschichtet. Die Schichtdicken wurden anhand von REM-Aufnahmen der Substratquerschliffe ausgewertet und graphisch dargestellt. Um einen guten Kontrast zwischen abgeschiedener Schicht und Funktionsschicht zu bekommen, wurde das beschichtete Substrat bei 900 \(^\circ\text{C}\) für 2 h in Ar/4%-H\(_2\) reduziert. Das reduzierte Substrat wurde in Epoxidharz eingebettet und senkrecht zur Flächennormalen in Einmillimeterschritten abgeschliffen, poliert und analysiert. Die so erhaltenen Aufnahmen (Abb. 4.9) der Schichtquerschnitte wurden mit einer geeigneten Software (Image-Pro der Firma MediaCybernetics) vermessen.

Abbildung 4.9: Querschliff (REM) zur Bestimmung der Schichtdicke

Die Schichtdicken sind in Abb. 4.10 graphisch dargestellt. Die gemessenen Werte der Schichtdicke schwanken zwischen 1,56 und 2,51 \(\mu \text{m} \). Dies bedeutet eine maximale relative Schichtdickenänderung von ca. 60% auf einer Substratfläche von 10×10 mm². Die Schichtdickenverteilung ist abhängig von der Ausdehnung der Plasmafackel, der Richtung der einfallenden Teilchen und der Entfernung zum Substrat.
Abbildung 4.10: YSZ-Schichtdickenverteilung (PLD) auf poliertem Anodensubstrat; Beschichtungsparameter: $T_{Sub} = 500 \, ^\circ C$, $pO_2 = 0,05 \, mbar$, $N_{Pulse} = 30000$

4.3.2.2 Schichtmorphologie und -defekte

In diesem Abschnitt werden die Schichtmorphologien in Abhängigkeit der PLD-Prozessparameter beschrieben. Im Vergleich zu den abgeschiedenen Schichten zeigt die unbeschichtete Substratoberfläche (Abb. 4.11) die zusammengesinterten YSZ- und NiO-Körner der Funktionsschichtoberfläche mit einem mittleren Durchmesser von ca. 1 μm. Die mittlere Rauhigkeit wurde zu $R_a = 300 \, nm$ bestimmt.
KAPITEL 4. ERGEBNISSE UND DISKUSSION

Abbildung 4.11: NiO/YSZ-Funktionsschichtoberfläche, gesintert bei 1400 °C für 3 h an Luft

Beschichtet wurde bei Substrattemperaturen von $T_{Sub} = 500$-600 °C und Prozessgasdrücken $pO_2 = 0,01$-0,5 mbar. Kleine Prozessgasdrücke induzierten eine dichte ohne sichtbare offene Poren gewachsene Schicht. Bei Prozessgasdrücken $pO_2 \geq 0,2$ mbar zeigten die Schichten eine Änderung der Morphologie. Die sich um die NiO- und YSZ-Körner legende Schicht zeigt eine körnige (Abb. 4.12d), bei weiterer Erhöhung des Prozessgasdrucks eine blumenkohlartige Struktur (Abb. 4.12e). Die durch Abschattungseffekte entstehenden offenen Kristallitgrenzen können nicht geschlossen werden. Die Energie der Teilchen liegt unterhalb der Energieschwelle die für die Oberflächendiffusion notwendig ist. Dies steht in Übereinstimmung mit Zone 1 des Schichtwachstumsmodells von Thornton [70], welche durch kolumnare, getrennt voneinander aufwachsende Kristallite charakterisiert ist. Die benötigte Teilchenenergie zur Aktivierung der Diffusion liegt im Bereich von ca. 1 eV. Die kinetische Energie der auffallenden Teilchen bei Prozessgasdrücken von $pO_2 = 0,5$ mbar liegt in diesem Energiebereich, unterhalb 0,5 mbar steigt die kinetische Energie an und erreicht bei 0,01 mbar ca. 100 eV. Unterhalb von $pO_2 = 0,2$ mbar wächst eine feinkristallinere Schicht. Die Energie der schichtbildenden Teilchen reicht aus, um die Oberflächendiffusion zu aktivieren (Abb. 4.12a,b,c). Die Schicht wird durch dicht aneinander aufwachsende Kristallite gebildet (Zone 2, Kapitel 2.4). Eine Erhöhung der Substrattemperatur von 500 °C auf 600 °C bewirkt eine Verschiebung der Strukturgrenze von Zone 1 zu Zone 2 zu größeren Prozessgasdrücken. Sichtbar wird dies durch den Vergleich der Schichtaufnahmen ($pO_2 = 0,2$ mbar) in Abb. 4.13. Die rauhe, offenporige Struktur der bei 500 °C abgeschiedenen Schicht ist ausge-
prägter als der bei 600 °C abgeschiedenen Schicht.

Abbildung 4.12: Beschichtete (PLD) Anodenfunktionsschichtoberflächen mit YSZ;
$T_{Sub} = 500$ °C, $N_{Pulse} = 20000$, a) $pO_2 = 0,01$ mbar, b) $pO_2 = 0,05$ mbar, c) $pO_2 = 0,1$ mbar, d) $pO_2 = 0,2$ mbar, e) $pO_2 = 0,5$ mbar
Abbildung 4.13: Beschichtete (PLD) Anodensubratoberflächen mit YSZ; pO$_2$ = 0,2 mbar, N$_{pulse}$ = 20000, a) T$_{Sub}$ = 500 °C, b) T$_{Sub}$ = 600 °C

Bruchflächen dieser Beschichtungsreihe unterstreichen das Wachstumsverhalten. Deutlich sind die kolumnaren Kristallite ab Prozessgasdrücken von pO$_2$ \geq 0,2 mbar zu erkennen. Mit steigendem Prozessgasdruck wachsen auch die Kristallitzwischenräume. Kleinere Prozessgasdrücke pO$_2$ \leq 0,1 mbar haben dichte Schichten mit aneinander gewachsenen Kristalliten zur Folge.
4.3. PLD-SCHICHTEN AUS YSZ

Die Erhöhung der Substrattemperatur auf $T_{Sub} = 600 \, ^\circ\text{C}$ zeigt tendenziell eine Verschiebung der Strukturgrenze von Zone 1 zu Zone 2 zu größeren Prozessgasdrücken. Abb. 4.15 zeigt Bruchflächen von abgeschiedenen Schichten bei gleichem Prozessgasdruck $pO_2 = 0,1 \, \text{mbar}$, jedoch unterschiedlichen Substrattemperaturen.

Abbildung 4.15: Beschichtete (PLD) Anodensubstratoberflächen mit YSZ; $pO_2 = 0,1 \, \text{mbar}$, $N_{\text{Pulse}} = 20000$, a) $T_{Sub} = 500 \, ^\circ\text{C}$, b) $T_{Sub} = 600 \, ^\circ\text{C}$

Die bei $T_{Sub} = 500 \, ^\circ\text{C}$ abgeschiedene Schicht zeigt im Gegensatz zur $T_{Sub} = 600 \, ^\circ\text{C}$ abgeschiedene Schicht Ansätze kolumnarer Kristallite. Die auf polierten Anodensubstraten abgeschiedenen Schichten zeigen im Vergleich zu denen auf unpolierten Substraten abgeschiedenen Schichten gleichmäßige Schichtmorphologien. Hier kann von einer Übergangszone T ausgegangen werden, in der die Schichten aufwachsen [70]. Die Zone T ist durch eine glatte Substratoberfläche definiert, auf der die Schichten vergleichbar zur Zone 1 aufwachsen. Jedoch sind die Kristallite schwer zu erkennen, da sie dicht gepackt sind und durch schlecht sichtbare Korngrenzen oder Poren getrennt werden. Abb. 4.16 zeigt Bruchflächen von abgeschiedenen Schichten auf polierten Anodensubstraten bei $T_{Sub} = 500 \, ^\circ\text{C}$ mit $N_{\text{Pulse}} = 20000$ Laserpulsen. Der Prozessgasdruck wurde wie in vorherigen Beschichtungsreihen von $pO_2 = 0,01$-0,5 $\, \text{mbar}$ variiert. Schichten, die bei Prozessgasdrücken $< 0,5 \, \text{mbar}$ abgeschieden wurden, zeigen eine dichte Struktur ohne erkennbare Korngrenzen (Abb. 4.16a). Die bei $pO_2 = 0,5 \, \text{mbar}$ abgeschiedene Schicht wies, in Übereinstimmung mit Thornton, kolumnar gewachsene, dicht gepackte Kristallite auf (Abb. 4.16b).
Abbildung 4.14: Beschichtete (PLD) Anodensubstratoberflächen mit YSZ; $T_{\text{Sub}}=500\, ^\circ\text{C}$, $N_{\text{Pulse}}=20000$, a) $pO_2=0,01\, \text{mbar}$, b) $pO_2=0,05\, \text{mbar}$, c) $pO_2=0,1\, \text{mbar}$, d) $pO_2=0,2\, \text{mbar}$, e) $pO_2=0,5\, \text{mbar}$
4.3. PLD-SCHICHTEN AUS YSZ

Abbildung 4.16: Mit YSZ beschichtete (PLD) Anodensubstratoberflächen (poliert); \(T_{Sub} = 500 \, ^\circ\text{C} \), \(N_{Pulse} = 20000 \), a) \(pO_2 = 0,01 \, \text{mbar} \), b) \(pO_2 = 0,5 \, \text{mbar} \)

KAPITEL 4. ERGEBNISSE UND DISKUSSION

Abbildung 4.17: Schichtdefekte auf Anodensubstratoberflächen (poliert); \(T_{Sub} = 500 \, ^\circ\mathrm{C} \), \(N_{Pulse} = 30000 \), \(pO_2 = 0.05 \, \text{mbar} \)

Eine weitere Variante der Schichtdefekte wurde durch Droplets, d.h. aufgeschmolzenes Targetmaterial, dass in Form von Tropfen auf die Substratoberfläche auftrifft, verursacht. Die Droplets erstarrten auf der Substratoberfläche und wurden in die aufwachsende Schicht eingebaut (Abb. 4.18a). An anderen Stellen jedoch konnte kein fester Verbund mit dem Schichtmaterial hergestellt werden, so dass das Droplet nach dem Einbetten aus der Schicht herausbrach und damit eine gasundichte Stelle erzeugte (Abb. 4.18b).

Abbildung 4.18: Schichtdefekte durch Dropletbildung (PLD); \(T_{Sub} = 500 \, ^\circ\mathrm{C} \), \(N_{Pulse} = 30000 \), \(pO_2 = 0.05 \, \text{mbar} \)
4.3. PLD-SCHICKTEN AUS YSZ

4.3.2.3 Schichtbildende Elemente und Phasenbildung

Bei Substrattemperaturen $T_{Sub} = 300-600 \, ^\circ C$ und Prozessgasdrücken $pO_2 = 0,01-0,5 \, \text{mbar}$ wurde die Phasenbildung mittels Röntgenbeugung studiert. Aufgrund einer Eindringtiefe der Röntgenstrahlung, die größer als die Schichtdicken der zu untersuchenden Substrate war, wurde das Substratmaterial mitgemessen. Überlagerungen der YSZ-Reflexe von Schicht- und Substratmaterial waren unumgänglich. Bei $T_{Sub} = 600 \, ^\circ C$ konnte im gesamten Prozessgasdruckbereich die c-YSZ-Struktur gemessen werden. Auffällig war lediglich bei $pO_2 = 0,01 \, \text{mbar}$, dass kleine Intensitäten des Ni(111)-Reflexes gemessen wurden. Bei diesem Prozessgasdruck wurden die an der Grenzfläche von der Schicht zum Substrat liegenden Ni-Körner partiell reduziert (siehe S. 111). Dieser Mechanismus trat vorzugsweise nur bei niedrigen Prozessgasdrücken $pO_2 \leq 0,05 \, \text{mbar}$ auf. Bei $T_{Sub} \leq 500 \, ^\circ C$ und $pO_2 < 0,5 \, \text{mbar}$ konnte neben der c-YSZ-Phase eine Verschiebung der YSZ-Reflexe zu geringeren Beugungswinkeln gemessen werden. Abb. 4.19 und Abb. 4.20 zeigen die Beugungsdiagramme der bei $T_{Sub} = 500 \, ^\circ C$ abgeschiedenen Schichten in Abhängigkeit vom Prozessgasdruck pO_2. Mit sinkendem Prozessgasdruck war eine zunehmende Verschiebung der YSZ-Reflexe zu kleineren Beugungswinkeln zu erkennen.
Abbildung 4.19: Beugungsdiagramme von YSZ-Schichten auf Anodensubstrat (poliert); $T_{Sub} = 500 \, ^\circ C$, $N_{Pulse} = 30000$, a) $pO_2 = 0.05$ mbar, b) $pO_2 = 0.1$ mbar, c) $pO_2 = 0.2$ mbar, d) $pO_2 = 0.5$ mbar

Abbildung 4.20: Beugungsdiagramme von YSZ-Schichten auf Anodensubstrat (poliert); $T_{Sub} = 500 \, ^\circ C$, $N_{Pulse} = 30000$, a) $pO_2 = 0.01$ mbar und b) $pO_2 = 0.5$ mbar
Zunächst wurde die Entstehung der tetragonalen YSZ-Phase vermutet. Aufgrund des fehlenden, für die tetragonale YSZ-Phase typischen, dritten Reflexes auf der rechten Flanke der c-YSZ-Reflexe bei allen untersuchten Beugungsdiagrammen, konnte die Vermutung widerlegt werden. Die entstandene zweite Phase konnte als fehlgeordnete, Sauerstoff unterstöchiometrische \(c_f \)-YSZ-Phase gedeutet werden. Sie ist ein Resultat erhöhter Sauerstofffehlstellendichte, welche durch auftreffende Teilchen hoher kinetischer Energien während der Schichtbildung hervorgerufen wird. Die Verschiebung der c-YSZ Reflexe zu kleineren Beugungswinkeln (siehe Abb. 4.21) resultierte in einer Vergrößerung der Netzebenenabstände und einer damit zusammenhängenden Vergrößerung der kubischen YSZ-Elementarzelle.

Abbildung 4.21: Beugungsdiagramme von YSZ-Schichten auf Anodensubstrat; \(pO_2 = 0,1 \text{ mbar}, N_{Pulse} = 30000 \), a) \(T_{Sub} = 400 ^\circ \text{C} \), b) \(T_{Sub} = 500 ^\circ \text{C} \), c) \(T_{Sub} = 600 ^\circ \text{C} \)
Die Gitterkonstanten konnten anhand der Braggschen Gleichung

\[d = \frac{a}{K} = \frac{\lambda}{2 \sin \theta} \]

(4.1)

errechnet werden, wobei \(d \) der Netzebenenabstand des untersuchten Reflexes, \(a \) die Gitterkonstante der Einheitszelle, \(\lambda \) die Wellenlänge der Röntgenstrahlung, \(\theta \) der Beugungswinkel und \(K \) eine Netzebenen abhängige Konstante ist. Für die Berechnung der Gitterkonstante wurde das Beugungsdiagramm der bei \(T_{\text{Sub}} = 400 \, ^\circ \text{C} \) und \(p_{\text{O}_2} = 0,1 \, \text{mbar} \) abgeschiedenen Schicht ausgewertet, da hier eine deutliche Trennung der Reflexe vorlag und damit die Beugungswinkel fehlerfrei abzulesen waren (Abb. 4.21). Die Beugungsdiagramme wurden zuvor auf die NiO Reflexe korrigiert. Zugrunde lag die JCPDS-Datei 4-0835 für die kubische NiO-Struktur. Bei der Umrechnung der Netzebenenabstände in die Gitterkonstante wurden die für die jeweiligen Reflexe notwendigen geometrischen Umrechnungsfaktoren berücksichtigt. Für den (111)-Reflex gilt \(K = \sqrt{3} \), für den (220)-Reflex gilt \(K = 2\sqrt{2} \) und für den (311)-Reflex gilt \(K = \sqrt{11} \). In Tabelle 4.1 sind die Netzebenenabstände und die daraus resultierenden Gitterkonstanten aufgelistet. \(d_1 \) gibt den Netzebenenabstand der c-YSZ Struktur und \(d_2 \) den Netzebenenabstand der fehlgeordneten \(c_f \)-YSZ-Struktur an. Daraus konnten die Gitterkonstanten \(a_1 \) (c-YSZ-Struktur) bzw. \(a_2 \) (\(c_f \)-YSZ-Struktur) berechnet werden. Die Gitterkonstante für die c-YSZ Struktur weicht nur um 0,15% von dem Literaturwert \(a_{c-YSZ} = 5,139 \, \text{Å} \) (JCPDS-Datei: 30-1468) der Verbindung \(\text{Y}_{0,15}\text{Zr}_{0,85}\text{O}_{1,93} \) ab. Die fehlgeordnete \(c_f \)-YSZ-Phase konnte bei allen vier Netzebenen zu \(a_{YSZ} = 5,213\pm0,003 \, \text{Å} \) bestimmt werden. Die Gitterkonstante der \(c_f \)-YSZ-Struktur ist somit um \(\Delta a_{YSZ} = 0,08 \, \text{Å} \) größer als die der c-YSZ-Struktur. Da diese Phase bei kleinen Prozessgasdrücken, also kleinem Sauerstoffangebot auf dem Substrat aufwächst, liegt die Vermutung nahe, dass in dem Gitter statistisch verteilt mehr Sauerstofffehlstellen entstehen und damit im Mittel die Bindungskräfte

<table>
<thead>
<tr>
<th>(hkl)</th>
<th>(d_1) (Å)</th>
<th>(d_2) (Å)</th>
<th>(a_1) (Å)</th>
<th>(a_2) (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(111)</td>
<td>2,965</td>
<td>3,011</td>
<td>5,133</td>
<td>5,216</td>
</tr>
<tr>
<td>(200)</td>
<td>2,569</td>
<td>2,607</td>
<td>5,132</td>
<td>5,214</td>
</tr>
<tr>
<td>(220)</td>
<td>1,814</td>
<td>1,843</td>
<td>5,131</td>
<td>5,213</td>
</tr>
<tr>
<td>(311)</td>
<td>1,547</td>
<td>1,571</td>
<td>5,131</td>
<td>5,210</td>
</tr>
</tbody>
</table>
der Ionen sinken. Dies führt wiederum zu der gemessenen Vergrößerung der Gitterkonstante, ohne dass der grundlegende Strukturtyp, d.h. die kubische Struktur der aufgewachsenen Schicht geändert wurde.

Die Erhöhung der Substrattemperatur bei konstantem Prozessgasdruck zeigte eine ähnliche Auswirkung auf die Phasenbildung. Bei einer Substrattemperatur von $T_{\text{Sub}} = 300 \, ^\circ\text{C}$ und kleinem Prozessgasdruck $p_{\text{O}_2} = 0,01 \, \text{mbar}$ wurden keine Ni-Reflexe gemessen (Abb. 4.22a). Die thermische Energie reichte nicht aus, um NiO im Substrat zu reduzieren bzw. Sauerstoffionen über das YSZ im Substrat in die aufwachsende Schicht zu transportieren. Die gemessenen Reflexe der c-YSZ-Phase wurden dem Substratmaterial zugeordnet. Die aufwachsende Schicht zeigte flache Reflexe. Daher wurde angenommen, dass sie eine überwiegend amorphe Struktur mit Ansätzen der c_f-YSZ-Struktur ausbildete (Abb. 4.22a). Bei Erhöhung der Substrattemperatur auf $T_{\text{Sub}} = 400 \, ^\circ\text{C}$ wurden deutliche Ni-Reflexe erkannt, ein Indiz für die stattgefundenen NiO Reduktion des Substratmaterials. Neben den c-YSZ-Reflexen wurden zu kleineren Beugungswinkeln verschobene Reflexe beobachtet (Abb. 4.22b). Sie wurden der fehlgeordneten c_f-YSZ Phase der schichtbildenden Kristallite zugeordnet. Den schichtbildenden Zr- und Y-Partikeln stand nicht ausreichend Sauerstoff zur Verfügung, um die c-YSZ Phase auszubilden. Die Schicht wuchs unterstöchiometrisch mit einer, im Vergleich zu c-YSZ, vergrößerten Einheitszelle auf. Bei weiterer Erhöhung der Substrattemperatur verschoben sich diese Reflexe in Richtung größeren Beugungswinkel, bis sie sich schließlich bei $T_{\text{Sub}} = 600 \, ^\circ\text{C}$ vollständig mit den c-YSZ-Reflexen überlagerten (Abb. 4.22d). Bei dieser Substrattemperatur stand der aufwachsenden Schicht ausreichend Sauerstoff aus Atmosphäre und Substrat zur Verfügung, um die c-YSZ-Phase auszubilden.
Abbildung 4.22: Beugungsdiagramme von YSZ-Schichten auf Anodensubstrat (poli-
liert); pO$_2$ = 0,01 mbar, N$_{Pulse}$ = 30000, a) T_{Sub} = 300 °C, b) T_{Sub} = 400 °C, c) T_{Sub} =
500 °C, d) T_{Sub} = 600 °C

Bei Erhöhung des Prozessgasdrucks auf pO$_2$ = 0,05 mbar bzw. pO$_2$ = 0,1 mbar
wurden diese Effekte in gleicher Weise, jedoch nicht so ausgeprägt erkannt, d.h. die
maximale Reflexverschiebung der fehlgeordneten c$_f$-YSZ- im Vergleich zur c-YSZ-
Phase betrug $\Delta \theta < 0,5^\circ$ in Einheiten von 2θ. Die Phasenbildung der abgeschiedenen
Schichten auf NiO/YSZ-Anodensubstratmaterial zeigten im Vergleich zu den auf
Al$_2$O$_3$ ermittelten Phasen Unterschiede bzgl. der Substrattemperatur. Z.B. wurden
bei den auf Al$_2$O$_3$ mit einem Prozessgasdruck von 0,1 mbar abgeschieden Schich-
ten keine Reflexverschiebungen der YSZ-Refexe im Temperaturbereich von 400-600
°C festgestellt. Erst bei größeren Prozessgasdrücken wanderten die YSZ-Refexe in
Richtung größerer Beugungswinkel. Bei den auf Anodensubstrat abgeschiedenen
Schichten hingegen wurde bei den gleichen Beschichtungsparametern eine Reflex-
verschiebung von $\Delta \theta = 0,5^\circ$ ermittelt, d.h. die c-YSZ-Phase wurde bei gleicher Sub-

KAPITEL 4. ERGEBNISSE UND DISKUSSION
4.3. PLD-SCHICHTEN AUS YSZ

4.3.2.4 Kristallitorientierung und Textur

Untersuchungen zur Orientierung der schichtbildenden Kristallite wurden an zwei ausgesuchten Proben durchgeführt. Die Substrate wurden bei einer Temperatur von 500 °C und Sauerstoffdrücken von 0,5 mbar (Probe 1) bzw. 0,05 mbar (Probe 2) mit N_{pulse} = 300000 Laserpulsen abgeschieden. Untersucht wurden die (111), (200) und (220) Beugungsreflexe von YSZ. Die Ergebnisse sind in Polardiagrammen dargestellt, wobei die Intensität des Beugungsreflexes in Abhängigkeit der Rotation (\phi = 0-360°) und der Verkippung der Probe (\psi = 0-90°) dargestellt ist (Abb. 4.23, Abb. 4.24). Die Poldiagramme der Probe 1 zeigen eine homogene Verteilung der Intensität. Eine Vorzugsorientierung der YSZ-Kristallite in der Schicht ist nicht messbar. Hingegen ist eine Textur der Probe 2 zu erkennen. Die Poldiagramme zeigen je ein Intensitätsmaximum in jedem Quadranten. Alle gemessenen Beugungsreflexe zeigen gemäß der Rotationssymmetrie der kubischen Struktur vier Maxima der Intensität in Abständen von \phi = 90°. Das vierte Poldiagramm der Probe 2 zeigt die Berechnung des (100)-Reflexes, der bei der kubischen Kristallstruktur aufgrund auslöschender Interferenz des gebeugten Röntgenstrahls nicht gemessen werden kann.
KAPITEL 4. ERGEBNISSE UND DISKUSSION

Abbildung 4.23: Polardiagramme zur Untersuchung der Kristallitorientierung von YSZ-Schichten auf Anodensubstrat; \(pO_2 = 0,5 \text{ mbar}, N_{\text{Pulse}} = 30000 \), a) (111)-Reflex, b) (200)-Reflex und c) (220)-Reflex

Das mittlere Intensitätsmaximum verdeutlicht die (100)-Orientierung der Kristallite in der Schicht. Jedoch sind die Kristallite in der (100)-Richtung zueinander verdreht aufgewachsen. Dies ist anhand des Intensitätsringes um den mittleren Reflex herum zu erkennen. Es liegt eine Fasertextur der YSZ-Kristallite in (100)-Richtung vor. Die Berechnung des (100)-Reflexes der Probe 1 war aufgrund der nicht gemessenen Vorzugsorientierung der Kristallite nicht sinnvoll.
4.3. PLD-SCHICHTEN AUS YSZ

Abbildung 4.24: Polardiagramme zur Untersuchung der Kristallitorientierung von YSZ-Schichten auf Anodensubstrat: \(pO_2 = 0.05 \) mbar, \(N_{Pulse} = 30000 \), a) (111)-Reflex, b) (200)-Reflex, c) (220)-Reflex und d) (100)-Reflex (berechnet)

4.3.2.5 Gasdichtigkeit

Für die Untersuchungen der Gasdichtigkeit wurden polierte und unpolierte Substrate 10×10 mm² bei einer Substrattemperatur \(T_{Sub} = 500 \) °C und einem Prozessgasdruck \(pO_2 = 0.1 \) mbar mit 30000-120000 Laserpulsen beschichtet. Die beschichteten Substrate wurden bei 900 °C in Ar/4%-H₂ reduziert und anschließend die
He-Leckraten bestimmt. Auf die Bestimmung der He-Leckraten im oxidierten Zustand der Proben wurde verzichtet, da die Anodenfunktionsschicht aufgrund ihrer dichten Struktur keine Aussage über die Dichtigkeit der abgeschiedenen Schichten zuließ. Vorversuche an unbeschichteten Substraten zeigten im oxidierten Zustand eine mittlere He-Leckrate abhängig von der Funktionsschichtdicke. Eine Verdreifachung der Funktionsschichtdicke bewirkte eine Leckratenabnahme von drei Größenordnungen, wohingegen die Leckraten der reduzierten Substrate keine Abhängigkeit von der Funktionsschichtdicke aufwiesen. Da die Funktionsschichtdicke herstellungsbedingt Toleranzen aufwies, wurde auf die Messungen der Substrate im oxidierten Zustand verzichtet. Der reproduzierbare Fehler der Messungen belief sich auf 7% und der vom Hersteller des Messsystems angegebene Fehler betrug 1-2%. Die He-Leckraten und die durch REM-Aufnahmen der Querschliffe ermittelten maximalen Elektrolytschichtdicken, welche im zentralen Bereich der Plasmafackel beschichtet wurden, sind in Tabelle 4.2 angegeben. Bei den angegebenen Schichtdicken ist zu berücksichtigen, dass die Ränder des Substrats, welche dem Randbereich der Plasmafackel ausgesetzt waren, um 30-40% kleinere Schichtdicken im Vergleich zu den Substratmitte aufwiesen. Um die Daten mit den standardmäßig hergestellten Elektrolytschichten (siehe Kapitel 2.2) zu vergleichen, wurden zwei 100×100 mm² große mit einer ca. 5-8 µm dicken 8YSZ-Elektrolytschicht beschichteten Substrate in jeweils vier gleichgroße Stücke zersägt, reduziert und von diesen Proben die He-Leckraten gemessen. Von den acht gemessenen Proben ergab sich ein Mittelwert der Leckrate von $\bar{L} = 5,32 \cdot 10^{-4} \text{mbarl/cm}^2\text{s}$ mit einer Standardabweichung von $\sigma_L = 5,31 \cdot 10^{-4} \text{mbarl/cm}^2\text{s}$. Die große Standardabweichung vom Mittelwert von 100% ist auf herstellungsbedingte, lokale Defekte in der Elektrolytschicht zurückzuführen. Die im mittleren Bereich 8 µm dicke PLD-Schicht zeigte die kleinste Leckrate von $15 \cdot 10^{-4} \text{mbarl/cm}^2\text{s}$. Berücksichtigt man die große Standardabweichung der

Tabelle 4.2: He-Leckraten und Dicken der Elektrolytschichten auf polierten Ni/YSZ Anodensubstraten beschichtet mit $N_{\text{Laserpuls}}$

<table>
<thead>
<tr>
<th>$N_{\text{Laserpuls}}$</th>
<th>$L_{\text{He}} \left(10^{-4} \text{mbarl/cm}^2\text{s}\right)$</th>
<th>$d_{\text{Schicht}} \left(\mu\text{m}\right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>30000</td>
<td>330</td>
<td>2,7</td>
</tr>
<tr>
<td>70000</td>
<td>230</td>
<td>6,1</td>
</tr>
<tr>
<td>80000</td>
<td>160</td>
<td>7,1</td>
</tr>
<tr>
<td>90000</td>
<td>15</td>
<td>8,0</td>
</tr>
</tbody>
</table>
4.3. PLD-SCHICHTEN AUS YSZ

standardmäßig hergestellten Schichten, liegt die Leckrate der mit PLD abgeschiedenen Schicht im Größenordnungsbereich der Standardzellen. Um die Abhängigkeit der Gasdichtigkeit der abgeschiedenen Elektrolytschichten auf die Oberflächenrauhigkeit der Substrate zu untersuchen, wurden zusätzlich bei gleichen Beschichtungsparametern Schichten auf unpolierten Anodensubstraten abgeschieden (Tabelle 4.3). Die

Tabelle 4.3: He-Leckraten und Dicken der Elektrolytschichten auf unpolierten Ni/YSZ Anodensubstraten beschichtet mit \(N_{Laserpuls} \)

<table>
<thead>
<tr>
<th>(N_{Laserpuls})</th>
<th>(L_{He} \left(10^{-4} \text{ mbarl/cm}^2\text{s} \right))</th>
<th>(d_{Schicht} \left(\mu m \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>80000</td>
<td>340</td>
<td>7,0</td>
</tr>
<tr>
<td>100000</td>
<td>340</td>
<td>8,5</td>
</tr>
<tr>
<td>120000</td>
<td>310</td>
<td>9,5</td>
</tr>
</tbody>
</table>

Schichten auf unpolierten Substraten zeigten im Vergleich zu denen auf polierten Substraten bei gleichen Schichtdicken bis um den Faktor 20 höhere He-Leckraten. Die größere Oberflächenrauhigkeit verursacht mehr lokale Defekte der Schicht pro Fläche und damit auch größere Leckraten. Die Anzahl der Defekte in der Schicht konnte mit dem Färbenmitteltest überprüft werden. Hierbei wurden die beschichteten Substrate mit einem roten Färbenmittel eingepinselt und nach 10 minütiger Eindringzeit mit einem Alkohol getränkten Tuch oberflächlich gesäubert. Ein weisses Entwicklerspray konnte nun die noch in den Poren bzw. Defekstellen der Schicht befindlichen Färbenmittelreste durch Kapillarkräfte an die Oberfläche transportieren. Porengrößen bis in den \(\mu m \)-Bereich konnten mit dieser Methode nachgewiesen werden (Abb. 4.25).
KAPITEL 4. ERGEBNISSE UND DISKUSSION

Abbildung 4.25: Färbermitteltest von YSZ-Schichten (PLD) auf poliertem (a-d) bzw. unpoliertem (e-g) Anodensubstraten; $pO_2 = 0,05 \text{ mbar}$, $T_{\text{Sub}} = 500 ^\circ \text{C}$, a) $N_{\text{Pulse}} = 30000$, b) $N_{\text{Pulse}} = 70000$, c) $N_{\text{Pulse}} = 80000$, d) $N_{\text{Pulse}} = 90000$, e) $N_{\text{Pulse}} = 80000$, f) $N_{\text{Pulse}} = 100000$ und g) $N_{\text{Pulse}} = 120000$

Der Färbermitteltest bestätigt qualitativ die gemessenen Leckraten der Schichten. Die dunklen Ränder der Substrate sind auf Stellen zurückzuführen, bei denen während der Politur die Anodenfunktionsschicht vollkommen abgetragen wurde und damit das poröse Substrat zum Vorschein kommt. Die Schichten auf polierten Substraten zeigen (Abb. 4.25) mit steigender Schichtdicke eine Abnahme der Defekte pro Fläche. Die mit 90000 Laserpulsen beschichtete polierte Probe zeigt keine sichtbaren Verfärbungen mehr, die auf Defekte schliessen lassen. Die gemessene Leckrate von $L = 15 \cdot 10^{-4} \text{mbar l/cm}^2 \text{s}$ ist daher auf submikrometer große Defekte zurückzuführen, welche mit dem Färbermitteltest nicht nachweisbar waren. Die Schichten auf unpolierten Substraten hingegen zeigten nur eine leichte Tendenz zur Abnahme der Defekte pro Fläche mit steigender Schichtdicke. Hier konnten Schichtdefekte, die durch Abschattungseffekte während der Beschichtung hervorgerufen wurden auch bei größeren Schichtdicken nicht oder nur unzureichend vermieden werden.

4.3.2.6 Chemische Elementverteilung

Tiefenprofil-Analysen wurden anhand SNMS-Messungen durchgeführt. Zwei polierte Anodensubstrate wurden bei $T_{\text{Sub}} = 500 ^\circ \text{C}$ und Prozessgasdrücken von $pO_2 = 0,01 \text{ mbar}$ bzw. 0,5 mbar mit $N_{\text{Pulse}} = 30000$ beschichtet. Bei einer Messzeit von 11000 s

Abbildung 4.26: SNMS-Konzentrationsverläufe einer YSZ-Schicht (T_{Sub} = 500 °C, pO₂ = 0,01 mbar) auf poliertem Anodensubstrat, a) Zr-, b) Y- und c) Ni-Intensitäten

In diesen Bereichen sinken die Zr- und Y-Intensitäten auf kleinere konstante Werte ab, welche den Elementkonzentrationen im Substratmaterial zugeordnet werden

4.3.2.7 Elektrochemische Zellenmessung

Um die elektrochemischen Eigenschaften von SOFCs mit PLD-Elektrolytschichten zu ermitteln, wurden zwei polierte Anodensubstrate bei 500 °C, \(pO_2 = 0,1 \) mbar mit 60000 (Zelle 1) bzw. 100000 (Zelle 2) Laserpulsen beschichtet. Die Elektrolytschichtdicken der Zelle 1 bzw. Zelle 2 betragen in der Mitte der Kathode 2,5/4,0 \(\mu \text{m} \) und an den Rändern 2,0/3,4 \(\mu \text{m} \). Die Herstellung der Substrate wurde in Abschnitt 3.4.9 auf S. 49 beschrieben. Kathodenseitig wurde 500 mln/min Luft und anodenseitig 500 mln/min \(H_2/3\%-H_2O \) angeboten (mln: Standard-ml). Die Kennlinien wurden zwischen 650-900 °C Zellentemperatur ermittelt (Abb. 4.27). Die Leistungsdichten der Zellen werden zum Vergleich bei einer Zellspannung von 0,7 V angegeben. In Tabelle 4.4 sind die Stromdichten (\(j_{\text{Zelle}} \)), Zellwiderstände (\(R_{\text{Zelle}} \)) und Leistungsdichten (\(P_{\text{Zelle}} \)) der gemessenen Zellen in Abhängigkeit der Betriebstemperaturen bei einer Zellspannung von 0,7 V aufgelistet. Zelle 2 weist bei 800-900 °C 68-84% der Leistungsdichte von Zelle 1 auf. Bei kleineren Temperaturen steigt die Leistungsdichte der Zelle 2 im Vergleich zur Leistungsdichte der Zelle 1 wieder an. Vermutlich waren Kontaktierungsschwierigkeiten für kleinere Leistungswerte der Zelle 1 während den Messungen verantwortlich. Der kathodenseitige Goldring verursachte bei zu großer Dicke Kontaktschwierigkeiten der Platinelektrode mit der Kathode, wohin gegen bei zu kleiner Dicke der elektrische Kontakt gut war, jedoch die Gasräume nicht mehr getrennt werden konnten. Kleinere Betriebstemperaturen führten vermutlich zum teilweisen Ablösen des kathodenseitigen elektrischen Kontakts, d.h. der Strom konnte nicht vollständig abgeführt werden. Im Vergleich zu den gemessenen Werten sind Referenzwerte einer Standardzelle in Tabelle 4.5 aufgelistet [80]. Die Referenzwerte wurden mit einer 50×50 mm² große Zelle mit 6 \(\mu \text{m} \) Elektrolytschichtdicke und 5 \(\mu \text{m} \) Anodenfunktionsschichtdicke aufgenommen. Kathodenmaterial und -dicke sind mit denen von Zelle1 und Zelle2 identisch. Die Messungen wurden anodenseitig bei gleicher Luftfeuchte (3% \(H_2O \)) mit 1000 mln/min \(H_2 \) und kathodenseitig mit 1000 mln/min Luft durchgeführt.
Abbildung 4.27: Zellspannung in Abhängigkeit der Stromdichte: SOFC mit PLD-Elektrolyt (8YSZ) beschichtet bei $T_{Sub} = 500 \, ^\circ\text{C}$, $pO_2 = 0,1 \, \text{mbar}$ mit 60000 Laserpulsen (oben, Zelle 1) und 100000 Laserpulsen (unten, Zelle 2)
Die Referenzzelle zeigte bei 900 °C eine 3-3,5 fach größere Leistungsdichte und deutlich kleinere Zellwiderstände als Zelle1 und Zelle2 (Abb. 4.28). Da das Elektrolyttmaterial bei 900 °C einen elektrischen Widerstand von ca. 0,01 Ω/µm aufweist [14], die Widerstandsdifferenz von Zelle 2 zu Zelle 1 (Abb. 4.28) bei dieser Temperatur jedoch 0,22 Ω beträgt, kann der Unterschied der Elektrolytschichtdicken nicht auf die großen Leistungsunterschiede zurückzuführen sein. Vielmehr sind vermutlich die Kontaktierungs Schwierigkeiten der Messapparatur für den Leistungsunterschied verantwortlich.

Abbildung 4.28: gemessene Zellwiderstände von Zelle 1, Zelle2 und Referenzzelle in Abhängigkeit der Betriebstemperatur
4.3. PLD-SCHICHTEN AUS YSZ

Tabelle 4.4: Stromdichten, Zellwiderstände und Leistungsdichten in Abhängigkeit der Betriebstemperaturen von Zelle 1 (linker Spaltenwert) und Zelle 2 (rechter Spaltenwert)

<table>
<thead>
<tr>
<th>T_{Zelle} (°C)</th>
<th>j_{Zelle} (A/cm²)</th>
<th>R_{Zelle} (Ωcm²)</th>
<th>P_{Zelle} (W/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>0,535/0,447</td>
<td>0,438/0,658</td>
<td>0,375/0,313</td>
</tr>
<tr>
<td>850</td>
<td>0,491/0,389</td>
<td>0,538/0,803</td>
<td>0,344/0,273</td>
</tr>
<tr>
<td>800</td>
<td>0,419/0,285</td>
<td>0,661/1,151</td>
<td>0,293/0,2</td>
</tr>
<tr>
<td>750</td>
<td>0,317/0,23</td>
<td>0,884/1,514</td>
<td>0,222/0,161</td>
</tr>
<tr>
<td>700</td>
<td>0,169/0,169</td>
<td>1,608/1,02</td>
<td>0,118/0,118</td>
</tr>
<tr>
<td>650</td>
<td>0,132/0,115</td>
<td>2,064/2,82</td>
<td>0,093/0,081</td>
</tr>
</tbody>
</table>

Tabelle 4.5: Referenzwerte von Stromdichte, Zellwiderständ und Leistungsdichte in Abhängigkeit der Betriebstemperatur

<table>
<thead>
<tr>
<th>T_{Zelle} (°C)</th>
<th>j_{Zelle} (A/cm²)</th>
<th>R_{Zelle} (Ωcm²)</th>
<th>P_{Zelle} (W/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>1,57</td>
<td>0,201</td>
<td>1,1</td>
</tr>
<tr>
<td>851</td>
<td>1,336</td>
<td>0,242</td>
<td>0,94</td>
</tr>
<tr>
<td>802</td>
<td>0,898</td>
<td>0,331</td>
<td>0,63</td>
</tr>
<tr>
<td>755</td>
<td>0,665</td>
<td>0,418</td>
<td>0,466</td>
</tr>
<tr>
<td>708</td>
<td>0,418</td>
<td>0,635</td>
<td>0,293</td>
</tr>
<tr>
<td>656</td>
<td>0,238</td>
<td>0,928</td>
<td>0,167</td>
</tr>
</tbody>
</table>

4.3.3 Diskussion von Abschnitt 4.3

Um den Einfluss des Anodensubstratwerkstoffs auf die Phasenbildung zu untersuchen, wurden im Vergleich YSZ-Schichten auf Al₂O₃-Substraten abgeschieden. Bei Substrattemperaturen von <600 °C verhält sich Al₂O₃ inert im Hinblick auf mögliche chemische Reaktionen mit dem Schichtwerkstoff. Die Variation der Substrattemperatur zwischen 300-600 °C zeigte keinen Einfluss auf die Phasenbildung der abgeschiedenen Schichten. Lediglich bei kleinem Prozessgasdruck von $pO₂ = 0,01$ mbar und einer Substrattemperatur $T_{Sub} = 300$ °C konnte eine kleine Verschiebung der YSZ-Reflexe zu kleineren Beugungswinkeln im Vergleich zu bei 600 °C abge-
KAPITEL 4. ERGEBNISSE UND DISKUSSION

Schiedenen Schichten gemessen werden. Im Falle der c-YSZ(111)-Reflexe betrug die Verschiebung \(2\theta = 0,1^\circ\). Bei kleinen Prozessgasdrücken waren größere Substrattemperaturen notwendig, damit sich die unverzerrte c-YSZ-Struktur ausbilden konnte. Die Variation des Prozessgasdrucks bei konstanter Substrattemperatur \(T_{Sub} = 400\ ^\circ C\) zeigte bei ansteigenden Drücken von \(pO_2 = 0,01-0,1\) mbar schmalere YSZ-Reflexe mit zunehmender Intensität. Laut Krawitz vergrößern sich damit die kristallinen Bereiche \[81\], d.h. der von dem Prozessgas zur Verfügung gestellte Sauerstoff wird mit steigendem Prozessgasdruck vermehrt in die aufwachsende Schicht eingebaut und ermöglicht somit die Ausbildung größerer Kristallite. Parallel verschieben sich die YSZ-Reflexe um +0,5 \(^\circ\) in Einheiten von \(2\theta\) und nehmen bei \(pO_2 \geq 0,2\) mbar die Position der zur c-YSZ entsprechenden Struktur ein. Bei Prozessgasdrücken \(\geq 0,2\) mbar zeigten sich in den Beugungsdiagrammen breitere Reflexe mit abnehmender Intensität, d.h. die Kristallitgröße nimmt ab und die Fehlordnung zu. Der große Prozessgasdruck bedingt kleinere kinetische Energien der auftreffenden Teilchen. Den Einfluss des Prozessgasdrucks auf die kinetische Energie von Zr-Teilchen beschrieben Gottmann und Kreutz \[62\]. Mit steigendem Prozessgasdruck stellten Gottmann und Kreutz kleinere kinetische Energien der Plasmateilchen fest. Für Zr-Teilchen berechneten sie für Prozessgasdrücke von \(pO_2=0-0,5\) mbar, \(\epsilon_{Laser} = 3,6\ J/cm^2\) und \(d_{Target/Substrat} = 30\ mm\) kinetische Energien der auftreffenden Teilchen von \(E_{kin} = 1-100\ eV\). Die für die Diffusion notwendige Teilchenenergie von einigen eV konnte also bei großen Prozessgasdrücken nur annähernd erreicht werden. Dies resultierte in kleineren Beweglichkeiten der schichtbildenden Teilchen, so dass sich nur noch bedingt eine Kristallstruktur ausbilden konnte. Im Vergleich dazu konnten die bei 600 \(^\circ\)C auf Anodensubstrat abgeschiedenen Schichten im gesamten Prozessgasdruckbereich \(pO_2=0,01-0,5\) mbar die c-YSZ-Struktur ausbilden, da Diffusion durch größere Temperaturen angeregt wurde. Auffällig im Beugungsdiagramm war die Messung des Ni(111)-Reflexes bei \(pO_2 = 0,01\) mbar. Aufgrund des fehlenden Sauerstoffs in der Atmosphäre und der kleineren Bindungsenthalpie von ZrO2 im Vergleich zu NiO wurden die in der Grenzfläche vom Substrat zur Schicht vorhandenen NiO-Körner oberflächlich zu Ni reduziert, wobei der freiwerdende Sauerstoff über die Sauerstofffehlstellen des YSZ im Substrat in die aufwachsende Schicht transportiert wurde. Sauerstoffionen wurden unter Bildung von c-YSZ in das Kristallgitter eingebaut. Voraussetzung für diesen Mechanismus war eine ausreichend hohe Substrattemperatur von über 400 \(^\circ\)C bei dem die Reduktion ablaufen konnte und das YSZ im Substrat ausreichend ionenleitend wurde. Bei kleineren Temperaturen konnten ne-
ben den c-YSZ-Reflexen weitere Reflexe an der linken Flanke gemessen werden, die wie bei den auf Al₂O₃ abgeschiedenen Schichten der fehlgeordneten c₇-YSZ Phase mit grösster Einheitszelle zugeordnet wurden. Mit sinkendem Prozessgasdruck war eine zunehmende Verschiebung der YSZ-Reflexe um Δθ = 0,5° zu kleineren Beugungswinkeln zu erkennen. Im Vergleich zu den auf Al₂O₃ ermittelten Phasen wurde jedoch bei gleicher Substrattemperatur die c-YSZ Phase schon bei kleineren Prozessgasdrücken ausgebildet. Dies konnte auf die Sauerstoffzufuhr aus dem partiell reduzierten NiO an der Substratgrenzfläche zurückgeführt werden. Aus den Beugungswinkeln konnte über die Bragg'sche Gleichung die Gitterkonstante der fehlgeordneten c₇-YSZ-Struktur zu aySZ = 5,213 Å berechnet werden. Die Abweichung von der stöchiometrischen c-YSZ-Struktur (JCPDS-Datei 30-1468) betrug ΔaySZ = 0,08 Å.

KAPITEL 4. ERGEBNISSE UND DISKUSSION

Plasma ungehindert passieren kann [57]. In der PLD-Anlage, die in dieser Arbeit verwendet wurde, wird eine Blende im Strahlengang der Laserstrahlung eingesetzt, um die intensitätsschwache Randstrahlung der Laserstrahlung, die zur Bildung von Droplets führt, abzuschneiden.

Untersuchungen zur Kristallitorientierung ergaben eine fasertextur orthogonal zur YSZ(100)-Netzebene. Sie wurde bei kleinem Prozessgasdruck $p_{\text{O}_2} = 0,01 \text{ mbar}$ und einer Temperatur $T_{\text{Sub}} = 500 \degree \text{C}$ gemessen. Es existieren somit keine Korngrenzen orthogonal zur YSZ(100)-Netzebene. Große Prozessgasdrücke hingegen induzieren eine gleichmäßig verteilte Kristallitorientierung ohne Vorzugsorientierung.

Tiefenprofilanalysen ergaben die gleiche relative Zusammensetzung der schichtbildenden Elemente Zr und Y wie im 8YSZ-Substratmaterial. Über die gesamte Schichtdicke konnte keine Veränderung in der Zusammensetzung gemessen werden. Weiterhin konnte keine Abhängigkeit der Zusammensetzung vom Prozessgasdruck während der Beschichtung gezeigt werden. Dies stimmt mit der für den PLD-Prozess typischen stöchiometrischen Abbildung vom Target- auf das Schichtmaterial überein.

He-Leckraten der abgeschiedenen Schichten wurden in Abhängigkeit der Schichtdicke bestimmt. Auf polierten Substraten ergab sich eine Halbierung der Leckrate bei einer Verdreifachung der Schichtdicke von 2,7 µm auf 7,1 µm. Bei weiterer Vergrößerung der Schichtdicke auf 8 µm sank die Leckrate um eine Größenordnung. Die Abnahme der Leckrate ist durch das vollständige Verschließen der Löcher bzw. Vertiefungen in der Anodenfunktionsschicht zu deuten. Der Großteil dieser Vertiefungen weist also eine Tiefe <8 µm auf (siehe Kapitel 4.3.2.2). Die Schichten auf unpolierten Substraten hingegen zeigten nur eine leichte Tendenz zur Abnahme der Defekte pro Fläche mit steigender Schichtdicke. Hier konnten Schichtdefekte die durch Abschattungseffekte während der Beschichtung hervorgerufen wurden auch bei größeren Schichtdicken nicht oder nur unzureichend vermieden werden.

4.4 PLD-Schichten: LSGM auf NiO/YSZ-Anodensubstraten

Alle durchgeführten Beschichtungen, außer es wird explizit darauf hingewiesen, wurden mit einer Leistungsdichte der Laserstrahlung auf dem Target von \(\varepsilon_{\text{Laser}} = 3,7 \) J/cm\(^2\) und einem mittleren Target-Substrat Abstand \(d_{\text{Target-Substrat}} = 30 \) mm durchgeführt. Alle Schichten wurden von dem in Absatz 4.2 beschriebenen LSGM-Target beschichtet.

4.4.1 Schichtmorphologie und -dicke

Die Schichten zeigten im Querschnitt eine dichte, poröse Mikrostruktur (Abb. 4.29). Schichtdefekte traten, wie bei den YSZ-Schichten, an Vertiefungen in der Funktionsschicht auf, die aufgrund von Abschattungseffekten nicht mit einer dichten, durchgängigen Schicht beschichtet werden konnten (siehe S.67).

Abbildung 4.29: Beschichtete Anodensubstratoberflächen (poliert) mit LSGM; \(T_{\text{Sub}} = 550 ^\circ \text{C}, N_{\text{Pulse}} = 30000, pO_2 = 0,1 \) mbar, a) \(\times3500 \) und b) \(\times7500 \)
4.4.2 Schichtbildende Elemente und Phasenbildung

EDX-Linienprofil Analysen (Abb. 4.30) zeigen im oberen Bereich den analysierten Bereich anhand einer REM Aufnahme und darunter die gemessenen Zählraten der charakteristischen Röntgenstrahlung La-Lα, Ga-Lα, Sr-Lα und Mg-Kα. Im Bereich der Schicht steigen die La- und Ga-Intensitäten des EDX-Signals deutlich an, wogegen sich die Sr- und Mg-Intensitäten des EDX-Signals nicht vom Hintergrundrauschen abhoben.

Abbildung 4.30: EDX-Linienprofil-Analyse von LSGM-Schicht auf Anodensubstrat (poliert); $T_{Sub} = 550 \, ^\circ\text{C}$, $N_{Pulse} = 30000$, $pO_2 = 0,1 \, \text{mbar}$

4.4.3 Phasenbildung nach thermischer Behandlung in Luft

Um die Phasenbildung der abgeschiedenen Schichten zu studieren, wurden die beschichteten Substrate nachträglich im Ofen thermisch behandelt. Bei einer Aufheiz- und Abkühlrate von 5 K/min wurden die beschichteten Substrate bei 600-1500 °C an Luft nachbehandelt und anschließend auf ihren Phasenbestand untersucht. Nach 2 h bei 700 °C zeigte das Beugungsdiagramm in Abb. 4.31a neben dem typischen amorphen Verlauf (breiter Reflex bei ca $2\theta = 30^\circ$) erste Reflexe der perowskitischen Lanthangallatphase.
Abbildung 4.31: Röntgen-Analyse von LSGM-Schichten (PLD) auf Anodensubstrat (poliert); Thermische Nachbehandlung an Luft bei a) 700 °C für 2 h, b) 700 °C für 12 h und c) 900 °C für 2 h

Nach 12 h bei 700 °C wurde der amorphe Anteil nicht mehr gemessen. Neben der Perowskitphase konnten zusätzlich die Hauptreflexe der Lanthangallatphase der Zusammensetzung La₄Ga₂O₉ gemessen werden (Abb. 4.31b). Nach Behandlung bei 900 °C für 2 h nahm die Ausbildung der La₄Ga₂O₉-Phase zu (Abb. 4.31c). Die schon im Targetmaterial beobachtete LaSrGa₃O₇ Phase konnte ebenfalls zu kleinen Anteilen gemessen werden. Eine Erhöhung der Temperatur auf 1000 °C zeigte ein unveränderten Phasenbestand (Abb. 4.32a). In der bei 1100 °C nachbehandelten Schicht wurde die La₄Ga₂O₉-Phase nicht mehr gemessen (Abb. 4.32b). Auffällig ist eine Zunahme der LaSrGa₃O₇-Phase, welche nach Behandlung bei 1150 °C deutlich abnahm und nach 1200 °C, bis auf kleinste Anteile, nicht mehr gemessen wurde.
4.4. PLD-SCHICHTEN: LSGM AUF NIO/YSZ-ANODENSUBSTRATEN

Abbildung 4.32: Röntgen-Analyse von LSGM-Schichten (PLD) auf Anodensubstrat (poliert); Thermische Nachbehandlung an Luft bei a) 1000 °C für 2 h, b) 1100 °C für 12 h und c) 1150 °C für 2 h

Die bei 1200 °C für 2 h nachbehandelte Schicht zeigte (Abb. 4.33a) eine Aufspaltung der Perowskitreflexe bei den Beugungswinkeln $2\theta = 32,5^\circ$, 40,5°, 52,5°, 58°, und 68°. Die Aufspaltung konnte in Übereinstimmung mit der LaMnO$_3$-Struktur als rhomboedrisch verzerrte Perowskitstruktur identifiziert werden. Eine Erhöhung der Temperatur auf 1300 °C zeigte einen deutlichen Rückgang der perowskitischen Phase, sowie Ansätze der Lanthanzirkonatphase La$_2$Zr$_2$O$_7$ (Abb. 4.33b). Nach Auslagerung bei 1500 °C an Luft konnte neben den Reflexen des Substratmaterials (YSZ, NiO) nur die Lanthanzirkonatphase gemessen werden (Abb. 4.33c). Elementanalysen konnten in Übereinstimmung mit den Beugungsanalysen nur noch La, Zr, Y und Ni nachweisen. Die Elementverteilungen in Abb. 4.34 zeigten die Verbindung des Lanthans (blau) mit den oberflächenhaften YSZ-Körner (rot) zu La$_2$Zr$_2$O$_7$. Vermutlich dampfte Ga ab und La, Sr und Mg diffundierten in den Substratwerkstoff.
Eine Schicht wurde nicht mehr erkannt. Abschließend ist zu bemerken, dass thermische Nachbehandlungen bei 1200 °C die amorph abgeschiedenen Schichten in die Perowskitphase überführen konnten ohne weitere Phasen erkennen zu lassen und wurden deshalb für die weiteren Untersuchungen speziell für die elektrochemischen Tests favorisiert.

Abbildung 4.33: Röntgen-Analyse von LSGM-Schichten (PLD) auf Anodensubstrat (poliert); Thermische Nachbehandlung an Luft bei a) 1200 °C für 2 h, b) 1300 °C für 12 h und c) 1500 °C für 2 h

Abbildung 4.33: Röntgen-Analyse von LSGM-Schichten (PLD) auf Anodensubstrat (poliert); Thermische Nachbehandlung an Luft bei a) 1200 °C für 2 h, b) 1300 °C für 12 h und c) 1500 °C für 2 h
4.4.4 Phasenbildung nach thermischer Auslagerung in Wasserstoff

Nach thermischer Behandlung der amorph abgeschiedenen Schichten bei 1200 °C konnten einphasige perowskitische Schichten mit geringen Anteilen der LaSrGa$_3$O$_7$-Phase hergestellt werden. Um die Phasenstabilität der LSGM Schicht in Kontakt mit dem Anodensubstratmaterial unter reduzierenden Bedingungen zu überprüfen, wurde das beschichtete Substrat zunächst vollständig bei 900 °C in Ar/4%-H$_2$ reduziert und danach bei 750 °C in gleicher Atmosphäre für 500 h ausgelagert. 750 °C wurden für die Auslagerung gewählt, da die Brennstoffzellen mit LSGM-Elektrolyt bei dieser Betriebstemperatur oder kleiner eingesetzt werden sollen. Nach der Reduktion bei 900 °C für 3 h zeigte sich eine Rücktransformation der Reflexaufspaltung der LaGaO$_3$-Phase in Einzelreflexe, d.h. die verzerrte rhomboedrische Perowskitstruktur ging nach der Reduktion wieder in die orthorhombische Perowskitstruktur über (Abb. 4.35b).
KAPITEL 4. ERGEBNISSE UND DISKUSSION

Abbildung 4.35: Röntgen-Analyse einer LSGM-Schicht (PLD) auf Anodensubstrat (poliert); Thermische Nachbehandlung an Luft bei a) 1200 °C für 2 h, b) in Ar/4%-H\textsubscript{2} bei 900 °C für 3 h

Nach der Auslagerung bei 750 °C in Ar/4%-H\textsubscript{2} für 500 h wurde der gleiche Phasenbestand gemessen (Abb. 4.35b).

4.4.5 Chemische Elementverteilung

Die bei 1200 °C an Luft auskristallisierte LSGM-Schicht wurde nach Auslagerung in Ar/4%-H\textsubscript{2} bei 750 °C für 500 h SNMS auf ihre Elementverteilung untersucht. Im Vergleich dazu wurde eine thermisch unbehandelte Schicht analysiert. Die Schichten wurden bei einer Substrattemperatur T\textsubscript{Sub}= 500 °C und einem Prozessgasdruck pO\textsubscript{2}= 0,1 mbar abgeschieden. Von beiden Schichten wurden Tiefenprofile der Elemente La, Sr, Ga und Mg erstellt und mit einem LSGM-Standard quantifiziert. Als Standard wurde das LSGM-Target verwendet, dessen Zusammensetzung La\textsubscript{0,85}Sr\textsubscript{0,15}Ga\textsubscript{0,85}Mg\textsubscript{0,15}O\textsubscript{2,85} zuvor durch chemische Analysen ermittelt wurde. Die
relativen Empfindlichkeitsfaktoren S_{rel} wurden anhand der im experimentellen Teil erwähnten Gleichung 3.3 auf S. 47 ermittelt. Die Gleichung 3.4 lieferte die Konzentrationen der schichtbildenden Elemente. Abb. 4.36 und Abb. 4.37 geben die gemessenen, gemäß der perowskitischen Stöchiometrie normierten Konzentration der Elemente La, Sr, Ga und Mg in Abhängigkeit der Schichttiefe an. Die untersuchte Fläche auf dem Substrat betrug $300 \times 300 \, \mu m^2$. Die unbehandelte Schicht zeigte von dem Targetmaterial abweichende Konzentrationsverhältnisse (Abb. 4.36).

Abbildung 4.36: SNMS-Tiefenprofil-Analyse von LSGM-Schicht auf Anodensubstrat, abgeschieden bei $T_{Sub}=500 \, ^\circ C$ und $pO_2=0,1 \, mbar$

Die Konzentrationen von La, Ga und Sr sind über das gemessene Tiefenprofil konstant. Dabei ist die normierte La-Konzentration mit 1 größer als die des Targetmaterials mit 0,85. Auch die normierte Ga- und Sr-Konzentration weichen mit 0,8 und 0,12 von der Targetzusammensetzung (Ga: 0,85, Sr: 0,15) ab. Die Mg-Konzentration
steigt an der Schichtoberfläche von 3 mol% bis 10 mol% zunächst an und fällt danach auf einen konstant bleibenden Wert von 8 mol% ab. Die große La-Konzentration im Vergleich zum Targetmaterial ist nur durch die Abnahme der Konzentration der restlichen Schichtelemente zu erklären. Zwei Möglichkeiten, die zu diesen Verlusten führen sind denkbar. Zum einen der Verlust auf dem Weg der schichtbildenden Partikel vom Target zum Substrat durch Oxidationsprozesse (Übergang in die Gasphase) und zum anderen das thermische Verdampfen auf der Substratoberfläche. In den tiefer liegenden Schichtbereichen von 1,25-2,5 \(\mu m \) setzt sich das Material unverändert aus La: 50 mol\%, Sr: 6 mol\%, Ga: 40 mol\% und Mg: 4 mol\% zusammen. Die thermisch behandelte Schicht wies im Vergleich zur unbehandelten unterschiedliche Elementkonzentrationen in Abhängigkeit der Schichttiefe auf.

Abbildung 4.37: SNMS-Tiefenprofil-Analyse von LSGM-Schicht auf Anodensubstrat (\(T_{Sub} = 500 \ ^\circ\text{C}, pO_2 = 0,1 \text{ mbar} \)) nach thermischer Behandlung in Luft und Auslagerung in Ar/4%-H\(_2\)
Die La-Konzentration sinkt von oberflächenlich 75 mol% auf 65 mol% bei einer Schichttiefe von 2 µm. In diesem Bereich erreicht die Ga-Konzentration 75 mol%. Die Sr-Konzentration stieg von oberflächenlich 35 mol% auf 50 mol% in 2 µm Tiefe an und sank in 2,6 µm Tiefe auf 40 mol% wieder ab. Die Sr-Konzentration im Schichtmaterial ist um das 2-3-fache höher als im Targetmaterial. Auffällig ist die sinkende Mg-Konzentration von 15 mol% auf 10 mol%. Der Anstieg der Sr-Konzentration bei abnehmender La-Konzentration in einer Schichttiefe von 2 µm läßt die Entstehung einer Sr-reichereren und La-ärmeren Phase vermuten. Die schon im Beugungsdiagramm in Ansätzen vorhandene SrLaGa$_3$O$_7$-Phase (siehe Abb. 4.35) könnte hierfür verantwortlich sein. Der Vergleich der Ergebnisse der beiden Substrate zeigt den Verlust von La (25-35 mol%) nach thermischer Behandlung bei 1200 °C und anschließender Auslagerung bei 750 °C in reduzierender Atmosphäre. Die Ga-Konzentration nimmt oberflächenlich um 10 mol% ab, während dessen die Sr-Konzentration um 23-38 mol% und die Mg-Konzentration um oberflächenlich 16 mol% ansteigt. Die Abnahme des Ga-Gehaltes ist vermutlich auf das Abdampfen bei größeren Temperaturen in Form von Ga$_2$O zurückzuführen. Der Rückgang der La-Konzentration ist vermutlich auf die Bildung von La$_2$Zr$_2$O$_7$ an der Substratgrenzfläche zurückzuführen. Die Beugsdiagramme der nachbehandelten Schicht lassen die Ausbildung dieser Phase jedoch erst ab einer Temperatur von 1300 °C erkennen. Bei 1500 °C ist ausschließlich nur die Lanthanzirkonat-Phase zu beobachten. Hier konnte auch festgestellt werden, dass die Schicht vollständig mit dem Substratmaterial reagierte hatte bzw. abgedampft war. Vermutlich beginnt die Bildung von La$_2$Zr$_2$O$_7$ schon bei kleineren Temperaturen als 1300 °C, konnte aber anhand der Beugungsanalysen aufgrund des begrenzten Anregungsvolumen und der kleinen Anteile nicht im Anfangsstadium gemessen werden. Mitterdorfer und Gauckler wiesen am Übergang von La$_{0.85}$Sr$_{0.15}$Mn$_y$O$_{3-δ}$ mit $y=0.95-1.1$ zu YSZ (9.5 mol% Y$_2$O$_3$-stabilisiertes ZrO$_2$) nach wenigen Minuten bei 1100 °C an Luft Formationen von kubischen La$_2$Zr$_2$O$_7$-Inseln nach [64].

zu führen, da die Bereiche der Röntgenspektren von Si-Kα (1,74 keV) und Sr-Lα (1,8 keV) nahe beieinander liegen. In Abb. 4.38 sind die gemessenen Intensitäten der charakteristischen Röntgenstrahlung von Ni(rot), Sr(violett), Ga(hellgrün), Lanthan(blau) und Zr(dunkelgrün) der REM-Aufnahme des Querschliffs überlagert. Die waagerechte gelbe Linie ist die Spur des Linienprofils. Im Bereich der zweiten Phase sinkt die Konzentration des Lanthans und die des Strontiums steigt an, wobei die Konzentration des Galliums dort ihr Maximum erreicht. Vermutlich bildet sich in diesen Bereichen die LaSrGa₃O₇-Phase aus, deren Existenz anhand der SNMS-Analysen bestätigt wurde. Im Substrat wechseln sich typischerweise Zr- und Ni-Konzentrationsmaxima, aufgrund der Ni- und YSZ-Körner ab. Auffällig hier ist die Zunahme der Sr-Konzentration, welche parallel mit der Zr-Konzentration ansteigt. Da im Beugungsdiagramm keine weitere Phase detektiert wurde, kann angenommen werden, dass wiederum Einbettmasse versetzt mit SiO₂-Polierpartikeln in den Poren des Substrats fälschlicherweise als Sr detektiert wurde. Unabhängig von den gemessenen Intensitäten der schichtbildenden Elemente wurde eine vom Substrat in die Schicht abfallende Ni-Intensität beobachtet. Sie kann einer Ni-Diffusion von den Ni-Körnern im Substrat in die Schicht zugeordnet werden.

Abbildung 4.38: EDX-Linienprofil-Analyse an einer LSGM-Schicht (links) nach thermischer Behandlung in Luft und Auslagerung in Ar/4%-H₂; Ni(rot), Sr(violett), Ga(hellgrün), Lanthan(blau) und Zr(dunkelgrün)
4.4.6 Elektrochemische Zellenmessung

Um die elektrochemischen Zellenleistungen von SOFCs mit LSGM-Elektrolytschichten zu ermitteln wurden drei polierte Anodensubstrate bei 500 °C, \(pO_2 = 0.1 \text{ mbar} \) und 60000 (Zelle 1), 80000 (Zelle 2) und 100000 (Zelle 3) Laserpulsen beschichtet. Anschließend wurden die Substrate bei 1200 °C für 3 h thermisch nachbehandelt, damit sich die Perowskitstruktur der Schicht ausbilden konnte (Abschnitt 4.4.3). Die weitere Herstellung der Substrate wird in Abschnitt 3.4.9 beschrieben. Die untersuchten Zellen 1-3 zeigten nach Reduktion bei 600-900 °C eine Zellspannung von 980 mV, welche nach ca. 1 h auf 0 mV zusammenbrach. Es konnten somit keine Kennlinien der Zellen aufgenommen werden.

4.4.7 Diskussion zu Abschnitt 4.4

PLD-Schichten wurden von einem LSGM-Target auf Anodensubstrat abgeschieden und auf Phasenbildung, Elementverteilung im Tiefenprofil und die Schichtmorphologie untersucht. Die Schichten zeigten anhand REM-Aufnahmen eine dichte, porenfreie Struktur [61], [57].

Ein grundlegendes Problem bei der Herstellung von LSGM-Elektrolytschichten ist deren Neigung zur Mehrphasigkeit [44], [52]. Bei den hier abgeschiedenen Schichten zeigten sich in Abhängigkeit der Temperatur Ausbildungen von unterschiedlichen Phasen. Direkt nach der Abscheidung bei \(T_{Sub} = 500-800 \text{ °C} \) konnten \textit{Beugungsanalysen} eine amorphe Struktur der Schichten nachweisen. Die thermische Energie war nicht ausreichend, um die Schicht auskristallisieren zu lassen. Von ähnlichen Ergebnissen berichteten Mathews et al. Bei ihren PLD-Abscheidungsversuchen bei Raumtemperatur von einem LSGM-Target auf Quarzglas konnten Mathews et al. die Ausbildung der amorphen Struktur nachweisen [63], die nach thermischer Behandlung bei 700 °C in Ar in die kubische LSGM-Struktur auskristallisierte. Nachträgliche thermische Behandlungen an Luft der hier besprochenen Schichten konnten ebenfalls die Ausbildung der \(\text{LaGaO}_3 \)-Phase provozieren. Ebenfalls zeigten sich nach 700 °C an Luft erste kristalline Strukturen. Neben der \(\text{LaGaO}_3 \)-Phase wurde bei 700 °C eine weitere Lanthangallatphase \(\text{La}_4\text{Ga}_2\text{O}_9 \) gemessen, deren Reflexe nach Behandlung bei 900 °C höhere Intensitäten zeigten. Kuncewicz-Kupczyk et al. konnten bei ihren Röntgenbeugungsanalysen von LSGM-Pellets ebenfalls diese Phase identifi-
KAPITEL 4. ERGEBNISSE UND DISKUSSION

SNMS-Tiefenprofilanalysen gaben Aufschluß über die Konzentration der schichtbildenden Elemente La, Sr, Ga und Mg der ausgelagerten im Vergleich zur unbehandelten Schicht. Die thermisch unbehandelte wie auch die nachbehandelte Schicht zeigte von dem Targetmaterial abweichende Konzentrationsverhältnisse. Die Stöchio-

Die in dieser Arbeit untersuchten Schichten zeigten in Folge des Rückgangs der Ga-Konzentration, die Ausbildung der ionisch schlechtleitenden LaSrGa₃O₇-Phase. Die Abnahme der La-Konzentration wurde auf die La-Diffusion vom Elektrolyten in das Anodenmaterial unter Bildung von Lanthanzirkonat zurückgeführt. Röntgenbeugungsanalysen der thermisch nachbehandelten Schichten konnten die Ausbildung der La₂Zr₂O₇-Phase bestätigen. Aufgrund des Anstiegs der Sr-Konzentration bei gleichzeitiger Abnahme der La-Konzentration wurde die Enstehung der LaSrGa₃O₇-Phase vermutet. Bestätigt wurde die Existenz zum einen durch schwache Reflexe im Beugungsdiagramm und zum anderen durch EDX.

4.5 Sputter-Schichten: YSZ

Alle Sputterschichten wurden bei einem mittleren Target-Substrat Abstand von 200 mm und einem Ionenstrom von 0,6 A auf dem Target mit einer Gesamtleistung von 1020 W abgeschieden. Während der Beschichtungen wurden der Sauerstoffpartialdruck pO₂ zwischen 0-6×10⁻⁴ mbar, die Substrattemperatur T_{Sub} zwischen 176-700 °C und die Beschichtungszeit t_{Dep} zwischen 25-240 min variiert.

4.5.1 Schichten auf Al₂O₃-Substraten

Für die Beschichtungen polierte Al₂O₃-Substrate mit den Abmessungen 10×10 mm² benutzt. Die mittlere Oberflächenrauhigkeit betrug Rₐ = 25 nm. Die Beschichtungsparameter sind in Tabelle 3.1 wiedergegeben.

4.5.1.1 Schichtdicke und Oberflächenrauhigkeit

Schichtdicken und Oberflächenrauhigkeiten wurden anhand von Profilometermessungen bestimmt. Die mittleren Oberflächenrauhigkeitswerte der Schichten von Rₐ = 25 nm unterschieden sich nicht von unbeschichteten Al₂O₃-Substraten. Die gemessenen Schichtdicken sind in Tabelle 4.6 zusammengefaßt. Mit zunehmenden Prozessgas-
bzw. Sauerstoffdruck \(p_{O_2} \) konnte bei gleichen Beschichtungszeiten eine Abnahme der Schichtdicke beobachtet werden.

Tabelle 4.6: Schichtdicken von gesputterten YSZ-Schichten auf \(Al_2O_3 \) (poliert) bei gleicher Beschichtungszeit

<table>
<thead>
<tr>
<th>(p_{O_2}) (10^{-4} \text{ mbar})</th>
<th>(d_{Schicht}) ((\mu \text{m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>9,25</td>
</tr>
<tr>
<td>0,65</td>
<td>8,5</td>
</tr>
<tr>
<td>2,3</td>
<td>6,5</td>
</tr>
<tr>
<td>3,8</td>
<td>4,0</td>
</tr>
<tr>
<td>5</td>
<td>1,6</td>
</tr>
<tr>
<td>6</td>
<td>1,4</td>
</tr>
</tbody>
</table>

4.5.1.2 Phasenbildung

Ohne Zufuhr von Sauerstoff während der Beschichtung wurde die metallische \(\alpha \)-Zr Phase festgestellt (Abb. 4.39). Dennoch sind kleine Anteile von \(Y_2O_3 \) zu erkennen.
Abbildung 4.39: Beugungsdiagramme von DC-Sputtering-Schichten auf Al₂O₃ (Zr/Y-Target); a) \(T_{\text{sub}} = 700 ^\circ \text{C}, pO_2 = 0 \text{ mbar} \), b) \(T_{\text{sub}} = 600 ^\circ \text{C}, pO_2 = 0,65 \times 10^{-4} \text{ mbar} \), c) \(T_{\text{sub}} = 700 ^\circ \text{C}, pO_2 = 2,3 \times 10^{-4} \text{ mbar} \)

Vermutlich führten kleine Leckagen der Gaszufuhr bzw. der Vakuumkammer und die Verunreinigung des Argons mit Sauerstoff zur unvermeidlichen Luft- bzw. Sauerstoffzufuhr in die Beschichtungskammer. Die aufgewachsene Schicht reagierte mit kleinen Mengen von Sauerstoff unter Bildung von \(\mathrm{Y}_2\mathrm{O}_3 \). Bei größerem Sauerstoffdruck von \(0,65 \times 10^{-4} \text{ mbar} \) und einer Abscheidungstemperatur von \(T_{\text{sub}} = 600 ^\circ \text{C} \) nahm die Bildung der oxidischen Phasen zu. Einzelne scharfe Reflexe der \(\alpha\)-Zr-Phase konnten nicht mehr nachgewiesen werden. Die stark verbreiterten Reflexe bei Beugungswinkeln von \(2\theta = 30^\circ \) und \(35^\circ \) (Abb. 4.39b) zeigen die beginnende Kristallisation der c-YSZ-Phase. Weiterhin deutet die Breite der Reflexe auf kleine kristalline Bereiche in der c-YSZ Phase hin, d.h. die schichtbildenden Elemente beginnen in kleineren Bereichen auszukristallisieren [81]. Bei weiterer Erhöhung des Sauerstoffdrucks auf \(2,3 \times 10^{-4} \text{ mbar} \) zeigen sich deutlich größere und schmalere Reflexe der c-YSZ-Phase, d.h. die Kristallitgröße wächst mit steigendem Sauerstoffdruck (Abb. 4.39c).
Bei weiterer Erhöhung des Sauerstoffdrucks auf $5-6 \times 10^{-4} \text{ mbar}$ nimmt die Intensität der c-YSZ-Reflexe wieder ab (Abb. 4.40).

Abbildung 4.40: Beugungsdiagramme von DC-Sputtering-Schichten auf Al_2O_3 (Zr/Y-Target); a) $T_{\text{sub}}= 600 ^\circ \text{C}$, $p\text{O}_2= 3,8 \times 10^{-4} \text{ mbar}$, b) $T_{\text{sub}}= 700 ^\circ \text{C}$, $p\text{O}_2= 5 \times 10^{-4} \text{ mbar}$, c) $T_{\text{sub}}= 500 ^\circ \text{C}$, $p\text{O}_2= 6 \times 10^{-4} \text{ mbar}$

Über die Halbwertsbreite der Reflexe kann die Kristallitgröße senkrecht zu den Netzebenen berechnet werden. Die Scherrer-Gleichung gibt die invers-proportionale Beziehung der Halbwertsbreite B zur Kristallitgröße D bzw. zum Kosinus des Beugungswinkel θ an.

$$B = \frac{\lambda}{D \cos \theta} \frac{180^\circ}{\pi}$$ (4.2)

Tabelle 4.7: Kristallitgrößen von gesputterten YSZ-Schichten auf Al₂O₃ (poliert)

<table>
<thead>
<tr>
<th>pO₂ (10^{-4}) mbar</th>
<th>T(_{\text{Sub}}) (^\circ)C</th>
<th>D (\text{Å})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,65</td>
<td>600</td>
<td>70</td>
</tr>
<tr>
<td>2,3</td>
<td>700</td>
<td>160</td>
</tr>
<tr>
<td>3,8</td>
<td>600</td>
<td>220</td>
</tr>
<tr>
<td>5</td>
<td>700</td>
<td>160</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>160</td>
</tr>
</tbody>
</table>

von pO₂ = 3,8 ×10⁻⁴ mbar ein Maximum erreicht und bei größeren Drücken auf einen Wert von 160 Å abfällt. Bei einem Sauerstoffdruck von pO₂ = 3,8 ×10⁻⁴ mbar weist die Schicht die größten Kristallite auf. Dieser Prozessgasdruck stellt für die YSZ-Beschichtung auf Al₂O₃ einen geeigneten Parameter dar, um dichte und gut auskristallisierte Schichten herzustellen.

4.5.2 Schichten auf NiO/YSZ-Anodensubstraten

Parallel zu den Beschichtungen auf Al₂O₃-Substraten wurden mit den gleichen Parametern (4.5) YSZ-Schichten auf Anodensubstraten abgeschieden. Die Schichten wurden auf ihre Morphologie, Dicke, Phasenbildung und Gasdichtigkeit untersucht.

4.5.2.1 Schichtmorphologie, -defekte und -dicke

REM-Querschliffe von Schichten die bei kleinen Sauerstoffdrücken pO₂ ≤ 2,3×10⁻⁴ mbar und Substrattemperaturen T\(_{\text{Sub}}\) > 500 °C abgeschieden wurden, zeigten dichte, poröse, porenfreie Schichten, ohne erkennbare Korngrenzen (Abb. 4.41a). Schichten, die bei großem Sauerstoffdruck von pO₂ = 6×10⁻⁴ mbar abgeschieden wurden, zeigten in Ansätzen die kolumnare Struktur. Einzelne kolumnare Kristallite wuchsen deutlich getrennt unter Bildung von Zwischenräumen voneinander auf (Abb. 4.41b).
Abbildung 4.41: REM-Querschliff von YSZ-Sputter-Schichten auf Anodensubstrat; a) \(T_{\text{sub}} = 600 \, ^\circ\text{C} \), \(pO_2 = 0.65 \times 10^{-4} \, \text{mbar} \), b) \(T_{\text{sub}} = 500 \, ^\circ\text{C} \), \(pO_2 = 6 \times 10^{-4} \, \text{mbar} \)

Die mit Profilometrie bestimmten Schichtdicken zeigten keine deutlichen Abweichungen von den auf \(\text{Al}_2\text{O}_3 \)-Substraten abgeschiedenen Schichten. Mit zunehmendem Sauerstoffdruck nahm die Schichtdicke ab (Tabelle 4.8). Defektstellen der abgeschiedenen Schichten wurden anhand von REM-Aufnahmen lokalisiert. Untersucht wurden Querschliffe von reduzierten Substraten, um eine gute optische Abgrenzung der Elektrolytschicht zur Anodenfunktionsschicht zu erhalten. Zwei grundlegende Typen von Schichtdefekten konnten erkannt werden: a) Substrat-induzierte Defekte

<table>
<thead>
<tr>
<th>(pO_2 , (10^{-4} , \text{mbar}))</th>
<th>(T_{\text{sub}} , (^\circ\text{C}))</th>
<th>(d_{\text{Schicht}} , (\mu\text{m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,65</td>
<td>600</td>
<td>7,5</td>
</tr>
<tr>
<td>2,3</td>
<td>700</td>
<td>7</td>
</tr>
<tr>
<td>3,8</td>
<td>600</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>700</td>
<td>1,75</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Tabelle 4.8: Schichtdicken von gesputterten YSZ-Schichten auf NiO/YSZ Anodensubstrat
und b) Defekte, die durch schichtinterne Spannungen verursacht wurden. Substrat-
induzierte Defekte traten an Vertiefungen oder Erhebungen in der Anodenfunkti-
onsschicht auf, die in der Größenordnung der Schichtdicke vorlagen. Hierbei konnten
Vertiefungen im Substrat nicht vollständig verschlossen werden (Abb. 4.42a). Erhe-
bungen wurden homogen beschichtet, jedoch traten Risse an der Grenzfläche vom
Substrat zur Schicht auf, die zu Abplatzungen der Schicht führten (Abb. 4.42b).

Abbildung 4.42: Defekte von YSZ-Sputter-Schichten auf Anodensubstrat an a) Ver-
tiefungen und b) an Erhebungen

Oft wurden Defekte beobachtet, die auf Druckspannungen in der Schicht zurück-
zuführen waren (Abb. 4.43). Bei diesen Defekten wurden Teile der Schicht vom
Substrat abgelöst. Vermutlich entstanden die Spannungen während des Abkühlens
nach der Besichtung.

Abbildung 4.43: Defekt von YSZ-Sputter-Schicht auf Anodensubstrat verursacht
durch Druckspannungen
4.5. SPUTTER-SCHICHTEN: YSZ

Schichten auf polierten Anodensubstraten zeigten weniger Defekte als auf unpolierten Substraten. Substrat-induzierte Defekte wurden auf polierten Oberflächen nicht beobachtet, während sie auf unpolierten Oberflächen häufig auftraten. Abb. 4.44a zeigt eine dichte Schicht auf polierter Substratoberfläche im Vergleich zu einer unedichten auf unpolierter Oberfläche in Abb. 4.44. Um defektfreie, gasdichte Schichten herzustellen, müssen die zu beschichtenden Substrate zuvor poliert werden.

Abbildung 4.44: a) defektfreie YSZ-Sputter-Schicht auf poliertem Anodensubstrat, b) defekte YSZ-Sputter-Schicht auf unpoliertem Anodensubstrat

4.5.2.2 Schichtbildende Elemente und Phasenbildung

Abbildungen 4.45: EDX-Linienprofil einer YSZ-Sputter-Schicht auf Anodensubstrat; $T_{sub} = 700 \, ^\circ \text{C}$, $pO_2 = 2 \times 10^{-4}$ mbar

Abgeschiedene Sputterschichten auf Anodensubstrat zeigten ähnliche Phasenbildungen wie die mit PLD hergestellten Schichten. Große Sauerstoffdrücke ($pO_2 = 6 \times 10^{-4}$ mbar) bei Temperaturen $> 500 \, ^\circ \text{C}$ induzierten c-YSZ Schichten (Abb. 4.46c). Bei kleineren Sauerstoffdrücken spalten sich die Reflexe der c-YSZ-Phase in jeweils zwei Reflexe auf. Vergleichbar mit den PLD-Schichten entstehen neue Reflexe, die beispielsweise im Falle des (111)-Reflexes um bis zu $-0,24^\circ$ in Einheiten von 2θ gegenüber dem (111)c-YSZ-Reflexes verschoben waren (Abb. 4.46a,b). Teile der Schicht kristallisieren in der c$_{f}$-YSZ-Struktur aus, deren Netzebenenabstände größer als die der geordneten, stöchiometrischen c-YSZ-Struktur sind. Die auf Al$_2$O$_3$ abgeschiedene Schicht weist im Vergleich zu der auf Anodensubstrat abgeschiedenen Schicht bei kleinem Sauerstoffdruck von $pO_2 = 0,65 \times 10^{-4}$ mbar und einer Substrattemperatur $T_{Sub} = 600 \, ^\circ \text{C}$ deutlich unausgeprägte YSZ-Reflexe auf, d.h. das Substrat dient bei diesen Parametern als Sauerstoffquelle durch partielle Reduzierung der NiO-Körner an der Substrat Grenzfläche. Der gemessene Ni(111)-Reflex und die dunkel-braune Verfärbung der Substrate sind deutliche Indizien dafür. Die Bruchfläche zeigte eine Verfärbungstiefe von ca. 40 μm.
TEM-Untersuchungen (EDX) bestätigten die Reduzierungerscheinungen. Die NiO-Körner in diesem Bereich der Substrate wurden oberflächlich, d.h. entlang der Korngrenzen zu Ni reduziert (Abb. 4.47). Grund dafür war die kleine Bindungsenthalpie des ZrO$_2$ (-263 kcal/mol) im Vergleich zum NiO (-57 kcal/mol). Der für die Oxidation der schichtbildenden Partikel notwendige Sauerstoff konnte indirekt durch die Reduktion des NiO über das ionenleitende YSZ-Gitter des Substrats in die aufwachsende Schicht transportiert werden. Zusätzlich musste die Substrattemperatur $T_{\text{Sub}} \geq 400$ °C betragen, um die notwendige thermische Aktivierungsenergie für die Ionenleitfähigkeit des YSZ zur Verfügung zu stellen. So konnte bei ausreichender Temperatur auch bei geringen Prozessgasdrücken c-YSZ abgeschieden werden. Bei einer Beschichtungstemperatur von 200 °C und keinem Sauerstofffluss konnten die metallischen Phasen von Zr und Y im Beugungsdiagramm identifiziert werden. Bei
dieser Temperatur findet der Reduktionsprozess des NiO im Substrat nicht statt, d.h. der an der Grenzfläche gebundene Sauerstoff kann aufgrund zu kleiner thermischer Energie nicht in die aufwachsende Schicht diffundieren.

Abbildung 4.47: TEM-Aufnahmen an der Grenzfläche von Anodensubstrat (rechts) und YSZ-Sputterschicht (links)

Alle Schichten wurden nach thermischer Behandlung bei 1100 °C an Luft nachoxidiert und zeigten im Beugungsdiagramm in allen Fällen nur noch die c-YSZ-Phase und kein metallisches Ni mehr.

4.5.2.3 Gasdichtigkeit

Wie in Abschnitt 4.3.2.5 erläutert wurde, waren Aussagen über die Gasdichtigkeit der Schichten nur anhand von reduzierten Proben sinnvoll, da die dichte Anodenfunktionsschicht im oxidierten Zustand He-Leckraten in der Größenordnung der Elektrolytschicht aufwies. Eine Verdreifachung der Funktionsschichtdicke hatte ei-
4.5. SPUTTER-SCHICHTEN: YSZ

ne um drei Größenordnungen kleinere He-Leckrate zur Folge, d.h. mit ungenauer Kenntnis der Funktionsschichtdicke waren Leckraten der Elektrolytschichten nicht zu ermitteln. Jeweils drei Messungen wurden an einem Substrat durchgeführt und davon der Mittelwert berechnet (Tabelle 4.9). Die bei kleinen O₂-Drücken abgeschiedenen Schichten zeigten aufgrund ihrer dichten Morphologie und Schichtdicken ≥ 7 µm kleine He-Leckraten von 6-7×10⁻⁴ mbar l/cm² s. Diese Werte sind vergleichbar mit denen der VSG-Elektrolytschichten. Die bei größeren Prozessgasdrücken abgeschiedenen Schichten wiesen um 2 Größenordnungen größere Leckraten auf. Zurückzuführen ist dies einerseits auf die kleinen Schichtdicken von 1,5-1,75 µm und der damit größeren Defektstellendichte und andererseits auf die kolumnare Morphologie. Die Defektdichte der 1,5-1,75 µm dünnen Schichten war größer als die der dickeren, da hier Abschattungseffekte dazu führten, dass fehlerhafte Stellen in der Funktionsschicht nicht gasdicht beschichtet bzw. abgedeckt wurden. Die Sputterschichten wiesen bei kleineren Dicken kleinere Leckraten auf als die PLD-Schichten. Die für den Betrieb notwendige kleine Leckrate wurde jedoch bei annähernd der gleichen Elektrolytschichtdicke von 7-8 µm erreicht.

4.5.3 Diskussion zu Abschnitt 4.5

In diesem Abschnitt wurden YSZ-Sputterschichten auf Al₂O₃- und Anodensubstraten auf ihre Morphologie, Defekte, Phasenbestand, schichtbildende Elemente und Gasdichtigkeit untersucht.

Tabelle 4.9: He-Leckraten von gesputterten YSZ-Schichten auf Ni/YSZ Anodensubstrat

<table>
<thead>
<tr>
<th>pO₂ (10⁻⁴ mbar)</th>
<th>Tₜₐₜ (°C)</th>
<th>Lₜₐₜ (10⁻⁴ mbar l/cm² s)</th>
<th>dₙₐₜ (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,65</td>
<td>600</td>
<td>6</td>
<td>7,5</td>
</tr>
<tr>
<td>2,3</td>
<td>700</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>700</td>
<td>260</td>
<td>1,75</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>360</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Die Phasenbildung auf Anodensubstraten unterschied sich von der auf Al\textsubscript{2}O\textsubscript{3}-Substraten. Während sich auf Anodensubstraten bei kleinen Sauerstoffdrücken von 0,65×10−4 mbar und 600 °C Substrattemperatur die \textit{c}\textsubscript{f}-YSZ-Phase ausbildete, wurde auf Al\textsubscript{2}O\textsubscript{3} der Übergang von der metallischen in die oxidischen Phase gemessen. Das NiO in der Grenzfläche des Substrats mit der Schicht diente bei diesen Abscheideparametern als zusätzliche Sauerstoffquelle, d.h. aufgrund der größeren Bindungsenthalpie des ZrO\textsubscript{2} als NiO wurde das NiO zu Ni reduziert und die frei gewordenen Sauerstoffionen über das YSZ in die aufgewachsene Schicht transportiert. EDX konnte die oberflächliche Reduktion der NiO-Körner an der Grenz-

KAPITEL 4. ERGEBNISSE UND DISKUSSION
Kapitel 5

Kapitelübergreifende Diskussion

Einer der Schwerpunkte in der heutigen SOFC-Forschung ist die Entwicklung alternativer Werkstoffe, die die Langzeitstabilität und die Leistungsdichte der Zellenstapel verbessern sollen. Hierbei würden neue Zellenmaterialien, die es erlauben bei gleicher elektrischer Leistung die Betriebstemperatur zu senken, eine deutliche Verbesserung der Lebensdauer bewirken. Eine Möglichkeit besteht darin, neue Elektrolytwerkstoffe mit größeren ionischen Leitfähigkeiten einzusetzen. LSGM-Werkstoffe werden seit einiger Zeit von unterschiedlichen Forschungsgruppen untersucht [89], [90], [91]. Die große ionische Leitfähigkeit der LSGM-Werkstoffe von ca. $\sigma_{800\,^\circ\mathrm{C}} = 0,1 \ \SI{}{S/cm}$ liegen deutlich über der des YSZ von $\sigma_{800\,^\circ\mathrm{C}} = 0,03 \ \SI{}{S/cm}$ und machen sie daher attraktiv für den Einsatz in SOFCs. Die chemische Stabilität des LSGM zu den Anoden- bzw. Kathodenmaterialien bildet den Schwerpunkt in der Erforschung dieses neuen Materials. Untersuchungen zur Einsatztauglichkeit der LSGM-Elektrolyte in SOFCs wurden nur vereinzelt durchgeführt [53], [92], [93]. Eine andere Möglichkeit zur Senkung der Betriebstemperatur bei konstanter Zellenleistung besteht in der Herstellung von 1-2 μm dicken Elektrolyttschichten, um den Widerstand der Schicht zu minimieren. Auf diese beiden Lösungsmöglichkeiten habe ich mich in dieser Arbeit konzentriert. PVD-Verfahren wie die Kathodenzerstäubung und die Abscheidung mit gepulster Laserstrahlung sind als universelle Beschichtungsverfahren, die es erlauben Schichtdicken von unter 100 nm herzustellen, erforscht. Mit diesen Verfahren wurden Elektrolyttschichten aus YSZ und LSGM hergestellt, charakterisiert und für den Einsatz in SOFCs beurteilt.

Die derzeit hergestellten YSZ-Elektrolyte weisen Schichtdicken von 5-10 μm auf. Ein zentrales Problem bei der Abscheidung von 1-2 μm dicken Elektrolyttschichten bestand in der mangelhaften aber für den Betrieb notwendigen Gasdich-

Die Vermeidung von Droplets wird auf unterschiedliche Weise erreicht. Z.B. werden sie wie bei dem verwandten PLD-System durch Abschneiden der Randbereiche des Laserstrahlungsprofils unterdrückt. Andere PLD-Systeme benutzten Rotoren zwischen Target und Substrat, die die im Vergleich zu den Plasma-Teilchen langsameren Droplets herausfiltern [57]. Bei den Sputterschichten wurden zwei grundlegende Typen von Defekten festgestellt: Substratinduzierte Defekte und Defekte, die auf schichtinterne Spannungen zurückzuführen waren. Spannungsinduzierte Defekte machten sich durch Schichtabschnitte bemerkbar, die sich vom Substrat ablösten. Auch hier konnten Gasundichtigkeitsstellen beobachtet werden. Srivastva et al. und Thiele et al. konnten nach Abscheidung von YSZ-Sputterschichten bei kleinen Prozessgasdrücken Ablösungen ihrer Schichten vom Substrat feststellen, die sie auf interne Druckspannungen zurückführen [68], [85]. Verantwortlich dafür waren große kinetische Energien der auftreffenden Teilchen. Die PLD-YSZ-Schichten zeigten auf polierten Substraten eine Halbierung der Leckrate von \(330 \times 10^{-4} \text{mbarl/cm}^2\text{s auf } 160 \times 10^{-4} \text{mbarl/cm}^2\text{s bei einer Verdreifachung der Schichtdicke von } 2,7 \mu \text{m auf } 7,1 \mu \text{m. Bei weiterer Erhöhung der Schichtdicke auf } 8 \mu \text{m sank die Leckrate um eine Größenordnung und lag damit im Bereich der Standardzellen.}

Die Schichten auf unpolierten Substraten hingegen zeigten nur eine leichte Tendenz zur Abnahme der Defekte pro Fläche mit steigender Schichtdicke. Hier konnten Schichtdefekte, die durch Abschattungen während der Beschichtung hervorgerufen wurden, auch bei größeren Schichtdicken nicht oder nur unzureichend vermieden werden. Die bei großen Sauerstoffdrücken hergestellten YSZ-Sputterschichten wiesen aufgrund ihrer
kleineren Schichtdicke größere Defektstellendichten und um zwei Größenordnungen größere Leckraten (360 ×10⁻⁴ mbarl/cm²s) auf als Schichten, die bei kleinen Sau-
erstoffdrücken abgeschieden wurden (6 ×10⁻⁴ mbarl/cm²s). Die mit den Standard-
zellen (VSG-Beschichtung) vergleichbaren Leckraten wurden bei einer Schichtdicke von ca. 7 µm erreicht. Abb. 5.1 zeigt den Vergleich der Leckraten von PLD- und Sputterschichten in Abhängigkeit der Schichtdicke.

Abbildung 5.1: He-Leckraten von YSZ- a) Sputter- und b) PLD-Schichten in Abhängigkeit der Schichtdicke

Während die Sputterschichten einen annähernd exponentiellen Abfall der Leckra-
te mit zunehmender Schichtdicke zeigen, weisen die PLD-Schichten zunächst einen kleineren Abfall der Leckraten bei kleineren Schichtdicken auf, der zwischen 7,1-8 µm um eine Größenordnung zunimmt. Wie auf den Mikroskopbildern zu erkennen ist, folgen die Sputterschichten den gekrümmten Oberflächen besser als die PLD-
Schichten, d.h. schon bei kleineren Schichtdicken lassen sie im Gegensatz zu den PLD-Schichten eine gasdichtere Oberfläche entstehen. Dies erklärt auch den schar-

In Abhängigkeit der Abscheideparameter Substrattemperatur und Prozessgasdruck, wurden unterschiedliche Phasen gemessen. Im Falle der PLD-Schichten bildete sich auf Al\(_2\)O\(_3\)-Substraten bei kleinen Prozessgasdrücken und Substrattemperaturen > 400 °C die \(c_f \)-YSZ-Struktur aus. Bei einem Prozessgasdruck von 0,01 mbar war deren Gitterkonstante um \(\Delta a_{YSZ} = 0,08 \) Å größer als die der \(c \)-YSZ-Struktur. Bei größeren Sauerstoffdrücken ging die \(c_f \)-YSZ-Struktur in die \(c \)-YSZ-Struktur über. Die auf Anodensubstrat ermittelten Phasen, bildeten bei gleicher Substrattemperatur die \(c \)-YSZ-Struktur schon bei kleineren Prozessgasdrücken aus. Dies konnte auf die Sauerstoffzufuhr aus dem partiell reduzierten NiO im Substrat an der Grenzfläche zur Schicht zurückgeführt werden. Bei kleinen Sauerstoffdrücken und Substrattemperaturen \(\geq \) 400 °C wurde aufgrund der kleineren Bindungsenthalpie des ZrO\(_2\) im Vergleich zu NiO, NiO reduziert. Die ungebundenen Sauerstoffionen konnten über die Sauerstofffehlstellen des YSZ im Substrat in die aufwachsene Schicht transportiert werden. Die Reduzierung wurde auch von Srivastava et al. beobachtet [68]. Sie berichteten von einer Braunfärbung ihrer abgeschiedenen YSZ-Sputterschichten, die nach thermischer Nachbehandlung bei 800-1200 °C an Luft verschwanden, konnten jedoch die Ursache nicht erklären. Horita et al. machten ähnliche Entdeckungen als
KAPITEL 5. KAPITELÜBERGREIFENDE DISKUSSION
Kapitel 6

Zusammenfassung

Bei den Sputterschichten wurden zwei grundlegende Typen von Defekten festgestellt. Einerseits waren es, wie auch bei den PLD-Schichten, substratinduzierte Defekte und andererseits wurden Defekte erkannt, die auf schichtinterne Druckspannungen zurückzuführen waren. Diese Defekte machten sich dadurch bemerkbar, das sich Teile der Schicht vom Substrat ablösten und damit Löcher in der Schicht hinterliessen, welche zu Gasundichtigkeiten führten. Verantwortlich für interne Druckspannungen waren zu hohe kinetischen Energien der auftreffenden Teilchen. Um mit Standardzellen vergleichbar niedrige Leckraten zu erhalten, müssen die Sub-
KAPITEL 6. ZUSAMMENFASSUNG

stratoberflächen Vertiefungen mit Abmessungen kleiner der Schichtdicke aufweisen. Das Ziel 1-2 µm dünne gasdichte Elektrolytschichten herzustellen, konnte aufgrund größerer Vertiefungen in der Substratoberfläche nicht erreicht werden.

Das gemessene Konzentrationsverhältnis der schichtbildenden Elemente Zr und Y konnte die Abscheidung von 8 mol% Y₂O₃ stabilisiertem ZrO₂ bestätigen. Die beschichteten Substrate wurden nach Aufbringen der Kathode (LSM) elektrochemisch getestet. Einflüsse der Elektrolytschichtdicke auf die Leistungsichte der Zellen konnten nicht gemessen werden. Im Vergleich zu Referenzzellen wiesen die Zellen
jedoch 1/3 der Leistungsdichte bei 2-3 fach größerem Zellwiderstand auf. Zurückgeführt wurden die geringeren Leistungswerte auf kleinere Oberflächen der elektrochemisch aktiven Drei-Phasen-Grenze an der Anode wie auch an der Kathode, sowie auf die schlechte elektrische Kontaktierung der Elektroden.

Für die elektrochemischen Untersuchungen wurde die bei 1200 °C nachbehandelte Schicht favorisiert, da hier das Material einphasig in der gewünschten perowskitischen Struktur vorlag. Messungen mit einer aufgebrachten LSM-Kathode zeigten zunächst eine Zellspannung von 980 mV, die jedoch nach wenigen Minuten auf 0 mV absank. Ni-Diffusion vom Anodenwerkstoff in den Elektrolyten (12 Atom-%) bis in die Kathodenfunktionsschicht (22 Atom-%) verursachte einen elektronischen Kurzschluß der Zelle und vermutlich eine Schädigung der Kathode, so dass keine Strom-Spannung-Kennlinien aufgenommen werden konnten. LSGM eignet sich daher nicht als Elektrolytwerkstoff in direktem Verbund mit Ni/YSZ-Anoden-Cermets für Anwendungen in Hochtemperatur-Brennstoffzellen.
Abkürzungsverzeichnis

a Gitterkonstante der Einheitszelle
α Wärmeausdehnungskoeffizient
B Halbwertsbreite des Röntgenreflexes
c_A, c_R Konzentration des Analyse-/Referenzelements
D Kristallitgröße
d_{Schicht} Schichtdicke
d_{Target−Substrat} Abstand Target zu Substrat
E_k Leerlaufspannung
ε_Laser Laserstrahlleistungsdichte
θ Röntgenbeugungswinkel
j Elektrische Stromdichte
K Konstante
L_{He} Helium-Leckrate
mln Standard-ml
N_{Pulse} Anzahl der Laserpulse
P Elektrische Leistungsdichte
p_kO_2 Sauerstoffpartialdruck an der Kathode
p_aO_2 Sauerstoffpartialdruck an der Anode
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Elektrischer Widerstand</td>
</tr>
<tr>
<td>T</td>
<td>Temperatur</td>
</tr>
<tr>
<td>T_{Sub}</td>
<td>Substrattemperatur</td>
</tr>
<tr>
<td>$T_{Schmelz}$</td>
<td>Schmelztemperatur</td>
</tr>
<tr>
<td>V</td>
<td>Elektrische Spannung</td>
</tr>
<tr>
<td>Y</td>
<td>Sputterausbeute</td>
</tr>
<tr>
<td>z_k</td>
<td>Ladungszahl des Ions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFC</td>
<td>Alcaline Fuel Cell</td>
</tr>
<tr>
<td>c-YSZ</td>
<td>Kubisches YSZ</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-Ray Analysis</td>
</tr>
<tr>
<td>DMFC</td>
<td>Direct Methanol Fuel Cell</td>
</tr>
<tr>
<td>HF</td>
<td>Hochfrequenzfeld</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>Inductively Coupled Plasma-Optical Emission Spectrometry</td>
</tr>
<tr>
<td>JCPDS</td>
<td>Joint Commitee on Powder Diffraction Standards</td>
</tr>
<tr>
<td>LSGM</td>
<td>Lanthan-Strontium-Magnesium-Gallat</td>
</tr>
<tr>
<td>LSM</td>
<td>Lanthan-Strontium-Manganat</td>
</tr>
<tr>
<td>MCFC</td>
<td>Molton Carbonate Fuel Cell</td>
</tr>
<tr>
<td>PAFC</td>
<td>Phosphoric Acid Fuel Cell</td>
</tr>
<tr>
<td>PEM</td>
<td>Polymer Electrolyte Membrane Fuel Cell</td>
</tr>
<tr>
<td>PLD</td>
<td>Pulsed Laser Deposition</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>PZT</td>
<td>Bleizirkonattitanat</td>
</tr>
<tr>
<td>REM</td>
<td>Raster Elektronen Mikroskopie</td>
</tr>
<tr>
<td>SNMS</td>
<td>Sputtered Neutrals Mass Spectrometry</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmissions Elektronen Mikroskopie</td>
</tr>
<tr>
<td>VSG</td>
<td>Vakuum Schlicker-Guss</td>
</tr>
<tr>
<td>WDX</td>
<td>Wavelenght Dispersive X-Ray Analysis</td>
</tr>
<tr>
<td>WPS</td>
<td>Wet Powder Spraying</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
<tr>
<td>YAG</td>
<td>Yttrium-Aluminium-Granat</td>
</tr>
<tr>
<td>YSZ</td>
<td>Yttrium stabilisiertes Zirkonoxid</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis
Literaturverzeichnis

[1] R. Grove; Phil. Mag., 14, (1839), S. 127

LITERATURVERZEICHNIS

[71] K. H. Guenther; SPIE Thin Film Technologies and Special Applications, 346, (1982), S. 9

[76] E. Hornbogen; Durchstrahlungs-Elektronenmikroskopie fester Stoffe, Chemie Verlag, (1971)

[80] Bericht IWV3

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit am Institut für Werkstoffe und Verfahren der Energietechnik 1 des Forschungszentrums Jülich in enger Zusammenarbeit mit dem Lehrstuhl für Lasertechnik der RWTH-Aachen.

Herrn Prof. Dr. rer. nat. R. Poprawe M.A. danke ich für die interessante Themenstellung, für die fachliche Betreuung und kritische Durchsicht der Arbeit und für die Übernahme des Hauptreferates.

Herrn Prof. Dr. rer. nat. D. Stöver danke ich für die interessante Themenstellung, für die fachliche Betreuung und kritische Durchsicht der Arbeit mit zahlreichen wertvollen Diskussionen und für die Übernahme des Korreferates.

Herrn Prof. Dr.-Ing. H. Olivier danke ich für die Übernahme des Vorsitzes des Prüfungsausschusses.

Herrn Dr. rer. nat. E. W. Kreutz danke ich für die hervorragende wissenschaftliche Betreuung und kritische Durchsicht der Arbeit sowie für zahlreiche wertvolle Diskussionen.

Herrn Dr. F. Tietz danke ich für die wissenschaftliche Betreuung und kritische Durchsicht der Arbeit.

Herrn Dr. H. P. Buchkremer danke ich für wertvolle Anregungen und Diskussionen.

Herrn Dr. Peter Panjan, Herrn Miha Cekada und Herrn Jozko Fiser vom Jozef Stefan Institut in Ljubljana, Slowenien danke ich für die Hilfe bei der Schichtherstellung mittels Kathodenzerstäubung und für die herzliche Gastfreundschaft.

Ich danke Herrn Kappertz, Herrn Blaß, Herrn Oellers, Herrn Mattonet, Herrn Bader, Herrn Coenen, Frau Moitroux, Herrn Dr. Fischer und Herrn Lersch für die Hilfe bei der Durchführung der Experimente.

Bei meiner Bürokollegin Frau Dr. Elke Wanzenberg möchte ich mich für die tolle Zusammenarbeit während meiner Zeit am IWV1 bedanken.

Ferner danke ich den Kollegen am IWV1 Frau K. Portulidou, Frau Dr. J. Mentz, Frau Dr. L. Zhao, Frau Dr. E. Schüller, Frau Dr. F. Träger, Frau Dr. A. Ahmad-
Danksagung

Khanlou, Frau S. Latzel, Frau V. Rostin, Frau Rüther, Frau G. Bruch, Herr S. Giesen, Herrn Dr. A. Mai, Herrn Dr. M. Bram, Herrn Dr. J. E. Döring, Herrn Dr. W. Meulenberg, Herrn Dr. H. Lehmann, Herrn Dr. N. Menzler, Herrn Dr. M. Ahrens, Herrn J. Mertens, Herrn Dr. G. Pracht, Herrn Dr. S. Reckers, Herrn Dr. D. Rutenbeck, Herrn Dr. D. Simwonis, Herrn Dr. S. Uhlenbruck, Herrn Dr. M. Müller, Herrn Dr. G. Kerkhoff, Herrn Dr. M. Dietrich, Herrn Dr. Vassen, Herrn J. Böhm und Herrn P. Drinovac für das sehr gute und freundschaftliche Arbeitsklima.

Lebenslauf

Persönliche Daten
17.03.1969 geboren in Versmold
ledig

Berufliche Tätigkeit
seit 2/03 Forschungs-Ingenieur am Ford Forschungszentrum Aachen
2/99 - 9/02 Wissenschaftlicher Mitarbeiter am Institut für Werkstoffe
und Verfahren der Energietechnik im Forschungszentrum Jülich,
Prof. Dr. rer. nat. D. Stöver
7/98 - 1/99 Wissenschaftlicher Mitarbeiter am Institut für Lasertechnik in
Aachen, Prof. Dr. rer. nat. R. Poprawe M.A.
1/97 - 6/98 Wissenschaftliche Hilfskraft am Institut für Lasertechnik in
Aachen, Prof. Dr. rer. nat. R. Poprawe M.A.
7/95 - 12/96 Wissenschaftliche Hilfskraft am Institut für Kunststoffverarbeitung
der RWTH Aachen, Prof. Dr.-Ing. W. Michaeli

Studium
4/90 - 6/98 Physik an der RWTH Aachen
6/98 Diplom-Physiker

Zivildienst
8/88 - 3/90 Zivildienst im Albertinen Krankenhaus in Dissen und
Schüchtermann-Klinik in Bad Rothenfelde

Schulbildung
8/75 - 6/88 Grundschule und CJD-Gymnasium in Versmold
6/88 Allgemeine Hochschulreife