Search for anomalous single top quark production in association with a photon in pp collisions at $\sqrt{s} = 8$ TeV

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

ABSTRACT: The result of a search for flavor changing neutral currents (FCNC) through single top quark production in association with a photon is presented. The study is based on proton-proton collisions at a center-of-mass energy of 8 TeV using data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.8 fb$^{-1}$. The search for $t\gamma$ events where $t \rightarrow Wb$ and $W \rightarrow \mu\nu$ is conducted in final states with a muon, a photon, at least one hadronic jet with at most one being consistent with originating from a bottom quark, and missing transverse momentum. No evidence of single top quark production in association with a photon through a FCNC is observed. Upper limits at the 95% confidence level are set on the $tu\gamma$ and $tc\gamma$ anomalous couplings and translated into upper limits on the branching fraction of the FCNC top quark decays: $B(t \rightarrow u\gamma) < 1.3 \times 10^{-4}$ and $B(t \rightarrow c\gamma) < 1.7 \times 10^{-3}$. Upper limits are also set on the cross section of associated $t\gamma$ production in a restricted phase-space region. These are the most stringent limits currently available.

KEYWORDS: Flavour Changing Neutral Currents, Hadron-Hadron scattering (experiments), Top physics

ArXiv ePrint: 1511.03951
1 Introduction

Evidence of physics beyond the standard model (SM) can be sought in measurements of the rates of flavor changing neutral currents (FCNC) in the top quark sector. Within the SM, top quark FCNC transitions are extremely suppressed by the GIM mechanism \[1\]. The predicted branching fraction (B) for \(t \to u\gamma \) and \(t \to c\gamma \) decays are approximately \(10^{-14} \) \[2\]. However, an enhancement of several orders of magnitude is predicted in some extensions of the SM, resulting in branching fractions observable at the LHC in some cases \[3, 4\]. Therefore, observation of these rare top quark decay modes would be indicative of physics beyond the SM.

Searches for FCNC \(tu\gamma \) and \(tc\gamma \) interactions have been carried out by several experiments, with as yet no indication of a signal. The measured upper limits at the 95% confidence level (CL) on the branching fraction of \(t \to q\gamma \), with \(q \) representing an up or charm quark, through single top quark production are 4.1% (L3) \[5\], 0.29% (ZEUS) \[6\], and 0.64% (H1) \[7\]. The 95% CL limit set by the CDF experiment through top quark pair production is \(B(t \to q\gamma) < 3.2\% \) \[8\].
The most general effective Lagrangian up to dimension-six operators, L_{eff}, used to describe the FCNC $tq\gamma$ vertex has the following form \[(1.1) \]:

$$L_{\text{eff}} = -eQ_t \sum_{q=u,c} q_{\nu} \frac{i\sigma^{\mu\nu} q_{\nu}}{\Lambda} (\kappa_{tq\gamma}^L P_L + \kappa_{tq\gamma}^R P_R) t A_\mu + \text{h.c.},$$

where e and Q_t are the electric charges of the electron and top quark, respectively, q_{ν} is the four-momentum of the photon, Λ is an effective cutoff, which conventionally is taken as the top quark mass, $\sigma^{\mu\nu} = \frac{i}{2}[\gamma^\mu, \gamma^\nu]$, and P_L and P_R reflect, respectively, the left- and right-handed projection operators. The strengths of the anomalous couplings are denoted by $\kappa_{tq\gamma}^L$ and $\kappa_{tq\gamma}^R$. No specific chirality is assumed for the FCNC interaction of $tq\gamma$, i.e., $\kappa_{tu\gamma}^L = \kappa_{tc\gamma}^L = \kappa_{tc\gamma}^R$. In the SM, the values of $\kappa_{tu\gamma}$ and $\kappa_{tc\gamma}$ vanish at the lowest tree level. A fully gauge-invariant effective-Lagrangian approach for parametrizing the top quark FCNC interactions has been studied in ref. [10]. The FCNC effective Lagrangian can be used to calculate both the branching fractions of the $t \rightarrow q\gamma$ decays and the cross sections for the production of a top quark in association with a photon.

The top quark FCNC processes can be probed through either top quark production or decay. In this paper, we examine the associated production of a single top quark and a photon, which is sensitive to the anomalous $tq\gamma$ FCNC coupling. The difference between quarks and antiquarks in the parton distribution functions (PDF) of the proton in the presence of a finite $tu\gamma$ coupling leads to an asymmetry between top and anti-top quark production rates. No asymmetry is expected for $tc\gamma$, because of the similar charm and anti-charm quark contents in the proton. This would allow a distinction between the $tu\gamma$ and $tc\gamma$ signal scenarios if these processes were observed [11]. Better sensitivity to the $tu\gamma$ coupling is expected because the up quark PDF in the proton is larger than that of the charm quark.

Within the SM, top quarks can also be produced in association with a photon. This proceeds through the radiation of a photon from the initial- or final-state particles in t-channel, s-channel, and W-associated production of single top quarks. These processes are treated as backgrounds in this analysis.

We search for FCNC interactions at the $tu\gamma$ and $tc\gamma$ vertices by looking for events with a single top quark and a photon in the final state, where the top quark decays into a W boson and a bottom quark, followed by the decay of the W boson to a muon and a neutrino. The final state includes $W^\pm \rightarrow \tau^\pm \nu_\tau$, events in which the τ lepton decays to $\mu \nu$. We focus on this particular leptonic decay because it has a very clean signature. Figure 1 illustrates the lowest-order diagram for this $t\gamma$ process including the muonic decay of the W boson from the top quark decay. The FCNC vertex is identified by a filled circle.

One of the distinctive signatures of the signal is the presence of a high transverse momentum (p_T) photon in the final state. The photon is expected to have large transverse momentum, owing to its recoil from the heavy top quark. The analysis is performed using events with a muon, a photon, at least one hadronic jet, with at most one being consistent with originating from a bottom quark, and missing transverse momentum. The results are compared with leading-order (LO) and next-to-leading-order (NLO) calculations of the FCNC signal production cross section based on perturbative quantum chromodynamics (QCD) [12].
Figure 1. Lowest-order Feynman diagram for single top quark production in association with a photon via a FCNC, including the muonic decay of the W boson from the top quark decay. The FCNC vertex is marked as a filled circle.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections are contained within the superconducting solenoid volume. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid.

The first level of the trigger system, composed of custom hardware processors, is designed to select the most interesting events in less than 4 μs, using information from the calorimeters and muon detectors. The high-level trigger processor farm further decreases the event rate from about 100 kHz to less than 1 kHz, before data storage.

A more detailed description of the CMS detector, together with a definition of the coordinate system and kinematic variables used in this analysis, can be found in ref. [13].

3 Data and simulation samples

The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.8 fb$^{-1}$, collected with the CMS detector at the CERN LHC.

Monte Carlo (MC) simulated signal samples of $pp \rightarrow t\gamma \rightarrow W^\pm b\gamma \rightarrow \ell^\pm \nu\ell b\gamma$, with ℓ representing e, μ, or τ leptons, are generated with the PROTOS 2.0 generator [14], with a minimum p_T requirement of 30 GeV for the associated photon. PROTOS is a LO generator for single top quark and $t\bar{t}$ production that includes anomalous top quark couplings.

To study the response of the analysis to the signal and to processes with potentially similar final-state signatures, simulated event samples of $t+\gamma$, $t\bar{t}$, $t\bar{t}+\gamma$, $W\gamma$+jets, $Z\gamma$+jets,
Drell-Yan, W+jets, and WWγ + jets events are generated using the LO MadGraph 5 generator [15]. Diboson samples (WW, WZ, and ZZ) are generated using PYTHIA 6 [16]. Single top quark events from tq-, tb-, and tW-channel are generated with the NLO POWHEG 1.0 [17–20] event generator. The NLO predictions for the main irreducible Wγ + jets background and the Zγ + jets process are calculated using the BAUR generator [21].

For all simulated samples, showering and hadronization are implemented with PYTHIA 6, and τ lepton decays with the tauola 2.7 program [22]. The CTEQ6L [23] PDFs are used to model the proton PDFs for the LO generators, while CT10 [24] is used for the NLO generators. The top quark mass is set to 172.5 GeV.

The response of the CMS detector is simulated with GEANT4 [25], and all simulated events are reconstructed and analyzed using the standard CMS software. The MC simulated events are weighted to reproduce the trigger and reconstruction efficiencies measured in data. The PYTHIA 6 generator is used to simulate the presence of additional proton-proton interactions in the same or nearby proton bunch crossings (pileup). The distribution of the number of pileup events in the simulation is weighted to match that in data.

4 Event selection and reconstruction of signal

The signal events are generally characterized by the presence of an isolated energetic photon, a muon, significant missing transverse momentum, and one b quark jet (b jet). The presence of an isolated muon and an isolated photon provides a clean signature for the signal. Events are initially selected with a single-muon trigger, requiring a muon with a minimum \(p_T \) of 24 GeV within the pseudorapidity range \(|\eta| < 2.1 \). Events are also required to have at least one well reconstructed pp interaction vertex candidate [26]. When more than one interaction vertex is found in an event, the one with the highest \(\sum p^2_T \) of its associated charged-particle tracks is called the primary vertex and selected for further analysis. The track associated with the muon candidate is required to be consistent with a particle coming from the primary vertex.

A particle-flow algorithm (PF) is used to reconstruct single-particle candidates, combining information from all subdetectors [27, 28]. The muon candidates are reconstructed by matching the information for tracks in the silicon tracker and the muon system. The muon candidates are required to have \(p_T > 26 \) GeV and \(|\eta| < 2.1 \). An accepted muon is required to have a relative isolation \(I_{\text{rel}} < 0.12 \), where \(I_{\text{rel}} \) is defined as the sum of the scalar \(p_T \) of all charged (except the muon candidate) and neutral PF candidates inside a cone of size \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.4 \) around the muon direction, divided by the muon \(p_T \), where \(\Delta \eta \) and \(\Delta \phi \) are the differences in the pseudorapidity and azimuthal angle between the directions of the PF candidate and the muon. To remove the contribution from pileup, the charged particles included in the calculation of \(I_{\text{rel}} \) are required to originate from the same vertex as the muon. Based on the average deposited energy density of neutral particles from pileup, a correction is applied to the neutral component in the isolation cone. One muon candidate is required in each event, and events with additional muon candidates with \(p_T > 10 \) GeV, \(|\eta| < 2.5 \), and \(I_{\text{rel}} < 0.2 \) are discarded.
Photon candidates with significant energy deposition in the ECAL are required to have a $p_T > 50$ GeV, with $|\eta| < 2.5$, but be outside of the transition region between the ECAL barrel and endcaps, $1.44 < |\eta| < 1.56$.

The isolation of photon candidates is defined using the following criteria: the ratio of the hadronic energy H to the total electromagnetic energy E (H/E) inside a cone of size $\Delta R < 0.15$ around the crystal containing the largest energy is required to be less than 0.05; the second moment of the electromagnetic shower in η ($\sigma_{\eta\eta}^2$) is required to be less than 0.011 (0.031) in the barrel (endcaps). Separate charged- and neutral-hadron isolation PF candidates inside a cone of size $\Delta R < 0.3$ around the photon candidate, are applied. For the barrel, charged- and neutral-hadron isolation values are required to be less than 0.7 GeV and $0.4 + 0.04 p_T^\gamma$, while for the endcaps they are required to be less than 0.5 GeV and $1.5 + 0.04 p_T^\gamma$ GeV, respectively, where p_T^γ is the transverse momentum of the photon candidate. The isolation criteria are corrected for additional interactions in the same bunch crossing [30]. A pixel detector track veto is employed to minimize the misidentification of an electron as a photon. Events with exactly one photon candidate are selected for further analysis.

Events with one or more electron candidates that pass loose selection requirements of $p_T > 20$ GeV, $|\eta| < 2.5$, and $I_{rel} < 0.15$ are rejected. The electron I_{rel} is defined in a manner similar to that for muons, using an isolation cone size of $\Delta R < 0.3$.

Jets are clustered from the reconstructed PF candidates, using the infrared- and collinear-safe anti-k_T algorithm with a distance parameter of 0.5 [31]. The charged hadrons originating from pileup interactions are excluded from the clustered PF candidates, and the remaining contributions from neutral particles are taken into account using a jet-area-based correction [30]. The momentum of a jet is defined as the vector sum of the momenta of all particles in the jet, and corrections to the jet energy are applied as a function of the jet p_T and η [32]. Only jets with $p_T > 30$ GeV and $|\eta| < 2.5$ are considered in the analysis.

The combined secondary vertex (CSV) algorithm [33, 34] is used to identify jets originating from the hadronization of b quarks. The algorithm combines the information from the secondary vertex and track impact parameters into a likelihood discriminant, whose output distinguishes between b jets and light-flavor jets. The chosen cutoff on the value of the discriminant corresponds to a b tagging efficiency of about 70%, while the misidentification probability is $\approx 18\%$ for c jets, and $\approx 1.5\%$ for other jets [33, 34].

To reduce the background from $t\bar{t}$ and $t\bar{t} + \gamma$ processes, events with more than one identified b jet are rejected. In events with no b-tagged jet, the jet with the largest value of the b tag discriminant is chosen as the b jet candidate. The missing transverse momentum vector, $\mathbf{p}_T^{\text{miss}}$, is defined as the negative vectorial sum of the momentum in the transverse plane of all PF objects. Its magnitude, p_T^{miss}, is required to be greater than 30 GeV. The direction of the photon candidate is required to be separated from the directions of the muon and b jet candidates by $\Delta R(\mu, \gamma) > 0.7$ and $\Delta R(\text{b jet}, \gamma) > 0.7$.

The top quark kinematic properties are reconstructed using the muon and b jet four-momenta and $\mathbf{p}_T^{\text{miss}}$. The p_T of the undetected neutrino is assumed to be equal to the magnitude of $\mathbf{p}_T^{\text{miss}}$, while its longitudinal component is obtained by constraining the in-
variant mass of the neutrino and muon to the world-average value of the W boson mass [35]. When the resulting quadratic equation has two real solutions, the one with the smaller absolute value of the longitudinal component of the neutrino momentum is taken [36]. When the solution is complex, the real part is considered as the longitudinal component of the neutrino momentum. The top quark candidate is reconstructed by combining the reconstructed W boson and the b jet candidate. Events with a reconstructed top quark invariant mass $m_{\mu\nu b}$ within 130 to 220 GeV are selected for further analysis. After all the selection criteria, signal efficiencies of 1.8% and 2.4% are achieved from simulation for $t\nu\gamma$ and $tc\gamma$ signal events, respectively.

5 Background estimation

The main background contributions arise from $W\gamma$+jets and W+jets events, where the W+jets background can mimic the signal when a jet is misidentified as a photon. The $W\gamma$+jets and W+jets backgrounds are estimated from data, while estimates for the backgrounds from single top quark ($t\nu$, tb, and tW-channel), $t+\gamma$, $t\bar{t}+\gamma$, $Z+\gamma$+jets, Drell-Yan, $WW\gamma$ + jets, and diboson backgrounds are calculated from the numbers of simulated events passing the event selection, scaled to their theoretical cross sections.

The contributions from the W+jets and $W\gamma$+jets backgrounds are estimated from data using a neural network (NN) discriminant formed from a combination of several variables: the p_T of the photon and jet candidates, the cosine of the angle between the momenta of the W boson and photon candidate, the azimuthal angle between the momentum of the photon candidate and the missing transverse momentum, and H/E. The NN is trained to distinguish these two sources of background and its output is parametrized as:

$$F(x_{NN}) = c_{Wj}S_{Wj}(x_{NN}) + c_{W\gamma j}S_{W\gamma j}(x_{NN}) + bB(x_{NN}),$$

(5.1)

where x_{NN} is the neural network output, $S_{Wj}(x_{NN})$, $S_{W\gamma j}(x_{NN})$, and $B(x_{NN})$ are, respectively, the normalized distributions for W+jets, $W\gamma$+jets, and the sum of all other backgrounds, and c_{Wj}, $c_{W\gamma j}$, and b are the corresponding fractions of each distribution.

From previous limits, it is known that any signal contribution will be small and is not included in eq. (5.1). The effect of its possible presence is accounted for as a systematic uncertainty. The parametrization in eq. (5.1) is fit to the data, leaving the W+jets and $W\gamma$+jets normalizations as free parameters. Both the normalization and the distribution in the sum of all other backgrounds, i.e., the b and $B(x_{NN})$ terms, are obtained from simulation. The distribution for W+jets, $S_{Wj}(x_{NN})$, is obtained from data in a control region defined by requiring photons with wide electromagnetic showers ($\sigma_{\eta\eta} > 0.011$ for the barrel and $\sigma_{\eta\eta} > 0.031$ for the endcap), and no b-tagged jets, while keeping all other selection criteria the same as in the signal region. The requirement of no b-tagged jets ensures a high content of W+jets, suppressing thereby the $t\bar{t}$ and single top quark contribution. The distribution for $W\gamma$+jets, $S_{W\gamma j}(x_{NN})$, is obtained from simulation. The numbers of W+jets and $W\gamma$+jets events are determined from the fit to the NN output distribution.

The fit results are taken as central values for the analysis, and are assigned uncertainties that reflect the differences obtained when varying the control region definition. Addition-
ally, an uncertainty is assigned accounting for the limited knowledge of the contaminations from other SM backgrounds in the control sample, estimated through a comparison with the results after subtracting their expectations from simulation. To take into account the uncertainties coming from the theoretical predictions of the cross sections for the simulated backgrounds, the individual cross sections are each varied by ±30% [37–39] and the differences in the fitted results with respect to the nominal fit are added in quadrature.

A total of 1794 events are selected in data and, assuming no contribution from FCNC, 1805 ± 80 events are expected, where the uncertainty is statistical. The expected amount of SM background is dominated by the Wγ + jets process, amounting to 57% of the total. The contributions of W + jets, t̅t̅, and Zγ + jets events are 16%, 8%, and 7% of the total background events, respectively. The remaining background events originate from t+γ, t̅t̅ +γ, single top quark (tq+tb+tW), WWγ + jets, and diboson production.

6 Signal extraction

Several discriminant variables are used to distinguish the signal from the SM backgrounds. To achieve the best discriminating power, a multivariate classification, based on boosted decision trees (BDT) [40, 41], is used. One BDT is used for the tuγ channel and another for the tcγ channel to take advantage of the slight differences in their production. For the tuγ signal, the asymmetry between the top and anti-top quark rates translates into a lepton charge asymmetry. The lepton charge is therefore used as an input in training the BDT for the tuγ signal. Eight variables are chosen to construct the two BDTs. The BDT input variables are: (i) \(p_T \) of the photon candidate, (ii) b tagging discriminant, (iii) \(p_T \) of the b jet, (iv) \(p_T \) of the muon (only for tcγ), (v) \(\cos(\vec{p}_t, \vec{p}_γ) \), the cosine of the angle between the direction of the reconstructed top quark and photon, (vi) \(\Delta R(b \text{ jet, } γ) \), (vii) \(\Delta R(μ, γ) \), (viii) lepton charge (only for tuγ), and (ix) jet multiplicity.

The \(p_T \) of the photon candidate is the most important variable for separating signal from background. The \(p_T \) of the muon does not contribute significantly to the discrimination of the tuγ signal, and is therefore not used in this case. Each BDT is trained using simulated signal (either tuγ or tcγ) and Wγ + jets, t̅t̅, and diboson background events. The distributions used as input to the BDT are obtained from data for Wγ + jets and W + jets and from simulation for the remaining background contributions. The W + jets distributions are obtained from the same control region as used for the NN inputs. Events with a reconstructed top quark mass in the sideband region defined as \(m_{μνb} > 220 \text{ GeV} \) or \(m_{μνb} < 130 \text{ GeV} \) are used to obtain the Wγ + jets distributions. The sideband region is enriched in Wγ + jets, with about 35% contamination from other background sources. This contamination is subtracted using an estimate from data for the W + jets contribution and MC predictions for the remaining background sources.

Figure 2 shows the distributions of some of the BDT input variables for the tuγ signal and SM background. Figure 3 shows the BDT output distributions for data, the estimated background, and the tuγ and tcγ signals. As described above, the Wγ + jets and W + jets distributions and their normalizations are estimated from data, while the remaining background contributions are obtained from simulation. The signal shapes are normalized.
to a cross section of 1 pb for showing the expected signal distributions in the figures. The vertical bars indicate the statistical uncertainty. The hatched band shows the contribution of the statistical and systematic uncertainties added in quadrature, with the dominant source being the statistical uncertainty in the estimation of the number of $W +$ jets and $W\gamma +$ jets events in data.

7 Systematic uncertainties

The effect on the signal and SM background expectations from different systematic sources is discussed below.

Instrumental uncertainties: the uncertainties in the trigger efficiency [42], photon [43] and lepton [44] selection efficiencies, jet energy scale and resolution, missing transverse momentum [32], and the modeling of pileup are propagated to the uncertainties in the signal and SM background expectations. The uncertainty in modeling the pileup is estimated by changing the total inelastic proton-proton cross section by $\pm5\%$ [45]. The uncertainty coming from the photon energy scale is estimated by changing the photon energy in simulation by $\pm1\%$ in the ECAL barrel and $\pm3\%$ in the endcaps [43]. The p_T- and η-dependent uncertainties in the b jet identifica-
Figure 3. The BDT output distributions for the data (points), the backgrounds (histograms), and the expected $t\bar{t}\gamma$ (a) and $t\bar{c}\gamma$ (b) signals (solid lines). The $t\bar{t}\gamma$ and $t\bar{c}\gamma$ signal distributions are normalized to a cross section of 1 pb. The vertical bars on the points give the statistical uncertainties. The hatched band shows the sum of the statistical and systematic uncertainties in the predicted background distributions combined in quadrature. The lower plots show the ratio of the data to the SM prediction.

Theoretical uncertainties: the uncertainty from the choice of PDF is determined according to the PDF4LHC prescription [47, 48] using the MSTW2008 [49] and NNPDF [50] PDFs. The uncertainty from the factorization and renormalization scales is evaluated by comparing simulated samples, produced using factorization and renormalization scales multiplied and divided by a factor of two relative to their standard values (top quark mass). A conservative estimate of the uncertainty owing to the top quark mass used in the simulation is obtained by producing simulated samples with the top quark mass shifted by ± 2 GeV. The uncertainties in the PDF, renormalization and factorization scales, and top quark mass affect both the predicted BDT distributions and the normalizations. An uncertainty of 5% in the signal rate is estimated from the NLO QCD corrections [12]. This uncertainty is assumed not to affect the signal distributions.

Normalization of the background: the uncertainties described in section 5 for the estimated $W\gamma +$ jets and $W +$ jets backgrounds are found to be 17% and 23%, respectively. The uncertainties in the normalization of all other backgrounds are found to be 30% [37–39].

8 Upper limits on anomalous couplings

No evidence is observed for anomalous single top quark production in association with a photon in the BDT output distributions shown in figure 3. These results are used to set
The expected and observed 95% CL upper limits on the FCNC $t_u\gamma$ and $t_c\gamma$ cross sections times branching fraction $B(t \rightarrow Wb \rightarrow b\ell\nu)$, the anomalous couplings $\kappa_{tu\gamma}$ and $\kappa_{tc\gamma}$, and the corresponding branching fractions $B(t \rightarrow u\gamma)$ and $B(t \rightarrow c\gamma)$ at LO and NLO are given. The one and two standard deviation (σ) ranges on the LO and NLO expected limits are also presented.

Table 1. The expected and observed 95% CL upper limits on the FCNC $t_u\gamma$ and $t_c\gamma$ cross sections times branching fraction $B(t \rightarrow Wb \rightarrow b\ell\nu)$, the anomalous couplings $\kappa_{tu\gamma}$ and $\kappa_{tc\gamma}$, and the corresponding branching fractions $B(t \rightarrow u\gamma)$ and $B(t \rightarrow c\gamma)$ at LO and NLO are presented in table 1. These results can be translated into upper limits on the anomalous couplings $\kappa_{tu\gamma}$ and $\kappa_{tc\gamma}$ and on the branching fractions $B(t \rightarrow u + \gamma)$ and $B(t \rightarrow e + \gamma)$ using the theoretical expectations [54]. The 95% CL upper bounds on the anomalous couplings and branching fractions with and without including the NLO QCD corrections to the signal cross section are presented in table 1, along with the expected limits. The one and two standard deviation ranges of the LO and

\[
\begin{array}{|c|c|c|c|c|}
\hline
& \text{Exp. limit (LO)} & \pm 1\sigma \ (\text{exp. limit}) & \pm 2\sigma \ (\text{exp. limit}) & \text{Obs. limit (LO)} \\
\hline
\sigma_{tu\gamma} B \ (fb) & 40 & 30–56 & 23–78 & 25 \\
\sigma_{tc\gamma} B \ (fb) & 39 & 30–55 & 24–76 & 34 \\
\kappa_{tu\gamma} & 0.036 & 0.032–0.043 & 0.028–0.051 & 0.029 \\
\kappa_{tc\gamma} & 0.111 & 0.098–0.132 & 0.087–0.16 & 0.10 \\
B(t \rightarrow u\gamma) & 2.7 \times 10^{-4} & (2.0–3.8) \times 10^{-4} & (1.6–5.4) \times 10^{-4} & 1.7 \times 10^{-4} \\
B(t \rightarrow c\gamma) & 2.5 \times 10^{-3} & (1.9–3.6) \times 10^{-3} & (1.5–4.9) \times 10^{-3} & 2.2 \times 10^{-3} \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
& \text{Exp. limit (NLO)} & \pm 1\sigma \ (\text{exp. limit}) & \pm 2\sigma \ (\text{exp. limit}) & \text{Obs. limit (NLO)} \\
\hline
\sigma_{tu\gamma} B \ (fb) & 39 & 30–58 & 25–84 & 26 \\
\sigma_{tc\gamma} B \ (fb) & 42 & 29–59 & 22–86 & 37 \\
\kappa_{tu\gamma} & 0.031 & 0.026–0.037 & 0.024–0.086 & 0.025 \\
\kappa_{tc\gamma} & 0.098 & 0.082–0.12 & 0.071–0.140 & 0.091 \\
B(t \rightarrow u\gamma) & 1.9 \times 10^{-4} & (1.4–2.9) \times 10^{-4} & (1.2–4.2) \times 10^{-4} & 1.3 \times 10^{-4} \\
B(t \rightarrow c\gamma) & 2.0 \times 10^{-3} & (1.3–2.7) \times 10^{-3} & (1.0–4.0) \times 10^{-3} & 1.7 \times 10^{-3} \\
\hline
\end{array}
\]
Figure 4. The measured 95% CL upper limits on \(B(t \rightarrow qZ) \) versus \(B(t \rightarrow q\gamma) \) from the L3 [5], ZEUS [6], H1 [7], D0 [55], CDF [8, 56], ATLAS [57], and CMS experiments [58]. The two vertical dashed lines show the results of this analysis.

NLO expected limits on the anomalous couplings and branching fractions are also shown in table 1. The measured 95% CL upper limits on \(B(t \rightarrow qZ) \) versus \(B(t \rightarrow q\gamma) \) from the L3 [5], ZEUS [6], H1 [7], D0 [55], CDF [56], ATLAS [57], and CMS [58] experiments, as well as the results of this analysis, are presented in figure 4.

Table 2 summarizes the sources of the systematic uncertainties in the expected upper limits on the signal cross sections. These are calculated as the ratio of the difference of the shifted expected limit coming from the related systematic source and the nominal expected limit.

9 Upper limits on the FCNC cross sections for a restricted phase space

Upper limits on the signal cross sections are also determined for a restricted phase-space region in which the detector is fully efficient. This removes the need to extrapolate to phase-space regions where the analysis has little or no sensitivity. The results are especially useful for comparing with theoretical models that predict enhancements in a particular phase-space region [10].

The measurement uses a simpler event-counting procedure instead of a fit to the BDT distribution. We define the fiducial cross section, \(\sigma_{\text{fid}} \), in a volume defined for stable particles at the generator level before any interaction with the detector. This can be related to the total cross section, \(\sigma \), through \(\sigma_{\text{fid}} = \sigma A \), where \(A \) is the acceptance in the fiducial volume. Stable particles are characterized as particles with mean lifetimes exceeding 30 ps. The upper limit on \(\sigma_{\text{fid}} \) is obtained from the limit on \(\sigma A \epsilon \), where \(\epsilon \) accounts for detector resolution, trigger efficiencies, and identification and isolation requirements applied in the analysis.

The leptons at the particle level are the electrons or muons originating from the decay of W bosons. The charged leptons from hadron decays are discarded, while electrons or muons from direct decays of \(\tau \) leptons are included.
Table 2. The sources and values of systematic uncertainties used to determine the observed and expected upper limits on the $tu\gamma$ and $tc\gamma$ cross sections. The values are given as a percentage of the expected upper limits. The sources are broken up into those that only affect the overall rate of signal events and those that affect both the rate and the shape of the BDT distributions.

Stable particles, except muons, electrons, photons and neutrinos, are used to reconstruct particle-level jets in the simulation. Jet reconstruction at the particle level is based on the anti-k_T algorithm [31] with a distance parameter of 0.5. When a reconstructed jet contains a B hadron, the jet is tagged as a b jet. In events without a matched b jet, the jet with the largest p_T is used to reconstruct the decayed top quark. The p_T of the neutrinos is calculated as the magnitude of the vector sum of the p_T of each neutrino in the event, except those originating from hadron decays. From these objects, the top quark mass is calculated in order to make kinematical cuts used in the definition of the fiducial region. The fiducial region is introduced at particle level, similar to the event selection requirements, and is summarized in table 3.

The efficiency ϵ is found to be 16% and 19% from simulation for the respective $tu\gamma$ and $tc\gamma$ events in the fiducial region. An additional fiducial region is defined by also requiring exactly one b-tagged jet in the event. The values of ϵ are thereby reduced to 11% and 14% for the two signals, respectively.

Table 4 shows the 95% CL upper limits on the signal cross sections in the two fiducial regions for the $tu\gamma$ and $tc\gamma$ processes. These are calculated from the total number of selected events in data (N_{obs}), the SM expectation (N_{SM}), both at detector level, and the efficiency for a signal event in the fiducial region to be reconstructed at detector level. The uncertainties in the SM expectation include statistical and systematic uncertainties.
Object Requirement

Single muon \(p_T > 26 \text{ GeV}, |\eta| < 2.1 \)

Veto for additional muons \(p_T > 10 \text{ GeV}, |\eta| < 2.5 \)

Electron veto \(p_T > 20 \text{ GeV}, |\eta| < 2.5 \)

Single photon \(p_T > 50 \text{ GeV}, |\eta| < 2.5 \) \((1.44 < |\eta| < 1.56 \text{ excluded}) \)

At least one jet \((N_{b \text{ jet}} < 2) \) \(p_T > 30 \text{ GeV}, |\eta| < 2.5 \)

Missing \(p_T \) \(p_T^{\text{miss}} > 30 \text{ GeV} \)

Muon, jets, and photons \(\Delta R(\mu, \gamma) \) and \(\Delta R(\text{jet}, \gamma) > 0.7 \)

Reconstructed top quark mass \(130 < m_{\mu \nu b} < 220 \text{ GeV} \)

<table>
<thead>
<tr>
<th>Fiducial region</th>
<th>Channel</th>
<th>(N_{\text{obs}})</th>
<th>(N_{\text{SM}})</th>
<th>(\epsilon)</th>
<th>(\sigma_{\text{fid}}^{95%} \text{ (fb)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic selection (table 3)</td>
<td>(\mu \gamma)</td>
<td>1794</td>
<td>1805 ± 215</td>
<td>0.16</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>(\tau \gamma)</td>
<td>275</td>
<td>258 ± 49</td>
<td>0.11</td>
<td>47</td>
</tr>
<tr>
<td>Basic selection and (N_{b \text{ jet}} = 1)</td>
<td>(\mu \gamma)</td>
<td>275</td>
<td>258 ± 49</td>
<td>0.11</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>(\tau \gamma)</td>
<td>275</td>
<td>258 ± 49</td>
<td>0.11</td>
<td>47</td>
</tr>
</tbody>
</table>

The total number of observed events is decreased by a factor of approximately 6.5 after requiring exactly one identified b jet in an event, while the expected number of SM events decreases by a factor of 7. The combined relative uncertainty in the number of expected SM events increases from 12\% to 19\% when this b jet requirement is included.

The upper limits are calculated including a total systematic uncertainty in the signal selection efficiencies of 10\%, estimated using a method similar to that described in section 7. These are the first limits set on the anomalous \(t \gamma \) production within a restricted phase-space region.

10 Summary

The result of a search for flavor changing neutral currents (FCNC) through single top quark production in association with a photon has been presented. The search is performed using proton-proton collisions at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.8 fb\(^{-1}\), collected by the CMS detector at the LHC. The number of observed events is consistent with the SM prediction. Upper limits are set at 95\% CL on the anomalous FCNC couplings of \(\kappa_{\mu \gamma} < 0.025 \) and \(\kappa_{\tau \gamma} < 0.091 \) using NLO QCD calculations. The corresponding upper limits on the branching fractions are \(\mathcal{B}(t \rightarrow u \gamma) < 1.3 \times 10^{-4} \) and \(\mathcal{B}(t \rightarrow c \gamma) < 1.7 \times 10^{-3} \), which are the most restrictive bounds to date. Observed upper
limits on the cross section in a restricted phase space are found to be 47 fb and 39 fb at 95% CL for $t\bar{u}\gamma$ and $t\bar{c}\gamma$ production, respectively, when exactly one identified b jet is required in the data. These are the first results on anomalous $t\gamma$ production within a restricted phase-space region.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).

Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS program of the National Science Center (Poland); the Compagnia di San Paolo (Torino); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation, contract C-1845.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References

[26] CMS collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, 2014 *JINST* **9** P10009.

[27] CMS collaboration, Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector, CMS-PAS-PFT-10-001 (2010).

[34] CMS collaboration, Performance of b tagging at $\sqrt{s} = 8$ TeV in multijet, t\bar{t}bar and boosted topology events, CMS-PAS-BTV-13-001 (2013).

Georgian Technical University, Tbilisi, Georgia
T. Toriashvili

Tbilisi State University, Tbilisi, Georgia
D. Lomidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, F. Colomb, W. De Boer, A. Descroix, A. Dierlamm, S. Fink, F. Freisch, M. Giffels, A. Gilbert,

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioánnina, Ioánnina, Greece

Wigner Research Centre for Physics, Budapest, Hungary

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi

University of Debrecen, Debrecen, Hungary
M. Bartók, A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, A. Kumar, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, India
INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy

S. Buontempo a, N. Cavallo a, c, S. Di Guida a, d, 2, M. Esposito a, b, F. Fabozzi a, c, A.O.M. Iorio a, b, G. Lanza a, L. Lista a, S. Meola a, d, 2, M. Merola a, P. Paolucci a, 2, C. Sciacca a, b, F. Thyssen

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy

P. Azzi a, 2, N. Bacchetta a, L. Benato a, b, D. Bisello a, b, A. Boletti a, b, A. Branca a, b, R. Carlin a, b, P. Checchia a, M. Dall’Osso a, b, 2, T. Dorigo a, U. Dosselli a, F. Gasparini a, b, U. Gasparini a, b, A. Gozzelino a, S. Lacapra a, M. Margoni a, b, A.T. Meneguzze a, b, M. Passaseo a, J. Pazzini a, b, M. Pegoraro a, N. Pozzobon a, b, P. Ronchese a, b, F. Simonetto a, b, E. Torassa a, M. Tosi a, b, M. Zanetti, P. Zotto a, b, A. Zucchetta a, b, G. Zumerle a, b

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy

A. Braghieri a, A. Magnani a, P. Montagna a, b, S.P. Ratti a, b, V. Re a, C. Riccardi a, b, P. Salvini a, I. Vai a, P. Vitulo a, b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy

L. Alunni Solestizi a, b, M. Biasini a, b, G.M. Bilei a, D. Ciangottini a, b, 2, L. Fanò a, b, P. Lariccia a, b, G. Mantovani a, b, M. Menichelli a, A. Saha a, A. Santocchia a, b, A. Spiezia a, b

INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy

K. Androsova a, 30, P. Azzurri a, G. Bagliesi a, J. Bernardini a, T. Boccali a, G. Broccolo a, c, R. Castaldi a, M.A. Ciocci a, 30, R. Dell’Orso a, S. Donato a, c, 2, G. Fedi, L. Foà a, c, 4, A. Giassi a, M.T. Grippi a, 30, F. Ligabue a, c, T. Lontadze a, L. Martini a, b, A. Messineo a, b, F. Palla a, A. Rizzi a, b, A. Savoy-Navarro a, 31, A.T. Serban a, P. Spagnolo a, P. Squillacioti a, 30, R. Tenchini a, G. Tonelli a, b, A. Venturi a, P.G. Verdini a

INFN Sezione di Roma a, Università di Roma b, Roma, Italy

L. Barone a, b, F. Cavallari a, G. D’imperio a, b, 2, D. Del Re a, b, M. Diemoz a, S. Gelli a, b, C. Jordà a, E. Longo a, b, F. Margaroli a, b, P. Meridiani a, G. Organtini a, b, R. Paramatti a, F. Preiato a, b, S. Rahatlou a, b, C. Rovelli a, F. Santanastasio a, b, P. Traczyk a, b, 2

INFN Sezione di Torino a, Università di Torino b, Torino, Italy, Università del Piemonte Orientale c, Novara, Italy

N. Amapane a, b, R. Arcidiacono a, c, 2, S. Argiro a, b, M. Arneodo a, c, R. Bellan a, b, C. Biino a, N. Cartiglia a, M. Costa a, b, R. Covarelli a, b, A. Degano a, b, N. Demaria a, L. Finco a, b, 2, B. Kiani a, c, C. Mariotti a, S. Maselli a, E. Migliore a, b, V. Monaco a, b, E. Montei a, b, M. Musich a, M.M. Obertino a, b, L. Pacher a, b, N. Pastrone a, M. Pelliccioni a, G.L. Pinna Angioni a, b, F. Ravera a, b, A. Romero a, b, M. Ruspa a, c, R. Sacchi a, b, A. Solano a, b, A. Staiano a, U. Tamponi a
INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b,2, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, A. Schizzia,b, A. Zanettia

Kangwon National University, Chunchon, Korea
A. Kropivnitskaya, S.K. Nam

Kyoungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, A. Sakharov, D.C. Son

Chonbuk National University, Jeonju, Korea
J.A. Brochero Cifuentes, H. Kim, T.J. Kim

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
S. Song

Korea University, Seoul, Korea

Seoul National University, Seoul, Korea
H.D. Yoo

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea
Y. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda
University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin

National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
A. Bylinkin

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, N. Korneeva, I. Lokhtin, I. Myagkov, S. Obraztsov, M.Perfilov, V. Savrin

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland
Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey
Bogazici University, Istanbul, Turkey
E.A. Albayrak53, E. Gülmez, M. Kaya54, O. Kaya55, T. Yetkin56

Istanbul Technical University, Istanbul, Turkey
K. Cankocak, S. Sen57, F.I. Vardarlı

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, U.S.A.
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, N. Pastika

The University of Alabama, Tuscaloosa, U.S.A.
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, U.S.A.
Fermi National Accelerator Laboratory, Batavia, U.S.A.

University of Florida, Gainesville, U.S.A.

Florida International University, Miami, U.S.A.

S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, U.S.A.

Florida Institute of Technology, Melbourne, U.S.A.

University of Illinois at Chicago (UIC), Chicago, U.S.A.

The University of Iowa, Iowa City, U.S.A.

Johns Hopkins University, Baltimore, U.S.A.

The University of Kansas, Lawrence, U.S.A.

Kansas State University, Manhattan, U.S.A.
A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, U.S.A.
D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, U.S.A.

Massachusetts Institute of Technology, Cambridge, U.S.A.

University of Minnesota, Minneapolis, U.S.A.

University of Mississippi, Oxford, U.S.A.
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, U.S.A.

State University of New York at Buffalo, Buffalo, U.S.A.
M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, U.S.A.

Northwestern University, Evanston, U.S.A.
University of Notre Dame, Notre Dame, U.S.A.

The Ohio State University, Columbus, U.S.A.

Princeton University, Princeton, U.S.A.

University of Puerto Rico, Mayaguez, U.S.A.
S. Malik

Purdue University, West Lafayette, U.S.A.

Purdue University Calumet, Hammond, U.S.A.
N. Parashar, J. Stupak

Rice University, Houston, U.S.A.

University of Rochester, Rochester, U.S.A.
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, G. Petrillo, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, U.S.A.

University of Tennessee, Knoxville, U.S.A.
M. Foerster, G. Riley, K. Rose, S. Spanier, A. York

Texas A&M University, College Station, U.S.A.
Texas Tech University, Lubbock, U.S.A.

Vanderbilt University, Nashville, U.S.A.

University of Virginia, Charlottesville, U.S.A.

Wayne State University, Detroit, U.S.A.
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin - Madison, Madison, WI, U.S.A.

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
4: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
5: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
6: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
7: Also at Universidade Estadual de Campinas, Campinas, Brazil
8: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
9: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
10: Also at Joint Institute for Nuclear Research, Dubna, Russia
11: Also at Beni-Suef University, Bani Sweif, Egypt
12: Now at British University in Egypt, Cairo, Egypt
13: Also at Ain Shams University, Cairo, Egypt
14: Also at Zewail City of Science and Technology, Zewail, Egypt
15: Also at Université de Haute Alsace, Mulhouse, France
16: Also at Tbilisi State University, Tbilisi, Georgia
17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
18: Also at University of Hamburg, Hamburg, Germany
19: Also at Brandenburg University of Technology, Cottbus, Germany
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at Eötvös Loránd University, Budapest, Hungary
22: Also at University of Debrecen, Debrecen, Hungary
23: Also at Wigner Research Centre for Physics, Budapest, Hungary
24: Also at University of Visva-Bharati, Santiniketan, India
25: Now at King Abdulaziz University, Jeddah, Saudi Arabia
26: Also at University of Ruhuna, Matara, Sri Lanka
27: Also at Isfahan University of Technology, Isfahan, Iran
28: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
30: Also at Università degli Studi di Siena, Siena, Italy
31: Also at Purdue University, West Lafayette, U.S.A.
32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
34: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
36: Also at Institute for Nuclear Research, Moscow, Russia
37: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
38: Also at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
39: Also at California Institute of Technology, Pasadena, U.S.A.
40: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
41: Also at National Technical University of Athens, Athens, Greece
42: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
43: Also at University of Athens, Athens, Greece
44: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
45: Also at Adiyaman University, Adiyaman, Turkey
46: Also at Mersin University, Mersin, Turkey
47: Also at Cag University, Mersin, Turkey
48: Also at Piri Reis University, Istanbul, Turkey
49: Also at Gaziosmanpasa University, Tokat, Turkey
50: Also at Ozyegin University, Istanbul, Turkey
51: Also at Izmir Institute of Technology, Izmir, Turkey
52: Also at Istanbul Bilgi University, Istanbul, Turkey
53: Also at Marmara University, Istanbul, Turkey
54: Also at Kafkas University, Kars, Turkey
55: Also at Yildiz Technical University, Istanbul, Turkey
56: Also at Hacettepe University, Ankara, Turkey
57: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
58: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
59: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
60: Also at Utah Valley University, Orem, U.S.A.
61: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
62: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
63: Also at Argonne National Laboratory, Argonne, U.S.A.
64: Also at Erzincan University, Erzincan, Turkey
66: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
67: Also at Texas A&M University at Qatar, Doha, Qatar
68: Also at Kyungpook National University, Daegu, Korea