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ZUSAMMENFASSUNG 

Die Aufgabenstellung einer langfristigen Planung von Festgesteinstagebauen mit 

diskontinuierlicher Gewinnung ist eine große kombinatorische Herausforderung, die nicht 

durch mathematische Programmierung in angemessener Zeit gelöst werden kann. Diese 

Dissertation stellt einen neuentwickelten metaheuristischen Algorithmus vor, der auf den 

Theorien des Ameisenalgorithmus (Ant Colony Optimization, ACO) basiert. Darüber hinaus 

wird die Anwendung des entwickelten Modells anhand einer langfristigen Planung eines 

zwei-dimensionalen hypothetischen Block-Modells untersucht verifiziert.  

ACO beschreibt das natürliche Verhalten von Ameisen bei der Futtersuche, das die kürzeste 

Strecke zwischen Kolonie und Nahrungsquelle zum Ziel und bereits mehrfach erfolgreich zur 

Lösung anderer kombinatorischer Probleme beigetragen hat. In der Natur wird das Problem 

der optimalen Routenfindung mittels Pheromonen, die eine Nachricht von einer Ameise an 

die nächste übertragen, gelöst. Die Pheromone steuern die Wegfindung der Ameisen, so 

dass sie nicht nach dem Zufallsprinzip wandern, sondern den Pheromonspuren folgen. Mit 

der Zeit verdunsten die Pheromone von der Spur, die selten oder gar nicht mehr genutzt 

wird, währenddessen die Route mit der kürzesten Strecke erhalten bleibt.  

Um mit der ACO-Theorie eine langfristige Planung eines Festgesteins-tagebaus zu simulieren, 

wird die Anzahl der Pheromonspuren jedes Blocks mit der Anzahl der Planungsperioden 

gleichgesetzt. Die Pheromonspuren, die einem Block zugeordnet werden können, stellen die 

maximale Abbauteufe einer jeden Blockspalte pro Abbauperiode dar.  

Die Form eines bestimmten Tagebaus kann, unter Beachtung der Böschungswinkel, durch 

ein einfaches Datenfeld von ganzen Zahlen dargestellt werden. Dabei stellt jedes Element 

dieses Datenfeldes die Tiefe des Tagebaus in einer einzelnen Spalte des Block-Modells dar. 

Wenn dieses Konzept zu einer langfristigen Produktionsplanung erweitert wird, wird jeder 

Produktionsplan durch ein Datenfeld dargestellt, dass mehrere Abbauteufen für jede Spalte 

des Blockmodells in Relation zu den verschiedenen Produktionsperioden aufweist.  

Am Anfang wird eine initiale Tagebauplanung anhand des Lerchs-Grossmann Algorithmuses 

und den von Wang & Sevim entwickelten Algorithmus „Alternative zur Parametrisierung 

Algorithmus“ erstellt und die Werte der Pheromon Werte entsprechend initialisiert. 

Basierend auf der Tagebauplanung werden den Blöcken, die in direkter Nähe zu den Blöcken 

des tiefsten Punkts liegen, während der Initialisierung höhere Pheromonwerte zugeordnet. 
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Diese Vorgehensweise erzeugt eine Reihe von zufälligen Zeitplänen, die nicht weit von der 

ursprünglichen Lösung sind. 

In jeder ACO-Iteration werden basierend auf den aktuellen Pheromonmengen zuerst 

mehrere Tagebaupläne erstellt. Dieser Prozess wird als “Bestimmung der Teufe“ 

gekennzeichnet und implementiert. Während des Prozesses wird die Teufe in jeder Periode 

für jede Spalte des Blockmodells bestimmt. Je höher der Wert der Pheromonspur eines 

Blocks ausfällt, desto größer ist die Möglichkeit, dass der Block als maximale Abbauteufe für 

die jeweilige Periode gewählt wird. Anschließend werden die Pheromonwerte aller Blöcke 

um einen gewissen Betrag durch Evaporation verringert. Im nächsten Schritt werden die 

Pheromonwerte der Blöcke, die den Abbaustand zur jeweiligen Periode begrenzen, je nach 

Qualität der Lösung des folgenden Abbaustands erhöht. Durch wiederholte Iterationen 

werden die Pheromonwerte der Blöcke, die die Form der optimalen Lösung definieren 

erhöht, während die Werte der anderen Blöcke signifikant verkleinert werden.  

Die ACO Optimierung Iterationen können auf verschiedene Arten implementiert werden. In 

der ersten und einfachsten Methode, Ant System (AS), dürfen alle konstruierten 

Tagebaustände zur Pheromonablagerung beitragen. Die zweite Methode, elitäres Ant-

System (EAS) zeichnet sich dadurch aus, dass der optimale Plan zusätzlich Pheromone in 

jeder Iteration ablegt. ASrank ist die dritte Methode in der nur eine geringe Anzahl von guten 

Tagebauplänen Pheromon hinzufügen kann. Die weiteren Varianten, Max-Min Ant System 

(MMAS) und Ant Colony System (ACS), erlauben nur den bis zu diesem Zeitpunkt besten 

Abbauplanungen Pheromone abzulegen und nutzen zusätzlich spezielle 

Pheromoneinschränkungen, die eine Stagnation im lokalen Optimum verhindern. 

Um die Effizienz des Algorithmus zu überprüfen wurde ein Computerprogramm entwickelt, 

dass auf Visual Basic 2005 als Programmiersprache aufbaut. In einer Fallstudie wurde ein 

Blockmodell einer hypothetischen Eisenerzlagerstätte mit 1000 Blöcken erstellt. Anhand des 

Blockmodells wurden die verschiedenen Varianten der ACO analysiert, um die beste 

Kombination der ACO-Parameter zu identifizieren. Die Analyse zeigte, dass die ACO den 

Wert der ersten Tagebauplanungen bis zu 34 % in einer akzeptablen Rechenzeit verbessern 

kann. Diese Verbesserung ist vor allem der Berücksichtigung von evtl. Einbußen 

zuzuschreiben, die aus einer Überschreitung von Kapazitätsgrenzen oder Produktqualitäten 

resultiert. Es konnte bewiesen werden, dass die MMAS Variante, die Variante mit der 

größten Exploartion von Lösungen ist, währenddessen die AVS Variante die schnellste 

Methode ist. Diese beiden Varianten sind die Einzigen, die sich aufgrund des Speicherbedarfs 

von Rechnern auf große Blockmodelle anwenden lassen. 
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ABSTRACT 

The problem of long-term planning of a hard rock open pit mine (discontinuous exploitation 

operation) is a large combinatorial problem which cannot be solved in a reasonable amount 

of time through mathematical programming models because of its large size. In this thesis, a 

new metaheuristic algorithm has been developed based on the Ant Colony Optimization 

(ACO) and its application in long-term scheduling of a two dimensional hypothetical block 

model has been analysed.  

ACO is inspired by the foraging behaviour of ants (i.e. finding the shortest way from the 

colony to the food source), and has been successfully implemented in several combinatorial 

optimization problems. In nature, ants transmit a message to other members by laying down 

a chemical trail called pheromones. Instead of travelling in a random manner, the 

pheromone trail allows the ants to trace the path. Over time, the pheromones layed over 

longer paths evaporate, whereas those over shorter routes continue to be marched over.  

In order to simulate the ACO process for long-term planning of a hard rock open-pit mine, 

various programming variables have been considered for each block as the pheromone 

trails. The number of these variables is equal to the number of planning periods. In fact 

these pheromone trails represent the desirability of the block for being the deepest point of 

the mine in that column for the given mining period.  

The shape of any given pit (in respect to the slope angles) can be represented by means of a 

simple array of integer numbers. Each element in this array shows the depth of the pit in an 

individual column of block model. Extending this concept to a long-term production 

planning, a mine schedule would be represented by an array that has several mine depths at 

each column of block model related to different production periods.   

At the beginning, the values of the pheromone trails are initialized according to a mine 

schedule generated by Lerchs-Grossmann’s algorithm and the alternative to 

parameterization algorithm of Wang & Sevim.  During initialization, relatively higher values 

of pheromones are assigned to those blocks that are close to the deepest points of the push 

backs in the initial mine schedule. This leads the procedure to construct a series of random 

schedules which are not far from the initial solution.  

In each ACO iteration, several mine schedules are constructed based on current pheromone 

trails. This is implemented through a process called “depth determination”. In this process 

the depth of a mine in each period is determined for each column of the block model. The 
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higher the value of the pheromone trail of a particular block, the higher the possibility of 

selecting that block as the pit depth in that period. Subsequently the pheromone values of 

all blocks are reduced to a certain percentage (evaporation) and additionally the pheromone 

value of the participating blocks used in defining the constructed schedules are increased 

according to the quality of the generated solutions. Through repeated iterations, the 

pheromone values of the blocks which define the shape of the optimum solution are 

increased whereas those of the others have been significantly evaporated.  

The ACO optimization iterations could be implemented in a variety of ways. The Ant System 

(AS) is the first and simplest method, whereby all of the constructed schedules are allowed 

to contribute in the pheromone deposition. In each iteration of the second method, the 

Elitist Ant System (EAS), the best schedule found up to that iteration (the best-so-far 

schedule) is also allowed to deposit pheromones. ASrank is the third method in which only a 

few good schedules are able to add pheromones. The other variants are the Max-Min Ant 

System (MMAS) and the Ant Colony System (ACS), which allow only the best-so-far schedule 

to deposit pheromones and utilise special pheromone limitations in order to prevent the 

stagnation in local optimums.  

To test the efficiency of the algorithm, a computer program has been developed in Visual 

Basic 2005 programming language. As a case study, the block model of a hypothetical iron 

ore deposit with 1000 blocks was considered and different variants of ACO had been 

analysed in order to find the best combination of ACO parameters. The analysis revealed 

that the ACO is able to improve the value of the initial mining schedule by up to 34% in a 

reasonable computational time. This is mainly contributed to the consideration of the 

penalties to the deviations of the capacities and the production qualities from their 

permitted limits. It had also been proved that the MMAS is the most explorative variant, 

while ACS is the fastest method. These two variants also count as the only variants which 

could be applied to a large block model in respect to the amount of memory needed.  
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1 INTRODUCTION  

Modern societies require a supply of raw material for its growth and sustenance. Most of 

these materials are attained by means of surface and underground mining operations. As 

compared to the underground mining, surface mining account for a significant proportion of 

the produced minerals currently having many advantages in terms of large production 

equipment size, short preproduction development period, high ore recovery and less labour 

requirements. It is categorized into open pit, strip, alluvial and in-situ mining methods 

(Hartman, 1987). Hard rock open pit mining is a mineral exploitation method by which the 

deposit is accessed by digging a large opening in the ground surface, called pit, to uncover 

the ore to air. The initial mining phase starts with a small pit, and then develops to a larger 

pit which encloses it. The process proceeds until a final shape of the mine called “ultimate 

pit limit” is reached. These sequences of pits are known as mining sequences or push backs. 

Mining operations in each push back starts from the most upper part and proceed towards 

its bottom (Sevim & Lei, 1998). The long-term mining sequence is obtained from a series of 

nested pits. The objective of pit optimization is to find the sequence that will maximize the 

economic rewards. The results of these calculations are used as a guide for short-term 

production planning which may be for a quarter, month or week.  

The last 30 years have seen a widely-publicized revolution in the application of numerical 

methods in the mining industry. With the application of geostatistics, 3-D modelling, Lerchs-

Grossmann algorithm and many other computer-based procedures, open-pit mining 

operations are routinely producing better mine plans on ever more complicated and often 

lower grade deposits, and with staffing levels that would have been unthinkable prior to the 

early 1980s. Recent studies in the field of open-pit optimization have been focused on 

finding new algorithms which are: 

 less complex methods in terms of comprehensibility and programming; and 

 require shorter computing times in order to be applicable to the large deposits; and 

 allow the incorporation of real mining complexities such as variable slopes, working 

slopes, time value of money, quality and quantity of planned material, related 

uncertainties, etc. (Dowd & Onur, 1993). 

Almost all computerized hard rock open-pit mine planning methods are based on block 

models. A block model divides the whole ore body and surrounding waste rocks into 3D 

blocks adjacent to each other (as shown in Figure ‎1-1). The model may have millions of 

blocks depending on the size of deposit and the size of blocks. The average ore grade of each 
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block is estimated using geostatistical approaches or conditional simulation methods  

(Sevim & Lei, 1998).  

1.1 COMPLEXITY OF PIT OPT IMIZATION  

The variables involved in production planning of a hard rock open-pit mine interact in a 

circular manner. Without the knowledge of one variable, the next variable in the cycle 

cannot be determined, Figure ‎1-2. The time taken to mine all the pits in the sequence will 

represent the mine life, while the outline of the last pit in the sequence will define the 

ultimate pit limits (UPL). To differentiate ore from waste, a cut-off grade must be 

determined which is a function of final commodity price, mining and processing costs. The 

annual mining rate and consequently the life of the project are unknown at the beginning of 

the planning. It can be observed from Figure ‎1-2 that the costs and revenues and 

consequently cut-off grade must be defined first in order to determine the ore body 

extension and calculate the economic values of the blocks. After that the ultimate pit limit is 

determined and then used to develop a production schedule, including the annual 

production and mining sequence. Subsequently, the selected annual production and mining 

phases are used to revise the revenues and costs. Clearly the value of any given variable in 

this cycle cannot be calculated if the value of the previous variable is unknown. Assuming 

the fixed values for one or more variables along the cycle would lead to an inferior planning. 

In fact, this is a multi-variable optimization problem that requires simultaneous solutions. 

Unfortunately, such a solution is not easy to achieve and after three decades of continuing 

efforts, the long-term production planning of an open-pit mine as a whole is still an 

unanswered issue. (Sevim & Lei, 1998). 

 

FIGURE ‎1-1  BLOCK MODEL  

HUSTRULID  &  KUCHTA 1995 
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In order to overcome this complexity, conventionally partial solutions of the problem are 

found for one or two parameters by firstly fixing the values of the other parameters. 

Typically, revenues and costs are estimated initially and the corresponding cut-off grade is 

calculated and subsequently an economic value is assigned to each block of the model. The 

process is followed to determine the maximum value pit (UPL) by using a graph theory based 

optimization algorithm. Once the UPL is defined, different mining push backs are fit within 

its. Then a trial-and-error approach is used to determine the final schedule with the highest 

possible economic value subject to the operational constraints. One of the most popular 

methods consists of generating a series of nested pits within the pre-determined UPL by 

using of the parameterization technique. This series are then searched for a mining 

sequence that would satisfy the operational constraints and targets. (Sevim & Lei, 1998). 

However, there are several fundamental problems with this method. For example, the 

mining cost is a function of the production capacity. Therefore, the mining cost of a specific 

block would be different when the mine is planned to produce dissimilar amounts of the ore. 

Thus, an annual production rate, which is obviously not optimized, must be assumed 

primarily in order to calculate the economic values of the blocks. Another problem is in 

determination of the UPL. The UPL, which is the final shape of the mine, has to be the 

natural result of the mine sequence optimization. But in this approach, however, mine 

sequences are enforced to fit into the pre-determined ultimate pit. In fact, the UPL and the 

FIGURE ‎1-2  CIRCULAR FASHION OF OPEN PIT OPTIMIZATION  

SEVIM &  LEI 1996 
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mining schedule should not be calculated individually if correct optimization is desired. 

(Sevim & Lei, 1998). 

1.2 NUMERICAL EXAMPLE  

Figure ‎1-3a illustrates a simple numerical example of the problem. It is a two dimensional 

block model with 50 block columns and 10 rows. The blocks have been assumed to be 

square and the slope angle has been considered as    . The blocks have been classified as 

ore and waste in a random manner and the economic values of ore blocks have been 

randomly generated. The value of waste blocks has been set to -6.  

The ultimate pit limit (UPL) of the model has been determined by the graph algorithm of 

Lerchs-Grossmann. As is shown in Figure ‎1-3b, there are 151 ore blocks and 66 waste blocks 

inside this pit and the aggregate value of the blocks fallen inside the pit (marked by the 

number 1) is as 321.   

 

 

w w w w w w w 3 6 w 2 w 1 w w 6 1 w 1 7 6 8 1 w 4 7 w 1 6 w 8 w w w 4 5 7 8 4 2 8 w 3 w w w w w w w 
w w w w w 6 8 1 w 4 7 w 1 6 w 2 w 7 8 w 4 6 w 1 4 8 w 7 5 8 w 1 8 w 3 w 6 7 1 8 5 w 1 5 w w w w w w 
w w w w w 4 6 w 1 4 8 w 7 5 8 w 7 w w 8 w 5 5 w w 3 4 w 1 5 6 w w 6 8 w 4 w w w 3 2 w w w w w w w w 
w w w w w w 5 5 w w 3 4 w 1 5 6 8 7 6 8 8 2 3 1 w 2 w 2 1 4 w 8 7 4 8 w 1 2 w w w w w w w w w w w w 
w w w w w 8 2 3 1 w 2 w 2 1 4 w 3 4 w 7 5 w 1 8 5 w 6 6 w w 5 7 w 2 4 w w w 4 6 6 w 7 w w w w w w w 
w w w w w 5 w 1 8 5 w 6 6 w w 5 2 w w 3 3 8 w 4 2 6 6 4 w 7 2 w w w w w 5 7 3 2 2 w 5 6 w w w w w w 
w w w w w 3 8 w 4 2 6 6 4 w 7 2 w 7 8 2 w 5 5 w w w w 3 w 4 7 w 2 1 1 6 w w w w 1 8 w 6 w w w w w w 
w w w w w w 5 5 w w w w 3 w 4 7 w w 5 8 w 2 4 8 3 1 w 1 3 3 7 w w w 7 4 3 4 6 7 1 4 w 3 w w w w w w 
w w w w w w 2 4 8 3 1 w 1 3 3 7 w w w 4 w w 1 6 w w w w w w 5 w w 4 4 w 1 2 6 w 5 5 1 w w w w w w w 
w w w w w 8 w 1 6 w w w w w w 5 w 4 4 5 w w w 3 6 w 2 w 1 w w 2 w w 1 5 8 2 2 7 6 w w 8 w w w w w w 

a.  Economic value of waste blocks = -6 

w w w 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w 1 w w w w w w w 
w w w w 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o w o o w w w w w w 
w w w w w 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w w w o o w w w w w w w w 
w w w w w w 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w o o w w w w w w w w w w w w 
w w w w w o o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w 1 o w w w o o o w o w w w w w w w 
w w w w w o w o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w w w w w o o o o o w o o w w w w w w 
w w w w w o o w o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w 1 w 1 o w o o o o w w w w o o w o w w w w w w 
w w w w w w o o w w w w 1 w 1 1 1 w 1 1 w 1 1 1 1 o w o o o o w w w o o o o o o o o w o w w w w w w 
w w w w w w o o o o o w o o o 1 w w w o w w 1 1 w w w w w w o w w o o w o o o w o o o w w w w w w w 
w w w w w o w o o w w w w w w o w o o o w w w o o w o w o w w o w w o o o o o o o w w o w w w w w w 

b. 

0 0 0 3 2 2 2 3 3 3 3 3 2 3 2 2 2 1 1 1 1 1 1 2 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 0 4 0 0 0 0 0 0 0 
0 0 0 0 3 2 3 3 3 3 3 4 3 3 3 2 2 2 1 1 1 1 2 4 4 1 5 2 2 2 2 2 1 1 1 1 1 1 5 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 3 3 3 3 3 4 4 4 3 3 3 2 2 2 1 1 2 4 4 4 5 5 5 2 2 2 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 3 3 3 4 4 4 4 4 3 3 3 3 2 2 2 4 4 4 5 5 5 5 5 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 3 4 4 4 4 4 4 4 3 3 3 3 2 4 4 4 5 5 5 5 5 5 5 2 2 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 3 3 3 4 4 4 5 5 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 5 4 4 4 4 4 4 4 3 4 4 5 5 5 5 5 5 0 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 4 4 0 4 5 0 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

c. 

 

FIGURE ‎1-3  NUMERICAL EXAMPLE 
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1 30 10 40 5.93 118 3.97 80.80 
2 26 14 40 5.12 49 7.41 24.16 
3 26 14 40 4.65 37 10.86 13.14 
4 39 15 54 4.18 73 16.02 15.84 
5 30 13 43 4.07 44 20 6.54 

Total 151 66 217 4.75 321 20 140.49 
* Mining for 20 years in 5 uniform period  ** Annual interest rate : 10% 

 
 
 
0 0 4 3 3 2 2 2 2 3 2 3 2 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 0 0 0 0 0 0 0 
0 0 0 4 3 3 2 2 3 3 3 3 3 2 2 2 2 1 1 2 2 1 2 2 2 1 3 1 2 1 2 1 1 2 1 2 1 1 3 1 3 3 0 0 0 0 0 0 0 0 
0 0 0 0 4 3 3 3 3 3 3 4 3 3 2 2 2 2 2 2 2 2 2 3 4 3 3 4 2 2 2 2 2 2 2 2 2 0 0 0 3 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 4 3 3 4 4 4 4 4 3 3 2 2 2 2 2 2 2 3 4 4 4 5 4 4 2 3 2 2 2 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 4 4 4 4 4 4 4 4 3 3 3 2 3 2 2 3 4 4 4 5 5 5 4 4 3 3 5 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 3 3 3 3 3 3 4 4 4 5 5 5 5 5 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 3 3 3 5 4 4 5 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 5 3 5 5 5 5 5 5 5 0 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 5 0 0 5 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

An initial long-term plan had been created for the model using the heuristic method of Wang 

& Sevim (1995), Figure ‎1-3c. The desired size of push backs in this case was set to 40 blocks. 

It could be observed that the designed push backs are almost uniform in size, with a 

descending average from 5.93 to 4.07.  Assuming an interest rate of ten percent and the 

mine life of 20 years, the value of the generated schedule decreases from the attractive 321 

units (in the undiscounted case) to 140.49 units considering the time value of money 

(discounted value), Table  ‎1-1. 

The other schedule shown in Figure ‎1-4 clearly reveals that the independent determination 

of the UPL and mining push backs do not always lead to an optimum mine schedule. This 

schedule produces a higher net present value (NPV), despite having a smaller undiscounted 

value, Table  ‎1-2 . 

 

 

 

FIGURE ‎1-4  IMPROVED SCHEDULE OF THE NUMERICAL EXAMPLE 

TABLE  ‎1-1   CHARACTERISTICS OF THE PUSHBACKS OF THE NUMERICAL EXAMPLE DESIGNED BY LG  AND PARAMETERIZATION  
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1 32 6 38 5.44 138.08 3.86 95.56 

2 39 19 58 5.13 86.07 8.55 35.06 

3 33 18 51 4.30 33.90 12.53 10.30 

4 39 23 62 3.92 14.88 17.23 2.90 

5 23 15 38 1.04 -66.08 20 1.04 

Total 166 81 247 19.83 206.85 20 147.86 

 

* Mining for 20 years in 5 uniform period     ** Annual interest rate : 10% 

 

In the last few decades, several tricks have been used traditionally to overcome this 

problem.  In the oldest attempt, mine design (UPL and push backs) process repeated several 

times by using a series of discounted block values obtained in current design instead of 

undiscounted block values. This method does not lead to an optimum schedule for all cases. 

The mostly used method, especially in commercial packages, is suggested by Whittle in 80’s. 

He uses two extreme methods of mining operations called Best Case and Worst Case mining 

scenarios to determine the final boundary of mining. Nevertheless, the ideal algorithm is one 

that solves two UPL and push back design problems simultaneously. Such a capability has 

only ever been provided in a genetic algorithm method so far. The new ACO mine scheduling 

approach is another method possessing this ability. 

1.3 A  BRIEF REVIEW OF THE LITERATURE  

The manual method of open-pit design required the extensive work of a planning team to 

define boundaries of ore in vertical sections and designing of the mine configurations in 

these sections according to the requirements and the available economic and technical 

information. Clearly this method was very time/labour intensive and would only be 

applicable for very small mineral deposits. The emergence of computers in the field of open-

pit planning has engaged researchers to develop better and faster approaches. However 

even after about 40 years, the field still needs to develop more powerful tools.  

TABLE  ‎1-2  CHARACTERISTICS OF THE NUMERICAL EXAMPLE’S PUSHBACKS IMPROVED BY ACO 
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In early studies (Pana, 1965; Williams, 1974; Lemieux, 1979) the moving cone algorithm was 

used to design the outline of the final pit shape. The algorithm starts from the surface and 

searches for ore blocks with positive economic value. Thereafter, it constructs a minimum 

removal cone on such a block. All blocks inside this cone are considered as removed if the 

sum of the economic values of these blocks is positive. The algorithm continues the search 

until all the ore blocks in the model have been examined. Despite the 3D nature of the 

method and the ability to consider variable slopes, it was proved very soon that the moving 

cone algorithm was not able to find the best solution in all cases. 

After development of various 2D mathematical methods that were able to find the optimum 

UPL on vertical sections, several studies were carried out to combine 2D sections and 

provide 3D pits (Johnson & Sharp; 1971, Wright;1987). Later Koenigsberg (1982) and Wilke & 

Wright (1984) succeeded in directly applying dynamic programming to solve the 3D pit 

design problem. The Lerchs and Grossmann’s algorithm might be one of the most utilized 

algorithms in open-pit optimization field. Authors used the graph theory to formulate the 

model optimum pit limit, see chapter 2.3.1. Afterwards several researchers attempted to 

develop more efficient algorithms for the UPL problem (Huttagosol and Cameron, 1992; 

Yegulalp and Arias, 1992; Zhao and Kim, 1992; Hochbaum, 2001). 

Subsequent studies focused on a more general problem rather than the UPL. It was the 

production planning problem. This challenging problem tried to answer the following 

questions (Dagdelen & Johnson, 1986):  

 Should a given block be mined by the end of mine life or not? (UPL problem)  

If yes: 

 When should it be mined? (Mine sequencing problem),  and 

 Where should it be send? E.g. processing plant, leach pad or waste dump? (Cut-off 

grade problem) 

As Chapter 2 explains, this is a huge mathematical programming model that could not be 

solved by available computer software and hardware.  

An early optimization attempt in production scheduling reverts back to the studies done by 

Wilke and Reimer (1977). Authors proposed a linear programming model for the short-term 

production scheduling of an open-pit iron ore mining operation. Later, Jordi and Currin 

(1979) proposed a goal programming model to optimize net present value, the total net 

profit and the total gold output. Zhang et al.  (1986) described a new Interactive Dynamic 

Optimization Method (IDOM) that combined inventory theory, dynamic programming, 
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computer simulation and interactive technique to formulate a production scheduling 

problem of open-pit mines.  

One of the major developed concepts was the application of lagrangian parameterization for 

optimization of production planning problem by Dagdelen and Johnson (1986). This concept 

uses the UPL algorithm applied to block models with varied block values to produce 

production schedules. The concept of lagrangian parameterization utilized later by Whittle 

to develop the most known commercial package in the field of open-pit optimization. 

Whittle’s method is a heuristic approach that uses the different block values to produce a 

series of nested pits and selects the UPL and mining push backs corresponding to the 

maximum NPV. Sevim and Lei (1996) described methodology comprising a group of heuristic 

algorithms and unconventional dynamic programming. This method had the capability to 

determine the cut-off grade, mining and milling production rates, mining sequence, mine life 

and UPL. In the recent studies conducted by Ramazan & Dagdelen (1998), a new algorithm 

which could develop push backs of minimum stripping ratio was presented. Ramazan & 

Dagdelen and Jonson (2005) proposed a new production scheduling optimization technique 

based on the fundamental tree algorithm to decrease the number of integer variables and to 

solve the problem as a mathematical programming model.  

Debny & Schofield (1996) attempted to use metaheuristic algorithms for first time in pit 

optimization; however, their developed genetic algorithm model was not able to be applied 

in real mining cases because of long computational times. In another study, Kumral and 

Dowd (2005) proposed another metaheuristic algorithm based on simulated annealing to 

improve the value of a given sub-optimal mine schedule. 

The non-deterministic view to the open-pit optimization is another research field which has 

received a lot of attraction in recent years. Osanloo & Gholamnejad (2008) modelled the 

long-term production scheduling problem by chance-constrained binary integer 

programming in a stochastic environment. Dimitrakopoulos (1998) outlined a general 

framework for modelling uncertainty and assessing geological risk. Conditional simulation is 

a class of Monte Carlo techniques that can be used to equally generated representatives of 

the in-situ ore body variability. Achireko & Frimpong (1996) proposed a new algorithm called 

MCS/MFNN which had the capability to address the random field properties associated with 

the ore grades, reserve and commodity prices. After modelling the block characteristics by 

conditional simulation, they used artificial neural networks to classify the blocks into classes 

based on their conditioned values. The error back propagation algorithm is then used to 

optimize the UPL by minimizing the desired and actual output errors in a multilayer 
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perception under pit wall slope constraints. Frimpong et al. (1998) developed an intelligent 

pit optimizer (IPOP) to deal with the random properties of optimized pit layouts. It combines 

stochastic models of ore reserves and commodity prices to generate economic block and 

target values.  

Recently, designing integrated intelligent systems for decision making on mineral resource 

exploitation is becoming of increasing interest. They provide analysis with intelligent design 

options to deal with structural, hydrological and tectonics problems of mine design. 

Frimpong and Szymanski (2002) have discussed current state-of-art technology and research 

in intelligent modelling, and have also addressed the current and future research frontiers in 

intelligent modelling.  

1.4 STRUCTURE OF THE RESEARCH  

The main objective of the current study was to develop a mathematical and computer 

modelling background of a new metaheuristic algorithm based on Ant Colony Optimization 

(ACO) for optimization of long-term open-pit designs.   

To achieve this, a computer program has been provided to test the proposed algorithm. As a 

case study, the block model of a hypothetical iron ore deposit is generated and the values of 

grades have been randomly assigned. The application of the newly developed algorithm is 

tested several times to achieve the best range of the parameters and proper variants of the 

ACO method. 

Chapter 2 elucidates the background, concepts and problems associated with the existing 

open-pit optimization techniques, such as mathematical modelling, heuristic and 

metaheuristic algorithms. This chapter contains the analytical survey of the literature on 

open-pit optimization algorithms and discusses their limitations. Chapter 3 deals with the 

basic fundamentals of the ant colony optimization. The principals of ACO have been 

explained by using the well-known travelling salesman problem in Chapter 3. In Chapter 4 

the major solution steps for a long-term open-pit planning problem by means of ACO is 

presented. The user interface of the programmed software and the results of its application 

on the case study have been included in this chapter.  Chapter 5 contains all conclusions and 

recommendations for further research works arising from this research study. 
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2 THE PROBLEM OF LONG-TERM OPEN-PIT PRODUCTION 

PLANNING 

The open-pit mine production scheduling problem can be defined as discovering the 

sequence in which rock blocks should be removed from the deposit as a certain material 

type in order to maximise the total discounted profit from the mine subject to a variety of 

physical and economic constraints. The size and the complexity of the problem cause that 

the currently available tools and methods are either yield suboptimal answers or not 

suitable for application to reasonable-sized deposits. This part discusses the long-term open-

pit production planning problem from a mathematical programming point of view. 

2.1 MATHEMATICAL PROGRAMMING MODELS  

2.1.1  INTEGER LINEAR  PROGRAMMING (IP) 

Integer linear programming (IP) can be effectively used to model the production scheduling 

problem of an open-pit mine (Caccetta et al., 1998). It can be defined as following: 

Objective function 

The objective function could be expressed as the maximization of net present return by 

mining and processing of blocks. 

           ∑ ∑∑  
     

  

 

   

 

   

 

   

 

Where  

  
   : The binary decision variables of the model (  

     if block   is mined as type   in 

time period   and   
     if otherwise). 

  
  

  : The objective function coefficients, representing the return from (or the cost of) 

mining of block   as type   in time period  . 

  : The index of the blocks in the ore body,          . 

  : The index of different possible types that a block may be mined as (for instance     if 

the block is mined as waste,      if the block is mined as processing ore and     if the 

block is mined as leaching ore and etc.),          . 

  and  : The index of periods over which the mine is being scheduled,          . 

The model consists of       binary variables.  
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The target will be subject to the following constraints: 

Mining capacity constraints  

Total tonnage of extracted material should be between a pre-determined upper and lower 

limit. 

{
 
 

 
 ∑∑     

  

 

   

      
 

 

   

∑∑     
  

 

   

      
 

 

   

            

Where  

   : Total tonnage of block   . 

     
        

  : The maximum and minimum allowed capacity of mining operation for the 

period of  . 

The model has     number of mining capacity constraints. 

Processing capacity constraints  

Quantity of each material type should also be between the defined boundaries: 

{
 
 

 
 ∑     

  

 

   

      
  

∑     
  

 

   

      
  

                    

Where  

     
         

    : The maximum and minimum allowed capacity of processing of material 

type   for the period of  . 

The number of processing capacity constraints will be       .  

Constraints for the average grade of products  

Average grade of each production element should be between pre-determined limits: 
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Where  

   : The index of valuable elements in blocks (such as copper, silver and gold),            

  
  : The grade of element   in block   

    
         

    : The maximum and minimum limits of the average grade defined for the 

element   of the material type   in the period    . 

Based on this formula there will be         number of average grade constraints 

required in the model. Normally no constraint required at least for the waste, therefore, the 

maximum number of constraints could be considered as    (   )      . 

Reserve constraints  

The reserve constraints are mathematically necessary to ensure that a block is mined only 

once. 

∑∑  
    

 

   

 

   

             

The number of constraints required in this case equals to the number of blocks,  .   

The main point in this formula is that when ∑ ∑   
     

   
 
    , it means that the block   

will not be mined at all. In other words the problem of ultimate pit limit (UPL) has also been 

enclosed in this formulation. 

Sequencing constraints  

The sequencing constraints ensure that a block can only be removed if all overlaying blocks 

have been removed in the previous or current periods.  

(∑   
  

 

   

)  (∑∑  
  

 

   

 

   

)                          

Where 
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  : The index for the set of overlying restricting blocks that should be removed earlier for 

mining of block  ,    ,            

The model should have       number of this constraint type. This constraint could be 

written in a compressed version with less number of constraints: 

  (∑   
  

 

   

)  ∑(∑∑  
  

 

   

 

   

)   

 

   

                    

Ramazan et al. (2004) showed that first case is faster at the run time. 

Binary variables 

Finally the variables of the model should be binary.    
                         

Through simply stated, an integer linear programming formulation of the open pit 

scheduling problem usually involves a large number of variables and constraints. For 

example, a small copper-molybdenum deposit containing 10,000 blocks and 10 planning 

periods would require the solution of an integer programming problem with 300,000 

variables, 200 mining and milling constraints, 900,000 sequencing constraints and 10,000 

reserve constraints. Clearly this is beyond the capacity of current integer programming 

packages.  

2.1.2  THE LINEAR PROGRAMMING (LP)  FORMULIZATION  OF THE MODEL  

Johnson (1969) has discussed the LP modelling of the long-term open-pit production 

planning problem. The major benefit in this model is that the fractional block extraction 

becomes possible.  

The LP model could be easily achieved by new definitions for the decision variables, 

coefficients of the objective function and discarding the binary nature of the variables in MIP 

formulation as following: 

  
   : The proportion of block   to be mined in period   as a processing type  . 

  
   : The NPV resulting from mining a unit weight of material in block   during period   if it 

is considered as processing type  . 

Johnson (1969) proposed to solve this problem by decomposing of the large multi-period 

production planning model into a master problem and a set of sub-problems that are exactly 

similar to UPL problem. After solving all sub-problems by well-known UPL algorithms such as 

Lerchs-Grossmann’s algorithm, solving the master problem would be relatively simple.  
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Although this method produces optimum solutions for each period individually, however, it 

does not optimize the problem totally. It also encounters situations in which some portion of 

a block could be extracted while all the overlying blocks have not been fully mined. In other 

words some percentages of overlying blocks are suspended in air. These downsides and high 

number of constraints cause the approach not to be practical. (Osanloo et al., 2008) 

2.2 MATHEMATICAL APPROACH ES FOR SOLUTION OF THE MODEL  

Several approaches have been proposed in literature to solve this model. Dagdelen and 

Johnson (1986) and Caccetta et al. (1998) used lagrangian parameterization in order to relax 

mining and milling constraints into objective function. Consequently the problem could be 

handled by repetition of any UPL algorithm such as Lerchs-Grossmann (1965) graph theory 

based algorithm.  Caccetta et al. (1998) utilized lagrange multipliers to omit the mining and 

milling constraints and solved the model using subgradient optimization method. Dowd & 

Onur (1992) and Onur & Dowd (1993) formulated the problem as a dynamic programming 

model. Later Ramazan et al. (2005) described the application of fundamental tree algorithm 

to reconstruct the mining blocks and decrease the number of variables in scheduling 

problem without reducing the resolution of the model or optimality of the results. A 

fundamental tree is defined as any combination of blocks such that the blocks can be 

profitably mined respecting slope constraints. Following comprehensively reviews the most 

important literatures. 

2.2.1  LAGRANGIAN PARAMETERIZATION  

The idea of lagrangian parameterization originates from the fact that the mining and 

processing constraints are relatively few in number but complicate the underlying structure 

of the whole problem. Using Lagrangian multipliers, the complex multi-period problem of 

open-pit production planning could be decomposed into smaller single-period problems that 

could be solved using optimum pit limit (UPL) design algorithms. Considering very efficient 

UPL algorithms such as Learchs-Grossman (1965) and Zhao-Kim (1992) and etc., this makes 

possible to solve a relatively large long-term open-pit scheduling problem. 

Before going into the formulization of this powerful concept, it is needed to define the UPL 

problem.  

Ultimate Pit Limit (UPL) Problem 

When formulated as a mathematical program, the objective in solving UPL problem is to find 

all the available ore material in the deposit which will maximize the profits and when mined, 

will satisfy the pit slope requirements. This problem can be formulated as: 
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    ∑    
 

 

                                 

Where    is the economic value of the block,     is the set of the blocks which must be 

removed earlier in order to reach the block     and    is one if the block   is mined and is 

zero otherwise. (Dagdelen & Johnson, 1986). Details of the well-known Lerchs-Grossmann 

algorithm of UPL calculation has been explained in chapter 2.3.1. 

Understanding Lagrangian parameterization  

The mining and milling constraints could be simply relaxed by multiplication of constraints in 

Lagrange multipliers and subtracting of resulted phrase from the objective function. 

Therefore the model can be re- written as: 

           ∑ ∑∑  
     

  

 

   

 

   

 

   

 

                                                

Where   
   are the new coefficients that have been obtained by subtracting Lagrange 

multipliers from the original   
   coefficients.  

Now the Lagrange multipliers should be adjusted using the sub-gradient method until the 

optimum schedule is obtained. At each step, only a problem similar to an ultimate pit limit 

problem needs to be solved. In cases that there are no multipliers that can result in a 

feasible solution for the constraints, this method may not converge to an optimum solution. 

This leads to a problem known as the gap problem.  

Caccetta et al. (1998) applied the method on a real ore body with 20,979 blocks and six time 

periods and the schedule obtained was within 5% of the theoretical optimum. One year later 

Akaike & Dagdelen (1999) proposed a 4D-network relaxation method which was capable to 

consider dynamic cut-off grade concept during the scheduling process and handle the 

stockpile option. 

2.2.2  CLUSTERING APPROACH  

One of the recent mathematical approaches to solve an IP model of production planning of 

an open-pit mine is the clustering method proposed by Ramazan et al. (2005). Clustering is 

defined as the classification of a large amount of data into a relatively few number of similar 

classes. The reason is to reduce complexity in the considered application in order to obtain 
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improved decisions based on the available information. Authors combined ore and waste 

blocks together to decrease the number of binary variables in the linear programming 

model. They defined the fundamental tree as any combination of blocks within the push 

backs, such that can be profitability mined and satisfy the slope constraints and no chosen 

sub-set of a fundamental tree meeting these requirements could be found. The clustering 

process is done using an LP formulation in a way that no available information of any 

individual block to be lost. Steps of algorithm have been shown in Figure ‎2-1. 

Figure ‎2-2 illustrates a 2D block model on which three fundamental trees are created by a 

linear programming formulation. Tree I can be mined first after which trees II and III become 

accessible for mining. After determination of the fundamental trees, their precedency is 

calculated by means of a cone template. In this stage, each fundamental tree is treated as an 

individual mining block containing a certain ore quantity, metal content and quality 

characteristics. Now an IP model could be generated by assigning a binary variable to each 

fundamental tree and each production period.  This model is then solved by CPLEX software 

and contents of the UPL are allocated to 3 to 5 smaller volumes (push backs). Finally, 

fundamental trees are scheduled by an IP formulation including all mining and milling 

operational constraints and tree sequence requirements. (Osanloo et al. 2008, Ramazan et 

al. 2005) 

The main advantages of this method are: 

 The number of model’s binary variables is directly proportional to the number of trees 

and periods. Therefore, it can result in reducing the size of the model and, hence, 

Generate a cone template 

Find the fundamental trees for each pushback 

Sequence the fundamental trees 

Schedule the fundamental trees 

Design the haul roads and smooth the pits 

FIGURE ‎2-1  STEPS OF THE MINE PLANNING METHOD BASED ON THE FUNDAMENTAL TREE ALGORITHM  
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bigger block models can be solved by this technique. Authors indicated that by using 

this method the number of binary variable can be decreased from 38,457 to 5,512 in a 

case. (Ramazan et al. 2005). 

 The gap problem could be eliminated. 

 Further studies on this algorithm revealed that it gives a schedule with a 6% higher 

NPV than those predicted by the use of other software such as Mintec Scheduler, NPV 

Scheduler and Millawa algorithm of Whittle. (Bernabe and Dagdelen, 2002). 

The drawbacks of the method are as follows. 

 In very large deposits, the number of trees to be scheduled and corresponding binary 

variables in the model would be still high enough to make the model impractical. 

 Since the fundamental trees are defined inside push backs, the optimality of this 

method will be up to the optimality of the push back determination routine. 

 Probably more than one iteration of the LP formulation is necessary for identifying 

optimal fundamental. 

 The complexity of the implementation of the steps of this method highly affects its 

public acceptance. (Osanloo et al. 2008, Ramazan et al. 2005) 

A B 

FIGURE ‎2-2  NETWORK REPRESENTATION OF A 2-D  BLOCK MODEL,   

(A)  THE NETWORK REPRESENTATION OF THE SOLUTION OF THE LP  FORMULATION AS THREE FUNDAMENTAL TREES SURROUNDED BY 

DASHED LINES (B)  (RAMAZAN ET.  AL.  2005) 
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2.2.3  BRANCH AND CUT TECHNI QUE  

Branch-and-cut technique is an efficient method for solution of combinatorial optimization 

problems that are formulated as mixed integer linear programming problems. It is an exact 

algorithm which combines a cutting plane and the branch-and-bound algorithm. It works by 

solving a sequence of linear programming relaxations of the IP problem. The cutting plane 

improves the relaxation of the problem to more closely approximation. Branch-and-bound 

algorithm carries out by a sophisticated divide and conquer tactic to solve problems. 

Efficiently solution of a general IP problem is usually not possible by means of a cutting plane 

approach; and normally branching is also necessary, which consequences in a branch-and-

cut approach (Mitchell 1999). Perhaps the best known branch-and-cut algorithms are those 

that have been used to solve the travelling salesman problem (TSP). (Appelegate et al. 1995). 

Application of Branch-and-cut procedure for solution of IP model of the long-term open-pit 

scheduling problem is effectively outlined by Caccetta and Hill (2003). Explicitly 

incorporation of most operational constraints such as maximum vertical depth, minimum pit 

bottom width and stockpile option in the optimization procedure could be accounted as the 

major advantages of their method. The process is able to provide acceptable solutions for 

production planning problems of medium sized mines. Nevertheless, for large problems it is 

relatively difficult to obtain an optimal solution. Authors illustrated that on a case study with 

about 209,600 blocks and ten planning periods, a solution with precision of 2.5% could be 

found within four hours. The other disadvantage of their process is that it does not consider 

cutoff grade optimization. The authors recommended that by conjunction of their branch-

and-cut methods with heuristics or meta-heuristics a good (possibly optimal) solution can be 

obtained. This would be also suitable to show how far from optimal this solution may be 

obtained. (Caccetta and Hill 2003). 

Defining all variables of the periods as binary values would prevent this algorithm to 

generate even a feasible solution for the long-term open-pit scheduling model; 

consequently, the number of binary variables should be reduced by setting of some variables 

as real numbers. For instance, setting of the variables corresponding to the positive blocks as 

binary and the rest of variables as real could significantly decrease the solution time. By this 

action the IP model transforms to an MIP model. This strategy is usually applied to all of the 

above-mentioned IP models. (Osanloo et al. 2008). 

2.2.4  DYNAMIC PROGRAMMING (DP)  FORMULATION  

This method consists of dividing of the prime problem into smaller problems for which an 

optimal solution could be easily found. To do this, it searches all possibilities and chooses the 
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optimum one. Unlike other operations research methods, there is not standard 

mathematical approach for dynamic programming models solution. (Osanloo et al. 2008).  

In this regard, the long-term production planning problem is modelled as a graph whose 

nodes represent the state of the system and arcs are related to the action that takes the 

system from one state to another. Solution of the production planning problem could be 

considered as finding the path with the highest value. (Osanloo et al. 2008). 

In the first attempts, dynamic programming was applied on the open-pit production 

planning problem by Roman (1974). His formulation simultaneously calculates the pit limit 

and block sequencing problems. In this formulation, the location of the block that must be 

mined in the last period is determined at starting stage of the sequencing process. 

Accordingly, all possible ways to schedule blocks above the particular block respecting to the 

slope constraints are checked and then the optimum sequence is determined by a NPV 

calculation routine. The sequence related to the highest NPV is chosen and its value is 

assigned to the initial pit outline. The blocks near the pit boundary have to be examined to 

define if they contribute to a positive NPV or not. Thus the blocks that do not correspond to 

a positive NPV are detached from the pit and a new pit sequence and NPV are attained. This 

procedure continues until no block is required to be detached from the pit. The advantage of 

this method is that it is based on the time value of the money and considers scheduling in 

determination of the ultimate pit limit. The drawbacks of this technique are as follows: 

  It cannot be applied on large block models. 

 There is no guarantee that mining and milling constraints will be met in each period. 

 The effect of the mine size on the unit cost is not considered. (Osanloo et al. 2008). 

Another DP formulation for the long-term planning problem expressed by Dowd and Onur 

(1992 & 1993). They indicated that in the previously proposed DP model, the number of 

alternatives which have to be considered is very high and beyond the memory of current 

PCs. They showed that this number could be reduced by means of elimination of the 

unattractive alternatives. Authors proposed algorithm could take all kinds of constraints, 

mobility and equipment access constraints into consideration and eliminate unattractive 

sequences as soon as they appear. The long calculation time was the major drawback of this 

method. 

The other attempt was a method proposed by Tolwinski and Underwood (1992) by 

combining DP, stochastic optimization, artificial intelligence and heuristic rules to solve the 

long-term production planning problem. In their DP model the problem was equivalent to 
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finding a path with the largest value in a graph  (     ), where   denotes the set of 

nodes related to the states of the model as the sequence of the pits,   is the set of block 

removal edges and   is the weights (rewards) associated with   elements. Supposing     to 

be the node related to the initial state of the mine, the problem of optimal production 

scheduling would be equivalent to finding a path               through the graph   that 

minimizes the total reward. For a practical case with numerous nodes, solution of DP model 

all of the nodes requires to be taken into account (blind search) and this leads to NP hard 

condition. To avoid it, Tolwinski and Underwood suggested an informed search method, 

based on AI and heuristic rules. Despite practicality of this technique for big models, it still 

suffers from the lack of guarantee to provide mathematically proven optimal solution or 

even sometimes a feasible solution. (Osanloo et al. 2008). 

Later Tolwinski (1998) and Tolwinski and Golosinski (1995) developed a routine based on the 

depth first search method for the DP formulation. Again in spite of the capability of 

application on large block models, however, the gaining the highest NPV was still infeasible. 

In another study Erarslan and Celebi (2001) utilized a simulative optimization model to find 

the optimum pit limit and production plan. In their DP formulation each extracted block was 

defined as a state of a DP stage. Despite very big advantages of this method such as 

simultaneous calculation of UPL and scheduling, ability to estimate unit costs for each new 

pit scenario and considering all types of constraints; again like the other DP approaches, 

finding the optimal solution was not practical for large deposits. (Osanloo et al. 2008). 

2.3 HEURISTIC ALGORITHMS  

In the last three decades lots of heuristic algorithms have been suggested in the field of 

open-pit production planning, but mostly cover only an individual part of the global 

optimization and needs be integrated with others to provide a general solution for the 

problem. Among them Whittle’s method and Sevim’s techniques are relatively integrated 

approaches that could cover all parts of the open-pit scheduling problem. 

2.3.1  WHITTLE ’S OPTIMIZATION PROCE SS  

Whittle’s process is based on the fast implementation of a series of Lerchs-Grossmann (LG) 

algorithm. This algorithm produces the mathematically optimum final pit shell, but only if 

maximum undiscounted cash flow is the criterion for optimization.  The process tries to 

assist selection of the optimum final pit by providing a best and worst case mining schedules 

and associated NPV curves. This normally produces a very wide range of possible pits among 
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which the engineer must pick a single optimal pit up, usually by guesswork, experience or 

rules-of-thumb. 

It should be noted that the only used optimization criterion in Whittle’s  method is to 

maximize the Net Present Value (NPV) of the cash flows gaining from the sales of metal or 

concentrate obtained from the pit. Therefore if the company derives revenues from 

downstream activities or if it looks for the maximum utilization of the mineral resource, or 

uses some measure other than NPV, the engineer must adjust the criteria accordingly. 

In this part, firstly the steps of well-known Lerchs-Grossmann (LG) algorithm have been 

explained. Then the concepts of the best and worst mining cases on the nested pits created 

by LG algorithm have been described. Finally the suggested method of whittle and milawa 

algorithm for providing of mine schedules have been stated. 

Definition of UPL problem 

During an open-pit mining operation blocks of the rock are extracted from the earth and 

surface of the land is being continuously excavated towards forming a deeper and deeper pit 

until its ultimate shape and termination of the operation. In order to design the optimal 

outline of a pit, one that maximizes the profit, the entire area is divided into a 3-dimensional 

grid of blocks and the metal content of each block is estimated based on the available 

geological information gotten from drill cores. Then each block gets an economic weight, 

representing the value of the ore in it, minus the costs involved in removing and processing 

of that block. While trying to maximize the total economic weight of the blocks to be 

extracted, there are also contouring constraints that have to be respected. These constraints 

correspond to the slope stability requirements of the open pit mining and the precedence 

constraints that prevent blocks from being mined before the others in higher layers of them. 

Subject to these constraints, the objective of the optimization problem is to find the most 

profitable set of the blocks. 

The UPL problem can be modelled as a directed graph   (   ). Each block   corresponds 

to a node with a weight    representing the net economic value of the individual block. 

There is a directed arc from node   to node   if block   can not be extracted before block   , 

which is normally in a layer right above block  . Now the objective is to find the set of blocks 

to be extracted while maximizes the profit. This is equivalent to finding a maximum-weight 

closed set of nodes, where a set of nodes is closed if it contains all successors of the nodes in 

the set. Such a set is called a maximum closure of  . 
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Lerchs-Grossmann algorithm 

The algorithm works by flagging certain blocks as "strong", meaning that they are planned to 

be mined. Blocks that are not strong are labelled as "weak", represents that there is no 

current plan to mine them. A block is considered to be strong if it belongs to a group of 

linked blocks, known as a branch, with a total positive value. Initially, each block is a 

separate branch and thus only the blocks with a positive economic value are strong. 

The algorithm checks for the arcs that run from a strong block to a weak block. Such pairs of 

blocks indicate a precedence conflict, and the algorithm tries to resolve this conflict by 

changing the links between blocks. As these changes are established, a tree structure is built 

up in which the blocks are linked together in branches. Lerchs and Grossmann indicated that 

when a check through all the arcs does not detect any possible strong to weak connection, 

then those blocks which are labelled as strong, constitute the optimal pit. They also 

demonstrated that this situation would be reached after a finite, but unknown, number of 

iterations. In practice the number of required checks would be anything from ten to a few 

hundred times of the arcs number to achieve optimality. 

Before the algorithm is explained, the following terms should be defined (Stuart, 2008): 

Slope Graph: A directed graph whose vertices represent the blocks of rock in the model. 

Directed edges of this graph point upwards to other vertices which must be mined earlier so 

that acceptable pit slopes to be left. This graph does not change during the algorithm 

process. The object of the LG algorithm is to find the maximum closure on this graph.  

Tree Graph: A rooted tree whose edges always coincide with the edges of the slope graph 

(regardless of direction). This graph changes in the course of the algorithm. 

Dummy root: An extra non-existent vertex assumed to lie below the rest of the blocks, and is 

considered to be the root of the tree graph at all times.  

Edge support: All edges and vertices in the tree graph support a mass. The mass is supported 

by an edge which is the sum of economic value of the vertices on the leafward side branch. 

In other words, by removing an edge, the tree graph is divided into two separate branches 

and the support of this edge refers to the sum of economic values of the branch which does 

not include the dummy root.  

Vertex support:  Is equivalent to the sum of economic value of the vertex itself and all 

vertices on its leafward side branch. 
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P and M edges: A P (Plus) edge on the tree graph is defined as the one which has the same 

direction as the slope graph in the direction away from the root. In other words, the P edges 

go up and the M edges go down. Up and down concepts are defined by spatial location. 

S and W edges: An S (strong) edge is either a P edge with a positive mass support or an M 

edge with a null or negative mass supports. In contrast, a W edge could be an M edge 

supporting a positive mass or an S edge which supports a zero or negative mass. 

S and W vertices: A vertex defined as S (strong) if at least one strong edge exists on the path 

between that vertex and the dummy root. Otherwise it will be W (weak).  

Normalized tree: A tree is called normalized if all its strong edges originate from the dummy 

root. Namely, only dummy edges can be strong and all others are weak in a normalized tree. 

In order to normalize a tree, all strong edges that do not originate from the root should be 

removed and replaced with a dummy edge connecting the severed branch to the root.  

Steps of the algorithm 

The four major steps of the LG algorithm are as follows: 

Step1. Initialize the tree graph by connecting all vertices to the dummy root. This is 

obviously a normalized graph. All edges that point to a positive block are strong and vice 

versa. Support of all vertices is also equal to its economic value. 

Step 2. Find a directed edge (A, B) in the slope graph, such that A is a strong vertex but B is 

not. If there is no edge with this condition, the algorithm is completed and the maximum 

closure (solution) is the set of all strong vertices. 

Step 3. Add the edge found in Step 2 to the tree graph and remove the dummy edge 

supporting the (former) strong branch.  

Step 4. Normalize the tree graph and looping back to the Step 1. (Stuart, 2008). 

A closer look at Step 2:  

After finding an unconnected edge from a strong vertex Sn to a weak vertex Wn on the slope 

graph in Step 1, a new tree Ts will be created during Step 2, from the previous normalized 

one Tt, Figure ‎2-3A. This is done by adding a new edge (Sn,Wn) and chopping off the dummy 

edge from the strong branch (D,S1), (Figure ‎2-3B). The existing (Sn,Wn) arrow in the slope 

graph reveals that Sn is always physically below Wn . (Stuart, 2008). 
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According to the definition of a normalized tree and the strong and weak branches, it could 

be consequent that (Stuart, 2008): 

The deleted edge (D, S1) was a strong edge and was supporting a positive mass (support of 

S1). This mass equals to the sum of economic values of all blocks in this branch. The rest of 

the edges in this branch were weak edges, thus they are either leafwards supporting a 

negative mass or rootwards supporting a positive mass. 

All edges in the weak branch were weak; therefore they are either leafwards supporting a 

negative mass or rootwards supporting a positive mass. 

FIGURE ‎2-3  SECOND STEP OF LERCHS AND GROSSMANN ALGORITHM  

FINDING A NEW EDGE FROM STRONG TO WEAK (A),  CUTTING THE ROOT CONNECTION OF STRONG BRANCH (B) 

A 

B 
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After Step 2, the only parts of the tree graph that will be altered is the vertices and edges on 

a path from S1 to the root which could be shown as {S1,S2...Sn, Wn, Wn-1….W2,W1,D} and 

termed the critical path (black path on Figure ‎2-4). 

Support of vertices on critical path could be updated as following: 

By definition the supported mass is the sum of all individual masses on the branch side of a 

vertex. After step 2, S1 loses the contribution of everything that S2 supports. If the new and 

old masses supported by S1 are shown in MnewS1 and MoldS1 then it could be written: 

MnewS1= MoldS1 - MoldS2 

Notice that MoldS1 is the mass of the whole strong branch prior to Step 2.  

Following the path from S1 to Sn after Step 2, the mass supported by any vertex Sx on this 

path equals to the mass of the old strong branch MoldS1 minus the mass that was supported 

by the next vertex on the path MoldSx+1. Therefore generally, one could write: 

MnewSx = MoldS1- MoldSx+1 

 The mass supported by Sn, MnewSn, is equal to the mass of the entire strong branch before 

Step 2, which was equal to MoldS1. 

The masses supported by the all vertices on the critical path from Wn to D will be increased 

by the weight of the entire strong branch. So that  

MnewWx = MoldWx + MoldS1 

FIGURE ‎2-4  CRITICAL PATH  
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It could be easily seen that edges between S1 and Sn turn from P to M edges or from M to P 

(leafwards to rootwards and vice versa) whereas edges between Wn and the root are 

unchanged. The connection from Sn to Wn is always an M edge. Consequently the following 

cases could happen for the edges on the critical path (Stuart, 2008): 

On the S part of the path, a former P edge (that is now transformed into an M edge) must 

have supported a negative or zero mass, based on the definition of normalised tree. The new 

supported mass is found by subtracting this negative value from MoldS1, which is the mass of 

the whole strong branch. So the new supported mass must be greater than or equal to 

MoldS1 (always positive). Consequently a P edge on the S part of the path will always become 

a weak edge after executing Step 2. 

The support of new (Sn,Wn) edge will be always equal to MoldS1, the mass of entire strong 

branch. Considering this positive number and the fact that a new edge is always a rootward 

edge, this means that this edge will always be weak.  

An M edge on the W part of the chain (that was M and is still an M edge after Step 2), should 

support a positive mass before by definition of a normalized tree. Therefore by adding MoldS1 

(the mass of the strong branch) to its support, the new support will always be positive and 

accordingly, the edge will always remain weak (Stuart, 2008).  

In contrast, it is not possible to establish a general rule for P edges in both W and S parts. 

This means that whether a P edge is strong or weak (that were previously M in S side and P 

in W side) should be identified by calculation of supported masses after operation of Step 2. 

Numerical example 

Suppose a very small numerical example considering a two dimensional block model 

containing 6 blocks as shown in Figure ‎2-5. The numbers represent the economic value of 

the blocks. 

 

To illustrate the algorithm, the problem has been presented in a graph figure. In the 

following figures the strong nodes and edges are shown in dark black and the weak ones 

FIGURE ‎2-5  SMALL NUMERICAL EXAMPLE BLOCK MODEL TO ILLUSTRATE LG   
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have been drawn in gray. Steps using the Lerchs-Grossmann algorithm in order to obtain the 

solution are as follows: 

A dummy root is added to the graph and initially all blocks are connected to the root. The 

supported mass of all blocks are equal to their economic value and all edges are leafwards. 

Therefore by the definition of strong and weak edges, all edges which point towards positive 

blocks are strong. Hence the positive blocks will be strong as they possess a strong edge. In 

contrast all negative blocks and their corresponding edges will be weak. 

 

The first possible connection from a strong vertex to a weak one would be considered 

between B5 to B1, Figure ‎2-7. By adding of this connection and removing the edge between 

the root and B5, the supported mass of B1 will change to +5-2=+3, resulting in a strong D-B1 

connection. In spite of the positive support of the B5-B1 edge, it is weak because of its 

rootward direction. This graph does not need to be normalized because all its strong edges 

start from the root. 

 

A second possible connection would be from B5 to B2, Figure ‎2-8. Adding B5-B2 and 

chopping D-B1 will change the support of B1, B2 and B5 vertices to -2, +3 and +1 

respectively. This means that the D-B2 leafward edge is strong and the B5-B2 and B5-B1 

connections are weak. All these three blocks are strong because of having a strong 

FIGURE ‎2-7  FIRST ITERATION  

A 
B 

A B 

FIGURE ‎2-6  ADDING DUMMY ROOT AND INITIAL STRONG AND WEAK NODES AND EDGES 
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connection to the root. Again, all strong edges originate from the root and no normalization 

is needed. 

 

The other possible connection could be found between B5 and B3. Inserting this connection 

will change the support of B3, B5 and B2 edges (path from W1 to S1) to -1, +1 and -2 

respectively. This reveals that all B5-B1, B5-B2, B5-B3 and D-B3 edges are weak. At this 

moment the tree has only one strong edge which originates from the root and there is no 

need for normalization.  

The next possible edge would be from B6 to B2. After adding this connection and cutting of 

the D-B6 edge, the support of B6, B2, B5 and B3 blocks will be altered to +4, +2, +5 and +3. 

Thus the D-B3 and B5-B2 edges will be strong edges by definition.  

FIGURE ‎2-9  THIRD ITERATION  

 

A B 

FIGURE ‎2-8  SECOND ITERATION 

A B 
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Now the B5-B2 connection is a non-dummy strong edge that should be removed and 

replaced by a new connection from the root to B2. Eventually the support of B1, B2, B3, B5 

and B6 vertices will be changed to -2, +2, +1, +3 and +4. All of these blocks are strong as they 

have a strong edge in their connection to the root. 

 

The next connection from strong to weak blocks could be found again from B6 to B4. By 

drawing this edge and deleting D-B2 the supported mass of B2, B6 and B4 will be altered as -

2, +2 and 0 respectively. It results in all B6-B2, B6-B4 and D-B4 edges as well as B2, B4 and B6 

vertices to become weak. No normalization is required at this stage. 

 
FIGURE ‎2-12  FIFTH CONNECTION AND CUT 

A B 

FIGURE ‎2-11  NORMALIZATION  

FIGURE ‎2-10  FOURTH ITERATION  

A B 
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The last possible connection appears now from B5 to B2.  After adding this edge and 

removing the D-B3 connection, the supported mass of B3, B5, B2, B6 and B4 will be changed 

to -2, +1, -1,+3 and +1 . The result is that, except for D-B4, all other edges of the tree are 

weak. The resultant tree does not require any normalization and there is no other possible 

connection from strong to weak blocks. It means that the algorithm has terminated and the 

solution (blocks that are inside the ultimate pit) is the set of all strong blocks. In this case, all 

blocks of the model fall within the solution set. 

 

Whittle found that it is faster to start at the bottom of the model than at the top. 

Additionally he established that the tree structure is much less tangled and easier to resolve 

if the arcs toward a block be checked rather than the arcs way from a block. Finally, when 

the arcs toward a block reveal more than one conflict, he found it advantageous to carefully 

choose which conflict to resolve first. As a whole, these ideas sped up the running of the 

Lerchs-Grossmann algorithm by about a factor of ten. (Whittle 1999). 

Construction of nested pits 

Whittle process starts by carrying out fifty to one hundred LG optimizations, for a list of 

different metal prices. In this approach, a series of pits with different sizes are obtained 

where each of the pits has the highest undiscounted dollar value for the considered pit size. 

The obvious way to do this is to optimize for the lowest price first (finding the smallest pit) 

and then to remove the mined blocks before optimizing with the next higher price. Whittle 

found that it is very much faster to start with the highest price, then the lowest price, and 

then to do a "binary chop" in which repeatedly a price from top and bottom of the prices list 

that has not been optimized yet is chosen and that is likely to split the largest group of 

blocks remaining. In this way, each optimization involves fewer and fewer blocks and arcs 

than the last, and the process goes faster and faster. He also found that it is faster not to 

FIGURE ‎2-13  THE LAST CONNECTION AND CUT 

A B 
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start each optimization from scratch and keep the existing tree structure as starting point for 

the next run with only adjusted block values. (Whittle 1999). 

The best and worst case mining scenarios  

The best case scheduling involves mining with many small cutbacks and indicates the highest 

possible NPV. It assumes that the waste associated with the ore required in any one year is 

mined in that same year.  This is rarely the case in reality and so produces an optimistic view 

of the project NPV. (Wharton 2000). 

The worst case schedule assumes all benches are mined in sequence from top to down and 

in their entirety, this is a very pessimistic scenario rarely seen in practice. (Wharton 2000). 

UPL selection based on the NPV -Tonnage graph 

Figure ‎2-14 shows a typical NPV-Tonnage graph by which Whittles process tries to find a 

good mine schedule. It represents the NPV and ore and waste tonnage for each nested pit. 

The best and worst NPV curves show an upper and lower limit on the value that can be 

achieved. (Wharton 2000). 

Now it is up to the mine designer to select one of the nested pits as UPL based on their 

corporate objectives of his/her company.  Unsophisticated users may use highest pit on the 

best case curve. More advanced users often use the maximum value pit estimated by taking 

the average NPV of the best and worst case curves. Some users vary this technique and use 

pits that are 60 or 70 percent of the difference between best and worst case values. For 

example for the case shown in Figure ‎2-14, although the pit 35 have the maximum NPV, pit 

FIGURE ‎2-14  TYPICAL NPV-TONNAGE GRAPH IN WHITTLE’S METHOD 

WHARTON 2000 
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32 would be selected as UPL because it provides almost the same NPV with 60 m tones less 

mining. (Whittle 1999, Wharton 2000). 

Mine scheduling  

Figure ‎2-15 shows the yearly production of the mine for the best and worst case mining 

scenarios considering a mining capacity of 35 million tons in the first year and 40 million tons 

for the rest of mine life and a processing capacity of 5 million tons for first two years, 8 

million tons for third year and 10 for the rest of mine life. (Wharton 2000). 

The worst case sequence suffers from having a high stripping ratio at the starting years of 

the mine and in this case it has led to a mill process that is starved of material in the early 

years of the mine. On the other hand the best case sequence which is based on mining each 

pit-shell one after the other, is not practical in a mining sense, however, it provides an upper 

limit on the NPV value of the mine. In this case it has a value of $ 368 m. (Wharton 2000). 

The next step in Whittle’s process is to provide a set of practical push backs and try to 

maximize the value of the mine. After that the Milawa algorithm is used to generate the 

mine schedules. It can operate in either the NPV mode where it will seek to maximize the 

NPV or a balancing mode where it will seek to maximize the use of production facilities early 

FIGURE ‎2-15  YEARLY PRODUCTION OF MINE FOR THE BEST AND WORST CASE MINING SCENARIOS  

WHARTON 2000 

 

A 
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in the life of the mine. In this case the chosen intermediate push backs consist of the pits 11, 

14, 19, 22, 25, 28 and 30. The resulting sequence by Milawa NPV has a value of $ 354m 

which is slightly lower than the expected maximum limit. The mill is fully utilised during the 

life of the project, however, the mining rate suffers from peaks and drops, Figure ‎2-16A. This 

may be acceptable considering the good NPV; however, better balanced equipment 

utilization would lead to lower investment, better employment and less use of mining 

contractors during the production peaks. (Wharton 2000). 

The balancing Milawa algorithm improves the steadiness of the mine production and yields 

the following graph, Figure ‎2-16B, and a NPV of $249m which is too poor to be considered. 

The problem arises from the fact that the algorithm has not been given a sensible target 

mining rate to use. It has used the maximum mining rate specified. (Wharton 2000). 

Plotting cumulative period tonnages of waste and ore for the best, worst and Milawa NPV 

cases, Figure ‎2-17A, shows that such a huge stripping is not necessary at the start of the 

project. In this case a relatively balanced production could be achieved by smoothing the 

Milawa NPV curve, Figure ‎2-17B. (Wharton 2000). 

The shown schedule (dotted line in Figure ‎2-17B) has a quite different production in periods 

1 to 5 (17.3 m) to those in period 6 and 7 (37.5m) and from period 8 onwards the 

FIGURE ‎2-16  MILAWA ALGORITHM,  NPV  MODE (A),  BALANCE MODE (B) 

WHARTON 2000 

A 

B 
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requirements are slightly higher than the first period (23.1m). The requirement for pre-

stripping drops in the final years of the project as the final pushback is mined, Figure ‎2-18. 

This planning provides an NPV of $341m, which has a great improvement on the previous 

value of $249m and is very close to the Milawa NPV mode value of $ 354m. (Wharton 2000). 

 

 

FIGURE ‎2-18  FINAL SCHEDULE  

WHARTON 2000 

 

FIGURE ‎2-17  ORE-WASTE GRAPH OF THE PERIODS  

(A)FOR THE BEST,  WORST AND MILAWA NPV  CASES ,  (B)  SMOOTHED PRODUCTION GRAPH(B),   WHARTON 2000 
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2.3.2  SEVIM ’S SUGGESTED APPROACH  

Another heuristic process of open-pit production planning has been developed by H. Sevim 

at Department of Mining Engineering, Southern Illinois University, U.S.A. With this method 

the best mining sequence, the ore and waste production rates, the ultimate pit limits and 

the mine life can be obtained simultaneously. It also allows the best milling cut-off grade to 

be determined by a systematic search. 

The process consists of four main steps. Firstly a block model is created based on the 

boundaries of the ore body and then a bounding algorithm discards those blocks which fall 

outside the largest feasible pit. In second step a series of milling cut-off grades are assumed, 

and for each one a sequence of nested pits is created using a heuristic algorithm. 

Considering of several cut-off grades enables the procedure to systematically search for the 

best cut-off grade without making any assumption about the other variables of the planning 

circle. The heuristic algorithm for generation of nested pits tries to design each pit to contain 

the highest quantity of metal among all possible pits with the same size. The sequence of 

these pits, called as 'maximum-metal' pits, is the best mining schedule since they could 

produce the maximum possible returns comparing to the other pits with the same sizes. 

Third stage is the phase of forming of all feasible mining push backs based on these pits and 

then economic evaluation of these push backs by the NPV method in order to find the best 

push back sequence. Fourth step consists of searching for the best sequences of the 

working-slope pits which end up to a final-slope pit by repeating the action of step II and III. 

In other words, after generation of a series of working-slope maximum-metal pits inside a 

•Create block model 

•Discard the blocks outside largest pit 

STEP 1 

•Consider a spectrum of milling cut-off grades 

•Create nested-pits for each cut-off grade case 

STEP 2 

•Consider all possible sequences of nested-pits for each cut-off garde case 

•Find the best sequence of nested pits for each cut-off garde case by dynamic programming to find the final pit of 
each case 

STEP 3 

•for each found final pit, create aseries of nested pits with a working-slope angle 

• Find the best sequence of these nested pits for each cut-off garde case by dynamic programming  to find the best 
schedule 

STEP 4 

FIGURE ‎2-19  MAIN STAGES OF SEVIM’S SUGGESTED PROCESS  

 



The problem of long-term open-pit production planning 

37 
 

number of large final-slope pits, the networks of all feasible sequences are formed and then 

the best sequence (highest NPV) is searched. These steps are repeated for all assumed cut-

off grades and the best simultaneous solution for the working-slope pit sequences among all 

sequences and all cut-off grades is found. Natural outcomes of this evaluation are the 

answers for the best sequence, cut-off grade, production rates, ultimate pit limits and mine 

life. (Sevim & Lei, 1996). 

Nested-pits creation algorithm 

Q. Wang and H. Sevim (1995) proposed a new heuristic algorithm that although does not 

guarantee to generate the optimum sequence of nested pits in the absolute sense, however, 

their numerical experiments showed that the obtained results are very near to the optimum 

pits generated by the parameterization method. The fact is that the algorithm looks 

somehow superior to the parameterization because of eliminating the gaps in the pit 

sequence and in generating a sequence that is closer (but not always exact) to the desired 

increment. Furthermore their required time of the calculation was only a fraction of the time 

needed by the parameterization method. (Wang & Sevim 1995). 

The nested pits creation algorithm is actually developed based on the idea that the finding of 

a maximum-metal pit of M blocks out of M+N Blocks is equivalent to the removal of N least-

metal blocks. A downward cone template, Figure ‎2-20, is utilized to find the set of least-

metal blocks. It explores the block model and finds the cones comprising N blocks or less. 

The found cones are sorted then in an ascending order of their average metal grade. Finally 

a pit is constructed by unification of the first K cones (lower metal content) to form the N 

least-metal blocks set. These blocks are eliminated from the block model for the next step 

and a new iteration starts on the remained M blocks, Figure ‎2-21. The process continues 

until designation of all blocks of the model to the different pit shells. (Wang & Sevim, 1995). 

The steps of the algorithm are demonstrated through a two-dimensional model (Table  ‎2-1) 

containing 15 square blocks (numbered from 1 to 15 and indicated in upper-left corner) with 

hypothetical random grades (shown by the lower number). Pit slopes in both directions are 

FIGURE ‎2-20  CONE TEMPLATE  

WANG &  SEVIM  (1995) 
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assumed to be simply 45°. Now, the goal is to find a sequence of max-metal pits with a size 

increment of 3 blocks and at most 4 blocks for the smallest pit. Evaluations start from the 

lower-left block and sequentially move to the upper and right blocks. (Wang & Sevim, 1995)  

a. STEPS OF THE ALGORIT HM  

The steps of the algorithm are as following: (Wang & Sevim, 1995) 

By putting the apex of the cone template on the most lower-left block (Block no. 1), three 

blocks (Blocks 1, 8 and 13 with the average grade of 0.567 g/t) fall inside the cone. The cone 

is acceptable (because the number of blocks is not greater than the increment size, 3); 

therefore, it can be stored in sorting array as the first cone. 

First column has no more blocks and algorithm considers the bottom block of the next 

column (Block 8). Placing the apex of cone shell on Block 8, Blocks 8 and 13 with the average 

grade of 0.65 g/t will fall inside. This cone is also acceptable and is inserted in the sorting 

array as the second place because of its average grade which is greater than that of the 

previous cone. 

When the next upper block in column II (Block 2) comes to be the apex of the cone shell, it 

will contain five blocks (2, 8, 9, 13 and 14), which is more than 3. Consequently, the cone is 

ignored and the algorithm continues by the bottom block of the third column. 

Setting the cone apex on the Block number 13 shows that it is the only block of the cone. 

The average grade of 0.7 g/t, which is greater than the average grade of previous cones, 

locates it in the third place of the array. 

Block 9 is the next one that should gain the apex of the cone template. This time the cone 

consists of three blocks (9, 13 and 14) with an average grade of 0.633 g/t. this makes it 

acceptable and inserts it in between Cone 1 and Cone 2 in the array. In other words, the new 

cone becomes Cone 2 and the former Cones 2 and 3 turn into Cones 3 and 4 respectively.  

The procedure continues until all seven columns are considered and an array of cones with 

ascending average grade order is obtained. The first cone of the array (lowest average grade) 

contains three blocks (7, 12 and 15) which is equal to the desired nested pit size. Hence 

these three blocks are disregarded from the block model, the block model is updated and 

algorithm moves to the next iteration. During the second iteration remaining 12 blocks of 

maximum-metal pit (shown below the original in table), will be altered in the same way.  
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 6 0.567 13,8,1  APEX=1 
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 8 0.650 13,8  APEX=8 

 - - Block No>3  APEX=2 

 9 0.700 13  APEX=13 

 7 0.633 14,13,9  APEX=9 

 - - Block No>3  APEX=3 
 3 0.400 14  APEX=14 

 - - Block No>3  APEX=10 
 - - Block No>3  APEX=4 

 4 0.500 15  APEX=15 
 5 0.500 14,15,11  APEX=11 

 - - Block No>3  APEX=5 
 2 0.350 12,15  APEX=12 

 - - Block No>3  APEX=6 
* 1 0.233 15,12,7  APEX=7 

 0.567 4 1,8,13  APEX=1 

 
 
 
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 0.650 7 8,13  APEX=8 

 - - Block No>3  APEX=2 

 0.700 - 13  APEX=13 

 0.633 6 9,13,14  APEX=9 

 - - Block No>3  APEX=3 

* 0.400 1 14  APEX=14 

* 0.467 2 10,13,14  APEX=10 

 - - Block No>3  APEX=4 

 0.500 3 11,14  APEX=11 

 - - Block No>3  APEX=5 

 0.600 5 6,11,14  APEX=6 

* 0.500 1 1,8  APEX=1 

 
 
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 0.600 4 8  APEX=8 

 0.700 5 2,8,9  APEX=2 

 0.800 8 9  APEX=9 

 0.766 7 3,9,8  APEX=3 

 0.800 9 4,9,11  APEX=4 

 0.600 3 11  APEX=11 

 0.550 2 5,11  APEX=5 

 0.700 6 6,11  APEX=6 

 0.750 4 2,9  APEX=2 

 
 

 

It
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n
 4

 

 0.800 5 9  APEX=9 

 0.850 7 3,9  APEX=3 

 0.800 6 4,11,9  APEX=4 

* 0.600 2 11  APEX=11 

* 0.550 1 5,11  APEX=5 

* 0.700 3 6,11  APEX=6 

* 0.750 1 2,9  APEX=2 

 

It
er
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* 0.800 2 9  APEX=9 

* 0.850 3 3,9  APEX=3 

* 0.900 4 4,9  APEX=4 

TABLE  ‎2-1  STEPS OF WANG&SEVIM’S SUGGESTED METHOD FOR NESTED PITS GENERATION  
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By applying the same steps on the updated block model with 12 blocks results in another 

array of cones. Accordingly, the other least-metal pit shell could be distinguished by merging 

of the first two cones of this array (Blocks 10, 13 and 14). By disregarding of these blocks, a 

new maximum-metal pit containing nine blocks is achieved. By repeating the procedure for 

two more iterations, the number of blocks in remaining maximum-metal pit progressively 

decreases and finally by reaching to four the algorithm ends. (Wang & Sevim, 1995). 

It should be noted that in the third iteration of the algorithm, the first cone has two blocks 

which is one block less than desired pit size and the combination of the first two cones has 

four blocks which is again one block more than the proposed size. Since both alternatives 

have the same difference from the requested increment (three blocks), the first option 

(Blocks 1 and 8), is selected for elimination because of the lower average grade. Eventually a 

pit of 7 blocks is remained for the next iteration. (Wang & Sevim, 1995). 

Another point that is very important in implementation of the algorithm is that usually only 

the first few cones of the array need to be stored because the objective of the procedure is 

only to find a least-metal union containing three blocks. In the extreme case, where each 

cone contains only one block, a maximum of three cones is needed to make a union of three 

blocks. So, after building of three first cones, the average grade of the newly built cone is 

compared with last item of the array. If it is bigger than that of the third cone, it will be 

rejected. Otherwise, it will be stored in the array according to its average grade and the 

former last cone will be discarded. Authors proposed that for the increment size of N blocks, 

FIGURE ‎2-21   CONSTRUCTION AND SORTING OF THE CONES  

SEVIM &LEI (1998) 
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N/2 will be a sufficient number for the size of sorting array. This attitude significantly 

reduces the amount of required memory and decreases the computing time. The other 

argument that is very vital in dealing with the large block models is that if the number of 

blocks for any cone exceeds from the required pit increment size, the size of the cones 

constructed by putting the apex on upper blocks of this column, which enclose the lower 

one, will be also bigger than the required increment number and; consequently, they do not 

need to be evaluated. (Wang & Sevim, 1995). 

Five maximum-metal pits with the sizes of 4, 7, 9, 12 and 15 blocks are the final outcomes of 

this numerical example. Visual analysis of the block model shows that these pits are indeed 

the maximum-metal pits. In other words, each one of the pits in this series contains more 

metal than any other pits with the same size. The reason is that by elimination of the lowest 

average grade cones from a block set, the remaining pit would expect to have the highest 

probability of being the maximum-metal pit of its size. Authors’ tests on artificial random 

block models indicated that the deviation from real maximum-metal pits, if there is any, is 

very small. (Wang & Sevim, 1995). 

Dynamic programming based search algorithm  

The process of searching for the sequence of nested pits corresponding to the highest NPV 

can be simply formulated as a conventional dynamic programming (DP) problem. In this 

model, the years are considered as stages and the pits are assumed as the states. Clearly the 

traditional characteristics of the states in the classic dynamic programing modelling should 

be satisfied and calculated value of the arcs in one state must be independent of the 

decisions made about the previous pits. In this network the arcs represent the mining of a 

pushback and their values are defined as the Net Cash Flows (NCF) created by mining of that 

pushback. Unfortunately in this formulation the capital investment at an arc depends on the 

capital that has already been invested in earlier years, and capital investment is directly 

connected to the production decision. (Sevim & Lei, 1998). 

Another improved DP modelling was proposed by Sevim & Lei (1996) by a modification in 

traditional DP formulation. They defined the states of the network by two variables including 

the maximum-metal pit and the equipment configuration. Authors used a record containing 

the number of equipment units and their ages as representative of the equipment 

configuration. For determination of the required equipment of an arc, all the changes in the 

status of the equipment such as buying the new equipment, substituting the used 

equipment, and storing the extra capacity are recorded in the equipment configuration 
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along its path. Sometimes, several paths of the network reach to a similar equipment 

configuration which is used by the DP technique as an advantage. (Sevim & Lei, 1998). 

A set of 5 nested pits is considered to illustrate the above mentioned process. Having 3, 6 

and 10 paths in the first, second and third stages respectively, there will be 19 arcs in total in 

the network, Figure ‎2-22. It is assumed that 1, 2, 3, 4 and 5 unit of equipment is required to 

mine Pit P1, P2, P3, P4 and P5 respectively. Hence, when P1 is mined out, the Path 01 has 

one unit of one year old equipment and the calculated NPV of $-23.3. The next arc 

corresponds to a push back from P1 to P3 which needs 2 equipment units. In other words 

one more unit is required for this push back and there will be a two years old unit plus a one 

year old unit at the end of the second year with the resulting NPV of $9.6. Only one 

equipment unit is required along the next path (0134) for removing of the material between 

P3 to P4. At the end of third year the NPV of $24.4 is reached and the equipment 

configuration has a three years old unit plus a one year old unit (the unit bought in the 

second period is has been stored in this year). Following a similar routine for arc 0234, 

identical equipment configuration is received at the end of pit P4. This means that these two 

paths direct to P4 with the similar equipment configuration. Comparing the generated NPV 

of two paths, $24.4 and $27.6 for the paths 0134 and 0234 respectively, reveals that the 

FIGURE ‎2-22  ILLUSTRATION OF THE DYNAMIC PROGRAMMING APPROACH FOR THE BEST PUSH BACKS SELECTION  

SEVIM &  LEI (1998) 
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next extensions of the path towards P5 should be made from 0234 instead of 0134. Hence, 

the decision made about the extension of P4 is independent from the route which has been 

passed up to this point. The proposed DP algorithm eliminates all the economically inferior 

Paths (such as 0134) and carries forward the information on superior Paths (like 0234). 

There are two other similar states in Stage 3 that decreases the number of distinct states at 

Stage 3 from 10 to 7. This considerably reduces the size of the network. (Sevim & Lei, 1998). 

After evaluation of all paths, their NPV is compared by the algorithm to find the highest NPV. 

The state corresponding to the highest NPV defines the UPL. Then, tracing back from the 

UPL, the algorithm generates the optimal mine sequence. It should be noted that each state 

of the network has a related NPV which may decline from that state to the next one if the 

mining activity along the arc connecting those states does not provide a positive cash flow. 

(Sevim & Lei 1998). 

Considering working-slope angles 

A simple hypothetical network has been utilized to demonstrate the process of considering 

working-slope angles. For this example spectrum of three cut-off grades is considered and 

for each cut-off grade a series of final-slope maximum-metal pits is determined. Figure ‎2-23 

shows the network of all possible mining sequences that could be formed from these pits. 

For instance, for the third cut-off grade (X3, drawn in the foreground) five maximum-metal 

pits are generated from P1 (the innermost and the smallest pit) to P5 (the outermost and 

the largest pit). It is also assumed that the incremental block numbers between two 

successive pits to be uniform and equal to the lowest possible production rate throughout 

the series. (Sevim & Lei 1996). 

The network shown in Figure ‎2-23 demonstrates that if P5 is mined in the first year, the 

mine will be ended in one year. Instead, by mining pit P1 in the first year, one of the pits P2, 

P3, P4 or P5 would be considered for the next year. The other connections of the network 

have the same explanation. Paths of the network could be defined as the sequences of pits 

which begin at time zero and ends in any of the pits and corresponds to a feasible 

production schedule. A net present cash flow (NPV) could be calculated for each path by 

summing up the discounted net cash flows of the push backs along the path to time zero. 

The best path of each network can be chosen then, as the path corresponding to the highest 

NPV. Consequently the final best path could be found among the best paths of all networks 

by comparison of their NPV. (Sevim & Lei 1996). 
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Suppose that the best path of the foreground network in Figure ‎2-23 to be as the marked 

thick line (0-P1-P3-P4). It reveals that the mining ends at P4 and the mining of the pushback 

from P4 to P5 has a negative cash flow. Therefore P5 is not included in the sequence. 

However, the best mining sequence needs to be made by a series of working-slope pits 

nested inside a large final-slope pit which is normally found in previous phase. As shown in 

Figure ‎2-24, two series of six working-slope maximum-metal pits are created ending at the 

pits P3 and P4. Then two new networks have been generated based on these series, and 

their best sequences have been found. There are two key points which have to be explained 

here. Firstly, the series of working-slope pits are constructed not only within the best final 

pit of the phase III but also within some smaller pits, like P3 in this case. The reason is that by 

applying the working-slope pits, the economics of the project changes too and the found 

final pit in phase III may no longer be the real UPL. Secondly, dissimilar to phase III, the best 

paths on the network of the working-slope pits have to be always end up at the last pit (the 

final-slope pit within which the series of working-slope pits have been generated). (Sevim & 

Lei 1996). 

FIGURE ‎2-23  GENERATED NESTED PITS FOR DIFFERENT CUT-OFF GRADES  

SEVIM &  LEI (1996) 
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For the best final pit of every cut-off grade in the spectrum a network similar to that 

presented in Figure ‎2-24 has to be constructed. Suppose that the best working-slope 

sequence has been found to be like the thick line marked in the foreground network of 

Figure ‎2-24 that (0-P2-P4-P5-P6). Superscripted numbers represent that the pits have been 

constructed based on the working-slope angle. The shown path means that the optimum 

mine-life is four years and the optimum shape of the mine is defined by pit P3. The optimum 

mining sequence of 0-P2-P4-P5-P6 reveals that P2 should be mined in year one. Then P4 have 

to be reached by a pushback from P2 in next year. In year three P5 needs to be mined; and 

finally, P3 has to be reached in the fourth year, expressing the ultimate pit. Accordingly, the 

optimum rates of ore and waste production could be calculated based on the known 

quantity of ore and waste in each pushback for the selected cut-off grade. This simplified 

example shows that the proposed process does not determine the mining sequence and the 

UPL independently. The other advantage is the values of production rates and the cut-off 

grade are the natural outcomes of the process and no pre-judgement is applied on these 

values. (Sevim & Lei 1996). 

FIGURE ‎2-24  WORKING-SLOPE PIT SERIES  

SEVIM &  LEI (1996) 
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2.4 METAHEURISTIC METHODS  

2.4.1  INTRODUCTION  

Metaheuristic optimization methods are a higher class of heuristic searching algorithms that 

are widely used for solving many of NP-hard combinatorial optimization problems. 

Combinatorial  optimization  

A combinatorial optimization problem could be defined as any maximization or minimization 

problem that is normally easy to state but very difficult to solve. Fundamentally a 

combinatorial optimization problem involves in finding the values of discrete variables in a 

way that the optimal value of a certain objective function to be reached subject to some 

problem constraints. The large Travelling Salesman Problems (TSP), Shortest-Path Problem, 

Assignment Problem, Sequential Ordering Problem and Knapsack Problem are typical 

examples of the combinatorial optimization problems. (Dorigo & Stützle, 2004). 

Combinatorial optimization problems are basically associated with a set of problem 

instances. The term problem denotes the overall query which has to be answered, generally 

having several parameters (variables) with undetermined values. A problem with particular 

values for its parameters called as instance. In other words an instance of a combinatorial 

problem П could be defined as a triple (Ѕ,f,Ω), where S refers to the set of candidate 

solutions, f denotes the objective function having a value f(s) for each candidate solution 

Ss , and Ω represents the set of problem constraints. Solutions that satisfy the problem 

constraints Ω define the set of feasible solutions SS 
~ . Finding the globally optimal feasible 

solution *s  is the aim of any optimization problem. For instance in a minimization problems 

the target is to find a solution Ss
~* in a way that )()( * sfsf   for all Ss

~
 . (Dorigo & Stützle, 

2004) 

Metaheuristics 

In engineering applications, most of the combinatorial problems are NP-hard. Normally the 

optimal solution of such a problem cannot be obtained within an acceptable computation 

time. Therefore approximation methods have to be utilized in order to practically answering 

of the large instances of the problem. An approximation method returns a near-optimal 

solution in a comparatively shorter time. Sometimes the approximation methods are 

colloquially called heuristics. They normally act by building new solutions or improving the 

available solutions by using a set of problem-specific knowledge. (Dorigo & Stützle, 2004). 

During last decades the new class of heuristic procedures, known as metaheuristics, has got 

a strong research attraction. A metaheuristics could be defined as a series of algorithmic 
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ideas that improve the heuristic methods and make them to be applicable to an extensive 

range of challenging problems. They are usually inspired by the biology and the nature and 

their application has expressively improved the capability of the algorithms in finding high 

quality solutions to very hard combinatorial problems, particularly for large and poorly 

understood problems. The family of the metaheuristics includes, but not limited to, Genetic 

Algorithm, Simulated Annealing, Tabu Search, Ant Colony Optimization, and Particle Swarm 

Optimization. (Dorigo & Stützle, 2004). 

2.4.2  GENETIC ALGORITHM (GA) 

Genetic algorithm is a search procedure that mimics the operation of genetics and natural 

selection. It begins the search with a population of random solutions and evolves this 

population over a series of generations by applying probability techniques and reproduction 

operators to each member of the population. Reproduction operation consists of two main 

steps known as crossover and mutation. The crossover operator combines the selected pairs 

of the solutions to produce new and potentially better solutions whereas the mutation 

operator provides the potential diversity in the population. The higher the quality of 

solutions (fitness values), the higher the possibility of their survival in next generations.  

The only study on the application of genetic algorithm in optimization of an open-pit mine 

production planning carried out by Denby and Schofield (1994). Figure ‎2-25 compares their 

proposed algorithm with the conventional long-term mine planning process. 

 

FIGURE ‎2-25  GENETIC ALGORITHM VERSUS CONVENTIONAL MINE PLANNING  

(SIMULTANEOUS CALCULATION OF THE UPL  AND PRODUCTION PLANNING )   
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The main advantage of this method was its ability to solve UPL and long-term planning 

problems simultaneously. By choosing proper values for genetic parameters, the method 

was capable to get good results in an acceptable time. On the other hand, the method was 

suffering from the fact that the results were not reproducible because of the stochastic 

nature of the algorithm. The major steps of the procedure have been summarized in 

Figure ‎2-26.  

Chromosome representation of the pits  

Denby and Schofield (1994) developed a special multi-dimensional genetic algorithm 

representation. This structure was capable to model the three dimensional spatial data and 

the time elements of the problem.  They encoded the long-term mine schedules as a set of 

matrix cells where the values assigned to the cells denoted to their period of extraction. 

(Denby and Schofield, 1994). 

Initial population 

Procedure starts with generation of a random population of feasible schedules. Every 

schedule could be considered as a combination of a series of nested surfaces of pits. Each 

•A set of random schedules are created  

Initial Population 

•For each of schedules of the population a fittness value is calculated , this is the Net Present Value of the schedule 

Fittness Calculation 

•During this phase individual schedules either survive to the next generation or die out, based on a weighted 
probability 

Individual Selection 

•Selected individuals are randomly classifies in pairs 
•Pairs are modifies by crossing-over  or breeding  schedule characteristics 
•In a random manner, a small percentage of schedules are being modified for mutation 

Reproduction 

•This step involves modifying the schedules as little as possible to ensure extraction constraints are not broken 

Normalization 

•Checking if the optimum solution is produced 
•If not, add offsprings to the population of parents, get back to the step 2 for a new iteration 

Termination criterion 

FIGURE ‎2-26  THE MAIN STEPS OF OPEN PIT PRODUCTION PLANNING BY GENETIC ALGORITHM 
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surface is constructed as a 2D array of random elevations ranging in value between the 

previous larger pit and the ground surface.  At the beginning, the generation of these 

surfaces are unconstrained from size and permitted slopes angles point of view. Therefore 

they have to be normalized in the next step to ensure that a practical pit surfaces containing 

a proper volume of material are produced. The population size is one of the controllable 

parameters in the genetic algorithm systems. In this case it is set to 50 on the basis of 

experience in other fields. (Denby and Schofield, 1994). 

Although Denby and Schofield generated the individual schedules by a random mechanism, 

however they envisaged for the future systems that the efficiency of the technique may 

improve by intelligent selection of feasible schedules. (Denby and Schofield, 1994). 

Assessment of pit fitness  

Defining a proper function for assessing of the quality of solutions is another fundamental 

stage in success of a genetic algorithm. Fitness value for each of the schedules in the 

population is calculated as the net present value (NPV) of the schedule. Authors have 

reported that the introduction of highly complex fitness functions has little or no effect on 

the overall efficiency of the system. (Denby and Schofield, 1994). 

Reproduction of pit population  

Reproduction is a critical stage during which a new generation is produced and individual 

schedules either survive to the next generation or are removed altogether. In this process 

schedules with high fitness values have more chance for surviving than those with lower 

fitness values. In this stage, it must ensure that a sufficient genetic diversity is maintained 

from generation to generation as well as convergence to an optimum result is sufficiently 

rapid by permitting the good schedules to reproduce faster than the bad schedules. (Denby 

and Schofield, 1994). 

a. CROSSOVER   

Approximately 70% of schedules are randomly combined in pairs on a probabilistic basis 

during crossover. This will result in the crossed pairs having modified schedule 

characteristics. The operator increases the fitness values of some schedules and improves 

their chances of survival into future generations, but some others will possibly have lower 

fitness values, reducing their chances of survival. (Denby and Schofield, 1994). 
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b.  MUTATION  

Mutation is the other important operator in reproduction. It randomly acts on a probabilistic 

basis on approximately 0.1% of the cells in the schedule to maintain genetic diversity and 

prevents the system from stagnation in an incorrect optimum.  It is done by randomly 

modification of the elevations of the selected cells. (Denby and Schofield, 1994). 

c.  NORMALIZING OF THE PI TS  

The action of crossover and mutation operators normally does not care to the shape of the 

pits in generated mine schedules. This leads the resulting pits to violate constraints and a 

normalization process to be needed after each action. Normalization procedure involves in 

modification of the schedule, as little as possible, to ensure that the extraction constraints, 

such as the number of cells in each scheduling period or the geomechanical sequencing 

constraints (slope angles) are not exceeded. The normalization process consists of two 

stages. In first pass surface points are gradually brought closer together till the slope angle 

and geotechnical constraints to be satisfied. Then, during the size constraint pass, surface 

points are either raised or lowered within geotechnically accepted limits until the size of pit 

becomes acceptable. These can sometimes result in significant alterations to the schedules. 

(Denby and Schofield, 1994). 

d. LOCAL OPTIMIZATION  

Authors discovered that the addition of a local optimizer greatly improves the optimization 

performance. They employed a programmed logic rule to swap blocks of high value that are 

scheduled for the late  extraction periods with blocks of low value that are scheduled for 

early  extractions. The approach utilizes pure logic and is not influenced by probability. Once 

the surface has been checked by local optimizer, it is necessary to normalize the surface 

again. Authors reported a 35% improvement in the speed of algorithm by use of the local 

optimizer. (Denby and Schofield, 1994). 

Termination condition of the algorithm  

The number of generations required to reach the optimum schedule varies depending on 

the complexity and the scale of the problem. Authors informed that for a problem consisting 

200 blocks, approximately 95% of final optimum could be reached after 50 to 120 

generations, whereas to reach 98% of the optimum requires as many as 380 generations. 

However, the way in which the genetic algorithm is formulated has a significant effect on the 

efficiency of the system. (Denby and Schofield, 1994). 
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2.4.3  S IMULATED ANNEALING (SA) 

Annealing is the process in which a metallic or glass solid is heated up sufficiently to allow its 

atoms and molecules to reach in a stress-free state (but not so much that cause melting) and 

then cooled gradually down to rearrange in a new configuration. In simulated annealing 

method, the value of the function under optimization is equivalent to the energy of the solid 

in reality. It begins with a random solution and then perturbs that solution slightly to create 

another potentially better solution. If the new solution satisfies the constraints and 

corresponds to a better objective function value than the existing solution, it is accepted 

without question. However, if the fitness value of new solution is less than that of previous, 

then a decision on its acceptance has to be made based on the current temperature of the 

system. This lets the procedure to jump out of potentially sub-optimal solutions. During the 

iterations of the algorithm, the temperature of the system is gradually lowered until the 

approximately optimum solution has been found. (Thomas 1996). 

Initial temperature and the cooling rate are the critical factors in the success of simulated 

annealing process. Excessively low starting temperature makes the process to converge too 

quickly and a sub-optimal solution might be produced. In contrast, extremely high initial 

temperature would cause spending a long time on poor initial solutions. Similarly, rapidly 

cooling of the system potentially gets locked around a local-optimum solution and produces 

a sub-optimal consequence. On the other hand, disproportionately slow cooling rate 

unnecessarily rises the computation time. (Thomas 1996). 

Kumral and Dowd (2005) investigated the solution of the open-pit mine production 

scheduling problem by using of SA metaheuristic. Figure ‎2-27 shows the major steps of this 

process. The idea behind this research was that any sub-optimal schedule can be improved 

by using SA. Therefore, they constructed a sub-optimal schedule by a conventional 

production planning algorithm and submitted it to the SA to improve its fitness value. The 

main supersede of this routine is that it employs a multi-objective function (comprised three 

minimization components in this study). On the other hand, independent determination of 

UPL and production schedule would be counted as a disadvantageous for this method. 

(Kumral & Dowd 2005). 

Objective function 

The objective function of the problem is expressed as minimization of a multi-objective 

function comprised three cost components including: 
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 Cost1 : the cost of deviation from required tonnage 

 Cost2 : the penalty and opportunity cost for each content variable 

 Cost3 : the cost of the content variability for each content variable (Kumral & Dowd 

2005). 

The first component arises from the fact that the quantity of extracted ore in each period 

should be in a specified plant capacity limits. Excessive quantity of ore mining leads to a 

stock holding cost. Inversely inadequate extraction tonnage would cause contractual costs 

due to unsatisfied capacity. In order to calculate the first element of the objective function, 

the total deviation from required tonnage is calculated during the course of the mine life. If 

the amount of scheduled production mass falls between the specified lower and upper 

boundary of tonnage tolerance (±5% of the Nominal Mining tonnage in period  ,         ), 

no cost will be incurred. Otherwise: 

       ∑       {
       
       
 

                  
                  
                               

 

   

 

where  

FIGURE ‎2-27  STEPS OF OPEN PIT SCHEDULE OPTIMIZATION BY SIMULATED ANNEALING  
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where   
  is a binary variable which is equal to one if the block   is considered to be mined in 

period  ,   
  is a binary variable which is equal to one if the block   is considered to be 

extracted as an ore block in period  ,   is the number of blocks in the block model,       is 

the value of first element of objective function in period  ,     is the absolute deviation of 

the scheduled tonnage from the required tonnage in period  ,     is the cost coefficient for 

the mining rates lesser than desired capacity and     is the cost coefficient for the mining 

rates further than the planned tonnage,    is the number of planning periods considered for 

scheduling,    is the weight of block  ,          is the nominal required tonnage in period 

 .  (Kumral & Dowd 2005). 

Secondly the average content of any considered parameter in the mined ore have to be 

between the stated limits (±10% of the specified grade). For less/more contents than the 

nominal content, a penalty/opportunity cost is deserved. Industrial, operational, qualitative 

or environmental reasons leads to the penalty cost for low quality ore production. Whereas 

excessively high-quality ore production schema in early phases may cause the content 

constraints in subsequent years not to be reached and consequently an opportunity cost to 

happen. (Kumral & Dowd, 2005). 
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where     
 

 is the deviation of the grade of the parameter   in period   from designed 

value,   is the number of parameters,    is the grade of the parameter   in block   ,      
 

is 

the cost of second element of the objective function related to the deviation of the grade of 
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the parameter   in the period  ,       
 

 is the designed grade of the parameter   in period 

  and     is tonnage of the ore in period   in the current schedule,     and     are the cost 

coefficients for the low and high grade mining respectively. (Kumral & Dowd, 2005). 

Kumral & Dowd (2005) considered the last element of the objective function to minimize the 

content variance of the variable under consideration. They expressed that by sending the 

extracted ore to stockpiling or processing operation, the variance could has a direct 

influence on the mill efficiency or parameters of the stacking and reclaiming. Moreover, the 

fluctuations of the content may result in disturbing the quality of the process or the finished 

product. (Kumral & Dowd 2005).  
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where    
 

 is the content variance of the parameter   in period   and     is the cost 

coefficient . 

Using a weighting summation, three mentioned components are converted into a single 

objective function. Magnitude of the weights (priorities of the objective function 

components) seems to depend on the ore body, sales contract, structure of the ore market 

and the plant characteristics. (Kumral & Dowd 2005). 

              ∑               
    
     (Kumral & Dowd, 2005) 

where          is the priority coefficient of the objective component   and      is the 

number of objectives components (three in this case). Considering an unbiased combination 

of the components, the sum of weights needs to be equal to one. (Kumral & Dowd 2005). 

∑          
    
     (Kumral & Dowd, 2005) 

Initial solution 

It has been experienced that the computational time to converge towards a good solution 

could be very long utilizing a random initial solution. Kumral and Dowd (2005) used 

lagrangian parameterization method proposed by Dagdelen and Johnson (1986) to obtain a 

favourable initial solution. 
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Constraints 

Kumral and Dowd (2005) implemented their optimization formulation subject to a series of 

constraints. The first constraint implies that the number of periods should be equal to or 

higher than the minimum acceptable number of phases. 

Furthermore, authors considered the access constraint to guarantee that the required 

working space of the loading equipment has been provided and a safe working slope has 

maintained. For example, with regular cubic blocks and the slope angle of 45  in all 

directions, a block is only minable in a given period if all of the nine blocks on its upper level 

have been extracted in previous periods or simultaneously in current period. In other words, 

in order to extract a mining block, all blocks within an extraction cone of the block have to 

be removed earlier or at the same time. Allowing the blocks to transfer from a period to 

another, during the perturbation mechanism, depends on satisfaction of this constraint. The 

walls of the mining cone are usually designed based on the slope angles in four principal 

directions. (Kumral & Dowd, 2005). 

Perturbation mechanism 

Perturbation mechanism accomplishes by shifting a certain number of blocks of a solution to 

the next or previous scheduling phases to produce a new solution. Transferring blocks are 

randomly selected and are reassigned to the neighbouring periods. Direction of the 

alteration to either the next or the previous period is also chosen in a random manner. 

Switching of the blocks will be rejected if it causes that the ore to waste ratio in any period 

to be violated. Mechanism has been demonstrated on a vertical two dimensional section in 

Figure ‎2-28. (Kumral & Dowd, 2005). 

Perturbation is permitted only when it does not exceed the access constraint. To do that, 

Kumral and Dowd (2005) proposed a special checking method using an upward-downward 

cone template shown in Figure ‎2-29. When the blocks supposed to be transferred from a 

period to the next period, all the blocks inside cone A need to be considered for earlier 

FIGURE ‎2-28  THE MECHANISM OF BLOCK PERTURBATION  

KUMRAL &  DOWD 2005 
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periods or the same period and all the blocks inside cone B have to be designed for later 

periods. On the other hand, when the blocks supposed to be transferred from a period to 

the previous period, all the blocks inside cone A need to be considered for earlier periods 

and all the blocks inside cone B have to be designed for later periods or the same period. 

(Kumral & Dowd, 2005). 

Acceptance criterion 

The possibility of accepting a perturbed solution at temperature of  ,    ( ), could be 

expressed as:, 

   ( )     {   
 ∑ (    )
    
   } (Kumral & Dowd, 2005) 

where  

   (
(     ( )      ( ))      ( )

 
) , and ∑     

    
    (Kumral & Dowd, 2005) 

where   is the current solution,   is the new solution and    is the priority weight of the  th 

elements of the objective function (     ) . The relative deviations    are determined 

separately for each component of the objective function,      ,           . This would 

let the algorithm not being dependent on only one objective. 

Authors recommended to use the (      ) approximation instead of the exponentiation 

       , because of the shorter calculation time.  They also found that using a discrete 

approximation represented by a look-up table could be even faster. Considering the 

acceptance probabilities of 0.995 and 0.0067 as the boundary limits, the value of   , will be 

equal to       and    respectively. In other words:  

FIGURE ‎2-29  UPWARD-DOWNWARD CONES TO DETERMINE TRANSFERABILITY OF BLOCKS  

KUMRAL &  DOWD 2005 
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            or                 (Kumral & Dowd, 2005) 

Therefore the value of    ( ) for different values of an integer Index Number (from 1 to 

1000) could be previously computed and saved in a table. Then by rounding the value of 

        to the nearest integer and using the pre-computed table, the acceptance 

possibility could be easily obtained. (Kumral & Dowd, 2005). 

 Cooling schedule and termination rule 

Kumral and Dowd (2005) used a fluctuating cooling process. They proposed to cool the 

system after any accepted solution and heat it up after any rejected solution. They used 

    (    ) and     (    )  functions for cooling and heating the system 

respectively. Temperature of the system will be balanced by having       heating 

iteration against each cooling one.  In other words, system heats up when the proportion of 

the rejected to the accepted moves is higher than  , which will subsequently decrease the 

number of rejects against acceptances. In contrast, when the proportion of the rejected to 

the accepted moves is less than  , system will be cooled and this will increase the number of 

rejects against acceptances. Hence, the schedule tends to converge theoretically to a point 

that the ratio of rejected to accepted solutions to be around  . Authors used this fact as the 

termination criterion too. They found that using         and            the value of 

objective function decreases slowly at the beginning of the procedure and reaches a stable 

state at the end. (Kumral & Dowd, 2005). 

Initial temperature 

Another substantial parameter in the performance of the SA is the initial temperature. Too 

high initial temperature makes the procedure to scatter for a long time on poor solutions. 

Excessively low initial temperatures could also lead the algorithm to be trapped in a local 

optima. The conducted experiments by the authors revealed that by taking the ratio of the 

number of the rejected moves to the accepted moves as 150 yields good solutions in shorter 

running time in comparison with the other initial temperatures. Initial temperature was 

selected as 1.67 to produce this ratio. (Kumral & Dowd, 2005). 
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3 ANT COLONY OPTIMIZATION (ACO) 

Ants first evolved around 120 million years ago, take form in over 11,400 different species 

and are considered one of the most successful insects due to their highly organised colonies, 

sometimes consisting of millions of ants. The field of “ant algorithms” derived from the 

observation of the behaviour of real ants, in order to inspire the basic idea of designing of 

the innovative algorithms for answering the optimization problems. One of the most 

effective models of ant algorithms known as Ant Colony Optimization (ACO) has been 

magnificently applied on several combinatorial optimization problems such as travelling 

salesman, sequential ordering, general assignment, multiple knapsack and network routing 

problems to produce high quality approximate solutions. It has been inspired by the foraging 

behaviour of the ants. (Dorigo & Stützle, 2004). 

In the real world, ants (initially) wander randomly, and return to their colony after finding 

food while laying down pheromone trails. A pheromone is any chemical or set of chemicals 

produced by living organisms to transmit a message to other members of the species. Ants 

tend likely not to travel at random, but to instead follow the pheromone trails and 

reinforcing it. Over time, however, the pheromone trails evaporate and lose their attraction 

strength. The more time that takes for an ant to travel along a path (longer paths), the 

higher evaporation of the pheromones. In contrast, shorter paths get more attracted and 

their pheromone density increases up to be balanced with the evaporation rate. In fact, the 

pheromone evaporation avoids the system to convergence to a local optimal solution. In 

other words, the first paths chosen by the ants would be followed by the other ones, if there 

were no evaporation. By finding a new path with shorter distance from colony to food 

source, other ants are also promoted to follow that path, and eventually all the ants follow a 

single path. (Wikipedia). 

Probably, the best way of illustrating how the ACO metaheuristic functions is by explaining 

how it has been utilized to solve the Travelling Salesman Problems (TSP). TSP is a 

comprehensively investigated problem in the literature and for a long time has appealed a 

significant amount of study efforts. The main reasons for the selection of TSP as the base 

problem to describe the operational procedure of ACO are: (Dorigo & Stützle, 2004) 

 TSP is a NP-hard optimization model that frequently arises in engineering applications;  

 TSP is a typical problem to which ACO algorithm has been originally applied;  

 TSP is an comprehensible problem, therefore, the behaviour of the algorithm is not 

complicated by unnecessary details;  
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 TSP has been known as a typical examination bed for new solution approaches and a 

good performance on the TSP is normally considered as evidence of their practicality; 

 The history of ACO indicates that the most efficient ACO algorithms for TSP were also 

effective for a wide range of other problems. (Dorigo & Stützle, 2004). 

3.1 TSP  DEFINITION  

TSP is the problem of a salesman who wants to start from his hometown and travel to a 

certain number of customer cities (visiting each city exactly once) and finally get back home 

through the shortest path. Mathematically it could be denoted as a complete weighted 

graph   (   ) where   is the set of nodes (cities), and   is the set of arcs (roads). Each 

arc (   )    has a value (length)    , which reveals the distance from city   to city  , and 

     . The goal of the problem is to discover the shortest Hamiltonian circuit of the graph. 

Hamiltonian circuit is defined as a closed tour that visits each of the nodes exactly once. 

        for every pair of the nodes in symmetric TSPs while in asymmetric TSPs at least for 

one pair of the cities        . (Dorigo & Stützle, 2004). 

The problem has shown an NP-hard behaviour even by removing the condition of one time 

visiting of each city. Traditionally the following approaches have been applied to solve TSP:  

 Analytical algorithms: They find the exact solutions and work fast only for relatively 

small problem sizes. Examples are linear programming, brute force search, dynamic 

programming and branch-and-bound. 

 Heuristic algorithms: They deliver either seemingly or probably good solutions, but 

they could not be proved to be optimal. Numerous approximation algorithms like 

nearest neighbour and greedy algorithm are included in this class. 

 Metaheuristic algorithms: They could yield better solutions and high approximation in 

reasonable time for large problems. Examples are genetic algorithm and ant colony 

optimization. (Wikipedia). 

3.2 BASIC ELEMENTS IN SOLUTION OF TSP  BY ACO   

3.2.1  CONSTRUCTION  GRAPH   

The problem is represented as a mathematical graph structure called construction graph. It 

is identical to the problem arrangement, i.e. a set of nodes  correspond to the cities and the 

set of arcs correspond to the roads. A weight is assigned to each arc which represents the 

distance     between cities    and  . The set of all possible Hamiltonian walks are the states 

of the problem. (Dorigo & Stützle, 2004). 
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Generally it favours to work on complete graphs in which there is at least one route between 

any two nodes. For incomplete graphs, it is possible to add new arcs to convert it to 

complete graph. Assigning large weights to the additional arcs guarantees that they will not 

be used in the optimal solution and final answer will not be affected. 

3.2.2  CONSTRAINTS   

All cities must be visited in the TSP and the visit has to be at most once. This is the single 

constraint of TSP. In order to satisfy this constraint, at each step of the algorithm, ants are 

only allowed to choose their next destination (the feasible neighbourhood set   
  of an ant   

located in city  ) among those cities that have not been visited yet. (Dorigo & Stützle, 2004). 

3.2.3  PHEROMONE TRAILS AND HEURISTIC INFORMATIO N  

Each arc     of the graph has been assigned a pheromone     value representing the 

desirability of the city   to be visited after city  . A heuristic information value      is also 

allocated to each arc which is usually defined as the inverse of the distance from city   to  , 

i.e.            . (Dorigo & Stützle, 2004). 

3.3 VARIANTS OF ACO  ALGORITHM FOR TSP   

The early types of ACO consisted of updating the pheromone trails immediately after moving 

from a city to another; but later studies showed that it would be more effective if the 

pheromone values to be updated after construction of all tours. Generally the quantity of 

deposited pheromone by each ant is a function of its tour length. Nowadays the preliminary 

variants have been abandoned due to their lower performance. (Dorigo & Stützle, 2004). 

3.3.1  ANT SYSTEM (AS) 

Ant system (AS) is the simplest version of ACO. It was initially proposed by Dorigo et al. 

(1991); and developed later by Dorigo, Maniezzo & Colorni (1991); Dorigo (1992). The 

algorithm starts by using initial pheromone values on graph edges which is usually 

determined heuristically. It is followed then by two main steps of the ACO algorithm known 

as the solution constructions and the pheromone update. (Dorigo & Stützle, 2004). 

Pheromone Initialization 

The value of initial pheromone is one of the key controllable parameters in AS. By too low 

initial pheromone values the exploration is biased by the first tours and generally results in 

trapping inside inferior zones of the search domain. Oppositely, the extremely high 

pheromone values can lose many of the primary iterations until the evaporation reduces the 

trails adequately so that the deposited pheromone of the ants to be able to affect the 
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search. Dorigo & Stützle (2004) suggested setting the initial pheromone trails to a value 

slightly higher than the expected pheromone deposition by the ants in one iteration. They 

proposed to use a rough estimate of this value as      , where   represents the number 

of ants, and     denotes the length of any initial tour generated by any tour construction 

procedure such as nearest-neighbourhood. (Dorigo & Stützle, 2004). 

Solution construction 

In the course of each ACO iteration, a series of solutions (tours) are constructed by   

artificial ants. They concurrently build a series of tours by starting from a randomly chosen 

city and step by step travelling through all other cities. At each step, ant   utilizes a 

probabilistic choice rule, named random proportional rule, to decide about the next 

travelling city. The probability of choosing  as the next city by ant  , when it is presently 

located at city  , is equal to: 

   
  

[   ]
 
[   ]

 

∑ [   ]
 [   ]

 
    
 

              
   (Dorigo & Stützle, 2004) 

Where           are the heuristic information of the system,   and   are the relative 

prominence of the pheromone values and the heuristic information, and   
  is the set of 

feasible neighbourhood cities of ant   when being at city   (the set of not visited cities).  

The random proportional rule implies that the higher the value of the pheromone trail and 

heuristic information of a certain arc, the higher the chance of choosing that arc. The relative 

values of the parameters   and   defines the performance of the algorithm from pure 

greedy search (    ) to completely pheromone based action (    ) either which lead to 

rather poor results or rapid stagnation. Relevant values of involved parameters for different 

variants of ACO algorithm have been indicated in Table  ‎3-1. (Dorigo & Stützle, 2004). 

In practise, each ant has to preserve a memory to save the list of cities that already visited, 

in the order that they were visited. It is quite convenient in defining the list of feasible 

neighbourhoods during tour construction as well as in calculation of the tour length and 

retracing of the path while pheromone deposition. (Dorigo & Stützle, 2004). 

Solution construction could be implemented in parallel or sequentially. The parallel method 

consists of letting all ants to make a move to next city at each construction step, while the 

sequential approach allows an ant to build a complete tour before starting the next ant. 

However, both alternatives are equivalent in AS. (Dorigo & Stützle, 2004) 
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ACO 
algorithm 

α β ρ m τo 

AS 1 2 to 5 0.5 n m/Cnn 

EAS 1 2 to 5 0.5 n (e+m)/ ρCnn 

ASrank 1 2 to 5 0.1 n 0.5w(w-1)/ρCnn 

MMAS 1 2 to 5 0.02 n 1/ ρCnn 

ACS 1 2 to 5 0.1 10 1/nCnn 

 : the number of cities in a TSP instance.  
EAS: parameter   should set to    . 
ASrank: number ofranked ants is    . 
MMAS: maximum pheromone trail limit is            

   and 

           (  √    
 

) ((     ) √    
 

) , where     is 
the average number of different choices available to an ant at 
each step while constructing a solution  
TSP instances with up to 200 cities, should use always the 
iteration best pheromone update rule, 
In larger instances both the iteration-best and the best-so-far 
pheromone update rules should be used alternately. 
ACS: In local pheromone trail update rule:      .  
In pseudorandom proportional action choice rule:        . 
 

Update of Pheromone Trails  

The pheromone trails need to be updated after construction of all tours. In general the 

update process has two major stages called evaporation and deposition. Evaporation lowers 

the pheromone value of all arcs by a constant factor. Then deposition adds extra pheromone 

on the arcs that the ants have crossed in their tours. Pheromone evaporation and deposition 

could be mathematically expressed as: 

    (   )             (   )    (Dorigo & Stützle, 2004) 

        ∑     
  

           (   )    (Dorigo & Stützle, 2004) 

    
  {   

 

 
     (   )   

 

          
 (Dorigo & Stützle, 2004) 

Where   is the evaporation rate (     ),     
  is the amount of pheromone that ant   

deposits on the arcs that it has visited and    is the length of the tour     built by  -th ant 

and is computed as the sum of the lengths of the arcs belong to   . (Dorigo & Stützle, 2004). 

TABLE  ‎3-1  PARAMETER SETTINGS FOR ACO ALGORITHMS WITHOUT LOCAL SEARCH  

DORIGO &STÜTZLE 2004 
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In fact the evaporation avoids the algorithm to accumulate unlimited magnitude of the 

pheromone on arcs.  I other words, it enables ACO to disremember the poor solutions that 

formerly found. Indeed, the pheromone value of an arc will be decreases exponentially in a 

few number of iterations if it is not passed by the ants often. (Dorigo & Stützle, 2004). 

It should be noted that during pheromone deposition, the amount of deposited pheromone 

by any ant is directly proportional to the quality of its tour. Consequently, arcs that are 

passed by numerous high quality (short tour) ants will collect further pheromone. This 

increases their attraction to be taken by the next ants in upcoming iterations of the 

algorithm. (Dorigo & Stützle, 2004). 

3.3.2  ELITIST ANT SYSTEM (EAS) 

The elitist strategy of Ant System was one of the primary improvements on the initial AS 

presented by Dorigo (1992) and Dorigo et al., (1991) and (1996). The main enhancement of 

EAS comes from a special attention which has been given to the best tour that found since 

the start of the algorithm (it will be indicated as    , the best-so-far tour, in the following). 

In other words, EAS utilizes a supplementary ant to deposit further pheromone to the arcs of 

the best-so-far tour. This is a typical example of a daemon action in ACO. Pheromone 

evaporation in EAS is applied similar to that was in AS. (Dorigo & Stützle, 2004). 

To implement the extra strengthening of tour    , an amount of       is deposited to its 

arcs in each iteration. Where     is the length of the     tour and    is a coefficient that 

expresses the relative significance given to the best-so-far tour    . Accordingly, the 

pheromone deposit equation can be rewritten as: 

        ∑     
  

         
      (Dorigo & Stützle, 2004) 

    
   {   

  

 
     (   )   

  

          
 (Dorigo & Stützle, 2004) 

Experiments of Dorigo (1992) revealed that the better tours in a lower number of iterations 

could be found using the elitist strategy with an appropriate value of  . (Dorigo & Stützle, 

2004). 

3.3.3  RANK-BASED ANT SYSTEM  (ASRANK) 

Rank Based Ant System (ASrank) was the other significant enhancement over the AS, 

proposed by Bullnheimer et al. (1999). In ASrank the ants are sorted based on their tour 

length and a rank   is assigned to each ant accordingly. Then, only the (   ) best ranked 

ants and the best-so-far ant are allowed to deposit pheromone. Deposited pheromone of 
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each ant is also proportional to its rank. Hence, the best-so-far ant always deposits the 

largest amount of pheromone and gives the strongest feedback, with a weight of  . Thus, 

the pheromone update rule of ASrank could be written as: 

        ∑ (   )    
    

         
      (Dorigo & Stützle, 2004) 

Where     
       and     

        .  

Bullnheimer et al. (1999) disclosed that ASrank performs slightly better than EAS and 

considerably better than AS. (Dorigo & Stützle, 2004). 

3.3.4  MAX–MIN  ANT SYSTEM  (MMAS) 

MAX–MIN Ant System (MMAS) is one of the most efficient and detailed studied ACO 

algorithms, Stützle & Hoos (1997) and (2000); Stützle (1999). MMAS presents four main 

modifications to AS. Firstly, it only allows the iteration-best ant or the best-so-far ant to 

deposit pheromone. This would usually lead to a rapid stagnation situation due to the 

extreme growth in pheromone amount of initially constructed good but suboptimal tour. 

MMAS applies three other adaptations to prevent stagnation. Second modification of MMAS 

involves in limiting the pheromone values to the range of [         ]. Thirdly, it initializes 

the pheromone trails to the upper limit and uses a quite low evaporation rate. As a final 

adjustment, algorithm reinitializes the pheromone trails each time that the system seems to 

approach stagnation. The process of evaporation is as same as in AS. The deposition of new 

pheromone can be written as below:  

            
             

             (Dorigo & Stützle, 2004) 

    
          , or      

           (Dorigo & Stützle, 2004) 

where     is the length of the iteration-best tour.  

MMAS alternatively utilizes the iteration-best and the best-so-far tours to update 

pheromone trails. In fact, using the best-so-far ant for pheromone update makes the search 

to concentrate quickly around    , while application of the iteration-best ant is less focused. 

Stützle (1999) showed that the frequency of using best-so-far instead of iteration-best could 

be determined according to the size of the TSP instance. He proposed to use only iteration-

best pheromone updates for small TSP instances. But instead, for large TSPs with hundreds 

of cities, the best performance obtains by progressively increasing of the frequency of using 

the best-so-far tour. (Dorigo & Stützle, 2004). 
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The Limits of Pheromone Trails 

MMAS is known as one of the most explorative ACO algorithms. This power comes from the 

effect of imposed lower and upper boundaries on pheromone values (     and     ). The 

upper limit prevents the primarily found arcs to become predominant and lead to 

stagnation. The lower limit also protects the poorly visited arcs to get out of calculation. In 

fact, the imposed pheromone boundaries limit the probability     of selecting a path    to 

the interval of [         ], with                  . (Dorigo & Stützle, 2004). 

Assuming the upper pheromone limit in long run equal to       (   is the length of the 

optimal tour) the maximum permitted value of pheromone      could be set to its 

preliminary estimation as        . Obviously, the value of      should be updated after 

finding each new best-so-far tour. Evaluations of Stützle (1999) revealed that the lower 

pheromone limit plays even more important role in preventing stagnation. He suggested 

that the lower pheromone limit to be set as a fraction of upper limit (           ). 

(Dorigo & Stützle, 2004). 

Pheromone Trail Initialization and Re -initialization 

In MMAS the pheromone trails are initially set to      and the pheromone evaporation rate 

is set to a quite low level. This action generates a gradual growth in the relative difference of 

the pheromone trails of the arcs which makes the primary phases of the MMAS to be very 

explorative. (Dorigo & Stützle, 2004). 

As another development, MMAS occasionally re-initializes the pheromone trails to raise the 

exploration of the less attractive arcs. This is usually triggered when the algorithm 

approaches stagnation.  The stagnation would be distinguished when no improved tour is 

found after a given number of iterations. (Dorigo & Stützle, 2004). 

3.3.5  ANT COLONY SYSTEM (ACS) 

Ant Colony System (ACS) is another innovative ACO algorithm proposed by Dorigo & 

Gambardella (1997a,b) by application of three major alterations in AS.  Firstly, it uses an 

aggressive action choice rule called pseudorandom proportional rule to more strongly use of 

the system experience. Furthermore, the pheromone update occurs only on the arcs of the 

best-so-far tour. Finally, besides the general pheromone update, ACS removes some 

pheromone from the arcs which have been passed through during tour constructions. This is 

applied immediately after a move and improves the exploration of the other paths. (Dorigo 

& Stützle, 2004). 
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Tour Construction 

The routine that ACS follows to move from a city   to another city   entirely differs from that 

of previous variants of ACO. It is based on a so called pseudorandom proportional rule. The 

rule could be expressed as following: 

  {
      

    
 {   [   ]

 }           

  

      
          

 (Dorigo & Stützle, 2004) 

where   is a random variable with normal distribution,    is a parameter valued between 

zero and one and   is a random variable selected similar to the main AS equation (   ). In 

plain words, with probability of    the ant will choose the city which has the highest learned 

knowledge i.e.    [   ]
 ; whereas with probability of (     ) it will utilize a probabilistic 

approach similar to AS. The explorative behaviour of the algorithm could be controlled by 

tuning of the parameter   . (Dorigo & Stützle, 2004). 

Global Pheromone Trail Update  

Similar to MMAS, the only ant that is permitted to deposit pheromone here is the best-so-far 

ant. But the major difference in ACS compared to the previous versions is that the 

evaporation of pheromone is also applied to the arcs of     only.  Thus, the update in ACS is 

implemented as the following equation: 

    (   )         
      (   )      and     

         (Dorigo & Stützle, 2004) 

Limiting the process of evaporation to only the arcs of the best-so-far ant reduces the 

computational complexity of the problem. In other words, the deposition and evaporation 

could be combined in a single step by using a discounted pheromone magnitude which runs 

into a weighted averaging between the old and deposited pheromone values. 

Experiments indicated that in small TSP instances the iteration-best tour could also be 

considered for the pheromone update. But the best-so-far ant generates better solutions for 

large instances with more than 100 cities. (Dorigo & Stützle, 2004). 

Local Pheromone Trail Update  

Another big difference of ACS with the former ACO algorithms is the considering of a local 

pheromone update rule, additional to the global pheromone trail updating. The ants apply 

this local pheromone update rule during their tour construction and immediately after 

having crossed an arc (   ): 

    (   )       (Dorigo & Stützle, 2004) 
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Where   (        )  and    are the parameters of the local pheromone update. 

Investigates showed that the value of 0.1 would be a proper estimate for the value of  . It is 

also found that the value of    can be set as equal to the initial pheromone trail values. 

Consequently, a good initial estimate for    could be       , where   is the number of 

cities and     is the length of a possible tour constructed by any heuristic such as nearest-

neighbour method. (Dorigo & Stützle, 2004). 

In the earlier discussed AS variants it did not matter if the tour construction to be done in 

parallel or sequential way. But it is important to note that, because of the local pheromone 

update rule in ACS, this makes a big difference. The idea behind the local pheromone update 

is to makes the arcs which have been passed by any ant, less desirable for the next ants. This 

could prevent the ants not to converge to the generation of a common path; i.e., not to 

show a stagnation behaviour. In order to generate such an improved exploration power, the 

pheromone trail     of arc (   ) is reduced to some percentage, immediately after passing 

over of an ant. In fact the local pheromone update provides an escalation in the exploration 

of arcs that have not been visited yet. Consequently, to benefit from the information of each 

ant by the others, during each iteration, all the ants have to move in parallel. (Dorigo & 

Stützle, 2004). 

Additional Remarks 

Ant Colony System is based on a former algorithm proposed by Dorigo & Gambardella (1996) 

known as Ant-Q. The main practical difference between ACS and Ant-Q is in the formula of 

the calculation of the parameter   , which in ACS is set to        but in Ant-Q is equal to 

           
 {   } , where   is a  parameter and        

 {   }  is the maximum of 

pheromone trails among all the cities that the ant has not visited yet when ant   is 

positioned at the city   (the neighbourhood cities   
 ). (Dorigo & Stützle, 2004). 

The individual idea of calculating τ0 was originally inspired by an equivalent well-known 

reinforcement learning algorithm (Sutton & Barto, 1998) and a related method used in Q-

learning (Watkins & Dayan, 1992). Later experiments showed that the setting of τ0 to a small 

fixed value leads to approximately the same performance while causing major simplification 

in the algorithm; subsequently, the Ant-Q was substituted by ACS. (Dorigo & Stützle, 2004). 

A remarkable similarity exists between MMAS and ACS algorithms. MMAS explicitly confines 

the pheromone trails to the defined maximum and minimum limits. A quite similar action 

can be distinguished in ACS which performs implicitly. The fact is that the pheromone trails 

can never fall under τ0 in ACS executions due to the initial values of the pheromone trails and 
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their both global and local update rules; because, as it could be read from their formulas, the 

initial values of the pheromone trails are set to the value of τ0 and the amount of deposited 

pheromone are always more than or equal to τ0. On the other hand, the pheromone trails 

can never exceed the value of the 1/Cbs which can easily be substantiated from the global 

pheromone update formula. In other words, it is implicitly assured in ACS formulation that 

the pheromone trails to be limited to the boundary of  (   )            
  . (Dorigo & 

Stützle, 2004). 

As the last point, it should be point out that ACS is the only ACO algorithm that limits the 

number of choices that need to be considered during each tour construction stage by using a 

candidate lists. Generally, the list includes a series of the best-ranked alternatives, defined 

based on the heuristic norms. For example in the TSP case, the candidate list of each city i 

would comprise the cities j, which are in a short distance. The list of candidates could be 

defined in several ways. Ordinarily, ACS sorts the neighbours of the city   in an ascending 

order of distances firstly and then selects a few number of the closest cities to be inserted in 

the  ’s candidate list. Therefore, the candidate lists could be constructed before beginning of 

the solution and remain stable during the entire calculation procedure. The ant   when 

situated at city  , decides on the subsequent city   only among those cities in the candidate 

list that are not passed yet. In case all the cities in the list of candidates are already visited, 

then one of the remaining cities is considered to be evaluated. Experimental evaluations 

have revealed that the quality of solution obtained by the algorithm can be improved by use 

of candidate lists. However, the significantly increase in the speed of the solution procedure 

is more important benefit of using the candidate lists. (Dorigo & Stützle, 2004). 

3.3.6  APPROXIMATE NONDETERMINISTIC TREE SEARCH (ANTS)   

The Approximate nondeterministic tree search (ANTS) proposed by Maniezzo (1999) is 

another ACO algorithm that gets some concepts from mathematical programming. In fact it 

can be frankly extended to the branch & bound procedure. Hence, the name ANTS originates 

from the fact that this algorithm could be interpreted as an approximate nondeterministic 

tree search. Precisely, ANTS calculates the lower bounds by a partial solution in order to find 

the heuristic information to be used by each ant during the construction of solutions. 

Actually, the algorithm can be extended to an exact mathematical programming algorithm; 

however, ACO part of the algorithm is presented here. (Dorigo & Stützle, 2004). 

Besides the presentation of the lower bounds estimation technique by mathematical 

programming in ANTS, it offers also two further adjustments to AS. The first is the use of a 
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novel action choice rule and the second is the modified pheromone trail update rule, 

described in following. (Dorigo & Stützle, 2004). 

Use of Lower Bounds 

In order to calculate the heuristic information related to desirability of adding an arc (   ), 

the ANTS algorithm uses lower bounds by discovering of a partial solution. Algorithm adds 

the arc to current partial solution in a trial manner and estimates the cost of a complete tour 

including this arc through a lower bound. The value of heuristic information      is then 

calculated based on the estimated cost value, to enter in the probabilistic procedure of 

decision making by the ants in the tour construction stages. As a result, desirability of adding 

a particular arc increases by decreasing the estimated cost. (Dorigo & Stützle, 2004). 

The advantage of using lower bounds in calculation of the heuristic information is that it 

prevents discarding of the feasible moves which lead to partial solutions and their estimated 

costs are larger than that of the best-so-far solution. However, it has a drawback that at each 

single construction step of an ant a lower bound needs to be calculated and therefore 

computational time would be significantly increased. Hence the lower bound has to be 

calculated efficiently to compensate the disadvantage as much as possible. (Dorigo & 

Stützle, 2004). 

Solution Construction 

Unlike the most other ACO algorithms, during the solution construction by the ants, ANTS 

uses a quite different rule for calculation of the probabilities of the ant   situated at city   to 

choose the next city  . The utilized rule could be expressed as following: 

   
  

     (   )   

∑  
    
     (   )   

              
   (Dorigo & Stützle, 2004) 

where   is a parameter,          , and    
  is the feasible neighbourhood set as before. 

Similarly the probability of moving to a city which does not belong to this set is zero. 

This formula, compared to that of AS, has the advantage of using only one parameter   

rather than two (  and  ). Furthermore, it has a simpler mathematical structure to combine 

pheromone trails and heuristic information (only summation instead of multiplications and 

powering) and consequently it is faster to compute. (Dorigo & Stützle, 2004). 
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Pheromone Trail Update 

One of the other particular characteristics of the ANTS is that it does not evaporate the 

pheromone trails explicitly. The procedure of pheromone updates in ANTS could be 

expressed as following: 

        ∑     
  

         (Dorigo & Stützle, 2004) 

Where     
  is defined by: 

    
  {
 (  

     

       
)

  
           

(   )             

         
 (Dorigo & Stützle, 2004) 

where   is a constant,    is the value of a lower bound on the optimal solution value 

computed at the beginning of the algorithm (       where     is the length of the optimal 

tour), and      is the moving average of the last   tours constructed by the ants, i.e., the 

mean length of the   most recent solutions that produced during the process (  is the 

constant coefficient of the algorithm). (Dorigo & Stützle, 2004). 

In other words, if the length of any constructed tour is longer than the current moving 

average, the pheromone trail of the belonging arcs will be decreased; whereas, the 

pheromone trail of the arcs of a better ant’s solution (with shorter length) will be increased. 

The dynamic scaling of the objective function differences is the other outcome of this 

formulation. It is particularly beneficial during the last iterations of the algorithm when the 

absolute difference between the solution qualities gets smaller and, accordingly, 

   becomes equal to     . The algorithm could be stopped once a solution with an objective 

function value equal to    is obtained, since    has been considered as an estimate of the 

optimal solution. (Dorigo & Stützle, 2004). 

It should be noted that up to now ANTS has not been applied to the TSP. However, very 

good results have been reported for the application of ANTS on a quadratic assignment 

problem. (Dorigo & Stützle, 2004). 

3.3.7  HYPER-CUBE FRAMEWORK ACO 

Blum, Roli, & Dorigo (2001) introduced the hyper-cube framework of ACO. The main 

characteristic of the hyper-cube framework is that it automatically converts the pheromone 

values to fall them always in the interval [0, 1]. The idea was inspired by the mathematical 

programming formulation of many combinatorial optimization problems, in which the 

problem solutions could be effectively encoded by the binary vectors. The decision variables 
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of a binary optimization model can only accept the values {0, 1} which are classically related 

to the solution elements such as those are used during solution construction by the ants. In 

other words, each solution of the problem corresponds to a corner of an n-dimensional 

hyper-cube (n is the number of decision variables in the problem). Problem relaxation is one 

the leading techniques for generation of the lower bounds for the model. This lets the 

decision variables to take values from the distance of [0, 1]. Therefore, the set of possible 

solutions     could be considered as the set of all vectors  ⃗     that are convex 

combinations of binary vectors  ⃗    : 

 ⃗       ⃗  ∑    ⃗    ⃗   
         [   ] ∑      (Dorigo & Stützle, 2004) 

Accordingly, the pheromone trail values of an ACO problem are normalized to fall in the 

interval [0, 1] and the vector of pheromones  ⃗  (       ) will be corresponded to a point 

in problem domain,  ̃. Clearly, any solution of the problem could be represented by a binary 

 ⃗ vector. (Dorigo & Stützle, 2004). 

Similarly, a series of decision variable     could be considered for each arc (   ) of a TSP 

problem. The value of decision variable will be set to       when the arc (   ) has been 

contributed in construction of the tour, and to       otherwise. In this regard, each 

decision variable will be associated with a pheromone value. In fact, this is the standard 

approach in solution of TSPs by means of ACO algorithms, which previously described. 

(Dorigo & Stützle, 2004). 

Pheromone Trail Update Rules 

As mentioned, the pheromone trails need to be in the interval [   ] in the hyper-cube 

framework. This could be simply realised by slightly adjusting of the standard pheromone 

update rules as following: 

    (   )     ∑     
  

    (Dorigo & Stützle, 2004) 

Where     
  is defined as: 
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 (Dorigo & Stützle, 2004) 

This formulation assures that the pheromone trails remain less than one after update. In 

other words, the new pheromone is a move of the old pheromone vector towards the vector 

of the weighted average of the solutions. (Dorigo & Stützle, 2004). 
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3.4 ADDING LOCAL SEARCH T O ACO 

It is nearly an accepted rule in all metaheuristics that by combining a local search algorithm 

and using a better initial solution the quality of obtaining solutions as well as the calculation 

speed could be significantly improved. Similarly there is a considerable potential of 

improvement in ACO to use local search. Experiments revealed that the iterated local search 

algorithm is one of the best-performing algorithms for TSP. (Dorigo & Stützle, 2004). 

To apply the local search on ACO, the solutions should be converted to their local optimum 

after that the ants have completed their solution construction. It should be noted that the 

pheromone trails are updated on the arcs of locally optimized solutions and clearly after 

application of the local search routine. The combination of ACO tour construction with local 

search could lead to better solution in most of the cases; because the neighbourhood set 

that they uses is quite different and there is a quite high potential of improving a solution 

constructed by ACO by means of local search. Obviously, the local search is not able to 

obtain high quality solutions as standalone and usually requires a good starting solution to 

only improve it. Such a solution could be delivered by ACO. (Dorigo & Stützle, 2004). 

3.5 IMPLEMENTING ACO  ALGORITHMS FOR TSP 

3.5.1  DATA STRUCTURES  

The series of mandatory data structures is required to store: TSP instances, pheromone trails 

and artificial ants. Following describes an overall summary of the key data structures that 

are necessary for execution of an ACO algorithm. 

Intercity distances 

For a TSP with   number of cities the easiest way to save all pre-computed intercity 

distances is to use a two dimensional     matrix. However, it is usually impossible (or too 

expensive) to store the full distance matrix in the main memory for very large instances of 

ACO. Alternatively, the distances between a city and the cities of its nearest-neighbour list 

could be calculated and stored in the memory. This can significantly reduce the necessary 

volume of required memory and computation. Another tip which could be used to speed up 

the algorithm is to store distances as integers, since the operations on integers are generally 

done considerably faster than the operations on real numbers. (Dorigo & Stützle, 2004). 

Nearest-Neighbour Lists 

As mentioned, using a list of nearest neighbours for each city could be suitable to speed up 

the algorithm. To do so, a sorting routine is applied for each city of problem instance. The 
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major speedup arises by cutting of the list after a certain number of cities in the list. (Dorigo 

& Stützle, 2004). 

Pheromone Trails  

There is a value corresponding to each arc of the construction graph that needs to be saved, 

related to the amount of its pheromone trail. For an asymmetric TSP instance, a number of 

    distinct pheromone values needs to be stored. It can be accomplished by utilizing a 

simple     matrix. Despite the fact that the required number of variables for a symmetric 

ACO instance equals to  (   )  , similar to the distance matrix, using a symmetric     

matrix to store the pheromones would be appropriate in this case too. (Dorigo & Stützle, 

2004). 

Combining Pheromone and Heuristic Information  

A vast number of probability calculations are required to combine the values of pheromone 

trails and heuristic information based on the formula    
  [   ]

 
[   ]

 
 ∑ [   ]

 [   ]
 

    
  

during each stage of the tour constructing, when an ant   located on a city   chooses the 

next city  . These are very close values that have to be calculated in each iteration by all of 

the ants on each locating city. Experiments showed that the calculation times may be 

considerably decreased by means of a supplementary matrix to store the values of the 

[   ]
 
[   ]

 
. Once again, like the pheromone values and the distance matrices, it is 

convenient to store the values of [   ]
 
[   ]

 
in a      matrix for a symmetric TSP instance. 

Furthermore, considering the fact that the [   ]
 

 values are constant during entire process, 

its values could be stored in another supplementary matrix to avoid re-computing of these 

values in each iteration. (Dorigo & Stützle, 2004). 

Pheromone Update 

Limiting the calculation of the values in the matrix of nearest-neighbour list of a city would 

be another optimization technique in speeding up the algorithm. In case of large TSP 

instances with thousands of cities, this could reduce the computation time significantly. 

(Dorigo & Stützle, 2004). 

Representing the Ants 

During each tour construction, the ant needs to store its partial solution which has built up 

to that point. It is also required to define the feasible neighbourhoods of each city as well as 

calculating and saving the objective function value of the generated solution.  
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Storing of the so far generated solution can be easily implemented by saving the partial tour 

in an adequately big array. This could be also used to check whether a city has not been 

visited yet and belongs to the feasible neighbourhood. Inappropriately, the computation 

time dramatically intensifies by application of this simple feasible neighbourhood 

determination method. The best trick to round this problem could be by simply designation 

of an extra binary array to each ant and setting the values to 1 if the city has already been 

visited and 0 if not. After each move, the binary array has to be updated. Finally, the length 

of the tours can simply computed by summing the arc lengths in the tour. In conclusion, 

representation of any ant requires a data structure that consists of one variable for storing 

of the tour length, one     dimensional array for storing the tour and a   dimensional 

binary array for saving the past nodes. (Dorigo & Stützle, 2004). 

Overall Memory Requirement  

In summary, a TSP problem with   number of cities requires four     dimensional 

matrices for saving of distance matrix, pheromone matrix, heuristic information matrix and 

pre-computed probabilities matrix. Additionally it needs another      dimensional matrix 

for the lists of the nearest-neighbours, where    is the maximum number of the nearest-

neighbours for a city. Furthermore, two one dimensional arrays with the size of     and   

are needed for every ant to save the tour and the visited cities respectively. A single integer 

variable will also store the length of the constructed tour.  Information of the all individual 

ants has to be memorized by the end of iteration too (except in MMAS and ACS in which 

saving of the iteration-best ant is enough).  Moreover the intermediate results, such as the 

best-so-far solution, and some statistical information about the performance of the 

algorithm have to be also saved; however, the later data structures occupies a very little 

memory compared to earlier arrays. To conclude, approximately      bytes of memory will 

be needed for a TSP instance with   cities (except for MMAS and ACS which is much less). 

(Dorigo & Stützle, 2004). 

3.5.2  ALGORITHM STEPS  

Data Initialization 

The following steps have to be executed respectively during data initialization of the 

program: 

 Reading the instance,  

 Computing the distance matrix,  

 Determining the nearest-neighbour lists for all cities and  
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 Initializing the pheromone matrix and the pre-computed probabilities matrix. 

It is also necessary to update the parameters of the algorithm and the information of the 

ants after each iteration. Variables such as CPU usage, number of iterations, the best-so-far 

solution that keep the track of the statistical information need to be revised after each 

iteration too. (Dorigo & Stützle, 2004).  

Termination Condition 

Calculation can be ended when at least one of the following termination conditions is 

reached:  

 Finding a solution within a certain distance from estimated optimal solution;  

 Exceeding the maximum number of tour constructions or algorithm iterations;  

 After a definite time of CPU execution; 

 Stagnation of the algorithm. (Dorigo & Stützle, 2004). 

Solution Construction 

The process of each solution construction consists of the following steps: 

 All cities should be marked as unvisited to clear the memory of previous ants; 

 A random initial city needs to be designated to each ant; 

 Letting the ants to move from city to city (based on the AS choice rule) and generate 

their tours;  

 Computing the length of the constructed tour.  

All of ants need to follow steps above in a parallel or sequential order (for ACS only in 

parallel). The number of construction steps is the same for all of the ants because they all 

have to visit exactly   cities. (Dorigo & Stützle, 2004). 

Local Search 

Small adjustments could be applied on the constructed tours using a local search procedure 

to improve their qualities. (Dorigo & Stützle, 2004). 

Pheromone Update 

The pheromone update procedure applies at the end of each iteration, and involves in two 

major stages: pheromone evaporation and pheromone deposition. Evaporation diminishes 

the pheromone value of all arcs by a constant evaporation factor while deposition adds 

some extra values to the pheromone of the arcs belonging to the constructed tours. Only 

one or very few number of ants are permitted to deposit pheromone (except in the 
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conventional AS and EAS). Hence, the procedure of pheromone trail deposition is not very 

long and complex excepting in AS and EAS. Thus, the speeding up tricks are usually 

unnecessary for the pheromone trail update procedures, particularly for ACS where both the 

pheromone evaporation and deposition actions are applied only on the arcs that are crossed 

by the best-so-far ant. (Dorigo & Stützle, 2004). 

3.5.3  CHANGES FOR IMPLEMENT ING OTHER VARIANTS O F ACO   

Most of the above-mentioned points are common for all of ACO variants; however, there are 

individual essential adjustments corresponding to each ACO algorithm. Some of these 

variations are as following: 

 Deposited pheromone in EAS and ASrank is applied proportional to the quality of 

solutions. It could be implemented by adding some weight factors to the standard 

pheromone deposition.  

 To control the pheromone limits in MMAS it would rather to integrate it into the 

procedure of pheromone update. (Dorigo & Stützle, 2004). 

ACS is the particular variant of ACO whose execution involves in more individual cares, some 

of which are summarized below: 

 The pseudorandom proportional action choice rule is used during tour construction in 

ACS. Accordingly, a random number   should be generated for the each move of the 

ants, to decide between the next best and the AS decision rule. 

 A special procedure should be programmed to be applied immediately after moving 

an ant to a new city in order to consider the local pheromone update.  

 The global pheromone trail update is applied at the end of each iteration only on arcs 

belonging to the best-so-far tour. Its implementation is similar to that of local update. 

 In ACS, the pre-computed probabilities matrix does not need to be updated in the 

course of the algorithm (except during initialization) due to the special formulation of 

the local and global pheromone trail update rules. (Dorigo & Stützle, 2004). 
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4 ACO  APPROACH FOR THE LONG-TERM SCHEDULING OF 

OPEN-PIT MINES 

Figure ‎4-1 shows the proposed process of long-term open-pit production planning in this 

research. The algorithm consists of saving   number of variables for each block of the 

model,    , which represents the pheromone value related to mining of block   in  th push 

back.   is the number of scheduling periods. The magnitude of saved pheromones 

represents the desirability of a block to be the deepest point of the mine in that pushback. 

The initial value of these variables are assigned based on a sub-optimal mine schedule 

generated by Lerchs-Grossmann and Wang-Sevim algorithms. Then the random mining 

schedules are constructed according to the initial pheromones. These schedules deposit an 

extra pheromone proportional to their economic quality. This action along with pheromone 

evaporation lead the algorithm towards the optimum boundary of mining push backs. 

4.1 PHEROMONE INITIALIZATION  

Experiments showed that the calculation time increased dramatically using the uniform 

initial pheromone pattern. Therefore in this study, a sub-optimal solution for the problem of 

FIGURE ‎4-1  MAIN STEPS OF ACO  FOR LONG-TERM PRODUCTION PLANNING OF OPEN PIT MINES 
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long-term open-pit scheduling is firstly determined by means of Lerchs-Grossmann’s 

algorithm of UPL design and the Wang-Sevim’s nested pits design algorithm. Then, initial 

pheromone trails are assigned to the blocks according to this sub-optimal solution. 

Normally the shape of a desired pushback does not change drastically from a sub-optimal 

solution to the optimal one. Thus assigning of higher pheromones to a few numbers of 

blocks around the sub-optimal pit depth could be enough to lead the algorithm towards the 

optimal solution. This process has been illustrated in Figure ‎4-2. Consider the pit shape 

shown in Figure ‎4-2a to be the outline of the mine in     extraction period. During the 

process of pheromone initialization, the pheromone value of the highlighted blocks in 

Figure ‎4-2b related to the period,    , are set to relatively high values. 

4.2 CONSTRUCTION OF SCHEDULES  

In order to construct a mine scheduling solution, a series of feasible nested pits related to 

the different mining push backs should be created. Each one of these pits consisted of a 

series of block columns. The shape of any pit could be defined by determining of the pit 

depth in its block columns. 

4.2.1  THE PROCESS OF DEPTH DETERMINATION  

Depth determination for a column of blocks requires the following information for each 

block: 

 

FIGURE ‎4-2  PHEROMONE INITIALIZATION OF THE BLOCKS.   
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  Pheromone values of each block 

 Tonnage and average grade of valuable minerals and troublemaker elements in the 

blocks 

 Direct costs and revenues associated with mining and milling of the blocks  

The upper and lower boundary of the permitted pit depth should also be available for the 

column. The calculated pit depth should also fall between these maximum and minimum 

allowed depths. The maximum allowed depth (dark lines in Figure ‎4-3) defines the deepest 

possible mining depth and could be calculated based on the maximum slope angle and 

distance from the borders of the block model. On the other hand, minimum depth of each 

column is determined according to the shape of the mine in earlier push back (dark dotted 

lines in Figure ‎4-3). Clearly, there is no minimum depth for the first pushback. The process of 

depth determination for a hypothetical block column has been illustrated in Table  ‎4-1.  

It should be noted that in this research the process of depth finding is done only for the 

columns containing at least one ore block. The depth of the pit in totally waste columns will 

be defined in the next step of pit generation algorithm, called normalization, from the 

neighbouring selected depths. 

Another important point is that the initial pheromones are assigned only to the ore blocks. 

Therefore, the selected depth will always coincide on an ore block. The reason is that there 

is no benefit in adding a waste block to the set of blocks considered to be inside the pit. 

Similarly, there will be no pheromone update (evaporation or deposition) for waste blocks. If 

the optimum depth lies on a waste block and the depth finding process defines an upper ore 

block instead, the optimum position will be generated automatically in the next step (pit 

generation from selected depths).  On the other hand if the pit depths go deeper than the 

optimum level, the fitness of its generated schedule would be low and the schedule will die 

out in ACO process. 

 

FIGURE ‎4-3  MAXIMUM AND MINIMUM DEPTH DEFINITION IN DEPTH DETERMINATION PROCESS  
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4.2.2  P IT GENERATION ACCORDING TO  THE SELECTED DEPTHS (NORMALIZATION) 

Usually the set of selected depths (the bold red lines in Figure ‎4-4a) do not result in a 

feasible pit shape. In fact it is the consequence of independent depth determination in each 

column. Thus a feasible pit generation process called normalization is required after 

determination of depths for each pit related to the mining periods. It is made in a manner 

that the obtained pit shape covers all the determined depths as well as the outline of earlier 

push backs, Figure ‎4-4b. 

Supposing square blocks and a slope angle of 45 degrees, the process could be explained in 
the following steps: 

 Start from the deepest level of the block model and check all the blocks from left to 

right. If the calculated depth of any column is equal to 1, then flag the block as an In-

Pit block. 

 Move to the upper level and check all blocks from left to right. If the calculated or 

minimum depth of any column is equal to or lower than the current level, flag the 

block as an In-Pit block. Moreover, if at least one of the three underlying blocks of any 

 

Block Column 

Pheromone* Heuristic 
Information* 

Selection 
possibility** 

Cumulative 
Possibility 

 

0 0 0.0000 0.0000 

280 8 0.0285 0.0285 

0 0 0.0000 0.0285 

0 0 0.0000 0.0285 

330 6 0.0297 0.0583 

540 7 0.0930 0.1514 

0 0 0.0000 0.1514 

670 6 0.1227 0.27424 

890 8 0.2889 0.5631*** 

750 9 0.2308 0.7939 

0 0 0.0000 0.7939 

870 5 0.1725 0.9664 

350 6 0.0335 1.0000 

0 0 0.0000 1.0000 

* without unit 

**based on     
  

[   ]
 
[   ]

 

∑ [   ]
 [   ]

 
    
 

   formula (           ) 

***selected depth according to the random number (0.6328) 

Selected Depth

W

O

O

W

O

O

O

W

O

Min Depth

Max Depth

TABLE  ‎4-1  THE PROCESS OF DEPTH DETERMINATION 
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block is flagged as In-Pit, then flag the corresponding block of the column as an In-Pit 

block as well. 

 Repeat the previous actions up to the uppermost level.   

After normalization of the pit, its size should be validated. In case of very big or very small 

generated pits, the algorithm reproduces this pit again from the beginning by determining 

the pit depths for block columns. Sometimes the generation of an abnormal (but valid) pit 

for the earlier push backs makes it impossible for the process to continue to the next push 

backs. Therefore if the pit generation process was not successful after a certain number of 

trials (for example 100 times), the algorithm leaves this set of pits and begins constructing 

another set from the first push back. 

4.2.3  M INE SCHEDULE C ONSTRUCTION FROM GEN ERATED PITS  

In the last step of the solution construction, individual pits which have been created for the 

different mining push backs are combined to produce a mine schedule, Figure ‎4-5. 

4.3 PHEROMONE UPDATE  

Results of the constructed mine schedules are transferred to the ACO optimization model as 

a series of decreases and increases in pheromone values of the blocks. 

 

 
FIGURE ‎4-4  GENERATION OF A NEW PIT BASED ON THE SELECTED DEPTHS AND PREVIOUS PIT 
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4.3.1  PHEROMONE EVAPORATION  

The first step of the pheromone update process consists of a uniform reduction in the value 

of all pheromones in order to help the ACO optimization model disregard the bad solutions. 

FIGURE ‎4-5   COMBINATION OF GENERATED PITS TO PRODUCE A MINE SCHEDULE  
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In this stage, the pheromone value of all blocks corresponding to all production schedules 

should be decreased by a certain percentage. 

4.3.2  PHEROMONE DEPOSITION  

Consider     
  to be the deepest block of     push back of     constructed mine schedule in 

the     column of the block model. The pheromone value of this block grows during the 

deposition phase by adding an additional pheromone value. The magnitude of the added 

pheromones differs for different variants of ACO algorithm.  

It should be noted that the deposition action is applied only to the ore blocks. In cases where 

the pit depth lies on a waste block, the additional pheromone is assigned to an imaginary 

block on the ground surface. This causes that the desirability of other ore blocks of the 

column not to increase because of the lack of pheromone deposition in the optimal depth. 

4.4 IMPLEMENTATION TOOL  

To evaluate the applicability of the proposed ACO algorithm for long-term planning of open-

pit mines, a computer program has been developed in Visual Studio 2005 programming 

environment for the implementation of calculations. The program interface consists of four 

different graphical user interface windows, including the input block model, input 

parameters, initial solution and ACO optimizer tabs, Figure ‎4-6. 

4.4.1  INPUT BLOCK MODEL TAB  

Implementation of the algorithm starts with importing a uniform block model to the 

program. The block model should be prepared as a text (ASCII) file in which the information 

of each block should be written in a separate line called records. These information fields 

could include coordinates, metal grades and troublous elements.  

In order to import the block model file into the program, the user can type the exact address 

into (1) or could browse through folders by clicking button (2). Clicking the preview button 

(3) will show the first 100 lines of the inputed file in the preview text box (12). This helps the 

user recognize the structure of the input file and assists in filling in the following parameters. 

Then, the number of blocks in X, Y and Z directions must be entered in (4).  

The program has the ability to use both index coordinates, (i,j,k), and real world coordinates, 

(x,y,z), which is selectable in (5). In fact the program does not need the real coordinates for 

optimization and the i, j and k indexes are used in all calculations. Therefore if the real world 

coordinates are imported into the program, the origin of the block model and size of blocks 

will be calculated using the given information. 
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The number of information fields in each record should be set in (6), after which the list 

boxes of (7), (8), (9) and (10) will be updated. The user must then choose the proper place of 

information related coordinates, rock type, density and production elements in these lists. 

Finally by clicking button (11) the model is imported and a short report regarding the 

number of blocks, dimensions, origin of the model and average grade of elements will be 

shown in the preview/report text box (12). 

4.4.2  INPUT PARAMETERS TAB  

In this tab, Figure ‎4-7, the economic and technical parameters of the mine are defined. 

Firstly, the user should define the units in (1). Then the dimension of blocks, the number of 

blocks in each direction and the origin of the block model should be entered in (2). The 

program calculates the block dimensions and the origin of the model if the (x,y,z) coordinate 

system has been utilized in the  imported block model.  

Product prices are another important economic parameter that should be defined in (3) for 

each production element such as copper, gold, etc. Finally the properties of the material for 

each rock type should be entered in (4). Required information includes: 

 Type of material (ore or waste), 

 Mining cost per ton, 

 Modification of mining cost by elevation, 

 Mining reference elevation, 

FIGURE ‎4-6  THE INPUT BLOCK MODEL TAB 
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 Modification factor per bench, 

Additionally, the following information regarding the ore blocks should be provided: 

 Mining recovery rate, 

 Mining dilution percentage, 

 Processing costs, 

 Processing recovery rate 

Having this information, the program can calculate the economic value of the blocks by 

clicking button (5). 

4.4.3  INITIAL SOLUTION TAB  

The first part of this tab, Figure ‎4-8, is designated to the parameters of the initial solution. 

The user has to define the final and working angles of the mining slopes in different 

directions in section (1). Then by clicking the UPL calculation button (2), a short report 

regarding the number of ore and waste blocks inside the UPL and the average grades will be 

given in the report box (7). Then the number of blocks for each push back can be estimated 

in order to reach the desired number of push backs based on the obtained UPL report. By 

entering the estimated number of blocks for each push back in (3) and by clicking the ‘Create 

Push Backs’ button (4), the program will create an initial solution for the ACO optimization 

process. A brief report will be displayed again in (7) about the number of blocks and average 

grade of elements for the created initial solution. 

 
FIGURE ‎4-7  INPUT PARAMETERS TAB  
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Prior to ACO optimization, it is necessary to define the mine scheduling parameters and the 

penalty coefficients in section (5) and (6). Required information includes the maximum and 

minimum mining and milling capacities, the maximum and minimum limit of average grade 

for each element (Fe and SiO2 in this case) and the penalty cost related to each of these 

items. 

4.4.4  ACO  OPTIMIZER  TAB  

The ACO optimizer tab contains the tools and parameters required for the improvement of 

initial solutions through implementation of ACO iterations. It consists of two groups of 

parameters including general and ACO variants parameters as well as a graph display tool to 

show the variations in parameters during the run of the program, Figure ‎4-9 .  

General ACO parameters are as following: 

 Initial pheromone value, (1) 

 Number of upper initialized blocks,  (2) 

 Number of lower initialized blocks, (3) 

 Priority coefficient of pheromone value, (4) 

 Priority coefficient of heuristic information value, (5) 

 Coefficient of evaporation rate, (6) 

 Number of ants in each iteration, (7) 

FIGURE ‎4-8  INITIAL SOLUTION TAB  
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Parameters of ACO variants include: 

 For the ASrank condition : the number of pheromone depositor (ranked) ants, (8) 

 For the elitist ant system (EAS): the coefficient of additional reinforcement for the 

best-so-far schedule, (9) 

 For max-min ant system (MMAS): the ratio of upper pheromone limit to the lower 

pheromone limit, (10) 

 For ant colony system (ACS):  the probability under which the tour construction 

process is carried out according to the aggressive action choice, (11), and the   and    

coefficients of the local pheromone update, (12). 

Eventually by each clicking of the ACO optimization button, an optimization iteration is 

implemented and the results are shown in the chart (14). The horizontal axis of this chart 

represents the ACO iteration and the vertical axis reveals the information that could be 

defined from the left hand side boxes.   The ACO optimization process is repeated until the 

graph stabilizes and the optimum solution is found. 

The graph (14) has the ability of drawing several items which should be selected from the 

box (15). These items include: 

 Economic value of the schedules 

 Penalty of the schedules 

 Push back information 

FIGURE ‎4-9  ACO  OPTIMIZER TAB  



Long-Term Open-Pit Planning by Ant Colony Optimization 

90 
 

For the last case, the number of push backs and required information must be chosen from 

(16) and (17) respectively. Selected information types could be one of the Fe or SiO2 

average, the number of blocks (ore, waste or total) or the life of the periods. Then the 

defined chart would be added to the graph by clicking the button (18). The chart is able to 

display up to 10 different information graphs simultaneously.  

4.5 CASE STUDY  

A hypothetical block model of an iron ore deposit containing 1000 blocks was created and 

the grades of Fe and SiO2 were randomly assigned to all ore blocks. The grades of Fe and 

SiO2 varied from 45 to 65 and from 5 to 15 percent respectively. According to these grades 

the net economic values of the blocks were calculated in the distance of 1 to 9. A constant 

value of -6 was assigned to the waste blocks.  

At the beginning the outline of the ultimate pit is determined by the Lerchs-Grossmann’s 

graph algorithm. The calculated UPL contains 455 ore and 161 waste blocks which led to 681 

units of undiscounted economic value. Then mining push backs were generated by the 

alternative to parameterization algorithm of Wang-Sevim. Through this, 9 uniform push 

backs with the size of 70 blocks were constructed. Considering an annual interest rate of 

10% and the mine life of 20 years, the discounted economic value of the constructed initial 

schedule was calculated as 323 units. Table  ‎4-2 shows the block numbers and the average 

grades of the push backs in the initial solution.  

As a simple scheduling condition, the following restrictions were considered for each period 

of this case study: 

 Mining rate: from 59 to 64 blocks per period 

 Processing rate: from 47 to 53 blocks per period 

 Average allowed grade of Fe: from 54 to 56 percent 

 Average allowed grade of SiO2: from 9 to 11 

Anything exceeding these limits has been considered to have 1 currency unit of penalty cost 

for each of the extra or fewer blocks. Consequently the value of the constructed initial 

scheduling solution received 79 currency units of penalty costs and its economic value 

dropped to 244 units. 
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1 49 14 63 2.1 53.2 8.3 

2 54 12 66 4.5 53.1 9.1 

3 46 22 68 6.5 54.3 8.4 

4 44 13 57 8.4 53.9 8.3 

5 49 21 70 10.6 53.7 8.8 

6 44 24 68 12.5 53.5 8.1 

7 52 18 70 14.8 53.4 8.7 

8 65 21 86 17.7 53.1 8.9 

9 52 16 68 20 51.9 9.2 

Total 455 161 616    

* Mining in 20 years and 9 uniform period 

4.6 ACO  VARIANTS AND SETTING  OF PARAMETERS  

In order to analyse the efficiency of different ACO variants in optimizing 

the long-term planning of open-pit mines and finding the best values of the ACO parameters, 

the program was utilized to be run using the following alternatives. 

4.6.1  ANT SYSTEM  (AS) 

As described in previous chapter, this is the simplest ACO system in which all ants have the 

ability to deposit pheromone proportional to the quality of their constructed tour. In the 

basic run of the ant system, the following values have been considered as key parameters: 

 The number of ants (number of tours in each iteration,  ) is considered to be equal to 

the number of block columns in the model.  In this case study it was 100. All of these 

ants were allowed to deposit pheromone. 

 Principally it is possible that a negative value schedule be constructed by some of the 

ants. On the other hand, as mentioned in Chapter 3.3.1, the deposited pheromone by 

each ant is proportional to the quality of its tour. Because a negative pheromone 

deposition is meaningless, therefore the value of the worst schedule is added to the 

fitness value of all schedules to ensure that all of them are above zero. Consequently 

the pheromone value of different iterations might not be comparable. In order to 

TABLE  ‎4-2  CHARACTERISTICS OF THE INITIAL PUSH BACKS  
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make a balance between the deposited pheromone of different iterations, all the 

fitness values were divided by the highest fitness value. Eventually all the fitness 

values fell in the distance of zero and one. This is almost similar to the hyper-cube 

framework ACO and has been applied in all cases of this research. 

 As described earlier, a good heuristic procedure to initialize the pheromone trails in 

the AS could be to set them to a value slightly higher than the expected amount of 

pheromones deposited by the ants in one iteration. A rough estimate of this value can 

be obtained as      , where   is the number of ants, and     is the discounted 

value of the initial schedule. Accordingly the initial values of the pheromone trails 

were set to 100. This number was assigned only to the ore blocks close to the outline 

of push backs. 

 Similar to the application of ACO for solution of TSP, the value of the evaporation 

coefficient,  , had been set to 0.5 in this case as well. 

 The upper and lower perturbation distance is considered as zero. In other words, 

relatively high pheromone values were assigned only to blocks which constructed the 

mining push backs. 

 Equal priority was considered for the pheromone trails and heuristic information in 

the basic case, (    and    ). 

 According to the justified fitness values of the constructed schedules the amount of 

deposited pheromone by each ant is considered to be equal to its fitness value which 

is always between 0 and 1. 

The efficiency of the basic ant system has been shown in Figure ‎4-10. The main point in this 

graph is that it proves the ACO has the ability of improving the quality of initial solutions 

generated by Lerchs-Grossmann algorithm and parameterization. The graph reveals that 

right from the first iteration, ACO algorithm improves the value of the mine schedule and 

after 14 iterations it reaches its best solution at 265.1309. In comparison to the initial 

solution which had a value of 244.0635, this meant more than an 8 percent improvement in 

the value solution. After the 12th iteration, the algorithm scatters around the level of 263. 

The value of any schedule has two major components which are the revenue and penalty 

costs. Actually the utilized algorithm for the construction of the initial solution (Lerchs-

Grossmann plus parameterization) takes only the first component (revenue) into account. 

Consequently the total combination could not be optimized. In fact ACO searches for the 

solutions which have a higher total value despite containing a lower revenue. The variation 

of the revenue and penalty cost values for the basic AS is shown in Figure ‎4-11. The original 
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combination of revenues and penalty costs has been changed from 323.2117 and 79.15385 

to 321.6918 and 56.56096. In other words, the found obtained solution has about two units 

less revenue but 13 units of lower penalty costs which led to some 11 units of improvement. 

The following solutions after the 12th iteration have less total value despite having fewer 

penalties. 

The standard deviations of solutions for the size of mining and processing operations, as well 

as for Fe content, are shown in Figure ‎4-12. The graph reveals that ACO has decreased the 

deviation of push backs from the planned values. 
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FIGURE ‎4-11  VARIATION OF REVENUES AND PENALTY COSTS DURING BASIC AS 

FIGURE ‎4-10  IMPROVEMENT OF SCHEDULING VALUE BY BASIC AS 
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It should be noted that because of the randomized nature of ACO, the calculation processes 

in different runs of the program were not similar and the value of the best found solution 

varied from 260 to 270. But in a correct routine, the final solution should be almost the same 

apart from the transitional answers in previous iterations. This means that there would be a 

possibility of further improvements by adjusting the parameters of the algorithm. 

In the following, the effect of changes in different ACO parameters on the efficiency of basic 

AS variant has been analysed. 

 

 

 

 

Ant number    

Value of the best 
found schedule 

Required time to get 
the best solution 

(milliseconds) 

Required iterations 
to get the best 

solution 

50 262.3471 2984 9 

75 266.9035 10469 15 

100 265.1309 11188 12 

125 266.0709 8719 9 

150 266.0709 9688 8 

200 268.5578 42281 24 

300 267.5038 57094 21 
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TABLE  ‎4-3  EFFECT OF ANT NUMBER ON THE SOLUTION QUALITY AND CALCULATION TIME 

FIGURE ‎4-12  DECREASING EFFECT OF THE VARIANCE IN BASIC AS  OPTIMIZATION  

FOR MINING AND PROCESSING CAPACITIES AND FE CONTENT  
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Number of ants  in each iteration 

The number of ants is one of the major parameters of the ACO. The importance of the ant 

numbers comes from its impact on the running time of each iteration.  It initially was set 

equal to the number of block columns in the model which is 100. Effect of using higher or 

lower number of ants in each iteration has been shown in Table  ‎4-3 . 

Although the judgment about the best number of ants according to this table is not easy, 

however, the table shows that not only do very high numbers not improve the solution 

noticeably, but they also drastically increase the calculation time. Very low ant numbers also 

led to fast stagnation. Consequently it seemed that the selected number was relatively 

appropriate and could vary from 20% fewer or more without any big effect on the algorithm. 

Initial pheromone value 

The result of changes in initial pheromone values is shown in Table  ‎4-4. The lower initial 

pheromone lets the program search more among remote solutions, and away from initial 

schedule which led to a slightly better solution. But it increases the calculation time by 

around 50 percent. On the other hand, a high initial pheromone value made the algorithm 

stagnate to solutions around the initial answer and consequently led to poor results. Again it 

seemed that the selected initial pheromone value was in the proper range.  

Priority factors of pheromone and heuristic information  

Table  ‎4-5 represents the efficiency of the algorithm with different combinations of 

pheromone values and heuristic information priority factors. The outcome revealed that the 

heuristic information is either unimportant in the process or it has not corresponded to an 

appropriate property. It is suggested to use relatively lower values for the priority factor of 

heuristic information (β). 

 

Initial 
Pher.    

Value of the best 
found schedule 

Required time to get 
the best solution 

(milliseconds) 

Required iterations 
to get the best 

solution 

50 266.4478 15312 24 

100 265.1309 11188 12 

200 263.3134 2844 6 

500 262.4578 2859 6 

 

 

TABLE  ‎4-4  EFFECT OF THE INITIAL PHEROMONE ON THE SOLUTION QUALITY AND CALCULATION TIME 
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Initial 
Pher. 

Value of the best 
found schedule 

Required time to get 
the best solution 

(milliseconds) 

Required iterations 
to get the best 

solution 

α=1 
β=0 

273.5045 51859 76 

α=1 
β=0.5 

272.2923 34672 49 

α=1 
β=1 

265.1309 11188 12 

α=1 
β=2 

260.0672 15312 23 

α=1 
β=5 

252.4027 734 2 
 

4.6.2  ELITIST ANT SYSTEM (EAS) 

The concept of EAS is to consider a strong emphasis to the best-so-far solution in the 

pheromone update step.  In other words, the best-so-far ant deposits as much pheromone 

as that of   normal ants. Considering      , efficiency of EAS is shown in Figure ‎4-13. As it 

is shown in Table  ‎3-1, the value of the initial pheromone is different from that of AS and the  

  and   parameters should be considered in the initial pheromone values formula as 

(   )         (400 in this case). 
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FIGURE ‎4-13  EFFICIENCY OF EAS  WITH      

TABLE  ‎4-5  EFFECT OF PRIORITY FACTORS OF PHEROMONE AND HEURISTIC INFORMATION 

ON THE SOLUTION QUALITY AND CALCULATION TIME 
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e  
Value of the best 
found schedule 

Required time to get 
the best solution 

(milliseconds) 

Required iterations 
to get the best 

solution 

25 274.9540 14312 22 

50 274.7419 13000 20 

75 274.7166 13812 21 

100 274.1010 11641 18 

125 274.0421 8281 13 

 

The most noticeable thing about this graph is that the elitist ant strategy has eliminated the 

scattering behaviour of the algorithm (compared to the AS which was never led to a firm 

solution). Unlike in Figure ‎4-10, in the EAS the best solutions of the iterations are almost 

close to the best so far schedule. 

Based on the graph, the quality of the solutions decreased in the first iteration after which it 

continuously increased up to the 18th iteration that corresponded to the ever-best schedule 

which had a value of 274.1010. 

The results obtained from the analysis of different values of   have been compared in 

Table  ‎4-6. The table provides a highly positive correlation between the application of EAS 

strategy and the basic AS for all values of  . Although no significant difference is apparent, 

however a value between 75 to 100 percent of normal ant numbers seem to be relevant for 

the coefficient of  . Higher values than this would prevent the algorithm from adequately 

discovering far domains from the initial solution.  

4.6.3  RANK BASED ANT SYSTEM (AS R A N K ) 

In ASrank each ant deposits an amount of pheromone that decreases with its rank. In 

addition, As in EAS, the best-so-far ant always deposits the largest amount of pheromones. 

In other words, in each iteration of ASrank only the (   ) best ranked ants and the ant that 

produced the best-so-far tour (this ant does not necessarily belong to the set of ants of the 

current iteration) are allowed to deposit pheromones. The best-so-far tour gives the 

strongest feedback (with weight  ) and the  -th best ant of the current iteration contributes 

to pheromone update with the weight of     . The initial pheromones are also assigned 

based on the formula      (   )        which equates to 400 for the current case 

study supposing a value of      and      . The efficiency of the algorithm and the 

calculation time for this variant is displayed in Figure ‎4-14. 

TABLE  ‎4-6  EFFECT OF THE REINFORCEMENT TO THE BEST SO FAR ANT  

ON THE SOLUTION QUALITY AND CALCULATION TIME 
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Figure ‎4-14 reveals that the ranking strategy allows the algorithm to be continued to more 

than a hundred iterations. Therefore the program would be able to improve the quality of 

the solution. In this case study a value of 279.0614 has been obtained for the best found 

solution in 107th iteration. Although this value is slightly higher than the 277.20928 in the 

40th iteration, it is up to the planning engineer to decide on spending almost triple 

calculation time in order to improve the solution for less than 1 percent. 

The quality of solutions and calculation times for different numbers of ranked ants,  , are 

compared in Table  ‎4-7. In each case the value of the initial pheromone has been chosen 

based on the     (   )         formula. Table  ‎4-7 shows that increasing   not only 

increases the calculation time but also decreases the quality of the solution. Hence a value 

between 5 to 15 percent of the number of normal ants is suggested for the ranked ants’ 

number ( ).    
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w  
Value of the best 
found schedule 

Required time to get 
the best solution 

(milliseconds) 

Required iterations 
to get the best 

solution 

5 279.0302 70781 106 

10 279.0614 72234 107 

20 278.7891 86078 130 

30 278.6068 115016 173 

50 278.2272 111828 166 

 

4.6.4  MAX-M IN ANT SYSTEM (MMAS) 

The main characteristics of MMAS are: 

 Only the iteration-best ant or the best-so-far ant is allowed to deposit pheromones. 

 Pheromone trail values are limited to the interval [         ].  

 Pheromone trails are initialized to the upper pheromone trail limit. 

 Pheromone evaporation rate is very small. 

 Pheromone trails are reinitialized each time the system approaches stagnation or 

when no improved tour has been generated for a certain number of consecutive 

iterations. 

As described in AS, it is necessary to make a justification for the values of the constructed 

mine schedules in order to abate the effect of negative schedules. This converts the 

discounted value of the solutions to the distance of [0,1] in each iteration. Therefore there 

will not be any difference between the iteration best solution and best so far solution (both 

being 1). Eventually the value of the initial pheromone (and also the     ) could be 

calculated as     which becomes, in this case, study equal to 50 considering       . Our 

experiments showed that using slightly higher values of   (0.03 to 0.05) with 2   to 3   (i.e. 

40 to 80) initial pheromones could reach better solutions in less iteration. Unlike in the TSP 

application the value of      is constant here and will not change during the iterations.  

In the solution of TSP, the ratio of           is suggested by Stützle (1999) to be as 

(  √    
 

) ((     ) √    
 

) , where     is the average number of different choices 

available to an ant at each step while constructing a solution. A fixed value of 5 is used for 

the      in our case study. The pheromone trails are re-initialized when no improvement 

occurs after 10 iterations. 

TABLE  ‎4-7  EFFECT OF REINFORCEMENT TO THE BEST SO FAR ANT  

ON THE SOLUTION QUALITY AND CALCULATION TIME 
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Figure ‎4-15 shows that the MMAS is able to get out of stagnation situations and improve the 

quality of solution to 284.5371 which is slightly higher than that of previous variants. In this 

case the evaporation rate and initial pheromone rate have been supposed as        and 

            . 

The main power of MMAS comes from its explorative nature which lets the program use 

higher perturbation distances which may lead to better solutions. However this will take 

more calculation time and higher scattering iterations before improvements are noticed, 

Figure ‎4-16.  
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FIGURE ‎4-16  POSSIBILITY OF USING HIGHER PERTURBATION DISTANCE  

AND APPLICATION OF MMAS  TO GET BETTER SOLUTION 

FIGURE ‎4-15  EFFICIENCY OF MMAS  WITH        AND             
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4.6.5  ANT COLONY SYSTEM (ACS) 

The ant colony system differs from the previous variants from the following points of view: 

 Pseudorandom proportional action choice rule: with the probability of    the ants 

makes its destination to the node which has the highest [   ]
 
[   ]

 
 . Whereas it has 

the       probability of using the same routine as AS for the selection. A value of 

       is suggested for the TSP solution.  

 Global pheromone update: in ACS only one ant (the best-so-far ant) is allowed to add 

pheromones after each iteration. Additionally, unlike AS, the evaporation process only 

applies to the arcs of the best-so-far tour, not to all the arcs. 

 Local pheromone update: the ants use a local pheromone update rule that they apply 

immediately after having crossed an arc during the tour construction of ACS.  

In order to evaluate the efficiency of ACS on our case study, the best values of the 

parameters were found as below: 

 Number of ants: 10 

 Evaporation rate: 0.1 

 Initial pheromone value: 0.01 

 Local pheromone update factor: 0.1 

 Pseudorandom choice probability: 0.9 

Obtained results of using ACS have been shown in Figure ‎4-17. The main noticeable point in 

ACS is that the number of ants has been drastically reduced which has direct effect on the 

calculation time of each iteration. For instance, the run time of iterations have been reduced 

from 700 to 1000 milliseconds in previous variants of ACO, to less than 100 ms in ACS. 

Another factor that helps the speed of the ACS algorithm is the fact that pheromone 

evaporation and deposition happen only on the arcs of the best so far solution. 

Consequently, when compared to the other variants of ACO,  ACS could reach much better 

solutions in a given time of calculation. This might be very beneficial for the big block 

models.  
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5 CONCLUSION 

A new algorithm for open-pit optimization using ant colony optimization has been developed 

and used to optimize the long-term scheduling of open-pit for a two dimensional randomly 

simulated block model. The algorithm is inspired by foraging behaviour of ants. 

The shapes of the pits (respective of the slope angles) are represented by means of a simple 

array of integer numbers. Each element of this array shows the depth of a pit in an individual 

column of block model. Extending this concept to the long-term production planning, any 

mine schedule is represented by an array that has several mine depths at each column of 

block model related to different production periods.   

In order to simulate the process, some programming variables are considered for each block 

as the pheromone trails. The numbers of these variables are equal to the number of 

planning periods. In fact these pheromone trails represent the desirability of the block for 

being the deepest point of the mine in that column for the given mining period.  

At the beginning, the values of the pheromone trails are initialized according to a mine 

schedule generated by Lerchs-Grossmann’s algorithm and the alternative to 

parameterization algorithm of Wang & Sevim.  During initialization, relatively higher values 

of pheromone are assigned to those blocks that are close to the deepest points of the push 

backs in the initial mine schedule. This leads the procedure to construct a series of random 

schedules which are not far from the initial solution.  

In each ACO iteration, several mine schedules are generated based on the current 

pheromone trails. This is implemented by a process called “depth determination”. In this 

process the depth of a mine in each period is determined for each column of the block 

model. The higher the value of the pheromone trail of a certain block, the higher the 

possibility of selecting that block as the pit depth in that period. Then the pheromone values 

of all blocks are reduced to a certain percentage (evaporation) and additionally the 

pheromone value of those blocks that participated in defining the constructed schedules are 

increased according to the quality of the generated solutions. Via repeated iterations, the 

pheromone values of the blocks which define the shape of the optimum solution are 

increased whereas those of the others have been significantly evaporated.  

The analysis carried out on the case study revealed that the ACO can improve the value of 

the mining schedule by up to 34%. This is mainly contributed to the fact that penalties can 

be considered in relation to their deviation from the permitted limits.  
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5.1 DISCUSSION  

The major benefits of using of the proposed algorithm compared to the former methods are: 

 Most of the available methods and algorithms follow a certain target (such as highest 

NPV, lowest stripping ratio etc.) in their solution strategy; therefore, later changes in 

the desired target would be very difficult or impossible with them. The ACO approach 

is able to consider any kind of objective functions in the optimization process. Even 

very complex objective functions do not have a significant influence on the efficiency 

of the method. This is because of the fact that all schedules are generated based on 

the pheromone values in the ACO, regardless of the objective function. Then the 

values of the generated schedules are calculated in the next step according to the 

defined target.  

 Variable slope angles can be modelled with ease in the generated schedules. The 

method even has the ability of applying very complex slope differentiations. The only 

change in the program would only be required in the normalization routine.  It is also 

possible to consider working slope angles by supposing different values for the slopes 

of the inner periods and the most outer phase. 

 During the ACO optimization iterations thousands of mine schedules are randomly 

created according to the pheromone values. In order to model uncertainty related to 

the characteristics of the blocks, these schedules can be constructed based on a series 

of the random variables instead of deterministic values. 

 In each iteration of the ACO,   number of mine schedules are being constructed. The 

calculation time of the algorithm is highly dependent on the value of   which is 

usually (except for ACS) considered equal to the number of block columns in the 

model. In other words the calculation time of a double sized block model in each 

direction (8 times more blocks) is expected to be only 4 times more. Therefore the 

required calculation time of a block model with one million blocks is expected to be 

around 100 times that of the case study used in this research. 

 In the Ant System (AS) and Elitist Ant System (EAS) variants of the ACO algorithm, a 

large number of mining schedules (all constructed schedules) have to be saved in the 

memory during each iteration to be used in the pheromone update stage. This makes 

the application of these variants very difficult, or even impossible, for large block 

models (because of being heavily memory intensive). Memory usage relatively 

decreases in the ASrank and reaches an acceptable range in the Max-Min Ant System 

(MMAS) and Ant Colony System (ACS) where only the best schedule needs to be saved 
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during the iteration. For a block model with one million blocks, the capacity of 4MB 

will be sufficient for the MMAS and ACS variants, for example. 

On the other hand disadvantages of the method which have to be considered are: 

 The process is not mathematically proven to always reach the best schedule. 

 The ACO algorithm needs to save numbers of variables in the memory for each block 

representing the desirability of the block for being the pit depth in different mining 

periods. In fact, the number of these variables is equal to the number of planning 

phases. In addition, it might be essential for large block models to provide another 

module to exclude unnecessary blocks and to manage the required memory.  

 The efficiency of ACO algorithm is highly dependent on the parameters like number of 

ants, evaporation rates, deposited pheromones in each iteration, etc. The found 

combinations of these parameters for this case study are not essentially the best 

combination for all deposits and block models. Hence a trial and error process might 

be necessary at the beginning to set the relevant combination of parameters for each 

individual case. 

 In addition to the initial solution’s primary function of leading the algorithm towards a 

relatively good solution, it is also necessary to control the size of generated pits.  

Without an initial solution, the program might scatter among unacceptable sized 

solutions. As described in Chapter 4.1, relatively higher values are assigned to the 

blocks close to the initial solution depths in order to initialize the pheromone values. 

However, adding high pheromone values only to the small number of blocks does not 

let the algorithm to deviate from the primary schedule. The distance that the 

schedules are allowed to be constructed is set by the perturbation number during the 

initialization. The bigger this value, the higher the possibility of finding better 

solutions. For the studied case, only the max-min ant system (MMAS) was able to 

accept a higher perturbation distance. Hence obtaining the optimum solution is not 

always reachable by the other variants of ACO if it is far from the initial solution. 

 The required memory for a large block model is high for the AS, EAS and ASrank 

variants which make them impractical for a real deposit in practice. 

 Calculation time is around two hours for a block model with one million blocks except 

the ACS variant which is fast enough even for large models. The only problem which 

we faced with the ACS in the studied case was that it was not explorative enough to 

approach the optimum solution.  
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5.2 PERSPECTIVE RESEARCH  

The current research comprised a background study for the application of the new 

metaheuristic methods in the optimization of the long-term open-pit planning.  Further 

investigations are suggested in the following fields. 

 The elaborated program has allowed for the implementation of two dimensional 

cases and a 1:1 slopes. However, its application in a real mining case has not been 

tested yet.  Supplementary programming is suggested to be done in a 3D extension of 

the algorithm, and should consider different angles and working slopes. Additionally it 

is also suggested that a faster programming environment such as c++ to be used 

instead of the currently used VB language.  

 The studied case shows that the ACS is comparatively fast and MMAS provides a 

relatively explorative approach. Application of a combination of these two 

alternatives is suggested to be studied. 

 The family of metaheuristics is not limited to the studied algorithms explained in this 

thesis. Application of other methods such as particle swarm optimization (PSO) and 

Tabu search (TS) are certainly additional future research subjects.  
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