
Formal Computational Methods

for Control Theory

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften
der Rheinisch-Westfälischen Technischen Hochschule Aachen zur

Erlangung des akademischen Grades eines Doktors der Naturwissenschaften
genehmigte Dissertation

vorgelegt von

Diplom-Mathematiker

Daniel Robertz

aus Aachen

Berichter: Universitätsprofessor Dr. Wilhelm Plesken
Universitätsprofessor Dr. Gerhard Jank

Tag der mündlichen Prüfung: 20.06.2006

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek
online verfügbar.



ii



Contents

1 Introduction 1

2 Janet’s Algorithm 5

2.1 Decomposition of Sets of Monomials into Disjoint Cones . . . . . 7

2.2 Janet’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Combinatorial Tools . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Ore Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Janet Bases for Ore Algebras . . . . . . . . . . . . . . . . . . . . 31

2.6 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Reducing the Complexity of Janet Basis Computations . . . . . . 36

3 Symbolic Computation with Differential Equations 43

3.1 The Jet Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Linearization of Differential Equations . . . . . . . . . . . . . . . 48

3.3 Janet Bases for Linear Differential Equations with Non-constant
Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 The Generalized Hilbert Series 67

4.1 Module-theoretic Approach to Linear Systems . . . . . . . . . . . 67

4.2 Homological Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Injective Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Injective Cogenerators . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 The Generalized Hilbert Series for Partial Differential Equations . 88

4.6 The Bernstein Filtration . . . . . . . . . . . . . . . . . . . . . . . 91

5 Algebraic Systems Theory 95

5.1 Structural Properties of Linear Systems . . . . . . . . . . . . . . . 97

5.2 Computation of extiD(M,D) . . . . . . . . . . . . . . . . . . . . . 100

5.3 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Autonomous Observables . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 The Maple package OreModules . . . . . . . . . . . . . . . . . . . 115

iii



iv CONTENTS

6 Parametrizing Linear Systems 117

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Parametrizing Linear Systems over Ore Algebras . . . . . . . . . . 121
6.3 Parametrizing Linear Systems with Autonomous Observables . . . 125
6.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.5 Flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.6 Computing Bases of Free Modules over the Weyl Algebras . . . . 141

7 A Stirred Tank Model 149

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2 Controllability, parametrizability, flatness . . . . . . . . . . . . . . 151
7.3 Autonomous observables . . . . . . . . . . . . . . . . . . . . . . . 157
7.4 Observability, input-output behavior . . . . . . . . . . . . . . . . 161
7.5 Motion planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.6 Optimal control problems . . . . . . . . . . . . . . . . . . . . . . 170
7.7 A discrete-time model . . . . . . . . . . . . . . . . . . . . . . . . 177
7.8 A differential time-delay model . . . . . . . . . . . . . . . . . . . 182

Bibliography 191

Symbol Table 200

Index 201

Curriculum Vitae 204



Chapter 1

Introduction

This thesis treats structural properties of control systems, e.g. controllability or
parametrizability of their behavior, from an algebraic point of view. It is in the
tradition of R. E. Kalman, who gave very important impetus to the structural
analysis of control systems in the 1960s. Since then more and more algebraic
methods have been applied and developed to gain insight into the behavior of
control systems.

With this work I contribute to a few aspects of the links between algebra and
control theory emphasizing formal methods and computational issues, which are
also of independent interest. First I describe the main features of the employed
method.

The control system is assumed to be modeled by a set of equations of a
certain kind. In general, these equations are nonlinear. Then the algebraic ap-
proach which is pursued here considers a linearization of these equations. Now
linear equations define a module over a ring which is chosen in accordance with
the type of the given equations (e.g. ordinary or partial differential equations,
difference equations, retarded differential equations, etc.). All consequences of
the given equations are built into this module so that it represents the relations
among the inspected quantities of the control system in an intrinsic way; in par-
ticular, two equivalent sets of linear equations give rise to the same module. The
space of functions which is expected to contain solutions of the given equations
is also assumed to be a module over the same ring; e.g. for differential equations
the action on the function space is by differentiation, for difference equations
by shifts, etc. Structural properties of the control system (e.g. the possibility
to parametrize the solutions of the system in a formal way) are characterized
by properties of the module which is defined by the given equations. However,
these characterizations require a suitable interplay of the module defined by the
equations and the module of admissible functions. In particular, the outlined
approach is not applicable (at least in the full generality) to all kinds of function
spaces. The most interesting properties of the module associated with the system

1



2 CHAPTER 1. INTRODUCTION

equations can be dealt with by using homological algebra. This gives a unified
approach to the structural properties and the possibilities to check them compu-
tationally. Among the structural properties of interest is the existence of so-called
autonomous quantities, which cannot be influenced by a control. Whereas it is
difficult in general to draw conclusions from the structural analysis of the lin-
earized system about the properties of the given nonlinear one, sometimes the
existence of such autonomous quantities for the original system can be confirmed
or denied. If the linearized system is completely controllable, then the given
nonlinear one has no autonomous quantities either. Conversely, if autonomous
quantities are found for the linearized system, then one can try to lift them to
the original system.

Among the developers of this algebraic approach are U. Oberst and E. Zerz
who have been working mostly with equations with constant coefficients which
give rise to commutative rings, and J.-F. Pommaret and A. Quadrat who were
the first to tackle the non-commutative case.

The algebraic approach to control systems described above demands algo-
rithms for symbolic computations at different steps of the strategy. If the given
equations are nonlinear, an appropriate way to linearize them is required. The
ring which is chosen in accordance with the type of the given equations needs
to be dealt with constructively. Moreover, methods to compute with modules
over these rings are fundamental in order to realize the constructions used from
homological algebra.

Addressing the first issue, this thesis presents a method which results in a
linearization of differential equations that is independent of any chosen trajectory.
In particular, no solution of the set of equations is needed. This defines a generic
linearization of the system (Chapter 3).

Secondly, Janet’s algorithm is used for computing with rings and modules
which arise in the present context. Given a finite generating set for a submod-
ule of a free module of tuples over a commutative polynomial algebra, Janet’s
algorithm constructs another finite set, called Janet basis, which generates the
same submodule, but consists of enough elements such that for any given tuple
it can be decided whether it is an element of the submodule or not. More pre-
cisely, a Janet basis defines normal forms for the elements of the residue class
module, enabling in this way effective computations in this module. As a tool for
commutative algebra, Janet bases serve similar purposes as the more commonly
known Gröbner bases do. Whereas Gröbner bases were introduced in the 1930s
and Buchberger’s algorithm, which computes Gröbner bases, was developed in
the 1960s, Janet’s theory from the 1920s even roots in earlier work of Méray and
Riquier in the last decades of the 19th century. Janet’s formal approach to sys-
tems of differential equations seemed forgotten for a long time, but was revived
by J.-F. Pommaret.



3

In this thesis, Janet’s algorithm is a keystone. In Chapter 2, I generalize
Janet’s algorithm from the well-known cases of commutative polynomial alge-
bras and the Weyl algebra to Ore algebras which are of interest in the following
chapters. For system theoretic applications Ore algebras are sufficiently gen-
eral because the most important types of equations define Ore algebras, whose
elements represent the operators which are involved in the equations.

The symbolic treatment of linear equations which arise from a generic lin-
earization of differential equations as announced above requires another adap-
tation of Janet’s algorithm. Since the generic linearization results in a system
of linear equations with non-constant coefficients, these coefficients are subject
to the original nonlinear equations. In particular, division by zero needs to be
prevented when performing the arithmetics in the corresponding ring. In Chap-
ter 3, I propose a straightforward way for dealing with these equations, which is
presented in the framework of jet calculus and differential rings. The nonlinear
differential equations are viewed as rewriting rules for elements of a differential
ring. In general, it might be difficult to handle them effectively. Then lineariza-
tion defines a module over this ring. Quite often one can determine the structure
of this module without having a full command on the ring described by the non-
linear equations. Technically speaking, Janet’s algorithm has to apply the given
rules possibly to each coefficient in every step.

In Chapter 4, I present a very useful combinatorial tool, the generalized
Hilbert series, which enumerates a vector space basis of a finitely presented mod-
ule over an Ore algebra for which Janet’s algorithm is applicable. The precision in
which structural properties of the solution space of a linear system are represented
by the module defined by the equations depends on the choice of the space of ad-
missible functions. A faithful correspondence of homological conditions holds for
function spaces which are injective cogenerators. For linear systems with constant
coefficients some common function spaces are known to be injective cogenerators.
In the case of ordinary or partial differential equations the generalized Hilbert
series represents the freedom to choose a solution. For instance, formal power
series solutions can be chosen through their Taylor coefficients; the coefficients
which can be chosen arbitrarily are given by the generalized Hilbert series. For
linear systems with non-constant coefficients very few injective cogenerators are
known. In this case it is much more difficult to grasp the solutions. Still it makes
sense to study the module which is defined by the equations. Janet’s algorithm
is applicable and provides the generalized Hilbert series. However, if the cho-
sen space of functions is not an injective cogenerator, then it does not reflect all
structural properties. In Chapter 4, I define an injective cogenerator for every
Ore algebra which is relevant for the later chapters, but in general I can give no
analytic interpretation of this module.

Applications of these methods are presented in Chapter 5. The decision about
controllability and the detection of autonomous quantities of a given control
system is demonstrated. The check of the structural properties needs a symbolic



4 CHAPTER 1. INTRODUCTION

treatment of the system equations, so that the algebraic approach lends itself to a
preprocessing for a numerical simulation of such systems. In particular, a reactor
considered in chemical engineering is examined.

In Chapter 6 the possibility to represent solutions of a linear system of equa-
tions as the image of a certain operator is investigated more closely. The es-
tablished theory about this way of parametrizing linear systems is recalled and
common work with A. Quadrat in this context is presented. The notion of
parametrization is extended to certain linear systems which are not completely
controllable and a method to compute bases of free left modules of rank at least 2
over the Weyl algebras is described, which plays a crucial role for the construction
of injective parametrizations.

A great portion of work was spent on implementations in Maple which en-
abled the present work. First of all, Janet’s algorithm is available now for many
rings through the packages Involutive, Janet, which I continued to develop,
and JanetOre, which I initiated. The intentions of these packages are rather
distinct (commutative polynomials, differential equations resp. Ore algebras) so
that several applications benefit from these implementations. Moreover, I joined
the OreModules project. This Maple package, originally developed by F. Chyzak
and A. Quadrat, is intended to solve various system theoretic problems using the
symbolic computational approach.

The final chapter demonstrates the Maple package OreModules on a stirred
tank model. The package JanetOre is used to perform the necessary Janet basis
computations. Chapter 7 is supposed to illustrate much of the theory mentioned
above, but also gives examples of facilities of OreModules on system theoretic
problems not elucidated in the previous chapters.

I would like to express my gratitude to several persons; first of all to Prof.
W. Plesken for his supervision and support, secondly to Prof. J.-F. Pommaret and
Dr. A. Quadrat who introduced us to the field of algebraic analysis. Moreover,
during my visits of A. Quadrat at INRIA Sophia Antipolis I always enjoyed the
very fruitful discussions.

Our cooperation with Prof. V. P. Gerdt and Dr. Y. A. Blinkov has also been
very productive and successful in the realm of Janet and involutive bases; I would
like to thank them, too.

Furthermore, I appreciate the support of my second supervisor Prof. G. Jank,
in particular his control theory lecture.

I would like to thank the process systems engineering group of Prof. W. Mar-
quardt (RWTH Aachen) for providing me with the reactor model of Exam-
ple 5.3.3.

Finally, I thank all colleagues at Lehrstuhl B für Mathematik, RWTH Aachen,
for a very nice atmosphere and especially Dr. M. Barakat for a lot of discussions.



Chapter 2

Janet’s Algorithm

Janet’s algorithm is named after Maurice Janet [Jan29] who developed it for the
structural analysis of systems of (linear) partial differential equations. It allows to
parametrize the formal power series solutions of a given system of (linear) partial
differential equations by arranging a scheme which determines for each Taylor
coefficient whether it can be chosen arbitrarily (in accordance with boundary
conditions) to obtain a solution or whether it depends (linearly) on these choices.
In particular it allows to determine the dimension of the vector space of the
formal power series solutions. The formal approach to differential equations used
in this context traces back to Ch. Méray [Mér80] and Ch. Riquier [Riq10]. After
the subject had fallen into oblivion for many years, it was popularized again by
J.-F. Pommaret [Pom94].

A linear system of partial differential equations with constant coefficients gives
rise to a system of algebraic equations and vice versa by associating with a deriva-
tive the monomial formed by the variables used for differentiation. In this way,
Janet’s algorithm also becomes a tool for solving systems of polynomial equations.
In fact, a Janet basis resulting from Janet’s algorithm is a particular generating
set for an ideal of a polynomial ring. Computations in the corresponding residue
class ring can be performed using the Janet basis because it defines a normal form
for the representatives of each residue class. The scheme for the Taylor coeffi-
cients, translated into the polynomial setting, accordingly provides combinatorial
information about the set of common zeros of the ideal under consideration. In
this context, Janet’s algorithm can be viewed as a simultaneous generalization
of both Euclid’s algorithm (univariate polynomials) and Gaussian elimination
(linear polynomials).

As a device for dealing with polynomial equations, Janet’s algorithm is a
very efficient alternative for Buchberger’s algorithm computing Gröbner bases of
polynomial ideals. The additional combinatorial features of Janet’s algorithm
however lead to a method of reducing a polynomial modulo other polynomials in
a unique way. This combinatorial part has been generalized by V. P. Gerdt and
Y. A. Blinkov in the framework of involutive divisions [GB98a], [GB98b]. On this

5



6 CHAPTER 2. JANET’S ALGORITHM

basis they have been designing efficient algorithms to compute involutive bases
(the analogues of Janet bases for more general involutive divisions).

In this chapter, Janet’s algorithm is adapted to a certain class of Ore alge-
bras, which are non-commutative polynomial rings. Ore algebras usually arise
as algebras of linear operators, e.g. differential operators or difference operators.
The most important examples for this thesis are the Weyl algebra and Ore alge-
bras containing shift operators. Gröbner bases for algebras of solvable type were
investigated by A. Kandri-Rody and V. Weispfenning in [KRW90]. Buchberger’s
algorithm to compute Gröbner bases has been generalized to Ore algebras by
F. Chyzak (see [Chy98], [CS98], where it is also applied to the study of special
functions and combinatorial sequences). Involutive divisions were studied for the
Weyl algebra case by W. M. Seiler [HSS02]. Gröbner bases were also addressed
in the framework of G-algebras by V. Levandovskyy [Lev05]. Very recently, the
concept of involutive division was extended to non-commutative rings in the the-
sis [Eva06]. However, an adaptation of Janet’s algorithm to Ore algebras does
not need this generality, so that this thesis gives a presentation of it using only
the necessary concepts. Restricted to Ore algebras, the exposition of Janet’s
algorithm is as efficient as for commutative polynomial rings.

A description of the fundamental ideas of Janet’s algorithm was given in
[PR05]. In this chapter we present more details and more precise descriptions
of the sub-algorithms. However, the emphasis is put on the structural view-
point. For efficiency issues we refer to the involutive basis algorithms [Ger05].
The first section explains the main combinatorial process in Janet’s algorithm
which accomplishes a specific sub-division of a certain set of monomials into
cones of monomials. In Section 2.2, this method of decomposing monomial sets
into disjoint cones is applied to the set of leading monomials of an ideal of a
(commutative) polynomial ring. Janet reduction is defined and used in Janet’s
algorithm to construct a particular generating set of an ideal (or more generally
a submodule of a finitely generated free module over a polynomial ring) which is
called a Janet basis. Section 2.3 introduces the generalized Hilbert series and the
Janet graph as combinatorial tools for the study of finitely generated modules
over polynomial rings. After defining Ore algebras and recalling their most im-
portant properties in Section 2.4, Janet’s algorithm is adapted to a certain class of
Ore algebras in Section 2.5. Some implementations are discussed in Section 2.6.
Finally, a simple tool for reducing the complexity for Janet basis computations
is presented in Section 2.7.

Janet’s algorithm is basic for the rest of this thesis. In particular, possibilities
to extend it to differential rings will be discussed in Section 3.3, and it will be
applied in the subsequent chapters.



2.1. DECOMPOSITION OF SETS OF MONOMIALS 7

2.1 Decomposition of Sets of Monomials into

Disjoint Cones

The exposition of Janet’s algorithm for commutative polynomial rings in this
and the next section follows [PR05], but gives more details and more precise
algorithms. We start by describing a method for partitioning a set of monomials
into a finite set of “cones” of monomials. It will be applied in the next section
to the set of leading monomials of a generating set for a submodule of a finitely
generated free module over a polynomial ring. This combinatorial procedure
steers the course of Janet’s algorithm to find a particular generating set for this
module which is called a Janet basis. The presented method is demonstrated
in this section on an easy example of two-variate monomials and on an example
involving three variables which shows the generic behavior of this procedure.

Let k be a field1 and R := k[x1, . . . , xn] the (commutative) polynomial algebra
over k. We define the set of monomials of R resp. in {x1, . . . , xn} by

Mon(R) := Mon({x1, . . . , xn}) := {xa | a ∈ (Z≥0)
n}, xa := xa1

1 · · ·xan

n ,

which is the free commutative monoid on x1, . . . , xn. The divisibility relation for
monomials is defined by:

xa | xb ⇐⇒ bi ≥ ai for all i = 1, . . . , n (a, b ∈ (Z≥0)
n).

Moreover, for each µ ⊆ {x1, . . . , xn} we set

Mon(µ) := {xa | a ∈ (Z≥0)
n; ai = 0 for all 1 ≤ i ≤ n such that xi 6∈ µ}.

Finally, for any set M we denote by P(M) the power set of M .
In this section we consider subsets S of Mon(R) which have the following

property:

Definition 2.1.1. A set S ⊆ Mon(R) is said to be Mon(R)-multiple closed, if

ms ∈ S for all m ∈ Mon(R), s ∈ S.

Every set G ⊆ Mon(R) satisfying

Mon(R)G = {mg | m ∈ Mon(R), g ∈ G} = S

is called a generating set for S. By [G] we denote the Mon(R)-multiple closed set
generated by G in Mon(R).

1For this section, the domain of coefficients of R is irrelevant. Hence, k could also be chosen
to be, e.g., a commutative ring with 1.



8 CHAPTER 2. JANET’S ALGORITHM

Example 2.1.2. Let R = k[x1, x2] and G := {x1x
2
2, x

3
1x2, x

4
1}. We consider

the Mon(R)-multiple closed set S = [G] generated by G. If we visualize the
monomial xi1x

j
2 as the point (i, j) in the positive quadrant of a x1-x2-coordinate

system, then the set S of monomials can be viewed as the discrete set of points
in the upper-right region in the following figure:

Example 2.1.3. Let R = k[x1, x2, x3] and G := {x1x2, x
3
2x3}. The Mon(R)-

multiple closed set S = [G] can be visualized in a similar way as in the previ-
ous example as the discrete set of points in the positive octant of the x1-x2-x3-
coordinate system shown in the next figure:

��

��

������������������

���
���
���
���
���
���

���
���
���
���
���
���

��������������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

��
��
��

��
��
��

The proof of the following very important lemma is given along the lines of
[Jan29].

Lemma 2.1.4. Every Mon(R)-multiple closed set has a finite generating set.

Proof. By induction on n we show that every sequence F of monomials m1, m2,
. . . in {x1, . . . , xn} with the property that no mi is divisible by any previous mj,
j < i, is a finite sequence. The case of univariate monomials is clear. For the
induction step, let m1 = xa1

1 · · ·xan
n . For each 1 ≤ j ≤ n and 0 ≤ d ≤ aj let F (j,d)

be the subsequence of F consisting of all monomials for which the exponent of xj
equals d. The union of the elements of all F (j,d), 1 ≤ j ≤ n, 0 ≤ d ≤ aj, already
exhausts the sequence F : for every monomial m in F having a greater power of



2.1. DECOMPOSITION OF SETS OF MONOMIALS 9

xj than m1 there is a variable xl whose exponent e in m is less than the exponent
of xl in m1 because m1 does not divide m. Therefore m is in the subsequence
F (l,e). Now the induction hypothesis can be applied to each F (j,d) by ignoring the
variable xj. Altogether, F is thus a finite sequence of monomials.

Corollary 2.1.5. Every ascending sequence of Mon(R)-multiple closed sets be-
comes stationary.

Proposition 2.1.6. Every Mon(R)-multiple closed set has a unique minimal
generating set.

Proof. Any generating set G for a Mon(R)-multiple closed set can be reduced to
a minimal generating set by removing those elements g from G for which there
exists h ∈ G− {g} such that h | g.

Let us assume that G1 and G2 are two minimal generating sets for the same
Mon(R)-multiple closed set S. Let g1 ∈ G1. Then there exists g2 ∈ G2 such that
g2 | g1 because G2 generates S. Since G1 is also a generating set for S, there
exists g̃1 ∈ G1 satisfying g̃1 | g2. It follows g̃1 | g1, which by the minimality of G1

implies g̃1 = g2 = g1. By reversing the roles of G1 and G2 we find G1 = G2.

Definition 2.1.7. A pair (C, µ) ∈ P(Mon(R))×P({x1, . . . , xn}) is called a cone
if there exists v ∈ C such that

Mon(µ)v = {mv | m ∈ Mon(µ)} = C.

Then v(C) := v is called the vertex of the cone (C, µ) and the elements of µ are the
multiplicative variables for (C, µ) (or simply for C). Finally, µ := {x1, . . . , xn}−µ
denotes the set of non-multiplicative variables for (C, µ) (or simply for C).

Remark 2.1.8. The vertex v(C) of a cone (C, µ) is well-defined since it is the
unique monomial in C with minimal total degree.

The purpose of this section is to describe a method to represent certain sets
of monomials as a disjoint union of the monomials of finitely many cones. For
instance, every union of cones of monomials can be written as a finite union of
disjoint cones of monomials. However, our main application will be to Mon(R)-
multiple closed sets and their complements in Mon(R).

Definition 2.1.9. Let S be any set of monomials in Mon(R). A decomposition
of S into disjoint cones is given by a finite set

{ (C1, µ1), . . . , (Cl, µl) } ⊂ P(Mon(R))× P({x1, . . . , xn})

such that each pair (Ci, µi) is a cone,

l⋃

i=1

Ci = S and Ci ∩ Cj = ∅ for all i 6= j.



10 CHAPTER 2. JANET’S ALGORITHM

Passing over to cone vertices, we will also call a finite set

T = { (m1, µ1), . . . , (ml, µl) } ⊂ Mon(R)× P({x1, . . . , xn})

a decomposition of S into disjoint cones if

(2.1) { (Mon(µ1)m1, µ1), . . . , (Mon(µl)ml, µl) }

satisfies the above conditions. Then, T is also said to be complete.

Given a finite set {m1, . . . ,ml} of monomials, there are many possible ways
of how to arrange sets of multiplicative variables µ1, . . . , µl such that (2.1) is a
set of cones such that Mon(µi)mi ∩Mon(µj)mj = ∅ for i 6= j. These possibilities
are addressed by the notion of involutive division which we will not discuss in
detail here. Important for us is only the Janet division:

Definition 2.1.10. [GB98a] Let M ⊂ Mon(R) be finite. For each m ∈ M , the
Janet division defines the set µ of multiplicative variables for the cone generated
by m as follows. Let m = xa ∈M . For 1 ≤ i ≤ n, we have:

xi ∈ µ ⇐⇒ max{bi | xb ∈M ; bj = aj for all j < i} = ai,

i.e., xi is a multiplicative variable for the cone generated by m if and only if its
exponent in m is maximal among all exponents of monomials in M which have
the same sequence of exponents of x1, . . . , xi−1 as m.

There are also other common involutive divisions, e.g. J. Thomas [Tho37]
proposed another way of defining the multiplicative variables of cones.

Let S ⊆ Mon(R) be Mon(R)-multiple closed. We are going to describe next
how to decompose S into disjoint cones. The result will provide the separation of
{x1, . . . , xn} into multiplicative and non-multiplicative variables for each cone in
accordance with the Janet division. The method is a recursive scan through the
tuples of exponents of the elements of S. Therefore we fix a permutation σ ∈ Sn
and set yi := xσ(i), i = 1, . . . , n. Without loss of generality one could just restrict
to the case yi = xi, i = 1, . . . , n. However, distinct permutations σ1 6= σ2 ∈ Sn
lead to different decompositions of S into disjoint cones in general.

Given a generating set G for the Mon(R)-multiple closed set S, the following
algorithm constructs a finite set of cones such that their sets of monomials are
disjoint and the union of these sets of monomials equals S.



2.1. DECOMPOSITION OF SETS OF MONOMIALS 11

Algorithm 2.1.11 (Decompose).

Input: (G, η), where G ⊂ Mon({y1, . . . , yn}) is finite and ∅ 6= η ⊆ {y1, . . . , yn}
Output: { (m1, µ1), . . . , (ml, µl) } ⊂ Mon({y1, . . . , yn})×P(η), a decomposition

of Mon(η)G into disjoint cones

Algorithm:

1: // minimize the generating set G (see Prop. 2.1.6):

2: G← {g ∈ G |6 ∃h ∈ G : h | g}
3: if |G| ≤ 1 or |η| = 1 then

4: return {(m, η) | m ∈ G}
5: else

6: // determine the first variable y in the sequence y1, . . . , yn with y ∈ η:
7: y ← ya with a = min{i | 1 ≤ i ≤ n, yi ∈ η}
8: // partition G into sets of monomials with the same degree in y:

9: d← max{degy(g) | g ∈ G}
10: Gi ← {g ∈ G | degy(g) = i}, i = 0, . . . , d

11: // add monomials not covered by cones due to y becoming non-mult.:

12: Gi ← Gi ∪
⋃i−1
j=0{yi−jg | g ∈ Gj}, i = 1, . . . , d

13: // for all cones resulting from Gd, y is a multiplicative variable:

14: Td ← { (m, ζ ∪ {y}) | (m, ζ) ∈ Decompose(Gd, η − {y}) }
15: // for all cones resulting from Gi, i < d, y is a non-multiplicative variable:

16: Ti ← Decompose(Gi, η − {y}), i = 0, . . . , d− 1

17: return
⋃d
i=0 Ti

18: fi

Theorem 2.1.12. Let S be a Mon({y1, . . . , yn})-multiple closed set. Given a
generating set G for S,

Decompose(G, {y1, . . . , yn})

returns a decomposition of S into disjoint cones. This decomposition only depends
on the set S and the choice of σ ∈ Sn defining yi := xσ(i), i = 1, . . . , n. It does
not depend on the choice of G.



12 CHAPTER 2. JANET’S ALGORITHM

Proof. Termination of Alg. 2.1.11 is clear because, if the algorithm does not
return in step 4, then it is called recursively with less and less variables in η until
reaching the case |η| = 1.

We show the correctness of Alg. 2.1.11 by induction on |η|. First of all, a
Mon(η)-multiple closed set generated by a single element is already a cone. If
|η| = 1, then the result in step 4 is a decomposition of Mon(η)G into disjoint
cones because no monomial in G divides any other monomial in G due to step 2.
In any other case, G is partitioned into sets of monomials distinguished by their
degree in y. Let us assume that Alg. 2.1.11 is correct for all second arguments of
smaller size than |η|. Then we first assert that

Mon(µ1)m1 ∩Mon(µ2)m2 = ∅ for all (m1, µ1), (m2, µ2) ∈ Ti, i = 0, . . . , d.

This assertion holds for i = d because mutually disjoint cones of monomials of
the same degree d in y for which y is a non-multiplicative variable stay disjoint
when y gets a multiplicative variable again. For i = 0, . . . , d − 1, the assertion
is true simply because of the induction hypothesis. Since y is only chosen to be
multiplicative for the cones resulting from Gd, and cones resulting from different
Gi, i < d, contain only monomials of distinct degree in y, it is clear that the
cones generated by elements in

⋃d
i=0 Ti are mutually disjoint.

Finally, we show that

(2.2)
⋃

(m,µ)∈
Sd

i=0 Ti

Mon(µ)m = Mon(η)G.

By the induction hypothesis we have

(2.3)





⋃
(m,µ)∈Td

Mon(µ)m = Mon(η)Gd,

⋃
(m,µ)∈Ti

Mon(µ)m = Mon(η − {y})Gi, i = 0, . . . , d− 1.

The “completion step” (step 12) ensures that

{m ∈ Mon(η)Gd | degy(m) = i} = Mon(η − {y})Gi.

Therefore, (2.3) implies (2.2).
That the result of Alg. 2.1.11 does not depend on the choice of the generating

set G follows directly from the uniqueness of a minimal generating set for S (see
Prop. 2.1.6).

In the next corollary we conclude that the method of decomposing Mon(R)-
multiple closed sets of monomials into disjoint cones also achieves the separation
of {y1, . . . , yn} into multiplicative and non-multiplicative variables for each cone
as defined by the Janet division.



2.1. DECOMPOSITION OF SETS OF MONOMIALS 13

Corollary 2.1.13. Let T be the output of Algorithm 2.1.11 and (m,µ) ∈ T with
m = ya, a ∈ (Z≥0)

n. Then, for 1 ≤ i ≤ n, we have:

yi ∈ µ ⇐⇒ max{bi | (yb, ν) ∈ T ; bj = aj for all j < i} = ai.

Proof. The case |T | = 1 is clear. Let |T | > 1. Then T is obtained by recursive
calls of Algorithm 2.1.11. From steps 14 and 16 it is apparent that yi is a multi-
plicative variable for m if and only if m ∈ Gd in the run of Decompose for which
y = yi, i.e. if and only if m has maximal exponent in yi among all monomials in
{c | (c, ν) ∈ T} having the same starting sequence of exponents as m.

Example 2.1.14. Let us apply Alg. 2.1.11 to the Mon(R)-multiple closed set
S from Ex. 2.1.2. We choose y1 = x1, y2 = x2. The input for Alg. 2.1.11 is
(G, η) with G = {x1x

2
2, x

3
1x2, x

4
1} and η = {x1, x2}. The algorithm switches to

the “else”-case and determines the first variable y = x1 in η. Therefore, the set
G is partitioned into subsets Gi according to the degree of the given monomials
in y = x1. Hence, we obtain d = 4 and

G4 = {x4
1}, G3 = {x3

1x2}, G2 = ∅, G1 = {x1x
2
2}, G0 = ∅.

The “completion step” (step 12) causes the following changes:

G4 = {x4
1, x

4
1x2, x

4
1x

2
2}, G3 = {x3

1x2, x
3
1x

2
2}, G2 = {x2

1x
2
2}.

The algorithm is applied recursively to (Gi, {x2}), i = 0, . . . , 4. For all these in-
puts, step 2 computes a minimal generating set containing at most one element.
In particular, the multiples of x3

1x2 and x3
1x

2
2 added to G4 and G3 in the “comple-

tion step” are removed immediately in the recursive runs. However, the addition
of x2

1x
2
2 to G2 is necessary. For an illustration of the case where a “completed”

Gi cannot be minimized to a set with a single element see the next example.

The runs of Decompose(Gi, {x2}), i = 0, . . . , 4, return with values

{ (x4
1, {x2}) }, { (x3

1x2, {x2}) }, { (x2
1x

2
2, {x2}) }, { (x1x

2
2, {x2}) }, ∅.

The set Gd from the partition of G containing the monomials with greatest ex-
ponent in y = x1 yields a “two-dimensional” cone, whereas the other sets Gi,
i < d, result in “one-dimensional” cones, i.e. cones with one multiplicative and
one non-multiplicative variable. The final result

(2.4) { (x4
1, {x1, x2}) }, { (x3

1x2, {x2}) }, { (x2
1x

2
2, {x2}) }, { (x1x

2
2, {x2}) }

is visualized in the following figure:



14 CHAPTER 2. JANET’S ALGORITHM

Example 2.1.15. We are going to find a decomposition of the Mon(R)-multiple
closed set S in Ex. 2.1.3. Now we choose y1 = x2, y2 = x1, y3 = x3. Note
that now our decomposition method distinguishes monomials by their degree in
x2 first, then by their degree in x1. The input for Alg. 2.1.11 is (G, η) with
G = {x1x2, x

3
2x3} and η = {x1, x2, x3}. Since no of the trivial cases in step 3 is

present, G is partitioned into subsets of monomials according to their degree in
x2, where d = 3 is the maximal occurring degree:

G3 = {x3
2x3}, G2 = ∅, G1 = {x1x2}, G0 = ∅.

The “completion step” (step 12) yields:

G3 = {x3
2x3, x1x

3
2}, G2 = {x1x

2
2}.

Note that G3 is already a minimal generating set for Mon({x1, x3})G3. Therefore,
Decompose(G3, {x1, x3}) sub-divides G3 into sets of monomials distinguished by
their degree in x1. We denote the local variables for this recursive call by a tilde.
Then we find d̃ = 1 and the sets

G̃1 = {x1x
3
2}, G̃0 = {x3

2x3},

where G̃1 is “completed” to

G̃1 = {x1x
3
2, x1x

3
2x3}.

By an additional recursive call, G̃1, G̃0 yield the cones

{ (x1x
3
2, {x1, x3}) }, { (x3

2x3, {x3}) }.

Moreover, G2, G1 from above result in the cones

{ (x1x
2
2, {x1, x3}) }, { (x1x2, {x1, x3}) }.

Therefore, the final result is

{ (x1x
3
2, {x1, x2, x3}) }, { (x3

2x3, {x2, x3}) }, { (x1x
2
2, {x1, x3}) }, { (x1x2, {x1, x3}) },

which is depicted in the next figure:



2.1. DECOMPOSITION OF SETS OF MONOMIALS 15

��

��

��

��

������������������

���
���
���
���
���
���

���
���
���
���
���
���

��������������

����������
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

In order to obtain a decomposition of S with the least number of cones, one could
unite the cones with vertices x1x2, x1x

2
2, x1x

3
2. We would have found this minimal

decomposition, if we had chosen y1 = x1, y2 = x2, y3 = x3, but in this example
cones were constructed by comparing the degrees of monomials in x2 first.

For applications of Janet bases, a decomposition of the complement Mon(R)−
S of a Mon(R)-multiple closed set S is more important than the decomposition
of S (see Chapter 4). The next algorithm constructs such a decomposition of
Mon(R)− S. It is a modification of Algorithm 2.1.11 (Decompose) which yields
cones of monomials in the complement of S instead of the decomposition of S.
Of course, Mon(R)− S is Mon(R)-multiple closed only if S = ∅.
Algorithm 2.1.16 (DecomposeComplement).

Input: (G, v, η), where G ⊂ Mon({y1, . . . , yn}) is finite, v ∈ Mon({y1, . . . , yn})
with v | g for all g ∈ G, and ∅ 6= η ⊆ {y1, . . . , yn}

Output: { (m1, µ1), . . . , (ml, µl) } ⊂ Mon({y1, . . . , yn})×P(η), a decomposition

of Mon(η)v −Mon(η)G into disjoint cones

Algorithm:

1: // minimize the generating set G (see Prop. 2.1.6):

2: G← {g ∈ G |6 ∃h ∈ G : h | g}
3: if G = ∅ then // the complement equals Mon(η)v, which is a cone

4: return { (v, η) }
5: elif |η| = 1 then // the complement is a finite set of monomials

6: return { (mv, ∅) | m ∈ Mon(η),mv 6∈ Mon(η)G}
7: else

8: // determine the first variable y in the sequence y1, . . . , yn with y ∈ η:
9: y ← ya with a = min{i | 1 ≤ i ≤ n, yi ∈ η}



16 CHAPTER 2. JANET’S ALGORITHM

10: // partition G into sets of monomials with the same degree in y:

11: d← max{degy(g) | g ∈ G}
12: Gi ← {g ∈ G | degy(g) = i}, i = 0, . . . , d

13: // add monomials not covered by cones due to y becoming non-mult.:

14: Gi ← Gi ∪
⋃i−1
j=0{yi−jg | g ∈ Gj}, i = 1, . . . , d

15: // for all cones resulting from Gd, y is a multiplicative variable:

16: Td ← { (m, ζ ∪ {y}) | (m, ζ) ∈ DecomposeComplement(Gd, y
dv, η − {y}) }

17: // for all cones resulting from Gi, i < d, y is a non-multiplicative variable:

18: Ti ← DecomposeComplement(Gi, y
iv, η − {y}), i = 0, . . . , d− 1

19: return
⋃d
i=0 Ti

20: fi

Theorem 2.1.17. Let S be a Mon({y1, . . . , yn})-multiple closed set. Given a
generating set G for S,

DecomposeComplement(G, 1, {y1, . . . , yn})

returns a decomposition of the complement Mon({y1, . . . , yn})− S of S into dis-
joint cones. This decomposition only depends on the set S and the choice of
σ ∈ Sn defining yi := xσ(i), i = 1, . . . , n. It does not depend on the choice of G.

Proof. Termination of Alg. 2.1.16 is clear because it is called recursively with less
and less variables in η until |η| = 1.

If G is empty, then (v, η) is a trivial decomposition of Mon(η)v into disjoint
cones proving the correctness of step 4. If |η| = 1, then the algorithm enumerates
the monomials in the complement of Mon(η)G in Mon(η)v which are finitely
many. These monomials provide cones with no multiplicative variables. The rest
of Alg. 2.1.16 is similar to Alg. 2.1.11, in particular the recursive treatment of
the partition of G into sets of monomials according to their degrees in y. The
only difference is the additional argument v which comprises the information in
which set Mon(η)v the complement is to be taken. The rest of the argumentation
carries over from the proof of Theorem 2.1.12.

Example 2.1.18. We apply Alg. 2.1.16 to the same data as in Ex. 2.1.14 in
order to find a decomposition of Mon({x1, x2, x3}) − S into disjoint cones. The
input for Alg. 2.1.16 is

G = {x1x
2
2, x

3
1x2, x

4
1}, v = 1, η = {x1, x2}.



2.1. DECOMPOSITION OF SETS OF MONOMIALS 17

Since G 6= ∅ and |η| > 1, the set G is partitioned and “completed” in the same
way as in Ex. 2.1.14. We have d = 4 and

G4 = {x4
1, x

4
1x2, x

4
1x

2
2}, G3 = {x3

1x2, x
3
1x

2
2}, G2 = {x2

1x
2
2}, G1 = {x1x

2
2}, G0 = ∅.

In the next table the recursive calls of Alg. 2.1.16 are listed:

Input Output
(G4, x

4
1, {x2}) ∅

(G3, x
3
1, {x2}) { (x3

1, ∅) }
(G2, x

2
1, {x2}) { (x2

1, ∅), (x2
1x2, ∅) }

(G1, x1, {x2}) { (x1, ∅), (x1x2, ∅) }
(G0, 1, {x2}) { (1, {x2}) }

The final result is:

(2.5) { (1, {x2}), (x1, ∅), (x1x2, ∅), (x2
1, ∅), (x2

1x2, ∅), (x3
1, ∅) }.

This decomposition is depicted in the following figure:

Example 2.1.19. We reconsider Ex. 2.1.15, where y1 = x2, y2 = x1, y3 = x3. In
order to decompose the complement Mon({x1, x2, x3}) − [G] into disjoint cones
we apply Alg. 2.1.16 to

G = {x1x2, x
3
2x3}, v = 1, η = {x1, x2, x3}.

The algorithm obtains the same partition of G as in Ex. 2.1.15, which is “com-
pleted” to

G3 = {x3
2x3, x1x

3
2}, G2 = {x1x

2
2}, G1 = {x1x2}, G0 = ∅.

The recursive calls of Alg. 2.1.16 are listed in the following table:

Input Output
(G3, x

3
2, {x1, x3}) { (x3

2, {x2}) }
(G2, x

2
2, {x1, x3}) { (x2

2, {x3}) }
(G1, x2, {x1, x3}) { (x2, {x3}) }
(G0, 1, {x1, x3}) { (1, {x1, x3}) }



18 CHAPTER 2. JANET’S ALGORITHM

Therefore, the final result is

{ (1, {x1, x3}), (x2, {x3}), (x2
2, {x3}), (x3

2, {x2}) },

which is shown in the next figure:

��

��

��

��

������������������

���
���
���
���
���
���

���
���
���
���
���
���

��������������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

��
��
��

��
��
��

2.2 Janet’s Algorithm

In this section, Janet’s algorithm for commutative polynomial rings over fields
is described. An adaptation of it to Ore algebras, which are in general non-
commutative rings, is presented in Section 2.5.

The combinatorial part of Janet’s algorithm is driven by the set of leading
monomials of a given generating set for a module of tuples over a polynomial ring.
Therefore, monomial orderings which define the leading monomial of a polyno-
mial are discussed first. Note that the combinatorial methods in the previous
section depend on a certain order of the variables, but no ordering on the whole
set of monomials is needed. In Janet’s algorithm the generating set from the
input is possibly enlarged or reduced in many steps in order to finally achieve
one whose set of leading monomials generates the multiple-closed set of all lead-
ing monomials of the module under consideration. The method of decomposing
multiple-closed sets of monomials as described in Section 2.1 is applied to the
set of leading monomials. It indicates by the non-multiplicative variables how
new leading monomials can be found. Then, Janet-reduction is defined which
produces normal forms of representatives for residue classes modulo the given
module. After giving the definition of Janet bases, Janet’s algorithm to compute
a Janet basis is presented.

Let k be a field, R := k[x1, . . . , xn], and q ∈ N. In this section we denote by
e1, . . . , eq the elements of the standard basis of the free R-module Rq, and we
set Mon(Rq) :=

⋃q
i=1 Mon(R)ei. For m1ei, m2ej ∈ Mon(Rq) we define

m1ei | m2ej ⇐⇒ i = j and m1 | m2.



2.2. JANET’S ALGORITHM 19

After fixing a total ordering < on Mon(Rq) the monomials with non-zero
coefficient in a tuple p ∈ Rq can be compared with respect to <. If p 6= 0, then
the greatest of these monomials is called the leading monomial of p (with respect
to <). The coefficient of the leading monomial of p is called the leading coefficient
of p. If the ordering < on Mon(Rq) is clear from the context, then references to
it will be omitted so that the leading monomial resp. coefficient of p will just be
denoted by lm(p) resp. lc(p) in what follows.

For Janet’s algorithm we always choose the total ordering < on Mon(Rq) to
be compatible with the multiplication Mon(R)×Mon(Rq)→ Mon(Rq) and to be
a well-ordering.

Definition 2.2.1. A monomial ordering on Mon(Rq) =
⋃q
i=1 Mon(R)ei is a total

ordering on Mon(Rq) satisfying for all 1 ≤ i ≤ q:

(a) ei < mei for all 1 6= m ∈ Mon(R) and

(b) m1ei < m2ei with m1,m2 ∈ Mon(R) implies xm1ei < xm2ei for all x ∈
{x1, . . . , xn}.

Examples 2.2.2. The most common monomial orderings in the case q = 1 are
defined as follows. We let m1 = xa1

1 · · ·xan
n , m2 = xb11 · · ·xbnn ∈ Mon(R).

(a) The degree reverse lexicographical ordering (degrevlex) on Mon(R) is defined
by:

m1 < m2 if and only if degm1 < degm2 or

degm1 = degm2 and m1 6= m2 and ai > bi

for i = max{j | aj 6= bj}.

(b) The lexicographical ordering (lex) on Mon(R) is defined by:

m1 < m2 if and only if m1 6= m2 and ai < bi for i = min{j | aj 6= bj}.

The degree reverse lexicographical ordering is used in most situations. If p1 and p2

are two non-zero polynomials with lm(p1) | lm(p2), where the leading monomials
are determined with respect to degrevlex, then a suitable multiple of p1 can be
subtracted from p2 in order to obtain a polynomial r such that lm(r) is less than
lm(p2) with respect to degrevlex. This also holds with respect to lex, but when
degrevlex is chosen, then it is clear that deg(lm(r)) ≤ deg(lm(p2)), i.e. the total
degree does not increase.

The lexicographical ordering can be exploited in Janet’s algorithm to find
tuples in a given module M ≤ Rq which contain only the least variable with
respect to lex. Since in general the total degree of a polynomial does not decrease
in the reduction process described above, computations with the lexicographical
ordering may be very time-consuming.



20 CHAPTER 2. JANET’S ALGORITHM

Remark 2.2.3. The most useful ways of extending a monomial ordering < on
Mon(R) to a monomial ordering on Mon(Rq) for q > 1 are the following (1 ≤
i, j ≤ q, m1,m2 ∈ Mon(R)):

(a) m1ei <TOP m2ej if and only if m1 < m2 or m1 = m2 and i < j (“term over
position” ordering).

(b) m1ei <POT m2ej if and only if i < j or i = j and m1 < m2 (“position over
term” ordering).

(c) Fix some 1 ≤ r ≤ q. Define m1ei <ELIM m2ej if and only if

(i < r and j ≥ r) or (not (i ≥ r and j < r) and m1 < m2).

The monomial ordering <TOP allows one to select the <-greatest monomial in
all non-zero entries of a tuple 0 6= p ∈ Rq, whereas <POT defines the leading
monomial of p to be the leading monomial with respect to < of the last non-zero
entry of p. The monomial ordering <ELIM can be used in Janet’s algorithm to
find tuples in a given module M ≤ Rq whose last (q − r + 1) entries are zero.

In what follows we fix a monomial ordering < on Mon(Rq).

Remark 2.2.4. The concept of Mon(R)-multiple closed sets in Mon(R) carries
over to Mon(R)-multiple closed sets in Mon(Rq). Definition 2.1.7 of a cone and
Definition 2.1.9 of a decomposition of a monomial set into disjoint cones are ex-
tended in a similar way. Moreover, every result of Section 2.1 is easily adapted
to the more general case of Mon(R)-multiple closed sets S ⊆ Mon(Rq) and their
complements by treating each subset Si := S∩Mon(R)ei, i = 1, . . . , q, separately.
In particular, decompositions of Mon(R)-multiple closed sets and their comple-
ments into disjoint cones can be constructed by straightforward extensions of
Algorithm 2.1.11 and Algorithm 2.1.16.

The link between submodules of Rq and Mon(R)-multiple closed sets, as de-
scribed in the following important remark, and the results of Section 2.1 provide
the combinatorial part of Janet’s algorithm.

Remark 2.2.5. For every submodule M of Rq the set of leading monomials

lm(M) := {lm(p) | 0 6= p ∈M}

is Mon(R)-multiple closed. Let L be a generating set for M . Following Sec-
tion 2.1, a decomposition

{ (m1, µ1), . . . , (ml, µl) } ⊂ Mon(Rq)× P({x1, . . . , xn})



2.2. JANET’S ALGORITHM 21

of [lm(L)] into disjoint cones can be constructed (for a fixed order of the vari-
ables). In fact, Algorithm 2.1.11 (Decompose) can be applied directly to a finite
generating set G ⊂ Rq−{0} of M by considering for decisions of the algorithm in
each element its leading monomial only, but performing multiplications (“comple-
tion step” 12) on the actual generators and not only on their leading monomials.
Apart from that, the only necessary modification in Algorithm 2.1.11 is to replace
degy( · ) by degy(lm( · )). In Janet’s algorithm, Decompose will be applied in this
adapted version.

Let M be a submodule of Rq. Starting with a finite generating set L of M ,
Janet’s algorithm possibly removes elements from L and inserts new elements of
M into L repeatedly in order to achieve finally that [lm(L)] = lm(M). An element
p ∈ L is removed if it is reduced to zero by subtraction of suitable multiples of
other elements of L. This is described now as the process of auto-reduction.

Definition 2.2.6. A finite set L ⊂ Rq − {0} is said to be auto-reduced if no
monomial occurring with non-zero coefficient in any p1 ∈ L is divisible by any
lm(p2), p2 ∈ L.

There is an obvious way of auto-reducing a given set L of (tuples of) poly-
nomials, namely by subtracting suitable multiples of elements p1 ∈ L from other
elements p2 ∈ L.

Algorithm 2.2.7 (Auto-reduce).

Input: (L,<), where L ⊂ Rq is a finite set and < is a monomial ordering on

Mon(Rq)

Output: A finite set L′ ⊂ Rq −{0} such that 〈L′〉 = 〈L〉 and L′ is auto-reduced

Algorithm:

1: L′ ← L− {0}
2: while ∃ p1, p2 ∈ L′, p1 6= p2 : p2 has a monomial m with coefficient c 6= 0

such that lm(p1) | m do

3: L′ ← L′ − {p2}
4: r ← p2 − c

lc(p1)
m

lm(p1)
p1

5: if r 6= 0 then

6: L′ ← L′ ∪ {r}
7: fi

8: od

9: return L′

The output of Algorithm 2.2.7 depends on the order in which reductions
are performed. However, our intention is to construct any auto-reduced set L′

satisfying [lm(L)] ⊆ [lm(L′)]. Obviously, this property is ensured. When the



22 CHAPTER 2. JANET’S ALGORITHM

monomials m in step 2 are chosen in decreasing order with respect to <, then it
is clear that Algorithm 2.2.7 terminates.

Next we describe a reduction process for (tuples of) polynomials which takes
the Janet division into account and is therefore uniquely determined.

Definition 2.2.8. Let T = { (b1, µ1), . . . , (bl, µl) } be a subset of (Rq − {0}) ×
P({x1, . . . , xn}).

(a) T is said to be complete, if { (lm(b1), µ1), . . . , (lm(bl), µl) } is a decompo-
sition into disjoint cones of the Mon(R)-multiple closed set generated by
{ lm(b1), . . . , lm(bl) }.

(b) p ∈ Rq is Janet-reducible modulo T if p contains some m ∈ Mon(Rq) with
non-zero coefficient for which there is (b, µ) ∈ T such that m ∈ Mon(µ)b.
In this case, (b, µ) is called a Janet-divisor of p. If p is not Janet-reducible
modulo T , then p is also said to be Janet-reduced modulo T .

The following algorithm subtracts suitable multiples of Janet-divisors from a
given p ∈ Rq as long as a monomial in p is Janet-reducible.

Algorithm 2.2.9 (Janet-reduce).

Input: (p, T,<), where p ∈ Rq, T = { (b1, µ1), . . . , (bl, µl) } ⊂ (Rq − {0}) ×
P({x1, . . . , xn}) is complete, and < is a monomial ordering on Mon(Rq)

Output: r ∈ Rq such that r+〈b1, . . . , bl〉 = p+〈b1, . . . , bl〉 and r is Janet-reduced

modulo T

Algorithm:

1: r ← 0

2: while p 6= 0 do

3: if ∃ (b, µ) ∈ T : lm(p) ∈ Mon(µ)b then

4: p← p− lc(p)
lc(b)

lm(p)
lm(b)

b

5: else

6: r ← r + lc(p) lm(p)

7: p← p− lc(p) lm(p)

8: fi

9: od

10: return r

Remarks 2.2.10. (a) Alg. 2.2.9 terminates because, as long as p 6= 0, the
leading monomial of p gets properly smaller with respect to the monomial
ordering < and < is a well-ordering. The result r of Alg. 2.2.9 is uniquely
defined for the given input because T is complete. As opposed to reduction
procedures for (tuples of) polynomials disregarding multiplicative variables,
the course of Alg. 2.2.9 is uniquely determined.



2.2. JANET’S ALGORITHM 23

(b) Let p1, p2 ∈ Rq and T be as in the input of Alg. 2.2.9. In general, the
equality p1 + 〈b1, . . . , bl〉 = p2 + 〈b1, . . . , bl〉 does not imply that the results
of applying Janet-reduce to p1 and p2 are equal. But later on (see Theo-
rem 2.2.13) it is shown that, if T is a Janet basis, then the result of Janet-
reduce constitutes a unique representative for every coset in Rq/〈b1, . . . , bl〉.
It is called the Janet-normal form of p modulo T . In order to simplify no-
tation, we denote the result of Janet-reduce by NF(p, T ), even if T is not a
Janet basis.

Definition 2.2.11. Let T = { (b1, µ1), . . . , (bl, µl) } be a subset of (Rq − {0}) ×
P({x1, . . . , xn}) and assume T is complete (see Def. 2.2.8 (a)). Then T is said to
be passive, if NF(x · bi, T ) = 0 holds for all x ∈ µi, 1 ≤ i ≤ l. In this case T is
also called a Janet basis for 〈b1, . . . , bl〉 ≤ Rq.

Now Janet’s algorithm is presented which computes a Janet basis for a given
submodule of Rq. For the decomposition of Mon(R)-multiple closed sets, an order
of the variables is fixed (see Section 2.1 and Remark 2.2.5).

Algorithm 2.2.12 (JanetBasis).

Input: (L,<), where L ⊂ Rq is a finite set and < is a monomial ordering on

Mon(Rq)

Output: J ⊂ Rq × P({x1, . . . , xn}), a Janet basis satisfying 〈p | (p, µ) ∈ J〉 =

〈L〉
Algorithm:

1: G← L

2: do

3: G← Auto-reduce(G) // see Alg. 2.2.7

4: J ← Decompose(G, {x1, . . . , xn}) // see Rem. 2.2.5

5: P ← {NF(x · p, J) | (p, µ) ∈ J, x 6∈ µ } // see Alg. 2.2.9

6: G← { p | (p, µ) ∈ J } ∪ P
7: od while P 6= {0}
8: return J

Theorem 2.2.13. (a) Algorithm 2.2.12 terminates and is correct.

(b) A k-basis of 〈L〉 is given by
⋃̇

(g,µ)∈J

Mon(µ)g, where J is the result of Algo-

rithm 2.2.12.

(c) A k-basis of Rq/〈L〉 is given by the cosets represented by
⋃̇

(m,µ)∈T

Mon(µ)m,

where T is a decomposition of Mon(Rq)− [{lm(p) | (p, µ) ∈ J}] into disjoint
cones.



24 CHAPTER 2. JANET’S ALGORITHM

(d) Given p1, p2 ∈ Rq, we have

p1 + 〈L〉 = p2 + 〈L〉 ⇐⇒ NF(p1, J) = NF(p2, J).

Proof. (a) First we show that JanetBasis terminates. Auto-reduction of G
possibly enlarges [lm(G)]. Decompose only augments the generating set
G by tuples p of polynomials with lm(p) ∈ [lm(G)], if it is necessary for
the chosen way of decomposing [lm(G)] into disjoint cones. In any case it
ensures [{lm(p) | (p, µ) ∈ J}] = [lm(G)]. If all Janet-normal forms in step 5
are zero, then the algorithm terminates. If P 6= {0}, then G′ := G ∪ P
satisfies [lm(G)] ( [lm(G′)]. By Corollary 2.1.5, after finitely many steps
we have [lm(G)] = [lm(G′)] which is equivalent to P = {0}. Therefore,
JanetBasis terminates in any case.

For the correctness we note that the set J resulting in step 4 is complete.
Therefore NF(x · p, J) in step 5 is well-defined. Once P = {0} holds in
step 7, J is passive, thus a Janet basis. The equality 〈p | (p, µ) ∈ J〉 = 〈L〉
holds in every round of the algorithm.

(b) Set B :=
⋃

(g,µ)∈J Mon(µ)g.

For the k-linear independence of B we note first that 0 6∈ B holds because
J is constructed by completing an auto-reduced set of polynomials. Fur-
thermore, lm(p1) 6= lm(p2) for all p1, p2 ∈ B with p1 6= p2 because J is
complete, which proves that B is k-linearly independent.

We show that B is a generating set for the k-vector space 〈L〉. Let 0 6= p ∈
〈L〉. Since lm(〈L〉) = [{lm(p) | (p, µ) ∈ J}], p is Janet-reducible modulo
J . For the Janet-normal form of p modulo J we have NF(p, J) ∈ 〈L〉, and
NF(p, J) is not Janet-reducible modulo J . The previous argument implies
NF(p, J) = 0. Therefore, p ∈ 〈B〉.

(c) Since [{lm(p) | (p, µ) ∈ J}] = lm(〈L〉), T is a decomposition of the com-
plement Mon(Rq) − lm(〈L〉) into disjoint cones. Hence, the cosets repre-
sented by

⋃
(m,µ)∈T Mon(µ)m are k-linearly independent. We show that

they generate Rq/〈L〉 as a k-vector space. Let 0 6= r ∈ Rq/〈L〉 and
choose any representative p ∈ Rq of the coset r. Then NF(p, J) is also
a representative of r, and NF(p, J) 6= 0 because otherwise p ∈ 〈L〉 and
r = 0. Janet-reduction (Alg. 2.2.9) ensures that the set of monomials oc-
curring with non-zero coefficient in NF(p, J) has empty intersection with
[{lm(p) | (p, µ) ∈ J}]. Therefore, p is a k-linear combination of elements in
Mon(Rq)− [{lm(p) | (p, µ) ∈ J}].

(d) The only remaining detail to fill is to show that NF(p, J) is uniquely deter-
mined by the coset p+ 〈L〉 ∈ Rq/〈L〉. But if n1, n2 ∈ Rq are Janet-normal



2.3. COMBINATORIAL TOOLS 25

forms of the same coset p+ 〈L〉, then n1 − n2 ∈ 〈L〉, and n1 − n2 is Janet-
reduced modulo J because n1 and n2 are so. The same argument as in the
last part of (b) shows that n1 − n2 = 0.

An example for applying Janet’s algorithm is given in the more general context
of Ore algebras in Ex. 2.5.6. Janet’s algorithm will also be used in the subsequent
chapters. We finish this section with a few remarks about the connection of Janet
bases to Gröbner bases and minimal Janet bases.

Remarks 2.2.14. (a) Every Janet basis is a Gröbner basis because the Janet-
normal form of the S-polynomial [AL94] of each pair of elements of a Janet
basis is zero and this Janet-normal form coincides with the normal form of
the S-polynomial in the sense of Gröbner bases.

(b) For a submodule M of Rq which is generated by a set G of monomials it
is sufficient to apply Decompose to G in order to obtain the Janet basis
for M . In fact, Decompose returns the minimal Janet basis J for M , i.e. J
is contained in every Janet basis (for the same order of the variables and
monomial ordering on Mon(Rq)) of M which consists of monomials only.
More generally, a Janet basis J for an arbitrary submodule M of Rq is said
to be minimal if {lm(p) | (p, µ) ∈ J} is the minimal Janet basis of 〈lm(M)〉
and the leading coefficient of p equals 1 for every p ∈ J . It is easily proved
that a minimal Janet basis for M is unique. Because of auto-reduction
Algorithm 2.2.12 (JanetBasis) returns the minimal Janet basis for 〈L〉 up
to the condition on the leading coefficients.

2.3 Combinatorial Tools

For the study of modules over polynomial algebras (or Ore algebras as described
later) several combinatorial objects are very useful. In this section we define only
a few of them.

Definition 2.3.1. (a) For any set S ⊆ Mon(Rq) of monomials, the generalized
Hilbert series of S is the formal power series

HS(x1, . . . , xn) :=
∑

m∈S

m ∈
q⊕

i=1

Z[[x1, . . . , xn]] ei.

(The Hilbert series usually encountered in commutative algebra is obtained
from the generalized Hilbert series as HS(λ, . . . , λ) for an indeterminate λ.)

(b) Let S ⊆ Mon(Rq) be a Mon(R)-multiple closed set and consider a decompo-
sition T = { (m1, µ1), . . . , (ml, µl) } of S into disjoint cones. Then the Janet
graph of T is the labeled directed graph with vertex set V = {m1, . . . ,ml}



26 CHAPTER 2. JANET’S ALGORITHM

and with edge set E as follows: E contains an edge from mi to mj labeled
by xr if and only if xr ∈ µi = {x1, . . . , xn} − µi and xr ·mi ∈ Mon(µj)mj,
i.e., for each non-multiplicative variable xr of a cone (mi, µi) there is one
edge labeled by xr from the vertex mi to the vertex mj of the unique Janet-
divisor of xr ·mi in T .

The importance of the complement in Mon(Rq) of the Mon(R)-multiple closed
set generated by the leading monomials of the elements of a Janet basis is ex-
plained in the following remark.

Remark 2.3.2. Let M be a submodule of Rq and let J be a Janet basis for
M with respect to some monomial ordering on Mon(Rq). We denote by S the
Mon(R)-multiple closed set generated by {lm(p) | (p, µ) ∈ J}. According to
Theorem 2.2.13 (c), a k-basis of Rq/M is formed by the cosets in Rq/M repre-
sented by the monomials in

⋃
(m,µ)∈T Mon(µ)m, where T is a decomposition of

C := Mon(Rq) − S into disjoint cones. Therefore, the generalized Hilbert series
HC(x1, . . . , xn) enumerates a k-basis of Rq/M .

The next remark shows that the computation of the generalized Hilbert series
of a set S of monomials is trivial if a decomposition of S into disjoint cones is
available.

Remark 2.3.3. Let (C, µ) ∈ P(Mon(R)) × P({x1, . . . , xn}) be a cone. We use
the geometric series

1

1− x =
∑

i≥0

xi

to write down the generalized Hilbert series H[C](x1, . . . , xn) as follows:

H[C](x1, . . . , xn) =
v(C)∏

x∈µ(1− x)
.

More generally, every decomposition of a Mon(R)-multiple closed set S into dis-
joint cones allows to compute the generalized Hilbert series of S by adding the
generalized Hilbert series of the cones. In an analogous way this remark applies
to the complements of Mon(R)-multiple closed sets.

Example 2.3.4. Let R = k[x1, x2] and G = {x1x
2
2, x

3
1x2, x

4
1} be the same gen-

erating set as in Ex. 2.1.14 and Ex. 2.1.18. Using the decomposition of [G] into
disjoint cones from (2.4), the generalized Hilbert series of [G] is easily determined
to be

H[G](x1, x2) =
x4

1

(1− x1) (1− x2)
+

x3
1x2

1− x2

+
x2

1x
2
2

1− x2

+
x1x

2
2

1− x2

.

The complement C = Mon(R)−[G] of [G] was partitioned into cones in Ex. 2.1.18.
From (2.5) we easily compute the generalized Hilbert series of C:

HC(x1, x2) =
1

1− x2

+ x1 + x1x2 + x2
1 + x2

1x2 + x3
1.



2.3. COMBINATORIAL TOOLS 27

Note that

H[G](x1, x2) +HC(x1, x2) =
1

(1− x1) (1− x2)
.

In the next example we visualize the Janet graphs for the results of Ex. 2.1.14
and Ex. 2.1.15.

Example 2.3.5. The Janet graph of the decomposition into disjoint cones (2.4) of
the Mon(k[x1, x2])-multiple closed set generated by {x1x

2
2, x

3
1x2, x

4
1} in Ex. 2.1.14

is:

x1x
2
2

x1−→ x2
1x

2
2

x1−→ x3
1x2

x1−→ x4
1.

For the decomposition of the Mon(k[x1, x2, x3])-multiple closed set generated by
G = {x1x2, x

3
2x3} obtained in Ex. 2.1.15 we have the following Janet graph:

x3
2x3

x1−→ x1x
3
2

x2←− x1x
2
2

x2←− x1x2.

We finish this section by proving a simple property of the Janet graph.

Proposition 2.3.6. Let S ⊆ Mon(Rq) be Mon(R)-multiple closed. The Janet
graph of the decomposition of S into disjoint cones constructed by Algorithm 2.1.11
(Decompose) has no cycles.

Proof. Without loss of generality we consider the case q = 1, i.e. a Mon(R)-
multiple closed set S in Mon(R). Let T = { (m1, µ1), . . . , (ml, µl) } be the de-
composition of S into disjoint cones obtained by Alg. 2.1.11.

Let us consider an edge from m1 = xa1
1 · · ·xan

n to m2 = xb11 · · ·xbnn labeled by
xr in the Janet graph of T . Hence, xr is a non-multiplicative variable for (m1, µ1),
i.e. xr 6∈ µ1.

If there is 1 ≤ j < r such that aj > bj, then there is a minimal j with this
property. For such an index j, the definition of the Janet division (see Def. 2.1.10)
implies that xj 6∈ µ2 which contradicts xrm1 ∈ Mon(µ2)m2.

If ai = bi for all i = 1, . . . , r − 1, then br > ar, again due to the definition of
Janet division, because xr 6∈ µ1 and xr ∈ µ2.

Hence, in any case m2 is greater than m1 with respect to the lexicographical
monomial ordering on Mon(R). A cycle in the Janet graph would contradict the
defining properties of this monomial ordering.

Although the lexicographical monomial ordering was used in the previous
proof, it should be clear from Section 2.1 that no monomial ordering on Mon(Rq)
is needed to decompose Mon(R)-multiple closed sets (or their complements) into
disjoint cones. The lexicographical monomial ordering arises naturally in this
context because the process of constructing a decomposition can be viewed as an
induction on the number of variables.



28 CHAPTER 2. JANET’S ALGORITHM

2.4 Ore Algebras

Ore algebras are certain algebras of linear operators. For instance, for a field k,
the Weyl algebra A1(k) consists of the polynomials in the differential operator
d
dt

whose coefficients are polynomials in t with coefficients in k. Many types
of linear systems can be analyzed structurally by viewing them as modules over
appropriate Ore algebras as explained in Section 4.1. The Ore algebra is chosen to
contain all polynomials in the operators occurring in the equations that describe
the system.

The construction of an Ore algebra can be thought of as an iteration of “Ore
extensions” of a field or a polynomial ring or an Ore algebra itself. An “Ore
extension” forms a skew polynomial ring in one indeterminate where the given
ground field or ring provides the coefficients. After giving the definition of skew
polynomial rings and Ore algebras following [CS98], several examples of Ore
algebras are presented. In Section 4.1 the importance of these examples for the
analysis of different types of linear systems will be discussed. At the end of this
section crucial properties of Ore algebras are given.

In what follows, let k be a field and A a domain2 which is also a k-algebra.

Definition 2.4.1. [MR00] The skew polynomial ring A[∂;σ, δ] is the (not neces-
sarily commutative) ring consisting of all polynomials in ∂ with coefficients in A
obeying the commutation rule

∂ a = σ(a) ∂ + δ(a), a ∈ A,

where σ : A → A is a k-algebra endomorphism (i.e. σ is multiplicative, k-linear
and satisfies σ(1) = 1) and δ : A → A is a σ-derivation, i.e. δ is k-linear and
satisfies:

δ(a b) = σ(a) δ(b) + δ(a) b, a, b ∈ A.

Remark 2.4.2. If σ is injective, then A[∂;σ, δ] is a domain because the degree
in ∂ of a product of two non-zero elements of A[∂;σ, δ] equals the sum of the
degrees in ∂ of the factors. Then the construction of a skew polynomial ring can
be iterated.

We recall the notion of Ore algebra as defined in [Chy98], [CS98].

Definition 2.4.3. Let A = k or A = k[x1, . . . , xn], the commutative polynomial
algebra over k. The Ore algebra

D = A[∂1;σ1, δ1] . . . [∂m;σm, δm]

2A domain is a (not necessarily commutative) ring A with 1 which satisfies for all a1, a2 ∈ A
that a1 6= 0, a2 6= 0 implies a1a2 6= 0.



2.4. ORE ALGEBRAS 29

is the (not necessarily commutative) ring consisting of all polynomials in ∂1, . . . ,
∂m with coefficients in A, where

∂i ∂j = ∂j ∂i for all 1 ≤ i, j ≤ m,

and all other commutation rules in D are defined by

(2.6) ∂i a = σi(a) ∂i + δi(a), a ∈ D, i = 1, . . . ,m,

where for i = 1, . . . ,m the maps σi : D → D are k-algebra endomorphisms and
δi : D → D are σi-derivations (see Def. 2.4.1) satisfying

(2.7)





σi ◦ σj = σj ◦ σi,
δi ◦ δj = δj ◦ δi,
σi ◦ δj = δj ◦ σi,
σi(∂j) = ∂j,

δi(∂j) = 0

for all 1 ≤ i, j ≤ m.

Remarks 2.4.4. Let D = A[∂1;σ1, δ1] . . . [∂m;σm, δm] be an Ore algebra.

(a) A straightforward calculation shows that the conditions (2.7) ensure that
the commutation rules (2.6) are compatible with the postulation that ∂i
and ∂j commute in D.

(b) If σi = idD and δi = 0 for all i = 1, . . . ,m, then D is the commutative
polynomial algebra over k in n+m indeterminates.

(c) Although the Ore algebra D in Def. 2.4.3 is defined “in one go”, it can be
thought of as an iterated skew polynomial ring. However, formally it is
more elaborate then to specify the maps σi, δi, i = 1, . . . ,m.

We list important examples of Ore algebras. They will be used for the study
of linear systems in Chapter 5 and the subsequent chapters.

Examples 2.4.5. (a) For n ∈ N, the Weyl algebra An(k) over the field k is
defined by

An(k) := k[x1, . . . , xn][∂1;σ1, δ1] . . . [∂n;σn, δn],

where for i = 1, . . . , n, σi = idAn(k) and δi = ∂
∂xi

is partial differentiation
with respect to xi. In the case n = 1 we usually write

A1(k) := k[t][∂;σ, δ],

where σ = idA1(k) is the identity and δ = d
dt

is formal differentiation with
respect to t.



30 CHAPTER 2. JANET’S ALGORITHM

In An(k) the commutation rules

∂i xj = xj ∂i + δij, 1 ≤ i, j ≤ n,

hold, where δij is the Kronecker symbol. Hence, ∂i represents the partial
differential operator with respect to xi (cf. also Ex. 4.1.1 (a)).

Another variant of the Weyl algebra is

Bn(k) := k(x1, . . . , xn)[∂1;σ1, δ1] . . . [∂n;σn, δn],

where σi = idBn(k) and δi = ∂
∂xi

, i = 1, . . . , n, are defined in the same way as
above, i.e. the localized Weyl algebra Bn(k) is defined analogously to An(k)
but starting with the field A = k(x1, . . . , xn) of rational functions in x1,
. . . , xn.

(b) For h ∈ R, we define the algebra of shift operators of “length” h by Sh :=
R[t][δh;σh, δ], where

σh(a) = a(t− h, δh), δ(a) = 0, a ∈ Sh.
This implies the commutation rule

δh t = (t− h) δh
in Sh. Hence, δh represents the shift operator of length h (cf. also Ex. 4.1.1
(b)).

(c) Let h ∈ R. We define Dh := R[t][∂;σ1, δ1][δh;σ2, δ2], where σ1 = idDh
is the

identity, δ1 = d
dt

is formal differentiation with respect to t,

σ2(a) = a(t− h, ∂), a ∈ Dh

and δ2 = 0. This algebra can be applied for differential time-delay systems
(cf. Ex. 4.1.1 (c)).

(d) We define D = k[x1, . . . , xn][∂1;σ1, δ1] . . . [∂n;σn, δn], where

σi(a) = a(x1, . . . , xi−1, xi − 1, xi+1, . . . , xn, ∂1, . . . , ∂n), a ∈ D,
and δi = 0, 1 ≤ i ≤ n. This algebra is suitable for the algebraic treatment
of (multidimensional) discrete systems (cf. Ex. 4.1.1 (d)). Of course, the
direction of the shifts can be reversed.

Convention 2.4.6. When the commutation rules for an Ore algebra are clear
from the context (e.g. for the Weyl algebras), then we also write

k[x1, . . . , xn][∂1, . . . , ∂m]

instead of
k[x1, . . . , xn][∂1;σ1, δ1] . . . [∂m;σm, δm],

which is, of course, a non-commutative ring in general.



2.5. JANET BASES FOR ORE ALGEBRAS 31

We only recall the property of Ore algebras, studied by Oystein Ore [Ore33],
which ensures the existence of left quotient division rings. (All concepts dealing
with left multiplication, left ideals etc. can of course be translated into similar
concepts for right multiplication, right ideals and so on.)

Definition 2.4.7. A ring D satisfies the left Ore condition if for all a1, a2 ∈
D − {0} there exist b1, b2 ∈ D − {0} such that b1a1 = b2a2.

Proposition 2.4.8. [MR00, Cor. 2.1.14] A domain D has a left quotient division
ring if and only if D satisfies the left Ore condition.

In fact, if we confine ourselves to left Noetherian rings, then every domain
has this property.

Proposition 2.4.9. [MR00, Thm. 2.1.15] If D is a left Noetherian domain, then
D satisfies the left Ore condition.

Moreover, we have the following important proposition.

Proposition 2.4.10. [MR00, Thm. 1.2.9 (iv)] If A is a left Noetherian domain
and σ is an automorphism of A, then A[∂;σ, δ] is also a left Noetherian domain.

Note that all Ore algebras in Ex. 2.4.5 are left Noetherian.

Remark 2.4.11. If k is of characteristic zero, then the Weyl algebras An(k) are
simple rings, i.e., they have no two-sided ideals except for {0} and An(k). The
same holds for Bn(k). This property can be used when adapting the elementary
divisor theory from commutative principal ideal domains to B1(k): for every
matrix A ∈ B1(k)

l×m there exist r ∈ N and matrices P ∈ GL(l, B1(k)) and
Q ∈ GL(m,B1(k)) such that

P AQ = diag(1, . . . , 1︸ ︷︷ ︸
r

, λ, 0, . . . , 0)

with a monic element λ ∈ B1(k) (Jacobson normal form, see [Reh02], [Coh85]).

2.5 Janet Bases for Ore Algebras

In this section, Janet’s algorithm, as presented in the previous sections, is adapted
to a certain class of Ore algebras. In contrast to the commutative case, the
definition of the set of leading monomials of a left ideal in an Ore algebra needs
the fixing of a normal form for polynomials. After defining monomial orderings
and leading monomials for tuples of polynomials in Ore algebras, the adaptation
of Janet’s algorithm is explained. Then an example is treated in detail.

Let k be a field, q ∈ N, and D = k[x1, . . . , xn][∂1;σ1, δ1] . . . [∂m;σm, δm] an
Ore algebra, where σi is an automorphism of k[x1, . . . , xn] for all i = 1, . . . ,m.



32 CHAPTER 2. JANET’S ALGORITHM

By Proposition 2.4.10, D is left Noetherian. In order to be able to base Janet’s
algorithm for Ore algebras on the notion of multiple-closed sets of monomials as
treated before in the commutative case, we restrict to the class of Ore algebras
D for which the commutation rules have the form

(2.8)

{
σi(xj) = cijxj + dij, cij ∈ k − {0}, dij ∈ k,

deg(δi(xj)) ≤ 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Throughout the rest of this chapter, we denote by Dq the free left D-module of
tuples of length q with entries in D. Let (e1, . . . , eq) be the standard basis of Dq.

Definition 2.5.1. We define the set of monomials of D by

Mon(D) := {xa ∂b | a ∈ (Z≥0)
n, b ∈ (Z≥0)

m}, xa := xa1
1 · · · xan

n , ∂
b := ∂b11 · · · ∂bmm .

We set Mon(Dq) :=
⋃q
i=1 Mon(D)ei.

Remark 2.5.2. Mon(Dq) is a k-basis of Dq, i.e. every element p ∈ Dq has a
unique representation

(2.9) p =

q∑

i=1

∑

a∈(Z≥0)n

b∈(Z≥0)m

ci,a,b x
a ∂b ei

as linear combination of the elements of Mon(Dq) with coefficients ci,a,b ∈ k,
where only finitely many ci,a,b are non-zero. Since xi and ∂j do not commute in
general, by the previous definition of monomials we distinguish a normal form
(2.9) for the elements p ∈ Dq.

If D is non-commutative, it is not reasonable to generalize the notion of
Mon(R)-multiple closed set of monomials from Section 2.1 to “left Mon(D)-
multiple closed set” of monomials because left multiples of elements in Mon(Dq)
are not elements in Mon(Dq) in general: e.g. in the Weyl algebra A1(k) with
commutation rule ∂ t = t ∂+1, the left multiple ∂ t of t is not a monomial. How-
ever, the type of commutation rules implied by (2.8) allows to use a bijection
between the non-commutative monomials and commutative monomials which is
compatible with left multiplication.

Remark 2.5.3. LetR = k[x̃1, . . . , x̃n, ∂̃1, . . . , ∂̃m] be the commutative polynomial
algebra in n+m indeterminates over the field k. By using the bijection

˜ : Mon(Dq)→ Mon(Rq) : xa ∂b ei 7→ x̃a ∂̃b ei,

a ∈ (Z≥0)
n, b ∈ (Z≥0)

m, 1 ≤ i ≤ q, the sets Mon(Dq) and Mon(Rq) can be
identified and we have m̃1m2 = m̃1 m̃2 for all m1,m2 ∈ Mon(Dq).



2.5. JANET BASES FOR ORE ALGEBRAS 33

Since the bijection defined in the previous remark is compatible with left
multiplication, we use it to define monomial orderings on Mon(Dq).

Definition 2.5.4. Let R and ˜ be defined as in Remark 2.5.3.

(a) A monomial ordering on Mon(Dq) is a total ordering < on Mon(Dq) for
which there exists a monomial ordering <̃ on Mon(Rq) such that

m1 < m2 ⇐⇒ m̃1 <̃ m̃2 for all m1,m2 ∈ Mon(Dq).

(b) Fix a monomial ordering < on Mon(Dq). Let p ∈ Dq − {0} and consider
its unique representation (2.9) with respect to the k-basis Mon(Dq). The
leading monomial lm(p) of p is defined as the <-greatest element xa ∂b ei
in Mon(Dq) for which ci,a,b 6= 0. Then the leading coefficient lc(p) of p is
defined by ci,a,b. Hence, we have maps lm : Dq − {0} → Mon(Dq) and
lc : Dq − {0} → k.

In what follows, we fix a monomial ordering < on Mon(Dq).

We are going to discuss now the adaptation of Janet’s algorithm to Ore alge-
bras. We succeed in doing so by keeping Algorithm 2.2.12 (JanetBasis) literally
and explaining the differences caused by the non-commutativity of D.

Remark 2.5.5. Let M be a left submodule of Dq and let G be a finite generating
set for M . The set lm(G) is utilized again to steer the course of Janet’s algorithm.
In Algorithm 2.2.12 (JanetBasis) it generated a Mon(R)-multiple closed set. Here
we apply the bijection ˜ of Remark 2.5.3 in order to consider lm(G) as a set of
monomials in a commutative polynomial ring in n+m variables. The procedure
to decompose [lm(G)] into disjoint cones is applied as described in Remark 2.2.5
to the module generators in G by respecting that the module generators are
multiplied by monomials only from the left. Such multiplications were already
written down as left multiplications in Algorithm 2.1.11 (Decompose). For the
case of commutative polynomial rings, this was not essential, but in the present
context this restriction needs to be maintained.

The notion of Janet-reducibility and the process of Janet-reduction are adopted
to the present situation by restricting all multiplications of monomials in Mon(D)
by arbitrary elements in Dq to left multiplications as was already indicated in
Definition 2.2.8 and Algorithm 2.2.9 (Janet-reduce) and Algorithm 2.2.7 (Auto-
reduce). Both algorithms form a left multiple of an element of Dq in step 4 and
subtract it from a given tuple in Dq in order to cancel its leading term. Be-
cause of the form of the commutation rules of D implied by (2.8) cancellation
of the leading term is achieved similarly to the commutative case. Since < is a
well-ordering, Janet-reduction terminates.

Again the non-multiplicative variables of the cones guide Janet’s algorithm
to new module generators. Since Janet’s algorithm for D again produces an



34 CHAPTER 2. JANET’S ALGORITHM

ascending sequence of sets of leading monomials (see part (a) in the proof of
Theorem 2.2.13: [lm(G)] ( [lm(G′)]), Corollary 2.1.5 shows the termination.
The correctness is proved in the same way as in the proof of Theorem 2.2.13.

Let us demonstrate Janet’s algorithm on a simple example.

Example 2.5.6. Let us investigate the following system of linear ordinary dif-
ferential equations (with a shift) for an unknown differentiable function y:

(2.10)





t ẏ(t)− 2 t y(t) = 0,

y(t+ 1)− y(t) = 0.

We are going to represent the operators which are applied to the unknown func-
tion y in the above equations by polynomials in the Ore algebra

D := R[t][∂;σ1, δ1][δ;σ2, δ2]

from Ex. 2.4.5 (c) with h = −1; i.e., ∂ represents the differential operator with
respect to t and δ the shift operator of “length” −1 in t. Hence, in D we have
the commutation rules

∂ t = t ∂ + 1,

δ t = (t+ 1) δ,

∂ δ = δ ∂.

Let us first discuss the kind of solutions of (2.10) which are admissible. Since
the space of functions among which solutions of (2.10) are to be determined is
considered as a left module over D, these functions need to be infinitely often dif-
ferentiable. So for instance, smooth functions, analytic functions or distributions
are admissible.

For t 6= 0, we have the ordinary differential equation ẏ(t) = 2 y(t) whose
smooth solutions are c e2t, c ∈ R. But the second equation in (2.10) implies
c = 0, so that the zero function is the only smooth solution of (2.10). If we are
not only interested in smooth solutions, then we suppress the division by t, and
the first equation in (2.10) also admits the Heaviside distribution. Again, this
solution is ruled out by the second equation in (2.10). Let us demonstrate that
Janet’s algorithm relieves us of this latter consideration.

As monomial ordering on Mon(D) we choose the degree reverse lexicographical
ordering (cf. Ex. 2.2.2 (a)) which is uniquely determined by

∂ > δ > t.

In what follows, the sets of leading monomials (translated to sets of commutative
monomials via the bijection defined in Remark 2.5.3) will be decomposed into
disjoint cones with respect to y1 = ∂, y2 = δ, y3 = t.



2.5. JANET BASES FOR ORE ALGEBRAS 35

Let us consider the left ideal in D generated by G1 := {p1, p2}, where

p1 := t ∂ − 2 t, p2 := δ − 1 ∈ D.
The leading monomials of p1 and p2 are the following:

lm(p1) = t ∂, lm(p2) = δ.

Hence, G1 is already auto-reduced. By decomposing [lm(G1)] into disjoint cones
we find the complete set

(2.11) J1 := { (p1, {∂, t}), (p2, {δ, t}), (p3, {∂, δ, t}) },
where p3 := ∂ · p2. The variable δ is non-multiplicative for the first cone, whereas
the variable ∂ is non-multiplicative for the second cone. Therefore, we compute
the Janet-normal forms of δ · p1 and ∂ · p2. The latter polynomial reduces to
zero simply by subtracting p3. For the former polynomial, Janet-reduction is
performed as follows:

p4 := δ · p1 = (t+ 1) δ ∂ − 2 (t+ 1) δ.

Then p4 has leading monomial t δ ∂. The unique Janet-divisor is the third cone
in (2.11). Hence, we compute

p5 := p4 − (t+ 1) (δ ∂ − ∂) = (t+ 1) ∂ − 2 (t+ 1) δ.

We have lm(p5) = t ∂ with unique Janet-divisor (p1, {∂, t}). Then

p6 := p5 − (t ∂ − 2 t) = ∂ + 2 t− 2 (t+ 1) δ

is Janet-reducible with Janet-divisor (p2, {δ, t}) which finally yields

r := p6 + 2 (t+ 1) (δ − 1) = ∂ − 2 = NF(δ · p1, J1).

The passivity check therefore yields P = {r} 6= {0}, so that we have to auto-
reduce G2 := {p1, p2, p3, r} in the next round. This removes p1 and p3 from G2.
Now Decompose({δ − 1, ∂ − 2}, {∂, δ, t}) returns the complete set

J2 = { (p2, {δ, t}), (r, {∂, δ, t}) },
so that only the Janet-normal form of ∂ · p2 needs to be computed. But it is
easily checked that NF(∂ · p2, J2) = 0. Therefore, J2 is a Janet basis.

Translating these polynomials back to equations, we therefore have the fol-
lowing differential time-delay system which is formally equivalent to (2.10):





ẏ(t)− 2 y(t) = 0,

y(t+ 1)− y(t) = 0.

The way how a Janet basis determines certain kinds of solutions of a given
system of linear equations is discussed in more detail in Chapter 4.



36 CHAPTER 2. JANET’S ALGORITHM

2.6 Implementations

Some implementations of Janet’s algorithm (realized at Lehrstuhl B für Mathe-
matik, RWTH Aachen) are discussed in this section.

The Maple packages Involutive [BCG+03a] and Janet [BCG+03b] imple-
ment the involutive basis algorithm [GB98a, GB98b] of V. P. Gerdt and Y. A. Blin-
kov for commutative polynomial algebras respectively for certain differential rings
(see Section 3.3). These packages were developed initially by C. F. Cid in 2000,
continued by the author of this thesis from 2001 on. Meanwhile, both implemen-
tations have been adjusted to more recent versions of the involutive basis algo-
rithm by Gerdt and Blinkov. In particular, many unnecessary Janet-reductions
are avoided by remembering multiplications by non-multiplicative variables which
have already been considered in previous passivity checks and by involutive ana-
logues of Buchberger’s criteria for Gröbner basis computations [AH05], [GY05].
Involutive and Janet also contain some combinatorial tools, e.g. the compu-
tation of generalized Hilbert series, Hilbert polynomials, Cartan characters etc.,
and several valuable procedures for commutative algebra and differential algebra.

JanetOre is a Maple package which extends Involutive to Ore algebras as
explained in Section 2.5. The polynomials given to and resulting from JanetOre

are always to be understood as the normal forms (2.9) on page 32. Since the
order of the factors in a product displayed by Maple can change in different runs
of the same commands, the user may have to sort the variables in each term of
the result according to the normal form (2.9) in order to write down the actual
polynomial.

A specialized implementation of the involutive basis technique for linear dif-
ference ideals [Ger06] has recently been realized in the Maple package LDA (abbre-
viation for Linear Difference Algebra) [GR06]. In particular, this implementation
has been applied for the generation of finite difference schemes for partial differ-
ential equations [GBM06].

2.7 Reducing the Complexity of Janet Basis

Computations

In this section a simple preprocessing tool for the computation of Janet bases is
presented. It reduces, if possible, the number of variables that occur in a given
generating set for a polynomial ideal. More precisely, this procedure produces a
generating set for the intersection of the given ideal with a polynomial ring in a
subset of the variables. This is achieved by solving some generating equations for
variables which occur only linearly and by substituting the resulting expressions
for these variables into the other equations. By remembering the equations that
were used to reduce the number of variables, the original system of algebraic



2.7. REDUCING THE COMPLEXITY 37

equations can be solved. Since the computation time of Janet bases usually de-
pends doubly exponentially on the number of variables, the presented procedure
quite often allows to compute Janet bases of ideals that otherwise could not be
found by using naively the existing implementations of Janet’s algorithm. After
describing the algorithm for this preprocessing tool, the method is demonstrated
on two examples.

Remark 2.7.1. The problem of computing Gröbner bases of ideals in (com-
mutative) polynomial algebras is in general not efficiently solvable in the sense
of complexity theory. Computing a reduced Gröbner basis [AL94] of an ideal of
polynomials over the rational numbers was proved to be an EXPSPACE-complete
problem. Some upper bounds on the total degrees of the polynomials of a re-
duced Gröbner basis are known. If the total degrees of the n-variate polynomials
in a generating set for an ideal I are bounded by d, then the total degrees of
the polynomials in a reduced Gröbner basis of I are bounded by a polynomial in
d which is, however, doubly exponentially in n (for more details see [vzGG03],
[May97]). Since every Janet basis is a Gröbner basis and a Janet basis can be
constructed from a Gröbner basis G just by turning G into a complete set (see
Def. 2.2.8 (a)), similar remarks hold for Janet basis computations.

It happens quite often that problems which seem to be intractable using the
current Maple implementations of the Janet basis algorithms can be handled
successfully by eliminating some of the variables which are present in the given
equations. By the previous remark the complexity of computing a Janet basis is
then reduced drastically.

The simplest situation is that in a system of algebraic equations one variable
occurs only linearly with constant coefficient in some equation. Then such an
equation can be used to eliminate the variable in all other equations. This case
is exploited in the following algorithm, whose termination and correctness are
clear. For simplicity we confine ourselves to a commutative polynomial algebra
R over a field k, but the method can also be applied for Ore algebras. We set
x := {x1, . . . , xn}.

Algorithm 2.7.2 (Substitute).

Input: A finite set L1 ⊂ R, where R = k[x]

Output: (L2, E, v), where L2 ⊂ k[v] is a finite set, v ⊆ x, and E is a finite set

of equations y = r, where y ∈ x− v and r ∈ k[x− {y}], such that

(p = 0 ∀p ∈ L1) ⇐⇒





q = 0 ∀q ∈ L2,

y = r ∀(y = r) ∈ E.

Algorithm:



38 CHAPTER 2. JANET’S ALGORITHM

1: L2 ← L1

2: E ← ∅
3: v ← x

4: while ∃ y ∈ v, p ∈ L2, 0 6= c ∈ k, p̃ ∈ k[v − {y}] : p = cy + p̃ do

5: r ← (p− p̃)/c
6: L2 ← L2 − {p} and substitute r for y in every q ∈ L2

7: E ← E ∪ {y = r}
8: v ← v − {y}
9: od

10: return (L2, E, v)

Remark 2.7.3. The result of Algorithm 2.7.2 of course depends on the choices
in step 4. Keeping expressions small (in particular the total degree of the poly-
nomials) is a first heuristic.

Algorithm 2.7.2 is implemented in Involutive.

Example 2.7.4.

> with(Involutive):

We consider the polynomial ring R = Q[x, y, z] and the ideal of R which is
generated by the elements of L defined below.

> var := [x,y,z];

var := [x, y, z]

> L := [x*y-z, z-x*y+y-1, x^2-y^2];

L := [x y − z, z − x y + y − 1, x2 − y2]

Instead of computing a Janet basis of this ideal in the polynomial ring with three
variables, we apply Substitute to L in order to reduce, if possible, the number
of indeterminates involved in the above polynomials:

> Substitute(L, var);

[[x2 − 1], [z = x y, y = 1], [x]]

In fact the first equation xy−z = 0 can be solved for z so that z can be eliminated
in the equation z−xy+y−1 = 0. Then we obtain y = 1 which can be substituted
into x2−y2 = 0. Therefore, one is left with only one equation x2−1 = 0 involving
only one variable which is very easy to solve.

A more realistic example is presented next. It emerges in the context of con-
structing matrix representations of groups and was dealt with in the preparation
of [PR06].



2.7. REDUCING THE COMPLEXITY 39

Example 2.7.5. In order to find projective matrix representations of degree d
over C of the group

G2,3,7 = 〈a, b | a2, b3, (ab)7〉
the images of a and b under such a representation are first written down as
matrices A and B with indeterminate entries. The relators a2, b3, (ab)7 of the
above presentation are translated into relations for commutative polynomials
obtained from the entries of the matrix equations

A2 = c1 Id, B3 = c2 Id, (AB)7 = c3 Id,

where c1, c2, c3 ∈ C− {0} are fixed and Id is the (d× d)-identity matrix. In this
example we give only a few details about the case d = 6, c1 = −1, c2 = 1, c3 = 1.

> with(Involutive):

> with(LinearAlgebra):

We need to define a primitive seventh root of unity in Maple:

> alias(omega=RootOf(add(x^i, i=0..6)));

ω

> simplify(omega^7);

1

The conjugation action of GL(6,C) is exploited to normalize the matrices A and
B in the following way (for more details see [PR06]):

> A := Matrix(6, 6, [[0,omega,0,0,c[1],d[1]],
> [-omega^6,0,0,0,c[2],d[2]],
> [0,0,0,-1,c[3],d[3]],
> [0,0,1,0,c[4],d[4]],
> [0,0,0,0,a[1],a[2]],
> [0,0,0,0,a[3],-a[1]]]);

A :=




0 ω 0 0 c1 d1

−ω6 0 0 0 c2 d2

0 0 0 −1 c3 d3

0 0 1 0 c4 d4

0 0 0 0 a1 a2

0 0 0 0 a3 −a1




> B := SubMatrix(Matrix(6, 6)+1, 1..6, [2,3,1,5,6,4]);

B :=




0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0






40 CHAPTER 2. JANET’S ALGORITHM

In particular, we already have B3 = I6.

The following indeterminates occur in the matrix A. We are going to derive
a system of algebraic equations for them.

> v := [c[1],d[1],c[2],d[2],c[3],d[3],c[4],d[4],a[1],a[2],a[3]];

v := [c1, d1, c2, d2, c3, d3, c4, d4, a1, a2, a3]

The first condition for these indeterminates to satisfy comes from the matrix
equation A2 + I6 = 0. The left hand sides of these equations are listed in L1:

> L1 := evala(map(op, convert(A^2+1, listlist)));

L1 := [0, 0, 0, 0, ω c2 + c1 a1 + d1 a3, ω d2 + c1 a2 − d1 a1, 0, 0, 0, 0,

c1 + ω c1 + ω2 c1 + c1 ω
3 + c1 ω

4 + c1 ω
5 + c2 a1 + d2 a3,

d1 + ω d1 + ω2 d1 + ω3 d1 + d1 ω
4 + d1 ω

5 + c2 a2 − d2 a1, 0, 0, 0, 0,

−c4 + c3 a1 + d3 a3, −d4 + c3 a2 − d3 a1, 0, 0, 0, 0, c3 + c4 a1 + d4 a3,

d3 + c4 a2 − d4 a1, 0, 0, 0, 0, a1
2 + a2 a3 + 1, 0, 0, 0, 0, 0, 0, a1

2 + a2 a3 + 1]

Instead of repeating this method for (AB)7 = I6, which would produce quite
large expressions, we prescribe the characteristic polynomial of the matrix AB
to be λ6 + λ5 + . . .+ λ+ 1.

> chi := CharacteristicPolynomial(A.B, lambda);

χ := λ6 + (−a2 − c4 − ω)λ5 + (−d4 a1 + c4 a2 + a2 ω − c2 + c4 ω)λ4+

(d4 a1 ω − d2 a1 + c2 a2 − a2 c4 ω − c3 − c3 ω − c3 ω2 − c3 ω3 − c3 ω4 − c3 ω5+

ω c2)λ
3 + ω(c3 − c2 a2 + d2 a1 + c3 ω + c3 ω

2 + c3 ω
3 + c3 ω

4 + c3 ω
5 − a3 ω

5+

a1 d3 ω
5 − c3 a2 ω

5)λ2 + (−a3 a2 ω + a3 − d3 a1 − a2 a3 + c3 a2 − a1
2 − a1

2 ω−
a1

2 ω2 − a1
2 ω3 − a1

2 ω4 − a1
2 ω5 − a3 a2 ω

2 − a3 a2 ω
3 − a3 a2 ω

4 − a3 a2 ω
5)λ

− a2 a3 − a1
2

Hence, all coefficients of χ are equated with 1, resulting in the following list of
left hand sides of algebraic equations for the indeterminates:

> L2 := map(i->coeff(chi, lambda, i)-1, [$0..5]);

L2 := [−a2 a3 − a1
2 − 1,−a3 a2 ω + a3 − d3 a1 − a2 a3 + c3 a2 − a1

2 − a1
2 ω−

a1
2 ω2 − a1

2 ω3 − a1
2 ω4 − a1

2 ω5 − a3 a2 ω
2 − a3 a2 ω

3 − a3 a2 ω
4 − a3 a2 ω

5 − 1,

ω(c3 − c2 a2 + d2 a1 + c3 ω + c3 ω
2 + c3 ω

3 + c3 ω
4 + c3 ω

5 − a3 ω
5 + a1 d3 ω

5−
c3 a2 ω

5)− 1,−d2 a1 + d4 a1 ω + c2 a2 − a2 c4 ω − c3 − c3 ω − c3 ω2 − c3 ω3−
c3 ω

4 − c3 ω5 + ω c2 − 1, −d4 a1 + c4 a2 + a2 ω − c2 + c4 ω − 1, −a2 − c4 − ω − 1]



2.7. REDUCING THE COMPLEXITY 41

Both lists of left hand sides of algebraic equations are united in the list L:

> L := [op(L1),op(L2)]:

Applying the present implementation of Janet’s algorithm (for the commuta-
tive polynomial case) in Maple directly to this generating set for an ideal in
Q(ω)[c1, d1, c2, d2, c3, d3, c4, d4, a1, a2, a3] leads to a rather long run:

> st := time():

> IB := InvolutiveBasis(L, v):

> time()-st;

860.470

The computation takes about 14 minutes on a computer equipped with two Pen-
tium III processors (1 GHz, 2 GB memory) running Maple 9.5. The Hilbert series
of the residue class ring is obtained essentially without further computation:

> PolHilbertSeries(lambda);

1 + 7λ+ 17λ2 + 27λ3 + 37λ4 + 47λ5 + λ6 (
47

1− λ +
10

(1− λ)2
)

From the degree of the last denominator in the Hilbert series, we conclude that
the Krull dimension of the residue class ring is two which corresponds to a two-
dimensional variety of representations for G2,3,7.

A faster method to discuss the above system of algebraic equations is to apply
Substitute to L first.

> st := time():

> S := Substitute(L, v):

> time()-st;

0.539

In less than one second, the procedure Substitute chose the following equations:

> for i in S[2] do print(i); od;

c2 = (1 + ω + ω2 + ω3 + ω4 + ω5) (c1 a1 + d1 a3)

d2 = (1 + ω + ω2 + ω3 + ω4 + ω5) (c1 a2 − d1 a1)

c4 = c3 a1 + d3 a3

d4 = −d3 a1 + c3 a2

c3 = ω + ω c1 a1 + ω d1 a3 + a2 d1 a3 + d1 a1
2 + a2 ω

2 d3 a3 + a1
2 ω2 d3



42 CHAPTER 2. JANET’S ALGORITHM

These equations were used to reduce the number of variables in the algebraic
equations. Now we are left with six variables:

> S[3];

[c1, d1, d3, a1, a2, a3]

If the solutions for the variables in S[3] are found, then the values of the variables
in the left hand sides of S[2] are determined. The computation of the Janet
basis of the ideal generated by S[1] is much faster than the previous Janet basis
computation:

> st := time():

> IB := InvolutiveBasis(S[1], S[3]):

> time()-st;

151.940

Hence, the Janet basis is computed in 2.5 minutes. Of course, since we consider a
different polynomial ring than before, the Hilbert series of the residue class ring
differs from the one above. But we still can read off the dimension of the variety
in the last denominator:

> PolHilbertSeries(lambda);

1 + 6λ+ 15λ2 + 24λ3 + 33λ4 + λ5 (
33

1− λ +
9

(1− λ)2
)



Chapter 3

Symbolic Computation with

Differential Equations

When computing with differential equations in a formal way, one is immediately
led to view all derivatives of the unknown functions as “variables” which are
differentially independent. The differential equations under consideration then
define relations among these variables. This approach is nowadays known as jet
calculus.

In this chapter we describe relevant issues for the symbolic treatment of dif-
ferential equations. The methods we are going to present are used in Chapter 5
for the structural analysis of linear systems. The jet formalism mentioned above
is explained in the first section. Next we introduce the notion of general lin-
earization of partial differential equations in this formal approach. It is described
using a minimum of notions of differential geometry and differential algebra (in
particular, we will not give the details about the vertical bundle for which we re-
fer to [Pom94]). In Section 3.3 we show that every system of (nonlinear) partial
differential equations defines a differential ring. Necessary arrangements for an
implementation of Janet’s algorithm to deal with the general linearization of a
nonlinear system of PDEs are discussed.

The calculus explained here is described in a more general and rigorous way
in [Bar01a], where it is part of a formal approach to functional spaces. Moreover,
the Maple package jets [Bar01b] makes available many tools for dealing with
jet expressions and implements many valuable procedures for formal differential
geometry.

3.1 The Jet Formalism

The way of viewing a differential equation as a relation for jet variables which
represent the derivatives of the unknown functions and which are differentially
independent a priori enables symbolic manipulations of differential equations.

43



44 CHAPTER 3. SYMBOLIC COMPUTATION WITH D. E.

In this section we describe this formal approach which is known as jet calculus
and which we will apply in the next section to linearize differential equations
in a generic way. Good references for the introduction to the jet formalism are
[Olv93], [Pom94].

First we recall the definition of a fibered manifold. Then the jet bundle of
a fibered manifold is defined. After giving an example of how the coordinate
changes of a jet bundle can be derived, we comment on the connection of the
coordinates of a jet bundle, which are also called jet variables, to the variables
occurring in a system of differential equations.

In what follows, all manifolds are understood to be smooth real manifolds.
For fixed n,m ∈ N we denote by prn : Rn ×Rm → Rn the projection onto the
first n components.

Definition 3.1.1 (Fibered manifold). Let X be a manifold of dimension n, E
a manifold of dimension m + n and π : E → X a surjective submersion, i.e., π
is surjective and dπ has rank n at all points of E. Then E is a fibered manifold
over X (with projection π), if for every p ∈ E there exist a neighborhood U of
p, a neighborhood V of π(U) and local coordinates Θ : U → Rn ×Rm of E and
θ : V → Rn of X such that

θ ◦ π|U = prn ◦Θ,

i.e., the following diagram of smooth maps commutes:

U

π|U
��

Θ
// Rn ×Rm

prn

��
V

θ
// Rn

For x ∈ X, π−1({x}) is called the fiber over x.
Two fibered manifolds E1 and E2 over X with projections π1 resp. π2 are said

to be equivalent, if there exists a diffeomorphism Φ : E1 → E2 such that the
diagram

E1

π1   A
AA

AA
AA

A

Φ
// E2

π2~~}}
}}

}}
}}

X

commutes.

Before discussing the admissible coordinate changes of a fibered manifold we
give some well-known examples of fibered manifolds.



3.1. THE JET FORMALISM 45

Examples 3.1.2. (a) If X and Y are manifolds of dimensions n resp. m, then
E := X × Y is a trivial fibered manifold over X with projection X × Y →
X : (x, y) 7→ x.

(b) Let X be a manifold of dimension n. Then the tangent bundle TX and
the cotangent bundle T ∗X are fibered manifolds over X with projections
TX → X : (p, v) 7→ p resp. T ∗X → X : (p, λ) 7→ p.

(c) The Möbius band is a fibered manifold over the circle S1. For each x ∈ S1,
the fiber over x is homeomorphic to the interval (0, 1) ⊂ R.

Remark 3.1.3. Let E be a fibered manifold over X with projection π and let
(x, u) : U → Rn×Rm be local coordinates for E. Then π : E → X is represented
locally by (x, u) 7→ x with respect to these coordinates. This implies that only the
smooth maps having the following property are admissible coordinate changes of
E. Let Θi : Ui → Rn×Rm, i = 1, 2, be local coordinates for E, where U1∩U2 6= ∅.
Then

Ψ = Θ2 ◦Θ−1
1 : Θ1(U1 ∩ U2)→ Θ2(U1 ∩ U2)

is a coordinate change of E if and only if Ψ is of the form

(x, u) = Ψ(x, u) = (ϕ(x), ψ(x, u)),

where the new coordinates are denoted with a bar.

Definition 3.1.4. Let E be a fibered manifold over X with projection π and let
U be an open subset of X. A smooth map ζ : U → E is called a local section of
E, if π ◦ ζ = idU . If U = X, then ζ is called a global section of E.

Examples 3.1.5. (a) Let X and Y be manifolds of dimensions n resp. m.
Then the local sections of E := X × Y can be identified with the smooth
maps U → Y , where U is an open subset of X. In particular, the set of
global sections of E can be viewed as the set of smooth maps X → Y .

(b) Let X be a manifold of dimension n. Then the local sections of the tan-
gent bundle TX are (smooth) vector fields, and the local sections of the
cotangent bundle T ∗X are (smooth) differential 1-forms.

Definition 3.1.6 (Jet bundle). Let X be a manifold of dimension n, E a fibered
manifold over X of dimension m+n, and let q ∈ Z≥0. The q-th jet bundle Jq(E)
of E is the fibered manifold over X of dimension n + m

(
q+n
n

)
defined by local

coordinates

(x1, . . . , xn, ukJ | 1 ≤ k ≤ m, J ∈ (Z≥0)
n, |J | = J1 + . . .+ Jn ≤ q)

and the coordinate changes derived from the coordinate changes

x = ϕ(x), u = ψ(x, u)



46 CHAPTER 3. SYMBOLIC COMPUTATION WITH D. E.

of E by identifying ukJ with the partial derivative ∂|J|fk

∂xJ , 1 ≤ k ≤ m, J ∈ (Z≥0)
n,

|J | ≤ q, of an arbitrary local section ζ of E and by using the chain rule for
differentiation (cf. Ex. 3.1.11 below for q = 1).

Remark 3.1.7. Local coordinates for the q-th jet bundle of E are used to rep-
resent local sections ζ of E and their (partial) derivatives up to order q. By
definition the symbols ukJ among the jet coordinates have both upper and lower
indices. The former enumerate the component of a local section ζ of E which is
represented by u, the latter indicate the variables with respect to which this local
section is differentiated. For instance, if E is a four-dimensional fibered manifold
over a two-dimensional manifold X, then J2(E) has coordinates

x1, x2, u1
(0,0), u

2
(0,0), u

1
(1,0), u

1
(0,1), u

2
(1,0), u

2
(0,1), u

1
(2,0), u

1
(1,1), u

1
(0,2), u

2
(2,0), u

2
(1,1), u

2
(0,2).

Note that the jet coordinates are differentially independent (e.g. ∂u1
(1,0)/∂x

1 = 0).

Therefore, all jet coordinates xi, ukJ are also called jet variables.

Definition 3.1.8. Let X be a manifold, E a fibered manifold over X, q ∈ Z≥0.

(a) The order of the jet variable ukJ of Jq(E) is defined to be |J |, whereas the
order of the jet variable xi is defined to be zero.

(b) Any smooth real-valued function f = f(xi, ukJ) which depends on finitely
many jet variables of Jq(E) is called a jet expression over E. We denote by
A(E) the vector space of all jet expressions over E (depending on finitely
many jet variables of any order).

Example 3.1.9. Let X have dimension 2 and E have dimension 2 + 1. Then

f(xi, ukJ) = x1 sinu1
(2,0) + ex

2+u1
(0,1) + (u1

(0,0))
3

is a jet expression over E. It depends on the jet variables xi, ukJ up to order 2.

Convention 3.1.10. If a derivative with respect to a single variable xj is rep-
resented by a jet variable, then we also write ukj instead of uk(j). Moreover, uk is

used as a synonym for uk(0,...,0).
In what follows, each expression containing jet variables is understood to be a

sum over all indices which occur at the same time as upper and lower indices of
jet variables.

Example 3.1.11. The coordinate changes for the first jet bundle J1(E) are
derived as follows. Denoting new coordinates with a bar, a coordinate change

x = ϕ(x), u = ψ(x, u)

of E implies for a local section ζ of E that

ζ(x) = ζ(ϕ(x)) = ψ(x, ζ(x)),



3.1. THE JET FORMALISM 47

where ζ represents the local section ζ in the new coordinates. Differentiating this
equation with respect to xi and using the chain rule we obtain

∂ζ
k
(ϕ(x))

∂xi
=
∂ζ

k

∂xj
|ϕ(x)

∂ϕj

∂xi
=
∂ψk

∂xi
|(x,ζ(x)) +

∂ψk

∂uj
|(x,ζ(x))

∂ζj

∂xi
=
∂ψk(x, ζ(x))

∂xi
.

The middle of the previous sequence of equations is translated into a coordinate
change of the jet variables as follows:

ukj
∂ϕj

∂xi
=
∂ψk

∂xi
+
∂ψk

∂uj
uji .

Locally this equation can be solved for ukj or for uji .
In a similar way, but involving larger and larger expressions, the coordinate

changes for the higher jet variables can be derived. The Maple package jets

[Bar01b] allows to compute coordinate changes for jet variables automatically.

Remark 3.1.12. In a system of partial differential equations which contain the
unknown functions u1, . . . , uq and finitely many of their derivatives with respect
to the variables x1, . . . , xn (of any order), u1, . . . , uq are called the dependent
variables and x1, . . . , xn are called the independent variables. In the context of
jet calculus the independent and dependent variables are identified with the jet
coordinates xi : E → R, i = 1, . . . , n, resp. uk : E → R, k = 1, . . . , q. Hence,
the jet variables represent the independent variables and the derivatives of the
dependent variables up to a certain order.

Using the jet formalism, a system of partial differential equations of order q
can be written as 




f 1(xi, ukJ) = 0,
...

f r(xi, ukJ) = 0,

where the jet variables ukJ represent the |J |-th order derivatives of the k-th com-
ponent of the unknown tuple of functions.

We finish this section by defining the total derivative of a jet expression.

Definition 3.1.13. Let X be a manifold of dimension n, E a fibered manifold
over X of dimension m+ n and f ∈ A(E) a jet expression over E. Then the i-th
total derivative of f is defined by

(3.1) Di f :=
∂f

∂xi
+ ukJ+1i

∂f

∂ukJ
,

where 1i ∈ (Z≥0)
n is the multi-index whose only non-zero entry is the i-th entry

which equals 1. Note that, according to Convention 3.1.10, the last term in (3.1)



48 CHAPTER 3. SYMBOLIC COMPUTATION WITH D. E.

is a double sum over k and J . The definition of total derivative is extended to
tuples of jet expressions f ∈ A(E)r in the component-wise way.

For any J = (j1, . . . , jn) ∈ (Z≥0)
n and any jet expression f over E we set

DJ f := Dj1
1 · · ·Djn

n f.

Example 3.1.14. In the situation of Def. 3.1.13 we have for any jet variable ukJ ,
1 ≤ k ≤ m, J ∈ (Z≥0)

n,

DK u
k
J = ukJ+K , K ∈ (Z≥0)

n.

More interestingly, let n = 2, m = 1, and consider the jet expression f =
x1 u+ (u(1,0))

2. Then the first total derivative of f is

D1 f = u+ x1 u(1,0) + 2u(1,0) u(2,0).

3.2 Linearization of Differential Equations

As is well-known, among differential equations the linear ones are best understood
and most easily handled. Linear differential equations in no way exhibit the
variety of phenomena which arise for nonlinear differential equations, but it is a
good technique in general to study a linearization of a given nonlinear differential
equation to gain insight in local properties of the latter. In this section we present
a way of linearizing differential equations which is generic, i.e. no solution (e.g.
critical point) of the differential equation needs to be known in advance, and
which is adequate for symbolic computation. This general linearization is applied
in Sections 5.3 and 5.4 for the structural analysis of linear systems.

In this section we first explain how the linearization of an ordinary differen-
tial equation along a given trajectory can be understood in a functional analytic
framework using the Fréchet derivative. Following [Olv93] we then define the for-
mal Fréchet derivative for (tuples of) jet expressions which leads to the notion of
general linearization of a jet expression. This is applied to differential equations,
and an example demonstrates the differences between the general linearization
and linearizations along certain solutions.

We start by recalling the definition of the Fréchet derivative.

Definition 3.2.1. [Aub77], [Die69] Let V and W be (real) Banach spaces, x0 ∈
V , N ⊆ V a neighborhood of x0 and f : N → W a map. If there exists a
continuous linear map Df(x0) : V → W such that

lim
‖x−x0‖→0

‖f(x)− f(x0)−Df(x0)(x− x0)‖
‖x− x0‖

= 0,



3.2. LINEARIZATION OF DIFFERENTIAL EQUATIONS 49

then f is said to be differentiable at x0 and Df(x0) is called the Fréchet derivative
of f at x0. Let L(V,W ) the set of continuous linear maps from V to W . If the
map V → L(V,W ) : x 7→ Df(x) is differentiable at x0, then f is said to be twice
differentiable at x0.

Remark 3.2.2. [Aub77], [AMR88] By definition of the Fréchet derivative,

x 7→ f(x0) +Df(x0) (x− x0)

is tangent to f at x0, i.e. it is a first-order approximation of f at x0.

Remark 3.2.3. Let us investigate an ordinary differential equation

(3.2) u̇ = f(u)

for a function u = u(t) ∈ B, where B is a Banach space with norm ‖·‖ consisting
of certain differentiable real-valued functions defined on an open subset of R. In
order to define a linearization of this differential equation, we assume that f is
a map B → B which is twice differentiable at every u0 ∈ B. Let uref ∈ B be a
solution of (3.2). Then we want to determine a function 0 6= U ∈ B such that

(3.3) uref + εU

approximates a solution of (3.2) in B for small ε > 0.
To this end let 0 ∈ I ⊆ R be an open interval and define the map

F : I −→ B : ε 7−→ (t 7→ f(uref(t) + εU(t))).

We are going to show that F is twice differentiable at every x0 ∈ I.
By definition of the Fréchet derivative of f at uref +x0 U , Df(uref +x0 U) is a

continuous linear map B → B. The following computation proves that DF (x0)
exists and equals ∆(x0) := Df(uref + x0 U)U . We have:

lim
|x−x0|→0

‖F (x)− F (x0)−∆(x0) (x− x0)‖
|x− x0|

= lim
|x−x0|→0

‖f(uref + xU)− f(uref + x0 U)−∆(x0) (x− x0)‖
|x− x0|

= lim
|x−x0|→0

‖f(uref + xU)− f(uref + x0 U)−∆(x0) (x− x0)‖
‖U · (x− x0)‖

· ‖U · (x− x0)‖
|x− x0|

= lim
|x−x0|→0

‖f(uref + xU)− f(uref + x0 U)−∆(x0) (x− x0)‖
‖U · (x− x0)‖

· ‖U‖
= 0

because Df(uref + x0 U) is the Fréchet derivative of f at uref + x0 U . Therefore,
F is differentiable at every x0 ∈ I with Fréchet derivative DF (x0) = ∆(x0).



50 CHAPTER 3. SYMBOLIC COMPUTATION WITH D. E.

We continue by showing that DF : x 7→ DF (x) is differentiable at every
x0 ∈ I. The candidate for the Fréchet derivative of DF at x0 is now

∆(2)(x0) := D2f(uref + x0 U)(U)(U).

By applying the usual inequality for the operator norm we find:

‖DF (x)−DF (x0)−∆(2)(x0) (x− x0)‖
|x− x0|

=
‖Df(uref + xU)U −Df(uref + x0 U)U −∆(2)(x0) (x− x0)‖

|x− x0|

≤ ‖Df(uref + xU)−Df(uref + x0 U)−D2f(uref + x0 U)(U)( · ) · (x− x0)‖
‖U · (x− x0)‖

·

‖U‖ · ‖U · (x− x0)‖
|x− x0|

=
‖Df(uref + xU)−Df(uref + x0 U)−D2f(uref + x0 U)(U)( · ) · (x− x0)‖

‖U · (x− x0)‖
·

‖U‖2.
Since D2f(uref + x0 U) is the Fréchet derivative of Df at uref + x0 U , we have

lim
|x−x0|→0

‖DF (x)−DF (x0)−∆(2)(x0) (x− x0)‖
|x− x0|

= 0.

We conclude that F is twice differentiable at every x0 ∈ I.
Hence, F has a Taylor expansion around 0 [Die69]:

F (ε) = F (0) +DF (0) ε+O(ε2) = f(uref) +Df(uref)U ε+O(ε2),

where O(ε2) denotes terms which are of higher order in ε than 1. By substituting
(3.3) for u in (3.2) we obtain:

˙uref + εU = f(uref + εU) = f(uref) +Df(uref)U ε+O(ε2),

i.e.
u̇ref + ε U̇ = f(uref) +Df(uref)U ε+O(ε2).

Since uref is a solution of (3.2), u̇ref and f(uref) cancel in the previous equation.
By neglecting the terms of higher order in ε we therefore have to solve the linear
ordinary differential equation

(3.4) U̇ = Df(uref)U

for U . The equation (3.4) is the linearization of (3.2) along the trajectory uref .
In many applications uref is taken to be constant, if possible, i.e. a critical

point of (3.2). Having solved the linear differential equation (3.4), uref + εU
approximates a solution of (3.2) in B for small ε.



3.2. LINEARIZATION OF DIFFERENTIAL EQUATIONS 51

Example 3.2.4. Let us consider

(3.5) u̇ = u2.

This ordinary differential equation has the following solutions:

v∞(t) = 0, vc(t) =
1

c− t , c ∈ R.

We fix a compact interval J ⊂ R and define B := C1(J). Then B is a Banach
space with norm

‖g‖ := sup
x∈J
|g(x)|+ sup

x∈J
|g′(x)|, g ∈ C1(J),

and B contains the restrictions to J of the solutions v∞ and vc, c 6∈ J .
We define f : B → B : u 7→ u2 which is twice differentiable at every x0 ∈ B.

The Fréchet derivative of f at x0 ∈ B is

Df(x0) : B → B : u 7→ 2x0 u.

For every solution uref ∈ B of (3.5) we have the linearization of (3.5) along the
trajectory uref :

U̇ = Df(uref)U.

The linearization along v∞ yields the zero solution. More interesting is the lin-
earization along the trajectory vc, c ∈ R:

(3.6) U̇ = 2 vc U =
2

c− t U.

The general solution of (3.6) is

Uc̃(t) =
c̃

(c− t)2
, c̃ ∈ R.

Let us fix c ∈ R− J . For an ε-neighborhood of c in R− J we compare vc + εUc̃
for c̃ = −1 with the solution vc+ε of (3.5). In fact, we have

vc+ε(t) =
1

(c+ ε)− t
=

1

c− t +
−1

(c− t)2
ε+O(ε2)

= vc(t) + εU−1(t) +O(ε2).

Hence, up to terms of higher order in ε, vc+ε coincides with vc + εU−1.



52 CHAPTER 3. SYMBOLIC COMPUTATION WITH D. E.

In order to arrive at a formal approach to linearize partial differential equa-
tions, we will no longer consider the right hand side of a differential equation to
be defined by a map from a certain Banach space of functions to itself but to be
a jet expression. More precisely, an ordinary differential equation u̇ − f(u) = 0
for one function of t as above will be viewed as g(t, uJ) = 0 for an appropriate jet
expression g. First, however, we recall the directional derivatives of a function.

Remark 3.2.5. [AMR88] Let V and W be Banach spaces, x0 ∈ V , N ⊆ V a
neighborhood of x0 and f : N → W a map. If f is differentiable at x0, then the
directional derivatives

d

dε
f(x0 + ε v)|ε=0

of f at x0 exist for all v ∈ V and equal Df(x0) v.

The previous remark motivates the definition of the formal Fréchet derivative
of a jet expression. Note that it is differentiated only in the “directions” of the
dependent variables and their derivatives.

Definition 3.2.6. [Olv93] Let X be a manifold of dimension n and E a fibered
manifold over X of dimension m+n. Let p = p(xi, ukJ) ∈ A(E)r be a tuple of jet
expressions over E. The formal Fréchet derivative of p is the differential operator
Dp which is defined for any f = f(xi, ukJ) ∈ A(E)m by

Dp(f) :=
d

dε
|ε=0 p(x

i, DJ (u+ ε f))

(i.e. before differentiating with respect to ε, every jet variable ukJ on which p
depends is substituted by the total derivative DJ(u

k + ε fk)).

Remark 3.2.7. In the definition of the formal Fréchet derivative we have

d

dε
p(xi, DJ (u+ ε f))

=
∂p

∂ulK
(xi, DJ (u+ ε f)) · d

dε
DK (ul + ε f l)

=
∂p

∂ulK
(xi, DJ (u+ ε f))DK f

l,

which is a double sum over l = 1, . . . ,m and K ∈ (Z≥0)
n. Hence,

Dp(f) =
d

dε
|ε=0 p(x

i, DJ (u+ ε f))

=
∂p

∂ulK
(xi, DJu

k)DK f
l

=
∂p

∂ulK
(xi, ukJ)DK f

l.



3.2. LINEARIZATION OF DIFFERENTIAL EQUATIONS 53

By considering the total derivatives DK f
l of the “directions” f l as new de-

pendent variables U l
K we arrive at the central notion of this section.

Definition 3.2.8. Let X be a manifold of dimension n, E a fibered manifold
over X of dimension m+ n, q ∈ Z≥0, and Jq(E) the q-th jet bundle over E. For
any jet expression f = f(xi, ukJ) over E depending on finitely many jet variables
up to order q we define the general linearization of f to be

(3.7) F (xi, ukJ , U
l
K) :=

∂f

∂ukJ
Uk
J ,

i = 1, . . . , n, J, K ∈ (Z≥0)
n, k, l = 1, . . . , q,

where the U l
K are new indeterminates (i.e. all xi, ukJ , U

l
K are differentially inde-

pendent).

Remarks 3.2.9. (a) Following Convention 3.1.10, the general linearization F
of f is defined as a double sum over the index k enumerating the components
of a section and the index J representing the partial differentiations. In
general, for a jet expression f depending on jet variables of order at most
q, the linearization F is a real-valued function of jet variables xi, ukJ up to
order q and the new variables U l

K . It depends on the latter variables only
linearly.

(b) Of course, the notion of general linearization is extended in a component-
wise way to tuples of jet expressions which we encounter as left hand sides
of systems of differential equations.

(c) With a higher amount of differential geometric language this kind of lin-
earization can be developed using the notion of vertical bundle of a fibered
manifold. The variables xi, ukJ , U

l
K in Def. 3.2.8 can be taken as the coor-

dinates of the vertical bundle of the fibered manifold Jq(E) over X, i.e. the
subbundle of the tangent bundle of Jq(E) ignoring the TX-components.
For more details we refer to [Pom94].

Remark 3.2.10. Let

(3.8)





f 1(xi, ukJ) = 0,
...

f r(xi, ukJ) = 0

be a (nonlinear) system of partial differential equations of order q with indepen-
dent variables x1, . . . , xn and dependent variables u1, . . . , um. We consider the
system of linear partial differential equations





F 1(xi, ukJ , U
l
K) = 0,

...
F r(xi, ukJ , U

l
K) = 0,



54 CHAPTER 3. SYMBOLIC COMPUTATION WITH D. E.

where F i is the general linearization of f i in the sense of Def. 3.2.8 and call it
the general linearization of (3.8). Let v = (v1, . . . , vm) be a solution of (3.8), i.e.

f j(xi,
∂|J |vk

∂xJ
) = 0 for all 1 ≤ j ≤ r.

Then 



F 1(xi, ∂
|J|vk

∂xJ , U l
K) = 0,

...

F r(xi, ∂
|J|vk

∂xJ , U l
K) = 0

is the linearization of (3.8) along the solution v (trajectory v in the case of
ordinary differential equations).

Example 3.2.11. Let us revisit Ex. 3.2.4 and apply jet notation. The ordinary
differential equation under consideration is u̇1 = (u1)2. Since only one indepen-
dent and one dependent variable are involved, i.e. n = m = 1, we set x = x1,
u = u1. Then the differential equation reads

(3.9) u̇ = u2.

Using the jet formalism, the equation is represented by

g(x, uJ) = 0, where g(x, uJ) := u1 − u2.

The linearization of (3.9) is

G(x, uJ , UJ) = 0,

where G(x, uJ , UJ) is the general linearization of g(x, uJ):

G(x, uJ , UJ) =
∂g

∂u1

U1 +
∂g

∂u
U = U1 − 2uU.

By substituting a solution u2,c, c ∈ R, of (3.9) (see Ex. 3.2.4) for the jet variable u
in this general linearization we obtain the linearization (3.6) along the trajectory
u2,c.

Remark 3.2.12. For the algebraic treatment of differential equations according
to our intentions we want the space of functions which contains solutions of the
given equations to be domain. Therefore, we consider analytic functions f in the
following example, i.e. f ∈ Cω(R).

The next example demonstrates that computations with the general lineariza-
tion of a nonlinear system of differential equations are not well-defined in general,
when substituting a solution of the nonlinear equations into the coefficients of the



3.2. LINEARIZATION OF DIFFERENTIAL EQUATIONS 55

general linearization. It deals with a system of partial differential equations with
independent variables x, y, z and dependent variable u, we write

ux, . . . , x︸ ︷︷ ︸
i

,y, . . . , y︸ ︷︷ ︸
j

,z, . . . , z︸ ︷︷ ︸
k

for the jet variable u(i,j,k). This notation will also be used later on in other
examples.

Example 3.2.13. Let us consider the following system of nonlinear partial dif-
ferential equations:

(3.10)





ux = uy uz,

uy = ux uz.

We substitute the right hand side of the first equation for ux in the second equa-
tion and obtain

uy (1− u2
z) = 0.

If uy = 0, then ux = 0 due to (3.10). Therefore

u(1)(x, y, z) := F (z) with F ∈ Cω(R) arbitrary

are solutions of (3.10). Otherwise, uz = 1 or uz = −1. In the first case, (3.10)
implies uy = ux which yields the solutions

u(2)(x, y, z) := z +G(x+ y) with G ∈ Cω(R) arbitrary.

In the second case, we have uy = −ux resulting in the solutions

u(3)(x, y, z) := −z +H(x− y) with H ∈ Cω(R) arbitrary.

The general linearization of (3.10) is

(3.11)





Ux − uz Uy − uy Uz = 0,

Uy − uz Ux − ux Uz = 0.

According to Remark 3.2.10, when we substitute u(1) for u in (3.11), we obtain
the linearization of (3.10) along the solution u(1):

(3.12)





Ux(x, y, z)− Ḟ (z)Uy(x, y, z) = 0,

Uy(x, y, z)− Ḟ (z)Ux(x, y, z) = 0.



56 CHAPTER 3. SYMBOLIC COMPUTATION WITH D. E.

Analogously, the linearizations of (3.10) along the solutions u(2) and u(3) are

(3.13)





Ux(x, y, z)− Uy(x, y, z)− Ġ(x+ y)Uz(x, y, z) = 0,

−Ux(x, y, z) + Uy(x, y, z)− Ġ(x+ y)Uz(x, y, z) = 0

resp.

(3.14)





Ux(x, y, z) + Uy(x, y, z) + Ḣ(x− y)Uz(x, y, z) = 0,

Ux(x, y, z) + Uy(x, y, z)− Ḣ(x− y)Uz(x, y, z) = 0.

A Janet basis of the general linearization (3.11) is obtained roughly as follows.
Since the leading terms of the equations in (3.11) are Ux resp. −uz Ux, the first
equation in (3.11) is multiplied by uz and added to the second equation. The
resulting differential equation E has leading term (1− u2

z)Uy, and the process of
Janet separation defines x to be a non-multiplicative variable for this equation.
The term −uz Uy in the first equation can be eliminated using this new equation,
but this requires to divide by

(3.15) d1 := 1− u2
z

first. Since we deal with the general linearization, this operation can be per-
formed, but for linearizations along certain solutions v this division may be un-
defined (namely when v2

z = 1). When working with the general linearization we
assume that this is not the case.

Then the new equation E is differentiated with respect to x because x is a
non-multiplicative variable for this equation. By using the previous equations
the result is Janet-reduced to

Uz = 0.

In a certain step the process of Janet-reduction divides by

(3.16)
d2 := −2ux uy, z uz

2 + uy, y uz
2 + 2uy ux, z uz

2 − ux, x uz2 − 2uy uz uy, z+

2ux, z uz ux + ux
2 uz, z − uy, y − uy2 uz, z + ux, x.

Since the left hand sides of all remaining equations are linear combinations of Ux,
Uy, and Uz, it is clear that the Janet basis of (3.11) is given by

(3.17) Ux = 0, Uy = 0, Uz = 0.

Now we examine the two expressions (3.15), (3.16) by which Janet’s algorithm
divides. Substituting the solutions u(1), u(2), u(3) for u into these expressions, we
find generically

u(1) u(2) u(3)

d1 6= 0 = 0 = 0
d2 = 0 = 0 = 0



3.3. JANET BASES FOR LINEAR DIFFERENTIAL EQUATIONS 57

We have d1 6= 0 if and only if 1 + F ′(z)2 6= 0.
Hence, the first step of Janet’s algorithm described above is valid for the

linearization (3.12) along u(1), but not for the linearizations (3.13) and (3.14)
along u(2) and u(3).

In fact, for these specific linearizations the Janet bases are easily obtained as

Ux = 0, Uy = 0 (along u(1)),

where the algorithm has to divide by

−1 + F ′(z)2,

resp.
Ux − Uy = 0, Uz = 0 (along u(2)),

where
G′(x+ y) 6= 0

must be assumed, resp.

Ux + Uy = 0, Uz = 0 (along u(3)),

where
H ′(x− y) 6= 0

is necessary.
We conclude that a Janet basis of a general linearization of a nonlinear system

of differential equations can only be specialized to certain linearizations along
trajectories of the nonlinear system, if division by zero during the Janet basis
computation can be excluded. For instance, the equation Uz = 0, as part of the
Janet basis (3.17) of the general linearization, does not hold in general for the
linearization along u(1). Similarly, Ux = 0 does not hold in general for the lin-
earization along u(2) or u(3). In the next section the question by which coefficients
Janet’s algorithm may divide is answered.

3.3 Janet Bases for Linear Differential Equa-

tions with Non-constant Coefficients

As shown in the last example of the previous section, computations with linear
differential equations having non-constant coefficients need to obey relations for
these coefficients, if this linear system is given as the general linearization of a
nonlinear system. The coefficients of the linearized equations are subject to the
original nonlinear equations. An implementation of Janet’s algorithm to deal
with such equations needs to take these nonlinear equations into account in order
to prevent division by zero. In this section we explain this situation using the
notion of differential ring. We are going to present a simple strategy to respect
the relations for the coefficients of a general linearization.



58 CHAPTER 3. SYMBOLIC COMPUTATION WITH D. E.

Definition 3.3.1. [Kol73] Let R be a ring. A map δ : R→ R is a derivation of
R if it satisfies

δ(a+ b) = δ(a) + δ(b),

δ(a b) = δ(a) b+ a δ(b), a, b ∈ R.

A differential ring is a ring R with a finite set of commuting derivations of R.
Accordingly, a differential field is a differential ring which is also a field. A
differential ring which is also an algebra over some ring or field is a differential
algebra. An ideal I of a differential ring R is called a differential ideal if it is
closed under the action of the derivations of the differential ring R.

Examples 3.3.2. (a) Every ring is a differential ring endowed with a trivial
derivation.

(b) Let R = Q[x1, . . . , xn]. Then R is a differential ring with derivations δi :
R → R : p 7→ ∂p

∂xi
, i = 1, . . . , n. The quotient field F = Q(x1, . . . , xn) of R

is a differential field, where δi is extended to F → F : r 7→ ∂r
∂xi

, i = 1, . . . , n.

(c) Let G ⊆ C be open and connected. Then the field of meromorphic functions
G→ C is a differential field with derivation f 7→ df

dz
.

For simplicity and in view of our applications we confine ourselves to differ-
ential fields of characteristic zero in what follows.

Remark 3.3.3. Systems of partial differential equations with only polynomial
nonlinearities in the dependent variables are usually considered as follows. Let
u := {u1, . . . , uq} be a set of indeterminates which are supposed to represent the
unknown scalar-valued functions of the system of PDEs. By δ1, . . . , δn we denote
the partial differential operators with respect to the independent variables x1, . . . ,
xn. Moreover, let F be a field containing all coefficients of the partial differential
equations under consideration, and view δ1, . . . , δn as derivations on F by their
differentiating action on these coefficients (i.e. if all coefficients of the equations
are real numbers, then F can be chosen to be R with trivial derivations δ1, . . . ,
δn; if the coefficients of the PDEs exclusively consist of rational functions in x1,
. . . , xn, then we set F := R(x1, . . . , xn) with the usual derivations). Hence, F is
a differential field. Note that δ1, . . . , δn do not act on the indeterminates u1, . . . ,
uq, so that we can consider

∆u := {δa1
1 · · · δan

n u
k | a ∈ (Z≥0)

n, 1 ≤ k ≤ q}

as a set of indeterminates.

Definition 3.3.4. Let u = {u1, . . . , uq}, δ1, . . . , δn, F , and ∆ be defined as in
the preceding remark. Then the (commutative) polynomial algebra

F{u} := F [∆u]



3.3. JANET BASES FOR LINEAR DIFFERENTIAL EQUATIONS 59

over F consists of all differential polynomials in u1, . . . , uq with coefficients in F .
It is also customary to write the variables δa1

1 · · · δan
n u

k of F{u} in jet notation as
ukJ with J = (a1, . . . , an) ∈ (Z≥0)

n, k = 1, . . . , q.

Remark 3.3.5. F{u} is a differential algebra over F and an integral domain.
It has the following universal property similar to any polynomial algebra. For
every differential F -algebra A and every map φ : u → A there exists a unique
homomorphism ψ : F{u} → A of differential F -algebras which extends φ, i.e.
ψ|u = φ. This property is traced back to polynomial algebras in a straightforward
way.

We quote a theorem by Ritt and Raudenbush [Rit66] (see also [BLOP95],
[Hub00]) which establishes a prime decomposition of radical differential ideals
similar to the decomposition of radical ideals in commutative algebra.

Theorem 3.3.6. Every radical differential ideal I of F{u} is an intersection of
finitely many prime differential ideals, i.e. there exist prime differential ideals P1,
. . . , Pr of F{u} such that

I = P1 ∩ . . . ∩ Pr.
Remark 3.3.7. In the situation of Remark 3.3.3 let R := F{u} be the F -algebra
of differential polynomials in u1, . . . , uq with coefficients in F . A system of
partial differential equations with independent variables x1, . . . , xn and dependent
variables u1, . . . , uq, where every nonlinear term in the dependent variables is a
polynomial, can then be written (in jet notation) as

(3.18)





p1(u
k
J) = 0,

...
pm(ukJ) = 0

with finitely many differential polynomials p1, . . . , pm ∈ R. Note that R is not
Noetherian, but every system of polynomial partial differential equations involves
only finitely many indeterminates of R which allows to use constructive methods
nevertheless.

Remark 3.3.8. Let us investigate a system of partial differential equations which
are polynomial in the dependent variables and assume it is represented by (3.18).
Let I be the differential ideal generated by p1, . . . , pm in F{u}. We recall that
the differential field F is defined in such a way that it contains all coefficients of
these equations; e.g. F = R(x1, . . . , xn) if the coefficients are rational functions.
By identifying δa1

1 · · · δan
n u

k with uk(a1,...,an) the general linearization Pi(u
k
J , U

l
K) of

pi(u
k
J) can formally be determined as in Def. 3.2.8, so that we obtain the linearized

system

(3.19)





P1(u
k
J , U

l
K) = 0,

...
Pm(ukJ , U

l
K) = 0.



60 CHAPTER 3. SYMBOLIC COMPUTATION WITH D. E.

Formally, the linearized system (3.19) could be treated by Janet’s algorithm as a
system of partial differential equations with coefficients which are rational func-
tions in xi, ukJ . Then the left hand sides Pi(u

k
J , U

l
K) are identified with elements

in the free left module
q⊕

l=1

DU l

over the Ore algebra

(3.20) D := Quot(F{u})[∂1;σ1, δ1] . . . [∂n;σn, δn],

where σi = idD, δi = ∂
∂xi , i = 1, . . . , n (cf. the definition of the Weyl algebra,

Ex. 2.4.5 (a)) via

U l
K ↔ ∂K U l, ∂K := ∂k11 · · · ∂kn

n , K = (k1, . . . , kn) ∈ (Z≥0)
n, l = 1, . . . , q.

However, this “generic” computation can be undefined due to division by zero
when a certain solution v of (3.18) is substituted for u in the linearized system
(3.19) (where the substitution is extended to all of F{u} by the universal property
described in Rem. 3.3.5). If the differential ideal I generated by p1, . . . , pm is
radical and a prime decomposition

I = P1 ∩ . . . ∩ Pr

of I is known (see Theorem 3.3.6), then the computation over D from (3.20)
should therefore be replaced by the computations over

Di := Quot(F{u}/Pi)[∂1;σ1, δ1] . . . [∂n;σn, δn], σi = idDi
, δi =

∂

∂xi
,

for each minimal prime ideal among the Pi.
The implementation of Janet’s algorithm needs to be adapted to the coefficient

domains Di. The Maple package Janet provides a rather simple way to deal with
these coefficients which works in many examples. Let G be a finite generating
set for Pi. The method which implements an arithmetic for Di requires that
the equations g = 0, g ∈ G, are solved for certain indeterminates ukJ in such
a way that rewriting rules for the ukJ are defined that do not result in infinite
loops. Using a method from the Maple package jets [Bar01b], in each step of
the Janet-reduction the given rewriting rules for indeterminates ukJ are applied to
each coefficient representing a residue class in Quot(F{u}/Pi) in order to obtain
a “reduced” representative. In particular, the “reduced” representative of the
zero residue class is expected to be zero when using the given rewriting rules.
Then no division by zero can occur when specializing u to a solution v of (3.18).
Anyway, the implementation in Janet collects all expressions by which JanetBasis
divides, so that divisions by zero for certain solutions v can be detected in case



3.3. JANET BASES FOR LINEAR DIFFERENTIAL EQUATIONS 61

the rewriting rules are inappropriate. This even permits to embark on another
strategy, namely to compute “generically” over the Ore algebra D defined in
(3.20) and to determine critical expressions for denominators afterwards. Hence,
it is possible to find certain solutions v of (3.18) that are “singular” in some
respect (cf. Ex. 5.3.2).

The technique described above will be applied in Chapter 5. To finish the
present section we illustrate possible difficulties with this approach. In particu-
lar, the following example demonstrates that, when the initial system of nonlinear
partial differential equations is not preprocessed adequately, an expression occur-
ring in some denominator during a Janet basis computation can be zero for all
specializations of u to any solution v of (3.18). Hence, a prime decomposition
of the differential ideal generated by the left hand sides in (3.18) is necessary to
avoid such effects. But this example also demonstrates another limitation of our
approach.

Example 3.3.9. In this example we consider a polynomially nonlinear system
of PDEs for one unknown function. We continue to replace the multi-index in a
jet variable u(i,j) by a sequence of i symbols x and j symbols y. Hence, u(2,1) is
also written as ux,x,y.

> with(Janet):

> with(jets):

Let us consider the following system of nonlinear partial differential equations
with independent variables x, y and dependent variable u:

(3.21)





ux = u2,

uy,y = u3.

We define the independent and dependent variables:

> ivar := [x,y]; dvar := [u];

ivar := [x, y]

dvar := [u]

The left hand sides of the partial differential equations are given by the list L:

> L := [diff(u(x,y),x)-u(x,y)^2, diff(u(x,y),y,y)-u(x,y)^3];

L := [( ∂
∂x

u(x, y))− u(x, y)2, ( ∂2

∂y2
u(x, y))− u(x, y)3]

Maple is able to find the following family of solutions, where C1 is an arbitrary
constant:



62 CHAPTER 3. SYMBOLIC COMPUTATION WITH D. E.

> S := pdsolve(L);

S := {u(x, y) =
2

−2x+
√

2 y + 2 C1
}

For later use we assign this family of solutions to p:

> p := rhs(op(S));

p :=
2

−2x+
√

2 y + 2 C1

Using the command Linearize we compute the general linearization of the sys-
tem of partial differential equations given by L. The new dependent variable for
the general linearization is chosen to be U :

> Dvar := [U];

Dvar := [U ]

We obtain the following linearization:

> GL := Linearize(L, ivar, dvar, Dvar);

GL := [( ∂
∂x

U(x, y))− 2 u(x, y) U(x, y), ( ∂2

∂y2
U(x, y))− 3 u(x, y)2 U(x, y)]

Now we are going to compute a Janet basis for this linear system of partial
differential equations over the Ore algebra Quot(Q(x, y){u})[∂x, ∂y], where ∂x
resp. ∂y represents differentiation with respect to x resp. y. We choose (3.21) as
rewriting rules for the coefficients uJ .

> N := [u[x]=u^2, u[y,y]=u^3];

N := [ux = u2, uy, y = u3]

> JanetBasis(GL, ivar, Dvar, "coeffeqs"=N, "coeffdvar"=dvar);

[[U(x, y)], [x, y], [U ]]

The list of expressions by which JanetBasis divided is the following:

> ZeroSets(ivar);

[ ∂
∂y

u(x, y), −u(x, y)4 + 2 ( ∂
∂y

u(x, y))2]

We investigate the second expression more closely. First we translate it into jet
notation:

> d := Diff2Ind(%[2], ivar, dvar);

d := −u4 + 2uy
2



3.3. JANET BASES FOR LINEAR DIFFERENTIAL EQUATIONS 63

By substituting the general solution p for u in d we realize that the expression d
vanishes for all solutions.

> jsubs(u=p, d, ivar, dvar);

0

When tracing the above computation of JanetBasis we discover that the expres-
sion d occurs only as the coefficient of U(x, y) in the last step of Janet’s algorithm.
In order to normalize the resulting Janet basis, the present implementation di-
vides by d which is a division by zero for each specialization of u as we have just
seen. Therefore, d U(x, y) = 0 in the last step of Janet’s algorithm, which means
that the Janet basis is {Ux − 2u, uy Uy − u3}.

The problem for the above application of JanetBasis was that no substitution
rule for uy was declared which needs to be known in advance. Returning to the
method described in Remark 3.3.8, we want to find a prime decomposition of the
radical of the differential ideal generated by ux − u2, uy,y − u3. The theory of
characteristic sets [Rit66], [Kol73] allows to construct such a decomposition for
polynomially nonlinear partial differential equations. Characteristic sets can be
computed in Maple by using the package diffalg [BLOP95], [Hub99], [Hub00].

> with(diffalg):

First we define the ringR := Q[∆U ] of differential polynomials (see Remark 3.3.3)
where U = {u}, ∆ = (δx, δy).

> R := differential_ring(derivations=[x,y], ranking=[u]);

R := PDE ring

The generating set for an ideal in R is given in jet notation:

> L2 := [u[x]-u[]^2, u[y,y]-u[]^3];

L2 := [ux − u2, uy, y − u3]

The next commands computes a decomposition of the differential ideal generated
by L2 into “characterizable” differential ideal. This decomposition is similar
to the primary decomposition in commutative algebra because a characterizable
ideal is an intersection of prime differential ideals.

> P := Rosenfeld_Groebner(L2, R);

P := [characterizable, characterizable]

Hence, the given differential ideal is decomposed into two characterizable ideals
I1, I2. A characterizable ideal is represented in Maple by two lists of differential



64 CHAPTER 3. SYMBOLIC COMPUTATION WITH D. E.

polynomials. The first one consists of left hand sides of differential equations
derived from the given generating set of differential polynomials. The second
list specifies inequalities for differential polynomials which were assumed in the
process of decomposition, e.g. when dividing by a leading term. We display these
lists for the computed characterizable ideals:

> equations(P[1]), inequations(P[1]);

[ux − u2, 2uy
2 − u4], [uy]

The second entry in the first list of left hand sides of differential equations is
exactly the term d which caused the problem in the previous run of Janet’s
algorithm. The other characterizable ideal is represented by a single differential
polynomial only:

> equations(P[2]), inequations(P[2]);

[u], []

We now use the above preprocessing of the system of nonlinear equations in order
to perform a correct run of Janet’s algorithm on the general linearization GL.
Since the leading derivative of d is quadratic, we have to choose a square root:

> N1 := [u[x]=u^2, u[y]=1/sqrt(2)*u^2];

N1 := [ux = u2, uy =

√
2u2

2
]

We compute the Janet basis of the general linearization over the Ore algebra
Quot(Q(x, y){u}/I1)[∂x, ∂y]:

> J1 := JanetBasis(GL, ivar, Dvar, "coeffeqs"=N1, "coeffdvar"=dvar);

J1 := [[−u(x, y)
√

2 U(x, y) + ( ∂
∂y

U(x, y)), ( ∂
∂x

U(x, y))− 2 u(x, y) U(x, y)], [x, y], [U ]]

The algorithm divided by the following expressions:

> ZeroSets(ivar);

[
1

2

√
2 u(x, y)2,

√
2]

Now we solve the sytem given by the Janet basis and obtain, of course, the zero
solution and another more complicated one.

> pdsolve(J1[1]);



3.3. JANET BASES FOR LINEAR DIFFERENTIAL EQUATIONS 65

{U(x, y) = 0, u(x, y) = u(x, y)},

{u(x, y) =
1

2

D( F1)(y +
√

2x)
√

2

F1(y +
√

2x)
, U(x, y) = F1(y +

√
2x)}

> solu := rhs(%[2][1]); solU := rhs(%%[2][2]);

solu :=
1

2

D( F1)(y +
√

2x)
√

2

F1(y +
√

2x)

solU := F1(y +
√

2x)

Substituting the second solution for the dependent variables in the general lin-
earization reveals that it is in fact only a solution of the linearization of the
system defined by the prime ideal I1:

> jsubs([u=solu, U=solU], Diff2Ind(GL, ivar, [op(dvar),op(Dvar)]),
> ivar, [op(dvar),op(Dvar)]);

[0, −1

2

−2 (D(2))( F1)(y −
√

2x) F1(y −
√

2x) + 3 D( F1)(y −
√

2x)2

F1(y −
√

2x)
]

We continue in a similar way with the other square root:

> N2 := [u[x]=u^2, u[y]=-1/sqrt(2)*u^2];

N2 := [ux = u2, uy = −
√

2u2

2
]

> J2 := JanetBasis(GL, ivar, Dvar, "coeffeqs"=N2, "coeffdvar"=dvar);

J2 := [[u(x, y)
√

2 U(x, y) + ( ∂
∂y

U(x, y)), ( ∂
∂x

U(x, y))− 2 u(x, y) U(x, y)], [x, y], [U ]]

The solutions of the system given by the Janet basis are:

> pdsolve(J2[1]);

{U(x, y) = 0, u(x, y) = u(x, y)},

{u(x, y) = −1

2

D( F1)(y −
√

2x)
√

2

F1(y −
√

2x)
, U(x, y) = F1(y −

√
2x)}

> solu := rhs(%[2][1]); solU := rhs(%%[2][2]);

solu := −1

2

D( F1)(y −
√

2x)
√

2

F1(y −
√

2x)

solU := F1(y −
√

2x)

Again, the second solution is only a solution of the linearization of the system
defined by the prime ideal I1:



66 CHAPTER 3. SYMBOLIC COMPUTATION WITH D. E.

> jsubs([u=solu, U=solU], Diff2Ind(GL, ivar, [op(dvar),op(Dvar)]),
> ivar, [op(dvar),op(Dvar)]);

[0, −1

2

−2 (D(2))( F1)(y −
√

2x) F1(y −
√

2x) + 3 D( F1)(y −
√

2x)2

F1(y −
√

2x)
]

This example demonstrated that a careful preprocessing of the nonlinear equa-
tions is needed in order to compute correctly with the coefficients of the general
linearization. More tools for symbolic computation with differential equations
are needed to be able to handle linearizations automatically.



Chapter 4

The Generalized Hilbert Series

In this chapter we show the importance of the generalized Hilbert series which
was introduced in Section 2.3. First we explain the module-theoretic approach to
linear systems which is used throughout this thesis. In Section 4.2, very impor-
tant notions from homological algebra are collected. The following two sections
then deal with injective modules resp. cogenerators which play a crucial role in
the algebraic analysis of linear systems (see Chapters 5 and 6). The generalized
Hilbert series is exemplified for the case of partial differential equations in Sec-
tion 4.5. Finally, the Bernstein filtration of the Weyl algebras is generalized to
a certain class of Ore algebras and the relation of the generalized Hilbert series
to the Hilbert series of left modules over these algebras with grading induced by
the Bernstein filtration is shown in Section 4.6.

4.1 Module-theoretic Approach to Linear Sys-

tems

In the present and the following chapters we study systems governed by equations
with coefficients in an Ore algebra D. This case is sufficiently general for appli-
cations in systems theory because by means of the Weyl algebras we can model
partial differential equations, and there are also Ore algebras to describe difference
equations, discrete systems, etc. In general, given a linear system of equations,
the Ore algebra D is chosen in such a way that it contains the polynomials in
all operators occurring in the equations. Constant coefficients can be viewed as
multiplication operators. For the arising algebraic problems to be algorithmically
solvable it is usually required that the ring is at least (left) Noetherian. One can
show that every (left) Noetherian domain satisfies the (left) Ore property (see
Prop. 2.4.9) which also justifies the choice of Ore algebras.

In this section we show that with every linear system a left D-module is
associated. The restriction to left modules in the non-commutative case is just
by convention. All constructions can be applied to right modules as well. After

67



68 CHAPTER 4. THE GENERALIZED HILBERT SERIES

giving the most important examples for the types of linear systems that we are
going to examine and the corresponding Ore algebras over which these systems
can be considered, the module-theoretic approach to linear systems is described.
Then Malgrange’s isomorphism is recalled which links the left D-module which is
associated to the given linear system to the solutions in a fixed left D-module F .

First we give a few examples of types of linear systems that can be considered
in the framework of Ore algebras.

Examples 4.1.1. (a) (Ordinary and partial differential equations)

Let k ∈ {R,C}. By definition of the Weyl algebra A1(k) (cf. Ex. 2.4.5 (a),
p. 29) we have

∂ a = a ∂ +
da

dt
a ∈ k[t].

This commutation rule expresses the product rule for differentiation with
respect to t: for differentiable functions a = a(t), y = y(t) we have:

d

dt
(a · y) = a

d

dt
y +

da

dt
y.

The differential operator d
dt

is represented by the element ∂ in A1. Hence,
we can associate with any “Kalman system” with polynomial coefficients

ẋ = Ax+B u, A ∈ k[t]n×n, B ∈ k[t]n×m,

the matrix
R = (∂ In − A −B) ∈ An×(n+m)

1

such that R (x(t)T u(t)T )T = 0.

Partial differential equations are treated in a similar way. The commutation
rules of An(k) exactly represent the product rules for the partial differen-
tiations. Moreover, linear systems of partial differential equations whose
coefficients are rational functions can be represented by matrices over the
localized Weyl algebra Bn(k) (cf. Ex. 2.4.5 (a)).

(b) (Time-delay systems)

Let h ∈ R. For the algebra Sh of shift operators of length h (cf. Ex. 2.4.5 (b))
we have

δh p(t) = p(t− h) δh, p ∈ R[t],

representing the “product rule” for the shift action on polynomials1:

δh(f(t) · g(t)) = f(t− h) δh g(t), f, g ∈ R[t].

1In this example, the indeterminate δh of the Ore algebra Sh and the shift operator which
it represents are identified.



4.1. MODULE-THEORETIC APPROACH TO LINEAR SYSTEMS 69

The time-delay system x(t) = x(t− h) + u(t− 2h) can then be represented
by the matrix

R = (1− δh − δ2
h) ∈ S1×2

h ,

such that R (x(t) u(t))T = 0.

(c) (Differential time-delay systems)

For linear differential time-delay systems both of the previous Ore exten-
sions can be applied at the same time. The Ore algebra Dh defined in
Ex. 2.4.5 (c) combines the product rules of the two previous examples. For
instance, the matrix

R = (∂ I − A −B δh) ∈ Dn×(n+m)
h , A ∈ R[t]n×n, B ∈ R[t]n×m,

represents the linear system

R

(
x(t)
u(t)

)
= ẋ(t)− A(t)x(t)−B(t)u(t− h) = 0.

(d) (Discrete systems)

For (multidimensional) discrete linear systems we choose the Ore algebra
defined in Ex. 2.4.5 (d). For instance, the equation

f(n) = f(n− 1) + f(n− 2)

defining the Fibonacci sequence (neglecting for now the initial conditions
f(0) = 0, f(1) = 1) can be represented by the matrix

R = (1− ∂ − ∂2) ∈ D1×1

over D = Q[n][∂;σ, δ] which is a special case of Ex. 2.4.5 (d). The domain
of coefficients Q[n] could be replaced just by Q because the above equation
has constant coefficients.

In what follows, let D be an Ore algebra which is in particular a k-algebra,
where k is a field. Moreover, for the time being we consider any left D-module F .
This module will play the role of a signal space. It is usually chosen as a space
of functions which is acted upon by D on the left. The solutions (trajectories)
of a linear system Ry = 0 are then searched for in Fp×1. Further properties of a
signal space rather than just being a left D-module will be specified later, when
needed.



70 CHAPTER 4. THE GENERALIZED HILBERT SERIES

Convention 4.1.2. With every matrix R ∈ Dq×p we associate two maps. On
the one hand we consider the homomorphism of left D-modules

(.R) : D1×q → D1×p : m 7→ mR.

On the other hand we have a homomorphism of abelian groups

(R.) : Fp×1 → F q×1 : η 7→ Rη.

If D is commutative, then (R.) is also a homomorphism of D-modules. Brackets
in (.R) and (R.) are often omitted.

Definition 4.1.3. The solution set of Rη = 0 in F , where R ∈ Dq×p, is defined
as

SolF(R) := ker(R.) = {η ∈ Fp×1 | Rη = 0}.
A set B ⊆ Fp×1 which is a solution set SolF(R) for some R ∈ Dq×p, is called a
behavior. We also write

BF(R) := SolF(R).

Definition 4.1.4. Let

p∑

j=1

Rij ηj = 0, i = 1, . . . , q,

be a linear system defined over an Ore algebra D, i.e. R ∈ Dq×p. Then

M := D1×p/D1×q R = coker(.R)

is the left D-module associated with Rη = 0.

Remark 4.1.5. By applying the rows of R to the vector η = (η1, . . . , ηp)
T , we

obtain the defining equations of the given linear system. The left D-module M
is defined in such a way that all left D-linear combinations of the residue classes
represented by the rows of R are zero in M . Therefore, we associate to the linear
system an algebraic object which is independent of the choice of the equations
which describe the system. By investigating the algebraic properties of M we
study the structural properties of the given linear system.

Definition 4.1.6. Let M , N be left D-modules. Then homD(M,N) denotes
the set of all homomorphisms f : M → N . In the special case N = D, we also
write M∗ for homD(M,D).

Remark 4.1.7. In general, homD(M,N) is an abelian group. If M is a left
D-module and N is both a left and a right D-module, then homD(M,N) can be
viewed as a right D-module in virtue of

(ϕ · d)(m) := ϕ(m) · d, d ∈ D, m ∈M, ϕ ∈ homD(M,N).



4.1. MODULE-THEORETIC APPROACH TO LINEAR SYSTEMS 71

It is easily checked that ϕ ·d defines a homomorphism M → N of left D-modules.
For all a1, a2 ∈ D, m1,m2 ∈M we have:

(ϕ · d)(a1m1 + a2m2) = ϕ(a1m1 + a2m2) · d
= (a1 ϕ(m1) + a2 ϕ(m2)) d

= a1 (ϕ · d)(m1) + a2 (ϕ · d)(m2).

In particular, this holds for the free left and right D-module N = D.
If D is a commutative ring, then for all D-modules M and N , homD(M,N)

is a D-module, where the action of D on homD(M,N) is simply defined by

(d · ϕ)(m) := d · ϕ(m), d ∈ D, m ∈M.

The following proposition is crucial for the interpretation of module-theoretic
constructions which involve the left D-module M associated to a linear system
for its solution space.

Proposition 4.1.8 (Malgrange’s isomorphism). [Mal63] Let M = D1×p/D1×q R
be the left D-module associated with a linear system Rη = 0 and F a left D-
module. Then we have

homD(M,F) ∼= SolF(R) = {η ∈ Fp×1 | Rη = 0}
as k-vector spaces.

Proof. Let (e1, . . . , ep) be a basis of D1×p and denote by ei := ei + D1×q R the
residue class of ei in M , i = 1, . . . , p. Then

π : homD(M,F) −→ SolF(R) : ϕ 7−→ (ϕ(ej))j=1,...,p ,

is a well-defined homomorphism of k-vector spaces because

R (ϕ(ej))j=1,...,p =
(∑p

j=1Rij ϕ(ej)
)
i=1,...,q

=
(
ϕ

(∑p
j=1Rij ej +D1×q R

))
i=1,...,q

(4.1)

= (ϕ(0 +D1×q R))i=1,...,q = 0.

By the universal property of the free left D-module D1×p every homomorphism
D1×p → F is uniquely determined by its values on the basis (e1, . . . , ep). There-
fore, every ϕ ∈ homD(M,F) is uniquely determined by specifying ϕ(e1), . . . ,
ϕ(ep) which satisfy (4.1). This defines a homomorphism of k-vector spaces which
is inverse to π.

Remark 4.1.9. In the case of linear systems with constant coefficients, i.e. when-
ever D is chosen to be commutative, homD(M,F) is also a D-module, and the
above isomorphism of vector spaces is also an isomorphism of D-modules.

In the case of non-constant coefficients, homD(M,F) is only a k-vector space
and SolF(R) is also a k-vector space only, because in general a left D-multiple of
a solution of the system equations is not a solution of the system equations.



72 CHAPTER 4. THE GENERALIZED HILBERT SERIES

4.2 Homological Algebra

The algebraic notions which are defined in this section are important for the
algebraic approach to linear systems described in the subsequent sections and
chapters. They will be applied to the left D-module M = D1×p/D1×q R which
is associated with a given linear system Rη = 0, where D is an Ore algebra.
Homological algebra provides an additional level of abstraction for dealing not
only with a single module but with families of modules which are related by
homomorphisms between certain of them. By embedding the theory of modules
into the more general theory of chain complexes, deeper invariants for modules
are obtained. A Maple package homalg which implements certain constructions
of homological algebra in an abstract way is in preparation at Lehrstuhl B für
Mathematik, RWTH Aachen [BR, BR06]. This package computes with modules
by letting another Maple package perform the ring arithmetics as specified by
the user. In this way the package is designed to depend as little as possible on
the rings which are admissible. However, homalg is not used in this thesis.

All algebraic notions of this section can be found in more detail in [CE56],
[Rot79], or [HS97]. In what follows let D be a (not necessarily commutative)
algebra over a field k and a left Ore domain. We consider left D-modules, but
all concepts are easily translated to right D-modules as well.

Definition 4.2.1. Let M = (Mi)i∈Z be a family of left D-modules.

(a) Let d = (di)i∈Z be a family of homomorphisms di : Mi → Mi−1 of left D-
modules. (M,d) is called a chain complex (of leftD-modules), if di◦di+1 = 0
holds for all i ∈ Z, i.e. im di+1 ⊆ ker di for all i ∈ Z. A chain complex is
written down as follows:

. . . di+2 //Mi+1
di+1 //Mi

di //Mi−1
di−1 // . . .

Let δ = (δi)i∈Z be a family of homomorphisms δi : Mi−1 → Mi of left D-
modules. (M, δ) is called a cochain complex (of left D-modules), if δi+1◦δi =
0 for all i ∈ Z. A cochain complex is written down as a chain complex, but
with reversed arrows. We also write cocomplex for cochain complex.

(b) The defect of exactness of a complex (M,d) at the i-th position or the i-th
homology group of (M,d) is defined by

Hi(M,d) := ker di/ im di+1.

The complex (M,d) is said to be exact at the i-th position, if Hi(M,d) = 0,
i.e. if ker di = im di+1. The complex (M,d) is called exact, if it is exact
at the i-th position for all i ∈ Z. An exact complex is also called an exact
sequence (of left D-modules).



4.2. HOMOLOGICAL ALGEBRA 73

(c) A short exact sequence (of leftD-modules) is an exact sequence (M,d) of left
D-modules for which all modules Mi are zero except for three consecutive
ones. If we call these modules M ′, M respectively M ′′, then a short exact
sequence is denoted as follows:

(4.2) 0 //M ′
f //M

g //M ′′ // 0.

Remarks 4.2.2. (a) A complex 0 −→ M1
f−→ M0 is exact if and only if f is

an injective homomorphism.

(b) A complex M1
g−→ M0 −→ 0 is exact if and only if g is a surjective

homomorphism.

(c) Let us consider the complex (4.2) of left D-modules. This complex is a
short exact sequence if and only if f is injective and ker g = im f and g is
surjective.

Remark 4.2.3. Let

(4.3) . . . di+2 //Mi+1
di+1 //Mi

di //Mi−1
di−1 // . . .

be a complex of left D-modules and let F be a left D-module. By applying
homD( · ,F) to (4.3) we mean to apply homD( · ,F) to each module in (4.3).
Then we obtain a cocomplex

(4.4) . . .
d∗i+2←−− homD(Mi+1,F)

d∗i+1←−− homD(Mi,F)
d∗i←− homD(Mi−1,F)

d∗i−1←−− . . .

of abelian groups, where the homomorphism d∗i , i ∈ Z, is defined by

d∗i (ϕ) = ϕ ◦ di, ϕ ∈ homD(Mi−1,F).

If D is a commutative ring, then (4.4) is also a complex of D-modules. Note that
even if (4.3) is exact, (4.4) need not be exact.

Definition 4.2.4. Let M be a left D-module. The submodule

t(M) := {m ∈M | ∃ 0 6= d ∈ D : dm = 0}
of M is the torsion submodule of M ; its elements are the torsion elements of M .
The module M is torsion-free if t(M) = {0}. It is torsion if t(M) = M .

Example 4.2.5. In the situation of Def. 4.2.4 we have the short exact sequence

0 // t(M) ι //M
ρ //M/t(M) // 0

where ι and ρ denote the canonical injection respectively the canonical projec-
tion. It is common practice in homological algebra to omit the maps which are
canonical when writing down a complex. Hence, e.g. in Chapter 6, the names ι
and ρ are no longer attached to the above arrows.



74 CHAPTER 4. THE GENERALIZED HILBERT SERIES

Definition 4.2.6. A left D-module M is projective if it is a direct summand of
each left D-module (up to isomorphism) of which it is an epimorphic image, more
precisely, for every epimorphism π : B → M of left D-modules, there exists a
homomorphism α : M → B such that π ◦ α = idM .

Definition 4.2.7. A left D-module M is said to be reflexive if the canonical map

εM : M −→ homD(homD(M,D), D) : m 7−→ (f 7→ f(m)),

m ∈M, f ∈ homD(M,D), is an isomorphism (of k-vector spaces).

Proposition 4.2.8. [MR00, Rot79] Let D be a left Ore domain. Then we have
the following implications among properties of finitely generated left D-modules:

free⇒ projective⇒ reflexive⇒ torsion-free.

Theorem 4.2.9. [MR00, Rot79] Let k be a field.

(a) Every finitely generated torsion-free left A1(k)-module is projective.

(b) If D is a left principal ideal domain, then every finitely generated torsion-
free left D-module is free (in particular, projective). This holds e.g. for
D = k[t] and D = B1 = k(t)[∂].

(c) (Quillen-Suslin theorem) Every projective module over a commutative poly-
nomial algebra over k is free.

Definition 4.2.10. An exact sequence of left D-modules

. . . d3 // P2
d2 // P1

d1 // P0
d0 //M // 0

is called a projective resolution of the left D-module M if Pi is projective for all
i. If the Pi are free, then the above exact sequence is called a free resolution of
M .

Remark 4.2.11. Let the finitely generated left D-module M be given as the
cokernel of a homomorphism ϕ : D1×q → D1×p of free left D-modules. Hence,
the complex

D1×q
ϕ // D1×p π //M // 0

is exact. Let R ∈ Dq×p be the matrix representing ϕ with respect to the standard
bases of D1×q and D1×p. Then M can be considered as being (finitely) presented
by generators and relations, i.e., M is generated by the images of the standard
basis elements of D1×p under the canonical projection π, and these images satisfy
the left D-linear relations given by the rows of R (and all their consequences).
Stated in yet another way we have M ∼= D1×p/D1×qR. A free resolution of M



4.2. HOMOLOGICAL ALGEBRA 75

can be constructed as follows. Compute a finite generating set for the left D-
linear relations satisfied by the rows of R. Write these relations as row vectors
with entries in D again and define the matrix S ∈ Dr×q composed of these row
vectors. The left D-module generated by the rows of S is called the syzygy module
of R. Since it is the kernel of the homomorphism (.R), it is finitely generated
as a submodule of the free module D1×q over the left Noetherian algebra D. By
construction the complex

D1×r .S // D1×q .R // D1×p π //M // 0

is exact. An iterated computation of syzygy modules then yields a free resolution
of M .

Upper bounds on the lengths of free resolutions depend on the ring D; e.g. for
the commutative polynomial algebra D = k[x1, . . . , xn] over k, Hilbert’s Syzygy
Theorem states that every finitely generated module over D has a free resolution
of length at most n. For the class of Ore algebras D dealt with in Section 2.5
finite generating sets for syzygy modules can be obtained from a Janet basis
computation with respect to a monomial ordering defined in Remark 2.2.3 (c).
The left global dimension lgld(D) of the Ore algebraD is defined as the supremum
of the lengths of projective resolutions of left D-modules (which may be infinite).
However, if the k-algebra A is a domain with finite left global dimension and
σ : A→ A is a k-algebra automorphism, then we have

lgldA ≤ lgldA[∂;σ, δ] ≤ lgldA+ 1,

which shows that for the Ore algebras D of interest for this thesis, free resolutions
of finite length of finitely generated left D-modules exist. (For more details we
refer to [MR00], [CQR05].)

We close this section by defining the extension groups extiD(M,F).

Definition 4.2.12. Let D be a left Noetherian Ore algebra, M a finitely gener-
ated left D-module, F a left D-module and

. . . d2 // P1
d1 // P0

d0 //M // 0

a projective resolution of M . For i ∈ Z≥0, the abelian groups extiD(M,F) are
defined as the defects of exactness of the cochain complex

. . . homD(P2,F)oo homD(P1,F)
d∗2oo homD(P0,F)

d∗1oo 0,oo

where the homomorphism d∗i , i ≥ 1, is defined by

d∗i (ϕ) = ϕ ◦ di, ϕ ∈ homD(Pi−1,F).



76 CHAPTER 4. THE GENERALIZED HILBERT SERIES

In other words, we have:





ext0
D(M,F) = ker d∗1 = homD(M,F),

extiD(M,F) = ker d∗i+1/ im d∗i , i ≥ 1.

The next proposition shows that extiD(M,F) is well-defined.

Proposition 4.2.13. The abelian group extiD(M,F), i ∈ Z≥0, only depends on
M and F up to group isomorphism, i.e., we can choose any projective resolution
of M to compute it.

More details about extension groups are given in Section 5.2.

4.3 Injective Modules

In this section modules with a property which is in some sense dual to projectivity
are considered more closely. In the context of linear systems over Ore algebras D,
the notion of an injective module is important for the interpretation of elements
of certain left D-modules as solutions of a given linear system. Together with
the property of being a cogenerator for the category of left D-modules, which
is explained in the following section, an injective left D-module F serves as a
signal space sharing homological properties with the left D-module M which is
associated with the given linear system. In particular, F is then thought of as
containing enough solutions of the linear system. More details on the duality
which is admitted by injective cogenerators is presented in the next section and
Chapter 6. The notions of injective modules and cogenerators can be found in
[Rot79] or [Bou80].

In what follows, we let D be a (not necessarily commutative) ring with 1. We
start by giving the definition of an injective module.

Definition 4.3.1. A left D-module F is injective if it is a direct summand of
each left D-module which contains it (up to isomorphism), more precisely, for
every monomorphism ι : F → E of left D-modules, there exists a homomorphism
β : E → F such that β ◦ ι = idF .

The defining property of an injective module is in some sense dual to the
defining property of a projective module (cf. Def. 4.2.6).

Lemma 4.3.2. A left D-module F is injective if and only if for every left D-
module A and every submodule B of A, every homomorphism ϕ : B → F can be
extended to a homomorphism ψ : A→ F .



4.3. INJECTIVE MODULES 77

Proof. “⇒”: We assume that F is injective. Let A be a left D-module, B a
submodule of A and ϕ : B → F a homomorphism of left D-modules. We define
N := {(ϕ(b),−b) ∈ F ⊕ A | b ∈ B} which is a submodule of F ⊕ A. Then we
consider the homomorphism from F to E := (F ⊕ A)/N

ι : F → E : f 7→ (f, 0) +N.

This homomorphism is injective because

ι(f) = 0 ⇐⇒ 0 = ϕ(0) = f, f ∈ F .

Since F is injective, there exists a homomorphism β : E → F such that β◦ι = idF .
Then we define the homomorphism

ψ : A→ F : a 7→ β((0, a) +N)

and show that ψ extends ϕ. Let b ∈ B. Then (0, b) +N = (ϕ(b), 0) +N . Hence,

ψ(b) = β((0, b) +N) = β(ι(ϕ(b))) = ϕ(b).

“⇐”: We assume that for every left D-module A and every submodule B of
A, every homomorphism ϕ : B → F can be extended to a homomorphism ψ :
A → F . Suppose that F is a submodule of a left D-module E . Then ϕ := idF

can be extended to a homomorphism β : E → F . This homomorphism satisfies
β ◦ ι = idF .

In fact, for a proof that a left D-module F is injective it is sufficient to verify
the property stated in Lemma 4.3.2 for every left ideal I of D as the following
lemma shows [Rot79].

Lemma 4.3.3 (Baer’s criterion). A left D-module F is injective if and only if
for every left ideal I of D every homomorphism ϕ : I → F can be extended to a
homomorphism ψ : D → F .

Proof. “⇒” is a particular case of Lemma 4.3.2.

“⇐”: We assume that for every left ideal I of D every homomorphism ϕ : I → F
can be extended to a homomorphism ψ : D → F . Suppose that F is a submodule
of a left D-module E . Then we show that for the canonical injection ι : F → E
there exists a homomorphism β : E → F such that β ◦ ι = idF . To this end we
are going to “approach” β by homomorphisms α : G → F , where F ≤ G ≤ E .

0 // F
idF

��

ι // E

β���
�

�
�

F

OO



78 CHAPTER 4. THE GENERALIZED HILBERT SERIES

We consider the set

S := { (G, α) | F ≤ G ≤ E , α ∈ homD(G,F), α|F = idF }

which is partially ordered by

(G1, α1) ≤ (G2, α2) ⇐⇒ G1 ≤ G2 and α2|G1 = α1.

Obviously, for every non-empty totally ordered subset T of S there exists an
element (U , υ) ∈ T such that (G, α) ≤ (U , υ) for all (G, α) ∈ T , which means that
T is inductively ordered (see [Lan93]). By Zorn’s Lemma there exists a maximal
element (M, β) in S. We show thatM = E . Then β : E → F satisfies β◦ι = idF .

Let us assume thatM � E . Then there exists e ∈ E −M. We define the left
ideal I := {d ∈ D | d e ∈M} of D and the homomorphism

ϕ : I → F : a 7→ β(a e).

Our assumption applies to the submodule I of the left D-module D, so that
there exists a homomorphism ψ : D → F which extends ϕ. Now we define the
homomorphism

γ :M+D e→ F : m+ d e 7→ β(m) + ψ(d)

and show that (M + D e, γ) ∈ S. First of all, γ is well-defined because for

m, m̃ ∈M, d, d̃ ∈ D satisfying m+ d e = m̃+ d̃ e we have

m− m̃ = (d̃− d) e ∈M

and hence d̃− d ∈ I, and

(β(m) + ψ(d))− (β(m̃) + ψ(d̃)) = β(m− m̃) + ψ(d− d̃)
= β((d̃− d) e)− ψ(d̃− d)
= ϕ(d̃− d)− ψ(d̃− d)
= 0.

Secondly, γ extends idF because

γ(f) = β(f) + ψ(0) = f for all f ∈ F .

Therefore, we have (M+D e, γ) ∈ S, which is a contradiction to the maximality
ofM.

The next proposition will be used in Chapter 6, where the problem of parame-
trizing the solution spaces of linear systems is investigated. There the injectivity
of the signal space is needed to establish a duality between the left D-module
which is associated with the system and the solution space.



4.3. INJECTIVE MODULES 79

Proposition 4.3.4. A left D-module F is injective if and only if for each exact
sequence of left D-modules

(4.5) 0 //M0
d0 //M1

d1 //M2
d2 // . . . dn−1 //Mn

// 0

the cochain complex

(4.6) 0 homD(M0,F)oo homD(M1,F)
d∗0oo

d∗1oo

homD(M2,F) . . .
d∗2oo homD(Mn,F)

d∗n−1oo 0oo

is exact, where d∗i : homD(Mi+1,F)→ homD(Mi,F), ϕ 7→ ϕ◦di, i = 0, . . . , n−1.

Proof. “⇐”: We apply Lemma 4.3.2 in order to prove that F is injective. Let A
be a left D-module and B a submodule of A. Then we have the exact sequence

0 // B
ι // A

ρ // A/B // 0,

where ι is the canonical injection and ρ is the canonical projection. By assump-
tion, the cocomplex

0 homD(B,F)oo homD(A,F)ι∗oo homD(A/B,F)
ρ∗oo 0oo

is exact. Let ϕ ∈ homD(B,F) be arbitrary. Since ι∗ is surjective (see Rem. 4.2.2
(b)), there exists ψ ∈ homD(A,F) such that ι∗(ψ) = ϕ, i.e. ψ|B = ϕ.

“⇒”: We assume that F is injective. The exactness of (4.6) is shown in three
steps. First we show that d∗n−1 is injective (see Rem. 4.2.2 (a)). Let ϕ ∈ ker d∗n−1,
i.e. ϕ ◦ dn−1 = 0. Let m ∈ Mn be arbitrary. Since dn−1 is surjective (see
Rem. 4.2.2 (b)), there exists m′ ∈Mn−1 such that m = dn−1(m

′). It follows

ϕ(m) = ϕ(dn−1(m
′)) = 0.

Therefore, ϕ = 0, and we have shown that d∗n−1 is injective.
Next d∗0 is proven to be surjective. Let ϕ ∈ homD(M0,F) be arbitrary. Via

d0 we consider M0 as a submodule of M1.

0 //M0

ϕ

��

d0 //M1

ψ}}z
z

z
z

F

Lemma 4.3.2 for A = M1, B = M0 implies that there exists an extension ψ ∈
homD(M1,F) of ϕ. Then we have d∗0(ψ) = ϕ.



80 CHAPTER 4. THE GENERALIZED HILBERT SERIES

Finally, we show that ker d∗i = im d∗i+1 for all i = 0, . . . , n− 2. Since (4.5) is a
complex, we have

d∗i (d
∗
i+1(ϕ)) = ϕ ◦ (di+1 ◦ di) = 0,

which means ker d∗i ⊇ im d∗i+1. Let ϕ ∈ ker d∗i , i.e. ϕ(im di) = {0}.

Mi
di //Mi+1

ϕ

��

di+1 //Mi+2

ψ
zzv

v
v

v
v

F

Since im di ⊆ kerϕ, there is an induced homomorphism

ϕ : Mi+1/ im di → F : m+ im di 7→ ϕ(m).

Due to the exactness of (4.5) and by the first isomorphism theorem we have

Mi+1/ im di = Mi+1/ ker di+1
∼= im di+1 ≤Mi+2,

so that we can consider ϕ as a homomorphism im di+1 → F . Now Lemma 4.3.2,
applied to A = Mi+2, B = im di+1, shows that there exists an extension ψ ∈
homD(Mi+2,F) of ϕ. For every m ∈Mi+1 the equations

ψ(di+1(m)) = ϕ(m+ im di) = ϕ(m)

hold, which means d∗i+1(ψ) = ϕ. Altogether we have ker d∗i = im d∗i+1.

We give an example which demonstrates the immediate benefit of an injective
signal space for the study of linear systems.

Example 4.3.5. Let k be a field, D = k[∂x1 , ∂x2 ] be the commutative polynomial
algebra over k and F a k-vector space of functions. We assume that ∂x1 , ∂x2 act
on F by partial differentiation with respect to x1 resp. x2, which turns F into a
D-module. In this example we consider the inhomogeneous linear system

(4.7) R1 η =

(
u1

u2

)
, where R1 :=

(
∂x1

∂x2

)
∈ D2×1 and u1, u2 ∈ F .

Obviously, one has the compatibility condition

(4.8) R2

(
u1

u2

)
= 0, where R2 = (∂x2 − ∂x1) ∈ D1×2.

TheD-moduleM = D/D1×2R1 has the following free resolution (see Def. 4.2.10):

0 // D
.R2 // D1×2

.R1 // D //M // 0.



4.3. INJECTIVE MODULES 81

By applying homD( · ,F) to each of these modules we obtain the cocomplex

0 Foo F2×1
(R2).oo F(R1).oo homD(M,F)oo 0.oo

If F is an injective D-module, then this complex is exact. In this case we find, as
in Prop. 4.1.8, that the solution set SolF(R1) (being the kernel of the homomor-
phism (R1).) is isomorphic to homD(M,F), i.e. Malgrange’s isomorphism. The
exactness at F2×1 means that the inhomogeneous system (4.7) is solvable if and
only if the compatibility condition (4.8) is fulfilled.

We recall that the algebra k[[x1, . . . , xn]] of formal power series in x1, . . . , xn
over the field k can be viewed as the dual vector space of the polynomial algebra
k[x1, . . . , xn] over k, i.e. k[x1, . . . , xn]

∗ ∼= k[[x1, . . . , xn]] as k-vector spaces. Now
we are going to consider the same construction for an Ore algebra.

Remark 4.3.6. Let D := k[x1, . . . , xn][∂1;σ1, δ1] . . . [∂m;σm, δm] be an Ore alge-
bra and set

F := homk(D, k),

i.e., F is the k-vector space of all homomorphisms from the k-vector space D to
k. Then F is a left D-module in virtue of

D ×F → F : (d, λ) 7→ (a 7→ λ(a d)).

The properties of this left D-action are easily checked. For all d1, d2 ∈ D, λ ∈ F
we have:

1 · λ = (a 7→ λ(a · 1)) = λ,

d2 · (d1 · λ) = d2 · (a 7→ λ(a d1)) = (a 7→ λ(a d2 d1)) = (d2 d1) · λ.

In fact, we have a pairing of D and F , i.e. a k-bilinear form

(4.9) ( , ) : D ×F → k : (d, λ) 7→ λ(d)

which is non-degenerate in both arguments. With respect to this pairing D and
F can be considered as dual to each other. Moreover, the linear map defined by
right multiplication in D by a fixed element d ∈ D and the linear map given by
left multiplication in F by the same element d are adjoint to each other:

(4.10) (a · d, λ) = λ(a · d) = (d · λ)(a) = (a, d · λ), a ∈ D, λ ∈ F .

Since every homomorphism λ ∈ F = homk(D, k) is uniquely determined by its
values for the elements of the k-basis (xα ∂β | α ∈ (Z≥0)

n, β ∈ (Z≥0)
m) of D, it

has a unique representation as formal power series

(4.11)
∑

α∈(Z≥0)n, β∈(Z≥0)m

(xα ∂β, λ)xα ∂β.



82 CHAPTER 4. THE GENERALIZED HILBERT SERIES

Due to (4.10), for every d ∈ D the representation of d · λ can be obtained as

(4.12)
∑

α∈(Z≥0)n, β∈(Z≥0)m

(xα ∂β, d · λ)xα ∂β =
∑

α∈(Z≥0)n, β∈(Z≥0)m

(xα ∂β · d, λ)xα ∂β.

The common case of formal power series over a field k is exemplified below in
Remark 4.5.1.

In the following corollary we will apply Janet’s algorithm for the class of
Ore algebras D treated in Section 2.5 in order to prove that homk(D, k) is an
injective left D-module. The crucial property is that the set of monomials of D
is partitioned by Janet’s algorithm into a set of monomials which are parametric
for the determination of a linear form λ ∈ homk(D, k) being orthogonal with
respect to the pairing in (4.9) to all elements of a given left ideal I of D, and
a set of monomials whose λ-values result from the choices of the values for the
parametric ones. Note that Janet’s algorithm provides both generalized Hilbert
series enumerating the respective sets of monomials (see Section 2.3).

Corollary 4.3.7. Let D = k[x1, . . . , xn][∂1;σ1, δ1] . . . [∂m;σm, δm] be an Ore al-
gebra as in Section 2.3 and let F := homk(D, k) be the left D-module defined in
Remark 4.3.6. Then F is injective.

Proof. We apply Baer’s criterion (see Lemma 4.3.3). Let I be a left ideal of D
and ϕ : I → F a homomorphism of left D-modules. Then ϕ defines a system of
linear equations with coefficients in D for an unknown λ ∈ F :

(4.13) d · λ = ϕ(d), d ∈ I.

It is easily seen from (4.11) and (4.12) that this system is equivalent to a system
of linear equations with coefficients in k for the unknowns (xα ∂β, λ), α ∈ (Z≥0)

n,
β ∈ (Z≥0)

m.
Since D is left Noetherian, the left ideal I is finitely generated. Let J be a

Janet basis for I with respect to a fixed monomial ordering (see Def. 2.2.11 and
Section 2.5). Since

⋃
(g,µ)∈J Mon(µ)g is a k-basis of I (see Thm. 2.2.13), for every

choice of values for the unknowns (m,λ) with monomials m in the complement
of lm(I) in Mon(D) a solution of (4.13) is uniquely determined. More precisely,
for every map

Mon(D)− [{lm(p) | (p, µ) ∈ J}]→ k

the values for the unknowns in {(lm(p), λ) | (p, µ) ∈ J} are uniquely determined
by the equations which are exhibited by the Janet basis. Then we have specified
values for all (xα ∂β, λ), α ∈ (Z≥0)

n, β ∈ (Z≥0)
m, in such a way that the element

λ ∈ F given by (4.11) is a solution of (4.13). Moreover, the homomorphism
ψ : D → F defined by ψ(1) := λ extends ϕ.

More examples of injective modules over certain Ore algebras will be given in
Example 4.4.5 in the next section.



4.4. INJECTIVE COGENERATORS 83

4.4 Injective Cogenerators

In this section we complement the homological properties of an injective left D-
module with properties of a cogenerator for the category of left D-modules to be
defined below. If an injective left D-module F is a cogenerator for the category
of left D-modules, then the structural properties of the space of solutions in F
of a linear system are reflected faithfully by the module which is associated with
the linear system. For linear systems with constant coefficients, the connection
between the module which is defined by the system equations and the solution
space was examined in [Obe90] using these notions from homological algebra.

First we consider a (not necessarily commutative) ring D with 1.

Definition 4.4.1. Let D be a ring with 1.

(a) We denote by DM the category of left D-modules.

(b) A left D-module G is called a generator for DM if for every left D-module
M we have:

〈 imϕ | ϕ ∈ homD(G,M) 〉 = M.

(c) A left D-module C is called a cogenerator for DM if for every left D-module
M we have: ⋂

ϕ∈homD(M,C)

kerϕ = {0}.

Remarks 4.4.2. Let D be a ring with 1.

(a) We show that the free left D-module D of rank 1 is a generator for DM . Let
M be any left D-module. Then for every m ∈M there is a homomorphism
D → M defined by 1 7→ m. Hence 〈 imϕ | ϕ ∈ homD(D,M) 〉 ⊇ M . The
inverse inclusion is clear.

(b) A left D-module C is a cogenerator for DM if and only if for every left
D-module M and every 0 6= m ∈ M there exists ϕ ∈ homD(M,C) such
that ϕ(m) 6= 0.

The following proposition is of crucial importance for the algebraic approach
to linear systems because, if a left D-module F is a cogenerator for DM , then
the left D-module which is defined by the system equations reflects structural
properties of the F -solutions of the system.

Proposition 4.4.3. Let F be a left D-module which is a cogenerator for DM .
Then for every complex

(4.14) 0 //M0
d0 //M1

d1 //M2
d2 // . . . dn−1 //Mn

// 0



84 CHAPTER 4. THE GENERALIZED HILBERT SERIES

of left D-modules we have: if

(4.15) 0 homD(M0,F)oo homD(M1,F)
d∗0oo

d∗1oo

homD(M2,F) . . .
d∗2oo homD(Mn,F)

d∗n−1oo 0oo

is an exact sequence, where d∗i , is defined as in Prop. 4.3.4, i = 0, . . . , n−1, then
(4.14) is exact.

Proof. Let us assume that (4.15) is exact. The exactness of (4.14) is shown in
three steps. First we show that dn−1 is surjective (see Rem. 4.2.2 (b)). Since d∗n−1

is injective (see Rem. 4.2.2 (a)), we have

ker d∗n−1 = {ϕ ∈ homD(Mn,F) | ϕ(im dn−1) = {0} } = {0}.

There is a one-to-one correspondence between the homomorphisms Mn → F
which map the elements of im dn−1 to zero and the homomorphismsMn/ im dn−1 →
F . Hence,

homD(Mn/ im dn−1,F) = {0}.
This implies ⋂

ϕ∈homD(Mn/ im dn−1,F)

kerϕ = Mn/ im dn−1,

and therefore Mn/ im dn−1 = {0} because F is a cogenerator for DM . We con-
clude that im dn−1 = Mn.

Next we prove that d0 is injective. Let m ∈ ker d0 be arbitrary. It follows
m ∈ ker d∗0(ϕ) for all ϕ ∈ homD(M1,F). Since d∗0 is surjective, we have

{ d∗0(ϕ) | ϕ ∈ homD(M1,F) } = homD(M0,F).

Therefore,

m ∈
⋂

ϕ∈homD(M0,F)

kerϕ = {0}

because F is a cogenerator for DM . Hence, d0 is injective.
Finally, we show that ker di+1 = im di for all i = 0, . . . , n − 2. The inclusion

ker di+1 ⊇ im di is clear by the assumption that (4.14) is a complex.
We note once more that there is a one-to-one correspondence between the

homomorphisms ϕ : Mi+1 → F whose kernel contains im di and the homomor-
phisms ϕ : Mi+1/ im di → F . Since F is a cogenerator for DM , we have

(4.16)
⋂

ϕ∈homD(Mi+1/ im di,F)

kerϕ = {0}.



4.4. INJECTIVE COGENERATORS 85

The exactness of (4.15) implies

{ϕ ∈ homD(Mi+1,F) | ϕ(im di) = {0} } = ker d∗i = im d∗i+1.

Therefore, (4.16) shows that

⋂

ϕ∈im d∗i+1

kerϕ = im di.

Now it is easy to prove ker di+1 ⊆ im di. Let m ∈ ker di+1 be arbitrary. Then
ϕ(m) = 0 for all ϕ ∈ im d∗i+1, which, due to the previous equation, implies
m ∈ im di. Thus we have shown that ker di+1 ⊆ im di.

We quote the following theorem about the existence of injective cogenerators.
However, the constructive proof given in [Rot79] involves modules which are
useless for effective computations.

Theorem 4.4.4. For every ring D with 1 there exists an injective cogenerator
F for the category DM of left D-modules.

In the following examples we record the most important examples of signal
spaces which are injective cogenerators for the category of left D-modules for a
few Ore algebras D.

Examples 4.4.5. (a) Let k ∈ {R,C} and D = k[s1, . . . , sr] the commutative
polynomial algebra over k. Then the following D-modules are injective
cogenerators for DM ([Mal63], [Ehr70], [Pal70], [Obe90, Thm. 2.54, Para-
graphs 3 and 4]):

(1) the discrete signal space kN
r

, whose elements can be represented by
sequences a = (an)n∈Nr , on which D acts by shifts:

(si a)n = a(n1,...,ni−1, ni+1, ni+1,...,nr), n ∈ Nr, 1 ≤ i ≤ r;

kN
r

can also be viewed as the set of formal power series, in which case
the action of D is given by left shifts of the coefficient sequences;

(2) the space of convergent power series in r variables with values in k as
a submodule of kN

r

;

(3) the space C∞(Ω, k) of k-valued smooth functions on an open and con-
vex set Ω ⊆ Rr, where si acts by partial differentiation with respect
to the i-th variable, 1 ≤ i ≤ r;

(4) the space D′(Ω, k) of k-valued distributions on an open and convex set
Ω ⊆ Rr, where D acts again by partial differentiation.



86 CHAPTER 4. THE GENERALIZED HILBERT SERIES

(b) [Zer06] For the localized Weyl algebraB1(R) (see Ex. 2.4.5 (a), Ex. 4.1.1 (a))
the R-valued functions on R which are smooth except in finitely many
points form an injective cogenerator for B1(R)M .

(c) [FO98] Let Ω be an open interval in R and define the C-algebra R(Ω) :=
{f/g | f, g ∈ C[t], g(λ) 6= 0 for all λ ∈ Ω}. Moreover, let D := R[∂] be the
skew polynomial ring with commutation rule (cf. Def. 2.4.1)

∂ a = a ∂ +
da

dt
, a ∈ R.

Then the space of Sato’s hyperfunctions on Ω is an injective cogenerator
for DM .

We are going to present an injective cogenerator F for the category of left D-
modules, where D is an Ore algebra as in Section 2.5. To this end, the following
lemma will be very useful to prove the cogenerator property. The isomorphism
described in this lemma is in fact a particular part of a natural equivalence of
functors, which is not needed here in the full generality. For more details we
refer to [Rot79], [Bou80]. For the case of modules over commutative rings this
natural equivalence was also applied in [Obe90] to prove the cogenerator property
of certain modules.

Lemma 4.4.6. Let D be a (not necessarily commutative) ring with 1 which is
also a k-algebra and M a left D-module. Then we have

homD(M, homk(D, k)) ∼= homk(M,k)

as k-vector spaces. Let 0 6= m ∈M . Then there exists ϕ ∈ homD(M, homk(D, k))
satisfying ϕ(m) 6= 0 if and only if there exists ψ ∈ homk(M,k) which satisfies
ψ(m) 6= 0.

Proof. First of all, it is verified in the same way as in Remark 4.3.6 that homk(D, k)
is a left D-module with action

D × homk(D, k)→ homk(D, k) : (d, β) 7→ (a 7→ β(a d)),

so that homD(M, homk(D, k)) is well-defined. Let us define

Φ : homD(M, homk(D, k)) −→ homk(M,k) :

α 7−→ (m 7→ α(m)(1))

and

Ψ : homk(M,k) −→ homD(M, homk(D, k)) :

β 7−→ (m 7→ (d 7→ β(dm))).



4.4. INJECTIVE COGENERATORS 87

Then Φ and Ψ are k-linear maps which are inverse to each other. The map Φ
is well-defined because every homomorphism of left D-modules is in particular a
k-linear map. In order to show that Ψ is well-defined we have to verify that for
every β ∈ homk(M,k), α := Ψ(β) is a homomorphism of left D-modules. Let
m1, m2 ∈ M and d1, d2 ∈ D be arbitrary. Then for all d ∈ D and i = 1, 2 we
have:

di α(mi) = (d 7→ α((d di)mi)).

Therefore,

(d1 α(m1) + d2 α(m2))(d) = α(d d1m1) + α(d d2m2) = α(d (d1m1 + d2m2)),

which shows that Ψ(β)(d1m1 + d2m2) = d1 Ψ(β)(m1) + d2 Ψ(β)(m2). The fact
that Φ and Ψ are k-linear is obvious. Finally, for all β ∈ homk(M,k) we have

Φ(Ψ(β)) = (m 7→ β(m))

and for all α ∈ homD(M, homk(M,k)), m ∈M ,

Ψ(Φ(α))(m) = (d 7→ α(dm)(1)) = (d 7→ dα(m)(1)) = (d 7→ α(m)(1 · d)).

Altogether it was proved that Φ and Ψ are isomorphisms which are inverse to
each other.

Let us fix 0 6= m ∈ M . If ϕ ∈ homD(M, homk(M,k)) satisfies ϕ(m) 6= 0,
then there exists a ∈ D such that ϕ(m)(a) 6= 0. We define ψ ∈ homk(M,k)
by ψ(m̃) := ϕ(m̃)(a), m̃ ∈ M . Then we have ψ(m) 6= 0. Conversely, if ψ ∈
homk(M,k) satisfies ψ(m) 6= 0, then for ϕ ∈ homD(M, homk(M,k)) defined by
ϕ(m) := (d 7→ ψ(dm)) we have ϕ(m) 6= 0 because ϕ(m)(1) 6= 0.

Now we are well prepared to present an injective cogenerator F for the cat-
egory of left D-modules, where D is an Ore algebra for which Janet bases are
defined. However, in general, we can give no analytic interpretation for this
injective cogenerator.

Theorem 4.4.7. Let D = k[x1, . . . , xn][∂1;σ1, δ1] . . . [∂m;σm, δm] be an Ore alge-
bra as in Section 2.5 and let F := homk(D, k). Then F is an injective cogenerator
for DM .

Proof. The fact that F is injective was shown in Corollary 4.3.7.
We prove that F is a cogenerator for DM by showing that for every left

D-module M and every 0 6= m ∈ M there exists ϕ ∈ homD(M,F) such that
ϕ(m) 6= 0 (see Remark 4.4.2 (b)). Let M be a left D-module and 0 6= m ∈ M
be arbitrary. By the axiom of choice there exists ψ ∈ homk(M,k) which satisfies
ψ(m) 6= 0. Then, according to Lemma 4.4.6, there exists ϕ ∈ homD(M,F) such
that ϕ(m) 6= 0.



88 CHAPTER 4. THE GENERALIZED HILBERT SERIES

4.5 The Generalized Hilbert Series for Partial

Differential Equations

In this section we explain the importance of the generalized Hilbert series for
systems of linear partial differential equations.

Remark 4.5.1. Let D = k[∂1, . . . , ∂n] be the commutative polynomial algebra
over a field k of characteristic zero, and let F := k[[x1, . . . , xn]] ∼= homk(D, k)
be the k-algebra of formal power series. Then every p ∈ F can be represented
uniquely as

(4.17)
∑

α∈(Z≥0)n

cα
xα

α!
, cα ∈ k, α! := α1! · · ·αn!.

We letD act on F from the left by partial differentiation of the formal power series
(4.17) and consider (xα/α! | α ∈ (Z≥0)

n) as the dual basis of (∂α | α ∈ (Z≥0)
n)

with respect to the pairing (4.9), i.e.

(∂β,
∑

α∈(Z≥0)n cα
xα

α!
) = cβ.

For a given system of linear partial differential equations with constant coeffi-
cients for one unknown function we compute a Janet basis J for the ideal of D
which is generated by the left hand sides of these equations. By considering the
differential equations as linear equations for (∂β, λ), β ∈ (Z≥0)

n, where λ ∈ F
is a formal power series solution, Janet’s algorithm partitions Mon(D) into a set
of monomials m for which (m,λ) ∈ k can be chosen arbitrarily and the set of
monomials S := {lm(p) | (p, µ) ∈ J} for which (lm(p), λ) ∈ k is uniquely deter-
mined by these choices. The set S is the Mon(D)-multiple closed set generated
by the leading monomials of the polynomials in the Janet basis J . In particular,
the k-dimension of the space of formal power series solutions can be computed
as the number of monomials in the complement C of S in Mon(D). In fact, the
generalized Hilbert series HC(∂1, . . . , ∂n) of C enumerates a basis for the Taylor
coefficients (∂β, λ) of λ whose values can be assigned freely.

In this context, M. Janet calls the monomials ∂β in Mon(D) − S paramet-
ric derivatives because the corresponding Taylor coefficients (∂β, λ) of a formal
power series solution λ can be chosen arbitrarily. The monomials in S are called
principal derivatives. The Taylor coefficients (∂β, λ) which correspond to prin-
cipal derivatives ∂β are uniquely determined by k-linear equations in terms of
the Taylor coefficients of parametric derivatives. Of course, the extension of this
method to determine the formal power series solutions of a linear system of partial
differential equations is extended to the case of more than one unknown func-
tion in a straightforward way. The Maple package Janet provides procedures
SolSeries and PolySol which compute truncated formal power series solutions
and polynomial solutions of linear systems of PDEs up to a given degree.



4.5. THE GENERALIZED HILBERT SERIES FOR PDES 89

Remark 4.5.2. The previous remark also applies to linear systems of par-
tial differential equations whose coefficients are rational functions in the inde-
pendent variables x1, . . . , xn, i.e. D = k[∂1, . . . , ∂n] is replaced by Bn(k) =
k(x1, . . . , xn)[∂1, . . . , ∂n] (see Ex. 2.4.5 (a)). Of course, in this case a formal power
series solution is only well-defined if the left submodule M of Bn(k)

q which repre-
sents the left hand sides of the equations is also a left submodule of A[∂1, . . . , ∂n]

q,
where A is a k-subalgebra of Bn(k) whose elements do not have a pole in 0 ∈ kn
and the Janet basis for M is computed within A[∂1, . . . , ∂n]

q. In other words, a
formal power series solution is only well-defined if 0 ∈ kn is not a zero of any
denominator occurring in the course of Janet’s algorithm.

The next example illustrates the generalized Hilbert series in very easy cases.

Example 4.5.3.

> with(Janet):

Let us consider an ordinary differential equation for one unknown function. We
are interested in formal power series solutions of d2u

dt2
= 0.

The independent variable is t, the dependent variable is u.

> ivar := [t]; dvar := [u];

ivar := [t]

dvar := [u]

The left hand side is entered in a list:

> L := [diff(u(t),t,t)];

L := [ d
2

dt2
u(t)]

The Janet basis of the left ideal I in the localized Weyl algebra B1(Q) generated
by ∂2 is trivially computed as follows:

> J := JanetBasis(L, ivar, dvar);

J := [[ d
2

dt2
u(t)], [t], [u]]

The parametric derivatives are given by the following list:

> ParamDeriv(ivar, dvar);

[u(t), d
dt

u(t)]

In general, ParamDeriv returns the generalized Hilbert series of the complement
of lm(I) in Mon(B1(Q)) as described in Remark 2.3.3. However, in case this



90 CHAPTER 4. THE GENERALIZED HILBERT SERIES

complement consists of finitely many elements only, the result is just the list of
these elements.

Let us determine all truncations of formal power series solutions of d2u
dt2

= 0
up to degree 2:

> SolSeries(J, 2);

[u(t) = C1 0 + C1 1 t], [C1 0, C1 1]

In fact, all formal power series solutions are constants or polynomials of degree 1.

Now we assume that we are given the Janet basis which corresponds to the
single equation t d

2u
dt2

= 0. Since the procedure JanetBasis divides by the leading
coefficient, we have to force the Janet package to accept the following input as a
Janet basis.

> J := AssertJanetBasis([t*diff(u(t),t,t)], ivar, dvar);

J := [[t ( d
2

dt2
u(t))], [t], [u]]

Of course, the parametric derivatives are the same as above:

> ParamDeriv(ivar, dvar);

[u(t), d
dt

u(t)]

However, since the procedure SolSeries has to divide by t when deriving linear
relations for the Taylor coefficients of a formal power series solution from the
Janet basis, such formal power series solutions are not well-defined in this case.

> SolSeries(J, 2);

Error, (in Janet/SolSeries) invalid point; solution of, t = 0

Let us now exemplify the generalized Hilbert series of the JanetOre package.

> with(JanetOre):

We define the Weyl algebra A1(Q) by the variables t and D and the relation
D t = tD + 1, which is abbreviated by “weyl(D,t)” when using JanetOre.

> var := [D,t]; ops := [weyl(D,t)];

var := [D, t]

ops := [weyl(D, t)]



4.6. THE BERNSTEIN FILTRATION 91

The left hand side of t d
2u
dt2

= 0 is represented by the following polynomial in
A1(Q):

> L := [t*D^2];

L := [tD2]

We compute a Janet basis of the left ideal I of A1(Q) which is generated by tD2.

> JBasis(L, var, ops);

[tD2]

The generalized Hilbert series of the complement of I in Mon(A1(Q)) is

> JFactorModuleBasis(var);

1

1− t +
D

1− t +
D2

1−D

However, it should be much more difficult to relate the generalized Hilbert series
to a vector space basis of solutions of t d

2u
dt2

= 0, e.g. in the space of Sato’s
hyperfunctions (see Ex. 4.4.5 (c)).

4.6 The Bernstein Filtration

We close this chapter by relating the generalized Hilbert series to a well-known
concept in the theory of algebraic D-modules [Cou95]: the Bernstein filtration.
In this section we generalize the Bernstein filtration to the class of Ore algebras
to which we adapted Janet’s algorithm in Chapter 2. For a submodule of a
finitely generated free module over such an Ore algebra which is endowed with
the Bernstein filtration, the Hilbert series of the associated graded module is then
easily obtained from the generalized Hilbert series which is provided by Janet’s
algorithm.

First we need to give the definitions of filtered resp. graded k-algebras and
filtered resp. graded modules over filtered resp. graded k-algebras.

Definition 4.6.1. Let D be a (not necessarily commutative) k-algebra.

(a) A family G = (Gi)i∈Z≥0
of k-subspaces of D is a grading of D, if

D =
⊕

i∈Z≥0

Gi and Gi ·Gj ⊆ Gi+j for all i, j ∈ Z≥0.

Then D is said to be graded.



92 CHAPTER 4. THE GENERALIZED HILBERT SERIES

(b) Let G = (Gi)i∈Z≥0
be a grading of D and let M be a left D-module. A

family Γ = (Γi)i∈Z≥0
of k-subspaces of M is a grading of M with respect to

G (or a G-grading of M), if

M =
⊕

i∈Z≥0

Γi and Gi · Γj ⊆ Γi+j for all i, j ∈ Z≥0.

Often an additional assumption on Γ is made on which we also agree here,
namely that dimk Γi is finite for all i ∈ Z≥0. Then M is said to be graded
with respect to G.

(c) Let G = (Gi)i∈Z≥0
be a grading of D and let M be a left D-module with G-

grading Γ = (Γi)i∈Z≥0
. The Hilbert series of M with respect to Γ is defined

by

HM,Γ(λ) :=
∑

i∈Z≥0

(dimk Γi)λ
i ∈ Z[[λ]].

Definition 4.6.2. Let D be a (not necessarily commutative) k-algebra.

(a) A family F = (Fi)i∈Z≥0
of k-subspaces of D is a filtration of D, if we have

for all i, j ∈ Z≥0:

Fi ⊆ Fi+1, D =
⋃

i∈Z≥0

Fi, and Fi · Fj ⊆ Fi+j.

Then D is said to be filtered.

(b) Let F = (Fi)i∈Z≥0
be a filtration of D and let M be a left D-module. A

family Φ = (Φi)i∈Z≥0
of k-subspaces of M is a filtration of M with respect

to F (or an F -filtration of M), if it satisfies for all i, j ∈ Z≥0:

Φi ⊆ Φi+1,
⋃

i∈Z≥0

Φi = M, and Fi · Φj ⊆ Φi+j.

Similarly to Def. 4.6.1 we make the additional assumption on Φ that dimk Φi

is finite for all i ∈ Z≥0. Then M is said to be filtered with respect to F .

The next remark shows that every filtration leads to a grading.

Remark 4.6.3. Every filtration F = (Fi)i∈Z≥0
of D defines a graded k-algebra

grF D :=
⊕

i∈Z≥0

Fi/Fi−1, where F−1 := {0}.

Similarly, if a left D-module M has a filtration Φ = (Φi)i∈Z≥0
with respect to F ,

then
grΦM :=

⊕

i∈Z≥0

Φi/Φi−1, where Φ−1 := {0},

is a left grF D-module with F -grading (Φi/Φi−1)i∈Z≥0
.



4.6. THE BERNSTEIN FILTRATION 93

Definition 4.6.4. Let k be a field, D = k[x1, . . . , xn][∂1;σ1, δ1] . . . [∂m;σm, δm] an
Ore algebra and q ∈ N. Let 0 6= p ∈ Dq be given in its unique representation

p =

q∑

i=1

∑

a∈(Z≥0)n

b∈(Z≥0)m

ci,a,b x
a ∂b ei, ci,a,b ∈ k,

with respect to the k-basis Mon(Dq) of Dq (see Remark 2.5.2). Then the total
degree of p is defined by

deg(p) := max{ |a|+ |b| | ci,a,b 6= 0 for some i ∈ {1, . . . , q} }.

Moreover, we set deg(0) := −∞.

Motivated by the Bernstein filtration of the Weyl algebras (see [Cou95]) we
give the following definition of the Bernstein filtration of Ore algebras for which
Janet bases are defined.

Definition 4.6.5. Let k be a field andD = k[x1, . . . , xn][∂1;σ1, δ1] . . . [∂m;σm, δm]
an Ore algebra with

σi(xj) = cijxj + dij, cij ∈ k − {0}, dij ∈ k,
deg(δi(xj)) ≤ 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Then the Bernstein filtration B = (Bi)i∈Z≥0
of D is defined by

Bi := { p ∈ D | deg(p) ≤ i }, i ∈ Z≥0.

Remark 4.6.6. Let D be an Ore algebra as in the previous definition. Then
the graded k-algebra grBD with respect to the Bernstein filtration B of D is
isomorphic to the commutative polynomial algebra over k in n+m variables.

Remark 4.6.7. Let D be an Ore algebra as in Definition 4.6.5, q ∈ N and let M
be a left submodule of Dq. We endow D with the Bernstein filtration B. Then
M has a B-filtration Φ = (Φi)i∈Z≥0

defined by

Φi := { p ∈M | deg(p) ≤ i }, i ∈ Z≥0.

By Remark 4.6.3, grΦM is a graded grBD-module, more precisely a graded
k[ξ1, . . . , ξn, η1, . . . , ηm]-module with B-grading Γ = (Γi)i∈Z≥0

given by

Γi := Φi/Φi−1, i ∈ Z≥0, where Φ−1 := {0}.

Now we fix the a monomial ordering < on Mon(Dq) which is compatible with
the total degree, i.e. for all m1,m2 ∈ Mon(Dq) we have:

deg(m1) < deg(m2) ⇒ m1 < m2.



94 CHAPTER 4. THE GENERALIZED HILBERT SERIES

Let J be a Janet basis for M with respect to this monomial ordering. Accord-
ing to Theorem 2.2.13 (b),

⋃
(g,µ)∈J Mon(µ)g is a k-basis of M . This k-basis is

enumerated by the generalized Hilbert series

Hlm(M)(x1, . . . , xn, ∂1, . . . , ∂m),

which is easily computed from J by using Remark 2.3.3. Since < is compatible
with the total degree,

⋃

(g,µ)∈J

Mon(µ) (lm(g) + Φdeg(g)−1)

is a k-basis of grΦM , so that the coefficient of λi in the formal power series
Hlm(M)(λ, . . . , λ) equals dimk Γi for all i ∈ Z≥0. Therefore, we have

Hlm(M)(λ, . . . , λ) = HgrΦM,Γ(λ).

The Hilbert series of the graded module grΦM is obtained from the generalized
Hilbert series of lm(M) by substituting the indeterminate λ for all variables x1,
. . . , xn, ∂1, . . . , ∂m.



Chapter 5

Algebraic Systems Theory

In this chapter we study structural properties of control systems. Let us first give
a very short introduction to the most important system theoretic notions.

Systems theory comprises the study of systems in a general manner. However,
for this thesis it is sufficient to think of a system as modelling certain natural
phenomena, engineering or economic processes, mechanical systems, chemical
processes etc. We confine ourselves to systems for which certain types of equations
determine the relations among quantities of the system which are of interest. The
quantities which are related by these equations are called the system variables.
Some of them are considered to form the state of the system, which is supposed
to represent the configuration of the system. It depends on the viewer’s intention
which variables are included in the state. Although a state is very convenient for
the interpretation of the observed properties of the system, it will only play a
minor role in what follows because the algebraic treatment of these systems does
not depend on the agreement on a state.

Among the relevant systems are dynamical systems which are either described
by ordinary differential equations in the continuous-time case or by difference
equations in the discrete-time case. But the scope of the algebraic approach which
is used in this thesis also admits, e.g. systems described by partial differential
equations or differential time-delay systems (i.e. systems governed by retarded
differential equations). However, only deterministic systems are considered here.

The types of systems are further classified, e.g. depending on whether the state
consists of finitely many or infinitely many quantities, whether the equations
describing the system are all linear or nonlinear, whether they have constant
coefficients or not, etc.

One of the basic questions to ask about a given system is whether it is con-
trollable, i.e. whether its state can be influenced by certain degrees of freedom. A
system is completely controllable if these degrees of freedom can be manipulated
in such a way as to make the state attain desired values. For a dynamical system
described by ordinary differential equations, this property can be viewed as the

95



96 CHAPTER 5. ALGEBRAIC SYSTEMS THEORY

possibility to connect any trajectory of the system which started in the past to
any future trajectory which respects the system laws.

As a particular case of controllability, in most applications it is desired to
stabilize the system, i.e. to steer it into a certain state of rest.

Another interesting property, which is in some sense dual to controllability, is
observability. Let us suppose that a state is chosen and certain functions of the
system variables are fixed which serve as outputs, which means that their actual
values are available to us. Then the system is said to be observable if the values
of the state variables can be recovered from these output variables alone.

The system theoretic philosophy behind the algebraic way of studying these
systems presented in this chapter is the behavioral approach established by J. C.
Willems [PW98], [Wil91]. For this approach a signal space is fixed which consists
of all functions (e.g. depending on time in the case of ordinary differential equa-
tions) which are admissible candidates for the solutions of the system equations.
As a subset of this signal space the set of solutions of these equations is deter-
mined. The set of solutions is the behavior of the system. For continuous-time
dynamical systems, the behavior thus consists of all trajectories that are solutions
of the ordinary differential equations for some initial conditions.

Depending on the type of the system under consideration and other aims,
the signal space is chosen to be e.g. the vector space of smooth functions, the
vector space of distributions, etc. As explained in the previous chapter, for the
investigation of linear systems a signal space is preferably an injective cogener-
ator because the structural properties of the solution space can be studied by
examining the module which is associated with the linear system.

A classification of certain structural properties of linear systems in terms of
the properties of the associated module is recalled in Section 5.1. The most im-
portant references are [PQ98, PQ99b, PQ99a, Qua99, Woo00]. In Section 5.2
a straightforward but practicable method for computing presentations of exten-
sion groups extiD(M,D) are given. Controllability is checked in Section 5.3 on
two examples. The first is a simple mechanical system, the second one comes
from chemical engineering. In Section 5.4 we give a detailed example of how
autonomous observables of the linearized system can be lifted to autonomous
observables of the given nonlinear one. Finally, a short survey of the OreModules
package is given in Section 5.5.

For further details about systems theory in general and algebraic methods we
refer to [PW98], [Son98], [BY83], [Zer00], [GL01]. For a detailed account on the
algebraic approach which is pursued here see [Pom01].



5.1. STRUCTURAL PROPERTIES OF LINEAR SYSTEMS 97

5.1 Structural Properties of Linear Systems

In this section we give a very concise overview of the module-theoretic characteri-
zations of structural properties of linear systems which are needed in the following
sections and chapters. Figure 5.1 is essentially due to A. Quadrat and we refer
to [Qua99] for the applications of homological algebra to systems theory.

Definition 5.1.1. [Woo00, CQR05] Let D be a left Noetherian Ore algebra,
R ∈ Dq×p, F a left D-module, and B = { η ∈ Fp×1 | Rη = 0 } the behavior
defined by R and F .

(a) An observable of B is a left D-linear combination of the system variables
ηi. An observable ψ is called autonomous if there exists 0 6= P ∈ D such
that P ψ = 0. An observable is said to be free if it is not autonomous.

(b) A behavior B is said to be controllable if every observable of B is free.

Remark 5.1.2. The notion of controllability defined in Def. 5.1.1 is independent
of any choice of variables for the system; in particular, no agreement on a state
of the system is needed.

For linear systems governed by ordinary differential equations, the equivalence
of this notion of controllability and the understanding of controllability as the
possibility to connect any past trajectory to any future trajectory was shown in
[FG93].

More generally, in [PS98], parametrizability of the behaviors of linear systems
of partial differential equations with constant coefficients in the sense of Chap-
ter 6, which is in fact equivalent to controllability, was proved to be equivalent
to the possibility to patch any two solutions of the system.

We quote the following important theorem from [CQR05]. The references
given in the theorem point to work on particular classes of systems (i.e. for
particular Ore algebras D).

Theorem 5.1.3. Let D be a left Noetherian Ore algebra, R ∈ Dq×p, and F
an injective left D-module which is also a cogenerator for DM . Moreover, let
M = D1×p/D1×q R be the left D-module which is associated with the linear system
Rη = 0 and B = { η ∈ Fp×1 | Rη = 0 } its behavior.

(a) [Pom95, Pom01, PQ99b, Woo00] The observables of B are in one-to-one
correspondence with the elements of the left D-module M .

(b) [FM98, PS98, Pom95, Pom01, PQ99b, Woo00] The autonomous observables
of B are in one-to-one correspondence with the torsion elements of M .

(c) [FM98, Mou95, PS98, Pom95, Pom01, PQ99b] B is controllable if and only
if M is torsion-free.



98 CHAPTER 5. ALGEBRAIC SYSTEMS THEORY

Definition 5.1.4. Let D be a left Noetherian Ore algebra, R ∈ Dq×p and M =
D1×p/D1×q R a leftD-module. The transposed module ofM is the rightD-module

M⊤ = Dq×1/RDp×1.

If D is a commutative ring, then we have M⊤ = D1×q/(D1×pRT ), which explains
the terminology.

Of course, the module M⊤ depends on the presentation of M as the left
D-module D1×p/D1×q R which is not indicated in the notation. When the trans-
posed module M⊤ of M will be used, M will always be given by a fixed presen-
tation M = D1×p/D1×q R.

The next theorem is very important for the structural analysis of linear sys-
tems over Ore algebras D. It characterizes torsion-free, reflexive and projective
left D-modules in terms of certain extension groups. This theorem will be ap-
plied many times in the subsequent sections and chapters. For the definition of
extension groups we refer to Def. 4.2.12, p. 75.

Theorem 5.1.5. [PQ03] Let D be a left and right Noetherian domain, R ∈ Dq×p

and consider the left D-module M presented by

D1×q .R // D1×p //M // 0.

Let M⊤ be the transposed module of M :

0 M⊤oo Dq×1oo Dp×1R.oo M∗oo 0.oo

(a) We have
t(M) ∼= ext1

D(M⊤, D).

In particular, M is torsion-free if and only if ext1
D(M⊤, D) = 0.

(b) M is reflexive if and only if extiD(M⊤, D) = 0 for i = 1, 2.

(c) M is projective if and only if extiD(M⊤, D) = 0 for all i = 1, . . . , rgld(D),
where the right global dimension rgld(D) of D is defined as the supremum
of the lengths of projective resolutions of right D-modules [MR00].

Remark 5.1.6. The right global dimension rgld(k[x1, . . . , xn]) of the polynomial
algebra over k equals n. If k has characteristic zero, then for the Weyl algebra
An(k) we also have rgld(An(k)) = n. Hence, in order to check whether a finitely
presented left An(k)-module is projective it is sufficient to compute n extension
groups of the transposed module M⊤. For more details see [MR00], [CQR05].

The important characterization of structural properties of linear systems in
terms of module properties and their counterparts in homological algebra are
summarized in the next figure.



5.1. STRUCTURAL PROPERTIES OF LINEAR SYSTEMS 99

Figure 5.1: characterizing system/module properties

system module
homological

algebra

autonomous observables t(M) 6= 0 ext1
D(M⊤, D) 6= 0

controllability,
parametrizability

t(M) = 0 ext1
D(M⊤, D) = 0

extiD(M⊤, D) = 0,
parametrizability

reflexive
of the parametrization

i = 1, 2

. . . . . . . . .

extiD(M⊤, D) = 0,
chain of

projective
n parametrizations

1 ≤ i ≤ n := rgld(D)

in general no criteria,
flatness free but for a principal ideal domain:

torsion-free ⇐⇒ free



100 CHAPTER 5. ALGEBRAIC SYSTEMS THEORY

5.2 Computation of extiD(M,D)

In the previous section a classification of structural properties of linear systems
was recalled. First of all, the structural properties of the system under consider-
ation correspond to properties of its associated module M . The latter properties
can be checked by computing extension groups extiD(M⊤, D) of the transposed
module M⊤ of M (see Figure 5.1). In this section we describe a straightforward
algorithm to compute a presentation of extiD(M,D), i ∈ Z≥0, for a left Noethe-
rian Ore algebra D. It assumes that generating sets of finitely presented left
D-modules (in particular syzygy modules) can be constructed. For the class of
Ore algebras considered in Section 2.5, Janet’s algorithm lends itself to this pur-
pose. The algorithm presented in this section will be applied in the subsequent
sections and chapters to investigate linear systems using the module-theoretic
approach.

First let D be a left Noetherian ring. We will confine ourselves to left Noethe-
rian Ore algebras later on. We recall Definition 4.2.12 of extiD(M,D), i ∈ Z≥0.

Definition 5.2.1. Let D be a left Noetherian Ore algebra, M a finitely generated
left D-module, F a left D-module and

(5.1) . . . d2 // P1
d1 // P0

d0 //M // 0

a projective resolution of M . For i ∈ Z≥0, the abelian groups extiD(M,F) are
defined as the defects of exactness of the cochain complex

. . . homD(P2,F)oo homD(P1,F)
d∗2oo homD(P0,F)

d∗1oo 0,oo

where the homomorphism d∗i , i ≥ 1, is defined by

d∗i (ϕ) = ϕ ◦ di, ϕ ∈ homD(Pi−1,F).

In other words, we have:





ext0
D(M,F) = ker d∗1 = homD(M,F),

extiD(M,F) = ker d∗i+1/ im d∗i , i ≥ 1.

In this section we consider the case F = D. For a left D-module M the
abelian group extiD(M,D) is a right D-module. If effective methods to compute
with (finitely generated) left D-modules are available, then it is favourable to deal
exclusively with leftD-modules by turning extiD(M,D) into a leftD-module. This
can be achieved with an involution of the ring D which is defined next.



5.2. COMPUTATION OF EXTENSION GROUPS 101

Definition 5.2.2. [Jac85] Let D be a (not necessarily commutative) ring with 1.
An automorphism θ of the additive group of D which maps 1 to 1 and satisfies

θ(a1 a2) = θ(a2) θ(a1) for all a1, a2 ∈ D
is called an anti-automorphism of D. If moreover θ satisfies θ ◦ θ = id, then θ is
called an involution of D.

Examples 5.2.3. (a) Let us consider the Weyl algebra in 2n indeterminates
An(k) = k[x1, . . . , xn][∂1, . . . , ∂n] (see Ex. 2.4.5 (a), Ex. 4.1.1 (a)). The most
common involution θ of An(k) is defined by

xi 7−→ xi, ∂i 7−→ −∂i, i = 1, . . . , n.

This also defines an involution for Bn(k) in a similar way.

(b) Let D = Sh (see Ex. 2.4.5 (b), Ex. 4.1.1 (b)). Then an involution θ of D is
defined by

t 7−→ −t, δh 7−→ δh.

Remark 5.2.4. Let D be a (not necessarily commutative) ring with 1 which has
an involution θ, and let M be a right D-module. Then M can be considered as
a left D-module by defining the action of D to be

r ·m := m · θ(r), r ∈ D, m ∈M.

Of course, the involution can be used in the same way to turn left D-modules
into right D-modules.

The following definition introduces a short notation for the result of applying
an involution θ to each entry of RT for a given matrix R ∈ Dq×p.

Definition 5.2.5. Let D be a (not necessarily commutative) ring with 1 which
has an involution θ. For each matrix R ∈ Dq×p we define the matrix

θ(R) := (θ(RT
ij))1≤i≤p, 1≤j≤q ∈ Dp×q.

The next remark shows that θ(R) is the correct “extension” of θ : D → D to
matrices.

Remark 5.2.6. In the situation of the previous definition we consider the prod-
uct Rv of the matrix R and a column vector v ∈ Dp×1. It is related to θ(v) θ(R)
as follows:

θ(v) θ(R) =
(∑p

j=1 θ(v)j θ(R)ji

)
i=1,...,q

=
(∑p

j=1 θ(vj) θ(Rij)
)
i=1,...,q

=
(∑p

j=1 θ(Rij vj)
)
i=1,...,q

= θ(Rv).



102 CHAPTER 5. ALGEBRAIC SYSTEMS THEORY

The matrix R represents a homomorphism Dp×1 → Dq×1 between free right
D-modules. Hence, when considering these modules as left D-modules, the cor-
responding homomorphism D1×p → D1×q is represented by θ(R).

Remark 5.2.7. Let D be a (not necessarily commutative) ring with 1 which has
an involution θ. We consider a complex

. . . // D1×p1
.R // D1×p2

.S // D1×p3 // . . .

of free left D-modules, where R ∈ Dp1×p2 , S ∈ Dp2×p3 are matrices with en-
tries in D. We apply homD( · , D) to this complex and use the isomorphisms
homD(D1×p, D) ∼= Dp×1, p ∈ N. This results in the following cocomplex of free
right D-modules

. . . Dp1×1oo Dp2×1R.oo Dp3×1S.oo . . .oo

According to our intention to consider left D-modules only, we want to turn
the previous cocomplex of right D-modules into a cocomplex of left D-modules.
In particular, homomorphisms between free modules in the new cocomplex are
represented by matrices which are applied to row vectors. By using the involution
θ of D and Remark 5.2.6 we obtain the following cocomplex of left D-modules

. . . D1×p1oo D1×p2
.θ(R)oo D1×p3

.θ(S)oo . . .oo

Note that if D is commutative, then θ(R) = RT , θ(S) = ST .

In what follows, let D be a left Noetherian Ore algebra which has an invo-
lution. We assume that we have a procedure at our disposal which computes a
finite generating set (e.g. a Janet basis) for the syzygy module of a finite generat-
ing set of a left D-module (see Remark 4.2.11, p. 74). The following algorithm is
formulated along the lines of the definition of the extension groups extiD(M,D),
i ∈ Z≥0. It constructs a presentation of an extension group extiD(M,D) for a
given finitely presented left D-module M . It uses an involution θ of D which we
fix once and for all, so that extiD(M,D) is considered as left D-module.

Algorithm 5.2.8 (Ext).

Input: (R, i), where R ∈ Dq×p defines M = D1×p/D1×qR, and i ∈ Z≥0

Output: (L1, L2), where L1 ∈ Dr×s, L2 ∈ Dt×s such that

extiD(M,D) ∼= D1×rL1/D
1×tL2

Algorithm:



5.3. CONTROLLABILITY 103

1: Compute the first i + 1 homomorphisms between free modules in a free

resolution of M , i.e. set S1 := R and find matrices S2 ∈ Dm2×m1 , . . . ,

Si+1 ∈ Dmi+1×mi , where m1 := q, m0 := p, such that the complex

D1×mi+1
.Si+1−→ D1×mi

.Si−→ . . .
.S3−→ D1×m2 .S2−→ D1×q .S1−→ D1×p −→M −→ 0

is exact (iterative computation of syzygy modules)

2: Compute a finite generating set of the syzygy module of the left D-module

generated by the rows of θ(Si+1), i.e. find a matrix K ∈ Dr×mi such that

D1×mi+1 D1×mi
.θ(Si+1)oo D1×r.Koo

is an exact sequence of left D-modules

3: if i = 0 then

4: return (K, 0 ∈ D1×p)

5: else

6: return (K, θ(Si))

7: fi

Remark 5.2.9. Comparing the beginning of a free resolution of M constructed
in Algorithm 5.2.8 with the resolution (5.1) (where we assume the Pi to be free)
we have di = (.Si) for all i ≥ 1. Therefore, Algorithm 5.2.8 presents extiD(M,D)
as ker di+1/ im di.

Algorithm 5.2.8 is derived from the definition of the extension groups in a
straightforward way. We included the description of this algorithm to clarify the
role of left D-modules and the involution θ of D. This algorithm will be applied
in the next sections and many times in Chapter 7.

5.3 Controllability

The algorithm described in the previous section, which computes a presentation
of an extension group ext1

D(M,D), is applied in this section in order to check
controllability of two linear systems. First we recall the characterization of con-
trollability by means of ext1

D(M⊤, D) ∼= t(M), where M is the module associated
with the linear system (see Section 5.1). Then we demonstrate the controllability
check on a mechanical system and a chemical engineering example.

Remark 5.3.1. By definition, a behavior B is controllable if and only if every
observable of B is free, i.e. not autonomous (see Section 5.1). Theorem 5.1.3
states that the autonomous observables of B are in one-to-one correspondence



104 CHAPTER 5. ALGEBRAIC SYSTEMS THEORY

with the torsion elements of the module M which is associated with the linear
system. Moreover, torsion-freeness of M is characterized by ext1

D(M⊤, D) = 0
(see Theorem 5.1.5, Figure 5.1).

The first example of this section can be found in [Pom01, Example V.I.1].
We demonstrate how controllability of a mechanical system can be checked using
symbolic computation only. Janet’s algorithm (see Chapter 2) is used to compute
presentations of extension groups ext1

D(M,D). In particular, the next example
illustrates the dependence of controllability on configurations of parameters which
occur in the equations describing the system (see also Chapter 7).

Example 5.3.2. Let us consider a bipendulum, more precisely a bar on which
two pendula of certain lengths l1 resp. l2 are fixed.

l1
l2

u

x2

x1

The bar is movable horizontally. Its horizontal position is denoted by u. The
horizontal positions of the end points of the two pendula are x1 resp. x2 . Then
u, x1 , x2 fulfill the ordinary differential equations

(5.2)





d2x1

dt2
+

g

l1
x1 − g

l1
u = 0,

d2x2

dt2
+

g

l2
x2 − g

l2
u = 0,

where g is the gravitational constant1.

> with(Janet):

For the equations which describe the bipendulum, the independent variable is t,
the dependent variables are x1 , x2 , and u.

> ivar := [t]; dvar := [x1,x2,u];

ivar := [t]

dvar := [x1 , x2 , u]

We enter the left hand sides of the equations. The variables g, l1 , and l2 are
parameters for the system.

1The deduction of the given linear ordinary differential equations which describe the bipen-
dulum relies on the approximation sin θ ≈ θ for small angles θ of the pendula to the vertical.



5.3. CONTROLLABILITY 105

> L1 := [g*x1(t)+l1*diff(x1(t),t,t)+g*u(t),
> g*x2(t)+l2*diff(x2(t),t,t)+g*u(t)];

L1 := [g x1(t) + l1 ( d
2

dt2
x1(t)) + g u(t), g x2(t) + l2 ( d

2

dt2
x2(t)) + g u(t)]

Since we deal with ordinary differential equations with constant coefficients, it is
appropriate to consider the system over the commutative polynomial algebra

D = Q(g, l1 , l2 )[∂],

where ∂ represents the differential operator d
dt

. Then (5.2) can be written as
R (x1 x2 u)T = 0 with

R :=

(
l1 ∂2 + g 0 g

0 l2 ∂2 + g g

)
∈ D2×3.

The D-module which is associated with the system is

M := D1×3/D1×2R.

In order to check controllability of the bipendulum, we compute the extension
group ext1

D(M⊤, D) of the transposed module M⊤ = D2×1/RD3×1 of M . Equiv-
alently (see Theorem 5.1.5), we compute a presentation for the torsion submodule
t(M) of M . This can be achieved by using the command Torsion of the package
Janet which implements Algorithm 5.2.8 using Janet bases:

> Torsion(L1, ivar, dvar);

[[ T1(t) = 0], [ T1(t)], 0]

The result means that the torsion submodule t(M) of M is trivial. In general, the
first list of the result consists of equations whose right hand sides are generators
for the presentation of the torsion submodule and whose left hand sides define
names for these generators. The second entry of the result is the list of relations
satisfied by the generators for the presentation of t(M) (more details are given be-
low). The result includes the Hilbert series of t(M) as last entry (see Section 2.3).
In the present case, we conclude t(M) = {0}. However, this consequence only
holds for the generic configurations of the parameters for the bipendulum, i.e. for
a generic choice of g, l1 , and l2 . We check by which expressions the computation
of t(M) has divided:

> ZeroSets(ivar);

[g, l1 , l2 , l1 − l2 ]

Of course, g, l1 , and l2 are assumed to be strictly positive. But the algorithm
divided by the difference l1 − l2 which is zero if and only if the lengths of the
two pendula are equal. Therefore, we study this particular case separately:



106 CHAPTER 5. ALGEBRAIC SYSTEMS THEORY

> L2 := subs(l2=l1, L1);

L2 := [g x1(t) + l1 ( d
2

dt2
x1(t)) + g u(t), g x2(t) + l1 ( d

2

dt2
x2(t)) + g u(t)]

By M ′ we denote the D-module which is associated with this particular system
(l1 = l2 ). We compute a presentation of the torsion submodule t(M ′) of M ′:

> T := Torsion(L2, ivar, dvar);

T := [[ T1(t) = x1(t)− x2(t)], [ T1(t) g + ( d
2

dt2
T1(t)) l1 ], 1 + s]

The list of expressions by which the algorithm divided assures that this result is
valid in any case:

> ZeroSets(ivar);

[g, l1 ]

The first list in T gives one generator x1 − x2 for t(M ′). For the presentation
of t(M ′) this generator is called T1. The second list in T is a generating set
of the differential relations satisfied by T1. It serves as the list of relations for
the presentation of t(M ′). Finally, the Hilbert series of t(M ′) given in the last
entry of T states that t(M ′) is two-dimensional as a Q(g, l1 )-vector space. More
precisely, t(M ′) has the Q(g, l1 )-basis ( T1, d T1

dt
).

We conclude that the bipendulum is controllable if and only if the lengths
of the two pendula are different. This coincides with the intuition that for the
case l1 = l2 we consider two copies of a system consisting of one pendulum
alone which are joined by the bar. If the initial configurations of the pendula of
equal lengths are the same (positions and velocities), then the link of these two
systems enforces the motions of the two pendula to be the same. Hence, in case
l1 = l2 the behavior of the bipendulum is partitioned into two subsets: the set of
trajectories with the same motions for the two pendula and the set of trajectories
with distinct motions of the two pendula. The membership of an element of the
behavior to either of these subsets depends only on the initial conditions and not
on any control.

The second example of this section deals with a biological reactor. The dy-
namics of the underlying system model is investigated in [ALLR82]. We thank
the process systems engineering group of Prof. W. Marquardt (RWTH Aachen)
for providing us with this model.

Example 5.3.3. A simple model of an isothermal continuous stirred tank bio-
logical reactor is described by the following nonlinear system (cf. [ALLR82])





dX

dt
= −F

V
X + µ(S)X,

dS

dt
=

F (SF − S)

V
− σ(S)X,



5.3. CONTROLLABILITY 107

where X is the concentration of cells in the reactor, S the substrate concentration
in the reactor, µ(S) the specific growth rate, σ(S) the specific substrate consump-
tion rate, SF the feed substrate concentration, F the volumetric feed flow rate
and V the reactor volume. We consider here the following dimensionless form
given in [ALLR82]





d x1

dt
= −x1 +DaM(x2 ) x1 ,

d x2

dt
= −x2 +DaΣ(x2 ) x1 ,

where

M(x2 ) := (1− x2 ) eSF x2/K , Σ(x2 ) :=
M(x2 ) (a+ b SF )

a− b (SF − 1) x2
.

According to the given reactor model we set a = 27
5
, b = 180. It is convenient to

consider (x1 x2 )T as the state of the system and the Damköhler number Da as
an input variable.

> with(Janet):

The independent variable is t, the dependent variables are x1 , x2 , Da.

> ivar := [t]; dvar := [x1,x2,Da];

ivar := [t]

dvar := [x1 , x2 , Da]

We enter the system equations as a list of left hand sides:

> L := [x1[t]+x1+(x2-1)*exp(SF*x2/K)*Da*x1,
> (27/5-180*SF*x2+180*SF)*(x2[t]+x2)+(x2-1)*
> exp(SF*x2/K)*(27/5+180*SF)*Da*x1];

L := [x1 t + x1 + (x2 − 1) e( SF x2

K
) Da x1 ,

(
27

5
− 180SF x2 + 180SF ) (x2 t + x2 ) + (x2 − 1) e( SF x2

K
) (

27

5
+ 180SF )Da x1 ]

Next we are going to compute the general linearization (see Remark 3.2.10, p. 53)
of the system of equations defined by L. The new indeterminates for the general
linearization are chosen to be dx1 , dx2 , dDa.

> Dvar := [dx1,dx2,dDa];

Dvar := [dx1 , dx2 , dDa]



108 CHAPTER 5. ALGEBRAIC SYSTEMS THEORY

The general linearization of L (which is first translated from jet notation into
differential expressions) is:

> GL := Linearize(Ind2Diff(L, ivar, dvar), ivar, dvar, Dvar);

GL :=

[
( ddt dx1(t)) + dx1(t) + dx1(t) e(

SF x2(t)
K

) Da(t) x2(t)− dx1(t) e(
SF x2(t)

K
) Da(t)

+
e(

SF x2(t)
K

) Da(t) x1(t) (K + SF x2(t)− SF ) dx2(t)

K

+ (x2(t)− 1) e(
SF x2(t)

K
) x1(t) dDa(t),

9

5
(x2(t)− 1) e(

SF x2(t)
K

) (3 + 100SF )Da(t) dx1(t) +
9

5
(3 ( ddt dx2(t))K

− 100 ( ddt dx2(t))K SF x2(t) + 100 ( ddt dx2(t))K SF − 100 dx2(t)SF K ( ddt x2(t))

− 200 dx2(t)SF x2(t)K + 3 dx2(t)K + 100 dx2(t)SF K

+ 3 dx2(t) e(
SF x2(t)

K
) Da(t) x1(t)K + 100 dx2(t) e(

SF x2(t)
K

) Da(t) x1(t)K SF

+ 3 dx2(t)SF e(
SF x2(t)

K
) Da(t) x1(t) x2(t)

+ 100 dx2(t)SF 2 e(
SF x2(t)

K
) Da(t) x1(t) x2(t)− 3 dx2(t)SF e(

SF x2(t)
K

) Da(t) x1(t)

− 100 dx2(t)SF 2 e(
SF x2(t)

K
) Da(t) x1(t))/K

+
9

5
(x2(t)− 1) e(

SF x2(t)
K

) (3 + 100SF ) x1(t) dDa(t)

]

Since the equations involve the exponential function exp(SF x2/K), we deal with
the differential ring Q(K,SF ){x1 , x2 , Da, exp(SF x2/K)}. Let I be the differ-
ential ideal of this ring which is generated by the differential polynomials in L.
Then we consider the general linearization over the Ore algebra

D := Quot(Q(K,SF ){x1 , x2 , Da, exp(SF x2/K)})[∂],

where ∂ acts by differentiation with respect to t. In order to compute in this
differential ring we provide Janet’s algorithm with the following rewriting rules
for the coefficients of the general linearization, which are jet expressions in x1 ,
x2 , Da:

> N := [op(solve({op(L)}, {x1[t],x2[t]}))];

N := [x1 t = −x1 − e( SF x2

K
) Da x1 x2 + e( SF x2

K
) Da x1 , x2 t = (−3 e( SF x2

K
) Da x1

+ 3 x2 + 3 e( SF x2

K
) Da x1 x2 − 100SF x2 2 + 100SF x2 + 100SF e( SF x2

K
) Da x1 x2

− 100SF e( SF x2

K
) Da x1 )/(−3 + 100SF x2 − 100SF )]

Let us denote by M the left D-module which is associated with the general
linearization. In order to check controllability of the biological reactor under



5.3. CONTROLLABILITY 109

consideration we construct a presentation for the extension group ext1
D(M⊤, D)

or, equivalently, for the torsion submodule t(M) of M (see Theorem 5.1.5). For
the computation we consider both M⊤ and ext1

D(M⊤, D) as left D-modules by
means of the involution defined in Ex. 5.2.3 (a).

> T := Torsion(GL, ivar, Dvar, "coeffeqs"=N, "coeffdvar"=dvar);

T := [[ T1(t) = 0], [ T1(t)], 0]

The first entry of the result T gives a generating set for t(M) which consists of
zero only. We conclude that t(M) = 0, i.e. the biological reactor is controllable
for generic configurations of the parameters.

The command Torsion applies Janet’s algorithm several times. Altogether
the above runs of Janet’s algorithm divided by the following expressions:

> ZeroSets(ivar);

[K, (3 + 100SF ) e(
SF x2(t)

K
), e(−

2 SF x2(t)
K

), e(
3 SF x2(t)

K
), x2(t) e(

3 SF x2(t)
K

),

(x2(t)− 1) e(
3 SF x2(t)

K
), x1(t) e(

4 SF x2(t)
K

), SF e(
3 SF x2(t)

K
),

(100SF x2(t)− 100SF − 3) e(
3 SF x2(t)

K
), e(−

SF x2(t)
K

)]

Controllability of the biological reactor holds if all these expressions are different
from zero. Some of these expressions may describe inequalities for the parameters
which need to be obeyed in order to avoid abnormal operation of the reactor. It is
clear that numerical simulation is not sufficient to find such inequalities so that a
preprocessing using symbolic computation could also be useful for the numerics.

The only interesting constant term above is 3 + 100SF . However, the case
3 + 100SF = 0 leads to a negative feed substrate concentration, which makes no
sense.

We conclude that the linearization of the biological reactor is completely con-
trollable (for the interesting configurations of the parameters). Since this lin-
earized system has no autonomous observables, we expect that the given non-
linear system has no autonomous observables either. If there existed one, then
an autonomous observable of the linearization could be obtained by linearizing
the one of the nonlinear system. Hence, for the given nonlinear model of the
biological reactor we do not expect any obstructions towards controllability.

In the next section we are going to study a nonlinear system which has an
autonomous observable in detail.



110 CHAPTER 5. ALGEBRAIC SYSTEMS THEORY

5.4 Autonomous Observables

In this section an example for a system with autonomous observables is discussed
in detail. Using the general linearization and the differential algebraic methods
described in Chapter 3, we find a generating set for the torsion submodule of
the module which is associated with the general linearization. Then we show
how it is possible to integrate an autonomous observable which corresponds to an
element of the torsion submodule in order to find an autonomous observable of the
given nonlinear system. For more details about the correspondence between the
autonomous observables of the linearized system and the autonomous observables
of the nonlinear system we refer to [ABMP95].

Example 5.4.1. The system of ordinary differential equations which we inves-
tigate in this example is taken from [Pom94, Example VII.C.3]. It is a nonlinear
system of ordinary differential equations for four unknown functions:

(5.3)





d y1

dt
− y2− y3u = 0,

d y2

dt
+ y1 = 0,

d y3

dt
+ y1u = 0.

We are going to study the structural properties of the system in Maple using the
packages Janet, jets, and diffalg.

> with(Janet):

> with(jets):

> with(diffalg):

The independent variable is t, the dependent variables are y1 , y2 , y3 , and u.

> ivar := [t]; dvar := [y1,y2,y3,u];

ivar := [t]

dvar := [y1 , y2 , y3 , u]

The left hand sides of the homogeneous equations are collected in the list L:

> L := [diff(y1(t),t)-y2(t)-y3(t)*u(t), diff(y2(t),t)+y1(t),
> diff(y3(t),t)+y1(t)*u(t)];

L := [( d
dt

y1(t))− y2(t)− y3(t) u(t), ( d
dt

y2(t)) + y1(t), ( d
dt

y3(t)) + y1(t) u(t)]

The equations can be thought of as describing the state (y1 , y2 , y3 ) which is
possibly influenced by the input u.



5.4. AUTONOMOUS OBSERVABLES 111

We are going to compute the general linearization of this system of ordinary
differential equations and use Y1 , Y2 , Y3 , U as new indeterminates for the
linearization:

> Dvar := [Y1,Y2,Y3,U];

Dvar := [Y1 , Y2 , Y3 , U ]

> GL := Linearize(L, ivar, dvar, Dvar);

GL := [( d
dt

Y1(t))− Y2(t)− u(t) Y3(t)− y3(t) U(t), Y1(t) + ( d
dt

Y2(t)),

u(t) Y1(t) + ( d
dt

Y3(t)) + y1(t) U(t)]

Let I be the differential ideal generated in Q(t){y1 , y2 , y3 , u} by the differential
polynomials in the list L. In order to compute with coefficients in the differential
ring Q(t){y1 , y2 , y3 , u}/I, we extract rewriting rules for the jet variables y1 kJ ,
y2 kJ , y3 kJ , u

k
J from (5.3). First of all we translate L into jet notation:

> Diff2Ind(L, ivar, dvar);

[y1 t − y2 − y3 u, y2 t + y1 , y3 t + y1 u]

Next we compute a prime decomposition of I (see Thm. 3.3.6 and Rem. 3.3.8). To
this end we apply the command Rosenfeld Groebner of the package diffalg.

> differential_ring(derivations=[t], ranking=[[y1,y2,y3,u]]);

ODE ring
> P := Rosenfeld_Groebner([y1[t]-y2[]-y3[]*u[], y2[t]+y1[],
> y3[t]+y1[]*u[]], %);

P := [characterizable]

> equations(P[1]), inequations(P[1]);

[y1 t − y2 − y3 u, y2 t + y1 , y3 t + y1 u], [ ]

We conclude that I is a prime differential ideal. Therefore we continue just by
compiling L to a list of rewriting rules which do not lead to infinite loops.

> N := [y1[t] = y2+y3*u, y2[t] = -y1, y3[t] = -y1*u];

N := [y1 t = y2 + y3 u, y2 t = −y1 , y3 t = −y1 u]

The linear system given by the general linearization GL is represented by the
matrix

R :=




∂ −1 −u −y3
1 ∂ 0 0
u 0 ∂ y1


 ∈ D3×4



112 CHAPTER 5. ALGEBRAIC SYSTEMS THEORY

over the Ore algebra

D = Quot(Q(t){y1 , y2 , y3 , u}/I)[∂],

where ∂ represents differentiation with respect to t. The left D-module associated
with this system is

M = D1×4/D1×3R.

We are going to compute the first extension group ext1
D(M⊤, D) of the transposed

module M⊤ = D3×1/RD4×1 of M .

A presentation of t(M) ∼= ext1
D(M⊤, D) (see Theorem 5.1.5) is returned by the

command Torsion. The following computation takes the rewriting rules for the
coefficients in Quot(Q(t){y1 , y2 , y3 , u}/I) into account. The involution defined
in Ex. 5.2.3 (a) is used to consider M⊤ and ext1

D(M⊤, D) as left D-modules.

> T := Torsion(GL, ivar, Dvar, "coeffeqs"=N, "coeffdvar"=dvar);

T := [[ T1(t) = y3(t) y1(t) u(t) Y1(t) + Y2(t) u(t) y2(t) y3(t) + u(t) y3(t)2 Y3(t),

T2(t) = −y1(t) y3(t) Y1(t)− Y2(t) y2(t) y3(t)− y3(t)2 Y3(t)],

[− T1(t)− T2(t) u(t),

( d
dt

T1(t)) y3(t) u(t)− T1(t) ( d
dt

u(t)) y3(t)− T1(t) ( d
dt

y3(t)) u(t)], 1]

During the whole computation the procedures divided by the following expres-
sions only:

> ZeroSets(ivar);

[u(t), u(t), y3(t), y1(t)]

Hence, along all solutions (y1 , y2 , y3 , u) of the nonlinear system (5.3) there are
autonomous observables of the linearized system which are given by T1 and T2
as defined in the first entry of T and all their left D-linear combinations. The
second entry of T is a generating set for the relations satisfied by T1 and T2.
In particular, T1 satisfies the equation

y3 u
d

dt
T1− du

dt
y3 T1− u d y3

dt
T1 = 0.

Moreover, T1 equals T2 multiplied by −u. The last entry of T is the Hilbert
series of ext1

D(M⊤, D) ∼= t(M). We realize that t(M) is one-dimensional as a
Quot(Q(t){y1 , y2 , y3 , u}/I)-vector space.

Now we want to find autonomous observables of the given nonlinear system
which correspond to the autonomous observables that we found for the lineariza-
tion.



5.4. AUTONOMOUS OBSERVABLES 113

It is possible to decide whether a jet expression is a formal Fréchet derivative
(see Def. 3.2.6, p. 52) of some jet expression by applying a certain operator of
the variational bicomplex [And, Bar01a] to it. A given jet expression is a formal
Fréchet derivative of some jet expression if and only if the procedure frechetv

of the package jets applied to the differential operator in matrix form which
represents the jet expression returns the zero matrix.

In order to apply the command frechetv we first translate the differential ex-
pression defining T1 into a differential operator in matrix form, i.e. we construct
D1 satisfying D1 (Y1 ,Y2 ,Y3 , U)T = T1.

> D1 := Diff2Op(Diff2Ind(rhs(T[1][1]), ivar, dvar), ivar, Dvar);

D1 :=
[

[[y3 y1 u, [ ]]] [[u y2 y3 , [ ]]] [[u y3 2, [ ]]] 0
]

Each entry of a matrix representing a differential operator is a list of lists. The
outer list represents a sum, and each inner list consists of a jet expression and a list
of independent variables. The jet expression is the coefficient for the differential
operator encoded by the list of independent variables, e.g. [u, [t, t]] is a notation
for u d2

dt2
. Now it is clear that the first entries of the inner lists in D1 are exactly

the coefficients of Y1 , Y2 resp. Y3 in T1.

> frechetv(D1, ivar, dvar);


0 0 [[y1 uS, [ ]]] [[y1 y3 S, [ ]]]
0 0 [[u y2 S, [ ]]] [[y2 y3 S, [ ]]]

[[−y1 uS, [ ]]] [[−u y2 S, [ ]]] 0 [[y3 2 S, [ ]]]
[[−y1 y3 S, [ ]]] [[−y2 y3 S, [ ]]] [[−y3 2 S, [ ]]] 0




Since the resulting matrix of operators is not zero, T1 is not a formal Fréchet
derivative of any jet expression.

We try the same for the autonomous observable T2:

> D2 := Diff2Op(Diff2Ind(rhs(T[1][2]), ivar, dvar), ivar, Dvar);

D2 :=
[

[[−y1 y3 , [ ]]] [[−y2 y3 , [ ]]] [[−y3 2, [ ]]] 0
]

> frechetv(D2, ivar, dvar);


0 0 [[−y1 S, [ ]]] 0
0 0 [[−y2 S, [ ]]] 0

[[y1 S, [ ]]] [[y2 S, [ ]]] 0 0
0 0 0 0




Again we conclude that T2 is not a formal Fréchet derivative.

By inspection we are led to define the following autonomous observable T3 :

> T3 := simplify(-rhs(T[1][2])/y3(t));



114 CHAPTER 5. ALGEBRAIC SYSTEMS THEORY

T3 := y1(t) Y1(t) + y2(t) Y2(t) + y3(t) Y3(t)

The command AutonomEq of the package Janet computes a generating set of
differential equations which are satisfied by T3 modulo the equations given by the
general linearization and all its differential consequences. By adding the rewriting
rules N for the jet variables y1 kJ , y2 kJ , y3 kJ we compute with coefficients in the
differential field Quot(Q(t){y1 , y2 , y3 , u}/I).

> AutonomEq(T3, GL, ivar, Dvar, "coeffeqs"=N, "coeffdvar"=dvar);

[ d
dt

A(t)]

The equations computed by AutonomEq include a new indeterminate A which
represents the differential expression given as first argument. Hence, A is to be
replaced by T3 . We conclude that T3 satisfies the equation dT3

dt
= 0.

In order to check whether T3 is a formal Fréchet derivative of some jet ex-
pression, we first translate T3 into a differential operator in matrix form:

> D3 := Diff2Op(Diff2Ind(T3, ivar, dvar), ivar, Dvar);

D3 :=
[

[[y1 , [ ]]] [[y2 , [ ]]] [[y3 , [ ]]] 0
]

> frechetv(D3, ivar, dvar);


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




The resulting differential operator is zero. Hence, there are no formal obstructions
towards the existence of a jet expression whose formal Fréchet derivative is T3 .
In fact, such a jet expression can be found using the homotopy formula [Olv93]

r(xi, ukJ) 7→
∫ 1

0

r(λxi, λ ukJ)
dλ

λ
.

We define this homotopy formula as an operator in Maple by using some functions
of the package jets. (Here it is sufficient to perform the substitution of the jet
coordinates by their λ-multiples up to order two only.)

> homotopy := r -> int(subs(map(a->a=lambda*a,
> jetcoor([$0..2], ivar, dvar)),
> appmt(r, dvar, ivar, dvar)[1])/lambda, lambda=0..1):

When we apply this homotopy operator to D3, we obtain the following jet ex-
pression:



5.5. THE MAPLE PACKAGE OREMODULES 115

> a := homotopy(D3);

a :=
y1 2

2
+

y2 2

2
+

y3 2

2

In fact, the formal Fréchet derivative of the previous jet expression equals T3 :

> Linearize(Ind2Diff(a, ivar, dvar), ivar, dvar, Dvar);

y1(t) Y1(t) + y2(t) Y2(t) + y3(t) Y3(t)

Moreover, a satisfies a differential equation. We have

da

dt
= y1

d y1

dt
+ y2

d y2

dt
+ y3

d y3

dt
,

and by taking the nonlinear system (5.3) into account, we obtain

y1
d y1

dt
+ y2

d y2

dt
+ y3

d y3

dt
= y1 (y2 + y3 u)− y1 y2 − y1 y3 u = 0.

Hence, we have da
dt

= 0, and a is an autonomous observable which corresponds to
the autonomous observable T3 of the linearized system.

5.5 The Maple package OreModules

In this section we give a short survey of the Maple package OreModules which
provides routines for the study of linear systems which are defined over Ore
algebras. The OreModules project was started by F. Chyzak and A. Quadrat
in 2002 and has been extended continuously since 2003 by A. Quadrat and the
author of this thesis.

Several methods for dealing with (left) modules over Ore algebras are im-
plemented in OreModules. Of course, these methods are always restricted to
Ore algebras for which Janet or Gröbner bases can be computed in Maple. These
include commutative polynomial algebras, the Weyl algebras, algebras of shift op-
erators and combinations of them. By default, the Maple packages Ore_algebra
and Groebner written by F. Chyzak are used to perform the Gröbner basis com-
putations which are necessary for the module-theoretic constructions. However,
an interface to JanetOre (see Section 2.6) is also provided which allows to switch
to Janet bases. In Chapter 7 we apply OreModules using this interface to a linear
system which describes a stirred tank model and demonstrate many features of
this package.

Among the implemented purely module-theoretic methods are procedures
which compute syzygies of the rows of a given matrix, which construct free reso-
lutions of finitely presented (left) modules, which compute extension groups etc.



116 CHAPTER 5. ALGEBRAIC SYSTEMS THEORY

Several more tools for matrices with entries in Ore algebras are available like the
computation of left and right inverses, elimination of variables etc.

For linear systems represented by matrices with entries in one of the above
mentioned Ore algebras the following system theoretic problems can be addressed
using OreModules:

• decide controllability, parametrizability, flatness, and π-freeness [CQR05],
[FM98], [Mou95];

• compute parametrizations (see also Chapter 6), autonomous observables,
flat outputs, π-polynomials;

• tools for linear quadratic optimal control problems (see Section 7.6);

• some methods from classical control theory: controllability matrices, Bru-
novský canonical forms.

A more recent extension of the OreModules project is the possibility to com-
pute bases of free left modules of rank at least 2 over the Weyl algebras An(k),
where k has characteristic zero, using a well-known result of J. T. Stafford [Sta78]
which states that every left ideal of An(k) can be generated by two elements. More
precisely, given a left ideal by means of three generators a, b, c, such two gener-
ators can be found as a + λ c, b + µ c with appropriate λ, µ ∈ An(k). Exploiting
this particular representation of these two generators and using recent algorith-
mic versions [HS01, Ley04] of Stafford’s result, bases of free left An(k)-modules of
rank at least 2 can be computed in OreModules for rather small examples. This
method is explained in Section 6.6.

For more detailed descriptions of OreModules see [CQR06a], [CQR06b]. The
OreModules web pages [CQR06a] also contain a “Library of Examples” which
demonstrate the procedures of OreModules on (small) application problems.



Chapter 6

Parametrizing Linear Systems

A system of linear equations with coefficients in a field can be transformed by
using Gaussian elimination into a form which allows to determine the solution
space of the system very easily. If the system is underdetermined, then the
Gauß-reduced matrix associated with it singles out some variables of the system
as parameters and specifies how all other variables are expressed (linearly) in
terms of the parameters. This procedure can be viewed as identifying the kernel
of the linear map induced by the system matrix as the image of another linear
map. In particular, every tuple of values assigned to the tuple of parameters
yields a solution, i.e. the parameters are not subject to any relation.

In this chapter the problem of parametrizing the solution space of a linear
system is described for linear systems with coefficients in an Ore algebra. The
most common application is to linear systems of differential equations (Monge’s
problem [Zer32], [Jan71]). In the behavioral approach to linear systems [PW98],
[Zer00], parametrizing the solution set is referred to as the problem of finding
an image representation of the behavior. The way of presenting the parametriz-
ability problem in this chapter traces back to J.-F. Pommaret and A. Quadrat
[Pom95, Pom01, PQ99a, PQ99b]. A detailed account on parametrizations in
the framework of Ore algebras was given in [CQR05]. In [QR05b] a method for
parametrizing uncontrollable linear systems was described which is explained in
more detail below.

Whereas in the case of linear equations with coefficients in a field it is always
achieved that the solution set is parametrized by an injective linear map, the
possibility to find an injective parametrization is not given in general. In system
theoretic applications, linear and also nonlinear systems of differential equations
whose solution sets have injective parametrizations in terms of arbitrary functions
are nowadays said to be flat [FLMR95].

We start in the first section by illustrating the notion of parametrizability
of linear systems on two examples. In the following section we formally define
parametrizations of the solutions sets of linear systems using the module-theoretic
approach described in Chapter 5. A well-known characterization of parametriz-

117



118 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS

ability expressed in terms of the module which is associated with the linear system
is recalled. It signifies that a linear system is parametrizable if and only if it has
no autonomous observables. Section 6.3 shows how the notion of parametrization
can be extended in such a way that the solutions of certain linear systems having
autonomous observables can also be parametrized. For linear systems of ordinary
differential equations whose coefficients are constant or polynomials or rational
functions this extension is always possible. Some examples of this extension are
given in Section 6.4. The notion of flatness of linear systems is discussed in Sec-
tion 6.5. It it equivalent to the freeness of the module which is associated with
the linear system. For certain Ore algebras it is possible to compute bases of free
modules effectively. The case of free left modules of rank at least 2 over the Weyl
algebras defined over a field of characteristic zero is treated in Section 6.6.

The methods used in this chapter are mainly module-theoretic. The con-
nection to the function spaces containing the solutions of the linear system un-
der consideration is provided by duality methods established by B. Malgrange,
L. Ehrenpreis, V. P. Palamodov, and U. Oberst (see Section 4.4).

6.1 Introduction

In this section we first illustrate the notion of parametrization on the well-known
de Rham complex. A counter-example to parametrizability is given thereafter.

Throughout this chapter, D will denote an Ore algebra and F a left D-module
which serves as a signal space, i.e. one could think of F as a function space in
which solutions of a given linear system are searched for (see Section 4.1).

We recall (see Convention 4.1.2) that with every matrix R ∈ Dq×p we associate
two homomorphisms:

(.R) : D1×q → D1×p : m 7→ mR and (R.) : Fp×1 → F q×1 : η 7→ Rη.

Example 6.1.1. Let us consider the linear system

(6.1) div y = (∂x1 ∂x2 ∂x3)




y1

y2

y3


 = 0 with y ∈ F3×1,

where F := C∞(R3). Since it is a linear system of partial differential equations
with constant coefficients, it is appropriate to consider F as module over the
commutative polynomial algebra D := R[∂x1 , ∂x2 , ∂x3 ]. It is well-known that
every solution y of (6.1) can be written as

y = rotw =




0 −∂x3 ∂x2

∂x3 0 −∂x1

−∂x2 ∂x1 0







w1

w2

w3


 for some w ∈ F3×1,



6.1. INTRODUCTION 119

and any w ∈ F3×1 defines a solution y = rotw of (6.1), i.e. the solutions BF(R1)
of (6.1) are parametrized by the operator rot:

BF(R1) = im((R2).), R2 := rot ∈ D3×3.

Of course, this parametrization is not injective: many different w ∈ F3×1 result
in the same y = rotw.

One may ask whether R2w = 0 can be parametrized in the same way. In fact,
every solution w ∈ F3×1 of R2w = 0 can be written as

w = grad v =




∂x1

∂x2

∂x3


 v for some v ∈ F ,

and any v ∈ F defines a solution w = grad v of R2w = 0, so that we have a
parametrization of BF(R2):

BF(R2) = im((R3).), R3 := grad ∈ D3×1.

Since all solutions of R3 u = 0 in F = C∞(R3) are constant, altogether we obtain
the de Rham complex:

0 // R // F grad // F3×1 rot // F3×1 div // F // 0.

In this complex grad, rot, div are understood as operators acting on (vectors of)
functions.

Example 6.1.2. We consider a system of linear differential time-delay equations
which arises in the context of a linearized model of Saint-Venant’s equations
[DPR99].

(6.2)





φ1(t− 2) + φ2(t)− 2 φ̇3(t− 1) = 0,

φ1(t) + φ2(t− 2)− 2 φ̇3(t− 1) = 0.

The operators involved in these equations can be taken from a commutative
polynomial algebra D := R[∂, δ] because (6.2) is a time-invariant system, i.e. the
equations have constant coefficients. We consider F := C∞(R) as a D-module,
where ∂ and δ act as follows:

∂ : y(t) 7→ ẏ(t), δ : y(t) 7→ y(t− 1), y = y(t) ∈ F .

We define

(6.3) R =

(
δ2 1 −2 δ ∂
1 δ2 −2 δ ∂

)
∈ D2×3.



120 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS

Then the linear system (6.2) can be written as Rφ = 0.
This system has some solutions. For instance, each 2-periodic function θ ∈ F

defines a solution 


φ1(t)
φ2(t)
φ3(t)


 =




θ(t)
−θ(t)

0




of the system. We want to analyze now, whether we can find a parametrization
of the solutions of (6.2) in the sense of the preceding example. Let (φ1, φ2, φ3)

T ∈
F3×1 be a solution of Rφ = 0 and let τ := φ1 − φ2. Taking the equations (6.2)
into account we have:

(δ2 τ)(t) = φ1(t− 2)− φ2(t− 2)

= −φ2(t) + φ1(t) + 2 φ̇3(t− 1)− 2 φ̇3(t− 1)

= −φ2(t) + φ1(t)

= τ(t).

Hence, τ is an autonomous observable of the system. It satisfies the equation

(6.4) (δ2 − 1) τ = 0,

i.e., τ is a 2-periodic function. Suppose that there exists a parametrization of the
behavior of Rφ = 0, i.e., there exists P ∈ D3×m for some m ∈ N such that

R




φ1

φ2

φ3


 = 0 ⇐⇒




φ1

φ2

φ3


 = P ξ, ξ ∈ Fm×1.

Relation (6.4) implies a relation between the components of ξ: from

φj =
m∑

i=1

Pji ξi, j = 1, 2, 3

and

τ = φ1 − φ2 =
m∑

i=1

(P1i − P2i) ξi

we find

(6.5) (δ2 − 1) τ =
m∑

i=1

(P1i − P2i)(δ
2 − 1) ξi = 0.

This contradicts the properties of a parametrization in the sense of the previous
example: not all ξ ∈ Fm×1 define a solution of (6.2), but only those ξ ∈ Fm×1

which satisfy (6.5). Hence there exists no parametrization of the solution set of
(6.2) in the above sense. This argument holds for every signal space F .



6.2. PARAMETRIZING LINEAR SYSTEMS OVER ORE ALGEBRAS 121

6.2 Parametrizing Linear Systems over Ore Al-

gebras

In this section the notion of parametrization of a behavior as motivated in the
previous section is defined formally using the module-theoretic approach of Chap-
ter 5. In particular, both the behavior and the module which is associated with
the linear system are considered. The significance of injective cogenerators F
for the parametrizability of the solution space of a linear system as a subset of
Fp×1 is explained. Finally, the well-known necessary and sufficient condition for
parametrizability on the module-theoretic side is recalled in Theorem 6.2.8.

Throughout this section let D be a left Noetherian Ore algebra and F a left
D-module. We consider R ∈ Dq×p defining the linear system Rη = 0.

First we recall Definition 4.1.3:

Definition 6.2.1. The solution set of Rη = 0 in F , where R ∈ Dq×p, is defined
as

SolF(R) := ker(R.) = {η ∈ Fp×1 | Rη = 0}.
A set B ⊆ Fp×1 which is a solution set SolF(R) for some R ∈ Dq×p, is called a
behavior. We also write

BF(R) := SolF(R).

Definition 6.2.2. A behavior B is parametrizable, if there exists a matrix P ∈
Dp×m such that B = P Fm×1, i.e., for every η ∈ B, there exists ξ ∈ Fm×1 such
that η = P ξ, and for all ξ ∈ Fm×1 we have RP ξ = 0. In this case, P (and also
the induced map (P.)) is called a parametrization of the behavior B.

Remark 6.2.3. By definition, a behavior B is represented as the kernel of a
homomorphism (R.) : Fp×1 → F q×1 (kernel representation of a behavior). The
behavior B is parametrizable if and only if there exists a matrix P ∈ Dp×m such
that

F q×1 Fp×1R.oo Fm×1P.oo

is an exact sequence of left D-modules (see Def. 4.2.1). A parametrization P of
B constitutes a very convenient representation of B as the image of the homo-
morphism (P.) : Fm×1 → Fp×1 (image representation of a behavior). Among the
applications of image representations of behaviors is e.g. a method to solve linear
quadratic optimal control problems (see Section 7.6, [PQ04] and [QR06b]).

Definition 6.2.4. Let R ∈ Dq×p and M := D1×p/D1×q R. The left D-module
M is called parametrizable, if there exists a matrix P ∈ Dp×m such that

D1×q .R // D1×p .P // D1×m

is an exact sequence of left D-modules. In this case, P (and also the induced
map (.P )) is called a parametrization of M .



122 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS

Remark 6.2.5. In contrast to a parametrization of a behavior, where the image
of the map (P.) is considered, for a parametrization of a module the kernel of the
map (.P ) is relevant.

Remark 6.2.6. Let the left D-module M = D1×p/D1×qR be parametrizable,
and let P ∈ Dp×m be a parametrization of M . Then

D1×q .R // D1×p
ρ //M // 0

is the beginning of a free resolution ofM . Moreover, by definition of a parametriza-
tion of M , the complex

D1×q .R // D1×p .P // D1×m

is exact. We conclude that M can be considered as a submodule of the free
module D1×m:

(6.6)

D1×q .R // D1×p .P //

ρ
$$I

IIIIIIII D1×m

M

""E
EE

EE
EE

EE

ι

OO

0

OO

0

The homomorphism ι : M → D1×m is constructed as follows: For any m ∈ M
there is a preimage r ∈ D1×p of m under the canonical projection ρ, namely
any representative of the residue class m. Then we define ι(m) := r P . This
definition is independent of the choice of r because two representatives of m
differ by an element sR, where s ∈ D1×q. But sR is mapped to zero under (.P ).
Furthermore, ι is injective because, if m ∈M satisfies ι(m) = 0, then the residue
class m has a representative sR for some s ∈ D1×q due to the exactness of the
upper row in (6.6). But this means, by definition of M , that m is the zero residue
class.

The next proposition shows how the notions of parametrization of a behavior
resp. a module are related depending on the properties of the signal space F .

Proposition 6.2.7. Let R ∈ Dq×p and M := D1×p/D1×q R be the left D-module
associated with the linear system Rη = 0. Moreover, let P ∈ Dp×m.

(a) If F is a cogenerator for the category of left D-modules (see Def. 4.4.1)
and P is a parametrization of the behavior B = SolF(R), then P is a
parametrization of M .

(b) If F is an injective left D-module (see Def. 4.3.1) and P is a parametriza-
tion of M , then P is a parametrization of the behavior B = SolF(R).



6.2. PARAMETRIZING LINEAR SYSTEMS OVER ORE ALGEBRAS 123

(c) If F is an injective cogenerator for the category of left D-modules, then
P is a parametrization of the behavior B = SolF(R) if and only if P is a
parametrization of M .

Proof. (a) We assume that P is a parametrization of B, i.e.

(6.7) F q×1 Fp×1R.oo Fm×1P.oo

is an exact sequence of left D-modules. Since F is a cogenerator for the
category of left D-modules, the complex

(6.8) D1×q .R // D1×p .P // D1×m,

from which (6.7) is obtained by applying homD( · ,F), is exact due to
Prop. 4.4.3. Hence, P is a parametrization of M .

(b) By assumption, (6.8) is an exact sequence. Since F is injective, the complex
(6.7) is exact. Then we have:

SolF(R) = ker(R.) = im(P.) = P Fm×1.

(c) is clear from (a) and (b).

Theorem 6.2.8. [Pom01] The left D-module M = D1×p/D1×q R is parametriz-
able if and only if t(M) = 0.

Proof. “⇒”: By Remark 6.2.6, M can be considered as a submodule of a free
module D1×m. Since D1×m is torsion-free (see Prop. 4.2.8), M does not contain
any non-zero torsion element either.

“⇐”: Let us assume that t(M) = 0. We consider the beginning of a free resolution
of the right D-module M⊤ := Dq×1/(RDp×1):

0 M⊤oo Dq×1oo Dp×1R.oo Dm×1.
P.oo

Applying homD( · , D) to this exact sequence yields the complex

(6.9) D1×q .R // D1×p .P // D1×m.

By definition of ext1
D(M⊤, D) (see Def. 4.2.12), the complex (6.9) is exact if and

only if
ext1

D(M⊤, D) = ker(.P )/ im(.R) = 0.

Now Theorem 5.1.5 states that we have

t(M) ∼= ext1
D(M⊤, D).

Therefore, the assumption implies that ext1
D(M⊤, D) = 0. Hence, P is a para-

metrization of M .



124 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS

Remark 6.2.9. Let F be an injective left D-module. By carrying out part “⇐”
of the previous proof constructively, we either obtain a parametrization P of
Rη = 0 or a generating set of t(M). Let us consider the complex (6.9). In order
to check whether (6.9) is exact, we construct the syzygy module of the rows of P ,
i.e. we compute a matrix R′ ∈ D1×q′ such that the lower complex in the diagram

D1×q .R // D1×p .P // D1×m // 0

D1×q′
.R′

::uuuuuuuuu

is exact. Therefore we have D1×q R = im(.R) ⊆ im(.R′) = D1×q′ R′ and

ext1
D(M⊤, D) = ker(.P )/ im(.R) = im(.R′)/ im(.R).

If im(.R′) = im(.R), then the sequence (6.9) is exact and P is a parametrization
of the behavior of Rη = 0. Otherwise, the residue classes in M = D1×p/D1×q R
represented by the rows of R′ form a generating set for t(M).

Corollary 6.2.10. Let R ∈ Dq×p and M = D1×p/D1×q R the left D-module asso-
ciated with the linear system Ry = 0. Moreover, let F be an injective cogenerator
for the category of left D-modules. The behavior B = SolF(R) is parametrizable
if and only if t(M) 6= 0.

The proof is obtained by combining Proposition 6.2.7 and Theorem 6.2.8.

Example 6.2.11. Returning to Ex. 6.1.2, we have

R =

(
δ2 1 −2 δ ∂
1 δ2 −2 δ ∂

)
∈ D2×3,

where D = R[∂, δ] is the commutative polynomial algebra. Then the D-module
M = D1×2/D1×3R is associated with this linear system. The transposed module
M⊤ of M is defined by M⊤ := D2×1/RD3×1. We compute a generating set of the
syzygy module of the columns of R and arrive at the following exact sequence:

0←−M⊤ ←− D2×1

„

δ2 1 −2 δ ∂
1 δ2 −2 δ ∂

«

.

←−−−−−−−−−−−−− D3×1

0

@

2 δ ∂
2 δ ∂

1 + δ2

1

A .

←−−−−−−− D1×1.

By applying homD( · , D) to this exact sequence, we obtain the complex

D1×2
.

„

δ2 1 −2 δ ∂
1 δ2 −2 δ ∂

«

−−−−−−−−−−−−−→ D1×3

.

0

@

2 δ ∂
2 δ ∂

1 + δ2

1

A

−−−−−−−→ D1×1.



6.3. LINEAR SYSTEMS WITH AUTONOMOUS OBSERVABLES 125

Now we compute the syzygies of the rows of P := (2 δ ∂ 2 δ ∂ 1+ δ2)T ∈ D3×1.

D1×2

.

„

δ2 1 −2 δ ∂
1 δ2 −2 δ ∂

«

// D1×3

.

0

@

2 δ ∂
2 δ ∂

1 + δ2

1

A

// D1×1

D1×2
.

„

1 −1 0
0 −1 − δ2 2 δ ∂

«

=: R′

33hhhhhhhhhhhhhhhhhhhhhhhh

We are now in position to check the exactness of the upper complex in the previous
diagram. Let us denote the first row of R′ by m := (1 − 1 0) ∈ D1×3. Then
we check that m 6∈ im(.R), i.e. the residue class m + im(.R) is not zero in M .
Moreover, we verify that

(δ2 − 1) ((1 − 1 0) + im(.R)) = 0 in M,

and both rows of R′ represent the same residue class in M . We conclude

t(M) ∼= ext1
D(M⊤, D) = im(.R′)/ im(.R) 6= 0,

and the torsion element m+ im(.R) generates t(M). In particular, the behavior
of Rη = 0 is not parametrizable, irrespective of which signal space F is chosen.
However, P is a parametrization of M/t(M).

6.3 Parametrizing Linear Systems with Auto-

nomous Observables

As exposed in the previous section, the behavior of a linear system is parametriz-
able if and only if the linear system is controllable, i.e. if and only if it has no
autonomous observables. However, in certain situations the solutions of uncon-
trollable linear systems can be expressed as a sum of a parametrization of the
controllable part of the system and a vector of solutions of the equations fulfilled
by autonomous observables of the system. Such a situation is on hand when the
torsion submodule t(M) of the module M associated with the linear system has a
complement in M . For linear systems of ordinary differential equations whose co-
efficients are constant, polynomials, or rational functions, this is always the case.
In the behavioral setting for the study of linear systems with constant coefficients,
constructive solutions to interconnection and decomposition problems were given
in [ZL01]. In this section we give several details about the approach presented in
[QR05b] for the according problems in the framework of Ore algebras.

We continue to consider a left Noetherian Ore algebra D. Let M be a left
D-module. We recall that

(6.10) 0 // t(M)
ι //M

ρ //M/t(M) // 0



126 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS

is a short exact sequence of left D-modules, where t(M) is the torsion submodule
of M (see Def. 4.2.4). In this complex, ι and ρ denote the canonical injection
resp. the canonical projection. As explained in Ex. 4.2.5, ι and ρ are not always
written down.

Definition 6.3.1. [Rot79] A short exact sequence of left D-modules

(6.11) 0 //M ′
f //M

g //M ′′ // 0

is split, if there exists a homomorphism h : M ′′ →M of left D-modules satisfying
g ◦ h = idM ′′ .

Remarks 6.3.2. (a) The short exact sequence (6.11) is split if and only if
there exists a homomorphism k : M → M ′ of left D-modules satisfying
k ◦ f = idM ′ . In this case, we have M ∼= M ′ ⊕M ′′, and M ′′ is called a
complement of M ′ in M .

(b) The homomorphism k can be constructed from h : M ′′ →M in such a way
that ker(k) = im(h), i.e.

(6.12) 0 M ′oo M
koo M ′′hoo 0oo

is a short exact sequence.

Remark 6.3.3. Let (6.11) be a split short exact sequence of left D-modules and
let F be an injective left D-module. Then

(6.13) 0 homD(M ′,F)oo homD(M,F)
f∗oo homD(M ′′,F)

g∗oo 0oo

is an exact sequence of k-vector spaces, where f ∗, g∗ are defined as in Prop. 4.3.4.
Moreover, since (6.11) is split, we also have the short exact sequence (6.12), which,
by the injectivity of F , gives rise to the short exact sequence

(6.14) 0 // homD(M ′,F)
k∗ // homD(M,F)

h∗ // homD(M ′′,F) // 0,

where h∗, k∗ are defined as in Prop. 4.3.4. As a short exact sequence of k-
vector spaces, (6.14) is always split because every k-vector space is free and hence
projective. Here we want to stress that h∗ in (6.14) actually is a homomorphism
satisfying h∗ ◦ g∗ = idhomD(M ′′,F): for every ϕ ∈ homD(M ′′,F) we have

(h∗ ◦ g∗)(ϕ) = (g ◦ h)∗(ϕ) = ϕ ◦ g ◦ h = ϕ

because g ◦ h = idM ′′ holds by assumption.

We apply the notion of a split short exact sequence to the case M ′ = t(M)
and M ′′ = M/t(M), i.e. to the short exact sequence (6.10), where M is the left
D-module associated with a linear system.



6.3. LINEAR SYSTEMS WITH AUTONOMOUS OBSERVABLES 127

Remark 6.3.4. Let F be an injective left D-module. For a given matrix R ∈
Dq×p we consider the left D-module M = D1×p/D1×q R which is associated
with Rη = 0. Moreover, let R′ ∈ Dq′×p be a matrix such that M/t(M) =
D1×p/D1×q′ R′. We consider the short exact sequence

(6.15) 0 // t(M) ι //M
ρ //M/t(M) // 0.

Since F is injective,

0 homD(t(M),F)oo homD(M,F)oo homD(M/t(M),F)oo 0oo

is an exact sequence of k-vector spaces. Using Malgrange’s isomorphism (see
Prop. 4.1.8), we have

(6.16) homD(M,F) ∼= SolF(R), homD(M/t(M),F) ∼= SolF(R′)

as k-vector spaces, so that the previous short exact sequence can also be written
(up to isomorphism) as

0 homD(t(M),F)oo SolF(R)λoo SolF(R′)κoo 0.oo

It is clear that we have the following isomorphism of k-vector spaces:

SolF(R) ∼= SolF(R′)⊕ homD(t(M),F).

Let us assume that the short exact sequence (6.15) is split. Then, according to
Remark 6.3.3, a projection π from SolF(R) onto SolF(R′) can be obtained as ρ∗

(up to the isomorphisms (6.16)). In order to turn this remark into a useful tool
for solving certain linear systems, we will translate the present situation into the
language of matrices below.

Remark 6.3.5. By the definition of a projective module (Def. 4.2.6), if M ′′ is
projective, then (6.11) is split. For the Ore algebras

D ∈ { k[∂], A1(k) = k[t][∂], B1(k) = k(t)[∂] },

every finitely generated torsion-free leftD-module is projective (see Theorem 4.2.9
(a) and (b), p. 74). If the linear system is given by ordinary differential equations
with coefficients which are constant, polynomials, or rational functions in t, then
the associated module M can be defined over one of these Ore algebras. In this
case the torsion-free module M ′′ = M/t(M) is therefore projective. Hence, every
such linear system of ordinary differential equations gives rise to a split short ex-
act sequence (6.15), so that we can always draw the conclusion from Remark 6.3.4
about the set of solutions for these linear systems.



128 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS

We consider the following commutative diagram of left D-modules:

(6.17)

0

��
0

��

t(M)

��
D1×q

��

.R // D1×p

id
��

//M

ρ

��

// 0

D1×q′ .R′
// D1×p

��

//M/t(M)

��

// 0

0 0

By applying homD( · ,F) to the complexes of left D-modules which are contained
in this diagram we obtain:

(6.18)

0

0 homD(t(M),F)

OO

F q×1 Fp×1

OO

R.oo SolF(R)

OO

oo 0oo

F q′×1

OO

Fp×1

id

OO

R′.oo SolF(R′)

OO

oo 0oo

0

OO

0

OO

For a visualization of the maps used in the next lemma, we refer to the
diagram (6.17).

Lemma 6.3.6. Let R ∈ Dq×p, M = D1×p/D1×q R and R′ ∈ Dq′×p such that
M/t(M) = D1×p/D1×q′ R′. The short exact sequence

(6.19) 0 // t(M) //M //M/t(M) // 0

is split if and only if there exist matrices S ∈ Dp×q′ and V ∈ Dq′×q such that

(6.20) R′ −R′ S R′ = V R.

Proof. Let ρ : M → M/t(M) be the canonical projection. By Def. 6.3.1, (6.19)
is split if and only if there exists a homomorphism σ : M/t(M) → M such that
ρ ◦ σ = idM/t(M).



6.3. LINEAR SYSTEMS WITH AUTONOMOUS OBSERVABLES 129

Every homomorphism M → M/t(M) can be defined by assigning its images
on the elements of a generating set of M in such a way that all left D-linear
relations satisfied by these generators are fulfilled for the corresponding images.
More precisely, in the present context we have M = D1×p/D1×q R so that the
residue classes in M of the standard basis vectors of D1×p form a generating set
of M . All left D-linear relations for this generating set are generated by the rows
of R. Similarly, the target M/t(M) = D1×p/D1×q′ R′ is generated by the residue
classes in M/t(M) of the standard basis vectors of D1×p whose left D-linear
relations are generated by the rows of R′. Hence, every homomorphism M →
M/t(M) can be defined on representatives of residue classes by an endomorphism
∆ : D1×p → D1×p which satisfies

∆(D1×q R) ⊆ D1×q′ R′.

For ρ : M → M/t(M) the endomorphism ∆ can be chosen to be the identity.
Analogously, σ : M/t(M)→M is induced by an endomorphism Σ : D1×p → D1×p

which satisfies

(6.21) Σ(D1×q′ R′) ⊆ D1×q R.

We represent Σ with respect to the standard basis of D1×p by a matrix U ∈ Dp×p.
Then (6.21) is equivalent to the existence of a matrix V ∈ Dq′×q such that

(6.22) R′ U = V R.

Let us now assume that (6.19) is split. Then, by the preceding remarks,
there exist U ∈ Dp×p and V ∈ Dq′×q such that (6.22) holds. The property
ρ ◦ σ = idM/t(M) translates into the existence of a matrix S ∈ Dp×q′ such that

(6.23) U Ip + S R′ = Ip,

where Ip is the (p × p)-identity matrix. By multiplying by R′ from the left and
using (6.22) we find (6.20).

Conversely, if (6.20) holds, then we define U := Ip − S R′. Then we have

R′ U = R′ −R′ S R′ = V R,

which means that U represents a well-defined homomorphism σ : M/t(M)→M
which satisfies ρ ◦ σ = idM/t(M) because (6.23) holds.

Lemma 6.3.7. Let R ∈ Dq×p, M = D1×p/D1×q R and R′ ∈ Dq′×p, M/t(M) =
D1×p/D1×q′ R′. Then there exists a matrix R′′ ∈ Dq×q′ such that R = R′′R′.

Proof. In the terminology of the proof of the previous lemma, the canonical
projection ρ : M → M/t(M) is represented by ∆ = idD1×p : D1×p → D1×p

which satisfies ∆(D1×q R) ⊆ D1×q′ R′. Hence there exists a matrix R′′ ∈ Dq×q′

satisfying RIp = R′′R′.



130 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS

Theorem 6.3.8. Let F be an injective left D-module, R ∈ Dq×p and M =
D1×p/D1×q R the left D-module associated with Rη = 0. Moreover, let R′ ∈ Dq′×p

such that M/t(M) = D1×p/D1×q′ R′ and

( L′
︸︷︷︸
∈Dr×q′

L︸︷︷︸
∈Dr×q

) ∈ Dr×(q′+q) such that ker

(
.

(
R′

R

))
= D1×r (L′ L).

If there exist matrices S ∈ Dp×q′ and V ∈ Dq′×q satisfying

(6.24) R′ −R′ S R′ = V R,

then we have

Rη = 0 ⇐⇒ η = P ξ + S τ, ξ ∈ Fm×1,

where P ∈ Dp×m is a parametrization of M/t(M) and τ runs through all solutions
of

L′ τ = 0.

Remarks 6.3.9. (a) The matrix composed of L and L′ in the assumption of
Thm. 6.3.8 can be obtained from a computation of syzygies of the rows of
the matrix (R′T RT )T ∈ D(q′+q)×p (see Remark 4.2.11).

(b) By Lemma 6.3.6, the existence of matrices S ∈ Dp×q′ and V ∈ Dq′×q

satisfying (6.24) is equivalent to the fact that (6.19) is split.

(c) Since P ∈ Dp×m in the assertion of the theorem is a parametrization of
M/t(M), we have P ξ ∈ SolF(R′) for all ξ ∈ Fm×1.

Proof of Thm. 6.3.8. “⇒”: We show that every solution η of Rη = 0 is of the
form η = P ξ + S τ for some ξ ∈ Fm×1 and some solution τ of L′ τ = 0.

Let η ∈ SolF(R) be arbitrary. Set U := Ip − S R′ ∈ Dp×p. By applying U to
η we obtain

η = U η + S R′ η.

We have U η ∈ SolF(R′) because

R′ U η = (R′ −R′ S R′) η = V R η = 0.

Since F is injective, the parametrization P of M/t(M) is also a parametrization
of SolF(R′) (see Prop. 6.2.7 (b)). Hence, there exists some ξ ∈ Fm×1 such that
U η = P ξ. Moreover, τ := R′ η is a solution of L′ τ = 0 because

L′ τ = L′R′ η = −LRη = 0

holds by assumption. Altogether we have shown that η can be written as η =
P ξ + S τ as claimed.



6.4. APPLICATIONS 131

“⇐”: Let τ be a solution of L′ τ = 0 and let ξ ∈ Fm×1 be arbitrary. Since F is
an injective left D-module, the inhomogeneous linear system

(
R′

R

)
η =

(
τ
0

)

is solvable if and only if the compatibility conditions

(L′ L)

(
τ
0

)
= L′ τ = 0

are fulfilled (compare to Ex. 4.3.5, p. 80). Since this is the case by assumption,
there exists η ∈ SolF(R) such that R′ η = τ .

By Lemma 6.3.7 there exists a matrix R′′ ∈ Dq×q′ such that R = R′′R′. Using
such a matrix R′′ and (6.24) we are able to show that η := P ξ+S τ is a solution
of Rη = 0:

Rη = RP ξ +RS τ

= R′′ (R′ P︸︷︷︸
0

) ξ +R′′ (R′ S R′)η

= R′′ (R′ − V R) η = 0.

This theorem holds, in particular, in the case of linear systems of partial
differential equations with constant coefficients for theR[∂1, . . . , ∂n]-modules F =
C∞(Ω) und D′(Ω) for open convex sets Ω ⊆ Rn, which are injective cogenerators
for the category of R[∂1, . . . , ∂n]-modules (see Ex. 4.4.5 (a) (3), (4)). Examples
are given in the next section.

An important application of the possibility to express all solutions of a linear
system as in Theorem 6.3.8 is to linear quadratic optimal control problems, where
a quadratic cost functional is to be minimized subject to a linear system. If
Theorem 6.3.8 applies in this situation, then substituting P ξ + S τ for η in
the cost functional turns the given problem into a variational problem without
constraints. For more details, we refer to Section 7.6, [PQ04] and [QR06b].

6.4 Applications

In this section we demonstrate Theorem 6.3.8 on two examples. The first one is
the bipendulum which is described by a system of ordinary differential equations
in Ex. 5.3.2. As a second example the linear system of differential time-delay
equations which was introduced in Ex. 6.1.2 is investigated again. Both systems
are not controllable in the sense of Section 6.2. The associated modules M
are not torsion-free. However, in both examples the torsion submodules have a
complement in M so that Theorem 6.3.8 can be applied.



132 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS

Example 6.4.1. We reconsider the bipendulum [Pom01] of Ex. 5.3.2 for a con-
figuration of the parameters for which the bipendulum is not controllable, i.e. the
lengths of the two pendula are equal. In this example we apply the Maple package
OreModules (see Section 5.5) in combination with JanetOre (see Section 2.6).

> with(OreModules):

> with(JanetOre):

First we set an option which makes OreModules use the package JanetOre for
the necessary Janet basis computations.

> OreModulesOptions("GroebnerBasis", "JanetOre"):

Since we deal with a linear system of ordinary differential equations we define the
Weyl algebra A1(Q(g, l)) in Maple. However, it is important to notice that, since
the equations have constant coefficients, we actually deal with modules over the
commutative ring

O := Q(g, l)[D]

of polynomials in D with coefficients that are rational functions in the param-
eters g and l. Here D represents differentiation with respect to time t. We
define the O-module F = C∞(R) of smooth functions on R and consider solu-
tions of the system in F . Note that F is an injective cogenerator for OM (see
Ex. 4.4.5 (a) (3)).

> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g,l]):

The system of equations (5.2), p. 104, is entered for the case l1 = l2 = l .

> R := matrix([[D^2+g/l, 0, -g/l], [0, D^2+g/l, -g/l]]);

R :=




D2 +
g

l
0 −g

l

0 D2 +
g

l
−g
l




Let us denote the O-module which is associated with the system by M . We
compute the extension group ext1

O(M⊤,O).

> Ext1 := Exti(Involution(R, Alg), Alg, 1);

Ext1 :=



[
−g −D2 l 0

0 1

]
,

[
1 −1 0
0 D2 l + g −g

]
,




g
g

D2 l + g








6.4. APPLICATIONS 133

The result of Exti is a list with three entries. The second entry of Ext1 is a
matrix whose rows represent residue classes in M which form a generating set
for ext1

O(M⊤,O). The entries of the i-th column of the first matrix in Ext1
generate the annihilator in O of the residue class represented by the i-th row in
Ext1 [2]. In particular, we have (l1 D2 + g)m1 = 0 in M , where m1 is the residue
class represented by (−1 1 0). This coincides with the corresponding result
in Ex. 5.3.2. We conclude that the bipendulum is not parametrizable for this
configuration of the parameters.

The third matrix in Ext1 is a parametrization of M/t(M). It was computed
exactly as in the proof of Theorem 6.2.8. Let us denote this parametrization by
P .

> P := Ext1[3];

P :=




g
g

D2 l + g




A generating set of torsion elements of t(M) ∼= ext1
O(M⊤,O) in terms of the

system variables and autonomous equations satisfied by the corresponding au-
tonomous observables can also be computed as follows:

> TorsionElements(R, [x1(t),x2(t),u(t)], Alg);

[
[
−g θ1(t)− l ( d

2

dt2
θ1(t)) = 0

]
,
[
θ1(t) = x1(t)− x2(t)

]
]

As the bipendulum is described by ordinary differential equations, we know that
the torsion submodule t(M) has a complement in M (see Remark 6.3.5). There-
fore, we can apply Theorem 6.3.8 to find a parametrization of the behavior of the
bipendulum nevertheless.

Since the residue classes in M represented by the rows of Ext1 [2] generate
t(M), we can also consider Ext1 [2] as a presentation of M/t(M), i.e. M/t(M) ∼=
O1×3/O1×2 Ext1 [2]. Hence, we have constructed a matrix R′ in O2×3 which fulfills
a part of the assumptions in Theorem 6.3.8. Let us denote this matrix by T in
Maple.

> T := Ext1[2];

T :=

[
1 −1 0
0 D2 l + g −g

]

As was proved in Lemma 6.3.7 we can find a matrix R′′ ∈ O2×2 which satisfies
R′′R′ = R. Such a matrix can be found using the command Factorize.

> Factorize(R, T, Alg);



134 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS




D2 l + g

l

1

l

0
1

l




In order to be able to apply Theorem 6.3.8 we still have to meet a few require-
ments. The matrix equation (6.24) is solved by a Janet basis computation (using
the Kronecker product for matrices, this matrix equation is written as a system
of affine equations for the unknown entries; for more details see [QR05b]). This
is accomplished by the command Complement which returns, if possible, a list of
matrices U , V , S satisfying the relations T − T S T = V R and U = I3 − S T .

> C := Complement(T, R, Alg);

C :=






0 1 0
0 1 0
0 0 1


 ,

[
0 0
0 l

]
,




1 0
0 0
0 0






In order to complete the requirements of Theorem 6.3.8 we compute the syzygy
module of the rows of the matrix formed by stacking R′ and R:

> L := SyzygyModule(linalg[stackmatrix](T, R), Alg);

L :=

[
D2 l + g 0 −l l

0 1 0 −l

]

The submatrix L′ of L obtained by selecting the first two columns defines a
system of two linear ordinary differential equations for autonomous observables
τ1, τ2 of the bipendulum. The second equation is τ2 = 0. Let us integrate the
first equation:

> dsolve(l*diff(tau1(t), t, t) + g*tau1(t), tau1(t));

τ1(t) = C1 sin(

√
g t√
l

) + C2 cos(

√
g t√
l

)

Hence, the general solution of the equation L′ τ = 0 in Theorem 6.3.8 is given by
the following vector:

> tau := matrix(2, 1, [rhs(%), 0]);

τ :=


 C1 sin(

√
g t√
l

) + C2 cos(

√
g t√
l

)

0






6.4. APPLICATIONS 135

Now we can write down a vector P ξ + S τ depending on one function and two
constants which can be chosen arbitrarily such that all solutions of R are given
by this vector.

> eta := ApplyMatrix(P, [xi(t)], Alg) +
> ApplyMatrix(C[3], tau, Alg);

η :=




g ξ(t)
g ξ(t)

g ξ(t) + l ( d
2

dt2
ξ(t))


 +




C1 sin(

√
g t√
l

) + C2 cos(

√
g t√
l

)

0
0




Hence, we have found a kind of parametrization of the behavior of the bipendulum
in the uncontrollable case. The above vector η can be computed directly using
the command Parametrization in OreModules, which uses dsolve to find the
general solution of L′ τ = 0:

> Parametrization(R, Alg);



C1 sin(

√
g t√
l

) + C2 cos(

√
g t√
l

) + g ξ1(t)

g ξ1(t)

g ξ1(t) + l ( d
2

dt2
ξ1(t))




Every solution (x1 , x2 , u)T ∈ C∞(R)3×1 of (5.2) is of the form





x1 (t) = C1 sin(

√
g t√
l

) + C2 cos(

√
g t√
l

) + g ξ1(t),

x2 (t) = g ξ1(t),

u(t) = g ξ1(t) + l ( d
2

dt2
ξ1(t))

for some constants C1 , C2 ∈ R and some ξ1 ∈ C∞(R).

Example 6.4.2. We resume Ex. 6.1.2 in which a system of linear differential
time-delay equations was studied.

> with(OreModules):

> with(JanetOre):

We select the interface of OreModules to JanetOre.

> OreModulesOptions("GroebnerBasis", "JanetOre"):



136 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS

In order to handle the linear system (6.2) using OreModules we define the Ore
algebra Alg := Q[t, s][D, δ] which consists of polynomials in D and δ with coef-
ficients that are polynomials in t and s.

> Alg := DefineOreAlgebra(diff=[D,t], dual_shift=[delta,s],
> polynom=[t,s], shift_action=[delta,t]):

Since the equations have constant coefficients, only the action of D and δ on
functions is relevant in what follows. All modules will be considered over the
commutative subring O := Q[D, δ] of Alg. According to the definition of Alg, D
acts by differentiation with respect to t and δ acts as a shift of “length” 1 on t.

Next we define the matrix R given in (6.3).

> R := matrix([[delta^2, 1, -2*D*delta],
> [1, delta^2, -2*D*delta]]);

R :=

[
δ2 1 −2 D δ
1 δ2 −2 D δ

]

We can verify the action of D and δ on functions by applying the matrix R to
the vector (φ1(t), φ2(t), φ3(t))T :

> ApplyMatrix(R, [phi1(t),phi2(t),phi3(t)], Alg);
[
φ1(t− 2) + φ2(t)− 2 D(φ3)(t− 1)
φ1(t) + φ2(t− 2)− 2 D(φ3)(t− 1)

]

Let us denote the O-module which is associated with the linear system by M .
Then we compute the extension group extO(M⊤,O).

> Ext1 := Exti(Involution(R, Alg), Alg, 1);

Ext1 :=



[
δ2 − 1 0

0 δ2 − 1

]
,

[
1 −1 0
0 −δ2 − 1 2 D δ

]
,




2 D δ
2 D δ
1 + δ2






The rows of Ext1 [2] represent residue classes which form a generating set for
the torsion submodule t(M) of M . The entries of the i-th column of Ext1 [1]
annihilate the generator mi of t(M) represented by the i-th row in Ext1 [2] so
that we have (δ2 − 1)mi = 0 in M . Therefore, we have found non-trivial torsion
elements of M . Moreover P := Ext1 [3] is parametrization of M/t(M).

> P := Ext1[3];

P :=




2 D δ
2 D δ
1 + δ2






6.4. APPLICATIONS 137

The generators for t(M) can also be obtained in terms of the system variables
together with the equations represented by Ext1 [1] as follows:

> TorsionElements(R, [phi1(t),phi2(t),phi3(t)], Alg);

[

[
θ1(t− 2)− θ1(t) = 0
θ2(t− 2)− θ2(t) = 0

]
,

[
θ1(t) = φ1(t)− φ2(t)

θ2(t) = −φ2(t− 2)− φ2(t) + 2 D(φ3)(t− 1)

]
]

The matrix R′ := Ext1 [2] satisfies M/t(M) ∼= O1×3/O1×2R′. We denote this
matrix by T in Maple:

> T := Ext1[2];

T :=

[
1 −1 0
0 −δ2 − 1 2 D δ

]

Lemma 6.3.7 is easily verified: we find a matrix R′′ in O2×2 such that R = R′′R′.

> Factorize(R, T, Alg);
[
δ2 −1
1 −1

]

Let us check whether the short exact sequence

0 −→ t(M) −→M −→M/t(M) −→ 0

is split. By Lemma 6.3.6 this is equivalent to the existence of matrices S ∈ O3×2

and V ∈ O2×2 which fulfill R′ − R′ S R′ = V R. The command Complement

computes such matrices if they exist. More precisely, Complement returns a list of
matrices U , V , S such that U = I3−S R′ and V and S satisfy R′−R′ S R′ = V R.

> C := Complement(T, R, Alg);

C :=







1

2

1

2
0

1

2

1

2
0

0 0 1



,

[
0 0
−1

2

−1

2

]
,




1

2
0

−1

2
0

0 0







Finally, we need to compute the syzygy module of the matrix (T T RT )T :

> L := SyzygyModule(linalg[stackmatrix](T, R), Alg);

L :=

[
1 −1 0 −1
0 δ2 − 1 −1 δ2

]



138 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS

Let us denote by L′ the submatrix of L formed by the first two columns. Then the
application of Theorem 6.3.8 requires the solutions τ = (τ1 τ2)T of L′ τ = 0.
The first equation in L′ τ states that τ1 = τ2, and the second equation implies
that τ1 is a 2-periodic function of t.

> tau := matrix(2, 1, [tau1(t),tau1(t)]);

τ :=

[
τ1(t)
τ1(t)

]

According to Theorem 6.3.8 we have a vector η := P ξ + S τ which gives all
solutions of (6.2) in an injective signal space, when τ1 is a 2-periodic function
and ξ is an arbitrary function.

> eta := ApplyMatrix(P, [xi(t)], Alg) +
> ApplyMatrix(C[3], tau, Alg);

η :=




2 D(ξ)(t− 1)
2 D(ξ)(t− 1)
ξ(t) + ξ(t− 2)


 +




1

2
τ1(t)

−1

2
τ1(t)

0




The command Parametrization as applied in the previous example uses pdsolve
in Maple to solve partial differential equations, which arise as L′ τ = 0 in Theo-
rem 6.3.8, symbolically. In the present case, Parametrization is not yet appli-
cable because pdsolve does not handle retarded differential equations.

6.5 Flatness

The notion of flatness of linear systems is investigated more closely in this section.
Stated in the framework of this chapter a linear system is flat if its behavior
has an injective parametrization (see Def. 6.2.2). The problem of expressing
the solutions of an underdetermined system of (nonlinear) partial differential
equations in terms of arbitrary functions has already been studied in the 19th
century and is known as Monge’s problem (see [Zer32], [Jan71]). Important
contributions were made by D. Hilbert [Hil12] and E. Cartan [Car14] for nonlinear
systems of ordinary differential equations.

In the context of systems theory, the notion of flatness was introduced for
continuous-time nonlinear systems in the beginning of the 1990s [FG93, FLMR95].
A given system is flat, if there exists a flat output, which is a (vector) function
of the system variables (and of finitely many of their derivatives) such that con-
versely every system variable can (locally) be expressed as a function of the



6.5. FLATNESS 139

components of the flat output in a unique way. In particular, the components of
a flat output are differentially independent. If a given system is flat and a flat
output of the system is known, then it is particularly easy to design controls for
the system. The problem of steering the system in such a way that the values
of the flat output follow given trajectories is then solved as follows: the chosen
inputs of the system are expressed in terms of the flat output which implies that
the input trajectory is (locally) uniquely determined by the desired trajectory for
the flat output. Sometimes this control strategy is sufficient and one renounces a
feedback to improve the accuracy of the actual output trajectory in comparison
to the desired trajectory (“open-loop control”).

desired trajectory open-loop control

0

0.2

0.4

0.6

0.8

1

–1 1 2 3 4

x

express input variables

in terms of flat output
//

–6

–4

–2

2

4

6

–1 1 2 3 4

x

Many systems emerging naturally in applications are flat and even have flat
outputs with a physical meaning so that the open-loop control strategy can be
implemented in a straightforward way. Many applications are treated in the
literature (e.g. [MRFR98], [Rot97], [OM02], [FPA03]).

In the rest of this section we incorporate the notion of flatness for linear
systems into the present Ore algebra framework.

Let D be a left Noetherian Ore algebra and F a left D-module.

Definition 6.5.1. [FM98, Mou95] A behavior B is said to be flat if an injective
parametrization P ∈ Dp×m of B exists, i.e. if there exist a parametrization
P ∈ Dp×m of B and a matrix T ∈ Dm×p such that T P = Im. In this case, we
say that T defines a flat output ξ of B in the sense that η = P ξ is equivalent to
ξ = T η.

For an example we refer to Section 7.2.

Theorem 6.5.2. [FM98, Mou95, PQ99b] Let D be a left Noetherian Ore algebra,
F a left D-module which is an injective cogenerator for DM , and B the behavior of
a linear system Rη = 0, where R ∈ Dq×p. Let M be the left D-module associated
with the system. The behavior B is flat if and only if the module M is free. Then
the D-bases of M are in one-to-one correspondence with the flat outputs of B.



140 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS

Proof. By definition of M the complex

(6.25) D1×q .R // D1×p //M // 0

is an exact sequence of left D-modules. Now B is flat if and only if there exists
P ∈ Dp×m which induces an injective homomorphism (P.) : Fm×1 → Fp×1 such
that

(6.26) F q×1 Fp×1R.oo Fm×1P.oo 0oo

is exact (see Remark 6.2.3). We recall what the property of F being an injective
cogenerator for DM means for the application of homD( · ,F) to the complex

(6.27) D1×q .R // D1×p .P // D1×m // 0.

This complex is exact if and only if (6.26) is exact. If B is flat, then (6.26)
is exact and it follows M ∼= D1×m, i.e. M is free. Conversely, if M ∼= D1×m,
then there exists a matrix P ∈ Dp×m such that (6.25) reads as the short exact
sequence (6.27). Since F is an injective cogenerator, (6.26) is then exact. Hence,
B is flat. The flat outputs are in one-to-one correspondence with the left inverses
of P , which on the other hand are in bijection with the D-bases of M .

Remark 6.5.3. In general, no necessary and sufficient condition expressed in
terms of homological algebra is known for the freeness of a left D-module (see
also Figure 5.1, p. 99). For specific k-algebras D, Theorem 4.2.9 (b) and (c)
provide (in combination with Prop. 4.2.8) necessary and sufficient conditions for
a finitely generated left D-module to be free.

Of course, in order to exploit the flatness of a behavior B, it is not sufficient
to prove that the associated left D-module is free, but a flat output of B also
needs to be computed. According to the previous theorem, the flat outputs
of B are in one-to-one correspondence with the D-bases of M . In general, a
parametrization which is constructed as explained in Remark 6.2.9 is not minimal,
i.e., the solutions of the given linear system are expressed in terms of arbitrary
functions whose number is not minimal. Obviously, a parametrization is not
injective, if it is not minimal. For more details about minimal parametrizations
we refer to [CQR05], [QR06a].

For specific k-algebras D there are particular methods to find bases of finitely
generated free modules:

• In the case of the localized Weyl algebra B1(k), where k is a field of char-
acteristic zero, the Jacobson normal form (see Remark 2.4.11) can be used
to find a basis.

• For commutative polynomial algebras Quillen-Suslin’s theorem (see The-
orem 4.2.9 (c)) states that projective modules are free. A constructive
version of Quillen-Suslin’s theorem is developed at Lehrstuhl B für Mathe-
matik, RWTH Aachen [FQ06].



6.6. COMPUTING BASES OVER THE WEYL ALGEBRAS 141

• In the next section we describe a method to compute bases of finitely gen-
erated free left modules over An(k) or Bn(k) of rank at least 2, where k is
a field of characteristic zero.

We only mention here another characterization of controllable time-varying
linear systems [QR05a]: every controllable time-varying linear system is a pro-
jection of a flat system.

6.6 Computing Bases of Free Modules over the

Weyl Algebras

In this final section a method to compute bases of free left D-modules of rank
at least 2 is presented, where D is either An(k) or Bn(k) for some n ∈ N and
a field k of characteristic zero. This joint work with A. Quadrat [QR06a] relies
on algorithmic versions of a theorem of J. T. Stafford developed in [HS01] and
[Ley04]. First the notion of a stable unimodular column vector is defined. For
such a column vector there exists a matrix representing elementary row operations
such that the product of this matrix by the column vector is the first standard
basis vector. Then we prove that every projective left D-module M which is the
cokernel of an injective homomorphism (.R) : D1×p → D1×q with p − q large
enough is a free module. The proofs of these facts are combined in a procedure
to compute a basis of M . Finally, an example demonstrates this procedure.

For the first part of this section we let D be any left Noetherian ring.

Definition 6.6.1. (a) A column vector v = (v1, . . . , vm)T ∈ Dm×1 is said to
be unimodular, if there exists a row vector w = (w1, . . . , wm) ∈ D1×m such
that

∑m
i=1wi vi = 1. The set of unimodular column vectors in Dm×1 is

denoted by Uc(m,D).

(b) A unimodular column vector v = (v1, . . . , vm)T ∈ Uc(m,D) is said to be
stable, if there exist a1, . . . , am−1 ∈ D such that

(6.28) v′ := (v1 + a1 vm, . . . , vm−1 + am−1 vm)T ∈ Uc(m− 1, D).

(c) The positive integer l is said to be in the stable range of D, if every uni-
modular column in Uc(m,D) is stable for all m ≥ l.

(d) The least positive integer l in the stable range of D is denoted by sr(D). If
no such integer exists, then we set sr(D) =∞.

Remark 6.6.2. More generally than in Definition 6.6.1, the stable range is de-
fined for left and right D-modules. The stable ranges of D considered either as
left D-module or as right D-module in this more general sense are the same.



142 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS

Example 6.6.3. (a) [MR00, Prop. 11.5.3] We have sr(Z) = 2 and sr(k[x]) = 2
for any field k.

(b) [MR00, Cor. 11.5.10 (i)] For D = R[x1, . . . , xn] we have sr(D) = n+ 1.

(c) [Sta78] If k is a field of characteristic zero, then we have sr(An(k)) = 2 and
sr(Bn(k)) = 2.

Definition 6.6.4. [MR00] The elementary group E(m,D) is the subgroup of
GL(m,D) which is generated by all matrices of the form Im + r Ei,j, i 6= j,
r ∈ D, where Ei,j denotes the (m ×m)-matrix whose only non-zero entry is at
position (i, j) and this entry equals 1.

The next proposition states that every stable unimodular column vector in
Dm×1 can be transformed to the first standard basis vector in Dm×1 by multiply-
ing an appropriate matrix E ∈ E(m,D) from the left. A constructive version of
this proposition for the Weyl algebras An(k) is an important ingredient for the
algorithm which computes bases of free modules over An(k) of rank at least 2.

Proposition 6.6.5. [QR06a] If v ∈ Uc(m,D) is stable, then there exists E ∈
E(m,D) such that E v = (1, 0, . . . , 0)T .

Proof. Since v is stable, there exist a1, . . . , am−1 ∈ D such that (6.28) holds. If
we denote the entries of v′ by v′i, 1 ≤ i ≤ m− 1, then the matrix

E1 :=




1 0 0 . . . 0 a1

0 1 0 . . . 0 a2

0 0 1 . . . 0 a3
...

...
...

. . .
...

...
0 0 0 . . . 1 am−1

0 0 0 . . . 0 1




∈ E(m,D)

satisfies E1 v = (v′1, . . . , v
′
m−1, vm)T . Since v′ is a unimodular column vector, there

exist b1, . . . , bm−1 ∈ D such that
∑m−1

i=1 bi v
′
i = 1. We define ci := (v′1−1− vm) bi,

i = 1, . . . ,m− 1. Then the matrix

E2 :=




1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
c1 c2 c3 . . . cm−1 1




∈ E(m,D)



6.6. COMPUTING BASES OVER THE WEYL ALGEBRAS 143

satisfies E2E1 v = (v′1, . . . , v
′
m−1, v

′
1 − 1)T . The first entry of the first standard

basis vector in Dm×1 is now produced by the matrix

E3 :=




1 0 0 . . . 0 −1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1




∈ E(m,D),

namely we have E3E2E1 v = (1, v′2, . . . , v
′
m−1, v

′
1− 1)T . Finally, using the matrix

E4 :=




1 0 0 . . . 0 0

−v′2 1 0 . . . 0 0

−v′3 0 1 . . . 0 0
...

...
...

. . .
...

...

−v′m−1 0 0 . . . 1 0

−v′1 + 1 0 0 . . . 0 1




∈ E(m,D)

we obtain E := E4E3E2E1 ∈ E(m,D) which fulfills the assertion.

As soon as a1, . . . , am−1 ∈ D can be found constructively such that (6.28)
holds, the proof of the previous proposition can be translated into an algorithm.
We are going to show below how this can be done for the Weyl algebras An(k)
and Bn(k) for a field k of characteristic zero. Bases of free left D-modules of
rank at least sr(D) can be computed along the lines of the proof of the following
theorem. The previous proposition is applied iteratively.

Theorem 6.6.6. [QR06a] Let k be a field and D a (not necessarily commutative)
k-algebra with involution θ. Then every projective left D-module M having a free
resolution of the form

(6.29) 0 // D1×q .R // D1×p //M // 0

with p− q ≥ sr(D) is free.

Remark 6.6.7. In fact, the assumption on the left D-module M in the theorem
states that M is stably-free, which by definition means that the direct sum of
M and some free left D-module is free (cf. Remark 6.3.2 (a)). In the present
situation we have M ⊕D1×q ∼= D1×p. Of course, every free module is stably-free,
and every stably-free module is projective. If M is a finitely generated stably-
free left module over an Ore algebra of the type considered e.g. in Section 2.4,
then a free resolution of M as in (6.29) can be constructed from any given finite
presentation of M (cf. [QR06a]).



144 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS

Proof of Thm. 6.6.6. Since M is projective, the short exact sequence (6.29) is
split (see Remark 6.3.5), i.e. there exists S ∈ Dp×q such that RS = Iq. In order
to be able to apply Proposition 6.6.5, we consider θ(R) ∈ Dp×q (cf. Def. 5.2.5)
and the short exact sequence

0 D1×qoo D1×p
.θ(R)oo ker(.θ(R))oo 0,oo

which is split because θ(S) θ(R) = θ(RS) = Iq. Therefore, the first column v
of θ(R) is a unimodular column vector with p entries. Now v is stable because
p > sr(D). By Proposition 6.6.5 there exists a matrix E ∈ E(p,D) such that
E v = (1, 0, . . . , 0)T , and hence

(6.30) E θ(R) =




1 ⋆
0
... T
0




for some matrix T ∈ D(p−1)×(q−1), where ⋆ denotes an appropriate number of
elements in D. We have (θ(S)E−1) (E θ(R)) = Iq, and obviously every left
inverse of E θ(R) is of the form




1 ⋆
0
... L
0


 ∈ D

(q−1)×(p−1).

Hence, by removing the first row and the first column of θ(S)E−1 we obtain a
left inverse of T . Therefore, the first column of T is a unimodular column vector
with p − 1 entries. Since p − 1 ≥ sr(D), there exists a matrix E ′ ∈ E(p − 1, D)
such that E ′ T has the same shape as the matrix in (6.30), but having only p− 1
rows and q − 1 columns. The above argument can be repeated as long as the
number of entries is greater than or equal to sr(D). Iteratively we conclude that
there exist matrices E1 := E, E2 := diag(1, E ′), . . . , Eq ∈ E(p,D) such that
F := Eq · · ·E1 satisfies

F θ(R) =




1 ⋆ . . . ⋆

0 1 ⋆
...

...
...

. . . ⋆
0 0 . . . 1
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0




.



6.6. COMPUTING BASES OVER THE WEYL ALGEBRAS 145

Now it is clear that ker(.(F θ(R))) = im(.P ) with P := (0 Ip−q) ∈ D(p−q)×p. So
we have ker(.θ(R)) = im(.(P F )) because F is invertible, i.e.

0 D1×qoo D1×p
.θ(R)oo D1×(p−q)

.(P F )oo 0oo

is a short exact sequence. If we define Q := θ(P F ) ∈ Dp×(p−q), then we have the
short exact sequence:

0 // D1×q .R // D1×p
.Q // D1×(p−q) // 0,

which is split because RS = Iq (see Remark 6.3.2 (a)). Hence, there exists a
matrix L ∈ D(p−q)×p such that LQ = Ip−q. We conclude that

M = D1×p/D1×q R ∼= D1×pQ = D1×(p−q)

is free, and a basis of M is given by the residue classes in M of the rows of L.

In the preceding proof Proposition 6.6.5 is applied. We quote the following
theorem of J. T. Stafford which will allow us to turn Proposition 6.6.5 into an
effective procedure. Then the proof of Theorem 6.6.6 describes a procedure to
construct bases of free modules over the Weyl algebras of rank at least 2.

Theorem 6.6.8 (Stafford). [Sta78] Let k be a field of characteristic zero and
D ∈ {An(k), Bn(k)}. Let a, b, c ∈ D generate the left ideal I of D, i.e.

I = Da+D b+D c,

and let d1, d2 ∈ D − {0} be arbitrary. Then there exist f, g ∈ D such that

(6.31) I = D (a+ d1 f c) +D (b+ d2 g c).

Remark 6.6.9. Most interesting in the present context is the special case d1 =
d2 = 1. Then the theorem simply states that every left ideal of An(k) (and of
Bn(k)) can be generated by two elements and, moreover, given three generators
of the left ideal, a generating set exists that consists of only two appropriate
linear combinations of the three generators as formed in (6.31).

Remark 6.6.10. Let D ∈ {An(k), Bn(k)}, where k is a field of characteristic
zero. Since sr(D) = 2 (see Ex. 6.6.3 (c)), every unimodular column vector v =
(v1, . . . , vm)T ∈ Uc(m,D) is stable, i.e. there exist a1, . . . , am−1 ∈ D such that
v′ = (v1 + a1 vm, . . . , vm−1 + am−1 vm)T is unimodular. Appropriate coefficients
ai ∈ D can be computed by applying a constructive version of Theorem 6.6.8
(see the next remark). To this end, choose three distinct entries of v, say v1,
v2, vm, and consider the left ideal I = D v1 +D v2 +D vm. Then a constructive
version of Theorem 6.6.8 (for the case d1 = d2 = 1) yields a1, a2 ∈ D such that



146 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS

I = D (v1+a1 vm)+D (v2+a2 vm). Now, v′ = (v1+a1 vm, v2+a2 vm, v3, . . . , vm−1)
T

is unimodular because by assumption

D =
m∑

i=1

D vi = I +
m−1∑

i=3

D vi.

Remark 6.6.11. Algorithmic versions of Theorem 6.6.8 have been developed
recently in [HS01] and [Ley04]. Using these constructive methods, an implemen-
tation of the described procedure to compute bases of free left modules over An(k)
or Bn(k) of rank at least 2 has been included in the Maple package OreModules

(see Section 5.5) by A. Quadrat and the author of this thesis. It is based on the
proofs of Prop. 6.6.5 and Theorem 6.6.6 and Remark 6.6.10. The implementation
has been applied successfully to small examples. However, the bottleneck are the
constructive versions of Stafford’s theorem which require a lot of Gröbner / Janet
basis computations.

Let us demonstrate the procedure to compute bases of free left modules over
the Weyl algebras of rank at least 2 on an example.

Example 6.6.12. [QR06a] We consider D = A3(Q) with the involution θ defined
in Ex. 5.2.3 (a),

R = (−∂1 + x3 − ∂2 − ∂3) ∈ Dp×q, p = 1, q = 3,

and M = D1×3/DR. Then S = (∂3 0 ∂1 − x3)
T satisfies RS = 1. Therefore

the short exact sequence

0 // D
.R // D1×3 //M // 0

splits and M is projective. Moreover, p− q = 2 = sr(D). By Theorem 6.6.6, M
is free.

Now θ(R) = (∂1 + x3 ∂2 ∂3)
T is a unimodular column vector because

θ(S) θ(R) = 1. Without describing the details of the algorithmic versions of
Stafford’s theorem, we show that

(6.32) D (∂1 + x3) +D∂2 +D∂3 = D (∂1 + x3) +D (∂2 + ∂3).

In fact, the left ideal in D generated by the entries a, b, c of θ(R) equals D
because ∂3 (∂1 + x3) + (−∂1 − x3) ∂3 = 1. On the other hand, we have

(6.33) (∂2 + ∂3) (∂1 + x3) + (−∂1 − x3) (∂2 + ∂3) = 1,

which shows that (6.32) holds. Therefore, we can choose f = 0, g = 1 in Stafford’s
theorem (in the case d1 = d2 = 1). Following the proof of Prop. 6.6.5, we define
the matrix

E1 :=




1 0 0
0 1 1
0 0 1


 ∈ E(3, D).



6.6. COMPUTING BASES OVER THE WEYL ALGEBRAS 147

We obtain E1 θ(R) = (∂1 +x3 ∂2 +∂3 ∂3)
T . By (6.33) we are led to define (see

the proof of Prop. 6.6.5)

c1 := (∂1 + x3 − 1− ∂3) (∂2 + ∂3), c2 := (∂1 + x3 − 1− ∂3) (−∂1 − x3)

and

E2 :=




1 0 0
0 1 0
c1 c2 1


 ∈ E(3, D).

We obtain E2E1 θ(R) = (∂1 + x3 ∂2 + ∂3 ∂1 + x3 − 1)T . Finally, we define

E3 :=




1 0 −1
0 1 0
0 0 1


 , E4 :=




1 0 0
−∂2 − x3 1 0
−∂1 − x3 + 1 0 1


 ∈ E(3, D)

and F := E4E3E2E1 which satisfies F θ(R) = (1, 0, 0)T . Now we compute a left
inverse L ∈ D2×3 of the matrix Q which is formed by the last two columns of
θ(F ). The procedure LeftInverse of the OreModules package yields:

L =

(
0 1 + x3 + 2 ∂1 x3 − x2

3 − ∂2
1 − ∂3 x3 − ∂1 + ∂1 ∂3

1 −2− ∂2 x3 − ∂3 x3 + ∂2 + ∂3 + ∂1 ∂3 − ∂3 ∂2 − ∂2
3 + ∂1 ∂2

−x3 − 2 ∂1 x3 + x2
3 + ∂2

1 + ∂3 x3 + ∂1 − ∂1 ∂3

2− ∂1 ∂2 − ∂1 ∂3 + ∂2 x3 + ∂3 x3 − ∂2 − ∂3 + ∂3 ∂2 + ∂2
3

)

The residue classes of the rows of L form a basis of M .



148 CHAPTER 6. PARAMETRIZING LINEAR SYSTEMS



Chapter 7

A Stirred Tank Model

In this chapter we demonstrate the algebraic approach to the structural anal-
ysis of linear systems on an example of a stirred tank model. The example is
taken from [KS72] (see Example 1.2). We apply the Maple packages OreModules
(see Section 5.5) and JanetOre (see Section 2.6) in order to perform the neces-
sary computations. In the following sections more system theoretic concepts are
addressed than have been introduced in the previous chapters.

First a linearization of the system of ordinary differential equations modelling
the stirred tank is introduced in Section 7.1. Controllability of this linear system
is checked in Section 7.2 by computing a presentation of the torsion submodule
of the module which is associated with the system. In [KS72] (Ex. 1.21) the
controllability is checked by computing the rank of the controllability matrix,
which can also be done with OreModules (end of Section 7.3). In addition, we
study parametrizability and flatness of the stirred tank in Section 7.2.

For certain configurations of the parameters of the stirred tank model the
system is not completely controllable. An autonomous observable of the stirred
tank for a particular configuration of the parameters is found in [KS72] (Ex. 1.19)
by precise inspection of the system equations and by physical intuition, whereas
the same autonomous observable is found in Section 7.3 automatically by applying
Algorithm 5.2.8 for the computation of extension groups. The controllable part
of the system is examined for these configurations of the parameters.

Section 7.4 first defines output variables for the system. Then observability
of the stirred tank and the relations between the input and the output variables
are investigated.

As explained in Section 6.5, flatness is a particularly useful property for con-
trolling a system in such a way that interesting quantities follow a prescribed
trajectory. This concept is illustrated in Section 7.5.

In Section 7.6 a linear quadratic optimal control problem as posed in [KS72],
Example 3.9, is treated. Whereas the problem is solved in [KS72] by deriving
Riccati equations whose solutions define the optimal feedback, we apply a method
proposed by J.-F. Pommaret and A. Quadrat [PQ04] which amounts to substitut-

149



150 CHAPTER 7. A STIRRED TANK MODEL

ing a parametrization of the system into the cost functional and thereby obtaining
a variational problem without constraints. The Euler-Lagrange equations for this
variational problem then give necessary conditions for optimality.

Finally, the stirred tank model is modified in two ways as shown in [KS72].
First a discrete-time description of the stirred tank is investigated in Section 7.7.
We study controllability, parametrizability and flatness for this discrete linear
system. In the final section a delay is incorporated into the stirred tank model.
The structural properties of the resulting differential time-delay system are ex-
amined in a similar manner as previously, but obstructions towards flatness of
the system are considered more closely.

7.1 Introduction

The tank under consideration is a container of some fluid, fed with two incoming
flows of fluids and having one outgoing flow. We denote by F1(t), F2(t) the
flow rates of the incoming flows and by F (t) the flow rate of the outgoing one.
The concentrations c1, c2 of certain dissolved materials in the incoming flows are
assumed to be constant. The concentration of interest in the outgoing flow is
denoted by c(t). Inside the tank the fluid is supposed to be stirred well so that
c(t) equals the according concentration in the tank. Finally, the tank is assumed
to have a constant cross-sectional area S.

In [KS72] the following mass balance equations are derived:





V̇ (t) = F1(t) + F2(t)− k
√

V (t)
S
,

˙
c(t)V (t) = c1 F1(t) + c2 F2(t)− c(t) k

√
V (t)
S
,

where V is the volume of the fluid in the tank and k is an experimental constant.
Linearization around a steady-state with fluid volume V0 and concentration c0
of the outgoing flow yields the following model of linear ordinary differential
equations for the stirred tank:

(7.1) ẋ(t) =

(
− 1

2 θ
0

0 −1
θ

)
x(t) +

(
1 1

c1−c0
V0

c2−c0
V0

)
u(t).

The components of x respectively u are the deviations of (V (t), c(t)) respectively

(F1(t), F2(t)) from the steady-state and θ := V0/(k
√

V0

S
) is the holdup time of

the tank.



7.2. CONTROLLABILITY, PARAMETRIZABILITY, FLATNESS 151

7.2 Controllability, parametrizability, flatness

> with(OreModules):

> with(JanetOre):

We select the Maple package JanetOre to perform the necessary Janet basis
computations.

> OreModulesOptions("GroebnerBasis", "JanetOre"):

First we study the structural properties of the system describing the stirred tank
for generic parameters, i.e. in this section we check whether the system is con-
trollable, parametrizable and flat.

The equations describing the behavior of the stirred tank have constant coef-
ficients, i.e. we deal with a time-invariant system. Therefore we consider modules
over the commutative polynomial algebra

O := Q(θ,V0 , c0 , c1 , c2 )[D],

where D represents differentiation with respect to t. In order to apply OreModules

to the given system, we declare the Ore algebra Alg := Q(θ,V0 , c0 , c1 , c2 )[t][D]
of ordinary differential operators with polynomial coefficients in t which have
coefficients that are rational functions in θ, V0 , c0 , c1 , c2 . Obviously, Alg
contains O as subring.

> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t],
> comm=[theta,V0,c0,c1,c2]):

The linear system (7.1) of ordinary differential equations is entered as follows:

> R := matrix([[D+1/(2*theta),0,-1,-1],
> [0,D+1/theta,-(c1-c0)/V0,-(c2-c0)/V0]]);

R :=




D +
1

2 θ
0 −1 −1

0 D +
1

θ
−c1 − c0

V0
−c2 − c0

V0




The equations are retrieved by applying the matrix R of operators to the column
vector of system variables:

> ApplyMatrix(R, vector([x1(t),x2(t),u1(t),u2(t)]), Alg)=
> matrix([[0]$2]);



152 CHAPTER 7. A STIRRED TANK MODEL




−1

2

−x1(t)− 2 ( ddt x1(t)) θ + 2 u1(t) θ + 2 u2(t) θ

θ

x2(t)V0 + ( ddt x2(t)) θ V0 − u1(t) θ c1 + u1(t) θ c0 − u2(t) θ c2 + u2(t) θ c0

θ V0


 =

[
0
0

]

Let M = O1×4/O1×2R be the O-module which is associated with the linear
system. Since we consider a linear system with constant coefficients, the trans-
posed module M⊤ is presented by the transposed matrix of R (see Def. 5.1.4), i.e.
M⊤ ∼= O1×2/O1×4RT . For matrices with entries in commutative Ore algebras
the standard involution is just transposition. Therefore, the transposed module
M⊤ of M is presented by:

> R_adj := linalg[transpose](R);

R adj :=




D +
1

2 θ
0

0 D +
1

θ

−1 −c1 − c0

V0

−1 −c2 − c0

V0




We are going to check whether the system which describes the stirred tank is
parametrizable. Since the system is given by ordinary differential equations with
constant coefficients, parametrizability is equivalent to flatness (Prop. 4.2.8 and
Thm. 4.2.9 (b)). The system is parametrizable if and only if ext1

O(M⊤,O) ∼= t(M)
(see Thm. 5.1.5) is zero. This can be checked by computing the extension group
ext1

O(M⊤,O) of the transposed module M⊤:

> Ext := Exti(R_adj, Alg, 1);

Ext :=



[

1 0
0 1

]
,

[
2 D θ + 1 0 −2 θ −2 θ

0 −θV0 D− V0 −θ (c0 − c1 ) −θ (c0 − c2 )

]
,




−2 θV0 (c1 − c2 ) , 2 θV0 (c1 − c2 )
2 θ (c0 − c2 ) (c1 − c2 ) , −2 θ (−c2 c0 + c2 c1 + c1 c0 − c1 2)
V0 (c0 − c2 ) , −V0 (c2 + c0 − 2 c1 ) + 2 (c1 − c2 ) θV0 D
−V0 (−2 c2 + c0 + c1 )− 2 (c1 − c2 ) θV0 D , V0 (c0 − c1 )







The residue classes in M represented by the rows of the second matrix in Ext
generate t(M). For i = 1, 2, the entries of the i-th column of the first matrix in
Ext generate the ideal of O whose elements annihilate the i-th generator given
in Ext[2], i.e., if we denote the residue class in M of the i-th row in Ext[2] by mi,



7.2. CONTROLLABILITY, PARAMETRIZABILITY, FLATNESS 153

then we have 1 ·m1 = 0 and 1 ·m2 = 0 in M . Therefore, t(M) = 0. Hence, the
stirred tank is generically parametrizable, and thus, generically flat. A generic
parametrization of the module M is given by P := Ext[3]. In the notation of
Algorithm 5.2.8 we have Ext[2] = K and Ext[3] = θ(Si+1) for i = 1.

> P := evalm(Ext[3]):

When using the command Parametrization of OreModules this parametrization
is applied to the vector (ξ1 ξ2)

T whose entries represent arbitrary (smooth)
functions of t, and the result is returned:

> matrix([[x1(t)],[x2(t)],[u1(t)],[u2(t)]])=
> Parametrization(R, Alg);




x1(t)
x2(t)
u1(t)
u2(t)


 =

[2 θ V0 ξ1(t) c2 − 2 θ V0 ξ1(t) c1 − 2 θ V0 ξ2(t) c2 + 2 θ V0 ξ2(t) c1 ]
[
2 θ ξ1(t) c2 2 − 2 θ ξ1(t) c2 c1 − 2 θ ξ1(t) c2 c0 + 2 θ ξ1(t) c1 c0 + 2 θ ξ2(t) c2 c0

− 2 θ ξ2(t) c2 c1 − 2 θ ξ2(t) c1 c0 + 2 θ ξ2(t) c1 2
]

[
V0 (−ξ1(t) c2 + ξ1(t) c0 − ξ2(t) c2 − ξ2(t) c0 + 2 ξ2(t) c1 − 2 θ ( ddt ξ2(t)) c2

+ 2 θ ( ddt ξ2(t)) c1 )

]

[
−V0 (ξ1(t) c0 − 2 ξ1(t) c2 + ξ1(t) c1 − 2 θ ( ddt ξ1(t)) c2 + 2 θ ( ddt ξ1(t)) c1

+ ξ2(t) c1 − ξ2(t) c0 )

]

We have just proved that M is torsion-free. Since this result was obtained by a
generic computation, it may be wrong for certain specializations of the parameters
of the system. We are going to investigate this below.

The algebraO is a principal ideal domain. By Theorem 4.2.9 (b) every torsion-
free O-module is free and, in particular, projective. Let us demonstrate another
way to check whether M is projective or not. First we note that the matrix R
which presents M induces an injective homomorphism .R:

> SyzygyModule(R, Alg);

INJ(2)



154 CHAPTER 7. A STIRRED TANK MODEL

We see that there is no non-trivial relation between the rows of R, i.e. R has full
row rank. Now, M is projective if and only if the short exact sequence

(7.2) 0 // O1×2 .R // O1×4 //M // 0

is split (see Def. 4.2.6 and Def. 6.3.1). Since .R is injective, (7.2) is split if and
only if there exists a matrix T in O4×2 such that RT = I2 (see Rem. 6.3.2 (a)).

> RightInverse(R, Alg);



0 0
0 0

−c0 − c2

c1 − c2
− V0

c1 − c2
c0 − c1

c1 − c2

V0

c1 − c2




Hence, there exists T in O4×2 satisfying RT = I2. Therefore, M is projective. If
values are assigned to the parameters of the system, then the associated module
is projective if and only if c1 6= c2 .

As we have already seen above, M is free. This also follows from the Quillen-
Suslin Theorem (see Thm. 4.2.9 (c)), because O is a commutative polynomial
algebra over a field. Hence, the stirred tank is a flat system (see Thm. 6.5.2),
and all specializations of the parameters lead to flat systems except for the case
c1 = c2 .

We can compute a generic flat output of the behavior of the stirred tank by
computing a matrix S inO2×4 such that S P = I2, where P is the parametrization
of the module M obtained above.

> S := map(factor, LeftInverse(P, Alg));

S :=




c0 − c1

2 θV0 (c1 − c2 )2

1

2 θ (c1 − c2 )2
0 0

c0 − c2

2 θV0 (c1 − c2 )2

1

2 θ (c1 − c2 )2
0 0




A flat output of the behavior of the stirred tank is defined by

(ξ1 ξ2)T = S (x1 x2 u1 u2 )T ,

and (ξ1 ξ2)T satisfies (x1 x2 u1 u2 )T = P (ξ1 ξ2)T . Again, this is a
result which holds for generic configurations of θ, V0 , c0 , c1 , c2 only. More
precisely, we have found a flat output for every specialization of the parameters
except when c1 = c2 . (Of course, we assume θ 6= 0 and V0 6= 0.) The flat
output can be displayed in a more readable way as follows:



7.2. CONTROLLABILITY, PARAMETRIZABILITY, FLATNESS 155

> matrix([[xi1(t)],[xi2(t)]])=
> ApplyMatrix(S, [x1(t),x2(t),u1(t),u2(t)], Alg);

[
ξ1(t)
ξ2(t)

]
=




1

2

x1(t) c0 − x1(t) c1 + x2(t)V0

θV0 (c1 − c2 )2

1

2

x1(t) c0 − x1(t) c2 + x2(t)V0

θV0 (c1 − c2 )2




If we apply the parametrization P to the flat output, we get the following matrix:

> Flat := Mult(P, S, Alg);

Flat :=




1 0 0 0
0 1 0 0

(2 D θ + 1) (c0 − c2 )

2 θ (c1 − c2 )

(1 + D θ)V0

(c1 − c2 ) θ
0 0

−(2 D θ + 1) (c0 − c1 )

2 θ (c1 − c2 )
−(1 + D θ)V0

(c1 − c2 ) θ
0 0




This matrix shows that we can also consider (x1 x2 )T as a flat output of the
system. (The system variables u1 and u2 are expressed as linear combinations
of x1 and x2 with coefficients given in the third resp. fourth row of Flat .) We
have the following parametrization:

> matrix([[x1(t)],[x2(t)],[u1(t)],[u2(t)]])=
> ApplyMatrix(Flat, [x1(t),x2(t),u1(t),u2(t)], Alg);




x1(t)
x2(t)
u1(t)
u2(t)


 =

[x1(t)]

[x2(t)]
[
1

2

x1(t) c0 − x1(t) c2 − 2 ( ddt x1(t)) θ c2 + 2 ( ddt x1(t)) θ c0 + 2 x2(t)V0 + 2V0 ( ddt x2(t)) θ

(c1 − c2 ) θ

]

[
− 1

2

x1(t) c0 − x1(t) c1 − 2 ( ddt x1(t)) θ c1 + 2 ( ddt x1(t)) θ c0 + 2 x2(t)V0 + 2V0 ( ddt x2(t)) θ

(c1 − c2 ) θ

]

Let us compute a change of variables which transforms R into Brunovský canon-
ical form [Son98]:

> Br := Brunovsky(R, Alg);



156 CHAPTER 7. A STIRRED TANK MODEL

Br :=




c0 − c1

2 θ V0 (c1 − c2 )2
1

2 θ (c1 − c2 )2
0 0

− c0 − c1

4 θ2 V0 (c1 − c2 )2
− 1

2 θ2 (c1 − c2 )2
0 − 1

2 θ V0 (c1 − c2 )
c0 − c2

2 θ V0 (c1 − c2 )2
1

2 θ (c1 − c2 )2
0 0

− c0 − c2

4 θ2 V0 (c1 − c2 )2
− 1

2 θ2 (c1 − c2 )2
1

2 θ V0 (c1 − c2 )
0




The matrix Br defines the following transformation of the variables:

> matrix([[z1(t)],[v1(t)],[z2(t)],[v2(t)]])=
> ApplyMatrix(Br, [x1(t),x2(t),u1(t),u2(t)], Alg);




z1(t)
v1(t)
z2(t)
v2(t)


 =




1

2

−x1(t) c1 + x1(t) c0 + x2(t)V0

θ V0 (c1 − c2 )2

−1

4

−x1(t) c1 + x1(t) c0 + 2 x2(t)V0 − 2 u2(t) θ c2 + 2 u2(t) θ c1

θ2 V0 (c1 − c2 )2

1

2

−x1(t) c2 + x1(t) c0 + x2(t)V0

θ V0 (c1 − c2 )2

1

4

x1(t) c2 − x1(t) c0 − 2 x2(t)V0 − 2 u1(t) θ c2 + 2 u1(t) θ c1

θ2 V0 (c1 − c2 )2




We note that this transformation is well-defined if and only if c1 6= c2 .

Let us check that the system matrix for the variables z1 , v1 , z2 , v2 is in
Brunovský canonical form. To this end we solve

Br




x1
x2
u1
u2


 =




z1
v1
z2
v2




for (x1 x2 u1 u2 )T modulo the equations R (x1 x2 u1 u2 )T = 0, which
allows to eliminate the latter variables. The command Elimination computes a
Janet basis with respect to a monomial ordering as described in Remark 2.2.3 (c)
to find relations among the variables z1 , v1 , z2 , v2 as just explained.

> F := Elimination(linalg[stackmatrix](Br, R), [x1,x2,u1,u2],
> [z1,v1,z2,v2,0,0], Alg):

> ApplyMatrix(F[1], [x1(t),x2(t),u1(t),u2(t)], Alg)=
> ApplyMatrix(F[2], [z1(t),v1(t),z2(t),v2(t)], Alg);



7.3. AUTONOMOUS OBSERVABLES 157




0
0

u2(t)
u1(t)
x2(t)
x1(t)




=

[
−( d

dt
z2(t)) + v2(t)

]
[
−( d

dt
z1(t)) + v1(t)

]

[−z1(t)V0 c1 − z1(t)V0 c0 + 2 z1(t)V0 c2 + 2 v1(t) θV0 c2 − 2 v1(t) θV0 c1

− z2(t)V0 c1 + z2(t)V0 c0 ]

[−z1(t)V0 c2 + z1(t)V0 c0 − z2(t)V0 c2 − z2(t)V0 c0 + 2 z2(t)V0 c1

− 2 v2(t) θV0 c2 + 2 v2(t) θV0 c1 ]

[2 θ z1(t) c2 2 − 2 θ z1(t) c2 c1 − 2 θ z1(t) c2 c0 + 2 θ z1(t) c1 c0 + 2 θ z2(t) c2 c0

− 2 θ z2(t) c2 c1 − 2 θ z2(t) c1 c0 + 2 θ z2(t) c1 2]

[2 z1(t) θV0 c2 − 2 z1(t) θV0 c1 − 2 z2(t) θV0 c2 + 2 z2(t) θV0 c1 ]

The first two equations show that we have transformed the system matrix into
Brunovský canonical form, i.e. when considering (z1 z2 )T as state and (v1 v2 )T

as input of the system, then the state is determined from the input simply by
integration. Moreover, the remaining equations in the previous result express x1 ,
x2 , u1 , and u2 in terms of z1 , v1 , z2 , v2 .

7.3 Autonomous observables

The concentrations c0 , c1 , and c2 satisfy a linear equation resulting from the
linearization of the nonlinear model around the steady-state.

By taking another relation for the values of the steady-state into account, one
derives that c1 = c2 implies c0 = c1 = c2 (for more details see [KS72]). We are
going to study the case c0 = c1 = c2 separately. The matrix which represents
the system equations is in this case:

> R1mod := subs([c2=c0,c1=c0], evalm(R));

R1mod :=




D +
1

2 θ
0 −1 −1

0 D +
1

θ
0 0




Let us denote byM ′ theO-module which is associated with this particular system.
The matrix which presents the transposed module of M ′ is R1modT because O
is a commutative ring (see Def. 5.1.4).



158 CHAPTER 7. A STIRRED TANK MODEL

> R1mod_adj := linalg[transpose](R1mod);

R1mod adj :=




D +
1

2 θ
0

0 D +
1

θ

−1 0
−1 0




In order to check controllability and parametrizability, we compute the extension
group ext1

O(M ′⊤,O) of the transposed module of M ′.

> Ext1mod := Exti(R1mod_adj, Alg, 1);

Ext1mod :=



[

1 0
0 1 + D θ

]
,

[
2 D θ + 1 0 −2 θ −2 θ

0 1 0 0

]
,




−2 θ 0
0 0
0 1

−2 D θ − 1 −1







The residue classes inM ′ represented by the rows of the second matrix in Ext1mod
generate t(M ′), and the residue class represented by the i-th row is annihilated
by the entries in the i-th column of the first matrix in Ext1mod . Hence, we find
a non-trivial torsion element m in M ′, namely the residue class represented by
x2 . It satisfies the equation (θD + 1)m = 0.

Therefore, the system is not (completely) controllable.

Note that Ext1mod [2] in O2×4 can also be interpreted as a matrix which
presents M ′/t(M ′), i.e. we have M ′/t(M ′) = coker(.Ext1mod [2]). Up to isomor-
phism, M ′/t(M ′) is the O-module which is associated with the controllable part
of the system. Accordingly, Ext1mod [3] is a parametrization of M ′/t(M ′).

We can find directly a generating set of autonomous observables of the system
by using the command AutonomousElements:

> AutonomousElements(R1mod, [x1(t),x2(t),u1(t),u2(t)], Alg);

[
[
θ1(t) + θ ( d

dt
θ1(t)) = 0

]
,
[
θ1 = C1 e(− t

θ
)

]
,
[
θ1 = x2(t)

]
]

The first entry of the result is an autonomous equation for the autonomous ob-
servable θ1 which is defined in terms of the system variables by the third entry.
By solving the autonomous equation, θ1 is obtained as a function of t which is
given by the second entry.

It was proved in [PQ99b] that the autonomous observables of a linear system
are in one-to-one correspondence with the first integrals of motion of the system.
The autonomous observable given above corresponds to the following first integral
of motion:



7.3. AUTONOMOUS OBSERVABLES 159

> V := FirstIntegral(R1mod, [x1(t),x2(t),u1(t),u2(t)], Alg);

V := C1 e( t
θ
) x2(t)

By definition of the first integral of motion, the time derivative of V is zero
modulo the system equations.

> Vdot := diff(V, t);

Vdot :=
C1 e(

t
θ
) x2(t)

θ
+ C1 e( t

θ
) ( d

dt
x2(t))

We recall the left hand sides of the system equations:

> Sys := ApplyMatrix(R1mod, [x1(t),x2(t),u1(t),u2(t)], Alg);

Sys :=




1

2

x1(t) + 2 ( d
dt

x1(t)) θ − 2 u1(t) θ − 2 u2(t) θ

θ

x2(t) + ( d
dt

x2(t)) θ

θ




It is possible to solve the second equation for the first derivative of x2 :

> sol := solve(Sys[2,1], diff(x2(t), t));

sol := −x2(t)

θ

By substituting sol for the first derivative of x2 in V dot, we can verify that the
time derivative of V is zero:

> subs(diff(x2(t), t)=sol, Vdot);

0

Now we pass over to the controllable part of the system:

> ApplyMatrix(Ext1mod[2], [x1(t),x2(t),u1(t),u2(t)], Alg)=
> matrix([[0],[0]]);[

x1(t) + 2 ( d
dt

x1(t)) θ − 2 u1(t) θ − 2 u2(t) θ
x2(t)

]
=

[
0
0

]

As O is a principal ideal domain, the torsion-free module M ′/t(M ′) is free. A
flat output of the behavior of the controllable part is obtained as follows:

> S2 := LeftInverse(Ext1mod[3], Alg);



160 CHAPTER 7. A STIRRED TANK MODEL

S2 :=


 −

1

2 θ
0 0 0

0 0 1 0




Hence, a flat output is defined by ξ = (ξ1 ξ2)
T = S2 (x1 x2 u1 u2 )T . We

have (x1 x2 u1 u2 )T = Ext1mod [3] (ξ1 ξ2)
T .

Although the stirred tank has autonomous observables for the given con-
figuration of the parameters, we can construct a parametrization of its behav-
ior along the lines of Section 6.3. Due to Remark 6.3.5, the torsion submod-
ule t(M ′) has a complement in M ′. This is taken into account by the com-
mand Parametrization which, using the notation of Theorem 6.3.8, computes
a parametrization P1mod := P ξ+S τ of the solution set of R1mod η = 0, where
ξ is a vector of arbitrary (smooth) functions of t and the vector τ depends on
certain functions and constants which can be chosen arbitrarily.

> P1mod := Parametrization(R1mod, Alg);

P1mod :=




−2 θ ξ1(t)

C1 e(−
t
θ
)

ξ2(t)
−ξ1(t)− 2 θ ( d

dt
ξ1(t))− ξ2(t)




We can easily verify that P1mod parametrizes some solutions of the system:

> ApplyMatrix(R1mod, P1mod, Alg);
[

0
0

]

Since we deal with a linear system with constant coefficients, we can choose the
space of smooth functions on R as an injective O-module F which is also a
cogenerator for OM (see Ex. 4.4.5 (a) (3)). Therefore we actually have

SolF(R) = {P1mod | (ξ1, ξ2)T ∈ F2×1, C1 ∈ R}.

Finally we demonstrate that our controllability result agrees with the conclusion
drawn from the standard check using the controllability matrix for a Kalman
system. The system equations can be written as ẋ = Ax+ B u, where A and B
are defined as follows:

> A := evalm([[-1/(2*theta),0],[0,-1/theta]]);

A :=



− 1

2 θ
0

0 −1

θ






7.4. OBSERVABILITY, INPUT-OUTPUT BEHAVIOR 161

> B := matrix([[1,1],[(c1-c0)/V0,(c2-c0)/V0]]);

B :=

[
1 1

c1 − c0

V0

c2 − c0

V0

]

Let us compute the controllability matrix:

> C := ControllabilityMatrix(A, B, 2, Alg);

C :=




1 1 − 1

2 θ
− 1

2 θ
c1 − c0

V0

c2 − c0

V0

c0 − c1

θV0

c0 − c2

θV0




> linalg[rank](C);

2

Generically the controllability matrix C has full rank. Hence, the stirred tank is
controllable for generic configurations of the parameters. We compute all princi-
pal minors of C:

> col := combinat[choose]([1,2,3,4], 2);

col := [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]

> d := map(c->numer(linalg[det](linalg[submatrix](C,
> 1..2, c))), col);

d := [c2 − c1 , c0 − c1 , −2 c2 + c0 + c1 , c2 + c0 − 2 c1 , c0 − c2 , c2 − c1 ]

> solve({op(d)});
{c1 = c2 , c0 = c2 , c2 = c2}

The controllability matrix has rank 1 if and only if c0 = c1 = c2 . According to
the remark at the beginning of this section, the system is controllable if and only
if c1 6= c2 .

7.4 Observability, input-output behavior

Let us introduce variables which we consider as outputs for the system: y1 =
x1/(2 θ) and y2 = x2 (see [KS72], p. 9). We are going to check whether the
system is observable and study its input-output behavior. First of all we define
the following matrix Y ∈ O2×4 which expresses the output variables in terms of
the system variables x1 , x2 , u1 , u2 :

> Y := matrix([[1/(2*theta),0,0,0],[0,1,0,0]]);



162 CHAPTER 7. A STIRRED TANK MODEL

Y :=




1

2 θ
0 0 0

0 1 0 0




Therefore, we consider the system described by

(7.3)




x1
x2
y1
y2


 =

(
R
Y

)



x1
x2
u1
u2


 .

> RY := linalg[stackmatrix](R, Y);

RY :=




D +
1

2 θ
0 −1 −1

0 D +
1

θ
−c1 − c0

V0
−c2 − c0

V0
1

2 θ
0 0 0

0 1 0 0




In these equations we try to eliminate x1 and x2 :

> E := Elimination(RY,[x1,x2,u1,u2],[0,0,y1,y2],Alg,[u1,u2]):
> ApplyMatrix(E[1], [x1(t),x2(t)], Alg)=
> ApplyMatrix(E[2], [y1(t),y2(t),u1(t),u2(t)], Alg);




0
0

x2(t)
x1(t)


 =




−V0 y2(t)− θ V0 ( d

dt
y2(t)) + u1(t) θ c1 − u1(t) θ c0 + u2(t) θ c2 − u2(t) θ c0

−y1(t)− 2 θ ( d

dt
y1(t)) + u1(t) + u2(t)
y2(t)

2 θ y1(t)




The result shows that the system variables x1 and x2 can be expressed without
derivatives in terms of the system variables y1 , y2 . Hence, the state (x1 x2 )T

of the system can be computed from the output (y1 y2 )T , which means that
the stirred tank with output (y1 y2 )T is observable. Moreover, the first two of
the previous equations describe the input-output behavior of the system, i.e. we
have





V0 y2 + θV0 d
dt

y2 = (θ c1 − θ c0 ) u1 + (θ c2 − θ c0 ) u2 ,

y1 + 2 θ d
dt

y1 = u1 + u2 .

We demonstrate another possibility to prove the observability of the system. It
is easily seen that the variables x1 , x2 on the one hand and the variables u1 , u2 ,



7.4. OBSERVABILITY, INPUT-OUTPUT BEHAVIOR 163

y1 , y2 on the other hand can be separated in the equation (7.3) in such a way
that (7.3) is equivalent to

(7.4) RX

(
x1
x2

)
= RUY




u1
u2
y1
y2




with appropriate matrices RX ∈ O4×2, RUY ∈ O4×4. These matrices are defined
as follows:

> RX := linalg[submatrix](RY, 1..4, 1..2);

RX :=




D +
1

2 θ
0

0 D +
1

θ
1

2 θ
0

0 1




> RUY := linalg[diag](linalg[submatrix](-RY, 1..2, 3..4),
> linalg[diag](1,1));

RUY :=




1 1 0 0
c1 − c0

V0

c2 − c0

V0
0 0

0 0 1 0
0 0 0 1




In order to solve (7.4) for (x1 x2 )T , we compute a matrix S ∈ O2×4 which
satisfies S ·RX = I2.

> S := LeftInverse(RX, Alg);

S :=

[
0 0 2 θ 0
0 0 0 1

]

Multiplying S on both sides of (7.4) from the left reveals that the system is
observable because the state variables x1 , x2 are expressed in terms of the output
variables y1 , y2 :

> matrix([[x1(t)],[x2(t)]])=ApplyMatrix(Mult(S, RUY, Alg),
> [u1(t),u2(t),y1(t),y2(t)], Alg);

[
x1(t)
x2(t)

]
=

[
2 θ y1(t)

y2(t)

]



164 CHAPTER 7. A STIRRED TANK MODEL

7.5 Motion planning

Let us recall that in case c1 6= c2 the system is flat, i.e. its behavior has an
injective parametrization. In Section 7.2 we have computed matrices P ∈ O4×2

and S ∈ O2×4 such that




x1
x2
u1
u2


 = P

(
ξ1
ξ2

)
,

(
ξ1
ξ2

)
= S




x1
x2
u1
u2


 .

Then we defined Flat := P S ∈ O4×4 and noticed that we can choose (x1 x2 )T

as a flat output of the behavior of the stirred tank. The input variables u1 , u2 are
expressed in terms of the flat output (x1 x2 )T as (u1 u2 )T = F (x1 x2 )T ,
where F is defined as follows:

> F := linalg[submatrix](Flat, 3..4, 1..2);

F :=




(2 D θ + 1) (c0 − c2 )

2 θ (c1 − c2 )

(1 + D θ)V0

(c1 − c2 ) θ

−(2 D θ + 1) (c0 − c1 )

2 θ (c1 − c2 )
−(1 + D θ)V0

(c1 − c2 ) θ




For given reference trajectories x1 ref , x2 ref for x1 resp. x2 the open-loop controls
u1 ref , u2 ref which lead to the desired trajectories for x1 and x2 are obtained as

(
u1 ref

u2 ref

)
= F

(
x1 ref

x2 ref

)
.

In this section we use the parameter values given on p. 10 of [KS72]:

> conf := [c1=1,c2=2,c0=1.25,V0=1,theta=50]:

Let us consider the following reference trajectories:

> x1ref := 0.1*exp(-alpha*t): x2ref := 0.2*exp(-beta*t):

> alpha := 1/10: beta := 1/7:

> plot([x1ref,x2ref], t=0..70, color=[red,green]);



7.5. MOTION PLANNING 165

0

0.05

0.1

0.15

0.2

10 20 30 40 50 60 70

t

The corresponding open-loop controls are then given by:

> u1ref := subs(conf, ApplyMatrix(F, [x1ref,x2ref], Alg)[1,1]);

u1ref := −0.006750000000 e(−0.1000000000 t) + 0.02457142856 e(−0.1428571429 t)

> u2ref := subs(conf, ApplyMatrix(F, [x1ref,x2ref], Alg)[2,1]);

u2ref := −0.002250000000 e(−0.1000000000 t) − 0.02457142856 e(−0.1428571429 t)

> plot([u1ref,u2ref], t=0..70, color=[blue,magenta]);

–0.02

–0.01

0

0.01

10 20 30 40 50 60 70
t

We are going to simulate the system for the given input (u1 ref u2 ref)
T .



166 CHAPTER 7. A STIRRED TANK MODEL

> ODE1 := {seq(ApplyMatrix(subs(conf, evalm(R)),
> [x1(t),x2(t),u1ref,u2ref], Alg)[i,1]=0,i=1..2)};

ODE1 := { 1

100
x1(t) + ( d

dt
x1(t)) + 0.009000000000 e(−0.1000000000 t) = 0,

1

50
x2(t) + ( d

dt
x2(t)) + 0.02457142856 e(−0.1428571429 t) = 0}

The initial conditions are:

> IC := {x1(0)=0.1, x2(0)=0.2}:
> dsol1 := dsolve(ODE1 union IC, {x1(t),x2(t)}, type=numeric,
> stiff=true):
> plots[odeplot](dsol1, [[t,x1(t), color=blue],
> [t,x2(t),color=red]], 0..50);

0

0.05

0.1

0.15

0.2

x1, x2

10 20 30 40 50

t

Due to model errors and noises, the system needs to be stabilized around the
trajectory (x1 ref x2 ref u1 ref u2 ref)

T .

In fact, we have ẋ = Ax+B u, where A and B are defined as in Section 7.3.
By linearity the error e = x − xref satisfies ė = Ae + B (u − uref). If we choose
the feedback u = uref +K e, then the dynamics of the error are described by

ė = (A+BK) e.

Since the system is controllable, K can be chosen in such a way that the error
e tends to zero (pole placement). The closed-loop system defined by the above
feedback is then described by

(7.5) ẋ = Ax+B (uref +K e) = (A+BK)x+B uref −BK xref .



7.5. MOTION PLANNING 167

Let us recall the matrices A and B from Section 7.3 and choose the feedback gain
K as follows:

> A := evalm([[-1/(2*theta),0],[0,-1/theta]]):
> B := matrix([[1,1],[(c1-c0)/V0,(c2-c0)/V0]]):

> K := matrix([[-0.7425,7.92],[-0.2475,0]]);

K :=

[
−0.7425 7.92
−0.2475 0

]

Then we define L := A+BK.

> L := evalm(subs(conf, evalm(A + B &* K)));

L :=

[
−1.000000000 7.92

0. −2.000000000

]

The characteristic polynomial of L is:

> chi := collect(linalg[charpoly](L, lambda), lambda);

χ := 2.000000000 + λ2 + 3.000000000λ

> factor(chi);

(λ+ 1.000000000) (λ+ 2.000000000)

Hence, the eigenvalues of L are −1 and −2. Since the (real parts of the) eigen-
values are negative, the closed-loop system is asymptotically stable.

The equations (7.5) are entered as follows:

> lhseq := subs(conf, evalm(ApplyMatrix(evalm(D-L),
> [x1(t),x2(t)], Alg)-ApplyMatrix(B, [u1ref,u2ref], Alg)+
> ApplyMatrix(Mult(B, K, Alg), [x1ref,x2ref], Alg)));

lhseq :=[
1.000000000 x1(t) + ( d

dt
x1(t))− 7.92 x2(t)− 0.09000000000 e(−0.1000000000 t)

+ 1.584000000 e(−0.1428571429 t)

]

[
2.000000000 x2(t) + ( d

dt
x2(t))− 0.3714285714 e(−0.1428571429 t)

]

> ODE2 := convert(lhseq, set);

ODE2 := {1.000000000 x1(t) + ( d
dt

x1(t))− 7.92 x2(t)

− 0.09000000000 e(−0.1000000000 t) + 1.584000000 e(−0.1428571429 t),

2.000000000 x2(t) + ( d
dt

x2(t))− 0.3714285714 e(−0.1428571429 t)}



168 CHAPTER 7. A STIRRED TANK MODEL

> dsol2 := dsolve(ODE2 union IC, {x1(t),x2(t)}, type=numeric,
> stiff=true):

> plots[odeplot](dsol2, [[t,x1(t), color=blue],
> [t,x2(t),color=red]], 0..50);

0

0.05

0.1

0.15

0.2

x1, x2

10 20 30 40 50

t

Let us consider the case where there are some perturbations in the system rep-
resented by terms exp(−10 t) sin(10 t)2 on the right hand side of the equations:

> ODE3 := {seq(ApplyMatrix(subs(conf, evalm(R)),
> [x1(t),x2(t),u1ref,u2ref],
> Alg)[i,1]=exp(-10*t)*sin(10*t)^2,i=1..2)};

ODE3 := { 1

50
x2(t) + ( d

dt
x2(t)) + 0.02457142856 e(−0.1428571429 t) = e(−10 t) sin(10 t)2,

1

100
x1(t) + ( d

dt
x1(t)) + 0.009000000000 e(−0.1000000000 t) = e(−10 t) sin(10 t)2}

> dsol3 := dsolve(ODE3 union IC, {x1(t),x2(t)}, type=numeric,
> stiff=true):

For the open-loop system the trajectories of x1 and x2 are the following:

> plots[odeplot](dsol3, [[t,x1(t),color=blue],
> [t,x2(t),color=red]], 0..50);



7.5. MOTION PLANNING 169

0.05

0.1

0.15

0.2

x1, x2

0 10 20 30 40 50

t

We determine the trajectories of x1 and x2 for the closed-loop system:

> ODE4 := {lhseq[1,1]=exp(-10*t)*sin(10*t)^2,
> lhseq[2,1]=exp(-10*t)*sin(10*t)^2};

ODE4 := {
2.000000000 x2(t) + ( d

dt
x2(t))− 0.3714285714 e(−0.1428571429 t) = e(−10 t) sin(10 t)2,

1.000000000 x1(t) + ( d
dt

x1(t))− 7.92 x2(t)− 0.09000000000 e(−0.1000000000 t)

+ 1.584000000 e(−0.1428571429 t) = e(−10 t) sin(10 t)2}
> dsol4 := dsolve(ODE4 union IC, {x1(t),x2(t)}, type=numeric,
> stiff=true):
> plots[odeplot](dsol4, [[t,x1(t), color=blue],
> [t,x2(t),color=red]], 0..50);

0

0.05

0.1

0.15

0.2

x1, x2

10 20 30 40 50

t



170 CHAPTER 7. A STIRRED TANK MODEL

From the plots we can see that now the trajectories of x1 and x2 are again closer
to the ones in the unperturbed situation. In particular, the state (x1 x2 )T tends
to zero more rapidly than without feedback.

7.6 Optimal control problems

Most of the time the demands on the dynamics of a system cannot be fulfilled
simultaneously. For instance, the wish that the state variables tend to zero very
rapidly can be met when the system is controllable by assigning values with very
small negative real parts to the spectrum of the system matrix describing the
closed-loop system. However, great influences on the system dynamics require
a great amount of energy, which is always restricted in practice. This leads to
a formulation of an optimal control problem [Son98, KS72]: the control for the
system is determined in such a way that it minimizes a given cost functional
which is designed according to the demands on the dynamics. Of course, the
original equations which describe the system still have to be satisfied by the
system variables. The simplest non-trivial situation is given for a linear system
of ordinary differential equations and a cost functional of the form

(7.6)

∫ t1

t0

(
xT C1 x+ uT C2 u

)
dt,

where C1 and C2 are positive definite symmetric matrices. Such problems are
referred to as linear quadratic optimal control problems. The first term of the
functional measures the deviation of the state from zero during the time interval
[t0, t1]. Similarly, the second summand reflects the size of the input values for
t ∈ [t0, t1]. Other variants of the cost functional include a term x(t1)

T C3 x(t1)
(without integration) which measures the distance of the state to zero at the
final time instant t1 with a positive definite symmetric matrix C3 . Of course,
the demands on the system dynamics can be encoded by appropriate weighting
of these terms, i.e. by the choice of the matrices C1 , C2 , and C3 .

In this section we consider a linear quadratic optimal control problem for the
stirred tank. We first deal with a cost functional of the form (7.6) which we define
along the lines of [KS72], p. 227.

First of all, we define the matrix

> Q := matrix([[sigma1,0],[0,sigma2]]);

Q :=

[
σ1 0
0 σ2

]

(with positive real numbers σ1, σ2) which is supposed to measure the output
y defined in Section 7.4 by means of a term yT Qy. The output variables



7.6. OPTIMAL CONTROL PROBLEMS 171

y1 , y2 are related to the state variables x1 , x2 and the input variables u1 ,
u2 via y = Y (xT uT )T , so that the definition of Q implies the summand
(xT uT )C1 (xT uT )T for the cost functional, where

> C1 := evalm(linalg[transpose](Y) &* Q &* Y);

C1 :=




σ1

4 θ2
0 0 0

0 σ2 0 0
0 0 0 0
0 0 0 0




Following [KS72] we define a summand in (7.6) which measures the size of the
input as follows (ρ, ρ1, ρ2 are positive real numbers):

> C2 := linalg[diag](0,0,rho*rho1,rho*rho2);

C2 :=




0 0 0 0
0 0 0 0
0 0 ρ ρ1 0
0 0 0 ρ ρ2




> C := evalm(C1 + C2);

C :=




σ1

4 θ2
0 0 0

0 σ2 0 0
0 0 ρ ρ1 0
0 0 0 ρ ρ2




Now we consider the problem of minimizing the cost functional

1

2

∫ T

0

(x1 x2 u1 u2 )C




x1
x2
u1
u2


 dt

subject to the system equations R (x1 x2 u1 u2 )T = 0 with given initial
conditions x1 (0) = x10 , x2 (0) = x20 .

We shall see later that we can also add a term which measures the terminal
state x(T ).

Using the fact that the system is parametrizable for generic configurations of
the parameters, we can substitute the parametrization P defined in Section 7.2
into the cost functional (and possibly into the term measuring the terminal state)



172 CHAPTER 7. A STIRRED TANK MODEL

in order to obtain a variational problem without (differential) constraint on the
arguments ξ1, ξ2 of the parametrization:

min
1

2

∫ T

0

(ξ1 ξ2)P
T C P

(
ξ1
ξ2

)T

dt.

Therefore, necessary conditions on optimality can be derived by computing the
Euler-Lagrange equations for the new cost functional. For more details on the
theory, we refer the reader to [Qua99] as well as [PQ04].

We add the constants σ1, σ2, ρ, ρ1, and ρ2 in the declaration of the Ore
algebra:

> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t],
> comm=[theta,V0,c0,c1,c2,sigma1,sigma2,rho,rho1,rho2]):

Then, we compute the Euler-Lagrange equations by using the OreModules com-
mand LQEquations (note that it is not necessary to specify the parametrization
P because LQEquations applies Parametrization to R).

> LQP := LQEquations(R, C, Alg):

The result LQP is a list with three entries (the third of which is the parametriza-
tion of the system which we are going to use at the end of this discussion). The
first entry of LQP is a matrix that contains the two Euler-Lagrange equations
for ξ1 and ξ2, namely:

> LQP[1][1,1];

−2 ξ2(t)V0 2 ρ ρ2 c2 c1 + 2 ξ2(t)V0 2 ρ ρ2 c2 c0 + 4 ξ1(t) θ2 σ2 c2 4 + 4 ξ2(t) θ2 σ2 c2 3 c0

− 4 ξ2(t) θ2 σ2 c2 3 c1 − 2 ( d

dt
ξ2(t))V0 2 ρ ρ1 c2 θ c1

− 2 ( d

dt
ξ2(t))V0 2 ρ ρ1 c0 θ c2 + 2 ( d

dt
ξ2(t))V0 2 ρ ρ2 θ c1 c0

+ 2 ( d

dt
ξ2(t))V0 2 ρ ρ1 c2 2 θ + 2 ( d

dt
ξ2(t))V0 2 ρ ρ1 c0 θ c1

+ 2 ( d

dt
ξ2(t))V0 2 ρ ρ2 θ c2 c1 − 2 ( d

dt
ξ2(t))V0 2 ρ ρ2 θ c2 c0

− 2 ( d

dt
ξ2(t))V0 2 ρ ρ2 θ c1 2 + 4 ξ1(t) θ2 σ2 c1 2 c0 2 + 4 ξ1(t) θ2 σ2 c2 2 c1 2

+ ξ1(t)V0 2 ρ ρ2 c0 2 + 4 ξ1(t) θ2 σ2 c2 2 c0 2 + 2 ξ2(t)V0 2 σ1 c2 c1

− 8 ξ1(t) θ2 σ2 c2 c1 2 c0 − 8 ξ1(t) θ2 σ2 c2 c0 2 c1 − 4 ξ1(t)V0 2 ρ ρ2 c2 c1

− 4 ξ1(t)V0 2 ρ ρ2 c2 c0 + 8 ( d
2

dt2
ξ1(t))V0 2 ρ ρ2 θ2 c2 c1

− 4 ( d
2

dt2
ξ1(t))V0 2 ρ ρ2 θ2 c1 2 − 4 ( d

2

dt2
ξ1(t))V0 2 ρ ρ2 θ2 c2 2 − 8 ξ1(t) θ2 σ2 c2 3 c0

− 8 ξ1(t) θ2 σ2 c2 3 c1 + ξ1(t)V0 2 ρ ρ2 c1 2 − 2 ξ1(t)V0 2 ρ ρ1 c2 c0



7.6. OPTIMAL CONTROL PROBLEMS 173

+ 4 ξ1(t)V0 2 ρ ρ2 c2 2 + ξ1(t)V0 2 σ1 c2 2 + ξ1(t)V0 2 σ1 c1 2 − ξ2(t)V0 2 σ1 c2 2

− ξ2(t)V0 2 σ1 c1 2 − 2 ξ1(t)V0 2 σ1 c2 c1 + 8 ξ2(t) θ2 σ2 c2 2 c1 2

− 4 ξ2(t) θ2 σ2 c2 c1 3 − 4 ξ2(t) θ2 σ2 c1 2 c0 2 + 16 ξ1(t) θ2 σ2 c2 2 c1 c0

+ ξ1(t)V0 2 ρ ρ1 c2 2 + ξ1(t)V0 2 ρ ρ1 c0 2 − 4 ξ2(t) θ2 σ2 c2 2 c0 2

− 4 ξ2(t) θ2 σ2 c2 2 c1 c0 + 8 ξ2(t) θ2 σ2 c2 c0 2 c1 − 4 ξ2(t) θ2 σ2 c2 c1 2 c0

+ 4 ξ2(t) θ2 σ2 c1 3 c0 − 2 ξ2(t)V0 2 ρ ρ1 c2 c1 + 2 ξ2(t)V0 2 ρ ρ1 c0 c1

− ξ2(t)V0 2 ρ ρ1 c0 2 + ξ2(t)V0 2 ρ ρ2 c1 2 + ξ2(t)V0 2 ρ ρ1 c2 2 − ξ2(t)V0 2 ρ ρ2 c0 2

+ 2 ξ1(t)V0 2 ρ ρ2 c1 c0

> LQP[1][2,1];

−4 ( d
2

dt2
ξ2(t))V0 2 ρ ρ1 θ2 c2 2 + 8 ( d

2

dt2
ξ2(t))V0 2 ρ ρ1 θ2 c2 c1

− 4 ( d
2

dt2
ξ2(t))V0 2 ρ ρ1 θ2 c1 2 − 4 ξ1(t) θ2 σ2 c1 2 c0 2 + 8 ξ1(t) θ2 σ2 c2 2 c1 2

− 2 ( d

dt
ξ1(t))V0 2 ρ ρ2 θ c2 c1 + 2 ( d

dt
ξ1(t))V0 2 ρ ρ2 θ c2 c0

− 2 ξ1(t)V0 2 ρ ρ1 c2 c1 − ξ1(t)V0 2 ρ ρ2 c0 2 − 4 ξ1(t) θ2 σ2 c2 2 c0 2

− 2 ( d

dt
ξ1(t))V0 2 ρ ρ2 θ c1 c0 + 2 ( d

dt
ξ1(t))V0 2 ρ ρ1 c2 θ c1

− 2 ξ2(t)V0 2 σ1 c2 c1 − 4 ξ1(t) θ2 σ2 c2 c1 2 c0 + 8 ξ1(t) θ2 σ2 c2 c0 2 c1

− 2 ξ1(t)V0 2 ρ ρ2 c2 c1 + 2 ξ1(t)V0 2 ρ ρ2 c2 c0 + 4 ξ1(t) θ2 σ2 c2 3 c0

− 4 ξ1(t) θ2 σ2 c2 3 c1 + ξ1(t)V0 2 ρ ρ2 c1 2 − ξ1(t)V0 2 σ1 c2 2 − ξ1(t)V0 2 σ1 c1 2

+ ξ2(t)V0 2 σ1 c2 2 + ξ2(t)V0 2 σ1 c1 2 + 4 ξ2(t) θ2 σ2 c1 4 + 2 ξ1(t)V0 2 σ1 c2 c1

− 4 ξ1(t) θ2 σ2 c2 c1 3 − 2 ( d

dt
ξ1(t))V0 2 ρ ρ1 c2 2 θ + 4 ξ2(t) θ2 σ2 c2 2 c1 2

− 8 ξ2(t) θ2 σ2 c2 c1 3 + 4 ξ2(t) θ2 σ2 c1 2 c0 2 + 2 ( d

dt
ξ1(t))V0 2 ρ ρ2 θ c1 2

+ 2 ξ1(t)V0 2 ρ ρ1 c0 c1 − 2 ( d

dt
ξ1(t))V0 2 ρ ρ1 c0 θ c1 − 4 ξ1(t) θ2 σ2 c2 2 c1 c0

+ 4 ξ1(t) θ2 σ2 c1 3 c0 + ξ1(t)V0 2 ρ ρ1 c2 2 − ξ1(t)V0 2 ρ ρ1 c0 2

+ 2 ( d

dt
ξ1(t))V0 2 ρ ρ1 c0 θ c2 + 4 ξ2(t) θ2 σ2 c2 2 c0 2 − 8 ξ2(t) θ2 σ2 c2 2 c1 c0

− 8 ξ2(t) θ2 σ2 c2 c0 2 c1 + 16 ξ2(t) θ2 σ2 c2 c1 2 c0 − 8 ξ2(t) θ2 σ2 c1 3 c0

− 4 ξ2(t)V0 2 ρ ρ1 c2 c1 − 4 ξ2(t)V0 2 ρ ρ1 c0 c1 + 4 ξ2(t)V0 2 ρ ρ1 c1 2

+ 2 ξ2(t)V0 2 ρ ρ1 c2 c0 + ξ2(t)V0 2 ρ ρ1 c0 2 + ξ2(t)V0 2 ρ ρ2 c1 2

− 2 ξ2(t)V0 2 ρ ρ2 c1 c0 + ξ2(t)V0 2 ρ ρ1 c2 2 + ξ2(t)V0 2 ρ ρ2 c0 2

Hence, a necessary condition for optimality is given by the equations

(7.7) LQP [1][1, 1] = 0, LQP [1][2, 1] = 0.

Moreover, the boundary terms arising from the integrations by parts are defined
by the second entry in LQP :

> Boundary := collect(LQP[2], {delta[xi[1]](t),delta[xi[2]](t)});



174 CHAPTER 7. A STIRRED TANK MODEL

Boundary := 2 θ V0 2 ρ(c2 ρ2 ξ2(t) c0 + 2 c2 2 ρ2 ξ1(t) + c1 2 ρ2 ξ2(t)− c1 ρ2 ξ2(t) c0

+ c1 ρ2 ξ1(t) c0 + 2 c1 2 ρ2 ( ddt ξ1(t)) θ + c1 2 ρ2 ξ1(t)− c2 ρ2 ξ1(t) c0

− 3 c2 ρ2 ξ1(t) c1 + 2 c2 2 ρ2 ( ddt ξ1(t)) θ − 4 c2 ρ2 ( ddt ξ1(t)) θ c1 − c2 ρ2 ξ2(t) c1 )

δξ1(t) + 2 θ V0 2 ρ(c2 2 ρ1 ξ2(t) + 2 c1 2 ρ1 ( ddt ξ2(t)) θ + 2 c2 2 ρ1 ( ddt ξ2(t)) θ

+ c2 2 ρ1 ξ1(t)− c1 ρ1 ξ1(t) c2 + 2 c1 2 ρ1 ξ2(t)− c1 ρ1 ξ2(t) c0

− 4 c2 ρ1 ( ddt ξ2(t)) θ c1 − c2 ρ1 ξ1(t) c0 + c1 ρ1 ξ1(t) c0 − 3 c2 ρ1 ξ2(t) c1

+ c2 ρ1 ξ2(t) c0 )δξ2(t)

Here δξ1 and δξ2 are the variations of ξ1 resp. ξ2. In order to obtain the initial and
final conditions for the equations (7.7), we need to distinguish the case where the
terminal value x(T ) is fixed and the case where there exists a summand in the
cost functional of the form x(T )T C3 x(T ).

In the first case we do not need the boundary terms Boundary, but we have
to translate the final conditions on x(T ) into final conditions on ξ1, ξ2 and their
derivatives by using the parametrization P of the system.

In the second case the parametrization P of the system is substituted into the
term x(T )T C3 x(T ). By computing the variation of this term, we obtain some
linear expressions in the variations δξ1 , δξ2 which we add to the boundary terms
that we have already computed.

Let us consider the case where the terminal state x(T ) is not measured by an
extra term in the cost functional, i.e. x(T ) is free.

Comparison of the coefficients of δξ1 and δξ2 yields that the following two
expressions in ξ1(T ), ξ2(T ), D(ξ1)(T ), D(ξ2)(T ) are zero:

> B1 := subs(t=T, convert(subs([delta[xi[1]](t)=1,
> delta[xi[2]](t)=0], Boundary), D));

B1 := 2 θ V0 2 ρ(c2 ρ2 ξ2(T ) c0 + 2 c2 2 ρ2 ξ1(T ) + c1 2 ρ2 ξ2(T )− c1 ρ2 ξ2(T ) c0

+ c1 ρ2 ξ1(T ) c0 + 2 c1 2 ρ2 D(ξ1)(T ) θ + c1 2 ρ2 ξ1(T )− c2 ρ2 ξ1(T ) c0

− 3 c2 ρ2 ξ1(T ) c1 + 2 c2 2 ρ2 D(ξ1)(T ) θ − 4 c2 ρ2 D(ξ1)(T ) θ c1 − c2 ρ2 ξ2(T ) c1 )

> B2 := subs(t=T, convert(subs([delta[xi[1]](t)=0,
> delta[xi[2]](t)=1], Boundary), D));

B2 := 2 θ V0 2 ρ(c2 2 ρ1 ξ2(T ) + 2 c1 2 ρ1 D(ξ2)(T ) θ + 2 c2 2 ρ1 D(ξ2)(T ) θ + c2 2 ρ1 ξ1(T )

− c1 ρ1 ξ1(T ) c2 + 2 c1 2 ρ1 ξ2(T )− c1 ρ1 ξ2(T ) c0 − 4 c2 ρ1 D(ξ2)(T ) θ c1

− c2 ρ1 ξ1(T ) c0 + c1 ρ1 ξ1(T ) c0 − 3 c2 ρ1 ξ2(T ) c1 + c2 ρ1 ξ2(T ) c0 )

The initial conditions are obtained by translating the initial conditions x1 (0) =
x10 , x2 (0) = x20 into initial conditions on ξ1 and ξ2:



7.6. OPTIMAL CONTROL PROBLEMS 175

> IC := {subs(t=0, Parametrization(R, Alg)[1,1]=x10),
> subs(t=0, Parametrization(R, Alg)[2,1]=x20)};

IC := {2 θ ξ1(0) c2 2 − 2 θ ξ1(0) c2 c1 − 2 θ ξ1(0) c2 c0 + 2 θ ξ1(0) c1 c0

+ 2 θ ξ2(0) c2 c0 − 2 θ ξ2(0) c2 c1 − 2 θ ξ2(0) c1 c0 + 2 θ ξ2(0) c1 2 = x20 ,

2 θV0 ξ1(0) c2 − 2 θV0 ξ1(0) c1 − 2 θV0 ξ2(0) c2 + 2 θV0 ξ2(0) c1 = x10}

In order to obtain the optimal trajectories in terms of ξ1, ξ2, we need to solve the
following system of ordinary differential equations

> ODEs := {LQP[1][1,1],LQP[1][2,1]}:

with the initial and final conditions:

> BoundaryConditions := {B1,B2,op(IC)}:

In general it is too difficult to solve this system using symbolic integrations (how-
ever, see also the Library of Examples on the OreModules web page [CQR06a]).
In the present situation we need to know the particular values of the constants θ,
V0 , c0 , c1 , c2 , σ1, σ2, ρ, ρ1, ρ2, and the final time instant T in order to solve
the system of ordinary differential equations numerically.

The values of the parameters are chosen as previously (see p. 10 of [KS72]).

> conf := [c0=1.25,c1=1,c2=2,V0=1,theta=50]:
> BVP := subs([op(conf),sigma1=50,sigma2=0.02,rho=0.1,
> rho1=1/3,rho2=3,x10=0.1,x20=0,T=50],
> ODEs union map(convert, BoundaryConditions, D));

BVP := {75.00 ξ1(0) + 25.00 ξ2(0) = 0,−5.000000004 ( d
dt
ξ2(t))− 3000.0 ( d

2

dt2
ξ1(t))

+ 163.437499 ξ1(t)− 12.33750000 ξ2(t), 100 ξ1(0)− 100 ξ2(0) = 0.1,

5.00000001 ( d
dt
ξ1(t))− 12.337500 ξ1(t) + 62.57083332 ξ2(t)

− 333.3333333 ( d
2

dt2
ξ2(t)),

4.166666660 ξ2(50) + 333.3333334 D(ξ2)(50) + 2.500000000 ξ1(50),

7.500 ξ2(50) + 52.500 ξ1(50) + 3000.0 D(ξ1)(50)}

This defines the boundary value problem which we solve numerically:

> dsol5 := dsolve(BVP, {xi[1](t),xi[2](t)}, type=numeric);

dsol5 := proc(x bvp) . . . end proc

In order to find the trajectories for x1 , x2 , u1 , u2 we have to adjust the parametri-
zation LQP [3] of the system (which coincides with the result of Parametrization)



176 CHAPTER 7. A STIRRED TANK MODEL

to the chosen values for the constants. We also rename the arbitrary functions
ξ1, ξ2 in LQP [3] because we are going to substitute the solutions of the boundary
value problem for these functions.

> P_ex := subs([op(conf),xi=eta], LQP[3]);

P ex :=




100 η1(t)− 100 η2(t)
75.00 η1(t) + 25.00 η2(t)

−0.75 η1(t)− 1.25 η2(t)− 100 ( d
dt
η2(t))

1.75 η1(t) + 100 ( d
dt
η1(t)) + 0.25 η2(t)




The first two components of the parametrization yield the trajectories for x1 , x2 :

> plots[odeplot](dsol5,
> [[t,subs([eta[1](t)=xi[1](t), eta[2](t)=xi[2](t)], P_ex[1,1]),
> color=blue],
> [t,subs([eta[1](t)=xi[1](t), eta[2](t)=xi[2](t)], P_ex[2,1]),
> color=red]], 0..50);

100*xi[1]–100*xi[2]
75.00*xi[1]+25.00*xi[2]

 

0

0.02

0.04

0.06

0.08

0.1

10 20 30 40 50

t

The third and the fourth component of the parametrization give the trajectories
for u1 , u2 :

> plots[odeplot](dsol5, [[t,subs([eta[1](t)=xi[1](t),
> eta[2](t)=xi[2](t)], P_ex[3,1]), color=blue],
> [t,subs([eta[1](t)=xi[1](t), eta[2](t)=xi[2](t)], P_ex[4,1]),
> color=red]], 0..50);



7.7. A DISCRETE-TIME MODEL 177

-.75*xi[1]–1.25*xi[2]–100*xi[2] || ’
1.75*xi[1]+100*xi[1] || ’+.25*xi[2]

 

–0.03

–0.025

–0.02

–0.015

–0.01

–0.005

0
10 20 30 40 50

t

Here we have chosen ρ = 0.1. The plots for x1 , x2 resp. u1 , u2 displayed above
can be compared to the ones given in [KS72], p. 228 and 229 (first column).

7.7 A discrete-time model

In this section we assume that the stirred tank is commanded by a computer,
which means that the values of the input variables change at discrete time instants
only (see [KS72], p. 449). The discrete-time description

x(i+ 1) = Ã(i)x(i) + B̃(i)u(i)

is derived from the continuous-time description

ẋ(t) = A(t)x(t) +B(t)u(t)

as follows. Using the transition matrix Φ(t′, t) of the system we have

x(t′) = Φ(t′, t)x(t) +

∫ t′

t

Φ(t′, τ)B(τ) dτ u(t).

By substituting ti for t and ti+1 for t′ we find

Ã(i) = Φ(ti+1, ti), B̃(i) =

∫ ti+1

ti

Φ(ti+1, τ)B(τ) dτ.

The continuous-time description of the stirred tank is time-invariant. Hence, we
have Φ(t′, t) = exp(A (t′ − t)).



178 CHAPTER 7. A STIRRED TANK MODEL

When each two consecutive time instants ti, ti+1 differ by the same period
of time ∆ > 0, then the discrete-time description is also time-invariant. For the
stirred tank we obtain

Ã =

(
e−∆/(2 θ) 0

0 e−∆/θ

)
, B̃ =

(
2 θ(1− e−∆/(2 θ)) 2 θ(1− e−∆/(2 θ))

θ (c1−c0 )
V0

(1− e−∆/θ) θ (c2−c0 )
V0

(1− e−∆/θ)

)
.

In order to deal with this time-invariant discrete-time system using OreModules,
we define the Ore algebra O = Q(θ,V0 , c0 , c1 , c2 , κ)[σ] of polynomials in σ with
coefficients that are rational functions in the parameters θ, V0 , c0 , c1 , c2 , and
κ := exp(−∆/(2 θ)), where σ represents the shift operator (σ x)(i) = x(i+ 1).

> Alg2 := DefineOreAlgebra(shift=[sigma,i], polynom=[i],
> comm=[theta,V0,c0,c1,c2,kappa]):

The system matrix is:

> R2 := matrix([[sigma-kappa,0,-2*theta*(1-kappa),
> -2*theta*(1-kappa)], [0,sigma-kappa^2,-theta*(c1-c0)*
> (1-kappa^2)/V0,-theta*(c2-c0)*(1-kappa^2)/V0]]);

R2 :=



σ − κ 0 −2 θ (1− κ) −2 θ (1− κ)

0 σ − κ2 −θ (c1 − c0 ) (1− κ2)

V0
−θ (c2 − c0 ) (1− κ2)

V0




Let M2 be the O-module which is associated with this linear system. In or-
der to check parametrizability, we are going to compute the extension group
ext1

O(M2⊤,O) of the transposed module of M2 . Since we deal with a linear sys-
tem with constant coefficients, the involution is just transposition of matrices.

> R2_adj := linalg[transpose](R2);

R2 adj :=




σ − κ 0
0 σ − κ2

−2 θ (1− κ) −θ (c1 − c0 ) (1− κ2)

V0

−2 θ (1− κ) −θ (c2 − c0 ) (1− κ2)

V0




We compute ext1
O(M2⊤,O).

> Ext2 := Exti(R2_adj, Alg2, 1);



7.7. A DISCRETE-TIME MODEL 179

Ext2 := [

[
1 0
0 1

]
,

[
σ − κ 0 2 θ (−1 + κ) 2 θ (−1 + κ)

0 σ V0 −V0 κ2 −(c1 − c1 κ2 − c0 + c0 κ2) θ −(c2 − c2 κ2 − c0 + c0 κ2) θ

]
,

[2V0 (−1 + κ) θ (−c2 + c1 ) , 2V0 (−1 + κ) θ (−c2 + c1 )]
[
− θ (c2 2 κ2 − c2 κ2 c1 − c2 2 + c2 c1 − c2 c0 κ2 + c1 c0 κ2 + c2 c0 − c1 c0 ) ,

−θ (c2 κ2 c1 − c2 c1 − c2 c0 κ2 + c1 c0 κ2 + c2 c0 − c1 c0 − c1 2 κ2 + c1 2)
]

[−V0 κ (c2 − c0 − κ c2 + κ c0 ) , −V0 κ (c2 − c0 + κ c0 − κ c1 )−V0 (−c2 + c1 )σ]

[V0 κ (−κ c2 + κ c0 + c1 − c0 )−V0 (−c2 + c1 )σ , V0 κ (c1 − c0 − κ c1 + κ c0 )]]

The residue classes in M2 of the rows of Ext2 [2] generate the torsion submodule
t(M2 ), and the elements in the i-th column of Ext2 [1] annihilate the residue class
represented by the i-th row of Ext2 [2]. Therefore, t(M2 ) = 0 and the system
is controllable for generic configurations of the parameters. Ext2 [3] provides a
parametrization of the behavior. In terms of arbitrary functions ξ1(i), ξ2(i) this
parametrization is also obtained as follows:

> Parametrization(R2, Alg2);

[
− 2V0 θ ξ1(i)κ c2 + 2V0 θ ξ1(i)κ c1 + 2V0 θ ξ1(i) c2 − 2V0 θ ξ1(i) c1

− 2V0 θ ξ2(i)κ c2 + 2V0 θ ξ2(i)κ c1 + 2V0 θ ξ2(i) c2 − 2V0 θ ξ2(i) c1
]

[
− θ ξ1(i) c2 2 κ2 + θ ξ1(i) c2 κ2 c1 + θ ξ1(i) c2 2 − θ ξ1(i) c2 c1 + θ ξ1(i) c2 c0 κ2

− θ ξ1(i) c1 c0 κ2 − θ ξ1(i) c2 c0 + θ ξ1(i) c1 c0 − θ ξ2(i) c2 κ2 c1 + θ ξ2(i) c2 c1

+ θ ξ2(i) c2 c0 κ2 − θ ξ2(i) c1 c0 κ2 − θ ξ2(i) c2 c0 + θ ξ2(i) c1 c0 + θ ξ2(i) c1 2 κ2

− θ ξ2(i) c1 2
]

[
−V0 κ ξ1(i) c2 + V0 κ ξ1(i) c0 + V0 κ2 ξ1(i) c2 −V0 κ2 ξ1(i) c0 −V0 κ ξ2(i) c2

+ V0 κ ξ2(i) c0 −V0 κ2 ξ2(i) c0 + V0 κ2 ξ2(i) c1 + V0 ξ2(i + 1) c2

−V0 ξ2(i + 1) c1
]

[
−V0 κ2 ξ1(i) c2 + V0 κ2 ξ1(i) c0 + V0 κ ξ1(i) c1 −V0 κ ξ1(i) c0 + V0 ξ1(i + 1) c2

−V0 ξ1(i + 1) c1 + V0 κ ξ2(i) c1 −V0 κ ξ2(i) c0 −V0 κ2 ξ2(i) c1 + V0 κ2 ξ2(i) c0
]

Since O is a principal ideal ring, M2 is also projective and free. The fact that
M2 is projective can also be verified as in Section 7.2.

> SyzygyModule(R2, Alg2);



180 CHAPTER 7. A STIRRED TANK MODEL

INJ(2)

> T := map(factor, RightInverse(R2, Alg2));

T :=




0 0
0 0

c0 − c2

2 θ (κ− 1) (c1 − c2 )

V0

(κ− 1) (κ+ 1) (c1 − c2 ) θ

− c0 − c1

2 (κ− 1) θ (c1 − c2 )
− V0

(κ− 1) (κ+ 1) (c1 − c2 ) θ




Hence, we have just proved that the short exact sequence

0 −→ O1×2 .R2−→ O1×4 −→ M2 −→ 0

splits (see Def. 6.3.1), which is equivalent to the fact that M2 is projective. The
module M2 is free which means that the system is flat for generic configurations
of the parameters. Let us compute a flat output of its behavior.

> S := map(factor, LeftInverse(Ext2[3], Alg2));

S :=



− c0 − c1

2 (c1 − c2 )2 V0 (κ− 1) θ
− 1

(c1 − c2 )2 (κ− 1) (κ+ 1) θ
0 0

c0 − c2

2 (c1 − c2 )2 V0 (κ− 1) θ

1

(c1 − c2 )2 (κ− 1) (κ+ 1) θ
0 0




A flat output is therefore defined by (ξ1 ξ2)T = S (x1 x2 u1 u2 )T and
(ξ1 ξ2)T satisfies (x1 x2 u1 u2 )T = Ext2 [3] (ξ1 ξ2)T . More explicitly, we
have:

> matrix([[xi1(i)],[xi2(i)]])=
> ApplyMatrix(S, [x1(i),x2(i),u1(i),u2(i)], Alg2);

[
ξ1(i)
ξ2(i)

]
=



−1

2

x1(i)κ c0 + x1(i) c0 − x1(i)κ c1 − x1(i) c1 + 2 x2(i)V0

(c1 − c2 )2 V0 θ (κ2 − 1)

1

2

−x1(i)κ c2 + x1(i)κ c0 − x1(i) c2 + x1(i) c0 + 2 x2(i)V0

(c1 − c2 )2 V0 θ (κ2 − 1)




We substitute (ξ1 ξ2)T = S (x1 x2 u1 u2 )T into (x1 x2 u1 u2 )T =
Ext2 [3] (ξ1 ξ2)T .

> P2 := Mult(Ext2[3], S2, Alg2);



7.7. A DISCRETE-TIME MODEL 181

P2 :=
[−V0 (c2 − c1 − κ c2 + κ c1 ) , 0 ,

2V0 θ c2 − 2V0 θ c1 − 2V0 θ κ c2 + 2V0 θ κ c1 , 0]
[
c2 2 κ2

2
− c2 κ2 c1

2
− c2 2

2
+

c2 c1

2
− c2 c0 κ2

2
+

c1 c0 κ2

2
+

c2 c0

2
− c1 c0

2
, 0 ,

−θ c2 κ2 c1 + θ c2 c1 + θ c2 c0 κ2 − θ c1 c0 κ2 − θ c2 c0 + θ c1 c0 + θ c1 2 κ2

− θ c1 2, 0

]

[
V0 κ (c2 − c0 − κ c2 + κ c0 )

2 θ
, 0 ,

−V0 κ c2 + V0 κ c0 −V0 κ2 c0 + V0 κ2 c1 + V0 σ c2 −V0 σ c1 , 0

]

[
− V0 (−c2 κ2 + c0 κ2 + κ c1 − κ c0 + σ c2 − σ c1 )

2 θ
, 0 ,

−V0 κ2 c1 + V0 κ c1 + V0 κ2 c0 −V0 κ c0 , 0

]

Obviously, (x1 x2 )T is another flat output of the behavior.

> matrix([[x1(i)],[x2(i)],[u1(i)],[u2(i)]])=
> ApplyMatrix(P2, [x1(i),x2(i),u1(i),u2(i)], Alg2);




x1(i)
x2(i)
u1(i)
u2(i)


 =

[−V0 x1(i) c2 + V0 x1(i) c1 + V0 x1(i)κ c2 −V0 x1(i)κ c1 + 2u1(i)V0 θ c2

− 2 u1(i)V0 θ c1 − 2 u1(i)V0 θ κ c2 + 2u1(i)V0 θ κ c1 ]
[
1

2
x1(i) c2 2 κ2 − 1

2
x1(i) c2 κ2 c1 − 1

2
x1(i) c2 2 +

1

2
x1(i) c2 c1 − 1

2
x1(i) c2 c0 κ2

+
1

2
x1(i) c1 c0 κ2 +

1

2
x1(i) c2 c0 − 1

2
x1(i) c1 c0 − u1(i) θ c2 κ2 c1 + u1(i) θ c2 c1

+ u1(i) θ c2 c0 κ2 − u1(i) θ c1 c0 κ2 − u1(i) θ c2 c0 + u1(i) θ c1 c0

+ u1(i) θ c1 2 κ2 − u1(i) θ c1 2

]

[
− 1

2
V0 (−x1(i)κ c2 + x1(i)κ c0 + κ2 x1(i) c2 − κ2 x1(i) c0 + 2κ u1(i) θ c2

− 2κ u1(i) θ c0 + 2κ2 u1(i) θ c0 − 2κ2 u1(i) θ c1 − 2 u1(i + 1) θ c2 + 2u1(i + 1) θ c1 )/θ

]

[
1

2
V0 (κ2 x1(i) c2 − κ2 x1(i) c0 − x1(i)κ c1 + x1(i)κ c0 − x1(i + 1) c2

+ x1(i + 1) c1 + 2κ u1(i) θ c1 − 2κ u1(i) θ c0 − 2κ2 u1(i) θ c1 + 2κ2 u1(i) θ c0 )/θ

]



182 CHAPTER 7. A STIRRED TANK MODEL

We conclude that the discrete-time model of the stirred tank is flat if c1 6= c2
and κ2 6= 1. By definition we have κ = exp(−∆/2θ), so that κ2 6= 1 always holds
because ∆ > 0. As in the continuous-time case, the flatness of the system can be
exploited for motion planning (see Section 7.5).

Let us consider the system for the case c0 = c1 = c2 .

> R2mod := subs([c2=c0,c1=c0], evalm(R2));

R2mod :=

[
σ − κ 0 −2 θ (1− κ) −2 θ (1− κ)

0 σ − κ2 0 0

]

We are going to check controllability, parametrizability and flatness for this par-
ticular setting.

> Ext2mod := Exti(linalg[transpose](R2mod), Alg2, 1);

Ext2mod :=



[

1 0
0 σ − κ2

]
,

[
σ − κ 0 −2 θ + 2 θ κ −2 θ + 2 θ κ

0 1 0 0

]
,




−2 θ (κ− 1) 0
0 0
0 1

σ − κ −1







As in the continuous time case we find a non-trivial torsion element m in the
O-module which is associated with the system, namely the residue class which
is represented by x2 . The torsion element satisfies (σ − κ2)m = 0. Therefore,
the system is not controllable and not parametrizable in this case. Since free
O-modules are torsion-free, it follows by contraposition that the system is not
flat. A generating set of torsion elements together with their annihilators is given
in terms of functions by the command TorsionElements:

> TorsionElements(R2mod, [x1(i),x2(i),u1(i),u2(i)], Alg2);

[
[
−κ2 θ2(i) + θ2(i+ 1) = 0

]
,
[
θ2(i) = x2(i)

]
]

In a similar way as in Section 7.3 the controllable part of the system can be stud-
ied by considering the presentation matrix Ext2mod [2] and the parametrization
Ext2mod [3].

7.8 A differential time-delay model

In this section we study a different model of the stirred tank which is described
in [KS72], pages 449–452. The two feeds with concentrations c1 resp. c2 are
mixed before they flow into the tank and the result is fed through a pipe as the
only incoming flow. The length of the pipe causes a transport delay τ . In [KS72]
the mass balances equations for this setting are linearized again and lead to the



7.8. A DIFFERENTIAL TIME-DELAY MODEL 183

following model of linear ordinary differential equations with a shift (compare to
(7.1)):

ẋ(t) =

(
− 1

2 θ
0

0 −1
θ

)
x(t) +

(
1 1
0 0

)
u(t) +

(
0 0

c1−c0

V0

c2−c0

V0

)
u(t− τ).

For the application of OreModules to this differential time-delay model we define
the Ore algebra O := Q(θ,V0 , c0 , c1 , c2 )[t, s][D, δ] of polynomials in D and δ
with coefficients that are polynomials in t and s obeying the following commuta-
tion rules:

D t = tD + 1, D s = sD,

δ s = (s− 1)σ, δ t = t δ,

D δ = δD.

Hence, D represents differentiation with respect to time t and δ is a shift operator.
Since the equations under consideration have constant coefficients, it is not a
problem that we have δ t = t δ, but the option shift_action=[delta,t,h] in
the following declaration specifies that, whenever a matrix with entries in Alg3
is applied to a vector of functions, then δ acts by a shift of “length” h in t.

> Alg3 := DefineOreAlgebra(diff=[D,t], dual_shift=[delta,s],
> polynom=[t,s], comm=[theta,V0,c0,c1,c2],
> shift_action=[delta,t,h]):

The new system is described by the following matrix R3 ∈ O2×4.

> R3 := matrix([[D+1/(2*theta),0,-1,-1],
> [0,D+1/theta,-(c1-c0)*delta/V0,-(c2-c1)*delta/V0]]);

R3 :=




D +
1

2 θ
0 −1 −1

0 D +
1

θ
−(c1 − c0 ) δ

V0
−(c2 − c1 ) δ

V0




Let us denote the O-module which is associated with this linear system by M3 .

In order to check structural properties of the system, we compute the ex-
tension group ext1

O(M3⊤,O). The involution is just transposition of matrices
because the equations have constant coefficients.

> Ext1 := Exti(linalg[transpose](R3), Alg3, 1);



184 CHAPTER 7. A STIRRED TANK MODEL

Ext1 :=



[

1 0
0 1

]
,

[
−2 D θ − 1 0 2 θ 2 θ

0 θ V0 D + V0 θ (−c1 + c0 ) δ (−c2 + c1 ) θ δ

]
,




−2V0 θ (c2 + c0 − 2 c1 ) , −2V0 θ (c2 + c0 − 2 c1 )
2 δ (c2 + c0 − 2 c1 ) θ (−c2 + c1 ) , 2 (c2 + c0 − 2 c1 ) δ θ (−c1 + c0 )
−V0 (−c2 + c1 ) , −(2 c0 − 3 c1 + c2 )V0 − 2 (c2 + c0 − 2 c1 )V0 θ D
−(−3 c1 + c0 + 2 c2 )V0 − 2 (c2 + c0 − 2 c1 )V0 θ D , V0 (−c1 + c0 )







The residue classes in M3 of the rows of Ext1 [2] generate the torsion submodule
t(M3 ) of M3 . The i-th generator is annihilated by the entries of the i-th column
of Ext1 [1], so that we conclude that t(M3 ) = 0. Hence, the present stirred
tank model is controllable and parametrizable for generic configurations of the
parameters. The third matrix in Ext1 provides a parametrization.

The same parametrization is given in terms of arbitrary (smooth) functions
ξ1, ξ2 by the command Parametrization (note that the action of δ on functions
is by shift on t):

> Parametrization(R3, Alg3);

[
− 2 θ V0 ξ1(t) c2 − 2V0 θ ξ1(t) c0 + 4 θ V0 ξ1(t) c1 − 2 θ V0 ξ2(t) c2

− 2V0 θ ξ2(t) c0 + 4 θ V0 ξ2(t) c1
]

[
− 2 θ ξ1(t− h) c2 2 + 6 θ ξ1(t− h) c2 c1 − 2 θ ξ1(t− h) c2 c0 + 2 θ ξ1(t− h) c1 c0

− 4 θ ξ1(t− h) c1 2 − 2 θ ξ2(t− h) c2 c1 − 6 θ ξ2(t− h) c1 c0 + 4 θ ξ2(t− h) c1 2

+ 2 θ ξ2(t− h) c2 c0 + 2 θ ξ2(t− h) c0 2
]

[
V0 ξ1(t) c2 −V0 ξ1(t) c1 − 2V0 ξ2(t) c0 + 3V0 ξ2(t) c1 −V0 ξ2(t) c2

− 2V0 θ D(ξ2)(t) c2 − 2V0 θ D(ξ2)(t) c0 + 4V0 θ D(ξ2)(t) c1
]

[
3V0 ξ1(t) c1 −V0 ξ1(t) c0 − 2V0 ξ1(t) c2 − 2V0 θ D(ξ1)(t) c2

− 2V0 θ D(ξ1)(t) c0 + 4V0 θ D(ξ1)(t) c1 −V0 ξ2(t) c1 + V0 ξ2(t) c0
]

In order to check whether the system is flat, we have to investigate whether
M3 is projective. Therefore, we need to compute the second extension group
ext2

O(M3⊤,O) of M3⊤ (see Theorem 5.1.5 and Figure 5.1, p. 99).

> Ext2 := Exti(linalg[transpose](R3), Alg3, 2);



7.8. A DIFFERENTIAL TIME-DELAY MODEL 185

Ext2 :=







δ 0
1 + D θ 0

0 δ
0 −D θ − 1


 ,

[
1 0
0 1

]
, SURJ(2)




The representatives of generators for ext2
O(M3⊤,O) given by the rows of Ext2 [2]

are annihilated by the entries in Ext2 [1] as explained before. We conclude
ext2

O(M3⊤,O) 6= 0, which means that M3 is not projective. In particular, M3 is
not free. Therefore, the system is not flat. This is coherent with the fact that
the parametrization Ext1 [3] does not induce an injective homomorphism:

> LeftInverse(Ext1[3], Alg3);

[ ]

However, we can compute a so-called “π-polynomial” (see [Mou95], [CQR05])
π ∈ Q(θ,V0 , c0 , c1 , c2 )[δ] such that

S−1O ⊗M3 = {m/a | m ∈ M3 , a = πj, j ∈ Z≥0 }

is a free S−1O-module, where S := {πj | j ∈ Z≥0 } is the multiplicatively
closed subset of the commutative ring O generated by π. This means, if we allow
to invert the π-polynomial, then the system, considered over this new algebra,
becomes flat. Let us compute a polynomial π ∈ Q(θ,V0 , c0 , c1 , c2 )[δ] with these
properties:

> PiPolynomial(R3, Alg3, [delta]);

[δ]

Hence, if we introduce the advance operator δ−1, then the system is flat. Let us
compute a flat output of its behavior:

> S := map(factor, LocalLeftInverse(Ext1[3], [delta], Alg3));

S :=



− −c1 + c0

2 (c2 + c0 − 2 c1 )2 V0 θ
− 1

2 δ θ (c2 + c0 − 2 c1 )2
0 0

−c2 + c1

2 (c2 + c0 − 2 c1 )2 V0 θ

1

2 δ θ (c2 + c0 − 2 c1 )2
0 0




A flat output is defined by (ξ1 ξ2)T = S (x1 x2 u1 u2 )T .

> T := simplify(evalm(Ext1[3] &* S));



186 CHAPTER 7. A STIRRED TANK MODEL

T :=




1 0 0 0
0 1 0 0

−(2 D θ + 1) (−c2 + c1 )

2 θ (c2 + c0 − 2 c1 )
− (1 + D θ)V0

(c2 + c0 − 2 c1 ) θ δ
0 0

(2 D θ + 1) (−c1 + c0 )

2 θ (c2 + c0 − 2 c1 )

(1 + D θ)V0

(c2 + c0 − 2 c1 ) θ δ
0 0




The previous computation shows that we can also choose (x1 x2 )T as a flat
output. The third and the fourth row of T express the input variables u1 , u2 in
terms of x1 , x2 . Note that they involve the advance operator.

> P := ApplyMatrix(T, [x1(t),x2(t),u1(t),u2(t)], Alg3):
> matrix([[x1(t)],[x2(t)],[u1(t)],[u2(t)]])=evalm(P);




x1(t)
x2(t)
u1(t)
u2(t)


 =

[x1(t)]

[x2(t)]
[
− 1

2
(−x1(t) c2 + x1(t) c1 − 2 D(x1 )(t) θ c2 + 2 D(x1 )(t) θ c1 + 2V0 x2(t + h)

+ 2V0 D(x2 )(t + h) θ)/((c2 + c0 − 2 c1 ) θ)

]

[
1

2
(−x1(t) c1 + x1(t) c0 − 2 D(x1 )(t) θ c1 + 2 D(x1 )(t) θ c0 + 2V0 x2(t + h)

+ 2V0 D(x2 )(t + h) θ)/((c2 + c0 − 2 c1 ) θ)

]

Note that the flat output (x1 x2 )T is well-defined if and only if c1 6= c0+c2

2
.

> u1ref3 := t -> evalm(P[3,1]):

> u2ref3 := t -> evalm(P[4,1]):

Using the flat output, the problem of motion planning is easily solved for the
stirred tank. If we specify the desired trajectories x1 ref , x2 ref for x1 , x2 , then
substitution into P results in the corresponding open-loop inputs u1 ref , u2 ref

which realize the given trajectories. Let us give an example.

> x1ref3 := 0.1*exp(-alpha*t): x2ref3 := 0.2*exp(-beta*t):

> alpha := 1/10: beta := 1/7:

> plot([x1ref3,x2ref3], t=0..70, color=[red,green]);



7.8. A DIFFERENTIAL TIME-DELAY MODEL 187

0

0.05

0.1

0.15

0.2

10 20 30 40 50 60 70

t

Let us choose a time-delay of “length” h = 5. Then the corresponding open-loop
inputs are:

> conf := [c1=1,c2=2,c0=1.25,V0=1,theta=50]:
> u1ref5 := subs([h=5,op(conf)],
> ApplyMatrix(linalg[submatrix](T, 3..4, 1..2),
> [x1ref3,x2ref3], Alg3)[1,1]);

u1ref5 := −0.007200000000 e(−0.1000000000 t) + 0.01965714285 e(−0.1428571429 t−0.7142857145)

> u2ref5 := subs([h=5,op(conf)],
> ApplyMatrix(linalg[submatrix](T, 3..4, 1..2),
> [x1ref3,x2ref3], Alg3)[2,1]);

u2ref5 := −0.001800000000 e(−0.1000000000 t) − 0.01965714285 e(−0.1428571429 t−0.7142857145)

> plot([u1ref5,u2ref5], t=0..70, color=[blue,magenta]);

–0.01

–0.008

–0.006

–0.004

–0.002

0

0.002

10 20 30 40 50 60 70
t



188 CHAPTER 7. A STIRRED TANK MODEL

Let us choose a time-delay of “length” h = 10. Then the corresponding open-loop
inputs are:

> u1ref10 := subs([h=10,op(conf)],
> ApplyMatrix(linalg[submatrix](T, 3..4, 1..2),
> [x1ref3,x2ref3], Alg3)[1,1]);

u1ref10 := −0.007200000000 e(−0.1000000000 t) + 0.01965714285 e(−0.1428571429 t−1.428571429)

> u2ref10 := subs([h=10,op(conf)],
> ApplyMatrix(linalg[submatrix](T, 3..4, 1..2),
> [x1ref3,x2ref3], Alg3)[2,1]);

u2ref10 := −0.001800000000 e(−0.1000000000 t) − 0.01965714285 e(−0.1428571429 t−1.428571429)

> plot([u1ref10,u2ref10], t=0..70, color=[blue,magenta]);

–0.006

–0.005

–0.004

–0.003

–0.002

–0.001

0
10 20 30 40 50 60 70

t

From the above computations we derived that the system was flat if c1 6= c0+c2

2
.

Let us study the case c1 = c0+c2

2
.

> R3mod := simplify(subs(c1=(c0+c2)/2, evalm(R3)));

R3mod :=




2 D θ + 1

2 θ
0 −1 −1

0
1 + D θ

θ

(−c2 + c0 ) δ

2V0

(−c2 + c0 ) δ

2V0




We check whether the system is controllable for this particular configuration of
the parameters. The O-module which is associated with this linear system is
denoted by M3 ′. First we compute the extension group ext1

O(M3 ′⊤,O) of the
transposed module of M3 ′.



7.8. A DIFFERENTIAL TIME-DELAY MODEL 189

> Ext1mod := Exti(linalg[transpose](R3mod), Alg3, 1);

Ext1mod :=



[

1 0
0 1

]
,

[
2 D θ + 1 0 −2 θ −2 θ

0 −2 θ V0 D− 2V0 −(c0 − c2 ) θ δ −(c0 − c2 ) θ δ

]
,




4V0 θ2 D + 4V0 θ 0
−(c0 − c2 ) θ δ − 2 θ2 (c0 − c2 )D δ 0

0 1
4V0 θ2 D2 + 6 θ V0 D + 2V0 −1







In a similar way as before, we conclude from the annihilating elements in the first
matrix of Ext1mod that the torsion submodule t(M3 ′) of M3 ′ is trivial. Hence,
the system is controllable and parametrizable. A parametrization of the behavior
is given by Ext1mod [3] or by the following command:

> matrix([[x1(t)],[x2(t)],[u1(t)],[u2(t)]])=
> Parametrization(R3mod, Alg3);




x1(t)
x2(t)
u1(t)
u2(t)


 =




4V0 θ2 D(ξ1)(t) + 4V0 θ ξ1(t)
θ ξ1(t− h) c2 − θ ξ1(t− h) c0 + 2 θ2 D(ξ1)(t− h) c2 − 2 θ2 D(ξ1)(t− h) c0

ξ2(t)

4V0 θ2 (D(2))(ξ1)(t) + 6V0 θ D(ξ1)(t) + 2V0 ξ1(t)− ξ2(t)




Flatness of the system is equivalent to freeness of M3 ′. Let us first check whether
M3 ′ is projective or not by computing the second extension group ext2

O(M3 ′⊤,O):

> Ext2mod := Exti(linalg[transpose](R3mod), Alg3, 2);

Ext2mod :=






δ 0
1 + D θ 0

0 1


 ,

[
1 0
0 1

]
, SURJ(2)




From the annihilating elements in the first column of Ext2mod [1] we see that the
first row of Ext2mod [2] defines a non-trivial generator of ext2

O(M3 ′⊤,O). Hence,
M3 ′ is not projective and not free.

The system is not flat. This is coherent with the fact that the parametrization
Ext1mod [3] does not induce an injective homomorphism:

> LeftInverse(Ext1mod[3], Alg3);

[ ]

However, we can find a “π-polynomial” π in Q(θ,V0 , c0 , c1 , c2 )[δ] such that

S−1D ⊗M3 ′ = {m/a | m ∈ M3 ′, a = πj, j ∈ Z≥0 }



190 CHAPTER 7. A STIRRED TANK MODEL

is a free S−1D-module, where S := {πj | j ∈ Z≥0 } is the multiplicatively closed
subset of D generated by π. Hence, π encodes the obstructions towards the
flatness of the system.

> PiPolynomial(R3mod, Alg3, [delta]);

[δ]

Therefore, if we allow to invert the time-delay operator δ, then there exists an
injective parametrization of the system. Let us show that Ext1mod [3] induces an
injective homomorphism of S−1D-modules:

> Smod := LocalLeftInverse(Ext1mod[3], [delta], Alg3);

Smod :=




1

2V0 θ

1

δ θ (c0 − c2 )
0 0

0 0 1 0




Using the advance operator δ−1, a flat output (ξ1 ξ2)T of the behavior is defined
by

> matrix([[xi[1](t)],[xi[2](t)]])=
> ApplyMatrix(Smod, [x1(t),x2(t),u1(t),u2(t)], Alg3);

[
ξ1(t)
ξ2(t)

]
=




1

2

x1(t) c0 − x1(t) c2 + 2V0 x2(t+ h)

V0 θ (c0 − c2 )

u1(t)




The flat output satisfies (x1 x2 u1 u2 )T = Ext1mod [3] (ξ1 ξ2)T . It is well-
defined if and only if c0 6= c2 .

Finally, if c1 = c0+c2

2
and c0 = c2 , i.e. c0 = c1 = c2 , then the system

matrix is:

> subs([c2=c0,c1=c0], evalm(R3));



D +
1

2 θ
0 −1 −1

0 D +
1

θ
0 0




For this configuration of the parameters the system matrix involves no time-delay
operator. This is exactly the case studied in Section 7.3, where it was shown that
the system was not (completely) controllable; in particular, the system is not flat
in this case.



Bibliography

[ABMP95] E. Aranda-Bricaire, C. H. Moog, and J.-B. Pomet. Infinitesimal
Brunovský form for nonlinear systems, with applications to dynamic
linearization. In Geometry in Nonlinear Control and Differential In-
clusions (Warsaw, 1993), volume 32 of Banach Center Publications,
pages 19–33. Polish Academy of Sciences, Warsaw, 1995. 110

[AH05] J. Apel and R. Hemmecke. Detecting unnecessary reductions in
an involutive basis computation. J. Symbolic Computation, 40(4–
5):1131–1149, 2005. 36

[AL94] W. W. Adams and P. Loustaunau. An Introduction to Gröbner
Bases. American Mathematical Society, 1994. 25, 37

[ALLR82] P. Agrawal, C. Lee, H. C. Lim, and D. Ramkrishna. Theoretical
Investigations of Dynamic Behavior of Isothermal Continuous Stirred
Tank Biological Reactors. Chemical Engineering Science, 37(3):453–
462, 1982. 106, 107

[AMR88] R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, Tensor Anal-
ysis, and Applications. Springer, second edition, 1988. 49, 52

[And] I. M. Anderson. The Variational Bicomplex. Preprint,
http://www.math.usu.edu/~fg mp/Publications/VB/vb.pdf.
113

[Aub77] J.-P. Aubin. Applied Abstract Analysis. John Wiley & Sons, 1977.
48, 49

[Bar01a] M. Barakat. Functional Spaces. A Direct Approach. PhD thesis,
RWTH Aachen, 2001. 43, 113

[Bar01b] M. Barakat. Jets. A MAPLE-Package for Formal Differential Geom-
etry. In V. G. Ganzha, E. W. Mayr, and E. V. Vorozhtsov, editors,
Computer Algebra in Scientific Computing CASC 2001, pages 1–12.
Springer, 2001. 43, 47, 60

191



192 BIBLIOGRAPHY

[BCG+03a] Y. A. Blinkov, C. F. Cid, V. P. Gerdt, W. Plesken, and D. Robertz.
The MAPLE Package “Janet”: I. Polynomial Systems. In Pro-
ceedings of the 6th International Workshop on Computer Algebra
in Scientific Computing, Passau (Germany), pages 31–40, 2003.
http://wwwb.math.rwth-aachen.de/Janet. 36

[BCG+03b] Y. A. Blinkov, C. F. Cid, V. P. Gerdt, W. Plesken, and D. Robertz.
The MAPLE Package “Janet”: II. Linear Partial Differential Equa-
tions. In Proceedings of the 6th International Workshop on Computer
Algebra in Scientific Computing, Passau (Germany), pages 41–54,
2003. http://wwwb.math.rwth-aachen.de/Janet. 36

[BLOP95] F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Representation
for the radical of a finitely generated differential ideal. In Proceedings
of ISSAC95, pages 158–166, 1995. 59, 63

[Bou80] N. Bourbaki. Elements de Mathematiques, Algèbre Ch. 10. Masson,
1980. 76, 86

[BR] M. Barakat and D. Robertz. homalg: An abstract package for ho-
mological algebra. In preparation. 72

[BR06] M. Barakat and D. Robertz. Computing Invariants of Multidimen-
sional Linear Systems on an Abstract Homological Level. In Proceed-
ings of the 17th International Symposium on Mathematical Theory
of Networks and Systems (MTNS 2006), Kyoto (Japan), pages 542–
559, 2006. 72

[BY83] H. Blomberg and R. Ylinen. Algebraic Theory for Multivariable Lin-
ear Systems. Academic Press, 1983. 96

[Car14] E. Cartan. Sur l’équivalence absolue de certains systèmes d’équations
différentielles et sur certaines familles de courbes. Bulletin de la
Société Mathématique de France, 42:12–48, 1914. 138

[CE56] H. Cartan and S. Eilenberg. Homological Algebra. Princeton Univer-
sity Press, 1956. 72

[Chy98] F. Chyzak. Fonctions holonomes en calcul formel. PhD thesis, Ecole
Polytechnique, France, 1998. 6, 28

[Coh85] P. M. Cohn. Free Rings and their Relations. Academic Press, second
edition, 1985. 31

[Cou95] S. C. Coutinho. A Primer of Algebraic D-modules. London Mathe-
matical Society Student Texts 33. Cambridge University Press, 1995.
91, 93



BIBLIOGRAPHY 193

[CQR05] F. Chyzak, A. Quadrat, and D. Robertz. Effective algorithms for
parametrizing linear control systems over Ore algebras. Applica-
ble Algebra in Engineering, Communication and Computing, 16:319–
376, 2005. 75, 97, 98, 116, 117, 140, 185

[CQR06a] F. Chyzak, A. Quadrat, and D. Robertz. OreModules project,
2003-2006. http://wwwb.math.rwth-aachen.de/OreModules. 116,
175

[CQR06b] F. Chyzak, A. Quadrat, and D. Robertz. OreModules: A sym-
bolic package for the study of multidimensional linear systems. In
J. Chiasson and J.-J. Loiseau, editors, Applications of Time-Delay
Systems, 2006. To appear. 116

[CS98] F. Chyzak and B. Salvy. Non-commutative elimination in Ore al-
gebras proves multivariate identities. J. Symbolic Computation,
26:187–227, 1998. 6, 28

[Die69] J. Dieudonné. Foundations of Modern Analysis. Academic Press,
second edition, 1969. 48, 50

[DPR99] F. Dubois, N. Petit, and P. Rouchon. Motion Planning and Nonlinear
Simulations for a Tank Containing a Fluid. In Proceedings of the
European Control Conference, Karlsruhe (Germany), 1999. 119

[Ehr70] L. Ehrenpreis. Fourier Analysis in Several Complex Variables. Wiley
Interscience Publishers, 1970. 85

[Eva06] G. A. Evans. Noncommutative Involutive Bases. PhD thesis, Uni-
versity of Wales, Bangor, 2006. 6

[FG93] M. Fliess and S. T. Glad. An Algebraic Approach to Linear and
Nonlinear Control. In H. L. Trentelman and J. C. Willems, editors,
Essays on Control: Perspectives in the Theory and its Applications,
pages 223–267. Birkhäuser, 1993. 97, 138

[FLMR95] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness and defect
of nonlinear systems: introductory theory and examples. Int. J.
Control, 61:1327–1361, 1995. 117, 138

[FM98] M. Fliess and H. Mounier. Controllability and observability of linear
delay systems: an algebraic approach. ESAIM COCV, 3:301–314,
1998. 97, 116, 139

[FO98] S. Fröhler and U. Oberst. Continuous time-varying linear systems.
Systems & Control Letters, 35:97–110, 1998. 86



194 BIBLIOGRAPHY

[FPA03] C. Fleck, T. Paulus, and D. Abel. Eine flachheitsbasierte Rand-
steuerung für das Stefan-Problem. In GMA Kongress 2003, VDI-
Berichte 1756, ISBN 3-18-091756-3, pages 311–319, 2003. 139

[FQ06] A. Fabiańska and A. Quadrat. Flat shift-invariant multidimensional
linear systems are algebraically equivalent to controllable 1-D linear
systems. In Proceedings of the 17th International Symposium on
Mathematical Theory of Networks and Systems (MTNS 2006), Kyoto
(Japan), pages 560–582, 2006. 140

[GB98a] V. P. Gerdt and Y. A. Blinkov. Involutive bases of polynomial ideals.
Mathematics and Computers in Simulation, 45:519–541, 1998. 5, 10,
36

[GB98b] V. P. Gerdt and Y. A. Blinkov. Minimal involutive bases. Mathe-
matics and Computers in Simulation, 45:543–560, 1998. 5, 36

[GBM06] V. P. Gerdt, Y. A. Blinkov, and V. V. Mozzhilkin. Gröbner Bases and
Generation of Difference Schemes for Partial Differential Equations.
Symmetry, Integrability and Geometry: Methods and Applications,
2, 2006. 36

[Ger05] V. P. Gerdt. Involutive Algorithms for Computing Gröbner Bases.
In S. Cojocaru, G. Pfister, and V. Ufnarovski, editors, Compu-
tational Commutative and Non-Commutative Algebraic Geometry,
NATO Science Series, pages 199–225. IOS Press, 2005. 6

[Ger06] V. P. Gerdt. On Computation of Gröbner Bases for Linear Difference
Systems. Nuclear Instruments and Methods in Physics Research, A:
Accelerators, Spectrometers, Detectors and Associated Equipment,
559(1):211–214, 2006. 36

[GL01] H. Gluesing-Luerssen. Linear Delay-Differential Systems with Com-
mensurate Delays: An Algebraic Approach. Springer, 2001. 96

[GR06] V. P. Gerdt and D. Robertz. A Maple Package for Computing
Gröbner Bases for Linear Recurrence Relations. Nuclear Instruments
and Methods in Physics Research, A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 559(1):215–219, 2006. 36

[GY05] V. P. Gerdt and D. A. Yanovich. Experimental Analysis of Invo-
lutive Criteria. In A. Dolzmann, A. Seidl, and T. Sturm, editors,
Algorithmic Algebra and Logic, pages 105–109. BOD Norderstedt,
2005. 36



BIBLIOGRAPHY 195

[Hil12] D. Hilbert. Über den Begriff der Klasse von Differentialgleichungen.
Math. Ann., 73:95–108, 1912. 138

[HS97] P. J. Hilton and U. Stammbach. A Course in Homological Algebra.
Springer, 1997. 72

[HS01] A. Hillebrand and W. Schmale. Towards an Effective Version of a
Theorem of Stafford. J. Symbolic Computation, 32:699–716, 2001.
116, 141, 146

[HSS02] M. Hausdorf, W. M. Seiler, and R. Steinwandt. Involutive Bases in
the Weyl Algebra. J. Symbolic Computation, 34:181–198, 2002. 6

[Hub99] E. Hubert. Essential Components of an Algebraic Differential Equa-
tion. J. Symbolic Computation, 29(4-5):657–680, 1999. 63

[Hub00] E. Hubert. Factorisation free decomposition algorithms in differential
algebra. J. Symbolic Computation, 29(4-5):641–662, 2000. 59, 63

[Jac85] N. Jacobson. Basis Algebra I. Freeman, second edition, 1985. 101

[Jan29] M. Janet. Leçons sur les systèmes des équationes aux dérivées par-
tielles. Cahiers Scientifique IV. Gauthiers-Villars, Paris, 1929. 5,
8

[Jan71] M. Janet. P. Zervos et le problème de Monge. Bull. Sci. Math.,
95(2):15–26, 1971. 117, 138

[Kol73] E. Kolchin. Differential Algebra and Algebraic Groups. Academic
Press, 1973. 58, 63

[KRW90] A. Kandri-Rody and V. Weispfenning. Non-commutative Gröbner
Bases in Algebras of Solvable Type. J. Symbolic Computation, 9:1–
26, 1990. 6

[KS72] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. John
Wiley & Sons, 1972. 149, 150, 157, 161, 164, 170, 171, 175, 177, 182

[Lan93] S. Lang. Algebra. Addison-Wesley, third edition, 1993. 78

[Lev05] V. Levandovskyy. Non-commutative Computer Algebra for polyno-
mial algebras: Gröbner bases, applications and implementation. PhD
thesis, Universität Kaiserslautern, Germany, 2005. 6

[Ley04] A. Leykin. Algorithmic proofs of two theorems of Stafford. J. Sym-
bolic Computation, 38:1535–1550, 2004. 116, 141, 146



196 BIBLIOGRAPHY

[Mal63] B. Malgrange. Systèmes différentiels à coefficients constants.
Séminaire Bourbaki, 246:1–11, 1963. 71, 85

[May97] E. W. Mayr. Some Complexity Results for Polynomial Ideals. J.
Complexity, 13:303–325, 1997. 37

[Mér80] C. Méray. Démonstration générale de l’existence des intégrales des
équations aux dérivées partielles. Journal de mathématiques pures
et appliquées, 3e série, tome VI:235–265, 1880. 5

[Mou95] H. Mounier. Propriétés des systèmes linéaires à retards: aspects
théoriques et pratiques. PhD thesis, University of Orsay, France,
1995. 97, 116, 139, 185

[MR00] J. C. McConnell and J. C. Robson. Noncommutative Noetherian
Rings. American Mathematical Society, 2000. 28, 31, 74, 75, 98, 142

[MRFR98] H. Mounier, J. Rudolph, M. Fliess, and P. Rouchon. Tracking control
of a vibrating string with an interior mass viewed as delay system.
ESAIM COCV, 3:315–321, 1998. 139

[Obe90] U. Oberst. Multidimensional constant linear systems. Acta Appl.
Math., 20:1–175, 1990. 83, 85, 86

[Olv93] P. J. Olver. Applications of Lie Groups to Differential Equations.
Graduate Texts in Mathematics 107. Springer, second edition, 1993.
44, 48, 52, 114

[OM02] J. Oldenburg and W. Marquardt. Flatness and higher order differen-
tial model representations in dynamic optimization. Computers and
Chemical Engineering, 26:385–400, 2002. 139

[Ore33] O. Ore. Theory of non-commutative polynomials. Annals of Math-
ematics, 34:480–508, 1933. 31

[Pal70] V. P. Palamodov. Linear Differential Operators with Constant Co-
efficients. Springer, 1970. 85

[Pom94] J.-F. Pommaret. Partial Differential Equations and Group Theory.
Kluwer Academic Publishers, 1994. 5, 43, 44, 53, 110

[Pom95] J.-F. Pommaret. Dualité différentielle et applications. C.R. Acad.
Sci. Paris, Série I 320:1225–1230, 1995. 97, 117

[Pom01] J.-F. Pommaret. Partial Differential Control Theory. Kluwer Aca-
demic Publishers, 2001. 96, 97, 104, 117, 123, 132



BIBLIOGRAPHY 197

[PQ98] J.-F. Pommaret and A. Quadrat. Generalized Bezout Identity. Appl.
Algebra Engrg. Comm. Comput., 9:91–116, 1998. 96

[PQ99a] J.-F. Pommaret and A. Quadrat. Algebraic analysis of linear mul-
tidimensional control systems. IMA J. Control and Optimization,
16:275–297, 1999. 96, 117

[PQ99b] J.-F. Pommaret and A. Quadrat. Localization and parametrization
of linear multidimensional control systems. Systems & Control Let-
ters, 37:247–260, 1999. 96, 97, 117, 139, 158

[PQ03] J.-F. Pommaret and A. Quadrat. A functorial approach to the be-
haviour of multidimensional control systems. Int. J. Appl. Math.
Comput. Sci., 13:7–13, 2003. 98

[PQ04] J.-F. Pommaret and A. Quadrat. A differential operator approach to
multidimensional optimal control. Int. J. Control, 77:821–836, 2004.
121, 131, 149, 172

[PR05] W. Plesken and D. Robertz. Janet’s approach to presentations and
resolutions for polynomials and linear pdes. Archiv der Mathematik,
84(1):22–37, 2005. 6, 7

[PR06] W. Plesken and D. Robertz. Representations, commutative algebra,
and Hurwitz groups. Journal of Algebra, 300:223–247, 2006. 38, 39

[PS98] H. K. Pillai and S. Shankar. A behavioral approach to control of
distributed systems. SIAM J. Control Optim., 37:388–408, 1998. 97

[PW98] J. W. Polderman and J. C. Willems. Introduction to Mathematical
Systems Theory. A Behavioral Approach. TAM 26. Springer, 1998.
96, 117

[QR05a] A. Quadrat and D. Robertz. On the blowing-up of stably free be-
haviours. In Proceedings of the 44th IEEE Conference on Decision
and Control and European Control Conference, Seville, pages 1541–
1546, 2005. 141

[QR05b] A. Quadrat and D. Robertz. Parametrizing all solutions of uncon-
trollable multidimensional linear systems. In Proceedings of the 16th
IFAC World Congress, Prague, 2005. 117, 125, 134

[QR06a] A. Quadrat and D. Robertz. Constructive computation of flat out-
puts of a class of multidimensional linear systems with variable co-
efficients. In Proceedings of the 17th International Symposium on
Mathematical Theory of Networks and Systems (MTNS 2006), Ky-
oto (Japan), pages 583–595, 2006. 140, 141, 142, 143, 146



198 BIBLIOGRAPHY

[QR06b] A. Quadrat and D. Robertz. On the Monge problem and multidimen-
sional optimal control. In Proceedings of the 17th International Sym-
posium on Mathematical Theory of Networks and Systems (MTNS
2006), Kyoto (Japan), pages 596–605, 2006. 121, 131

[Qua99] A. Quadrat. Analyse algébrique des systèmes de contrôle linéaires
multidimensionnels. PhD thesis, Ecole Nationale des Ponts et
Chaussées, France, 1999. 96, 97, 172

[Reh02] H. P. Rehm. Differential-Algebra. Lecture Notes, Univ. of Karlsruhe,
Germany, WS 2001/2002. 31

[Riq10] C. Riquier. Les systèmes d’équations aux dérivées partielles.
Gauthiers-Villars, Paris, 1910. 5

[Rit66] J. F. Ritt. Differential Algebra. Dover, 1966. 59, 63

[Rot79] J. J. Rotman. An Introduction to Homological Algebra. Academic
Press, 1979. 72, 74, 76, 77, 85, 86, 126

[Rot97] R. Rothfuß. Anwendung der flachheitsbasierten Analyse und
Regelung nichtlinearer Mehrgrößensysteme. Meß-, Steuerungs- und
Regelungstechnik, Nr. 664. Fortschrittberichte VDI, 1997. 139

[Son98] E. D. Sontag. Mathematical Control Theory. Deterministic Finite
Dimensional Systems. TAM 6. Springer, second edition, 1998. 96,
155, 170

[Sta78] J. T. Stafford. Module structure of Weyl algebras. J. London Math.
Soc., 18:429–442, 1978. 116, 142, 145

[Tho37] J. Thomas. Differential Systems. American Mathematical Society,
1937. 10

[vzGG03] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cam-
bridge University Press, second edition, 2003. 37

[Wil91] J. C. Willems. Paradigms and puzzles in the theory of dynamical sys-
tems. IEEE Transactions on Automatic Control, 36:259–294, 1991.
96

[Woo00] J. Wood. Modules and behaviours in nD systems theory. Multidi-
mensional Systems and Signal Processing, 11:11–48, 2000. 96, 97

[Zer32] P. Zervos. Le problème de Monge. Mémorial des Sciences
Mathématiques, fasc. LIII, 1932. 117, 138



BIBLIOGRAPHY 199

[Zer00] E. Zerz. Topics in Multidimensional Linear Systems Theory. Lecture
Notes in Control and Information Sciences 256. Springer, 2000. 96,
117

[Zer06] E. Zerz. An algebraic analysis approach to linear time-varying sys-
tems. IMA J. Mathematical Control & Information, 23:113–126,
2006. 86

[ZL01] E. Zerz and V. Lomadze. A Constructive Solution to Interconnec-
tion and Decomposition Problems with Multidimensional Behaviors.
SIAM J. Control Optim., 40:1072–1086, 2001. 125



Symbol Table

A(E), 46
A1(k), 29
An(k), 29

BF(R), 70
Bn(k), 30

Dh, h ∈ R, 30
Di, 1 ≤ i ≤ n, 47
DJ , J ∈ (Z≥0)

n, 48

E(m,D), 142
extiD(M,F), 75

F{u}, 58

[G], 7

HM,Γ, 92
homD(M1,M2), 70
HS(x1, . . . , xn), 25

Id, 39, 129

L(V,W ), 49
lc(p), 19, 33
lm(p), 19, 33

M∗, 70
M⊤, 98

DM , 83
Mon(D), 32
Mon(Dq), 32
Mon(R), 7
Mon(Rq), 18
Mon({x1, . . . , xn}), 7
µ, 9

NF(p, T ), 23

P(M), 7

(.R), 70
(R.), 70

Sh, h ∈ R, 30
SolF(R), 70
sr(D), 141

θ(R), R ∈ Dq×p, 101

Uc(m,D), 141

v(C), 9

200



Index

algebra of shift operators, 30, 68
anti-automorphism of a ring, 101
auto-reduced set, 21
auto-reduction, 21

Baer’s criterion for injectivity, 77
behavior, 70, 121

controllable, 97
flat, 139
parametrizable, 121

behavior of a system, 96
Bernstein filtration, 93
bipendulum, 104, 132

cochain complex, 72
cocomplex, 72
cogenerator for a module category, 83
complement, 126
complete, 10, 22
complex, 72

exact, 72
cone of monomials, 9
controllability matrix, 161
controllable behavior, 97
controllable system, 95

de Rham complex, 119
decomposition into disjoint cones, 9, 11,

15
defect of exactness, 72
degree reverse lexicographical ordering,

19
dependent variable, 47
derivation of a ring, 58
diffalg (Maple package), 63, 110

differential algebra, 58
differential field, 58
differential ideal, 58
differential polynomial, 59
differential ring, 58
differential time-delay systems, 30, 69,

183
discrete systems, 69, 177

elementary group, 142
Euler-Lagrange equations, 172
exact complex, 72
extension group, 75

fiber, 44
fibered manifold, 44
filtered k-algebra, 92
filtered module, 92
filtration, 92
finitely presented module, 74
flat behavior, 139
flat output, 138, 154
formal power series solution of a PDE,

88
free module, 139, 143
free resolution, 74
Fréchet derivative, 49

formal, 52

general linearization of a jet expression,
53

general linearization of a system of dif-
ferential equations, 54, 107

generalized Hilbert series, 25, 88
generator for a module category, 83

201



202 INDEX

global dimension
left, 75
right, 98

global section, 45
Gröbner basis, 25
graded k-algebra, 91
graded module, 92
grading, 91

Hilbert series, 92
Hilbert series, generalized, 25, 88
homalg (Maple package), 72
homology group, 72
homomorphisms, 70

image representation, 121
independent variable, 47
injective cogenerator, 83
injective module, 76
involution of a ring, 101
Involutive (Maple package), 36, 38
involutive basis, 6
involutive division, 5, 10

Jacobson normal form, 31, 140
Janet (Maple package), 36, 60, 88, 89,

104, 107, 110
Janet basis, 23

minimal, 25
Janet division, 10
Janet graph, 25
Janet reduction, 22
Janet’s algorithm, 23, 33, 56, 60, 89
Janet-divisor, 22
Janet-normal form, 23
Janet-reduced, 22
Janet-reducible, 22
JanetOre (Maple package), 36, 90, 132,

135, 151
jet bundle, 45
jet expression, 46
jet variable, 46
jets (Maple package), 43, 60, 110

Kalman system, 68
kernel representation, 121

leading coefficient, 19, 33
leading monomial, 19, 33
lexicographical ordering, 19
linear quadratic optimal control prob-

lem, 170
linearization along a trajectory, 50, 51
local section, 45

Malgrange’s isomorphism, 71, 81
minimal Janet basis, 25
module associated with a linear system,

70, 97, 121
Monge’s problem, 117, 138
monomial ordering, 19, 33
monomials, 7, 32
multidimensional discrete systems, 69
multiple closed set, 7, 20
multiplicative variables, 9

non-multiplicative variables, 9

observable, 97
autonomous, 97
free, 97

order of a jet variable, 46
ordinary differential equations, 68
Ore algebra, 28
Ore condition, 31
OreModules (Maple package), 115, 132,

135, 146, 151

parametric derivative, 88
parametrizable behavior, 121
parametrizable module, 121
parametrization of a behavior, 121
parametrization of a module, 121
partial differential equations, 68
passive, 23
position over term ordering, 20
prime decomposition, 59
principal derivative, 88



INDEX 203

projective module, 74, 98, 127, 143
projective resolution, 74

Quillen-Suslin theorem, 74

reflexive module, 74, 98

short exact sequence, 73
split, 126

signal space, 69, 96
skew polynomial ring, 28
solution set, 70, 121
split short exact sequence, 126
stabilizability, 96
stable range, 141
stable unimodular column vector, 141
stably-free module, 143
Stafford’s theorem, 145
state of a system, 95
system variables, 95
syzygy module, 75

term over position ordering, 20
time-delay systems, 68
torsion elements, 73
torsion module, 73
torsion submodule, 73, 98
torsion-free module, 73, 97, 98
total degree, 93
total derivative, 47
transposed module, 98

unimodular column vector, 141
stable, 141

vertex of a cone, 9

Weyl algebra, 29, 68



Curriculum Vitae

Daniel Robertz

25.11.1977 Geburt in Aachen

1984–1988 Gemeinschaftsgrundschule Driescher Hof, Aachen

1988–1997 Inda-Gymnasium, Aachen; Abschluss: Abitur

1997–1998 Zivildienst in Aachen

Okt. 1998 Beginn des Mathematik-Studiums mit Nebenfach
Informatik an der RWTH Aachen

Okt. 2000 – Studentische Hilfskraft am Lehrstuhl B für Mathematik,
Jan. 2003 RWTH Aachen

Dez. 2000 Teilnahme am Sun-Softwarepreis (organisiert durch die
Fachgruppe Informatik, RWTH Aachen): Programmierung
eines autonomen Agenten für die Robocup-Simulationsliga;
Erreichen des 1. Platzes (zusammen mit zwei Kommilitonen)

Jan. 2003 Diplom in Mathematik
mit dem Gesamturteil “mit Auszeichnung”

Feb. 2003 – Stipendiat des Graduiertenkollegs “Hierarchie und Symmetrie
Sep. 2003 in mathematischen Modellen” an der RWTH Aachen

Feb. 2003 – 6- bis 10-wöchige Besuche am Forschungsinstitut
Apr. 2005 INRIA, Sophia Antipolis, Frankreich

Jun. 2003 – Wissenschaftliche Hilfskraft am Lehrstuhl B für Mathematik,
Sep. 2003 RWTH Aachen

seit Okt. 2003 Wissenschaftlicher Mitarbeiter am Lehrstuhl B für
Mathematik, RWTH Aachen, und
Kollegiat des Graduiertenkollegs “Hierarchie und Symmetrie
in mathematischen Modellen” an der RWTH Aachen


	1 Introduction
	2 Janet's Algorithm
	2.1 Decomposition of Sets of Monomials into Disjoint Cones
	2.2 Janet's Algorithm
	2.3 Combinatorial Tools
	2.4 Ore Algebras
	2.5 Janet Bases for Ore Algebras
	2.6 Implementations
	2.7 Reducing the Complexity of Janet Basis Computations

	3 Symbolic Computation with Differential Equations
	3.1 The Jet Formalism
	3.2 Linearization of Differential Equations
	3.3 Janet Bases for Linear Differential Equations with Non-constant Coefficients

	4 The Generalized Hilbert Series
	4.1 Module-theoretic Approach to Linear Systems
	4.2 Homological Algebra
	4.3 Injective Modules
	4.4 Injective Cogenerators
	4.5 The Generalized Hilbert Series for Partial Differential Equations
	4.6 The Bernstein Filtration

	5 Algebraic Systems Theory
	5.1 Structural Properties of Linear Systems
	5.2 Computation of `39`42`"613A``45`47`"603AextDi(M, D)
	5.3 Controllability
	5.4 Autonomous Observables
	5.5 The Maple package OreModules

	6 Parametrizing Linear Systems
	6.1 Introduction
	6.2 Parametrizing Linear Systems over Ore Algebras
	6.3 Parametrizing Linear Systems with Autonomous Observables
	6.4 Applications
	6.5 Flatness
	6.6 Computing Bases of Free Modules over the Weyl Algebras

	7 A Stirred Tank Model
	7.1 Introduction
	7.2 Controllability, parametrizability, flatness
	7.3 Autonomous observables
	7.4 Observability, input-output behavior
	7.5 Motion planning
	7.6 Optimal control problems
	7.7 A discrete-time model
	7.8 A differential time-delay model

	Bibliography
	Symbol Table
	Index
	Curriculum Vitae

