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Abstract

Two-color microarray experiments form an important tool in gene expression
analysis. They are often used to identify candidate genes that can be made
accountable for the genesis of a certain disease. Due to the high costs of mi-
croarray experiments it is fundamental to design these experiments carefully and
specifically give instructions, which samples should be allocated on the same mi-
croarray. Thereby, two samples are hybridized together on one array and the
assignment of samples to arrays influences the precision of the results. Therefore,
design issues for microarray experiments have been investigated intensively in the
last years. However, only few authors, e.g., Stanzel [37], focused on more than
one factor of interest. We extend Stanzel’s work and derive approximate optimal
designs for estimating interactions in multi-factorial settings. Thereby, optimal-
ity of candidate designs is shown using equivalence theorems (Pukelsheim [33]).
Another practical important but less studied topic is the derivation of exact op-
timal designs. Most research considers approximate designs or exact designs for
special contrast sets and selected numbers of arrays. Therefore, we focus on ex-
act designs and present a method to construct A-optimal microarray designs for
arbitrary numbers of arrays and arbitrary contrast sets. This method is applied
to derive optimal designs for estimating treatment-control comparisons, all-to-
next contrasts, Helmert contrasts and all pairwise comparisons. Furthermore,
we derive robust designs, which achieve efficient results even if observations are
missing. Missing values are a crucial topic in the context of microarray experi-
ments, since they often occur due to scratches on the slide or other damaging.
In applications recommendations for the choice of efficient experimental layouts

can be derived from our constructed designs.
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Chapter 1

Introduction

Many diseases, such as Alzheimer’s disease or Huntington’s disease [31], can be
traced back to particular strongly expressed genes [12]. Therefore, it is desirable
to identify these genes that can be made accountable for a certain disease in
order to generate novel drugs. In recent years microarray technology has be-
come one of the most prominent tools in gene expression analysis due to the
fact that gene expressions of thousands of genes can be measured simultane-
ously. The microarrays consist of thousands of spots, where each spot contains
e.g. the genetic information of one gene of the human genome. After process-
ing the experiment, gene expression measurements for each gene are available
and researchers can analyze which genes are higher expressed in diseased cells
compared to healthy cells. Several microarray technologies are commonly used,
the most prominent ones are oligonucleotide arrays and cDNA microarrays, also
called two-color microarrays. Oligonucleotide arrays measure gene expressions
of one sample per array, whereas cDNA microarrays hybridize two samples on
one array by coloring one sample green and the other sample red. For cDNA
microarrays, two important design questions arise in order to achieve precise
parameter estimates in the underlying statistical model. Which samples should
be allocated together on one microarray? Which samples should be labeled with
the green or red dye? For instance, Figure 1.1 illustrates a simplification of a
two-color microarray process with one array. Here, mRNA transcripts from a

tumor cell and from a healthy cell are extracted and labeled with green (Cy3)



1. Introduction

and red (Cyb) dyes, respectively, and are placed on the microarray. The thus la-
beled mRNA molecules of each gene bind to the complementary DNA strands of
the corresponding gene spot on the array. Gene spots are illustrated as points on
the microarray in Figure 1.1. Afterwards, a laser scanner measures the amount
of hybridized mRNA for each color and each gene and gives dye fluorescence in-
tensities, which correspond to the gene expression levels of the considered genes.
Here, higher intensities indicate higher gene expressions, e.g., if the red labeled
sample has twice as much of a transcript as the green labeled sample, then the

red signal should be twice as much as the green signal [21].

If genes are found, for which the mRNA amount of the tumor cells is extremely
high or low regulated in comparison to the healthy cells, they represent can-
didate genes that could be accountable for the considered disease. A detailed
description of microarray experiments can be found in Klug et al. [27], Simon et
al. [35], Parmigiani et al. [32], Draghici [10] or Wit and McClure [44]. In this the-
sis, samples from cells with a known disease or samples prepared with a specific
treatment are only referred to as treatment, e.g., a sample from a healthy cell
is called treatment zero, whereas a sample from a tumor cell is called treatment

one.

However, microarrays are very expensive, thus it is fundamental to use appropri-
ate designs to get most precise parameter estimates in the underlying statistical
model. Optimal designs assign treatments and dyes in such a way to the microar-
rays that unbiased estimates with minimal variances of the effects of interest are
ensured. Thereby, microarray experiments correspond to incomplete block de-
signs with block size two, whereas each microarray illustrates a block. Design
issues for microarray experiments have been investigated intensively in recent
years, see for example Kerr and Churchill [23], Glonek and Solomon [15] or Yang
and Speed [46]. However, most authors focus on the contrast set of all pairwise
treatment comparisons. Further contrast sets are seldom addressed. In addi-
tion, only few authors, e.g., Stanzel [37], consider more than one experimental
factor of interest, although in medical applications scientists are often interested
in many factors and their interactions. For instance, Churchill [8] investigated

several mouse cell lines medicated with different treatments. He was interested

7



1. Introduction

in the cell line effect as well as in the treatment effect and in corresponding
two-way interactions. Furthermore, Taylor et al. [39] and Stamatakis et al. [36]
were interested in three-way interactions. Therefore, the interesting question
of optimal designs for estimating interactions in multi-factorial settings arises
and is considered in this work. To this end, we extend the investigations of

Stanzel [37], who focused on two factors of interest.

The thesis is structured as follows: Chapter 2 introduces the statistical model,
which is used to describe microarray experiments, and gives a short overview
of design of experiments in Section 2.3. For instance, we define approximate
and exact designs and introduce tools, e.g., information matrices, information
functions and the equivalence theorems, to illustrate the principles of optimal
design. Exact A-optimal designs for different contrast sets, including the com-
parisons with a control-treatment, all-to-next contrasts and Helmert contrasts,
are derived in Chapter 3. Moreover, in Chapter 4 approximate optimal designs
are investigated for several contrast sets in the one-factorial and multi-factorial
setting. The dye effect is explicitly studied in Section 4.7. In Chapter 3 and
in the first part of Chapter 4 we neglect the impact of the dyes temporarily.
Chapter 5 considers robustness issues and provides efficient designs in scenarios

with missing values. A conclusion and perspective is given in Chapter 6.
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Figure 1.1: Simplified illustration of a microarray experiment.



Chapter 2

Fundamentals

In this chapter we introduce the graphical representation of microarray experi-
ments, as well as the underlying statistical model, which is used throughout this
work. Furthermore, we give a short overview of the main definitions and main

concepts of optimal design.

2.1 Graphical representation of microarray ex-
periments

Two color microarray experiments can be represented as directed graphs with
multiple edges. A directed graph D = (V, A) is a pair of a set V', whose elements
are called vertices, and a set A of ordered pairs of vertices, called directed edges.
Multiple edges connect the same vertices. Each treatment is illustrated as a
vertex and each microarray is illustrated as a directed edge of the graph. The
tail of each edge corresponds to the red labeled sample, the head to the green

labeled sample. For instance, Figure 2.1 displays a microarray experiment with

Z4
Zo X5 X1

Y2
Y1

Figure 2.1: Graph representation of a microarray experiment
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2.1. Graphical representation of microarray experiments 2. Fundamentals

three different treatments and x; + x5 + y; + y2 + 21 + 29 arrays. Treatment
zero labeled in red and treatment one labeled in green are hybridized together
on z arrays and so on. Many designs receive their name due to their graphical
representation, for example the loop design is represented as a loop in the graph
representation and the star design is represented as a star (Figure 2.2). Star
designs allocate each treatment together with the control-treatment on the same
array. Ignoring the dye effect, microarray experiments can be displayed as graphs
G = (V, FE) with undirected edges, i.e. each edge e € E corresponds to a set
of two vertices e = {vy,v2}, v1,v2 € V. In this case, two treatment effects can
be compared, i.e. their difference can be estimated, if and only if there exists a
path between the corresponding two vertices. A path is an alternating sequence
of distinct vertices and edges in the graph. The precision of the estimate of this
treatment difference depends on the number of paths between the two vertices.
For example, in Figure 2.2 all pairwise comparisons can be estimated in the right
and left design, since both designs are connected. A design is called connected if
every pair of vertices is joined by a path. The definitions become more complex
if we include the dye effect. The dye effect can be estimated if there exists at
least one loop in the graph representation. A loop is a path whose endvertices
coincide. The estimate of the dye effect becomes more precise when the length
of the loop increases. For instance, in the case with dye effect, all pairwise
comparisons can be estimated in the left design in Figure 2.2, whereas treatment

zero is confounded with the red dye in the right design.

©)

B—@

Figure 2.2: Graphical representation of the loop design and the star design.

11



2.2. Statistical modeling of microarray experiments 2. Fundamentals

2.2 Statistical modeling of microarray experi-

ments

Many authors have focused on the statistical analysis and modeling of microar-
ray experiments. Kerr et al. [24] firstly examined two-color microarray data by
analysis of variance (ANOVA) and recommended a model describing the log-
arithms of the measured intensities dependent on the array-, treatment-, dye-
and gene-effect, including treatment interactions of interest. Their work has
been extended by many authors. For instance, Landgrebe et al. [29], Bailey [2]

and Latif et al. [30] ignored the gene effect and considered gene specific models
log, (y) =TT+ Aa+ Dd + € (2.1)

where y = (y1,...,¥2,) is the vector of all observed dye intensities for a par-
ticular gene. These logarithmized dye intensities depend on the treatment ef-
fect 7 = (710, 71,...,7), the array effect & = («,...,®,) and the utilized dye
0 = (Ogreens Ored)- [T | A | D] denotes the 2a x (t 4+ 1+ a + 2) design matrix and

€ = (€1, ..., €,) denotes the vector of error terms.

Further model modifications are ascribed to Wolfinger et al. [45], who modeled
the array effect as random, or Landgrebe et al. [29], who analyzed the logarith-
mized ratios of dye intensities obtained for each microarray separately for each

gene. Instead of the two observations

10g2 (yijgreen) =T + Q; + 5green + €ijgreen, (22)

logy (Ykjred) = Tk + @&j + Ored + Ekjreds (2.3)

Landgrebe et al. considered the log ratio

Yijgreen
10g2 (L) =T, — T+ 5green - 5red + €ijgreen — €kjred- (24)
Ykjred

12
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Therefore, they introduced the model
z2=XT+Wd+n (2.5)

where z = (21,. .., z,) is the vector of log ratios of the dye intensities measured
for a particular gene on all a arrays. This vector is dependent on the treat-
ment effect 7 = (79, 71,...,7) and the dye effect 0 = (dgreens Ored)- [X | W] is
the design matrix, where each row of X consists of exactly one 1 and one —1,
whereas all other entries are equal to zero. W is equal to (1,,—1,), where 1,
is the a-dimensional column vector with all entries equal to one. The term 7 is
the random error vector. We assume all n;, i € {1,...,a} to be independently
identically distributed with mean zero and variance o2. Throughout this work
we assume that o2 = 1/2 without loss of generality. This assumption simplifies
the calculations of variances in Chapter 3 and in the following chapters, because

a factor of two can be eliminated from all calculations.

2.3 Design of experiments

In this section, we introduce some basics on optimal design of experiments, which
are required throughout this work. Firstly, we focus on differences between
approximate and exact designs. Secondly, we present the main definitions of
optimal design of experiments and finally we describe a tool to confirm optimality

of a given candidate design.

2.3.1 Approximate and exact designs

An approximate design £ € = over a design region X can be described as

T ... 2

pr - D

with support points z; € X and weights 0 < p; < 1, Zizl p; = 1 representing the

proportion of realizations of point z;. The design region X is determined by the

13



2.3. Design of experiments 2. Fundamentals

values of the explanatory variables of the given statistical model. Approximate
designs are not restricted to specific numbers of observations, they are defined
for infinity observations. Synonyms for approximate designs are continuous or
asymptotic designs, see e.g. Goos [16]. On the other hand, exact designs §,, € =,

with n observations can be represented as

ry ... X
gn:

sl R 17}

where 22:1 n; = n and n; is the number of observations at design point z;.
In practice exact designs are used; they are also called discrete designs. Effi-
cient exact designs with n observations can be achieved with the help of optimal
approximate theory. All weights p; of a given approximate design are multi-
plied with n and rounded. This procedure often yields good exact designs and

sometimes even optimal exact designs, see Goos [16].

2.3.2 Optimal designs

We present the main definitions of optimal design of experiments on the basis

of the simple model
y=X0+e¢ (2.6)

where y is the n x 1 response vector dependent on the v experimental conditions
0 = (6,...,0,)T, X is the corresponding n x v design matriz. The random
error terms €;, i € {1,...,v} are assumed to be independently identically dis-

2

tributed with mean zero and variance ¢“ = 1. An unbiased estimator of the

fixed parameter vector € is calculated with the method of ordinary least squares

as
0= (XTX)"XTy (2.7)

with variance

>

Var(f) = (X7 X)~, (2.8)

14
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where (X7 X)~ denotes a generalized inverse of X7 X. The information matrix
for estimating the unknown parameter vector #, given the design &, with design

matrix X is

M, = (XTX). (2.9)
Considering approximate designs ¢ the information matrix is defined as

M, = (XTPX) (2.10)

with weight matrix P = diag(py,...,p;) and design matrix X containing the [
support points of the design. If only the parameters 64, ...,0, with w < v are

of interest, the model can be restated as
y=X0+e=<X1X2> | +e (2.11)

with 0, = (01,...,0,)" and 0y = (Owity- o007, X, and X, are the n x w and
n x (v —w) submatrices of X. Therefore, the information matrix for estimating

the unknown parameters 6; = (01, ...,0,)7 is

due to Harvilles Theorem 9.6.1 [19].

Researchers are often interested in estimating a set of m contrasts C7 of the
parameters 0; C' = (¢, ¢y, ..., Cp) is a v X m matrix with ¢/ = (¢, ..., c;) and
Z§=1 c;j = 0 for 1 <4 < m. In this case, the ordinary least squares estimator

for CTO has variance
Var(CT0) = c*(XTX)C (2.13)

and the information matrix changes to

1

ME = (CT(XTX)~C)~ (2.14)
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2.3. Design of experiments 2. Fundamentals

if the v x m matrix C' has full column space. Pukelsheim [33] extended this
definition for rank deficient subsystems and defined the generalized information
matrix for CT0 as

ME = i T xTx 2.15
& = geplin. QT (XTX)Q (2.15)

with a v x m matrix C' that may be rank deficient. The minimum is taken
relative to the Loewner ordering. This partial ordering is defined as A > B if
and only if A— B is nonnegative definite for symmetric matrices A and B. Thus,

the Gauss-Markov Theorem provides
M = (X"X) = (X"X)R"(R(X"X)R")" R(X"X) (2.16)

with R = I, — CG with an arbitrary generalized inverse G of C'. Pukelsheim
shows the equality ME = CMg CT for all C with a full column rank. It is easy
to verify that these contrast information matrices are nonnegative definite with
zero row and column sums. Druilhet and Markiewicz [11] give another definition
of generalized information matrices, since Pukelsheims definition does not lead
to the usual information matrix for full rank subsystems. They proposed

Mg, = ' f(xXTx 2.17
& QGR”XW;QTIglzncT(CCT)+CQ ( )Q ( )

and showed M{ = (CT(XTX)~C)" if C"0 is estimable, i.e. if
Range(C) C Range(X” X).

(CT(XTX)~C)" denotes the Moore-Penrose-Inverse of (CT(XTX)~C). This
definition leads to the usual information matrix for full rank subsystems. Since
the Loewner ordering is a partial ordering, we define information functions in
order to compare arbitrary information matrices. Let NND? be the set of v x v
nonnegative definite matrices with zero row and column sums. Information

functions are defined as in Kiefer [25].

Definition 2.1:

¢ : NND? — R is an information function, if it satisfies the following conditions:

16
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(a) ¢ is convex,

(b) ¢ is invariant under simultaneous permutations of rows and the same

columns,

(c) ¢(aC) is non increasing in the scalar o > 0 for C' € NND?.

The smaller the value of ¢(M¢), the smaller the variance of the estimated param-
eters and the more efficient is the design. The purpose of optimal design theory
is to determine the designs with the highest information or equivalent with the
minimal variance. This corresponds to the minimization of the function ¢(M¢’)
for £ € =. A design £ is said to be universal optimal in a set = of designs if
it minimizes ¢(M;) for all information functions ¢ (Kiefer [26]). In many cases
universal optimal designs do not exist since they depend on the information
function. Therefore, we have to restrict to special optimality criteria. The most

prominent criteria are the matrix means ¢;.

Ezxample 2.2:

A design ¢ is ¢;-optimal for ¢ € [~1,00)\{0}, if it minimizes the expression

¢l (ME) = (M> q (2.18)

v—1

for the v — 1 eigenvalues \; of the information matrix M¢. Define ¢f(M¢) =

[TLA Y and ¢l (ME) = max A7,

A special case of the ¢ -criteria are the D-optimality criterion for ¢ = 0 and the
A-optimality criterion for ¢ = 1. D-optimal designs minimize the determinant
of the variance covariance matrix of the parameter estimates, their main advan-
tage is that they are invariant to a change of scale in the factors. A-optimal
designs minimize the trace of the variance covariance matrix or equivalently
minimize the sum of the variances of the parameters of interest » . , Var(éi).

Considering the contrast set (ci,...,¢,) the A-optimal design minimizes the

term Tr <Var(CTé)) =S Var(¢,78) for § = (6y,...,6,)7.

Pukelsheim [33] generalized the ¢;-criteria for rank deficient subsystems with

singular information matrices. Matrix means ¢, for rank deficient subsystems

17



2.3. Design of experiments 2. Fundamentals

are defined as follows

Gg(ME) = ¢ (A1, A

whereas A1, ..., A\, are the positive eigenvalues of the singular information matrix

ME.
2.3.3 Equivalence theorem

We present a central result of optimal design theory for approximate designs,
the equivalence theorem. This theorem can be applied to show ¢,-optimality of

a given design for the estimation of an arbitrary contrast set C'.

Theorem 2.3:
A design is ¢_,-optimal, p € (—oo, 1], for the estimation of the contrast set C
if and only if there exists a generalized inverse G = (XTPX)~ of XTPX that

satisfies the normality inequality

GO (CTGC) " (CTGe) T (CTGe) T e e < Tr ((CTGC) T (CT6e) ')

(2.19)
for all possible design points x € X, X = {z € {—1,0,1}" : 3l with z; =
1 A 3lj with z; = —1}. The expression 3! stands for ”‘there exists exactly
one”’. P is the diagonal matrix containing the optimal weights for all design

points listed in the design matrix X. In case of optimality, equality holds in the
normality inequality (2.19) for all support points x of all optimal designs.

For the proof, a detailed discussion and the equivalence theorem for p = co we

refer to Pukelsheim [33].

Another interesting theorem which we use in this work is due to Kiefer [25].

Theorem 2.4:
Let ¢ : NND? — R be an information function. If there is a design with a
completely symmetric information matrix, which has maximum trace in a class

of designs, then it is universally optimal in the given class.

A matrix is said to be completely symmetric if it is of the form el, + f.J,, where

I, is the v x v identity matrix and J, is the v X v matrix with all entries equal

18
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to one, e and f are scalars. It can be easily shown that

_ 1 f
(6]—@ + fJU>+ = EID - mjv (220)
ife+vf+#0ande#0.
1 1
(6]1, + fJU)+ = EID - %Jv (221)

if e+ vf = 0. The eigenvalues of (el, + f.J,) are e with multiplicity v — 1 and
e +vf with multiplicity 1.

In the special case of model (2.5) with R := X7X yields 7; is the number of
occurrences of treatment ¢ overall, while 7;; denotes the number of blocks which
contain both treatments ¢ and j. Therefore, an information matrix maximizes
the trace and is completely symmetric if and only if each treatment occurs
equally often and every two treatments are contained in the same number of

blocks. A block of size two corresponds to an array in the microarray setting.

Define Py, recursively by P, := [1, —1] and P, := for all kK € N=3,

2
whereas 1, and 0, are k-dimensional column vectors with all entries equal to 1

and 0, respectively. I is the k x k identity matrix.

Obviously the design with design matrix X := P,

0,111 —I;

0;2|0; 2|15 —1I;
Py =

0y | --- | 0g |15 —1o

0; s 0,/11,|—-1,

fulfills this condition. Thus, it is particularly ¢,-optimal, ¢ € [—1, 0], for the

estimation of all orthogonal contrast sets, which we will use later on. We refer

19



2.3. Design of experiments 2. Fundamentals

to Stanzel [37] for helpful properties of the matrix P, ;. We use the facts

(P P5y)" = (t 4+ 1) Py P, and (2:22)

Te((Pe1Ply) (P Py )) =t (2.23)

for ¢ € R=Y and ¢ € N in Section 4.

20



Chapter 3

Exact A-Optimal Designs

In this chapter we propose a method to derive exact A-optimal designs for prac-
tical situations with a given number of arrays and small numbers of treatments,
since in many applications the number of treatments does not exceed a known
limit. We apply this approach to several contrast settings, including the com-
parisons with a control treatment, all-to-next contrasts and Helmert contrasts.
A-optimal designs for pairwise treatment comparisons are derived in Tsai et
al. [41] and Bailey [2].

Throughout this chapter we consider the A-optimality criterion, since it is still
the most popular one for block designs, see Atkinson [1]. Another important
criterion, especially in robustness investigations, is the D-optimality criterion.
However, Bailey [2] already has investigated D-optimal design for the estimation
of all pairwise comparisons and this criterion is independent on the contrast set
of interest. All derivations in this chapter are based on model 2.1, whereas the
dye effect is ignored in a first step referring to Bailey [2]. Dyes are reintroduced

in Chapter 4.7.
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3.1. Calculation of A-optimal designs 3. Exact A-Optimal Designs

3.1 Calculation of A-optimal designs

Let (c1,...,¢n) with ¢/ = (cp,-..,cy) be the contrast set of interest for the

parameters 7 = (7o, ...,7)T. Then the A-optimal design minimizes the term

Z Var(c,' 7) (3.1)

as outlined in Section 2.3.

This sum is in particular dependent on the number of used arrays a and on
the two treatments combined on each array. Since each contrast ¢ € RY,
= (o, cu), 1 € {1,...,m} fulfills the equation Z:ZO ¢;; = 0 by defini-
tion, we get Var(¢,'7) = Var(d>_;_, cui; + ZE:SJA ci7;) for ¢, ..., ¢ > 0 and
Ci(st1) - - C < Owith D77 ey = — Z:‘:s 1 ¢ without loss of generality. Hence,
we rephrase Var (¢,'7) = Var (ZZ < @ij (i — @-)) with appropriate a;; resulting
from the values of ¢;;. Thus, it is sufficient to calculate the expressions Var(7;,—17;)
and Cov(7; — 74,7 — 71) to determine >,", Var(¢/’7). Therefore we will give a
formula to calculate these expressions in the following theorem. This theorem
uses the fact that each microarray experiment with t+1 treatments and a arrays
can be illustrated by a multigraph with ¢+ 1 vertices and a edges, whereas every
two treatments tested on the same array in the experiment are connected by an

edge in the graph, as outlined in Section 2.1.

Theorem 3.1:

Let V= {0,...,t} be the set of vertices (treatments) and £ = {zo1, o2, - . . , T(z—1)¢ }
the set of edges of a given graph with |E| = (tgl).

The function b : z;; — b(z;;) : £ — Ny specifies the number of arrays b(z;;)
comparing treatments i and j for each treatment pair (7, j), i.e. the graph with

vertex set V' and with the a edges in the multi set

E = {(L’Ql, e X015 X022y - - -5 L2y - - - 7x(t—1)t7 ce ,(L’(t_l)t}
~ ~~ ~ ~~ o N ~ -
b(zo1) times b(zo2) times b(2(1—1)) times
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describes a specific microarray experiment with a arrays. Then

b(al)b(aQ) cee b(at,l)
ACE\{IE.L']'}Z‘A|:t—12
. R (V,AU{z;;}) has no loops
Var(f; — 7;) = 3.2
wln =) > banb(an) - bla) 32
ACE:|Al=t:
(V,A) has no loops

with i,7 € {0,...,t},i# jand A = {ay,a9,...} C E.

Theorem 3.1 can be proven with results from physical networks, especially
with the help of resistance matrices. For a detailed description see Bailey and

Cameron [3]. Furthermore, it can be shown easily that
. 1 . . . .
Cov(T; — 175, T —T1) = §(Va7’(7'i 1)+ Var(t;—7,)—Var(t;—7) —Var(t;, —%)).

We demonstrate the application of Theorem 3.1 in the following examples.

Fxample 3.2:
If we consider three treatments the experiment with a = x + y + 2z arrays is
illustrated in Figure 3.1. Let b(xg1) = =, b(xe2) = vy, b(x12) = 2z, i.e. treat-

ment 0 is combined with treatment 1 on x arrays etc. Consequently we get

- Yy+z - s S T W Z
Var (7o — 71) = Tl Cov(Tyg — 71,70 — T2) = el

~ ~ 0\ Ttz o gy ~ N — Yy
Var(7y — 72) = o Cov(Tg — 71,71 — T2) = Pl

S A\ z+y o - S S T
Var (7, — 72) = v Cov(Ty — Ta, 71 — T2) = prweseyd

The denominator of these terms corresponds to the number of spanning trees
of the underlying graph. A spanning tree is a connected subgraph without
any loop, which contains every vertex of the underlying graph. The numerator
of Var(7; — 7;) specifies the number of spanning thickets of the graph with i
and j in different components, whereby a spanning thicket is a spanning forest
with exactly two components. The variances of these estimators depend on the

number of paths joining the two vertices.

Ezxample 3.3:

Considering four treatments we denote b(x;;) = Bjj, i.e. treatment i is combined
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with treatment j on B;; arrays. The experiment with a = By + By + Bos +
B1o+ B3+ Bsg arrays is illustrated in Figure 3.1. Consequently we can calculate

the denominator of Var(7;, — 7;) as

By B12Bas + Bo1 B12Bos + Boi1 B12Bi3 + Bo1 Bas Bos + Bo1 Baz B3 + Boi1 Baz Boo
+Bo1 Bo3Boz + Boi1 B13Boa + Bi2Bas Bos + B12BagBog + B12Bo3 B3 + B12Bo3Bo2

+DB19B13Bys + Ba3 B3B3 + BasBi3Bos + BosBi3Bo2 =: d

for all ¢ # j. The numerators of Var(7; —7;) can be extracted from the following

terms.

d-Var(7p —71) = BiaBas+ B12Bos + BiaBis + Ba3Bos + BasBis
+Ba3Bos + BozBoz + B13Bo2,

d-Var(7p —Ta) = BB+ Bo1Bos + Bo1Bis + B12Bas + BiaBos
+DB12B13 4+ B3B3 + B3B3,

d-Var(7p —73) = BoBia + Bo1Bas + By Bos + B12Bas + BiaBis
+DB12Bys + B3B3 + B13Boa,

d-Var(7y —Ta) = BB+ Bo1Bos + BoiBis + BasBos + BasBoa
+DBy3B13 + Bo3Boz + Bi13Boa,

d-Var(ty —73) = By Bia + BoiBas + Boi1Bo2 + B12Bos + B12Bog
+Ba3Bos + BasBoa + BosBoa,

d-Var(7a —73) = By Bia + Bo1Bos + Boi1Bis + Bo1 B2 + BiaBos

+B192Bys + By B3 + B13By2,
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BO1
BO B12
B2s
Figure 3.1: Graph representation of microarray experiments with three and four treat-
ments.
d-Cov(1g — 71,70 — T2) = BiaBas + B1aBos + BiaBis + BagBis,
d-Cov(tg — 71,70 —73) = Bi1aBas + B1aBi3 + BagBis + B13Boo,
d-Cov(7g — 72,70 — 73) = Bo1Bag + Bz + Bas + B1aBi3 + Bo3Bis,
d-Cov(Ty — 79,71 — T3) = Bo1Bas + BagBos + BazBoz + Boz Bz,
and so on.

Theorem 3.1 can theoretically be applied to all values of treatments ¢, but the
computation time increases immensely. However, in many applications the num-
ber of treatments is small and exact optimal designs can be derived with Theo-
rem 3.1 for all numbers of arrays a. For larger values of ¢ approximate optimal
designs are proposed in Chapter 4. The corresponding approximate optimality

results can be used to construct nearly optimal designs for all values of ¢t and a.

3.2 Optimal designs for treatment-control com-
parisons

Although in medical applications scientists are often interested in comparing
several treatments to a control-treatment, only few authors considered design
problems for treatment-control comparisons in microarray experiments. Kunert
et al. [28] derived approximate optimal designs in this scenario, exact designs
were not computed. Thus, we will construct exact A-optimal designs for esti-

mating treatment-control comparisons and we will show that these designs are
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3.2. Treatment-control comparisons 3. Exact A-Optimal Designs

more efficient than the star designs which are often used in practice. Star designs
allocate each treatment together with the control-treatment on the same array,
e.g. Figure 2.2. For example, Zieker et al.[47] used a star design with two treat-
ments and a control to compare gene expressions of marathon runners, before,
immediately after and 24 hours after exercise. The control-treatment in a star
design is of practical interest in contrast to the reference in a common reference
design. Common reference designs are widely used in practice (e.g. Callow et
al. [6]) and compare competing treatments via a reference sample, which is not
of interest itself. Star designs always perform better than the common reference
designs, since they do not waste resources in order to estimate the effect of the

uninteresting reference treatment.

Throughout this section 7y describes the control-treatment and 7;, i € {1,...,t}
describe the other treatments. Therefore, we have to minimize 22:1 Var(7o—17:),
if we are interested in estimating all treatment-control contrasts 7y — 7; for i =
1,...,t. We will derive A-optimal designs using Theorem 3.1 for t € {2,3,4},

because these values are often used in practical settings.

If we consider two treatments and one control-treatment we have to minimize

the function

r+y+ 2z

Var(7g — 7 Var(tg — 79) = ————
(TO Tl)+ (TO TQ) TY + 12+ Yz

(3.3)

under the constraints x + y + z = a and z,y, z € {0,...,a}. The results of this
minimization obtained for a € {6,8,10,12,15} arrays are displayed in Table
3.1. Similar results for other values of a can be obtained easily by minimizing
expression (3.3). Certainly, all designs remain optimal, if the values of x = By
and y = By, are interchanged. For instance, if we use a = 10 arrays we get
the optimal design, which investigates both treatment-control comparisons on
four microarrays each and the non-interesting treatment by treatment compar-
ison on the remaining two microarrays. In Table 3.2 and Table 3.3 we listed
similar results for ¢ € {3,4} (using Mathematica 7.0.1.0, Wolfram Research).
Altogether, we realize that it is efficient to hybridize the control-treatment on

more arrays than the other treatments, but it is recommendable to use also some
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Table 3.1: A-Optimal designs for comparisons with a control, ¢t = 2

a=9 a=11 a=12 a=15 a=20 a=25
By 2 3 3 4 5) 7
Bos 2 2 3 4 5) 6
Bos 2 3 3 4 5) 6
Bio 1 1 1 1 1 2
Bis 1 1 1 1 2 2
Bos 1 1 1 1 2 2

arrays without the control. As mentioned above, star designs are often used by
researchers in medical and biological applications. Using the designs proposed in
this paper instead of the star designs, we observe a gain in efficiency of at least
4% for t = 2 and at least 10% for t € {3, 4}, see Table 3.4. We get similar results
for other values of ¢t and a. Therefore, the star design is not advisable, even if
we are interested in the treatment-control comparisons. The poor performance
of the star design in other contrast settings is considered in Vinciotti [43] for

example.

Table 3.3: A-Optimal designs for comparisons with a control, ¢t = 4

a=14 a=15 a=16 a=20 a=25
By 2 3 2 4 5
Bos 2 2 2 3 4
Bos 2 3 3 4 5
By 2 2 3 3 4
Bis 1 1 1 1 1
Bis 1 0 1 1 1
B 1 1 1 1 1
Bos 1 1 1 1 1
By 1 1 1 1 2
Bsy 1 1 1 1 1
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Table 3.4: Comparisons of the variances obtained for the constructed optimal designs
and the star designs, t € {2,3,4} treatments, a arrays.

t=2 a=6 a=8 a=10 a=12 a=15
Var. opt. design | 0.64  0.47 0.38 0.31 0.25
Var. star design | 0.67 0.5 0.4 0.33 0.31
Var. opt. design 096 094 095 094  0.80

Var. star design

t=3 a=9 a=11 a=12 a=15 a=20 a=25
Var. opt. design | 0.9 0.74 0.67 0.54 0.40 0.32
Var. star design 1 0.83 0.75 0.6 0.45 0.36
Yar. opt. Cesign 09 089  0.89 0.9 0.88  0.89

Var. star design

t=14 a=14 a=15 a=16 a=20 a=25
Var. opt. design | 1.00 0.93 0.87 0.69 0.55
Var. star design | 1.17 1.08 1 0.8 0.64
Vo CB (e 086 086  0.87  0.86  0.86

3.3 Optimal designs for all-to-next contrasts

Another interesting contrast set are the all-to-next contrasts 7;,_; — 7; for i €
{1,...,t}. They are often used in time course experiments to compare consec-
utive points in time. We will compute A-optimal designs for these contrasts
with the same method used in the previous section. Thus, the derivation of A-
optimal designs for this scenario leads to the minimization of the target function
zt: Var(7;,_1 — 7;) for a given number of a arrays. Therefore, for ¢ = 2 the target
i=1

function
By 4 2By + Bia

By Boz + Boi1 B2 + B B2

has to be minimized under the constraints B+ Bgo+ B2 = a and By, Boo, B1s €
Ny, which is equivalent to expression (3.3) with interchanged variables. For ¢ = 3

the function

(Bo1B12 + Bo1Bag + B12Bas + 2By Bog + 2B12Bos + 2Ba3 Bos + 2Bo1 Bis
+B12B13 + B3B3 + 2By3B13 + Bo1 Boa + B12Bos + 2B23 Bos + 2By3 B

+3B13Bg2)/d

has to be minimized under the constraints B01 + BOQ + Bog + Blg + B13 + ng =a

and By, Boa, Bos, B1a, Bi3, Bas € Ny. The solutions of these minimizations are
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Table 3.5: A-Optimal designs for the estimation of all-to-next contrasts, t = 2

Table 3.6: A-Optimal designs for the estimation of all-to-next contrasts, t = 3

a=9 a=11 a=12 a=15 a=20 a=25
By 2 3 3 4 5) 7
Bos 1 1 1 1 2 2
Bos 1 1 1 1 1 1
Bio 2 2 3 4 5 6
Bis 1 1 1 1 2 2
Bos 2 3 3 4 5) 7

listed in Table 3.5 and Table 3.6. For example, considering 15 microarrays and
four treatments the samples of consecutive points in time are compared on four
slides and the non-consecutive treatment comparisons are hybridized only on one
slide. Independent on the number of arrays and treatments, we observe that A-
optimal designs comprise more microarrays hybridizing consecutive treatment

comparisons than microarrays hybridizing more distant treatments.

3.4 Optimal designs for Helmert contrasts

Helmert contrasts compare each treatment to the mean of the treatments with

t
subsequent treatment indices, i.e. 7; — t%l > m,1€{0,1,...,t}. These con-
I=it+1
trasts are also very useful for ordered treatment arrangements, for instance time

course experiments. For ¢ = 2 the Helmert contrasts are given by 7 — %7’1 — %7'2

and 7 — 7. Thus, A-optimal designs for estimating these contrasts can be
obtained by the following minimization

1 1
min (Var(fo — 57:1 — 5722) + Var(fl — fg))

1 1 1
= min (ZVM(TAO - 7))+ ZVar(fo — 7) + Var(fy — %) + §Cov(fo — 71,70 — Tb))

N 5By1 + 9By2 + 4B
4By Bog + 4Bo1 B12 + 4Bo2 B2

= mi
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Table 3.7: A-Optimal designs for the estimation of Helmert contrasts, t = 2

a=6 a=8 a=10 a=12 a=15
By, 2 2 3 4 4
Boa 2 3 3 4 5
Bio 2 3 4 4 6
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under the constraints By, + Bgs + Bio = a and By, Bgo, Bis € Ny. The results
of this minimization for a € {6,8,10,12,15} arrays are displayed in Table 3.7.
The first Helmert contrast vector (1, —1/2,—1/2) has the norm +/3/2 and the
second vector (0,1, —1) has the norm V2. Therefore, the comparison of treat-
ments one and two is more important than the comparison of treatment zero
and treatment one. This is reflected in Table 3.7by the fact that for any value of
a the value of By, is always the highest. According results for ¢ = 3 are listed in
Table 3.8 (using Mathematica 7.0.1.0, Wolfram Research). Again, comparisons
between treatments with larger treatment indices are hybridized together on
more slides due to the norms of the Helmert contrasts. For example, the value
By is the highest for all values of a in Table 3.8. Helmert contrasts belong to
the set of orthogonal contrasts, hence it is straightforward to find the optimal
designs for normalized Helmert contrasts <7‘Z‘ — t—il i Tl) / % due to the
fact that the corresponding contrast matrix is ortilzolgcl)nal. In this section we
considered usual non-normalized Helmert contrasts 7; — % zt: 71, which assign

I=i+1
higher weights to posterior comparisons.
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3.5 Optimal designs for all pairwise treatment

comparisons

The approach outlined in Section 3.1 can also be used to derive A-optimal de-
signs for all pairwise treatment comparisons. Since exact optimal designs for
these contrast set are already considered in Tsai et al. [41] and in Bailey [2],
we will not state the numerically solutions of this problem here. Tsai et al.
proposed an algorithm to find exact optimal designs for this contrast set, which
is based on an exhaustive search on non-isomorphic graphs. This approach can
only be applied for very small numbers of arrays and treatments and is very time
consuming. Our approach yields the same designs as stated in Tsai et al. [41].

Another way to explore optimal designs for the pairwise treatment comparisons
C = PL, for selected numbers of arrays can be traced back to Kiefers derivation

of universal optimal designs [25] stated in Theorem 2.4.

Theorem 3.4:
Considering model (2.5) without dye effect, the design £ with design matrix
X = Pyy1 is ¢optimal, ¢ € [—1,00] for the estimation of the contrasts CTr

Proof: As mentioned at the end of Section 2.3.3, a design with design matrix
X = P,y is ¢,optimal, ¢ € [—1,00] for all contrast sets with orthogonal
contrast matrices C'. Since the pairwise treatment comparison contrasts are not
orthogonal, we have to show that the eigenvalues of the information matrix are
invariant to pre- and post-multiplication with P,,; and PEH, respectively. We
will prove that the eigenvalues remain the same except for multiplication with
a constant factor. In this case the optimal design remains the same, since the
matrix means do only depend on the eigenvalues of the considered matrices.
For that purpose we consider the singular value decomposition of CT = P, =
UXVT with unitary matrices U and V and a diagonal matrix 3. Obviously it
holds that
M :=PL Py = (t+ 1) — Jipa.
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Thus, P P has t positive eigenvalues equal to ¢ + 1 as mentioned in Sec-
tion 2.3.3. Hence, the positive singular values of P, correspond to v/t + 1 and

we obtain

ViFl 0

ViHl 0

Y= VIFI 0
0 0

0 0

We are interested in the set of eigenvalues, i.e. the spectrum &, of the matrix
Py Mg P[ ;. This matrix does not depend on the generalized inverse of M, and
equals P, M P/ ;. This can be easily shown with Pukelsheim’s [33] Theorem
[.17. Due to Range(P,41) C Range(l(ty)) the equality

Range(PgrlPtH) = Range(PErl)

holds. In particular it holds that Range(P},P+1) C Range(PZ,) and hence
Pry1 M~ Pl does not depend on the generalized inverse of M using Pukelsheim’s

Theorem 1.17. Supposing that

is the identity matrix with an additional row with zeros and an additional column

with zeros, we can show

(P M~ PL) =(USVIMTVETUT) = 5(SVIMTVET)
=05 (LVIMTVI)) Uu{0,...,0} =v6(MT)U{0,0,...,0}.

The last equality holds because M+ = t%[tﬂ - ﬁJtH has row and col-

umn sums equal to zero and the last column of V' is a multiple of (1,...,1)7,
since the last column of V' corresponds to the singular value 0 of P, ;.We get

Gq((PraM~PL)T) = vgye(M) due to the definition of the matrix means and

we achieve the same optimization tasks for our contrast set C' = P}, as for
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orthogonal contrasts or no contrasts. Thus, we get the same optimal design. [J

This result is comprehensible, we expect that the optimal design hybridizes all

treatment combinations together on a microarray.
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Chapter 4

Approximate Optimal Designs

For large values of ¢ the computation time of exact optimal designs increases
immensely, hence we will propose approximate optimal designs for these situ-
ations in this chapter. The corresponding approximate optimality results can
be used to construct nearly optimal exact designs for all values of t,a € N .
We will derive approximate optimal designs for one and multi-factorial settings.
Multi-factorial settings contain more than one experimental factor of interest.
For example, in addition to the treatment effect researchers are often interested
in the cell line effect, in the effect of gender, and in appropriate interactions.
For instance, Churchill [8] investigated several mouse cell lines medicated with
different treatments. He was interested in the cell line effect as well as in the
treatment effect and in treatment by cell line interactions. However, only few
authors have considered optimal designs in multi-factorial settings. Some au-
thors have investigated optimal designs for the estimation of main effects and
first-order interactions. See, for example, Glonek and Solomon [15] or Banerjee
and Mukerjee [4], who have examined factorial designs for microarray experi-
ments under the baseline parametrization. Furthermore, Kerr [22] as well as
Grossmann and Schwabe [17] have derived efficient designs for the estimation
of main effects and two way interaction effects when all factors have two lev-
els. Another reference is Stanzel and Hilgers [38], who give approximate designs
for the estimation of two-factor interactions. However, in medical applications

scientists are often interested in many factors. For instance, Taylor et al. [39]
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and Stamatakis et al. [36] have investigated scenarios with more than two fac-
tors. They are interested in three-way interactions. Therefore, the interesting
question of constructing approximate optimal designs for estimating interaction
effects in multi-factorial settings arises and will be considered in this chapter.
We will extend the investigations of Stanzel and Hilgers [38], who focused on two
factors of interest and all pairwise treatment comparisons, by examining further
contrast sets including treatment-control comparisons, all-to-next contrasts and
Helmert contrasts. In addition, we consider multi-factorial layouts with more

than two factors of interest in Section 4.4.

4.1 Generalized statistical model

In this section, we will extend model (2.5) such that it can be applied to exper-

iments with n experimental factors of interest. Accordingly we can describe the

vector of all observed log ratios of the dye intensities of each array z = (zy, ..., 2,)
as

z=XT+Wd+n (4.1)
where 7 = (7111, -+, Tl kni « - Thikookn_11y - - > Thika. ks ) 18 the vector of all the

effects of factor level combinations of the n factors of interest, k; denotes the
number of factor levels of factor i, and § = (Ogreen;Ored) are the dye effects.
[X | W1 is the design matrix, where each row of X consists of exactly one 1 and
one —1, whereas all other entries are equal to zero. W is equal to (1,, —1,)
and 7 is the random error vector. For n = 1 model (4.1) yields model 2.5, for
n = 2 it yields the model considered in Stanzel [37]. Again, we will ignore the
dyes in the the following sections, but all theorems can be shown with dye effect

analogously.

4.2 Main effect contrasts in two- and multi-

factorial settings

Throughout this section model (4.1) is considered. First, we derive optimal

experimental designs for the estimation of the main effect contrasts in the two-
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factorial setting, i.e. n = 2 experimental factors of interest. If two factors with
ki and ko levels are considered and one likes to estimate arbitrary contrasts
CT(ry,...,mk,)" of the ky levels of the second factor in all of the k; levels of the
first factor, then the contrasts (1, @ C)T(i1,..., Tkk,)" are of interest. The
following theorem is valid for all contrast sets. We assume that an optimal design
T

in the one-factorial setting for the estimation of the contrasts set C* (7, ..., 71,)

is known for a factor with ko factor levels in the one-factorial setting.
Theorem 4.1:

Suppose that a design £ with [ x ko design matrix X and [ x1 weight matrix P is
¢_,-optimal, p € (—o0, 1], for the estimation of the contrast set CT (7, ..., 74,)"
in the one-factorial model (4.1) with n = 1. Then, the design with design matrix
X = I, ® X and weight matrix P = kil (Ix, ® P) is ¢_,-optimal in the two-
factorial model (4.1) with n = 2 for the estimation of the contrast set C”7 with

C=1;,®0C and 7 = (T11, -+, Thyhp) . -

Proof: Choose p € (—o0,1] fix. Due to Theorem 2.3 and the ¢_,-optimality
of X for the estimation of the contrast set CT(ry,...,7,)T we know that a

generalized inverse matrix G = (X TpX )~ exists, which fulfills the inequalities
G (CTGO)T(CTGE) T (CTGO) T T e < T ((CTGO) T (T 6e) ')
for all z € X = {x € {-1,0,1}*2 : 3li with z; = 1 A 3lj with z; = —1}. Define

A:=Gc(cTGe)t (cTae) TP (cTae)t oTaT, (4.2)
const := Tr ((C’TGC')Jr (C’TGC)l_p) : (4.3)
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Furthermore, we will use the following equations which can be proved easily:

G- (XPX) - (ki (1, ® (XTPX))>_, (4.4

—k <Ik1 ® (XTPX)_> — ki (I, ®G), (4.5)

GC =k (1, ® GC), (4.6)

CTGC = (1} @ C7) (ky (I, ® Q) (14, ® C) = k? (CTGC),  (4.7)
(crac)” = kl% (cTGo)t (4.8)
(dTéé)l_p _ 2 (CTGO) (4.9)

Forally € Y = {y € {—1,0,1}**2 : 3li with y; = 1 A3!j with y; = —1} it holds
that

1—

Tielel(eiele) M (eiele) R (eliele) ey ell?
< Tr ((éTaé)* (éTéé)”)
&y (Ju e (Ge(CT6e) (CTGe) T (CTGe) T eTaT) )y
<1r((CTGo)" (CTGe) ).

From the optimality of the design ¢ we know that 27 Az < const for all z € X =
{x € {~1,0,1}*2 : i with x; = 1 A 3!j with z; = —1}. Therefore, we have to
show y7 (Jp, ® A)y < const for all y € Y = {y € {—1,0, 1}k : Il with y; =
1 A 3lj with y; = —1}. Without loss of generality, let z; = 1 and z; = —1 and
thus

.TTA.T = (aﬂ — ajl: vy Qs — ijQ).T = U4; — aji — (aij — ajj),

where a;; is the element in row ¢ and column j in the matrix A. We partition

Yyt =l u) = s Yiket - Ykt - Ykike) With g = 1and y; = —1

without loss of generality. We consider three different cases. Firstly, suppose
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h # 1 and 7 # j, then

Y (T @ Ay = (1, @ (0 — aj1, ..., Giny — Qjky)) Y

= a;; — aj; — (a; — aj;) = " Az,

The same result can be shown analogously for h = [ and 7 # j. Assuming h =
and i = j we get the following inequality y” (Jy, @ A)y = 0 < 27 Az. Therefore,
the inequalities in Theorem 2.3 hold for the design with design matrix X and

weight matrix P for the estimation of the main effect contrasts. OJ

Theorem 4.1 deals with two-factorial models. However, it can be applied to

multi-factorial settings easily, since 1y, @ L, ® -+ - @1y, , ®C = Ljy.p, , @ C.

4.3 Interaction effect contrasts in the two-factorial

setting

In addition to the estimation of main effects in model (4.1) biologists are often
interested in interactions between two or more factors. For example, considering
ky cell lines and an arbitrary contrast set C' of the ks treatments, we can specify
the two-factor interaction effect contrasts P ® C' with the matrix Py, defined

as in Section 2.3.3.

Theorem 4.2:

Suppose that the design ¢ with the [ X ko design matrix X and the I x [ weight
matrix P is ¢_,-optimal, p € (—o0,1], for the estimation of the contrast set
CT(r,...,7,)" in the one factorial model (4.1). Then, the design with design
matrix X = I, ® X and weight matrix P = 1?11 (Ix, ® P) is the ¢_,-optimal
design in the two-factorial model (4.1) for the estimation of the contrast set
CTr with C = Pl ®C,if a;; < 0,4 # jand a; < kzlk_llconst with const =

Tr((CTGC)* (CTGC)?) and A = GC(CTGC)*H(CTGC) ' »(CTGC)**CTGT.

Proof: Choose p € (—o0,1] fix. We will use the equivalence theorems 2.3

to show optimality of the design with design matrix X and weight matrix P.
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Therefore, we will consider a generalized inverse G = (X TpX )~, which fulfills

the inequalities
TG (CTGO)T(CTGE) T (CTGO) T O e < T ((CTGO) T (CT6e) )

for all z € X = {z € {-1,0,1}}2 : 3 with x; = 1 A Jj with z; = —1}.

Analogously to the proof of Theorem 4.1 we can show
G = (XTJBXy =k (I, ® G), (4.10
GC = kI, ® G)(PL @ C) = k(PL ® GC), (4.11

)
)
CTGC = (Py, @ CT)ky (I, © G)(PL ® C) = ky (P, BL ® CTGCR.12)
(CTGC) = (P P @ (€7GO)"), (4.13

)

(CTGCO)' P = k' P((Py, PEY P @ (CTGC)' ). (4.14

Since we know from Section 2.3.3 that (Pl Py,) = kily, — Ji, and (P, PL)? =
k7P, P,g; for ¢ > 0, we can demonstrate
GO(CTEOYHCTGOY P (CTGOYHCTET
= ((Ple (Pk’lPk?;)+(Pk1Plz;)1_p(Pk’1Plg;)+Pk’1)
GCICTao)yT(cTGe) P oTGe)TCT Gk, P

= (PL(Puo, PE) ki P (Po, PL) (P PL) T Py @ Ay P
1

73 P (P PE) Py © Ay
1

1
= (kg Uy = Ti)? @ Ak = (T (ki Dy — i) @ Ak TP

1

= ((kidy, — Ji,) @ A)ky 22

= (klippg;<Pk1Pk];)+Pk1 ® A)k’llip - (kl
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Using Tr((Py, P )T (Py, PL)) = k1 — 1 from Section 2.3.3 we see

Tr((CTGC)T (CTGC)P)

=Tr((Py, )T (P, PL) P @ (CTGC) T (CTGO) ' Py 7P

= Te(((Pe, Pr,) " (P B 7) Te((CTGO)H(CTGO) )k ™7
= Tv((Py, PL) ki P(Pr, PlL)) const ki ™?

= k1 % (k; — 1) const.

Due to the ¢_,-optimality of the design &, we know that z7 Az < const for all
r € X ={xe{-1,0,1}F : I with z; = 1 A3lj with z; = —1}. Thus, we have

to show

y' (ki Ly, — Jp,) ® A)y < (k1 — 1) const
forally € ¥ = {y € {—1,0,1}* : 3l with y; = 1 A 3lj with y; = —1}.
Without loss of generality, we assume z; = 1 and x; = —1 and thus 2l Ax = a;—
aj;—(a;;—aj;) as in the proof of Theorem 4.1. We partition y” = (y{ ;... ;4. ) =

(Y115 -+ s Yikos - - -3 Yhkats - - - » Ykiko) With yp; = 1 and y;; = —1 and consider three

different cases. Firstly, suppose h # [, © # j:

T((kilyy, — Jiy) @ A)y

- <_ai1 + Aj1y v vy —Qiky + Ajky, —Aj1 + Aj1y v vy —iky + Ajkgy - - -y
NS -~ v ~~ v
1. cell line 2. cell line
(k‘l - 1)%’1 +aj1, ..., (kl - 1)aik2 + Qjgys - - -
~ TV
h. cell line
—Q;1 — (kl — 1)61]'1, ey —aikQ — (kl — 1)ajk2, .. )y
N - 7
1. cell line

kl 1 i + Qg — <_aij - (kl - 1)ajj)

k1 — 1) (au + aj;) + 2a,;

= ( )
= ( )
= (k1 — D)(aii + aj; — 2a;;) + 2(k1 — 1)ag; + 2a;
< (k1 — 1) const + 2k;a;;

<( )

ki1 — 1) const .

The last inequality holds due to the assumption a;; < 0, for all ¢ # j. Secondly,
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ki1—1
2k

we suppose h # [, i = j and use the fact that a;; < const. Therefore,

yT ((kl]kl - Jkl) ® A) Yy
= (/ﬁ - 1)au‘ +ay; — (—au‘ - (/ﬁ - 1)au‘) = 2kya;;

< (ky — 1) const.
Assuming h =, i # j we finally get

y" (kidk, — Jiy) @ A) y

- (_ail + A1y oy —Qiky + Qjlos - - -
1. ce‘lTline
(k‘l — 1)ai1 — (]{51 — 1)aj1, ey (]{31 — 1)aik2 — (k)l — 1)(1j]€2/, .. )y
l. Cchlino

= (k1 — Day — (k1 — Vaji — (k1 — Dai; — (kr — 1)ay;)

= (k1 — 1)(ai; + aj; — 2a;;) < (k; — 1)const.

This completes the proof. O

Ezample 4.3:

If we are interested in estimating the specific interaction contrasts C' = P @ PL
of ky cell lines and ky treatments, i.e. C' = P in Theorem 4.2, where P de-
fines all pairwise treatment comparisons, the inequalities in Theorem 4.2 reduce
to ky < k. We will show this in the following part. Because of Theorem 3.4
we know that the design with design matrix X = Py, and equal weights is
¢_p-optimal for estimating the contrasts C*r with C' = P/,CT2 . Thus, the Moore-

Penrose-Inverse G = (X7 PX)* fulfills the normality inequalities of the equiva-
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lence Theorem 2.3 for p € (—o0, 1] with P = (,}2) I(z@). Hence,

2

G = (XTPX)" = (é(kﬂ,ﬁ - J,Q)>+ = (k;) (%Ikg - %22%)) :

CTGC = fo— 1

szpkj;a
2
— - PB,P
(ky — 1)y ™7k
const = Tr((CTGO)H(CTGC)' P) = Ti(

(CTGC)*t =

P

T
(ko — 1)Pky”t! (FuFie))

2p op
= T vt () = G et = k)
op

(kg — 1)p71k2p’

A = GC(CTGO)YH(CTGC) P (CTGC) T CTGT

(ke —D)'7P
B 21-pf, P4 Py, (Pey P, )* P,
(ko — )P
9l—pj, pF1 (kQ]kQ Jk2)
2
(kQ*l)l_p

< 0 for all i # j and a; < B=tconst & ko < ki,

Therefore, Q55 = —W T

i.e. the design with design matrix I}, ® P, and equal weights is ¢_,-optimal for

estimating C = Ple ® P/,CT2 , if there are less treatments ko than cell lines k.

4.4 Interaction effect contrasts in the multi-
factorial settings for the estimation of all

pairwise comparisons

Up to know we have considered contrasts of the main effects in the two- and
the multi-factorial model as well as contrasts of the interaction effects in the
two-factorial model. In this section we will derive approximate optimal de-
signs for the estimation of interaction effects in the multi-factorial setting, if we
are interested in all pairwise comparisons of the factor levels of all n experi-

mental factors under investigation. Assuming a three-factorial model, Hinkel-

42



4.4. Interactions in multi-factorial setting 4. Approximate Optimal Designs

mann et al. [20] have investigated interaction contrast CT (Ty11, .. ., Thykoks ). With
CT = P, @ Py, ® Py,, where ky, ky and k3 are the levels of the three factors

of interest. In general, the interaction contrasts in a multi-factorial model with

n experimental factors of interest are defined as CT7 = (P, @ P, ® ... ®
P, ) (T111s -+ s Thikoo k)L - We can show the following theorem.
Theorem 4.4:

Consider the multi-factorial model (4.1) with n € N experimental factors of
interest. Let k;, i € {1,...,n} denote the number of levels of factor i and
assume without loss of generality 2 < k; < ... < k,. The design with design
matrix X = Py, ® I, ® ... ® I}, and weight matrix P = ka—<>Ik2 () is a

¢_,-optimal design (p € (—o0, 1]) for the estimation of the interaction contrasts

CTT = (Pk1 ® Pk2 ® Ce ® Pkn)T Wlth T = (7'11“.1, e ,Tkle.“kn)T.

Proof: We will proof this statement per induction for fixed p € (—o0, 1]. Exam-
ple 4.3 provides the basis of the induction for n = 2. We assume that the state-
ment is true for arbitrary [ < n—1, i.e. for the estimation of Cf(Tllml, . ,Tkle.“kl)T =
(P, @ oo @ B)(T11.15 -+ Thikoooky ). With min{ky, ...,k } = ky > 2 is the de-
sign with design matrix X; = P, ® I, ® ... ® I, and with weight matrix

PO = ¢_,-optimal for [ < n — 1. We will derive that the

;k] .
k2'”kl( 21) kQ...kl( ’ )

statement is also true for n factors and k,, > k.

G, =XIp™xt= (((Xn_l) ® Ikn)Tkin(P"—U ® I, ) ((Xn-1) ® Ikn>>

= k(G ® 1,),
GGy = Fku(GriCpy @ PL),
CTG,Cp = k(CT_ G 1 Cpy @ Py, PL),
E, = Gncn(cgancm(c{ G.C)"P(CrG,C) eI GT
= ky P(En1 ® By (Pknka)Jr(P PP (P, PL)Y Pr,)
=k P(E,_ @k P(I, — k;_Jk ) =k:(E, 1 @ (I, — kiann))
= 2 P (k) — 1)1"’Hk3‘2p((1k1 - %J;ﬂ) ®...® (I, — ;?1,;”%”'

1=2
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Thereby we use the fact from Example 4.3 and the proof of Theorem 4.2 that

1
ki

1

By =27y Pk P (ky — 1) (I, — p
2

Jk1)®<1k2 - Jk2))

Furthermore, we get

const, := Tr((Cr'G,C,) " (CTG,C,)P)
= Tr((Cr:LF—lanlcnfl)+(Cg—1Gn710n71)17p ® (Pknplg;)Jr(PknPlgl)lip)k;p
= const,_i Tr(k,” (P, Pl ))k;,”

k (kn - 1)

= k"~ 'const,_12— 5

= 2k P(ky — )P ] [ b (ki — 1)
=2

_ kl—l p]jl_‘[k;._Qp(k?‘—].)
2]{31 e i i 3

=k ?(k,, — 1)const,_;

since we know from the proof of Theorem 4.2, Example 4.3, and k; < ks that

consty = ky 2 (ky — 1)const, = 2%k, P (ky — 1) P (ke — 1)ky 7.

Knowing 2T E,_ix < const,_; for all z € X,_; = {z € {-1,0, 1}k1...kn,1’3!i :
z; =—1A3lj: z; =1} we have to show y" E,y < const,, for all y € X, = {y €
{—1,0, 1 F1Fn |30 gy = =1 A y; = 1)

yT'E,y < const,,

1
Ky,
I, ) ykn < (k, — 1)const,,_y

<~ karlz_2p(En—1 ® (]kn -
1
kn

Ie,))y < k;2p(k:n — 1)const,,_;

~ yT<En_1 ® (]k?n -

Assume 1 < h,l < kyky---k,_1 and 1 <1,j <k, and partition

yT - (y{7 s lezlkg...kn,l) = (y117 sy Ylkys - oy Ykika kg1 - - )yk1k2...kn71kn>'
The inequality 27 B, 1z < const,_; for x € X,_; with 7, = 1 and ; = —1 is
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equivalent to
eg;l Uy e(n b_ eg; b_ el(g Y < const, 1,

(n—1)

where € is the ij-th element of the matrix F,_;.

We will distinguish three cases. Firstly, suppose h = [ and i # j, without loss

of generality ¢ < j and yp; = 1 as well as y;; = —1. Thus,
T 1
n—1 n—1 n—1 n—1
= (e V=) = e (=), e Mk — 1) — e (=),
i.th::ntry
n—1 (n—1
........................ e (=1) = ek, — 1),
Jth;try
n—1 n—1 n—1) n—1
ey (=) = ey (=1, e (ke —1)- e (=1),...,

kn +’L.th entry

n—1 n—1
........................ e >(—1)—eh2 Mk = 1), )y

kn—+j .th entry

Due to the structure of E,, we know
el — orlr (k1—11p Hk:ka—l

_ k?l -1 1_p]j1_‘[k_‘_2p<k‘ . 1)
2k i=1 Z Z .

Using all results, we can show that y? E,y < const,, is equivalent to

kl—l 1-pn—1 )
2k k. Pk —1
(%) M-y

<(("t) IR0 = - 1)
S k(b —1) < Zk:_l(kn —1)
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This inequality y* E,y < const,, is fulfilled due to our assumption k; < k,,.

Secondly, we assume h # [ and ¢ = j.

= (e V(=) = e (=) P = 1) — e T (R = 1),

~
i.th entry

n—1 n—
........................ e (1) — eV (=1), .

’

n—1 n—1 n—1
en (1) — e V(=) e ke — 1) — e (ke — 1),

S

~
kn—+i.th entry

n—1 n—1
........................ e (1) — eV (=), )y

= (k,, — 1)(6;:;;1) + el(ln*l) - 26;571)) < (k,, — 1)const,_;.

And last we suppose h # [ and i # j.

1
= (e V(=) — e — 1) — el (=),
i.th;ltry
n—1 n—1
........................ e (=D = ey — 1),
j.th;try

n—1 n—1 n—1 n—1
622 )(_1)_61(2 )(_1)’-"vf22 )(kn_1>_€z(2 )(_1)7--‘
kn+i.;l:entry

- n—1
........................ e (=) = ey (k= 1), )y

J/

kn+j.th entry

n—1 n—1 n—1
= (kn — 1)(€§Lh Lt el(l )) + 2€l(h :

n—1 n—1 n—1 n—1
(kn — 1)(‘52;1 'y ez(z )~ 26§u )) + anegl )

< (k, — 1)const,,_1 + anegfl).
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Due to the structure of E,,_; we know for h # [

ooy o QD ki) O = )0 (kg = )% (kg — D (1)
th 2Pkl (ky — 1)1 - Kk .. Ky

( 1) kl 1 1-pn—1
n— B —2
o :( = ) gk: Pk — 1),

Obviously, eg;_l) < 0 for ¢y odd. Hence let ¢y be even. Define

Pk, ... k) i= 2P kP _ka,‘l %)

and therefore const,,_1 = 2h,_1(k1,. .., k1) ([ ]2 21 ki 71) We have to prove the

following inequality.

2(ky — Dhypq(key .o kn1) (k1 — 1) (kg — 1) -+ (kpyoy — 1) n

ik -« kn_y
2hn,1(l{71, R kn,1>(l€1 — 1)q1 s (l{?n,1 — 1)Qn—1(_1)q0
kikg - - kny
—~ 1 k
< 2k — Dby (k... k H s

54 (kl — 1)(l€2 — 1) . (kn—l — 1)(/{}” — 1)
(ky = 1) (ky = 1% - by — 1) (-1
<r(ky— 1) (k1 — D)y — 1)

& (k1 — 1) (ks — 1) - (kg — D)®1(=1)% < (kg — 1)(ky — 1) -+ (kn — 1)

- (kg — 1>q2 (kg — 1)!13 o (l{}n,1 — 1)(1"71 ‘

1 (ky — D% < (K, — 1).
ko —1  ky—1 (kn_y — 1) (k= 1) = A )

This inequality is fulfilled for k, > k; > 2 and for all ¢; € {0,1} for i €

{1,....n—=1}and go=n—>_", 4, since(k,i;#ﬁl-

At this point we know the ¢_,-optimal designs for the estimation of interaction
effects, that are associated with studying all pairwise comparisons of the factor

levels of all the experimental factors examined in a multi-factorial setting. In

the next sections we will turn to further contrast sets.
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4.5 Comparisons with a control-treatment

A very important contrast set for biological applications is the set of all treatment-
control comparisons introduced in Section 3.2, where exact A-optimal designs
were derived. In the following subsections, we will use the method explained in
Section 3.1 to derive approximate A-optimal designs for the treatment-control
comparisons. We will consider a setting with one factor of interest as well as a
multi-factorial layout. To be able to apply Theorem 4.1 and Theorem 4.2, an
approximate optimal design associated with the one-factorial model should be
known. Therefore, we will first construct A-optimal designs for estimating all

treatment-control comparisons in the one-factorial setting in the next subsection.

4.5.1 A-optimal designs in the one-factorial setting

The following construction of A-optimal approximate designs is based on the
gene-specific model (2.5), where the dye effect is removed. The dye effect is
reintroduced in Section 4.7. Again we denote the control-treatment by 79 and

the other treatments by 7, ¢ € {1,...,t}.

The derivation of the approximate A-optimal designs is also based on the results
presented in Section 3.1, i.e. we will use Theorem 3.1 to minimize 22:1 Var (79—
7;), but, in contrast to Chapter 3 we will consider continuous values @ € [0,1].
The value b(fl—’) is denoted by Bi(;), if we consider t treatments and one control-
treatment. BZ(;) describes the rate of microarrays hybridizing treatments ¢ and

7. Therefore, we will minimize

t
> Var(fy — 4;)
i=1
under the constraints
~(t ~(t ~(t
B((n) + B(()z) +-t B((t)fl)t =1,
BY 0,1 forall 0 <i<j<t.

Fort =3 and 1 <14,j <t, j # ¢ we obtain the weights Bé? = 1 and BZ(;) =L
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For t € N=* U {2} the weights can be expressed as

po At -DVt+1-(t+1)

) — 4.15
0 tt +1)(t —3) ’ (4.15)
~ 2 —-2vt+1+1
0 = ( i+l (4.16)
J tt+1)(t—-3)
We define ry) = Bé? and rét) = BZ(;) since these weights are independent on

7 and j. Using the equivalence theorem 2.3 we show the A-optimality of the

designs that are constructed according to these weights.

Theorem 4.5:

Approximate A-optimal designs for the estimation of all treatment-control com-
parisons 79 — 7;, ¢ € {1,...,t} in the one-factorial setting allocate the control
with each of the other treatment on the rate r%t) of all @ microarrays, all other
treatment comparisons are allocated on the rate rgt) of all @ microarrays with
trit) + (;)rét) = 1. In other words, designs with design matrix X = P, and

weight matrix P := diag(rgt), e ,rgt), rét), e ,Tét)) are A-optimal.

-~

Proof: Choose t fix and denote rgt) =7 and rét) = 19 throughout this proof. For
p = —1 the ¢_,-optimality criterion is the same as the A-optimality-criterion.
Therefore, we will show that the equivalence theorem 2.3 holds for p = —1. We
show that the Moore-Penrose-Inverse G = (XTPX)t of XTPX satisfies the

normality inequality

TGO (CTGO) T (CTGE) (CTGC) T CTGT < Tr ((€7GC) " (¢TGe)?)
(4.17)
for all possible design points z € X, X = {z € {-1,0,1}! : 3 with z; =
1 A3l with z; = —1}. P := diag(ry,..., 71,72, ...,1r2) with try + ())ry = 1 is

' (2)

the diagonal matrix containing the optimal weights for all design points listed in

X = P,,1. Since we are interested in the comparisons with a control-treatment,
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we consider the contrast matrix

It can be shown easily, that

XTPX _ T‘lt ‘ —7“1]1;

—r Ly |(ry + tro) Ly — oy

where J; is the t x t matrix with all entries equal to 1 and I; is the t x t identity

matrix. Thus, we get

. 1 t ‘ —17
G =X PX) = (t+1)2 (t+1)2 (t+2)r1+
’]" T1 — T1T7T2
! _]lt r1+tre It + r1+ire
1
cTGo = L+—"2

T’l—f-tTg t Tl(Tl—f-t’I“g)
(CTGC)+ = (7”1 + t'f’g)[t — ?”QJt,
1 T
(t+1)r1 ]lt

GC =

1 r1—"r2
rittra I+ (t+1)ry (ri+tra) Ji

Furthermore, we can show

Te((CTGCY (CTGO)?) = %

and

Ge (cTqe)t (cTae)? (cTGe)t oTaT

t -1 ]lT
r2(t+1)2 ra(t+1)2 "t

1 1 (ro—r1)((t+2)r1+tra)
r%(tJrl)Q]lt (T1+t'r2)2]t+ r2(t+1)2(ri+tr)? J

If we compare the control-treatment to the i-th treatment, we denote the design
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point z ;) = (1,0,...,0, =1 ,0,...,0) and therewith

7

ele (CTGO) (CTGC)* (CTGC)T CTG )
B 1 B -1 r2(t2 +t — 1) + 2ryry + tr3
o\ (t+1)2 (t+1)%r2 (t+1)2r? (t +1)2ri(ry + tro)?
1
=5 (\/t+1— 12(VEF 1 +2)
_ (7“1 + 7’2>t
r1(ry + trg)
= Tr((CTGC) (CTGO)?).

Analogously we prove equality in (4.17) for z(;; = (0,...,0,_1 _,0,...,0, =1 ,0,...

for the comparisons of the i-th and j-th treatment.

2%, GC (CTGC) " (CTG0) (CTGO) " CTG ayy,
_ 2<rf(t2 +t—1)+2riry + tr2 (=) ((#+2)r + trg))
(t+ 1)202(ry + try)? r2(t 4+ 1)2(ry + try)?

VT 1R T 2
= Tv((CTGO)H(CTGC)?).

Therefore, the normality equations (4.17) hold for all possible design points
x and the given designs are approximate A-optimal for the estimation of all

treatment-control comparisons. 0]

The weights rgt) and rét) of the A-optimal designs for the estimation of all

treatment-control contrasts are listed in Table 4.1 for various numbers of treat-
ments. Note, that the A-optimal designs in Theorem 4.5 are not universal
optimal. The weights change for other optimality criteria. For example, if we
consider the setting of one reference and three treatments, Table 4.1 gives the
optimal weights for the A-optimality criteria. These weights are not D-optimal.
The value of the D-optimality criteria defined in Example 2.2 for the estimation
of the treatment-control contrasts is 2.52. In contrast, if we set all weights to
1/6, the value of the D-optimality criteria changes to 2.38, which represents a
better design.
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Table 4.1: Weights of the approximate A-optimal designs for various numbers of
treatments.

5 )
=2 16-V3) (-3+2/3)
t= 1 1z

t=4|&(-5+3vV5) L(5-2V5)
t=5| :=(

t=6| &(=7+5V7) E(7T-2V7)

4.5.2 A-optimal designs in the multi-factorial setting

Using Theorem 4.1 and Theorem 4.2, we can expand the results of Section 4.5.1
to the two-factorial setting in model (4.1). Let C' denote the contrast ma-
trix comparing t treatments with a control-treatment, i.e. the contrast ma-
trix outlined in the proof of Theorem 4.5. If we are interested in estimat-
ing the main effect contrasts Ct with C = 1, ® C, it is obvious that the
design with design matrix X = I, ® P, and weight matrix P = %(Ikl ®
diag(z"gt), ce rgti, rgt), e rgt))) is A-optimal due to Theorem 4.1 and Theorem 4.5.

J/

v (£)
If we are also interested in the estimation of the interaction effect contrasts
Cr with C = P,;fl ® C', we can use Theorem 4.2 and Theorem 4.5 to show
that the design with design matrix X = Iy, ® P4y and weight matrix P =

kil([kl ® diag(z"gt), o ,rgt), rg), . ,rét))) is also A-optimal for estimating Cr if

S

‘ )

t+1 < k. To demonstrate this result, we have to verify the conditions

aij < 0,1 # jand a; < kgk_llconst, with const = Tr((CTGC)T(CTGC)'P)

and A = GO(CTGC)H(CTGC)'P(CTGC)TCTGT due to Theorem 4.2. We

know from the proof of Theorem 4.5 that

t

A= | P
—1 1 1

P12 P erl?)

<r§t) + rét)) t

TY) <T§t) n tré”) .

—1 ]lT

r{? 1) 7t
I+ (r§7 =) (t+2)rD D) ’
G e S

const =
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Obviously a;; < 0, 7 # j holds, because of r§ > 7“2 ) for all t € N. Hence, it

ki1—-1
2k1

remains to show a; < ®=lconst. First, we consider a;; < const, which is

2k

equivalent to

t by —1 (D eyt

GF = F OG0 4 0

ri’ (4 1)2 2k, (ry” +try’)

t(t — 3) (ke — 1) (t—3)
& <

2+ D)(V1+t(—V/1+t+t—1)) 1+t(vV1+t—t+1)2k
N —t (k1 — 1)
t+ t+1~ kq '

This equality holds for t + 1 < ky. For ¢ # 1 we can show that the inequality

a;; < kgk const is equivalent to the following inequality.
A2 024 () — (@2 i) (k= D+
r? (1200 + 12 = 2k (e + 1))
o —7{) + 27"%'5)7“5) + 7{) t+ ré) t+ rf)zt? <(k:1 — 1)(7“9 + Té))
rgt) (t+ 1)2(7"?) + trét)) N 2k
- —t2—t+ 1> +2v/1+t—2tV1+1) (k1 —1)
1+t —t+VI+t)(-1—t—VI+t+ty1+t) kiv1+t
- —t(vV1+t+1—1t)? < (ky — 1)
A+t (VI+t+1—t)(—V/1T+t—1+t) — Ky
t (kp — 1)
=4 < -
(t + 1) - kq
& t+1< k1

All transformations hold for ¢ # 3, but the conditions can also be easily shown

fort=3and t+1 < k;. We get
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AP+ ) = (@2 ) (b = D0 )t

rgt)Q(t + 1)2(7”?) + trét))2 N 2k1r§t) (TY) + trgt))
- 3 < Ak — 1)
ki
< ky > 4,
t k=1 (4
rP 12 7 2k D00 )
- 5 < Ak — 1)
ki
s ki > 4.

These inequalities are valid, since k; > t + 1. Therefore, we know the optimal

design for the estimation of the interaction effect contrasts Cr with C' = P,;‘Fl ®

1 1 ... 1
-10 ... O

O =1 9] for practical applications.

o 0 . -1
4.6 Helmert contrasts and all-to-next contrasts

Analogously to our considerations of treatment-control comparisons, approxi-
mate A-optimal designs for Helmert contrasts and all-to-next contrasts can be
derived. However, the properties of the resulting optimal designs do not have
as nice properties as the designs presented in the previous section. Therefore,
it is impossible to state an explicit formula for the optimal weights dependent
on t. First, the optimal weights for the Helmert contrasts, which have been
introduced in Section 3.4 are derived for ¢ = 2 and ¢ = 3. As in the previous

section, we use the results of Section 3.1, especially Theorem 3.1, to minimize
(t)

S, Var(c]'#) considering continuous values for B;;’ € [0,1]. As mentioned in

Section 3.4, A-optimal designs for the estimation of Helmert contrasts can be
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achieved for ¢t = 2 by minimizing the target function:

1 1
min (Var(fo — 57:1 — 57:2) + Var(7, — T}))
) 1 . R 1 R R 1 . o . . .
= min ZV&I(TO - 7))+ ZV&I‘(T@ —Ty) + §COV(7'0 — 71,70 — T2) + Var(7; — 72)

5B§y + 585 + 4B
H(2) H(2 H(2) H(2 H(2) (2
BB 4B B + B

= min

under the constraints Bg) + Bé? + Bg) 1 and BO? ) Bé;, Bg) R=0. This

implies

4+ B + By

min
4 ( (Bél) + B(2)> +BY + BY + Bfﬁ)[?é?)

under the constraints BY + BY < 1 and B, BY) € R20. Since B BY
reaches its maximum for Bg) = B((é) under these constrains, we get
2+ B
0<B(2)<1 23(2)(2 - 3381))

and therefore B((ﬁ) = B(()g) =2(2v/3-3) and B2 =1- 1(2v3-3).

Analogously, we minimize the following function, if we are interested in estimat-

ing the Helmert contrasts for ¢t = 3.

. R 1. 1. 1. . 1, 1. . R
min (Val"(To — 57’1 — 57'2 — ng) + Var(ﬁ — 57’2 — 57’3) + Var(Tg — 7'3))
49ab + 18b* + 26ac + 36bc + 49ad + 110bd + 40cd + 20d>

18(b + 2¢ + d)(ab + ad + 2bd)

= min

under the constraints a +2b+c+2d =1and 0 < a,b,c,d < 1. We set a = l-:j’((ﬁ),
b= Bw) = Bg), c= Bg), d = B[(,g) = B(():;) due to the symmetry properties of
the Helmert contrast matrix. The solutions of this minimization, obtained using

Mathematica, are illustrated in Table 4.2, whereas ¢, is the second root of the
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equation

—4 + 322 — 1222 — 20822 + 263z* = 0

and g5 is the second root of the equation
—1156 4 89762 — 98282 — 1576823 + 21303z = 0.

Therefore, g3 =1 — 391 — 2gs.

All-to-next contrasts can be deliberated in the same way. For instance, for t = 2

the following function is minimized

min (Var(7y — 71) + Var(7, — 72))
BY? +2B% + BY®

“ 252 52 52 . 52 52

B(gl)B(()Q) + B(()l)B§2) + B(gz)Bgz)

= min

under the constraints BS> + B + B? =1 and B, BY, B? € R20. As a

result, we get BS? = Bg) =1(3— V/3) and ]3’(%) =1-2(3— V3).

The resulting optimal weights for ¢ = 2 and ¢t = 3 are summarized in Table 4.3.

Here, f; is the third root of
0.0625 — 1.002* + 22" = 0.
fa2 is the second root of
—1.9375 + 15.0002 — 31.002% + 8.02° + 22* = 0
and f3 is the third root of
0.0625 — 9.002% — 8.02° + 22* = 0.

fa is calculated as fy =1—2f; — fo — 2f5.

Referring to Ferrari quartic equations can be solved exactly, but Galois showed

that the roots of an fifth power equation cannot be solved exactly. Thus, the
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Table 4.2: Approximate A-optimal designs for estimating Helmert contrasts, t = 2
and t = 3.

t=2 t=3
optimal weight optimal weight
By | 2(2v3-3)  =~0.3094 0 ~ 0.1522
B | 2(2v3-3) ~0.3094 7 ~ 0.1522
Bos - - 7 ~ 0.1522
Bip | 1—4(2/3-3) =~0.3812 g2 ~ 0.1645
Bis - - s ~ 0.1645
By - - s ~ 0.2144

Table 4.3: Approximate A-optimal designs for estimating all-to-next contrasts, ¢t = 2
and t = 3.

t=2 t=3
optimal weight optimal weight
By | 3(3-vV3)  ~0.4227 S ~ 0.2706
Bop | 1-2(3—+3) =0.1547 fs ~ 0.0806
Bos - - f4 ~ 0.0538
B | 33-V3)  ~04227 f ~ 0.2439
Bis - - fs ~ 0.0806
Bos - - fi ~ 0.2706

complexity of this problem increases immensely for higher values of ¢t and we
will terminate the investigations. However, we see in Table 4.2 that posterior
treatment comparisons with higher indices ¢, j in Bij get higher weights, most
important is the comparison of treatments two and three and least important
are the comparisons with treatment zero. This phenomenon has been explained
in Section 3.4. For the all-to-next contrasts we realize again, that the compar-
isons with the highest weights are the comparisons between treatments with

consecutive treatment indices, By, Bio and Bas.
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4.7 Dye effect

Up to now the difference in dye intensities caused by different characteristics of
the two dyes was not taken into account throughout our optimization consid-
erations. We will reintroduce the dye effect in this chapter. As mentioned in
Section 2.1 microarray experiments can be illustrated as directed graphs. An-
other way to describe a two-color microarray experiment is to consider it as a
2 x a row-column design, where the two dyes are arranged in the rows and the

a arrays are displayed in the columns (see Figure 4.1(a)).

It is easy to see that no information is lost if each treatment is colored green and
red at the same frequency, i.e. each treatment occurs in the first and second row
of the row-column design at the same frequency [23]|. Therefore, if all treatments
occur with an even quantity, the optimal design remains the same. In the
approximate setting, dye swaps can be added to each design point in order to
achieve optimal designs, if the primary design was not even. Dye swaps hybridize
each treatment comparison on two arrays with the dye assignments reversed in
the second comparison. This method always leads to optimal designs including
the dye effect. Therefore, many authors recommend dye swaps, e.g. Yang and
Speed [46], Stanzel [38] and Kerr [21]. Stanzel [37] proved the optimality of dye

swap designs for special contrast sets. He showed the following theorem.

Theorem 4.6:
The design with design matrix (X | W) with X = (PL,—PL)", W defined

as <112(k2), —]].2(k2)> and equal weights for each support point listed in the de-
2 2

sign matrix, is ¢_, optimal, p € (—o0,1], for the estimation of the contrasts

< l{l ® Pk/‘Z

02y O | 5 | 29 (P Poggyey Oy ) | | |- 2

and 0 denote the k x 1 column vectors with all entries equal to 1 and 0, respec-

tively.

On the other hand Dobbin et al. [9] found out that dye swap assignments are
often unnecessary and wasteful of resources. It is more efficient to balance the
treatments with respect to the dyes and to avoid repeating comparisons. The

designs recommended by Stanzel [37] remain optimal without dye swaps for
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odd number of treatments. Thereby, the matrix P, is substituted by P.. P,

is defined as in Section 2.3.3. We define P recursively by P, := [1,—1] and
T | Flear

for all k¥ € N23, where +1;, is the k x 1 vector with

alternating values 1 and —1 starting with 1, (£1;), = (=1)"' . FI is the
diagonal matrix with alternating diagonal elements 1 and —1, starting with —1,
i.e. (FI); = (—=1)" . The proofs can be carried out similarly as in Stanzel [37].
Since all columns of the design matrix P, are orthogonal to the dyes (1,..., )T,

the treatment effects can be estimated independently of the dyes [16].

However, the exact setting is more complex. In general, exact results including
dyes are not feasible without time-consuming searches. Therefore, we will use
heuristics in order to assign the dyes in a good way to our optimal designs
presented in the previous sections. Assuming that each treatment i is colored
red and green d,; and d,; times, respectively, with |d,; — dg;| < 1. This approach
will lead to optimal and near-optimal designs in most cases. Bailey [2] showed
that balanced designs do not perform well in some cases. For instance, she proved
that the design displayed in Figure 4.1 (b) is A-optimal for the estimation of
all pairwise treatment comparisons. However, in most cases the given approach
leads to good designs. Ture [42] showed that row-column designs for treatment-
control comparisons perform well if the treatments occur in each row at the same
frequency. Therefore, we assign the dyes as balanced as possible to the optimal
designs constructed in the previous sections and calculate the variances of the
corresponding designs. These variances can be compared to the variances of the
optimal designs ignoring the dye effect, which provides a lower bound for the
smallest possible variance. If, by including the dye effect, the variance increases
slightly, we have found a good microarray design including the dye effect. We
use the same approach for the other contrast settings, e.g. Table 4.4, Table 4.5
and Table 4.6. Figure 4.2 and Figure 4.3 illustrate the experiments, which were
considered in Table 4.4 and Table 4.5 graphically. The rows ”Var. opt. incl.
dye” give the variances of the graphically illustrated designs, which take the dye
effect into account. We observe that these variances only increase slightly in

comparison to the same designs without dye effect, which are displayed in the
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Array 1| Array 2 Array a
Green 1 2 1
Red 2 1 t

(a) (b)

Figure 4.1: (a)Row-column design. (b) Optimal design for all pairwise treatment
comparisons.

Table 4.4: Exact A-optimal and near A-optimal designs for treatment-control com-
parisons with and without dye effect, ¢t = 2 treatments, a arrays. The same variances
are obtained for the all-to-next contrasts.

a=6 a=7 a=8 a=9 a=10 a=15
Var. opt. design 0.64 053 047 042 0.38 0.25
Var. opt. incl. dye | 0.66 0.53 0.48 0.42 0.38 0.25

rows "Var. opt. design”. Therefore, we found efficient designs for microarray
experiments also if the dye effect is taken into account. For a detailed discussion

of the dye effect see Bailey [2] or Dobbin [9].

Figure 4.2: Efficient designs for estimating treatment-control comparisons accounting
for the dye effect, t = 3 treatments, a arrays. Numbers displayed on arrows indi-
cate the number of arrays, on which this treatment comparison is analyzed with the
according dye arrangement.
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a=9

a=10 a=11 a=12

a=15

a=20 a=25

P P - Y
0202020 020LDZO 04DL0L
B S e

Figure 4.3: Efficient designs for estimating all-to-next contrasts accounting for the
dye effect, t € {2,3} treatments, a arrays. Numbers displayed on arrows indicate the
number of arrays, on which this treatment comparison is analyzed with the according

dye arrangement.

Table 4.5: Exact A-optimal and near A-optimal designs for treatment-control and
all-to-next contrasts with and without dye effect, ¢ = 3 treatments, a arrays.

Treatment Control

a=9 a=10 a=11 a=12 a=15 a=20 a=25

Var. opt. design

0.9

0.82 0.74 0.67 0.54 0.40 0.32

Var. opt. incl. dye

0.9

0.82 0.74 0.68 0.54 0.40 0.32

All-to-next a=9 a=10 a=11 a=12 a=15 a=20 a=25
Var. opt. design 0.92 0.82 0.75 0.68 0.54 0.41 0.32
Var. opt. incl. dye | 0.93 0.82 0.75 0.69 0.54 0.41 0.33

Table 4.6: Exact A-optimal and near A-optimal designs for treatment-control and
all-to-next contrasts with and without dye effect, ¢ = 4 treatments, a arrays.

Treatment-control

a=14 a=15 a=16 a=20 a=25

Var. opt. design

1.00 0.93 0.87 0.69 0.55

Var. opt. incl. dye

1.01 0.94 0.88 0.69 0.55

All-to-next a=14 a=15 a=16 a=20 a=25
Var. opt. design 1.03 0.96 0.89 0.71 0.57
Var. opt. incl. dye | 1.03 0.97 0.90 0.71 0.57

61




Chapter 5

Robustness Considerations

In many microarray experiments observations are missing and cannot be involved
in the statistical analysis of the experiment. Missing values occur for different
reasons, such as scratches on the slide, insufficient resolution, image corruption
or other damaging (Troyanskaya et al. [40]). It is thus important to use robust
experiments, which ensure precise results even if observations are missing. Latif
et al. [30] have investigated specific robustness properties of commonly used
microarray designs. They proposed two robustness criteria and calculated these
criteria for the commonly used designs. But to date no attempts have been made
to examine these robustness criteria analytically. We will derive designs with
optimal robustness properties and study connections between the robustness

criteria introduced by Latif et al. [30] and popular optimality criteria.

5.1 Definition of robustness criteria

This section contains the necessary definitions to describe robustness properties
of microarray experiments. We illustrate the robustness criteria proposed in
Latif et al. [30] as well as further definitions of robustness (e.g. proposed in

Bailey [2]).

We consider model (2.5) without dye effect,

z=XT7+n,
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where z = (z1,...,2,) is the vector of log ratios of the dye intensities mea-
sured for a particular gene on all a arrays. the log ratios are dependent on
the treatment effect 7 = (79,71,...,7). The term 7 is the random error vec-
tor. We assume 7;, 1 < ¢ < a to be independently identically distributed
with mean zero and variance o?. A design with a x (¢ + 1) design matrix X
is called connected if all contrasts C77 under investigation are estimable, i.e.
CT(XTX)"(XTX) = CT. The breakdown number (BDN) of a design is de-
fined as the minimum number of arrays, whose removal leads to at least one
disconnected design. In other words, for a design with breakdown number b the
effect of interest is still estimable for all the subdesigns with b — 1 missing obser-
vations, but there exists at least one subdesign with b missing observations with
at least one inestimable effect of interest [30]. The breakdown number can be
defined with and without dye effect in the same way. In the following, we restrict
our investigations to the situation without dye effect. For instance, ignoring the
dye effect, the loop design illustrated in Figure 2.2 has breakdown number two,
whereas the star design presented in Figure 2.2 has breakdown number equal to

one.

The breakdown number is also a well-known number in graph theory. In graph
theory edge connectivity of a graph is defined as the minimal number of edges
whose removal results in a disconnected graph. Thus, the graph theoretical
expression edge connectivity is the same as the breakdown number introduced

by Latif et al. [30].

Furthermore, Latif et al. [30] proposed a second robustness criterion to select
good designs among designs with the same breakdown number. They defined
the residual efficiency measure ¢® as the average efficiency of all subdesigns

with a given number b of missing observations.

a\—1 _ -1
(b(b) (C,X) = (b) Xb;‘)(b ¢ <(OT (XI;FXb) O) > for b< BDN

o0 otherwise,
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where &}, is the set of all (‘Z) subdesign matrices resulting from the a x (¢ + 1)
design matrix X by deleting arbitrary b rows. The matrix C'is the usual contrast

matrix and ¢ is an information function defined in Definition 2.1.

Another robustness criterion is the usual D-optimality criterion defined in Ex-
ample 2.2, commonly known as the design which minimizes the volume of the
confidence ellipsoid for the vector of treatment effects. The D-optimality cri-
terion maximizes the determinant of the information matrix. Cheng [7] em-
phasized that the value of the D-criterion for block designs is proportional to
the number of spanning trees of the corresponding graph. Therefore, D-optimal

designs have a strong connection to robustness considerations.

5.2 Optimal breakdown number

Latif et al. [30] introduced the breakdown number for microarray experiments,
but they made no attempts to derive the designs with the optimal breakdown
number for given values of treatments ¢ and arrays a. The following theorem

gives the highest possible breakdown number for given numbers a and .

Theorem 5.1:
For given values a and ¢ with 0 <t — 1 < a, the highest possible breakdown
number is equal to Opt-BDN (¢,a) = LQT“J , where | z] denotes the highest integer

less or equal to x.

It can be easily seen that Opt-BDN (¢, a) < [ 2| since St Deg(v;) = 2a, where
Deg(v;) denotes the degree of vertex v;, i.e. the number of edges incident to the
vertex v;. Thus, there has to be at least one vertex with degree Deg(v;) < [22].
On the other hand, graphs fulfilling equality can be easily derived in many ways.
For example, the designs consisting of repeated loops of length ¢ and additional
edges joining the vertices with the highest distance in these loops have the
optimal breakdown number. Therefore, we know several designs with the best
breakdown number. A detailed proof of Theorem 5.1 and further properties

regarding edge connectivity can be found in Bollobas [5], Theorem 1.6.

A detailed investigation of the breakdown numbers of D-optimal designs leads
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us to the following conjecture.

Conjecture 5.2:
D-optimal designs always achieve the optimal breakdown number given in The-

orem H.1.

Although, the conjecture seems reasonable, the proof turns out to be difficult.
We show the conjecture for special cases in the following section. Thereby, we
restrict ourselves to the consideration of block designs ignoring the dye effect.
The general case dealing with row-column designs is a similar task for future

research.

5.3 D-optimal designs

Many authors draw their attention to the derivation of D-optimal block designs
in different scenarios. We will introduce known D-optimal designs and show that
all of them achieve the optimal breakdown number. For example, Kiefer showed
the universal optimality of balanced incomplete block designs [26]. Blocks of
size k are incomplete in the sense that the block size is smaller than the number
of treatments (k < t) and that no treatment occurs more than once in any
block. An incomplete block design is balanced if the within-block concurrences
r;; of any two distinct treatments ¢ and j are equal for all pairs (7,7), ¢ # j,
i.e. the number of blocks containing any two distinct treatments is a constant.
Ghosh [14] emphasized that balanced incomplete block designs are robust against
the unavailability of all observations in any 27“ — 1 blocks. With other words, he
stated that the breakdown number for balanced incomplete block designs is the

: 2a
Integer <.

Another major reference in this regard is Gaffke [13], who derived D-optimal
block designs for up to six treatments, when no balanced block design exists.
For instance, he showed the D-optimality of the designs illustrated in Figure 5.1.
The thick lines in Figure 5.1 illustrate A edges, A € N, and the thin lines illustrate
one additional edge. Therefore, the first design consists of a = 6\ edges, the

second design of a = 6\ + 1 edges and so on.
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We calculated the break down numbers of these D-optimal designs by means of
Mengers Theorem and represented the results in Figure 5.1. Mengers Theorem
states that the maximum number of paths connecting vertices x and y, which
have no edge in common, equals the minimal number of edges, whose removal
disconnects x and y in a graph (see, e.g., Bollobas [5], Theorem 2.4). We call
two paths with no common edge independent paths. The first graph in Fig. 5.1
corresponds to a balanced incomplete block designs. Using Ghoshs [14] state-
ment cited above, the break down number of this design equals 3\. The break
down number of the second graph has to be greater or equal to 3\. However,
deleting the 3\ edges incident to the lower right vertex disconnects the graph.
This proves that the break down number equals 3\. In general, all break down
numbers have to be smaller than the minimal degree of a vertex in a graph. In
the third graph in Fig. 5.1, the minimal degree of a vertex is 3A\+1. On the other
hand, 3\ + 1 independent paths connect every two vertices in this third graph.
Therefore, according to Mengers theorem, the break down number equals 3\ +1.
This argument can also be used for the other graphs in Fig. 5.1. Altogether,
all of these D-optimal designs achieve the optimal break down number given in

Theorem 5.1.

In addition, Gaffke derived D-optimal designs for three, five and six treatments.
In all cases, it can be shown that these designs achieve the highest breakdown
numbers. Thus, our conjecture is true for all D-optimal designs presented in

Gaffke [13], which are designs with up to six treatments.

Further work on D-optimal designs includes Cheng [7], who derived the following

' NS NN
DDA

BDN=3A BDN=3A  BDN=3A+1 BDN=3A+1 BDN=3A+2  BDN=3A+2

Figure 5.1: D-optimal block designs for four treatments.
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Theorem 5.3:

Let G* be a graph with ¢ vertices and a edges which is a regular complete
bipartite graph or the graph obtained by adding a constant number A of edges
to each pair of vertices in a regular complete bipartite graph (i.e., the vertices
of G* can be divided into two groups of equal size such that there are A edges
between any two vertices in the same group and A 4+ 1 edges between any two
vertices in different groups, where A > 0 is an integer). Then G* is the unique
(up to isomorphism) graph which has the maximum number of spanning trees

among all the graphs with ¢ vertices and a edges.

A regular graph is a graph where each vertex has the same degree. It is called
bipartite, if its vertices can be divided into two disjoint parts such that no
vertices in the same part are adjacent. Each edge is incident to a vertex from
both parts. A bipartite graph is complete, if all vertices from different parts
are adjacent. Since these graphs maximize the number of spanning trees, they

represent D-optimal microarray designs.

These designs have a = (%)2 + (;))\ arrays and their breakdown number equals
%%—)\ (t — 1) due to Mengers Theorem. In a graph obtained by adding a constant
number A of edges to each pair of vertices in a regular complete bipartite graph,
each vertex has degree £ + A(t — 1). Therefore, the break down number is less
or equal to £ 4+ A(t —1). On the other hand £ + A(¢t — 1) paths connecting each
pair of vertices can be found. Thus, the break down number equals £ + A(t —1)

and is optimal.

Theorem 5.4:
Let G* be a graph with t vertices and a edges which is a regular complete m-
partite graph. Then G* is the unique (up to isomorphism) simple graph that

has the maximum number of spanning trees with ¢ vertices and a edges.

A graph is m-partite if its vertices can be divided into m disjoint parts such that

no vertices in the same part are adjacent. Each part of the regular complete

m-partite graph consists of % vertices and each vertex is adjacent to all vertices

of the other m — 1 parts of the graph, but it is not adjacent to the % — 1 vertices
t(m—1)

of the same part. Therefore, each vertex has degree ——— and break down
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number % due Mengers Theorem. This value is the highest possible break
down number for a = (’;) (%)2

Furthermore, Cheng proved the following theorem.

Theorem 5.5:
Let G* be a graph with ¢ vertices which is obtained by deleting ¢ mutually
nonadjacent edges from a complete graph with ¢ < ¢/2. Then G* maximizes

the number of spanning trees over all the simple graphs with t vertices and

(;) — ¢ edges.

Due to Ghosh [14] the break down number of a complete graph equals t — 1. By
deleting one edge, the graph contains a vertex with degree t — 2 and the break
down number decreases by one. By deleting additional mutually nonadjacent
edges up to ¢ < t/2, the break down number stays the same, because t — 2
independent paths connecting each pair of vertices can be constructed. Again,
the breakdown number ¢t — 2 of these D-optimal designs is the best possible

breakdown number.

Furthermore, the conjecture can be shown in general if the breakdown number
is less or equal to two or equivalently a < 3t/2. The following theorem is a result
of a discussion with R. Bailey at the conference ”‘Advances in Model-Oriented

Design and Analysis 97" in Bertinoro, Italy in June 2010.

Theorem 5.6:
Every D-optimal connected graph G with ¢ vertices and a edges, t < a, does
not contain a bridge. A bridge is an edge in a connected graph whose removal

disconnects the graph.

Proof: Suppose that the edge {y,z} is a bridge of G. Removing this bridge
splits G into two components Y and Z. Every spanning tree of G consists of
a spanning tree for Y, the edge {y, z}, and a spanning tree for Z. Hence the
number of spanning trees for GG is sq, where s and ¢ are the numbers of spanning
trees in Y and Z respectively. This number is positive, because G is connected.
Since t < a, there is at least one edge e in G which is in a cycle. Without loss

of generality, e is in component Y. Let x be the number of spanning trees of Y
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which do not contain e. Since e is in a cycle, x > 0. Create a new graph Y’ by
inserting a vertex c into e. Every spanning tree of Y which contains e gives a
spanning tree of Y’ containing both edges at ¢; every spanning tree of Y which
does not contain e gives two spanning trees of Y’, one containing each edge at
c. Hence the number of spanning trees of Y’ is s — z 4+ 2x = s + x > s. Create
a new graph G’ by replacing Y by Y’, removing the bridge, and identifying the
vertices y and z. Then G’ has t vertices and a edges. Every spanning tree of G’
consists of a spanning tree of Y/ with a spanning tree of Z. Hence G’ has (s+1x)q

spanning trees. This number is greater than sq, so G cannot be D-optimal. [J

Corollary 5.7:
If G is a D-optimal graph with ¢ vertices and a edges, where t < a, then G has

no vertices of degree one.

This corollary was also proved using another method by Bailey and Cameron [3].

Corollary 5.8:
If G is a D-optimal graph with ¢ vertices and a edges, where t < a < 3t/2, then

G has breakdown number two.

Proof: If a < 3t/2 then the average degree is strictly less than 3, so G has a
vertex v of degree one or two. Since (G is D-optimal, it has no vertex of degree
one, so v has degree two. Therefore the two edges incident with v form a cutset
of size two. A cutset is a set of edges whose removal increases the number of
components of the graph. Any cutset of size one is a bridge, but G has no bridge

because it is D-optimal. Hence the edge-connectivity of G is two. U

Therefore, Conjecture 5.2 is shown for a < 3¢/2 and additionally for the given D-

optimal designs. It remains an open problem to show the conjecture in general.
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Chapter 6

Summary and outlook

In this work, we investigated optimal designs for two-color microarray experi-
ments for many practical relevant scenarios. These optimal designs ensure un-
biased parameter estimates with minimal variances. In future, our results can
be used to achieve precise estimates in our underlying statistical model with
few arrays. We distinguished between two approaches, which complement one
another in practical applications. Firstly, we derived exact optimal designs in
Chapter 3, and secondly, we constructed approximate optimal designs in Chap-
ter 4. Exact designs provide optimal solutions for a given number of arrays.
They can be calculated with the approach stated in Section 3.1 and they are
mostly used if the number of treatments does not exceed a given limit, which
usually holds in practice. The number of treatments is typically smaller than
five in applications, see e.g., Callow et al. [6]. For higher numbers of treatments
approximate optimal designs produce relief, since they provide nearly optimal
design layouts for all given numbers of treatments and arrays. They may be
used, if the computing of exact optimal designs is difficult due to high num-
bers of treatments. Approximate theory considers scenarios with infinite arrays
and assigns weights corresponding to the proportions of arrays investigating a
given treatment comparison. For applications with finite arrays, the weights are
rounded and multiplied with the number of available arrays. This procedure
often yields efficient exact designs and sometimes even optimal exact designs for

a fixed number of arrays. Therefore, we derived approximate optimal designs in
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6. Summary and outlook

one- and multi-factorial settings in Chapter 4. In particular, in multi-factorial
settings the construction of approximate designs is very crucial, since, here,
many factor level combinations need to be taken into account, which increases
the computing time of exact designs. The approximate optimal designs that we
have constructed in Chapter 4 can be used to estimate main and interaction

effects.

Furthermore, in this thesis we focused on different contrast sets, e.g. the Helmert
contrasts, all-to-next contrasts, all pairwise comparisons and treatment-control
comparisons. All of these contrast sets are important in different applications
and for each contrast set different designs are optimal. Therefore, we derived
optimal exact designs for all of these contrast sets in Section 3.2, Section 3.3,
Section 3.4 and Section 3.5. In addition, we gave optimal approximate designs
for these contrasts in Section 4.5 and Section 4.6. Scientists often use the star
design in various situations, although it does not provide precise parameter
estimates. We proved that the star design is inefficient, even if we are interested
in all treatment-control comparisons. Using the designs proposed in this work
instead of the star designs, researchers can save resources while getting the same
results. A detailed comparison of star designs and our optimal designs is given
in Section 3.2. In addition, we investigated robustness properties of microarray
designs against missing values in Chapter 5. Missing values often occur due to
different reasons, such as scratches on the array. We found out that D-optimal

designs often have good robustness properties.

In this thesis we answered a couple of very interesting questions concerning the
design of microarray experiments. Due to the complexity of microarray exper-
iments and due to the quick growth of biotechnology during the last decades,
the number of questions in this field increases immensely and there are still
several unanswered questions. First of all, we restricted our investigations in
Section 3.1 to the A-optimality criterion, since this criterion is the most popu-
lar and relevant one for block designs, see Atkinson [1]. The extension of our
optimality considerations to other optimality criteria is an issue for future re-
search. Another interesting topic not covered in this thesis addresses technical

replicates. Technical replicates are mRNA samples which use a common bio-
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6. Summary and outlook

logical source, e.g. they are extracted from the same individual. Measurements
taken from technical replicates are higher correlated than measurements from
biological replicates using different biological sources. To account for techni-
cal replicates in our statistical model, we can add a random block effect and
consider optimal design theory for mixed models. Under special restrictions
optimal designs can be easily detected in this scenario. For instance, optimal
designs taking only technical replicates into account are identical to optimal
designs with only biological replicates, since the variances of all estimates dif-
fer by a constant term. Tsai et al. [41] showed this numerically and presented
optimal designs in scenarios with just one biological source. Nevertheless, the
calculation of optimal designs is more complex, if a mixture of biological and
technical replicates is taken into account. Just in a few cases, if the random
block effects can be chosen orthogonal to the other effects, optimal designs can
be easily derived from the designs proposed in this work. However, in many
settings orthogonality cannot be achieved and the derivation of optimal designs

is thus a topic for future research.
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