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Abstract

Two-color microarray experiments form an important tool in gene expression

analysis. They are often used to identify candidate genes that can be made

accountable for the genesis of a certain disease. Due to the high costs of mi-

croarray experiments it is fundamental to design these experiments carefully and

specifically give instructions, which samples should be allocated on the same mi-

croarray. Thereby, two samples are hybridized together on one array and the

assignment of samples to arrays influences the precision of the results. Therefore,

design issues for microarray experiments have been investigated intensively in the

last years. However, only few authors, e.g., Stanzel [37], focused on more than

one factor of interest. We extend Stanzel’s work and derive approximate optimal

designs for estimating interactions in multi-factorial settings. Thereby, optimal-

ity of candidate designs is shown using equivalence theorems (Pukelsheim [33]).

Another practical important but less studied topic is the derivation of exact op-

timal designs. Most research considers approximate designs or exact designs for

special contrast sets and selected numbers of arrays. Therefore, we focus on ex-

act designs and present a method to construct A-optimal microarray designs for

arbitrary numbers of arrays and arbitrary contrast sets. This method is applied

to derive optimal designs for estimating treatment-control comparisons, all-to-

next contrasts, Helmert contrasts and all pairwise comparisons. Furthermore,

we derive robust designs, which achieve efficient results even if observations are

missing. Missing values are a crucial topic in the context of microarray experi-

ments, since they often occur due to scratches on the slide or other damaging.

In applications recommendations for the choice of efficient experimental layouts

can be derived from our constructed designs.
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Chapter 1

Introduction

Many diseases, such as Alzheimer’s disease or Huntington’s disease [31], can be

traced back to particular strongly expressed genes [12]. Therefore, it is desirable

to identify these genes that can be made accountable for a certain disease in

order to generate novel drugs. In recent years microarray technology has be-

come one of the most prominent tools in gene expression analysis due to the

fact that gene expressions of thousands of genes can be measured simultane-

ously. The microarrays consist of thousands of spots, where each spot contains

e.g. the genetic information of one gene of the human genome. After process-

ing the experiment, gene expression measurements for each gene are available

and researchers can analyze which genes are higher expressed in diseased cells

compared to healthy cells. Several microarray technologies are commonly used,

the most prominent ones are oligonucleotide arrays and cDNA microarrays, also

called two-color microarrays. Oligonucleotide arrays measure gene expressions

of one sample per array, whereas cDNA microarrays hybridize two samples on

one array by coloring one sample green and the other sample red. For cDNA

microarrays, two important design questions arise in order to achieve precise

parameter estimates in the underlying statistical model. Which samples should

be allocated together on one microarray? Which samples should be labeled with

the green or red dye? For instance, Figure 1.1 illustrates a simplification of a

two-color microarray process with one array. Here, mRNA transcripts from a

tumor cell and from a healthy cell are extracted and labeled with green (Cy3)
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1. Introduction

and red (Cy5) dyes, respectively, and are placed on the microarray. The thus la-

beled mRNA molecules of each gene bind to the complementary DNA strands of

the corresponding gene spot on the array. Gene spots are illustrated as points on

the microarray in Figure 1.1. Afterwards, a laser scanner measures the amount

of hybridized mRNA for each color and each gene and gives dye fluorescence in-

tensities, which correspond to the gene expression levels of the considered genes.

Here, higher intensities indicate higher gene expressions, e.g., if the red labeled

sample has twice as much of a transcript as the green labeled sample, then the

red signal should be twice as much as the green signal [21].

If genes are found, for which the mRNA amount of the tumor cells is extremely

high or low regulated in comparison to the healthy cells, they represent can-

didate genes that could be accountable for the considered disease. A detailed

description of microarray experiments can be found in Klug et al. [27], Simon et

al. [35], Parmigiani et al. [32], Draghici [10] or Wit and McClure [44]. In this the-

sis, samples from cells with a known disease or samples prepared with a specific

treatment are only referred to as treatment, e.g., a sample from a healthy cell

is called treatment zero, whereas a sample from a tumor cell is called treatment

one.

However, microarrays are very expensive, thus it is fundamental to use appropri-

ate designs to get most precise parameter estimates in the underlying statistical

model. Optimal designs assign treatments and dyes in such a way to the microar-

rays that unbiased estimates with minimal variances of the effects of interest are

ensured. Thereby, microarray experiments correspond to incomplete block de-

signs with block size two, whereas each microarray illustrates a block. Design

issues for microarray experiments have been investigated intensively in recent

years, see for example Kerr and Churchill [23], Glonek and Solomon [15] or Yang

and Speed [46]. However, most authors focus on the contrast set of all pairwise

treatment comparisons. Further contrast sets are seldom addressed. In addi-

tion, only few authors, e.g., Stanzel [37], consider more than one experimental

factor of interest, although in medical applications scientists are often interested

in many factors and their interactions. For instance, Churchill [8] investigated

several mouse cell lines medicated with different treatments. He was interested
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1. Introduction

in the cell line effect as well as in the treatment effect and in corresponding

two-way interactions. Furthermore, Taylor et al. [39] and Stamatakis et al. [36]

were interested in three-way interactions. Therefore, the interesting question

of optimal designs for estimating interactions in multi-factorial settings arises

and is considered in this work. To this end, we extend the investigations of

Stanzel [37], who focused on two factors of interest.

The thesis is structured as follows: Chapter 2 introduces the statistical model,

which is used to describe microarray experiments, and gives a short overview

of design of experiments in Section 2.3. For instance, we define approximate

and exact designs and introduce tools, e.g., information matrices, information

functions and the equivalence theorems, to illustrate the principles of optimal

design. Exact A-optimal designs for different contrast sets, including the com-

parisons with a control-treatment, all-to-next contrasts and Helmert contrasts,

are derived in Chapter 3. Moreover, in Chapter 4 approximate optimal designs

are investigated for several contrast sets in the one-factorial and multi-factorial

setting. The dye effect is explicitly studied in Section 4.7. In Chapter 3 and

in the first part of Chapter 4 we neglect the impact of the dyes temporarily.

Chapter 5 considers robustness issues and provides efficient designs in scenarios

with missing values. A conclusion and perspective is given in Chapter 6.
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1. Introduction

Figure 1.1: Simplified illustration of a microarray experiment.
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Chapter 2

Fundamentals

In this chapter we introduce the graphical representation of microarray experi-

ments, as well as the underlying statistical model, which is used throughout this

work. Furthermore, we give a short overview of the main definitions and main

concepts of optimal design.

2.1 Graphical representation of microarray ex-

periments

Two color microarray experiments can be represented as directed graphs with

multiple edges. A directed graph D = (V,A) is a pair of a set V , whose elements

are called vertices, and a set A of ordered pairs of vertices, called directed edges.

Multiple edges connect the same vertices. Each treatment is illustrated as a

vertex and each microarray is illustrated as a directed edge of the graph. The

tail of each edge corresponds to the red labeled sample, the head to the green

labeled sample. For instance, Figure 2.1 displays a microarray experiment with

Figure 2.1: Graph representation of a microarray experiment
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2.1. Graphical representation of microarray experiments 2. Fundamentals

three different treatments and x1 + x2 + y1 + y2 + z1 + z2 arrays. Treatment

zero labeled in red and treatment one labeled in green are hybridized together

on x1 arrays and so on. Many designs receive their name due to their graphical

representation, for example the loop design is represented as a loop in the graph

representation and the star design is represented as a star (Figure 2.2). Star

designs allocate each treatment together with the control-treatment on the same

array. Ignoring the dye effect, microarray experiments can be displayed as graphs

G = (V,E) with undirected edges, i.e. each edge e ∈ E corresponds to a set

of two vertices e = {v1, v2}, v1, v2 ∈ V . In this case, two treatment effects can

be compared, i.e. their difference can be estimated, if and only if there exists a

path between the corresponding two vertices. A path is an alternating sequence

of distinct vertices and edges in the graph. The precision of the estimate of this

treatment difference depends on the number of paths between the two vertices.

For example, in Figure 2.2 all pairwise comparisons can be estimated in the right

and left design, since both designs are connected. A design is called connected if

every pair of vertices is joined by a path. The definitions become more complex

if we include the dye effect. The dye effect can be estimated if there exists at

least one loop in the graph representation. A loop is a path whose endvertices

coincide. The estimate of the dye effect becomes more precise when the length

of the loop increases. For instance, in the case with dye effect, all pairwise

comparisons can be estimated in the left design in Figure 2.2, whereas treatment

zero is confounded with the red dye in the right design.

Figure 2.2: Graphical representation of the loop design and the star design.
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2.2. Statistical modeling of microarray experiments 2. Fundamentals

2.2 Statistical modeling of microarray experi-

ments

Many authors have focused on the statistical analysis and modeling of microar-

ray experiments. Kerr et al. [24] firstly examined two-color microarray data by

analysis of variance (ANOVA) and recommended a model describing the log-

arithms of the measured intensities dependent on the array-, treatment-, dye-

and gene-effect, including treatment interactions of interest. Their work has

been extended by many authors. For instance, Landgrebe et al. [29], Bailey [2]

and Latif et al. [30] ignored the gene effect and considered gene specific models

log2 (y) = Tτ + Aα +Dδ + ε (2.1)

where y = (y1, . . . , y2a) is the vector of all observed dye intensities for a par-

ticular gene. These logarithmized dye intensities depend on the treatment ef-

fect τ = (τ0, τ1, . . . , τt), the array effect α = (α1, . . . , αa) and the utilized dye

δ = (δgreen, δred). [T | A | D] denotes the 2a× (t+ 1 + a+ 2) design matrix and

ε = (ε1, . . . , ε2a) denotes the vector of error terms.

Further model modifications are ascribed to Wolfinger et al. [45], who modeled

the array effect as random, or Landgrebe et al. [29], who analyzed the logarith-

mized ratios of dye intensities obtained for each microarray separately for each

gene. Instead of the two observations

log2 (yijgreen) = τi + αj + δgreen + εijgreen, (2.2)

log2 (ykjred) = τk + αj + δred + εkjred, (2.3)

Landgrebe et al. considered the log ratio

log2

(
yijgreen
ykjred

)
= τi − τk + δgreen − δred + εijgreen − εkjred. (2.4)
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2.3. Design of experiments 2. Fundamentals

Therefore, they introduced the model

z = Xτ +Wδ + η (2.5)

where z = (z1, . . . , za) is the vector of log ratios of the dye intensities measured

for a particular gene on all a arrays. This vector is dependent on the treat-

ment effect τ = (τ0, τ1, . . . , τt) and the dye effect δ = (δgreen, δred). [X | W ] is

the design matrix, where each row of X consists of exactly one 1 and one −1,

whereas all other entries are equal to zero. W is equal to (1a,−1a), where 1a

is the a-dimensional column vector with all entries equal to one. The term η is

the random error vector. We assume all ηi, i ∈ {1, . . . , a} to be independently

identically distributed with mean zero and variance σ2. Throughout this work

we assume that σ2 = 1/2 without loss of generality. This assumption simplifies

the calculations of variances in Chapter 3 and in the following chapters, because

a factor of two can be eliminated from all calculations.

2.3 Design of experiments

In this section, we introduce some basics on optimal design of experiments, which

are required throughout this work. Firstly, we focus on differences between

approximate and exact designs. Secondly, we present the main definitions of

optimal design of experiments and finally we describe a tool to confirm optimality

of a given candidate design.

2.3.1 Approximate and exact designs

An approximate design ξ ∈ Ξ over a design region X can be described as

ξ =

x1 . . . xl

p1 . . . pl


with support points xi ∈ X and weights 0 ≤ pi ≤ 1,

∑l
i=1 pi = 1 representing the

proportion of realizations of point xi. The design region X is determined by the
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2.3. Design of experiments 2. Fundamentals

values of the explanatory variables of the given statistical model. Approximate

designs are not restricted to specific numbers of observations, they are defined

for infinity observations. Synonyms for approximate designs are continuous or

asymptotic designs, see e.g. Goos [16]. On the other hand, exact designs ξn ∈ Ξn

with n observations can be represented as

ξn =

x1 . . . xl

n1 . . . nl


where

∑l
i=1 ni = n and ni is the number of observations at design point xi.

In practice exact designs are used; they are also called discrete designs. Effi-

cient exact designs with n observations can be achieved with the help of optimal

approximate theory. All weights pi of a given approximate design are multi-

plied with n and rounded. This procedure often yields good exact designs and

sometimes even optimal exact designs, see Goos [16].

2.3.2 Optimal designs

We present the main definitions of optimal design of experiments on the basis

of the simple model

y = Xθ + ε (2.6)

where y is the n×1 response vector dependent on the v experimental conditions

θ = (θ1, . . . , θv)
T , X is the corresponding n × v design matrix. The random

error terms εi, i ∈ {1, . . . , v} are assumed to be independently identically dis-

tributed with mean zero and variance σ̃2 = 1. An unbiased estimator of the

fixed parameter vector θ is calculated with the method of ordinary least squares

as

θ̂ = (XTX)−XTy (2.7)

with variance

Var(θ̂) = (XTX)−, (2.8)
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2.3. Design of experiments 2. Fundamentals

where (XTX)− denotes a generalized inverse of XTX. The information matrix

for estimating the unknown parameter vector θ, given the design ξn with design

matrix X is

Mξn = (XTX). (2.9)

Considering approximate designs ξ the information matrix is defined as

Mξ = (X̀TPX̀) (2.10)

with weight matrix P = diag(p1, . . . , pl) and design matrix X̀ containing the l

support points of the design. If only the parameters θ1, . . . , θw with w < v are

of interest, the model can be restated as

y = Xθ + ε =
(
X̃1 X̃2

)θ̃1
θ̃2

+ ε (2.11)

with θ̃1 = (θ1, . . . , θw)T and θ̃2 = (θw+1, . . . , θv)
T . X̃1 and X̃2 are the n× w and

n× (v−w) submatrices of X. Therefore, the information matrix for estimating

the unknown parameters θ̃1 = (θ1, . . . , θw)T is

Mξn = X̃T
1 X̃1 − X̃T

1 X̃2(X̃
T
2 X̃2)

−X̃T
2 X̃1 (2.12)

due to Harvilles Theorem 9.6.1 [19].

Researchers are often interested in estimating a set of m contrasts CT θ of the

parameters θ; C = (c1, c2, . . . , cm) is a v×m matrix with cTi = (ci1, . . . , civ) and∑v
j=1 cij = 0 for 1 ≤ i ≤ m. In this case, the ordinary least squares estimator

for CT θ has variance

Var(CT θ̂) = CT (XTX)−C (2.13)

and the information matrix changes to

MC
ξn =

(
CT (XTX)−C

)−1
(2.14)
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2.3. Design of experiments 2. Fundamentals

if the v × m matrix C has full column space. Pukelsheim [33] extended this

definition for rank deficient subsystems and defined the generalized information

matrix for CT θ as

M̃C
ξn = min

Q∈Rv×v :QTC=C
QT (XTX)Q (2.15)

with a v × m matrix C that may be rank deficient. The minimum is taken

relative to the Loewner ordering. This partial ordering is defined as A ≥ B if

and only if A−B is nonnegative definite for symmetric matrices A and B. Thus,

the Gauss-Markov Theorem provides

M̃C
ξn = (XTX)− (XTX)RT (R(XTX)RT )−R(XTX) (2.16)

with R = Iv − CG with an arbitrary generalized inverse G of C. Pukelsheim

shows the equality M̃C
ξ = CMC

ξ C
T for all C with a full column rank. It is easy

to verify that these contrast information matrices are nonnegative definite with

zero row and column sums. Druilhet and Markiewicz [11] give another definition

of generalized information matrices, since Pukelsheims definition does not lead

to the usual information matrix for full rank subsystems. They proposed

MC
ξn = min

Q∈Rv×m:QTC=CT (CCT )+C
QT (XTX)Q (2.17)

and showed MC
ξn

= (CT (XTX)−C)+ if CT θ is estimable, i.e. if

Range(C) ⊂ Range(XTX).

(CT (XTX)−C)+ denotes the Moore-Penrose-Inverse of (CT (XTX)−C). This

definition leads to the usual information matrix for full rank subsystems. Since

the Loewner ordering is a partial ordering, we define information functions in

order to compare arbitrary information matrices. Let NND0
v be the set of v × v

nonnegative definite matrices with zero row and column sums. Information

functions are defined as in Kiefer [25].

Definition 2.1:

φ : NND0
v → R is an information function, if it satisfies the following conditions:
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(a) φ is convex,

(b) φ is invariant under simultaneous permutations of rows and the same

columns,

(c) φ(αC) is non increasing in the scalar α ≥ 0 for C ∈ NND0
v.

The smaller the value of φ(Mξ), the smaller the variance of the estimated param-

eters and the more efficient is the design. The purpose of optimal design theory

is to determine the designs with the highest information or equivalent with the

minimal variance. This corresponds to the minimization of the function φ(MC
ξ )

for ξ ∈ Ξ. A design ξ is said to be universal optimal in a set Ξ of designs if

it minimizes φ(Mξ) for all information functions φ (Kiefer [26]). In many cases

universal optimal designs do not exist since they depend on the information

function. Therefore, we have to restrict to special optimality criteria. The most

prominent criteria are the matrix means φ′q.

Example 2.2:

A design ξ is φ′q-optimal for q ∈ [−1,∞)\{0}, if it minimizes the expression

φ′q(M
C
ξ ) =

(∑v−1
i=1 λ

−q
i

v − 1

) 1
q

(2.18)

for the v − 1 eigenvalues λi of the information matrix MC
ξ . Define φ′0(M

C
ξ ) =∏

i λ
−1/(v−1)
i and φ′∞(MC

ξ ) = maxλ−1i .

A special case of the φ′q -criteria are the D-optimality criterion for q = 0 and the

A-optimality criterion for q = 1. D-optimal designs minimize the determinant

of the variance covariance matrix of the parameter estimates, their main advan-

tage is that they are invariant to a change of scale in the factors. A-optimal

designs minimize the trace of the variance covariance matrix or equivalently

minimize the sum of the variances of the parameters of interest
∑v

i=1 Var(θ̂i).

Considering the contrast set (c1, . . . , cm) the A-optimal design minimizes the

term Tr
(

Var(CT θ̂)
)

=
∑m

l=1 Var(cl
T θ̂) for θ̂ = (θ̂1, . . . , θ̂v)

T .

Pukelsheim [33] generalized the φ′q-criteria for rank deficient subsystems with

singular information matrices. Matrix means φq for rank deficient subsystems

17



2.3. Design of experiments 2. Fundamentals

are defined as follows

φq(M
C
ξ ) = φ′q(λ1, . . . , λr)

whereas λ1, . . . , λr are the positive eigenvalues of the singular information matrix

MC
ξ .

2.3.3 Equivalence theorem

We present a central result of optimal design theory for approximate designs,

the equivalence theorem. This theorem can be applied to show φq-optimality of

a given design for the estimation of an arbitrary contrast set C.

Theorem 2.3:

A design is φ−p-optimal, p ∈ (−∞, 1], for the estimation of the contrast set C

if and only if there exists a generalized inverse G = (X̀TPX̀)− of X̀TPX̀ that

satisfies the normality inequality

xTGC
(
CTGC

)+ (
CTGC

)1−p (
CTGC

)+
CTGTx ≤ Tr

((
CTGC

)+ (
CTGC

)1−p)
(2.19)

for all possible design points x ∈ X , X = {x ∈ {−1, 0, 1}v : ∃!i with xi =

1 ∧ ∃!j with xj = −1}. The expression ∃! stands for ”‘there exists exactly

one”’. P is the diagonal matrix containing the optimal weights for all design

points listed in the design matrix X̀. In case of optimality, equality holds in the

normality inequality (2.19) for all support points x of all optimal designs.

For the proof, a detailed discussion and the equivalence theorem for p = ∞ we

refer to Pukelsheim [33].

Another interesting theorem which we use in this work is due to Kiefer [25].

Theorem 2.4:

Let φ : NND0
v → R be an information function. If there is a design with a

completely symmetric information matrix, which has maximum trace in a class

of designs, then it is universally optimal in the given class.

A matrix is said to be completely symmetric if it is of the form eIv + fJv, where

Iv is the v × v identity matrix and Jv is the v × v matrix with all entries equal

18
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to one, e and f are scalars. It can be easily shown that

(eIv + fJv)
+ =

1

e
Iv −

f

e(e+ vf)
Jv (2.20)

if e+ vf 6= 0 and e 6= 0.

(eIv + fJv)
+ =

1

e
Iv −

1

ve
Jv (2.21)

if e + vf = 0. The eigenvalues of (eIv + fJv) are e with multiplicity v − 1 and

e+ vf with multiplicity 1.

In the special case of model (2.5) with R̃ := XTX yields r̃ii is the number of

occurrences of treatment i overall, while r̃ij denotes the number of blocks which

contain both treatments i and j. Therefore, an information matrix maximizes

the trace and is completely symmetric if and only if each treatment occurs

equally often and every two treatments are contained in the same number of

blocks. A block of size two corresponds to an array in the microarray setting.

Define Pk recursively by P2 := [1,−1] and Pk :=

 1k−1 −Ik−1
0(k−1

2 ) Pk−1

 for all k ∈ N≥3,

whereas 1k and 0k are k-dimensional column vectors with all entries equal to 1

and 0, respectively. Ik is the k × k identity matrix.

Obviously the design with design matrix X := Pt+1

Pt+1 :=



1t −I t
0t−1 1t−1 −I t−1
0t−2 0t−2 1t−2 −I t−2

...
. . . . . . . . .

02 · · · 02 12 −I2

01 · · · 01 11 −I1


fulfills this condition. Thus, it is particularly φq-optimal, q ∈ [−1,∞], for the

estimation of all orthogonal contrast sets, which we will use later on. We refer
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to Stanzel [37] for helpful properties of the matrix Pt+1. We use the facts

(Pt+1P
T
t+1)

q = (t+ 1)q−1Pt+1P
T
t+1 and (2.22)

Tr((Pt+1P
T
t+1)

+(Pt+1P
T
t+1)) = t (2.23)

for q ∈ R≥0 and t ∈ N in Section 4.
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Chapter 3

Exact A-Optimal Designs

In this chapter we propose a method to derive exact A-optimal designs for prac-

tical situations with a given number of arrays and small numbers of treatments,

since in many applications the number of treatments does not exceed a known

limit. We apply this approach to several contrast settings, including the com-

parisons with a control treatment, all-to-next contrasts and Helmert contrasts.

A-optimal designs for pairwise treatment comparisons are derived in Tsai et

al. [41] and Bailey [2].

Throughout this chapter we consider the A-optimality criterion, since it is still

the most popular one for block designs, see Atkinson [1]. Another important

criterion, especially in robustness investigations, is the D-optimality criterion.

However, Bailey [2] already has investigated D-optimal design for the estimation

of all pairwise comparisons and this criterion is independent on the contrast set

of interest. All derivations in this chapter are based on model 2.1, whereas the

dye effect is ignored in a first step referring to Bailey [2]. Dyes are reintroduced

in Chapter 4.7.
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3.1 Calculation of A-optimal designs

Let (c1, . . . , cm) with cTl = (cl0, . . . , clt) be the contrast set of interest for the

parameters τ = (τ0, . . . , τt)
T . Then the A-optimal design minimizes the term

m∑
l=1

Var(cl
T τ̂) (3.1)

as outlined in Section 2.3.

This sum is in particular dependent on the number of used arrays a and on

the two treatments combined on each array. Since each contrast cl ∈ Rt,

cTl = (cl0, . . . , clt), l ∈ {1, . . . ,m} fulfills the equation
∑t

i=0 cli = 0 by defini-

tion, we get Var(cl
T τ̂) = Var(

∑s
i=0 cliτ̂i +

∑t
i=s+1 cliτ̂i) for cl0, . . . , cls ≥ 0 and

cl(s+1), . . . , clt < 0 with
∑s

i=0 cli = −
∑t

i=s+1 cli without loss of generality. Hence,

we rephrase Var
(
cl
T τ̂
)

= Var
(∑

i<j aij (τ̂i − τ̂j)
)

with appropriate aij resulting

from the values of cli. Thus, it is sufficient to calculate the expressions Var(τ̂i−τ̂j)

and Cov(τ̂i − τ̂j, τ̂k − τ̂l) to determine
∑m

l=1 Var(cl
T τ̂). Therefore we will give a

formula to calculate these expressions in the following theorem. This theorem

uses the fact that each microarray experiment with t+1 treatments and a arrays

can be illustrated by a multigraph with t+1 vertices and a edges, whereas every

two treatments tested on the same array in the experiment are connected by an

edge in the graph, as outlined in Section 2.1.

Theorem 3.1:

Let V = {0, . . . , t} be the set of vertices (treatments) andE = {x01, x02, . . . , x(t−1)t}

the set of edges of a given graph with |E| =
(
t+1
2

)
.

The function b : xij 7−→ b(xij) : E −→ N0 specifies the number of arrays b(xij)

comparing treatments i and j for each treatment pair (i, j), i.e. the graph with

vertex set V and with the a edges in the multi set

Ẽ = {x01, . . . , x01︸ ︷︷ ︸
b(x01) times

, x02, . . . , x02︸ ︷︷ ︸
b(x02) times

, . . . , x(t−1)t, . . . , x(t−1)t︸ ︷︷ ︸
b(x(t−1)t) times

}
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describes a specific microarray experiment with a arrays. Then

Var(τ̂i − τ̂j) =

∑
A⊂E\{xij}:|A|=t−1:

(V,A∪{xij}) has no loops

b(a1)b(a2) · · · b(at−1)

∑
A⊂E:|A|=t:

(V,A) has no loops

b(a1)b(a2) · · · b(at)
(3.2)

with i, j ∈ {0, . . . , t}, i 6= j and A = {a1, a2, . . .} ⊂ E.

Theorem 3.1 can be proven with results from physical networks, especially

with the help of resistance matrices. For a detailed description see Bailey and

Cameron [3]. Furthermore, it can be shown easily that

Cov(τ̂i− τ̂j, τ̂k− τ̂l) =
1

2
(V ar(τ̂i− τ̂l)+V ar(τ̂j− τ̂k)−V ar(τ̂j− τ̂l)−V ar(τ̂i− τ̂k)).

We demonstrate the application of Theorem 3.1 in the following examples.

Example 3.2:

If we consider three treatments the experiment with a = x + y + z arrays is

illustrated in Figure 3.1. Let b(x01) = x, b(x02) = y, b(x12) = z, i.e. treat-

ment 0 is combined with treatment 1 on x arrays etc. Consequently we get

Var(τ̂0 − τ̂1) = y+z
xy+xz+yz

, Cov(τ̂0 − τ̂1, τ̂0 − τ̂2) = z
xy+xz+yz

,

Var(τ̂0 − τ̂2) = x+z
xy+xz+yz

, Cov(τ̂0 − τ̂1, τ̂1 − τ̂2) = y
xy+xz+yz

,

Var(τ̂1 − τ̂2) = x+y
xy+xz+yz

, Cov(τ̂0 − τ̂2, τ̂1 − τ̂2) = x
xy+xz+yz

.

The denominator of these terms corresponds to the number of spanning trees

of the underlying graph. A spanning tree is a connected subgraph without

any loop, which contains every vertex of the underlying graph. The numerator

of Var(τ̂i − τ̂j) specifies the number of spanning thickets of the graph with i

and j in different components, whereby a spanning thicket is a spanning forest

with exactly two components. The variances of these estimators depend on the

number of paths joining the two vertices.

Example 3.3:

Considering four treatments we denote b(xij) = Bij, i.e. treatment i is combined
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with treatment j on Bij arrays. The experiment with a = B01 + B02 + B03 +

B12+B13+B23 arrays is illustrated in Figure 3.1. Consequently we can calculate

the denominator of Var(τ̂i − τ̂j) as

B01B12B23 +B01B12B03 +B01B12B13 +B01B23B03 +B01B23B13 +B01B23B02

+B01B03B02 +B01B13B02 +B12B23B03 +B12B23B02 +B12B03B13 +B12B03B02

+B12B13B02 +B23B03B13 +B23B13B02 +B03B13B02 =: d

for all i 6= j. The numerators of Var(τ̂i− τ̂j) can be extracted from the following

terms.

d · Var(τ̂0 − τ̂1) = B12B23 +B12B03 +B12B13 +B23B03 +B23B13

+B23B02 +B03B02 +B13B02,

d · Var(τ̂0 − τ̂2) = B01B23 +B01B03 +B01B13 +B12B23 +B12B03

+B12B13 +B23B13 +B03B13,

d · Var(τ̂0 − τ̂3) = B01B12 +B01B23 +B01B02 +B12B23 +B12B13

+B12B02 +B23B13 +B13B02,

d · Var(τ̂1 − τ̂2) = B01B23 +B01B03 +B01B13 +B23B03 +B23B02

+B03B13 +B03B02 +B13B02,

d · Var(τ̂1 − τ̂3) = B01B12 +B01B23 +B01B02 +B12B03 +B12B02

+B23B03 +B23B02 +B03B02,

d · Var(τ̂2 − τ̂3) = B01B12 +B01B03 +B01B13 +B01B02 +B12B03

+B12B02 +B03B13 +B13B02,
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3.2. Treatment-control comparisons 3. Exact A-Optimal Designs

Figure 3.1: Graph representation of microarray experiments with three and four treat-
ments.

d · Cov(τ̂0 − τ̂1, τ̂0 − τ̂2) = B12B23 +B12B03 +B12B13 +B23B13,

d · Cov(τ̂0 − τ̂1, τ̂0 − τ̂3) = B12B23 +B12B13 +B23B13 +B13B02,

d · Cov(τ̂0 − τ̂2, τ̂0 − τ̂3) = B01B23 +B12 +B23 +B12B13 +B23B13,

d · Cov(τ̂1 − τ̂2, τ̂1 − τ̂3) = B01B23 +B23B03 +B23B02 +B03B02,

and so on.

Theorem 3.1 can theoretically be applied to all values of treatments t, but the

computation time increases immensely. However, in many applications the num-

ber of treatments is small and exact optimal designs can be derived with Theo-

rem 3.1 for all numbers of arrays a. For larger values of t approximate optimal

designs are proposed in Chapter 4. The corresponding approximate optimality

results can be used to construct nearly optimal designs for all values of t and a.

3.2 Optimal designs for treatment-control com-

parisons

Although in medical applications scientists are often interested in comparing

several treatments to a control-treatment, only few authors considered design

problems for treatment-control comparisons in microarray experiments. Kunert

et al. [28] derived approximate optimal designs in this scenario, exact designs

were not computed. Thus, we will construct exact A-optimal designs for esti-

mating treatment-control comparisons and we will show that these designs are
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more efficient than the star designs which are often used in practice. Star designs

allocate each treatment together with the control-treatment on the same array,

e.g. Figure 2.2. For example, Zieker et al.[47] used a star design with two treat-

ments and a control to compare gene expressions of marathon runners, before,

immediately after and 24 hours after exercise. The control-treatment in a star

design is of practical interest in contrast to the reference in a common reference

design. Common reference designs are widely used in practice (e.g. Callow et

al. [6]) and compare competing treatments via a reference sample, which is not

of interest itself. Star designs always perform better than the common reference

designs, since they do not waste resources in order to estimate the effect of the

uninteresting reference treatment.

Throughout this section τ0 describes the control-treatment and τi, i ∈ {1, . . . , t}

describe the other treatments. Therefore, we have to minimize
∑t

i=1 Var(τ̂0− τ̂i),

if we are interested in estimating all treatment-control contrasts τ0 − τi for i =

1, . . . , t. We will derive A-optimal designs using Theorem 3.1 for t ∈ {2, 3, 4},

because these values are often used in practical settings.

If we consider two treatments and one control-treatment we have to minimize

the function

Var(τ̂0 − τ̂1) + Var(τ̂0 − τ̂2) =
x+ y + 2z

xy + xz + yz
(3.3)

under the constraints x+ y + z = a and x, y, z ∈ {0, . . . , a}. The results of this

minimization obtained for a ∈ {6, 8, 10, 12, 15} arrays are displayed in Table

3.1. Similar results for other values of a can be obtained easily by minimizing

expression (3.3). Certainly, all designs remain optimal, if the values of x = B01

and y = B02 are interchanged. For instance, if we use a = 10 arrays we get

the optimal design, which investigates both treatment-control comparisons on

four microarrays each and the non-interesting treatment by treatment compar-

ison on the remaining two microarrays. In Table 3.2 and Table 3.3 we listed

similar results for t ∈ {3, 4} (using Mathematica 7.0.1.0, Wolfram Research).

Altogether, we realize that it is efficient to hybridize the control-treatment on

more arrays than the other treatments, but it is recommendable to use also some
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Table 3.1: A-Optimal designs for comparisons with a control, t = 2

a = 6 a = 8 a = 10 a = 12 a = 15
B01 3 4 4 5 6
B02 2 3 4 5 6
B12 1 1 2 2 3

Table 3.2: A-Optimal designs for comparisons with a control, t = 3

a = 9 a = 11 a = 12 a = 15 a = 20 a = 25
B01 2 3 3 4 5 7
B02 2 2 3 4 5 6
B03 2 3 3 4 5 6
B12 1 1 1 1 1 2
B13 1 1 1 1 2 2
B23 1 1 1 1 2 2

arrays without the control. As mentioned above, star designs are often used by

researchers in medical and biological applications. Using the designs proposed in

this paper instead of the star designs, we observe a gain in efficiency of at least

4% for t = 2 and at least 10% for t ∈ {3, 4}, see Table 3.4. We get similar results

for other values of t and a. Therefore, the star design is not advisable, even if

we are interested in the treatment-control comparisons. The poor performance

of the star design in other contrast settings is considered in Vinciotti [43] for

example.

Table 3.3: A-Optimal designs for comparisons with a control, t = 4

a = 14 a = 15 a = 16 a = 20 a = 25
B01 2 3 2 4 5
B02 2 2 2 3 4
B03 2 3 3 4 5
B04 2 2 3 3 4
B12 1 1 1 1 1
B13 1 0 1 1 1
B14 1 1 1 1 1
B23 1 1 1 1 1
B24 1 1 1 1 2
B34 1 1 1 1 1
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Table 3.4: Comparisons of the variances obtained for the constructed optimal designs
and the star designs, t ∈ {2, 3, 4} treatments, a arrays.

t = 2 a = 6 a = 8 a = 10 a = 12 a = 15
Var. opt. design 0.64 0.47 0.38 0.31 0.25
Var. star design 0.67 0.5 0.4 0.33 0.31

Var. opt. design
Var. star design

0.96 0.94 0.95 0.94 0.80

t = 3 a = 9 a = 11 a = 12 a = 15 a = 20 a = 25
Var. opt. design 0.9 0.74 0.67 0.54 0.40 0.32
Var. star design 1 0.83 0.75 0.6 0.45 0.36

Var. opt. design
Var. star design

0.9 0.89 0.89 0.9 0.88 0.89

t = 4 a = 14 a = 15 a = 16 a = 20 a = 25
Var. opt. design 1.00 0.93 0.87 0.69 0.55
Var. star design 1.17 1.08 1 0.8 0.64

Var. opt. design
Var. star design

0.86 0.86 0.87 0.86 0.86

3.3 Optimal designs for all-to-next contrasts

Another interesting contrast set are the all-to-next contrasts τi−1 − τi for i ∈

{1, . . . , t}. They are often used in time course experiments to compare consec-

utive points in time. We will compute A-optimal designs for these contrasts

with the same method used in the previous section. Thus, the derivation of A-

optimal designs for this scenario leads to the minimization of the target function
t∑
i=1

Var(τ̂i−1 − τ̂i) for a given number of a arrays. Therefore, for t = 2 the target

function
B01 + 2B02 +B12

B01B02 +B01B12 +B02B12

has to be minimized under the constraintsB01+B02+B12 = a andB01, B02, B12 ∈

N0, which is equivalent to expression (3.3) with interchanged variables. For t = 3

the function

(B01B12 +B01B23 +B12B23 + 2B01B03 + 2B12B03 + 2B23B03 + 2B01B13

+B12B13 +B23B13 + 2B03B13 +B01B02 +B12B02 + 2B23B02 + 2B03B02

+3B13B02)/d

has to be minimized under the constraints B01 +B02 +B03 +B12 +B13 +B23 = a

and B01, B02, B03, B12, B13, B23 ∈ N0. The solutions of these minimizations are

28



3.4. Helmert contrasts 3. Exact A-Optimal Designs

Table 3.5: A-Optimal designs for the estimation of all-to-next contrasts, t = 2

a = 6 a = 8 a = 10 a = 12 a = 15
B01 2 3 4 5 6
B02 1 1 2 2 3
B12 3 4 4 5 6

Table 3.6: A-Optimal designs for the estimation of all-to-next contrasts, t = 3

a = 9 a = 11 a = 12 a = 15 a = 20 a = 25
B01 2 3 3 4 5 7
B02 1 1 1 1 2 2
B03 1 1 1 1 1 1
B12 2 2 3 4 5 6
B13 1 1 1 1 2 2
B23 2 3 3 4 5 7

listed in Table 3.5 and Table 3.6. For example, considering 15 microarrays and

four treatments the samples of consecutive points in time are compared on four

slides and the non-consecutive treatment comparisons are hybridized only on one

slide. Independent on the number of arrays and treatments, we observe that A-

optimal designs comprise more microarrays hybridizing consecutive treatment

comparisons than microarrays hybridizing more distant treatments.

3.4 Optimal designs for Helmert contrasts

Helmert contrasts compare each treatment to the mean of the treatments with

subsequent treatment indices, i.e. τi − 1
t−i

t∑
l=i+1

τl, i ∈ {0, 1, . . . , t}. These con-

trasts are also very useful for ordered treatment arrangements, for instance time

course experiments. For t = 2 the Helmert contrasts are given by τ0− 1
2
τ1− 1

2
τ2

and τ1 − τ2. Thus, A-optimal designs for estimating these contrasts can be

obtained by the following minimization

min

(
Var(τ̂0 −

1

2
τ̂1 −

1

2
τ̂2) + Var(τ̂1 − τ̂2)

)
= min

(
1

4
Var(τ̂0 − τ̂1) +

1

4
Var(τ̂0 − τ̂2) + Var(τ̂1 − τ̂2) +

1

2
Cov(τ̂0 − τ̂1, τ̂0 − τ̂2)

)
= min

5B01 + 5B02 + 4B12

4B01B02 + 4B01B12 + 4B02B12
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Table 3.7: A-Optimal designs for the estimation of Helmert contrasts, t = 2

a = 6 a = 8 a = 10 a = 12 a = 15
B01 2 2 3 4 4
B02 2 3 3 4 5
B12 2 3 4 4 6

Table 3.8: A-Optimal designs for the estimation of Helmert contrasts, t = 3

a = 9 a = 11 a = 12 a = 15 a = 20 a = 25
B01 1 1 2 2 3 4
B02 2 2 2 3 3 4
B03 1 2 2 2 3 4
B12 1 2 2 2 3 4
B13 2 2 2 3 4 4
B23 2 2 2 3 4 5

under the constraints B01 + B02 + B12 = a and B01, B02, B12 ∈ N0. The results

of this minimization for a ∈ {6, 8, 10, 12, 15} arrays are displayed in Table 3.7.

The first Helmert contrast vector (1,−1/2,−1/2) has the norm
√

3/2 and the

second vector (0, 1,−1) has the norm
√

2. Therefore, the comparison of treat-

ments one and two is more important than the comparison of treatment zero

and treatment one. This is reflected in Table 3.7by the fact that for any value of

a the value of B12 is always the highest. According results for t = 3 are listed in

Table 3.8 (using Mathematica 7.0.1.0, Wolfram Research). Again, comparisons

between treatments with larger treatment indices are hybridized together on

more slides due to the norms of the Helmert contrasts. For example, the value

B23 is the highest for all values of a in Table 3.8. Helmert contrasts belong to

the set of orthogonal contrasts, hence it is straightforward to find the optimal

designs for normalized Helmert contrasts

(
τi − 1

t−i

t∑
l=i+1

τl

)
/
√

t−i+1
t−i due to the

fact that the corresponding contrast matrix is orthogonal. In this section we

considered usual non-normalized Helmert contrasts τi− 1
t−i

t∑
l=i+1

τl, which assign

higher weights to posterior comparisons.
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3.5 Optimal designs for all pairwise treatment

comparisons

The approach outlined in Section 3.1 can also be used to derive A-optimal de-

signs for all pairwise treatment comparisons. Since exact optimal designs for

these contrast set are already considered in Tsai et al. [41] and in Bailey [2],

we will not state the numerically solutions of this problem here. Tsai et al.

proposed an algorithm to find exact optimal designs for this contrast set, which

is based on an exhaustive search on non-isomorphic graphs. This approach can

only be applied for very small numbers of arrays and treatments and is very time

consuming. Our approach yields the same designs as stated in Tsai et al. [41].

Another way to explore optimal designs for the pairwise treatment comparisons

C = P T
t+1 for selected numbers of arrays can be traced back to Kiefers derivation

of universal optimal designs [25] stated in Theorem 2.4.

Theorem 3.4:

Considering model (2.5) without dye effect, the design ξ with design matrix

X̀ := Pt+1 is φq-optimal, q ∈ [−1,∞] for the estimation of the contrasts CT τ

with C = P T
t+1.

Proof : As mentioned at the end of Section 2.3.3, a design with design matrix

X := Pt+1 is φq-optimal, q ∈ [−1,∞] for all contrast sets with orthogonal

contrast matrices C. Since the pairwise treatment comparison contrasts are not

orthogonal, we have to show that the eigenvalues of the information matrix are

invariant to pre- and post-multiplication with Pt+1 and P T
t+1, respectively. We

will prove that the eigenvalues remain the same except for multiplication with

a constant factor. In this case the optimal design remains the same, since the

matrix means do only depend on the eigenvalues of the considered matrices.

For that purpose we consider the singular value decomposition of CT = Pt+1 =

UΣV T with unitary matrices U and V and a diagonal matrix Σ. Obviously it

holds that

M := P T
t+1Pt+1 = (t+ 1)It+1 − Jt+1.
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Thus, P T
t+1Pt+1 has t positive eigenvalues equal to t + 1 as mentioned in Sec-

tion 2.3.3. Hence, the positive singular values of Pt+1 correspond to
√
t+ 1 and

we obtain

Σ =


√
t+1 0√

t+1 0

...
...√

t+1 0
0 ··· 0
...

...
0 ··· 0

.
We are interested in the set of eigenvalues, i.e. the spectrum σ̃, of the matrix

Pt+1M
−
ξ P

T
t+1. This matrix does not depend on the generalized inverse of Mξ and

equals Pt+1M
+
ξ P

T
t+1. This can be easily shown with Pukelsheim’s [33] Theorem

I.17. Due to Range(Pt+1) ⊂ Range(I(t+1
2 )) the equality

Range(P T
t+1Pt+1) = Range(P T

t+1)

holds. In particular it holds that Range(P T
t+1Pt+1) ⊂ Range(P T

t+1) and hence

Pt+1M
−P T

t+1 does not depend on the generalized inverse of M using Pukelsheim’s

Theorem I.17. Supposing that

I0 =

 I
0
...

0 · · · 0


is the identity matrix with an additional row with zeros and an additional column

with zeros, we can show

σ̃(Pt+1M
−P T

t+1) = σ̃(UΣV TM+V ΣTUT ) = σ̃(ΣV TM+V ΣT )

= vσ̃(I0V
TM+V I0) ∪ {0, . . . , 0} = vσ̃(M+) ∪ {0, 0, . . . , 0}.

The last equality holds because M+ = 1
t+1
It+1 − 1

(t+1)2
Jt+1 has row and col-

umn sums equal to zero and the last column of V is a multiple of (1, . . . , 1)T ,

since the last column of V corresponds to the singular value 0 of Pt+1.We get

φq((Pt+1M
−P T

t+1)
+) = vφq(M) due to the definition of the matrix means and

we achieve the same optimization tasks for our contrast set C = P T
t+1 as for
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orthogonal contrasts or no contrasts. Thus, we get the same optimal design. �

This result is comprehensible, we expect that the optimal design hybridizes all

treatment combinations together on a microarray.
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Chapter 4

Approximate Optimal Designs

For large values of t the computation time of exact optimal designs increases

immensely, hence we will propose approximate optimal designs for these situ-

ations in this chapter. The corresponding approximate optimality results can

be used to construct nearly optimal exact designs for all values of t, a ∈ N .

We will derive approximate optimal designs for one and multi-factorial settings.

Multi-factorial settings contain more than one experimental factor of interest.

For example, in addition to the treatment effect researchers are often interested

in the cell line effect, in the effect of gender, and in appropriate interactions.

For instance, Churchill [8] investigated several mouse cell lines medicated with

different treatments. He was interested in the cell line effect as well as in the

treatment effect and in treatment by cell line interactions. However, only few

authors have considered optimal designs in multi-factorial settings. Some au-

thors have investigated optimal designs for the estimation of main effects and

first-order interactions. See, for example, Glonek and Solomon [15] or Banerjee

and Mukerjee [4], who have examined factorial designs for microarray experi-

ments under the baseline parametrization. Furthermore, Kerr [22] as well as

Grossmann and Schwabe [17] have derived efficient designs for the estimation

of main effects and two way interaction effects when all factors have two lev-

els. Another reference is Stanzel and Hilgers [38], who give approximate designs

for the estimation of two-factor interactions. However, in medical applications

scientists are often interested in many factors. For instance, Taylor et al. [39]
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and Stamatakis et al. [36] have investigated scenarios with more than two fac-

tors. They are interested in three-way interactions. Therefore, the interesting

question of constructing approximate optimal designs for estimating interaction

effects in multi-factorial settings arises and will be considered in this chapter.

We will extend the investigations of Stanzel and Hilgers [38], who focused on two

factors of interest and all pairwise treatment comparisons, by examining further

contrast sets including treatment-control comparisons, all-to-next contrasts and

Helmert contrasts. In addition, we consider multi-factorial layouts with more

than two factors of interest in Section 4.4.

4.1 Generalized statistical model

In this section, we will extend model (2.5) such that it can be applied to exper-

iments with n experimental factors of interest. Accordingly we can describe the

vector of all observed log ratios of the dye intensities of each array z = (z1, . . . , za)

as

z = Xτ +Wδ + η (4.1)

where τ = (τ11...1, . . . , τ11...kn ; . . . ; τk1k2...kn−11, . . . , τk1k2...kn) is the vector of all the

effects of factor level combinations of the n factors of interest, ki denotes the

number of factor levels of factor i, and δ = (δgreen, δred) are the dye effects.

[X | W ] is the design matrix, where each row of X consists of exactly one 1 and

one −1, whereas all other entries are equal to zero. W is equal to (1a,−1a)

and η is the random error vector. For n = 1 model (4.1) yields model 2.5, for

n = 2 it yields the model considered in Stanzel [37]. Again, we will ignore the

dyes in the the following sections, but all theorems can be shown with dye effect

analogously.

4.2 Main effect contrasts in two- and multi-

factorial settings

Throughout this section model (4.1) is considered. First, we derive optimal

experimental designs for the estimation of the main effect contrasts in the two-
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factorial setting, i.e. n = 2 experimental factors of interest. If two factors with

k1 and k2 levels are considered and one likes to estimate arbitrary contrasts

CT (τ1, . . . , τk2)
T of the k2 levels of the second factor in all of the k1 levels of the

first factor, then the contrasts (1k1 ⊗ C)T (τ11, . . . , τk1k2)
T are of interest. The

following theorem is valid for all contrast sets. We assume that an optimal design

in the one-factorial setting for the estimation of the contrasts set CT (τ1, . . . , τk2)
T

is known for a factor with k2 factor levels in the one-factorial setting.

Theorem 4.1:

Suppose that a design ξ with l×k2 design matrix X̀ and l× l weight matrix P is

φ−p-optimal, p ∈ (−∞, 1], for the estimation of the contrast set CT (τ1, . . . , τk2)
T

in the one-factorial model (4.1) with n = 1. Then, the design with design matrix

X̃ = Ik1 ⊗ X̀ and weight matrix P̃ = 1
k1

(Ik1 ⊗ P ) is φ−p-optimal in the two-

factorial model (4.1) with n = 2 for the estimation of the contrast set C̃T τ with

C̃ = 1k1 ⊗ C and τ = (τ11, . . . , τk1k2)
T .

Proof : Choose p ∈ (−∞, 1] fix. Due to Theorem 2.3 and the φ−p-optimality

of X for the estimation of the contrast set CT (τ1, . . . , τk2)
T we know that a

generalized inverse matrix G = (X̀TPX̀)− exists, which fulfills the inequalities

xTGC
(
CTGC

)+ (
CTGC

)1−p (
CTGC

)+
CTGTx ≤ Tr

((
CTGC

)+ (
CTGC

)1−p)
for all x ∈ X = {x ∈ {−1, 0, 1}k2 : ∃!i with xi = 1 ∧ ∃!j with xj = −1}. Define

A := GC
(
CTGC

)+ (
CTGC

)1−p (
CTGC

)+
CTGT , (4.2)

const := Tr
((
CTGC

)+ (
CTGC

)1−p)
. (4.3)
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Furthermore, we will use the following equations which can be proved easily:

G̃ =
(
X̃T P̃ X̃

)−
=

(
1

k1

(
Ik1 ⊗

(
XTPX

)))−
, (4.4)

= k1

(
Ik1 ⊗

(
XTPX

)−)
= k1 (Ik1 ⊗G) , (4.5)

G̃C̃ = k1 (1k1 ⊗GC) , (4.6)

C̃T G̃C̃ =
(
1Tk1 ⊗ C

T
)

(k1 (Ik1 ⊗G)) (1k1 ⊗ C) = k21
(
CTGC

)
, (4.7)(

C̃T G̃C̃
)+

=
1

k21

(
CTGC

)+
, (4.8)(

C̃T G̃C̃
)1−p

= k2−2p1

(
CTGC

)1−p
. (4.9)

For all y ∈ Y = {y ∈ {−1, 0, 1}k1k2 : ∃!i with yi = 1∧∃!j with yj = −1} it holds

that

yT G̃C̃
(
C̃T G̃C̃

)+ (
C̃T G̃C̃

)1−p (
C̃T G̃C̃

)+
C̃T G̃Ty

≤ Tr

((
C̃T G̃C̃

)+ (
C̃T G̃C̃

)1−p)
⇔ yT

(
Jk1 ⊗

(
GC

(
CTGC

)+ (
CTGC

)1−p (
CTGC

)+
CTGT

))
y

≤ Tr
((
CTGC

)+ (
CTGC

)1−p)
.

From the optimality of the design ξ we know that xTAx ≤ const for all x ∈ X =

{x ∈ {−1, 0, 1}k2 : ∃!i with xi = 1 ∧ ∃!j with xj = −1}. Therefore, we have to

show yT (Jk1 ⊗ A) y ≤ const for all y ∈ Y = {y ∈ {−1, 0, 1}k1k2 : ∃!i with yi =

1 ∧ ∃!j with yj = −1}. Without loss of generality, let xi = 1 and xj = −1 and

thus

xTAx = (ai1 − aj1, . . . , aik2 − ajk2)x = aii − aji − (aij − ajj),

where aij is the element in row i and column j in the matrix A. We partition

yT = (yT1 ; . . . ; yTk1) = (y11, . . . , y1k2 ; . . . ; yk11, . . . , yk1k2) with yhi = 1 and ylj = −1

without loss of generality. We consider three different cases. Firstly, suppose
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h 6= l and i 6= j, then

yT (Jk1 ⊗ A) y =
(
1Tk1 ⊗ (ai1 − aj1, . . . , aik2 − ajk2)

)
y

= aii − aji − (aij − ajj) = xTAx.

The same result can be shown analogously for h = l and i 6= j. Assuming h = l

and i = j we get the following inequality yT (Jk1 ⊗ A) y = 0 ≤ xTAx. Therefore,

the inequalities in Theorem 2.3 hold for the design with design matrix X̃ and

weight matrix P̃ for the estimation of the main effect contrasts. �

Theorem 4.1 deals with two-factorial models. However, it can be applied to

multi-factorial settings easily, since 1k1 ⊗ 1k2 ⊗ · · · ⊗ 1kn−1 ⊗C = 1k1···kn−1 ⊗C.

4.3 Interaction effect contrasts in the two-factorial

setting

In addition to the estimation of main effects in model (4.1) biologists are often

interested in interactions between two or more factors. For example, considering

k1 cell lines and an arbitrary contrast set C of the k2 treatments, we can specify

the two-factor interaction effect contrasts P T
k1
⊗ C with the matrix Pk1 defined

as in Section 2.3.3.

Theorem 4.2:

Suppose that the design ξ with the l× k2 design matrix X̀ and the l× l weight

matrix P is φ−p-optimal, p ∈ (−∞, 1], for the estimation of the contrast set

CT (τ1, . . . , τk2)
T in the one factorial model (4.1). Then, the design with design

matrix X̃ = Ik1 ⊗ X̀ and weight matrix P̃ = 1
k1

(Ik1 ⊗ P ) is the φ−p-optimal

design in the two-factorial model (4.1) for the estimation of the contrast set

C̃T τ with C̃ = P T
k1
⊗ C, if aij ≤ 0, i 6= j and aii ≤ k1−1

2k1
const with const =

Tr((CTGC)+(CTGC)1−p) and A = GC(CTGC)+(CTGC)1−p(CTGC)+CTGT .

Proof : Choose p ∈ (−∞, 1] fix. We will use the equivalence theorems 2.3

to show optimality of the design with design matrix X̃ and weight matrix P̃ .
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Therefore, we will consider a generalized inverse G = (X̀TPX̀)−, which fulfills

the inequalities

xTGC
(
CTGC

)+ (
CTGC

)1−p (
CTGC

)+
CTGTx ≤ Tr

((
CTGC

)+ (
CTGC

)1−p)
for all x ∈ X = {x ∈ {−1, 0, 1}k2 : ∃!i with xi = 1 ∧ ∃!j with xj = −1}.

Analogously to the proof of Theorem 4.1 we can show

G̃ =
(
X̃T P̃ X̃

)−
= k1 (Ik1 ⊗G) , (4.10)

G̃C̃ = k1(Ik1 ⊗G)(P T
k1
⊗ C) = k1(P

T
k1
⊗GC), (4.11)

C̃T G̃C̃ = (Pk1 ⊗ CT )k1(Ik1 ⊗G)(P T
k1
⊗ C) = k1(Pk1P

T
k1
⊗ CTGC)(4.12)

(C̃T G̃C̃)+ =
1

k1
((Pk1P

T
k1

)+ ⊗ (CTGC)+), (4.13)

(C̃T G̃C̃)1−p = k1
1−p((Pk1P

T
k1

)1−p ⊗ (CTGC)1−p). (4.14)

Since we know from Section 2.3.3 that (P T
k1
Pk1) = k1Ik1 − Jk1 and (Pk1P

T
k1

)q =

k1
q−1Pk1P

T
k1

for q > 0, we can demonstrate

G̃C̃(C̃T G̃C̃)+(C̃T G̃C̃)1−p(C̃T G̃C̃)+C̃T G̃T

= ((P T
k1

(Pk1P
T
k1

)+(Pk1P
T
k1

)1−p(Pk1P
T
k1

)+Pk1)

⊗GC(CTGC)+(CTGC)1−p(CTGC)+CTGT )k1
1−p

= (P T
k1

(Pk1P
T
k1

)+k1
−p(Pk1P

T
k1

)(Pk1P
T
k1

)+Pk1 ⊗ A)k1
1−p

= (k1
−pP T

k1
(Pk1P

T
k1

)+Pk1 ⊗ A)k1
1−p = (k1

−p 1

k1
2P

T
k1

(Pk1P
T
k1

)Pk1 ⊗ A)k1
1−p

= (k1
−p 1

k1
2 (k1Ik1 − Jk1)2 ⊗ A)k1

1−p = (k1
−p−1(k1Ik1 − Jk1)⊗ A)k1

1−p

= ((k1Ik1 − Jk1)⊗ A)k1
−2p.
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Using Tr((Pk1P
T
k1

)+(Pk1P
T
k1

)) = k1 − 1 from Section 2.3.3 we see

Tr((C̃T G̃C̃)+(C̃T G̃C̃)1−p)

= Tr((Pk1P
T
k1

)+(Pk1P
T
k1

)1−p ⊗ (CTGC)+(CTGC)1−p)k1
−p

= Tr(((Pk1P
T
k1

)+(Pk1P
T
k1

)1−p) Tr((CTGC)+(CTGC)1−p)k1
−p

= Tr((Pk1P
T
k1

)+k1
−p(Pk1P

T
k1

)) const k1
−p

= k1
−2p(k1 − 1) const.

Due to the φ−p-optimality of the design ξ, we know that xTAx ≤ const for all

x ∈ X = {x ∈ {−1, 0, 1}k2 : ∃!i with xi = 1∧∃!j with xj = −1}. Thus, we have

to show

yT ((k1Ik1 − Jk1)⊗ A) y ≤ (k1 − 1) const

for all y ∈ Y = {y ∈ {−1, 0, 1}k1k2 : ∃!i with yi = 1 ∧ ∃!j with yj = −1}.

Without loss of generality, we assume xi = 1 and xj = −1 and thus xTAx = aii−

aji−(aij−ajj) as in the proof of Theorem 4.1. We partition yT = (yT1 ; . . . ; yTk1) =

(y11, . . . , y1k2 ; . . . ; yk11, . . . , yk1k2) with yhi = 1 and ylj = −1 and consider three

different cases. Firstly, suppose h 6= l, i 6= j:

yT ((k1Ik1 − Jk1)⊗ A) y

= (−ai1 + aj1, . . . ,−aik2 + ajk2︸ ︷︷ ︸
1. cell line

,−ai1 + aj1, . . . ,−aik2 + ajk2︸ ︷︷ ︸
2. cell line

, . . . ,

(k1 − 1)ai1 + aj1, . . . , (k1 − 1)aik2 + ajk2︸ ︷︷ ︸
h. cell line

, . . . ,

−ai1 − (k1 − 1)aj1, . . . ,−aik2 − (k1 − 1)ajk2︸ ︷︷ ︸
l. cell line

, . . .)y

= (k1 − 1)aii + aji − (−aij − (k1 − 1)ajj)

= (k1 − 1)(aii + ajj) + 2aij

= (k1 − 1)(aii + ajj − 2aij) + 2(k1 − 1)aij + 2aij

≤ (k1 − 1) const + 2k1aij

≤ (k1 − 1) const .

The last inequality holds due to the assumption aij ≤ 0, for all i 6= j. Secondly,
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we suppose h 6= l, i = j and use the fact that aii ≤ k1−1
2k1

const. Therefore,

yT ((k1Ik1 − Jk1)⊗ A) y

= (k1 − 1)aii + aii − (−aii − (k1 − 1)aii) = 2k1aii

≤ (k1 − 1) const.

Assuming h = l, i 6= j we finally get

yT ((k1Ik1 − Jk1)⊗ A) y

= (−ai1 + aj1, . . . ,−aik2 + ajk2︸ ︷︷ ︸
1. cell line

, . . . ,

(k1 − 1)ai1 − (k1 − 1)aj1, . . . , (k1 − 1)aik2 − (k1 − 1)ajk2︸ ︷︷ ︸
l. cell line

, . . .)y

= (k1 − 1)aii − (k1 − 1)aji − ((k1 − 1)aij − (k1 − 1)ajj)

= (k1 − 1)(aii + ajj − 2aij) ≤ (k1 − 1)const.

This completes the proof. �

Example 4.3:

If we are interested in estimating the specific interaction contrasts C̃ = P T
k1
⊗P T

k2

of k1 cell lines and k2 treatments, i.e. C = P T
k2

in Theorem 4.2, where P T
k2

de-

fines all pairwise treatment comparisons, the inequalities in Theorem 4.2 reduce

to k2 ≤ k1. We will show this in the following part. Because of Theorem 3.4

we know that the design with design matrix X̀ = Pk2 and equal weights is

φ−p-optimal for estimating the contrasts CT τ with C = P T
k2

. Thus, the Moore-

Penrose-Inverse G = (X̀TPX̀)+ fulfills the normality inequalities of the equiva-

41



4.4. Interactions in multi-factorial setting 4. Approximate Optimal Designs

lence Theorem 2.3 for p ∈ (−∞, 1] with P = 1

(k2
2 )
I(k2

2 ). Hence,

G = (X̀TPX̀)+ =

(
1(
k2
2

)(k2Ik2 − Jk2)

)+

=

(
k2
2

)(
1

k2
Ik2 −

1

k2
2Jk2)

)
,

CTGC =
k2 − 1

2
Pk2P

T
k2
,

(CTGC)+ =
2

(k2 − 1)k2
2Pk2P

T
k2
,

const = Tr((CTGC)+(CTGC)1−p) = Tr(
2p

(k2 − 1)pk2
p+1 (Pk2P

T
k2

))

=
2p

(k2 − 1)pk2
p+1Tr((P T

k2
Pk2)) =

2p

(k2 − 1)pk2
p+1Tr(k2Ik2 − Jk2)

=
2p

(k2 − 1)p−1k2
p ,

A = GC(CTGC)+(CTGC)1−p(CTGC)+CTGT

=
(k2 − 1)1−p

21−pk2
p+4 P

T
k2

(Pk2P
T
k2

)3Pk2

=
(k2 − 1)1−p

21−pk2
p+1 (k2Ik2 − Jk2).

Therefore, aij = − (k2−1)1−p

21−pk2
p+1 ≤ 0 for all i 6= j and aii ≤ k1−1

2k1
const ⇔ k2 ≤ k1,

i.e. the design with design matrix Ik1⊗Pk2 and equal weights is φ−p-optimal for

estimating C̃ = P T
k1
⊗ P T

k2
, if there are less treatments k2 than cell lines k1.

4.4 Interaction effect contrasts in the multi-

factorial settings for the estimation of all

pairwise comparisons

Up to know we have considered contrasts of the main effects in the two- and

the multi-factorial model as well as contrasts of the interaction effects in the

two-factorial model. In this section we will derive approximate optimal de-

signs for the estimation of interaction effects in the multi-factorial setting, if we

are interested in all pairwise comparisons of the factor levels of all n experi-

mental factors under investigation. Assuming a three-factorial model, Hinkel-
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mann et al. [20] have investigated interaction contrast CT (τ111, . . . , τk1k2k3)
T with

CT = Pk1 ⊗ Pk2 ⊗ Pk3 , where k1, k2 and k3 are the levels of the three factors

of interest. In general, the interaction contrasts in a multi-factorial model with

n experimental factors of interest are defined as CT τ = (Pk1 ⊗ Pk2 ⊗ . . . ⊗

Pkn)(τ11...1, . . . , τk1k2...kn)T . We can show the following theorem.

Theorem 4.4:

Consider the multi-factorial model (4.1) with n ∈ N experimental factors of

interest. Let ki, i ∈ {1, . . . , n} denote the number of levels of factor i and

assume without loss of generality 2 ≤ k1 ≤ . . . ≤ kn. The design with design

matrix X = Pk1 ⊗ Ik2 ⊗ . . .⊗ Ikn and weight matrix P = 1

k2···kn(k1
2 )
Ik2···kn(k1

2 ) is a

φ−p-optimal design (p ∈ (−∞, 1]) for the estimation of the interaction contrasts

CT τ = (Pk1 ⊗ Pk2 ⊗ . . .⊗ Pkn)τ with τ = (τ11...1, . . . , τk1k2...kn)T .

Proof : We will proof this statement per induction for fixed p ∈ (−∞, 1]. Exam-

ple 4.3 provides the basis of the induction for n = 2. We assume that the state-

ment is true for arbitrary l ≤ n−1, i.e. for the estimation of CT
l (τ11...1, . . . , τk1k2...kl)

T =

(Pk1 ⊗ ... ⊗ Pkl)(τ11...1, . . . , τk1k2...kl)
T with min{k1, ..., kl} = k1 ≥ 2 is the de-

sign with design matrix Xl = Pk1 ⊗ Ik2 ⊗ . . . ⊗ Ikl and with weight matrix

P (l) = 1

k2···kl(k1
2 )
Ik2···kl(k1

2 ) φ−p-optimal for l ≤ n − 1. We will derive that the

statement is also true for n factors and kn ≥ k1.

Gn = (XT
n P

(n)Xn)+ =

(
((Xn−1)⊗ Ikn)T

1

kn
(P n−1) ⊗ Ikn)((Xn−1)⊗ Ikn)

)+

= kn(Gn−1 ⊗ Ikn),

GnCn = kn(Gn−1Cn−1 ⊗ P T
kn),

CT
nGnCn = kn(CT

n−1Gn−1Cn−1 ⊗ PknP T
kn),

En := GnCn(CT
nGnCn)+(CT

nGnCn)1−p(CT
nGnCn)+CT

nG
T
n

= k1−pn (En−1 ⊗ P T
kn(PknP

T
kn)+(PknP

T
kn)1−p(PknP

T
kn)+Pkn)

= k1−pn (En−1 ⊗ k−pn (Ikn −
1

kn
Jkn)) = k1−2pn (En−1 ⊗ (Ikn −

1

kn
Jkn))

= 2p−1k−p1 (k1 − 1)1−p
n∏
i=2

k1−2pi ((Ik1 −
1

k1
Jk1)⊗ . . .⊗ (Ikn −

1

kn
Jkn)).
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Thereby we use the fact from Example 4.3 and the proof of Theorem 4.2 that

E2 = 2p−1k1−2p2 k−p1 (k1 − 1)1−p((Ik1 −
1

k1
Jk1)⊗ (Ik2 −

1

k2
Jk2)).

Furthermore, we get

constn := Tr((CT
nGnCn)+(CT

nGnCn)1−p)

= Tr((CT
n−1Gn−1Cn−1)

+(CT
n−1Gn−1Cn−1)

1−p ⊗ (PknP
T
kn)+(PknP

T
kn)1−p)k−pn

= constn−1Tr(k−p−1n (PknP
T
kn))k−pn

= k−2p−1n constn−12
kn(kn − 1)

2
= k−2pn (kn − 1)constn−1

= 2pk−p1 (k1 − 1)1−p
n∏
i=2

k
−2p
i (ki − 1)

=

(
k1 − 1

2k1

)−p n∏
i=1

k−2pi (ki − 1),

since we know from the proof of Theorem 4.2, Example 4.3, and k1 ≤ k2 that

const2 = k−2p2 (k2 − 1)const1 = 2pk−p1 (k1 − 1)1−p(k2 − 1)k
−2p
2 .

Knowing xTEn−1x ≤ constn−1 for all x ∈ Xn−1 = {x ∈ {−1, 0, 1}k1...kn−1|∃!i :

xi = −1 ∧ ∃!j : xj = 1} we have to show yTEny ≤ constn for all y ∈ Xn = {y ∈

{−1, 0, 1}k1...kn|∃!i : yi = −1 ∧ ∃!j : yj = 1}.

yTEny ≤ constn

⇔ yTk1−2pn (En−1 ⊗ (Ikn −
1

kn
Jkn))y ≤ k−2pn (kn − 1)constn−1

⇔ yT (En−1 ⊗ (Ikn −
1

kn
Jkn))ykn ≤ (kn − 1)constn−1

Assume 1 ≤ h, l ≤ k1k2 · · · kn−1 and 1 ≤ i, j ≤ kn and partition

yT = (yT1 ; . . . ; yTk1k2...kn−1
) = (y11, . . . , y1kn ; . . . ; yk1k2...kn−11, . . . , yk1k2...kn−1kn).

The inequality xTEn−1x ≤ constn−1 for x ∈ Xn−1 with xh = 1 and xl = −1 is
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equivalent to

e
(n−1)
hh + e

(n−1)
ll − e(n−1)hl − e(n−1)lh ≤ constn−1,

where e
(n−1)
ij is the ij-th element of the matrix En−1.

We will distinguish three cases. Firstly, suppose h = l and i 6= j, without loss

of generality i < j and yhi = 1 as well as ylj = −1. Thus,

yTkn(En−1 ⊗ (Ikn −
1

kn
Jkn))y

= (e
(n−1)
h1 (−1)− e(n−1)h1 (−1), . . . , e

(n−1)
h1 (kn − 1)− e(n−1)h1 (−1)︸ ︷︷ ︸

i.th entry

, . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . , e
(n−1)
h1 (−1)− e(n−1)h1 (kn − 1)︸ ︷︷ ︸

j.th entry

, . . . ,

e
(n−1)
h2 (−1)− e(n−1)h2 (−1), . . . , e

(n−1)
h2 (kn − 1)− e(n−1)h2 (−1)︸ ︷︷ ︸

kn+i.th entry

, . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . , e
(n−1)
h2 (−1)− e(n−1)h2 (kn − 1)︸ ︷︷ ︸

kn+j.th entry

, . . .)y

= 2kne
(n−1)
hh

Due to the structure of En we know

e
(n)
hh = 2p−1k−p1 (k1 − 1)1−p

(k1 − 1)

k1

n∏
i=2

k−2pi (ki − 1)

=

(
k1 − 1

2k1

)1−p n∏
i=1

k−2pi (ki − 1).

Using all results, we can show that yTEny ≤ constn is equivalent to

2kn

(
k1 − 1

2k1

)1−p n−1∏
i=1

k−2pi (ki − 1)

≤ (

(
k1 − 1

2k1

)−p n−1∏
i=1

k−2pi (ki − 1))(kn − 1)

⇔ kn(k1 − 1) ≤ k1(kn − 1)

⇔ k1 ≤ kn.
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This inequality yTEny ≤ constn is fulfilled due to our assumption k1 ≤ kn.

Secondly, we assume h 6= l and i = j.

yTkn(En−1 ⊗ (Ikn −
1

kn
Jkn))y

= (e
(n−1)
h1 (−1)− e(n−1)l1 (−1), . . . , e

(n−1)
h1 (kn − 1)− e(n−1)l1 (kn − 1)︸ ︷︷ ︸

i.th entry

, . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . , e
(n−1)
h1 (−1)− e(n−1)l1 (−1), . . . ,

e
(n−1)
h2 (−1)− e(n−1)l2 (−1), . . . , e

(n−1)
h2 (kn − 1)− e(n−1)l2 (kn − 1)︸ ︷︷ ︸

kn+i.th entry

, . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . , e
(n−1)
h2 (−1)− e(n−1)l2 (−1), . . .)y

= (kn − 1)(e
(n−1)
hh + e

(n−1)
ll − 2e

(n−1)
hl ) ≤ (kn − 1)constn−1.

And last we suppose h 6= l and i 6= j.

yTkn(En−1 ⊗ (Ikn −
1

kn
Jkn))y

= (e
(n−1)
h1 (−1)− e(n−1)l1 (−1), . . . , e

(n−1)
h1 (kn − 1)− e(n−1)l1 (−1)︸ ︷︷ ︸

i.th entry

, . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . , e
(n−1)
h1 (−1)− e(n−1)l1 (kn − 1)︸ ︷︷ ︸

j.th entry

, . . . ,

e
(n−1)
h2 (−1)− e(n−1)l2 (−1), . . . , e

(n−1)
h2 (kn − 1)− e(n−1)l2 (−1)︸ ︷︷ ︸

kn+i.th entry

, . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . , e
(n−1)
h2 (−1)− e(n−1)l2 (kn − 1)︸ ︷︷ ︸

kn+j.th entry

, . . .)y

= (kn − 1)(e
(n−1)
hh + e

(n−1)
ll ) + 2e

(n−1)
lh

= (kn − 1)(e
(n−1)
hh + e

(n−1)
ll − 2e

(n−1)
hl ) + 2kne

(n−1)
hl

≤ (kn − 1)constn−1 + 2kne
(n−1)
hl .
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Due to the structure of En−1 we know for h 6= l

e
(n−1)
lh ∈

{
(
∏n

i=2 k
1−2p
i ) · (k1 − 1)q1(k2 − 1)q2 . . . (kn−1 − 1)qn−1(−1)q0

21−pkp1(k1 − 1)p−1 · k1k2 . . . kn−1∣∣∣∣∣for i ∈ {1, . . . , n− 1} is qi ∈ {0, 1} and q0 = (n− 1)−
n−1∑
i=1

qi

}
,

e
(n−1)
hh =

(
k1 − 1

2k1

)1−p n−1∏
i=1

k−2pi (ki − 1).

Obviously, e
(n−1)
hl ≤ 0 for q0 odd. Hence let q0 be even. Define

hn(k1, . . . , kn) := 2p−1k−p1 (k1 − 1)1−p(
n∏
i=2

k
1−2p
i )

and therefore constn−1 = 2hn−1(k1, . . . , kn−1)(
∏n−1

i=2
ki−1
ki

). We have to prove the

following inequality.

2(kn − 1)hn−1(k1, . . . , kn−1)(k1 − 1)(k2 − 1) · · · (kn−1 − 1)

k1k2 · · · kn−1
+

2hn−1(k1, . . . , kn−1)(k1 − 1)q1 · · · (kn−1 − 1)qn−1(−1)q0

k1k2 · · · kn−1

≤ 2(kn − 1)hn−1(k1, . . . , kn−1)(
n−1∏
i=2

ki − 1

ki
)
k1
k1

⇔ (k1 − 1)(k2 − 1) . . . (kn−1 − 1)(kn − 1) +

(k1 − 1)q1(k2 − 1)q2 · · · (kn−1 − 1)qn−1(−1)q0

≤ k1(k2 − 1) · · · (kn−1 − 1)(kn − 1)

⇔ (k1 − 1)q1(k2 − 1)q2 · · · (kn−1 − 1)qn−1(−1)q0 ≤ (k2 − 1)(k3 − 1) · · · (kn − 1)

⇔ (k2 − 1)q2

k2 − 1

(k3 − 1)q3

k3 − 1
· · · (kn−1 − 1)qn−1

(kn−1 − 1)
· 1 · (k1 − 1)q1 ≤ (kn − 1).

This inequality is fulfilled for kn ≥ k1 ≥ 2 and for all qi ∈ {0, 1} for i ∈

{1, . . . , n− 1} and q0 = n−
∑n

i=1 qi, since (ki−1)qi
ki−1 ≤ 1. �

At this point we know the φ−p-optimal designs for the estimation of interaction

effects, that are associated with studying all pairwise comparisons of the factor

levels of all the experimental factors examined in a multi-factorial setting. In

the next sections we will turn to further contrast sets.
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4.5 Comparisons with a control-treatment

A very important contrast set for biological applications is the set of all treatment-

control comparisons introduced in Section 3.2, where exact A-optimal designs

were derived. In the following subsections, we will use the method explained in

Section 3.1 to derive approximate A-optimal designs for the treatment-control

comparisons. We will consider a setting with one factor of interest as well as a

multi-factorial layout. To be able to apply Theorem 4.1 and Theorem 4.2, an

approximate optimal design associated with the one-factorial model should be

known. Therefore, we will first construct A-optimal designs for estimating all

treatment-control comparisons in the one-factorial setting in the next subsection.

4.5.1 A-optimal designs in the one-factorial setting

The following construction of A-optimal approximate designs is based on the

gene-specific model (2.5), where the dye effect is removed. The dye effect is

reintroduced in Section 4.7. Again we denote the control-treatment by τ0 and

the other treatments by τi, i ∈ {1, . . . , t}.

The derivation of the approximate A-optimal designs is also based on the results

presented in Section 3.1, i.e. we will use Theorem 3.1 to minimize
∑t

i=1 Var(τ̂0−

τ̂i), but, in contrast to Chapter 3 we will consider continuous values
b(xij)

a
∈ [0, 1].

The value
b(xij)

a
is denoted by B̃

(t)
ij , if we consider t treatments and one control-

treatment. B̃
(t)
ij describes the rate of microarrays hybridizing treatments i and

j. Therefore, we will minimize

t∑
i=1

Var(τ̂0 − τ̂i)

under the constraints

B̃
(t)
01 + B̃

(t)
02 + · · ·+ B̃

(t)
(t−1)t = 1,

B̃
(t)
ij ∈ [0, 1] for all 0 ≤ i < j ≤ t.

For t = 3 and 1 ≤ i, j ≤ t, j 6= i we obtain the weights B̃
(t)
0i = 1

4
and B̃

(t)
ij = 1

12
.
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For t ∈ N≥4 ∪ {2} the weights can be expressed as

B̃
(t)
0i =

2((t− 1)
√
t+ 1− (t+ 1))

t(t+ 1)(t− 3)
, (4.15)

B̃
(t)
ij =

2(t− 2
√
t+ 1 + 1)

t(t+ 1)(t− 3)
. (4.16)

We define r
(t)
1 := B̃

(t)
0i and r

(t)
2 := B̃

(t)
ij since these weights are independent on

i and j. Using the equivalence theorem 2.3 we show the A-optimality of the

designs that are constructed according to these weights.

Theorem 4.5:

Approximate A-optimal designs for the estimation of all treatment-control com-

parisons τ0 − τi, i ∈ {1, . . . , t} in the one-factorial setting allocate the control

with each of the other treatment on the rate r
(t)
1 of all a microarrays, all other

treatment comparisons are allocated on the rate r
(t)
2 of all a microarrays with

tr
(t)
1 +

(
t
2

)
r
(t)
2 = 1. In other words, designs with design matrix X̀ = Pt+1 and

weight matrix P := diag(r
(t)
1 , . . . , r

(t)
1︸ ︷︷ ︸

t

, r
(t)
2 , . . . , r

(t)
2︸ ︷︷ ︸

(t
2)

) are A-optimal.

Proof : Choose t fix and denote r
(t)
1 = r1 and r

(t)
2 = r2 throughout this proof. For

p = −1 the φ−p-optimality criterion is the same as the A-optimality-criterion.

Therefore, we will show that the equivalence theorem 2.3 holds for p = −1. We

show that the Moore-Penrose-Inverse G = (X̀TPX̀)+ of X̀TPX̀ satisfies the

normality inequality

xTGC
(
CTGC

)+ (
CTGC

)2 (
CTGC

)+
CTGTx ≤ Tr

((
CTGC

)+ (
CTGC

)2)
(4.17)

for all possible design points x ∈ X , X = {x ∈ {−1, 0, 1}t+1 : ∃!i with xi =

1 ∧ ∃!j with xj = −1}. P := diag(r1, . . . , r1︸ ︷︷ ︸
t

, r2, . . . , r2︸ ︷︷ ︸
(t
2)

) with tr1 +
(
t
2

)
r2 = 1 is

the diagonal matrix containing the optimal weights for all design points listed in

X̀ = Pt+1. Since we are interested in the comparisons with a control-treatment,

49



4.5. Comparisons with a control-treatment 4. Approximate Optimal Designs

we consider the contrast matrix

C =



1 1 . . . 1

−1 0 . . . 0

0 −1 . . . 0
...

. . .

0 0 . . . −1


.

It can be shown easily, that

XTPX =

 r1t −r11Tt
−r11t (r1 + tr2)It − r2Jt

 ,

where Jt is the t× t matrix with all entries equal to 1 and It is the t× t identity

matrix. Thus, we get

G = (XTPX)− =
1

r1(t+ 1)2

 t −1Tt
−1t (t+1)2r1

r1+tr2
It + −(t+2)r1+r2

r1+tr2
Jt

 ,

CTGC =
1

r1 + tr2
It +

r2
r1(r1 + tr2)

Jt,

(CTGC)+ = (r1 + tr2)It − r2Jt,

GC =


1

(t+1)r1
1Tt

1
r1+tr2

It + r1−r2
(t+1)r1(r1+tr2)

Jt

 .

Furthermore, we can show

Tr((CTGC)+(CTGC)2) =
(r1 + r2)t

r1(r1 + tr2)
,

and

GC
(
CTGC

)+ (
CTGC

)2 (
CTGC

)+
CTGT

=

 t
r21(t+1)2

−1
r21(t+1)2

1Tt

−1
r21(t+1)2

1t
1

(r1+tr2)2
It + (r2−r1)((t+2)r1+tr2)

r21(t+1)2(r1+tr2)2
Jt

 .

If we compare the control-treatment to the i-th treatment, we denote the design
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point x(0i) = (1, 0, . . . , 0, −1︸︷︷︸
i

, 0, . . . , 0) and therewith

xT(0i)GC
(
CTGC

)+ (
CTGC

)2 (
CTGC

)+
CTGTx(0i)

=

(
t

(t+ 1)2r21
+

1

(t+ 1)2r21

)
−
(

−1

(t+ 1)2r21
− r21(t

2 + t− 1) + 2r1r2 + tr22
(t+ 1)2r21(r1 + tr2)2

)
=

1

2

(√
t+ 1− 1)2(

√
t+ 1 + 2

)2
=

(r1 + r2)t

r1(r1 + tr2)

= Tr((CTGC)+(CTGC)2).

Analogously we prove equality in (4.17) for x(ij) = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0, −1︸︷︷︸
j

, 0, . . . , 0)

for the comparisons of the i-th and j-th treatment.

xT(ij)GC
(
CTGC

)+ (
CTGC

)2 (
CTGC

)+
CTGTx(ij)

= 2(
r21(t

2 + t− 1) + 2r1r2 + tr22
(t+ 1)2r21(r1 + tr2)2

− (r2 − r1)((t+ 2)r1 + tr2)

r21(t+ 1)2(r1 + tr2)2
)

=
1

2
(
√
t+ 1− 1)2(

√
t+ 1 + 2)2

= Tr((CTGC)+(CTGC)2).

Therefore, the normality equations (4.17) hold for all possible design points

x and the given designs are approximate A-optimal for the estimation of all

treatment-control comparisons. �

The weights r
(t)
1 and r

(t)
2 of the A-optimal designs for the estimation of all

treatment-control contrasts are listed in Table 4.1 for various numbers of treat-

ments. Note, that the A-optimal designs in Theorem 4.5 are not universal

optimal. The weights change for other optimality criteria. For example, if we

consider the setting of one reference and three treatments, Table 4.1 gives the

optimal weights for the A-optimality criteria. These weights are not D-optimal.

The value of the D-optimality criteria defined in Example 2.2 for the estimation

of the treatment-control contrasts is 2.52. In contrast, if we set all weights to

1/6, the value of the D-optimality criteria changes to 2.38, which represents a

better design.
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Table 4.1: Weights of the approximate A-optimal designs for various numbers of
treatments.

r
(t)
1 r

(t)
2

t = 2 1
3
(3−

√
3) 1

3
(−3 + 2

√
3)

t = 3 1
4

1
12

t = 4 1
10

(−5 + 3
√

5) 1
10

(5− 2
√

5)

t = 5 1
15

(−3 + 2
√

6) 1
15

(3−
√

6)

t = 6 1
63

(−7 + 5
√

7) 1
63

(7− 2
√

7)

4.5.2 A-optimal designs in the multi-factorial setting

Using Theorem 4.1 and Theorem 4.2, we can expand the results of Section 4.5.1

to the two-factorial setting in model (4.1). Let C denote the contrast ma-

trix comparing t treatments with a control-treatment, i.e. the contrast ma-

trix outlined in the proof of Theorem 4.5. If we are interested in estimat-

ing the main effect contrasts C̄τ with C̄ = 1k1 ⊗ C, it is obvious that the

design with design matrix X̄ = Ik1 ⊗ Pt+1 and weight matrix P̄ = 1
k1

(Ik1 ⊗

diag(r
(t)
1 , . . . , r

(t)
1︸ ︷︷ ︸

t

, r
(t)
2 , . . . , r

(t)
2︸ ︷︷ ︸

(t
2)

)) is A-optimal due to Theorem 4.1 and Theorem 4.5.

If we are also interested in the estimation of the interaction effect contrasts

C̃τ with C̃ = P T
k1
⊗ C, we can use Theorem 4.2 and Theorem 4.5 to show

that the design with design matrix X̃ = Ik1 ⊗ Pt+1 and weight matrix P̃ =

1
k1

(Ik1 ⊗ diag(r
(t)
1 , . . . , r

(t)
1︸ ︷︷ ︸

t

, r
(t)
2 , . . . , r

(t)
2︸ ︷︷ ︸

(t
2)

)) is also A-optimal for estimating C̃τ if

t + 1 ≤ k1. To demonstrate this result, we have to verify the conditions

aij ≤ 0, i 6= j and aii ≤ k1−1
2k1

const, with const = Tr((CTGC)+(CTGC)1−p)

and A = GC(CTGC)+(CTGC)1−p(CTGC)+CTGT due to Theorem 4.2. We

know from the proof of Theorem 4.5 that

A =

 t

r
(t)2
1 (t+1)2

−1
r
(t)2
1 (t+1)2

1Tt

−1
r
(t)2
1 (t+1)2

1t
1

(r
(t)
1 +tr

(t)
2 )2

It +
(r

(t)
2 −r

(t)
1 )((t+2)r

(t)
1 +tr

(t)
2 )

r
(t)2
1 (t+1)2(r

(t)
1 +tr

(t)
2 )2

Jt

 ,

const =

(
r
(t)
1 + r

(t)
2

)
t

r
(t)
1

(
r
(t)
1 + tr

(t)
2

) .
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Obviously aij ≤ 0, i 6= j holds, because of r
(t)
1 > r

(t)
2 for all t ∈ N. Hence, it

remains to show aii ≤ k1−1
2k1

const. First, we consider a11 ≤ k1−1
2k1

const, which is

equivalent to

t

r
(t)2
1 (t+ 1)2

≤ k1 − 1

2k1

(r
(t)
1 + r

(t)
2 )t

r
(t)
1 (r

(t)
1 + tr

(t)
2 )

⇔ tt(t− 3)

2(t+ 1)(
√

1 + t(−
√

1 + t+ t− 1))
≤ −(k1 − 1)t(t− 3)√

1 + t(
√

1 + t− t+ 1)2k1

⇔ −t
t+ 1

≤ −(k1 − 1)

k1
.

This equality holds for t + 1 ≤ k1. For i 6= 1 we can show that the inequality

aii ≤ k1−1
2k1

const is equivalent to the following inequality.

r
(t)2
1 (t+ 1)2 + (r

(t)
2 − r

(t)
1 )((t+ 2)r

(t)
1 + tr

(t)
2 )

r
(t)2
1 (t+ 1)2(r

(t)
1 + tr

(t)
2 )2

≤(k1 − 1)(r
(t)
1 + r

(t)
2 )t

2k1r
(t)
1 (r

(t)
1 + tr

(t)
2 )

⇔ −r(t)21 + 2r
(t)
1 r

(t)
2 + r

(t)2
1 t+ r

(t)2
2 t+ r

(t)2
1 t2

r
(t)
1 (t+ 1)2(r

(t)
1 + tr

(t)
2 )

≤(k1 − 1)(r
(t)
1 + r

(t)
2 )t

2k1

⇔ −t(2− t+ t2 + 2
√

1 + t− 2t
√

1 + t)

(1 + t)(1− t+
√

1 + t)(−1− t−
√

1 + t+ t
√

1 + t)
≤ (k1 − 1)

k1
√

1 + t

⇔ −t(
√

1 + t+ 1− t)2

(1 + t)(
√

1 + t+ 1− t)(−
√

1 + t− 1 + t)
≤ (k1 − 1)

k1

⇔ t

(t+ 1)
≤ (k1 − 1)

k1

⇔ t+ 1 ≤ k1.

All transformations hold for t 6= 3, but the conditions can also be easily shown

for t = 3 and t+ 1 ≤ k1. We get
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r
(t)2
1 (t+ 1)2 + (r

(t)
2 − r

(t)
1 )((t+ 2)r

(t)
1 + tr

(t)
2 )

r
(t)2
1 (t+ 1)2(r

(t)
1 + tr

(t)
2 )2

≤ (k1 − 1)(r
(t)
1 + r

(t)
2 )t

2k1r
(t)
1 (r

(t)
1 + tr

(t)
2 )

⇔ 3 ≤ 4(k1 − 1)

k1

⇔ k1 ≥ 4,

t

r
(t)2
1 (t+ 1)2

≤k1 − 1

2k1

(r
(t)
1 + r

(t)
2 )t

r
(t)
1 (r

(t)
1 + tr

(t)
2 )

⇔ 3 ≤ 4(k1 − 1)

k1

⇔ k1 ≥ 4.

These inequalities are valid, since k1 ≥ t + 1. Therefore, we know the optimal

design for the estimation of the interaction effect contrasts C̃τ with C̃ = P T
k1
⊗ 1 1 ... 1

−1 0 ... 0
0 −1 ... 0
...

...
0 0 ... −1

 for practical applications.

4.6 Helmert contrasts and all-to-next contrasts

Analogously to our considerations of treatment-control comparisons, approxi-

mate A-optimal designs for Helmert contrasts and all-to-next contrasts can be

derived. However, the properties of the resulting optimal designs do not have

as nice properties as the designs presented in the previous section. Therefore,

it is impossible to state an explicit formula for the optimal weights dependent

on t. First, the optimal weights for the Helmert contrasts, which have been

introduced in Section 3.4 are derived for t = 2 and t = 3. As in the previous

section, we use the results of Section 3.1, especially Theorem 3.1, to minimize∑m
l=1 Var(cTl τ̂) considering continuous values for B̃

(t)
ij ∈ [0, 1]. As mentioned in

Section 3.4, A-optimal designs for the estimation of Helmert contrasts can be
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achieved for t = 2 by minimizing the target function:

min

(
Var(τ̂0 −

1

2
τ̂1 −

1

2
τ̂2) + Var(τ̂1 − τ̂2)

)
= min

(
1

4
Var(τ̂0 − τ̂1) +

1

4
Var(τ̂0 − τ̂2) +

1

2
Cov(τ̂0 − τ̂1, τ̂0 − τ̂2) + Var(τ̂1 − τ̂2)

)
= min

5B̃
(2)
01 + 5B̃

(2)
02 + 4B̃

(2)
12

4B̃
(2)
01 B̃

(2)
02 + 4B̃

(2)
01 B̃

(2)
12 + 4B̃

(2)
02 B̃

(2)
12

under the constraints B̃
(2)
01 + B̃

(2)
02 + B̃

(2)
12 = 1 and B̃

(2)
01 , B̃

(2)
02 , B̃

(2)
12 ∈ R≥0. This

implies

min
4 + B̃

(2)
01 + B̃

(2)
02

4

(
−
(
B̃

(2)
01 + B̃

(2)
02

)2
+ B̃

(2)
01 + B̃

(2)
02 + B̃

(2)
01 B̃

(2)
02

)

under the constraints B̃
(2)
01 + B̃

(2)
02 ≤ 1 and B̃

(2)
01 , B̃

(2)
02 ∈ R≥0. Since B̃

(2)
01 B̃

(2)
02

reaches its maximum for B̃
(2)
01 = B̃

(2)
02 under these constrains, we get

min
0≤B̃(2)

01 ≤
1
2

2 + B̃
(2)
01

2B̃
(2)
01 (2− 3B̃

(2)
01 )

and therefore B̃
(2)
01 = B̃

(2)
02 = 2

3
(2
√

3− 3) and B̃
(2)
12 = 1− 4

3
(2
√

3− 3).

Analogously, we minimize the following function, if we are interested in estimat-

ing the Helmert contrasts for t = 3.

min

(
Var(τ̂0 −

1

3
τ̂1 −

1

3
τ̂2 −

1

3
τ̂3) + Var(τ̂1 −

1

2
τ̂2 −

1

2
τ̂3) + Var(τ̂2 − τ̂3)

)
= min

49ab+ 18b2 + 26ac+ 36bc+ 49ad+ 110bd+ 40cd+ 20d2

18(b+ 2c+ d)(ab+ ad+ 2bd)

under the constraints a+ 2b+ c+ 2d = 1 and 0 ≤ a, b, c, d ≤ 1. We set a = B̃
(3)
01 ,

b = B̃
(3)
12 = B̃

(3)
13 , c = B̃

(3)
23 , d = B̃

(3)
02 = B̃

(3)
03 due to the symmetry properties of

the Helmert contrast matrix. The solutions of this minimization, obtained using

Mathematica, are illustrated in Table 4.2, whereas g1 is the second root of the
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equation

−4 + 32x− 12x2 − 208x3 + 263x4 = 0

and g2 is the second root of the equation

−1156 + 8976x− 9828x2 − 15768x3 + 21303x4 = 0.

Therefore, g3 = 1− 3g1 − 2g2.

All-to-next contrasts can be deliberated in the same way. For instance, for t = 2

the following function is minimized

min (Var(τ̂0 − τ̂1) + Var(τ̂1 − τ̂2))

= min
B̃

(2)
01 + 2B̃

(2)
02 + B̃

(2)
12

B̃
(2)
01 B̃

(2)
02 + B̃

(2)
01 B̃

(2)
12 + B̃

(2)
02 B̃

(2)
12

under the constraints B̃
(2)
01 + B̃

(2)
02 + B̃

(2)
12 = 1 and B̃

(2)
01 , B̃

(2)
02 , B̃

(2)
12 ∈ R≥0. As a

result, we get B̃
(2)
01 = B̃

(2)
12 = 1

3
(3−

√
3) and B̃

(2)
02 = 1− 2

3
(3−

√
3).

The resulting optimal weights for t = 2 and t = 3 are summarized in Table 4.3.

Here, f1 is the third root of

0.0625− 1.00x2 + 2x4 = 0.

f2 is the second root of

−1.9375 + 15.000x− 31.00x2 + 8.0x3 + 2x4 = 0

and f3 is the third root of

0.0625− 9.00x2 − 8.0x3 + 2x4 = 0.

f4 is calculated as f4 = 1− 2f1 − f2 − 2f3.

Referring to Ferrari quartic equations can be solved exactly, but Galois showed

that the roots of an fifth power equation cannot be solved exactly. Thus, the
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Table 4.2: Approximate A-optimal designs for estimating Helmert contrasts, t = 2
and t = 3.

t = 2 t = 3
optimal weight optimal weight

B̃01
2
3
(2
√

3− 3) ≈ 0.3094 g1 ≈ 0.1522

B̃02
2
3
(2
√

3− 3) ≈ 0.3094 g1 ≈ 0.1522

B̃03 - - g1 ≈ 0.1522

B̃12 1− 4
3
(2
√

3− 3) ≈ 0.3812 g2 ≈ 0.1645

B̃13 - - g2 ≈ 0.1645

B̃23 - - g3 ≈ 0.2144

Table 4.3: Approximate A-optimal designs for estimating all-to-next contrasts, t = 2
and t = 3.

t = 2 t = 3
optimal weight optimal weight

B̃01
1
3
(3−

√
3) ≈ 0.4227 f1 ≈ 0.2706

B̃02 1− 2
3
(3−

√
3) ≈ 0.1547 f3 ≈ 0.0806

B̃03 - - f4 ≈ 0.0538

B̃12
1
3
(3−

√
3) ≈ 0.4227 f2 ≈ 0.2439

B̃13 - - f3 ≈ 0.0806

B̃23 - - f1 ≈ 0.2706

complexity of this problem increases immensely for higher values of t and we

will terminate the investigations. However, we see in Table 4.2 that posterior

treatment comparisons with higher indices i, j in B̃ij get higher weights, most

important is the comparison of treatments two and three and least important

are the comparisons with treatment zero. This phenomenon has been explained

in Section 3.4. For the all-to-next contrasts we realize again, that the compar-

isons with the highest weights are the comparisons between treatments with

consecutive treatment indices, B̃01, B̃12 and B̃23.
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4.7 Dye effect

Up to now the difference in dye intensities caused by different characteristics of

the two dyes was not taken into account throughout our optimization consid-

erations. We will reintroduce the dye effect in this chapter. As mentioned in

Section 2.1 microarray experiments can be illustrated as directed graphs. An-

other way to describe a two-color microarray experiment is to consider it as a

2× a row-column design, where the two dyes are arranged in the rows and the

a arrays are displayed in the columns (see Figure 4.1(a)).

It is easy to see that no information is lost if each treatment is colored green and

red at the same frequency, i.e. each treatment occurs in the first and second row

of the row-column design at the same frequency [23]. Therefore, if all treatments

occur with an even quantity, the optimal design remains the same. In the

approximate setting, dye swaps can be added to each design point in order to

achieve optimal designs, if the primary design was not even. Dye swaps hybridize

each treatment comparison on two arrays with the dye assignments reversed in

the second comparison. This method always leads to optimal designs including

the dye effect. Therefore, many authors recommend dye swaps, e.g. Yang and

Speed [46], Stanzel [38] and Kerr [21]. Stanzel [37] proved the optimality of dye

swap designs for special contrast sets. He showed the following theorem.

Theorem 4.6:

The design with design matrix (X | W ) with X =
(
P T
k2
,−P T

k2

)T
, W defined

as
(
12(k2

2 ),−12(k2
2 )

)
and equal weights for each support point listed in the de-

sign matrix, is φ−p optimal, p ∈ (−∞, 1], for the estimation of the contrasts(
1Tk1 ⊗ Pk2 0(k2

2 ), 0(k2
2 )

) τ

δ

 and
(
Pk1 ⊗ Pk2 0(k1

2 )(k2
2 ), 0(k1

2 )(k2
2 )

) τ

δ

. 1k

and 0k denote the k×1 column vectors with all entries equal to 1 and 0, respec-

tively.

On the other hand Dobbin et al. [9] found out that dye swap assignments are

often unnecessary and wasteful of resources. It is more efficient to balance the

treatments with respect to the dyes and to avoid repeating comparisons. The

designs recommended by Stanzel [37] remain optimal without dye swaps for
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odd number of treatments. Thereby, the matrix Pk is substituted by P̃k. Pk

is defined as in Section 2.3.3. We define P̃k recursively by P̃2 := [1,−1] and

P̃k :=

±1k−1 ∓Ik−1
0(k−1

2 ) P̃k−1

 for all k ∈ N≥3, where ±1k is the k × 1 vector with

alternating values 1 and −1 starting with 1, (±1k)i = (−1)i+1 . ∓Ik is the

diagonal matrix with alternating diagonal elements 1 and −1, starting with −1,

i.e. (∓Ik)ii = (−1)i . The proofs can be carried out similarly as in Stanzel [37].

Since all columns of the design matrix P̃k are orthogonal to the dyes (1, . . . , 1)T ,

the treatment effects can be estimated independently of the dyes [16].

However, the exact setting is more complex. In general, exact results including

dyes are not feasible without time-consuming searches. Therefore, we will use

heuristics in order to assign the dyes in a good way to our optimal designs

presented in the previous sections. Assuming that each treatment i is colored

red and green dri and dgi times, respectively, with |dri − dgi| ≤ 1. This approach

will lead to optimal and near-optimal designs in most cases. Bailey [2] showed

that balanced designs do not perform well in some cases. For instance, she proved

that the design displayed in Figure 4.1 (b) is A-optimal for the estimation of

all pairwise treatment comparisons. However, in most cases the given approach

leads to good designs. Ture [42] showed that row-column designs for treatment-

control comparisons perform well if the treatments occur in each row at the same

frequency. Therefore, we assign the dyes as balanced as possible to the optimal

designs constructed in the previous sections and calculate the variances of the

corresponding designs. These variances can be compared to the variances of the

optimal designs ignoring the dye effect, which provides a lower bound for the

smallest possible variance. If, by including the dye effect, the variance increases

slightly, we have found a good microarray design including the dye effect. We

use the same approach for the other contrast settings, e.g. Table 4.4, Table 4.5

and Table 4.6. Figure 4.2 and Figure 4.3 illustrate the experiments, which were

considered in Table 4.4 and Table 4.5 graphically. The rows ”Var. opt. incl.

dye” give the variances of the graphically illustrated designs, which take the dye

effect into account. We observe that these variances only increase slightly in

comparison to the same designs without dye effect, which are displayed in the
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(a) (b)

Figure 4.1: (a)Row-column design. (b) Optimal design for all pairwise treatment
comparisons.

Table 4.4: Exact A-optimal and near A-optimal designs for treatment-control com-
parisons with and without dye effect, t = 2 treatments, a arrays. The same variances
are obtained for the all-to-next contrasts.

a = 6 a = 7 a = 8 a = 9 a = 10 a = 15
Var. opt. design 0.64 0.53 0.47 0.42 0.38 0.25

Var. opt. incl. dye 0.66 0.53 0.48 0.42 0.38 0.25

rows ”Var. opt. design”. Therefore, we found efficient designs for microarray

experiments also if the dye effect is taken into account. For a detailed discussion

of the dye effect see Bailey [2] or Dobbin [9].

Figure 4.2: Efficient designs for estimating treatment-control comparisons accounting
for the dye effect, t = 3 treatments, a arrays. Numbers displayed on arrows indi-
cate the number of arrays, on which this treatment comparison is analyzed with the
according dye arrangement.
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Figure 4.3: Efficient designs for estimating all-to-next contrasts accounting for the
dye effect, t ∈ {2, 3} treatments, a arrays. Numbers displayed on arrows indicate the
number of arrays, on which this treatment comparison is analyzed with the according
dye arrangement.

Table 4.5: Exact A-optimal and near A-optimal designs for treatment-control and
all-to-next contrasts with and without dye effect, t = 3 treatments, a arrays.

Treatment Control a = 9 a = 10 a = 11 a = 12 a = 15 a = 20 a = 25
Var. opt. design 0.9 0.82 0.74 0.67 0.54 0.40 0.32

Var. opt. incl. dye 0.9 0.82 0.74 0.68 0.54 0.40 0.32

All-to-next a = 9 a = 10 a = 11 a = 12 a = 15 a = 20 a = 25
Var. opt. design 0.92 0.82 0.75 0.68 0.54 0.41 0.32

Var. opt. incl. dye 0.93 0.82 0.75 0.69 0.54 0.41 0.33

Table 4.6: Exact A-optimal and near A-optimal designs for treatment-control and
all-to-next contrasts with and without dye effect, t = 4 treatments, a arrays.

Treatment-control a = 14 a = 15 a = 16 a = 20 a = 25
Var. opt. design 1.00 0.93 0.87 0.69 0.55

Var. opt. incl. dye 1.01 0.94 0.88 0.69 0.55

All-to-next a = 14 a = 15 a = 16 a = 20 a = 25
Var. opt. design 1.03 0.96 0.89 0.71 0.57

Var. opt. incl. dye 1.03 0.97 0.90 0.71 0.57
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Chapter 5

Robustness Considerations

In many microarray experiments observations are missing and cannot be involved

in the statistical analysis of the experiment. Missing values occur for different

reasons, such as scratches on the slide, insufficient resolution, image corruption

or other damaging (Troyanskaya et al. [40]). It is thus important to use robust

experiments, which ensure precise results even if observations are missing. Latif

et al. [30] have investigated specific robustness properties of commonly used

microarray designs. They proposed two robustness criteria and calculated these

criteria for the commonly used designs. But to date no attempts have been made

to examine these robustness criteria analytically. We will derive designs with

optimal robustness properties and study connections between the robustness

criteria introduced by Latif et al. [30] and popular optimality criteria.

5.1 Definition of robustness criteria

This section contains the necessary definitions to describe robustness properties

of microarray experiments. We illustrate the robustness criteria proposed in

Latif et al. [30] as well as further definitions of robustness (e.g. proposed in

Bailey [2]).

We consider model (2.5) without dye effect,

z = Xτ + η,
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where z = (z1, . . . , za) is the vector of log ratios of the dye intensities mea-

sured for a particular gene on all a arrays. the log ratios are dependent on

the treatment effect τ = (τ0, τ1, . . . , τt). The term η is the random error vec-

tor. We assume ηi, 1 ≤ i ≤ a to be independently identically distributed

with mean zero and variance σ2. A design with a × (t + 1) design matrix X

is called connected if all contrasts CT τ under investigation are estimable, i.e.

CT (XTX)−(XTX) = CT . The breakdown number (BDN) of a design is de-

fined as the minimum number of arrays, whose removal leads to at least one

disconnected design. In other words, for a design with breakdown number b the

effect of interest is still estimable for all the subdesigns with b−1 missing obser-

vations, but there exists at least one subdesign with b missing observations with

at least one inestimable effect of interest [30]. The breakdown number can be

defined with and without dye effect in the same way. In the following, we restrict

our investigations to the situation without dye effect. For instance, ignoring the

dye effect, the loop design illustrated in Figure 2.2 has breakdown number two,

whereas the star design presented in Figure 2.2 has breakdown number equal to

one.

The breakdown number is also a well-known number in graph theory. In graph

theory edge connectivity of a graph is defined as the minimal number of edges

whose removal results in a disconnected graph. Thus, the graph theoretical

expression edge connectivity is the same as the breakdown number introduced

by Latif et al. [30].

Furthermore, Latif et al. [30] proposed a second robustness criterion to select

good designs among designs with the same breakdown number. They defined

the residual efficiency measure φ(b) as the average efficiency of all subdesigns

with a given number b of missing observations.

φ(b) (C,X) =


(
a
b

)−1 ∑
Xb∈Xb

φ

((
CT
(
XT
b Xb

)−
C
)−1)

for b < BDN

∞ otherwise,
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where Xb is the set of all
(
a
b

)
subdesign matrices resulting from the a × (t + 1)

design matrix X by deleting arbitrary b rows. The matrix C is the usual contrast

matrix and φ is an information function defined in Definition 2.1.

Another robustness criterion is the usual D-optimality criterion defined in Ex-

ample 2.2, commonly known as the design which minimizes the volume of the

confidence ellipsoid for the vector of treatment effects. The D-optimality cri-

terion maximizes the determinant of the information matrix. Cheng [7] em-

phasized that the value of the D-criterion for block designs is proportional to

the number of spanning trees of the corresponding graph. Therefore, D-optimal

designs have a strong connection to robustness considerations.

5.2 Optimal breakdown number

Latif et al. [30] introduced the breakdown number for microarray experiments,

but they made no attempts to derive the designs with the optimal breakdown

number for given values of treatments t and arrays a. The following theorem

gives the highest possible breakdown number for given numbers a and t.

Theorem 5.1:

For given values a and t with 0 ≤ t − 1 ≤ a, the highest possible breakdown

number is equal to Opt-BDN (t, a) =
⌊
2a
t

⌋
, where bxc denotes the highest integer

less or equal to x.

It can be easily seen that Opt-BDN (t, a) ≤
⌊
2a
t

⌋
since

∑t
i=1 Deg(vi) = 2a, where

Deg(vi) denotes the degree of vertex vi, i.e. the number of edges incident to the

vertex vi. Thus, there has to be at least one vertex with degree Deg(vi) ≤
⌊
2a
t

⌋
.

On the other hand, graphs fulfilling equality can be easily derived in many ways.

For example, the designs consisting of repeated loops of length t and additional

edges joining the vertices with the highest distance in these loops have the

optimal breakdown number. Therefore, we know several designs with the best

breakdown number. A detailed proof of Theorem 5.1 and further properties

regarding edge connectivity can be found in Bollobas [5], Theorem 1.6.

A detailed investigation of the breakdown numbers of D-optimal designs leads
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us to the following conjecture.

Conjecture 5.2:

D-optimal designs always achieve the optimal breakdown number given in The-

orem 5.1.

Although, the conjecture seems reasonable, the proof turns out to be difficult.

We show the conjecture for special cases in the following section. Thereby, we

restrict ourselves to the consideration of block designs ignoring the dye effect.

The general case dealing with row-column designs is a similar task for future

research.

5.3 D-optimal designs

Many authors draw their attention to the derivation of D-optimal block designs

in different scenarios. We will introduce known D-optimal designs and show that

all of them achieve the optimal breakdown number. For example, Kiefer showed

the universal optimality of balanced incomplete block designs [26]. Blocks of

size k are incomplete in the sense that the block size is smaller than the number

of treatments (k < t) and that no treatment occurs more than once in any

block. An incomplete block design is balanced if the within-block concurrences

rij of any two distinct treatments i and j are equal for all pairs (i, j), i 6= j,

i.e. the number of blocks containing any two distinct treatments is a constant.

Ghosh [14] emphasized that balanced incomplete block designs are robust against

the unavailability of all observations in any 2a
t
− 1 blocks. With other words, he

stated that the breakdown number for balanced incomplete block designs is the

integer 2a
t

.

Another major reference in this regard is Gaffke [13], who derived D-optimal

block designs for up to six treatments, when no balanced block design exists.

For instance, he showed the D-optimality of the designs illustrated in Figure 5.1.

The thick lines in Figure 5.1 illustrate λ edges, λ ∈ N, and the thin lines illustrate

one additional edge. Therefore, the first design consists of a = 6λ edges, the

second design of a = 6λ+ 1 edges and so on.
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We calculated the break down numbers of these D-optimal designs by means of

Mengers Theorem and represented the results in Figure 5.1. Mengers Theorem

states that the maximum number of paths connecting vertices x and y, which

have no edge in common, equals the minimal number of edges, whose removal

disconnects x and y in a graph (see, e.g., Bollobas [5], Theorem 2.4). We call

two paths with no common edge independent paths. The first graph in Fig. 5.1

corresponds to a balanced incomplete block designs. Using Ghoshs [14] state-

ment cited above, the break down number of this design equals 3λ. The break

down number of the second graph has to be greater or equal to 3λ. However,

deleting the 3λ edges incident to the lower right vertex disconnects the graph.

This proves that the break down number equals 3λ. In general, all break down

numbers have to be smaller than the minimal degree of a vertex in a graph. In

the third graph in Fig. 5.1, the minimal degree of a vertex is 3λ+1. On the other

hand, 3λ + 1 independent paths connect every two vertices in this third graph.

Therefore, according to Mengers theorem, the break down number equals 3λ+1.

This argument can also be used for the other graphs in Fig. 5.1. Altogether,

all of these D-optimal designs achieve the optimal break down number given in

Theorem 5.1.

In addition, Gaffke derived D-optimal designs for three, five and six treatments.

In all cases, it can be shown that these designs achieve the highest breakdown

numbers. Thus, our conjecture is true for all D-optimal designs presented in

Gaffke [13], which are designs with up to six treatments.

Further work on D-optimal designs includes Cheng [7], who derived the following

theorems.

Figure 5.1: D-optimal block designs for four treatments.
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Theorem 5.3:

Let G* be a graph with t vertices and a edges which is a regular complete

bipartite graph or the graph obtained by adding a constant number λ of edges

to each pair of vertices in a regular complete bipartite graph (i.e., the vertices

of G* can be divided into two groups of equal size such that there are λ edges

between any two vertices in the same group and λ + 1 edges between any two

vertices in different groups, where λ ≥ 0 is an integer). Then G* is the unique

(up to isomorphism) graph which has the maximum number of spanning trees

among all the graphs with t vertices and a edges.

A regular graph is a graph where each vertex has the same degree. It is called

bipartite, if its vertices can be divided into two disjoint parts such that no

vertices in the same part are adjacent. Each edge is incident to a vertex from

both parts. A bipartite graph is complete, if all vertices from different parts

are adjacent. Since these graphs maximize the number of spanning trees, they

represent D-optimal microarray designs.

These designs have a =
(
t
2

)2
+
(
t
2

)
λ arrays and their breakdown number equals

t
2
+λ (t− 1) due to Mengers Theorem. In a graph obtained by adding a constant

number λ of edges to each pair of vertices in a regular complete bipartite graph,

each vertex has degree t
2

+ λ(t − 1). Therefore, the break down number is less

or equal to t
2

+ λ(t− 1). On the other hand t
2

+ λ(t− 1) paths connecting each

pair of vertices can be found. Thus, the break down number equals t
2

+ λ(t− 1)

and is optimal.

Theorem 5.4:

Let G* be a graph with t vertices and a edges which is a regular complete m-

partite graph. Then G* is the unique (up to isomorphism) simple graph that

has the maximum number of spanning trees with t vertices and a edges.

A graph is m-partite if its vertices can be divided into m disjoint parts such that

no vertices in the same part are adjacent. Each part of the regular complete

m-partite graph consists of t
m

vertices and each vertex is adjacent to all vertices

of the other m−1 parts of the graph, but it is not adjacent to the t
m
−1 vertices

of the same part. Therefore, each vertex has degree t(m−1)
m

and break down
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number t(m−1)
m

due Mengers Theorem. This value is the highest possible break

down number for a =
(
m
2

) (
t
m

)2
.

Furthermore, Cheng proved the following theorem.

Theorem 5.5:

Let G* be a graph with t vertices which is obtained by deleting q mutually

nonadjacent edges from a complete graph with q ≤ t/2. Then G* maximizes

the number of spanning trees over all the simple graphs with t vertices and(
t
2

)
− q edges.

Due to Ghosh [14] the break down number of a complete graph equals t− 1. By

deleting one edge, the graph contains a vertex with degree t− 2 and the break

down number decreases by one. By deleting additional mutually nonadjacent

edges up to q ≤ t/2, the break down number stays the same, because t − 2

independent paths connecting each pair of vertices can be constructed. Again,

the breakdown number t − 2 of these D-optimal designs is the best possible

breakdown number.

Furthermore, the conjecture can be shown in general if the breakdown number

is less or equal to two or equivalently a < 3t/2. The following theorem is a result

of a discussion with R. Bailey at the conference ”‘Advances in Model-Oriented

Design and Analysis 9”’ in Bertinoro, Italy in June 2010.

Theorem 5.6:

Every D-optimal connected graph G with t vertices and a edges, t ≤ a, does

not contain a bridge. A bridge is an edge in a connected graph whose removal

disconnects the graph.

Proof : Suppose that the edge {y, z} is a bridge of G. Removing this bridge

splits G into two components Y and Z. Every spanning tree of G consists of

a spanning tree for Y , the edge {y, z}, and a spanning tree for Z. Hence the

number of spanning trees for G is sq, where s and q are the numbers of spanning

trees in Y and Z respectively. This number is positive, because G is connected.

Since t ≤ a, there is at least one edge e in G which is in a cycle. Without loss

of generality, e is in component Y . Let x be the number of spanning trees of Y
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which do not contain e. Since e is in a cycle, x > 0. Create a new graph Y ′ by

inserting a vertex c into e. Every spanning tree of Y which contains e gives a

spanning tree of Y ′ containing both edges at c; every spanning tree of Y which

does not contain e gives two spanning trees of Y ′, one containing each edge at

c. Hence the number of spanning trees of Y ′ is s− x + 2x = s + x > s. Create

a new graph G′ by replacing Y by Y ′, removing the bridge, and identifying the

vertices y and z. Then G′ has t vertices and a edges. Every spanning tree of G′

consists of a spanning tree of Y ′ with a spanning tree of Z. Hence G′ has (s+x)q

spanning trees. This number is greater than sq, so G cannot be D-optimal. �

Corollary 5.7:

If G is a D-optimal graph with t vertices and a edges, where t ≤ a, then G has

no vertices of degree one.

This corollary was also proved using another method by Bailey and Cameron [3].

Corollary 5.8:

If G is a D-optimal graph with t vertices and a edges, where t ≤ a < 3t/2, then

G has breakdown number two.

Proof : If a < 3t/2 then the average degree is strictly less than 3, so G has a

vertex v of degree one or two. Since G is D-optimal, it has no vertex of degree

one, so v has degree two. Therefore the two edges incident with v form a cutset

of size two. A cutset is a set of edges whose removal increases the number of

components of the graph. Any cutset of size one is a bridge, but G has no bridge

because it is D-optimal. Hence the edge-connectivity of G is two. �

Therefore, Conjecture 5.2 is shown for a < 3t/2 and additionally for the given D-

optimal designs. It remains an open problem to show the conjecture in general.
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Chapter 6

Summary and outlook

In this work, we investigated optimal designs for two-color microarray experi-

ments for many practical relevant scenarios. These optimal designs ensure un-

biased parameter estimates with minimal variances. In future, our results can

be used to achieve precise estimates in our underlying statistical model with

few arrays. We distinguished between two approaches, which complement one

another in practical applications. Firstly, we derived exact optimal designs in

Chapter 3, and secondly, we constructed approximate optimal designs in Chap-

ter 4. Exact designs provide optimal solutions for a given number of arrays.

They can be calculated with the approach stated in Section 3.1 and they are

mostly used if the number of treatments does not exceed a given limit, which

usually holds in practice. The number of treatments is typically smaller than

five in applications, see e.g., Callow et al. [6]. For higher numbers of treatments

approximate optimal designs produce relief, since they provide nearly optimal

design layouts for all given numbers of treatments and arrays. They may be

used, if the computing of exact optimal designs is difficult due to high num-

bers of treatments. Approximate theory considers scenarios with infinite arrays

and assigns weights corresponding to the proportions of arrays investigating a

given treatment comparison. For applications with finite arrays, the weights are

rounded and multiplied with the number of available arrays. This procedure

often yields efficient exact designs and sometimes even optimal exact designs for

a fixed number of arrays. Therefore, we derived approximate optimal designs in
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6. Summary and outlook

one- and multi-factorial settings in Chapter 4. In particular, in multi-factorial

settings the construction of approximate designs is very crucial, since, here,

many factor level combinations need to be taken into account, which increases

the computing time of exact designs. The approximate optimal designs that we

have constructed in Chapter 4 can be used to estimate main and interaction

effects.

Furthermore, in this thesis we focused on different contrast sets, e.g. the Helmert

contrasts, all-to-next contrasts, all pairwise comparisons and treatment-control

comparisons. All of these contrast sets are important in different applications

and for each contrast set different designs are optimal. Therefore, we derived

optimal exact designs for all of these contrast sets in Section 3.2, Section 3.3,

Section 3.4 and Section 3.5. In addition, we gave optimal approximate designs

for these contrasts in Section 4.5 and Section 4.6. Scientists often use the star

design in various situations, although it does not provide precise parameter

estimates. We proved that the star design is inefficient, even if we are interested

in all treatment-control comparisons. Using the designs proposed in this work

instead of the star designs, researchers can save resources while getting the same

results. A detailed comparison of star designs and our optimal designs is given

in Section 3.2. In addition, we investigated robustness properties of microarray

designs against missing values in Chapter 5. Missing values often occur due to

different reasons, such as scratches on the array. We found out that D-optimal

designs often have good robustness properties.

In this thesis we answered a couple of very interesting questions concerning the

design of microarray experiments. Due to the complexity of microarray exper-

iments and due to the quick growth of biotechnology during the last decades,

the number of questions in this field increases immensely and there are still

several unanswered questions. First of all, we restricted our investigations in

Section 3.1 to the A-optimality criterion, since this criterion is the most popu-

lar and relevant one for block designs, see Atkinson [1]. The extension of our

optimality considerations to other optimality criteria is an issue for future re-

search. Another interesting topic not covered in this thesis addresses technical

replicates. Technical replicates are mRNA samples which use a common bio-
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logical source, e.g. they are extracted from the same individual. Measurements

taken from technical replicates are higher correlated than measurements from

biological replicates using different biological sources. To account for techni-

cal replicates in our statistical model, we can add a random block effect and

consider optimal design theory for mixed models. Under special restrictions

optimal designs can be easily detected in this scenario. For instance, optimal

designs taking only technical replicates into account are identical to optimal

designs with only biological replicates, since the variances of all estimates dif-

fer by a constant term. Tsai et al. [41] showed this numerically and presented

optimal designs in scenarios with just one biological source. Nevertheless, the

calculation of optimal designs is more complex, if a mixture of biological and

technical replicates is taken into account. Just in a few cases, if the random

block effects can be chosen orthogonal to the other effects, optimal designs can

be easily derived from the designs proposed in this work. However, in many

settings orthogonality cannot be achieved and the derivation of optimal designs

is thus a topic for future research.
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