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We present a nonparametric facial feature localization method using relative directional information between regularly sampled
image segments and facial feature points. Instead of using any iterative parameter optimization technique or search algorithm, our
method 	nds the location of facial feature points by using a weighted concentration of the directional vectors originating from
the image segments pointing to the expected facial feature positions. Each directional vector is calculated by linear combination
of eigendirectional vectors which are obtained by a principal component analysis of training facial segments in feature space of
histogram of oriented gradient (HOG). Our method 	nds facial feature points very fast and accurately, since it utilizes statistical
reasoning from all the training data without need to extract local patterns at the estimated positions of facial features, any iterative
parameter optimization algorithm, and any search algorithm. In addition, we can reduce the storage size for the trained model by
controlling the energy preserving level of HOG pattern space.

1. Introduction

�e vision-based face monitoring became one of the con-
venient human-computer-interaction (HCI) tools since face
region detection and tracking algorithms [1–3] have been
proposed. To realizeHCI tool formobile devices, we still need
a low time andmemory consuming technique to avoid heavy
load in pattern searching or matching algorithm.

In this paper, we adopt the approach of [4] which
uses regularly distributed image segments and a codebook
calculated in a training phase. Instead of storing all HOG
pattern plus all directional vectors to the feature points
as a codebook, we introduce eigen-HOGs (EHOGs) and
eigendirectional vectors (EDVs) and propose a completely
new training and nonparametric inferring procedure based
on a compact codebook containing these EHOGs and EDVs,
which allows signi	cantly reducing the memory requirement
for the codebook and enables running in hardware of low
performance, for example, mobile applications. Our new
inferring procedure computes for every image segment a set
of directional vectors pointing the prospective feature point

positions. Using the compact codebook, such directional
vectors are not simply the bestmatch but a linear combination
of EDVs where the coe�cients for these combinations are
derived from the projection of the HOG to the EHOG space.
Such a computation does not rely on a computationally
expensive search algorithm and therefore is very e�cient.We
show in our experiments that linearly combining EDVs is a
better choice, in the sense of accuracy, than simple taking
the best match. As we will show in the experiments, our new
inferring procedure is able to handle occlusions e�ciently
and robustly.

Related Work. Recently, several methods [4–12] for 	nding
locations of facial feature points, for example, corners of eyes,
eye brushes, mouth, nose tip, beyond detection, and tracking
of region center and area have been proposed because of the
needs for more accurate recognition of user’s subtle intension
like expression. �ey can be categorized into two di
erent
methodologies, that is, iterative parameter optimization and
nonparametric localization.
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Iterative parameter optimization methods [5–9] de	ne
the facial feature localization as a parameter optimization
problem and solve it by iteratively 	nding least squares
solution for a prede	ned error metric. Active shape model
(ASM) [5, 6], active appearance model (AAM) [7–9], and
3D morphable model (3DMM) [10] are the statistical models
which arewidely used for facial feature localization by 	nding
optimal parameters of shape and 2D or 3D texture. Although
they show good results with some constraints on parameters,
they need to set an initial position near optimumand iterative
minimization of energy function. In particular, calculation of
larger sized hessian matrix is requisite for 	tting 3DMM and
this causes high computational complexity.

As a nonparametric localization method, Chen et al.
[11] calculated the positions of facial feature points by using
pixel likelihood maps. �ey divided facial region into sev-
eral segments corresponding to each feature point. �en,
likelihood maps for each feature point related to the image
segments were calculated by using the classi	er trained
by boosting strategy. �is algorithm showed very accurate
localization result and fast performance with illumination
and scale invariance. However, their method needs a large
bundle of nonface training images and cannot deal with
occlusion. Kozakaya et al. [4] proposed the codebook-based
approach which uses relative directional vectors from regu-
larly divided segment of face image to feature points. �ey
made a codebook which consists of histogram of oriented
gradient (HOG) [12] patterns of all training segments, HOG
patterns of all facial feature points, and relative directional
vectors from all segment centers to facial feature points.
For the input face image, they divided face images into
canonical segments and found the most similar one from
codebook by comparing HOG patterns of input and train-
ing segments with approximated nearest neighbor search
(ANNS) algorithm [13]. Finally, they calculated the positions
of facial feature points by weighted vector concentration
(WVC) algorithm which calculates the crossing points of
the relative direction vectors corresponding to the found
segments. �eir algorithm showed a better performance in
accuracy than the extended ASM (STASM) [6], the state-
of-the-art. Additionally, it could 	nd the occluded feature
points from the nonoccluded segments. However, a huge size
of storage for codebook, about 600 megabytes for thousands
of training images, is inevitable because codebook size is
proportional to the number of training segments while a large
number of training segments are necessary for generalized
performance.

Overview. Figure 1 shows the proposed facial feature local-
ization frame work. First, coarse face region on the input
face image is detected by Viola-Jones face detector [1]. And
then the image inside the detected region is resized into a
canonical size and segmented into a number of regularly
positioned blocks. HOG of each block is calculated and
projected onto the EHOGs space of that segment to get the
projection coe�cients. With these coe�cients, directional
vector from segment center to feature point is calculated
by linear combination of EDVs. Here, whether the block is
occluded or not is concluded by checking these projection

coe�cients and similarity measure of the trained and the
input HOG patterns. Finally, the position of feature point is
calculated by WVC [4].

�e remainder of this paper is organized as follows.
Section 2 shortly repeats how to compute histograms of ori-
ented gradients (HOG). Performing a principal component
analysis (PCA) on theHOGs, we compute EHOGs and EDVs
in order to train the compact codebook (Section 3). Section 4
describes the localization procedure of facial features given
a single input image. Experimental results are presented in
Section 5 and we conclude this work in Section 6.

2. Histograms of Oriented Gradients

HOG is a well-known feature for its illumination invariance
and high distinctiveness [12]. Similar to [4], we detect the
facial region in each training and input image using theViola-
Jones face detector [1]. We resize the detected facial region
to 72 × 72 pixels and place the centers of partial overlapping
image segments on a regular 9 × 9 grid, which de	nes a
set of 81 image segments. Here, resizing is for no waste of
pixel on the face image in calculating HOG and the resizing
does not a
ect the image ratio. For each image segment �,
we compute a histogram of oriented gradients HOGs. As in
[4, 12, 14] experimentally validated, we use three unsigned
orientation bins and 3 × 3 blocks of 4 × 4 cells of 5 × 5 pixels,
such that each segment has 30 × 30 pixel. Figure 5 shows the
canonical centers of the segments and the cell division. We
extract the histogram of each cell by adding the magnitude
of each of the pixels gradients to the bin corresponding to its
orientation. �e histograms of all cells within one block are
concatenated and the resulting histogram is normalized. �e
	nal histogram is computed by concatenating the histograms
of all blocks which is also normalized. See [12] for more
details.

3. Compact Codebook: Computing
Eigen-HOGs (EHOGs) and
Eigendirectional Vectors (EDVs)

Using HOG patterns themselves requires a huge amount of
memory because it needs to store all the high dimensional
patterns, that is, HOG patterns of training segments, HOG
patterns of feature points, and their corresponding direc-
tional vectors. Several hundredmegabytes of storage space for
thousands of training images is inevitable for that. Since such
extensive memory consumption is far too much for a facial
feature localization application, we propose to use principal
component analysis (PCA) as a data regression technique to
reduce the codebook size.

In order to compute the compact codebook, we collect
a set of histograms of oriented gradients from � training
images. For training image � and segment �, we extract an
HOG ℎ�� . We assume that facial features have been assigned
such that we can store for image � a set of directional

vectors V
�,�
� which points from the center of segment � to

the feature point �. Here � is the index of one of the �
manually annotated feature points. From the histogram data,



Computational Intelligence and Neuroscience 3

Segment number 1

Feature point

Coarse face region detection Block segmentation

Projection onto eigen HOG 

space of segment number 1

HOG of segment number s

Projection onto eigen HOG

space of segment number s

HOG of segment number 1

Calculation of HOG and its projection

Weighted vector concentration

Linear combination of 

eigen directional vectors

Cs

C1

...

Figure 1: �e proposed facial feature localization method. Yellow rectangle on the top le� image represents coarse face region from Viola-
Jones face detector. �e green spots near eyebrows are centers of segments. �e red spot on the bottom right image is a feature point, le�
corner of lip. �e orange arrows are the directional vectors from segment centers to feature point.

we construct for each segment � amatrix��HOG = [ℎ�1, . . . , ℎ��]
where the columns contain the histograms ℎ�� obtained from
the n training images. Running PCAon such amatrix extracts
an average histogram ℎ�avg and eigenhistograms ℎ��1 ⋅ ⋅ ⋅ ℎ���,
with 
 = � − 1. We assume that the eigenhistograms
are sorted according to their signi	cance; that is, ���1 >⋅ ⋅ ⋅ > ����, where ��ei is the eigenvalue of the eigenhistogramℎ�ei. To reduce dimensionality, only the � most signi	cant
eigenvectors are stored in the columns of a matrix��EHOG =[ℎ�ave, ℎ��1, . . . , ℎ����]. Here �� is chosen such that at least a 	xed
fraction 
 (e.g., 0.9) of variance (energy) is preserved:


 ≤ ∑�
�

	=1 ���	∑�	=1 ���	 . (1)

A�er PCA, EHOGs can be represented as a linear combi-
nation of HOGs

��HOG ⋅ �� = ��EHOG, (2)

where �� ∈ R
�×(��+1) is a coe�cient matrix which is

computed as

�� = (��HOG


 ⋅ ��HOG)−1��HOG


 ⋅ ��EHOG. (3)

We use this coe�cients matrix to compute the eigendirec-
tional vectors for every facial feature point � and segment �
as

��,�EDV = ��,� ⋅ ��, (4)

where ��,� = [V�,�1 , . . . , V�,�� ] ∈ R
2×� and ��,�EDV = [V�,�ave,

V
�,�
�1 , . . . , V�,����] ∈ R2×(��+1). �e whole procedure of codebook
making is depicted in Figure 2.

4. Localizing Facial Features

In what follows, we describe how we compute the position of
facial features in a new input image, as during the training
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Figure 2: Calculating EHOGs and EDVs.

we detect the facial region using the Viola-Jones face detector
[1]. As pointed out in Section 2, we resize this region to 72 ×
72 pixels and regularly position the centers of 9 × 9 segments
in the resampled face region. �en, we compute histograms
of oriented gradients ℎ� for each segment �. Each HOG can
be approximated as a linear combination of EHOGs where
the coe�cients are obtained by a simple and fast projection
step. We use these coe�cients to compute directional vectors
to all facial features as a linear combination of EDVs and use
a similarity-based and a distance-based integration approach
to infer the positions of the facial features. As the 	nal step,
the localization result in 72 × 72 pixel sized image is resized
into the original image size.

4.1. Computing Directional Vectors from Face Segments to the
Feature Points. In our method, we do not rely on any time
consuming search algorithm like ANNS [13] to compute the
best matching HOG from the codebook. In what follows
we describe how we compute the � directional vectors to
the feature points originating from the segment �. Assuming

theHOGof this segment to beℎ�, we can compute coe�cients[�1, . . . , ���] such that

ℎ� ≈ ℎ�ave +
��∑
�=1
��� ℎ�ei. (5)

�e coe�cients can be computed by projection as ��� = ⟨ℎ� −ℎ�ave, ℎ�ei⟩, where ⟨�, �⟩ represents the inner product.
In order to compute the directional vector V�,� from the

center of the segment to the feature �, we use these coe�cients
to linearly combine the EDVs:

V
�,� = V�,�ave +

��∑
�=1
��� V�,�ei . (6)

Figure 3 shows the procedure of calculating a directional
vector.

4.2. Computing Final Feature Point Positions by a Weighted
Vector Concentration (WVC). A�er computing the direc-
tional vectors pointing from the segments centers to the
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Figure 3: Calculating the directional vector of a segment.

feature points, WVC [4] is used to calculate the positions of
feature points such that they have the least weighted sum of
squared distances from the lines of directional vectors as

argmin
��,��


∑
�=1
�2� �������� + ���� + ������2 , (7)

where�� is the weight of segment �, (��, ��) is the coordinate
of facial feature point �, (��, ��, ��) is the coe�cients of linear
equation ��� + ��� + �� = 0 with �2� + �2� = 1 representing the
line going through the center of segment � and feature �, and� is the total number of facial segments.

For the weights of segments, 	rst we de	ne the similarity-
based weight for the directional vector of segment � as the
inner product of ℎ� and its projection onto the �th EHOGs
space:

�� = ⟨ℎ�, ℎ�ave +
��∑
�=1
��� ℎ�ei⟩. (8)

�e dot product of the HOG extracted at the prospective fea-
ture position with the HOG at the feature position observed
in the training data is a good indicator for the correctness
of the directional vector if the face is not occluded [4].
However, if the input face image is partially occluded, the
HOG extracted at the occluded prospective feature position
is much di
erent from the trained one even though the
HOG patterns of the corresponding image segments are
very similar to each other. Note that we do not extract
an HOG at positions predicted by each directional vector
to compute ��, which is computationally quite expensive
since we need to extract � × " of HOGs. We rather use
our quality measurement based on the Mahalanobis distance
whichmeasures the similarity of unknown samples to known
ones. Compared to the eigenvalues ���1, . . . , ����� , if one of the
projection coe�cient squares ���� exceeds 2.5-sigma (standard

deviation) bound, we infer that the observedHOG is far away

from the distribution of HOG of the corresponding segment.
In such case, we explicitly set its weight to zero

�� = {{{
��� if

&&&&&����&&&&& < 2.5√���� for * = 1 ⋅ ⋅ ⋅ ��,
0 otherwise. (9)

�e second weight is based on distance measure in
position. We use Gaussian kernel function among the kernel
functions of square distance to give larger weights to the
segment closer to the feature point than those far from the
feature point

�� = ��� ⋅ -−	2/�2 , (10)

where / is the distance between segment center and feature
point and 3 is the half length of rectangular region of face.

�e remainder of the WVC procedure goes through
LMedS [15] and distance-based weighting which are same to
the WVC procedure of [4].

5. Experimental Results

In this section, we compare our method using EHOGs and
EDVs to the original codebook approach [4] which used
HOGs and a nearest neighbor search in storage size, local-
ization accuracy, and processing speed. For all experiments,
we used a Pentium 4 PC with a 2.6GHz Quad core CPU and
2GB memory.

5.1. Training. We gathered 969 upright frontal-view face
images from various sources by using Viola-Jones face detec-
tor [1]. We manually marked 21 facial feature points like eyes,
eyebrows, nose, and mouth (see Figure 4). �ese images and
facial feature points were used as the training data to make
EHOGs and EDVs.

For an HOG descriptor of a segment, we used three
unsigned orientation bins and 3 × 3 blocks of 4 × 4 cells of
5× 5 pixels whichwas determined by preliminary experiment
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LB1: le� eyebrow, inner corner

LB2: le� eyebrow, center

LB3: le� eyebrow, outer corner
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LE3: le� eye, outer corner 
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Figure 4: De	nition of 21 facial feature points.
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Figure 5: Canonical segmentation of face image. Yellow asterisks
stand for the centers of segments, white stitched rectangles stand for
cells, cyan rectangle stands for block, and red rectangle stands for
segment.

in [4, 14]. �erefore, each segment has 30 × 30 pixel size and
each face image has 9 × 9 segment array. Figure 5 shows the
canonical centers of segments and cell division. �e 	rst and
the last rows and columns of pixel are not used because HOG
cannot be calculated on them due to the lack of gradient.
78489 (969 images and 81 segments per image) of local HOG
patterns and 1648269 (969 images, 81 segments per image,
and 21 feature points per segment) of directional vectors for
all the training segments were calculated with this parameter
setting. Additionally, 20349 (969 images and 21 feature points
per image) of local likelihood HOG patterns [4] for all facial
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Figure 6: Storage size versus energy preserving level.

feature points were calculated. �e set of the local HOG
patterns, the directional vectors, and the local likelihood
HOG patterns was stored as an original codebook [4] for the
purpose of performance comparison. Next, the local HOG
patterns and the directional vectors went through a further
process which is explained in Section 3 to make EHOGs and
EDVs for each segment with varying energy preserving level.

5.2. Storage Size. Figure 6 shows the required storage size
for EHOGs and EDVs versus energy preserving level of
PCA. While the original codebook needs about 185MB of
storage size, the storage size of our method is drastically
reduced as the energy preserving level decreases. When
the energy preserving level is 70%, the storage size reaches
20 times less size than original codebook. Even when the
energy preserving level is 99%, the storage size is less than a
quarter of original codebook size. �is means that the HOG
pattern space of facial image segment has a large amount
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Figure 7: Localization error versus computation time.

of redundancy and that applying PCA e
ectively saves the
storage size.

5.3. Test of Feature Point Localization without Occlusion.
We evaluated the proposed method (EHOGs + EDVs) with
FERETduplicate I dataset [16] and compared its performance
with that of HOG + NNS [4]. �e probe set of FERET which
consists of 722 images was selected for test and we manually
marked 21 facial feature points on the images as the ground
truth. Note that the training set in Section 5.1 is independent
of this test set. As the 	rst step of localization test, detected
face regions on FERET face images by using Viola-Jones face
detector [1] were resized into 72 × 72 pixels. �en, with the
same face region information, our method and HOG + NNS
method were applied to detect 21 facial feature points. Here,
we used approximation error 4 = 0 for ANNS for the best
matching result with exact NNS.

Figure 7 shows how the feature localization error and the
computation time change according to the energy preserving
level of the proposed method. �e computation time repre-
sents the average time consumption for HOG calculation and
directional vector calculation on an input image. Detection
errorwasmeasured as the pixel distance between the detected
feature points and the manually marked ground truth. �e
mean pixel error was calculated as the average of the pixel
distances divided by the distance between two eye centers.
As the energy preserving level goes down from 90% to
10%, the computation time also goes down because the less
number of EHOGs and EDVs requires the less computational
cost for directional vector calculation in Section 4.1. “Error
level of NNS” (0.0507) is the localization error obtained by
using original codebook of HOG pattern and NNS, which
is the best performance with original codebook. Compared
to this error level, energy preserving level more than 80%
is allowable because it maintains the accuracy above 97% of
“error level of NNS.”

Note that the localization error of the energy preserving
level above 90% is smaller than the “error level of NNS.”
�is is very impressive result because the proposed method
not only reduces storage size but also improves localization

accuracy. �is seems to be happening because the proposed
algorithm calculates more accurate directional vector by
integrating the directional vectors of the training segments
while nearest search algorithm	nds the bestmatched pattern
in codebook and just uses the directional vector of that
matched pattern. �erefore, the proposed method with high
energy preserving level performed better by utilizing the sta-
tistical characteristic of segments than the original codebook-
based approach [4] did. Figure 8 shows the localization result
for each facial feature point. Average errors (and standard
deviations) for the proposed method (EHOGs + EDVs)
with 60%, 80%, 95%, and 99% and the original codebook-
basedmethod with exact nearest neighbour search algorithm
(HOG + NNS) are 0.0572 (0.0193), 0.0526 (0.0189), 0.0475
(0.0167), 0.0457 (0.0156), and 0.0507 (0.136).

5.4. Test for Facial Feature Localization with Partial Occlusion.
For the test of robustness against partial occlusion, we put a
white block on the test images of Section 5.2. �e size of the
white block was 10% of the area of input facial region and its
positions were randomly set on the facial region. �en, we
applied our method and the HOG + NNS to these occluded
images.

�e result of the facial feature localization with occlusion
is shown in Figure 9. �e tendency of average accuracy is
similar to the nonoccluded case (Figure 8). However, the
increment of error is higher withHOG+NNS than EHOGs+
EDVs. In particular, for the right eye brow (RB3), right eye
(RE1-4), and mouth (LM, RM, and BM), the error increment
is much higher than the proposed method. As explained in
Section 4.2, HOG + NNS used similarity measure of local
likelihood pattern of facial feature point which is occluded
and resulted in higher error increment than our proposed
method which used HOG pattern of segment to give the
nonoccluded segment a high certainty.

Figure 10 shows several sample results of the proposed
facial feature localization with 90% energy preserving level
without or with 10% occlusion. �e images on top row are
the results without occlusion and those on bottom row with
occlusion. �e blue rectangle represents coarse face region
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(a)

(b)

Figure 10: Sample results of the proposed facial feature localization with 90% energy preserving level on FERET face images without (a) or
with 10% occlusion (b).

detected byViola-Jones face detector [1], green dots represent
the segment centers, and red dots represent the detected facial
feature points. �e proposed method localized the feature
points correctly on nonoccluded faces. And even on occluded
faces, it estimated the locations of the occluded feature points
from directional information of the nonoccluded segments.
For the 	�h column of images of Figure 10, the face is rotated
by 20 degrees from upright position and this caused incorrect
localization of feature points because our training database
does not have any rotated images.�is can be easily dealt with
some existing techniques of image alignment or learningwith
augmented training data.More about this will be discussed in
conclusion session.

5.5. Overall Performance Comparison. �e time consump-
tion, the required storage size, and the accuracy of the tested
algorithms are summarized in Table 1 for the performance
comparison at a glance. Our method is very fast, accurate,
and low storage consuming over HOG + ANNS (4 = 10
as [4]) and HOG + NNS. Because they need much more
calculations of HOG patterns of the prospective facial feature
points (81 segments × 21 feature points = 1701 calculations)
than our method, they need hundreds of milliseconds in
HOG calculation. EHOGs + EDVs with 80% energy as the
best choice of ourmethod with regard to the balance between
storage size and accuracy has 16 times less storage and a little
smaller error than HOG + ANNS method.

6. Conclusion

In this work, we proposed a new algorithm to localize facial
feature points. Adopting the framework of original codebook
method [4], we introduced a new way to deduce directional
vector pointing to facial feature without using any time
consuming search algorithm. First we employed PCA to learn
a compact codebook from a set of HOGs extracted at regular
placed segment within the facial region and directional
vectors pointing from these segments to manually selected
facial feature points. Second, a simple linear combination of
segmental directional vectors allowed computing the direc-
tions to the feature points. �ird, the energy preservation
level was used to control the tradeo
 between storage size
and accuracy of the localization. By comparing our method
to the original codebookmethod, we experimentally justi	ed
that our method with an energy preservation level around
80% drastically reduces the memory consumption (94%
of the original codebook is saved) and time consumption
while producing a comparable localization error. Our new
occlusion handling is based on the distribution of the HOGs
in the training data and we also experimentally showed that
this approach handles occlusions very robustly.

We start the facial feature localization from the detected
coarse face region which is aligned to upright. Since our
database does not contain pose varying faces like one shown
in the right-most column of Figure 10, we have problems to
infer the correct feature positions in such cases. One could
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Table 1: Performance comparison of facial feature localization.

Method\Process HOG
calculation

Directional vector
EDVs or ANNS or

NNS

WVC
Total time

consumption
Storage size (%)

Average error/standard deviation
(with 10% occlusion)

EHOGs + EDVs 60%

3ms

3ms 11ms 5.0MB (2.7%) 0.0572/0.0193 (0.0593/0.0213)

EHOGs + EDVs 80% 7ms

5ms

15ms 11.4MB (6.2%) 0.0526/0.0189 (0.0571/0.0204),

EHOGs + EDVs 95% 16ms 24ms 25.5MB (13.8%) 0.0475/0.0167 (0.0515/0.0192),

EHOGs + EDVs 99% 25ms 33ms 39.8MB (21.5%) 0.0457/0.0156 (0.0506/0.0189),

HOG + ANNS [4]
(4 = 10) 483ms

16ms 499ms 185.3MB (100%) 0.0527/0.0151 (0.0631/0.0185)

HOG + NNS
(ANNS with 4 = 0) 1490ms 1978ms 185.3MB (100%) 0.0507/0.0136 (0.0602/0.0174)

easily tackle the in-plane rotation problem by adopting image
registration techniques [17, 18] as the prior step of our com-
pact codebook approach. In particular, because generalized
hyperplane approximation (GHA) [18] achieved very good
alignment result by regression learning and HOG is also
used in this approach, using GHA is better in computation
time and algorithm consistency. For the out-of-plane rotation
problem, we can add pose variations of somewhat pro	le
or out-of-plane rotated faces to the training database. �is
has been done by the machine-learning-based method like
regression learning [19] or neural network approach [20]
and achieved competitive out-of-plane rotation invariant
results. But adding more samples to training data will make
additional bases in eigen-HOGs or eigendirectional vectors
and this will give some increase in codebook storage. We
focused on compact codebook and eigenfeatures in this work
and the combination with those methods and more analysis
about this remained as a future work.
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