
Online Algorithms for Packet
Scheduling and Buffer

Management

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

M.Sc.

Kamal Al-Bawani

aus Sanaa, Jemen

Berichter: Assistant Professor Dr. Matthias Englert
Privatdozent Dr. Walter Unger
Universitätsprofessor Dr. Peter Rossmanith

Tag der mündlichen Prüfung: 22. April 2016

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.





i

Zusammenfassung

In dieser Arbeit untersuchen wir aus einer algorithmischen Perspektive das
Puffer-Management-Problem in Netzwerk-Switches. In typischen Szenarios
in der Datenpaketvermittlung kommen Pakete mit verschiedenen Service-
Anforderungen an den Eingangsports des Switches an, und werden in Puffern
(Warteschlangen) mit begrenzter Kapazität gespeichert. Danach werden sie
über die Switching-Fabric in ihre entsprechenden Ausgangsports übertragen,
wo sie anderen Warteschlangen beitreten. Schließlich werden die Pakete aus
dem Switch durch seine ausgehenden Verbindungen zu ihren nächsten Zielen
im Netzwerk gesendet.

Da die Bandbreite der ein- und ausgehenden Verbindungen und auch
die Kapazitäten der Puffer beschränkt sind, kann Pufferüberlauf auftreten.
Es ist in diesem Fall unvermeidlich, einige Pakete zu verwerfen. In an-
deren Switching-Modellen können Pakete, die verzögerungsempfindlich sind,
verworfen werden, wenn sie eine bestimmte Deadline in der Warteschlange
überschreiten. Wir betrachten mehrere Switching-Modelle mit dem Ziel,
den Durchsatz der Switches zu maximieren. Wenn alle Pakete gleich be-
handelt werden, d.h. in Übereinstimmung mit dem Best-Effort-Konzept des
Internet, quantifizieren wir den Durchsatz als die Anzahl der Pakete, die er-
folgreich durch den Switch übertragen werden. In Netzwerken mit Quality
of Service (QoS) Anforderungen werden Pakete Werte, die ihren Dienst-
stufen entsprechen, zugeordnet. Der Durchsatz ist in diesem Fall gleich dem
Gesamtwert der Pakete, die erfolgreich übertragen werden.

Wir präsentieren verschiedene Algorithmen für das Puffer-Management-
Problem. In der Buffering-Phase dieser Algorithmen untersuchen wir, ob
ein ankommendes Paket angenommen oder abgelehnt werden soll, und ob
ein bereits in der Warteschlange enthaltenes Paket verdrängt werden soll,
um Platz für weitere wertvollen Pakete zu reservieren. In der Scheduling-
Phase beantworten wir Fragen von der Art “welches Paket soll in einem fes-
ten Zeitschritt von einem Eingangsport zu einem Ausgangsport übertragen
werden?”, und “welches Paket soll von einem Ausgangspuffer entlassen wer-
den?”.

Eine Eingabe für unsere Algorithmen ist eine endliche Folge von Paketen,
die in einer “Online” Art und Weise betrachtet werden. Das heißt, dass die



ii

Pakete nach einander über die Zeit ankommen und eine unwiderrufliche
Entscheidung on the fly gemacht werden muss, bevor zukünftige Ankünfte
bekannt werden. Solche Algorithmen, die unvollständige Informationen über
die Zukunft bewältigen müssen und deren Entscheidungen nicht rückgängig
gemacht werden können, werden Online-Algorithmen genannt.

Es ist bekannt, dass Paketankunftszeiten keine spezifische Ankunfts-
verteilung einhalten. In der Wirklichkeit haben Pakete die Tendenz, in
“Bursts” und nicht in glatten Poisson-like-Verteilungen anzukommen. Aus
diesem Grund machen wir keine vorherigen Annahmen über die Ankunfts-
verteilung der Pakete. Deshalb greifen wir zur Methode der Competitive-
Analyse, welche die typische Worst-Case-Analyse ist, die verwendet wird,
um die Leistung von Online-Algorithmen zu beurteilen.

In der Competitive-Analyse vergleichen wir die Güte eines Online-Algo-
rithmus mit der Güte eines optimalen Algorithmus, von dem angenommen
wird, dass er die gesamte Eingabesequenz im Voraus kennt. Ein Online-
Algorithmus heißt c-competitive, wenn für jede Eingangssequenz die Güte
des optimalen Algorithmus höchstens c mal die Güte des Online-Algorithmus
ist. Der Wert c wird auch als competitive ratio des Online-Algorithmus
genannt. Wir beweisen obere und untere Schranken des competitive ratio
von mehreren Online-Algorithmen, und zeigen, dass einige dieser Algorith-
men optimal sind.



iii

Abstract

In this work, we study the problem of buffer management in network switches
from an algorithmic perspective. In a typical switching scenario, packets
with different service demands arrive at the input ports of the switch and
are stored in buffers (queues) of limited capacity. Thereafter, they are trans-
ferred over the switching fabric to their corresponding output ports where
they join other queues. Finally, packets are transmitted out of the switch
through its outgoing links to their next destinations in the network.

Due to limitations in the link bandwidth and buffer capacities, buffers
may experience events of overflow and thus it becomes inevitable to drop
some packets. In other switching models, packets that are sensitive to delay
are dropped if they exceed a specific deadline inside the queue. We consider
multiple models of switching with the goal of maximizing the throughput of
the switch. If all packets are treated equally, i.e., corresponding to the best-
effort concept of the Internet, we quantify the throughput as the number of
packets that are successfully transmitted through the switch. In networks
with Quality of Service (QoS) requirements, packets are assigned values that
correspond to their levels of service, and the throughput in this case is equal
to the total value of packets that are successfully transmitted.

We present different algorithms for the problem of buffer management.
In the buffering phase of these algorithms, we examine whether an arriv-
ing packet is accepted or rejected, and whether an already queued packet
is preempted (dropped) to save space for more valuable packets. In the
scheduling phase, we seek to answer questions of the kind “which packet to
transfer from an input port to an output port in a given time step?”, and
“which packet to transmit from an output buffer?”.

An input instance for our algorithms is a finite sequence of packets arriv-
ing in an “online” manner, i.e., packets arrive one by one over time and an
irrevocable decision has to be made on the fly before future arrivals become
known. Such algorithms which need to cope with incomplete information
about future and cannot undo their decisions are called online algorithms.

It is known that packet arrivals do not adhere to any specific arrival
distribution. In reality, packets tend to arrive “in bursts” rather than in
smooth Poisson-like distributions. Thus, we do not make any prior as-



iv

sumptions about the arrival process of packets. We therefore resort to the
framework of competitive analysis which is the typical worst-case analysis
used to assess the performance of online algorithms.

In competitive analysis, the benefit of an online algorithm is compared
to the benefit of an optimal algorithm which is assumed to know the entire
input sequence in advance. An online algorithm is called c-competitive if
for each input sequence, the benefit of the optimal algorithm is at most c
times the benefit of the online algorithm. The value c is also called the
competitive ratio of the online algorithm. We prove upper and lower bounds
on the competitive ratio of several online algorithms, and show that some
of these algorithms are optimal.



v

Acknowledgments

First of all, I am very grateful to Berthold Vöcking for being the extra-
ordinary supervisor and teacher he was. He granted me a great degree
of freedom and confidence to pursue the research I found most appealing.
He did though help me with many insightful discussions and taught me
many interesting things in different aspects of algorithms—and life in gen-
eral. Berthold passed away in summer 2014 at an early age. His sudden
leaving was a great loss for me, on both a scientific level and, maybe more
significantly, on a personal level.

With no less gratitude, I would also like to thank Matthias Englert
who has been a great mentor and co-author for me, and in times when
I was with him at Warwick University, a very generous host also. The
many discussions we had on many topics in many places were mostly fruitful
and improved my research in numerous ways. I especially appreciate his
tremendous support as a first reviewer of my thesis. I would also like to
thank my other co-authors, Matthias Westermann, especially for his great
hospitality in Dortmund, and Alexander Souza who introduced me to the
problem of buffer management.

I am also indebted to Walter Unger and Peter Rossmanith for several
casual discussions in Winterberg and also for acting as reviewers of my
thesis. I am especially thankful to Walter for being always supportive after
the leaving of Berthold. I would also like to thank all my current and former
colleagues in the Algorithms and Complexity group for the pleasant and
friendly atmosphere they have continued to preserve in our group. Special
thanks to Oliver Göbel who kindly guided me through many bureaucratic
procedures and proof-read the German abstract of this thesis.

Last, and as I would say it in Arabic “the musk of the closure“, I would
like to express my endless gratefulness to my family, foremost to my parents,
my wife and my kids, for their unconditional love and support. This thesis
is dedicated with all humility to them.



vi



vii

Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Switch Architecture . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Switching with QoS Guarantees . . . . . . . . . . . . . . . . . 6

1.4 Problem Definition: Framework and Objectives . . . . . . 6

1.5 Online Algorithms and Competitive Analysis . . . . . . . . . 8

1.5.1 Example Problem: Throughput Maximization in IQ
Switches . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Problem Definition: Models and Results . . . . . . . . . . . . 19

1.6.1 The FIFO Model . . . . . . . . . . . . . . . . . . . . . 19

1.6.2 The Model of Priority Queues . . . . . . . . . . . . . . 20

1.6.3 The CIOQ Model . . . . . . . . . . . . . . . . . . . . . 21

1.6.4 The Buffered Crossbar Model . . . . . . . . . . . . . . 22

1.6.5 The Bounded-Delay Model . . . . . . . . . . . . . . . 23

1.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.8 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . 28

2 FIFO Buffer Management 29

2.1 The 0/1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Algorithm cpg . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Monotonic Sequences . . . . . . . . . . . . . . . . . . 35

2.3.2 General Sequences . . . . . . . . . . . . . . . . . . . . 39

3 Packet Scheduling with Priority Queues 43

3.1 Algorithm greedy . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Forwarding Packets in CIOQ Switches 51

4.1 Unit-value Case . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 General-value Case . . . . . . . . . . . . . . . . . . . . . . . . 55



viii Contents

5 Forwarding Packets in Buffered Crossbar Switches 63

5.1 Unit-value Case . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 General-value Case . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Scheduling Packets with Deadlines 75

6.1 Unbounded Competitive Ratio . . . . . . . . . . . . . . . . . 76
6.2 An Optimal Algorithm sg . . . . . . . . . . . . . . . . . . . . 76

7 Open Problems 81

7.1 The FIFO Model . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2 The Model of Priority Queues . . . . . . . . . . . . . . . . . . 82
7.3 The CIOQ and Buffered Crossbar Models . . . . . . . . . . . 82
7.4 The Bounded-Delay Model . . . . . . . . . . . . . . . . . . . 83

Bibliography 85



1

Chapter 1

Introduction

1.1 Overview

The problem of buffer management arises in the core of computer networks—
the mesh of switching devices that interconnects the network’s end systems.
In a network application, computation devices, such as PCs, laptops, smart
phones, gaming consoles, etc., that are placed on the terminal nodes of the
network are called hosts. Hosts communicate with each other by exchanging
messages. A message can contain any kind of information. For example, it
can just be a standard request to download a website or it can contain some
data, such as a text of an Email, an image, or an audio file. Before they are
popped into the network, messages are split into smaller pieces, called data
packets. Each packet travels alone from the source host to the destination
host through a path of multiple switching devices. In networking jargon,
these switching devices are called switches or routers, and they are placed
on the inner nodes of the network to store and forward packets. Packets are
transmitted into a switch through its ingoing and are transmitted out of the
switch through its outgoing links.

The path between a source and a destination is not known for the travel-
ing packet before hand. Packets are forwarded over the network in a manner
similar to guiding a tourist who is driving through a country without a map
and remembers only the address of her final destination. In this case, the
tourist is forwarded by local people from a city to another, based on the
portion of the address that contains the city name. Once she arrives in the
final city, she is forwarded further to the district of the city that appears in
another portion of the address. After that, inside that district, she is for-
warded to the goal street and then, using the house number in the address,
to her final destination. In a similar way, a packet stores in its header, among
other information, the IP address of its destination host. When the packet
arrives at an intermediate switch, its destination’s IP address is looked up in
a table, known as routing table, that maps IP addresses, or more precisely,



2 Chapter 1. Introduction

prefixes of IP addresses to outgoing links of the switch. The packet is then
transmitted to the next switch over the specified outgoing link and proceeds
further towards its final destination.

Let’s now have a closer look into packet switches. The process described
above of determining the outgoing link of an incoming packet using the
routing table is called routing. Although routing is a major function of
the switch, the topics of this work revolve around another major function,
namely, the process of transmitting the packet throughout the switch down
to its specified outgoing link. This process is known as forwarding or switch-
ing. In a nutshell, three components of the switch are involved in forwarding:
the input ports, the output ports, and the switching fabric interconnecting
the input and output ports. As the name implies, input ports interface the
ingoing links attached to the switch, and output ports interface the outgoing
links. When a packet arrives, it enters the switch at one of its input ports,
based on the packet’s source, and its destination’s IP address is immedi-
ately looked up in the routing table to determine the output port which
corresponds to its next destination. The packet is then transferred to the
determined output port through the switching fabric, and after that it is
transmitted from the output port onto the outgoing link which takes it fur-
ther to the next switch on its path.

While transmitting a packet from an output port is implemented in a
straightforward way, moving packets from input to output ports over the
switching fabric is implemented in different ways. Without sinking in tech-
nical details, we distinguish between two major designs of the switching
fabric in modern switches: In the first design, the switching fabric are im-
plemented as a single shared bus (channel) that transfers only one packet at
a time. That is, even if several packets demand to be transferred at the same
time, each from a different input port to a different output port, only one of
them can cross the bus at a time. In the second design, the switching fabric
are implemented as multiple buses in a way that parallelizes the transfer of
packets. So multiple packets from different input ports that are destined for
different output ports can be transferred at the same time. In either design,
a single bus can not transfer more than one packet at a time. In practice,
the first design is adopted only in small local area and enterprise networks.

From the first moment it enters the switch, a data packet goes through
several processes that all enhance the switch’s main process of forwarding.
As described above, the output port of the packet is first determined in the
process of routing. Another process is fragmentation. A massive network,
such as the Internet, is in fact a network of networks, and some problems of
heterogeneity arise at the interfaces between these networks. In particular,
each of the links along the path between the packet’s source and destination
may adhere to different transmission protocols, and each of these protocols
may set a different limit on the size of the packet. In this case, if the size
of an incoming packet exceeds the defined limit of the switch’s protocol, the



1.1. Overview 3

packet is fragmented into smaller packets, and specific fields in the headers of
these fragments are properly modified so that they can be “glued” together
at the destination. In following sections, we will discuss further processes
that address other fields of the packet’s header, namely, the service type and
time-to-live fields which are most relevant to the topics of this work 1.

The rate of data transfer over a network link is called the bandwidth of
the link. A link that has a bandwidth of W bps can transmit up to W bits
in each second. Even after fragmentation, the size of a packet may exceed
the bandwidth of an outgoing link. In this case, the packet is transmitted
over multiple time steps (seconds), a process that is controlled by a special
mechanism called store-and-forward. Specifically, a packet that is transmit-
ted from switch A to switch B over multiple time steps is not forwarded
further by B until it is completely received at the input port of B.

Due to limitation in the bandwidth of links, the rate in which packets
arrive at the switch, incoming from multiple ingoing links, may exceed the
rate of transmission over the outgoing links, and therefore packets may ex-
perience some delay inside the switch. To solve this problem, switches are
devised with buffers, also known as queues, to accommodate delayed packets
until they are transmitted to their next destination. As we will see in the
next section, the architecture of switches varies by the placement of buffers
inside the switch, but in most cases, at least one buffer is placed at each
output port. This kind of buffers is called output buffers. However, buffers
in general are of limited capacity and this in turn leads to another problem,
namely, the packet loss. More specifically, in cases of congestion, a packet
that arrives at the switch while the buffer of its corresponding output port
is full is either dropped or one of the already queued packets is dropped.

In this work, we deal with the interplay between packet scheduling
(transmission) and packet buffering. In packet scheduling, we seek to an-
swer questions of the kind “which packet to transfer from an input port to
an output port in a given time step?”, and “which packet to transmit from
an output buffer?”. In packet buffering, the questions that frequently arise
are whether an arriving packet is accepted (queued) or rejected (dropped),
and whether an already queued packet is preempted (dropped). In all vari-
ants of these problems, our goal is to maximize the switch’s throughput,
i.e., to ensure that as many packet as possible are transmitted successfully
throughout the switch. A more concise definition of the throughput will be
given in Section 1.4.

A detailed and up-to-date investigation of packet routing and switching
(as implemented in practice) and computer networking in general can be
found in the thorough textbook of Kurose and Ross [KR12].

1We here assume the widely deployed IP protocol version 4, denoted as IPv4.



4 Chapter 1. Introduction

input ports switching fabric output ports

Figure 1.1: CIOQ switch — An example with N = 3

1.2 Switch Architecture

The placement of buffers in the switch is essential in the architecture of
switches. The following types of switches are the most dominant in the
currently used devices, where the location and capacity of buffers depend
on the expected traffic load, the relative speed of the switching fabric, and
the line speed, i.e., the speed of ingoing and outgoing links. A switch with
N input ports and M output ports is called an N ×M switch.

• Output-queued (OQ) switches. Buffers in this type of switches are
placed only at output ports. When a packet arrives at an input port,
it immediately crosses the switching fabric and joins the buffer of its
corresponding output port. In some cases, more than one buffer are
placed at each output port, one for each class of packets, in order to
support different types of service. Typically, the speed of the input
links are much higher than the speed of the switching fabric, and
packets from different input ports may be destined at the same time
for the same output port. In such cases, congestion at input ports
may arise and some packets are lost before they are transferred to
their output ports. This problem leads to the next architecture.

• Input-queued (IQ) switches. In this type of switches, one buffer is
placed at each input port. Arriving packets are stored in this buffer
until they are transferred through the switching fabric to their output
ports. However, another problem, the so-called head-of-line (HOL)
blocking, occurs in this design. Consider for example the following
scenario. At some time t, a packet p is at the head of the buffer of an
input port and is destined for output port i. Assume that packets are
transferred in a first-in-first-out (FIFO) order, and that the buffer of
output port i is full at time t. Consequently, not only p is blocked at
t, but also all packets behind p are blocked, even if they are destined
for output ports whose buffers are still not full. This problem is solved
by the next switch design.



1.2. Switch Architecture 5

input ports switching fabric

output ports

Figure 1.2: Buffered crossbar switch — An example with N = 3

• Combined input and output queued (CIOQ) switches. Similar to IQ
switches, buffers are placed at both input and output ports. However,
in each input port, a separate buffer is dedicated for each output port,
where all packets that are destined for a specific output port are stored
in the buffer that corresponds to that output port. Typically, CIOQ
switches are N×N switches. Thus, N buffers are placed at each input
port and one buffer at each output port. The buffers at input ports
are called the input queues or sometimes the virtual output queues
(VOQ). Figure 1.1 depicts an example of a CIOQ switch.

• Buffered crossbar switches. Closely related to CIOQ switches, this type
of switch architecture is obtained by adding queues at the crosspoints
of the switching fabric. More specifically, for every input port i and
every output port j, an additional queue is placed at the crosspoint
(i, j) of the switching fabric. A packet that is intended to move from
i to j is first stored in the corresponding virtual output queue at i,
then transferred to the new queue at the crosspoint (i, j), and finally
moved to the output queue of j. Although more space requirements are
involved in this kind of switches, practice has shown that the adoption
of crossbar queues significantly decreases the scheduling overhead of
CIOQ switches. Figure 1.2 depicts an example of a buffered crossbar
switch.



6 Chapter 1. Introduction

In this work, we consider all these types of switches. We obtain new
results for buffer management in the OQ, CIOQ and buffered crossbar
switches. Notice that CIOQ switches are a generalization of IQ switches,
i.e., an N × 1 CIOQ switch is also an IQ switch.

1.3 Switching with QoS Guarantees

In modern IP networks, the concept of Quality of Service (QoS) is sup-
ported to provide preferential treatment for different classes of end-users or
network applications. According to a Service Level Agreement (SLA) with
the service provider, a packet that belongs to a customer’s predefined data
stream is guaranteed a certain level of service, i.e., a fixed value of bit rate,
delay, or jitter. QoS guarantees are essential for many kinds of data streams
that require fixed bit rate or are latency sensitive, e.g., real-time streaming
applications such as voice over IP (VoIP), online games and IP-television
(IPTV).

In the widely deployed IP protocol version 4, denoted as IPv4, the two
fields of service type and time-to-live in the packet’s header are reserved for
the implementation of the QoS concept. In a heterogeneous network like the
Internet, classification of packets may occur at the switch level; for example,
to realize a scheme of differentiated services designed for a private network.
In this case, the service type field in the packet’s header is rewritten upon
the arrival of the the packet with a value corresponding to its Class of Service
(CoS).

Additionally, in applications where packets are sensitive to delay, the
other field of time-to-live is decreased by one each time the packet arrives
at a new switch, and the packet is eventually discarded (lost) if this value
reaches 0 at some point on its rout. Later on in this chapter, we will call
this model of switching the bounded-delay model, and instead of the time-
to-live value, we assign to each packet a deadline after which the packet is
not relevant any more and thus is discarded.

1.4 Problem Definition: Framework and Objectives

As mentioned above, we consider the problem of buffer management as it
arises in the different types of switches discussed in Section 1.2. We therefore
consider different models of packet switching that will be discussed in depth
in Section 1.6. For the moment, we introduce the theoretical framework of
these models and discuss their common aspects and objectives.

First, we consider a switch with multiple input and output ports. Buffers
(queues) are placed at the input and output ports in a manner that is spec-
ified by each switching model. Buffers are bounded in capacity. They may
have the same capacity or each buffer may be of a different capacity.



1.4. Problem Definition: Framework and Objectives 7

We discretize time into steps of unit length. A time step may for example
correspond to one second in practice. In each time step, an arbitrary number
of packets arrive at the input ports of the switch, while at most one packet
is transmitted from any output port.

All packets are assumed to have the same size. In fact, this assumption
complies to a reasonable extent with the practice in real switches. As men-
tioned in Section 1.1, a process of fragmentation takes place in switches in
order to split large packets into smaller packets of nearly equal size.

We consider two cases with regard to the packet size: either all packets
have size of 1, or they all have size of P > 1, and P is integer. The first
choice abstracts the case in practice where the switch’s bandwidth allows to
transmit the packet as a whole in one time step, and the second abstracts
the case where each packet is transmitted over P > 1 time steps. Assume
that all ingoing and outgoing links have the same bandwidth of W bps.
Thus, we assume that the size of a packet is either W or a multiple of W .

An input instance for all problems considered in this work is a finite
sequence of packets. Each packet is characterized by the following attributes:
the input port at which it arrives, the output port from which it leaves the
switch, its time of arrival, and a value that corresponds to its service class
or priority. Notice that the packet’s input and output ports are part of the
input, i.e., the algorithm does not choose the input and output queues of
the packets.

We consider two cases with regard to the packet value: either all packets
have the same value of 1, or each packet has an arbitrary value. We call
these cases the unit-value case and the general-value case, respectively. In
the unit-value case, all packets are treated equally, which corresponds to the
best-effort concept that is dominant in the core network of the Internet.

Packets arrive in an online manner, i.e., one by one over time and a
decision has to be made on the fly before future arrivals become known.
More specifically, an algorithm for such problems must immediately decide
whether to accept or reject an arriving packet. Also, at transmission times,
it must decide which packet to send based only on its past schedule and the
current configurations of the buffers. Furthermore, all decisions made in this
manner are irrevocable. For example, the algorithm cannot accept a packet
that was rejected in a previous time step or re-queue a packet that was
transmitted before. Such algorithms which need to cope with incomplete
information about future and cannot undo their decisions are called online
algorithms. This is in contrast to the typical (offline) algorithms which first
receive the entire input at once, process the input back and forth, and then
output a final solution. Online algorithms are discussed in details in Section
1.5.

An algorithm for the problem of buffer management consists of two
phases. In the buffering phase, the algorithm decides for each arriving packet
whether to admit it to the designated buffer or reject it. In the scheduling



8 Chapter 1. Introduction

phase, the algorithm decides which packet to transmit (either completely or
partially) from each output buffer in each time step. The algorithm may
also drop a packet that is already queued in order to make room for a new
one. Dropping a packet in the latter case is called preemption.

For any input sequence, rejected and preempted packets are lost, and the
total value of the transmitted packets defines the throughput of the switch.
Clearly, if all packets have value 1, the throughput is equal the number of
packets that are successfully transmitted. All problems that we study in
this work are optimization problems. We aim by each algorithm for these
problems to maximize the switch’s throughput.

In the bounded-delay model, which will be studied in Chapter 6, another
attribute of packets is involved. Each packet is assigned an integral value
corresponding to its deadline. If a packet is not transmitted before its dead-
line, it is lost. In this case, the goal is to maximize the total value of packets
that are transmitted before their deadlines. Furthermore, we relax the con-
straint on buffers in this model and assume that their capacity is unlimited.
However, we may assume in this case that the life span of any packet, i.e.,
the difference between its arrival time and its deadline, is bounded by some
value s. Thus, the number of packets pending in the buffer at any time is
bounded by s since any more packets beyond this bound would expire in
the next s time steps.

Throughout this work, an input sequence will be considered also as an
event sequence. An event sequence consists of arrival and send events, where
an arrival event corresponds to the arrival of a new packet and a send event
corresponds to the transmission of an enqueued packet. Finally, we denote
the time preceding the first arrival event as time 0, and we assume that the
queues of any algorithm are all empty at time 0.

1.5 Online Algorithms and Competitive Analysis

Online problems are common in real life. They arise from our lack of infor-
mation on future events. A classical example of online problems is the skiing
problem: A person in a ski resort has to decide whether to rent skis for $10
per day or rather buy a new pair for $100. This becomes an online problem
if it is not known in advance when to quit skiing. For example, due to a
wavering weather, it is not known for how long this facility is open in the
current season. So how to cope with this uncertainty about the weather? If
the person buys at an early point of time, it can happen that a storm blows
out in a few days and the optimal choice would have been in this case to
rent for those days. However, if she rents everyday, the weather can remain
perfect for many days and the optimal choice would have been in this case
to buy at the first day. So what is the optimal choice in this game?

Formally, the input of an online problem is revealed over time as a se-



1.5. Online Algorithms and Competitive Analysis 9

quence of requests σ = σ(t0), σ(t1), . . . , where σ(ti) is the input request at
time step ti. An algorithm that must respond to input σ(ti) at time step ti,
i.e., without knowing the future input requests, and cannot change its re-
sponses to previous requests, is called online. Online problems are typically
optimization problems. The goal is either to maximize profits or minimize
costs. From now on, we will assume a maximization problem. We denote
the benefit of an online algorithm alg from an input sequence σ by alg(σ).

Due to incomplete information about future, the online algorithm is not
expected to compute the optimal benefit. For many online problems, it suf-
fices to compute approximated solutions that are near optimal. Although
time and space requirements are essential in the evaluation of algorithms,
the performance of an online algorithm is not primarily measured by these
two aspects, but rather by the ratio of its benefit from an input sequence to
the maximum benefit that can be ever made from the same input sequence.
Thus, for the purpose of comparison, one fixes an offline (sometimes hy-
pothesized) algorithm that knows the entire input in advance and computes
the optimal benefit. We call this algorithm opt and denote its benefit from
a sequence σ by opt(σ).

This method of analyzing online algorithms by comparing alg to opt is
called the competitive analysis. Competitive analysis is a worst-case analysis,
i.e., the ratio opt(σ)/alg(σ) is considered for any input sequence σ. More
specifically, an online algorithm alg is called c-competitive if there is a
constant α such that for any input sequence σ,

opt(σ) ≤ c · alg(σ) + α .

We call c in this case the competitive ratio of alg. Notice that α can be
a function of problem parameters, e.g., the queue capacity, but it must be
independent of the input sequence. Allowing this additive constant α helps
us smooth the analysis, so that the competitive ratio does not depend on any
initial configurations whose effect becomes asymptotically negligible, i.e., as
the input sequence becomes longer and longer. If α = 0, we say that alg

is strictly c-competitive. In fact, almost all the online algorithms that we
study in this work are strictly competitive.

The competitive analysis is also called adversarial analysis because one
may imagine the generation of inputs as a game between the online algorithm
and an omniscient adversary who can read the online player’s mind—it
knows how the online algorithm works. The adversary’s task is then to
generate an input piece in each time step and the online algorithm must
immediately respond to this input. Due to its omniscience, the adversary
generates inputs in a malicious way so as to minimize the benefit of the
online player and in the same time maximize its own benefit. For more
insight into online algorithms and competitive analysis, we refer the reader
to the textbook of Borodin and El-Yaniv [BEY98].



10 Chapter 1. Introduction

Employing the competitive analysis in the buffer management problem is
well-motivated from a practical point of view. It is well known that network
traffics do not adhere to any specific arrival distribution (see, e.g., [PF95,
VB00]). In reality, packets tend to arrive in bursts rather than in smooth
Poisson-like streams. Moreover, it has been shown that network traffics,
e.g., Ethernet traffics, follow a self-similar behavior that is difficult to model
[LTWW94]. To this end, stochastic models have been recently undermined
in networking analysis, and tools such as the competitive analysis started to
gain more interest.

In the next section, we present an example online problem to illustrate
the main concepts and techniques of competitive analysis that are used
throughout this work. We address in this example the buffer management
problem in a simple switching model.

1.5.1 Example Problem: Throughput Maximization in IQ
Switches

This problem corresponds to an IQ switch of N input ports and one output
port. We assume that only one packet can be transferred over the switch-
ing fabric in each time step. Hence, packets are sent directly to outside
the switch without queuing at the output port. Furthermore, the size of
each packet is assumed to be 1. Thus, a packet can be sent (transmitted)
completely in one time step.

More formally, the system consists of N queues, all have the same ca-
pacity B, i.e., each queue can store up to B packets at a time. We denote
the i-th queue as Qi. Moreover, all packets have value 1. In each time step,
a non-empty queue is chosen and exactly one packet is sent from this queue.
The goal is to maximize the number of sent packets.

Notice that since all packets have the same value, preemption does not
help in this model. Also, it does not help to reject an arriving packet while
its corresponding queue is yet not full. We therefore consider the following
greedy online algorithm.

greedy: Accept any arriving packet as long as its corresponding
queue is not full.

In each time step, choose any arbitrary non-empty queue and
send the packet at its head.

The rest of this section is organized as follows. First, we show that
greedy has a competitive ratio of 3. The main purpose of presenting this
result is to illustrate the analysis technique of mapping schemes which is
probably the most used tool in the analysis of online switching algorithms.
Then, we show how to improve the competitive ratio of greedy to 2 using
another technique, which we call the technique of modifying the optimal



1.5. Online Algorithms and Competitive Analysis 11

algorithm, and which we extensively use in Chapters 4 and 5. After that,
we show a lower bound on the competitive ratio of greedy and a general
lower bound of 2− 1/N on the competitive ratio of any deterministic online
algorithm. Finally, we use a third technique, called the potential-function
technique, to further improve the competitive ratio of greedy. Specifically,
we show that greedy is indeed (2 − 1/N)-competitive and thus it is an
optimal algorithm for this problem. Although they may be proved here
differently, all these results on the IQ switches, except Theorem 1.7, are
already known [AS06, AR05].

The Technique of Mapping Schemes

Before we start, we slightly abuse our notations so that opt and greedy

also denote the set of packets sent by opt and greedy, respectively. Thus,
opt \ greedy denotes the set of packets that are accepted by opt but
rejected by greedy.

As stated before, to prove that greedy is c-competitive, we have to show
that |opt| ≤ c |greedy| holds for any input sequence. One way to do that
is to define a function from opt\greedy to greedy with the following two
properties: (i) each packet from opt \ greedy is mapped to a packet from
greedy, and (ii) for each packet p ∈ greedy, the total number of packets
from opt\greedy that are mapped to p is at most c−1. Obviously, having
such a function means that the number of packets that are sent only by opt

is at most c − 1 times the number of packets sent by greedy. Thus, the
number of all packets sent by opt, including packets sent by greedy, is at
most c times the number of packets sent by greedy.

We now define a mapping scheme for any input sequence of greedy that
satisfies the above two conditions with c = 3. We adopt the same mapping
scheme that is given by Azar and Richter [AR04] for a related switching
model. We denote by Q∗

i (t) and Qi(t) the set of packets in the i-th queues
of opt and greedy, respectively, at time t. Moreover, we will call a packet
of greedy that is mapped by a packet of opt a marked packet.

Mapping Scheme. For each time t, starting from t = 0,

• t is an arrival event. Let a packet p arrive at queue Qi at
t. If p is accepted by opt and rejected by greedy, let q be
the first unmarked packet in Qi(t), i.e., the packet closest to
the queue’s head to which none of opt’s packets has been
mapped yet. Map p to q. We say in this case that q is
marked.

• t is a send event. Let opt and greedy send from the i-th
and the j-th queue, respectively. If Qi(t) contains marked
packets, let pi be the last marked packet in Qi(t), i.e., the



12 Chapter 1. Introduction

packet closest to the queue’s tail to which a packet of opt
is mapped. Let p∗ be the packet of opt that is mapped to
pi. Moreover, let pj be the packet sent by greedy from Qj

at t. Re-map p∗ to pj , i.e., in terms of marks, remove the
mark of pi and mark pj .

First, we notice that packets are marked in a FIFO order, i.e., in the
order of their arrivals. Hence the following remark.

Remark 1.1. At any time t, if greedy sends an unmarked packet from a
queue Qi at t, then Qi(t) contains no marked packets.

Let Mi(t) denote the set of marked packets that are in queue Qi at time
t. The next lemma shows that the number of marked packets in Qi(t) does
not exceed the number of packets in Q∗

i (t).

Lemma 1.2. For any queue Qi and any time t, |Mi(t)| ≤ |Q∗
i (t)|.

Proof. We use an induction argument over time steps. Let the induction
basis be at time 0, i.e., before the input sequence begins. Clearly, all queues
are empty at that time and thus the claim holds. Now assume the claim
holds at any time before t. We want to show it also holds at t. Notice that
Mi(t) and Q∗

i (t) change only in arrival and send events. Thus, t is either of
these two events.

Assume first that t is a send event. The only critical scenario in this
case is when opt sends a packet from Q∗

i at t and greedy does not send
any marked packet from Qi. If greedy does not send any packet at all,
then its queues must be all empty at t. Also, if it sends an unmarked packet
from Qi at t, then, by Remark 1.1, this queue is empty of marked packets.
Clearly, the claim holds in either case. A third case in this scenario is that
greedy sends a packet from a different queue Qj at t while Qi(t) contains
marked packets. By the mapping scheme, greedy will in this case remove
the mark of the last marked packet in Qi(t) and mark the packet sent from
Qj . therefore, the number of marked packets in Qi(t) decreases also by 1
and thus the claim continues to hold.

Now assume that t is an arrival event. The only critical case in this
scenario is when a packet is marked in Qi(t) while opt does not accept any
new packet. However, marking a new packet in an arrival event occurs only
when opt accepts the arriving packet. Hence, this case cannot happen and
thus the claim holds.

Lemma 1.2 is crucial to show the feasibility of the mapping scheme. Now,
we show the 3-competitive ratio of greedy based on the mapping scheme.

Theorem 1.3. The competitive ratio of greedy is at most 3.



1.5. Online Algorithms and Competitive Analysis 13

Proof. We want to show that (i) each packet of opt \ greedy is mapped
to a packet from greedy, and (ii) each packet of greedy has at most 2
marks.

For each packet p ∈ opt \ greedy, since p is not accepted by greedy,
the queue of greedy must be full at the arrival time of p. Thus, if p arrives
at queue Qi, |Qi(t)| = B > |Q∗

i (t)|. Hence, by Lemma 1.2, the number of
marked packets in Qi must be strictly less than B, and thus at least one
packet in Qi(t) is not marked and therefore p is mapped to this packet.
In a send event, p might be remapped to another packet, but it is never
unmapped.

To show (ii), notice that each packet p ∈ greedy is marked for the first
time in an arrive event, then it may be marked for a second time when it is
sent. After that, p cannot be marked any more. Thus, p can have at most
2 marks.

Modifying the Optimal Algorithm

Another analysis technique is to modify opt in a manner that does not
decrease its benefit in order to ensure that the queues of both opt and
greedy maintain a specific configuration at any given time. In particular,
we make the queues of opt and greedy identical at any time by allowing
opt to send more than one packet in some time steps, and by generating
extra packets exclusively for it. Since the queues of the two algorithms are
identical, greedy sends exactly one packet in each time step in which opt

sends. Thus, we show the competitive ratio for any send event, and this is
equal to the maximum number of packets that opt sends in one time step.

Theorem 1.4. The competitive ratio of greedy is at most 2.

Proof. Before we start, we make an assumptions about opt. Since all pack-
ets are of value 1, we can assume without loss of generality that opt accepts
each arriving packet as long as its corresponding queue is not full. Thus,
opt and greedy adopt the same policy in arrival events.

Now, we show by induction that opt sends in each time step at most
twice what greedy sends. Fix a time step t that starts with identical queues
in both opt and greedy. By assumption, opt accepts in t as many packets
as greedy does. Thus, the queues of the two algorithms remain identical
at the end of t.

Consider now the send event of t. Let opt and greedy send from the
i-th and the j-th queues, respectively. If i 6= j, we modify opt as follows.
We send a packet from Q∗

j and insert a new packet into Q∗
i . Obviously,

modifying opt in this way can only increase its benefit. Furthermore, the
queues of opt and greedy remain identical after the send event, and opt

sends at most twice what greedy sends.



14 Chapter 1. Introduction

Lower Bounds

We gave first, by Theorem 1.3, an upper bound of 3 on the competitive
ratio of greedy. It then turned out, by Theorem 1.4, that greedy has a
competitive ratio of 2. So, we may ask ourselves in this position whether we
can improve the competitive ratio any further. In other words, how far are
we from the “right” competitive ratio of greedy? A more general question
in this respect is whether another online algorithm can achieve a better
competitive ratio than greedy’s. Or, what is the best competitive ratio of
this online problem? In this section, we answer questions of this kind by
showing two lower bounds, one on the competitive ratio of greedy and the
other on the competitive ratio of any deterministic online algorithm. Both
lower bounds are of 2− 1/N .

The first lower bound on the competitive ratio of greedy shows that our
last analysis of this algorithm is almost tight, and the second lower bound
shows that greedy is a good candidate for an optimal algorithm for the
problem of throughput maximization in IQ switches. In the next section,
we give a more involved analysis of greedy, using the technique of potential
functions, and show its competitive ratio is indeed 2 − 1/N . Hence, given
the two lower bounds of 2−1/N , the competitive ratio of greedy cannot be
improved any more, and no other online algorithm has a competitive ratio
better than greedy. We say in this case that greedy is an optimal online
algorithm.

Theorem 1.5. The competitive ratio of greedy is at least 2− 1/N .

Proof. Recall the definition of the competitive ratio. An online algorithm
alg is called c-competitive if the inequality opt(σ)/alg(σ) ≤ c for any input
σ. Thus, to show that the competitive ratio of greedy cannot be better
than 2 − 1/N , it is sufficient to show that opt(σ)/greedy(σ) ≥ 2 − 1/N
for a single input sequence σ.

Now, we take the place of an adversary who knows how greedy works,
and generate a worst-case sequence for greedy. In the first time step, B
packets arrive at each queue. Then, for the next (N−1)B time steps, a single
packet arrives at queue QN in each time step. Clearly, greedy accepts all
packets arriving in the first time step. Since greedy sends from an arbitrary
non-empty queue in each time step, we assume that it sends from the non-
empty queue with the smallest index. Thus, in steps 2, . . . , (N − 1)B + 1,
queue QN remains full and therefore all the (N − 1)B packets arriving in
these steps are rejected by greedy. Hence, the benefit of greedy equals
N ·B.

On the other hand, the optimal algorithm, which works offline, sends
only from queue QN during the first (N − 1)B time steps, and thus can
accept all packets of the sequence. Hence, the competitive ratio of greedy



1.5. Online Algorithms and Competitive Analysis 15

in this case cannot be better than

N ·B + (N − 1)B

N ·B = 2− 1

N
.

Next, we show a general lower bound of 2−1/N on the competitive ratio
of any deterministic online algorithm.

Theorem 1.6. For any value of B, no deterministic online algorithm has
a competitive ratio better than 2− 1/N .

Proof. To show a general bound of 2−1/N , i.e., for any online algorithm, we
fix an online algorithm alg and show that it cannot achieve a competitive
ratio better than 2 − 1/N . Thus, we, playing the role of the adversary,
generate a worst-case sequence σ and show that opt(σ)/alg(σ) ≥ 2−1/N .
Obviously, we do not know how algorithm alg works, but it suffices to
compute an upper bound on its benefit, i.e., the maximum benefit that an
online algorithm can make from this sequence. Since a competitive ratio for
this problem holds for any queue capacity B, we may further assume a fixed
value B = 1 for the capacity of any queue.

We now generate the worst-case sequence as follows. For each time step
1 ≤ i ≤ N , we define the set of arriving packets in i as a set of queue indices
Si ⊆ {1, . . . , N} in the following way. First, let S1 = {1, . . . , N}. This
means that a set of N packets, each destined for a different queue, arrives in
the first time step. Clearly, since all packets have the same value, accepting
these packets can only increase the benefit of alg. Thus, we assume that
alg accepts all packets arriving in the first time step. Furthermore, let
s1 be the index of the queue from which alg sends in the first time step.
Since alg is deterministic, this value is well-defined given S1. Now, define
S2 = S1 \ {s1}, and again let s2 be the index of the queue served by alg

in time step 2 provided that S2 arrives in this time step. Similarly, define
S3 = S2 \ {s2}, and in general St+1 = St \ {st} for t = 1, . . . , N − 1. Clearly,
SN ⊂ · · · ⊂ S1 = {1, . . . , N}.

Observe now that packets arriving in time steps 2, . . . , N all correspond
to full queues in alg, and thus alg must reject all of these packets. Hence,
the benefit of alg does not exceed N , i.e., the number of packets arriving
in the first time step.

Now, we compute the benefit of the optimal algorithm. opt accepts
all packets corresponding to S1 in the first time step, and sends a packet
from the queue corresponding to s2 in the send event of the first time step.
Since s2 ∈ S2, opt accepts the packet corresponding to s2 in the second
time step and rejects all other packets. Similarly, in the send event of the
second step, opt sends a packet from the queue corresponding to s3. In
general, in the send event of time step t, opt sends a packet from the queue



16 Chapter 1. Introduction

corresponding to st+1 for t = 1, . . . , N ; and, for t = 2, . . . , N , it accepts the
packet corresponding to st in time step t and rejects all other packets. Thus,
opt sends N + (N − 1) packets in total and therefore the competitive ratio
of alg cannot be better than

N + (N − 1)

N
= 2− 1

N
.

The Potential-Function Technique

For many online algorithms, it is not possible to show the competitive ratio
by comparing the benefits of the online and optimal algorithms over every
single time step. For example, in our problem of throughput maximization,
there are time steps where the optimal algorithm sends a packet while the
online algorithm does not send any packet at all. Also, it may happen that
the optimal algorithm accepts an arriving packet while the online algorithm
rejects it. Thus, over such single time steps, the local benefit of the online
algorithm is 0 and thus it is not competitive at all.

Therefore, in cases where the optimal benefit in a single time step exceeds
the online benefit by a factor greater than the desired competitive ratio,
one seeks to compare the optimal benefit in that time step with rather the
“amortized” benefit of the online algorithm. The amortized benefit of a
time step t can be computed as the online benefit of t plus another amount
that has been accumulated over previous time steps where the online benefit
exceeded the desired amount. To illustrate the idea of amortized benefits,
let opt(t) and on(t) denote the optimal and online benefits in a time step t.
Thus, our initial goal was to show that for any time step t, c·on(t) ≥ opt(t),
where c is the competitive ratio we want to show. The idea now is to save
amounts of the online benefit in those time steps where c · on(t) exceeds
opt(t) and use these saved amounts in future time steps where c ·on(t) falls
short of opt(t). We call the savings account in which we maintain those
amounts the potential function.

More Formally, a potential function Φ is typically a mapping from the
set of all possible configurations 2 of the optimal-online game to the set of
real numbers. As in savings accounts, we maintain a potential function Φ
such that Φ(T ) = Φ(0), where 0 and T correspond to the start and end
configurations of the optimal-online game. Our goal now is to show that
c·on(t)+∆Φ(t) ≥ opt(t) holds at each time t, where ∆Φ(t) = Φ(t)−Φ(t−1)
is the change in the potential value between steps t−1 and t. Thus, summing
over all time steps and given that Φ(T ) = Φ(0), it follows that c · on(σ) ≥
opt(σ), and thus on is shown to be c-competitive 3.

2The term of configuration will become clear in the proof of the next theorem.
3In fact, it suffices to define a potential function which satisfies Φ(T ) ≤ Φ(0).



1.5. Online Algorithms and Competitive Analysis 17

Potential functions are an original tool of the theory of online algorithms
and have been used since early formulations of competitive analysis [ST85].
In fact, the way we describe them above is only the standard style to show
how they are used in general. Although the main principle remains the
same, the style of potential functions we use in our problems of through-
put maximization is different. In this section, we show how such potential
functions are used to prove that greedy is optimal.

Theorem 1.7. The competitive ratio of greedy is at most 2− 1/N .

Proof. First, we assume that no packets arrive after the first time step in
which all queues of greedy become empty. To justify this assumption, we
show a partition of the input sequence into phases such that each phase
satisfies the following two conditions: (i) the queues of greedy and opt are
all empty at the start and end of the phase, and (ii) no packets arrive in the
phase after the first time step in which all queues of greedy become empty.
Hence, each phase can be seen as a separate input sequence satisfying the
assumption, and thus it suffices in this case to show the competitive ratio
on any arbitrary phase.

To show how to create these phases, we consider the creation of the first
phase. Let t be the first time in which all queues of greedy become empty.
We postpone the packets arriving after t until opt’s queues become empty
as well, say at time t′. Thus, opt and greedy are both empty at time
t′. Since the queues of greedy are already empty at t, changing the input
sequence in this way can increase the benefit of opt only. Let t′ define the
end of the first phase, and the next arrival time after t′ define the start of
the second phase. Clearly, we can continue in the same way to partition the
remaining of the input sequence.

Before we proceed, we define a new notation. Let δj(t) (resp. δ∗j (t))
denote the total number of packets sent by greedy (resp. opt) from Qj

(resp. Q∗
j ) between times 0 and t, inclusive. Thus, if no further packets

arrive at Qj after t, then δj(t) + Qj(t) and δ∗j (t) + Q∗
j (t) respectively define

the benefits of greedy and opt from the j-th queue.
We now define a potential function Φ : Z 7→ Z as follows.

Φ(t) = (2− 1

N
)

N
∑

j=1

(δj(t) + Qj(t))−
N
∑

j=1

(

δ∗j (t) + Q∗
j (t)

)

Clearly, it suffices to prove that Φ(t) ≥ 0 for any t ≥ 0. We conduct an
induction proof over time. As nothing arrives before the sequence starts,
Φ(0) = 0 trivially holds. Now, assume the claim holds at any time before t.
We want to show that it also holds at t. Notice that Φ(t) changes only in
arrival and send events. Thus, t is either of these two events.

First, assume that t is a send event. Since sending a packet from a
queue Qj increases δj(·) by 1 and decreases Qj(·) by 1, the potential does
not change and thus Φ(t) = Φ(t− 1) ≥ 0.



18 Chapter 1. Introduction

Assume now that t is an arrival event. Notice first that in arrival events,
δj(t) = δj(t−1) and δ∗j (t) = δ∗j (t−1). If both algorithms accept the arriving
packet or both reject it, the potential increases by (1− 1/N) or it does not
change at all. If only greedy accepts the arriving packet, the potential
increases by (2− 1/N). In any of these cases, Φ(t) ≥ Φ(t− 1) ≥ 0.

Now, consider the critical case where the arriving packet is accepted by
opt and rejected by greedy. Let Qk be the queue at which the packet is
rejected. We re-write the potential function in the following way.

Φ(t) =
N
∑

j=1

Qj(t)−
1

N

N
∑

j=1

Q∗
j (t) +

N
∑

j=1

δj(t)−
N
∑

j=1

δ∗j (t)

+ (1− 1

N
)

N
∑

j=1

δj(t)− (1− 1

N
)

N
∑

j=1

(

Q∗
j (t)−Qj(t)

)

.

Clearly, Qk(t) = B, and thus
∑N

j=1Qj(t) ≥ B. Moreover,

1

N

N
∑

j=1

Q∗
j (t) ≤

1

N
·N ·B = B .

Thus,

N
∑

j=1

Qj(t)−
1

N

N
∑

j=1

Q∗
j (t) ≥ 0 . (1.5.1)

Furthermore, by assumption, the queues of greedy have not been empty
before t, and thus greedy has sent a packet in each time step before t.
Hence,

N
∑

j=1

δj(t)−
N
∑

j=1

δ∗j (t) ≥ 0 . (1.5.2)

We want to show now that δj(t)+Qj(t) ≥ Q∗
j (t), for any 1 ≤ j ≤ N . Let

Aj(t) denote the number of packets that arrive at Qj between times 0 and t,
inclusive. We distinguish between two cases: either (i) Qj overflows before
t, and thus δj(t) + Qj(t) ≥ B ≥ Q∗

j (t); or (ii) Qj does not overflow before
t, and thus δj(t) + Qj(t) = Aj(t) ≥ Q∗

j (t). Hence, δj(t) ≥ Q∗
j (t) − Qj(t) in

either case, and therefore

(1− 1

N
)

N
∑

j=1

δj(t)− (1− 1

N
)

N
∑

j=1

(

Q∗
j (t)−Qj(t)

)

≥ 0 . (1.5.3)

Finally, we conclude from Inequalities 1.5.1 - 1.5.3 that Φ(t) ≥ 0.



1.6. Problem Definition: Models and Results 19

1.6 Problem Definition: Models and Results

The problem of buffer management has been studied in many different mod-
els in the context of online algorithms. These models do not vary only in the
switching architecture they adopt, but also in several other aspects, such as
whether buffers are of FIFO or an arbitrary regime, whether packet values
are arbitrary or just the same, or whether packets are delay-sensitive or not.

In this work, we study this problem in several models, and each model in
different varieties. We present new results, some of which are tight, and give
more insight into the “competitiveness” of these problems. In this section,
we define our models in details and present the results we obtained in each
one.

1.6.1 The FIFO Model

In the FIFO model, the switch consists only of one buffer. This can be seen
as an N × 1 OQ switch, i.e., with only one output port and packets arrive
directly at its single output queue. Due to the FIFO property, the sequence
of sent (transmitted) packets has to be a subsequence of the arriving packets.
Packets in this model are assumed to have size 1, so a packet can be sent
completely in one time step. Furthermore, the queue capacity is a fixed
parameter B, i.e., the queue cannot store more than B packets at a time.

Clearly, throughput maximization would be trivial in this model if all
packets have the same value. Therefore, we assume that each packet p has
an arbitrary value, denoted by v(p). A buffer management algorithm can
reject arriving packets and also preempt (drop) packets that were previously
inserted into the queue. The goal is to maximize the total value of sent
packets.

Our Results

We study a special class of online algorithms, called comparison-based algo-
rithms. A comparison-based algorithm makes its decisions based solely on
the relative order between packet values with no regard to the actual values.
This kind of algorithms proves to be robust in the realm of QoS switches.
As we saw in Section 1.3, a packet value stands only for the packet’s service
level, and thus it does not have any intrinsic meaning in itself. However, it
has been observed that even slight changes to the packet values can result
in substantial changes in the outcome of current buffer management algo-
rithms, even though the relative order of the corresponding service levels
is preserved. Hence, comparison-based algorithms emerge as robust buffer
management policies since their behavior is independent of how the service
levels are implemented in practice.



20 Chapter 1. Introduction

We aim first to give some insight into the competitiveness of comparison-
based algorithms. Our main result is a lower bound of 1 + 1/

√
2 ≈ 1.707 on

the competitive ratio of any deterministic comparison-based algorithm. This
significantly improves upon a lower bound of 1.419 that is known for general
deterministic algorithms. We then give a comparison-based algorithm, cpg,
that matches our lower bound in the case of monotonic sequences, i.e., pack-
ets arrive in a non-decreasing order according to their values. We further
study the competitive ratio of cpg for general sequences and show that its
competitive ratio in this case is at least 1.829.

Our results on the FIFO model are presented in Chapter 2.

1.6.2 The Model of Priority Queues

In this model, the switch is equipped with multiple queues of limited capac-
ities, where each queue stores packets of one value only. More specifically,
let V = {v1 < · · · < vm} be a set of m non-negative packet values, and
Q = {Q1, . . . , Qm} be a set of m queues. Arriving packets are stored in
the m queues, such that a packet of value vi is stored in Qi. All packets
have size 1, and all queues have the same capacity B. In each time step, a
non-empty queue is chosen and exactly one packet is sent from this queue.
Again, the goal is to maximize the total value of sent packets.

This model can be seen as an OQ switch of only one output port, and
at this output port, m queues are placed, where m is the number of service
classes that are defined by the network administrator. In fact, in real-world
switches, e.g. Cisco switches [cis06], packets are buffered exactly in this
style and this is referred to by priority queuing in the terminology of packet
switching.

Our Results

We analyze a natural greedy algorithm, greedy, which sends in each time
step a packet with the greatest value. We show that greedy is (1 + r)-
competitive, where r = max1≤i≤m−1{vi/vi+1}. Thus, the competitive ratio
of greedy is strictly below 2, and it tends to 1 as r tends to 0. For example,
choosing the packet values to be powers of 2 makes greedy 3/2-competitive.

Furthermore, we show a lower bound of 2 − vm/
∑m

i=1 vi on the com-
petitiveness of any deterministic online algorithm. In fact, one can easily
show that greedy is asymptotically optimal, even with a competitive ratio
near 2. Notice that when r tends to 1, the differences between packet values
will shrink to 0 and thus the lower bound will tend to 2 − 1/m, which is
asymptotically 2.

Our results on this model are presented in Chapter 3. In subsequent,
independent works, some of these results were improved. Namely, Itoh and
Yoshimoto [IY15] show that greedy is (1 + r)-competitive also in the case



1.6. Problem Definition: Models and Results 21

where each queue has a different capacity. Kawahara et al. [KKM15] con-
duct a tight analysis on the competitive ratio of greedy in the case where
v1 = 1 and vm = α ≥ 1, and show it is exactly 2−min1≤i≤m−1{vi+1/

∑i+1
i=1 vi}.

They also give a lower bound of 1+(α+α2 +α3)/(1+4α+3α2 +4α3 +α4).

1.6.3 The CIOQ Model

We consider in this model a CIOQ switch as it is described in Section 1.2,
i.e., with N input ports and N output ports. Each input port has N queues
and each output port has one queue. We call the queues at the input ports
the input queues and those at the output ports the output queues. An input
queue that is placed at input port i (i = 1, . . . , N) and corresponds to
output port j (j = 1, . . . , N) is denoted by Qij . An output queue that is
placed at output port j (j = 1, . . . , N) is denoted by Qj . For any input or
output queue Q, Q(t) denotes the set of packets that reside in Q at time t.
All queues in the switch are non-FIFO, i.e., packets may be stored in and
released from queues in any arbitrary order. Furthermore, all queues have
limited capacity. We denote by B(Q) the capacity of a queue Q. All packets
have size 1. For each packet p in the input sequence, v(p), in(p), and out(p)
denote p’s value, input port, and output port, respectively, where in(p) and
out(p) take on values between 1 and N .

Each time step is divided into three phases: arrival, scheduling and
transmission phases. The arrival and transmission of packets are defined
as usual. In the scheduling phase, a set of packets that are stored in input
queues are transferred to their corresponding output queues through the
switching fabric. These transfers take place in internal time cycles which
we call the scheduling cycles. We say that a switch has a speedup S when
it is capable of performing S scheduling cycles within a single time step.
we denote the s-th cycle of time step t by t[s], for s = 1, . . . , S. In any
scheduling cycle, a matching between input and output ports is computed,
such that at most one packet is released from each input port and at most one
packet is admitted to each output port. More specifically, when a packet p is
transferred from queue Qij in scheduling cycle t[s], it is forwarded through
the switching fabric to queue Qj , and no packet except p is released from
input port i or forwarded to output port j in t[s].

We study two variants of this model, the unit-value and the general-value
variants. As the names imply, packets have all value 1 in the first variant,
and arbitrary values in the second variant. In the latter case, packets that
are already queued can be preempted before they are sent.

Our Results

Our main objective in this model is to devise online algorithms that are
both competitive and efficient. All online algorithms known for this prob-



22 Chapter 1. Introduction

lem are based on computing maximum matching in each scheduling cycle,
and thus are far from being efficient for real-world switches. We present
new algorithms that are significantly more efficient and yet achieve the best
competitive ratios known for this problem.

All algorithms that we present in this chapter are based on greedy
maximal-matching computations, i.e., we construct a matching incremen-
tally by adding edges, one by one, until no more edges can be added.
Such matchings can be built in time linear to the number of edges in the
graph. Clearly, this is substantially more efficient than computing a max-
imum matching, which is known to take O(N5/2) time [HK73]. Moreover,
computing maximal matchings complies more with the current practice in
distributed systems where packet scheduling has to perform in real time.

With respect to competitiveness, we show that our algorithm for the
unit-value case is 3-competitive for any speedup, and thus it achieves the
best competitive ratio known for this problem [KR06]. In the general-value
case, we improve on a previous algorithm that is 6-competitive [KR08] and
show that our algorithm has a competitive ratio of 3 + 2

√
2 ≈ 5.828 for any

speedup.

Our results on the CIOQ model are presented in Chapter 4.

1.6.4 The Buffered Crossbar Model

The model of buffered crossbar switches is obtained from the CIOQ model
by adding further queues at the crosspoints of the switching fabric. Crossbar
queues are also non-FIFO. A crossbar queue that is placed at the crosspoint
of input port i (i = 1, . . . , N) and output port j (j = 1, . . . , N) is denoted
by Cij .

All other notations and conventions of the CIOQ model hold also for the
buffered crossbar model. However, each cycle of the scheduling phase in the
buffered crossbar model is divided into two subphases: the input subphase
and the output subphase. In the input subphase, packets can be transferred
from any input queue Qij to its corresponding crossbar queue Cij , such that
at most one packet is transferred from each input port i. In the output
subphase, packets can be transferred from any crossbar queue Cij to its
corresponding output queue Qj , such that at most one packet is transferred
to each output port j.

We also study two variants of this model, the unit-value and the general-
value variants, and packets can be preempted in the general-value variant.

Our Results

For the unit-value case, Kesselman et al. [KKS12a] give a greedy algorithm,
which we call Crossbar Greedy Unit (cgu), with a competitive ratio of 4
for any speedup. We improve on this result and show that cgu is indeed



1.6. Problem Definition: Models and Results 23

3-competitive. For the general-value case, they give an algorithm that is
16.24-competitive for any speedup. We present a variant of this algorithm
and show that it achieves a competitive ratio of 12 + 2

√
2 ≈ 14.828 for any

speedup.

These results on the CIOQ model are presented in Chapter 6.

1.6.5 The Bounded-Delay Model

With this model, we go back to switches of one buffer. As mentioned in
Section 1.4, packets with deadlines are stored in a single queue. The queue
has unlimited capacity, so all arriving packets are stored in the queue and the
packet which is not sent before its deadline is dropped (lost). Each packet
has an arbitrary value. Furthermore, each packet p has a size ρ(p) ≥ 1.
Thus, to send p completely, the packet must be transmitted over ρ(p) time
steps.

For ease of exposition, we call ρ(p) the processing time of p. We also call
a packet that is completely transmitted a completed packet. Our objective
in this case is to maximize the total value of packets that are completed
before their deadlines.

For each packet p, we denote by r(p), d(p), and v(p) the arrival time,
deadline and value of p, respectively. Since time is discrete in our models,
processing times, arrival times and deadlines are integers, while a packet’s
value can be any positive number. Clearly, for any packet p, it must hold
that d(p)− r(p) ≥ ρ(p). Moreover, in any time step, only one packet can be
processed. Preemption in this model has a boarder meaning. Specifically, a
packet that is under process can be preempted, i.e., interrupted, to process
another packet. However, a preempted packet can be later on processed
again and its processing is resumed from the last point at which it was
interrupted. Therefore, we say that a packet p is completed if p is processed
over a number of integral time intervals [a1, b1], . . . , [al, bl], such that r(p) ≤
a1, bl ≤ d(p), and

∑l
k=1 bk − ak = ρ(p).

Let sp(t) denote the remaining processing time of a packet p at time t.
We say that a packet p is pending at time t if sp(t) > 0 and t+ sp(t) ≤ d(p),
i.e., p is still not completed at t and if it is immediately processed at t
without preemption, it can be completed before its deadline. Since the
queue’s capacity is unlimited, unlimited number of pending packets can be
maintained at any time.

Our Results

This problem has its roots in the area of job scheduling. It is known that
without any restriction on deadlines and processing times, no deterministic
online algorithm can achieve a bounded competitive ratio, even if all packets
have value of 1 [BHS94]. Therefore, only results for special cases have been



24 Chapter 1. Introduction

pursued.
Woeginger [Woe94], also in the context of job scheduling, shows that

no deterministic algorithm can be better than 4-competitive if packets have
equal processing times and tight deadlines, i.e., for any packet p, d(p) =
r(p) + ρ(p). He also provides an algorithm with a matching competitive
ratio.

We first consider a special case of deadlines, the so-called agreeable or
order-respective deadlines, i.e., for any two packets p and q, r(p) ≤ r(q) ⇔
d(p) ≤ d(q). We show that no deterministic algorithm has a bounded com-
petitive ratio in this case. Then, we consider the more restricted case where
all processing times are equal and give a natural greedy algorithm, which we
call sg, and show that it achieves a competitive ratio of 4. Clearly, Woeg-
inger’s model is a special case of agreeable deadlines. Therefore, his lower
bound of 4 carries over to our model and thus sg is optimal.

Our result on the CIOQ model is presented in Chapter 6.

1.7 Related Work

The problem of buffer management has gained a substantial interest in the
theory community since the beginning of the last decade. This line of re-
search, in the context of online algorithms and competitive analysis, was
initiated by the two seminal papers of Aiello et al. [AMRR00] and Mansour
et al. [MPSL00] on the FIFO model. (These two papers appeared after that
in journal versions as [AMRR05] and [MPSL04].)

We next survey the previous results on the models that are most related
to ours. For a comprehensive and relatively up-to-date survey of competitive
buffer management, we refer the reader to the survey of Goldwasser [Gol10].

The FIFO Model

Aiello et al. [AMRR05] consider a more restricted variant of the FIFO model
where preemption is not allowed and packet values are either 1 or α > 1.
They present a lower bound of 2 − 1/α on the competitive ratio of any
deterministic or randomized algorithm. This lower bound is matched by
Andelman et al. [AMZ03, Zhu04] with a deterministic online algorithm.

In a more general case of the non-preemptive model, packets have arbi-
trary values between 1 and α > 1. Andelman et al. [AMZ03, Zhu04] give
a lower bound of 1 + ln(α) on the competitive ratio of deterministic algo-
rithms, and Zhu [Zhu04] shows a lower bound of (logα+2)/2 for randomized
algorithms. Finally, Andelman and Mansour [AM03] give a deterministic al-
gorithm with a competitive ratio 2 + ln(α) + O(ln2(α)/B), which matches
the lower bound of 1 + ln(α) up to a constant additive factor.

In the preemptive model with arbitrary packet values, which is consid-
ered in our work, Mansour et al. [MPSL04] show that a natural greedy



1.7. Related Work 25

algorithm, which is called greedy and is presented in Chapter 2, is 4-
competitive. Kesselman et al. [KLM+04] show that the exact competitive
ratio of greedy is 2 − 1/B. Kesselman et al. [KMvS05] give the state-of-
the-art algorithm pg, and prove that pg is 1.983-competitive. Additionally,
they give a lower bound of (1 +

√
5)/2 ≈ 1.618 on the competitive ratio of

pg and a lower bound of 1.419 on the competitive ratio of any deterministic
algorithm. Bansal et al. [BFK+04] slightly modify pg and show that the
modified algorithm is 1.75-competitive. Finally, Englert and Westermann
[EW09] show that pg is in fact 1.732-competitive and give a lower bound of
1+(1/

√
2) ≈ 1.707 on its competitive ratio. We will discuss greedy and pg

further in Chapter 2, but we notice here that pg is not a comparison-based
algorithm.

The only randomized algorithm in this model is given by Andelman
[And05]. He presents a comparison-based algorithm which flips a coin be-
tween two deterministic algorithms, one of them is greedy. He shows that
this algorithm is 1.75-competitive.

In the case where packets take on only two values, 1 and α > 1, Lotker
and Patt-Shamir [LPS03] give a preemptive algorithm with a competitive
ratio of 1.304. Kesselman et al. [KLM+04] show a lower bound of 1.282 on
the competitive ratio of any deterministic algorithm, and Englert and West-
ermann [EW09] give an algorithm that matches this lower bound. Finally,
Andelman [And05] presents a randomized algorithm with a competitive ra-
tio of 5/4 and shows a lower bound of 1.197 on the competitive ratio of any
randomized algorithm.

The Model of Priority Queues

In [AB10], we consider a special case of this model with two packet values,
1 and α > 1. We show that a greedy algorithm, which is called greedy and
is presented in Chapter 3, achieves a competitive ratio of (α + 2)/(α + 1).
Thus, given the lower bound that we obtain in this work, greedy turns out
to be optimal in this special case.

The IQ Model

We present this model as an example problem in Section 1.5.1. In fact, if
all packets have the same value, this model is a special case of our model
of priority queues. Moreover, it is also a special case of the CIOQ model,
because with a speedup of 1 and only one output port, the CIOQ model is
equivalent to an IQ model.

In the unit-value case of the IQ model, Azar and Richter [AR05] provide
the aforementioned lower bound of 2− 1/N on the competitive ratio of any
deterministic algorithm. They also show that any work-conserving policy
for this model is 2-competitive, i.e., an algorithm that sends a packet in each



26 Chapter 1. Introduction

time step as long as its queues are not empty. Furthermore, for arbitrary B,
they give a lower bound of (1.366 − Θ(1/N)). Albers and Schmidt [AS06]
improve these results and give a policy called semi-greedy that is 1.889-
competitive, for any B with N ≫ B, and 1.857-competitive, for B = 2.
They also give a lower bound of e/(e− 1) ≈ 1.582 on the competitive ratio
of any deterministic algorithm, if N ≫ B. Azar and Litichevskey [AL06]
match this lower bound for large B.

If randomization is allowed, Azar and Richter [AR05] give an e/(e− 1)-
competitive algorithm, for B > logN , and a lower bound of 1.46−Θ(1/N),
for B = 1. Albers and Schmidt [AS06] improve the lower bound to 1.466, for
any B and large N , and 1.231, for N = 2. Bienkowski and Madry [BM08]
present a policy for N = 2 and any B that achieves the optimal competitive
ratio of 1.231.

For the general-value case of the IQ model with N FIFO queues, Azar
and Richter [AR05] give a preemptive algorithm with a competitive ratio
of (4 + 2 ln(α)) for arbitrary packet values in the interval [1, α], and a 2.6-
competitive algorithm for the special case of two packet values 1 and α > 1.
Azar and Richter [AR04] improve that by a comparison-based 3-competitive
algorithm, called tlh. Itoh and Takahashi [IT06] improve the analysis of
tlh to a competitive ratio of 3− 1/α.

The CIOQ Model

For the unit-value case of the CIOQ model, Kesselman and Rosén [KR06]
present a greedy algorithm that is 3-competitive for any speedup. For the
general-value case, they give an algorithm that is 6-competitive for any
speedup [KR08]. As mentioned in Section 1.6.3, we improve upon these
results in this work.

In the general-value case, Kesselman and Rosén [KR06] consider also a
CIOQ model with FIFO queues. They give two algorithms with competitive
ratios of 4 ·S and 8 ·min{k, 2 logα}, where k is the number of distinct packet
values and α is the ratio between the largest and the smallest packet values.
Azar and Richter [AR06] improve The latter result and give an algorithm
with a competitive ratio of 8 for any speedup. Kesselman et al. [KKS12b]
show that this algorithm is indeed 7.47-competitive.

The Buffered Crossbar Model

For the unit-value case of the buffered crossbar model, Kesselman et al.
[KKS12a] present a greedy algorithm with a competitive ratio of 4 for any
speedup. For the general-value case, they give an algorithm that is 16.24-
competitive for any speedup. As mentioned in Section 1.6.4, these results
are improved in this work.



1.7. Related Work 27

For the buffered crossbar model with FIFO queues, Kesselman et al.
[KKS10] give a 19.95-competitive algorithm for any speedup.

The Bounded-Delay Model

The variant of this model where all packets have size 1 has received a con-
siderable interest, probably because it also represents a scheduling problem
of unit-length jobs on one machine. We cover here only a small part of this
extensive area of research.

The best lower bound known in this case is φ ≈ 1.618 [Haj01, AMZ03,
CF03]. It is derived using a sequence of packets which can reside in the
queue for at most 2 time steps. In the case of arbitrary deadlines, Englert
and Westermann [EW07] give a deterministic algorithm with a competitive
ratio of 1.828, which is the best competitive ratio known. Thus, it is still
an open problem whether there exists an optimal algorithm in the case of
arbitrary deadlines.

The case of agreeable deadlines has been also studied in this model, i.e.,
with packet sizes of 1. An algorithm that is given by Jeż et al. [JLSS12] has
a competitive ratio of 1.618. Since the above lower bound of 1.618 applies
also for agreeable deadlines, this algorithm is optimal.

In the case of randomized algorithms, Bienkowski et al. [BCJ08] give
a lower bound of 1.33 on the competitive ratio of any randomized algo-
rithm. This lower bound is matched only in the case of agreeable deadlines
[JLSS12]. For general deadlines, the best randomized algorithm known has
a competitive ratio of 1.582 [CCF+06].

In our variant of arbitrary sizes (processing times), all related results
are obtained in the context of job scheduling. We therefore adopt the same
terminology of that area and use “job” in place of “packet”. As mentioned
above, without any restriction on deadlines and processing times, no deter-
ministic online algorithm can achieve a bounded competitive ratio, even if
all jobs have value of 1 [BHS94]. Therefore, only results for special cases
have been pursued.

Woeginger [Woe94] considers the case where all jobs have tight deadlines,
i.e., an arriving job is either processed immediately without preemption or
it is lost. This problem is also known as interval scheduling. In the case
of equal processing times, he shows that no deterministic algorithm can be
better than 4-competitive. He also provides an algorithm with a matching
competitive ratio.

In the model of equal processing times and arbitrary deadlines, Dürr et
al. [DJT12] give a deterministic algorithm that is 5-competitive. This result
is improved by Kim [Kim11] to a 4.24-competitive algorithm. The lower
bound of 4 applies also in this case. Thus, it is still an open problem whether
there exists an optimal algorithm for the model of arbitrary deadlines.



28 Chapter 1. Introduction

Finally, Fung et al. [FPZ14] and Chrobak et al. [CJST07] study random-
ization under several variants of this model, and Epstein et al. [EJSvS16]
study the problem of interval scheduling on m related machines.

1.8 Bibliographical Notes

Most of the results presented in this work have previously been published
as joint works. Specifically, Chapter 3 is based on a joint work with Alexan-
der Souza [ABS13], and Chapter 2 is based on a joint work with Matthias
Englert and Matthias Westermann [ABEW16]. Chapter 4 and 5 are based
on another joint work with Matthias Englert and Matthias Westermann
[ABEWar]. The results of Chapter 6 are based on recent work and have not
been published yet.



29

Chapter 2

FIFO Buffer Management

Despite its compact and simple formulation, the FIFO model has raised the
most challenging and intriguing questions in the problem of buffer manage-
ment—most of which are still open. For instance, although the non-preempt-
ive case has been settled along time ago, we still do not know how preemption
can be used to obtain optimal online algorithms. Moreover, randomization,
in both the preemptive and non-preemptive cases, is still unfrequented. In
this chapter, we address a further question of how a special class of on-
line algorithms, the so-called comparison-based algorithms, perform in this
model. More specifically, we examine whether these algorithms can achieve
a competitive ratio better than 2.

We call an algorithm comparison-based if it makes its decisions based
solely on the relative order between values with no regard to the actual
values. In other words, changing the packet values does not change the
algorithm’s behavior as long as the relative order between the values is not
changed.

This property renders comparison-based algorithms a robust tool in the
realm of QoS switches. Recall from Section 1.3 that a packet value stands
only for the packet’s service level, and thus it does not have any intrinsic
meaning in itself. However, without the comparison-based property, slight
changes to the packet values would result in substantial changes in the out-
come of the buffer management policy, even though the relative order of the
corresponding service levels is preserved. Hence, it is sufficiently interesting
to devise online buffer management algorithms that perform independently
of how the service levels are implemented in practice.

The following algorithm, which we call greedy, is an example of this
kind of algorithms.

When a packet p arrives, accept p if the queue is not full. Other-
wise, let q be the packet with the smallest value in the queue.
If v(p) ≥ v(q), drop q and accept p; otherwise, reject p. In send
events, send the packet at the head of the queue.



30 Chapter 2. FIFO Buffer Management

Clearly, greedy keeps the most valuable B packets in each time step.
Kesselman et al. [KLM+04] show that greedy is 2-competitive. Since the
introduction of greedy, it has been an open problem to show whether a
comparison-based algorithm exists with a competitive ratio below 2.

To improve the competitive ratio of greedy, Kesselman et al. [KMvS05]
extend its preemption rule in the following way: Upon the arrival of a packet
p, the algorithm proactively drops the first packet in the queue whose value
is within a fraction 1/β of the value of p, for some β ≥ 1. The resulting
algorithm is called Preemptive-Greedy (pg). However, the additional rule of
pg makes it a non-comparison-based algorithm. Kesselman et al. show that
pg is 1.983-competitive. They also show a lower bound of (1+

√
5)/2 ≈ 1.618

on the competitive ratio of pg and a lower bound of 1.419 on the competitive
ratio of any deterministic algorithm. Englert and Westermann [EW09] show
that pg is in fact 1.732-competitive.

In Section 2.1, we give more insight into the competitiveness of com-
parison-based algorithms through the introduction of the zero-one princi-
ple. We also show that greedy cannot be better than 2-competitive, even
if packets arrive in a specific order. In Section 2.2, we show a lower bound of
1 + 1/

√
2 ≈ 1.707 on the competitive ratio of any deterministic comparison-

based algorithm. Thus, our lower bound improves upon the lower bound
of 1.419 for general deterministic algorithms. We then consider the case of
monotonic sequences in Section 2.3 and present a comparison-based algo-
rithm, cpg, that matches our lower bound in this case. We further study the
competitive ratio of cpg for general sequences and show that its competitive
ratio in this case is at least 1.829.

We conclude our discussion with another intriguing question of whether
a comparison-based algorithm with a competitive ratio close to 1 + 1/

√
2 ≈

1.707 could exist. If so, this would mean that we do not need to know
the actual values of packets in order to compete with pg, the best non-
comparison-based algorithm so far. If not, and in particular if 2 is the right
lower bound for any comparison-based algorithm, the desired robustness of
this kind of algorithms must come at a price, namely, a significantly degraded
performance.

2.1 The 0/1 Principle

Azar and Richter [AR04] introduce the 0/1 principle for the analysis of com-
parison-based algorithms in a variety of buffering models. They show the
following theorem.

Theorem 2.1 ([AR04]). Let alg be a comparison-based switching algorithm
(deterministic or randomized). alg is c-competitive if and only if alg is
c-competitive for all input sequences of packets with values 0 and 1, under
every possible way of breaking ties between equal values.



2.1. The 0/1 Principle 31

The 0/1 principle is by its own an interesting motivation to consider
comparison-based algorithms due to the significant simplification it brings
into the analysis of buffer management algorithms. So, for such an algorithm
alg, it is sufficient by Theorem 2.1 to show the competitive ratio of alg for
only 0/1 sequences. We denote a packet of value 0 as 0-packet, and of value
1 as 1-packet.

As a warm-up, we first use the 0/1 principle to show a lower bound of
asymptotically 2 on the competitive ratio of greedy.

Theorem 2.2. The competitive ratio of greedy is at least 2− 1/B.

Proof. We generate an input sequence σ in the following way. In the first
time step, B − 1 0-packets arrive, followed by a single 1-packet. In time
steps 2, . . . , B − 1, one 1-packet arrives in each step. After that, a burst of
B 1-packets arrive in the B-th time step.

Clearly, the optimal algorithm accepts all 1-packets and rejects all 0-
packets. Hence, it makes a total benefit of 2B − 1. On the other hand,
greedy accepts all the 0-packets arriving in the first time step. It also
accepts all the 1-packets arriving in the first B− 1 steps. However, since no
overflow occurs in these time steps, none of these 1-packets can be sent before
the burst of 1-packets arrives in the last time step. Therefore, greedy can
keep only B 1-packets from all 1-packets that arrive in this sequence, and
thus its competitive ratio is (2B − 1)/B = 2− 1/B.

Notice that in the sequence used in the construction of the above lower
bound, packets arrive in a non-decreasing order of values, i.e., for any two
packets p and q, v(p) ≤ v(q) if and only if p arrives before q. We call
sequences of this kind monotonic. In Section 2.3, we give a comparison-
based algorithm that is optimal in the case of monotonic sequences.

The 0/1 principle has been used to show several results in the buffer
management problem. For our model of a single FIFO queue, Andelman
[And05] employs the 0/1 principle to give a randomized comparison-based
algorithm with a competitive ratio of 1.75. In fact, this is the only ran-
domized algorithm known for this model. In a related model with multiple
FIFO queues, Azar and Richter [AR04] use it to show a comparison-based
algorithm with a competitive ratio of 3.

In a different model, where the buffer is not FIFO and packet values are
not known for the online algorithm, Azar et al. [ACG13] use it to show a
randomized algorithm with a competitive ratio of 1.69. This algorithm is
modified to a 1.55-competitive randomized algorithm, and a lower bound of
1.5 on the competitive ratio of any randomized algorithm is shown for that
model [AC15].



32 Chapter 2. FIFO Buffer Management

2.2 Lower Bound

The following theorem shows that no deterministic comparison-based algo-
rithm can be better than 1 + 1/

√
2 ≈ 1.707.

Theorem 2.3. The competitive ratio of any deterministic comparison-based
algorithm is at least 1 + 1/

√
2 ≈ 1.707.

Proof. Fix an online algorithm onl. The adversary constructs a sequence
of packets with non-decreasing values over a number of iterations. The 0/1
values corresponding to the packets’ real values are revealed only when the
sequence stops. In each iteration, the adversary generates a burst of B
packets in one time slot followed by a number of individual packets, each in
one time slot. We call a slot with B arrivals a bursty slot, and a slot with
one arrival a light slot. A construction routine is repeated by the adversary
until the desired lower bound is obtained. For i ≥ 0, let fi denote the i-th
bursty slot, and let ti denote the number of time slots that onl takes to
send and preempt all packets that it has in slot fi.

As initialization, the adversary generates B packets in the first time slot.
Thus, the first slot is f0. After that, the adversary generates t0 light slots,
i.e., one packet arrives in each slot. Now, starting with i = 0, the adversary
constructs the rest of the sequence by the following routine which is repeated
until ti ≥ B/

√
2.

1. Generate the bursty slot fi+1.

2. If ti ≥ B/
√

2, stop the sequence. At this point, all packets that arrive
between f0 and fi (inclusive) are revealed as 0-packets and all packets
after that are revealed as 1-packets, i.e., the 1-packets are those which
arrive in the ti light slots and in the bursty slot fi+1. Clearly, the
optimal algorithm, denoted as opt, will send all the 1-packets while
onl will gain only the B 1-packets which it has in slot fi+1. Notice
that onl sends only 0-packets in the ti light slots. Hence, provided
that ti ≥ B/

√
2,

opt

onl
=

ti + B

B

≥ B/
√

2 + B

B
.

3. If ti < B/
√

2, continue the sequence after fi+1 by generating ti+1 light
slots.

(a) If ti+1 ≤ ti, stop the sequence. At this point, all packets that
arrive between f0 and fi (inclusive) are revealed as 0-packets and
all packets after that are revealed as 1-packets, i.e., the 1-packets



2.3. Algorithm cpg 33

are those which arrive in the ti and ti+1 light slots and in the
bursty slot fi+1. Clearly, opt will send all the 1-packets while
onl will send only ti+1 packets of the B 1-packets which it has in
slot fi+1 and also the ti+1 1-packets which it collects after fi+1.
Hence, provided that B >

√
2 · ti and ti ≥ ti+1,

opt

onl
=

ti + B + ti+1

ti+1 + ti+1

≥ ti +
√

2 · ti + ti+1

2 · ti+1

≥ (1 +
√

2)ti+1 + ti+1

2 · ti+1
.

(b) If ti+1 > ti, set i = i + 1 and repeat the routine.

Obviously, the above routine terminates eventually, because a new iteration
is invoked only when ti+1 > ti, and thus the amount of ti is strictly increased
in each iteration. Therefore, there must exist i such that ti ≥ B/

√
2.

2.3 Algorithm cpg

We present a comparison-based preemptive greedy (cpg) algorithm. It fol-
lows a similar rule of preemption as pg, but without addressing the actual
values of packets: Roughly speaking, once you have a set S of β packets in
the queue with a packet r in front of them, such that r is less valuable than
each packet in S, preempt r.

cpg is described more precisely in Algorithm 1. To avoid using the
same set of packets to preempt many other packets, it associates with each
arriving packet p a non-negative credit, denoted by c(p). For a set S of
packets, c(S) will also denote the total credit of all packets in S. We now
describe the above preemption rule in more details.

First, we present the notations of preemptable packets and preempting
sets. Assume that a packet p arrives at time t. Let Q(t) be the set of packets
in cpg’s queue immediately before t. For any packet r ∈ Q(t), if there exists
a set S ⊆ (Q(t) ∪ {p}) \ {r} such that (i) p ∈ S, (ii) c (S) ≥ β, and (iii) for
each packet q ∈ (S), arr(q) ≥ arr(r) and v(q) ≥ v(r), then we say that r is
preemptable by p. Furthermore, we call S a preempting set of r.

A packet r is preempted upon the arrival of another packet p if r is the
first packet in the queue (in the FIFO order) such that r is preemptable by
p and the value of r is less than the value of the packet that is behind r in
the queue (if any). After a packet r is preempted, cpg invokes a subroutine
charge to deduct a total of β units from the credits of the preempting
packets of r. This charging operation can be done arbitrarily, but subject to
the non-negative constraint of credits, i.e., c(p) ≥ 0, for any packet p. After



34 Chapter 2. FIFO Buffer Management

Algorithm 1: cpg

arrival event. A packet p arrives at time t:

c(p)← 1;

Let r be the first packet in the queue such that r is preemptable by p
and the value of r is less than the value of the packet that is behind r
(if any).

if r exists then

let S be a preempting set of r;
drop r and charge(S);

if the queue is not full then
insert p;

else

let q be the packet with the smallest value in the queue;
if v(q) < v(p) then

drop q and insert p;
else

reject p;

that, the algorithm proceeds similarly to greedy: It inserts the arriving
packet p into the queue if the queue is not full or p is more valuable than
the packet with the least value in the queue. In the latter case, the packet
with the least value is dropped. Otherwise, p is rejected. Finally, in send
events, cpg simply sends the packet at the head of the queue.

Lost Packets. We distinguish between three types of packets lost by cpg:

1. Rejected packets: An arriving packet p is rejected if the queue is full
and no packet in the queue is less valuable than p.

2. Evicted packets: An enqueued packet q is evicted by an arriving packet
p if the queue is full and q is the least valuable among p and the packets
in the queue.

3. Preempted packets: An enqueued packet r is preempted upon the
arrival of another packet p if r is the first packet in the queue such
that r is preemptable by p and the value of r is less than the value of
the packet that is behind r (if any).

Notice that a 1-packet can only be evicted by a 1-packet. Also, if a
1-packet q is preempted, the preempting packets of q are all 1-packets.



2.3. Algorithm cpg 35

2.3.1 Monotonic Sequences

In this section, we consider input sequences in which packets arrive with
non-decreasing values, i.e., for any two packets p and q, v(p) ≤ v(q) if and
only if p arrives before q. As shown in Section 2.1, the competitive ratio of
greedy is asymptotically 2 in this case.

Theorem 2.4. Choosing β =
√

2 + 1, the competitive ratio of cpg is at
most 1 + 1/

√
2 ≈ 1.707.

For the rest of the analysis, we fix an event sequence σ of only 0- and
1-packets. Furthermore, let Q(t) (resp. Q∗(t)) denote the set of 1-packets in
the queue of cpg (resp. opt) at time t.

Assumptions on the Optimal and the Online Algorithms. Notice
that opt, in contrast to cpg, can determine whether a packet of σ has value
0 or 1. Therefore, we can assume that opt accepts arriving 1-packets as long
as its queue is not full, and rejects all 0-packets. In send events, it sends
1-packets (in FIFO order) unless its queue is empty.

We further assume that no packets arrive after the first time in which
the queue of cpg becomes empty. This assumption is also without loss of
generality as we can partition σ into phases such that each phase satisfies
this assumption and the queues of cpg and opt are both empty at the start
and the end of the phase. Then, it is sufficient to show the competitive
ratio on any arbitrary phase. Consider for example the creation of the first
phase. Let t be the first time in which the queue of cpg becomes empty. We
postpone the packets arriving after t until opt’s queue is empty as well, say
at time t′, so that opt and cpg are both empty at t′. This change can only
increase the benefit of opt. Clearly, t′ defines the end of the first phase,
and the next arrival event in σ defines the start of the second phase. The
remaining of σ can be further partitioned in the same way.

Overflow Time Slot. We call a time slot in which cpg rejects or evicts
1-packets an overflow time slot. Assume for the moment that at least one
overflow time slot occurs in σ. For the rest of the analysis, we will use f to
denote the last overflow slot, and tf to denote the time immediately before
this slot ends. Obviously, rejection and eviction of 1-packets can happen
only when the queue of cpg is full of 1-packets. Let t′f be the point of time
immediately before the first rejection or eviction in f takes place. Thus,
the number of 1-packets in the queue at time t′f is B. Thereafter, between
t′f and tf , any 1-packet that is evicted or preempted is replaced by the 1-
packet whose arrival invokes that eviction or preemption. Thus, the size
of the queue does not change between t′f and tf , and hence the following
observation.



36 Chapter 2. FIFO Buffer Management

Remark 2.5. |Q(tf )| = B.

Furthermore, the following lemma shows that the B 1-packets in the
queue at time tf can be used to preempt at most one 1-packet in later
arrival events.

Lemma 2.6. Consider any arrival event e. Let t be the time immediately
after e and let D(t) denote the set of packets in the queue at time t except
the head packet. Then, c(D(t)) < β.

Proof. We show the lemma by contradiction. Let e be the first arrival event
in σ, such that immediately after e, say at time t, c(D(t)) ≥ β. Hence,
immediately before e, say at time t′, β > c(D(t′)) ≥ β − 1, since the total
credit of the queue cannot increase by more than 1 in each arrival event.

Now, let p be the packet arriving in e and let q be the head packet at
the arrival of p. Recall that σ is monotonic. Thus, the packets behind q in
the queue and packet p are all at least as valuable as q. Hence, adding the
credit of p to c(D(t′)), these packets would preempt q upon the arrival of p,
and thus the total credit would decrease by 1. Therefore, c(D(·)) does not
change between t′ and t which contradicts the definition of e.

Before we proceed, we introduce further notations. Let arr(t, t′) denote
the set of 1-packets that arrive in σ between time t and t′. Furthermore, let
sent(t, t′) and lost(t, t′) denote the set of 1-packets that cpg sends and
loses, respectively, between time t and t′. Similarly, we define sent∗(t, t′)
and lost∗(t, t′) for opt.

Lemma 2.7. It holds that

|lost(0, tf )|−|lost∗(0, tf )|+|Q(tf )|−|Q∗(tf )| = |sent∗(0, tf )|−|sent(0, tf )|.

Proof. The lemma follows from this simple observation:

|Q(tf )|+ |sent(0, tf )|+ |lost(0, tf )|
= |arr(0, tf )|
= |Q∗(tf )|+ |sent∗(0, tf )|+ |lost∗(0, tf )| .

The following lemma is crucial for the analysis of cpg. It essentially
upper-bounds the number of 1-packets that cpg loses between the start of
the sequence and the end of the overflow slot.

Lemma 2.8. |lost(0, tf )| − |lost∗(0, tf )|+ |Q(tf )| − |Q∗(tf )| ≤ β
β+1B .



2.3. Algorithm cpg 37

Proof. First, we present further notations. If an algorithm alg does not
send anything in a sent event t, we say that alg sends a ∅-packet in t. We
call a send event in which opt sends an x-packet and cpg sends a y-packet
an x/y send event, where x and y take on values from {0, 1, ∅}. Furthermore,
we denote by δx/y(t, t′) the number of x/y send events that occur between
time t and time t′.

Now, observe that

|sent∗(0, tf )| = δ1/0(0, tf ) + δ1/1(0, tf ) + δ1/∅(0, tf ) ,

|sent(0, tf )| = δ0/1(0, tf ) + δ1/1(0, tf ) + δ∅/1(0, tf ) .

Recall that opt does not send 0-packets and that, by assumption, the queue
of cpg does not get empty before tf . Thus, δ0/1(0, tf ) = δ1/∅(0, tf ) = 0, and
therefore

|sent∗(0, tf )| − |sent(0, tf )| = δ1/0(0, tf )− δ∅/1(0, tf ) ≤ δ1/0(0, tf ) .

Hence, given Lemma 2.7, it suffices to show that δ1/0(0, tf ) ≤ ⌊ β
β+1B⌋.

Assume for the sake of contradiction that δ1/0(0, tf ) > ⌊ β
β+1B⌋. Let M1

(resp. M0) be the set of 1-packets (resp. 0-packets) that opt (resp. cpg)
sends in these 1/0 send events. Thus,

|M1| = |M0| ≥ ⌊
β

β + 1
B⌋+ 1 >

β

β + 1
B . (2.3.1)

Let p (resp. q) denote the first arriving packet in M1 (resp. M0). Further-
more, let r be the last arriving packet in M0 and denote the time in which
it is sent by tr. Recall that σ is monotonic. Thus, all the 1-packets of M1

arrive after r. Moreover, since cpg’s buffer is FIFO, none of these 1-packets
is sent before tr. Also, since r, which is a 0-packet, is before them in the
queue and is eventually sent, cpg does not either reject, evict or preempt
any 1-packet from M1 before tr. Therefore, all the 1-packets of M1 must be
in the queue of cpg at time tr.

Let’s now look closely at the queue of cpg immediately after the arrival
of p. Let that time be denoted as tp. Since q is sent with p in the same
1/0 send event and since r is between q and p (by the above argument), q
and r must be in the queue as well at time tp. Moreover, since r is the last
arriving 0-packet in M0, the remaining 0-packets of M0 must also be in the
queue at tp. Hence, the queue of cpg contains all the packets of M0 along
with p at time tp.

Next, notice that all the 1-packets of M1 are inserted in cpg’s queue
after r (which is a 0-packet) without preempting it. Since the credits of
packets are used only in preemption, the credits of these 1-packets must be
used to preempt other packets before r. Let R be the set of these preempted
packets. Obviously,

|R| ≥ ⌊|M1|/β⌋ > |M1|/β − 1 . (2.3.2)



38 Chapter 2. FIFO Buffer Management

Since the packets of R cannot be preempted before the arrivals of the
packets of M1, all of them must be then before r in the queue at time tp.
Thus, the queue of cpg contains the packets of both M0 and R along with
p at time tp. Clearly, M0 ∩R∩ {p} = ∅. Hence, given Inequalities 2.3.1 and
2.3.2, the size of cpg’s queue at tp is at least

|M0|+ |R|+ 1 > |M0|+ |M1|/β =
β + 1

β
M0 >

β + 1

β

β

β + 1
B = B ,

which is strictly larger than B, and hence a contradiction.

So far, our discussion has been focused on one half of the scene; namely,
the one between the start of the sequence and the end of the last overflow
slot. We shall now move our focus to the second half which extends from
time tf until the end of the sequence.

First, let t0 be defined as follows: t0 = 0 if no overflow slot occurs in
σ, and t0 = tf otherwise. Notice that in both cases, no 1-packet is rejected
or evicted by cpg after t0. Moreover, let T denote the first time by which
the sequence stops and the queues of opt and cpg are both empty. Thus,
the benefits of opt and cpg are given by |sent∗(0, T )| and |sent(0, T )|,
respectively.

The following lemma is the main ingredient of the proof of the compet-
itive ratio.

Lemma 2.9. |sent(0, T )| ≥ (β − 1) (|lost(0, T )| − |lost∗(0, T )|) .

Proof. Obviously, we can write |sent(0, T )| as follows:

|sent(0, T )| = |sent(0, t0)|+ |Q(t0)|+ |arr(t0, T )| − |lost(t0, T )|
≥ |Q(t0)|+ |arr(t0, T )| − |lost(t0, T )| .

Due to the fact that no 1-packet is rejected or evicted by cpg after t0,
all packets in lost(t0, T ) are lost by preemption. We further notice that all
these packets are preempted using packets that arrive after t0. This is trivial
in case t0 = 0, and follows from Lemma 2.6 in case t0 = tf . (In fact, in the
latter case, at most one packet of lost(t0, T ) can be preempted using the
credits of packets that are in the queue at time tf , but this anomaly can be
covered by introducing an additive constant in the competitive ratio of cpg.)
Since preempting a packet requires a credit of β, preempting the packets of
lost(t0, T ) implies the arrival of at least new β |lost(t0, T )| 1-packets that
are inserted into the queue after t0. Thus, |arr(t0, T )| ≥ β |lost(t0, T )|,
and hence we can rewrite |sent(0, T )| in the following way:

|sent(0, T )| ≥ |Q(t0)|+ β |lost(t0, T )| − |lost(t0, T )|
= |Q(t0)|+ (β − 1) |lost(t0, T )|
≥ |Q(t0)|+ (β − 1) (|lost(t0, T )| − |lost∗(t0, T )|) .



2.3. Algorithm cpg 39

Now, if t0 = 0, then |Q(t0)| = 0 and thus the lemma follows immediately.
If t0 = tf , we continue as follows:

|sent(0, T )| ≥ B+

(β − 1)
(

|lost(tf , T )| − |lost∗(tf , T )| − |Q(tf )|+ |Q∗(tf )|
)

≥ β + 1

β

(

|lost(0, tf )| − |lost∗(0, tf )|+ |Q(tf )| − |Q∗(tf )|
)

+ (β − 1)
(

|lost(tf , T )| − |lost∗(tf , T )| − |Q(tf )|+ |Q∗(tf )|
)

= (β − 1)
(

|lost(0, T )| − |lost∗(0, T )|
)

,

where the first inequality follows from Remark 2.5, the second inequality
from Lemma 2.8, and the equality from the fact that β − 1 = (β + 1)/β, for
β =
√

2 + 1.

Now, we use Lemma 2.9 to show that |sent∗(0, T )| ≤ β
β−1 |sent(0, T )|,

which obviously completes the proof of Theorem 2.4:

|sent∗(0, T )| = |arr(0, T )| − |lost∗(0, T )|
= |sent(0, T )|+ |lost(0, T )| − |lost∗(0, T )|

≤ |sent(0, T )|+ 1

β − 1
|sent(0, T )|

=
β

β − 1
|sent(0, T )| .

2.3.2 General Sequences

Theorem 2.4 shows that cpg is an optimal comparison-based algorithm in
the case of monotonic sequences. In this section, we investigate how this
algorithm performs on general sequences.

We notice that Lemma 2.6 does not necessarily hold for general se-
quences. Therefore, after an overflow of 1-packets takes place, the total
credit of the 1-packets in the online buffer can significantly exceed β and
thus some of these packets may be used in a subsequent time steps to pre-
empt other packets from the same group, i.e., the group of the B 1-packets
from the overflow slot. Consequently, the lower bound of B on the number
of cpg’s sent 1-packets may no longer hold in the general case, resulting
in a competitive ratio worse than 1.707. Such a bad scenario for cpg is
illustrated in the proof of the following theorem and leads to a lower bound
of 1.829 on its competitive ratio.

Theorem 2.10. For any value of β, cpg cannot be better than 1.829-
competitive.

Proof. The adversary generates one of the following two sequences based on
the value of β:



40 Chapter 2. FIFO Buffer Management

Case 1. β ≤ 2.206: In the first time slot, B 1-packets are generated in an
increasing order (with respect to their original values). After that, no more
packets arrive. Clearly, opt sends all the B packets, while in cpg, every β
packets preempt a packet from the front. Thus, cpg preempts B/β in total.
Hence, its competitive ratio is given by

opt

cpg
=

B

B −B/β
=

β

β − 1
≥ 1.829 .

Case 2. β > 2.206: In the first time slot, (B − 1) 0-packets are generated
followed by a single 1-packet. Then, over the next βB/(β+1)−1 time slots,
a single 1-packet is generated in each slot. Let M1 denote the set of those
1-packets that arrive in the first βB/(β + 1) time slots. After that, in slot
number βB/(β+1)+1, B 1-packets arrive at once. Let M2 denote the set of
these packets. Finally, in the next B/(β(β+1)) time slots, a single 1-packet
arrives in each slot. Let M3 denote the set of these packets. After that, no
more packets arrive.

Clearly, opt sends all the 1-packets in the sequence. To minimize the
number of 1-packets sent by cpg, the adversary can choose the original
values of the 1-packets in the following malicious way. First, the values
of packets in M2 are all strictly less than the smallest value in M1. Let
M ′

2 denote the set of the first B/(β + 1) packets in M2. The packets of
M ′

2 are ordered as follows. For each group of β packets, starting from the
earliest, the first packet is strictly smaller than the β − 1 packets behind
it, and all the β packets of this group are strictly smaller than all packets
before them in M ′

2. For example, for β = 3, theses groups may look like
|50, 51, 51|40, 41, 41|30, 31, 31| . . . . For the rest of M2, i.e., the set M2 \M ′

2,
packets are given values that are strictly less than the smallest value in
M ′

2. Finally, the packets in M3 are all assigned a value that is equal to the
greatest value in M ′

2.

Obviously, cpg accepts all the βB/(β + 1) packets of M1 and uses them
to preempt B/(β + 1) 0-packets. Meanwhile, the rest of the B 0-packets
are sent in the first βB/(β + 1) time slots. Thus, the packets of M1 will be
all in the queue of cpg when the packets of M2 arrive. Clearly, this leads
to an overflow of 1-packets and only the packets of M ′

2 can be accepted in
this time slot. These packets are inserted with full credits into the queue,
and thus when each packet from M3 arrives, it groups with β − 1 packets
from M ′

2 to preempt the first packet in one β-group of M ′
2, according to the

above description of M ′
2. Therefore, cpg sends a total of B 1-packets only,



2.3. Algorithm cpg 41

and hence its competitive ratio is given by

opt

cpg
=
|M1|+ |M2|+ |M3|

B

=
β

β + 1
+ 1 +

1

β(β + 1)

=
β(β + 1) + β2 + 1

β(β + 1)
≥ 1.829 .

Finally, we make an observation on the preemption rule of cpg. It can
be easily verified that cpg remains optimal in the monotonic-sequence case
even with the following change of the preemption rule: “Let r be the first
packet in the queue such that r is preemptable by p.” Thus, without any
regard to packets that follow r in the queue. Let’s call this changed version
of cpg the relaxed version. We next show that the relaxed version of cpg
is no better than 2-competitive in the case of general sequences. Thus,
the preemption rule as it is defined in Algorithm 1 is necessary to show a
competitive ratio below 2 for cpg. In fact, this definition of cpg corresponds
to the modified version of pg given by Bansal et al. [BFK+04].

Theorem 2.11. For any value of β, the relaxed version of cpg cannot be
better than 2-competitive.

Proof. Assume that cpg has the following configuration of the queue at the
end of the first slot: B/(β + 2) 0-packets in the front of the queue, followed
by B/(β + 2) 1-packets, but these 1-packets are placed among another set
of 0-packets in a specific way, so that they all get preempted before the next
overflow slot. Specifically, each 1-packet of those is preceded by (β − 1) 0-
packets and followed by one 0-packet. Assume that opt has these 1-packets
in its queue at the end of the first slot as well.

After the first time slot, nothing arrives until cpg sends all the B/(β+2)
0-packets in the front of the queue. In these time steps, opt sends the
B/(β + 2) 1-packets. After that, the rest of the buffer is filled again with 0-
packets, and then a single 1-packet arrives in each slot of the next βB/(β+1)
time slots. It is over these time slots where cpg preempts the B/(β + 2) 1-
packets of the first slot while sending only 0-packets. Notice that opt sends
the single 1-packets over these time slots. Then the overflow of B 1-packets
happens and we just continue after that in the same way as we did in the
proof of Theorem 2.10.

Summing up all the 1-packets of opt results in

B

β + 2
+

βB

β + 1
+ B +

B

β(β + 1)
,

while cpg sends only B 1-packets (after the overflow). Clearly, that leads
to a competitive ratio above 2 for any value of β.



42 Chapter 2. FIFO Buffer Management



43

Chapter 3

Packet Scheduling with

Priority Queues

In this chapter, we consider the switch model where m queues are used to
store packets of values V = {v1 < · · · < vm}, such that the i-th queue stores
only packets of value vi.

In Section 3.1, We derive an upper bound for the competitive ratio of a
natural greedy algorithm, greedy, which sends in each time step a packet
with the greatest value. Specifically, we show that greedy is (1 + r)-
competitive, where r = max1≤i≤m−1{vi/vi+1}. Clearly, the competitive
ratio of greedy is strictly below 2 and it tends to 1 as r tends to 0. Deriv-
ing a competitive ratio that is a function of packet values allows us to tune
these values so as to minimize the competitive ratio. For example, choosing
the packet values to be powers of 2 makes greedy 3/2-competitive.

We assume that all queues have the same capacity B. In fact, greedy is
2-competitive even if each queue has its own capacity. This can be shown by
an argument similar to the proof of Theorem 1.4 in Chapter 1 using the fact
that greedy sends the packet with the greatest value in each send event.

In Section 3.2, we show a lower bound of of 2 − vm/
∑m

i=1 vi on the
competitive ratio of any deterministic algorithm. Thus, when r tends to 1,
the differences between packet values will shrink to 0 and thus the lower
bound will tend to 2 − 1/m, which is asymptotically 2. Clearly, when r
tends to 1, the competitive ratio of greedy is also asymptotically 2 and
thus greedy is optimal in this case.

3.1 Algorithm greedy

We define greedy as follows. At arrive events, greedy accepts packets of
any value until the respective queue becomes full. At send events, it serves
the non-empty queue, if any, with the highest packet value, i.e., a packet of
value vi is sent only when all queues Qj are empty, for i < j ≤ m.



44 Chapter 3. Packet Scheduling with Priority Queues

Let r = max1≤i≤m−1{vi/vi+1}. The following theorem shows that greedy
is (1 + r)-competitive.

Theorem 3.1. The competitive ratio of greedy is at most 1 + r.

First, we fix an event sequence σ. We call a packet of value vi a vi-
packet, and the i-th queue is denoted as the vi-queue. Let Ai and A∗

i denote
the total number of vi-packets accepted by greedy and opt, respectively.
Hence, greedy(σ) =

∑m
i=1 viAi, and opt(σ) =

∑m
i=1 viA

∗
i .

We begin by showing that opt and greedy send the same number of
vm-packets.

Lemma 3.2. A∗
m = Am.

Proof. By definition of greedy, vm-packets enjoy absolute priority at send-
ing. Hence, the number of vm-packets that greedy sends is maximum, i.e.,
Am ≥ A∗

m.
Assume that Am becomes greater than A∗

m for the first time at arrive
event t. This means that opt rejects at t a vm-packet that greedy accepts.
Hence, opt’s vm-queue was full immediately before t but greedy’s had at
least one vacancy. Let j = 1, . . . ,m−1. Since Am = A∗

m immediately before
t, there must have been a send event t′ before t where opt sent a vj-packet
while its vm-queue was not empty. Change opt’s schedule by sending a
vm-packet at t′ instead of the vj-packet. Clearly, this yields an increase in
opt’s benefit and the rejected vm-packet at time t can be accepted.

The following lemma shows an upper bound on the total number of
packets that opt accepts but greedy rejects.

Lemma 3.3. For any 1 ≤ i ≤ m− 1,

m−1
∑

j=i

(

A∗
j −Aj

)

≤
m
∑

j=i+1

Aj .

Proof. For any 1 ≤ i ≤ m−1, we define the following notion of time interval.
A time interval I ends with a send event, and the next time interval starts
with the first arrive event after the end of I. We call a time interval I red
interval (or r-interval) if the value of any packet sent by greedy in I is
in {vi, . . . , vm} ⊆ V , and green interval (or g-interval) if the value of any
packet sent by greedy in I is in {v1, . . . , vi−1} ⊆ V or I contains send
events in which greedy does not send any packet. We partition σ into r-
and g-intervals such that no two consecutive intervals are of the same color.
Clearly, this partitioning is feasible.

For the rest of the proof, let j be any number in {i, . . . ,m}. The following
observation follows from the definition of g-intervals; otherwise, greedy

would send vj-packets in a g-interval and thus it is no longer a g-interval.



3.1. Algorithm greedy 45

Observation 3.4. In any g-interval, any vj-queue of greedy is empty and
no vj-packets arrive.

Let Aj(I) (resp., A∗
j (I)) denote the total number of vj-packets accepted

by greedy (resp., opt) in time interval I, and let ℜ denote the set of all r-
intervals. Given Observation 3.4, Aj =

∑

I∈ℜAj(I) and A∗
j =

∑

I∈ℜA∗
j (I).

Hence, it suffices to prove the lemma for any r-interval. Thus, we fix an
r-interval I and show that

∑m−1
j=i (A∗

j (I)−Aj(I)) ≤∑m
j=i+1Aj(I).

Let δj(t) denote the total number of vj-packets sent by greedy between
the first and the t-th event of I, inclusive. Let bj(t) denote the size of
greedy’s vj-queue right after the t-th event of I. By Observation 3.4,
interval I starts with greedy’s vj-queue empty. Thus, if no further vj-
packets arrive in I after event t, we get that Aj(I) = δj(t) + bj(t). For opt,
we define δ∗j (t) as the total number of vj-packets that arrive in I and are
sent by opt between the first and the t-th event of I, inclusive; and b∗j (t)
as the number of packets that arrive in I and still reside in opt’s vj-queue
right after the t-th event of I. Thus, if no further vj-packets arrive in I after
event t, we also get that A∗

j (I) = δ∗j (t) + b∗j (t).

We now define a potential function ϕ : Z 7→ Z as follows.

ϕ(t) =
m
∑

j=i

(δj(t) + bj(t)) +
m−1
∑

j=i+1

(δj(t) + bj(t))−
m−1
∑

j=i

(

δ∗j (t) + b∗j (t)
)

Clearly, it suffices to prove that ϕ(t) ≥ 0 for any t ≥ 0. We conduct an
induction proof over the number of arrive and send events of I. (Notice
that ϕ(t) changes on arrive and send events only.) For the induction basis,
ϕ(0) = 0 as nothing arrives in I before its first event. Assume that ϕ(t) ≥ 0
for t ≤ k − 1. We will show that ϕ(k) ≥ 0.

First, assume that the k-th event is a send event. Since I is an r-interval,
greedy sends a vl-packet, where i ≤ l ≤ m. We show that δj(k) + bj(k) =
δj(k−1)+bj(k−1), for any j = i, . . . ,m. This is obvious for j 6= l as nothing
has changed in vj-queue since event k−1. For j = l, δj(k) = δj(k−1)+1 as
the number of sent vj-packets increases by 1, and bj(k) = bj(k−1)−1 as the
size of vj-queue decreases by 1. Thus, δj(k) + bj(k) = δj(k − 1) + bj(k − 1),
as required. Similarly, if opt sends a vj-packet that arrives in I, one can
show that δ∗j (k) + b∗j (k) = δ∗j (k − 1) + b∗j (k − 1), for any j = i, . . . ,m − 1.
Therefore, ϕ(k) = ϕ(k − 1) ≥ 0.

Assume now that the k-th event is an arrive event. We first observe that
in arrive events, δj(k) = δj(k−1) and δ∗j (k) = δ∗j (k−1) as nothing has been
sent since the last event. Moreover, since I is an r-interval, the arriving
packet must be a vl-packet, where i ≤ l ≤ m. Now, we distinguish between
four cases: (1) Both opt and greedy reject the packet, (2) both accept
it, (3) greedy accepts and opt rejects, or (4) opt accepts and greedy

rejects. The potential function does clearly not change in the first case. In



46 Chapter 3. Packet Scheduling with Priority Queues

the second and third case, vl-queue increases by one in greedy and by at
most one in opt (it does not increase in opt in the third case). Thus, ϕ(k)
will increase by at least 1 due to change in greedy’s queue (it increases by
2 if i+1 ≤ l ≤ m−1) and will decrease by at most 1 due to change in opt’s
queue. Hence, ϕ(k) ≥ ϕ(k − 1).

Now, consider the last case where opt accepts but greedy rejects. First,
we rewrite ϕ(k) as

ϕ(k) =

m
∑

j=i

δj(k) +

m
∑

j=i

bj(k) +

m−1
∑

j=i+1

(δj(k) + bj(k))

−
m−1
∑

j=i

δ∗j (k)−
m−1
∑

j=i+1

b∗j (k)− b∗i (k) .

Since the arriving vl-packet is rejected by greedy, greedy’s vl-queue must
be full. Thus,

∑m
j=i bj(k) ≥ B. However, the size of opt’s vi-queue can

never exceed B. Hence

m
∑

j=i

(bj(k))− b∗i (k) ≥ 0. (3.1.1)

Let η be the number of send events in interval I up to the current arrive
event k. Clearly,

∑m−1
j=i δ∗j (k) ≤ η. By definition of r-intervals, greedy has

sent exactly η packets of value vj ∈ {vi, . . . , vm}. Thus,
∑m

j=i δj(k) = η.
Hence,

m
∑

j=i

δj(k)−
m−1
∑

j=i

δ∗j (k) ≥ 0. (3.1.2)

Recall that b∗j counts opt’s vj-packets that it accepts only in I. Thus, for
i+1 ≤ j ≤ m−1, at least b∗j (k) packets must arrive in I up to event k. Since
greedy starts I with an empty vj-queue, and since b∗j (k) ≤ B, greedy

must be able to accept at least b∗j (k) packets of all vj-packets arriving in I.
Thus, recalling that δj(k) + bj(k) represents the number of vj-packets that
greedy accepts in I up to k, we get that δj(k) + bj(k) ≥ b∗j (k), and hence,

m−1
∑

j=i+1

(δj(k) + bj(k))−
m−1
∑

j=i+1

b∗j (k) ≥ 0. (3.1.3)

By summing up inequalities 3.1.1 - 3.1.3, we get that ϕ(k) ≥ 0, and thus
the lemma follows.

Next, we show a weighted version of Lemma 3.3 when i = 1, which is,
along with Lemma 3.6, essential to improve the competitive ratio of greedy
from 2 to 1 + r.



3.1. Algorithm greedy 47

Lemma 3.5. It holds that

m−1
∑

j=1

vj(A
∗
j −Aj) ≤

m−1
∑

j=1

vjAj+1.

Proof. For simplicity of exposition, let m = 4. By Lemma 3.3,

i = 1 : (A∗
1 −A1) + (A∗

2 −A2) + (A∗
3 −A3) ≤ A2 + A3 + A4,

i = 2 : (A∗
2 −A2) + (A∗

3 −A3) ≤ A3 + A4,

i = 3 : (A∗
3 −A3) ≤ A4.

Recall that vi < vi+1, for all 1 ≤ i ≤ m − 1. Thus, multiplying both sides
of (i = 1) by v1, both sides of (i = 2) by (v2 − v1), both sides of (i = 3) by
(v3 − v2), and adding up all the resulting inequalities, we get

v1(A
∗
1 −A1) + v2(A

∗
2 −A2) + v3(A

∗
3 −A3) ≤ v1A2 + v2A3 + v3A4.

Clearly, the argument above can be generalized for any m ≥ 2.

The following lemma is the last ingredient of the proof of Theorem 3.1.

Lemma 3.6. It holds that

∑m−1
j=1 vjAj+1

∑m−1
j=1 vj+1Aj+1

≤ r.

Proof. Let r = vk/vk+1, for some 1 ≤ k ≤ m− 1. Hence, by definition of r,
for any 1 ≤ j ≤ m− 1,

vj
vj+1

≤ vk
vk+1

,

which can be rewritten as vk+1 · vj ≤ vk · vj+1. Thus, multiplying by Aj+1

and then summing over all j, we get

vk+1

m−1
∑

j=1

vjAj+1 ≤ vk

m−1
∑

j=1

vj+1Aj+1,

from which the lemma follows.

Now, we conclude the proof of Theorem 3.1 as follows.



48 Chapter 3. Packet Scheduling with Priority Queues

opt(σ)

greedy(σ)
=

∑m
j=1 vjA

∗
j

∑m
j=1 vjAj

= 1 +

∑m
j=1 vj(A

∗
j −Aj)

∑m
j=1 vjAj

= 1 +

∑m−1
j=1 vj(A

∗
j −Aj)

∑m
j=1 vjAj

≤ 1 +

∑m−1
j=1 vjAj+1
∑m

j=1 vjAj

≤ 1 +

∑m−1
j=1 vjAj+1

∑m−1
j=1 vj+1Aj+1

≤ 1 + r,

where the last equality follows from Lemma 3.2, while the first and last
inequalities follow from Lemma 3.5 and Lemma 3.6, respectively.

3.2 Lower Bound

Next, we show a lower bound on the competitive ratio of any deterministic
online algorithm.

Theorem 3.7. The competitive ratio of any deterministic online algorithm
is at least 2− vm/(

∑m
i=1 vi).

Proof. We first assume that any online and offline algorithm in this model
is work-conserving : It must send a packet if it has a non-empty queue at
sending time. Moreover, since accepting a packet of one value does not
interfere with packets of other values, we may extend the concept of work-
conserving and assume that any algorithm must accept a packet arriving at a
queue if this queue has residual capacity. Notice that each algorithm, which
is not work-conserving can be transformed into a work-conserving algorithm,
without changing the benefit. This is because the work-conserving algorithm
can send everything the other algorithm sends, but earlier; and it can accept
everything the other algorithm accepts, but also earlier.

Let alg be any deterministic online algorithm, which will have to com-
pete against an offline algorithm opt. Furthermore, assume that all queues
are of size 1.

We construct an adversarial instance σ in the following way: In each
time step 1 ≤ i ≤ m, packets of distinct values arrive. We denote the set
of values of the packets arriving in step i by Vi ⊆ V . Let V1 = V . By
work-conserving, we may assume that alg accepts all packets in step 1. Let



3.2. Lower Bound 49

s1 be the packet value sent by alg in the send event of step 1. Since alg

is online and deterministic, this value is well-defined. Define V2 = V1 \ {s1}
and let s2 be the packet value sent by alg if V2 arrives in step 2. Now define
V3 = V2 \ {s2} and in general Vt+1 = Vt \ {st} for t = 1, . . . ,m− 1. Clearly,
V1 ⊃ V2 ⊃ · · · ⊃ Vm.

Observe that all packets arriving in the time steps 2, . . . ,m are of values
corresponding to non-empty queues in alg. So alg must reject all of these
packets. Hence alg(σ) =

∑m
i=1 vi since alg accepts all packets arriving in

the first step.
Now, we define the optimal algorithm. opt accepts all packets V1 in step

1, but sends the packet with value s2 in the send event of that step. Since
s2 is still in the queues of alg in step 2, we have s2 ∈ V2. Now opt accepts
the packet with value s2 in step 2 and rejects all other packets. In the send
event of step 2, opt sends a packet with value s3. In general, in the send
event of step t, it sends a packet with value st+1 for t = 1, . . . ,m − 1; and,
for t = 2, . . . ,m, opt accepts the packet with value st in step t and rejects
all other packets.

Observe that before the send event of step m, opt still has one packet
of each value in its queues and no further packets will arrive. So, opt

sends those packets in the send events of steps m, . . . , 2m− 1, in any order.
Therefore, if alg sends one packet of value v, opt sends two packets of
value v, except for the one packet with value s1. Thus we have opt(σ) =
2 ·∑m

i=1 vi − s1 ≥ 2 ·∑m
i=1 vi − vm.

Therefore,

opt(σ)

alg(σ)
≥ 2 ·∑m

i=1 vi − vm
∑m

i=1 vi

= 2− vm
∑m

i=1 vi
.



50 Chapter 3. Packet Scheduling with Priority Queues



51

Chapter 4

Forwarding Packets in

CIOQ Switches

In this chapter, we study the buffer management problem in an N×N CIOQ
switch. This time our objective is twofold: To devise online algorithms that
are both competitive and efficient. All online algorithms known for this
problem are based on computing maximum matching in each scheduling
cycle, and thus are far from being efficient for real-world switches. We
present new algorithms that are significantly more efficient and yet achieve
the best competitive ratios known for this problem.

In each scheduling cycle, a bipartite graph is induced from the current
configuration of the input and output queues, where the vertices of the
left-hand side correspond to the input ports, and the vertices of the right-
hand side correspond to the output ports. An edge (i, j) indicates that a
packet can be transferred from the i-th input port to the j-th output port.
Clearly, a matching in this graph corresponds to an admissible schedule for
the current scheduling cycle.

All algorithms that we present in this chapter are based on greedy match-
ing computations, i.e., we construct a matching incrementally by adding
edges, one by one, until no more edges can be added. The resulting match-
ing is called maximal. Clearly, a maximal matching can be built in time
linear to the number of edges in the graph, and this is more efficient than
computing a maximum matching, which is known to take O(N5/2) time
[HK73]. Moreover, computing maximal matchings complies more with the
current practice in distributed systems where packet scheduling has to per-
form in real time.

With respect to competitiveness, we show in Section 4.1 that our algo-
rithm for the unit-value case is 3-competitive for any speedup, and thus it
achieves the best competitive ratio known for this problem [KR06]. In Sec-
tion 4.2, we improve on a previous algorithm that is 6-competitive [KR08]
in the general-value case, and show that our algorithm has a competitive



52 Chapter 4. Forwarding Packets in CIOQ Switches

ratio of 3 + 2
√

2 ≈ 5.828 for any speedup.

To obtain these results in an elegant way, we use the technique of mod-
ifying the optimal algorithm that is described in Section 1.5.1, but in a
way that is far more involved. This technique has been used also by Jeż et
al. [JLSS12] for another buffer management related problem. However, in
that work, buffers are manipulated so that the optimal algorithm and the on-
line algorithm always have identical buffer configurations—a property that
is relaxed in our analysis.

4.1 Unit-value Case

In this case, all packets have value of 1. Our goal is thus to maximize the
number of transmitted packets. We present the following algorithm which
we call Greedy Matching (gm).

Arrival phase: For every arriving packet p with in(p) = i and
out(p) = j, accept p if Qij is not full; otherwise, reject p.

Scheduling phase: In every scheduling cycle t[s], a bipartite
graph Gt[s] = (U, V,E) is induced from the current configuration
of the switch, where U = {u1, . . . , uN}, V = {v1, . . . , vN} and an
edge (ui, vj) ∈ E if and only if the input queue Qij is not empty
and the output queue Qj is not full at t[s].

A greedy matching Mt[s] is then computed on Gt[s] in the fol-
lowing way: Start with an empty matching and iterate over all
edges of E. Add an edge e to the current matching if e does not
violate the matching property.

After Mt[s] is computed, for each edge (ui, vj) ∈ Mt[s], the head
packet of Qij is transferred to Qj .

Transmission phase: For every non-empty output queue Qj ,
send the packet at the head of Qj .

The next theorem shows that gm is 3-competitive for any speedup.

Theorem 4.1. The competitive ratio of gm is at most 3 for any speedup.

From now on, we fix an input sequence σ, and, for any input or output
queue Q, we reserve the notation Q for the online algorithm and use Q∗ to
denote the corresponding queue of the offline algorithm opt.

First, without loss of generality, we assume that opt is greedy in trans-
mission events, i.e, it sends a packet from an output queue as long as its
queue is not empty. Obviously, as opt knows in advance which packets it
is going to send, holding packets back in output queues or sending them as
early as possible does not change its benefit.



4.1. Unit-value Case 53

Now, we modify opt in a way that does not decrease its benefit of σ.
Specifically, at the end of each scheduling cycle t[s], i.e., immediately after
opt performs its scheduling policy, we apply the following two modifications
on the configuration of opt in the given order:

Modification 4.1.1. Suppose that gm transfers a packet from
Qij and opt does not transfer any packet from Q∗

ij in t[s]. If
Q∗

ij is not empty in t[s], we release a packet p from Q∗
ij and send

it directly out of the switch, i.e., through an imaginary channel.
In this case, p is called a privileged packet of Type 1 and it
contributes to the benefit of the optimal algorithm.

Modification 4.1.2. Suppose that opt transfers a packet p to
Q∗

j and gm does not transfer any packet to Qj in t[s]. If Qj is
not full in t[s], we send p directly out of the switch. In this case,
we call p a privileged packet of Type 2 and it contributes to the
benefit of the optimal algorithm.

Clearly, these modifications do not decrease the benefit of the optimal
algorithm. They can only make it stronger by allowing it to send packets
directly from input ports to outside the switch without being enqueued in
output ports. The input and output queues will respectively become shorter
in this case and thus the optimal algorithm may accept more new packets.

Before we continue, we introduce further notations. We call packets
that opt schedules through the normal channels, i.e., not privileged, normal
packets. We use S∗ and P ∗ to denote the sets of opt’s normal and privileged
packets, respectively. Clearly, the benefit of opt is given by |P ∗|+ |S∗|. We
also use S to denote the set of packets sent by gm. Thus, we want to show
that |P ∗|+ |S∗| ≤ 3 |S|.

We now show how to derive the competitive ratio of 3. First, we show
in Lemma 4.2 how Modifications 4.1.1 and 4.1.2 are used to preserve the
following invariant: At any time, each queue in gm is no shorter than its
counterpart in opt. Therefore, for any time step t and output port j, if opt
sends a packet from j in t, gm must also send a packet from j in t. Hence,
|S∗| ≤ |S|. After that, we show by Lemma 4.4 that |P ∗| ≤ 2 |S|. Thus, the
proof of Theorem 4.1 follows directly from these two lemmas.

Lemma 4.2. For any i, j ∈ {1, . . . , N} and any time t, the following in-
equalities hold:

I1. |Q∗
ij(t)| ≤ |Qij(t)|,

I2. |Q∗
j (t)| ≤ |Qj(t)|.



54 Chapter 4. Forwarding Packets in CIOQ Switches

Proof. Inequalities I1 and I2 can be shown by a simple induction over time.
Let the induction base be at time 0, i.e., before the sequence starts. All
queues are empty at this time and thus I1 and I2 hold. Assume now that
they hold for any time before time t. We next show that they hold for t as
well.

Clearly, queues change in arrival, scheduling and transmission events
only. So, we assume that t is the time immediately after an event τ that is
either an arrival, scheduling or transmission event.

Assume τ is an arrival event. Clearly, output queues do not change in
arrival events and thus I2 holds for this case. For I1, the only critical case is
when the arriving packet is rejected by gm and accepted by opt. However,
the input queue of gm must be full in this case and thus I1 still holds.

Now, let τ be a scheduling event. Here, the only critical case for I1 is
when gm transfers a packet from Qij while opt does not transfer anything
from Q∗

ij . However, either Q∗
ij is empty in this case or it cannot happen due

to Modification 4.1.1. For I2, the only critical case is when opt inserts a
packet into Q∗

j while gm does not insert anything into Qj . However, either
Qj is full in this case or it cannot happen due to Modification 4.1.2.

Finally, assume τ is a transmission event. Clearly, the input queues do
not change in transmission events and thus I1 holds for this case. For I2,
the only critical case is when gm sends a packet from Qj while opt does
not send anything from Q∗

j . However, since we assume that opt is greedy
at sending, its output queue must be empty in this case and thus I2 still
holds.

The following lemma shows that if Modification 4.1.2 takes place, gm

must transfer a packet from the same input port.

Lemma 4.3. Suppose that, in t[s], opt transfers a packet p from Q∗
ij to Q∗

j

and gm does not transfer any packet to Qj. If Qj is not full in t[s], then
gm transfers a packet p′ from Qij′ in t[s], where j′ 6= j.

Proof. Recall the bipartite graph Gt[s] and the corresponding matching Mt[s]

which are induced from the configuration of gm right before performing the
scheduling cycle t[s].

Assume that Qj is not full in t[s]. By Inequality I1 of Lemma 4.2,
since opt transfers p from Q∗

ij in t[s], gm must have at least one packet
in Qij . Therefore, an edge (ui, vj) must be in E. Nevertheless, since gm

does not transfer any packet to Qj , (ui, vj) is not in Mt[s]. Since Mt[s] is a
maximal matching, there must exist an edge (ui, vj′), for j′ 6= j, such that
(ui, vj′) ∈Mt[s]. Hence, a packet p′ is transferred from Qij′ in t[s].

Lemma 4.4. The following inequality holds:

|P ∗| ≤ 2 |S| .



4.2. General-value Case 55

Proof. We carry out the following mapping scheme from P ∗ to S in each
scheduling cycle t[s].

1. Let p be a privileged packet of Type 1 that is sent by opt from Q∗
ij in

t[s]. By Modification 4.1.1, gm transfers a packet p′ from Qij in t[s].
Map p to p′.

2. Let p be a privileged packet of Type 2 that is sent by opt from Q∗
ij .

By Lemma 4.3, gm transfers a packet p′ from Qij′ in t[s], where j′ 6= j.
Map p to p′.

Clearly, this mapping scheme is feasible, i.e., each packet p ∈ P ∗ is
mapped to a packet q ∈ S. Furthermore, at most two privileged packets can
be mapped to each packet q ∈ S. To see that, let q be a packet transferred by
gm from Qij in a scheduling cycle t[s]. Clearly, q can get mapped only in t[s],
provided that opt sends privileged packets in this time. By Modifications
4.1.1 and 4.1.2, opt can send at most 2 privileged packets from input port i
in t[s]: one of Type 1 if opt’s queue of Q∗

ij is not empty, and one of Type 2
if it transfers a packet from another queue Q∗

ij′ . Thus, these two privileged
packets are mapped to q.

4.2 General-value Case

For the case of arbitrary packet values, we present the Preemptive Greedy
algorithm (pg) that is a variant of a 6-competitive algorithm given by Kessel-
man and Rosén [KR08]. We show next that pg has a competitive ratio of
3 + 2

√
2 ≈ 5.828 for any speedup.

Before we describe pg formally, we introduce further notations. Let
gij(t) denote the packet with the greatest value in Qij at time t, and lij(t)
(resp. lj(t)) denote the packet with the least value in Qij (resp. Qj) at
time t. Additionally, let β ≥ 1 be a parameter of the algorithm that will be
determined later.

Arrival phase: If a packet p arrives at time t with in(p) = i
and out(p) = j, accept p if

|Qij(t)| < B(Qij)
∨

v(lij(t)) < v(p) ;

otherwise, reject p. If p is accepted while |Qij(t)| = B(Qij), then
lij(t) is preempted.

Scheduling phase: In every scheduling cycle t[s], a weighted
bipartite graph Gt[s] = (U, V,E,w) is induced from the cur-
rent configuration of the switch, where U = {u1, . . . , uN}, V =
{v1, . . . , vN}. An edge (ui, vj) ∈ E if and only if



56 Chapter 4. Forwarding Packets in CIOQ Switches

|Qij(t[s])| > 0
∧

(

|Qj(t[s])| < B(Qj)
∨

v(gij(t[s])) > β v(lj(t[s]))
)

,

and the weight of (ui, vj) is given by w(ui, vj) = v(gij(t[s])).

A greedy matching Mt[s] is then computed on Gt[s] in the follow-
ing way: Start with an empty matching and iterate over all edges
of E in a descending order of their weights. Add an edge e to the
current matching if e does not violate the matching property.

After Mt[s] is computed, for each edge (ui, vj) ∈Mt[s], the packet
gij(t[s]) is transferred to Qj . If gij(t[s]) is transferred while
|Qj(t[s])| = B(Qj), then lj(t[s]) is preempted.

Transmission phase: For every non-empty output queue Qj ,
send the packet with the greatest value in Qj .

As described above, unlike the algorithm given in [KR08], pg computes a
maximal weighted matching in each scheduling cycle rather than a maximum
weighted matching.

Theorem 4.5. For β =
√

2 + 1, the competitive ratio of pg is at most
3 + 2

√
2 ≈ 5.828 for any speedup.

First, we fix an input sequence σ. Without loss of generality, we make
the following assumptions about opt:

A1. opt is greedy in scheduling and transmission events, i.e, when it trans-
fers or sends a packet p from an input or output queue, it chooses p
as the one with the greatest value in the queue.

A2. opt is work-conserving at output ports, i.e., it sends a packet from
every non-empty output queue in each transmission event.

Obviously, as it knows in advance which packets it is going to send, it
does not matter for opt in which order these packets are released from their
queues or when they are transmitted from output queues. Now, based on
the greediness of both pg and opt, we make another harmless assumption:

A3. In all input and output queues, pg and opt store packets in the order
of their values, where the packet with the greatest value is at the
queue’s head and the one with the least value is at the queue’s tail.

Similarly to the unit-value case, we modify opt without decreasing its
benefit. Specifically, at the end of each scheduling cycle t[s], i.e., imme-
diately after opt performs its scheduling policy, we apply the following
modifications on the configurations of opt:



4.2. General-value Case 57

Modification 4.2.1. Suppose that pg transfers a packet from
Qij and opt does not transfer any packet from Q∗

ij in t[s]. If
Q∗

ij is not empty in t[s], we release the head packet p of Q∗
ij, i.e.,

the packet with the greatest value in Q∗
ij, and send it directly out

of the switch. In this case, we call p a privileged packet of Type
1 and it contributes to the benefit of the optimal algorithm.

Modification 4.2.2. If opt transfers a packet p to Q∗
j and pg

transfers a packet q to Qj in t[s] with v(q) < v(p), we send p
directly out of the switch. In this case, we call p a privileged
packet of Type 2 and it contributes to the benefit of the optimal
algorithm.

Modification 4.2.3. Suppose that opt transfers a packet p to
Q∗

j and pg does not transfer any packet to Qj in t[s]. If Qj is
not full in t[s] or v(p) > β v(lj(t[s])), we send p directly out of
the switch. In this case, we call p a privileged packet of Type 3
and it contributes to the benefit of the optimal algorithm.

Notice that Modifications 4.2.2 and 4.2.3 are closely related and dealing
with them separately is only for ease of exposition.

Let δij(k, t) (resp. δj(k, t)) denote the packet at position k in Qij (resp.
Qj) at time t, where position 1 corresponds to the head of the queue. Let
δ∗ij(k, t) and δ∗j (k, t) be the corresponding notations for opt. The following
lemma shows that each packet in an opt’s input queue is aligned to a packet
of the same or greater value in the corresponding input queue of pg, and
each packet p in an opt’s output queue is aligned to a packet q in the
corresponding output queue of pg, where v(p) ≤ βv(q).

Lemma 4.6. For any i, j ∈ {1, . . . , N} and any time t, the following in-
equalities hold:

I1. v(δ∗ij(k, t)) ≤ v(δij(k, t)), for any position k = 1, . . . , |Q∗
ij(t)|

I2. v(δ∗j (k, t)) ≤ β v(δj(k, t)), for any position k = 1, . . . , |Q∗
j (t)|

Proof. Inequalities I1 and I2 can be shown by a simple induction over time.
Let the induction base be at time 0, i.e., before the sequence starts. All
queues are empty at this time and thus I1 and I2 hold. Assume now that
they hold for any time up to time t − 1. We next show that they hold for
time t as well.

Clearly, input queues change only in arrival, scheduling or transmission
events. So, we assume that t is the time immediately after an event τ which
is either an arrival, scheduling or transmission event. In the following, we



58 Chapter 4. Forwarding Packets in CIOQ Switches

will argue only for I2. The argument for I1 is analogous, and we will put
the main differences between [ ] at the respective positions.

Before we start, we say that a packet p ∈ Q∗
j (t) is in a legal alignment

if p is aligned in time t to a packet q ∈ Qj(t) with v(p) ≤ βv(q). Clearly,
it suffices to show that any packet p ∈ Q∗

j (t) is in a legal alignment. We
distinguish between two cases:

Case I2.1 p ∈ Q∗
j (t − 1). Thus, by induction, p is aligned in t − 1 to a

packet q ∈ Qj(t−1) with v(p) ≤ βv(q) [resp. v(p) ≤ v(q)]. We need to show
in this case that p either remains in the same alignment in t or it changes
to another legal alignment. Assumption A3 implies that any packet p from
t − 1 either remains in its position in time t, moves one step ahead (if a
packet, that is in front of p, is sent from the queue) or moves one step back
(if a new packet is inserted in front of p).

Assume now that p remains in its position in t but q moves. Notice that
neither q nor any packet in front of it can be released from the queue in
time t; otherwise, by Assumption A2 [resp. Modification 4.2.1], some packet
would be also released from Q∗

j , which makes p move one step ahead. Thus,
q can only move back in t. In this case, however, the packet q′ that is
directly in front of q is aligned with p. Since v(q) ≤ v(q′), p is again in a
legal alignment.

Next, assume that p moves one step ahead in t. In this case, p either
remains in a legal alignment with q (in case q moves ahead as well) or it
aligns with a packet that is in front of q in t − 1 and thus makes again a
legal alignment.

Finally, assume that p moves one step back in t. Thus, a packet p′

must be inserted in front of p, implying that v(p) ≤ v(p′). Notice that
the insertion of p′ happens only in one of two cases: (i) if a packet r with
v(r) ≥ v(p′) is inserted into Qj (by Modifications 4.2.2), or (ii) if Qj is
full in t and v(p′) ≤ βv(lj(t)) (by Modifications 4.2.3). Let k denote the
position of the alignment (p, q) in time t − 1. In case (i), either (1) r is
inserted in a position k′ ≤ k, and thus p will be aligned again with q in t,
or (2) r is inserted in a position k′ > k, and thus p will be aligned with
some packet q′ in t. Clearly, the second case implies that v(r) ≤ v(q′). Since
v(p) ≤ v(p′) ≤ v(r), v(p) ≤ v(q′). Hence, p is in a legal alignment in either
case.

In case (ii), since Qj is full in t, p must be aligned with some packet
q′ in t. Clearly, v(lj(t)) ≤ v(q′). Moreover, since v(p′) ≤ βv(lj(t)), v(p) ≤
v(p′) ≤ βv(q′). Thus, p makes a legal alignment with q′. [The respective
cases for I1 are: case (i) p′ is also inserted into Qij , thus r = p′ in the above
argument, and case (ii) Qij is full in t and v(lj(t)) ≥ v(p′).]

Case I2.2 p /∈ Q∗
j (t − 1). Thus, p is a new packet that is inserted in

the queue in time t. Again, notice that the insertion of p into Q∗
j happens

only in one of two cases: (i) if a packet r with v(r) ≥ v(p) is inserted into



4.2. General-value Case 59

Qj (by Modification 4.2.2), or (ii) if Qj is full in t and v(p) ≤ βv(lj(t)) (by
Modifications 4.2.3). In case (ii), since Qj is full in t, p must be aligned with
a packet q in t. Since v(p) ≤ βv(lj(t)), v(p) ≤ βv(q). Thus, p makes a legal
alignment with q.

Now, consider case (i). Let k denote the position at which p is inserted.
If k = 1, p is aligned with the most valuable packet in Qj in t. Since r is in
Qj in time t, p must be aligned with a packet of value at least v(r) ≥ v(p).
Now suppose k > 1. Let p′ be the packet that is directly in front of p in t.
Clearly, p′ ∈ Q∗

j (t − 1) and v(p) ≤ v(p′). Furthermore, let q′ be the packet
aligned with p′ in time t− 1. Thus, v(p) ≤ v(p′) ≤ βv(q′). Additionally, let
q be the packet at position k in Qj in time t− 1 (assume q = ∅ if this is an
empty position in Qj).

Notice that (1) r is inserted in position k, and thus p will be aligned with
r in t, (2) r is inserted in a position k′ < k, and thus p will be aligned with q′

in t, or (3) r is inserted in a position k′ > k, and thus p will be aligned with
q in t. Clearly, the last case implies that q 6= ∅ and that v(q) ≥ v(r) ≥ v(p).
Therefore, we have v(p) ≤ v(r) in the first case, v(p) ≤ βv(q′) in the second,
and v(p) ≤ v(q) in the third. Hence, p is in a legal alignment in any case.

[The respective cases for I1 are: case (i) p is also inserted into Qij , thus
r = p in the above argument, and case (ii) Qij is full in t and v(lj(t)) ≥
v(p).]

Similarly to the analysis of the unit-value case, granting opt with priv-
ileged packets must be done carefully, so that the total value of privileged
packets remains within a certain factor of the total value of packets that
pg sends. Obviously, each privileged packet of Type 1 can be paired with a
packet that pg transfers from the same input queue. In the following two
lemmas, we show that such a pairing is feasible for privileged packets of
Type 2 and 3 as well. Of course, as packets of pg may be preempted after
being transferred to output queues, some pairs can be destructed. However,
we will show in Lemma 4.9 how to fix this problem.

Lemma 4.7. If opt transfers a packet p from Q∗
ij to Q∗

j and pg transfers
a packet q to Qj in t[s] with v(q) < v(p), then pg transfers a packet p′ from
Qij′ in t[s] with j′ 6= j and v(p′) ≥ v(p).

Proof. Recall the bipartite graph Gt[s] and the corresponding matching Mt[s]

which are induced from the configuration of pg right before performing the
scheduling cycle t[s].

By Inequality I1 of Lemma 4.6, since opt transfers p from Q∗
ij in t[s],

pg must have at the head of Qij a packet r with v(r) ≥ v(p). Obviously,
v(r) > v(q) and thus q 6= r. As a result, q must be transferred from an
input queue Qi′j with i′ 6= i. Moreover, since q is inserted in Qj , the edge
(ui′ , vj) ∈ E, and either |Qj(t[s])| < B(Qj) or v(q) > βv(lj(t[s])). Therefore,
it holds also for r that either |Qj(t[s])| < B(Qj) or v(r) > βv(lj(t[s])).



60 Chapter 4. Forwarding Packets in CIOQ Switches

Hence, the edge (ui, vj) ∈ E as well, and clearly w(ui, vj) ≥ w(ui′ , vj). This
implies that (ui, vj) is considered before (ui′ , vj) during the computation
of Mt[s]. However, since (ui, vj) is not in the matching, the node ui must
have been matched before considering (ui, vj), and thus there exists an edge
(ui, vj′), for j′ 6= j, that is inserted in the matching before considering
(ui, vj). As a result, a packet p′ is transferred from Qij′ , and it must hold
that w(ui, vj′) ≥ w(ui, vj). Hence, v(p′) ≥ v(r) ≥ v(p).

The proof of the following lemma is analogous to that of Lemma 4.7.
We present it for the sake of completeness.

Lemma 4.8. Suppose that, in t[s], opt transfers a packet p from Q∗
ij to

Q∗
j and pg does not transfer any packet to Qj. If Qj is not full in t[s] or

v(p) > βv(lj(t[s])), then pg transfers a packet p′ from Qij′ in t[s] with j′ 6= j
and v(p′) ≥ v(p).

Proof. Assume that Qj is not full in t[s] or v(p) > βv(lj(t[s])). By Inequality
I1 of Lemma 4.6, since opt transfers p from Q∗

ij in t[s], pg must have at
the head of Qij a packet r with v(r) ≥ v(p). Thus, if v(p) > βv(lj(t[s])),
then it must also hold that v(r) > βv(lj(t[s])). Hence, Qj is not full in
t[s] or v(r) > βv(lj(t[s])), and therefore the edge (ui, vj) must be in E.
Nevertheless, as pg does not transfer any packet to Qj , (ui, vj) is not in Mt[s].
Hence, the node ui must have been matched before considering (ui, vj) in the
matching computation. Thus, there exists an edge (ui, vj′), for j′ 6= j, that
is inserted in the matching before considering (ui, vj). Clearly, this results
in the transfer of a packet p′ from Qij′ . Moreover, w(ui, vj′) ≥ w(ui, vj),
and therefore v(p′) ≥ v(r) ≥ v(p).

Now, recall Inequality I2 of Lemma 4.6. It implies that if opt sends a
packet of value v from some output queue at some time, pg must send a
packet of at least v/β from the same output queue at the same time. Let
S (resp. S∗) denote the set of all packets that pg (resp. opt) sends from
output queues. Thus,

∑

p∈S∗

v(p) ≤ β
∑

p∈S

v(p) .

Moreover, let P ∗ denote the set of all privileged packets, of all types, that
opt sends directly out of the switch. The next lemma shows that

∑

p∈P ∗

v(p) ≤ 2β

β − 1

∑

p∈S

v(p) .



4.2. General-value Case 61

Thus, we can conclude the competitive ratio of pg as follows

opt(σ) =
∑

p∈S∗

v(p) +
∑

p∈P ∗

v(p)

≤ β
∑

p∈S

v(p) +
2β

β − 1

∑

p∈S

v(p)

=

(

β +
2β

β − 1

)

pg(σ) .

Finally, it is easy to verify that the optimal value for β is
√

2 + 1, resulting
in a competitive ratio of 3 + 2

√
2 ≈ 5.828.

Lemma 4.9. The following inequality holds:

∑

p∈P ∗

v(p) ≤ 2β

β − 1

∑

p∈S

v(p) .

Proof. We consider the following mapping scheme:

1. Let p be a privileged packet of Type 1 that is sent by opt from Q∗
ij

in scheduling cycle t[s]. By Modification 4.2.1, pg transfers a packet
p′ from Qij in t[s], and by Inequality I1 of Lemma 4.6, v(p) ≤ v(p′).
Map p to p′.

2. Let p be a privileged packet of Type 2 that is sent by opt from Q∗
ij

in scheduling cycle t[s]. By Lemma 4.7, pg transfers a packet p′ from
Q∗

ij′ in t[s] with j′ 6= j and v(p) ≤ v(p′). Map p to p′.

3. Let p be a privileged packet of Type 3 that is sent by opt from Q∗
ij

in scheduling cycle t[s]. By Lemma 4.8, pg transfers a packet p′ from
Q∗

ij′ in t[s] with j′ 6= j and v(p) ≤ v(p′). Map p to p′.

4. Let q be a packet that is preempted from an output queue Qj by
another packet p′. For each privileged packet p that is mapped to q,
re-map p to p′.

As shown above, this mapping scheme is feasible, i.e., each packet p ∈ P ∗

is mapped to a packet p′ ∈ S. Now, it remains to show that the total value
of privileged packets that are mapped to each packet p′ ∈ S is at most
2β
β−1v(p′).

For any packet p′ ∈ S, p′ can get mapped in two events: when it is
scheduled and when it preempts a packet from an output queue. Assume
that p′ is scheduled from Qij′ to Qj′ during scheduling cycle t[s]. Now,
assume that opt transfers a packet from Q∗

ij to Q∗
j during t[s]. Clearly, we

can only send one privileged packet p1 of Type 1 from Q∗
ij′ in t[s] (in case

j 6= j′). Furthermore, we can only send from Q∗
ij either a privileged packet



62 Chapter 4. Forwarding Packets in CIOQ Switches

p2 of Type 2 (in case pg transfers a packet q to Qj with v(q) < v(p2)), or a
privileged packet p3 of Type 3 (in case pg does not transfer any packet to
Qj). Hence, at most two privileged packets may be sent during t[s] from each
input port i. Since privileged packets are mapped only to packets that are
transferred by pg from the same input port during the same scheduling cycle,
at most two packets from {p1, p2, p3} can be mapped to p′. Furthermore,
as shown in the mapping scheme above, the value of any of these privileged
packets is at most the value of p′. Thus, the total value of privileged packets
that are mapped to p′ when it is scheduled is at most 2 v(p′).

Assume now that p′ is the m-th packet in a chain of packets q0, . . . , qm
in which packet qn preempts packet qn−1, for 1 ≤ n ≤ m. Let x(qn) denote
the total value of privileged packets that are mapped to a packet qn after it
preempts qn−1. Thus, the total value of privileged packets that are mapped
to p′ is given by x(qm). Notice that q0 does not preempt any packet and
thus the total value of privileged packets that are mapped to q0 is at most
2 v(q0). Thus, x(qm) can be given by the following recursion:

x(q0) ≤ 2 v(q0)

x(qn) ≤ 2 v(qn) + x(qn−1) , for 0 < n ≤ m .

Solving this recursion, we obtain that

x(qm) ≤ 2

m
∑

n=0

v(qn) .

Notice also that v(qn−1) ≤ v(qn)/β, for 1 ≤ n ≤ m. Hence, we can rewrite
x(qm) as follows:

x(qm) ≤ 2v(qm)

m
∑

n=0

(1/β)n

≤ 2β

β − 1
v(qm) .



63

Chapter 5

Forwarding Packets in

Buffered Crossbar Switches

As we saw in Chapter 1, the model of buffered crossbar switches is obtained
from the CIOQ model by adding further queues at the crosspoints of the
switching fabric. Crossbar queues are also non-FIFO. A crossbar queue that
is placed at the crosspoint of input port i (i = 1, . . . , N) and output port j
(j = 1, . . . , N) is denoted by Cij .

As we did in Chapter 4, we study two variants of this model. In Sec-
tion 5.1, we show a 3-competitive algorithm for any speedup, which is an
improvement on a previous competitive ratio of 4 [KKS12a]. In Section
5.2, we also improve on a previous result of 16.24-competitiveness in the
general-value case, and present a new algorithm with a competitive ratio of
12 + 2

√
2 ≈ 14.828 for any speedup.

The analysis of these algorithms is similar to the analysis of their coun-
terparts in the CIOQ model. We show that the technique of modifying the
adversary can also be applied here, however not in a straightforward way,
to obtain better competitive ratios.

5.1 Unit-value Case

First, recall that each cycle of the scheduling phase in the buffered crossbar
model is divided into two subphases: the input subphase and the output
subphase. In the input subphase, packets can be transferred from any input
queue Qij to its corresponding crossbar queue Cij , such that at most one
packet is transferred from each input port i. In the output subphase, packets
can be transferred from any crossbar queue Cij to its corresponding output
queue Qj , such that at most one packet is transferred to each output port
j.

Kesselman et al. [KKS12a] consider the following algorithm, which we
call Crossbar Greedy Unit (cgu), for the case where all packets have the



64 Chapter 5. Forwarding Packets in Buffered Crossbar Switches

same value.

Arrival phase: For every arriving packet p with in(p) = i and
out(p) = j, accept p if Qij is not full; otherwise, reject p.

Scheduling phase: We divide every scheduling cycle t[s] into
two subphases:

- Input Subphase: For each input port i, choose an arbi-
trary input queue Qij which satisfies

|Qij(t[s])| > 0
∧

|Cij(t[s])| < B(Cij) ,

and transfer its head packet.

- Output Subphase: For each output queue Qj , choose an
arbitrary crossbar queue Cij which satisfies

|Qj(t[s])| < B(Qj)
∧

|Cij(t[s])| > 0 ,

and transfer its head packet.

Transmission phase: For every non-empty output queue Qj ,
send the packet at the head of Qj .

The next theorem shows that cgu is 3-competitive for any speedup.

Theorem 5.1. The competitive ratio of cgu is at most 3 for any speedup.

First, we fix an input sequence σ. Again, we modify opt in a way
that does not decrease its benefit over σ. Specifically, at the end of each
scheduling cycle t[s], i.e., immediately after opt performs its scheduling
policy, we apply the following modifications on the configuration of opt in
the given order:

Modification 5.1.1. Suppose that cgu transfers a packet from
Qij and opt does not transfer any packet from Q∗

ij 6= ∅ in t[s].
We transfer a packet p from Q∗

ij in t[s]. If C∗
ij is not full in

t[s], p is transferred to C∗
ij. Otherwise, p is sent directly out of

the switch. In either case, p is called a privileged packet and it
contributes to the benefit of the optimal algorithm.

Modification 5.1.2. Suppose that cgu transfers a packet to
Cij and opt does not transfer any packet to C∗

ij in t[s]. If C∗
ij

is not full in t[s] and no privileged packet is transferred to C∗
ij

by Modification 5.1.1 in t[s] (possibly because cgu transfers from
Qij while Q∗

ij is empty), we generate a new packet and insert it
into C∗

ij. Such a new packet is called an extra packet of Type 1
and it contributes to the benefit of the optimal algorithm.



5.1. Unit-value Case 65

Modification 5.1.3. Suppose that opt transfers a packet from
C∗
ij and cgu does not transfer any packet from Cij in t[s]. If Cij

is not empty in t[s], we generate a new packet and insert it into
C∗
ij. Such a new packet is called an extra packet of Type 2 and

it contributes to the benefit of the optimal algorithm.

Notice that the trick of extra packets is not used in the analysis of the
algorithms presented in Chapter 4 for the CIOQ model. Next, we show how
the above modifications are used to show a set of invariants that is different
from the invariants shown in Section 4.1.

Lemma 5.2. For any time t and any i, j ∈ {1, . . . , N}, the following in-
equalities hold:

I1. |Qij(t)| ≥ |Q∗
ij(t)|

I2. |C∗
ij(t)| ≥ |Cij(t)|

Proof. We show Inequalities I1 and I2 by a simple induction over time. Let
the induction base be at time 0, i.e., before the sequence starts. All queues
are empty at this time and all inequalities hold. Assume now that they hold
for any time before time t. We next show that they hold for t as well.

Clearly, input and crossbar queues change only in arrival and scheduling
events. So, we assume that t is the time immediately after an event τ which
is either an arrival or a scheduling event.

Assume τ is an arrival event. Clearly, crossbar queues do not change in
arrival events and thus I2 holds for this case. For I1, the only critical case is
when the arriving packet is rejected by cgu and accepted by opt. However,
the input queue of cgu must be full in this case and thus I1 still holds.

Now, let τ be a scheduling event. Here, the only critical case for I1 is
when cgu transfers a packet from Qij while opt does not transfer anything
from Q∗

ij . However, either Q∗
ij is empty in this case or it cannot happen due

to Modification 5.1.1. For I2, the first critical case is when cgu inserts a
packet into Cij while opt does not insert anything into C∗

ij . However, either
C∗
ij is full in this case or it cannot happen due to Modification 5.1.2. The

second critical case for I2 is when opt transfers a packet from C∗
ij while cgu

does not transfer anything from Cij . However, either Cij is empty in this
case or the size of C∗

ij does not decrease due to Modification 5.1.3.

In the following, we use S∗
t[s] to denote the set of opt’s normal packets

in the input subphase of cycle t[s]. These are packets that opt schedules
through the normal channels, i.e., not privileged, and are part of the original
input sequence, i.e., not extra. On the other hand, we use St[s] to denote
the set of packets that cgu schedules in the input subphase of cycle t[s],
i.e., from input queues to crossbar queues.



66 Chapter 5. Forwarding Packets in Buffered Crossbar Switches

Lemma 5.3. For any scheduling cycle t[s], |S∗
t[s]| ≤ |St[s]|.

Proof. We want to show that in the input subphase of any scheduling cycle
t[s], if opt transfers a normal packet from an input port i, cgu also transfers
a packet from i.

Assume that opt transfers a normal packet p from Q∗
ij (to C∗

ij) in t[s].
Thus, by I1 and I2 of Lemma 5.2, Qij is not empty and Cij is not full in t[s]
(Note that opt would not schedule a packet to a full crossbar queue, as all
packets are of the same value). Hence, cgu transfers a packet from either
Qij or another input queue Qij′ in t[s].

Let P ∗
t[s] denote the set of opt’s privileged and extra packets (of either

type) that occur in scheduling cycle t[s].
We consider the following mapping scheme from P ∗

t[s] to St[s]. For packets
that are inserted in cgu’s output queues, we use the notion of a “marked”
packet. Initially, all packets are unmarked.

1. Let p be a privileged packet that is transferred by opt from Q∗
ij in

scheduling cycle t[s]. By Modification 5.1.1, cgu transfers a packet q
from Qij in t[s]. Map p to q.

2. Let p be an extra packet of Type 1 that is inserted into C∗
ij in the

input subphase of scheduling cycle t[s]. By Modification 5.1.2, cgu

transfers a packet q into Cij in t[s]. Map p to q.

3. Let p be an extra packet of Type 2 that is inserted into C∗
ij in the

output subphase of scheduling cycle t[s]. By Modification 5.1.3, Cij is
not empty in t[s], and opt transfers a packet p′ to Q∗

j . Thus, Q∗
j is

not full right before t[s]. Now, let q be the first unmarked packet in
Qj , i.e., the nearest to the queue’s head. Map p to q and then mark
q. Note that q can be the packet that cgu may insert into Qj in t[s].

Next, we show that the mapping scheme is feasible, i.e., each packet
p ∈ P ∗

t[s] is mapped to a packet q ∈ St[s]. Clearly, Steps 1 and 2 are feasible.

We show now that Step 3 is feasible as well. Let Mj(t) denote the set of
marked packets in Qj at time t, for any 1 ≤ j ≤ N . We first show the
following lemma.

Lemma 5.4. At any time t, |Mj(t)| ≤ |Q∗
j (t)| .

Proof. We show the claim by induction over the scheduling and transmission
events. Clearly, Mj(t) and Q∗

j (t) change only in these events.
Assume first that t is a transmission event. The only critical scenario in

this event is that opt sends a packet from Q∗
j while cgu does not send a

marked packet. If that happens, then either cgu sends an unmarked packet
in t or it does not send any packet at all. The first case cannot happen while



5.1. Unit-value Case 67

|Mj(t)| > 0 since marked packets are always at the front of the queue. The
second case is safe because it implies that Qj is empty and thus |Mj(t)| = 0.

Now, assume that t is a scheduling event. The only critical scenario
in this event is that a packet q is marked in Qj while opt does not insert
any packet into Q∗

j . However, according to Step 3 of the mapping scheme,
marking q implies that opt transfers a packet p′ from C∗

ij to Q∗
j . Thus, this

scenario cannot happen in scheduling events.

Now, to show that Step 3 of the mapping scheme is feasible, we need
to show that at least one packet is unmarked in Qj in the scheduling cycle
t[s]. For the sake of contradiction, assume that all packets in Qj are marked
or Qj is empty in t[s]. The first thing that follows from this assumption is
that cgu does not insert any packet into Qj in t[s] (because otherwise the
inserted packet would be initially unmarked).

Recall from Step 3 that Cij is not empty in t[s]. Thus, since no packet is
inserted into Qj , Qj must be full in t[s]. Hence, since all packets are marked
by assumption, |Mj(t)| = B(Qj), where t is the time right before t[s]. Thus,
by Lemma 5.4, |Q∗

j (t)| = B(Q∗
j ) as well. However, this contradicts with

the fact that opt inserts p′ into Q∗
j in t[s]. Hence, at least one packet is

unmarked in Qj in the scheduling cycle t[s], and thus Step 3 is feasible.

Lemma 5.5. For any scheduling cycle t[s], |P ∗
t[s]| ≤ 2 |St[s]|.

Proof. As shown above, the mapping scheme is feasible for each scheduling
cycle t[s]. So, it remains to show that at most two packets from P ∗

t[s] are
mapped to any packet q ∈ St[s].

Consider a packet q ∈ St[s]. Let Qij be the input queue from which q is
transferred in the scheduling cycle t[s]. Obviously, q may get mapped by:
(i) a privileged packet p that is transferred from Q∗

ij in t[s], (ii) an extra
packet p′ of Type 1 that is inserted into C∗

ij in the input subphase of t[s],
and (iii) an extra packet p′′ of Type 2 that is inserted into C∗

i′j in the output
subphase of t[s], for i 6= i′. Therefore, at most three packets can be mapped
to q during its entire lifespan.

Assume now, for the sake of contradiction, that both p and p′ are mapped
to q. According to Modification 5.1.2, since an extra packet p′ is inserted
into C∗

ij , C
∗
ij cannot be full in t[s]. However, by Modification 5.1.1, p must be

transferred to C∗
ij in this case and not directly to outside the switch. Hence,

by Modification 5.1.2, no extra packet is generated in t[s] in this case and
thus p′ does not exist, leading to a contradiction.

Now, as cgu does not preempt packets, each packet which cgu schedules
in an input subphase must be eventually sent, and thus it contributes to the
benefit of cgu. Hence, cgu(σ) =

∑

t[s] |St[s]|. Furthermore, notice that
opt(σ) =

∑

t[s] |S∗
t[s]| + |P ∗

t[s]|. Therefore, the proof of Theorem 5.1 follows
immediately from Lemma 5.3 and 5.5.



68 Chapter 5. Forwarding Packets in Buffered Crossbar Switches

5.2 General-value Case

For the case of arbitrary packet values, we present the Crossbar Preemptive
Greedy algorithm (cpg) that is a variant of a 16.24-competitive algorithm
given by Kesselman et al. [KKS12a].

Recall the notations gij(t), lij(t), and lj(t) that we used with algorithm
pg (Section 4.2). Let gcij(t) and lcij(t) be the corresponding notations for
crossbar queue Cij , i.e., the packet with the greatest value and the packet
with the least value, respectively, in Cij at time t. Additionally, let β ≥ 1
and α ≥ 1 be two parameters of the algorithm that will be determined later.
If β = α, our algorithm will be the same as the algorithm given in [KKS12a].
However, we show that to minimize the competitive ratio for this algorithm,
these two parameters must take on different values.

Arrival phase: If a packet p arrives at time t with in(p) = i
and out(p) = j, accept p if

|Qij(t)| < B(Qij)
∨

v(lij(t)) < v(p) ;

otherwise, reject p. If p is accepted while |Qij(t)| = B(Qij), then
lij(t) is preempted.

Scheduling phase: We divide every scheduling cycle t[s] into
two subphases:

- Input Subphase: For each input port i, let J be defined
as follows:

J =

{

j : |Qij(t[s])| > 0
∧

(

|Cij(t[s])| < B(Cij)
∨

v(gij(t[s])) > β v(lcij(t[s]))

)}

.

If J 6= ∅, choose Qij such that for all j′ ∈ J ,

j ∈ J
∧

v(gij(t[s])) ≥ v(gij′(t[s])) .

Transfer gij(t[s]) to Cij . If |Cij(t[s])| = B(Cij), preempt
lcij(t[s]) first.

- Output Subphase: For each output queue Qj , choose a
crossbar queue Cij such that for all i′ 6= i,

|Cij(t[s])| > 0
∧

v(gcij(t[s])) ≥ v(gci′j(t[s])) .

If the following condition is satisfied

|Qj(t[s])| < B(Qj)
∨

v(gcij(t[s])) > αv(lj(t[s])) ,

transfer gcij(t[s]) to Qj . If |Qj(t[s])| = B(Qj), preempt
lj(t[s]) first.



5.2. General-value Case 69

Transmission phase: For every non-empty output queue Qj ,
send the packet with the greatest value in Qj .

Notice that all ties in cpg are broken arbitrarily.

Theorem 5.6. For β = 2
√

2−1 and α = 2
√

2, the competitive ratio of cpg
is at most 12 + 2

√
2 ≈ 14.828 for any speedup.

The analysis of cpg is carried out in a similar way as pg. We extend
Assumptions A1 - A3 to include crossbar queues as well, and modify opt

in a slightly different way. Specifically, at the end of each scheduling cycle
t[s], i.e., immediately after opt performs its scheduling policy, we apply the
following modifications on the configurations of opt:

Modification 5.2.1. Suppose that cpg transfers a packet from
Qij and opt does not transfer any packet from Q∗

ij in t[s]. If
Q∗

ij is not empty in t[s], we release the head packet p of Q∗
ij, i.e.,

the packet with the greatest value in Q∗
ij, and send it directly out

of the switch. In this case, we call p a privileged packet of Type
1 and it contributes to the benefit of the optimal algorithm.

Modification 5.2.2. Suppose that opt transfers a packet p to
C∗
ij and cpg does not transfer any packet to Cij in t[s]. If Cij is

not full in t[s] or v(p) > β v(lcij(t[s])), we send p directly out of
the switch. In this case, we call p a privileged packet of Type 2
and it contributes to the benefit of the optimal algorithm.

Modification 5.2.3. Suppose that cpg transfers a packet from
Cij and opt does not transfer any packet from C∗

ij in t[s]. If C∗
ij

is not empty in t[s], we release the head packet p of C∗
ij, i.e., the

packet with the greatest value in C∗
ij, and send it directly out of

the switch. In this case, we call p a privileged packet of Type 3
and it contributes to the benefit of the optimal algorithm.

Notice that Modifications 5.2.1 and 5.2.2 occur in the input subphase of
t[s], while Modification 5.2.3 occurs in the output subphase.

The following lemma extends Lemma 4.6 to include crossbar queues. We
similarly use γij(k, t) (resp. γ∗ij(k, t)) to denote the packet at position k in
Cij (resp. C∗

ij) at time t.

Lemma 5.7. For any i, j ∈ {1, . . . , N} and any time t, the following in-
equalities hold:

I1. v(δ∗ij(k, t)) ≤ v(δij(k, t)), for any position k = 1, . . . , |Q∗
ij(t)|



70 Chapter 5. Forwarding Packets in Buffered Crossbar Switches

I2. v(γ∗ij(k, t)) ≤ β v(γij(k, t)), for any position k = 1, . . . , |C∗
ij(t)|

I3. v(δ∗j (k, t)) ≤ αβ v(δj(k, t)), for any position k = 1, . . . , |Q∗
j (t)|

Proof. Inequalities I1 - I3 can be shown by a simple induction over time.
Let the induction base be at time 0, i.e., before the sequence starts. All
queues are empty at this time and thus all inequalities hold. Assume now
that they hold for any time up to time t− 1. We next show that they hold
for time t as well.

Clearly, input queues change only in arrival, scheduling or transmission
events. So, we assume that t is the time immediately after an event τ which
is either an arrival, scheduling or transmission event. In the following, we
will argue only for I2 and I3. The argument for I1 is the same as in the
proof of Lemma 4.6.

Before we start with I2, we say that a packet p ∈ C∗
ij(t) is in a legal

alignment if p is aligned in time t to a packet q ∈ Cij(t) with v(p) ≤ βv(q).
Clearly, it suffices to show that any packet p ∈ C∗

ij(t) is in a legal alignment.
We distinguish between two cases:

Case I2.1 p ∈ C∗
ij(t − 1). Thus, by induction, p is aligned in t − 1 to a

packet q ∈ Cij(t− 1) with v(p) ≤ βv(q). We need to show in this case that
p either remains in the same alignment in t or it changes to another legal
alignment.

The only critical case is when p moves one step back in t (other cases
are the same as in the proof of Lemma 4.6). In this case, a packet p′ must
be inserted in front of p, implying that v(p) ≤ v(p′). Here, we distinguish
between two cases: (i) cpg transfers a packet r to Cij as well, (ii) cpg does
not transfer any packet to Cij . Let k denote the position of the alignment
(p, q) in time t− 1. In case (i), due to Inequality I1 of this lemma, it must
hold that v(p′) ≤ v(r). Now, notice that either (1) r is inserted in a position
k′ ≤ k, and thus p will be aligned again with q in t, or (2) r is inserted
in a position k′ > k, and thus p will be aligned with some packet q′ in t.
Clearly, the second case implies that v(r) ≤ v(q′). Since v(p) ≤ v(p′) ≤ v(r),
v(p) ≤ v(q′). Hence, p is in a legal alignment in either case.

In case (ii), Cij must be full in t and v(p′) ≤ βv(lcij(t)); otherwise, due
to Modification 5.2.2, opt would not insert any packet in C∗

ij . Thus, p
must be aligned with some packet q′ in t. Clearly, v(lcij(t)) ≤ v(q′). Thus,
v(p) ≤ v(p′) ≤ βv(q′). Hence, p makes a legal alignment with q′.

Case I2.2 p /∈ C∗
ij(t − 1). Thus, p is a new packet that is inserted in

C∗
ij in time t. Again, we distinguish between two cases: (i) cpg transfers a

packet r to Cij , or (ii) cpg does not transfer any packet to Cij . In case (ii),
Cij must be full in t and v(p) ≤ βv(lcij(t)); otherwise, due to Modification
5.2.2, opt would not insert any packet into C∗

ij . Thus, p must be aligned
with a packet q in t. Clearly, v(lcij(t)) ≤ v(q). Thus, v(p) ≤ βv(q). Hence,
p makes a legal alignment with q.



5.2. General-value Case 71

Now, consider case (i). Due to Inequality I1 of this lemma, it must hold
that v(p) ≤ v(r). Let k denote the position at which p is inserted. If k = 1,
p is aligned with the most valuable packet in Cij in t. Since r is in Cij in
time t, p must be aligned with a packet of value at least v(r) ≥ v(p). Now
suppose k > 1. Let p′ be the packet that is directly in front of p in t. Clearly,
p′ ∈ C∗

ij(t − 1) and v(p) ≤ v(p′). Furthermore, let q′ be the packet aligned
with p′ in time t− 1. Thus, v(p) ≤ v(p′) ≤ βv(q′). additionally, let q be the
packet at position k in Cij in time t − 1 (assume q = ∅ if this is an empty
position in Cij).

Notice that (1) r is inserted in position k, and thus p will be aligned with
r in t, (2) r is inserted in a position k′ < k, and thus p will be aligned with q′

in t, or (3) r is inserted in a position k′ > k, and thus p will be aligned with
q in t. Clearly, the last case implies that q 6= ∅ and that v(q) ≥ v(r) ≥ v(p).
Therefore, we have v(p) ≤ v(r) in the first case, v(p) ≤ βv(q′) in the second,
and v(p) ≤ v(q) in the third. Hence, p is in a legal alignment in any case.

Before we continue with I3, we say that a packet p ∈ Q∗
j (t) is in a legal

alignment if p is aligned in time t to a packet q ∈ Qj(t) with v(p) ≤ αβv(q).
Clearly, it suffices to show that any packet p ∈ Q∗

j (t) is in a legal alignment.
We distinguish between two cases:

Case I3.1 p ∈ Q∗
j (t − 1). Thus, by induction, p is aligned in t − 1 to a

packet q ∈ Qj(t− 1) with v(p) ≤ αβv(q). We need to show in this case that
p either remains in the same alignment in t or it changes to another legal
alignment.

The only critical case is when p moves one step back in t (other cases
are the same as in the proof of Lemma 4.6). In this case, a packet p′ must
be inserted in front of p, implying that v(p) ≤ v(p′). Here, we distinguish
between two cases: (i) cpg transfers a packet r to Qj as well, or (ii) cpg does
not transfer any packet to Qj . Let k denote the position of the alignment
(p, q) in time t − 1. In case (i), due to Inequality I2 (of this lemma), it
must hold that v(p′) ≤ βv(r). Now, notice that either (1) r is inserted
in a position k′ ≤ k, and thus p will be aligned again with q in t, or (2)
r is inserted in a position k′ > k, and thus p will be aligned with some
packet q′ in t. Clearly, the second case implies that v(r) ≤ v(q′). Since
v(p) ≤ v(p′) ≤ βv(r), v(p) ≤ βv(q′). Hence, p is in a legal alignment in
either case.

In case (ii), recall that p′ is transferred by opt from C∗
ij . Thus, due

to Inequality I2 (of this lemma), Cij is not empty. Therefore, since cpg

does not transfer any packet to Qj in this case, Qj must be full in t and
v(gcij(t)) ≤ αv(lj(t)). Since v(p′) ≤ βv(gcij(t)) (again due to Inequality
I2), v(p′) ≤ αβv(lj(t)). Now, since Qj is full in t, p must be aligned with
some packet q′ in t. Clearly, v(lj(t)) ≤ v(q′). Thus, v(p) ≤ v(p′) ≤ αβv(q′).
Thus, p makes a legal alignment with q′.

Case I3.2 p /∈ Q∗
j (t− 1). Thus, p is a new packet that is inserted in the



72 Chapter 5. Forwarding Packets in Buffered Crossbar Switches

queue in time t. Again, we distinguish between two cases: (i) cpg transfers a
packet r to Qj , or (ii) or (ii) cpg does not transfer any packet to Qj . In case
(ii), recall that p is transferred by opt from C∗

ij . Thus, due to Inequality I2
of this lemma, Cij is not empty. Therefore, since cpg does not transfer any
packet to Qj in this case, Qj must be full in t and v(gcij(t)) ≤ αv(lj(t)).
Since v(p) ≤ βv(gcij(t)) (again due to Inequality I2), v(p) ≤ αβv(lj(t)).
Now, since Qj is full in t, p must be aligned with a packet q in t. Clearly,
v(lj(t)) ≤ v(q). Thus, v(p) ≤ αβv(q). Thus, p makes a legal alignment with
q.

Now, consider case (i). Due to Inequality I2 of this lemma, it must hold
that v(p) ≤ βv(r). Let k denote the position at which p is inserted. If k = 1,
p is aligned with the most valuable packet in Qj in t. Since r is in Qj in
time t, p must be aligned with a packet of value at least v(r) ≥ v(p). Now
suppose that k > 1. Let p′ be the packet that is directly in front of p in t.
Clearly, p′ ∈ Q∗

j (t − 1) and v(p) ≤ v(p′). Furthermore, let q′ be the packet
aligned with p′ in time t− 1. Thus, v(p) ≤ v(p′) ≤ αβv(q′). additionally, let
q be the packet at position k in Qj in time t− 1 (assume q = ∅ if this is an
empty position in Qj).

Notice that (1) r is inserted in position k, and thus p will be aligned with
r in t, (2) r is inserted in a position k′ < k, and thus p will be aligned with
q′ in t, or (3) r is inserted in a position k′ > k, and thus p will be aligned
with q in t. Clearly, the last case implies that q 6= ∅ and that v(r) ≤ v(q),
and thus v(p) ≤ βv(q). Therefore, we have v(p) ≤ βv(r) in the first case,
v(p) ≤ αβv(q′) in the second, and v(p) ≤ βv(q) in the third. Hence, p is in
a legal alignment in any case.

The following lemma extends the claim of Lemma 4.8 to crossbar queues
concerning the feasibility of mapping privileged packets of type 2.

Lemma 5.8. Assume that opt transfers a packet p from Q∗
ij to C∗

ij in t[s]
and cpg does not transfer any packet to Cij. If Cij is not full in t[s] or
v(p) > βv(lcij(t[s])), then cpg transfers a packet p′ from Qij′ in t[s] with
j′ 6= j and v(p′) ≥ v(p).

Proof. Assume that Cij is not full in t[s] or v(p) > βv(lcij(t[s])). By Inequal-
ity I1 of Lemma 5.7, since opt transfers p from Q∗

ij in t[s], cpg must have
at the head of Qij a packet r with v(r) ≥ v(p). Thus, if v(p) > βv(lcij(t[s])),
then it must also hold that v(r) > βv(lcij(t[s])). Hence, Cij is not full in t[s]
or v(r) > βv(lcij(t[s])), and therefore r is eligible to be transferred to Cij .
Nevertheless, as cpg does not transfer any packet to Cij , another eligible
packet p′ must be transferred from another input queue Qij′ , where j′ 6= j.
Obviously, as cpg preferred p′ over r, it must hold that v(p′) ≥ v(r), and
hence v(p′) ≥ v(p).

Now, recall Inequality I3 of Lemma 5.7. It implies that if opt sends a
packet of value v from some output queue at some time, cpg must send a



5.2. General-value Case 73

packet of at least v/(αβ) from the same output queue at the same time. Let
S (resp. S∗) denote the set of all packets that cpg (resp. opt) sends from
output queues. Thus,

∑

p∈S∗

v(p) ≤ αβ
∑

p∈S

v(p) .

Moreover, let P ∗ denote the set of all privileged packets, of all types, that
opt sends directly out of the switch. The next lemma shows that

∑

p∈P ∗

v(p) ≤ 2αβ + αβ(β − 1)

(α− 1)(β − 1)

∑

p∈S

v(p) .

Thus, we can conclude the competitive ratio of cpg as

opt(σ) ≤
(

αβ +
2αβ + αβ(β − 1)

(α− 1)(β − 1)

)

cpg(σ) .

It can be verified that this competitive ratio is minimized when β = 2
√

2−1
and α = 2

√
2, resulting in a competitive ratio of 12 + 2

√
2 ≈ 14.828.

Lemma 5.9. The following inequality holds:

∑

p∈P ∗

v(p) ≤ 2αβ + αβ(β − 1)

(α− 1)(β − 1)

∑

p∈S

v(p) .

Proof. We consider the following mapping scheme:

1. Let p be a privileged packet of Type 1 that is sent from Q∗
ij in t[s]. By

Modification 5.2.1, cpg transfers a packet p′ from Qij in t[s], and by
Inequality I1 of Lemma 5.7, v(p) ≤ v(p′). Map p to p′.

2. Let p be a privileged packet of Type 2 that is sent from Q∗
ij in t[s].

By Lemma 5.8, cpg transfers a packet p′ from Q∗
ij′ in t[s] with j′ 6= j

and v(p) ≤ v(p′). Map p to p′.

3. Let p be a privileged packet of Type 3 that is sent from C∗
ij in t[s]. By

Modification 5.2.3, cpg transfers a packet p′ from Cij in t[s], and by
Inequality I2 of Lemma 5.7, v(p) ≤ βv(p′). Map p to p′.

4. Let q be a packet that is preempted from a crossbar or an output queue
by another packet p′. For each privileged packet p that is mapped to
q, re-map p to p′.

As shown above, this mapping scheme is feasible, i.e., each packet p ∈ P ∗

is mapped to a packet p′ ∈ S. Now, it remains to show that the total value



74 Chapter 5. Forwarding Packets in Buffered Crossbar Switches

of privileged packets that are mapped to each packet p′ ∈ S is at most
2αβ+αβ(β−1)
(α−1)(β−1) v(p′).

For any packet p′ ∈ S, p′ can get mapped in four cases: (1) when it
is scheduled in an input subphase, (2) when it preempts a packet from a
crossbar queue, (3) when it is scheduled in an output subphase, and (4)
when it preempts a packet from an output queue. We first consider cases
(1) and (2). Assume that p′ is scheduled from Qij′ to Cij′ in the input
subphase t. Now, assume that opt transfers a packet from Q∗

ij to C∗
ij in

the same time. Clearly, if j 6= j′, a privileged packet, say p1, of Type 1
can be sent from Q∗

ij′ in t, and the packet which opt transfers from Q∗
ij can

become a privileged packet, say p2, of Type 2. Hence, at most two privileged
packets may be sent in t from each input port i. Since privileged packets
of Type 1 and 2 are mapped only to packets that are transferred by cpg

from the same input port during the same input subphase, only p1 and p2
can be mapped to p′ in t. Furthermore, as shown in the mapping scheme
above, the value of any of these privileged packets is at most the value of p′.
Thus, the total value of privileged packets that are mapped to p′ when it is
scheduled in an input subphase is at most 2 v(p′).

Assume now that p′ preempts a packet from Cij′ . Using the same argu-
ment of preemption chains in the proof of Lemma 4.9, we can show that the
total value of privileged packets that are mapped to p′ when it preempts a
packet from Cij′ is at most 2β

β−1v(p′).

Now, we consider cases (3) and (4). In case (3), p′ is scheduled in an
output subphase t to the output queue Q′

j . Additionally, assume that opt

does not transfer any packet from C∗
ij′ in t. Clearly, a privileged packet, say

p3, of Type 3 will be sent in this case from C∗
ij′ . Since privileged packets of

Type 3 are mapped only to packets that are transferred by cpg from the
same crossbar queue in the same output subphase, only p3 is mapped to p′

in t. Furthermore, as shown in the mapping scheme above, the value of p3 is
at most β times the value of p′. Thus, the total value of privileged packets
that are mapped to p′ when it is scheduled in an output subphase is at most
(β + 2β

β−1)v(p′).

Finally, assume that p′ preempts a packet from Q′
j . Again, using the

same argument of preemption chains in the proof of Lemma 4.9, we can
show that the total value of privileged packets that are mapped to p′ when
it preempts a packet from Q′

j is at most 2αβ+αβ(β−1)
(α−1)(β−1) v(p′).



75

Chapter 6

Scheduling Packets with

Deadlines

In this chapter, we first consider the case where packets have arbitrary pro-
cessing times and agreeable deadlines. We start with a negative result show-
ing that no deterministic algorithm has a bounded competitive ratio in this
case. Then, we consider the more restricted case where all processing times
are equal and present an optimal online algorithm with a competitive ratio
of 4.

Packets with deadlines are stored in a single queue with unlimited ca-
pacity. Each packet p needs ρ(p) time steps to be completely sent. For ease
of exposition, we call ρ(p) the processing time of p. We also call a packet
that is completely transmitted a completed packet. Our objective in this
model is to maximize the total value of packets that are completed before
their deadlines.

Recall that, for a packet p, r(p), d(p), and v(p) denote the arrival time,
deadline and value of p, respectively. Moreover, in each time step, only one
packet can be processed, and a packet that is being processed can be pre-
empted to process another packet. However, the processing of a preempted
packet can be resumed from the last point of preemption. We say that a
packet p is pending at time t if it has not been completed yet and can still
be completed if it is immediately processed at t without preemption. We
assume that the queue keeps only pending packets at any time.

This problem has its roots in the area of job scheduling. It is known that
without any restriction on deadlines and processing times, no deterministic
online algorithm can achieve a bounded competitive ratio, even if all packets
have value of 1 [BHS94]. Therefore, only results for special cases have been
pursued.

If packets have equal processing times and tight deadlines, i.e., for any
packet p, d(p) = r(p)+ρ(p), Woeginger [Woe94] shows that no deterministic
algorithm can be better than 4-competitive. He also provides an algorithm



76 Chapter 6. Scheduling Packets with Deadlines

with a matching competitive ratio. If deadlines are arbitrary, we only know
that the competitive ratio is between 4 and 4.24 [Kim11].

6.1 Unbounded Competitive Ratio

In this section, we consider the case of arbitrary processing times and agree-
able deadlines. We show that no deterministic algorithm has a bounded
competitive ratio in this case.

Theorem 6.1. In the case of arbitrary processing times and agreeable dead-
lines, no deterministic algorithm has a bounded competitive ratio.

Proof. Let K be a sufficiently large integer. We define two other integers
M = 2K

2

and m = logM +1. We consider a sequence of packets p0, . . . , pm,
where all packets have a deadline at time M . Packet p0 arrives at time 0
and has a processing time of M . Furthermore, p0 has a value of K and all
other packets have a value of 1. For 1 ≤ n < m, packet pn has a processing
time M/2n, and the last packet pm has a processing time of 1. Moreover,
r(p1) = 0 and r(pn) = r(pn−1) + ρ(pn−1), for 1 < n ≤ m. Clearly, the first
packet corresponds to the time interval [0,M ], and the remaining m packets
correspond to successive intervals of lengths M/2,M/4, . . . , 1, 1 whose union
is [0,M ]. Thus, packets p1, . . . , pm collide with the large packet p0.

Now, fix an online algorithm alg. We construct an agreeable-deadline
instance for alg in the following adversarial way. Let the packet sequence
proceed as long as alg chooses in each time step to process p0. If alg

switches to any other packet in a time step t, we cut the sequence immedi-
ately, i.e., if t ∈ [r(pn), r(pn+1)), for some n > 0, packets pn+1, . . . , pm do
not appear in this instance.

Clearly, if alg completes p0, it cannot complete any other packet. The
adversary on the other hand completes all packets except p0. Thus, the
competitive ratio of alg in this case is at least (logM)/K = K. In the
other case, if pn is the last packet released, where n > 0, alg can complete
only pn as all previous packets are too large to be completed in the remaining
interval (r(pn),M ]. In this case, the adversary completes p0 only. Thus, the
competitive ratio of alg is again K. Clearly, K can be chosen arbitrarily
large, and therefore the competitive ratio of alg cannot be bounded.

6.2 An Optimal Algorithm sg

In this section, we show that a natural greedy algorithm, which we call Semi-
Greedy (sg), has a competitive ratio of 4 in the case of equal processing
times and agreeable deadlines. Clearly, Woeginger’s model is a special case
of this model. Therefore, the lower bound of 4 holds in our model and thus



6.2. An Optimal Algorithm sg 77

sg is optimal. For general deadlines, sg achieves a competitive ratio of 5
[CLTW04].

Algorithm sg.

• If sg is idle, i.e., it has just completed a packet or the
queue is empty, process the packet with the maximum value
among all pending packets.

• If a new packet p arrives while another packet q is being
processed, process p if v(q) < v(p)/2. We say in this case
that p preempts q.

Theorem 6.2. The competitive ratio of sg is at most 4.

First, we fix a sequence of packets with agreeable deadlines. Without
loss of generality, we make the following assumption about opt. Since the
adversary is clairvoyant, it knows the set of “right” packets in advance, i.e.,
packets that constitute the optimal solution. Let opt be the algorithm which
schedules these packets without preemption, using the Earliest-Deadline-
First (EDF) heuristic. Clearly, the schedule computed by opt in this way
is feasible.

We slightly abuse our notation and let opt and sg denote the set of
packets that are completed by opt and sg, respectively. Furthermore, for a
set S of packets, we denote by v(S) the total value of the packets of S.

Next, we show a mapping scheme from opt to sg. We show afterwards
how this scheme is used to show a competitive ratio of 4.

Mapping Scheme. We scan the schedules of both opt and sg,
starting from time 0. In each time step t, we observe two kinds
of events, start-events of opt and preempt-events of sg.

• t is a start-event of opt. opt starts a packet q at t.

1. sg is idle at t: Map q to itself. We call q a packet of
Type 1.

2. sg is processing a packet q′ at t:

(a) If sg completes q before t, map q to itself. We call
q a packet of Type 1.

(b) Otherwise (i.e., sg completes q after t or it does not
complete q at all), map q to q′. We call q a packet
of Type 2.

• t is a preempt-event of sg. A packet p preempts another
packet p′ at t. If a packet q of Type 2 or 3 is mapped to p′,
then q is re-mapped to p and its type is changed to 3.



78 Chapter 6. Scheduling Packets with Deadlines

Notice that we do not assume any transition time between packets, i.e.,
sg may complete (or preempt) a packet at a point of time and start (or
resume) another packet at the same point of time. Therefore, in a start-
event, if sg completes a packet in t and then becomes idle, t denotes in
this case a point of time at which sg is idle. Similarly, if sg completes (or
preempts) a packet in t and then starts (or resumes) another packet, then
q′ in Step 2 of the mapping scheme denotes the packet that sg starts or
resumes. Thus, in start-events, t does not coincide with the completion or
preemption time of a packet.

Lemma 6.3. All packets of opt are mapped to packets that are completed
by sg.

Proof. Clearly, all packets of opt are considered in the mapping scheme. In
Steps 1 and 2.(a) of a start-event, q is mapped to a completed packet. Notice
that in Step 1, sg must have completed q by t; otherwise, it would not be
idle at that time. In Step 2.(b) of a start-event and in a preempt-event, q is
mapped to a packet that sg may not complete. However, in preempt-events,
it is ensured that such a packet is re-mapped whenever a preemption takes
place until it is eventually mapped to a packet that is completed by sg.

The previous lemma shows that the mapping scheme is feasible. Thus, to
show a competitive ratio of 4, it remains only to show the following lemma.

Lemma 6.4. For any packet p ∈ sg, if Ap ⊆ opt denotes the set of all
packets that are mapped to p, then v(Ap) ≤ 4 v(p).

Before we show Lemma 6.4, we first show a number of lemmas that will
constitute its proof.

Lemma 6.5. For any packet p ∈ sg, at most one packet of Type 1 and one
packet of Type 2 are mapped to p.

Proof. Clearly, any packet q ∈ opt is mapped to itself at most once in the
mapping scheme. This shows the first part of the lemma.

We show now that at most one packet of Type 2 is mapped to p. Assume
for contradiction that two packets q and q′ of Type 2 are mapped to p, where
opt processes q before q′. Let t and t′ be the times at which q and q′ are
started, respectively. Thus, two start-events occur at t and t′ in which q
and q′ are respectively mapped to p. Clearly, sg processes p at both t
and t′. Notice that, by the mapping scheme, t′ does not coincide with the
completion time of p, and thus p must be completed after t′. Recall that
all packets have the same processing time. Thus, p must be preempted
between t and t′ by another packet p′; otherwise, p would be completed
before or at t′. Hence, a preempt-event occurs between t and t′ in which q is
re-mapped to p′. Consequently, the type of q is changed to 3 and that leads
to a contradiction.



6.2. An Optimal Algorithm sg 79

Lemma 6.6. For any packet p ∈ sg, if a packet q of Type 2 is mapped to
p, then v(q) ≤ 2 v(p). Furthermore, if a packet of Type 1 is additionally
mapped to p, then v(q) ≤ v(p).

Proof. We know from the mapping scheme that when opt starts q, say at
time tq, q is pending in sg and sg is processing p at tq. Let sp be the latest
time before tq at which sg starts (or resumes) p. Thus, since sg prefers p
over q between sp and tq, either v(q) ≤ v(p), in case q arrives before or at
sp, or v(q) ≤ 2 v(p), in case q arrives between sp and tq.

To show the other part of the claim, we assume that, besides q, p is
mapped to itself. Let tp be the time at which opt starts p. We distinguish
between two cases: (i) opt completes p first, and (ii) opt completes q first.
In the first case, since sg is still processing p at time tq, it completes p after
tp. Also, sg must be processing some packet p′ at time tp; otherwise, sg

would be idle at tp and thus it would complete p before tq. Thus, by Step
2.(b) of the mapping scheme, p must be mapped to p′ and hence being of
Type 2. Since packets of Type 2 can be changed to Type 3 only, p cannot
be of Type 1 and thus Case (i) cannot occur.

We now consider Case (ii). By assumption, opt schedules its packets
in an EDF-order. Thus, since opt completes q before p, d(q) ≤ d(p). Fur-
thermore, since packets have agreeable deadlines, r(q) ≤ r(p) and thus q
arrives before or at the same time as p. As shown above for the first part
of the claim, since sg prefers p over q between sp and tq, either v(q) ≤ v(p)
in case q arrives before or at sp, or v(q) ≤ 2 v(p) in case q arrives between
sp and tq. However, q cannot arrive between sp and tq in this case. Thus,
v(q) ≤ v(p).

Lemma 6.7. For any packet p ∈ sg, if Tp ⊆ opt denotes the set of packets
of Type 3 that are mapped to p, then v(Tp) ≤ 2 v(p).

Proof. Clearly, packets of Type 3 are mapped to a packet p only in preempt-
events, i.e., when p preempts another packet p′.

Let p0, . . . , pm be a chain of packets, where packet pn preempts packet
pn−1, for 0 < n ≤ m, and pm = p. Let x(pn) denote the total value of packets
of Type 2 and 3 that are mapped to packet pn, for 0 ≤ n ≤ m. Notice that
a packet can preempt only one packet—at the time of its arrival. Hence,
each packet pn preempts packet pn−1 only, and thus packets of Type 3 that
are mapped to p emerge only from Type-2 and Type-3 packets of pm−1.
Hence, the total value of packets of Type 3 that are mapped to p is given by
x(pm−1). Recursively, for 0 < n ≤ m, packets of Type 3 that are mapped to
pn emerge only from Type-2 and Type-3 packets of pn−1. Notice also that
p0 does not preempt any packet and thus x(p0) gives only the total value of
packets of Type 2 that are mapped to p0. Furthermore, by Lemma 6.5 and
6.6, at most one packet of Type 2 can be mapped to any packet pn and the



80 Chapter 6. Scheduling Packets with Deadlines

value of this packet is at most 2 v(pn). Thus, x(pm−1) can be given by the
following recursion:

x(p0) ≤ 2 v(p0)

x(pn) ≤ 2 v(pn) + x(pn−1) , for 0 < n ≤ m− 1.

Solving this recursion, we obtain that

x(pm−1) ≤ 2

m−1
∑

n=0

v(pn) .

Recall that, by algorithm, v(pn−1) < v(pn)/2, for 0 < n ≤ m. Hence, we
can rewrite x(pm−1) as follows:

x(pm−1) ≤ 2 v(pm−1)
m−1
∑

n=0

(1/2)n

≤ 4 v(pm−1)

≤ 2 v(p) .

Proof of Lemma 6.4. The proof follows directly from the last three lemmas.
By Lemma 6.5 and 6.6, the total value of packets of Type 1 and Type 2 that
are mapped to p is at most 2 v(p). Also, by Lemma 6.7, the total value of
packets of Type 3 that are mapped to p is at most 2 v(p).



81

Chapter 7

Open Problems

We discuss in this chapter several questions that are still open in the problem
of buffer management. In this work, we focus only on deterministic online
algorithms, so one major question that is common for all our models is how
randomization can be used to improve the upper bounds of the respective
problems. In the deterministic setting, improving the current upper and
lower bounds is another intriguing question for most of these models.

7.1 The FIFO Model

In the FIFO model, the only randomized algorithm known is due to Andel-
man [And05]. He presents a comparison-based algorithm which flips a coin
between two deterministic algorithms, one of them is greedy presented in
Chapter 2. Andelman shows that his algorithm is 1.75-competitive. Un-
fortunately, this is outperformed by the deterministic algorithm pg which
is known to be 1.732-competitive [EW09]. Moreover, the best known lower
bound on the competitive ratio of randomized algorithms is 1.25. Thus,
showing better randomized upper and lower bounds seems to be a challeng-
ing task that is still much far from being accomplished.

For general deterministic algorithm in this model, it is still unclear how
to reduce the gap between the current upper bound of 1.732 (of PG) and
the current lower bound of 1.419 given by [KMvS05]. The competitive ratio
of PG itself cannot be significantly improved as Englert and Westermann
[EW09] show a lower bound of 1.707 on its competitive ratio. Thus, one
needs to think of preemption rules that are cleverer than the preemption
rule of pg. One observation that may help in this direction is that pg is a
memoryless algorithm, i.e., its preemption decisions are based only on the
current configuration of the queue. So how would a history of previous send
events change the preemption decisions?

With respect to comparison-based algorithm, an interesting question is
whether a comparison-based algorithm with a competitive ratio close to



82 Chapter 7. Open Problems

1 + 1/
√

2 ≈ 1.707 could exist. If so, this would mean that we do not need to
know the actual values of packets in order to compete with pg, the best non-
comparison-based algorithm so far. If not, and in particular if 2 is the right
lower bound for any comparison-based algorithm, the desired robustness of
this kind of algorithms must come at a price, namely, a significantly degraded
performance.

7.2 The Model of Priority Queues

Randomization in the model of priority queues is even more vital from a
practical point of view. In practice, queuing as it is done in Chapter 3
is rarely used. The problem in this kind of greedy queuing is that queues
corresponding to small packet values may suffer from starvation. In other
words, if queues of high values are populated most of the time, the queues of
low values will not be served frequently enough and will thus overflow, which
leads to frequent packet loss. That will in turn lead to severely reduce the
sender’s transmission rate of the the lost packets as imposed by the TCP
mechanism. Therefore, a certain level of fairness must be guaranteed in
priority queuing policies.

In today’s switches, a randomized algorithm called Weighted Fair Queu-
ing (WFQ) is used. Simply stated, in each time step, WFQ sends a packet
of value vi from a non-empty queue with probability vi/

∑

j∈At
vj , where

At ⊆ {1, . . . ,m} corresponds to the set of non-empty queues at time t. It
is thus of great interest to assess the competitiveness of WFQ and other
randomized algorithms in terms of lower and upper bounds.

7.3 The CIOQ and Buffered Crossbar Models

Despite the considerable interest that the switching problem in the CIOQ
and buffered crossbar models has received, no result is known on any ran-
domized algorithm in these models. Furthermore, we are not aware of any
deterministic lower bounds that are constructed especially for these models.

As we showed in Section 1.7, the IQ model is a special case of these two
models, and a lower bound of 2−1/N is known for that model [AR05]. Thus,
this lower bound applies also to the CIOQ and buffered crossbar models.
However, the gap between this lower bound and the upper bounds we show
in this work is quite considerable, especially in the general-value case where
we show an upper bound of 5.828 in the CIOQ model and 14.828 in the
buffered crossbar model. Due to the complex interaction between input and
output queues in these models, we consider this problem as one of the most
challenging open problems in the area of buffer management—it is already
intriguing for us whether a lower bound that is only 2 + ǫ is attainable, even
in the unit-value case of the CIOQ model.



7.4. The Bounded-Delay Model 83

7.4 The Bounded-Delay Model

The main open problem in the model of packets with deadlines that we
consider in this work is to reduce the gap between the long-standing lower
bound of 4 [Woe94] and the most recent upper bound of 4.24 [Kim11] in the
case of general deadlines. Before tackling this general case, one may first
settle the problem in further special cases of deadlines, e.g., the s-bounded
case, where the deadline of any packet is no more than s time steps after
its arrival time, for a fixed s. Clearly, this is a special case of the agreeable-
deadline model, so it is settled by our result in the case where packets have
equal processing times. What about general processing times? Does it admit
a bounded competitive ratio in that case? In fact, even if all packets have
value 1, there is still a gap between a lower bound of 3/2 and an upper
bound of 2 given by Baruah et al. [BHS94]. Closing this gap has been a
challenging open problem.

The randomized version of this model is not settled either. The cur-
rent upper bound for the case of general deadlines is 3 [FPZ14], which is
implied from a 3-competitive algorithm for the so-called preemptive model
with restarts. That is, when a “job” (in the machine scheduling jargon) is
preempted, it cannot be processed again unless it is restarted from scratch.
In other words, jobs can only be completed as a whole, without interruption.
The current non-trivial lower bound is only known in the preemptive model
with restarts for barely randomized algorithms, i.e., algorithms that choose
between two deterministic algorithms at random. Fung et al. [FPZ14] show
that no barely randomized algorithm can be better than 2-competitive in
that model.

With respect to the variant of preemption with restarts, notice that the
deterministic lower bound of 4 holds also in this model. Thus, a natural
question in this case is whether our algorithm, sg, remains optimal with
this different concept of preemption.

Finally, in the related model of packets of size 1 and general deadlines,
a gap between the best known lower bound of 1.618 [Haj01, AMZ03, CF03]
and the current upper bound of 1.828 [EW07] still persists, which may reflect
an intrinsic difficulty in the case of general deadlines.



84 Chapter 7. Open Problems



85

Bibliography

[AB10] Kamal Al-Bawani. Competitive algorithms for packet buffering
in QoS networks. Master’s thesis, Freiburg University, 2010.

[ABEW16] Kamal Al-Bawani, Matthias Englert, and Matthias Wester-
mann. Comparison-based FIFO buffer management in QoS
switches. In Proc. of the 12th Latin American Theoretical In-
formatics Symposium (LATIN), pages 27–40, 2016.

[ABEWar] Kamal Al-Bawani, Matthias Englert, and Matthias Wester-
mann. Online packet scheduling for CIOQ and buffered crossbar
switches. In Proc. of the 28th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2016 (to appear).

[ABS13] Kamal Al-Bawani and Alexander Souza. Buffer overflow man-
agement with class segregation. Information Processing Letters,
113(4):145–150, 2013.

[AC15] Yossi Azar and Ilan Reuven Cohen. Serving in the dark should
be done non-uniformly. In Proc. of the 42nd Int. Colloquium on
Automata, Languages and Programming (ICALP), pages 91–
102, 2015.

[ACG13] Yossi Azar, Ilan Reuven Cohen, and Iftah Gamzu. The loss of
serving in the dark. In Proc. of the 45th ACM Symp. on Theory
of Computing (STOC), pages 951–960, 2013.

[AL06] Yossi Azar and Arik Litichevskey. Maximizing throughput in
multi-queue switches. Algorithmica, 45(1):69–90, 2006.

[AM03] Nir Andelman and Yishay Mansour. Competitive management
of non-preemptive queues with multiple values. In Proc. of the
17th Int. Conf. on Distributed Computing (DISC), pages 166–
180, 2003.

[AMRR00] William Aiello, Yishay Mansour, S. Rajagopolan, and Adi
Rosén. Competitive queue policies for differentiated services.



86 Bibliography

In Proc. Nineteenth IEEE Conf. on Computer Communications
(INFOCOM), volume 2, pages 431–440, 2000.

[AMRR05] William Aiello, Yishay Mansour, S. Rajagopolan, and Adi
Rosén. Competitive queue policies for differentiated services.
Journal of Algorithms, 55(2):113–141, 2005.

[AMZ03] Nir Andelman, Yishay Mansour, and An Zhu. Competitive
queueing policies for QoS switches. In Proc. of the 14th Annual
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 761–
770, 2003.

[And05] Nir Andelman. Randomized queue management for DiffServ.
In Proc. of the 17th ACM Symp. on Parallelism in Algorithms
and Architectures (SPAA), pages 1–10, 2005.

[AR04] Yossi Azar and Yossi Richter. The zero-one principle for switch-
ing networks. In Proc. of the 36th ACM Symp. on Theory of
Computing (STOC), pages 64–71, 2004.

[AR05] Yossi Azar and Yossi Richter. Management of multi-queue
switches in QoS networks. Algorithmica, 43:81–96, 2005.

[AR06] Yossi Azar and Yossi Richter. An improved algorithm for
CIOQ switches. ACM Transactions on Algorithms, 2(2):282–
295, 2006.

[AS06] Susanne Albers and Markus Schmidt. On the performance of
greedy algorithms in packet buffering. SIAM Journal on Com-
puting, 35(2):278–304, 2006.

[BCJ08] Marcin Bienkowski, Marek Chrobak, and  Lukasz Jeż. Random-
ized algorithms for buffer management with 2-bounded delay.
In Proc. of the 6th Workshop on Approximation and Online
Algorithms (WAOA), pages 92–104, 2008.

[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press, New York,
1998.

[BFK+04] Nikhil Bansal, Lisa Fleischer, Tracy Kimbrel, Mohammad Mah-
dian, Baruch Schieber, and Maxim Sviridenko. Further im-
provements in competitive guarantees for QoS buffering. In
Proc. of the 31st Int. Colloquium on Automata, Languages and
Programming (ICALP), pages 196–207, 2004.

[BHS94] Sanjoy K. Baruah, Jayant Haritsa, and Nitin Sharma. On-line
scheduling to maximize task completions. In Real-time systems
symposium, pages 228 – 236, 1994.



Bibliography 87

[BM08] Marcin Bienkowski and Aleksander Madry. Geometric aspects
of online packet buffering: An optimal randomized algorithm
for two buffers. In Proc. of the 8th Latin American Symp. on
Theoretical Informatics (LATIN), pages 252–263, 2008.

[CCF+06] Francis Y. L. Chin, Marek Chrobak, Stanley P. Y. Fung, Wo-
jciech Jawor, Jǐŕı Sgall, and Tomáš Tichý. Online competitive
algorithms for maximizing weighted throughput of unit jobs.
Journal of Discrete Algorithms, 4(2):255–276, 2006.

[CF03] Francis Y. L. Chin and Stanley P. Y. Fung. Online scheduling
for partial job values: Does timesharing or randomization help?
Algorithmica, 37:149–164, 2003.

[cis06] Internetworking Technology Handbook, chapter 49. Cisco Sys-
tems, Inc., 2006.

[CJST07] Marek Chrobak, Wojciech Jawor, Jǐŕı Sgall, and Tomáš Tichý.
Online scheduling of equal-length jobs: Randomization and
restarts help. SIAM Journal on Computing, 36(6):1709–1728,
2007.

[CLTW04] Wun-Tat Chan, Tak Wah Lam, Hing-Fung Ting, and Prudence
W. H. Wong. New results on on-demand broadcasting with
deadline via job scheduling with cancellation. In Proc. of the
10th International on Computing and Combinatorics Confer-
ence, pages 210 – 218, 2004.

[DJT12] Christoph Dürr,  Lukasz Jeż, and Nguyen Kim Thang. On-
line scheduling of bounded length jobs to maximize throughput.
Journal of Scheduling, 15:653 – 664, 2012.

[EJSvS16] Leah Epstein,  Lukasz Jeż, Jǐŕı Sgall, and Rob van Stee. Online
scheduling of jobs with fixed start times on related machines.
Algorithmica, 1(1):156–176, 2016.

[EW07] Matthias Englert and Matthias Westermann. Considering sup-
pressed packets improves buffer management in QoS switches.
In Proc. of the 18th Annual ACM-SIAM Symp. on Discrete Al-
gorithms (SODA), pages 209–218, 2007.

[EW09] Matthias Englert and Matthias Westermann. Lower and upper
bounds on FIFO buffer management in QoS switches. Algorith-
mica, 53(4):523–548, 2009.

[FPZ14] S.P.Y. Fung, C.K. Poon, and F. Zheng. Improved randomized
online scheduling of intervals and jobs. Theory Comput. Syst,
55(1):202–228, 2014.



88 Bibliography

[Gol10] Michael H. Goldwasser. A survey of buffer management policies
for packet switches. SIGACT News, 41:100–128, 2010.

[Haj01] B. Hajek. On the competitiveness of online scheduling of unit-
length packets with hard deadlines in slotted time. In Proc.
35th Conf. in Information Sciences and Systems (CISS), pages
434–438, 2001.

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM Journal on
Computing, 2(4):225–231, 1973.

[IT06] Toshiya Itoh and Noriyuki Takahashi. Competitive analysis of
multi-queue preemptive QoS algorithms for general priorities.
IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences, E89-A(5):1186–1197, 2006.

[IY15] Toshiya Itoh and Seiji Yoshimoto. Buffer management of multi-
queue QoS switches with class segregation. Theoretical Com-
puter Science, 589:24–33, 2015.

[JLSS12]  Lukasz Jeż, Fei Li, Jay Sethuraman, and Clifford Stein. Online
scheduling of packets with agreeable deadlines. ACM Transac-
tions on Algorithms, 9(1):Article 5, 2012.

[Kim11] Thang Nguyen Kim. Improved online scheduling in maximizing
throughput of equal length jobs. In Proc. of the 6th Interna-
tional Computer Science Symposium in Russia (CSR), pages
429 – 442, 2011.

[KKM15] Jun Kawahara, Koji M. Kobayashib, and Tomotaka Maeda.
Tight analysis of priority queuing for egress traffic. Computer
Networks, 91:614–624, 2015.

[KKS10] Alex Kesselman, Kirill Kogan, and Michael Segal. Packet mode
and QoS algorithms for buffered crossbar switches with FIFO
queuing. Distributed Computing, 23(3):163–175, 2010.

[KKS12a] Alex Kesselman, Kirill Kogan, and Michael Segal. Best ef-
fort and priority queuing policies for buffered crossbar switches.
Chicago Journal of Theoretical Computer Science, 2012(5):1–
14, 2012.

[KKS12b] Alex Kesselman, Kirill Kogan, and Michael Segal. Improved
competitive performance bounds for CIOQ switches. Algorith-
mica, 63(1-2):411–424, 2012.



Bibliography 89

[KLM+04] Alexander Kesselman, Zvi Lotker, Yishay Mansour, Boal Patt-
Shamir, Baruch Schieber, and Maxim Sviridenko. Buffer over-
flow management in QoS switches. SIAM Journal on Comput-
ing, 33(3):563–583, 2004.

[KMvS05] Alex Kesselman, Yishay Mansour, and Rob van Stee. Improved
competitive guarantees for QoS buffering. Algorithmica, 43(1-
2):97–111, 2005.

[KR06] Alex Kesselman and Adi Rosén. Scheduling policies for CIOQ
switches. Journal of Algorithms, 60(1):60–83, 2006.

[KR08] Alex Kesselman and Adi Rosén. Controlling CIOQ switches
with priority queuing and in multistage interconnection net-
works. Journal of Interconnection Networks, 9(1-2):53–72, 2008.

[KR12] James F. Kurose and Keith W. Ross. Computer networking: a
top-down approach. Pearson Education, Inc., 6th edition, 2012.

[LPS03] Zvi Lotker and Boaz Patt-Shamir. Nearly optimal FIFO
buffer management for two packet classes. Computer Networks,
42(4):481–492, 2003.

[LTWW94] Will E. Leland, Murad S. Taqqu, Walter Willinger, and
Daniel V. Wilson. On the self-similar nature of ethernet traffic
(extended version). IEEE/ACM Transactions on Networking,
2(1):1–15, 1994.

[MPSL00] Yishay Mansour, Boaz Patt-Shamir, and Ofer Lapid. Optimal
smoothing schedules for real-time streams. In Proc. 19th ACM
Symp. on Principles of Distributed Computing (PODC), pages
21–29, 2000.

[MPSL04] Yishay Mansour, Boaz Patt-Shamir, and Ofer Lapid. Optimal
smoothing schedules for real-time streams. Distributed Comput-
ing, 17(1):77–89, 2004.

[PF95] Vern Paxson and Sally Floyd. Wide-area traffic: the failure
of Poisson modeling. IEEE/ACM Transactions on Networking,
3(3):226–244, 1995.

[ST85] Daniel Sleator and Robert Tarjan. Amortized efficiency of
list update and paging rules. Communications of the ACM,
28(2):202–208, 1985.

[VB00] Andras Veres and Miklós Boda. The chaotic nature of TCP con-
gestion control. In Proc. of the 19th IEEE Conf. on Computer
Communications (INFOCOM), pages 1715–1723, 2000.



90 Bibliography

[Woe94] Gerhard J. Woeginger. On-line scheduling of jobs with fixed
start and end times. Theoretical Computer Science, 130(1):5 –
16, 1994.

[Zhu04] An Zhu. Analysis of queueing policies in QoS switches. Journal
of Algorithms, 53(2):137–168, 2004.


