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CHAPTER 1
Introduction

Gene expression is the process of selectively reading genetic information and it describes
a life-essential mechanism in all known living organisms. Key players in the regulation of
gene expression are proteins that interact with DNA. For example, histone proteins can be
modified (histone modifications) and locally influence the DNA’s accessibility. The DNA’s
accessibility is a crucial feature for transcription factor proteins, as they bind to the DNA.
DNA-protein interaction sites are nowadays analyzed in a genome wide manner with chro-
matin immunoprecipitation followed by sequencing (ChIP-seq).

ChIP is a complex multistep protocol that provides millions of short DNA fragments cov-
ering the regions around the protein-DNA interaction sites. The subsequent sequencing step
produces DNA strings (reads) of the beginning or the end of these fragments. The informa-
tion of the reads’ positions, which is associated with the positions of the protein-DNA inter-
action sites, gets lost during the sequencing process. Sophisticated string search algorithms
have to be applied to reconstruct these positions by mapping the reads back to a reference
genome. As the mapped reads only partially describe the original DNA fragments, the exact
positions of the DNA-protein interaction sites have to be determined.

To each genomic location, a discrete value is assigned, which corresponds to the num-
ber of reads that cover this position. The number of reads corresponds to the strength of
the protein binding event. Peaks, that is, regions with a signal higher than expected by
chance, describe to the protein-DNA interaction sites. Detecting such peaks is the funda-
mental computational challenge in the ChIP-seq analysis. The great majority of published
computational tools have concentrated on the detection of peaks in a single ChIP-seq signal.
As in every complex wet lab protocol, ChIP-seq contains a wide range of potential biases.
To reduce the effect of unwanted biases, ChIP-seq experiments are often replicated, which
helps to distinguish between biological and random events and to verify the reliability of
all experimental steps. Complex ChIP-seq based studies emphasize the demand of meth-
ods to compare replicated ChIP-seq signals which are associated with distinct biological
conditions. For example, the detection of histone changes for distinct cellular conditions is
an outstanding crucial problem in current biological and medical research which leads to a
deeper understanding of gene expression regulation. For example,

• cancer can exhibit histone changes which affect gene expression. Koues et al. (2015) for
instance analyze regulatory features including histone changes between lymphoma
patients and a control group with healthy individuals.

• histone states have a high impact on cell differentiation and play therefore a key role
in biological processes. Lin et al. (2015) investigate regulatory changes during the
development of antigen-presenting dendritic cells.

• changes in histones lead to cell activation. Saeed et al. (2014) for instance explore how
monocyte cells are activated to macrophages cells which play a key role in the defence
system of the organism.

1



Figure 1.1.: Example for changes in histone modification levels of monocyte and macrophage cells from the
study of Saeed et al. (2014). With ChIP-seq it becomes possible to assign to each genomic position
a discrete value that reflects the strength of the DNA-protein binding. Replicated ChIP-seq sig-
nals are shown as line plots for the monocytes (red) and macrophages (green) cells for the regions
where the genes IRAK3 and PDK2 are located in the human genome. Differential peaks between
the profiles of monocyte and macrophage cells are indicated by black boxes: DP2 and DP3 gain
monocyte and DP1 and DP4 gain macrophage signal. An increasing signal in this particular
histone modification (H3K4me3) usually leads to an increase in the gene expression.

All these studies are about the comparison of histone modification levels from distinct ex-
perimental conditions. Figure 1.1 gives an example for the replicated ChIP-seq signal based
on histone modifications of monocyte and macrophage cells from the study of Saeed et al.
(2014). Differential peaks (DPs) between the green and red signal correspond to changes of
certain histone modifications. Several computational challenges arise when detecting DPs:

• the shape of ChIP-seq peaks depends on the underlying protein of interest. For ChIP-
seq data of histone modifications, the DNA-protein interactions occur in mid-size to
large domains. Here, domains can span several hundreds of base pairs and may have
intricate patterns of gains and losses of ChIP-seq signals within the same domain. In
contrast, ChIP-seq from transcription factors mostly happens in small isolated peaks.

• artefacts, which arise due to the complexity of the ChIP-seq protocol, produce signals
with distinct signal-to-noise ratios, even when they are produced in the same lab and
follow the same protocols (Furey, 2012; Meyer and Liu, 2014). Furthermore, differ-
ent sequencing depths between samples aggravate the comparison of their ChIP-seq
signal. Hence, a robust normalization method for the ChIP-seq signals is required.

• clinical samples, where patients have a distinct genetic background, introduce further
variation to the distinct ChIP-seq signals (Ashoor et al., 2013). Moreover, replicated
ChIP-seq experiments introduce further complexity which has to be reflected by the
use of sophisticated statistical models.

Current differential peak calling methods fail to cover all listed challenges. They apply
heuristic signal segmentation strategies, such as window-based approaches, to identify DPs.
There are only a few attempts to normalize ChIP-seq data. Furthermore, most methods do
not support replicates. Hence, there is a clear need for computational methods that address
all challenges.

In this thesis, we propose ODIN and THOR, algorithms to determine changes of protein-
DNA complexes for distinct cellular conditions in ChIP-seq experiments without and with
replicates. In particular, our algorithms detect DPs in the above described studies from Lin
et al. (2015), Koues et al. (2015) and Saeed et al. (2014). Our methods address all described
challenges. We apply a statistical model (hidden Markov model) to call DPs and to handle
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replicates. We also introduce a novel normalization strategy which is based on control re-
gions. These features lead to comprehensive algorithms that accurately call DPs in ChIP-seq
signals.

Moreover, the evaluation of differential peak calling algorithms is an open problem. The
research community lacks both a direct metric to rate the algorithms and data sets with a
genome wide map of DNA-protein interaction sites which can serve as gold standards. We
propose two alternative approaches for the evaluation. First, we present indirect metrics to
quantify DPs by taking advantage of gene expression data and second, we use simulation
to customize artificial gold standards.

1.1 Organization of the Thesis

In Chapter 2, we first explain the biological and technical background. Second, we formal-
ize the differential peak calling problem. Finally, we discuss the previous computational
work done on this field and formulate specific goals of this thesis. In Chapter 3, we explain
our method to call differential peaks in ChIP-seq signals. First, we give details about the
preprocessing pipeline which is necessary for the ChIP-seq analysis. Next, we explain the
differential peak calling procedure. We conclude with the postprocessing pipeline of our
method. In Chapter 4, we describe the experiments performed in this thesis. First, we pro-
pose an algorithm to simulate ChIP-seq reads that contain differential peaks. Second, we
describe our evaluation approach which is based on gene expression data. We also list the
biological data used for our experiments and give a short introduction to the statistical test
for the evaluation. Finally, we detail the experiments we perform to evaluate differential
peak calling methods. In Chapter 5, we give an overview of the results we have achieved
with our experiments. We distinguish between our methods THOR that takes replicates into
account and ODIN that does not take replicates into account. The final Chapter 6 contains a
concluding discussion and an outlook to future work.
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CHAPTER 2
Background

We first introduce the fundamental biological concepts of DNA, gene expression and epige-
netics. We then explain ChIP-seq, a method to investigate epigenetics by identifying DNA-
protein complexes in a genome-wide manner. Next, we detail computational aspects of the
ChIP-seq data analysis. We introduce the peak calling problem on a single ChIP-seq signal.
The extension of this problem is the differential peak calling problem, which is extensively
addressed in this thesis. We motivate the differential peak calling with current biological
and medical studies and point out arising challenges. Next, we discuss previous work that
is related to this thesis. Finally, we formulate the aims of the thesis.

2.1 Biology

We give an overview of the biological concepts that are necessary to understand the thesis.
See Alberts et al. (2002) for a more detailed description of molecular biology and, in partic-
ular, for a gentle introduction to DNA. Lodish et al. (2007) give a detailed introduction to
gene expression and Allis et al. (2007) explain epigenetics in detail.

2.1.1. DNA

Deoxyribonucleic acid (DNA) is the carrier of genetic information of living organisms. DNA
is a chain molecule with nucleotides as elements. While the phosphate group and the sugar
molecule are similar, the third element of a nucleotide, the nucleobase (or base), varies. We
therefore can describe a DNA strand by its bases adenine (A), cytosine (C), guanine (G) and
thymine (T). DNA is directional, that is, it has a 5’ and a 3’ end. The nucleotides adenine
and thymine as well as cytosine and guanine can pair and form a double-stranded structure.
Both strands are coiled around each other and build the typical double helix. The strands
are reverse complements of each other.

2.1.2. Gene Expression

Gene expression is the process of selectively reading genetic information contained in the
DNA. Processing the genetic information works in two steps: first, DNA is translated into
RNA molecules, and second, the RNA is translated into proteins. In the first step, a protein
complex called RNA polymerase II binds to the DNA and successively reads the genetic
information of a DNA molecule (transcription). Figure 2.1 shows the concept of gene tran-
scription. The RNA polymerase complex (1) attaches to the promoter of gene X, (2) locally
separates the two DNA strands, (3) creates an RNA molecule by reading one nucleotide at
a time and (4) finally reconnects the two DNA strands. In the second step, a certain protein
translates the RNA to protein molecules (translation). Proteins are life-essential molecules
which contribute to the structural components of a cell and perform all activities within a
cell. Various control mechanisms of a cell facilitate production of proteins on demand. For
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2.1. Biology

example, in Figure 2.1 certain proteins, so called transcription factors (TFs), attach to the
DNA and may effect the rate of transcription initiation.

regulatory sequence

spacer DNA

gene regulatory proteins
general 

transcription 
factors

promoter

gene X

RNA polymerase II
gene 

regulatory 
proteins

5' 3'

Figure 2.1.: Gene transcription. In this example the transcription of gene X is shown. The RNA polymerase
II attaches to the gene promoter, a DNA sequence that is upstream located to the gene. Also,
general transcription factors bind to the promoter and help the polymerase to position properly at
the promoter. Several control mechanisms determine the gene transcription. For example, gene
regulatory proteins such as TFs bind to regulatory sequences and effect the rate of transcription
initiation. Regulatory sequences, also called enhancer regions, may either be located close to the
promoter, far upstream or close downstream of the gene. The figure is based on Alberts et al.
(2002).

2.1.3. Epigenetics

Epigenetics investigates changes in gene expression by mechanisms other than variation in
the DNA sequence such as the chromatin organization. Chromatin is a macromolecule that
helps packaging DNA and proteins to make them fit within the cell. It also serves as an
index system to organise the genome. Figure 2.2 depicts the concept of chromatin. There
are two chromatin states, open and closed chromatin, which facilitate the DNA to be more
or less compact. Hence, the states effect the gene expression, because for genomic regions
with close chromatin the DNA is less accessible for TFs compared to regions with open
chromatin. Chromatin states play a key role for example in cell differentiation by allowing
the selective expression of particular genes.

A nucleosome is the fundamental core unit of chromatin and consists of eight histones.
Histones are proteins where the DNA is wrapped around to be spatially organised in a
maximal condensed way. There are two types of histones: core histones form the nucleo-
some and linker histones bind the nucleosome to the DNA. Amino-terminal histone tails
drive through the nucleosome core and make contact with adjacent nucleosomes to build
the chromatin structure.

Enzymes may chemically modify the histone tails which then affect the overall chromatin
structure. The enzyme adds a chemical flag to the histone tails comparable to DNA methyla-
tion or the chromatin remodelling processes. We refer to a histone with a particular chemical
flag as histone modification. Importantly, some histone modifications effect the chromatin
which effects the gene expression. Particular histone modifications are therefore associated
for example to activation or deactivation of gene expression (see Figure 2.2).

The naming of a histone modifications follow the following structure: the histone num-
ber in a nucleosome whose tail is modified, the single-letter amino acid abbreviation, the
amino acid position in the protein, the type of the modification and the number of modifi-
cations. For instance, the histone modification H3K4me3 describes a chemical modification
of histone three (H3), where the amino acid lysine at the fourth position (K4) is changed by
adding three methyl groups (me3). In the following we list histone modifications which are
considered in this thesis. Histone modifications H3K79me2 and H3K36me3 are associated
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with transcription (Nguyen and Zhang, 2011; Sims Iii and Reinberg, 2009). Histone modifi-
cation H3K4me3, typically located in the promoter, H3K4me1, typically located in enhancer
regions, as well as H3K27ac and H3K9ac are associated with activation (Briggs et al., 2001;
Creyghton et al., 2010; Grant et al., 1999). Histone modification H3K9me3 and H3K27me3
are associated with repression (Cao et al., 2002).
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Figure 2.2.: Epigenetic concept. Among others, gene expression is regulated by closed and open chromatin.
Closed chromatin exhibits repressive histone modifications and inhibits RNA ploymerases II to
attach to the DNA. In contrary, open chromatin has active histone marks as well as certain
activator proteins. Activator proteins are gene regulatory proteins which are also shown in Fig-
ure 2.1. They interact with mediator proteins and enable transcription factors as well as RNA
polymerase to bind to the DNA. RNA polymerase reads the DNA from 5’ to 3’ end. Thereby,
RNA molecules are produced which eventually are translated to proteins. Histone modifications
are also associated with DNA transcription. The figure is based on Lodish et al. (2007).

2.2 ChIP-seq to Analyze Epigenetics

We introduce chromatin immunoprecipitation followed by sequencing (ChIP-seq), a method
to identify DNA-protein complexes in a genome-wide manner. First, we explain ChIP which
is a method to isolate DNA fragments that are attached to certain proteins of interest. We
then explain DNA sequencing which is used to determine the nucleotide sequence of a DNA
molecule and its position with regard to a reference genome. Finally, we describe ChIP-seq
which combines ChIP with DNA sequencing. Further, we emphasize important challenges
that have to be considered in the analysis of ChIP-seq experiments.

2.2.1. ChIP

Chromatin immunoprecipitation (ChIP) is used to investigate protein-DNA interactions in-
side a cell. In particular, ChIP enables localization of posttranslational modifications of the
histone tails (see Section 2.1.3) as well as DNA target sites of TFs in the genome. The ba-
sic idea of ChIP was first reported in the 1960s, while applications of ChIP in studies of
histone-DNA interactions go back to the late 1970s (Jackson, 1978; Collas, 2010).
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The ChIP protocol has several steps. First, DNA and proteins in a cell are cross-linked
with formaldehyde. These DNA-protein complexes are fragmented for example by soni-
cation into fragments of 200− 1000bp. Specific antibodies are then used to pull out (im-
munoprecipitate) protein-DNA complexes that contain the proteins of interest. Finally, the
cross-link is reversed (formaldehyde is heat-reversible) and the DNA that was bound to the
protein is purified. To identify the DNA sequences associated with the proteins of interest,
downstream analysis, such as DNA sequencing (see Figure 2.3), is required.

2.2.2. DNA sequencing

DNA sequencing methods determine the base sequence of a DNA sample. The first ap-
proach to sequence DNA was the chain-termination method invented by Sanger et al. (1977).
However, routine studies of mammalians became possible by high-throughput sequencing
technologies which are also called next-generation sequencing (NGS) or second-generation
sequencing. NGS takes advantage of parallelization: nucleotides are read in parallel and a
large number of DNA fragments is considered at the same time (Shendure and Ji, 2008).
Parallelization is often done by cloning DNA fragments which is usually performed by
PCR (Mullis and Faloona, 1987). Each DNA fragment can be sequenced from one end,
resulting in single-end reads, or from both ends, resulting in paired-end reads. In most
cases, the reads are shorter than the DNA fragments and therefore give only partially the
base sequence of the fragment. Compared to Sanger sequencing, the costs of NGS are much
lower, while the base calls are less accurate and the reads are smaller. NGS is the current
method for large-scale sequencing applications. In many cases, a reference genome of the
organism is known. Then, sequencing of organisms results in the computational problem to
determine the position of each read in the genome. We refer to the process of estimating the
read positions as aligning or mapping the reads to the reference genome. There are various
technologies for DNA sequencing. All sequencing experiments analyzed in this thesis were
performed with Illumina devices.

2.2.3. ChIP-seq Method

ChIP-seq combines the ChIP protocol with high-throughput sequencing technologies and
thereby offers a low-cost way to identify DNA-protein interactions in a genome-wide man-
ner (Park, 2009). ChIP-seq was one of the earliest applications of NGS (Johnson et al., 2007).
Figure 2.3 gives an overview of the ChIP-seq workflow. First, the DNA obtained by ChIP
(see Figure 2.3, step 1) and associated with the proteins of interest is sequenced by NGS
methods (see Figure 2.3, step 2). NGS sequencing typically produces short (~50− 100bp)
single-ended reads. The reads are then aligned to the reference genome (Park, 2009) (see
Figure 2.3, step 3). Finally, a genomic signal is created based on the aligned reads (see Fig-
ure 2.3, step 4). Genomic regions where reads accumulate more than by chance (peaks) are
identified within the ChIP-seq signal (peak calling). Peaks represent regions in the genome
where the proteins of interest are localized in the original DNA sample (Collas, 2010).

The size of DNA fragments is larger than the protein-DNA interaction site. Therefore,
reads derived from the DNA fragments map to different genomic locations which results in
fuzzy peak shapes. Furthermore, peaks usually have different shapes due to the underlying
proteins of interest taken into account by the ChIP protocol. TFs usually attach to small DNA
regions without any further TF in the vicinity. The ChIP-seq landscape of TFs therefore tends
to exhibit sharp, isolated peaks. In contrary, histone modifications are organised in groups
where all histones are close to each other. In general, this leads to a complex ChIP-seq
landscape with several peaks in close vicinity. Histone modifications at active regulatory
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elements exhibit relatively small protein domains. Broad domains are caused by a large
number of proteins, which typically occur for histone modifications that repress genomic
regions.

reference genome

3.) alignment

2.) DNA purification 

     and sequencing

1.) immunoprecipitation 

     and shearing

4.) genomic signal

5' 3'

Figure 2.3.: ChIP-seq workflow. We show DNA that is wrapped around histones which may or may not be
modified. The histone modifications are indicated by a green signal at their tails. First, ChIP is
used to fetch out the proteins of interest with specific antibodies and to shear the DNA. Antibodies
are represented as elements that are attached to the modified histones. Next, NGS methods are
used to create reads which are mapped to a given reference genome. As the DNA fragment is not
entirely sequenced, the reads stem either from the beginning or the end of the fragment. Reads
can be mapped to the forward strand, that is, left oriented reads are mapped from the 5’ to 3’ end
of the genome; or to the reverse strand, that is, right oriented reads are mapped from 3’ to 5’ end
of the genome. Typically, a discrete signal is then derived from the set of aligned reads for the
entire genome. It is a common procedure to extend the ChIP-seq reads to match the fragment
size. Peaks indicated by red boxes in the ChIP-seq signal refer to positions in the genome where
DNA interacts with the proteins of interest.

2.2.4. Control Sample

Each experimental step in the ChIP-seq protocol potentially involves various sources of arti-
facts. For example, DNA shearing usually does not result in a uniform fragment distribution
of the genome, as open chromatin regions tend to be fragmented more easily than closed re-
gions. Also, repetitive regions in the sample DNA may incorrectly seem to be enriched
due to differences in the reference and sample genome (Park, 2009). Moreover, the DNA to
be analyzed may be contaminated with DNA that was not bound by the chosen antibody.
Therefore, it is highly recommended to compare a peak in a ChIP-seq profile to a control
sample in the same cell in order to determine its significance (Meyer and Liu, 2014). There
are three different ways to obtain control DNA:

• input-DNA: a fraction of the DNA sample is removed prior to the immunoprecipita-
tion step;

• mock IP DNA: DNA is obtained from immunoprecipitation without an antibody; and
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• DNA from non-specific immunoprecipitation, that is, the immunoprecipitation step is
performed for a fraction of the sample DNA with an antibody that is known to not be
involved in DNA bindings.

Input-DNA is the most widely used method as it is assumed to test against the most com-
mon artifacts introduced by the ChIP-seq protocol such as bias in the DNA fragmentation
process (Park, 2009; Furey, 2012).

2.2.5. Arising Challenges

The ChIP-seq protocol is frequently refined to improve its accuracy (Meyer and Liu, 2014).
Various challenges arising from both the technical and computational side have to be over-
come to improve the peak detection. Here, we list the most important challenges associated
with ChIP-seq.

Antibody

The antibody chosen for the ChIP experiment directly affects how well defined a peak in
the ChIP-seq signal appears. Thus, the antibody’s sensitivity and specificity is crucial for
the analysis. High quality antibodies precisely pull out the proper protein-DNA complexes
and thereby ensure a high level of enriched signal compared to the background noise. For
some proteins there is no proper antibody, such that these proteins cannot be examined by
ChIP-seq. Furthermore, the quality of the antibody may also depend on the manufacturer.

Cell Population

A typical ChIP experiment needs approximately 107 cells and thereby limits the number
of ChIP experiments that can be performed on a biological sample. The number of cells de-
pends on the quality of the antibody as well as on the abundance of the target protein (Furey,
2012). Some techniques (Acevedo et al., 2007; Adli and Bernstein, 2011) have been developed
to decrease the number of required cells. However, fewer cells generally produce less well
defined peaks in the resulting ChIP-seq signal.

Sequencing

DNA fragments obtained from ChIP are sequenced and mapped to a reference genome. The
sequencing depth is crucial for the success of the ChIP-seq experiment. It is recommended
to have approximately 2 ·107 reads for ChIP-seq experiments with the human genome and
target proteins that lead to relatively isolated ChIP-seq peaks such as active histone marks.
Apart from the absolute number of reads, it is recommended that the amount of reads map-
ping to distinct genomic location is higher than 80% (Furey, 2012).

There are genomic regions that cannot be captured in the ChIP-seq analysis (ENCODE
Project Consortium, 2012). These regions comprise unstructured, high signals and occur in-
dependently of the type of NGS experiment. We refer to such regions as blacklisted regions.
They are typically ignored in the ChIP-seq analysis.

Several studies address sequencing-specific bias (Khrameeva and Gelfand, 2012; Allhoff
et al., 2013) which have to be taken into account by the mapping algorithm and the down-
stream analysis. Particularly important is the bias due to GC-content. Benjamini and Speed
(2012) describe a dependency between the fragment count and the fragment’s GC-content
which may lead to artificial, non-biological high signals in the ChIP-seq experiment.
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PCR Duplicates

PCR duplicates lead to artificially induced reads that impose unwanted bias on the down-
stream analysis. There are two ways how these duplicates are created. First, during PCR
(see Section 2.2.2) of the sequencing procedure, duplicates may be created by accidentally
considering several times the same fragment. Second, PCR duplicates may be created in the
picture analyzing step during the sequencing process. That is, one DNA feature is mistaken
as two or more features (Meyer and Liu, 2014; Maze et al., 2014). Both types of PCR du-
plicates lead to reads which are mapped to the same genomic location. However, because
of sonication-based fragmentation, it is highly unlikely that two DNA fragments will stem
from the same genomic location. Hence, reads with identical mapping positions indicate
that they are PCR duplicates.

Fragment Size Estimation

ChIP-seq experiments typically comprise single-ended reads. For all DNA fragments, these
reads are expected to come from on average uniform ratio of both DNA strands. Further-
more, the reads only partially cover one end of the fragments. Hence, the read distribution
exhibits two peaks up- and downstream of the proteins of interest (see Figure 2.4). Typi-
cally, the reads are extended to the original fragment length, such that the read distribution
provides a single peak that correlates with the protein position.

The fragment length can be obtained from the ChIP-seq protocol or be computationally
estimated with the aligned ChIP-seq reads. Due to some expected difficulties in the pro-
tocol’s accuracy, the fragment size is usually derived from the reads (Pepke et al., 2009). In
Figure 2.3 and Figure 2.4, the extension size of reads is indicated by a distance arrow for each
read. The extended reads are then used to generate the genomic signal (Step 4 in Figure 2.3).

2.2.6. Quality Measures of ChIP-seq Experiments

Successfully calling peaks in a ChIP-seq signal highly depends on the signal’s signal-to-
noise ratio (Landt et al., 2012). The ChIP-seq signal correlates to DNA-protein interaction
sites. Signal that is not correlated to the these interaction sites is called background noise.
Background noise may stem from various sources such as the fragmentation step or poor
antibodies in the ChIP protocol. A high signal-to-noise ratio is highly desired for all down-
stream analyses of ChIP-seq data as it positively effects the accuracy of the peak calling step.

Landt et al. (2012) introduced several widely used measures to evaluate ChIP-seq data.
These metrics give indications about the quality of the ChIP-seq experiment. First, the frac-
tion of reads in peaks (FRiP) is an indicator for the signal-to-noise ratio in the data. The
FRiP is estimated by calling peaks in a ChIP-seq signal and computing the ratio of reads
within the called peaks and the overall number of reads. The higher the FRiP, the better the
signal-to-noise ratio. See Figure 2.5 for an illustration of FRiP. Second, the non-redundant
fraction (NRF) of reads denotes the ratio between the number of positions in the genome
that uniquely mappable reads map to and the total number of uniquely mappable reads.
NRF is associated with the number of PCR duplicates (see Section 2.2.5) and measures the
entropy of the set of aligned reads. NRF decreases with sequencing depth as at some point
PCR-amplified DNA fragment will be sequenced repeatedly.
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Figure 2.4.: Fragment size estimation. Reads are mapped to the forward strand (black line) or reverse strand
(dotted black line) of the reference genome. The distributions of the reads (red and pink) build two
peaks at the left and right side of the protein of interest, as only the beginning or the end of the
DNA fragments is sequenced. The original DNA fragments are indicated as dotted lines which
extend the reads. Because of the shearing process of the ChIP-seq protocol, the fragments slightly
differ in their start positions. The fragmentation size is computed and the reads are artificially
extended to obtain the original fragment length. The distribution of the extended reads (red)
exhibits one peak whose position correlates with the position of the protein of interest. The figure
is based on Park (2009).

2.3 Computational Analysis of ChIP-seq

Computational analysis is necessary to derive the positions of DNA-protein complexes from
ChIP-seq data. First, we introduce the single signal peak calling problem. Next, we formal-
ize the differential peak calling problem and motivate it by presenting related studies of
current biological and medical research. Finally, we point out arising challenges.

2.3.1. Single Signal Peak Calling Problem

A common goal in ChIP-seq data analysis is the genome-wide detection of protein-DNA
interactions in a single biological condition. The protein-DNA interaction positions are as-
sociated with peaks in a ChIP-seq profile. We refer to the detection of peaks in a ChIP-seq
profile as the single signal peak calling problem.

Definition 2.1 (Single Signal Peak Calling Problem). For a given vector X describing a ChIP-seq
profile, find genomic positions (peaks), where the signal is significantly enriched.

To each genomic location, we assign a discrete value, which corresponds to the number
of reads that cover this position. The number of reads corresponds to the strength of the
protein binding event. Hence, we describe a ChIP-seq profile with a vector X .

Single signal peak callers (SPCs) typically work in two phases. First, they segment the ge-
nomic signal into background regions and regions with potential peaks. The segmentation
is either performed with a window-based approach or more sophisticated methods like hid-
den Markov models (HMMs) (Rabiner, 1989). Then, they perform a statistical test to check
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Figure 2.5.: Example for different signal-to-noise ratios. The figure shows two ChIP-seq profiles of histone
modification H3K27ac based on two cancer patients of the same cell. We therefore assume that
the ChIP-seq profiles have similar peaks. ChIP-seq profile S1 has a low and profile S2 a high
signal-to-noise ratio (please note the different y-axis scales). To compute FRiP, peaks (black bars
below the signal) are first called for S1 and S2. Next, the number of reads falling into these peaks
is divided by the total number of reads. The ChIP-seq data stem from Koues et al. (2015).

whether the potential peaks significantly differ to the background signal. SPC provide a list
of peaks where each peak is typically assigned to a p-value.

The single signal peak calling problem has already been addressed by several research
groups. Wilbanks and Facciotti (2010) as well as Chen et al. (2012) review and evaluate
various SPCs. Single signal peak callers with good evaluation performance in transcrip-
tion factor binding sites (TFBS) studies are for example PeakSeq (Rozowsky et al., 2009),
QuEST (Valouev et al., 2008) and MACS (Zhang et al., 2008). Moreover, sophisticated seg-
mentation methods like HMMs are used for example by HMCan (Ashoor et al., 2013) and
BayesPeaks (Spyrou et al., 2009). Figure 2.6 gives an example for the peak prediction of a
SPC. Light blue stripes below the ChIP-seq profiles indicate genomic regions, where the SPC
calls a peaks.

ChIP-seq experiments are often replicated to avoid considering peaks resulting from vari-
ability by random chance. Replication is therefore desired to distinguish between biological
and random events as well as to verify the reliability of experimental steps (Park, 2009).
The majority of SPCs is not able to handle replicates; and only recently, strategies have been
developed for this purpose. For example, the ENCODE project proposes the use of the irre-
producible discovery rate (IDR). IDR finds common peaks of a set of candidate peaks that
are separately called by SPCs on individual replicates (Landt et al., 2012; Li et al., 2011).
Also, Ibrahim et al. (2015) propose a method for the joint analysis of ChIP-seq replicates for
the single signal peak calling problem. Their method detects peak boundaries with higher
precision than identifying common peaks in replicates with IDR or pooling ChIP-seq reads
of replicates.

2.3.2. Differential Peak Calling Problem

Differential peak calling is an important problem in current medical and biological research
that investigates changes in protein-DNA interactions of distinct cellular conditions. In con-
trary to the single signal peak calling problem, this computationally challenge has not been
extensively addressed. The differential peak calling problem is defined as follows:
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Definition 2.2 (Differential Peak Calling Problem). Given two experimental conditions X1 =
{X11, . . . ,X1k} and X2 = {X21, . . . ,X2k} containing a set of genomic ChIP-seq signals, find genomic
positions (differential peaks) where X1 and X2 significantly differ.

We are interested in significant differential peaks (DPs) between two biological conditions
X1 and X2 which can or cannot contain replicates.
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Figure 2.6.: Differential peak calling example. We show an example of two distinct ChIP-seq signals for the
histone modification H3K4me2 before (0h, upper signal) and 24 hours after (24h, lower signal)
induction of TLR4 signaling of macrophages around the gene Irf1 (Kaikkonen et al., 2013). We
indicate with squares examples of regions, which are putative DPs with gain (or loss) of ChIP-seq
signal after 24 hours of TLR4 treatment. The height of the squares indicates the size of the highest
ChIP-seq signal for a DP. We display results from the SPC PeakSeq (grey bars) and a two-stage
peak caller based on applying DESeq on PeakSeq peaks (black bars). PeakSeq successfully detects
broad peaks describing ChIP-seq signal for each cell. The two-stage peak caller can detect DP1
and DP3, but cannot detect changes within the broad candidate peaks such as DP2 or complex
changes in the signal within the Irf1 gene body (DP4 and DP5).

Initially, differential peak calling was performed by peak calling on individual ChIP-seq
signals. Peaks detected in only one of the conditions were then defined as cell-specific
peaks (Heinz et al., 2010). However, such methods are not able to detect cases where peaks
were presented (and called) in both cell types, but exhibit a significant increase (decrease)
of the DNA-protein signal in one of the cells. In the example of Figure 2.6, which is based
on peaks from PeakSeq (Rozowsky et al., 2009), only DP1 would be detected as cell-specific.
Moreover, most SPCs do not provide any functionality to normalize ChIP-seq profiles. Thus,
it is likely that they show bias in experiments with distinct number of reads.

A more sophisticated strategy to detect DPs is the combination of peaks from SPCs with
statistical methods for the analysis of differential gene expression of RNA-seq data. These
two-stage differential peak callers (DPCs) first combine peaks that are called on individual
ChIP-seq conditions using SPCs. Next, they count the number of reads for each candidate
peak, perform signal normalization and apply statistical tests assuming a differential count
model. Therefore, they can detect candidate peaks where the number of read counts is
significantly higher or lower in one of the ChIP-seq conditions. While this approach allows
the detection of significant changes in ChIP-seq data within candidate peaks, it is highly
dependent on the initial peak calling step as well as on the strategy used to create the set
of candidate peaks. For example, histone modifications associated with active regulatory
regions occur in domains spanning several hundreds of base pairs and may have intricate
patterns of gain/loss of ChIP-seq signals within the same domain. SPCs tend to call the
domains as single peaks and consequently the differential analysis is only able to evaluate
the differential counts of the complete called peaks. In Figure 2.6, the SPCs calls one peak
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for the gene body of Irf4. The DPC is therefore not able to distinguish between DP4 and
DP5.

A further strategy to detect DPs is to first segment the genome with a fixed window. Next,
it is tested whether the windows contain differential counts. Heuristic methods are applied
to merge windows in close vicinity to each other and with similar counts (Shen et al., 2013).
The performance of such methods depends on the window merging strategy as well as the
window size. Too large windows tend to omit small peaks in the ChIP-seq signal. For
example, DP2 in Figure 2.6 is not detectable with a window size of 1000bp, which is the
default parameter of the DPC Diffreps (Shen et al., 2013).

2.3.3. Example of Studies Comparing ChIP-seq Signals

There are several studies of current biological and medical research that compare ChIP-seq
signals under distinct conditions. These studies investigate for example

• cell differentiation: Lin et al. (2015) investigate regulatory changes in a mouse model
during the development of antigen-presenting dendritic cells with regard to the his-
tone modifications H3K4me1 and H3K27ac.

• cell activation: Saeed et al. (2014) perform ChIP-seq experiments in humans for mono-
cytes that are activated to macrophages. The differentiation from monocytes to macro-
phages plays a key role in the host’s defence system. The study describes epigenetic
differences with regard to several histone modifications. Biological replicates based on
different donors are used for the study.

• comparison of healthy and diseased individuals: Koues et al. (2015) analyze the dif-
ference of regulatory genomic features between healthy individuals and lymphomas
patients. They investigate the histone modification H3K27ac.

• the activation of signaling pathways: Kaikkonen et al. (2013) describe the response of
macrophages after the time dependent activation of the TLR4 pathway which plays
an important role in the immune system. Their study comprises a mouse model and
does not provide replicates.

Calling DPs in these studies can give findings that generally lead to a deeper understanding
of epigenetics. Depending on the application, DP predictions may exhibit starting points for
drug discovery and epigenetic biomarker detection (Koues et al., 2015; Saeed et al., 2014),
give new insights into cell differentiation steps (Lin et al., 2015) or unravel mechanisms for
the immune system activation (Kaikkonen et al., 2013).

2.3.4. Arising Challenges

The differential peak calling problem leads to computational challenges which arise addi-
tionally to the ChIP-seq specific tasks described in Section 2.2.5.

Replicates

Replicated ChIP-seq experiments can be used to reduce the effect of unwanted technical
bias. There are two kinds of replicates of ChIP-seq experiments. Biological replicates stem
from independent cell cultures or tissue samples to ensure reproducibility. Technical repli-
cates are based on measuring a single biological sample and can therefore only be used to
estimate the variability of the sequencing step (Yang et al., 2014). These two kinds exhibit
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different characteristics. For instance, the variance between biological replicates is supposed
to be higher than for technical replicates, as they stem from various biological samples.

If replicates are available, the problem becomes computationally more complex as more
information has to be taken into account. In particular, count data derived from NGS data
usually exhibit overdispersion, that is, the variance in the data exceeds the mean (Anders
and Huber, 2010; Cameron and Trivedi, 2001; Ismail and Jemain, 2007). To ensure accurate
DP estimates on must take into account overdispersion. This typically requires the use of
complex statistical models.

Normalization

For the differential peak calling problem, we compare several ChIP-seq profiles which typi-
cally exhibit different sequencing depths as well as different signal-to-noise ratios. ChIP-seq
profiles may be over- or underrepresented when comparing them, and therefore normaliza-
tion against different sequencing depths is necessary. The signal-to-noise ratios should also
be considered in the normalization. Even in the case without replicates, normalization of
samples associated with distinct conditions is important.

Evaluation

There is no direct metric to systematically quantify DP predictions. Furthermore, due to
the biological complexity, there is no genome-wide map of DNA-protein interactions which
could be used as a gold standard. Consequently, evaluating solutions for the differential
peak calling problem is still an open problem. However, indirect metrics can be used to
quantify the DP predictions. For example, as gene expression correlates well to certain hi-
stone modifications (Karlić et al., 2010), the validation of DP predictions with gene expres-
sion is possible. Furthermore, the simulation of ChIP-seq reads is an effective strategy to
produce artificial gold standards with various data characteristics (Humburg, 2011; Zhang
et al., 2008; Lun and Smyth, 2014).

2.4 Related Work

The differential peak calling problem for ChIP-seq data has been addressed only in a few
studies. Here, we first review normalization approaches. Second, we give an overview
of existing simulation algorithms for ChIP-seq data. Finally, we list existing methods to
solve the differential peak calling problem and give a short description of their working
procedure. We explain how the tools address the challenges described in Section 2.3.4 and
Section 2.2.5.

2.4.1. Normalization

The majority of normalization approaches multiplies the ChIP-seq signals by a constant fac-
tor. One example is the normalization by library sizes. Here, the normalization factor de-
notes the ratio between the total number of counts of (1) the signal with the highest total
number of counts; and (2) the total number of counts of the signal which has to be nor-
malized. Thereby, signals with lower total counts are raised to the level of the signal with
maximal total counts.

We demonstrate the normalization by library sizes with an example. We resort to Fig-
ure 2.5 which shows two replicates of the same condition, but with different read counts
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and signal-to-noise ratios. As the replicates stem from the same condition, the consensus
peaks should have similar counts across the conditions after normalization. MA plots visu-
alize count distributions in two genomic signals and we use them to picture the counts of
the consensus peaks in Figure 2.5. We divide the genome into consecutive bins and count
the signal specific reads falling into these bins, that is, for each bin, we obtain the num-
ber of reads for both signals. The MA-plot assigned for each bin the M-value, that is, the
logarithmic ratio of the counts, to the A-value, that is, the logarithmic mean of the counts.
Figure 2.7A gives the MA-plot for the signals shown in Figure 2.5. The rationale for using
MA-plots is that, after signal normalization, the bins associated with consensus peaks (indi-
cated by red points) should give low absolute M-values, as they stem from two replicates of
the same condition. Without any normalization, the mean M-value of peak-associated bins
(MMP) is 2.4 in the example of Figure 2.5.

In this example, the normalization by library sizes gives a factor of 1.6 for signal S1. S1’s
low signal-to-noise ratio inhibits a higher normalization factor, as the entire signal of S1,
including the noise, is used for the calculation. Figure 2.7B gives the corresponding MA-
plot. Compared to the case without normalization, the peak-associated bins yield a lower
MMP value (1.54), which demonstrates the advantage of the normalization.

Robinson and Oshlack (2010) propose a strategy to normalize RNA gene expression data
under the assumption that the majority of the genes are not differentially expressed. For
given signals, they first compute the M- and A-values. Next, they estimate a quantile based
range of the values which are used for the normalization. The rationale of not considering
outliers of M- and A-values is that they may have a strong influence to the results (Meyer
and Liu, 2014). The normalization factor is computed by the product of the resulting M-
and A-values normalized against the A-values. They refer to their normalization approach
as trimmed mean of M-values (TMM). Anders and Huber (2010) implemented a similar
approach by using the geometric mean of the gene expression data. The majority of DPCs
dealing with replicates use a TMM-based normalization strategy.

Figure 2.7C depicts the MA-plot after normalizing with a TMM-based factor of 1.29 for
S1 and 0.98 for S2. Trimming M- and A-values does not exclude the noise signal which is
still comprehensively considered for the estimation of the normalization factors. Hence, the
TMM normalization leads to an MMP of 1.79 which is in this example even higher than the
MMP of the simple normalization by library sizes (1.54).

Figure 2.7.: We show MA-plots for different normalization approaches for the region shown in Figure 2.5,
where we apply IDR to find common peaks within the replicates. Bins associated with IDR-peaks
are highlighted in red. We also give the mean M-value of peak-associated bins (MMP) which is
supposed to be low after normalization. We depict MA-plots without (A), after the normalization
by library sizes (B) and after the TMM (C) normalization.
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2.4.2. Evaluation

There is neither a direct metric to rate nor a gold standard to compare DP predictions. How-
ever, the simulation of ChIP-seq profiles is an effective strategy to evaluate DPCs. The ma-
jority of ChIP-seq simulation algorithms is based on the single signal peak calling problem.
Zhang et al. (2008) developed a strategy to model TF-based ChIP-seq signals that contain
sharp peaks. They simulate the background noise with a Gamma distribution which deter-
mines the impact of noise on particular genomic regions. Zhang et al. (2008) do not provide
NGS reads and consequently they lack to model the bias based on the sequencing process,
such as the GC-content. Humburg (2011) followed Zhang et al. (2008) and extended their
model to make it capable of producing NGS reads. He enhanced the model by making it
more flexible in terms of the number of reads and the number of binding events. However,
the model of Humburg (2011) has no parameter to directly set the number of binding events
that occur in the simulated ChIP-seq data. None of these approaches can be directly used for
the differential peak calling problem as they are restricted to exactly one ChIP-seq profile.

Lun and Smyth (2014) developed a method to simulate ChIP-seq profiles with DPs be-
tween two conditions. In this method, the reads of an enriched regions are sampled from a
Negative Binomial distribution. DPs are included by adjusting the parameters of the Neg-
ative Binomial distribution such that one condition is expected to gain more reads than the
other. Next, the reads’ positions are determined. The simulation algorithm lacks to model
crucial parameters such as the background noise and the variability of peaks in ChIP-seq
profiles associated with the same condition. Also, their simulation algorithm is not publicly
available.

2.4.3. Two-Stage Differential Peak Caller

DPCs can be roughly categorized in two-stage and one-stage DPCs. Two-stage approaches
are based on separate candidate peaks for each ChIP-seq profile. These candidate peaks are
pre-computed by SPCs and used as input for sophisticated differential count models. In
general, two-stage DPCs merge the candidate peaks with regard to the conditions they stem
from, count the number of reads for each candidate peak, perform signal normalization and
apply statistical tests assuming particular count models. Some two-stage DPCs use count
models that are tailored for the differential expression analysis of RNA-seq data. Such mod-
els are for instance implemented in DESeq (Anders and Huber, 2010) and edgeR (Robinson
et al., 2010). We list all two-stage DPCs that are, to our best knowledge, available. Table 2.1
gives an overview of the tools and their supported features.

DiffBind

DiffBind (Ross-Innes et al., 2012) is a two-stage differential peak method based on SPC
candidate peaks. First, the peak lists are merged to obtain consensus peaks. The num-
ber of reads falling into these consensus peaks are counted and a statistical model based
on edgeR (Robinson et al., 2010) is estimated to call DPs. The count data is modeled by
a Negative Binomial distribution to take into account overdispersion induced by potential
replicates. DiffBind normalizes data by following the TMM approach after input-control is
subtracted from ChIP-seq profiles. DiffBind can also account for replicates. However, nei-
ther the fragmentation size nor GC-content is estimated by DiffBind. Also, the input-DNA
is not normalized and no postprocessing step is implemented to filter artefacts.
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MACS2

MACS2 (unpublished, available at https://github.com/taoliu/MACS/, last access
October 14th, 2015) works in two steps. First, all ChIP-seq profiles are pooled together
and MACS2’s SPC (callpeak) is executed for each condition. Second, we apply MACS2’s
algorithm bdgdiff to identify DPs within these peaks. The SPC normalizes against input-
DNA, considers GC-content and estimates the fragmentation size. MACS2’s differential
peak calling method works with a sliding window approach on candidate regions (personal
communication). There is no formal description of its parameters and the strategy for nor-
malization.

DESeq

One can combine DEseq with SPCs to make it applicable to the differential peak calling
problem. First, a SPC computes a list of candidate peaks for each condition and second,
DESeq is used to determine DPs. DESeq (Anders and Huber, 2010) is a tool to analyze dif-
ferential gene expression. The observed counts are normalized with the geometric mean and
the count data is modeled with a Negative Binomial distribution. DESeq uses the Negative
Binomial distribution to compute a p-value for each estimated differential gene. By using
the Negative Binomial distribution, DESeq is capable to take overdispersion into account. In
general, combinations of DESeq and a SPC do not apply any filtering steps to avoid strand
bias.

If replicates are available, we have to consider proper SPCs. We use JAMM (Ibrahim
et al., 2015), a peak caller that considers replicates, to define a peak list and refer to this
method as DESeq-JAMM. JAMM takes input-DNA into account and subtracts it from ChIP-
seq profiles. Also, we apply IDR (Li et al., 2011) which is a method to define for a set of
replicates a list of peaks with high consistency within the replicates. We follow the frame-
work of ENCODE for the IDR computation (see https://sites.google.com/site/
anshulkundaje/projects/idr, last access on 21th November 2014). We refer to this
method as DESeq-IDR.

DBChIP

The two-stage DPC DBChIP (Liang and Keleş, 2012) receives as input the summit (position
with maximal count within a peak) information of peaks from SPCs. The peaks’ summits
are clustered to obtain consensus peaks. Then, edgeR (Robinson et al., 2010) is applied to
derive DPs from the consensus peaks. If available, input-DNA is subtracted from the ChIP-
seq profiles. DBChIP focuses on the analysis of transcription factor peaks and therefore uses
predefined short regions of 200 bp around the peak summits as candidates for DPs. DBChIP
is not able to take into account replicates, to compute the GC-content and to normalize the
input-DNA before subtraction. The fragmentation size can be computed by the SPC that is
used.

MAnorm

MAnorm (Shao et al., 2012) receives as input the candidate peaks from SPCs. MAnorm
normalizes the peak counts between two samples with a local robust regression approach
and computes for each candidate peak a p-value. The p-value is used to check whether a
DP has been found. The fragmentation size can be computed by the used SPC. MAnorm is
not able to consider replicates and does not take advantage of input-DNA or GC-content.
Furthermore, no post-precessing steps are performed.
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2.4.4. One-Stage Differential Peak Caller

One-stage DPC methods are based on segmentation methods, such as hidden Markov mod-
els (HMMs) or sliding window-based approaches. While two-stage DPC work in two phases,
one-stage DPCs analyze ChIP-seq profiles and perform DP calling in a single step. We list
all one-stage DPC that are, to our best knowledge, available. Table 2.1 gives an overview of
the tools and their supported features.

ChIPDiff

To our knowledge, the earliest published method proposed for the differential peak call-
ing problem is ChIPDiff (Xu et al., 2008). ChIPDiff uses a three state HMM to distinguish
between DPs and background signal. The HMM emission is based on an approximation
of a Beta-Binomial distribution, which is fixed after the initialization of the model. The
Baum-Welch algorithm is used to estimate transition parameters. ChIPDiff exhibits some
limitations. Instead of a p-value , an empirical fold-change criterion is used to determine
whether a DP is significant. Moreover, the fragmentation size of a ChIP-seq experiment is
fixed to 200bp. ChIPDiff does not take advantage of input-DNA and does not perform any
GC-content normalization. Also, replicates are not supported.

Csaw

Csaw (Lun and Smyth, 2014) main method is a window-based approach to segment ChIP-
seq profiles. Replicates can be taken into account. A modified version of the TMM method
is applied to normalize the CHIP-seq signal on 10kbp bins. EdgeR (Robinson et al., 2010),
which is based on a Negative Binomial distribution test, is used to assign a p-value to each
DP. Consecutive significant bins are merged to form final DPs. Input-DNA is not used to
normalize ChIP-seq signals, but only in a postprocessing step to filter out potential false pos-
itive DPs. Furthermore, csaw does not normalize against GC-content and does not estimate
the fragmentation size.

PePr

PePr (Zhang et al., 2014) follows a window-based strategy to detect DPs. The windows
size is computed automatically and equals the estimated average width of initially called
peaks. PePr normalizes the input-DNA to the mean of all ChIP-seq signals, computes the
fold change of input-DNA and ChIP-seq signal and follows the TMM approach to globally
normalize across different ChIP-seq profiles. PePr requires input-DNA to run. To check for
DPs, first read counts are modeled by a Negative Binomial distribution and second Wald’s
test is applied to check for significance in read counts. Furthermore, PePr provides estima-
tion of fragment size, input subtraction, filtering of peaks with strand bias, but does not
correct for GC-content. PePr can handle replicates of ChIP-seq profiles.

DiffReps

DiffReps (Shen et al., 2013) performs a sliding window approach to identify potential DPs.
It globally normalizes by the geometric mean for each sample and also takes into account
input-DNA. A pre-screening test ensures that only bins with a sufficient number of reads are
considered for the analysis. DiffReps can deal with replicates and uses a Negative Binomial
test based on Anders and Huber (2010) to detect DPs.
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RSEG

RSEG (Song and Smith, 2011) is specialized for the single signal peak calling problem based
on repressive histones, which are distributed in large sequenced genomic domains. How-
ever, it has an option to call DPs with a three-state HMM. RSEG’s HMM uses Difference
Negative Binomial distribution as emission distribution. As it is tailored for broad histone
marks, we do not take RSEG into account for this thesis.
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PePr × × win W s/m × × × TMM ×
diffReps × × win NB s/m × GM ×

csaw × × win NB s/m TMM ×
DiffBind × SPC NB s/m × TMM ×

DESeq-IDR × SPC NB s/m MR ×
DESeq-JAMM × SPC G,NB s/m × × MR ×

MACS2 SPC NA s/m × NA NA NA NA × NA
DBChIP SPC NB s/m × MR ×

MAnorm SPC - s/m MA ×
ChIPDiff × HMM - s/m fixed LS ×

RSEG × HMM NBD l ×
Table 2.1.: Tool characteristics. Differential peak callers can be categorized in one-stage or two-stage ap-

proaches using either an HMM or a window-based approach to segment the ChIP-seq profiles.
They perform a statistical test based on a Negative Binomial (NB) distribution, a Difference Nega-
tive Binomial distribution (NBD), Wald’s test (w) or Gaussian mixture model (G) to identify DPs.
The tools are specialized in different domain sizes in the ChIP-seq signal. ChIP-seq experiments
with small (s) domains are based on TFs, with medium (m) domains on active histone marks,
and large (l) domains on repressive histone marks. In this thesis, we investigate differential peak
callers that concentrate on small and medium size domains. Input-DNA can be normalized and
may be used to subtract it from ChIP-seq profiles (see Section 2.2.4). The normalization strategies
are based on TMM, geometric means (GM), median ratios (MR) from Anders and Huber (2010),
MA plots (MA) or library sizes (LS) (see Section 2.4.1). Also, normalizing against GC-content
may prohibit bias in profiles (see Section 2.2.5). For DESeq-JAMM, JAMM uses GMM to detect
peaks and DESeq uses NB to detect DPs. JAMM subtracts the input-DNA from ChIP-seq profiles.
MAnorm does not model counts of DPs, but normalizes them and assigns directly a p-value to
them.

2.5 Discussion and Conclusion

Two challenges naturally arise from ChIP-seq data. SPCs call peaks on a single ChIP-seq
signal and DPCs identify differences in ChIP-seq signals that are associated with two bio-
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logical conditions. We divide the DPCs into two classes: two- and one-stage DPCs. Two-
stage DPCs have clear conceptional disadvantages. First, their DPs are restricted to their
initial candidate regions as well as to the strategy used to create the set of candidate peaks.
These candidate regions depend on the SPC and its concrete parametrization. Some SPC are
specialized in calling broader regions, while some SPC show advantages in calling sharp
peaks (Wilbanks and Facciotti, 2010). Consequently, prior knowledge of the data is required
to obtain accurate peak predictions. While two-stage DPCS can detect DPs where the num-
ber of read counts is significantly higher or lower in one of the ChIP-seq conditions, two-
stage DPC fail to detect subtle changes within these candidate regions (Allhoff et al., 2014;
Maze et al., 2014). This is particularly crucial for ChIP-seq data of histone modifications,
where DNA-protein interactions occur in mid-size to large domains. Histone modifications
associated with active regulatory regions occur in domains spanning several hundreds of
base pairs and may have intricate patterns of gain or loss of ChIP-seq signals within the
same domain. In contrary, ChIP-seq from transcription factors mostly happens in small iso-
lated peaks. Figure 2.6 shows an example for the predictions of a SCP which are merged by
a two-stage DPC to identify DPs. The two-stage DPC fails to detect DP2, as the SCP predicts
a too broad peak in this region such that the signal change of DP2 is not detectable for the
DPC. Furthermore, the SCP calls a domain that contain both DP4 and DP5. Consequently, it
is impossible for the DPC to distinguish between these DPs. Second, two-stage DPC meth-
ods usually do not provide any preprocessing steps crucial for ChIP-seq analysis, such as
fragment size estimation, GC-bias correction and input-DNA subtraction (see Table 2.1).

The majority of DPCs, namely DiffBind, csaw and PePr, uses TMM or an approach similar
to TMM (median ratio (MR), see DESeq and DBChIP in Table 2.1) to normalize ChIP-seq
profiles. However, TMM was devised for gene expression experiments which assumes that
counts of most observations (genes or peaks) do not change. This is not necessarily the case
for protein interactions, as two distinct cells can have distinct amounts of proteins or histone
modifications bound to their DNA (Meyer and Liu, 2014). Particularly problematic in this
normalization approaches is the effect of replicate specific background noise. Background
noise does not reflect the protein-DNA interaction sites and therefore induces bias in the
normalization strategy.

Moreover, all one-stage DPCs that solve the differential peak calling problem with repli-
cates use window-based approaches to identify DPs and apply heuristic strategies to merge
peaks (DiffReps, PePr and csaw, see Table 2.1). HMM-based approaches are more appropri-
ate to segment a signal, as they intrinsically detect peaks with variable size through the use
of posterior decoding algorithms. Hence, HMMs represent a robust alternative to windows-
based segmentation approaches.

There is no method that addresses all pre- and postprocessing steps listed in Table 2.1. For
instance, only PePr, MACS2 and DESeq-JAMM are able to estimate the fragmentation size
of a ChIP-seq experiment. Furthermore, input-DNA may help to identify technical artifacts
and therefore to avoid false positive DPs. PePr, DiffBind, DESeq-JAMM and DBChIP take
advantage of input-DNA, but only PePr also normalizes the control DNA. No method takes
GC-content into account to improve the DP predictions. Also, only PePr provides postpro-
cessing steps to get rid of implausible DP candidates. The main disadvantage of PePr is
that is requires input-DNA to predict DP which is not always available. Furthermore, PePr
uses a window-based approach to detect DPs. There is no method that takes into account
blacklisted genomic regions.

The systematic evaluation of DPCs is still an open problem. An indirect metric, such as
the combination of gene expression data with DP estimates, can determine the quality of
DPs. Moreover, simulated data can help to investigate solutions for the differential peak
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calling problem in a systematic way as gold standards can be customized. In particular, it
is crucial to have methodologies exploring the performance of DPCs on data with distinct
characteristics: from ChIP-seq samples with low variability and high signal-to-noise ratio to
samples with high variability and low signal-to-noise ratios.

2.6 Aims of the Thesis

In the previous sections, we pointed out that various methods have been developed to
solve the differential peak calling problem. We discussed that two-stage DPCs have concep-
tual disadvantages and that therefore one-stage DPCs are the favourable method of choice.
However, there is no method that covers all challenges that have to be considered in the
ChIP-seq analysis (see Table 2.1). Hence, the aims of this thesis are the following:

• we want to propose one-stage DPCs using HMMs that take into account all challenges
associated with ChIP-seq. We restrict our analysis to TFs and activating histone marks
resulting in small to medium sized peaks in the ChIP-seq signal. ChIP-seq experiments
are typically replicated to reduce the effect of technical bias. Hence, our methods have
to account for replicates and properly consider overdispersion in their statistical mod-
els (see Section 2.3.4).

• we pointed out that normalization of ChIP-seq profiles is a crucial step to identify DPs
(see Section 2.3.4). In this thesis, we want to propose a novel normalization strategy
that is more robust to background noise. The background noise is problematic for
TMM and the normalization by library size.

• the evaluation of differential peak calling solutions is still an open problem. As de-
scribed in Section 2.3.4, there is neither a gold standard nor a direct metric to check
the quality of a differential peak calling solution. Evaluation strategies can assess DP
estimates in a systematic way. In this thesis, we want to propose an indirect metric
to quantify DPCs. Moreover, we will develop a simulation algorithm to be able to
produce customized gold standards. With regard to these evaluation strategies our
methods should give best results.

• we listed several challenges that either arise from the ChIP-seq protocol itself (see Sec-
tion 2.2.5) or in particular from the differential peak calling problem (see Section 2.3.4).
Our proposed methods will address all of them: the GC-content, to compensate the
correlation between the number of reads and the underlying GC-content; PCR dupli-
cates, to avoid signal in ChIP-seq profiles which is based on PCR duplicates rather than
biological events; the input-DNA, to get rid of bias in the ChIP-seq data for example
due to the shearing process; the fragment size estimation, to compute the precise loca-
tion of the DNA-protein complexes in the genome; and blacklisted genomic regions,
to get rid of DPs that lie within regions that are not properly covered by the sequenc-
ing process. None of the competing methods listed in Table 2.1 addresses all of these
issues.

23





CHAPTER 3
Methods

In the previous chapter, we introduced the fundamental biological concepts as well as the
ChIP-seq technique. We also formalized and motivated the differential peak calling prob-
lem. The aim of the thesis is to develop algorithms to call differential peaks in ChIP-seq
profiles. In this chapter we explain our differential peak calling methods to achieve this
goal. Algorithm 3.1 gives an overview of the methods. We first introduce the notation and
conventions that are necessary to formalize our solution. We then explain the preprocessing
steps that are required to make the ChIP-seq signal applicable for our methods (see Algo-
rithm 3.1, Step 1). In particular, we propose a novel normalization strategy for ChIP-seq
signals which is based on control regions. After a brief introduction to HMMs, we describe
how to use them to estimate potential DP candidates (see Algorithm 3.1, Step 2). HMMs
represent a convenient strategy to segment the signal and are not considered by the major-
ity of the competing methods (see Table 2.1). Next, we explain which postprocessing steps
are performed to obtain the final DPs (see Algorithm 3.1, Step 3). Here, we propose a novel
p-value estimation strategy which is based on an HMM. Finally, we describe the implemen-
tation of our solutions.

3.1 Notations and Conventions

We denote an alphabet Σ and typically use Σ = {A,C,G,T}, where the nucleotides are given
as capital letters. Character N is used as a wildcard that represents any element in Σ. A string
is an element of Σ∗ and is denoted a lower case character. Let s= 〈s1, . . . ,sm〉 be a string. Then,
string s has length |s| = m and the substring 〈si,si+1, . . . ,s j〉 is written as [si,s j]. A genome is
a string which can be divided into a sequence 〈b1, . . . ,bL〉 of bins. A bin is assigned to the
number of reads covering this bin. The number of reads for a bin is the genomic signal for
that bin. We use genomic signal, ChIP-seq experiment and ChIP-seq profile as synonyms.
The index i of a genome is called a genomic position.

The matrix X represents a genomic signal

X = {xi j}D×L,

where D is the number of genomic signals and L the number of bins. The ith genomic signal
is represented by the vector xi· = (xi1, . . . ,xiL) and the genomic signals for bin j is represented
by the vector x· j = (x1 j, . . . ,xD j). Moreover, each ChIP-seq experiment belongs to one of K
biological conditions. The set of experiments associated with condition k is given as

Gk = {i | i ∈ {1, . . . ,D}, i belongs to k},

and the set of all experiment as
G = {G1, ...,GK}.

In this thesis we investigate the case K = |G| = 2, that is, we are interested in two biologi-
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Algorithm 3.1 Differential peak calling algorithm
Input: reference genome g, two sets of aligned reads S1,S2
Output: list of DPs 〈di〉, i ∈ N

1. employ preprocessing pipeline to S1 and S2: . Section 3.2

1.1 filter reads in S1,S2 . Section 3.2.1

1.2 estimate fragmentation size f̂ . Section 3.2.2

1.3 create signal matrix XD×L . Section 3.2.3

1.4 normalize X against GC-content . Section 3.2.4

1.5 if xinput available:
normalize with input-DNA xi· = x′i·−α · xinput

i . Section 3.2.5

1.6 normalize* X among ChIP-seq profiles . Section 3.2.6

2. identify candidate DPs 〈d′i〉with HMM* δ :

if D > 2: . with replicates
use Negative Binomial as emission of HMM δ . Section 3.3.3

else: . without replicates
use Binomial or mixture of Poissons as emission of HMM δ . Section 3.3.3

3. postprocess* candidate DPs 〈d′i〉 and output final DPs 〈di〉 . Section 3.4.2

* novel features proposed in this thesis

cal conditions. In particular, in case D = 2 without replicates, we have |G| = 2 and the two
genomic signals are associated with different conditions. Further, xGk j represents the ge-
nomic signal restricted to experiments belonging to Gk and xGk j is the mean read count for
all experiments in condition k, that is,

xGk j =
∑i∈Gk

xi j

|Gk|
.

Moreover, ChIP-seq experiments often have input-DNA for each cell type analyzed (see
Section 2.2.4). We will refer to input-DNA as xinput = {xinput

1 , ...,xinput
L }.

The probabilities measure is given by Pr. We use bp (base pair) as length unit for nu-
cleotide sequences.

3.2 Preprocessing Pipeline

We employ a pipeline to preprocess data obtained by ChIP-seq. The aim of the pipeline is to
construct and to improve the genomic signal represented by matrix X. Signal improvement
is necessary since the data contains bias as it is described in Section 2.2.5. The first step of
Algorithm 3.1 gives an overview of the pipeline. The rationale for steps 1.1− 1.5 are well
described by the research community. Step 1.6, the normalization of ChIP-seq profiles, is
crucial for a successful peak calling step. We propose a novel normalization strategy which
is based on control regions. We assume that the data are given as reads that are aligned to a
genome g.
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3.2.1. Filtering of Reads

Reads are mapped to the reference genome g and serve as input for our method. We ignore
reads mapping to genomic regions which are either unassembled (denoted by Ns in the
genome) or that exhibit a poor mappability (see Section 2.2.5). Regions with poor mappabil-
ity stem from the fact that short reads cannot be uniquely mapped to repetitive regions that
exhibit a higher length than the reads themselves (Song and Smith, 2011). Reads aligned
completely to a region with poor mappability are ignored. Moreover, we ignore all reads
but one that are mapped to a same coordinate as it is likely that these reads stem from PCR
duplicates (see Section 2.2.5).

3.2.2. Fragment Size Estimation

Figure 2.4 (see Section 2.2.5) depicts the situation where reads are aligned to the forward and
reverse genome and lie half the fragment size away from the ChIP-seq source. As only the
beginning of the sample’s DNA fragments is sequenced in the ChIP-seq protocol, we have
to reconstruct the unknown fragment size f . With the reconstructed fragment size, peaks in
the read distribution correlate to protein position in the ChIP-seq signal.

Given set F of the leftmost positions of all reads aligned to the forward strand and given
set R of the rightmost positions of all reads aligned to the reverse strand, we follow Mam-
mana et al. (2013) and define the strand cross-correlation function

c( f ) = ∑
p∈F∪R

h(p) ·h( f + p), with

h(x) =


0, x /∈ F ∪R,
2, x ∈ F ∩R,
1, else.

The convolution c gives the correlation between counts on the forward and reverse strands
for a given fragment size f . The fragment size f corresponds to the value with the maximum
correlation between both strands, that is,

f̂ = arg maxf∈G c( f ),

with G⊆ N. In other words, we shift the coordinates and compute the overlap. The shifting
distance resulting in a maximum overlap corresponds to the size of the fragments covering
the target DNA-protein complexes (Kharchenko et al., 2008).

3.2.3. Signal Profile

We create the genomic profile of a ChIP-seq experiment by fragmenting the genome into
bins and counting the reads falling in these bins. First, we extend all forward (reverse) reads
from the leftmost (rightmost) position to the 3′ (5′) direction by the estimated read fragment
size f̂ . Second, we divide the genome into consecutive bins 〈b1, . . . ,bL〉 by using a sliding
window approach. Each bin b j covers the genomic positions [ j ·s−0.5 ·w, j ·s+0.5 ·w], where
s and w are the step size and the window size. The genomic positions are restricted to a range
from 0 to the genome’s length. The value of the genomic profile xi j is the number of extended
reads of ChIP-seq signal i aligned to regions overlapping bin b j. If a read lies entirely in a
filtered region, it will be ignored (see Section 3.2.1).
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3.2.4. GC-Content

Sequencing technologies usually exhibit an undesired correlation between the number of
reads and the GC-content of the regions where the reads are located (see Section 2.2.5). To
model and correct this effect, we use an histogram-based approach inspired by Ashoor et al.
(2013). Let g j ∈ [0,1] indicate the GC-content of the genomic bin b j, that is, the proportion
of Gs and Cs in the bin’s underlying genomic sequence. We want to measure the average
number of reads from input signal xinput assigned to bins on a particular GC-content interval.
For an interval [v,v+δ ]⊆ [0,1] with resolution parameter δ and genomic control signal xinput ,
we have

h(v) =
∑

L
j=1 xinput

j 1(g j ∈ [v,v+δ ])

∑
L
j=1 1(g j ∈ [v,v+δ ])

,

where 1 is an indicator function and v ∈ {0,δ , . . . ,1−δ}. We sum over all bins j to compute
the average input-DNA signal for a particular GC-content interval. Next, we define the
expected signal value of function h as

T = δ ·∑
v

h(v).

We then correct the genomic signal xi j for given g j ∈ [v,v+δ ] with

xGC
i j = xi j ·

T
h(v)

.

Loosely speaking, we increase (decrease) the genomic signal of a bin, if the average GC-
dependent signal is lower (higher) than expected. We use input-DNA as no immunoprecip-
itate step has taken place (see Section 2.2.1) and therefore no signal induced by antibodies
may influence the correlation between the number of reads and the GC-content.

3.2.5. Control Normalization

To avoid bias associated with the DNA shearing process, the input-DNA is usually sub-
tracted from the ChIP-seq genomic signals (rows of matrix X). We follow the sequencing
extraction scaling approach of Diaz et al. (2012), which performs a signal normalization
previous to the subtraction. The rationale is that while input-DNA and ChIP-seq libraries
usually have similar number of reads, the majority of ChIP-seq reads are concentrated in
protein-DNA interaction sites. Therefore, a simple subtraction tends to over-penalize the
ChIP-seq signal. For a scaling factor α and input-DNA xinput , we perform for the ith signal

xi· = x′i·−α · xinput
i ,

where x′i· indicates the original signal. See Diaz et al. (2012) for details about the computation
of factor α .

3.2.6. Sample Normalization

A crucial aspect in the analysis of multiple ChIP-seq samples is the strategy for a genome-
wide normalization of samples to bring them to a similar scale. Here, we describe two
normalization approaches. We justify the use of these approaches and also point out their
disadvantages. The disadvantages is the motivation to introduce a novel normalization
strategy.
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SDS-based Normalization Approach

An easy, intuitive approach for normalization is the global sequencing depth scaling (SDS)
approach. Here, we simply increase the ChIP-seq signals that exhibit a genome-wide overall
lower sequencing depth.
More formally, let S1 = ∑

L
j=1 xG1 j and S2 = ∑

L
j=1 xG2 j be the signal’s total sum for xG1· and xG2·.

We scale up the genomic signal with less overall signal by the factor f = max(S1/S2,S2/S1).
For example, if S1 < S2, we have

xnorm
G1· = f · xG1·

with f = S2/S1. We round all values to obtain count data again.

TMM-based Normalization Approach

Outliers in the data, that is, bins with unexpected high read counts, negatively influence the
SDS approach. Due to technical issues in the protocol, high read counts usually occur in
ChIP-seq data and the SDS approach consequently artificially increases the signal. A more
robust way to normalize is to use the trimmed mean of the genome-wide logarithmic counts
(TMM) (Robinson and Oshlack, 2010). Currently, most DPCs use TMM for the normalization
of replicates.

More formally, for a given signal xi· with i ∈ Gk, we first estimate the mean signal xGk· of
condition k. We add 1 to all count data to avoid zero counts. Then, the logarithmic ratio
(M-values)

M j = log
(

xGk j

xi j

)
,

and the logarithmic average (A-values)

A j = 0.5 · log(xGk j · xi j),

are estimated for all bins j. To reduce the number of outliers, we use trimmed values for M j

and A j. The normalization factor fi is the ratio of M- and A-values weighted by A-values

log( fi) =
∑ j A j ·M j

∑ j A j
.

Housekeeping Gene Normalization Approach

TMM was initially devised for gene expression experiments which assumes that counts of
most observations (genes or peaks) do not change. This is not necessarily the case for protein
interactions, as two distinct cells can have distinct amounts of proteins or histone modifica-
tions bound to their DNA (Meyer and Liu, 2014). Particularly problematic in this normal-
ization approaches is the effect of replicate specific signal-to-noise ratio (see Figure 2.5).

We propose a normalization approach that is based on the idea that particular control re-
gions serve as reference points to bring the ChIP-seq signals to the same level independently
from the biological condition and from the experiments. Among others, these reference val-
ues can be obtained by ChIP-PCR on selected genomic regions. For the case of activating
histone modification, we use the promoter of housekeeping genes (HK). Karlić et al. (2010)
show that histone modifications correlate well to gene expression and can therefore be used
to predict the gene expression level. Housekeeping genes contribute to basic cell main-
tenance and are therefore expected to maintain constant gene expression level and conse-
quently constant histone modifications (Eisenberg and Levanon, 2013). The overall working
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assumption for our normalization approach is that housekeeping genes do not change their
expression or the abundance of histone marks in their promoter.

More formally, we define a set of control genomic regions, R = {r1, . . . ,rN}. The ChIP-seq
signal of region rn for sample i is

hin = ∑
j

xi j ·1(b j overlaps rn).

First, for a given region n, we normalize the mean of each sample to the particular signal i

h′in =
h·n
hin

.

The normalization factor for sample i is

fi =
∑n h′in

N
,

where N is the number of HK genes. Finally, ChIP-seq count estimates for sample i are given
by

x′i· = fi · xi·.

We use the promoter of housekeeping genes that are described by Eisenberg and Levanon
(2013), namely C1orf43, CHMP2A, EMC7, GPI, PSMB2, PSMB4, RAB7A, REEP5, SNRPD3,
VCP, VPS29, for the human genome. For the mouse genome, we use the corresponding
genes but left out the human specific C1orf43. See Figure 3.2 for a schematic example of this
normalization approach.

As example we perform the HK gene normalization for the signals shown in Figure 2.5.
Similar to Figure 2.7, we show in Figure 3.1 the MA-plots without normalization (A), after
applying the normalization by library size (B) and after the TMM normalization (C). More-
over, we depict in Figure 3.1D the MA-plot after normalizing the signals with the HK gene
strategy. Here, we apply a normalization factor of 4.1 for S1 and of 1.1 for S2. In contrast
to the normalization by library size and the TMM normalization, the usage of HK genes
ensures not to take noise signal into account. We obtain a mean M-value of peak-associated
bins (MMP) of 0.81 which is lower than after the library size (1.54) and TMM (1.79) normal-
ization. Low M-values are expected as the peaks are based on two replicates of the same
condition. Hence, this example demonstrates the advantage of the HK gene over the global
and TMM normalization.

Figure 3.1.: (A)-(C) MA-plots (see Figure 2.7) for the region shown in Figure 2.5. (D) MA-plot for the HK
gene normalization. We show the HK gene normalization factors F1 and F2 as well as the mean
M-value of peak-associated bins (MMP).
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Figure 3.2.: HK gene normalization approach. The left panel shows four ChIP-seq signals assigned to two
biological conditions (red and green). More details about the presented data can be found in
Section 4.3. Boxes in signals contain peaks where its peak mass is given. The bold box gives the
promoter of a HK gene used for normalization. In this carton, the normalization procedure gives
0.8 for ChIP-seq signal FL14, 1.7 for FL16, 0.5 for CC3 and 2.5 for CC4 as normalization factor.
The right panel shows the normalized signal with updated mass values of each peak located in a
box. The HK gene normalization approach brings all ChIP-seq signals to the same scale for any
further downstream analysis steps.

3.3 Differential Peak Calling

We first give a brief introduction to HMMs. Second, we explain how we use HMMs to call
candidate DPs. We describe the emission distribution used for the HMM, and explain how
to initialize as well as how to train the HMM.

3.3.1. HMM Introduction

A hidden Markov model (HMM) is a stochastic model based on Markov chains. An HMM
has a finite set S = {1, . . . ,M} of states and a probability density function assigned to each
state. The HMM is in each time point at a particular state and emits a symbol with a prob-
ability given by a certain density function. The emitted symbol is also called observation.
More formal, let X = (X1, . . . ,XL) be a random variable and let x = (x1, . . . ,xL) be a realisa-
tion of X that represents the observation sequence. Moreover, let Q = (Q1, . . . ,QL) be an
unknown variable. For observation x = (x1, . . . ,x j, . . . ,xL), we have an unknown sequence of
states q = (q1, . . . ,q j, . . . ,qL) (q j ∈ S), where state q j emits observation x j. There are two major
assumptions for HMMs:

(a) the probability to be in a state depends only of the previous state, that is,

Pr(q j | q1, . . . ,q j−1) = Pr(q j | q j−1), and (3.1)

(b) the probability of emitting observation x j depends only on state q j, that is,

Pr(x j | q1, . . . ,q j) = Pr(x j | q j).

The probability given by Equation 3.1 to reach a state is described by a transition matrix

A = (akl) with akl = Pr(q j = k | q j−1 = l),

for 1 ≤ k ≤ M, 1 ≤ l ≤ M, akl > 0 and ∑l akl = 1. Furthermore, let π = (π1, . . . ,πM) be the
initial state probabilities Pr(q1 = k) = πk. In our case, the observation space X is discrete.
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We consequently can reduce the probability density functions to probability mass functions
B. Hence, an HMM δ is parameterized by δ = (A,B,π). Let bs denote the probability mass
function associated with state s, that is,

bs(y) = Pr(y = x j | q j = s,Θs)

with 1≤ s≤M and y ∈ X . Parameter Θs describes the parameter of function bs.
There are three fundamental computational problems associated with HMMs. The first

problem is how to compute the likelihood of a sequence of observations x for a given HMM
δ , that is, one has to evaluate

Pr(x | δ ) = ∑
q∈Q

Pr(x,q|δ ), (3.2)

where Q gives all possible state sequences. Due to Equation 3.1, it is easy to see that Equa-
tion 3.2 is equivalent to

Pr(x | δ ) = ∑
q∈Q

πq1bq1(x1)aq1q2 . . .aqL−1qLbqL(xL). (3.3)

Evaluating Equation 3.3 needs O(LML) operations. However, the forward-backward algo-
rithm solves Equation 3.3 in O(ML) by taking advantage of dynamic programming and two
variables called forward and backward variables (Rabiner, 1989). The forward variable is
defined as

αs( j) = Pr((x1, . . . ,x j),q j = s | δ ).

Loosely spoken, for a given HMM δ the forward variable gives the probability to produce
prefix (x1, . . . ,x j) of the observation x and end up in state s. The backward variable is defined
as

βs( j) =

{
Pr((x j+1, . . . ,xL),q j = s), for 1≤ j ≤ L,
1, for j = L.

For a given HMM δ , the backward variable gives the probability to obtain suffix (x j+1, . . . ,xL)
of the observation x by starting from state s. Both variable are recursively defined and can
be computed with dynamic programming. Combining the forward and backward vari-
able leads to the forward-backward algorithm. The forward-backward algorithm can also
be used to compute a further important measure, namely the posterior probability γ . The
posterior probability γs( j) is defined as the probability of being in state s at time j, that is,

γs( j) = Pr(q j = s | δ ,x). (3.4)

It can be shown that the posterior probability γs( j) is given by

γs( j) =
αs( j)βs( j)

∑
L
j αs( j)βs( j)

.

The second problem is about finding a state sequence that maximizes its likelihood for a
given HMM δ and observation x, that is, one has to evaluate

q̂ = arg max
q

Pr(x,q | δ ).
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The Viterbi algorithm which works similar to the forward-backward algorithm can solve the
problem in O(M2L) (Rabiner, 1989). The most likely state sequence is therefore also called
Viterbi path.
The last problem is about the maximum likelihood estimation of an HMM δ for a given
observation x, that is, one has to evaluate

δ̂ = arg max
δ

Pr(x | δ ). (3.5)

Equation 3.5 cannot be solved analytically. A popular numeric maximization approach is
the Baum-Welch algorithm, a specific instance of the EM-algorithm for HMMs. To apply
the Baum-Welch algorithm for a discrete HMM with emission distribution b, the following
equation has to be solved, either numerically or analytically,

Θ̂ ∈ arg max
Θ

M

∑
s=0

L

∑
j=0

γs( j) logbs(y). (3.6)

This chapter is based on Couvreur (1996). For more details and proofs, please see Rabiner
(1989). Also, to get a deeper understanding of the Baum-Welch algorithm, we refer the
reader to Bilmes (1998).

3.3.2. HMM for Differential Peak Calling

We model the differential peak calling problem with a three state HMM, which receives
a D× L dimensional signal matrix X as input. The signals are the ChIP-Seq profiles after
the application of all preprocessing steps described in Section 3.2. This first order HMM
contains a state representing DPs gained in the first biological condition G1 (Gain 1), a
state for DPs gained in the second biological condition G2 (Gain 2) and a background state
(Back). We will call DPs to be Gain 1 (Gain 2) for all competing methods, whenever they
are detected to have higher signal in xG1· (xG12·). Figure 3.3 shows the HMM topology, where
all states have transitions to all other states and to themselves. We constrain the emission
distribution to avoid label switching and to reduce the number of free parameters of the
HMM.

The main idea to obtain candidate DPs is to first train an HMM with the Baum-Welch al-
gorithm and then derive the most likely state sequence from the given data using the Viterbi
algorithm. The state sequence is then associated with genomic regions exhibiting a DP in the
first or second condition. This strategy depends crucially on the HMM’s emission distribu-
tion that has to properly reflect the distribution of X. In case with replicates, overdispersion
typically occurs and has to be considered by the emission distribution. The application of
the HMM to the signal matrix X is the second step in Algorithm 3.1.

3.3.3. Emission Distribution

For a given state s and observation x· j, the emission distribution bs of the HMM is given by
the product of probabilities for each biological condition G, that is,

bs(y) = Pr s(y = x· j | q j = s) = ∏k≤|G|Pr sk(xGk j). (3.7)

The probability of observing xGk j in state s and condition k is given by the product of the
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Figure 3.3.: HMM topology. The emission distributions are assigned to each state. To avoid label switching
and to reduce number of free parameters, we constraint several parameters of the emission dis-
tributions. That is, the location parameter Elow and Ehigh of the emission distribution that are
associated with state Gain 1 and state Gain 2 are equal across the conditions. State Back
exhibit location parameter Eback. In case with replicates, the HMM has a Negative Binomial
distribution as emission. The location parameters µlow and µhigh correspond to Elow and Ehigh.
Furthermore, we set µlow equal to Eback. In case without replicates, the HMM has either a Bino-
mial or a mixture of Poisson distributions as emission. For the Binomial, we have Elow = nplow,
Ehigh = nphigh, and Eback = npback. For the mixture of Poisson distributions, we use λsi1 respec-
tively.

observation’s probabilities associated with condition k

Pr sk(xGk j) = ∏i∈Gk
Pr sk(xi j). (3.8)

In case D= 2 without replicates, Equation 3.8 consists only of one factor, as G1 and G2 contain
only one element. In the following, we will give the HMM emission distribution for three
cases: Binomial, mixture of Poissons and Negative Binomial.

HMM without Replicates

In case without replicates two ChIP-seq profiles describing two biological conditions have
to be taken into account. DPs are defined by changes among both profiles. The counts of
both signals are modeled by a 2-dimensional emission distribution. We choose a Binomial
distribution, as it models the number of successes in a sequence of independent Bernoulli
experiments, that is, experiments with either a true or false outcome. Given a hypothetical
Bernoulli experiment, the reads can either fall into the particular bin (true outcome) or into
all other bins (false outcome). Hence, the number of reads in a genomic bin is modeled by a
Binomial distribution.

More formally, we only have one ChIP-seq signal i per condition k. Equation 3.7 gives the
emission distribution bs for state s for a Binomial distribution by

bs(y) = Pr s(y = x· j | q j = s) = ∏k≤|G|∏i∈Gk

( n
x· j

)
pxi j

sGk
(1− psGk)

n−xi j . (3.9)

with free parameters

Θ ={psGk}s=1,2,3,k=1,2∪{n}.

Parameter n is independent of state s and represents the number of reads of the largest
library

n = max

(
L

∑
j=1

xG1 j,
L

∑
j=1

xG2 j

)
.
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Parameter psk is the probability of observing a read in state s and condition k.
For a large number of Bernoulli experiments, the Binomial distribution approximates the

Poisson distribution. As we have a large number of reads in a ChIP-seq experiment, we
therefore also evaluate the Poisson distribution as emission. We additionally extend our
model by using a mixture of Poisson distributions. The rationale is that a mixture model is
suitable to model outliers in the count data. In our case, due to various sources of bias in
the ChIP-seq protocol, there are usually bins with unexpectedly large numbers of reads that
we want to model. The Poisson distribution describes the probability of a given number of
events occurring in a fixed interval. Similar to the Binomial distribution, we thereby model
the number of reads falling into a genomic bin.

More formally, we have as emission distribution

bs(y) = Pr s(y = x· j | q j = s) = ∏k≤|G|∏i∈Gk ∑
N
l=1 csl ·bskl(xi j), (3.10)

where N is the number of mixture components, where matrix c ∈ RM×N gives the mix-
ing coefficient of the mixture for each state s ∈ [1,2, . . . ,M] (here M = 3) and component
l ∈ [1,2, . . . ,N] with csl ∈ [0,1] and ∑

N
l=1 csl = 1 for each state, and where

bskl(xi j) =
exp(− f (l) ·λsk1) · ( f (l) ·λsk1)

xi j

xi j!

gives the Poisson component of the mixture model. We use the function f (l) = l to ensure
that the mean of each mixture component are multiple of each other. This is equivalent to
the constraint

λskl = l ·λsk1. (3.11)

This constraint was introduced to mitigate the problem that during mixture estimation some
components can end up with little data support (or low mixing coefficients). This is usual
when outliers (peaks with unusually large numbers of reads) are present in the data. In the
case of the mixture of Poisson distributions, we have

Θ ={λsk1,csl}s=1,2,3,k=1,2,l={1,...,N}

as free parameters.

HMM with Replicates

In the case with replicates we model a DP by a D-dimensional emission distribution. There
is additionally variance within the conditions which makes it in general harder to prop-
erly model the observations with the HMM emission distribution. In particular, given var-
ious ChIP-seq profiles of one condition, it is likely to observe overdispersion, that is, that
the mean exceeds the variance. The Binomial and Poisson distribution cannot cope with
overdispersion, as their variance linearly depends one the mean (Ismail and Jemain, 2007).
We therefore use the Negative Binomial distribution as emission, since it is able to take
overdispersion into account. Indeed, it can be shown that the Poisson distribution where
the mean is separately drawn from a Gamma distribution results in a Negative Binomial
distribution (Cameron and Trivedi, 2001). As there is no analytical solution for the Baum-
Welch algorithm with a Negative Binomial distribution, we will show how to estimate the
distribution.

More formally, Equation 3.7 gives the emission distribution bs for state s, condition k and
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sample i by

bs(y) = Pr s(y = x· j | q j = s)

= ∏
k≤|G|

∏
i∈Gk

g(xi j |Θs = {µsGk ,asGk}) (3.12)

= ∏
k≤|G|

∏
i∈Gk

Γ(xi j +a−1
sGk

)

Γ(xi j +1) ·Γ(a−1
sGk

)
·

(
a−1

sGk

a−1
sGk

+µsGk

)a−1
sGk

·

(
µsGk

a−1
sGk

+µsGk

)a−1
sGk

, (3.13)

with free parameters

Θ = {µsGk ,asGk}s=1,2,3,k=1,2,

where asGk is the dispersion parameter, µsGk the location parameter and Γ the gamma func-
tion. The Negative Binomial distribution g has mean E(xi) = µsGk and variance

Var(xi) = µsGk(1+asGk µsGk). (3.14)

If asGk = 0, the mean equals the variance and the distribution results in a Poison distribution.
For asGk > 0, variance increases with mean as usual when dealing with NGS data containing
replicates (Anders and Huber, 2010).

3.3.4. HMM Training

The HMM is estimated with the Baum-Welch algorithm. Estimates of the initial state and
transition probabilities follow usual methods (Rabiner, 1989). Training is performed until
convergence. See for example Couvreur (1996) for a gentle introduction to the Baum-Welch
algorithm. For a given emission distribution, we have to evaluate Equation 3.6 to obtain the
estimates for the emission in the Baum-Welch algorithm. In the following we will explain
how to compute the estimate for the Binomial, mixture of Poisson and the Negative Binomial
distribution.

Binomial Distribution as Emission without Replicates

Equation 3.9 gives the HMM emission based on a Binomial distribution with free parameters

Θ ={psGk}s=1,2,3,k=1,2∪{n}.

To reduce the number of parameter estimates, we constrain the parameters from Back state
(s = 3) to be equal pback = p31 = p32. We also constrain emissions for state Gain 1 (s=1) and
state Gain 2 (s=2) by plow = p1G1 = p2G2 and phigh = p1G2 = p2G1 to avoid label switching (Ra-
biner, 1989). This makes the distributions of enriched signals (non-enriched signals) from
states Gain 1 and Gain 2 equal (Figure 3.3). In our case, we have |G| = 2 conditions and
M = 3 HMM’s states. We only have to solve 3 optimization problems, that is, determining
pback, phigh and plow, to solve Equation 3.6. Here we show the estimation of phigh. The other
parameter estimates follow in a similar manner. As we do not have replicates, we rewrite
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Equation 3.6 as

arg max
phigh∈Θ

M

∑
s=1

L

∑
j=1

γs( j) log

(
∑

k≤|G|
∑

i∈Gk

(
n

xi j

)
pxi j

1Gk
(1− p1Gk)

n−xi j

)

=arg max
phigh∈Θ

M

∑
s=1

L

∑
j=1

γ1( j) log

((
n

x1 j

)
px1 j

sG1
(1− psG1)

n−xi j

)

+
M

∑
s=1

L

∑
j=1

γ2( j) log

((
n

x2 j

)
px2 j

sG2
(1− psG2)

n−x2 j

)
=arg max

phigh∈Θ

f (phigh = p1G1)+h(phigh = p2G2)

To compute the maximum of the function f +h, we first compute the derivative for phigh

f
δ phigh

+
h

δ phigh
=

L

∑
j=1

γ1( j)
x1 j
( n

x1 j

)
px1 j−1

1G1
(1− p)n−x1 j −

( n
x1 j

)
px1 j

1G1
(n− x1 j)(1− p1G1)

n−x1 j−1( n
x1 j

)
px1 j(1− p1G1)

n−xi j

+
L

∑
j=1

γ2( j)
x2 j
( n

x2 j

)
px2 j−1

1G2
(1− p)n−x2 j −

( n
x2 j

)
px2 j

1G2
(n− x2 j)(1− p1G2)

n−x2 j−1( n
x2 j

)
px2 j(1− p1G2)

n−x2 j

=
L

∑
j=1

γ1( j)
x1 j−np1G1

p1G1(1− p1G1)
+

L

∑
j=1

γ2( j)
x2 j−np1G2

p1G2(1− p1G2)
.

Then, we obtain the estimate of the maximum of the function f +h for phigh:

p̂high =
N

∑
j=1

γ1( j)x1 j + γ2( j)x2 j

n · γ1( j)+n · γ2( j)
.

The other parameters can be computed accordingly. We obtain

plow = p1G2 = p2G1 =
N

∑
j=1

γ1( j)x2 j + γ2( j)x1 j

n · γ1( j)+n · γ2( j)
, and

pback = p3G1 = p3G2 =
N

∑
j=1

γ3( j)x1 j + γ3( j)x2 j

2 ·n · γ3( j)
.

Mixture of Poisson Distributions as Emission without Replicates

The HMM emission based on the mixture of Poisson distributions is described by Equa-
tion 3.10. We use the Q function (see Section 4.2 in Bilmes (1998)) to obtain the equations for
the EM-algorithm.
With regard to our constraint described in Equation 3.11, we consequently have to solve

max
Θsk1∈R

M

∑
s=1

N

∑
l=1

L

∑
j=1

logbsil(xi j) · p(O,q j = s,mq j j = l | λ ′),

where q = (q1, . . . ,qL) is a sequence of states and where s j ∈ {1, . . . ,N} is the state at time j.
Furthermore m is a vector that indicates the mixture component for each state at each time.
We obtain λsi1 for the first component as
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λsi1 =
∑

L
j=1 ∑

N
l=1 xi j · rsl( j)

∑
L
j=1 ∑

N
l=1 f (l) · rsl( j)

,

where rsl( j) is the posterior probability of being in state s at time j with regard to the com-
ponent l. The mixing coefficients csl and posterior probabilities rsl( j) follow standard pa-
rameterizations and are defined as

csl =
∑

L
j=1 rsl( j)

∑
L
j=1 γs( j)

, and

rsl( j) = γs( j) ·
csl ·bsl(xi j)

∑
N
l=1 csl ·bsl(xi j)

,

Furthermore, we compute λsi1 for the component l as

λsil = l ·λsi1,

where γs( j) is the posterior probability to be at state s at time j.
We constrain the mixture distribution for each component l accordingly to the case of the
Binomial distribution λ11l = λ22l,λ12l = λ21l and λ31l = λ32l . All other parameters follow stan-
dard mixture model estimates.

Negative Binomial Distribution as Emission with Replicates

Equation 3.13 gives the HMM emission based on a Negative Binomial distribution with free
parameters

ΘsGk = {asGk ,µsGk},

for state s and condition k, where asGk is the dispersion parameter and where µsGk gives the
location. For parameters ΘsGk of the Negative Binomial distribution, Equation 3.6 cannot be
solved analytically. Instead we estimate µsGk and asGk based on a moment approach.

In our case, we have |G|= 2 conditions and M = 3 HMM’s states. Given Equation 3.6, we
therefore have to solve 6 optimization problems for each condition and state. We constrain
location parameters of Gain 1 (s=1) and state Gain 2 (s=2) associated with enriched sig-
nals to be equal µ1G1 = µ2G2 = µhigh. We also constrain location parameters of low values and
background states to be equal µ1G2 = µ2G1 = µ3G1 = µ3G2 = µlow (see Figure 3.3). This avoids
label switching problems in the HMM (Rabiner, 1989). Consequently, we only have to solve
2 optimization problems, that is, determining µhigh and µlow, to solve Equation 3.6. Here we
show the estimation of µhigh = µ11 = µ22.

In Equation 3.6, we restrict our optimization space and obtain

arg max
µhigh∈Θ

M

∑
s=1

∑
k≤|G|

∑
i∈Gk

L

∑
j=1

γs( j) logg(xi j|µsGk)+
M

∑
s=1

∑
k≤|G|

∑
i∈Gk

L

∑
j=0

γs( j) logg(xi j|µsGk)

=arg max
µhigh∈Θ

M

∑
s=1

∑
i∈G1

L

∑
j=1

γs( j) logg(xi j|µsG1)+
M

∑
s=1

∑
i∈G2

L

∑
j=0

γs( j) logg(xi j|µsG2)

=arg max
µhigh∈Θ

f (µhigh)

We define a function f depending on µhigh. As we want to optimize f , we take the derivative
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of f . The derivative of f is restricted to the case s = 1 and s = 2.

f
δ µhigh

=
∑i∈G1 ∑

L
j=0 γ1( j) logg(xi j|µ1G1)

δ µhigh
+

∑i∈G2 ∑
L
j=0 γ2( j) logg(xi j|µ2G2)

δ µhigh

=
f1

δ µhigh
+

f2

δ µhigh
(3.15)

Sums containing µ2G1 and µ1G2 are constants while deriving f with regard to µhigh and there-
fore are no longer considered. To simplify the notation, we introduce functions f1 and f2,
which we have to derive separately to obtain the derivative of f . Accordingly to Ismail and
Jemain (2007), we can rewrite Equation 3.12 as

g(xi j|ΘsGk) =

(
xi j−1

∑
h=1

ln(1+asGk h)

)
− xi j · ln(asGk)− ln(xi j!)+ xi j · ln(asGk ·µsGk)

− (xi j +a−1
sGk

) · ln(1+asGk ·µsGk) (3.16)

We plug in Equation 3.16 in function f1 of Equation 3.15. The derivative of f1 is given by

f1

δ µhigh
= ∑

i∈G2

L

∑
j=0

γ1( j)
xi j−µhigh

µhigh +a1µ2
high

The derivative estimation for f2 works similar. We plug in f1/δ µhigh and f2/δ µhigh in Equa-
tion 3.15, set f/δ µhigh to 0 and obtain the parameter µ̂high that optimize function f , that
is,

f
δ µhigh

!
= 0 = ∑

i∈G1

L

∑
j=0

γ1( j)
xi j−µhigh

µhigh +a1µ2
high

+ ∑
i∈G2

L

∑
j=0

γ2( j)
xi j−µhigh

µhigh +a1µ2
high

⇒ µ̂high =
∑i∈G1 ∑

L
j=0 γ1( j)xi j +∑i∈G2 ∑

L
j=0 γ2( j)xi j

|G1|∑L
j=0 γ1( j)+ |G2|∑L

j=0 γ2( j)

Parameter µ̂low is computed in a similar manner.

To obtain reliable variance estimates on small sample sizes, we assume that the variance
can be described by a smooth function based on the mean estimates similar as described
by Anders and Huber (2010). We use a quadratic function

vk(x) = c1Gk · x
2 + x+ c2Gk , (3.17)

which is estimated for the ChIP-seq data on samples of condition k previous to the Baum-
welch algorithm. The dispersion parameter ask is derived from Equation 3.14 and given
by

asGk =
vk(µsGk)−µsGk

µ2
sGk

.

We apply the Viterbi algorithm to estimate a state sequence for the complete genomic signal.
Finally, we merge consecutive bins associated with states Gain 1 or Gain 2 to obtain the
candidate DPs.
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3.3.5. Initial HMM Estimates

The Baum-Welch algorithm depends on the initial estimates to train the HMM. We use po-
tential DPs as initial estimates and use two kinds of criteria to define them. First, a fold
change criterion to quantify the intensity of a potential DP and second, a minimum signal
criterion to avoid DP exhibiting too low counts. Based on these criteria, we annotate bins
as initial DPs. We then use the initial DPs to obtain a posterior probability as well as to
perform a single M-Step of the Baum-Welch algorithm to compute initial parameters. Given
the large size of the genomic signals with initial DPs, we only use a random selection of
regions to train the HMM. We select genomic regions formed by contiguous bins not filtered
out in Section 3.2, which have at least a bin annotated with either Gain 1 or Gain 2 state.
Depending on the absence of replicates, we follow two strategies to define initial DPs.

HMM without Replicates

A bin b j will be assigned to state Gain 1 if

xG1 j/xG2 j > t,

to state Gain 2 if
xG2 j/xG1 j > t

and to Back state otherwise.

HMM with Replicates

For state Gain 1, we select bins if there is a difference t1 in counts between two signals

xG1 j− xG2 j > t1,

or if there is a high fold change t2 and minimum signal support t3

xG1 j/xG2 j > t2 and xG1 j + xG2 j > t3.

DPs associated with state Gain 2 are defined accordingly. Otherwise, the bin is assigned
the Back state.

3.4 Postprocessing Steps

We perform postprocessing steps to improve the DP estimation. First, we assign a p-value
to each DP to evaluate how significant the difference between the two biological conditions
is. Then, we remove DPs that are likely false positives caused by technical issues due to
the ChIP-seq protocol (Pepke et al., 2009). This postprocessing pipeline is the third step in
Algorithm 3.1.

3.4.1. P-Value Calculation

Statistical hypothesis testing is about the analysis of empirically collected data and in par-
ticular about the question whether the data provide enough evidence to reject a stated null
hypothesis. We assume the null hypothesis to be true unless there is strong evidence in the
data against it. If so, we reject the null hypothesis and assume the alternative hypothesis to
be true. For a given null hypothesis, the p-value is a function describing the probability of
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obtaining a result equal or more extreme than the observed results. If the p-value is suffi-
cient low, the observed result does not go in accordance with the null hypothesis which is
then rejected. In our case, under the assumption that the count distribution of the first and
second biological conditions describes the genomic background signal, the p-value gives the
probability for a candidate DP. If the p-value is low, the null hypothesis is rejected and the
potential DP is considered to be a true candidate DP.

More formally, we follow the idea of Anders and Huber (2010) to assign a p-value to each
DP. Let

y1 =
v

∑
j=u

xG1 j and y2 =
v

∑
j=u

xG2 j

be the read counts of a DP spanning from bin u to v with two biological conditions G1 and
G2. For a DP gaining a peak in condition G1, the p-value is the sum of probabilities of the
tuple (a,b) with a > y1 and a+b = y1+y2. In other words, given a DP with counts (y1,y2), we
add up all probabilities of tuples with more extreme values. More extreme values a defined
as a > y1 for a fixed margin sum a+b = y1 + y2.
More formally,

Pr(a > y1|y2) = ∑
a+b=y1+y2

a>y1

Pr(a,b), (3.18)

where a,b ∈ N. We compute the probability Pr(a,b) as

Pr(a,b) =
Pr(a | s = 3,Θ31) ·Pr(b | s = 3,Θ32)

∑c+d=a+b Pr(c | s = 3,Θ31) ·Pr(d | s = 3,Θ32)
, (3.19)

where c,d ∈ N with c+d = a+b. We use the distribution of the HMM’s Back state (s = 3),
that is, the genomic background signal, to compute the p-value. The p-value for DPs gaining
a peak in condition G2 can be defined accordingly.

For large y1,y2 values, the computation of the sums in Equation 3.18 and Equation 3.19
are computationally expensive which makes improvements in the formalization for a faster
p-value calculation necessary. We combine both equations and obtain

Pr(a > y1|y2) =
∑a+b=y1+y2

a>y1

Pr(a | s = 3,Θ31) ·Pr(b | s = 3,Θ32)

∑c+d=y1+y2 Pr(c | s = 3,Θ31) ·Pr(d | s = 3,Θ32)
. (3.20)

The sum of the nominator is a subset of the sum of the denominator. Consequently, we only
need to evaluate the sum of the denominator and take into account the appropriate values
for the nominator.

We model the probability of the counts with the HMM’s emission distribution that is
assigned to the Back state. The distribution has parameters Θ31 = Θ32. In the following we
assume that a Binomial distribution B is assigned to the Back state of the HMM. Given that
b = y1 + y2− a we can then rewrite the main term in the nominator (and denominator) as a
combination of Binomial distributions:

Definition 3.1 (Combined Binomial (CB) Distribution). Let B a Binomial distribution, the com-
bined Binomial (CB) distribution is defined as

f (x) = B(x | n, p) ·B(y1 + y2− x | n, p), with

B(x | n, p) =
(

n
x

)
px(1− p)n−x,
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with fixed y1,y2 ∈ N and where n ∈ N p ∈ [0,1] are the parameters of the Binomial distribution.

To further improve the computation of Equation 3.20, we show that DB distributions are
axially symmetrical and have a global maximum at q = (y1 + y2)/2 given that p31 = p32. To
investigate these characteristics, we first give a statement about the binomial coefficient.

Lemma 3.2. Let
(n

k

)
be the binomial coefficient with n,k ∈ B and k ≤ n. It is(

n
k

)
=

(
n

k−1

)
n− k+1

k
.

Proof. (
n
k

)
=

n!
k!(n− k)!

=
n!

(k−1)!(n− k+1)!
· n− k+1

k
=

(
n

k−1

)
n− k+1

k

We show that the DB distribution is symmetrical.

Lemma 3.3. Let f be a CB distribution, f is symmetrical to the y-axis parallel going through the
point q = (y1 + y2)/2.

Proof. Let d ∈ N, it is

f (q+d) = B(
y1 + y2

2
+d | n, p) ·B(y1 + y2−

y1 + y2

2
−d | n, p)

= B(y1 + y2− (
y1 + y2

2
−d) | n, p) ·B(y1 + y2

2
−d | n, p)

= f (
y1 + y2

2
−d)

= f (q−d).

Next, we estimate the maximum of a CB distribution. We will show that the CB distribution
monotonically decrease starting from point q = (y1 +y2)/2. Due to its symmetrical property,
we conclude the maximum at point q.

Lemma 3.4. Let f be a CB distribution, f monotonically decreases starting from point q = (y1 +
y2)/2, q ∈ N, for all x≥ q.

Proof. We will use complete induction with the induction hypothesis

f (q+ k)
f (q+ k+1)

> 1, (3.21)

with k ∈ N and k ≥ 0.
First, we start with the base case k = 0.
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f (q)
f (q+1)

=

(n
q

)
pq(1− p)n−q

(n
q

)
pq(1− p)n−q( n

q+1

)
pq+1(1− p)n−q−1

( n
q−1

)
pq−1(1− p)n−q+1

=
(q+1)!(n−q−1)!(q−1)!(n−q+1)!)

q!(n−q)!q!(n−q)!

=
q+1

q
· n−q+1

n−q
> 1.

We assume that the induction hypothesis in Equation 3.21 holds for k. In the induction step,
we will proof that the induction hypothesis holds for the case k+ 1 as well. Here, we use
Lemma 3.2 to bring the binomial coefficient in the right form.

f (q+ k+1)
f (q+ k+2)

=

( n
q+k+1

)
pq+k+1(1− p)n−q−k−1

( n
y1+y2−q−k−1

)
py1+y2−q−k−1(1− p)n−y1−y2+q+k+1( n

q+k+2

)
pq+k+2(1− p)n−q−k−2

( n
y1+y2−q−k−2

)
py1+y2−q−k−2(1− p)n−y1−y2+q+k+2

3.2
=

( n
q+k

)n−q−k
q+k+1 pq+k p(1− p)n−q−k

( n
y1+y2−q−k

) y1+y2−q−k
n−y1−y2+q+k+1 py1+y2−q−k( n

q+k+1

)n−q−k−2
q+k+2 pq+k+1 p(1− p)(1− p)n−q−k−2

· p−1(1− p)n−y1−y2+q+k(1− p)( n
y1+y2−q−k−1

) y1+y2−q−k−1
n−y1−y2+q+k+2 py1+y2−q−k−1 p−1(1− p)n−y1−y2+q+k+1(1− p)

=
f (q+ k)

f (q+ k+1)︸ ︷︷ ︸
>1, induction

· n−q− k
n−q− k−2︸ ︷︷ ︸

>1

· y1 + y2−q− k
y1 + y2−q− k−1︸ ︷︷ ︸

>1

· q+ k+2
q+ k+1︸ ︷︷ ︸

>1

· n− y1− y2 +q+ k+2
n− y1− y2 +q+ k+1︸ ︷︷ ︸

>1

We can now state that a CB distribution has its maximum at q = (y1 + y2)/2,q ∈ N.

Lemma 3.5. Let f be a CB distribution. Function f has its maximum at q = (y1 + y2)/2, q ∈ N.

Proof. Lemma 3.4 state that function f monotonically decreases from point q = (y1 + y2)/2
for all x > q, q ∈ N. As function f is symmetrical to a y-axis parallel going through point
q (Lemma 3.3), it is clear that f has a maximum at q,q ∈ N. If q /∈ N, f has two maxima at
q1 = b(y1+y2)/2c and q2 = b(y1+y2)/2c+1. For this case, it is clear that the main ideas of the
lemmata presented here still hold.

As CD distributions are symmetrical (Lemma 3.3), we only have to evaluate half of the sum’s
values of the numerator (denominator) of Equation 3.20. Furthermore, as DB distributions
decrease monotonically (Lemma 3.4 and Lemma 3.5) departing from q, we can approximate
the p-value calculation by making f (e) = f (a) for all e > a given that f (a)− f (a+ 1) < ε .
These steps allow a speed up of 100 times on the p-value calculations on our experiments.
The lemmata presented here do not hold for the mixture of Poisson distribution or the Neg-
ative Binomial distribution.

3.4.2. Filtering of ChIP-seq experimental artifacts

We perform several postprocessing steps to remove spurious DPs. The rationale is that
the ChIP-seq protocol induces biases that lead to peaks in the ChIP-seq signal that are not
caused by biological events (Pepke et al., 2009).
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First, we ignore all DPs with a size smaller than the estimated fragment size f̂ . We also
merge concordant DPs, which have a distance less than the estimated fragment size f̂ . The
second step is only suggested for histone modification data, which is usually localized in
broader genomic regions. P-values are re-estimated after merging and corrected for control-
ling the False Discovery Rate (Benjamini and Hochberg, 1995).

For the case with replicates, we use the mean of estimated fragment sizes. Additionally,
false positive DPs may be caused by a high strand lag (Pepke et al., 2009). For each DP,
we therefore count the forward and reverse reads, normalize the ratio by computing the
z-scores and filter out all DPs that exhibit a high/low z-score. By default, we choose a z-
scores threshold of 2 which corresponds to a two fold standard deviation from the normal
distribution. Also, DPs falling into blacklisted genomic regions (see Section 2.2.5) are filtered
out.

3.5 Implementation

We implemented our HMM-based strategy to detect DP in ChIP-seq signals associated with
two biological conditions as Python command line tools. ODIN (One-stage DIffereNtial
peak caller) comprise the HMM with a Binomial and mixture of Poisson distributions for
the case of a ChIP-seq analysis without replicates. THOR can be seen as an extension of
ODIN and provides an HMM with a Negative Binomial distribution to take replicates into
account. Both tools perform the pre- and postprocessing steps described in Section 3.2 and
Section 3.4.

THOR and ODIN are part of the Regulatory Genomics Toolbox (RGT) which provides
functions for Python to handle genomic signals. In particular RGT gives an infrastructure
to analyze ChIP-seq signals. THOR and ODIN are available under the terms of the GNU
General Public Licence v3 (GPL v3). At their current version (ODIN 0.4 and THOR 0.1), they
exhibit 3253 and 2821 lines of code with 136 and 112 functions, respectively. ODIN was
released in October 2014 and THOR was released in July 2015. The HMM both tools are
using is implemented in the HMMlearn package (see https://github.com/hmmlearn/
hmmlearn), which is based on the machine learning package Scikit-learn (Pedregosa et al.,
2011).

ODIN and THOR take as input BAM files describing the aligned reads, a fasta file de-
scribing the genome to consider, and a tab separated file describing the chromosome size
of the genome. They output bigwig files to describe the normalized ChIP-seq signal for
each replicate and condition. Furthermore they give BED and narrowPeak files describing
the identified DPs. Please see https://genome.ucsc.edu/FAQ/FAQformat.html for
more details about the file formats. Besides HMMlearn, further important non-standard
python packages that are used are HTSeq to process FASTA files, scipy to process BAM files
and scipy and numpy to cope with the ChIP-seq signal.

We tested ODIN and THOR with Python 2.7, Numpy 1.4.0, Scipy 0.7, Scikit-learn 0.14,
Pysam 0.7.5, HTSeq 0.6.5 and HMMlearn 0.0.1. We use a local Linux Ubuntu 14.04.4 LTS x86
64-bit machine running with 8 Intel(R) Core(TM) i7-4770 CPU at 3.40GHz and 16 GB RAM.
Furthermore, we run both tools on an HPC cluster mainly based on Intel Xeon-based 8- to
128-way SMP 64-bit nodes with Scientific Linux release 6.6 (Carbon).
For more information how to use ODIN, please see

www.regulatory-genomics.org/ODIN,

and for THOR please see
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www.regulatory-genomics.org/THOR.

All websites mentioned in this Section were accessed on 14th November, 2015.

3.6 Summary

In this chapter, we introduced our algorithms ODIN and THOR to identify DPs in ChIP-
seq signals without and with replicates. Algorithm 3.1 gives an schematic overview of both
methods. Our algorithms apply new concepts to solve the differential peak calling problem:

• we introduce the preprocessing steps that are necessary to make the ChIP-seq sig-
nals applicable to our algorithms. Importantly, we introduced a novel normalization
strategy for the ChIP-seq profiles which is based on the use of control regions (see
Section 3.2.6).

• ODIN and THOR apply an HMM to segment the signal by detecting peaks with vari-
able size through the use of posterior decoding algorithms. In the case without repli-
cates, we use a Binomial or a mixture of Poisson distributions as emission (see Sec-
tion 3.3.3). The rationale is that the Binomial distribution models the number of suc-
cesses in a sequence of independent Bernoulli experiments. We can see the ChIP-seq
profile construction as a sequence of Bernoulli experiments, where each reads falls or
does not fall into a particular genomic bin. Furthermore, the Binomial distribution ap-
proaches the Poisson distribution for a large number of Bernoulli experiments. In the
case with replicates, we apply a Negative Binomial distribution as emission (see Sec-
tion 3.3.3), as it is equivalent to the Poisson distribution, where the mean is separately
drawn from a Gamma distribution. Furthermore, the Negative Binomial distribution
accounts for overdispersion, which typically occurs when dealing with NGS count
data.

• from a methodological aspect, the use of an HMM to segment the signal is the favour-
able method of choice. Window-based approaches (PePr, DiffReps, csaw, see Table 2.1)
depend on heuristic methods and do not take advantage of decoding algorithms to
call DPs. Moreover, using pre-defined peaks (DiffBind, MACS2, DBChIP, DESeq,
MAnorm, see Table 2.1) highly depends on the strategy how to compute the initial
peak set.

• we explained our postprocessing strategy to get rid of technical artifacts (see Sec-
tion 3.4). Moreover, we compute a p-value for each DPs (see Section 3.4.1). The calcu-
lation is based on the emission distribution of the used HMMs.
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CHAPTER 4
Experimental Methods

In the previous chapter, we introduced our algorithms ODIN and THOR to call DPs in ChIP-
seq signals without and with replicates. Here, we describe the experimental setup for our
evaluation studies. Evaluation and comparison of DPCs are challenging problems, as there
are neither direct metrics to rate DP estimates nor datasets which could serve as gold stan-
dards in the evaluation procedure. We apply two alternative strategies to evaluate DPs. In
this chapter, we first describe the simulation algorithm for ChIP-seq data to produce artifi-
cial gold standards. The algorithm is highly parametrized to enable producing various gold
standards for the evaluation. Second, we propose indirect metrics by associating DPs with
gene expression changes in the same cellular conditions. Moreover, we describe the biolog-
ical data sets used for the evaluation studies. Next, we describe the experiments performed
with and without replicates to evaluate THOR, ODIN and their competing methods. Also,
we describe two use cases for THOR. The first use case describes the ability of THOR to call
DPs that support regulatory single nucleotide polymorphisms (rSNPs). The second use case
is about the association of DPs to genes. We check whether these genes go in accordance
with prior biological knowledge. Finally, we briefly explain the statistical test we apply to
quantify different methods solving the differential peak calling problem. Figure 4.1 gives an
overview of all experiments.

4.1 Evaluation with Simulated Data

With the simulation of ChIP-seq data it is possible to produce a gold standard which can be
used to evaluate DPCs. This allows us to evaluate methods for data with distinct charac-
teristics such as the number of replicates and the number of reads per sample. For a given
DPC, we check whether DPs in the simulated data are (in-)correctly called or not called. The
simulation of single ChIP-seq datasets has already been addressed by Zhang et al. (2008)
and Humburg (2011) (see Section 2.4.2), but none of these approaches can be used directly
for the differential peak calling problem.

4.1.1. Simulation Method

Algorithm 4.1 describes how we simulate ChIP-seq reads that contain replicates. Figure 4.4
pictures the simulation procedure. In the following, we describe each step in more detail.

1. Step Creating Protein Domains We define n protein domains (Di)i=1...n for a genome g
(see Figure 4.4, Step 1). Protein domains are regions in the genome that contain
proteins. Depending on the number of proteins, these domains model histone mod-
ifications (large number of proteins) or TFs (low number of proteins) within the
genome. Genomic regions with repetitive or unassembled parts are ignored for
the domain placement. For each protein domain Di, we sample the actual num-
ber qi of proteins (Pi, j) j=1...qi that are contained. The protein number qi follows a
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Negative Binomial distribution qi ∼ NBm1,p1 . We determine the positions ri,1 of the
first protein Pi,1 by uniformly selecting a position within the genome: ri,1 ∼U [g]. We
then place further proteins ri, j with a particular space between each other, that is,
ri, j = ri,1+∑

j−1
k=1 bk ( j ∈ {2 . . .qi}). The spacing variable bk follows a mixture of normal

distributions bk ∼ ∑l cl ·Nµl ,σ
2
l
.
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Figure 4.1.: Overview of Experiments. If no replicates are available, we use the DAGE score for the studies
TLR4 and DC to evaluate ODIN and its competitors ChIPDiff, MACS2, MAnorm, DESeq,
and DBChIP (B3). We also evaluate the p-value estimation strategies (B1), the construction
of the genomic signal ODIN uses for the analysis (B2) and the parametrization of the applied
DPCs (B4). Moreover, we take advantages of simulation, where we vary the protein domain
sizes as well as the peak sizes (A). For the case with replicates, we apply the DCA metric for the
studies LYMP, DC, CO and MM to quantify the DP predictions of THOR and its competitors
PePr, csaw, MACS2, DESeq, DiffBind and DiffReps (D1). Moreover, we evaluate the impact
of overdispersion to THOR (D2), the characteristics of the data sets (D4) and the initial DPs
THOR is using (D3). We also use simulated data for the evaluation with different peak sizes,
within-condition variance and numbers of replicates (C). Furthermore, we apply THOR to two
use cases to evaluate its ability to evaluate prior biological knowledge (E).

2. Step Sampling Fragments We sample the fragments {Fi, j,l} that are bound to the protein
Pi, j (see Figure 4.4, Step 2). The length si, j,l of each fragment Fi, j,l follows a normal
distribution si, j,l ∼Nµ,σ2 . Fragments are assigned randomly to each DNA strand and
always cover the entire length oi, j of the protein Pi, j to which they are associated.
However, since fragments are usually larger than the corresponding proteins, they
are randomly moved up- or downstream. That is, for a given fragment’s midpoint
mi, j,l ,

mi, j,l = ri, j + t with t ∼U [−(si, j,l−oi, j),(si, j,l−oi, j)].
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For MA-plots of biological data, we typically observe a non-linear decrease of M-
values for higher A-values. We model this non linearity by using function f which
is described by a Laplace distribution:

fb,µ(di, j) =
1
2b

exp

(
−
∣∣di, j−µ

∣∣
b

)
, (4.1)

with b = 0.5, µ = 0.2 and where di, j gives the ratio of the fragments assigned to one
of the biological conditions. The number l of fragments we sample for a protein is
given by

l = f0.5,0.2(di, j) · p,

where p follows a Negative Binomial distribution p ∼ NBm2,p2 . Figure 4.2 shows an
example of an MA plot of simulated data. The factor f0.5,0.2 causes the typical non-
linear relationship between M and A values, that is, the M-values decrease stronger
than linear with increasing A-values.

Figure 4.2.: MA-plot example of simulated ChIP-seq data. We use mean m1 = 8 and variance p1 = 14 for
the negative binomial distribution describing the protein domains. The number of fragments as-
signed to each protein follows a Negative Binomial distribution with mean m2 = 150 and variance
p2 = 10000. We have 2 replicates for each condition with α0 = 5 for a moderate variance between
the replicates. The Laplace function (Equation 4.1) leads to the typical shape of the MA-plot.

3. Step Assigning Fragments For a given protein Pi, j, factor di, j describes the ratio of the
protein associated fragments that are assigned to the biological conditions. In our
model, the ratio di, j follows a beta distribution B(0.5,0.5). The beta distribution
B(0.5,0.5) is symmetrical to 0.5 and tends to assume the extreme values 0 and 1. We
thereby increase the probability that fragments are mostly assigned to one condition
which could potentially result in a DP.

For each protein domain Pi, j and each biological condition, we randomly choose a
replicate and assign fragments to it (see Figure 4.4, Step 3). For n replicates in a con-
dition and for a constant vector α = (α0, . . . ,α0) of length n, where α0 describes the
variance to distribute fragments among the replicates, the probability distribution
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Algorithm 4.1 ChIP-seq read simulator
Input: reference genome g
Output: ChIP-seq read 〈rkGi〉k∈N,i∈1,2 for condition Gi with replicates

1. select genomic regions in g, include protein domains Di, and sample proteins Pi, j in
domain Di

2. sample and place fragments Fi, j,l per protein Pi, j

3. assign a proportion di, j of fragments of a protein Pi, j to a biological condition Gi, and
assign each fragment to a ChIP-seq replicate of a biological condition Gi

4. add noise to the data

5. define DPs for each protein Pi, j and output reads 〈rkGi〉k∈N for condition Gi

to assign fragments to replicates is given by a Dirichlet distribution of order n, that
is,

f (x,α) =
1

B(α)

K

∏
i=1

xαi−1
i , with

B(α) =
∏

K
i=1 Γ(αi)

Γ
(
∑

K
i=1 αi

) .
For each fragment, we follow the sampled probabilities to assign it to a replicate.
The lower α0, the higher is the variance within the replicates.

4. Step Adding Noise We follow Zhang et al. (2008) to add noise to each replicate (see Fig-
ure 4.4, Step 4). We divide the genome into bins and assign a random weight to
each bin. We assume that the majority of noise fragments in a ChIP-seq experiment
appear in single locations, but some of them build dense clusters. We therefore use
a right skewed gamma distribution to model the weight of a bin.

Accordingly to the weights, we randomly sample t bins with replacement. For each
sampled bin, we add a noise fragment with a uniformly chosen position to the bin.
The number t of chosen bins for replicate r is defined as

t = min
(

#fragments
FRiP

,
b ·genome’s length

read’s length

)
.

FRiP is the fraction of reads in peaks. To have the number t invariant towards
genome’s length, we multiply the ratio of genome’s and read’s length by b. The
variable b gives the average background coverage.

5. Step Deriving Reads from Fragments and Defining Differential Peaks Reads are ob-
tained by getting the initial u base pairs of fragments in the forward strand (or the
last u base pairs of the reverse strand). We define a DP gaining signal in condition
Gi, if the number of fragment in condition Gi is higher than a given threshold e and
at least v fragments are present, that is,

| {Fi, j,l}
∣∣
Gi
|

| {Fi, j,l} |
> e and

∣∣{Fi, j,l}
∣∣
Gi
≥ v,
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where |{Fi, j,l}|Gi gives the fragments of condition Gi (see Figure 4.4, Step 5). The
position of the DP is defined by the protein position ri, j.
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Figure 4.3.: Example for simulated data. (A) A differential peak calling problem with 3 replicates in each
condition, moderate peak size variance and low within-condition variance. (B) A hard differ-
ential peak calling problem with 4 replicates, high peak size variance and high within-condition
variance.

Figure 4.3 gives two examples for simulated data. We use the simulation algorithm with
different parameters to obtain an easy and a hard differential peak calling problem with
replicates.

To simulate ChIP-seq reads without replicates, we use a simpler version of Algorithm 4.1.
First, we use a fixed spacing b between the proteins within a domain (see Step 1). Second,
for the number l of fragments to sample per protein (see Step 2), we use a random variable
following a Negative Binomial distribution. In the case with replicates, we use the Laplace
function to model the non-linearity of the MA-plot (see Step 2). Here, we do not consider
the non-linear property. Next, we use a constant ratio to assign fragments to one of the
biological conditions (see Step 3). Finally, we do not add background noise to the ChIP-seq
data, that is, we do not perform Step 4. The rationale of this simulation version is a historical
one, as we first developed the simulation algorithm without replicates and then extended
the approach to account for replicates.
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Figure 4.4.: Workflow to simulate ChIP-seq data. First, unassembled and repeated regions are marked and
ignored in the further progress. We then uniformly place domains of proteins in the genome.
Here, domain D1 contains proteins P11, P12, P13 and P14, and Domain D2 contains proteins P21,
P22 and P23. The spacing between two proteins of a domain, for example b2 between protein
P12 and P13, is sampled from a mixture normal distribution. Next, fragments are assigned to a
protein, e.g. fragment F148 is associated with protein P14. In the next step, fragments are assigned
to both biological conditions (S1, S2) as well as replicates (black, white). We add noise to the data
and define reads as the beginning or ending part of the fragments.
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4.1.2. Evaluation

We describe how we use simulated data to evaluate DPCs. For given simulated data and
DP predictions, Table 4.1 gives an overview of the possible classification of DPs. For a gentle
introduction to the evaluation of a classifier, please see Fawcett (2004).

simulated DP no simulated DP
called DP true positives false positives

not called DP false negatives true negatives

Table 4.1.: Possible classification. For a given genomic region, a DPC calls or does not call a DP (rows), while
the simulated data actually contain or do not contain a DP (columns). This results in four possible
classifications performed by the DPC, namely true/false positive/negative DPs.

If the simulated region is a DP and is classified as positive (negative), the region is called a
true positive (false negative). If the simulated region is no DP and is classified as positive
(negative), the region is called a false positive (true negative). For a DPC, the numbers in the
major diagonal (true positives and true negatives) give the correct decisions. The numbers
outside the major diagonal (false negatives and false positives) give the incorrect decisions.
Moreover, we define the true positive rate (TPR) as the ratio between positive called DPs
and the total number of positives, that is,

TPR =
true positives

true positives+ false negatives
.

The false positive rate (FPR) is given by

FPR =
false positives

false positives+ true negatives
.

DPCs assign a p-value to the called DPs, where a lower p-value indicates a higher proba-
bility that the DP is a true positive. DPCs typically use a p-value threshold to define final
DPs. Stricter thresholds lead to a stricter classification and in particular stricter FPR. The
receiver operating characteristic (ROC) curve describes the relationship between FPR and
TPR for distinct p-value thresholds. The ROC curve therefore allows a visual representation
of a classifier performance under distinct FPRs. The area under the curve (AUC), that is, the
integral, of a ROC curve gives a single score for a DPC. The higher the AUC ROC, the better
the DP predictions of the considered method. We use ROC and AUC ROC to evaluate DPCs
with simulated data.

In our case, true or false positives and negatives are given as genomic regions. To classify
these regions, we define an interval based algebra. A genomic region r = (rs,re) is described
by its starting position rs and ending position re. We omit the chromosome information
as we restrict our analysis to one chromosome. The intersection of two genomic regions
r1 = (r1s,r1e) and r2 = (r2s,r2e) is defined as

r1∩ r2 =

{
(max(r1s,r2s),min(r1e,r2e)) if r1 and r2 overlap,
/0 else.

The subtraction of two genomic regions is defined as
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r1− r2 =



(r1s,r2s) if r1 and r2 overlap, r1s < r2s, r1e < r2e,

(r2e,r1e) if r1 and r2 overlap, r1s > r2s, r1e > r2e,

{(r1s,r2s),(r2e,r1e)} if r1 and r2 overlap, r1s < r2s, r1e > r2e,

/0 if r1 and r2 overlap, r1s > r2s, r1e < r2e,

(r1s,r1e) else.

For two sets of genomic regions the subtraction and intersection operation is performed
element-wise, that is, for each element of the first set the operation is performed for each
element of the second set. The size of a genomic region set is defined as the sum of all
genomic regions’ length.

With the interval based algebra on genomic regions, we are able to quantify the classifica-
tion outcome of DP predictions. For a given simulation instance, we define g as a genomic
region spanning the entire genome which we simulate. Moreover, we have a set of genomic
regions T describing true DPs in the simulated data and a set PA of genomic regions describ-
ing DPs predicted by algorithm A. We obtain true positive DPs by computing T ∩PA, false
positive DPs by computing PA−T , false negative DPs by computing T −PA and true nega-
tive DPs by computing g−T −PA. Figure 4.5 gives an example of the operations on genomic
regions and the resulting classification. We use the algebra based classification and obtain

TPR =
|T ∩PA|
|T |

and FPR =
|PA−T |
|g−T |

.

In the case without replicates, we use for historical reasons a simpler approach to evalu-
ate DP predictions. DPCs are evaluated by sorting the called DPs by smallest p-value and
calculating the proportion of true positives among the top r called DPs.

T

PA

PA - T

T - PA

g - T - PA

genome g

T   PA
⋂TP:

FP:

FN:

TN:

Figure 4.5.: Algebra on genomic regions. For a given genome g, true DPs T in the simulated data and
predicted DPs PA, we perform operations on genomic regions to compute all possible classification
outcomes: true positive (TP), false positive (FP), false negative (FN) and true negative (TN) DPs.
For the differential peak calling problem, we typically obtain a large number of true negative DPs,
as the majority of the genome does not contain ChIP-seq signal.

4.1.3. Implementation

We implemented both strategies to simulate ChIP-seq data with and without replicates as
Python command line tools. The tools are public available at http://costalab.org/wp/
ODIN and http://costalab.org/wp/THOR under the terms of the GNU General Public
Licence v3 (GPL v3). The required input is the reference genome in fasta format and the ge-
nomic regions in BED format describing repeated regions within the genome. In the case
with replicates, the user additionally has to define the number of replicates for each condi-
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tion. The tools are highly parametrized, that is, all variables introduced here, such as the
number of protein within a domain and the number of reads, can be customized for each
run which allows a flexible tool usage. We use the same computational landscape of THOR
and ODIN for the simulators. All websites mentioned in this section were accessed on 17th
November, 2015.

4.2 Evaluation with Biological Data

We motivate and discuss two approaches to measure the quality of DPs called by DPCs on
real datasets. These approaches are based on the correlation of DPs and associated gene
expression data.

4.2.1. Indirect Metric

We associate changes in protein-DNA interactions with changes in gene expression when-
ever gene expression is measured in the same cellular conditions. The idea is based on the
fact that the level of histone modifications correlates with the expression of the surrounding
genes (Karlić et al., 2010). Several groups have already used histone modifications to predict
gene expression (Cheng et al., 2011; Maze et al., 2014). We will use gene expression data to
evaluate DPs.

Our measure is independent of the number of called peaks and can be applied either to
gene expression data from sequencing or microarray data. For sequencing data, we first
extend the DPs to have a length at least of 1000bps. Next, we count the reads of the gene
expression data falling into the DPs. The use of minimum windows around DPs is based
on the fact that we want to capture the expression of known genes or uncharacterized, long
non-coding RNA (lncRNA) in the close proximity of the DPs. For microarray data, DPs are
assigned to genes if (1) they are located in the gene or close to the promoter of a gene (1000bp
upstream) or (2) if the DPs are located 50 Kbps away from the TSS without a TSS of another
gene in between. The average expression value of genes assigned to a peak is used. Peaks
not assigned to genes are ignored. We use the gene annotations from Cunningham et al.
(2015).

DAGE

For the case without replicates, we sort DPs called by algorithm A by increasing p-value and
take the top k ranked DPs that are associated with the HMM state Gain 1 (or Gain 2). Let
sAi1 and sAi2 be the gene expression values associated with the ith DP called by algorithm A
in the first and second condition. We define the function

e(k) =
∑i≤k log

(
sAi1
sAi2

)
k

, (4.2)

for k ∈ N. Function e gives the average logarithmic ratio of condition-specific expression
values for the top k DPs. The higher the value is, the higher is the association between DP
and changes in expression.

We compute the integral of function e and obtain the single statistic DAGE (Differential
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Average Gene Expression). We use Equation 4.2 and define

DAGE =

(
∑
k∈K
|e(k)|

)
·h, (4.3)

for K = [h,2 ·h, . . . ,H] where h is the step size and H the maximum number of DPs used.

DCA

If replicates are available, we perform a differential expression analysis with DESeq (An-
ders and Huber, 2010) for RNA-seq and limma (Ritchie et al., 2015) for microarray data. We
compute p-values of the differential expression analysis and use them to indicate expres-
sion changes. This approach improves the DAGE statistic, which is based on a simple fold
change.

We rank the DPs by increasing p-values. For a given DP with rank i, let pAi1 be the cor-
responding p-value of the DPC A and let pAi2 be the corresponding p-value of the gene ex-
pression analysis. We compute the Spearmann rank-correlation (Spearman, 1904) between
p-value lists (pAi1) and (pAi2) for the top k ranked DPs, that is,

f (k) = cor
(
(pAi1),(pAi2)

)
Spearman, (4.4)

for all i < k, k ∈N. We obtain DCA (Differential Correlation Analysis) curves which indicate
the association of gene expression and DPs for a distinct number of called peaks. Further-
more, we obtain a single score for algorithm A by estimating the normalized area under the
DCA curve, that is, we use Equation 4.4 and obtain

DCA =

(
∑k∈K max

(
0, f (k)

))
·h

H
, (4.5)

for K = [h,2 · h, . . . ,H], where h is the step size and H the maximum number of DPs used.
We ignore DPs with a negative correlation between gene expression and count data, as they
represent spurious solutions. The DCA score detects the positive correlation between gene
expression changes and DPs.

DAGE and DCA evaluation are based on the use of cumulative values computed by the
functions e and f . Evaluation of e(k) takes into account sAi1 and sAi2 with i ≤ k. Evaluation
of e(k+1) also considers sAi1 and sAi2 with i≤ k. Additionally, the succeeding values sA(k+1)1
and sA(k+1)2 are evaluated. This pattern makes the values sAi1 and sAi2 gain higher impact
on distinct evaluations of function e than all succeeding values sA j1 and sA j2 with j > i. The
corresponding statement is valid for function f . This characteristic of DAGE and DCA is
also shared by AUC ROC (see Section 4.1.2), which is typically used by the machine learning
community (Fawcett, 2004).

4.3 Biological Datasets

We list the biological datasets that we use to evaluate DPCs. Depending on the availabil-
ity of replicates, we use the DAGE or DCA statistic for the evaluation. Table 4.2 gives an
overview of the differential peak calling experiments without replicates and Table 4.3 of the
datasets with replicates. We use BWA (Li and Durbin, 2010) version 0.6.1−r104 with default
parameters for read mapping to the mouse (mm9) or human genome (hg19).
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• Dendritic Cell (DC) Differentiation This in-house study measures regulatory changes
during the development of antigen-presenting dendritic cells (DC) which develop
from hematopoietic stem cells in bone marrow. Our collaborators have established
an in-vitro protocol to differentiate multipotent progenitors (MPP) from adult mouse
bone marrow to common DC progenitors (CDP) (Felker et al., 2010). CDP cells are fur-
ther differentiated to either classical DC (cDC) or plasmacytoid DC (pDC). For these
four cell types, we have performed a DP analysis comparing the lineage commitment
steps (MPP to CDP, CDP to cDC, CDP to pDC) and DC subset specification (cDC and
pDC).

ChIP-seq experiments without replicates were performed for the histone modification
H3K4me1 and the TF PU.1 by Lin et al. (2015). The data is available at the Gene Expres-
sion omnibus (GEO) database (Edgar et al., 2002) with accession number GSE57563. It
has been shown that the TF PU.1 is associated with active gene regulation (Lin et al.,
2015). Hence, similar to histone modifications, we use PU.1 to evaluate DPs with the
DAGE score. A single input-DNA profile which serves as control for all cell types is
available. We also have gene expression data from microarrays for all four cell types
from Felker et al. (2010) (GEO accession GSE22432). Altogether, we obtain 8 experi-
ments which are listed in Table 4.2.

Furthermore, ChIP-seq experiments with two technical replicates were performed for
the histone modification H3K27ac (GEO accession GSE73143). Input-DNA for each
cell type is available. This study represents a scenario with potentially very low vari-
ability within the biological conditions and leads to 4 experiments in Table 4.3.

• TLF4 Pathway Analysis (TLR4) Kaikkonen et al. (2013) investigate the response of
macrophages after activation of the TLR4 signaling pathway in mice. They provide
ChIP-seq experiments without replicates for the TF PU.1 at time points 0h, 1h, 6h, 12h
and 24h and for the histone modification H3K4me2 at time points 0h, 1h, 6h and 24h
(time point 12h was not available). We perform differential peak calling by comparing
the time point 0h with all other time points, which leads to 7 experiments (Table 4.2).
The study provides an input-DNA signal of untreated cells, which is used as con-
trol. Moreover, we use the genomic run-on sequencing (GRO-seq) experiments, which
measure the quantity of nascent transcripts, at time points 0h, 1h, 6h, 12h and 24h for
evaluation. These data were obtained from GEO accession number GSE48759.

• Epigenomics Effects of Cocaine (CO) Feng et al. (2014) analyze epigenetic changes
after cocaine intake on mouse nucleus accumbens. The study measures histone modi-
fications of three biological replicates after treatment with a cocaine or saline solution.
We use data from histone modifications H3K4me1 and H3K36me3, which leads to two
DP calling experiments. The authors provide RNA-seq data matching the samples, but
no input-DNA (GEO accession number GSE42811 and GSE24850). This study repre-
sents a scenario with biological replicates that exhibit a similar genomic background.
Therefore, we expect a low variance within the biological conditions.

• Monocyte and Macrophages (MM) This study provides samples of monocytes acti-
vated to macrophages in up to 8 human samples (Saeed et al., 2014). We consider
the histone modifications H3K4me1, H3K27ac and H3Kme3. For histone modification
H3K4me1 there are 6 monocytes and 10 macrophages, for H3K27ac there are 5 mono-
cytes and 8 macrophages and for H3K4me3 there are 6 monocytes and 10 macrophages
samples. We perform DP estimations between monocytes and macrophages for all hi-
stone modifications. Condition-specific RNA-seq data (36 macrophages and 25 mono-
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Experiment Protein Cond. 1 Cond. 2
TLR4-PU.1-0h-1h PU.1 0h 1h
TLR4-PU.1-0h-6h PU.1 0h 6h
TLR4-PU.1-0h-12h PU.1 0h 12h
TLR4-PU.1-0h-24h PU.1 0h 24h
TLR4-H3K4me2-0h-1h H3K4me2 0h 1h
TLR4-H3K4me2-0h-6h H3K4me2 0h 6h
TLR4-H3K4me2-0h-24h H3K4me2 0h 24h
DC-PU.1-MPP-CDP PU.1 MPP CDP
DC-PU.1-CDP-cDC PU.1 CDP cDC
DC-PU.1-CDP-pDC PU.1 CDP pDC
DC-PU.1-cDC-pDC PU.1 cDC pDC
DC-H3K4me1-MPP-CDP H3K4me1 MPP CDP
DC-H3K4me1-CDP-cDC H3K4me1 CDP cDC
DC-H3K4me1-CDP-pDC H3K4me1 CDP pDC
DC-H3K4me1-cDC-pDC H3K4me1 cDC pDC

Table 4.2.: Overview of DP experiments without replicates. We give the experiment name, protein type as
well as the cellular conditions for each of the evaluated differential peak problems.

cytes samples) are used for evaluation. The study does not provide input-DNA data
for the ChIP-seq experiments. The data are available with restricted access at the Eu-
ropean Genome-phenome Archive (EGA) (Lappalainen et al., 2015), accession number
EGAD00001001011. This study represents a scenario with human biological replicates
with a moderate within-group variability.

• B cell lymphoma (LYMP) Koues et al. (2015) performed a comprehensive analysis of
regulatory genomic features in lymphomas. We use ChIP-seq data of the histone mod-
ification H3K27ac on follicular lymphoma cells (FLs), as well as distinct populations
of B cells from healthy donors: proliferative centroblasts (CC) and peripheral blood
B cells (PBBA). We only consider samples with a matching input-DNA and gene ex-
pression (measured with microarrays): CC samples 1-5, FL samples 1, 2, 5, 8, 10, 11,
14, 16 and PBBA sample 1-3 (GEO accession number GSE62246). We evaluate DPs in
the cases FL vs. CC, FL vs. PBBA and CC vs. PBBA. This dataset contains human
biological replicates and disease samples and is expected to have a high within-group
variability.

4.4 Experiments without Replicates

Here, we explain how the above mentioned evaluation procedures are used for our exper-
iments without replicates. We describe the experiments we perform to evaluate ODIN and
other methods that do not account for replicates. ODIN is run with a Binomial and a mixture
of Poisson distribution as emission. Moreover, we evaluate ChIPDiff, MACS2, MAnorm,
DBChIP and DESeq. MAnorm, DBChIP and DESeq are based on initial candidate peaks
called by SPCs (see Table 2.1). We also evaluate the use of the SPCs PeakSeq, Quest and
MACS. First, we describe how we use the simulated data. Second, we resort to the biologi-
cal data for the evaluation experiments.
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4.4. Experiments without Replicates

Experiment Histone Cond. 1 Cond. 2 #rep
DC-H3K27ac-MPP-CDP H3K27ac MPP CDP 2, 2
DC-H3K27ac-CDP-cDC H3K27ac CDP cDC 2, 2
DC-H3K27ac-CDP-pDC H3K27ac CDP pDC 2, 2
DC-H3K27ac-cDC-pDC H3K27ac cDC pDC 2, 2
CO-H3K36me3 H3K36me3 saline cocaine 3, 3
CO-H3K4me1 H3K4me1 saline cocaine 3, 3
MM-H3K27ac H3K27ac monoc. macrop.s 5, 8
MM-H3K4me1 H3K4me1 monoc. macrop. 5, 8
MM-H3K4me3 H3K4me3 monoc. macrop. 6, 10
LYMP-FL-CC H3K27ac FL CC 8, 5
LYMP-FL-PBBA H3K27ac FL PBBA 8, 3
LYMP-CC-PBBA H3K27ac CC PBBA 5, 3

Table 4.3.: Overview of DP experiments with replicates. For each experiment, we describe the experiment
name, histone modification type, cellular conditions and number of replicates.

4.4.1. Evaluation of Methods with Simulation Data

We describe the simulation experiments without replicates. First, we explain the experimen-
tal setup and second, we give details about the parametrization of the simulator and all used
DPCs.

Experimental Setup

We investigate the effect of protein domain sizes as well as the number of reads in the li-
braries. We therefore vary the parameters

• m1 to obtain larger protein domains,

• p1 to obtain more variable sized protein domains,

• m2 to obtain peaks with higher number of reads, and

• p2 to obtain peaks with higher variance in their size.

See Section 4.1.1 for a detailed description of the parameters. We evaluate the parameter
settings

(m1, p1) ∈ {(1,4),(4,6),(8,14)} and

(m2, p2) ∈ {(20,200),(20,2000),(100,200)}.

We combine the two-stage DPC DBChIP and MAnorm with the SPC MACS, as MACS
provides good performance (Chen et al., 2012; Wilbanks and Facciotti, 2010) and does not
require input-DNA for the execution. Moreover, we evaluate the usage of DESeq in this
scenario. Hence, we combine DESeq with MACS and refer to this algorithm as DESeq-
MACS. We run ODIN with the Binomial and mixture of Poisson emission distribution. For
the mixture of Poisson we consider 1, 2, 3, and 4 components.

Parametrization of Methods

The following values are set as constants in our simulated ChIP-seq experiments. We gener-
ate 10,000 protein domains per dataset. The spacing b between proteins is defined as 200 bp,
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which reflects the average spacing between nucleosomes (Mammana et al., 2013). Further-
more, ChIP fragments typically have a length of 200 bp (Furey, 2012). We therefore model
the fragment’s size with mean µ = 200 and standard deviation σ = 20. The standard devia-
tion follows estimates taken from paired-end sequencing data reported in (Marschall et al.,
2012). The minimum number of reads v to support a DP is 25 and the ratio e for definition of
a DP is defined as e = 0.6. We use a ChIP-seq read size of 26 bp. We choose chromosome 1 of
the mouse genome (mm9) as reference genome and align the simulated reads with BWA (Li
and Durbin, 2010) version 0.6.1− r104 with default parameters. For each parametrization
choice, we generate 50 simulated datasets. We run all methods with default parameters.

4.4.2. Evaluation of Methods with Biological Data

We give details about the experiments performed with biological datasets without repli-
cates. First, we introduce the experimental setup and second, we describe the parametriza-
tion of all considered DPCs.

Experimental Setup

We use all datasets which are listed in Table 4.2, that is, all 15 ChIP-seq experiments from the
TLR4 study (Kaikkonen et al., 2013) and the DC study (Lin et al., 2015) without replicates.
The two-stage DPCs DBChIP, DESeq and MAnorm require peaks of each ChIP-seq signal
as input. In contrast to the simulated data which does not provide input-DNA, we here are
able to separately evaluate the SPCs PeakSeq, Quest and MACS to compute the candidate
peaks. The SPCs were selected based on their good performance (Chen et al., 2012; Wilbanks
and Facciotti, 2010). We also define a two-stage DPC which merges all candidate peaks and
uses them as input for DESeq.

DBChIP uses predefined short windows of 250bps around the peak summits as candidates
for DPs. As proposed by the authors, we apply DBChIP to TF-based ChIP-seq data which
typically exhibit well defined, sharp peaks. In contrast to the DPC that combines DESeq with
candidate peaks, DBChIP finds DPs with variable size which is common for histone ChIP-
seq data. Hence, we distinguish between experiments with TFs and histone modifications.
As ChIPDiff does not provide p-values or any criteria to sort DPs, we can only obtain points
for the DAGE curve.

In our experiments, ODIN (with a single component in the mixture model) requires av-
eragely 12GB of memory. The calculations last on average 4 hours on a 3.4GHz machine.
Computational time increases linearly with the number of components in the case of mix-
ture of Poisson distributions.

Parametrization of Methods

For ODIN, we use the mappability files that are provided by Landt et al. (2012)1 to compute
the genomic signal (Section 3.2.1). We only consider regions with a mappability value of
1. We compute the fragment size (Section 3.2.2) with f̂ = arg maxf∈G c( f ) for the range G =
[0,5, . . . ,600]. Moreover, we use a step size s of 50 and window size w of 100 to compute the
signal profile (Section 3.2.3). This choice was based on visual inspection of peaks: smaller
windows did not affect peaks and larger windows induced too large peaks. We only use
input-DNA signal of chromosome 1 to build the GC-content histogram (Section 3.2.4).

1http://hgdownload-test.cse.ucsc.edu/goldenPath/mm9/encodeDCC/
wgEncodeMapability/, last access: 25th November 2015,
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4.5. Experiments with Replicates

ChIPDiff is also run with default parameters (FC = 3, minRegionDist = 1000 and minP =
0.95). It finds less than 20 peaks for half of the experiments from the TLR4 study. For
these experiments, we change parameters (FC = 1.5, minRegionDist = 200 and minP = 0.7)
to obtain at least 100 DPs. MACS2 is run with parameter C = 0.5 for the TLR4 study and
C = 1.5 for the DC study. MAnorm, DBChIP and DESeq and all SPCs are run with default
parameters.

4.4.3. Evaluation of P-value Estimation Strategies

We evaluate distinct estimations strategies to compute p-values of DPs. For this, we call DPs
with ODIN for all biological datasets (see Table 4.2) and re-compute the p-values with DESeq
and edgeR. As we do not consider replicates, we have to choose the following parameters
for DEseq’s function estimateDispersions: the method blind, the sharingMode fit-only and the
fitType local. For edgeR, we follow the user guide and use a dispersion factor of 0.04 in the
exactTest function. We use edgeR version 3.6.8 and DEseq version 1.16.0. We compare the
DAGE scores based on the p-value estimates of ODIN, edgeR and DESeq.

4.5 Experiments with Replicates

We describe the experiments to evaluate THOR and competing DPCs that take replicates
into account. First, we resort to simulated data and then we describe how we use biological
data for the evaluation experiments.

We call DPs with THOR and all methods described in Table 2.1 that account for replicates,
that is, MACS2, DiffBind and DiffReps, PePr and csaw. Moreover, we combine DESeq with
the SPC JAMM, which can handle replicates. We also combine DESeq with IDR, which uses
peaks called by MACS2 on single ChIP-seq profiles to estimate common peaks within a
condition (see Section 2.4.3). We refer to these approaches as DESeq-JAMM and DESeq-IDR
respectively.

As described in Section 3.3.3, ODIN uses a Binomial or, for large n, where n is the number
of reads in the ChIP-seq libraries, an equivalent Poisson distribution. We evaluate THOR
with a Poisson distribution by fixing asGk = 0 (see Section 3.3.3), which can be seen as a
version of ODIN that supports replicates. We refer to this approach as Poisson-THOR.

4.5.1. Evaluation of Methods with Simulation Data

We describe the simulation experiments with replicates. First, we explain the experimental
setup and second, we give details about the parametrization of the simulator as well as all
DPCs.

Experimental Setup

We are interested in how methods perform when the number of reads of each protein in a
domain, the number of replicates and the variance within replicates changes. We therefore
simulate the following parameter settings:

• (m2, p2) ∈ {(100,200),(100,400)} to obtain peaks with moderate and high variance in
their sizes. Thereby, we model distinct types of histone modifications which have
either uniform or varying peak sizes;

• (r1,r2) ∈ {(2,2),(4,4)} to evaluate experiments with 2 and 4 replicates in each condi-
tion, and
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• α0 ∈ {5,10,60} to obtain data with low (60), moderate (15) and high (5) variance within
a biological condition. This parameter controls the consistency between replicates:
higher variance imposes lower consistency and more difficult differential peak calling
problems.

See Section 4.1.1 for a detailed description of the parameters. Experiments with 2 replicates
are obtained by discarding 2 ChIP-seq experiments from each biological condition of the
experiments with 4 replicates. We were not able to run csaw on the simulated data, even
when trying out distinct parameters as used in the real data. Furthermore, PePr requires
input-DNA which is not provided by our simulation model.

Parametrization of Methods

We model the space between the proteins bk within the same domain. Since we are inter-
ested in modelling histones, we estimate mixture model parameters by using histone posi-
tion data in yeast (Weiner et al., 2010). For this, we randomly take 10,000 consecutive histone
positions and fit a mixture normal distribution to their distance. We ignore positions which
are 500bp away from each other, as we assume that these positions belong to two different
histone domains. Bayesian information criterion shows that 2 components fit best for the
mixture model (−1.5 · 102). To model histone characteristics, we define the minimum dis-
tance between proteins in a domain as the sum of the usual estimate of histone size (147bps)
and the average linker size (55bps) (Szerlong and Hansen, 2010).

Similar to the case without replicates, we generate n= 10,000 protein domains per dataset.
ChIP fragments typically have a length of 200 bp (Furey, 2012). We therefore model the
fragment’s size with mean µ = 200 and standard deviation σ = 20. The standard deviation
follows estimates taken from paired-end sequencing data reported by Marschall et al. (2012).
The minimum number of reads to support a DP v is 25 and the ratio e for definition of a DP is
defined as e= 0.6. We use a read size u of 26. Reads are sampled from chromosome 1 of mm9
and aligned with BWA with default parameters. We use a FRiP of 0.05 (Landt et al., 2012) for
the estimation of the noise in the simulated signal. Our empirical studies have shown that
the average background coverage b should be around 0.25 in ChIP-seq experiments. We use
m1 = 8 and p1 = 14 for the Negative Binomial distribution NBm1,p1 describing the number
of proteins in a protein domain. We repeat each experiment 25 times. We run all methods
DPCs with default parameters.

4.5.2. Evaluation of Methods with Biological Data

We describe the experiments performed with biological datasets that contain replicates.
First, we explain the experimental setup and second, we detail the parametrization of all
considered DPCs.

Experimental Setup

We use all 12 dataset which are listed in Table 4.3, that is, 4 experiments from the DC (Lin
et al., 2015), 2 experiments from the CO (Feng et al., 2014), 3 experiments from the MM (Saeed
et al., 2014) and 3 experiments from the LYMP study (Koues et al., 2015).

We run THOR with two normalization strategies, the housekeeping gene approach as well
as TMM (see Section 3.2.6), and refer to them as THOR-HK and THOR-TMM. The evaluation
of the normalization strategies was not necessary in the case of the simulated data, as we
ensure that both conditions have the same overall number of reads.
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On the dataset with largest number of ChIP-seq samples (MM-H3K4me3), THOR required
4 hours and 16 GBs of memory on a 3.4GHz machine.

Parametrization of Methods

As described in Section 3.3.5, we use certain criteria to define initial DPs used to train the
HMM of THOR. We use t1 = 〈x〉.95 as minimum difference between signals, where 〈x〉.95 is
the value in the 95% percentile of X; t2 = 1.6 as fold change criteria, and t3 = t1/2. If these
parameters yield a training set smaller than tmin = 100, we decrease t2 by 15 and t1 by 0.1,
and repeat the training set construction procedure. To estimate the mean-variance function
for each biological condition k, we randomly choose 20.000 bins, estimate mean and vari-
ance for each bin and fit the quadratic model described in Equation 3.17 using a non-linear
least squares approach (Levenberg, 1944). We use regions 500bps upstream of housekeep-
ing genes (C1orf43, CHMP2A, EMC7, GPI, PSMB2, PSMB4, RAB7A, REEP5, SNRPD3, VCP,
VPS29) described by Eisenberg and Levanon Eisenberg and Levanon (2013) as control re-
gions for the human genome.

We use the following parametrization for the competing methods. For csaw, as suggested
by the authors, we use a window size of 150bp and a step size of 25bp. All other parame-
ters are set as default. For Pepr, we follow the instructions on their webpage (see https:
//ones.ccmb.med.umich.edu/wiki/PePr/, last access on 12th November 2014) in-
cluding a procedure to remove artefacts in ChIP-seq data. To obtain a number of DPs com-
parable to other tools, we increase the p-value threshold parameter to 0.01. Initially, MACS2
called too few DPs, such that we had to decrease both the minimum length for DPs by us-
ing l = 50 and the fold-change cutoff by using C = 1.5 in the algorithm bdgdiff. Moreover,
we increased the p-value threshold to 0.2 to increase the number of peaks for the algorithm
callpeak. MACS2’s callpeak algorithm serves as internal SPC by identifying peaks in single
ChIP-seq profiles. These peak estimates represent the base for all downstream steps to call
DPs. For DiffBind, as recommended by the authors, we choose parameter minOverlap to
be 3 in the count function to only consider peaks supported in up to three replicates across
all conditions. Moreover, we increase the threshold for significant DPs (th=0.1). We run
DiffReps with default parameters, that is, we use a window size of 1000bp and a step size of
100bp, but increase significance threshold for called DP (by using the option –pval 0.1). For
DESeq-IDR, we follow the framework of ENCODE (see https://sites.google.com/
site/anshulkundaje/projects/idr, last access on 21th November 2014) to estimate
common peaks with IDR. We use an IDR threshold of 0.01 for the replicates, an IDR thresh-
old of 0.02 for the self-consistency replicates, and an IDR threshold of 0.0025 for the pooled
pseudo replicates. We then apply DESeq with default parameters to check for DPs. More-
over, we use JAMM in combination with DESeq where we use default parameters for both
methods.

4.6 Use Cases of THOR

We use THOR in two studies that investigate biologically motivated questions. We resort to
the data described in Section 4.3. The aim is to present biological results that are expected
to arise, as we thereby ensure that THOR is performing proper DP predictions. The prior
knowledge about the results stems from the study-specific biological background.
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4.6. Use Cases of THOR

4.6.1. Identifying rSNPs

We evaluate the ability of THOR with the housekeeping normalization approach to detect
DPs that support regulatory single nucleotide polymorphisms (rSNPs). Regulatory single
nucleotide polymorphisms are point mutations of the DNA which may modify the specific
transcription factor binding site (TFBS) such that the TF binding affinity is influenced. These
rSNPs thereby influence the gene expression as well as the chromatin state (Hawkins et al.,
2010; Guo et al., 2014). Figure 4.6 gives an example for a rSNP.

TF

...GGTACTTACGCA
T
TAATCG...

H3K4me1

TFBS

rSNP

Figure 4.6.: A regulatory SNP, here a substitution of a single nucleotide A to T, effects the TBFS such that
the TF cannot bind at that genomic position. Hence, the gene expression is influenced and the
chromatin structure is modified. The figure is based on Hawkins et al. (2010).

We evaluate the presence of disease-associated rSNPs in DPs by considering samples of
tumour B-cell from patients follicular lymphoma (FL) and centroblasts B-cell from healthy
donors (CC) (dataset LYMP-FL-CC from the study of Koues et al. (2015), see Table 4.3).

We call SNPs in FL samples using GATK’s UnifiedGenotyper (McKenna et al., 2010). Con-
cerning filtering steps performed by GATK, we use a threshold value of 20 for read depth
across samples (DP), the Variant Confidence/Quality by Depth (QD) and the RMS Mapping
Quality (MQ). We filter SNPs that lie on chromosomes chrY and chrM. Moreover, we ex-
clude SNPs falling into blacklisted regions (ENCODE Project Consortium, 2012) and restrict
our analysis to loci with at least 4 reads in more than 2 CC and 3 FLs samples. This yields
4390 candidate SNPs. We further filter SNPs, if the frequency of alternative alleles is higher
in FL than in CC samples (p-value < 0.05; Fisher Exact Test). This procedure results in 243
candidate SNPs, of which 143 overlapped with DPs called by THOR (FL vs. CC). Moreover,
we evaluate all transcription factor binding sites with JASPAR (Mathelier et al., 2014) and
UNIPROBE (Robasky and Bulyk, 2011) motifs and a FDR of 10−4 using the motif analysis
tool from www.regulatory-genomics.org (last access: 3rd December 2015). Altogether,
117 rSNPs were associated with DPs gained in FL (vs CC) and 20 rSNPs were associated with
peaks gained in CC (vs. FL). See Sup. Table A.40 for a selection of the rSNPs. The overlap
with DPs called by MACS2 only covers 41 candidate rSNPs, which is the highest overlap
among all competing methods of THOR.

4.6.2. Analysing the Development of Dendritic Cells

We evaluate the confirmability of DPs called by THOR by analysing the datasets DC-H3K27-
ac-CDP-cDC and DC-H3K27ac-CDP-pDC (see Table 4.3) from the study of Lin et al. (2015)
in more detail. We apply THOR with the housekeeping gene normalization approach and
restrict our analysis to the case where peaks are gained respectively in the cDC and pDC
condition. Similar to the DCA and DAGE approach (see Section 4.2.1), we assign DPs to
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genes if (1) they are located in the gene or close to the promoter of a gene (1000bp upstream)
or (2) if the peaks are located 50 Kbps away from the TSS without a TSS of another gene in
between. We sort the gene list by the associated p-values of the DPs. If multiple DPs are
assigned to a gene, we take the DP with the smallest p-value. The rationale for this expe-
riment is that under the assumption that THOR calls reasonable DPs, genes that are known
to be associated with the differentiation of CDP to cDC or pDC cells should be ranked in the
top of the list, that is, close to DPs with lowest p-values.

4.7 Statistical Analysis

We apply the Friedman-Nemenyi test (Demšar, 2006) to the DAGE and DCA values as well
as to the measures provided by the ChIP-seq simulation to evaluate DPCs. The Friedman-
Nemenyi test consists of two parts. First, the non-parametric Friedman test (Friedman, 1937)
detects differences in observations estimated by various methods across multiple datasets.
The test computes for each method a rank for the observations of all datasets. Under the
assumption of uniformly distributed ranks across the methods, that is, that the methods give
similar observations, the test checks for significant differences within the ranks. Depending
on the number of observations and methods, the test statistic approaches a χ2 distribution.
Second, the Nemenyi test (Nemenyi, 1962) is applied to identify the method that causes the
significant difference in the rank statistic. In our case, the Friedman-Nemenyi test indicates
whether one of the DPCs is assigned to significant higher values than others across multiple
datasets.

4.8 Summary

In this chapter, we described the experimental methods for our evaluation studies of DPCs.
First, we introduced a simulation algorithm for ChIP-seq profiles with DPs to obtain artifi-
cial gold standards. Second, we described two indirect metrics to rate DPs. Both metrics are
based on the idea that histone modifications correlate with gene expression. If replicates are
available, we apply the DAGE metric for 15; and otherwise, the DCA metric for 12 differ-
ential peak calling problems. We also detailed the experimental setup of our studies. In the
case with replicates, we simulate ChIP-seq data with variable protein domains sizes as well
as variable peak sizes for our study. With regard to the DAGE metric, we investigate dis-
tinct parameter settings for ODIN. Moreover, we perform a DAGE-based evaluation study
with ODIN and its competitors. In the case without replicates, we simulate ChIP-seq data
with variable peaks sizes, different number of replicates and distinct variances between the
conditions. We also perform an evaluation study with regard to the DCA metric based on
THOR and its competitors. We furthermore evaluate THOR’s ability to support prior bi-
ological findings. In particular, we use THOR to call DPs between distinct differentiation
steps of dendritic cells. We assign called DPs to genes and check whether these genes go
in accordance with prior knowledge of dentritic cells. Figure 4.1 gives an overview of all
experiments.
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CHAPTER 5
Results

In the previous chapter we described the experimental methods for our evaluation studies
and detailed the performed experiments comprising ODIN, THOR and their competitors.
In this chapter, we first describe the results of the experiments performed without repli-
cates, that is, we evaluate in particular ODIN. Second, we explain the results of experiments
that contain replicates. Here, we investigate the performance of THOR. Figure 4.1 gives an
overview of all performed experiments.

5.1 Experiments with ODIN

We describe the results of experiments with ODIN. First, we describe the findings of the
simulated ChIP-seq data without replicates (see Figure 4.1A). We produce simulated, artifi-
cial gold standards of ChIP-seq profiles to extensively evaluate DPCs with regard to distinct
data characteristics. We then give the results for the biological data without replicates evalu-
ated with the DAGE statistic (see Figure 4.1B1-B4). The DAGE metric is based on the idea of
associating changes in protein-DNA bindings with changes in gene expression of the same
cellular condition.

5.1.1. Experiments with Simulated Data

As described in Section 4.4.1 we investigate the effect of variable size in the protein domains
as well as a variable number of reads in the ChIP-seq experiments. Figure 5.1 shows the
results for simulated data without replicates. As expected, methods perform best for exper-
iments with more reads and lower number of proteins per domain (bottom left). The reason
is that lower number of proteins per domain shape isolated peaks in the signal. In combi-
nation with a large number of reads per protein, these peaks additionally are well-defined.
As a consequence, this scenario presents an easy differential peak calling problem. The
performance of MAnorm for top ranked DPs is quite competitive with ODIN variants for
data with few proteins per domains (left column), but its performance deteriorates when-
ever more proteins are present in the domains. MACS2 has similar performance as ODIN
variants when large number of reads are present (bottom), but ODIN clearly outperforms
MACS2 when peak sizes have a high variance (middle row). We calculate the Area Under
the Curve (AUC) of ROC curves for each experiment to perform the Friedman-Nemenyi
test. We then evaluate the overall performance of methods for all conditions (see Table 5.1
and Sup. Table A.1 for the Friedman ranking). Results indicates that ODIN with Binomial
or single Poisson distribution has a significantly higher AUC scores than MACS2, MAnorm,
DESeq-MACS and DBChIP (p-value < 0.1). Other tools do not significantly outperform any
other tool.
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MAnorm ∗ +

DESeq-MACS ∗ ∗ ∗ +

DBChIP ∗ ∗ ∗ ∗

Table 5.1.: Results for the simulated datasets without replicates. The table is based on the Friedman-Nemenyi
hypothesis test and the AUC scores. The asterisk and the cross, respectively, mean that the method
in the column outperformed the method in the row with significance levels of 0.05 and 0.1.

5.1.2. Genomic Signal Construction

In the following, we resort to biological data. For this experiment we restrict our analysis to
chromosome 1, which we then discard for the further analysis with biological data sets.

We evaluate the impact of the preprocessing steps performed to create and improve the
ChIP-seq signal (see Section 3.2 and Figure 4.1B2). In particular, we analyze all 8 combi-
nations of using: (1) the GC-content model, (2) filtering reads aligned to poor mappability
regions and (3) the subtraction of input-DNA. The Friedman-Nemenyi test on DAGE statis-
tics (h = 50, H = 500) indicates a slight advantage of using input-DNA subtraction and GC-
content model compared to using none of the steps for TF data (p-value < 0.1). No signifi-
cant difference is detected on histone data. However, the Friedman score ranks are similar
in both scenarios reinforcing the advantage of the input-DNA subtraction and GC-content
model, which will be further used in all experiments (see Sup. Table A.2 – Sup. Table A.5).

5.1.3. Method Parametrization

We evaluate the use of parameter constraints and the choice of the HMM’s emission distri-
bution as presented in Section 3.3.4. We compute the DAGE statistic (h = 50, H = 500) with
or without parameter constraints.

First, the constrained model has statistically significant higher DAGE values (p-value <
0.006, one-tailed Wilcoxon test) for experiments with TFs, while no significant differences
are obtained for histone modification experiments. This reinforces the advantage of param-
eter constraints, which are used in further experiments.

Furthermore, we evaluate the use of distinct emission distributions for ODIN: Binomial
and mixture of Poisson with 1 to 4 components. As shown in Sup. Table A.6 – Sup. Table A.9,
no significant difference was found. We therefore use the Poisson mixture with the number
of components that offers the highest ranking (four components for histones experiments
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Figure 5.1.: Average ratio of true positive DPs for all compared methods over nine distinct parameters of the
simulated data. The number of reads per peak increases from top to bottom (small: m2 = 20, p2 =
200, small with high variance: m2 = 20, p2 = 2000, large: m2 = 100, p2 = 200). The number
and variance of proteins within a domain increases from left to right (small: m1 = 1, p1 = 4,
medium: m2 = 5, p2 = 6, large: m2 = 8, p2 = 14).

and one component for TF experiments) as well as the Binomial distribution in the following
experiments.

Finally, we inspect the impact of SPCs (MACS, QUEST and PeakSeq) on two-stage DPCs
DPChIP, DESeq and MAnorm. As shown in Sup. Table A.10 – Sup. Table A.13, no significant
difference between the used SPCs was found. We therefore use the best ranked combination
for the follow-up experiments: MAnorm-macs, DESeq-quest and DBChIP-quest.

5.1.4. Evaluation P-value Estimation Strategies

We evaluate the p-value estimation methods of ODIN, DESeq (Anders and Huber, 2010)
and EdgeR (Robinson et al., 2010) (see Figure 4.1B1). We use DPs predicted by ODIN with
a Binomial distribution for all 15 datasets. ODIN’s p-value estimation leads to a significant
higher DAGE score than the p-value estimation of DESeq and EdgeR for TF experiments
and a significant higher DAGE score than EdgeR for histone experiments (see Table 5.2;
Sup. Table A.14 and Sup. Table A.15 give the Friedman rankings for the experiments).
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Table 5.2.: P-value estimation evaluation based on histone modification and TF experiments. We estimate p-
values with our strategy (ODIN, see Section 3.4.1), the strategy of DESeq (ODIN-DESeq) and the
strategy of edgeR (ODIN-edgeR) for histone modification and TF experiments. The asterisk and
the cross, respectively, mean that the method in the column outperformed the method with regard
to the DAGE scores in the row with significance levels of 0.05 and 0.1.

5.1.5. Comparative Evaluation on Biological Data

We describe the DAGE results for all considered methods (see Table 2.1) based on all bio-
logical datasets without replicates (see Table 4.2). See B3 in Figure 4.1 for this specific exper-
iment. In Figure 5.2 we display DAGE curves for DBChIP, MACS2, our DESeq approach,
MAnorm and ODIN for four selected experiments on real data. As ChIPDiff does not pro-
vide information to sort the DPs, its results are only represented as points, where the x-axis
location corresponds to the number of called DPs. In most scenarios, curves approximate
to zero for higher ranks, which indicates that higher ranked DPs are associated with higher
expression changes. In some scenarios, such as TLR4-H3K4me2-0h-6h, the curve associated
with Gain 2DPs (Figure 5.2H) are further from 0 than Gain 1DPs (Figure 5.2G). This is an
indication that there are more changes in ChIP-seq peaks and gene expression in signal 2 (6h)
than in signal 1 (0h). This is in accordance with the main message of the TLR4 study, which
shows that induction of TLR4 promotes new enhancers marked by H3K4me2 (Kaikkonen
et al., 2013). While there are some experiment-specific variations, both ODIN variants out-
perform other methods on DC-PU.1-MPP-CDP (Figure 5.2A, B), DC-H3K4me1-MPP-CDP
(Figure 5.2C, D). Furthermore, the performance of ODIN with Binomial distribution is simi-
lar to other methods on TRL4-H3K4me1-0h-6h (Figure 5.2G, H) and TRL4-PU.1-0h-6h (Fig-
ure 5.2E, F). All DAGE curves can be found at Sup. Figure A.1 – Sup. Figure A.4.

Moreover, we evaluate the performance of all methods for all 15 real data experiments
listed in Table 4.2 by computing the DAGE scores for Gain 1 and Gain 2 peaks. The
Friedman-Nemenyi test indicates that both ODIN variants have significantly higher DAGE
scores than DBChIP and MACS2 on TF experiments (p-value < 0.1, see Table 5.3, Sup. Ta-
ble A.16 gives the Friedman ranking) and significantly higher DAGE scores than DESeq
on histone data (p-value < 0.05, see Table 5.4, Sup. Table A.17 gives the Friedman rank-
ing). Moreover, ODIN with Binomial distribution has a significant higher DAGE score than
MACS2 and MAnorm on histone and TF data.

We also performed an evaluation of ChIPDiff by comparing the DAGE values of all meth-
ods with H equal to the number of peaks called by ChIPDiff. ODIN with Binomial distribu-
tion has significantly higher DAGE scores than ChIPDiff on TF experiments (p-value < 0.1,
see Sup. Table A.18 and Sup. Table A.19), while no statistical difference was detected on
histone data (see Sup. Table A.20 and Sup. Table A.21). In all cases, both ODIN with Bino-
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Table 5.3.: DAGE results based on TF experiments. Friedman-Nemenyi hypothesis test results for the AUC
metric. The asterisk and the cross, respectively, mean that the method in the column outperformed
the method in the row with significance levels of 0.05 and 0.1.
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Table 5.4.: DAGE results based on histone experiments. Friedman-Nemenyi hypothesis test results for the
AUC metric. The asterisk and the cross, respectively, mean that the method in the column outper-
formed the method in the row with significance levels of 0.05 and 0.1.

mial and mixture of Poisson distribution ranked best by the Friedman score compared to all
competing methods.

We perform a visual inspection of the DPs from experiment TLR4-H3K4me2-0h-24h around
gene Irf1. In Figure 5.3 we show the DP estimates for the same genomic region already
shown in Figure 2.6. MAnorm and our approach DESeq-quest can successfully detect changes
in large peak areas. ChIPDiff detects most DPs, but have a tendency to call large regions.
ODIN and MACS2 are able to detect detailed changes within the large domains. MACS2
and ChIPDiff are not able to recover a DP upstream of Irf1 (marked as DP2) in H3K4me2 0h.
The loss of this histone mark after TLR4 treatment is supported by gain of PU.1 on the very
sample location for PU.1 ChIP-seq profiles.
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5.2 Experiments with THOR

We describe the results of experiments with THOR and its competing methods. First, we
describe the findings of the simulated ChIP-seq data with replicates (see Figure 4.1C). Simu-
lated gold standards of ChIP-seq profiles help to evaluate DPCs with regard to distinct data
characteristics. Next, we detail the results for the biological data with replicates which we
evaluate with the DCA statistic (see Figure 4.1D1-D4). Similar to the DAGE metric, the DCA
metric is based on the idea of associating changes in protein-DNA bindings with changes in
gene expression of the same cellular condition. Finally, we describe two use cases for THOR
(see Figure 4.1E). The first use case describes the ability of THOR to call DPs that support
rSNPs. The second use case is about the association of DPs to genes.

5.2.1. Experiments with Simulated Data

Figure 5.4 shows the distributions of AUC values for all methods and experimental combi-
nations. The first simulation parameter is the number of replicates (red vs. green lines). We
observe that most methods have lower AUC values in experiments with 2 replicates (red
line) than with 4 replicates (green line) (p-value < 0.05; one-sided Wilcoxon test). Exceptions
are Poisson-THOR and IDR. IDR returns very few peaks on cases with 4 replicates (green
line), even when using an lenient threshold the SPC used as input for IDR. Poisson-THOR’s
poor performance on 4 replicates stems from its simple distribution, which does not cope
with overdispersion.
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Figure 5.4.: Results for simulated data with replicates. We show the AUC distribution for 25 repetitions
of each scenario. Simulated data were based on moderate (A) and high (B) condition peak size
variability and 2 (red lines) and 4 (green lines) replicates. Each boxplot is divided by the level of
within-condition variance (low, medium and high). Methods (x-axis) are ordered by decreasing
median AUC values (y-axis) for the cases with 4 replicates.

The second simulation parameter is the variance of the peak sizes, where we evaluate
scenarios with moderate (Figure 5.4A) and high (Figure 5.4B) variance. Two methods have
higher AUC values in scenarios with moderate peak variance. THOR in case of low and
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medium within-condition variance and 2 replicates (p-value < 10−4, one-sided Wilcoxon
test), as well as DiffBind in the case with low, medium and high within-condition variance
and 2 replicates (p-value < 4.7 ·10−8, one-sided Wilcoxon test). All other methods show no
significant changes in AUC values.

The third characteristic is the level of variance within the replicates. DESeq-JAMM, Diff-
Reps and DESeq-IDR show decrease in AUC values for increasing variance. Interestingly,
the performance of THOR, MACS2 and DiffBind shows increase in AUC values with in-
creasing variance for respectively 5, 3 and 6 of the eight cases (p-value < 0.05; one-sided
Wilcoxon test).

Finally, we apply the Friedman-Neymeni test for all data together to evaluate the statis-
tical significance in AUC value differences for distinct methods. THOR has significantly
higher AUC scores than all competing methods. MACS2 has significant higher AUC values
than DiffReps, DESeq-IDR, DiffBind and Poisson-THOR; and DESeq-JAMM and DiffReps
have significantly higher AUC values than DiffBind and Poisson-THOR (p-value < 0.05, see
Table 5.5 and Sup. Table A.22 for the Friedman ranking). Evaluating specific conditions,
THOR has significantly higher AUC values than DiffReps, DiffBind and Poisson-THOR for
all 12 cases (p-value < 0.05, Sup. Table A.23 – Sup. Table A.34). In the case with 2 repli-
cates, THOR additionally has significantly higher AUC values than DESeq-JAMM (p-value
< 0.05, Sup. Table A.23 – Sup. Table A.28) and in the case with 4 replicates significantly
higher AUC values than DESeq-IDR (p-value < 0.05, Sup. Table A.29 – Sup. Table A.34).
THOR is ranked top in all of the 12 cases.
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Table 5.5.: Friedman-Nemenyi test results based on the AUC statistic of simulated data for all scenarios. The
asterisk and the cross, respectively, mean that the method in the column outperformed the method
in the row with significance levels of 0.05 and 0.1.

5.2.2. Initial DP Estimation

In the following, we resort to biological data. Here, we evaluate the impact of the initial DP
estimates to train THOR’s HMM (see Figure 4.1D3). Similar for the experiments with ODIN,
we restrict in this experiment our analysis to chromosome 1. We then discard chromosome 1
for the further analysis with biological data sets.

According to our parametrization (see Section 4.5.2), the initial DPs we use to train THOR’s
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HMM are based on a minimum difference between signals t1 and a fold change t2. We
set the minimum signal support t3 = t1/2. We evaluated different parameter settings for
t2 ∈ {1.3,1.6} and t1 ∈

{
〈x〉.95,〈x〉.99

}
by predicting DPs for chromosome 1 for all 12 ex-

periments with replicates. The Friedman-Nemenyi test on DCA statistics for h = 100 and
H = 1000 shows no statistically significant differences, which indicates that THOR is robust
against distinct initial parameter setups (see Sup. Table A.35 and Sup. Table A.36). We used
the parametrization with the highest ranking (t1 = 1.6, t2 = 〈x〉.95) for all further experiments.

5.2.3. Quality Analysis on Biological Data Sets

To better understand the characteristics of ChIP-seq experiments evaluated in our study (see
Table 4.3), we first perform a quality check. For this we use the FRiP (fractions of reads in
peaks) score from the ENCODE consortia (Landt et al., 2012) which gives an estimate of
the signal-to-noise ratio of ChIP-seq experiments (see Section 2.2.6). We also propose the
use of the quadratic coefficient, that is, the variable c1Gk in Equation 3.17 which describes
the mean-variance function, for a given biological condition as an indicator for “overdisper-
sion”. Figure 5.5A and B give two examples of the mean-variance function of selected exper-
iments. Overdispersion positively correlates with the number of replicates in the condition
(R=0.74, adjusted p-value=0.0001; Spearman Correlation). Moreover, higher overdispersion
is associated with lower FRiP scores (R=-0.78; adjusted p-value=2.9 · 10−5). As depicted
in Figure 5.5C, average FRiP vs. overdispersion space separates the experiments by their
expected complexity. The dendritic cell (DC) differentiation experiments, which were ob-
tained by in vitro differentiation of cells with technical replicates, have highest FRiP values
and lowest overdispersion values. The follicular lymphoma experiments (LYMP), which
arise from patients with distinct genetic background and with potential tissue heterogene-
ity, have both highest overdispersion scores and lowest average FRiP. This indicates that the
experiments evaluated here cover a large spectrum of peak size variance within biological
conditions.
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Figure 5.5.: (A) and (B) Two examples for the mean-variance function described by Equation 3.17. A high
value (A) of c1Gk gives the function a quadratic and a low value (B) a linear shape. (C) Associa-
tion between average FRiP and overdispersion scores. FRiP and overdispersion scores for the 24
biological conditions analyzed: cocaine intake (CO), monocyte differentiation (MM), lymphoid
cancer (LYMPH) and dendritic cell differentiation (DC). Higher FRiP indicates higher signal-
to-noise ratio and better ChIP-seq experiments. Higher overdispersion scores indicates higher
within-condition variability. Arrows indicate the experiments described in (A) and (B).
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5.2.4. Comparative Analysis of Biological Data

We evaluate THOR and six competing methods (csaw, MACS2, DiffReps, PePr, DiffBind
and DeSeq-IDR) on 12 differential peak calling problems using data from the cocaine in-
take on mice (CO), dendritic cell differentiation (DC), B cell follicular lymphoma (LYMP)
and monocyte differentiation (MM) study (see Section 4.3 and Table 4.3)1. We also evaluate
the application of THOR with either the TMM (THOR-TMM) or the housekeeping genes
(THOR-HK) normalization approach (see Section 3.2.6). The performance of the methods
was evaluated with the DCA (Differential Correlation Analysis) statistic. See D1 in Fig-
ure 4.1 for this specific experiment. Figure 5.6 shows selected examples for DCA curves.
Sup. Figure A.5 – Sup. Figure A.8 give all 12 DCA curves.
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Figure 5.6.: DCA curves for four selected differential peak calling problems. We show DCA curves for
(A) CO-H3K4me1, (B) DC-H3K27ac-CDP-cDC, (C) MM-H3K4me1 and (D) LYMP-FL-CC.
Higher DCA values indicate higher association between differential peaks and differential ex-
pression.

We use the Friedman-Nemenyi test to check for significant differences in the area un-
der the DCA curves (see Section 4.7). THOR with both normalization strategies is the best
ranked method and has significantly higher DCA values than DESeqIDR, csaw and Diffbind
(adjusted p-value<0.05, Table 5.6 and Sup. Table A.37 for the Friedman ranking). MACS2
also has significantly higher DCA values than csaw (adjusted p-value<0.05).
As PePr requires input-DNA data and therefore cannot be executed for MM and CO, we
repeat the Friedman-Nemenyi test on DCA values from DC and LYMP only. In this case,
THOR-HK has significantly higher DCA score than csaw (p-value<0.05) as well as Poisson-
THOR (p-value<0.1, Sup. Table A.38 – Sup. Table A.39) and THOR-TMM outperforms csaw
(p-value<0.05). There is no significant differences for all other competing methods.

As an example, we show in Figure 5.7 DPs for H3K4me3 histone modification on the
monocyte to macrophage differentiation (MM) experiments of genes discussed in the orig-
inal study from Saeed et al. (2014). DiffBind and DESeq-IDR do not call any DPs in this
region. THOR calls a combination of gain (green) and decrease (red) in H3K4me3 levels in
IRAK3’s and PDK2’s promoters. Csaw peaks misses regions with large histone changes in

1We were not able to execute JAMM on these data sets, which was therefore left out of this analysis.
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Table 5.6.: Friedman-Nemenyi hypothesis test results for the DCA score (h = 500,H = 10000). The asterisk
and the cross, respectively, mean that the method in the column outperformed the method in the
row with significance levels of 0.05 and 0.1.

both cases. MACS2 only detects a small lost peak in IRAK3 promoter, while DiffReps de-
tects rather large gain peaks in both promoters. The average peak size of all analyzed data
supports the fact that DiffReps tends to call larger DPs (1893bps) and MACS2 smaller DPs
(296bps) than all other tools (1133bps) (see Figure 5.9).

Figure 5.7.: Example of DPs estimates in biological data. We depict an overlay of all H3K4me3 and RNA-seq
signals for monocytes (red) and macrophages (green) around the promoter of IRAK3 and PDK2
for THOR and competing methods. We show the 10,000 most significant DPs of each method.

5.2.5. Overdispersion Impact on Differential Peak Calling Performance

We analyze the effect of overdispersion to the DPCs (see Figure 4.1D2). As previously de-
scribed, follicular lymphoma (LYMP) experiments exhibit highest overdispersion values,
while the dendritic cell differentiation study has the lowest. Interestingly, the DCA scores
supports the notion that THOR has relatively better performance than competing tools in
data with high within-condition variance such as LYMP-FL-CC (Figure 5.6C), while it per-
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Figure 5.9.: DP size distribution for each tool. The boxplot of each tool gives the DP size distribution obtained
from predictions on all biological data.

forms comparatively well with other competing methods such as in DC-CDP-cDC (Fig-
ure 5.6B). To investigate this more systematically, we measured the difference between the
THOR-HK vs. the best DCA for competing methods. As indicated in Figure 5.8, there is
a moderate association between ∆ DCA and the overdispersion score (R=0.36; adjusted p-
value<0.1). The ∆ DCA is large for experiments with large number of replicates and genetic
variance between samples from MM and LYMP.

Another important question is the performance of the two normalization approaches sup-
ported by THOR. While the Friedman rank indicates THOR-HK has overall better ranking,
the difference in ranks between the TMM and HK approaches is not statistically significant.
Considering the difference in DCA scores for THOR-HK and THOR-TMM (Figure 5.10),
we observe that both methods perform similarly in most data sets. However, THOR-HK
clearly outperforms THOR-TMM in four conditions from LYMPH (LYMP-CC-PBBA gain,
LYMP-CC-PBBA loss, LYMP-FL-CC loss and LYMP-FL-PBBA loss). These conditions have
small FRiP (< 0.05) and large overdispersion estimates (> 0.03). These results indicate that
in cases with high variance or low signal-to-noise ratio it is advisable to perform a house-
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keeping gene normalization strategy.
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Figure 5.10.: Association between the difference in DCA values for THOR normalization approaches
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5.2.6. Use Cases

We describe two use cases for THOR (see Figure 4.1E). First, we apply THOR to the LYMP-
FL-CC data set to evaluate the ability of THOR to call DPs that support rSNPs. Second, we
evaluate whether DPs called by THOR for the data sets DC-H3K27ac-CDP-cDC and DC-
H3K27ac-CDP-pDC are associated with dendritic cell genes.

Identifying rSNPs

In this experiment we analyze THOR’s ability to call DPs that support rSNPs. For the data
set LYMP-FL-CC (see Table 4.3), we first call DPs with THOR and second use GATK to
identify rSNPs. Next, we filter SNPs that do not lie within DPs (see Sup. Table A.40 for an
selection). In Section 4.6.1, we describe in detail how we obtain the 137 candidate rSNPs.

We apply GREAT (McLean et al., 2010) to perform an enrichment analysis of the 203 genes
that are neighbouring the candidate rSNPs. GREAT assigns biological meaning to non-
coding genomic regions such as rSNPs. For that, GREAT assigns the rSNPs to genes in
the vicinity and details the biological function of the genes. All resulting 27 enriched gene
sets are associated with lymphoid cells, such as abnormal lymphocyte morphology (adjusted
p-value=6.5 · 10−4; 39 annotated genes) and abnormal B cell morphology (p-value=0.0011; 23
annotated genes). Concerning the 28 rSNPs detected in the original study (Koues et al.,
2015), there is no overlap of our candidate rSNPs and the GREAT analysis indicates no
enriched terms. However, note that Koues et al. (2015) employ a distinct strategy to detect
rSNPs, which was based on comparing the reads of single FL patients vs. all CC cells.

Next, we select six genomic regions with seven rSNPs which are close to genes with "ab-
normal lymphocyte morphology" as indicated by GREAT, lie within a DP with low p-value
(< 10−14) and the rSNP disrupted (or enhanced) transcription factor binding sites (TFBS).
One interesting cluster of rSNPs is present in the locus of the G-receptor gene family RGS.
The second ranked (by lowest DP p-value) rSNP is located in the promoter of RGS2 (Fig-
ure 5.11A) and two rSNPs (DP ranks 6 and 7) lie in an enhancer region between RGS1
and RGS13 (Figure 5.11B). There are lower levels of H3K27ac around all rSNPs and in the
promoters of these genes indicating a decrease of gene activity. We also find that rSNPs
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change binding affinity of TFBS of B-cell factors Bcl6 (disruption) and Ikaros (enhancement)
as well as the repressive chromatin remodelling factor YY1 (enhancement). Genes in these
loci (RGS1, RGS2 and RGS13) have been previously reported to be associated with B cell
motility (Han et al., 2005) and to regulation of germinal center B cells (Shi et al., 2002).

Figure 5.11.: Selection of regulatory SNPs. We depict FL (red signal) and CC (green signal) located in DPs
called by THOR (red/green bars under ChIP-seq signals). For each rSNP, we indicate close
genes and a table with the frequency of the common (top) and alternative (bottom) alleles. We
also show examples of TFBS motifs being disrupted by the rSNPs. Red (black) boxes indicate
the motif position that is disrupted (enhanced).

The rSNPs in DP rank 5 is in the vicinity of IL-18BP (Figure 5.11C). Both rSNP region and IL-
18BP have increased H3K27ac levels in FL patients. Interestingly, the rSNP disrupt a Ikaros
binding site. IL-18BP is known to antagonize the IL-18 receptor and Interferon responses in
immune cells (Yoshimoto et al., 1998). Another interesting rSNP locus (rank 10) is close to
NEAT1 (and MALAT1) (Figure 5.11D). This genomic region displays high losses of H3K27ac
on FL condition. Among others, we find disruption of motifs of the Meis1 factor. While
MALAT1 and NEAT1 have not been associated with B cell lymphomas, these long non-
coding genes have prominent functions in RNA splicing and cancer (Gutschner et al., 2013).
Moreover, a rSNP (rank 13, Figure 5.11E) is in the vicinity of the kinase PTK2B, which has
increased H327ac levels in FL patients. The rSNP enhanced the binding of the hematopoietic
master regulated Sfp1. This kinase has been shown to be relevant for marginal zone B cells
in mice (Guinamard et al., 2000).

Finally, rSNP on rank 19 (Figure 5.11F) lies in a intergenic region of gene CCR6 and dis-
rupts the binding of a Klf4 factor. CC chemokines are known regulators of both B cell as well
as cancer cell migration and were also among the genes found in the original study (Koues
et al., 2015). Altogether, these results indicate the power of THOR by detecting DPs sup-
porting rSNPs.
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Dendritic Cell Development Analysis

We evaluate if DPs are close to genes which are relevant for dendritic cell differentiation.
Here, we only evaluate genes gained in cDC (compared to CDP) and pDC (compared to
CDP) using H3K27ac (see data set DC-H3K27ac-CDP-cDC/pDC in Table 4.3).

First, we perform an analysis with GREAT to evaluate the biological functions associated
with genes. For cDC peaks, we obtain MHC class II protein complex (adjusted p-value=1.8 ·
10−106; 8 annotated genes) and antigen processing and presentation of exogenous peptide antigen
via MHC class II (adjusted p-value=1.1 · 10−76; 6 annotated genes). The major histocompat-
ibility complex (MHC) class II is a molecule family that occurs in antigen presenting cells
such as dendritic cells (Ting and Trowsdale, 2002). For pDC peaks, the GREAT analysis
yields interferon receptor activity (adjusted p-value=5.5 ·10−41; one annotated gene) and type I
interferon production (adjusted p-value=6.1 ·10−39; one annotated gene). Interferons are a pro-
tein family in the response against viruses and cancer cells, which are known functions of
dendritic cells (De Andrea et al., 2002).

Second, we evaluate DPs by assigning them to genes in their vicinity. Sup. Table A.41
gives the top 50 ranked genes that are close to DPs gained in cDC cells. ID2 (rank 4) is an
important factor associated with cDC differentiation, and is known to have low expression
in the precursors cell CDP (Jackson et al., 2011). Also, receptor genes ADAM19 (rank 13)
and KIT (rank 47) are known markers of cDC cells (Miller et al., 2012). Six of the top eight
ranked genes, that is, H2-AA, H2-AB1, H2EB-1, H2-EA-PS, H2-EB2 (see Figure 5.12C) and
CD74 (see Figure 5.12D), as well as several further other listed genes (H2-DMB1 (rank 16),
H2-DMB2 (rank 17), CIITA (rank 28) and H2-OB (rank 37)) code proteins that are part of
the MHC class II family. Moreover, gene IRF8 (rank 14) regulates distinct stages of the DC
differentiation (Jackson et al., 2011).

Sup. Table A.42 lists the top 50 genes close to pDC gain peaks. The top ranked gene
SIGLECH (see Figure 5.12A) is a receptor widely used as pDC identification marker (Zhang
et al., 2006). Moreover, gene IRF8 (rank 2, see Figure 5.12B), gene TCF4 (rank 41) and gene
RUNX2 (rank 49) play key roles in the development of pDC cells (Jaiswal et al., 2013; Cisse
et al., 2008; Sawai et al., 2013). Gene PACSIN1 (rank 36) regulates the interferon response
specifically in pDC cells. Gene IFNAR1 (rank 9) and IL10RB (rank 10) code interferon recep-
tors. Altogether, THOR identifies several genes that are associated with either cDC or pDC
cells. This indicates that THOR’s results go in accordance with prior biological knowledge.

5.3 Discussion

Figure 4.1 gives an overview of all experiments we have performed for the evaluation of
ODIN, THOR and their competitors. We evaluate ODIN with simulated and biological data
sets. ODIN significantly outperforms all competing methods on the simulated data, where
we vary the size of the protein domains as well as the size of peaks within the domain.
With regard to the DAGE metric, the performance of MACS2, DBChIP and DESeq is worse
than ODIN’s independently from the protein of interest (TF or histone modifications). This
emphasizes ODIN’s flexibility which is caused by the use of the HMM for the signal seg-
mentation step. MACS2 predicts simulated DPs well for the easy scenario with high peak
sizes, but shows poor performance for peaks with a high variance in their size. MAnorm
in combination with the SPC MACS also provides good results for the simulated as well as
biological data which can be explained by its sophisticated normalization strategy. ChIPDiff
also uses an HMM to identify DPs. However, it lacks the application of pre- and postpro-
cessing steps resulting in a poor overall performance.
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Figure 5.12.: Genes with most significant DPs. We give examples of genes that are associated with the most
significant DPs for histone modification H3K27ac with two replicates. For the data set DC-
H3K4ac-CDP-pDC (top) we show genes SIGLECH (A) and IRF8 (B), and for data set DC-
H3K4ac-CDP-cDC (bottom) we picture gene CD74 (C) and genes that code of the MHC class II
family (D).

THOR outperforms competing methods for most simulated and biological data sets. Con-
cerning the biological data, the difference in performance between THOR and its closest
competing method is relatively higher for data with high overdispersion and low quality.
Moreover, THOR with the housekeeping gene normalization approach is the top ranked
method for the biological data. In particular, THOR performs best for experimental con-
ditions from the follicular lymphoma study. This study has overall lowest quality statis-
tics (FRiP) and highest within-condition variance scores (overdispersion). Indeed, THOR’s
framework includes the estimation of overdispersion quality measures, which can be used
to guide the choice of normalization strategy.

One competing method with an overall good performance is MACS2 (unpublished), which
was ranked third on simulated data and second on biological data. Although there is
no current description of MACS2, it is based on the framework of the widely used SPC
MACS (Zhang et al., 2008). The performance of other tools varied across distinct experi-
ments. While DESeq-IDR performed well on simulated data cases with low within-condition
variance and low number of replicates, it failed to call peaks on data with large variance.
This is expected as IDR was conceived for a conservative peak detection on technical repli-
cates. JAMM (with DESeq) had good performance on simulated data and is the only frame-
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work performing integrative analysis of single signal peak calling problems with replicates.
Some methods, such as PePr and DiffReps, had a tendency to call peaks larger than other
tools and the observed histone changes. This explains the average performance of these
methods in our evaluation. Poisson-THOR, which can be seen as a version of ODIN sup-
porting replicates with a distribution not coping with overdispersion, has poor results in
most evaluated scenarios. This reinforces the importance of support to overdispersion on
the presence of replicates.

We also demonstrate THOR’s power to call DPs by applying it to two use cases. First,
we show that THOR calls DPs that support rSNPs. We call SNPs for the leukemia study
(LYMP-FL-CC in Table 4.3) and check whether they fall into DPs called by THOR. Among
all methods, THOR provides DPs with the highest amount of covered SNPs. We show that
SNPs potentially influence TFBS which are associated with leukemia.

In the second study, we assign DPs called by THOR to genes for cDC and pDC peaks com-
pared to CDP for H3K4me1. As expected, the resulting genes are associated with dendritic
cells and their development. The identified genes go in accordance with prior knowledge of
dendritic cells and in particular of their differentiation. Both use cases give reasonable find-
ings which emphasize THOR’s usefulness for the DP identification. In combination with
our evaluation studies, which are based on simulated, artificial gold standards as well as
the DCA metric, the use case studies emphasize that THOR is a powerful method for the
ChIP-seq analysis.
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CHAPTER 6
Conclusion

This thesis contributes to the computational analysis of ChIP-seq data. The main goal of this
work was to develop algorithms that call differential peaks (DPs) in ChIP-seq data. We pro-
pose the one-stage DPCs ODIN and THOR for the case without and with replicates in ChIP-
seq experiments. Both methods are based on a hidden Markov Model (HMM) to identify
DPs, as HMMs segment the ChIP-seq signal by detecting peaks with variable size through
the use of posterior decoding algorithms. Competing methods, such as MACS2, MAnorm,
DBChIP, DiffBind and DiffReps, use pre-defined candidate peaks to identify DPs. This ap-
proach highly depends on the initial peak calling step and fails to detect subtle changes
within complex histone modification peak landscapes. Other methods, such as PePr and
csaw, use a window-based approach to segment the signal. However, the performance of
this strategy highly depends on the choice of the window size. Moreover, heuristic methods
have to be applied to merge windows in close vicinity to each other.

In the case without replicates, ODIN uses an HMM with a Binomial or Poisson distribu-
tion and in the case with replicates, THOR uses a Negative Binomial distribution as emis-
sion to handle overdispersion. Modelling overdispersion, which ChIP-seq data typically ex-
hibits, is crucial for an accurate DP calling process. As there is no analytical solution for the
Baum-Welch algorithm with a Negative Binomial distribution, we estimate the correspond-
ing parameters based on an empirically evaluated mean-variance function. With regard to
the HMM emission, we also propose a p-value estimation strategy to identify significant
DPs.

A crucial aspect for the differential peak calling problem is the normalization, as ChIP-
seq profiles typically exhibit different sequencing depths as well as different signal-to-noise
ratios. The widely used TMM normalization approach, which was originally developed
for gene expression analysis, is based on the assumption that the number of reads in most
genomic regions does not change across the conditions. This is not necessarily the case
for protein interactions, as two distinct cells can have distinct amounts of proteins or hi-
stone modifications bound to their DNA. Particularly problematic with TMM is the effect
of replicate-specific background noise. Hence, we propose the use of control regions for
normalization. We propose housekeeping (HK) genes as control regions for the analysis of
active histone marks. Our experiments show that THOR’s DP predictions lead to highest
DCA scores when we apply the HK gene normalization (see Table 5.6). For other proteins of
interest, ChIP-PCR measurements can provide regions which can serve as control regions.

Several pre- and postprocessing steps are necessary to call DPs in ChIP-seq data: read
filtering, fragment size estimation, GC-content normalization, control DNA normalization,
sample normalization and artefact filtering. See Table 2.1 for an overview of the features
implemented in the competing methods. ODIN and THOR perform all required steps which
makes them the most complete methods for solving the differential peak calling problem.

Evaluation of DPCs is still an open problem in the research community. To our best knowl-
edge, we perform the most comprehensive evaluation study available. First, we use biologi-
cal data sets for the evaluation. In the case without replicates, we propose the DAGE and, in
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the case with replicates, the DCA metric. Both metrics are based on the idea of associating
changes in protein-DNA bindings with changes in gene expression of the same cellular con-
dition. For the case without replicates, we use 15 data sets to quantify 5 competing methods
(MACS2, ChIPDiff, DESeq, MAnorm and DBChIP); and for the case with replicates, we use
12 data sets to evaluate 7 competing methods (DiffReps, DiffBind, MACS2, csaw, DESeq-
IDR, DESeq-JAMM and PePr). To obtain a comprehensive picture of the performance, we
use data sets from different kinds of proteins (TFs and activating histone marks), which
results in different peak sizes in the signal.

Second, we propose an algorithm to simulate ChIP-seq reads of two biological conditions
with potential replicates that contain DPs. The simulation of ChIP-seq profiles can produce
artificial and customized gold standards which can be used to extensively evaluate DPCs
with regard to distinct data characteristics. Our algorithm is highly parametrized, such that
a broad range of gold standards can be produced. Furthermore, our algorithm produces
raw ChIP-seq reads, which have to be mapped to a reference genome. Thereby, bias induced
by the mapping process is taken into account. In the case without replicates, we vary the
protein domain size and the peak sizes. In the case with replicates, we account for various
peak sizes, within-condition variance and number of replicates. These experimental setups
cover a wide range of characteristics of differential peak calling problems.

Altogether, our evaluation studies show that ODIN and THOR are the best performing
methods. The performance is justified from their methodological aspects, as both tools use
an HMM to intrinsically analyses windows of varying size during the detection of DPs.

6.1 Future Work

A natural extension of ODIN and THOR is to consider more than 2 biological conditions
which can yield more intricate epigenetic findings in biological and medical research. For
example, we could evaluate time series data as it is provided by Kaikkonen et al. (2013).
Also, we could analyze developmental series as described in the dendritic cells study.

ODIN and THOR use an HMM to segment the ChIP-seq signal. We restrict our analysis
to the case of small or medium sized peaks. However, HMMs are flexible, such that our
methods could also call peaks in large protein domains. A systematic evaluation of this idea
could potentially offer a wide range of further applications for ODIN and THOR.

Our normalization approach is based on housekeeping genes as control regions in the
case of active histone marks. The rationale is that control regions on the one hand should
have a similar signal across the conditions and on the other hand exhibit a low noise. We
could also evaluate the use of consensus peaks across the conditions as control regions.
Consensus peaks could be called by IDR or JAMM. However, this approach includes the
additional peak calling step in the normalization procedure. Peak calling is error prone and
its performance depends on the method’s parametrization as well as the shape of the peaks
in the ChIP-seq profiles.

The idea of DCA and DAGE is that gene expression correlates to certain histone modifica-
tions of the same cellular conditions. However, this approach can oversimplify the problem.
Maze et al. (2014) state that histone modification levels can exhibit opposite changes with re-
gard to the gene expression among a gene. Moreover, the interplay between certain proteins
and histone modifications may lead to changes in the histone modification level. For exam-
ple, while the histone modification H3K4me3 is usually enriched at active gene promoters
and therefore associated with transcription, its level can also decrease at certain genes when
RNA polymerase II interacts with the gene. Hence, the working assumption for our metrics
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is that in the majority of cases certain histone modification are consistently associated with
gene expression changes in the same biological condition. Furthermore, it is possible to gen-
eralize this idea of DCA and DAGE. Instead of only considering gene expression data, DPs
that are based on active histone modifications can be associated with other active histone
modification that are known to be featured in the same biological conditions.

Furthermore, calling DPs in signals describing distinct biological conditions is not re-
stricted to the ChIP-seq technique. A novel sequencing application is SHAPE-seq (Lucks
et al., 2011; Loughrey et al., 2014) which investigates the RNA structure. For SHAPE-seq,
solving the differential peak calling problem is potentially as important as for ChIP-seq,
since comparing the RNA structure of two biological conditions leads to a deeper under-
standing of the underlying biological mechanisms in cells. However, one challenge is that
the SHAPE-seq protocol produces artefacts that differ to the ones from ChIP-seq. Applying
SHAPE-seq makes it necessary to consider other technology-specific artefacts.
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APPENDIX A
Appendix

A.1 Results with ODIN

A.1.1. Simulation

AUC
ODIN-binomial 1.3333
ODIN-poisson-1 2.0
ODIN-poisson-4 3.4444
ODIN-poisson-3 4.2222
ODIN-poisson-2 5.3333
MACS2 5.8889
MAnorm 6.0
DESeq-macs 8.2222
DBChIP 8.5556

Table A.1.: Friedman ranking for the results based on the simulated data. For each metric, the methods are
displayed in decreasing order with their respective Friedman ranking.
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A.1.2. Parameter Selection

AUC
input-DNA, nomapReg, GC 3.5
input-DNA, mapReg, GC 3.7813
noinput-DNA, nomapReg, GC 3.9375
input-DNA, nomapReg, noGC 4.4375
noinput-DNA, mapReg, GC 4.4688
input-DNA, mapReg, noGC 4.7813
noinput-DNA, mapReg, noGC 5.1563
noinput-DNA, nomapReg, noGC 5.9375

Table A.2.: The Friedman ranking for the construction of the genomic signal based on TF experiments. For
the DAGE statistic we use h = 50, H = 500. We restrict our analysis to DPs in chromosome
1. We are interested in all 8 combinations of using: (1) the GC-content model (GC, noGC), (2)
filtering reads aligned to poor mappability regions (mapReg, nomapReg) and (3) the subtraction
of input-DNA (input-DNA, noinput-DNA).
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input-DNA, nomapReg, GC
input-DNA, mapReg, GC

noinput-DNA, nomapReg, GC
input-DNA, nomapReg, noGC

noinput-DNA, mapReg, GC
input-DNA, mapReg, noGC

noinput-DNA, mapReg, noGC
noinput-DNA, nomapReg, noGC +

Table A.3.: Friedman-Nemenyi hypothesis test results for the construction of the genomic signal based on
TF experiments. The asterisk and the cross, respectively, mean that the method in the column
outperformed the method in the row with significance levels of 0.05 and 0.1.
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A.1. Results with ODIN

AUC
input-DNA, nomapReg, GC 3.9286
input-DNA, mapReg, GC 4.0
noinput-DNA, mapReg, GC 4.0
noinput-DNA, nomapReg, GC 4.2143
input-DNA, nomapReg, noGC 4.7143
input-DNA, mapReg, noGC 4.7857
noinput-DNA, nomapReg, noGC 4.9286
noinput-DNA, mapReg, noGC 5.4286

Table A.4.: The Friedman ranking for the construction of the genomic signal based on histone modification
experiments. For the DAGE statistic we use h = 50, H = 500. We restrict our analysis to DPs in
chromosome 1. We are interested in all 8 combinations of using: (1) the GC-content model (GC,
noGC), (2) filtering reads aligned to poor mappability regions (mapReg, nomapReg) and (3) the
subtraction of input-DNA (input-DNA, noinput-DNA).

in
pu

t-
D

N
A

,n
om

ap
R

eg
,G

C

in
pu

t-
D

N
A

,m
ap

R
eg

,G
C

no
in

pu
t-

D
N

A
,m

ap
R

eg
,G

C

no
in

pu
t-

N
A

,n
om

ap
R

eg
,G

C

in
pu

t-
D

N
A

,n
om

ap
R

eg
,n

oG
C

in
pu

t-
D

N
A

,m
ap

R
eg

,n
oG

C

no
in

pu
t-

D
N

A
,n

om
ap

R
eg

,n
oG

C

no
in

pu
t-

D
N

A
,m

ap
R

eg
,n

oG
C

input-DNA, nomapReg, GC
input-DNA, mapReg, GC

noinput-DNA, mapReg, GC
noinput-DNA, nomapReg, GC
input-DNA, nomapReg, noGC

input-DNA, mapReg, noGC
noinput-DNA, nomapReg, noGC

noinput-DNA, mapReg, noGC

Table A.5.: Friedman-Nemenyi hypothesis test results for the construction of the genomic signal based on
histone modification experiments. The asterisk and the cross, respectively, mean that the method
in the column outperformed the method in the row with significance levels of 0.05 and 0.1.

91



A.1. Results with ODIN

AUC
poisson1 2.5
binomial 2.8125
poisson3 3.1563
poisson4 3.1875
poisson2 3.3438

Table A.6.: Results based on TF experiments and emission distributions applied by ODIN. We constrain our
analysis on chromosome 1 and use h = 50 and H = 500 for the DAGE score. Friedman ranking:
for each metric, the methods are displayed in decreasing order with their respective Friedman
ranking.
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Table A.7.: Results based on TF experiments and emission distributions applied by ODIN. Friedman-
Nemenyi hypothesis test results for the AUC metric. The asterisk and the cross, respectively,
mean that the method in the column outperformed the method in the row with significance levels
of 0.05 and 0.1.

AUC
poisson4 2.4286
poisson3 2.5714
poisson2 3.0
poisson1 3.1429
binomial 3.8571

Table A.8.: Results based on histone experiments and emission distributions applied by ODIN. We constrain
our analysis on chromosome 1 and use h = 50 and H = 500 for the DAGE score. Friedman rank-
ing: for each metric, the methods are displayed in decreasing order with their respective Friedman
ranking.
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A.1. Results with ODIN
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Table A.9.: Results based on histone experiments and emission distributions applied by ODIN. Friedman-
Nemenyi hypothesis test results for the AUC metric. The asterisk and the cross, respectively,
mean that the method in the column outperformed the method in the row with significance levels
of 0.05 and 0.1.

AUC
MAnorm-macs 2.375
MAnorm-quest 3.0625
MAnorm-peakseq 3.125
DBChIP-quest 3.8125
DBChIP-macs 4.125
DBChIP-peakseq 4.5

Table A.10.: Results based on TF experiments. We consider different combinations of two-stage DPC and
underlying SPC. We constrain our analysis on chromosome 1 and use h = 50 and H = 500 for
the DAGE score. Friedman ranking: for each metric, the methods are displayed in decreasing
order with their respective Friedman ranking.
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Table A.11.: Results based on TF experiments. We consider different combinations of two-stage DPC and
underlying SPC. Friedman-Nemenyi hypothesis test results for the AUC metric. The asterisk
and the cross, respectively, mean that the method in the column outperformed the method in the
row with significance levels of 0.05 and 0.1.
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A.1. Results with ODIN

AUC
MAnorm-macs 1.3929
MAnorm-quest 2.4286
MAnorm-peakseq 3.1429
DESeq-quest 4.2143
DESeq-macs 4.75
DESeq-peakseq 5.0714

Table A.12.: Results based on histone experiments. We consider different combinations of two-stage DPC and
underlying SPC. We constrain our analysis on chromosome 1 and use h = 50 and H = 500 for
the DAGE score. Friedman ranking: for each metric, the methods are displayed in decreasing
order with their respective Friedman ranking.
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DESeq-quest ∗
DESeq-macs ∗ ∗

DESeq-peakseq ∗ ∗ +

Table A.13.: Results based on histone experiments. We consider different combinations of two-stage DPC and
underlying SPC. Friedman-Nemenyi hypothesis test results for the AUC metric. The asterisk
and the cross, respectively, mean that the method in the column outperformed the method in the
row with significance levels of 0.05 and 0.1.

AUC
ODIN 1.1875
ODIN-deseq 2.3125
ODIN-edgeR 2.5

Table A.14.: Results based on TF experiments. We constrain our analysis on chromosome 1 and use h = 50
and H = 500 for the DAGE score. Friedman ranking: for each metric, the methods are displayed
in decreasing order with their respective Friedman ranking.
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A.1. Results with ODIN

AUC
ODIN 1.2143
ODIN-deseq 1.8571
ODIN-edgeR 2.9286

Table A.15.: Results based on histone experiments. We constrain our analysis on chromosome 1 and use
h = 50 and H = 500 for the DAGE score. Friedman ranking: for each metric, the methods are
displayed in decreasing order with their respective Friedman ranking.
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A.1. Results with ODIN

A.1.3. DAGE
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Figure A.1.: DAGE results for histone experiments (based on Kaikkonen et al. (2013))
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Figure A.2.: DAGE results for TF experiments (based on Kaikkonen et al. (2013))
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Figure A.3.: DAGE results for histone experiments (based on Lin et al. (2015)
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Figure A.4.: DAGE results for TF experiments (based on Lin et al. (2015)
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A.1. Results with ODIN

AUC
ODIN-poisson-1 1.875
ODIN-binomial 2.1875
MAnorm-macs 3.4063
MACS2 3.6563
DBChIP-quest 3.875

Table A.16.: DAGE results based on TF experiments. We use h = 200 and H = 10000 for the DAGE score.
Friedman ranking: for each metric, the methods are displayed in decreasing order with their
respective Friedman ranking.

AUC
ODIN-binomial 1.6429
ODIN-poisson-4 2.0
MAnorm-macs 3.2857
MACS2 3.3571
DEseq-quest 4.7143

Table A.17.: DAGE results based on histone experiments. We use h = 200 and H = 10000 for the DAGE
score. Friedman ranking: for each metric, the methods are displayed in decreasing order with
their respective Friedman ranking.

AUC
ODIN 2.1875
ODIN-poisson-1 2.3125
MACS2 3.75
ChIPDiff 4.0
MAnorm-macs 4.125
DBChIP-quest 4.625

Table A.18.: DAGE results with ChIPDiff based on TF experiments. We use h = 200; H equals the number
of DPs called by ChIPDiff. Friedman ranking: for each metric, the methods are displayed in
decreasing order with their respective Friedman ranking.
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Table A.19.: DAGE results with ChIPDiff based on TF experiments. Friedman-Nemenyi hypothesis test
results for the AUC metric. The asterisk and the cross, respectively, mean that the method in the
column outperformed the method in the row with significance levels of 0.05 and 0.1.

AUC
ODIN-poisson-4 2.5
ODIN 2.5714
MAnorm-macs 3.4286
ChIPDiff 3.6429
MACS2 3.7143
DESeq-quest 5.1429

Table A.20.: DAGE results with ChIPDiff based on histone experiments. We use h = 200; H equals the
number of DPs called by ChIPDiff. Friedman ranking: for each metric, the methods are displayed
in decreasing order with their respective Friedman ranking.
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Table A.21.: DAGE results with ChIPDiff based on histone experiments. Friedman-Nemenyi hypothesis test
results for the AUC metric. The asterisk and the cross, respectively, mean that the method in the
column outperformed the method in the row with significance levels of 0.05 and 0.1.
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A.2 Results with THOR

A.2.1. Simulation

AUC
THOR 1.0652
MACS2 3.0598
DESeq-JAMM 3.9185
DiffReps 4.087
DESeq-IDR 4.4891
DiffBind 5.0761
Poisson-THOR 6.3043

Table A.22.: Friedman ranking of simulated data for all parameter settings based on the AUC statistic (see
main document Section 4.3.3 for details). The methods are displayed in decreasing order with
their respective Friedman ranking.
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Table A.23.: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the case with 2
replicates, low within-condition variance, and moderate peak size variability. The asterisk and
the cross, respectively, mean that the method in the column outperformed the method in the row
with significance levels of 0.05 and 0.1.
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Table A.24.: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the case with 2
replicates, medium within-condition variance, and moderate peak size variability. The asterisk
and the cross, respectively, mean that the method in the column outperformed the method in the
row with significance levels of 0.05 and 0.1.
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Table A.25.: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the case with 2
replicates, high within-condition variance, and moderate peak size variability. The asterisk and
the cross, respectively, mean that the method in the column outperformed the method in the row
with significance levels of 0.05 and 0.1.
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Table A.26.: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the case with 2
replicates, low within-condition variance, and high peak size variability. The asterisk and the
cross, respectively, mean that the method in the column outperformed the method in the row
with significance levels of 0.05 and 0.1.
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Table A.27.: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the case with 2
replicates, medium within-condition variance, and high peak size variability. The asterisk and
the cross, respectively, mean that the method in the column outperformed the method in the row
with significance levels of 0.05 and 0.1.
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Table A.28.: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the case with 2
replicates, high within-condition variance, and high peak size variability. The asterisk and the
cross, respectively, mean that the method in the column outperformed the method in the row with
significance levels of 0.05 and 0.1.
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Table A.29.: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the case with 4
replicates, low within-condition variance, and moderate peak size variability. The asterisk and
the cross, respectively, mean that the method in the column outperformed the method in the row
with significance levels of 0.05 and 0.1.
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Table A.30.: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the case with 4
replicates, medium within-condition variance, and moderate peak size variability. The asterisk
and the cross, respectively, mean that the method in the column outperformed the method in the
row with significance levels of 0.05 and 0.1.
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Table A.31.: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the case with 4
replicates, high within-condition variance, and moderate peak size variability. The asterisk and
the cross, respectively, mean that the method in the column outperformed the method in the row
with significance levels of 0.05 and 0.1.
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Table A.32.: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the case with 4
replicates, low within-condition variance, and high peak size variability. The asterisk and the
cross, respectively, mean that the method in the column outperformed the method in the row
with significance levels of 0.05 and 0.1.
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Table A.33.: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the case with 4
replicates, medium within-condition variance, and high peak size variability. The asterisk and
the cross, respectively, mean that the method in the column outperformed the method in the row
with significance levels of 0.05 and 0.1.
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Table A.34.: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the case with 4
replicates, high within-condition variance, and high peak size variability. The asterisk and the
cross, respectively, mean that the method in the column outperformed the method in the row with
significance levels of 0.05 and 0.1.

109



A.2. Results with THOR

A.2.2. Parameter Selection

AUC
THOR-1.6/95 2.2857
THOR-1.3/95 2.4286
THOR-1.6/99 2.5
THOR-1.3/99 2.7857

Table A.35.: Friedman ranking based on DCA score (h = 100,H = 1000). We evaluate the initial parameter
setting of THOR, that is, t1 ∈ {〈x〉.95,〈x〉.99} and t2 ∈ {1.3,1.6} where t1 is the fold change
criteria and t2 the minimum difference between signals based on percentile estimates (see main
document Section 4.3.4 for details). The analysis is restricted to chromosome 1. For each metric,
the methods are displayed in decreasing order with their respective Friedman ranking.
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Table A.36.: Friedman-Nemenyi hypothesis test results for the DCA score (h = 100,H = 1000) restricted to
chromosome 1. The asterisk and the cross, respectively, mean that the method in the column
outperformed the method in the row with significance levels of 0.05 and 0.1.
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A.2.3. DCA
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Figure A.5.: DCA curves for CO study. We run THOR with TMM and housekeeping genes normalization
approach. PePr required input-DNA and is therefore unable to call DPs.
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Figure A.6.: DCA curves for DC study. We run THOR with TMM and housekeeping genes normalization
approach.
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Figure A.7.: DCA curves for LYMP study. We run THOR with TMM and housekeeping genes normaliza-
tion approach.
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Figure A.8.: DCA curves for MM study. We run THOR with TMM and housekeeping genes normalization
approach. PePr required input-DNA and is therefore unable to call DPs.
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AUC
THOR-HK 2.0
THOR-TMM 2.4286
macs2 3.7857
DiffReps 4.4286
DiffBind 5.2143
DESeqIDR 5.6429
Poisson-THOR 5.7143
csaw 6.7857

Table A.37.: Friedman ranking based on DCA score (h = 500,H = 10000) for all datasets (CO, DC, LYMP
and MM). The methods are displayed in decreasing order with their respective Friedman ranking.

AUC
THOR-HK 2.3333
THOR-TMM 2.7778
macs2 4.3333
PePr 4.6667
DiffReps 5.0
DiffBind 5.7778
DESeqIDR 6.0
Poisson-THOR 6.3333
csaw 7.7778

Table A.38.: Friedman ranking based on DCA score (h = 500,H = 10000) for datasets DC and LYMP. We
restrict the analysis to DC and LYMP as PePr requires input-DNA which is not provided by CO
and MM. The methods are displayed in decreasing order with their respective Friedman ranking.
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Table A.39.: Friedman-Nemenyi hypothesis test results for the DCA score (h= 500,H = 10000). The asterisk
and the cross, respectively, mean that the method in the column outperformed the method in the
row with significance levels of 0.05 and 0.1.
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A.2.4. Use Cases of THOR

rank chrom pos dbSNP rID − log10 p-value dir Gene upstream Gene downstream Figure 5.11?
1 chr3 16553883 rs2346911 99.8922475655 - RFTN1 (+1330) OXNAD1 (+247178)
2 chr1 192776414 rs1418718 77.6115468364 - RGS2 (-1757) RGS13 (+171140) X
3 chr9 127562788 rs750691 73.6809538923 + OLFML2A (+23239) RPL35 (+61452)
4 chr9 127562973 rs913232 73.6809538923 + OLFML2A (+23424) RPL35 (+61267)
5 chr11 71752160 rs7115200 69.3486017723 + LRTOMT (-39222) IL18BP (+42052) X
6 chr1 192577986 rs4130930 65.9782743138 - RGS13 (-27289) RGS1 (+33130) X
7 chr1 192578763 rs7538087 65.9782743138 - RGS13 (-26512) RGS1 (+33907) X
8 chr17 74524652 rs8077736 53.8122623004 + RHBDF2 (-27164) CYGB (+9335)
9 chr10 6391031 rs12416248 49.3236112959 - PFKFB3 (+146138) PRKCQ (+231232)

10 chr11 65197393 rs674485 43.6775100799 - SCYL1 (-95155) FRMD8 (+43324) X
11 chr21 45615896 rs2838520 36.4901273214 - ICOSLG (+44932) C21orf33 (+62410)
12 chr21 45615917 rs2838521 36.4901273214 - ICOSLG (+44911) C21orf33 (+62431)
13 chr8 27247339 rs34947559 26.0782531932 + PTK2B (+78341) CHRNA2 (+89474) X
14 chr17 41400290 NA 25.3212748249 + ARL4D (-76037) TMEM106A (+36397)
15 chr17 41400913 NA 25.3212748249 + ARL4D (-75414) TMEM106A (+37020)
16 chr11 128496565 rs949097 24.244683318 + FLI1 (-67325) ETS1 (-39129)
17 chr17 56709222 rs444393 24.1492427636 - SEPT4 (-91044) TEX14 (+60162)
18 chr1 182558137 rs10911102 21.5391751611 + RNASEL (+254) RGSL1 (+138857)
19 chr6 167527097 rs6909252 20.9400452035 - CCR6 (-9160) FGFR1OP (+114428) X
20 chr1 147806874 rs2999607 20.6529101183 + NBPF24 (-207326) PPIAL4A (+148545)
21 chr1 147807277 rs481176 20.6529101183 + NBPF24 (-207729) PPIAL4A (+148142)
22 chr17 6659146 rs955462 20.4274431857 + SLC13A5 (-42261) XAF1 (-13)
23 chr1 151031667 rs3806386 18.8647292719 + MLLT11 (+1434) CDC42SE1 (+11134)
24 chr3 115377254 rs13100660 18.168913574 + GAP43 (+34898) LSAMP (+787124)
25 chr9 134144806 rs7861111 17.4971632608 + PPAPDC3 (-20275) NUP214 (+143859)
26 chr16 56946804 rs711746 17.3017972487 + HERPUD1 (-19156) SLC12A3 (+47686)
27 chr17 45213047 NA 17.1375858395 - RPRML (-156434) CDC27 (+53495)
28 chrX 15693367 rs4830979 17.0962250807 + CA5B (-63026) TMEM27 (-10214)
29 chrX 15693461 rs4830980 17.0962250807 + CA5B (-62932) TMEM27 (-10308)
30 chr3 56591508 rs73079894 15.0492637401 + CCDC66 (+308) ARHGEF3 (+521828)
31 chr18 46549675 rs4939571 14.2426089689 + SMAD7 (-72595) DYM (+437497)
32 chr6 88182439 rs2273129 14.2079766474 + SLC35A1 (-256) C6orf163 (+127869)
33 chr2 44588941 rs698775 14.0871764676 + PREPL (-309) CAMKMT (-162)
34 chr20 56056342 rs1001752 14.0111470481 - CTCFL (+43821) RBM38 (+89880)
35 chr7 1979750 rs10950456 13.7186584489 + ELFN1 (+251996) MAD1L1 (+293128)
36 chr17 67323781 rs333938 13.3851108104 + MAP2K6 (-87058) ABCA5 (-540)
37 chr7 22862192 rs2270106 13.313357982 + TOMM7 (+278) IL6 (+96690)
38 chr22 48494758 rs5768350 12.1807933237 + FAM19A5 (-390514)
39 chr1 43418026 rs2297972 11.1639466495 + SLC2A1 (+6475) ZNF691 (+105720)
40 chr4 64378 NA 11.0619722048 + ZNF595 (+11169) ZNF732 (+234732)
41 chr22 46984098 rs1883193 10.9788053627 + CELSR1 (-51032) GRAMD4 (-32201)
42 chr22 46984100 rs1883192 10.9788053627 + CELSR1 (-51034) GRAMD4 (-32199)
43 chr22 46984268 rs909558 10.9788053627 + CELSR1 (-51202) GRAMD4 (-32031)
44 chr5 149793457 rs1560661 10.6980883333 + CD74 (-1144) RPS14 (+35853)
45 chr6 32634104 NA 10.4960726902 + HLA-DQB1 (+357) HLA-DQA1 (+28971)
46 chr3 28390351 rs1870259 10.4450508705 + AZI2 (+267) CMC1 (+107266)
47 chr8 47829990 rs13259304 10.441488493 + SPIDR (-343177)
48 chr8 47829991 rs13259305 10.441488493 + SPIDR (-343176)
49 chr17 70025931 rs2193053 9.895586428 + SOX9 (-91230)
50 chr22 22400882 rs4145408 9.3687977404 - VPREB1 (-198205) TOP3B (-63736)
51 chr22 24142330 rs738795 9.3254710848 - SMARCB1 (+13170) DERL3 (+38863)
52 chr17 33905468 rs321600 9.2026740212 + SLFN14 (-20352) PEX12 (+180)
53 chr15 52528193 rs6493549 8.9018777619 + GNB5 (-44628) MYO5C (+59802)
54 chr9 126101008 rs10114139 8.8987861442 + STRBP (-70154) CRB2 (-17531)
55 chr7 45025720 rs3213658 8.279020729 - CCM2 (-40905) MYO1G (-7024)
56 chr9 137029841 rs28650068 8.1713392696 - RXRA (-188585) WDR5 (+28632)
57 chr1 32355180 rs593133 8.0917910077 + SPOCD1 (-73529) PTP4A2 (+48808)
58 chr12 6570966 rs1045548 7.5019308863 + VAMP1 (+8877) TAPBPL (+9717)
59 chr5 156700461 rs62383003 7.2378390446 + CYFIP2 (+7324) FNDC9 (+72268)
60 chr5 130588550 rs6596007 7.0902630177 + CDC42SE2 (-11243) LYRM7 (+82048)
61 chr7 2750918 rs10252130 6.8566385722 + AMZ1 (+31763) GNA12 (+133040)
62 chr5 43313178 rs10039048 6.7651996991 + HMGCS1 (+417) ENSG00000177453 (+120225)
63 chr1 172412995 rs3213563 6.7522493823 + PIGC (+231) DNM3 (+602375)
64 chr5 163342658 rs13184669 6.5468860152 + MAT2B (+410105)
65 chr5 163343803 rs12516138 6.5468860152 + MAT2B (+411250)
66 chr1 205601464 rs3088136 6.2865958958 + ELK4 (-375) SLC45A3 (+48123)
67 chr1 242011406 rs1776179 6.1953416871 + OPN3 (-207744) EXO1 (-76)
68 chr10 126289743 rs2104227 6.0646970367 + LHPP (+139340) FAM53B (+142876)
69 chr6 116600774 rs3749895 6.0268617678 + TSPYL4 (-25514) TSPYL1 (+292)
70 chr3 14473000 rs7620731 5.9079302255 + C3orf20 (-243606) SLC6A6 (+28925)
71 chr8 135613597 rs894346 5.8709599503 + ZFAT (+111684)
72 chr8 135613624 rs894347 5.8709599503 + ZFAT (+111657)
73 chr2 109065858 rs2460947 5.8340918213 + LIMS1 (-205635) GCC2 (+842)
74 chr11 1873950 rs2089908 5.7990375522 + LSP1 (-12445) TNNI2 (+13240)
75 chr3 188108642 rs56046601 5.7612327644 - TPRG1 (-781121) LPP (+177922)
76 chr5 40835088 rs2270625 5.6276004169 + PRKAA1 (-36613) RPL37 (+349)
77 chr1 179051300 rs2296377 5.3746650821 - TOR3A (+789) ABL2 (+147436)
78 chr9 6704188 rs820495 5.133890915 + GLDC (-58539) KDM4C (-53468)
79 chr9 6704237 rs820494 5.133890915 + GLDC (-58588) KDM4C (-53419)
80 chr2 225867366 rs281527 5.0464335748 + CUL3 (-417302) DOCK10 (+39793)

Table A.40.: List of candidate rSNPs ranked by the negative logarithm of the p-value of the DPs called by
THOR. For each SNP we give the rank, the chromosome, the position, the dbSNP rID, the
negative logarithm of the DP called by THOR the SNP lies within and the genes that lay in close
vicinity. We also indicate whether the rSNP is pictured in Figure 5.11. We list the top 80/137
ranked rSNPs.
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A.2. Results with THOR

rank gene chrom start end strand -log10 p-value
1 H2-AA chr17 34419688 34424772 - 9342.50545168
2 H2-AB1 chr17 34400153 34406363 + 8018.77571673
3 H2-EB1 chr17 34442821 34453144 + 4555.68454975
4 ID2 chr12 25778665 25780957 - 3379.91074335
5 H2-EA-PS chr17 34342933 34344643 - 2380.2150288
6 H2-EB2 chr17 34462609 34477174 + 2380.2150288
7 KLRK1 chr6 129560340 129573882 - 2200.32296143
8 CD74 chr18 60963501 60972300 + 2101.33787491
9 IFI202B chr1 175892699 175912975 - 2080.14008533

10 OLFR433 chr1 175972063 175973067 + 2080.14008533
11 MARCKS chr10 36853180 36858726 - 1815.84060863
12 CCND1 chr7 152115835 152125774 - 1591.72987841
13 ADAM19 chr11 45869493 45960845 + 1559.08891211
14 IRF8 chr8 123260257 123280594 + 1530.25808614
15 CST3 chr2 148697457 148701428 - 1458.44354685
16 H2-DMB1 chr17 34290016 34297175 + 1412.96685804
17 H2-DMB2 chr17 34280251 34288498 + 1412.96685804
18 TNKS chr8 35892232 36028744 - 1380.13798257
19 NF1 chr11 79153194 79395114 + 1372.2157044
20 CD83 chr13 43880475 43898499 + 1291.08471599
21 AMZ1 chr5 141200080 141237393 + 1286.78303837
22 P2RY10 chrX 104283830 104300313 + 1163.99255182
23 HERPUD1 chr8 96910337 96919277 + 1056.72241201
24 SLC12A3 chr8 96853091 96890113 + 1056.72241201
25 BC051142 chr17 34535764 34597679 + 1049.4840957
26 EGR3 chr14 70477251 70479964 + 1039.28587015
27 AHRR chr13 74348565 74429779 - 1017.25699529
28 CIITA chr16 10488270 10527657 + 1006.89398006
29 PRKAR2A chr9 108594473 108651843 + 975.004304756
30 PMEPA1 chr2 173049958 173102034 - 968.09089682
31 HIAT1 chr3 116334081 116384178 - 946.531575531
32 A330009N23Rik chr15 101055056 101055069 - 929.20633982
33 GRASP chr15 101054637 101063186 + 929.20633982
34 HRH1 chr6 114347929 114433290 + 919.54865411
35 ZFP800 chr6 28189930 28348005 - 913.228573003
36 GRAMD3 chr18 56591785 56663446 + 895.274922571
37 H2-OB chr17 34375847 34382852 + 855.004458933
38 WDR86 chr5 24217555 24236545 - 845.047427982
39 P2RX5 chr11 72973922 72986187 + 844.537705199
40 NCOA7 chr10 30365389 30522913 - 843.985543271
41 ACTB chr5 143664793 143668433 - 840.4456036
42 COL25A1 chr3 129883808 130302795 + 831.737274956
43 5830416P10RIK chr19 53526024 53526024 - 826.028290432
44 SMNDC1 chr19 53453703 53465063 - 826.028290432
45 SLFN5 chr11 82764850 82776443 + 820.070737402
44 GM8817 chrX 163526888 163553394 - 817.998789877
47 KIT chr5 75970940 76052747 + 794.821851563
48 DIS3L2 chr1 88600382 88946670 + 791.794724159
49 FAM46A chr9 85214045 85220955 - 788.360435944
50 ANKRD55 chr13 113078658 113174210 + 784.448973727

Table A.41.: List of genes in DC-CDP-cDC (cDC peaks) that are associated with DPs called by THOR. We
rank the genes by the p-value of the assigned DP. For each gene, we give the chromosome, the
start and end positions, the strand as well as the p-value the gene is assigned to. Genes that are
highlighted in bold are specifically known to be associated with dendritic cells and in particular
cDC cells.
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A.2. Results with THOR

rank gene chrom start end strand -log10 p-value
1 SIGLECH chr7 63023547 63034295 + 9678.16863265
2 IRF8 chr8 123260257 123280594 + 9397.95545021
3 PECAM1 chr11 106515530 106611942 - 7721.79239662
4 TEX2 chr11 106363460 106474737 - 7721.79239662
5 PSAP chr10 59740374 59765345 + 6767.12351276
6 MCTP2 chr7 79222715 79451481 - 6471.46286813
7 EGFR chr11 16652205 16818161 + 6031.83979238
8 FBXO48 chr11 16851377 16854775 + 6031.83979238
9 IFNAR1 chr16 91485482 91507686 + 5777.69157412

10 IL10RB chr16 91406408 91426079 + 5777.69157412
11 LDLRAD3 chr2 101790359 102026542 - 5257.7739313
12 SEMA4B chr7 87331726 87371280 + 4773.62970215
13 ST8SIA4 chr1 97484258 97564148 - 4752.49374499
14 PPM1H chr10 122115817 122382851 + 4708.84903533
15 PRKAG2 chr5 24368561 24606460 - 4318.68020523
16 OLFR164 chr16 19285835 19286930 - 4135.75145138
17 CDK20 chr13 64533860 64541028 + 4015.81891814
18 CTSL chr13 64464521 64471614 - 4015.81891814
19 MTAP7D1 chr4 125933470 125933614 - 3892.15227629
20 STAMBPL1 chr19 34266718 34314823 + 3697.16215076
21 ATP1B1 chr1 166367397 166388486 - 3647.33666707
22 CYBASC3 chr19 10651929 10651951 + 3619.76719482
23 TMEM138 chr19 10644967 10651852 - 3619.76719482
24 ARL5C chr11 97850891 97857495 - 3528.20546387
25 EPHA2 chr4 140857154 140885299 + 3428.42485528
26 MED16 chr10 79357452 79371668 - 3330.06424981
27 TMEM229B chr12 80062781 80108614 - 3321.71551074
28 RPGRIP1 chr14 52730378 52783221 + 3282.52005794
29 CMAH chr13 24419288 24569154 + 3276.26687301
30 LRP8 chr4 107474865 107549445 + 3227.01828285
31 RPL31 chr1 39424695 39428753 + 3154.91756008
32 TBC1D8 chr1 39428343 39535592 - 3154.91756008
33 KLHDC4 chr8 124320212 124353469 - 3036.19329771
34 SLC7A5 chr8 124405049 124431594 - 3036.19329771
35 HPSE2 chr19 42863436 43462801 - 3020.84986442
36 PACSIN1 chr17 27792453 27848051 + 2978.26587504
37 CCDC162 chr10 41258651 41429106 - 2881.08000048
38 BCR chr10 74523640 74647668 + 2861.03007096
39 LY6E chr15 74785480 74790335 + 2850.91050473
40 MED12L chr3 58810899 59122332 + 2834.58051421
41 TCF4 chr18 69503799 69847621 + 2698.42429934
42 DGAT2 chr7 106302172 106331223 - 2670.94433911
43 UVRAG chr7 106035252 106289654 - 2670.94433911
44 3300005D01RIK chr17 5803242 5803242 + 2661.34040582
45 SNX9 chr17 5841327 5931033 + 2661.34040582
46 PMEPA1 chr2 173049958 173102034 - 2627.43181036
47 CD4 chr6 124814709 124838239 - 2614.28892241
48 LAG3 chr6 124854378 124861723 - 2614.28892241
49 RUNX2 chr17 44632935 44951746 - 2580.8334652
50 CD33 chr7 50782825 50788541 - 2563.80058712

Table A.42.: List of genes in DC-CDP-pDC (pDC peaks) that are associated with DPs called by THOR. We
rank the genes by the p-value of the assigned DP. For each gene, we give the chromosome, the
start and end positions, the strand as well as the p-value the gene is assigned to. Genes that are
highlighted in bold are specifically known to be associated with dendritic cells and in particular
pDC cells.
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