MEMORY AND DELAY IN REGULAR INFINITE GAMES

Von der Fakultit fiir Mathematik, Informatik und Naturwissenschaften
der RWTH Aachen University zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker
Michael Holtmann

aus Diisseldorf

Berichter: Universitdatsprofessor Dr. Dr.h.c. Wolfgang Thomas
Universitdtsprofessor Dr. Erich Gradel

Tag der miindlichen Priifung: 9. Mai 2011

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek
online verfiigbar.

Zusammenfassung

Unendliche Zwei-Personen-Spiele sind ein ausdrucksstarkes und anpassungsfa-
higes Werkzeug bei der Modellierung und Verifikation reaktiver Systeme. Es ist
allgemein bekannt, dass beispielsweise die Konstruktion eines Controllers, der
beliebig lange in der Umgebung eines Systems agiert, reduziert werden kann auf
die Berechnung einer Gewinnstrategie in einem unendlichen Spiel (Pnueli und
Rosner, 1989). Fiir die Klasse der Spiele mit reguldrer Gewinnbedingung haben
Biichi und Landweber 1969 gezeigt, dass einer der Spieler eine Gewinnstrategie
hat, die durch einen endlichen Automaten realisierbar ist. Basierend auf diesem
grundlegenden Resultat hat die Forschung viele Versuche unternommen, die Lo-
sungsverfahren fiir unendliche Spiele weiterzuentwickeln. Dies betrifft sowohl
den zeitlichen Aufwand, den man benétigt, um Gewinnstrategien zu berechnen,
als auch den Speicherbedarf, um diese dann zu programmieren. In der vorliegen-
den Arbeit geht es hauptsdchlich um den zweiten Aspekt. Es werden zwei Proble-
me betrachtet, die im Hinblick auf die Konstruktion kleiner Controllerspezifika-
tionen von Bedeutung sind.

Im ersten Teil der Arbeit beschiftigen wir uns mit dem klassischen Problem,
endlich reprédsentierbare Gewinnstrategien zu berechnen, die von Automaten mit
moglichst wenig Speicher (das heifst mit moglichst wenig Zustdnden) realisiert
werden konnen. Auch wenn ein Resultat von Dziembowski et al. aus dem Jah-
re 1997 besagt, dass es exotische reguldre Spiele gibt, fiir die Gewinnstrategien
nur durch Automaten implementiert werden konnen, die gemessen an der Grofse
der Spielarena mindestens exponentiell grof sind, so erfordern die meisten prak-
tischen Beispiele doch weit weniger Speicherplatz. Wir stellen einen effizienten
Algorithmus fiir die Reduktion des fiir die Implementierung von Gewinnstrate-
gien verwendeten Speichers vor und wenden ihn auf mehrere Klassen reguldrer
Bedingungen an. Aufierdem zeigen wir, dass mit unserem Verfahren ein exponen-
tieller Gewinn beziiglich der Speichergrofie erzielt werden kann.

Im zweiten Teil dieser Arbeit fithren wir einen verallgemeinerten Begriff von
Strategien ein. Einer der Spieler darf jeden seiner Ziige fiir eine endliche Anzahl
von Schritten hinauszdgern. Mit anderen Worten, er kann bei seinen Entschei-
dungen einen Vorgriff auf die Ztige des Gegners ausnutzen. Dieses Szenario ldsst
sich beispielsweise in verteilten Systemen wiederfinden, zum Beispiel, wenn Puf-
ferspeicher fiir die Kommunikation zwischen entfernten Komponenten eingesetzt
werden. Unser Konzept von Strategien erfasst die Klasse der stetigen Operatoren
und ist damit eine Erweiterung der Arbeit von Hosch und Landweber (1972) und
insbesondere auch der von Biichi und Landweber (1969). Wir zeigen, dass das
Problem, ob eine gegebene regulédre Spezifikation durch einen stetigen Operator
erfiillt werden kann, entscheidbar ist und dass jede solche Losung auch auf ei-
ne mit beschranktem Vorgriff reduziert werden kann. Aus unseren Ergebnissen
leiten wir eine verallgemeinerte Determiniertheit reguldrer Bedingungen ab.

Abstract

Infinite two-player games constitute a powerful and flexible framework for the
design and verification of reactive systems. It is well-known that, for example,
the construction of a controller acting indefinitely within its environment can be
reduced to the computation of a winning strategy in an infinite game (Pnueli
and Rosner, 1989). For the class of regular games, Biichi and Landweber (1969)
showed that one of the players has a winning strategy which can be realized by a
finite-state automaton. Based on this fundamental result, many efforts have been
made by the research community to improve the solution methods for infinite
games. This is meant with respect to both the time needed to compute winning
strategies and the amount of space required to implement them. In the present
work we are mainly concerned with the second aspect. We study two problems
related to the construction of small controller programs.

In the first part of the thesis, we address the classical problem of computing
finite-state winning strategies which can be realized by automata with as little
memory, i.e., number of states, as possible. Even though it follows from a result
of Dziembowski et al. (1997) that there exist exotic regular games for which the
size of automata implementing winning strategies is at least exponential in the
size of the game arena, most practical cases require far less space. We propose
an efficient algorithm which reduces the memory used for the implementation of
winning strategies, for several classes of regular conditions, and we show that our
technique can effect an exponential gain in the size of the memory.

In the second part of this thesis, we introduce a generalized notion of a strat-
egy. One of the players is allowed to delay each of his moves for a finite num-
ber of steps, or, in other words, exploit in his strategy some lookahead on the
moves of the opponent. This setting captures situations in distributed systems,
for example, when buffers are present in communication between remote compo-
nents. Our concept of strategies corresponds to the class of continuous operators,
thereby extending the work of Hosch and Landweber (1972) and, in particular,
that of Biichi and Landweber (1969). We show that the problem whether a given
regular specification is solvable by a continuous operator is decidable and that
each continuous solution can be reduced to one of bounded lookahead. From our
results, we derive a generalized determinacy of regular conditions.

Acknowledgments

I am very grateful to all the people who have contributed to the success of this
thesis, either directly or indirectly.

First and foremost, I would like to thank my supervisor Wolfgang Thomas
for giving me the opportunity to work as an academic researcher. His continu-
ing support and helpful advice have been of great value to me throughout the
past years. It was him who suggested to me to apply for the AlgoSyn Research
Training Group, where I enjoyed three years of interdisciplinary exchange.

I would like to thank Erich Gréadel for his kind readiness to act as a co-examiner
of this thesis.

I would like to thank all my co-authors whom I have had the pleasure to
work with: Marcus Gelderie, Lukasz Kaiser, Christof Loding and, again, Wolf-
gang Thomas.

I would like to thank all my colleagues at I7 and MGI, especially those who
helped me with proofreading a first draft of this thesis and who made many help-
ful comments on its contents: Tobias Ganzow, Marcus Gelderie, L.ukasz Kaiser,
Daniel Neider, Bernd Puchala, Roman Rabinovich, Frank Radmacher and Michaela
Slaats.

Finally, I am deeply indebted to my friends and family for their constant sup-
port throughout the past years. Especially, I would like to mention my affection-
ate girlfriend Franzi for continuing encouragement and plenty of patience she
had with me.

Contents

Introduction

1 Preliminaries
1.1 BasicNotation
1.2 Words and Formal Languages
1.3 Automata.
14 Infinite Games e e

2 Synopsis of Winning Conditions
2.1 Games with Positional Winning Strategies
2.2 Game Simulation L o Lo L o
2.3 Games with Non-Positional Winning Strategies

I Memory Reduction for Strategies in Infinite Games

3 An Algorithm for Memory Reduction
3.1 Retrospection: Mealy Automata
3.2 Reduction of Game Graphs
3.3 Staiger-Wagner Conditions
3.4 Request-Response Conditions
3.5 Muller and Streett Conditions
3.6 Discussion o

Conclusion of Part I

II Infinite Games with Finite Delay

4 Games with Delay
4.1 Delay Operators
4.2 Decision Problem e

X

11
11
11
12
14

19
20
25
27

X CONTENTS

5 Finite Delay in Regular Games 105
51 TheBlock Game 106
5.2 The Semigroup Game 109
53 Delay Values 118

6 A Concurrent Setting 125
6.1 Reduction to the Turn-based Setting 126
6.2 Regular Specifications 129

Conclusion of Part II 133

Bibliography 137

Index 145

Introduction

The theory of infinite games in computer science was initiated by work of
Alonzo Church, who raised a problem today referred to as the Church Synthe-
sis Problem [Chu57, Chu63]: one is given a circuit and a requirement between
input sequences to the circuit and the corresponding outputs, i.e., a binary rela-
tion between infinite sequences over finite alphabets. Church asked whether it
was possible to algorithmically synthesize a new circuit which satisfies the re-
quirement in the sense that, when faced with any input, it generates an output
which is in relation to the input. Alternatively, one should be able to determine
that no such circuit exists. Moreover, generation of the output should be done
in an on-demand fashion, i.e., the i-th output letter should depend only on the
first i letters of the input sequence.

The above scenario naturally arises as a simple format of an infinite game,
called Gale-Stewart game [GS53, Mos80]. There are two players, Player I choos-
ing the input sequence and Player O choosing the output sequence. The game
proceeds in rounds where in each round Player I chooses one letter from a
given input alphabet, and Player O answers by one letter from an output al-
phabet, afterwards. The requirement is modeled by a winning condition, which
is given as an omega-language L over pairs of input and output letters. A play
is winning for Player O if the pair of sequences produced by the players is con-
tained in the language L; otherwise Player I wins. To this end, Player I tries to
take appropriate actions to violate the given specification; his adversary must
find convenient answers in order to verify that the specification can in fact be
satisfied.

In the game setting described above the players have opposing objectives,
therefore each pair of sequences is winning for either of the two. In the study
of infinite games one goes even further, by asking the question of whether a
given Gale-Stewart game is determined. A game is said to be determined if
one of the players has a winning strategqy, and a player has a winning strategy
if he can continuously react to the decisions taken by the opponent such that
the resulting pair of sequences satisfies his objective, no matter what letters
the adversary chooses. In their work [BL69], Biichi and Landweber deal with
reqular Gale-Stewart games. A (winning) condition is called regular if it is

2 INTRODUCTION

the infinite behavior of a finite transition system (with a standard acceptance
condition), or, equivalently, if it can be expressed in monadic second-order
logic. Biichi and Landweber showed that regular games are determined and
that they can be solved effectively. This means that one can decide which player
has a winning strategy and compute a finite-state automaton (with output)
implementing such a winning strategy.

Embedding it into the wider context of automated verification, Church’s
setting can be reformulated as the synthesis problem for reactive systems. In its
most general form a reactive system is any discrete event system in which sev-
eral agents interact with each other. One agent is a programmable entity, called
Controller, acting indefinitely within the environment of the system. The task
is to program the controller such that the run of the system satisfies a given
specification. During the last decades, the research community has been suc-
cessfully concerned with reducing the synthesis problem for reactive systems
to questions on infinite games [PR89, ALW89, MP95]. According to that, the
construction of a correct controller amounts to the computation of a winning
strategy. Many approaches to find algorithmic solutions to infinite games have
been developed, providing methods for automatic construction of controllers.
For a comprehensive overview of fundamental results and the connection to
both logic and the theory of omega-automata, the reader is referred to the sur-
vey [Tho97] and the textbook [PP04]; for further references to the topic see
also [GTWO02].

Whereas Biichi’s and Landweber’s work served as one of the first steps
into the theory of program synthesis, many efforts have been made to come
up with generalizations and extensions of their fundamental result. To this
end, a huge part of the literature deals with modifications of the basic set-
ting. The first one concerns the system or the specification (or both), for exam-
ple, infinite game arenas and non-regular winning conditions are considered
[Wal96, Cac03, BSW03]. Another aspect is the way games are played, regard-
ing in particular the influence of a probabilistic nature or the effect of multiple
players [CM]04, Kuc¢11].

In this work we mostly restrict to the basic setting, i.e., we consider games
between two players on a finite game arena, with a regular winning condition.
One of the players represents a possibly hostile environment, modeling for
example a user making corruptive requests to a system. The other player has
the role of the controller. She has to react to the adversary’s behavior such that
the run of the system under consideration satisfies a given requirement.

INTRODUCTION 3

Aims of the Thesis. Due to the enormous size of real systems, many efforts
have been made to improve the solution methods for infinite games. We mean
this with respect to both the time needed to determine the winner and the
space required to implement winning strategies. In this work we are mainly
interested in the second aspect. The thesis consists of two parts, each of which
is devoted to the study of one problem that is related to the size needed for
the construction of controller programs.

In the first part of the thesis we deal with regular infinite games on finite
graphs. We address the classical problem of memory reduction, i.e., the reduc-
tion of the amount of memory that is needed to implement winning strategies
for a given game. The memory is an abstraction containing relevant informa-
tion about the players’ behavior in the history of a play. We propose an efficient
algorithm which reduces the size of the memory that is needed to realize win-
ning strategies by finite automata, and we prove that our technique can result
in an exponential gain (compared to known approaches) in the number of
states.

In the second part of the thesis we deal with regular Gale-Stewart games.
We introduce the notion of a strategy with finite delay, which incorporates in-
formation about the adversary’s future behavior. This means that one player
has to make a commitment to some of his upcoming moves, and the other
player can rely on this knowledge when taking a decision. We use this con-
cept to show an extension of the Biichi-Landweber Theorem, namely that the
problem whether a regular condition is solvable by a continuous operator is
decidable.

Part I: Memory Reduction for Strategies in Infinite Games

As noted in [ALW89, PR89], the amount of memory that is required to realize
a particular winning strategy in an infinite game corresponds to the size of the
respective controller program for a reactive system. Thus, besides studying the
algorithmic complexity of deciding the winner, the problem of finding winning
strategies which are easy to implement has always been an intensely investi-
gated branch in the field of infinite games. As already indicated, it was shown
in [BL69] that the winner of a regular game has a finite-state winning strategy,
i.e., a winning strategy which can be executed by a finite strategy automaton.
The size of the memory, i.e., the number of states, of such an automaton is
an appropriate measure for the quality of the underlying strategy. Many re-
sults of the past three decades have revealed both upper and lower bounds for
the size of strategy automata required to solve infinite games. Whereas some

4 INTRODUCTION

conditions (like, for example, reachability or parity objectives) can be solved by
positional winning strategies, i.e., they can be implemented by an automaton
with only one state, others require an amount of memory exponential in the
size of the game arena or the winning condition [E]J91, Tho95, DJW97, Zie98].

Let us mention some results on standard winning conditions relevant to
our work. Staiger-Wagner and Muller conditions depend on the set of vertices
that are visited at least once and on the set of vertices that are visited infinitely
often, respectively. (Staiger-Wagner games are sometimes also referred to as
weak Muller games, for example in [Tho(02].) Both types of objective are given
by a family F = {F, ..., Ft}, where each F; is a subset of vertices of the under-
lying game graph (cf. [Mul63]). A play satisfies the Staiger-Wagner condition
induced by F if all vertices occurring in the play (at least once) form one of
the sets F;. Analogously, a play is good with respect to the Muller condition F
if the set of all vertices occurring infinitely often coincides with some F;. The
optimal bound for the size of the memory required to solve a Staiger-Wagner
game over an arena with n vertices is 2". In a technical report, McNaughton in-
troduced the name “order vector” for the set of all permutations of a given set
of vertices [McN65]. Gurevich and Harrington renamed the data structure as
Latest Appearance Record (short: LAR) and used it to solve Muller games [GH82].
Later on, Dziembowski et al. showed that 1!, i.e., the amount of memory pro-
vided by a LAR, is a matching upper and lower bound for the realization of a
winning strategy in a Muller game with O(n) vertices [DJW97].

A similar result was achieved in [Hor05] for Streett games, which capture
the notion of strong fairness in reactive systems and are given by a family
Q= {(Ey,F),...,(Ex, F)} of pairs of subsets of vertices. To satisfy the Streett
condition induced by (), the following must hold for each i: if F; is visited
infinitely often, then E; must also be visited infinitely often. Horn showed
that there exist Streett games with both an arena and a winning condition of
size O(kz) whose solution require a memory of size at least k!, i.e., factorial
in the number of Streett pairs, whereas the best upper bound known is k! - k>
[BLV96].

Another class of winning conditions are Request-Response conditions, which
capture basic liveness requirements [WHTO03]. Such a condition is given in the
same format as a Streett condition, and a play satisfies the induced Request-
Response condition if every request, i.e., a visit to some E;, is eventually fol-
lowed by a matching response, i.e., a visit to the corresponding set F;,. As
shown in [WHTO03], winning strategies in Request-Response games may re-
quire a memory of size 2k .k, ie., exponential in the number of request-
response pairs. For a short survey on algorithms for the computation of win-

INTRODUCTION 5

ning strategies and for some further references to related literature, the reader
is referred to Chapter 2.

By the current state of research, the problem of finding winning strategies of
optimal size is intractable, i.e., it cannot be solved in polynomial time. Hunter
and Dawar have shown that the problem of deciding the winner of a Muller
game is Pspace-complete if the winning condition is represented appropriately
[HDO5]. As a compromise, we consider the problem of memory reduction.
Our motivation arises from the fact that, even though there exist exponential
lower bounds for the size of the memory needed for implementing winning
strategies, most practical examples require far less space. The problem with
standard algorithms is that they take account of the aforementioned bounds.
If a given game is to be solved, then the maximal amount of memory that may
be needed is a priori allocated, without further considering the structure of
the game graph or the winning condition. For example, winning strategies in
a Staiger-Wagner game are implemented by storing the set of vertices which
are visited in a play. This entails a memory of size exponential in the size of
the arena, no matter how much memory is actually needed for solving the
game at hand. To overcome this (possibly unavoidable) weakness, we intend
to investigate properties of the game in order to reduce the used memory before
the computation of winning strategies.

In the first part of this thesis, we propose an efficient technique for the
algorithmic reduction of the memory needed for the implementation of win-
ning strategies in infinite games on finite graphs, for several classes of omega-
regular objectives. Our algorithm is based on the notion of game simulation (see
for example [Tho95]). The idea of a game simulation is to reduce the solution
of a given game to the solution of a new one, which has a simpler winning
condition but an extended arena containing the memory needed to solve the
original game. Our approach to memory reduction is the simplification of
the extended game graph, such that the properties of game simulation are
preserved. Applying efficient techniques for state space reduction of omega-
automata, we compute an equivalence relation on the set of memory contents.
The new memory is then the set of equivalence classes of this relation.

We apply our technique to Staiger-Wagner, Request-Response, Muller and
Streett conditions and show that our approach can result in an exponential gain
in the size of the memory. For Staiger-Wagner, Request-Response and Streett
games, we present examples where standard algorithms yield very compli-
cated winning strategies (of exponential size), but our algorithm produces a
memory of constant size.

6 INTRODUCTION

Organization of Part I. The first part of the thesis comprises Chapter 3. In
Section 3.1, we review the standard minimization technique for finite automata
with output, in a context where they are used for the implementation of finite-
state strategies. In Section 3.2 we present our approach to memory reduction
and formally prove its correctness. Sections 3.3 through 3.5 are devoted to the
application of our technique to games with particular omega-regular winning
conditions. Section 3.6 serves as an evaluation of our approach.

The results presented in the first part of the thesis were obtained in col-
laborations with Christof Loding and Marcus Gelderie. They are published
in [HL07, GH11].

Part II: Infinite Games with Finite Delay

As already remarked, the Church Synthesis Problem was solved by Biichi and
Landweber in the framework of regular infinite games. However, the underly-
ing motivation for their work was a slightly different question posed in terms
of operators, i.e., functions mapping infinite sequences over finite alphabets
from one space into another. Following the notation of [BL69], a condition is
any binary relation between infinite sequences, and we say that an operator
solves a condition if for each given input the produced output is in relation
to the input. Biichi and Landweber motivated their work by descriptive set
theory, in the sense that they asked for the particular type of continuity of op-
erators which solve a given condition. This served as an entry into the study
of the topological properties inherent in binary relations between infinite se-
quences. As we will point out in the second part of this thesis, there is a close
connection between the degree of continuity of an operator and generalized
solution concepts for infinite games.

Basically, we deal with three fundamental levels of operators, referring to
the Cantor topology over the space of infinite sequences. The most general
ones are the continuous operators, where each output letter depends on a finite
part of the input (see for example [TB73, TL93]). An operator is called uniformly
continuous if for each position i there exists a bound for the lengths of the
input prefixes on which the i-th output letter depends. On a further level
of specialization, we are dealing with Lipschitz continuous operators. These
are operators where, for each i, the i-th output letter depends on at most the
tirst i+-d letters of the input, for some natural number d. In this thesis, Lipschitz
continuous operators are mostly called bounded-delay operators.

Whereas the aforementioned notions of continuity allow that an input pre-
fix is longer than the output prefix it determines, Biichi and Landweber con-

INTRODUCTION 7

sidered in [BL69] a more restricted class of operators. They introduced the
notion of a shift operator, where the term “shift” refers to the fact that each
output prefix is determined by some input prefix of at most the same length.
To put it simply, if an output prefix of length 7 is determined by an input prefix
of length j such that j < i, then the shift at position i is i—j. If, for all i, the
shift at position i is at least d, then we speak of a d-shift operator.

Biichi and Landweber were particularly interested in deciding whether a
given specification allows for a solution of shift zero, which captures the case
of a classical strategy. In fact, they defined the notion of determinacy using the
terminology of shift operators. Accordingly, a condition is determined if ei-
ther there exists a 0-shift operator which guarantees that the produced output
is in relation to the input, or there exists an analogous operator ensuring that
the output is not in relation to the input. Biichi and Landweber proved that,
for each regular condition, precisely one of the aforementioned cases occurs,
and that one can compute a corresponding solution which can be realized by
a deterministic finite automaton. They obtained these results using the find-
ings achieved by McNaughton on the infinite behavior of transition systems
[McN66].

The ideas of [BL69] were resumed by Hosch and Landweber, who intro-
duced the name delay for the notion dual to that of a shift [HL72]. In a delay
operator, the j-th output letter is determined by an input prefix of at least the
same length. (We mostly prefer the term “delay” to the term “shift”, because
one may intuitively expect that at least one additional input letter should be
given until the next output letter can be produced.) In the framework of Gale-
Stewart games, a delay operator corresponds to a generalized notion of a strat-
egy for Player O. More precisely, she is allowed to choose an additional move
skip, instead of some letter of the output alphabet. Each skip is disregarded
when evaluating the winning condition.

Example. Consider the Boolean alphabet B := {0,1} and the regular omega-
language defined by

Oa 1xxDb
T <a *) (B*) + (b * ok *) (B,
where a,b € B and * denotes any bit. If Player I chooses 0 as his first bit, then
Player O needs to know a to satisfy the winning condition. To this end, she
answers by choosing skip, such that Player I has to give the bit a and Player O
can respond with the same bit, only afterwards. In this situation, the move skip
is required only once; accordingly, we speak of delay one. Analogously, if
Player I chooses 1 as his first bit, then Player O needs delay three to obtain b.

8 INTRODUCTION

In the above example Player O wins with delay three, but neither with
delay two nor with delay one. That means that the condition defined by the
expression r has a 3-delay solution, but it has no solution of smaller delay. The
main result of Hosch and Landweber in [HL72] is that, for the class of regular
omega-languages, the problem whether there exists a natural number d such
that a given condition has a d-delay solution is decidable. Their proof also
exhibits an upper bound for the required constant, by exploiting findings from
the field of Boolean circuit theory obtained by Even and Meyer [EM69].

As a practical application of Hosch’s and Landweber’s result, one may as-
sume that the controller of a system is equipped with a finite buffer of length d
such that the input letters supplied by the environment can be stored in that
buffer. Then, the i-th output letter can be produced with delay d, i.e., on the
basis of the first i4-d input letters.

Conversely, in many realistic situations of distributed systems the transmis-
sion of data is deferred. This means that in some component a decision has to
be taken at a point of time where the actions of the other components are not
yet known. This captures the case that the output has to be produced with a
certain shift.

Whereas Biichi’s and Landweber’s setting is limited to standard controllers,
the result of Hosch and Landweber implies that for both the aforementioned
scenarios one can decide whether a bounded lookahead into the future be-
havior of the adversary will help in satisfying a given regular specification.
Therefore, Hosch’s and Landweber’s work extended the findings in [BL69].

In the second part of the thesis we further generalize the results obtained
in [HL72], getting rid of the obstacle that the production of an output letter
may involve only bounded knowledge about the future of the input. Our mo-
tivation is to introduce a notion of a strategy which captures the class of contin-
uous operators. To do so, we consider strategies with finite delay, i.e., we allow
one of the players to postpone each of his moves for an arbitrary finite number
of steps. It will turn out that, for the class of regular omega-languages, the
problem whether a given condition admits a finite-delay solution is decidable
in time doubly exponential in the size of the representation of the specifica-
tion. Moreover, we show that each solution can be reduced to one of doubly
exponential bounded delay. Apart from treating a more general scenario, our
proof is considerably simpler and gives lower complexity bounds than the one
in [HL72].

We use our results to derive a generalized determinacy of regular conditions.
More precisely, we show the following extension of the Biichi-Landweber The-
orem: let L be a regular condition which is not solvable by a 0-shift operator.

INTRODUCTION 9

Then, L is not solvable by any continuous operator either, or there exists a
minimal constant d; (uniquely determined by L) such that L has a solution
with bounded delay d;. The problem which one of these two cases applies is
decidable, and the constant d; is computable.

Organization of Part II. The second part of the thesis comprises Chapter 4,
Chapter 5 and Chapter 6. Chapter 4 serves as an excursus into the field of
topology. In particular, it points out the connection between continuous op-
erators and games with finite delay. Chapter 5 is devoted to the proof that,
for the class of regular languages, the problem whether a given condition is
solvable with finite delay is decidable. In Chapter 6 we extend our results to a
concurrent setting.

Most of the results presented in the second part of the thesis were obtained
in collaborations with Lukasz Kaiser, Frank Pottgen and Wolfgang Thomas.
They are published in [HKT10, P6t10].

Chapter 1

Preliminaries

In this chapter we fix the notation used throughout this thesis. We introduce
basic notions on formal languages and automata both over finite and infinite
words. Moreover, we define the two game-theoretic settings which are going
to be considered.

1.1 Basic Notation

For any set M, we write 2M for the power set of M, i.e., the set of all subsets
of M.

An alphabet is a finite set; each of its elements is called a letter. Usually, we
write ¥ for an alphabet and a,b, ... for its letters. The Boolean alphabet {0,1}
is denoted B. The set of natural numbers is denoted IN, and IN is the set
of natural numbers without zero, i.e,, N4 := IN'\ {0}. The set of integers
is denoted Z and the set of positive integers is Z, = {i € Z | i > 1};
analogously, the set of negative integers is Z_. We write R for the set of real
numbers.

1.2 Words and Formal Languages

We write X* and X¢ for the set of finite and infinite words, respectively, over X.
Usually, finite words are denoted u, v, ... whereas «, §, . .. are infinite words.
For u € X*, we write |u| for the length of u, i.e., the number of letters of u,
and X" := {u | |u| = n} is the set of all words of length n. The empty word
has length 0 and is written as ¢. The set X* \ {¢} of all non-empty words is
denoted 1. For u € £* and 0 < i,j < |u — 1|, we write u[i, j] for the infix of u
from position i to position j and u[i] := u[i, i]; if j < i then u[i, j] := e. Infixes of
w-words are written analogously. For n, n, € IN with n; < np, we write ¥ [r1,m2]

n
for Uy, <p<n, 2"

11

12 1 — PRELIMINARIES

A language is a subset of either ~* or X“. In the first case we call it a *-
language, or finitary language, and in the second case we call it an w-language,
or infinitary language. Usually, we use the capital letter L to denote a language.
Given the words u, v € ¥* and & € X%, let uv be the finite word resulting from
the concatenation of # and v. Analogously, the infinite word ua results from
the concatenation of u and «. Extending to languages, the concatenation LL’
of a finitary language L and a finitary or infinitary language L’ is the set of
all possible concatenations of a word in L and a word in L’. This means, we
have LL' := {uv | u € L,v € L'}. L™ denotes the set of all (non-empty) finite
concatenations of L with itself, and L* := L U {e}; analogously, we write L%
for the set of all infinite concatenations.

For an alphabet X, the set of reqular expressions over X is inductively de-
fined. The atomic expressions are &, € and each a € X defining the lan-
guages L(@) := o, L(¢) := {e} and L(a) := {a}, respectively. If ry,7r, are
regular expressions, then so are r; + 1, r17 and r]. The expression ry + 12
defines the union, meaning L(r; + rp) := L(r1) U L(r2). Analogously, 717 de-
fines the concatenation L(rq)L(r2), and finally, the expression r; defines the
language L(r1)*. We say that a x-language L C X* is regular if L = L(r) for
some regular expression r over X.

Regular expressions are defined analogously for infinitary languages. An
w-regular expression is of the form rys{’ + - - - +r,s;’, where n is a natural num-
ber, r1,...,7y,51,...,5, are standard regular expressions, and L(s’) := L(s;)“
(for 1 <i < n). We say that an w-language L C X% is w-regular if L = L(r) for
some w-regular expression r over .

1.3 Automata

In this section we introduce the different types of automata that we are going
to use in this work.

1.3.1 Automata on Finite Words

A nondeterministic finite automaton (NFA) over X is a tuple A = (Q,qo, A, F)
where Q is a finite (non-empty) set of states, qo € Q is the initial state, A C Q X
¥ x Q is the transition relation, and F C Q is the set of final states. A run p, of A
on a word u := ug- - - u,_1 is a finite sequence p,(0) - - - p,(n) with p,(0) = qo
and (o, (i), u;, pu(i+1)) € Aforalli=0,...,n—1. We define p, to be accepting
if p,(n) € F, and A accepts u if there exists an accepting run of A on u. The set
of all words accepted by A is the x-language of .4 and denoted L. (.A).

1.3 — AUTOMATA 13

The automaton A is called deterministic (DFA) if for all g € Q,a € X there
exists exactly one 4’ € Q such that (g,4,9") € A. In this case, we can rewrite A
as a function : Q x £ — Q. Note that a DFA has exactly one run on each
possible input word.

Theorem 1.1. Let X be an alphabet and L C X*. Then, the following are equivalent:
1. L is a reqular x-language.
2. There exists a NFA A with L,(A) = L.
3. There exists a DFA A’ with L,(A") = L.

For a given transition function §, we denote 6* the extension of é from input
letters to finite input words. We obtain 6* : Q x £* — Q with 6*(g,¢) := g and
0*(q,wa) := 6(6*(q,w),a), forall g € Q,w € X*,a € X. In Chapter 5 we need
the following basic property of deterministic finite automata.

Lemma 1.2. Let A be a DFA with n states and |L.(A)| = co. Then, for all i € N,
A accepts a word u; of length i < |u;| < i+n.

Proof. Let A be a DFA with n states and |L.(A)| = co. Since L.(A) is infi-
nite it must be possible, for each i € IN, to read a word u of length i such
that from 0*(qo, 1) a final state is reachable. Otherwise, the length of words
accepted by A is bounded by 7, which is a contradiction to the fact that 4 ac-
cepts infinitely many words. Then, from 6*(qo, 1) we can reach a final state by
a word u’ of length at most n. The word uu’ is accepted by A and is of length
between i and i+n. O

1.3.2 Automata on Infinite Words

We assume that the reader is familiar with the theory of w-automata (see for
example [Tho97]). Here, we restrict only to the basic notations.

A nondeterministic Biichi automaton (NBA) over ¥ is a tuple A = (Q, g0, A, F)
where Q, g0, A and F are defined as for NFA. A run of a NBA is the natural
extension of a run of a NFA to infinite words, i.e., it is an infinite sequence
Pu = Pu(0)pa(1)pa(2) - - - such that (o, (i), a;, pu(i+1)) € A for all i € N, where
a = woiag - - € X is some infinite input to A. Let Inf(p,) be the infinity set
of p,, i.e., the set of states visited infinitely often in run p,. We define p, to
be accepting if Inf(p,) N F # &, i.e., at least one final state is visited infinitely
often. A accepts a if there exists an accepting run of A on a. The set of all
words accepted by A is the w-language of A and denoted L, (.A). If a given

14 1 — PRELIMINARIES

Biichi automaton has a deterministic transition structure then, analogously to
DFA, we call it a DBA and rewrite A as .

A deterministic! parity automaton (DPA) over ¥ is a tuple A = (Q,4qo,9,¢)
where Q, g9 and ¢ are defined as for DFA, and c is a coloring, i.e., a function
c:Q —{0,...,m} (m € N) from the set of states into a finite set of colors (or
priorities). For R C Q, we denote ¢(R) the set of colors assigned to any state
in R, i.e., ¢(R) := {c(q) | ¢ € R}. A run of a DPA is defined analogously to
a run of a NBA. Let « be an input to the DPA A and let Inf(c(p,)) be the set
of colors seen infinitely often in run p,. We define the parity automaton A to
accept « if max(Inf(c(py))), i-e., the maximal color seen infinitely often in the
run of A on a, is even. Accordingly, the acceptance condition of A is called
a max-parity condition.? As for Biichi automata, the set of all words accepted
by A is the w-language of A.

A deterministic weak parity automaton has the same format as a deterministic
parity automaton. The only difference is that it has a weaker acceptance condi-
tion: a run p is accepting if max(Occ(c(p))), i.e., the maximal color occurring
in p, is even.

The following theorem is a fundamental result on the expressive power of
automata on infinite words (see for example [GTWO02]).

Theorem 1.3. Let X be an alphabet and L C X“. Then, the following are equivalent:
1. L is a regular w-language.
2. There exists a NBA A with L, (A) = L.
3. There exists a DPA A" with L,,(A’) = L.

In the sequel, we simply use the terms “language” and “regular”, if it is
clear from the context whether we consider finitary or infinitary languages;
moreover, we write L(.A) instead of L.(A) or L (A), if it is clear what kind
of automaton A is. Moreover, for a state g of any given automaton .4, we
denote A, the automaton A with initial state g.

1.4 Infinite Games

In this section we introduce two versions of infinite games, and the notion of
a strategy. In Section 1.4.1 we deal with infinite games on finite arenas, where
a play is considered as an infinite path through a finite graph. This notion of

1We consider only the deterministic version of parity automata.
2 A min-parity condition is defined analogously, with the minimal color seen infinitely often.

1.4 — INFINITE GAMES 15

game is used in Part I of the thesis. In Section 1.4.3 we define the more general
setting of Gale-Stewart games [GS53, Mos80], which we need for Part II.

1.4.1 Games on Finite Graphs

An infinite game on a graph is a tuple I' = (G, ¢), where G is a game arena and ¢
is a winning condition. The arena is a finite, directed graph G = (V,V,, V4, E),
where V is a set of vertices and E C V x V is a set of edges between vertices. The
set V is partitioned into the two disjoint sets Vp, V4, i.e., it holds V = V U V.
We assume that each vertex has at least one successor, i.e., for all v € V the
set vE := {¢' | (v,7') € E} is non-empty. The game is played by two players,
called Player 0 and Player 1, where the set V contains the vertices belonging
to Player 0, and V; is the set of vertices belonging to Player 1; for brevity, we
usually write only G = (V,E).

The game I’ is played as follows. A token is placed on an initial vertex and
moved through the graph by the players, for an infinite number of rounds. If
the current vertex is owned by Player 0, then she makes the next move, and
accordingly for Player 1. Clearly, moves are allowed only along edges. So, if
the current vertex is v, then the respective player has to choose some v’ such
that (v,7’) € E, and the token is moved on from v to v. This way, the players
build up an infinite path through G, called a play. It is an infinite sequence
0=0(0)o(1)o(2)--- € V¥ such that (0(i),0(i + 1)) € E, for all i € IN.

The winning condition (or objective) ¢ is the set of all plays which are winning
for Player 0. That means, it is a set of infinite paths through G or, more for-
mally, ¢ C V¥. A play is winning for Player 1 if it is not winning for Player 0.

1.4.2 Strategies and Memory

A strategy for Player 0 is a (partial) function f : V*Vj — V defining for each
game position of Player 0 her next move. By a game position of Player 0 we
mean a finite play prefix ending in some vertex v € Vj. That means, for any
finite play prefix vy - - - v; with v; € Vp it must hold (v;, f(vg - - - v;)) € E. A play
0 = 0(0)o(1)0(2) - - - is played according to f if for every i € IN with o(i) € V
we have o(i +1) = f(0(0)---o(i)). For each v € V, the function f is called
a winning strategy from v for Player 0 if every play starting in v that is played
according to f is winning for Player 0, i.e., it is contained in ¢; we say that a
player wins from v if he has a winning strategy from v. The winning region Wy of
Player 0 is the set of all vertices from where Player 0 wins. Winning strategies
for Player 1 are defined analogously.

16 1 — PRELIMINARIES

One of the main interests in the field of infinite games is to determine which
player has a winning strategy. By a game solution we mean the winning re-
gions Wy, W of both players and corresponding winning strategies. Usually,
we do not consider a particular initial vertex but ask for the whole winning
region of each player. It is not hard to see that from a given vertex at most one
of the players can have a winning strategy.

Remark 1.4. For each vertex v, at most one of the players wins from v, i.e., the
set Wp N W is empty.

Proof. We prove Remark 1.4 by contradiction. Assume both players have a
winning strategy from v, say fo for Player 0 and go for Player 1. Consider the
unique play ¢y, o, that is built up when Player 0 and Player 1 play according
to fo and go, respectively. Since fj is winning for Player 0 we have ¢, . € ¢, for
all strategies g of Player 1, in particular for go. Moreover, since gy is winning
for Player 1, we have gfq, € ¢ := V¥ \ ¢, for all strategies f of Player 0, in
particular for fo. We get 05, ¢, € ® NP A contradiction. O

The following notion is needed to speak about the existence of winning
strategies.

Definition 1.5. Let I' = (G, ¢) be an infinite game on a graph. We say that T’
is determined if, for each vertex v, one of the players has a winning strategy
from v.

One of the most fundamental results in the algorithmic theory of infinite
games is due to Biichi and Landweber, stating that each infinite game on a
finite graph with a regular winning condition is determined [BL69]. An in-
troduction into the winning conditions we are going to deal with in Part I of
this thesis can be found in Chapter 2. All of the games presented there are
determined.

1.4.2.1 Finite-state Strategies

Throughout the first part of the thesis we are concerned with the amount of
memory that is needed to implement (winning) strategies. In the case of regular
winning conditions it is sufficient to consider strategies which require only
finite memory [BL69].

To get clearer what is meant by memory we introduce strategy automata,
which are a special kind of DFA. Let G = (V,E) be a game graph, where V)
is the set of vertices belonging to Player 0. A strategy automaton (over V) for
Player 0 is a tuple A = (S,s9,0,T) where S is a finite (non-empty) set of

1.4 — INFINITE GAMES 17

states, called memory, sg is the initial memory content and o : S x V. — S is the
memory update function, i.e., the transition function of A. The major difference
to a normal DFA is that a strategy automaton has a transition choice function
T :Sx Vyp — V, instead of a set of final states. The strategy automaton A
defines the strategy f4 for Player 0 as follows: as soon as a move in G is made
the automaton reads the new vertex and updates its state according to c. If the
new vertex is contained in V), then the transition choice function 7 tells Player 0
where to move next. The strategy defined by A is the function f4: V*Vy = V
where f4(vg---v;) :=t(0*(s0,v0 - - - vi_1),v;), for v; € V.

A strategy f is called an automaton strategy (or finite-state) if there exists a
strategy automaton A with f4 = f. By the size of a strategy we mean the min-
imal number of states among all automata implementing this strategy. We say
that a strategy is positional if it has size one; such a strategy depends only on the
current vertex of the play. That means, if f is a positional strategy for Player 0,
then f(wv) = f(v) for all game positions wv of Player 0 (w € V*,v € V;). Note
that a positional strategy f can be represented by a set of edges, namely by the
set Ef := {(v, f(v)) | v € Vo}.

We say that an infinite game is positionally determined if both players have
positional winning strategies from their respective winning regions.

1.4.3 Gale-Stewart Games

In the second part of this thesis we use a more general notion of infinite game,
called Gale-Stewart game [GS53]. It is played by two players, Player Input and
Player Output, or short Player I and Player O. The game proceeds in rounds,
where one round is played as follows: first Player I chooses a letter from a
finite input alphabet Xj, then Player O chooses a letter from a finite output
alphabet Xo. This way, the players build up two w-words; Player I builds
up a = apmay--- € X', and Player O builds up B = bobiby--- € £§. The
corresponding play is winning for Player O if the word a”g := (;%)(;!)(;2) - -
satisfies the winning condition, i.e., it is contained in a given w-language L
over ¥ := Y1 X Y. Otherwise, the play is winning for Player I. For L C X<,
the Gale-Stewart game with winning condition L is denoted I'(L). We say
that L is solvable if Player O has a winning strategy in I'(L).

It is important to note that, for w-regular L, the Gale-Stewart game I'(L)
is positionally determined. This follows from the fact that it can be modeled
by a parity game on a finite graph with finitely many colors (see Section 2.1.4
for more details). To this end, let A = (Q,qo,J,c) over X be a DPA recogniz-
ing L. Each play starts in g9 and proceeds as follows: if 4 € Q is the current

18 1 — PRELIMINARIES

state, then Player I chooses a € Xj, moving on to (g,a). Afterwards, Player O
chooses b € g and thereby moves to 6(q, (;)). The game graph built up this
way is of size linear in |.A].

In Part II of this work we introduce a generalization of Gale-Stewart games,
where one of the players, or even both of them, may have to choose several
bits in one round. Whereas in the turn-based setting of Chapter 5 we obtain a
game which is still determined, in Chapter 6 we deal with concurrent games;
both players make their choices simultaneously, and determinacy is no longer
guaranteed.

Chapter 2
Synopsis of Winning Conditions

A fundamental difference between various games is the complexity to solve
them, with respect to both the time required to compute winning strategies and
the space needed to implement these winning strategies. Whereas some win-
ning conditions allow for positional winning strategies, others require mem-
ory, often of size exponential in the representation of the game graph or the
winning condition.

The present chapter predominantly serves as an introduction to the first
part of the thesis, where we deal with the problem of memory reduction, i.e.,
the problem of computing a winning strategy which has a memory as small as
possible. In the following sections, we formally define the winning conditions
we are going to consider later on; moreover, we present fundamental results
from the field of infinite games which are relevant for us (see for example
[GTWO02]). All the types of infinite games considered in this chapter have w-
regular objectives and are played on a finite arena, if not stated differently.
Hence, we can rely on determinacy [BL69].

In Section 1.4.1 we have introduced an infinite game as a tuple I' = (G, ¢)
where G is a finite graph and ¢ is a set of infinite sequences over the set V of
vertices of G. In fact, we intend to deal only with winning conditions which
can be represented by finite objects. More precisely, there are four distinct
ways of writing down the winning conditions we consider.

e Reachability and Biichi objectives are defined in Sections 2.1.1 and 2.1.3,
respectively. They are given by a subset F of V: F C V.

o Staiger-Wagner and Muller objectives are introduced in Sections 2.3.1
and 2.3.3, respectively. They are given by a family F of subsets of V:
F = {F1,...,Fk} with F; C V.

e Request-Response and Streett objectives are presented in Sections 2.3.2
and 2.3.4, respectively. They are given by a family) of pairs of subsets
of V: O = {(F,F),...,(F, F)} with F;, Ff C V.

19

20 2 — Synoprsis oF WINNING CONDITIONS

e Weak parity and parity objectives are defined in Sections 2.1.2 and 2.1.4,
respectively. They are given by a mapping c from V into a finite set of
colors: ¢: V. — {0,...,m}, for some m € IN.

This chapter is organized as follows. Section 2.1 introduces several types of
winning conditions for infinite games, all of which are solvable by positional
winning strategies. In Section 2.2 we present the concept of game simulation,
i.e., a technique to solve games requiring non-positional winning strategies.
In Section 2.3 we define four winning conditions for which the corresponding
games are usually not solvable by positional winning strategies; to each of
them we apply the approach of game simulation.

2.1 Games with Positional Winning Strategies

In this section we introduce several types of infinite games which allow for
positional winning strategies. The constructions presented are of particular
relevance for Part I of this work. Section 2.1.4 cites some results on parity
games which are also relevant for the second part of the thesis.

2.1.1 Reachability Games and Attractor Strategies

Attractor strategies are the most fundamental concept needed for solving infi-
nite games. In their purest form, they are used to solve games with reachabil-
ity objectives, and winning strategies for more complex winning conditions are
usually composed of several attractor strategies. The name “attractor” strategy
comes from the fact that it is defined in such a way that the play is attracted
towards a particular part of the game arena, as quickly as possible. An at-
tractor strategy is a positional strategy, which is computable by a backwards
breadth-first search through the game graph.

In a reachability game we are given a game graph G and a designated sub-
set F C V. A play ¢ is winning for Player 0 if it visits a vertex in F at least once.
To solve a reachability game we inductively compute the set of vertices from
where Player 0 can force the play into F. This set is called the O-attractor of F
and denoted Attrg(F); the subscript 0 indicates that we refer to Player 0. We
show that the O-attractor coincides with Player 0’s winning region Wy. Then,
since reachability games are determined, the complement of the O-attractor is
Player 1’s winning region. To compute Attry(F) we introduce a superscript i,
denoting the set of vertices from where Player 0 can force the play into F in at
most i moves. It holds Attr)(F) = F and

2.1 — GAMES WITH PosiTtoNAL WINNING STRATEGIES 21

Attrg™ (F) = Attr(F) U {v € Vo | 3(v,¢) € E: 0/ € Attrg(F)}
U{v eV |V(v,?v) € E:v e Attry(F)}.

Clearly, we have Attr) C Attri™ and Attry(F) = | Attr)(F). Since G is finite,
the sequence (Attr)); c y becomes stationary after at most | V| steps, i.e., it holds
Attro(F) = Attr)/(F).

An attractor strategy is a strategy which reduces the distance to F in each
step. By the distance of a vertex v to F we mean the minimal i such that
v € Attrh(F). Either v € Vp, which means that Player 0 can choose a succes-
sor v’ of v which has shorter distance to F than v, or v € V;, which means

(%
(%

that all successors v’ of v have shorter distance to F than v. These observations
yield the following winning strategy for Player 0:

from a vertex in Attri"!(F) move to a vertex in Attr)(F).

Any strategy satisfying the above condition is winning for Player 0 in the
reachability game. Algorithm 2.1 is a linear time procedure to compute the
O-attractor; it performs a backwards breadth-first search starting from F.

Algorithm 2.1 (ATTRACTOR)
Input: Reachability game I = (G, F) with G = (V, Vp, V4,E) and F C V
Output: Attro(F) and positional winning strategy for Player 0

1: A« F, M+ E,Eg+ @
2: forall v € V; \ F do {Count number of outgoing edges}
3: out(v) < {v' | (v,v') € E}|
4: end for
5: while there exists e = (v,7') € M withv ¢ A,v' € A do
6: M+ M\ {e}
7 if v € Vp then {From v, Player 0 can move into Attry(F)}
8: A+~ AU{v}
9: Eop + EqU {6}
10: else
11: out(v) < out(v)—1
12: if out(v) = 0 then {From v, Player 1 must move into Attry(F)}
13: A+ AU{v}
14: end if
15: end if

16: end while
17: return (A, Ey)

Note that each edge is traversed at most twice. Hence, the running time of
Algorithm 2.1 is linear in |G|, where we set |G| := |V| + |E|. After termination,

22 2 — Synoprsis oF WINNING CONDITIONS

A is exactly the set Attro(F) and Ey (extended by any positional strategy from
Vp-vertices in V' \ Attro(F)) is an attractor winning strategy for Player 0 from
Attry(F). This yields the following observation.

Corollary 2.1. Let I = (G, F) be a reachability game. Then we can compute an
attractor winning strategy for Player 0 in time O(|G]).

To see how we can compute a winning strategy for Player 1, we consider I
from his perspective. This leads us to the objective of avoiding the set F, i.e.,
keeping the play inside V' \ F. Such a condition is called a safety condition, the
complement of a reachability condition. Safety conditions can be characterized
in terms of “bad” prefixes (see for example [BK08]); from Player 1’s point of
view the bad prefixes are those containing a vertex from the set F.

From each vertex v € V \ Attrg(F), Player 1 has a strategy to avoid the
set F, i.e., Player 0 cannot force the play into F. Either it holds v € V), which
means that each outgoing edge must lead to V' \ Attry(F), or it holds v € V;,
which means that at least one outgoing edge leads to V' \ Attry(F). Once we
have computed Attr(F), we can compute a winning strategy for Player 1 from
V' \ Attro(F) in linear time. For each vertex v € Vj \ Attro(F), we have to
consider each outgoing edge at most once to find a successor v/ of v with
v’ € V'\ Attrg(F). The following theorem summarizes the above results.

Theorem 2.2. Let I = (G, F) be a reachability game. Then, the winning region for
Player 0is Wy = Attro(F) and the winning region for Player 1is Wy = V' \ Attry(F).
Both players have positional winning strategies computable in time linear in |G].

2.1.2 Weak Parity Games

In this section we introduce weak parity games. A weak parity condition is given
by a coloring, i.e., a mapping ¢ : V — {0,...,m} with m € IN. We can assume
w.l.o.g. that m is even. Recall that, for a play o, we denote Occ(o) the occurrence
set of g, i.e., the set of vertices occurring in ¢ at least once. A play 0 = vyvj07 - - -
is winning for Player 0 if the maximal color seen in ¢ is even. That means

0 € ¢ <= max(Occ(c(0))) is even,

where c(p) is the sequence c(vg)c(v1)c(v2) - - - of colors seen in the play o.
The following theorem states that weak parity games can be solved in poly-
nomial time by positional winning strategies for both players.

Theorem 2.3 ([Cha06]). Let T = (G,c) be a weak parity game. Then, the win-
ning regions of both players and corresponding positional winning strategies can be
computed in time O(m), where m is the number of edges of G.

2.1 — GAMES WITH PosiTtoNAL WINNING STRATEGIES 23

Proof. We proceed via a refined attractor construction; still, each edge has to
be traversed only once. The idea is to compute for each color k (in decreasing
order, starting with the maximal color m) the set Ay of vertices from where one
of the players wins such that he can force a visit to a vertex of color at least k. In
the first iteration we are interested in the set of all vertices from where Player 0
can reach the even color m, i.e., the set A,, := Attrg(C,,), where C; := ¢~ (k)
for all 0 < k < m. Afterwards, the set C,, can be deleted from the game graph,
obtaining the subgraph G"~!. (Note that the graph G" 1 is still a valid game
graph, since it is a trap for Player 0 [Zie98].) On the game graph G" ! we
continue analogously, computing the set A,,_4 ::Attrlmfl(Cm_Q for Player 1.
(The superscript m—1 indicates that the computation is carried out on the
graph G"~1; note that it holds G™ = G.) Afterwards, we delete Attrlmfl(Cm_Q
from G™~!, obtaining the graph G” 2. On this graph we compute the set
Ap_n = Attrgifz(Cm,z) for Player 0, and so on. In [Cha06] it is shown that it
holds
W(): U Akandwl = U Ak,
k even k odd

and that the respective attractor strategies computed in the iterations of the
algorithm are positional winning strategies for the players. O

The particular procedure for solving weak parity games is fundamental for
two results we are going to present later on (in Theorems 3.32 and 3.38).

2.1.3 Biichi Games

In a Biichi game I' = (G, F) we are given a designated subset F C V of final
vertices. Player 0 wins a play o if a final vertex is seen again and again:

0€ @ < Inf(o)NF# @

Biichi games are solved in two steps (cf. [Tho95, GTWO02]). The first step is to
compute the set of final vertices from where Player 0 can force infinitely many
revisits to final vertices. We call this set the recurrence region of F for Player 0
and denote it Recury(F). It can be computed inductively as follows: for all i,
we compute the set of final vertices from where Player 0 can force i revisits to F;
each iteration requires time O(|G|). After at most |V| iterations the sequence
of computed sets becomes stationary, at Recury(F). The second step is a bit
simpler. We compute the 0-attractor of Recury(F), i.e., the set Attrg(Recury(F)).
The latter set coincides with the winning region Wy of Player 0; the union of
the attractor strategy to reach Recury(F) and the strategy to revisit Recury(F)
again and again is a positional winning strategy for Player 0 from Wj.

24 2 — Synoprsis oF WINNING CONDITIONS

Computing a winning strategy for Player 1 is a bit more involved. Once
we have computed Wy, we also have W; = V \ Wy in our hands. However,
Player 1 needs to ensure that a final vertex is visited only finitely often. Such
an objective is called a co-Biichi condition, the complement of a Biichi condition.
The problem is that W; may contain final vertices, and we have to avoid them
from a certain point onwards. To get the solution, we first solve a subgame
on Wj, where Player 0 has the reachability objective to reach F, and Player 1
has to fulfill the safety condition to stay inside W; \ F. Let W] be the winning
region of Player 1 in this subgame. Due to the fact that Player 1 wins the
Biichi game from W; (on G), the set W] must be non-empty, and he has a
positional winning strategy that never leaves W (cf. Theorem 2.2). Moreover,
he must have an attractor strategy from all vertices in W; which forces a play to
reach W] in at most |V| moves. Putting together the winning strategy from Wj
for the subgame and an attractor strategy to reach W (on G) we obtain a
positional winning strategy for Player 1 from W in the Biichi game.

Theorem 2.4. Let I = (G, F) be a Biichi game on a graph with n vertices and | edges.
The winning regions are Wy = Attry(Recury(F)) and Wy = V \ Attrg(Recury(F)),
and corresponding positional winning strategies for both players can be computed in
time O(n - 1).

2.1.4 Parity Games

A parity game is an infinite game where each vertex of G is assigned one of
finitely many colors. The winning condition is defined analogously to the ac-
ceptance condition of a DPA: a play ¢ is winning for Player 0 if max(Inf(c(0))),
i.e., the maximal color seen infinitely often, is even.

Parity games on finite graphs with finitely many colors are determined with
positional winning strategies for both players; this result was independently
proven in [EJ91] and [Mos91]. In Part II of the present thesis we come across
parity games on countably infinite graphs where the number of colors remains
finite. For such games, the result of Emerson & Jutla and Mostowski holds
as well. (In this work we do not consider parity games with infinitely many
colors; the interested reader is referred to [GW06].)

Many efforts have been made to find algorithmic solutions for parity games
(see for example [Jur00, VJOO]). Although it is known that the problem of
deciding the winner in a parity game is in UP N co-UP [Jur98], the search for
a tight lower bound for the computational complexity has not been successful
yet (see for example [Fri09]). In particular, it is not known whether parity
games can be solved in polynomial time. The fastest deterministic algorithm

2.2 — GAME SIMULATION 25

presently known has a running time which is subexponential in the number of
vertices of the game graph [JPZ06].

Theorem 2.5. Let T = (G,c) be a parity game on a finite or countably infinite
graph, with finitely many colors. Each vertex belongs to either Wy or Wy. Moreover,
Player 0 and Player 1 have positional winning strategies from Wy and Wy, respectively.
If G is finite, then one can compute the winning regions and corresponding positional
winning strategies in time at most V", where n is the number of vertices of the
game graph.

2.2 Game Simulation

The key idea of game simulation is to reduce the solution of a given game to the
solution of a new one which has a larger game graph but a simpler winning
condition [Tho02]. We have as input an infinite game I' = (G, ¢) and obtain as
output an infinite game I'" = (G/, ¢’). The game I" is computed from I' such
that G’ consists of finitely many copies of G. Each copy memorizes a particular
history of a play in the original game and the new edge relation comprises the
memory update rule. Whereas the expanded game graph G’ is more complex
than G, the winning condition ¢’ (for Player 0) is much easier than the given
one. In many cases, ¢ requires memory (of exponential size), but ¢’ admits
positional winning strategies. Therefore, the complexity of the given winning
condition ¢ is diverted to the game graph G'.

Definition 2.6. Let I' = (G, ¢) and I = (G/, ¢’) be infinite games with game
graphs G = (V, Vo, W, E),G' = (V/, Vg, V{,E’) and winning conditions ¢, ¢'.
We say that I is simulated by I” (short: ' < I") if the following hold:

1. V/' =S x V for a finite memory set S; fori € {0,1} and all s € S,v € V it
holdsv € V; <= (s,v) € V/
2. Every play ¢ of T is transformed into a unique play ¢’ of I’ by
a) Jsp € S,Vv € V: 0(0) = v = 0'(0) = (s0,0)
b) Let (s,v) € V":
i (v,v) e E=3s'€S:((s,v),(s',v)) e E
ii. ((s,v),(s1,v1)),((s,v),(s2,v2)) EE' =51 =52

o ((s,v),(s,v)) € El = (v,v') € E

3. ¢ is winning for Player 0 in I' <= ¢’ is winning for Player 0 in I”

26 2 — Synoprsis oF WINNING CONDITIONS

What one should especially note in the above definition is item 2(b)ii: from
a given vertex (s, v) all outgoing edges lead to vertices with the same memory
component. This means that the memory update is uniquely determined by
s and v and, thus, depends only on the source vertex of an edge. For this
reason, we need the unique initial memory content sy (cf. item 2a). The above
definition of game simulation is chosen due to particular technical reasons
connected with the algorithms we are going to present later on.!

Once we have applied a game simulation, we can compute winning strate-
gies for both players from their respective winning region in I'. Let us explain
this exemplarily for Player 0: we solve the game I and obtain a finite-state win-
ning strategy f’ from Player 0’s winning region W/ in I'; the game simulations
we are going to consider in Section 2.3 in fact yield games with positional win-
ning strategies. From that we can construct a winning strategy f for Player 0
in [; it is implemented by the strategy automaton A constructed as follows:
each state of A corresponds to one of the G-copies in G’, and the transition
function ¢ is obtained from the edge relation E’ of G’. The output function T
of Ay is uniquely determined by the strategy f’. If f' is a winning strategy for
Player 0 in I”, then Ay implements a winning strategy for her in T.

Theorem 2.7. Let T = (G, ¢) and I" = (G/, ¢') be infinite games such that T < T’
according to Definition 2.6. If Player 0 wins T' from vertex (so,v) by a positional
winning strategy f', then she wins T from vertex v by an automaton strategy f.

Proof. We prove the above theorem by constructing the strategy automaton
Af = (S,50,0,T) over V, where S,V and sy are already given by the definition
of game simulation. We define ¢ and T as follows:

c:SxV =S o(s,v) :=s where s’ is the memory content uniquely
determined by s and v

T:Sx Vo=V 1(s,v0) := v where ¢ is the second component of
the unique vertex (s', ") with ((s, vo), (s',v")) € Ep

Ay gets as input the vertices visited in G and changes states accordingly. For
every game position vy - - - v; of Player 0 it outputs some E-successor v;.1 of v;.
Finally, the choices of Player 1 induce a play ¢ on G which, together with
the memory contents, forms a play ¢’ winning for Player 0 in I'. Since T is
simulated by I" it follows from item 3 of Definition 2.6 that ¢ is winning for
Player 0 in I'. O

IThere are other equivalent definitions of game simulation where the memory update also
depends on the target vertex of an edge.

2.3 — GAMES WITH NON-POSITIONAL WINNING STRATEGIES 27

With the above technique we can solve games which do not allow for posi-
tional winning strategies in general. (The constructions in the proof of Theo-
rem 2.7 work analogously for Player 1.) The winning regions Wy, W; in I' can
be read off directly from the winning regions W), W{ in I’. For i € {0,1} and
v € V, vertex v belongs to W; if and only if vertex (sg, v) belongs to W/.

2.3 Games with Non-Positional Winning Strategies

There are games which usually do not admit a solution by positional winning
strategies. The purpose of this section is to introduce those to which we apply
our memory reduction algorithm in Part I of the thesis.

The first type of games we shall consider are the ones induced by “weak”
winning conditions, or Staiger-Wagner conditions, as we call them (cf. [SW74]).
In the associated games the winner of a play is declared on the basis of the
set of all vertices occurring in the play (at least once). The second class of
conditions we are going to deal with are called Request-Response conditions
(see [WHTO03]). They do not depend on the set of occurring vertices but rather
on their particular order. In addition, we present results on two standard forms
for w-regular objectives, namely Muller (see for example [GH82, DJW97]) and
Streett (see for example [BLV96, Hor05]). Each of the two depends on the
vertices visited infinitely often and, accordingly, is also referred to as a “strong”
winning condition.

2.3.1 Staiger-Wagner Games

In a Staiger-Wagner game T = (G, F) we are given a family F C 2" where V is
the set of vertices of the given game graph. A play ¢ is winning for Player 0
if Occ(o) € F (cf. weak Muller games in [Tho02]). Note that a Staiger-Wagner
condition is a Boolean combination of reachability and safety conditions.

A lower bound for the size of the memory required to win Staiger-Wagner
games is exponential in the size of the game graph.

Theorem 2.8. There is a family I', = (G, Fy,) of Staiger-Wagner games where the
size of Gy, is linear in n and each winning strategy from a particular vertex vy requires
a memory of size at least 2".

Proof. The game graph G, is depicted in Figure 2.1. Circle vertices belong to
Player 0 and square vertices belong to Player 1. The graph has 6n +2 € O(n)

28 2 — Synoprsis oF WINNING CONDITIONS

vertices and 8n 4+ 2 € O(n) edges. Thus, the size of G, is linear in n. The
winning condition F; contains precisely the sets F C V which satisfy

ieF <= i'eF, foralll1 <i<n.

Each play is divided in two phases: in the first phase (between vertices v;
and x) Player 1 selects a subset P C {1,...,n} of vertices. In the second phase
(between vertices vy and y) Player 0 selects a subset R C {1/,...,n'} of vertices,
analogously. Player 0 wins if she mimics the behavior of Player 1, i.e., it holds
ieP < i'eRforallie{l,...,n}.

1 2 n—1 n

SN N NN
\D/ \D/ \ s \D/

SN NS N N/ N0
y
@\ /@\ /@\ /@\ /@\ /

Figure 2.1: Staiger-Wagner game graph G,

Clearly, Player 0 wins I', by memorizing the vertices in {1,...,n} which
are visited in the first phase and by moving from vy, accordingly. Since the
set {1,...,n} has 2" subsets, each winning strategy needs at least 2" states to
be implemented by a strategy automaton. A simple argument shows that no
automaton with less than 2" states implements a winning strategy for Player 0.

O

We apply the technique of game simulation to solve Staiger-Wagner games.
More precisely, we simulate them by weak parity games, using a memory of
size 2" where n is the number of vertices of the game graph.

To win Staiger-Wagner games, it suffices to store for each vertex of the
game arena whether it has already been visited or not. Consequently, it is
straightforward to use as memory the set of possible occurrence sets; we de-
fine the memory to be the set S := 2V. While playing, we collect the vis-

2.3 — GAMES WITH NON-POSITIONAL WINNING STRATEGIES 29

ited states such that at any given point in a play, i.e.,, at some game posi-
tion 0(0) - - - o(i), the current memory content is Occ(0(0) - - - ¢(i)). The game
graph G’ = (V/,E’) has as vertices the set V' := 2V x V. If vy is the initial
vertex of I, then (&, 1) is the initial vertex of T". Following Definition 2.6, we
update the memory according to the source vertex of an edge; the new edge
relation is E' := {((R,v), (RU{v},?")) | (v,v') € E,R C V}. Thereby, we are
done with items 1 and 2 of Definition 2.6. What is still missing is the winning
condition ¢'. For that we define the coloring ¢ as follows:

2-|RU{v}| -1 ,if RU{v} ¢ F
c¢(R,v) :=
2-|RU{v}| Jif RU{v} e F
Let us explain how a play ¢ of I is transformed into a play ¢’ of I'". During ¢’,
the sequence of occurrence sets in the visited vertices is weakly increasing with
respect to the subset relation C. This is due to the fact that we only add vertices
to the R-component, but never delete some. Therefore, the sequence of visited
colors is weakly increasing (with respect to <) and it becomes stationary as
soon as the memory component has reached Occ(o), i.e., no new V-vertices
are visited afterwards. From that point onwards, the unique maximal color is
being seen for the rest of the play and it is even if and only if Occ(o) € F.
This means that ¢ is winning for Player 0 in I if and only if ¢’ is winning for
Player 0 in I", verifying item 3 of Definition 2.6.

Theorem 2.9. Let I' = (G, F) be a Staiger-Wagner game where G has n vertices.
Then there exists a weak parity game I' = (G',c) such that G’ has 2" - n vertices
and T <T.

Note that Staiger-Wagner games are symmetric, i.e., both players have to
satisfy Staiger-Wagner conditions in order to win. Accordingly, winning strate-
gies for both players require memory.

By Theorems 2.9 and 2.3, Staiger-Wagner games are solvable in time expo-
nential in the number of vertices of the game graph.

Corollary 2.10. Let I = (G, F) be a Staiger-Wagner game. The game T is de-
termined. Omne can compute the winning regions Wy, Wy and automaton winning
strategies for both players in time exponential in |G|.

2.3.2 Request-Response Games

In a Request-Response game the winning condition is given by a family () of pairs
of subsets of V: O = {(Py,Ryq),..., (P, Ry)}, where P;,R; C V for 1 <j <k,

30 2 — Synoprsis oF WINNING CONDITIONS

with k € IN. Each set P; is called “request”’-set and each set R; is called
“response”-set. Player 0 wins a play ¢ if, for all j, each visit to the set P; is
eventually followed by a visit to the set R;.

A lower bound for the memory required to solve Request-Response games
is exponential in the number k of request-response pairs. For a proof of this
result we refer to [WHTO3].

Theorem 2.11 ([WHTO03]). There is a family Ty = (G, Q) of Request-Response
games such that the following hold:

1. Both the size of Gy and the number of request-response pairs are linear in k.

2. Player 0 has a winning strategy from a particular vertex vy, and every winning
strateqy from vy requires a memory of size at least 2 - k.

The rest of this section is devoted to a game simulation of Request-Response
games by Biichi games. The idea is to memorize the set of active request-
response pairs. We say that a pair (P, R;) is active at a given point in a play,
if the set P; has been visited before and the latest visit to P; has not yet been
responded to. We cyclically2 test whether all requests are eventually responded
to. If the test is successful for a particular pair (P]-, R]-), i.e., it is either not active
or it has been active but was responded to in the latest move, then we proceed
to the next pair. If the test for the last pair (P, Rg) is successful, then a final
vertex is visited and we start over again with the first pair (P;,R;). If some
request is never responded to, i.e., the respective pair remains active from a
certain point onwards, then no further final vertex is seen. Let G = (V, E) and
Q={(P,Ry),..., (P, Ri)}. We define G’ := (V’,E’) as follows:

o V=2 ks {1, .k} xBxV
e ((P,j,b,v),(P,j,V,v)) eE <
- PP =(PU{jloePH)\{jlveR;}
= j JifjeP
(jmod k) +1 , otherwise
1 ,ifj=kandj =1
0 , otherwise

- (v,v') €E

- =

21f there is only one request-response pair in (), then we need to add a dummy pair
(P2, Ry) = (2, 9) to detect a completed cycle.

2.3 — GAMES WITH NON-POSITIONAL WINNING STRATEGIES 31

o F:=2{Lkb s {1, k} x {1} x V

As initial memory content we choose sy := (&,1,0) (cf. item 2a of Defini-
tion 2.6). The winning condition ¢’ is uniquely determined by the set F. The
reader may verify that the above definitions of G’ and F satisfy the properties
of game simulation.

Theorem 2.12. ((WHTO03]) Let T = (G, Q) be a Request-Response game where G
has n vertices and Q) has k request-response pairs. Then there exists a Biichi game
I" = (G',F) such that G' has 2¥*1 . k - n vertices and T < T".

It is not hard to see that Player 1 has a positional winning strategy from his
winning region. If he plays a winning strategy from some vertex v € Wj, then
there must exist 1 < j < k such that eventually the pair (Pj, Rj) is activated, but
never responded to afterwards. Note that the choice of j may be influenced by
Player 0. For the activation of (P;, R;) Player 1 can play an attractor strategy,
and for keeping (P, R;) active he has to avoid R;, i.e., satisfy a safety condition.

By Theorems 2.12 and 2.4, Request-Response games are solvable in time
exponential in the number of request-response pairs of the winning condition.

Corollary 2.13. Let I' = (G, Q) be a Request-Response game. The game T is de-
termined. Omne can compute the winning regions Wy, Wy and automaton winning
strategies for both players in time exponential in |Q)| and polynomial in |G]|.

2.3.3 Muller Games

In a Muller game we are given a family F = {Fy, ..., F} of subsets of V: FECV
for all 1 < j < k where k € IN. A play ¢ is winning for Player 0 if the set
of vertices visited infinitely often, i.e., the set Inf(¢), is one of the sets in F.
Note that a Muller condition is a Boolean combination of Biichi and co-Biichi
conditions.

A lower bound for the memory needed to implement winning strategies for
Muller games is n!, if O(n) is the size of the game graph.

Theorem 2.14 ([DJW97]). There is a family Ty = (Gpn, Fy) of Muller games such
that the number of vertices of G, is linear in n and each winning strategy for Player 0
requires a memory of size at least n!.

Proof. The graph G, is depicted in Figure 2.2. The set of vertices of the game
graph is {v1,...,0,,0),...,0,}, Vo := {v1,..., 04} and V; := {v},..., 0} are
the sets of vertices belonging to Player 0 and Player 1, respectively, and the set
of edges is {(v},v}), (v;,v;) | 1 < j,I < n}. The graph G, has 2n € O(n) ver-
tices. The players move in alternation where in each move the current player

32 2 — Synoprsis oF WINNING CONDITIONS

is free to move to any of the vertices belonging to the opponent. The Muller
winning condition ¢, is induced by F, with

Fu:=A{FCV[|FNVp| =max{j|v; € FNVi}}.
The definition of the winning condition means that the number of Vj-vertices

visited infinitely often is equal to the maximal index j such that V;-vertex U} is

visited infinitely often.

@]
@

/
D “

Figure 2.2: Muller game graph G,

Dziembowski et al. have shown that Player 0 wins from each vertex of G,
and that each winning strategy requires a memory of size at least n!. The proof
is accomplished by induction on n and can be found in [DJW97]. O

We present a game simulation of Muller games by parity games (see for ex-
ample [GTWO02]). As a start, we introduce the Latest Appearance Record (LAR),
which we are going to use as memory (see for example [McN65, GHS82]).
If V={vy,...,0,} is the set of vertices of the game graph, then we define
LAR(V) := S, x {1,...,n} where S, denotes the symmetric group of all per-
mutations of the set {1,...,n}. We use the LAR to memorize the order of
latest visits to the vertices of the game graph. A play ¢ of the Muller game I’ is
transformed into a play ¢’ of the parity game I'" as follows. As initial memory
content we choose sp := (1---n,1). Letr = (j1 - - - ju, h) be the current memory
content and vj, the current vertex (1 < I < n); we call h the hit value of r. If a
move from v;, to v, is made, then jj is shifted to the first position and the hit
value is set to [.

We define the parity game graph G’ = (V’, E’) as follows:

o V/:=LAR(V) x V

e Forall (ji---ju,h) € LAR(V),l,m € {1,...,n} with (v;,v;,) € E there is
an edge (((j1 -+ jn 1), 0;), (Gijr -+ jiajisr -+ ju 1), 05,)) € E'.

2.3 — GAMES WITH NON-POSITIONAL WINNING STRATEGIES 33

The parity winning condition is induced by the following coloring:

2h—1 ,if{vjl,...,vjh} %./T"

c((j1+-jn, h),v;) =
((j1- -+ ju), 05) oh Sif {vj,, ..., v} €F

The above game simulation of Muller games by parity games is correct. In
other words, a play ¢ in I' is winning for Player 0 if and only if the correspond-
ing play ¢’ in I is winning for Player 0. For a full proof we refer to [GTWO02].

Theorem 2.15. Let T = (G, F) be a Muller game where G has n vertices. Then there
exists a parity game T' = (G',c) such that G’ has n! - n? vertices and T < T,

From Theorem 2.14 and the fact that Muller games are symmetric it follows
that both players require memory (of possibly factorial size) in order to win.
By Theorems 2.15 and 2.5, a solution to a Muller game can be computed.

Corollary 2.16. Let I = (G, F) be a Muller game. The game T is determined. One
can compute the winning regions Wy, Wy and automaton winning strategies for both
players.

So far we have spared to mention the computational complexity of Muller
games. This issue is caught up in the following paragraph.

Excursus on the Complexity of Muller Games. The time needed to solve an
infinite game is measured in the size of its representation. For Muller games,
the literature has suggested a number of different ways for writing down the
winning condition, each of which has a different degree of succinctness. In
this work, we choose the explicit representation, i.e., the sets in F are all listed.
For this type, Horn has shown that the winning regions of a Muller game can
be computed in polynomial time [Hor08].

A more succinct formalism is due to Zielonka [Zie98]; he introduced the
notion of a split tree, mostly referred to in the literature as Zielonka tree. It
is a rooted tree in which each node is labeled by a subset of vertices of the
game graph such that the node is owned by the player for whom the label is
winning, and each child of a node is labeled by a subset (of the parent-label)
winning for the other player. Zielonka trees are a commonly used memory
structure for the implementation of winning strategies in Muller games (see
for example [DJW97]). In [HDO5], Hunter and Dawar have introduced Zielonka
DAGs which are Zielonka trees with nodes labeled by the same set merged.
Whereas Zielonka trees allow for a solution of the corresponding Muller game
in NP N co-NP [DJW97], Zielonka DAGs are more succinct such that deciding
the winner becomes PsrACE-complete.

34 2 — Synoprsis oF WINNING CONDITIONS

Other ways of writing down Muller winning conditions, for which [HD05]
has established Pspace-completeness for deciding the winner, are win-sets and
their variant colorings, and Emerson & Lei formulas; for detailed definitions of
these conditions, the reader is referred to [McN93, ELS85].

2.3.4 Streett Games

Streett games capture the notion of strong fairness in distributed systems. For ex-
ample, if a process is repeatedly requesting a particular resource, then it should
eventually be granted access to that resource. This means that infinitely many
requests are fulfilled infinitely often; finitely many requests can be ignored.

A Streett condition is a family Q) = {(Ey, F1), ..., (Ex, Fx) } of pairs of subsets
E,F,CV for 1 < j <k, with k € IN. A play ¢ is winning for Player 0 if, for
each 1 < j < k such that the set Fj is visited infinitely often, the set Ej is also
visited infinitely often:

Vj(Inf(¢) N F; # @ = Inf(¢) NE; # 9)

A Streett condition is a special kind of Muller condition. If we express ()
by means of an equivalent family F of subsets of V, then F is closed under
union (see [Zie98]).

Winning strategies in Streett games may require a memory of size at least k!,
i.e., factorial in the number of Streett pairs, if both the game graph and the
winning condition are of size quadratic in k.

Theorem 2.17 ([Hor05]). There is a family T'y = (Gy, Qi) of Streett games such that,
for k > 2, both the size of Gy and the number of pairs in O are quadratic in k, and
each winning strategy for Player 0 needs a memory of size at least k!.

Proof. The game graph Gy is depicted in Figure 2.3. It has the set V} of vertices
with Vi := {o,w} U{i, {i,j} | 1 <i# j <k}, and the set

Ec = {(0, {7}, ({ij}, 1), () [1< i # <K} U{(w,0)}

of edges.® That means there are O(k?) vertices and O(k?) edges. The winning
condition contains k? — k € O(k?) pairs; it is defined as

O={{it {{i,j}}) [1<i#j<k}

3Note that ({i,j},i) represents two edges.

2.3 — GAMES WITH NON-POSITIONAL WINNING STRATEGIES 35

|
/
\

o

Figure 2.3: Streett game graph Gy

The game starts at vertex v and proceeds in rounds as follows: Player 1
chooses a vertex {i,j}, thereby activating the two conditions i and j. After-
wards, Player 0 answers precisely one of them, moving to either vertex i or
vertex j. She has the following natural winning strategy of size k!: each mem-
ory content is a permutation 7 = (711 --- 1) € Sk, where Sk denotes the
symmetric group of all permutations of the set {1,...,k}; each 7y can be taken
as initial memory content. If Player 1 moves to vertex {i,j}, then Player 0
answers by moving to the vertex which appears first in 77 and shifts it to the
very last position. That means, 7t is a priority queue: if 1, = i and 77, = |
and r < s, then Player 0 moves to vertex i and the new memory content is
(701 -+ TTp17T41 - - - 7T). It is not difficult to see that this strategy is winning
for Player 0. If a condition is requested but not immediately answered, then
it is shifted in 7w by one position to the front. After at most k unanswered
requests it reaches the first position of 7r, which means that it is answered next
time it is requested. Thus, if it is requested infinitely often, then it answered
infinitely often.

In fact, the aforementioned winning strategy for Player 0 is optimal in the
sense that there exists no winning strategy for her with less memory. The proof
is accomplished by induction on k and can be found in [Hor05]. O

36 2 — Synoprsis oF WINNING CONDITIONS

We present a game simulation of Streett games by parity games (see [MS95,
BLV96]), using almost the same idea as for Muller games. We use the Index
Appearance Record (IAR) to memorize the order of latest visits to the sets E;
(j=1,...,k). Let G= (V,E) be a game graph and Q = {(E1, Fy),..., (Ex, F¢)}
a family of pairs of subsets of V. As memory S we define:

S:=IAR(Q) ={(j1-jre f) | (1 jk) €S, 1<e f <k}

As initial memory content we choose sp := (1---k,1,1). The edge relation E’
of the parity game graph G’ = (V/,E’) is uniquely determined by the edge
relation E and (). We define:
((Gr- e f)o), (i€ f),0) € BN o=
1. (v,v') € E
2. (jy - ji) is obtained from (j; - - - j) by shifting all j; with v € E; to the
left, I € {1,...,k}

3. ¢ is the maximal* | € {1,...,k} such that v € Ej,
4. f'is the maximal m € {1,...,k} such thatv € F;,
Let the coloring ¢ : S x V — {1,...,2k} be defined by:

2e ,ife> f

(G jre f)o) = {2f1 ife < f

Correctness of the above game simulation is established in [MS95].

Theorem 2.18. Let T = (G,)) be a Streett game where G has n vertices and () has
k pairs. Then there exists a parity game ' = (G', c) such that G’ has k! - k> - n vertices
and T <T7.

In a Streett game, a play ¢ is winning for Player 1 if it violates the given
Streett condition, i.e., it satisfies the following condition:

Jj(Inf(0) NE; = @ ANInf(¢) N F; # O)

This kind of condition is called Rabin condition. It can always be fulfilled by
a positional strategy, though, such a strategy is not obtained when solving the
game by game simulation via IAR. In [Hor05], Horn gives an algorithm for
solving Streett games which computes a positional winning strategy for the
Rabin player and has a running time exponential in k.

“We assume w.l.o.g. that Ex = F; = V to have the pointers ¢’ and f’ well-defined.

2.3 — GAMES WITH NON-POSITIONAL WINNING STRATEGIES 37

Corollary 2.19. Let T = (G, Q) be a Streett game. The game T is determined. One
can compute the winning regions Wy, Wy and both an automaton winning strategy for
Player 0 and a positional winning strategy for Player 1 in time exponential in |Q)| and
polynomial in |G|.

Part 1

Memory Reduction for Strategies
in Infinite Games

Chapter 3

An Algorithm
for Memory Reduction

The purpose of this chapter is to propose an algorithm which reduces the
memory necessary for the implementation of winning strategies in infinite
games.

The design and analysis of algorithms for the computation of winning
strategies is a central task in the field of controller synthesis. The basic re-
sult in this area is the Biichi-Landweber Theorem, which says that each reg-
ular infinite game on a finite arena is determined and a finite-state winning
strategy for the winner can be constructed [BL69]. Besides studying the al-
gorithmic complexity of solving such games (see for example [HDO05]), many
results in the past decades have revealed both exponential lower and upper
bounds for the size of the memory required to implement winning strategies
[DIW97, Zie98, GTW02, Hor05]. The aim of the present chapter is not the
analysis or extension of the aforementioned findings. Rather, we deal with the
problem of algorithmic reduction of the used memory, for multiple (sub)classes
of regular conditions.

A finite-state strategy can be reduced by minimizing a strategy automaton
implementing it. Even though this can be done very efficiently, there are two
strong arguments why this technique is inappropriate for memory reduction.
The first one is that minimization of an automaton reduces only the represen-
tation of a strategy, but it disregards other possible winning strategies which
may require less memory. The second reason is that the resulting automaton
is minimal with respect to the output function as a whole, but the imple-
mented strategy is only a partial function. Clearly, the size of existing winning
strategies depends only on the underlying game graph and the winning condi-
tion. Therefore, we intend to establish a method for memory reduction which
is independent of automata minimization or the representation of particular
strategies.

41

42 3 — AN ALGORITHM FOR MEMORY REDUCTION

The starting point of our new algorithm is the concept of game simulation,
which has been presented in Section 2.2 (see also [Tho02]). Recall that the key
idea of game simulation is to reduce the solution to a given game to the solu-
tion of a new one which has an extended game graph and an easier winning
condition. The new game graph contains enough memory to solve the orig-
inal game. The basic idea of our memory reduction algorithm is to simplify
the extended game graph before the computation of winning strategies for the
two players. This is accomplished by state space reduction of an equivalent
w-automaton. In this context, equivalence means that the automaton accepts
precisely the language of all plays winning for Player 0 in the given game. The
reduction is carried out such that the properties of game simulation are pre-
served. Our algorithm computes an equivalence relation on the set of vertices
of the extended game graph and from that infers equivalent memory contents.

This chapter is organized as follows. We start Section 3.1 by giving a review
of a minimization technique for finite automata with output. Moreover, we ex-
plain the shortcomings of using this approach for memory reduction of finite-
state strategies. In Section 3.2 we present our new algorithm and formally
prove its correctness. In Sections 3.3 through 3.5 we apply our method to four
types of winning conditions: Staiger-Wagner, Request-Response, Muller and
Streett. Section 3.6 serves as a discussion of the advantages and disadvantages
of our approach; it also comprises computational results on an implementation
of our technique.

3.1 Retrospection: Mealy Automata

The minimization problem for DFA is the problem, for a given DFA A, to
compute a DFA A’ such that it holds L(A") = L(A) and A’ is the minimal
automaton with this property. This problem is well-understood and known to
be solvable in time O(n -logn), if n is the number of states of A and |X| is
assumed constant [Hop71, Gri73]. The automaton A’ is uniquely determined
(up to isomorphism).

In this section we deal with minimization of Mealy automata [Mea55], i.e.,
deterministic finite automata with output. Mealy automata are very similar
to usual DFA. Instead of a set F of final states, they are equipped with an
output function T assigning to each transition one letter of a given output
alphabet. The output for a particular input word w is the concatenation of
the output letters assigned to the transitions taken by A during its run on w.
Accordingly, two states are declared equivalent if from both the two states
the automaton computes the same output, for all possible input words. Two

3.1 — RETROSPECTION: MEALY AUTOMATA 43

Mealy automata A, A" are said to be equivalent if they compute the same
output from their initial states. To get this clearer, let us first formally define a
Mealy automaton.

Definition 3.1. A Mealy automaton over ¥,Y¥o has the form A = (Q,qo,6,7)
where Q, %, g9 and ¢ are defined as for usual DFA, X is an output alphabet and
T: QXX — Xo is called output function. The output f, : Z* — L& computed
by A is inductively defined as f4(¢) :=¢, and for all w € £*,a € X as

fa(wa) := fa(w)7(6"(qo,w),a).

The upcoming theorem shows that minimization of Mealy automata can
be done analogously to minimization of standard DFA. The algorithm is a re-
fined block partitioning approach. The partition is initialized such that two
states ¢,¢q' are in distinct blocks if and only if there is a letter a such that
T(q,a) # 7(q',a). The blocks are refined iteratively until there are no more
two states in the same block from which some letter a € X leads into different
blocks. To get the same asymptotic running time as in minimization of stan-
dard DFA, we need to make the additional assumption that |Xp| is taken as a
constant; then, we can minimize a given Mealy automaton in time On- log n),
obtaining an equivalent one which is uniquely determined (up to isomor-
phism). The algorithm and both the proof of correctness and complexity work
analogously to the one for DFA [Gri73, Bra84].

Theorem 3.2. Let A be a Mealy automaton with n states. Then, A can be transformed
into an equivalent minimal Mealy automaton A’ in time O(n -logn), and A’ is
uniquely determined (up to isomorphism).

We intend to use Mealy automata as strategy automata for infinite games
on graphs. That means, the automaton reads the vertices visited in a play and
changes its state accordingly, and the output function determines the moves of
one player. If we are given a strategy automaton for Player 0 and the current
vertex is owned by her, then the automaton additionally outputs the vertex to
which she is supposed to move to next; if the current vertex belongs to Player 1,
then T outputs a dummy letter ¢ ¢ V. (In a strategy automaton for Player 1,
the dummy letter is output when Player 0 moves.) This extension of T is neces-
sary to guarantee correctness! of the minimization algorithm described above.
Since in our case input letters are vertices in V and output letters are vertices

IWe require length preservation in A: for two words w,w’ with |w| < |w'| it must hold
(g0, w) < T*(qo,w’), where T* is the extension of T from input letters to input words, in
the natural way.

44 3 — AN ALGORITHM FOR MEMORY REDUCTION

in V or the dummy letter o, we abolish the particular output alphabet Xo.
Moreover, from now on, we use only the term “strategy automaton”, i.e., we
mean an automaton of the format A = (S, sp, o, T) over the input alphabet V
(cf. page 16), and the output alphabet is V U {e}.

In the following section, we explain two reasons why minimization of strat-
egy automata is mostly unreasonable for memory reduction.

3.1.1 Disadvantages of Strategy Automata

We have already indicated how strategy automata can be minimized algorith-
mically. That means, if we are given an automaton A computing the output
function f, then we can compute the minimal automaton implementing f.
However, this does not hold for the strategy implemented by A, say g. This is
due to the fact that a strategy is a partial function, and it needs only be defined
for the set of possible play prefixes on the underlying game graph. Hence,
some transitions of A can be useless for the definition of g. If we are given
a minimal automaton implementing f and redirect the irrelevant transitions,
then the strategy implemented by the new automaton is still g, but it needs no
longer be minimal.

Example 3.3. Consider the Staiger-Wagner game depicted in Figure 3.1 with
the winning condition 7 = {{0,1},{1,2}} for Player 0. In this game Player 0’s
winning region is Wy = {0,1}, and she has the following winning strategy of
size two: if the play starts in vertex 0, then move to vertex 1 and stay there; if
it starts in vertex 1, then move to vertex 2.

n n 0
©—O

Figure 3.1: Staiger-Wagner game

Consider the automata A and A’ in Figure 3.2, where input letters are writ-
ten to the left of a vertical line and output letters are written to the right of
that line. Both A and A" are minimal with respect to the output function they
compute, and each of them implements the aforementioned strategy.

If A changes its state from sy to sy, then Player 0 moves from vertex 1 to
vertex 2 and, hence, letter 0 can never be read again. Thus, the transition
from s, to sp reading input letter 0 is irrelevant, and we can redirect it from s,
to s; without changing the implemented strategy. However, this yields a non-
minimal automaton, say .A*, where states sy and s, are equivalent with respect

3.1 — RETROSPECTION: MEALY AUTOMATA 45

0/1
11

2| 2 0|1

O op O 112 111
64’ 2||. 2\‘.
O op O

112 o1 —()——

(52)D 12
2o

Figure 3.2: Strategy automata A (on the left) and A’ (on the right)

to the computed output function. Minimizing A* we obtain precisely A" (up
to isomorphism).

More generally speaking, there may exist infinitely many automata, each of
them implementing the same strategy, such that each automaton is minimal
(with respect to the output function it computes). For example, assume we are
given a game I' = (G, ¢) and simulate it by a new game I’ = (G/, ¢’) to con-
struct a winning strategy. Then, we may consider only the reachable part of G’
and thereby obtain a partially defined automaton containing only the relevant
transitions. However, to be able to apply the minimization algorithm we need
to specify all the missing transitions as well. Clearly, there is an exponential
number of possible completions and we know of no efficient procedure to find
the one which allows for the best minimization. If we allow to add states,
then there are even infinitely many possibilities. Note that this yields arbitrary
large minimal automata. For a further discussion on minimization of partially
defined Mealy automata we refer to [Koh70].

The above considerations show that minimization of a given strategy is
heavily influenced by the particular representation of the strategy. However,
the major shortcoming we want to address here is needless complexity of the
strategy itself. Even if we have a winning strategy automaton with the irrele-
vant transitions defined such that minimization yields an optimal (with respect
to the implemented strategy) number of states, then still there can exist other
winning strategies which require less memory.

From now on, let f denote a strategy rather than a whole output function.
Consider the Staiger-Wagner game depicted in Figure 3.3 with the winning
condition F = {{0,1},{0,2},{0,1,2,3}} for Player 0. In this game Player 0’s
winning region is Wy = {0, 1}, and she has the following winning strategy f of

46 3 — AN ALGORITHM FOR MEMORY REDUCTION

size two: if the play has visited vertex 1, then move from vertex 2 to vertex 3,
otherwise stay at vertex 2. It can easily be shown that this strategy is optimal
in the sense that Player 0 has no positional winning strategy.

0

(2)o

|

3O

Figure 3.3: Staiger-Wagner game

Consider the automaton A, depicted in Figure 3.4, where we omit the out-
put letter o. It has n + 2 states and implements a variant of the strategy f,
say f,: if vertex 1 has been visited, then stay at vertex 2 for exactly n times
and afterwards move on to vertex 3; otherwise stay at vertex 2. (Note that it

holds f = fo.)

0,3 0,1,3
2|2 0,1,3 0,1,3 23
@)

Figure 3.4: Strateqy automaton A,

Clearly, for each n € N, the strategy f, is a winning strategy for Player 0.
Moreover, the automaton 4, is minimal with respect to f, because we need
the states sq,...,s, to keep track of the exact number of revisits to vertex 2.
If n is arbitrary, then we get an arbitrary large strategy automaton; this is very
unsatisfying.

Even though the algorithms from Section 2.3 guarantee upper bounds for
the size of the used memory, we cannot assume that they yield a winning
strategy of acceptable size, i.e., at most polynomial in the size of the optimal
winning strategy. We come back to this problem in Section 3.6. There, we show

3.2 — REDpUCTION OF GAME GRAPHS 47

that there exist games where standard algorithms yield winning strategies of
size exponentially larger than the size of optimal ones.

Subsuming the previous observations shows that we should use an algo-
rithm for memory reduction which is independent of any particular strategy.
Rather, it should make use of properties of the game itself and use this to find
a winning strategy which is as simple as possible. In the following section we
present an algorithm which overcomes the disadvantages of the minimization
algorithm for strategy automata.

3.2 Reduction of Game Graphs

In this section we present our algorithm which reduces the memory neces-
sary for the implementation of winning strategies in infinite games. The basic
idea is to apply a game simulation and then to simplify the expanded game
graph, before the computation of winning strategies. The simplification is ac-
complished via state space reduction of an w-automaton. We show the correct-
ness of our approach and apply it to four classes of winning conditions, namely
Staiger-Wagner, Request-Response, Muller and Streett? conditions. The main
advantage of our algorithm over the technique of automata minimization (see
Section 3.1) is that the actual memory reduction is independent of any partic-
ular strategy.

Let us explain our technique in more detail; it is illustrated in Figure 3.5.
We are given an infinite game I" which is to be solved. Our algorithm realizes
a modification of the output of the game simulation, i.e., the dashed arrow
from I to I'”. The infinite game I admits easier winning strategies than I".
This is achieved by the sequence of solid arrows from I’ to I/, via the au-
tomata A and B. The arrow from T to I" is not really part of our algorithm,
but just a standard technique used for introducing memory. Analogously, com-
puting a solution to the game I'” (or to I') is independent of the technique of
game simulation. Therefore, we measure the complexity of our approach in
the size of I, but not in the size of I', and we consider the time needed for
solving I'”, separately.

We reduce the size of the game graph G’ and get a new game graph G”. For
formal reasons, the actual reduction is carried out on an w-automaton .4 which
is equivalent to the considered game, in the sense that it holds L(.A) = ¢. The
state set and the acceptance condition of A are the set of vertices and the win-
ning condition of I, respectively. As indicated in Figure 3.5, the properties of

2For Muller and Streett conditions our algorithm coincides, except for the game simulation in
the first step.

48 3 — AN ALGORITHM FOR MEMORY REDUCTION

game simulation shall be preserved when I’ is computed from I"'. To guar-
antee this, we need to maintain the structural properties of G’, proceeding
as follows: we compute a language-preserving equivalence relation ~ on the
set S x V. From ~ we compute a refined relation ~s on S and use this relation
to reduce only the set S; the new memory is the set S’ := S/~,. The correct-
ness of our algorithm, i.e., the fact that I' < I'” holds (see the leftmost dashed
arrow in Figure 3.5), is solely derived from the compatibility of the relation ~
(see Definition 3.6).

I"/ — (G/, q0I> A
I'=(G, 4))
@ r<r’ View I as
‘. w-automaton A
Reduction of a Reduction of an
r F” game graph w-automaton
< \\ I l
View B as
infinite game I'”’
(G// / B

Figure 3.5: Algorithm for memory reduction

In the sequel of this section, we explain the single steps of our algorithm,
i.e., the solid arrows in Figure 3.5, where the concept of game simulation has
already been introduced in Section 2.2. Hence, let us directly proceed to a
formal definition of the automaton A.

Definition 3.4. Let I = (G, ¢),I" = (G/, ¢') be two infinite games with game
graphs G = (V, V), V1,E),G' = (S x V,S x V,S x V4, E’) such that T < T’. We
define the (det.) game automaton A(T') := ((S x V) U {90, sink }, 90,9, 1%, Vo)
over V. The state set consists of the set of all vertices of G’ plus two auxil-
iary states: qo is the initial state and ggni is a sink state to intercept inputs
which are not valid plays on G. The transition function ¢ is mainly adopted

3.2 — REDpUCTION OF GAME GRAPHS 49

from E’ such that a transition is labeled by the V-component of its target state:
if ((s1,01),(s2,v2)) € E' then 6((s1,01),v2) := (s2,v2).3 For v/ € V, we set
5(q0,v") := (s0,v"), where s is the initial memory content given by the game
simulation, and §(gsink, ') := gsink- For s € S,v,0" € V with (v,0") ¢ E, we set
5((s,v),7") := Gsink-

The acceptance condition i is defined on an abstract level: a run goo’ of A
is defined to be accepting if ¢’ is a play winning for Player 0 in I".4

For retranslation of the automaton B into the infinite game I'’ (see Fig-
ure 3.5), we use a construction reverse to that of a game automaton from an
infinite game. For retrieval of the partition of the vertices, we need to keep
the information Vj in the signature of A. We call this an automaton game, de-
noted I'(A).

The reader may verify that the game automaton A is deterministic and that
it is equivalent to both T and I”, in the sense that plays winning for Player 0
map to accepting runs, and vice versa.

Remark 3.5. Let I', T’ be infinite games such that T <TI” and A := A(I"). Then,
the language recognized by A is the set of all plays winning for Player 0 in I,
i.e., it holds L(A) = ¢.

3.2.1 Reduction of Game Automata

In this section we explain the technical details for the reduction of game graphs
via game automata. There are two major concerns we have to cope with:

1. The minimization problem for w-automata is known to be PspacEe-hard,
already for deterministic Biichi automata [G]79]. To overcome this obsta-
cle a variety of simulation relations, which guarantee language preserva-
tion and admit efficient computation, have been studied (see for example
[HHK95, HKR97, EWS05]). The particular relations used in this work are
presented in Sections 3.3 through 3.5.

2. We want to reduce only the set S of memory contents, but not the com-
plete state space. Therefore, any equivalence relation on the set of states
needs to be refined, appropriately.

As indicated above, we intend to compute a language-preserving equivalence
relation ~ on the state space S x V of the game automaton A, which is re-
fined to an equivalence relation ~s on S, afterwards. Moreover, the quotient

3The transition labels are redundant information, but they are necessary to define the language
accepted by A.
4In particular, the run ggo’ must mimic a play on G/, i.e., ¢’ does not visit gy

50 3 — AN ALGORITHM FOR MEMORY REDUCTION

automaton with respect to ~gs shall have a deterministic transition structure.
These requirements are subsumed in the following definition.

Definition 3.6. Let A be a game automaton and let ~ be an equivalence rela-
tion on S x V. We say that ~ is compatible with A if the following hold:

1. Forall s1,s, € S,v,v' € V:
(s1,0) = (s2,v) = 8((s1,0),7") = 5((s2,0),7)

2. Let p and p’ be two runs of A (starting in arbitrary states) such that p(i) ~
p'(i) for all i > 0. Then p is accepting if and only if p’ is accepting.

Our idea for the definition of the refinement ~g is as follows: if it holds the
equivalence (s1,v) &~ (s2,v), then from these two states exactly the same inputs
are accepted. This means, if in I’ a player plays the same strategy from (s3,v)
and (sz,v), then the plays built up are both either winning or losing, irrespec-
tive of what the opponent does. Accordingly, if the equivalence (s1,7) = (s, v)
holds for all v € V, then s; and s, need not be distinguished.

Definition 3.7. Let A be a game automaton and let ~ be a compatible equiva-
lence relation on S x V. The equivalence relation ~s on § is defined as follows:

$1 /g Sp <= Yo € V: (51,0) = (52,0)

The equivalence class of s with respect to /g is denoted [s]|. Note that prop-
erty 1 of Definition 3.6 does not translate from ~ to ~g. That means, if we are
given si,s; € S with s; =g sy, (v,7") € E and (s},v') := d((s;,v),7') fori =1,2,
then it holds (s}, ") = (s}, v’), but s}, s} need not be ~g-equivalent. Hence, to
get the v'-successor of ([s1],v) well-defined, we choose a fixed total order <g
on S, ie., 51 <g 52 <g s3 <g ..., and use the <g-minimal element among all
successor memory contents. This is clarified by the following definition.

Definition 3.8. Let .4 be a game automaton, ~ a compatible equivalence rela-
tion on S x V and &g derived from & as above. We define the deterministic
quotient game automaton A/~, = ((S X V) U {qo, Gsink }, G0, 6/ ~s, P/ ~s, Vo) OVer
V. Given ([s],v) € S/~, x V and (v,v’) € E, we define

8/~s(([s],0),7") := ([Smin(s,0)],0),
where
Smin(8,0) := min{§’' | 3830 : § ~5 s such that §((§,v),7') = (§,7')}.

Note that §' depends only on § and v, due to uniqueness of the memory up-
date; hence smin(s, v) is well-defined. The rest of ¢/~ is defined analogously:

3.2 — REDpUCTION OF GAME GRAPHS 51

for each v € V, we have a transition from go to ([so], v), where s¢ is the ini-
tial memory content; for s; =g s, (v,v') ¢ E, the transitions 6((s1,v),v’) =
d((s2,v),v") = gsink in A are merged such that 6/~.(([s1],7),?") := Gsink- The
transitions from ggink to gsink are adopted from A.

The acceptance condition ¢/~, of A/~, is defined in terms of accepting
runs: let p = go([so], v0)([s51],v1)([s2], v2) - - - be the run of A/~ on vyv10; - - -
and let p’ = qo(s(, v0)(s},v1)(s5,v2) - - - be the corresponding run of A, i.e., it
holds s/ € [s;] for all i € IN. We define p to be accepting if and only if o’ is
accepting.

Note that the run p’ is uniquely determined by the run p which, in turn,
is uniquely given by the word vyv; - - -, because both A and A/~ are de-
terministic. Then, the acceptance condition of A/~, immediately implies
L(A) = L(A/~,), because accepting and non-accepting runs in A correspond
to accepting and non-accepting runs in 4/ ~,, respectively.

Remark 3.9. Let A be a game automaton, ~ a compatible equivalence relation
on S x V and =5 as given by Definition 3.7. Then, A and A/~ are equivalent,
i.e., itholds L(A) = L(A/~,).

In the forthcoming sections we present game automata with either weak
parity, Biichi or parity acceptance condition. For each of the three we prove
existence of a compatible equivalence relation and use this to apply our mem-
ory reduction algorithm. Before that, we close the present section by giving a
formal correctness proof of our technique. In the following theorem we show
that the automaton game I "of A/ ~; has the same structural properties as I "
i.e., the game simulation relation is preserved. This means that it holds ' < T,
as indicated by the leftmost dashed arrow in Figure 3.5.

Theorem 3.10. Let I = (G, ¢) and I" = (G', ¢') be infinite games such that T is
simulated by T". Let A be the game automaton of I" and ~ a compatible equivalence
relation on S x V. Then, T is simulated by the unique automaton game I'"' of A/ ~..

Proof. From Definitions 3.6 and 3.8 it follows that .4/~ has a state set of the
form (S’ x V) U {qo,gsink} for a finite set S’, and a deterministic transition
structure. Hence, A/ ~; is a game automaton and we can transform it into
the unique automaton game I’ = (G”, ¢") with G” = (V",E"”), where the
owner of a vertex (s’,v) € V" is given by the owner of v € V. It remains
to show that I' is simulated by I'"”. To do so, we verify items 1 through 3 of
Definition 2.6; item 1 is already clear by the previous remarks.

For item 2a, we choose [sy] as initial memory content and obtain as possi-
ble initial vertices on G” the set {([so],v) | v € V}. To check the edge rela-
tion E” of G”, consider a vertex ([s],v) € V”; obviously, it holds (s,v) € S x V.

52 3 — AN ALGORITHM FOR MEMORY REDUCTION

Let v € V be such that (v,0") € E. Since I' < T”, there exists s’ € S such
that ((s,v),(s’,v')) € E' and, hence, there exists (a unique) Smin(s,v) € S
such that 6/~.(([s],7),?") = ([smin(s,7)],?") (cf. Definition 3.8). This yields
the edge (([s],v), ([Smin(s,v)],7")) € E”, validating item 2(b)i. For the reverse
direction, i.e., item 2c, we argue the other way round. However, note that
(([s],v), ([smin(s,v)],7")) € E” does not imply ((s,v), (Smin(s,v),?")) € E'. But,
by Definition 3.8, there must exist § € [s] such that ((8,v), (smin(s,v),?")) € E'.
Thereby, the existence of (v, ') in E is verified.

To complete the proof of item 2 from Definition 2.6, we show uniqueness
of the memory update as follows: for s,s1,s, € S and v,v1,v2 € V, we assume
the edges (([s],v), ([s1],v1)), (([s],v), ([s2],v2)) € E”. By Definition 3.4, this
means 8/~,(([s],2),01) = ([s1],01) and 6/~ (([s],0),02) = (s2},02). Towards
a contradiction, assume [s1] # [s2] and consider the following implication:

[s1] # [s2] =" [min{& | 3§ : § ~5 s such that §((§,v),v1) = (§,v1)}] #
[min{8’ | 35 : § ~g s such that §((5,v),v2) = (§,v2)}]
= min{§ | 35:§ ~g s such that §((§,v),v1) = (§,01)} #
min{§ | 35 : § ~5 s such that §((§,v),v2) = (§,v2)}
= {§|3$:8~gssuchthaté((5,0v),v1) = (8,v1)} #
8| 38 : 8~ s such that 6((8,0),v2) = (§,02)}
= {§' | 38 :8 =g s such that ((§,v),(§,v1)) € E'} #
{8 | 35 : § =g s such that ((§,v), (8,v2)) € E'}
D&?Sbé

The last inequality yields the desired contradiction as follows: for every sin-
gle § € S with § =g s, the memory update §’ from (§,v) is unique. If we iterate
this argument, then we get that the above sets of memory updates must co-
incide. Thus, we have deduced the uniqueness of the memory update in G”
from the uniqueness of the memory update in G'.

What remains to be shown is that plays winning for Player 0 in I' map
to plays winning for her in I'’, and vice versa (cf. item 3 of Definition 2.6).
This basically follows from the fact that A and A/~ are equivalent. Let
0 = vov1v2 - - - be a play in T, and let o' = (s0,v0)(s1,v1)(52,v2) - - - and ¢" =
([so],v0) ([s1],v1)([s5],v2) - - - be the corresponding plays in I and I'”, respec-
tively. Then, we get the following equivalence:

3.2 — REDpUCTION OF GAME GRAPHS 53

r<r’ /
0€9 < 0 €c9@
P the unique run goo’ of A on ¢ is accepting
< o€ L(A)
Rem. 3.9
=" 0€ L(A/~,)

<= the unique run go0” of A/~ on ¢ is accepting

Def. 3.4 17

= o' e€¢”

O

The essence of Theorem 3.10 is that from a solution to I we can construct
winning strategies for both players in I which are implemented with less mem-
ory than winning strategies constructed by solving I''. More precisely, we have
reduced the upper bound for the size of the used memory from \S[to |S/ g]

Let us formulate the full memory reduction algorithm schematically de-
picted in Figure 3.5 (cf. page 48).

Algorithm 3.1 (MEMORY REDUCTION)

Input: Infinite game I' = (G, ¢)
Output: Strategy automaton Ay for Player 0 from W

1: Establish a game simulation of I by a new game I"" in which Player 0 has a
positional winning strategy.

2: View I" as w-automaton A.

3: Reduce A: use a compatible equivalence relation ~ on S x V to com-
pute ~s on S and construct the corresponding quotient game automa-
ton A/ ~,.

4: Transform A/~ into the unique automaton game I'”.

5: Compute a positional winning strategy for Player 0 in I/ and from it con-
struct the strategy automaton .A £

Note that Algorithm 3.1 does not depend on the actual winning condi-
tion @; we only need a compatible equivalence relation ~ for the execution
of step 3. Moreover, our technique works correctly even if I’ or I do not
admit positional winning strategies. In this case we need to apply a product
construction, which gets as input the memory update structure of the reduced
game, i.e., the graph G”, and a strategy automaton implementing a winning
strategy for Player 0 in T".

Note that, once the strategy automaton Ay is computed, the classical mini-
mization approach for strategy automata can be applied; this observation holds
independently of the procedure the automaton Ay is obtained from.

54 3 — AN ALGORITHM FOR MEMORY REDUCTION

In the upcoming sections we present techniques to reduce the size of game
automata with particular acceptance conditions. We show that the equivalence
relations used are compatible and that it is possible to define a quotient game
automaton (cf. Definition 3.8) with the same type of acceptance condition.

3.3 Staiger-Wagner Conditions

In this section we apply Algorithm 3.1 to Staiger-Wagner games. For the game
simulation in step 1 we use the algorithm presented on page 28, obtaining a
weak parity game automaton. To reduce its state space we transform it into a
DWA, i.e., a deterministic weak Biichi automaton. DWA are a special kind of
deterministic Biichi automata and can be efficiently minimized with more or
less the same algorithm as for minimizing automata over finite words [L6d01].
More precisely, we do some precomputations to the DWA and afterwards com-
pute the state equivalence known from minimization of standard DFA. We
show that the obtained relation is compatible with the DWA and from it com-
pute the equivalence relation ~s according to Definition 3.7. The quotient
automaton induced by ~g is again a DWA, and it is transformed back into
an equivalent weak parity game automaton. This automaton is then used to
execute the last two steps of Algorithm 3.1.

In Section 3.6.1, we present a family of Staiger-Wagner games where our
algorithm yields an exponential reduction of the used memory, as the classi-
cal approach, i.e.,, minimization of a strategy automaton, yields exponential
memory. As a start, let us introduce deterministic weak Biichi automata.

3.3.1 Deterministic Weak Biichi Automata

DWA form a special subclass of deterministic Biichi automata (DBA). They
recognize the class of regular languages which are both recognizable by deter-
ministic Biichi and deterministic co-Biichi automata. This means that they are
weaker than nondeterministic Biichi automata (NBA) and also weaker than
DBA. (We introduce DWA here, because we only use them to reduce weak
parity game automata.)

An important property of a weak parity game automaton is that in every
run the sequence of seen colors is weakly increasing (cf. page 29). This imme-
diately implies that all states within the same strongly connected component
have the same color. A strongly connected component (short: SCC) is a maximal
subset C C Q such that each state in C is reachable from every other state in C.
If the color of some SCC C is even, then a run remaining in C until infinity is

3.3 — STAIGER-WAGNER CONDITIONS 55

accepting, no matter which particular states are visited. This is a certain kind
of weakness which similarly can be found in DWA.

Definition 3.11. Let A=(Q, 4o, J, F) be a deterministic Biichi automaton over X.
The DBA A is called a deterministic weak Biichi automaton if every SCC of A
contains either only final states or only non-final states. According to this we
call a SCC final or non-final.

We call a state g € Q recurrent if there is a word w € X such that
0*(q,w) = g. Otherwise q is called transient. A SCC is called transient if it
has only one state and this state is transient. Otherwise a SCC is called recur-
rent.

The first step towards a minimization algorithm for DWA is to express the
acceptance condition by means of a coloring.

Definition 3.12. Let A = (Q,qo,6,F) be a DWA and k € IN. A function ¢ :
Q — {0,...,k} is called A-coloring if the following hold:

1. ¢(q) is even for every recurrent state g € F
2. ¢(gq) is odd for every recurrent state g ¢ F
3. ¢(q) <c(r) forall q,r € Q with §(g,a) = r for some a €
A coloring c is called k-maximal if the following hold:
1. ¢(q) < c(q) for every A-coloring ¢’ : Q — {0,...,k} and allg € Q
2. ¢(q) < kforevery g€ Q
A coloring is called maximal if it is k-maximal for some k € IN.

The following remark (deduced from [L6d01]) shows that an .A-coloring
can be used to express the acceptance condition of A in terms of a weak parity
condition. However, note that the notion of coloring from Definition 3.12 is
more restrictive than the one introduced on page 14.

Remark 3.13. Let A be a deterministic weak Biichi game automaton over V and
let ¢ be an A-coloring. Let further A’ be the weak parity game automaton
determined by A and acceptance condition c. Then, A and A" are equivalent.

Vice versa, given a weak parity game automaton we can construct an equiv-
alent DWA, declaring final all states with even color. Altogether, we obtain that
weak parity game automata and deterministic weak Biichi game automata can
be transformed into each other. Note that both directions take only linear time.

56 3 — AN ALGORITHM FOR MEMORY REDUCTION

Let us consider a technique for minimization of (general) DWA [Lod01].
Basically, the algorithm works as for standard DFA. The only difference is that,
before computing equivalent states, the DWA has to be normalized (see Defi-
nition 3.14). As is shown below, the normalization can be done in time O(n),
where 1 is the number of states of the given DWA. Applying for example block
partitioning [Hop71], one finally obtains a minimal equivalent DWA uniquely
determined (up to isomorphism) in time O(n - logn). We do not want to give
the complete correctness proof for this approach, but we mention one funda-
mental part of it and refer to [Lod01] for the remaining details. That is, we
explain how a DWA is normalized. For that we need the following definition.

Definition 3.14. Let A = (Q,qo,d,F) be a DWA over ¥ and ¢ an .A-coloring.
Let F, be the set of states with even color: F. := {g | ¢(g) is even}. We say that
A is in normal form if F = F, for some k-maximal A-coloring ¢ : Q — {0,..., k}
with k even.

Theorem 3.15 ([L6d01]). Let A = (Q,4qo,9,F) be a DWA over ¥. with n states.
Then there exists a set F' C Q of final states computable in time O(n) such that the
DWA A" = (Q, 40,9, F") over ¥ is in normal form and equivalent to A.

Proof. The asymptotic running time of each graph search algorithm used in
this proof is linear in n + |X|n, i.e., the size of A. Since we consider |Z| a
constant we obtain an overall running time in O(n) (see [L6d01, Sed91] for
further details).

The main part of the proof is to find a k-maximal .A-coloring, for some
even k € IN. From item 3 of Definition 3.12 we immediately deduce that
all states within the same SCC get the same color. Hence, we only have to
find a maximal coloring for the SCC-graph G of A. This graph is of the
form G = (V,E) with V.= {Qy,...,Qn}, where Qy,...,Q,, are the SCCs
of A. There is an edge (Q;,Q;) € E if and only if i # j and there are states
7 € Qi,q; € Q; such that 5(g;,a) = gq; for some a € X. Since G is acyclic the
set V is partially ordered by E and, hence, we can assume that V is topologi-
cally sorted, i.e., (Q;, Q]-) € E implies i < j. Moreover, we can assume that all
SCCs are marked whether they are transient (or recurrent) and whether they
are final (or non-final). If A has m SCCs, then we compute a m’-maximal color-
ing d for G, where m’ is the smallest even number greater than or equal to m,
ie., m' := mif m is even or m’ := m+1 if m is odd. Algorithm 3.2 computes
the coloring d as follows: we start with all SCCs that have no successors in G,
assigning to them the highest possible color (either m’ or m’—1). From that we
inductively obtain the d-values for predecessor-SCCs.

3.3 — STAIGER-WAGNER CONDITIONS 57

Algorithm 3.2 (MaxiMAL COLORING)
Input: Topologically sorted SCC-graph G = (V,E) with V. = {Qy, ..., Qu}
Output: Maximal coloring for G

1: fori = m downto 1 do

2 if succ(Q;) = @ then {Initialize d(Q;) with maximal possible value}
3 if Q; is final then
4 d(Ql) =m'
5: else
6: d(Q;) :==m'—1
7 end if
8 else {Compute d(Q;) with help of successor values}
9: l:= mm{d(Q]) | Q] € SMCC(Q[)}
10: if ; is transient then
11: d(Q;) =1
12: else if [is even and Q; is final then
13: d(Q;) =1
14: else if [is odd and Q; is non-final then
15: d(Q;) =1
16: else
17: d(Q;) :=1-1
18: end if
19: end if
20: end for

21: return d

Since V is topologically sorted, the d-values of all successors of a SCC Q; are
computed before d(Q;) is computed. The values of the SCCs with no succes-
sors are maximal (either m’ or m’—1), and so are the d-values of all other SCCs.
Note that each transition of A is considered at most once, namely in line 9,
which takes time at most |X|n. Let F/ be the set of states with even d-color:

F=|J &

d(Q;) is even

For a € X¢, the run of A on « and the run of A’ on « coincide. Moreover, for
each recurrent SCC Q);, it holds that Q; is final in A if and only if Q; is final
in A’. There may be SCCs which are final in A and non-final in A’, or vice
versa, but this can only be the case for transient SCCs, which have no effect on
acceptance. Hence, A and A’ are equivalent. O

In [L6d01] it is shown that a normalized DWA A can be minimized in

58 3 — AN ALGORITHM FOR MEMORY REDUCTION

the same way as the DFA A. To do so, we compute the state equivalence
relation ~ 4 (see for example [Hop71]); for two states q,4" of a DFA A we
define

qraq = YweX :5*(qw) €F < & (¢,w)€F.

If we merge all ~ 4-equivalent states in a normalized DWA, then we obtain an
equivalent minimal DWA, which only depends on the accepted w-language.

Theorem 3.16 ([L6d01]). Let A = (Q,qo,9,F) be a DWA over ¥. with n states.
Then, one can compute an equivalent minimal DWA A™" in time O (n -log n), where
A™N s yuniquely determined (up to isomorphismy).

3.3.2 Reduction of Weak Parity Game Automata

By the results of the previous section, a weak parity game automaton can
easily be transformed into a deterministic weak Biichi game automaton. In
the DWA, a state is declared final if it has an even color in the weak parity
game automaton. Moreover, the initial state qo is declared final and the sink
state ggnik is declared non-final. This does not change the accepted language
and the automaton is still a DWA.

We show that the state equivalence relation ~ 4 known from minimization
of standard DFA is compatible with the DWA A. (For a definition of ~ 4 see at
the end of Section 3.3.1.) Moreover, we define the quotient automaton A/ ~.,
where ~g is computed from ~ 4 according to Definition 3.7.

Lemma 3.17. Let A be a deterministic weak Biichi game automaton. Then, the rela-
tion =~ 4 is compatible with A.

Proof. We show item 1 of Definition 3.6 by contraposition. Consider two states
(s,v),(s',v") € Sx Vand aletter vy € V such that d((s,v),vo) #4 6((s',7'),v0).
Then, there exists w € V* such that

5*(6((s,v),v0),w) € F < 5*(6((s',7"),v0), w) ¢ F.

Hence, the word vyw separates (s,v) and (s/,v’). For item 2, let p,p’ be two
runs such that p(i) ~ 4 p'(i), for all i € IN. Note that two ~ 4-equivalent states
are either both final or both non-final. From this it follows that p is accepting
if and only if p’ is accepting. O

We define equivalent memory contents as follows: for si,s, € S, let s; ~g 57
if for all v € V it holds (s1,v) ~ 4 (s2,v). We compute the quotient automaton

3.3 — STAIGER-WAGNER CONDITIONS 59

induced by ~s according to Definition 3.8. It has the following set F/~, of
final states: for [s] € S/~,,v € V, let

([sl,v) € F/~ng : <= (s,v) € F.

If s; =5 s, then by definition of ~g it holds (s1,v) ~4 (s2,v), for all v € V.
This implies the equivalence (s1,v) € F <= (s2,v) € F, which means that
F/~ is well-defined. From the above results we deduce that a run p of A is
accepting if and only if the corresponding run p’ of A/, is accepting. This
means that Definition 3.8 is satisfied and A/~ is a deterministic weak Biichi
game automaton equivalent to A (cf. Remark 3.9).

The automaton A/~ can also be considered as a weak parity game au-
tomaton, because only states with the same color can be merged. To see this,
we go back to general DWA.

Lemma 3.18. Let A = (Q, 40,6, F) be a DWA over ¥ and let ¢ be a maximal A-
coloring. Let further p,q € Q such that c(p) # c(q). Then, it holds p %4 q.

Proof. Let p,q € Q such that c(p) # c(q). We use a lemma from [L5d01] to
deduce that L, (A,) # L, (A,;). Hence, there exists « € ¢ such that w.Lo.g. it
holds & € Ly,(Ap) and & & L, (Ay). Since A, assumes only finitely many final
states in its run on «, there exists a finite prefix w of a such that 6*(p,w) € F
and 0*(q,w) ¢ F. Thus, w separates p and . O

The above lemma shows that two states which are to be merged must have
assigned the same color. This means that for each maximal coloring d (com-
puted by Algorithm 3.2) the coloring d/~, given by

d/~([s],v) :=d(s,v)

is well-defined. Hence, the DWA A/

~; can be seen as a weak parity game

automaton with coloring d/ ~.
Let us summarize the results of Sections 3.3.1 and 3.3.2 by reformulating
Algorithm 3.1 for Staiger-Wagner games.

3.3.3 A Memory Reduction Algorithm for Staiger-Wagner Games

Given a Staiger-Wagner game I' = (G, F), we apply the game simulation from
page 28, obtaining a weak parity game I = (G’,c). We consider I as a weak
parity game automaton which subsequently is transformed into an equivalent
DWA. We apply Algorithm 3.2, computing a maximal coloring d, and obtain
the normalized deterministic weak Biichi game automaton A with the set F of
final states.

60 3 — AN ALGORITHM FOR MEMORY REDUCTION

To A we apply a minimization algorithm for standard DFA, computing
the equivalence relation ~ 4. From ~ 4 we compute ~g according to Defini-
tion 3.7. By our previous results, the relation ~ 4 is compatible with A and,
accordingly, A/~ is a deterministic weak Biichi game automaton equivalent
to A. Using Remark 3.13, we view A/ ~, as weak parity game automaton with
coloring d/~,. We get that I is simulated by the automaton game I "of A/ -

Theorem 3.19. Let T be a Staiger-Wagner game and I’ the expanded weak parity
game according to page 28. Further, let A be a normalized deterministic weak Biichi
game automaton for I with maximal coloring d, and let = 4 be defined as on page 58.
Then T is simulated by the weak parity automaton game T"" of A/~ with color-
ing d/~.

Algorithm 3.3 (MEMORY REDUCTION FOR STAIGER-WAGNER GAMES)

Input: Staiger-Wagner game I' = (G, F)
Output: Strategy automaton A for Player 0 from Wp
1: Establish a game simulation of I' by a weak parity game I”.
2: Transform I into a deterministic weak Biichi game automaton, via the
weak parity game automaton of I".
3: Apply Algorithm 3.2 to obtain a normalized DWA A, say with maximal
coloring d.
4: Consider A as a DFA and compute the state equivalence relation ~ 4; re-
fine ~ 4 to obtain ~s and construct the quotient DWA A/ ~..
5: Transform A/~ into an equivalent weak parity game automaton 5 with
the coloring d/ ~.
6: View B as weak parity automaton game I'”.
7: Compute a positional winning strategy for Player 0 in I'” and from it con-
struct Ay.

We measure the running time of our algorithm in the size of I'. By the
results of Section 3.3.1, transformation of a weak parity game automaton into
a deterministic weak Biichi game automaton (or vice versa) takes time O(n),
where 7 is the number of states of the given game automaton. Normalization
of the deterministic weak Biichi game automaton A takes time linear in the
number of transitions, which is O(n -logn); the factor logn comes from the
input alphabet V, which is of size logarithmic in n. For the same reason, the
computation of ~ 4 takes time O(#n - (logn)?). The weak parity game I’ can
be solved in time O(n -logn). Thus, the overall running time of Algorithm 3.3
is O(n - (logn)?), i.e., polynomial in |I”’|.

3.4 — REQUEST-RESPONSE CONDITIONS 61

3.4 Request-Response Conditions

In this section, we apply our approach for memory reduction to Request-
Response games. The first step is a game simulation by a Biichi game (cf. The-
orem 2.12). Afterwards, we reduce the state space of the obtained Biichi game
automaton. Several types of simulation relations have been proposed for au-
tomata with Biichi acceptance condition, for example direct and fair simulation
(see for example [EHO00, HKR97]). The problem with these notions is that they
are inadequate for state space reduction. Direct simulation is too strong be-
cause in an accepting run of a Biichi automaton the particular positions where
final states occur are not relevant; quotienting with respect to fair simulation
does not preserve the recognized language.

To overcome this, we use the notion of delayed simulation (introduced in
[EWSO05]), which is an intermediate between direct and fair simulation, and it
preserves the recognized language. Delayed simulation is defined by means of
a simulation game between two players, called Spoiler and Duplicator. Dupli-
cator wins if, for each visit to a final state in the run built up by Spoiler, there
is a visit to a final state in the run built up by Duplicator, sometime later.

In [EWSO05] it is shown that, for a (nondeterministic) Biichi automaton, the
delayed simulation relation can be computed in polynomial time (by solving
a parity game with constantly many colors). In our setting we deal with de-
terministic Biichi automata, which makes the situation much simpler. More
precisely, we show that for Biichi game automata the computation of delayed
simulation can be reduced to minimization of standard DFA, after some pre-
processing.

3.4.1 Delayed Simulation for Biichi Automata

First of all, let us introduce the delayed simulation game for Biichi automata.
We assume that A = (Q, g1, A, F) is a (nondeterministic) Biichi automaton
over % with no dead ends, i.e., for each state g there exists a state 4’ and a
letter a such that (g,4,q") € A. For qo,q; € Q, we define the delayed simulation
game Gg,(qo,q,). (We assume A implicitly and leave it out in our notation.) It
is played by two players, called Spoiler and Duplicator. The players move in
turn, Spoiler starting from g9 and Duplicator starting from g;. In each round
i=0,1,2,..., Spoiler chooses a transition (g;,a;,4;1+1) € A and moves a pebble
from g; to g;11 and, afterwards, Duplicator does the same with a transition
(9i,a;,q;,) € A with the same labeling (a; = aj). Thereby, Spoiler and Du-

I A1 4/

plicator build up the runs p = qogqig2--- and p’ = qyq145 - - -, respectively.

62 3 — AN ALGORITHM FOR MEMORY REDUCTION

Duplicator wins if and only if she can mimic each of Spoiler’s visits to final
states, in a delayed fashion: the play (p, ') is winning for Duplicator if it holds

Vi(gi€ F==3Jj>i:q;€F).

Spoiler wins if either the above condition is not satisfied or the play comes to a
halt, i.e., Duplicator cannot answer by a transition labeled with the same letter
previously chosen by Spoiler. We say that q(, delayed simulates g if Duplicator
has a winning strategy in G4 (qo,q;), and we denote this g9 =<4 q). Accord-
ingly, qo, q;, delayed simulate each other if and only if g9 <4, g and g =4 o,
denoted g0 ~4. 4.

As is shown in [EWS05], the relation <, is a preorder, i.e., it is reflexive and
transitive. This immediately implies that ~, is an equivalence relation. More-
over, it is shown that quotienting with respect to ~;, preserves the recognized
language, which is the basic observation needed to use delayed simulation for
state space reduction of Biichi automata. The ~;,-quotient of a (nondetermin-
istic) Biichi automaton is defined in the natural way: it has the state set Q/~,
with initial state [g1] (g1 is the initial state of .A) and

(a2, [q]) € A/~ : == Fq0 € [4], 90 € [q] such that (qo,a,q0) € A,
and the set F/~, :={[q] | [g] N F # @} of final states.
Lemma 3.20 ((EWS05]). Let A be a Biichi automaton. Then L(A)=L(A/~,,) holds.

We show that for deterministic Biichi automata delayed simulation can be
computed by a reduction to the minimization problem for standard DFA. To
do so, we first introduce the delayed bisimulation game GU. 1t is defined sim-
ilarly to G, except for the following two differences: in each round of the
play, Spoiler can choose freely which of the two pebbles he wants to move.
Duplicator must choose the other pebble, afterwards. Moreover, the winning
condition for Duplicator is modified. If a final state is seen at some position i in
either run, then there must be a position j > i such that a final state is seen at
position j in the other run. If Duplicator has a winning strategy in G4 (g0, g0),
then we say that qo, g}, are delayed bisimilar, and we denote this qo ~Y. g{.

We first prove that, for a deterministic Biichi automaton, two states delayed
simulate each other if and only if they are delayed bisimilar. The major rea-
son for this is the fact that the chosen transitions are uniquely determined by
Spoiler’s decisions. Hence, it makes no difference whether he moves in p or p’,
and Duplicator has only one possible move to answer with.

3.4 — REQUEST-RESPONSE CONDITIONS 63

Lemma 3.21. Let A = (Q, q1,9, F) be a deterministic Biichi automaton. Then, for all
states qo, q € Q it holds

~ / ~bi 1
qo =de 4o < 40 =4, qo-

Proof. By the above remarks, Gy (4o, q0), Gae (40, q0) and G5i(qo,q;) can all be
modeled on the same game graph G, which has as set of vertices the Cartesian
product Q x Q, and all vertices belong to Spoiler. Hence, it suffices to show
that each path in G satisfies the winning condition of Gu. (g0, q) and G (44, 90)
if and only if it satisfies the winning condition of Qgé(qo, q0)- For the implica-
tion from left to right, assume that for each i with g; € F there exists j > i such
that q;- € F, and for each i with g} € F there exists j > i such that g; € F. This is
exactly the winning condition of G}(g0,g)). The reverse implication is shown
analogously. O

In [EWS05] it is proven that, even for nondeterministic Biichi automata, de-
layed bisimulation coincides with direct bisimulation after some preprocess-
ing. The direct bisimulation game G differs from the delayed version in that
Duplicator has to precisely mimic Spoiler’s visits to final vertices: for all i, it
must hold that g; € F if and only if g} € F. If qo,4; € Q are direct bisimilar,
then we write qo ~J: g

To show how we can compute delayed bisimulation, let us first define the
closure of a Biichi automaton.

Definition 3.22. Let A = (Q, q1, A, F) be a Biichi automaton over X. The closure
of A, denoted cl(A), is the Biichi automaton A = (Q,q;, A, F') over ¥, where
we initially set F/ := F and then iterate the following until a fixed point is
reached:

If there exists g ¢ F’ such that all successors of g are in F’, then put g in F'.

Note that cl(.A) can be computed from A in time O(|X| - n), if n is the
number of states of A, and that A and cl(.A) accept the same language. The
inclusion L(A) C L(cl(A)) is immediately clear, because F C F’. For the
reverse inclusion, note that from each state in F’ \ F a state in F must be seen
in every run of A, after traversing at most |Q| transitions. Thus, each accepting
run in cl(A) has an accepting counterpart in A.

The following result yields the correspondence between delayed bisimula-
tion and direct bisimulation.

Lemma 3.23 ([EWS05]). Let A be a Biichi automaton and qo, q{, states of A. Then,
it holds
90 Xge Go in A <= g0 ;o in cl(A).

64 3 — AN ALGORITHM FOR MEMORY REDUCTION

Proof. We first show that each winning strategy f for Duplicator in the delayed
bisimulation game on A is a winning strategy for her in the direct bisimula-
tion game on cl(A), ie., g; € F' if and only if 4, € F/, for all i € IN. For a
contradiction, assume w.l.o.g. that g; € ' and q; ¢ F’, for some j. Since q; ¢ F'
there exists an infinite path from q} without a state in F/ on it; since F/ D F,
this path neither has a state in F on it. Pick a strategy ¢ for Spoiler (in the
delayed bisimulation game on .A) playing exactly this path. Since g; € F’ there
must be a state in F on each infinite path from g;. This means, if Spoiler plays
the strategy ¢ in the delayed bisimulation game on .4, then from g; a state in F
must be reached after a finite number of transitions, whereas from q; no state
in F is ever reached. This means that Spoiler wins the delayed bisimulation
game on A; a contradiction.

Conversely, let f be a winning strategy for Duplicator in the direct bisim-
ulation game on cl(.A) from (qo, g(). To show that f is winning for her in the
delayed bisimulation game on .4, we prove, for each i € IN, that q; € F implies
the existence of j > i such that q;- € F. By definition, if q; € F then q; € F/;
since f is a winning strategy for Duplicator in the direct bisimulation game
on cl(A), this implies q; € F’. We distinguish two cases: if g, € F, then
we set j := i, i.e., we take qg as the state we were looking for. Otherwise, it
holds q; € F'\ F. This means that g, must have been added to F’ in some
iteration of the computation of F/, say in the I-th iteration, and all successors
of g/ must have been in F’ after iteration /—1. This yields a situation for the
successors of ¢! and iteration /—1 analogous to that of g; and iteration I. We
repeat this argument at most / times, so we eventually leave F’ \ F and reach a
state in F. Hence, on each infinite path from g we reach a candidate for q;. O

Note that, for a deterministic Biichi automaton A, the computation of the
direct bisimulation relation can be done in the same way as block partitioning
for the DFA A. To this end, let ~ 4 be defined as on page 58 and observe the
following: if there exists w € L* separating g and ¢4/, then Spoiler wins GU!
by choosing the sequence of transitions labeled with wa, for any a € X¢.
Conversely, if g =4 ¢/, then in all possible plays of G the states visited in a
round are either both final or non-final; hence, Duplicator wins.

The construction of cl(\A) can be done in time O(n) and determining the
relation 2 4) takes time O(n - logn).>

Theorem 3.24. Let A be a deterministic Biichi automaton with n states and ~,, the
delayed simulation relation on the state space of A. Then, ~, can be computed in
time O(n -logn).

5Recall that |Z| is assumed constant.

3.4 — REQUEST-RESPONSE CONDITIONS 65

3.4.2 Reduction of Biichi Game Automata

By Lemmas 3.21 and 3.23 and the above explanations, we have proven that, for
a Biichi game automaton A, the computation of ~, in A can be reduced to
the computation of ~4! in cl(A), which is the same as & 1) in the DFA cl(A).
Since A and cl(.A) are equivalent and =, in A coincides with ~(4 in cl(A),
we conclude that A/~ is equivalent to cl(A)/~, . Hence, we can proceed
by considering only cl(.A) instead of A.

In order to use these findings for our memory reduction algorithm, we
verify that ~q(4) is compatible with (the Biichi automaton) cl(A): item 1 of
Definition 3.6 follows from the proof of Lemma 3.17. Item 2 holds as well,
because equivalent states are either both final or both non-final. Accordingly,
if p =p(0)p(1)p(2)--- and p’ = p’(0)p’(1)p’(2) - - - are two runs in cl(.A) such
that for all i € IN it holds p(i) ~q(4) 0’ (i) in the DFA cl(A), then p is accepting
if and only if p’ is accepting.

Lemma 3.25. Let A be a Biichi game automaton and =4 the state equivalence
relation of the DFA cl(A). Then =y) is compatible with cl(A).

For two memory contents si,50 € S, we declare s; ~g s if forall v € V
it holds (s1,v) ~q(4) (s2,v). We compute the quotient automaton of cl(.A)
induced by ~g, according to Definition 3.8. Since the equivalence s; ~g s
implies (s1,v) ~q(4) (52,0) for all v € V, both (s1,0), (s2,v) are either final or
non-final. Let F be the set of final states in cl(.4). Then, we can choose the
following set F/~, of final states in cl(\A) /~,: for [s] € S/~,,v € V, let

([sl,v) € F/ng : <= (s,v) € F.

From the above results we deduce that a run of a Biichi game automaton A is
accepting if and only if the corresponding run of cl(A)/~, is accepting. This
means that Definition 3.8 is satisfied and cl(.A)/ ~, is a Biichi game automaton
equivalent to A (cf. Remark 3.9).

3.4.3 A Memory Reduction Algorithm for Request-Response Games

Given a Request-Response game I' = (G, (), we apply the game simulation
from page 30, obtaining a Biichi game I"'. Subsequently, we transform I'"" into
the Biichi game automaton A and compute cl(A). In cl(A) we compute the
relation ~q(4 of the DFA cl(A). From ~(4) we compute ~s and the quotient
automaton Cl(.A) / ~s. Subsuming our results, we can reformulate Theorem 3.10
as follows.

66 3 — AN ALGORITHM FOR MEMORY REDUCTION

Theorem 3.26. Let I' be a Request-Response game and I the expanded Biichi game
according to page 30. Let A be the game automaton of T and =) the state equiv-
alence relation in the DFA cl(A). Then T is simulated by the automaton game I
of A/ ~.

In fact, the above theorem reveals that our technique for memory reduction
can also be applied to other games which can be simulated by Biichi games,
for example generalized Biichi or upwards-closed Muller games.

Algorithm 3.4 (MEMORY REDUCTION FOR REQUEST-RESPONSE GAMES)

Input: Request-Response game I' = (G, (})

Output: Strategy automaton A for Player 0 from Wp

: Establish a game simulation of I by a Biichi game I".

Transform I" into the Biichi game automaton A.

Compute cl(A), the closure of A, say with the set F of final vertices.

Consider cl(.A) as a DFA and compute the state equivalence relation ~ 4);
refine ~(4) to obtain ~s and construct the quotient Biichi game automa-
ton B := cl(A)/~, with the set F/~ of final vertices.

5: View B as Biichi automaton game I"”.

6: Compute a positional winning strategy for Player 0 in I'” and from it con-
struct Ay.

Note that we measure the running time of our algorithm in the size of I".
In Section 3.4.1, we have shown that the delayed simulation relation of a de-
terministic Biichi automaton can be computed in time O(n - logn), where n
is the number of states and |Z| is assumed constant. Here, we get a com-
plexity of O(n - (logn)?), because we have O(logn) input letters. The Biichi
game T can be solved in time O(n?-logn). Hence, Algorithm 3.4 runs in
time O(n? - logn), i.e., polynomial in |I’|, and it asymptotically requires no
more time than solving I".

3.5 Muller and Streett Conditions

In this section, we present our approach to memory reduction for both Muller
and Streett conditions. It differs only in step 1 (of Algorithm 3.1), where we ap-
ply game simulations via LAR for Muller games and via IAR for Streett games,
but we obtain a parity game in both cases. Accordingly, steps 2 through 5 are
then dealt with at once.

We use the right-hand delayed simulation for alternating parity automata in-
troduced in [FWO06] to reduce parity game automata. Delayed simulation for

3.5 — MULLER AND STREETT CONDITIONS 67

the parity condition takes into account not only whether visited vertices are
colored even or odd, but also the actual colors. Whereas for Biichi game au-
tomata the problem of computing delayed simulation can be reduced to the
minimization problem for standard DFA (cf. Section 3.4.1), for parity automata
the situation is much more involved: the simulation game has to be solved ex-
plicitly. It is equipped with a priority memory keeping track of the “pending
obligations” for Duplicator. If she visits a color which, for satisfying the par-
ity condition, is at least as good as the current obligation imposed by Spoiler,
then the priority memory is reset and a final state is visited; accordingly, the
simulation game has a Biichi winning condition (for Duplicator).

In our setting, we can use a simplification of the game described in [FW06].
First of all, a parity game automaton is not alternating which means that the
first move of each round is made by Spoiler in the simulated automaton and
the second move is made by Duplicator in the simulating automaton. Due to
this fixed policy of moving the pebbles, we need less vertices in the simulation
game graph. Secondly, a game automaton is deterministic. This implies that
the positions of the two pebbles and the update of the priority memory are
uniquely determined by a letter chosen by Spoiler. Accordingly, this letter
needs not be stored and all vertices in the simulation game graph belong to
Spoiler.

In the next section we formally introduce the delayed simulation game. For
brevity, we only present the simplified version for parity game automata.

3.5.1 Delayed Simulation for Parity Game Automata

We are given a parity game automaton A = ((S x V) U {qo, Gsink }» 0,9, ¢, Vo)
over V where a run p of A is accepting if the maximal color seen infinitely
often in p is even.

We construct the right-hand® delayed simulation game G7' := (G7', ¢1!) as fol-
lows: the game graph G7' := (V" E™") has the set of vertices

VI = (Sx V) x (Sx V) x (¢(Sx V) U {v});

the third component of a vertex is called priority memory. We set Vs, := vin

®The notion of delayed simulation presented in [FWO06] is called right-hand delayed simulation
in [Fri05]. The intuition behind “right-hand” is that the simulating automaton, i.e., the
automaton on the right-hand side of the relation symbol, triggers a reset of the priority
memory. In [Fri05], other definitions of delayed simulation for the parity condition are given
as well, but quotienting with respect to these relations does not preserve the recognized
language. However, right-hand delayed simulation preserves the recognized language. For
further explanations and formal proofs we refer to [Fri05, FW06].

68 3 — AN ALGORITHM FOR MEMORY REDUCTION

(and Vp, := @). The edge relation EZ@ - V;ﬁ’ ><Vd’f is defined as follows:
(((s1,01), (52,02), k), ((s1,01), (53, 02), K)) € Effy : <=

e 5((s;,v),v;) = (s},v}), fori =1,2

*n =0

o k' =pm(c(s},v)),c(sh,v5), k)
In the work of Fritz and Wilke a min-parity condition is assumed. Since we
deal only with max-parity games the notions introduced below are adjusted
appropriately. First, let us define the priority memory update pm : IN x IN x
(NU{v}) =» NU{v} as follows:

i pm(i,j,v') = max{i,j}, if j <i

i. pm(i,j,v) =V, ifi <j

=

max{i,j k},if j <i

iv. p

N
<
~.
3
>

=k, ifi <j,iisodd and k <i, and (j is odd or j < k)
V. v,ifi <j,jisevenand k < j, and (i is even or i < k)

vi. p

(
(
iii. pm(i,j k) =
m(i, j, k)
pm(i, j, k) =
m(i,j, k) = v, ifiis odd, j is even, and both k < iand k < j
vii. else pm(i,j, k) =k
The binary relation < is the reward order on IN. We define n < m if
e m is even and n is odd, or
e m and n are both even and n < m, or

e m and n are both odd and m < n.

This yields ... <5 <3 <1<0<2<4<..,;ifn < mthen we say that m
is better than n, whereas terms like maximum and greater refer to the standard
relation < on IN. We leave it up to the reader to verify that case vii of the
definition of pm applies if and only if i < j,i < kand j < k.

The set ¢! is determined by a Biichi winning condition. A play ¢ of G/ is
winning for Duplicator if the set

F:=(SxV)x(SxV)x{v}

is visited infinitely often. This means Spoiler wins if he can avoid v* from a cer-
tain point onwards. The idea behind the Biichi winning condition is as follows:

3.5 — MULLER AND STREETT CONDITIONS 69

assume v~ disappears from the priority memory at some given point. Then,
it can only be restored if in the simulating run we see a color which is both
even and greater than (or equal to) the maximal color seen in the simulated
run since the previous v'. As a consequence, if the simulated run is accepting,
then the simulating one is accepting as well.

Duplicator’s winning region Wp, in g;’; determines the relation Sgef. Gen-
erally speaking, we write (s1,v1) <" (sp,v2) and say that (sp, v2) right-hand
delayed simulates (s1,v1) (short: “(sy,v2) delayed simulates (s1,v1)”) if Dupli-
cator has a winning strategy in G7" from the initial game position p; defined
below. Let i := ¢(s1,v1) and j := ¢(s2, v2):

((s1,71), (s2,v2), max{i,j}) ,ifj<i

§1,01),(82,02)) ‘=
pi((s1,v1), (s2,02)) ((s1,v1), (s2,02), V") , otherwise

Then, we set (s1,v1) g;{; (s2,72) : <= pi((s1,v1),(52,v2)) € Wpy and the
corresponding equivalence relation’ is defined as

(s1,01) %Zh@ (s2,12) 1 <= (s1,01) Sgi (s2,v2) and (s, v2) S;’Z (s1,71).

In our setting, we are only interested in pairs of states which have the same
V-component. More precisely, we only consider initial game positions where
it holds v; = v;. We have to distinguish three cases depending on the colors of
the considered states. Case (i) holds if ¢(s, v) < c(s1,v), case (ii) symmetrically
holds if c¢(s1,v) < ¢(s2,7). In the remaining case (iii) we have equal colors, i.e.,
it holds ¢(s1,v) = ¢(s2,v). The following formalizes the above definition of p;
for all three cases:

(s1,0) & (s2,0): <= (51,0) <7 (s2,0) and (s2,0) <" (s1,0)
— ((s1,9), (s2,0), max{c(s1,v), c(s2,v)}) € Wpy and
case (i) ((52, 7)), (51,7)), \/) € Wpu
or <(51/7))/ (52; 7)), \/) € Wpy and
case (ii) ((s2,0), (s1,v), max{c(s1,v),c(s2,0)}) € Wpy
or ((S],Z)), (52/ U)/ \/) € Wpy and
case (iii)<(52, 7)), (51,7)), \/) € Wpu

3.5.2 Quotienting

We show that ~7" is compatible with the underlying parity game automaton.
Item 1 of Definition 3.6 is verified by the upcoming lemma; item 2 follows

"The relation §g€l is a preorder, i.e., transitive and reflexive [FW06].

70 3 — AN ALGORITHM FOR MEMORY REDUCTION

from the fact that quotienting with respect to ~7/! is language-preserving, as is
proven in [Fri05].

Lemma 3.27. Let A be a parity game automaton and =)' be defined as in Sec-
tion 3.5.1. Then, for all 51,5y € S,v1,v2,0" € V it holds:

(s1,01) R (s2,02) = 6((51,01),0) 7 6((52,02), V')
Proof. We show the equivalent

5((s1,01),v") #t 8((52,02),0') == (s1,01) L (52,02).

By symmetry, it suffices to show the following implication (x):

5((s1,01),0") it 6((52,02),0") = (s1,01) Lt (s2,02)

By definition, the premise of (*) means that Spoiler has a winning strategy
in G7" from the initial game position py := p1(6((s1,v1),v'),5((s2,2),7’)). This
implies that from p; there exists a word a such that on the path through G
(uniquely determined by «) the priority memory content v* is avoided from
a certain point onwards.® We claim that choosing the word v« is a winning
strategy for Spoiler in G’ from p := pi((s1,v1), (s2,02)).

Leto = 0(1)0(2) - - - be the play from p; and o’ = 0'(0)¢’(1)0’(2) - - - the play
from p,. We get that pr, ,(0(s)) = pr,(¢'(s)), for all s > 1, where pr, , is the
projection on the first two components. In the proof we only mention the third
components, i.e., the priority memory. The premise of (*) can be reformulated
as:

In ¢ the symbol v" is seen only finitely often.

If pry(o(s)) = pry(0’(s)) for some s > 1, then ¢(s) = ¢'(s) which means that
the plays ¢ and ¢’ coincide from position s onwards. Since ¢ is winning for
Spoiler by assumption and we have a Biichi winning condition, this implies
that ¢’ is winning for him as well, and we are done. We call this the trivial
case.

Let r be the last position where v* appears in ¢. By induction, we show
that there exists no position s > r where ¢’ has v in the third component.
Moreover, we prove the additional assertion that at each position s > r the
priority memory of o(s) is less than the priority memory of ¢'(s).

For s > 1, let ks := pr;(0(s)) denote the priority memory at position s in
the play ¢ (k; analogously for ¢) and let i; := c(pr;(o(s))) = c(pr;(0’(s)))

8Note that all vertices in G;ﬁ belong to Spoiler.

3.5 — MULLER AND STREETT CONDITIONS 71

be the color of the state at position s in the simulated run, and analogously
with js in the simulating run. Since k, = v and k, # k,°, we get k. € c(S x V).
By assumption, we also have k,11 € ¢(S x V). Generally speaking, for any
two successive v/, say at position s; and s,, the sequence (ks)s, <s<s, is weakly
increasing (see the definition of pm). In our case, this means that the sequence
(ks)r<s eventually becomes stationary because ¢(S x V) is finite.

For the induction start, we show that k.., € c(S x V), where the exact
value depends on i,.1,jr4+1 and k}. Since k, = v and k,1 € ¢(S x V), case i
of the definition of pm must apply in ¢, which means j, 1 < 7,41 and k, 1 :=
max{ir4+1, jr+1}. This implies that in ¢’ case iii must apply because k, # v/, by
assumption. Hence, k|, = max{i,11,jr41,k,} = max{k}, k. 11} € c(Sx V). If
k.11 > k, then we get the trivial case, whereas k,,; < k| implies k, ; = k.
This also proves the additional claim k,,; < k| ;. For the induction step, we
assume ks, ks11,k; € c(S x V), ks < ki, and distinguish the cases ks < k1 and
ks = ksyq1 (for s > r):

o ks < ksy1: the priority memory value can increase only in case iii (cf. def-
inition of pm), which means js11 < is+1 and ksi1 := max{isy1, js+1,Ks }-
Since k; # ksi+1, at least one of the values i;11 or j;41 must be strictly
greater than k;. Hence, it holds k;11 = max{is;+1, js+1}. By the induction
hypothesis, it holds k € ¢(S x V). Hence, case iii also applies in ¢’ and
we get k1= max{is;1,js11,ki}. If ki < ki, then, for the same argu-
ment as above, we get k ; = max{is;1,js;1}, implying ks 11 = k4, ie.,
the trivial case holds. Otherwise, we get k{ ; = k; € ¢(S x V). Since
ks < ki we have ks 1 = max{isi1,js+1,ks} < max{isy1, jsp1, ki) = Kby,
and the assumption ks 1 # k. ; yields the additional claim ks < ki ;.

o ks = ksy1: exactly one of the cases iii,iv or vii of the definition of pm
must apply in 0. We show that in each case it holds k, = k., ;. This also

s+1°
verifies the additional claim ks < k{ ;.

iii: We get ks;1 := max{is11, js+1, ks }, which (together with the assump-
tion ks = k1) implies ks > i1 and ks > js11. Furthermore, we
have js11 < is+1 and since k. # v/, case iii also applies in ¢/, which
means k; ; := max{is+1, js+1, ki }. The induction hypothesis k > ks
together with ks > isyq and ks > joiq yields k} > is11 and k, > js41,
which implies k|, ; = k.

iv: In this case we have is1; = js+1, which (together with the assump-
tion k, # v') means that exactly one of the cases iv,v,vi or vii holds

90therwise, we have the trivial case and are done.

72 3 — AN ALGORITHM FOR MEMORY REDUCTION

in ¢’. We show that cases v and vi are impossible, which then im-
plies k. 1= k. (cf. cases iv and vii). To exclude case v, note that
the conditions for that case imply that j;+1 > k. and that js;q is
even, which simultaneously with the conditions of case iv means
that ks > js+1. Altogether, this yields ks > js+1 > k. contradicting
the induction hypothesis k; < k.. Since for case vi the conditions
“js41 > kl” and “js11 is even” hold as well, we can deduce the same
contradiction as for case v.

vii: By our remarks on case vii (cf. page 68), we have i;41 < js41, and
ks > is11 and ks > js11. As above, the cases iv,v,vi or vii are possible
in ¢’. In both the cases v and vi the condition js41 > ki yields ks > k,
a contradiction to the induction hypothesis.

We have shown that there exists no s > r such that k, = v'. Hence, the
play ¢ is winning for Spoiler, which means that he has a winning strategy
from position p,. Thereby, the implication (x) is shown. O

Corollary 3.28. Let A be a parity game automaton and =" the delayed simulation
relation for A. Then =~ is compatible with A.

We compute ~5 from =)' (as in Definition 3.7) and express the accep-

tance condition /~, of A/~ in terms of a coloring c/~,. To this end, let
s € §,v € V and define

¢/ ~([s],0) = max{c(s,) | (s,) =2 (5,0)},

and let go, gsink inherit their color from A. Since s; ~gs s, implies the equiva-
lence (s1,v) & (sp,v) for all v € V, the above definition of ¢/~ is indepen-
dent of representatives. Hence, A/~ is a parity game automaton.

In [Fri0O5], the %gz—quotient A/ o is defined in a natural way. For our
setting, this means 5/%;;([(5, v)],7") :=[6((s,v),7")] and

¢/ ([(s,0)]) == max{c(s',v) | (',0') = (s,0)}.

The author shows that quotienting with respect to &/)' preserves the recog-
nized language, i.e., it holds L(A) = L(.A/ :;h) (see [Fri05, FWO06] for details);
we use this result in the proof of the following lemma.

Lemma 3.29. Let A be a parity game automaton and A/~ the corresponding ~g-
quotient with coloring ¢/~ (defined as above). Then A and A/~ are equivalent.

3.5 — MULLER AND STREETT CONDITIONS 73

Proof. We have to show that it holds L(A) = L(A/~,), where it suffices to
show that L(A/) = L(A/~,) holds. By Corollary 3.28, automaton .4/ ol
is deterministic, and by Definition 3.8, automaton 4/~ is deterministic. For
a € V¥, let p be the run of A/~, on « and p’ be the corresponding run of A/ ~
on a. The run p’ is uniquely determined by the run p, because both A/ ~
and A/~ are deterministic and =g is a refinement of %;’Z Moreover, p is ac-
cepting if and only if p’ is accepting, because both runs have the same sequence
of colors. Since both A/~ and A/ ~ri Are deterministic, there is no other run
on &, neither for A/~ nor for A/ il Thus « is accepted by A/ ~, if and only
if it is accepted by A/ .. O

3.5.3 A Memory Reduction Algorithm for Muller and Streett Games

The previous results show that our algorithm for memory reduction is appli-
cable to both Muller and Streett games as follows: we simulate I' by a parity
game I"" which is then transformed into a parity game automaton .A. For A we
construct the right-hand delayed simulation game G7' and solve it by standard
techniques (see for example [GTWO02]). Duplicator’s winning region in g‘;’; and
Definition 3.7 uniquely determine ~s. The corresponding quotient automa-
ton A/~ is a parity game automaton equivalent to A, and we can transform
it into a unique parity automaton game I'"’. By Theorem 3.10, T is simulated
by I'.

Theorem 3.30. Let I' be a Muller or Streett game and I the corresponding parity
game (cf. pages 32,36). Further, let A be the game automaton of T' and =~ the right-
hand delayed simulation. Then T is simulated by the automaton game T" of A/ ~,.

Algorithm 3.5 (MEMORY REDUCTION FOR MULLER AND STREETT GAMES)
Input: Muller game I' = (G, F) or Streett game I' = (G, Q)
Output: Strategy automaton Ay for Player 0 from Wy

1: Establish a game simulation of ' by a parity game I".

2: Transform I" into the parity game automaton .4, say with coloring c.

3: Construct the delayed simulation game G for A.

4: From Duplicator’s winning region compute %gef, refine %;’2 to obtain ~g
and construct the quotient parity game automaton B := A/~ with the

coloring ¢/ ~;.

o

View B as parity automaton game I'”.
6: Compute a positional winning strategy for Player 0 in I " and from it con-
struct Ay.

74 3 — AN ALGORITHM FOR MEMORY REDUCTION

At this point, we mention an optional normalization of the coloring ¢ done
before the execution of step 4; it is efficiently computable and may make the
relation &7 larger. For each SCC C of A, we iterate the following: while there
exists (s,v) € C such that c(s,v) > 2 and there exists no (s/,v’') € C such that
c(s',v") = ¢(s,v)—1, do ¢(s,v) := c(s,v)—2. Clearly, this does not change the
accepted language [FWO06].

Recall that we measure the running time of our algorithm in the size of I".
For the computation of ~', we need to solve the simulation game G'". It is a
Biichi game with O(n? - k) vertices where 7 is the number of states of the parity
game automaton 4 and k is the number of colors assigned by the coloring c.
Since Biichi games are solvable in polynomial time (measured in the size of
the game graph), the running time of steps 2 through 5 of Algorithm 3.5 is
polynomial in |[I”|. However, note that step 6 requires time n9Wn) [TPZ06].

3.6 Discussion

In this section we analyze strengths and weaknesses of our approach to mem-
ory reduction.

On the positive side, we prove the existence of particular games for which
our new algorithm yields winning strategies of at most constant size, whereas
standard algorithms compute very complicated strategies of exponential size.
For the class of Staiger-Wagner conditions, we present an example where our
technique results in an exponential gain in the memory size, measured in the
size of the game graph. Analogous results are obtained for Request-Response
and Streett conditions, but there the benefit is measured in the number of pairs
of the winning condition Q).

On the negative side, we point out a particular weakness of our approach,
which is that for determining equivalent memory contents the behavior of the
two players is not taken into account. We give an example of a Staiger-Wagner
game where the game graph is of size O(n) and our algorithm produces a
memory of size at least 2. However, Player 0 has a positional winning strategy
which is found if the game is solved via game simulation.

3.6.1 Exponential Gains

In this section we present examples of Staiger-Wagner, Request-Response and
Streett games where our algorithm reduces the size of the needed memory
from exponential to constant. In each of the three cases, we first apply a game
simulation yielding a game which admits positional winning strategies for

3.6 — DiscussioN 75

both players. We show that the winning strategy computed for Player 0 in the
simulating game yields a very complicated finite-state winning strategy in the
simulated game. However, if we apply our new technique, then we obtain a
very simple winning strategy.

For both Staiger-Wagner and Request-Response games, it will turn out that
the major argument in our proofs is that an attractor strategy chooses the short-
est way into the set of final vertices. Moreover, in Theorem 3.32 we utilize the
fact that, for solving weak parity games, high colors are preferred to low ones.
Both these weaknesses are ruled out by our approach to memory reduction.

Additionally, we present a result for Streett games similar to the aforemen-
tioned ones. We compute a game simulation by a parity game and make rea-
sonable assumptions of the properties of a winning strategy constructed for
Player 0 in this parity game; as a consequence, we get a memory of size expo-
nential in the number of Streett pairs, but our algorithm reduces the memory
to size one.

Let us start with an example of a Staiger-Wagner game.

Example 3.31. Consider the Staiger-Wagner game I', = (G, F;) with the game
graph G, depicted in Figure 3.6 and the winning condition

Fo={U|{v} CUCCA{v,uy,...,uy}} U{R | {x,y} C R}.

Player 1 owns only vertex v, which we consider to be the initial vertex of the
game. Player 0 wins if the play remains within {v,uy,...,u,} or reaches both

N N

®
INCRRC SO

vertices x and v.

®

Figure 3.6: Staiger-Wagner game graph G,

Simulating I',, by a weak parity game I'), = (G, ¢,,), we obtain exponentially
many reachable memory contents in G;,. (A memory content s is reachable if
there exist v,v' € V such that (s, ¢’) is reachable from (sp, v) via a finite path.)

76 3 — AN ALGORITHM FOR MEMORY REDUCTION

If we solve I'j, with the algorithm from [Cha06], then this yields a winning
strategy for Player 0 in I, of size exponential in n. Note that the size of G, is
linear in n, while F;, contains exponentially many sets. If we use Algorithm 3.3
to reduce the size of G;, before solving the game, then we obtain a winning
strategy of constant size for Player 0 in I',.

Theorem 3.32. Let I',=(G,, Fy,) be defined as in Example 3.31 and let T'),=(G},, ¢,)
be the expanded weak parity game obtained from I’y (according to page 28). Then,
Player 0 wins I'y, from vertex v such that the following hold:

1. The positional winning strategy for Player 0 in T, from (&, v) computed by the
algorithm from [Cha06] yields a winning strategy for Player 0 in 'y, from v of
size at least 2".

2. The equivalence relation ~g computed from I', by Algorithm 3.3 (see page 60)
has five equivalence classes.

Proof. The winning regions of I', are the sets Wy = {uy,...,u,,v,x} and
Wy = {vy,...,04,y}. We can assume that Player 1 eventually moves to ver-
tex x; otherwise, the play stays within the set {uy,...,u,, v}, which means that
Player 0 wins. Thus, let a play be of the form ¢ = vo;x0,. For abbreviation, we
set Uy :={U | {v} CUC {v,us,...,un}}.

If we apply the game simulation from page 28 to I',, then we obtain a
weak parity game I'j, where the game graph G/, contains as memory the set
of vertices visited in a play. For each color k, the algorithm for solving I,
computes the set Ay from where a player can force a win by reaching a ver-
tex of color at least k (cf. [Cha06] or Section 2.1.2). It starts with the highest
color m := 2(2n + 3); the highest color is twice the number of vertices in G,,.

Note that from vertex x Player 0 has a strategy to move to vertex y such that
all vertices in V, are finally visited, namely via uq,vy,...,u,, v, (in the given
order). As a consequence, the algorithm from [Cha06] will direct Player 0
to reach Cy,, i.e., the vertices of color m, in T’,. This is due to the fact that
the set A, is the first set to be computed (see the proof of Theorem 2.3). In
particular, this means that the strategy computed for I';, in ¢, visits each of the
vertices u; not visited in ;.

The important observation is how the strategy actually moves from ver-
tex x to vertex y, namely by skipping all vertices u; which have already been
visited in ;. This is due to the fact that it searches the shortest way into Cj,
because it is an attractor strategy. For example, if Player 1 moves from v di-
rectly to x without visiting any vertex u;, then Player 0 visits each vertex u; to
reach Cy (in I'},). This means that we get the play ¢ =vxu 0y - - - u,,v,y*. Con-
trariwise, if Player 1 visits each u; before moving to x, then we get for example

3.6 — DiscussioN 77

0 =VuU10 - - - U, VXV - - - VY, because in this case the shortest way into Cy is to
skip all vertices u;.

Altogether, the set of vertices u; visited in ¢; uniquely determines the strat-
egy for Player 0 from vertex x to vertex y. For each i, vertex u; is visited in ¢,
if and only if it has not been visited in ¢;. Each of the 2" sets in U, yields a
different strategy, each of which requires one state in the strategy automaton.
Hence, this automaton is of size at least 2".

To see item ?? of the theorem, we have to determine the equivalence classes
of ~5. First, we reduce the problem of computing ~ for the weak parity game
automaton A of T, to the problem of computing the standard equivalence
relation ~ 4 for a DFA A’ uniquely determined by A (cf. Section 3.3.2). This
yields for two given states

(Sllv) ~ <52/ Z)) — L<~A(sl,v)) = L(A(sz,v))/

which allows us to identify equivalence of states with winning the same plays
from the corresponding vertices in the game. From ~ we compute ~g and
obtain that the set S/~ has five elements and that all sets in U, are equivalent.
Table 3.1 gives a review of the five equivalence classes. The sets from U, are
all in class three, which has {v,u;} as representative. Accordingly, Player 0
wins if the play stays in U, or reaches both x and y; otherwise, Player 1 wins.
Class five consists of all sets containing y, but not x. If a play in I'), reaches
the memory content {y}, then the corresponding play in I', reaches vertex y.
Thus, the only possible continuation of the play is y* and Player 0 loses.

Plays winning for. ..
Class Representative ays winning 1or

... Player O ... Player 1
1 %4 y None
2 {x} Reach y otherwise
3 {v,u1} Stay in U, or reach x and y otherwise
4 {v,uy,v1,uz} Reach both x and y otherwise
5 {y} None v

Table 3.1: Equivalence classes of ~g

O

Theorem 3.32 shows that there exist games with weak winning condition
where our algorithm yields a substantial reduction of the needed memory:.

78 3 — AN ALGORITHM FOR MEMORY REDUCTION

Next, we extend this result to Request-Response specifications. For the proof,
we utilize an argument similar to one from the previous proof. More precisely,
we exploit the fact that attractor strategies sometimes are too hasty to reach a
final vertex.

Example 3.33. Consider the Request-Response game Ty = (G, ;) with the
game graph Gy depicted in Figure 3.7 (for k = 3) and the winning condition ()
containing the following 2k+-1 pairs of sets:

Oy = {(Po, Ro)} U{(P1,Ry), (P}, Ry), ..., (Px Ri), (P, Ry)}

In Figure 3.7, all sets are written next to the vertices they contain; in partic-
ular, vertex y is contained in all response-sets. The play starts at vertex v.
Player 1 makes k independent decisions, moving either to a vertex in P; or P/
(i=1,...,k). At vertex w Player 0 takes over, making k decisions himself.

Rs v Ri R!

%D O 0.0 00
DD@OO
[G G

Figure 3.7: Request-Response game graph G

Note that each pair in () is eventually responded to, namely at vertex y;
the pair (P, Ro) is already responded to at vertex w. Hence, every (positional)
strategy for Player 0 is a winning strategy. However, we show that a standard
algorithm computes a winning strategy of size exponential in k, while both Gy
and) are of size linear in k.

Theorem 3.34. Let T'y = (Gy, () be the Request-Response game from Example 3.33
and let T} = (G, Fx) be the expanded Biichi game obtained from Ty (according to
page 30). Then, Player 0 wins I'y from vertex v such that the following hold:

1. The positional winning strategy for Player 0 in T} from (2,1,0,v) computed by
the algorithm described on page 23 yields a winning strategy for Player 0 in T
from v of size at least 2~

2. The equivalence relation ~g computed from I'y by Algorithm 3.4 (see page 66)
has one equivalence class.

3.6 — DiscussioN 79

Proof. If Player 0 precisely mimics the decisions of Player 1, i.e.,, she moves
to the R;-vertex if and only if Player 1 has moved to the P;-vertex (for all
i=1,...,k), then in the Biichi game the final vertex (&,1,1,y) is visited after
the first 4k+1 moves. On the way from vertex w to vertex y, the cyclic counter
in the memory is increased by one for 2k+-1 times: it starts with value 1 at ver-
tex w and has value 2k+1 when reaching vertex x; it is reset to value 1 when the
play proceeds from vertex x to vertex y (in I'y) and the final vertex (&,1,1,v)
is visited (in T7}).

If Player 0 makes a mistake, i.e., there exists 1 < j < k such that she moves
to the R;-vertex if and only if Player 1 has moved to the Pj’ -vertex, then the final
vertex (2,1,1,y) is visited as well, but it takes longer to reach it than in the
case where she plays “correctly”. This is due to the fact that her false answer
to the j-th request prevents the cyclic counter from being increased.

By our remarks above, there is a unique shortest path from vertex w to
vertex y which visits a final vertex in the Biichi game T}. It is the path which
precisely mimics Player 1’s behavior between vertex v to vertex w. Solving the
Biichi game we obtain an attractor strategy, which means that a final vertex is
assumed as soon as possible. Hence, the strategy chooses the “correct” path
from vertex w to vertex y (in I'y). This requires a memory of size at least 2k
because the strategy needs to memorize each of the k decisions of Player 1.

Since every request is eventually responded to (and never requested again),
the set of active pairs becomes finally empty, and it remains empty for the rest
of the play. This means that the cyclic counter is eventually reset to 1 and the
final vertex (&,1,1,y) is visited (on G,’<). Moreover, this vertex is repeatedly
visited after the next 2k +1,2-(2k+1),3- (2k +1),... moves. Summing up,
every infinite path on G, visits a final vertex (infinitely often).

Let us now analyze Algorithm 3.4. Consider the Biichi game automaton A
of T}, (for arbitrary k). By the remarks above, every infinite path in A (with-
out gsink) leads through the final state (&, 1,1,y), even when starting at non-
reachable states. Accordingly, all states in S x V are declared final in the clo-
sure cl(A) of A (cf. Definition 3.22). Thus, we obtain ~4! in cl(A) to be the
set

{((s1,0), (s2,0)) | 51,50 € 211K x {1,...,k} x B,v € V}.

This implies that all memory contents are equivalent, i.e., S/~ is a singleton.
O

Let us show a similar result for the class of strong winning conditions.
We consider the Streett game in the upcoming Example 3.35 and make natural
assumptions of the winning strategy for Player 0 in the simulating parity game.

80 3 — AN ALGORITHM FOR MEMORY REDUCTION

More precisely, we demand that she behaves “optimally”. This is meant in the
sense that she continuously chooses those edges which globally guarantee the
best colors she can enforce. A color m is better than a color n if n < m, where
< is the reward order from page 68.

Example 3.35. Let Gy be the graph shown in Figure 3.8 (for k = 3) and () the
following Streett winning condition:

O ={(E1,F),(E-1,F-1),..., (Ex, Ex), (E_t, Fx), (V,V)}

E.«k E»Fk Ej3F E,F1 E,F, E3F3 Vi:E,E_;

O o oo oo
aliciic - ol

N i N ” N /! N ”

Ey,F1 EyF, E,F3 EFh EF Ej3HR

Figure 3.8: Streett game graph Gz

As in Figure 3.7, all sets are written next to the vertices they contain. The
game starts at vertex v; and proceeds similarly to the one from Example 3.33.
The major difference is that vertex v; is visited infinitely often, naturally di-
viding each play into rounds. At the end of each round, i.e., when the play
proceeds from vertex y to vertex vy, the highest possible color 4k+2 is seen in
the simulating parity game I';. This is due to the fact that some index must be
at the last position of the current IAR and, accordingly, the pointer ¢’ has the
value 2k+1 (cf. page 36). Thus, each play satisfies the parity winning condition,
and each (positional) strategy for Player 0 is winning.

For a better understanding of item 1 of the following theorem, the reader
should recall (from page 17) that a positional strategy f can be represented by
the following set of edges: E¢ := {(v, f(v)) | v is a vertex owned by Player 0}.

Theorem 3.36. Let Ty = (G, Q) be the Streett game from Example 3.35 and
let T} = (Gy, cx) be the expanded parity game obtained from T'y (according to page 36)
where sg := ((1---2k+1),1,1) is the initial memory content. Then, Player 0 wins Ty
from vertex vy such that the following hold:

1. Each positional winning strategy f{ for Player 0 in T} from (s, v1) with
{ax(s,9') | ((s,0), (8, 0")) € Egtn{2n+1|neN} =2

3.6 — DiscussioN 81

yields a winning strategy fy for Player 0 in Ty from vy of size at least 2F.

2. The equivalence relation ~g computed from Ty by Algorithm 3.5 (see page 73)
has one equivalence class.

Proof. For simplicity, we assume k = 3; the proof is analogous for other values
of k. First of all, we fix a convention on the entries in an IAR: let the pair (V, V)
be represented by V and every other pair by its unique index: for example,
(E_3,F_5) is represented by —2; if index i has value —j, then we set —i:=j,
for1 <j<3.

The intersection in item 1 means that Player 0 chooses only edges leading
into vertices of even color. To prove that item, note that in any round the
permutation reached (in I';) when vertex w is reached (in I's) is of the form

(Vizip iy p),

where i; € {j, —j} for 1 <j < 3, and p is some permutation of {—i1, —i>, —i3}.
For example, let Player 1 at v; decide to move up, then again up, and then
down; then the permutation is (V 3 —2 —1 p), because the indices —1, —2
and 3 are shifted to the second position one after another, and V stays at the
front (cf. page 36). Moreover, p is a permutation of {1,2, —3}, i.e., the set of all
indices i for which Player 1 has moved to E_; and F;, recently.

If Player 0 moves upwards at wy, i.e., she mimics Player 1’s behavior at ver-
tex v1, then the permutation becomes (V' 1 3 =2 —1 p’), and p’ is either (2 —3)
or (=3 2). That means, ¢’ is assigned the value 5, 6 or 7.1 Simultaneously,
f' gets the value 5 because F_; is visited and —1 is at the fifth position in
the new permutation. Accordingly, it holds ¢/ > f’, which means that we see
color 10, 12 or 14.

Conversely, if Player 0 moves downwards at w;, then the permutation be-
comes (V. —1 3 —2 p”), for some appropriate p”. Hence, ¢ is assigned 4
because index —1 comes from the fourth position. Moreover, index 1 is located
somewhere in p”, either at position 5, 6 or 7. Thus, we have f' > 5 > 4 = ¢;
accordingly, we see an odd color: either 9, 11 or 13.

Making an analogous observation at vertices w,, w3, we can deduce the
following: if Player 0 mimics Player 1’s behavior, then she visits an even color,
say /; if she makes the “wrong” move, then a vertex of odd color less than / is
seen. Calling the latter situation an error, note that Player 0 can play errorless
by memorizing Player 1’s decisions. By an argument analogous to that in

10Note that the definition of ¢’ refers to the old permutation, and index 1 comes from position 5,
6 or 7 (cf. page 36).

82 3 — AN ALGORITHM FOR MEMORY REDUCTION

the proof of Theorem 3.34, implementation of an errorless winning strategy
requires a memory of size at least 2*.

To see item ??, let us consider Algorithm 3.5. Every play on G,’< must tra-
verse an edge ((s1,¥), (52,v1)) infinitely often, for some IARs sy, s,. Thereby, a
vertex with the highest possible color 4k + 2 is visited, because there must be
1 <j <k such that the index j or —j is at the last position of the IAR s;. Thus,
in the simulation game the priority memory is reset to v and a final vertex is
visited, infinitely often. Accordingly, Duplicator has a winning strategy from
each vertex in the simulation game graph. Summing up, all states (having the
same V-component) in the parity game automaton A of I} are %;ﬁ—equivalent,
which means that all memory contents are declared ~s-equivalent. Thus, we
obtain a reduced memory of size one. O

3.6.2 Where Game Automata are too Weak

In the previous section, we have shown that there exist games where our ap-
proach yields a substantial reduction of the required memory. For the sake
of completeness, in the present section we give a negative example: our algo-
rithm computes a memory of exponential size. However, a positional winning
strategy is computed when the reduced game is solved.

Example 3.37. Consider the game graph G, depicted in Figure 3.9 and the fol-
lowing Staiger-Wagner winning condition:

Fo={R|u;€R <= x;€e Randw; € R < z; €R,i=1,...,n} U

{R|y;€R,i=1,...,n}

Let us first explain possible winning strategies, by analyzing the two types
of sets contained in the winning condition. The first kind covers those plays
where Player 0 mimics Player 1’s behavior. At each vertex y; she has to choose
x; or z;, and she has to move to x; if and only if Player 1 has moved to u;. We
call this the “mimic” strategy; clearly, it is winning, but it requires a memory
of size at least 2".

The second kind of sets capture the case where Player 0 moves to y; (for
all i), independent of Player 1’s behavior. This is the only positional winning
strategy from v;; we call it “autonomous”. Note that Player 0’s decision where
to move from vertex y; cannot be revised later: switching from the mimic
strategy to the autonomous one (or vice versa) means that Player O loses.

3.6 — DiscussioN 83

uq Uy Up—1 Uy

(%1 (%] Un—1 Op Un+1

SN S N
> ! > - - > ;71» —-> :’l —> Yn+1
D ORI O p Ny DYy

Figure 3.9: Staiger-Wagner game graph G,

Theorem 3.38. Let T')y = (Gyp, Fy) be the Staiger-Wagner game from Example 3.37
and let T, = (G, cu) e the expanded weak parity game obtained from T, (according
to page 28). Then, Player 0 wins I', from vertex vy such that the following hold:

1. The positional winning strategy for Player 0 in T, from (&, v1) computed by the
algorithm from [Cha06] yields the only positional winning strategy for Player 0
in 'y from vy.

2. The reduced game graph G| computed by Algorithm 3.3 has at least 2" memory
contents.

Proof. To prove item 1 of the theorem it is important to understand that the
winning strategy returned by the algorithm from [Cha06] is the autonomous
one. The highest possible number of vertices which can be visited in a play
(starting at v1) is 4n + 3. For this, Player 0 has to play the autonomous strategy:
it visits two vertices between y; and y,, where the mimic strategy visits only
one vertex between y; and y».

The algorithm from [Cha06] computes the attractor sets Ay, starting with
k=2 (7n+ 3)!! and decreasing until k = 0 (see proof of Theorem 2.3), where
Ap for k' = 2- (4n + 3) is the first non-empty set that is computed. It is not
hard to see that each vertex (M, y;) reachable in G), is contained in Ay, by
considering the autonomous strategy. Since each play (starting at v;) reaches
such a vertex (M, y1), we also get (&,v1) € Ap. No matter which way Player 1

"n ', we have 7n 4 3 vertices and accordingly the highest possible color in I’} is 2 - (71 + 3).

84 3 — AN ALGORITHM FOR MEMORY REDUCTION

chooses to reach vertex y; (in G;), the algorithm always directs Player 0 to play
autonomously.

For item 2, consider vertices (M1, 1), (M, y1) reachable in G), with M; #
M;. Let A be the weak parity game automaton of I'}, for arbitrary n. Then
there exists 1 < j < n such that w.lo.g. it holds uj € M \ M,. Moreover,
there exists an input a of A with x; appearing in it such that « is accepted
from (Mj,y1) and rejected from (Mpy,y1). This implies that (My,y1), (Ma2,y1)
are non-equivalent in .4 and, accordingly, it holds M; %5 M,. Since there are
at least 2" candidates for M; and M, we get that the reduced game graph G
computed by Algorithm 3.3 has at least 2" memory contents. O

3.6.3 Implementation

In this section we describe some aspects relevant for the implementation of our
memory reduction algorithm.

We work with the tool GASt (“Games, Automata and Strategies”).!? It has
been developed since the diploma thesis of Nico Wallmeier in 2002 and is
predominantly implemented in JAVA [Wal03]. GASt provides numerous algo-
rithms for synthesis problems in the field of infinite games (and automata over
infinite words), for example solutions to all types of games presented in Chap-
ter 2. Moreover, the tool comprises a technique for the optimization of “waiting
times” in winning strategies for Request-Response games (cf. [Wal08]).

GASt contains all the game simulation algorithms presented in Section 2.3.
First, a given game graph G is traversed by a depth-first search to construct
the reachable part of the expanded game graph G'. Afterwards, the associ-
ated game is solved and the positional winning strategies obtained are used
to construct winning strategies for the game underlying graph G. We have
integrated our memory reduction algorithm as follows: the reduction of the
expanded game graph G/, i.e., the computation of G”, is invoked directly after
the construction of G’, before the computation of positional winning strategies.

We have implemented our algorithm for four types of winning conditions:
Staiger-Wagner, Request-Response, Muller and Streett. Each one of them is
encapsulated in its own class, inheriting functionalities from a common super-
class. An important difference to the formal presentation of our technique is
that the computations are carried out directly on the game graph G’; the no-
tion of a game automaton is just a formality used to prove correctness of our
approach.

12Until late 2006 the tool was called SymProg.

3.6 — DiscussioN 85

In Sections 3.3 and 3.4 we have shown that for both weak parity game au-
tomata and Biichi game automata the problem of state space reduction can be
reduced to the minimization problem for standard DFA. Hence, we apply the
block partitioning algorithm from [Hop71] in both cases!3, after some individ-
ual preprocessing. In the case of a weak parity game (as obtained by game
simulation from a Staiger-Wagner game), we compute a maximal coloring on
the SCC-graph of G’. The actual translation to a DWA is only implicit, mean-
ing that a set of final states is not explicitly constructed; instead, it is identified
with the set of states which have an even color. By the results of Section 3.3.2
only vertices with the same color can be equivalent. Hence, in the quotient
game graph that is to be computed we can adopt the color assigned by the
maximal coloring. The preprocessing for a Biichi game (as obtained by game
simulation from a Request-Response game) is the computation of the closure
(cf. Definition 3.22) of the expanded Biichi game graph, manipulating the set
of final states.

To implement Algorithm 3.5 for Muller and Streett games, we are faced
with the reduction of a parity game graph. Therefor, we have implemented
the delayed simulation game for the parity condition. It is constructed as
a usual Biichi game, making use of functionalities which have earlier been
implemented in GASt. The solution to this game is processed to obtain the
relation %Z[é

For each of the considered winning conditions, the computed equivalence
relation on S x V has been proven to be compatible. Thus, in our imple-
mentation, we can refine each one to obtain the relation ~s on the memory
component S. Finally, we use ~s to compute the corresponding quotient game
graph. To do so, we fix a total order <s on S and retain only the <s-minimal
element of each ~s-equivalence class; to simplify matters, the initial memory
content sy is assumed <g-minimal. All other memory contents are erased, and
the quotient game graph is then computed in the obvious way.

3.6.3.1 Computation Results

Whereas GASt provides synthesis algorithms based on both the enumerative
and the symbolic representation of the state space, we have implemented our
approach only for the enumerative case. Due to the exponential size of a
game graph obtained by game simulation, the running time of our algorithm
grows very rapidly. Sometimes considering only the reachable vertices of G’

13The restriction that our technique requires a deterministic transition structure is neutralized
by the fact that only vertices with the same V-component are tested for equivalence.

86 3 — AN ALGORITHM FOR MEMORY REDUCTION

already yields a substantial reduction of the needed memory. In that case,
we have to restrict the definition of ~g further. More on this can be found in
Section 6.1 in [Hol07]. However, to obtain the results presented in Section 3.6.1,
it is required to consider the non-reachable part of G as well.

The following tables summarize some computation results for the games
from Examples 3.31 and 3.33, with and without our memory reduction algo-
rithm. One can observe the exponential growth rate of both the size of the
expanded game graph (see |S,|, |V} in Table 3.2 and |S|, |V/| in Table 3.3) and
the time needed to solve the respective game. However, the computation of ~g
and the construction of the quotient game graph is done efficiently, because we
measure the running time of our algorithm in the size of the expanded game
graph. Moreover, note that in the first case the memory is reduced to size five
whereas in the second case we obtain a memory of size one, no matter the
value of the parameter (1 or k).

I, Memory Reduction Iy

n |Val

S, V! Solve = Quotient S/ V| Solve

’ n n n
2 7 69 699 68ms 1.8s 0.3s 5 23 < 5ms
3 9 203 2906 031s 3l5s 3.7s 5 29 _each
4 11 609 11291 3.15s 684s 56s 5 35

Table 3.2: Computation results for Example 3.31
I} Memory Reduction ry
ko [Vil
Sk| |V{] Solve ~g Quotient [S;| |V//| Solve

2 14 30 716 120 ms 2s 20ms 1 14
3 20 8 3743 80ms 113s 70ms 1 20 S6ms
4 26 211 16947 36s 80 mins 0.5s 1 26 each
5 32 560 71596 outof mem 44.5h 2.6s 1 32

Table 3.3: Computation results for Example 3.33

Conclusion of Part I

Summary

In the first part of the thesis, we have dealt with the problem of reducing
the memory necessary for implementing winning strategies in regular infi-
nite two-player games. Our motivation has been initiated by the fact that,
in many cases, winning strategies constructed by standard algorithms require
considerably more space to be realized than actually needed. As a remedy,
we have introduced a technique which is independent of particular strategies,
approaching the problem of memory reduction before the computation of win-
ning strategies.

Our Approach. The key idea of our algorithm is to apply a game simulation
extending the given game arena by a finite memory component, and to reduce
the extended game graph by identifying equivalent memory contents, after-
wards. This has been realized by a transformation of the simulating game into
an equivalent deterministic word automaton, called game automaton, which
recognizes the language of all plays winning for Player 0 in the given game. We
compute an equivalence relation ~g on the set S of memory contents, declar-
ing two memory contents equivalent if, from them, Player 0 wins precisely
the same plays. The correctness of our technique follows from the fact that
quotienting with respect to ~s preserves the structural properties of the ex-
tended game graph (see Theorem 3.10). Our algorithm has as parameters a
game simulation and a language-preserving equivalence relation to reduce the
state space of an w-automaton.

We have applied our approach to distinct classes of winning conditions,
among them Muller and Streett, i.e., two standard forms for w-regular ob-
jectives, the practically relevant class of Request-Response conditions, and
Staiger-Wagner objectives, capturing the class of weak specifications. Both
Muller and Streett games can be simulated by parity games, and Request-
Response and Staiger-Wagner games can be simulated by Biichi and weak
parity games, respectively. We were thus faced with the reduction of game
automata with either a parity or a Biichi or a weak parity acceptance condi-

87

88 CONCLUSION OF PART I

tion. Since the minimization problem for w-automata is known to be Psrace-
hard already for deterministic Biichi automata, one of the main challenges of
our approach was to find efficient techniques for state space reduction of the
aforementioned types of game automata.

State Space Reduction of Game Automata. We have shown that state space
reduction for weak parity game automata can be reduced to the minimiza-
tion problem for standard DFA. To do so, we proceeded via a transforma-
tion to weak Biichi game automata and used an approach proposed by Lod-
ing [Lod01]. Thereby, we obtained a running time of our memory reduction
algorithm for Staiger-Wagner games which is polynomial in the size of the
simulating weak parity game: if n is the number of states of the given game
automaton, then we require time O(n - (logn)?).

For state space reduction of both Biichi game automata and parity game
automata, we have relied on heuristics based on the notion of delayed sim-
ulation. It has been introduced in [EWS05] by Etessami et al. for Biichi con-
ditions and has been extended by Fritz and Wilke for (alternating) parity ac-
ceptance [FWO06]. Delayed simulation is characterized by means of an infinite
game between two players, called Spoiler and Duplicator. In our setting, a
state g delayed simulates a state ¢’ if Duplicator (starting at g) can fulfill all
the obligations imposed by Spoiler (starting at ¢’), in a delayed fashion. In the
case of Biichi acceptance an obligation is a visit to a final state, and for a parity
condition it means that Spoiler sees a better color than Duplicator.

We have shown that, for Biichi game automata, the computation of delayed
simulation can be reduced to minimization of standard DFA. This yields the
same asymptotic running time of our technique for Request-Response games
as for Staiger-Wagner games.

For the parity condition, computing delayed simulation amounts to solv-
ing the corresponding simulation game explicitly. It is a Biichi game on a
graph which is equipped with a priority memory; this memory keeps track
of pending obligations, and every time Duplicator fulfills one a final vertex is
assumed. Solving the delayed simulation game for a parity game automaton
requires time O(n? - k), where 7 is the number of states and k the number of
colors. The costs of our algorithm for memory reduction in Muller and Streett
games are thus polynomially bounded in the size of the extended parity game.

Results. Our main result is that the approach of reducing the extended game
graph, which is obtained by a game simulation, can effect an exponential gain
in the size of the memory.

CONCLUSION OF PART I 89

For the class of Staiger-Wagner conditions, we gave an example where a
standard algorithm computes a winning strategy of exponential size, but our
technique reduces the memory to constant size. For the class of Request-
Response specifications, we presented a family of games where our approach
optimizes the simulating game graph, i.e., the memory is reduced to size one.
Thus, for each player a positional winning strategy can be computed.

In both the proofs of the aforementioned results, we made use of the fact
that attractor strategies choose the shortest way to reach a final vertex. More-
over, the algorithm from [Cha06] for solving weak parity games prefers high
colors to low ones. Both properties turned out to be disadvantageous for the
purpose of finding simple winning strategies, and they are ruled out by our
algorithm.

For obtaining a similar result for Streett games, we had to make an assump-
tion of the winning strategy computed for Player 0 in the simulating parity
game. More precisely, we postulated that Player 0 behaves optimally, in the
sense that she plays a strategy which guarantees to visit the best colors pos-
sible. We showed that, under this natural assumption, one obtains a winning
strategy for Player 0 of optimal size.

Further Prospects

Delayed Simulation is too Fine. Unfortunately, a positive result for Muller
games (with a substantial reduction of the memory) is still missing. In fact, one
can show that the only game graph where our algorithm is capable of reducing
the memory to size one is the simple cycle (of any length). The major problem
is that the definition of delayed simulation for the parity condition has to be
very restrictive in order to preserve the recognized language upon quotienting.
It is not hard to see that, although Muller conditions are prefix-independent,
finite prefixes of a run in a parity (game) automaton must not be neglected
when computing the delayed simulation relation. To that effect, it would be
interesting to search for alternative definitions.

Alternating Acceptance. Our algorithm lacks in a mechanism for taking into
account the behavior of the two players. One improvement in this direction
could be to retain the partition of the game graph into Player 0’s and Player 1’s
vertices and to apply an approach for state space reduction of alternating au-
tomata (see for example [FW02, FW06]).

90 CONCLUSION OF PART I

Complexity of Memory Optimization. We have not considered finding a
lower bound for the complexity of computing winning strategies of optimal
size. On the one hand, Hunter and Dawar have shown in [HDO05] that the
problem of deciding the winner in a Muller game with a winning condition
represented by a win-set is PsPACE-complete. This immediately implies PspacE-
completeness of memory optimization for win-set Muller games. On the other
hand, Horn has proven explicit Muller games, i.e., the kind of representation
chosen in this thesis, to be solvable in P [Hor08]. It would be interesting to
see whether this result carries over to the problem of finding winning strate-
gies of optimal size. Similar questions can also be asked for Staiger-Wagner
games.

Part 11

Infinite Games with Finite Delay

Chapter 4

Games with Delay

In this chapter we introduce infinite games with delay. The basic idea under-
lying those games is to refine the classical way of playing Gale-Stewart games.
One of the two players is allowed to defer the delivery of each of his moves for
an arbitrary finite number of steps. Note that this induces a generalized notion
of a strategy such that one player has the additional move skip. The delay at a
given point of a play is the difference in the total number of moves made by
the players, disregarding each skip. We perform an analysis of the decidability
of these games, exploring the set of possible winning strategies in the delayed
setting.

The concept of strategies which are generalized in the above sense corre-
sponds to the class of continuous operators. Early research on the interrelation
between games and operators can be found for example in the work of Biichi
and Landweber [BL69], where the authors indicate the connection between a
game with delay! and the continuity of an operator mapping from one space
into another. In fact, Biichi and Landweber raise the fundamental question
on the decidability of infinite games in terms of delay operators. Their famous
result that the winner of a regular game is decidable captures the case of delay
Zero.

The idea of strategies with delay is also pursued in [HL72] where the au-
thors show that the existence of a bounded-delay operator satisfying a given
regular specification is decidable. In Chapter 5, we deal with the problem
whether a regular specification can be solved by a continuous operator. We
show that this problem is decidable, thereby extending the results of [HL72].

This chapter serves as a preparation for a resumption of the work of Biichi,
Hosch and Landweber. In Section 4.1 we present the basic topological notions
and discuss several restrictions of continuity; we exhibit a hierarchy which
classifies operators according to the delay they require. In Section 4.2 we state
the decision problem which we are going to approach for the rest of this work.

1Biichi and Landweber use the dual notion, called shift.

93

94 4 — GAMES WITH DELAY

We reformulate the existence of a continuous operator satisfying a given con-
dition as the existence of a winning strategy in a Gale-Stewart game with finite
delay.

4.1 Delay Operators

Let us first give the most basic topological notions needed to introduce delay
operators. The definitions presented here are along the lines of [TL93].
For an alphabet %, the function dist : £¢ x £ — [0, 1] with

0 ,ifa=p, and

1
2n

dist(a, B) :=
p) , if n is the minimal n with a[n] # B[n]

defines a distance between w-sequences. The longer the common prefix of «
and S, the closer is the distance between them. The function dist is a metric,
called Cantor metric, inducing a topology on X~¢; the pair (£¢,d) is called Cantor
space. The 5 -neighborhood of a is the set of all § such that dist(e, B) < 4, i.e., it
holds «[0, n] = B[0, n]. In other words, B is contained in &[0, n]“. According
to the standard definition in topology, a set L C X¢ is open in the Cantor space
if it is a union of neighborhoods of w-words, i.e., it can be written as

L =WXv,

for some W C X*. The set W contains all the aforementioned prefixes a0,],
each of which determines one neighborhood.

An operator is a function A : ¢ — ¢, It is called continuous if the preimage
of every open set U C X% is open, where the preimage of U is the set

ATHU) = {a € 29 | Aa) € U}.

For an operator which is continuous in the above sense, consider « € £“ and
an arbitrary finite prefix A(«)[0,k] of A(«). Since the set A(a)[0,k]Z% is open,
its preimage A~1(A(«)[0,k]Z%) is open as well, i.e., it has the form WX« for
some W C ¥*. Since & € WX, there must be a finite prefix w of « withw € W
and « € {w}x® C WEX®. Each o/ € X¢ with prefix w is also contained
in WX, and therefore has a A-image contained in A(a)[0,k|Z%, therefore it
holds A(a)[0,k] = A(a’)[0,k]. In other words, the input prefix w determines
the output prefix A(«a)[0,k]. Altogether, this means that an operator A is con-
tinuous if and only if for each « € X each finite prefix of A(«) is determined
by a finite prefix of a.

4.1 — DELAY OPERATORS 95

For our purposes, the latter characterization of continuity is more conve-
nient. To capture the constraint that each finite prefix of the output is de-
termined by a finite prefix of the input, we use a labeling I of the full |X|-
branching tree, mostly referred to as labeling tree. For ¥ = {ay,...,a;}, each
vertex is assigned a letter in {ay,...,a;} U {t>}, where > means that the next
output letter is not yet determined. The output A(«) is the sequence of I-values
on the path corresponding to «, where all the letters [> are neglected.

Definition 4.1. An operator A : £¢ — X% is continuous if there exists a map-
ping I : ¥* — X U {>} such that for all « € X% the w-word I(a) :=
1(«]0])1(«[0,1])I(«[0,2]) - - - satisfies the following conditions:

1. The word I(a) does not end with >¢.

2. Ma) = strip(I(«)), where strip(I(a)) is the w-word I(a) with all letters >
removed.

Note that in the above definition the word I(a) can have t>-infixes of arbi-
trary finite length. However, this does not contradict continuity. As an exam-
ple, let B := {0, 1} and consider the following continuous operator.

Example 4.2. Let A1 : BY — B“ be defined such that Ay (bob1bs - - -) := bbb - - -
where for all i € IN

b= <i)bj> mod 2
i

Note that for determining the bit b} of the output one has to know the (finite)
prefix by - - - by of the input. The continuity of A; is verified for example by the
following labeling [: B* — B U {>}:

/ b) mod 2 ,if j =2 for some i € N
I(bo- - b)) ;{(Zko k) J

> , otherwise

Given an operator A and an input &, we say that a prefix u of A(a) depends
only on a prefix v of « if each &’ with the prefix v has a A-image with prefix u.
We use a function for describing an upper bound for the length of input pre-
fixes on which output prefixes of a given length depend. If such a bound exists
for each particular length, then we say that A is uniformly continuous.

Definition 4.3. Let i : IN — IN be a strictly increasing function. We say that
A is a h-delay operator if, for each a € X, the prefix A(«)[0,i] depends only
on «[0, h(i)].

An operator A is said to be uniformly continuous if there exists a function h
of the above form such that A is a h-delay operator.

96 4 — GAMES WITH DELAY

A property of the space ¢ we intend to make use of is the fact that the set of
continuous operators and the set of uniformly continuous operators coincide.

First of all, note that each uniformly continuous operator is indeed contin-
uous. Let i : IN — IN be strictly increasing and let A be a h-delay operator.
Then, given any i € IN, the value (i) indicates the maximal level one has de-
scend to in some |X|-branching tree such that on each path at least i+1 non->>
labels are seen. More precisely, we label all vertices on the levels 0 to 1(0)—1
with >. Afterwards, we label each node «[0,7(0)—1] on level h(0) with the
first letter of A(«[0,1(0)—1]B), for arbitrary a, p € £“. Note that this letter is
independent of B, as it depends only on «[0, #(0)—1], by assumption. Then we
label all vertices on levels 1(0)+1 to h(1)—1 with > and each node «[0, h(1)—1]
on level h(1) with the second letter of A(a[0,h(1)—1]p'), for any p’ € ¢, and
so forth.

Each continuous operator from X¢ to X is also uniformly continuous.
This follows from the fact that the space X is compact, i.e., it is closed and
bounded. Equivalently, one can show the property by using Konig’s Lemma.

Lemma 4.4. Let A : ¢ — X% be continuous. Then, there exists a strictly increasing
function h : IN — IN such that A is a h-delay operator.

Proof. Letl:X* — X U {>>} be a labeling of the full |X|-branching tree witness-
ing the continuity of A. We claim that for each node v € X* there exists a num-
ber k(v) € N such that for each word a; - - - ay(,) € Y(©) at least one node w
in the set {v,vay,...,vay - -vk(v)} has a non-> label, i.e., it holds I(w) # ©>.
Towards a contradiction, assume u € X* violates this condition and consider
the tree of all >>-labeled nodes rooted at u. Since k(u) does not exist, the tree
has nodes on levels of arbitrary high depth and, hence, is infinite. Moreover,
every node has at most |X| successors, i.e., the tree is finitely branching. Thus,
by Konig’s Lemma it contains an infinite path. As a consequence, there ex-
ists B € X such that /(1) ends with >“; a contradiction to Definition 4.1.

Knowing that for each v € ¥* the number k(v) exists, we define the func-
tion # : IN — N inductively by /(0) := k(e) and

h(i+1):=h(i)+1+ o \zf\rfh)zi)ﬂ}k(v)'

The definition of h guarantees that, for each i € N, there is a non->> label
on each path between (and including) levels h(i)+1 and h(i+1). Thus, on
each path of the tree there are at least i4-1 non-I> labels up to (and including)
level k(7). This means, if the input prefix «[0, h(i) —1] is known, then the output
prefix A(«)[0,1] is determined. By Definition 4.3, A is a h-delay operator and
hence uniformly continuous. O

4.1 — DELAY OPERATORS 97

A function h witnessing uniform continuity of a given operator exhibits a
bound for the number of additional input letters needed to determine the next
output letter. As we want to consider strategies inducing only finite delay,
the results we are going to show in Chapter 5 rely on the existence of such a
bound. Indeed, an operator which is continuous but not uniformly continuous
may require more than finite delay. To see this, we consider an example which
has the crucial property that the space considered is no longer closed.

Example 4.5. Let the operator A, : B \ {09} — B be defined such that for all
b € B,B € B“ we have
12(0%1bp) := b1©.

The operator A, checks if there is 0 or 1 directly after the first 1 in the input.
Note that A, is continuous, since the first bit of the output is determined by
a finite prefix of the input. However, there exists no strictly increasing func-
tion 1 : N — IN, such that A, is a h-delay operator. This is due to the fact
that we cannot bound the length of the input prefix to clarify whether b = 0
or b = 1. Hence, the operator A, is not uniformly continuous. In other words,
if one is asked to give the first bit of the output, then no particular length of
prefixes does suffice to give the answer. Rather, the whole input « is needed,
i.e., we require infinite delay.

As we have already seen, the classes of continuous operators ¢ — 2~¢ and
uniformly continuous operators ¢ — X are exactly the same. This holds
analogously for any finite alphabet of size at least two. Therefore, we can
restrict ourselves to the Boolean alphabet B := {0,1}, from now on.

Among the uniformly continuous operators we distinguish an even more
restricted class. Intuitively, encountering a sequence of >-letters in the tree
described by the labeling function ! (cf. Definition 4.1) means that the next
output letter is not yet determined. If from some level onwards letter > does
not appear anymore, then I(a) € (>*B)*B%, for each « € B“. In this case,
the function / can be defined such that h(i+1) = h(i)+1, for all i > iy with i
chosen appropriately.

Definition 4.6. Let 1 : IN — IN be a strictly increasing function. We say that
h is of bounded delay if there exists iy € N such that h(i+1) = h(i)+1, for
all i > ip. We say that A : BY — B“ is a bounded-delay operator (or an operator
of bounded delay) if and only if it is a h-delay operator for some function / of
bounded delay.

If A is a bounded-delay operator, then there exists d € IN with h(i) < i+d
for all i € N, and h(i) = i+d for all i > iy. This means that, for each « € BY,

98 4 — GAMES WITH DELAY

the output prefix A(«)[0,i] depends only on «[0,i+d]. The smallest possible
value for d is the maximal number of >-letters required on any path in an
adequate labeling tree.

Example 4.7. Let A3 : B — B“ be the following bounded-delay operator:

As(a) = {(1 —af0])0¢ ,if (a[0] +...+a[3]) mod2 =0

(1 —«[0])1% , otherwise

Note that, for each & € B%, the first output bit A3(«)[0] depends only on «[0].
However, the second output bit A3(«)[1] is determined only after the fourth
input bit «[3] is known. Consider the possible labeling function ! which is
given by the tree in Figure 4.1. Each node has two entries: the upper one is
the (finite) input prefix w corresponding to that node, and the lower one is the
value I(w). All nodes below level four have a non->> label (and are left out in
the figure). Node 0 has label 1, because every « starting with 0 has a A3-image
starting with 1 (analogously for the node w = 1 with label 0). According to the
definition of A3, a node w € B* has label 0 if w contains an even number of 1s.

/N o/

> > > >

/A /A /A /A

000 001 010 011 100 101 110 111

N\

00 11

> > > > > > > >

T A A A T A A

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

Figure 4.1: A labeling tree inducing bounded delay

4.1 — DELAY OPERATORS 99

In topological terms, an operator A : BY — B¢ is of bounded delay if it
is Lipschitz continuous, the latter meaning that there exists ¢ € R such that
for all o, € B¢ it holds dist(A(a),A(B)) < c-dist(w,B). If c satisfies the
latter condition, then we say that A is c-Lipschitz continuous, and c is the corre-
sponding Lipschitz constant. Thus, if A is a h-delay operator with k(i) < i+d
(for all i € IN), then the Lipschitz constant can be chosen as ¢ := 24, Con-
versely, if A is not of bounded delay, then for each d there exist « € B“,i € IN
such that A(«)[0,i] is not determined by «[0,i+d]|. This means that there ex-
ists B € BY with B[0,i+d]| = «[0,i+d], i.e., satisfying dist(a,) < 2-(+d) such
that A(B)[0,i] # A(«)[0,i], therefore dist(A(a),A(B)) > 27%. This contradicts
Lipschitz continuity as it holds

dist(A(a), A(B)) 2" d

dist(a,) ~ — 2-(i+d) 2

which cannot be bounded by any ¢ € R.

A further restriction of bounded-delay operators are constant-delay oper-
ators. For such operators it holds that, for each « € B, the labeling I(«) is
contained in >*B%.

Definition 4.8. Let /i be of bounded delay, according to Definition 4.6. We say
that h is of constant delay d if h(0) = d for some d € IN and h(i+1) = h(i)+1
for all i € IN. An operator A : BY — B® is a d-delay operator (or an operator
of constant delay d) if and only if it is a h-delay operator for some function & of
constant delay d.

By definition, each d-delay operator is a bounded-delay operator. However,
the converse also holds, if the constant d is chosen appropriately. Let A be
a h-delay operator for some function / of bounded delay, with iy given as in
Definition 4.6. Then, one can define a new function /' such that 4'(0) := h(ip)
and N (i+1) := K (i)+1 for i € IN. Note that A is an operator of constant
delay #'(0). In Example 4.7 we get 1'(0) = 4, because below (and including)
that level no further >-letters occur in the labeling tree.

In this section we have exhibited a hierarchy of delay operators, i.e., contin-
uous functions from one space into another. For a finite alphabet ~, the classes
of continuous operators from ¥~¢ to £“ and uniformly continuous operators
from > to X coincide (indicated by the dashed line in Figure 4.2). Moreover,
we have seen that each operator of bounded delay is also one of constant delay.

100 4 — GAMES WITH DELAY

all operators

continuous operators

- ~

,~ uniformly continuous
/ \

! operators '

1

bounded-delay
and

constant-delay

operators

|
|
|
|
|
|
|
|
|
!
!
|
|
|
1

Figure 4.2: A hierarchy of operators

4.2 Decision Problem

In this section we bridge between the existence of an operator A satisfying
a given condition between input and output and the existence of a winning
strategy for a particular player in an infinite game. The first player builds up
the input sequence x € B and is hence called Player I; I stands for Input. The
second player builds up the output sequence g := A(a) € B“ and, accordingly,
is called Player O. In the framework of infinite games, continuity means that
Player O may postpone a choice for a finite number of moves of the opponent,
namely until she has enough information to give the next output bit.

The core matter of our analysis concerns two things: first of all, we ask
whether the existence of a continuous operator guaranteeing particular prop-
erties is decidable and, second, if such an operator exists then we want to
synthesize one which is as simple as possible; this is meant in the sense that
it is located on a low level in the hierarchy of Figure 4.2. More precisely, we
approach the following two problems.

Problem 4.9. Let L be an w-language over B2. Does there exist a continuous
operator A : BY — B“ such that for all « € B% it holds (AE"[X)) eL?

Problem 4.10. Let L be an w-language over B2. Does there exist a bounded-
delay operator A : BY — B“ such that for all « € B% it holds (/\&)) eL?

Our main goal is to prove that, for regular L, Problem 4.9 is decidable. To
do so, we first reformulate it in the framework of infinite games and explain

4.2 — DECISION PROBLEM 101

why there exists a continuous operator solving L if and only if Player O has a
winning strategy in a generalized Gale-Stewart game.

Decidability of Problem 4.10 has already been shown in [HL72]. However,
we improve the results obtained there by establishing a connection to operators
of unbounded, i.e., finite but not bounded, delay. Our techniques show that
if Player O has a winning strategy inducing a continuous operator, then she
also has one requiring only constant delay. This means that, for regular L,
the answer to the question in Problem 4.10 is the same as the answer to the
question in Problem 4.9. Moreover, our proofs reveal a better upper bound for
the required constant than given in [HL72].

In Section 4.1, we have assumed that the function i : N — IN is strictly
increasing. For our purposes, it is more convenient to consider the function 2,
denoting the number of additional input bits until the next output bit:

2G) = {h@“‘ S
h(i) —h(i—1) ,ifi>0

For strictly increasing & : N — IN we obtain a unique W N — N, and
vice versa. Accordingly, we say that #* is of bounded delay if / is of bounded
delay, and analogously for constant delay. If / is of bounded delay, then there
exists iy € IN such that h*(i) = 1, for all i > iyp. Moreover, if & is of constant
delay then it holds iy = 0 (cf. Definitions 4.6 and 4.8). For technical conve-
nience, from now on we work only with the functions %, calling them delay
functions. However, to simplify matters, we usually write f (or g) instead of h2.
Moreover, we use a special notation for functions inducing constant delay. We
write (d) for the delay function f : N — N of constant delay d: (d)(0) = d+1
and (d)(i) =1fori > 1.

Let us now introduce the delay game T'r(L); it is a generalization of a Gale-
Stewart game and has as parameters an w-language L over B? and a de-
lay function f : N — IN;. In each round, each of the players makes one
move, where Player I begins. The function f imposes a delay on the moves
of Player O. This means that in round i Player I has to choose f(i) bits, and
Player O chooses one bit, afterwards. This way the players build up two in-
finite sequences; Player I builds up « := apaja; - -- and Player O builds up
B := bobiby - - - (a;,b; € B). The corresponding play is winning for Player O if

the word
a a a
w'p = (bﬁ)(bi)(bi)

is contained in L; otherwise, it is winning for Player L.

102 4 — GAMES WITH DELAY

Observe that the possible strategies for Player O in I'r(L) correspond pre-
cisely to h-delay operators, for f = h®. This is due to the fact that Player O
must output her i-th bit after receiving the next f(i) bits chosen by Player I.
Thus, the question whether there exists a h-delay operator A such that the in-
clusion {(Af‘“)) | « € BY} C Lholds is equivalent to the question whether there
exists a winning strategy for Player O in T's(L). We say that L is solvable with
finite delay (or has a finite-delay solution) if there exists f : IN — IN such that
Player O wins I'r(L), and accordingly for functions of bounded and constant
delay.

By the explanations above, we can reformulate Problem 4.9 as follows.

Problem 4.11 (FINITEDELAY). Let L be an w-language over B2. Is L solvable
with finite delay?

In Chapter 5, we approach Problem 4.11 and show that it is decidable for
the class of regular w-languages. Moreover, we prove that every finite-delay
solution can be reduced to one of constant delay, where the constant is at
most doubly exponential in the size of a parity automaton recognizing the
specification L.

Theorem 4.12. Let A be a DPA over B? recognizing the regular w-language L. Then
the following hold:

1. The problem whether L is solvable with finite delay is in 2ExpTIME.

2. If L is solvable with finite delay, then it is solvable with constant delay d, for
some d that is doubly exponential in | A.

The proofs we are going to present make frequent use of convenient prop-
erties of the delay game. First of all, for each regular language L C (B?)“ and
each delay function f : IN — IN, the delay game I'¢(L) is determined. This is
due to the fact that it can be modeled by a parity game on a finite or countably
infinite graph with finitely many colors (cf. Section 2.1.4). The only difference
to the Gale-Stewart game without delay (see Section 1.4.3) is that we have to
keep track of a finite word Player I moves ahead. Moreover, if f is of bounded
delay, then the parity game graph can be assumed to be finite, because the
number of different words of bounded length is finite. That means, we can
decide the winner of the corresponding delay game by standard techniques
(see for example [GTWO02]).

Another property we need is that winning is monotone with respect to
an increase or decrease of the delay. For two functions f,g : N — N, we
write f C g if f(i) < g(i) for all i € IN. The relation C is a partial order on the

4.2 — DECISION PROBLEM 103

set of all delay functions. If f £ ¢ and Player O wins I'f, then she also wins I,
because in I'y she has at least as much information about Player I's moves as
in I'y, at any given point in a play. (Note that monotonicity also holds if L is
non-regular.) Our observations can be subsumed as follows.

Remark 4.13. Let L C (B?)“ be an w-language and fo : N — IN,. Then the
following hold:

1. If L is regular, then the delay game I's (L) is determined.

2. If L is regular and fp is of bounded delay, then the winner of T’z (L) is
decidable.

3. If Player O wins I'z (L) then she also wins I'¢(L), for all f 3 f;. Analo-
gously, if Player I wins I's, (L) then he also wins I'¢(L), for all f C f,.

In Chapter 6 we extend our game model to a concurrent setting, such that
both players may postpone their moves for a finite number of steps. This yields
a more general class of games where determinacy is no longer guaranteed.
However, we prove that for the case of regular specifications we can decide
whether a finite-delay solution exists, by a reduction to the techniques from
Chapter 5.

Chapter 5

Finite Delay in Regular Games

The motivation of this chapter mainly comes from the work [HL72] of Hosch
and Landweber. There, the authors show that the problem whether a reg-
ular specification admits a bounded-delay solution is decidable. We extend
this result to arbitrary finite delay, by approaching Problem 4.11 for the class
of regular w-languages. Moreover, we prove that every regular specification
allowing for a finite-delay solution also has a constant-delay solution.

Our proof proceeds via a two-stage reduction. The first step is to introduce
the block game (see Section 5.1), in which Player I has more freedom in the
choices he can make. More precisely, the length of the word chosen by him
in round 7 needs not exactly be f(i), as was required in I's. Rather, it has to
be of a length contained in a certain interval. We show that this change in the
rules of the game does not make a difference for the existence of finite-delay
solutions.

The second step of the reduction is done in Section 5.2 where we introduce
the semigroup game. It is uniquely determined by the semigroup underlying the
parity automaton A recognizing the winning condition L; in particular, this
game is independent of any delay function. We show that a winning strategy
for Player I in the semigroup game can be used to simulate a winning strategy
for him in every block game, and vice versa. Thereby, we reduce the question
whether L is solvable with finite delay to the question whether Player O has
a winning strategy in the semigroup game. The latter can be answered by
applying standard techniques, because the semigroup game is a parity game
on a finite graph; more precisely, the number of vertices is doubly exponential
in the size of A, i.e., the number of states and the number of colors.

In Sections 5.1 and 5.2, we have the convention that the function f imposes
a delay on the moves of Player O. In Section 5.3, we consider the symmetric
setting where the player moving ahead is either Player I or Player O. We show
that our results are independent of the fact which player defers his moves,
by reducing the symmetric setting to the one-sided case. From this we de-

105

106 5 — FINTTE DELAY IN REGULAR GAMES

duce that, for each regular language L (over B?), either one of the players
wins independent of the fact who moves ahead, or there exists a constant dj,
(uniquely determined by L) such that one of the players wins with each delay
at most d; —1 and the other player wins with each delay at least d;. The con-
stant dy, is called the delay value of L. From our results, we derive a generalized
determinacy of regular Gale-Stewart games (see Theorem 5.23).

Before we start with the technical part, we agree on the fact that L C (]Bz)w
is a regular w-language, given by a DPA A over B2. The size of A, denoted |.A|,
is given by the number 1 of states and the number m of colors. Henceforth, we
assume L implicitly and mostly leave it out in our notation.

One of the core parts of the overall proof will be to define an equivalence re-
lation on the set of all finite words over B2, such that two words are equivalent
if they induce the same behavior on the given DPA A. (The precise definition
of “behavior” is given in Section 5.2.1.) The intuition behind the block game is
to guarantee that any given equivalence class of the aforementioned relation
contains a word which can be chosen as a whole, i.e., in only one move. To
ensure this, we need to allow Player I to select words of variable length. This
is realized in the next section.

5.1 The Block Game

In this section we accomplish the first step of our main reduction. We relax
the number of bits Player I can choose in each move. For this we introduce
the block game 1“}, which differs from I'; in two ways: first, the lengths of
the words to be chosen by the players are decided by Player I, within certain
intervals determined by f; second, Player I is one move ahead compared to I's.

A play in F’f is built up as follows: in his first move, Player I chooses
up € BFO2f(0)] and u; € BFMW2fM] and then Player O chooses vy € Blul,
In each round thereafter, i.e., for i > 2, Player I chooses u; € BU02f()] and
Player O responds by a word v; ; € Bl"-1l. The winning condition is defined
as for the “normal” delay game I #,1.e., it is given by the language L recognized
by A.

Note that the block game F’f can be modeled by a parity game on a finite
or countably infinite graph with finitely many colors. In the vertices we keep
track of at most two finite words Player I moves ahead. Thus, by an argument
analogous to that for the normal delay game, the block game is determined.

Remark 5.1. Let f : IN — IN1. The block game I } is determined.

The first step of our reduction is to show that the existence of a finite-delay

5.1 — THE Brock GAME 107

solution is not influenced when switching over from the delay game to the
block game. More precisely, we prove the following equivalence (x):

For all functions f, Player I wins the delay game I';.
—
For all functions f, Player I wins the block game F’f.

Note that, by definition, the left side of the above equivalence holds if and only
if L is not solvable with finite delay. To accomplish the implication from left to
right, let us show that Player I wins the block game induced by f, if he wins
the delay game induced by f’, where for given f : N — IN; the function f’ is
defined by

£/(0):= f(0)+ f(1) and f'(i) :== f(i+1) fori > 0.

The intuition behind the definition of f'(0) is that, in the block game, Player I
has to choose two words of total length at least f(0) + f(1) in the first round.

Proposition 5.2. Let f : N — IN.. If Player I wins Iy then he also wins T }

Proof. Assume Player I has a winning strategy in I'». For i € IN, let u; be
the words chosen by Player I in Ty and u; the words chosen by Player I in 1“}

(and analogously v;, v/ for Player O). The winning strategy yields 1y € Bf '(0)
as Player Is first move. Since f(0) + f(1) = f'(0) we can choose uju} = 1 as
Player I's first move in I';. Player O answers by v, € Bl“0l. We can use v}y in T £
to simulate the moves vy, ..., Vjop|-1 of Player O, each of which consists of one
bit. Player I answers by u1, ..., ujy | of lengths f'(1),..., f'(|vg]). Since |up| > 1,
the sum f'(1) + - -- + f/(]vg|) is non-empty and at least f'(1) = f(2). Accord-
ingly, the word u; - - - |y is long enough to give u; with f(2) < [uy| < 2f(2).
We choose u; as the prefix of uy - - - u},| of length f(2). Player O answers in I’
by v} of length |u}|, and we can use it to simulate another |v}| rounds in Ty,
Thereby, we obtain enough bits to give u}, and so on. This way, we build up

the same w-wordsin T’ Ji and I‘}. Since Player I wins I I he wins I‘} aswell. O

For the implication from right to left of the equivalence (*) we show that
Player I wins the delay game induced by f, if he wins the block game induced
by f” (see below). To accomplish the proof, we need to define f” such that it
is growing much faster than f. The reason for this is as follows: if we want to
simulate Player O’s i-th move v/ in the block game, then we need to guarantee
that Player I's (i + 1)-th move is long enough to be able to play at least |v]
rounds in the normal delay game, because in each of these rounds Player O
plays only one bit, which can be used for v;.

108 5 — FINTTE DELAY IN REGULAR GAMES

For f : IN — IN_, let f” be inductively defined by f”(0) := f(0) and

2(f"(0)+...+f" (7))
flit1):= Y. fO)
j=0
The greatest value for the index j in the above sum is 2(f”(0) + ... + f"(i)),
which has a value at least 2(i + 1). Hence, f”(i + 1) has f(i + 1) as summand.
This yields f(i) < f”(i), for all i € N, therefore f C f.

Proposition 5.3. Let f : N — IN.;. If Player I wins l"}// then he also wins I'y.

Proof. Assume Player I has a winning strategy in 1"},,. For i € N, let u} be
the words chosen by Player I in I‘},, and u; the words chosen by Player I
in I's (and analogously v}, v; for Player O). Player I's winning strategy yields
uj € B (0).2f"(0)] and TS B W2f"(] a5 his first move in I‘},,. Fori € N,
let d! be the length of u!. Since

2f"(0)

f%+%2f%®+fqn=f®%FX%ﬂﬂ
=

we can give the moves uy, ..., U, of Player I in I’ f- This yields Player O’s an-
SWerS 0, ..., Ug/ 1, i.e., d; bits. We can use them to simulate vy, i.e., Player O’s
first move in I';,. Player I's winning strategy yields u; of length f”(2) < dj <
2f"(2). We need to give another d; moves of Player I in I's to obtain Player O’s
answers U, ..., Ug 4 1. For that we need f(dy + 1) +... + f(dy +dy) bits.
With u), in our hands we can give these moves, because

dy = f'(2) = f0)+...+f(2f"(0) +2f"(1))
> f(0) +...+ f(dy+df)
> fldy+1) +... 4 f(dy+db).

Iterating this, we obtain the same w-words built up in I’ }/, and T f- Since Player I
wins l"},, he also wins I'y. O

The following corollary of Propositions 5.2 and 5.3 completes the first step
in our main reduction: for the implication from item 1 to item 2, assume that
Player I wins the delay game Iy, forall f:IN — IN4, and let fo : N — IN,
be any delay function. Since Player I wins I'; for every f, he particularly
wins T’ - Hence, by Proposition 5.2, he also wins the block game I‘}O. The
reverse implication is shown analogously, using Proposition 5.3.

Corollary 5.4. Let L be a regular language over B2. Then the following are equivalent:
1. Forall f:IN — N, Player I wins the delay game T r(L).

2. Forall f :IN — N, Player I wins the block game T';(L).

5.2 — THE SEMIGROUP GAME 109

5.2 The Semigroup Game

In this section we accomplish the second step of our reduction, i.e., the main
step for the proof of Theorem 4.12. We introduce the semigroup game, which
only depends on the given parity automaton .4, but which is independent of
any particular delay function. It is called semigroup game because a move of a
player is an element of the semigroup describing the underlying behavior of A
(see for example [PP95]).

We extract from 4 two equivalence relations, one for each player, such that
a move of a player is an equivalence class of his or her respective relation.
Roughly speaking, an equivalence class contains all words which effect the
same behavior on A. The first relation (for Player O) is denoted ~¢ and in-
duces a finite semigroup on (IB?)*. The second relation (for Player I) ranges
over B*; it is denoted ~j and is a refinement of ~g. We show that each of the
two relations has finite index. This is due to the fact that the semigroup un-
derlying A has only finitely many elements — a major ingredient for obtaining
our main decidability result. Moreover, we show that each equivalence class
of both the two relations is a regular *-language computable from A. As a
consequence, we can compute both ~go and ~1.

The semigroup game is a parity game on a graph of size at most doubly
exponential in the number n of states and the number m of colors of A; hence,
its winner is computable. The main result of this section is that Player I wins
the semigroup game if and only if he wins the block game 1“} for all delay
functions f. From the proof of the latter equivalence we obtain the reduction
of finite delay to constant delay as follows: having computed both equivalence
relations, we can bound the length of a shortest representative in each class
by a doubly exponential constant n’ depending only on n and m. Finally, we
obtain the result that, if Player O wins the semigroup game, then L is solvable
with constant delay 2n’—1.

5.2.1 From Parity Automata to Semigroups

Our approach to transform parity automata into finite semigroups is similar
to the constructions presented in [PP95, Pin95]. Let A = (Q, g0, 9, ¢) be a DPA
over B2 We use the semiring S := ({L} Uc(Q),+,) in which addition is
defined as maximum, i.e., x + y := max{x, y} with L being the least element,
and multiplication is defined as follows:

max{x,y} ,ifx# Landy# L

X-y =
1 , otherwise

110 5 — FINTTE DELAY IN REGULAR GAMES

Note that the set Legq := (lBZ)*, i.e., the set of pairs of words of equal length,
is a regular language. With each pair () € Leq we associate a matrix () of
size |Q|? with entries in S.

Definition 5.5. Let A = (Q, qo,6,¢) be a DPA over B? and i : Leq — S2*€ the
matrix defined as follows:

w(") = - (i 8% (p, (3) # 4
P max{c(p)} ,if 6*(p, (%)) = q and p is the associated .A-path

We say that (})) is the behavior of A on (7).

Example 5.6. Consider the parity automaton A depicted in Figure 5.1. The
coloring is given in the lower part of each state, and gy is the initial state. The
symbols * in the transition labels stand for any bit.

Figure 5.1: Parity automaton A

Let the word (“) = (§5) € Leq be given. (We associate both the first row
and the first column of y(gé) to go, and analogously with the other rows and
columns for states q1,4>.) Analyzing the run of A on (8(1)) from each particular

state, we obtain the behavior

(o) =

- e

1
2
2

-

5.2 — THE SEMIGROUP GAME 111

For example, from state g the automaton A changes state to q; when read-
ing (8) and returns to go when reading ((1)) The maximal color seen in this run
is 4, which is the reason why we put it in the upper left corner of y(gé). The
reader may verify the other entries of the matrix, analogously.

Note that the set S2*Q of all possible matrices induces a finite semigroup
with neutral element () and associative multiplication: for all finite words
u,u',u’, 0,0, 0" € B with |u| = |v],|u/| = |v/| and |u”| = |[0”] it holds

u u/u// uu/ u//
M(v) ﬂ(v’v”) B V(vv’) 'M(v”)'
We declare two elements in Leq to be ~p-equivalent if they induce the same
behavior on A.

Definition 5.7. Let (5) (gf) be two words in (B?)*. We define (%) ~o (ij:) if it
holds u(;) = u(3,)-

Note that (J';5) has the same behavior as ({;), and hence (3)}5) ~o (5)- In
the semigroup game we are going to define later on, each move of Player O is
a behavior of A4, i.e., an equivalence class of ~g. Obviously, the relation ~¢ is
an equivalence relation. For each (%), the equivalence class [(%)] is identified
by the matrix u(%) € SP*Q. Since S and Q are finite, S9*Q is finite as well,
and so the relation ~g has finite index, i.e., it has finitely many equivalence
classes. We denote the index of ~g by index(~p). Note that Leq/~, induces
a finite semigroup with neutral element [(£)], and y is a semigroup morphism
from (Leq/ ~o,*) to (S2*2,). We show that we can compute the equivalence
relation ~¢ from A.

Lemma 5.8. Let (%) € Leq. Then, the set [(%)] is a regular x-language over BZ.

Proof. We construct an automaton A recognizing [(4)] as follows: first,
we construct for all p,q € Q,k € ¢(Q) the automaton A, ,x recognizing the
language of all (finite) words inducing a path from p to g in A where k is the
highest color seen on that path. The idea for this construction is to simulate
the behavior of A while memorizing the highest color seen. To this end, define

Ap g = (c(Q) x Q,(c(p), p),8',{(k,q)}) over B> where

(W () = (mac{ie(o(r () 1200 (,))

for all ¥ € ¢(Q),p’ € Q,x,y € B. The automaton starts in state (c(p),p)
and simulates the behavior of A on its input. If it stops in state (k,¢), then it
accepts. The automaton A[(;)] is then obtained as the intersection automaton
of all A, .« for p,q,k such that y(ﬁ)p/q = k. O

112 5 — FINTTE DELAY IN REGULAR GAMES

Since ~@ has finite index, we can find automata for all its equivalence
classes in the following way: for » € IN, let A;,..., A, be the automata al-
ready constructed. Then, it holds

index(~o) =7 <= |J L(A) = Leq

i=1,...r

The equality on the right side of the above equivalence can be effectively
checked, and if this test fails, then we repeat the construction from the above
proof with a word contained in the language Leq \ U;j—1,.., L(A;).

Corollary 5.9. Let A be a DPA with n states and m colors. Then, the relation ~q is
computable in time O((mn)?").

Proof. Let u,v € B* with |u| = |v|. Since A is deterministic, there is exactly
one entry distinct from L in each of the n rows of y(}), and each automa-
ton A, with y(ﬁ)p,q
Hence, the automaton Ajx; can be constructed in time O((mn)") and has at

= k # L has at most mn states and 4(mn) transitions.

most (mn)" states. There are at most (mn)" possible matrices identifying all
the ~p-equivalence classes. Accordingly, the time needed to compute ~g is
in O((mn)" - (mn)"). O

The relation ~ is a refinement of ~p, based on the following idea. Let
u,u’ € B* be two words which can be chosen by Player I in the block game.
We declare them equivalent if for each word v € B* there exists a word v' € B*
such that () and (;‘:) induce the same behavior on A. That means, if u, 1’ are
equivalent then the different behaviors Player O can effect are precisely the
same, no matter whether Player I chooses u or u'.

Definition 5.10. Let u,u’ be two finite words over B. We define u ~g u’ if it
holds

G): Go: () e [() = 3 (5) e [()])
00 (% (% 0 00

Clearly, ~1 is an equivalence relation; in the semigroup game we are going
to define, the moves of Player I are the ~j-equivalence classes. For u € B,
the ~j-equivalence class of u (denoted [u]) can be identified with a subset
of the set of all ~p-classes; this subset contains all ~p-classes which have a
representative with u in the first component. That means, ~j is essentially
the power set of ~p. Since ~@ has finite index, we get that ~j has finite
index as well; more precisely it holds index(~) < 2index(~0) Analogously to
Lemma 5.8, we show that ~7 is computable.

5.2 — THE SEMIGROUP GAME 113

Lemma 5.11. Let u € B*. Then, the set [u] is a regular x-language over 1B.

Proof. We construct an automaton Ay, recognizing the language [u] as follows:
first, we have to check for which ~o-classes [(gg)] there exists v € B/*l such
that (3) € [(;")]. Let B be a DFA recognizing [(;’)]. We take the projection
on the first component (deleting the second component from the transitions
of B) and test whether the resulting automaton, say B’, accepts u. If we do
the same for all ~p-classes, then we obtain r automata By, ..., B, accepting u,
and s automata B; 4, ..., B, ; not accepting u, where r 4-s = index(~). From
these automata we can effectively construct an automaton for [u], because

W= LN N LE).

o j=r+1,.,r+s

O

For each u € B*, we get a unique partition into two sets of automata, one
containing those B; which accept u and one containing those B]f which do not
accept u. Thus, considering each of the 2"4eX(~0) possible combinations of the
above intersection, we get that ~1 is computable.

Corollary 5.12. Let A be a DPA with n states and m colors. Then, the relation ~r is
computable in time O (2(mm)"+(mn)*"),

Proof. Recall that there are at most (mn)" ~p-equivalence classes, each of
which is recognized by an automaton of size O((mn)"). For u € B*, the
construction of A, includes determinization of those automata B]’- not accept-

ing u. Hence, each automaton A}, needs time O((20mm"ymm)"y = O (2(mm)*"y to
be constructed and has at most 20" states. Accordingly, the time required

to compute the whole equivalence relation ~j is in O(2irdex(~o) p(mn)?y
O(z(mn)”—l—(mn)z”)‘ n

5.2.2 Definition of the Semigroup Game

In this section we define a game induced by a DPA A over B?, where the
moves of Player I and Player O are classes from B*/ ., and Leq/ ~, respectively.
Accordingly, we call it the semigroup game of A, and we denote it T'sg(A).
(Usually, we assume A implicitly and write simply I'sg.)

The game I's is defined similar to the block game I". The only difference is
that the players do not choose concrete words but the respective classes from
the relations ~; and ~o. A play is built up as follows: in the first round,
Player I chooses two infinite classes [ug], [1] € B*/~,; after that, Player O

114 5 — FINTTE DELAY IN REGULAR GAMES

up
]

Player I chooses an infinite class [1;] € B*/., and Player O chooses a class
[(571)] € Leq/~o- Note that, for each i, Player O’s move [(%)] is partially

Vi1 Ui
determined by Player I's choice [u;]. Hence, the winning condition can be

chooses a class [()] € Leq/~o- In each round thereafter, ie., for i > 2,

defined solely on Player O’s moves: a play is winning for her if (3°)(;})(;7) - -
is accepted by \A.

Note that B*/., contains at least one infinite class because B* is infinite
and ~p has finite index. Moreover, for each class [u] there exists at least one
class in Leq/~, associated with [u] (by the definition of ~p), since u must
appear in the first component of some word (). Hence, both players can
always move. Furthermore, the winning condition of I'sg is well-defined
because acceptance of A is independent of representatives. Given an infi-
nite sequence over B2, one can iteratively replace any finite infix by a ~o-
equivalent one, without touching membership in L(.A4). More formally, for
two w-words (;°)(;!) - - - and (zg)(z%) -+ with () ~o (z,;) for all i € IN, it holds

U1

(P e = (“6)(”3> e L(A).

/ /
0o (%] (%) (4]

I'sg can be modeled by a parity game on a graph with at most 22(mn)"+1

mn ver-
tices. Thus, its winner is computable by standard techniques (see for example
[GTWO02]). In the vertices we keep track of the ~j-equivalence classes recently
chosen by Player I, a color depending on the course of the play and the cur-
rent state g of A. The vertex reached by a move [(%)] of Player O is colored

by y(g)q g Where q' is the state reached in A from g when reading ().

5.2.3 Simulation of the Block Game

In this section we prove correctness of the second step of our reduction. We
show that Player I has a winning strategy for the block game 1“} for all func-
tions f : N — IN, if and only if he wins the semigroup game I'sg. This com-
pletes the reduction and also yields the proof of item 1 of Theorem 4.12, i.e.,
decidability of Problem 4.11. The proof is divided into two parts, Lemma 5.13
and Lemma 5.14. Item 2 of Theorem 4.12, i.e., the reduction from finite delay
to constant delay, is shown in Lemma 5.15, separately.

We first approach the connection between the block game and the semi-
group game. The basic idea for the proof of Lemma 5.14 is, for arbitrary f,
to simulate the moves of the players in 1"} by the corresponding equivalence
classes of the relations ~1 and ~@, and vice versa. There, one has the prob-
lem whether a class [u;] € B*/., has an appropriate representative, i.e., one

5.2 — THE SEMIGROUP GAME 115

of length between f(i) and 2f(i). We use Lemma 1.2 to show that there is a
particular function fy such that for each f with f 3 fy a representative of the
required length indeed exists. Then, the following lemma completes the proof.

Lemma 5.13. Player I wins Ty for all functions g : N — N4 if and only if there
exists a function fo : IN — IN. such that Player I wins 1"} forall f 1 fo.

Proof. The implication from left to right is immediate, setting fy := (0). We
show the converse by contraposition. Assume there exists gy such that Player I
does not win I'y). Determinacy yields that Player O wins I'y). By Proposi-
tion 5.2 Player O wins Fg(') ; that implies that she also wins T’ I for all g 3 g6 (see
Remark 4.13). Proposition 5.3 yields that Player O wins I',, for all g 3 ;.
Towards a contradiction, let fy be a function such that Player I wins 1"} for
all f 3 fo, and let f. be the maximum of fy and g, i.e., for all i € IN we have

fili) :=max{fo(i), 8o (i) }-

Since f, 3 g it holds that Player O wins I';,. Recall that for each f it
holds f” 1 f (cf. page 108). Thus, Player I must win F’f,,, by assumption,
because f' J f. 3 fo. This yields a contradiction which means that fy cannot
exist. O

In the upcoming lemma we finally establish the simulation between the
block game and the semigroup game. We show how to compute an appro-
priate candidate for the function f; mentioned in the previous lemma. We
have to guarantee that every infinite ~j-equivalence class contains a word of
length between fy and 2fy; then, the same also holds for every f with f 3 f.
Since every ~j-class is a regular *-language (cf. Lemma 5.11), we can apply
Lemma 1.2 to prove that fp can be chosen to be the maximal number of states
among all automata recognizing the ~j-classes.

Lemma 5.14. Player I wins I'sg if and only if there is a function fo : N — IN such
that Player I wins T for all f 3 fo.

Proof. We start with the implication from right to left. Let fo : N — IN; be a
function such that Player I wins F’f for all f J fy. We define a function f, such
that f. J fo and each word of length f. (i) is contained in an infinite ~j-class,
for all i € IN. To this end, let d’ be the length of a longest word in all finite
~i-classes! and define, for all i € N, f, (i) := max{fy(i),d’ + 1}.

Since f. J fo, Player I wins F’f* by assumption, and a winning strategy
yields his first two moves ug,u;. By our above remarks, both [ug] and [u]

11f ~1 has no finite equivalence class, then we define d .=0.

116 5 — FINTTE DELAY IN REGULAR GAMES

must be infinite, and so he can choose them in I'sg. We simulate Player O’s
Uup

answer [(Uo

)] by choosing v in I‘}*, and Player I's winning strategy yields u,
with [u7] being infinite. Choosing [u;] in T'sg we obtain the next move [(ﬁi)] of
Player O, and so on.

We argue that the plays built up induce the same maximal color occurring
infinitely often. It suffices to show that in both plays a move of Player O
leads A to the same state, via paths with equal maximal color. Then, the rest
follows by induction. Let g; be the current state of A and u;, ;11 be the latest
words chosen by Player I. If Player O chooses [(zj)] in T'sg, then we reach

the state gi41 := 0*(g;, (%)) via the maximal color y(g{')q . The state g1
! U qidiv1

is well-defined because from g; every (Z;) € [(ﬁj)] leads A to the same state,
though via different paths, but with the same maximal color. In 1"}* Player O
chooses v;. As in I'sg, we reach the state g;41 via the maximal color (%)

vilg. a4

Conversely, assume that Player I wins I'sg. Let Ay, ..., A, be automatg,z‘]gé:-
ognizing all the ~i-classes, and n’ be the maximal number of states among
these automata: n’ := max{ny,...,n,}, where n; is the number of states of A;
for j = 1,...,r. For the rest of this proof, let fo be the constant function
with fo(i) := n’ for all i € N. (To simplify matters, we write fy instead
of fo(i).) We first show that Player I wins I';: Player I's winning strategy
in I'sg yields [ug], [1]. Since [ug], [u1] are infinite, we can apply Lemma 1.2.
Accordingly, each A; with [L(A;)| = co accepts a word of length between fo
and fo + n; and thus between fo and 2fy, because n; < f;. Hence, we can
assume w.l.o.g. that fo < |ug|, |ui| < 2fp. Player I chooses ug, u; in F’fo and
Player O answers by a word vy with |vg] = |up|. We simulate this move
by [(;)] in I'sg and obtain Player I's answer [u,], so the next move of Player I
in T is u (for appropriate u). Player O chooses vy with [v1| = [u1], and so
forth.

Using the same inductive argument as above, the plays built up have the
same maximal color occurring infinitely often. Starting at g;, Player O’s move v;
in 1"}0 has the same effect as the corresponding move [(zj)] in I'sg, i.e., we reach
the state ;1 := 0" (g;, (;)) via the maximal color y(zjf)qhqm.

We complete the proof (of the implication from left to right) by showing that
Player I wins F} forall f O fy. Let|[a, b]| := b—a be the size of the interval [a, b].
If f 3 fo, then (since |[fo,2f0]| = n’) it holds |[f(i),2f(i)]| > n’, for all i € N.
Hence, to win F’f Player I simply needs to choose longer representatives of the

~i1-classes than in I’}O. d

In the proof of Corollary 5.12 we have argued that each ~j-equivalence class
is recognized by a DFA with at most 2(mm)*" states. Thus, we can bound the

5.2 — THE SEMIGROUP GAME 117

constant n’ from the previous proof to be at most 2 (mn)*" thereby, we have also
found an appropriate candidate for the function fy, namely f(i) := 2(mm)*" for
all i € IN.

We have just accomplished the proof of item 1 of Theorem 4.12. The pre-
vious lemma completes our reduction of the problem whether a regular lan-
guage L over B? is solvable with finite delay to the question whether Player O
wins the semigroup game induced by some DPA A recognizing L. As already
remarked, the latter can be answered, because the semigroup game is a parity
game on a finite graph.

Next, we approach item 2 of Theorem 4.12. We show that each regular
specification which admits a finite-delay solution also allows for one of con-
stant delay. The idea for the proof of the upcoming lemma is two consider the
length of a shortest representative in each ~j-class.

Lemma 5.15. Let fy := n’ with n’ as in the proof of Lemma 5.14. Then, Player O
wins I'sg if and only if she wins T, _yy.

Proof. Let u of length d’ be a longest word in all finite ~j-equivalence classes.
Moreover, let L(A;) = [u], where A; has n; states. Then we have d' < n;.
Otherwise, the run of A; on u had a loop, which is a contradiction to the
finiteness of L(.A;). Since n1 < n’ we getd’ < n’ and sod’ +1 < »n’. Thus, each
~i-class containing a word of length at least f is infinite.

Assume that Player O wins I'sg. We first show that Player O wins I‘}O.
Let up, u; with n’ < |ug|, |u1| < 2n’ be the first move of Player I in F’fo. By
the above remarks [uo], [u1] are infinite, and we can simulate [uo], [11] in Ts.
Player O’s winning strategy in I'sg yields [(ZE)} for some suitable vy. Let her
choose 7y in 1"}0. Then Player I chooses u; and we simulate [u5] in I'sg, and so
on.

As in the proof of Lemma 5.14, we obtain plays with the same maximal
color occurring infinitely often, and so Player O wins I }0.

We obtain a winning strategy for Player O in I'(5,/_;), simulating one in I’ }0
as follows: the bits ag - - - a3,y 1 chosen by Player I in his first move in I'(5,/_y)
are simulated in I‘}O by the two words up, 11, each of which has length #’,
namely ug :=ag---a,,_1 and uy := a,y - - - apy_1. Player O’s winning strategy
yields her first move vg in I” ; the word vy can be used to give her n’ first
moves in I',_qy. Thereby, we obtain n’ new bits by Player I which can be
used to simulate his next move u; in the block game induced by fy, and so
forth.

Since Player O plays a winning strategy in 1"}0 and the w-words built up
in I‘}O and I'p,_1) are exactly the same, she also wins I'(5,/_y).

118 5 — FINTTE DELAY IN REGULAR GAMES

Conversely, let Player O win T'5,_1) and let go(i) := 27/, for all i € IN.
Since we have go J (2n’ — 1), Player O wins I'q;. Then, by Proposition 5.3, she
also wins I o+ Given a winning strategy for Player O in I" o We can specify one
for her in FSG as follows: a move [u;] of Player I is 51mulated by u; in I” o By
Lemma 1.2, an appropriate representative u; of length g (i) < |u;| < 2g(/(i)
must exist because gy 2 go, and so |[g((7),2g((i)]| > n’ for all i € IN. We use
Player O’s answer v;_; to choose [(g;j)] in I'sg. This yields a play winning for
Player O in I'sc. O

With Corollary 5.4 and Lemmas 5.13 and 5.14 we have shown that the prob-
lem whether L(.A) is solvable with finite delay is reducible to the question
whether Player O wins I'sg. In the framework of Section 4.1 this means that
we can decide whether there exists a continuous operator satisfying a regular
specification (given by a DPA A).

We estimated the game graph of I'sg to have at most 22(mn)"
where 7 is the number of states and m the number of colors of A (see at the

thmn vertices,

end of Section 5.2.2). Since we require only m colors to express the parity win-
ning condition of T'sg, its winner can be computed in time O((22"")"+1pn)™),

according to [Sch07]. Let us summarize the obtained results.

Theorem 5.16. Let A be a DPA over B2. The problem whether L(A) is solvable with
finite delay and the problem whether there is a continuous operator A such that it holds
{(A(a) | @ € B} C L(A) are in 2ExPTIME.

Finally, Lemma 5.15 shows that L(.A) is solvable with finite delay if and only
if it is solvable with constant delay. Moreover, the lemma exhibits a doubly

exponential upper bound for the required constant.
2n

Theorem 5.17. Let A be a DPA over B2 with n states and m colors, and n' := 2(mn)™"
Then, the following are equivalent:

1. L(.A) is solvable with finite delay.
2. L(\A) is solvable with constant delay 2n’—1.
3. There is a continuous operator A such that {(o) |« € BY} C L(A).

4. There is a (2n' — 1)-delay operator A such that {(,(,,) | « € B“} C L(A).

«)

5.3 Delay Values

For the class of regular w-languages, we have established decidability of Prob-
lem 4.11. Moreover, we have shown that each regular specification allowing
for a finite-delay solution also admits a constant-delay solution.

5.3 — DELAY VALUES 119

In our setting, we have assumed that the function f induces a delay on the
moves of Player O: the greater the function f, the greater the advantage for
her. However, we may as well consider the delay being imposed on the moves
of Player I; then Player O has to move ahead and an increasing delay function
is an increasing disadvantage for her. The purpose of the present section is
to show that the heart of the problem, i.e., determining whether a regular w-
language has a finite-delay solution, is independent of the fact who of the two
players moves ahead.

To this end, let us generalize the delay game I’y as follows: we modify the
range of the function f such that the value f(i) captures the increase of the
delay in round i, from Player O’s point of view; negative f-values are hence
a convenient way for describing a delay of Player I's moves. For the rest of
this section, we consider the set of possible delay functions to be F, := F, U F_
where

Fi:={f|f N—=Z;}andF_:={f| f:N—>Z_}.

If f € F; then the delay game is played as before (note that Z, = IN), i.e,,
Player I moves ahead. If f € F_ then the roles of the players are swapped as
follows: in each round, Player O has to choose |f(i)| bits and Player I chooses
one bit, afterwards. Then, we may raise the question whether it is possible
for Player I to delay his moves for a finite number of steps such that he has
a winning strategy in the corresponding game. This is the same as to ask for
the existence of a function f € F_ such that Player I wins I's(L). Thus, we can
formulate a dual version of Problem 4.11 as follows.

Problem 5.18. Let L be an w-language over B2. Does there exist a function
f € F_ such that Player I wins I'¢(L)?

If Player I wins I'¢(L) for some f € F_, then he can force the play into the
complement language L := (B?)“ \ L. Accordingly, we say that L is solv-
able with finite shift, and analogously for restricted classes of functions (cf.
page 101). Following the notation of [HL72], a shift function f € F_ can
also be interpreted as a function inducing negative delay; we may use each
term in place of the other. Accordingly, the function of constant shift d is re-
ferred to as the function (—d), i.e., the function inducing constant delay —d,
where (—d)(0) = —(d+1) and (—d)(i) = —1 for i > 1. Note that our no-
tation distinguishes between the function (—0) of constant shift 0 and the
function (0) of constant delay 0. In the first one Player O begins, whereas
in the second one Player I begins. This may make a difference in who has
a winning strategy, for example, if we consider the regular winning condi-
tion L 1= {(2)(2)(&) - € (B2)® | ao = bo}.

120 5 — FINTTE DELAY IN REGULAR GAMES

For f € F,, we can observe properties analogous to the ones made for the
normal delay game in Remark 4.13: items 1 and 2 directly translate to the
generalized setting, as the basic modeling of the delay game is not effected by
changing the roles of the players. For item 3, we naturally extend the relation C
to the set F,.. However, winning is still monotone. If f,g € F,and g: IN — Z_,
then f C ¢ means that |g(i)| < [f(i)| for every i, and accordingly Player O
in T'¢(L) has to give less bits than in Tf(L), in each round. Note that this is
an advantage for Player O, compared to I's(L), and that she can simulate each
winning strategy for T'r(L) in T'¢(L).

Remark 5.19. Let L C (IB?)“ be w-regular and f; € F,. Then the following hold:
1. The generalized delay game T's (L) is determined.
2. If fo is of bounded delay, then the winner of ' (L) is decidable.

3. If Player O wins I'z (L) then she also wins T's(L), for all f 3 fo. Analo-
gously, if Player I wins T's (L) then he also wins T'¢(L), for all f C fo.

We show that Problem 5.18 can be reduced to Problem 4.11. To do so, we
modify the winning condition L and swap the roles of the players. Then, we
can restrict the range of the function f to F, again, i.e., we are back in the
setting of the previous sections.

Definition 5.20. Let L C (B?)“ be a language. The complement-flip language
of L is defined as

L':={p a|a"B € L}.

If L is a regular language recognized by the DPA A = (Q, qo,d,c), then L'
is recognized by the DPA A= (Q, q0,¢’,c"), where in A" the transition labels
of A are flipped and the color of every state is increased by one (cf. [GTWO02]).
For all 4,4’ € Q, x,y, € B we define

(a(y) == 00 (3) =
and
d(q) :=c(q) + 1.

Note that the size of A" is linear in the size of A.

Lemma5.21. Let f_ € F_, f, := —f_ € Fy and L C (B?)% be a language. Player |
wins Ty (L) if and only if Player O wins Ty, (LY).

5.3 — DELAY VALUES 121

Proof. Let u; and v; be the moves made by Player I and Player O, respectively,
in Ts (L), and analogously with u/, v} in T, (L").

Assume Player I has a winning strategy in I'y (L). This winning strategy
is simulated in I'y, (L*) as follows: Player I chooses a word uf, € B/+(). We
simulate u(, as Player O’s first move in T 2 (L), i.e., we set v := u. Player I's
answer is the bit 19, and we take it as Player O’s first move v}, in T A (fl):
vy := uo. Player I answers by his second move u}, which we simulate as
Player O’s second move v; in T’ fa (L), meaning v; := u}, and so forth.

We build up the play (Zg)(ﬁi)(ﬁi) -+ in Ty (L) and the play (Zg)(zli)(zlg) e
in Ts, (L'). Since Player I plays a winning strategy in T'; (L), the play built
up is winning for him, i.e., it holds (Zg) (zi)(zz) .-~ ¢ L. This means that
(Zg)(Zi)(Zz) .-+ € L, therefore (Zé)(ﬁi)(ﬁ%) ... € I'. Thus, the play built up
in T's, (L') is winning for Player O.

The implication from right to left is shown analogously. O

The above lemma means that every function f- € F_ witnessing that L is
solvable with finite shift has a counterpart f; € F, such that L' is solvable
with delay f,. As a direct consequence, we get that Problem 5.18 is reducible
to Problem 4.11 (replacing L by L'). Since, for regular L, the language L'
is regular as well, we can apply the techniques from the previous sections
to decide whether L has a finite-shift solution, obtaining analogous results.
Moreover, we obtain the same asymptotic running time because A" can be
constructed from A in linear time.

Theorem 5.22. Let A be a DPA over B? recognizing the reqular w-language L. Then
the following hold:

1. The problem whether L is solvable with finite shift is in 2ExPTIME.

2. If L is solvable with finite shift, then it is solvable with constant shift d, for
some d doubly exponential in | A*.

For a DPA A over B? recognizing the regular w-language L, Theorems 5.17
and 5.22 mean the following: L is solvable with finite delay if and only if L is
solvable with constant delay 2n'—1, where n’ := 2(mn)*" is determined by the
number 7 of states and the number m of colors of A. Analogously, L is solvable
with finite shift if and only if L is solvable with constant shift 21’ —1. It may be
the case that both L has a finite-shift solution and L has a finite-delay solution.
Then, there exists a minimal constant d such that Player O wins F<d>(L) 5 dis
called the delay value of L. We obtain the following generalized determinacy of
regular Gale-Stewart games.

122 5 — FINTTE DELAY IN REGULAR GAMES

Theorem 5.23 (Generalized Determinacy). Let L be recognized by the DPA A
over B2 with n states and m colors, and let n' := 2" Then precisely one of the
following holds:

1. Player I wins T(L), for all f € F..
2. Player O wins T¢(L), for all f € F..

3. There exists an integer> d; € [—(2n'—1),2n'—1] uniquely determined by L
such that it holds

dr = min{d | Player O wins T 4(L)}
and d — 1 = max{d | Player I wins T 4 (L)}.

Moreover, from Theorems 5.16 and 5.22 we can draw the conclusion that
we can decide which case of Theorem 5.23 holds.

Theorem 5.24. Let A be a DPA over B? recognizing L. Then, the problem to decide
which case of Theorem 5.23 holds is in 2ExPTIME. If case 3 applies, then one can
compute the delay value d in triply exponential time.

Proof. Let A have n states and m colors. By Theorem 5.16, we can decide
in 2ExpTIME whether L is solvable with finite delay. To do so, we construct the
semigroup game I'sg(A) and solve it. By our main reduction, L has a finite-
delay solution if and only if Player O wins I'sg(.A); if Player I wins then L is
not solvable with finite delay, which means that case 1 of Theorem 5.23 holds.

Analogously, we can decide whether L admits a finite-shift solution (cf.
Theorem 5.22), by solving the semigroup game T'sg(A'). Recall that A’ is of
size linear in A, therefore a solution to I'sg(.A") can be computed in 2ExPTIME.
If Player O wins I'sg (ZI), then L is solvable with finite shift. Otherwise, Player I
wins T'sg(A") and case 2 of Theorem 5.23 applies.

The case where Player I wins both I'sg(AA) and T'sg(A") is not possible,
because the main reduction of the previous sections and Lemma 5.21 yield
that both players win T'(L) for all f € F,, a contradiction.

If Player O wins both T'sg(A) and Tsg(A"), then L is solvable with finite
delay and L is solvable with finite shift. Hence, there exists a constant d, > 0
such that Player O wins I'yy) (L) and a constant d_ < —O0 such that Player I
wins I' (4 y(L). By monotonicity, there must exist a minimal d* with d_ < d* <
dy such that Player O wins I'(;«(L), i.e., Player I wins T'(y (L) for all d < d*;

ZRecall that our notation distinguishes between the functions (—0) and (0). To cope with this,
let —1 be the predecessor of —0, and let —0 be the predecessor of 0.

5.3 — DELAY VALUES 123

note that d* < 0 is possible. Since, for given f € F., the winner of T's(L)
depends only on L (but not on its representation .A), the constant 4* also de-
pends only on L. Altogether, case 3 of Theorem 5.23 holds, and d* is the
delay value dj.

To compute d; we search through the interval [—(2n'—1),2n’—1] via binary
search. Throughout the computation we assume that d = {%L where
we start with d_ := —(2n'—1) and d := 2n'—1 If Player O wins I (L)
then d := d and if Player [wins I'4y(L) then d_ := d, such that the size of the
remaining interval is halved. Afterwards, we update the value d and proceed
analogously, until d_ = 4.

By the above procedure, we obtain d; in at most logn’ + 2 iterations. For
each d, the game T' (5 (L) can be modeled as a parity game on a graph with
O(n2) vertices, where we memorize the word one of the players moves ahead.
Since d is at most doubly exponential and we require only m colors for the
parity condition, the game I'(5(L) can thus be solved in triply exponential
time. Since the number of iterations is only exponential, the overall running
time to compute d; is also triply exponential. O

Let us reformulate our results in terms of delay operators: first of all, note
that the determinacy of a regular condition L (established in [BL69]) means that
either L or L is solvable by a 1-Lipschitz continuous operator, i.e., an operator
for which the constant 1 witnesses Lipschitz continuity (cf. page 99). In other
words, either L or L contains the graph of a 1-Lipschitz continuous operator.
This is due to the fact that the i-th output bit depends only on the first i input
bits and, therefore, for all , p € B“ with a # B it holds

dist(A(a), A(B))
dist(«, B) =1

From Theorem 5.23 it follows that, even if L has no 1-Lipschitz continuous so-
lution, it may nonetheless be solvable by a c-Lipschitz continuous operator, for
some ¢ < 221'=1 Theorem 5.17 implies that there exists a continuous solution
if and only if there exists a 22”/_1—Lipschitz continuous solution. That means,
for finding a continuous solution, it suffices to explore the set of operators of
delay bounded by 21’ —1. Note that this already yields decidability of the prob-
lem whether a regular condition is solvable by a continuous operator. Finally,
Theorem 5.24 implies that one can compute the minimal Lipschitz constant
required, if it exists, in triply exponential time.

3Sometimes, it may be necessary to consider d = Ld* §d+ |, ifd = [%] has already been

considered.

Chapter 6

A Concurrent Setting

Concurrent games are used to model synchronous interaction in open systems
[dAHMO00, dAHMO1]. The basic difference to turn-based games is that con-
current games normally cannot be won with deterministic strategies, i.e., they
are non-determined in the classical sense. Consider the following example of
a simple non-determined concurrent Gale-Stewart game.

Example 6.1. Let the players simultaneously choose one bit in each round of
the game. The winning condition is given by the following regular expression:

= ([G)+ QI 1)+ (DD

That means, a play is winning for Player O if and only if she chooses the
same bit as her opponent, in infinitely many rounds. Clearly, since Player O
does not know the bit a; when choosing b;, she cannot force to satisfy the
winning condition. By an analogous argument, Player I cannot guarantee that
the winning condition is violated. Thus, neither Player I nor Player O has a
winning strategy, which means that the game is non-determined.

There are well-known techniques to decide whether a given concurrent
game is determined with deterministic strategies (see for example [d AHMOO,
dAHMO1]). Additionally, more sophisticated notions of strategies have been
invented which ensure winning with a desired probability, possibly involving
both random choice of moves and infinite memory [dAHO00]. In the game of
Example 6.1, Player O has an almost-sure winning strategy (cf. [[KHO02]), i.e., a
mixed strategy which is winning for her with probability 1. Here, we abstain
from considering mixed strategies. Instead, we conduct the analysis of games
with finite delay in a concurrent setting.

First of all, we introduce a concurrent game with delay and show that any
winning strategy for one of the players can be simulated by a winning strat-
egy in a turn-based game, and vice versa (see Propositions 6.2 and 6.3). As
a corollary, we get that winning is still monotone with respect to the delay
function.

125

126 6 — A CONCURRENT SETTING

For w-regular specifications, we convey the techniques used in the previous
chapter to prove analogous results for the concurrent setting. As it will turn
out, a solution of finite delay can still be reduced to one of constant delay,
which means that the delay value of a regular language is still computable in
triply exponential time. Moreover, we can decide whether there exist delay
functions high enough such that our game becomes non-determined, and we
show how to compute upper bounds for these functions.

This chapter is organized as follows. First, we introduce a concurrent game
with finite delay. In Section 6.1, we reduce the concurrent setting to the turn-
based case; the findings presented hold for arbitrary classes of conditions.
Finally, in Section 6.2 we consider the class of regular specifications and show
results analogous to those in Chapter 5.

Definition of I'“. Let us informally describe the concurrent delay game I'7 (L).
It is induced by an w-language L over B? and two functions f,g : N — IN,.
The function f imposes a delay on the moves of Player O, and analogously for
the function g and the moves of Player I. (The concurrency inherent in the new
setting makes an analysis of possible shift solutions meaningless, therefore f, g
map into IN.)

A play proceeds as follows: in each round, ie., for i > 0, each of the
two players simultaneously chooses a non-empty word of predefined length.
Player I chooses a word of length f(i), and Player O chooses a word which
has length g(7). Thereby, each player builds up an infinite sequence; Player I
builds up & = apa1az - - - and Player O builds up B = bobiby--- (a;,b; € B).
The important difference to the normal delay game from Chapter 5 is that the
moves of each player are hidden to the opponent, and they are only uncovered
bit by bit during the course of the play: the bits 4; and b; are communicated to
Player O and Player I, respectively, after round i. That means, in each round
both players have to commit to possibly several bits, but each of them gets the
information about only one bit chosen by the opponent.

The winning condition is the same as for the normal delay game, i.e., the
play built up is winning for Player O if a”g := (;?)(;!)(;2) - - - is contained in L.
Otherwise, it is winning for Player I.

6.1 Reduction to the Turn-based Setting

The aim of this section is to reduce the concurrent setting to the turn-based
one. Therefor, we show in the following two propositions that, for each player,
a winning strategy in I'“ can be simulated by a winning strategy for Player I

6.1 — REDUCTION TO THE TURN-BASED SETTING 127

in the normal delay game. (Depending on which player we consider in I'°‘,
we may have to adapt the winning condition for the normal delay game.) The
reason for this is as follows: in each of the two settings, Player I is shown
one bit of Player O in each round. If Player I has a winning strategy in one of
the games, then it makes no difference for him whether or not the opponent
chooses concurrently, or whether the opponent, when taking a decision, knows
about all of Player I's previous choices. Hence, Player I also has a winning
strategy in the other game.

Proposition 6.2. Let L be an w-language over B> and f : N — IN.. Then, for
all g : N — IN_. it holds:

Player I wins F;fg(L) <= Player [wins T¢(L)

Proof. We accomplish the proof by simulation of the winning strategies. Let u;
and v; be the words chosen by Player I and Player O, respectively, in round i
of T ?fg(L), and analogously with u;, v} for T¢(L). (Note that v; € B, for all
ieIN.)

Let Player I have a winning strategy in I’ ?Cg(L) It yields up € B/, and
we can choose u; := up. Player O’s answer vy € B in I'f(L) is simulated

CC

in I’ 3 g(L), such that after the first round the bit vj, is uncovered. Player I's
winning strategy yields the word u; € Bf(M), which is taken as u). Player O’s
answer v} is taken as her next bit in I'? (L). (Note that this bit may belong
to either vy or v;, depending on g.) Player I's winning strategy in F}fg(L)
yields u, € Bf(?), and so on. The plays built up this way coincide. Thus, since
Player I wins F}fg(L), he also wins I'¢(L).

The implication from right to left is accomplished analogously. O

For the simulation of a winning strategy for Player O in F}fg(L), we uti-

lize the complement-flip language ' as winning condition for the turn-based
game.

Proposition 6.3. Let L be an w-language over B? and ¢ : N — IN... Then, for
all f:IN — N it holds:

Player O wins F}fg(L) <= Player [wins To(L")

Proof. Again, we argue by simulation of the winning strategies. (To this end, let
the words u;, v;, uf, v; have the same meaning as in the proof of Proposition 6.2.)

Assume Player O has a winning strategy in F;fg(L), which means that we
obtain vy € B8, without any information about the move uy of Player I;
set uj := vo. Player O’s answer v is just one bit, and we simulate it in I'? (L)

128 6 — A CONCURRENT SETTING

such that it is taken as the first bit of uy. This yields Player O’s second
move v; € BSMW in T e (L), which we use as second move of Player Iin T'g(L"),
i.e., u} := v1. Player O’s answer] is taken as the next bit of Player I in I'} T g(L)

it belongs to either ug or u;, depending on f. We obtain v, € B8(?), and proceed
analogously.
We get uguquy - - - = vjvjvh - - - and vov vy - - - = ugujUy - - -, by construction.
u u
Since Player O plays a winning strategy in I'f g(), we have (%) (;1)(57) - -+ € L.

01
Hence, it also holds (”9)(0,)(1/) -++ ¢ L', which means that the play in T¢(L")
Y 2
is winning for Player I. 1
The proof for the other direction works analogously. O

A direct consequence of the above propositions and Remark 4.13 is that,
for both players, winning the game I'““ is a monotone property with respect to
decreasing delay.

Remark 6.4. Let L C (B?)“ be an w-language and fo, g0 : N — IN.. If Player I
wins ' (L), then he also wins I'? (L), for all f,g : N — N with f C fo.
Analogously, if Player O wins I' .20 (L), then she also wins F}fg(L), forall f,g:
IN — IN; with g T go.

Basically, the following theorem is a consequence of the previous remark.
For case 2a, note that there cannot exist functions f,g such that Player O
wins I’ ?fg(L), because, otherwise, it follows from monotonicity that both play-
ers win F§8> (0) (L); a contradiction. For case 2b, the argument is analogous.

Theorem 6.5. Let L be an w-language over B2. Then precisely one of the following
holds:

1. Global Determinacy: the game I'F (L) is determined, for all f,& : N — IN.
a) Player I wins I'y (), forall f,g.
b) Player O wins FCC o (L), forall f,g.

2. Delay-dependent Determinacy: there exist functions fo,go, f1,81 : IN — N4
such that I's (L) is determined and I (L) is non-determined.

a) Player I has a winning strategy in F}C (L) for all f,g with f T fo, and
I, (L) is non-determined for all f, g with f 3 f1. Player O does not have
a winning strategy in FCC (), forall f,g.

b) Player O has a winning strategy in T'¥ (L) for all f, g with g & go, and
F}C (L) is non-determined for all f,g with ¢ 3 g1. Player I does not have
a winning strategy in I's (L), for all f, g.

3. Global Non-Determinacy: Iy, (L) is non-determined, for all f, g : N — N,

6.2 — REGULAR SPECIFICATIONS 129

6.2 Regular Specifications

From now on, we deal only with w-regular specifications. We use the results
from Chapter 5 to decide, for which functions, which player has a winning
strategy in the concurrent delay game. Moreover, we show that one can decide
whether there exist delay functions (high enough) such that the game becomes
non-determined.

As a start, we reformulate case 2 of Theorem 6.5 such that the delay func-
tions fo, g0, f1, g1 can be assumed to induce constant delay.

Lemma 6.6. Let A be a DPA over B? recognizing L, where A has n states and
m colors, and n' = (mm)*", Moreover, let fo, g0, f1,81 : IN — IN4. be functions such
that T'¢ o (L) is determined and I (L) is non-determined. Then precisely one of the
following holds:

1. There exists a maximal dy < 2n’—1 uniquely determined by L such that Player I

;ui;s <l;l ?§>I>’g(L), for all g. Moreover, F}fg(L) is non-determined for all f, g with
g (ar).

2. There exists a maximal do < 2n'—1 uniquely determined by L such that
Player O wins 'Y, do>(L), for all f. Moreover, I'F (L) is non-determined for
all f,g with g 3 (do).

Proof. Assume that Player I wins 'Y e (L). Then it follows from Proposition 6.2
that Player I wins I's, (L). By Remark 4.13, Player I also wins I') (L) and thus,
by Proposition 6.2, he wins l"%%g(L) for all g.

Moreover, if T’ ?f o (L) is non-determined, then Player I does not win I'f, (L),
by Proposition 6.2. Thus, since I', (L) is determined, Player O wins 'y, (L). By
the results of Chapter 5, she also wins T4 (L), for some d' < 2n’—1, which
means that Player I does not win I'(4y(L). Using Proposition 6.2 again, we
obtain that Player I does not win T’ ?C/>,g(L), for all g.

Altogether, Player I wins 1"§8>,g(L) and does not win F%§,>,g(L), for some
d" < 2n'—1 and all g. Hence, by monotonicity, there must exist a unique
constant dy € [0,2n’—1] such that Player I wins 1"§§>,g(L) foralld < djandall g,
and Fi(é),g(L) is non-determined for all d > d; and all g. Clearly, d; depends
only on L. Thus, item 1 of the lemma holds.

Item 2 holds analogously, assuming that Player O wins I’ % % (L). O

Theorem 6.7. Let A = (Q,4qo,d,c) be a DPA over B? recognizing L, where A has
n states and m colors, and n' = 2 (mn)? Then, the problem to decide which case of

Theorem 6.5 holds is in 2ExPTIME. If case 2 applies, then one can compute dy (or do)
in 3ExPTIME.

130 6 — A CONCURRENT SETTING

Proof. We construct both the semigroup games I'sg(A) and I'sg(A") (see Sec-
tion 5.2) and distinguish four different cases.

1. Player I wins both T'sg(A) and Tsg(A"). By Lemmas 5.13 and 5.14,
Player I wins I'¢(L) for all f. From Proposition 6.2 it follows that Player I
wins I'¢ (L), for all f,¢. Analogously (with Proposition 6.3), if Player I
wins T'sg(A"), then Player O wins ¢, (L), for all f,g. This yields a
contradiction, because at most one player can have a winning strategy
in I'®; consequently, this case cannot occur. Moreover, we conclude that
if Player I wins one of the two semigroup games, then Player O wins the

other one (see cases 2 and 3 below).

2. Player I wins T'sg(.A) and Player O wins I'sg(A"). By Lemmas 5.13
and 5.14, Player I wins I'¢(L) for all f. From Proposition 6.2 it follows
that Player I wins F;fg(L), for all f, g, which means that case 1a of Theo-
rem 6.5 holds.

3. Player O wins I'sg(.A) and Player I wins I'sg(.A"). This case is analogous
to case 2, yielding that Player O wins F}fg(L), for all f,g. Thus, it holds
case 1b of Theorem 6.5.

4. Player O wins both T'sg(A) and T'sg(A"). Lemma 5.15 yields that Player O

wins T',y_1)(L), and Proposition 6.2 implies that Player I does not have

cc
(2n'-1),8

Player O wins I o, _q) (L"), and Proposition 6.3 implies that Player O does

a winning strategy in I (L), for all g. Analogously, we obtain that

not have a winning strategy in T’ %(211/—1) (L), for all f. As a consequence,

the game Fign’%), <2n,71>(L) is non-determined; monotonicity yields that
I"CC

¢ (L) is non-determined, for all f, g 3 (2n" —1).

To decide whether it holds item 2 or 3 of Theorem 6.5, we check whether
G, <0>(L) has a winner. For each ¢ € {I,O}, we consider the game G,
which is defined as the normal Gale-Stewart game (cf. Section 1.4.3), with
the only difference that Player o begins: in each round, Player ¢ chooses
one bit x and Player ¢ answers by one bit y, afterwards. Clearly, G, can
be modeled as a parity game on a finite graph and we can apply standard
techniques to decide its winner [GTW02]. The important observation is
that each winning strategy for Player ¢ in F§8>,<0>(L) also is a winning
strategy for him in G, and vice versa. This is due to the fact that, in both
games, Player ¢ has to choose x before knowing about y. For Player ¢
there is a difference: whereas in G, he knows about x before choosing y,
in ', <0>(L) he knows about x only after choosing y, which is a disad-
vantage compared to G,. Altogether, Player ¢ wins G, if and only if

6.2 — REGULAR SPECIFICATIONS 131

he wins I'f, <0>(L) or I'g, <0>(L) is non-determined. We can deduce the
following.

Remark 6.8. The game I ?f» (0) (L) is non-determined if and only if Player I
wins Go and Player O wins Gj.

To that effect, solving 1 and Go we can decide whether it holds case 2a,
2b or 3 (of Theorem 6.5) as follows: if I' ?6» (0) (L) is non-determined, then
I'¢,(L) is non-determined for all f, g, by Remark 6.4. Accordingly, it
holds case 3 of Theorem 6.5. Otherwise, the winner of F§8>,) (L) deter-
mines whether it holds case 2a or 2b.

We have proven that, for regular L C (IBZ)” , it is decidable which case of The-
orem 6.5 holds. The construction and solving of the semigroup games I'sg(.A)
and T'sg(A") can be done in doubly exponential time, which suffices to deal
with cases 1 through 3 of the above case distinction.

For case 4, we need to construct and solve both G; and Go. Each of these two
games can be modeled by a parity game on a graph with 3n vertices and m col-
ors and, thus, is solvable in time O((3n)™). If the solutions to Gy and Go yield
that I‘§8>, o) (L) does not have a winner, then we are done. Otherwise, we make
use of Lemma 6.6 and compute d; (or dop), analogously to the proof of Theo-
rem 5.24. Let us exemplarily consider the case where Player I wins I ?6» (0) (L),
i.e., we have to compute d;. We execute a binary search through the inter-
val [0,2n'—1], finding the maximal d such that Player I wins ', <0>(L), in at
most logn’+2 iterations. For every considered constant d, we construct the
generalization Gy, of G;, where in his first move Player I chooses d+1 bits,
instead of only one bit. (The game Gp 4 needs not be considered because we
know that Player O does not win I’ ?fg(L), for all f,g.) G4 can be modeled as a
parity game on a graph with at most O(1n24) vertices and m colors, hence it can
be solved in exponential time [Sch07]. Since d is at most doubly exponential,
the overall time needed to compute dj is triply exponential. O

Conclusion of Part 11

Summary

In the second part of the thesis, we have explored the topological properties
of operators that are needed to solve regular conditions. Our motivation has
been initiated by the work [BL69] of Biichi and Landweber, who showed that
the existence of solutions with delay zero is decidable, and by the work [HL72]
of Hosch and Landweber, who extended the former result to bounded-delay
operators.

Our Approach. We have considered regular Gale-Stewart games with the no-
tion of a strategy corresponding to the class of continuous operators. One of
the players is allowed to delay each of his moves for a finite number of steps,
thereby obtaining the possibility to get an unbounded lookahead on the moves
of the opponent. In our approach, we have made use of the fact that the be-
havior of a deterministic parity automaton (recognizing the winning condition)
can be described by a finite number of equivalence classes, each of which con-
tains all words which induce the same behavior on the automaton. The set of
equivalence classes induces a finite semigroup on the set of all possible inputs
to the automaton. On this basis, we have defined a parity game on a finite
graph, called semigroup game, in which a move of a player is a behavior of
the given parity automaton.

Results. We have shown that the output player wins the semigroup game if
and only if she wins the Gale-Stewart game with some finite delay. Thereby,
the problem whether a given regular specification is solvable with finite delay
turned out to be decidable (in doubly exponential time). Moreover, we have
proven that each finite-delay solution can be reduced to one of constant delay
where the required constant is at most doubly exponential in the size of the
automaton representing the winning condition. This follows from the fact
that the length of a shortest representative of any behavior induced by the
automaton is at most doubly exponential.

From our results we have derived a generalization of the determinacy of

133

134 CONCLUSION OF PART II

regular conditions (shown by Biichi and Landweber), now provided in Theo-
rem 5.23. In topological terms, our results mean that every regular condition
which is solvable by a continuous operator is also solvable by a Lipschitz con-
tinuous operator.

We have obtained analogous results for a concurrent setting.

Further Prospects

Lower Bound. We have skipped a proof of a lower bound for the required
delay, which obviously is at least linear in the size of the automaton. For exam-
ple, the condition that the first output bit has to coincide with the k-th input bit
(for some fixed k), is recognizable by a DPA with O(k) states, and it requires a
delay of k to be solved.

We believe that there exists no regular condition requiring a delay which
asymptotically exceeds the number of states of an automaton recognizing the
condition. The reason for this is as follows: if in a regular specification the
i-th output letter depends on the first j letters of the input sequence, then an
automaton recognizing the specification has to count up to positions i and j;
this requires at least max{i,j} states. One idea could be to see whether a
representation by logic formulas helps in the issue of finding lower bounds.

Infinite Delay. Note that there are regular conditions which require to know
about the whole input sequence, to be able to decide on the first output let-
ter. For example, consider the specification over B2 where the first output
bit should be 1 if the input sequence contains 1 infinitely often, and 0 other-
wise. This condition is recognizable by a DPA with five states and three colors.
Clearly, Player O does not win with any finite delay.

However, one could think of a game with infinite delay, such that Player I
has to give a full w-word in his first move. We have spared to consider this
setting as the question whether there exists a solution with infinite delay can
obviously be answered in the following way: if there exists a word a such that,
for no B, the pair («,B) is contained in L, then Player I wins by choosing «.
Otherwise, for each a, Player O can build up some B such that (x,8) € L,
which means that Player O has a winning strategy, because she knows « be-
fore she has to choose the first letter of 5. The problem to decide which one
of the aforementioned situations holds can effectively be solved as follows:
first, we project the transitions of the automaton A on the first component;
afterwards, the language of the obtained automaton, say .A’, is tested for uni-
versality. Clearly, Player O wins with infinite delay if and only if L(A’) is

CONCLUSION OF PArT II 135

universal.

One may argue that the above notion of infinite delay is inappropriate for
algorithmic synthesis. On the one hand, it is not clear how to model it as an
infinite game because Player I had to move only once. On the other hand,
depending on the kind of word Player I chooses, Player O’s winning strategy
needs not be finitely representable; therefore, we might not be able to imple-
ment it.

However, it is also possible to think of infinite lookahead such that the
second player may use information about the first player’s sequence up to a
partition of the space of sequences into regular sets.

Non-regular Winning Conditions. Whereas Walukiewicz has shown that in-
finite games with deterministic context-free winning condition are determined
with (deterministic) pushdown-strategies [Wal96], neither our results nor the
results in [HL72] translate to non-regular winning conditions. Recent work of
Fridman et al. has shown that the problem whether a deterministic context-free
specification is solvable with finite delay is undecidable [FLZ10].

The proof is accomplished by a reduction from the halting problem for
2-register machines, which is known to be undecidable [SS63]. Player I builds
up a sequence of encodings of configurations, each of which is a triple (I, c1, ¢2),
where [denotes the current line of the machine and ¢y, ¢, are the contents of
the counters. Player O verifies whether or not the adversary’s choices comply
with the transitions of the given machine. She wins if she detects an error in
the computation given by Player I, i.e., at a particular position the next but
one configuration is not the successor configuration of the next one. The latter
condition can be checked by a deterministic pushdown automaton.

The argument for the correctness of the reduction is as follows: if the ma-
chine halts, then its computation is finite and of bounded length. Accordingly;,
there exists a constant d such that, in the game with delay d, Player I has
to choose the whole computation (plus a successor configuration of the stop-
configuration) in the first round. Since the stop-configuration has no valid suc-
cessor configuration, Player O can claim incorrectness, and hence wins with
delay d. Conversely, if the machine does not halt, then Player I can build up
an infinite computation without making a mistake. Accordingly, he wins with
each finite delay. Note that the given arguments yield undecidability already
for the case where only bounded delay is considered.

Moreover, Fridman et al. have shown in [FLZ10] that there exists a deter-
ministic context-free specification such that Player O wins the corresponding
game with finite delay, but she requires a delay which cannot be bounded by

136 CONCLUSION OF PART II

some k-fold exponential function, for any fixed k.

Bibliography

[ALWS89]

[BKO8]

[BL69]

[BLV96]

[Bra84]

[BSWO03]

[Cac03]

[Cha06]

Martin Abadi, Leslie Lamport, and Pierre Wolper. Realizable and
unrealizable specifications of reactive systems. In Giorgio Ausiello,
Mariangiola Dezani-Ciancaglini, and Simona Ronchi Della Rocca,
editors, ICALP, volume 372 of LNCS, pages 1-17. Springer, 1989.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, 2008.

J. Richard Biichi and Lawrence H. Landweber. Solving sequen-
tial conditions by finite-state strategies. Transactions of the AMS,
138:295-311, 1969.

Nils Buhrke, Helmut Lescow, and Jens Voge. Strategy construction
in infinite games with streett and rabin chain winning conditions.
In Tiziana Margaria and Bernhard Steffen, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 1055 of
LNCS, pages 207-224. Springer Berlin / Heidelberg, 1996.

Wilfried Brauer. Automatentheorie: Eine Einfiihrung in die Theorie
endlicher Automaten; mit 60 Beispielen und 111 Ubungsaufgaben. Leit-
fdden und Monographien der Informatik. Teubner, Stuttgart, 1984.

Alexis-Julien Bouquet, Olivier Serre, and Igor Walukiewicz. Push-
down games with unboundedness and regular conditions. In Par-
itosh K. Pandya and Jaikumar Radhakrishnan, editors, FSTTCS,
volume 2914 of LNCS, pages 88-99. Springer, 2003.

Thierry Cachat. Higher order pushdown automata, the caucal
hierarchy of graphs and parity games. In Jos C. M. Baeten,
Jan Karel Lenstra, Joachim Parrow, and Gerhard]J. Woeginger, ed-
itors, ICALP, volume 2719 of LNCS, pages 556-569. Springer, 2003.

Krishnendu Chatterjee. Linear Time Algorithm for Weak Parity
Games. Technical report, EECS Department, University of Califor-
nia, Berkeley, 2006.

137

138

BiBLIOGRAPHY

[Chub57]

[Chu63]

[CMJ04]

[dAHO0]

[dAHMO0]

[dAHMO1]

[DJW97]

[EHO0]

[ET91]

Alonzo Church. Applications of recursive arithmetic to the prob-
lem of circuit synthesis. In Summaries of the Summer Institute of
Symbolic Logic, volume 1, pages 3-50. Cornell University, Ithaca,
New York, 1957.

Alonzo Church. Logic, arithmetic, and automata. In Proceedings
of the International Congress of Mathematicians, 1962, pages 23-35.
Institute Mittag-Leffler, Djursholm, Sweden, 1963.

Krishnendu Chatterjee, Rupak Majumdar, and Marcin Jurdzinski.
On nash equilibria in stochastic games. In Jerzy Marcinkowski and
Andrzej Tarlecki, editors, CSL, volume 3210 of LNCS, pages 26—40.
Springer, 2004.

Luca de Alfaro and Thomas A. Henzinger. Concurrent Omega-
Regular Games. In 15th Symposium on Logic in Computer Science
(LICS’ 00), pages 141-156, Washington - Brussels - Tokyo, 2000.
IEEE.

Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang. The
control of synchronous systems. In Catuscia Palamidessi, editor,
CONCUR 2000 — Concurrency Theory (11th CONCUR’2000), volume
1877 of LNCS, pages 458-473. Springer-Verlag (New York), Penn-
sylvania State University, University Park, PA, USA, 2000.

Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang.
The control of synchronous systems, part II. In Kim G. Larsen and
Mogens Nielsen, editors, CONCUR 2001 — Concurrency Theory (12st
CONCUR'01), volume 2154 of LNCS, pages 566-582. Springer-
Verlag (New York), Aalborg, Denmark, 2001.

Stefan Dziembowski, Marcin Jurdziiiski, and Igor Walukiewicz.
How Much Memory is Needed to Win Infinite Games? In Pro-
ceedings of the 12th LICS, pages 99-110, Washington - Brussels -
Tokyo, 1997. IEEE.

Kousha Etessami and Gerard J. Holzmann. Optimizing Biichi Au-
tomata. In Catuscia Palamidessi, editor, CONCUR 2000 — Con-
currency Theory, volume 1877 of LNCS, pages 153-168. Springer
Berlin/Heidelberg, 2000.

E. Allen Emerson and Charanjit S. Jutla. Tree Automata, Mu-
Calculus and Determinacy (Extended Abstract). In 32nd Annual

BiBLIOGRAPHY 139

[EL85]

[EM69]

[EWS05]

[FLZ10]

[Fri05]

[Fri09]

[FW02]

[FWO06]

[GHS2]

Symposium on Foundations of Computer Science, pages 368-377, San
Juan, Puerto Rico, 1991. IEEE.

E. Allen Emerson and Chin-Laung Lei. Modalities for model
checking: Branching time strikes back. In Conference Record of the
Twelfth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 84-96, New Orleans, Louisiana, January 13-16, 1985.
ACM SIGACT-SIGPLAN, ACM Press. Extended abstract.

Shimon Even and Albert R. Meyer. Sequential boolean equations.
IEEE Transactions on Computers, C-18(3):230-240, 1969.

Kousha Etessami, Thomas Wilke, and Rebecca A. Schuller. Fair
Simulation Relations, Parity Games, and State Space Reduction
for Biichi Automata. SIAM Journal on Computing, 34(5):1159-1175,
2005.

Wladimir Fridman, Christof Loding, and Martin Zimmermann.
Degrees of lookahead in context-free infinite games. Technical Re-
port AIB-2010-20, RWTH Aachen University, December 2010.

Carsten Fritz. Simulation-Based Simplification of omega-Automata.
PhD thesis, Christian-Albrechts-Universitiat zu Kiel, 2005.

Oliver Friedmann. An exponential lower bound for the parity
game strategy improvement algorithm as we know it. In LICS,
pages 145-156. IEEE Computer Society, 2009.

Carsten Fritz and Thomas Wilke. State space reductions for alter-
nating biichi automata quotienting by simulation equivalences. In
Manindra Agrawal and Anil Seth, editors, FST TCS 2002: Founda-
tions of Software Technology and Theoretical Computer Science, volume
2556 of Lecture Notes in Computer Science, pages 157-168. Springer
Berlin / Heidelberg, 2002.

Carsten Fritz and Thomas Wilke. Simulation Relations for Alter-
nating Parity Automata and Parity Games. In Proceedings of the
10th DLT, volume 4036 of LNCS, pages 59-70. Springer, 2006.

Yuri Gurevich and Leo Harrington. Trees, Automata and Games.
In Proceedings of the 14th STOC, pages 60-65, San Francisco, CA,
1982.

140

BiBLIOGRAPHY

[GH11]

[G]79]

[Gri73]

[GS53]

[GTWO02]

[GWO0e6]

[HDO05]

[HHK95]

[HKR97]

Marcus Gelderie and Michael Holtmann. Memory reduction via
delayed simulation. In Johannes Reich and Bernd Finkbeiner,
editors, International Workshop on Interactions, Games and Protocols
(iWIGP), Saarbriicken, Germany, volume 50 of EPTCS, pages 4660,
2011.

Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W.H. Freeman and
Co., San Francisco, CA, 1979.

David Gries. Describing an Algorithm by Hopcroft. Acta Informat-
ica, 2:97-109, 1973.

David Gale and Frank M. Stewart. Infinite games with perfect
information. Annals of Mathematical Studies, 28:245-266, 1953.

Erich Gradel, Wolfgang Thomas, and Thomas Wilke, editors. Au-
tomata, Logics and Infinite Games, volume 2500 of LNCS. Springer,
2002.

Erich Grdadel and Igor Walukiewicz. Positional determinacy of
games with infinitely many priorities. Logical Methods in Computer
Science, 2(4), 2006.

Paul Hunter and Anuj Dawar. Complexity bounds for regular
games. In Joanna Jedrzejowicz and Andrzej Szepietowski, edi-
tors, Proceedings of the 30th International Symposium on Mathematical
Foundations of Computer Science 2005, MFCS 2005, volume 3618 of
LNCS, pages 495-506. Springer, 2005.

Monika R. Henzinger, Thomas A. Henzinger, and Peter W. Kopke.
Computing simulations on finite and infinite graphs. In IEEE,
editor, 36th Annual Symposium on Foundations of Computer Science:
October 23-25, 1995, Milwaukee, Wisconsin, pages 453-462, pub-
IEEE:adr, 1995. IEEE Computer Society Press.

Thomas A. Henzinger, Orna Kupferman, and Sriram K. Rajamani.
Fair simulation. In Antoni Mazurkiewicz and J6zef Winkowski,
editors, CONCUR '97: Concurrency Theory, 8th International Confer-
ence, volume 1243 of LNCS, pages 273-287, Warsaw, Poland, 1997.
Springer-Verlag.

BiBLIOGRAPHY 141

[HKT10]

[HL72]

[HLO7]

[Hol07]

[Hop71]

[Hor05]

[Hor08]

[JKHO02]

[JPZ06]

[Jur9s]

[Jur00]

Michael Holtmann, Lukasz Kaiser, and Wolfgang Thomas. De-
grees of Lookahead in Regular Infinite Games. In Luke Ong, editor,
Foundations of Software Science and Computational Structures, volume
6014 of LNCS, pages 252-266. Springer, 2010.

Frederick A. Hosch and Lawrence H. Landweber. Finite delay solu-
tions for sequential conditions. In M. Nivat, editor, Automata, Lan-
guages and Programming, pages 45-60, Paris, France, 1972. North-
Holland, Amsterdam.

Michael Holtmann and Christof Loding. Memory Reduction for
Strategies in Infinite Games. In Jan Holub and Jan Zdarek, editors,
CIAA, volume 4783 of LNCS, pages 253-264. Springer, 2007.

Michael Holtmann. Memory Reduction for Strategies in Infinite
Games. Diploma Thesis (revised version), RWTH Aachen, 2007.

John E. Hopcroft. An nlogn-Algorithm for Minimizing States in
a Finite Automaton. Technical report, Stanford University, Depart-
ment of Computer Science, 1971.

Florian Horn. Streett Games on Finite Graphs. GDV, 2005.

Florian Horn. Explicit Muller games are PTIME. In Ramesh Har-
iharan, Madhavan Mukund, and V. Vinay, editors, IARCS Annual
Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2008), volume 2 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 235-243, Dagstuhl, Germany,
2008. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.

Marcin Jurdziniski, Orna Kupferman, and Thomas A. Henzinger.
Trading probability for fairness. In Julian C. Bradfield, editor, CSL,
volume 2471 of LNCS, pages 292-305. Springer, 2002.

Marcin Jurdzinski, Mike Paterson, and Uri Zwick. A determinis-
tic subexponential algorithm for solving parity games. In SODA,
pages 117-123. ACM-SIAM, 2006.

Marcin Jurdziniski. Deciding the winner in parity games is in UP N
co—UP. Information Processing Letters, 68(3):119-124, 1998.

Marcin Jurdzifiski. Small progress measures for solving parity
games. In Horst Reichel and Sophie Tison, editors, STACS, vol-
ume 1770 of LNCS, pages 290-301. Springer, 2000.

142

BiBLIOGRAPHY

[Koh70]

[Kug11]

[Lod01]

[McN65]

[McN66]

[McN93]

[Meab5]

[Mos80]

[Mos91]

[MP95]

[MS95]

[Mul63]

[Pin95]

Zvi Kohavi. Switching and Finite Automata Theory. McGraw-Hill,
New York, 1970.

Antonin Kucera. Turn-based stochastic games. In Krzysztof R.
Apt and Erich Gradel, editors, Lectures in Game Theory for Computer
Scientists, pages 146-184. Cambridge University Press, 2011.

Christof Loding. Efficient minimization of deterministic weak w-
automata. IPL, 79:105-109, 2001.

Robert McNaughton. Finite-state infinite games. Technical report,
Project MAC, Massachusetts Institute of Technology, USA, 1965.

Robert McNaughton. Testing and generating infinite sequences by
a finite automaton. Information and Control, 9(5):521-530, 1966.

Robert McNaughton. Infinite games played on finite graphs. An-
nals of Pure and Applied Logic, 65(2):149-184, 1993.

George H. Mealy. A method for synthesizing sequential circuits.
Bell System Technical Journal, 34(5):1045-1079, 1955.

Yiannis N. Moschovakis. Descriptive Set Theory, volume 100 of Stud-
ies in Logic and the Foundations of Mathematics. North-Holland Pub-
lishing Company, 1980.

Andrzej W. Mostowski. Games with forbidden positions. Technical
Report 78, University of Gdarsk, 1991.

Zohar Manna and Amir Pnueli. Temporal Verification of Reactive
Systems - Safety -. Springer-Verlag, New York, 1995.

David E. Muller and Paul E. Schupp. Simulating alternating tree
automata by nondeterministic automata: New results and new
proofs of the theorems of Rabin, McNaughton and Safra. Theo-
retical Computer Science, 141(1-2):69-107, 1995.

David E. Muller. Infinite sequences and finite machines. In Pro-
ceedings of the Fourth Annual Symposium on Switching Circuit Theory
and Logical Design, pages 3-16, Chicago, Illinois, 1963. IEEE.

Jean-Eric Pin. Finite semigroups and recognizable languages: An
introduction, 1995.

BiBLIOGRAPHY 143

[P5t10]

[PP95]

[PP04]

[PR89]

[Sch07]

[Sed91]

[SS63]

[SW74]

[TB73]

[Tho95]

[Tho97]

[Tho02]

Frank Poéttgen. Unendliche Zweipersonenspiele mit Verzogerter
Information. Diploma Thesis, RWTH Aachen, 2010.

Dominique Perrin and Jean-Eric Pin. Semigroups and automata on
infinite words. In J. Fountain, editor, NATO Advanced Study Insti-
tute Semigroups, Formal Language and Groups, pages 49-72. Kluwer
academic publishers, 1995.

Dominique Perrin and Jean-Eric Pin. Infinite words, volume 141 of
Pure and Applied Mathematics. Elsevier, Amsterdam, 2004.

Amir Pnueli and Roni Rosner. On the synthesis of a reactive mod-
ule. In Proceedings of the Sixteenth Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 179-190. ACM Press, 1989.

Sven Schewe. Solving parity games in big steps. In Vikraman
Arvind and Sanjiva Prasad, editors, FSTTCS, volume 4855 of
LNCS, pages 449-460. Springer, 2007.

Robert Sedgewick. Algorithmen. Addison-Wesley Publishing Com-
pany, Reading, MA, 1991.

John C. Shepherdson and Howard E. Sturgis. Computability of
recursive functions. Journal of the ACM, 10:217-255, 1963.

Ludwig Staiger and Klaus Wagner. Automatentheoretische und
automatenfreie Charakterisierungen topologischer Klassen reg-
uldrer Folgenmengen. Elektronische Informationsverarbeitung und
Kybernetik, 10(7):379-392, 1974.

Boris A. Trakhtenbrot and Janis M. Barzdin. Finite Automata, Be-
havior and Synthesis. North Holland, Amsterdam, 1973.

Wolfgang Thomas. On the synthesis of strategies in infinite games.
In Proceedings of the 12th STACS, volume 900 of LNCS, pages 1-13,
Munich, Germany, 1995. Springer.

Wolfgang Thomas. Languages, automata and logic. In A. Salomaa
and G. Rozenberg, editors, Handbook of Formal Languages, volume
3, Beyond Words. Springer, Berlin, 1997.

Wolfgang Thomas. Infinite Games and Verification. In Proceed-
ings of the 14th CAV, volume 2404 of LNCS, pages 58-64. Springer-
Verlag, 2002.

144

BiBLIOGRAPHY

[TL93]

[V]00]

[Wal96]

[Wal03]

[Wal08]

[WHTO3]

[Zie98]

Wolfgang Thomas and Helmut Lescow. Logical specifications
of infinite computations. In]J. W. de Bakker, W. P. de Roever,
and G. Rozenberg, editors, REX School/Symposium, volume 803 of
LNCS, pages 583-621. Springer, 1993.

Jens Voge and Marcin Jurdziiiski. A discrete strategy improve-
ment algorithm for solving parity games. In E. Allen Emerson
and A. Prasad Sistla, editors, CAV, volume 1855 of LNCS, pages
202-215. Springer, 2000.

Igor Walukiewicz. Pushdown processes: Games and model check-
ing. In Rajeev Alur and Thomas A. Henzinger, editors, CAV, vol-
ume 1102 of LNCS, pages 62-74. Springer, 1996.

Nico Wallmeier. Symbolische Synthese zustandsbasierter reaktiver
Programme. Diplomarbeit, RWTH Aachen, 2003.

Nico Wallmeier. Strategien in unendlichen Spielen mit Liveness-
Gewinnbedingungen: Syntheseverfahren, Optimierung und Implemen-
tierung. PhD thesis, RWTH Aachen, 2008.

Nico Wallmeier, Patrick Hiitten, and Wolfgang Thomas. Symbolic
Synthesis of Finite-State Controllers for Request-Response Specifi-
cations. In Proceedings of the 8th CIAA, volume 2759 of LNCS, pages
11-22. Springer, 2003.

Wieslaw Zielonka. Infinite games on finitely coloured graphs with
applications to automata on infinite trees. Theoretical Computer Sci-
ence, 200(1-2):135-183, 1998.

Index

Notation
Attro(F) oo 20-21
A/ g e 50
c(A) o 63
A 120
(d) oo 101
OF 13
dist ..o 94
G ttee et i e i e e 50
o S 112
e I 111
F oo 19
e 107
T 108
Foooe 119
1“} 106
F}C g(L) 126
Tp(L) o, 101, 119
TsG(A) e 113
G 67
) 15
T <T 25
index(~o) . .oeeiiiiii 111
INf(0) oo 13
Eeq 110
L 120
e 102
H(S) o 110
NG 11
OCC(0) o vveeeeie i 22
O 19

oink +vcevvvvmenenneneniinenen 48
Y e 11
hmml . 11
R 69
L 63
W] 11
P e 15
Algorithms
Attractor (2.1). ...l 21
Maximal Coloring (3.2) 57
Memory Reduction (3.1)........... 53
Muller,Streett (3.5)............. 73
Request-Response (3.4) 66
Staiger-Wagner (3.3) 60
A
attractor.................. see strategy
automaton game................... 49
B
bisimulation game
delayed........................ 62
direct............ ... 63
block game....................... 106
Biichi automaton 13-14
acceptingrun.................. 13
closure 63
Biichigame........................ 23
final vertices................... 23
C
Cantor metric...................... 94

145

146 INDEX
co-Biichi condition................. 24 M
color. .o 14 memory see strategy automaton
coloring................... ... 14,20 Muller game....................... 31
compatible............... ...l 50
complement-flip language........ 120 o
occurrenceset 22
D openset...................al 94
delay function.................... 101 operator...................oool 94
delay game 101, 119 h-delayoonn.. 95
concurrent.................... 126 bounded-delay 97
delay value................, 121 Constant-delay _________________ 99
delayed bisimilar 62 continuous. 94, 95
delayed bisimulation game........ see Lipschitz continuous 99
bisimulation game uniformly continuous 95
delayed simulation game
Btichi. .. .eoeeeeeeaninn 61-62 P
delayed simulates 62 parity automaton.................. 14
right-hand................... 69 accepting run.................. 14
parity ... 67-69 behavior...................... 110
determined 16 Parity game................. 24
DWA ..o 55 Play ..o 15
(maximal) coloring 55 priority memory................... 67
normal form................... 56 Q
G quotient game automaton . .. see game
Gale-Stewart game................. 17 automaton
game automaton................... 48 R
quotient....................... 50 . o
. . Rabin condition.................... 36
game simulation................... 25 .
game solution 16 reachability ga.me """"""""" 20
GASE o gq TCCUITENCETEHION covmerrerreen 23
regular omega-language 12
I Request-Response game 29
Index Appearance Record 36 rewardorder...................... 68
infinite game 15 right-hand delayed simulates. see
infinity set.................o.o 13 delayed simulation game
L S
labeling tree 95 safety condition.................... 22
Latest Appearance Record 32 SCC........... see strongly connected
Lipschitz constant 99 component

INDEX

147

semigroup game 113-114
simulation game.......... see delayed
simulation game
solvable............................ 17
with finite delay/shift ... 102, 119
Staiger-Wagner game 27
strategy.............. ... 15-16
attractor.................... 20-21
finite-state..................... 17
positional...................... 17
SIZ€....iiiii 17
winning 15
strategy automaton............. 16-17
MEMOLY ..ottt 17
Streettgame....................... 34
strongly connected component..... 54
W
weak parity automaton............ 14
weak parity game.................. 22
winning condition................. 15
winning region 15

winning strategy see strategy

