Polyol mediated synthesis and electrochemical performance of nanostructured LiMn$_2$O$_4$ cathodes

Shuo Yang1, Melanie Homberger1,2, Michael Noyong1,2, Ulrich Simon1,2,*

1 Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
2 JARA-FIT, 52056 Aachen, Germany.

*E-mail: ulrich.simon@ac.rwth-aachen.de

doi: 10.20964/2016.12.96

Received: 26 August 2016 / Accepted: 15 October 2016 / Published: 10 November 2016

Nanoparticulate single phase LiMn$_2$O$_4$ spinel was prepared via polyol method and applied as a cathode in a lithium ion battery. The effects of calcination temperature (250 °C – 800 °C) as well as of post-synthetic treatment by ball milling on the physiochemical and electrochemical properties of LiMn$_2$O$_4$ were studied by means of powder XRD, SEM, cyclic voltammetry and charge/discharge cycling. With increasing calcination temperature, the electrochemical activity and discharge capacity increased. The measurements revealed that the electrochemical performance of LiMn$_2$O$_4$ can be further improved by ball milling before calcination. Furthermore, the ball milling process allowed reducing the calcination temperature needed to obtain electrochemically active material.

Keywords: Lithium ion battery, LiMn$_2$O$_4$ spinel, nanoparticles, calcination, ball milling

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).