Unterschiede in der TGF-β-vermittelten Signaltransduktion in aktivierten hepatischen Sternzellen unterhalb der Smad2-Phosphorylierung

Frank Berg
Unterschiede in der TGF-β-vermittelten Signaltransduktion
in aktivierten hepatischen Sternzellen unterhalb der Smad2-Phosphorylierung

Von der Medizinischen Fakultät
der Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades
eines Doktors der Medizin
genehmigte Dissertation

vorgelegt von
Frank Berg
aus
Düsseldorf

Berichter: Herr Privatdozent
Dr.rer.nat. Steven Dooley
Herr Universitätsprofessor
Dr.med. Dipl.-Biochem. Siegfried Matern

Tag der mündlichen Prüfung: 12. Mai 2003

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.
Aus dem Institut für Klinische Chemie und Pathobiochemie
sowie Klinisch-Chemischen Zentrallabor
der Medizinischen Fakultät der RWTH Aachen
(Direktor: Univ.-Prof. Dr. med., Prof. h. c. (RCH) A. M. Gressner)
Inhaltsverzeichnis

1 Einleitung ... 3
 1.1 Leberfibrose/Leberzirrhose ... 3
 1.2 Hepatische Sternzellen (HSC) .. 4
 1.3 TGF-β .. 6
 1.4 TGF-β-Signalweg / Smad-Proteine .. 6
 1.5 Expression TGF-β-abhängiger Zielgene .. 10

2 Arbeitshypothesen .. 11

3 Material und Methoden .. 12
 3.1 Zellen und Materialien in der Zellkultur .. 12
 3.2 RNA-Isolierung .. 15
 3.3 Northern-Blot .. 18
 3.4 Polymerase-Ketten-Reaktion (PCR) .. 21
 3.5 Protein-Isolierung ... 25
 3.6 Western-Blot-Analyse .. 27
 3.7 Transfektion von Zellen .. 32
 3.8 TGF-β-abhängige Wachstumsinhibition 35

4 Ergebnisse ... 36
 4.1 TGF-β-abhängige Smad2-Phosphorylierung 36
 4.2 (CAGA)9-MLP-Luc Regulation in Abhängigkeit von TGF-β 38
 4.3 TGF-β-abhängige Smad7-Expression ... 40
 4.4 TGF-β-Effekte auf das Zellwachstum .. 46
 4.5 Regulation der Typ I Kollagen-mRNA-Expression 48
4.6 TGF-β-Effekte auf die Degradation der extrazellulären Matrix 51
4.7 Smad7-Überexpression in den Zellen ... 55
4.8 Einfluß von Smad7- und dominant negativ Smad3-/Smad4-Expression auf TGF-β-Zielgene ... 57
4.9 Smad3-Aktivität in CFSC und HSC-T6 ... 61

5 Diskussion .. 63

5.1 Wachstumsinhibition ... 63
5.2 Regulation der Typ I Kollagen-Expression 64
5.3 Einfluß von Smad7 und konstitutiv phosphoryliertem Smad3 64
5.4 TIMP-1- und PAI-1-Expression ... 65
5.5 Therapeutische Aspekte ... 66

6 Zusammenfassung .. 68

7 Literatur .. 70

8 Danksagung .. 79
1 Einleitung

1.1 Leberfibrose/Leberzirrhose

Diese hepatischen Sternzellen sind dann für die Ausbildung der Fibrose von entscheidender Bedeutung.
1.2 Hepatische Sternzellen (HSC)

Die hepatischen Sternzellen (HSC), auch als Ito-Zellen oder Fettspeicherzellen (FSC) bekannt, sind in der Leber im perisinusoidalen Raum (Disse-Raum) lokalisiert. Die Zellen zeichnen sich durch charakteristische, große Fettvakuolen aus, die der physiologischen Speicherung von Retinoid (Vitamin A) dienen.

1.2.1 Aktivierung von HSC

Abb. 1 A/B: Aktivierung und Transdifferenzierung hepatischer Sternzellen
A: ruhende hepatische Sternzellen, 3 Tage alt.
B: aktivierte hepatische Sternzellen, 10 Tage alt.
1.3 Transforming-Growth-Factor (TGF)-β

TGF-β ist ein multifunktionelles Zytokin, welches in fünf verschiedenen Isoformen (TGF-β1-5) bekannt ist. Nur die Isoformen 1-3 kommen in Säugetieren vor, wobei die codierenden Gene dieser Isoformen auf verschiedenen Chromosomen liegen. Das Gen für TGF-β1 liegt in der Region 19q13, das für TGF-β2 in der Region 1q41 und das für TGF-β3 in der Region 14q24.

TGF-β ist ein Wachstumsfaktor und wird zusammen mit Activin, Inhibin, den BMP’s und der Müller’schen inhibitorischen Substanz in eine Familie eingeordnet.

1.4 TGF-β-Signalweg

1.4.1. Smad-Proteine

Eine Reihe von zytoplasmatischen Proteinen können jetzt mit den Rezeptoren in Interaktion treten. Als die wichtigste Gruppe ist hier die Familie der Smad-Proteine zu nennen.

Smads sind Proteine mit einem Molekulargewicht zwischen 42 kDa und 60 kDa. Charakteristisch für die Smad-Proteine ist das Vorhandensein von zwei homologen Domänen, jeweils am Amino- und Carboxy-Ende, welche als MH1 bzw. MH2 (mad homology domains) bezeichnet werden [14]. Nach ihren funktionellen Eigenschaften werden die Smads in drei Gruppen eingeteilt: Rezeptor-aktivierte „R-Smads“ (Smad1, Smad2, Smad 3, Smad5, Smad8), „Co-Smads“ (Smad4) und inhibitorische Smads „I-Smads“ (Smad6, Smad7) [83].

Aus der Gruppe der R-Smads sind für den TGF-β Signalweg vor allem Smad2 und Smad3 von Bedeutung. Die Aktivierung der R-Smads durch den Typ I Rezeptor erfolgt durch Phosphorylierung von zwei Serinresten am Carboxy-Ende. Smad2 und Smad3 bilden dafür, über ihre MH2 Domäne, einen Komplex mit dem Membran-assoziierten Protein SARA (smad-anchor for receptor activation), wodurch die Annäherung der R-Smads an die Kinase des Typ I Rezeptors vermittelt wird [83, 85]. Die phosphorylierten R-Smads (Smad2 und Smad3) oligomerisieren dann mit dem Co-Smad4 und der so entstandene Smad-Proteinkomplex geht in den Zellkern, um dort auf DNA-Ebene die Genexpression zu beeinflussen. Interessanterweise kann Smad4 nur im Komplex mit R-Smads in den Zellkern gelangen, wohingegen die R-Smads auch ohne Smad4 in den Nucleus translokierten können. Smad4 ist dennoch weniger als Transporter anzusehen, sondern eher an der Regulation der Genexpression beteiligt [83].

Die I-Smads (Smad6/7) antagonisieren den TGF-β Signalweg, indem sie die Phosphorylierung der R-Smads bzw. die Bindung an den Rezeptorkomplex verhindern (85). So läßt sich durch Überexpression von Smad7 in der Zelle die TGF-β-Signaltransduktion über die Smad-Proteine blockieren und somit auch einige typische TGF-β-Effekte, wie z.B. Wachstumsinhibition (88) oder SBE-Aktivierung. Dabei wird die Transkription der I-Smads durch TGF-β selbst induziert, sodaß hier ein negativer feedback-Regulationsmechanismus vorliegt.
Abb. 2: Schematische Darstellung der TGF-β-Signaltransduktion in der Zelle.
1.5 Expression TGF-β-abhängiger Zielgene

TGF-β nimmt auch Einfluß auf die Expression von Faktoren, die eine Rolle bei der Degradation der extrazellulären Matrix spielen, wie PAI-1 (*plasmin activator inhibitor-1*) oder TIMP-1 (*tissue inhibitor of metalloproteinase-1*). PAI-1 ist ein Enzym, welches zur *Serinproteinase-Inhibitor*-Familie gehört. Es reguliert verschiedene Faktoren, wie uPA (*urokinase-type plasminogen activator*) oder TPA (*tissue plasminogen activator*), und führt so zu einer verminderten proteolytischen Aktivität [82]. TIMP-1 wirkt profibrotisch indem es verschiedene Matrix-Metalloproteinasen (MMP-1, MMP-2) inhibiert. Sowohl PAI-1 als auch TIMP-1 werden in aktivierten hepatischen Sternzellen vermehrt exprimiert. Weiter ist bekannt, daß TGF-β regulatorisch in den Zellzyklus eingreift. TGF-β-abhängige Änderungen hinsichtlich des Proliferationsverhaltens von HSC, im Zuge ihrer Aktivierung, sind deshalb ebenfalls Gegenstand der Untersuchungen.
2 Arbeitshypothesen

Offen ist jedoch in wie weit dieser Signalweg für die verschiedenen TGF-β-Effekte generalisiert ist. TGF-β ist als Zytokin, welches in fast allen Körperzellen synthetisiert wird, in vielfältige physiologische Funktionen involviert. Deshalb ist es im Hinblick auf Therapieansätze wichtig, die Signalwege genau zu kennen, um entsprechend spezifisch z.B. die Fibrogenese blockieren zu können, ohne dabei in physiologische Abläufe wie die Wundheilung oder Immunmodulation einzugreifen.

3 Material und Methoden

3.1. Zellen und Materialien in der Zellkultur

3.1.1 HSC-T6
Zur Herstellung dieser Zelllinie, wurden FSC (fat storing cells) aus einer normalen, nicht zirrhotischen Rattenleber isoliert. Diese Zellen sind dann 15 Tage nach Ausplattierung mit dem „SV 40 large T antigen“ transfiziert worden und es entwickelte sich der immortalisierte Zellklon HSC-T6. Die Zellen wurden freundlicherweise von Dr. S. Friedman, Mount Sinai School of Medicine, New York, überlassen.

3.1.2 CFSC
Die Zelllinie stammt aus FSC, welche aus einer (durch CCl4 induzierten) zirrhotischen Rattenleber isoliert wurden und nach Ausplattierung spontan immortalisierten. Sie wurden freundlicherweise von Dr. M. Rojkind, Albert Einstein College of Medicine, New York, zur Verfügung gestellt.

Beide Zelllinien besitzen die Eigenschaften von aktivierten HSC bzw. Myofibroblasten und zeigen zudem einen stabilen Phänotyp. HSC-T6 und CFSC zeigen auch über vielfache Passagen keine Veränderungen in Bezug auf:
1. Morphologie
2. Proliferationsrate
3. mRNA Expression von:
 3.1 Extrazellulären Matrix Komponenten
 3.2 Zytokinen
3.1.3 Verwendete Kulturmedien, Chemikalien, Zytokine, Gefäße

Kulturmedium
- DMEM (Dulbecco’s Modified Eagle Medium; GIBCO-BRL, Karlsruhe)
 - + 2 mM L-Glutamin (ICN Biomedicals, Aurora, USA)
 - + 100 units/ml Penicillin, 50 µg/ml Streptomycin-G (Sigma, Deisenhofen)
 - + 10% FKS (Föttales Kälberserum, Boehringer, Ingelheim)

- HBSS (Hanks’ Balanced Salt Solution), ohne Kalzium/Magnesium (PAA Laboratories GmbH, Linz, Österreich)
- Trypsin- EDTA, (GIBCO-BRL)

Zytokine
- TGF-β: humanes, rekombinantes TGF-β1, (R&D Systems Inc., Minneapolis, USA)

Kulturgefäße im Zellkulturlabor
- Kulturflaschen (Greiner Labortechnik, Kremsmünster, Österreich)
- Petrischalen (10 cm²), (Greiner Labortechnik)
- 6/12-well-Microtiterplatten (Becton/Dickinson, www.bd.com)

3.1.4 Kultivierung und Passage von CFSC

Um die Zellen zu passagieren, geht man wie folgt vor: Das Medium der zu passagierenden Petrischale/Kulturflasche wird mit einer Pipette abgesaugt. Dann
wäscht man die Zellen 3 x mit 15 ml HBSS, um das restliche fötale Kälberserum abzuspülen, welches das Trypsin in seiner Wirkung inhibieren würde. Im nächsten Schritt werden 2 ml Trypsin/HBSS (37°C) zupipettiert. Die Zellen werden dann für 10-15 Minuten im Kulturschrank inkubiert. Trypsin ist eine Endopeptidase und spaltet Proteine der extrazellulären Matrix; auf diese Weise lösen sich die Zellen vom Boden des Kulturgefäßes ab. Dies ist nach ca. 10-15 Minuten der Fall und ist mikroskopisch an der abgerundeten Form der Zellen zu erkennen. Die Trypsin/HBSS-Zellsuspension wird dann abpipettiert und in Kulturmedium (37°C) suspendiert. Die Zellen können nun neu ausplattiert werden. Vor Stimulationsversuchen ist jedoch eine Zellzahlbestimmung mittels einer Neubauer-Zählkammer erforderlich.

3.1.5 Kultivierung von HSC-T6

Die Kultivierung von HSC-T6 unterscheidet sich nicht wesentlich von der, der CFSC. Die Zelllinie HSC-T6 hat jedoch eine längere Kulturzeit, das bedeutet die Zellen sind erst ca. 5 Tage nach der letzten Passage annähernd konfluent zugewachsen, wobei dann eine Aufsplittung pro Petrischale von 1:30 möglich ist. Die Passagierung verläuft analog der von CFSC.

3.1.6 Stimulation mit TGF-β

Die in Kultur befindlichen Zellen werden abtrypsiniert (3.1.4) und die Zellzahl mittels einer Neubauer-Zählkammer bestimmt. Dann werden je ca. 900.000 Zellen pro Petrischale (10 cm²) ausgesät, wobei zu jedem Stimulationsansatz eine Kontrolle mitgeführt wird. Nach etwa 36 Stunden sind die Zellen zu 70 bis 80% konfluent zugewachsen. Das Medium wird jetzt abgesaugt und jeweils 15 ml „Hungermedium“ (0,5% FKS) auf jede Petrischale zupipettiert. Die Zellen werden für 24 Stunden im Brutschrank inkubiert und dann das Medium erneut abgesaugt. Es folgt die Stimulation mit 5 ng/ml TGF-β, wobei 5 ml Hungermedium je Petrischale hinzugegeben werden. Ein Ansatz TGF-β-stimulierter Zellen und die jeweils zugehörige Kontrolle (Zellen zu gleichen Bedingungen kultiviert aber nicht TGF-β-stimuliert) werden zu folgenden Zeitpunkten nach Stimulationsbeginn gestoppt:
0 Min., 30 Min., 60 Min., 90 Min., 4 Std., 8 Std., 12 Std., 24 Std., 48 Std., 72 Std.

Das Medium wird abgesaugt und die Zellen werden dreimal mit HBSS gespült. Zur RNA-Isolierung gibt man je 1 ml TRIzol (Gibco BRL), zur Proteinisolierung je 200 µl Lysis-Puffer (3.5.2) auf jede Petrischale. Die Zellen werden dann mittels eines Zellschabers abgekratzt und bis zur weiteren Bearbeitung bei −70°C weggebrochen.

3.2 RNA-Isolierung

Die RNA-Isolierung erfolgt mittels TRIZOL (Gibco BRL), einem Fertig-Reagenz zur Isolierung von Gesamt-RNA aus Zellen und Gewebe. Da es sich bei Trizol um ein phenolhaltiges Reagenz handelt, wird unter einem geeigneten Abzug gearbeitet. Die Zellen werden wie unter (1.1.6) beschrieben mit einem Zellschaber abgeerntet, nachdem zuvor 1 ml Trizol auf je eine 10 cm² Petrischale pipettiert worden ist. Im nächsten Schritt homogenisiert man die Zellen mittels eines Mixers, um so die Zellmembranen zu zerstören und die intrazelluläre RNA in die Suspension freizusetzen. 0,2 ml Chloroform werden zupipettiert, die Suspension wird kurz (15 Sek.) per Hand leicht geschüttelt und dann für 2-3 Minuten bei Raumtemperatur inkubiert. Es folgt eine Zentrifugation für 15 Minuten bei 12.000 x g (Biofuge15R, Heraeus) und 4 °C. Durch das hinzugefügte Chloroform, mit nachfolgender Zentrifugation, ist die Suspension in drei Phasen getrennt worden. In eine untere, organische, rotfarbige Phenol-Chloroformphase, eine Zwischenphase und in eine obere, wässrige Phase. Die RNA befindet sich ausschließlich in der oberen, wässrigen Phase, welche etwa 60% der eingesetzten Menge des Trizol-Reagenz ausmacht. Diese wird vorsichtig abpipettiert und in ein neues Eppendorfgefäße überführt. Zur Präzipitation der RNA gibt man nun 0,5 ml Isopropyl-Alkohol hinzu. Nach 10 minütiger Inkubation bei Raumtemperatur wird die Suspension für weitere 10 Min. bei 12.000 x g und 4°C zentrifugiert. Es entsteht ein RNA-Pellet auf dem Boden des Zentrifugenröhrchens. Die Suspension wird vorsichtig abgekippt und es folgt ein Waschschritt, indem das RNA-Pellet in 1 ml 75% Ethanol durch vortexen gelöst wird. Nach erneuter Zentrifugation für 5 Min. bei 7.500 x g und 4°C hat sich wieder ein RNA-Pellet gebildet. Nach Abkippen des Ethanol wird das RNA-Pellet in RNase-freiem A. dest. gelöst. Die RNA-Probe kann bei −70 °C eingefroren und aufbewahrt werden.
3.2.1 Bestimmung der RNA-Konzentration

Die Konzentration wird durch Extinktionsmessung mit einem Photometer bestimmt. Es wird je 1 µl Probe (Eluat) mit 49 µl RNase freiem A. dest. verdünnt, dann wird die Extinktion bei 260 nm und 280 nm gegen den Leerwert gemessen. 1 OD 260 nm entspricht einer RNA-Konzentration von 40 µg/ml. Die Ratio gibt die Reinheit der RNA an und errechnet sich aus dem Quotient der Extinktion 260 nm/280 nm. Saubere RNA hat eine Ratio von 1,7-2,0.

3.2.2 RNA-Agarose-Gelelektrophorese

Um die Intaktheit der Gesamt-RNA zu überprüfen, werden die RNA-Proben auf einem 1% igen Agarose-Formaldehydgel elektrophoretisch aufgetrennt.

Ansetzen des Agarosegels:

0,6 g Agarose (SeaKem), werden in 6,0 ml 10x MOPS-Puffer und 54 ml H2O suspendiert. Es folgt ein kurzes Auflösen der Suspension in der Mikrowelle bis eine schlierenfreie Lösung entsteht. Nach Abkühlung auf ca. 60 °C werden unter dem Abzug 10 ml Formaldehyd (37%) zupipettiert. Formaldehyd hält die RNA in denaturiertem Zustand und inaktiviert RNasen. Das Gel kann jetzt gegossen werden. Die Suspension wird dazu ca. 0,4 bis 0,5 cm hoch in eine nach oben offene Kassette gegossen, deren Boden eine Glasplatte bildet. Dann wird von oben eine Auftragsschablone angelegt, deren Zähne bis ca. 1mm über die Glasplatte reichen. Wenn das Gel erstarrt ist, entfernt man die Auftragsschablone zusammen mit den vier Seitenwänden der Glasplatte. Das Gel, welches nun frei auf der Glasplatte liegt, wird jetzt in eine Flachbett-Elektrophoresekammer gesetzt und der Laufpuffer (1X MOPS) bis ca. 0,5 cm über die Geloberfläche hinzugegeben.

1,5 bis 3,5 µl der RNA-Probe werden mit 18,5 µl des Auftragsbuffers (3.2.3) vermischt und dann für 10–15 Min., bei 55–65 °C im Wasserbad denaturiert. Bis zum Gelauftrag werden die Proben auf Eis gestellt.
Elektrophorese:

3.2.3 Lauf-/Ladepuffer

Laufpuffer:

<table>
<thead>
<tr>
<th>MOPS-SDS</th>
<th>20x konzentriert</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOPS</td>
<td>1,0 M 104,6 g</td>
</tr>
<tr>
<td>Tris-Base</td>
<td>1,0 M 60,6 g</td>
</tr>
<tr>
<td>SDS</td>
<td>69,3 mM 10,0 g</td>
</tr>
<tr>
<td>EDTA</td>
<td>20,5 mM 3,0 g</td>
</tr>
<tr>
<td>ad 500 ml Aqua dest</td>
<td></td>
</tr>
</tbody>
</table>

Auftragspuffer:

2,0 µl 10x MOPS
1,0 µl Ethidiumbromid (10 mg/ml, 1:10 verdünnt)
10 µl Formamid deionisiert (bei –20 °C gelagert)
3,5 µl Formaldehyd (37 %)
2,0 µl Bromphenolblau-Ladepuffer
 - Zusammensetzung:
 0,09 % Bromphenolblau
 0,09 % Xylene Cyanol
 60 % Glycerol
 60 mM EDTA
3.3 Northern-Blot

3.3.1 Blotten auf Nylonmembran

Das Northern-Gel wird für 2 x 5 Min. in 25 mM Phosphatpuffer (pH 6,5) inkubiert. Eine Wanne mit 25 mM Phosphatpuffer (pH 6,5) wird vorbereitet und mittels einer Glasplatte, welche auf der Wanne liegt, wird eine Brücke gebildet. Ein Streifen Whatman-Papier wird auf Gelbreite zurechtgeschnitten, in Phosphatpuffer getränkt und so auf die Glasplatte gelegt, daß Kontakt mit der Pufferwanne besteht. Jetzt kann das Gel auf dem Streifen Whatman-Papier positioniert werden. Um das Gel herum legt man 1 cm breite Parafilmstreifen und auf das Gel eine zurechtgeschnittene Nylonmembran. Zur Vervollständigung des Blottes werden auf die Nylonmembran noch 3 Streifen Whatman-Papier, sowie ein Satz Papiertücher gelegt und mit einem Gewicht von ca. 500 g beschwert. Es wird für mindestens 12 Stunden geblottet.

Nach Abbau des Blottes schwenkt man dann die Nicht-RNA-Seite der Nylonmembran für 1 Min. in 50 mM Phosphatpuffer (pH 7,2). Anschließend wird die Membran zwischen zwei Streifen Whatman-Papier kurz angetrocknet und mit der RNA-Seite nach oben im UV-Stratalinker durch crosslinking behandelt, um die RNA fest an die Nylonmembran zu binden.

3.3.2 Markierung der radioaktiven Sonde

25 ng DNA werden in 18 µl Aqua dest. gelöst und anschließend im Wasserbad bei 100°C denaturiert.
Auf Eis wird dann der Nukleotid-Puffer-Mix zupipettiert; dieser besteht aus

- 2 µl dGTP
- 2 µl dTTP
- 2 µl dATP
- 15 µl Random Primer Puffer Mix
- 5 µl Aqua dest.

sowie im Isotopenlabor

- 5 µl [32P]dCTP
- 1 µl Klenow-Enzym

Der Ansatz wird 1 Stunde bei 25°C inkubiert.

Anschließend wird die Markierungsreaktion durch Zugabe von 5 µl 0,5 M EDTA (pH 8,0) abgestoppt. Die nicht inkorporierten Nukleotide werden von der radioaktiv-markierten DNA-Probe mittels einer Aufreinigungssäule (Stratagene, www.stratagene.com) getrennt.

3.3.3 Prähybridisierung

Zuerst wird die geblottete Nylonmembran mit Aqua dest. angefeuchtet, dann mit der RNA-Seite nach innen in die Hybridisierungsröhrle gelegt.

Es folgt die Zugabe einer auf 65 °C erwärmten Prähybridisierungslösung. Der Ansatz wird für mindestens 30 Min. im Hybridisierungsofen inkubiert.

3.3.4 Hybridisierung

Die radioaktive Sonde wird für 10 Min. im kochenden Wasserbad denaturiert und dann in die Hybridisierungsröhrle gegeben.

Die Hybridisierung erfolgt für mind. 18 Std. bei 65 °C.
3.3.5 Waschen der Nylonmembran

Nach dem Abschütten der radioaktiven Sonde folgen drei Waschschriften.
1. 50 ml 250 mM Phosphatpuffer (pH 7,2) + 2,5 ml 20% SDS für 15 Min. bei 65 °C
2. 50 ml 100 mM Phosphatpuffer (pH 7,2) + 2,5 ml 20% SDS für 15 Min. bei 65 °C
3. 50 ml 50 mM Phosphatpuffer (pH 7,2) + 2,5 ml 20% SDS für 15 Min. bei 65 °C

Die Nylonmembran wird dann aus der Hybridisierungsröhre genommen, kurz in Aqua dest. geschwenkt und in Plastikfolie eingeschweißt.

3.3.6 Belichtung und Entwicklung des Filmes

Die Membran wird in eine Belichtungskassette geklebt, ein Röntgenfilm aufgelegt und bis zur Entwicklung des Filmes bei –80 °C inkubiert.

3.3.7 Materialien

DNA Primer siehe 3.4.4
DNA Labeling System (GIBCO-BRL)
Klenow Fragment (GIBCO-BRL)
α^{32}P-dCTP (Amersham/Pharmacia, Uppsala, Schweden)

Gene Screen-Hybridisierungs-Lsg. (100 ml)
- 500 mM Phosphatpuffer (pH 7,2) 100 ml
- 7 % SDS 7 g
- 1 mM EDTA 0,037 g
3.4 Polymerase-Ketten-Reaktion (PCR)

Die PCR ist eine hochempfindliche in vitro Methode zum Nachweis kleiner Mengen bestimmter Nucleinsäureabschnitte. Dabei findet mit Hilfe einer hitzestabilen DNA-Polymerase eine zyklische DNA-Neusynthese des zu untersuchenden DNA-Segmentes statt. Es werden zwei Primeroligonukleotide (*forward* und *reverse*) verwendet, welche die zu untersuchende DNA-Sequenz flankieren. Desweiteren bedarf es der vier Desoxyribonucleotide (dATP, dCTP, dGTP, dTTP).

Ein PCR-Zyklus besteht aus drei Reaktionsschritten:

1. Denaturierung der DNA durch Erhitzen auf Temperaturen >90°C (90-99°C), (Denaturierung)
2. Anlagerung der Primer an die DNA durch Absenken der Temperatur (40-68°C), (annealing)
3. Elongation des Komplementärstranges (60-72°C), (Extension)

3.4.1 Real-time PCR (*Real-time polymerase-chain-reaction*)

Für die in dieser Arbeit zu untersuchenden DNA-Segmente ist nicht nur deren Nachweis erforderlich, sondern auch eine Quantifizierung in den verschiedenen Proben. Eine solche Quantifizierung ist mit einer normalen PCR jedoch nur möglich, solange die PCR Reaktion sich im linearen Bereich der Amplifikationseffizienz befindet. Dies ist bei einer normalen PCR schwer zu überprüfen. Man müßte praktisch nach jedem Zyklus ein Aliquot aus der Reaktion entnehmen und auf ein Gel auftragen. Eine solche Überprüfung entfällt bei dem hier benutzten Light Cycler
System (Roche), welches die Amplifikation des PCR Produktes nach jedem Zyklus auf einem Monitor (real-time) anzeigt.

Dabei erfolgt die Detektion durch Fluoreszenzmessung, welche in Intervallen durchgeführt wird. Die eingesetzten Glaskapillaren, in denen sich die Proben befinden, dienen hierbei als Küvetten.

Dabei wird folgendes Meßprinzip angewendet:

Die spezifische Detektion von PCR-Produkten wird durch Verwendung von Hybridisierungsproben ermöglicht; unspezifische Produkte und Primerdimere werden nicht detektiert.

3.4.2 Umschreiben der RNA in cDNA

Durch eine Reserve Transkriptase (Qiagen, Hilden) wird die in der Gesamt-RNA enthaltene mRNA in cDNA umgeschrieben. Bei den folgenden Arbeiten werden alle Reagenzien und RNA-Proben auf Eis gesetzt, um Degradation zu verhindern.

Es wird 1 µg je RNA-Probe zusammen mit 2 µg Oligo-dT Primer (Roche) in ein 0,5ml Eppendorfgefäss pipettiert und mit RNase-freiem H₂O auf ein Volumen von 14 µl aufgefüllt. Dieser Ansatz wird dann zur Denaturierung der RNA für 10 Min. bei 70°C im Thermocycler (Biometra, Göttingen) inkubiert. Anschließend werden die Proben kurz zentrifugiert.

Auf Eis wird folgender Reaktionsmix angesetzt und zu jeder RNA-Probe zupipettiert:

- dNTP Mix 10 mM 2,0 µl
- RNase Inhibitor (10 units / µl) 1,0 µl
- Reserve Transkriptase 1,0 µl
- 10x Puffer RT 2,0 µl
- Zusammensetzung: 250 µl 1 M Tris×Cl, pH 8.2
 250 µl 1 M KCl
 30 µl 1 M MgCl₂
 470 µl H₂O

Es entsteht ein Gesamtvolumen von jeweils 20 µl je RNA-Probe, welches nochmals gut gemischt und für 20 Sek. zentrifugiert wird. Es folgt eine weitere Inkubation der Proben im Thermocycler. Ein geeignetes Programm durchläuft drei Phasen:

2. Synthese der cDNA 42°C 60 Min.
3. Enzym-Denaturierung 95°C 5 Min.

Die cDNA kann sofort für die PCR eingesetzt oder bei -70°C eingefroren werden.
3.4.3 Versuchsdurchführung RT-PCR

Von jeder zu untersuchenden cDNA-Probe werden genau 2 µl (entspricht 100 ng Gesamt-RNA) abpipettiert und mit 8 µl RNase-freiem Aqua dest. verdünnt, sodaß ein Probenansatz von 10 µl entsteht. Für jede cDNA-Probe wird eine dreifache Bestimmung durchgeführt. Als Referenz wird hier ein externer Standard mit einer Konzentration von 50 µg/µl cDNA verwendet. Der Standard wird in Doppel-Bestimmung in folgenden Verdünnungen eingesetzt:

1:1 verdünnt mit RNase freiem Wasser
1:2,5 verdünnt mit RNase freiem Wasser
1:5 verdünnt mit RNase freiem Wasser
1:10 verdünnt mit RNase freiem Wasser

Pipettierschema für den Primer-Mix:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-DNA</td>
<td>2 µl</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>2,4 µl</td>
</tr>
<tr>
<td>Hybridisierungsprobe x</td>
<td>2,5 µl</td>
</tr>
<tr>
<td>Hybridisierungsprobe Lc</td>
<td>2,5 µl</td>
</tr>
<tr>
<td>Primer rev</td>
<td>20 pmol</td>
</tr>
<tr>
<td>Primer for</td>
<td>20 pmol</td>
</tr>
<tr>
<td>RNase freies H₂O</td>
<td>add</td>
</tr>
</tbody>
</table>

Es entsteht ein Primer-Mix von 17 µl pro Probe, welcher in entsprechender Menge (3 x je Probe, 2 x je Standard, 1 x Leerwert) angesetzt wird. Dann werden zuerst 17 µl Primer-Mix und danach 3 µl Probenansatz/Kontrolle in eine nur nach oben offene Light Cycler-Kapillare (3.4.3) pipettiert. Die Kapillaren werden mit Plastikkappen verschlossen und für 30 Sek. zentrifugiert, sodaß sich der Primer/Probenansatz im unteren Teil der Kapillare befindet. Dann werden diese in ein Karussel eingelegt, welches Platz für 32 Kapillaren bietet. Die RT-PCR wird mittels des Light Cycler-Systems der Firma Roche durchgeführt.
3.4.4 Materialien

cDNA Synthesis Kit, (Roche, Mannheim)
LightCycler™ Capillaries, Roche
LightCycler™, Roche

Primer:
Ratte Col1A2: 422 bp Fragment
Ratte Col 1A2 for: 5’-AACAGGACTTCTTCCGAAACCAC-3’;
Ratte Col 1A2 rev: 5’-CATTTCACCACCTTGCTTC-3’;
Hybridisierungsproben: 5´-LC 640-GGGAGGAAACGAAATGAGGCTGG CAAAGA;
5’- ACGAATGCTGAATCTTAGAGAGAGAATCTGGG-X; X = Fluoreszein

Ratte Smad7: 117 bp Fragment
Ratte Smad7 for: 5’GGAGTCCTTTCCTCTCTC-3’;
Ratte Smad7 rev: 5’-GGCTCAATGAGCATGCTCAC-3’;
Hybridisierungsproben: 5´-LC 640-AACCTGTGTAAT GCAGATTTGGACTGCTG-
Ph; 5’-AAGCACTACGATGCTAAATTCCG ATGAG-X; X = Fluoreszein

3.5 Protein-Isolierung

Die Zellen, aus denen Proteine isoliert werden sollen, werden wie unter (3.1.6) beschrieben mit HBSS gewaschen. Anschließend gibt man 200 µl Lysis-Puffer + Proteinase-Inhibitor auf jede 10 cm² Petrischale. Die Zellen werden dann mittels eines Zellschabers isoliert und die Zellsuspension in ein Eppendorfgefäß überführt. Um die intrazellulären Proteine in Suspension zu bringen, ist es notwendig die Zellmembranen zu zerstören. Dies geschieht mechanisch, indem die Zellsuspension mittels einer Insulinspritze und einer 25G Kanüle 5 bis 6 mal aufgezogen wird. Das homogenisierte Zelllysat wird für mindestens 120 Min. auf Eis gestellt, dann wird 15 Min. bei 15.000 x g und 4°C zentrifugiert (Biofuge15R, Heraeus). Zellreste wie Membranen, Zytoskelett, RNA, DNA, ect. bilden auf dem Boden des Eppendorfgefäßes ein Pellet, während die Proteine sich in dem klaren Lysis-Puffer

3.5.1 Bestimmung der Proteinkonzentration

Durchführung

Zuerst werden je 20 µl Reagenz S (3.5.2) mit 1 ml Reagenz A versetzt. Es entsteht das Arbeitsreagenz A'.
Es wird ein Proteinstandard von 3 µg/µl verwendet; dieser wird in folgenden Verdünnungen eingesetzt:
1 : 1
1 : 2,5
1 : 5

Dann werden je 5 µl Probe/Standard/Leerwert in die Fächer einer Mikrotiterplatte (3.5.2) pipettiert, danach je 25 µl Arbeitsreagenz A' und je 200 µl Reagenz B hinzugegeben. Es wird für 15 Min. unter leichtem Schütteln inkubiert.
Nach 15 Min. kann die Absorption bei 690 nm gemessen werden. Anhand der Proteinstandards wird eine Standardkurve erstellt, mit der die Konzentration jeder Probe abgelesen werden kann.

3.5.2 Material

Reporter-Lysis-Puffer 5x (Promega)

50 x Protease-Inhibitor-Cocktail:
 - eine Tablette Complete™ (Roche) in 1ml Aqua dest. lösen.

Proteinstandard
Protein-Test-Standard II, Bio-Rad, (Rinder-Serum-Albumin), in 10 ml H₂O gelöst, ergibt eine Proteinkonzentration von 3 µg/µl.

DC Protein-Test, Bio-Rad, bestehend aus:
 - Reagenz A, 250 ml
 - Reagenz B, 1000 ml
 - Reagenz S, 5 ml

Microtiter®-Platten, Greiner Labortechnik

3.6 Western-Blot-Analyse

3.6.1 Gelelektrophorese

Mit Hilfe einer Gelelektrophorese werden die Proteine ihrem Molekulargewicht entsprechend aufgetrennt. Die Protein-Proben werden dafür mit einem Probenpuffer versetzt und mit H₂O, je nach verwendetem Gel, auf ein Volumen von 20 µl (NuPage 4-12%, Bis-Tris Gel) bzw. 30 µl (4-12%, Tris-Glycine Gel) angesetzt. Dieser Ansatz wird zur Denaturierung der Proben für 5 Min. bei 95°C inkubiert, nachfolgend 5 Min. zentrifugiert und bis zum Auftragen in die Geltaschen auf Eis gestellt. Das Gel wird in eine Novex-Mini-Cell-Elektrophoresekammer eingesetzt; zuvor wird der Taschenkamm gezogen und die Taschen 3 mal mit dem Laufpuffer gewaschen. Dann füllt man den Laufpuffer in die Elektrophoresekammer. Das Gel sollte ca. 0,5 cm überschichtet sein. Anschließend werden die Proben in die Geltaschen pipettiert. Bei jedem Gel wird ein Benchmark-Proteinstandard mit aufgetragen. Der Benchmark-Proteinstandard besteht aus 10 Proteinen mit Molekulargewichten zwischen 10 und 200 kDa. Dabei sind die Proteine jeweils mit einem blauen bzw. pinken Farbstoff gekoppelt. So können später mögliche Bänder einem Molekulargewicht zugeordnet werden. Die Elektrophorese kann gestartet werden. Laufpuffer, Höhe der angelegten Spannung und somit die Elektrophoresedauer richten sich nach dem verwendeten Gel. Anhand des mitgeführten Benchmark-Proteinstands kann die Auftrennung verfolgt werden.

3.6.2 Proteintransfer auf Nitrocellulose-Membran

Nach der Auftrennung der Proteine durch die Gelelektrophorese erfolgt die Übertragung auf eine Nitrocellulose-Membran durch elektrophoretisches Blotten. Schon während der Gelelektrophorese wird die Nitrocellulose-Membran für 5 Min. in 30% Methanol inkubiert und anschließend für mindestens 5 Min. in Towbin-Transferpuffer äquilibriert. Das Gel wird nach dem Ende der Elektrophorese ebenfalls für 5 Min. in Towbin-Transferpuffer gelegt und somit gewaschen. Es werden drei Filterpapiere (Whatman, 0,75 mm dick) auf Gelgröße zurechtgeschnitten, in Transferpuffer getränkt und aufeinander gelegt. Darauf plaziert man dann das Gel und auf dem Gel wiederum die Nitrocellulose-Membran. Der Blotaufbau wird vervollständigt, indem wieder drei Filterpapiere (Whatman) in Transferpuffer getränkt

3.6.3 Proteinnachweis durch Antikörper

Nach dem Blotten wird die Nitrocellulose-Membran aus der Blotting-Kassette genommen, in eine geeignete Schale gelegt und für 5 Min. in TBST (3.6.5) gewaschen. Die Schale steht dabei, wie auch bei den folgenden Schritten, auf einer Wippe und wird mit einer Frequenz von 30 x pro Minute geschwenkt. Dann inkubiert man die Membran für eine Stunde in 5% Milchpulver/TBST (3.6.5). Auf diese Weise werden die freien Bindungstellen an der Nitrozellulose-Membran blockiert und eine unspezifische Bindung des zur Detektion verwendeten Antikörpers verhindert. Es folgt eine zweistündige Inkubation mit dem ersten proteinspezifischen Antikörper in einer Verdünnung 1 : 2000 in 5% Milchpulver/TBST. Danach wird die Membran 2 x mit TBST und 3 x mit TBS für je 5 Min. gewaschen und mit dem zweiten Peroxidase-gekoppelten Antikörper für eine Stunde inkubiert. Anschließend erfolgt ein erneutes Waschen der Membran mit 2 x TBST und 3 x mit TBS.

3.6.4 Detektion durch Lumineszenz

3.6.5 Material

Transfermembran
Nitrocellulose-Membran, 0,45 µm, (Schleicher & Schüll, Dassel)

Antikörper, Reagenzien
Anti-Flag® M2 Monoclonaler-Antikörper, (Sigma, Deisenhofen)
Anti-Smad2 (Kaninchen), Polyclonal, (Zymed® Laboratories, San Francisco, USA)
Anti-PAI-1 Antikörper (C20; Santa Cruz Biotechnology Inc., Heidelberg)
Anti-TβRI Antikörper (V22, Santa Cruz Biotechnology Inc.)
Anti Smad7 Antikörper (N19, Santa Cruz Biotechnology Inc.)
Anti Smad2/3 Antikörper (Santa Cruz Biotechnology Inc.)
Anti Ziege Peroxidase-gekoppelter Antikörper (Santa Cruz Biotechnology Inc.)
Anti Kaninchen Peroxidase-gekoppelter Antikörper (Santa Cruz Biotechnology Inc.)
Anti Maus Peroxidase-gekoppelter Antikörper (Santa Cruz Biotechnology Inc.)
SuperSignal® West Dura Luminol/Enhancer Solution (Pierce; Bonn)
SuperSignal® West Dura Stable Peroxide Solution (Pierce)

Trenngele und Lauf-/Probenpuffer:
NuPage™4-12% Bis-Tris Gel, 1,0mm x 10 well (Novex™; www.novex.com)
Probenpuffer: NuPAGE™ LDS Sample Buffer (4x) (Novex™)
Laufpuffer: MOPS SDS Running Buffer (20x) (Novex™)
4-12% Tris-Glycine Gel, 1,5mm x 10well (Novex™)
Probenpuffer: LDS Sample Buffer (6x) (Novex™)
Laufpuffer: Tris-Glycine-SDS Puffer 10x

TBS:
- 10 mM Tris pH 8,0
- 150 mM NaCl
TBST:
- 10 mM Tris pH 8,0
- 150 mM NaCl
- 0,05% Tween 20

Transferpuffer nach Towbin
- Tris 25 mM
- Glycine 192 m
- Methanol 20 %
- pH 8,3
- 3,03 g Tris und 14,4 g Glycine in 500 ml Aqua dest. lösen, 200 ml Methanol hinzugeben und auf 1 l Aqua dest. auffüllen
3.7 Transfektion von Zellen

Bei der Transfektion handelt es sich um eine Methode zur Einschleusung heterologer DNA in eine Zielzelle.
Es wird zwischen einer transienten und stabilen Transfektion unterschieden. In beiden Fällen wird die DNA in den Zellkern übertragen, wobei sie bei der transienten Transfektion aber nicht in die Chromosomen der Zielzelle eingebaut wird, wie dies bei der stabilen Transfektion der Fall ist. In den hier durchgeführten Experimenten wurde ausschließlich mit der transienten Transfektion gearbeitet.

3.7.1 Adenovirale Konstrukte

aliquotiert. Um die Zellmembranen zu zerstören und so die intrazellulär-befindlichen Viren in Suspension zu bringen, werden die Aliquots 5x hintereinander in flüssigem Stickstoff gefroren und sogleich im 37°C Wasserbad aufgetaut. Darauf wird für 10 Minuten bei 5.000 UpM zentrifugiert, der virale Überstand abpipettiert, erneut aliquotiert und in flüssigem Stickstoff tiefgefroren.

3.7.2 Transfektion von CFSC und HSC-T6

Adenovirale Infektion:
Nach dem Absaugen des Mediums erfolgt die Infektion der Zellen. Dabei wird jeweils eine M.O.I. (multiplicity of infection) von 50 gewählt.

Transfektion mit dem FuGene System

Nach der Infektion/Transfektion werden die Zellen für 2 Tage in Komplettmedium belassen, dann für 8 Stunden auf 0,5% FKS-Medium gesetzt und mit 5 ng/ml TGF-β stimuliert. Nach weiteren 14 Stunden Kultivierung in 0,5% FKS-Medium werden die Zellen wie unter (3.1.6) beschrieben geerntet.
3.7.3 Reportergen-Tests

3.7.3.1 Luciferase-Test

Protokoll (Luciferase-Test-System, Promega; www.promega.com)
1. Zellen isolieren mittels 1x Reporter Lysis Puffer (400 µl/60 mm Kulturschale)
2. 15 Sek. vortexen und 2 Min. bei 15.000 x g, 4°C zentrifugieren
3. 20 µl Zelleextrakt mit 100 µl Luciferase-Test-Reagenz mischen
4. Lumineszenzmessung, 1 Sek. mittels 1450 Microbeta Wallac Jet
3.8 TGF-\(\beta\)-abhängige Wachstumsinhibition

5.000 Zellen CFSC bzw. 2.500 Zellen HSC-T6 werden zur Dreifach-Bestimmung in 96-well-Mikrotiterplatten ausgesät. Nach 16 Stunden Kultivierung in Komplettmedium erfolgt ein erster Mediumwechsel. Die Zellen werden für weitere 8 Stunden in DMEM/10% FKS belassen und dann für 16 Stunden in DMEM/0,5% FKS kultiviert. Das Medium wird abgesaugt und TGF-\(\beta\), in 0,1% BSA/DMEM, wird in folgenden Konzentrationen zupipettiert: 5000, 1000, 500, 250, 100, 50, 25, 10, 5, 2.5, 1.0 pg/ml. Nach 1 Stunde wird nochmals Medium hinzugegeben, sodaß eine Konzentration von 0,5% FKS vorliegt. Nach weiteren 8 Stunden Inkubation folgt die Zugabe von BrdU (Brom-desoxy-uridin) in einer Konzentration von \(5 \times 10^{-5}\) M. Nach Gebrauchspraktik (5-Bromo-2’-deoxy-uridine Labeling and Detection Kit; Roche Diagnostics) werden die Zellen für 30 Minuten bei Raumtemperatur fixiert, 1 Stunde mit dem Antikörper inkubiert und mit PBS gewaschen. 100 µl/well Substrat werden zupipettiert, die Reaktion mit 1N H\(_2\)SO\(_4\) gestoppt und die BrdU-Inkorporation mittels ELISA bei 450nm gemessen.
4 Ergebnisse

4.1 TGF-β-abhängige Smad2-Phosphorylierung

TGF-β vermittelt seine Signalwirkung auf eine bestimmte Zielzelle durch Bindung an Membranrezeptoren.
Nach der Bindung an den TGF-β-Rezeptor Typ II, folgt die Phosphorylierung und somit Aktivierung des Rezeptor Typ I. Dieser wiederum phosphoryliert Smad2 an einem SSVS Motiv am Carboxy-terminalen Ende und überführt das Smad2-Protein somit in die aktivierte Form. Während primäre, ruhende HSC noch stark auf TGF-β-Stimulation reagieren, werden sie im Laufe der Aktivierung zu Myofibroblasten TGF-β-insensitiv [38]. In der vorliegenden Arbeit wird die TGF-β-Signaltransduktion in zwei permanenten Zelllinien untersucht und mit primären HSC verglichen. Diese Zelllinien zeigen viele Eigenschaften von aktivierten HSC.
Hierzu sind Protein-Lysate aus CFSC, HSC-T6, MFB und primären HSC isoliert worden. Diese wurden mittels Westernblot mit Primärantikörpern gegen phosphoryliertes-Smad2 analysiert.
In CFSC, HSC-T6 und primären HSC wird Smad2 transient durch TGF-β-Behandlung phosphoryliert. Die Smad2-Aktivierung hält bis etwa 90 Minuten nach Stimulationsbeginn an. Transdifferenzierte MFB sind wie erwartet nicht mehr TGF-β-sensitiv und Smad2 wird entsprechend nicht phosphoryliert.
Abb. 1: TGF-β-vermittelte Smad2-Phosphorylierung in primär kultivierten HSC, transdifferenzierten MFB, CFSC und HSC-T6. Monolayerkulturen (70-80 % konfluent) wurden für 8 Stunden in Kulturmedium mit 0,5% FKS belassen, anschließend mit 5 ng/ml TGF-β stimuliert und zu verschiedenen Zeitpunkten gestoppt. 40 µg Proteinlysate wurden elektrophoretisch aufgetrennt und im Western-Blot-Verfahren mit Primärantikörpern gegen P-Smad2 untersucht.
4.2 (CAGA)_{9}-MLP-Luc Regulation in Abhängigkeit von TGF-β

Die auch als SBE (smad binding element) bezeichnete CAGA-Box ist eine DNA-Sequenz, welche in der Promotorregion verschiedener TGF-β-Zielgene vorkommt. Im folgenden sind CFSC und HSC-T6 transient mit einem (CAGA)_{9}-MLP-Luc Plasmid transfiziert worden. Das Plasmid enthält dabei 9 Kopien des SBE, gekoppelt mit einer TATA-Box und der Initiatorsequenz eines adenoviralen Promotors (MLP, major late promoter).

![Graphik](image-url)
Abb. 2 A/B: TGF-β-abhängige Stimulation von (CAGA)_9-MLP-Luc in CFSC (A) und HSC-T6 (B).

Beide Zelllinien wurden transient transfiiziert, wobei 2µg/5ml (CAGA)_9-MLP-Luc Reporter-DNA und als Kontrollvektor (pGL3-MLP-Luc) verwendet wurden. Dann folgte eine 8 Std. Kultivierung in 0,5% FKS/Kulturmedium und anschließend eine Stimulation mit TGF-β für 14 Std.. Die TGF-β-Effekte wurden durch Messung der Luciferaseaktivität analysiert. Es sind 3 unabhängige Versuche durchgeführt worden.

Um die Transfektionseffizienz zu ermitteln wurde mit pRLCMV (Renilla Luciferase) cotransfiiziert. Kontrollzellen wurden ebenso mit den Plasmiden transfiiziert, aber nicht mit TGF-β stimuliert.
4.3 TGF-β-abhängige Smad7-Expression

3A

![Bar chart](image-url)
Abb. 3 A/B: TGF-β-Effekte auf die Regulation des Smad7-Promotors in CFSC (A) und HSC-T6 (B).

Beide Zelllinien wurden transient transfiziert, wobei 2µg/5ml p(-1280-)-Smad7prom-luc Reporter-DNA und als Kontrollvektor pGL3basic verwendet wurden. Die transfizierten Zellen sind für 8 Std. auf 0,5% FKS/Medium gesetzt worden, mit 5 ng/ml TGF-β behandelt und 14 Std. später gestoppt worden. Proteine wurden isoliert und die Luciferaseaktivität gemessen. Die Transfektionseffizienz wurde mittels Cotransfektion mit pRLCMV (Renilla Luciferase) bestimmt.

Um zu untersuchen, in wie weit die endogene mRNA-Expression von Smad7 durch die Stimulation mit TGF-β beeinflußt wird, wurden Messungen mittels einer quantitativen real-time RT-PCR durchgeführt. Dabei sind spezifische Smad7-Primer (Ratte) und Hybridisierungsproben zur Detektion eingesetzt worden (siehe 3.4).
In beiden Zelllinien konnte TGF-β-abhängig die mRNA-Expression von Smad7 transient gesteigert werden. Das Maximum lag bei 60 Minuten nach Stimulation mit TGF-β. Vergleicht man diese Daten mit den Ergebnissen aus den Western-Blot-Analysen mit Primärantikörpern gegen P-Smad2, so zeigt sich eine sequenzielle Abhängigkeit der Smad7-Expression auf mRNA-Ebene von der vorangegangenen Smad2-Phosphorylierung.
Abb. 3 C/D: Smad7-Expression auf mRNA-Ebene nach Stimulation mit TGF-β in CFSC (C) und HSC-T6 (D).

Auch im Northern-Blot-Verfahren konnte ein Anstieg der Smad7 mRNA-Expression nach TGF-β-Stimulation nachgewiesen werden.

3E

Abb. 3 E: Northern-Blot-Analyse der Smad7 mRNA-Expression in HSC-T6. HSC-T6 (70-80% konfluent) wurden für 8 Std. in Kulturmedium mit 0,5% FKS kultiviert, mit 5 ng/ml TGF-β stimuliert und zu verschiedenen Zeitpunkten gestoppt. 20 µg der isolierten Gesamt-RNA sind in einer Northern-Blot-Analyse mit Smad7-Hybridisierungsproben (Ratte) untersucht worden. GAPDH wurde als Ladungskontrolle benutzt.

Nachdem bereits mittels quantitativer RT-PCR und Northern-Blot-Analyse die gesteigerte Transkription des Smad7-Genabschnitts in Abhängigkeit von TGF-β gezeigt werden konnte, wurde im folgenden das Smad7-Protein in der Westernblot-Analyse nachgewiesen. Es wurden Proteinlysate aus HSC-T6 und CFSC sowie Primärantikörper gegen Smad7 verwendet. In HSC-T6 zeigte sich eine transiente Smad7-Expression nach TGF-β-Behandlung. Der Maximalwert wurde 4 Std. nach Stimulationsbeginn gemessen. In einem gleichen Versuch mit Proteinlysaten aus CFSC konnten nur schwache Smad7-Proteinbanden detektiert werden, der relativ niedrigen Smad7-Expression auf mRNA-Ebene (Abb 3C) entsprechend.
Abb. 3 F/G: Western-Blot-Analyse mit Primärantikörpern gegen Smad7. Monolayerkulturen (80% konfluent) wurden für 8 Stunden in Kulturmedium mit 0,5% FKS kultiviert; anschließend mit 5 ng/ml TGF-β stimuliert und nach 14 Std. zu verschiedenen Zeitpunkten gestoppt. 40 µg Proteinlysate sind elektrophoretisch aufgetrennt und im Western-Blot-Verfahren untersucht worden. Als Positivkontrolle wurden Proteinlysate aus HEK293-Zellen aufgetragen, welche mit einem Flag-Smad7-exprimierenden Konstrukt transfiziert worden waren.
4.4 TGF-β-Effekte auf das Zellwachstum

Abb 4 A/B: CFSC und HSC-T6 zeigen sich resistent gegen TGF-β-abhängige Wachstumsinhibition. Monolayerkulturen (80 % konfluent) wurden mit verschiedenen Konzentrationen TGF-β stimuliert und anschließend mit BrdU behandelt (s. 3.8). 16 Std. später wurde die BrdU-Inkorporation mittels ELISA gemessen.
4.5 Regulation der Typ I Kollagen mRNA Expression

![Col1A2 RT-PCR](image)
Abb 5 A/B: Col1A2 mRNA-Expressionsanalyse in CFSC (A) und HSC-T6 (B) mittels RT-PCR.

Abb. 5 C: Col1A1 Promotorstudie in Abhängigkeit von TGF-β.

CFSC wurden mit 500 ng/ml Col1A1-Promotor/Reporterplasmid transfiziert und für 8 Std. in 0,5% FKS/Kulturmedium kultiviert; dann mit 5 ng/ml TGF-β behandelt und 14 Std. später gestoppt. Proteine wurden isoliert und die Luciferaseaktivität gemessen. Die Transfektionseffizienz ist mittels einer Cotransfektion mit pRLCMV (Renilla Luciferase) bestimmt worden.

In einem Northern-Blot-Experiment wurden je 20 µg Gesamt-RNA, isoliert aus CFSC, drei Tage alten primären HSC und transdifferenzierten MFB eingesetzt. Ähnlich wie in der Promotorstudie (Abb 5 C/D) zeigte sich kein signifikanter Unterschied in der Col1A1 mRNA-Expression zwischen TGF-β stimulierten und nicht stimulierten CFSC. Gleiches gilt auch für primäre HSC und transdifferenzierte MFB. Während ruhende HSC offensichtlich nur sehr wenig Col1A1 mRNA exprimieren, bilden CFSC und transdifferenzierte MFB jeweils große Mengen Col1A1 mRNA [siehe Dr. Arbeit von Jens Westhoff und beiliegende Publikation (Berg et al.)].
Die Untersuchungen bezüglich der Typ I Kollagen Expression zeigten zusammenfassend folgende Ergebnisse:

1. In ruhenden, primären HSC findet sich keine TGF-β-abhängige Col1A1 mRNA-Expression. Hingegen konnte in früheren Studien gezeigt werden, daß Col1A2 mRNA unter TGF-β-Behandlung induziert wird.
2. In CFSC und transdifferenzierten MFB wird Col1A1 mRNA zu etwa gleichen Mengen gebildet, die Col1A2 Expression ist jedoch in MFB signifikant höher als in CFSC.

4.6 TGF-β-Effekte auf die Degradation der extrazellulären Matrix

Neben der verstärkten Expression der ECM kommt es im Laufe der Fibrogenese auch zu Veränderungen in Bezug auf die Degradation von ECM-Komponenten. So werden TGF-β-abhängig bestimmte Enzyme (TIMP-1, PAI-1) vermehrt gebildet, welche einen hemmenden Einfluß auf die Degradation der ECM haben. TIMP-1 (tissue inhibitor of metalloproteinase-1) ist ein solches Enzym und wird im Zuge der Aktivierung von HSC verstärkt exprimiert. Es konnte bereits gezeigt werden, daß TGF-β TIMP-1 direkt über Smad3 induzieren kann [58]. Die TGF-β-abhängige TIMP-1 mRNA-Expression wurde in CFSC untersucht. Dabei ist ein 1kb TIMP-1-Fragment in einer Northern-Blot-Analyse eingesetzt worden. Die Untersuchung ergab, daß in CFSC nur geringe Mengen TIMP-1 mRNA exprimiert werden, verglichen mit einer starken Expression in MFB. Da TGF-β keinen Einfluß auf die Expression in CFSC nimmt, wird TIMP-1 offensichtlich in den untersuchten Zelllinien nicht durch TGF-β reguliert.
Abb. 6A: Northern-Blot-Analyse der TIMP-1 und PAI-1 mRNA-Expression in CFSC. CFSC (70-80% konfluent) wurden für 8 Std. in Kulturmedium mit 0,5% FKS belassen, mit 5 ng/ml TGF-β stimuliert und zu verschiedenen Zeitpunkten gestoppt. 20 µg der isolierten Gesamt-RNA sind in einer Northern-Blot-Analyse mit spezifischen TIMP-1- bzw. PAI-1-Hybridisierungsproben eingesetzt worden. GAPDH wurde als Ladungskontrolle mit aufgetragen.

PAI-1 (*plasminogen activator inhibitor*) ist ein weiteres Enzym, welches in die Degradation der ECM eingreift. PAI-1 zeigt einen profibrotischen Effekt, indem es verschiedene ECM-degradierende Enzyme inhibiert. TGF-β ist in der Lage in primären HSC eine vermehrte PAI-1-Synthese zu induzieren [60], welche dann in transdifferenzierten MFB auf einem hohen Level aufrecht erhalten wird [59]. Um den Einfluß der TGF-β-Signaltransduktion auf die PAI-1 Expression in CFSC zu untersuchen, wurde zunächst Gesamt-RNA in Northern-Blot- und Proteinlysate in Western-Blot-Analysen untersucht. In der Northern-Blot-Analyse zeigte sich ca. 4
Std. nach TGF-β-Behandlung ein Anstieg der PAI-1 mRNA auf Höhe der 2.2 kb Bande (Abb 6A). In MFB wurde PAI-1 erwartungsgemäß stark exprimiert. Auf Proteinebene fand sich eine konstitutive PAI-1-Expression in unbehandelten CFSC, welche unter TGF-β Stimulation nach 12 Std. noch anstieg.

Abb. 6 C/D: TGF-β-Effekte auf die PAI-1 Promotoraktivität in CFSC und HSC-T6. Beide Zelllinien wurden mit 500 ng/ml p3TPLux transfiziert und für 8 Std. in 0,5% FKS/Kulturmedium belassen, dann mit 5 ng/ml TGF-β behandelt und 14 Std. später gestoppt. Proteine wurden isoliert und die Luciferaseaktivität gemessen. Die Transfektionseffizienz ist mittels Cotransfektion mit pRLCMV (Renilla Luciferase) bestimmt worden.
4.7 Smad7-Überexpression in den Zellen

Smad7 ist ein potentieller Antagonist von TGF-β. Um die inhibitorische Wirkung des Smad7-Proteins auf die intrazelluläre Signalvermittlung von TGF-β zu untersuchen, erfolgte eine Überexpression von Smad7 in den Zellen. Dafür sind die Zellen mit einem adenoviralen Konstrukt (Ad5.CMV-flag-S7ΔE1/ΔE3) transfiziert worden, welches Flag-Smad7 exprimiert. Dem Flag-Smad7-Gen ist dabei ein CMV (Zytomegalie-Virus) Promotor vorgeschaltet.

In einem Vorversuch sind verschiedene Titer der Adenoviren zur Infektion von CFSC und HSC-T6 eingesetzt worden. Dabei sollte ein möglichst optimaler Titer gefunden werden, wobei die Zellen einerseits keiner zu hohen Konzentration von Adenoviren ausgesetzt sind und andererseits eine effiziente Infektion erreicht wird. CFSC und HSC-T6 wurden dafür mit einer M.O.I. von 1, 10, 50 und 100 infiziert und 24 bzw. 48 Stunden nach Infektionsbeginn gestoppt. Die Smad7-Expression ist dann mittels Western-Blot-Analyse mit Antikörpern gegen Smad7 untersucht worden.

Abb 7 A: Western-Blot-Analyse der ektopen Smad7-Expression in HSC-T6 und CFSC.

Zellen wurden mit Adenoviren verschiedener M.O.I. (*multiplicity of infection*) infiziert und 24 oder 48 Std. später gestoppt. Je 20 µg Proteinlysate sind in einem Western-Blot-Verfahren mit Primärantikörpern gegen Smad7 untersucht worden.
Eine effiziente Transfektion zeigte sich in beiden Zelllinien bei einer M.O.I. von 50 und 100 nach 48 Stunden jeweils mit stärkerer Intensität der Smad7-Bande als nach 24 Stunden. Nach diesen Ergebnissen sind für die weiteren Studien mit Smad7 eine M.O.I. von 50 und eine Infektionsdauer von 24 Stunden festgelegt worden.

Die inhibitorische Wirkung von Smad7 auf die TGF-β-abhängige Smad2-Phosphorylierung ist in Abb. 7B dargestellt. CFSC und HSC-T6 wurden mit Smad7 transfiziert bzw. unbehandelt belassen und jeweils mit TGF-β stimuliert. In beiden Zelllinien konnte die Smad2-Aktivierung durch eine Smad7-Überexpression blockiert werden.

Abb. 7 B: Inhibition der Smad2-Aktivierung durch ektopische Smad7-Überexpression. Je 250.000 CFSC bzw. HSC-T6 sind mit AdSmad7 (M.O.I. 50) für 24 Stunden infiziert bzw. als Kontrolle nicht infiziert worden. Die Zellen wurden für 24 Stunden in 0,5% FKS/Kulturmedium kultiviert und z.T. für 16 Stunden mit TGF-β stimuliert. Je 20µg Proteinlysate sind im Western-Blot-Verfahren mit Primärantikörpern gegen P-Smad2 analysiert worden.
4.8 Einfluß von Smad7- und dominant negativ Smad3-/Smad4-Expression auf TGF-β Zielgene

Um die Regulation TGF-β-abhängiger Zielgene detaillierter zu untersuchen, erfolgte neben der Smad7-Überexpression auch eine ektopische Expression von dominant negativem Smad3 (dnSmad3) und Smad4 (dnSmad4), sowie einem konstitutiv-aktiven TGF-β-Rezeptor Typ I (CA-TβRI) in der Zelle. Kontrollzellen wurden mit Adenoviren transfiziert, welche das LacZ-Gen exprimieren. Der Transfektionserfolg wurde jeweils mittels Western-Blot-Analyse mit Antikörpern gegen die verschiedenen rekombinanten Proteine nachgewiesen.

Abb. 8 A/B zeigt die Effekte der verschiedenen Reporterkonstrukte auf die Aktivität von (CAGA)₉MLP-Luc. Die ektopische Expression des konstitutiv-aktiven TGF-β Typ I Rezeptors und TGF-β-Stimulation unterscheiden sich dabei kaum in ihrer Wirkung auf die Zielzelle. Eine Überexpression von Smad7, dnSmad3 und dnSmad4 reduziert jeweils die Reportergenaktivität in beiden Zelllinien; dnSmad4 ist dabei interessanterweise effektiver als dnSmad3 und Smad7.

![Graphik zu 8 A/B](image-url)
Abb 8 A/B: Effekte der CATβRI-, dnSmad3-, dnSmad4-, und Smad7-Expression auf (CAGA)₉MLP-Luc in CFSC und HSC-T6.

Die Aktivität des Col1A1 Promotors konnte in CFSC durch dnSmad4 um etwa 50% reduziert werden, dnSmad3 und Smad7 hatten keinen signifikanten Einfluß.

Abb. 8 D: Col1A1 Promotoraktivität bei CATβRI-, dnSmad3-, dnSmad4-, und Smad7-Expression in CFSC.
CFSC wurden mit 500 ng/ml Col1A1-Promotor/Reporterplasmid transfiziert und für 8 Std. in Kulturmedium mit 0,5% FKS belassen. Dann ist mit 5 ng/ml TGF-β stimuliert und 14 Std. später der Versuch gestoppt worden. Eine ektopische Expression von dnSmad3/4 und Smad7 wurde durch zusätzliche Infektion mit Adenovieren (M.O.I. 50) erreicht. Proteine wurden isoliert und die Luciferaseaktivität gemessen. Die Transfektionseffizienz ist mittels Cotransfektion mit pRLCMV (Renilla Luciferase) bestimmt worden.

Die PAI-1 Promotoraktivität wurde durch dnSmad3 und dnSmad4 Expression deutlich runterreguliert. Smad7-Überexpression zeigte dagegen keinen inhibitorischen Effekt.
Abb. 8 E/F: Effekte der CATβRI-, dnSmad3-, dnSmad4-, und Smad7-Expression auf den PAI-1 Promotor p3TPlux in CFSC und HSC-T6.
Monolayerkulturen sind mit 500 ng/ml p3TPlux transfiziert und z.T. mit adenoviralen Konstrukten (M.O.I. 50) infiziert worden. Proteinlysate wurden isoliert und die Luciferaseaktivität gemessen. Die Transfektionseffizienz wurde mittels Cotransfektion mit pRLCMV (Renilla Luciferase) bestimmt.
Blockiert man den TGF-β-Signalweg durch ektopischeExpression von dnSmad3 und dnSmad4, werden entsprechend auch die TGF-β-vermittelten Effekte auf (CAGA)₉ und den PAI-1 Promotor geblockt. Smad7 zeigt aber nur eine inhibitorische Wirkung auf die (CAGA)₉MLP-Luc Aktivität, nicht dagegen auf p3TP-lux und Col1A1.

4.9 Smad3-Aktivität in CFSC und HSC-T6

Ebenso wie das Smad2-Protein ist Smad3 ein Mediator, über den das TGF-β-Signal vom Rezeptor in den Zellkern vermittelt wird. Im folgenden wurde die Smad3-Expression und Phosphorylierung in CFSC, HSC-T6 und primär kultivierten HSC untersucht. Dafür sind Antikörper gegen phosphoryliertes Smad1 verwendet worden, die gleichzeitig mit phosphoryliertem Smad3 kreuzreagieren. Desweiteren wurde mit polyklonalen Antikörpern gegen Smad2/3 gearbeitet. In primären HSC stieg die Smad3-Phosphorylierung nach Behandlung mit TGF-β stark an (mit Maximum nach 1 Std.). Durch ektopische Expression von Smad7 in 3 Tage alten HSC konnte diese TGF-β-abhängige Aktivierung blockiert werden. Im Gegensatz dazu fand sich in CFSC und HSC-T6 ein permanentes P-Smad3 Signal, unabhängig von TGF-β-Behandlung und auch durch Smad7-Überexpression nicht blockierbar.
Abb 9 A: TGF-βabhängige und unabhängige Smad3-Phosphorylierung in aktivierten HSC (CFSC/HSC-T6) und primären HSC.

40 µg Proteinlysate von primären HSC, CFSC und HSC-T6 wurden TGF-β stimuliert oder unbehandelt im Western-Blot-Verfahren eingesetzt. Zusätzlich ist jeder Zelltyp in einem Ansatz mit einem adenoviralen Smad7-Konstrukt infiziert worden. Zur P-Smad3 Immundetektion wurde ein spezifisches Antiserum gegen P-Smad1 verwendet, welches mit PSmad3 kreuzreakiert. Ein parallel durchgeführter Western-Blot ist mit spezifischen Antikörpern gegen Smad2/3 inkubiert worden.
5 Diskussion

5.1 Wachstumsinhibition

5.2 Regulation der Typ I Kollagen Expression

Typ I Kollagen ist der Hauptbestandteil der extrazellulären Matrix und es gilt heute als gesichert, daß aktivierte HSC für die vermehrte Produktion in der Leber verantwortlich sind. Die Col1A2-Sequenz enthält ein TGF-β gesteuertes Element, welches in der Lage ist mit einem Komplex aus Smad-Proteinen und GC-Box assoziierten Faktoren zu interagieren [64]. In Übereinstimmung mit diesem Befund konnte auch ein TGF-β-induzierter Anstieg der Col1A2 mRNA-Expression in primären HSC gezeigt werden [37]. In transdifferenzierten MFB bleibt die Kollagen-Expression konstitutiv hochreguliert und ist dabei weder durch TGF-β zu steigern, noch durch TGF-β Antagonisten (LAP, anti-TGFβ Antikörper) zu reduzieren [37]. Diese Daten zeigen, daß die Kollagen-Expression in MFB von TGF-β unabhängig geworden ist und dies konnte auch in der vorliegenden Arbeit, in Bezug auf CFSC und HSC-T6, bestätigt werden. Die TGF-β Rezeptoraktivierung und Smad2-vermittelte Signaltransduktion hatten weder Effekte auf die Col1A1- noch Col1A2-mRNA-Expression, und auch der Col1A1 Promotor konnte nur geringfügig aktiviert werden. Desweiteren wurde die Col1A1 Promotoraktivität durch ektopische Expression von Smad7 und dnSmad3 nur geringfügig gesenkt, konnte aber durch dnSmad4 Überexpression um ca. 50% runterreguliert werden. Angesichts dieser Ergebnisse folgern wir, daß nur ein Teil der Col1A1 Promotoraktivität/Expression über den Smad3/Smad4 Komplex reguliert wird. Dieser Anteil, welcher hier dann ca. 50% ausmacht, ist über die Inhibition des Smad3/Smad4-Komplexes durch dnSmad4 blockierbar. An der kompletten Regulierung der Col1A1-Expression wäre(n) dann noch einer anderer bzw. andere Signalwege beteiligt.

5.3 Einfluß von Smad7 und konstitutiv phosphoryliertem Smad3

Es ist interessant, daß in beiden Zelllinien, CFSC und HSC-T6, konstitutiv phosphoryliertes Smad3 gefunden wurde. Eine Smad7-Überexpression hatte dabei keinen Einfluß auf die Smad3-Phosphorylierung. Dies wäre dann auch die Erklärung, weshalb die Smad7-Expression nicht in die Regulation des Col1A1-Promoters
eingreift. Daraus würde folgen, daß die Kollagen-Expression u.a. über aktivierte Smad3 reguliert wird, welches nicht durch Smad7 inhibiert werden kann. Auch ist bislang nicht bekannt, über welchen Mechanismus die konstitutive Smad3-Aktivierung erfolgt. Behandlung mit TGF-β zeigte keinen Einfluß. Die vom Liganden unabhängige Anwesenheit von P-Smad3 läßt auf eine Rolle von Smad3 in der Fibrogenese schließen. Dies würde zum einen den profibrotischen Effekt von TGF-β, vermittelt über Smad3-Aktivierung, erklären und zum anderen den Verlust der TGF-β-Sensitivität in transdifferenzierten MFB [38,39]. Diese Hypothese unterstützend konnte gezeigt werden, daß in MFB im Vergleich mit primären HSC eine vermehrte Smad3 mRNA-Expression vorliegt [39]. Studien mit Smad3 knock out Mäusen bestätigen ebenfalls den profibrotischen Einfluß von Smad3. So wurde 72 Stunden nach CCl4-Behandlung von Smad3 knock out Mäusen eine Induktion der Col1A1- und Col1A2-mRNA gemessen, die nur 42% bzw. 64% der Induktion in Wildtyp Mäusen entsprach [68]. Gleiche Daten fanden sich für die in vitro aktivierte HSC der knock out Mäuse und auch die Proliferationsrate dieser HSC war, im Vergleich zu HSC aus Wildtyp Mäusen, gesteigert. Diese Daten lassen vermuten, daß Smad3 für eine maximale Typ I Kollagen-Expression und für den wachstumsinhibitorischen Effekt von TGF-β notwendig ist.

5.4 TIMP-1 und PAI-1 Expression

Im Gegensatz zu TIMP-1 und Typ I Kollagen konnte die PAI-1 Expression auf mRNA- und Proteinebene durch TGF-β gesteigert werden. Promotorstudien mit
p3TPlux zeigten zusätzlich eine signifikante TGF-β-abhängige Aktivitätssteigerung, vergleichbar mit der von (CAGA)₉-MLP-Luc. Durch Expression des konstitutiv aktiven TGF-β Rezeptor Typ I (CATβRI) wurden gleiche Effekte wie unter TGF-β-Stimulation erzielt. In einem weiteren Versuch zeigte sich, daß dnSmad3 und dnSmad4 in der Lage waren die TGF-β-induzierte p3TPlux, sowie (CAGA)₉-MLP-Luc Aktivität signifikant zu reduzieren. dnSmad4 war dabei jeweils effektiver als dnSmad3, was auch hier durch die bereits konstitutiv vorliegende Aktivierung von Smad3 erklärt werden kann. Ein interessantes Ergebnis ist, daß Smad7 die (CAGA)₉-MLP-Luc Aktivität blockieren kann, aber ohne Effekt auf p3TPlux bleibt. In einer anderen Studie mit Keratinozyten ist dagegen von einer Antagonisierung der TGF-β-abhängigen p3TPlux-Aktivierung durch Smad7 berichtet worden. Es ist deshalb anzunehmen, daß der PAI-1 Promotor p3TPlux in verschiedenen Zelltypen unterschiedlich durch TGF-β reguliert wird. Eine wichtige Rolle spielt dabei das Vorliegen verschiedener Transkriptionsfaktoren. Alle beschriebenen Funktionen auf die Genexpression vermitteln die Smad-Proteine in Kooperation mit Transkriptionsfaktoren [17-20]. Für einige dieser Proteine (Evi [72], TGIF [73], Ski [74-76]) konnte bereits detailliert auf geklärt werden, wie sie die TGF-β-vermittelte Transkriptionsaktivität, in Interaktion mit Smad3, steigern oder inhibieren können.

5.5 Therapeutische Aspekte

Es gibt bereits länger Überlegungen der Fibrogenese der Leber über Blockierung der TGF-β-abhängigen Smad-Aktivierung entgegenzuwirken. Dazu bestehen verschiedene mögliche Ansätze, wie beispielsweise eine Smad7-Überexpression, Anti-TGF-β-Therapien mit Antikörpern oder löslichem TGF-β Rezeptor Typ II. So wurde in einem in vivo Experiment (Ratte) durch Infektion mit einem adenoviralen Vektor ein inaktiver TGF-β Rezeptor Typ II exprimiert. Die durch Dimethylnitrosamine induzierte Leberfibrose konnte in den infizierten Tieren signifikant reduziert werden [10]. In einem anderen Experiment konnte durch Smad7-Überexpression in Mäusen die Induktion einer Lungenfibrose durch Bleomycin verhindert werden [89].
Angesichts der vielfältigen Funktionen von TGF-β (Immunmodulation, Wundheilung, ect.) ist es jedoch wünschenswert, spezifisch die profibrotischen Effekte zu blockieren. Deshalb ist es wichtig, die genauen Regulationsmechanismen der in die Fibrose involvierten Komponenten (Smads, Kollagen, TIMP, PAI) zu kennen. Weiter konnte in der vorliegenden Arbeit gezeigt werden, daß die Wirkung von TGF-β und Smad-Proteinen auch vom jeweiligen Zelltyp abhängig ist. Das Ziel ist deshalb eine spezifische und somit möglichst nebenwirkungsarme Therapie der Fibrogenese zu entwickeln, ohne dabei die jeweils physiologischen, vorteilhaften Effekte von TGF-β zu antagonisieren.
6 Zusammenfassung

Es konnte gezeigt werden, daß in CFSC und HSC-T6 eine TGF-β-abhängige Smad2-Phosphorylierung erfolgt und dadurch zeitversetzt verschiedene Zielgene wie Smad7, (CAGA)₉-MLP-Luc und PAI-1 aktiviert werden. Die TIMP-1 Expression erfolgte in den untersuchten Zellen nicht mehr in Abhängigkeit von TGF-β-Behandlung und auch die Smad7-Überexpression konnte sie nicht hemmen. Desweiteren sind beide Zelllinien resistent gegenüber TGF-β-vermittelter Wachstumsinhibition, obwohl der Signalweg über die Smad-Proteine intakt ist.

Die Kollagen-Expression in den aktivierten HSC konnte weder durch TGF-β gesteigert, noch durch Überexpression von Smad7 runter reguliert werden. Der Promotor für die Col1A1 Kette des Typ I Kollagens läßt sich jedoch durch Expression von Smad4 zu ca. 50 % in seiner Aktivität senken.

Im Gegensatz zu TIMP-1 wurde die PAI-1 Expression/ Promotoraktivität durch TGF-β hoch reguliert. Interessant in diesem Zusammenhang ist, daß Smad7 als klassischer Gegenspieler von TGF-β, keinen inhibitorischen Einfluß auf die Aktivität des PAI-1 Promotor p3TPlux hat. Dagegen konnte gezeigt werden, daß Smad7 sowohl die TGF-β-abhängige Smad2-Phosphorylierung als auch die (CAGA)₉-MLP-Luc Aktivität...
7 Literatur

Danksagung

Danken möchte ich Dr. Steven Dooley, meinem Doktorvater, für die gute Betreuung dieses Forschungsprojektes.
Auch Herrn Bert Delvoux (simply the best) möchte ich an dieser Stelle danken für seine Unterstützung bei den verschiedenen Experimenten.

Weiter gilt mein Dank Herrn Prof. Gressner, dem Direktor des Institutes für Klinische Chemie und Pathobiochemie der RWTH Aachen, für seine Anregungen und die Bereitstellung von Material und Einrichtungen.

Allen hier nicht genannten Personen die an dieser Forschungsarbeit beteiligt waren.
Lebenslauf

Persönliche Daten

Name: Frank Berg
Geburtsdatum: 24.03.1975
Geburtsort: Düsseldorf
Familienstand: ledig
Konfession: Röm-Kath.

Schulausbildung

1981 – 1985 Grundschule Yorckstraße in Solingen

Studium

04/1996 – 04/1998 Philipps-Universität Marburg
10/2001 – 09/2002 Praktisches Jahr (Klinikum Aachen)

12.11.2002 Abschluß des Medizinstudiums mit der Gesamtnote: Gut

Seit 01.12.2002 Arzt im Praktikum an der Klinik für Kardiologie und Angiologie am Elisabeth-Krankenhaus Essen