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Abstract

The planning of airport ground staff gives rise to a number of challenging optimisation problems.
Ground handling workloads are naturally represented as work tasks, e.g. for baggage unload-
ing or passenger check-in. These workloads must be covered by appropriate employees. Staff
scheduling is usually carried out in several stages: Indemand planning, workloads are aggregated
and analysed, inshift planning, appropriate shift duties are generated, androsteringconsists in
generating lines of duty for the workers. These phases are strongly interrelated, and different
optimisation problems have to be solved at each stage.

Workforce scheduling models have traditionally built upon aggregate labour requirements given
in discrete time periods. However, the literature does not describe any models or algorithms for the
generation of appropriate workload representations. Additionally, it will not always be sufficient
to cover coarse-grained abstractions of workloads. If information on flights as well as passenger
and load figures are sufficiently exact, we will rather be interested in directly covering individual
work tasks. Furthermore, shift scheduling and rostering approaches have regularly taken special
assumptions or investigated simplified problems, limiting their practical applicability.

In this work, we tackle optimisation problems at different planning stages. We show how in the
presence of movable tasks, we can obtain a suitable demand curve representation of workloads,
using a levelling procedure which combines aspects from vehicle routing and resource levelling.
Furthermore, we devise two algorithms for task-level shift planning which relates to vehicle rout-
ing and shift scheduling models. The first method is an improvement procedure, building upon
the results of a construction phase and dealing with a complex shift planning setting. The second
algorithm focuses on a subclass of task-level shift planning and is able to solve many problems
to proven optimality. Finally, we design an algorithm for complex cyclic rostering on the basis
of aggregate workloads. The approach builds upon a novel model for representing flexible breaks
and solves the shift scheduling and rostering stage simultaneously.

Models and algorithms proposed in this thesis are more integrated and tackle more complex
settings than previous approaches. We employ modern constraint programming and integer pro-
gramming solution techniques, including column generation and branch-and-price. For the novel
optimisation problems treated in this work, we provide complexity results. All algorithms are
evaluated on complex large-scale test cases from the practice of airlines, airports and ground han-
dling companies.





Zusammenfassung

Die Planung von Bodenpersonal an Flughäfen beinhaltet eine Reihe anspruchsvoller Optimie-
rungsprobleme. Das Arbeitsaufkommen für Abfertigungsdienste wird typischerweise in Form
von Arbeitsauftr̈agen dargestellt, z.B. für die Gep̈ackentladung oder für Check-in-Dienste. Dieses
Arbeitspensum muss durch geeignete Mitarbeiter abgedeckt werden. Die Planung wirdüblicher-
weise stufig durchgeführt: In derBedarfsplanungwird das Arbeitsaufkommen aggregiert und
analysiert, in derSchichtplanungwerden geeignete Schichtdienste generiert, und in derDienst-
planungwerden Dienstpl̈ane f̈ur die Mitarbeiter erstellt. Die einzelnen Phasen sind dabei eng
verzahnt, und auf jeder Stufe müssen verschiedene Optimierungsprobleme gelöst werden.

Personalplanungsmodelle bauen traditionell auf aggregierten Bedarfszahlen auf, die in diskre-
ten Zeitschritten angegeben werden. Für die tats̈achliche Generierung einer solchen Bedarfskur-
venrepr̈asentation sind in der Literatur allerdings keine Modelle oder Algorithmen beschrieben
worden. Dar̈uber hinaus ist eine Planung auf Basis grober Bedarfszahlen nicht immer ausreichend.
Wenn hinreichend genaue Informationenüber abzufertigende Flüge und Passagier-/Gepäckzahlen
zur Verfügung stehen, ist man vielmehr daran interessiert, die einzelnen Arbeitsaufträge zu ver-
planen. Schicht- und Dienstplanungsansätze in der Literatur gehen zudem durchgehend von spe-
ziellen Annahmen aus oder behandeln vereinfachte Probleme, was ihre praktische Anwendbarkeit
einschr̈ankt.

In dieser Arbeit werden Optimierungsprobleme für verschiedene Planungsschritte gelöst. Es
wird gezeigt, wie eine geeignete Bedarfskurvendarstellung unter Berücksichtigung verschiebli-
cher Auftr̈age generiert werden kann, indem Elemente des Vehicle Routing und des Resource
Levelling kombiniert werden. Darüber hinaus werden zwei Algorithmen für die auftragsbasier-
te Schichtplanung entwickelt, die auf Modellen des Vehicle Routing und des Shift Scheduling
aufbauen. Die erste Methode ist ein Verbesserungsverfahren, das auf den Ergebnissen einer Kon-
struktionsheuristik basiert und ein komplexes Schichtplanungsproblem behandelt. Der zweite Al-
gorithmus bezieht sich auf eine Teilproblemklasse und löst viele praktische Probleminstanzen
beweisbar optimal. Schließlich wird ein Algorithmus für die Erstellung komplexer Schichträder
auf Basis einer aggregierten Bedarfsdarstellung konzipiert. Der Ansatz baut auf einem Modell zur
impliziten Darstellung flexibler Pausen auf und löst das Shift Scheduling- und Dienstplanungs-
problem simultan.

Die Modelle und Algorithmen in dieser Arbeit sind stärker integriert und berücksichtigen kom-
plexere Nebenbedingungen als frühere Beitr̈age. Moderne Techniken des Constraint Program-
ming und der ganzzahligen Programmierung (einschließlich Spaltengenerierungs- und Branch-
and-Price-Ans̈atzen) werden eingesetzt. Für die vorgestellten neuartigen Optimierungsprobleme
werden Komplexiẗatsuntersuchungen durchgeführt. Alle Algorithmen werden auf großen, kom-
plexen Testf̈allen aus der Praxis von Fluglinien, Flughäfen und Bodenverkehrsgesellschaften eva-
luiert.
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1. Introduction

The best scientist is open to experience
and begins with romance

– the idea that anything is possible.
— Ray Bradbury

1.1. Airport Ground Handling

Today’s airlines and airports are facing an enormous cost pressure. Several crises have adversely
affected the business, including September 11th, war in Iraq, SARS and the world economic sit-
uation. Insolvencies of major carriers reflect economical problems which are partly self-inflicted
and partly due to external factors. Increasing oil prices are a new threat to the recovery of the
airline business. In spite of this, business has recently regained growth rates of earlier years. In
the first three quarters of 2004, worldwide air transport passenger kilometres have increased by
17.7% and freight tonne kilometres by 14.1% over the preceding year [IATA, 2004a]. Low cost
carriers and new markets in Asia are the main drivers of growth. By 2010, the International Air
Transport Association (IATA) expects 2.2 billion passengers per annum which is 600 million more
than in 2003 [IATA, 2004b].

In view of new competitors and the growth of the air transport market, airlines try to cut their
costs and increase competitivity. Beneath fuel costs and crew personnel, ground handling activ-
ities represent a major cost factor [Brusco et al., 1995]. Handling tasks can be distinguished by
planeside (ramp) operations and passenger services [Ashford et al., 1997]. Tasks on the ramp
include baggage handling, aircraft cleaning, refuelling, water services, bus transportation, cargo
and catering, load planning and control, traffic control, towing and de-icing. Passenger services
mainly refer to check-in, boarding, ticketing, help desks, sales reservation offices and backoffice
activities. Beyond these basic tasks, aircraft maintenance and security checks must be considered.
At their base airports, airlines usually accomplish these tasks by their own personnel. Alterna-
tively, airports and ground handling companies offer ground handling services to airlines. With
increasing deregulation, international handling companies with worldwide subsidiaries see their
market shares growing.

Clearly, efficient planning of staff is crucial in controlling costs. Due to the size of airport oper-
ations, even small improvements translate into large savings. As an example, Holloran and Byrn
[1986] reported savings of approximately six million dollars by the introduction of an automated
staff scheduling application at United Airlines. Further eight million dollars per annum have been
saved by the introduction of an improved system in 1994 [Brusco et al., 1995].

Ground staff scheduling is a very complex task. Planning frequently involves several hundred
employees, several thousand work tasks per week and multitudes of constraints. Airports often
work on a continuous basis with operations on 24 hours, seven days a week. Workforce demands
are subject to high variations at different times of the day. Airlines often use the hub-and-spoke
principle, meaning that connecting flights from smaller airports are bundled at larger stations in
order to minimise passenger transfer times for long-haul connections. This practice as well as
commuter activity of business people result in three, four or even more pronounced peak times of
high workload within each day (see Fig. 1.1) [Ashford et al., 1997].
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Figure 1.1.: Typical workloads at an airport over the day.

Manual scheduling is a tedious and error-prone task, and it frequently takes planners several
hours or even days to prepare staff plans by hand [Dowling et al., 1997] [Yu, 1998]. Processes
are difficult to overview by planners, and different resources are tightly coupled [Ashford et al.,
1997, p. 185] [Yu, 1998, p. xiv]. At large airports, it is normally impossible to handle staff without
computer support. All airlines, airports and ground handling companies nowadays make use of
scheduling systems. In the literature, several airline-specific systems have been reported, e.g. at
Air Canada [Nobert and Roy, 1998], Alitalia [Felici and Gentile, 2004], Pan Am [Schindler and
Semmel, 1993] and United Airlines [Holloran and Byrn, 1986] [Brusco et al., 1995].

Much progress has been made since the development of the first ground staff planning systems.
Scheduling software is nowadays required to flexibly adapt to changing work rules, problem char-
acteristics and sizes of operations [Dowling et al., 1997]. Clearly, the development of advanced
planning systems is itself a costly investment. Many airlines, airports and ground handling compa-
nies therefore resort to generic software packages, including advanced optimisation components
and powerful graphical user interfaces, see e.g. Khoong and Lau [1992], Khoong et al. [1994] and
Dowling et al. [1997].

This work deals with offline aspects of ground staff planning, i.e. the estimation of workloads
and the generation of staff plans several days or weeks before operations. This means that work-
loads for the planning period are calculated from a fixed flight schedule, forecasted passenger
and baggage figures and service agreements between airlines and ground handling departments or
companies. We will not deal with real-time aspects, i.e. issues like short-term schedule changes
or interruptions due to flight delays or illnesses will not be considered.

The optimisation models and algorithms developed in this work are generic and apply to a
wide range of ground handling activities. However, some services may not conform to the gen-
eral framework and may therefore not be covered (e.g. cargo handling, catering and bus trans-
portation). As different ground handling activities (like baggage or check-in services) still differ
considerably, we aim at conceiving algorithms which are robust on a wide range of relevant plan-
ning scenarios. However, we will also show how problem-specific features can sometimes be
exploited by special solution approaches.

This work has been carried out as a part of an appointment of the author to INFORM Institut
für Operations Research und Management GmbH, Aachen, Germany. INFORM markets a com-
prehensive suite of airport applications named GroundStar which is in use at major customers all
over the world. Airport users e.g. include Berlin, Frankfurt and Moscow, ground handling compa-
nies comprise Aviapartner, DNATA, ServisAir GlobeGround and Swissport, and airline customers
are e.g. Air Canada, Air France, British Airways, Emirates, Lufthansa and SAS. All optimisation
algorithms described in this work are part of the staff planning application of GroundStar.

In the following, we will give a short overview of planning processes and objectives in airport
ground staff planning. We will point out how workforce scheduling is treated in the literature and
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demand planning

task generation

shift planning

rostering

Figure 1.2.: Planning stages in airport ground staff planning.

show the relationship of airport scheduling problems with vehicle routing. Finally, we will give a
survey on contributions of this thesis and describe its structure.

1.2. Planning Processes and Objectives

Planning of ground staff involves several stages (Fig. 1.2). First, we generate work tasks based
on the flight schedule for the planning period, forecasted load figures and service agreements.
These work tasks represent the input of a demand planning phase in which temporal demands are
analysed in their temporal evolution and with regard to peak times. In a second stage, workloads
are covered by suitable shift duties. Finally, rosters are built, specifying shifts and days off for the
workforce at hand. Roster generation takes either original workloads or given shift plans as input.
Virtually all airport services adhere to this general scheme.

Planning can take place on different levels. Inoperative planning, we aim at actual staff plans
for the day of operations. If operative planning is carried out few days or weeks ahead of time,
information on flights is generally quite accurate. However, rosters are sometimes prepared for
a whole flight season in advance, meaning that planning is typically based on a model week
with typical flight events and aircraft loads.Tactical planninge.g. involves calculating prices
for different services, analysing work rules as a preparation for union negotiations, and what-if
scenarios when acquiring new customers. On astrategical level, managers will e.g. be interested
in cost calculations when extending business to new airports. Tactical and strategical plannings
are usually based on model weeks of typical workloads.

In the following, we describe the planning processes in more detail and give annotations on the
significance of planning stages under different conditions.

1.2.1. Task Generation

Figure 1.3 shows the basic scheme of task generation, see also Dowling et al. [1997]. A first input
is theflight schedule, covering flight events that are relevant to the ground handling company or
department. Each flight is made up of anarrival at the airport under consideration, adeparture
and thegroundtimein between. Alternatively, flights may consist of anarrival leg or departure
leg only, e.g. if the aircraft stays at the airport for a longer period of time. Flight schedules often
contain positioning information, e.g. with regard to aircraft stands, arrival gates and check-in
counters.

Task generation often depends onpassenger and baggageinformation. While exact load in-
formation may be available if planning takes place shortly before operations, averaging or other
statistical methods can be used to generate reliable load information ahead of time.

Engagement standardsrepresent task generation rules matching on specific flight events, e.g.
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Figure 1.3.: Task generation.
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Figure 1.4.: Work tasks relating to aircraft arrivals, departures and groundtimes.

by airline, aircraft type, routings, intervals of baggage loads etc., see also Alvarez-Valdez et al.
[1999], Sørensen and Clausen [2002]. As an example, an engagement standard may define the
generation of eight cleaning tasks of 45 minutes each for a Boeing 747-400, to be carried out
within the groundtime of the aircraft.

Especially tasks on the apron will usually pertain tosingle flight events, i.e. they can be at-
tributed to either arrival, departure or the link of both legs. Times at which tasks must be carried
out either refer to the arrival, departure or the groundtime of the aircraft (Fig. 1.4). As an exam-
ple, an arrival flight may ask for a number of baggage unloading tasks, starting five minutes after
touchdown and whose quantity and durations depend on baggage figures. In contrast, the above
cabin cleaning tasks would refer to the groundtime of the aircraft.

Alternatively, work tasks can be generated formultiple flightsin common. A typical example is
check-in personnel which often serves groups of flights, e.g. StarAlliance Economy passengers.
Workloads then result from the numbers of passengers to be served by a group of flights.Arrival
profilesspecify how many passengers are expected to arrive in intervals relative to the departure
time. Queueing modelsare then employed to calculate counter and personnel demands, using
information on typicalservice timesper passenger and acceptable lengths ofpassenger queues
[Schindler and Semmel, 1993] [Brusco et al., 1995]. Workloads can finally be broken down into
work tasks for check-in personnel. Alternatively to the aforementioned check-in example, tasks
may pertain to several flights if e.g. baggage unloading at adjacent aircraft stands can be done by
the same staff. Task start times and lengths will then refer to the respective flight events.

A third class of work tasks does not make any reference to flight events. As an example, the
number of staff at ticket and information counters does not depend on specific flights. Work tasks
will then be specified by absolute start times and durations corresponding to the opening hours of
the respective service.
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Figure 1.5.: Tour planning and demand curve.

Regardless of the mode of task generation, the resulting work tasks have a number of proper-
ties. As mentioned before, tasks have fixed lengths and either start at fixed times (e.g. baggage
unloading tasks) or within given time windows (e.g. cabin cleaning tasks). They must be carried
out at given positions, e.g. at an aircraft position on the apron or at given check-in counters. Tasks
may require workers to have certain qualifications, e.g. for handling a specific aircraft or language
skills for check-in and boarding. Cleaning tasks must often be carried out by teams of workers
[Stern and Hersh, 1980].

Task generation is the most basic step in airport staff planning. Throughout this work, we will
assume that work tasks for a given department are readily available.

1.2.2. Demand Planning

Workloads are usually visualised as ademand curve, i.e. a histogram of parallel tasks at each time
of the planning horizon. As each work task requires one employee, this representation allows for
an easy analysis of workforce requirements. Times of high workloads are easily analysed, and
planners are enabled to assess suitable shift duties covering more than one demand peak. Demand
curves are also a common abstraction of workloads to be covered in the subsequent shift planning
phase; workloads are then usually discretised in steps of 15 or 30 minutes, see e.g. Brusco et al.
[1995].

Simply superposing tasks is generally not sufficient for generating demand curves. On the
one hand, it would not be clear how to fix movable tasks. Furthermore, start time decisions for
different tasks are generally interdependent since a worker cannot cover more than one task at a
time. Especially at peak times, tasks will block each other. On the other hand, we must consider
that workers must travel between different work task locations. If we imagine distances between
locations on the apron, such travel times may considerably contribute to workloads.

A model covering tasks by tours is therefore more appropriate, see Fig. 1.5 (work tasks are
orange, travel times are displayed in yellow). Each tour can be interpreted as a sequence of tasks
that must be carried out by a vehicle (e.g. a push-back tractor or baggage vehicle) or by one or
several workers in turn. Superposing tasks in tours allows for an incorporation of mutual inter-
dependencies between tasks and a consideration of travel times (lower part of Fig. 1.5). Clearly,
minimising the number of tours corresponds to solving a resource investment problem, i.e. we
determine e.g. the minimum number of required vehicles [Brucker et al., 1999].

Especially in staff planning, we will be interested in avoiding unnecessary demand peaks. This
can be achieved by placing movable tasks at times of low workload and by avoiding travel times.
In general, a smoother demand curve will also provide a better basis for demand-based shift
planning as described in the following section. The associated problem of smoothing labour
requirements will be called theworkload levelling problem.

In the literature, authors have consistently assumed that work tasks are fixed in time and ignored
travel times between different locations, see e.g. Schindler and Semmel [1993], Brusco et al.
[1995] and Dowling et al. [1997]. Only Nobert and Roy [1998] deal with the levelling of air cargo
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workloads. The levelling of labour requirements that are given by movable tasks at different
locations has not yet been described in the literature.

1.2.3. Shift Planning

Shift planning amounts to covering workloads by suitable and cost-efficient shift duties. On
airports, employees who are assigned the shift duties are usually not known in the planning phase,
i.e. shift planning isanonymous planning. The alternative replanning of given shifts or rosters with
given staff information is less difficult and will not be part of this work. Anonymous planning e.g.
implies that qualification requirements can only be considered on an aggregate level.

Shift typesare a basic notion in ground staff planning. Each shift type defines a valid starting
and ending time for a shift duty and prescribes one or several meal or relief breaks, see e.g. Koop
[1988]. A given shift type may be valid on some or all days of the week. Shift type costs reflect
actual labour costs or penalties for undesirable shifts, e.g. night shifts. Each shift used to cover
labour demands thus incurs costs as given by its shift type. Airport shift planning usually involves
between 10 and 600 shift types. Due to strongly varying demands throughout the day, workloads
can be covered more efficiently if the shift model allows for much scheduling flexibility [Bailey
and Field, 1985] [Brusco, 1998].

Shift types and break rules result from state and federal laws, union agreements, company
policies or practical considerations [Buffa et al., 1976] [Aykin, 2000]. In the European Union,
the working time directive 93/104/EC of 23 November 1993 with amendments 2000/34/EC,
2000/79/EC and 2002/15/EC [EU, 1993] [EU, 2000a] [EU, 2000b] [EU, 2002] gives a frame-
work for admissible shift models. Especially relevant to the ground handling sector is the Council
Directive 2000/79/EC of 27 November 2000 [EU, 2000a], concerning the organisation of working
time of mobile workers in civil aviation.

The workforce of airlines, airports and ground handling companies is usually made up of full-
time and part-time employees. The base workload is then covered by full-time staff with typical
shift lengths of between eight and eleven hours and up to three meal and relief breaks [Bechtold,
1988]. Planners often try to use full-time shifts which cover at least two peak periods within
the day. In contrast to full-time staff, the use of part-time employees is often restricted by union
regulations. However, part-time shifts of typically four or five hours length are known to be
important for flexibly covering labour requirements [Holloran and Byrn, 1986] [Schindler and
Semmel, 1993].

When generating a shift plan for given workloads, different overlapping shift types compete in
covering workloads. If an airport operates 24 hours, 7 days a week, shift types not only overlap
within the day, but also spill over between days. Shift planning problems for such continuous
operations are therefore more complex [Tien and Kamiyama, 1982].

Shift planning can either be based on workloads as given by a demand curve, or it can be directly
based on work tasks [Ernst et al., 2004].Demand-level shift planningaims at covering workforce
requirements per time period (e.g. 15 minutes) by a cost-minimal set of shifts (Fig. 1.6). This
view of shift planning is well-established in the practice of planning on airports as well as in other
service industries, see e.g. Tien and Kamiyama [1982], Holloran and Byrn [1986], Schindler
and Semmel [1993] and Brusco et al. [1995]. The assignment of actual work tasks may then
be deferred to shortly before operations [Dowling et al., 1997]. Demand-level shift planning is
appropriate when workloads are not exactly known, e.g. due to missing information on load data
or flights to be handled. Clearly, aggregate planning also reduces problem complexity and can
be a precondition for tractable optimisation models. Additionally, demand-based models often
allow for additional scheduling flexibility. As an example, planners usually do not fully cover
workloads in peak times. Suchunderstaffingis easily accounted for in histogram-based models
[Thompson, 1993].
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Figure 1.6.: Demand-level shift planning.
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Figure 1.7.: Task-level shift planning.

In contrast,task-level shift planning(see Fig. 1.7) is more detailed and therefore more compli-
cated. In task-level planning, shifts represent tours of tasks, starting and ending at a depot and
respecting travel times between the tasks. Each task must start within its time window, and tours
must fit into the boundaries imposed by shift types and lunch and relief breaks. Additionally, we
may have to respect qualification constraints, e.g. limiting special skill requirements to few shifts.
Tasks for check-in services or ticket counter personnel often span over the whole day and must be
splitted in order to be assigned to shifts. Furthermore, tasks and shifts for teams may have to be
placed in parallel.

Note that in demand-level planning, we assume task start times and travel times to be realised as
in the demand planning phase. Furthermore, qualification requirements cannot be represented in a
single demand curve. Decisions for shift types (and consequently, shift start and end times) do not
take into account that tasks may not be splittable at the boundaries of shifts. However, if tasks are
little movable, travel times are moderate, qualification requirements are rather homogeneous and
tasks are splittable, shift planning based on a demand curve will provide a good approximation to
task-level scheduling. In practice, planning scenarios often come close to these requirements.

The decision for demand-based or task-based models depends on a number of factors. If the
quality of workload information is high and planners require high-resolution schedules, shift plans
should make reference to single work tasks. If the planning is carried out weeks before actual
operations, demand-based models will offer sufficient degrees of detail. In this thesis, we argue
that demand-based and task-based models can both be appropriate in different situations, and we
will cover both types of models.

It is worth mentioning that task generation and demand planning are not always independent
from shift planning [Henderson and Mason, 1998]. If demands e.g. result from passenger arrivals
and queueing models, moving demands to later time periods may render the coverage of work-
loads easier [Mason et al., 1998]. In general however, task generation can be separated from shift
planning without major repercussions. Throughout this work, we will assume that tasks can be
generated without any reference to the shift level.
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Figure 1.8.: Weekly roster for three employees.

1.2.4. Rostering

The rostering problem consists in sequencing shift duties and days off into patterns for individual
employees or groups of employees, cf. Fig. 1.8. Union and legal regulations (e.g. the aforemen-
tioned EU directives) and company policies impose a number of constraints. The most frequent
work rules include

• minimum and maximum bounds on the number of consecutive days on and days off,

• minimum rest times and start time differences between consecutive shifts,

• minimum, maximum and average working hours per week and

• the number of weekends off per period,

see e.g. Bechtold and Showalter [1987], Lau [1994] and Dowling et al. [1997].
Different kinds of rosters are used in practice. Figure 1.8 showsindividual rosterswith a sepa-

rate schedule for each employee. If concrete employees for each roster line are known (namedros-
tering), we can take employee availabilities, preferences and qualifications into account [Thomp-
son, 1996b]. In airport practice, rosters are usually planned on ananonymousbasis. Schedules
are then assigned to employees in a subsequent stage. In North America, anonymous rosters are
often published forbidding, i.e. employees choose roster lines in decreasing order of seniority,
see e.g. Holloran and Byrn [1986] and Schindler and Semmel [1993].

Alternatively, rosters can becyclic (equivalently,rotating) and apply to a group of workers
(Fig. 1.9). One employee will then start on each roster week, i.e. the length of the roster is
equal to the number of employees. When finishing the first week, employee 1 switches to week
2, employee 2 to week 3 etc. while the worker on the last roster week starts over with the first
week. Cyclic rosters are always anonymous; only the employee group for the whole roster may be
known. Rotating shift patterns are usually planned for a whole flight season in advance. Clearly,
they are less flexible as they do not adapt to fluctuating demands and absenteeism [Warner, 1976].
However, cyclic rosters provide a maximum degree of fairness since all employees work on the
same pattern. Furthermore, employees can easily foresee their shift duties on given days in the
future. Rotating rosters are often used to cover the bottomline demand by full-time workers.
Holidays, short-term absences and changes in workloads are considered only later, e.g. by shift
swaps and part-time staff [Dowling et al., 1997].

Rostering often builds upon given shifts determined in a preceding shift planning phase. If
however significant restrictions are imposed on the roster level, it may not be possible to create
efficient rosters upon given shift demands, and it will be more appropriate to integrate shift plan-
ning and rostering. In airport practice, individual rosters are often planned manually or with strong
user interaction on the basis of given shift plans. Similarly, cyclic rostering is still little automated
and usually amounts to applying small changes to rosters of the preceding flight season.
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Figure 1.9.: Cyclic roster for five employees.

Like shift planning, rostering can have different objectives. On an operative level, planners
will be interested in efficient rosters for the workforce at hand. Tactical and strategical planning
will typically involve what-if scenarios and may e.g. assess necessary staff sizes or evaluate the
suitability of different shift duties, see e.g. Holloran and Byrn [1986], Dowling et al. [1997].
Rostering models usually include penalty terms for inconvenient characteristics of schedules, e.g.
with regard to undesirable shift sequences or days off [Koop, 1988] [Jaumard et al., 1998].

1.3. Related Work on Workforce Scheduling

Since the first proposition of an integer programming model for shift scheduling by Dantzig
[1954], workforce scheduling has received considerable attention in the literature. Shift schedul-
ing and rostering problems are tackled in many different service industries, including airports and
airlines, railways, telephone companies, hospitals, emergency services, toll collection and banks.
With only few exceptions, all publications aim at covering aggregated workloads given on an ap-
propriate discretisation level (often 30 minutes), i.e. models are demand-based with regard to the
above characterisation. Overviews of applications and models can be found in Baker [1976], Tien
and Kamiyama [1982], Bechtold et al. [1991] and more recently in Ernst et al. [2004].

Staff scheduling problems are usually categorised intoshift, day-off, andtour schedulingmod-
els [Baker, 1976].Shift schedulingis the problem of specifying, for a given day, the starting times
and durations of shifts assigned to employees, see Dantzig [1954]. Furthermore, it may include
the problem of positioning meal and relief breaks within each shift [Bechtold and Jacobs, 1990].

Day-off schedulinginvolves the placement of days off into a cyclic or non-cyclic roster [Tibre-
wala et al., 1972]. Typically, target shift numbers per day are given, implying on which weekdays
days off should ideally be placed. Besides demand coverage constraints, typical restrictions in-
clude bounds on the number of consecutive days on and the placement of day-off stretches and
weekends off.

If only one shift type is used, day-off scheduling is equivalent to the overall task of building
a valid roster. In the multiple-shift case, we additionally face ashift assignmentproblem that
consists in attributing shifts to the gaps left after day-off scheduling [Bennett and Potts, 1968].
In shift assignment, we must usually respect minimum rest times between shifts and maximum
offsets between start times on consecutive days on [Jacobs and Brusco, 1996] [Lau, 1996b].

Many scientists have adopted sequential approaches for the solution of the overall rostering
problem: First, target shift numbers for different shift types are determined, then days off are
scheduled and finally, shifts are assigned to the remaining positions in the roster, see e.g. Bai-
ley and Field [1985], Balakrishnan and Wong [1990], Khoong and Lau [1992] and Lau [1996a].
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However, we have already pointed out that the single problems are interdependent, and it may not
be possible at all to find a valid roster for the shifts determined in the first step. Authors have there-
fore called for integrated formulations subsumed under the notiontour scheduling[Baker, 1976].
Tour scheduling thus involves the simultaneous determination of shifts and day-off positions in a
roster subject to demand coverage constraints.

A number of publications have dealt with the generation of cyclic rosters, e.g. Bennett and
Potts [1968], Laporte et al. [1980], Balakrishnan and Wong [1990] and Mason [1999]. To the
knowledge of the author, all models in the literature have built upon demand figures per shift type,
i.e. there have not been any integrated approaches for simultaneous shift scheduling and cyclic
rostering.

Many scientists have used integer programming or linear programming based rounding to solve
scheduling and rostering problems [Ernst et al., 2004]. In Chapter 2, we will given an overview
of relevant workforce scheduling literature with a focus on models and solution techniques.

1.4. Relationship to Vehicle Routing and Scheduling

The levelling problem for workforce demands (Section 1.2.2) is based on placing work tasks in
tours such that time window and travel time constraints are taken into account. We will initially
minimise the number of tours which are required to cover the tasks. In a second phase, we will take
levelling effects for movable tasks into account. The basic setting amounts to avehicle routing
problem with time windows, covering “customers” (work tasks) by a set of “vehicle routes” (tours).
Similar objectives as in workload levelling have been considered in the literature on resource
levelling [Brucker et al., 1999].

Similarly, task-level shift planning consists in designing tours of tasks such that each tour fits
into a shift duty. Additionally to time window and travel time constraints, we must respect break
and shift type constraints. Task-level shift planning can therefore be interpreted as an integration
of vehicle routing and shift scheduling. Additionally, we have to deal with splittable (preemptive)
tasks, crews and qualification constraints. Khoong et al. [1994] and Rekik et al. [2003] have
called for an integration of workforce scheduling with vehicle routing, but no actual work has
been done up to now. Related work includes the article by Bailey et al. [1995] who rudimentally
integrated project scheduling with shift scheduling and by Berman et al. [1997] who integrated
shift scheduling with workflow optimisation in a mail-processing facility. From a vehicle routing
perspective, some scientists have imposed tour length restrictions to deal with maximum durations
of driver duties [Toth and Vigo, 2001a] [Campbell and Savelsbergh, 2004].

Vehicle routing has been a very active field of research over several decades. It subsumes
a class of problems in which a number of customers (here: tasks) must be served by a set of
vehicles (here: workers, shifts), using an appropriate network for their movements [Toth and
Vigo, 2001a]. Tours start and end at one or several depots. Note that in task-level shift planning,
depots not only have a spacial character, but we can also interprete shift start and end times as
depots which impose temporal restrictions. Different objectives are considered in vehicle routing,
e.g. minimising routing costs or the number of vehicles [Bodin and Golden, 1981]. Clearly, this is
similar to minimising shift costs in task-level scheduling. Furthermore, qualification restrictions
in shift planning can be interpreted as a special case of vehicle capacity restrictions.

While thevehicle routing problem with time windows(VRPTW) usually involves vehicle loads
and capacity restrictions [Cordeau et al., 2001a], VRPTWs without capacity restrictions are usu-
ally denoted asmultiple travelling salesman problems with time windows(m-TSPTW) [Desrosiers
et al., 1993]. If the start times of customer visits are fixed, we deal withvehicle scheduling
problems(VSP) orcapacitated vehicle scheduling problems(CVSP) [Bodin and Golden, 1981]
[Desrosiers et al., 1993].
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1.5. Contributions of the Dissertation

Dantzig and Ramser [1959] were the first to propose a mathematical programming formula-
tion for a real-world vehicle routing application. Clarke and Wright [1964] improved upon the
Dantzig-Ramser approach and proposed their classical savings algorithm. Overviews of vehicle
routing models and algorithms are given by Bodin et al. [1983], Christofides [1985] and in the
excellent article of Desrosiers et al. [1993]. Further in-depth treatments can be found in the books
of Golden and Assad [1988] and more recently in Toth and Vigo [2001b]. Complexity results on
different vehicle routing and scheduling problems are summarised by Lenstra and Kan [1981].

A large variety of solution techniques have been applied to vehicle routing and scheduling prob-
lems, including heuristics (e.g. Solomon [1987]), local search (e.g. Potvin and Rousseau [1995])
and metaheuristics (e.g. tabu search [Gendreau et al., 1994] [Potvin et al., 1996], evolutionary
programming [Potvin and Bengio, 1996]), integer programming (e.g. Desrosiers et al. [1984],
Desrochers et al. [1992]), constraint programming (e.g. Kilby et al. [2000]) as well as hybrid
integer/constraint programming approaches (e.g. Rousseau et al. [2002]). Nearly ten years ago,
Laporte and Osman [1995] have already collected 500 references in the context of vehicle routing
and scheduling. We will therefore restrict ourselves to an overview of constraint-based approaches
in Chapter 3.

1.5. Contributions of the Dissertation

The goal of this work is to develop models and efficient algorithms for different stages of air-
port ground staff planning. The focus will be on models which are more integrated than former
approaches. This is in accordance with a general tendency toward more integrated optimisation
scheduling models in the literature, see e.g. Cordeau et al. [2001c], Cordeau et al. [2001b] and
Sørensen and Clausen [2002]. Clearly, models which simultaneously deal with several planning
stages potentially allow for realising additional savings.

However, we will not restrict our attention to task-based models, but argue that depending on
the context, demand-level models may also be appropriate for shift planning and rostering. All
models and algorithms will refer to anonymous scheduling, i.e. we do not explicitly assign shifts
or rosters to employees. Depending on the context, we will deal with operational, tactical, or
strategical planning scenarios with given or unknown staff sizes. In rostering, we will allow for
planning with understaffing. Models and algorithms will be designed for potentially continuous
24×7 operations which clearly does not exclude exploiting the discontinuity of particular problem
instances, e.g. due to night flying restrictions on some airports.

We will use state-of-the-art solution techniques to tackle these scheduling problems. Integer
programming (IP) and constraint programming (CP) have received considerable attention in re-
cent years and have proven to be powerful solution techniques for real-world problems. Integer
programming has been the predominant solution techniques for demand-level shift scheduling
and rostering models. Column generation is often used to decompose problems involving huge
numbers of decision variables. While integer programming is a powerful solution technique for
obtaining optimal or near-optimal solutions, constraint programming is particularly appropriate
for very complex settings and non-linear objective functions or constraints. Throughout this the-
sis, both techniques will be used in different contexts.

We will start by conceiving alevelling procedurefor demand planning involving movable tasks.
While the basic setting is a vehicle routing problem with time windows, the goal of workload lev-
elling can be compared to resource levelling problems in project scheduling. Workload levelling
is a novel problem that has not yet been dealt with in the literature. It will be shown that the
problem isNP-hard. Based on the outcome of a tour-minimisation algorithm, we will conceive
an constraint-based local improvement algorithm aiming at avoiding unnecessary demand peaks.
For the search for improving solution, we will make use of a novel variant of a restricted tree
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traversal strategy.

Similarly, a constraint model will provide the basis for a local improvement algorithm forcom-
plex task-level shift planning. Integrating shift scheduling with vehicle routing, task-level shift
planning is an optimisation problem which has not yet been treated in the literature. We will show
how a large number of real-world constraints can be represented in a constraint programming
model, including preemptive tasks, crew and qualification restrictions. Using large neighbour-
hoods, the local improvement algorithm will provide a remedy for deficiencies of a preceding
heuristic construction algorithm.

In a further part of this thesis, we will show howtask-level shift planningcan be made amenable
to optimal solutiontechniques by focusing on an important subclass. We will show that even a
very basic shift planning setting isNP-complete in the strong sense. For the problem considered,
we will develop a column generation formulation by Dantzig-Wolfe decomposition. In conjunc-
tion with a preliminary problem decomposition technique, the resultingbranch-and-price algo-
rithm is able to solve a considerable number of real-world airport planning problems to optimality
in a reasonable amount of time.

Turning to demand-based models, we will give an illustrative introduction toimplicit modelling
of flexible break placement. We will extend an existing model for the representation of flexible
breaks, overcoming an important limitation that has not yet been explicitly dealt with in the liter-
ature.

The resulting model will provide the basis for abranch-and-price algorithmfor integrated
cyclic rostering. In contrast to previous models, our formulation will directly build upon work-
loads per demand period and integrate the shift planning and rostering stage. The setting includes
a multitude of constraints which are relevant in ground staff rostering and considerably extends
previous approaches. We will devise a novel IP formulation that is solved by multiple column
generation and branch-and-price, yielding near-optimal solutions on real-world test cases.

All modelling approaches and algorithms will be motivated by literature reviews and introduc-
tions to solution techniques throughout the work.

All algorithms have been realised as a part of a commercial tool for generic ground staff plan-
ning. They are in use at many airlines, airports and ground handling companies or are about
to be implemented at customer sites. The algorithms contribute to customer satisfaction, realise
additional savings and allow for more flexibility in the scheduling of ground staff.

Some of the techniques in this work build upon solutions of heuristic algorithms which are
not described in detail here. The immediate context of the algorithms in the planning system is
illustrated in Fig. 1.10; contributions of this thesis are shaded.

Clearly, implementing the algorithms as a part of a commercial planning system has influenced
design decisions. High-quality solutions are an important criterion, but robustness on a wide
range of different planning scenarios was deemed at least as important. Computing times play
a role especially when performing what-if analyses. Solution techniques which offer a tradeoff
between running times and solution quality clearly provide an advantage. All algorithms were
tested on real-world planning scenarios representing a wide range of different airport services.
Test cases therefore incorporate quite different characteristics, e.g. with regard to task movability,
skill requirements and scheduling flexibility. Problems often have a very large scale and fre-
quently involve considerable numbers of constraints. The evaluation of the different algorithms
will essentially be based on the same test cases, enabling for a recognition of common problem
characteristics and comparisons between different solution techniques.
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Figure 1.10.: Overview of contributed algorithms.
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1.6. Structure of the Document

After having given an introduction to airport ground staff scheduling in this chapter, we first give
a comprehensive overview of workforce scheduling literature in Chapter 2. A special focus is
put on models and algorithms which are relevant to airport operations. We will furthermore draw
analogies of general workforce scheduling to crew scheduling at airlines and public mass transport
companies.

In Chapter 3, we will introduce constraint propagation techniques for the solution of constraint
satisfaction and optimisation problems. Local search methods in constraint programming as well
as modelling alternatives for CP-based vehicle routing will be reviewed, laying the ground for the
two subsequent chapters.

Chapter 4 describes the constraint-based local improvement method for workload levelling in
demand planning and proves theNP-hardness of the problem. Different preprocessing tech-
niques will be described to prepare the results of a preceding construction heuristic for levelling.

Complex task-level shift planning is the subject of Chapter 5. We will introduce the general
problem and develop a mathematical model. A constraint programming model for the problem
will be described, and it will be shown how problem-specific lower bounds can be derived. The
resulting local search algorithms is demonstrated to be efficient on a large variety of test cases,
providing a remedy for the flaws of a preceding construction heuristic.

Chapter 6 again has an introductory character. Dantzig-Wolfe decomposition principle and the
resulting column generation and branch-and-price techniques will be described. Furthermore, we
will point out the relationship to Lagrangian relaxation and give an overview of recent develop-
ments.

In Chapter 7, we will apply Dantzig-Wolfe decomposition to a subclass of the task-level shift
planning problem described in Chapter 5 and solve the resulting model by branch-and-price. Ad-
ditionally, we will prove that even a very restricted shift planning problem isNP-hard in the
strong sense.

While Chapter 2 already comprises a review of implicit models in IP-based scheduling, Chap-
ter 8 gives an illustrative introduction to implicit modelling of break placement flexibility in
demand-level scheduling. We will generalise an implicit model from the literature, overcoming
limitations of previous approaches.

The resulting model provides the basis for the integrated cyclic rostering algorithm of Chap-
ter 9. Reviewing different modelling alternatives and potentials for implicit models, we will
develop a new model for the creation of complex cyclic rosters and devise adapted column gener-
ation algorithms and branching schemes.

Chapter 10 will give a summary of contributions and an outlook on future developments and
research.

Chapters will partly build upon preceding explanations. As far as possible, we have used a
common mathematical notation throughout the thesis. An overview of symbols and abbreviations
can be found in Appendices A and B. Appendix C gives an overview of workforce scheduling
publications.
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2. An Annotated Bibliography on
Workforce Scheduling

When the weight of the paperwork
equals the weight of the plane,

the plane will fly.
— Donald Douglas

2.1. Introduction

In Chapter 1, we have introduced basic notions of workforce scheduling. According to Baker
[1976], workforce scheduling problems can be categorised as eithershift scheduling, day-off
schedulingor tour schedulingapproaches. Shift scheduling deals with the determination of ap-
propriate shift duties within a day in order to cover workforce requirements given on a suitable
discretisation level, e.g. 15 or 30 minutes. Clearly, shift scheduling is trivial if shifts do not
overlap [Baker, 1976] [Mabert and Watts, 1982] [Emmons and Fuh, 1997]. Day-off scheduling
involves the determination of positions for days off in a cyclic or non-cyclic roster. If only one
shift type is involved, day-off scheduling is equivalent to the overall task of building rosters. In
the multiple-shift case, we need an additionalshift assignmentphase in order to match given shifts
into the remaining roster gaps. Tour scheduling integrates these tasks by determining daily shifts
and day-off positions simultaneously.

In several publications, it has been pointed out that integrated formulations can be important in
order to avoid excessive labour costs [Buffa et al., 1976] [Easton and Rossin, 1991], see also the
comparative evaluations of McGinnis et al. [1978] and Bechtold and Showalter [1987]. However,
it should be noted that there is no need for an integrated formulation if there are few restrictions
on valid shift transitions from one day to the other or if only one shift type is used [Holloran and
Byrn, 1986]. For an overview of publications on different model types (shift, day-off and tour
scheduling), the reader is referred to Appendix C.

Some publications have assumed the size of the workforce to be given externally, see e.g.
Mabert and Raedels [1977], Bechtold [1988] and Thompson [1996b]. Other researchers initially
solve aworkforce allocationproblem of determining the minimum staff size for the given work-
loads, see Panton and Ryan [1999] and the combinatorial approaches described in Section 2.3.
However, a majority of publications has treated the determination of necessary workforce sizes as
an objective in shift, day-off or tour scheduling, see e.g. Henderson and Berry [1976], Morris and
Showalter [1983], Jarrah et al. [1994] and Brusco and Jacobs [2000].

Planning is often based on cyclic demands, representing exemplary workloads of a model day
or week. Demands are then assumed to wrap around, i.e. the first demand period is assumed to
follow the last scheduling interval [Çezik and Günlük, 2002]. Analogously, employee availabil-
ity is frequently assumed to be cyclic with employees working on a repeating pattern [Morris
and Showalter, 1983] [Jacobs and Brusco, 1996] [Brusco and Jacobs, 1998a]. As described in
Section 1.2.4, cyclicity can also refer to the roster itself, meaning that the roster consists of a
sequence of several weeks on which workers rotate (cyclic rosters) [Baker, 1976] [Mason, 1999].
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Tour scheduling generally refers to the non-cyclic case (even if demands and employee availabili-
ties can be cyclic), while publications on cyclic roster generation are more scarce. All cyclic roster
approaches in the literature are non-integrative, i.e. they build upon demand figures per shift type.

As mentioned in Section 1.2.3, we can further distinguishnamedandanonymousscheduling
approaches [Tien and Kamiyama, 1982] [Khoong et al., 1994]. Named scheduling implies that
individual employees are explicitly assigned to shifts and tours, meaning that information on
skills, availabilities and preferences can be taken into account , see e.g. Love and Hoey [1990].
In contrast, employee attribution is not part of anonymous scheduling. While named scheduling
is e.g. frequent in nurse scheduling and airline crew rostering (see Sections 2.6 and 2.11), airport
planners usually employ anonymous schedules. Clearly, cyclic rosters are always anonymous.
Appendix C gives an overview of literature on named and anonymous scheduling.

Tour scheduling scenarios are frequently categorised as eithercontinuousor discontinuous.
Organisations working on a continuous basis are confronted with labour requirements on 24 hours
a day, 7 days a week. Shifts for continuous operations usually overlap from one day to the other.
In contrast, discontinuous models involve less-than-24-h operations. Discontinuity introduces a
special structure into mathematical programming formulations of scheduling problems, meaning
that such problems are often easier to solve [Jarrah et al., 1994] [Brusco and Jacobs, 1995] [Brusco
and Johns, 1996].

Scheduling flexibility also varies with other factors. The workforce may be made up of only
full-time employees (e.g. Morris and Showalter [1983], Bechtold et al. [1991], Brusco and Jacobs
[1993b]) or a mix of full-time and part-time workers (e.g. Bennett and Potts [1968], Easton and
Rossin [1991], Brusco [1998]). While in some organisations, it may be possible to start shifts
at any time of the day within a given discretisation, other companies may only be able to use a
small number of different shift types [Thompson, 1995] [Rekik et al., 2003]. Furthermore, one or
several lunch and relief breaks may have to be considered at fixed times within the shifts or within
given time windows [Aykin, 2000].

In tour scheduling, shifts on consecutive days may be constrained to equal start times and
durations (see e.g. Laporte et al. [1980], Li et al. [1991]) while in other settings, start times are
allowed to vary freely (e.g. Bailey [1985]) or within given bands (e.g. Jacobs and Brusco [1996]).
Work rules may constrain days off to be taken consecutively or allow for single days off [Bechtold,
1981]. If shift durations are identical and the number of shifts per week is given, the number of
working hours is fixed (see e.g. Glover and McMillan [1986], Thompson [1993] and Çezik et al.
[2001]). In other problems, average working hours per week are explicitly taken into account, see
e.g. Mason and Smith [1998].

Different degrees of flexibility are usually due to legal or union regulations. Additionally,
special assumptions can be taken for computational reasons [Laporte et al., 1980] [Li et al., 1991].
However, Jacobs and Bechtold [1993] have empirically shown that higher degrees of scheduling
flexibility often allow for a better labour utilisation.

Shift, day-off and tour scheduling can be represented by a generalised set covering formulation
which is originally due to Dantzig [1954], see also Morris and Showalter [1983] and Bailey and
Field [1985]:

min
∑
j∈J

cjXj (2.1)

subject to ∑
j∈J

aijXj ≥ di ∀ i ∈ I (2.2)

Xj ≥ 0 and integer ∀ j ∈ J (2.3)
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2.2. Shift Scheduling Approaches

In the context of shift scheduling, coefficients and decision variables have the following mean-
ings:

Xj number of employees assigned to shiftj;
cj cost of shiftj;
di number of employees required to work in thei’th time period;
I set of time periods in a day;
J set of daily shift types;
aij = 1 if time periodi is a work period in daily shift typej (0 otherwise).

For day-off scheduling, parameters and variables are interpreted as follows:

Xj number of employees assigned to day-off patternj;
cj cost of day-off patternj;
di number of employees required on thei’th day of the week;
I set of operating days per week;
J set of day-off patterns to be considered;
aij = 1 if day i is a work day in the day-off patternj (0 otherwise).

In tour scheduling, variables and columns in the constraint matrix represent tours of shifts:

Xj number of employees assigned to tourj;
cj cost of tourj;
di number of employees required to work in thei’th time period;
I number of time periods to be scheduled over the week;
J number of tour types to be considered;
aij = 1 if time periodi is a work period in tourj (0 otherwise).

Most models for shift, day-off and tour scheduling implicitly or explicitly rely on this model,
see e.g. Keith [1979], Morris and Showalter [1983], Brusco and Jacobs [1993a] and Aykin [2000].
As will become clear in the sequel, many authors have used integer programming (IP) approaches
or linear programming based rounding heuristics to solve this problem, see also Ernst et al. [2004].
Several authors have noted that the aforementioned linear programming (LP) formulation gener-
ally exhibits advantageous integer properties (see e.g. Bailey [1985], Bailey and Field [1985]).
Furthermore, the LP relaxation is known to be very tight and therefore lends itself well for inte-
ger solution methods by branch-and-bound [Henderson and Berry, 1976] [Morris and Showalter,
1983].

The following overview of workforce scheduling publications focuses more on models and so-
lution techniques than previous surveys (like Ernst et al. [2004]). Furthermore, it concentrates
on publications with relevance to airport ground staff planning. The presentation will mainly be
structured by the aforementioned problem classes. Two modelling features have received atten-
tion on their own right and will be described separately: the modelling of flexible break placement
as well as working subset approaches, aiming at reducing the number of used shift types. Further-
more, nurse scheduling is described as a special case of named scheduling. Complexity results in
workforce scheduling problems are summarised in a separate section. At the end of the chapter,
we will give annotations on similarities of general workforce scheduling with airline crew roster-
ing and driver scheduling in public mass transport. Within each section, publications will be cited
in chronological order if grouping contributions by affiliation is not more appropriate.

2.2. Shift Scheduling Approaches

Dantzig [1954] was the first to propose the above set covering formulation for shift scheduling of
toll booth staff. He noted that using the simplex method often naturally yields integer solutions
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and proposed to round up fractional values in order to obtain feasible integer solutions. Fur-
thermore, Dantzig called for integrating breaks into the formulation by setting the corresponding
matrix coefficients to0. Bennett and Potts [1968] used this explicit representation of breaks for
shift scheduling of toll collectors with a given ratio of full-time and part-time employees. Aim-
ing at minimising excess labour, the set covering model was solved by a multiple-step integer
programming procedure.

Planning of telephone operator duties was a popular domain of application in the 1970’s. Se-
gal [1972] proposed a network flow model, using the out-of-kilter method. In his approach,
labour demands are incorporated in lower bounds on so-called forward arcs while backward arcs
represent feasible shifts. Breaks are scheduled in a second phase, possibly resulting in labour
shortages which are added to the demands of the original problem. Buffa et al. [1976] described
how to forecast telephone operator workloads, using historical data and a queueing model. Their
heuristic shift scheduling algorithm allows for understaffing and overstaffing and used local es-
timations of deviations between operator availability and forecasted demands. Shifts are then
heuristically assigned to operators, taking shift and day-off preferences into account. Henderson
and Berry [1976] proposed an LP approach for telephone operator scheduling, using different
rounding heuristics and local search. The formulation uses aworking subsetof shift types which
are heuristically selected in a first step. In another LP approach to telephone operator schedul-
ing, Keith [1979] allowed for two-level understaffing and overstaffing which is penalised in the
objective function. He proposed to round fractional solutions to the nearest integer, subsequently
applying several improvement steps.

Gaballa and Pearce [1979] used queueing models to forecast weekly workloads in sales reser-
vation offices at Qantas. Daily shift scheduling problems are solved by integer programming,
incorporating breaks by a distinct set of variables. Weekly rosters are built in a second step, again
using integer programming. In another airline applications, Stern and Hersh [1980] described
the scheduling of aircraft cleaning crews, using non-overlapping shift types and flexible breaks.
In their setting, workloads for each job at an aircraft are given as man-hours to be worked by a
crew of workers. The application leads to a special shift scheduling model to be decomposed and
solved by integer programming.

In an interesting paper, Bartholdi et al. [1980] analysed a class of cyclic staffing problems,
covering shift and day-off scheduling settings. Cyclic staffing problems lead to set covering for-
mulations in which the columns (rows) of the constraint matrix contain cyclically consecutive
ones. The authors showed how to solve this class of problems efficiently either by variable trans-
formation and a network flow formulation or by linear programming and cumulative rounding.
These results were generalised by Bartholdi III [1981] who presented another optimal LP-based
round-off algorithm for column (row) circular matrices. For problems with non-consecutive ones
in the constraint matrix, a quality bound was given in terms of the number of blocks of ones. Also
based on this work, Karp and Orlin [1981] described the transformation of cyclic staffing prob-
lems into parametric shortest path problems and presented a polynomial-time solution algorithm.
Vohra [1988] proposed a heuristic algorithm for cyclic problems allowing for more than one block
of consecutive ones when blocks of ones have equal lengths. The quality of the heuristic depends
on demand deviations from the maximum workload, ensuring optimality only if all requirements
are equal.

In the context of shift scheduling with fixed breaks, Bailey and Field [1985] stressed the im-
portance of using different shift lengths to cover workloads efficiently. The LP-based rounding
algorithm of Bartholdi III [1981] was shown to be superior to the heuristic approach of McGinnis
et al. [1978] proposed in the context of tour scheduling (see Section 2.5).

Love and Hoey [1990] described the development of a system for named shift planning in
fast-food restaurants, taking employee availabilities into account and trying to balance skill levels
between different working areas. The problem is decomposed into a set covering formulation for
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shift scheduling and an employee assignment phase, both of which are solved by network flow
algorithms.

Shift scheduling for full-time and part-time staff at Pan Am was described by Schindler and
Semmel [1993]. The model was solved by integer programming, considering lunch breaks in a
second phase.

Thompson [1996b] developed a model for named shift scheduling with limited employee avail-
abilities. A special set covering model with sets of shifts for each employee and multi-level penal-
ties for understaffing and overstaffing was presented and solved by simulated annealing (SA).
Experimentally evaluating different local search operators, the SA approach was shown to yield
solutions which are only slightly worse than optimal IP solutions.

Berman et al. [1997] integrated the scheduling of shifts and workflow of a mail processing
facility in an integer programming model. On the personnel scheduling level, full-time and part-
time employees as well as breaks and qualifications were taken into account. Workflow was
subjected to time window and capacity constraints.

In the airport cargo handling application of Nobert and Roy [1998], workloads are given as
kilos of freight to be processed in given time intervals. The authors integrated the levelling of
these workloads with shift scheduling into an integer programming formulation. Using test data
from Air Canada, the levelling approach was shown to be superior to linear or no levelling.

Sørensen and Clausen [2002] experimentally investigated the effects of decentralising ground
staff planning for British Airways operations at London-Heathrow airport. Their model integrates
a so-called zoning problem with the allocation of aircraft stands and cyclic shift scheduling. While
the solution approach uses simulated annealing on the zoning and stand level, the shift scheduling
problems employ only limited numbers of shifts and can be solved heuristically. It was shown that
increasing the number of zones and decentralising planning processes can lead to considerable
excess workforce and a decline in the quality of stand allocations. By application of historical
flight delay data, the robustness of stand allocations and staff plans was evaluated.

Musliu et al. [2004] described a weekly shift scheduling problem, avoiding an excessive use of
different shift types over the week. The authors proposed a tabu search algorithm which exploits
problem-specific knowledge. The algorithm is part of a commercial scheduling system.

2.3. Day-Off Scheduling Approaches

As mentioned before, day-off scheduling consists in determining the placement of days off in
cyclic or non-cyclic rosters. Mabert and Raedels [1977] formulated a day-off scheduling problem
for part-time bank tellers as a set covering model. In their formulation, workloads of different
branches of the bank are aggregated, the resulting problem solved by integer programming and
subsequently disaggregated. An alternative heuristic procedure was shown to be computationally
advantageous, but inferior with regard to solution quality.

Based on this work, Bechtold [1988] presented a day-off scheduling model and heuristic algo-
rithms for different goal sets, limits on the number of consecutive days on and employees working
either at a single or at multiple locations. The algorithms were shown to outperform the alternative
heuristic method of Mabert and Raedels [1977].

Most publications on day-off scheduling are more restrictive with regard to the given demand
figures and the work rules considered. Many authors have proposed sequential approaches, start-
ing by determining lower bounds on the workforce size. Afterwards, days off are assigned ac-
cording to given rules, resulting in polynomial time algorithms for solutions using the minimum
workforce size. Emmons and Burns [1991] call this thecombinatorial approach. While early
publications refer to only one shift type, the combinatorial approach has later been extended to
multiple shifts. Since demand figures are given per shift type, these models are not integrated as
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in tour scheduling. Demands and employee availabilities are generally assumed to be cyclic.
In the setting of Tibrewala et al. [1972], variable demand figures are given for a single shift type

over a week. The authors demonstrated how to arrive at a minimum workforce size, allowing for
one or two days off per week. In the cyclic model of Baker [1974], variable shift demand figures
are to be covered exactly by a mix of full-time staff with two consecutive days on per week and
part-time staff available to work single shifts. Baker showed that a proposed tableau algorithm
was always able to determine a solution using the minimum number of part-time staff.

Brownell and Lowerre [1976] studied necessary workforce sizes when demands for a single
shift type are equal on all weekdays and on weekend days. With employees working five days each
week, closed-form expressions for the minimum workforce size as well as optimal algorithms for
different work policies (e.g. consecutive days off, every other weekend off) were presented. Low-
erre [1977] refined these results, analysing the lengths of workstretches (number of consecutive
days on) and adding two further policies for cyclic rosters. Baker and Magazine [1977] basi-
cally treated the same setting with only cyclic demands, but relaxed the condition of Brownell
and Lowerre [1976] of weekend demands to be lower than weekday requirements. Burns [1978]
allowed for a maximum of six days on as well as variable demands with every other weekend off
in a cyclic setting.

Baker et al. [1979] treated the case of equal demands on all days with employees working
five days each week and a maximum of six consecutive days on. Concentrating on anA-out-
of-B weekends off constraint, they studied the consequences of different work policies on the
workforce size. Bechtold [1981] allowed for arbitrary demands and presented algorithms for one
or two days off per week. He showed that his algorithm is easier and more efficient than the
comparable algorithm of Tibrewala et al. [1972]. However, it was noted that the latter algorithm
yields better distributions of surplus labour while his own approach turned out to better disperse
slack than the round-off procedure of Bartholdi et al. [1980]. In cyclic rostering, Emmons [1985]
treated the case of a minimum workforce which is equal on weekdays and on weekend days,
granting two days off per week,A out of B weekends off and workstretches of between two and
four days. Burns and Carter [1985] extended their earlier studies on constructive algorithms by
considering variable demands, five workdays per week, maximum workstretches of six days and
A out ofB weekends off in non-cyclic scheduling.

Workers of different skill rankings were considered by Emmons and Burns [1991], assuming
that workforce requirements for each class of workers are constant throughout all days of the
week. Employees were grantedA out of B weekends off. Their method first determines neces-
sary workforce sizes, then distributes weekends off and other days off and finally assign shifts,
minimising the use of highly-qualified staff. A last single-shift model for non-cyclic scheduling
was presented by Emmons and Fuh [1997]. Labour requirements were assumed to be constant
throughout weekdays and weekend days. Two types of part-time workers were considered, the
one entailing lower costs than full-time employees and a more expensive but unlimited pool of
part-time staff.

Burns and Koop [1987] were the first to extend previous combinatorial approaches to a multiple
shift case with three non-overlapping shifts and equal demands on weekdays and lower but equal
demands on weekends. Shift changes within workstretches were disallowed andA out of B
weekends off granted. Based on closed-form expressions for the minimum workforce size, their
algorithm builds rosters on the basis of so-calledmodules, i.e. predetermined patterns of one or
several weeks. The slots of these modules are then filled by appropriate shift duties. Koop [1988]
studied another cyclic roster setting with multiple shifts and shift change restrictions. It was shown
how to determine lower bounds on the workforce size. The author proposed a network model for
cyclic rostering and formulated conditions for the existence of a circulation. Additionally, some
special cases of shift change constraints were considered.

Hung considered a similar multiple-shift case with equal demands on weekdays and week-
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end days for each shift [Hung, 1993] [Hung, 1994a] [Hung, 1994b]. As in other combinatorial
approaches, closed-form expressions for the minimum workforce size as well as constructive op-
timal algorithms were given for three [Hung, 1993], four [Hung, 1994a] and alternating three/four
[Hung, 1994b] shifts per week. These approaches were extended by Burns and Narasimhan
[1999], providing control over maximum lengths of workstretches. Optimal workforce sizes were
determined, days off allocated and finally shifts assigned without considering restrictions on shift
successions.

All combinatorial approaches are restricted to special cases and usually do not generalise to
different work policies. Emmons and Burns [1991] note that “an integer programming formula-
tion can more easily incorporate additional constraints, and be extended to more general models.”
However, combinatorial models have often incorporated constraints which have not yet been rep-
resented in full detail in more general solution approaches.

2.4. Shift Assignment Approaches

Shift assignment is concerned with the attribution of shifts of given types to the gaps left af-
ter day-off scheduling. Clearly, it only applies to sequential approaches which decompose the
rostering problem into a day-off and shift assignment phase. Two of the aforementioned publica-
tions already comprise a shift assignment part, namely Emmons and Burns [1991] and Burns and
Narasimhan [1999].

Van den Berg and Panton [1994] investigated two shift assignment problems for cyclic rosters.
One problem constrains shifts on consecutive days to have equal types while the other allows for
forward-rotating assignments, i.e. shifts rotate from earlier to later start times. Different existence
conditions for such assignments were presented and subproblems solved by heuristics and net-
work flow algorithms. Lau investigated a similar problem denoted aschanging shift assignment
problem, prescribing valid shift transitions by a matrix. While the overall problem was shown to
beNP-hard [Lau, 1996b], greedy and network flow approaches were proposed for some easier
subclasses in Lau [1994], Lau [1996a] and Lau [1996b].

In a named scheduling model, Jackson et al. [1997] compared different approaches for as-
signing given shifts with qualification requirements to employees. Greedy and random greedy
algorithms resulted in satisfactory results while different iterative improvement approaches like
tabu search did not compare favourably.

2.5. Tour Scheduling Approaches

Ritzman et al. [1976] were the first to propose a simultaneous approach for shift and day-off
scheduling in an application to a mail sorting facility. Integrating the planning of workforce and
workflow between different operations, full-time and part-time staff was scheduled by dedicated
decision rules and simulation.

Several publications have pointed out the importance of integrated models. McGinnis et al.
[1978] showed an integrated heuristic algorithm to outperform a sequential approach, consisting
in shift scheduling, day-off scheduling and shift assignment. In an integer programming approach
to discontinuous tour scheduling, Bailey [1985] showed that considerable savings can be obtained
from an integrated formulation. Bechtold and Showalter [1987] demonstrated the superiority of a
heuristic tour scheduling algorithm over an LP-based two-phase approach.

A linear programming rounding procedure for continuous tour scheduling was proposed by
Morris and Showalter [1983]. In their solution method, fractional solutions are first rounded
down before restoring feasibility by successively adding tours. The algorithm was shown to yield

21



2. An Annotated Bibliography on Workforce Scheduling

a maximum deviation of 1% with regard to the LP relaxation and to compare favourably to the
rounding heuristics of Henderson and Berry [1976] and Bartholdi III [1981].

Glover et al. [1984] presented a model for discontinuous named tour scheduling, taking pref-
erences into account and incorporating full-time and part-time employees. As a precursor of tabu
search, a local search algorithm was described, allowing for steps into the infeasibility region of
the search space. A similar approach was proposed by Glover and McMillan [1986] for named
tour scheduling with restricted employee availabilities, full-time and part-time staff, different skill
levels, flexible breaks and restrictions on the number of weekly working hours. The approach was
tested successfully on shift scheduling problems arising in fast-food restaurants.

Holloran and Byrn [1986] described the development of a scheduling system for United Air-
lines sales reservation offices and passenger services. Their approaches uses queueing models for
the generation of typical weekly workloads. These are covered by monthly tours with equal shifts
in each workstretch, using the LP-based rounding scheme of Henderson and Berry [1976]. Sepa-
rate modules are used to reduce the number of employed shift start times and to ensure contiguity
between monthly work schedules.

Further application-oriented papers were contributed by Andrews and Parsons [1989] and Tay-
lor and Huxley [1989]. Andrews and Parsons [1989] described the evaluation of commercial
scheduling systems for telephone operators at a mail-order sales company, including demand
forecasting models and tour scheduling algorithms. Taylor and Huxley [1989] described the re-
alisation of a scheduling system for the San Francisco Police Department. A primal-dual integer
heuristic was developed to solve a tour scheduling problem with relatively strict restrictions on
the distribution of shifts and days off.

Bechtold et al. [1991] compared different tour scheduling algorithms, including the LP-based
rounding approaches of Henderson and Berry [1976], Keith [1979] and Morris and Showalter
[1983] as well as the heuristic algorithms of Buffa et al. [1976], McGinnis et al. [1978] and
Bechtold and Showalter [1987], using a tour scheduling setting which is amenable to all of these
solution techniques. On a set of artificial test problems, the technique of Bechtold and Showalter
[1987] turned out to be competitive with LP-based approaches while the rounding heuristics of
Keith [1979] and Morris and Showalter [1983] outperformed alternative solution techniques.

Easton and Rossin [1991] described a column generation algorithm for tour scheduling. Only
tours of nonzero values in the LP relaxation were subjected to an integer programming formula-
tion. The authors showed that this method often finds optimal overall solutions and outperforms
LP-based rounding or improvement algorithms.

In an application to a lockbox department of a bank, Li et al. [1991] interpreted constraint
coefficients of a set covering formulation as employee productivities. For a discontinuous tour
scheduling formulation for full-time and part-time employees, they proposed LP-based rounding
based on the methods of Bartholdi III [1981] and Showalter and Mabert [1988].

Loucks and Jacobs [1991] presented a named tour scheduling problem arising in a fast-food
restaurant, involving employee availabilities, skills and task assignments. Their formulation is
based on goal programming, aiming at minimising overstaffing and deviations from targeted work
hours for each employee. However, a goal programming solution method was deemed too costly,
and construction and improvement heuristics were used instead.

In two publications, Brusco and Jacobs proposed simulated annealing approaches for tour
scheduling scenarios involving flexible breaks. Brusco and Jacobs [1993b] applied SA to dis-
continuous tour scheduling and allowed for start-time float within the tours. In contrast, the SA
algorithm of Brusco and Jacobs [1993a] refers to continuous tour scheduling with equal start times
on all days and five consecutive days on per tour. Both approaches build upon an initial heuristic
solution and use a neighbourhood which consists in dropping and rebuilding tours. Brusco and
Jacobs [1993b] showed that simulated annealing is faster than LP-based methods while obtaining
solutions which are within a maximum deviation of 1.95% from the LP relaxations. Brusco and
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Jacobs [1993a] showed that SA outperforms the LP-based rounding techniques of Keith [1979]
and Morris and Showalter [1983].

A number of publications is based on these simulated annealing algorithms, including Brusco
and Jacobs [1995], Brusco and Johns [1995], Brusco et al. [1995], Brusco and Jacobs [1998b] and
the shift scheduling approach of Thompson [1996b] described above. Brusco and Jacobs [1995]
conducted experiments on a tour scheduling formulation for a mixed full-time/part-time work-
force. They showed that applying a discontinuous formulation to continuous problems entails
substantial excess labour costs if the use of part-time staff is limited. Brusco and Johns [1995]
showed how to treat the even dispersion of surplus labour as a secondary goal in the tour schedul-
ing model of Easton and Rossin [1991], using the above SA algorithm and the LP-based rounding
approach of Morris and Showalter [1983].

The development of a PC-based personnel scheduling system for full-time and part-time work-
ers at United Airlines was described in Brusco et al. [1995]. In this application, the above simu-
lated annealing algorithm builds upon initial tour schedules generated by the system of Holloran
and Byrn [1986]. Major savings were reported using the new system. The authors incorporated
an LP-based technique for reducing the number of shift starting times which was described by
Brusco and Jacobs [1998b] (cf. Section 2.9). Equally based on data of United Airlines opera-
tions, Brusco and Jacobs [1998a] showed how the number of columns in the IP formulation of a
continuous tour scheduling problem can be reduced by some simple observations.

Jacobs and Bechtold [1993] conducted a comprehensive study on the efficiency of tour schedul-
ing with different degrees of flexibility, using the integer programming formulation of Bailey
[1985] and the break model of Bechtold and Jacobs [1990] (described in Section 2.8). On a set of
different requirement patterns, they found out that flexibility with regard to tour lengths and break
placement are major sources of schedule efficiency. While shift type flexibility (start times and
lengths) had considerable effects, start-time float within the tours and day-off flexibility were only
minor factors. Furthermore, it was noted that a different extent of labour requirements throughout
the day has considerable impact on roster efficiency. While the amplitudes of demands are further
important factors, mean requirements were not found out to be significant.

In a simple tour scheduling environment, Thompson [1993] conducted a simulation analysis
on the consequences of different requirement representations. Alternatively to “at-least” staffing
levels, a service operation was modelled by target staffing models, allowing for staff shortages
and overcoverages. Target staffing levels as well as stepwise linear costs of understaffing and
overstaffing were calculated from different customer arrival patterns, service times and customer
dissatisfaction costs. Using the LP-based rounding techniques of Henderson and Berry [1976]
and Keith [1979], Thompson [1993] concluded that more exact representations of demands and
the admittance of supply shortage results in lower overall costs.

Bechtold and Brusco [1994a] proposed a sequential approach for discontinuous tour scheduling
of full-time and part-time staff which is amenable to the solution by a personal computer. For the
solution of the underlying shift scheduling problems, they combined the algorithm of Showalter
and Mabert [1988] with an improvement phase by Henderson and Berry [1976], favouring the
use of few shift start times across the days. The procedures of Bechtold [1981] and Bechtold
[1988] were subsequently used for day-off scheduling. In comparison to the method of Easton
and Rossin [1991], the approach was shown to yield slightly worse results on easy test problems
while results were better on larger scenarios and required less computing time.

Inspired by Burns and Carter [1985] and Bechtold and Jacobs [1990], Jarrah et al. [1994] com-
bined seven daily shift scheduling formulations into an integer programming model for discontin-
uous tour scheduling, using specialised branching rules on aggregate features. The effectiveness
of the approach was demonstrated on test cases of the U.S. Postal Service.

Bailey et al. [1995] proposed an integrated integer programming model for project and tour
scheduling. Only little information was given on modelling details and solution methods.
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Brusco and Johns [1996] exploited the special structure of discontinuous tour scheduling prob-
lems. Their method is based on successive fixations of tour variables in an LP formulation, starting
with tours whose shifts start in the first or last period of the days. On settings with only full-time
workers, the authors showed that this approach nearly always finds optimal solutions and out-
performs the techniques of Keith [1979] and Morris and Showalter [1983]. Using the reduction
technique of Easton and Rossin [1991] for experiments on a mixed workforce, the algorithm
turned out to perform consistently better than the method of Bechtold and Brusco [1994b].

A system for monthly ground staff rostering at a large airport was described by Dowling et al.
[1997]. Allocating actual work tasks as late as one day before operations, a simulated annealing
algorithm was used to solve the tour scheduling problem on the demand-curve level.

Brusco [1998] proposed to use the Gomory dual all-integer cutting plane to solve a discon-
tinuous tour scheduling problem involving full-time and part-time employees. On scheduling
environments with different degrees of flexibility, the approach was shown to be superior to a
commercial branch-and-bound code for integer programming.

In a call centre application, Henderson and Mason [1998] considered the determination of
labour requirements as an integral part of scheduling. They proposed to repeatedly iterate between
shift or tour scheduling by integer programming and the simulation of customer arrivals by a
queueing model, generating new demand constraints for the scheduling model.

Alvarez-Valdez et al. [1999] developed a tabu search algorithm for continuous tour scheduling
of a mixed workforce at a Spanish aircraft fuelling company. In their contribution, schedules refer
to one week, but respect constraints with regard to the preceding week as well as global work
balances. The proposed algorithm first only determines shift classes for each day. Schedules
are then assigned to employees and appropriate shifts filled in. The method was compared to
a commercial integer programming package at equally restricted runtimes. However, the tabu
search approach still yielded solutions exceeding IP results by 2% and more.

Mason and Nielsen [1999] described a named tour scheduling algorithm. The procedure is part
of a commercial software package which has been implemented in call centres, at an airport Cus-
toms authority and for nurse rostering. Their model involves qualifications and staff preferences
and was solved by heuristic decomposition and column generation.

2.6. Nurse Scheduling Approaches

The scheduling of nurses and physicians has received particular attention in the literature. While
this application area is closely related to other domains of workforce scheduling, models usu-
ally bear some special characteristics. Nurse scheduling generally belongs to the class of named
scheduling models, incorporating preferences and availabilities, see e.g. Warner [1976] and Dows-
land [1998]. Furthermore, several researchers have considered nurses of different skill classes
[Arthur and Ravindran, 1981] [Jaumard et al., 1998]. Requirements are usually given per shift
type, i.e. nurse scheduling refers to the sequential or simultaneous determination of day-off and
shift positions. Most publications assume three non-overlapping shift types, namely morning,
evening and night shift [Arthur and Ravindran, 1981]. Breaks are not considered, but models may
include the assignment of nurses to functions, see Schaerf and Meisels [1999]. Solution meth-
ods sometimes only aim at finding feasible solutions [Berrada et al., 1996] [Jaumard et al., 1998]
[Schaerf and Meisels, 1999]. Alternatively, it may be known that requirements cannot be met at
all [Warner, 1976], or nurse preferences are considered more important than meeting demands
[Arthur and Ravindran, 1981]. As most nurse scheduling models are feasibility-driven, solution
methods are often different from general workforce scheduling and e.g. include constraint pro-
gramming and tabu search. The class of problems arising in nurse scheduling is sometimes sub-
sumed under the termemployee timetabling problems[Meisels et al., 1997] [Schaerf and Meisels,
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1999]. We will shortly survey the relevant literature; two further publications on nurse scheduling
will be described in the subsequent section on cyclic rostering.

Miller et al. [1976] presented a local search scheme for nurse scheduling with only one shift
type. Their algorithm aims at meeting minimum and preferred staffing levels as well as nurse
preferences. The method was implemented in a number of hospitals in the U.S. and Canada,
yielding results which were superior to the schedules used by the hospitals before. In the model
of Warner [1976], nurses were allowed to specify their preferences on score cards, distributing
penalty points for inconvenient assignments. Different skill classes were considered. A multiple-
choice integer programming formulation was used to generate 14-day schedules for each nurse
with costs reflecting preferences. The optimisation approach was implemented at the University
of Michigan Hospital.

Arthur and Ravindran [1981] described a sequential approach for nurse scheduling. While
weekends off were granted according to nurse preferences, other days off were scheduled by a
goal programming approach. Shifts of three skill classes were then assigned separately, again
taking preferences into account. Musa and Saxena [1984] used a goal programming formulation
for day-off scheduling of nurses. Goals included the coverage of workloads as well as meeting
weekend-off preferences and weekly work hours. A special solution technique, inspired by the
additive algorithm of Balas [1965], was applied to a small example.

Based on the tour scheduling approach of Bailey [1985], Ozkarahan and Bailey [1988] pre-
sented a goal programming model for nurse scheduling with a fixed staff size. Demands were
given per time period, and goals included meeting the workforce requirements as well as match-
ing the derived shift numbers to tours. A sequential solution approach was used, determining
daily schedules after day-off scheduling. Tests were carried out on real-world data, and signifi-
cant savings were reported with regard to the manual planning method used before.

Weil et al. [1995] developed a constraint programming (CP) model for nurse scheduling, using
a simple search strategy on a small real-world example. In a strongly constrained setting includ-
ing preassigned shifts, Cheng et al. [1997] presented another CP method for nurse scheduling.
Redundant modelling was used, coupling two alternative constraint programming models by so-
called channelling constraints. The technique was successively applied to real-world data from a
Hong Kong hospital. Meisels et al. [1997] described the development of a nurse scheduling sys-
tem involving a combined CP/knowledge-based approach. Qualification and shift compatibility
constraints were incorporated as well as nurse preferences.

The setting of Berrada et al. [1996] considers constraints on the number of consecutive and
weekly working days as well as restrictions on the placement of days off and preferences. The
model was solved by integer programming and tabu search. Contrary to Berrada et al. [1996],
Dowsland [1998] regarded demands for non-overlapping shifts as hard constraints. An involved
two-phase tabu search algorithm was proposed, using strategic oscillation and chain neighbour-
hoods. Tabu search was reported to be more robust than simulated annealing or random descent.

Jaumard et al. [1998] described a general framework for the solution of nurse scheduling prob-
lems by branch-and-price. Their setting is closer to general workforce scheduling as demand
figures are given by so-called demand periods and shifts are allowed to overlap. Preferences
and skills are considered as well as understaffing. Additionally, the model includes matching
conditions for contiguity between scheduling periods. The authors used a column generation for-
mulation, representing working hours, weekends off, consecutive days on, holidays and shift type
constraints as constrained resources in a shortest path subproblem. Preliminary tests on data from
a Montŕeal hospital indicated rather high running times.

Another approach for tour scheduling in a nursery application was described by Mason and
Smith [1998]. Similarly to Jaumard et al. [1998], demand figures are given per segment in which
no shifts start and end, and column generation was used in an integer programming formulation.
The model includes constraints on the number of days on and off as well as preferences with regard
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to the choice of shifts, shift transitions and general workstretch features. A column generator
generates minimum-cost workstretches and combines them into roster lines, using a network flow
formulation and dynamic programming. Furthermore, it was shown how working hour constraints
can be respected.

Schaerf and Meisels [1999] used generalised local search to find an assignment of nurses to
shifts and functions such that the least number of constraints is violated. Their model includes
nurse availabilities as well as qualifications. Carter and Lapierre [2001] summarised scheduling
techniques for emergency room physicians in hospitals around Montréal. A multitude of relevant
restrictions was described. It was shown how schedules used in two hospitals could be slightly
improved by manual changes and simple tabu search techniques.

Most recently, Bellanti et al. [2004] described a monthly nurse scheduling problem in an Italian
hospital. The model includes preferences as well as holidays. Starting with the assignment of
holidays, requested days off and night shifts, a greedy algorithm builds an initial solution. Solution
improvement by tabu search and iterated local search yielded solutions which were superior to
manually created schedules, but none of the two improvement methods turned out to strictly
outperform the other.

2.7. Cyclic Roster Approaches

A limited number of publications deal with cyclic rosters on which workers rotate in a cyclic fash-
ion, cf. Section 1.2.4. The main advantage of cyclic rosters is their fairness because all employees
work on the same pattern [Bennett and Potts, 1968]. However, rotating schedules entail an equal
coverage for every week for which they are unrolled, meaning that it is not possible to adapt to
changing labour demands [Baker, 1976] [Ernst et al., 2004].

Some publications which refer to cyclic rosters have already been cited before, namely the
combinatorial approaches for day-off scheduling by Lowerre [1977], Emmons [1985], Burns and
Koop [1987] and Koop [1988] as well as the shift assignment problems treated in van den Berg and
Panton [1994], Lau [1994], Lau [1996a] and Lau [1996b]. Although cyclic rostering is a special
case of tour scheduling, it is interesting to note that no publication has treated cyclic rostering in
an integrated way, determining daily shifts and shift/day-off schedules simultaneously.

Bennett and Potts [1968] devised a two-step approach for cyclic scheduling of bus drivers
and operators, sequentially assigning days off and shifts of given types. Special goals for the
distribution of days off were partly solved to optimality by combinatorial analysis.

In an application to police and fire departments, Laporte et al. [1980] developed an integer
programming approach for generating cyclic rosters. In their model, shift changes between three
non-overlapping shifts are disallowed within workstretches. Integer programming was used for
the selection of building blocks among the set of all feasible workstretches, and solutions contain-
ing disconnected subcycles were cut off by additional constraints. An alternative integer program-
ming approach for cyclic nurse scheduling with only one shift type was proposed by Rosenbloom
and Goertzen [1987] who generated valid weekly sequences of days off and shifts in a first step
and defined a matrix of week transitions respecting all constraints. An integer program was then
used to choose among the valid transitions.

Balakrishnan and Wong [1990] presented a cyclic rostering problem with a given workforce
size and demand figures per shift type. Shift changes within workstretches were disallowed, and
the first workstretch was assumed to start on a Monday in order to break cyclicity. Incorporating
coverage constraints in a Lagrangian relaxation approach, the subproblem was formulated and
solved as a network flow model. The possible duality gap was closed by the solution of aK-
shortest path problem.

Panton [1991] divided a cyclic roster of fixed size intomodulesof several weeks. The day-off
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scheduling and shift assignment problems were then solved within each module. In their heuris-
tic solution approach, weekends off are assigned first, and labour requirements are evenly divided
between the modules. Days off are scheduled by complete enumeration, respecting matching con-
ditions between weeks. Finally, shifts are assigned using the out-of-kilter algorithm for network
flows. The approach was evaluated on scheduling problems for Casino security officers.

Several publications describe the development of a scheduling system named ROMAN, devel-
oped at the Singapore Information Technology Institute. The system incorporates algorithms for
cyclic and non-cyclic named rostering. Chew [1991] gave a description the underlying cyclic ros-
ter algorithm in an application to airport baggage services. Due to special rules, the model only
allows for a small number of feasible workstretches. Chew [1991] formulated an integer program
on the workstretch level, but outlined only a manual solution procedure, assigning shifts one by
one with non-increasing start times.

System overviews and applications to the health care and transportation sector were reported
in Khoong and Lau [1992] and Khoong et al. [1994]. Khoong and Lau [1992] also described a
sequential approach for cyclic roster generation, starting with the determination of required shift
numbers and the necessary workforce size. Subsequently, days off and shifts were assigned, using
different heuristic methods, branch-and-bound search and allowing for user interaction on differ-
ent levels. Khoong et al. [1994] additionally mentioned a module for individual rostering which
e.g. incorporates employee preferences. The system allows for the definition of work rules in
a specification language and provides means for what-if analyses of work policies, employment
levels, demand levels and deployment profiles. Khoong et al. [1994] shortly surveyed solutions
methods, including heuristics, local search, branch-and-bound, graph algorithms and manual in-
teraction on different subproblems.

Mason et al. [1998] described the development of another rostering system for the Customs
authority at Auckland airport. Their methods starts by determining labour requirements per time
period, using heuristics and iterated simulation of passenger arrivals. A shift scheduling formu-
lation is then used to cover demands by full-time and part-time staff. Finally, full-time shifts are
positioned in a cyclic roster by a method described by Panton [1991].

Building upon the work of Balakrishnan and Wong [1990], Millar and Kiragu [1998] presented
a network flow model for cyclic and non-cyclic anonymous nurse rostering. As only two non-
overlapping shift types are used, all feasible workstretches can be enumerated and represented as
nodes in a flow formulation. Incorporating shift coverages as well as constraints on weekends off
and weekly working hours, the model was solved by a commercial integer programming package.

One of the best recent references for cyclic rostering is given by Mason [1999]. The author
reviewed IP models for the generation of cyclic rosters for given shift numbers. He proposed to
represent workstretches by columns, taking different shift types and shift changes within work-
stretches into account. In order to avoid disconnected solutions, a novel three-way branch was
presented which seems to be more powerful than the cutting scheme of Laporte et al. [1980].

Taking a half-automatic heuristic approach, Muslija et al. [2000] solved a cyclic rostering prob-
lem for given workforce sizes and shift requirements. After determining lengths of work blocks,
blocks of shifts and days off are distributed subject to weekend-off constraints. Finally, valid
sequences of shifts are generated and assigned to the work blocks. The algorithm is part of a
commercial software package.

Felici and Gentile [2004] described an integer programming algorithm for cyclic rostering at
Alitalia, using a formulation which initially exhibits strong symmetry. A number of valid inequal-
ities was derived in order to tighten the LP bound, making use of special problem structures with
regard to weekends off and days on and off. Specialised branching strategies aim at breaking
symmetry. Real-world test problems were used for the experimental evaluation.
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2.8. Break Placement Flexibility and Implicit Modelling

Special attention has been given to the representation of relief and lunch breaks in shift and tour
scheduling. Aykin [1996] notes that in shifts of at least nine hours, employees usually receive one
lunch break of 30 or 60 minutes and two relief breaks of 15 minutes each. Other authors report on
settings in which only one lunch breaks is required, e.g. Brusco and Johns [1996]. Furthermore,
some organisations usesplit shiftswhich Thompson [1992] defines as shifts with a meal break
of at least 1.5 hours, see also Segal [1972], Holloran and Byrn [1986] and Jacobs and Bechtold
[1993].

Clearly, workers are not available for covering workloads during their break. Breaks are usually
restricted to take place within certain time intervals which can e.g. be governed by canteen opening
hours [Bechtold and Jacobs, 1990]. The placement of breaks then provides flexibility which can
be exploited in scheduling [Dantzig, 1954] [Segal, 1972]. The consideration of flexible breaks
in shift and tour scheduling based on the above set covering model has attracted considerable
research.

A straightforward approach for the incorporation of breaks consists in replicating shift variables
for each valid break placement [Dantzig, 1954]. The columns in the set covering formulation
(2.1)-(2.3) then only equal 1 if none of the breaks is taken at the given moment. Considering
more than one break implies creating one shift variable for each combination of break start times.
If breaks can only be taken within rather limited intervals, this is a feasible approach, see e.g.
Bennett and Potts [1968], Thompson [1990] and Brusco [1998]. With larger degrees of freedom,
the explicit incorporation of breaks is generally judged intractable [Bechtold, 1988].

Keith [1979] and Schindler and Semmel [1993] propose to consider break placement only in a
second step. Other authors completely ignore breaks (e.g. Morris and Showalter [1983], Bailey
and Field [1985] and Brusco and Jacobs [2001]) or use only fixed breaks (e.g. Brusco and Ja-
cobs [1993b], Brusco and Johns [1995]). However, Showalter and Mabert [1988] and Jacobs and
Bechtold [1993] have shown that break placement flexibility plays an important role in the cre-
ation of efficient shift plans and rosters. Clearly, flexible breaks can be more easily incorporated
in heuristic solution approaches, see e.g. Henderson and Berry [1976].

For shift scheduling scenarios with three breaks, Panton and Ryan [1999] and Mehrotra et al.
[2000] proposed to use column generation to enumerate break combinations and showed that this
approach is competitive with other models. However, it does not exploit size advantages related
to so-calledimplicit formulations.

Gaballa and Pearce [1979] were the first to use sets ofbreak variables. A distinct break variable
is attributed to each shift and break start time. Break variables reduce workforce availabilities in
the time periods covered by the breaks. By one constraint per shift, the sum of breaks is restricted
to be equal to the numbers of shifts.

Bechtold and Jacobs [1990] improved this basic idea by sharing break variables between dif-
ferent shifts. A set of so-called forward and backward constraints and one equality constraint
ensures the availability of sufficient breaks for all shifts. In a post-processing step, breaks are
matched to the shifts. The equivalence of this model to a formulation incorporating breaks explic-
itly in the shift variables was proved by Bechtold and Jacobs [1996]. In comparison to Gaballa
and Pearce [1979], the approach of Bechtold and Jacobs [1990] reduces the number of constraints
considerably. However, it only applies to less-than-24h operations and makes rather restrictive as-
sumptions: shifts contain only one break, all break durations are equal, and break time windows
do not exhibit so-calledextraordinary overlap.

These restrictions do not apply to the approach of Aykin [1996] who generalised the Ga-
balla/Pearce model by using one set of break variables for each of three breaks in a shift. In
Aykin [1998], this model was applied to cyclic shift scheduling problems. More recently, Aykin
[2000] showed that even if his formulation requires more break variables, the number of nonzeros
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in the constraint matrix is less than in the extended formulation of Bechtold and Jacobs [1990]. On
a set of artificial shift scheduling problems, optimal solutions were shown to be obtained in lower
runtimes. However, Aykin did not make use of a constraint substitution idea given in Bechtold
and Jacobs [1990] which reduces the number of nonzero elements in the constraint matrix.

Topaloglu and Ozkarahan [1998] compared the break scheduling approaches of Bechtold and
Jacobs [1990] and Aykin [1996] on a tour scheduling formulation based on Bailey [1985], gener-
alising the Bechtold/Jacobs model to several breaks per shift. A comparative evaluation showed
that on many tour scheduling settings, the Bechtold/Jacobs approach entails lower computation
times.

Other researchers have also adopted the Bechtold/Jacobs approach for representing flexible
breaks, including Jarrah et al. [1994], Thompson [1995] and Thompson [1996a]. Brusco and
Jacobs [2000] showed how to overcome the restriction to discontinuous operations by the intro-
duction of so-called wrap-around break variables. Rekik et al. [2003] gave a new interpretation of
the forward/backward constraints of Bechtold and Jacobs [1990] by Benders’ reformulation and
elimination of redundant constraints. Furthermore, they showed the equivalence of the models
of Bechtold and Jacobs [1990] and Aykin [1996]. Rekik et al. [2003] remarked that the Bech-
told/Jacobs formulation bears size advantages especially if shifts have many break start times in
common.

Implicit modelling has been used in other shift and tour scheduling applications as well. The
basic idea of implicit models consists in using several categories of variables which are coupled
by constraints, avoiding redundancy when shifts or tours share common properties. Coupling
constraints encode feasibility conditions on the assignment of different classes of objects, leaving
the generation of actual solutions for a postprocessing step, see e.g. Bailey [1985], Bechtold and
Jacobs [1990] and Thompson [1995].

Moondra [1976] proposed an implicit model for representing start time flexibility in shift
scheduling. Thompson [1995] combined this idea with the implicit break model of Bechtold
and Jacobs [1990]. Doubly implicit shift scheduling was also used by Thompson [1996a] in order
to evaluate the effects of different numbers of action times which consist of shift and break start
and end times. Implicit shift models are restricted to settings with large scheduling flexibility
and assume shift costs to be proportional to the number of covered time periods [Mehrotra et al.,
2000]. Thompson [1995] showed that the implicit shift model exhibits substantial size advantages
if a shift scheduling setting conforms with these assumptions.

Bailey [1985] presented a model for implicit handling of start time flexibility (float) in tour
scheduling. He showed that if different shift types are allowed in a weekly tour, feasible day-on/off
patterns can be represented by a distinct set of variables which is coupled to variables determining
the shifts per day. If these assumptions are too general, it may still be sufficient to restrict weekly
shifts to an interval of admissible start times. An implicit model for overlappingstart-time bands
was described by Jacobs and Brusco [1996]. Restricting each tour to a set of start times, the
authors coupled the tour variables to shift variables of the respective start-time band. In Brusco
and Jacobs [2000], this formulation was integrated with the implicit break placement formulation
of Bechtold and Jacobs [1990]. Rekik et al. [2003] proposed a doubly implicit formulation for
start-time bands and break placement flexibility. They showed how to overcome a limitation of
Brusco and Jacobs [2000], allowing for overlapping start-time bands between the days by the
introduction of wrap-around shift variables.

Thompson [1990] developed an implicit model for the handling of limited employee availabili-
ties in named shift scheduling. So-calledregionsrepresent sets of shifts (and equivalently intervals
of time) in which more than one employee is available. Employees are assigned to regions, and
the set of region variables is coupled to the shift variables.

Thompson [1992] conducted a study on using service personnel for blocks of controllable work
(e.g. maintenance or cleaning tasks) when no uncontrollable work (due to customer arrivals) has to
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be carried out. In their approach, a set of variables represents start times for blocks of controllable
work. Two integer programming formulations were compared which are very similar to the break
models of Gaballa and Pearce [1979] and Bechtold and Jacobs [1990]. By a computational study
on artificial test problems, the second formulation was shown to be superior in terms of model
sizes and solution times.

Çezik et al. [2001] coupled seven daily shift scheduling formulations into a discontinuous tour
scheduling formulation, restricting shifts on consecutive days by forward and backward constraint
systems as in Bechtold and Jacobs [1990]. In another interesting paper, Çezik and Günlük [2002]
gave a general interpretation of implicit models by projecting out variables of a bipartite flow for-
mulation. They showed how different assumptions lead to different representational complexities.
Their analysis was illustrated with the implicit break model of Bechtold and Jacobs [1990] and
the tour scheduling formulation of Çezik et al. [2001].

2.9. Working Subset Methods

Besides implicit modelling, scientists have proposed to useworking subsetsof the shift types to
reduce problem sizes. Some of these propositions have already been mentioned throughout the
preceding exposition. Several authors have treated the minimisation of different shift types as
implicit or explicit objectives in shift or tour scheduling models, see Holloran and Byrn [1986],
Bechtold and Brusco [1994a], Brusco et al. [1995] and Musliu et al. [2004]. Mabert and Watts
[1982] mentioned that the use of working subsets not only reduces computational complexity,
but is also convenient for the staff. Brusco and Jacobs [2001] pointed out that restrictions on
shift starting times avoid administrative burden and ease the organisation of briefing sessions for
employees. Thompson [1996a] evaluated the impact of action times (i.e. shift and break start and
end times) on service organisations. In the following, we shortly summarise publications which
explicitly tackle working subset problems.

Henderson and Berry [1976] replicated shift variables in the classical set covering formulation
for each possible placement of three breaks. From the resulting shift realisations, they chose a
working subset by selecting a first random shift and repeatedly adding shifts of highest differences
with regard to the number of covered periods. They showed that for low working subset sizes,
this method is superior to random selection of shifts. Furthermore, Henderson and Berry [1976]
stated that only 40 to 50 shifts with fixed breaks are generally sufficient to find efficient solutions.

In a tour scheduling application for part-time staff in a bank, Mabert and Watts [1982] proposed
a heuristic reduction method for the number of shifts. A priori, shifts of 4, 5 and 6 hours were
admitted with respective numbers of 5, 4 and 3 shifts per tour. Using relative frequencies of
shifts in the solution of a weekly shift scheduling formulation, Mabert and Watts [1982] selected
working subsets of shift types and workdays by biased sampling.

Easton and Rossin [1991] used column generation to implicitly represent tours with a high
degree of scheduling flexibility. In their contribution, only tours with nonzero values in the LP
relaxation are used for a tour scheduling algorithm. The authors showed that this method is
superior to the approaches of Henderson and Berry [1976] and Mabert and Watts [1982] as well
as LP-based rounding techniques.

A comparative evaluation of different working subset methods was presented by Bechtold and
Brusco [1994b], solving discontinuous tour scheduling problems by integer programming. They
distinguished between structural methods using only information on the shifts (like in Henderson
and Berry [1976]) and demand-based procedures (as in Mabert and Watts [1982]). In addition
to the aforementioned techniques, the authors proposed two further structural methods and one
demand-based method. It was shown that best results for different working subset sizes from 10 to
50 shifts are obtained by either the new structural or the new demand-based method. Furthermore,
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it was demonstrated that global optimal solutions can usually be obtained with working set sizes
of 40 or 50 shifts. Bechtold and Brusco [1994b] mentioned that structural and demand-based
working subset methods could be combined with the “refinement procedure” of Easton and Rossin
[1991].

The United Airlines scheduling system described by Brusco et al. [1995] incorporates another
method for shift start time selection which Brusco and Jacobs [1998b] presented in more detail.
The method is based on the superposition of daily demands, resulting in a shift scheduling formu-
lation. This problem is solved by a heuristic column generation algorithm, using dynamic sets of
admissible start times, different shift selection rules and random elements. The subsequent sim-
ulated annealing algorithm for tour scheduling only employs shifts used in the shift scheduling
solution. Brusco and Jacobs [1998b] showed that this method yields results which exceed the LP
relaxation only slightly.

Based on the algorithm of Brusco [1998], Brusco and Jacobs [2001] evaluated the impact of
the numbers and choices of shift starting times in continuous tour scheduling. Restricting all
shifts in a tour to start at the same time, they extended the basic IP formulation by starting time
constraints. By an experimental evaluation with different work policies on demand profiles from
service industries, they found out that efficient schedules can often be found with as little as three
to five starting times. However, it was also stated that the number of starting-time subsets which
are capable of providing optimal workforce sizes is often small, and poor selections can lead to
substantial penalties. Furthermore, a case study for a call centre was described, using heuristic
starting time selection procedures in a spreadsheet application.

2.10. Complexity Results

A number of authors have shown that classes of problems arising in workforce scheduling are
NP-hard. Bartholdi III [1981] proved that cyclic staffing with intermittently available resources
is NP-hard. This problem e.g. covers shift scheduling problems with breaks and cyclic em-
ployee availability as well as cyclic tour scheduling problems. However, Bartholdi III [1981] also
showed that cyclic staffing problems are solvable in polynomial time if the columns in a cyclic
set covering formulation contain contiguous blocks of ones. Vohra [1988] gave a polynomial-
time algorithm for problems with equal demands. The combinatorial approaches described in
Section 2.3 represent further classes of polynomial subproblems.

Van den Berg and Panton [1994] analysed thecontinuous shift assignment problem(CoSA)
which consists in attributing given shifts to gaps in a cyclic roster such that consecutive days are
attributed equal shift types. By a reduction from the PARTITION problem, they showed that this
problem isNP-hard. Closely related is thechanging shift assignment problem(CSAP) of Lau
[1994], prescribing valid pairs of shift types on consecutive days. CSAP was shown to beNP-
hard by Lau [1994] and Lau [1996b] even under restrictive assumptions, using a reduction from
3SAT. Both publications provide a further proof for theNP-hardness of cyclic rostering.

Kortsarz and Slany [2001] studied the relation of theminimum shift design problemconsidered
in Musliu et al. [2004] to the minimum edge-cost flow problem. The problem involves the choice
of shift types and the determination of the number of employees assigned to each shift. Kortsarz
and Slany [2001] showed that the minimum shift design problem isNP-hard. Furthermore, they
stated that there is a constantc < 1 such that approximating the shift design problem withinc lnn
isNP-hard.
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2.11. Relationship to Crew Rostering

Related to general workforce scheduling is the rostering of airline crews, i.e. pilots, flight engi-
neers and attendants. Much attention has been given to crew rostering since cabin personnel is
usually the second most important cost factor for airlines (after fuel costs) [Anbil et al., 1992].
Overviews on airline crew scheduling and rostering can be found in Bodin et al. [1983], Teodor-
ović [1989] and, more recently, in Kohl and Karisch [2004]. For annotations on parallels between
general workforce and crew scheduling, see also Dowling et al. [1997], Rekik et al. [2003] and
Ernst et al. [2004].

Crew rostering problems are usually solved in two stages [Ryan, 1992]. In a first step, the
flight legs(single nonstop flights, alsosegments) are grouped into so-calledpairings(equivalently,
rotations). A pairing is a sequence of flight legs which can be carried out by one crew, starting
and finishing at a crew base [Anbil et al., 1992]. While pairings for short-haul flights usually
span over one or two days, long-haul flights often entail pairings of three or four days. Union and
legal regulations usually impose minimum rest times between working days as well as working
hour constraints [Vance et al., 1997].Crew pairing optimisationis usually formulated as a set
partitioning problem1 and solved by integer programming, see e.g. Anbil et al. [1992], Hoffman
and Padberg [1993] and Vance et al. [1997].

In the subsequentcrew rosteringphase, given pairings are covered by rosters [Ernst et al.,
2004]. In contrast to crew pairing, crew rostering is usually carried out on a named basis, i.e.
employees for the single roster lines are known. Solution approaches usually take preassigned
activities like ground duties, trainings and simulator sessions into account, see e.g. Gamache and
Soumis [1998] and Day and Ryan [1997]. Additionally, staff qualifications may be explicitly con-
sidered [Gamache et al., 1999]. The alternativebidlineapproach which is most frequent in North
America assumes that rosters are anonymous [Kohl and Karisch, 2004]. Each crew member then
chooses a roster line in order of seniority. A third possibility ispreferential bidding, meaning that
the anonymous roster generation method takes preference scores into account, usually weighted
by seniority. Crew rostering problems often decompose by crew base and aircraft type since e.g.
pilots are usually only qualified for one aircraft type [Gamache et al., 1998]. The scheduling
horizon is usually four weeks or a month [Ryan, 1992] [Gamache et al., 1999].

As crew pairing, crew rostering is usually formulated as a generalised set partitioning model
(e.g. Ryan [1992], Gamache et al. [1999]):

min
m∑

j∈1

∑
r∈Rj

crXr

subject to

m∑
j=1

∑
r∈Rj

aprXr = bp ∀p ∈ {1, . . . , n} (2.4)∑
r∈Rj

Xr = 1 ∀j ∈ {1, . . . ,m} (2.5)

Xr ∈ {0, 1} ∀ r ∈
m⋃

j=1

Rj (2.6)

wheren is the number of pairings andm the number of employees.Rj denotes is an index
set for feasible roster lines for employeej. The binary decision variablesXr choose among the

1Set partitiong problems can be stated as
P

j∈J cjXj subject to
P

j∈J aijXj = 1∀i ∈ I, Xj ∈ {0, 1} ∀j ∈ J with
cj ∈ R+ andaij ∈ {0, 1}.
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roster lines such that each employee is assigned exactly one roster line (constraints (2.5)) and each
pairing is assigned the required numberbp of crew members (crew complement, constraints (2.4)).
The enumeration of feasible roster lines is often treated as a separate problem [Christou et al.,
1999] [Kohl and Karisch, 2004]. The predominant solution method for the above model is integer
programming, often in conjunction with column generation, see e.g. Ryan [1992], Day and Ryan
[1997], Gamache et al. [1998] and Gamache et al. [1999]. Fahle et al. [2002] and Sellmann
et al. [2002] have proposed solution methods combining integer programming with constraint
programming.

More recently, crew rostering has been applied to railway applications, see e.g. Caprara et al.
[1997], Caprara et al. [1998] and Ernst et al. [2000]. The basic setting is closely related to aircrew
rostering. In a first step,round trips(pairings) are generated for different crew bases which are
rostered in a second step. However, the scheduling horizon is usually one week, rosters are
anonymous and can be cyclic or non-cyclic [Ernst et al., 2000]. In the cyclic roster applications
described by Caprara et al. [1997] and Caprara et al. [1998], one crew starts on each day of the
roster instead of attributing one worker or crew to each roster week (as in the cyclic rosters of
Section 2.7).

At first sight, there are considerable similarities between crew rostering and general workforce
scheduling. Both settings impose similar constraints like minimum rest times, restrictions on
consecutive days on and off as well as working hour constraints. While workforce scheduling
problems are often formulated as set covering programs, set partitioning models and algorithms
are the predominant basis for crew rostering approaches. In both settings, column generation
approaches have received considerable attention in recent years.

However, there are some important differences. While in general workforce scheduling, em-
ployees may only be scheduled within given limits of shift lengths and start times, crew duties
result from the given pairings. Breaks are not explicitly considered, but result from rest times
(sits) between subsequent trips. Crew scheduling furthermore incorporates linking constraints
which guarantee geographic contiguity [Dowling et al., 1997]. Finally, crew scheduling generally
refers to named scheduling, and rosters are non-cyclic with exceptions in railcrew rostering.

A further application of anonymous rostering is the scheduling ofbus driverswhich is also
referred to asrun-cuttingin North America. A large number of contributions was presented on in-
ternational workshops on computer-aided scheduling of public transport [Wren, 1981] [Rousseau,
1985] [Daduna and Wren, 1988] [Desrochers and Rousseau, 1992] [Daduna et al., 1995] [Wilson,
1999]. An overview on bus driver scheduling can e.g. be found in Wren and Rousseau [1995].

A bus schedule defines so-calledvehicle blocks, i.e. daily tours of a bus, starting and ending at
a depot. Furthermore, it definesrelief pointswhich correspond to stopovers away from the depot
at which drivers may change. Trips between such relief points build basictasksto be covered
by the driver schedule. The problem is either stated as a set partitioning model (e.g. Falkner and
Ryan [1992] or as a set covering relaxation with one coverage constraints for each task, see e.g.
Smith and Wren [1988] or Desrochers and Soumis [1989]. Overcoverage of tasks is treated in
a subsequent step or accepted as so-calleddeadheadingwith drivers as passengers. Falkner and
Ryan [1992] have proposed a model for simultaneous scheduling of vehicles and drivers. As for
aircrew scheduling (see e.g. Kohl and Karisch [2004]), much progress in bus driver scheduling
results from the development of commercial systems like HASTUS and CREW-OPT in North
America [Blais and Rousseau, 1988] [Desrochers and Soumis, 1989], IMPACS in the United
Kingdom [Smith and Wren, 1988] and HOT in Germany [Daduna and Mojsilovic, 1988].

As in airline and railway crew rostering, bus driver scheduling is driven by the tasks of the
bus schedule, and there is no notion of shift types like in general workforce scheduling [Wren and
Rousseau, 1995]. Meal breaks are usually taken into account [Smith and Wren, 1988] [Desrochers
and Soumis, 1989]. Furthermore, models sometimes include shift overtime and split shifts, con-
sisting of two spells separated by a break of several hours [Wren and Rousseau, 1995].
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3. Local Search in Constraint
Programming

All intelligent thoughts have already been thought;
what is necessary is only to try to think them again.

— Johann Wolfgang von Goethe

In the following, we give a short introduction toconstraint programmingwhich has become a
popular solution method for discrete optimisation problems. We will start by describing funda-
mental concepts. While constraint programming usually uses branch-and-bound search, we will
review work on constraint programming in a local search context. Furthermore, we will describe
different methods for representing vehicle routing problems in a constraint programming frame-
work. In Chapters 4 and 5, these techniques will be applied to two problems arising in airport
workforce planning.

3.1. Constraint Programming

Constraint programming (CP) is a paradigm which aims at solving combinatorial optimisation
problems [Baptiste et al., 2001]. Like other solution methods, CP comprises two components: a
search strategyand asearch space reduction strategy. Constraint programming uses a technique
called constraint propagation for search space reduction while branch-and-bound is the predom-
inant solution technique. Constraint propagation is based on the formulation of combinatorial
search problems as constraint satisfaction problems (CSP). The image interpretation settings of
Huffman [1971], Clowes [1971] and Waltz [1975] were the first publications on constraint satis-
faction problems. For surveys on CSP solving, see Meseguer [1989] and Kumar [1992], for an
in-depth treatment of constraint processing e.g. Tsang [1993] and Dechter [2003].

Formally, a CSP can be described by a tripleP = (V, DOM, CONS):

• V = {x1, . . . , xn} is a finite set ofvariables;

• DOM = {D(x) |x ∈ V } is a set ofdomainswith D(x) containing all values that can be
assigned tox;

• CONS= {c1, . . . , cm} is a set ofconstraints.

Domains are usually finite. A constraintc ∈ CONSis a functionc : D(xi1)× . . .×D(xik)→
{true, false} on a base setV ′ = {xi1 , . . . , xik}. |V ′| is called thearity of the constraint. For a
setV = {x1, . . . , xn}, anassignmentis an element ofD(x1) × . . . ×D(xn). If c ∈ CONSis a
constraint with base setV ′ = {xi1 , . . . , xin}, an assignmenta ∈ D(xi1)× . . .×D(xin) satisfies
c iff c(ai1 , . . . , ain) = true. Solvinga CSPP = (V, DOM, CONS) is equivalent to finding an
assignmenta which satisfies all constraintsc ∈ CONS.

Constraint satisfaction problems are often represented as (hyper-)graphs with the node setV ,
node labels fromDOM and a (hyper-)edge on the base setV ′ of each constraintc ∈ CONS. If
all constraints inCONSare binary (|V ′| = 2), the constraint graph will be an ordinary undirected
graph.
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While for constraint satisfaction problems, we seek afeasiblesolution, the task associated with
a constraint optimisation problem(COP) consists in finding anoptimal feasible solution with
regard to an objective functionz. z is a functionz : D(x1) × . . . × D(xn) → R, attributing
a valuez(a) to each assignment. Without loss of generality, it can be assumed thatz is to be
minimised. A COP instanceP can thus be described by a quadrupleP = (V, DOM, CONS, z).
General CSP and COP solving isNP-hard [Dechter, 2003].

Clearly, finite domain CSPs or COPs can be solved by full enumeration, generating all possible
assignments for the variables. However, this will only be a practical approach for very small ex-
amples. Constraint propagation provides a more evolved search space reduction technique. The
basic idea of constraint propagation is to eliminate inconsistent variable assignments by repeated
application of implicit constraints, the so-calledconsistency tests. For the application of con-
sistency tests, we maintain variable-specific subsetsδ(xi) ⊆ D(xi) (xi ∈ V ) or higher-order
working setsδ(xi1 , . . . , xil) ⊆ D(xi1)× . . .×D(xil). A consistency test has a condition partA
and an instruction partB: Each timeA is satisfied, executeB which possibly restricts the working
subset of combined domains.

Different levels of consistency can be achieved by consistency tests. Montanari [1974] intro-
duced the basic notions of node, arc, and path consistency, relating to problems with only binary
constraints. Imagine that domainsδ(x) are maintained for each single variablex ∈ V . Node
consistencyis simply achieved if the values in each variable’s domain satisfy the constraints on
that variable. A constraint network isarc consistentif for every value inδ(xi), there is a value
in the domainδ(xj) of each variablexj 6= xi such that the combined assignment obeys all con-
straints. Finally, a model ispath consistentif for each pair(xi, xj) of variables, each consistent
assignment fromδ(xi) × δ(xj) and each third variablexk, there is a value in the domainδ(xk)
such that the combined assignment satisfies all binary constraints on the variables.

If we include higher-order (non-binary) constraints, the notion ofgeneralised arc consistency
can be used to describe the state of a constraint model. A variablexi is then called generalised
arc-consistent relative to a constraintc ∈ CONSinvolving xi iff for any value fromδ(xi), there
is an assignment fromδ(xj) for each variablexj 6= xi involved inc such thatc is fulfilled. The
constraint model is said to be arc-consistent if each of its variables is arc-consistent with regard
to all constraints [Dechter, 2003].

More general is the notion ofk-consistency[Freuder, 1978]. We say that a partial assignment
(ai1 , . . . , aik) is k-feasibleif it satisfies all constraints which at most contain these variables.
Algorithms for obtainingk-consistency maintain sets of combined assignments for variable sub-
sets of orderk − 1. k-consistency is then achieved if for any(k − 1)-feasible assignment from
δ(xi1 , . . . , xik−1

) ⊆ D(xi1) × . . . × D(xik−1
) and for any further variablexik , there exists an

assignment forxk taken from a setδ(xik) ⊆ D(xik) such that the combined assignment isk-
feasible.

However, managing(k− 1)-dimensional working subsets is only practical for small values for
k. Therefore, the concept ofdomain consistencyhas been introduced which only necessitates one-
dimensional subsetsδ(xi) ⊆ D(xi) for each variablexi ∈ V [Dorndorf et al., 2000]. A problem
is k-d-consistentif for all variable setsV ′ := {xi1 , . . . , xik−1

} of orderk − 1 and every variable
xik , every instantiationaik ∈ δ(xik) of xik can be extended to a feasible assignment, i.e. there is
a k-feasible assignment(ai1 , . . . , aik) with aij ∈ δ(xij ). Note thatk-d-consistency corresponds
to generalised arc consistency if the maximum arity over the constraints is less or equal tok.

If domains are maintained by intervalsδ(xi) = [li, ri] := [li, li+1, . . . , ri] (givenD(xi) ⊆ N0),
we speak ofbound consistency. The definition of bound consistency is analogous to domain
consistency: The working subsetsδ(xi) are k-b-consistentiff for all variable subsetsV ′ :=
{xi1 , . . . , xik−1

} of orderk − 1, for everyk’th variablexik and eachaik ∈ [lik , rik ], there are
valuesai1 ∈ δ(xi1), . . . , aik−1

∈ δ(xik−1
) such that(ai1 , . . . , aik) is k-feasible. In some con-

texts, domains can be naturally defined by intervals, meaning that domain and bound consistency
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coincide.
The repeated application of consistency tests can be interpreted as a fixed point iteration.

Uniqueness of the fixed point can be proved if consistency tests are monotonous, see e.g. Dorndorf
et al. [2000].

Constraint programming systems usually implement some combination of domain and bound
consistency and normally only guaranteek-consistency fork = 2 (arc consistency). A series of
algorithms for achieving arc consistency (AC-3, AC-5, etc.) have been proposed, see Dechter
[2003] for an overview. Algorithm 1 shows the basic scheme of the AC-3 algorithm. A queue
Q is used to maintain pairs of variables which must be checked for consistency. The REVISE

procedure (Algorithm 2) is repeatedly called to delete inconsistent values. If a domain is changed,
all constraints involving the respective variable are re-evaluated.

Algorithm 1 AC-3(V, DOM, CONS)
for all pairs(xi, xj) ∈ V × V do

Q← Q ∪ {(xi, xj), (xj , xi)}
end for
while Q 6= ∅ do

select and delete(xi, xj) from Q
if REVISE(xi, xj) = truethen

Q← Q ∪ {(xk, xi) | k 6= i, k 6= j}
end if

end while

More evolved algorithms maintain values supporting the possible assignments to a variable.
Constraint programming systems usually use some variant of the AC-5 algorithm [Hentenryck
et al., 1992]. Consistency tests are usually only triggered on specific events of the involved do-
mains: domain events(any change to the domain),range events(change of the minimum or
maximum value) andbound events(a single value remains in the domain). A consistency test for
enforcing difference between two variables e.g. only triggers on bound events because as long as
there is more than one value in a variable’s domain, nothing can be concluded with regard to the
other domain.

Algorithm 2 REVISE(xi, xj)
deleted← false
for all ai ∈ δi do

for all constraintscxixj on (xi, xj) do
if there is noaj ∈ δj such thatcxixj (ai, aj) = truethen

deleteai from δi

deleted← true
end if

end for
end for
return deleted

The concepts of constraint satisfaction and propagation are often part of special programming
languages (“constraint logic programming”) like PROLOG, CHIP and ECLiPSe. Additionally,
programming libraries and modelling environments in C++ and Java have become available (e.g.
Ilog Solver or Coalog Solver).

Clearly, there is a tradeoff between achieving higher consistency and the complexity of con-
sistency tests. Higher consistency results in less search effort, but may be costly. On the other
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hand, if consistency is low, branch-and-bound search will often run into dead-ends of inconsistent
variable assignments. In practice, consistency tests are usually designed to have low polynomial
time complexity.

Constraint programming systems often provideglobal constraints, i.e. high-level abstractions
for modelling complex combinatorial problems in a natural way. Global constraints often make
use of specialised algorithms like flow or matching algorithms. The most prominent example
is thealldifferentconstraint which ensures that all variables in a given set are assigned pairwise
different values [Ŕegin, 1994].

3.2. Large Neighbourhood Search

Constraint programming is a very successful solution technique for complex discrete optimisation
problems. It allows for an easy incorporation of a multitude of side constraints. In realistic prob-
lems, sometimes not all constraints are known in advance, and further restrictions may come up
with the refinement of optimisation models. Traditional algorithmic paradigms are often limited
in this case because the incorporation of additional constraints would entail a complete redesign.
In CP-based algorithms, additional constraints usually pose no problems and may even allow for
a more efficient solution. Constraint models are often used in powerful branch-and-bound algo-
rithms for the exact solution of problems [Tsang, 1993].

However, exact solution approaches are generally very costly, and consequently, construction
heuristics are most frequently used to tackle large-scale optimisation problems. These can be com-
bined with a solution improvement phase. The improvement phase often involves local exchanges
like the classical 2-opt, 3-opt or Or-opt exchanges [Lin, 1965] [Or, 1976] which are powerful for
simple travelling salesman and vehicle routing settings. Generalisations to more complex prob-
lems, e.g. involving time windows, are sometimes possible, cf. e.g. Potvin and Rousseau [1995].
Generally, the classical operators fail on more constrained problems because local exchanges do
not always find improving solutions which obey all constraints.

The idea of large neighbourhood search (LNS) is the repeated relaxation of some of the deci-
sions made in the construction phase and a subsequent reoptimisation, using CP-based branch-
and-bound. Each single relaxation and reoptimisation can be seen as a local step in a possibly
very large neighbourhood. In comparison to classical local improvement operators, the number
of relaxed decisions will generally be much larger. Additionally, reoptimisation is done with the
full freedom of tree-based search and not according to a fixed scheme. The underlying constraint
model helps in maintaining feasibility, and the advantages of CP-based algorithms mentioned
above remain valid. In strongly constrained problems, a search in large neighbourhoods will be
the only possibility to find improving steps at all.

Constraint-based local improvement was first introduced for the solution of job-shop schedul-
ing problems. Applegate and Cook [1991] presented a shuffle technique which was inspired by
the shifting bottleneck procedure in Adams et al. [1988]. Another implementation of CP-based
reoptimisation for job-shop scheduling can be found in Caseau and Laburthe [1995].

More specifically to a travelling salesman/vehicle routing context with time windows, Pesant
and Gendreau showed how to reinterpret classical local search operators in a CP framework.
They devised a special neighbourhood CP model for the local move which is coupled by inter-
face constraints to the master model [Pesant and Gendreau, 1996] [Pesant and Gendreau, 1999].
The approach is applied to a direction-preserving 3-opt neighbourhood for the TSPTW (and in
Pesant and Gendreau [1999] to a physician scheduling problem). While the approach remains
restricted to classical operators, the authors make out a trend towards the exploration of larger
neighbourhoods.

In an application to vehicle routing, Shaw [1998] developed an involved scheme for constraint-
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based reoptimisation and was the first to use the notion of large neighbourhood search. In each
local step, decisions for a set of interdependent visits are relaxed, using a measure of relatedness.
Random elements are used to diversify the search. Instead of using full branch-and-bound, limited
discrepancy search (LDS) is used in order to heuristically limit the size of the search tree [Harvey
and Ginsberg, 1995]. The approach is evaluated on a number of standardised VRP and VRPTW
problem instances including Solomon’s VRPTW instances [Solomon, 1987]. The initial solution
is built by using one vehicle per visit. The approach is shown to be highly competitive and
often superior to leading solution techniques, yielding the best-known results for some of the test
problems.

Kilby et al. [2000] have conducted a detailed study of the impact of the number of constraints
on the quality of different construction and improvement methods. For the solution construction,
the traditional savings heuristic of Clarke and Wright [1964] and two constraint-based insertion
heuristics are used. For solution improvement, LNS was compared to traditional operators from
the VRP literature. These methods were applied to vehicle routing problems with and without time
windows and with additional precedence and same-tour constraints. For solution construction, the
constraint-based methods are shown to be superior to the savings heuristic. While on simple VRP
problems, the traditional exchange operators are almost as good as LNS for solution improvement,
large neighbourhood search is shown to be clearly superior on strongly constrained test problems.
In [Kilby et al., 1998], implementation details for the two aforementioned publications were given.

Caseau and Laburthe embedded local search in a construction method for VRP and VRPTW
problems, minimising the number of tours and travel distances [Caseau and Laburthe, 1999].
Construction and improvement are based on constraint programming in order to address com-
plex constraints including capacity restrictions, but the local steps are classical 2-opt and 3-opt
exchanges. For the minimisation of the number of vehicles in the VRPTW, an additional relax-
and-reoptimise algorithm is devised which uses limited discrepancy search. The method is shown
to be highly competitive, often outperforming the tabu search reference of Rochat and Taillard
[1995] when the travelling distance is minimised.

The following two chapters will describe applications of large neighbourhood search. Chapter 4
will present an algorithm for levelling workloads arising in workforce planning on airports, using
a non-linear objective function. In Chapter 5, a complex shift planning problem based on routing
and scheduling problems is tackled by CP-based local search.

3.3. Constraint-Based Solution Methods for Vehicle Routing

Before entering into these algorithms, we will shortly review different constraint-based solution
methods for vehicle routing problems with time windows (VRPTWs). In vehicle routing, we are
given a setI of customers which must be served by a setK of vehicles. The visit at customeri ∈ I
must be carried out within a time interval[ai, bi]. Early arrival is allowed, but entails waiting until
the earliest service timeai. Between two customersi andj, we have a travel time ofdi,j . We will
assume that travel times obey the triangle inequality,di1,i3 ≤ di1,i2 + di2,i3 ∀i1, i2, i3 ∈ I. We
will not consider capacity restrictions for the moment being. In vehicle routing, different goals
can be pursued, e.g. the minimisation of the number of vehicle routes or the minimisation of travel
distances [Toth and Vigo, 2001a].

Constraint-based methods for time-constrained vehicle routing problems can follow different
approaches. Each formulation entails different sets of constraint variables, consistency tests and
search algorithms. Depending on characteristics of the problem at hand (e.g. the magnitude of
travel times, the widths of time windows, further constraints), one or the other method will be
appropriate. We will shortly review different techniques used in the literature.
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insertion-based
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partial path
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disjunctive
models

Figure 3.1.: Basic ideas of constraint-based methods for vehicle routing.

3.3.1. Insertion-Based Methods

Probably the most intuitive approach for vehicle routing is given byinsertion-based methods(see
Fig. 3.1a, nodes in orange colour represent visits, grey bars are vehicle routes). The basic idea is
to insert visits one by one into an emerging set of vehicle routes. Customers are therefore explic-
itly assigned to vehicles, and partial solutions consists of incomplete vehicle routes along with
unassigned visits. Clearly, insertion-based models are not restricted to being solved by constraint
programming. In fact, insertion-based methods have mostly been implemented by ad-hoc data
structures and procedures. An example which has gained much attention is the insertion heuristic
of Solomon [1987] who uses a mix of travel time and temporal criteria to select customers for
insertion. Based on Solomon’s heuristic, Potvin and Rousseau [1993] propose a parallel route
building algorithm.

We will show how an insertion-based approach can be followed in the constraint programming
paradigm, using a model which is similar to the one described by Kilby et al. [2000]. We introduce
a temporal domainδt

i = [αi, βi] denoting the interval of valid service times for customeri1. δt
i

is naturally initialised to the original time window for customeri ([αi, βi] := [ai, bi]). δveh
i ⊆ K

will denote the set of vehicles by whichi can be covered.πi ∈ I andσi ∈ I represent the
customers which precede and succeed customeri in a given (partial) set of tours. As suggested by
the notation,πi andσi are no domain variables in the proper sense, but change their values upon
insertion of additional customers.

Furthermore, we letδip
i ⊆ I denote the set of valid insertion positions ofi. Without loss of

generality, we will assume thatδip
i represents validsuccessorvisits, i.e.j ∈ δip

i if i can be inserted
beforej. Note that in contrast to the model of Kilby et al. [2000], we assume thatδip

i not only
contains inserted visits, but in general also comprises still uninserted visits which may finally
become the successor ofi. If i is inserted,δip

i thus containsσi as well as unassigned customers
which can be inserted betweeni andσi.

If i ∈ I is a customer which has already been inserted into a route, the following rules describe
valid updates for the temporal domains ofi and its surrounding visits:

αi + di,σi > ασi =⇒ ασi := αi + di,σi (3.1)
βi − dπi,i < βπi =⇒ βπi := βi − dπi,i (3.2)

While (3.1) describes the forward propagation ofi’s earliest start time to its successor, (3.2)
is the backward propagation of latest start times. We will thus create on consistency tests for

1As indicated by the notation, we will treat domains as units in their own right without making reference to the
original variables (likexi in the above presentation).
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each customeri, performing the updates according to rules (3.1) and (3.2) and triggering upon the
range events ofδt

i . The update of the earliest start time ofσi will then trigger the respective test
for σi, possibly updating the earliest start time ofσσi and so on. Similarly, updates of latest start
times are propagated by a linear backward pass over the route. This propagation scheme is known
aspush-forward/push-backward propagation[Solomon, 1987] [Caseau and Laburthe, 1999].

After propagating all temporal constraints, the domainsδt
i = [αi, βi] are consistent for alli,

and each customer can realise any service time within its temporal domain. A visiti can therefore
be inserted between two scheduled visitsj1 andj2 (j1 := πj2 if

αj1 + dj1,i ≤ βi ∧ max(αj1 + dj1,i, αi) + di,j2 ≤ βj2 (3.3)

This observation can be used to update the setδip
i of valid insertion positions ofi, i.e. we remove

j2 from δip
i if (3.3) is not fulfilled.

Clearly, the basic decisions of a search algorithm correspond to inserting visits into the routes.
Note that insertingi into a routek amounts to settingδveh

i to {k} and specifying the predecessor
and successor visitsπi := j1 andσi := j2, respectively. In the model of Kilby et al. [2000],
insertion decisions are only taken extrinsically, i.e. insertions are not triggered by constraint prop-
agation. However, if the insertion of one visit leaves only one possible insertion position for
another visit, this could be exploited implicitly. We therefore introduce boolean domainsδins

i for
eachi ∈ I. δins

i is initially set to{true, false} and reduced to{true} wheni is inserted.
We can now conceive a consistency test which triggers as soon as|{j ∈ δip

i | δins
j = {true}| =

1, i.e. there is only one remaining insertion position fori. We then inserti in the corresponding
route and insertion position. Additionally, we revise the insertion positions domain ofi:

δip
i := {j ∈ δip

i | δ
ins
j = {true, false} ∨ j = σi}

Note that insertion also activates temporal propagation for the inserted visit (rules (3.1) and (3.2)).
In insertion methods, the sequence of trips is explicitly resolved. Furthermore, visits are as-

signed to dedicated vehicles. If vehicles cannot be distinguished, this introduces symmetry be-
cause assigning a tour to any of the vehicles results in isomorphic solutions. However, different
vehicle characteristics or multiple depots can be easily accounted for. Campbell and Savelsbergh
[2004] have recently noted that complicating side constraints like shift time limits, variable deliv-
ery volumes and multiple routes per vehicle can be easily incorporated in insertion-based methods.

3.3.2. Partial Path Methods

As insertion-based formulations,partial path methodsare based on a previous/next representation
for sequences of visits. However, visits are not explicitly assigned to routes. Basic decisions
correspond to fixing the predecessors or successors, linking chains of trips (see Fig. 3.1b).

To illustrate a constraint logic for partial path methods, we letδsucc
i ⊆ I andδpred

i ⊆ I denote
the valid successors and predecessors of visiti, respectively. As above,δt

i = [αi, βi] denotes the
interval of valid start times fori. Note that we do not use any vehicle domains.

We will give examples of typical consistency tests in partial path methods. Temporal propaga-
tion can be carried out by using the following rules:

min
j∈δpred

i

(αj + dj,i) > αi =⇒ αi := min
j∈δpred

i

(αj + dj,i) (3.4)

max
j∈δsucc

j

(βj − di,j) < βi =⇒ βi := max
j∈δsucc

j

(βj − di,j) (3.5)

In contrast to the update rules (3.1) and (3.2) in insertion-based methods, (3.4) and (3.5) require
minimisation or maximisation operations over all valid predecessors or successors. While this
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potentially yields a higher degree of consistency, it entailsO(|I|) runtime for each execution.
Clearly, analogous update rules could also be realised in insertion-based methods if predecessor
and successor domains (like the aboveδip

i ) were used. However, this would sacrifice the runtime
advantage of push-forward/push-backward propagation.

Using temporal information, we can adapt the successor domainδsucc
i for eachi as follows:

αi + di,j > βj =⇒ j /∈ δsucc
i

In a final solution, each visit can only appear in one successor domain. We therefore impose
analldifferentconstraints on the successor domainδsucc

i [Focacci et al., 2002]. Predecessors and
successors are then synchronised by the following rules:

i /∈ δpred
j ⇐⇒ j /∈ δsucc

i

Note that these updates are not as strong as the above insertion checks (3.3) for insertion-based
methods.

To the knowledge of the author, partial path methods have only been applied to travelling
salesman problems with and without time windows (TSP/TSPTW), see e.g. Caseau and Laburthe
[1997], Pesant et al. [1998] and Focacci et al. [2002]. In this class of problems, one can make use
of the fact that we build only a single path. Additional propagational effect can then be gained by
maintaining sets of visits whichmustprecede or succeed a given customer [Langevin et al., 1993]
[Pesant et al., 1998].

In travelling salesman and vehicle routing settings, we face the problem of subtours, i.e. closed
circuits returning to a given customer or city [Dantzig et al., 1954] [Lawler et al., 1985]. Caseau
and Laburthe [1997] and Pesant et al. [1998] independently proposed anocycleconstraint which
keeps track of the beginningβi and ending visitεi of the path in which eachi ∈ I is involved.
With this information, we can impose

δsucc
i = {j} =⇒ βi /∈ δεj

in order to avoid the end of the path to become connected to its beginning. Clearly, the problem
of disconnected solutions is only important if temporal restrictions are loose. If time windows
are tight, the temporal orientation of visits will make subtours unlikely, and the additional cost of
nocyclemay not pay off.

Extending partial path methods to vehicle routing settings is possible, but requires additional
effort. Imposing restrictions on the vehicle level is more difficult since paths are initially built
without any reference to vehicles. Basic decisions in search algorithms amount to fixing pre-
decessor and successor variables. While insertion-based methods allow for inserting customers
between two scheduled visits, predecessor and successor decisions are rather myopic [Caseau and
Laburthe, 1997]. If we aim at minimising travel times, powerful lower bounds can be used, e.g.
by assignment and minimum spanning tree relaxations [Pesant et al., 1998] [Focacci et al., 2002]
or the Lagrange method [Caseau and Laburthe, 1997].

3.3.3. Disjunctive Methods

While the above methods have been developed in the field of vehicle routing and travelling sales-
man problems,disjunctive schedulinghas its roots in research on job-shop scheduling [Roy and
Sussman, 1964]. If travel times are interpreted as sequence-dependent setup times (see e.g. Al-
lahverdi et al. [1999]), disjunctive scheduling also applies to routing problems [Beck et al., 2002].

Disjunctive constraints prevent the simultaneous or overlapping processing of activities (visits)
without specifying their exact order. The basic idea corresponds to enforcing two customersi, j
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which are assigned to the same vehicle to be placed either “i beforej” or “ j beforei” (Fig. 3.1c).
Using exemplary consistency tests, we shortly illustrate how this idea can be represented in con-
straint models. For an introduction to disjunctive scheduling, see e.g. Baptiste et al. [2001].

We only need two domainsδveh
i ⊆ K andδt

i = [αi, βi] for each visiti ∈ I. If for two visits
i, j, we havebi + di,j ≤ ai (bj + dj,i ≤ aj), i can only be placed before (after)i. Otherwise,
there is a disjunctive constraint betweeni andj which becomes operational by an appropriate
consistency test. This test becomes active as soon asi andj are assigned to the same vehicle
(δveh

i = {k} = δveh
j ):

αi + di,j > βj =⇒ αi := max(αi, αj + dj,i) (3.6)
αj + dj,i > βi =⇒ αj := max(αj , αi + di,j) (3.7)

Rule (3.6) reflects the fact that ifi cannot be placed beforej, it must take place afterj. The time
window of i is then reduced accordingly. Update (3.7) applies to the symmetric situation, placing
i beforej. We therefore choose among the two different orders ofi and j if one of the rules
applies [Carlier and Pinson, 1989].

If we know thati andj cannot be placed on behind the other, we can enforce thati andj are
assigned to different vehicles. If we assume that e.g.i is bound to vehiclek (δveh

i = {k}), we can
apply the following update:

αi + di,j > βj ∧ αj + dj,i > βi ∧ δveh
i = {k} =⇒ δveh

j := δveh
j \ {k} (3.8)

It should be mentioned that the above rules do not always ensure sufficient consistency for
assignment feasibility. Imagine three customersi1, i2 and i3 with initial start time windows
[aij , bij ] = [0, 1] ∀j ∈ {1, 2, 3} and travel times of 1 between all visits (dij1 ,ij2

= 1 ∀j1 6= j2).
If i1, i2 andi3 are assigned to the same vehicle, the reader can easily verify that none of the rules
(3.6), (3.7) or (3.8) has any effect. However, it is clear that the trips cannot be carried out by the
same vehicle. A search algorithm must therefore take explicit disjunction decisions for customers
whose order has not been implicitly defined by propagation.

The above basic scheme can be refined by generalising disjunctions to sets of activities [Caseau
and Laburthe, 1994] [Caseau and Laburthe, 1995]. A review of consistency tests and degrees of
consistency in disjunctive scheduling can be found in Dorndorf et al. [2000].

While insertion-based formulations assign customers to vehicles and fix their sequence at the
same time, disjunctive methods take these decisions separately. Like in insertion methods, it is
easy to incorporate constraints on the vehicle level.

Disjunctive scheduling has yielded quite impressive results on shop and machine scheduling
problems, see e.g. Carlier and Pinson [1989] and Baptiste et al. [1995]. Beck et al. [2002] have
recently described how vehicle routing and open shop scheduling problems can be mutually re-
formulated. Using constraint programming libraries for job-shop scheduling (using disjunctive
methods) and routing problems (using previous/next representations) on original and reformu-
lated problems, the authors argue that each technology performs best on the class of problems for
which it has originally been developed.

For the following two chapters, we have therefore opted for insertion-based methods. As we
will see, these techniques are able to incorporate multitudes of relevant constraints in airport
demand and shift planning.
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4. Workload Levelling in a Vehicle Routing
Environment

What is chiefly needed is skill
rather than machinery.

— Wilbur Wright

Using the techniques described in the preceding chapter, we now tackle theworkload levelling
problemwhich was shortly described in Section 1.2.2. Its goal is the smoothing of a demand
curve which is the superposition of tasks planned in tours. While workload levelling is based on
the vehicle routing problem with time windows (VRPTW), the objective function aims at avoiding
sharp demand peaks which are difficult to cover by staff. We will show that the problem isNP-
hard and present an algorithm for solution improvement by repeated relaxation and CP-based
reoptimisation.

4.1. Introduction

Demand planning is a first and important step in the management and scheduling of ground han-
dling workforce and equipment. Planners frequently try to get an overview of workforce demands
by visualising the temporal superposition of all work tasks. The visualisation of a histogram of
workloads in their temporal evolution (“demand curve”) is helpful for

• an analysis of the magnitude of workload at different times of the day and week;

• an analysis of peak times with high workforce demand and traffic congestion;

• the determination of the temporal extent of workload within the day and the times in which
nothing has to be done (e.g. in the night);

• an estimation of the necessary workforce size or equipment dimension;

• an assessment of the ability of different shift types to cover peak times (times of highest
workload) efficiently.

Demand planning can also be seen as a preparatory step for shift planning. On the one hand,
an analysis of demands can give an idea of how to cover the bottom-line demand by full time
workers and peak demands by additional part-time staff. On the other hand, shift planning and
rostering models usually aim at covering workloads given in discrete intervals. Furthermore,
covering demand-based workloads can give a good approximation to task-level shift planning if
the characteristics of the handling tasks are sufficiently homogeneous (see Section 1.2.3).

The workload is initially given as a set of tasks which is the result of matching task generation
rules (engagement standards) to flight events. Each task is defined by a length, a location and
an interval of admissible start times. Between the tasks, the equipment or worker possibly has
to move from one location to another. We will always assume that the trip between tasks is
performed directly before starting the latter tasks. Time windows are hard constraints: A worker
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Figure 4.1.: Basic setting of workload levelling: (crew) tasks in tours, demand curve.

arriving too early must wait until the task’s earliest start time, and a task must not start after its
latest start time.

When planning mobile equipment like baggage vehicles, push-back tractors or catering trucks,
we have a typical vehicle routing setting: Vehicles start a central depot, perform a set of tasks
within the bounds of their time windows and return to the depot. We will not impose any capacity
constraints: While some of the vehicles (like push-back tractors) are not used to carry goods,
others (like baggage lorries) are configured ad-hoc to the necessary size for the given baggage.
Since equipment is constantly available, a global tour model seems appropriate, i.e. the extent of
tours equals the given planning time horizon which is typically one week (see the upper part of
Fig. 4.1).

This global tour model is also a good approximation for planning workforce demands. Like
mobile equipment, workers must carry out tasks, driving from one location to the other. Especially
on the apron, travel times can be considerable and should not be neglected in the estimation of
workloads. The work tasks for staff will also be planned in global tours, and we will account for
work and travel times in the demand curve. Clearly, this only gives an approximation of actual
workloads because workers are not constantly available. The global tour model will generally
underestimate travel times because real workers start and end their shifts at prescribed times.

In contrast to equipment tasks, workforce tasks may be grouped into blocks of crew tasks which
which will be carried out by teams of workers. Such crew tasks must be performed as much in
parallel as possible. Working in teams is common e.g. in the cleaning of aircraft cabins.

The basic setting for demand planning is thus the vehicle routing problem with time windows
(VRPTW) with additional crew constraints. Especially when planning equipment, we will be in-
terested in a minimisation of the number of tours, giving a minimum number of devices which
must be acquired. This is the objective of an algorithm which has already been used in the plan-
ning system before, see Kwasniok [1994]. It solves the routing problem as an assignment problem
by a network flow algorithm for fixed tasks [Desrosiers et al., 1993] and by the classical Solomon
insertion heuristic for movable tasks [Solomon, 1987]. If a scenario only contains fixed tasks, we
cannot do much more except for minimising travel times.

In workforce planning, the tour model is mainly used to get an approximation of travel times,
and we will be more interested in the temporal evolution of workforce demands. Demand peaks
should be avoided by performing movable tasks at times of lower workload. While the minimi-
sation of the number of tours tends to minimise the overall demand peak, it is not sufficient for
avoiding local peaks. As a consequence, it does not make use of the freedom of fixing tasks at
different times of their time windows. Generally speaking, we aim at a demand curve which is as
smooth as possible in order to minimise the necessary workforce. This will avoid workforce ac-
tivation problems related to sudden increases or decreases of workloads. The associated problem
will be called theworkload levelling problem(WLP), see also Fig. 4.1.

When levelling workloads, we will generally not be willing to increase the number of tours.
The smoothing procedure will therefore be based on the result of tour minimisation. We can then
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4.2. Vehicle Routing and Resource Levelling

try to fix the tasks to start times which give a levelled demand. The result of this initial phase can
be improved by considering reattributions of tasks to different tours, giving them higher temporal
degrees of freedom. Local search is a good means for this task. While well-known local exchange
operators like 2-opt and 3-opt have proven to helpful in basic travelling salesman and vehicle
routing problems, their usefulness is limited for the time window case [Caseau and Laburthe,
1999]. For more complex scenarios like the workload levelling problem (e.g. requiring crew task
parallelism), the exploration of larger neighbourhoods is more appropriate. In order to enlarge
the degrees of freedom in local search,large neighbourhood search(LNS) has proved to be a
successful optimisation technique, see Section 3.2.

Large neighbourhood search combines advantages of local search methods with those of con-
straint programming. While good solutions can already be obtained in little time, LNS yields
high-quality solutions if more runtime can be invested. Furthermore, constraint-based algorithms
generally do not require a fundamental redesign if further constraints (e.g. precedence or different-
tour constraints) come into play which is often the case in real-world optimisation problems.

The procedure not only needs to be robust with regard to future constraints. Planning scenarios
on airports effectively exhibit quite different characteristics. As an example, the number of tasks
will range from an order of103 to 105, tasks can be movable only over some minutes or several
hours, all tasks or none of the tasks can be grouped in crews of different sizes, and travel times
can be absent or reach durations of up to one hour. The goal of this work is thus the development
of an algorithm which is robust in terms of solution quality on a wide range of test cases.

The chapter is structured as follows: we first show that the workload levelling problem bears
strong similarities to the resource levelling problem in project scheduling. Afterwards, a math-
ematical definition of workload levelling will be given. Paragraph 4.4 shows that the workload
levelling problem isNP-hard, justifying the search for appropriate heuristic algorithms. We
present a constraint model for workload levelling which is the basis of a branch-and-bound algo-
rithm, making use of powerful lower bounds. The overall local search scheme will be described
in Section 4.8, and Section 4.9 shows how the results of the preceding tour minimisation phase
can be preprocessed for the local improvement phase. Experimental results on realistic airport
planning scenarios are given in Section 4.10. The chapter concludes by giving a summary and
some future research directions.

4.2. Vehicle Routing and Resource Levelling

A task which is similar to workload levelling is investigated unter the termresource levellingin
project scheduling. Resource levelling does not refer to a unique objective function; according to
Brucker et al. [1999], a project scheduling problem is of a resource levelling type if “the objective
function to be minimised represents some measure of the variation of resource utilisation”1. This
comprises the following objectives:

1. Reduction of fluctuations in the pattern of resource usage [Easa, 1989];

2. Minimisation of the deviation from a target resource level [Brucker et al., 1999];

3. Minimisation of the excession of a target resource level [Brucker et al., 1999];

4. Making the resource utilisation approach a rectangular shape [Harris, 1990];

5. Gradual buildup of resource requirements towards a single peak and subsequent decline
[Ahuja, 1976].

1In contrast, the minimisation of the number tours in vehicle routing can be compared to the resource investment
problem, see Brucker et al. [1999].
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4. Workload Levelling in a Vehicle Routing Environment

Objective (1) is usually grasped by minimising the sum of the squares of resource requirements
[Zimmermann and Engelhardt, 1998], (2) can be tackled by the sum of the squares of the absolute
differences between requirements in consecutive periods. The sum of the positive differences will
tend towards objective (3) [Brucker et al., 1999]. For objective (4), the sum of the absolute values
of the differences can be taken [Neumann and Zimmermann, 1999], objective (5) is achieved by
minimising the sum of the squares of resource changes [Ahuja, 1976].

All of these objective functions arenon-regularbecause their value may decrease with higher
makespans. Therefore, the minimum makespan is calculated in a first step and fixed in resource
levelling. Likewise, we will base workload levelling on an existing algorithm for tour minimisa-
tion and impose an upper bound on the number of tours used in workload levelling.

Basic considerations of resource levelling were presented by Ahuja [1976]. The basic problem
was described with the objective to attain a parabolic resource profile which gradually builds up
and declines after a peak. A variance measure of the difference in resource usage from one period
to the other is minimised by shifting non-critical tasks within their time windows. A brute-force
approach for very small examples as well as a simple greedy heuristic are presented, fixing one
activity after the other.

Easa [1989] devised an exact integer programming approach for minimising the absolute devi-
ations from a target resource level. The decision variables are the shifts of the non-critical tasks
within their time windows. The algorithm seems appropriate only for very small examples. No
experimental results are presented.

The heuristic algorithm of Harris [1990] consists of sequentially fixing all tasks with the objec-
tive of making the histogram of a single resource approach a rectangle. Base intervals in which
movable activities must take place are scheduled first to have a better guidance for the algorithm.

Seibert and Evans [1991] conduct a comprehensive study of important considerations in project
scheduling with regard to the temporal evolution of resource demands, using early-start/late-start
resource curves. The authors stress the importance of resource levelling especially in planning
staff to avoid short-term hiring and firing with negative cost effects. A project scheduling software
package is used for generating a levelled resource usage curve; its quality is measured by the sum
of the squares of residuals to an initially assumed resource profile.

Bandelloni et al. [1994] describe a dynamic programming algorithm for resource levelling, min-
imising the squared deviations of requirements from their mean. The method starts by building a
graph expressing interdependencies between noncritical activities due to succession relationships
or objective function interactions. The components of this graph are successively split up by fixing
start times of activities with few interactions.

Resource levelling with minimum and maximum time lags and with or without resource limits
(restricted resource levelling) is treated by Zimmermann and Engelhardt [1998]. The study refers
to different objective functions like maximum resource usage, sum-of-squares, deviation from a
target level and absolute differences in requirements of consecutive time periods. The authors
develop powerful lower bounds for the case of unrestricted resources and devise a branch-and-
bound algorithm. The search tree is heuristically cut by filtered beam search. Test cases of up to
200 activities and five different resources are solved.

Neumann and Zimmermann [1999] show that resource levelling with minimum and maximum
time lags isNP-hard on the set of objective functions already used in Zimmermann and Engel-
hardt [1998]. Heuristic algorithms are presented to solve the restricted and unrestricted case by
fixing activity start times one by one. A clever idea allows to reduce the complexity from pseudo-
polynomiality in the time window widths to a polynomial runtime in the number of activities. For
the restricted case, already fixed activities may have to be revised. Experimental results show that
activities should be fixed in decreasing sizes of their time windows and on the basis of resource
demands including base time intervals of near-critical activities.
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More specific to airport staff planning, Nobert and Roy [1998] integrate the levelling of aircargo
workloads in a shift scheduling model. Workloads are given by kilograms of freight which can be
processed with interruptions. After solving the LP relaxation, resulting demands are rounded up.
The resulting standard shift scheduling problem is then solved by integer programming.

To the knowledge of the author, no articles have been published on workload levelling in a
vehicle routing scenario. One possible reason for this is that vehicle routing and project scheduling
were investigated separately for a long time. Proposing an algorithm for the workload levelling
problem will be a step in combining ideas from project scheduling and vehicle routing.

Still, the workload levelling problem differs from resource levelling in some aspects. Resources
are normally levelled over the whole span of a project with a day as the smallest time unit [Ahuja,
1976]. If resources refer to skilled workers, resource levelling is used because staff needs training
for a job, and operations will not be efficient if personnel is frequently employed or set free
[Seibert and Evans, 1991]. In contrast, workload levelling will be used on a more tactical or
operational level. It deals with workload fluctuations over a day or a week and will usually be
performed on a minute discretisation.

For workload levelling, minimising the sum of the squares of workloads seems appropriate.
With this objective, potentially overlapping tasks will be fixed in a way to avoid local demand
peaks (within the limits of their time windows and tours). The global demand maximum may also
be decreased because the objective of the algorithm mentioned in Section 4.1 is tour minimisation,
and it is heuristic in nature. Since we will consider travel times in the demand curve, the workload
levelling algorithm will also tend to avoid unnecessary travel times. Because the main source
of improvement lies in the fixation of task start times, workload levelling will only be applied
to scenarios containing movable tasks. Typical airport applications comprise cabin cleaning or
operations departments.

While transferring ideas from resource levelling (like time window propagation and search
strategies) can be fruitful, none of the approaches in the literature appears to be sufficient for
workload levelling. Many approaches in the literature are restricted to very small test cases.
More important is the difference in problem complexity: in project scheduling, temporal relations
between activities are fixed, i.e. there is a fixed graph of potential temporal influences between ac-
tivities. This is not the case in workload levelling since temporal dependencies are a consequence
of the attribution of tasks to positions in tours.

We therefore have two degrees of freedom: The attribution of tasks to tours and the temporal
fixing of tasks within their tours. These decisions are interdependent since a task’s time window
is restricted by its surrounding tasks. Experimental results will indicate that reattributing tasks to
different tours has a strong impact on solution quality.

4.3. Mathematical Model

We now give a mathematical description of the workload levelling problem. LetI be the set of
tasks andR the tours as given by the result of the preliminary tour minimisation algorithm.T is
the (discretised) time horizon, covering all tasks. Each tour will start at an artificial origin task
and end at a destination task;Io andId will denote the sets of all origin and destination tasks,
respectively. Some or all tasks may be grouped into blocksC ⊆ I of crew tasks; the set of all
crews will be denoted byC2.

We introduce the followingparameters:

2Note that the uppercase letterC suggests that crews are sets of tasks, see also Appendix A.
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4. Workload Levelling in a Vehicle Routing Environment

[ai, bi] ⊂ T start time window of taski ∈ I ∪ Io ∪ Id

li length of taski ∈ I ∪ Io ∪ Id (0 for delimiter tasks)
di,j travel time between tasksi ∈ I ∪ Io, j ∈ I ∪ Id

Origin tasksi ∈ Io will be fixed to the scenario start (ai = bi = minT ), destination delimiters
i ∈ Id to the scenario end (ai = bi = max T ). Note that by fixing the depot travel timesdi,j for
i ∈ Io or j ∈ Id, we only allow for single-depot models.

The followingvariablesare used:

Ri tour of taski ∈ I ∪ Io ∪ Id

succi successor ofi ∈ I ∪ Io

predi predecessor ofi ∈ I ∪ Id

Ti start time ofi ∈ I ∪ Io ∪ Id

Tours of delimiter tasksi ∈ Io∪Id are fixed in advance since each tour has unique origin and desti-
nation tasks. Note that the variable information is somewhat redundant since if all predecessors are
fixed, we also know the successors and tours.SchedulesΣ are given by the fixation of predecessor,
successor, tour and start time for each work taski, i.e.Σ = {(Ri, (predi, succi), Ti) | i ∈ I}.

For a given scheduleΣ, the number of tasks (workforce demand) whose travel times or work
durations take place att ∈ T is

W (t) := |{i ∈ I |Ti − dpredi,i ≤ t < Ti + li}|,

see also Fig. 4.1. We now define the workload levelling problem as

min z =
∑
t∈T

W (t)2 (4.1)

subject to
Tours

Ri ∈ R ∀i ∈ I ∪ Io ∪ Id (4.2)

Time windows
Ti ∈ [ai, bi] ∀i ∈ I ∪ Io ∪ Id (4.3)

Tour temporal relation

Ti + li + di,succi ≤ Tsucci ∀i ∈ I ∪ Io (4.4)

Predecessor-successor consistency

predi = j ⇔ succj = i ∀i ∈ I ∪ Id,∀j ∈ I ∪ Io (4.5)

Predecessor-tour consistency

∃ j : predi = j ∧Ri = r ⇒ Rj = r ∀i ∈ I ∪ Id (4.6)

Tour difference
Ri 6= Rj ∀i, j ∈ C, i 6= j, C ∈ C (4.7)

Crew temporal relation

Tj ≥ Ti + (aj − ai)
Tj + lj ≤ Ti + li + (aj − ai)

∀C ∈ C,∀i, j ∈ C : i 6= j, li ≥ lj (4.8)

Constraint (4.2) restricts tasks to use the given tours. Start times are restricted in terms of
time windows and successor/predecessor relations by (4.3) and (4.4). Equations (4.5) and (4.6)
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a.

b.

c.

d.

Figure 4.2.: Temporal relation of crew tasks.

ensure consistency between predecessors and successors as well as between predecessors and
tours. Equation (4.7) constrains crew tasks to be placed in different tours. The parallelism of crew
tasks is expressed by (4.8).

Let us consider the effect of constraint (4.8) on the temporal relation of two tasksi, j ∈ C of
the same crewC ∈ C (Fig. 4.2). Let firsti, j have equal lengthsli = lj and same earliest start
timesai = aj . Then (4.8) constrainsi, j to be placed in parallel (see Fig. 4.2a). Let now the
duration of the first task be greater (li > lj) but the start times still be equal. Then (4.8) says that
j should start afteri but should end beforej, i.e.j is to be placed underi (Fig. 4.2b).

We now consider the case of identical durations but different start times. W.l.o.g. letaj > ai.
Thenj must take place exactlyaj − ai time units later thani (Fig. 4.2c), i.e.aj − ai is an offset
betweeni andj. If finally li > lj andaj > ai (Fig. 4.2d), thenj must be placed within a time
window identical to the length ofi, but with an offset ofaj − ai with regard toi’s time window.

Constraints (4.8) thus ensure that crew tasks withai = aj take place as much in parallel as
possible. Ifaj − ai 6= 0, the differenceaj − ai can be interpreted as an offset for the relative
position of the time windows. A typical application is a supervisor arriving somewhat earlier at
a working location to prepare jobs for a group of e.g. cabin cleaners. The offset in the original
earliest start timesai, aj then always entails an equal offset in the planned start timesTi, Tj .

For the realisation of constraints (4.8), crew tasks will be sorted by decreasing durations. Nev-
ertheless, (4.8) still describes a number of constraints which is quadratic in the number of crew
tasks. Leti, j, k ∈ C be pairwise different tasks ofC ∈ C with li ≥ lj ≥ lk. Then constraints
(4.8) for the task pairs(i, j) and(j, k) read as

Tj ≥ Ti + (aj − ai)
Tj + lj ≤ Ti + li + (aj − ai)

and
Tk ≥ Tj + (ak − aj)

Tk + lk ≤ Tj + lj + (ak − aj)

It follows

Tk ≥ Tj + (ak − aj) ≥ Ti + (aj − ai) + (ak − aj) = Ti + (ak − ai)
Tk + lk ≤ Tj + lj + (ak − aj) ≤ Ti + li + (aj − ai) + (ak − aj) = Ti + li + (ak − ai)

which are exactly the constraints (4.8) for the task pair(i, k). As a consequence, the crew temporal
relation is transitive, and it suffices to define constraints for adjacent tasks in an ordering by
decreasing lengths, i.e. we need2(|C| − 1) constraints for a crewC ∈ C.
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4. Workload Levelling in a Vehicle Routing Environment

4.4. Computational Complexity

General resource levelling is known to beNP-hard [Neumann and Zimmermann, 1999]. Simi-
larly, theNP-hardness of workload levelling can be shown.

Theorem 1. The workload levelling problem (WLP) isNP-hard.

Proof. The decision problem corresponding to WLP is: Is there a scheduleΣ with objective func-
tion valuez(Σ) ≤ B? To show that WLP isNP-hard, we will use a polynomial transformation
from the PARTITION problem which isNP-hard [Garey and Johnson, 1979]. The PARTITION

problem is: Given a finite setE and a sizes(e) ∈ N0 for eache ∈ E, is there a subsetE′ ⊆ E
such that ∑

e∈E′

s(e) =
∑

e∈E\E′
s(e)

For the WLP, the time horizon is chosen asT = [0, 2[, all travel timesdi,j are0. For each given
e with sizes(e) ∈ N0, we build a crew ofs(e) tasks all of which have a start time window[0, 1]
and a length of1. Note that this set of crew tasks has an offset of0 and thus has to be placed in
parallel. Clearly, for eache with s(e) = 1, we construct a single non-crew task. It is evident that
this transformation is polynomial.

We now setB := 2
(
|E|
2

)2
. For a given partition ofE into E′ andE \ E′, we can build a

solution to WLP by fixing all tasks corresponding to elements inE′ to start time0 and tasks of
E \ E′ to 1. This gives a scheduleΣ for WLP with objective function valuez(Σ) = B.

Conversely, ifz(Σ) ≤ B for the given problem withh :=
∑

e∈E s(e) tasks, this (optimal)
solution must be given byh2 tasks being fixed to start time0 and h

2 tasks fixed to1, respectively.
Let E′ be the tasks corresponding to the crews (or single tasks) fixed to0 (note that a block of
crew tasks starts at either0 or 1). Now E′ andE \E′ is a partition ofE with

∑
e∈E′ s(e) = h

2 =∑
e∈E\E′ s(e).

Because WLP isNP-hard, we cannot expect that a polynomial time algorithm exists which
solves the problem exactly. Empirical experience shows that typical test cases are very demanding
as well, justifying the search for powerful heuristics.

4.5. Constraint Model

We will now devise a constraint model for the workload levelling problem. It will be based on
an insertion logic, inserting tasks sequentially into an emerging set of shifts (see Section 3.3).
Travel times can be asymmetric (e.g. due to one-way connections on the apron), but are assumed
to obey the triangle inequality. The following domains will be used, given with the corresponding
decision variable in the mathematical model:

Name mathematical variable CP domain
start time Ti δstart

i = [αi, βi]
inserted variable — δins

i

current predecessor predi πi

current successor succi σi

predecessor variable predi δpred
i

insertion positions succi δip
i

tour variable Ri δtour
i
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The domainδstart
i gives the start time window of taski. It is initialised toδstart

i = [αi, βi] :=
[ai, bi] and will be adapted if time windows are restricted by inserted tasks.

The binary variable domainδins
i will be {false, true} for relaxed tasks and will become{true}

upon insertion. An inserted task has current predecessor and successor tasksπi andσi in its tour.
As described in Section 3.3.1,πi andσi are no constraint variables in the proper sense. Instead
of shrinking monotonically, these variables give the (intermediary) predecessors and successors
in the partial schedule, containing single values which change with new insertions. For relaxed
tasks,πi andσi are set toNIL.

In contrast,δpred
i gives the potential predecessor tasks: for inserted tasks, this includes the

actual predecessor in the tour as well as unscheduled tasks which may be placed before the task.
For tasks which are not inserted, the domain gives the tasks which may become predecessors ofi
in a tour. Similar to the predecessor variable,δip

i gives the potential successors for an uninserted
taski. While δpred

i converges to the predecessor in the final schedule,δip
i becomes empty wheni

is inserted. Insertion positions are thus only temporarily used for tasks which are not yet inserted.

The reason for this asymmetry is propagation efficiency. The evaluation of insertion positions
which are feasible with regard to the time windows is most efficiently done from the unscheduled
task’s perspective. As soon as a task is inserted, these insertion checks will be disabled by setting
the insertion positionsδip

i to∅. Valid insertion positions are primarily stored as successors because
a set of successors can efficiently be synchronised with the predecessor domain of another task
(cf. the insertion positions test below). Contrasting to the insertion positions variable, we need full
predecessor information inδpred

i which always includes the actual predecessor. This information
will be used for the scheduling of potential travel times (see Section 4.7).

Finally, δtour
i gives the potential tours to whichi may be attributed. For scheduled tasks, this

domain will contain a single value equal to the task’s actual tour.

In the following, we will describe the consistency tests. It will become clear that the insertion-
based model is particularly well-suited for local reoptimisation which can e.g. be exploited for
an efficient evaluation of insertion positions. For each local step, the insertion and start time
decisions for a setIrel of work tasks will be released, and for eachi ∈ Irel the possible insertion
positions will be evaluated. Let

Φ(i) := {(j1, j2) | j1, j2 ∈ I \ Irel, αj1 + lj1 + dj1,i ≤ bi ∧
max(αj1 + lj1 + dj1,i, ai) + li + di,j2 ≤ βj2}

be the set of pairs of tasks between whichi can be inserted andΦ :=
⋃

i∈Irel Φ(i) the set of
all insertion positions. We will express the time complexity of consistency tests in terms of the
cardinalities|Irel| and|Φ|. Note that because a task can always be inserted at its former position,
we have|Irel| ≤ |Φ|.

Tour temporal relation For each work taski ∈ I, we have the following update rules:

απi + lπi + dπi,i > αi =⇒ αi := απi + lπi + dπi,i

βi − dπi,i − lπi < βπi =⇒ βπi := βi − dπi,i − lπi

The consistency test will be executed upon each change ofδstart
i , πi or σi. Its time com-

plexity is inO(1) for each taski.

Crew temporal relation Let C = (i1, . . . , in) ∈ C be a crew such thatlij ≥ lij+1 for all j.
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The start times of adjacent crew tasksij , ij+1 are updated by the following rules:

αij + (aij+1 − aij ) > αij+1 =⇒
αij+1 := αij + (aij+1 − aij )

αij+1 − (lij − lij+1)− (aij+1 − aij ) > αij =⇒
αij := αij+1 − (aij+1 − aij ) + (lij+1 − lij )

βij + (lij − lij+1) + (aij+1 − aij ) < βij+1 =⇒
βij+1 := βij + (lij − lij+1) + (aij+1 − aij )

βij+1 − (aij+1 − aij ) < βij =⇒
βij := βij+1 − (aij+1 − aij )

This consistency test is executed upon the range events ofδstart
ij

andδstart
ij+1

. As for the tour
temporal relations, its time complexity is constant for each pair(ij , ij+1).

Insertion positions We evaluate insertion positions for all released tasksi ∈ Irel. The poten-
tial successor setδip

i is divided into a set of unscheduled tasksΓ(i) and a set of inserted
tasks, defining pairsΞ(i) of tasks between whichi may be inserted:

Γ(i) := {j2 | j2 ∈ δip
i , δins

j2
= {false, true}}

Ξ(i) := {(j1, j2) | j2 ∈ δip
i , δins

j2
= {true}, j1 = πj2}

Note that the predecessorsj1 in Ξ(i) are the inserted tasks ofδpred
i . The setsΓdel(i) and

Ξdel(i) give the uninserted tasks which cannot be successors ofi and the pairs of inserted
tasks between whichi cannot be inserted due to temporal restrictions:

Γdel(i) := {j2 ∈ Γ(i) |αi + li + di,j2 > βj2}
Ξdel(i) := {(j1, j2) ∈ Ξ(i) | αj1 + lj1 + dj1,i > βi,

max(αj1 + lj1 + lj1i, αi) + li + di,j2 > βj2}

The potential successors and predecessors are updated as follows:

δip
i := δip

i \ (Γdel(i) ∪ {j2 | (j1, j2) ∈ Ξdel(i)})
δpred
i := δpred

i \ {j1 | (j1, j2) ∈ Ξdel(i)}

This check must be performed upon changes of the start time windowsδstart
j of potential

predecessors and successors, upon their insertions (δins
j domain events) and upon changes

of i’s start time windowδstart
i . The cost of the test is inO(|Φ|).

Predecessor update Predecessor information is adjusted upon updates of insertion position
domains. All tasks which are not inserted and do not allow fori as successor can be removed
from δpred

i :
δpred
i := δpred

i \ {i′ ∈ δpred
i | δins

i′ = {false, true}, i /∈ δip
i′ }

If i is inserted, we will additionally remove all scheduled predecessors except for its actual
predecessorπi:

δins
i = {true} =⇒ δpred

i := δpred
i \ {i′ ∈ δpred

i | δins
i′ = {true}, πi 6= i′}

Note that this consistency test is unidirectional and does not remove potential successor
tasks from an insertion positions domain. One predecessor update constraint is used for
each task inIrel ∪

⋃
i∈Irel{j2 | (j1, j2) ∈ Φ(i)}. The test will be triggered for each change

of δip
j1

for j1 such that(j1, j2) ∈ Φ(i) as well as upon insertion ofi (δins
i domain event).

The complexity of the test is inO(|Φ|) if containment inδip
i can be checked in constant

time (e.g. by a bit vector representation).
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Different tours Each crew task must be inserted into a different tour. Analldifferent({δtour
i | i ∈

C}) global constraint is used for every crewC ∈ C. Thealldifferent constraint with in-
cremental updates triggers on all domain events and has a runtime inO(|C|2|R|2) for a
complete branch of the search tree [Régin, 1994] [Ŕegin, 2000].

Tour-task consistency While insertion positions and predecessors are restricted by the in-
sertion positions constraint, tour domains may be constrained by the different tours test.
This information must be made consistent. If a task is inserted, nothing has to be done. If
δins
i = {false, true}, we perform the following updates:

δip
i := δip

i \ {j ∈ δip
i | δtour

j = {r}, r /∈ δtour
i }

δpred
i := δpred

i \ {j ∈ δpred
i | δtour

j = {r}, r /∈ δtour
i }

δtour
i := {r ∈ δtour

i | ∃j ∈ δip
i : δins

j = {true}, δtour
j = {r}}

The test could be made somewhat stronger by deleting insertion positionsj such thatδtour
j ∩

δtour
i = ∅, but for efficiency reasons, the rule propagates for|δtour

j | = 1. It is therefore only
triggered on the bound events of the tour variables of insertion positions (predecessors and
successors) and on domain events ofδtour

i andδip
i . Because for uninserted tasks,δip

i and
δpred
i are always conform in giving the same insertion positions, triggering onδpred

i would
be redundant.

Note that the rule for updatingδtour
i only considers inserted tasksj. This is correct because

if there is no inserted taskj in tourr before whichi can be inserted,i can never be attributed
to r. For the same reason, there is no meaning in triggering the constraint upon insertions
of potential predecessors and successors ofi.

The consistency test adapts the predecessor information inδpred
i , but because the prede-

cessor update rule described above is unidirectional, this information will never become
propagated to other tasks’ successor domainsδip

j . What may seem a “consistency gap” will
be little harmful in practice because insertion positions are only evaluated for uninserted
tasksj. Because the tour variableδtour

j of uninserted tasks rarely becomes bound, we will

not expect that hardly ever such a taskj has to be deleted fromδpred
i .

Again assuming set containment checks to run in constant time, the predecessor and suc-
cessor update run inO(|Φ|) time each. Because the number of possible tours fori cannot
be greater than its insertion positions, the tour domain update has the same complexity,
yielding an overall runtime inO(|Φ|).

Task insertion When the set{j ∈ δip
i | δins

j = {true}} of insertion positions fori reduces to a
single taskj2, i can be inserted betweenj1 := πj2 andj2, entailing the following updates:

δip
i := ∅

δtour
i := {r}
δins
i := {true}
πi := j1 σi := j2

σj1 := i πj2 := i

The constraint only triggers on domain events ofδip
i . Additional triggering upon insertions

of any of thej ∈ δip
i would be redundant because an increase in the number of inserted

successors can never result in an insertion ofi. The main purpose of the task insertion
constraint is to trigger the temporal propagation fori. Its cost is inO(|Φ|).
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insertion
positions

start
times

Figure 4.3.: Structure of the search tree.

Only the insertion positions, predecessor update and tour-task consistency tests trigger upon
domain changes of tasks which depend on the set of relaxed tasks or on the insertion positions. We
will therefore dynamically add these constraints for each local step, registering the tests only on
the respective domains of insertion positions (taken fromΦ(i)). This avoids redundant executions
of consistency tests as far as possible. Note that even if the task insertion test is only necessary
for released tasks, we can make it a static part of the constraint model because it will effectively
only be triggered for released tasks.

The constraint model presented above exhibits some symmetry which can deteriorate the effi-
ciency of branch-and-bound algorithms. One symmetry is with regard to the tours: The chains of
tasks in a solution can be assigned to any of the|R| tours, yielding equivalent solutions (see also
Section 3.3.1). This symmetry is not harmful in local search because we will never release a total
tour, and the task context in a tour will always break the symmetry.

Another potential symmetry relates to the tasks. Especially crew tasks often have identical
time windows, lengths and take place at the same location. Every single task can be attributed
to any permutation of the tours, yielding isomorphic solutions. To avoid this symmetry, tasks of
identical time windows, lengths, locations and crews (or non-crew tasks) are grouped. A partial
ordering is defined on the tasks and tours such that the tasks of each such group are assigned in
non-decreasing order to the tours. This assignment will be ensured by a special consistency test,
preventing the search algorithm from repeatedly evaluating isomorphic situations.

4.6. Branch-and-Bound

As described in Section 3.2, large neighbourhood search (LNS) consists of the repeated relaxation
of decisions and reoptimisation. While the relaxation amounts to resetting tour attributions of
tasks and their time windows, reoptimisation will consist of a restricted branch-and-bound search.
Before it is shown how the search tree can be heuristically restricted to promising parts of the
solution space, the basic branch-and-bound scheme will be described.

For each of the relaxed tasks, two types of decisions must be taken: Tasks have to be inserted
into the plan, and they must be fixed in time. Because a task’s time windows can be restricted by
insertion, we will first insert tasks and then fix start times. As a consequence, the search tree will
be structured into two levels: an upper level where insertion decisions are taken and a lower level
on which tasks are fixed to start times (cf. Fig. 4.3).

The basic branch-and-bound search is outlined by Algorithm 3. The input is a partial schedule
Σ̂ (the result of relaxing task decisions) and an incumbent solutionΣ∗ of valuez∗ which is identi-
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cal to the schedule before relaxation. The algorithm uses a stackN of tree nodes which still have
to be processed.

Algorithm 3 WLP branch-and-bound.

1: N ← (Σ̂)
2: while there are nodes onN do
3: pop a partial scheduleΣ′ fromN
4: if there are uninserted tasks inΣ′ then
5: choose taski with δins

i = {false, true}
6: for all insertion positionsj ∈ δip

i do
7: perform trial insertion ofi beforej (δip

i := {j})
8: calculate lower boundLB(Σ′, δip

i := {j})
9: end for

10: for all insertion positionsj ∈ δip
i such thatLB(Σ′, δip

i := {j}) < z∗ do
11: create a child ofΣ′, assigningδip

i := {j}
12: push child on node stackN
13: end for
14: else ifthere are unfixed tasksthen
15: choose a taski with |δstart

i | > 1
16: for all start timesτ ∈ δstart

i do
17: perform trial fixation ofδstart

i to t
18: calculate lower boundLB(Σ′, δstart

i := {t})
19: end for
20: for all start timest ∈ δstart

i such thatLB(Σ′, δstart
i := {t}) < z∗ do

21: create a child ofΣ′, assigningδstart
i := {t}

22: push child on node stackN
23: end for
24: else ifz(Σ′) < z∗ then
25: Σ∗ ← Σ′

26: z∗ ← z(Σ′)
27: end if
28: end while

Constraint propagation is performed throughout the search tree, i.e. after each insertion or fix-
ation of start times, the consequences on other variables are propagated. This may fix decisions
for further tasks. As an example, when a crew task is fixed in time, all of its adjacent crew tasks
will become fixed if all tasks have equal lengths.

Most of the consistency tests described above turned out to have little immediate cost conse-
quences. For the trial insertions and fixations (lines 7 and 15 of the algorithm), propagation was
therefore restricted to the temporal consistency tests.

Some design decisions were left open so far. In lines 5 and 13, decisions for tasksi which are to
be inserted or fixed are taken. The order of task insertions and fixations has a considerable impact
on the algorithm’s performance.Dynamic variable orderingwill be used, i.e. these decision will
depend on the state of the constraint model [Dechter, 2003]. In both cases, variants of the fail-first
principle will be used, meaning that we should first take tasks whose insertion positions or start
times are most restricted [Haralick and Elliott, 1980].

For task insertions, we will first insert tasks belonging to larger crews because larger crew
blocks will be more restricting. Within the tasks of same crew size, tasks with few insertion
positions are preferred, i.e. tasks are sorted by increasing sizes ofδip

i . If these are still equal, tasks
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with smaller time windowsδstart
i are preferred. Remaining ties are broken arbitrarily. When

fixing start times, tasks with smaller time windowsδstart
i are taken first. In case of ties, tasks of

larger crews are preferred. Remaining ambiguities are resolved arbitrarily (e.g. by task order).
Furthermore, we must specify in which order the children of a search node are explored, i.e.

in which order they are written on the node stack (lines 10 through 13 and 20 through 23 of
Algorithm 3). Because the lower bound which will be described in Section 4.7 gives good hints
of promising branches, this lower bound is always used as a first criterion. For tie breaking, the
minimum objective function resulting from an insertion or start time fixation has shown to provide
good guidance.

Even for modestly sized sets of relaxed tasks, a complete branch-and-bound search would be
too costly in terms of computation time. Additionally, each tree search only represents one local
exchange while considerable improvements on large-scale scenarios can only be achieved by
many local steps. The single steps should then not necessitate too much time. Among the different
schemes to prune the search space heuristically,limited discrepancy search(LDS) proposed by
Harvey and Ginsberg [1995] is one of the most successful techniques in recent years.

The basic observation which has led to the development of LDS is that pure construction heuris-
tics, taking decisions one by one, often lead to good solutions. On some instances, optima may
be reached, while on others, only few decisions of the heuristic are wrong. Interpreted in a tree
search context, a construction heuristic corresponds to a descent on the best branches of the tree if
the children at each node are ordered by the heuristic criterion. If now the heuristic fails to find a
better solution, the intuition says that we should follow its decisions at all but one decision point.
This discrepancy from the best path can be taken at any node. If there is no improvement, we
should try two discrepancies and so on. If the best decisions correspond to left branches, we thus
allow a limited number of deviations to the right. Note that this first corresponds to a depth-first
tree traversal on the leftmost branch while the breadth of search is iteratively increased.

For a tree search with discrepancyD, we visit leaves in which a maximum ofD discrepancies
from the best decisions is summed up over all of the decision points. Limited discrepancy search
now increases the numberD of allowed discrepancies up to a given limitLD, starting withD = 0
which corresponds to following the best valuation at all decision points. This of course means
that in a run for a givenD, the parts of the search trees forD′ = 0, . . . , D − 1 will be revisited.
But because we may have found good solutions in preceding runs, the gain in upper bound quality
usually outweighs the extra effort. It can be easily verified that despite of repetitions, complexity
of LDS is inO(nLD) if n is the number of decision points.

From a local search viewpoint, LDS allows the exploration of a neighbourhood in a time which
is polynomial in the number of relaxed tasks if the discrepancy limitLD is fixed. Clearly, the
runtime is still exponential inLD.

First experiments have shown that when low discrepancy limits were used, the algorithm often
failed to find improving solutions. On the other hand, solution times grew rapidly with higher
limits. A variation of the basic LDS schema was therefore used: Instead of consuming discrepan-
cies for all deviations from the best path, discrepancy is only accounted if the first decision on a
branch results in a feasible improving solution. This means that each time an improving solution
is found, this fact is backpropagated to all decision points which have led to the solution. When
the next alternative at a decision point is evaluated, discrepancy is only consumed if the preceding
branch was marked as successful.

As a consequence, an improving solution can always be found with a discrepancy limit of
LD := 0. The limit LD thus has a strong impact on the number of improving solutions which are
explored. For an improvement method of the workload levelling problem, this approach seems
very appropriate because the starting solution was created without considering levelling criteria.
As a consequence, improving solutions can be found very quickly in the first steps while later on,
improvements can only be found by investing more search effort.
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Figure 4.4.: Base histogram: critical, near-critical and non-critical tasks.

4.7. Lower Bounding

The use of good lower bounds is crucial for the performance of branch-and-bound type algorithms.
If the lower bound of a partial solutionΣ′ is already greater or equal to the value of the incumbent
solution, the current branch can be abandoned. In this way, large portions of the search tree can be
pruned if lower bounds are tight. Additionally, lower bounds can be used to guide the tree search
as described above.

A basic lower bound could be calculated by superposing the demands of all tasks which are
inserted and whose start times are fixed. We can do better by a simple observation. Fig. 4.4
distinguishes three basic situations for a task’s time window (given by dotted brackets). Tasks
which are fixed in time (Fig. 4.4a) can be totally accounted in the demand curve (sketched below
the task). If a task’s start time is not yet fixed, we may still have the situation of Fig. 4.4b: If the
latest start time of a task is less than its earliest completion time, we already know that it must
take place within a certainbase interval[Harris, 1990] [Neumann and Zimmermann, 1999]. Only
if the time window is very large (case 4.4c), nothing can be done.

The resulting demand profile will be calledbase histogram. In analogy to project scheduling
terminology, tasks with fixed time windows will be called critical and unfixed tasks with a non-
empty base interval near-critical3.

In the context of workload levelling, we must include travel times which are placed directly
before the start times of the tasks. In a partial scheduleΣ′ as given by the constraint model in a
search node, the final travel times are not known for all tasks because some of the tasks may not
yet be inserted. For lower bound calculation, we can nevertheless include a minimum travel time
dmin

i which must be performed before a taski:

dmin
i := min

j∈δpred
i

dj,i

For a current start time windowδstart
i = [αi, βi] and the minimum travel timedmin

i , the base
time interval of taski will be [βi − dmin

i , αi + li[. The numberŴ (t) of tasks which must be

3In project scheduling, activities are critical if there is no slack, cf. e.g. Zimmermann [2005].
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performed at a timet ∈ T can thus be defined as

Ŵ (t) := |{i ∈ I |βi − dmin
i ≤ t < αi + li}|

Using this demand, a first lower bound on the final objective function value of a partial schedule
Σ′ is given by

ẑ(Σ′) :=
∑
t∈T

Ŵ (t)2

By the insertion of tasks and start time decisions, the time windows will be narrowed in the course
of solution construction, increasing the sizes of the base intervals.ẑ(t) will finally converge
toward the final objective valuez(t) for a full schedule.

For a partial scheduleΣ′, let I ′ ⊆ I be the set of tasks which are not yet fixed in time, i.e.
I ′ := {i ∈ I |αi < βi}. Similarly to Zimmermann and Engelhardt [1998], these tasks can be
used to strengthen the lower bound. Note that we have already scheduled a workload ofmax(αi+
li− (βi−dmin

i ), 0) for all tasksi ∈ I ′. If we do not want to tackle interdependencies of start time
decisions for tasksi ∈ I ′ explicitly, we can regard the remaining task minutes

wi := li + dmin
i −max(αi + li − (βi − dmin

i ), 0)

as a uniform workload which will be attributed unitwise to times of lowest demands. It is clear
that the total workloadW ′ :=

∑
i∈I′ wi must be carried out within the time interval

T ′ = [A,B[=
[
min
i∈I′

(αi − dmin
i ),max

i∈I′
(βi + li)

[
The workload will be distributed in steps of increasing intervals with the left boundaryA being

fixed. The tasksi ∈ I ′ are sorted by latest end timesβi + li. Let i1 be the task with lowest latest
end time. The workloadwi1 is now distributed unitwise over the intervalT1 := [A, βi1 + li1 ],
each time increasinĝWt at the timet of lowest workload. The workloadwi2 of the next task in
order is then distributed over the intervalT2 := [A, βi2 + li2 ] and so on. In this way, the total
workload is uniformly scheduled in increasing intervals. By construction, it is clear that the value
z̃(Σ′) :=

∑
t∈T W̃t obtained from the final histogram̃Wt is still a lower bound.

If periods are stored by their demand̂Wt, the procedure can be implemented inO(|T ′|+ |W ′|)
time (andO(|T ′|) space) complexity.

The quality of the lower bound depends on the time periodT ′ covered by the tasks inI ′. The
quality of the bound will normally be better if a small number of tasks is unscheduled which is
true for large neighbourhood search. Even if it is helpful in guiding the search tree traversal, the
lower boundz̃(Σ′) calculated before any tour attributions and temporal fixations will generally
not give a good indication of the optimal objective function value.

4.8. Large Neighbourhood Search

The local search algorithm consists of repeated steps of decision relaxation and reoptimisation. In
Section 4.6, the reinsertion and fixing of tasks by branch-and-bound was described. We will now
present the choice of tasks whose insertion and start time decisions are relaxed.

Tasks should be chosen as to allow for an objective function improvement when being reop-
timised. It will thus not make sense to relax tasks which are far away from each other because
insertion and fixation decisions for such tasks will not be interdependent. We should prefer tasks
which are somehow related. As in Shaw [1998], a relatedness measure will be used for the choice
of task sets. Note that the choice of task sets for relaxation is related to clustering methods [Tail-
lard, 1993].
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Crew tasks generally have a strong interaction: If e.g. crew tasks have same lengths, the total
crew block will be fixed when the start time of one of the tasks is fixed. We will therefore always
relax whole blocks of crew tasks. Furthermore, the symmetry constraints described in Section 4.5
impose considerable restrictions for the tour attribution. Non-crew tasks will therefore only be
relaxed along with their symmetry group.

The procedure will consist in choosing a first task and then collecting a set of related tasks.
Because most improvements will stem from start time changes (and not from changes in travel
time), only movable tasks are considered in the first step. Different cost-based criteria like regret-
based selection were tried for the selection of a first task. Astonishingly, none of these criteria
could clearly outperform a random task selection. Selection criteria cannot generally grasp the
improvement potential of a task’s surroundings and will therefore be very local in nature. Since
the LNS algorithm quickly finds local improvements, such criteria will only bias the search when
tasks have been moved to their locally optimal solution. The first task is therefore chosen with a
uniform distribution over the set of movable tasks. Along with the first task, its crew or symmetry
group tasks are chosen.

Because only tasks which are near in time interact with the first task, the further choice is
restricted to tasks which can overlap with a time window[αi − TD,αi + li + TD] around the
first taski whereTD is a parameter. Note that all time windows are fixed when selecting tasks
for relaxation, i.e.αi = βi ∀i ∈ I. A relatedness measureREL(i, j) between two tasksi, j is
used which is a weighted sum of four terms:

REL(i, j) := λTW · TW (i, j) + λOL ·OL(i, j) + λDIST ·DIST (i, j) + λTT · TT (i, j)

A higher relatedness means that these tasks are assumed to have a better chance of improving the
solution when being released. All terms are designed to be commutative in their arguments:

• TW (i, j) is the size of the (original) time windows:TW (i, j) := (bi − ai) + (bj − aj)

• OL(i, j) gives the current overlap betweeni andj: OL(i, j) := max(min(αi + li, αj +
lj)−max(αi, αj), 0)

• DIST (i, j) is a measure of the distance between the tasks (DIST fix is a parameter of the
algorithm):

DIST (i, j) :=

{
1

|αj−αi|+|(αj+lj)−(αi+li)| if |αj − αi|+ |(αj + lj)− (αi + li)| > 0
DIST fix else

• TT (i, j) gives a (symmetric) distance betweeni andj (with parameterTT fix):

TT (i, j) :=

{
1

tij+tji
if tij + tji > 0

TT fix else

If Irel are the tasks chosen so far, the valuations
∑

i∈Irel REL(i, j) are calculated for all tasks
j ∈ I \ Irel which are near to the first tasks. The tasks are then sorted by decreasing valuations.
This means that tasks which are near in time or space to the tasks chosen so far, which overlap
with them or have large time windows will come first. LetRS be the number of elements in this
sorting.

If we relied too much on the relatedness sorting, we would possibly miss sets of tasks which can
improve the solution. As proposed in Shaw [1998], some random influence is introduced in order
to diversify the search. A random numberµ ∈ [0, 1[ is chosen, and with a choice randomness
parameterCR ∈ N, an index

κ :=
⌊
RS · µCR

⌋
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is calculated. We now choose theκ’th element in the relatedness sorting (along with its crew
or symmetry group tasks) to be relaxed. IfCR is high, µCR will be close to0, and we will
choose one of the first elements in the relatedness sorting. IfCR is rather low, the influence of
randomness will be greater.

This task selection procedureIrel is repeated until no more tasks can be chosen without ex-
ceeding a given limit on the number of tasks. The tasks inIrel are then relaxed, i.e. their start
time, tour and scheduled domains are reset; the current predecessor/successor values are set to
NIL. We then evaluate possible insertion positionsΦ(i) in the tours. These insertion positions
are recorded in the insertion positions and predecessor domains of the relaxed tasks as well as in
the predecessor domains of the insertion positions. As described above, the insertion positions,
predecessor update and tour-task consistency tests are added dynamically to the formulation, and
tasks are reinserted and fixed by the LDS algorithm described above.

Finally, we must specify how the neighbourhood size, i.e. the number of relaxed tasks, is con-
trolled. Clearly, the most costly step in large neighbourhood search is the reinsertion procedure
whose complexity scales with the number of relaxed tasks. For efficiency reasons, we should try
to gain improvements by the least number of tasks. The procedure therefore starts with only one
relaxed task at a time. After a certain number of steps, no further improvements will be possible.
To avoid stalling, the step size is increased by one after a numberSWIof steps which do not yield
any improvement. Clearly, there is a tradeoff: Instead of accepting many non-improving steps at
a low stepwidth, it may pay off to force higher numbers of tasks to be relaxed in order to gain
substantial improvements.

A general advantage of large neighbourhood search is that the solution quality smoothly scales
with the invested runtime: While with little runtime, reasonable results are obtained, the results
gradually get better if more time is available. If arbitrarily large neighbourhood sizes and dis-
crepancies can be used, LNS amounts to a complete search for the given optimisation problem.

4.9. Preprocessing

As described before, the levelling procedure is preceded by a tour minimisation algorithm. The
improvement phase will build upon the task attribution as given by the preceding tour minimisa-
tion phase. We still have some degrees of freedom for fixing tasks within their remaining time
windows. Before the implementation of the levelling procedure, tasks were fixed to their earliest
possible start times, neglecting the possibility of shifting tasks within their tours in order to level
demands. This earliest start solution is a possible starting point for the levelling algorithm. How-
ever, a better starting solution can be generated by letting a preprocessing phase decide at which
times the tasks are scheduled.

Assume first that the scenario does not contain crew tasks. Consider a tour whose tasks are not
yet fixed in time, containing a set of tasksIr in fixed order. If the tour is traversed timewise, the
possible start times of a taski2 only depend on the fixation of the preceding taski1. This means
that a dynamic programming (DP) algorithm with state spaceIr×T can be applied. The cheapest
objective function value for each state(i2, t2) is calculated by minimisation over the start timest1
of the predecessori1 = πi2 such thatt1 + li1 +di1,i2 ≤ t2. At each node, the increase in objective
function by fixingi2 to t2 is added.

This dynamic programming algorithm can make use of the constraint model, see also Focacci
and Milano [2001]. When a DP state(i1, t1) is expanded to possible start times for successor task
i2, this can be done by settingδstart

i1
:= {t1} and propagating. The resulting objective function

is recorded, and each of the start times inδstart
i2

is tried and propagated. If the best value at state
(i1, t1) plus the objective function increase is less than the current value at the state(i2, t2), its best
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i1 i2i‘

Figure 4.5.: Temporal influence over crew tasks.

value is updated. This procedure can be optimised for start timest1 of i1 with t1+li1+di1,i2 < ai2 ,
i.e. when the fixation ofi1 to t1 does not have any influence on possible start times fori2. We can
then first minimise over the states(i1, t1) with the aforementioned property and then expand to
all start timest2 ∈ [ai2 , bi2 ] of i2.

This procedure provides local optima for a single tour in a specified context as given by the
tasks in other tours. The context should be as expressive as possible. Imagine that no other tasks
are recorded in the demand curve. Then the tourwise dynamic programming as described above
will yield identical costs for every possible fixation. On the other hand, if the tasks of all other
tours are fixed, the optimisation may have a very “local character”, meaning that we cannot expect
much improvement.

Two dynamic programming schemes were evaluated:

• We use the given task attribution, but let the time windows open. Base time intervals of all
tasks are recorded as described in Section 4.7, i.e. we start from a base workload histogram.
The tours are then fixed one by one by the above dynamic programming procedure. This
successive fixing procedure will be referred to as SFDP.

• We take the earliest start time fixation. For each tour in turn, the start times for all tasks in
the tour are relaxed and reoptimised by dynamic programming. This is repeatedly done on
all tours until no more improvement is possible, i.e. we have reached a local optimum. This
is the case if no improvement was possible for|R| tours. We will refer to this procedure as
repeated local dynamic programming (RLDP).

Note that RLDP will traverse more tours than SFDP, but the extra runtime may pay off because
the fixation of a tour is evaluated in different contexts. For SFDP, the context in which a tour is
optimised will be less expressive, especially for the first tours which are fixed.

If the scenario contains crew tasks, some extra effort must be spent. In the RLDP scheme, start
time decisions should be relaxed for complete crews because otherwise, a crew task would have
little or no degrees of freedom. Potential problems for dynamic programming arise from the more
complex temporal relations between the tasks: While within the tours, possible start times for a
taski2 only depend on its predecessori1, valid start times fori2 may additionally be influenced
by tasks beforei1 via crew task relations. An example can be found in Fig. 4.5 where tasks of
the same colours represent blocks of crew tasks and temporal influences are sketched by arrows.
In such cases, the optimal start times determined in dynamic programming may not be feasible.
In practical scenarios, this phenomenon will be rare, and we will simply discard the DP results in
such cases.

For comparison with the dynamic programming approaches, a third greedy fixing (GF) method
is evaluated. All time windows are left open, and fixing is done on the basis of the base histogram.
All tasks are traversed in order of increasing time windows, i.e. decisions for tasks with most
degrees of freedom are left until the end. Each task in turn is fixed to its (locally) optimal start
time. This approach was successfully applied to resource levelling [Harris, 1990] and corresponds
to the fail-first principle [Haralick and Elliott, 1980].

The best solution of these preprocessing algorithms will give a hint of which objective function
values can be attained within the given attribution of tasks to tours. The degree by which the local
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No. days tasks movable average task crews crew range of tours groups
tasks time window minutes tasks travel times

A01 8 229 199 217.4 14274 0 0 [0,7] 4 229
A02 8 1819 1073 168.2 80985 637 1351 [0,7] 20 1105
A03 7 3420 3197 71.1 46080 0 0 [0,0] 57 2720
B01 7 410 99 96.8 43255 33 99 [0,11] 34 82
B02 7 748 138 32.9 10673 19 38 [0,8] 11 692
B03 7 929 26 35.1 61870 0 0 [0,10] 20 929
B04 7 1615 628 255.7 34025 134 1615 [0,10] 42 134
B05 7 1121 338 269.3 27795 0 0 [0,24] 11 777
B06 8 627 609 109.2 18450 94 188 [0,18] 7 533
B07 8 734 696 104.4 22555 145 290 [0,29] 7 581
B08 8 4252 4241 116.6 45547 0 0 [0,54] 57 4203
B09 7 11325 8961 56 321464 0 0 [0,12] 789 7423
B10 7 4867 1032 77.5 75313 1572 4867 [0,0] 43 1572
B11 7 623 422 190.3 59629 72 623 [0,0] 28 72
B12 7 3234 3172 87.8 50758 580 3234 [0,1] 21 580
B13 7 1836 1588 52.8 65452 739 1836 [0,1] 22 739
B14 7 3731 742 9.5 20025 0 0 [0,3] 12 3583

Table 4.1.: Scenario data.

search algorithm is able to improve the solution will furthermore give an indication of how much
the quality of tour attributions contributes to overall solution quality.

4.10. Experimental Results

All of the aforementioned algorithms were implemented in Visual C++ 7.1. The toolkitctk was
used for the implementation of constraint propagation and the branch-and-bound algorithm. Tests
were carried out on a personal computer with AMD Athlon 2000+ processor (1.67 MHz), 512
MB main memory and operating system Windows XP SP1.

Since workload levelling is a novel optimisation problem which is especially relevant to airport
operations, realistic airport planning scenarios were chosen for the evaluation. Scenarios cover
seven or eight days with a discretisation of one minute and often have a large scale as can be seen
from Table 4.1. Test cases of class A represent pure equipment planning scenarios while class B
scenarios apply to staff planning.

The number of tasks vary between 229 (scenario A01) and 11325 (scenario B09) of which
an average of 59.9% are movable (columntasksincludes movable tasks in Table 4.1). While in
some scenarios, nearly all tasks are movable, only 2.8% of the tasks are movable in scenario B03,
meaning that the potential for levelling will be rather low. The average time windows as given in
Table 4.1 refer to movable tasks only. As can be seen from the problem data, the tasks are partly
highly movable with a time window of up to 269 minutes. Tasks have average lengths of between
5.4 and 105.5 minutes. 10 out of 17 scenarios contain crew tasks with average crew sizes between
2 and 12. Some of the scenarios have vanishing travel times while others use travel durations of
up to 54 minutes. It can be seen that the test cases cover a wide range of different characteristics
with regard to the number of tasks, their movabilities, durations and the use of crews.

The figuretours gives the result of the initial tour minimisation algorithm. Note that while
scenario A01 comprises only 4 tours, 789 tours are needed to cover the tasks of scenario B09.
The columngroupsrefers to the symmetry breaking described in Section 4.5. It can be seen that
especially the test cases involving crew tasks exhibit strong symmetry. In other scenarios, there
is no or nearly no advantage in using symmetry breaking constraints. As an example, each task

64



4.10. Experimental Results

No. EST SFDP RLDP GF
obj. fct. obj. fct. improvement runtime (sec.) obj. fct. improvement runtime obj. fct. improvement runtime (sec.)

A01 34808 30004 13.80% 1801.62 31950 8.21% 2271.68 29940 13.99% 1.14
A02 866586 810704 6.45% 215.78 866534 0.01% 0.91 812956 6.19% 1.14
A03 309680 306010 1.19% 9.81 308410 0.41% 8.10 307030 0.86% 0.31
B01 564373 549397 2.65% 42.63 549397 2.65% 131.28 552037 2.19% 0.17
B02 34946 34412 1.53% 0.16 34642 0.87% 0.29 34414 1.52% 0.03
B03 631072 630766 0.05% 0.10 630916 0.02% 3.54 630766 0.05% 0.02
B04 552403 530297 4.00% 29.61 543331 1.64% 80.23 528493 4.33% 0.55
B05 124539 120645 3.13% 2.90 121803 2.20% 15.10 120911 2.91% 0.18
B06 57671 49871 13.52% 96.82 54239 5.95% 56.60 49663 13.89% 0.48
B07 86393 76359 11.61% 63.26 82531 4.47% 16.62 76497 11.45% 0.59
B08 318996 315790 1.01% 70.37 318684 0.10% 1316.61 316734 0.71% 5.18
B09 28045088 27901034 0.51% 345.07 28045178 0.00% 264.81 27956676 0.32% 28.56
B10 1158001 1114627 3.75% 0.98 1152755 0.45% 1.32 1115295 3.69% 0.44
B11 882205 787145 10.78% 9.99 796789 9.68% 5.41 787913 10.69% 1.26
B12 505034 467734 7.39% 137.71 505034 0.00% 1.00 467566 7.42% 1.99
B13 707076 659146 6.78% 143.68 707076 0.00% 0.74 659506 6.73% 1.49
B14 93818 91326 2.66% 0.30 92160 1.77% 1.37 91396 2.58% 0.26

Table 4.2.: Preprocessing runtimes and results.

builds its own group in scenario A01.

Table 4.2 shows results and runtimes (in seconds) of the three preprocessing algorithms SFDP,
RLDP and GF in comparison to earliest start fixing (EST). It can be seen that SFDP dominates
RLDP in solution quality. The disappointing results of RLDP can be explained by its local char-
acter since it reoptimises only one tour at a time with all other tours being fixed. This prevents
RLDP from overcoming local optima. In contrast to expectations, SFDP is not faster than RLDP
on all scenarios. Nevertheless, SFDP only consumes more time on scenarios on which results are
clearly superior to RLDP, i.e. RLDP terminates early because no further improvements can be
found.

Astonishingly, the results of GF preprocessing are competitive with the SFDP results. While on
most scenarios, the quality of GF results is slightly below the SFDP outcome, it is even better on 4
of the 17 scenarios. Even if the fixing idea of GF is simple, the ordering of tasks by increasing time
windows seems to pay off, confirming the experience of Harris [1990] in the resource levelling
context. GF needs only little computation time while SFDP consumes up to more than 30 minutes
for preprocessing. The high runtimes of SFDP are due to the testwise fixations and propagations
of start time decisions in dynamic programming. On average, SFDP consumes more than 67
times the runtime of GF. As expected, the improvements by preprocessing are generally higher on
scenarios involving many tasks with wide time windows.

The results of GF preprocessing were taken as a starting point for large neighbourhood search.
In preliminary experiments, the parameters for the choice of release tasks and for reinsertion were
tuned. The maximum distanceTD for tasks which can be relaxed around the first chosen task
was set to 180 minutes. The relatedness weight parametersλTW , λOL, λDIST andλTT were all
set to 1, i.e. the criteria are equally weighted. The valuesDIST fix andTT fix were fixed to10.
A value of50 was used for the choice randomness parameterCR, meaning that the influence of
randomness is rather low.

As described in Section 4.6, the search depth can be controlled by the discrepancy limitLD.
Astonishingly, a limit ofLD = 0 provided best results on average. As a consequence, only one
improving solution is explored in every iteration. Clearly, it becomes more and more difficult to
find improving solutions when the quality of the incumbent solution gradually increases.

A planner may sometimes not be able to invest too much runtime. To show how the solution
quality scales with the invested runtime, Table 4.3 gives results for runs with a limit of 10, 20 and
60 minutes runtime. The runtimes include the GF preprocessing, improvement figures are given
relative to the GF results. Different values were used for the parameterSWI, denoting the number
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No. GF result runtime 10 min. runtime 20 min. runtime 60 min.
obj. fct. avg. obj. fct. improvement rel. σ̃ avg. obj. fct. improvement rel. σ̃ avg. obj. fct. improvement rel. σ̃

A01 29940 27643.6 7.67% 0.14% 27523.0 8.07% 0.41% 27410.0 8.45% 0.18%
A02 812956 774513.8 4.73% 0.57% 767191.6 5.63% 0.17% 764722.8 5.93% 0.13%
A03 307030 299750.4 2.37% 0.30% 296525.6 3.42% 0.19% 295039.2 3.91% 0.11%
B01 552037 541517.8 1.91% 0.12% 541518.2 1.91% 0.12% 541521.0 1.90% 0.12%
B02 34414 33002.6 4.10% 0.22% 32714.4 4.94% 0.30% 32432.0 5.76% 0.62%
B03 630766 626745.6 0.64% 0.04% 626381.4 0.70% 0.08% 624930.8 0.93% 0.08%
B04 528493 527568.0 0.18% 0.12% 527339.8 0.22% 0.09% 526241.8 0.43% 0.15%
B05 120911 114923.0 4.95% 0.35% 114242.0 5.52% 0.21% 113896.0 5.80% 0.14%
B06 49663 45308.6 8.77% 0.98% 44656.4 10.08% 0.48% 44620.4 10.15% 0.33%
B07 76497 67294.6 12.03% 0.36% 66403.8 13.19% 0.27% 65793.0 13.99% 0.22%
B08 316734 267878.6 15.42% 2.09% 248517.6 21.54% 1.67% 242099.0 23.56% 0.55%
B09 27956676 27927436.0 0.10% 0.02% 27897576.4 0.21% 0.02% 27790665.2 0.59% 0.03%
B10 1115295 1075460.6 3.57% 0.22% 1072787.0 3.81% 0.05% 1071994.6 3.88% 0.04%
B11 787913 770067.8 2.26% 0.34% 768371.0 2.48% 0.09% 766377.0 2.73% 0.28%
B12 467566 443968.8 5.05% 0.33% 438915.8 6.13% 0.15% 436433.8 6.66% 0.36%
B13 659506 637238.6 3.38% 0.10% 633412.8 3.96% 0.08% 632818.0 4.05% 0.09%
B14 91396 87865.8 3.86% 0.14% 87111.2 4.69% 0.16% 86672.6 5.17% 0.26%

Table 4.3.: Results of large neighbourhood search based on GF results.

of steps without improvement after which the number of relaxed tasks is increased: For the 10, 20,
and 60 minute runs,SWIwas set to 20, 50, and 100, respectively. This means that for the longer
runtimes, smaller neighbourhoods are explored more thoroughly. Each result is an average over 5
runs with different random seeds. To show the closeness of results with different initialisations of
the random number generator, an estimation

σ̃ =

√∑n
i=1(zi − z̄)2

n− 1

for the standard deviation was calculated withzi being the results of the different runs,z̄ the
average results as given in Table 4.3 andn := 5 the number of runs. The relative standard
deviation in Table 4.3 is equal toσ̃z̄ . Additionally to the LNS results in Table 4.3, Table 4.4 shows
how many steps are performed on average and how many tasks are relaxed in the final steps.

From Table 4.3, it can be seen that the LNS procedure improves the preprocessing results con-
siderably. If we assume that the freedom of fixing tasks within their tours is well exploited by
preprocessing, this means that the reattribution of tasks to different tours is a considerable source
of improvement. This however varies between the scenarios. As an example, scenario B04 is
improved by 4.33% in preprocessing, but LNS only finds an additional 0.43% amelioration. In
contrast, LNS improves scenario B08 by 23.56% while the improvement of preprocessing can
nearly be neglected. Other scenarios (like scenario B07) are substantially levelled by preprocess-
ing and LNS. The results of LNS were again subjected to the tour-wise dynamic programming
reoptimisation used in RLDP preprocessing. On none of the scenarios further improvement could
be realised, demonstrating the quality of start time decisions in LNS.

From the results for different runtimes, it can be seen that much of the improvement can gener-
ally be achieved in relatively low runtimes. After a certain number of steps, large neighbourhood
search hardly yields any improvement. Fig. 4.6 shows the typical evolution of solution quality
on a LNS run on scenario B08. The time after which saturation occurs differs from scenario to
scenario. As an example, the best solution for scenario B01 comprising little movable tasks is
already found after 10 minutes runtime.

Relative standard deviations for the different runs are generally quite low. As expected, devi-
ations diminish with higher runtimes: While the 10 minutes results have an average deviation of
0.38%, the 20 minutes and 60 minutes results exhibit relative standard deviations of 0.27% and
0.22%, respectively.
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No. runtime 10 min. runtime 20 min. runtime 60 min.
avg. steps avg. tasks avg. steps avg. tasks avg. steps avg. tasks

A01 562.0 5.2 1100.2 5.0 2109.0 5.0
A02 1081.8 4.6 3010.6 5.0 5356.6 5.2
A03 1184.4 4.6 3566.6 4.6 7285.0 5.0
B01 320.4 12.0 651.8 12.4 1157.0 12.0
B02 460.6 6.8 1112.2 6.0 2446.8 6.0
B03 761.4 12.6 1764.8 10.8 4411.8 9.8
B04 420.0 26.0 970.0 25.2 2112.2 26.4
B05 725.4 4.4 1681.2 4.4 3376.4 5.4
B06 852.2 5.4 2315.0 5.2 4214.6 5.4
B07 1166.0 5.4 2950.4 5.6 5497.4 5.8
B08 5269.6 7.0 12106.6 8.4 18744.4 7.6
B09 121.0 1.0 242.6 1.0 716.6 1.0
B10 1123.2 11.2 2404.0 10.0 5041.8 13.4
B11 406.8 19.4 973.6 19.2 2304.0 23.4
B12 1375.6 15.4 3644.6 13.4 7308.0 15.2
B13 1156.4 7.8 3217.0 7.0 5254.0 8.0
B14 1445.0 9.8 3100.0 10.2 5870.6 10.4

Table 4.4.: Final numbers of steps and tasks in large neighbourhood search.
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Figure 4.6.: Objective function development on scenario B08.
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10 min. 20 min. 60 min.
GF EST GF EST GF EST

A01 27643.6 28086.2 27523.0 27832.6 27410.0 27667.8
A02 774513.8 773665.0 767191.6 766787.2 764722.8 765033.4
A03 299750.4 300008.0 296525.6 296498.0 295039.2 294751.2
B01 541517.8 541829.4 541518.2 541578.2 541521.0 541775.0
B02 33002.6 33016.0 32714.4 32763.6 32432.0 32227.8
B03 626745.6 626989.8 626381.4 626329.8 624930.8 625145.8
B04 527568.0 530519.0 527339.8 528272.0 526241.8 525609.0
B05 114923.0 114742.6 114242.0 114085.4 113896.0 113887.8
B06 45308.6 45242.6 44656.4 44612.0 44620.4 44593.4
B07 67294.6 67778.8 66403.8 66770.0 65793.0 66332.0
B08 267878.6 269470.8 248517.6 248398.2 242099.0 240663.0
B09 27927436.0 28007548.8 27897576.4 27976051.2 27790665.2 27857366.8
B10 1075460.6 1075764.6 1072787.0 1072961.0 1071994.6 1072239.8
B11 770067.8 767937.0 768371.0 768273.0 766377.0 768273.0
B12 443968.8 447729.2 438915.8 442574.2 436433.8 439751.2
B13 637238.6 639134.4 633412.8 635564.6 632818.0 634708.2
B14 87865.8 87770.6 87111.2 87136.4 86672.6 86685.2

Table 4.5.: Overall effect of GF preprocessing.

The final numbers of steps and tasks as given in Table 4.4 reflect the different characteristics
of the test cases. As an example, large neighbourhood search on the large-scale scenario B09
consists of repeated relaxations and reoptimisations of only one task. It can be clearly expected
that the results on this scenario will improve if further runtime is invested. On the other end of the
scale, up to 20367 steps are performed on scenario B08, and up to 28 tasks are released in a run
on scenario B04.

To measure the overall effect of GF preprocessing, large neighbourhood search was run an
additional five times on the initial solution in which all tasks are fixed to their earliest possible
start times. Table 4.5 contrasts the average 10, 20, and 60 minutes results with earliest start time
fixing (EST) to the GF/LNS results.

It can be seen that the GF improvements are quickly reconstructed by pure large neighbourhood
search. After only 10 minutes, the GF/LNS results are better on only 12 of the 17 scenarios while
on average, EST/LNS results are still 0.26% above the GF/LNS outcomes. After 20 and 60
minutes, the average gap is 0.19% and 0.12%, respectively, and preprocessing does not pay off
any more.

Additionally to the objective function summing up quadratic workloads, it is interesting to
observe the effects of levelling on the overall workload maximum and travel times even if these
are no explicit optimisation criteria. A summary of demand peaks and travel times before (with
EST fixing) and after optimisation (including GF preprocessing) is given in Table 4.6. As before,
optimisation results are averaged over five runs with 60 minutes of runtime.

Obviously, workload levelling is also beneficial for global demand maxima. On 8 out of 17
scenarios, the demand maximum can be lowered by the levelling procedure. It is interesting to
note that the large-scale scenario B09 figures among these 8 scenarios; in one run, the global
maximum is even reduced from 129 to 125. A visual inspection of this scenario shows that the
levelling results are better than the maximum 0.95% objective function improvement (over EST
fixing) might suggest.
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No. demand maximum travel times
before optimisation after optimisation before optimisation after optimisation

A01 4 3.0 530 377.2
A02 20 16.6 2247 2322.2
A03 12 10.0 0 0.0
B01 31 28.0 374 374.0
B02 7 6.0 1705 1419.4
B03 20 20.0 3094 2691.2
B04 42 42.0 1708 1735.6
B05 11 11.0 2380 2014.6
B06 7 6.8 861 819.6
B07 7 7.0 1534 1387.2
B08 10 8.8 8905 2842.4
B09 129 126.6 135900 135900.0
B10 43 43.0 0 0.0
B11 28 28.0 0 0.0
B12 18 18.0 1884 1821.8
B13 22 22.0 876 911.6
B14 11 11.0 3255 2793.2

Table 4.6.: Effects on global demand maxima and travel times.

The algorithm also tends to reduce travel times. A reduction can be observed on 9 of the 14
scenarios involving travel times while on three scenarios, travel times slightly increase. Travel
time reductions raise up to a 69.4% improvement on a scenario B08 run. Clearly, it must be noted
that travel times are not an optimisation criterion of the initial tour building algorithm.

4.11. Conclusions and Future Research

We have presented a novel workload levelling problem in a vehicle routing environment. Its ob-
jective is the smoothing of workloads arising as work tasks for mobile staff and equipment on
airports. Superpositioning work tasks and travel times as a demand curve, workload levelling ex-
ploits the freedom of positioning movable tasks at times of low workloads. Unnecessary demand
peaks are therefore avoided. The resulting demand curve provides a suitable basis for realistic
estimations of workforce demands and for the planning of staff and equipment.

We have shown that workforce levelling is closely related to resource levelling in project
scheduling. Like resource levelling builds upon the result of a makespan optimisation algorithm,
workload levelling starts from the outcome of a tour minimisation procedure. Consequently,
workload levelling has been conceived as a solution improvement algorithm. Furthermore, we
have proved that workload levelling isNP-hard, justifying the search for heuristic algorithms.

We have shown that constraint propagation is a good choice for capturing the temporal interde-
pendencies between the tasks as well as the non-linear objective function. Additionally, CP allows
for an easy incorporation of constraints which may come up in the future. We have presented a
large neighbourhood search algorithm which repeatedly relaxes and reoptimises insertion and start
time decisions. A new variant of limited discrepancy search has been used for reoptimisation, ex-
ploiting a powerful lower bound. The solution scheme gradually explores larger neighbourhoods
and provides easy means of weighing runtime against solution quality.

As an interface between tour minimisation and local search, three different greedy and local
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dynamic programming procedures for the initial fixing of start times have been presented.
The algorithms has been tested on a wide range of real-world scenarios of different sizes and

characteristics. Surprisingly, the greedy preprocessing algorithm has shown to be the best basis
for solution improvement, providing competitive results within very low runtimes. Large neigh-
bourhood search has been able to improve considerably upon the preprocessing results, showing
that a considerable potential for improvement lies in the reattribution of tasks. While with short
runtimes, preprocessing still pays off, comparable results can be achieved by pure large neigh-
bourhood search if more runtime is invested. The overall algorithm has been shown to be robust
in providing level demand curves on quite different test cases. Furthermore, overall demand max-
ima and travel times have been reduced on many planning scenarios.

The workload levelling procedure is part of a commercial software application and has proven
to be a very valuable tool for demand planning and for the preparation of workloads for staff
planning.

In general, one can expect that levelled workloads provide a better basis for demand-level
planning of shift duties. If, however, shift planning is the only focus of workload levelling, the
model may be refined. As an example, the length of tours could be restricted such that tours fit into
shifts [Ernst et al., 2004]. A disadvantage of the separation of workload levelling and (demand-
based) shift planning is that levelling does not always schedule tasks at positions which are most
appropriate with regard to shift planning. A theoretical deficiency is that the demand-level shift
planning approach does not provide a lower bound for task-level shift planning.

Further experiments with large neighbourhood search could e.g. evaluate the efficiency of al-
ternative heuristic pruning techniques. Different alternatives to limited discrepancy search have
been proposed in recent years, including improved limited discrepancy search [Korf, 1996], depth-
bounded discrepancy search [Walsh, 1997] and interleaved depth-first search [Meseguer, 1997].
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5. An Improvement Algorithm for Complex
Shift Planning

The art of flying
is to throw yourself at the ground

and miss.
— Douglas Adams

Shift planning at airports can be carried out in different ways. Models in the literature regularly
build upon workforce demands given in discrete time periods, see Chapter 2. If information
on flights and passenger/load figures is little detailed, this is also an appropriate approach for
ground staff planning. If, however, we are interested in an operative planning which is carried
out shortly before operations, shift planning should aim at covering the individual work tasks (see
also Section 1.2.3). Task-level shift planning is a novel optimisation problem which combines
aspects of vehicle routing and shift scheduling. Additionally, our scenario requires the handling
of preemptive tasks and crew constraints. In the past, a heuristic construction method has been
used to tackle the large scale and considerable complexity of airport shift planning problems.
While this method generally provides good solutions, it sometimes lacks robustness and exhibits
deficiencies on individual planning instances. In the following, we will develop a mathematical
description of task-level shift planning and describe the design and implementation of a constraint-
based method for local reoptimisation of shift plans.

5.1. Introduction

Ground handling companies and airline ground handling departments face the problem of cover-
ing large sets of work tasks with appropriate staff. Handling tasks include baggage loading and
unloading, aircraft cleaning, fuelling as well as check-in and boarding services. In the preceding
chapter on workload levelling, it was shown how tasks can be prepared for a graphical demand
analysis as well as demand-based scheduling. We will now deal with covering work tasks by
appropriate shift duties which are assigned to workers in a downstream step.

For a given department, we will assume a set of tasks to be given, spanning over a planning
horizon which will frequently be one week. Each task is basically characterised by a window of
possible start times, a length and a location at which it takes place. The goal of shift planning is
to cover these tasks by shifts of any of a set of given types. Shift types define start and end times
within the day and give information on the duration and placement of one or several breaks (e.g.
relief or lunch breaks). Tasks must be placed one after the other such that time window and break
placement restrictions are met and sufficient time for travel between locations is available.

This basic scenario is often enriched by further constraints. Workers like aircraft cleaning staff
are often planned in crews or teams, imposing constraints on the parallelism of tasks and shifts.
Some of the tasks can be preemptive or splittable, meaning that the task is handed over to another
person at some time. Some tasks may have to be covered by staff with special skills like language
skills (for check-in and boarding services) or being trained for a special aircraft type (e.g. for
baggage loading/unloading). Further restrictions affect the mix of shift types in the final plan,
reflecting the numbers of workers with different contracts and worktime agreements.
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Task-level shift planning consists in building tours of tasks, obeying time window constraints.
This can be interpreted as a special vehicle routing problem with time windows (VRPTW) with
the shift types imposing restrictions on the tours. Crews and splittable (preemptive) tasks intro-
duce novel modelling aspects which are particularly challenging for the design of optimisation
algorithms. Task-level shift planning is thus an integration of classical shift scheduling with vehi-
cle routing and further complicating constraints.

Only a limited number of publications is loosely related to this problem. Thompson [1992] de-
scribes the scheduling of blocks of controllable work which can be interpreted as splittable tasks.
Bailey et al. [1995] describe a shift scheduling setting in which workloads are given as activities
in a project scheduling environment while in Nobert and Roy [1998], workforce demands relate
to the weight of aircargo. Campbell and Savelsbergh [2004] limit the extent of tours by a given
length without explicitly taking shift types or breaks into account. Crew and driver scheduling re-
lates to task-level scheduling in covering trips by shifts duties (see Section 2.11). However, driver
and crew duties are driven by the placement and lengths of trips, and there is no notion of shift
types. In the following, we will show how all aspects of complex task-level shift planning can
be represented in an optimisation model and how efficient algorithms can be designed, yielding
robust solutions on a large variety of staff scheduling scenarios.

Realistic airport shift planning is often carried out on a very large scale. Frequently several
thousand tasks with partly wide time windows must be covered, and several hundred shift types
may be used. Furthermore, several dozens of qualifications and related restrictions are used. Due
to 24×7 operations, it may not be possible to decompose larger scheduling horizons without
sacrificing optimisation quality. In Chapter 7, it will be shown that even a very restricted version
of the shift planning problem isNP-hard. While scenarios using little constraints can still be
solved to optimality (see Chapter 7), we cannot expect to obtain optimal solutions on larger and
more complex scenarios. Nevertheless, the use of advanced optimisation algorithms pays off
because with the large scale of airport operations, small improvements translate to large savings.

Heuristic methods allow for the construction of solutions of good quality in low runtimes.
In the past, a construction method has successfully been used for several years. The algorithm
makes use of the approximation of workloads by a workload histogram and initially solves a set
covering formulation of the demand-level shift scheduling problem by linear programming and
heuristic rounding. The levelled workload histogram of Chapter 4 provides a starting point for
this initial phase which considers only a small subset of the constraints. In a second phase, the
tasks are inserted into the shifts of the first phase one by one. Because the workload histogram
only provides an approximation to actual workloads, further shifts may have to be created in a
final phase to cover all tasks.

Each task is handled only once in the course of solution construction, entailing low runtimes
even for large-scale scenarios. Since the algorithm was used and tuned for several years, the
solutions generally exhibit a fairly good quality and were generally well-accepted by customers.
Nevertheless, the algorithm shares typical traits with construction heuristics: While on average,
good solutions are provided in little runtime, solutions can have considerable deficiencies on
selected scenarios. The more obvious such flaws are, the less planners will accept the algorithm.
Tuning of parameters sometimes helps, but changing parameters generally improves results on
some scenarios while quality decreases on others.

The goal of this work was thus the conception and implementation of an algorithm which im-
proves the initial solution by local reoptimisation, compensating for the flaws of the construction
phase. By designing an improvement procedure, we can benefit from the generally good quality
of the construction algorithm and from other advantageous features of initial solutions like the
grouping of tasks of similar qualifications. The algorithm should be generic and robust on a wide
range of real-world planning scenarios.

As described in Chapter 3, solution techniques based on constraint programming are partic-
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ularly appropriate for problems comprising many constraints. We will therefore develop a con-
straint model representing the multitude of constraints which make up the shift planning problem.
On this basis, a relax-and-optimise approach similar to the solution approach of the workload lev-
elling problem will be devised. Constraint programming has the additional advantage of an easy
incorporation of additional constraints which are likely to come up in the future, e.g. by model
refinements or customer-specific requirements. The algorithm will allow for the determination of
good solutions in reasonable runtimes. With further invested runtime, solution quality increases
further, resulting in shift plans that are partly considerably better than the starting solutions.

The chapter is organised as follows: In the subsequent section, the shift planning problem is de-
scribed formally, providing a basis for the mathematical model in Section 5.3. Sections 5.4 and 5.5
present basic considerations for the design of a CP-based optimisation algorithm. The constraint
model is described in Section 5.6. The calculation of lower bounds presented in Section 5.7 pro-
vides a basis for the restricted branch-and-bound algorithm of Section 5.8 while Section 5.9 deals
with design decisions for the implementation of large neighbourhood search. The minimisation
of task overlaps which are partly allowed in the optimisation model is the subject of Section 5.10.
Section 5.11 presents experimental results. A summary concludes the chapter.

5.2. Problem Description

In the following, we will characterise basic entities in task-level shift planning and introduce some
notation. We will furthermore describe how task splitting, overlapping and crews are handled. An
overview of mathematical symbols can be found in Appendix A.

5.2.1. Tasks and Shifts

Workloads are given as a setI of (work) tasks. A taski ∈ I is characterised by an interval[ai, bi]
of possiblestart times(start time window) and a lengthli. All times are assumed to be given as
integer numbers on an appropriate discretisation level (typically minutes).

The output of the shift planning process is a setS of shifts. Different constraints apply on the
shift level.Shift typesK specify when shifts can start and end. A shift typek ∈ K can be realised
on daysNk ⊆ N whereN is the set of all days of the planning horizon (often one week). The
realisation of shift typek ∈ K on a dayn ∈ Nk starts at a timestkn and ends atetkn. Note that
a shift is always attributed to the day on which it starts. It will be assumed that shift types cover
at most 24 hours. For a shift of typek ∈ K, costs ofck are incurred. Shift costs will often be
proportional to their length. Additionally, night shifts may entail higher costs.

Furthermore, a shift type defines up to threebreak rulesfor the lunch or relief breaks a shift
must contain (see Fig. 5.1). In practice, shifts will often contain a lunch break of 30 or 60 minutes
length and up to two relief breaks of 15 minute length [Schindler and Semmel, 1993] [Aykin,
2000]. The (possibly empty) early, main and late break rules of a shift typek are denoted bybreb

k ,
brmb

k andbrlb
k , respectively. If a shift type prescribes the use of less breaks, it will be assumed that

the corresponding break rules have the valueNIL (e.g.breb
k = NIL). The set of all break rules will

be denoted byBR. A break rulebr ∈ BR is defined by a start time window[abr, bbr] relative to
the shift start and a lengthlbr.

A shifts ∈ S can be regarded an instance of a shift typek ∈ K on a dayn ∈ Nk, see e.g. Koop
[1988]. The shift start and end times of a shifts are then given bystkn andetkn. An origin task
ios and a destination taskids will delimit the start and end of a shifts. The start time windows of
these tasks are naturally defined as[aios , bios ] := [stkn, stkn] and[aids

, bids
] := [etkn, etkn]. The sets

of all origin and destination tasks will be denoted byIo andId, respectively.
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shift start
origin task

early break
buffer

late break
buffer

shift end
destination task

early break main break late break

Figure 5.1.: Structure of a shift with origin, destination and break tasks.

A shift can have up to three breaks as defined by the break rules of its shift type. Shifts of type
k will contain onebreak taskfor each break rule ofk. The break rules of shift typek thus induce
up to three break tasksIbreak

s = {iebs , imb
s , ilbs } in a shifts. Start time windows of break tasks are

defined by the break rules relative to the start timestkn of the shift type realisation(k, n):

[aieb
s

, bieb
s

] := [stkn + abreb
k

, stkn + bbreb
k

]
[aimb

s
, bimb

s
] := [stkn + abrmb

k
, stkn + bbrmb

k
]

[ailbs
, bilbs

] := [stkn + abrlb
k
, stkn + bbrlb

k
]

Analogously, break task lengths are given by the break rules:

lieb
s

:= lbreb
k

limb
s

:= lbrmb
k

lilbs := lbrlb
k

While the shift attributions of work tasksi ∈ I will be decision variables of the optimisation
process, the shift assignment of break tasks is fixed. The set of all break tasks will be denoted by
Ib :=

⋃
s∈S Ib

s .
A main break rulebr := brmb

k can furthermore definebreak buffertimesbbeb
br andbblb

br. While
bbeb

br defines the minimum time between the end of the early break and the start of the main break,
bblb

br is a minimum buffer time between main and late break.
Tasks can take place at different locations, entailingtravel timesbetween the tasks. If a task

i ∈ I ∪ Id is placed in a shift with a predecessor work taskj ∈ I, a travel timedj,i must be
performed directly beforei’s start. While in vehicle routing settings, the minimisation of travel
distances is often an explicit objective (see Section 1.4), they only impose feasibility conditions
in our setting. Clearly, time windows must be respected, i.e. an arrival ati before its earliest start
time ai entails waiting time. Shifts start and end at a central depot. Depot travel times are given
by dios,i anddi,ids

for i ∈ I.
Breaks will take place at the location of their predecessor work tasks, i.e. there are no travel

times before breaks. We will therefore definedi,j = 0 if j ∈ Ib. Because the predecessor of a
break can be another break, the determination of travel times of tasks after breaks may require a
recourse over several break tasks. Ifpredi denotes the predecessor of a taski in a shift, we define
the first regular predecessorrpred(i) ∈ I ∪ Io of a taski ∈ I ∪ Ib ∪ Id as

rpred(i) :=
{

predi if predi ∈ I ∪ Io

rpred(predi) else

With this definition, the travel time which must be accomplished before a taski (possibly a break
task) isdrpred(i),i. As in Chapter 4, travel times are assumed to obey the triangle inequality.

The goal of shift planning consists in covering all work tasks by shifts of appropriate shift types.
The setS of shifts along with the shift typeKs and dayNs for each shifts ∈ S are thus decision
variables of the optimisation process1. Furthermore,Si will denote the shift attribution of task

1As in Chapter 4, we will represent decision variables by uppercase letters with indices for the entities to which they
refer (e.g.Ks, Ns, Si), see also Appendix A.
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break

break

break

break break

Figure 5.2.: Task-level shift planning.

i ∈ I ∪ Ib ∪ Io ∪ Id. Note that for break and delimiter task, this shift attribution is fixed. As
in Chapter 4, we will use an insertion-based model and therefore maintain the predecessorpredi

and successor tasksucci for eachi ∈ I ∪ Ib ∪ Io ∪ Id. The start timesTi for eachi ∈ I will also
be regarded as decision variables even if they do not have any impact on the objective function.

The general setting of shift planning is sketched in Fig. 5.2. In the upper part, the (possibly
movable) work tasks are displayed which are the input of the optimisation process. The output is
a set of shifts (shown in the lower part), including travel times (yellow) between the tasks. Note
that there are no travel times before breaks.

5.2.2. Qualifications

Each work task can have qualification requirements, corresponding to basic skills which a worker
must meet. Each taski ∈ I thus requires a setQi ⊆ Q of qualifications whereQ is the set of all
elementary qualifications.

A shift derives its qualification requirements from its tasks. Clearly, if a task requires the worker
to have a certain skill, a person working a shift must cover all qualification requirements of tasks
in the shift. The qualification profileQs of a shifts is thus given by

Qs =
⋃
i∈I

Si=s

Qi

Since skilled workers are generally scarce, the combination of qualification requirements in
shifts must generally be restricted. First of all, this will be done by restricting the number of
qualifications per shift by a constantqmax ∈ N (|Qs| ≤ qmax). Note that this qualification
restriction is closely related to capacity constraints in vehicle routing (see e.g. Toth and Vigo
[2001a]). This implies that all tasks must obey this limit (|Qi| ≤ qmax) since otherwise, a task
could never be assigned to a shift.

Furthermore, we introduce an objective function term for penalising the use of scarce quali-
fication combinations. This term should be regarded an approximation for obtaining solutions
reflecting the skills of the workforce at hand. More exact approaches limiting shifts along work-
force restrictions may be subject of future research. Qualification penalties will be a subordinate
objective, i.e. we will not accept better qualification combinations if this entails additional shift
costs.

We will assume thatqualification preferencesqp(Q′) ∈ [0, 1] can be given for each setQ′ ⊆ Q
with qp(∅) = 1 andqp(Q1) ≥ qp(Q2) if Q1 ⊆ Q2. Qualification preferences should reflect the
relative frequencies of skill combinations among the staff, i.e. scarce qualification combinations
should have low preference values. Note that while an analysis of ways to obtain appropriate
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and consistent values is beyond the scope of this work, the determination of preferences must be
regarded a difficult problem in itself.

Qualification combinationsQ′ with qp(Q′) = 0 will be interpreted asincompatible qualifica-
tions, i.e. such qualifications must not be combined in shifts. A typical example for incompatible
qualifications are water and faeces services on airports which are not combined for hygienic rea-
sons.

Some tasks in a scenario may require qualifications which can only be covered by few employ-
ees. A wide-spread use of such special qualifications may prevent a shift plan from being covered
by appropriate staff. Knowing the number of staff with different skills, planners can often specify
maximum limits on the numbers of shifts containing a specific qualification. This will be rep-
resented byqualification restrictionsQR. A qualification restrictionqr ∈ QR is defined by a
qualificationqqr ∈ Q and a limitmqr ∈ N on the number of shifts requiringqqr. Imposing strict
maximum limits may prevent an algorithm from finding feasible solutions. We will therefore use
a large penaltyMQR if a qualification limit is exceeded.

5.2.3. Crews

The planning practice on airports sometimes requires workers to be planned increws(teams).
This comprises the task parallelism constraints which have already been described in Section 4.3
for the workload levelling problem. A shift planning scenario may thus define a number oftask
crewsC (corresponding to the crews of Section 4.3) withC ⊆ I ∀C ∈ C.

Sometimes it may already be sufficient to impose temporal restrictions on crew tasks. In other
cases, we may not only want the tasks to be performed in parallel, but due to legislative or union
regulations, the staff may work in fixed groups on parallel shifts, performing groups of parallel
tasks during their shifts. For a given shift planning scenario, the sizecs ∈ N of each crew of
workers will be fixed. If thus a scenario withcs > 1 is given, the set of shiftsS will consist of
groups ofcs shifts each.

A typical example is the planning of cabin cleaning personnel [Stern and Hersh, 1980]. The
staff in cleaning departments often consists of crews of sizecs = 4. We thus have to create blocks
of four shifts each which we will callshift crews. Each shift crewH ∈ H, H ⊆ S is thus a group
of cs shifts.

The crew sizecs generally corresponds to the size of typical task groups. In the above cabin
cleaning example, we would thus expect that tasks are usually blocked as groups of four tasks
because the cleaning of a typical aircraft may require this number of workers. To avoid splitting
up staff crews, each such task group should always be assigned in total to a shift crew.

Clearly, crews should not only work on shifts of parallel types, but their blocks of tasks should
also be performed as much in parallel as possible. However, the task parallelism constraints of
task crews are often imposed on larger blocks of tasks. As an example, a wide-body aircraft may
require two crews of four people to work in parallel in order to accomplish the cleaning work
within the groundtime. Task parallelism would then refer to a group of eight tasks while blocks
of four tasks are assigned to parallel shifts.

A task crewC ∈ C may thus be split up into one or severalsubcrewseach of which has
a maximum size ofcs. If all tasks in a task crew have identical time windows and lengths, task
crews may be split arbitrarily. However, this is not the case in general. Ifcs > 1, we will therefore
assume that a setB of subcrews is given such that each subcrewB ∈ B is a subset of the tasks of
a task crew. Note that ifcs = 1, a scenario can contain task crews without any subcrews, i.e. only
task parallelism constraints are imposed.

We will restrict each subcrewB ∈ B to be assigned to a blockH ∈ H of shift crews. Note
that subcrews can have sizes less thancs, and crew planning scenarios may even comprise single
non-crew tasks. We will allow such ungrouped tasks to be covered either by crew shifts or by
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Figure 5.3.: Handling of task crews and subcrews.
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Figure 5.4.: Task splitting.

singleton shifts which are not grouped in crews. Crew planning scenarios with given crew sizecs
will therefore generally involve blocks of crew shifts of ordercs and single shifts. Even if each
crew member can cover different sets of tasks, we will restrict the breaks of shift crews to take
place in parallel.

Figure 5.3 illustrates the handling of crew tasks for a department withcs = 4. In the example,
seven tasks build a task crew whose tasks are placed in parallel. The task crew consists of two
subcrews each of which is placed in a block of crew shifts of size4. Note that not only the crew
tasks are placed in parallel (assuming that the time windows are not fixed a priori), but also the
break tasks.

5.2.4. Task Splitting

Due to their lengths, some tasks may not fit into any shift type. As an example, occupations
for ticketing or check-in counters or help desks frequently span over the whole day, but shift
types typically have maximum lengths of 8 to 12 hours. Nevertheless, it may not be obligatory to
attribute such tasks to a single person. Thus it is possible to split it at some point in time and assign
the resulting task parts to different shifts, introducing the concept ofpreemptive tasks. Figure 5.4
shows the basic idea: A long task is interrupted at the start time of the break of the first shift.
While the third part of the task is again attributed to the same shift, the break time interval and the
final part are attributed to separate shifts.

Planners on airports usually know which types of tasks must be split in order to ensure that a
feasible shift attribution can be found. Preemptive tasks should generally not be split into arbitrary
many parts since a frequent switching between different workers disrupts operations. We therefore
assume that for each taski, a minimum split lengthmsli is given, denoting the minimum length
of a task part after splitting. Ifmsli = ∞, we will assume thati cannot be split. Crew tasks will
always be non-preemptive.

We could try to determine appropriatesplit parts(parts which result from splitting) before shift
planning, i.e. the split parts would already be input of the algorithm. This would clearly fix the
number of split parts, their lengths and split points. These figures should however depend on the
shift types and the context given by surrounding tasks. Task splitting is therefore integrated into
shift planning, i.e. the times at which tasks are split will be decision variables of the optimisation
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process.
For each taski with msli < ∞, we will determine the number of split parts beforehand,

replacingi by its split parts in the input task setI. The number of generated split parts will be
taken to be an upper bound on the number of effectively used split parts in a schedule.

The obvious upper boundbli/mslic on the number of split parts is generally too weak. This
number can be reduced if we take some considerations about meaningful split points with regard
to the shift types into account. In practice, planners often try to cover a long task principally by
one shift, only taking out the time span of a break (for an example, cf. to the first shift in Fig. 5.4).
We will determine the shift type that covers the longest part of the task without taking care of
breaks, but respecting displacements of the task within its start time interval. For each break, we
assume that one additional split part has to be created. Ifi leaves a part which does not fit into
any shift type, the procedure is repeated for the remaining task duration.

If a andb are earliest and latest start times andl is a length (initially,a, b andl will be equal to
ai, bi andli), we can calculate the part of a task which is covered by shift typek on dayn:

cov(i, k, n, a, b, l) :=


min(etkn − di,idk

,max(stkn + diok,i, a) + l)
−max(stkn + didk,i, a)

if stkn ≤ b

0 else

If nb(t1, t2) is the number of breaks in the time interval[t1, t2]2, the number of split parts for
task i with earliest start timeai =: a, latest start timebi =: b and lengthli =: l is iteratively
calculated as

sparts(a, b, l) :=


0 if l = 0
1 + nb(st, st + tcov) + sparts(st + cv, st + cv, l − cv)
with cv := maxk′,n′ cov(k′, n′, a, b, l)

(k, n) := argmaxk′,n′cov(k′, n′, a, b, l)
st := max(a, stkn)

else

Knowing the numberm := sparts(ai, bi, li) of parts to be created from an original taski,
we createn split partsi1, . . . , im. Each of these parts will have the same start time interval
[aij , bij ] := [ai, bi] as the original taski. Additionally, we define an ordered sequence of the split
partsP := (i1, . . . , im) denoted assplit taskof total lengthlP := li. Split parts will inherit the
location of the original task, i.e. travel times from and to split parts are defined as fori. Split task
and split parts replace the original taski as part of the input data.

The set of all split tasks will be denoted byP. The lengths of the single split parts will be
variable, and there is no meaning in attributing lengthslij to split partsij . We therefore set
lij = 0∀ij ∈ P, P ∈ P. The split taskP inherits the minimum split part length from the
original task:mslP := msli. For a split partij of P , we will write ij ∈ P , and the split task
Pij ∈ P ∪ {NIL} of a i ∈ I will be P if i ∈ P for aP ∈ P andNIL otherwise.

Split points will be represented by the start timesTij of the single split parts. Their end times
are equal to the start time of the next split part, i.e.Tij+1 also represents the end time ofij . Note
that while the start times of interior split parts are generally not fixed, the start of the first split part
and the end of the last split part are movable if and only if the original task is movable. If these
outer times are movable, they are still constrained to obey a distance which is equal to the length
of the original task.

In order to define an end time for the last split partim, a delimitingpseudo split partipseudo
P

is defined for each split taskP ∈ P. The start timeT
ipseudo
P

of this task represents the end

2We take a pessimistic approach and define a break taskibs to be in time interval[st, et] iff max(st, aib
s
) <

min(et, bib
s

+ lib
s
).
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Figure 5.5.: Structure of a split task.

time of split partim. Note that the pseudo split part is only introduced for convenience reasons
sinceT

ipseudo
P

= Ti1 + lP . The start time window of the pseudo task is[a
ipseudo
P

, b
ipseudo
P

] =

[ai1 + lP , bi1 + lP ]. Sinceipseudo
P is not a “real” task, we defineS

ipseudo
P

:= NIL. The structure of

a split task is illustrated in Fig. 5.5.
We define the split part successorssucci of a split parti as

ssucci :=


ij+1 if Pi = (i1, . . . , im) andi = ij , j < n
ptP if Pi = (i1, . . . , im) andi = im
NIL if i = ipseudo

P for aP ∈ P

and the split part predecessorspredi as

spredi :=


NIL if Pi = (i1, . . . , im) andi = i1
ij−1 if Pi = (i1, . . . , im) andi = ij , j > 1
im if i = ipseudo

P for aP ∈ P

The length of a split parti can be calculated from its start timeTi and the start timeTssucci of
its split part successor. The actual lengthal(i) of a taski ∈ I is therefore defined as

al(i) :=
{

li if Pi = NIL
Tssucci − Ti else

5.2.5. Task Overlapping

The lengths of work tasks on airports are hardly deterministic. Especially in peak times, employ-
ees are often encouraged to work harder, perform several tasks in parallel or in shorter times. In
a deterministic model, this practice cannot be represented in full detail. To defuse some of the
strict character of deterministic models, a taski ∈ I will be allowed to overlap up to a maximum
task-dependent duration oftolmax

i minutes. This maximum overlap can depend on task attributes
like the staff group by which it will be performed.

For easier handling, we will generalisetolmax
i to a maximum overlapolmax

i for general tasks
i ∈ I ∪ Ib ∪ Io ∪ Id. Because an overlap with origin, destination or break tasks would mean
performing parts of a task within a break or outside a shift, we setolmax

i = 0 for all i ∈ Ib∪Io∪Id.
Furthermore, no more than two tasks should overlap, meaning that the overlapolmax

i of work tasks
i ∈ I should be limited by half the length of the task.
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For split parts, the task length is a consequence of the start times of adjacent split parts. Since
allowed overlaps will normally be substantially shorter than minimum split part durations, we will
relate the overlap limit to the minimum split part length. This leads to the following definition:

olmax
i :=


0 if i ∈ Ib ∪ Io ∪ Id

min
(
tolmax

i ,
⌊

li
2

⌋)
if i ∈ I andPi = NIL

min
(
tolmax

i ,
⌊

mslPi
2

⌋)
if i ∈ I andPi 6= NIL

If possible, overlap should be avoided. Because we will generally accept overlap if shift costs
can be lowered, we will not try to handle overlap minimisation as part of the optimisation model.
Instead, overlap will be minimised as a part of a post-processing step, cf. Section 5.10.

5.2.6. Shift Number Restrictions

Different employment categories among the workforce often impose considerable restrictions,
and solutions will fall short of planners’ requirements if these are not represented. As an example,
it may be advantageous to create many short shifts to cover the demand in peak times, i.e. periods
of high workload. In general, short shifts can only be covered by part time staff, and part time
workers are only available to a certain extent due to union and legal regulations, see e.g. Bennett
and Potts [1968], Schindler and Semmel [1993] and Brusco et al. [1995].

We therefore introduceshift number restrictions, limiting the numbers of shifts of certain types,
including minimumand maximumas well asrelative and absoluterestrictions. Each absolute
restrictionr ∈ Rmin

abs (r ∈ Rmax
abs ) imposes a minimum (maximum) limit ofmr ∈ N shifts on shift

type realisations fromKr × Nr whereKr andNr are sets of reference shift types and days. In
contrast, a relative shift number restrictionr ∈ Rmin

rel (r ∈ Rmax
rel ) defines a minimum (maximum)

proportion ofpr ∈ R+ on the number of shifts fromKr × Nr with regard to all shifts on the
reference daysNr (i.e. shifts fromK ×Nr).

While minimum restrictions can always be obeyed, it may not be possible to obey maximum
limits, and we will impose a large penaltyMSNR if a maximum shift number restriction (absolute
or relative) cannot be obeyed.

5.3. Mathematical Model

We are now ready to define the shift planning problem by summarising its parameters and decision
variables and defining constraints and optimisation criteria.

The parameters (input) of the algorithm are given by:

I set of work tasks
[ai, bi] ⊂ N start time window of taski ∈ I
li ∈ N length of taski ∈ I
Qi ⊆ Q qualifications of taski ∈ I
olmax

i ∈ N maximum overlap fori ∈ I ∪ Ib ∪ Io ∪ Id

P set of split tasks
C, B sets of task crews, subcrews
di1,i2 ∈ N travel time betweeni1 ∈ I ∪ Io andi2 ∈ I ∪ Id

K set of shift types
ck ∈ R+ cost of shift typek ∈ K
Nk ⊆ N days of validity of shift typek ∈ K
stkn, etkn ∈ N start and end time of shift type realisation

k ∈ K on dayn ∈ Nk
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breb
k , brmb

k , brlb
k ∈ BR early, main and late break rule for shift typek ∈ K

[abr, bbr] ⊂ N break start time relative to shift start given by break rulebr
lbr ∈ N break length given by break rulebr
qmax ∈ N maximum number of qualifications in shifts
qp(Q′) ∈ R+ qualification penalties for qualification setQ′

QR qualification restrictions
mqr ∈ N maximum limit given by qualification restrictionqr ∈ QR
Rmin

abs , Rmax
abs absolute shift number restrictions

Rmin
rel , Rmax

rel relative shift number restrictions
mr ∈ N minimum/maximum limit for

absolute shift restrictionsr ∈ Rmin
abs ∪Rmax

abs

pr ∈ R+ minimum/maximum proportions for
relative shift restrictionsr ∈ Rmin

rel ∪Rmax
rel

The following are the decision variables:

S set of shifts
Ks ∈ K shift type for each shifts ∈ S
Ns ∈ N day for each shifts ∈ S
H shift crews
Si ∈ S shift for each taski ∈ I
predi ∈ I ∪ Io ∪ Ib predecessor of taski ∈ I ∪ Id ∪ Ib

succi ∈ I ∪ Id ∪ Ib successor of taski ∈ I ∪ Io ∪ Ib

Ti ∈ T start time of taski ∈ I ∪ Ib

Note that while the objective function will not depend on the start times, the start time variables
Ti are used for validity checks and are useful as part of the output. Equally, an output of realised
travel times and qualification profilesQs of the shifts can be interesting.

As described above, shift costs are the main optimisation criterion. The planner may further-
more want to optimise the qualification mix in the shifts. As described in Section 5.2.2, qualifica-
tion penalties are regarded a subordinate objective, i.e. objectives are lexicographically ordered.
The qualification penalty term will therefore be normalised by means of the minimum positive
qualification preference

qpmin := min
Q′⊆Q

qp(Q′)>0

qp(Q′)

By multiplication with a weightwQP , we keep a means of adjusting the relative significance of
qualification preferences3.

As described above, exceeding the upper limits of qualification or maximum shift number re-
strictions is penalised by large valuesMQR andMSNR, respectively.

Sometimes it may not be possible to place all tasks in shifts, e.g. if there are no shift types
covering the total duration of a task. Splitting may be a remedy, but there could be times of
the day which are not covered by any shift types at all, or splitting may not be desired. If task
splitting is allowed, we want to assign as many task minutes as possible. We therefore impose a
penaltyMUT for each task minute which is not assigned to a shift.MUT will be chosen such that
covering a task pays off even if qualification or shift restrictions are exceeded.

The shift planning problem is defined by

3The equivalent weights technique for lexicographically ordered objectives was originally proposed by Sherali [1982],
see also Berrada et al. [1996] for a workforce scheduling application.
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min

{∑
s∈S

cKs (5.1)

+ wQP qpmin

|S|
∑
s∈S

qp(Qs)−1 (5.2)

+ MQR
∑

qr∈QR

max (|{s ∈ S|qqr ∈ Qs}| −mqr, 0) (5.3)

+ MSNR
∑

r∈Rmax
abs

max

∑
k∈Kr

∑
n∈Nr

|{s ∈ S|Ks = k, Ns = n}| −mr, 0

 (5.4)

+ MSNR
∑

r∈Rmax
rel

max

( ∑
k∈Kr

∑
n∈Nr

|{s ∈ S|Ks = k, Ns = n}|−

pr ·
∑
k∈K

∑
n∈Nr

|{s ∈ S|Ks = k, Ns = n}|, 0

) (5.5)

+ MUT ·
∑
i∈I

Si=NIL

al(i)

}
(5.6)

subject to
Time windows

Ti ∈ [ai, bi] ∀i ∈ I ∪ Ib ∪ Io ∪ Id (5.7)

Shift temporal relation

Tssucci + drpred(succi),succi
−min(olmax

i , olmax
succi

) ≤ Tsucci if Pi 6= NIL
Ti + li + drpred(succi),succi

−min(olmax
i , olmax

succi
) ≤ Tsucci else

∀i ∈ I ∪ Ib ∪ Io
(5.8)

Crew temporal relation

Tij+1 ≥ Tij + (aij+1 − aij )
Tij+1 ≤ Tij + lij + (aij+1 − aij )

}
∀C = (i1, . . . , im) ∈ C,∀1 ≤ j < n (5.9)

Shift type days
Ns ∈ NKs ∀s ∈ S (5.10)

Shift start and end times
Tios = stKsNs

Tids
= etKsNs

}
∀s ∈ S (5.11)

Break buffers

Tieb
s

+ lieb
s

+ bbeb
br ≤ Timb

s
∀s ∈ S : breb

Ks
6= NIL 6= brmb

Ks
=: br

Timb
s

+ limb
s

+ bbeb
br ≤ Tilbs

∀s ∈ S : br := brmb
Ks
6= NIL 6= brlb

Ks

(5.12)

Predecessor-successor consistency

predi = j ⇔ succj = i ∀i ∈ I ∪ Ib ∪ Io (5.13)

Shift-predecessor consistency

predi = j ∧ Si = s⇒ Sj = s ∀i ∈ I ∪ Ib ∪ Io (5.14)
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Shift difference
Si1 6= Si2 ∀C ∈ C,∀i1, i2 ∈ C, i1 6= i2 (5.15)

Subcrew attribution

∃H ∈ H : Si1 , Si2 ∈ H ∀B ∈ B, i1, i2 ∈ B, i1 6= i2 (5.16)

Crew shift types

Ks1 = Ks2

Ns1 = Ns2

}
∀s1, s2 ∈ S,∃H ∈ H : s1, s2 ∈ H (5.17)

Crew break parallelism

Tieb
s1

= Tieb
s2

Timb
s1

= Timb
s2

Tilbs1
= Tilbs2

∀s1, s2 ∈ S,∃ H ∈ H : s1, s2 ∈ H (5.18)

Split task length
Ti1 + lP = T

ipseudo
P

∀P = (i1, . . . , im) ∈ P (5.19)

Minimum split part lengths

Ti + mslPi ≤ Tssucci if ssucci 6= succi

Ti = Tssucci else

}
∀i ∈ I : Pi 6= NIL (5.20)

Shift qualification profiles
Qs =

⋃
i∈I

Si=s

Qi (5.21)

Maximum qualification requirements

|Qs| <= qmax ∀s ∈ S (5.22)

Incompatible qualifications

Qs 6⊆ Q′ ∀Q′ ⊆ Q : qp(Q′) = 0,∀s ∈ S (5.23)

Absolute minimum shift number restrictions∑
k∈Kr

∑
n∈Nr

|{s ∈ S|Ks = k, Ns = n}| ≥ mr ∀r ∈ Rmin
abs (5.24)

Relative minimum shift number restrictions∑
k∈Kr

∑
n∈Nr

|{s ∈ S|Ks = k, Ns = n}| ≥

pr ·
∑
k∈K

∑
n∈Nr

|{s ∈ S|Ks = k, Ns = n}|

∀r ∈ Rmin
rel (5.25)

The objective function term (5.1) describes the shift costs as induced by the shift types while
(5.2) imposes qualification penalties. Since the number of used shifts should not an impact, the
sum of the inverted qualification preferences is divided by the number|S| of shifts. Note that
all qualification preferences are strictly positive due to constraint (5.23). For normalisation, the

83



5. An Improvement Algorithm for Complex Shift Planning

qualification penalty term is multiplied byqpmin. Consequently, the qualification term has values
in [0, 1], rendering tuning of qualification influences viawQP easier.

Terms (5.3), (5.4) and (5.5) impose large penalties if qualification or maximum shift number
restrictions cannot be obeyed. Finally, (5.6) accounts for task minutes which cannot be assigned
to shifts, making use of the actual lengthal(i) defined in Section 5.2.4.

Equation (5.7) restricts all tasks (including origin, destination and break tasks) to start within
their start time window. Constraint (5.8) enforces tasks to be placed one behind the other in shifts.
While for non-preemptive tasks, the end time is given by the start time plus its length, the end of
split parts is given by the start timeTssucci of the split part successor. Tasks are allowed to overlap
by at mostmin(olmax

i1
, olmax

i2
) time units.

Crew tasks should be placed as much in parallel as possible as described by equations (5.9).
Again, it suffices to use a linear number of constraints for adjacent pairs(ij , ij+1) of crew tasks,
cf. Section 4.3. The differenceaij+1 − aij between the original start times of adjacent crew tasks
is interpreted as an offset for the realised start times.

Equation (5.10) restrains a shift to be on a day which is valid for its shift typeKs, and (5.11)
synchronises the shift type realisation with the shift start and end times.

Constraints (5.12) impose minimum buffer times between early/main and main/late break while
equations (5.13) and (5.13) guarantee consistency between predecessor, successor and shift vari-
ables.

To ensure a fair assignment of the work tasks to the members of a team, no more than one
task of a subcrew is assigned to the same worker as described by (5.15) (note that this is often
implicit in (5.9). While subcrews are part of the input, the shifts are grouped into shift crews, and
subcrews are always assigned to such blocks of shifts (equation (5.16)). All shifts of a shift crew
ask for the same shift type realisation (constraints (5.17)), and their breaks take place in parallel
(constraints (5.18)).

Split parts must cover the total length of their split task which is ensured by constraints (5.19).
Each split part has a minimum length as given by the valuemslPi (constraints (5.20)). Note that
the minimum distance between start times is only imposed if two split parts are not successors in
a shift. Split parts which are placed as successors in a shift are interpreted as a single effective
part. A solution to the shift planning problem can thus use less effective parts than the logical
parts which were originally generated. The start times of split parts which are placed one behind
the other are assumed to be equal.

Equation (5.21) relates shift qualification profiles to the qualification requirements of the tasks,
and (5.22) restricts qualification requirements to a maximum sizeqmax. Constraint (5.23) forbids
the use of incompatible qualifications. Absolute and relative minimum shift number restrictions
are represented by (5.24) and (5.25).

While in the bulk of the literature on shift planning, the workload is represented by a histogram
of workforce requirements per time interval, model (5.1)-(5.25) covers a set of work tasks. The
shifts contain tours of tasks. Problem (5.1)-(5.25) can thus be interpreted as a specialised vehicle
routing problem with time windows (VRPTW). Instead of using an intermediate histogram ab-
straction, the tasks are directly attributed to a set of appropriate shifts in an integrated approach.
To the knowledge of the author, this is the first time that task-level shift planning is addressed.

The basic VRPTW problem is not only enriched by restrictions referring to the shifts, but
also by complicating task-level constraints, including qualifications, task splitting, overlapping
and crews. The crew temporal constraints (5.9) and break parallelism constraints (5.18) refer
to tasks in different shifts. Therefore, they introduce vertical relations between the shifts while
the classical shift temporal relations (5.8) have a horizontal character. Task splitting (preemptive
tasks) add further vertical constraints to the problem since start time decisions for split parts
generally involve two shifts.

In Chapter 7, it will be shown that even a simple subproblem of the shift planning problem
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is NP-hard in the strong sense. While we will see that simple classes of shift planning prob-
lems can still be solved to optimality, this cannot be expected for general large-scale scenarios
involving many constraints. Before this work, a construction heuristic for the shift planning prob-
lem has been used with success. While this algorithm generally produces good results in very
low runtimes, solution quality sometimes suffers from evident flaws which has adverse effects on
customer satisfaction.

It was therefore searched for a procedure which is able to provide a remedy for the deficiency of
the initial algorithm. This was supposed to be done without sacrificing beneficial properties of the
construction algorithm like its performance and solution properties like the grouping of tasks of
different qualifications. It was therefore decided to implement a solution improvement algorithm,
using the result of the initial algorithm as a starting point. By repeated local steps, obvious flaws
of the solution were supposed to be overcome and the general solution quality enhanced. Because
local steps only change small parts of the solutions, many properties of the initial solution can be
conserved.

Traditional local search operators could not be expected to provide reasonable means for the
improvement of shift plans. The good experience with the levelling algorithm of Chapter 4 was
the reason for opting for a solution by a CP-based relax-and-optimise approach. Clearly, con-
straint programming is the method of choice for representing the complex constraints of the shift
planning problem (5.1)-(5.25). Large neighbourhood search gives a framework for the relaxation
and reoptimisation of parts of a given solution, using a restricted branch-and-bound scheme.

In the following, we will first develop a constraint programming model for the shift planning
problem described above. This model is not restricted to the local search context, but some design
decisions make it particularly appropriate for the reoptimisation setting. As in Chapter 4, we use
an insertion-based model which allows for an efficient propagation of start times [Caseau and
Laburthe, 1999] and is flexible in incorporating further constraints which may come up in the
future [Campbell and Savelsbergh, 2004]. For performance reasons, we will accept a somewhat
lower degree of consistency with regard to the determination of insertion positions. Effectively,
a full evaluation would mean that some of the consistency tests would have to trigger on many
events. Before explaining the domains and consistency tests, we will describe some general ideas
with regard to the creation of shifts and the handling of unassigned tasks.

5.4. Shift Creation

Our goal is to find a setS of shifts covering the tasksI at minimum costs. In order to represent
the complex constraints of task-level shift planning, we will use a constraint programming model.
As in Chapter 4, different domains and consistency tests will pertain to the basic entities. As
an example, we will use a start time domain for each task. Similarly, we need domains and
consistency tests for the shifts. As an example, we will represent valid start times of break tasks
as well as qulaification profiles of shifts by appropriate domain variables.

Such domains and consistency tests cannot be generated dynamically, but must be created be-
forehand. For the work tasks, this does not impose any problems since the tasks are part of the
input data. In contrast, the set of shifts is part of the decision variables of the problem, and the
composition of a “good” set of shifts is not obvious. We therefore have to create domains and
consistency tests for a set of shifts which is not known in advance.

As a remedy, we will create so-calledshift templates. These templates should be chosen such
that any possibly optimal solution can be represented by the related domains and consistency tests.
We therefore need upper bound approximations on the number of required shifts of different types.
For the calculated shift numbers, we then domains and consistency tests. Clearly, we can leave
shift templates empty, meaning that such shifts are not part of the final solution.
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The starting solution for the improvement procedure clearly gives an indication for creating a
suitable set of shift templates, but we will generally require additional shifts of other types. We
will thus only make use of the set of tasks for determining an upper bound on the number of
required shifts. Since there is no obvious way to determine which combinations of tasks will be
covered by the same shifts, we will take the worst-cast approximation of covering each task by a
separate shift.

In a first approach, we could create one set of templates for each shift type realisation. Many
constraints effectively relate to the shift type realisation. As an example, this would fix the shift
start and end times and define initial start time domains for the break tasks. Nevertheless, the ap-
proach has some disadvantages. First, the upper bound approximation for the number of required
shift templates will be poor: For each taski, we would have to create a shift template for each
shift type/day combination coveringi, resulting in a huge number of shift templates. Second, the
consequences for the logic of a solution algorithm are unfavourable. In practice, shifts can often
be shortened or prolonged within the set of given shift types without affecting key figures like the
number of breaks. If now the shift type is fixed for each template, the use of longer or shorter shift
types requires a reattribution of all tasks to another shift template.

Instead of fixing shift types, we first only settle the dayNs = ns on which a shift template
s starts and leave its actual shift type open. This means that the start time domains of origin,
destination and break tasks are initialised to rather general values. As an example, the start time
domain of an origin task incorporates all start times of the valid shift types for the template.
Additionally, the initial break start time domains will contain all possible start times for any of the
possible shift types. This means that we have to adapt the set of possible break times as soon as
the shift type is known. Clearly, this can be carried out by a consistency test. Similarly, we will
need consistency tests to ensure possible break buffer times.

Since the consistency tests for a shift template cannot change dynamically, we must choose the
set of possible shift types such that the basic information on breaks (break durations, buffer times)
is fixed for a template. As can be easily observed, all of this information relates to the set of break
rules of the shift type. Consequently, we will fix the set of break rules for each shift template, i.e.
a given shift template can be fixed to any shift typek on dayns with the same set of break rules.

To formalise this idea, we introduce the notion ofbreak rule daysBRD. A break rule day
brd ∈ BRD is defined as a pairbrd := (nbrd, BRbrd) of a reference daynbrd and a possibly
empty setBRbrd of break rules such that each break rule type (early, main, late break) occurs at
most once in the set. We furthermore define a setKbrd of all shift types which are covered by a
break rule daybrd:

Kbrd := {k ∈ K |nbrd ∈ Nk ∧ {breb
k , brmb

k , brlb
k } = BRbrd}

We define the earliest start timestbrd for a break rule daybrd as the minimum start time over its
shift type realisations (stbrd := mink∈Kbrd

stknbrd
) and the latest end timeetbrd as the maximum

over the end times (etbrd := maxk∈Kbrd
etknbrd

). Each shift templates will have a fixed break
rule daybrds (and therefore also a fixed dayNs = nbrd) while its shift typeKs will be determined
in the course of the algorithm.

With these considerations and definitions, an easy temporal checking of tasks can be performed:
A taski may be covered by a shifts of break rule daybrd := brds if

stbrd ≤ bi ∧min(stbrd + dio,i, ai) + li + di,id ≤ etbrd

wheredio,i anddi,id are travel times from and to the depot. Note that with this definition, we
neglect that there may be breaks preventing the task from being covered. To avoid checking all
shift types of a break rule day, we will neglect the effect of breaks.
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Two cases have to be distinguished. If the crew sizecs is 1, the scenario will not comprise
subcrews, and no shift crews must be created. We can therefore determine the numbercntbrd of
shifts for each break rule daybrd as

cntbrd := |{i ∈ I | stbrd + dio,i ≤ bi ∧max(stbrd, ai) + li + di,id ≤ etbrd}|

If there are split tasks in the input data (P 6= ∅), split parts – which have vanishing lengthsli
– will also be counted in this term. Whilecntbrd remains a valid upper bound on the shifts to
be created, we may seek for more exact approximations for split tasks, e.g. taking minimum split
part lengths into account. But since minimum lengths are only obeyed if split parts are placed in
different shifts, we will content ourselves with the above definition.

If the crew sizecs is greater than1, we must create blocks ofcs shifts. While most of the tasks
will generally be grouped in subcrews in a such scenario, there may be singleton tasks which are
not attributed to subcrews. Clearly, we do not need a whole shift crew to cover singleton tasks.
We therefore count the number of shifts which are needed for non-crew tasks separately:

cntsingle
brd := |{i ∈ I | i /∈

⋃
B∈B

B ∧

stbrd + dio,i ≤ bi ∧
max(stbrd, ai) + li + di,id ≤ etbrd}|

When checking if a subcrew might fit into a break rule day, we must check if all tasks of the
subcrew can be placed in the break rule day, i.e. we use the minimum over all latest start times
and the maximum over all earliest end times for temporal checks with the break rule day. Thus,
the numbercntcrew

brd of shift crews to be created for subcrew tasks is

cntcrew
brd := |{B ∈ B | stbrd ≤ min

i∈B
(bi − dio,i)∧

max
i∈B

(max(stbrd, ai) + li + di,id) ≤ etbrd}|

In total, we will create ⌈
cntsingle

brd

cs

⌉
+ cntcrew

brd

shift crews for a break rule daybrd, each consisting ofcs shift templates.
Because each of the shifts can finally be fixed to different shift types, the break rule day ap-

proach creates considerably less shifts than fixed shift type method. The more shift types require
the same sets of break, the clearer the savings will be. We will never create more templates than in
the fixed shift type approach. If many break rule combinations are used in the shift types, memory
requirements may still be high. If this is the case, we can heuristically introduce upper bounds on
the number of created templates per day or per break rule day.

Note that even if shift templates are used, only those shifts which finally comprise work tasks
will be part of the output of the algorithm. Nevertheless, we will letS denote the set of all shift
templates.

5.5. Unassigned Task Handling

As described in Section 5.3, it may not be possible to assign all tasks to shifts. If a task remains
unassigned (Si = NIL), a penalty ofMUT · al(i) proportional to its actual length is imposed.
Allowing tasks not to be assigned to any shift can be cumbersome in algorithmic handling. We
will therefore create a dummy shifts = sdummy

i for each taski which can be left unassigned.
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If the task cannot be covered by a regular shift, this will be represented by the assignment to its
dummy shift:Si := sdummy

i .
Note that if a task which can be covered is left unassigned in the initial solution, this must be

regarded a flaw the construction algorithm. Furthermore, if splitting is used, it may be possible to
assign larger portions of a split task than in the starting solution. In general, we can assume that
only a small amount of the tasks is unassigned in the initial solution.

We first treat the case of non-split tasksi. For each such taski, a dummy shiftsdummy
i is

created. Furthermore, we create a special dummy shift typekdummy
l for each unassigned task

lengthl and assign dummy shifts to the corresponding shift type:K
sdummy
i

= kdummy
li

. The cost

of a dummy shift typekdummy
l is given byc

kdummy
l

= MUT · l, reflecting the unassigned task

penalties. The start and end times of dummy shift types are set to limits which guarantee that
every task can be placed into a shift of the shift type, i.e. they only have one realisation and will
generally be longer than 24 hours.

For split partsi, we cannot account unassigned task penalties via dummy shift types since
lengths are not fixed. We will define one dummy shift per split task, meaning that logically
unassigned split parts of the same split taskP are placed in the same dummy shiftsdummy

P . To

avoid penalties on the shift level, these dummy shifts have a fixed shift typekdummy
0 of costs

c
kdummy
0

= 0. Penalties for unassigned split parts will thus be accounted separately.

A special break rule daybrddummy ∈ BRD is defined to cover all dummy shift types. All
dummy shifts are assigned to this break rule day:brd

sdummy
i

:= brddummy. Dummy shifts will

not be regarded parts of the shift setS because they require a dedicated handling.

5.6. Constraint Model

We now come to the description of details of the constraint model. After showing which domain
variables are used, we will describe the consistency tests which are used to propagate information
on tasks, shifts, qualifications and so on. The main novelty of the model lies in the temporal
propagation. In comparison to the model of Chapter 4, we not only have to incorporate shift types
and breaks, but we must also devise rules which cover regular work tasks as well as split parts.

5.6.1. Domains

We start by describing the domains used in the CP model. The possible start times of each task
i are maintained in a domainδstart

i which is represented by a rangeδstart
i = [αi, βi]. For work

tasksi ∈ I, the start time domain is naturally initialised to[ai, bi]. The initial time windows of
origin, destination and break tasks are initialised to the extent of the break rule day of the shift:

δstart
ios

= δstart
ids

= δstart
ieb
s

= δstart
imb
s

= δstart
ilbs

:= [stbrds , etbrds ]

The length of a split parti is the consequence of the values of two adjacent temporal variables
δstart
i andδstart

ssucci
of i and its split task successorssucci, respectively. To provide control over the

length of a split part, we introduce a split part length domainδsl
i . Again, possible lengths can be

represented as a range which is initialised to

δstart
ij := [0, lP ]

for each partij of a split taskP ∈ P. Note that several parts of a split task can be superposed,
representing only one effective split part. Only the last part of such a task chain will then have a
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Name Mathematical variable CP domain
start time Ti δstart

i

split task part length — δsl
i

running predecessor predi πi

running successor succi σi

shift assignment Si δshift
i

predecessor task predi δpred
i

inserted flag — δins
i

Table 5.2.: Overview of task-related variables in the CP model.

positive length. The last split partim of a split taskP will therefore always have a positive length,
and its length variable is initialised to

δstart
im := [mslP , lP ]

As an insertion-based model is used, we will keep track of current predecessors and successors
in a variableπi for each taski ∈ I∪Ib∪Id and the current successorσi for each taski ∈ I∪Ib∪Io.
πi andσi are not constraint variables in the proper sense as they contain single values which are
adapted with insertions (see also Section 4.5). With a given initial shift plan, the initialisation
of predecessor and successor variables is straightforward. For empty shifts, origin, break and
destination task build a chain of predecessor and successor tasks.

For each taski ∈ I ∪ Ib ∪ Io ∪ Id, the set of shifts to which it may be assigned is maintained
in a domainδshift

i . While for the starting solution the shift assignment is given, we will show in
Section 5.9.3 how the set of shifts is reinitialised within local search. Clearly, the shift domain is
fixed for origin, destination and break tasks.

Additionally to the shift assignment, we keep track of potential predecessor tasks in a domain
δpred
i . While the current predecessor taskπi denotes the unique current predecessor after all

insertions made so far, the predecessor variableδpred
i specifies all tasks after whichi may be

inserted in a shift (ifi is not yet inserted) or all tasks which may still be inserted in front ofi (if i
was already inserted). The predecessor domains will be reinitialised for each local step.

The boolean domainδins
i will indicate if i is inserted into a shift. Origin, destination and

break tasks are always inserted (δins
i := {true}) while domains of work tasks are initialised to

δins
i := {false, true} when their assignment is relaxed in a local step.
All task-related domains with their equivalents in the mathematical model are given in Ta-

ble 5.2.
Turning to shift-related domains,δK

s will specify the shift types which may be attributed to a
shift s; note that the day is fixed for each shift template. Initially, all potential shift types ofbrds

are part of the shift type domain:
δK
s := Kbrds

The shift type of dummy shiftssdummy
i is always fixed to the dummy shift type which corresponds

to i’s length:
δK
sdummy
i

:= {kdummy
li

}

Since shift costs only arise for shifts containing work tasksi ∈ I, we keep track of used
shift templatess via boolean domainsδused

s . As shift templates are initially empty, we initialise
δused
s := {false, true}. As soon as a work taski ∈ I is inserted into the shift, the value false will

be removed from the domain.
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Name Mathematical variable CP domain
shift type Ks δK

s

shift used flag — δused
s

qualifications Qs δQ
s

qualification penalty qp(Qs)−1 δqp
s

Table 5.3.: Overview of shift-related variables in the CP model.

a. Non-split task

b. Split task

c. Travel time

Figure 5.6.: Temporal propagation for split and non-split tasks and for travel times.

The qualification domainδQ
s describes the set of qualification requirements for each shifts ∈ S.

Since CP domains shrink monotonically and qualification requirements augment with each task
insertion,δQ

s will represent the inverse of the qualification requirements, i.e.Q \Qs. Since empty
shifts do not have qualification requirements,δQ

s is initialised to the setQ of all qualifications.
A further domainδqp

s is introduced for the calculation of qualification penalties according to
objective function term (5.2). The domain is represented as a range between the actual penalty
(qp(Qs)−1) and the maximum valueqp−1

min with qpmin defined as in Section 5.3. Becauseqp(∅) =
1, we initialiseδqp

s to
δqp
s = [1, qp−1

min]

for empty shifts. Additionally to calculating actual qualification penalties,δqp
s will be used to

cause a search failure when a task insertion results incompatible qualifications in a shift. The
decision is then automatically revised (cf. Section 5.6.3).

All shift-related domains are summarised in Table 5.3.

5.6.2. Shift Temporal Constraints

Predecessor and successor relationships define temporal relations between subsequent tasks in
shifts. We will now define rules for updating start time windows upon changes of the temporal
information of other tasks. We will use push-forward/push-backward propagation rules which
allow for the update of time windows by a linear forward pass for earliest start times and a linear
backward pass for latest start times. Checks for possible insertion positions can then be done in
constant time, see also Section 3.3.1.

Due to split parts, the temporal propagation will be more complicated than in the CP model for
the workload levelling problem. According to Fig. 5.6, the following cases must be distinguished:

• The time window of a non-split taski is updated; such an update is typically due to a task
insertion (orange task in Fig. 5.6a). We must propagate this information forward to the
successor taskσi and backward to the predecessor taskπi in the shift.
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• The time window of a split parti is restricted (Fig. 5.6b). Note that the time windowδstart
i

of a split part denotes the start time window of one task (orange task in lower shift) as well as
the end time of its split part predecessorspredi (orange task in upper shift). Consequently,
we must propagate the temporal update backward to the predecessorπi of taski and forward
to the successorσspredi

of its split part predecessorspredi. A further constraint between
the start and end time windows of a split part will guarantee that minimum split part lengths
are observed (see below).

• Upon each travel time change, this means that the minimum distance between two subse-
quent task may have increased (Fig. 5.6c). This must be propagated forward from the first
to the second task and backward from the second to the first. Since breaks take place at the
location of their predecessor work task, we must pay special attention to tasks after breaks
whose travel times can change when a task is inserted before the break.

We will define building blocks for start time propagation in these different cases. The forward
propagation ruleFWDPROP(i1, i2) describes the earliest start time propagation from a taski1
(non-split task or split part) to the earliest start time ofi2. Symmetrically,BWDPROP(i1, i2) will
propagate changes of the latest start time of taski2 to the latest end time of taski1 (again,i1 may
be split part or not).

As mentioned before, we must be careful with the interaction of breaks and travel times. If
the direct predecessor of a break task is another break task, the determination of travel times can
mean a recourse to a work task over several breaks. When a task is inserted into a shift, not only
its own travel time is changed, but also the travel time of the first successor task which is not a
break. For travel time propagation, we define a first work task predecessorwpred(i) and a first
work task successorwsucc(i) as

wpred(i) :=
{

πi if πi ∈ I ∪ Io

wpred(πi) if πi ∈ Ib

wsucc(i) :=
{

σi if �i∈ I ∪ Id

wsucc(σi) if �i∈ Ib

Furthermore, we have to take into account that the minimum distance between subsequent
tasksi1 andi2 can be relaxed by an overlap which is limited bymin(olmax

i1
, olmax

i2
). The forward

propagationFWDPROP(i1, i2) for tasksi1 ∈ I ∪ Ib ∪ Io andi2 ∈ I ∪ Ib ∪ Id is thus given by

FWDPROP(i1, i2) : Pi1 = NIL ∨ Pi2 = NIL ∨ Pi1 6= Pi2 =⇒[
t := αi1 + li1 + dwpred(i2),i2 −min(olmax

i1
, olmax

i2
) > αi2 =⇒ αi2 := t if Pi1 = NIL

t := αssucci1
+ dwpred(i2),i2 −min(olmax

i1
, olmax

i2
) > αi2 =⇒ αi2 := t if Pi1 6= NIL

]
The backward propagationBWDPROP(i1, i2) of latest end times is defined symmetrically:

BWDPROP(i1, i2) : Pi1 = NIL ∨ Pi2 = NIL ∨ Pi1 6= Pi2 =⇒[
t := βi2 − dwpred(i2),i2 − li1 + min(olmax

i1
, olmax

i2
) < βi1 =⇒ βi1 := t if Pi1 = NIL

t := βi2 − dwpred(i2),i2 + min(olmax
i1

, olmax
i2

) < βssucci1
=⇒ βssucci1

:= t if Pi1 6= NIL

]
Some comments are in place to understand these building blocks. As a first observation, both

FWDPROP(i1, i2) andBWDPROP(i1, i2) will entail updates only if not bothi1 andi2 are split
parts of the same split taskPi1 = Pi2 . Otherwise,i1 andi2 are subsequent split parts of the same
split task, and other consistency tests will apply.

The propagation rules describe how temporal information is transferred between the end ofi1
and the start ofi2. While the time windowδstart

i2
always describes the domain of start times for

91



5. An Improvement Algorithm for Complex Shift Planning

i2, we have to make a distinction for the determination ofi1’s end time. Ifi1 is a non-split task
(Pi = NIL), the range of end times can be calculated by adding the lengthli1 to the start time
window δstart

i1
= [αi1 , βi1 ]. If howeveri1 is a split part (Pi1 6= NIL), the range of end times is

retrieved fromδstart
ssucci1

.
Note also that a travel timedwpred(i2),i2 is used in the propagation rules. Effectively,i1 may be

a break task, meaning that it inherits the location of the first work task predecessor. Ifi2 is a break
task,dwpred(i2),i2 is 0 by definition.

We can now come to the description of consistency tests for the different settings of Fig. 5.6.

Non-split task temporal relation For each non-split taski ∈ I ∪ Ib ∪ Io ∪ Id (Pi = NIL),
start times are updated as follows:

i /∈ Io, πi 6= NIL =⇒ BWDPROP(πi, i)
i /∈ Id, σi 6= NIL =⇒ FWDPROP(i, σi)

This consistency test will be performed each time the start time domainδstart
i , the prede-

cessorπi or the successorσi change. For eachi, the time complexity is inO(1).

Split part temporal relation For each split parti ∈ I (Pi 6= NIL), start times are adapted by

πi 6= NIL =⇒ BWDPROP(πi, i)
spredi 6= NIL, σspredi

6= NIL =⇒ FWDPROP(spredi, σspredi
)

Latest start time are propagated backward as for non-split tasks. Forward propagation how-
ever affects the split part predecessor and its shift successor ifi is not the first part of its split
task. The rule triggers upon reductions ofδstart

i as well as on changes ofi’s predecessorπi

andspredi’s successorσspredi
, executing inO(1) runtime for eachi.

When a taski is inserted, the temporal information betweeni and its predecessor and successor
is already completely propagated by the consistency tests described before. If breaks are involved,
we additionally need the following update rule.

Travel time propagation For each break taskib ∈ Ib, surrounding start times are adapted by

πib 6= NIL =⇒
{

FWDPROP(wpred(ib), wsucc(ib))
BWDPROP(wpred(ib), wsucc(ib))

This test clearly triggers on changes ofπib . As for the tests above, the time complexity is
in O(1).

The temporal propagation rules described so far reflect the shift temporal constraints (5.8).

5.6.3. Shift Constraints

In the course of reoptimisation, task insertions will entail restrictions of the temporal domains
δstart
ios

andδstart
ids

of origin and destination tasks, respectively. Clearly, this also restricts the set of

valid shift types which is maintained in domainsδK
s . Vice versa, earliest and latest start times of

origin and destination tasks can be updated using the set of valid shift types.
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Shift types For a shifts ∈ S, the setδK
s of valid shift types and the shift boundaries given by

δstart
ios

andδstart
ids

will be updated as follows:

Kvalid
s := {k ∈ δK

s |αios ≤ stkns ≤ βios ∧ αids
≤ etkns ≤ βids

} =⇒

δK
s := Kvalid

s

min
k∈Kvalid

s

stkns > αios =⇒ αios := min
k∈Kvalid

s

stkns

max
k∈Kvalid

s

stkns < βios =⇒ βios := max
k∈Kvalid

s

stkns

min
k∈Kvalid

s

etkns > αids
=⇒ αids

:= min
k∈Kvalid

s

etkns

max
k∈Kvalid

s

etkns < βids
=⇒ βids

:= max
k∈Kvalid

s

etkns


The test is triggered upon changes ofδK

s , δstart
ios

, δstart
ids

. Its complexity is inO(|K|).

Because shift templates do not have fixed shift types, the start time domainsδstart
ib

of break
tasksib ∈ Ib were initialised to rather unspecific values (cf. Section 5.6.1). In the course of
the algorithm, break start time windows will be adapted with further information on valid shift
types becoming available. In the opposite direction, task insertions around breaks generally cause
changes to their start time domains which can also affect valid shift types. As break rules define
break windows with reference to the shift start, the following break window constraints involve
the start time variables of origin and break tasks.

Break windows Let s ∈ S be a shift of break rule daybrds. For each break rulebr ∈ BRbrds ,
the following updates are applied to the start time windows of the origin taskios and the
break taskib corresponding tobr, using the break time window[abr, bbr] given bybr relative
to the shift start:

αios + abr > αib =⇒ αib := αios + abr

βios + bbr < βib =⇒ βib := βios + bbr

αib − bbr > αios =⇒ αios := αib − bbr

βib − abr < βios =⇒ βios := βib − abr

The update triggers on changes ofδstart
ios

andδstart
ib

, usually caused by some task insertion.
The test runs in constant time for each break.

Furthermore, minimum buffer times may be defined between early and main or main and late
break. These can be formulated as consistency tests between the start time domains of the involved
break tasks. The main difference between break window and break buffer constraints is that the
former limits minimum and maximum distances while the latter only defines minimum buffer
times.

Break buffers Let s ∈ S be a shift with early, main and late break, i.e.

BRbrds = {breb
s , brmb

s , brlb
s }

and letbbeb
br andbblb

br be the early and late break buffer times defined by the main break rule
br := brmb

s . Then the following reduction rules apply to the start time domainsδstart
ieb
s

=
[αieb

s
, βieb

s
], δstart

imb
s

= [αimb
s

, βimb
s

] andδstart
ilbs

= [αilbs
, βilbs

] of the break tasks:

αieb
s

+ lieb
s

+ bbeb
br > αimb

s
=⇒ αimb

s
:= αieb

s
+ lieb

s
+ bbeb

br

βimb
s
− bbeb

br − lieb
s

< βieb
s

=⇒ βieb
s

:= βimb
s
− bbeb

br − lieb
s

αimb
s

+ limb
s

+ bblb
br > αilbs

=⇒ αilbs
:= αimb

s
+ limb

s
+ bblb

br

βilbs
− bblb

br − limb
s

< βimb
s

=⇒ βimb
s

:= βilbs
− bblb

br − limb
s
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If we only have an earlyor a late break, only one pair of reduction rules is used. The test is
triggered upon changes of the involved start time domains and entails anO(1) runtime for
each shift.

This consistency test implements the break buffer constraints (5.12) of the mathematical model.
As described above, the qualification penalties are calculated via domainsδqp

s . This variable
will be updated upon each change of the inverse qualification profileδqp

s for each shifts.

Qualification combinations Let s ∈ S be a shift andqpmin as defined in Section 5.3. The
qualification penalty domainδqp

s is recalculated fromδQ
s as follows:

δqp
s :=

{
δqp
s \]−∞, qp(Q \ δQ

s )−1[ if qp(Q \ δQ
s ) > 0 and|Q \ δQ

s | ≤ qmax

δqp
s \]−∞, qp−1

min + 1[ else

With an appropriate representation of qualification sets, the test executes in constant run-
time.

The rule basically calculates qualification penalties as defined by the objective function term
(5.2). If the shift’s qualification profileQ \ δQ

s contains incompatible qualifications (i.e.qp(Q \
δQ
s ) = 0) or if the size of the qualification profile exceeds the limitqmax, the new minimum ofδqp

s

is set toqp−1
min + 1. Because the maximum of the qualification penalty domainδqp

s was initialised
to qp−1

min (cf. Section 5.6.1),δqp
s will then become empty. Consequently, if a task insertion entails

combining incompatible qualifications or exceeding the limit for the qualification profile size, the
state of the constraint model becomes invalid. In constraint programming, invalid assignments are
discarded and entail backtracking, i.e. the insertion decision causing failure will be revised. The
consistency test thus additionally assures that constraints (5.22) and (5.23) are observed.

Note that the propagation of incompatible qualifications and maximal qualification profile sizes
could be stronger by adapting shift domains of uninserted tasks. However, this would mean
costly checks of potential qualification profiles. Furthermore, consistency tests triggering on many
events would have to be used. Because in practice, incompatible qualifications and qualification
profile sizes are not very limiting, it was decided to use less costly a-posteriori checks as described
above.

5.6.4. Crew Constraints

Additionally to the horizontal relations between subsequent tasks in shifts, crews define vertical
dependencies between tasks in different shifts. These can be efficiently represented if crew tasks
are sorted by length, cf. Section 4.3. Additionally to crew tasks, the breaks of a shift crew must be
placed in parallel. In fact, temporal restrictions on crew tasks and breaks are equivalent if breaks
have equal lengths and earliest start times, cf. to constraints (5.9) and (5.18) in the mathematical
model. But since the shifts of a shift crew have equal shift types, their break rules will be identical.
This means that their lengths are in fact equal. Furthermore, since break start times were initialised
using break rule days (cf. Section 5.6.1), their initial start times also correspond. We can thus use
the same consistency test for the implementation of constraints (5.9) and (5.18).

Crew temporal relation Let

C = (i1, . . . , im) ∈ C ∪
⋃

{s1,...,sn}∈H

{
(iebs1

, . . . , iebsn
), (imb

s1
, . . . , imb

sn
), (ilbs1

, . . . , ilbsn
)
}

be a tuple of crew tasks or break tasks of crew shift, and letij , ij+1 ∈ C be adjacent tasks in
the sorting ofC by decreasing lengths (lij ≥ lij+1). Then the following domain reduction
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rules apply for1 ≤ j < n:

αij + (aij+1 − aij ) > αij+1 =⇒
αij+1 := αij + (aij+1 − aij )

βij+1 − (aij+1 − aij ) < βij =⇒
βij := βij+1 − (aij+1 − aij )

αij − (lij+1 − lij ) + (aij+1 − aij ) > αij+1 =⇒
αij+1 := αij − (lij+1 − lij ) + (aij+1 − aij )

βij+1 + (lij+1 − lij )− (aij+1 − aij ) < βij =⇒
βij := βij+1 + (lij+1 − lij )− (aij+1 − aij )

If a shift crew does not contain a full set of early, main and late breaks, the update is only
performed for the breaks which are defined by the break rules. The test is performed upon
each change of the involved variablesδstart

ij
andδstart

ij+1
and hasO(1) time complexity for

each pair(j, j + 1).

Additionally to the temporal constraints, there are further restrictions on crew tasks. The fol-
lowing test implements the above constraint (5.15).

Different shifts The tasks of each crewC ∈ C must be placed in different shifts. This is
enforced by analldifferent({δshift

i | i ∈ C}) global constraint of complexityO(|C|2|S|2)
for a whole branch of the search [Régin, 1994] [Ŕegin, 2000].

Furthermore, all tasks of a subcrewB ∈ B must be assigned to the same shift crewH ∈ H
(constraint 5.16). This is assured by the following consistency test:

Subcrew attribution Let B ∈ B be a subcrew and

S(B) := {s ∈ S | ∃i ∈ B : δshift
i = {s}}

the set of regular shifts to which tasks ofB are already assigned. Ifs′ ∈ S(B) 6= ∅, we can
enforce the assignment of all tasksi ∈ B to the same shift crew by

|δshift
i | > 1 =⇒ δshift

i := δshift
i ∩Hs′

It should be noted that the setS(B) will not include dummy shiftssdummy
i . Because the

consistency test is performed each time the shift domain of a subcrew task is bound to a
value, the setS(B) will only contain shifts of the same shift crew. We can therefore use an
arbitrary shifts′ to determine this shift crewHs′ and prevent all other tasks of the subcrew
to be assigned to shifts which are not part ofHs′ .

With an appropriate implementation of set operations, the test consumes(|B|) runtime for
each subcrewB ∈ B.

By definition, all shifts of a shift crew have identical break rule days. But we must also ensure
that all crew shifts finally have same shift types (constraint (5.17)). We may update all shift type
domains each time one of them changes, but this would amount to costly set operations. Instead,
we note that a shift typek ∈ K can be uniquely determined from given start and end times
st = stkn andet = etkn for a fixed dayn and its set of break rules. Since the set of break rules
of a shift templates follows from its break rule daybrds, we can achieve full consistency of shift
types by synchronisation of the start time domainsδstart

ios
andδstart

ids
.
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Shift start times For each shift crewH ∈ H, the start time domainδstart
ios

for eachs ∈ H are
updated as follows:

max
s′∈H

αio
s′

> αios =⇒ αios := max
s′∈H

αio
s′

min
s′∈H

βio
s′

< βios =⇒ βios := min
s′∈H

βio
s′

The test triggers on changes ofδstart
ios

.

Shift end times For a shift crewH ∈ H and each shifts ∈ H, we update the temporal domains
of the destination tasksids as follows:

max
s′∈H

αid
s′

> αids
=⇒ αids

:= max
s′∈H

αid
s′

min
s′∈H

βid
s′

< βids
=⇒ βids

:= min
s′∈H

βid
s′

The rule triggers on changes of theδstart
ids

. Both tests haveO(|H|) runtime complexity.

In conjunction with the shift type consistency test described above, these tests ensure that the
domainsδK

s of all shifts inH correspond.
For shift cost accounting, shift templates are marked as used via a domainδused

s as soon as a
task is inserted. In crew handling, we must consider that a shift crew can only be used as a unit.
We will therefore mark all crew shifts as used as soon as a task is inserted into one of them.

Shift crew accounting Let H ∈ H be a shift crew. The following update rule is used to
account for full shift crews:

∃s ∈ H : δused
s = {true} =⇒ deltaused

s′ := {true} ∀s′ ∈ H

This update is executed each time one of the flag variablesδused
s is set to{true}, consuming

O(|H|) runtime.

5.6.5. Split Task Constraints

Split parts require special attention since their lengths are variable. Several split parts can be
placed one behind the other in a shift, representing only one effective split part. If we do not
impose further restrictions on the successive placement, several states of the model will represent
the same logical situation since redundant split parts can be piled up in different ways. Such
symmetries should be avoided since they inflate the search space.

We will therefore restrict the succession of split parts to the end of a split taskP = (i1, . . . , im),
i.e. if two partsij and ij+1 are direct successors in a shift and no further task will be placed
between them, we enforce that all tasksij′ with j′ > i succeed. Vice versa, if two parts cannot
be placed one behind the other, none of the tasksij′ with j′ < i will be placed as successors in
shifts.

Shift succession of split parts interacts with their lengths: If we know that two parts are placed
one behind the other, the first part is restricted to a length of0. If the tasks cannot succeed, the
minimum split lengthmslP has to be obeyed. These two aspects are represented by the following
consistency test, triggering on changes of the predecessor domainδpred

i :
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Split part succession Let P = {i1, . . . , im} a split task andi ∈ P , i 6= i1, one of its split
parts. The following update rules apply:

δpred
i = {spredi} =⇒[
ssucci 6= ipseudo

P ⇒ δpred
ssucci := {i}

δsl
spredi

:= δsl
spredi

\]0,∞[

]
spredi /∈ δpred

i =⇒[
spredspredi

6= NIL⇒ δpred
spredi

:= δpred
spredi

\ {spredspredi
}

δsl
spredi

:= δsl
spredi

\]−∞,mslP [

]

The test is executed upon changes ofδpred
i and has constant runtime.

If the predecessor domainsδpred
spredi

or δpred
ssucci are updated by the split part succession rule, this

will cause the execution of the same consistency test forspredi or ssucci, respectively. Therefore,
decisions for shift successions are propagated backward while decisions for different shifts will
be propagated toward the end of a split task.

Symmetrically to the split part succession rule, a further test is devised which triggers on
changes of the length domainδsl

i : If the minimum in this domain is greater than0, we know
that we cannot superposei with its split successorssucci in the same shift. Vice versa, if the
maximum length falls belowmslPi , ssucci must be placed behindi.

Split part length Let P = {i1, . . . , im} ∈ P be a split task andi ∈ P , i 6= im, one of its split
parts. Using the valuesδsl

i = [slmin
i , slmax

i } of i’s length domain, the following updates
are performed:

slmin
i > 0 =⇒ δpred

ssucci := δpred
ssucci \ {i}

slmax
i < mslP =⇒ δpred

ssucci := {i}

The test is triggered upon changes ofδsl
i and hasO(1) runtime.

The split part length is synchronised with the temporal domains:

Split part length synchronisation For a split parti ∈ I, the following reduction rules syn-
chronise the split part lengthδsl

i = [slmin
i , slmax

i ] with the temporal domainsδstart
i and

δstart
ssucci

of i and its split part successorssucci:

αi + slmin
i > αssucci =⇒ αssucci := αi + slmin

i

βi + slmax
i < βssucci =⇒ βssucci := βi + slmax

i

αssucci − slmax
i > αi =⇒ αi := αssucci − slmax

i

βssucci − slmin
i < βi =⇒ βi := βssucci − slmin

i

αssucci − βi > slmin
i =⇒ slmin

i := αssucci − βi

βssucci − αi < slmax
i =⇒ slmax

i := βssucci − αi

The consistency test triggers changes ofδstart
i , δstart

ssucci
andδsl

i and hasO(1) complexity.

The combination of the split part succession test and the length synchronisation rule guarantees
that minimum lengths according to constraint (5.20) are observed.

Additionally to synchronising split part lengths, we must guarantee that the lengths of all split
parts sum up to the total lengthlP of the split taskP = (i1, . . . , im). This is realised by a temporal
constraint between the start time domains of the first and the pseudo split part:
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Split task length Let P = (i1, . . . , im) ∈ P be a split task,i1 its first split part andipseudo
P the

delimiting pseudo split part. The following test expresses thatP must observe a total length
of lP :

αi1 + lP > α
ipseudo
P

=⇒ α
ipseudo
P

:= αi1 + lP

βi1 + lP < β
ipseudo
P

=⇒ β
ipseudo
P

:= βi1 + lP

α
ipseudo
P

− lP > αi1 =⇒ αi1 := α
ipseudo
P

− lP

β
ipseudo
P

− lP < βi1 =⇒ βi1 := β
ipseudo
P

− lP

The test triggers on changes ofδstart
i1

andδstart
ipseudo
P

and hasO(1) runtime complexity.

5.6.6. Insertion Position Constraints

Within large neighbourhood search, we will repeatedly relax the insertion decisions for a set
Irel ⊆ I of tasks. For eachi ∈ Irel, the possible insertion positionsΦ(i) will be determined. Let
Φ :=

⋃
i∈Irel Φ(i) be the set of all insertion positions for the relaxed tasks. The complexity of the

following consistency tests will be given with reference to the figures|Irel| and|Φ|. Section 5.9.3
will show how the setsΦ(i) are determined.

In the constraint model, insertion positions are maintained on the task level (δpred
i ) and as

shifts (δshift
i ). Different constraints apply to the two levels both of which are coordinated by the

following rule.

Shift-predecessor consistency For each taski ∈ I, the predecessor and shift domainsδpred
i

andδshift
i are synchronised as follows:

δpred
i := δpred

i \ {j ∈ δpred
i | δshift

j = {s} ∧ s /∈ δshift
i }

δshift
i := {s ∈ δshift

i | ∃j ∈ δpred
i : δins

j = {true} ∧ δshift
j = {s}}

From δpred
i , we remove all inserted tasks which are assigned to shifts which are not valid

for i. Furthermore, a shift inδshift
i cannot be used to coveri if there is none of its tasks

is part ofδpred
i . Note that the rule could be made somewhat stronger by deleting inserted

predecessorsj with δshift
i ∩ δshift

j = ∅, but this would involve more costly set operations.

With careful implementation, the test hasO(|Φ|) time complexity.

A central part of the propagation logic is the decision to insert a task into a shift. The shift
attributionδshift

i of a taski does not uniquely determine its position in the shift. We must therefore
resolve the succession relationship via the predecessor domainδpred

i . The set of predecessors
contains tasks which are already inserted as well as uninserted tasks. The exact insertion position
of i is uniquely determined whenδpred

i contains only one inserted task.

Task insertion Let i ∈ I be a work task and

Ψins(i) := {i′ ∈ δpred
i | δins

i′ = {true}}

the set of inserted possible predecessors ofi. For the insertion ofi into a shift, we perform
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the following update:

δins
i 6= {true} ∧Ψins(i) = {ipred} ∧ isucc := σipred ∧ δshift

ipred = {s} =⇒

δpred
isucc := δpred

isucc \ {i′ ∈ δpred
isucc | i′ 6= i ∧ δins

i′ = {true}}
δpred
i := δpred

i \ {i′ ∈ δpred
i | i′ 6= ipred ∧ δins

i′ = {true}}
δpred
i′ := δpred

i′ \ {i} ∀i′ ∈ I ∪ Ib ∪ Io ∪ Id, i′ 6= isucc, δins
i′ = {true}, |δpred

i′ | > 1
πi := ipred, σi := isucc, πisucc := i, σipred := i

δshift
i := {s}

δins
i := δins

i \ {false}
δused
s := δused

s \ {false}
δQ
s := δQ

s \Qi


The test is triggers upon each a change ofδpred

i . The cost of the update is inO(|Irel| +
|Φ|+ |Q|).

The setΨins(i) of inserted predecessors ofi will generally contain at least one task because
otherwise,δpred

i would only contain tasks which are not inserted. But we cannot expect thati can
be inserted after the insertion of one of its predecessors, sayi′, since then,δpred

i would have to
contain at least one of the inserted predecessors ofi′. ConsequentlyΨins(i) = ∅ means that we
cannot inserti at all.

The insertion rule performs a number of updates. It sets predecessor domains, adapts running
predecessors and successors, sets the shift and inserted domains of the task as well as the shift’s
“used” domain and updates the qualification domain. Note thatδQ

s contains the inverse of a shift’s
actual qualification profile, i.e. all qualifications which arenot required by the shift.

In order to exclude all other insertion positions, the test traverses all inserted tasks with unbound
predecessor variables which are not equal to the actual successorisucc. To make this update more
efficient, the set{i′ ∈ I ∪ Ib ∪ Io ∪ Id | |δpred

i′ | > 1} can be maintained in a global constraint

variable. Each time the predecessor domainδpred
i′ of a taski′ becomes bound to a value, the global

domain will be updated by a simple consistency test.
Some comments on the constraint model are in place. First of all, the model uses an insertion-

based logic, i.e. tasks are inserted one by one into an emerging shift plan. The current state of the
insertions is maintained in the current predecessor and successor variablesπi andσi. The insertion
test described before is responsible for setting these variables, triggering the temporal propagation
within shifts. The efficient propagation of time windows by forward/backward passes is a main
advantage of the model. Note that while the predecessor/successor variables are not constraint
variables in the proper sense, they preserve monotonicity of temporal propagation. Because the
triangle inequality is obeyed, the length and travel time of a newly inserted task sums up to a
duration which is at least as long as the temporal distances accounted before insertion.

Possible insertion positions for tasks are maintained in predecessor and shift domains. In con-
trast to the model for the workload levelling problem, there are no intermediate checks for tempo-
ral validity of insertion positions. Instead, the search strategy will evaluate which of the insertion
positions are valid with regard to temporal and other constraints (like compatibility of qualifica-
tions). This lower degree of consistency was accepted because refined models require more costly
consistency tests triggering on many events. Preliminary tests showed that this does not generally
pay off for the shift planning problem.

An explanation can be found by an analysis of possible effects of predecessor domain reduc-
tions. The best we can expect from a deletion of insertion positions is the insertion of further tasks.
But this will only happen if a single inserted task remains in a predecessor domain. However, a
task can generally be inserted in many places, including at least one empty shift template. As a
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consequence, we cannot expect substantial effects from additional consistency tests, and runtime
seems to be better invested in the additional cost of a systematic search space exploration.

5.6.7. Avoiding Symmetry

Especially when planning scenarios comprise crews, there are often several tasks of identical
characteristics. Every permutation of these tasks then results in an isomorphic solution. Such
symmetries should be avoided to prevent the search from evaluating equivalent solutions (see also
Section 4.5). These symmetries do not affect split parts which are variable in length. We therefore
build groups of non-split tasks having identical

• time windows,

• lengths,

• task crews and subcrews (or are non-crew tasks),

• locations (i.e. travel times to surrounding tasks),

• maximum overlaps and

• qualification profiles.

It should be clear that all tasks of each such group are isomorphic. Partial orders are then
imposed on the tasks of each group and all shifts. By a special consistency test, the tasks of
a group are restricted to be assigned to shifts in increasing order, resolving the aforementioned
symmetry.

5.6.8. Objective Function Calculation

We can now specify how the objective function value can be calculated from the constraint model.
A given state (schedule)Σ of the model will represent a complete solution if

• All tasks are assigned to shifts (possibly dummy shifts), i.e. the domainsδshift
i are bound

to single values for alli ∈ I.

• The shift types of all used shifts are fixed, i.e.

δused
s = {true} ⇒ |δK

s | = 1

While in simple cases, we can always fix the shift type domains to the cheapest valid shift
type, shift number constraints entail interdependencies, requiring an adequate search pro-
cedure for the determination of an overall best solution.

• The lengths of split parts which are assigned to their dummy shift are fixed, i.e. their length
domainδsl

i is bound. Again, there are interdependencies between decisions for different
tasks, and an easy fixing to the shortest possible lengths (avoiding penalties for unassigned
task minutes) is not possible.

Note that the specification of a full solution does not require the fixing of start time variables
δstart
i , meaning that a search algorithm will only have to fix the above domains.
The objective valuez of a complete scheduleΣ will be the sum of five components:

z(Σ) := zSC(Σ) + zUT (Σ) + zQP (Σ) + zQR(Σ) + zSNR(Σ)
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5.6. Constraint Model

zSC is the shift cost component. Since in the CP model, we use possibly empty shift templates,
only used shifts are considered, i.e. shifts for whichδused

s = {true}. In partial solutions, we can
determine minimum shift costs using information on valid shift types:

zSC(Σ) :=
∑
s∈S

δused
s ={true}

min
k∈δK

s

ck

Via costs of dummy shift types,zSC(Σ) already contains unassigned task penalties for non-
split tasks (cf. Section 5.5). Meanwhile, unassigned split parts must be penalised separately.
Their lengths are retrieved from the domainsδsl

i which is bound in a complete solution. Ifslmin
i

is the minimum length (complete solution: effective length) of a split parti (minimum value of
δsl
i ), the unassigned split part penaltyzUT (Σ) of a scheduleΣ is

zUT (Σ) := MUT ·
∑

i∈I:Pi 6=NIL
δshift
i ={sdummy

Pi
}

slmin
i

Penalties for qualification combinations are summed up byzQR(Σ). As described above, the
individual penalties for the shifts are maintained in domainsδqp

s . Since empty shift templates
account for penalties of1, a correction term is used. We furthermore normalise qualification
penalties by the sum of used shifts and the minimum qualification preferenceqpmin, i.e.

zQP (Σ) := wQP qpmin

|{s ∈ S | δused
s = {true}}|

(∑
s∈S

qpmin
s − |{s ∈ S|δused

s = {true}}|

)

whereqpmin
s is the minimum value in the domainδqp

s .
The calculation of penalties for exceeding qualification restrictions is straightforward:

zQR(Σ) := MQR ·
∑

qr∈QR

max(|{s ∈ S | qqr /∈ δQ
s }| −mqr, 0)

In this term, only used shifts are considered because only thenQ \ δQ
s possibly contains a qualifi-

cationqqr.
Shift number restrictions impose constraints on the composition of a shift plan. Minimum

restrictions can always be observed by adding empty shifts to a solution. In the model, we can
simply add the cost

cK
min(r) := min

k∈Kr

ck

of the cheapest shift type in the reference setKr for each shortage. Meanwhile, maximum re-
strictions impose large penaltiesMSNR for each extra shift. All shift number restrictions can
therefore be represented as objective function components.

For penalty calculation, the actual numberACT (r) of shifts for a shift restrictionr is defined
as:

ACT (r) := |{s ∈ S | δused
s = {true}, ns ∈ Nr,∃k ∈ Kr : δK

s = {k}}|

Relative shift number restrictionsr ∈ Rmin
rel ∪Rmax

rel define minimum and maximum proportions
of shifts of types inKr relative to all shifts on the respective days. To calculate penalties for
shortage (minimum restrictions) and surplus shifts (maximum restrictions), we additionally need
the number of all reference shiftsREF (r) on the affected days:

REF (r) := |{s ∈ S | δused
s = {true}, ns ∈ Nr}|
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5. An Improvement Algorithm for Complex Shift Planning

When a shift plan is filled up in order to observe a relative minimum restrictionr ∈ Rmin
rel , we

must consider that each additional shift also changesREF (r). The numberρ of additional shifts
to be created should be chosen to obey

ACT (r) + ρ ≥ pr(REF (r) + ρ)

=⇒ ρ ≥ pr·REF (r)−ACT (r)
1−pr

(5.26)

The minimum numberρ of additional shifts is thus

ρ :=
⌈

pr ·REF (r)−ACT (r)
1− pr

⌉
With these considerations, the shift restriction penalty termzSNR(Σ) can be calculated as

zSNR(Σ) := MSNR
∑

r∈Rmax
abs

max(ACT (r)−mr, 0) + (5.27)

cK
min(r)

∑
r∈Rmin

abs

max(mr −ACT (r), 0) + (5.28)

MSNR
∑

r∈Rmax
rel

max(ACT (r)− (pr ·REF (r)), 0) + (5.29)

cmin
k (r)

∑
r∈Rmin

rel

max
(⌈

pr ·REF (r)−ACT (r)
1− pr

⌉
, 0
)

(5.30)

A drawback of this term is that it can only be calculated for complete solutions. Only then
all shift types are fixed and numbers of actual and reference shifts for relative restrictions are
known. Clearly, we should also have guidance for the search when a solution is not complete.
The following section describes how this can be achieved.

5.7. Lower Bounding

The existence of good lower bounds, i.e. lower estimations on the final objective function value
of a partial solution, is crucial for the performance of branch-and-bound algorithms. In addition
to pruning large parts of the search tree, lower bounds can be used to guide the search, indicating
which branches are promising and should be followed.

Some of the above terms for the evaluation of the objective function value already try to antici-
pate costs. The shift cost termzSC already considers cheapest valid shift types, and the unassigned
task penaltyzUT takes minimum task lengths into account. On the other hand, the termzSNR for
shift number restrictions is rather weak because it can only be evaluated for a complete solution.
However, it will be essential to take promising decisions in early stages of the search if it is meant
to find a shift mix observing all restrictions. This requires good measures for penalties arising
in complete solutions. Additionally, it will be shown that information on uninserted tasks can be
used to anticipate further shift costs.

5.7.1. Task Look-Ahead

Imagine a taski which is not yet inserted but can be attributed to shifts which are not used so far,
i.e. δused

s = {false, true} ∀s ∈ δshift
i . Theni will cause additional shift costs upon insertion. In

the local steps of large neighbourhood search, tasks will be forbidden to be inserted into dummy
shifts in order to reduce the number of unassigned tasks. We can therefore infer additional costs
for uninserted tasks by the set of regular shift types. Clearly, it must be considered that two
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5.7. Lower Bounding

such tasks may be covered by the same shift. The resulting interdependencies will be implicitly
represented by the following approach.

Imagine that the cost of a shift type is distributed over its length, resulting in minutewise costs
for the shift type. Different shift types can cause different costs for covering the same minute. We
can define minimum minutewise costsmc(t) for a time periodt as

mc(t) := min
k∈K,n∈Nk

stkn≤t<etkn

ck

etkn − stkn

If i is a non-split task, its insertion will entail costs of at least

min
t∈δstart

i

t′<t+li∑
t′=t

mc(t′)

Covering a split parti by an empty shift results in costs of at least

min
t∈δstart

i

t′<t+mslPi∑
t′=t

mc(t′)

These costs can be added to the shift costs for eachi fulfilling the above conditions, resulting
in a stronger lower bound.

5.7.2. Maximum Restrictions

For absolute maximum restrictions, the calculation of lower bounds is easy.ACT lb(r) :=
ACT (r) is effectively a lower bound on the number of actual shifts in a complete solution. The
term

MSNR
∑

r∈Rmax
abs

max(ACT lb(r)−mr, 0) (5.31)

is thus a lower bound on the penalties for absolute maximum restrictions. Note that the bound
could be refined by using an actual numberACT ′(r) := |{s ∈ S | δused

s = {true} ∧ δK
s ⊆

Kr}|. ACT ′(r) is however more costly to evaluate, and we will content ourselves with the above
expression (5.31).

For relative maximum restrictions, we additionally need an upper boundREF ub(r) on the
number of reference shifts. We will first include all used shifts on daysNr. In a partial solution,
some tasks may not yet be assigned to shifts and will be covered by still empty shift templates.
We will assume that each of these tasks will be covered by one shift. For a given restriction
r ∈ Rmax

rel , it suffices to consider tasks which can be covered by shifts starting on one of the days
Nr. Because a shift cannot cover more than 24 hours, we define the setISNR(r) of relevant tasks
for r as

I(r) := {i ∈ I | (Pi = NIL ∧ t1 + dio,i ≤ bi ∧ ai + li + di,id ≤ t2)∨
(Pi 6= NIL ∧ t1 + dio,i ≤ bi ∧ assucci + di,id ≤ t2)}

where[t1, t2] is the time range of the set
⋃

n∈Nr
{n, n + 1} of days anddio,i anddi,id are depot

travel times. The numberNT (r) of not inserted tasks on the days affected byr is then

NT (r) :=
∣∣{i ∈ I(r) | δins

i 6= {true}
}∣∣ (5.32)

and
REF ub(r) := |{s ∈ S | δused

s = {true}, ns ∈ Nr}|+ NT (r)
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5. An Improvement Algorithm for Complex Shift Planning

gives an upper bound on the number of reference shifts.REF ub(r) decreases monotonically
because each time one of the tasks is inserted, one task less is accounted, but there is at most
one additional used shift on the affected days. Because all tasks are assigned in a complete
solution,REF ub(r) converges toREF (r). A lower bound on the penalties for relative maximum
restrictions is thus given by

MSNR
∑

r∈Rmax
rel

max(ACT lb(r)− (pr ·REF ub(r)), 0) (5.33)

By additional constraint variables,REF ub(r) can be efficiently calculated as a part of the CP
model. We therefore introduce global domains containing the unused shift templates for each
day. Because the number of shift templates for each day is fixed, the first part of the formula for
REF ub(r) can be calculated from these domains. The second part can be retrieved from variables
storing all unassigned tasks for each day on which these can take place.

5.7.3. Minimum Restrictions

We now come to the handling of absolute minimum restrictions. From (5.28), we may think of
calculating an upper bound onACT (r) to obtain a lower bound on the penalties for absolute
minimum restrictions. But because penalties for minimum restrictions are related to shift type
costs (cK

min(r) := mink∈Kr ck), stronger bounds can be obtained.
The basic idea is that costs for violated minimum restrictions are imposed anyway: If a min-

imum restrictionsr falls short of its limit and a yet uninserted task is covered by a shift inKr,
this will entail costs of at leastmink∈Kr ck in the shift cost term. If another shift type is used, the
same costs will arise for the violated restrictionr in the penalty term (5.28).

We can thus use the original numberACT (r) of used shifts inKr ×Nr and basically impose
costs of

cK
min(r)

∑
r∈Rmin

abs

max(mr −ACT (r), 0)

(cf. (5.28)) for absolute minimum restrictions.
However, we must take care about the interaction of shift costs and restriction penalties. In the

shift cost termzSC , we have already accounted minimum costs for used shifts. As long as not all
of the shift types are not fixed, we do not know if a shift will finally realise a typeKr. We have to
avoid accounting such shifts twice, i.e. in the shift cost and restriction terms. The following shifts
DA(r) are concerned:

DA(r) := {s ∈ S | δK
s ∩Kr 6= ∅, ns ∈ Nr, |δK

s | > 1, δused
s = {true}}

Because this problem only exists when using minimum shift number restrictions, we will not
try to refine the shift cost term, but realise the remedy as a part of restriction penalties.

Imagine a shifts1 in DA(r) with cshift
min (s1) := mink∈δK

s1
ck ≥ mink∈Kr ck =: csnr

min(r), i.e. its
current shift costs are already higher than the minimum costs for shift types inKr. Since the costs
cshift
min are realised anyway, the error can be attributed to the additional penalty ofcsnr

min(r) which
should be subtracted from the restriction penalties. For a shifts2 ∈ DA(r) with cshift

min (s2) <

csnr
min(r), we would locate the flaw in the shift costscshift

min (s2) because ifs2 finally has a shift type
in Kr, it will incur costs of at leastcsnr

min(r).
Now imagine that a partial solution contains boths1 ands2, and a restrictionr ∈ Rmin

abs asks for
a minimum number of one shift of types inKr. We have to take a pessimistic approach and sub-
tract the highest costs to obtain a valid lower bound on the penalty costs (5.28). If(s1, s2, . . . , sn)
are all of the shifts inDA(r) ordered by decreasing minimum costscshift

min (si), we would take the
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shifts of highest costs and subtractmin(cshift
min (s1), csnr

min(r)), min(cshift
min (s2), csnr

min(r)) etc. from
the penalties. The number of shift costs to be deducted is

ν = min(|DA(r)|,max(mr −ACT (r), 0))

We could thus use

csnr
min(r) ·max(mr −ACT (r), 0)−

ν∑
i=1

min(cshift
min (si), csnr

min(r)) (5.34)

as a lower bound approximation on the penalties forr. The drawback of this term is its com-
putational complexity. Such penalty costs would have to be recalculated upon each change of
DA(r) due to the bounding of one of the shift types or because shifts are newly used. Further-
more, the term would have to be updated after each change to the shift costscshift

min (si) or the
numberACT (r) of actual shifts.

Equation (5.34) defines penalties with deductions for doubly accounted shifts. An alternative
consists in penalising less shifts, i.e. to define deductions on the number of shifts and not on the
cost level. Usingcsnr

min(r) ≥ min(cshift
min (si), csnr

min(r)), the above penalty term can be relaxed:

csnr
min(r) ·max(mr −ACT (r), 0)−

ν∑
i=1

csnr
min(r)

≥ csnr
min(r) · (max(mr −ACT (r), 0)− ν)

= csnr
min(r) ·max(mr −ACT (r)− |DA(r)|, 0)

Because the determination ofDA(r) involves costly calculations of set intersections,DA(r)
is replaced by a simpler setDA′(r) of used and unfixed shifts whose break rule days allow for a
fixing to one of the typesKr on daysNr:

DA′(r) := {s ∈ S | Kbrds ∩Kr 6= ∅, ns ∈ Nr,
|δK

s | > 1, δused
s = {true}} ⊇ DA(r)

We must be sure that monotonicity properties still hold. Assume the case that a task is inserted
into a shift of one of the break rule days

BRD(r) := {brd ∈ BRD |Kbrd ∩Kr 6= ∅}

If the shift type is not directly bound, the shift will be part ofDA′(r), and if r is not yet
observed, one penalty less will be accounted. Since the shift is newly used, it causes an increase
of at leastmink∈Kbrds

ck in the shift cost term, but with the definition above, the shift restriction

penalties would decrease bycsnr
min(r) at the same time. If the new minimum shift costscshift

min (s)
are less thancsnr

min(r), the sum of shift costs and restriction penalties would decrease which is not
desirable.

To gain a better formulation, we will partly account for costs of less thancsnr
min(r) for shifts

falling short of the minimum limit. We therefore define the minimum costs of all shifts which
may later be bound to one of the shift typesKr, using the break rule daysBRD(r) as defined
above:

cbrd
min(r) := min

brd∈BRD(r)
k∈Kbrd

ck

Clearly, we havecbrd
min(r) ≤ csnr

min(r) because the minimum is taken over a superset of shift
types. In general, the difference in costs will not be high because shift restrictions frequently
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apply to classes of shift types which are strongly related (e.g. shifts for full-time staff) and are
likely to be grasped by one break rule day.

Since the above monotonicity problems only arise when tasks are inserted into unused shifts,
lower costs ofcbrd

min(r) only have to be accounted as long as there are uninserted tasks. We
might therefore determine the tasks fitting into shift types inBRD(r). But because the error
resulting from a rougher approximation is low, we simply take the numberNT (r) of not inserted
tasks on the days affected byr as defined in equation (5.32). With the numberNPabs(r) :=
max(mr − ACT (r) − |DA′(r)|, 0) of penalties to be incurred byr ∈ Rmin

abs , a lower bound on
the penalties for absolute minimum restrictions is given by∑

r∈Rmin
abs

csnr
min(r) ·min(NPabs(r), NT (r)) + csnr

min(r) ·max(NPabs(r)−NT (r), 0) (5.35)

It should be noted that (5.35) is not a lower bound on the penalties (5.28) in itself, but has lower
bound properties in combination with shift costs. Effectively, (5.35) may decrease while the sum
with the shift costs increases monotonically. BecauseDA′(r) andNT (r) are empty in a complete
solution, it is clear that (5.35) converges towards (5.28).

The lower bound approximation forrelative minimum restrictions is based on the considera-
tions for absolute minimum restrictions. The main difference is the determination of the number
NPrel(r) of penalties. It is important to note that each additional shift contributing toACT (r)
also increases the numberREF (r) of reference shifts. However, we must keep in mind that the
time when we know that a shift is used and counts for the reference shifts differs from the time
when it is considered an actual shift of a type inKr.

For the calculation of additional shifts for relative minimum restrictions, the lower bound ap-
proximation

REF lb(r) := REF (r) = |{s ∈ S | δused
s = {true}, ns ∈ Nr}|

on the number of reference shifts is used. To cover the minimum requirement of
⌈
pr ·REF lb(r)

⌉
shifts, we will first assume that

COV (r) := max(min(dpr ·REF (r)e −ACT (r), |DA′(r)|), 0)

shifts fromDA′(r) will finally contribute tor. While the shifts ofDA′(r) are already counted in
REF lb(r), we must take into account that each shift beyondDA′(r) also increases the number
of reference shifts. Furthermore, we must consider that we have already takenCOV (r) shifts
from DA′(r), i.e. the number of actual shifts isACT (r) + COV (r). Therefore, the numberρ of
additional shifts obeys

ACT (r) + COV (r) + ρ ≥ pr · (REF lb(r) + ρ)
⇒ ρ ≥ pr·REF lb(r)−(ACT (r)+COV (r))

1−pr

Consequently, the (minimum) numberNPrel(r) of penalties is

NPrel(r) := max
(⌈

pr ·REF lb(r)− (ACT (r) + COV (r))
1− pr

⌉
, 0
)

With this figure given, the penalties for relative minimum restrictions can be calculated analo-
gously to absolute minimum restrictions:∑

r∈Rmin
rel

cbrd
min(r) ·min(NPrel(r), NT (r)) + csnr

min(r) ·max(NPrel(r)−NT (r), 0) (5.36)
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The main difference between absolute and relative minimum restrictions is that the minimum
limit imposed by relative restrictions increases within the shift plan construction. Since the limit
increases monotonically, we are sure not to violate the lower bound property.

The sum of equations (5.31), (5.33), (5.35) and (5.36) represents the shift number restriction
penalty which is used as a lower bound tozSNR in the course of the shift plan reoptimisation,
converging tozSNR for a complete solution.

5.8. Branch-and-Bound

As described before, we aim at improving an initial solution by a relax-and-optimise approach.
Under the termlarge neighbourhood search, Kilby, Prosser and Shaw [1998] and Shaw [1998]
have proposed a framework which was already used for the solution of the workload levelling
problem in Chapter 4. Before describing how decisions are relaxed, we describe the restricted
branch-and-bound scheme of the reoptimisation phase.

According to the definition of a complete solution in Section 5.6.8, the search consists of the
following:

1. Insertion of relaxed tasks into shifts;

2. fixing of shifts to shift types;

3. fixing of lengths of split parts which are assigned to their dummy shift.

Suppose that a taski is to be inserted between two tasksi1 and i2. In order to trigger this
insertion, all inserted tasks except fori1 are deleted from the predecessor domainδpred

i :

δpred
i := δpred

i \ {i′ ∈ δpred
i | δins

i′ = {true}, i′ 6= i1}

entailing the execution the task insertion rule described in Section 5.6.6. The fixing of shift types
and split part lengths is simply done by setting shift type and split part length domainsδK

s andδsl
i

to single values, respectively. Note that split parts in dummy shifts cannot simply be fixed to their
shortest possible lengths because there can be interdependencies via temporal relations via other
tasks and shifts.

Decisions are taken in the above order, i.e. first all tasks are inserted, then the shift types of
used shifts are fixed and finally the lengths of logically unassigned split parts are determined. The
search tree thus consists of three layers corresponding to the different decisions, cf. Fig. 5.7.

Other orderings would be possible, but are less promising. As an example, there is no advantage
in fixing shift types earlier because we already account for minimum shift costs. Fixing shift
types can restrain possible lengths of split parts in dummy shifts, but this interdependency can be
estimated not to be too strong. Generally, it should be tried to keep related decisions e.g. for shift
types or for split part lengths close to each other, limiting the depth of backtracking when some
of the decisions prove to be bad. This is clearly accomplished by the layered approach.

As long as there are tasks which are not inserted (Irem := {i ∈ I | δins
i 6= {true}} 6= ∅), we

choose the taski ∈ Irem with the least number of remaining insertion positions, i.e. the taski for
which the number|{i′ ∈ δpred

i | δins
i′ = {true}}| of inserted tasks is minimal. This corresponds

to the fail-first principle [Haralick and Elliott, 1980]. If for several tasks, the number of insertion
positions is equal, we take the taski which is least movable, i.e. for which|δstart

i | is minimal.
Trial insertions are then performed for each possible insertion position. The resulting objective

values are lower bounds on the final objective function value, giving hints on how promising an
insertion is. Branches corresponding to low values are thus explored first.
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task
insertions

shift types

split part
lengths

Figure 5.7.: Search tree structure.

After inserting all tasks into shifts, we consecutively choose shifts from

Srem := {s ∈ S | δused
s = {true}, |δK

s | > 1}

for shift type fixing. Under the following conditions, the fixing of shift types is easy:

1. The break rule day of the shift is not involved in a shift number restriction, i.e. none of the
shift type realisations(k, nbrd) for k ∈ Kbrds is contained inKr × Nr for a shift number
restrictionr.

2. There are no vertical interdependencies with other shifts (which could be affected by shift
number restrictions), i.e. the shift does not contain crew tasks or split parts.

If these conditions hold, the shift type decision does not interfere with other shifts, ands can
simply be fixed to the cheapest possible shift type. For such shifts, shift type decisions will be
taken before all other shifts.

For all other shifts, the number of potential interdependencies is determined, i.e. the number
of shift number restrictions and the different split tasks and crews which make shift type fixing
difficult. The shifts are then traversed in order of increasing numbers of interdependencies. A trial
fixing to each of the shift types inδK

s is performed, and the resulting objective function values are
used to order subnodes, i.e. cheapest alternatives are chosen first.

Finally, we fix the split parts which are logically unassigned, i.e.

SP rem := {i ∈ I |Pi 6= NIL, δins
i = {true}, δshift

i = {sdummy
i }, |δsl

i | > 1}

Split parts are traversed in decreasing order of the sizes|δsl
i | of their length domains. The

subnodes are traversed in order of increasing task lengths since shorter durations generally result
in lower costs.

Clearly, the lower bound described in Section 5.7 is not only used for the assessment of task
insertion and shift type decisions, but also for pruning the search space. As soon as the lower
bound exceeds the valuation of a previous best solution, the current state of the model cannot
result in an improvement. Consequently, the branch is pruned, and search continues by exploring
other assignments.
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Since even the search trees for local steps are often too complex to be fully explored, we use
limited discrepancy search (LDS) [Harvey and Ginsberg, 1995] in order to heuristically reduce
the search space. We thus limit the number of discrepancies with regard to the best search path in
the tree by a constantLD. In contrast to the LDS algorithm for workload levelling (Section 4.6),
all branches will be counted for the discrepancies and not only branches resulting in a dead end.
Discrepancies are aggregated over all layers, including insertion, shift type and length decisions.
For the final levels representing unassigned split part decisions, we will account for more than
one discrepancy for each deviation from the best path because length decisions are generally less
interdependent.

5.9. Large Neighbourhood Search

In large neighbourhood search, we will repeatedly select sets of tasks for relaxation and reoptimi-
sation by CP-based branch-and-bound described before. Each of the steps can be regarded a local
exchange which systematically explores a large neighbourhood. The local steps are performed
until termination conditions like maximum runtimes or maximum numbers of steps are met. Ini-
tially, we try to achieve improvements in little computation time by reassigning single tasks. As
soon as a given numberSWIof steps is performed without improving the objective function, the
number of relaxed tasks is increased by one etc. The steps therefore gradually become more
complex and time-consuming, but are able to repair higher-order deficiencies.

In each step, a fixed numberntrel of tasks is released. Clearly, the effectiveness of the algorithm
heavily depends on the determination of task sets which promise to yield improvements. Two
basic strategies for task selection are conceivable:

• Roll back the insertion decisions for all tasks in a shift such that the shift is no longer used
and accounted for. A local step based on this idea aims at removing inefficient shifts from
the shift plan, trying to use cheaper shifts to cover the tasks.

• Revise the shift decisions for strongly interdependent tasks in different shifts. An improve-
ment could then stem from a shift being shortened or the qualification mix becoming better.

We will make an alternate use of these two strategies. The first strategy will be calledshift
releaseand the lattertask release. Note that both ideas include the rollback of insertion decisions
of tasks. For each step, we choose the shift release strategy with probabilityp. Otherwise, we use
the task-oriented strategy (with probability1− p).

The two strategies work as follows: First, one shift/task is selected in an environment which
may yield an improvement. Further shifts/tasks are retrieved from a fixed interval around the
first shift/task because if there is no temporal dependency between relaxed decisions, there is
no advantage in revise the items in common. Clearly, shifts and tasks are only released if the
maximum numberntrel of tasks is obeyed.

Local steps can include tasks which were assigned to their dummy shifts. As long as there
are tasks in dummy shifts, it will be probable that these will be chosen in a shift release step
because this strategy takes shift costs into account. If however a task cannot be assigned at all,
e.g. because a time period is not covered by any of the shift types, we should forbid such tasks to
be chosen. We therefore devise a preprocessing step determining which tasks cannot be covered.
Furthermore, we only allow one logically unassigned task to be included in any local step.

5.9.1. Shift Release

We start with the description of the shift release strategy. For the choice of a first shift, the
following valuations are used:
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• A reverse utilisationRUTIL(s): The utilisation of a shift is the quotient of the sum of task
task lengths (including break tasks) and travel times divided by the shift’s duration. The
reverse utilisation is then 100% minus the utilisation.

• The marginal shift costMCOST (s), i.e. the reduction of costs if the shift is not used.
This includes shift type costs as well as marginal shift restriction penalties as far as the
corresponding shift type is involved in a shift number restriction.

Clearly, a shift with high values for these terms will more probably lead to an improvement.
A weighted sum of the two terms is built, and all shifts are sorted by decreasing combined costs.
If SN is the number of shifts,CR ∈ N is a measure of choice randomness, andµ is a random
number in[0, 1[, the indexκ of the chosen shift in the sorted array is calculated as follows (cf.
Kilby et al. [2000]):

κ :=
⌊
SN · µCR

⌋
(5.37)

If CR is high,µCR will be close to0, and we will frequently take the first shift whose valu-
ation is most promising. For smaller values ofCR, the influence of randomness will increase,
diversifying the search.

After the choice of a first shifts1, two further valuations are evaluated for all shifts inS:

• The temporal distance tos1: If a shift s starts befores1, the temporal distanceDIST (s1, s)
is the time between the end ofs and the start ofs1. If s1 is befores, the temporal distance
is the difference between the start ofs and the end ofs1. If the shifts overlap, we have
SDIST (s1, s) = 0.

• The overlapSOL(s1, s) of the two shifts.

The total valuationSREL(s) for a shifts is then the weighted sum of the above reverse utili-
sation and marginal shift cost together with the temporal distance and overlap with the first shift.
The next shifts are again chosen according to (5.37) with all shifts being sorted according to their
combined valuation.

Each time an additional shifts′ is chosen, the valuationsDIST (s′, s) andOL(s′, s) are added
to the total valuationSREL(s) of all shifts. Consequently, ifSrel are the shifts chosen so far, the
valuationSREL(s) of a shifts ∈ S \ S′ is

SREL(s) := λUTIL ·RUTIL(s) + λMCOST ·MCOST (s)+
λSDIST ·

∑
s′∈Srel

SDIST (s′, s) + λSOL ·
∑

s′∈Srel

SOL(s′, s)

Preliminary tests have shown that the temporal distance valuationDIST (s′, s) does not suf-
ficiently prevent shifts with high temporal distances from being chosen. Therefore, the added
temporal distances ∑

s′∈Srel

DIST (s′, s)

of commonly chosen shifts are limited by a constantTDshifts.
The procedure continues as long as there are shifts which can be chosen without exceeding the

maximum numberntrel of tasks.

110



5.9. Large Neighbourhood Search

5.9.2. Task Release

The task-oriented release strategy basically works the same. One aspect has special importance
in the context of the task release method: If tasks are in subcrews, releasing a single task has only
little benefits because the task will have to be placed in the same shift crew as adjacent crew tasks.
Therefore, subcrews are always relaxed as a whole. Consequently, we must ensure that when a
crew task is chosen, all of its subcrew tasks can also be released within the limit ofntrel tasks.

For the choice of a first task, different strategies were tried, but in the end, choosing a task
i1 from a uniform distribution over all tasks turned out to be the best strategy. Again, releasing
tasks which are far away from each other is little promising. Further tasks are therefore limited to
overlap with a interval ofTDtasks time units around the first task, defined relative to its start and
end. If the first task is a crew task, the range is defined from the earliest start and latest end over
all subcrew tasks.

All further tasks are chosen as described above: The tasks within the range are sorted according
to decreasing valuations expressing a relatedness with the tasks which were relaxed so far. Further
tasks are then chosen according to (5.37). If the task is a crew task, the total subcrew is released
while non-crew tasks are released along with their group of symmetric tasks (cf. Section 5.6.7).
This procedure continues as long as the maximum limitntrel of relaxed tasks can be obeyed.

The relatednessTREL between two tasks comprises the following terms:

• The overlapTOL(i1, i2) which is defined as the minimum overlap resulting from a move-
ment of tasks within in their remaining time windows.

• The temporal distanceTDIST (i1, i2) summing up the absolute distances between earliest
start times and latest end times.

• The affiliationST (i1, i2) to the same split task which is1 if Pi1 = Pi2 6= NIL and 0
otherwise.

• The affiliationCREW (i1, i2) to the same task crew which is1 if there is aC ∈ C such
thati1, i2 ∈ C. Note that a task crew may consist of several subcrews. Then this term will
favour subcrews of the same task crew to be chosen.

• The similarityQUAL(i1, i2) of qualification profiles which is the cardinality of the inter-
section of the tasks’ qualification requirements:QUAL(i1, i2) := |Qi1 ∩Qi2 |.

As above, the valuations are aggregated over all tasks which are released so far: IfIrel is the
set of chosen tasks,TREL(i) is calculated as

TREL(i) := λTOL ·
∑

i′∈Irel

TOL(i′, i) + λTDIST ·
∑

i′∈Irel

TDIST (i′, i)+

λST ·
∑

i′∈Irel

ST (i′, i) + λCREW ·
∑

i′∈Irel

CREW (i′, i)+

λQUAL ·
∑

i′∈Irel

QUAL(i′, i)

Note that independently from the chosen strategy (task or shift release), we will determine a set
Irel of tasks to be relaxed. Nevertheless, we will also revise decisions which do not relate to tasks
(like shift types).
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5.9.3. Local Step Setup

For setting up the CP model for a local step, it is not sufficient to revise insertion decisions for
tasks. If a shift becomes empty, e.g. by revision of insertion decisions in the shift release strategy,
we should also reset the “used” as well as the shift type domain, assuring that shift costs are no
longer incurred. Even if not the ensemble of all tasks in a shift are relaxed, we will want to have
the flexibility of shortening or prolonging the shift by relaxing the shift type domain. We thus
have to devise a procedure to determine all items (tasks and shifts) which potentially interfere
with the insertion decisions of the tasks to be relaxed.

Starting from the setIrel, we will build sets of dependent tasksIdep and shiftsSdep. For all
tasks inIdep, we will basically reset the time windows (but not the insertion decisions as for the
tasks inIrel ⊆ Idep). For the shiftsSdep, we will revise all decisions relating to the shift type, i.e.
we will enable the shift to be fixed to another shift type in the course of the local step.

If a taski ∈ Irel is a crew task, we know thati’s insertion could have caused temporal restric-
tions on its adjacent crew tasks. The same is true ifi is a split part. The propagation to related
tasks of the same task crew or split task may have entailed decisions for shift types, and these
decisions should also be rolled back. Clearly, if a shift is part of a shift crew, we should reset the
shift types of all crew shifts since otherwise, we would not open any degrees of freedom. The set
Idep is therefore recursively defined as the smallest set for which the following holds:

i ∈ Irel ⇒ i ∈ Idep

i ∈ Irel ∧ ∃C ∈ C : i ∈ C ⇒ C ⊆ Idep

i ∈ Irel ∧ Pi 6= NIL⇒ Pi ⊆ Idep

s ∈ Sdep ∧ δshift
i = {s} ⇒ i ∈ Idep

Note that this definition makes use of the setSdep (which reversely depends onIdep) since all
tasks in dependent shifts are defined to be dependent themselves. Their time windows should be
reset because the decision for a specific shift type may have entailed time windows reductions.
This is especially true for the origin, destination and break tasks because without resetting these
tasks, the shift would not gain any degrees of freedom.

The setSdep of dependent shifts is the smallest set for which the following conditions hold:

i ∈ Idep ∧ δshift
i = {s} ⇒ s ∈ Sdep

s ∈ Sdep ∧ ∃H ∈ H : s ∈ H ⇒ H ⊆ Sdep

The two sets can be calculated by a fixed point iteration, starting from the setIdep := Irel and
successively adding dependent tasks and shifts toIdep andSdep.

We then reset CP domains pertaining to tasks and shifts inIdep andSdep. For each dependent
taski ∈ Idep, δstart

i is reset to the original time window[ai, bi]. For all relaxed tasksi ∈ Irel, we
additionally perform the following steps (note thatIrel ⊆ Idep):

• The successorσπi of the predecessorπi of i is set to its successorσi while the predecessor
πσi of the successor taskσi is set toπi; πi andσi are subsequently reset toNIL;

• δins
i is set to{false, true};

• δpred
i andδshift

i are temporarily reset to empty sets because the determination of insertion
positions can only be done in a subsequent step.

For all shiftss ∈ Sdep, the following domains are reset:

• δK
s is set to all shift typesKbrds allowed by the shift’s break rule daybrds;
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break

break

break

Figure 5.8.: Covering tasks by empty shift templates.

• δused
s is reset to{false, true};

• δs
qual is reinitialised to the setQ of all qualifications;

• δqp
s is set to[1, qp−1

min].

After rolling back the domains to their original states, a local repropagation is performed in or-
der to make the consequences of unrevised insertion decisions visible. Therefore, all consistency
tests relating to dependent tasks and shifts are propagated. Afterwards, the time windows reflect
the current state of insertions, and the shift type and cost information as well as qualification
profiles will be consistent.

Subsequently we can evaluate the positions into which relaxed tasks can be reinserted. All
shifts which could cover a taski ∈ Irel are traversed. Ifi can be inserted between two tasks
i1 and i2 (including origin, destination and break tasks),(i1, i2) will be part of the setΦ(i) of
insertion positions introduced above. The taski1 is then added toδpred

i of potential predecessors
of i, i is added toδpred

i2
, and the shifts of i1 andi2 to δshift

i .
Basically the same is done for empty shift templates cover the tasks. Clearly, if a task can be

attributed to an empty shifts, it can be covered by any template of the same break rule day. In
order to avoid symmetry, we add only one empty shift per break rule day to the shift domain of a
task. If a further task can be covered by the same break rule day, we must consider that an empty
shift may finally be used to cover both tasks. We therefore allow the task to be assigned to the first
empty shift as well as to another empty shift template of the break rule day. For each task fitting
into a break rule day, we thus include an additional empty shift, cf. Fig. 5.8. Note that if subcrews
are used, the same argument applies to the shift crew level.

The insertion positions are entered into the respective variablesδpred
i andδshift

i . A repropa-
gation ensures consistency before starting the reoptimisation by the branch-and-bound algorithm
described before.

5.10. Overlap Minimisation

As described in Section 5.2.5, two subsequent tasksi1, i2 in a shift are allowed to overlap by a
maximum amount ofmin(olmax

i1
, olmax

i2
), including the travel betweeni1 andi2. The constraint

imposing minimum distances between the start times of such tasksi1 and i2 was therefore re-
laxed by this amount. Overlap was introduced to soften the strict deterministic character of the
model. It reflects the planning practice to pack tasks somewhat tighter in order to increase the
shift utilisation.

Clearly, overlap should be avoided if possible. Overlap minimisation is not explicitly included
in the optimisation model for two reasons. On the one hand, it is a subordinate objective, i.e. we
will accept more overlap if shift costs can be lowered. On the other hand, the determination of
overlaps requires determining task start times. However, this would make the search more costly
because we would have to fix all start time domains as a part of the tree search.
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When handling overlap minimisation as a secondary objective, we can still exploit the degrees
of freedom which are left after local improvement, consisting of the start times of movable tasks
and the lengths of split parts. This can be compared to thefinalisingprocedures of Campbell and
Savelsbergh [2004]. Our goal will be the minimisation of the sum of overlaps on all tasks.

If no crews or split tasks are used, the best solution can easily be found by a dynamic pro-
gramming pass over the tasks in every shift. As described in Section 5.3, crews and split tasks
introduce vertical temporal relations, i.e. their start time decisions affect more than one shift. As
a consequence, overlap minimisation is not straightforward anymore. A simple greedy method is
therefore used for fixing start times.

The procedure passes once over all shifts and the tasks they contain. For each taski, the start
times fromδstart

i are tried and the (local) consequences on task overlaps determined. The best
start time is then entered into the constraint model and propagated before turning to the next task.

For each non-split taski, we can simply determine the overlaps with the predecessor and suc-
cessor taskspredi andsucci. If i is a split part, we calculate the overlap with the predecessor
predi and the minimum overlap with its successorsucci, assuming thati will have a minimum
length as given byδsl

i . If i is the first split part of a split task (i.e.spredi = NIL), the end time of
the last split part can be determined by adding the total split task length to the start time. We there-
fore additionally include the overlap of the last split part with its successor and its predecessor,
using the task’s minimum length. Ifi is not the first split part,i’s start time is also the end time of
spredi. We can therefore determine the overlap ofspredi with its successor and its predecessor,
using the minimum length fromδsl

spredi
.

Often there are ties in choosing the start time causing least overlaps. Non-split tasks are then
fixed to the earliest start time while split parts are fixed such that the first split part has the longest
possible length. Consequently, only the start time of the first split part is fixed to the earliest value
while start times of all other parts are fixed to latest start times. This corresponds to a sequential
view of task splitting: the longest possible part of a splittable task is assigned to a shift, and if the
task does not fit completely, it is interrupted at the latest possible time.

5.11. Experimental Results

We will evaluate the performance of the large neighbourhood search algorithm on a number of
real-world scenarios from the practice of ground handling companies and airlines. Basic informa-
tion on the test cases is summarised in Tables 5.4 and 5.5. Scenarios belong to one of the three
classes B, C and D. Test set B corresponds to the staff planning scenarios used in the workload
levelling procedure of Chapter 4. Scenarios of set C use only limited constraints and involve only
fixed tasks; these scenarios will also be used for the experiments of Chapter 7. Scenarios of class
D partly involve richer sets of constraints while only a limited number or none of the tasks are
movable.

Most test cases span over one week or eight days. Some scenarios have a very large scale with
up to 11325 tasks (scenario B09) and 2380 shift types (scenario D14). 15 out of 62 test cases
allow for splitting of a subset of the tasks with minimum split part lengths between 30 and 300
minutes;original tasksin Table 5.4 refers to the number of tasksbeforesplitting. Task overlapping
up to 2 minutes is only admitted on five scenarios. 15 scenarios comprise task crews of which 8
scenarios involve crew planning with subcrews of sizes 2 or 4. 36 scenarios involve qualifications,
but in many cases, qualification constraints are very loose. As an example, scenario B02 allows
for four qualifications per shift which exactly equals the number of involved qualifications. Seven
test cases comprise qualification restrictions. Absolute shift number restrictions are present in ten
scenarios while only two test files include relative restrictions. While the number shift types is
partly considerable (scenarios D14, D22), the number of break rule days is mostly moderate with
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only few exceptions (e.g. B09 and B10).
The algorithm was implemented in Visual C++ 7.1. Tests were carried out an AMD Athlon

2000+ computer (1.67 GHz) with 512 MB RAM and operating system Windows XP SP1. For the
implementation of constraint propagation and branch-and-bound, thectk toolkit was used. The
improvement phase builds upon solutions of the construction heuristic which was described in
Section 5.1. For all tests, we have setwQP = 5, MQR = MSNR = 500 andMUT = 10.

The relaxation strategies were tuned in preliminary tests. With a probability of 70%, the task
release strategy is used, but results turned out to be robust over a wide range of different values.
The parameters for the task and shift release strategy are given in Table 5.6.

A discrepancy limit ofLD = 8 turned out to be a good compromise between search depth
and processing times of individual steps. Discrepancy is accounted for over all search tree layers
representing task insertion and shift fixation decisions. Shifts which do not involve vertical in-
terdependencies due to split or crew tasks are heuristically fixed to their cheapest available shift
types (i.e. a discrepancy of 0 is used). Equally, logically unassigned split parts are always fixed to
their shortest possible lengths by accounting for 8 discrepancies for each deviation from the best
branch. Additionally to imposing a discrepancy limit, it turned out to be advantageous to limit the
number of branches leading to propagation failures to a maximum of 2000. Failures usually arise
when the value of a partial solution exceeds the value of the incumbent, but can also result from
inconsistent assignments (e.g. due to incompatible qualifications).

The performance of the algorithm was evaluated at runtimes of 5 and 30 minutes. The 5 minute
limit is typical of situations in which solutions must be obtained within low response times while
a 30 minute run will generally be started for offline execution. For the 5-minute tests,SWI(steps
without improvement before stepwidth incrementation) was set to 10. For the 30 minute runs,
SWIwas equal to 60, meaning that smaller neighbourhoods are investigated more thoroughly.

Results with regard to objective function improvements are summarised in Table 5.7. Results of
the LNS runs represent averages over five runs with different random seeds. As can be seen, local
search improves initial shift plans by an average of 3.07% (5 minutes) and 3.88% (30 minutes).
Highest improvements are attained on scenarios B13 (47.07%), D09 (19.67%) and D31 (17.87%).
On scenarios B13 and D31, these improvements mainly stem from covering still unassigned tasks.
While on some scenarios, all or nearly all improvement is accomplished within five minutes (e.g.
B02, B13, D01), savings on other scenarios are considerably higher with additional runtime (e.g.
B03, C04, D03). Relative standard deviations for the different runs (see Section 4.10) amounted
to an average of 0.39% for the 5-minute experiments and 0.46% for the 30-minute tests.

While the objective function comprises several terms, Table 5.8 gives results in terms of shift
costs. As can be seen, savings raise up to a maximum of 15.94% on scenario B06. On five
scenarios, more than 10% improvement are achieved; on average, savings amount to 2.15% (5
minutes) and 2.74% (30 minutes). Improvements on scenarios involving movable tasks are often
higher, especially if crews are involved. On scenario B09, shift costs increase slightly because
additional shifts are needed to cover still unassigned tasks.

Furthermore, Table 5.8 indicates shift utilisations which result from dividing total task minutes
by total shift durations without breaks [Jacobs and Bechtold, 1993]. Utilisations before local
improvement amount to 56.8% with a minimum of 20.9% (B04) and a maximum of 99.7% (D21).
While the average utilisation is typical of airport operations (see e.g. Dowling et al. [1997]), the
minimum utilisation shows that in scenario B04, shift types do not seem be well-designed for
covering the workload. In the 30-minute runs, shift utilisations are increased by up to 9.1% (B06)
with an average of 1.4%.

While these savings are already considerable in view of the large scale of airport operations,
a main benefit of the local improvement algorithm consists in offering a remedy for deficiencies
of the construction algorithm. While scenarios frequently comprise work tasks which cannot be
covered by any of the given shift types, the construction phase sometimes leaves tasks unassigned
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No. days original splittable avg. time avg. task avg. min. max. max. crew task avg. size subcrews avg. size
tasks tasks window width length split part length travel time overlap size crews task crews subcrews

B01 8 410 0 23.1 105.5 0.0 11 0 1 33 3.0 0 0.0
B02 8 748 0 5.9 14.3 0.0 8 0 1 19 2.0 0 0.0
B03 8 929 0 1.0 66.6 0.0 10 0 1 0 0.0 0 0.0
B04 8 1615 0 99.0 21.1 0.0 10 0 1 134 12.1 0 0.0
B05 7 1121 0 80.9 24.8 0.0 24 0 1 0 0.0 0 0.0
B06 8 627 0 105.1 29.4 0.0 18 0 1 533 1.2 0 0.0
B07 8 734 0 98.1 30.7 0.0 29 0 1 573 1.3 0 0.0
B08 8 4252 0 115.3 10.7 0.0 54 0 1 0 0.0 0 0.0
B09 7 11325 83 43.6 28.4 45.0 12 0 1 0 0.0 0 0.0
B10 7 4867 0 16.2 15.5 0.0 0 0 1 1572 3.1 0 0.0
B11 7 623 0 128.2 95.7 0.0 0 0 1 72 8.7 0 0.0
B12 7 3234 0 85.1 15.7 0.0 1 0 4 580 5.6 968 3.3
B13 7 1836 0 44.8 35.6 0.0 1 0 4 739 2.5 772 2.4
B14 7 3731 0 1.7 5.4 0.0 3 2 1 0 0.0 0 0.0

C01 8 2934 0 0.0 37.1 0.0 0 0 1 0 0.0 0 0.0
C02 8 3337 0 0.0 176.1 0.0 13 0 1 0 0.0 0 0.0
C03 8 2128 0 0.0 27.0 0.0 26 0 1 0 0.0 0 0.0
C04 8 1429 0 0.0 45.5 0.0 26 0 1 0 0.0 0 0.0
C05 8 1027 0 0.0 45.6 0.0 19 0 1 0 0.0 0 0.0
C06 8 1598 0 0.0 47.6 0.0 26 0 1 0 0.0 0 0.0
C07 4 2588 0 0.0 68.2 0.0 0 0 1 0 0.0 0 0.0
C08 4 1816 0 0.0 88.2 0.0 0 0 1 0 0.0 0 0.0
C09 3 1718 0 0.0 71.8 0.0 0 0 1 0 0.0 0 0.0
C10 3 860 0 0.0 112.2 0.0 0 0 1 0 0.0 0 0.0
C11 3 327 0 0.0 66.3 0.0 0 0 1 0 0.0 0 0.0
C12 3 572 0 0.0 58.7 0.0 0 0 1 0 0.0 0 0.0
C13 8 3521 0 0.0 40.1 0.0 6 0 1 0 0.0 0 0.0
C14 8 1297 0 0.0 20.0 0.0 13 0 1 0 0.0 0 0.0
C15 8 149 0 0.0 25.0 0.0 1 0 1 0 0.0 0 0.0
C16 8 255 0 0.0 70.2 0.0 28 0 1 0 0.0 0 0.0
C17 7 2256 0 0.0 38.9 0.0 3 0 1 0 0.0 0 0.0

D01 8 2710 0 0.0 55.7 0.0 5 0 4 609 4.4 706 3.8
D02 8 1764 0 0.0 68.5 0.0 4 0 4 239 7.4 478 3.7
D03 8 292 0 0.0 25.8 0.0 6 0 2 146 2.0 146 2.0
D04 8 476 119 0.0 140.7 45.0 3 0 1 0 0.0 0 0.0
D05 8 348 123 0.0 211.0 45.0 3 0 1 0 0.0 0 0.0
D06 8 7693 0 0.0 57.8 0.0 11 0 4 1497 5.1 1924 4.0
D07 8 2986 0 0.0 28.9 0.0 10 0 2 1493 2.0 1493 2.0
D08 8 842 0 0.0 26.7 0.0 5 0 2 421 2.0 421 2.0
D09 8 441 0 0.0 48.2 0.0 6 0 1 0 0.0 0 0.0
D10 8 1590 0 1.0 53.9 0.0 0 0 1 0 0.0 0 0.0
D11 8 911 0 0.0 58.1 0.0 10 0 1 0 0.0 0 0.0
D12 8 151 0 4.8 432.3 0.0 0 0 1 0 0.0 0 0.0
D13 8 548 19 0.0 165.0 300.0 0 0 1 0 0.0 0 0.0
D14 8 1634 16 0.0 155.2 45.0 60 0 1 0 0.0 0 0.0
D15 8 3011 65 0.0 73.5 30.0 0 2 1 0 0.0 0 0.0
D16 8 1792 0 0.0 89.8 0.0 12 0 1 0 0.0 0 0.0
D17 8 5124 0 0.0 23.8 0.0 12 0 1 0 0.0 0 0.0
D18 7 540 128 0.0 176.8 45.0 0 0 1 0 0.0 0 0.0
D19 8 2075 0 0.0 124.2 0.0 5 0 1 0 0.0 0 0.0
D20 7 187 0 0.0 247.8 0.0 0 0 1 0 0.0 0 0.0
D21 7 126 0 0.0 239.2 0.0 0 0 1 0 0.0 0 0.0
D22 7 3328 83 0.0 83.8 45.0 0 0 1 0 0.0 0 0.0
D23 7 2994 70 0.0 54.0 45.0 0 0 1 0 0.0 0 0.0
D24 7 2164 634 0.0 186.4 45.0 7 0 1 0 0.0 0 0.0
D25 7 2248 68 0.0 43.6 45.0 2 0 1 0 0.0 0 0.0
D26 7 609 7 0.0 29.2 45.0 14 0 1 0 0.0 0 0.0
D27 7 2771 0 0.0 32.5 0.0 0 0 1 0 0.0 0 0.0
D28 7 673 115 0.0 206.5 45.0 1 2 1 0 0.0 0 0.0
D29 7 9759 0 0.0 33.9 0.0 3 2 1 0 0.0 0 0.0
D30 7 3976 332 0.0 75.2 45.0 3 2 1 0 0.0 0 0.0
D31 7 236 97 0.0 251.0 45.0 0 0 1 0 0.0 0 0.0

Table 5.4.: Scenario data.
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No. quali- avg. qual. qual. pref. max. qual. qualification shift break rule range of avg. breaks avg. shift abs. shift restr. rel. shift restr.
fications per task range per shift restrictions types days shift lengths per shift type type cost (min./max.) (min./max.)

B01 3 1.1 [0,1] 4 7 11 18 [390,510] 2.0 88.2 0/0 0/0
B02 4 1.0 [0.42,0.73] 4 0 9 9 [510,510] 2.0 96.6 0/0 0/0
B03 12 0.4 [0,1] 4 35 33 18 [390,510] 1.0 96.0 0/57 0/0
B04 0 0.0 [1,1] – 0 41 9 [360,720] 0.0 82.5 0/0 0/0
B05 0 0.0 [1,1] – 0 17 9 [480,480] 0.0 80.0 0/0 0/0
B06 0 0.0 [1,1] – 0 94 9 [360,600] 0.0 79.8 0/0 0/0
B07 0 0.0 [1,1] – 0 94 9 [360,600] 0.0 79.8 0/0 0/0
B08 0 0.0 [1,1] – 0 3 9 [470,490] 1.0 78.0 0/0 0/0
B09 0 0.0 [1,1] – 0 68 288 [180,660] 0.7 68.5 0/68 0/0
B10 2 0.6 [0.2,1] 4 0 58 207 [360,540] 0.9 94.0 0/0 0/0
B11 0 0.0 [1,1] – 0 8 36 [240,570] 0.9 87.8 0/0 0/0
B12 2 1.0 [1,1] 4 0 352 18 [240,600] 0.7 75.2 0/0 0/0
B13 2 1.0 [1,1] 4 0 352 18 [240,600] 0.7 75.2 0/0 0/0
B14 0 0.0 [1,1] – 0 354 36 [240,600] 0.7 75.3 0/0 0/0

C01 0 0.0 [1,1] – 0 176 18 [240,480] 0.5 1601.7 0/0 0/0
C02 0 0.0 [1,1] – 0 270 45 [240,510] 2.4 74.0 0/0 0/0
C03 1 1.0 [1,1] 10 0 270 45 [240,510] 2.4 74.0 0/0 0/0
C04 1 0.5 [1,1] 10 0 270 45 [240,510] 2.4 74.0 0/0 0/0
C05 2 0.6 [1,1] 10 0 270 45 [240,510] 2.4 74.0 0/0 0/0
C06 1 0.6 [1,1] 10 0 270 45 [240,510] 2.4 74.0 0/0 0/0
C07 0 0.0 [1,1] – 0 12 72 [484,484] 1.0 80.0 8/12 0/0
C08 0 0.0 [1,1] – 0 12 63 [484,484] 1.0 80.0 8/8 0/0
C09 0 0.0 [1,1] – 0 17 126 [384,484] 1.0 80.0 12/12 0/0
C10 0 0.0 [1,1] – 0 11 63 [501,501] 1.0 80.0 0/0 0/0
C11 0 0.0 [1,1] – 0 17 108 [456,471] 1.0 80.0 0/0 0/0
C12 0 0.0 [1,1] – 0 14 72 [456,471] 1.0 80.0 0/0 0/0
C13 0 0.0 [1,1] – 0 9 9 [360,720] 1.0 94.7 14/35 0/0
C14 0 0.0 [1,1] – 0 41 9 [360,720] 0.0 82.5 0/0 0/0
C15 0 0.0 [1,1] – 0 94 9 [360,600] 0.0 79.8 0/0 0/0
C16 0 0.0 [1,1] – 0 94 9 [360,600] 0.0 79.8 0/0 0/0
C17 3 1.1 [1,1] 4 0 5 9 [480,600] 1.0 106.9 0/0 0/0

D01 2 1.0 [1,1] 4 0 384 36 [240,640] 0.8 236.3 0/0 0/0
D02 2 1.0 [1,1] 4 0 384 36 [240,640] 0.8 236.3 0/0 0/0
D03 2 1.0 [1,1] 4 0 384 36 [240,640] 0.8 236.3 0/0 0/0
D04 0 0.0 [1,1] – 0 270 45 [240,510] 2.4 74.0 0/0 0/0
D05 0 0.0 [1,1] – 0 270 45 [240,510] 2.4 74.0 0/0 0/0
D06 2 1.0 [1,1] 4 0 174 18 [240,480] 0.6 128.3 0/0 0/0
D07 2 1.0 [1,1] 4 0 174 18 [240,480] 0.6 128.3 0/0 0/0
D08 2 1.0 [1,1] 4 0 174 18 [240,480] 0.6 128.3 0/0 0/0
D09 2 1.3 [0.42,1] 4 7 8 18 [390,510] 2.0 80.5 0/0 0/0
D10 14 1.4 [0,1] 4 7 47 9 [510,510] 1.0 103.2 0/0 0/0
D11 5 0.3 [0,1] 4 21 31 18 [390,510] 1.0 95.7 0/7 0/0
D12 4 0.9 [0,0.63] 4 0 31 18 [390,510] 1.0 95.7 0/7 0/0
D13 5 1.0 [0,1] 4 0 672 9 [240,630] 0.0 93.1 0/0 0/0
D14 11 0.6 [0,1] 4 0 2380 27 [240,645] 0.9 94.4 0/0 0/7
D15 4 0.2 [0,0.55] 2 0 280 45 [360,960] 0.0 98.6 7/0 0/0
D16 0 0.0 [1,1] – 0 41 9 [360,720] 0.0 82.5 0/0 0/0
D17 0 0.0 [1,1] – 0 41 9 [360,720] 0.0 82.5 0/0 0/0
D18 0 0.0 [1,1] – 0 161 27 [195,600] 1.0 76.5 0/0 0/0
D19 8 0.2 [0.04,1] 2 0 9 9 [480,510] 0.0 100.3 0/0 0/0
D20 7 1.0 [0,1] 4 43 324 162 [240,720] 0.5 566.9 0/0 0/0
D21 3 1.0 [0,0.54] 4 0 324 162 [240,720] 0.5 566.9 0/0 0/0
D22 0 0.0 [1,1] – 0 825 16 [180,480] 0.4 53.7 0/0 0/0
D23 9 1.0 [0,1] 4 0 369 18 [240,480] 0.8 59.2 0/0 0/0
D24 16 1.1 [0,1] 4 0 16 18 [240,480] 0.8 59.2 0/0 0/0
D25 3 0.5 [0.04,1] 4 0 71 135 [240,750] 1.0 94.8 0/0 0/0
D26 1 0.5 [0.03,0.03] 4 0 29 117 [270,570] 1.0 87.0 0/0 0/0
D27 8 1.0 [0,1] 4 0 32 9 [360,540] 0.0 89.2 0/0 0/0
D28 0 0.0 [1,1] – 0 354 36 [240,600] 0.7 75.3 0/0 0/0
D29 3 0.3 [0.94,1] 4 1 354 36 [240,600] 0.7 75.3 0/9 0/7
D30 7 1.0 [0,1] 4 0 354 36 [240,600] 0.7 75.3 0/0 0/0
D31 1 1.0 [0.91,0.91] 4 0 20 45 [240,570] 0.5 69.3 0/0 0/0

Table 5.5.: Scenario data (continued).

shift release task release
CR 10 TDtasks 480
TDshifts 480 λTOL 100
λUTIL 20 λTDIST 10
λMCOST 10 λST 10
λSDIST 100 λCREW 10
λSOL 10 λQUAL 100

Table 5.6.: Parameters of release strategies.
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No. initial 5 min. 30 min.
obj. fct. obj. fct. improvement obj. fct. improvement

B01 19978.0 19402.0 2.88% 19334.2 3.22%
B02 7182.3 7066.5 1.61% 7066.1 1.62%
B03 37664.3 34035.4 9.63% 32196.1 14.52%
B04 27135.0 25993.0 4.21% 25771.0 5.03%
B05 20715.0 20347.0 1.78% 20187.0 2.55%
B06 6415.0 5485.0 14.50% 5393.0 15.93%
B07 7725.0 6827.0 11.62% 6723.0 12.97%
B08 13797.7 13373.8 3.07% 13217.1 4.21%
B09 730835.5 730501.7 0.05% 730413.0 0.06%
B10 40985.7 40896.0 0.22% 40766.1 0.54%
B11 64392.0 64272.5 0.19% 64263.0 0.20%
B12 20039.0 18241.0 8.97% 17752.6 11.41%
B13 46785.0 25725.5 45.01% 24765.6 47.07%
B14 7789.3 7624.3 2.12% 7597.5 2.46%

C01 258489.5 255088.3 1.32% 254764.6 1.44%
C02 3645650.0 3644874.8 0.02% 3644060.4 0.04%
C03 25513.0 25478.2 0.14% 25478.2 0.14%
C04 24695.0 24639.0 0.23% 24440.0 1.03%
C05 18627.0 18254.6 2.00% 18210.2 2.24%
C06 29782.0 29725.4 0.19% 29629.8 0.51%
C07 56080.0 56080.0 0.00% 56064.0 0.03%
C08 125840.0 125776.0 0.05% 125680.0 0.13%
C09 42400.0 42400.0 0.00% 42400.0 0.00%
C10 26000.0 25968.0 0.12% 25920.0 0.31%
C11 7680.0 7680.0 0.00% 7680.0 0.00%
C12 13520.0 13408.0 0.83% 13328.0 1.42%
C13 102173.0 102173.0 0.00% 102152.0 0.02%
C14 13195.0 12977.1 1.65% 12873.2 2.44%
C15 3265.0 3135.0 3.98% 3111.0 4.72%
C16 8105.0 7173.0 11.50% 7043.0 13.10%
C17 45773.5 45668.8 0.23% 45575.5 0.43%

D01 56858.4 55153.8 3.00% 55141.8 3.02%
D02 57206.3 55672.3 2.68% 55603.5 2.80%
D03 5552.3 5482.7 1.25% 5410.3 2.56%
D04 25707.0 24954.4 2.93% 24605.8 4.28%
D05 35480.0 35480.0 0.00% 35480.0 0.00%
D06 145661.0 144289.8 0.94% 144281.8 0.95%
D07 29321.0 28891.0 1.47% 28699.0 2.12%
D08 12773.0 12374.2 3.12% 12153.0 4.85%
D09 27575.0 23804.0 13.68% 22152.2 19.67%
D10 31091.3 30252.7 2.70% 29852.7 3.98%
D11 21782.2 21049.4 3.36% 20958.2 3.78%
D12 13654.5 13632.0 0.16% 13632.0 0.16%
D13 21090.0 20860.0 1.09% 20711.0 1.80%
D14 66098.3 65549.1 0.83% 65339.6 1.15%
D15 55578.6 55115.9 0.83% 54809.2 1.38%
D16 42335.3 41681.3 1.54% 41367.3 2.29%
D17 37135.0 36839.1 0.80% 36549.2 1.58%
D18 21729.0 21506.3 1.02% 21472.3 1.18%
D19 95574.3 93945.5 1.70% 93470.9 2.20%
D20 60525.7 60522.7 0.00% 60507.2 0.03%
D21 40095.6 38889.6 3.01% 38186.1 4.76%
D22 61060.0 60440.0 1.02% 60141.0 1.51%
D23 39680.5 39572.5 0.27% 39452.5 0.57%
D24 83025.2 82938.2 0.10% 82771.2 0.31%
D25 32720.1 32665.1 0.17% 32662.1 0.18%
D26 14320.9 14121.0 1.40% 14050.9 1.89%
D27 32459.3 32054.2 1.25% 31932.1 1.62%
D28 32928.0 32858.8 0.21% 32743.0 0.56%
D29 133596.6 132964.4 0.47% 132096.8 1.12%
D30 76360.8 76145.8 0.28% 76095.8 0.35%
D31 101460.0 90190.8 11.11% 83327.2 17.87%

Table 5.7.: Average improvement of objective function.
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No. initial solution 5 min. 30 min.
shift costs utilisation shift cost improvement utilisation shift cost improvement utilisation

B01 19973.0 44.0% 19397.0 2.88% 45.1% 19329.2 3.22% 45.2%
B02 7179.0 28.7% 7063.2 1.61% 29.1% 7062.8 1.62% 29.1%
B03 22162.0 53.1% 22233.1 -0.32% 52.9% 21893.8 1.21% 53.7%
B04 27130.0 20.9% 25988.0 4.21% 21.8% 25766.0 5.03% 22.0%
B05 12960.0 34.7% 12592.0 2.84% 35.8% 12432.0 4.07% 36.2%
B06 6410.0 48.0% 5480.0 14.51% 56.1% 5388.0 15.94% 57.1%
B07 7720.0 48.7% 6822.0 11.63% 55.1% 6718.0 12.98% 56.0%
B08 13482.7 58.5% 13058.8 3.14% 60.4% 12902.1 4.31% 61.1%
B09 98900.5 48.1% 98966.7 -0.07% 48.0% 98978.0 -0.08% 48.0%
B10 40981.0 38.1% 40891.3 0.22% 38.2% 40761.4 0.54% 38.3%
B11 21037.0 49.9% 20917.5 0.57% 50.1% 20908.0 0.61% 50.2%
B12 20034.0 50.3% 18236.0 8.97% 55.0% 17747.6 11.41% 56.5%
B13 27260.0 47.1% 25719.6 5.65% 51.8% 24759.6 9.17% 53.7%
B14 7784.3 51.6% 7619.3 2.12% 52.8% 7592.5 2.46% 53.0%

C01 258484.5 54.5% 255083.3 1.32% 54.5% 254759.6 1.44% 54.6%
C02 73125.0 71.2% 72349.8 1.06% 71.2% 71535.4 2.17% 71.3%
C03 25508.0 51.7% 25473.2 0.14% 51.7% 25473.2 0.14% 51.7%
C04 24690.0 58.1% 24634.0 0.23% 58.2% 24435.0 1.03% 58.8%
C05 18622.0 54.4% 18249.6 2.00% 55.2% 18205.2 2.24% 55.3%
C06 29777.0 57.9% 29720.4 0.19% 57.9% 29624.8 0.51% 58.1%
C07 55680.0 59.8% 55680.0 0.00% 59.8% 55664.0 0.03% 59.8%
C08 45440.0 66.5% 45376.0 0.14% 66.6% 45280.0 0.35% 66.8%
C09 42000.0 56.0% 42000.0 0.00% 56.0% 42000.0 0.00% 56.0%
C10 25600.0 68.4% 25568.0 0.13% 68.5% 25520.0 0.31% 68.6%
C11 7280.0 59.0% 7280.0 0.00% 59.0% 7280.0 0.00% 59.0%
C12 13120.0 50.7% 13008.0 0.85% 51.1% 12928.0 1.46% 51.3%
C13 71168.0 34.1% 71168.0 0.00% 34.1% 71147.0 0.03% 34.1%
C14 13190.0 32.8% 12972.1 1.65% 33.3% 12868.2 2.44% 33.6%
C15 3260.0 19.0% 3130.0 3.99% 19.8% 3106.0 4.72% 20.0%
C16 8100.0 36.8% 7168.0 11.51% 41.6% 7038.0 13.11% 42.4%
C17 45768.5 37.6% 45663.8 0.23% 37.7% 45570.5 0.43% 37.8%

D01 56853.4 51.9% 55148.8 3.00% 53.6% 55136.8 3.02% 53.6%
D02 57201.3 54.0% 55667.3 2.68% 54.3% 55598.5 2.80% 54.4%
D03 5547.3 24.6% 5477.7 1.25% 25.0% 5405.3 2.56% 25.3%
D04 25702.0 63.9% 24949.4 2.93% 65.6% 24600.8 4.28% 66.5%
D05 25595.0 74.6% 25595.0 0.00% 74.6% 25595.0 0.00% 74.6%
D06 145656.0 64.9% 144284.8 0.94% 65.0% 144276.8 0.95% 65.0%
D07 29316.0 58.3% 28886.0 1.47% 59.2% 28694.0 2.12% 59.6%
D08 12768.0 34.0% 12369.2 3.12% 35.3% 12148.0 4.86% 36.0%
D09 12770.0 32.3% 11599.0 9.17% 35.5% 11447.2 10.36% 35.9%
D10 31091.0 52.5% 30252.4 2.70% 53.8% 29852.4 3.98% 54.5%
D11 21781.5 46.3% 21048.7 3.36% 47.8% 20957.5 3.78% 48.0%
D12 13652.5 94.4% 13630.0 0.16% 94.4% 13630.0 0.16% 94.4%
D13 21085.0 85.7% 20855.0 1.09% 86.8% 20706.0 1.80% 87.4%
D14 66098.3 78.8% 65549.1 0.83% 79.4% 65339.6 1.15% 79.7%
D15 55578.0 76.0% 55115.3 0.83% 76.7% 54808.6 1.38% 77.2%
D16 42330.3 63.3% 41676.3 1.54% 64.3% 41362.3 2.29% 64.8%
D17 37130.0 54.6% 36834.1 0.80% 55.1% 36544.2 1.58% 55.5%
D18 21724.0 76.5% 21501.3 1.03% 77.3% 21467.3 1.18% 77.4%
D19 72824.0 67.4% 71195.2 2.24% 68.9% 70720.6 2.89% 69.3%
D20 59523.3 98.1% 59520.3 0.01% 98.1% 59504.8 0.03% 98.3%
D21 40092.5 99.7% 38886.5 3.01% 99.8% 38183.0 4.76% 99.8%
D22 61055.0 76.3% 60435.0 1.02% 77.1% 60136.0 1.51% 77.4%
D23 39680.0 71.3% 39572.0 0.27% 71.5% 39452.0 0.57% 71.7%
D24 83025.0 84.8% 82938.0 0.10% 84.9% 82771.0 0.31% 85.0%
D25 32717.5 57.9% 32662.5 0.17% 58.0% 32659.5 0.18% 58.0%
D26 9818.0 35.5% 9618.0 2.04% 36.2% 9637.9 1.83% 36.1%
D27 32458.0 53.6% 32052.9 1.25% 54.3% 31930.7 1.62% 54.6%
D28 32923.0 83.8% 32853.8 0.21% 84.0% 32738.0 0.56% 84.3%
D29 96091.8 68.9% 95859.6 0.24% 69.1% 95492.0 0.62% 69.3%
D30 76357.7 78.5% 76142.7 0.28% 78.7% 76092.7 0.35% 78.8%
D31 13825.0 70.4% 13235.6 4.26% 75.0% 13349.8 3.44% 75.5%

Table 5.8.: Shift costs and utilisations.
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No. 5 min. 30 min.
steps tasks steps tasks

B01 434.3 5.2 525.4 6.4
B02 462.9 8.4 550.6 10.0
B03 673.6 5.6 910.1 7.8
B04 746.4 4.8 946.7 6.2
B05 646.0 12.4 939.0 18.2
B06 924.6 9.0 1123.3 11.4
B07 997.7 8.6 1222.3 10.4
B08 1111.9 22.6 1444.4 29.2
B09 497.4 2.6 572.4 3.8
B10 373.7 5.2 533.6 7.4
B11 463.4 6.0 613.6 8.4
B12 627.7 7.8 1007.3 12.4
B13 1814.9 8.8 2170.9 12.2
B14 655.0 9.6 880.0 12.8

C01 477.9 5.6 575.1 7.0
C02 737.7 4.0 993.7 5.2
C03 363.0 5.4 407.9 6.6
C04 275.7 4.0 407.4 4.6
C05 453.0 3.8 535.9 4.6
C06 325.9 3.2 484.4 4.0
C07 432.1 6.0 502.0 7.4
C08 411.1 6.2 505.3 7.8
C09 333.0 5.0 397.3 6.2
C10 362.3 6.8 454.3 9.0
C11 294.0 6.8 406.6 9.4
C12 275.7 5.0 378.6 7.2
C13 311.3 3.0 373.9 4.0
C14 510.1 7.2 682.4 9.6
C15 357.4 7.0 473.0 9.2
C16 603.4 6.2 805.9 9.4
C17 460.0 7.8 557.7 9.2

No. 5 min. 30 min.
steps tasks steps tasks

D01 760.7 12.2 771.1 12.4
D02 473.3 6.2 585.0 8.4
D03 421.1 9.6 486.3 10.2
D04 443.4 2.6 610.9 3.2
D05 136.7 2.0 182.0 3.0
D06 962.4 12.0 1050.3 13.8
D07 681.0 12.4 854.0 15.4
D08 637.1 12.0 874.4 16.2
D09 646.7 6.0 792.7 7.6
D10 958.4 7.8 1201.6 10.8
D11 612.1 6.4 782.9 9.2
D12 851.1 19.0 1122.3 25.2
D13 642.1 4.2 937.0 5.8
D14 607.0 2.2 866.6 3.2
D15 735.6 2.2 1134.7 3.2
D16 874.0 6.4 1132.6 8.0
D17 680.7 7.2 1022.4 9.6
D18 508.1 4.2 693.9 6.4
D19 945.0 8.8 1167.9 11.2
D20 162.3 4.0 222.6 4.6
D21 221.0 4.0 315.1 5.8
D22 1123.3 2.4 1419.1 3.8
D23 360.1 1.0 600.6 2.4
D24 465.7 1.0 565.3 1.0
D25 324.1 6.0 407.1 7.2
D26 452.6 9.6 544.1 11.8
D27 1336.7 9.4 1615.4 11.8
D28 149.1 1.0 251.3 1.0
D29 740.9 2.4 1261.9 3.6
D30 317.1 1.0 349.1 1.0
D31 457.7 2.2 872.0 4.6

Table 5.9.: Final steps and stepwidths.

which could be covered. As an example, large neighbourhood search assigns additional 63 tasks
in scenario B13 and additional 14 tasks in scenario D31.

Furthermore, the initial algorithm is sometimes not able to avoid maximum restriction viola-
tions due to its heuristic nature. Such deficiencies are quickly resolved by local improvement. As
an example, LNS avoids up to two qualification restriction violations on scenario D29 and ten
violations on scenarios B03 and D09. Furthermore, on scenarios B09 and D29, one and two more
maximum shift number restrictions are obeyed after local improvement.

Runtime information is given in Table 5.9. While on some large-scale scenarios, all improve-
ment is attained by releasing one task at a time (scenarios D24 and D30), up to 31 tasks were
relaxed in one run on scenario B08. The number of steps over the different 30-minute runs ranged
from 124 (one run on D05) to 3079 (one run on B13).

In Table 5.10, we can study the development of task splits on scenarios comprising preemptive
tasks. Figures indicate the average number of split parts per split task in the initial solution and
after 30 minutes (averages over five runs). It can be seen that even if we do not penalise splitting,
the average number of split parts consistently decreases by local improvement.

Table 5.11 compares total task overlaps (in minutes) in the initial solutions and after local
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No. before LNS after LNS
(30 min.)

B09 2.4 2.4
D04 2.9 2.5
D05 5.4 4.1
D13 2.2 2.2
D14 2.0 2.0
D15 4.8 2.5
D20 2.0 1.3
D22 4.0 4.0
D23 5.3 5.3
D24 4.0 4.0
D25 3.5 2.3
D26 7.9 7.9
D28 4.8 3.2
D30 3.4 3.1
D31 3.2 2.6

Table 5.10.: Average numbers of parts per split task.

No. before LNS after LNS
(30 min.)

B14 2209 2703.0
D15 2990 279.6
D28 27 201.6
D29 64422 3842.0
D30 5399 1479.6

Table 5.11.: Changes in total overlapping.

improvement and application of the algorithm of Section 5.10; only scenarios allowing for over-
lapping are shown. As can be seen, changes in overlaps are highly problem-dependent. While
on scenarios D15, D29 and D30, overlaps decrease by 90.6%, 94.0% and 72.6% on average, sce-
narios B14 and D28 use 22.4% and 646.7% more overlap after local improvement. On the latter
scenarios, overlap is effectively used for a tighter packing of tasks in order to reduce shift costs.

The results of local improvement are generally very satisfactory. The algorithm has been im-
plemented as a part of a commercial staff scheduling system and meets customer demands. De-
ficiencies of initial heuristic solutions are quickly levelled out, and additional improvement can
be obtained by investing more runtime. Results of the combined construction/improvement algo-
rithm are more robust, and the algorithm scales well to large problem instances. However, we will
shortly mention some shortcomings of the local improvement scheme.

First, the algorithm has turned out to be sensitive to different kinds of shift models and shift
costs. If many shift types are used, the algorithm can exploit more degrees of freedom to shorten or
prolong shifts. If shift costs are proportional to shift lengths (which is often the case in practice),
the algorithm yields much improvement already in small neighbourhoods. If in contrast only
few shift types are present, local search must be applied to much larger neighbourhoods since
improving the solution will often necessitate swaps of many tasks. If shift costs are independent
from their lengths (e.g. if unit costs are used for all shifts), this means that improvement can
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Figure 5.9.: Example from scenario C12: partial solution before improvement.

Figure 5.10.: Example from scenario C12: partial solution after improvement.

usually only be achieved by saving shifts.

As an example, scenario D17 uses shift costs which are proportional to shift lengths. In the
above experiments, local search achieved average shift cost savings of 1.58% and increased shift
utilisation by 0.9%. In an experiment with all shift costs set to 1, shift cost improvements within 30
minutes amounted to an average of 0.61% while utilisation was increased by only 0.2%. Clearly,
this can be intentional if the number of shifts is the only optimisation criterion. In fact, the number
of shifts was decreased by a maximum of one shift with proportional shift costs while up to four
shifts were saved with the unit-cost model.

Another deficiency of large neighbourhood search lies in the asymmetry of task selection and
reinsertion procedures: While relaxed tasks are optimised by powerful branch-and-bound search,
their choice is based on simple heuristic rules. However, we may necessitate larger and more com-
plex neighbourhoods in order to achieve more global improvement. However, these are generally
not easy to find.

Figure 5.9 shows an extract of scenario C12. In order to save one shift in the given solution,
all tasks which are marked yellow must be relaxed (tasks in shifts which are also involved in
the local step are marked green, breaks have red colours). The result of the local step is given in
Fig. 5.10. Note that the yellow tasks represent the minimum task set which is required for this local
step. While the branch-and-bound procedure of Section 5.8 immediately finds the improvement,
such complex neighbourhoods are not easy to determine. Preliminary experiments with LP-based
relaxation strategies turned out to be successful, but required excessive computation times when
iteratively applied for finding minimum neighbourhoods. A more efficient solution approach will
be presented in the next chapter.
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5.12. Conclusions and Future Research

We have tackled a complex task-level shift planning problem on airports. While most literature
focuses on covering a demand curve of labour requirements, we have developed a mathematical
description for shift planning on the level of single work tasks, integrating shift scheduling with
vehicle routing. Task-level shift planning is an appropriate model for detailed operative planning,
incorporating a multitude of constraints with regard to shifts and qualifications. Crew restrictions
and preemptive tasks represent further outstanding features of the model.

We have shown how task-level shift planning can be incorporated in a constraint programming
model. We have demonstrated how classical forward/backward schemes for temporal propagation
can be extended to handle crews and preemptive tasks. Shift type flexibility was handled by
introducing the notion of break rule days. Furthermore, we have shown how qualification and
shift number restrictions can be dealt with.

We have described a constraint-based local improvement algorithm which builds upon solu-
tions of a construction heuristic, resolving deficiencies of initial solutions while preserving ad-
vantageous features. Different strategies have been described for the choice of sets of tasks to
be reoptimised. Reinsertion is then accomplished by restricted branch-and-bound search, exploit-
ing problem-specific lower bounds. The combined construction-improvement approach offers the
possibility of weighing runtime against solution quality. While good solutions even for large-
scale scenarios are available within rather low runtimes, better solutions can be obtained if more
runtime can be invested.

Experimental results have shown that the improvement algorithm is effective and efficient on
a wide range of real-world test cases. Results of the initial algorithm could partly be improved
considerably. The algorithm provides a remedy for flaws of the construction phase, including
uncovered tasks and violations of shift number and qualification restrictions.

As a part of a commercial staff scheduling package, the algorithm is used by airlines, airports
and ground handling companies. Because it provides locally optimal and robust solutions on a
very general setting, the method has considerably increased customer satisfaction and improved
the quality of shift plans.

Constraint programming has turned out to be a very flexible framework for complex shift plan-
ning. The improvement algorithm has already been generalised to different settings, including
planning with fixed shifts and partially fixed assignments, optimising shift plans for likely flight
delays, cross-utilising shift plans of different departments and checking given shift plans for re-
striction violations. The constraint model might further be enriched in the future, e.g. by additional
qualification constraints, representing the skills of the workforce at hand.

While the algorithm has proven an invaluable tool in practice, a minor deficiency of large
neighbourhood search is the asymmetric nature of its relaxation and reoptimisation strategies.
Several enhancements are conceivable for the future. On the one hand, it may be promising to
combine constraint-based search with tabu search or simulated annealing in order to overcome
local optima with moderate neighbourhood sizes. Furthermore, the constraint model described
in this chapter could be used for a new construction algorithm. An alternative approach, using
integer programming global search, will be described in Chapter 7.
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6. Column Generation and
Branch-and-Price

The purpose of mathematical programming
is insight,

not numbers.
— Arthur M. Geoffrion

In the preceding chapters, we have used constraint programming to solve the workload levelling
problem as well as complex task-level shift planning problems. Constraint programming is a very
powerful technique for the handling of multitudes of constraints as well as linear and non-linear
objective functions. In general, CP is very strong in representing feasibility aspects of discrete
optimisation problems. In contrast, linear programming based methods focus on the optimisation
aspect [Gr̈onkvist, 2002]. In the following, we will introduce column generation and branch-and-
price techniques which have become popular solution techniques in integer programming. The
description will lay the ground for the algorithms of Chapters 7 and 9.

Column generation was originally proposed by Ford and Fulkerson [1958] and Dantzig and
Wolfe [1960] and independently by Gilmore and Gomory [1961]. Apart from the original publi-
cations, Chv́atal [1983], Barnhart et al. [1998] and Desrosiers and Lübbecke [2003] give excellent
surveys of Dantzig-Wolfe decomposition, column generation and branch-and-price techniques. A
good overview of implementation issues and speedup techniques can be found in Desaulniers
et al. [2001]. L̈ubbecke and Desrosiers [2004] summarise some recent developments in column
generation. Another valuable source of information is the PhD thesis of Lübbecke [2001].

The following exposition is mainly based on Chvátal [1983] and Barnhart et al. [1998]. First,
the general decomposition idea is presented, leading to a column generation scheme for the im-
plicit handling of large numbers of variables. Dantzig-Wolfe decomposition is shown to be partic-
ularly appropriate for block-structured linear programs. Furthermore, we describe how integrality
can be achieved by branch-and-price. We shortly sketch the relationship between column genera-
tion and Lagrangian relaxation. Finally, some advanced performance issues are dealt with.

6.1. Dantzig-Wolfe Decomposition

Inspired by an idea of Ford and Fulkerson [1958], Dantzig and Wolfe [1960] presented a decom-
position method for linear programs. The idea of Dantzig-Wolfe decomposition is to separate
the constraint system into a set of complicated coupling constraints and easier-to-handle local
constraints. The reformulation leads to a master program containing the complicated constraints
while the local constraints are implicit in the newly defined variables. The master program has
less constraints, but many more variables than the original compact formulation. The idea of col-
umn generation is to deal implicitly with the set of variables (see Ford and Fulkerson [1958]),
restricting the master program to a subset of the variables and generating additional variables on
demand via dual variable information. Gilmore and Gomory [1961] proposed a similar scheme
for the cutting stock problem for which the column generation formulation arises naturally.

In the following, we will assume that we are given a minimisation problem. We therefore start
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from a linear program
min cT X (6.1)

subject to

A1X ≥ b1 (6.2)
A2X ≥ b2 (6.3)

X ≥ 0 (6.4)

whereA1 ∈ Rm1×n and A2 ∈ Rm2×n are coefficient matrices,b1 ∈ Rm1 , b2 ∈ Rm2 the
corresponding ride-hand sides andc ∈ Rn a cost vector. Program (6.1)-(6.4) will be called the
compact formulation.

According to the theorems of Weyl and Minkowski (cf. Nemhauser and Wolsey [1988]), every
point of a non-empty polyhedronX := {X ∈ Rn

+ |A2X ≥ b2} can be expressed as a convex
combination of the extreme points{xq}q∈Q plus a nonnegative linear combination of the extreme
rays{xp}p∈P of X :

X =

∑
q∈Q

λqxq +
∑
p∈P

λpxp

∣∣∣∣λq ≥ 0 ∀q ∈ Q,λp ≥ 0 ∀p ∈ P,
∑
q∈Q

λq = 1


Note that the simplex method systematically enumerates basic feasible solutions (the extreme

points ofX ) or yields a basic feasible direction (an extreme ray ofX ) of the solution space which
is spanned up by its constraint system [Chvátal, 1983].

X thus observesA2X ≥ b2 if and only if

X =
∑
q∈Q

λqxq +
∑
p∈P

λpxp,
∑
q∈Q

λq = 1

Representing the original variablesX by the extreme points and extreme rays of the polyhedron
defined by the constraint systemA2X ≥ b2, the linear program (6.1)-(6.4) can be rewritten as

min cT

∑
q∈Q

λqxq +
∑
p∈P

λpxp


subject to

A1

∑
q∈Q

λqxq +
∑
p∈P

λpxp

 ≥ b1

∑
q∈Q

λq = 1

λq ≥ 0 ∀q ∈ Q
λp ≥ 0 ∀p ∈ P

or, rearranging the terms, as

min
∑
q∈Q

(cT xq)λq +
∑
p∈P

(cT xp)λp (6.5)

subject to ∑
q∈Q

(A1xq)λq +
∑
p∈P

(A1xp)λp ≥ b1 (6.6)
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6.1. Dantzig-Wolfe Decomposition

∑
q∈Q

λq = 1 (6.7)

λq ≥ 0 ∀q ∈ Q (6.8)
λp ≥ 0 ∀p ∈ P (6.9)

which is called themaster programassociated with (6.1)-(6.4). We will denote its cost vector by
ĉ, the constraint matrix (including the convexity constraint (6.7)) byÂ and the right-hand side by
b̂ := [b1 1]T . The decision variables of the master program are theλq andλp, and the columns of
the constraint matrix correspond to extreme points and extreme rays ofX .

The master program involves less constraints, but many more variables than the compact formu-
lation. However, the columns of (6.5)-(6.9) need not be fully enumerated when using the revised
simplex method [Orchard-Hays, 1968]. Instead, we can use arestricted master program(RMP)
which contains only a subset of the columns and variables of the master program. Additional
columns will be implicitly priced out by asubproblem(or pricing problem), and columns with
negative reduced costs will be added to the restricted master program.

According to the simplex criterion, we must choose an entering column with negative reduced
costs in each iteration. In the optimal solution to a given restricted master program, letπ ∈ Rm1

denote the dual values associated with constraints (6.6) andµ the dual value of the convexity
constraint (6.7). To find an entering columnâ of Â, the following subproblem is solved:

min (c− πA1)X (6.10)

subject to

A2X ≥ b2 (6.11)
X ≥ 0 (6.12)

If the subproblem has an optimal solutionx∗ such that(c − πA1)x∗ − µ < 0, x∗ is a basic
feasible solution with negative reduced costs and corresponds to one of the extreme pointsxq.
The column

â :=
(

A1x∗

1

)
(6.13)

of Â can thus be added to the RMP with the corresponding cost coefficient inĉ set tocx∗. In the
master program,̂a can be used as an entering column.

If the subproblem (6.10)-(6.12) is unbounded, we find a basic feasible directionx̃ such that
(c− πA1)x̃ < 0. x̃ then corresponds to one of the extreme raysxp, and the column

â :=
(

A1x̃
0

)
(6.14)

of Â can be added to the restricted master program with cost coefficientcx̃. Because its reduced
costs are negative, it can be used as an entering column.

If finally the problem (6.10)-(6.12) has an optimal solutionx∗ of value(c− πA1)x∗ − µ ≥ 0,
we know that each extreme pointxq satisfies(c − πA1)xq − µ ≥ 0, and every extreme rayxp

obeys(c − πA1)xq ≥ 0. Since every column̂a of Â follows either form (6.13) or (6.14), there
are no columns with negative reduced costs, and the solution of the restricted master program is
optimal.

Section 7.4 will describe a subproblem whose polyhedron is only spanned up by extreme rays,
i.e. it does not have non-trivial extreme points. Then upper bounds can be introduced on the
variables of the subproblem, cutting the rays. Note that any multiple of an extreme ray represents
the same ray.
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restricted master program

linear program

pricing problem

dynamic programming,
network flow models

e.g.

dual
prices columns

Figure 6.1.: Column generation process.

When solving model (6.5)-(6.9) by column generation, we start from a restricted master pro-
gram which guarantees a feasible solution. The two-phase simplex algorithm can be used for this
purpose, or a known heuristic solution can be entered as a starting solution [Barnhart et al., 1998]
[Desrosiers and L̈ubbecke, 2003]. Note that the initial dual values which are used for column
generation will be “better” when a good starting solution is known. Alternatively, a good dual
solution can be used to start the column generation process, see du Merle et al. [1999], Lübbecke
and Desrosiers [2004].

The restricted master program is then solved to optimality, and the optimal dual values are
transferred to the subproblem. If a column with negative reduced costs can be found, it is added
to the RMP. The restricted master program is then reoptimised, resulting in new dual values for
the subproblem. The algorithm terminates when no more columns with negative reduced costs
are found. Fig. 6.1 shows the iteration between master program and subproblems.

It is noteworthy that it is not necessary to find the column with most negative reduced costs
as proposed by the Dantzig rule. Instead, any column with negative reduced costs is a candidate
for improving the solution and can thus be added to the master program. Column generation
algorithms tend to converge faster if several negative reduced cost columns are added in each
iteration [Desrosiers et al., 1984].

6.2. Block-Structured Linear Programs

Clearly, the separation of the constraint matrix into partsA1 andA2 should be guided by the prob-
lem structure. Dantzig-Wolfe decomposition is often applied to block-angular linear programs in
which the constraint matrix exhibits the following structure:

A1,1 A1,2 · · · A1,K

A2,1

A2,2

...
A2,K


(A1,1 . . . A1,K)X = b1 are then calledcoupling(or linking) constraints while the subproblem

defined by the block-diagonal matrixA2 decomposes into separate problems for eachA2,k. In
fact, each of the constraint systemsA2,kX2 ≥ b2,k defines a distinct polyhedron on the setXk

of decision variables corresponding toA2,k (andb2,k the corresponding right-hand side). Each
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such polyhedron can be separately represented by its extreme points{xk
q | q ∈ Qk} and extreme

rays{xk
p | p ∈ P k}, and the master program will contain one convexity constraint

∑
q∈Qk λk

q = 1
for each subproblemk. If the restrictions on all subsets are equal (i.e.A2,k1 = A2,k2 , b2,k1 =
b2,k2 ∀k1 6= k2), only one subproblem has to be solved, and the convexity constraints generalise
to
∑K

k=1

∑
p∈P k λk

p = K [Barnhart et al., 1998].

As an example, the multicommodity flow problem (see e.g. [Ahuja et al., 1993]) gives rise to a
block-structured linear program. It was this problem which originally inspired Ford and Fulkerson
[1958] to propose dealing implicitly with the columns of a master program. As Desrosiers and
Lübbecke [2003] point out, many problems in vehicle routing and crew rostering have multicom-
modity flow problems as an underlying structure. Other applications give rise to block-structured
linear programs as well, see Lübbecke and Desrosiers [2004] for an overview.

In the context of block-structured programs, the decomposition principle has an interesting
economic interpretation as decentralised planning with incomplete information at the centre, see
Lasdon [1970] and Chv́atal [1983].

While Dantzig and Wolfe originally supposed the subproblems to be solved by linear program-
ming, column generation does not prescribe the pricing method. Subproblems can often be natu-
rally formulated as shortest path problems or resource-constrained shortest path problems which
are usually solved by dynamic programming or network flow algorithms [Vanderbeck, 2000] [De-
saulniers et al., 2001].

Not always is column generation the result of applying Dantzig-Wolfe decomposition. As an
example, Gilmore and Gomory [1961] originally proposed their column generation scheme for the
cutting stock problem without any reference to a compact formulation. Villeneuve et al. [2003]
have recently shown that under relatively mild conditions, a compact formulation exists for every
column generation model. However, the compact formulation does not need to be unique, cf.
Valério de Carvalho [2002]. Even if a column generation formulation is sometimes more natural,
the compact formulation can give additional insight for the integer solution of column generation
models as will be seen in the sequel.

Column generation models often avoid problem symmetries which are difficult to circumvent
in the compact formulation [Barnhart et al., 1998]. As an example, the straightforward compact
formulation for the cutting stock problem which is due to Kantorovich [1960] exhibits strong
symmetry which is not present in the column generation formulation [Valério de Carvalho, 2002].
Another example for avoiding symmetries by column generation will be given by the rostering
application in Chapter 9.

Another argument for column generation models is the quality of the LP lower bound which is
particularly important when solving integer models by branch-and-bound. Since column gener-
ation models result from a reformulation, their LP bounds are at least as good as in the compact
formulation. For many problems, the column generation bounds are substantially tighter due to
the incorporation of integrality constraints in the subproblem. Again, the cutting stock problem
provides a good example: While the Kantorovich model provides a poor LP bound (as shown
by Valério de Carvalho [2002]), the column generation formulation is known to be very tight,
providing an appropriate basis for exact solution approaches by branch-and-bound, see e.g. Vance
et al. [1994]. In fact, the subproblems of the cutting stock problem are solved as knapsack prob-
lems, meaning that the column generation only admits linear combinations of integer solutions
to the subproblems. If however the subproblem is naturally integer, i.e. the LP relaxation only
yields integer solutions, the bounds of the compact and column generation formulation coincide
[Geoffrion, 1974].
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6.3. Branch-and-Price

So far, we have focused our attention on the decomposition of linear programs which often arise as
LP relaxations of discrete optimisation problems. When Dantzig-Wolfe decomposition is applied
to integer programs which are to be solved by LP-based branch-and-bound, it does not suffice
to generate columns at the root node. The initial column set may not provide an optimal integer
solution or even an integer-feasible solution. We must therefore generate columns throughout the
search tree [Desaulniers et al., 2001]. It is interesting to note that not only is column generation
required after branching, but branching may also be required in order to generate all potential
variables in the subproblem, see Villeneuve et al. [2003] for an example. The combination of
branch-and-bound with column generation is known asbranch-and-priceor integer column gen-
eration[Barnhart et al., 1998] [Vanderbeck and Wolsey, 1996] [Vanderbeck, 2000].

The first application of branch-and-price for a routing problem was presented by Desrosiers
et al. [1984]. Since this first publication, many authors have described successful branch-and-
price implementations, see Lübbecke and Desrosiers [2004] for a survey. Application areas in-
clude routing and scheduling (see Desrosiers et al. [1984], Desrochers et al. [1990], Dumas et al.
[1991], Desrochers et al. [1992] and for an overview Desrosiers et al. [1993]), the aforementioned
cutting stock problem (e.g. Vance et al. [1994]), crew pairing and rostering (e.g. Desrochers and
Soumis [1989], Ryan [1992], Vance et al. [1997], Gamache et al. [1999]), tour scheduling (e.g.
Mason and Smith [1998], Mason and Nielsen [1999], Mason [1999]) and generalised assignment
(Savelsbergh [1997]).

A main focus of branch-and-price research is on the design of branching rules. Appelgren
[1969] was the first to note that classical variable branching is not compatible with column gen-
eration. Assume that in a binary problem (like e.g. crew scheduling), a variableXj takes on a
fractional value0 < f < 1 in the relaxed optimal solution. Branching by variable dichotomy
would then enforceXj = 0 on one branch andXj = 1 on the other. The0 branch corresponds to
forbidding the variable to be part of the solution. In column generation, however, the subproblem
is likely to create this variable again after branching. This clearly has to be prevented. Aftern
branching decisions,n variables must be forbidden if we follow the0 branches. This is gener-
ally not easy to represent in the subproblem structure. If e.g. the subproblem is a shortest path
problem, we must forbid whole paths to be generated. Variable branching therefore destroys the
subproblem structure and is generally regarded incompatible with column generation [Barnhart
et al., 1998].

One of the most frequently applied branching rule in integer column generation is Ryan-Foster
constraint branching [Ryan and Foster, 1981] which applies to binary set partitioning problems.
Applications of set partitioning models include the aforementioned crew scheduling, cutting stock
and vehicle routing problems.

Let A be the binary constraint matrix of the restricted master program of a set partitioning
formulation, and suppose that the basic solutionλ to Aλ = 1, λ ≥ 0 is fractional. Then there
exist two rowsr, s such that

0 <
∑

k:ark=1,ask=1

λk < 1,

see Ryan and Foster [1981] for a proof. When we have determined two such rowsr, s, we can
enforce

∑
k:ark=1,ask=1 λk = 0 on one of the branches (e.g. the left branch) while on the right

branch, we set
∑

k:ark=1,ask=1 λk = 1. Consequently, we enforce the two items corresponding
to r ands to be covered by the same variable on the right branch while on the left branch,r and
s must be covered by different variables. In general, this rule can be easily transferred to the
subproblem by an adaptation of the underlying graph structure, see Barnhart et al. [1998].

Applications of this branching rule can e.g. be found in Desrochers and Soumis [1989], Dumas
et al. [1991], Ryan [1992], Anbil et al. [1992] and Vance et al. [1994]. The basic idea of Ryan-
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Foster branching can also be transferred to set covering problems if only rows are considered for
which the covering constraints are fulfilled at equality, see Grönkvist [1998]. Generalisations to
non-binary integer programs and general right-hand sides can be found in Vanderbeck and Wolsey
[1996] and Vanderbeck [2000]. However, these integer branching rules suppose the subproblems
to be solved by mixed integer programming which can be very costly.

More generally, it has been proposed to branch on the variables of the compact formulation,
see e.g. Gamache et al. [1999] and Villeneuve et al. [2003]. In fact, the original variables are part
of the subproblem, meaning that branching decisions on these variables can be easily transferred
to the subproblem without destroying its structure. Ryan-Foster branching is a special case of this
general rule when the rowsr, s correspond to adjacent nodes in a flow formulation with branching
applied to the variable representing the flow betweenr ands.

6.4. Lower Bounding

Assuming that we are given a minimisation problem, the solution value at a branch-and-price
node only represents a lower bound if no more columns with negative reduced costs can be found,
i.e. when we have solved the LP relaxation. Lasdon [1970], Farley [1990] and Vanderbeck and
Wolsey [1996] describe lower bounds on the final objective function which can be calculated
beforecolumn generation has terminated. As we will see, these lower bounds can be used to
terminate column generation even if negative reduced cost columns are still available.

The lower bound of Lasdon [1970] does not make special assumptions on the type and struc-
ture of the linear program. However, Lasdon’s description only applies to the case of different
restrictions on the subsets, i.e.A2,k1 = A2,k2 , b2,k1 = b2,k2 ∀k1 6= k2 (see Section 6.2). Fur-
thermore, Lasdon assumed that convexity constraints

∑
q∈Qk λk

q = 1 are present in the master
program which is not the case if the subproblem polyhedra are only spanned up by extreme rays.
In the following, we will show how the Lasdon bound can be generalised to the case of identical
restrictions on the subsets when an upper bound on the sum of the variables is known.

We therefore formulate the master program as

min z =
∑
k∈K

∑
p∈P

ck
pλ

k
p (6.15)

subject to ∑
k∈K

∑
p∈P k

âk
pλ

k
p = b (6.16)

λk
p ≥ 0 (6.17)

with âk
p denoting the master program column corresponding to variableλk

p. Furthermore, we
assume that we know an implicit boundL on the sum of the variables:∑

k∈K

∑
p∈P k

λk
p ≤ L (6.18)

We multiply the constraints (6.16) by their dual valuesπ ∈ Rm and subtract their sum from
(6.15), giving

z − πb =
∑
k∈K

∑
p∈P k

λk
p(c

k
p − πb) (6.19)

131



6. Column Generation and Branch-and-Price

The valueck
p − πb =: c̄k

p is exactly the reduced cost of variablep in subproblemk. Thek’th
subproblem in fact calculatesminp∈P k c̄k

p. Using this minimum in (6.19), we obtain

z − πb ≥
∑
k∈K

∑
p∈P k

λk
p

(
min
p∈P k

c̄k
p

)
=⇒ z − πb ≥

∑
k∈K

(
min
p∈P k

c̄k
p

) ∑
p∈P k

λk
p

=⇒ z − πb ≥

min
k∈K
p∈P k

c̄k
p

∑
k∈K

∑
p∈P k

λk
p

wheremin k∈K
p∈P k

c̄k
p is easily calculated by a minimisation over the optimal solutions of the sub-

problems. Using the upper boundL (equation (6.18)), we can deduce

z ≥

min
k∈K
p∈P k

c̄k
p

L + πb

Because this inequality holds for every value ofz which can be obtained from (6.15)-(6.17), it
is also valid for the minimum value ofz. We therefore have

min z ≥

min
k∈K
p∈P k

c̄k
p

L + πb (6.20)

From LP duality theory, we know thatπb is the objective function valuezB of the current basis.
Inequality (6.20) therefore expresses that

zlb := zB +

min
k∈K
p∈P k

c̄k
p

L

is a lower bound on the final objective function which can be easily calculated from the data which
is available at each column generation iteration.

Assume that the objective function value of an integer solution to (6.15)-(6.17) is always integer.
We can then terminate column generation as soon asdzlbe ≥ zB because generating further
columns will not improve the lower bound information at the current node. This sometimes help
to avoid the so-calledtailing-off effectwhich describes the slow convergence of column generation
algorithms near the optimum [Lübbecke and Desrosiers, 2004]. If we know an upper boundzub

on the optimal objective function value of (6.15)-(6.17), we can furthermore prune the current
branch ifdzlbe ≥ zub.

Farley [1990] proposes another lower bound for a special class of linear programs with only
≥ constraints and non-negative objective function coefficients. The bound of Vanderbeck and
Wolsey [1996] is a minor strengthening of Lasdon’s bound for identical subproblems when lower
and upper bounds on the decision variables are known.

6.5. Lagrangian Relaxation

While column generation is an intrinsically primal method, Lagrangian relaxation can be re-
garded an equivalent dual method which is often used to solve integer programs [Geoffrion, 1974]

132



6.6. Convexification versus Discretisation

[Lemaŕechal, 2001]. Several researchers have compared column generation and Lagrangian re-
laxation, see e.g. L̈ubbecke and Desrosiers [2004].

The idea of Lagrangian relaxation applied to integer programs is to relax a setA1X ≥ b1

of constraints which are integrated into the objective function, weighted by a vectoru ≥ 0 of
Lagrange multipliers. This results in theLagrangian subproblem

L(u) := min
X∈X

cT X − uT (A1X − b1) (6.21)

with X := {X |A2X ≥ b2, X ≥ 0, X integer}. Solving (6.21) is algorithmically equivalent to
solving the subproblem described above with the dual values replaced by Lagrange multipliers.

L(u) is a lower bound on the optimal valuez∗ of the above problem sinceL(u) ≤ min(cT X−
uT (A1X− b1) |A1X ≥ b1) ≤ z∗. The best lower bound can be found by solving theLagrangian
dual problem:

L := max
u≥0

L(u) (6.22)

Imagine that the best setu∗ of dual multipliers has been determined by solving (6.21). Accord-
ing to the definition of the Lagrangian subproblem, we haveA2X ≥ b2 and by complementary
slackness, it can be shown thatu∗T (A1X − b1) = 0. We only have to check thatA1X ≥ b1.
If one of these constraints is violated, primal feasibility must be recovered by some appropriate
repair algorithm [Desrosiers and Lübbecke, 2003].

The Lagrangian dual (6.22) is most often solved by subgradient optimisation which is simple
and easy to implement, see e.g. Geoffrion [1974]. More recent proposals include bundle methods
[Hiriart-Urruty and Lemaŕechal, 1993] and the analytic centre cutting plane method [Goffin and
Vial, 2002]. Alternatively, imagine thatX is replaced by conv(X ) which does not change the op-
timal solution value. This turns the Lagrangian dual into a linear program. In fact, the Lagrangian
dual will yield the same value as the linear program above [Geoffrion, 1974], and the optimal La-
grange multipliers will correspond to the dual variables of the restricted master program [Barnhart
et al., 1998].

Lagrangian relaxation and column generation are therefore equivalent, and the choice for one
of these methods is mainly due to performance issues. While for a long time, Lagrangian re-
laxation has found wide-spread use, column generation is nowadays considered superior due to
the advent of efficient simplex codes [Barnhart et al., 1998]. However, there are approaches to
combine column generation with Lagrangian relaxation [van den Akker et al., 2002], and dual
solutions obtained by Lagrangian relaxation can be useful to start column generation [Lübbecke
and Desrosiers, 2004].

6.6. Convexification versus Discretisation

In Dantzig-Wolfe decomposition, the solution space of a constraint subset is represented by a
convex-linear combination of the extreme points and rays. When solving integer programs, we
will usually claim the subproblem solutions (i.e. the extreme points and rays) to be integer. The
underlying solution space is then aconvexificationof all integer feasible solutions [L̈ubbecke and
Desrosiers, 2004]. The optimal integer solution can be situated in the interior of the solution space,
being a convex-linear combination of the extreme points and rays. We will therefore only require
integrality on the original variables while the derived variablesλq andλp can still be fractional.

Imagine the multicommodity flow problem with the subproblem being a shortest path problem
(see e.g. Assad [1978]). The elementary paths generated by the subproblem are combined to
complex flows in the master program. Integrality is only required on the original flow variables.
If we are interested in the individual paths, these integral flows can be recomposed according to
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the flow decomposition theorem (e.g. Ahuja et al. [1993]). Note that these derived paths need not
be identical with the paths which are generated as subproblem solutions.

In other problems however, we may want the new variablesλq andλp to be integer. As pointed
out by Vanderbeck [2000], the resulting program is not equivalent to the convex program defined
above. As opposed to convexification, the decomposition will be based on adiscretisationof the
solution space. Effectively, the subproblem must be able to generate interior integer points of the
solution space. The decomposition is then based on the following theorem (see Nemhauser and
Wolsey [1988]):

Theorem 2. LetP := {X ∈ Rn |A2X ≥ b2, X ≥ 0} 6= ∅ andX = P ∩ Zn. Then there exists a
finite set of integer points{xq}q∈Q and a finite set of integer rays{xp}p∈P ofP such that

X =

∑
q∈Q

xqλq +
∑
p∈P

xpλp

∣∣∣∣ ∑
q∈Q

λq = 1, λ ∈ N|Q|+|P |
0


This theorem is the integer analogon of the theorems of Weyl and Minkowski, and the decom-

position based on discretisation is analogous to Dantzig-Wolfe decomposition. In the special case
of an empty set of integer rays, all of theλq, q ∈ Q will be binary, and solving the master pro-
gram is equivalent to selecting one of the subproblem solutions. Note that as long as the linear
programming relaxation is solved, convexification and discretisation coincide. Furthermore, if
the original variables are binary, both approaches are equivalent since the solution space does not
include interior points [L̈ubbecke and Desrosiers, 2004].

While the distinction between convexification and discretisation is theoretically important, it
is often neglected in practice. Effectively, enforcing integrality on the original variables often
entails integrality on the derived variables. The design of branch-and-price algorithms mostly
aims at developing branching rules which are empirically sufficient in order to produce integer
solutions, see Mason [1999] for an example.

6.7. Advanced Performance Issues

In recent years, several techniques have been proposed to speed up column generation and branch-
and-price algorithms, see Desaulniers et al. [2001] for a survey. Some approaches have already
been mentioned, e.g. using heuristic primal or dual solutions as a starting point. Furthermore,
we have described in Section 6.4 how lower bounds can be used for early termination of column
generation.

A further speedup idea consists in fixing the original variables of the compact formulation by
using lower and upper bounds. As Desrosiers and Lübbecke [2003] note, dual variable informa-
tion on the original variables which is not available in the master program can be obtained from the
ultimate solution of the pricing problem before reaching the optimum. Fixing original variables
corresponds to reduced-cost fixing in linear programming, see Padberg and Rinaldi [1991].

Another approach which has newly attracted attention in general mixed integer programming
is the use of cutting planes, see Johnson et al. [2000], Martin [2001] and Marchand et al. [2002].
The combined use of cutting planes and branching is known asbranch-and-cut, and adding col-
umn generation results inbranch-and-price-and-cutapproaches. Cutting planes generally help in
finding good lower bounds [Barnhart et al., 1998]. Up to now, only little publications on branch-
and-price-and-cut applications have been published, see Nemhauser and Park [1991], Kohl et al.
[1999] and Barnhart et al. [2000]. As Irnich [2002] notes, all of these approaches restrict cutting
planes to be separated after pricing has converged. Combining pricing and cutting plane separa-
tion in a more flexible way (e.g. including lifting of cutting planes [Marchand et al., 2002]) will
certainly be subject of future research.
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Column generation corresponds to cut generation in the dual program and is thus equivalent
to Kelley’s cutting plane method for the dual model [Kelley, 1960]. Valério de Carvalho [2002]
has proposed to introduce additional dual cuts, i.e. cuts which are valid for the dual model, rep-
resenting variables of the primal formulation. In an application for the cutting stock problem, he
has shown how dual cuts with an intuitive interpretation speed up column generation. While the
definition of dual cuts depends on the problem, it may be possible to transfer this idea fruitfully
to other applications.

It has been observed that dual values often do not converge smoothly, and oscillations prevent
column generation from a fast convergence [Lübbecke and Desrosiers, 2004]. This has led to the
proposition of differentstabilisationtechniques. The idea of the BOXSTEP method of Marsten
et al. [1975] is to restrict dual values to a box around their current values. If the new duals are
situated on the boundary, the box is relocated. Otherwise, the optimum has been reached in the
interior of the box. Wentges [1997] and Neame [2000] stabilise the evolution of dual values by
using a convex combination of the current dual values and the values of the preceding iteration.
Du Merle et al. [1999] propose a combination of primal and dual strategies. As in the BOXSTEP

approach, a box is put around the dual values; exceeding the bounds is allowed but penalised.
These penalties translate into perturbations for the primal constraints, and violating the constraints
is penalised as given by the limits on the dual variables. By dynamic updates, deviations from the
original model are driven out of the solution.

As column generation and branch-and-price algorithms are active fields of research, further
acceleration ideas will certainly come up in the future.
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7. Optimal Shift Planning by
Branch-and-Price

That is the trouble with flying:
We always have to return to airports.

Think of how much fun flying would be
if we didn’t have to return to airports.

— Henry Minizburg

In Chapter 5, we have introduced complex task-level shift planning which combines elements
from shift scheduling and vehicle routing. The problem was complicated by preemptive tasks as
well as crew and qualification constraints. In this chapter, a subclass will be tackled, consisting
in covering a given set of non-preemptive tasks with fixed start times by appropriate shift duties.
Simplified shift planning therefore combines classical shift scheduling with elements from vehicle
scheduling and can be interpreted as a specialised multiple depot vehicle scheduling problem
(MDVSP). We will show that simplified shift planning isNP-hard in the strong sense which also
proves that general task-level shift planning isNP-hard. Furthermore, we will use Dantzig-Wolfe
decomposition to derive a branch-and-price algorithm which solves many real-world test cases to
proven optimality while consuming moderate computation times.

7.1. Introduction

General task-level shift planning as described in Chapter 5 is a complex optimisation problem. It
can involve movable tasks, preemptive tasks, crew constraints as well as qualification and shift-
level restrictions. The improvement algorithm of Chapter 5 was designed to tackle all of these
constraints, providing a means for generating robust solutions for a multitude of scenarios. While
all of these features can be helpful in general airport ground handling, practical shift planning
often involves only a small subset of the modelling aspects.

As an example, many planning scenarios comprise only tasks which are fixed in time. Task
splitting is often helpful for the planning of passenger services (like check-in, boarding and tick-
eting) while on the apron, handling tasks usually have short durations, and task interruptions are
not desired. Similarly, crew planning is often used for aircraft cleaning personnel while most
other airports services can be scheduled without any parallelism constraints. Finally, severe qual-
ification restrictions are usually only imposed in the planning of highly specialised services like
operations departments.

This justifies the search for specialised algorithms for a smaller class of shift planning prob-
lems, exploiting special structures while still being sufficiently general. In this chapter, we will
restrict our attention to shift planning with tasks which are non-preemptive and fixed in time.
Furthermore, task overlapping, crew planning, qualifications as well as break buffers and relative
shift number restrictions will not be supported.

The resulting shift planning problem thus consists in covering tasks of given start times and
lengths by a cost-minimal set of shifts which can be of any of the given types. Note that while
work tasks are fixed in time, we can have several movable breaks in each shift. Travel times will
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be considered, and absolute minimum and maximum restrictions can be imposed on arbitrary sets
of shift types.

While the general shift planning of Chapter 5 is based on the vehicle routing problem with
time windows (VRPTW), the fixed task case is called the vehicle scheduling problem (VSP)
[Desrosiers et al., 1993]. Additionally to the basic VSP setting, shift types restrict the start and
end times of tours. Each shift type can be regarded as a depot, imposing temporal restrictions on
the departures and arrivals of vehicles. Fixed task shift scheduling can thus be regarded a special
case of the multiple depot vehicle scheduling problem (MDVSP).

In Chapter 5, it was shown that some shift planning instances are difficult to tackle by local
improvement. This is especially the case if few shift types are used or shift costs are independent
from their lengths. Then very large neighbourhoods must be reoptimised in order to achieve
improvements, and improving sets of tasks are difficult to find. Our goal will be the development
of an algorithm overcoming these deficiencies which are typical of local search approaches.

The local improvement algorithm presented in Chapter 5 did not make assumptions on the
structure of the problem instances. In fact, the complexity of local steps depends more on the
neighbourhood size than on the scale of the overall scenario. In practice, a considerable number
of airports must obey night flying restrictions. Additionally, there may be time periods of low
workload within the days. In both cases, realistic scenarios may naturally decompose into separate
days or even smaller planning horizons. This can be exploited by decomposition, making the
separate problems amenable to an exact solution approach.

The algorithms of Chapters 4 and 5 were based on constraint programming. As described in
Section 3.1, CP has its origins in the solution of constraint satisfaction problems. With a focus
on feasibility aspects, it is a technique which is appropriate for problems which are strongly con-
strained or which involve non-linear restrictions or objectives. In contrast, linear programming
which is the predominant optimisation method in the Operations Research community is espe-
cially powerful in tackling cost aspects while it is limited in the incorporation of complex and
non-linear side constraints. For extensive comparisons of strengths and weaknesses of CP and LP
approaches, the reader is referred to Heipcke [1999] and Lustig and Puget [2001].

In this chapter, an integer programming approach for the simplified shift planning problem is
developed. It will be shown how the structure of a compact network flow formulation of the sim-
plified shift planning problem can be exploited by Dantzig-Wolfe decomposition. The resulting
column generation model will be solved by repeated iterations between a master program and
subproblems. By branching on the original flow variables, integer solutions can be efficiently
obtained in a way which is compatible with the subproblems. In order to generate optimal solu-
tions, column generation is applied throughout the search tree. As will be shown, real-world shift
planning problems often decompose into several components which can be optimised separately.
Even if simplified shift planning is shown to beNP-hard, the branch-and-price approach is able
to provide optimal solutions for many real-world test cases in reasonable times.

Throughout the chapter, basically the same notations as in Chapter 5 will be used. Each work
task i ∈ I will be given along with a start timeai = bi and a lengthli. Between two tasks
i, j, a travel time ofdi,j time units must be performed. Travel times can be asymmetric, but
are assumed to obey the triangle inequality. Shifts start and end at a central depot, and breaks
take place at the location of their predecessor work task. Day indicesn will be omitted from the
formulation, assuming that given problems span over only one day. The generalisation to several
days is straightforward and will be presented in Section 7.7. A shift typek ∈ K will thus be
characterised by a start timestk, an end timeetk and costsck.

An absolute shift number restrictionr ∈ Rmin
abs (r ∈ Rmax

abs ) imposes a minimum (maximum)
limit of mr ∈ N shifts on a shift type setKr. For ease of exposition, we will assume that all shift
number restrictions are hard constraints and can be obeyed. Imposing penalties for exceeding
maximum limits as in Chapter 5 will be straightforward. We will furthermore suppose that all
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tasks can be covered by shifts.
The presentation will be structured as follows: Section 7.2 shows that simplified shift plan-

ning isNP-hard. Section 7.3 presents a flow formulation for simplified shift planning which is
submitted to Dantzig-Wolfe decomposition in Section 7.4. In Section 7.5, it is shown how the
reformulated problem can be solved by column generation. Integer branching is the subject of
Section 7.6. Section 7.7 shows how realistic shift planning scenarios can often be decomposed
into independent optimisation problems. Experimental results are given in Section 7.8, and a
summary (Section 7.9) concludes the presentation.

7.2. Computational Complexity

The simplified shift planning problem can be interpreted as a special multiple depot vehicle
scheduling problem (MDVSP) [Desrosiers et al., 1993] with the depots corresponding to origin-
destination pairs for each shift type. The general MDVSP is known to beNP-hard, see Bertossi
et al. [1987] or the alternative proof of Löbel [1997]. Still we cannot conclude that the simplified
shift planning problem isNP-hard because it exhibits a special cost and depot structure which
may render the problem “easy”. We will therefore show theNP-hardness of simplified shift
planning in the sequel.

The proof will be based on a reduction from the ONE-IN-THREE 3SAT problem with un-
negated literals which can be stated as follows:

Given numbersq ≥ 3 andp ≥ 1, a setU := {u0, . . . , uq−1} of q boolean variables
and a setC := {C0, . . . , Cp−1} of p clauses overU such that eachCh ∈ C has only
unnegated variables (literals) and|Ch| = 3 ∀h, is there a truth assignmenttr : U →
{true, false} such that each clauseCh ∈ C has exactly one true variable?

The ONE-IN-THREE 3SAT problem with unnegated literals is known to beNP-hard in the
strong sense [Garey and Johnson, 1979].

Theorem 3. The simplified shift planning problem isNP-hard in the strong sense even if no
travel times, shift restrictions or breaks are present.

Proof. We will first prove that simplified shift planning isNP-hard. We therefore have to show
how a shift planning problem can be constructed for a given instance of the ONE-IN-THREE
3SAT problem with unnegated literals. The time axis will be structured into time slices of2q time
units for each clauseCh, starting at time0. An additional period of2(p − 1)q + 1 time units is
added after the end of the clause time slices. Furthermore, one time unit is added before start time
0, i.e. the time scale starts at−1. Note that times could be made positive by adding one time unit.

The task setI will be made up of a disjoint union ofliteral tasksI lit, filling tasksIfill and
clause tasksIcl:

• For each variableug occurring as a literal in clauseCh, a literal taski ∈ I lit with start time
ai := 2hq + g and lengthli := q is created. The set of literal tasks corresponding to a
variableug will be denoted byI lit

g .

• If variableug occurs as a literal in clauseCh1 and its next occurrence is inCh2 , afilling task
i ∈ Ifill with start timeai := (2h1 +1)q + g and lengthli := (2(h2−h1)− 1)q is created,
i.e. i is a task which starts at the end of one literal task and ends at the start of the next literal
task of the same variable. Ifug occurs inCh1 for the first time, afilling task i ∈ Ifill with
start timeai := −1 and lengthli := 2h1q + g + 1 is created, i.e.i starts at−1 and ends at
the start time of the first literal task of theug. If ug occurs inCh2 for the last time, afilling
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Figure 7.1.: Building blocks of shift planning problem for variable setU := {u0, u1, u2, u3} and
clausesC := {{u0, u1, u2}, {u0, u1, u3}}.

taski ∈ Ifill with start timeai := (2h2 + 1)q + g and lengthli := (2(p − h2) − 1)q − g
is created, i.e.i starts at the end of the last literal task and ends at2qp. The set of all filling
tasks for a taskug will be denoted byIfill

g .

• For each clauseCh, a clause taski ∈ Icl with ai := 2(h + 1)q − 1 and lengthli :=
2q(p− 1) + 2 is created.

The setK of shift types consists of severalT shift typesKT , a singleF shift typekF andfilling
shift typesKfill:

• For each clauseCh, a T shift typek ∈ KT is created with start timestk := 2hq and end
timeetk := 2(p + h)q + 1.

• TheF shift typekF has start timestkF := −1 and end timeetkF := 2pq.

• For each filling taski ∈ Ifill, there is afilling shift typek ∈ Kfill which exactly covers the
filling task, i.e. it hasstk := ai andetk := ai + li.

The costck of each shift typek ∈ K is defined to equal its lengthetk − stk. It should be clear
that this transformation is polynomial.

Figure 7.1 illustrates the shift planning problem which results from ONE-IN-THREE 3SAT
problem withU := {u0, u1, u2, u3} andC := {{u0, u1, u2}, {u0, u1, u3}} (example taken from
Löbel [1997]). The upper part gives the clause tasks (blue) for eachCh ∈ C and the blocks
I lit
g ∪ Ifill

g of literal (red) and filling tasks (green) for eachug ∈ U . The shift types (each of which
can be used by several shifts) are given by grey bars in the lower part. On the vertical axis, the
time slice of2q = 8 time units for each clauseCh are sketched.

The problem is well-defined since all of the tasks can be covered by shifts. Some ideas of the
construction shall be given:

• The sets of literal and fixing tasksI lit
h ∪ Ifill

h for a variableh exactly fit into a shift of the F
shift typekF without any waiting time. Alternatively, filling tasks can be covered by their
corresponding filling shift type without any waiting time.
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C0 C1

Figure 7.2.: Solution of cost2(p2q + pq2)− pq + p + q = 94 for the example.

• At a point in time at which a literal taski ∈ I lit
h ends, no other tasks fromI lit ∪ Ifill end.

There is exactly one filling task fromIfill
h which starts at this point in time, and no other

literal or filling tasks start at this time. Similarly, there is at most one filling task which ends
at each point in time. Ifi ∈ Ifill

h is a filling task which is not a “final” filling task (ending at
2pq), then there is exactly one task inI lit ∪ Ifill starting at this time, namely a literal task
i′ ∈ I lit

h . Two observations follow:

1. None of the literal tasksi ∈ I lit can be covered without waiting time by a filling shift
type.

2. If a literal taski ∈ I lit
h is covered by the F shift typekF , waiting time can only be

avoided if the shift contains all of the literal and filling tasksI lit
h ∪ Ifill

h created for the
variableuh.

• Each pairi, j ∈ I lit of literal tasks pertaining to the same clause overlaps by at least one
time unit, i.e. literal tasks of a clause cannot be covered by the same shift.

• Each clause task can only be covered by exactly one of the T shift types and none of the
other shift types. Covering a clause task by a T shift type leaves a gap which can be used
to cover further tasks. The gap is equal to the time slice for the corresponding clause, i.e.
it starts at2kq and has a length of2q − 1. Only literal tasks fit into this gap – note that
filling tasks always cover the time period2k′q − 1 for a k′. Since literal tasks of a clause
Ck always cover period(2k + 1)q − 1, no more than one literal task will fit into the gap. T
shift types cannot cover tasks without waiting times.

With these observations, it is easy to see that the total work task minutes amount to(2pq +
1)q + p(2q(p− 1) + 2) = 2(p2q + pq2 − pq + p) + q.

It is now claimed that there exists a solution of cost2(p2q + pq2) − pq + p + q for this shift
planning problem if and only if the given instance(U, C) of the ONE-IN-THREE 3SAT problem
with unnegated literals has a solution.

“If” . Suppose a variable assignmenttr : U → {true, false} exists such that each clause
contains exactly one true variable. We then build one shift for each of thep clause shift types.
The shift for clauseCh covers the task which corresponds to the true literal in the respective clause
and the only clause task which fits into the shift type. Each filling tasksi ∈ Ifill

g whose variables
ug is assigned the value true is matched to its filling shift type without any waiting time. The
blocksI lit

g ∪ Ifill
g of tasks for allg with tr(ug) = false are assigned to shifts of the F shift type

kF , again without any gaps. Now all tasks are covered. Figure 7.2 shows the shift plan for the
above example withU := {u1, u2, u3, u4}, C := {{u1, u2, u3}, {u1, u2, u4}}.
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The only waiting time in the plan stems from the clause shift types and amounts top(q − 1).
Because the cost of the shift types is equal to their lengths, the cost of the resulting shift plan is the
sum of work and waiting time:(2(p2q+pq2−pq+p)+q)+p(q−1) = 2(p2q+pq2)−pq+p+q.

“Only if” . Imagine an optimal shift plan of cost2(p2q + pq2)− pq + p + q for the above shift
planning scenario. We will show that we can deduce a truth assignment for the ONE-IN-THREE
3SAT problem such that each clause has exactly one true literal.

For covering the clause tasks, the shift plan must contain at least one shift of each T shift type,
amounting for costs ofp(2pq + 1). By construction, the clause shifts can additionally cover one
literal task at most (and only literal tasks). These tasks will be the literals which are assigned the
value true. Note that each T shift type corresponds to a different clause. Even if all of the gaps of
thep shifts with T shift types are used for covering literal tasks, the remaining tasks will amount
to (2(p2q + pq2− pq + p) + q)− p((2q(p− 1) + 2) + q) = 2pq2− pq + q task minutes. Because
we have already used shifts of costp(2pq +1), these must be covered by shifts of maximum costs
2(p2q + pq2)− pq + p + q− (2p2q + p) = 2pq2− pq + q, i.e. the remaining shift costs equal the
remaining task minutes.

On the one hand, this means that we cannot have more than thep shifts of the T shift types
because these always entail waiting times. Consequently, exactly one literal in each clause will
be assigned the value true. On the other hand, it means that all other literal tasks are assigned to F
shifts together with their filling tasks. We will assign the value false to all literals corresponding
to these literal tasks. Since we cannot afford waiting times, all tasks inI lit

g1
will be assigned to the

same shift ifug1 will be assigned the value false. If thus a literal taski ∈ I lit
g2

is not covered by an
F shift, none of the tasks inI lit

g2
can be covered by an F shift, i.e. we assign consistent values to

all variables. Note that the filling tasksIfill
g2 for a variableug2 with tr(ug2) = true can be covered

without waiting times by their filling shift types.
Since the proof does not make use of travel times, shift restrictions or breaks, this shows that

even basic shift planning is in factNP-hard. To show that simplified shift planning isNP-hard
in the strong sense, we have to prove that even if the sizes of all entities are polynomially bounded
in the length of the input, the problem remainsNP-hard, see e.g. Hromkovič [2001, p. 151].

We first note that the ONE-IN-THREE 3SAT problem with unnegated literals isNP-hard in
the strong sense since it does not involve any numbers [Garey and Johnson, 1979]. The only
numbers which are involved in shift planning without travel times are the lengths of tasks and
shifts. But in the above proof, tasks and shifts have maximum durations of2pq + 1. Lengths are
therefore bounded by a polynomial in the input length, showing that simplified shift planning is
NP-hard in the strong sense, see also Garey and Johnson [1979, Chapter 4].

The proof uses the basic idea of Löbel [1997] of chaining tasks (visits) which are consistently
assigned the value false. However, Löbel’s proof is based on the network structure of the multi-
commodity flow problem associated with a special MDVSP arising in duty scheduling of public
transport, i.e. there is no temporal structure (and clearly no shifts or shift types).

7.3. A Flow Model

The simplified shift planning problem will now be formulated as a network flow model. For ease
of exposition, it will first be assumed that each shift typek ∈ K defines exactly one break. Later,
generalisations to shift types with several or no breaks are discussed. The formulation will use a
distinct networkGk for each shift typek. The construction ensures that every path in the network
for shift typek represents a valid shift of typek, covering a (possibly empty) set of the tasks.

For each taski ∈ I, a start timeai and a lengthli are given. Each shift typek ∈ K will be
delimited by an origin taskiko and a destination taskikd with fixed time windows[aiko

, biko
] = {stk}
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and[aikd
, bikd

] = {etk}, respectively. The unique break taskikb of shift typek has a length oflikb
and a start time window[aikb

, bikb
] such thataiko

≤ aikb
andbikb

+ likb
≤ bikd

. Note that in contrast to
Chapter 5, depot and break tasks are defined per shift type (and not per shift).

The networkGk = (V k, Ek) for shift typek ∈ K is constructed as follows: The origin and
destination tasks of shift typek will be represented by an origin and a destination nodevk

o andvk
d ,

respectively. For each taski ∈ I, one node is created for each position in the shift (before or after
the break) into whichi fits. A taski fits between origin and break task if

aiko
+ diko ,i ≤ ai ∧ ai + li ≤ bikb

If this condition is true,Vk will thus contain a node fori. A further i node is created ifi also
fits between break and shift type end, i.e. if

aikb
+ likb

≤ ai ∧ ai + li + di,ikd
≤ bikd

The set of nodes for taski and shift typek is denoted byV k
i and will be empty ifi does not fit

into k.
For the breakikb , one node is created for each possible predecessor task (including the origin

task) and each start time which this predecessor task admits. For each possible predecessori
and each start time in[max(ai + li, aikb

), bikb
], the break node setV k

b for shift typek will thus
contain one node. The multiplication of break nodes by possible predecessors makes it possible
to attribute a break node to the location of its predecessor.

The construction of the edge setEk is straightforward. Ifvk
i andvk

j are nodes for work tasksi
andj (vk

i ∈ V k
i , vk

j ∈ V k
j ), then there is an edge(vk

i , vk
j ) ∈ Ek if and only if ai + li + di,j ≤ aj .

If vk
i is a node for a taski fitting into the first part ofk (before the break),Ek contains edges

(vk
o , vk

i ) and(vk
i , vk

b ) for each break nodevk
b which was created for predecessori. If vk

i is a node
for taski and the position ink after the break, edges(vk

i , vk
d) and(vk

b , vk
i ) are included inEk if

the predecessor taskj 6= i and start timet associated withvk
b are such thatt + likb

+ dj,i ≤ ai. To

allow for empty first and second shift parts,Ek contains all arcs(vk
o , vk

b ) if vk
b is a break node for

predecessorvk
o and edges(vk

b , vk
d) for all break nodesvk

b .
The result of the construction is a network

Gk =

(⋃
i∈I

V k
i ∪ {vk

o , vk
d} ∪ V k

b , Ek

)

for each shift typek. In the flow formulation, all edges have a capacity of1.
An example can be found in Fig. 7.3. In the upper part of the figure, three tasks and a shift

typek are sketched. The shift type defines a break which must take place within a time window
(including the break’s length) as given by the brackets. For compactness of presentation, the time
axis is assumed to be discretised such that the break can only realize three different start times.
While tasks1 and3 only fit into the first and second part of the shift, respectively, task2 can be
placed in either part. Consequently, the network shown in the lower part contains two nodes2a
and2b. For each admissible start time and predecessor (iko , 1 or 2a), the graph contains a break
node. Note that the network does not contain any nodeb2a

1 because task2 does not allow for a
break placement at its first possible position.

From the construction, it should be clear that every unit flow (or path) fromvk
o to vk

d in Gk

represents a shift of typek, covering some possibly empty set of tasks. In fact, it can be easily
verified that each path passes through a break node and travel times can be correctly covered.
Furthermore, no path can pass through more than one node of a setV k

i because tasks are fixed in
time. The notions of paths and shifts will thus be used interchangeably in the sequel.
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Figure 7.3.: Network construction example.

If TW is the maximum width of the break time windows (TW := maxk bikb
− aikb

+ 1), the
total number of nodes is inO(|K| · |I| · TW ), i.e. the construction is pseudo-polynomial in the
break window sizes. The number of break nodes can be somewhat reduced if several tasks take
place at the same location. Then it suffices to multiply the break nodes by predecessor locations
(instead of by the predecessors themselves).

When formulating the shift planning problem as a network flow model, we are interested in the
minimisation of shift costs. As a shift corresponds to a path from origin nodevk

o to destination
nodevk

d , the costsck incurred by shift typek can be attributed to the edges emanating from the
origin node. The costsck

vw of an edge(v, w) ∈ Ek will thus be defined as

ck
vw :=

{
ck if v = vk

o

0 else

The minimisation of shift costs is a regular objective function since it does not depend on the
task start times. For this class of objective functions, the networks above can be simplified by

creating break nodes only for the earliest possible start times. In Fig. 7.3, the nodesb
iko
2 , b

iko
3 , b1

2, b1
3

andb2a
3 thus become redundant.

The network flow model for the shift planning problem combines the flow formulations for
the different shift types. The decision variables are the flowsXk

vw on the edges(v, w) ∈ Ek.
Additionally to flow restrictions, the model will include absolute minimum and maximum shift
number restrictionsRmin

abs andRmax
abs . A minimum (maximum) restrictionr ∈ Rmin

abs ∪ Rmax
abs

imposes a lower (upper) limit ofmr ∈ N on the shifts of types inKr.
If δ−(v) andδ+(v) are the in- and outedges of a nodev, the flow formulation reads as

min
∑
k∈K

∑
(v,w)∈Ek

ck
vwXk

vw (7.1)
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7.4. Dantzig-Wolfe Decomposition

subject to ∑
k∈K

∑
v∈V k

i

∑
(v,w)∈δ+(v)

Xk
vw = 1 ∀i ∈ I (7.2)∑

k∈Kr

∑
(vk

o ,w)∈δ+(vk
o )

Xk
vk

o w ≥mr ∀r ∈ Rmin
abs (7.3)∑

k∈Kr

∑
(vk

o ,w)∈δ+(vk
o )

Xk
vk

o w ≤mr ∀r ∈ Rmax
abs (7.4)∑

(w,v)∈δ−(v)

Xk
wv −

∑
(v,w)∈δ+(v)

Xk
vw = 0 ∀k ∈ K,∀v ∈ V k

b ∪
⋃
i∈I

V k
i (7.5)

Xk
vw ≥ 0 and integer∀k ∈ K,∀(v, w) ∈ Ek (7.6)

Constraints (7.2) ensure that each task is covered exactly once by a shift. (7.3) and (7.4) are the
minimum and maximum shift number restrictions, respectively. Equations (7.5) are the flow con-
servation constraints for inner nodes of the networks. (7.6) imposes nonnegativity and integrality
on the flow variables. Note that the flow variables are generally non-binary because in order to
obey the minimum restrictions (7.3), we may need several empty shifts of the same type. Model
(7.1)-(7.6) is closely related to so-calledthree-index formulationsfor vehicle routing problems
[Toth and Vigo, 2001a].

Generalising the model to shift types with more than one break or no break at all is straight-
forward. Note that if more than one break is present, additional node instances for the possible
positions (between the breaks, at the start or end of the shift) for each task must be created. Be-
cause we assume travel times to obey the triangle inequality and the objective does not depend on
the gaps between the tasks, it is not necessary to restrict tasks to be covered exactly once. Effec-
tively, if a shift plan covers a task several times, we can simply take out all but one task instance
from the plan. The set partitioning constraints (7.2) can therefore be relaxed to set covering con-
straints (≥ 1) [Toth and Vigo, 2001a] which are numerically more stable [Barnhart et al., 1998]
[Desaulniers et al., 2001].

Lübbecke and Desrosiers [2004] additionally note that relaxing set partitioning to set covering
constraints halves the dual solution space since dual variables of covering constraints are restricted
to be nonnegative. Note that while a solution may cover some of the tasks more than once, an
minimum cost solution will never use multiple instances of a whole path.

Equations (7.1) through (7.6) describe an integer multicommodity flow problem with additional
quantitative restrictions [Assad, 1978] [Bertossi et al., 1987]. Actually, the shift types can be in-
terpreted as commodities each of which must be routed on a dedicated network. Constraints (7.2)
through (7.4) arecoupling constraintswhich potentially span over all of the individual flow mod-
els (block [A1 · · ·A|K|]X ≥ b in Fig. 7.41). In contrast, the flow constraints 7.5 are local to
the flow models. The constraint system thus has ablockangularstructure (blocksBkX = 0 in
Fig. 7.4) with different restrictions on the subsets, cf. Section 6.2.

7.4. Dantzig-Wolfe Decomposition

As mentioned before, the flow model of the shift planning problem gives rise to the block-
structured linear program (7.1)-(7.6). We will exploit this special structure by applying Dantzig-
Wolfe decomposition to the compact formulation. For related work on the multiple-depot vehicle
routing and scheduling problems, the reader is referred to Desrosiers et al. [1993], Ribeiro and
Soumis [1994] and Desaulniers et al. [1998]. For the time being, we will relax the integrality
conditions of (7.6).

1Note that also the maximum shift number restrictions can be formulated as≥ constraints by multiplying with−1.
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Figure 7.4.: Blockangular structure of the flow model.

As described in Section 6.1, the Dantzig-Wolfe decomposition is based on the representation
of the convex polyhedra given by the blocks of local constraints by their extreme points and rays.
Applied to problem (7.1)-(7.6), (7.2) through (7.4) are the coupling constraints and thus remain
in the master program. The flow conservation constraints (7.5) along with the nonnegativity con-
straints (7.6) build the subsystems. Since constraints (7.5) define a homogeneous polyhedron,
the polyhedra of these subsystems do not have extreme points and can be represented by a linear
combination of the extreme rays.

Let {(xk
vwp | (v, w) ∈ Ek) | p ∈ Ωk} be the set of extreme rays for shift typek. Each extreme

ray (xk
vwp | (v, w) ∈ Ek) represents a single path (shift) because it obeys the flow conservation

constraints. Note that if(xk
vwp | (v, w) ∈ Ek) was a combination of several shifts, it could not be

an extreme ray. Without loss of generality, we can assume thatxk
vwp ∈ {0, 1}.

By the theorems of Weyl and Minkowski, the original variablesXk
vw can be represented by a

linear combination of the extreme rays:Xk
vw =

∑
p∈Ωk

xk
vwpλ

k
p (λk

p ≥ 0) [Nemhauser and Wolsey,

1988]. The following formulation results from replacing all of the original variables in formula-
tion (7.1)-(7.6):

min
∑
k∈K

∑
p∈Ωk

 ∑
(v,w)∈Ek

ck
vwxk

vwp

λk
p (7.7)

subject to

∑
k∈K

∑
p∈Ωk

∑
v∈V k

i

∑
(v,w)∈δ+(v)

xk
vwp

λk
p ≥ 1 ∀i ∈ I (7.8)

∑
k∈Kr

∑
p∈Ωk

 ∑
(vk

o ,w)∈δ+(vk
o )

xvk
o wp

λk
p ≥mr ∀r ∈ Rmin

abs (7.9)

∑
k∈Kr

∑
p∈Ωk

 ∑
(vk

o ,w)∈δ+(vk
o )

xvk
o wp

λk
p ≤mr ∀r ∈ Rmax

abs (7.10)

λk
p ≥ 0 ∀k ∈ K,∀p ∈ Ωk (7.11)
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7.4. Dantzig-Wolfe Decomposition

The decision variables of this problem are the coefficientsλk
p for the extreme rays of the poly-

hedra given by the flow conservation constraints. We will now introduce new identifiers for the
objective function and constraint coefficients which were already grouped by brackets. Let

ck
p :=

∑
(v,w)∈Ek

ck
vwxk

vwp

be the cost coefficient for extreme rayp ∈ Ωk. As mentioned above, an extreme ray is a single
path from the origin to the destination node. Furthermore, we only account for shift costs on the
outedges of origin nodes while all other edge weights are0. Therefore,ck

p is equal to the shift
type costck.

The coverage coefficients in constraints (7.8) will be denoted bygk
ip for eachi ∈ I andp ∈ Ωk:

gk
ip :=

∑
v∈V k

i

∑
(v,w)∈δ+(v)

xk
vwp

With p being a shift, this coefficient will be equal to1 if p traverses a node belonging to taski
and0 otherwise. The coefficientsgk

ip thus indicate which work tasks are covered by a shiftp of
typek, i.e.(gk

ip | i ∈ I) is the characteristic vector of the set of covered work tasks.
Finally, we analyse the coefficient ∑

(vk
o ,w)∈δ+(vk

o )

xvk
o wp

in the shift restrictions 7.9 and (7.10). This sum equals1 if p is a shift of typek and will be0
otherwise. Since the sums in (7.9) and (7.10) only run overp ∈ Ωk, the coefficient can be omitted.

With these observations and definitions, themaster programreads as

min
∑
k∈K

∑
p∈Ωk

ck
pλ

k
p (7.12)

subject to ∑
k∈K

∑
p∈Ωk

gk
ipλ

k
p ≥ 1 ∀i ∈ I (7.13)∑

k∈Kr

∑
p∈Ωk

λk
p ≥mr ∀r ∈ Rmin

abs (7.14)∑
k∈Kr

∑
p∈Ωk

λk
p ≤mr ∀r ∈ Rmax

abs (7.15)

λk
p ≥ 0 ∀k ∈ K,∀p ∈ Ωk (7.16)

This linear program has a natural interpretation. The decision variableλk
p represents the “pro-

portion” of a shiftp used in the solution. Shift costs are derived from their shift types. In the
constraint system, the column for a shiftp indicates which tasks are covered. The shift restrictions
sum up all shifts which are affected by the restrictions. Because the coefficients of the extreme
rays were chosen to be binary, we will regain integrality if the variablesλk

p are constrained to
be binary. Then the program (7.12)-(7.16) corresponds to selecting a subset of all possible shifts
such that all tasks are covered and the shift restrictions are obeyed.

While the original formulation (7.1)-(7.6) expresses the flow problem in terms of the flows on
the edges, the Dantzig-Wolfe formulation (7.12)-(7.16) builds solutions by combinations of paths
(unit flows) from origin to destination nodes. Dantzig-Wolfe decomposition on this problem thus
corresponds to an application of the flow decomposition theorem, cf. Ahuja et al. [1993].
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7. Optimal Shift Planning by Branch-and-Price

7.5. Column Generation

The solution of (7.12)-(7.16) by linear programming in principle requires a full enumeration of
all possible shifts covering subsets of the tasks. In practice, this will only be possible on very
small test cases. The idea of column generation is to maintain only a restricted subsetΩ′ ⊂
Ω :=

⋃
k∈K Ωk of variables in the master program and assumeλk

p = 0 for all p ∈ Ω \ Ω′. The
restricted master program is solved to optimality on the restricted column set, using the simplex
method. In the subproblems, the optimal dual values are then used to generate new shifts (extreme
rays) which may improve the solution. The generated columns are added to the restricted master
program which is then resolved. This process iterates until no more improving columns are found
in the subproblems.

In the pricing problems, we generate extreme rays of the polyhedra defined by the constraint
systems which are not represented in the master program. According to the simplex method, we
should generate extreme rays (shifts) whose reduced costs are negative. Letπi andµr be the dual
values associated with the covering and shift restriction constraints in an optimal solution to the
restricted master program. If the Dantzig rule is used for the choice of an entering variable, we
seek for a columnp such that the reduced cost

c̄k
p := ck

p −
∑
i∈I

gk
ipπi −

∑
r∈Rmin

abs

ρr(k)µr −
∑

r∈Rmax
abs

ρr(k)µr (7.17)

is minimal. In this formulation,ρr is a functionρr : K → {0, 1} which indicates if a given shift
number restrictionr ∈ Rmin

abs ∪Rmax
abs refers to a shift type:

ρr(k) :=
{

1 if k ∈ Kr

0 else

The dual valuesπi andµr can be interpreted as shadow prices for covering a taski and using
a shift type inKr, respectively. For minimum shift restrictions, these prices will be nonnegative
while for the maximum restrictions, the dual values will be nonpositive. If covering a task or obey-
ing a shift restriction represents a bottleneck in a restricted master program, the dual values will be
different from0. Interpreting term (7.17), we thus seek for a shift of a priori costsck

p = ck which
gets a reward for covering bottleneck tasks or minimum restrictions and which gets penalised for
using shift types of bottleneck maximum restrictions. From the subproblem viewpoint, the cov-
erage and shift restrictions are represented by a reward/penalty mechanism via dual values of the
master program while the flow conservation constraints are represented explicitly.

As described above, thegk
ip and the contributions to the shift restrictions are fixed for the master

program. For the subproblems, they are calculated from the decision variables which are the edge
flowsXk

vw. As described above, the flow formulation decomposes into individual models for each
shift typek. As a consequence, the one pricing problem is solved for each shift type. The shift
with minimum reduced costs can then be retrieved by minimisation over the results for eachk.
The pricing problem for shift typek is

min
∑

(v,w)∈Ek

ck
vwXk

vw −
∑
i∈I

πi

∑
v∈V k

i

∑
(v,w)∈δ+(v)

Xk
vw

−
∑

r∈Rmin
abs

ρr(k)µr −
∑

r∈Rmax
abs

ρr(k)µr

(7.18)

subject to ∑
(w,v)∈δ−(v)

Xk
wv −

∑
(v,w)∈δ+(v)

Xk
vw = 0 ∀v ∈ V k

b ∪
⋃
i∈I

V k
i
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7.6. Branch-and-Price

Xk
vw ∈ {0, 1} ∀(v, w) ∈ Ek

In the objective function (7.18), the term

c̄k := −
∑

r∈Rmin
abs

ρr(k)µr −
∑

r∈Rmax
abs

ρr(k)µr

for the shift restrictions is constant for a givenk. The covering pricesπi can be attributed to the
edges by defining new edge costsc̄k

vw:

c̄k
vw :=

{
ck
vw − πi if v ∈ V k

i

ck
vw else

With these definitions, the pricing problem for shift typek can be reformulated as

min c̄k +
∑

(v,w)∈Ek

c̄k
vwXk

vw

subject to ∑
(w,v)∈δ−(v)

Xk
wv −

∑
(v,w)∈δ+(v)

Xk
vw = 0 ∀v ∈ V k

b ∪
⋃
i∈I

V k
i

Xk
vw ∈ {0, 1} ∀(i, j) ∈ Ek

This is a shortest path problem on the modified edge costsc̄k
vw which can e.g. be solved by the

Dijkstra algorithm or by dynamic programming [Cormen et al., 2001]. Alternatively, it can be
solved by the simplex method for linear programming since shortest path problems are naturally
integer [Ahuja et al., 1993]. The lower bounds of the LP relaxations of the compact and the
column generation formulation therefore coincide as described in Section 6.3.

As described above, we can obtain the best new shift by minimising over the results for all shift
types. If the resulting shift has negative reduced costs, it is added as a new column to the restricted
master program. The master program is then resolved, providing the pricing problems with new
dual values in the next iteration. This process iterates until no more reduced cost columns can
be found in which case the optimal solution to the relaxed problem has been found, see also
Figure 6.1 in Section 6.1.

It should be noted that in the pricing problems, it suffices to find shifts with negative reduced
costs instead of minimum cost solutions. Column generation schemes tend to converge faster
if several negative reduced cost columns are added in each iteration [Desrosiers et al., 1984].
Note also that by subproblem pricing, all possible shifts are implicitly represented in the master
program. Nevertheless, the simplex algorithm will only explore a small subset of the total number
of shifts on its way to the optimum solution.

If several shifts of a shift type have equal reduced costs, we always choose a non-dominated
shift, i.e. a shift into which no further tasks can be inserted without increasing reduced costs. Toth
and Vigo [2001a] have called such columnsinclusion-maximal. By this procedure, we include a
maximum number of tasks with vanishing dual costs to the shift. This accounts for the fact that
such tasks can be a bottleneck in later iterations. We can therefore expect that less columns must
be generated if we always add non-dominated shifts, see also Lübbecke and Desrosiers [2004].

7.6. Branch-and-Price

Up to now, the integrality restrictions of the original problem were dropped and only the LP relax-
ation of the shift planning problem was solved. Set covering formulations are generally known to

149



7. Optimal Shift Planning by Branch-and-Price

exhibit advantageous integer properties, see e.g. Bailey [1985] and Mehrotra et al. [2000]. In order
to tackle fractionalities, we will devise an LP-based branch-and-bound algorithm. We will thus
repeatedly branch on fractional values, imposing new integrality cuts on the branches. Branch-
ing decisions may render new variables advantageous, meaning that column generation should be
performed throughout the search tree.

As pointed out in Section 6.3, branching should be applied to the variables of the compact
formulation [Villeneuve et al., 2003], i.e. on the edge flow variablesXk

vw =
∑

p∈Ωk xk
vwpλ

k
p

[Desrochers et al., 1992]. Since these flow variables are part of the pricing problems, this does not
destroy the subproblem structure. Since we enforce integrality only on the original variables, the
branch-and-price approach is based on the convexification of the solution space, see Section 6.6.

In the original formulation, the set partitioning (= 1) constraints were relaxed to set covering
constraints (≥ 1). As a consequence, the edge values

∑
p∈Ωk xk

vwpλ
k
p can assume higher-order

fractional values. Let
∑

p∈Ωk xk
vwpλ

k
p = y with y > 1 and fractional. We would then create two

new branches, imposing
∑

p∈Ωk xk
vwpλ

k
p ≤ byc on one branch and

∑
p∈Ωk xk

vwpλ
k
p ≥ dye on the

other. But on the≤ branch,
∑

p∈Ωk xk
vwpλ

k
p may later have a fractional value0 < y′ < byc, and

we would have to branch again.
This branching is clearly redundant because we can implicitly assume the set partitioning struc-

ture. Without loss of generality, the values
∑

p∈Ωk xk
vwpλ

k
p can be constrained to the range[0, 1].

If
∑

p∈Ωk xk
vwpλ

k
p assumes a fractional valuey, we can therefore create two branches with con-

straints
∑

p∈Ωk xk
vwpλ

k
p = 0 and

∑
p∈Ωk xk

vwpλ
k
p = 1, respectively.

This corresponds to Ryan-Foster constraint branching, see Section 6.3. In the shift planning
context, the branch

∑
p∈Ωk xk

vwpλ
k
p = 0 means that we forbid the use of edge(v, w) in net-

work Gk, i.e. the nodesv andw must not be covered by the same shift of typek. This can be
implemented by forcing all shifts using(v, w) to 0 and removing edge(v, w) from Gk in the sub-
problems. The branch

∑
p∈Ωk xk

vwpλ
k
p = 1 says thatv andw must be covered once by the same

shift of typek. This is realised by removing all shifts coveringv or w but not both and removing
all edges(v, w′) with w′ 6= w from the pricing problems. Even if theλk

p will never exceed1 in an
optimal solution, the constraint

∑
p∈Ωk xk

vwpλ
k
p = 1 must be explicitly added to the master pro-

gram because it constrains the original variableXp
vw to [0, 1] which was not originally assumed.

This constraint yields an additional dual value which must be subtracted from the edge cost in the
pricing problem.

For the implementation described below, branching was applied on a more aggregate level.
Instead of branching on the edges of the individual shift types, integrality is enforced on the level
of consecutive tasks in shifts of arbitrary types, see also Desrochers and Soumis [1989]. We
thus search for task pairs(i, j) such that the sum of the shifts coveringi andj consecutively is
fractional. The branching rule is then applied to all edges inV k

i × V k
j for all shift typesk ∈ K.

Clearly, the number of potential task pair branches is less than for edge level branching. Note
however that task pair branching is not complete in general, i.e. fractionalities may remain even
if all task pairs are integer. Nevertheless, it revealed to be sufficient on all test cases.

In order to avoid a destruction of the current master program solution, branching is applied to
task pairs(i, j) with values less than1 as long as possible. We always branch on the pair(i, j)
whose value is closest to1. Because such a solution suggests to cover tasks(i, j) consecutively
and by the same shift, the= 1 branch is explored first. A similar branching scheme has been
proposed by Ryan [1992]. It could be observed that this rule often allows for finding an optimal
solution with a single descent in the search tree, i.e. the first integer solution is already optimal.

The overall branch-and-price scheme is given by Algorithm 4. The result of the shift planning
construction heuristic described in Chapter 5 is used as a starting solutionΣ∗. Σ∗ thus provides
the master program with a first column set and gives an initial upper boundz∗. It is important to
note that the LP valuezLP does not provide a lower bound as long as improving columns can be
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7.7. Problem Decomposition

found.

Algorithm 4 Branch-and-price
1: initialisation with heuristic starting solutionΣ∗ of valuez∗

2: while there are branch-and-bound nodes to be processeddo
3: take a node
4: solve the restricted master problem
5: solve the pricing problems on the current optimal dual values
6: if there are columns with negative reduced costthen
7: add columns to the master problem
8: else ifzLP ≥ z∗ then
9: abandon node

10: else ifsolution integerthen
11: new best solution:Σ∗ ← ΣLP , z∗ ← zLP

12: else
13: branching: create successor nodes
14: end if
15: end while

The search tree is first traversed in depth-first order. Because we cannot give a new lower bound
before column generation has terminated, a node initially inherits its parent’s lower bound.

Additionally to the LP lower boundzLP , a global lower bound is used which is equal to the
minimum over the lower bounds on all nodes which are still to be processed. If this value is
greater or equal to the valuez∗ of the incumbent solution, we can terminate the search because we
will not find better solutions. In the shift planning problem, the best solution is frequently found
very early with the global lower bound proving optimality.

We have initially conducted experiments with the generalised Lasdon lower bound of Sec-
tion 6.4. This lower bound can be used for early termination of column generation and to prune
the search space. For the calculation, we have used the number|I| of tasks as an upper bound
approximation to the number of final shifts. However, no performance improvements could be
observed. On the one hand, the quality of the bound was often poor. On the other hand, the LP
lower bound was very close to the optimum throughout large parts of the search tree. Addition-
ally, the tailing-off effect of column generation was not very strong. We have therefore decided
not to use the Lasdon bound for the experimental results presented below.

The pruning in Algorithm 4 was refined by some simple observations. If all shift type costs
are integer, an improved shift plan must save costs of at least one, i.e. we can prune a node if
zLP + 1 ≥ z∗. If there are non-integer shift type costs, determining the difference between the
incumbent and an improving solution amounts to solving a subset sum problem [Martello and
Toth, 1990]. While subset-sum is anNP-hard problem, building all combinations of shift type
costs can easily be accomplished by a pseudo-polynomial dynamic programming algorithm. In
most cases, only fractions of a second were taken to determine the current stepwidth.

7.7. Problem Decomposition

For the above formulation, it was assumed that the shift planning problem decomposes into sepa-
rate days. Consequently, day indices for shift types and shift restrictions were omitted. It should
be clear that the model can easily be generalised to several days by replacing each shift typesk
by a shift type realisation(k, n) with n denoting the day. IfKr is the set of shift types andNr
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7. Optimal Shift Planning by Branch-and-Price

the set of days of a shift restrictionr ∈ Rmin
abs ∪ Rmax

abs , r refers to the setKr × Nr of shift type
realisations.

In the practice of airports, there are often times of little or no traffic (e.g. during night), i.e. oper-
ations arediscontinuous, see also Section 1.2.3. Shift planning problems then indeed decompose
into independent problems. Each of these problems typically covers one day and sometimes even
spans over shorter time periods due to low workloads between peak times. In the sequel, it will be
shown how given problems can be automatically decomposed into independent components. The
individual problems are then solved separately and afterwards composed into a complete solution.

Decomposition is often crucial for making a scenario amenable to an exact solution approach,
and even if a complete scenario could be solved by the above branch-and-price approach, shift
planning by decomposition is more efficient. Note that this is generally not true for the local im-
provement algorithm of Chapter 5 because the complexity of local reoptimisation steps essentially
depends on the neighbourhood sizes and not on the size of the overall problem. When problems
could be decomposed by day, the daily problems were often very similar due to the resemblance
of flight schedules and task generation rules.

We will use aconstraint graphG = (V,E) for decomposition. The node setV comprises
all shift type realisations(k, n) on the different days, i.e.V = {(k, n) | k ∈ K, n ∈ Nk} with
Nk being the valid days of shift typek. We then check which shift type realisations may cover
each taski ∈ I, taking breaks into account. For each taski, we introduce edges inG such that
the nodes of shift type realisations coveringi induce a complete subgraph (clique). Analogously,
we introduce edges between all shift type realisations inKr × Nr for each shift restrictionr ∈
Rmin

abs ∪Rmax
abs with reference shift typesKr and daysNr.

It should be clear that in the resulting graph, two nodes are connected if and only if decisions
for the associated shift type realisations are interdependent. Consequently, the connected com-
ponents ofG represent independent optimisation problems. For each component, we build one
subproblem consisting of the shift type realisations associated with its nodes and the tasks which
can be covered by them. Each subproblem is then consecutively submitted to the above algorithm.
Note that this assures that tasks which cannot be covered by the given shift types are never used
as an input for the branch-and-price algorithm.

7.8. Experimental Results

The above algorithm has been implemented in Visual C++ 7.1, using libraries of the open soft-
ware initiative COIN-OR (Common Optimisation Interface for Operations Research) [Ralphs and
Ladányi, 2001] [Lougee-Heimer, 2003]. CLP of COIN-OR was used as LP solver, and BCP
(Branch, Cut & Price) provided the basis for the branch-and-price implementation. OSI (Open
Solver Interface) builds the bridge between BCP and CLP. CLP proved to be robust and suffi-
ciently efficient on the test cases. By means of OSI, the implementation is independent of the
LP solver which may be exchanged in the future. Originally, BCP did not provide a handling of
global lower bounds as described in Section 7.6, so this feature was implemented as a part of this
work. In fact, branch-and-bound could often be terminated prematurely using global lower bound
checks.

For the tests, the shift planning construction heuristic described in Chapter 5 was used to pro-
vide the branch-and-price algorithm with a starting solution. An optimised dynamic program-
ming algorithm was used for the subproblems. In every iteration, one shift is added to the master
program for each shift type for which a reduced cost column exists. Integrality is achieved by
aggregate branching on task pairs. Tests were carried out on a AMD-2000+ computer (1.67 GHz)
with 512 MB main memory and operating system Windows XP SP1.

Table 7.1 summarises basic figures of the scenario set C (see also Chapter 5) which comprises
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No. days tasks task travel time shift abs. min. abs. max.
minutes range types restrictions restrictions

C01 8 2934 108754 [0,0] 35 0 0
C02 8 2813 230257 [0,13] 198 0 0
C03 8 2128 57470 [0,26] 74 0 0
C04 8 1429 65035 [0,26] 67 0 0
C05 8 1027 46855 [0,19] 65 0 0
C06 8 1598 76005 [0,26] 74 0 0
C07 4 2588 176538 [0,0] 12 12 8
C08 4 1816 160206 [0,0] 12 8 8
C09 3 1718 123407 [0,0] 17 12 12
C10 3 860 96505 [0,0] 11 0 0
C11 3 327 21680 [0,0] 17 0 0
C12 3 572 33550 [0,0] 14 0 0
C13 8 3517 141030 [0,6] 9 35 14
C14 8 1297 25940 [0,13] 24 0 0
C15 8 149 3725 [0,1] 94 0 0
C16 8 255 17895 [0,28] 94 0 0
C17 7 2256 87770 [0,3] 5 0 0

Table 7.1.: Scenario data.

exactly the scenarios to which the branch-and-price algorithm applies. For the number of tasks
and task minutes (sum of the task lengths) in Table 7.1, tasks which cannot be assigned to any of
the shift types were omitted.

The original scenarios C01 through C06 and C14 through C16 define huge numbers of shift
types (up to 270). This makes solution by the above algorithm difficult because all possible
alternatives of covering tasks by different shift types would have to be evaluated in a huge number
of subproblems. Note that the local improvement procedure of Chapter 5 does not suffer from this
problem if the number of break rule days is low.

However, the use of many different shift types in a plan is often not desired, and the construction
heuristic described in Section 5.1 effectively tends to employ only a small subset of the shift types.
As described in Section 2.9, it is common practice to use only aworking subsetof the shift types
for planning, see e.g. Easton and Rossin [1991], Bechtold and Brusco [1994b] and Brusco and
Jacobs [2001]. Sørensen and Clausen [2002] have noted that considerable administrative burden
is associated with using many shift types. For the experiments on test cases C01 through C06
and C14, the sets of shift types was restricted to those used in the initial heuristic solution; these
numbers are given in the shift type column of Table 7.1. Note that this means that if a shift type
is used on one of the days, it will be available for all days of the scenario. As a consequence, the
numbers of shift types are partly still considerable (up to 198). However, it should be mentioned
that the selection biases the solution procedure towards the outcome of the construction heuristic
whose shift type decisions may not be optimal. The evaluation of alternative working subset
methods may be subject of future research.

To all of the scenarios, the decomposition procedure of Section 7.7 was applied. Results are
summarised in Table 7.2, giving the number of components and the average number of tasks and
shift type realisations (shift types unfolded per day) per component. Comparing the number of
components to the scenario days given in Table 7.1, it can be seen that scenarios often decompose
by day or even into smaller units. However, three of the scenarios (C14, C15 and C17) do not
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No. components average number average number of
of tasks shift type realisations

C01 9 326.0 31.6
C02 8 351.6 198.0
C03 9 236.4 65.9
C04 8 178.6 67.0
C05 8 128.4 65.0
C06 8 199.8 74.0
C07 4 647.0 12.0
C08 4 454.0 12.0
C09 3 572.7 17.0
C10 3 286.7 11.0
C11 3 109.0 17.0
C12 4 143.0 10.5
C13 8 439.6 9.0
C14 1 1297.0 191.0
C15 1 149.0 785.0
C16 9 28.3 83.3
C17 1 2256.0 36.0

Table 7.2.: Decomposition results.

decompose at all. Effectively, these scenarios are test cases from airports with 24×7 operations.
While the initial scenarios were partly huge, the number of tasks and shift type realisations is
usually moderate after decomposition. Scenarios C02, C14, C15 and C17 are still challenging due
to the numbers of tasks (up to an average of 2256 tasks per component) and shift type realisations
(up to an average of 785).

As described in Section 7.3, one flow model is built for each shift type realisation. Average
graph sizes per shift type realisation are given in Table 7.3. Due to breaks, each task may be
represented by several nodes with 1.18 nodes per task on average. Note that the number of edges
per shift type graph can be considerable when a graph contains many nodes, with a maximum of
52041 edges in one of the components of scenario C13. Differences in the node number can be
partly explained by different task lengths (e.g. tasks in scenario C13 have average lengths of 40
minutes, tasks in scenario C16 average lengths of more than 70 minutes) and shift types (e.g. shift
type durations are 5804 minutes on average in scenario C13 and 479 minutes in scenarios C15
and C16).

Each component was separately submitted to the branch-and-price procedure with a runtime
limit of two hours. Table 7.4 presents solution data, summing up over all components of each
scenario while the runtime data of Table 7.5 is given as averages over the components. Running
times are given in seconds.

Astonishingly, the values of the LP relaxation are often equal to the value of the optimum
solution a maximum gap of 0.29% on one component of scenario C09 (Table 7.4). On all but
four cases, optimality with regard to the working subset of shift types could be proven for the best
solution found by the branch-and-price algorithm. The algorithm ran into the runtime limit on all
components of scenario C02 and one component of scenarios C03, C13 and C14, respectively. As
a comparison of the numbers of explored nodes and the search tree depths suggests (Table 7.5),
optimal solutions were nearly always found with a single descent. The only exception among the
scenarios for which optimality was proven is built by one component of each of the scenarios C01,
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No. average average average
tasks task nodes edges

C01 106.6 120.6 6082.3
C02 103.6 135.7 4233.4
C03 78.4 113.2 3406.5
C04 58.1 80.5 1548.2
C05 43.0 59.2 920.5
C06 69.1 96.2 2013.7
C07 260.3 286.4 23463.0
C08 169.9 185.6 8969.7
C09 229.8 256.8 17619.9
C10 123.4 129.8 4224.8
C11 40.0 48.1 708.7
C12 76.4 89.1 2607.1
C13 252.9 296.5 28601.3
C14 53.2 53.2 1533.1
C15 5.3 5.3 24.0
C16 9.7 9.7 50.7
C17 126.5 142.8 8124.5

Table 7.3.: Graph construction.

C09 and C17. This shows the excellent quality of the branching rule which basically consists in
rounding up edge flows close to1.

On the components for which optimality could not be proven, best known results were often
obtained by the first descent in the search tree. The main difficulty of the affected components of
scenarios C02, C03, C13 and C14 lies in the gap between the value of the LP relaxation and the
value of the encountered solution. While the gaps show that the best solutions are within 0.37%
and 0.16% of the optimal value, it is possible that parts of these solutions are in fact optimal.
Hoffman and Padberg [1993] have noted that larger set partitioning problems often exhibit worse
integer properties and lower bounds than smaller problem instances; the same might be true for
the above set covering model. It is interesting to note that test cases C02 and C14 are among the
scenarios with the highest numbers of shift type realisations per component. The adverse effect
high numbers of potential shifts can also be seen from the time for solving the LP relaxation
(Table 7.5).

While the lower bound quality plays an essential role, we can also observe an influence of
subproblem complexity on the runtimes (Table 7.5). Scenarios C07 and C13 which ask for the
highest number of edges in the subproblem graphs are among the scenarios consuming most
runtime. Note however that these times do not stem from the solution of the subproblems whose
runtimes can nearly be neglected. Instead, computation time is mainly consumed by solving the
potentially large linear programs which result from the problem complexity.

Especially near the optimum, it will not be possible to generate columns with negative reduced
costs for all subproblems. As can be seen from Table 7.5, subproblems yield an average of 0.5
columns per call which are added to the restricted master program.

The highest runtime among the scenarios solved to optimality is consumed by scenario C17
which contains the highest number of tasks since it cannot be decomposed. This shows the im-
portance of problem decomposition. Problems C11, C15 and C16 turned out to be very easy to
solve with a maximum of 28 search nodes for one component of scenario C11. In total, runtimes
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No. initial solution LP relaxation optimum best solution
C01 258484.5 252380.0 252380.0 252380.0
C02 73125.0 56327.3 – 56507.0
C03 25508.0 22841.5 – 22845.0
C04 24690.0 22121.0 22121.0 22121.0
C05 18622.0 16330.0 16330.0 16330.0
C06 29777.0 26329.0 26329.0 26329.0
C07 55680.0 51200.0 51200.0 51200.0
C08 45440.0 40960.0 40960.0 40960.0
C09 42000.0 39453.4 39520.0 39520.0
C10 25600.0 24800.0 24800.0 24800.0
C11 7280.0 7040.0 7040.0 7040.0
C12 13120.0 12400.0 12400.0 12400.0
C13 71168.0 56836.5 – 56840.0
C14 13190.0 12550.0 – 12560.0
C15 3260.0 3090.0 3090.0 3090.0
C16 8100.0 7020.0 7020.0 7020.0
C17 45768.5 44329.5 44329.5 44329.5

Table 7.4.: Branch-and-price results.

were rather moderate, and many real-world problem instances turn out to be within the reach of
the optimal algorithm which was not expected before this work. This also shows that worst-case
complexity results like in Section 7.2 do not always admit conclusions on the solution of practical
problem instances.

Table 7.6 compares improvements achieved by the local improvement method of Chapter 5 and
branch-and-price. Results of large neighbourhood search (LNS) are given as averages over five
runs after 30 minutes runtime. It should be noted that branch-and-price sometimes necessitates
much more runtime. It can be seen that while local improvement often yields moderate improve-
ments, branch-and-price finds solutions which save average shift costs of 8.95%. Especially on
scenarios with very few shift types (e.g. C13), LNS fails to find substantial improvement. In con-
trast, scenarios C15 and C16 involve multitudes of shifts, and results are nearly equivalent. This
shows that while local search is an appropriate method for the handling of general large-scale
scenarios, branch-and-price is a suitable technique for scenarios with limited constraints.

Further details for the comparison of initial solutions and branch-and-price results are given in
Table 7.7. The number of shifts is effectively reduced by up to 30.8%. Furthermore, the shift
utilisation (task minutes divided by shift minutes without breaks) which is rather low in some test
cases could be increased by up to 16.9%.

In total, the branch-and-price algorithms has shown to be very efficient in solving real-world
shift planning problems with restricted constraints. The decomposition procedure makes problems
amenable to exact solution, and many scenarios can effectively be solved to optimality. This is
mainly due to the quality of the LP lower bound and the success of the branching rule. The fact
that the best solution was nearly always found within a single descent suggests that the algorithm
could also be used heuristically by restricting the tree search to the left-most branch, see also
Grönkvist [1998]. Results were very satisfying and show that integer column generation is an
appropriate approach for restricted ground staff planning.
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No. total time to column generator number of time for search search
time LP relaxation calls generated variablessubproblems nodes depth

C01 408.31 35.73 15096.9 11247.6 0.08 247.7 220.1
C02 7200.00 425.73 326477.5 44568.6 2.98 540.6 169.9
C03 1323.53 57.42 50876.4 26045.2 0.37 405.6 157.6
C04 67.75 12.28 8746.5 4819.0 0.04 77.4 77.4
C05 30.17 6.30 6071.4 2808.3 0.03 52.6 52.6
C06 97.58 19.05 9324.5 4252.1 0.05 75.5 75.5
C07 608.62 53.97 8192.8 6420.5 0.05 326.8 326.8
C08 177.50 32.67 4513.3 3637.8 0.03 193.8 193.8
C09 370.19 37.20 10231.7 6354.0 0.04 227.7 159.7
C10 12.94 3.75 1284.3 751.3 0.00 53.3 53.3
C11 0.78 0.27 643.7 14.3 0.00 15.3 15.3
C12 9.24 1.00 1143.8 679.3 0.00 38.0 38.0
C13 2539.41 99.94 25895.5 20945.3 0.14 576.4 288.5
C14 7200.00 129.73 750248.0 333165.0 14.79 1624.0 833.0
C15 1.72 0.51 5495.0 885.0 0.02 2.0 2.0
C16 0.18 0.10 971.1 300.8 0.00 1.8 1.8
C17 4744.44 83.11 171270.0 82992.0 2.64 1849.0 947.0

Table 7.5.: Runtime data.

No. initial LNS branch-and-price
solution solution improvement solution improvement

C01 258484.5 254971.0 1.36% 252380.0 2.36%
C02 73125.0 71547.0 2.16% 56507.0 22.73%
C03 25508.0 25478.0 0.12% 22845.0 10.44%
C04 24690.0 24245.0 1.80% 22121.0 10.41%
C05 18622.0 18189.0 2.33% 16330.0 12.31%
C06 29777.0 29685.0 0.31% 26329.0 11.58%
C07 55680.0 55680.0 0.00% 51200.0 8.05%
C08 45440.0 45280.0 0.35% 40960.0 9.86%
C09 42000.0 42000.0 0.00% 39520.0 5.90%
C10 25600.0 25520.0 0.31% 24800.0 3.13%
C11 7280.0 7280.0 0.00% 7040.0 3.30%
C12 13120.0 12880.0 1.83% 12400.0 5.49%
C13 71168.0 71168.0 0.00% 56840.0 20.13%
C14 13190.0 12950.3 1.82% 12560.0 4.78%
C15 3260.0 3100.0 4.91% 3090.0 5.21%
C16 8100.0 7050.0 12.96% 7020.0 13.33%
C17 45768.5 45557.0 0.46% 44329.5 3.14%

Table 7.6.: Shift cost improvement by LNS and branch-and-price.
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No. initial solution branch-and-price solution
number of shift shift minutes shift number of shift shift minutes shift

shifts minutes without breaks utilisation shifts minutes without breaks utilisation
C01 578 208320 199620 54.5% 560 198720 190680 57.0%
C02 1010 361710 323550 71.2% 699 292980 261540 88.0%
C03 361 124950 111120 51.7% 335 110940 98310 58.5%
C04 380 126600 111960 58.1% 342 111870 98970 65.7%
C05 284 97380 86130 54.4% 255 85050 75780 61.8%
C06 499 148020 131310 57.9% 448 129690 115080 66.0%
C07 696 336864 295104 59.8% 640 309760 271360 65.1%
C08 568 274912 240832 66.5% 512 247808 217088 73.8%
C09 525 251700 220200 56.0% 494 238396 208756 59.1%
C10 320 160320 141120 68.4% 310 155310 136710 70.6%
C11 91 42186 36726 59.0% 88 41133 35853 60.5%
C12 164 76074 66234 50.7% 155 72210 62910 53.3%
C13 716 435600 414120 34.1% 715 349620 328170 43.0%
C14 171 79140 79140 32.8% 161 75360 75360 34.4%
C15 45 19560 19560 19.0% 41 18540 18540 20.1%
C16 129 48600 48600 36.8% 99 42120 42120 42.5%
C17 469 247320 233250 37.6% 455 239400 225750 38.9%

Table 7.7.: Comparison of results.

7.9. Conclusions and Future Research

We have tackled a restricted shift planning problem, comprising tasks which are fixed in time,
shifts with breaks and absolute shift number restrictions. A considerable number of practical
planning instances is covered by this problem class, justifying the search for efficient algorithms
exploiting specific problem structures.

Restricted shift planning is basically a combination of classical vehicle and shift scheduling
problems. We have shown that covering fixed tasks by an efficient set of shift duties can be
interpreted as a special multiple depot vehicle scheduling problem (MDVSP) or, more generally,
as a multicommodity flow problem. We have proven that simplified shift planning isNP-hard in
the strong sense which also means that general task-level shift planning is computationally hard.

We have shown how the problem can be represented by a specialised flow model. The resulting
block-structured constraint matrix can be exploited by Dantzig-Wolfe decomposition. We have
therefore derived a column generation formulation in which columns can be naturally interpreted
as valid shift duties. For achieving integrality, a branching rule was devised which is compatible
with the shortest path subproblems.

On airports with night-flying restrictions or very low workloads within the days, shift planning
problems often naturally decompose. This has been exploited by a decomposition procedure on
the basis of a constraint graph that expresses interdependencies between decisions.

It was shown how most test cases can be solved to proven optimality by branch-and-price. In
view of theNP-hardness result, this is remarkable and was not expected before this work. Com-
pared to an initial heuristic algorithm, shift costs can be decreased by up to 22.7%. Additionally,
solution times are mostly moderate. The algorithm is part of a commercial staff scheduling system
and has proven to be a very powerful tool in practice.

While results were very satifying, there are still possibilities for improvement. Dual values are
known to oscillate heavily in column generation approaches with an adverse effect on convergence
[Desrosiers and L̈ubbecke, 2003]. Preliminary tests with the stabilisation schemes of du Merle
et al. [1999] and Neame [1999] have shown that parameter tuning is quite difficult in these meth-
ods, and stabilisation did not have the desired effect. Nonetheless, a systematic exploration or
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enhancements might reveal that computation times can still be improved.
For two problem instances, optimality of the solutions could not be proven. A possible remedy

is the use of cutting planes in order to improve the lower bound still further, resulting in a branch-
and-price-and-cut approach. While some separation procedures for strong cuts in set covering
formulations have been proposed (see Cornuéjols and Sassano [1989], Sassano [1989] and Nobili
and Sassano [1989]), these are computationally expensive, and little has been reported on their
computational success. However, future progress may make this approach practical.

In an application to the cutting stock problem, Valério de Carvalho [2002] has shown that
the introduction of additional dual cuts can speed up column generation. While the design of dual
cuts is highly problem-dependent, the approach may also be interesting for routing and scheduling
applications.

However, results were beyond expectations, and future directions mainly refer to enrichments
of the model. When time windows are included into the model, we have to avoid negative reduced
costs cycles in the subproblems [Cordeau et al., 2001a]. Each subproblem is then an elementary
shortest path problem which isNP-hard in the strong sense [Dror, 1994]. Different solution
approaches have been proposed, see e.g. Kohl et al. [1999] and Irnich and Villeneuve [2003].

Additionally, we may include qualification restrictions by imposing resource constraints in the
subproblems. The resulting resource-constrained shortest path problems are usually solved by
pseudo-polynomial dynamic programming algorithms, see also Section 9.6. However, the repre-
sentational complexity in maintaining aggregated qualification sets increases exponentially in the
number of involved qualifications.

More flexibility for the incorporation of further constraints seems to be offered by methods
combining constraint programming with integer programming. Different schemes have been pro-
posed, including constraint-based column generation [Fahle et al., 2002] [Rousseau et al., 2002]
and cost-based domain filtering [Focacci et al., 1998] [Focacci et al., 1999]. The basic idea of
these techniques is to represent complex constraints in a CP model while the search is guided by
linear programming. Clearly, this is also a promising approach for task-level shift planning.
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8. Implicit Modelling of Flexible Break
Placement

Tea breaks do not need to be scheduled.
— Adel Gaballa, Wayne Pearce,

Telephone Sales Manpower Planning at Qantas,
Interfaces Vol. 9, 1979

In Chapters 5 and 7, we have described models and algorithms for task-level shift planning, in-
tegrating aspects of shift scheduling and vehicle routing. We now turn to shift and tour scheduling
models which aim at covering a demand curve of workloads given in discrete time periods. While
task-level planning is more detailed, histogram-based scheduling is sufficient in many planning
situations (see also Chapter 1). On the one hand, covering a demand curve yields a good approx-
imation to task-level scheduling if tasks are little movable and few constraints are imposed on the
task level. On the other hand, scheduling tasks may be over-detailed in long-term planning when
information on flight events, passenger and load figures is less detailed.

The integer programming model developed in this chapter will provide the basis for an algo-
rithm for cyclic roster generation. Cyclic rosters are usually designed several weeks or months
ahead of time and are usually valid for a whole flight season. It is therefore appropriate to build
solution algorithms upon a curve of aggregated workloads. As described in Dowling et al. [1997],
the actual assignment of tasks can then be deferred to shortly before the day of operations. As
cyclic rosters are rotating patterns such that each assigned employee works on any shift duty at a
given time, workloads must also be homogeneous.

Demand-level scheduling is not only well-accepted and intuitive to staff planners, but also al-
lows for additional planning flexibility. In practice, planners often do not fully cover workloads,
but accept slight understaffing in periods of peak requirements [Gaballa and Pearce, 1979] [Dowl-
ing et al., 1997]. From a technical viewpoint, demand-level scheduling allows for efficient models
and solution techniques and is often the only way to make shift scheduling and rostering problems
computationally tractable [Ernst et al., 2004]. As described in Chapter 2, nearly all literature on
shift and tour scheduling build upon demand curves of aggregate workloads.

We can suppose that levelled workforce requirements provide a more appropriate basis for
demand-level shift planning and rostering. We will therefore assume that the following models
and algorithms build upon the results of the levelling procedure of Chapter 4.

8.1. Introduction

In this chapter, we will develop a weekly shift scheduling formulation which serves as a basis
for the cyclic rostering algorithm of Chapter 9. We therefore assume that given workforce re-
quirements are cyclic, i.e. the first day follows the last day of the one-week scheduling horizon.
Since rosters are usually created for a longer period in advance, planning should be based on a
model week with typical flight events and passenger and baggage load figures. Our model will be
designed for potentially continuous operations with shifts overlapping from one day to the other.
The formulation will be based on the standard set covering formulation of Dantzig [1954] and
solved by LP-based methods.
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In task-level shift planning, breaks can be handled similarly to work tasks, see Section 5.2.1.
For demand-based scheduling, different models have been proposed for the handling of flexible
breaks (see Section 2.8). Since the publication of Bechtold and Jacobs [1990], flexible breaks have
mostly been represented by implicit models which considerably reduce the size of LP formula-
tions. The original model of Bechtold and Jacobs [1990] is restricted to discontinuous operations
with one break per shift and equal break durations. Furthermore, break time windows must not ex-
hibit a property namedextraordinary overlap(EO). Aykin [1996] proposed an alternative implicit
model which is more widely applicable and incorporates multiple breaks.

While the formulation of Bechtold and Jacobs [1990] generally necessitates less break vari-
ables, Aykin [2000] claimed that his formulation requires less nonzero constraint coefficients and
showed its computational superiority on a set of cyclic shift scheduling problems. However, Aykin
[2000] did not make use of a substitution idea of Bechtold and Jacobs [1990], reducing the number
of nonzero constraint coefficients. In the tour scheduling experiments of Topaloglu and Ozkara-
han [1998], the Bechtold/Jacobs formulation generally performed better, see also the annotations
in Mehrotra et al. [2000]. Rekik et al. [2003] noted that the Bechtold/Jacobs model should be
superior on problems in which many break variables can be shared among the shift types.

Most of the restrictive assumptions given in Bechtold and Jacobs [1990] have been relaxed
by extensions of the basic model. Brusco and Jacobs [2000] and Aykin [2000] proposed to use
wrap-around break variables to overcome the limitation to less-than-24h operations. Topaloglu
and Ozkarahan [1998] and Aykin [2000] showed how more than one break can be incorporated in
the formulation of Bechtold and Jacobs [1990]. Analogously, more than one break duration can
be accounted for.

The extraordinary overlap condition has received far less attention which is possibly due to the
fact that EO is not very frequent in real-world shift planning [Aykin, 2000]. In this chapter, we
will show how the Bechtold/Jacobs model can be generalised to scenarios in which break windows
exhibit extraordinary overlap. Furthermore, it will be described how the number of nonzero matrix
elements can be further reduced by a partitioning of shift and break variables. We will show that
the resulting formulation outperforms the Aykin [1996] model on a number of real-world airport
test cases.

For the set covering formulation, the planning horizon is usually divided into periods of equal
lengths, see e.g. Henderson and Berry [1976], Morris and Showalter [1983], Dowling et al. [1997],
Brusco and Jacobs [1998b] and Rekik et al. [2003]. For computational reasons, the discretisation
is often very coarse-grained with period lengths of 15, 30 or 60 minutes, see Thompson [1995].
We will show how workforce requirements can be represented more flexibly, adapting to the gran-
ularity of shift types and breaks of the scenario at hand. The proposed method allows for a more
compact representation without sacrificing granularity at times requiring more representational
detail.

The chapter will be structured as follows: In Section 8.2, we will review the basic set covering
formulation for shift scheduling. Section 8.3 gives an illustrative introduction to implicit break
modelling, leading to the integer programming formulation of Section 8.4. Section 8.5 contributes
the new approach for avoiding extraordinary overlap to be incorporated in the extended model
of Section 8.6 while Section 8.7 deals with the compact representation of labour requirements.
Section 8.8 points out empirical advantages, and Section 8.9 concludes with a summary.

8.2. Basic Set Covering Formulation

We will start by introducing the generalised set covering formulation for shift scheduling, going
back to Dantzig [1954]. Labour demandsdt ∈ N0 are given per discrete time periodt ∈ T =
{1, . . . , |T |} and cover one week. As before, the set of shift types is denoted byK. The set of
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days on which a shift typek ∈ K can be realised is given byNk ⊆ N whereN := {1, . . . , 7} is
the set of all days of the one-week scheduling horizon. The costs of shift typek ∈ K are given
by ck. Skn is a decision variable denoting the number of shifts of shift type realisation(k, n).
In the sequel, the termshiftswill be used interchangeably with shift type realisations; note that
shift instances are not distinguishable if we do not attribute tasks. The formulation will be cyclic,
i.e. shifts starting on the last day can “wrap around” to the first day. We use a constraint matrix
[atkn] with atkn = 1 if shift (k, n) (k ∈ K, n ∈ Nk) covers demand periodt ∈ T andatkn = 0
otherwise.

Ground handling companies and airlines usually do not try to fully cover demands. In periods
of high workloads, planners accept slight understaffing [Gaballa and Pearce, 1979] and rely on
temporary employment companies to cover short-term shortages. In the cyclic roster algorithm
which will be described in Chapter 9, we will introduce upper limits on the workforce size, mean-
ing that the staff at hand may not be able to fully cover requirements. We therefore introduce
shortage variablesOt, t ∈ T , which are penalised by costs ofcsht in the objective function, see
e.g. Baker [1976], Keith [1979], Bailey [1985], Thompson [1993], Mason and Nielsen [1999]
and Rekik et al. [2003]. These penalties should reflect actual costs of temporary staff as well as
possible. We will also assume that shortage costs exceed average shift costs per time period.

With these definitions, the cyclic weekly shift scheduling problem reads as

min
∑
k∈K
n∈Nk

ckSkn +
∑
t∈T

cshtOt (8.1)

subject to ∑
t∈T

atknSkn + Ot ≥ dt ∀ t ∈ T (8.2)

Skn ≥ 0 and integer∀ k ∈ K, n ∈ Nk (8.3)
Ot ≥ 0 and integer∀ t ∈ T (8.4)

Objective function (8.1) seeks for a cost-minimal set of shift types, possibly accepting under-
staffing. Skn gives the number of shifts of each realisation. The corresponding column in the
constraint matrix indicates which periods are covered. If we imagine the right hand sidedt to be
1 for all t and the decision variablesSkn to be binary, the rows can be interpreted as a set which
must be covered by subsets with the columns representing characteristic vectors of the subsets
[Hromkovič, 2001]. Allowingdt andSkn to be greater than1 corresponds to a generalisation to
multisets. The resulting model is sometimes termed general (or generalised) set covering formu-
lation, see e.g. Jacobs and Bechtold [1993].

8.3. Flexible Break Placement

Work regulations usually prescribe that shifts for full-time staff must contain at least one meal
break and possibly further relief breaks. Clearly, workers are not available to cover workloads
within the duration of their breaks. Union and legal regulations or company policies usually
prescribe breaks to be taken within the limits of given time windows, specifying earliest and latest
break start times (cf. Section 5.2.1). In the following presentation, we will first restrict ourselves
to the case of exactly one break per shift. Furthermore, we will assume that breaks of different
shift types have equal durations.

A first approach to handle break placement flexibility is to define one decision variable for each
shift and each possible break placement, i.e. to replicate shift variables for each break placement
[Dantzig, 1954]. The matrix entries in formulation (8.1)-(8.4) then contain a0 for all time intervals
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Figure 8.1.: Example for shifts with flexible breaks.

in which the corresponding break takes place. If breaks are not movable or break windows are
tight, this is a feasible approach. In practice however, break windows frequently cover one or
several hours, blowing up the LP formulation.

Gaballa and Pearce [1979], Bechtold and Jacobs [1990] and Aykin [1996] have proposed to
use a distinct set ofbreak variablesto handle break placement flexibility. A break variable then
indicates the number of breaks of a specific type. While Gaballa and Pearce [1979] and Aykin
[1996] use one break variable for each break start time and shift, Bechtold and Jacobs [1990]
share break variables among shifts and define a break variableBl for each possible break start
time.

Instead of encoding the attribution of breaks to shifts explicitly, Bechtold and Jacobs [1990]
have shown how to formulate a set offorward andbackward constraints. Under a number of
conditions, these constraints ensure sufficient breaks to be available for all shifts. The actual
attribution of breaks to shifts is then part of a downstream step. The (integer) linear program
only encodes existence conditions on the attribution of breaks instead of incorporating complete
information on break placement.

Instead of repeating the formal definition and proof of Bechtold and Jacobs [1990] and Bechtold
and Jacobs [1996], we will give an intuitive introduction to implicit break handling. Fig. 8.1 shows
three shifts, each consisting of five time periods, allowing for a break of one period in the second,
third or fourth period of the shift. The number of breaks at each of the resulting five positions is
represented by break variablesB1 throughB5. Note that for the moment being, we will omit the
day indices from the shift variablesS1 throughS3.

If adequate numbers of shifts and breaks are given, the attribution of breaks to shifts can be
interpreted as a transportation problem with restricted topology [Ford and Fulkerson, 1962] [Rekik
et al., 2003]. For the above example, the corresponding bipartite graph is shown in Fig. 8.2: The
nodesV := {v1, v2, v3} represent the shifts for which a “supply” equal to the numberSk of shifts
is given. The nodesW := {w1, . . . , w5} represent breaks with “demands” corresponding to the
break numbersBl. Between each shift nodev ∈ V , there is an edge toward break nodew ∈W if
and only if the break time window admits the corresponding break. The costs of “transportation”
on these edges will be0.

Transportation problems can be expressed as network flow algorithms, see e.g. Ahuja et al.
[1993]. We therefore introduce an additional source nodes and a sink (target) nodet in the
bipartite graph of Fig. 8.2. The source node is linked to all nodes inV by an edge of capacity
equal to the numberSk of shifts associated withv. All nodesw ∈ W are linked to the sink node
by an edge of capacityBl. The attribution edges betweenV andW have infinite capacities. The
resulting graph for the above example is sketched in Fig. 8.3.

Our goal is the formulation of constraints between the variables which ensure that a feasible
attribution of breaks to shifts exists. Let us first assume that we are given numbersSk andBl

of shifts and breaks such that this attribution is possible. The numbers of shifts and breaks must
clearly be equal, and we will setN :=

∑
k Sk =

∑
l Bl. A feasible attribution of breaks to shifts
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Figure 8.2.: Break attribution as a transportation problem.

then corresponds to a flow of cardinalityN in the above network, i.e. a flow which saturates the
edges in{s} × V andW × {t}. We therefore have to ensure the existence of such a maximum
flow. Çezik and G̈unlük [2002] call the underlying problembipartite flow feasibility problem.

A cut is defined as a partition of the nodes{s, t} ∪ V ∪W into two partsC andC̄. Note that a
cut can also be identified with the arcs betweenC andC̄ [Ahuja et al., 1993]. Ans-t cut is a cut
C such thats ∈ C andt ∈ C̄. According to themin-cut max-flow theorem, the maximum flow in
a network corresponds to the capacity of thes-t cut of minimum capacity [Ford and Fulkerson,
1962]. In order to ensure that a flow of sizeN exists, we will require alls-t cuts to have capacities
of at leastN .

Clearly, any cut including edges betweenV andW has infinite capacity and will not limit
the flow. SettingC := {s}, we cut all edges betweens andV whose sum equals

∑
k Sk. The

resulting cut capacity condition is
∑

k Sk ≥ N which is true by definition. Analogously, setting
C = {s, t} ∪ V ∪W (C̄ = {t}) results in the trivial inequality

∑
l Bl ≥ N .

Now imagine the non-trivial cut shown as red dotted line in Fig. 8.3a which corresponds to the
cut setC = {v1, w1, w2, w3}. Comprising only edges from{s} × V andW × {t}, its capacity is
easily determined asS2 + S3 + B1 + B2 + B3. As before, we require this sum to be at leastN .
Using

∑3
i=1 Si = N , this can be formulated as

−S1 + B1 + B2 + B3 ≥ 0 (8.5)

in whichN no longer appears. Including further nodes fromW in the cut set or excluding nodes
of V from C only leads to weaker constraints. As an example, take the cut of Fig. 8.4a, leading to

−S1 + B1 + B2 + B3 + B4 ≥ 0

which is dominated by (8.5).
As a second example, consider the cut of Fig. 8.3b. Enforcing the cut capacityS1 + S2 + B3 +

B4 + B5 to be larger or equal toN leads to the constraint

−S3 + B3 + B4 + B5 ≥ 0 (8.6)

As mentioned before, we must pay attention not to include any of the edges betweenV and
W in a cut. As an example, imagine we would have includedv2 in the cut set of Fig. 8.3a, i.e.
C = {v1, v2, w1, w2, w3}. Since this cut includes the edge(v2, w4) of infinite capacity, the cut
capacity is trivially greater thanN .

We have already seen that the cut of Fig. 8.4a leads to a dominated constraint. This is equally
true for cuts of the type given in Fig. 8.4b. In this example, the cutC = {v1, w1, w2, w3, w4, w5}
leads to a constraint

−S1 + B1 + B2 + B3 + B4 + B5 ≥ 0
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Figure 8.3.: Cuts in the break attribution network.
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Figure 8.4.: Cuts leading to dominated constraints.

166



8.4. Shift Scheduling with Breaks

which is again dominated by (8.5). Effectively, only constraints of the types given in Fig. 8.3
lead to non-dominated constraints. Including more and more nodes fromV and the corresponding
nodes ofW in cuts of Fig. 8.3a leads to a set offorward constraints. In the same way, we can
gradually include more nodes in cut sets of Fig. 8.3b, starting from the last node ofV , in order to
to obtain a set ofbackward constraints. Adding the equality constraint on shifts and breaks, this
leads to the following set of constraints for the above example:

−S1 +B1 +B2 +B3 ≥ 0
−S1 −S2 +B1 +B2 +B3 +B4 ≥ 0

−S3 +B3 +B4 +B5 ≥ 0
−S2 −S3 +B2 +B3 +B4 +B5 ≥ 0

−S1 −S2 −S3 +B1 +B2 +B3 +B4 +B5 = 0

8.4. Shift Scheduling with Breaks

With this illustration, we are now ready to give a formal definition of the implicit break model.
Let [estbkn, lstbkn] denote the break start time window of shift(k, n). Break windows will not be
regarded as cyclic, i.e. if a shift starting on the seventh day admits breaks on the following day,
we will assume that these breaks start on an imaginary eighth day. For each possible start time
in
⋃

k∈K
n∈Nk

[estbkn, lstbkn], one break variableBl is used, indexed byl ∈ L in order of start times.

Break indices associated with earliest break start times in the time windows of different shifts are
denoted byLest, and the set of breaks associated with latest start timesLlst. By lest := min Lest,
we denote the overall earliest break and byllst := maxLlst the latest break.

For each breakl ∈ L, we define the setLB(l) := {l′ ∈ L | l ≤ l′} of breaks starting no
earlier thanl. The corresponding set of shifts whose break time windows are subsets ofLB(l)
is KB(l) := {(k, n) | k ∈ K, n ∈ Nk, [estbkn, lstbkn] ⊆ LB(l)}. Analogously, we define a set
LF (l) := {l′ ∈ L | l′ ≤ l} of breaks starting no later thanl and the setKF (l) := {(k, n) | k ∈
K, n ∈ Nk, [estbkn, lstbkn] ⊆ LF (l)} of related shifts.

In the extended set covering formulation with breaks, the workload coverage by shifts is re-
duced by breaks. We therefore introduce a coefficient matrix[btl] with btl = 1 if break l covers
periodt andbtl = 0 otherwise. For these coverage coefficients, break times are considered as
cyclic, i.e. a break on the eighth day reduces the coverage on the first day. Consequently, shifts
starting on the first and last day of the one-week scheduling horizon use different break variables
even if these breaks refer to the same actual start times. This idea ofwrap-around break variables
was independently proposed by Aykin [2000] and Brusco and Jacobs [2000].

Based on model (8.1)-(8.4), the set covering formulation including breaks reads as

min
∑
k∈K
n∈Nk

ckSkn + cshtOt

subject to ∑
k∈K
n∈Nk

atknSkn −
∑
l∈L

btlBl + Ot ≥ dt ∀ t ∈ T (8.7)

−
∑

(k,n)∈KF (l)

Skn +
∑

l′∈LF (l)

Bl′ ≥ 0 ∀ l ∈ Llst \ {llst} (8.8)

−
∑

(k,n)∈KB(l)

Skn +
∑

l′∈LB(l)

Bl′ ≥ 0 ∀ l ∈ Lest \ {lest} (8.9)
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Figure 8.5.: Example network for equivalence proof of implicit break handling.

∑
k∈K
n∈Nk

Skn −
∑
l∈L

Bl = 0 (8.10)

Skn ≥ 0 and integer∀ k ∈ K, n ∈ Nk (8.11)
Bl ≥ 0 and integer∀ l ∈ L (8.12)
Ot ≥ 0 and integer∀ t ∈ T (8.13)

Inequalities (8.7) are the coverage constraints. (8.8) and (8.9) are sets of forward and backward
constraints, spanning over successively more break and shift variables in forward and backward
direction, respectively. Constraint (8.10) ensures that shift numbers match break numbers. All
variables are nonnegative and integer ((8.11), (8.12), (8.13)).

Bechtold and Jacobs [1996] prove that forward and backward constraints and the equality
constraint are sufficient conditions for the existence of a break attribution if noextraordinary
overlap (EO) exists. Let(k1, n1) and (k2, n2) be two shifts. The break start time windows
[estbk1n1

, lstbk1n1
] and [estbk2n2

, lstbk2n2
] of (k1, n1) and(k2, n2) exhibit extraordinary overlap if

the break start time window of(k1, n1) completely lies in the interior of the break start time
window of (k2, n2) (or vice-versa), i.e.estbk2n2

< estbk1n1
andlstbk1n1

< lstbk2n2
.

We will shortly illustrate basic ideas of the proof in Bechtold and Jacobs [1996] which we will
refer to in Section 9.4. We must show that sufficient numbers of breaks are available for each set
of shifts. Any set of shifts can be divided intoassociated setsof shifts which compete for breaks
which are contained in the break windows of both shifts. Since each set of shifts is made up of
disjoint sets of associated shift which do not mutually compete for breaks, it is sufficient to show
that for each associated set of shifts, sufficient numbers of breaks are available.

Related to a given set of associated shifts is a number of breaks. We will now extend the shift set
by all shifts whose valid breaks are subsets of this set of breaks. As an example, take the associated
set{S1, S3} and the respective set{v1, v3} of nodes in Fig. 8.5. These shifts compete for breaks
{B1, . . . , B5} corresponding to the nodes{w1, . . . , w5}. However,S2 also competes for these
breaks. Proving the sufficiency of breaks for the extended set of shifts effectively provides a
stronger condition than using the original shift set.

If the enlarged associated set of shifts appears in a forward or backward constraint, nothing
remains to be shown. As an example, the set{S1, S2, S3} in the above example makes part of
a forward constraint. Let us therefore take the associated set{S2, S3, S4} corresponding to the
nodes{v2, v3, v4} in Fig. 8.5. The corresponding break set is{B2, B3, B4, B5, B6}. One forward
and one backward constraint span around this set of breaks, namely the forward constraint

B1 + B2 + B3 + B4 + B5 + B6 ≥ S1 + S2 + S3 + S4
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Figure 8.6.: Graphical illustration of variable sets in forward/backward constraints.

and the backward constraint

B2 + B3 + B4 + B5 + B6 + B7 ≥ S2 + S3 + S4 + S5

Subtracting from the equality condition
∑5

k=1 Sk =
∑7

l=1 Bl yields the inequalitiesB7 ≤ S5

andB1 ≤ S1.
Due to the construction of forward and backward constraints, the sets of break variables in both

of these constraints must be disjoint. Furthermore, it can be shown that by the absence of EO, the
sets of shift variables have to be disjoint. We can therefore add the latter constraints and substitute
in the equality constraint, yielding

B2 + B3 + B4 + B5 + B6 ≥ S2 + S3 + S4

This shows that sufficient numbers of breaks are available for the given set of shifts. The
proof thus basically combines forward and backward constraints, making use of the fact that the
complementary sets of shift and break variables are disjoint if EO is absent. This idea is illustrated
in Fig. 8.6. Each box represents one variable, e.g. a break variable. Boxes which are covered by
the respective constraints have blue colour. The complementary variable sets (shown in light
yellow) are in fact disjoint, and we can combine a forward and backward constraint to generate
a new implicit constraint on a variable subset (represented by the boxes on the right). We will
get back to this illustration in Section 9.4 where we will show that this no longer holds when
generalising implicit modelling to two dimensions.

To show the effect of extraordinary overlap, imagine that in the above example, shiftS3 only
admits a break of typeB3, i.e. the edges(v3, w4) and(v3, w5) would not be part of the network
in Fig. 8.5. This introduces EO since the break window ({B3}) of S3 is completely contained in
the break window ofS2 ({B2, B3, B4}). Then forward and backward constraint do not generally
ensure a feasible assignment. As an example, it can be easily verified that settingS2 = 1, S3 = 1,
B2 = 1 andB4 = 1 (and all other decision variables to0) obeys all forward and backward
constraints without admitting a feasible break assignment toS3. In fact, the complementary
variable sets of the forward constraintB1 + B2 + B3 ≥ S1 + S3 and the backward constraint
B3 + B4 + B5 + B6 + B7 ≥ S3 + S4 + S5 are no longer disjoint, and the necessary constraint
B3 ≥ S3 is not implicit.

An interesting alternative proof for the sufficiency of forward/backward constraints has been
given by Rekik et al. [2003]. It is based on an explicit formulation of the transportation problem
with variables denoting the number of breaks of given types assigned to a specific shift. Rekik
et al. [2003] apply Benders’ reformulation to this model and retrieve existence conditions for the
break assignment as cutting constraints on the rays of the dual program. It is then shown that most
inequalities are dominated by others when EO is absent while the remaining conditions build the
forward/backward constraint set.
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A number of researchers have used the aforementioned formulation to represent flexible break
placement, including Jarrah et al. [1994], Thompson [1995] and Brusco and Jacobs [2000]. It
allows for a formulation with only one variable for each break start time if all break durations are
equal and if EO is absent. Furthermore, the number of forward and backward constraints is linear
in the number of shifts.

Alternatively, Gaballa and Pearce [1979] have proposed to use one break variable for each start
time and each shift. Aykin [1996] generalises this idea, using one set of break variables for each
of three breaks in a shift. In order to match break and shift numbers, one equality constraint is
created for each shift. As in the model of Bechtold and Jacobs [1990], the number of constraints
is linear in the number of shifts. However, many more break variables are needed in general. A
main advantage of the model of Gaballa and Pearce [1979] and Aykin [2000] is its generality since
it naturally incorporates multiple breaks of different durations. Furthermore, it is not restricted to
settings without extraordinary overlap.

Aykin [2000] shows that while his model uses more break variables, it often entails lower
numbers of nonzeros in the constraint matrix. On a set of cyclic shift scheduling problems, he
demonstrates the computational superiority of his approach. However, Topaloglu and Ozkarahan
[1998] showed that on a set of tour scheduling problems, the Bechtold/Jacobs model generally
performed better. Aykin [2000] does not make use of an idea given by Bechtold and Jacobs [1990],
reducing the number of nonzero elements in the constraint matrix. To explain this transformation,
let

−
∑

(k,n)∈KF (l)

Skn +
∑

l′∈LF (l)

Bl′ ≥ 0

be the forward constraint for anl ∈ Llst \ {llst}. Adding the equality constraint (8.10) (and
multiplying by−1) yields the complementary constraint

−
∑

(k,n)∈K\KF (l)
n∈Nk

Skn +
∑

l′∈L\LF (l)

Bl′ ≤ 0

which may involve less nonzero coefficients. The analogous transformation can be applied to
backward constraints. It is likely that this idea would have resulted in better results on the test
cases considered by Aykin [2000].

It is worth mentioning that implicit modelling is not restricted to break representation. As
summarised in Section 2.8, other applications include implicit models of flexible shift start times
[Moondra, 1976] [Thompson, 1995], tour scheduling [Bailey, 1985] [Çezik et al., 2001] and start-
time bands in tour scheduling [Jacobs and Brusco, 1996] [Brusco and Jacobs, 2000], limited
employee availability [Thompson, 1990] and flexible placement of blocks of “controllable work”
[Thompson, 1992]. A general methodology for implicit models has been given by Çezik and
Günlük [2002], including an analysis of representational complexities under different assump-
tions.

8.5. Avoiding Extraordinary Overlap

Several publications have shown how to overcome restrictions of the Bechtold/Jacobs model. As
described above, wrap-around break variables can be used to break cyclicity [Aykin, 2000] [Br-
usco and Jacobs, 2000]. If shifts contain more than one break, Topaloglu and Ozkarahan [1998]
and Aykin [2000] propose to employ several sets of break variables and forward/backward con-
straints. Analogously, different break durations can be tackled by introducing separate variables
and constraints for each duration [Rekik et al., 2003].
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Surprisingly, the extraordinary overlap condition has received far less attention. This is proba-
bly due to the fact that EO is not very frequent in real-world scheduling problems. Aykin [2000]
notes that break lengths and start time windows usually do not change with the shift types. Using
the terminology of Chapter 5.2.1, real-world scenarios often use few break rules which define
break durations and time windows relative to shift starting times. Bechtold and Jacobs [1996]
note that even if break windows exhibit some extraordinary overlap, insufficient break availabili-
ties are not very frequent even if forward/backward constraints do not guarantee the existence of
an assignment.

Çezik and G̈unlük [2002] show that when EO is present, we can use a set of constraints which
is quadratic in the number of shifts. Rekik et al. [2003] propose to add break constraints dy-
namically from Benders’ reformulation of the transportation problem, ensuring feasibility even if
EO is present. However, this solution is rather costly and potentially generates many dominated
constraints. Another remedy consists in using the break model of Gaballa and Pearce [1979] and
Aykin [1996] which does not suffer from problems with extraordinary overlap. However, this
model generally requires many more break variables. Furthermore, we would not exploit the fact
that EO is not very frequent in practice.

In the following, we will show how EO can be explicitly handled within the model of Bechtold
and Jacobs [1990]. The basic idea is to partition the set of shifts such that break windows in each
shift class do not exhibit extraordinary overlap. We can then use one set of break variables and
forward/backward constraints (and one equality constraint) for each shift class. LetG = (V,E)
be a directed graph representing extraordinary overlap relations. We create one nodev for each
shift (k, n) and associate the break window[estbkn, lstbkn] =: [estbv, lst

b
v] with v. G contains one

edge for each pair(v1, v2) such that the break window associated withv1 covers the break window
of v2 in the sense of extraordinary overlap, i.e.

E := {(v1, v2) | estbv1
< estbv2

, lstbv2
< lstbv1

}

The graph construction clearly necessitatesO(|V |2) operations.
We note that extraordinary overlap is a transitive relation, i.e. if(v1, v2) ∈ E and(v2, v3) ∈ E,

then also(v1, v3) ∈ E. If (v1, v2) ∈ E, the break window associated withv2 is strictly tighter
than the interval of valid break start times ofv1, meaning thatG does not contain cycles. If the
edges are interpreted as undirected, the EO graph is acomparability graph, and the directed edges
in E represent atransitive orientation[Golumbic, 1980].

Our goal is to find a partition ofV into pairwise disjoint subsetsV0, . . . , Vm−1 such that

m−1⋃
i=0

Vi = V

and there is no edge between any two vertices in a subset, i.e. shift classes areEO-free. This
problem is closely related to thegraph colouring problemif we interprete edges as undirected:
Partition the setV of vertices into classesV0, . . . , Vm−1 (nodes inVi are assigned colouri) such
that adjacent vertices are in different classes (have different colours). While it is well-known that
the colouring of general graphs is anNP-hard problem, Golumbic [1977] shows that compara-
bility graphs can be coloured inO(|E|) time if a transitive orientation is known.

In fact, the transitive orientation induces a natural partial ordering on the vertices of a compa-
rability graph. We can therefore assign aheighth(v) to each vertexv. If v is a sink (i.e. no edges
emanate fromv), we seth(v) := 0. Otherwise, we assignh(v) := 1 + max{h(w) | (v, w) ∈ E}.
All vertices of equal height are then assigned the same colour. Clearly, the resulting colouring is
feasible since adjacent vertices are assigned different colours. Furthermore, there must be a di-
rected path of lengthmaxv∈V h(v) in G. BecauseE is transitive, the vertices of this longest path
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Figure 8.7.: Colouring of a comparability graph.

build a clique in the undirected graph corresponding toG, showing that the colouring is minimal.
The height functionh : v → N0 can be determined inO(|E|) time by a recursive depth-first
search [Golumbic, 1977].

As an example, take the graph of Fig. 8.7. The graph contains two connected components.
Edges which follow from transitivity are not shown. Next to the nodes, the break windows
[estbv, lst

b
v] are given. Nodes are attributed to five layers corresponding to the colours. Due to

transitivity, the path of vertices{1, 2, 3, 4, 6} builds a clique in the undirected variant of the graph.
Consequently, the chromatic number (minimum number of colours) of the graph equals five.

We now get back to our break representation problem. If the break windows of two shifts
exhibit extraordinary overlap, these shifts share breaks of equal start times. Separating shifts and
attributing a distinct set of breaks to each shift class therefore amounts to replicating variables for
common breaks. As an example, vertices 2 and 5 in Fig. 8.7 share break start times 9 through 14.
Since the nodes are linked by an edge, we would use separate break variables for all of these start
times.

Consequently, we should try to place shifts which ask for common break start times in same
shift classes. Minimising the number of required break variables, we look for anm ∈ N and a
partition ofV into classesV0, . . . , Vm−1 such that∑

t∈
S

v∈V [estbv ,lstbv ]

|{i | ∃v ∈ Vi : t ∈ [estbv, lst
b
v]}| (8.14)

is minimised.
Clearly, the goal of graph colouring is advantageous toward this end. However, we can see

from Fig. 8.7 that the height function always assigns vertices to the bottommost layer (node 5 is
attributed a height of 1). It can furthermore be observed that nodes 1, 2, 3, and 5 ask for break start
time 12. With the above colouring, this start time would be present on four layers. In contrast,
attributing node 5 to layer (height) 2 results in only three break variables for start time 12. It thus
seems to be advantageous to align nodes on the topmost layers.

This is exactly done by Algorithm 5. The EO graphG = (V,E) is presented as input, and the
partitioning ofV into EO-free classesVi, i = 0, . . . ,m− 1, builds the output of the algorithm. In
the description,δ−(v) ⊆ E andδ+(v) ⊆ E denote the in- and outedges ofv ∈ V .

In comparison to the procedure for determining the height function, the order in which nodes
are assigned to layers is reversed. The procedure basically amounts to imposing a topological
order on the graph. Keeping track of the number of unvisited inedgesd[v] for eachv ∈ V , the
algorithm starts by assigning vertices without predecessors to layer 0. In each iteration, we visit
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8.5. Avoiding Extraordinary Overlap

Algorithm 5 BREAKPARTITIONING

i← 0
d[v]← |δ−(v)|
V0 ← {v ∈ V | d[v] = 0}
repeat

for all (v, w) ∈
⋃

v′∈Vi

δ+(v′) do

d[v]← d[v]− 1
if d[v] = 0 then

Vi+1 ← Vi+1 ∪ {w}
end if

end for
i← i + 1

until Vi = ∅

the outedges of the nodes on the current layer and decrease the number of unvisited edges for
adjacent nodes. In each iteration, the next layer is built by the vertices whose predecessors have
completely been assigned to previous levels. Since each node either has an empty predecessor set
or can be reached via a path from a node without predecessors, all nodes inV will be covered by
exactly one of the setsVi. Clearly, if the shift types of the original break partitioning problem do
not exhibit extraordinary overlap, BREAKPARTITIONING degenerates, andV0 will be equal toV .

Assuming an adjacency list representation of the graph, the initialisation phase of Algorithm 5
requiresO(|V |) steps. The main loop handles each edge exactly once and thus requiresO(|E|)
operations. The overall BREAKPARTITIONING algorithm therefore runs inO(|V | + |E|) =
O(|E|) time.

It should be clear that BREAKPARTITIONING provides alternative colouring algorithm for com-
parability graphs. In contrast to theheightprocedure, vertex 5 in the above example (Fig. 8.7) is
assigned to layerV2 (height 2). It is interesting to note that the procedure does not make use of
the break time windows associated with the nodes. Nevertheless, we can show that the resulting
shift classes use the minimum possible number of breaks.

Theorem 4. BREAKPARTITIONING solves the break partitioning problem to optimality.

Proof. We have to prove that∑
t∈
S

v∈V [estbv ,lstbv ]

| {i | ∃v ∈ Vi : t ∈ [estbv, lst
b
v]}|

is minimal in the solution of BREAKPARTITIONING. Toward this end, we prove the stronger
property that|{i | ∃v ∈ Vi : t ∈ [estbv, lst

b
v]}| is minimal for eacht.

For a givent, let v ∈ V be a node whose break window coverst (i.e. t ∈ [estbv, lst
b
v]). Let v be

on leveli in the result of BREAKPARTITIONING (v ∈ Vi). Then there is a pathv0, v1, . . . , vi = v
such thatvi′ ∈ Vi′ ∀i′ = 0, . . . , i, i.e. each level contains exactly one of the nodes. Ifv is
the only node of its component on levelVi (e.g. node 6 in Fig. 8.7), this is obvious. If level
Vi comprises several nodes “in parallel” (as for node 5), the claim follows from the fact that
BREAKPARTITIONING placesv on the uppermost possible level. Because the time windows of
all predecessors in the path must be supersets of[estbv, lst

b
v], all levelsV0, . . . , Vi comprise start

time t.
Let imax be the last level containing a nodev with t ∈ [estbv, lst

b
v]. By transitivity, the path

v0, . . . , vimax = v with vi′ ∈ Vi′ is a clique if the graph is interpreted as undirected. Therefore,
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Figure 8.8.: Example for further separation of shift classes.

we need at leastimax + 1 EO-free classes to covert. But this is exactly the number of partitions
used by BREAKPARTITIONING.

For each shift class, we will use one set of break variables and constraints. Since there is no
extraordinary overlap between shifts in a class, forward and backward constraints ensure assign-
ment feasibility for breaks and shifts. Using Algorithm 5, the resulting number of break variables
is minimised. Since we still share break variables between different shifts, the number of vari-
ables will generally be lower than in the approach of Gaballa and Pearce [1979] and Aykin [1996].
However, as the experiments of Aykin [2000] indicate, the sparsity of the constraint matrix also
seems to play an important role in solution efficiency.

Additionally to complementing forward and backward constraints as described in Section 8.4,
we will make use of a further idea to reduce the number of nonzero constraint coefficients. Shift
classes determined by BREAKPARTITIONING will usually be made up of subsets of shifts which
do not share any breaks. This is especially true when using a one-week scheduling horizon since
break windows of shifts starting on different days are often disjoint. As an example, imagine
that a shift class exhibits the structure shown in Fig. 8.8. The shifts associated withv1 andv2

only compete for breaksw1 throughw3 while shifts relating tov3 andv4 ask for breaks from
{w4, w5, w6}.

It is clear that such shift classes can be broken up, creating one constraint system for each set
of associated shifts. This not only reduces the number of nonzero coefficients in the constraint
matrix, but also reduces the number of constraints. In the example, the combined system would
necessitate seven constraints (three forward and backward constraints, one equality constraint)
while after separation, we only need six constraints (one forward, backward and equality con-
straint for each subsystem).

8.6. General Shift Scheduling with Multiple Breaks

Up to now, we have assumed that each shift contains exactly one break and that all breaks have
equal durations. If a shift contains more than one break, we can simply use one set of break
variables and constraints for each break type (e.g. early, main and late break), see Topaloglu and
Ozkarahan [1998] and Aykin [2000]. Analogously, if several durations are used for the same break
type (e.g. 30 and 60 minute main breaks), the break system can be split up further [Rekik et al.,
2003]. We will therefore solve one break partitioning problem for each break type and duration.
If there are subclasses of shifts which do not mutually compete for break variables, the resulting
shift classes can be decomposed.
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8.7. Action Time Transformation

The result of this decomposition procedure is a setR of break classes. In order to illustrate the
complete set covering model, we will extend the above identifiers by a break class indexr. The set
of all breaks for classr ∈ R will be denoted byLr while Kr are the shifts associated withr. Note
that a shift can be part of several classes if it contains more than one break. The sets of earliest
and latest break start times in the time windows of shifts inKr are denoted byLest

r andLlst
r ,

respectively.lestr := minLest
r andllstr := max Llst

r are the earliest and latest overall break start
times in classr ∈ R. For a breakl ∈ Lr, LB

r := {l′ ∈ Lr | l ≤ l′} andLF
r (l) := {l′ ∈ Lr | l′ ≤ l}

are the sets of breaks starting no earlier and no later thanl, respectively.KB
r (l) andKF

r (l) are
the corresponding sets of shifts whose break windows are completely covered byLB

r andLF
r .

Brl is the decision variable for breakl in classr. The coverage reduction coefficients are given
by btrl which equal1 if t is a period covered by breakl in classr and0 otherwise. For reasons
which will become clear in the sequel, the following set covering model for the weekly shift
scheduling problem uses distinct shortage costscsht

t for each time intervalt ∈ T .

min
∑
k∈K
n∈Nk

ckSkn +
∑
t∈T

csht
t Ot (8.15)

subject to ∑
k∈K
n∈Nk

atknSkn −
∑
r∈R

∑
l∈L

btrlBrl + Ot ≥ dt ∀ t ∈ T (8.16)

−
∑

(k,n)∈KF
r (l)

Skn +
∑

l′∈LF
r (l)

Brl′ ≥ 0 ∀ r ∈ R,
∀l ∈ Llst

r \ {llstr }
(8.17)

−
∑

(k,n)∈KB
r (l)

Skn +
∑

l′∈LB
r (l)

Brl′ ≥ 0 ∀ r ∈ R,
∀l ∈ Lest

r \ {lestr }
(8.18)∑

(k,n)∈Kr

Skn −
∑
l∈Lr

Brl = 0 ∀ r ∈ R (8.19)

Skn ≥ 0 and integer∀ k ∈ K, n ∈ Nk (8.20)
Brl ≥ 0 and integer∀ r ∈ R, l ∈ Lr (8.21)
Ot ≥ 0 and integer∀ t ∈ T (8.22)

As described before, the break constraints (8.17) through (8.19) only guarantee sufficient num-
bers of breaks for all shifts. To generate an actual shift plan, the break assignment problem must
be solved. One possibility is to use the transportation problem associated with the shifts and
breaks of each break class, e.g. by the network flow formulation used in Section 8.3. Alterna-
tively, Bechtold and Jacobs [1990] describe a simple single-pass procedure.

8.7. Action Time Transformation

Up to now, we have tacitly assumed that the one-week scheduling horizon is divided into demand
periods of equal lengths. While the workload levelling experiments in Chapter 4 were based
on a minute discretisation, it will generally be sufficient to represent aggregated workloads on a
more coarse-grained level, e.g. 15 minutes, reducing the number of coverage constraints. This
is in accordance with the workforce scheduling literature proposing 15, 30 or even 60 minute
discretisations, see e.g. Henderson and Berry [1976], Morris and Showalter [1983], Thompson
[1995], Dowling et al. [1997], Brusco and Jacobs [2000] and Rekik et al. [2003].

While a 15- or 30-minute discretisation will generally be sufficient throughout times of low
activity, we might opt for a finer structure in periods in which shifts or breaks start and end. In
fact, shift start and end times may not coincide at all with given interval boundaries. In models
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Figure 8.9.: Component segments of shifts and demand periods.

without breaks, Mason and Smith [1998] and Jaumard et al. [1998] independently proposed to
divide the planning horizon intocomponent segments(Jaumard et al. [1998]:modified demand
periods) in which no shifts start and end. In such segments, the shift coverage will be uniform.
Instead of using fixed-length time periods, the scheduling horizon is then segmented into intervals
of variable durations, see Fig. 8.9.

Not only shift start and end times, but also starting and ending times of breaks definedaction
times[Thompson, 1996a]. If breaks can start within given time windows, we can assume a suitable
discretisation for break start times, e.g. five minutes. Each interval between action times will then
represent a demand periodt in model (8.15)-(8.21). In general, there will be many times within the
day without any shift or break start and end times, and a formulation based on modified demand
periods will usually be more compact than a model with fixed length intervals. Furthermore, an
action time transformation flexibly adapts to the given scenario, using more detail in times of
many action times and less granularity in times of low activity.

We define the workforce demand of a modified demand period to be the maximum over the
corresponding one minute intervals of the original demand curve. If no understaffing is used,
covering the modified demand periods is equivalent to covering the original workload histogram
(assuming a one minute discretisation for breaks). If shortage is admitted, we will define the
understaffing costcsht

t of the modified demand periodt as csht
t := κcsht if κ is the length of

the demand period. However, the transformed model will only approximate shortage costs if the
original demands within the segment are not uniform. In fact, the model assumes all original
workloads to be equal to the maximum over the interval.

One remedy consists in defining additional action times for each change in workload. This
introduces many additional demand intervals while the error by a coarser-grained model is not
important if segments are not too long. We will therefore adopt a mixed approach. First, the
original time horizon is divided into segments in which action times are only defined by shift
and break start and end times. Break start times are discretised and aligned to even five minute
intervals to increase the chance of several action times to coincide. Only if a break time window
does not admit a placement at an even five minute time (if e.g. start times between 10:02 and
10:04 are admitted), we let its (uneven) earliest start induce an action time.

In a second step, segments are subdivided if they do not exhibit uniform workforce demands.
Each 15-minute subsegment defines a separate demand period if it contains a change in labour
requirements. If the demand does not change over a period of more than 15 minute, this larger
interval defines a segment. By this approach, we avoid large declines in approximation quality for
shortage costs.
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8.8. Experimental Results

No. shift types shifts shifts with different average break
breaks break durations window width

B03 20 140 140 1 1.0
B05 11 77 0 0 –
C01 20 140 77 1 301.0
C13 5 35 35 1 277.0
C14 15 105 0 0 –
C16 8 56 0 0 –
C17 5 35 35 1 403.0
D09 8 56 56 1 391.0
D10 22 154 154 1 1.0
D11 18 126 126 1 1.0
D12 13 91 91 1 1.0
D15 20 140 21 3 301.0
D16 22 154 0 0 –
D25 20 68 68 1 295.3
D26 16 52 52 1 301.0
D27 20 140 0 0 –

Table 8.1.: Scenario data.

8.8. Experimental Results

We now evaluate the above model on real-world airport planning scenarios. A set of 16 test cases
was selected which will also be used for the tests of the cyclic roster algorithm presented in the
following chapter. Further criteria for choosing these scenarios will be given in Section 9.10.
We first analyse the impact of the action time transformation on the number of demand periods.
Afterwards, we compare the above break model which generalises the implicit formulation of
Bechtold and Jacobs [1990] to the approach of Gaballa and Pearce [1979] and Aykin [1996] who
used one set of break variables for each shift. For the tests, only main breaks have been considered
since the supplementary relief breaks (usually of 15 minutes lengths) have turned out to have only
minor impact (see also Schindler and Semmel [1993]). All scenarios cover a one week horizon,
starting on Monday.

Basic properties of the test cases are summarised in Table 8.1. With exceptions in scenarios
D25 and D26, the shift types of all scenarios can be realised on all days of the week. While on
some scenarios, all shifts include a main break, five scenarios do not contain any breaks at all,
and we will use these scenarios only for an evaluation of the temporal transformation. The break
window widths indicate the average number of admissible break start times over all shifts. It can
be seen that scenarios B03 and D10 through D12 only comprise fixed breaks while other scenarios
incorporate substantial break placement flexibility with a largest break window of 496 minutes in
scenario D25.

As described in Section 1.1, workloads on airports usually exhibit strong variations over the day
and over the week. The different requirement profiles are described by Table 8.2. While average
demands over the one week planning horizon are often moderate, peak demands raise up to 59
workers in scenarios C13 and D15. The standard deviation1 reflects the demand fluctuations. As
an example, Fig. 8.10 shows the demand curve of scenario C13. It can be seen that there are five
peak times within each day with slightly lower demands on the weekend.

1
qP

t∈T (dt − d̄)2 whend̄ denotes the average workload.
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No. average demand maximum demand standard deviation
B03 6.4 20 4.7
B05 3.0 11 1.6
C01 9.5 48 9.4
C13 13.2 59 15.1
C14 3.0 15 2.2
C16 1.5 6 1.9
C17 8.9 43 8.1
D09 2.3 14 2.8
D10 8.4 25 6.5
D11 5.5 22 4.7
D12 5.7 10 3.1
D15 18.7 59 15.2
D16 16.3 36 6.6
D25 9.7 34 8.5
D26 1.8 9 2.0
D27 8.9 31 7.6

Table 8.2.: Demand curve characteristics.
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Figure 8.10.: Demand curve of scenario C13.
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8.8. Experimental Results

No. after shifts after
and breaks histogram

B03 238 568
B05 119 656
C01 1274 1335
C13 1134 1267
C14 91 668
C16 70 198
C17 1302 1439
D09 1442 1448
D10 294 614
D11 252 575
D12 175 175
D15 182 515
D16 98 672
D25 624 809
D26 660 817
D27 133 529

Table 8.3.: Number of demand periods after action time transformation.

Results of the action time transformation are given in Table 8.3. The second column shows
the number of demand periods after defining action times for shift and break start times. As
explained above, breaks are defined in five minute steps if they can be flexibly placed. It can
be seen that especially on scenarios with high break flexibility, the number of demand periods is
already considerable. Scenario D09 exhibits the highest number of 1442 demand periods after
this first step, corresponding to an average demand period length of 7 minutes.

For the results given in the third column, additional action times were defined in 15 minute
steps if periods comprise demand changes. It can be seen that histogram action times add only
few additional demand periods if the first step already entails a high resolution. However, on
scenarios which do not comprise breaks (B05, C14, C16, D16 and D27), histogram action times
are the most relevant factor for the number of demand periods. On average, the resulting demand
periods have lengths of little more than 18 minutes. As a consequence, the adaptive action time
transformation of Section 8.7 on average yields less demand periods than the most fine-grained
models in the literature, using 15-minute demand intervals. At the same time, the transformed
time basis is able to incorporate shifts which do not start and end in even 15-minute intervals and
makes use of a finer-grained break resolution.

As we use only one break, the number of BREAKPARTITIONING problems for the above prob-
lems is equal to the number of break durations given in Table 8.1. Results for the scenarios
incorporating breaks are given in Table 8.4. The second column gives the sums of edges for the
different break partitioning problems, i.e. the number of break windows exhibiting extraordinary
overlap. Conforming with statements of Bechtold and Jacobs [1990] and Aykin [2000], extraor-
dinary overlap is quite rare in these real-world test cases, and only scenarios D09 and D26 exhibit
EO at all.

The third column gives the number of shift (and break) classes (layers) as a sum over the
different BREAKPARTITIONING runs. On scenarios without extraordinary overlap, this number
is equal to the number of BREAKPARTITIONING problems solved. On scenarios D09 and D26 in
which EO is present, we only need two layers, meaning that extraordinary overlap does not entail
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No. edges layers break classes
B03 0 1 140
C01 0 1 14
C13 0 1 14
C17 0 1 35
D09 21 2 28
D10 0 1 154
D11 0 1 126
D12 0 1 91
D15 0 3 21
D25 0 1 46
D26 6 2 26

Table 8.4.: Results of BREAKPARTITIONING and additional splitup.

No. without splitup with splitup breaks per shift type
variables constraints nonzeros variables constraints nonzeros variables constraints nonzeros

B03 140 279 19880 140 140 280 140 140 280
C01 1106 153 46771 1106 140 4732 2387 77 2464
C13 1022 69 19530 1022 56 2296 1379 35 1414
C17 1085 69 20704 1085 35 1120 1085 35 1120
D09 2282 103 34249 2282 77 3241 3976 56 4032
D10 154 307 24024 154 154 308 154 154 308
D11 126 251 16128 126 126 252 126 126 252
D12 91 181 8462 91 91 182 91 91 182
D15 21 39 186 21 21 42 21 21 42
D25 475 91 13143 475 46 543 1004 68 1072
D26 518 50 6215 518 26 570 1480 52 1532

Table 8.5.: Sizes of LP representations for different break formulations.

too many variable replications.
The last column of Table 8.4 indicates the number of break classes after splitup by associated

shifts and breaks. It can be seen that the increase upon the number of classes after BREAKPARTI-
TIONING is considerable. This means that the formulation after splitup uses many more systems
of break variables and constraints. On scenarios admitting only one break start time per shift, each
shift class is only made up of one shift.

We now compare the extended variant of the Bechtold/Jacobs break model with the approach
of Gaballa and Pearce [1979] and Aykin [1996] (Table 8.5). The first two sets of columns in
Table 8.5 indicate key figures of the Bechtold/Jacobs approach. For the second set of columns,
shifts and breaks were split up as described before. The figures relate to the above action time
transformation, i.e. variables for flexible breaks are created with a five minute discretisation.

While the number of variables with and without splitup is equal, the number of constraints is
reduced by an average of 40.4%. Especially if shifts comprise only one break, the model without
splitup uses sets of forwardandbackward constraints in an order of the number of shifts. In con-
trast, the advanced model uses only one equality constraint. In such cases, the break formulation is
trivial if shifts allow for only one break start time. However, when looking for a generic approach
for a wide range of realistic scenarios, the superiority of the splitup approach is important.

The advantage of the splitup idea becomes especially clear from the number of nonzero coef-
ficients in the constraint matrix. In both cases, the constraint substitution of Bechtold and Jacobs
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No. extended Bechtold/Jacobs modelGaballa/Pearce/Aykin model
C01 41.63 31.17
C13 2.42 2.63
C17 1.83 1.94
D09 4.22 5.80
D26 11.34 12.14
D27 2.36 2.97

Table 8.6.: Runtimes for LP relaxation of tour scheduling model.

[1990] for reducing the number of nonzeros has been applied (see Section 8.4). The splitup pro-
cedure effectively reduces the number of nonzeros by an average of 92.8%.

Clearly, using one set of break variables for each shift type (third set of columns in Table 8.5)
results in more break variables than in the aforementioned model; on average, 47.5% more vari-
ables are used. On scenarios containing only fixed breaks, the number of variables is equal. With
regard to the number of constraints, none of the models offers a clear advantage. While the model
of Gaballa and Pearce [1979] and Aykin [1996] uses exactly one equality constraint for each shift
which includes a break, the above model (after splitup) sometimes uses more constraints while on
other scenarios, sharing break variables between shifts results in a lower number of constraints.
Note that even if the numbers of constraints (or even the number of nonzeros) are equal, the types
of constraints can be different.

With regard to the number of nonzeros, the extended Bechtold/Jacobs model (with splitup)
seems to be slightly superior. Comparing the approaches on the seven scenarios allowing for
flexible breaks, the model with one set of break variables per shift necessitates an average surplus
of 29.2% nonzeros. However, none of the formulations strictly dominates the other: While on
scenario D26, the latter model uses 168.8% more nonzeros, it entails a reduction of 47.9% in the
number of nonzero matrix elements on scenario C01. However, the assumption of Aykin [2000]
that his model is generally superior with regard to the number of nonzeros is not valid if the above
advanced model is applied to typical airport planning scenarios.

On the scenarios on which the two models yield different constraint systems (six scenarios), we
have additionally evaluated LP solution times. Running times for model (8.15)-(8.21) have been
generally too low to yield expressive results. As the above model is meant as a first step towards
a cyclic roster algorithm, the solution times for the LP relaxation of the cyclic roster algorithm
of Chapter 9 were taken for comparison. The exact test conditions and roster constraints will be
given in Section 9.10. The algorithm has been implemented in Visual C++ 7.1, using BCP of
COIN-OR and XPRESS-MP Release 2004 of Dash Optimization as LP solver [Dash, 2004]. The
experiments were carried out on an AMD Athlon 3000+ computer with 2.16 GHz, 1 GB main
memory and operating system Windows XP SP1.

Computation times are given in Table 8.6 (in seconds). It can be seen that on five of the six sce-
narios, the proposed break model yields better runtimes than the model using one set of variables
and constraints per shift. On average, the Gaballa/Pearce/Aykin model consumes 5.7% more run-
time. Only on scenario C01, the latter model yields a better result. In our experiments, we could
observe that the performance of the different models also depends on the roster parameters (see
also Section 9.10). In practice, the extended Bechtold/Jacobs model nearly always outperformed
the Gaballa/Pearce/Aykin model, making it the method of choice as a generic approach for mod-
elling break placement flexibility.
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8.9. Conclusions and Future Research

In this chapter, we have introduced implicit models for the handling of flexible breaks in a weekly
shift scheduling problem. We have shown that the attribution of breaks to shifts can be represented
as a transportation problem. While the resulting formulation already incorporated generalisations
of the original shift scheduling model of Bechtold and Jacobs [1990], we have pointed out that
an elementary assumption namedextraordinary overlaphas only rudimentally been tackled up to
now.

We have developed a polynomial-time algorithm which separates the sets of shifts and breaks
such that each resulting class does not incorporate extraordinary overlap. It has been shown
that by an additional splitup idea, the number of constraints and nonzero matrix elements can be
significantly reduced. Using these considerations, the weekly shift scheduling formulation has
been generalised to the case of multiple breaks with different durations. We have shown that by
taking shift and break start and end times into account, the time scale can be transformed in an
intelligent way. This transformation yields a reduction in the number of demand periods without
sacrificing modelling detail at times of high scheduling flexibility, e.g. due to breaks.

By empirical analysis on real-world planning scenarios, we have demonstrated the efficacy of
the action time transformation. In an evaluation of the break model, we have shown that split-
ting up shifts and breaks by associated sets is crucial in developing efficient representations. The
extended break formulation has been shown to be superior to an alternative formulation not only
in terms of the number of variables, but also with regard to the sparsity of the constraint ma-
trix. Computationally, the new procedure mostly performs better than the alternative approach.
While the test cases incorporated either no break, a fixed break or rather large break windows,
the scenarios are representative of airport staff planning problems. On such scenarios, the ex-
tended Bechtold/Jacobs model is not only theoretically superior by sharing break variables, but
also seems to be appropriate as a generic approach in real-world ground staff planning.

The weekly shift scheduling model could be extended by further constraints, e.g. by the shift
restrictions of Section 5.2.6. While in practice, the model often naturally yields integer solutions,
we have not described a systematic approach for arriving at integer solutions. Instead of enhancing
the isolated shift scheduling formulation, we will use the model as a basis for an integrated cyclic
rostering algorithm in the following chapter.
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9. Cyclic Roster Generation by
Branch-and-Price

Tower: Lufthansa 893, number one,
check for workers on the taxiway.

Pilot: Roger... (after a short while)
We’ve checked the workers,

they are all working.
— from a radio message

In the previous chapter, we have introduced a basic model for demand-level scheduling includ-
ing flexible breaks. Even if we have considered a cyclic weekly scheduling horizon, we have not
explicitly built roster lines for the individual employees. The setting was therefore ashift schedul-
ing problem which additionally considers shift overlapping between the days. In contrast to shift
scheduling,rosteringtakes constraints on valid sequences of shifts into account (see Chapter 2).
In the following, we will build upon the formulation of Chapter 8 and develop a novel model and
algorithm for integrated cyclic rostering.

9.1. Introduction

Cyclic rosters(equivalently,shift patternsor rotating schedules) represent sequences of shifts
designed for a group of employees. One worker starts on each week on the roster, switching
cyclically from one week to the next. The basic principle is most easily described by an example.
In the roster of Fig. 9.1, two shift typesA andB are used; “–” signifies a day off. Four employees
work on this schedule. After finishing one week, each worker switches to the subsequent week
while worker four turns to the first week. All workers therefore rotate over the pattern for a given
period of time, e.g. a flight season.

The lower part of Fig. 9.1 shows the shift coverage, i.e. the number of shifts of typesA and
B for each day of the week. Clearly, the coverage is constant for the whole season for which
the roster is unrolled. Naturally, all staff working on a roster must have equal contract types with
regard to weekly work hours and identical skills. Cyclic rosters are frequently used to schedule

Mon Tue Wed Thu Fri Sat Sun

1 A A A A − − A
2 A A B B B − −
3 B B − A A A −
4 B B B B B − −
A 2 2 1 2 1 1 1
B 2 2 2 2 2 0 0
Σ 4 4 3 4 3 1 1

Figure 9.1.: Cyclic roster example.
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full-time staff at airlines and airports, but also in call centres, hospitals, emergency services and in
public transport, see e.g. Bennett and Potts [1968], Khoong et al. [1994] and Çezik et al. [2001].
Many of these organisations are facing continuous labour requirements on seven days a week, 24
hours a day.

On the one hand, cyclic rosters are quite rigid and inable to adapt to changes in labour require-
ments. Restricted availabilities of employees, e.g. due to trainings, illnesses or vacation, cannot
be acounted for. However, they offer a maximum degree of fairness in the distribution of shifts
[Millar and Kiragu, 1998]. Furthermore, workers can foresee their duties for a whole planning
season in advance. Airports are frequently obliged to use cyclic rosters due to union regulations
or company policies. Short-term demand peaks or staff absences are usually compensated by shift
swaps or part-time staff.

For planners, cyclic roster generation is a very demanding task. Two classes of constraints have
to be considered [Ernst et al., 2004]:

• Demand constraints: The roster should cover the workforce demands given per time period
or per shift type.

• Union and legal regulations: These typically specify minimum and maximum consecutive
workdays, the number of weekends off, if single days off can be given, etc.

The objective in roster construction can be the size of the workforce, labour costs, measures
relating to roster quality (like weekends off, consecutive workdays, etc.) or combinations of these.
Due to the large scale of airport rostering problems and the multitude of restrictions, manual roster
creation is burdensome and error-prone. Glover and McMillan [1986] mention an example of
planners taking between 8 to 15 hours to create a schedule for 70 to 100 employees. On airports,
it is frequent practice to reuse rosters from one season to the next with only slight modifications
for changes in labour requirements.

As in the preceding chapter, we will assume requirements to be given by a demand curve.
As cyclic rosters are not able to adapt to fluctuating demands, requirements should be based
on a model week with typical workloads [Gaballa and Pearce, 1979]. Clearly, demands must
be cyclic. For several reasons, demand-level scheduling is particularly appropriate for cyclic
roster generation. On the one hand, rotating schedules are created for a whole planning season in
advance, and actual task-level workloads are generally not exactly known. On the other hand, all
workers must cover the qualification requirements of all work task, i.e. workloads naturally have
to be homogeneous.

The creation of cyclic rosters involves different linked aspects, including the determination of
appropriate daily shifts, the sequencing of shifts and days off and the cyclic closure. As shown in
Chapter 2, many authors have taken sequential approaches, first solving shift scheduling problems
for each day and subsequently assigning days off and shifts, see e.g. Bennett and Potts [1968],
Emmons [1985] and Lau [1994]. While nowadays, non-cyclic rostering problems are usually
solved in an integrated way (e.g. Jarrah et al. [1994], Brusco and Jacobs [2000], Rekik et al.
[2003]), there has not been any publication on integrated cyclic tour scheduling to the knowledge
of the author. In fact, all references for cyclic rosters build upon demand figures per shift type, see
e.g. Balakrishnan and Wong [1990], Mason [1999], Muslija et al. [2000] and Felici and Gentile
[2004].

Cyclic roster approaches have regularly taken special assumptions. While some models (e.g.
Laporte et al. [1980]) only allow for equal shifts on subsequent workdays, other approaches pro-
vide no control over shift successions [Çezik et al., 2001]. Models frequently allow for only
one shift type [Rosenbloom and Goertzen, 1987] or one shift length, meaning that constraints on
weekly working hours are implicit in the number of shifts, see e.g. Mason [1999]. Most pub-
lications do not incorporate meal and rest breaks and do not represent weekend-off constraints
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[Balakrishnan and Wong, 1990]. Other approaches are very heuristic in nature (e.g. Khoong and
Lau [1992], Khoong et al. [1994]) or apply only to special restrictions (e.g. Felici and Gentile
[2004]).

In this work, we propose a more generic model and algorithm for cyclic roster generation which
applies to a large variety of scenarios. Mason and Nielsen [1999] note that it is very difficult to
“develop a single truly generic package that can be used for all rostering problems”. As this
is also true for planning practice on airports, we have tried to define a setting which covers most
typical restrictions. The resulting model is still more general and covers more constraints than any
approach before. The formulation will be integrated in determining daily shifts and shift and day-
off positions simultaneously. It will apply to continuous as well as discontinuous operations and
will incorporate one or multiple flexible breaks per shift. Furthermore, it will allow for operative
planning with given workforce sizes as well as what-if analyses with flexible staff sizes.

Especially in recent years, most solution approaches for cyclic and non-cyclic staff scheduling
problems have built upon linear or integer programming [Chew, 1991] [Ernst et al., 2004]. We
will devise a branch-and-price approach for cyclic rostering which builds upon the generalised
set covering formulation of the preceding chapter. The solution method will based upon previous
propositions but use a new representation of rosters in order to overcome limitations of alternative
approaches. We will furthermore give some annotations on the use of implicit models in roster
generation.

The chapter will be structured as follows: In the next section, we describe the constraints
for our cyclic roster approach. Different modelling approaches will be reviewed in Section 9.3
while Section 9.4 describes how a week-based representation of cyclic rosters can be extended
for our complex setting. The full model is presented in Section 9.5, using column generation to
implicit represent variables (Section 9.6). In Sections 9.7 and 9.8, we will show how connected
integer solutions are obtained by suitable branching strategies. Section 9.9 will describe some
generalisations of the model. Finally, we will give experimental results (Section 9.10) and a
summary (Section 9.11).

9.2. Problem Description

The cyclic roster problem consists in determining a shift pattern of several weeks subject to re-
strictions on the validity of shift and day-off sequences, covering given workforce requirements
as well as possible. Two different planning scenarios are imaginable. In most cases, the planner
will create an operational roster for the next season, implying that the staff size is fixed while
and understaffing may be acceptable. In other cases, the planner may be interested in a what-if
analysis of minimum workforce sizes to cover given demands. A possible scenario is the estima-
tion of staff costs due to the acquisition of additional clients. To provide maximum flexibility, we
will assume minimum and maximum limitswmin andwmax for the number of roster weeks to be
given. Fixed staff size planning then corresponds to the casewmin = wmax.

As in the previous chapter, shift types will be denoted byK. Each shift type can be realised on
a setNk ⊆ N of days of the one-week planning horizonN := {1, . . . , 7}. Shift type realisations
(k, n) (k ∈ K, n ∈ Nk) will also be referred to asshiftsand entail costs ofck. Shifts are attributed
to the day on which they start.

While we allow for different shift types on consecutive days, bad shift transitions should gen-
erally be avoided. As an example, a night shift should not be followed by an early shift. Such
transitions can be avoided by prescribing minimum rest times between shifts. Additionally, shifts
on consecutive days are often constrained to start at the same time or to follow a “forward creep-
ing” pattern, meaning that start times on subsequent days are nondecreasing. We will therefore
restrict shift starting times to a given interval around the start time on the preceding day. Mini-
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mum rest times and start-time offsets can be aggregated by definingGk ⊆ K to be the set of valid
predecessor shift types fork ∈ K. Inconvenient transitions from a shift typek1 to k2 will be pe-
nalised by a nonnegative valueτk1,k2 . We will assume thatk ∈ Gk for eachk ∈ K. τk1,k2 will be
calculated as a linear measure of the start time difference betweenk1 andk2, i.e.τk,k = 0∀k ∈ K.

A similar constraint refers to shift successions over days off. In general, a sequence of night
shift, day off and early shift is not admissible since the time off would be too short. A day off
is generally defined as an off-duty period of at least24 + h hours whereh is usually between0
and12 hours. More generally, a day-off stretch ofκ days must ensure a period of24κ + h hours
off duty. We will aggregate this information, definingHk ⊆ K to be the set of valid day off
predecessors of shift typek ∈ K. No penalties will be imposed for day-off transitions.

Consecutive days on build so-calledworkstretcheswhich will be restricted to minimum and
maximums numbers ofmon

min andmon
max shifts, respectively. Analoguously, day-off stretches will

be limited to a minimum and maximum ofmoff
min andmoff

max days off, respectively. Single days
off can e.g. be avoided by settingmoff

min > 1. We will assume thatmon
min ≤ 7 andmoff

max ≤ 6
which is sufficient in all realistic cases.

In practice, shift types usually have lengths which are multiples of e.g. 30 or 60 minutes. To
provide control over weekly working hours, we assume that a shift typek ∈ K covers a number of
uk ∈ N work unitseach of which e.g. corresponds to 30-minute time period. We will restrict each
roster week to comprise betweenumin andumax work units. Since labour contracts prescribe
weekly working hours, we will ensure that a roster is made up of an average number ofuavg

weekly work units up to a given tolerance ofutol units.
The user can furthermore specify anA-out-of-B weekends-off constraint. Since blocked week-

ends are virtually always undesirable, this will automatically imply an even spreading of weekends
off.

In accordance with most workforce scheduling publications (see e.g. Koop [1988], Thompson
[1993], Ernst et al. [2004]), we will follow a multiobjective approach. Our primary goal will be the
minimisation of labour shortages. Among solutions entailing equal shortages, we will minimise
shift costs. We will therefore define shortage penalties which exceed average shift type costs per
time period. Note that when the number of roster weeks is not fixed, less roster weeks entail
lower shift costs if shift costs are reasonably defined. Additionally, shift costs provide means for
avoiding e.g. night shifts. Inconvenience costs for shift type transitions are regarded a subordinate
objective. We will therefore assumemaxk1,k2 τk1,k2 � mink ck.

The aforementioned cyclic rostering problem isNP-hard which follows from the complexity
results of Bartholdi III [1981] for cyclic staffing problems with intermittently available resources.
Furthermore, the changing shift assignment problem analysed by Lau [1994] and the continuous
shift assignment problem of van den Berg and Panton [1994] buildNP-hard subclasses of the
above setting.

9.3. Modelling Approaches

In the following, we will review different column generation models for the cyclic roster problem.
The formulations will be analysed with regard to their suitability to cover the above restrictions
as well as constraints which may come up in the future. For ease of exposition, we will assume
demand figures to be given per shift. The cyclic roster formulation will later be based on the set
covering formulation from the preceding chapter, meaning that labour requirements will be given
per time period. A set of equality constraints will be used to couple shift and roster models.

In integer programming formulations of the cyclic roster problem, columns (variables) repre-
sent subsequences (building blocks) of shifts. In the different formulations, these building blocks
represent either workstretches, weeks or single days. Different constraints are imposed in the lin-
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X1 X2 X3 X4 X5

Mon A 1 1 ≥ 2
B 1 1 ≥ 2

Tue A 1 1 ≥ 2
B 1 1 ≥ 2

Wed A 1 ≥ 1
B 1 1 ≥ 2

Thu A 1 1 ≥ 2
B 1 1 ≥ 2

Fri A 1 ≥ 1
B 1 1 ≥ 2

Sat A 1 ≥ 1
B ≥ 0

Sun A 1 ≥ 1
B ≥ 0

Mon 1 1 1 1 = 4
Tue 1 1 1 1 = 4
Wed 1 1 1 1 = 4
Thu 1 1 1 1 = 4
Fri 1 1 1 1 = 4
Sat 1 1 1 1 = 4
Sun 2 1 1 = 4

Figure 9.2.: Workstretch encoding.

ear program in order to match these basic blocks and to form a valid roster. For illustration, we
will show how the roster of Fig. 9.1 is represented in the different models. Two shift typesA and
B with demand figures as given in the lower part of the table will be used. The shifts are planned
in a cyclic roster of four weeks length with every other weekend off.

Laporte et al. [1980], Chew [1991], Lau [1996b] and Mason [1999] have proposed to divide
rosters intoworkstretches1. For the purpose of this model, workstretches are defined as sequences
of consecutive shifts along with the following block of days off. Constraint coefficients represent
the shifts and days off which are covered by the workstretch, and integer variables denote the
number of chosen workstretches of different types. Cost coefficients typically represent labour
costs or penalties for inconvenient workstretches. The integer program therefore chooses a cost-
minimal set of compatible workstretches to cover workloads.

Fig. 9.2 shows a restricted integer program for the workstretch scheme. As an example, the
first column in program represents a workstretch starting on Monday, consisting of four shifts
of type A and two subsequent days off. The upper part of Fig. 9.2 represents shift coverage
constraints. Additionally, we must ensure that each day of the roster is coveredw times if w is a
given number of roster weeks [Mason, 1999]. This is accomplished by the constraint system in
the lower part. Note that workstretches contribute to the day equalities with days on and days off.
If there are no restrictions with regard to shifts surrounding days off, rosters naturally decompose
by workstretches, see e.g. Koop [1988].

Alternatively, variables and columns of the integer program may represent roster weeks, see
Fig. 9.3. While shift transitions within the week are incorporated in the given week patterns,

1Workstretches have also been denoted asbasic patterns[Chew, 1991],stints [Millar and Kiragu, 1998] orwork
blocks[Muslija et al., 2000].

187



9. Cyclic Roster Generation by Branch-and-Price

X1 X2 X3 X4

Mon A 1 1 ≥ 2
B 1 1 ≥ 2

Tue A 1 1 ≥ 2
B 1 1 ≥ 2

Wed A 1 ≥ 1
B 1 1 ≥ 2

Thu A 1 1 ≥ 2
B 1 1 ≥ 2

Fri A 1 ≥ 1
B 1 1 ≥ 2

Sat A 1 ≥ 1
B ≥ 0

Sun A 1 ≥ 1
B ≥ 0

weeks 1 1 1 1 = 4

Figure 9.3.: Week encoding.

special attention must be given to the validity of transitions between the weeks. Rosenbloom and
Goertzen [1987] introduce special transition variables to ensure validity with regard to minimum
and maximum days on and off at week boundaries.

We could also use smaller building blocks. As an example, Çezik et al. [2001] and Çezik and
Günlük [2002] solve seven daily shift scheduling models and combine these into a tour scheduling
formulation. Feasibility with regard to start time differences on consecutive days is ensured by
explicit link variables or, projecting out the link variables, by a constraint system similar to the
implicit break constraints described in Section 8.3.

Larger building blocks are conceivable as well. When we have to grantA out of B weekends
off, it can be advantageous to build units ofB weeks within the column generator. This idea relates
to Emmons [1985] and Burns and Koop [1987] who propose to build rosters by combination of
blocks ofB weeks. However, this approach entails the largest potential number of variables.
Furthermore, the optimal or given roster length may not always be a multiple ofB, or there may
be no weekend-off constraint at all. For these reasons, we will not further pursue this approach.

While it may seem natural to solve the above models by column generation, specific settings
may allow for a complete enumeration of building blocks, see e.g. Laporte et al. [1980] and Rosen-
bloom and Goertzen [1987]. In more general settings however, complete enumeration becomes
prohibitive. In the following, we will assume that problems are decomposed when workstretch
or week encoding are used, adding columns dynamically via a column generator subproblem (cf.
e.g. Easton and Rossin [1991], Gamache and Soumis [1998] and Mason and Smith [1998]).

Clearly, the workstretch representation easily incorporates minimum and maximum bounds on
the number of workdays and days off. Furthermore, minimum rest times between shifts are easily
handled within the column generator. Minimum temporal distances between shifts over days off
are difficult to take into account and would require special constraint systems like in Çezik and
Günlük [2002]. While average working hours can be represented by an additional constraint in the
master program (and a larger search space in the subproblem), minimum and maximum weekly
working hours cannot be taken into account.

In contrast, this task is easy if weeks are taken as building blocks. But while observing bounds
on consecutive days on and off is easy within weeks, special care has to be given to transitions
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X1 X2 X3 X4

Mon 1 1 1 ≥ 3
Tue 1 1 1 ≥ 3
Wed 1 1 ≥ 2
Thu 1 1 1 ≥ 3
Fri 1 1 1 ≥ 3
Sat 1 1 1 ≥ 3
Sun 1 1 ≥ 2
Mon 2 1 1 = 4
Tue 2 1 1 = 4
Wed 1 1 1 1 = 4
Thu 1 1 2 = 4
Fri 1 1 2 = 4
Sat 1 1 1 1 = 4
Sun 1 1 1 1 = 4

Figure 9.4.: Roster containing disconnected subcycles.

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Figure 9.5.: Disconnected subcycles.

between the weeks. The same is true for minimum rest times between shifts and over days off at
the week boundary, creating a feasibility problem for week transitions in two dimensions.

Çezik et al. [2001] only show how weeks of five workdays can be extracted from an implicit
model combining daily set covering formulations. In contrast, bounds on workdays and days
off cannot be easily incorporated. Minimum times between shifts and over days off could be
respected via an implicit constraint system. While average working hours could be covered via
an additional constraint, there is no easy way to guarantee adherence to minimum and maximum
working hours per week.

In week and workstretch formulations, minimum numbers of weekends off over the complete
roster can be easily respected via an additional constraint. Nevertheless, weekends off generally
have to be equally distributed which is not easy to represent.

Another problem in all formulations arises from disconnected subcycles [Laporte et al., 1980]
[Mason, 1999]. Figure 9.4 gives an example for a workstretch formulation. For ease of exposi-
tion, only one shift type is used. The roster comprises four workstretchesMon→Tue, Wed→Sun,
Thu→Fri , Sat→Wed. As can be easily verified, all constraints are observed, but the workstretches
cannot be composed into a single rotation. Figure 9.5 shows workstretches as arcs, leading from
their first day to the day after their last day; weekday nodes are shown as lines. From this graph, it
becomes clear thatMon→Tue/Wed→SunandThu→Fri /Sat→Wedform disconnected subcycles.

The problem of disconnected subcycles is closely related to the subtour problem in IP represen-
tations of vehicle routing and travelling salesman problems, see e.g. Dantzig et al. [1954], Fisher
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single shifts workstretches weeks

Consecutive difficult easy easy within weeks,
days on/days off difficult

between weeks
Minimum rest times difficult easy easy within week,
between shifts difficult

between weeks
Minimum rest time difficult difficult easy within week,
over day off difficult

between weeks
Minimum and maximum difficult difficult easy
working hours per week
Average working hours easy easy easy
per week
Distance between difficult difficult difficult
weekends off
Disconnected subcycles may exist may exist may exist

Table 9.1.: Comparison of different cyclic roster formulations.

and Jaikumar [1981] and Lawler et al. [1985]. Disconnected subcycles may arise in all of the
above models, but are less likely to occur in week and single-day formulations. Laporte et al.
[1980] and Mason [1999] show how to eliminate disconnected subcycles by means of cuts and
branching, respectively. Other authors build several cyclic rosters from the subcycles (e.g. Burns
and Koop [1987]) or implicitly tolerate their existence (Rosenbloom and Goertzen [1987], Çezik
et al. [2001]). We will assume that subcycles are undesired since attributing employees to separate
rosters sacrifices fairness of shift attributions.

Table 9.1 summarises advantages and disadvantages of workstretch, week and single-shift en-
coding. Obviously, the Çezik et al. [2001] model of combining daily set covering formulations
into a tour scheduling formulation is not appropriate for the setting described above. The main
flaw of the workstretch model is its difficulty to represent minimum and maximum working hours
per week. If the above setting is enriched by further constraints in the future, these are likely to
refer to weeks; Rosenbloom and Goertzen [1987] even state that “virtually all labour restrictions
concern weekly schedules”.

We will therefore adopt the week formulation and show how all aforementioned constraints can
be represented. We will assume that a work week starts on Monday and ends on Sunday. While
the column generation approach of Chapter 7 was developed from a compact formulation, the
compact model for the above problem would amount to defining one variable per roster position.
However, weeks in cyclic rosters are isomorphic, and attributing variables to specific weeks entails
symmetry problems [Felici and Gentile, 2004]. In contrast, the column generation formulation
does not attribute weeks to specific positions and therefore naturally avoids symmetry. We will
thus only make reference to the compact formulation in integer branching (Section 9.7).

9.4. Encoding Week Transitions

In the preceding section, we have seen that many roster constraints are easy to obey in the week
formulation. However, it becomes more difficult to ensure validity between roster weeks. We
therefore have to ensure that the integer program chooses weeks such that the shift sequence
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Figure 9.6.: Transportation problem for numbers of days on/off.

at the end of one week matches at least one other week start, i.e. weeks can be linked without
violating constraints. Before describing the generation of weeks in more detail, we will analyse
the restrictions governing validity of week transitions. For the moment being, we will neglect
weekend-off constraints.

First, we must observe minimum and maximum limits on the number of consecutive days on
and off. As an example, let[mon

min,mon
max] = [3, 5] and[moff

min,moff
max] = [1, 2]. This means that

if e.g. a week ends on a single day on, there must be another week starting with at least two and at
most four days on. If a week ends on e.g. three days on, it can be linked to either a week starting
on a maximum of two days on or to a week commencing on one or two days off. Analoguously,
only weeks obeying certain starting conditions can follow a week ending on days off. Sequences
of days on and off at week boundaries represent feasibility conditions which must be suitably
encoded.

Figure 9.6 shows the basic situation. Nodes on the left-hand side represent week endings on
different numbers of days on (blue) and off (red). Nodes for week starts are shown on the right-
hand side. Valid week transitions are represented by edges. The attribution of matching numbers
of days on and off can be interpreted as a transportation problem, matching supplies of week
endings to demands of week starts. It is easy to observe that the problem of ensuring matching
numbers of weeks is equivalent to the shift-break attribution problem of Section 8.3. By con-
struction, it is obvious that the network does not exhibit extraordinary overlap (EO) as defined in
Section 8.4.

However, there are additional restrictions in our approach. Shift types on consecutive days on
must be chosen such that start times only differ by a limited time. The basic situation is illustrated
in Fig. 9.7. Nodes on the left-hand side correspond to start times of Sunday shifts while right-
hand side nodes represent start times of Monday shifts. In the example, start times are allowed to
deviate by at most one hour. Again, matching conditions could be encoded by implicit constraint.
In this way, Çezik et al. [2001] couple seven daily shift scheduling formulation to a tour scheduling
model. Using this idea only at week boundaries would be a means of ensuring start time validity.

While the above example can be seen to obey the extraordinary overlap condition, this is gen-
erally not true if additional minimum rest times must be observed between shifts. Analoguously,
limiting shift transitions over days off can entail extraordinary overlap. We therefore cannot use
the linear-size constraint system of Bechtold and Jacobs [1990]. Instead, we would have to resort
to a quadratic number of constraints (see Çezik and Günlük [2002]) or use the separation logic
of Section 8.5. Furthermore, shift transitions not only imply feasibility conditions, but can also
entail inconvenience costs. However, as opposed to shift successions within weeks, transitions at

191



9. Cyclic Roster Generation by Branch-and-Price

8:00

sh
if

t
st

ar
t 

o
n

 
S

u
n

d
ay

sh
ift

start o
n

 
M

o
n

d
ay

9:00

10:00

11:00

12:00

8:00

9:00

10:00

11:00

12:00

Figure 9.7.: Transportation problem for shift start times on successive days.

week endings week starts

Figure 9.8.: Two-dimensional transportation problem for week transitions.

week boundaries may not be too critical, and it may be acceptable to neglect transition penalties
between weeks.

To ensure matching numbers of weeks, we must obey both limits on the numbers of days on
and offandrestrict shift transitions, creating a matching problem in two dimensions (Fig. 9.8). In
analogy to Fig. 8.6, Figure 9.9 visualises the sets of variables which are covered by forward and
backward constraints in two dimensions (blue boxes).

In Section 8.4, we have sketched the proof of Bechtold and Jacobs [1996] for the sufficiency
of forward and backward constraints to ensure assignment feasibility. The basic idea of the proof
consists in combining forward and backward constraints whose complementary variable sets are
disjoint if extraordinary overlap is absent. However, we see that in Fig. 9.9, the variables repre-
sented by the lower left and the upper right (yellow) boxes are present in the complementary sets
of both forward and backward constraint. This means that even if there is no extraordinary over-
lap, complementary variable sets will not be disjoint in two dimensions. The proof of Bechtold
and Jacobs [1996] therefore does not apply, and forward and backward constraints will generally
not be sufficient to encode matching conditions between weeks.

forward
constraint

backward
constraint

Figure 9.9.: Forward and backward constraints in two dimensions.
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Figure 9.10.: Week link encoding.

Using a quadratic number of constraints in each dimension (according to Çezik and Günlük
[2002]) would be a remedy. The resulting number of constraints could be implicitly dealt with,
generating transition cuts dynamically; Çezik and Günlük [2002] describe how cuts can be sep-
arated by determining minimum flow capacities. However, preliminary experiments have shown
that even if only non-dominated cuts were generated, the overall performance of the approach was
poor.

Dealing explicitly with succession feasibility between weeks amounts to introducing additional
variables representing the numbers of week transitions of each type. Each suchlink variable is
related to given numbers of days on or off and shift types at week starts and endings. We will
refer to the characteristics of week starts or endings asjunctions. A junction can be represented
by a pair(k, m) ∈ K × N and an additional indication of the junction type (day-on/day-off).
As a example, let(k, m) be a week start junction. If it is a day-on junction,k refers to the shift
on Monday andm to the number of days on at the week start. If(k, m) represents a week start
off-day junction,k denotes the first shift in the week andm the number of days off at the week
start.

The validity of week transitions can be checked using only information on the junctions. If
e.g.(k1,m1) is a week end day-on junction and(k2,m2) a week start day-on junction, the two
corresponding weeks follow each other ifk1 ∈ Gk1 andm1 + m2 ∈ [mon

min,mon
max]. Weeks can

then be interpreted as connecting week start and end junctions while links build bridges between
week end and start junctions. Shift type transition penaltiesτk1,k2 can be accounted for in the
costs of links.

The basic idea is sketched in Fig. 9.10. Red nodes represent week start (equivalently, link
end) junctions, blue nodes week end (equivalently, link start) junctions; week start junctions are
replicated on the right side. The order of weeks in the example is given on the week edges.

Link variables enable us to explicitly represent feasible week transitions in a linear program by
enforcing the numbers of week start junctions to match the number of target junctions of links and
week endings to equal the numbers of links starting on the respective junctions. Rosenbloom and
Goertzen [1987] use similar transition variables in a simple setting admitting only few feasible
weeks and links encoding feasibility with regard to bounds on days on and off. In our setting,
we will not only generate weeks dynamically, but also defer link variable generation to a col-
umn generator. This allows for dealing implicitly with link variables whose potential number is
biquadratic in the number of days on/off and shift types.

Because we assumedmoff
max ≤ 6, each week will comprise at least one shift. Consequently,

validity of shift transitions can always be ensured at the interface between subsequent week. Since
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furthermoremon
max ≤ 7, a workstretch cannot span over more than one week. Consequently, a

week with seven days on must be preceded and followed by days off, and encoding feasibility
with regard to the length of workstretches does not involve more than two adjacent weeks.

It is interesting to note that the implicit formulation described above can be obtained from
an explicit model by projecting out link variables, see Çezik and Günlük [2002]. Clearly, the
resulting model is only equivalent if all link variables have costs of0 which is not the case in
the above model. Theoretically, it is also possible to use half-implicit approaches, e.g. by using a
separate implicit constraint system to encode shift type transitions for each combination of days
on/off at week starts/ending. This potentially results in a quadratic number of linear-complexity
constraint systems. It remains to be investigated if mixed-implicit approaches are competitive
with pure implicit or explicit approaches.

Regardless of the model used, we may face the subcycle problem described in Section 9.3. The
explicit formulation will generally be more susceptible to disconnected solutions since it leaves
lower degrees of freedom for matching week starts and endings. We will defer this problem
to Section 9.8 where we will describe how disconnected solutions can be cut off by specialised
branching rules.

9.5. Integer Programming Model

The following column generation formulation for the cyclic roster problem is based on the weekly
shift scheduling model of Section 8.6. Additional week and link variables will be coupled to
the shift variables and represent the sequencing aspect of rostering. While coverage and break
constraints are considered as before, additional roster constraints apply to the level of weeks and
links. By combining these models, we arrive at an integrated model for cyclic tour scheduling.

As before, the model incorporates decision variables for shifts (Skn for k ∈ K, n ∈ Nk),
breaks (Brl for break classr ∈ R and break indexl) and shortages (Ot for time periodt ∈ T ).
Shifts of typek entail costs ofck while shortages are penalised by period-dependent costs ofcsht

t .
atkn andbtrl are shift and break coverage coefficients for periodt. Break index sets for forward
and backward constraints are denoted byLlst

r andLest
r while llstr andlestr are the latest and earliest

breaks per break class.
We newly introduce index setsI andJ for valid weeks and links, respectively. A week variable

ϑi indicates how many weeks of typei ∈ I are used in a solution. Analoguously,λj denotes the
number of links of typej ∈ J . Shift transition costs (τk1,k2) within each week are aggregated in a
cost coefficientcw

i for each weeki ∈ I. Analoguously, link costscl
j , j ∈ J , incorporate transition

costs ifj represents a day-on link; note that day-off transitions do not entail penalties. In order
to respect bounds on the number of roster weeks and to account for average working hours, we
introduce an additional variableW denoting the number of roster weeks.

Each dynamically generated variable contributes a column to the constraint matrix. For week
variables, we define shift coefficientsskn

i with skn
i = 1 if week i covers shift(k, n) and 0

otherwise. Byui, we will denote the number of work units aggregated over the week (ui =∑
k∈K

∑
n∈Nk

skn
i ukn).

Furthermore, we must specify the start and end junctions for each weeki ∈ I. We define
wskm,on

i = 1 if i starts withm days on and incorporates shift typek on Monday (wskm,on
i = 0

otherwise). Ifi starts withm days off and shift typek on the first workday of the week, we set
wskm,off

i = 1 (wskm,off
i = 0 otherwise). Symmetrically, we define coefficientswekm,on

i and
wekm,off

i for week endings on days on and off, respectively.
As described above, links are counterparts of weeks, connecting week end (link start) junctions

to week start (link end) junctions. We therefore definelskm,on
j = 1 if link j ∈ J matches a week

end junction withm days on and shift typek on Sunday (lskm,on
j = 0 otherwise). Analoguously,
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9.5. Integer Programming Model

lskm,off
j equals1 if j starts on a junction specifyingm days off and shift typek on the last

workday of a week. Link end (week start) junction coefficientslekm,on
j andlekm,off

j are defined
symmetrically.

The integrated cyclic roster model reads as

min
∑
i∈I

cw
i ϑi +

∑
j∈J

cl
jλj +

∑
k∈K
n∈Nk

ckSkn +
∑
t∈T

csht
t Ot (9.1)

subject to∑
k∈K
n∈Nk

atknSkn −
∑
r∈R

∑
l∈L

btrlBrl + Ot ≥ dt ∀ t ∈ T (9.2)

−
∑

(k,n)∈KF
r (l)

Skn +
∑

l′∈LF
r (l)

Brl′ ≥ 0 ∀ r ∈ R, l ∈ Llst
r \ {llstr } (9.3)

−
∑

(k,n)∈KB
r (l)

Skn +
∑

l′∈LB
r (l)

Brl′ ≥ 0 ∀ r ∈ R, l ∈ Lest
r \ {lestr } (9.4)∑

(k,n)∈Kr

Skn −
∑
l∈Lr

Brl = 0 ∀ r ∈ R (9.5)

−Skn +
∑
i∈I

skn
i ϑi = 0 ∀ k ∈ K, n ∈ Nk (9.6)∑

i∈I

wskm,on
i ϑi −

∑
j∈J

lekm,on
j λj = 0 ∀ k ∈ K : 1 ∈ Nk,

m ≤ mon
max

(9.7)∑
i∈I

wskm,off
i ϑi −

∑
j∈J

lekm,off
j λj = 0 ∀ k ∈ K : m + 1 ∈ Nk,

m ≤ moff
max

(9.8)∑
i∈I

wekm,on
i ϑi −

∑
j∈J

lskm,on
j λj = 0 ∀ k ∈ K : 7 ∈ Nk,

m ≤ mon
max

(9.9)∑
i∈I

wekm,off
i ϑi −

∑
j∈J

lskm,off
j λj = 0 ∀ k ∈ K : 7−m ∈ Nk,

m ≤ moff
max

(9.10)∑
i∈I

ϑi −W = 0 (9.11)∑
i∈I

uiϑi − uavgW ≥ −utol (9.12)∑
i∈I

uiϑi − uavgW ≤ utol (9.13)

wmin ≤W ≤ wmax and integer (9.14)
ϑi ≥ 0 and integer∀ i ∈ I (9.15)
λj ≥ 0 and integer∀ j ∈ J (9.16)

Skn ≥ 0 and integer∀ k ∈ K, n ∈ Nk (9.17)
Brl ≥ 0 and integer∀ r ∈ R, l ∈ Lr (9.18)
Ot ≥ 0 and integer∀ t ∈ T (9.19)

Objective function (9.1) vises at minimising a mix of shift costs, shift transition penalties (given
week and link coefficients) and understaffing penalties. As in the model of Section 8.6, (9.2) is a
set of coverage constraints while (9.3), (9.4) and (9.5) are forward, backward and equality con-
straints for breaks. Constraint set (9.6) matches shift variables shifts used in the weeks. While
(9.7) and (9.8) match the numbers of week start/link end junctions, (9.9) and (9.10) enforce equal-
ity of junctions for week starts and link endings. (9.11) determines the number of roster weeks
which are restricted by constraints (9.14). The roster week variable is additionally employed in
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9. Cyclic Roster Generation by Branch-and-Price

inequalities (9.12) and (9.13), enforcing average working hours to be obeyed up to a given tol-
erance. (9.15) through (9.19) are nonnegativity and integrality constraints for week, link, shift,
break and shortage variables.

While parts of the work rules are explicitly represent in model (9.1)-(9.19), other restrictions
(e.g. minimum and maximum weekly working hours) are implicit in the definition of the index
setsI andJ . We will thus only include valid weeks and links.

The column generation formulation of the cyclic roster problem is based on representing only
subsetsI ′ ⊆ I andJ ′ ⊆ J of the variables in a restricted master program corresponding to
(9.1)-(9.19). Valid weeks and links will then be generated dynamically and added to the master
program. With regard to the classification of Section 6.2, (9.1)-(9.19) is a column generation
formulation with identical restrictions on the subsets.

We will shortly indicate relations to models proposed in the literature. Model (9.1)-(9.19) uses
an implicit representation of weeks, using shifts as given by a distinct set of shift variables. This
strongly relates to the implicit model for non-cyclic tour scheduling of Bailey [1985]. However,
the above model specifies shifts explicitly, providing more control over shift sucessions than in
the Bailey model. Work hour constraints like (9.12) and (9.13) have been incorporated in the
non-cyclic tour scheduling models of Jaumard et al. [1998], Mason and Smith [1998] and Mason
and Nielsen [1999]. Two-dimensional link encoding in a column generation approach is a novel
proposition.

An illustration of the block-angular structure of model (9.1)-(9.19) is given in Fig. 9.11. For
clarity reasons, nonnegativity and integrality constraints and bounds on roster weeks are not rep-
resented.

9.6. Week and Link Generation

Since the number of week and link variables in model (9.1)-(9.19) is very large, we only represent
subsetsI ′ ⊆ I andJ ′ ⊆ J of the weeks and links in a restricted master program. New weeks and
links with negative reduced costs are then generated on demand. In order to solve the LP relax-
ation, we will first drop the integrality restrictions in constraints (9.14) through (9.19). Section 9.7
will describe how integer solutions can be obtained by using compatible branching rules.

Generating link variables with negative reduced costs is fairly easy and basically amounts to
enumerating feasible combinations of day-on/day-off stretches and shift types at the interface
between weeks. Letγon

k,m andγoff
k,m be the dual prices associated with constraints (9.7) and (9.8)

for week start (link end) junctions andηon
k,m andηoff

k,m be the dual prices of equalities (9.9) and
(9.10) for week end (link start) junctions.

As an example, let(k1,m1) be the junction for a week ending onm1 days on with shift typek1

on Sunday. Analoguously, let(k2,m2) be the junction of a week starting onm2 days on and shift
typek2 on Monday. Ifk1 ∈ Gk2 andm1 + m2 ∈ [mon

min,mon
max], the week starting on(k2,m2) is

a valid successor of the week ending on(k1,m1). The reduced cost̄con,on
j of the corresponding

link j is calculated by subtracting the inner product of dual prices and constraint coefficients from
the actual (penalty) costs. For the example, we obtain

c̄on,on
j := τk1,k2 + ηon

k1,m1
+ γon

k2,m2

Analoguously, we can calculate reduced costs for valid day-off/day-off, day-on/day-off and
day-off/day-on links. Note however that no penalty costs are incurred for transitions over days
off. Calculating the minimum cost link therefore amounts to determining
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Figure 9.11.: Structure of the linear program.
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9. Cyclic Roster Generation by Branch-and-Price

min
{

min
(k1,m1),(k2,m2),k1∈Gk2
m1+m2∈[mon

min,mon
max]

τk1,k2 + ηon
k1,m1

+ γon
k2,m2

,

min
(k1,m1),(k2,m2),k1∈Hk2

m1+m2∈[moff
min,moff

max]

ηoff
k1,m1

+ γoff
k2,m2

,

min
(k1,m1),(k2,m2),k1∈Hk2

m1∈[mon
min,mon

max]

m2∈[moff
min,moff

min]

ηon
k1,m1

+ γoff
k2,m2

,

min
(k1,m1),(k2,m2),k1∈Hk2

m1∈[moff
min,moff

max]
m2∈[mon

min,mon
max]

ηoff
k1,m1

+ γon
k2,m2

}

(9.20)

The calculation can be accelerated by predetermining minimum dual values over start and end
junctions. If e.g. a link start junction cannot entail negative reduced cost even if the minimum
end junction cost is taken, we do not need to evaluate any of the combinations involving the start
junction. By solving (9.20), we determine one or several links of minimum reduced costs which
are added to the restricted master program. The corresponding cost coefficientcl

j is set toτk1,k2

for day-on transitions and0 otherwise. The calculation of (9.20) is linear in the number of shift
types and the widths of the day-on and day-off windows ([mon

min,mon
max] and[moff

min,moff
max]).

The problem of finding valid weeks with negative reduced costs and corresponds to solving a
special resource-constrained shortest path problem (RCSP). Resources represent the number of
consecutive days on and off and aggregated work units over the shifts. The RCSP isNP-hard
[Dror, 1994] and is usually solved by pseudo-polynomial dynamic programming (DP) algorithms,
see e.g. Desrosiers et al. [1993], Jaumard et al. [1998]. For the generation of weeks, we basically
define DP states for each day, shift type and given resource consumptions. States are unfolded in
the order of weekdays, respecting valid shift transitions and minimum/maximum bounds on the
number of days on and off.

However, encoding week transitions by links and junctions introduces an aspect which distin-
guishes the generation of weeks from standard resource-constrained shortest path problems. In
our model, we are given dual prices for week start and end junctions, specifying the first and last
shift type of the week and the number of initial or final days on or off. Week start and end junc-
tions define startingandending conditions for weeks. In contrast, there are no starting conditions
in standard RCSPs, i.e. resource counters are initialised e.g. to0 at the start of the dynamic pro-
gram and aggregated in the course of unfolding the underlying network. In our setting, we also
have to provide control over the number of days on/off and shift type at the start of the week in
order to consider dual prices of start junctions. Together with the ending conditions as given by
end junction prices, we are given a two-sided resource-constrained shortest path problem.

We will therefore solve the RCSP in two steps: Day-on start junction prices will be handled by
a first dynamic program termedbackward net. As day-on start junctions specify the number of
initial days on in the week, the backward net will include a counter for the number of remaining
days on. After creating this first stretch of days on, states are expanded via a day-off transition
into a forward net. While remaining days on decrease in backward net expansions, states in the
forward net comprise a counter for the number of days on used so far. While the backward net
only incorporates day-on transitions, the forward net includes day-on and day-off state expansions.
While day-on start junctions provide starting conditions for the backward net, day-off junctions
represent weeks starting on days off. Day-off start junction prices are therefore directly considered
in the forward net.

The basic idea is sketched in Fig. 9.12. The backward net is responsible for creating the first
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Figure 9.12.: Partition of week into backward net part and forward net part.

workstretch of each week (marked in blue) while further stretches of days on and off are handled
by the forward net (shown in orange colour).

Additionally to the prices of (week) start and end junctions (denoted as above), we have to
incorporate further dual values. The dual valueπk,n associated with each of the constraints (9.6)
gives a price for shift typek on dayn. The dual prices for constraints (9.12) and (9.13) indicate the
cost of a work unit; their sum will be denoted byω. Finally, each week contributes to the number
of roster weeks, andφ will denote the dual price associated with the week equality constraint
(9.11).

We start with the description of the backward net. LetP (k, n,m, u) represent the accumulated
costs for a partial shift sequence with shift typek on dayn, remaining workdaysm and aggregated
work unitsu, including the work units of shift(k, n). As mentioned before, the backward net
only covers day-on transitions for the first stretch of workdays. In the following formula, we will
assume that pricesγon

k,m andγoff
k,m equal−∞ for invalid start junctions, e.g. if1 /∈ Nk for a day-on

start junction. Furthermore, we will setP (k, n,m, u) =∞ for invalid states. The DP recurrence
for the backward net is then given by

P (k, n,m, u) :=
−γon

k,m+1 − πk,n n = 1, u = uk

min
k′∈Gk:

n−1∈Nk′

[P (k′, n− 1,m + 1, u− uk) + τk′,k]− πk,n n > 1, u > uk
(9.21)

The first term considers day-on junction prices for states on the first day (Monday) and subtracts
the dual price of the corresponding shift. While the counteru for the work units equalsuk after
the first shift,m denotes the remaining days on and is decremented for each day. The second term
refers to all further days, assuming that DP states are evaluated in order of weekdays. For a given
state(k, n,m, u), minimisation runs over all states in the preceding layer (n − 1) if remaining
days and units match. Additionally to considering dual costs for the current shift (πk,n), the shift
transition penaltyτk′,k is accounted for.

The recurrence equation for the forward net is similar, but includes additional day-off transi-
tions and usesm as a counter for workdays accomplished so far (instead of counting remaining
days down).Q(k, n,m, u) represents the accumulated costs of a state with shiftk on dayn as the
m’th consecutive day on and aggregated work unitsu. The forward net covers only shifts after an
initial stretch of workdays (from the backward net) or days off (using start junctions) and there-
fore starts on the second day (n = 2). Again, we will assumeQ(k, n,m, u) =∞ for “unknown”
states, e.g. ifn < 2.

199



9. Cyclic Roster Generation by Branch-and-Price

Mon Tue Wed Thu Fri Sat Sun
0h

8h

16h

32h

40h

48h

56h

days

work
hours

from
backward net

or start junction

Figure 9.13.: Exemplary expansions in the forward net.

Q(k, n,m, u) :=

−γoff
k,n−1 − πk,n

m = 1,
u = uk

min
[

min
k′∈Hk

n−n′−1∈[moff
min,moff

max]

P (k′, n′, 0, u− uk),

min
k′∈Hk,n−n′−1∈[moff

min,moff
max]

m′∈[mon
min,mon

max]

Q(k′, n′,m′, u− uk)
]
−πk,n


m = 1,
u > uk

min
k′∈Gk

[Q(k′, n− 1,m− 1, u− uk) + τk′,k]− πk,n
m > 1,
u > uk

(9.22)

Again, some words of explanation are in place. The first line inserts day-off junction values
into the forward net, using shiftk on dayn and accounting for a first day on (m = 1) and the work
units of shift typek (u = uk). Lines two and three refer to day-off transitions (m = 1), expanding
states from the backward and forward net. Backward net expansions are restricted to states in
which no further workdays have to be taken (P (k′, n′, 0, u − uk)) while for forward net states,
the number of days on in the workstretch must be in[mon

min,mon
max]. In both cases, the number of

days off must be within the given limits[moff
min,moff

max]. Additionally to summing up work units,
dual shift costsπk,n are subtracted. The last line refers to transitions between consecutive days
on, taking shift costs as well as transition penalties (τk′,k) into account.

In the definitions ofP (k, n,m, u) andQ(k, n,m, u), we have tacitly assumed that only states
are evaluated which can result in a valid solution. A state(k, n,m, u) is e.g. invalid ifn /∈ Nk,
u > umax or m ≤ mon

max in the forward net. An illustration for the evaluation of forward net
states can be found in Fig. 9.13. The state space is only displayed with regard to working hours
(work units) and days of the week while shift types and the day-on counter were left out.

The above recurrence formulae evaluate states by referring back to previous states (“pulling”).
However, (9.21) and (9.22) will be typically implemented by expanding states in forward direc-
tion (“reaching”). By the reaching strategy, we naturally evaluate only valid states whose number
is quite moderate in practice. The dynamic programs will thus be evaluated in order of increasing
weekdays, expanding each state to the next layer(s). Dual values of week start junctions are ini-
tially inserted into the backward net (for day-on junctions) or forward net (for day-off junctions).
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9.6. Week and Link Generation

Additionally, final backward net states (form = 0) will be expanded to the forward net.
Analysing the complexity of the above operations, we first note that the workstretches created

by backward and forward net are disjoint. We can therefore give bounds on the common com-
plexity of both dynamic programs. The number of states is in the order of|K| ·mon

max · umax for
each weekday (|N | = 7), but their exact number varies between the days. On the one hand, the
possible values ofm depend on the weekday. As an example, the forward net only contains states
for m = 1 on Tuesday, form ∈ {1, 2} on Wednesday etc. On the other hand, only a limited num-
ber of different sums of work units are valid on each day. On Monday, the minimum work units
amount tomink∈K uk, and Saturday states which may lead to a valid week will have between
max(umin −maxk∈K uk, 0) andumax −mink∈K uk work units. If we additionally take restric-
tions on workstretch lengths into account, this can be used to additionally prune the search space.
In realistic test cases, we can furthermore assume that only very few sums of work units will be
generated. In the extreme case of equal work units for all shift types, the unit dimension in the
above dynamic programs degenerates, and aggregated units will reflect the number of workdays
so far.

The number of operations for each valid state depends on its type. Each node will either allow
for day-on transitions (backward net states and forward net states withm > 1) or for day-off
transitions (forward net states withm = 1). Day-on transitions necessitate|Gk| operations ifk
is the shift type of the state. Day-off transitions entail operations in the order of|Hk| · (moff

max −
moff

min + 1), but the exact complexity again depends on the weekday. Additionally, we have to
take start junction prices into account, namely at backward net states forn = 1 and forward net
states form = 1 andn− 1 ≤ moff

max.
It remains to be shown how weeks with negative reduced costs can be obtained from the back-

ward and forward net calculations. Nodes of both dynamic programs (9.21) and (9.22) may rep-
resent final states of a week. Additionally to subtracting dual values for week end junctions, we
must consider costs of work units and roster weeks. Finding a minimum cost week amounts to
evaluating

min
k∈K

u∈[umin,umax]

{
min

(
min

n∈{7−moff
max,...,6}

[P (k, n, 0, u)− ηoff
k,7−n],

P (k, 7, 0, u)− ηon
k,7,

min
n∈{max(2,7−moff

max),...,6}
m∈[mon

min,mon
max]

Q(k, n,m, u)− ηoff
k,7−n,

min
m∈[1,mon

max]
Q(k, 7,m, u)− ηon

k,m

)
− uω

}
− φ

(9.23)

where the second line (P (k, 7, 0, u) − ηon
k,7) is only taken if the setting allows for seven days on

(mon
max = 7), meaning that the backward net contains workstretches of seven days. The first two

lines retrieve final states from the backward net, assuming that all prescribed workdays from the
start junctions have been carried out (m = 0). Forn ≤ 6, the week will end on days off, and we
will subtract the corresponding day-off junction value. Forn = 7 (if valid), we retrieve a week
which is only made up of workdays and ends on a day-on junction. Analoguously, we retrieve
weeks ending on days off from the forward net (third line) if the number of workdays is in the
valid range. The fourth line corresponds to forward net states corresponding to week endings on
days on. In every case, dual costs of week units (uω) and roster weeks (φ) are considered.

Let us shortly analyse the complexity of the above operations. Day-off end junctions from the
backward net (first line of (9.23)) are retrieved by minimisation over shift types, units and final
days off in the order of|K| ·(umax−umin+1) ·moff

max. For day-on endings from the backward net
(second line), we minimise over shift types and units (complexity|K|·(umax−umin+1)). Day-off
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endings from the forward net (third line) additionally require a minimisation over valid numbers
of days on (|K|·(umax−umin+1)·(mon

max−mon
min+1)·moff

max). Finally, day-on end junctions from
the forward net (fourth line of (9.23)) are retrieved in the order of|K| · (umax−umin +1) ·mon

max

operations.
Actual reduced cost weeks are retrieved by tracing back over the states which have led to the

respective final state. The week is then added to the restricted master program (9.1)-(9.19). The
cost coefficientcw

j is calculated as the sum of hift transition penalties accounted for in (9.21)
and (9.22). Note that actual shift costs are coefficients of the shift variablesSkn and are only
transferred to the column generation subproblem via dual costsπk,n.

Some loosely related approaches have been described in the literature. Mason and Smith [1998]
consider weekly working hours in column generation for named rostering. In the solution of an
RCSP for nurse scheduling, Jaumard et al. [1998] include matching conditions with regard to
the previous planning period. However, there is no need for a two-sided dynamic program in
their case. A similar dynamic programming formulation can be found in Çezik et al. [2001] who
however use explicit nodes for days off. The two-sided backward/forward DP scheme is a novel
contribution which becomes necessary by the special encoding of week links.

The above subproblems for generating links and weeks frequently yield multiple optimal solu-
tions. In such cases, all resulting columns are added to the master program. It should be noted that
the LP relaxation of (9.1)-(9.19) is initially infeasible if no starting solution can be provided. The
violated constraints (9.12) and (9.14) for units and roster weeks are therefore relaxed by introduc-
ing slack variables. By attributing high costs to the slack variables, we quickly reach feasibility
with regard to the original problem which is retained afterwards.

9.7. Integer Branching

After describing the subproblems, we now return to the master program which is basically a set
covering formulation. Many authors have noted that set covering models exhibit advantageous
integer properties and provide tight lower bounds, see e.g. Bailey [1985], Jacobs and Bechtold
[1993], Aykin [1996] and Mehrotra et al. [2000]. As a consequence, they lend themselves very
well for solution by LP-based branch-and-bound procedures.

If a solution is fractional, we first check if the valuef of the roster week variableW is integer.
If not, we apply a branch and imposeW ≥ dfe on the first branch andW ≤ bfc on the second
branch. This kind of branching turned out to have strong integerising effects, see also Smith and
Wren [1988] and Gamache and Soumis [1998] for similar applications in crew scheduling. Note
that under most realistic cost structures, shift costs will increase monotonically with the number
of roster weeks since weekly working hours are fixed (up to a given tolerance). Conversely, if in
the LP relaxation at a search node, the value of the roster week variable is greater thandfe, it is
reasonable to assume that the search node will lead to a roster of at leastbfc weeks. This justifies
following the roundup branch first (see also Section 9.10).

Additionally, we can branch on the shift variablesSkn. If a given variableSkn has a fractional
valuef , we enforceSkn ≥ dfe on one of the branches andSkn ≤ bfc on the other. Branching on
variables which are closest to an integer value turned out to be advantageous in order to quickly
find solutions of high quality. However, rounddown branches turned out to entail rather slow
convergence. We therefore search for the shift whose value is closest to the next higher integer
value and first follow the roundup branch. Clearly, rounding up is more constructive and therefore
allows to obtain integer solutions more quickly.

When devising branching rules for remaining fractionalities, we must respect compatibility
with the column generation procedures described before. In the shift planning problem of Chap-
ter 7, branching rules were based on variables of the compact formulation. Here we can follow
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9.8. Subcycle Branching

a similar approach. In analogy to the task pair branching of Section 7.6, we branch on fractional
shift transitions within weeks. For each used shift transition(k1, n1)→ (k2, n2) between consec-
utive days on or over days off, we sum up the valuesϑi of all weeks incorporating this transition.
If the sum for any shift transition has a fractional value, sayf , we branch and enforce the sum
to be≥ dfe on one branch and≤ bfc on the other (“constraint branching”). Clearly, this can be
easily incorporated in the structure of the week subproblem by attributing the corresponding dual
value to the shift transitions in the backward and forward net. As for shift branching, we prefer
roundup branches.

If all week values are integral, links will also be integer because the related transportation
problem is naturally integer, see e.g. Ahuja et al. [1993]. However, branching on link variables is
still helpful if solutions are still fractional. Similarly to shift transition branching within the weeks,
we search for fractional transitions described by links, preferring roundup branches. Since link
column generation basically corresponds to complete enumeration, dual values of link transition
cuts can be easily incorporated if some attention is given to the speedup idea of Section 9.6.

After applying these branching rules, week and link variables were always integer. However,
the break variables can still be fractional. Aykin [1996] notes that break fractionalities are quite
rare which is confirmed by our experiments. If fractional values remain, these can be easily cut
off by branching according to the aforementioned rules.

Note that these branch types do not give an absolute guarantee for finding integer solutions. In
contrast to the approach of Chapter 7, our integer programming model is based on a discretisation
of the search space. We therefore aim at rendering the derived variablesϑi, i ∈ I, andλj , j ∈ J ,
integer. However, branching basically applies to the original flow variables. In practice, it is
common to devise branching rules which are empirically sufficient for obtaining integer solutions,
see e.g. Mehrotra et al. [2000]. It should be clear that the above branching rules leave only little
room for fractionalities. In practice, the above branch types were always sufficient for obtaining
integer solutions.

9.8. Subcycle Branching

As described in Section 9.3, resulting integer solutions can still contain disconnected subcycles.
An example is given in Fig. 9.14. It can be seen that the used links match the weeks, but still no
contiguous cyclic roster can be built since weeks{1, 2} and{3} are disconnected. Under typical
roster restrictions, subcycles are even likely to occur: Typical basic patterns in rosters are e.g.
made up five workdays with equal shift types and two days off. It is clear that week endings of
such patterns will often be valid successors of their own starts.

Laporte et al. [1980] propose to cut off exactly one integer solution if subcycles arise. Clearly,
this is the weakest possible remedy for disconnectedness. Mason [1999] provides a review on
subcycle problems and describes a more involved three-way branch for a formulation based on
a workstretch representation. In the following, we will analyse the connectedness of week-link
solutions and derive a novel branching scheme for the above solution approach.

We first recall some notions of graph theory on directed graphs (digraphs). A pathv1  v2

in a digraphG = (V,E) is a sequencev1, v2, . . . , vn of vertices such that(vi, vi+1) ∈ E for all
i = 1, . . . , n− 1 and no edge is used more than once. A pathv1  vn that starts and ends at the
same vertex (v1 = vn) is calledcircuit. A digraph isstrongly connectedif for any two vertices
v1, v2 ∈ V , there is a pathv1  v2 and a pathv2  v1. If a digraph is not strongly connected,
it contains more than one connectedcomponent. A path which contains every edge of a digraph
exactly once is called anEuler path, and an Euler path starting and ending at the same vertex is an
Euler circuit. As in previous chapters, edges with origin (destination) nodev are calledoutedges
(inedges) of v. The number of outedges (inedges) ofv is called theindegree(outdegree) of v.
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Figure 9.14.: Weeks and links generating disconnected subcycles.

Now imagine an integer solution to the cyclic roster problem. From the given weeks and links,
we must build a closed cyclic roster. We defineV1 andV2 to be sets of vertices representing
week start and end junctions, respectively. In the example of Fig. 9.14,V1 corresponds to the red
nodes andV2 to the blue nodes. For each weeki ∈ I which is part of the solution, we create
ϑi edges between the junctions corresponding to its start and end, i.e. weeks are represented by
edges inV1 × V2. Analoguously, we insertλj edges between the week end and week start node
corresponding to the origin and destination of the link, respectively. Links thus correspond to
edges inV2 × V1. The result is a bipartiteroster graph. A cyclic roster now corresponds to an
Euler circuit in the roster graph, i.e. a circuit which uses each edge exactly once.

According to a prominent result of graph theory, a digraph contains an Euler circuit if and only
if

1. the digraph is strongly connected and

2. the indegree of each vertex equals its outdegree,

see e.g. Wilson [1996]. Condition 2 exactly corresponds to constraints (9.7) through (9.10) of the
cyclic roster problem, enforcing equality of week and link junctions. We therefore only have to
ensure that the roster graph is strongly connected.

Subcycle problems are also treated in integer programming models of the vehicle routing and
travelling salesman problems. When using LP-based solution methods, subtour elimination con-
straints are often added dynamically to the model, see Lawler et al. [1985, p. 26]. The main
difference in cyclic roster generation lies in the fact that the “cities” (junctions) to be visited are
not fixed in advance. In fact, junctions which are used by a given LP solution do not need to be
present in an optimal solution. The necessary subcycle breaking restrictions cannot be formulated
as linear constraints. We will therefore resort to a branching scheme.

Assume that an integer solution to model (9.1)-(9.19) is given. We can then determine strongly
connected components of the associated roster graph, e.g. by Tarjan’s algorithm [Tarjan, 1972]. If
the graph is disconnected, each strongly connected component represents one subcycle. LetV ′

1 ⊆
V1, V ′

2 ⊆ V2 be the week start and end junctions involved in the largest subcycle. ByI
V ′1→V ′2

⊆ I,

we will denote the set of weeks starting on a junction associated with one of the nodes inV ′
1 and

ending on a junction which is not associated with one of the nodes inV ′
2 . Analoguously, the set

J
V ′2→V ′2

⊆ J will denote the all links starting inV ′
2 and ending on a junction which is not inV ′

2 .

IV ′1→V2
(JV ′2→V1

) represents all weeks (links) starting on a junction inV ′
1 (V ′

2). Finally, J
V2→V ′1

andJ
V ′2→V1

are the sets of junctions which do not end or start inV ′
1 or V ′

2 , respectively.
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9.8. Subcycle Branching

We can now create a four-way branch with the following restrictions:

1.
∑

j∈J
V ′2→V ′1

λj ≥ 1

2.
∑

i∈I
V ′1→V ′2

ϑi ≥ 1

3.
∑

j∈J
V2→V ′1

λj = 0

4.
∑

j∈J
V ′2→V1

λj = 0

Branch 1 and 2 enforce at least one link or week to emanate from the given subcycle. Clearly,
a final solution might not at all use junctions fromV ′

1 or V ′
2 . These cases are therefore covered by

branch 3 and 4, forbidding links using the corresponding junctions. Clearly these conditions could
also be imposed on the week variables since the junctions of links and weeks are synchronised
by constraints (9.7) through (9.10). It should be clear that the subcycle betweenV ′

1 andV ′
2 is not

valid on any of the branches.
Let us analyse the impact of the above constraints on the structure of the subproblems. The

constraints on branches 1, 3, and 4 refer to links. As links are basically generated by complete
enumeration, these restrictions are easily incorporated if some care is taken with regard to the
speedup procedure of Section 9.6.

The second branch is somewhat more complicated as it refers to the generation of weeks by the
backward/forward net approach. The constraint implies that we must be able to price out combi-
nations of start and end junctions. Costs of weeks fromV ′

1 to V ′
2 must therefore be reduced by the

dual value of the branching constraint. This however introduces interdependencies between week
start and end junction decisions. These are resolved by the following approach: We first execute
the backward/forward dynamic programs as described in Section 9.6. If a resulting solution links
V ′

1 to V ′
2 , we subtract the dual value of the branching constraint. As this dual value may render

further reduced costs negative, we run the two-sided RCSP algorithm for a second time, allowing
only for start junctions inV ′

1 and end junctions inV ′
2 . This clearly means that following the sec-

ond branch entailsn additional subproblem executions on then’th search tree level. Because the
constraints on branches 1, 3, and 4 are much easier to incorporate, we heuristically prefer these
link branches in the branch-and-bound procedure.

Up to now, we have assumed that subcycle branches are only applied to integer solutions. In
practice, it will be very difficult to arrive at connected solutions if many integrality conditions
have been imposed before. In the above exposition, we have used a roster graph, using one edge
for each single week and link. However, we can equivalently check connectivity on a graph
which uses only one edge for each week or link which is part of the solution, i.e. we collapse
multiple edges to single ones. Clearly, thisconnectivity graphis connected if and only if the roster
graph is connected. If we are given a fractional solution, we can build the connectivity graph
by introducing an edge for each positive week and link variable. Clearly, this is an optimistic
assumption for connectivity since we cannot expect each of these weeks and links to be part
of a final solution. However, this enables us to render fractional solutions connected. In the
implementation, we apply integer branches only to connected solutions, i.e. we generate subcycle
branches as long as solutions are not connected.
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9. Cyclic Roster Generation by Branch-and-Price

It is worth mentioning that other branches of lower order are conceivable2. However, the above
four-way branch offers two distinct advantages: On the one hand, it separates the complicating
week branch 2 from the easier link branches. On the other hand, it exhibits advantageous in-
teger properties because the right-hand sides of branches 1 and 2 equal 1. This means that the
subcycle branch will often save us from an additional integer branch on fractional links. In first
experiments, the above four-way branch has shown to outperform alternative binary or three-way
branches.

Imagine that we have arrived at a connected integer solution. Finding an actual cyclic roster
amounts to building an Euler circuit in the roster graph. Algorithms for this task date back to the
19th century and were proposed by Hierholzer [1873] and Fleury [1883]. Hierholzer’s algorithm
is not only more efficient, but is also very intuitive. It basically consists in building edge-disjoint
circuits, each time starting at a node whose outedges are not yet completely covered. Because we
assume indegrees to match outdegrees of each node, all edges can be covered by such circuits.
Due to connectedness, all of these circuits can be linked into a single Euler circuit covering all
edges. The computational complexity of Hierholzer’s algorithm is inΘ(|E|), see also Jungnickel
[2002].

For the overall problem of building a roster, we additionally have to assign breaks as given
by the break variables. As described in Section 8.6, this can be done by a simple single-pass
procedure proposed by Bechtold and Jacobs [1990].

9.9. Generalisations

In the following, we will describe some possible extensions to the above model which refer to
additional constraints which may be required in some rostering settings.

Roster scenarios often specify anA-out-of-B weekends-off constraint. Since blocked week-
ends are virtually always undesirable, this automatically implies that weekends off must be evenly
spread over the roster. We will only consider the caseA = 1, i.e. eachB’th weekend is a weekend
off; generalising toA > 1 is straightforward. In order to evenly spread weekends off, it does not
suffice to introduce an additional constraint in the master program. Instead, we decompose rosters
into blocks ofB weeks at maximum, see Emmons [1985], Burns and Koop [1987] and Panton
[1991] for related approaches. Roster generation will then assign each week to aweek position
from {1, . . . , B} within these blocks. Each week in theB’th position is enforced to include a
weekend off. Note that regardless of its position, each week covers shift demands of the unique
model week. Additionally to assigning weeks to positions, we replicate the junctions. Junctions
will generally connect weeks of subsequent positions in cyclic order.

The basic idea is sketched in Fig. 9.9, assumingB = 2, i.e. each second weekend is a weekend
off. The setting includes two week positions, entailing two systems of start and end junctions;
the second set of end junctions is replicated on the left-hand side. Links mostly connect weeks of
subsequent week positions. However, the length of a roster may not be divisible by 2, meaning
that we also have to allow for shorter stretches between weekends off. This is done by admitting

2The reader may verify that the binary branch with conditions

X
j∈J

V ′2→V ′1

λj +
X

i∈I
V ′1→V ′2

ϑi ≥
1

2wmax

0
B@

X
j∈JV ′2→V1

λj +
X

i∈IV ′1→V2

ϑi

1
CA

and X
j∈J

V2→V ′1

λj = 0,
X

j∈J
V ′2→V1

λj = 0

also invalidates the current subcycle without cutting off valid solutions.
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Figure 9.15.: Generalised week link encoding for weekends off.

links between each system of week end junctions and the start junctions of the last week position.
As an example, Fig. 9.9 shows a roster of five weeks, including a link between an end junction of
position 2 and another start junction of a week in position 2. Consequently, the consecutive roster
weeks 4 and 5 both include a weekend off.

Introducing weekend-off constraints not only entails a replication of junction systems and con-
straints, but also results in a linear growth of the number of week and link subproblems to be
solved. Additionally, subcycle branches have to be generalised.

Another possible generalisation regards the simultaneous creation of several rosters. Rosters
then relate to different worker categories, and different restrictions can apply to each roster. Work-
loads are covered by all rosters in common, accounting for interdependencies between the rosters.
Different subsets of shift types may be valid for the different worker categories [Alvarez-Valdez
et al., 1999]. When generating multiple rosters, we must take care with the roundup cut for the
numberW of roster weeks described in Section 9.7. In general, we will not be able to impose
lower limits on the weeks of single rosters. In practice however, roundup cuts may still be helpful
in obtaining integer solutions if we keep in mind that they render the approach heuristic.

Up to now, we have assumed that one worker is assigned to each roster week. However, if
employees work in crews, more than one worker may be attributed to each roster week, meaning
that demands are covered in multiples of the crew size [Laporte et al., 1980] [Chew, 1991]. The
number of workers on each week is also known as theblocking factorof the roster. If all rosters
which are planned simultaneously have identical blocking factors, this can be easily incorporated
by dividing (and rounding up) demand figures. If blocking factors are different, we can still divide
demands by their greatest common divisor. Remaining factors are considered by letting each week
contribute more than one shift coverage in the equality constraints (9.6).

9.10. Experimental Results

The cyclic roster algorithm has been implemented in Visual C++ 7.1, using BCP of COIN-OR for
the implementation of branch-and-price [Ralphs and Ladányi, 2001]. XPRESS-MP Release 2004
was used as LP solver [Dash, 2004]. Basic data for the test cases was already given in the evalu-
ation of the different break models in Chapter 8. The scenarios were chosen by different criteria.
First, it was checked by visual observation if demands were typical of a model week. Scenarios
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9. Cyclic Roster Generation by Branch-and-Price

No. original used shift types in shift
shift types scheduling LP relaxation

B03 33 20
B05 17 11
C01 176 33
C13 9 5
C14 41 15
C16 94 8
C17 5 5
D09 8 8
D10 47 22
D12 31 18
D13 31 13
D16 280 51
D17 41 22
D26 71 30
D27 29 16
D28 32 20

Table 9.2.: Working subset reduction.

had to span over at least seven days, and scenarios in which workloads differed substantially from
day to day were left out. Furthermore, we have not included scenarios with crew tasks because it
would not have been clear if we should use cyclic rosters with blocking factors (see Section 9.9)
to cover such workloads. Additionally, we have excluded scenarios which obviously ask for a
mixed workforce with different qualifications. These selection rules resulted in the choice of 16
test cases.

The scenarios were then restricted to seven days, reaching from Monday to Sunday. Scenarios
including movable tasks were submitted to the levelling procedure of Chapter 4. Since conver-
gence of the branch-and-price algorithm proved to be sensitive especially to the number of shift
types, we have restricted the shift types to working subsets. While in Chapter 7, we have used
the initial heuristic solution for the choice of shift types, this did not seem to be appropriate
for demand-level planning. We have therefore basically used the approach of Mabert and Watts
[1982] and Brusco and Jacobs [1998b] who propose to generate working subsets by solving the
analoguous shift scheduling formulation. The shift types employed by the resulting shift plan are
then used for the solution of the tour scheduling problem.

In contrast to Brusco and Jacobs [1998b], we have not projected the weekly problem on a
single day, but solved the weekly shift scheduling formulation as described in Chapter 8. By this
approach, we account for the fact that the days of the week may require different shift types in
order to efficiently cover demands. Table 9.2 shows the original numbers of shift types and the
numbers of shift types used in the shift scheduling solution.

It can be seen that the number of effectively used shift types is generally quite moderate. It
is worth mentioning that the shift scheduling solutions were nearly always integer, i.e. the shift
type selection is often based on actual demand-level shift plans. Scenarios C01, D16 and D26
still asked for 33, 51 and 30 shift types, respectively. In order to obtain moderately sized working
subsets, we have heuristically restricted these scenarios to the 20 most frequent shift types in the
shift scheduling solution.

Clearly, it is not evident that working subsets from a shift scheduling model are also appropriate
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No. shift shifts paid shift durations shift costs action demands
types min. max. avg. min. max. avg. times avg. max. std. dev.

B03 20 140 360 480 462.0 70.0 131.0 92.8 568 6.4 20 4.7
B05 11 77 480 480 480.0 80.0 80.0 80.0 656 3.0 11 1.6
C01 20 140 240 480 372.0 43.0 1566.5 411.2 1335 9.5 48 9.4
C13 5 35 330 690 516.0 58.0 118.0 89.0 1267 13.2 59 15.1
C14 15 105 360 600 452.0 60.0 100.0 75.3 668 3.0 15 2.2
C16 8 56 360 540 435.0 60.0 90.0 72.5 198 1.5 6 1.9
C17 5 35 450 570 522.0 85.0 143.5 106.9 1439 8.9 43 8.1
D09 8 56 360 480 420.0 70.0 92.0 80.5 1448 2.3 14 2.8
D10 22 154 480 480 480.0 90.0 126.5 95.9 614 8.4 25 6.5
D12 18 126 360 480 460.0 70.0 129.0 93.8 575 5.5 22 4.7
D13 13 91 360 480 461.5 71.0 129.0 90.7 175 5.7 10 3.1
D16 20 140 360 720 504.0 70.0 130.0 95.2 515 18.7 59 15.2
D17 22 154 360 720 490.9 60.0 120.0 81.8 672 16.3 36 6.6
D26 20 68 240 720 503.4 50.0 130.0 94.5 809 9.7 34 8.5
D27 16 52 270 540 426.1 55.0 101.0 82.1 817 1.8 9 2.0
D28 20 140 360 540 460.5 70.0 129.0 89.2 529 8.9 31 7.6

Table 9.3.: Scenario data.

for tour scheduling and cyclic rostering problems. In practice however, it has frequently been
observed that working subset reductions do not severely affect solution quality if the reduced
number of shift types allows for sufficiently scheduling flexibility, see e.g. Easton and Rossin
[1991], Bechtold and Brusco [1994b] and Brusco and Jacobs [1998b]. Brusco and Jacobs [2001]
show that as few as three to five shift types can be sufficient if their choice is taken carefully.
One possible explanation for these observations is that scheduling formulations often allow for
several alternative optimal solutions, see e.g. Segal [1972], Thompson [1993] and Brusco and
Johns [1995].

Working subset methods not only make scenarios amenable to complex roster algorithms. Lim-
iting the number of used shift types is often also desired by planners, and many approaches have
been described which treat shift type restrictions as implicit or explicit objectives in rostering, see
e.g. Gaballa and Pearce [1979], Holloran and Byrn [1986], Schindler and Semmel [1993] and Br-
usco et al. [1995]. Another reason for using limited shift type sets is the administrative burden and
the difficulty of managing briefing sessions when many shift start times are allowed [Brusco and
Jacobs, 2001]. Since organisations using cyclic rosters usually face strong union regulations, it is
natural to assume that only a limited set of shift types can be exploited. Working subset methods
then represent efficient means of determining efficient sets of shift types before entering into the
solution of the roster problem, see also Section 2.9.

Table 9.3 summarises data on the resulting test cases. Besides the numbers of shift types and
shifts, we indicate minimum, maximum and average shift costs and lengths. Note that these enti-
ties refer topaid durations, i.e. unpaid breaks are subtracted from the shift lengths. Furthermore,
the table gives the numbers of action intervals (as defined in Section 8.7) and information on work-
loads throughout the week (average and maximum demands as well as standard deviation). These
scenarios were also used for the evaluation of the break model in Chapter 8; further information
on the numbers of breaks and action times can be found in Section 8.8.

We have used the cyclic roster algorithm to generate cyclic rosters of variable lengths which
cover labour requirements as completely as possible. We have therefore setwmin to 1 andwmax

to 150 which was sufficient for covering workloads in all test cases. Some scenarios contain
workloads in periods which are not covered by any shift type, meaning that shortage penalties
cannot be avoided. For all test cases, we have set the limits[mon

min,mon
max] on the number of
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No. average number of average number of
day on successors day off successors

B03 5.9 17.8
B05 3.0 10.1
C01 7.3 19.5
C13 1.8 4.8
C14 3.8 12.9
C16 2.0 7.0
C17 1.0 4.2
D09 3.5 8.0
D10 6.0 19.4
D12 4.8 15.9
D13 5.0 12.1
D16 6.7 19.5
D17 5.5 18.4
D26 10.3 20.0
D27 6.9 16.0
D28 9.7 19.4

Table 9.4.: Valid successor shift types on days on and off.

consecutive days on to[2, 6] and[moff
min,moff

max] to [2, 4]. Shift type lengths were subjected to a
discretisation of 30 minutes, i.e. work units are counted in multiples of half hours. Each roster
week was constrained to comprise between 28 (i.e.umin = 56) and 52 (i.e.umax = 104) work
hours, the average work time was set to 40 hours (i.e.uavg = 80) with a tolerance of 4 hours over
the whole roster (utol = 8). Between two shifts, we have imposed a minimum rest time of eight
hours; the additional rest time over days off (see Section 9.2) was chosen as six hours.

Shift start time differences between consecutive days were limited to 120 minutes. As explained
in Section 9.2, we impose transition penalties for consecutive shifts with different start times.
These penalties were chosen to be linear in the start time differences. To ensure that penalties are
treated as a subordinate objective, we normalise them with the minimum shift costs. For the tests,
we have limited transition penalties for backward-creeping shift start times (e.g. start time 10h on
Monday, 8h on Tuesday) to 20% of the minimum shift costs. For forward-creeping start times
(e.g. 8h on Monday, 10h on Tuesday), we have used maximum relative penalties of 5%. Period
shortages were penalised by a factor of 1000 for each uncovered minute, meaning that shortages
are avoided whenever possible.

Table 9.4 shows the numbers of successor shift types as averages over all shifts. It can be
seen that the above parameter choices generally lead to considerable scheduling flexibility. Ta-
ble 9.5 shows the number of states in the forward and backward dynamic programs as described
in Section 9.6. In the right column, the potential number of link variables is given. While on
some scenarios (e.g. C13, C17), the number of links is quite moderate, scenarios C01, D10, D17
and D28 ask for more than 15000 potential link variables. Clearly, representing these variables
statically in the master program would considerably slow down the simplex pricing.

To speed up convergence of column generation, we have slightly perturbed the costs of weeks
and links by attributing marginal costs to day-on and day-off stretches of different lengths, see
also Mason and Nielsen [1999]. In the above setting, we have added 0.01 to the costs of weeks
and links involving stretches of five days on, 0.02 to four-day stretches and so on. Analoguously,
we have attributed increasing costs to shorter day-off stretches. Note that this not only imposes

210



9.10. Experimental Results

No. number of states in potential number
forward/backward net of links

B03 1204 13518
B05 341 4158
C01 1403 15027
C13 491 927
C14 2694 7257
C16 771 2088
C17 196 768
D09 632 2532
D10 682 16038
D12 1049 10761
D13 826 6156
D16 8424 14880
D17 5080 15162
D26 3871 3785
D27 1434 2078
D28 5919 15681

Table 9.5.: Number of forward/backward net states and potential links.

cost perturbations, but should also have a slight effect on preferring longer stretches of days on
and off whenever possible.

Branching decisions were taken as follows: If at the root node, the roster week variableW has a
fractional value, sayf , then we apply the cutW ≥ dfe. If W is fractional at a deeper search node,
we apply a branch on the number of roster weeks as described in Section 9.7. If the roster weeks
are integer, we check for subcycles and apply the connectivity branch of Section 9.8 if necessary.
For the remaining branches, preliminary experiments have shown that shift transition branches
(for week variables) and link branches more quickly yield integer solutions than branches on the
shift variablesSkn. However, imposing shift branches only after all other branches did not seem
to be advantageous either. We have therefore adopted a mixed approach: If any fractionality of
at least 0.9 (e.g. 3.9) is found among the shift transitions or links, we create the corresponding
roundup branch. Otherwise, we check for shift fractionalities of 0.9 and more before falling back
to 0.8 fractionalities. Branches on fractional break variables (see Section 9.7) are only imposed if
necessary.

The search tree is traversed in depth-first order until a first connected integer solution is found.
Afterwards, we switch to best-first search, i.e. we always choose the search node with the least
lower bound value for processing.

We sometimes encountered convergence problems with column generation after applying some
branches. We therefore terminate column generation prematurely as soon as the difference be-
tween the current objective function value and the exponentially smoothed objective function
(with coefficient 0.5) falls below10−6. In this case, we directly apply the next branch (“early
branching”, see also Desaulniers et al. [2001]). In order to obtain lower bounds even if early
branching is applied, we have used the generalised Lasdon lower bound of Section 6.4. Note that
the parameterwmax provides a predefined limit on the number of roster weeks and on the number
of links as required by the lower bound calculation.

Table 9.6 shows LP relaxation results for test runs on an AMD Athlon 3000+ computer with
2.16 GHz, 1 GB main memory and operating system Windows XP SP1. The left set of columns re-
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No. first LP relaxation LP relaxation after week cut gap
obj. fct. roster runtime obj. fct. roster runtime

weeks (secs.) weeks (secs.)
B03 19680.7 43.0 30.88 19680.7 43 30.88 0.00%
B05 12560.8 31.5 4.06 12760.8 32 4.95 1.59%
C01 277742.9 122.7 41.63 277757.8 123 41.64 0.01%
C13 220916.3 122.7 2.42 221049.5 123 2.48 0.06%
C14 12401.1 30.9 17.48 12407.6 31 18.09 0.05%
C16 6404.8 16.1 0.73 6760.2 17 1.22 5.55%
C17 47173.3 99.8 1.83 47199.1 100 1.86 0.05%
D09 102909.6 28.7 4.22 103059.6 29 4.58 0.15%
D10 25600.6 55.9 45.06 25612.0 56 45.11 0.04%
D12 19812.0 43.3 19.22 20052.5 44 25.53 1.21%
D13 11473.9 24.8 13.28 11583.9 25 14.39 0.96%
D16 193318.0 95.6 57.42 193396.8 96 70.63 0.04%
D17 36235.3 90.7 87.78 36361.3 91 109.77 0.35%
D26 31898.4 70.6 11.34 31974.4 71 11.75 0.24%
D27 19296.0 22.7 2.36 19427.5 23 2.72 0.68%
D28 32523.7 71.0 17.17 32523.7 71 17.17 0.00%

Table 9.6.: LP relaxations before and after week cut.

fer to the original LP relaxation, the right set gives information on the LP relaxation after applying
the first≥ cut on the number of roster weeks. Note that the original LP relaxation exactly corre-
sponds to the experiments conducted for comparing the different break models (in Section 8.8). It
can be seen that solution times for the LP relaxations are generally quite moderate. As expected,
scenarios involving more complex column generators (see Table 9.5) generally result in higher
runtimes. The gap between the solution values before and after applying the week cut is mostly
quite tight.

We have terminated the subsequent branch-and-price search as soon as the gap between the
latter lower bound and the best known solution is less than 0.5%. In addition, we have imposed
a three hour time limit on all runs. From Table 9.7, we can see that this runtime limit has never
been reached. In an average runtime of less than 572 secs., we could find solutions which are
within an average of 0.1% of the second lower bound (after applying the week cut). On scenario
B03, the first lower bound proves the optimality of the found solution (with regard to the working
subset of shift types). The numbers of weeks of the resulting rosters were mostly equal to the
supposed optimal values indicated in Table 9.6. The best solution for scenario D09 required one
more roster week, scenario C01 even five more roster weeks. Nevertheless, the gap to the first LP
relaxation is still very low on these scenarios. This can be explained by the shift cost structure;
scenarios C01 and D09 in fact contain some costly night shifts. This means that we may be able
to avoid the use of night shifts if more roster weeks are employed. Clearly, this also implies that
applying the roster week cut in the root node (instead of branching on fractional week values) has
to be regarded a heuristic measure.

While we have used the second lower bound (after applying the week cut) as a termination
criterion, we must assess the quality of the generated rosters by comparing the final objective
function values to the original lower bounds. From Table 9.7, we can see that these gaps are
generally very low and amount to only 0.79% on average. However, the gaps on scenarios B05,
D12, D13 and especially C16 are somewhat higher. On these scenarios, we have additionally
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9.10. Experimental Results

No. obj. fct. roster runtime gap first gap relaxation
weeks (secs.) relaxation after week cut

B03 19680.7 43 36.38 0.00% 0.00%
B05 12800.8 32 7.14 1.91% 0.31%
C01 277989.0 128 82.67 0.09% 0.08%
C13 221052.0 123 3.56 0.06% 0.00%
C14 12408.8 31 2185.86 0.06% 0.01%
C16 6766.3 17 599.52 5.65% 0.09%
C17 47262.5 100 144.97 0.19% 0.13%
D09 103515.0 30 12.20 0.59% 0.44%
D10 25679.3 56 138.00 0.31% 0.26%
D12 20061.1 44 42.33 1.26% 0.04%
D13 11598.4 25 4864.28 1.08% 0.13%
D16 193399.0 96 168.95 0.04% 0.00%
D17 36371.5 91 644.28 0.38% 0.03%
D26 31976.6 71 17.91 0.25% 0.01%
D27 19437.1 23 118.36 0.73% 0.05%
D28 32525.5 71 81.73 0.01% 0.01%

Table 9.7.: Integer solution data.

conducted tests with a full branching strategy, i.e. we have replaced the week roundup cut in the
root node by a full branch. Within six hours runtime, we could prove that on all of these scenarios,
the lower bound after week roundup is indeed a valid global lower bound. This means that these
problems in fact exhibit worse LP lower bounds, and the best solution of these scenarios is in fact
within less than 0.5% of the optimal value. This shows that the second lower bound is a good
measure for the potential quality of an optimal roster, justifying its use as a termination criterion.

Table 9.8 gives additional details on the experiments. From the comparison of search nodes
and the maximum search depth, it can be seen that on ten test cases, the best solutions could be
found with a single descent in the search tree. In contrast, we require considerable search effort for
scenarios C16, C17 and D13. Table 9.8 also indicates the number of column generation iterations.
As the numbers of generated week and link variables show, we often find several variables with
identical reduced costs in each iteration which are all added to the restricted master program. In
comparison to overall runtimes, the solution times for the subproblems are very moderate.

Table 9.9 indicates the numbers of different branches which are required to arrive at the best
known solution. Note that the test cases using roster week branches on the way to the best solution
(C01, D09) are exactly the scenarios in which the final number of roster weeks exceeds the value
of the second LP relaxation. As can be seen, we have never required break variable branching.
The number of subcycle branches gives an indication of the difficulty in arriving at connected
solutions. While on many scenarios, only few connectivity branches were needed, scenarios D10
and D13 required as many as 14 and 20 subcycle branches, respectively.

For the evaluation of the weekend-off model of Section 9.9, we have enforced every third
weekend off on the above scenarios. Results are given in Table 9.10. As expected, the weekend-off
constraint substantially increases the number of required roster weeks. Note that the weekend-off
constraint not only cuts the workload coverage on weekends, but also restricts the set of feasible
workstretches between two weekends off.

While on most scenarios, the runtime limit of three hours has been the limiting factor, we
can see that the algorithm yields results of very high quality. Gaps toward the second lower
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No. search max. search iterations week variable generator link variable generator
nodes depth generated runtime generated runtime

variables (secs.) variables (secs.)
B03 40 40 514 1276 1.31 3120 0.30
B05 17 17 382 681 0.22 938 0.08
C01 92 92 1092 2419 3.72 4317 0.31
C13 39 39 189 204 0.11 293 0.02
C14 989 327 13534 44218 57.29 24423 22.73
C16 2692 392 9926 15594 12.45 12135 4.33
C17 3305 92 7717 5659 2.52 9631 0.41
D09 40 39 419 804 0.38 1390 0.06
D10 76 76 1420 2652 2.08 7083 1.36
D12 60 60 732 2117 1.48 4509 0.31
D13 4481 575 37009 72143 57.04 61725 37.17
D16 142 142 1020 3408 18.29 6984 0.81
D17 211 211 1382 5073 14.53 7664 1.17
D26 78 78 504 1076 3.19 1703 0.11
D27 515 167 3999 10173 8.67 6260 0.89
D28 130 130 633 3198 9.57 5313 0.39

Table 9.8.: Runtime data.

No. integer branches subcycle
roster weeks transitions links shifts breaks branches

B03 0 27 6 4 0 2
B05 0 13 0 1 0 2
C01 1 75 11 4 0 0
C13 0 31 6 1 0 0
C14 0 28 3 1 0 5
C16 0 23 2 4 0 5
C17 0 18 7 3 0 1
D09 1 24 9 2 0 2
D10 0 51 9 1 0 14
D12 0 47 11 1 0 0
D13 0 62 8 6 0 20
D16 0 115 23 0 0 3
D17 0 138 54 12 0 6
D26 0 68 8 0 0 1
D27 0 21 7 1 0 4
D28 0 86 30 7 0 6

Table 9.9.: Number of branches of different types.
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9.11. Contributions and Future Research

No. first LP relaxation LP relaxation after week cut total best solution gap gap
obj. fct. roster runtime obj. fct. roster runtime runtime obj. fct. roster runtime first relaxation after

weeks (secs.) weeks (secs.) (secs.) weeks (secs.) relaxation week cut
B03 601822.7 61.7 67.63 601971.7 62 72.17 10800.00 608281.0 65 6683.53 1.07% 1.05%
B05 460304.5 40.3 9.30 460561.2 41 10.24 10800.00 465921.0 42 2311.56 1.22% 1.16%
C01 1662260.7 124.0 63.75 1662260.7 124 63.75 63.84 1662282.2 124 63.84 0.00% 0.00%
C13 226301.1 136.1 4.31 226650.9 137 4.63 11.45 227069.0 138 11.45 0.34% 0.18%
C14 13760.9 34.5 21.00 13960.9 35 31.42 10800.00 14377.0 36 7616.13 4.48% 2.98%
C16 12053.2 30.2 0.84 12360.9 31 1.02 2112.30 12360.9 31 2112.30 2.55% 0.00%
C17 50980.5 107.1 2.86 51042.2 108 3.00 179.97 51062.5 108 179.97 0.16% 0.04%
D09 420885.4 36.7 4.52 421035.4 37 4.70 10800.00 431440.0 38 59.67 2.51% 2.47%
D10 812019.6 85.0 40.53 812019.6 85 40.53 10800.00 817879.0 87 6625.97 0.72% 0.72%
D12 561514.7 60.7 32.44 561664.3 61 34.27 10800.00 567093.0 62 592.34 0.99% 0.97%
D13 376877.4 38.0 10.39 376877.4 38 10.39 10800.00 399126.0 43 9379.06 5.90% 5.90%
D16 198142.0 108.0 95.27 198142.0 108 95.27 222.39 198142.0 108 222.39 0.00% 0.00%
D17 36483.2 91.0 159.94 36483.4 91 160.73 10800.00 37278.5 93 1724.41 2.18% 2.18%
D26 32643.5 72.8 19.64 32725.2 73 20.19 1301.27 32734.5 73 1301.27 0.28% 0.03%
D27 28558.4 43.2 3.69 28889.6 44 3.84 10800.00 29783.4 46 4046.58 4.29% 3.09%
D28 38667.1 85.4 51.72 38906.4 86 53.05 10800.00 39354.4 87 299.88 1.78% 1.15%

Table 9.10.: Results of runs with weekend-off constraint.

bound (after applying the roster week cut) amount to an average of 1.37% with a maximum of
5.9% on scenario D13. According to our experiments, the quality of the lower bounds seems
to be somewhat worse when weekend-off constraints are imposed. While the above results are
already very satisfactory, investigations on improving the lower bound quality are part of ongoing
research.

9.11. Contributions and Future Research

We have proposed a novel approach for integrated cyclic rostering. While all literature builds upon
demand figures given per shift type, the new model integrates the daily shift scheduling problems
with the determination of shift positions and days off. The model covers more constraints than
any cyclic roster approach before. Reviewing different representations, we have shown that the
given setting is most appropriately tackled by a formulation in which decision variables represent
roster weeks. The resulting problems of encoding feasibility of week successions was analysed
with regard to implicit and explicit approaches. We have proposed a novel integer programming
formulation which is based on encoding week transitions by explicit link variables. Both roster
weeks and links are generated dynamically within a column generation approach.

While the generation of reduced cost links basically corresponds to enumerating feasible tran-
sitions, weeks are generated by solving a two-sided resource-constrained shortest path problem.
We have shown how integral solutions can be obtained by constraint branching on fractional shift
transitions and static variables of the master program. Special attention has been given to the
problem of disconnected solutions. We have developed a specialised subcycle breaking strategy
for the week-link encoding scheme. Furthermore, we have demonstrated how final rosters can be
built by determining Euler circuits in a roster graph. Different generalisations of the basic model
have been described, including the incorporation of weekend-off constraints and blocking factors
as well as the creation of multiple rosters.

In an experimental evaluation, we have shown that the algorithm is effective and efficient on
real-world planning scenarios. Shift types have been restricted to working subset which not only
speeds up calculations, but is also frequently desired by staff planners. For these working subsets,
we have shown that the algorithm finds near-optimal solutions in very moderate runtimes. Addi-
tionally, we have conducted experiments with weekend-off constraints. While computation times
were somewhat higher, solutions could again be proven to be very close to optimality.

Different refinements could be subject of future research. On some problem instances, we have
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encountered numerical difficulties with column generation. We already employ different methods
to tackle these problems, including cost perturbation and early branching. Experiments with the
stabilisation method of du Merle et al. [1999] have not yet yielded competitive results, but further
investigations may provide more insight into promising techniques.

Brusco [1998] and Brusco and Jacobs [2001] have successfully used the Gomory all-integer
cutting plane for the solution of compact integer programming formulations of discontinuous tour
scheduling problems. While it is not clear if this method generalises well to column generation,
the use of cutting planes may be successful in improving the quality of lower bounds.

Cordeau et al. [2001c] and Cordeau et al. [2001b] have successfully employed Benders’ decom-
position for models in which two types of variables are generated dynamically. The generation
of link variables could therefore be submitted to a reformulation which might render the overall
approach still more efficient.

The model itself could also be further generalised. Alternatively to limiting weekly work units,
we may use the unit counter to impose restrictions on the number of weekly shift duties. Ad-
ditionally to creating several cyclic rosters in parallel, we may allow for the creation of parallel
non-cyclic rosters or even use a pure shift scheduling model for some worker categories. The idea
of junction systems could be generalised in order to encode contiguity of subsequent planning
periods in linear rostering.

We believe that further research on implicit modelling is very promising. In this work, we have
already described possible applications for representing flexible breaks and for encoding week
transitions. A possible future application is cyclic roster generation based on a given shift plan,
i.e. with demand figures given per shift type. A more flexible integrative approach should exploit
the freedom of prolonging shifts if this makes shifts easier to cover by a roster (e.g. due to working
hour constraints). The resulting problem of generating roster shifts which subsume a given set of
planned shifts again exhibits the typical transportation structure of implicit models.

216



10. Summary and Outlook

Takeoffs are optional.
Landings are mandatory.

— saying among pilots

In this thesis, we have conceived models and designed efficient algorithms for ground staff
scheduling on airports. It was shown that contributions in the literature only partially fulfil re-
quirements of airport staff planners. Up to now, shift scheduling and rostering models have built
upon labour demands given in discrete time periods (demand-level planning). However, work-
loads in ground handling are basically made up of work tasks at different locations on the airport,
introducing a vehicle routing aspect to workforce scheduling (task-level planning). We have ar-
gued that depending on the planning context and the detail of available flight information, either
task-level or demand-level planning are appropriate. New models and interfaces have been pro-
posed to provide a unifying view on airport staff planning.

Contributions of this work are threefold:

• We have proposedmore integrated models and solution methods, including two algorithms
for task-level shift planning (Chapters 5 and 7), combining shift scheduling with vehicle
routing, and the cyclic roster algorithm, solving shift scheduling and rostering problems
simultaneously (Chapter 9).

• We haveprovided a missing linkbetween task-level scheduling and demand-based plan-
ning when work tasks can be carried out within given intervals, see the workload levelling
algorithm of Chapter 4.

• We have designed more complex models and algorithms than in previous contributions
to accommodate for the complexity of real-world ground staff planning, see e.g. the shift
planning application of Chapter 5, the implicit break model of Chapter 8 and the cyclic
roster algorithm of Chapter 9.

Apart from investigating novel problems and contributing new models and algorithms, we have
provided real-world applications of modern constraint programming and branch-and-price solu-
tion techniques. Most recent contributions have been considered and enhanced for the given op-
timisation problems. On the theoretical side, we have provided complexity results for workload
levelling and task-level shift planning.

In Chapter 4, we have tackled theworkload levelling problemwhich arises in demand plan-
ning of airport ground staff and equipment. Its goal is to avoid unnecessary peaks in workforce
demands by placing movable tasks at times of low workloads. Covering work tasks by tours,
travel times and time windows are taken into account. While the basis of workload levelling is a
vehicle routing problem with time windows, we have shown that the problem is closely related to
resource levelling in project scheduling. We have given anNP-hardness proof and conceived a
CP-based local improvement algorithm building upon the results of an initial tour minimisation
algorithm. The solution method was shown to be effective and efficient on a wide range of real-
world planning scenarios. The resulting demand curves provide a suitable basis for demand-level
shift planning and rostering and have been used for the tests of Chapters 8 and 9.
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Complex task-level shift planningwas the subject of Chapter 5. We have developed a math-
ematical formulation for the shift planning problem, including shift type and break restrictions,
qualification and crew constraints and preemptive tasks, to name just a few. It was shown how this
complex setting can be incorporated in a constraint programming model. On this basis, we have
designed an improvement algorithm which provides a remedy for flaws of an initial construction
heuristic. The method was shown to be efficient and robust even on large-scale test cases and
strongly constrained scenarios. Especially if shift types allow for sufficient flexibility, CP-based
local search yields major improvements which translate into considerable cost savings for ground
handling companies.

Both of the algorithms of Chapters 4 and 5 have used a constraint programming based solution
technique termedlarge neighbourhood search(LNS). However, motivations for using LNS were
quite different. While the workload levelling procedure naturally builds upon the outcome of a
tour minimisation algorithm, the local improvement algorithm for shift planning was designed to
account for deficiencies of a given construction algorithm.

We have then turned to linear programming based algorithms. As we have introduced basic
concepts of constraint programming in Chapter 3, Chapter 6 has given an overview of recent
developments in column generation and branch-and-price techniques.

In Chapter 7, we have focused on an importantsubclass of task-level shift planning. It has
been shown that even basic shift planning isNP-hard in the strong sense. Using Dantzig-Wolfe
decomposition, we have reformulated an initial flow formulation as a column generation model. A
problem decomposition method has been proposed to make real-world airport planning scenarios
amenable to solution by branch-and-price. The algorithm has been shown to provide optimal
or near-optimal results on a set of real-world planning scenarios. It has turned out to be very
successful especially on scenarios on which the local search algorithm of Chapter 5 fails to find
substantial improvement, making it a complementary solution technique.

In Chapter 8, we have introducedimplicit modelsfor the consideration offlexible breaksin
integer programming models for demand-level scheduling. We have shown how an efficient ap-
proach from the literature can be extended to be applicable to arbitrary problems. A partitioning
algorithm has been proposed to account for so-called extraordinary overlap of break time win-
dows. By empirical comparison with an alternative approach, we have demonstrated that the new
formulation can generally be solved more efficiently.

Based on this formulation, we have developed a model and an algorithm forcyclic rostering
(Chapter 9). Reviewing different modelling alternatives, we have shown that a formulation in
which decision variables represent roster weeks is most appropriate for the given setting. The
roster-level model has been coupled to the shift scheduling model of Chapter 8, resulting in a
formulation for simultaneous shift scheduling and rostering. A novel branch-and-price formula-
tion has been developed, and appropriate column generators and branching strategies have been
designed. Tackling more constraints than any approach before, the algorithm has been shown to
be effective and efficient on different test cases with quite different characteristics.

All algorithms have been implemented as a part of a commercial software package for airport
ground staff scheduling. The contributions of this thesis provide solutions to new scheduling
problems and allow for a more integrated view on different planning stages. Being important
new elements of the planning system, they have proven to be effective and efficient on real-world
settings and have considerably increased customer satisfaction.

Reviewing the solution techniques, constraint programming has shown to be appropriate for
the incorporation of complex constraints and non-linear objective functions. In practice, it is also
important that constraint-based solution methods are easily extendible to new constraints. Local
search has taken advantage of the search space reduction by constraint propagation, using large
neighbourhoods to find improvements in strongly constrained problems. Nevertheless, we have
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also pointed out some limitations of large neighbourhood search (Chapter 5) which are mainly
due to the heuristic nature of neighbourhood selection rules. Experiments with LP-based release
strategies have been conducted, but pure integer programming approaches have yielded better
performance on the problems considered.

Our experiments have confirmed the success of Dantzig-Wolfe decomposition and column gen-
eration techniques for scheduling problems. Linear programming frequently yields very tight
lower bounds, making formulations particularly appropriate for branch-and-bound solution meth-
ods. Integer programming models have shown to provide a very good view on global optimality.
Clearly, integer programming models are more limited with regard to the incorporation of many
constraints. Furthermore, large problems sometimes have to be heuristically reduced in order to
reduce the search space. Even if this can frequently be done without sacrificing solution quality,
the proposed integer programming algorithms are more sensitive to characteristics of the given
problems and require careful parameter tuning.

One of the most promising subjects of future research is the application of hybrid constraint
programming/integer programming methods to the aforementioned problems. First contributions
have e.g. been provided by Focacci et al. [1998] and Focacci et al. [1999] (“cost-based domain
filtering”) as well as Fahle et al. [2002] and Rousseau et al. [2002] (“constraint-based column
generation”). The basic idea of these techniques is to represent complex constraint in a constraint
programming model while linear programming guides the search. Especially task-level shift plan-
ning should provide an interesting field of application.

Further investigations could aim at analysing interactions between different planning stages. As
an example, we may examine the relationship between demand-level and task-level scheduling in
more detail. This may include models and algorithms for creating demand curves which explicitly
aim at approximating task-level planning problems or providing lower bounds.

However, one of the most important fields of future research should be the robustness of plans
with regard to flight delays and other interruptions. Statistics on flight delays are e.g. available
from the Association of European Airlines (AEA) and the Central Office for Delay Analysis
(CODA) of Eurocontrol. As an example, more than 20% of the intra-European flight departures
were delayed by more than 15 minutes in the third quarter of 2004 [AEA, 2004]. Other sources of
uncertainty may also be important to consider, e.g. employee illness [Dowling et al., 1997]. In the
practice of ground staff planning, such problems are usually tackled by ad-hoc and best-practice
methods on the day of operations, e.g. by using overtime and standby staff [Stern and Hersh,
1980] [Dowling et al., 1997]. Research on explicitly considering uncertainty in the planning stage
is still at its beginning, see e.g. Bolat [2000] and Yan et al. [2002] for applications in aircraft stand
assignment.

Depending on the causes of uncertainty and the type of available information, different theories
will be suitable for modelling uncertainty [Zimmermann, 2000]. We are currently investigating
the robustness of given task-level shift plans by simulation analysis, using statistical flight delay
data [Sørensen and Clausen, 2002]. Furthermore, we have conducted first experiments with a
specialisation of the local improvement algorithm of Chapter 5, distributing gaps between the
tasks evenly over the shift plan. In general, this will make conflicts due to flight delays less likely
[Bolat, 2000]. To make demand-level plans more robust, it may be helpful to consider minimum
and maximum workforce demand profiles under different realisations of task start times, see the
resource envelopeapproach of Muscettola [2002].
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A. Mathematical Symbols

Sets

N natural numbers
N0 natural numbers including 0
R real numbers
R+ nonnegative real numbers
Z integer numbers

Tasks and shifts

i ∈ I tasks
t ∈ T time periods of the planning horizon
n ∈ N days of the planning horizon
[ai, bi] ⊆ T start time window of taski
li ∈ N length of taski
di,j ∈ N travel time between tasksi andj
s ∈ S shifts

Shift types and breaks

k ∈ K shift types
n ∈ Nk valid days of shift typek
stkn, etkn ∈ N start/end time of the realisation of shift typek on dayn
ck ∈ R+ cost of shift typek
breb

k , brmb
k , brlb

k ∈ BR early, main and late break rule of shift typek
lbr ∈ N length of break defined by break rulebr
bbeb

br, bb
lb
br ∈ N early/late buffer defined by break rulebr

[estbkn, lstbkn] ⊆ T break start time window of shift(k, n)

Shift number restrictions

r ∈ Rmin
abs ∪Rmax

abs absolute minimum/maximum shift number restrictions
r ∈ Rmin

rel ∪Rmax
rel relative minimum/maximum shift number restrictions

Kr ⊆ K reference shift type set for shift number restrictionr
Nr ⊆ N reference days of shift number restrictionr
mr ∈ N0 limit for absolute shift number restrictionr
pr ∈ R+ limit for relative shift number restrictionr

Graphs

G = (V,E) graph
v, w ∈ V vertices
E edge set
δ−(v) ⊆ E inedges ofv
δ+(v) ⊆ E outedges ofv
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A. Mathematical Symbols

Workload levelling

r ∈ R tours
C ∈ C crews
Io, Id origin and destination tasks
dmin

i ∈ N minimum travel time before taski

Ri ∈ R tour of taski
Pi ∈ I predecessor of taski
Si ∈ I successor of taski
Ti ∈ T start time of taski

W (t) ∈ N workload at timet
Irel ⊆ I set of relaxed tasks
Θ(i) ∈ I × I insertion positions of taski

δstart
i = [αi, βi] start time domain of taski

δins
i boolean “inserted” domain of taski

δpred
i predecessor domain of taski

δip
i insertion position domain of taski

δtour
i tour domain of taski

πi current predecessor of taski
σi current successor of taski

D ∈ N0 discrepancy
LD ∈ N0 discrepancy limit

Shift planning local improvement

al(i) ∈ N actual length of taski
ios ∈ Io origin tasks for the shifts
ids ∈ Id destination tasks for the shifts
iebs , imb

s , ilbs ∈ Ib early, main, late break task of shifts

C ∈ C task crews
B ∈ B subcrews
cs ∈ N crew size
H ∈ H shift crews

P ∈ P split tasks
lP ∈ N total length of split taskP
msli,mslP ∈ N minimum split length for taski/split taskP
Pi ∈ P split task of split parti
iPpseudo pseudo split part of split taskP
spredi, ssucci ∈ I split part predecessor/successor of split parti

tolmax
i ∈ N maximum overlap for (non-split) taski

olmax
i ∈ N derived maximum overlap for taski

Q set of all qualifications
Qi ⊆ Q qualification requirements of taski
Qs ⊆ Q qualification requirements of shifts
qmax ∈ N maximum number of qualifications per shift
qp(Q′) ∈ R+ qualification preference for setQ′
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qpmin ∈ R+ \ {0} minimum positive qualification preference

qr ∈ QR qualification restrictions
qqr ∈ Q reference qualification for restrictionqr
mqr ∈ N limit for restrictionqr

Ti ∈ T start time of taski
Si ∈ S shift of taski
predi, succi predecessor/successor of taski
Ks ∈ K shift type of shifts
Ns ∈ N day of shifts

wQP ∈ R+ qualification penalty weight
MQR ∈ R+ penalty for violating qualification restrictions
MSNR ∈ R+ penalty for violating shift number restrictions
MUT ∈ R+ penalty for unassigned task minutes

brd ∈ BRD break rule days
nbrd ∈ N day of break rule daybrd
BRbrd ⊆ BR set of break rules of break rule daybrd
Kbrd ∈ K shift type of break rule daybrd

sdummy
i dummy shift for unassigned taski

kdummy
l pseudo shift type for task lengthl

brddummy pseudo break rule day

δstart
i = [αi, βi] start time domain for taski

δsl
i split part length domain for split parti

πi, σi predecessor, successor of taski

δshift
i shift domain of taski

δpred
i predecessor domain of taski

δins
i “inserted” domain of taski

δK
s shift type domain of taski

δused
s “used” domain of taski

δQ
s qualificaton domain of taski

δqp
s qualification penalty domain of taski

Irel ⊆ I tasks to be relaxed
Idep ⊆ I dependent tasks
Sdep ⊆ S dependent shifts

Shift planning by branch-and-price

q ∈ N number of variables
p ∈ N number of clauses
U = {u0, . . . , uq−1} boolean variables
C = {C0, . . . , Cp−1} clauses
tr : U → {false, true} truth assignment
I lit literal tasks
Ifill filling tasks
Icl clause tasks
KT T (true) shift types
KF F (false) shift types
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Kfill filling shift types

iko origin task of shift typek
ikd destination task of shift typek
ikb break task of shift typek

Gk = (V k, Ek) flow graph for shift typek
vk
o origin node of shift typek

vk
d destination node of shift typek

V k
b break nodes of shift typek

ck
vw cost of edge(v, w) of graphGk

Xk
vw flow on edge(v, w) of graphGk

p ∈ Ωk extreme rays for subproblemk
Ω set of all extreme rays
xk

vwp edge flow on(v, w) for rayp of subproblemk

λk
p decision variable for rayp of subproblemk

ck
p ∈ R+ cost coefficient of rayp of subproblemk

gk
ip ∈ N coverage coefficient for constrainti of rayp of subproblemk

πi dual value for coverage constrainti
µr dual value for shift number restrictionr
c̄k
p reduced cost of rayp of subproblemk

ρr(k) indicator function for shift number restrictionr
c̄k derived reduced cost associated with shift typek
c̄k
vw derived reduced cost of edge(v, w) of subproblemk

Implicit break modelling

l ∈ L break indices
r ∈ R shift/break classes
Lest, Lest

r set of earliest start times over all break windows (in classr)
Llst, Llst

r set of latest start times over all break windows (in classr)
lest, lestr earliest overall break (in classr)
llst, llstr latest overall break (in classr)
LB(l), LB

r (l) set of breaks (in classr) starting no earlier thanl
KB(l), KB

r (l) set of shifts (in classr) associated withLB(l)
LF (l), LF

r (l) set of breaks (in classr) starting no later thanl
KF (l), KF

r (l) set of shifts (in classr) associated withLF (l)
dt ∈ N0 workforce demand in periodt
atkn ∈ N0 coverage coefficient for shift(k, n) in periodt
btl ∈ N0 coefficient for breakl in periodt
csht, csht

t ∈ R+ shortage cost (for demand periodt)

Cyclic rosters

[wmin, wmax] ⊆ N0 limits on the number of roster weeks
Gk ∈ K valid day-on predecessor shift types of shift typek
Hk ∈ K valid day-off predecessor shift types of shift typek
τk1,k2 ∈ R+ shift transition penalty betweenk1 andk2

[mon
min,mon

max] ⊆ N limits on the number of consecutive days on
[moff

min,moff
max] ⊆ N limits on the number of consecutive days off

uk ∈ N work units of shift typek
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[umin, umax] ⊆ N0 limits on the number of work units per week
uavg ∈ N average work units per week
utol ∈ N tolerance for average work units per week

I index set for week variables
J index set for link variables
ϑi number of weeks of typei
λj number of links of typej
cw
i ∈ R+ cost of weeki

cl
j ∈ R+ cost of linkj

ui ∈ N work units of weeki
skn
i ∈ {0, 1} shift coverage coefficient of weeki for shift (k, n)

m ∈ N number of consecutive days on/off
wskm,on

i , wskm,off
i coefficients for start junction(k, m) of weeki

wekm,on
i , wekm,off

i coefficients for end junction(k, m) of weeki

lskm,on
j , lskm,off

j coefficients for start junction(k, m) of link j

lekm,on
j , lekm,off

j coefficients for end junction(k, m) of link j

γon
k,m, γoff

k,m dual prices associated with week start/link end constraints

ηon
k,m, ηoff

k,m dual prices associated with week end/link start constraints
πk,n dual price associated with shift equality constraints
ω dual price associated with work units
φ dual price associated with roster week constraint
P (k, n,m, u) value of backward net state for shift(k, n),

m remaining days on andu work units
Q(k, n,m, u) value of forward net state for shift(k, n),

m days on andu work units
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B. Acronyms and Abbreviations

B.1. Acronyms

BCP branch, cut and price
COIN-OR common optimisation interface for Operations Research
COP constraint optimisation problem
CP constraint programming
CSP constraint satisfaction problem
CVSP capacitated vehicle scheduling problem
DAG directed acyclic graph
DP dynamic programming
EO extraordinary overlap
GF greedy fixing
IP integer programming
LDS limited discrepancy search
LNS large neighbourhood search
LP linear programming
MDVSP multiple-depot vehicle scheduling problem
OSI open solver interface
RCSP resource-constrained shortest path problem
RLDP repeated local dynamic programming
RMP restricted master program
SA simulated annealing
SFDP successive fixing by dynamic programming
TSP travelling salesman problem
TSPTW travelling salesman problem with time windows
VRP vehicle routing problem
VRPTW vehicle routing problem with time windows
VSP vehicle scheduling problem
WLP workload levelling problem

B.2. Abbreviations

abs. absolute
avg. average
cf. confer
e.g. for example (exempli gratia)
etc. et cetera
fig. figure
i.e. that is (id est)
iff if and only if
min. minimum
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B. Acronyms and Abbreviations

max. maximum
No. number
obj. fct. objective function
p. page
pref. preference
qual. qualification
rel. relative
secs. seconds
std. dev. standard deviation
w.l.o.g. without loss of generality
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C. Overview of Workforce Scheduling
Literature

In the following, an overview of the relevant literature cited in Chapter 2 will be given. Publica-
tions will be categorised by model types, solution techniques, named and anonymous models as
well as application areas.

C.1. Overview by Models

Table C.1 summarises references with regard to different models, including shift, day-off and tour
scheduling, shift assignment and cyclic rostering. Special nurse scheduling models which often
do not fall into these categories are mentioned separately. Within each section, publications are
listed chronologically.

It should be noted that not all publications can be categorised without ambiguities. As an ex-
ample, some of the day-off approaches refer to cyclic rosters, e.g. Emmons [1985]. Furthermore,
Bennett and Potts [1968] which is a classical reference on cyclic rosters effectively uses a se-
quential day-off and shift assignment approach. Similarly, all shift assignment references except
for Jackson et al. [1997] refer to cyclic rosters. If publications explicitly refer to more than one
model type, these are listed more than once, e.g. Millar and Kiragu [1998]. Bartholdi et al. [1980],
Bartholdi III [1981], Karp and Orlin [1981] and Vohra [1988] treat a class of cyclic staffing prob-
lems. While these also cover day-off scheduling models, their focus is on shift scheduling to
which we have attributed these publications.

C.2. Overview by Solution Methods

In Table C.2, we categorise workforce scheduling publications by solution approaches. Overviews
of parts of these references can also be found in Bechtold et al. [1991], Thompson [1992], Brusco
and Jacobs [1993b], Thompson [1993] and Thompson [1995]. Ernst et al. [2004] mention that the
literature is heavily skewed torwards mathematical programming and metaheuristic approaches.
However, the employed techniques also dependend on the application and setting. While e.g. no
constraint programming approaches have been proposed for anonymous scheduling, CP seems to
be appropriate for more constrained models in named nurse scheduling.

While Table C.2 separately lists greedy optimal algorithms, it should be noted that combinato-
rial approaches also belong to the class of polynomial-time optimal algorithms, see Section 2.3.
Integer programming models comprise some column generation (Easton and Rossin [1991], Pan-
ton and Ryan [1999]) and branch-and-price approaches (Mason and Smith [1998], Mason [1999],
Mason and Nielsen [1999], Mehrotra et al. [2000]). References for graph algorithms comprise
publications using several or mixed approaches (Lagrangian relaxation in Balakrishnan and Wong
[1990], heuristics in Panton [1991] and van den Berg and Panton [1994], and simulation in Mason
et al. [1998]). “Other solution approaches” in Table C.2 refer to the additive algorithm of Balas
[Musa and Saxena, 1984], goal programming [Ozkarahan and Bailey, 1988] and a half-automatic
constraint-based approach [Muslija et al., 2000].
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shift scheduling day-off scheduling tour scheduling
Dantzig [1954] Tibrewala et al. [1972] Ritzman et al. [1976]
Bennett and Potts [1968] Baker [1974] McGinnis et al. [1978]
Segal [1972] Brownell and Lowerre [1976] Mabert and Watts [1982]
Buffa et al. [1976] Miller et al. [1976] Morris and Showalter [1983]
Henderson and Berry [1976] Baker and Magazine [1977] Glover et al. [1984]
Moondra [1976] Lowerre [1977] Bailey [1985]
Gaballa and Pearce [1979] Mabert and Raedels [1977] Glover and McMillan [1986]
Keith [1979] Baker et al. [1979] Holloran and Byrn [1986]
Bartholdi et al. [1980] Burns and Carter [1985] Bechtold and Showalter [1987]
Stern and Hersh [1980] Emmons [1985] Showalter and Mabert [1988]
Bartholdi III [1981] Burns and Koop [1987] Andrews and Parsons [1989]
Karp and Orlin [1981] Bechtold [1988] Taylor and Huxley [1989]
Bailey and Field [1985] Koop [1988] Bechtold et al. [1991]
Vohra [1988] Emmons and Burns [1991] Easton and Rossin [1991]
Bechtold and Jacobs [1990] Hung [1993] Li et al. [1991]
Love and Hoey [1990] Hung [1994a] Loucks and Jacobs [1991]
Thompson [1990] Hung [1994b] Brusco and Jacobs [1993b]
Thompson [1992] Emmons and Fuh [1997] Brusco and Jacobs [1993a]
Schindler and Semmel [1993] Burns and Narasimhan [1999] Jacobs and Bechtold [1993]
Thompson [1995] Thompson [1993]
Thompson [1996a] shift assignment Bechtold and Brusco [1994a]
Thompson [1996b] Lau [1994] Brusco et al. [1995]
Aykin [1998] van den Berg and Panton [1994] Brusco and Jacobs [1995]
Nobert and Roy [1998] Lau [1996a] Brusco and Johns [1995]
Panton and Ryan [1999] Lau [1996b] Brusco and Johns [1996]
Aykin [2000] Jackson et al. [1997] Jacobs and Brusco [1996]
Mehrotra et al. [2000] Dowling et al. [1997]
Çezik and G̈unlük [2002] cyclic rosters Brusco [1998]
Sørensen and Clausen [2002]Bennett and Potts [1968] Brusco and Jacobs [1998a]
Musliu et al. [2004] Laporte et al. [1980] Brusco and Jacobs [1998b]

Rosenbloom and Goertzen [1987]Henderson and Mason [1998]
named scheduling for Balakrishnan and Wong [1990] Jaumard et al. [1998]
nurses/physicians Chew [1991] Mason and Smith [1998]
Miller et al. [1976] Panton [1991] Millar and Kiragu [1998]
Warner [1976] Khoong and Lau [1992] Topaloglu and Ozkarahan [1998]
Arthur and Ravindran [1981] Mason et al. [1998] Alvarez-Valdez et al. [1999]
Musa and Saxena [1984] Millar and Kiragu [1998] Mason and Nielsen [1999]
Ozkarahan and Bailey [1988] Mason [1999] Brusco and Jacobs [2000]
Weil et al. [1995] Muslija et al. [2000] Brusco and Jacobs [2001]
Berrada et al. [1996] Çezik et al. [2001] Çezik et al. [2001]
Cheng et al. [1997] Felici and Gentile [2004] Çezik and G̈unlük [2002]
Meisels et al. [1997] Rekik et al. [2003]
Dowsland [1998]
Schaerf and Meisels [1999]
Carter and Lapierre [2001]
Bellanti et al. [2004]

Table C.1.: Overview of publications on different models.

230
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integer programming LP/rounding combinatorial approaches
Bennett and Potts [1968] Dantzig [1954] Tibrewala et al. [1972]
Warner [1976] Henderson and Berry [1976] Baker [1974]
Mabert and Raedels [1977] Moondra [1976] Brownell and Lowerre [1976]
Gaballa and Pearce [1979] Keith [1979] Baker and Magazine [1977]
Laporte et al. [1980] Bartholdi et al. [1980] Lowerre [1977]
Stern and Hersh [1980] Bartholdi III [1981] Burns [1978]
Bailey [1985] Morris and Showalter [1983] Baker et al. [1979]
Rosenbloom and Goertzen [1987]Bailey and Field [1985] Bechtold [1981]
Bechtold and Jacobs [1990] Holloran and Byrn [1986] Burns and Carter [1985]
Easton and Rossin [1991] Li et al. [1991] Emmons [1985]
Thompson [1992] Thompson [1990] Burns and Koop [1987]
Jacobs and Bechtold [1993] Bechtold et al. [1991] Bechtold [1988]
Schindler and Semmel [1993] Thompson [1993] Koop [1988]
Thompson [1995] Bechtold and Brusco [1994a] Emmons and Burns [1991]
Brusco and Johns [1996] Hung [1993]
Jacobs and Brusco [1996] simulated annealing Hung [1994a]
Thompson [1996a] Brusco and Jacobs [1993b] Hung [1994b]
Aykin [1998] Brusco and Jacobs [1993a] Emmons and Fuh [1997]
Brusco [1998] Brusco et al. [1995] Burns and Narasimhan [1999]
Brusco and Jacobs [1998a] Brusco and Jacobs [1995]
Henderson and Mason [1998] Brusco and Johns [1995] other greedy
Mason and Smith [1998] Thompson [1996b] optimal approaches
Nobert and Roy [1998] Dowling et al. [1997] Vohra [1988]
Topaloglu and Ozkarahan [1998] Brusco and Jacobs [1998b] Chew [1991]
Mason [1999] Sørensen and Clausen [2002]
Mason and Nielsen [1999] heuristics
Panton and Ryan [1999] tabu search Buffa et al. [1976]
Aykin [2000] Glover et al. [1984] Miller et al. [1976]
Brusco and Jacobs [2000] Glover and McMillan [1986] Ritzman et al. [1976]
Mehrotra et al. [2000] Berrada et al. [1996] McGinnis et al. [1978]
Brusco and Jacobs [2001] Jackson et al. [1997] Arthur and Ravindran [1981]
Çezik et al. [2001] Dowsland [1998] Bechtold and Showalter [1987]
Çezik and G̈unlük [2002] Alvarez-Valdez et al. [1999] Taylor and Huxley [1989]
Rekik et al. [2003] Carter and Lapierre [2001] Loucks and Jacobs [1991]
Felici and Gentile [2004] Bellanti et al. [2004] Khoong and Lau [1992]

Musliu et al. [2004] Lau [1994]
graph algorithms, Lau [1996a]
network flows other local search approaches Lau [1996b]
Segal [1972] Miller et al. [1976]
Bartholdi et al. [1980] Schaerf and Meisels [1999] other approaches
Karp and Orlin [1981] Musa and Saxena [1984]
Balakrishnan and Wong [1990] constraint programming Ozkarahan and Bailey [1988]
Love and Hoey [1990] Weil et al. [1995] Muslija et al. [2000]
Panton [1991] Cheng et al. [1997]
van den Berg and Panton [1994] Meisels et al. [1997]
Mason et al. [1998]

Table C.2.: Overview of solution techniques.
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C.3. Overview by Anonymous and Named Models

While anonymous planning refers to staff scheduling on an aggregate level, named models at-
tribute shifts and tours to employees. Named models can incorporate skills, availabilities as well
as preferences. Cyclic models as well as combinatorial approaches belong to the class of anony-
mous models. An overview can be found in Table C.3.

C.4. Overview by Application Areas

Table C.4 lists references by application areas if these are explicitly mentioned. Again, there
are interdependencies with the aforementioned categories. As an example, fast-food and nurse
scheduling models generally belong to the class of named models.

232



C.4. Overview by Application Areas

anonymous scheduling (continued) named scheduling
Dantzig [1954] Brusco and Jacobs [1993b] Miller et al. [1976]
Bennett and Potts [1968] Hung [1993] Warner [1976]
Segal [1972] Jacobs and Bechtold [1993] Arthur and Ravindran [1981]
Tibrewala et al. [1972] Schindler and Semmel [1993] Glover et al. [1984]
Baker [1974] Thompson [1993] Glover and McMillan [1986]
Baker [1976] Bechtold and Brusco [1994b] Thompson [1990]
Brownell and Lowerre [1976] Bechtold and Brusco [1994a] Weil et al. [1995]
Henderson and Berry [1976] Hung [1994a] Berrada et al. [1996]
Moondra [1976] Hung [1994b] Cheng et al. [1997]
Ritzman et al. [1976] Jarrah et al. [1994] Jackson et al. [1997]
Baker and Magazine [1977] Lau [1994] Meisels et al. [1997]
Lowerre [1977] van den Berg and Panton [1994] Dowsland [1998]
Mabert and Raedels [1977] Brusco et al. [1995] Jaumard et al. [1998]
McGinnis et al. [1978] Brusco and Jacobs [1995] Mason and Smith [1998]
Baker et al. [1979] Brusco and Johns [1995] Mason and Nielsen [1999]
Gaballa and Pearce [1979] Thompson [1995] Schaerf and Meisels [1999]
Keith [1979] Aykin [1996] Carter and Lapierre [2001]
Bartholdi et al. [1980] Bechtold and Jacobs [1996] Bellanti et al. [2004]
Laporte et al. [1980] Brusco and Johns [1996]
Stern and Hersh [1980] Jacobs and Brusco [1996] anonymous scheduling and
Bartholdi III [1981] Lau [1996a] subsequent assignment
Mabert and Watts [1982] Lau [1996b] Buffa et al. [1976]
Tien and Kamiyama [1982] Thompson [1996a] Bailey and Field [1985]
Morris and Showalter [1983] Thompson [1996b] Love and Hoey [1990]
Musa and Saxena [1984] Dowling et al. [1997] Alvarez-Valdez et al. [1999]
Bailey [1985] Emmons and Fuh [1997]
Burns and Carter [1985] Brusco [1998] named and
Emmons [1985] Brusco and Jacobs [1998a] anonymous scheduling
Holloran and Byrn [1986] Brusco and Jacobs [1998b] Khoong and Lau [1992]
Burns and Koop [1987] Henderson and Mason [1998] Khoong et al. [1994]
Bechtold and Showalter [1987] Mason et al. [1998]
Rosenbloom and Goertzen [1987]Millar and Kiragu [1998]
Bechtold [1988] Nobert and Roy [1998]
Koop [1988] Topaloglu and Ozkarahan [1998]
Ozkarahan and Bailey [1988] Burns and Narasimhan [1999]
Vohra [1988] Mason [1999]
Andrews and Parsons [1989] Panton and Ryan [1999]
Taylor and Huxley [1989] Aykin [2000]
Balakrishnan and Wong [1990] Brusco and Jacobs [2000]
Bechtold and Jacobs [1990] Mehrotra et al. [2000]
Bechtold et al. [1991] Muslija et al. [2000]
Chew [1991] Brusco and Jacobs [2001]
Easton and Rossin [1991] Çezik et al. [2001]
Emmons and Burns [1991] Çezik and G̈unlük [2002]
Li et al. [1991] Sørensen and Clausen [2002]
Loucks and Jacobs [1991] Rekik et al. [2003]
Panton [1991] Felici and Gentile [2004]
Thompson [1992] Musliu et al. [2004]
Brusco and Jacobs [1993b]

Table C.3.: Overview of publications on anonymous and named scheduling.
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airport ground handling bus drivers bank applications
Chew [1991] Bennett and Potts [1968] Moondra [1976]
Khoong and Lau [1992] Mabert and Raedels [1977]
Schindler and Semmel [1993] call centres Mabert and Watts [1982]
Khoong et al. [1994] Andrews and Parsons [1989] Li et al. [1991]
Brusco et al. [1995] Henderson and Mason [1998]
Dowling et al. [1997] Mason and Nielsen [1999] physician scheduling
Brusco and Jacobs [1998a] Brusco and Jacobs [2000] Carter and Lapierre [2001]
Brusco and Jacobs [1998b] Brusco and Jacobs [2001]
Sørensen and Clausen [2002] Çezik et al. [2001] nurse scheduling
Felici and Gentile [2004] Miller et al. [1976]

telephone operators Warner [1976]
aircraft cleaning Segal [1972] Arthur and Ravindran [1981]
Stern and Hersh [1980] Buffa et al. [1976] Musa and Saxena [1984]

Henderson and Berry [1976] Rosenbloom and Goertzen [1987]
aircraft refuelling McGinnis et al. [1978] Ozkarahan and Bailey [1988]
Alvarez-Valdez et al. [1999] Keith [1979] Khoong and Lau [1992]

Khoong et al. [1994]
airport passenger services toll collectors Weil et al. [1995]
Schindler and Semmel [1993] Dantzig [1954] Berrada et al. [1996]
Brusco et al. [1995] Bennett and Potts [1968] Cheng et al. [1997]

Jacobs and Brusco [1996] Meisels et al. [1997]
airline sales reservation offices Dowsland [1998]
Gaballa and Pearce [1979] fast-food restaurants Jaumard et al. [1998]
Holloran and Byrn [1986] Glover and McMillan [1986] Mason and Smith [1998]

Love and Hoey [1990] Millar and Kiragu [1998]
airport Customs/immigration authority Loucks and Jacobs [1991] Mason and Nielsen [1999]
Mason et al. [1998] Thompson [1996a] Schaerf and Meisels [1999]
Mason and Nielsen [1999] Bellanti et al. [2004]

mail facility
air cargo terminal Ritzman et al. [1976] police patrol officers
Nobert and Roy [1998] Jarrah et al. [1994] Taylor and Huxley [1989]

Casino security officers
Panton [1991]

Table C.4.: Overview of applications.
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length, 79, 100
minimum length, 83, 84, 97
predecessor, 79
pseudo, 78
successor, 79

split shifts, 28, 33
split tasks, 78

length, 97
propagation, 96–98

splitting, 7, 10, 71, 77–79, 84
stabilisation, 135, 158
staff planning

anonymous, 16, 232
demand level, 6, 9, 161
manual, 2
named, 16, 24, 232
operative, 3, 9, 49
strategical, 3, 9
systems, 2, 12
tactical, 3, 9, 49
task level, 7, 10

start time windows, 5, 7, 39, 40, 45, 50, 53,
73, 82

start-time band, 16, 29
strategical planning, 3, 9
strong connectivity, 203
subcrews, 76, 83, 111

propagation, 95
subcycles, 189, 194, 203–206
subgradient optimisation, 133
subproblem, 127

and branching, 130
Lagrangian, 133

subset sum problem, 151
subtour elimination, 42, 189, 204
symmetry, 41, 56, 96, 100, 129, 190

tactical planning, 3, 9, 49
tailing-off effect, 132, 151
Tarjan’s algorithm, 204
task generation, 3–5
task-level planning, 7, 10

and demand-level planning, 7, 161
shift planning, 71–123, 137–159

tasks,seework tasks
temporal propagation, 53–54, 90–92

backward, 91
forward, 91
horizontal, 94
vertical, 94

topogical order, 172
tour scheduling, 10, 15, 17, 21–24, 130, 188,

196, 229
continuous, 16
cyclic, 31, 184, 194
discontinuous, 16

tours, 5, 7, 46
transitive orientation, 171
transitivity, 51, 171
transportation problem, 164, 175, 203
travel times, 5, 39, 46, 50, 59, 74, 138
travelling salesman problem, 42, 189

with time windows, 42
triangle inequality, 39, 52, 74, 99, 145

unassigned tasks, 81, 87–88
uncertainty, 219
understaffing, 6, 161, 163, 176
union regulations, 6, 8, 16, 32, 184, 209
United Airlines, 1, 2, 22, 23, 31

variable ordering, 57
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vehicle block, 33
vehicle routing, 10–11, 71, 129, 145, 189

and constraint programming, 39–43
and levelling, 10, 49
and shift planning, 10, 72, 138
disjunctive methods, 42–43
insertion-based methods, 40–41, 52
partial path methods, 41–42
with time windows, 10, 38, 39, 45, 46,

72, 84
vehicle scheduling, 10, 138, 139, 145

and shift planning, 138
vertical temporal relations, 84

week transitions, 190–194
week variables, 194

generation, 198–202
weekends off, 20, 186, 188, 206–207
Weyl’s theorem, 126, 134, 146
what-if analysis, 9, 12, 185
work rules, 185–186
work tasks, 3, 5, 45, 73, 138

crews, 46, 49, 71, 76, 84
critical, 59
generation, 3–5
length, 5, 45, 73, 138
movable, 5, 46
near-critical, 59
preemptive, 10, 71, 77–79, 84
qualifications, 5, 75
splitting, 7, 10, 71, 77–79, 84
start time window, 5, 7, 45, 50, 53, 73,

82
unassigned, 81, 87–88

work units, 186
workforce allocation, 15
workforce scheduling, 9–10, 15–33

and crew rostering, 33
complexity, 31

working hours, 16, 184, 186
working subset methods, 18, 30–31, 153, 209

demand-based methods, 30
structural methods, 30

working time directives, 6
workload levelling, 5, 10, 45–70, 161

and shift planning, 45, 70
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