OpenMP Scalability Limits on Large SMPs and How
to Extend Them.

Von der Fakultat fiir Mathematik, Informatik und Naturwissenschaften
der RWTH Aachen University zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker Dirk Schmidl

aus Erkelenz

Berichter: Universitatsprofessor Dr. Matthias S. Miiller

Universitatsprofessor Dr. Christian Bischof

Tag der miindlichen Prifung: 28. Juni 2016

Diese Dissertation ist auf den Internetseiten der Universitatsbibliothek online

verflugbar.

Zusammenfassung

Aktuell sind Rechenknoten mit zwei Prozessoren die am haufigsten verwendeten
Knoten im Bereich des Hochleistungsrechnen. Viele tausend dieser Knoten konnen
iiber ein schnelles Netzwerk miteinander gekoppelt werden zu einem Rechenclus-
ter. Um diese Cluster zu programmieren wird iiblicherweise das Message Passing
Interface (MPI) verwendet. MPI erfordert es die Parallelitiat und die verwendeten
Datentransfers sehr explizit iiber Funktionsaufrufe zu realisieren.

Eine Alternative zu MPI, welche eine Parallelisierung auf héherer Ebene erlaubt
ist OpenMP. In OpenMP konnen serielle Programme mit Pragmas angereichert
werden um rechenintensive Teile der Anwendung parallel auszufithren. In vie-
len Féllen ist dies mit weniger Aufwand verbunden wie eine Parallelisierung mit
MPI, bei der die gesamte Datenverteilung iiber alle Knoten im gesamten Pro-
gramm implementiert werden muss. Der Nachteil von OpenMP ist, dass es nur
auf Maschinen mit geteiltem Hauptspeicher und nicht auf den weit verbreiteten
Clustern eingesetzt werden kann. Eine Reihe von Herstellern hat sich aber darauf
spezialisiert grofle Maschinen mit geteiltem Hauptspeicher herzustellen. Da geteil-
ter Hauptspeicher und damit einhergehende Anforderungen an die Koheranz der
Speicher und Caches kompliziert zu implementieren sind, haben solche Maschi-
nen Eigenheiten, die bei der Programmierung mit OpenMP beriicksichtigt werden
miissen um eine gute Parallelisierung zu erreichen.

In dieser Arbeit beschéaftige ich mich damit die Eigenschaften verschiedener
dieser groflen Maschinen mit geteilten Hauptspeicher und die Programmierbarkeit
mit OpenMP zu untersuchen. An Stellen an denen OpenMP nicht die notigen
Mittel fiir eine gute Parallelisierung liefert, werde ich Verbesserungen aufzeigen.

Weiterhin beschéftige ich mich in der Arbeit damit, wie Anwendungen mit
OpenMP fiir solche Maschinen systematisch optimiert werden konnen. Hier-
bei wird die Nutzbarkeit von Performance-Analyse-Werkzeugen untersucht und
Verbesserungen im Bereich der Task-basierten Analyse vorgestellt, welche die Op-
timierung fiir groffe Systeme vereinfachen. Abschliefend stelle ich noch ein Modell
vor, welches verwendet werden kann um eine Performance-Abschatzung fiir eine
Anwendung auf einem solchen System vorzunehmen.

Abschlieend wird anhand von zwei Anwendungen gezeigt, dass es die vorgestell-
ten Optimierungen erlauben mit echten Nutzeranwendungen eine Skalierbarkeit
mit OpenMP auf grofien Systemen zu erreichen.

Abstract

The most widely used node type in high-performance computing nowadays is a
2-socket server node. These nodes are coupled to clusters with thousands of nodes
via a fast interconnect, e.g. Infiniband. To program these clusters the Message
Passing Interface (MPI) became the de-facto standard. However, MPI requires
a very explicit expression of data layout and data transfer in a parallel program
which often requires the rewriting of an application to parallelize it.

An alternative to MPI is OpenMP, which allows to incrementally parallelize a se-
rial application by adding pragmas to compute-intensive regions of the code. This
is often more feasibly than rewriting the application with MPI. The disadvantage
of OpenMP is that it requires a shared memory and thus cannot be used between
nodes of a cluster. However, different hardware vendors offer large machines with a
shared memory between all cores of the system. However, maintaining coherency
between memory and all cores of the system is a challenging task and so these
machines have different characteristics compared to the standard 2-socket servers.
These characteristics must be taken into account by a programmer to achieve good
performance on such a system.

In this work, I will investigate different large shared memory machines to high-
light these characteristics and I will show how these characteristics can be handled
in OpenMP programs. When OpenMP is not able to handle different problems, I
will present solutions in user space, which could be added to OpenMP for a better
support of large systems.

Furthermore, I will present a tools-guided workflow to optimize applications for
such machines. I will investigate the ability of performance tools to highlight per-
formance issues and I will present improvements for such tools to handle OpenMP
tasks. These improvements allow to investigate the efficiency of task-parallel exe-
cution, especially for large shared memory machines. The workflow also contains
a performance model to find out how well the performance of an application is on
a system and when to stop tuning the application.

Finally, I will present two application case studies where user codes have been
optimized to reach a good performance by applying the optimization techniques
presented in this thesis.

Contents

[Cist of Figures| iv
[List of Tablesl vii
1__Introduction| 1
(L1 Main Contributionsl o 3
(.2 NUMA Architectures 5
(1.3 State-of-the-art in NUMA Programming| 6
(1.4 Experiment Hardware| 7

2 A Benchmark-Guided Characterization of Large Shared-Memory Ma- |
[_chines 11
2.1 Memory Performancel 12
[2.1.1 Serial Memory Performance, 12

[2.1.2 Parallel Memory Bandwidth| 14

[2.1.3 memory go_around| 16

[2.1.4 Data Management| 18

2.2 OpenMP Runtime Issues| 20
2.1 BEPCC Benchmarks 20

2.2.2 Nested Parallelism| 22

2.3 Distance Matriceso 24
[2.3.1 System Locality Distance Intormation Table| 25

2.5.2 Automatic Matrix Generationl 26

2.4 Summary| oo 28

3 Improved Memory Allocation and Migration in OpenMP Programs| 29
[3.1 Facets of Athnity in OpenMP Programs| 31
B.I.1 Distribution of Datal 32

B.1.2 Placement of Threads 33

3.1.3 Distribution of Workl 34

[3.2 Generating Reasonable Place Lists) 35
[3.2.1 The Traveling Salesman Problem| 36

[3.2.2 Approximation algorithms| 37

.23 FEvaluation|. 38

324 Recommendationl oL 40

Contents

[3.3 OMPX: An OpenMP Extension Library for Memory Placement| . .
[3.3.1 Memory Allocation and Initialization|
[3.3.2 Memory Migration|
[3.3.3 Performance Modeling for Memory Migration|

[3.4 Summary|

NUMA-aware Scheduling Strategies|

[4.1 Load Balancing versus Data Locality]
[4.1.1 A NUMA-aware Load Balancing Benchmark|

[4.2.1 'The Scheduling Principle|
[4.2.2 Work Stealing| L

[4.3 Locality-aware Task Programming/.
[4.3.1 Implementation of task schedulers|.
[4.3.2 Task creation patterns|00
4.3.3 NUMA-aware task creationl
[4.3.4 Tasking Performance on NUMA systems|

4.4 Summary|

6 Enabling NUMA-aware Task-performance Analysis|
0.1 Task-related Performance Issues
i nalyzing Tasks with Sampling Based Performance Tools|.
[5.2 Analyzing Tasks with S ling Based Perf Tools
[5.2.1 Intel VIune Amphtier XE{
[5.2.2 Oracle Solaris Studio Performance Analyzer|
[b.3 Event-Based Performance Tools
[>.3.1 Gathering performance data for tasks in Score-P|.
[5.3.2 Detecting task-related performance issues|.
(5.4 Improvements to Investigate Tasks on NUMA Machines|.
[5.4.1 Shortcomings in Score-P Regarding Task Analysisf
[5.4.2 Combining Traces with Hardware Information|
643 FEvaluationl.
[5.5 Summary|
[6 A Workflow to Program Large SMP Machines|

1

[6.1 Tools-guided Performance Tuning on Big SMP Machines|
[6.1.1 Tuning Cycle|
[6.1.2 Investigated Issues|
[6.1.3 Conjugate Gradient Method|

[6.2 Modeling OpenMP Pertormance|

[6.2.2 A Performance Model for large SMPs|
[6.2.3 Model Description|

40
41
42
43
46

47
50
20
o4
25
95
58
59
60
61
62
63
64

67
67
70
71
73
74
74
7
84
84
84
85
88

Contents

[6.2.4 Example: Conjugate Gradient Method 105

6.3 Case Studied. 106
6.3.1 SHEMAT-Suitelo o oo 107

[6.3.2 TrajSearch|. 108

(6.4 Summary| 111

[/ Summary and Conclusion| 113
=1]s orap 115

1ii

List of Figures

R1

Read Bandwidth in GB/s reached for different NUMA levels mea-

sured on the Xeon Phi, Westmere, HP, BCS, Altix and ScaleMP

system for different memory footprints.|

13

p.2

Parallel read and write bandwidth on the Westmere, HP, Altix,

BCS and Xeon Phi systems for an increasing number of threads.| . .

15

P.3

The memory_go_around benchmark works in n+1 steps. In the

first step the memory of the right neighbour is used to measure

the bandwidth, in the next step the memory of the next neighbour

and so on. This increases the distance between thread and memory

n every step, until half of the steps are done, then the distance

decreases until it reaches zero in the last step. |.

P4

Bandwidth measured with the memory_go_around benchmark for

n—+1 steps with n threads on the Westmere, HP, Altix, BCS, and

Xeon Phisystem| 000

P25

Overhead for different OpenMP constructs measured with the EPCC

microbenchmarks on the BCS machine and the Intel Compiler 14.0.

22

[2.6 (a)Distance Information retrieved from Linux and (b) measured

| 1]] = bonchmarl S Sockot Tntdl |

Nehalem-EX machiel o

BT D : ved T G SO AT UV]

25

[2.8 Distance matrix of the HP (left) and the BCS system (right). The

matrix 1s scaled such that the upper left value is always ten, larger

numbers indicate higher distances.|.

B1

Graph representation of the measured distances between the sockets

on the 8-socket HP system. |

B2

Access time for different numbers of accesses of a complete page

for different initialization and migration strategies on the 2-socket

Westmere a) and 4-socket SandyBridge b) system. The points of

intersection indicate when migration is beneficial over serial or

M1

Distribution of work packages (WPs) across NUMA nodes for the

load balancing benchmark. Exemplary for 12 work packages (WPs)

on a machine with 8 threads and 4 NUMA nodes.)

v

List of Figures

4.2 Load balancing benchmark results on a Xeon Phi system, running |

with b9 threads. Scheduling 3840 work packages with a static and |

dynamic scheduled parallel loop.|. 52

[4.3 Load balancing benchmark results on a 4-socket Bull s6030 system, |

running with 32 threads. Scheduling 3840 work packages with a |

static and dynamic scheduled parallel loop|. 593

4.4 Load balancing benchmark results on a 16-socket system, running |

with 128 threads. Scheduling 3840 work packages with a static |

and dynamic scheduled parallel loop,| 54

[4.5 Illustration of the NUMA-aware scheduler for 16 work packages and |

4 threads. Thread 0 finishes its packages first and can now steal |

package 7, 11 or 15.).o 56
[4.6 Load balancing benchmark results the NUMA-aware scheduler with |
different strategies for work stealing.| 57
.7 Tlustration of a central task queue used by four threads (left) and |
thread-local task queues for four threads (right).|. 60

[4.8 Illustration of local task queues for four threads. Thread 2 has an |

empty queue and applies task stealing. The other threads have local |

tasks to executel 62

[4.9 Load balancing benchmark results when tasking was applied. All |

tasks were created by the thread which also initialized the data used |

by the task, to maintain locality for thread-local task queues.. . . . 63

(5.1 A 16x16 Sudoku board with initial entries (left) and the algorithm |

in pseudocode to solve the sudoku puzzle(right).|. 71

[>.2 Analysis results of the Sudoku solver with the Intel VTune Amplifier |

XE for 32 threads on a 2-socket SandyBridge system with 32 cores |

1 totall ..o 72

[>.3 Analysis results of the Sudoku solver with the Oracle Solaris Studio |

Performance Analyzer for 32 threads on a 2-socket SandyBridge |

system with 32 coresintotal| 73

[>.4 Call stacks based on the present enter and exit events in the O'T'F?2 |

trace, in (a) for the original trace and in (b) after the virtual exit |

[>.5 Vampir screenshot showing how too coarse grained tasks can be |

detectedl 77
[5.6 Vampir screenshot showing how too fine grained tasks can be detected.| 78
[5.7 Vampir screenshot showing the single-creator pattern..| 79

[>.8 Performance analysis with V'ITune for the test programs with too |

coarsely grained tasks, too finely grained tasks and with a bottle- |

neck on the creator site with the single-creator pattern.| 80
[5.9 Vampir screenshot showing the timeline and callstack view for the |
sudoku solver). 82

List of Figures

[5.10 Performance of the Sudoku solver example without and with the

cut-off strategy used.|

83

E1l Wokd 5 . I Tard — . l

analyze NUMA related task scheduling issues.|

85

[>.12 Vampir screenshot showing the tasks during the execution of the

load balancing benchmark with the Intel runtime. Tasks executed

on the creating thread ar shown in green, stolen tasks from the same

NUMA-node in orange and from remote NUMA-nodes in red.|

86

[5.13 Vampir screenshot showing the tasks during the execution ot the

load balancing benchmark with the GNU runtime system. Tasks

executed on the creating thread are shown in green, stolen tasks

from the same NUMA-node in orange and from remote NUMA-

nodes in red. Comparing this figure to figure|5.12 a huge difference

in the way tasks are scheduled in the GNU and Intel runtime can

be observed.

[6.1 Illustration of the tuning cycle]

(6.2 Screenshot of the visualization tool for remote accesses on the BCS |

[system.|.o 95
[6.3 Hotspots of the CG solver investigated with Intel V'Iune,| 97
[6.4 Performance reached with the CG solver on the BCS system after |

[parallelizing hotspots with and without thread binding.| 97
[6.5 Local and remote memory accesses of the matrix vector multiplica- |

[tionin the CG solver measured with Intel VIunel 98
[6.6 Performance reached with the CG solver on the BCS system after |

[optimizing the memory access pattern by distributing the matrix |

[across NUMA nodes) oo 99
[6.7 Overhead in the sparse matrix vector operation in the CG solver, |

[measured with Intel VIunel 99
[6.8 Performance reached with the CG solver on the BCS system after |

[optimizing the memory access pattern by distributing the matrix |

[across NUMA nodes) oL 100
6.9 The Roofline Model applied to the BCS system.| 102
(6.10 Measured and modeled runtime for the CG solver) 106
[6.11 Speedup of the SHEMAT-Suite code on a 13 board ScaleMP ma- |

[chine for the original and optimized version.| 107
[6.12 Runtime and speedup ot the TrajSearch code on a Numascale ma- |

[chine with up to 1024 threads.|. 110

vi

List of Tables

In

Overview of the machines used during this work.|.

10

P

Overhead in microseconds for a malloc call allocating 1MB of mem-

ory. All threads constantly allocate and free memory. Results are

shown for 30, 60 and 120 threads on the Xeon Phi and 32, 64 and

128 on the P, BCS and AKX, . .« « o o oo e

R.2

Bandwidth reached when initializing an 2 GB array with first-touch

memory placement. In brackets the speedup compared to a single

thread on the same machine is shown. Results are shown for 30, 60

and 120 threads on the Xeon Phi and 32, 64 and 128 on the HP,

BCS and Altix systems.| 0L,

P23

Overhead in microseconds of the parallel construct on the BCS

machine, measured with the EPCC syncbench benchmark for dif-

ferent compilers.|.o Lo

P

Overhead in microseconds for OpenMP constructs in nested parallel

regions measured on the BCS machine and the Intel Compiler 14.0

and 128 threads)

B

Shortest paths generated by the brute-torce, greedy or Christofides

algorithm.| o

B2

Average page access time and overhead to migrate a page in us on

the 2-socket Westmere and 4-socket SandyBridge system.

B

Task generation behavior of the BOT'S benchmarks and several ap-

plications from RW'TH Aachen University|

5.2

Overhead and generated amount of data for investigated tools for

the Sudoku codel

[.3

Fraction of tasks which have been executed locally, on the same

socket or remotely for the GNU runtime system, compared to the

expected ratiol L.

vii

1 Introduction

Several programming paradigms exist for parallel programming today. Two indus-
try standards have become the de-facto standards in high-performance computing
for this purpose over the past decades, namely the Message Passing Interface
(MPI) and Open Multi-Processing (OpenMP). While MPI can be used on shared
and distributed memory systems, OpenMP requires a single system with a shared
memory for execution. However, OpenMP allows to extend the time consum-
ing parts of a serial program incrementally with directives for parallel execution,
without the need to rewrite the overall application. MPI, in contrast, requires
an explicit data distribution by the programmer and it requires to manually send
messages whenever data needs to be transferred between processes. Therefore, the
complete application needs to be adjusted to the distributed data layout, which
requires a complete rewrite of the application code in many cases. MPI therefore is
often called the ”assembly language of parallel programming”, as e.g. mentioned
in [Mattson et al., 2004] and [Pacheco, 1996], whereas OpenMP was often found
to be easier to use but it is also said to be very limited in scalability [Jost et al.,
2003).

To combine the advantages of both paradigms, many approaches have been in-
vestigated to allow OpenMP programming on large core counts. One way is to
couple multiple shared memory boards with a special interconnect that allows to
maintain shared memory over all boards. SGI designed their proprietary NU-
MAconnect for this purpose, which allows to build shared memory systems with
thousands of cores. Although, SGI was one of the first and maybe the most suc-
cessful vendor producing large shared memory machines in the past, other vendors
provide similar solutions as well. Bull, for example, completed the development
of the bull coherence switch, a chip that can be used to couple standard 4-socket
servers to a larger shared memory system with up to 16 processors. Numascale
is another company which developed a chip to combine several boards to a single
machine. This chip can couple hundreds of boards in a 3D-torus topology, forming
single systems with thousands of cores. The company ScaleMP uses a different
approach to reach the same goal. Instead of providing a hardware solution to build
a single machine, ScaleMP offers a virtualization software, called vSMP Founda-
tion,to provide shared memory on a cluster of standard servers. vSMP Foundation
uses the standard infiniband network of the cluster for the actual data transfers,
but provides the view of a shared memory and a single operating system image to
the user.

1 Introduction

All these machines allow to use OpenMP on hundreds or thousands of cores.
Although every OpenMP program can be run on these machines, the performance
is often worse than expected. On standard 2- or 4-socket servers the cache coher-
ence is typically maintained by a protocol called snooping. This implies that all
changes to a cache line, i.e. writes to a memory location, are propagated to all
other caches in the system. This allows to invalidate all other copies of the cache
lines in the system because these copies now contain an old value. The network
traffic for such a protocol increases drastically with the number of processors in
the system which need to be cache coherent, because every processor has changes
to communicate and needs to invalidate own copies when others change those
cache lines. Therefore, snooping does not scale for larger systems. All vendors of
larger systems, mentioned before, use a different protocol to connect systems in a
cache coherent manner. The second protocol is a directory based cache coherence
protocol. Here, the owner of a cache line has a directory with instances holding
a copy of this cache line. When the cache line is changed, the owner is informed
and the owner informs all instances with a copy of the cache line. This reduces
the traffic substantially, because typically a cache line is now not shared by all
cores in a system but only by a few cores or not at all. Such a directory based
protocol allows to build large systems, but the disadvantage is that a changes to
a cache line are propagated slower, since first the owner of the cache line needs to
be informed and second everyone with a copy must be informed, whereas snoop-
ing directly informs everyone in one step. As I will show later in this work, this
results in different characteristics of large NUMA systems compared to standard
2- or 4-socket servers. To achieve performance a programmer needs to be aware of
these characteristics and must keep them into account during the parallelization
of his code.

This work presents new and extends well-known methods for application tuning
on shared memory machines to achieve scalability to hundreds or thousands of
cores with OpenMP parallel applications. I will first characterize different large
shared memory machines, like an SGI Altix Ultraviolet, a Bull Coherence Switch
system and a ScaleMP machine with the use of standard benchmarks as well
as self-implemented tests to investigate performance relevant parameters of these
machines and I will show how this information can be used to automatically gen-
erate a machine description as it is needed in OpenMP’s affinity support (i.e. a
place-list). I cover standard techniques and tools as a basis before I present
self implemented methods for data migration and NUMA-aware load-balancing,
as well as extensions to standard performance tools which allow to detect perfor-
mance issues which could not be detected before, especially when OpenMP tasks
are used. Finally, ways to model OpenMP performance especially on large NUMA
machines are presented and I will present a recommended workflow to optimize
applications for large NUMA machines to achieve this performance.

The rest of this work is structured as follows: First I will explain types of NUMA

1.1 Main Contributions

machines and introduce the systems used for experiments throughout this work
in the rest of this chapter. Afterwards, performance characteristics of the inves-
tigated machines and different OpenMP runtime systems on these machines are
evaluated and discussed in section [, where I will also present how the gathered
information can be used to set up a distance matrix as a way to describe the ma-
chine properties with respect to non-uniform memory access. 1 will cover general
NUMA optimizations and present the OMPX library for memory placement in
chapter [3| and investigate load balancing issues on large NUMA systems in chap-
ter[dl In chapter [5| I will cover the ability of performance tools to handle OpenMP
tasks and I will present extension to a performance measurement system, called
Score-P, to improve the investigation of performance problems related to tasks on
large SMP systems. Furthermore, I developed a performance model for OpenMP
applications on NUMA systems and a workflow to optimize applications. This and
two applications case studies which prove the optimizations useful on real appli-
cation codes are presented in chapter [6] Finally conclusions are drawn in chapter

[

1.1 Main Contributions

This work provides new contributions over state-of-the-art practices in the area or
high-performance computing in the following fields.

First, as mentioned before, large shared memory machines exist from many
vendors and with different underlying technical solutions. Characteristics of these
different machines are investigated with the help of kernel benchmarks to clas-
sify the different architectures. Distance information of the NUMA nodes in a
system are used to automatically build a place-list. A place-list is an abstract
machine description used by OpenMP to support affinity. The generation of this
list is left to the programmer by the OpenMP specification, so a systematic way to
generate it can further ease the use of OpenMP’s affinity support. Furthermore,
the results of the kernel tests are used to form an easy-to-use performance model
for OpenMP programs on these machines. Existing performance models nowa-
days are either very simple, like the roofline model [Williams et al., 2009], where
peak-performance and memory bandwidth are the only restrictions for application
performance, or models are extremely complicate to apply. E.g. in [Treibig and
Hager, 2010] a model is presented to predict the performance of serial programs,
based on an analysis of the generated assembly code and detailed hardware in-
formation about throughput and latency for all cache levels, based on processor
specific vendor information. According to the authors, this is not done for parallel
programs, because the transfers of cache lines cannot be predicted that accurate
by looking at the assembly code only. In [Culler et al., 1993] or [Ramos and Hoe-
fler, 2013] parallel applications are considered, but the models concentrate only on

1 Introduction

the network and only network transfer times are considered. Both models require
in-depth knowledge of all transfers, which is useful in message passing applica-
tions, but most often not realistic for OpenMP programs, since data is transferred
transparently by the cache coherence mechanisms of the hardware. |[Calotoiu et al.,
2013] presented a tool for automatic performance modeling, namely Extra-P. This
tool allows to extrapolate the performance of an application runs with many cores
based on a few previous measurements with smaller core counts. The tool focuses
on MPI applications, but the techniques might be applied to OpenMP applications
as well. However, such an approach will very likely lead to inaccurate predictions
on hierarchical NUMA systems, as the small scale measurements on a few cores do
not provide any reliable data to predict memory access performance outside of the
local NUMA domain. The model presented here will use results from the kernel
benchmarks to provide a more accurate performance estimation than the roofline
model, while it will still be usable by non architecture experts and for OpenMP
programs.

Second, data and thread placement are the most important factors in shared
memory programming on NUMA systems. The current standard of OpenMP al-
lows the placement of threads on places with different strategies. For the data
placement no OpenMP support exists, but it is common practice to use the first-
touch data placement policy to distribute the data across NUMA nodes in the
desired way. This means, that the data needs to be accessed first on the node
where it should reside in memory, this can be achieved in many cases by parallel
initialization with the same access pattern that is later on used during computa-
tion. If this is not sufficient for an application, e.g. because the data access pattern
changes over time, like in adaptive algorithms, data migration mechanisms exist
for the Linux operating system. This work will investigate the usefulness of these
mechanisms on modern architectures. Furthermore, a method will be presented
to achieve migration-on-next-touch in user space for the Linux operating system.
This approach means that memory is migrated to the thread which uses the mem-
ory the next time. The Solaris operating system offers support for this type of
migration, but for Linux no support exists so far. The advantage of this method
is not that it is faster than explicit migration, but that it can be applied easier if
the access pattern is unknown or hard to describe for explicit migration calls.

Third, load balancing is one of the major challenges in parallel computing in
general. OpenMP provides standard methods to deal with load imbalance for un-
balanced computation loops, namely dynamic or guided schedules can be applied,
leading to a balanced but unpredictable and unreproducible distribution and or-
der of the loop iterations of the parallel loop. This makes it impossible to allocate
data on the right NUMA nodes in advance. This work will present a NUMA-aware
scheduling mechanism, providing load balancing while still maintaining data lo-
cality where possible.

1.2 NUMA Architectures

Fourth, since OpenMP version 3.0, tasks provide a different way to express
parallelism in OpenMP. The concept of tasks adds an additional layer of parallelism
but also of complexity to OpenMP programs. An OpenMP runtime has a lot of
flexibility in the way tasks are executed. This allows a lot of optimization inside
the runtime system, e.g. automatic work balancing, and for the programmer it
allows to express complex parallel algorithms in a simpler way in many cases, e.g.
when recursions are used. The downside for a programmer is that it is hard to
analyze the performance of OpenMP task parallel programs, since the runtime
system makes many decisions for the programmer. This work will investigate the
behavior of different OpenMP runtime systems and analyze how tasks are handled
on large NUMA machines. Based on this information, different methods to use
tasks by a programmer are presented and advice is given on which methods should
be used when on large NUMA machines.

Fifth, this work investigates common performance problems occurring in stan-
dard OpenMP programs in general and on large NUMA architectures in particular.
The ability of performance tools to detect these problems is investigated and for
issues which cannot be detected easily, methods are presented to extend perfor-
mance tools to detect these issues. The problematic issues are related to OpenMP
tasking, since this relatively new concept is not well supported by many perfor-
mance tools. To improve this, the Score-P measurement system is used as a basis
which allows to profile and trace application runs of parallel programs. For traces,
a trace-to-trace converter is used which adds additional information to the trace
file and runs several tests on the measured data to highlight the mentioned tasking
related performance issues.

1.2 NUMA Architectures

All major processor vendors building chips for high-performance computing servers
build so called Non-uniform Memory Access (NUMA) architectures. In these
architectures a core can access all the memory in the system, but the access time
differs depending on the physical location of the memory. Typically there is a part
of the memory attached to every socket of the system which can be accesses faster
than memory attached to remote sockets. The advantage of NUMA architectures
is that the available memory bandwidth in a system is increased with the number
of sockets. The disadvantage is, that a programmer needs to take the NUMA
characteristics into account to achieve good performance on such a system.

A commonly used way to program such systems is to use OpenMP, which pro-
vides a high-level pragma-based way for parallel programming, which is in many
cases easier to apply than distributed-memory programming. Of course a shared-
memory program is limited to a single system running a single OS instance. This

1 Introduction

is why some hardware vendors build large shared-memory machines based on spe-
cialized interconnects, like SGI builds the Altix UltraViolet systems with up to
2048 cores based on their proprietary NUMAconnect interconnect.

Besides hardware solutions to build large shared-memory machines software
solutions have been investigated to allow shared memory programming on clusters.
Some approaches modified the Linux kernel to achieve a Single System Image
(SSI) on top of a cluster, for example MOSIX [Barak et al., 1993] or OpenMOSIX
as well as Kerrighed [Morin et al., 2004] [Vallée et al., 2003]. Multi-threaded
applications have not been in the focus of these projects and thus they did not
turn out to be very useful for OpenMP programs. MOSIX / OpenMOSIX both
only allow the migration of processes and not of threads, which makes it unsuitable
for OpenMP. It has been shown that Kerrighed can run OpenMP applications
employing a modified threading library [Margery et al., 2003|, but this project did
not progress over a proof-of-concept state allowing the execution of commercial
codes. In addition, the achieved performance was not suitable for productive use.
ScaleMP is the first company offering a product to couple cluster nodes into a
single system. The software solution, called vSMP, allows to run a single system
Linux image on an infiniband cluster. Any shared-memory program can run on
these machines without recompilation.

Specifically targeting the execution of OpenMP programs on clusters has also
been the focus of several research projects and even commercial products. In [Lu
et al., 1998] an OpenMP implementation for the TreadMarks software has been
presented, which supports a subset of the OpenMP standard. In [Sato et al.,
2001] an OpenMP implementation on top of the page-based distributed shared
memory (DSM) system SCASH has been presented for the Omni source-to-source
translator. In this approach, all accesses to global variables are replaced by ac-
cesses into the DSM and all shared data is controlled by the DSM. Although the
full OpenMP specification is implemented, support for the C++ programming
language is missing. Intel’s ClusterOpenMP [Hoeflinger, 2006] has been the only
commercial approach for OpenMP on clusters with full support for OpenMP 2.5.
An examination revealed major shortcomings in the applicability and the memory
management [Terboven et al., 2008b| for real-world applications and meanwhile
Intel ceased the development of this product.

1.3 State-of-the-art in NUMA Programming

NUMA-aware programming in OpenMP has been investigated for some time. One
of the major issues which has been tackled so for is the placement of threads on the
architecture. For this problem OpenMP offers support since version 3.1, which has
been extended in version 4.0. Details are described in this work in chapter[3] Also

1.4 Experiment Hardware

for memory placement same state-of-the-art practices have evolved, specifically
the use of the first-touch memory placement policy of the OS to distribute data
over the system by a parallel data initialization. In OpenMP, no support for
data placement or migration exists at all. For the OpenMP tasking feature or
for dynamic schedules, which offer more flexibility in terms of work balancing, no
NUMA support exists at all.

Besides the functionality to program in a NUMA-aware fashion, support in
performance analysis tools is also mandatory to detect and avoid certain issues.
Here, some tools exist which give some information on NUMA accesses, but they
are typically hard to use, since they are based on hardware counters which are
extremely hardware dependent and change with every new processor generation.

In practice, even if many large NUMA systems exist, they are mostly partitioned
by a batch system to run many batch jobs in parallel and only a very few user
codes scale very well over a complete system. Techniques, as they will be presented
in this work, are developed to optimize more user codes for large NUMA systems
to make full use of these machines for a higher number of user codes.

1.4 Experiment Hardware

This work contains results carried out on the following architectures.

Westmere

This system is a Bullx B500 blade equipped with two Intel Xeon X5675 (”West-
mere”) processors with 6-cores each, a clock rate of 3.07 GHz and 24 GB of main
memory. The Westmere system represents a standard 2-socket node which is the
most commonly used node type in current clusters.

SandyBridge
The SandyBridge system is a 4-socket DELL M820 system equipped with Intel

Xeon E5-4620 (”SandyBridge”) processors running at a clock rate of 2.20 GHz.
The system contains 256 GB of main memory.

HP ProlLiant

The HP ProLiant DLI80 GT7 server used for our experiments is a single server
equipped with eight Intel Xeon X6550 processors with 8 cores each. All processors

1 Introduction

are clocked at 2 GHz and connected to each other through the Intel Quick Path
interconnect. Every processor contains a memory controller attached to 32 GB of

main memory, making this server a ccNUMA machine with a total of 64 cores and
256 GB of memory.

SGI Altix UltraViolet

The SGI Altix UV system consists of several two socket boards, each equipped with
two Intel Xeon E7- 4870 10-core processors clocked at 2.4 GHz. All of these boards
are connected with SGIs NUMALink interconnect into a single shared memory
machine. Since on one board the cache-coherence is established directly over the
QPI, whereas the NUMALink network is needed for different boards, this machine
is a hierarchical NUMA machine, with different cache-coherency mechanisms on
different hierarchical levels. The machine used in our tests has 2080 cores and
about 2 TB of main memory. All of our tests were done on up to 16 processors
during batch operation of the system. For a better comparison with the 8-core
processors used in the other systems, all tests were done using only eight of the
ten available cores on each socket, i.e. using up to 128 cores.

BCS

The BCS system consists of four bullx s6010 boards. Each board is equipped with
four Intel Xeon X7550 processors with 8 cores each and 64 GB of main memory.
The Intel Quick Path Interconnect combines the four sockets to a single system
and the Bull Coherence Switch (BCS) technology is used to extents the QPI to
combine four of those boards into one SMP machine with 128 cores and 256 GB
of main memory. So, this system is also a hierarchical NUMA system.

ScaleMP

The ScaleMP machine investigated here consists of 16 boards, each equipped with
four Intel Xeon X7550 8-core processors clocked at 2 GHz and 256 GB of main
memory. The boards are connected via a 4x QDR InfiniBand network, where
every board is connected via two host channel adapters. Thus, from a hardware
point of view this is an ordinary (small) cluster. The innovative part of the ma-
chine is the vSMP software, which runs below the operating system and creates
a single system image on top of the described hardware. The virtualization layer
of the processors and the InfiniBand network is used by the vSMP software to
create cache-coherency on a per page basis and to allow remote memory access
between all the boards. A partition of the main memory is reserved by the vSMP
software to run different caching and prefetching mechanisms automatically in the

1.4 Experiment Hardware

background, as well as a page-based memory migration mechanism. These mech-
anisms do not only move pages on access, they can also adjust the home node of
memory pages if pages are frequently used on a remote node. This is a notable
difference to standard x86-based non-uniform memory architectures (NUMA), like
the Altix or BCS machine, where page migration needs to be done by the user, if
possible at all. From a user point of view the machine looks like a single Linux
machine with 512 cores and about 3.7 TB of main memory. About 300 GB of the
available memory are used by the vSMP software internally for caching. Linux
sees 64 NUMA nodes, each containing about 64 GB of main memory. Due to the
End Users License Agreements of ScaleMP, no absolute performance results for the
ScaleMP machine may be presented here, but I will show relative improvements
for different tuning steps on such a system.

Intel Xeon Phi

The Intel Xeon Phi coprocessor is not a NUMA machine, it is only a single chip
with one memory chunk attached. The system is used for comparison to demon-
strate the behavior of a non-NUMA system for the tests carried out. The Intel
Xeon Phi coprocessor is based on the concepts of the Intel Architecture (IA) and
provides a shared-memory many-core CPU that is packed on a PCI Express ex-
tension card. The version used here has 60 cores clocked at 1.053 GHz and offers
full cache coherency across all cores with 8 GB of GDDR5 memory. A ring net-
work connects all cores with each other and with memory and I/O devices. Every
core supports 4-way Hyperthreading, which allows the system to run up to 240
threads in parallel. The comparably small amount of main memory is attached to
the Xeon Phi Chip as one NUMA node. Thus, the system is a 240-way parallel
system with a uniform memory architecture, which is another difference to the
other machines with are large NUMA systems.

The Xeon Phi card used in this work was plugged into a host system with two
Intel Xeon E5 processors. For all of our experiments we used the host system only
to cross-compile the executables, which were copied and executed stand-alone on
the Xeon Phi. This procedure gives us insight in the performance attributes of
the chip, independent from the programming model used. Of course, comparing
one extension card with complete systems is an uneven comparison, but for sure
we will see standalone systems with hundreds of cores in the near future and the
Phi might give evidence on the behavior of such systems.

1 Introduction

System #sockets | #cores | clock rate | memory | 2nd level interconnect
Xeon Phi 1 60 | 1.0 GHz 8 GB | -

Westmere 2 12 | 3.0 GHz 24 GB | -

SandyBridge 4 32| 22GHz | 256 GB |-

HP 8 64| 2.0GHz | 256 GB | -

BCS 16 128 | 2.0 GHz | 256 GB | Bull Coherence Switch
ScaleMP 64 512 | 2.0 GHz | 3789 GB | Infiniband / vSMP
Altix 208 2080 | 2.4 GHz | 2048 GB | NUMALink

Table 1.1: Overview of the machines used during this work.

10

2 A Benchmark-Guided
Characterization of Large
Shared-Memory Machines

As already mentioned before, a part of this work is to provide insights in the
different types of shared-memory machines, since machine attributes have a high
influence on the program’s performance. In this chapter, I will show methods to
investigate relevant attributes of large SMP machines with standard kernel bench-
marks and self-implemented benchmarks. All tests are done on the set of shared
memory machines presented in section [I.4] but the methods can easily be applied
to any other machine. Since machines with uniform memory access (UMA), non
uniform memory access (NUMA) and with software or hardware based multiple
NUMA levels are used in these experiment, general differences between these ma-
chine types will be highlighted by these tests as well. The benchmark results are
later on in this work used as basis for a machine description which can be used for
OpenMP programs to improve the affinity support in section [3.2] and to formalize
a performance model for OpenMP programs on NUMA systems, overcoming some
of the limitations of well established performance models in section [6.2

Benchmarks to investigate the performance of different aspects of an architecture
have been developed in many different studies. Standard benchmarks to investi-
gate the memory performance of a system are the Stream benchmark [McCalpin,
1995] and the LMBench benchmark suite [McVoy and Staelin, 1996]. For OpenMP
programs the EPCC microbenchmarks [Bull, 1999], [Bull and O’Neill, 2001}, [Bull
et al., 2012] can be used to measure the overhead of OpenMP constructs. Further-
more, benchmark suites exist which can be used to compare the performance of
architectures and OpenMP implementations for application-like kernels, e.g. the
SPEC OMP benchmark suite [Aslot et al., 2001], [Miiller et al., 2012] or the NAS
parallel benchmarks [Bailey et al., 1991]. For OpenMP programs using the new
tasking paradigm the Barcelona OpenMP Task Suite (BOTS) [Duran et al., 2009
can be used.

All of these benchmarks come with published performance results on different
architectures, but no study has been made to compare the performance of large
SMP machines so far. Furthermore, I want to investigate different aspects of the
machine and not improve the benchmarks themselves in this work. So, I used some

11

2 A Benchmark-Guided Characterization of Large Shared-Memory Machines

of the benchmarks mentioned, like the EPCC microbenchmark or developed own
tests for specific characteristics of the test machines. The rest of this chapter will
show that hardware awareness is important on large NUMA systems and which
parts of an application are mostly influenced by these hardware characteristics.
Furthermore, it shows differences and similarities of the machines and OpenMP
runtime systems on these machines.

Parts of the results and methods presented in this chapter have been published
before. In [Schmidl et al., 2010a], [Schmidl et al., 2010b] and |Berr et al., 2012
kernel tests on a ScaleMP system similar to results presented here have been
reported. Furthermore, the performance of Xeon Phi systems in comparison to
hierarchical NUMA systems like the BCS machine were presented in [Cramer
et al., 2012] and [Schmidl et al., 2013b|. Finally, a study comparing different
NUMA systems as they are used here was published at IWOMP 2013 in [Schmid]l
et al., 2013a].

2.1 Memory Performance

One of the big advantages of NUMA systems compared to UMA machines is the
fact that every processor has its own memory and that this memory is directly
connected to the processor. Thus, the available amount of main memory and the
available bandwidth increases with the number of sockets in such a system. Since
many scientific applications are memory bound, a high overall memory bandwidth
is important for many applications. Therefore, I will first investigate the main
memory bandwidth of the target platforms of this work.

2.1.1 Serial Memory Performance

The memory bandwidth and latency on a NUMA system is highly influenced by
the physical location of the memory in relation to the processor core accessing
the memory. As described in section [1.4] the investigated machines have a uni-
form memory access (Xeon Phi), a non uniform memory access with one level
(Westmere, HP) or with two levels (Altix, BCS, ScaleMP). First, I implemented a
serial memory bandwidth test which reads or writes an data array 1000 times and
computes the reached memory bandwidth. The test can be used to measure the
reachable bandwidth for a single thread on different systems. The command line
tool numactl, provided by the Linux operating system, can be used to set the core
and also the memory node used for the benchmark. For example, the bandwidth
a thread running on core 0 can reach when data on the fourth NUMA node is
accessed can be measured by the following command:

12

2.1 Memory Performance

Bandwidth in GB/s Bandwidth in GB/s

Bandwidth in GB/s

1% T T 11T T 1T 1T 17T 1T 17 17T 17 17 17 1T 17T
16 | -
14 b
12 b
1_ -
0.8 b
0.6 b
04 -
02 b
O | NN SN I N S [N [N S [N U N A NN NN S N_——
5 2322688 0 b
"5a5g9d 5352090
w 53]
Memory Footprint
local
(a) Xeon Phi
%g T T T 1T 1T 17 17T 17T 17T 17T 17 T1rTT
14 b
12 b
10 b
8_ -
6_ -
4_ =
2_ -
0 | NN S [N N [N Y Y N S N N S I N N SN _— _—
25222252 % 86 5
"Fp2FEzz2o o
@ (s3]
Memory Footprint
local
remote level 1 ——
(c) HP
%g T T 1T T 17T T 17T 11T 1717 1T
14 -
12 b
10 b
8_ -
6_ -
4+ i
2_ -
O | T N 1 1 1
T 2REE252R85 35
"3agodggge o
vs)

Memory Footprint

local
remote level 1 ——
remote level 2 ——

(e) Altix

(\/)25IIIIIIIIIIIIIIIIIIII

o

O]

£

=

=]

=

©

2 L i

I

[a1)] | NN (N [N Y [N Y N N U S N [N U N U NN A W_— —
252322252 % 6 5
X X O o)
wmmxmmggzmm

w w

Memory Footprint
local
remote level 1 ——

(b) Westmere
c\”lGIIIIIIIIIIIIIIIIIIII
o 14 1
o 12 .
ElO 1
g &]
s 4 1
g O | NN N A T T N Y I I N |

5283226288086 8
A X O (o]
Wmmxmmc%%zmw
@ s3]
Memory Footprint
local
remote level 1 ——
remote level 2 ——
(d) BCS
Yy
[ra)
(O]
£
s
=]
=
©
c
gIIIIIIIIIIIIIIIIIIII
X5 2 32 2528 8% 6 5
(o)) 2]
oA R = T @ % % 2 ©w w
vs)

Memory Footprint

local
remote level 1 ——
remote level 2 ——

(f) ScaleMP

Figure 2.1: Read Bandwidth in GB/s reached for different NUMA levels measured

on the Xeon Phi, Westmere, HP, BCS, Altix and ScaleMP system for

different memory footprints.

13

2 A Benchmark-Guided Characterization of Large Shared-Memory Machines

numactl --membind=4 --physcpubind=0 ./bandwidth_test.exe

In this way I measured the reachable bandwidth for three different scenarios, if
applicable on the specific machine:

(i) local: Here the core and the memory belong to the same socket in the
system.

(ii) remote level 1: Here the memory of a remote socket on the same physical
board is used. To access the data the QPI can be used by the hardware.

(iii) remote level 2: Here the memory of a remote socket on a different physical
board is used. To access the data the second level interconnect of the system
(BCS, Numalink or vSMP software + infiniband) is needed.

The results of my tests are shown in figure for the read bandwidth. Results
for the write bandwidth look similar and are therefore omitted. On all machines, a
typical cache behavior can be seen. For small data sizes the access is fast, since the
data fits into the caches and is not loaded from memory for all but the first of the
1000 accesses. When the size of the last level cache is exceeded, the performance
drops down to the memory bandwidth and stays pretty much constant at this level
in all measured cases. The differences in the local performance of the systems is
due to different processors, clock speed and memory dims. But it can be observed,
that the bandwidth for a remote level 1 access is about 25% to 30% slower than a
local access. A remote level 2 access in contrast is about 75% slower on the BCS
system and 85% on the Altix machine. On the ScaleMP machine no difference can
be observed between remote level 1 and 2, because the software caches all accesses
internally and serves the requests from the board local software cache.

Overall, these tests show that the memory bandwidth highly depends of the
location of the data in the NUMA system, as expected. Moreover, the tests
also show, that on hierarchical NUMA machines, the board local accesses are
not penalized by the fact that the systems have a second level interconnect. So,
for a programmer it is important to realize that remote memory is not equal on
these hierarchical machines. The different levels should be taken into account.

2.1.2 Parallel Memory Bandwidth

Since parallel applications in high-performance computing typically use all cores
of a system at a time the total bandwidth of a system is more important than
the serial bandwidth investigated so far. Thus, I modified the benchmark used
in section to work with several threads on an array and measured the read
and write bandwidth. All threads are working on different pieces of the array, so
there are no conflicts or synchronization constructs among threads. Threads were

14

2.1 Memory Performance

placed in a close binding using the OMP_PROC_BIND environment variable provided
by OpenMP for thread placement. The close strategy instructs the runtime to
fill up all cores and hyperthreads of one socket before the next socket is used.

250 T T T T
« 200 .
m
(O]
c 150 .
=
5
S 100 i
o)
c
©
@ 50 g
O 1 1 1 1
o al = = N N
o o 0 o [6)]
o o o o

Number of Threads

Phi - read HP - read Altix - read
Phi - write HP - write Altix - write
Westmere - read BCS - read

BCS - write

Westmere - write

Figure 2.2: Parallel read and write bandwidth on the Westmere, HP, Altix, BCS
and Xeon Phi systems for an increasing number of threads.

Figure [2.2 shows the read and write bandwidth for an increasing number of
threads on the different platforms for a memory footprint of 16 MB per thread.
(Results for the ScaleMP machine are omitted because ScaleMP’s EULA does not
allow to publish absolute performance results.) On the Intel Xeon Phi machine
the maximum memory bandwidth of about 130 GB/s for reading and 60 GB/s
for writing can be achieved with about 120 threads. Beyond this, the bandwidth
stagnates. This behavior is typical for UMA systems like the Xeon Phi. The
bandwidth rises at the beginning, until enough threads are started to consume
the total available bandwidth of the memory controller. With more threads the
bandwidth does not raise any further, which leads to the flattened curve in figure
2.2

On the NUMA systems the bandwidth rises with the number of sockets used
and does not stagnate at all. Of course, this is due to the increasing number of
memory controllers and memory banks for a larger number of threads. However,
it also indicates that the cache coherence on all systems for mostly local memory
accesses is low and does not prohibit scaling on such systems.

On all systems the read bandwidth is higher than the write bandwidth, since a
write requires a prior read of a cache line which leads to half the bandwidth of a
write operation compared to a read operation.

15

2 A Benchmark-Guided Characterization of Large Shared-Memory Machines

2.1.3 memory _go_around

The parallel bandwidth investigated so far is the optimal bandwidth which can
be reached on a system. All threads were working on distinct pieces of a shared
array which was distributed across the NUMA nodes of the system. Thereby it
can be achieved that nearly all accesses to data are served by the local memory
of a processor. This is a typical case in dense linear algebra, where matrices and
vectors can easily be split between threads, or in embarrassingly parallel algorithms
were often all threads work on their own data. However, there also exist many
algorithms where some data sharing is required. Here, a certain amount of remote
accesses cannot be avoided. To investigate the drop in the available memory
bandwidth with remote accesses, a different benchmark is used. The unpublished
benchmark was originally designed by Dieter an Mey and only slightly modified
for this work to contain automatic thread placement. The benchmark increases
the number of remote accesses from step to step and measures the effect on the
memory bandwidth reached.

Socket 0 Socket 1

@D [@EE|[EEE
Socket 1 Socket 0 Socket 1

Soicosi

OGO OO,

Socket 0 Socket 1 Socket 0 Socket 1

Step 1

Socket 0

Figure 2.3: The memory_go_around benchmark works in n+1 steps. In the first
step the memory of the right neighbour is used to measure the band-
width, in the next step the memory of the next neighbour and so on.
This increases the distance between thread and memory in every step,
until half of the steps are done, then the distance decreases until it
reaches zero in the last step.

The benchmark is called memory_go_around and it was first presented in [Schmidl
et al., 2013a]. In the first step, every thread initializes its chunk of data and mea-
sures the memory bandwidth to access this chunk. This step is similar to the
parallel bandwidth test used in section [2.1.2] In the next step, all threads work on
the data of their right neighbor, so thread ¢ works on memory initialized by thread
(t + 1) mod (n), where n is the total number of threads used, as exemplified in
figure 2.3] Threads are placed in a way that neighboring threads run as close to

16

2.1 Memory Performance

each other as possible. So, I first fill up all hyperthreads of a core, than all cores
of a processor and then all processors of a board and all boards in a system. So,
there is a high chance that neighboring threads run on the same NUMA node or
board. Only the one thread running on the last core of a socket or board will work
on data on the next socket or board. In the next steps the distance is increased,
since all threads ¢ work on the data of thread (¢ + s) mod (n) in step s. Hence, the
number of remote memory accesses rises for the first n/2 steps. Then the number
shrinks again until in step n — 1 every thread works on the memory of the left
neighbor and in step n again on its own local memory.

300 T T T T T T

250 | R

200 R

150 R

Bandwidth in GB/s

100 b

50 | -

O Il Il Il Il Il Il
0 20 40 60 80 100 120 140

Turn
HP —— BCS —— Altix

Phi Westmere

Figure 2.4: Bandwidth measured with the memory_go_around benchmark for n+1
steps with n threads on the Westmere, HP, Altix, BCS, and Xeon Phi
system.

Figure shows the result for 24 Threads on the Westmere, 64 Threads on
the HP, 120 threads on the Xeon Phi and for 128 threads on the Altix and BCS
machine. The Xeon Phi machine shows the typical behavior of a UMA system.
Since only one memory location exists in the system, it does not matter at all,
which thread initialized the data and a constant bandwidth of about 130 GB/s is
reached in all turns.

On the other machines the bandwidth declines for the first half of the steps
and then rises up again. Of course this is related to the increasing number of
remote accesses and the increasing distance between these accesses. On the 2-
socket Westmere system, which represents the most typical architecture in HPC,
the performance drops rather slow in the first 12 turns until it reaches the minimum
of about 50% of the starting performance. On the HP system, the performance

17

2 A Benchmark-Guided Characterization of Large Shared-Memory Machines

drops down from about 120 to 60 GB/s, so also here about 50% of the performance
are still reached, even when all accesses are remote accesses across the whole
system. But the curve drops faster than on the Westmere system.

On the Altix and BCS machines the drop is from about 250 to 18 or 8 GB/s
which is 6% or 3% of the available maximum bandwidth. Furthermore, the perfor-
mance drops down very fast starting at turn 1. The performance penalty is much
more severe on the hierarchical systems and already reached for a smaller num-
ber of remote accesses. This makes it much more important to minimize remote
accesses compared to the standard 2-socket Westmere machine, for example. How-
ever, if an application does not require a lot of data sharing between the threads,
proper data placement or migration can avoid these problems, as I will show in

chapter [3]

2.1.4 Data Management

Besides the performance of memory accesses on a system, which I investigated so
far, data management can be a source of overhead. Especially on large shared-
memory machines with lots of threads, managing a shared address space and
mapping virtual to physical addresses is a challenging task which might require
locking by the OS and thus can hinder the scalability of a program. In [Schmidl
et al., 2010b] we have shown that allocation and initialization of an array can
introduce significant overhead on a hierarchical system. Here, I want to investigate
the allocation and initialization process separately on the target platforms to get
more insights in the source of overhead.

Data Allocation

Since all threads use a shared address space, synchronization is required when mul-
tiple threads allocate memory simultaneously, to ensure that the virtual addresses
returned by the allocation process are disjoint. The overhead of locking depends
on many factors, like the number of threads, the OS, the frequency in which al-
location calls occur and so on. I wrote a simple benchmark which illustrates the
behavior in a worst-case scenario. In the benchmark, all threads are just allocating
memory all the time in a parallel region. This is unrealistic for a real program, but
it gives an impression of the scaling behavior of memory allocation on different
systems. Furthermore, the benchmark was run with standard malloc calls and
with calls to Intel’s kmp malloc function. kmp malloc is an optimized memory
allocation function provided by Intel for improved performance in multithreaded
programs.

Table[2.1|shows the overhead for memory allocation on the different test systems.
First of all, the allocation on the Xeon Phi system is comparably slow, which

18

2.1 Memory Performance

malloc
#Threads | PHI | Westmere | HP BCS | Altix
1| 15.27 2.12 3.61 | 4.30 | 3.46
24 357
32/30 | 11023 6075 | 4902 | 5146
64/60 | 19807 12470 | 14007 | 10473
128/120 | 26603 29552 | 21030
kmp_malloc
1 981 2.06 3.04 | 3.63 | 2.60
24 16.4
32/30 | 37211 411 530 558
64/60 | 88717 1476 | 2786 | 2646
128/120 | 175641 12958 | 11742

Table 2.1: Overhead in microseconds for a malloc call allocating 1MB of memory.
All threads constantly allocate and free memory. Results are shown for
30, 60 and 120 threads on the Xeon Phi and 32, 64 and 128 on the HP,
BCS and Altix.

might be due to the low clock frequency. Furthermore, kmp malloc delivers worse
performance for the allocation itself than standard malloc calls here. Maybe Intel
did not optimize this functionality for the Xeon Phi in version 14.0 of the Intel
compiler, which I used for the tests. On all other systems it can be observed,
that the allocation time rises with the number of threads. This is not surprising,
since more conflicts occur. On the 2-socket Westmere system a slowdown of about
170 can be observed for 24 threads, on the other systems the slowdown is up to
nearly 4 orders of magnitude for a large number of threads. In a program with a
lot of memory allocation calls, like many C++ programs which tend to call a lot
of constructors and destructors during execution, this can be a limiting factor for
scalability. The calls to kmp malloc are up to an order of magnitude faster for a
large number of threads. Overall, it makes sense to use these calls if possible to
reach better scalability for OpenMP programs on large systems. However, since it
requires to change all malloc calls in a program and in libraries used, this advice
is often hard to fulfill in practice. Furthermore, the kmp malloc function is Intel
specific.

Data Initialization

After the allocation, the OS needs to assign physical addresses to the memory
pages when they are first used. Typically, this is done during the initialization of
the data, since a read access does not make sense before initialization. I measured
the bandwidth when initializing a 2 GB array with a different number of threads.

19

2 A Benchmark-Guided Characterization of Large Shared-Memory Machines

Table shows the bandwidth reached. In brackets the speedup compared to a
single thread on the same system is shown. It can be observed that the initial-
ization scales well on all platforms. Although the address tables, necessary for
the mapping of virtual to physical addresses, need to be maintained for the com-
plete process, this seems to scale well over the complete machine. The less than
linear speedup is due to the limited memory bandwidth in the system. Overall,
the overhead observed in [Schmidl et al., 2010b] seems to be caused by the data
allocation and the initialization seems to be no big problem on large systems, since
the overhead scales well over the complete machine.

#Threads PHI Westmere HP BCS Altix
1| 0.67(1.0) 2.2 (1.0) 1.42 (1.0) 1.31 (1.0) 1.38 (1.0)
24 17.2 (7.8)
32/30 | 17.73 (26.5) 16.70 (11.8) | 18.36 (14.0) | 18.30 (13.2)
64/60 | 23.12 (34.6) 32.93 (23.2) | 34.24 (26.1) | 33.70 (24.4)
128/120 | 19.32 (28.9) 67.98 (51.9) | 72.10 (52.2)

Table 2.2: Bandwidth reached when initializing an 2 GB array with first-touch
memory placement. In brackets the speedup compared to a single
thread on the same machine is shown. Results are shown for 30, 60
and 120 threads on the Xeon Phi and 32, 64 and 128 on the HP, BCS
and Altix systems.

2.2 OpenMP Runtime Issues

Overhead through remote accesses and memory management are one very im-
portant source of overhead on large shared memory machines, but not the only
one. Another important source of overhead is the overhead of OpenMP constructs
used in an application. Of course the overhead of the OpenMP runtime system
increases on a larger machine, since more threads have to be managed. However,
how much it increases depends on many factors, like the machine, the OpenMP
construct and the implementation inside of the runtime.

2.2.1 EPCC Benchmarks

The EPCC microbenchmarks, developed by Bull at al. |[Bull, 1999|, can be used
to measure the overhead introduced by OpenMP constructs. Within this suite,
there exist benchmarks to measure the overhead of synchronization, the overhead
of data allocation and copies in private, firstprivate and other constructs as
well as the overhead of schedule clauses for worksharing constructs.

20

2.2 OpenMP Runtime Issues

Here, I focus on the overhead of synchronization constructs on large NUMA
systems. Therefore, I used the syncbench benchmark to measure the overhead
of OpenMP constructs with the most widely used compilers in high-performance
computing, i.e. the Intel, GCC, PGI, Oracle Solaris Studio and Clang compilers.
The tests were performed on the BCS machine as a representative for a hierarchical
architecture.

#Threads | Intel (14.0) | GCC (4.8) | PGI (15.1) | Studio (12.4) | Clang (3.7)
1 0.34 0.21 0.18 0.22 0.31
2 0.81 0.87 0.61 19.22 1.22
4 0.98 1.34 0.85 03.28 1.56
8 1.40 2.22 1.30 174.0 2.33
16 4.54 14.41 3.92 399.7 8.64
32 5.30 48.45 5.40 3991 9.45
64 13.05 238.6 13.34 9495 24.69
128 15.96 710.1 24.74 19671 27.85

Table 2.3: Overhead in microseconds of the parallel construct on the BCS ma-
chine, measured with the EPCC syncbench benchmark for different
compilers.

Table shows the results of the overhead measurements for a parallel con-
struct with all investigated compilers. Thread binding was activated in the same
way as before, so that threads are placed close to each other. The placement of
threads across the system takes place in the OpenMP runtime when threads are
created, so the overhead is included in the measurements.

It can be observed, that the overhead significantly differs between the differ-
ent runtime implementations. For all compilers, the overhead increases with the
number of threads, which is what a user would expect, since creating and placing
128 threads is more work than creating 4 threads. For the Intel, PGI and Clang
Compiler the overhead for up to 128 threads is still around 15 - 30 microsec-
onds, whereas the overhead for the GCC and Studio compiler is much higher: 710
microseconds for the GCC and 19671 for the Studio compiler. If many parallel
regions are used in a program, a user should clearly use one of the faster compilers,
since the overhead is much lower. But even for the Intel compiler the overhead
to create and bind threads on the BCS system is still about 50 times higher than
in the serial case. Avoiding the creation of too many parallel regions in general is
therefore still necessary on larger machines to keep the overhead low and possibly
achieve scalability.

For different OpenMP constructs and numbers of threads the overhead differs.
The Intel implementation delivers the lowest overhead in my experiments, there-
fore it is used to investigate different constructs on the BCS machine. Figure [2.5

21

2 A Benchmark-Guided Characterization of Large Shared-Memory Machines

16 : ; . ; : .
14 +) .
12 | g

10 +

Overhead in microseconds

o N A O
| T

1 2 4 8 16 32 64 128
#Threads

parallel parallel for barrier for

Figure 2.5: Overhead for different OpenMP constructs measured with the EPCC
microbenchmarks on the BCS machine and the Intel Compiler 14.0.

shows the overhead for a parallel, parallel for, barrier and for construct
for an increasing number of threads. It can be observed that the overhead of a
for and a barrier construct are nearly identical as well as the overhead of a
parallel and a parallel for construct. The reason is that the for construct
includes a barrier. In addition, it only includes an index calculation which needs
no synchronization and needs only a few floating point operations which do not
take a lot of CPU cycles. Since the parallel construct also includes a barrier,
the difference to a parallel for construct is also the index calculation which is
negligible.

Furthermore, the influence of the hardware topology can be observed for all
constructs. The BCS machine has two levels of NUMA. The limit of a socket is
reached with 8 threads and one board is fully occupied with 32 threads. Corre-
spondingly, figure shows two steps in the overhead curves for all constructs.

2.2.2 Nested Parallelism

For a single level of parallelism in an application the overhead can be influenced
only by the number of threads and the placement. But, in most cases a thread per
core is started and then the placement is easy. Placing the threads consecutive on
all cores on a socket, board and machine as it was done for the tests above is the
best option to minimize the distance between neighboring threads.

When nested parallel regions are used to express multiple levels of parallelism in
an application, the situation gets more complicated. Basically, on every level the
user has to choose if the threads created for this level should be placed together on
the same socket or be distributed over the complete machine to fill up the sockets
on a nested inner level. The overhead for nested parallel regions can differ from

22

2.2 OpenMP Runtime Issues

the standard case with one level, since more bookkeeping by the OpenMP runtime
is needed. To measure the overhead of nested constructs I modified the EPCC
benchmarks as described in [Schmidl et al., 2010a] by surrounding the actual tests
with an additional outer parallel region. The benchmarks measure the overhead
of all constructs on an inner nested level.

#Threads | parallel | parallel for | barrier for
off 2066 2184 176 | 24.0
on 2819 2791 8.2 9.1
compact 1502 1551 188.6 | 205.8
distributed 2787 2795 8.5 9.9

Table 2.4: Overhead in microseconds for OpenMP constructs in nested parallel
regions measured on the BCS machine and the Intel Compiler 14.0 and
128 threads.

I measured on the BCS system with four outer threads, where each thread
spawns an inner team of 32 threads again using the Intel Compiler. So, the tests
use all 128 cores of the system. For the placement two strategies are possible,
starting one of the outer threads per board and then filling up the boards with 32
inner threads in the nested inner parallel region or placing the outer threads on the
first four cores of the system and then starting the other threads on the rest of the
systems, depending on the creation time inside of the runtime. The first strategy
is called distributed and the second one compact in table [2.4] Here, the overhead
is shown for the Intel compiler on the BCS system for these two strategies and for
thread binding turned off and on by setting the OMP_PROC_BIND variable to on and
off.

First, it can be observed, that the overhead of nested parallel regions is about
two orders of magnitude higher than for the outer regions measured before (see
Fig. [2.5). The reason is that threads are managed in a thread pool inside of the
OpenMP runtime. Since the thread pool is shared, creating four parallel regions
simultaneously creates synchronization overhead inside of the runtime system.
Second, it can be observed that the binding strategies influence the overhead.
Turning thread binding off creates the teams faster than turning it on, but this
is because the binding is just omitted. Threads are just running on a single
board where they are created in this case. For computation tasks this would
waste resources or the OS scheduler would migrate the threads later on and create
overhead then. Turning binding on seems to behave like the distributed case, so
this might be the default behavior of the runtime system. In the distributed case,
the synchronization of an inner team in the barrier or for construct is much
faster. This is because all threads are running on the same board of the system
and therefore the synchronization does not involve communication across boards.
In the close case, the synchronization takes much longer, but the parallel regions

23

2 A Benchmark-Guided Characterization of Large Shared-Memory Machines

are executed faster. This is because the thread pool is located on the first board
and the management of threads can be done by the master threads on this board
when all threads are running there. The placement of threads across boards is
then done in parallel. Overall the user needs to find a compromise between thread
generation and synchronization overhead. But, when data is shared between the
threads of an inner team, the distributed binding has the additional advantage
that the data is local for all threads of the inner team, whereas the threads are
distributed in an unpredictable fashion in the close case.

2.3 Distance Matrices

It was been shown so far, that the different levels of NUMA distance in a hierar-
chical machine introduce different overhead with respect to remote accesses and
runtime overhead. For a programmer it is therefore sometimes necessary to have
full control over the thread and data placement in a system. Techniques to op-
timize performance for large NUMA systems will be discussed later in this work,
but obviously, a necessary requirement is a representation of the system which can
be queried by the programmer to get an overview of the system.

A portable hardware description is addressed by several libraries where the
Portable Hardware Locality (hwloc) [Broquedis et al., 2010] software package
is the most prominent one and most widely used one, since it is provided with the
OpenMPI software package. In hwloc the hardware is described in a hierarchical
tree structure with different levels for System, NUMA nodes, Sockets, several levels
for cores with shared caches and hyperthreads. In [Schmidl et al., 2010b] I used a
similar tree-like representation for thread binding on large NUMA systems, but it
turned out that such a structure is not sufficient in many cases. The disadvantage
is that the distance on a specific level cannot be expressed in a tree. All sockets
in a system, for example, are on one level, without a way to distinguish sockets
with different distances. For a standard 2-socket server this is appropriate, but on
large hierarchical systems this is not sufficient to describe the hardware.

In this work, I develop a machine model based on the concept of a distance
matrix and discuss how to exploit it from within applications and the OpenMP
runtime system. In chapter [3, T will further discuss how it can be used as basis
to obtain a suitable place list for thread binding in OpenMP 4.0. I believe that
this model delivers functionality still missing in OpenMP today, where the ma-
chine description of a NUMA system is left to the programmer. An automatically
generated description would eliminate the need for the user to handle details of
the NUMA distances in the system he is currently using and it would allow to
program in a more portable fashion for different systems.

24

2.3 Distance Matrices

2.3.1 System Locality Distance Information Table

Describing distances in a NUMA system has been addressed before. The Advanced
Configuration and Power Interface Specification (ACPI) |[Hewlett-Packard et al.,
of the system BIOS provides the System Locality Distance Information Table
(SLIT) listing the distance between hardware resources on different NUMA nodes.
However, it is undefined how this table has to be filled, resulting in implementation-
defined behavior.

Socket 0 1 2 3 4 5 6 7 Socket

0
1
2
3
4
5
6
7

N O UL bs WN R O

Figure 2.6: (a)Distance Information retrieved from Linux and (b) measured
distance with our distance matrix benchmark on a 8-Socket Intel
Nehalem-EX machine.

On the Linux operating system, this table can be queried either via the /sys
virtual file system, or it can be retrieved by tools like numactl. The libnuma
library provides a suitable API, the function numa distance(int nodel, int
node2) returns a number to describe the distance between two NUMA nodes
(nodel and node2).

On a Fuyjitsu system with 8 Intel Nehalem processors, the SLIT showed the
distance information shown in figure 2.6| on the left side. As usual, the diagonal
values in the table are normalized to 10 and all other values are 12 which indicates
that all distances in the system are equal and about 20% slower than local accesses.
On the right side of figure I show the distance matrix proposed in this work,
which is based on measured bandwidth values between the sockets. Details are
given below, but obviously the measurements show that the distances are not equal
between all sockets. It can be observed that the system is internally hierarchical
where the first 4 sockets build a closer block as well as the last 4 sockets. Between
these blocks the distance seems to be slightly slower. This demonstrates that
the SLIT is not reliable on all systems and a more reliable approach offered by
OpenMP is likely to be a better alternative for programmers.

However, the SLIT is not always as problematic as on the 8-socket system.
Figure shows the SLIT on an SGI Altix UV system. It can be observed, that
the matrix is much more detailed than on the Fujitsu system and the distances
are expressed more realistically. For a programmer such a matrix might be useful,

25

2 A Benchmark-Guided Characterization of Large Shared-Memory Machines

Socket 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Figure 2.7: Distance information retrieved from Linux on an SGI Altix UV.

but the described approach below offers a portable way to generate distances on
all systems, independent of the quality of the SLIT provided by the vendor.

2.3.2 Automatic Matrix Generation

Generating a distance matrix on a system is, in general, a simple task which works
in the following five steps:

(i) Linux libnuma library is used to allocate chunks of memory on all NUMA
nodes.

(ii) Threads are placed on all NUMA nodes in the system.

(iii) All threads running on socket a access the memory chunk allocated by socket
b and measure the reached bandwidth.

(iv) This value is stored in an intermediate matrix M as distance between socket
a and socket b.

(v) The values are normalized in a way that the upper-left entry (D(1,1)) is 10
and the other distances D(a,b) = (M (1,1)/M/(a,b)) * 10.

Of course the bandwidth measurements deliver lower values for NUMA nodes
which are far apart from each other. Through the normalization done in (iv) and
(v) the matrix is generated in a way that lower bandwidth values are mapped
to higher distances, which is more intuitive for a user. Furthermore, it is more
comparable to the values in the SLIT which are familiar to some users already.

26

2.3 Distance Matrices

These distance matrices can be generated for a full system once and stored in a
config file. Of course, it is also possible to measure the matrix when the OpenMP
runtime is initialized. The advantage of this approach is, that is can be done also
for a subset of the cores in a system. On large systems it is common practice, that
a batch job may only run on a subset of the cores, if it does not require the full
machine. As a result, only the distances for the sockets used by the batch job are
relevant.

Inside of an OpenMP program, I propose an API call as an extension to the OMP
API, similar to the numa distance(int nodel, int node2) function provided by
libnuma. The runtime system then shall measure the distances of all sockets used
by the program at program start and it shall allow the user to query all relevant
distances.

Figure [2.8 shows the measured distance matrices for the HP and BCS machine.
The Altix system could not be used exclusively and on the ScaleMP system no
remote bandwidth could be measured, because the caching inside of the vSMP
system hides the lower remote bandwidth for remote accesses all the time, as I
already showed in fig 2.1l Therefore, no matrices for these systems are presented.

Sockt 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Socket 0 1 2 3 4 5 6 0
10 10 17 13 18 18 18 18
10 10 17 13 18 18 18 18 431 56 56 56 56/ 10 13 13 13 56 56 56 57 58 58 58 58
17 17 10 11 18 18 18 18 °
17 17 10 11 19 19 18 18 ;
18 18 18 18 10 10 17 17 9 56 56 55 55 55 55 55 55/ 13 10 13 13 55 55 56 55
18 18 18 18 10 10 17 17 11 56 56 56 55 56 56 56 55 13 13 13 10 56 56 56 56
18 18 18 18 17 17 10 10 13 55 55 55 55 56 56 55 55 56 55 55 55/ 13 10 13 13
18 19 18 18 17 17 10 9 15 56 56 56 56 56 56 56 56 56 56 56 56/.13 13 13 10

N O o bW N - O

Figure 2.8: Distance matrix of the HP (left) and the BCS system (right). The
matrix is scaled such that the upper left value is always ten, larger
numbers indicate higher distances.

Obviously, there are differences between both systems. On the HP board there
are always two sockets which seem to be connected very fast, whereas the other
sockets have distances between 17 - 19. In contrast to the Fujitsu system shown
in figure this system seems to be built of 2 socket blocks and not 4 socket
blocks. But the distances overall are much lower than on the Fujitsu system.

On the BCS system, all accesses on one board are between 10 and 13, which is
faster than most of the connections on the one HP board. All connections using
the BCS chip are significantly slower, here a distance of 55 - 59 is reached. So, the
BCS machine can provide cache coherence over a larger number of cores, but at a
cost.

27

2 A Benchmark-Guided Characterization of Large Shared-Memory Machines

2.4 Summary

In this chapter, I investigated several architectures with a focus on OpenMP pro-
grams. The memory tests have shown that the overhead for remote accesses is sig-
nificant on all hierarchical NUMA architectures, compared to NUMA on standard
2-socket servers. On the ScaleMP system, this overhead is hidden by the software
caching mechanisms of the vSMP software. But on all systems the performance
for local accesses is not influenced by the additional layer of cache coherency. Also
for the memory management in the operating system, significant overhead could
be observed, up to three orders of magnitude for a test program with only malloc
and free calls.

Besides the memory system, also the OpenMP runtime system can prohibit
scaling of an application across a larger NUMA system. I tested several compil-
ers with the EPCC microbenchmarks and showed that the Intel runtime system
delivers best performance. The Clang and PGI compiler delivered comparable
performance, whereas the GCC and Studio compilers were orders of magnitude
slower. In the case of a nested parallel region, the overhead for inner regions was
much higher than on the first level and the placement was more important for
performance.

Finally, I presented the distance matrix representation of a machine which can
be created easily for all systems. The matrix measured can represent the relevant
distances of the system better and more reliably than the SLIT used in the OS in
some cases.

28

3 Improved Memory Allocation and
Migration in OpenMP Programs

On NUMA machines an application can profit from the combined memory capacity
and bandwidth of several memory controllers and memory channels. Since every
node adds a new memory controller to the system, this design has the potential
to scale much better than UMA machines, as shown in section 2.1} The downside,
however, is that the programmer needs to consider the NUMA characteristics of
such a machine to achieve performance. In the next chapters techniques to handle
these architectures are discussed.

Thread binding for OpenMP programs, which is covered in parts of this chapter,
has been investigated in several studies before. In 2006 Huang et al. proposed
a grouping of threads in subteams |Huang et al., 2006]. A new clause, named
ONTHREADS, is used here to map work on subteams where subteams can run
on different parts of the system. This approach is an alternative to nested parallel
regions with thread placement. Ayguadé et al. [Ayguadé et al., 1999] and Zhang et
al. [Zhang, 2008|] both present methods to bind threads to specific cores in a system.
In both cases, the cores for placement must be denoted explicitly by the user, which
requires detailed hardware knowledge. This knowledge is often not present for
average users. Therefore, easier strategies for thread binding were needed as they
are available in the Intel compiler with the KMP_AFFINITY mechanism for a single
level of parallelism or as they have been developed in my diploma thesis [Schmidl,
2009] and presented at IWOMP [Schmidl et al., 2010a] 2010 also for nested parallel
regions. Finally, an approach has been added in the latest version of the OpenMP
specification, based on a proposal by Eichenberger et al. [Eichenberger et al., 2012
with a place list and different binding strategies as described in detail later in this
section.

Besides the thread placement also memory placement and migration is discussed
in this chapter. The content presented is partially based on former work presented
in [Terboven et al., 2008a], where our migration-on-next-touch mechanism for
the Linux OS was presented first. The functionality of this mechanism is equiv-
alent to the madvice based implementation on Solaris. But, since Linux was
missing such a system call [implemented an algorithm based on the Linux system
calls mprotect and sys_move_pages in user space to make this functionality also
available under the Linux OS. At IWOMP 2014, this mechanism was described in

29

3 Improved Memory Allocation and Migration in OpenMP Programs

more detail together with other proposed OpenMP extensions in the OMPX li-
brary (see [Schmidl et al., 2014]). Furthermore, a performance study to investigate
the usability of the extensions was presented.

Memory affinity and migration for shared memory programming has also been
investigated by others in several studies. Hardware support for automatic migra-
tion by the IRIX operating system was implemented in the SGI Origin, here TLB
miss statistics and remote memory reference counters were used to identify pages
for an automatic migration [Laudon and Lenoski, 1997]. In the Sun WildFire,
running a modified version of the Solaris OS, the number of occurences that cache
lines from a given page are retrieved in the same sharing state were tracked to find
candidates for memory migration, see [Noordergraaf and van der Pas, 1999).

Additional software solutions for the Linux operating system exist as kernel
patches, like AutoNUMA [Jonathan Corbet, 2014], where statistics on remote
memory accesses are collected and threads, processes or data is migrated to estab-
lish a good thread to data locality.

Nikolopoulos et al. [Nikolopoulos et al., 2000] presented an integrated compiler
/ runtime / OS migration framework for user-level dynamic page migration. They
use compiler instrumentation and a sampling approach which improves the locality
of the memory pages. It turns out that none of these fully automatic mechanisms
works well for all applications and that is why other approaches try to allow users
to initiate data migration.

An extension of OpenMP for memory migration on NUMA machines was imple-
mented in Compaq’s OpenMP compiler |[Bircsak et al., 2000]. With the help of a
set of additional OpenMP Fortran directives, the programmer has the possibility to
specify user-directed page migration and user-directed data layout. In the OMPX
library presented here, I provide a similar compiler-independent functionality for
today’s standard Linux distributions.

Another study about future OpenMP runtime perspectives was made in [Bro-
quedis et al., 2009|. Here, an extension to the scheduler ForestGOMP and a mem-
ory manager called MaMI are proposed which should take the burden to maintain
data locality in an application. The programmer therefore shall give hints about
the memory access, but hints can also be given by the compiler or by hardware
counters. The scheduler then shall migrate threads or data to achieve a good
locality. The mechanism is evaluated with a set of modified stream benchmarks.
In the solution I present in this work, the responsibility to maintain data locality
is given to the programmer. The programmer must explicitly migrate data or
ask the system to migrate the data on next-touch. The scheduler is not involved
in this decision. The advantage of this solution is that the programmer has full
control over the data layout.

An application-driven study for the benefit of affinity-on-next-touch mechanisms

30

3.1 Facets of Affinity in OpenMP Programs

was done by Lof and Holmgren |Lof and Holmgren, 2005]. The experiments in
this study were done on SPARC processors under the Solaris OS, where the next-
touch migration is supported by the OS. The study showed that an industrial
PDE solver could be improved by 166% in runtime. This is a motivation to enable
the migration on next-touch mechanism on other operating systems as well, as it
presented here for the Linux OS.

In our previous work [Terboven et al., 2008b], we have already sketched a mech-
anism for affinity-on-next-touch for the Linux operating system in user space. A
kernel-level implementation for the same purpose with a higher bandwidth is pre-
sented by Lankes et. al. [Lankes et al., 2010]. The downside is that a kernel patch
is required, so this approach cannot be used on arbitrary HPC production systems.
In addition, Goglin and Furmento [Goglin and Furmento, 2009] compared a similar
memory migration mechanism, based on our former publication, in user space with
an approach in kernel space. Although the kernel-based implementation turned
out to migrate pages in 70 % of the time of the user-space implementation, the
advantage of the approach presented here is that no kernel patches are needed
and thus it can be implemented for any Linux system. Applying patches to the
kernel of a HPC Cluster is typically not possible in a production environment for
security reasons.

3.1 Facets of Affinity in OpenMP Programs

As shown in chapter [2| on large SMP machines the memory access time rises
significantly between local memory and remote memory on different levels. This
makes NUMA-aware programming much more important on large SMPs than on
standard 2-socket systems, like the Westmere system used in chapter 2l The main
goal here is to avoid remote accesses and maximize local memory accesses. For
a shared memory program, several conditions influence the locality between data
and threads:

(i) The distribution of data across NUMA nodes.
(ii) The placement and migration of threads on the NUMA nodes.

(iii) The work distribution and resulting memory access pattern across threads.
Depending on the algorithm this access pattern can change over time which
makes the problem highly dynamic.

For all of these problems solutions exist which are commonly used and which
work sufficiently well in most standard cases. However, there still exist many cases
where additional support is needed which is not yet provided in OpenMP. In the
rest of this section, I will give an overview of common practices used nowadays and

31

3 Improved Memory Allocation and Migration in OpenMP Programs

discuss their advantages and shortcomings. Then I will present some improvements
to overcome these shortcomings in the rest of this chapter and in chapter 4

3.1.1 Distribution of Data

The decision where data is placed on a NUMA system is taken by the operating
system. All operating systems used for HPC nowadays (Linux, Windows, Solaris,
AIX) use the so called "first touch” strategy: The data is placed in the NUMA
node’s memory of the core where the first access to the data occurs. If no free
memory is available on this NUMA node, the memory is placed on a NUMA node
with the shortest possible distance. This decision is not taken per byte, but per
memory page, which is by default four kilobyte on a x86 architecture. For OpenMP
programs, this automatically puts all the private data into the local NUMA node
of a thread. Since no other thread accesses this data ever, it cannot be accessed
first by a different thread.

As a consequence of the first-toch policy of the OS, it became common prac-
tice to initialize the data in parallel, with the access pattern that shall be used
later on in the computation, as we described in [Terboven et al., 2008a]. This
distributes the data in the same way as it is used later on and thus maximizes the
thread to data affinity. There might be some memory pages which are used by
multiple threads, e.g. when the chunks assigned to threads are not a multiple of
the page size and thus boundaries of chunks arise in the middle of a page. In such
cases, only one thread gets local access to the data and the other threads have to
work remotely.

If the memory access changes over time, this first touch placement is often not
sufficient. In such cases, it is often beneficial to change the data distribution over
time. The libnuma library offers the function sys_move pages to migrate data on
Linux systems, even if the placement has already been done. This can be used to
change the data layout during the computation if necessary.

Finally, Linux offers high level control on the command line to restrict the map-
ping of data to NUMA nodes. E.g. the NUMA control tool numactl offers func-
tionality to restrict programs to use only specific NUMA nodes during execution.
Furthermore, numactl allows to change the first touch memory allocation policy of
the Linux OS for an application to a "round robin” allocation strategy. This leads
to a round robin distribution of memory pages over the specified NUMA nodes,
independently of the access pattern during the first use of the data. For algorithms
with a random access pattern, where the first touch policy cannot be applied in a
useful manner, this can be a useful strategy. Although it does not reduce the num-
ber of remote accesses compared to other strategies for a random access pattern,
it can distributes the remote accesses evenly across all NUMA nodes and at least

32

3.1 Facets of Affinity in OpenMP Programs

allows utilization of all available links in the system. A performance comparison
of "round robin” allocation compared to first touch allocation will be presented
later in this chapter.

3.1.2 Placement of Threads

Since version 3.0, OpenMP offers some basic support for the placement of threads.
Besides the direct support in OpenMP, some techniques have become common
practice, based on operating system capabilities. Some of these techniques work
on all commonly used operating systems and some are specific for the Linux OS,
which is the dominant OS for compute clusters in high-performance computing.

For an efficient use of the data placement mentioned before, it is necessary
to achieve a fixed mapping of threads to cores. Per default, the OS scheduler
decides which threads are executed on which cores of the system, depending on
the number of threads which need to be executed, the load of the system and
the number of available processors. (A processor in this context is an execution
unit seen by the OS scheduler, namely a core or Hyperthread in modern systems.)
The mapping between threads and processors can and normally does change over
time, which leads to threads being migrated to different processors. On desktop
systems, where hundreds of threads might be running on four or eight processors
this makes perfect sense, especially since most threads do not create enough work
to fully utilize a processor constantly. For HPC applications this is different. All
threads can typically fully utilize a processor constantly. Migrating threads in such
an environment leads to a loss of cache locality and data locality on NUMA nodes
if a NUMA system is used. This problem is well known for years and meanwhile
OpenMP offers a standardized way to achieve a fixed mapping of threads to cores.

Two major points influenced the decisions in the OpenMP language committee
to support thread placement of OpenMP threads. First, the standardized method
should allow users to place threads on shared memory machines in a portable way.
This way should be easy to understand and should not require detailed knowledge
of the hardware, since this would contradict the idea of being portable between
different platforms. Second, the approach should be flexible enough to allow a
user full control over the placement if this is needed for the application.

As a solution to fulfill these requirements an abstract description of the machine
was specified, a so called place list. A place list is a list of places, where
each place is a set of one or more processors. Every thread is then bound by the
OpenMP runtime to one of these places, according to a strategy specified by the
user.

In an informal fashion, the strategies can be described as follow. A formal
description can be found in the OpenMP specification [OpenMP ARB, 2013].

33

3 Improved Memory Allocation and Migration in OpenMP Programs

e master: With the master strategy, all threads are bound exactly to the same
place where the master thread spawning the team is running.

e close: The close strategy specifies that all threads of the newly created team
should run on the places next in the place list after the place of the master
thread of the team.

e spread: When the spread strategy is used, the threads are spread across the
place list of the master thread with the largest possible distance. This is
realized by dividing the place list into consecutive partitions, one partition
per thread if possible and then each thread gets one partition assigned and
is placed on the first place in this partition. If such a thread becomes the
master of an inner nested team, only its subpartition is used for this inner
team. This leads to a distinct placement for all inner teams created by the
different threads of the outer team.

The ideas behind the close and spread strategy are that threads running close
together can most likely share resources like the last level cache and the memory of
a NUMA node, whereas threads spread over the complete system will most likely
use more of the available resources of a system, which results in a higher overall
memory bandwidth and a higher total cache capacity.

If no place in the place list contains processors from different NUMA nodes,
this placement method can guarantee that no thread is migrated by the operating
system to a different NUMA node. Thus, data which is allocated by a thread
using the first touch policy will remain in the local memory of this thread during
execution.

3.1.3 Distribution of Work

The last mapping which influences the data locality during execution is the map-
ping between threads and work chunks. In OpenMP there exist different methods
to distribute work across threads. The most commonly used method is the loop
worksharing construct. When work is distributed using this construct, the user
can specify a schedule to influence the work distribution. When three conditions
are fulfilled, OpenMP guarantees that the work distribution across several loop
worksharing constructs is identical. This allows to use this distribution during ini-
tialization and execution, which maximizes the data locality as described above.
The conditions are:

e The loops need to have the exact same iteration space.
e The loops need to use a static schedule.

e The loops need to use the same chunkzize parameter or both need to use
no chunkzize parameter.

34

3.2 Generating Reasonable Place Lists

In many cases these conditions can be easily fulfilled, as long as the load bal-
ance of the loop is regular. For example, in dense linear algebra algorithms often a
parallelization over vector elements or matrix rows can be reused for several math-
ematical operations. Loops with an unbalanced work distribution are discussed
later in chapter

For other worksharing constructs like a single region or a sections construct,
the mapping of work to threads is not specified in OpenMP and thus cannot be
predicted. However, sections are only seldom used and single regions normally
are not very time consuming, so the data locality of these constructs is normally
not a problem in real applications.

A much more challenging problem in this respect is the task construct. Tasks
are work items in combination with an own data environment. These tasks can
be executed by any thread in a thread team, making it very hard to predict the
NUMA node where they are executed. Currently, no method exists in OpenMP
to achieve local accesses in a task, other than initializing the data in the same
task. First attempts for NUMA-aware task programming are discussed further in
chapter [4] and tools support needed for such techniques in chapter 5

3.2 Generating Reasonable Place Lists

The mapping of threads to places is specified in OpenMP. However, a method to
generate these place lists is not standardized.

Currently the user can:

(i) use an abstract name (threads, cores or sockets) to specify the granu-
larity of a place in the place list, or

(ii) explicitly provide a list of places based on processor numbers used by the
operating systems.

To fulfill the intention of the placement strategies close and spread, of course
threads being close together in the place list should also be close together in
the system. The generation of such a place list fulfilling these requirements is a
challenging task. For small systems, e.g. with two sockets, it is typically easy
to take all cores of a processor as a group of places close to each other and then
putting these two groups behind each other in a place list. However, for large
machines, like the SGI Altix UV machine (see figure for the SLIT of the
system), where several boards are connected with different network topologies,
the task to generate a suitable place list is much harder.

The distance information from the system locality distance information table
can be used as a basis for this task, but the distance matrix presented in section

35

3 Improved Memory Allocation and Migration in OpenMP Programs

is a more suitable basis, as explained in chapter Still, cores inside of a
processor can be seen as close together, since communication inside of a chip is
much faster than external communication. Now, it is necessary to sort the sockets
in a way that neighboring sockets have the shortest possible distance. However,
this problem is equivalent to the traveling salesman problem (TSP), well known
in graph theory.

In the TSP, a salesman has to visit a set of cities to sell his goods. The dis-
tance between every two cities is given. Every city shall be visited exactly once.
Furthermore, the salesman shall return to his hometown at the end, so he should
travel in a circle. Of course, a lot of different routes exist to visit all cities. The
goal of the TSP is to find the optimal tour with the shortest overall distance.

In our representation of this problem, we have NUMA nodes with distances
between the sockets and not cities with distances between each other. But, as
mentioned the place-1list in OpenMP is used by the binding strategies in a way;,
that neighboring sockets should have a distance as small as possible. Furthermore,
if the end of a place-1ist is reached, the strategies perform a wrap-around and
restart at the beginning. So, the distance between the last and the first place in
the list should also be as small as possible. This results in the requirement to find
a list with minimal overall distances between neighbors and between the last and
the fist element. This is an equivalent goal than finding the shortest tour in the
TSP.

3.2.1 The Traveling Salesman Problem

The Traveling Salesman Problem is known to be NP-hard, so no algorithm is
known to solve it in polynomial time.

To solve this task, different options exist:
(i) Solve the problem with a brute-force algorithm in exponential time.

(ii) Use information of symmetry in the network topology to solve the problem
more easily.

(iii) Approximate the solution with an appropriate heuristic.

Option (i) will result in an optimal place list, but the algorithm has an expo-
nential runtime. Option (ii) is the best option, if symmetry information on the
topology is available and if the complete system is used, since the runtime should
be feasible. But normally only the system locality distance information table is
available and no further information on the network itself. Furthermore, when
only a part of the system is assigned to a job, as it is typical for large systems
like the SGI Altix UV, the place list only needs to be generated for the subset

36

3.2 Generating Reasonable Place Lists

of the nodes which are assigned to the job. Providing place lists for all possible
job assignments is not possible. An approximation algorithm (option (iii)) is a
good compromise, the solution must not be optimal, but it can be computed in
polynomial time. And in contrast to option (ii) it can be used even on a subset of
the nodes of a system based on a distance matrix which can be easily computed
at the beginning of a job as discussed in section [2.3]

3.2.2 Approximation algorithms

0

A 20

<
<5 19 1%

0
v

LT
18
8T
ol
ST

6 E 2

v
qa«‘
8&r

Y

> A%

Figure 3.1: Graph representation of the measured distances between the sockets
on the 8-socket HP system.

The graph representation of the problem is defined as follows:

Let G = (V, E) be a clique with:
(i) Every NUMA node in the system is represented by a node v € V.

(ii) Every two nodes v and w in the system are connected by an edge e,,, with

the weight d,, = w where M is the distance matrix measured
before.

37

3 Improved Memory Allocation and Migration in OpenMP Programs

As an example, the resulting graph for the 8-socket HP system based on the
measured distance matrix as described in section [2.3]is shown in figure [3.1]

The TSP is NP-hard and it is not possible to approximate the general problem
with a constant factor. However, if the edge weights are a metric, there exist ap-
proximation algorithms with constant factors, like the Christofides algorithm that
produces a 1.5 approximation, see |Christofides and GROUP., 1976] for details.
To check if our weights are a metric on the graph we need to verify two points:

e Every two nodes in the graph must be connected by an edge, i.e. the graph
must be a clique.

e For all nodes the triangle inequality must hold, this means for nodes vy, vy
and vs it is always true, that dy,m, < dy,vs + dpg,-

Obviously, the graph generated from the distance matrix or taken from the SLIT
is a clique, since I measured all possible connections between sockets and the SLIT
also describes all possible connections. Formally showing that the triangle inequal-
ity holds is not possible, since the results are based on the bandwidth measured
between the sockets. However, it is very likely, that the triangle inequality holds.
Assuming it would not hold implies there exist 3 sockets A,B, and C so that the
bandwidth measured from A to B is less than the bandwidth from A to C plus the
bandwidth from C to B. But the routing algorithm can take any connection on
the system, since the bandwidth tests were done exclusively, so it could also take
the connection from A to C and then to B as well without the need to intermedi-
ately store the data in the memory of C. This intermediate store is necessary with
our test, so the direct connection will most likely be faster. In this case the edge
weights in our graph build a metric and the algorithm of Christofides can produce
a 1.5 approximation of the TSP, which means the length of the tour generated by
the Christofides algorithm is smaller than 1.5 times the optimal solution.

Furthermore, it is possible to approximate the solution of the TSP with a simple
greedy algorithm. Here, the tour starts at one node and as the next node it always
adds the node with the shortest distance which has not yet been chosen. There is
no guarantee on the quality of this solution, but it can be computed very easily
and fast based on the distance matrix or the system locality distance information
table, depending on which information is available.

3.2.3 Evaluation

To compare the different algorithms to generate a path through the distance graph
I implemented a brute-force algorithm which generates the distance for all possible
tours through the graph. Then it picks the best tour which is possible. This al-
gorithm delivers the best possible place list, but the runtime is exponential in the

38

3.2 Generating Reasonable Place Lists

| System | Algorithm | Distance | Time (sec.) | Tour

HP brute-force 106 | 0.00064 76541032

HP Christofides 106 | 0.00033 01324576

HP Greedy 106 | 0.00004 01324567

BCS brute-force 376 | 404k 1514131110897
645302112

BCS Christofides 512 | 0.00084 012375411
86131291014 15

BCS Greedy 379 | 0.00004 01235467
891011121314 15

Altix brute-force n.a | n.a n.a

Altix Christofides 863 | 0.0022 0132671011

14 15 18 19 22 23 26 27
313045891213

16 17 20 21 24 25 29 28
Altix Greedy 848 | 0.00005 01236745
89101114 151213
16 17 18 19 22 23 20 21
24 25 26 27 30 31 28 29

Table 3.1: Shortest paths generated by the brute-force, greedy or Christofides
algorithm.

number of sockets. Furthermore, I implemented a greedy heuristic which always
takes the nearest neighbor to the actual socket and the Christofides heuristic. Ta-
ble [3.1] compares the runtime of these algorithms and the generated tours through
the distance graph.

For the 8-socket HP system, the brute-force algorithm finishes in reasonable
runtime, but on the 16-socket BCS system it takes a bit less than 5 days and for
the Altix system it is not feasible. The heuristics both run in reasonable time,
even on the large BCS and Altix systems. The tour produced by the Christofides
algorithm is in all cases equal or worse compared to the greedy algorithm. While
the greedy algorithm can not guarantee the quality of the result, in our cases it
is pretty good. On the HP system the results are of equal quality and on the
BCS system the greedy algorithm produces a tour with length 379, with 376 being
the optimal result. Because the runtime of both algorithms is low and the place-
list only needs to be computed once per program run, we suggest to use bath
Christofides and the greedy algorithm.

39

3 Improved Memory Allocation and Migration in OpenMP Programs

3.2.4 Recommendation

After evaluating these options, my recommendations to generate a place list for
OpenMP is the following:

(i) At the beginning of a program run, detect which cores are in the cpuset of
the program.

Evaluate which sockets are covered by this cpuset.

Generate a distance matrix for these sockets.

Use the Christofides algorithm to approximate the same problem.

)
)
(iv) Use the greedy algorithm to approximate the TSP on this matrix.
)
) Choose the better solution.

)

Take all cores of the sockets in the order in which the sockets appear in the
tour as a place list.

Following these steps, it is possible to generate a place list for OpenMP with-
out much overhead which orders cores in the desired way. Based on these place
lists, the binding strategies close and spread can be used for thread pinning as
described in the OpenMP specification with the desired result that places with a
close distance in the place list also have a close distance on the hardware.

3.3 OMPX: An OpenMP Extension Library for
Memory Placement

So far, I discussed the mapping of threads to cores in the system. Furthermore,
the mapping of data on NUMA nodes is also important to achieve a good usage
of local data for an application. OpenMP so far does not provide any mechanisms
to achieve a desired mapping of data on NUMA nodes in a system. However,
all operating systems provide some support for this task, like the first touch ini-
tialization mentioned at the beginning of this chapter. Here I further want to
explain existing methods and propose extensions to the OpenMP specification to
provide a platform-independent and user-friendly way to handle the problem of
data placement. All OpenMP extensions proposed here have been implemented
in the RWTH OMPX library [[] as a proof of concept.

'https://bitbucket.org/rwth-itc—hpc/ompx

40

https://bitbucket.org/rwth-itc-hpc/ompx

3.3 OMPX: An OpenMP Extension Library for Memory Placement

3.3.1 Memory Allocation and Initialization

As described earlier, for OpenMP placement the most common way to achieve a
desired data placement is to use the first-touch memory distribution mechanism of
the operating system and a parallel initialization of data. For serial or distributed
memory programs, this leads to only local accesses of a program if possible, since
the data is only used by a single process and thus initialized and used always on
the same NUMA node. If the local NUMA node of the thread has no more free
pages, of course a page on a remote node is chosen and also remote accesses can
occur for serial programs. First touch is applied nowadays by nearly all operating
systems, e.g. Linux, Windows, Solaris or AIX, as default policy.

In an OpenMP program this strategy can be used to achieve a distribution of
data across nodes by allocating the data in parallel, with threads running on these
different nodes. Therefore, an access to the data has to be used in the same way
as it will be used later in the computation. E.g. when a vector is initialized by
all threads with a static schedule clause, it should be used later on in a parallel
loop with a static schedule. This will then lead to mostly local memory accesses.
Since the distribution is on the granularity of a page, there might be some remote
accesses if a page is shared between two threads.

This strategy can be easily applied, if the access pattern of the data is known
a-priori. If this is not the case, it is impossible to allocate the data with the
right access pattern. In such cases, the data distribution cannot be done in a way
that mostly local accesses occur. Often serial data initialization is used in such
cases which leads to a memory placement where all the data is located on one
NUMA node with the first touch OS policy. But, placing the data only on one
NUMA node will not only lead to many remote accesses by all threads running on
remote nodes, it will furthermore focus all remote accesses on one single NUMA
node. A better compromise in such cases is often to distribute the data in a
round-robin or random way. This is possible for the whole program, e.g. using the
numactl tool under the Linux OS as mentioned before. Furthermore, the 1ibnuma
library provides an API to apply this strategy only for some arrays in a program.
I propose a function (r_ompx_interleaved alloc) for OpenMP to achieve this
distribution in a standardized way at allocation time. The function shall provide
similar functionality as the function numa_alloc_interleave from libnuma, but
a close integration into the OpenMP runtime allows to check the OpenMP place
list and distribute data only over NUMA nodes currently used by the OpenMP
team. With the 1libnuma functionality this is also possible, but the user would
need to query the cpuset of all threads in the team and generate a bitmask for
the NUMA nodes to use in the alloc call. A standard way provided by OpenMP
would make this much more user-friendly.

41

3 Improved Memory Allocation and Migration in OpenMP Programs

3.3.2 Memory Migration

For cases where the memory access pattern is random or unpredictable, spreading
data across the whole system is advisable. But sometimes the access pattern of
an application changes over time, when different phases of an application run, or
when data is adaptively refined. Also if the placement is done in a library which
does not respect NUMA characteristics of a machine, a bad data placement may
happen which needs to be corrected. In such cases, the placement of data needs to
be changed during the execution of a program. Therefore, the operating system
needs to provide access for memory migration, which most systems do.

For example under Linux, pages can be migrated using libnuma but the user
needs to provide a destination for every page of an array which is a complicated
task. Therefore, I propose the following additional functions to the OpenMP API
for better usability:

r_ompx_migrate and r_ompx_fetch: The function r ompx migrate provides func-
tionality to migrate a chunk of memory to a specified node and the function
r_ompx_fetch migrates data to the node where the calling thread is currently run-
ning. The first function allows a master thread to distribute data for a team of
threads in advance, whereas the latter function allows all threads to fetch data to
the local NUMA node. This can be done without the need to find out which cores
and NUMA nodes have been chosen by the OpenMP runtime for which thread.

r_.ompx_next_touch: This function is useful when the data access pattern is
repetitive but not known exactly in advance or when it is hard to divide the
data into consecutive chunks, e.g. when the data is accessed indirectly through
pointers. One thread can flag a chunk of memory to be moved when it is accessed
the next time. The page is then moved to the thread which tried to access the
page. This allows to distribute pages during computation without the need to
explicitly specify the distribution pattern.

The algorithm to achieve this functionality under the Linux operating system is
outlined in code and works in two phases. First, all pages of the user specified
memory chunk are protected for read/write access and a signal handler for the
signal SIGSEGV is installed. Second, when a SIGSEGV signal occurs, this means a
thread has tried to access the page, the installed signal handler migrates the page
to the NUMA node of the accessing thread and releases the read/write lock on
the page. Then the library returns to the user program where the page is now
accessible and located on the local NUMA node.

42

CO 1O Ul W N

3.3 OMPX: An OpenMP Extension Library for Memory Placement

function r_ompx_next_touch (addr,size)
foreach page p from addr to (addr+size)
lock p for read and write access;
end foreach
install sigh() as signal handler for SIGSEGV;

end function

function sigh ()
p = page causing the SIGSEGV;
n = NUMA node of the current thread;
migrate p to n;
release the read/write lock on p;
end function

Listing 3.1: Pseudo-Code illustrating the next_touch algorithm.

3.3.3 Performance Modeling for Memory Migration

After the migration methods have been presented, I will analyze the overhead of
these methods and compare it with the benefit of the improved memory access
pattern. This leads to a simple performance model, which can be used to de-
cide when these migration techniques are beneficial. The tests were done on the
Westmere and SandyBridge systems described in section [I.2] Both machines run
Linux kernel 2.6.32 and we used 4k pages for all test. The tests perform a daxpy
operation on three vectors and measure the access time of all threads and then
compute a per page average access time for all threads. The tests use one thread
per core on both systems. I investigate the following cases:

e serial: The data is initialized by a single thread (in serial) and thus all data
is placed on only one of the NUMA nodes.

e parallel: The data is initialized in parallel so that the data is distributed
across all NUMA nodes and the daxpy operation works on local data.

e interleaved: The data is distributed round robin across the NUMA nodes
using r_ompx_interleave_alloc. During the daxpy operation the data is
still used with a static schedule, so the number of remote accesses is not
reduced compared to serial. However, the advantage is that the remote
accesses are now evenly distributed across the nodes.

e migrate: Here the data is initialized serially and then the data is migrated
to the thread that will use it later on. We use the function r_ompx_fetch
for this purpose, but r_ompx migrate has similar overhead, since it uses the
same mechanism internally.

43

3 Improved Memory Allocation and Migration in OpenMP Programs

e next_touch: The data is also initialized serially and then migrated, but
in contrast to the former case, the function r_ompx next_touch is used to
flag the data for migration and to move it in the first iteration of the daxpy

kernel.
Strategy \ serial \ parallel \ interleaved \ migrate \ next_touch
2-socket Westmere
Access Time 0.204 0.102 0.141 - -
Migration Overhead - - - 1.295 15.593
After Migration - - - 0.102 0.102
4-socket SandyBridge
Access Time 0.334 0.048 0.095 - -
Migration Overhead - - - | 14.458 73.939
After Migration - - - 0.047 0.047

Table 3.2: Average page access time and overhead to migrate a page in us on the
2-socket Westmere and 4-socket SandyBridge system.

Table [3.2]shows the average time to access all variables of a complete page as well
as the overhead for the migration of a page. Investigating the overhead per page
allows the evaluation of the migration independent of the algorithm or dataset,
as long as the data at least exceeds the size of a memory page. An evaluation
on a smaller granularity is not possible, since Linux only allows the migration of
a complete page as mentioned before. In the serial case, all pages were located
on one NUMA node whereas they were located perfectly distributed across both
NUMA nodes in the parallel case. In the latter case, on the Westmere system, this
leads to an average access time of about 0.1 us which is 2x faster than the 0.2 us
when the data is initialized serially. Since two memory controllers are used instead
of one this is as expected. When the pages are initialized interleaved, the access
time is 0.141 pus. Both migration strategies deliver the same good access time as
the parallel strategy after migration, which verifies that the migration works as
desired, but they introduce overhead of 1.3 us for explicit migration and 15.6 us
for next_touch.

On the SandyBridge system the difference between serial and parallel initiali-
zation is higher: 0.33 ps compared to 0.05 ps. The performance advantage of the
optimized data layout on the 4-socket system is more significant. Because of the
more complex topology, the cost of page migration is higher for both migration
techniques. The measured time of explicit migration is 14.5 us and 74 us for
next_touch migration takes.

Since the overhead is much higher than a single remote access of the data, it
is only useful if the data is needed multiple times. Given the overhead (O) and
access time (A) of table the total access time (T) for x memory accesses can

44

3.3 OMPX: An OpenMP Extension Library for Memory Placement

a

~

100

404

154

60

40 / /
20 o f-- ’_‘..'.."--";"'_f's =
F ¢ ‘‘‘‘‘‘ R -

pradis
rrr1rrrrrr11

0 50 100 150 200 250 300 350 400 450 500
Number of Memory Accesses for a Page

Total Access Time in us

o

b

200

150

100

50

Total Access Time in us

0 T T -\-_\‘— rr1r1rr1rr11
0 50 100 150 200 250 300 350 400 450 500
Number of Memory Accesses for a Page

------ serial_init — -parallel_init - - interleaved_init migrate --- next_touch

Figure 3.2: Access time for different numbers of accesses of a complete page for dif-
ferent initialization and migration strategies on the 2-socket Westmere
a) and 4-socket SandyBridge b) system. The points of intersection
indicate when migration is beneficial over serial or interleaved.

be calculated as ' = O + (x x A). Figure shows the access time for the
investigated memory initialization and migration mechanisms. The intersection
points of the straight lines indicate the break-even point where the migration
starts to be beneficial. For example on the Westmere system the lines of serial
and migrate intersect at 12.7 (50 on SandyBridge). This means if the data is
initialized serially it is beneficial to migrate it in advance if all the data of the
complete page is used 13 (50) or more times. Migration with the next_touch
mechanism is beneficial for 1544 or 258+ accesses on the Westmere system or
SandyBridge system, respectively. This means that explicit migration should be
used if possible, i.e. if the data access pattern is known, as explicit migration
induces much less overhead. If only a fraction of the data on a page is used, e.g.
only one variable, migration will of course pay off only for a higher number of
accesses.

45

3 Improved Memory Allocation and Migration in OpenMP Programs

3.4 Summary

In this section, I discussed problems regarding the mapping of threads to cores and
data to NUMA nodes. Both problems need to be taken into account to achieve a
good rate of local accesses on a NUMA system. The larger the system gets, the
more important this optimization is, since the cost of remote accesses increases
as shown in chapter 2] For the mapping of threads to cores, OpenMP provides
good mechanisms to use different placement strategies. The only downside is that
the problem to describe the hardware in a so called place list is left to the user. I
showed, that the problem can be seen as TSP on the distance matrix or the system
locality distance information table, if the distance matrix is not available. The TSP
can be approximated with a greedy approach or with the Christofides algorithm
in polynomial time and for all investigated systems the result was very close to
the optimal solution generated with a brute-force algorithm in exponential time.
Since I recommend to use the better solution of the greedy and the Christofides
algorithm, the guaranty of Christofides to have at least a 1.5 approximation is
always given for the place list.

The problem of data placement on a system can be solved using the first touch
mechanism provided by the OS, if the memory access pattern is known in advance
and does not change over runtime. If this is not the case, I proposed OpenMP
extensions implemented in the OMPX library to handle these problems with inter-
leaved memory allocation or memory migration. Migration can be done explicitly
or semi-automatic with the explained next-touch algorithm. Here, the data is mi-
grated to the thread which uses the data next, but the algorithm comes with a
significant overhead. I also investigated the overhead and showed how a simple
model can be used to decide if migration is beneficial or if remote accesses should
be accepted, because the overhead of migration is higher than the gain of it. The
problem left for the next sections is the mapping of work to threads which also in-
fluences the amount of local and remote memory accesses in a program. Especially
for OpenMP tasks this problem is not handled by OpenMP at all so far.

46

4 NUMA-aware Scheduling
Strategies

Distributing work onto threads or processes in a parallel program is one of the
most essential tasks in parallel programming. Therefore, this chapter will discuss
challenges in work scheduling for OpenMP programs on large NUMA systems.
The work I will present here is partially based on prior work. A former version
of the load balancing benchmark used for evaluation in this chapter was part of
my contribution to [Terboven et al., 2012b| and |[Terboven et al., 2012a]. And
an initial version of the NUMA aware scheduler was presented in [Berr et al.,
2012]. Although the scheduler was used only for a specific application on the
ScaleMP architecture, it has proven its ability to lead to better scaling behavior
than the traditional OpenMP schedulers. A more general version of this scheduler
is presented during this chapter.

The overall goal in work scheduling is to minimize the total execution time of a
program. This is typically achieved by an even distribution of work to processes
or threads. Depending on the work which needs to be scheduled, different general
strategies can be applied.

Static Work Scheduling For many problems the execution time of different work
items can be determined a-priori and does not change during the execution of the
program. For those problems, typically a work scheduling can be computed locally
by every process or thread before the execution of the parallel work. These static
work scheduling approaches typically induce low overhead, since no communication
at runtime is needed, after the distribution of work is done.

Dynamic Work Scheduling For problems where the computation time for dif-
ferent work items cannot be pre-computed, e.g. because it changes dynamically
over runtime, static work scheduling should not be used because it will most likely
not deliver an even distribution of work over the threads or processes. In such
cases, dynamic work scheduling can deliver a better distribution of work to tasks.
Dynamic work scheduling means that the computational work items are assigned
to threads or processes at runtime, in a way that distributes work as evenly as
possible over the available threads or processes. The well known master-worker

47

4 NUMA-aware Scheduling Strategies

approach is often used in MPI programs to achieve a dynamic work scheduling
(see [Gropp et al., 2014]). In shared memory programs, often runtime systems can
deliver dynamic work scheduling. The advantage over static approaches is that
the distribution can be adjusted at runtime, which leads typically to a more even
distribution of work. The disadvantage is, that parts of the compute resources
are utilized by scheduling which introduces overhead. For example, the master
process in a master-worker approach does not take part in the computation of
the result and thus introduces overhead needed for the parallel execution of a
program.

The OpenMP specification offers different ways for static and dynamic work
scheduling. The most commonly used worksharing construct, the loop construct,
which can be used to parallelize the execution of a for or do loop in C/C++ or
Fortran respectively, comes with a schedule clause. The schedule clause allows
a programmer to choose how the iterations shall be distributed across all threads
of the current team. The following strategies can be applied:

static[:chunksize| All loop iterations are divided into packages of size chunksize
and distributed round-robin across all threads. If no chunksize parameter is
present, the loop iterations are distributed in ¢ evenly sized chunks for ¢ threads.

dynamic[:chunksize| The loop iterations are again distributed in packages of size
chunksize. Then, every thread executes one package. After a thread finishes a
package, it gets the next available package. This strategy ensures that all threads
participate in the parallel loop execution as long as work packages are available.

guided[:chunksize| This schedule is similar to the dynamic schedule. The differ-
ence is that the size of work packages is reduced over time. This leads to a lower
scheduling overhead at the beginning of the iteration space because of the larger
packages, and to a better load balancing because of the small packages at the end
of the iteration space.

auto With the auto schedule, the compiler or runtime is free to choose any sched-
ule.

runtime The runtime schedule allows users to choose one of the above schedules
at runtime by setting the OMP_SCHEDULE environment variable.

Further OpenMP constructs which allow work distribution are the section
construct which can be used for a static distribution of a fixed number of work
packages to threads and the task construct. The task construct specifies a package
of work and data, a so-called task, which can be computed independently from
other tasks. The OpenMP runtime system can execute created tasks in any order
and at any time before the next synchronization construct is reached. This allows
a dynamic work scheduling of tasks by the OpenMP runtime system, which leads
to a balanced work distribution if enough tasks are created.

48

In addition to standard OpenMP scheduling strategies, different researches in-
vented improved scheduling strategies for OpenMP. S. Donfack et al. [Donfack
et al., 2012] combined the static and dynamic scheduler in a similar way as we
have done it before in [Berr et al., 2012|, but with the difference that they need
to precompute the static and dynamic fraction for the scheduler and that their
scheduler is optimized only for a dense matrix factorization. Furthermore, they
concentrate on cache reuse and not an NUMA issues to optimize their strategy.
Kale et al. |[Kale et al., 2014] implemented a similar idea where they optimized
work stealing to improve the data locality for caches. The work presented here
mainly differs in the point that none of the other ideas focused on large NUMA
systems and data locality on a NUMA node level and they require scheduling de-
scriptions at compile time, whereas the ideas presented here can be evaluated at
run time and thus are more flexible when the dataset changes.

Architectural Trends The problem of load balancing is one of the major prob-
lems in efficient parallel programming even today, and architectural trends indicate
that it will become even more important in the near future. The reason therefore
are two new features of Intel’s next generation micro-architecture, Haswell. Today,
Haswell-EP processors already exist for up to 2-socket servers, but the Haswell-
EX variant which is needed for large shared memory systems is not available.
Therefore, I will only mention the features relevant for the load balancing problem
discussed here, but cannot present test results for such architectures. However,
the methods presented in this work are general enough to be used also on such
architectures.

The first relevant feature is an independent clock frequency for the uncore part
of the processor. This allows the operating system to change the clock frequency
of the cores and the uncore part (memory controller, QPI interconnect, ...) inde-
pendently. In [Wang et al., 2015] we showed, that this difference is very important
for memory bound applications, since it allows to clock down cores for memory
bound applications without reducing the memory bandwidth available. This was
not the case in former microarchitectures where the memory controller was auto-
matically clocked down with the cores. This feature gives the OS more freedom to
change frequencies which potentially changes the runtime of one or more threads
in a parallel program and eventually introduces load imbalance.

The second relevant feature is that the AVX vector units are clocked indepen-
dently from the clock frequency of the core. So inside of one core, two clock
frequencies can be chosen. If the hardware or OS chooses different frequencies
here for different cores at a time, e.g. because the power budget of the chip is
exceeded, this can also introduce load imbalance in a parallel execution.

49

4 NUMA-aware Scheduling Strategies

4.1 Load Balancing versus Data Locality

On NUMA machines work scheduling becomes even more complicated. The overall
goal is still to reduce the total runtime, but the total execution time is influenced
by the size of a work package as well as by the distance to the data needed for
the execution. So, the scheduling problem has two dimensions: The order of work
packages to be executed, and the place where the packages are executed. To reduce
the total runtime the following factors have to be optimized:

Load Balancing: The work must be distributed in a way that all threads par-
ticipating in the computation are utilized from the beginning to the end of the
computation. Threads finishing early have to wait in the next barrier for other
threads and waste CPU cycles. So, the goal is to minimize the overall waiting
time in the barrier for all threads.

Data Locality: All threads shall access only local data to minimize the data
access time and to finish all work packages as fast as possible. Loading remote data
leads to time consuming traffic over the interconnect and increases the computation
time for individual work packages. Here, the amount of local data accesses must
be maximized.

For dynamic work loads these two goals are often in conflict to each other. The
data is often already distributed and maximizing the local data accesses leads
to a static work distribution. Optimizing the load balancing cannot fulfill the
restriction to have mostly local data accesses, if the data is not distributed evenly,
so there exist setups for which it is impossible to fulfill both requirements.

4.1.1 A NUMA-aware Load Balancing Benchmark

To get a better understanding of this problem, I developed a benchmark to inves-
tigate the behavior of load balancing strategies on NUMA machines.

In the benchmark a set of work packages is created, which needs to be scheduled
on a NUMA machine. A work package does a vector addition, an operation which
is memory bound on current architectures for array sizes exceeding the cache size.
All work packages work on different vectors which are distributed across all NUMA
nodes. The number of work packages is evenly distributed across all nodes. To
emulate load imbalance, in the benchmark the size of the vectors differs, leading
to different computation times for the vector addition. The first work packages, on
NUMA node zero, are the smallest ones and all work packages increase linearly in
size. Figure [4.1| shows an example distribution of 12 work packages over 4 NUMA
nodes on a 8 thread machine. For a scheduler this case is hard, since the first
NUMA nodes have much less local work than the last NUMA nodes.

20

4.1 Load Balancing versus Data Locality

NUMA-node 0 NUMA-node 1 NUMA-node 2 = NUMA-node 3

Thread Thread Thread Thread
0 1 4 5

Ay
=

Figure 4.1: Distribution of work packages (WPs) across NUMA nodes for the load
balancing benchmark. Exemplary for 12 work packages (WPs) on a
machine with 8 threads and 4 NUMA nodes.

WP 0
WP 1

On a machine with uniform memory access, the benchmark can be used to inves-
tigate the load balancing capabilities of OpenMP’s different scheduling strategies.
Since only one NUMA node exists on such systems, all memory accesses are local.
The benchmark reports for all threads the total execution time for work packages
executed by this thread. Figure shows the execution time for 59 threads on the
Intel Xeon Phi. A total of 3840 work packages were scheduled with a total memory
footprint of about 7 GB. The bars show the execution time for a static and a
dynamic scheduling for a parallel for loop. The lines indicate the maximum
execution time of a thread, since this is the time for the overall execution, which
should be minimized. Both schedules work as expected on this system, the static
schedule distributes the work packages in equal chunks to the threads. Since the
vectors in the first work packages were designed much smaller, the first threads
finish much faster. The last thread with the largest packages takes the longest
time with 2.69 seconds. With the dynamic schedule, the work is distributed much
more evenly over all threads. Nearly all threads finish at the same time after 1.65
seconds. The dynamic schedule leads to a good load balancing on UMA machines,
which is no surprise since UMA architectures were common when the schedule was
added to the OpenMP version 1.0 in 1997.

Today, the majority of all machines used in high-performance computing provide
non uniform memory accesses. This is because 2-socket servers are the sweet spot
from a price perspective on the server market today. To better investigate those

o1

4 NUMA-aware Scheduling Strategies

3 T T T
2.5

sl _.-|I|||””||” |
0.5 i
0 10 20 30 40 50

Threads

Runtime in sec.

static == dynamic

Figure 4.2: Load balancing benchmark results on a Xeon Phi system, running
with 59 threads. Scheduling 3840 work packages with a static and
dynamic scheduled parallel loop.

machines, the benchmark does not only report the total execution time for every
thread, it also splits this time in chunks depending on the location of the data used
during this time. This allows to analyze which threads worked on local and remote
data. Figure[4.3|shows the results for a parallel for loop with a static and with
a dynamic scheduling clause. The benchmark was run on a 4-socket bull s6030
system equipped with four Intel Xeon X7550 (Nehalem) eight-core processors.
For each thread a bar indicates the execution time as before, in addition the color
indicates the source NUMA node of the data used. Eight threads were started per
socket and the placement was done in a way that the first eight threads ran on
NUMA node one, the second eight threads on NUMA node two and so on. The
longest running thread shows the overall execution time (red line in the diagram),
since other threads have to wait in a barrier at the end of the parallel loop.

For the static scheduling of the parallel loop, the overall execution time for
the benchmark scheduling 3840 work packages with a memory footprint of about
40 GB was 4.5 seconds. The scheduling was done in a way, that all threads
were working on local data only, which is depicted by the fact that the first 8
threads have only yellow bars, the second eight threads only green bars and so
on. Although this schedule is optimal for the data locality goal of the scheduling
problem, obviously the load balancing is very bad. The first processor finishes all
work packages after less than one second and then waits until the work is finished
for about 3.5 seconds.

The dynamic schedule strategy delivers a much better load balancing. All
threads finish nearly at the same time, which is the same behavior than on the
UMA system. But, all threads worked on data located on all NUMA nodes, in-
dicated by the yellow, green, light blue and dark blue portion in all bars in the
diagram. This indicates, that the data locality goal was not achieved, since about
3/4 of all data accesses were remote accesses. If we look at the overall execution

52

4.1 Load Balancing versus Data Locality

5 T T T T T T T T T T T T T T T T T T

om0

0123456 7 8 91011121314151617 1819202122 23242526272829 3031
Threads

Runtime in sec.

(a) static loop schedule

TLCCCLCLLL L L T LT LT

Runtime in sec.
N

0
012 3 456 7 8 91011121314151617 1819202122 232425262728293031
Threads
Node 0 Node 1 mmmss= Node 2 Node 3

(b) dynamic loop schedule

Figure 4.3: Load balancing benchmark results on a 4-socket Bull s6030 system,
running with 32 threads. Scheduling 3840 work packages with a static
and dynamic scheduled parallel loop.

time of 2.67 seconds we see, that the time load balancing is still beneficial since
we saved about 40% of the overall runtime compared to the static schedule.

The need for NUMA-aware load balancing becomes much more relevant, the
larger the NUMA systems gets. Figure [4.4] shows results for the same benchmark
on a 16-socket BCS machine. Again, the static schedule delivers perfect data
locality but bad load balancing and the dynamic schedule delivers good load bal-
ancing and bad data locality. But here, the impact of data locality is much more
important than on the 4-socket machine. One reason is that the percentage of
remote accesses increases with an unpredictable schedule like the dynamic sched-
ule in OpenMP. Only an average of 1/16 of all accesses is a local access, compared
to 1/4 on the 4-socket system. A second reason is, that the remote accesses get
much more expensive, as [showed in section On the 16-socket machine, the
static scheduling finishes in 1.16 seconds, the dynamic schedule takes even 1.67.
In contrast to the 4-socket machine, the dynamic scheduling does not help at all
to avoid the load imbalance here. Different scheduling strategies are needed to

23

4 NUMA-aware Scheduling Strategies

2 T
o
o 15} -
£
g '
s T
0 b ||||||"|"""I """"
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125
Threads
(a) static loop schedule
2 T
g o "|||||||||||||"|||||||||||||||""||'|"""""'|'|""| I'|||||||||''|''|'|'|||||||'||'I||||||||||||II|||I|||||I||||II|III|]
£
FE 1ttt A
S 05 |- |
e ' -.....||......|.|I.|||||-|..|.|||.||..||..||.||||"||||||.|......||.I.||I|.|||II|||||||.||||.|II|||.--||l|I-|I||u||l||u|||||||
N g
T 'l T I T T i n Basiancgifgaligcid] TR I A i Ll

0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125

Threads
Node 0 Node 3 mmmmm Node 6 mmmmm Node 9 mmmmm Node 12 mmmmm Node 15
Node 1 mmssm Node 4 mmmmm Node 7 Node 10 mmmss Node 13
Node 2 Node 5 Node 8 Node 11 == Node 14—

(b) dynamic loop schedule

Figure 4.4: Load balancing benchmark results on a 16-socket system, running
with 128 threads. Scheduling 3840 work packages with a static and
dynamic scheduled parallel loop.

better support load balancing on large NUMA systems in OpenMP programs.

4.2 A NUMA-aware Work Scheduler

The benchmark results have shown that the standard scheduling mechanisms in
OpenMP are not always sufficient for work scheduling on NUMA-systems. Prob-
lems occur if

(i) the work packages are memory bound,

(i) the used data already exists and it is distributed across the NUMA nodes of
the system and

(iii) the data used inside of one work package is located on a NUMA node.

If these requirements are not met, the scheduling problem is completely different.
If one work package uses data from all NUMA nodes or if the total data is only

54

4.2 A NUMA-aware Work Scheduler

located on a single NUMA node, memory migration strategies presented in chapter
can be used to achieve a better data distribution, but the scheduler above can
do nothing to reduce the number of remote accesses. For the rest of this section,
I assume the three mentioned prerequisites are fulfilled.

4.2.1 The Scheduling Principle

As mentioned before, NUMA-aware scheduling optimizes two goals. The first one
is to keep all threads busy and avoid idle time. The second goal is to work on local
data. In figure and we can see that the static scheduling leads to good data
locality at the beginning of the program run. The problem is that threads with
only a small amount of the total work become idle very quickly. All threads with
a large amount of work, on the other hand, can work very well on local data for
a long time. The dynamically scheduled cases show that the load balancing can
easily be achieved, when threads also work on remote work packages.

The scheduler presented here is a combination of both strategies. It consists of
two steps:

(i) When the execution of the parallel loop starts, the same static schedule is
applied to the loop which has been used to initialize the data. This leads to
only local accesses for threads working in this phase.

(ii) When a thread has finished all its work packages it would wait in a bar-
rier until all threads finished the loop. The NUMA-aware scheduler instead
switches to a different strategy. The thread starts to execute work packages
of other threads, in a fashion comparable to the dynamic schedule case.

This combination of static and dynamic scheduling helps to preserve data lo-
cality as much as possible. Good data locality is achieved for all threads with a
sufficient amount of local work. For threads with only little local work, this goal
cannot be achieved by the scheduler. In general, this goal is not achievable without
losing the load balancing advantages of the scheduler, if no data is migrated. So,
this scheduler aims to provide a best effort scheduling, not to optimize both load
balance and data locality.

4.2.2 Work Stealing

The term "work stealing” is often used in the context of tasking to describe the
situation when every thread has its own private task queue and an underutilized
thread executes a task out of another threads queue. Although no tasks are used
in the scheduler, the situation is very similar when a thread goes into the dynamic

25

4 NUMA-aware Scheduling Strategies

—

0| 1] 2 3-7 8 | 9 |10 11.13 14 | 15

Figure 4.5: Tlustration of the NUMA-aware scheduler for 16 work packages and 4
threads. Thread 0 finishes its packages first and can now steal package
7, 11 or 15.

scheduling phase, where it executes remote work packages. So, I will use the term
"work stealing” here when a thread executes remote packages.

In the dynamic scheduling phase, the work stealing can be done in three different
ways as described below. One thing all these ways have in common is that the
stealing is done from the end of the iteration space as illustrated in figure
Here, thread 0 finishes all work packages first and now it can steal from any other
thread, since there are work packages left for all threads. The advantage of stealing
work packages from the end of the iteration space is that data between neighboring
packages might be located on the same page or even cacheline. When the local
thread works from front-to-back and the stealing is done back-to-front, there is
the least amount of interference between the local thread and stealing threads.

The decision, which work package should be taken, can be done in the following
ways:

e Randomly one thread is chosen.

e The scheduler tries to steal from a thread as close as possible to the stealing
thread in terms of NUMA distance.

e The thread with the largest number of available work packages is chosen.

All of these approaches have different advantages and disadvantages and which
one is the best highly depends on the number of work packages, their size, their
distribution, and on the machine.

Choosing randomly where to steal work is a decision which can be done locally
and thus is very fast to take on any machine. But, choosing randomly might lead
to a situation where one thread with a lot of work remains the only one with work
to do. Then all threads work on data of this thread which further slows down
execution.

Stealing from threads which are close to the current thread can lead to the same
situation, where all threads work on one NUMA node, if the data is not evenly

o6

4.2 A NUMA-aware Work Scheduler

1 T
g o8t i
(2]
£ 06] il M
e o N (i h' I
E o4 Hii | || |
= o II I| ||I ||| ||
& .
0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125
Threads
(a) random stealing
1 T T T T T T T
g o8 ||I ||I ||| I I"| I| ||'||II||I | || LY |' | wililiitin
£ 06 |||| |II|'I|||| il |II||||||| I| N
€
E 0.4 II|I"I|II|||||||II'|I|I||||| i
& oz i ||||||||
o Rl it
0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125
Threads
(b) stealing from threads with a small NUMA distance
1 T
%} | 4
] 0.8
£ 06 TR LIER
|'! 1
£ oa} I| |||| I'll | '| ||||||'
- I'"' i
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125
Threads
Node 0 Node 3 mmmsm Node 6 mmmmm Node O mmmmm Node 12 mmmmm Node 15
Node 1 mmmss Node 4 mmmmm Node 7 Node 10 mmm== Node 13
Node 2 Node 5 Node 8 Node 11 mmmmm Node 14—

(c) stealing from the thread with most work packages left

Figure 4.6: Load balancing benchmark results the NUMA-aware scheduler with
different strategies for work stealing.

distributed across all NUMA nodes. However, the advantage of this strategy is
that at the beginning threads steal from the local NUMA node, which preserves
the state where all threads work on local data for a longer time. On hierarchical
NUMA-machines the threads will then work on a different socket from the same
node, which is still beneficial over a remote node. But at the end, threads have to
steal also from remote nodes, if no more local work is available.

The last strategy, where data is taken from the thread with the most work
packages left, is probably the best strategy regarding load balancing. If possible,
it avoids the situation where only one thread is left with work, since the thread
with the most work packages to do gets helpers from the very beginning on, but

57

4 NUMA-aware Scheduling Strategies

the decision requires to check for the work left of all threads. This means that on
a large machine a value needs to be read from all NUMA nodes, which might be
costly. Furthermore, if the work is really unevenly balanced, all threads will steal
from the same thread at the same time at the beginning of phase two, and this
might make the memory bus of this thread the bottleneck. This will improve when
the number of work packages reaches the number of the thread with the second
most packages, as then the threads get distributed between two NUMA-nodes and
SO on.

4.2.3 Performance Results

As shown before, traditional scheduling with the static or dynamic scheduling
strategy is not efficient on large NUMA systems, like the BCS systems, for an
unbalanced workload and data distribution for memory bound work packages. I
implemented the NUMA aware strategies and ran the benchmark code with these
strategies. Figure [4.6|shows the resulting performance. For all strategies, it can be
observed that the NUMA-aware scheduling outperforms the static and dynamic
scheduling. The first threads with only small local work packages steal a lot of
work and the later threads with larger local work packages steal nearly no work.
This leads to a lower number of remote accesses in total and thus to a better
overall performance.

For the random work stealing strategy it can be observed, that the first threads
steal work from all NUMA nodes. Of course, more work is stolen from the later
NUMA nodes, since these nodes contain most of the work. A disadvantage of
this strategy is that some of the later threads have to do work stealing, although
they would have enough local work to do as too much work was stolen from those
threads, leaving them without work before the execution is finished.

In case (b), where work is stolen from threads with a small NUMA distance, it
can be observed that all threads from one node start stealing roughly at the same
time. Then all threads steal from the next NUMA node and so on. This results
in many threads stealing from the same node at the same time and thus it makes
the memory controller from this node a bottleneck. This behavior, of course, is
caused by the increasing load of our benchmark data set. If the work would be
evenly distributed across all NUMA nodes, this pattern could not be observed.
However, if there is a load imbalance in the computation between threads, it is
unlikely that the load is evenly distributed across all NUMA nodes. Overall, this
strategy is worse compared to the random stealing. The overall execution takes
0.92 seconds compared to 0.67 seconds in the random case.

Case (c) delivers the best performance for this benchmark data set with a run-
time of 0.64 seconds. Having a closer look at the work distribution, it can be

o8

4.3 Locality-aware Task Programming

observed that the second half of the threads (64-127) performs nearly no work
stealing at all. The reason is that they have enough local work to execute and the
stealing scheme is balanced enough to not steal too much work from those threads.
This leads to less remote accesses compared to both other schemes.

Overall, the benchmark has shown that the NUMA aware scheduler can deliver
much lower remote access rates than a static or dynamic OpenMP scheduling on
the BCS machine for the given data set. This leads to a better usage of the local
memory bandwidth, and thus to a better overall runtime. The better scheduling
characteristics of option (c) for work stealing overcome the disadvantage that a
global table with the number of workpackages left for all threads is needed. Both
other options for work stealing led to more remote accesses than necessary for the
given dataset. However, the difference between the load aware and the random
work stealing is very small with 0.03 seconds. It should be kept in mind, that
for the current dataset the work increases constantly for all threads. For a more
random imbalance, the random or NUMA distance optimized work stealing might
be beneficial. A use case for the scheduler with a realistic data set is shown in
section [0} This will further highlight the usefulness of the scheduler in real world
applications.

4.3 Locality-aware Task Programming

The NUMA-aware scheduler with different strategies for work stealing implements
an efficient way to schedule work packages on NUMA systems. The downside of
this approach is that the user has to implement the scheduling strategy explicitly
in user code. This slightly contradicts the idea of OpenMP to offer a high level
programming paradigm for shared memory programming.

I have shown before that the work scheduling strategies for OpenMP’s work-
sharing constructs are not suitable for large NUMA systems in some cases. But
in version 3.0 of the specification the task construct was added to OpenMP. This
construct allows to specify a task, which is a bundle of code to be executed and its
own data environment. Tasks can be executed immediately or the execution can
be deferred. If deferred, the task is put to a queue where a thread of the current
thread team can dequeue and execute it. The decisions when a task is executed
and by which thread a task is executed are taken by the OpenMP runtime system.
In this section, I will investigate if this model allows efficient work scheduling on
large NUMA systems with standard OpenMP scheduling mechanisms.

29

4 NUMA-aware Scheduling Strategies

4.3.1 Implementation of task schedulers

The OpenMP specification does not restrict OpenMP runtimes in their imple-
mentation of task queues. Even executing all tasks immediately when the task
construct is reached without any queuing is valid according to the specification.
But this would not introduce any parallelism to the program and it is not what
programmers expect from an implementation. After tasking has been added to
OpenMP, in general, two ways to implement task queues have become common
practice.

Central task queues

-~ enqucue — dequeue — stealing
/‘T”’N /‘T”’ﬁ /‘T”’ﬁ /‘T”’ﬁ
AU - - . L s s s
Thread||Thread || Thread || Thread i |Thread | |Thread|: | Thread|: | Thread
0 1 2 3 I A S I [
% % % X e e e

Figure 4.7: Illustration of a central task queue used by four threads (left) and
thread-local task queues for four threads (right).

A simple way to implement task queues is to have one central task queue in
the OpenMP runtime system. Every thread which encounters a task construct
can enqueue the task to this central queue or immediately execute the task. The
decision if the task is executed or enqueued is taken by the runtime system and
might depend on certain heuristics. For example, if the task queue is full, it
might lead to a better reuse of the caches to execute the current task instead of
dequeueing the first task in the queue and enqueueing the current task. If a thread
reaches a synchronization point, it can dequeue a task from the centralized queue
and execute this task. Figure illustrates the structure of a central task queue
on the left side.

The advantage of a central task queue is that it is quite easy to implement
and still delivers a good load balancing of tasks across threads. Also the runtime
does not have to take any decisions where to enqueue or dequeue tasks, since
only one queue exists. These decisions might also add overhead in more advanced
implementations of task queues. A disadvantage of this approach has turned out
to be the fact that the queue can become the bottleneck in a task parallel program.

60

4.3 Locality-aware Task Programming

Since all threads access both ends of the queue, frequently creating and executing
tasks needs locking or atomic access to this data structure. This can easily lead
to threads waiting to enqueue or dequeue tasks which is overhead that should be
avoided in parallel programs. However, this approach is used in many compilers,
e.g. in the GNU or Oracle Compiler.

Thread-local task queues

A different way to implement task queues is to have thread-local task queues. This
approach is illustrated on the right side of figure[£.7] The main goal is to overcome
the limitations of the central task queue regarding the limited scalability. Here,
every thread has its own queue and so tasks can be enqueued in parallel in these
thread-local queues. Furthermore, tasks can be dequeued in parallel, as long as all
queues are not empty. If the task queue of a thread is empty and this thread has no
more work left, task stealing is applied in this approach. Task stealing means that a
thread dequeues a task from a non-local task queue. A more detailed description
and implementation details can be found in [Duran et al., 2008] for the Nanos
runtime and in [LaGrone et al., 2011] for the OpenUH compiler. Furthermore,
this approach is also used in the Intel compiler, where the source code is publicly
availabld'] The advantage of this approach is clearly that it increases the scalability
if all threads enqueue and dequeue tasks. The disadvantage is that there might be
overhead added to the dequeue operation when task stealing is applied. Finding
a queue that is not empty can involve trying to steal from all task queues in the
runtime in the worst case, when only the last one contains tasks.

4.3.2 Task creation patterns

Besides the implementation of the task queues in the OpenMP runtime, also the
way programmers create tasks can have a high influence on the performance of
a tasking program. In [Terboven et al., 2012a] and [Terboven et al., 2012b] we
investigated two ways to create tasks.

e Single-Producer Parallel-Executor: In this task creation pattern all
tasks are created by a single thread. All other threads of the team participate
in the execution of the tasks. This pattern is often the easiest way to paral-
lelize a program with tasks. Often a parallel region with a single construct
is used to spawn threads and then one thread creates tasks in the single
construct and all other threads wait in the barrier at the end of the single
construct and execute created tasks. This construct can easily be applied in
situations where normal worksharing is unsuited, like for while loops or for
loops where the iteration space cannot be determined in advance.

Thttps:/ /www.openmprtl.org/

61

4 NUMA-aware Scheduling Strategies

e Parallel-Producer Parallel-Executor: Here, all threads participate in
the creation and in the execution of tasks. To implement this pattern, a
worksharing construct like a for construct can be used to distribute work
among threads and then each thread creates tasks. The advantage of tasks
is that they can lead to a better load balancing than the worksharing alone.
Another way to implement this pattern is to apply tasks in a recursive way.
When all tasks on a recursion level spawn new tasks, distributing these tasks
across multiple threads also distributes the creation of tasks of the next level.
The advantage of this approach is, that no single creator thread can become
the bottleneck.

4.3.3 NUMA-aware task creation

As depicted in section [£.2] the goal for work scheduling on NUMA systems is to
maximize the amount of local work done while still keeping all threads busy all
the time. When the OpenMP runtime system uses thread-local task queues, the
parallel-producer multiple-executor pattern can be used for this purpose as
illustrated in figure [4.8]

NUMA node 0 NUMA node 1

Thread Thread

’ %‘ Task

Task

Thread . Task Task
1 2cal Task Task
\ Task Task

Figure 4.8: Tllustration of local task queues for four threads. Thread 2 has an
empty queue and applies task stealing. The other threads have local
tasks to execute.

All threads start to execute tasks they created first and only steal remote tasks
when no more local tasks are available. If all tasks are created by threads where the
data is in the local memory, this results in a behavior similar to the NUMA-aware
Scheduler with random work stealing.

For a programmer, this situation is similar to memory initialization with the
first-touch policy. The programmer can not influence the placement of the

62

4.3 Locality-aware Task Programming

data directly with this policy, but by initializing the data with a thread running
on a specific NUMA node the chance that the data will reside on this NUMA
node increases significantly. However, the OS can still decide to use a different
NUMA node if necessary, e.g. when the capacity of the desired NUMA node is
not sufficient. With a NUMA-aware task creation, the programmer can create the
task where he thinks it is desirable to execute the task, but the runtime might still
take a different decision if needed, e.g. to achieve better load balancing.

4.3.4 Tasking Performance on NUMA systems

To evaluate performance, I modified the load balancing benchmark program to
create tasks instead of using the NUMA-aware scheduler or OpenMP worksharing
constructs. Hereby I created the tasks in the way described above. All threads
created the data as usual and then also created the tasks working on the locally
initialized data. Figure shows the resulting performance for the Intel Compiler
(v 15.0) and for the GNU Compiler (v 4.9) on the BCS system.

T T T T T T T T T T T T T T T T
® 08
2 Tt TTIATHITT 1
B 0.6 | | | H I il
o | | | | i 'l | '|I' '
E o4 M
@ o | Il |
x : |
2 LU .|. I i
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125
Threads
Node 0 Node 3 mmmmm Node 6 mmmmm Node 9 mmmmm Node 12 mmmmm Node 15
Node 1 mmmss Node 4 mmmmm Node 7 Node 10 mmm== Node 13
Node 2 Node 5 Node 8 Node 11 mmmmm Node 14—
(a) Intel Compiler
6 T T T
S 5 R
Q MU |
2] . 1
c 4 iI 'I |I I "
g 3
£ 2]
RS 11 II i I|||
g LH | HLIL
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125
Threads
Node 0 Node 3 mmmmm Node 6 mmmmm Node 9 mmmmm Node 12 mmmmm Node 15
Node 1 mmmms Node 4 mmmmm Node 7 Node 10 mmm== Node 13
Node 2 Node 5 Node 8 Node 11 mmssm Node 14 mmmmm

(b) GNU Compiler
Figure 4.9: Load balancing benchmark results when tasking was applied. All tasks

were created by the thread which also initialized the data used by the
task, to maintain locality for thread-local task queues.

63

4 NUMA-aware Scheduling Strategies

As described earlier, the Intel runtime applies thread-local task queues, whereas
the GNU runtime has a centralized queue for task scheduling. It can be observed,
that the performance for the Intel runtime is as desired, the total execution takes
0.68 sec. which is comparable to the NUMA-aware scheduler with random work
stealing with 0.67 seconds. Looking at the diagram it can be observed, that
especially the larger threads mostly work on local data, whereas the first threads
apply stealing, as desired here and also in the NUMA-aware scheduler. With the
GNU runtime the behavior looks completely different. The total runtime is about
8 times higher with 5.4 seconds and the distribution of colors shows that all threads
execute tasks from all NUMA nodes more or less evenly distributed. The reason
is, that the one centralized queue can not preserve any locality information and
this leads to a lot of remote accesses and the overall slow runtime.

4.4 Summary

In this section, the problem of NUMA-aware work scheduling has been discussed.
Problems occur when work packages use data which is already distributed over
the NUMA nodes, since the scheduler needs to optimize the load balancing as
a primary goal and also maximize the number of local memory accesses as a
secondary target. With the help of the load balancing benchmark presented above,
it has been shown that traditional work scheduling methods of OpenMP are not
sufficient. The static scheduling could not fulfill the requirements to deliver
a good balance of load and the dynamic or guided schedule can not maintain
data locality. The presented NUMA-aware scheduler could achieve a good load
balancing but still keeps as much data locality as possible. The load balancing
benchmark showed a good performance for random work stealing or when stealing
was done from threads with most work left to execute. The NUMA-aware work
stealing led to a situation where the load balance inside of a NUMA node could
be solved, but if load imbalance also exists between NUMA nodes, this strategy
was slightly worse than the aforementioned once.

Finally, it has been investigated how centralized and thread local task queues
work on NUMA systems and it has been shown how the latter one can be used for a
NUMA-aware task creation to achieve better load balancing. The basic idea here is
to create the tasks with those threads which also initialized the corresponding data
for the task. This strategy could achieve performance on-par with the NUMA-
aware scheduler without the need to implement a scheduler by hand for the Intel
compiler which uses thread-local task queues. However, for centralized task queues
as they are, for example, used in the GNU compiler, this solution performed 8
times slower than the NUMA-aware scheduler. Overall, the strategies presented
here solve the scheduling problem of work on NUMA architectures better than all
standard OpenMP scheduling methods. Especially on larger NUMA systems the

64

4.4 Summary

tests have shown shortcomings in the dynamic scheduling strategy of OpenMP
and here the presented scheduling methods are even more beneficial than on the
4-socket system investigated before.

65

5 Enabling NUMA-aware
Task-performance Analysis

As shown in chapter 4], OpenMP tasking can be used to achieve a good NUMA-
aware load balancing. However, applying the tasking feature is not trivial for the
following reasons: First, tasks add a second level of parallelism on top of multi-
threading and second, the task scheduling mechanisms of the OpenMP runtime
influence the performance, as shown in chapter [4) but they cannot directly be
observed by a user. Therefore, performance analysis tools are important to help
programmers to apply the tasking parallelization in the right way. Since the
tasking feature was added later (in version 3.0) to the OpenMP specification, the
support in performance tools for tasks, in general, is not as advanced as for the
thread level parallelism in OpenMP. In particular, regarding NUMA-aware task
programming, nearly no support for tasks is present in performance tools.

In this chapter I will analyze problems which occur in task parallel programs
to identify common issues which should be detected by performance tools. Then
I will check the ability of state-of-the art performance tools to detect these issues
and furthermore present an analysis approach for those problems which turned
out to be not detected with these standard tools.

The work presented in this chapter is partially based on previous work published
at IWOMP in [Schmidl et al., 2012], where non NUMA-related performance issues
for tasking were investigated with the Score-P measurement tool [Knupfer et al.,
2011], [Mey et al., 2012]. Furthermore, at the Parallel Tools Workshop [Schmidl
et al., 2013c], a comparison of state-of-the-art performance tools for task related
performance analysis was published.

5.1 Task-related Performance Issues

In task-parallel programs, the OpenMP runtime manages a team of threads and
applies scheduling of tasks to these threads. So, tasks which have to wait at a syn-
chronization or task scheduling point do not necessarily indicate an idle thread. A
performance drawback in the execution of a program only occurs when threads do

67

5 Enabling NUMA-aware Task-performance Analysis

not execute any tasks or when threads are utilized for overhead through task cre-
ation or scheduling. Furthermore, if the parallel-creator multiple-executor
pattern is used for NUMA-aware task programming, as described in chapter [4] a
performance penalty can occur when tasks are stolen from remote NUMA-nodes.

To identify performance problems in task parallel programs, I investigated bench-
marks from the Barcelona OpenMP Task Suite (BOTS) [Duran et al., 2008] and
applications developed at RWTH Aachen University. Table lists those bench-
marks and highlights if tasks are created in an iterative or recursive way and if
the creation is nested or not.

Barcelona OpenMP Task Suite | RWTH Aachen University

Application task nested | Application task | nested
creation tasks creation | tasks

Alignment | iterative no | Sudoku recursive yes

FFT recursive yes | SparseCG iterative no

Fib recursive yes | FIRE iterative yes

Floorplan recursive yes | NestedCP iterative yes

Health recursive yes | KegelSpan | recursive yes

NQueens recursive yes

Sort recursive yes

SparseLLU iterative no

Strassen recursive yes

Table 5.1: Task generation behavior of the BOTS benchmarks and several appli-
cations from RWTH Aachen University.

It can be observed, that recursive task creation occurs frequently, but also iter-
ative creation of tasks is used in many cases. In most cases the nested creation of
tasks is applied in the benchmarks and the applications investigated here. Task
constructs can be directly nested inside each other which is an advantage of task-
ing compared to traditional worksharing constructs in OpenMP. Therefore, it is
natural to apply tasking in cases where parallelism occurs in a nested way.

Depending on the datasets used for the benchmarks and applications, the fol-
lowing performance issues could be identified.

Too Finely Grained Task Parallelism.

If the execution time of a task is too short, the overhead to create the task
or to suspend and resume it exceeds the execution time. In those cases, it is
more efficient to execute the task’s body directly, instead of creating the task
and executing it later. The exact time to create a task and schedule it of course
depends on many factors, the hardware, the OpenMP runtime, the data-sharing

68

5.1 Task-related Performance Issues

attributes of the task and so on. Thus, it cannot be quantified precisely when
the task parallelism is too finely grained without measuring the overhead and
execution time for the specific task instance. Too finely grained tasks often occur
when tasks are created recursively in a divide-and-conquer type of algorithm. With
every divide step, the tasks get smaller since the problem size shrinks, and at some
point, the overhead exceeds the execution time of the task.

Too Coarsely Grained Task Parallelism.

When only very large tasks are created in a program, the load balancing does
not work in an efficient way. At the end of the execution, when only a few tasks
are left, some threads will execute the remaining tasks and the other threads will
idle. If the tasks are very large, this leads to threads idling for a long time. In
the worse case, the total number of tasks is less than the number of threads in the

current team. Than some threads do not participate in the parallel execution at
all.

Task-creation Bottleneck.

When the single-producer parallel-executor pattern is used, as described
in section [4.3] one thread creates all the tasks. When the producer thread creates
tasks slower then the team executes them, the producer will become the bottleneck
and other threads will idle and wait until new tasks are created. The occurrence
of this problem depends for example on the runtime system, the size of the tasks,
the size of the thread team.

NUMA-unaware Task Scheduling.

If the parallel-producer parallel-executor pattern is used on NUMA ar-
chitectures to achieve a NUMA-aware task scheduling, the scheduling decisions of
the OpenMP runtime system have a high influence on the performance, as was
shown with the help of the NUMA-aware load balancing benchmark in section
[4.3] For example, a runtime system with a centralized task queue will not be able
to preserve the NUMA-nodes where tasks were created and thus will not lead to
a good NUMA-aware scheduling. Here, the overhead of task scheduling is not
necessarily high, nor are any threads idling, but the execution of a task will take
longer than necessary.

These four performance problems happen frequently in task-parallel OpenMP
applications. Since they depend on the amount of overhead and scheduling de-
cisions inside the OpenMP runtime, they are hard to quantify by a programmer
without tool support. To analyze programs and detect those issues, the following
information is necessary:

(i) the time to execute the task,

69

5 Enabling NUMA-aware Task-performance Analysis

(ii) the overhead to create and schedule the task,

(iii) the creating thread of the task,

(iv) the executing thread(s) of the task,

)
)
)
(v) the cores where those threads are running on and

(vi) information on the topology of the system.

Presenting this information to a user can help to investigate the efficiency of a
task parallel program and detect potential performance problems during execution.

5.2 Analyzing Tasks with Sampling Based
Performance Tools

Now, I will investigate the ability of performance tools to detect and classify
the issues mentioned above. In general, two well-established techniques exist to
gather performance data for applications at runtime: sampling and event-based
techniques. The ability of sampling based tools to investigate task performance in
OpenMP is discussed here, before I present work done in a joint project with the
event-based performance measurement system Score-P in the next section. Finally,
I will present my extensions to this work to improve the abilities of Score-P for
large SMP machines.

Sampling-based performance tools interrupt the application at certain points
and record the status of the application at this point. Typically these sample points
are taken periodically after a fix time period, e.g. every microsecond, but also other
trigger mechanisms like the overflow of a hardware performance counter can be
used. This technique is not accurate, but if the sampling frequency is appropriate
and the number of samples is high enough it gives a good statistical overview of
the application execution. T'wo performance tools based on this technique are the
Intel VTune Amplifier XE and the Oracle Solaris Studio Performance Analyzer.
Here these two tools are investigated as representatives for sampling based tools.
As an example application the task-parallel Sudoku solver is used.

Sudoku

The Sudoku solver represents a typical backtracking problem. Backtracking has
been identified as a relevant problem class in HPC in the classification from Berke-
ley, also called Berkeley dwarfs |Asanovic et al., 2006]. Since backtracking algo-
rithms are of a recursive nature, traditional loop level parallelism in OpenMP is
hard to apply in such cases, but tasking can be applied much easier. Therefore,

70

5.2 Analyzing Tasks with Sampling Based Performance Tools

ol 52 6 Algorithm 5.2.1: SUDOKU()
15(11 16[14 12 6 .
13 | 912 3[16[14] 151110 for each empty field f
2| [16] |11] [15]10] 1 (for each possible number i
15[11]10 16| 2|13] 8| 9|12 (if i is already used
12/13 4 115 6) 2 3 1110 mn row, column or block
51 el 1[12] | o] [15[11]10] 7|16 3 , R
5 o e T3 = o then continue with v + 1
10[7[15(11|16 12[13 6 else
9 1 2| [16]10 11 copy the sudoku board
1| [4] e| 9[13 71 111l | 3[1e insert i in f
16[14 7] T10[15[4| 6] 1 13 8 te a task to check
10| |15 16| 9|12]13 115 4 create a tasw 1o chec
2] 1] 4] 6| |16 11[10 the new board
5 81213 [10 1] 2 14 L L continue with 1+ 1
3[16 10 7 6 12 wait for all tasks to finish

Figure 5.1: A 16x16 Sudoku board with initial entries (left) and the algorithm in
pseudocode to solve the sudoku puzzle(right).

this algorithm was chosen as an example here, to study the ability of performance
analysis tools in task parallel programs.

For a given Sudoku board, the solver determines all possible solutions of the
Sudoku puzzle in a brute force way. Figure [5.1] shows the initial configuration of
the board used in this experiment and the algorithm in pseudo-code. For every
empty field, the solver tries to insert every possible number. Only if the number
is not yet used in the same row, column or block it creates a task to insert the
number and check the rest of the board, otherwise no task is created. In both
cases the algorithm continues with the next number for the current field or with
the next possible field. Every task which finds a valid number and is on the last
empty field, stores the current solution as a valid solution for the puzzle. After all
tasks have finished, all valid solutions have been found. Note, even if the algorithm
is fairly simple, it is hard to fully understand the runtime behavior. For example,
determining the number of tasks used highly depends on the initial board and
even if the board is known, like the one in figure [5.1} it is difficult to determine
this number a-priori. Since tasks are very useful for such dynamic algorithms this
is a representative problem for task-parallel programs.

5.2.1 Intel VTune Amplifier XE

The Intel VTune Amplifier XE [Intel, 2013] is a tool produced by Intel to in-
vestigate the performance of C/C++, Fortran, Java, C# and assembly code. It

71

5 Enabling NUMA-aware Task-performance Analysis

c. CPU Time: Total by Utilization
all Stack
Top Hotspots @idle @ Poor §Ok @ideal Bover
. = 2 . . . ~ . [OpenMP worker] 14.620s [
This section lists the most active functions in < usolve_parallelsompstask@106 | 14.390s [N
overall application performance. < solve_parallelsompgtask@106, 11.710s [N
. . ~ . solve_parallel$ompstask@10 11.710s [N
Function CPU Time < usolve_parallelsompstask@l 9.020s [N
~usolve_parallelgomp$task@ 9.020s (NN
solve_parallelomptask@106 9.090s < solve_parallelsompstask(8.220 [N
csudokuBoard::checkHorizontal 5.730s oo Gos
~usolve_parallel 5.570s (I
CSudokuBoard::check 1.910s < solve_parallel 5.470s [
B <. solve parallelfompy 5.470s [
CSudokuBoard::checkBox 1.620s < solve. parallelsom| 54705 S
‘e - mabin narallald o = 1 0on-
CsudokuBoard::CSudokuBoard 1.370s Highlighted 680 Tow(er:
(a) Hotspots (b) Callstack

CPU Time by Utilization*

Oidle @ Poor [Jok [lideal Spin Time

Function / Call Stack Overhead and

(c) Overhead for Functions

So.. CPU Time: Total by... Overhead and
) Source .
Line [l idle @Poor [Jok WBic Spin Time: Total
#pragma omp taskwait 16.450s 1.220s

sudoku->set(y, x, 0); -
return false; 0.050s 0s

(d) Overhead for Sourcelines

Figure 5.2: Analysis results of the Sudoku solver with the Intel VTune Amplifier
XE for 32 threads on a 2-socket SandyBridge system with 32 cores in
total.

supports a variety of thread-based parallel programming paradigms like OpenMP,
pthreads or Intel Threading Building Blocks. Hardware Performance Counters are
supported for all Intel processors.

A performance analysis of the sudoku solver was performed and the basic data
related to the tasking performance is presented in figure . The overview (figure
5.2(a)|) shows the top hotspots of the application. This view presents the tasking
region in line 106 as major hotspot. More details of the hotspot can be found in
the callstack view (figure[5.2(b))), where it is shown that the region recursively calls
the solve _parallel region, where the task region is inside. The total runtime of
all tasks on a certain level of the recursion is presented. Furthermore, the tool
measures the ”Overhead and Spin Time” on different levels, for functions (figure

5.2(c)) and on a source code level(figure [5.2(d))).

Details of what can be detected in a task-based program will be given in the
next section for VTune and the Oracle Analyzer together, since both tools offer a
similar amount of information.

72

5.2 Analyzing Tasks with Sampling Based Performance Tools

5.2.2 Oracle Solaris Studio Performance Analyzer

Call Stack for Selected Event
% User CPU Mame solve_parallel{nt,int,CSudokuBoar
solve_parallel{nt,int,CSudokuBoar
Wo(seC.) 4] solve_parallelntint,CSudokuEoar
solve_parallel{nt,int,CSudokuBoar
101.380 100.00 <Tatalx solve_paralleldnt,int,CSudokuBoar
101, 380 100,00 _ Tibhc_start_main solve_parallelgntint,CSudokuBoar
. solve_parallel{nt,int,CSudokuBoar
101. 380 100.00 nain solve_paralleldnt,int,CSudokuE oar
a4, 449 93,16 solve_parallel{int,int, CSudokuBog solve_paralleldnt,int, CSudokuB oar
13.153 12.97 (SudokuBoard: :check{int,int,int) sowe-paraleldnt,int, Cudokusoar
] i solve_parallel{nt,int,CSudokuBoar
5.921 6.823 solwelint,int,C5udokyBoard®, bool, solve_parallel@nt,int,CSudokuBoar
(a) Hotspots (b) Callstack
& User | & ome | B oomp | & omp | Name
CPU ait Wark mvhidl.
(sec (sec.) (sec.) (sec.)

101. 380 2,320 10,234 79,826 <Totals
94,440 2.320 12.312 79.816 OpenMP Task fTrom solwe_parallel (int,int, CsudokuBi

(c) Overhead for Functions

& User | B omp | B omp | B oMp | Source File: sudoku.cpp
CPU st Wark, ot Object File: sudoku_oracle.exe
(sec.) (sec.) (sec.) {sec.y | Load Object: <sudoku_oracle.exe>
0,140 0. 0,140 0. 104, for {int i = 1; 1 <= sudoku->getFieldsi
7.291 0. 7.291 0. 105. if (lsudoku-zcheckix, v, 1)) {

Source OpenMP region below has tag R1

Priwate wariables in El: (bool solwe_parallel{int,int

Shared variables in REl: found_sudokus, std::cout

Firstpriwvate wariables in El: (bool salve_parallel{in
74,845 0,010 0. 74,835 106. #pragma omp task fFirstprivatedi,x,w,sudokul

107, i

(d) Overhead for Sourcelines

Figure 5.3: Analysis results of the Sudoku solver with the Oracle Solaris Studio
Performance Analyzer for 32 threads on a 2-socket SandyBridge system
with 32 cores in total.

The Oracle Solaris Studio Performance Analyzer [Oracle, 2013] is also a sam-
pling based tool for performance analysis. It can be used to investigate serial or
multi-threaded applications written in C/C++, Fortran or Java. Furthermore, it
supports hardware counters on Intel, AMD and Sparc processors under Linux and
Solaris.

Figure [5.3| shows results for an analysis of the sudoku solver with the Oracle
Performance Analyzer. The information is basically the same as with the Intel
VTune Amplifier. The detected hotspots (figure and the corresponding
callstacks (figure [5.3(b)|) are shown. In contrast to the Intel tool, it does not show
the runtime for different callstack levels, but only the number of callstack levels

73

5 Enabling NUMA-aware Task-performance Analysis

and the total runtime for a function. The tool also shows overhead spent in the
OpenMP runtime system on a function (figure 5.3(c)|) or source line (figure [5.3(d)))
level. The overhead spent in the runtime is shown at the task pragma, so it can
be identified as overhead through task creation or scheduling. For this test the
Oracle Solaris Studio compiler and runtime system was used as the Analyzer does
not support the Intel runtime system. The high overhead value shown here is due
to the different tasking implementation of the Oracle runtime system.

Overall, both sampling-based tools deliver the same kind of information. Infor-
mation on the time spent in all tasks created by a specific task pragma can be
seen as well as overhead spent in the OpenMP runtime system for a specific task
pragma. The Intel VTune Amplifier XE furthermore allows to differentiate this
information for different call stack levels. Both tools, however, are able to identify
neither individual task instances, nor the number of tasks executed in total. The
reason is that for two samples on the same level, the tools cannot determine if
they belong to the same tasks or if they belong to different tasks created in the
same function. But this information would be very useful to identify too coarsely
or too finely grained tasks.

5.3 Event-Based Performance Tools

Event-based performance tools gather performance data in a different way. They
do not gather data at certain intervals, but when certain events occur. Such events
can be the beginning and ending of a function, spawning new threads, user defined
events and also the begin and end of a task execution. Since OpenMP does not
provide a standardized interface to trigger such events yet, many performance
tools rely on source-to-source instrumentation. This means that certain calls to a
measurement library are inserted into the source code around different OpenMP
pragmas. One commonly used tool for this is the ”OpenMP Pragma And Region
Instrumentor” (Opari) which automatically inserts calls to the POMP interface,
see [Mohr et al., 2002]. Since Opari and the POMP interface have been developed
before tasking was supported in OpenMP, initially there was no support for tasks
available. We extended both, Opari and POMP, to add task support as described
in [Lorenz et al., 2010].

5.3.1 Gathering performance data for tasks in Score-P

Gathering performance data for tasks is more complicated than for worksharing
constructs in OpenMP for the following reasons.

(i) After the creation a task can be executed or it can be pushed into a task-
queue for later execution.

74

5.3 Event-Based Performance Tools

(ii) During the execution a task can be suspended and resumed later on at certain
task scheduling points.

(iii) OpenMP does not provide an identifier for tasks. So, for the measurement
system it is hard to detect which task instance is active at the moment.

To circumvent some of these problems we implemented a way to add task iden-
tifies with Opari during the source-to-source instrumentation step. Therefore, we
use a combination of threadprivate and task-local variables to keep the task ID.
Since this is not part of this work, the reader is referred to [Lorenz et al., 2010]
for details. Relevant for this work is, that those task IDs are available in the
measurement system, although they are not provided by OpenMP.

Furthermore, tasks which are suspended can lead to a broken nesting of enter
and exit events for functions which occur during execution. Performance tools
rely on the principle of a function stack per thread, as it is typically used. This
implies that an exit event must close the function on top of the stack. With tasks
this can be broken, even for a single thread with tied OpenMP tasks. The reason
is that a task logically contains its own function stack. When a task enters a
function foo which contains a task scheduling point and the task is suspended at
this scheduling point, no other task which is next executed by the thread can exit
the function foo. The function foo can only be exited after the task has been
resumed. To map this onto a thread-based execution scheme, the following steps
are necessary:

e When a task is suspended, all functions inside of the task are virtually exited,
to get back to the function stack of the thread.

e The virtually exited functions are stored for every task instance.

e Whenever a task is resumed, all functions which have been stored for the
task are entered again, to restore the state of the stack, when the task has
been suspended.

Executing these steps at runtime would potentially add overhead to the mea-
surement and might increase the memory requirement of the measurement system
to store all the call stack information of suspended tasks. Since the enter and exit
events which are normally written allow to apply these changes later, this can be
done in a post-processing step afterwards. I implemented a trace parser which
reads an OTF2 trace file generated by Score-P, adds the virtual exit events at task
suspension and the enter events if the task is resumed and produces a modified
OTF?2 trace as output.

Figure illustrates the changes on a very simple execution of two tasks. In
the barrier contains the execution of task 1, since the enter event of task 1 is
the first event in the trace file. The task enters £1 and executed do_work before it
enters a taskwait region, where it is suspended. Task 2 is now executed. It enters

75

5 Enabling NUMA-aware Task-performance Analysis

barrier
taskl
f1

taskwait
task2

' [' ' ' ' [' | ' | ' ' LI T T S T S S S
o) T O L = L = =Ly
3338658 > 3552 o T oo oyooodad B
= QL F o o D o QLY VYLV LL 2
® A® ® ® S ® A® ® ® <@ S < SAASLSSETAES
S s s S D s s s S o = ® O ODANLDDDOOWL @
= Y3 5 5 PL G G2 N = § L a3 22 = S==O0s=
T ST xS o TS S o o+ o = TO0OESTITO2 T
m;—m HO o m:'_-mN o om mng;-m,_\mgﬁm
S /59 — | © gun — wn 0w — n Fo—0on a
s 5x | = 5= | | =~ Zz =0 S5x AT
p =E = g = 2N s £ & DPRag=z Eaze
S = o S o N o oo O + P o +O =
— — = S o — = 2 2 = o — = o —
z z = z z= = 2 = 2
=
) =
(a) original trace
barrier
task1 task2 taskl
f1 f2 fi
do_work tw do_work | | tw | tw
! [I 1 ! 1 [1 1 ' i [1 [T Y T T S I
o = 0 L —_— L = _— = —
333865 > 35352 % T oo orooodaa 8
- V5 o QL oo = 0 = VY VHrwVVYLnL 2
O ~® ® @ S ®A® ® ® < 3 << <SZTAS<SSEAZEZS
293 35 5 L S35 S O 5 20 20000 OGLN =
SEF e T FIFT 2 2% 589382833 °%
E"gmvo o w Fu — O O mvmag‘mvmgg—x
S S= I . =S8 = I - = = o 3 x AT S
o =E = g = 320 g £ s = DRg=Zs kEazo
> 2 o o o N o o o - o -+ O =
st S o N S 2o gL
3 ~ -~ > = — =3 o =
~ = & = ~ = o < Q
= Z z 2 =
N =

(b) processed trace

Figure 5.4: Call stacks based on the present enter and exit events in the OTF2
trace, in (a) for the original trace and in (b) after the virtual exit and
enter events were added.

a function £2 and also executes do_work, before it reaches a taskwait. Then task
1 is resumed and finishes execution. Looking at the call stack, it looks like task 2
is part of task 1, which obviously was not the case. The OpenMP runtime would
have been free to execute task 2 first, than task 1 and task 2 would be exchanged
in the execution. So, besides the fact that problems can occur where this leads to
wrong call stacks, even if the call stacks can be displayed by standard tools, this
information is misleading for the user.

My post-processing tool transforms the cal stack from figure into the call
stack shown in figure . Here, the complete task 1 is suspended including
function £1 and both tasks are executed as child nodes of the barrier in a call
stack view. Using this tool no wrong nesting of enter and exit events is possible
and the information reflects the execution model of tasks in OpenMP.

76

5.3 Event-Based Performance Tools

5.3.2 Detecting task-related performance issues

In contrast to the sampling-based performance analysis tools, event-based mea-
surements allow to identify the execution time for individual task instances. Fur-
thermore, the tools can measure the time spent in a task pragma without the task
execution time. This allows to investigate the task creation overhead for a task
instance.

Timeline
0.000s 00255 0050s 00755 0100s 0125s 0150s 0175s 0200s

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

i

Function Summary
All Processes, Accumulated Exclusive Time per Function Group

08s 06s 04s 02s 00s
1001 s ,] , , | FUNCTION
: 0.60 : : OMP_IBARRIER
{ i i <100 ps | OMP_TASK
<100 ps |OMP_SINGLE_SBLOCK
<100 ps |OMP_PARALLEL

Figure 5.5: Vampir screenshot showing how too coarse grained tasks can be
detected.

This measurement technique allows to directly investigate three out of the four
performance issues mentioned in section[5.1] Iimplemented artificial test programs
where too coarse grained and too fine grained tasks occur and where the task
producer in a single-producer multiple-executor scheme was the bottleneck.

Figure shows the performance results visualized in Vampir [Nagel et al.,

for too coarse grained tasks. In the timeline view it can be observed that
all threads execute a task (blue) of the same size, then only two tasks are left,
which are executed by thread 2 and 3, while all other threads are waiting in the
barrier (green). When the exclusive time is shown in the Function Summary view,
it can be observed that roughly 40% of the overall time is wasted by waiting in
the barrier. If these tasks were split into more smaller tasks, all threads could be
kept active for a longer time and the waiting time could be reduced, leading to a
shorter overall execution time.

In figure [5.6] the performance results are shown for the test case with too fine
grained tasks. Here the task execution again is shown in blue and the task creation

7

5 Enabling NUMA-aware Task-performance Analysis

Timeline AR
1.75 ms 1.80 ms 1.85ms 1.90 ms 1.95 ms 2.00 ms
Thread O
Thread 1
Thread 2
Thread 3

Ll [| [»]
Function Summary
All Processes, Accumulated Exclusive Time per Function Group
600 ps 500 ps 400 ps 300 ps 200 ps 100 ps 0 us
; ; ; ; : : j OMP_TASK
570.339 us FUNCTION
; : : ; {16.447 ps [7] OMP_IBARRIER
i 4317 ps [OMP_PARALLEL

Figure 5.6: Vampir screenshot showing how too fine grained tasks can be detected.

regions are shown in orange. All threads create tasks and execute tasks. But
creating a task takes longer than executing a task. This is also reflected in the
Function Summary view. Overall more time is spent in task creation than in
task execution. Here, the overall execution time can be improved if the tasks
were not created. The threads could directly execute the task body and thus
save the overhead. If the tasks are needed to distribute the work across threads
it would be beneficial to merge the tasks into a smaller number of larger tasks.
This would reduce the overhead, since a smaller number of tasks is created, but
would keep the overall task execution time the same. Typically, this phenomenon
occurs when tasks are created recursively for smaller and smaller partitions in a
divide-and-conquer like algorithm. At some point the partitions get too small and
no more tasks should be generated. This can be done by a cut-off strategy during
task creation. An example of this will be shown for the Soduku solver later in this
section.

Performance data of the test program where the creator was the bottleneck
in a single-creator multiple-executor execution model are shown in figure
b.7 The same program was executed with four and 16 threads. When four
threads were used, thread 0 was creating tasks all the time and threads 1-3 execute
those tasks. With 16 threads again thread 0 created tasks all the time. The
other threads execute tasks or wait in a barrier. Immediately after a task is
created, one of the waiting threads starts to execute it, e.g. thread 10 starts task
execution after the first task was created by thread 0. So, this thread was ready
to execute a task, but no task was available. It can be concluded that the creator
is the bottleneck here and more executor threads would not improve the overall
performance of the program. The problem can be solved in two ways. First,
the creator could merge some of the tasks and create larger tasks. This would

78

5.3 Event-Based Performance Tools

Timeline
17.060 ms 17.080 ms 17.100 ms 17.120 ms
Thread 0 Thomptask ''6omp task |'bomp task \lgomp task | "gomp task |
Thread 1 task_0_740 task 0 743
Thread 2 as task_0_741
Thread 3 task_0 739 task_0_742

(a) 4 threads

limeline
17.6850 ms 17.6900 ms 17.6950 ms 17.7000 ms 17.7050 ms 17.7100 ms 17.7150 ms

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9
Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

(b) 16 threads

Figure 5.7: Vampir screenshot showing the single-creator pattern..

improve the ratio between task creation overhead and task execution time. The
bottleneck of the creator would still exist, but the saturation is reached for a larger
number of threads. Secondly, the task creation could be parallelized by switching
to the multiple-producer multiple-executor pattern. This solution would
distribute the creation overhead over all threads and no single thread would become
the bottleneck.

The fourth mentioned problem, the NUMA-unaware task scheduling, cannot be
detected with the given data. Improvements in the measurement tools to detect
this problem are discussed later in section |5.4

Sampling based analysis of tasking issues To highlight the differences between
the information presented using the Score-P measurement system and sampling
based tools, I also investigated the three performance issues presented above with
the Intel VTune Amplifier XE. The Oracle Solaris Studio can also be used, but
the level of information is similar to VTune, so it is omitted here.

Figure |5.8| shows VTune screenshots when the test programs were analyzed. In
(a) and (b) it is shown how too coarsely grained tasks can be observed in VTune.

79

5 Enabling NUMA-aware Task-performance Analysis

The timeline view shows that two threads at the bottom are busy (green bar) until
the end, whereas the other tasks are waiting in a synchronization construct (orange
bar). The tool correctly detects high synchronization time which is assigned to
the barrier of the single construct as can be seen in the source view. So, the user
gets a hint that threads are waiting in the barrier, but no connection to the task
granularity can be observed, in contrast to the Score-P based analysis which was
presented earlier in figure [5.5|

e S0ms 100ms. 150ms 200ms s

> a Source overhead 2
cuaiZnnm In Li.
OMP Wor... Time
'OMP Wor... 10 #pragma omp parallel num_threads(8) 42.2%
OMP Wor... 11 {
P Wor ; ‘ : . i F2:2%
OMP Wor 13 for (i=@ ; i < ntasks; i++){
OMP Wor... I 14 | #pragma omp task
(a) coarse tasks, timeline view (b) coarse tasks, source view
Function stack Effective Time by Utilization
QDidle @ Poor [Ok @ Ideal @ Over
= [OpenMP dispatcher] Os
~umainompparallel@12 40.560s [N
“u__kmp_omp_task
(c) fine tasks, function stack
QEC#CrQe 1d0ms ' 150ms " 160ms 170ms " 180ms 190ms 200ms 210ms 23 0ms ' 240ms ' 250ms ' 260ms _ Ruler Area
OMP Wor... e e e e e I“‘ HREginn...
OMP Wor... |
OMP Wor... | [@8 Running
OMP Wor... | [ik CPU Ti..
OMP Wor... | 7] ik Spin an...
master_w... | 9 CPU sa...
OMP Wor... | | FlcPu usage
g |OMP Wor... | [¥] duk CPU Ti..
E OMP Wor... | [¥] duk Spin an...
= loMP Wor... [18:
OMP Wor.... |
OMP Wor... |
OMP Wor.... |
OMP Wor... |
OMP Wor... |
OMP Wor.... |
(d) single-creator, timeline view
[CPU Timev ¥
OpenMP Region f Function / _—
. . N Overhea
Call Stack Effective Time Spin Time .
Time
' mainompparallel@unknoy 59.990 150.000ms 360.000ms

(e) single-creator, function stack
Figure 5.8: Performance analysis with VTune for the test programs with too
coarsely grained tasks, too finely grained tasks and with a bottleneck

on the creator site with the single-creator pattern.

When the test program with too finely grained tasks is analyzed, most of the
time is mapped to the parallel region which creates the tasks. But the tasks

80

5.3 Event-Based Performance Tools

themselves only consume 8.2 out of 40.5 seconds as can be seen in part (c) of
figure The tool does not show synchronization time, since task creation does
not synchronize. The time is also not shown as overhead time in the tool. The
only hint for the programmer about wasting a lot of time is that the task body
consumes much less time in comparison to the overall region.

The single-creator test was also investigated with VTune. The screenshots are
shown in (d) and (e). In the timeline view it can be observed, that the first
thread is busy (green) all the time, whereas the other threads have a fraction
of synchronization and overhead time during the execution (orange). Since no
regions or individual tasks are shown as it was the case with Score-P (fig. , no
hints are given why the synchronization time shows up. The other views, e.g. the
function stack, show a high overhead and spin time for the overall parallel region.
Overhead and spin time can be caused by different problems, e.g. load balance
or by the issue investigated here, so the information presented by VTune gives a
hint which region to investigate, but the level of detail is not as high as with the
event-based analysis shown before.

Analyzing the Sudoku solver using Score-P The event based measurement
techniques can be used to get a deeper insight into the task execution of the Sudoku
solver. Figure [5.9] shows the advantage of the direct measurement techniques
compared to the sampling based tools mentioned above (fig. and p.2). In
the timeline view, it can be seen that some time is spent in the taskwait regions.
This is the synchronization time or the task creation and the scheduling overhead.
Also the sampling based tools highlighted a high amount of overhead for the task
creation or scheduling, but here we can further investigate the runtime behavior.
If we zoom into the callstack view, the time for a single execution of a task instance
can be seen on different levels of the call stack. On the upper levels, a task takes
0.16 seconds, but on the last levels of the call stack it only takes 2.2us. The
algorithm calls the same routine and task pragma in a recursive way for all empty
fields in the sudoku board. For the last empty cells the created tasks are very
small since the remaining sudoku board to solve has no more empty fields. This
performance problem (too finely grained tasks) occurs frequently when tasks are
used in recursive algorithms and the situation can easily be analyzed with direct
measurement, tool like Score-P.

After the issue is detected, a well-known solution for this kind of problem is
to stop creating tasks at the upper levels, where the tasks are of reasonable size.
This strategy is called cut-off mechanism. I implemented a cut-off for the Sudoku
solver and the performance results are shown in figure[5.10} Obviously the detected
performance problem is fixed and now the program reaches a speedup of sixteen
instead of four.

Although the direct measurement tools provide more detailed information than

81

5 Enabling NUMA-aware Task-performance Analysis

6.80 s 6.855 6.90s 6.95s 7.00s 7.055 7.10s 7.

= Mast...read [EyE TN T e AT Y
OMP"'dl | AT R AR IR 1R 1K (AR 1] G| S Y (8]] LAy L T A I (AR (1]
OMP...d 2 L R L I IR L L e T AR Ty RIS
OMP...d 3 L 1 S I TR E R T AT TR | R TR T A RN LRI |
OMP...d 4 LI IR || RAR I A S R | A A LR INE]
OMP...d 5 N A sV Y™ e W R ALY LA MR T
OMP"'d 5 R { S REALRL BRI AR N TRNRA IR I AL AR AL A LR ANCOE RO RN 000 R MM E ORI DR L

OMP..d7

T o o W T A 1 S T VLN R

(a) timeline

6.80 s 6.85 s 6.90 s 6.955 7.00's 7.10s 7.155
+ 3 E— :

Master thread ! :

il somp pa udok D H . O 16

; WL uration: 0.16 sec

3 B

af 108 Mapo—

5B

il

7 F

8

g I

10

T . Duration: 2.2 ps
su] = TWr T

(b) callstack

Figure 5.9: Vampir screenshot showing the timeline and callstack view for the
Sudoku solver.

the sampling based tools, there is also a disadvantage using this technique. The
overhead for the sampling based tools increases linearly with the sampling fre-
quency of the tool. Since the sampling frequency can easily be controlled, the
typical overhead can be kept sufficiently low for such tools. For the direct mea-
surement tools, the overhead is proportional to the number of events which occur,
which is the number of tasks in our case. Since the number of events is controlled
by the program, the tool cannot influence the overhead directly. In many cases it
can lead to a massive distortion of the results. Table[5.2/shows the overhead for the
measurement with the mentioned tools and also the size of the output data. Both
sampling-based tools introduce a low overhead and only need a few megabyte of
storage for the results. Score-P introduces 150% overhead for the Sudoku solver,
which is very high, and in the tracing case, it also produces a lot of output data,

82

5.3 Event-Based Performance Tools

B Intel C++ 13.1, scatter binding Intel C++ 13.1, scatter binding, cutoff
=B=speedup: Intel C++ 13.1, scatter binding =>=speedup: Intel C++ 13.1, scatter binding, cutoff
8 - 20
E 6 r 15 a
< 3
5 4 - 10 9
- Q
lrey wv
32 s
)
£o -0
n§= 1 2 3 4 5 6 7 8 9 10 11 12 16 24 32

#threads

Figure 5.10: Performance of the Sudoku solver example without and with the
cut-off strategy used.

16 Threads Runtime Overhead Data Volume

(setup routine) | (complete program)
Oracle Analyzer <1% 28 MB
Intel VTune % 8.5 MB
Score-P (Profiling) ~ 150% 44 KB
Score-P (Tracing) ~ 150% 1.2 GB

Table 5.2: Overhead and generated amount of data for investigated tools for the
Sudoku code.

1.2 GB. For programs running a few seconds this is very much data and for real
applications the amount of data generated can easily exceed the capacity of the
storage system and of the analysis tools.

In summary, sampling based tools give a good overview of the execution and
they come at a lower price in terms of overhead and storage needed. If this level
of detail is sufficient, these tools should be used. If details of the individual task
instances are needed, which allow to detect certain task-related problems more
efficiently, the overhead for the direct measurement tools has to be paid. These
tools can show detailed information on individual tasks and also on the creation
overhead for a task. If the same pragma is used in a recursive way, it often creates
tasks of different sizes on different levels of the call stack. In such situations it is
beneficial to analyze individual task instances to understand the runtime behavior
and to detect the performance problem.

83

5 Enabling NUMA-aware Task-performance Analysis

5.4 Improvements to Investigate Tasks on NUMA
Machines

In section [4.3] T discussed how scheduling strategies of the OpenMP runtime can in-
fluence the performance of a tasking program on NUMA machines. Furthermore, I
explained how a programmer can use the parallel-producer multiple-executor
paradigm during task creation to influence the scheduling under certain conditions.
As shown in chapter [d] the decisions of the runtime system to manage or steal tasks
influence the performance of a program. For example, the difference between a
runtime with thread-local tasks queues and a central task queue was about a factor
of 8 for the load balancing benchmark on the BCS machines, as shown in figure
4.9 If the internal behavior of a runtime is essential for the execution of a pro-
gram, a performance tool should be able to investigate this behavior. To the best
of my knowledge, no performance tool provides this kind of information today.

5.4.1 Shortcomings in Score-P Regarding Task Analysis

At the beginning of this chapter, I mentioned information which is needed to
highlight the relevant runtime decisions on NUMA machines. Currently the direct
measurement tools allow to investigate the time to create and execute a task
and they also show the thread which executed the task. Furthermore, the task
identifiers we implemented in Score-P allow to distinguish task instances. Given
the task ID when a thread creates a new task and the task ID when a thread
executes a task allows detection of task stealing. Furthermore, the thread where
a task was stolen from can be detected.

Missing in a Score-P measurement currently is the information on the mapping
of OpenMP threads to cores and sockets. This information is essential to determine
if tasks were migrated across NUMA-nodes.

5.4.2 Combining Traces with Hardware Information

As a proof-of-concept I modified the trace rewriter tool mentioned above in a way
that it analyses the NUMA-related task scheduling decisions. First, I provide
a mapping file which describes the hardware and the mapping of threads onto
the hardware. The distribution of cores to NUMA-nodes can be easily queried
from the Linux operating system. The distribution of threads onto these cores in
general is not fix and it can be influenced by the operating system, as described in
chapter [3] But OpenMP allows to achieve a fixed binding with the OMP_PROC_BIND
environment variable. This mechanism was used throughout these tests to achieve

84

5.4 Improvements to Investigate Tasks on NUMA Machines

the described mapping of threads to cores during execution. Then the parser tool
reads the trace as well as the mapping file and investigates all executed tasks and
splits them into the following groups:

e local queue
Tasks in this group have been executed by the thread which created the task.

e same socket
Tasks in this group have been executed by a thread different from the creator
thread, but they still run on the same socket where they have been created.

e remote socket
Tasks in this group have been created by a thread on a remote NUMA node.

Then the parser tool writes the same trace again to disk but it modifies all
task events in a way that the groups can be seen in the resulting trace file. The
workflow of the rewriter tool is sketched in figure [5.11] For production use of
these improvements it would be beneficial to write the hardware and mapping
information into the OTF2 trace file. Furthermore, the grouping of tasks into
local and remotely executed tasks could be done directly in the performance tool.
This would reduce the overhead of use, but since the Vampir tool is not publicly
available, I implemented the rewriter tool as a proof of concept.

Application Svents OTF2 Trace
&,
L
G
Hardwar .
Linux e Mapping

Figure 5.11: Workflow of the trace rewriter tool to use hardware information to
analyze NUMA related task scheduling issues.

5.4.3 Evaluation

Since the resulting trace is still a valid OTF2 trace file, it can be visualized in
Vampir as shown in figure |5.12l Here the color coding possibilities of vampir
are used to show the tasks from the local queue in green, task from the same
socket in yellow and tasks from a remote socket in red. The execution of the
load balancing benchmark from section [is shown and the Intel compiler and a
parallel-producer multiple-executor task creation scheme was used. So, this
is the best case for this benchmark when tasks were used. It can be seen that a

85

5 Enabling NUMA-aware Task-performance Analysis

3.00s 3.25s

Thread 0 et) |!$omp task (remote socket)

Thread 1 (! J . |!$omp task (remote socket)
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8 r < . " ' — —
Thread 9 s - . !$omp task (remote socket)
Thread 10 ’ . !$omp task (remote socket)

Thread 11 . " . !$omp task (remote socket)
Thread 12 p ta Ci 2 - . !$omp task (remote socket)
Thread 13 '$0m| C - " - ” -
Thread 14 eu - - g ! $omp task (remote socket)
Thread 15 " !$omp task (remote socket)

Thread 16 np K (loc I !$omp task (remote socket)
Thread 17 !
Thread 18
Thread 19
Thread 20
Thread 21
Thread 22
Thread 23
Thread 24 g — ” ’
Thread 25 omp (lo 4 - J!$omp task (remote socket)
Thread 26
Thread 27
Thread 28
Thread 29
Thread 30
Thread 31 . !$omp task (remote socket)

Figure 5.12: Vampir screenshot showing the tasks during the execution of the
load balancing benchmark with the Intel runtime. Tasks executed on
the creating thread ar shown in green, stolen tasks from the same
NUMA-node in orange and from remote NUMA-nodes in red.

lot of threads execute local tasks (green) most of the time and only a few threads
execute remote tasks (red) once. Since some of the threads did not have a lot of
local work, this was the best scheduling model as discussed in section

If the same benchmark is executed with the GNU compiler, the performance is
much worse. The reason is that the GNU runtime uses a centralized task queue
which is not able to maintain any task locality. For a programmer without this
knowledge it might be confusing that the performance changes that much between
these compilers. With the proposed improvements for performance analysis as they
are implemented in the parser tool, the analysis of the code for the GNU compiler
looks like shown in figure [5.13] Here a lot of red tasks are executed which means a
lot of tasks from remote sockets are executed, which leads to many remote accesses
and a slower execution time. An interesting fact is that most threads execute local
tasks at the beginning. This is because the task creation first puts tasks in the
centralized task queue for later execution. After the queue is filled, tasks are
executed immediately and not put into the queue. This of course leads to local
execution. When the tasks are then executed from the task queue the chance to
execute a local one is 1/32, the chance for orange is 7/32 and the chance for red
is 24/32. When I zoom in to omit the phase when the task queue is filled and all
tasks are executed locally at the beginning of the trace, the distribution shown in
table is observed. Obviously the measured values match pretty well with the

86

5.4 Improvements to Investigate Tasks on NUMA Machines

~Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9
Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15
Thread 16
Thread 17
Thread 18
Thread 19
Thread 20
Thread 21
Thread 22
Thread 23
Thread 24
Thread 25
Thread 26
Thread 27
Thread 28
Thread 29
Thread 30
Thread 31

Figure 5.13:

un B !somp task (remote socket)

| _|'$omp task (remote socket)

Vampir screenshot showing the tasks during the execution of the

load balancing benchmark with the GNU runtime system. Tasks
executed on the creating thread are shown in green, stolen tasks from
the same NUMA-node in orange and from remote NUMA-nodes in
red. Comparing this figure to figure[5.12} a huge difference in the way
tasks are scheduled in the GNU and Intel runtime can be observed.

expectations which indicated that the assumptions

correct.

on the scheduling have been

access time fraction fraction

[sec] | measured | calculated
local 1.761 3.2% 3.1%
same socket 12.339 22.5% 21.9%
remote socket | 40.838 74.3% 75%

Table 5.3: Fraction of tasks which have been executed locally, on the same socket
or remotely for the GNU runtime system, compared to the expected

ratio

This information on task scheduling can help programmers to understand the
performance of a tasking program on NUMA machines, so it is beneficial if a
performance tool can present the data as shown above.

87

5 Enabling NUMA-aware Task-performance Analysis

5.5 Summary

In this chapter, I investigated performance issues in task parallel programs, and
discussed four typical performance issues in OpenMP task-parallel programs. Too
coarsely and too finely grained tasks, a bottleneck in task creation if a single thread
creates all tasks, and NUMA-unaware scheduling of tasks in case of parallel task
creation used with the intention to maintain NUMA locality. Sampling-based
tools from Intel and Oracle were used to investigate the Sudoku solver example
application. The results identified the bad efficiency of the parallelization, but
they failed to highlight the problem clearly. The event-based performance analysis
with Score-P, gave more detailed information which was able to detect three out
of the four mentioned problems. For the last problem, the NUMA-unaware task
scheduling, information about the hardware and thread placement was missing.
I showed with a Score-P trace rewriting tool how this information could be used
to detect the last-mentioned performance problem. Here, a separate mapping file
was generated which contained the missing information about the placement and
hardware. Then the rewriter combines the information from the trace and the
mapping file and generates a good overview of the task scheduling done by the
OpenMP runtime system.

88

6 A Workflow to Program Large
SMP Machines

OpenMP provides an attractive approach for beginners in parallel programming
as it allows for incremental parallelization of an existing application and does
not require a complete rewrite of the code. Subsequent tuning can improve the
performance by employing techniques taught, for example, in books like ”Using
OpenMP” |Chapman et al., 2007] or in an OpenMP tutorial. However, more
advanced tuning steps as they are described in this thesis are often not covered.

The question of interest investigated in this chapter is if it is possible to specify a
step-by-step guide that directs the programmer towards a successful shared mem-
ory parallelization of his code for large NUMA systems. Such a guide will enable
performance engineering, defined as structured and methodical process of devel-
oping highly efficient HPC applications, similar to [Hager, 2013]. A structured
approach to optimize applications will enable programmers, which are not experts
in performance optimization, to ensure sensible performance of their codes.

This chapter contains a description of a performance engineering workflow for
OpenMP programs on large NUMA systems. As part of performance engineering,
a performance model is presented and all steps are accompanied with an exam-
ple. Finally, the chapter is completed with two application case studies where
application tuning for large NUMA systems was applied.

The work presented is partially based on former publications. A basic version of
the workflow presented here was published in [Schmidl et al., 2013d] and the tool
to visualize remote traffic described during the data layout section in the workflow
was published in [Weyers et al., 2014]. The roofline model was applied to the
CG solver used later in this chapter in |[Cramer et al., 2012], but the improved
performance model presented here has not been published before. Furthermore,
the case studies for SHEMAT-Suite and TrajSearch have been published partially
in [Schmidl et al., 2010b], [Berr et al., 2012], [Schmidl and Vesterkjeer, 2014] and
[Schmidl et al., 2015].

89

6 A Workflow to Program Large SMP Machines

6.1 Tools-guided Performance Tuning on Big SMP

Machines

6.1.1 Tuning Cycle

Performance tuning of an application is a continuous process, which aims to achieve
better and better performance. Performance analysis tools can be used as part of
this process. In such cases it is common practice to repeat several general steps,
which are often called ”"tuning cycle”.

90

Measurement

Optimization

Figure 6.1: Illustration of the tuning cycle

The tuning cycle is depicted in figure [6.1] and consists of the following steps:

e Measurement: First, performance analysis tools are used to gather data of

the execution of the program. Different kinds of data can be gathered here,
ranging from execution time for specific functions to hardware counter data
e.g. for TLB misses during execution. The data can be gathered in different
ways, like sampling or event based, as described in section for tasks as
an example.

Analysis: Second, the performance data is analyzed. Here, several tools
exist to visualize the data, e.g. in a timeline browser of the Vampir GUI,
showing the program execution over time, or annotated in the source code as
in VTune, where e.g. the cache misses can be shown at the source lines where
they occurred. Also tools exist which try to analyze the data automatically
and lead the user to performance problems, like the Scalasca tool |Geimer
et al., 2008]. During this step the user should be able to understand the
reason of a performance loss in the program.

Optimization: During the optimization step the user changes the code to
circumvent the performance bottleneck. Typical optimization steps include,

6.1 Tools-guided Performance Tuning on Big SMP Machines

for example, blocking to optimize the cache usage or rebalancing the load to
achieve a better distribution of work to threads.

e Testing: As a last step, the changes are tested to ensure that the results
are still correct and to check if the optimization really increased the code
performance.

Since it is hard, most of the time even impossible, to identify all performance
issues of an application all in once, these four steps are repeated in a cycle as
mentioned before.

Finally, the question when to stop performance tuning is interesting, since this
cycle can be repeated basically forever, but the performance gains typically get
smaller and smaller. The two main reasons to stop tuning are:

(i) When an application has to reach a certain performance criteria, it is enough
to optimize until this criteria is reached. A common example are real-time
simulations, where an application already achieves real-time performance,
there is no need to optimize and get any faster.

(ii) Many applications do not have such a limit. In many areas, getting results
faster is always beneficial, e.g. because it allows more scientific results or it
can speed up a development process in industrial areas. For such codes often
performance modeling is used to determine the theoretical best performance
of a code on an given architecture, as for example done in [Hager and Wellein,
2010]. Then performance tuning can be stopped, when a certain relative
performance is reached, like 90% of the best possible performance. Where
exactly this boundary is set, is up to the programmer.

The cycle mentioned can be used, as a guideline, but it does not answer the
question which data shall be gathered, how it should be analyzed and how the
applications can be optimized. These questions, of course, depend on the code
and on the hardware architecture. Next, I will present some performance issues
which frequently occur with OpenMP programs on large shared-memory machines.
The tuning steps to apply are those presented in previous chapters.

6.1.2 Investigated Issues

A recipe with a list of all issues to investigate on a large NUMA machine and
an order in which they shall be handled cannot be given in general. Depending
on the code, certain issues are more significant than others and must be handled
first, since they hide other less significant issues in the analysis. Also optimization
steps which fix one issue can introduce a different one into the code by accident.
Here, I will list a set of typical issues to investigate for OpenMP programs on large
NUMA systems. For all of these issues an iteration of the tuning cycle is useful to

91

6 A Workflow to Program Large SMP Machines

investigate if the issue is relevant in the investigated source code or not. If present,
the issue should be fixed and the resulting code should be investigated for other
occurrences of the same issue again, until the issue does not occur anymore. The
reason is that one issue can be present multiple times in a code. I advise to start
checking for the issues in the order they are listed below. However, as mentioned
before, it might be necessary to go back and forth in the list to find all relevant
issues.

Hotspot Analysis and Parallelization Ratio

There are good reasons for the well established practice to start a performance
analysis by determining the hotspots of a program. Hotspots are regions in the
code where a significant amount of execution time is spent. These hotspots are
then target for further optimization steps. The reason for this is grounded in
Amdahl’s law ([Amdahl, 1967]), which gives a limit for the speedup gained by
optimization steps. Also, while Amdahl’s law is often only applied for paralleliza-
tion, it holds for any optimization technique applied to a code region opt. When
the region opt takes a fraction T, of the overall execution time, then the speedup
for any optimization applied to this region is limited by:

Speedup < (6.1)

(1 - Tom)

So, it is more beneficial to optimize code regions, which consume a high fraction
of the execution time. Identifying those regions can be done with most perfor-
mance tools and it only requires investigation of the execution time and no special
hardware performance counters. However, sampling-based tools typically deliver
a higher accuracy, since they can often map the execution time to source lines
if debug symbols are present. For example, the ”Hotspots Analysis” of the Intel
VTune Amplifier XE delivers hotspots of the code on a source code level.

The hotspots analysis is often a good starting point in performance analysis,
but it only delivers insights where to look in further iterations of the tuning cycle.
Normally this step does not spot a performance issue which can be optimized in
a straight-forward fashion.

However, the data gathered during the hotspots analysis can be used in the
analysis step of the tuning cycle to spot a performance issue for OpenMP programs.
The time information gathered allows to determine the parallelization ratio of
the code, i.e. the fraction of the code which is parallelized with OpenMP. This
fraction allows the programmer to calculate the maximum possible speedup based
on Amdahl’s law. If a certain speedup is desired, this analysis allows to calculate
the number of hotspots which at least need to be parallelized to make this speedup

92

6.1 Tools-guided Performance Tuning on Big SMP Machines

possible. Otherwise, a user can start parallelizing the most relevant serial hotspot
and continue this procedure to reduce the serial fraction. Since one advantage of
OpenMP is that it can be incrementally added to the code, it is very suitable for
such an approach.

Synchronization Overhead and Locking

As shown before, synchronization and locking can be orders of magnitude more
expensive on large NUMA machines with hundreds of OpenMP threads compared
to standard two socket servers. Therefore, codes which scale and run well on
standard machines tend to run into this issue when hierarchical NUMA systems
are used. These issues can be caused by using OpenMP synchronization constructs
like critical regions or barriers. If this is the case, performance tools will show a
high execution time in those regions. Here, event-based measurement tools, like
Score-P, or sampling-based tools can be used. Both types will identify time spent
in barriers or critical regions. For critical regions, the time spent in the overall
construct and in the inner region can be measured by tools. The difference between
both time spans is the time to process the critical construct and waiting time to
enter the critical region. If this time is significant, a performance problem is
present, since threads waste time waiting to enter the region.

Optimization steps to circumvent these problems can be to avoid barriers if they
are not necessary, e.g. by using a nowait clause. For critical regions, an atomic
construct can be used as a replacement sometimes. This allows an implementation
to use atomic hardware operations instead of locks, which are much faster. If this
is not the case, often buffers can be used to reduce the amount of critical writes
and then bundle all writes of a buffer in one critical region. Although these steps
are well-known optimization methods for OpenMP programs, their relevance on
large NUMA systems is significantly higher compared to standard servers. This is
because the overhead can be orders of magnitude higher on these systems as was
shown in section 2.2

Other sources of locking are the explicit use of lock routines or functions which
require locking internally. One of those functions is malloc which is very expensive
on large NUMA systems as described in section If one of those functions
appears in a hotspot, it should be investigated if the use of locks can be reduced
here. For explicit locks, often the granularity of the locking can be adjusted, e.g.
by locking elements of a data structure instead of the complete data structure.
This requires more locks, but the contention typically is reduced and thus less
time is spent waiting. For malloc calls which occur frequently, a replacement of
the allocation library can help, e.g. to kmp_malloc as also discussed in section

214

93

6 A Workflow to Program Large SMP Machines

Data Layout

As discussed earlier, remote accesses are far more expensive on large NUMA sys-
tems compared to standard servers. Therefore, it is much more important that
the data layout is done in a way that remote accesses are avoided if possible. As
explained in detail in chapter 3] the data layout can be influenced in different ways.
The first-touch policy of the OS can be used to achieve a certain data layout
by parallel initialization of the data. Furthermore, different memory migration
techniques have been discussed.

Before the data layout can be optimized, it must be detected where the data
layout is not optimal. This is a tough task and to the best of my knowledge
no tool exists which can answer this question in a simple way. A strong indi-
cation that the data layout is not optimal is the presence of many remote ac-
cesses in a code region. The amount of remote accesses can be investigated with
hardware performance counters on most architectures. For example, the counter
MEM_UNCORE_RETIRED:REMOTE_DRAM on the Westmere system delivers the number
of memory accesses which have been served from a remote node. Their relevance
can be better understood, if they are seen in relation to:

e (a) the local memory accesses, to get a ratio of remote accesses, or

e (b) the maximum possible number of remote accesses which can be served
by the system in the given time.

Option (a) is typically easier to realize. On the Westmere system, it requires to
measure also the counter MEM_UNCORE_RETIRED: LOCAL_DRAM to calculate the ratio.
If the user then examines a high ratio of remote accesses, e.g. 50%, this indicates
that the data layout is not as expected and should be optimized. Of course, for
some data access patterns, e.g. random accesses in a shared array, a high number
of remote accesses cannot be avoided. These issues must still be investigated by
the programmer, but the hardware counters point the programmer to locations in
the code which should be investigated.

For option (b), we developed a tool which was presented in [Weyers et al., 2014].
The focus of this work is on data visualization, which has been done by Weyers
and Herber.

My contribution is the hardware counter analysis in relation to the possible
maximum bandwidth a link can deliver. I measured the amount of transfers over
all QPI links and memory links on a BCS system. Furthermore, I measured the
limit of all those links, i.e. to the local memory, to a socket on the same board and
to a remote board. Investigating the hardware counters then allows to determine
if the usage is close to the theoretical limit of the link. If this is not the case,
it indicates that this link is a performance bottleneck and optimization might be
required.

94

6.1 'Tools-guided Performance Tuning on Big SMP Machines

3409.0
[MBytes/s] I

0.0
[MBytes/s]

12802.0

|Maytes/s]I

0.0
[MBytes/s]

15143.0

[MBytes/s) l

0.0
[MBytes/s]
85.50s 88.00s

[r—] 2 &)

Figure 6.2: Screenshot of the visualization tool for remote accesses on the BCS
system.

Figure [6.2] shows the traffic over all links of one board in a BCS system. For
every link, a diagram is shown with the traffic (measured with hardware counters)
shown over time. On the diagonal the memory traffic of the sockets S1, S2, S3
and S4 are shown. The elements (Sx,Sy) for 1 < z,y < 4 and x # y in the matrix
show traffic of the QPI links on the board. The right column shows the traffic
to the BCS link. All backgrounds are color coded with different scales, shown at
the right. Since the memory controller can deliver about 15 GB/s, the range for
those entries is 0 - 15 GB/s, whereas it is 0 - 3.4 GB/s for the BCS links, since
the link cannot deliver more than this bandwidth. Overall this tool shows that
remote traffic hardware counters can be analyzed in a useful way, if they are set
into relation to the maximum capabilities of the system (option (b)).

If it turns out that too many remote accesses occur, the techniques presented in
chapter [3] for memory placement and migration can be used to optimize the data
layout.

Load Balancing

As discussed in detail in chapter [4] load balancing is a challenging task in parallel
programming. If the work is not evenly distributed across all threads of a team,
some threads have to wait at the next barrier for the thread with the longest
execution time. Common reasons for load imbalance in OpenMP programs on
NUMA systems are:

95

6 A Workflow to Program Large SMP Machines

e a static distribution of work which maps more work to some threads, i.e.
some threads have more instructions to execute.

e different memory access time to needed data for some threads, i.e. some
threads have more remote accesses and therefore need a longer time frame
to execute the same amount of instructions due to longer waiting times for
the data.

In both cases load imbalance can be investigated with performance tools if the
execution time of all threads is compared. If load imbalance occurs during execu-
tion, the execution time of the code region differs between threads, furthermore
the waiting time in the barrier differs exactly in the opposite direction. A user
therefore can compare the waiting time in a barrier or the execution time of regions
for all threads in a team to detect load imbalance.

When load imbalance is detected, it can be avoided e.g. with the techniques
presented in chapter [4

Applying the tuning cycle for all these issues will optimize OpenMP applications
for large NUMA systems. As mentioned before, every performance issue can occur
multiple times in different parts of the application and fixing one issue might result
in a different issue which was not visible before. Therefore, it usually is beneficial to
repeat these steps multiple times. When to stop the tuning cycle is a hard question
which can, for example, be answered with performance modeling as shown later
in this chapter.

6.1.3 Conjugate Gradient Method

As an example how the tuning workflow can be applied, I use a conjugate gradient
(CG) solver to optimize for a BCS system in this section. CG solvers are a standard
iterative method to solve sparse linear equation systems and they are often time
consuming parts of application codes. Therefore, the kernel is of high relevance in
high-performance computing.

The serial version of the solver taken here was developed by Tim Cramer for
an exercise in parallel programming and the example matrix was taken from the
Florida Sparse Matrix Collection E] This collection is a set of real-world matrices
which offer a realistic sparsity pattern.

As described in the workflow above, I started the first iteration of the tuning
cycle with a hotspots analysis. I used the Intel VTune Amplifier XE here, but any
other tool discussed before should deliver similar results for these tests. Figure
shows a screenshot of the main hotspots of the kernel. The fact that the CG kernel

Thttps://www.cise.ufl.edu/research /sparse/matrices/

96

6.1 Tools-guided Performance Tuning on Big SMP Machines

CPU Time: Total by Utilization

Call stack
!Dldle @ Poor [JOk [ideal [Over
“u :
b matvec 40.8% (D
b u xpay 1.4%|
P waxpy 1.4%'
b . vectorDot 1.2%]
D uaxpy 1.1%|
P vectorDot 0.6%

Figure 6.3: Hotspots of the CG solver investigated with Intel VTune.

only consumed 46% of the overall execution time is because the matrix must be
read from disk in the kernel and the test environment contains error checks at the
end which consume some time. If the CG is applied in a simulation code, those
steps are of course not needed and therefore I only focus on those 46% of the test
execution.

Hotspots detected in the kernel are the matrix-vector multiplication (matvec)
and several vector additions and dot-product operations (xpay, axpy and vectorDot).
The matrix-vector operation is by far the most dominant hotspot consuming 40.8%
out of the 46.7% of the CG execution. VTune furthermore shows that the overall
utilization of the machine is poor, meaning not all parallel resources are used.
Since I started with a serial version, this is obvious, but this analysis detects the
utilization per hotspot. So in a real application it can be used to find hotspots
which need to be parallelized.

5000 Runtime - no hl'nr'll'ng Runtime - h\'nr‘lfng 10
—Speedup - no binding —Speedup - binding
S 4000 8
£ 3000 | / 6 3
2 2
£ 2000 | 4 =
5 /\
£ 1000 | ; ~ 2
0 T T T T T T T 0
1 2 4 8 16 32 64 128

Number of Threads

Figure 6.4: Performance reached with the CG solver on the BCS system after
parallelizing hotspots with and without thread binding.

To fix this issue, I parallelized all hotspots with a parallel loop and used the
reduction operation within the dot product. This led to the performance shown in
figure once measured with and without binding of threads to cores. Binding

97

6 A Workflow to Program Large SMP Machines

threads delivers overall better performance. But, in total, the speedup of the CG
solver is very limited in both cases.

Next, I analyzed the data layout of the code using the VTune Amplifier. On the
16-socket BCS system, the counters OFFCORE_RESPONSE_O.ANY DATA.LOCAL_DRAM
and OFFCORE _RESPONSE_0.ANY DATA.REMOTE DRAM were used to measure the amount
of memory accesses served from local or remote memory.

s, Hardware Event Count by Hardware Event T

s Source
Li. OFFCORE_RESPONSE_0.ANY_DATA.LOCAL... | OFFCORE_RESPONSE_0.ANY_DATA.REMOTE...

51 #pragma omp parallel for private(j) 0 0
52 for(i=0; i<n; i++){ 800,000 10,200,000
53 yl[il=0; 400,000 1,200,000
54 for(j=ptr[il; j<ptrli+1]; j++){ 20,800,000 93,400,000

Figure 6.5: Local and remote memory accesses of the matrix vector multiplication
in the CG solver measured with Intel VTune.

Figure shows the results for the matrix-vector multiplication. It can be
observed that about 93% of all memory accesses are served from remote DRAM
on the 16-socket system. The reason is that the matrix is not distributed across the
NUMA nodes. Since the initialization was no hotspot it has not been parallelized
and the data was placed by the OS on the NUMA node of the master thread.
Some vectors involved in the CG were used the first time to store results during
the execution of the CG solver and they are therefore already distributed, but
for the large matrix only the eight threads on the first socket have local accesses
whereas all other threads access it remotely. As mentioned in chapter 3| there exist
several options to optimize the data layout, the easiest one in such a static case is
to initialize the data in parallel, which has been done here for the matrix setup.
Hereafter, the performance improved significantly as shown in the results in figure
6.6l

Next the load balance of the code is investigated. All vector operations show
equal execution times on all threads. In the matrix-vector operation the overhead
spent in the OpenMP runtime is noticeably high. As shown in figure [6.7 the
accumulated time spent in the runtime system is about 10 seconds.

The total execution time in the parallel region is about 33 seconds, so about 25%
of the overall time is overhead. The red background color in VTune indicates that
this is detected as possible performance issue. Some overhead to create threads
and synchronize in a parallel region is typical. But all parallel regions executed
in the vector operations, which are also executed once per iteration in the solver
produce less than one second of overhead and not 10 seconds. This indicates
some load imbalance in the matrix vector operation. This is due to the sparsity
pattern of the matrix. The rows are distributed evenly across all threads, but the
load is proportional to the number of non-zero elements in the sparse matrix, not

98

6.1 Tools-guided Performance Tuning on Big SMP Machines

1400 — - 35
untime =—=3peedu

1200 peecup — 30
9
g 1000 | - PEN
£ 800 | - 2035
1] 7]
£ 600 15 &
= /)
€ 400 | - 10
% 00 | L 5

0 T T T T T T 0

1 2 4 8 16 32 64 128

Number of Threads

Figure 6.6: Performance reached with the CG solver on the BCS system after
optimizing the memory access pattern by distributing the matrix across

NUMA nodes.
Som CPU Time: Total by... Ove...
Line Solice and...

[DIdle @ Poor [JOk I

49 void matvec(const int n, const int nnz, |
50 int i,3;
51 #pragma omp parallel for private(j) 22.462s [10.612s
52 for(i=0; i<n; i++){ 0.050s 0s
53 yli]=e; 0.060s 0s
54 for(j=ptr(il; j<ptrli+l]; j++){ 1.741sf] 0s
55 y[il+=value[j]l*x[index[j]]; 9.998s [0s

Figure 6.7: Overhead in the sparse matrix vector operation in the CG solver,
measured with Intel VTune.

proportional to the number of rows. If some rows contain more non-zero elements,
threads executing those rows have more work to do. As discussed in section [4.1]
dynamic or guided schedules do not work well on NUMA systems. Therefore, I
computed a static distribution of rows during the matrix setup in a way that all
chunks contain roughly the same amount of non zero elements. The distribution
stores a start and end row for each thread. This distribution is then used during
the setup and during the later computation. So, the data distribution fits to the
computational access pattern in the CG solver.

Figure shows the performance reached by the optimized version on the BCS
system. The CG solver now scales well over the complete BCS system and reaches
a speedup of about 45 with 128 threads. This example shows that the standard
techniques presented in the optimization workflow work well for the CG kernel
to optimize the code for large NUMA systems. Furthermore, it has been seen
that tools can play an important role in this process since they help to identify
performance problems in an easier way. Later in this chapter, in section [6.3] T will

99

6 A Workflow to Program Large SMP Machines

1400 50

Runtime - precalculated

1200 +——
1 1000 +— —>Speedup - precalculated / - 40
200 +— / - 30
600 +— / L 20
400 |— i
200 +— _— - 10
0 ——// : : : : 0

1 2 4 8 16 32 64 128
Number of Threads

Speedup

Runtime in sec

Figure 6.8: Performance reached with the CG solver on the BCS system after
optimizing the memory access pattern by distributing the matrix across

NUMA nodes.

present case studies that show also real world applications face similar problems
and can be optimized for NUMA systems in a similar fashion.

6.2 Modeling OpenMP Performance

As already explained when the tuning cycle was described in section [6.1.1] perfor-
mance modeling can be used to determine the point at which performance tuning
should be stopped, because the performance is close to the optimum for a specific
algorithm on a given architecture. Since modern architectures, parallel program-
ming libraries and runtime systems, as well as parallel algorithms are complicated,
a precise model, covering all details, is usually not feasible. A model should pre-
dict performance close to the reality, be simple enough to be understood by a
user, and be applicable to real algorithms and applications. Here, I will first cover
existing models and their shortcomings for OpenMP programs on large SMPs, and
then I will present a model which overcomes these shortcomings. To conclude the
discussion on performance modeling, I will apply the example to the parallel CG
solver tuned above and show that the reached performance is close to the modeled
performance.

6.2.1 Performance Models

Several performance models exist, which can be used for serial programs, like
the roofline model presented e.g. by William et al. [Williams et al., 2009] or a

model from Treibig_and Hager for bandwidth-limited loop kernels [Treibig_and

100

6.2 Modeling OpenMP Performance

Hager, 2010]. The roofline model is a simple model which is based on funda-
mental hardware characteristics, i.e. peak performance and memory bandwidth
limitations, and ignores, for example cache hierarchies. This model is relatively
easy to apply, and delivers good results for serial applications where the number of
memory transfers required and the floating point operations required can be deter-
mined. The model presented by Treibig and Hager is more complicated to apply,
since it requires a detailed analysis of different cache levels in the system and the
need to analyze the memory access in a very detailed fashion to determine, which
cache level can hold the data for the algorithm. Both models are made for serial
programs and Treibig and Hager write in their publication that shared memory
applications would require extensive extensions of the model which are beyond
the scope of their work. The roofline model can be applied also to shared-memory
programs, but still it only covers bandwidth limitations and the peak performance
of a system, so effects like synchronization overhead and communication are not
covered.

Especially for parallel applications with MPI, models exist which cover the com-
munication in detail, like models from [Culler et al., 1993] or [Ramos and Hoefler,
2013|. These models cover communication and network characteristics in detail.
For MPI applications these models are very useful, since it is easy to identify the
communication in an application. For OpenMP, no explicit communication calls
exist, since the shared memory is used by all threads to exchange data. So, these
models cannot be extended to also cover OpenMP parallel programs.

The model I will propose later in this chapter to cover OpenMP programs on
large NUMA systems can be seen as an extension of the roofline model. Therefore,
details of the roofline model are given first in the next paragraph.

Roofline Model

As already mentioned, the roofline model is based on the peak performance of a
system and the memory bandwidth it can reach. Whether a kernel is limited by
one or the other of these limitations depends on the number of floating point (FP)
operations (fops) executed in the kernel and the amount of memory transfers in
bytes (memtrans) performed in the kernel. Based on the operational intensity,
defined as Operationallntensity = %, the roofline model can be visualized
as a diagram, as shown in figure for the BCS system as an example. The
peak floating point performance of the system is 1024 GFLOPS. This means no
application will ever exceed this performance. In the diagram this is indicated
by a vertical line at 1024 GFLOPS labeled with "Peak FP Performance”. The
maximum reachable memory bandwidth can be measured with a benchmark. The
roofline model uses the STREAM benchmark here, which delivers a maximum
bandwidth of 260 GB/s for the BCS system. The line labeled "Max. bandwidth”

101

6 A Workflow to Program Large SMP Machines

covers all points in the diagram where 260 GB/s of data is transferred, dependent
on the operational intensity. Both lines cannot be exceeded by an application of a
given operational intensity, since the machine can either not load the data faster,
if the "Max. bandwidth” line is the limit, or the machine cannot compute more
floating point results, even if it could still load more data from memory.

4096

1024 Peak FP Performance

Mult /Add imbalance
256 A e Do Vectorization. _ .

64

GFLOPS

16

4
1

0,25
0,0625 0,25 1 4 16 64 256 1024
Operational Intensity

Figure 6.9: The Roofline Model applied to the BCS system.

Applications might not be able to reach one of the limits for different reasons.
For example modern architectures use fused multiply-add operations, which means
that two FP operations, one add and one multiply, can be done at once. If the
algorithm does not require one add per multiplication, this feature cannot be used
and the processor only delivers half of the peak performance (512 GFLOPS on the
BCS system). Another feature which needs to be applied is SIMD vectorization.
Here, a processor applies the operations on a vector of elements instead of a single
element. If this feature cannot be used, e.g. because the algorithm does not work
on consecutive elements in memory, another factor of two is lost in performance
and the algorithm can only reach a fourth of the peak performance (256 GFLOPS
on the BCS system). These limitations are illustrated by dashed lines in the
diagram of the roofline model.

The diagram only describes the hardware characteristics. For a specific algo-
rithm, a user can determine the operational intensity by counting the number of
memory accesses and floating point operations, and check in the diagram if the
kernel is memory or floating point limited. Furthermore, a user can compare the
upper limit with the performance reached to check how close the implementation
is to the optimum.

As mentioned before, the model is relatively simple to apply, but for OpenMP
programs it sometimes is too simple, especially on large NUMA systems. There-

102

6.2 Modeling OpenMP Performance

fore, I will present an extended model in the next section which covers more details
of the OpenMP execution, without getting too complicated to be practical.

6.2.2 A Performance Model for large SMPs

The performance model presented here is also based on the achievable memory
bandwidth of a system, if the application is memory bound, but it takes a few more
aspects into account. Since the roofline model was designed for serial programs,
it does not take multithreading into account at all. However, it can easily be
extended to reflect the memory bandwidth and peak performance which can be
reached with a certain number of threads on a system.

In my model I also take the following two factors into account, which are sig-
nificant on large NUMA systems:

(i) The peak memory bandwidth of a system is typically measured with the
stream benchmark for large memory footprints of several GB. For smaller
arrays this bandwidth typically cannot be reached, for two reasons. First,
prefetching units in the core need to fill their pipeline to work efficiently and
second, identical cachelines are shared between threads which then need to
be transferred between the cores. For large arrays sharing these cachelines
and filling the pipeline has a much smaller influence than for small arrays.
Therefore, the model presented here will not take the best memory perfor-
mance of the system into account but the best performance for a certain
memory footprint.

(ii) In OpenMP programs, the synchronization overhead can be relevant for the
overall performance. As shown in section with the help of the EPCC
microbenchmarks, this can be orders of magnitude more significant on large
SMP machines than on standard servers.

These two factors can be used easily by measuring the STREAM bandwidths
for different memory footprints and the synchronization overhead with the help
of the EPCC microbenchmarks. For an application, the user then calculates the
time needed to load the data and synchronize the threads. Both values are then
added to calculate the predicted runtime for a memory bound application.

6.2.3 Model Description

The model can be described formally as an extension of the roofline model. In the
roofline model, we can calculate the runtime 7" with formulas [6.2] and [6.4]

In [6.2] memtrans is the amount of data which needs to be accessed in memory
in the algorithm and ¢ is the number of threads used. The time to transfer the

103

6 A Workflow to Program Large SMP Machines

T,, = memtrans x bw(t) (6.2)
T. = fops x peak(t) (6.3)
T = max(T,,, T;) (6.4)

data for the algorithm 7, is then computed by multiplying m with the peak
bandwidth which can be reached with ¢ threads, bw(t). The time to calculate
all floating point operations 7, is described in formula [6.3| as the product of all
floating point operations needed by the algorithm fops and the peak performance
of the architecture when t threads are used peak(t). The time for the algorithm
is then the maximum of 7}, and T, since either the memory bandwidth or the
computation time limits the algorithm’s performance in the roofline model. In
the roofline model the function peak() is the calculated maximum performance
of the machine and the function bw() can be measured by using the STREAM
benchmark.

The model I present in this work extends the roofline model in two ways as
described in the formulas -[6.8] The first extension is, that T, now takes the
size of the arrays into account. As shown in chapter [2] the bandwidth reached on
large NUMA systems highly depends on the memory footprint, therefore it cannot
be assumed, that the maximum bandwidth can be reached for all array sizes. Here,
I calculate the sum over all accessed arrays in the algorithm and multiply the size
of the array a with bw(t, sizeof(a)) which is the bandwidth which can be achieved
for ¢t threads on an array the size of a.

The second extension is that synchronization constructs are taken into account
in Ts. Here, sync(t, s) is the time a synchronization construct s needs to execute
with t threads on the target architecture. s can be one of the following OpenMP
constructs parallel, parallel for, for, barrier or reduction. This can be
measured with the EPCC microbenchmarks as it was done in section 2.2.1l For
Ty, T., and Ty we then obtain the following formulas:

T = Z sizeof(a) X bw(t, sizeof(a))
VacA (6.5)

with A = all accessed arrays

T. = fops x peak(t) (6.6)

T, = Z sync(t, s)
VseS (67)

with S = all used synchronization constructs

104

6.2 Modeling OpenMP Performance

T = max(T,,,T.) + T (6.8)

The overall time T' to execute the algorithm is then the maximum of 7, and
T., for the same reasons as in the roofline model, plus the synchronization time
Ty, since synchronization needs to be applied in all cases, whether the algorithm
is memory or compute bound.

The changes applied to the roofline model are more relevant on large NUMA
systems than on other systems, because the difference in the memory bandwidth
for different sized arrays is higher when more NUMA nodes are involved and the
synchronization overhead is also much more relevant. To show the usefulness of
the model I will next apply it to the CG kernel in the following section.

6.2.4 Example: Conjugate Gradient Method

As mentioned at the beginning of this chapter, the matrix vector multiplication
is the main hotspot in the CG solver. Furthermore, it contains two dot products
and three scaled vector operations per iteration. The memory footprint in the CG
solver is different for the matrix-vector operation and the vector-vector operations.
The sparse matrix is stored in compressed row storage (CRS) format and has a
dimension of N = 2,017,169 and contains nnz = 283, 073, 458 non-zero elements.
This results in a memory footprint of about 3.1 GB for the matrix-vector and about
45 MB for the vector-vector operations. The bandwidth which can be achieved for
such arrays was measured with the STREAM benchmark. For a small number of
threads the bandwidth is between 4.5 and 5 GB/s in both cases, so there is nearly
no difference. With 128 threads the BCS machine can reach a transfer rate of 226
GB/s for the transfer of 3.1 GB and 155 GB/s for the transfer of 45 MB. So, the
difference is really visible.

Furthermore, the CG kernel needs two reduction operations and six worksharing
loops. The overhead for those operations was measured with the EPCC bench-
marks for different numbers of threads.

Figure shows the resulting predicted performance of the model and the
measured performance on the BCS system. The model does not work very well
for a small number of threads. The reason is that the performance for only a few
threads is not really influenced by the synchronization and the bandwidth differs
significantly from the stream bandwidth. A small number of threads cannot utilize
the bandwidth completely. Therefore, the performance depends on many more
factors like the cache reuse and the number of load and store instructions which
can be issued per core and many more. For such cases, the more complicated
model from Treibig and Hager [Treibig and Hager, 2010] would be more useful,
since it takes for example all cache levels, and the issued instructions into account.

105

6 A Workflow to Program Large SMP Machines

1200 — . : : : —
Measured runtime
1000 - Modeled runtime |
800 |
)
q) i -
£ 600
'_
400 | i
200 _ I I I |
0 | - —
1 2 4 8 16 32 64 128

Number of Threads

Figure 6.10: Measured and modeled runtime for the CG solver.

However, for a larger number of threads, the model presented here works well.
The bandwidth measured depends more on the maximum bandwidth of the system
and the data set size. Also the synchronization constructs are more relevant on
large machines. For a larger number of threads (32+), the error of the presented
model is between 0.7% and 10%. For comparison, the straightforward roofline
model is off by 22% for 128 threads. So, the presented model is useful for a large
number of threads on big SMP systems and it is comparably easy to apply for
users.

6.3 Case Studies

After explaining characteristics of the large NUMA systems and techniques to op-
timize OpenMP applications for those machines, I will now discuss two case studies
to show how real application codes were optimized to obtain good performance on
large SMP machines. The first case study has been published at the IEEE Cluster
conference 2010 [Schmidl et al., 2010b]. The code, called SHEMAT-Suite, was
optimized mainly by Andreas Wolf for a ScaleMP machine. My contribution to
the work were insights in machine characteristics and guidance with optimization
techniques which were applied in the code. The second code, called TrajSearch,
was at the beginning also optimized for a ScaleMP machine as part of the bachelor
thesis of Nicolas Berr which I supervised, see |Berr et al., 2012] for details. Later,
I added slight modifications to optimize the code further on a Numascale system,
see [Schmidl and Vesterkjeer, 2014] and [Schmidl et al., 2015]. Both codes show
that the tuning advice presented in this thesis can lead to good performance on a
large NUMA system.

106

6.3 Case Studies

6.3.1 SHEMAT-Suite

SHEMAT-Suite is a simulation package developed at the Institute for Applied
Geophysics and Geothermal Energy at RWTH Aachen University. Like the pre-
decessor SHEMAT [Clauser, 2003] (Simmulator for HEat and M Ass Transport)
it solves the coupled transient equations for groundwater flow, heat transport and
the transport of reactive solutes in porous media at high temperature in three
space dimensions. The code version from 2010 was used in the study [Schmidl
et al., 2010b| and is also the one discussed in this thesis. The code uses automatic
differentiation [Wolf, 2011] to calculate directional derivatives. The OpenMP par-
allelization uses nested parallel regions. On the first level, different directional
derivatives are computed in parallel. On the second level, each of these derivatives
uses OpenMP teams to parallelize the calculation of individual derivatives.
45

@ improved, bound
40 (1x8)
35 ~*improved, bound
(8x1)
30 v original, bound

S o5 (1X8)
8 #-original, bound
O 20 (8x1)
& 15
v VgV
10 I X
A
5 e
OE

ser 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of Nodes

Figure 6.11: Speedup of the SHEMAT-Suite code on a 13 board ScaleMP machine
for the original and optimized version.

The SHEMAT-Suite code was optimized for a ScaleMP machine based on 2
socket boards, each equipped with Intel Harpertown Quadcore processors. The
code optimization contained the following steps:

e The placement of threads was optimized in a way that one derivative is
computed per board of the ScaleMP machine. The inner teams then fill up
all cores of a board. Since nearly no data sharing is necessary on the outer
level, this reduces synchronization and data sharing between the boards.

e Performance analysis showed that frequent data allocation consumed a lot
of runtime. To avoid this performance loss, arrays were allocated at the
beginning of the execution which were reused during execution.

e Furthermore, a library to activate huge-pages was used to avoid long data
initialization times. Nowadays, the transparent huge-pages feature of current

107

6 A Workflow to Program Large SMP Machines

Linux kernels automatically uses huge-pages which makes this optimization
unnecessary, since huge-pages are always used if a large array is allocated.
But during the time of this optimization the library increased the overhead
of data initialization a lot.

Figure shows the speedup of the SHEMAT-Suite code without and with
the optimizations applied to the code. For both versions (original-bound and
improved-bound) the thread binding was enabled, since for the original code with-
out thread binding no reliable measurements could be done. The speedup is based
on a serial run with one thread. Then measurements for different numbers of
boards were done, where all cores of a board were used. Running 8 threads on
1 board delivers a speedup of about 3.7. This speedup is limited due to memory
limitations on one board. Adding more boards increases the available bandwidth
which finally results in a speedup of about 41 on all 13 boards of the system.

Optimizing this code for large NUMA systems, in this case the ScaleMP ma-
chine, increased the performance significantly and makes the code well suited for
such an architecture.

6.3.2 TrajSearch

TrajSearch is a post-processing code for dissipation element analysis developed at
the Institute of Combustion Technology| of RWTH Aachen University by Peters
and Wang [Peters and Wang, 2006]. The dissipation element analysis provides a
deeper understanding of turbulence and can be employed to reconstruct important
statistical properties |[Gampert et al., 2011].

TrajSearch decomposes a highly-resolved three dimensional turbulent flow field
obtained by Direct Numerical Simulation (DNS) into non-arbitrary, space-filling
and non-overlapping geometrical elements (dissipation elements). As input data,
the algorithm uses the 3D scalar field produced by the DNS. Then, starting from
every grid point in this scalar field, the search processes follow the trajectory
in ascending and descending gradient direction until a maximum, respectively
minimum point is found. For all points in the grid a counter is incremented to
store how many trajectories crossed this point. Furthermore, a list of extremal
points is stored as well as the mapping of trajectories to these extremal points.
All points where the trajectory ended in the same pair of minimum and maximum
form a dissipation element.

All search processes can be done independently, as long as the accesses to the
result arrays are synchronized. It should be mentioned here, that the compute time
for the search process depends on the length of the trajectory which highly varies

http:/ /www.itv.rwth-aachen.de/

108

6.3 Case Studies

during the data set, resulting in a high load imbalance. Furthermore, the data
needed for a search process depends on the ascending and descending gradients
direction and thus is unknown a-priori. This complicates the data placement on
a NUMA machine, since the data access cannot be predicted.

The following optimization steps have been applied to the TrajSearch code:

e Data placement: As mentioned before, the data access pattern is unpre-
dictable, so it is impossible to reach 100 % of local memory accesses. But,
since the starting point of every search in the scalar field is known, it is pos-
sible to achieve local accesses for the start of every trajectory search and the
local neighborhood. The scalar field is therefore distributed in equal chunks
over the machine in a static way.

e Local buffering: As a result of the analysis, the extremal points need to
be stored in a global list. Locking the list for every new extremal point
produced too much overhead, so every thread keeps a local list in its thread
local storage during the computation and at the end these lists are merged.
Some of the extremal points might be found by several threads and are
thus stored in several private lists, but during the merge process this can be
eliminated. Since the memory consumption per thread is low, there is no
need to merge double entries earlier. Furthermore, for every grid point the
number of crossing trajectories is stored. To avoid extensive locking here,
also thread local buffers are implemented, but the memory consumption is
much higher. Potentially some GB need to be stored per thread, thus the
buffers need to be flushed during computation when a certain threshold is
reached into the shared result array.

e Data allocation: Since a lot of data allocation calls negatively influ-
enced the performance of the code, an optimized memory allocation call
(kmp-malloc) was used, as described in chapter 2]

e NUMA-aware scheduling: The time needed to calculate a search pro-
cess for a trajectory depends on different factors, one is the length of the
trajectory. So, the processes potentially need extremely different computa-
tion times, which results in load imbalance. Since the data locality when
such a search process is started should be preserved, dynamic scheduling
cannot be applied for the reasons explained in detail in chapter [l The
NUMA-aware scheduler using load-aware stealing is used in the TrajSearch
code to avoid these imbalances as much as possible.

Figure [6.12| shows the runtime and speedup achieved with the TrajSearch code
on a Numascale machine. The used machine is operated by the University of Oslo’s
Center for Information Technology, USIT. The systems is a PRACE prototype that
it is financially supported by the PRACE-1IP project. As a PRACE prototype

109

6 A Workflow to Program Large SMP Machines

14 T T T T T 700
_ 12t 4 600
= 10} 4 500
=
S 8 4 400
E 6 4 300
c
S5 a4t 4 200
x

2| e | s

0 _ - || — 0

96 192 384 768 1024
Number of Threads

Runtime =mssmm Speedup

Figure 6.12: Runtime and speedup of the TrajSearch code on a Numascale machine
with up to 1024 threads.

system, this machine is representative for the class of large shared memory ma-
chines. Since these prototypes are identified as architectures with a promising
future by PRACE, evaluating tuning steps on this architecture will have a high
relevance on future systems as well.

The configuration of the system is as follows:

72 IBM x3755 M3 nodes

144 AMD 6174 CPUs

1728 Cores

4.6 TB Memory

3D Torus Interconnect (3x6x4)

The performance results are presented for up to 1024 cores only, for the fol-
lowing reason. The Oracle compiler provided best performance on the system,
but it only supports thread placement up to 1024 threads. A serial test run to
calculate the speedup was not possible due to the memory requirements of the
code. Therefore, the speedup is calculated with the 24 threads run as reference
under the assumption that a speedup of 24 is achieved for this reference point. In
total, the code scales well over the machine and a speedup of about 625 is achieved
with 1024 threads. A performance drop can be observed in the diagram after 768
threads. The reason is that the AMD 6174 CPUs always share floating-point units
between two cores. This means the system only has 864 FPUs and so for 1024
threads some FPUs are shared between two threads.

110

6.4 Summary

6.4 Summary

In this chapter, a workflow was presented to optimize applications for large NUMA
systems. The workflow described for typical performance problems of shared mem-
ory programs on large NUMA systems how performance issues can be identified
with tools and how they can be avoided. For more difficult issues, it is referred
to the appropriate former chapter where several problems have been discussed in
depth. Furthermore, the workflow ends with a performance model taking more fac-
tors into account than the simple roofline model, without getting too complicated.
Finally I presented two case studies, SHEMAT-Suite and TrajSearch, where opti-
mizations have been done to enable application codes to profit from large NUMA
systems. Here, the largest tests were done with with TrajSearch on a Numascale
system with 1024 threads, where a speedup of about 625 was reached.

111

7 Summary and Conclusion

In the work presented in this thesis, different relevant aspects of OpenMP program-
ming on large NUMA systems have been covered. First, I investigated different
machine characteristics in chapter 2 Here it was shown, that hierarchical NUMA
machines, which employ different levels of interconnect technology throughout the
system, have a noticeable difference in bandwidth and latency when the different
interconnects are used. Also the synchronization time of OpenMP constructs in-
creased by orders of magnitude, when multiple levels of interconnects needed to
be used for synchronization. The relevance of this became clear for the SHEMAT-
Suite case study, where the binding of threads on different levels of nested parallel
regions could use these characteristics to minimize synchronization on the inner
most, i.e. second, OpenMP level. Regarding the representation of these NUMA
distances to the user, I discussed problems with the System Locality Distance In-
formation Table (SLIT) used in Linux and proposed a measured distance matrix
as more accurate representation which could be used in OpenMP runtimes and
filled at initialization time with simple tests.

Next, I presented different optimization techniques which can and need to be
applied to OpenMP programs to achieve a good performance on large NUMA
systems. Basically, the main goal is to reach as many local memory accesses
as possible on a NUMA system, this includes the problems of thread placement,
memory placement and work distribution. For thread placement, OpenMP already
offers binding strategies but leaves the generation of place-lists to the program-
mer. Here, [proposed a greedy TSP algorithm to approximate the problem, since
an optimal place-list cannot be achieved in reasonable time. The algorithm was
evaluated on large test systems and it was equal to or nearly equal to the optimal
solution with respect to the total distance during neighbors in the list compared
to an exponential algorithm which computes the optimal list. The advantage was,
that it runs in sub-second timeranges instead of hours or days for the optimal so-
lution, which makes it usable during initialization of the OpenMP runtime. Also
the placement of data was targeted in chapter |3 in the OMPX library which in
addition to memory migration functionality presented a next_touch implementa-
tion for the Linux operating system. Also a model was presented to determine if
migration of data in a program is useful or not, depending on the number of times
the data is used on the remote node.

The distribution of work is pretty easy in a static case, but on NUMA systems

113

7 Summary and Conclusion

no good scheduling scheme exists for dynamic cases. Therefore, I investigated
load balancing on NUMA systems in chapter [l T looked at standard scheduling
techniques and proposed a NUMA-aware scheduling scheme which outperformed
all available schedules, i.e. static, dynamic and guided scheduling. Furthermore,
I investigated the behavior of different OpenMP runtime systems to handle tasks
on NUMA machines and gave advice to programmers, how tasks can be used for
work distribution in a good way, under some circumstances, i.e. if the OpenMP
runtime uses thread local task queues and task stealing. Additionally, performance
tools and their ability to investigate the performance of tasks were examined and
compared in chapter [l All presented tools had weaknesses to investigate the
performance of tasks on NUMA systems for the presented NUMA aware task
creation. The main reason was, that the tools were hardware unaware, which
means they analyze threads, but have no notion where these threads were executed.
I presented a tool which merges hardware information into a Score-P trace to allow
a better investigation of NUMA related scheduling decisions in the trace.

Finally, I presented a workflow in chapter [6] which puts all the technique to-
gether and combines them with standard performance analysis and optimization
techniques. The result is a structured procedure which can be applied to do per-
formance engineering of OpenMP codes on large NUMA systems. The presented
case studies with the SHEMAT-Suite and the TrajSearch code give evidence, that
it is possible to optimize codes for such system sand to achieve a good performance
and scaling with OpenMP.

I have presented methods to scale OpenMP programs to more than a thou-
sand threads on large systems, but some of the techniques used are not part of
the OpenMP specification, thus I implemented optimization techniques like the
NUMA-aware scheduler or the OMPX library. In conclusion, OpenMP is missing
features for memory placement and the scheduling in a NUMA-aware fashion is
needed. Furthermore, tasks can be programmed NUMA-aware with some runtime
systems, but not with all. Here, the standard also needs to improve to offer a
vendor-independent way in the spirit of an open specification like OpenMP.

Future hardware is expected to become even more complicated with respect to
memory hierarchies. Processors like Intel’s Knights Landing have been announced
with different types of memory attached to a single processor: Standard DDR4
RAM and on-chip memory called MCDRAM. MCDRAM will provide a higher
bandwidth but less capacity than the standard DDR4 memory. Furthermore ac-
celerators will emerge which allow to share memory between a host and a device
processor. Future work in the context of OpenMP will have to extend the tech-
niques for memory placement and migration as presented in this dissertation to
be applicable on future architectures. An integration into the OpenMP specifi-
cation is highly desirable,as this is a requirement for portable support of those
architectural features.

114

Bibliography

[Amdahl, 1967] Amdahl, G. M. (1967). Validity of the Single Processor Approach
to Achieving Large Scale Computing Capabilities. In Proceedings of the April
18-20, 1967, Spring Joint Computer Conference, AFIPS 67 (Spring), pages
483-485, New York, NY, USA. ACM.

[Asanovic et al., 2006] Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J.,
Husbands, P., Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams,
S. W., and Yelick, K. A. (2006). The Landscape of Parallel Computing Re-
search: A View from Berkeley. Technical report, TECHNICAL REPORT, UC
BERKELEY.

[Aslot et al., 2001] Aslot, V., Domeika, M., Eigenmann, R., Gaertner, G., Jones,
W., and Parady, B. (2001). SPEComp: A New Benchmark Suite for Measur-
ing Parallel Computer Performance. In Eigenmann, R. and Voss, M., editors,
OpenMP Shared Memory Parallel Programming, volume 2104 of Lecture Notes
in Computer Science, pages 1-10. Springer Berlin Heidelberg.

[Ayguadé et al., 1999] Ayguadé, E., Martorell, X., Labarta, J., GonzAjlez, M.,
and Navarro, N. (1999). Exploiting Multiple Levels of Parallelism in OpenMP:
A Case Study. In Proc. Of the 1999 International Conference on Parallel Pro-
cessing, Ajzu, pages 172-180.

[Bailey et al., 1991] Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S.,
Carter, R. L., Fatoohi, R. A., Frederickson, P. O., Lasinski, T. A., Simon,
H. D., Venkatakrishnan, V., and Weeratunga, S. K. (1991). The NAS parallel
benchmarks. Technical report, NASA Ames Research Center.

[Barak et al., 1993] Barak, A., Guday, S., and Wheeler, R. G. (1993). The MOSIX
Distributed Operating System: Load Balancing for UNIX. Springer, Secaucus,
NJ, USA.

[Berr et al., 2012] Berr, N., Schmidl, D., Gébbert, J. H., Lankes, S., an Mey, D.,
Bemmerl, T., and Bischof, C. (2012). Trajectory-Search on ScaleMP’s vSMP
Architecture. In Applications, Tools and Techniques on the Road to Fxascale
Computing : proceedings of the 14th biennial ParCo conference ; ParCo2011 ;
held in Ghent, Belgium, Advances in Parallel Computing ; 22, New York, NY.
IOS Press.

115

Bibliography

[Bircsak et al., 2000] Bircsak, J., Craig, P., Crowell, R., Cvetanovic, Z., Harris, J.,
Nelson, C. A., and Offner, C. D. (2000). Extending OpenMP for NUMA Ma-
chines. In Proceedings of the 2000 ACM/IEEE Conference on Supercomputing,
SC ’00, Washington, DC, USA. IEEE Computer Society.

[Broquedis et al., 2010] Broquedis, F., Clet Ortega, J., Moreaud, S., Furmento,
N., Goglin, B., Mercier, G., Thibault, S., and Namyst, R. (2010). hwloc: a
Generic Framework for Managing Hardware Affinities in HPC Applications. In
[EEE, editor, PDP 2010 - The 18th Euromicro International Conference on
Parallel, Distributed and Network-Based Computing, Pisa Italie.

[Broquedis et al., 2009] Broquedis, F., Furmento, N., Goglin, B., Namyst, R., and
Wacrenier, P.-A. (2009). Dynamic Task and Data Placement over NUMA Ar-
chitectures: An OpenMP Runtime Perspective. In Proceedings of the 5th In-
ternational Workshop on OpenMP: FEvolving OpenMP in an Age of Extreme
Parallelism, IWOMP 09, pages 79-92, Berlin, Heidelberg. Springer-Verlag.

[Bull, 1999] Bull, J. M. (1999). Measuring Synchronisation and Scheduling Over-
heads in OpenMP. In In Proc. of 1st European Workshop on OpenMP (EWOMP
'99), pages 99-105.

[Bull and O’Neill, 2001] Bull, J. M. and O’Neill, D. (2001). A Microbenchmark
Suite for OpenMP 2.0. SIGARCH Comput. Archit. News, 29(5):41-48.

[Bull et al., 2012] Bull, J. M., Reid, F., and McDonnell, N. (2012). A Microbench-
mark Suite for OpenMP Tasks. In Proceedings of the 8th International Confer-
ence on. OpenMP in a Heterogeneous World, IWOMP’12, pages 271-274, Berlin,
Heidelberg. Springer-Verlag.

[Calotoiu et al., 2013] Calotoiu, A., Hoefler, T., Poke, M., and Wolf, F. (2013).
Using Automated Performance Modeling to Find Scalability Bugs in Complex
Codes. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC '13, pages 45:1-45:12, New
York, NY, USA. ACM.

[Chapman et al., 2007] Chapman, B., Jost, G., and Pas, R. v. d. (2007). Using
OpenMP: Portable Shared Memory Parallel Programming. The MIT Press.

[Christofides and GROUP., 1976] Christofides, N. and GROUP., C.-M. U. P. P.
M. S. R. (1976). Worst-Case Analysis of a New Heuristic for the Travelling
Salesman Problem. Management sciences research report. Defense Technical
Information Center.

[Clauser, 2003] Clauser, C., editor (2003). Numerical Simulation of Reactive Flow
in Hot Aquifers. SHEMAT and Processing SHEMAT. Springer, New York, NY,
USA.

116

Bibliography

[Cramer et al., 2012] Cramer, T., Schmidl, D., Klemm, M., and an Mey, D.
(2012). OpenMP Programming on Intel Xeon Phi Coprocessors: An Early Per-
formance Comparison. In Proceedings of the Many-core Applications Research
Community (MARC) Symposium at RWTH Aachen University, pages 38-44.

[Culler et al., 1993] Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser,
K. E., Santos, E., Subramonian, R., and von Eicken, T. (1993). LogP: To-
wards a Realistic Model of Parallel Computation. In Proceedings of the Fourth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPOPP 93, pages 1-12, New York, NY, USA. ACM.

[Donfack et al., 2012] Donfack, S., Grigori, L., Gropp, W. D., and Kale, V. (2012).
Hybrid Static/Dynamic Scheduling for Already Optimized Dense Matrix Fac-
torization. In Proceedings of the 2012 IEEE 26th International Parallel and
Distributed Processing Symposium, IPDPS "12, pages 496-507, Washington, DC,
USA. IEEE Computer Society.

[Duran et al., 2008] Duran, A., Corbaldn, J., and Ayguadé, E. (2008). Evaluation
of OpenMP Task Scheduling Strategies. In Proceedings of the 4th International
Conference on OpenMP in a New Era of Parallelism, IWOMP’08, pages 100—
110, Berlin, Heidelberg. Springer-Verlag.

[Duran et al., 2009] Duran, A., Teruel, X., Ferrer, R., Martorell, X., and Ayguade,
E. (2009). Barcelona OpenMP Tasks Suite: A Set of Benchmarks Targeting the
Exploitation of Task Parallelism in OpenMP. In Parallel Processing, 2009.
ICPP °09. International Conference on, pages 124-131.

[Eichenberger et al., 2012] Eichenberger, A., Terboven, C., Wong, M., and
an Mey, D. (2012). The Design of OpenMP Thread Affinity. In Chapman,
B., Massaioli, F., Miiller, M., and Rorro, M., editors, OpenMP in a Heteroge-
neous World, volume 7312 of Lecture Notes in Computer Science, pages 15-28.
Springer Berlin Heidelberg.

[Gampert et al., 2011] Gampert, M., Goébbert, J. H., Gauding, M., Schéfer, P.,
and Peters; N. (2011). Extensive strain along gradient trajectories in the tur-
bulent kinetic energy field. New Journal of Physics.

[Geimer et al., 2008] Geimer, M., Wolf, F., Wylie, B. J. N Abrahém, E., Becker,
D., and Mohr, B. (2008). The SCALASCA Performance Toolset Architecture. In
Proc. of the International Workshop on Scalable Tools for High-End Computing
(STHEC), Kos, Greece, pages 51-65.

[Goglin and Furmento, 2009] Goglin, B. and Furmento, N. (2009). Enabling high-
performance memory migration for multithreaded applications on LINUX. In
Parallel Distributed Processing, 2009. IPDPS 2009. IEEE International Sym-

posium on, pages 1-9.

117

Bibliography

[Gropp et al., 2014] Gropp, W., Lusk, E., and Skjellum, A. (2014). Using MPI:
Portable Parallel Programming with the Message-Passing Interface, 3rd edition.
MIT Press.

[Hager, 2013] Hager, G. (2013). Performance engineering: from numbers to
insight. In FEuro-Par 2012: Parallel Processing Workshops, pages 393-394.
Springer.

[Hager and Wellein, 2010] Hager, G. and Wellein, G. (2010). Introduction to High
Performance Computing for Scientists and Engineers. CRC Press, Inc., Boca
Raton, FL, USA, 1st edition.

[Hewlett-Packard et al., 2011] Hewlett-Packard, Intel, Microsoft, Phoenix,
and Toshiba (2011). Advanced Configuration and Power Interface.
http://www.acpi.info/.

[Hoeflinger, 2006] Hoeflinger, J. P. (2006). Extending OpenMP to Clusters.

[Huang et al., 2006] Huang, L., Chapman, B., and Liao, C. (2006). An Implemen-
tation and Evaluation of Thread Subteam for OpenMP Extensions. Workshop
on Programming Models for Ubiquitous Parallelism (PMUP 06), Seattle.

[Intel, 2013] Intel (2013). Intel VTune Amplifier XE. Last accessed on March 24,
2016.

[Jonathan Corbet, 2014] Jonathan Corbet (2014). AutoNUMA: the other ap-
proach to NUMA scheduling. http://lwn.net/Articles/488709/. Last vis-
ited on 09/05/2014.

[Jost et al., 2003] Jost, G., Jin, H., Mey, D. A., and Hatay, F. F. (2003). Com-
paring the OpenMP, MPI, and Hybrid Programming Paradigms on an SMP
Cluster 1.

[Kale et al., 2014] Kale, V., Randles, A., and Gropp, W. D. (2014). Locality-
Optimized Mixed Static/Dynamic Scheduling for Improving Load Balancing
on SMPs. In Proceedings of the 21st Furopean MPI Users’ Group Meeting,
EuroMPI/ASIA 14, pages 115:115-115:116, New York, NY, USA. ACM.

[Kniipfer et al., 2011] Kniipfer, A., Rossel, C., an Mey, D., Biersdorff, S., Di-
ethelm, K., Eschweiler, D., Geimer, M., Gerndt, M., Lorenz, D., Malony, A. D.,
Nagel, W. E., Oleynik, Y., Philippen, P., Saviankou, P., Schmidl, D., Shende,
S. S., Tschiiter, R., Wagner, M., Wesarg, B., and Wolf, F. (2011). Score-P
— A Joint Performance Measurement Run-Time Infrastructure for Periscope,
Scalasca, TAU, and Vampir. In Proc. of 5th Parallel Tools Workshop, Dresden,
Germany.

[LaGrone et al., 2011] LaGrone, J., Aribuki, A., Addison, C., and Chapman, B.
(2011). A Runtime Implementation of OpenMP Tasks. In Chapman, B., Gropp,

118

http://lwn.net/Articles/488709/

Bibliography

W., Kumaran, K., and Miiller, M., editors, OpenMP in the Petascale Era, vol-
ume 6665 of Lecture Notes in Computer Science, pages 165-178. Springer Berlin
Heidelberg.

[Lankes et al., 2010] Lankes, S., Bierbaum, B., and Bemmerl, T. (2010). Affinity-
on-next-touch: An Extension to the Linux Kernel for NUMA Architectures.
In Proceedings of the Sth International Conference on Parallel Processing and
Applied Mathematics: Part I, PPAM’09, pages 576-585, Berlin, Heidelberg.
Springer-Verlag.

[Laudon and Lenoski, 1997] Laudon, J. and Lenoski, D. (1997). The SGI Origin:
A ¢ccNUMA Highly Scalable Server. In Proceedings of the 24th Annual Inter-

national Symposium on Computer Architecture, ISCA 97, pages 241-251, New
York, NY, USA. ACM.

[L6f and Holmgren, 2005] Lof, H. and Holmgren, S. (2005). Affinity-on-next-
touch: Increasing the Performance of an Industrial PDE Solver on a cc-NUMA

System. In Proceedings of the 19th Annual International Conference on Super-
computing, ICS ’05, pages 387-392, New York, NY, USA. ACM.

[Lorenz et al., 2010] Lorenz, D., Mohr, B., Réssel, C., Schmidl, D., and Wolf,
F. (2010). How to reconcile event-based performance analysis with tasking
in OpenMP. 1In Proceedings of the 6th international conference on Beyond
Loop Level Parallelism in OpenMP: accelerators, Tasking and more, IWOMP 10,
pages 109-121, Berlin, Heidelberg. Springer-Verlag.

[Lu et al., 1998] Lu, H., Hu, Y. C., and Zwaenepoel, W. (1998). OpenMP on
networks of workstations. In Supercomputing ’98: Proceedings of the 1998
ACM/IEEE conference on Supercomputing (CDROM), pages 1-15, Washing-
ton, DC, USA. IEEE Computer Society.

[Margery et al., 2003] Margery, D., Vallee, G., Lottiaux, R., Morin, C., and yves
Berthou, J. (2003). Kerrighed: A SSI Cluster OS Running OpenMP. In In
Proc. 5th European Workshop on OpenMP (EWOMPOS.

[Mattson et al., 2004] Mattson, T., Sanders, B., and Massingill, B. (2004). Pat-
terns for Parallel Programming. Addison-Wesley Professional, first edition.

[McCalpin, 1995] McCalpin, J. D. (1995). STREAM: Sustainable Memory Band-
width in High Performance Computers. Last accessed on March 24, 2016.

[McVoy and Staelin, 1996] McVoy, L. and Staelin, C. (1996). lmbench: Portable
Tools for Performance Analysis. In Proceedings of the 1996 annual conference
on USENIX Annual Technical Conference, ATEC 96, pages 23-23, Berkeley,
CA, USA. USENIX Association.

[Mey et al., 2012] Mey, D. a., Biersdorf, S., Bischof, C., Diethelm, K., Eschweiler,
D., Gerndt, M., Kntipfer, A., Lorenz, D., Malony, A., Nagel, W. E., Oleynik,

119

Bibliography

Y., Rossel, C., Saviankou, P., Schmidl, D., Shende, S., Wagner, M., Wesarg,
B., and Wolf, F. (2012). Score-P: A Unified Performance Measurement System
for Petascale Applications. In Bischof, C., Hegering, H.-G., Nagel, W. E., and
Wittum, G., editors, Competence in High Performance Computing 2010, pages
85-97. Springer Berlin Heidelberg. 10.1007/978-3-642-24025-6_8.

[Mohr et al., 2002] Mohr, B., Malony, A. D., Shende, S., and Wolf, F. (2002).
Design and Prototype of a Performance Tool Interface for OpenMP. J. Super-
comput., 23(1):105-128.

[Morin et al., 2004] Morin, C., Gallard, P., Lottiaux, R., and Vallée, G. (2004).
Towards an efficient single system image cluster operating system. Future Gener.
Comput. Syst., 20(4):505-521.

[Miiller et al., 2012] Miiller, M. S., Baron, J., Brantley, W. C., Feng, H., Hack-
enberg, D., Henschel, R., Jost, G., Molka, D., Parrott, C., Robichaux, J.,
Shelepugin, P., van Waveren, M., Whitney, B., and Kumaran, K. (2012).
SPEC OMP2012 — an Application Benchmark Suite for Parallel Systems Using
OpenMP. In Proceedings of the Sth International Conference on OpenMP in a
Heterogeneous World, IWOMP’12, pages 223-236, Berlin, Heidelberg. Springer-
Verlag.

[Nagel et al., 1996] Nagel, W., Weber, M., Hoppe, H.-C., and Solchenbach, K.
(1996). VAMPIR: Visualization and Analysis of MPI Resources. Supercomputer,
12(1):69-80.

[Nikolopoulos et al., 2000] Nikolopoulos, D., Papatheodorou, T., Polychronopou-
los, C., Labarta, J., and Ayguade, E. (2000). Leveraging Transparent Data Dis-
tribution in OpenMP via User-Level Dynamic Page Migration. In Valero, M.,
Joe, K., Kitsuregawa, M., and Tanaka, H., editors, High Performance Comput-
ing, volume 1940 of Lecture Notes in Computer Science, pages 415-427. Springer
Berlin Heidelberg.

[Noordergraaf and van der Pas, 1999] Noordergraaf, L. and van der Pas, R.
(1999). Performance Experiences on Sun’s Wildfire Prototype. In Proceedings
of the 1999 ACM/IEEE Conference on Supercomputing, SC 99, New York, NY,
USA. ACM.

[OpenMP ARB, 2013] OpenMP ARB (2013). OpenMP Application Program In-
terface, v. 4.0.

[Oracle, 2013] Oracle (2013). Oracle Solaris Studio 12.2: Performance Analyzer.
Last accessed on March 24, 2016.

[Pacheco, 1996] Pacheco, P. S. (1996). Parallel Programming with MPI. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

120

Bibliography

[Peters and Wang, 2006] Peters, N. and Wang, L. (2006). Dissipation element
analysis of scalar fields in turbulence. C. R. Mechanique, 334:493-506.

[Ramos and Hoefler, 2013] Ramos, S. and Hoefler, T. (2013). Modeling Commu-
nication in Cache-coherent SMP Systems: A Case-study with Xeon Phi. In
Proceedings of the 22Nd International Symposium on High-performance Paral-
lel and Distributed Computing, HPDC ’13, pages 97-108, New York, NY, USA.
ACM.

[Sato et al., 2001] Sato, M., Harada, H., Hasegawa, A., and Ishikawa, Y. (2001).
Cluster-enabled OpenMP: An OpenMP compiler for the SCASH software dis-
tributed shared memory system. Scientific Programming, 9(2,3):123-130.

[Schmidl, 2009] Schmidl, D. (2009). Platzierung von OpenMP-Programmen auf
hierarchischen Speicherarchitekturen. (Diplomarbeit, RWTH Aachen Univer-

sity).

[Schmidl et al., 2013a] Schmidl, D., an Mey, D., and Miiller, M. (2013a). Per-
formance Characteristics of Large SMP Machines. In Rendell, A., Chapman,
B., and Miiller, M., editors, OpenMP in the Era of Low Power Devices and
Accelerators, volume 8122 of Lecture Notes in Computer Science, pages 58-T70.
Springer Berlin Heidelberg.

[Schmidl et al., 2014] Schmidl, D., Cramer, T., Terboven, C., Mey, D., and Miiller,
M. (2014). An OpenMP Extension Library for Memory Affinity. In DeRose,
L., de Supinski, B., Olivier, S., Chapman, B., and Miiller, M., editors, Using
and Improving OpenMP for Devices, Tasks, and More, volume 8766 of Lecture
Notes in Computer Science, pages 103-114. Springer International Publishing.

[Schmidl et al., 2013b] Schmidl, D., Cramer, T., Wienke, S., Terboven, C., and
Miiller, M. (2013b). Assessing the Performance of OpenMP Programs on the
Intel Xeon Phi. In Wolf, F., Mohr, B., and an Mey, D., editors, Furo-Par 2013
Parallel Processing, volume 8097 of Lecture Notes in Computer Science, pages
547-558. Springer Berlin Heidelberg.

[Schmidl et al., 2012] Schmidl, D., Philippen, P., Lorenz, D., Rossel, C., Geimer,
M., an Mey, D., Mohr, B., and Wolf, F. (2012). Performance Analysis Tech-
niques for Task-Based OpenMP Applications. In Chapman, B., Massaioli, F.,
Miiller, M., and Rorro, M., editors, OpenMP in a Heterogeneous World, volume

7312 of Lecture Notes in Computer Science, pages 196-209. Springer Berlin /
Heidelberg. 10.1007/978-3-642-30961-8_15.

[Schmidl et al., 2010a] Schmidl, D., Terboven, C., an Mey, D., and Biicker, M.
(2010a). Binding Nested OpenMP Programs on Hierarchical Memory Architec-
tures. In Sato, M., Hanawa, T., Miiller, M., Chapman, B., and de Supinski,
B., editors, Beyond Loop Level Parallelism in OpenMP: Accelerators, Tasking

121

Bibliography

and More, volume 6132 of Lecture Notes in Computer Science, pages 29—42.
Springer Berlin / Heidelberg. 10.1007/978-3-642-13217-9_3.

[Schmidl et al., 2013¢] Schmidl, D., Terboven, C., an Mey, D., and Miiller, M. S.
(2013c). Suitability of Performance Tools for OpenMP Task-Parallel Programs.
In Kniipfer, A., Gracia, J., Nagel, W. E., and Resch, M. M., editors, Tools for
High Performance Computing 2013, pages 25-37. Springer International Pub-
lishing.

[Schmidl et al., 2013d] Schmidl, D., Terboven, C., Iwainsky, C., Bischof, C., and
Miller, M. S. (2013d). Towards a Performance Engineering Workflow for
OpenMP 4.0. In Proc. of ParCo, Minisymposium Modeling and Engineering,
Munich, Germany.

[Schmidl et al., 2010b] Schmidl, D., Terboven, C., Wolf, A., Mey, D. a., and
Bischof, C. (2010b). How to Scale Nested OpenMP Applications on the ScaleMP
vSMP Architecture. In Proceedings of the 2010 IEEE International Conference
on Cluster Computing, CLUSTER ’10, pages 29-37, Washington, DC, USA.
[EEE Computer Society.

[Schmidl and Vesterkjeer, 2014] Schmidl, D. and Vesterkjeer, A. (2014). Scaling
OpenMP Programs to Thousand Cores on the Numascale Architecture. Poster
Session at SC14, http://scl4.supercomputing.org/sites/all/themes/
scl4/files/archive/tech_poster/tech_poster_pages/post108.html.

[Schmidl et al., 2015] Schmidl, D., Vesterkjeer, A., and Miiller, M. S. (2015). Eval-
uating OpenMP Performance on Thousands of Cores on the Numascale Archi-
tecture. In Proceedings of ParCo2015.

[Terboven et al., 2008a] Terboven, C., an Mey, D., Schmidl, D., Jin, H., and Re-
ichstein, T. (2008a). Data and thread affinity in openmp programs. In Pro-

ceedings of the 2008 workshop on Memory access on future processors: a solved
problem?, MAW ’08, pages 377-384, New York, NY, USA. ACM.

[Terboven et al., 2008b] Terboven, C., Mey, D., Schmidl, D., and Wagner, M.
(2008b). First Experiences with Intel Cluster OpenMP. In Eigenmann, R. and
de Supinski, B., editors, OpenMP in a New Era of Parallelism, volume 5004 of
Lecture Notes in Computer Science, pages 48-59. Springer Berlin / Heidelberg.
10.1007/978-3-540-79561-2_5.

[Terboven et al., 2012a] Terboven, C., Schmidl, D., Cramer, T., and an Mey, D.
(2012a). Assessing OpenMP Tasking Implementations on NUMA Architectures.
In Chapman, B., Massaioli, F., Miiller, M., and Rorro, M., editors, OpenMP
in a Heterogeneous World, volume 7312 of Lecture Notes in Computer Science,
pages 182-195. Springer Berlin / Heidelberg. 10.1007/978-3-642-30961-8_14.

[Terboven et al., 2012b] Terboven, C., Schmidl, D., Cramer, T., and an Mey, D.
(2012b). Task-Parallel Programming on NUMA Architectures. In Kaklama-

122

http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/tech_poster_pages/post108.html
http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/tech_poster_pages/post108.html

Bibliography

nis, C., Papatheodorou, T., and Spirakis, P., editors, Euro-Par 2012 Parallel
Processing, volume 7484 of Lecture Notes in Computer Science, pages 638-649.
Springer Berlin / Heidelberg. 10.1007/978-3-642-32820-6_63.

[Treibig and Hager, 2010] Treibig, J. and Hager, G. (2010). Introducing a Per-
formance Model for Bandwidth-Limited Loop Kernels. In Wyrzykowski, R.,
Dongarra, J., Karczewski, K., and Wasniewski, J., editors, Parallel Processing
and Applied Mathematics, volume 6067 of Lecture Notes in Computer Science,
pages 615-624. Springer Berlin Heidelberg.

[Vallée et al., 2003] Vallée, G., Lottiaux, R., Rilling, L., Berthou, J.-Y., Malhen,
[. D., and Morin, C. (2003). A Case for Single System Image Cluster Operating
Systems: The Kerrighed Approach. Parallel Processing Letters, 13(2):95-122.

[Wang et al., 2015] Wang, B., Schmidl, D., and Miiller, M. (2015). Evaluating
the Energy Consumption of OpenMP Applications on Haswell Processors. In
Terboven, C., de Supinski, B. R., Reble, P., Chapman, B. M., and Miiller, M. S.,
editors, OpenMP: Heterogenous Ezrecution and Data Movements, volume 9342
of Lecture Notes in Computer Science, pages 233-246. Springer International

Publishing.

[Weyers et al., 2014] Weyers, B., Terboven, C., Schmidl, D., Herber, J., Kuhlen,
T. W., Miiller, M. S., and Hentschel, B. (2014). Visualization of Memory Access
Behavior on Hierarchical NUMA Architectures. In Proceedings of the First
Workshop on Visual Performance Analysis, VPA ’14, pages 42-49, Piscataway,
NJ, USA. IEEE Press.

[Williams et al., 2009] Williams, S., Waterman, A., and Patterson, D. (2009).
Roofline: An Insightful Visual Performance Model for Multicore Architectures.
Commun. ACM, 52(4):65-76.

[Wolf, 2011] Wolf, A. (2011). Ein Softwarekonzept zur hierarchischen Paral-
lelisierung von stochastischen und deterministischen Inversionsproblemen auf
modernen ccNUMA-Plattformen unter Nutzung automatischer Programmtrans-

formation. PhD thesis, Aachen. Zusammenfassung in dt. und engl. Sprache;
Aachen, Techn. Hochsch., Diss., 2011.

[Zhang, 2008] Zhang, G. (2008). Extending the OpenMP Standard for Thread
Mapping and Grouping . In OpenMP Shared Memory Parallel Programming,
volume 4315/2008, pages 435-446.

123

	List of Figures
	List of Tables
	Introduction
	Main Contributions
	NUMA Architectures
	State-of-the-art in NUMA Programming
	Experiment Hardware

	A Benchmark-Guided Characterization of Large Shared-Memory Machines
	Memory Performance
	Serial Memory Performance
	Parallel Memory Bandwidth
	memory_go_around
	Data Management

	OpenMP Runtime Issues
	EPCC Benchmarks
	Nested Parallelism

	Distance Matrices
	System Locality Distance Information Table
	Automatic Matrix Generation

	Summary

	Improved Memory Allocation and Migration in OpenMP Programs
	Facets of Affinity in OpenMP Programs
	Distribution of Data
	Placement of Threads
	Distribution of Work

	Generating Reasonable Place Lists
	The Traveling Salesman Problem
	Approximation algorithms
	Evaluation
	Recommendation

	OMPX: An OpenMP Extension Library for Memory Placement
	Memory Allocation and Initialization
	Memory Migration
	Performance Modeling for Memory Migration

	Summary

	NUMA-aware Scheduling Strategies
	Load Balancing versus Data Locality
	A NUMA-aware Load Balancing Benchmark

	A NUMA-aware Work Scheduler
	The Scheduling Principle
	Work Stealing
	Performance Results

	Locality-aware Task Programming
	Implementation of task schedulers
	Task creation patterns
	NUMA-aware task creation
	Tasking Performance on NUMA systems

	Summary

	Enabling NUMA-aware Task-performance Analysis
	Task-related Performance Issues
	Analyzing Tasks with Sampling Based Performance Tools
	Intel VTune Amplifier XE
	Oracle Solaris Studio Performance Analyzer

	Event-Based Performance Tools
	Gathering performance data for tasks in Score-P
	Detecting task-related performance issues

	Improvements to Investigate Tasks on NUMA Machines
	Shortcomings in Score-P Regarding Task Analysis
	Combining Traces with Hardware Information
	Evaluation

	Summary

	A Workflow to Program Large SMP Machines
	Tools-guided Performance Tuning on Big SMP Machines
	Tuning Cycle
	Investigated Issues
	Conjugate Gradient Method

	Modeling OpenMP Performance
	Performance Models
	A Performance Model for large SMPs
	Model Description
	Example: Conjugate Gradient Method

	Case Studies
	SHEMAT-Suite
	TrajSearch

	Summary

	Summary and Conclusion
	Bibliography

