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Abstract

Mobile phones as well as tablets are omnipresent and belong to everyday life. Today

audiovisual communication takes place at different locations and in a large variety

of acoustic environments. In consequence, the intelligibility as well as the quality

of speech may significantly be degraded by ambient background noise. In order to

improve speech intelligibility and to ensure a convenient communication with high

audio quality, speech enhancement techniques are required. In this thesis all critical
components contributing to the enhancement of the up-link signal are addressed:

• signal capturing at the acoustic front-end with a new near field beamformer,

• new codebook based speech and noise estimation procedure generating and
exploiting reliability information, and

• actual noise reduction exploiting spectral dependencies of human speech.

For the acoustic front-end of the digital processing chain a novel concept for the filter

optimization of a near field beamformer is introduced. The optimization scheme

allows to closely approximate a predefined reception characteristic which can be
freely chosen according to the application. The output of the beamformer provides

a pre-enhanced signal with improved SNR for subsequent single-microphone based

speech enhancement.
Single-microphone noise reduction usually relies on statistical properties of

speech and noise. In general, the noise is assumed to be stationary or only slightly
time-varying, which is in practice often not fulfilled. Due to imprecise noise

estimation, single-microphone systems are prone to unpleasant artifacts that are

called musical tones. In this context different Information Combining methods,

merging various estimates, are presented which address specifically the problem of

non-stationary noise signals, leading to a significant improved estimation accuracy.
On the one hand, the proposed Information Combining is used with respect to

spectral dependencies of human speech. On the other hand, it merges the best of

several speech and noise estimates depending on their reliability. The necessary

estimates are provided by a new statistical noise estimator as well as a codebook

driven speech and noise estimation algorithm. The achieved estimation quality

opens up the possibility to close the gap between the conflicting goals of high noise

attenuation, low speech distortion, and the prevention of undesired musical tone

artifacts. Finally, the practical aspects of the proposed enhancement systems are

considered and discussed with two implemented real-time demonstrators.
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Chapter 1

Introduction

Speech is one of the most important manners of human interaction. The invention

of the telephone enables a communication with persons all around the world which

is a matter of course nowadays. As a result of continuous technological progress
and economical interests, wireless communication as well as the internet have

been evolving. Mobile phones and tablets are omnipresent and belong to everyday

life. The Internet enables new multi-modal communication services such as video

conferencing, gaining more and more importance, e. g., for international cooperation

of companies, for home office or for social communication.

Mobile communication takes place at different locations and in a large variety

of acoustic environments. In consequence, the intelligibility as well as the quality
of speech signals may be significantly degraded in case of background noise such as,

e. g., traffic, engine, wind, babble, and office noise.

In order to ensure the speech intelligibility and even to improve the listening
comfort with high audio quality, speech enhancement techniques are required. These

algorithms aim at reducing echos, reverberation and background noise without
affecting the underlying speech signal. A typical application scenario is depicted

in Fig. 1.1. A clean speech signal s is disturbed by surrounding noise sources n
which are captured by the microphones of a mobile phone. Before the signal is

transmitted over the radio channel, speech enhancement is applied. In this thesis

the focus is on the problem of noise reduction.

Noise reduction systems can be subdivided into two classes: single-microphone

systems and multi-microphone systems. Single-microphone systems usually rely on

statistical properties of speech and noise for signal enhancement. In general, the

noise is assumed to be stationary or only slightly time-varying. In practice, however,

this assumption is often not fulfilled. Consequently, single-microphone systems

suffer frequently from unpleasant artifacts due to imprecise noise estimation. These

artifacts are called musical tones. Adding a second microphone allows to exploit

the coherence for improved noise estimation. In contrast, multi-microphone speech

enhancement systems are designed to exploit additionally spatial information as

the desired and interfering audio signals are usually spatially separated. Utilizing

the spatial information, a beamformer with usually more than two microphones,
for example, can amplify a target speaker efficiently while simultaneously damping

other speakers and background noise. Hence, an appropriately designed microphone

array allows to achieve a substantial improvement of the signal-to-noise ratio
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1.1 Related Works

speech between the low band (50 Hz – 4 kHz) and the high band (4 kHz – 7 kHz)

yielding a refined noise estimate. On the other hand, information about the reliabil-

ity of different estimates of speech and noise is generated and exploited. Depending

on this information the estimates are combined resulting in refined estimates of
speech and noise, enabling advanced speech enhancement. The necessary different

estimates of speech and noise are provided by a novel codebook based algorithm
and a new developed low complexity noise estimator called Baseline Tracing. It

turns out, that the use of codebook driven speech and noise estimation together

with Information Combining is able to model and cope with highly non-stationary

noise. It is of special interest that the occurrence of undesired artifacts such as

musical tones is reduced tremendously.

Furthermore, in a video conferencing application, multi-modal Information

Combining is carried out. The proposed near field beamformer is embedded in a

high quality video conferencing client. Exploiting information provided from audio
and video analysis, the activity of speakers is determined in terms of soft decision

values as a function of space and time. On this basis, the most active speakers can

be identified and separated.

1.1 Related Works

In literature, a vast amount of proposals for speech enhancement can be found. A

comprehensive overview including the historical evolution up to state-of-the-art

approaches for the estimation of the short-term noise power spectral density (PSD),

the input SNR, and different weighting gain functions is presented in, e. g., [Benesty

et al. 2009, 2007; Hänsler & Schmidt 2006, 2008; Loizou 2013; Vary et al. 1998;

Vary & Martin 2006]. The first practical implementations date back to the year
1965. In [Schroeder 1965] the first patent on spectral subtraction was published for

an analog circuit implementation.

In the digital era, digital signal processors (DSPs) prepared the ground to

implement adaptive and more sophisticated noise reduction algorithms. The key

digital signal processing approaches can be found in [Boll 1979; Lim & Oppenheim

1979; McAulay & Malpass 1980] and are based on spectral subtraction or the
Wiener filter [Wiener 1949] method.

For real-time speech enhancement, the noisy input signal is segmented into

overlapping frames. Usually these segments are transformed into a domain, in which

speech and noise are better separable, e. g., the short-term Fourier domain (STFD)

or the cepstral domain. This procedure is called analysis. Model based processing is

carried out in the transform domain. A statistical estimation framework is usually

applied exploiting certain assumptions about the statistics of speech and noise.

While a Gaussian model is often used for noise, speech is modeled by either a

Gaussian or super-Gaussian distribution. Specific solutions are detailed, e. g., in
[Breithaupt et al. 2007, 2008; Ephraim & Malah 1984, 1985; Erkelens et al. 2007;

Lotter & Vary 2005; Martin 2005; Vary 1985]. After manipulation, the enhanced

signal is transformed back into the time domain which is called synthesis.

3



Chapter 1 – Introduction

In particular, the precise estimation of the time varying noise spectrogram

remains the most crucial part in speech enhancement and is a prerequisite for

noise reduction by adaptive time and frequency dependent filtering. If the noise is

stationary or only slowly varying with time, a short-term noise PSD estimate can
either be obtained during speech pauses or by continuously tracking the magnitude

minima in the STFD. Further processing and updating over time is necessary.
Several methods have been proposed for the estimation of noise, e. g., [Baasch et al.

2014; Cohen 2003; Doblinger 1995; Dörbecker & Ernst 1996; Gerkmann & Hendriks

2011; Hendriks et al. 2010; Jeub et al. 2011; Martin 2001, 2006; Nelke et al. 2013].

Specialized solutions are, e. g., [Chen et al. 2009; Esch et al. 2010c] for rapidly

time-varying harmonic car engine noise, [Godsill et al. 2015; Talmon et al. 2013]
facing an abrupt or impulsive noise sound which is typical for keyboard typing or

door knocking. Wind noise is covered, e. g., in [Nelke et al. 2015; Nelke & Vary

2015] and references therein.

1.2 Structure of this Thesis

The thesis is subdivided into six chapters which are supplemented by a number of
appendices.

In Chap. 2 the concept of microphone array processing is introduced. The

difference between the far and near field is emphasized motivated by a video

conference application scenario. On this basis an optimization scheme for near field

beamforming is derived. The optimization scheme allows to closely approximate
a predefined reception characteristic which can be freely chosen according to the

application. Finally, the novel concept for filter optimization is assessed in a free

field scenario as well as in a reverberant room.

The basic principles of statistical noise reduction are introduced in Chap. 3.

Subsequently, Baseline Tracing, a novel short-term noise PSD estimator, is pre-

sented. The basic idea consists of a constrained logarithmic magnitude tracing of

the noisy observation separately for each frequency bin. The new short-term noise
PSD estimator is an inherently unbiased estimator and does not need correction

terms. A detailed performance analysis is provided covering the noise estimation

performance as well as the application embedded in a conventional noise reduction

system. Furthermore, the estimator is evaluated also on pure speech signals.

In addition, an approach to wideband (50 Hz – 7 kHz) noise reduction is presented.

Spectral dependencies between the low band (50 Hz – 4 kHz) and the high band

(4 kHz – 7 kHz) of speech signals are investigated. An analysis of meaningful and
noise robust features is carried out. Applying techniques known from artificial

bandwidth extension, features from the enhanced low band signal are extracted

and used to improve the noise estimate in high band. Spectral weighting gains

determined from this noise estimate are adaptively combined with conventional

gains obtained in addition for the high band. This combining in the high band is

possible employing a pre-trained SNR dependent look-up table.

Codebook based speech and noise estimation is detailed in Chap. 4. A priori

4
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knowledge about speech and noise allows to model and to cope with highly non-

stationary noise environments. A brief overview of the development and the

fundamental principles is presented. Starting point is a brute force codebook

matching approach, which provides the upper performance bound and serves as

reference. The basic concept is a superposition of scaled speech and noise codebook

entries. At first, the a priori assumptions of speech and noise are analyzed with
respect to practical application scenarios. While the speech codebook is pre-trained

in advance, the noise codebook is adapted to new noise types online. Thus, the

system becomes independent of a priori knowledge regarding noise. Training

vectors for online noise codebook updates are identified using a voice activity

detector (VAD) and a codebook mismatch measure. For this purpose, a novel noise

robust VAD is developed which depends only on a priori knowledge about speech.

In Chap. 5 a generic theoretical analysis of the joint speech and noise estimation

problem is carried out given the noisy observation. The analysis considers an

arbitrary number of different speech and noise estimates. An analytic solution is

formulated which minimizes the estimation error power with respect to the noisy

observation. This procedure is called Information Combining and provides optimal

mixing coefficients of the different speech and noise estimates. On this basis two
main restrictions of codebook based speech and noise estimation are addressed.

Missing a priori codebook knowledge regarding noise is compensated utilizing an

additional noise estimate as automatic fallback, e. g., provided by the new proposed

statistical noise estimator Baseline Tracing. In a second step this procedure is

generalized to additionally provide a refined speech estimate.

With respect to practical application scenarios, a substantial complexity reduc-

tion is necessary. Utilizing the Information Combining procedure in this context,
the brute force codebook driven speech and noise estimates can be replaced by two

cascades of gain shape vector quantizer (VQ) estimates, i. e., the determination

of the spectral shape using a codebook in a first step and the calculation of the

corresponding gain in a second step. The chapter closes with a comprehensive
evaluation including all presented aspects of codebook driven noise reduction.

In Chap. 6 two application examples are presented. The near field beamformer

detailed in Chap. 2 is utilized in a high quality video conferencing scenario in order

to determine the most active speakers as a function of time and space. In the

second part of the chapter, the codebook driven speech enhancement system is

analyzed and a further complexity reduction is carried out, for both the codebook

matching as well as the VAD. Utilizing a software based private branch exchange

(PBX) a proof of concept implementation on a lightweight embedded computing

platform is created. Finally, the results of this thesis are discussed in Chap. 7.

5



Chapter 1 – Introduction

Parts of this thesis have been presented in the following references published by

the author: [Heese et al. 2010; Heese et al. 2011; Heese et al. 2012a; Heese et al.

2012b; Heese et al. 2013; Heese et al. 2014a; Heese & Vary 2015; Heese et al. 2015;

Esch et al. 2010a; Esch et al. 2010b; Esch et al. 2010c; Esch et al. 2012; Schlien

et al. 2013; Schäfer et al. 2012; Bulla et al. 2013; Hadad et al. 2014; Niermann et al.

2015]. Throughout this thesis, these references are marked by underlining the year.
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Chapter 2

Near Field Beamforming

The aim of sensor array signal processing is to estimate a desired signal which may

be degraded by additive noise using temporal and spatial information from array

sensors [Haykin & K. R. Liu 2010]. The design of such systems is an ongoing topic

of research with many applications in the radio frequency domain [Haykin et al.

1993] as well as in the acoustic domain [Brandstein & Ward 2001]. Especially in the

acoustic domain the class of linear microphone arrays received attention since they

can easily be integrated into communication systems such as video conferencing

terminals. If the desired and the interfering audio signals are spatially separated,

an appropriately designed microphone array allows to achieve a substantial signal-

to-noise ratio (SNR) gain already at the acoustic front-end.

Spatial separation of audio source is often present, e. g., in a conferencing

scenario or a typical office room. Moreover, the reverberation as well as the level

of diffuse background noise are usually quite low in these environments. Hence,

speech enhancement techniques utilizing multichannel microphone arrays, such

as beamformer algorithms, are appropriate to amplify a target speaker efficiently

while simultaneously damping other competing speakers and background noise.

Beamformer algorithms can be subdivided into fixed and adaptive approaches

[Brandstein & Ward 2001; Haykin & K. R. Liu 2010]. Fixed beamforming algorithms

are independent of the input signals and can realize robust directional gains

with moderate numerical complexity. Typical representatives are the (weighted)

delay-and-sum as well as the filter-and-sum beamformer. Adaptive beamforming
algorithms are well suited for cancelling moving interferers. Among various adaptive

beamforming categories, the minimum variance distortionless response (MVDR),

the multichannel Wiener filter (MWF), the linearly constrained minimum variance

(LCMV) beamformer, and the generalized sidelobe canceller (GSC) are the most
commonly used [Griffiths & Jim 1982; Markovich Golan et al. 2009; Van Veen &

Buckley 1988].

Furthermore beamformers can be realized operating in the time domain or the

sub-band domain, e. g., [De Haan et al. 2001; Lorenzelli et al. 1996; Nordholm et al.

2008; Zhao et al. 2011]. Using a sub-band beamformer offers several advantages

compared to a full-band beamformer such as an overall lower filter degree or an

improved reception characteristic with respect to the operational frequency.

When designing beamformers, a specific spatial and if necessary frequency-

dependent reception characteristic is usually the desired goal. For the far field case,

7
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Figure 2.1: Filter-and-sum beamformer with M microphones and N non-

uniform sub-bands

i. e., if the distance to the array is significantly larger than its geometric setup,

many beamformer design methods are known, e.g., [Doclo & Moonen 2003; Ward

et al. 1995]. There are also procedures known, aiming specifically at the near field,

where the far field assumption provides only an approximation in the best case,

see e. g., [Doclo & Moonen 2003; Fisher & Rafaely 2011; Kennedy et al. 1996;

Ryan & Goubran 2000] and references therein. However, these approaches optimize

the reception characteristic limited by several design constraints, e. g., only on a

(semi-)circular arc at one specific distance from the array.

To circumvent this limitations, an alternative new design strategy is considered

[Heese et al. 2013; Schäfer et al. 2012]. The reception characteristic is optimized for

a certain predefined two-dimensional target area in the near field, simultaneously

for different distances and angles. The work in [Schäfer et al. 2012] considered a
weighted delay-and-sum array with full-band processing as basis for the optimization

while in [Heese et al. 2013] a more generalized approach using sub-bands and a

filter-and-sum beamformer is applied which is presented in the following.
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2.1 Non-Uniform Near Field Sub-band Filter-and-Sum Beamformer

2.1 Non-Uniform Near Field Sub-band Filter-and-Sum
Beamformer

A simplified block diagram of the proposed beamformer system is depicted in Fig. 2.1.

It consists of M microphones followed by non-uniform filter-banks [Löllmann 2011]

each comprising N sub-bands. Subsequently, all sub-bands are processed by different

filter-and-sum units represented by the impulse responses hm
n , m ∈ {1, . . . ,M},

n ∈ {1, . . . , N}, where n denotes the sub-band index and m the microphone index.

Finally, the summation of the output signals of the filter-and-sum units result in

the all-over beamformer output signal ŝ(k).

The microphone signal samples ym(k) are obtained by analog-digital conversion

with a sampling frequency of fs, where k represents the discrete time index. A

point source s(k) is assumed to be at position p on an appropriately chosen
two-dimensional spatial grid, e. g.,

• in a polar coordinate system: p = (r ϕ)T or

• in a Cartesian coordinate system p = (x y)T .

Given the impulse responses hpm(k), m ∈ {1, . . . ,M}, from the point source p to
each of the M microphones, each microphone signal ym(k) can be expressed as:

ym(k) = hpm(k) ∗ s(k) , (2.1)

where ∗ denotes the linear discrete convolution operator. The output ŝ(k) thereby

depends on the source location p and can be calculated according to:

ŝ(k) =

M∑

m=1

N∑

n=1

hm
n (k) ∗

(
hFB

n (k) ∗ ym(k)
)
, (2.2)

where hFB
n (k) represents the bandpass impulse responses of the filterbank and hm

n (k)

the finite impulse response (FIR) sub-band filters of length L to be determined by
numerical optimization.

2.2 Numerical Optimization

The optimization of the filter-and-sum units is carried out in frequency sub-bands

to decouple the optimization procedure. Furthermore the frequency resolution

is chosen following the human auditory system. The principle of the numerical

optimization procedure for each sub-band is depicted in Fig. 2.2. An iterative

minimization of an error measure is carried out. The error measure is a function of

the level difference between a predefined target reception characteristic and the
simulated one. The simulated reception characteristic is calculated on the current

state of the filter coefficients and the impulse responses, modeling the acoustic path

between the source positions and the microphones, in each iteration.
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Figure 2.2: Optimization process for each frequency sub-band

Since the optimization is performed in exactly the same manner for simulated

impulse responses as well as for measured ones, it is very flexible referring to
different practical application scenarios.

2.2.1 Definition of the Target

In order to determine the filter coefficients of the beamformer, a target area in

front of the microphone array with different amplification or attenuation gains

has to be defined. Hence, the target reception characteristic Sp(f) is defined as a
spatial distribution of areas with defined amplification or attenuation in front of

the microphone array.
The spatial target reception characteristic Sp(f) can be defined as frequency-

dependent but a frequency-independent target, i. e., Sp(f) = Sp, is suitable in

many applications. The target speaker should be in the amplified region Phigh

(target amplification gain Shigh) while the attenuated area Plow (target attenuation
gain Slow) is chosen to contain all interfering signals. This corresponds to a given

SNR improvement compared to a single omnidirectional microphone for the received

signal. Hence, the target reception characteristic is defined as,

Sp =

{
Shigh for p ∈ Phigh

Slow for p ∈ Plow .
(2.3)
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Since the output signal ŝ(k) for each source location p can be expressed as a

linear superposition of the filtered version of the source signal:

ŝ(k) =

M∑

m=1

N∑

n=1

hm
n (k) ∗ hFB

n (k) ∗ hpm(k) ∗ s(k), (2.4)

the overall filter gp(k) can be calculated as:

gp(k) =

M∑

m=1

N∑

n=1

hm
n (k) ∗ hFB

n (k) ∗ hpm(k). (2.5)

Applying the frequency transform of the overall filter gp(k) yields:

Gp(f)

F

s ❝gp(k) . (2.6)

Finally, the reception characteristic Ŝp(f) in dB of the beamformer at frequency f

for every point in the target region (p ∈ {Phigh ∪ Plow} of the microphone array is
obtained by:

Ŝp(f) = 20 · log10 |Gp(f)| . (2.7)

2.2.3 Error Function

The reception characteristic Ŝp(f) represents the intermediate reception character-

istic which is realized by the respective filter coefficients in each iteration step. By

variation of the sub-band filters, the distance between the predefined target Sp and

Ŝp(f) is minimized in terms of the summed quadratic gain difference ∆S(n) for
each sub-band n. For all points, where Sp is defined according to Eq. (2.3), and over

all frequencies fi with i ∈ {imin, . . . , imax}, for which the reception characteristic
shall be optimized, the sum of the quadratic gain differences is calculated according

to:

∆S(n) =

imax∑

i=imin

∑

p∈{Phigh∪ Plow}

(
Sp − Ŝp(fi)

)2

, (2.8)

where fimin and fimax denote the lower and upper edge frequencies of sub-band n.

2.2.4 Optimization Procedure

The optimum filter coefficients for each microphone and each sub-band n are

determined in a minimum mean-square error (MMSE) sense by:

[
h1

n, . . . ,h
M
n

]
opt

= arg min
h

∆S(n) . (2.9)
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For the optimum search, the iterative interior-point algorithm according to [Byrd

et al. 2000] is employed with the constraint that the filter coefficients range within
−1 and 1. Since this constraint only limits the maximum amplification that is

achievable by the array itself and does not change the relation between the filter
coefficients, subsequent scaling of the output ŝ(k) can be applied to map the

reception characteristic to a desired gain.

2.3 Performance Example

The proposed new design strategy using decoupled sub-band filters for the optimiza-

tion of the reception characteristic in the near field is demonstrated in two steps.

At first the proposed new design strategy is compared with two other beamforming

approaches. In a possible application scenario, e. g., a video conferencing system,

the simulation of the impulse responses can be rather simple since conference

rooms are usually not highly reverberant. In this case, a simple mirror-image

approach or even the approximation by a free field model is suitable. Hence, the

assessment is based here (without loss of generality) on a free field setup since this

allows for a clearer evaluation of the impact of the filter coefficients. In a second

example the proposed beamformer is evaluated using measured impulse responses

of a reverberant room.

2.3.1 Free Field

In this assessment the proposed new design strategy is compared with two other

beamforming approaches. A beamformer which also allows to optimizes the re-

ception characteristic in the near field and a conventional unoptimized one. The

performance is evaluated by comparing the reception characteristic of the different

methods.

As representative for an unoptimized beamformer the Chebyshev weighting

approach [Harris 2004] is utilized. This is a fair comparison since the Chebyshev
weighting allows to specify a minimum attenuation for all sidelobes while at the

same time also minimizing the width of the main lobe. Hence, this combination

allows to maximize the SNR between a target area and a diffuse noise field.

As a second reference, the near field full-band optimized weighted delay-and-sum

beamformer from [Schäfer et al. 2012] is considered as an optimized beamformer

candidate. In order to demonstrate the benefit of the proposed sub-band processing,
the full-band weighted delay-and-sum beamformer [Schäfer et al. 2012] is modified

utilizing a filter-and-sum unit instead of the weighted delay-and-sum unit. In the

following this beamformer is referred as modified full-band beamformer.

The reception characteristics are evaluated for a one square meter sized area in

front of the microphone array and the density of the spatial grid is set to 0.01 m for
both dimensions (x and y). Since the simulation is based on an acoustic free field,

the impulse responses hpm(k) from each point of the spatial grid to the microphone

array represent the corresponding delays. All beamformer setups are parameterized

13
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such that they are supposed to achieve a level difference between the amplified and

damped area of 40 dB.
For the two optimized beamformer setups (proposed sub-band and modified

full-band) the target area can be defined explicitly and is depicted in Fig. 2.3. The
microphone arrays are designed to amplify sources on the left (Phigh: −0.5 m ≤
x < 0 m ∧ 0.2 m < y ≤ 0.8 m) while attenuating sources on the right (Plow:
0 m < x ≤ 0.5 m ∧ 0.2 m < y ≤ 0.8 m). Due to the specified spatial grid resolution

this leads to 3000 points in Phigh and Plow, respectively.
The sample rate fs is set to 48 kHz and the microphone line array consists of

M = 8 omnidirectional sensors which have a spacing of 3 cm between the sensors

and a gap of 30 cm in the middle of the array, e. g., for camera mounting in a video

conferencing application. The microphone array is centered at the origin of the

coordinate system as depicted in Fig. 2.3. Spatial aliasing can be expected for
frequencies higher than approximately 5600 Hz due to the microphone spacing. For

the proposed system the number of sub-bands is set to N = 6 using a non-uniform

filter bank according to the human auditory system [Löllmann 2011]. The frequency

range of each sub-band can be seen in Table 2.1. For simplicity all sub-band filters

have been realized as FIR filters. The degree of the filter-and-sum units hm
n is set

to L = 8 resulting in 48 filter coefficients to be optimized. Thus, the modified

full-band beamformer based on [Schäfer et al. 2012] is also set up with a filter

length of 481.

A comparison of the three reception characteristics is given for two different

operating frequencies:

• fi = 500 Hz as a representative for the lower frequencies for which the

microphone array can be utilized,

• fi = 2000 Hz as a frequency that is right in the center of the operational

frequency range of the microphone array.

In Fig. 2.4 the two-dimensional reception characteristics in front of the micro-

phone array are depicted for the Chebyshev weighting. Looking at the operational

frequency of 2000 Hz in Fig. 2.4b there is a notable level difference between the

amplified area Phigh and the damped area Plow on average. However, the desired

reception characteristic within Plow is only achieved at the bottom right corner of

Table 2.1: Filterbank sub-bands

Band Frequency range / Hz Band Frequency range / Hz

1 1 - 268 4 1549 - 2614

2 268 - 839 5 2614 - 4731

3 839 - 1549 6 4731 - 12049

1The optimized filter coefficients are listed in Appendix A.1.1 for the sub-band beamformer

and in Appendix A.1.2 for the full-band approach.
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Figure 2.4: Reception characteristic of the microphone array with Chebyshev

weighting [Harris 2004] at different operational frequencies

Plow. For the 500 Hz case which is depicted in Fig. 2.4a the reception characteristic

of the microphone array is resembling the behavior of a single omnidirectional

microphone which is located in the origin of the coordinate system. Hence, no level
difference between Phigh and Plow is visible.

Fig. 2.5 and Fig. 2.6 present the reception characteristics for the optimized

beamformer algorithms. The performance based on optimized weighting according

to [Schäfer et al. 2012] is shown for the 500 Hz case in Fig. 2.5a. A noticeable

level difference between the areas Phigh (right side) and Plow (left side) can be

seen. However, the target for the damped area is only partly achieved, yet it is
better compared to the Chebyshev weighting. The reception characteristic for the

proposed system (see Fig. 2.6a) fits the previously defined areas of attenuation and

amplification very well even at this low frequency.

Comparing the performance for the 2000 Hz case (Fig. 2.5b and 2.6b) the

difference of the reception characteristics is smaller. Both algorithms provide a

significant level difference between Phigh and Plow and outperform the result given

by the Chebyshev weighting (cf. Fig. 2.4b). However, especially in the critical

border region at x = 0 m the new beamformer matches the predefined target

reception characteristic even better.
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Figure 2.5: Reception characteristics of the microphone array employing the

modified full-band optimized filters at different operational fre-

quencies
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Figure 2.6: Reception characteristics of the microphone array employing the

proposed sub-band optimized filters at different operational fre-

quencies
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Chapter 3

Statistical Noise Reduction in the
Frequency Domain

This chapter introduces the basic principles of statistical noise reduction in the

frequency domain which are required in the sequel of this thesis. A general overview

about statistical noise reduction techniques including state-of-the-art approaches

for the estimation of the short-term noise power spectral density (PSD), the input
signal-to-noise ratio (SNR), and different gain functions is provided. For a more

detailed insight into statistical noise suppression techniques the reader is referred

to the literature, e. g., [Benesty et al. 2007, 2009; Hänsler & Schmidt 2006, 2008;
Vary & Martin 2006].

When it comes to the transmission of speech signals in communication systems,

the original speech signal is often impaired by annoying background noise. Noise

reduction algorithms aim at suppressing the background noise while keeping the
speech signal as natural as possible. Since more than 30 years, noise reduction

is covered in literature and is still an ongoing topic, e. g., [Boll 1979; Ephraim

& Malah 1984, 1985; Vary & Martin 2006]. The noise reduction approaches can
be subdivided into two classes: single-microphone systems and multi-microphone

systems. Systems comprising multiple microphones are able to employ statistical

and spatial information about speech and noise. Single microphone systems usually
rely on (temporal) statistical properties of the speech and noise signal components

for noise reduction. Depending on the application, the environment, the number
of microphones, the noise type and source signals, different approaches are used

in practice. Specialized solutions are, e. g., [Chen et al. 2009; Esch et al. 2010c]

for rapidly time-varying harmonic (car engine) noise, [Godsill et al. 2015; Talmon

et al. 2013] facing an abrupt change or impulsive noise sound which is typical for

keyboard typing or door knocking.

Throughout this thesis all developed algorithms are tailored to real-time process-

ing of single-microphone audio signals. This covers typical applications including

hearing-aid or mobile-phone scenarios. With this constraint only causal modifica-

tions of the recorded audio signal are possible, i. e., only signal properties from the

current point in time and the past are available but no information from the future.

A commonly used approach to perform single-microphone speech enhancement

utilizes the so called spectral decomposition exploiting statistical techniques to

separate speech and noise from the noisy observation. In order to transform the
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noisy signal into the frequency domain, the signal is segmented into frames which

are subsequently transformed utilizing the short-term Fourier domain (STFD)
transformation. Individual adaptive gains are applied to each STFD coefficient to

perform the actual noise suppression. If the SNR for a specific STFD coefficient

is high an absolute gain close to one is chosen. In the opposed case where the

SNR is low an absolute gain close to zero is applied. The gain function minimizes
a specific distortion measure between the clean speech and the speech estimate.

Usually, the gain function requires knowledge about the short-term noise PSD and
the input SNR, which are in general not known a priori and have to be estimated.

Thereafter, the processed spectrum is transformed back into the time domain.

The first part of this chapter is organized following the signal flow of a typical

statistical noise reduction system. After introducing the signal model, the analysis –

synthesis framework (Sec. 3.2.1) is described including the transformation into

and from the short-term frequency domain. A conventional noise suppression

system is detailed in Sec. 3.4 including the estimation of the short-term noise

PSD (Sec. 3.4.1), the short-term SNR (Sec. 3.4.2) and the spectral weighting gain

calculation (Sec. 3.4.3). Subsequently, a new statistical short-term noise PSD

estimator is presented in Sec. 3.5. In Sec. 3.6 a wideband (50 Hz – 7 kHz) noise

suppression approach is presented exploiting spectral dependencies between the
low- and high-band. Conclusions are drawn in Sec. 3.7.

3.1 Problem Formulation

In Fig. 1.1 the problem of capturing speech signals in the presence of noise is

illustrated for a mobile phone scenario. In the following the speech enhancement

problem is discussed for single-microphone systems. In general, the microphone

of a mobile phone does not only record the desired speech signal s(k) but also

a superposition of surrounding noise signals. The samples from the microphone

signal y(k) are obtained by analog-digital conversion with a sampling frequency

of fs. The noisy input signal y(k) is modeled by a clean speech component s(k)

which is degraded by additive noise components nj(k) according to:

y(k) = s(k) +
∑

j

nj(k) = s(k) + n(k), (3.1)

where k is the discrete time index and j the index of the noise sources. The speech

and noise signals are modeled as uncorrelated and zero-mean random processes.

The aim of noise reduction is to estimate the clean speech signal having only the

noisy observation y(k) available. This is achieved by attenuating the noise as much

as possible while keeping the speech distortion as low as possible at the same time

using adaptive filtering. The resulting speech signal estimate at the output of the

noise reduction system is denoted by ŝ(k). A further requirement of the speech
enhancement system is to allow a convenient conversation without notable delay of

the recorded signal y(k). With this constraint only causal modifications are possible,

i. e., only signal properties of the past can be taken into account to estimate ŝ(k).
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+s(k)

n(k)

Analysis
y(k)
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Y(λ, µ)
Synthesis

Ŝ(λ, µ)
ŝ(k)

Figure 3.1: Generic block diagram of a speech enhancement system

3.2 System Overview

Throughout this thesis all considered noise reduction approaches are covered by

the block diagram depicted in Fig. 3.1. Wide arrows indicate multi-channel signals
and thin arrows single-channel signals, respectively.

For the derivation of most statistical noise reduction algorithms, speech and

noise are considered as stationary processes. Hence, the resulting filter coefficients
would be fixed over time and could be applied using simple finite impulse response

(FIR) or infinite impulse response (IIR) filters. However, regarding noise, the
assumption of stationarity strongly depends on the noise type and in case of speech

it does not hold at all. The human speech production is a time varying process and

especially plosive sounds, created by sudden pressure rises in the vocal tract, result

in a highly non-stationary speech signal. However, segmenting the speech signal

into short-time segments of 10 – 100 ms, speech can be assumed as short-term

stationary within the segment [Rabiner & Schafer 1978].

In order to respect the short-term stationarity of speech, the noisy input signal
y(k) is subdivided into short-time frames and the processing of the noisy input
signal is carried out framewise. Hence, the delay of the system results in one frame

which is below the threshold of perception in the context of speech communication
[Cox 1984; Kitawaki & Itoh 1991]. The temporal changes of speech and noise are

considered for updating the filter coefficients continuously on a frame by frame

basis. The frames are transformed into a domain in which the desired and the

noise signal are better separable. Usual transformation domains are the frequency

or cepstral domain. Using the frequency domain is a widely accepted technique

for speech enhancement as it is very similar to the processing taking place in the

human auditory system [Zwicker & Fastl 1990]. Therefore, the discrete Fourier

transform (DFT) frequency domain is used as transfer domain in this thesis. The

procedure including segmenting, windowing and transformation is called analysis.
After manipulation in the transform domain the enhanced segments are transformed

back into the time domain and combined which is called synthesis. Hence, an

analysis – synthesis framework with perfect reconstruction forms the basis for the

speech enhancement system.

3.2.1 Analysis and Synthesis

A block diagram of the analysis and synthesis framework used in this work is

depicted in Fig. 3.2. As mentioned before, the input signal y(k) is segmented due
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Figure 3.2: Analysis – synthesis framework: (a) Analysis block including

segmentation, windowing and DFT, (b) Synthesis consisting of

IDFT, windowing and overlap-add.

to short-term (quasi) stationarity into frames of LF samples which may overlap

according to

yλ(κ) = y(λ · LA + κ) with κ ∈ {0, . . . , LF − 1}, λ ∈ N0, (3.2)

where λ is the frame index, LA the frame advance in samples, and κ is the sample

position within one frame. If no overlap is required LA equals LF . In order to avoid

major discontinuities at the frame edges and to counteract the spectral leakage

effect, a tapered window function w(κ) is applied to each frame [Vary & Martin

2006]. The effect of the window function is a fade in and fade out of the frame. In

addition, this reduces the unavoidable cyclic effects of DFT domain processing. In

consequence, windowing requires a frame overlap to ensure perfect reconstruction of

the frames during synthesis. An example of a window can be seen in Fig. 3.3 (e. g.,

one of the colored curves). Suitable and frequently deployed window functions are

the Hann window, Hamming window or Blackmann window [Oppenheim et al. 1989].

Typical values for the frame length in speech processing are TF ∈ {5 ms, . . . , 40 ms}
[Paliwal et al. 2010; Vary & Martin 2006], which results in a frame-size in samples

of

LF = ⌊TF · fs⌋, (3.3)
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with a frame overlap of typical 50 % – 75 % [Benesty et al. 2007; Loizou 2013].

Arbitrary frame overlaps require a window function whose shifted versions according
to LA add up to at least a constant value or to one for perfect reconstruction1.

The Hann window fulfills this requirement at least for a subset of frame overlaps.
Due to the symmetric bell shape of the window function the maximum value is

located in the center of the window. Hence, the frame overlap has to be greater

or equal than 50 % for perfect reconstruction. To circumvent this limitation the

so called flat top Hann window is introduced here, which allows arbitrary frame

overlaps and perfect reconstruction. The window is composed of three parts: a half

Hann window, a series of ones and the second half of the Hann window. The size

of each part depends on the frame size and the frame advance. The flat top Hann

window wftHann(κ) for frame size LF and frame advance LA, where LA ≤ LF , is

calculated according to:

Nw/2 = LF −
⌈
LF

2LA

⌉
· LA (3.4)

wHann/2(κ) =
1

2

(
1 − cos

(
πκ

Nw/2 − 1

))
(3.5)

wftHann(κ) =





wHann/2(κ) if 0 ≤ κ < Nw/2

1 if Nw/2 ≤ κ < LF −Nw/2

wHann/2(LF − 1 − κ) if LF −Nw/2 ≤ κ < LF

0 otherwise .

(3.6)

From 100 % down to 50 % frame overlap the flat top Hann window is identical to a

regular Hann window

wHann(κ) =
1

2

(
1 − cos

(
2πκ

LF − 1

))
. (3.7)

With decreasing overlap but less than 50 % the center of the window is filled with

ones and in the border case where LF = LA, i. e., no frame overlap, the flat top

Hann window results in a rectangular window.

As depicted in Fig. 3.2 the window function is applied in the considered frame-

work during analysis and synthesis. The window function is applied twice for

the following reasons. On the one hand negative effects mainly caused by cyclic

convolution which are introduced due to spectral modifications are reduced and on

the other hand the spectral modifications are cross-faded in the overlapping parts of

the windows [Marin-Hurtado & Anderson 2011]. Doing so, the square root function

is applied to the window function due to the multiplicative concatenation of analysis

and synthesis which yields an allover perfect reconstruction. The resulting square

root Hann windows are visualized on the right hand side of Fig. 3.2.

After segmenting and windowing and, if necessary, zero-padding each resulting

noisy short-time frame yλ(κ) is transformed into the frequency domain using a

1Note if the constant is not equal to one, a normalization has to be applied within the

synthesis.
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short-time discrete Fourier transform (DFT)2 of length NDFT. Zero-padding is

required if NDFT > LF . The spectrum of the input signal y(k) at frequency bin µ

and frame λ is given by:

yλ(κ) · w(κ)

DFT

❝ s Y(λ, µ) = S(λ, µ) + N (λ, µ), (3.8)

where S(λ, µ) and N (λ, µ) correspond to the spectral coefficients of the speech

and noise signal, respectively. Note that the frequency domain representation of

the input, the speech and noise signal already includes the effect of windowing.

Thereafter, the actual speech enhancement takes place in the frequency domain
which is detailed in Sec. 3.4.

In order to obtain the enhanced signal in the time domain the operations which

are applied in the analysis stage are reversed. As presented in Fig. 3.2b the enhanced

frames Ŝ(λ, µ) are transformed into time domain segments ŝλ(κ) using the IDFT.

Subsequently, the window function is applied. Since it is possible that the windows

add up to a constant greater than one (due to the overlap) a normalization factor

gw within the synthesis procedure is necessary which is calculated by:

Nw =
⌈
LF

LA

⌉
, (3.9)

gw =
⌊
Nw

2

⌋
+Nw mod 2 , (3.10)

where Nw specifies the number of beginning windows within one frame. Finally, the
enhanced signal in the time domain ŝ(k) is constructed by overlap-add [Crochiere

1980] of the normalized and windowed segments

Ŝ(λ, µ)

IDFT

s ❝ ŝλ(κ), (3.11)

ŝ(k) =
∑

λ∈N0

1

gw
· ŝλ(κ) · w(κ), (3.12)

with κ = λ · LA − k. Note that the enhanced signal frames in the time domain

ŝλ(κ) and the window function w(κ) are zero for 0 < κ > LF − 1.

An example of the overall windowing including the analysis and synthesis stage

is depicted in Fig. 3.3 for successive frames. The effective windows are colored

and the sum of the windows is indicated by the black curve. Note for perfect

reconstruction at least Nw overlapping windows are necessary. Hence, perfect

reconstruction can not be achieved at the beginning and the end of ŝ(k). If not

stated otherwise the square-root Hann window is used and a frame length of 20 ms

is applied with an frame overlap of 50 % throughout this thesis.

Both, the analysis and the synthesis stage are not subject of this work. Different

solutions can be found for an analysis – synthesis framework, e. g., by a filter-bank

2Throughout this thesis the fast Fourier transform (FFT) [Cooley & Tukey 1965] is used
as efficient implementation of the DFT. A prerequisite for applying the FFT is a frame size

of a power of two.
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The recursive short-term expectation of x(k) is defined by

Ẽα {x(k)} = (1 − α) · x(k) + α · x(k − 1). (3.15)

The parameters K and α control the smoothing properties of the respective short-
term expectation estimator. Assuming an uncorrelated signal x(k), a relation

between the two parameters can be found by equating the variance of the mean short-

term expectation EK {·} and recursive short-term expectation Ẽα {·} estimators.

It can be shown that the equivalent rectangular window length of the recursive
short-term expectation estimator is given by

α =
K − 1

K + 1
, (3.16)

in terms of the samples K which are used for the moving average estimator and

vice versa

K =
1 + α

1 − α
. (3.17)

Refer to Appendix B for a detailed derivation.

With regard to speech enhancement, most of the algorithms are derived based

on power spectral density (PSD) Φ(µ), short-term PSD Φ(λ, µ) or power signal

quantities |·|2. The computation of power quantities should be normalized to the
frame-size for a correct physical definition, but will be neglected as it is usually

done in literature. This is possible as within a specific speech enhancement system

the used frame-size and frame advance are fixed and therefore no normalization

is necessary. Moreover, power quantities are almost always used in ratios, e. g.,
for SNR computation. Hence, the dependency of the normalization factor on the

frame-size is canceled out. Thus, the PSD of x(k) is defined as

Φxx(µ) = E
{

|X (λ, µ)|2
}
, (3.18)

where X (λ, µ) is the frequency representation of x(k) according to Sec. 3.2.1. The
short-term PSD is given by

Φxx(λ, µ) = EK

{
|X (λ, µ)|2

}
. (3.19)

3.4 Conventional Noise Suppression

Most state-of-the-art noise reduction systems are realized in a framework as depicted

in Fig. 3.1 employing the presented or a similar analysis – synthesis framework (see

Sec. 3.2.1). In the following the functionality of the intermediate modification block
in Fig. 3.1 is described in detail including state-of-the-art examples. A common

approach to enhance degraded speech is presented in Fig. 3.4. It consists of a

detection or estimation part on the left hand side and the actual speech enhancement
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Figure 3.4: Block diagram of standard noise reduction system working in the

frequency domain

on the right hand side. The estimate3 of the short-term noise PSD Φ̂nn(λ, µ) is

the basis from which the a priori SNR estimate ξ̂(λ, µ) and the a posteriori SNR

estimate γ̂(λ, µ) can be calculated. A weighting gain G(λ, µ) is computed which

aims to minimize a specific distortion measure between the clean speech S(λ, µ)

and the speech estimate Ŝ(λ, µ) signal as a function of one or more of the estimated

quantities Φ̂nn(λ, µ), ξ̂(λ, µ) and γ̂(λ, µ). The actual noise reduction is carried out

by spectral weighting, i. e., multiplying the noisy input Y(λ, µ) with the spectral

gain G(λ, µ) and results in the clean speech estimate Ŝ(λ, µ). Frequency bins of

the noisy input signal Y(λ, µ) which contain mostly noise shall be damped while
frequency bins comprising mainly speech shall pass. Utilizing the synthesis stage

the corresponding enhanced time domain signal ŝ(k) is created.

3.4.1 Noise Estimation

All speech enhancement systems covered in this thesis rely on knowledge about

the short-term noise PSD. The estimation of the short-term noise PSD Φ̂nn(λ, µ)

remains a crucial and challenging task in every noise reduction system, especially

in case of non-stationary noise. Noise estimation algorithms usually rely on the

assumption that speech and noise have different temporal statistics which can be

used to estimate the noise from the noisy input signal. Overestimation of the

noise leads likely to over-attenuation of the speech signal resulting in strong speech

distortions. On the other hand, high remaining levels of noise is the consequence of

noise underestimation.

If the noise is stationary or only slowly varying in time, a short-term noise

PSD estimate can either be obtained during speech pauses or by continuously

tracking versus time the magnitude minima in the short-time Fourier domain.

3An estimated signal or parameter is indicated by the hat symbol ̂ throughout this

thesis
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Further processing and updating over time is necessary. Several methods have been

proposed for the estimation of the short-term noise PSD by tracking and post-
processing the magnitude minima in the short-time Fourier domain, e. g., [Baasch

et al. 2014; Cohen 2003; Cohen & Berdugo 2002; Doblinger 1995; Gerkmann &
Hendriks 2011; Hendriks et al. 2010; Martin 2001, 2006].

A comparison of state-of-the-art single microphone short-term noise PSD es-

timators can be found in [Taghia et al. 2011]. The most important methods are

briefly presented in the following.

Voice Activity Detection

One of the first approaches known from literature for the estimation of the short-

term noise PSD, e. g., [McAulay & Malpass 1980; Van Compernolle 1989] is based

on a voice activity detector (VAD). A short-term noise PSD estimate is obtained

by updating the noise PSD only in phases of speech absence. A simple noise PSD

estimate is provided using a first order recursive system with 0 < αΦ < 1 given by

Φ̂nn(λ, µ) = αΦ · Φ̂nn(λ− 1, µ) + (1 − αΦ) · |Y(λ, µ)|2 , (3.20)

while speech is absent and kept constant during speech presence, i. e., αΦ = 1.

However, the quality of VAD is limited by the input SNR leading to unreliable VAD

estimates for low input SNR conditions [Vary & Martin 2006]. Hence, a suitable

short-term noise PSD estimate is only possible for moderate SNR conditions and

rather stationary background noise. In recent years more sophisticated methods

were developed which update the noise PSD also during speech presence.

Minimum Tracker

In [Doblinger 1995] the noise spectrum is estimated for each frequency bin based on

a temporally smoothed periodogram of the noisy observation by nonlinear temporal

minima tracking. If the last noise PSD estimate is smaller than the current noisy

observation the tracking is realized by a weighted average of the last and current

noisy frame. In the other case the current noisy observation serves as new noise

PSD estimate.

Minimum Statistics

The Minimum Statistics [Martin 1994, 2001, 2006] method is based on two assump-

tions:

• speech and noise are statistically independent and

• the power of the noisy signal often decays to the power level of the noise.

Using a smoothed periodogram of the noisy signal, it is possible to track a minimum

separately in each frequency bin within a certain sliding time window to obtain a
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short-term noise PSD estimate Φ̂nn(λ, µ). The smoothed signal power is also given

by a first order recursive system according to

∣∣Y(λ, µ)
∣∣2 = αMS(λ, µ) ·

∣∣Y(λ− 1, µ)
∣∣2 + (1 − αMS(λ, µ)) · |Y(λ, µ)|2 , (3.21)

with 0 < αMS(λ, µ) < 1 denoting a time and frequency dependent smoothing factor.

The smoothing factor αMS(λ, µ) minimizes the conditional minimum mean-square

error (MMSE) between the true noise Φ̂nn(λ, µ) and the smoothed signal power∣∣Y(λ, µ)
∣∣2. The smoothing factor can be expressed as a function of the smoothed

a posteriori SNR [Martin 2001]. Afterwards the minimum within a sliding time

window of the past LMS frames is computed separately for each frequency bin by

∣∣Y(λ, µ)min

∣∣2 = min
λ̃

∣∣Y(λ̃, µ)
∣∣2 , (3.22)

with λ̃ ∈ {λ − LMS + 1, . . . , λ} representing the frame index of the sliding time

window. The duration of the time window for the minimum search states a trade-

off between fast noise tracking and remaining speech portions in the noise PSD
estimate. A typical value for the time window length corresponds to 1.5 s. As the

minimum is always smaller or equal to the mean noise power a bias correction

B(λ, µ) is necessary. The bias correction is mainly dependent on the length of the

minimum search interval and on the variance of the noisy input periodogram and

thus dependent on the smoothing parameter αMS(λ, µ) of the periodogram. The

short-term noise PSD estimate is finally given by

Φ̂nn(λ, µ) = B(λ, µ, αMS(λ, µ)) ·
∣∣Y(λ, µ)min

∣∣2 . (3.23)

Minimum Statistics performs well in stationary and slowly changing noise

conditions as the minimum at each frequency bin within the search time window
provides a good estimate of the actual noise power.

Noise power estimation based on the probability of speech presence (SPP)

Given a reliable VAD, the aforementioned VAD based noise estimator updates the

short-term noise PSD estimate only in phases of speech absence. In contrast, the

SPP algorithm [Gerkmann & Hendriks 2011, 2012], which is a further development

of [Hendriks et al. 2010], estimates the noise PSD for each frequency by a smoothed

linear combination of the current observed noisy short-term PSD and the last

estimate of the noise PSD weighted by the speech presence and speech absence

probability, respectively. The speech presence probability (SPP) is a time and

frequency dependent soft value for the speech activity ranging between zero and

one. Assuming a Gaussian distribution for the real and imaginary components of
the noise and speech spectral coefficients the SPP can be formulated. Applying

Bayes’s theorem, the probability p of speech presence H1 can be expressed given

the noisy observation Y(λ, µ) and a noise PSD estimate Φ̂nn(λ, µ) according to
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[Cohen & Berdugo 2001] by4

p(H1|Y(λ, µ)) =

(
1 + (1 + ξopt) exp

(
−|Y(λ, µ)|2

Φ̂nn(λ, µ)
· ξopt

ξopt + 1

))−1

, (3.24)

where the fixed optimal a priori SNR ξopt is chosen as 10 log10(ξopt) = 15 dB under

the constraint that the true a priori SNR is less or equal to 20 dB [Gerkmann et al.

2008]. Moreover, the speech presence and speech absence is modeled equiprobable,

i. e.,

p(H1) = p(H0) = 0.5. (3.25)

If the short-term noise PSD estimate Φ̂nn(λ, µ) underestimates the true short-term

noise power, the SPP p(H1|Y(λ, µ)) is overestimated since the denominator of

Eq. (3.24) gets smaller due to the dominant ratio −|Y(λ,µ)|2
/Φ̂nn(λ,µ) in exp(·). In

the extreme case, i. e., Φ̂nn(λ, µ) << |Y(λ, µ)|2, the SPP p(H1|Y(λ, µ)) tends to

one although |Y(λ, µ)|2 is small with respect to the true, but unknown, noise

power. In order to avoid stagnation for SPP values close to one post-processing of

p(H1|Y(λ, µ)) is applied, including recursive smoothing and bounding the smoothed

SPP to an upper limit. According to [Gerkmann & Hendriks 2011] the SPP can be

interpreted as frequency and time dependent soft VAD which is suitable to control

the update of the noise periodogram leading to

∣∣∣N̂ (λ, µ)

∣∣∣
2

= p(H0|Y(λ, µ)) |Y(λ, µ)|2 + p(H1|Y(λ, µ))Φ̂nn(λ− 1, µ) (3.26)

with the probability of speech absence given by

p(H0|Y(λ, µ)) = 1 − p(H1|Y(λ, µ)). (3.27)

Finally, the spectral noise power estimate is computed by temporal smoothing of

the noise periodogram according to

Φ̂nn(λ, µ) = 0.8 · Φ̂nn(λ− 1, µ) + 0.2 ·
∣∣∣N̂ (λ, µ)

∣∣∣
2

. (3.28)

The evaluation carried out in [Gerkmann & Hendriks 2012] confirmed a good perfor-

mance for this noise PSD tracking algorithm also in challenging noise environments,

i. e., in case of at least slowly time-varying noise.

3.4.2 Signal-to-noise ratio Estimation

The signal-to-noise ratio (SNR) is an important measurement for speech enhance-

ment and is exploited by many algorithms. Various spectral weighting rules can

be formulated as a function of the SNR. Two important SNR quantities are the

4In a realistic system the noise estimate Φ̂nn(λ, µ) is approximated by the noise estimate

from the previous frame Φ̂nn(λ − 1, µ) to estimate the SPP.
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a priori SNR ξ and the a posteriori SNR γ. Their estimates are defined in [McAulay

& Malpass 1980]. The a posteriori SNR is defined as the ratio between the noisy
periodogram and the short-term noise PSD as given by

γ(λ, µ) =
|Y(λ, µ)|2
Φnn(λ, µ)

=
|Y(λ, µ)|2

EK

{
|N (λ, µ)|2

} , (3.29)

where EK {·} represents the short-term mean expectation operator, i. e., the short-
term average of its argument in this context as defined in Sec. 3.3. Given an

estimate of the short-term noise PSD Φ̂nn(λ, µ) the a posteriori SNR can easily be
measured. In contrast, the a priori SNR defined by

ξ(λ, µ) =
Φss(λ, µ)

Φnn(λ, µ)
=

EK

{
|S(λ, µ)|2

}

EK

{
|N (λ, µ)|2

} , (3.30)

is more challenging to estimate since the short-term PSD of speech Φss(λ, µ) is
necessary. In general, Φss(λ, µ) is not known a priori. Using the relation

Y(λ, µ) = S(λ, µ) + N (λ, µ), (3.31)

and assuming again that speech and noise are uncorrelated the cross terms

Φsn(λ, µ) = Φns(λ, µ) = 0, (3.32)

are close to zero and the a priori SNR can now be formulated in terms of the

a posteriori SNR according to:

ξ(λ, µ) =
Φss(λ, µ)

Φnn(λ, µ)
=

|Y(λ, µ)|2
Φnn(λ, µ)

− 1 = γ(λ, µ) − 1. (3.33)

The decision-directed approach is a widely accepted method in literature to

estimate the a priori SNR ξ(λ, µ) and was suggested by [Ephraim & Malah 1984].

It is assumed that a speech estimate Ŝ(λ− 1, µ) of the previous frame is available

and furthermore that S(λ, µ) ≈ S(λ − 1, µ), which is true for a quasi-stationary

speech sound but less valid for, e. g., transient sounds. Now, the a priori SNR
is computed by a linear combination of speech and noise estimates from the last

frame and an instantaneous realization of the a posteriori SNR

ξ̂(λ, µ) = αξ

∣∣∣Ŝ(λ− 1, µ)

∣∣∣
2

EK

{
|N (λ− 1, µ)|2

} + (1 − αξ) max (γ(λ, µ) − 1, 0), (3.34)

where max (·, ·) returns the maximum of the two arguments. The choice of αξ

states a tradeoff between noise reduction and speech distortion. A typical value for

αξ lies in the range 0.9 < αξ < 0.99. In this work αξ = 0.98 is chosen as suggested

in [Ephraim & Malah 1984].
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3.4.3 Spectral Weighting

As depicted in Fig. 3.4 the actual noise reduction is achieved by spectral weighting

yielding the enhanced speech estimate Ŝ(λ, µ) in the frequency domain by

Ŝ(λ, µ) = G(λ, µ) · Y(λ, µ) = G(λ, µ) · |Y(λ, µ)| eiϑY (λ,µ), (3.35)

where |Y(λ, µ)| is the noisy magnitude and ϑY(λ, µ) the corresponding phase at

frequency bin µ and frame λ. The weighting gain is updated in each frame and

the calculation is usually a function of the previously introduced short-term noise

PSD estimate Φ̂nn(λ, µ) and the SNR estimates ξ̂(λ, µ) and γ̂(λ, µ). Typically, the

optimization of the weighting gain function aims to minimize a specific mathematical

cost function between the clean speech signal S(λ, µ) and its estimate Ŝ(λ, µ)

assuming certain statistical characteristics about speech and noise. Often used cost
functions are the MMSE, the maximum likelihood (ML) or maximum a posteriori

(MAP) criterion. In general, the weighting gains can be complex-valued. As the
human auditory system is rather insensitive w. r. t. to phase distortions [Vary 1985;

Wang & Lim 1982] most weighting gain rules modify only the spectral magnitudes

of the noisy DFT coefficients. Doing so, G(λ, µ) is real-valued and lies in the range

between zero and one. Hence, the noisy phase is applied during synthesis to obtain

the enhanced speech signal in the time domain.

In the following the well-known Wiener filter weighting rule [Lim & Oppenheim
1979; Vaseghi 1996] is presented. The Wiener filter minimizes the MMSE between

the clean speech DFT coefficients S(λ, µ) and the enhanced DFT coefficients

Ŝ(λ, µ) independently for each frequency bin µ assuming Gaussian probability

density functions (PDFs) for both. Using Eq. (3.35) it follows for the MMSE

expression:

E

{∣∣∣S(λ, µ) − Ŝ(λ, µ)

∣∣∣
2
}

= E
{

|S(λ, µ) − G(λ, µ) · Y(λ, µ)|2
} !

= min .

(3.36)

Assuming that the DFT coefficients are independent, it can be shown that the

partial derivation of Eq. 3.36 with respect to the real and imaginary parts of G(λ, µ)

∂ E

{∣∣∣S(λ, µ) − Ŝ(λ, µ)

∣∣∣
2
}

∂ Im{G(λ, µ)} = 0,

∂ E

{∣∣∣S(λ, µ) − Ŝ(λ, µ)

∣∣∣
2
}

∂ Re{G(λ, µ)} = 0 (3.37)

yields [Vaseghi 1996]

Im{G(λ, µ)} = 0, (3.38)

Re{G(λ, µ)} =
E
{

|S(λ, µ)|2
}

E
{

|S(λ, µ)|2 + |N (λ, µ)|2
} =

Φ̂ss(λ, µ)

Φ̂ss(λ, µ) + Φ̂nn(λ, µ)
(3.39)
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where Re{·} and Im{·} denote the real and imaginary parts, respectively. Hence,

the Wiener filter weighting is real valued and it can also be expressed in terms of
the a priori SNR estimate ξ̂ as

GW (λ, µ) =
ξ̂(λ, µ)

1 + ξ̂(λ, µ)
. (3.40)

Another popular approach is called spectral subtraction and was proposed by

[Boll 1979]. The noise reduction is achieved by subtracting an estimate of the noise

magnitude spectrum from the noisy speech magnitude spectrum according to

∣∣∣Ŝ(λ, µ)

∣∣∣ = |Y(λ, µ)| − E {|N (λ, µ)|} , (3.41)

which leads to the weighting gain calculation rule:

GS(λ, µ) = 1 − E {|N (λ, µ)|}
|Y(λ, µ)| . (3.42)

In [Hansen 1991] a gain rule was proposed which generalizes the approach of

[Boll 1979] introducing the two parameters αG and βG and using the noise estimate

N̂ (λ, µ). The gain rule is given by

G(λ, µ) =

√√√√√√


1 −




∣∣∣N̂ (λ, µ)

∣∣∣
2

|Y(λ, µ)|2




βG



αG

. (3.43)

The parameters αG and βG can be either fixed or adaptive incorporating the

characteristics of speech and noise over the time. Using αG = 2 and βG = 0.5 yields
the spectral subtraction rule by [Boll 1979], whereas αG = βG = 1 leads to the

power subtraction rule. Setting αG = 2 and βG = 1 results in the Wiener filter
weighting gain (refer Eq. 3.39).

3.5 Noise Estimation by Logarithmic Baseline Tracing

A novel noise PSD estimator for disturbed speech signals that operates in the

short-time Fourier domain is presented [Heese & Vary 2015]. A short-term noise

PSD estimate is provided by constrained tracing with time the noisy observation

separately for each frequency bin. The constraint is a limitation of the logarithmic

magnitude change between successive time frames. Since speech onsets are assumed

as sudden rises in the noisy observation, a fixed and an adaptive tracing parameter

β will be derived to track the contained noise while preventing speech leakage to
the noise PSD estimate. In other words, the new estimator is explicitly designed

to estimate all signal components with a lower dynamic than speech. Hence,

the remaining signal estimate is considered as noise. The constraint frequency
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dependent magnitude change causes inertia of the noise estimate over time which

models the different temporal and frequency dependent statistics of speech and
noise.

The experimental evaluation and comparison with state-of-the-art algorithms,

SPP [Gerkmann & Hendriks 2011] and Minimum Statistics [Martin 2001, 2006],

confirms a lower logarithmic noise estimation error and superior speech enhancement

rated in a standard noise reduction system. The proposed concept has an extremely
low computational complexity and memory consumption. Thus, it is well suited

for applications where processing power and memory is limited.

The property of the new estimator to largely prevent speech leakage to the noise

estimate along with the low computational complexity is an important feature for

information combining as detailed in Sec. 5 of different speech and noise short-term
PSDs.

3.5.1 Signal Model

For the derivation of the new short-term noise PSD estimator it is assumed that

the speech and noise signals have zero mean and are independent so that

E
{

|Y(λ, µ)|2
}

= E
{

|S(λ, µ)|2
}

+ E
{

|N (λ, µ)|2
}
. (3.44)

3.5.2 Definition of the Noise Signal Baseline

In most derivations of (short-term) noise PSD estimators speech and noise are

assumed as uncorrelated and the noise is modeled as a stationary process [Gerkmann

& Hendriks 2012; Martin 2006]. Hence, applying the expectation operator in the

derivations cancels the speech-noise cross-terms out which simplifies the estimation

problem. As noise estimators and speech enhancement systems operate on a frame-

by-frame basis, this simplifications do not hold. In this section the aforementioned

simplifications are analyzed relaxing the requirement of the noise to be stationary

and by formulating the estimation problem including the speech-noise cross-terms.

The final estimation term can be expressed in terms of a baseline which is equivalent

to the short-term noise PSD.

In the following consideration an arbitrary but stationary noise only signal is
assumed. Since most speech enhancement algorithms are derived based on the noise

signal power spectral density (PSD) Φnn(µ), the determination of the noise signal

PSD or at least the short-term noise PSD Φnn(λ, µ) is the objective of a noise

estimator. Quite often, it is not possible to observe more than a single realization,
i. e., a noise signal frame, of a stochastic noise signal process. Then, the estimation

of the PSD by averaging over an ensemble of observations is not possible. The

periodogram |N (λ, µ)|2 [Schuster 1898] is a commonly utilized non-parametric

simple estimator for the noise PSD Φnn(µ) resulting in a so called short-term

PSD estimate Φ̂nn(λ, µ) = |N (λ, µ)|2. Since the periodogram in contrast to the

PSD is calculated from a finite segment length, e. g., a signal frame nλ(κ), it is

suitable for block processing which is demanded in the context of real-time signal
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enhancement. However, the difference between Φ̂nn(λ, µ) and Φnn(µ) is caused

by the finite frame length, which is in the order of 20 ms in speech enhancement,

used for the calculation of the periodogram. Hence, the finite frame length and the

random nature of most noise signals cause the obtained short-term periodograms

of consecutive signal frames to vary randomly around the true average spectrum,

i. e., the PSD Φnn(µ). In order to reduce the variance of the short-term noise PSD

estimate Φ̂nn(λ, µ) = |N (λ, µ)|2 possibly adaptive temporal smoothing is applied

to the periodograms, which yields a refined short-term noise PSD estimate

Φ̂nn(λ, µ) = Ẽα {N (λ, µ)N ∗(λ, µ)} (3.45)

= αΦ(λ, µ) · Φ̂nn(λ− 1, µ) + (1 − αΦ(λ, µ)) · |N (λ, µ)|2 ,

as close approximation of the true noise PSD Φnn(µ).

With regard to more realistic noise scenarios, the requirement for the noise

signal is relaxed allowing both, stationary or slowly varying short-term stationary
noise which is denoted by Φnn(λ, µ) (where λ is the frame index). Then, the true

noise PSD Φnn(µ) would be a sub-optimal noise power estimate with respect to an

arbitrary signal frame λ, since it does not provide temporal information. Assuming

a short-term stationary noise signal, the desired short-term PSD estimate Φ̂nn(λ, µ)

is an approximation of the short-term noise PSD Φnn(λ, µ) which is defined as the
average over all K signal frames centered around the current frame λ which are

considered as stationary:

Φnn(λ, µ) = EK

{
N (λ̃, µ) · N ∗(λ̃, µ)

}
, with λ̃ = λ−

⌈
K

2

⌉
. (3.46)

In general, the smoothing parameter αΦ(λ, µ) is set such that the resulting smoothed

estimate is also short-term stationary. The choice of the smoothing parameter states

the trade off between estimation delay and noise power over- and under-estimation.

Another interpretation of the smoothing procedure is to decompose the noise

signal into a baseline B(λ, µ), which is equivalent to the short-term noise PSD

Φnn(λ, µ) and the remaining fast temporal fluctuations F(λ, µ) according to

B(λ, µ) = Φnn(λ, µ) ≈ Φ̂nn(λ, µ) (3.47)

|N (λ, µ)|2 = B(λ, µ) + F(λ, µ). (3.48)

In practice, B(λ, µ) can be approximated by the above mentioned smoothed version

of the noise signal power Φ̂nn(λ, µ) described by Eq. (3.45). In Fig. 3.5 an example

of pure noise |N (λ, µ)|2 its baseline B(λ, µ) and the remaining fast variations F(λ, µ)

is depicted as a function of time for a single frequency bin µ = 101 (fs = 16 kHz,

NDFT = 512).

A common aim of statistical noise PSD estimators is the determination of the
smoothed short-term noise PSD estimate Φ̂nn(λ, µ) given only the noisy observation

Y(λ, µ) = S(λ, µ) + N (λ, µ). In the context of slowly varying noise, the presented

baseline B(λ, µ) as a function of time and frequency provides the desired smoothed
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∣∣2

d(λ, µ) ∈ {−1, 0, 1}

∣∣N̂ (λ, µ)
∣∣2

linear amplitude domain logarithmic amplitude domain

Figure 3.6: Equivalent block diagram of proposed noise estimator

B(λ, µ). An alternative approach for the determination of baseline B(λ, µ) is to

limit the magnitude change between successive time frames by a fixed or adaptive

step size. This concept will be explained in the next sections.

3.5.3 Concept of Baseline Tracing

The noise estimation problem is formulated in the logarithmic amplitude domain,
while the actual implementation is carried out with linear amplitudes. This proce-

dure is beneficial for the following reasons:

• the linear domain processing is computationally less complex than in the

logarithmic domain,

• the logarithmic domain estimator is inherently unbiased, as shown below,

and does not need correction terms like, e. g., Minimum Statistics [Martin

2001, 2006],

• the logarithmic domain formulation of the proposed estimator does not need

explicit amplitude normalization,

• the logarithmic domain corresponds to the perception of the human auditory

system.

The equivalent logarithmic domain block diagram of the proposed short-term noise

PSD estimator is depicted in Fig. 3.6. The estimator can be explained in terms
of delta modulation with an adaptive step size ∆(λ, µ). For each fixed frequency

bin µ, the variable step size ∆(λ, µ) is deliberately adjusted such that the estimate

ln

∣∣∣N̂ (λ, µ)

∣∣∣
2

follows the baseline of the logarithmic noisy sub-band, which is called

Baseline Tracing. The noise estimate as depicted in Fig. 3.6 is obtained in the
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domain except of the granular noise known from delta modulation. In contrast to

delta modulation d(λ) = 0 is allowed, which is favorable as the noise estimation
may exactly match the, e. g., constant input.

For complexity reasons, the logarithmic short-term noise PSD estimator is

implemented in the linear amplitude domain. The resulting equations (3.54)

and (3.55) are in parts similar to [Baasch et al. 2014]. However, the adaptation

mechanism proposed in this thesis is speech dependent and the control is effective

in the logarithmic amplitude domain.

Given a noise estimate
∣∣∣N̂ (λ− 1, µ)

∣∣∣
2

from the last frame, the current estimate
∣∣∣N̂ (λ, µ)

∣∣∣
2

is calculated by stretching or compressing the last estimate with the

tracing factor β(µ) in each frequency bin. The tracing factor β is equivalent to

β(λ, µ) = e∆(λ,µ), (3.53)

and can be realized frequency dependent or independent. A further option is to

use a time varying β(λ, µ) in analogy to the adaptive step size control in delta

modulation [Jayant & Noll 1984; Proakis & Salehi 2001]. As criterion for stretching

or compressing, the signum function is used. If the difference between the current

noisy observation Y(λ, µ) and the last estimate N̂ (λ− 1, µ) is greater than zero,

N̂ (λ− 1, µ) will be stretched by β and compressed by 1/β in the other case. The

estimation step, which is equivalent to the “Delta Modulation Algorithm” in the

logarithmic amplitude domain of Fig. 3.6, is described by the following equations

in the linear amplitude

∣∣∣N̂ (λ, µ)

∣∣∣
2

=

∣∣∣N̂ (λ− 1, µ)

∣∣∣
2

· β(λ, µ)D(λ,µ), (3.54)

D(λ, µ) = sign

(
ln |Y(λ, µ)|2 − ln

∣∣∣N̂ (λ− 1, µ)

∣∣∣
2
)
, (3.55)

= sign

(
|Y(λ, µ)|2 −

∣∣∣N̂ (λ− 1, µ)

∣∣∣
2
)
, (3.56)

with the initialization of the first estimate

∣∣∣N̂ (1, µ)

∣∣∣
2

= |Y(1, µ)|2.

A proof of concept example for a single frequency bin µ = 59 corresponding

to a frequency of 1816 Hz is depicted in Fig. 3.8 as a function of time. Here, a

noisy signal consisting of factory1 noise [Varga et al. 1992] and a female speaker

randomly taken from the NTT database [NTT-Corporation 1994] at 5 dB input

SNR was processed with a frequency independent tracing factor

β(λ, µ) = 1.05 ≈ 0.4 dB, (3.57)

which corresponds to approximately 5 % change in

∣∣∣N̂ (λ, µ)

∣∣∣
2

from frame to frame

in this example. In the upper plot the clean speech ( ) and noise signal ( )
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speech aware and frequency dependent φ(µ) is specified as:

φ(µ) =
NDFT · LTA−1(µ)∑NDFT−1

i=0
LTA−1(i)

. (3.61)

Note φ(µ) is thus normalized to a mean of one. Both, the normalized long-term

speech spectrum ( ) and its normalized inverse φ(µ) ( ) are depicted in

Fig. 3.9.

Fixed Scaling Parameter α with the Time

As mentioned above, a large β leads to an erroneous noise PSD estimate including

also speech. As φ(µ) is one on average, β(λ, µ) may be too large in many cases

and

∣∣∣N̂ (λ, µ)

∣∣∣
2

changes excessively in successive frames, which can be solved by an

appropriate choice of α(λ). According to Fig. 3.9 the main part of speech energy

is distributed up to approx. 3.4 kHz. Allowing a change of p% on average every
10 ms at this frequency range yields to a fixed α(λ) of:

α(λ) =
p · LA

(⌊
3.4 kHz·NDFT

fs

⌋
+ 1
)

fs ·
∑
⌊

3.4 kHz·NDFT
fs

⌋
i=0 φ(i)

, (3.62)

where LA is the frame advance in samples. Setting p, e. g., to 5 % as in the presented
example in Fig. 3.8 yields α(λ) ≈ 0.13 ≈̂ 0.4 dB/10 ms.

Adaptive Scaling α(λ) with the Time

A further option is an adaptive α(λ) as a function of the frame a posteriori

SNR. If the a posteriori SNR is extremely high, the adaptive α(λ) should be very

small, resulting in small changes of

∣∣∣N̂ (λ, µ)

∣∣∣
2

in successive frames. Whereas with

decreasing SNR, α(λ) should grow, allowing a faster tracking of the noise. In order

to prevent error propagation, the adaptive α(λ) is chosen as a function of the

segmental mean SNR with an upper limit of γmax defined as

γseg(λ) = min


 1

NDFT

NDFT−1∑

µ=0

|Y(λ− 1, µ)|2∣∣∣N̂ (λ− 1, µ)

∣∣∣
2
, γmax


 , (3.63)

controlled by a second independent a posteriori SNR estimate

γ2nd(λ) =

∑NDFT−1

µ=0
|Y(λ, µ)|2

∑NDFT−1

µ=0

∣∣∣N̂2nd(λ, µ)

∣∣∣
2
, (3.64)

where N̂2nd(λ, µ) is provided by a second Baseline Tracer with a large fixed α2nd

according to Eq. (3.62), resulting in a fast but rough noise tracking. The reason

42



3.5 Noise Estimation by Logarithmic Baseline Tracing

Parameter Settings

Sampling frequency fs 16 kHz

Frame length LF 320 (=̂ 20 ms)

FFT length NDFT 512 (including zero-padding)

Frame overlap 50 % (LA = 160 =̂ 20 ms)

Window function
√

Hann − window

SNR estimation Decision-directed approach

Table 3.1: Simulation system settings

behind γ2nd is to reduce the tracking speed in case of sudden increase of the speech
component. Combining both SNR estimates, the adaptive α(λ) is now specified as

α(λ) =
1 − γseg(λ)/γmax

γ2nd(λ)
, (3.65)

where the denominator provides fast and robust scaling of α(λ) which is refined by

the nominator and γmax defines the upper limit for noise tracking.

3.5.5 Evaluation

The evaluation is carried out in three steps. At first the noise estimation performance
itself is rated. Afterwards the new estimator is applied to a clean speech signal as

boundary experiment for infinity input SNR. In a third step the new estimator
is evaluated embedded in a standard noise reduction system. Different objective

speech enhancement scores serve as indirect performance measures. In the following,
a standard speech enhancement system which is depicted in Fig. 3.4 serves as

benchmark platform. The corresponding simulation parameters are summarized in

Tab. 3.1.

The proposed noise PSD estimator Baseline Tracing is compared in two different

configurations for β(λ, µ) with three state-of-the-art methods: Minimum Tracking

[Doblinger 1995], Minimum Statistics [Martin 2006] and the SPP noise tracker

[Gerkmann & Hendriks 2011].

The first configuration of the new baseline tracing algorithm employs a fre-

quency dependent φ(µ) according to the inverse long-term speech average spec-

trum (Sec. 3.5.4) and a fixed α(λ) = 0.4 dB/10 ms, while in the second config-

uration α(λ) is a posteriori SNR dependent (Sec. 3.5.4) with γmax=̂15 dB and

α2nd = 1.6 dB/10 ms. The parameters of the Minimum Tracking, Minimum Statis-

tics and SPP algorithm are chosen as suggested in [Doblinger 1995; Martin 2006;

Gerkmann & Hendriks 2011], respectively.

The comparison is performed for all permutations of the following parameters:

• the input SNR varies from −10 to 35 dB in 5 dB steps5 and

5The mixing procedure is detailed in Sec. C.1. Note that for the calculation of the scaling
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Estimator LogErr LogErrUnder LogErrOver

Baseline Tracing (adaptive α) 2.94 dB 1.19 dB 1.76 dB

Baseline Tracing (fixed α) 4.11 dB 1.65 dB 2.46 dB

SPP 3.93 dB 1.45 dB 2.48 dB

Minimum Statistics 5.09 dB 2.55 dB 2.54 dB

Minima Tracker 5.35 dB 4.00 dB 1.35 dB

Table 3.2: Noise PSD logarithmic error measures for different short-term noise

PSD estimators. The input signal consists exclusively of modulated
white Gaussian noise.

overestimation of the true noise power, as indicated by LogErrOver, likely results in

an attenuation of the speech and thus in speech distortions. On the other hand,

a noise power underestimation, pointed out by the LogErrUnder causes probable
lower noise attenuation.

In a first boundary experiment the noise estimators are analyzed applying them

to a non-stationary noise signal, i. e., without the influence of speech. The syntheti-

cally composed noise sequence consists of 62 s of a modulated white Gaussian noise

signal (fmod = 0.5 Hz, Eq. (3.66)). The first 2 seconds, i. e., the first modulation

period, of the noise estimate results are discarded due to initialization operations.

The remaining 60 s are subdivided into 15 periods of 4 seconds length and averaged.

In addition the results are also averaged across frequency in order to reduce the

variance and to provide a compact representation. The short-term noise PSD
estimates as indicated by the colored curves and the true noise power marked

by the black color of averaged noise signal periods are depicted in Fig. 3.10. It

is obvious that all noise estimation algorithms are not able to follow closely the
true noise power ( ) in this example. The Minima Tracker ( ) consequently

underestimates the true noise power. In contrast, the Minimum Statistics method

( ) underestimates only the rising edge of the noise signal and is able to follow

more closely the falling edge. This behavior can be expected due to the length of the

sliding minimum window of approx. 1.5 s. The remaining noise estimators perform

similar. Analyzing the Baseline Tracing estimator utilizing a fixed α ( ) it is

apparent that it has a slightly worse performance and a tendency to overestimate

the noise power at the falling edges of the noise signal compared with the SPP

estimator. If the Baseline Tracing is using the adaptive α(λ) ( ), the algorithm

is able to follow the true noise power more precisely than the SPP approach. The

presented results are confirmed by the objective LogErr measures applied to the

whole noise signal sequence and are summarized in Tab. 3.2.

In the following, the noise estimation performance is evaluated in a more realistic
scenario under the influence of speech, different noise types and various SNRs as

described above. The averaged results in terms of the LogErr are presented in

Fig. 3.11. As in the previous example the Minimum Tracker ( ) marks the
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estimation is similar. The Minimum Statistics ( ) and Minimum Tracking ( )

have a comparable performance regarding the total LogErr measure and perform
0.59 dB worse on average compared to SPP and the proposed estimator with fixed

α. In contrast to Minimum Statistics, the LogErr analysis of Minimum Tracking
confirmed a dominant underestimation of the short-term noise PSD, indicating

lower performance in terms of noise reduction. For all noises and SNR conditions,
the proposed estimator Baseline Tracing with adaptive α(λ) ( ) holds the best

performance in all error measures with an advance up to 1.1 dB and 0.71 dB on

average.

Short-term Noise PSD Estimation on a Clean Speech Signal

In this experiment the noise estimators are applied to the randomly chosen clean

speech signals, i. e., without noise. This reflects on the one hand the border case of

infinite input SNR. On the other hand, the tendency of the respective estimator to

estimate erroneously speech as noise can be studied. If speech contributes to the
short-term noise PSD estimate, speech distortions in terms of speech attenuation

during the noise reduction process will likely occur. In addition, the performance

of the mentioned information combining, detailed in Sec. 5, of different noise

and speech short-term PSD estimates is significantly degraded if one of the noise

estimates contains speech.

The noise short-term PSD estimates of the four best approaches are depicted in

terms of spectrograms in Fig. 3.13 exemplarily for one speech signal and confirm
that the Minimum Statistics algorithm and the proposed Baseline Tracing noise

estimator in both configurations for α(λ) deliver an almost perfect noise estimate,

i. e., Φ̂nn(λ, µ) is very close to zero. However, the SPP approach shows isolated

significant contributions in the noise estimate. The LogErr measures normalized to

the best noise estimator, i. e., Baseline Tracing (adaptive), and averaged over all
30 speakers result in

• Baseline Tracing (adaptive): 0 dB ∆LogErr,

• Minimum Statistics: 2.22 dB ∆LogErr,

• Baseline Tracing (fixed): 3.93 dB ∆LogErr,

• SPP 6.37 dB ∆LogErr, and

• Minimum Tracker : 15.33 dB ∆LogErr.

Note that for the calculation of the LogErr the noise floor reference is set to -80 dB

which corresponds to the most silent part of the clean speech signals.

Noise Reduction Performance

In addition, the performance of the different noise estimators is also rated in terms

of objective speech enhancement scores. Therefore, the noise estimators are utilized
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Figure 3.13: Noise short-term PSD estimates from clean speech depicted as

spectrograms.
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increasing occurrence of so called musical tones, especially at higher frequencies.

So far, only a limited number of proposals have been made which take into account
the aforementioned aspects when enhancing wideband speech signals, e. g., [Esch

et al. 2010a; Heese et al. 2010] and [Beaugeant et al. 2006].
From another field of speech enhancement it is known, that the spectral depen-

dencies of speech signals can be exploited to estimate missing high frequencies by
analyzing the low band speech signal. This technique is called artificial bandwidth

extension (BWE), e. g., [Geiser et al. 2007; Heese et al. 2012a; Jax & Vary 2006].
With respect to noise reduction, techniques from the BWE can be used to improve

the estimation of the weighting gains in the high band.

Additionally to conventional calculated weighting gains, an intermediate en-

hanced low band signal is used to provide a second set of high band weighting gains

utilizing techniques from BWE. The weighting gains are combined using an SNR

dependent information combining approach.

3.6.1 Wideband Noise Reduction System Overview

To counteract the mentioned problems when it comes to wideband noise reduction,

a joint noise reduction system [Esch et al. 2010a; Heese et al. 2010] is presented. It

uses different noise reduction schemes for the low and high band and makes use of
the spectral dependencies in speech signals similar to techniques known from BWE.

In the following the sub-index “LB” indicates the low frequency band and “HB”

the high band. The block diagram of the proposed system is depicted in Fig. 3.18.
The input signal y(k) is decomposed into its low band yLB and high band

yHB components applying a two-channel infinite impulse response (IIR) quadrature
mirror filter (QMF) with critical sampling and near perfect reconstruction [Löllmann

et al. 2009]. Subsequently, the filtered signals are down-sampled by a factor of 2,
where k′ represents the discrete time index in the sub-sampled domain. Individual

analysis – synthesis structures allow the re-use of existing low band noise reduction

systems7. The noise reduction is carried out in the frequency domain by spectral

weighting for both bands. For this purpose yLB(k′) and yHB(k′) are segmented into

overlapping frames and transformed to the spectral domain as stated in Sec. 3.2.1.

Thus, the spectral coefficients of the noisy input signal at frequency bin µ and

frame λ are given by:

YLB(λ, µ) = SLB(λ, µ) + NLB(λ, µ), (3.68)

YHB(λ, µ) = SHB(λ, µ) + NHB(λ, µ), (3.69)

where SLB(λ, µ), SHB(λ, µ) and NLB(λ, µ), NHB(λ, µ) represent the spectral coeffi-

cients of the speech and noise component of the low and high band, respectively.
While a conventional noise suppression, operating in the frequency domain, is used

in the low band (50 Hz – 4 kHz), a joint noise suppression approach is applied

in the high band (4 kHz – 7 kHz). Using spectral features from the intermediate

7Note that the DFT length NDFT is defined for each band after downsampling.

54



3.6 Noise Reduction by Information Combining Exploiting Spectral . . .
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Figure 3.18: Wideband noise reduction system using different schemes in the

low and high band exploiting the spectral dependencies of speech.

enhanced low band signal S̃LB(λ, µ), the high band noise reduction is supported by

techniques known from BWE.

In general, limiting the weighting gains to a lower bound max {G(λ, µ), gmin}
allows to control the tradeoff between noise attenuation and speech distortion. The

favored tradeoff depends on the application. Since noise disturbs the application
of BWE techniques, a stronger noise attenuation for the intermediate enhanced

low band signal S̃LB(λ, µ) = GLB(λ, µ) · YLB(λ, µ) using a small gmin is desirable.

Whereas, a small amount of speech attenuation is favored in case of actual speech

enhancement utilizing a higher gmin.

Finally, both enhanced signals ŝLB(k′) and ŝHB(k′) are combined by a QMF

synthesis in order to obtain the enhanced wideband signal ŝ(k).

3.6.2 Joint Noise Reduction in the High Band

The principle of the combined high band noise reduction system is illustrated in

Fig. 3.19. Since the analysis – synthesis framework remains the same as for the
low band showed in Fig. 3.18, only the processing blocks in the spectral domain

are depicted. Two separate noise reduction schemes are performed in parallel

to the noisy high band spectrum YHB(λ, µ). The results are two gain estimates,

conventional gains Gconv and novel gains Gbwe which exploit spectral dependencies

between the low and high band. For the following reasons the frequency resolution

of the weighting gains in the high band is decreased:

• The properties of the human auditory system are taken into account, i.e.,

the frequency selectivity decreases with higher frequencies [Zwicker 1982].

• Due to the aforementioned imprecise SNR estimation in the high band the

resulting weighting gains exhibit a high variance over time and frequency,

which results likely in musical tones. Decreasing the frequency resolution by
combining neighboring frequency bins limits the temporal fluctuations of the

weighting gains and reduces their variance over time. This yields a better

suppression of musical tones.
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• Since the estimation accuracy of the BWE is limited to the spectral envelope

of the high band, the determination of Gbwe is bounded inherently to sub-
bands.

Hence, the frequency resolution is decreased from NDFT to N ′
DFT by combining

adjacent frequency-bins using 50% overlapping Hann windows of the same lengths.

The decimated frequency index is denoted by µ′, where N ′
DFT < NDFT.

The conventional approach consists of noise power estimation, SNR estima-

tion and the calculation of the weighting gain Gconv(µ) as described in Sec. 3.2.

The subsequent post-processing decreases the frequency resolution as described

above. The determination of the novel weighting gains Gbwe(µ′) will be detailed in

Section 3.6.2. The final weighting gain GHB(µ′) for the high band is obtained by

adaptive combining the two independent weighting gains:

GHB(λ, µ′) = αG(λ, µ′)Gbwe(λ, µ′) +
(
1 − αG(λ, µ′)

)
Gconv(λ, µ′), (3.70)

where αG ∈ [0, 1] represents a reliability factor which is frame and frequency

dependent and will be explained later.

Finally, the frequency resolution of the resulting high band weighting gains

GHB(λ, µ′) is interpolated to its original resolution from N ′
DFT to NDFT using

overlap-add of 50% overlapping scaled Hann windows. Spectral weighting of the

noisy high band coefficients according to

ŜHB(λ, µ) = YHB(λ, µ) · GHB(λ, µ) (3.71)

Feature
extraction

S̃LB(µ)
Parameter
estimation

x

Noise
estimation

∣∣ŜHB(µ′)
∣∣2

SNR
estimation

∣∣N̂HB(µ′)
∣∣2

Gain
calculation

YHB(µ)

Conventional
gain calculation

Post-
processing

×

αG(µ′)

Gbwe(µ′)

×

1 − αG(µ′)

Gconv(µ′)

+ GHB(µ′)

Figure 3.19: Highband noise reduction scheme exploiting spectral dependen-

cies between low and high band (applied to each frame λ)
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yields an estimate of the clean high band coefficients ŜHB(λ, µ). The enhanced signal

ŝ(k′) in the time domain is obtained by applying an inverse DFT and overlap-add.

Noise Reduction Exploiting Spectral Dependencies

Statistical dependencies between the low band (50 Hz – 4 kHz) and the high band

(4 kHz – 7 kHz) are exploited using techniques known from BWE. The method that

is used here is partly included in [Geiser et al. 2007]. The concept is to estimate

high band signal parameters based on meaningful features which are extracted only

from the intermediate enhanced low band signal applying a trained hidden markov

model (HMM).

Therefore, spectral features from the processed enhanced low band signal S̃LB(µ)

are calculated. Usually, representations of the spectral envelope of the low band
signal serve as features and are extracted on a frame-by-frame basis [Jax & Vary

2004]. In the classical BWE application the mel frequency cepstral coefficients

(MFCC) and the zero-crossing rate (ZCR) [Rabiner & Schafer 1978] have been

proven as suitable features. In a first approach those features are chosen for the

estimation of the clean speech high band parameters [Esch et al. 2010a]. Since

the enhanced low band signal still contains noise, more appropriate features allow

to improve the BWE estimation performance in this context. Hence, the feature
vector x derived from the low band consists of NC relative spectral transform -

perceptual linear prediction (RASTA-PLP) coefficients and the ZCR [Rabiner &

Schafer 1978] of the low band signal S̃LB. RASTA [Hermansky & Morgan 1994] is
a technique that applies a filter in each frequency sub-band in order to smooth over

short-term noise variations and to remove any constant offset resulting from static

spectral coloration in the speech channel. The PLP [Hermansky 1990] algorithm

preserves the important speech information by warping spectra to minimize the

differences between speakers.

As mentioned before and in contrast to a classical BWE application where
an undisturbed input signal is assumed and the HMM can be trained with clean

speech, the processed enhanced low band signal, which serves here as input for the

BWE, will still contain remaining background noise. This fact is taken into account

and incorporated into the training process of the HMM. White Gaussian noise

serves here as model for residual noise. Hence, the training data used to determine

the low band features is disturbed by white Gaussian noise with an SNR of 0 dB

to cope even with strongly impaired signals. Subsequently, a conventional noise

reduction, e. g., Sec. 3.2, is applied using a strong noise suppression with gmin close

to zero, e. g., -20 dB. Doing so, typical processing artifacts are integrated in the

training process.

As in [Geiser et al. 2007], a trained HMM is used to estimate the parameter

vector v representing µ′ clean speech sub-band energies of the high band. Let

X = {x(1), . . . , x(λ)} denote a sequence of feature vectors starting with frame one

to λ. The MMSE estimation of a parameter vector v of the current frame with
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given observations X can be formulated as

E
{

||v − v̂||2|X
} !

= min, (3.72)

where v̂ is the respective estimate. The solution to this optimization problem is

the conditional expectation vMMSE = E {v|X}. Given a pre-computed codebook

C = {v̂1, . . . , v̂MC
} for the vectors v this MMSE estimate can be approximated as

v̂MMSE =
∑

v̂
i
∈C

v̂i · P (v̂i|X), (3.73)

which is basically a weighted sum over the centroids of the codebook. The weights

P (v̂i|X) comprise a posteriori probabilities which can be determined using HMM

techniques [Geiser et al. 2007]. The codebook C is obtained creating a large amount

of training vectors which are then used for the training of a vector quantizer (VQ).

The result of the VQ training corresponds to the codebook. In this work the LBG

algorithm [Linde et al. 1980] with the MMSE distance measure is employed.

Once the clean speech energies v̂MMSE = {
∣∣ŜHB(0)

∣∣2 , · · · ,
∣∣ŜHB(N ′

DFT − 1)
∣∣2} of

the µ′ sub-bands have been estimated, they are together with the noisy observation

used to estimate the noise power in the high band for each frame λ:

|N̂HB(µ′)|2 = max
(

|YHB(µ′)|2 − |ŜHB(µ′)|2, 0
)
. (3.74)

Finally, the a posteriori SNR γ(µ′) and a priori SNR ξ(µ′) can be estimated and

expressed according to:

γ̂HB(µ′) =
|YHB(µ′)|2

|N̂HB(µ′)|2
and ξ̂HB(µ′) =

|ŜHB(µ′)|2

|N̂HB(µ′)|2
. (3.75)

Based on the SNR estimates a Wiener filter or any state-of-the-art weighting rule

Gbwe can be calculated.

Information Combining by Cross-Fading

As mentioned before, the information of the two high band estimates, in terms

of the weighting gains Gconv(λ, µ′) and Gbwe(λ, µ′), is adaptively combined using

the cross-fading-factor αG(λ, µ′). Assuming optimal weighting gains Gopt, which

are derived from the ideal a posteriori SNR γ(µ′) and a priori SNR ξ(µ′) also

determined at the reduced frequency resolution by combining adjacent frequency

bins as before

γHB(µ′) =
|YHB(µ′)|2
|NHB(µ′)|2 and ξHB(µ′) =

|SHB(µ′)|2
|NHB(µ′)|2 , (3.76)

the oracle cross-fading factor αG,oracle(µ′) can be formulated as

αG,oracle(µ′) =
(Gopt(µ

′) − Gconv(µ′))
2

(Gopt(µ′) − Gconv(µ′))2 + (Gopt(µ′) −Gbwe(µ′))2
, (3.77)
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Figure 3.20: Example of a look-up table for the determination of ᾱG (µ′ = 1).

and is normalized to one. This oracle cross-fading factor minimizes the distance

of Gconv to the optimal weighting gains Gopt. If the conventional noise suppres-

sion technique performs better than the BWE approach, i. e., (Gopt −Gconv)2 <

(Gopt −Gbwe)2, αref tends to smaller values leading to a stronger weighting of Gconv

and vice versa.

Since Gopt is not available in a realistic scenario the cross-fading factor of the

weighting gains, which is a reliability indicator for Gconv and Gbwe, has to be

estimated from given quantities. Utilizing the averaged low band and the sub-band

SNR of the respective high band, the cross-fading factor can be estimated which

is realized here by means of a look-up table. In a training process, where all

ideal quantities are available, αG,oracle(µ′) is recorded for every frame λ and every

sub-band µ′ together with the respective sub-band SNR ξHB
opt(µ′) of the high band

and the averaged SNR ξ̄LB
opt of the low band

ξ̄LB
opt =

1

NDFT

NDFT−1∑

µ=0

|SLB(µ)|2
|NLB(µ)|2 . (3.78)

Based on the training data, a look-up table for the estimation of αG(µ′) is generated

for every sub-band. Therefore, ξHB
opt(µ′) and ξ̄LB

opt are quantized (e. g., 1 dB step size)

and the corresponding values for αG,oracle(µ′) are averaged within the quantization

levels. An example of a look-up table for sub-band µ′ = 1 is depicted in Fig. 3.20.

At the end, the final look-up table provides one estimate ᾱG(µ′) for each quantized

combination of ξHB
opt(µ′) and ξ̄LB

opt. In a real application, ξHB
opt and ξ̄LB

opt are not
available. Here, the respective SNR estimates of the conventional noise suppression

techniques in the low band and high band are utilized to determine ᾱG(µ′) using

the pre-trained look-up table for each sub-band µ′.
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Parameter Settings

Sampling frequency fs 16 kHz

Frame length LF 160 (=̂ 20 ms due to downsampling)

FFT length NDFT 256 (including zero-padding)

Frame overlap 50 % (Hann window)

Input SNR −10 dB . . . 35 dB (step size: 5 dB)

Noise estimation Minimum Statistics [Martin 2006]

SNR estimation decision-directed (Sec. 3.4.2)

Number sub-bands µ′ 24

Number RASTA-PLPs NC 13

Codebook size MC 128 (training based on 1.5 h speech)

Gain limitation (gmin / g̃min) (0.2857 / 0.01)

Table 3.4: System settings.

3.6.3 Experimental Results

Any conventional noise reduction system can be applied for the low band and to

estimate the conventional weighting gains Gconv in the high band. Since the focus
of the evaluation is on the joint noise reduction in the high band, the choice of

the used conventional noise estimator plays a minor role. For better comparability

with other conventional noise reduction systems the noise is estimated by Minimum

Statistics [Martin 2006], the SNR is estimated by the decision-directed approach

[Ephraim & Malah 1984] and the well-known Wiener filter [Lim & Oppenheim

1979] is utilized as weighting gain rule for Gconv and Gbwe.

The proposed joint noise suppression technique employing different configura-

tions is compared with the conventional case, where only the Wiener filter weighting
gains are applied to both the low band and the high band. In the first configuration

• the features consists of MFCCs and the ZCR with the use of αG,oracle [Esch
et al. 2010a]. The HMM training is based only on clean speech.

• The second configuration comprises RASTA-PLP and the ZCR as features

with the use of αG,oracle and ᾱG . In addition, the HMM is trained based on

enhanced S̃LB speech which has been disturbed by additive white Gaussian

noise in advance with an SNR of 0 dB and employing an aggressive weighting

gain utilizing g̃min.

For the objective evaluation of the different noise reduction systems the sim-

ulation setup as described in Appendix C is utilized. The simulation parameters

which are used for evaluation are listed in Tab. 3.4. The N ′
DFT look-up tables

which are required for the estimation of αG,oracle are generated based on 10 min of
clean speech from the NTT database [NTT-Corporation 1994] disturbed by white

Gaussian noise at different input SNR values varying from −10 dB to 35 dB in

5 dB steps. White Gaussian noise is utilized as background noise model for the
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3.7 Summary

the inertia performs implicit smoothing. Hence, no further smoothing of the noisy

observation or the noise estimate itself is necessary, which simplifies the computation
and reduces the number of algorithm parameters to only one parameter β. The

estimator can be explained in terms of delta modulation with an adaptive step

size, operated in the slope overload mode. In the linear domain, the noise PSD

of the current frame is calculated by a simple scaling of the last noise estimate

with a certain frequency and time dependent β. Stretching or compressing is

decided according to the sign of the difference between the last short-term noise

PSD estimate and the current noisy frame. Doing so, the estimator aims to follow

the noisy observation. Since speech onsets are assumed as sudden rises in the

noisy observation, β has to be selected to only follow the noise. A fixed as well as

an adaptive β(λ, µ) are presented which consider the long-term speech spectrum

average and frame SNR. The new short-term noise PSD estimator is an inherently

unbiased estimator in the logarithmic domain and does not need correction terms.

This is also valid for the linear amplitude domain except of granular noise known

from delta modulation. Compared to state-of-the-art systems, the new Baseline

Tracing algorithm with adaptive β(λ, µ) has a superior performance with respect

to the noise PSD error measure while performing similar to the SPP using a fixed
β(µ). The noise reduction performance is characterized by a low cepstral distance,

i. e., low speech distortion and high SegNA – SegSA measures resulting in a high

noise attenuation.

In addition, an approach to wideband speech enhancement is presented that

exploits spectral dependencies between the low band (50 Hz – 4 kHz) and the high

band (4 kHz – 7 kHz) of speech signals in order to improve the noise reduction in

the high band. While a conventional noise suppression takes place in the low band,
a joint noise suppression approach is applied in the high band. Features from the

processed and enhanced low band signal are extracted and used to estimate sub-
band energies of the high band using techniques known from artificial bandwidth

extension. The utilized RASTA-PLP features for the HMM are more robust

against short-term noise variations compared to MFCC features and minimize the
speaker difference. The weighting gains determined from these energy estimates are
adaptively combined with conventional gains obtained in addition for the high band.

This information combining in the high band is possible employing a pre-trained

look-up table which is dependent on the average low band and the respective high

band SNR. In order to increase the perceived speech quality if only a noisy low band

signal has been received, a slightly modified version of the system can additionally

be used to perform a joint noise reduction and artificial bandwidth extension.
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Chapter 4

Codebook Based Noise Suppression

Single microphone noise reduction systems usually rely on different statistical

properties of speech and noise [Boll 1979; Ephraim & Malah 1984, 1985; Lotter

& Vary 2005]. In addition, it is assumed that the ambient background noise

is stationary or only slightly time-varying [Martin 2001; Hendriks et al. 2010;

Gerkmann & Hendriks 2011; Heese & Vary 2015] which is usually not fulfilled

in practice. In consequence, statistical state-of-the-art noise estimators provide

an estimate for the short-term noise power spectral density (PSD) in the best

case. If the underlying noise signal exhibits a reasonable variance, the spectral
fine-structure over frequency and time is estimated inadequately. Hence, statistical

noise reduction systems are only able to remove the short-term mean of the noise
which likely results in unpleasant artifacts that are called musical tones.

In contrast, the class of codebook based speech enhancement systems [Sreenivas
& Kirnapure 1996; Srinivasan et al. 2006, 2007; Rosenkranz 2010; Rosenkranz

& Puder 2012a; Sigg et al. 2012; Hao & Bao 2015; Deng & Bao 2016] faces

the aforementioned constraints by using a priori knowledge about speech and/or

noise and also allows to model and thus cope with highly non-stationary noise

environments. Hence, the aim is to estimate short-term power spectra (STPSs)

instead of short-term PSD quantities. Additionally, the codebook driven noise

reduction systems have the potential to reduce the occurrence of musical tones,

since the instantaneous speech and noise is estimated jointly over frequency and

time.

One of the first proposals for codebook based noise reduction consists of an

iterative Wiener Filter which relies on spectral constraints given by a priori speech

knowledge [Sreenivas & Kirnapure 1996]. The block diagram of the basic concept

is depicted in Fig. 4.1. A Wiener filter G(λ, µ) is applied to the noisy input Y(λ, µ)

yielding a clean speech estimate Ŝ(λ, µ). This speech estimate is converted to
linear prediction coefficients (LPCs) and refined using the best matching entry of

a pre-trained speech codebook. The Wiener Filter in the next iteration utilizes

the refined speech estimate. For the first iteration, the Wiener Filter G(λ, µ) is

initialized with G0(λ, µ) = 1. The iteration process will be finished if the same

codebook entry is chosen in two consecutive iterations.

Recent approaches employ a priori knowledge about both speech and noise.

Spectral speech and noise estimates are obtained on a frame-by-frame basis in the

frequency domain by a linear combination or a weighted sum of entries from pre-
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Wiener Filter G(λ, µ)Y(λ, µ)

Codebook
matching

Speech codebook

LPC analysis

Ŝ(λ, µ)

Iteration

Initial weights G(λ, µ) = G0(λ, µ) = 1

Figure 4.1: Block diagram of iterative codebook constrained Wiener filtering

approach [Sreenivas & Kirnapure 1996].

trained gain-normalized codebooks. Since no closed-form solution for the optimal

gain calculation of the codebook entries exists, the gains have to be approximated.
The concept is illustrated in Fig. 4.2. The proposed algorithms [Srinivasan et al.

2006, 2007; Rosenkranz 2010; Rosenkranz & Puder 2012a] mainly differ in the

methods of gain estimation and in the features which are stored in the codebooks.

Since the employed features describe only the spectral envelope of a frame, the

speech

∣∣∣Ŝ(λ, µ)

∣∣∣
2

and noise

∣∣∣N̂ (λ, µ)

∣∣∣
2

estimates exhibit a limited spectral resolution.

Hence, the weighting gain rule which is derived from these estimates is also spectrally
smoothed. This leads to severe speech distortion especially in voiced speech parts
since the harmonic structure of speech is not modeled by spectral envelopes. By

using an adaptive comb-filter as in [Rosenkranz 2010; Yoshioka et al. 2010], the
spectral fine-structure can be recreated. However, this filter requires an accurate

estimate of the fundamental frequency which is challenging. Since current pitch

estimators are only able to reliably estimate the fundamental frequency in signal-to-

noise ratio (SNR) ranges above approximately 10 dB [Shahnaz et al. 2005; Gonzalez

& Brookes 2014], this solution is restricted to few realistic scenarios. In [Rosenkranz
& Puder 2012a], the authors propose a more accurate gain estimation based on

Newton’s method [Bronstein et al. 1999] and use an envelope model which is based

on the real-valued cepstrum for the codebook entries. In addition, a new weighting

gain rule is proposed which depends only on the noise estimate, obtained by the

codebook processing, and the noisy input. Doing so, the spectral fine structure

is implicitly somewhat modeled by the noisy input. Due to the codebook-based

spectrally smooth noise estimate, sharp spectral peaks of the noise are not accurately

modeled. In turn, this generates an increased occurrence of musical tones.

However, the performance of codebook matching is mainly limited either by
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Likelihood computation

Gain adaptation

Noise codebook Speech codebook

Y(λ, µ)

∣∣Ŝ(λ, µ)
∣∣2

∣∣N̂ (λ, µ)
∣∣2

Figure 4.2: Basic concept of codebook driven noise reduction [Srinivasan et al.
2006, 2007; Rosenkranz 2010; Rosenkranz & Puder 2012a].

missing a priori knowledge, especially with respect to noise, or deviations due

to the signal transmission path, i. e., changing acoustic and electrical (recording

equipment, microphone) path. In [Rosenkranz 2010] the speech and noise codebook

entries are adjusted (equalized) to compensate the influence of the transmission

path similar to cepstral mean subtraction [Westphal 1997; Veth & Boves 1998]

while in [Rosenkranz & Puder 2012b] fixed delta codebooks between the actual
noise and a conventional noise estimate (e. g., [Martin 2006; Hendriks et al. 2010;

Gerkmann & Hendriks 2011]) are employed to reduce the effect of missing a priori
noise knowledge.

In summary, the main issues of codebook based speech and noise estimation are
the limited spectral resolution of the codebooks and missing or unknown a priori

knowledge regarding noise.
In the following, a novel codebook based speech and noise estimation system is

presented which tackles the aforementioned problems. The basic concept of the

proposed codebook speech enhancement system is the superposition of a scaled

speech and noise codebook entry on a frame-by-frame basis. While the speech

codebook is pre-trained offline using a representative data basis, the noise codebook

is adapted quickly to new noise types online. Thus, the system is independent

of a priori noise knowledge. Training vectors for noise codebook updates are

identified using a voice activity detector (VAD) and a codebook mismatch measure.

The VAD is realized as part of the codebook matching but utilizes only a priori

knowledge on speech. A Wiener filter or any state-of-the-art weighting rule can be

applied subsequently for speech enhancement, cf. Sec. 3.4.3. For the sake of speaker

independence, the speech codebook also comprises spectral envelopes, while the

noise codebook exhibits the full spectral resolution. Hence, the speech and noise
estimate after codebook matching exhibit different spectral resolutions. Since no

closed-form solution for optimal gain calculation exists, a brute force approach1

1The brute force approach enumerates all possible candidates for the noisy observation,
i. e., all possible combinations of speech and noise codebook entries scaled by all possible

gains, and evaluates which combination matches best the noisy observation.
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serves as reference codebook processing platform.

However, with respect to speech enhancement applications, e. g., for a mobile
phone scenario, a dramatic reduction of complexity is necessary. This is accom-

plished by replacing the brute force codebook matching with a cascade of gain shape
estimates. This reduces the complexity significantly but provides various speech

estimates and various noise estimates. Compared with the brute force search, these
estimates of speech and noise are somewhat inaccurate estimates. Furthermore,

the different estimates have to be merged in order to provide the final estimates

of speech and noise and to improve estimation quality. The adaptive combination

of different speech and noise estimates is subject to the next chapter (Chap. 5).

Moreover, the entire evaluation of codebook-based speech enhancement is also

presented in Chap. 5.

The remainder of this chapter is organized as follows. In Sec. 4.1 the signal

model is introduced and the basic codebook matching algorithm is presented. A

refined SNR estimation considering speech and noise estimates is presented in

Sec. 4.2. The speech and noise codebook training is detailed in Sec. 4.3 while in

Sec. 4.4 the speech codebook driven VAD including a comprehensive evaluation

is described. In Sec. 4.5 the online noise codebook adaptation is explained. A

summary and conclusion are presented in Sec. 4.6.

4.1 Speech and Noise Estimation

A simplified block diagram of the proposed codebook estimation system is given

in Fig. 4.3. As in the chapter about statistical noise reduction (Sec. 3.2), it is

assumed that the noisy input signal y(k) consists of a clean speech signal s(k)
degraded by an additive noise component n(k). Since the processing takes place in

the short-term Fourier domain (STFD), the noisy input signal y(k) is segmented

into overlapping frames, followed by windowing and subsequent transformation into

the frequency domain2. The spectral coefficients of the segmented and windowed

+s(k)

n(k)

Analysis
y(k) Codebook matching

&
VAD

Noise codebook Speech codebook

Y(λ, µ)

Nm(λ)(µ) Sl(λ)(µ)

∣∣ŜCB(λ, µ)
∣∣2

∣∣N̂CB(λ, µ)
∣∣2

Figure 4.3: Proposed codebook based speech and noise estimation system

2Refer to Sec. 3.2.1 for the detailed analysis procedure. Note that the frequency domain

representation of the respective signals already includes the effect of windowing.
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input signal yλ(κ) at frequency bin µ and frame λ are given by

yλ(κ) = sλ(κ) + nλ(κ)

DFT

❝ s Y(λ, µ) = S(λ, µ) + N (λ, µ), (4.1)

where S(λ, µ) and N (λ, µ) correspond to the spectral coefficients of the clean

speech signal and the noise signal, respectively. Speech and noise are estimated

from the noisy observation by minimizing the difference between the noisy input

frame Y(λ, µ) and its estimate Ŷ(λ, µ). The estimation of the noisy input frame

Ŷ(λ, µ) is modeled by a scaled superposition of a speech Sl(µ) and a noise Nm(µ)

codebook entry according to

Ŷ(λ, µ) = σs(λ)Sl(λ)(µ)︸ ︷︷ ︸
ŜCB(λ,µ)

+σn(λ)Nm(λ)(µ)︸ ︷︷ ︸
N̂CB(λ,µ)

(4.2)

where l ∈ {1, . . . , L}, m ∈ {1, . . . ,M} denote the codebook indices and σs, σn the

gain factors of speech and noise, respectively. The codebook entries Sl(µ) and

Nm(µ) are normalized to one with respect to their power.
With regard to speech enhancement, most of the algorithms are derived based

on power spectral density (PSD), short-term PSD or power signal quantities. The

computation of power quantities should be normalized to the frame-size for a

correct physical definition, but will be neglected as it is usually done in literature.
This is possible as within a specific speech enhancement system the frame-size and

frame advance are fixed and therefore no normalization is necessary. Moreover,

power quantities are almost always used in relation to each other, e. g., for SNR

computation. Hence, the dependency on the frame-size is canceled out.

4.1.1 Codebook Matching by Distance Minimization

With regard to the minimization procedure, Eq. (4.2) exhibits too many degrees

of freedom and should therefore be simplified. Because most of the algorithms in

speech enhancement are derived on short-term power spectrum (STPS) quantities,

it is sufficient to provide estimates for the STPS of speech and noise. Therefore,

the minimization will be carried out on the STPS |Y(λ, µ)|2, which will be derived

in the following. According to the additive signal model, the STPS of the noisy

observation Y(µ) of the current frame λ can be expressed as

|Y(µ)|2 =
∣∣(|S(µ)|eiϑS (µ) + |N (µ)|eiϑN (µ)

)∣∣2

= |S(µ)|2 + |N (µ)|2 + 2|S(µ)||N (µ)| cos (ϑS(µ) − ϑN (µ)) ,
(4.3)

where ϑS and ϑN denote the phase of speech and noise, respectively. In terms of

the speech and noise codebooks, the STPS estimate

∣∣∣Ŷ(µ)

∣∣∣
2

for the current frame

λ is thus formulated by,
∣∣∣Ŷl,m,σs,σn (µ)

∣∣∣
2

= σ2
s |Sl(µ)|2 + σ2

n |Nm(µ)|2 (4.4)

+ 2σsσn|Sl||Nm| cos (ϑS(µ) − ϑN (µ)) .
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Equation (4.4) describes a mapping between the set of parameters [l,m, σs, σn] and

the estimate
∣∣∣Ŷ(µ)

∣∣∣
2

, where

∣∣∣Ŷl,m,σs,σn (µ)

∣∣∣
2

forms a set of all possible estimations.

Given an accurate estimate for the true STPS |Y(µ)|2, speech and noise are

implicitly estimated due to the frequency independent gains σs and σn. To obtain

a precisely estimate for the true STPS |Y(µ)|2 from the set

∣∣∣Ŷl,m,σs,σn (µ)

∣∣∣
2

, the

optimal parameters lopt,mopt, σs,opt, σn,opt can be found by minimizing:

arg min
l,m,σs,σn

dist

(
|Y(µ)|2 ,

∣∣∣Ŷl,m,σs,σn (µ)

∣∣∣
2
)
. (4.5)

Equation 4.5 describes the very general approach for the codebook matching. In

the following simplifications will be presented in order to reduce the computational

complexity.

4.1.2 Model Assumptions and Simplifications

The phase difference ϑ(µ) = ϑS(µ) − ϑN (µ) is unknown a priori. According to

measurements with plain speech and noise, ϑ(µ) is considered to be an equally

uniformly distributed random variable on the interval [0, 2π). Since E {cos(ϑ(µ))} =

0 due to averaging over time as, e. g., in the SNR estimation stage, the cross-term

in Eq. (4.4) is omitted in the following. Experiments have confirmed that the
additional estimation error of speech and noise introduced by omitting the cross-

term is orders of magnitude below the true estimation error. Additional experiments

have confirmed that the influence by omitting the cross-term on the performance
of noise reduction is negligible (see Appendix D for further details). With this

assumption Eq. (4.4) simplifies to

∣∣∣Ŷl,m,σs,σn (µ)

∣∣∣
2

= σ2
s |Sl(µ)|2 + σ2

n |Nm(µ)|2 (4.6)

=

∣∣∣ŜCB(µ)

∣∣∣
2

+

∣∣∣N̂CB(µ)

∣∣∣
2

. (4.7)

The codebook entries Sl(µ), Nm(µ) are normalized to one with respect to their

power. Thus, the gain factors σ2
s and σ2

n represent the short-term power of speech

and noise. Applying the constraint that the power of the noisy observation is equal
to the power of the optimal estimate,

∑

µ

∣∣∣Ŷl,m,σs,σn (µ)

∣∣∣
2

≈
∑

µ

|Y(µ)|2 =: σ2
y, (4.8)

and further exploiting that the codebook entries are normalized, the speech gain

σ2
s can be substituted and Eq. (4.6) simplifies to

∣∣∣Ŷl,m,σn (µ)

∣∣∣
2

=
(
σ2

y − σ2
n

)
|Sl(µ)|2 + σ2

n |Nm(µ)|2 , (4.9)
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which reduces the number of parameters to be optimized and thus the computational

expense. Techniques known from gain shape vector quantizer (VQ) to determine
the codebook entries and the gain σ2

n independently are not applicable here. The

optimization of the gain σ2
n for a fixed but arbitrary combination of speech and

noise codebook entries, carried out in the minimum mean-square error (MMSE)

sense, shows that σ2
n ≥ 0 is not guaranteed (cf. Appendix E for derivation) and in

case of σ2
n < 0 the model assumption is violated, i. e., σ2

n represents the short-term

power of noise. Hence, all permutations of the parameters l, m, and σn must be
taken into account, which can be realized by a quantization of σn according to:

σn =
i

Nq − 1
σy, i = 0, ..., Nq − 1. (4.10)

Finally, the optimal parameters lopt,mopt, σn,opt can be found by minimizing:

arg min
l,m,σn

dist

(
|Y(µ)|2 ,

∣∣∣Ŷl,m,σn (µ)

∣∣∣
2
)
, (4.11)

where dist(·, ·) represents an arbitrary distance measure. Hence, the codebook

estimate of |Y(µ)|2 for any frame λ yields,

∣∣∣Ŷ(µ)

∣∣∣
2

=

∣∣∣Ŷlopt,mopt,σn,opt (µ)

∣∣∣
2

(4.12)

=
(
σ2

y − σ2
n,opt

) ∣∣Slopt (µ)
∣∣2

︸ ︷︷ ︸∣∣ŜCB(µ)
∣∣2

+σ2
n,opt

∣∣Nmopt (µ)
∣∣2

︸ ︷︷ ︸∣∣N̂CB(µ)
∣∣2

. (4.13)

In the following, the subscript “opt” will be omitted for the sake of brevity. In order

to reduce the speaker dependence, only spectral envelopes are stored as speech

codebook entries.

4.1.3 Distance Measures

For the implementation of Eq. (4.11) a suitable distance measure is necessary. In

this section possible distance measures are presented. The notation of the distance
operator dist | is illustrated by,

dist

∣∣∣P,P̂
Algorithm = f

(
P(µ), P̂(µ)

)
. (4.14)

While the operands from which the distance is calculated are denoted at the top of

the vertical bar symbol, the actual distance algorithm is indicated at the bottom.

If no algorithm is specified, the dist operator serves as place holder for an arbitrary

distance measure. Note that in the expression the operands P and P̂ are assumed
to be power quantities. The distance measures express the difference between an

original spectrum P(µ) and the estimation or approximation P̂(µ) of that spectrum

as a function f , describing the employed algorithm.
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Mean-Square Error difference

dist

∣∣∣P,P̂
MSE =

1

NDFT

NDFT−1∑

µ=0

(√
P(µ) −

√
P̂(µ)

)2

. (4.15)

Relative Power difference

dist

∣∣∣P,P̂
REL =

1∑NDFT−1

µ=0
P(µ)

NDFT−1∑

µ=0

∣∣∣P(µ) − P̂(µ)

∣∣∣ . (4.16)

Itakura-Saito distance

The Itakura–Saito distance [Itakura & Saito 1968] is often used for speech coding

and speech quality assessment. It is not designed as perceptual measure, but it

reflects subjective meaningful distortion for the spectral shape of speech. Due to its

asymmetric nature the Itakura–Saito distance is more sensitive to spectral peaks

than spectral valleys [Wei & Gibson 2000] and is defined as

dist

∣∣∣P(µ),P̂(µ)
IS =

1

NDFT

NDFT−1∑

µ=0

[
P

P̂(µ)
− log

P
P̂(µ)

− 1

]
. (4.17)

4.2 Modified Decision-Directed SNR Estimation

In case of statistical speech enhancement, the a priori SNR estimation is usually

carried out by the decision-directed approach [Ephraim & Malah 1984] which is

detailed in Sec. 3.4.2. The decision-directed SNR ξ̂Stat(λ, µ) only depends on a

noise estimate and the previous enhanced frame from the output of the speech

enhancement system. The a priori SNR estimate is formulated by a linear com-

bination of speech and noise estimates from the last frame and an instantaneous

realization of the a posteriori SNR γ(λ, µ),

γ(λ, µ) =
|Y(λ, µ)|2

EK

{
|N (λ, µ)|2

} ≈ |S(λ, µ)|2

EK

{
|N (λ, µ)|2

}+
|N (λ, µ)|2

EK

{
|N (λ, µ)|2

} , (4.18)

ξ̂Stat(λ, µ) = αξ

∣∣∣Ŝ(λ− 1, µ)

∣∣∣
2

EK

{
|N (λ− 1, µ)|2

}
︸ ︷︷ ︸

SNRDD(λ−1,µ)

+(1 − αξ) max (γ(λ, µ) − 1, 0)︸ ︷︷ ︸
SNRi(λ,µ)

. (4.19)

Conceptually, the decision-directed SNR can be interpreted as a weighted sum of

two a priori SNR estimates, the decision-directed SNRDD and instantaneous SNRi.

The SNRDD estimate is a refined version of the a priori SNR of the previous frame
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incorporating the decision of the speech enhancement system. The SNRi is an

a priori SNR estimate utilizing the instantaneous realization of the a posteriori
SNR γ(λ, µ) which only depends on a noise estimate. Since EK

{
|N (λ, µ)|2

}
may

differ significantly from |N (λ, µ)|2 the simplification EK

{
|N (λ, µ)|2

}
= |N (λ, µ)|2

does not hold and results in an imprecise a priori SNR γ(λ, µ)−1. As a workaround,

the estimate γ(λ, µ) − 1 is limited to values greater or equal to zero applying the

max operator.
In contrast to statistical speech enhancement, the codebook driven approach

can additionally exploit a speech estimate in the current frame. Hence, the a priori
SNR estimate SNRi in Eq. (4.19) is replaced by SNRCB which exploits both, the

speech ŜCB(λ, µ) and noise N̂CB(λ, µ) estimate. Considering the high temporal

resolution of the codebook matching, the a priori SNR estimate according to the

decicison-directed approach is now given in terms of STPS by,

ξ̂CB(λ, µ) = αξ

∣∣∣Ŝ(λ− 1, µ)

∣∣∣
2

∣∣∣N̂CB(λ− 1, µ)

∣∣∣
2

︸ ︷︷ ︸
SNRDD(λ−1,µ)

+(1 − αξ)

∣∣∣ŜCB(λ, µ)

∣∣∣
2

∣∣∣N̂CB(λ, µ)

∣∣∣
2

︸ ︷︷ ︸
SNRCB(λ,µ)

. (4.20)

As mentioned before, the evaluation of the modified Decision-Directed SNR estima-

tion is presented in the next chapter in Sec. 5.8.3.

4.3 Codebook Training

A crucial point is the generation of suitable speech and noise codebook entries
which form the codebooks. As mentioned before, the noise codebook entries exhibit

the full spectral resolution while the speech codebook consists of spectral envelopes

in order to reduce the speaker dependence. Thus, the noise codebook entries

are stored as short-term power spectrum (STPS). There exist several compact

representations of the spectral envelope which are based on auto-regressive (AR)

modeling [Itakura 1975; Kleijn & Paliwal 1995; Murthi & Rao 2000; Soong & Juang

1984] like the linear prediction coefficients (LPCs), the line spectral frequencies

(LSF) or the minimum variance distortionless response (MVDR) representation.

For simplicity of the simulation framework, the speech codebook entries are also

stored as STPS. Hence, the codebook entry vectors for speech and noise are defined

in vector notation as

|Sl|2 =
(
|Sl(µ = 0)|2 , . . . , |Sl(µ = NDFT − 1)|2

)⊺
, (4.21)

|Nm|2 =
(
|Nm(µ = 0)|2 , . . . , |Nm(µ = NDFT − 1)|2

)⊺
, (4.22)

each containing a STPS. The respective speech and noise codebooks,

CS =
{

|S1|2 , . . . , |SL|2
}
, (4.23)

CN =
{

|N1|2 , . . . , |NM |2
}
, (4.24)
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Figure 4.4: Generation of speech (a) and noise (b) codebook entries

consist of collections of entry vectors. Since the noise codebook CN shall be adapted

online it is further necessary to divide the codebook into a fixed part consisting of

M� ∈ N base codebook entries and an adaptive part with a maximum number of

M◦ ∈ N0 entries, which are created and updated online.

In the following, the codebook training process is explained which is valid for
offline creation as well as online adaptation. Figure 4.4a depicts the block diagram

of the noise codebook training process while Fig. 4.4b presents the generation of
the speech codebook. Each training sequence as indicated by the subscript t is

normalized to −26 dBov according to ITU P.56 [ITU-T Recommendation P.56 1993]
standardization. Following, the sequence is segmented into overlapping frames,

windowed and transformed into the frequency domain according to Sec. 3.2.1. For

a compact representation, the spectral coefficients of the speech and noise training

frames are denoted by,

N λ = (N (λ, µ = 0), . . . ,N (λ, µ = NDFT − 1))⊺, (4.25)

Sλ = (S(λ, µ = 0), . . . ,S(λ, µ = NDFT − 1))⊺. (4.26)

After applying the magnitude square operation, all resulting STPS frames below a
certain power threshold are discarded. Since the input sequence is normalized, this

threshold can be adjusted independently of the training input. On the one hand,

doing so removes silent parts of the training data which may be over-represented
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4.3 Codebook Training

in the subsequent vector quantization. On the other hand, it prevents frames

with up-scaled recording noise (self noise of recording equipment, e. g., microphone,
amplifier, and analog-to-digital converter) after power normalization. As indicated

before, different training schemes are applied for the speech and noise training
sequences. In the following, the particularities of speech and noise are investigated.

4.3.1 Noise Codebook

The training sequence nt(k) consists of plain noise. Applying the aforementioned

procedure, a large number of K STPS input vectors TN =
{

|N 1|2 , . . . , |N K |2
}

exist which are used for the training of a VQ. The result of the VQ training is

used as codebook. For the fixed part of the noise codebook the VQ is configured to

return M� codebook entries while the adaptive part of size M◦ is constructed by
sub-codebooks consisting of M∆ entries with r ·M∆ ≤ M◦ and r ∈ N0 is the number

of sub-codebooks. In this work, the LBG algorithm [Linde et al. 1980] is employed
together with the Itakura Saito distance (Eqn. 4.17) as distance measure. As it

is not assured that the output of the VQ training is still normalized, subsequent

normalization to one with respect to the power is applied again.

To obtain a fixed noise codebook which contains several noise types, it has

been proven useful, to concatenate individual sub-codebooks each trained with

meaningful prototype sequences of the particular noise type.

4.3.2 Speech Codebook

To keep the speech codebook as generic as possible, the speaker dependence of

the speech codebook entries is reduced in order to contain mainly information

about the spoken phonemes. According to the source-filter model of human speech

production [Vary & Martin 2006], speech is created by an excitation signal which

has a flat spectral shape and a subsequent vocal tract filter which forms the spectral

shape of the specific phoneme. The excitation signal’s counterpart in the human

speech production system consists of the lungs and larynx, while the vocal tract

filter models the neck, nasal cavity, and the mouth. From the areas of low bitrate

speech coding and speech recognition it is known, that the excitation signal is

significantly speaker dependent while the vocal tract filter is rather similar among

different speakers. Voiced sounds are constructed by an excitation signal consisting

of periodic pulses caused by the larynx. The frequency of these pulses is called

fundamental pitch frequency fp and is very specific among various humans. In

particular, the pitch of men is in the range of 50 – 250 Hz and typically lower than

for women with a pitch of 120 – 500 Hz. In contrast, unvoiced sounds like “s” or “ch”

are caused by a white noise excitation signal whereas plosives like “p” and “k” are

created by sudden pressure-rises in the vocal tract. Thus, voiced sounds are more

critical with respect to speaker-dependence. The spectrum of a voiced excitation
signal is characterized by a harmonic structure with the fundamental pitch frequency

as distance between the spectral peaks. In order to significantly reduce the speaker

dependency, the speaker-dependent excitation signal is removed, i. e., the spectral
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Chapter 4 – Codebook Based Noise Suppression

envelope has to be calculated. Doing so, a training set TS =
{∣∣S̃1

∣∣2 , . . . ,
∣∣S̃J

∣∣2} of
STPSs consisting of the speaker-independent spectral envelopes emerges. Different

methods for obtaining the spectral envelope are known from literature [Rosenkranz

2012]. Popular ones are based on AR modeling and linear prediction or the cepstral

smoothing. The AR model has a pitch dependency since with significant higher

model order also the pitch harmonics are included in the envelope estimate. In

turn, the cepstral model separates the spectral envelope and pitch strictly and thus

a more accurate estimate of the spectral envelope is possible [Rosenkranz 2012].

Therefore, the cepstral smoothing is preferred and will be used in the following.

Cepstral Processing

The speaker-dependent pitch frequency fp of the excitation is assumed to be in
the range between 50 Hz and 500 Hz [Vary & Martin 2006]. As mentioned before,

a cepstral approach, like in [Rosenkranz 2010], is applied to separate the spectral

envelope and the excitation. Therefore, the clean speech STPSs
∣∣Sj

∣∣2 of the training

data are frame-wise transformed to the cepstral domain:

C|Sj |2 (q) =
1

2

NDFT−1∑

µ=0

log
(
|Sj(µ)|2

)
e

i2π
µq

NDFT , q = 0, . . . , NDFT − 1, (4.27)

where q represents the cepstral bin index (quefrency). A pitch frequency fp is

represented in the cepstrum as a peak in the cepstral bin qp =
⌊

fs
fp

⌋
, where

⌊·⌋ denotes the floor rounding operator [Martin et al. 2008; Rosenkranz 2010].

Assuming that the pitch frequencies are bounded to be lower than 500 Hz and

considering the symmetry of the cepstral coefficients, the range qp < q < NDFT −qp

is called the excitation part in the following.

The speaker-dependent excitation is removed from the training sequence TS by

setting the corresponding cepstral coefficients of the excitation part to zero:

C|S̃j |2 (q) =

{
0 if qp < q < M − qp

C|Sj |2 (q) else.
(4.28)

Afterwards, the modified cepstrum C|S̃j |2 (q) is transformed back to the spectral

domain:

∣∣S̃j(µ)
∣∣2 = exp

(
2 ·

NDFT−1∑

q=0

C|S̃j |2 (q)e
−i2π

µq
NDFT

)
. (4.29)

A subsequent normalization of
∣∣S̃j(µ)

∣∣2 to one with respect to the power is applied

to obtain the training set TS =
{∣∣S̃1

∣∣2 , . . . ,
∣∣S̃J

∣∣2
}

consisting of J spectral envelope

STPSs,

∣∣S̃j

∣∣2 =
(∣∣S̃j(µ = 0)

∣∣2 , . . . ,
∣∣S̃j(µ = NDFT − 1)

∣∣2
)⊺

. (4.30)
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The same VQ configuration as for the noise codebook is used for the speech

codebook creation. After VQ training of TS , finally, a codebook CS with L entries
is created. Each codebook entry STPS is normalized to a power of one since the

output vectors of VQ process are not ensured to be normalized.

4.3.3 Codebook Training Quality Measure

In order to obtain new training sequences for the online adaptation of the noise

codebook, a suitable mismatch measure Q |M and a threshold Q |C are required. The
mismatch measure describes the ability to approximate the current noisy observation

Y(λ, µ) by means of the speech and noise codebooks during the codebook matching

process. The computation of the threshold Q |C will be formulated in terms of the

speech codebook training quality Q |CS and the noise codebook training quality

Q |CN . Both the mismatch measure and the threshold are derived in Sec. 4.5. In

addition, the speech codebook training quality Q |CS serves also as indicator for an
adequate speech codebook training.

The codebook training quality is defined as the ability of the respective codebook

to represent its training data. Hence, the training quality measure is calculated for

each codebook according to,

Q |CS = dist
∣∣CS ,TS , (4.31)

dist
∣∣CS ,TS =

1

J

∑

|S̃i|2
∈TS

min
l

{
dist

(
|Sl|2 ,

∣∣S̃i

∣∣2
) ∣∣∣ l ∈ (1, . . . , L)

}
, (4.32)

Q |CN = dist
∣∣CN ,TN , (4.33)

dist
∣∣CN ,TN =

1

K

∑

|N i|2
∈TN

min
l

{
dist

(
|Nm|2, |N i|2

)∣∣∣ m ∈ (1, . . . ,M)

}
. (4.34)

The codebook training quality is basically the mean of the distance between each

training input vector to the closest codebook entry vector, where dist is the same
distance measure which is employed during the codebook matching process.

4.3.4 Evaluation of Speech Codebook Training Quality

Since the speech codebook consists of a priori speech knowledge, it is created in

advance and therefore needs to be dimensioned appropriately. For the generation of

the speech codebook two degrees of freedom are available, the training length, i. e.,

the number of training frames J and the number of speech codebook entries L.

While the LBG algorithm, which is used for the generation of the speech

codebook entries, uses the Itakura Saito distance as distance measure, different

distance measures can be applied during the application of the speech codebook.
Hence, the speech codebook training is analyzed with respect to the employed

distance measures, i. e., the Itakura Saito distance or the relative power distance.

As detailed in Sec. 4.3.3, the speech codebook training quality Q |CS is defined as
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Parameter Settings

Sampling frequency fs 16 kHz

Frame length LF 320 (=̂ 20 ms)

Frame advance LA 160 (=̂ 10 ms)

FFT length NDFT 512 (including zero-padding)

Frame overlap 50 % (
√

Hann-window)

Maximum pitch frequency fp 500 Hz

Table 4.1: Speech codebook training parameters

the ability of the respective codebook to represent its training data utilizing the

chosen distance measure.

The parameters for the speech codebook training are summarized in Table 4.1.

The training data consists of a randomly chosen subset from the test set of the

TIMIT database [Garofolo & Consortium 1993]. The speech codebook training is

carried out according to Sec. 4.3.2. The results in terms of Q |CS are calculated

according to Sec. 4.3.3 and depicted regarding the relative power distance in

Fig. 4.5a and for the Itakura Saito distance in Fig. 4.5b. The color of the respective

plot denotes the codebook quality Q |CS from blue (good) to red (bad).

In general, a greater codebook size ensures a better performance. Both distance

measures perform very similar with respect to the gradation for both, the codebook
size and the training length, as indicated by the color. In addition, both configura-

tions exhibit a slight quality degradation with increasing training length given a

fixed but arbitrary codebook size. This is caused due to the higher variance of the

training data for a increasing number of training data. Since the TIMIT database
consists of 42 phonemes a saturation of the quality measures can be expected for

L >= 42. This is confirmed as with a codebook size of L = 64 entries both quality

measures start to saturate.

If not stated otherwise, the speech codebook is created from a 3073 s training

sequence from the test set of the TIMIT database and exhibits L = 128 codebook

entries. This choice states a good compromise between numerical complexity during

the application of the codebook and the codebook quality Q |CS for both used

distance measures.
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Figure 4.5: The speech codebook training quality Q |CS is depicted for various

codebook entry sizes L, different training data lengths and distance

metrics. The quality measure Q |CS describes the ability of the

codebook to represent its training data and can be calculated for

different distance metrics. Hence, small values indicate a better

performance.

4.4 Speech Codebook based VAD

The objective of a voice activity detector (VAD) is to detect the presence or

absence of human speech in, e. g., a microphone signal which might be degraded

by background noise. As mentioned before, a robust VAD with respect to highly

non-stationary background noise is required for online noise codebook adaptation.

Early VAD systems extract simple energy features such as SNR estimations,

that respond while speech is present, and compare the quantified values to a fixed
or adaptive threshold for a VAD decision, e. g., [McAulay & Malpass 1980; Van

Compernolle 1989; Vary & Martin 2006]. In the GSM cellular radio system the VAD

[ETSI Recommendation GSM 06.32 1996] is basically an energy detector whose
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Chapter 4 – Codebook Based Noise Suppression

accuracy is improved by adaptive filtering to increase the speech-to-noise ratio.

Since the encountered noise in mobile environments may be constantly changing
with time and frequency, the adaptive filter is only updated when three conditions

are fulfilled: speech is absent, the signal seems stationary, and does not include a
pitch component which is inherent in voiced speech.

However, energy based techniques do not work reliably under adverse acoustic

conditions, e.g., at signal-to-noise ratios of 0 dB or below. Recent systems mainly

employ statistical models, also including additional features like the zero crossing

rate, pitch, tone, complex-signal correlation, and the energy levels of frequency bands

[Cho & Kondoz 2001; Ghosh et al. 2011; Sohn et al. 1999; Vähätalo & Johansson

1999]. By adding more microphones, the voice activity detection accuracy can be

improved, e. g., [Rosca et al. 2002; Taghizadeh et al. 2011]. All these approaches

cope with moderate, mainly stationary noise. However, for many applications, they

are not sufficiently robust with respect to highly non-stationary noise.

Sohn [Sohn et al. 1999] proposes a likelihood ratio test, combined with a Markov

process, that models speech occurrences in order to obtain a VAD. Cho [Cho &

Kondoz 2001] analyzes this method and improves some fundamental problems at

speech offset regions using a smoothed likelihood ratio for the adaptation of the
noise variance, resulting in an improved decision of voice activity. Tan [Tan et al.

2010] employs a likelihood ratio test and modifies the handling of voiced frames

by selecting exclusively the harmonic components for computing. Ghosh [Ghosh

et al. 2011] introduces a “long-term signal variability measure” which represents

the degree of non-stationarity. Combined with the assumption that speech is

significantly less stationary than noise, this measure discriminates between noise

and noisy speech, resulting in a more robust VAD performance.

Here, a new approach is presented that is operating in the short-time discrete
Fourier transform (DFT) domain and provides soft VAD decisions. The proposed

algorithm is a continued development of [Heese et al. 2015]. Acoustically degraded

speech signals are frame-wise compared with a speech codebook. Doing so, a

similarity measure between the input signal and typical spectral speech compositions

is determined and further processed to obtain a soft speech presence indicator.

This new technique is robust to highly non-stationary noise types and reliably

detects speech also in adverse SNR conditions of -5 dB. Since the speech codebook

is designed speaker-independently and the algorithm does not rely on a noise

codebook, the algorithm is not restricted to known speakers and independent to

different noise types.

4.4.1 Codebook VAD Overview

The VAD algorithm is carried out using a speech codebook as a-priori knowledge.

An overview of the algorithm is depicted in Fig. 4.6. A possibly degraded speech
signal Y(λ, µ) is frame-wise compared with a speech codebook by utilizing gain

shape vector quantization. A modified version of the speech codebook is adapted in

every frame to the current speaker by combining in the cepstral domain the current
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Figure 4.6: Speech codebook based VAD

noisy speech frame with the codebook entries as explained in the next section

(Sec. 4.4.2). Soft VAD values vsoft(λ) ranging from zero to one are calculated by

post-processing of the speech gain σvad(λ). If desired, a binary VAD vbin(λ) can
be calculated from the soft VAD values vsoft(λ), e. g., by applying a threshold.

4.4.2 Gain Shape Codebook Matching

In contrast to a joint codebook matching of speech and noise as in Sec. 4.1.1, the

concept of codebook driven VAD employs only a speech codebook. Thus, gain

shape codebook matching is possible, i. e., the determination of the spectral shape

using gain normalized codebooks in a first step and subsequently the calculation of

the speech gain in a second step.

In contradiction to the noisy input frames, the speaker-independent codebook

CS contains only entries with spectral envelopes |Sl|2. The envelopes |Sl|2 have to

be modified according to Eq. (4.35), as detailed below, in order to re-established

their harmonic structure caused by the excitation of the source-filter model (cf.

Sec. 4.3.2). This improves the determination of the spectral shape during the gain

shape matching process. The fundamental principle is to compare the noisy speech

signal |Y(λ, µ)|2 frame-wise with modified speech codebook entries
∣∣Šl(µ)

∣∣2 in order

to find the entry
∣∣Šlopt (µ)

∣∣2 which fits best the current noisy frame.

The adapted codebook entries
∣∣Šl

∣∣2 have a comb-like structure whose pitch

frequency fp equals the one of the current input speech frame. In the cepstral

domain the comb-like harmonic structure is mapped into one pitch specific cepstral
bin. Thus, the power of this cepstral bin is assumed to be significantly above

the noise floor of neighboring bins. Hence, the codebook adaptation is realized

by means of a cepstral approach, i. e., the excitation part from the noisy STPS
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|Y(λ, µ)|2 is extracted and incorporated into each codebook entry |Sl(µ)|2. This

procedure is repeated for each input frame.
The cepstral representation CS

l
(q) of the codebook entries |Sl|2 is calculated

analogously to Eq. (4.27) and C|Y(λ,µ)|2 (q) is the cepstrum of the noisy speech signal.

The envelope of CS
l
(q) and the pitch from C|Y(λ,µ)|2 (q) are combined according to:

C|Šl(λ,µ)|2 (q) =

{
C|Y(λ,µ)|2 (q) qp < q < NDFT − qp

C|Sl(µ)|2 (q) else,
(4.35)

where qp < q < NDFT − qp represents the excitation part and qp =
⌊

fs
fp

⌋
is the

cepstral bin corresponding to a pitch frequency of fp. Afterwards C|Šl(λ,µ)|2 (q) is

transformed to the spectral representation analogously to Eq. (4.29) and normalized

to a power of one. The result
∣∣Šl(λ, µ)

∣∣2 is a codebook entry which is adapted to

the current speaker with a corresponding harmonic frequency structure.

Finally, the optimal speech codebook entry lopt for the current frame λ can be

found by minimizing:

arg min
l

dist

(
1

σ2
y(λ)

|Y(λ, µ)|2 ,
∣∣Šl(λ, µ)

∣∣2
)
, (4.36)

with σ2
y(λ) =

∑NDFT−1

µ=0
|Y(λ, µ)|2. Since the speech codebook entries are normal-

ized, a distance measure is required whose mapping and order is only dependent

on the spectral shape and independent to a scaling of
∣∣Šl(λ, µ)

∣∣2. Thus in contrast

to the joint speech and noise codebook matching, the Itakura Saito distance is not

applicable here. The relative power distance dist

∣∣∣P,P̂
REL is used as distance measure

which turned out to be the best of the proposed metrics.

After determining the optimal codebook entry
∣∣Šlopt (λ, µ)

∣∣2, the speech gain

σvad which represents the speech power is calculated. The speech gain scales the

found codebook entry
∣∣Šlopt (λ, µ)

∣∣2 to the correct power resulting in the speech

estimate

∣∣∣Ŝ(λ, µ)

∣∣∣ = σvad(λ) ·
∣∣Šlopt (λ, µ)

∣∣. From speech coding it is known that

the optimal gain σvad(λ) can be found by minimizing the distance between the

speech estimate Ŝ(λ, µ) and the true speech S(λ, µ) for the current frame λ. Since

noisy speech is explicitly assumed as input to the algorithm, the gain derivation

is, in contrast, carried out based on the distance between Ŝ(λ, µ) and the noisy

observation Y(λ, µ). The relation of σvad to the true speech power is analyzed

afterwards. Hence, the optimization is calculated in the MMSE sense for the current

frame λ according to3:

dist

∣∣∣Y,Ŝ
MSE =

NDFT−1∑

µ=0

(
|Y(µ)| − σvadŠlopt (µ)

)2 !
= min . (4.37)

3Since the codebook entries are real-valued and positiv (cf. Sec. 4.3), the absolute value

operator of Šlopt
is omitted in the following for the sake of clarity.
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4.4 Speech Codebook based VAD

Building the partial derivation of dist

∣∣∣Y,Ŝ
MSE with respect to σvad and setting to zero

yields the extremum of the distance given by

∂

∂σvad

(
dist

∣∣∣Y,Ŝ
MSE

)
=

NDFT−1∑

µ=0

∂

∂σvad

(
|Y(µ)| − σvadŠlopt (µ)

)2 !
= 0 (4.38)

=

NDFT−1∑

µ=0

2 ·
(
|Y(µ)| − σvadŠlopt (µ)

) (
−Šlopt (µ)

)
(4.39)

= −2·
NDFT−1∑

µ=0

|Y(µ)| Šlopt (µ) + 2·σvad

NDFT−1∑

µ=0

Š
2
lopt

(µ) (4.40)

Hence, Eq. (4.40) can be transformed and σvad is expressed as:

σvad =

NDFT−1∑
µ=0

|Y(µ)| Šlopt (µ)

NDFT−1∑
µ=0

Š2
lopt

(µ)

=

NDFT−1∑
µ=0

|S(µ) + N (µ)| Šlopt (µ)

NDFT−1∑
µ=0

Š2
lopt

(µ)

. (4.41)

Since the second partial derivation of Eq. (4.40) with respect to σvad yields

∂2

∂2σvad

(
dist

∣∣∣Y(µ),Ŝ(µ)
MSE

)
= 2 ·

NDFT−1∑

µ=0

Š
2
lopt

(µ) > 0, (4.42)

and is greater than zero, the found extremum is in fact a minimum of dist

∣∣∣Y,Ŝ
MSE .

In the following it is analyzed to what extend σvad is related to the speech

power of a frame although the minimization is carried out on the noisy observation

|Y(µ)|2 = |S(µ) + N (µ)|2. Since the denominator of Eq. (4.41) is independent of

the noisy observation, the gain σvad is mainly determined by the numerator. A
further evaluation of the numerator of Eq. (4.41) leads to an expression describing

the gain σvad separated into a speech, a noise and a speech-noise (cross-term)

dependent contribution of σvad according to,

|S(µ) + N (µ)| Šlopt (µ) =

√
|S(µ)|2 Š2

lopt
(µ) + |N (µ)|2 Š2

lopt
(µ) (4.43)

+ 2 |S(µ)| |N (µ)| Š2
lopt

(µ) cos(ϑS(µ) − ϑN (µ)),

where ϑS(µ) and ϑN (µ) denote the phase of speech and noise, respectively. First,

two special cases with respect to the noisy input signal Y(µ) are considered:

Speech only In the case where the input signal Y(µ) consists only of speech, i. e.,

Y(µ) = S(µ), a codebook entry Šlopt (µ) with an excellent matching spectral
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shape can be found and the gain σvad yields

σvad,S =

NDFT−1∑
µ=0

|S(µ)| Šlopt (µ)

NDFT−1∑
µ=0

Š2
lopt

(µ)

. (4.44)

The gain σvad,S represents the correct frame speech power σs in a very good

approximation since |S(µ)| and Šlopt (µ) are highly correlated over frequency.

Noise only In the opposite case where the input signal consists of noise only, i. e.,

Y(µ) = N (µ), no suitable codebook entry is available in general. Thus, the

spectral envelopes of the speech codebook and the observed noise frame differ

significantly and the gain σvad is expressed by

σvad,N =

NDFT−1∑
µ=0

|N (µ)| Šlopt (µ)

NDFT−1∑
µ=0

Š2
lopt

(µ)

. (4.45)

If the noise N (µ) and the selected speech codebook entry Šlopt have no

significant spectral overlap (low correlation) σvad,N ≪ σvad,S .

Combining the boundary cases described above models a realistic scenario including

speech pauses as well as occurring background noise, i. e., Y(µ) = S(µ) + N (µ). In
this case the gain σvad is determined by Eq. (4.43). Again, the noise component

N (µ) and the selected speech codebook entry Šlopt as well as the noise component

and the current speech component S(µ) are assumed to be (almost) uncorrelated.
Thus, Eq. (4.43) is dominated by the addend |S(µ)|2 Š2

lopt
(µ) and the gain results

in σvad ≈ σvad,S . Hence, the speech gain σvad is used as speech presence indicator.

However, in practical scenarios spectral overlaps between |N (µ)|, Šlopt (µ) and

|N (µ)|, |S(µ)| occur, i. e., speech and noise are not strictly uncorrelated. Thus,

a noise floor in the gain σvad depending on the noise signal is observed since

|N (µ)|2 Š2
lopt

(µ) > 0 and |S(µ)| |N (µ)| Š2
lopt

(µ) cos(ϑS(µ) − ϑN (µ)) 6= 0. Further

post-processing is necessary to obtain a reliable VAD measure.

4.4.3 Speech Gain Post-Processing

Due to remaining noise and sudden outliers the speech gain σvad(λ) fluctuates.
Thus, in a first step of the post-processing, recursive smoothing is applied to the

speech gain by:

σ2
vad(λ) =

[
ασ

√
σ2

vad(λ− 1) + (1 − ασ)
√
σ2

vad(λ)

]2

. (4.46)
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since the noise floor detection is similar to noise estimation in speech enhancement

as the speech gain can be decomposed into a slowly changing noise floor component
(the baseline of the speech gain) and the remaining strong fluctuations due to

speech activity. Thus, a baseline tracing of the noise floor bf(λ) similar to the noise
estimator presented in Sec. 3.5 is carried out according to

b̂f(λ) = b̂f(λ− 1) + sign
(
σ2

vad(λ) − b̂f(λ− 1)
)

∆′(λ). (4.48)

In each frame, the noise floor b̂f(λ) is updated by shifting ±∆′(λ) in order to follow
σ2

vad(λ) slowly.

Total speech presence, i. e., vsoft(λ) = 1, is assumed if the speech gain σ2
vad(λ)

exceeds the speech gain ceiling bc(λ). The speech gain ceiling bc(λ) is derived from

the noise floor estimate b̂f(λ) and is defined with the adaptive factor η(λ) according

to

bc(λ) = max
(
η(λ) · b̂f(λ), bc,min

)
, (4.49)

where bc,min defines a minimum value for the ceiling bc(λ) if no substantial noise

floor is present. The factor η(λ) is dependent on the speech gain SNR and bounded
to ηmin ≤ η(λ) ≤ ηmax. Therefore, the local past of the speech gain and the noise

floor estimate b̂f(λ) are stored in a sliding time window of length Tw. The fraction

of the mean of the sliding time windows provides a speech gain SNR estimate. It is

only updated in phases where total speech presence is indicated, i. e., vsoft(λ) = 1.
In addition, the same recursive smoothing as for speech gain, c.f. Eq. (4.46), is

applied which yields the speech gain SNR estimate η(λ).

An example of the noise floor estimate b̂f(λ) and the ceiling bc(λ) is depicted in

Fig. 4.7 by the red ( ) and blue curve ( ), respectively. Finally, soft VAD

values for σ2
vad between b̂f(λ) and bc(λ) are interpolated linearly according to

vsoft(λ) = max

(
min

(
σ2

vad(λ) − b̂f(λ)

bc(λ) − b̂f(λ)
, 1

)
, 0

)
. (4.50)

Gains lower or equal to the noise floor are mapped to zero, whereas gains higher or

equal to the ceiling bc(λ) are clipped and mapped to one. The resulting soft values

are robust to different noise floor levels in the speech gain which may result from

low input SNR and varying noise types.

In order to be independent of system parameters like the sampling frequency fs

or the frame advance LA, a relative shift ∆ is introduced with dimension %
time

such

that LA

fs
∆ is the relative change per frame. Moreover, it is desirable to update the

noise floor mainly in cases of speech absence, yielding the absolute shift to

∆′(λ) =

{
LA

fs
· ∆ · b̂f(λ− 1) for σ2

vad(λ) ≤ bc(λ− 1)
LA

fs
· ∆ · b̂f(λ− 1) · βsp for σ2

vad(λ) > bc(λ− 1).
(4.51)

If the speech gain exceeds the ceiling bc, total speech presence is assumed and the

tracing speed is reduced by the factor 0 < βsp < 1. It is not set to zero to prevent
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Parameter Settings

Sampling frequency fs 16 kHz

Frame length LF 320 (=̂ 20 ms)

Frame advance LA 160 (=̂ 10 ms)

FFT length NDFT 512 (including zero-padding)

Frame overlap 50 % (
√

Hann-window)

Speech codebook entries L 128

Smoothing parameters ασ↑ | ασ↓ 0.8 | 0.91

Gain ceiling factor bounds ηmin|ηmax 3 dB | 15 dB

Ceiling minimum bc,min 3

Relative shift ∆ 0.2 s−1

Speech presence factor βsp
1
4

Speech gain SNR window length Tw 0.1 s
(
=̂
⌈

fs
LA
Tw

⌉
= 10 frames

)

Table 4.2: Simulation system settings

that the system gets stuck in case of a completely wrong floor and ceiling estimation.

Experiments confirmed that the relative shift over time ∆ should be in the range

between 0.2 %
20 ms

and 0.8 %
20 ms

, i. e., the noise floor changes by the given percentage during

20 ms, a time period in which speech is considered to be stationary [Vary & Martin

2006].

If a binary VAD is desired, it can be calculated by a simple comparison with a

threshold 0 < thr < 1 according to

vbin(λ) =

{
0 if vsoft(λ) < thr

1 if vsoft(λ) ≥ thr .
(4.52)

4.4.4 Evaluation

The proposed speech codebook based VAD system is assessed in a benchmark with

four reference methods proposed by [Sohn et al. 1999], [Tan et al. 2010], [Ghosh

et al. 2011] and the GSM VAD [ETSI Recommendation GSM 06.32 1996]. All

algorithms except the GSM VAD provide soft VAD values. Since the objective

scores require a binary VAD, Eq. (4.52) is utilized applying different thresholds

varying between zero and one.

The parameters for the simulation are listed in Tab. 4.2. The speech codebook

is trained according to Sec. 4.3 with randomly chosen speech files from the training

set of the TIMIT database [Garofolo & Consortium 1993], resulting in a total

training sequence length of 3073 s, cf. 4.3.4. The configuration of the remaining

algorithms are chosen as suggested in [ETSI Recommendation GSM 06.32 1996;

Ghosh et al. 2011; Sohn et al. 1999; Tan et al. 2010].

The benchmark is performed for all permutations of the following parameters:
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• the input SNR ranges from from −5 dB to 20 dB in 5 dB steps4,

• 24 randomly chosen sentences belonging to 12 male and 12 female, randomly
chosen speakers from the test set of the TIMIT database [Garofolo & Con-

sortium 1993] are selected and concatenated. The test set is not included in

the training set. Three seconds of silence are inserted at the beginning and

the end of the sequence as well as between the sentences.

• The resulting 160 s of speech sequences are mixed with 11 types of noise

(pink, jackhammer, canteen, wind, outside traffic, midsize car, inside train,

train station, nature, pub noise, indoor soccer) from the ETSI database
[ETSI EG 202 396-1 2009] resulting in 66 different noisy signals, respectively

176 minutes.

• The threshold for the binary VAD calculation varies for all tested soft VAD

algorithms in 39 steps from zero to one.

An objective evaluation is performed which is based on a numerical comparison

of the binary VAD vbin(λ) with a ground truth binary VAD vtrue(λ). As mentioned

before, vbin(λ) is provided by Eq. (4.52) applying different thresholds varying

between zero and one for each soft VAD value. In this simulation, the clean speech

and the scaled noise, from which the noisy signal is additively generated, are

separately available. The objective measurement of active speech level according to
ITU P.56 standardization [ITU-T Recommendation P.56 1993] provides a reliable

binary VAD based on clean speech signals. Hence, this measure is applied to the
clean speech signal in order to provide the ground truth reference VAD vtrue(λ).

The numerical evaluation is performed in terms of three VAD measures,

• Accuracy rate Pa: Percentage of speech frames with correct VAD estimation;

• Detection rate (or true positive rate) Pd: Fraction of active speech frames

that are detected correctly;

• False alarm rate (or false positive rate) Pf : Fraction of speech frames without

speech that are classified erroneously as speech.

The objective measures are detailed in Appendix C.4. Note the first 160 frames,

i. e., 1.6 s, are not included in the evaluation to ignore transient effects.
When applying a VAD, a compromise between detection-rate and false-alarm-

rate has to be made by choosing an appropriate threshold. This compromise can
be visualized, utilizing a ROC curve as a function of varying thresholds5. A fixed

but arbitrary threshold corresponds to a specific point on the ROC curve. In
Fig. 4.8 different aspects of the above mentioned compromise are detailed in terms

of ROC curves. Fig. 4.8a presents a ROC curve which is generated by averaging

4The mixing procedure is detailed in Appendix C.1. Note that for the calculation of the
scaling factor to adjust the input SNR only speech and noise signal sections with speech

presence are considered.
5For the sake of clarity, the thresholds thr ∈ {0, 1} are discarded in the presented figures.
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the objective scores detection-rate and false-alarm-rate for all permutations of the

input SNR and noise types, separately for each threshold thr. Thus, it presents
the achievable combinations of detection-rate and false-alarm-rate that result from

varying the threshold. In addition, the binary GSM VAD [ETSI Recommendation
GSM 06.32 1996] is depicted as reference and marked by the cross sign. For the

proposed speech codebook VAD system ( ), it is obvious that it holds the

best relationship between the false-alarm-rate and the detection-rate. The false-

alarm-rate never exceeds 24 % with a maximum detection-rate of 95 %. In order

to achieve the same detection-rate, significantly higher false-alarm-rates of 32 %

(Ghosh, ), 45 % (Tan, ) or 70 % (Sohn, ) must be tolerated. However,

the reference VAD systems ( , , ) achieve a higher maximum-detection-

rate compared to the proposed VAD ( ), but at the expense of a significantly

higher false-alarm-rate.

In Fig. 4.8b the averaged results are summarized for selected noise types: inside
train ( ), indoor soccer ( ), wind noise ( ), and babble noise ( ).

Hence, the influence of stationary and instationary noise can be analyzed. For

the sake of clarity, only the proposed VAD ( ) and the best reference method,

i. e., [Ghosh et al. 2011] ( ), are visualized. The superior performance of the

proposed codebook VAD is confirmed. For all noise types, the proposed method

( ) yields the best performance. Moreover, the proposed algorithm performs
well for stationary noise types, e. g., inside train ( ) as well as for instationary

noise types like indoor soccer ( ) and wind noise ( ). Comparing wind noise,

the proposed VAD ( ) achieves approximately 30 % better false-alarm-rate than

[Ghosh et al. 2011] ( ) and similar detection-rate scores. However, a reliable
voice detection during babble noise ( ) is not possible because this sort of noise

is very similar to the speech codebook entries. Hence, babble noise is frequently
classified as speech, leading to a high false alarm rate, yet better than [Ghosh et al.

2011] ( ).

The VAD accuracy is analyzed in Fig. 4.9. In order to examine the influence

of the threshold, the results are averaged over the input SNR and noise types and

plotted as a function of the threshold in Fig. 4.9a. Also in this VAD measure, the

codebook based VAD ( ) clearly provides the best scores over the complete

threshold range, especially for thresholds up to 0.4. The advance to the second

best algorithm [Ghosh et al. 2011] ( ) for thr > 0.4 is approximately 10 %
accuracy. One advantage of the proposed technique is the flatness of the accuracy

measure. Because of that, it is possible to set any desired working point on the

ROC curves depicted in Fig. 4.8 by adjusting the threshold without losing accuracy.

The accuracy of the reference VAD algorithms ( , , ) increases with the

threshold. [Tan et al. 2010] ( ) and [Ghosh et al. 2011] ( ) achieve similar

performance for thr > 0.5 while [Sohn et al. 1999] ( ) has the worst performace

over the complete threshold range, approximately 10 % worse than [Ghosh et al.

2011] ( ).

To gain more insights into the behavior of the VAD algorithms at different

SNR conditions, the best thresholds for each algorithm are selected from Fig. 4.9a.
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Using those thresholds, the accuracy is averaged for all noise types and each VAD

algorithm. The results are depicted over the input SNR in Fig. 4.9b. As might be
expected, the performance of all algorithms gets better with increasing SNR. Again,

the proposed speech codebook based VAD ( ) provides the best performance,
starting with 80 % accuracy at −5 dB SNR and achieving nearly 100 % at 20 dB

SNR. Comparing the reference VAD algorithms ( , , ), [Ghosh et

al. 2011] ( ) performs best at low SNR values, while [Tan et al. 2010] ( )

performs best for SNR values greater or equal than 5 dB. As indicated by the
previous results in Fig. 4.9a [Sohn et al. 1999] ( ) achieves the lowest accuracy

over the complete SNR range.

With respect to the online noise codebook training process as described in

Sec. 4.5, the new proposed speech codebook based VAD algorithm is well suited. It

achieves the best scores in all VAD measures. Especially in the critical SNR range

around 5 dB, the proposed VAD provides excellent accuracy rates in the range of

90 % and is thus 10 % better compared to the second best algorithm [Ghosh et al.

2011]. The new VAD does not rely on noise a-priori information, which makes

it robust also to highly non-stationary noise and adverse SNR conditions, e. g.,

down to -5 dB. The new algorithm is characterized by higher detection-rates at a
significantly lower false-alarm-rate compared to state-of-the-art systems [Ghosh

et al. 2011; Sohn et al. 1999; Tan et al. 2010]. In addition, it is possible to adjust

the compromise between a higher detection-rate versus a higher false-alarm-rate by

changing the threshold without increasing the total number of miss-detections.

4.5 Online Noise Codebook Adaptation

Since the noise environment is unknown a priori, an online training and adaptation

of the noise codebook is required. Hence, a training sequence acquired from the

noisy observation y(k) of the new and unknown noise type is necessary. Assuming
speech pauses in y(k) the training sequences can be found if speech is absent and

a mismatch Q |M (λ) during the codebook matching process is recognized. The

mismatch Q |M (λ) is defined between the noisy observation Y(µ) and its codebook

based approximation Ŷ(µ) and given for the current frame λ by

Q |M (λ) = dist

(
|Y(λ, µ)|2 ,

∣∣∣Ŷ(λ, µ)

∣∣∣
2
)
. (4.53)

Hence, the mismatch measure Q |M (λ) describes the ability to estimate the noisy

observation on the current state of the speech and noise codebooks.

Based on the training quality measures Q |CS and Q |CN of the respective

codebooks, a lower bound of the mismatch Q |M is estimated by

Q |C (λ) =
σ2

s(λ)

σ2
s(λ) + σ2

n(λ)
· Q |CS (λ) +

σ2
n(λ)

σ2
s(λ) + σ2

n(λ)
· Q |CN (λ), (4.54)

assuming that σ2
s and σ2

n are reliable also in the case of decent actual noise codebook
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Parameter Settings

Training frames LT 40

VQ output size M∆ 4 codebook entries

Hangover VAD margin LH 60 frames

Adaption margin LM 40 frames

Hit rate T 80 %

Speech codebook size L 128 entries

Histogram window LW 500 frames

Table 4.3: Codebook algorithm parameters

mismatch. Comparing Q |M with Q |C , the effective codebook mismatch can be

quantified incorporating the speech and noise codebook training quality.

In particular the following conditions must match in order to acquire new noise
training sequences:

• Training frames must not contain speech, which requires a robust VAD
measure. A robust speech codebook based VAD is presented in Sec. 4.4.

In addition, a hangover frame distance to the last VAD frame of LH is

introduced.

• A frame is classified as new noise type if the mismatch measure exceeds the

threshold, i. e., Q |M > Q |C .

• The distance measure evaluation of the last LT frames must have detected
an unknown noise sound, i. e., T percent of the last LT frames exceed the

distance threshold Q |M > Q |C .

• A safety margin between two adaptions of frame length LM has to be kept.

Given at least LT frames in the past which satisfy these conditions the same vector

training as in Sec. 4.3 is utilized to obtain M∆ new adaptive codebook entries
which are then combined with the noise codebook. If the maximum defined noise

codebook size M = M� +M◦ is exceeded where M◦ = r ·M∆ and r is the number

of codebook updates, the less used entries from the variable codebook part of the

last LW frames are discarded.

4.5.1 Performance Example

An example of the online noise codebook adaptation is illustrated in Fig. 4.10. A

noisy input signal is generated consisting of five, different six seconds long stationary
and non-stationary noise types mixed with five male and female english speakers

taken from the TIMIT database [Garofolo & Consortium 1993] at a SNR of 0 dB.

Since the noise codebook is initialized with a single white noise codebook entry,
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it has to be adapted every six seconds. The VAD measure is provided by the

proposed speech-codebook-based VAD algorithm detailed in the previous Sec. 4.4.
The parameters for the simulation and the VAD setup are presented in Tab. 4.2.

The codebook algorithm settings are summarized in Tab. 4.3, with a maximum
noise codebook size of M = 28. The upper plot of Fig. 4.10 depicts the waveform

of the noisy input signal to emphasize the performance of the VAD in terms of
vbin ( ) and the ground truth reference vtrue ( ). The ground truth reference

VAD is calculated according to ITU P.56 [ITU-T Recommendation P.56 1993]
standardization from the clean speech signal which is available in the simulation

system. Apart from “pub noise” (around 20 s) and “wind noise” (around 26 s), the

presented new VAD algorithm provides reliable decisions. Vertical red lines indicate

a codebook adaption which uses each time the past 40 frames as training sequence,

indicated by the light red background. The lower plot depicts the codebook

matching mismatch measure Q |M ( ) and the adaptive threshold Q |C ( ).

The spectrograms of the clean speech signal and the noise-only component are

depicted for reference. It is obvious that each noise change is detected and the

noise codebook is adapted accordingly. By means of the stationary noise types

“inside train” and “nature” it is demonstrated, that a single adaptation of the noise

codebook is sufficient while repeatedly adapting is necessary in the remaining cases,

which reflects the fast changing characteristic of the noise signals. This observation

is supported by the course of Q |M ( ). It is also apparent that adaptation takes

exclusively place in speech pauses while a certain safety distance to speech activity

frames is always maintained which avoids speech leaking into the noise codebook.

4.6 Summary and Conclusion

Most state-of-the-art noise reduction systems can be explained by means of noise

estimation, spectral SNR estimation, and spectral weighting. In contrast, the

codebook-based approach also incorporates a speech estimate. A priori knowledge

about speech and noise allows to model and cope with highly non-stationary noise

environments. A new modified decision-directed a priori SNR estimate ξ̂mod is
proposed incorporating the codebook driven speech estimate.

In a first step, the concept of the proposed codebook speech and noise estimation

is based on superposition of scaled speech and noise codebook entries. For the sake

of speaker independence, the speech codebook consists of spectral envelopes, while
the noise codebook comprises the full spectral resolution. Since no closed-form

solution for optimal gain calculation of the speech and noise codebook entries exists,
a brute force approach serves as reference codebook processing scheme. While
the speech codebook is pre-trained in advance, the noise codebook is adapted to

new noise types online. Thus, the system is independent of a priori knowledge on

noise. Training vectors for online noise codebook updates are identified using a

voice activity detector (VAD) and a codebook mismatch measure.

The VAD is realized as part of the codebook matching, but utilizes only a priori

knowledge on speech. A speech power gain is provided in each frame. This gain
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provides a reliable speech indicator and may contain a noise floor, especially at

low SNRs. By means of a baseline tracing algorithm, known from noise reduction,
the noise floor is removed and subsequently the gain is mapped to soft VAD

values between zero and one. Instrumental measurements confirmed a consistent
improvement in comparison to state-of-the-art systems [Ghosh et al. 2011; Sohn

et al. 1999; Tan et al. 2010], resulting in better detection rates at significant lower
false alarm rates, especially for low input SNR, e. g., −5 dB SNR.

Although the noise codebook is updated online, it is not guaranteed that an
appropriate codebook entry is available for each noisy observation. A noise codebook

update is prevented, for example, if the ambient noise changes while speech is still

present. In such cases, the noise estimation is restricted. Moreover, with respect

to feasible applications, e. g., mobile phones, a significant complexity reduction is

necessary which demands to replace the brute force codebook matching. This two

remaining restrictions of codebook based speech and noise estimation are tackled

in the next chapter.
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Information Combining

A major advantage of codebook driven speech and noise estimation is its ability to
model highly non-stationary speech and noise processes. However, the estimation

accuracy is limited by the a priori knowledge of the codebooks, especially with

respect to missing noise a priori knowledge. Although the noise codebook is

adaptive, it does not guarantee that an appropriate codebook entry is available for
the current noisy observation. For example, if speech is present during a sequence

where the noise type changes, a noise codebook update is not possible. Hence,

in phases of missing a priori noise knowledge an alternative independent noise

estimate, e. g., provided by a statistical noise estimator (cf., 3.4.1), should be

considered. Moreover an adaptive combination of both noise estimates is desirable,

resulting in a refined noise estimate.

In order to carry out this adaptive combination, a reliability measure is necessary.

Utilizing the codebook speech estimate, it is possible to create all permutations of

the speech estimate and the noise estimates which provide different estimates for

the noisy observation. The distance between the different estimates and the noisy

observation itself serves as reliability measure. Afterwards, the noise estimates are
combined by a weighted sum according to the obtained distances separately for

each frequency bin, which yields the refined final noise estimate. Given a second

speech estimate, e. g., from the last enhanced frame of the speech enhancement

system, the adaptive combining procedure can be generalized and provides in

addition a refined speech estimate. Doing so, it is possible to recreate the spectral

fine-structure in the final speech estimate. This adaptive combination procedure

is called information combining in the following. By information combining, the

speech and noise estimates are significantly improved.

As mentioned before, a substantial complexity reduction of the codebook match-

ing process is necessary for the application of codebook based speech enhancement.

Utilizing the information combining procedure, the codebook driven speech and

noise estimates can be replaced by somewhat inaccurate estimates. Hence, the

brute force search of the codebook matching is replaced by a cascade of gain shape

estimates, which provides various speech and noise estimates. Compared with the

brute force search, the cascade of gain shape estimates plus subsequent informa-
tion combining allows a huge complexity reduction without notable quality loss.

Thus, information combining improves estimation quality and provides complexity

reduction.
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The remainder of this chapter is organized as follows. The concept of information

combining is outlined in Sec. 5.1. In Sec. 5.2 the joint estimation problem of speech

and noise is formulated. While in Sec. 5.3 the constraints of combining speech

and noise are detailed, the resulting estimation error is derived in Sec. 5.4. The

minimization of the total estimation error is carried out in Sec. 5.5 and a closed-form

solution for the total estimation error power is given in Sec. 5.6. On the basis

of the developed information combining approach a complexity reduction of the

codebook matching is outlined utilizing gain shape techniques in Sec. 5.7. The
entire evaluation of codebook based speech enhancement is presented in Sec. 5.8

and conclusions are drawn in Sec. 4.6.

5.1 Concept of Information Combining

The term information combining is known from channel coding and information
theory [Huber & Huettinger 2003; Land et al. 2005; Land & Huber 2006]. If

the same data sequence is transmitted in parallel over independent channels or

several times sequentially over the same channel, the independent observations

can be combined at the receiver. The concept of information combining is to

merge different independent estimates of a quantity into one in order to improve

the overall estimation performance. The overall mutual information represents a

combination of the mutual information of the independent estimates. The simplest

realization of information combining would be the average of the different estimates.

In general, averaging does not necessarily ensure an enhancement of the estimation

performance. However, if reliability information related to the different estimates

is available, the estimation quality is improved by applying an automatic weighted

averaging of the estimates depending on their reliability yielding the refined final

estimate. A special application of information combining is known from mobile

radio transmission technology as maximum ratio diversity combining [Brennan

2003] and has been successfully used to improve the signal-to-noise ratio (SNR)

given several antenna receiver signals. To the best knowledge of the author, no

approach is known yet in the literature covering noise reduction that exploits the
concept of information combining using different speech and noise estimates.

5.2 Estimation Problem Formulation

In the addressed example of information combining in mobile radio transmission,

the noisy observations from the antenna receivers consist of the desired source

target signal and additive noise. Hence, knowledge about the noise, e. g., in terms of

the signal-to-noise ratio (SNR), enables to provide the required reliability measure

for information combining.

In contrast to radio transmission technology or channel coding, two different

estimation targets can be identified in speech enhancement, namely the speech and

the noise signal. Furthermore, both estimation targets are included in the noisy
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observation. Hence, it is more challenging to derive the estimation error, i. e., the

reliability measure of either the speech or the noise estimate separately.

With respect to speech enhancement, the relation between the desired target

quantity, its estimates and the associated estimation errors is given by

S(λ, µ) = Ŝs(λ, µ) + ES
s (λ, µ) with 1 ≤ s ≤ Ns, (5.1)

N (λ, µ) = N̂n(λ, µ) + EN
n (λ, µ) with 1 ≤ n ≤ Nn, (5.2)

for speech and noise, respectively. The number of speech estimates is given by Ns,

the number of noise estimates by Nn, and the particular subscripts s, n indicate

a specific estimate. The corresponding estimation errors are denoted by ES
s (λ, µ)

and EN
n (λ, µ). In the following it is assumed that at least two speech estimates

Ŝs(λ, µ) and two noise estimates N̂n(λ, µ) exist.

In general, only the noisy observation including speech and noise is available. In

consequence, two different estimation problems are included in the noisy observation.

Hence, it is not possible to obtain the estimation errors ES
s (λ, µ) and EN

n (λ, µ)

directly, associated with each of the different speech Ŝs(λ, µ) and noise N̂n(λ, µ)

estimates. However, combining the speech and noise estimates it is possible to

compute several estimates of the noisy observation which are denoted by Ŷi(λ, µ).

The subscript i corresponds to all permutations of the speech and noise estimates
and is detailed later. Employing the signal model

Y(λ, µ) = S(λ, µ) + N (λ, µ), (5.3)

the noisy observation can be written using Eq. (5.1) and (5.2) as combination of

the speech and noise estimates and their estimation errors according to

Y(λ, µ) = Ŝs(λ, µ) + N̂n(λ, µ)︸ ︷︷ ︸
Ŷi(λ,µ)

+ES
s (λ, µ) + EN

n (λ, µ)︸ ︷︷ ︸
EY

i
(λ,µ)

. (5.4)

Hence, the former desired target quantities speech and noise are combined and

mapped into one target quantity. The new target quantity is given by the noisy

observation Y(λ, µ) which is estimated by

Ŷi(λ, µ) = Ŝs(λ, µ) + N̂n(λ, µ), (5.5)

and the corresponding estimation error EY
i (λ, µ) = Y(λ, µ) − Ŷi(λ, µ) yields

EY
i (λ, µ) = ES

s (λ, µ) + EN
n (λ, µ). (5.6)

In contrast to ES
s (λ, µ) and EN

n (λ, µ), the estimation error EY
i (λ, µ) can be com-

puted given the noisy observation Y(λ, µ) and its estimate Ŷi(λ, µ).

For a complete specification of Eq. (5.5), a mapping rule from the noisy ob-

servation estimate index i to the speech and noise estimate indices s and n is
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5.3 Constraint Combining of Speech and Noise
Estimates

Since only EY
i (λ, µ) is measurable given the noisy observation Y(λ, µ), the infor-

mation combining of the estimates Ŝs(λ, µ) and N̂n(λ, µ) is carried out indirectly

in terms of Ŷi(λ, µ). Hence, the information combining of the different estimates

Ŷi(λ, µ) is performed by a weighted averaging, utilizing the weights ci(λ, µ),

Ŷ(λ, µ) =

Ns·Nn∑

i=1

ci(λ, µ) · Ŷi(λ, µ) (5.15)

=

Ns·Nn∑

i=1

ci(λ, µ) · Y(λ, µ)

︸ ︷︷ ︸
!

=Y(λ,µ)

−
Ns·Nn∑

i=1

ci(λ, µ) · EY
i (λ, µ)

︸ ︷︷ ︸
EY (λ,µ)

, (5.16)

which yields the enhanced estimate Ŷ(λ, µ). In order to also model the enhanced

estimate Ŷ(λ, µ) in terms of the noisy observation and an estimation error EY(λ, µ),

the weights are constraint by

Ns·Nn∑

i=1

ci(λ, µ) = 1, (5.17)

which yields the relation Ŷ(λ, µ) = Y(λ, µ)−EY(λ, µ). Using Eq. (5.5) in Eq. (5.15),

the enhanced speech and noise estimates are finally given in terms of the weights by

Ŝ(λ, µ) =

Ns·Nn∑

i=1

ci(λ, µ) · Ŝs(λ, µ), with s =((i− 1) mod Ns) + 1, (5.18)

N̂ (λ, µ) =

Ns·Nn∑

i=1

ci(λ, µ) · N̂n(λ, µ), with n =
⌈
i

Ns

⌉
. (5.19)

In order to exploit the available information of the different estimates Ŝs(λ, µ)

and N̂n(λ, µ), the weights ci(λ, µ) should be dependent on the measurable estimation

error EY
i (λ, µ). Moreover, the weights ci(λ, µ) should minimize the total estimation

error power
∣∣EY

∣∣2. Hence, an expression for the total estimation error power

dependent on the weights ci(λ, µ) is necessary.

5.4 Estimation Error

In this section an expression for the total estimation error power
∣∣EY

∣∣2 is derived

which depends on the weights ci(λ, µ). In addition it is analyzed to which extend
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the total estimation error power
∣∣EY

∣∣2 is related to the estimation error power of
the speech and noise estimates.

Assuming that EY(λ, µ) is an ergodic process, the estimation error power is

given by

∣∣EY
∣∣2 = E

{
NDFT−1∑

µ=0

∣∣∣Y(λ, µ) − Ŷ(λ, µ)

∣∣∣
2

}
= E

{∣∣EY(λ)
∣∣2
}
, (5.20)

where E {·} denotes the expectation operator with respect to time, i. e., the frame

index λ. Utilizing Eq. (5.15) and (5.17) the error power
∣∣EY(λ)

∣∣2 for each frame λ

is formulated by

∣∣EY(λ)
∣∣2 =

NDFT−1∑

µ=0

∣∣∣∣∣

Ns·Nn∑

i=1

ci(λ, µ) · EY
i (λ, µ)

∣∣∣∣∣

2

(5.21)

and the total error power
∣∣EY

∣∣2 yields

∣∣EY
∣∣2 = E

{
NDFT−1∑

µ=0

∣∣∣∣∣

Ns·Nn∑

i=1

ci(λ, µ) · EY
i (λ, µ)

∣∣∣∣∣

2}
(5.22)

=

NDFT−1∑

µ=0

E

{∣∣∣∣∣

Ns·Nn∑

i=1

ci(λ, µ) · EY
i (λ, µ)

∣∣∣∣∣

2}
(5.23)

=

NDFT−1∑

µ=0

∣∣EY(µ)
∣∣2 (5.24)

With respect to the minimizing procedure of the total estimation error power, it

is sufficient to minimize the estimation error power with respect to the frequency

index
∣∣EY(µ)

∣∣2. Evaluating
∣∣EY(µ)

∣∣2 and separating the auto estimation error

terms from the double sum yields

∣∣EY(µ)
∣∣2 = E

{(
Ns·Nn∑

i=1

ci(λ, µ)EY
i (λ, µ)

)(
Ns·Nn∑

j=1

cj(λ, µ)EY
i (λ, µ)

)∗}
(5.25)

=

Ns·Nn∑

i=1

E

{
|ci(λ, µ)|2 ·

∣∣EY
i (λ, µ)

∣∣2
}

+ (5.26)

Ns·Nn∑

i=1

Ns·Nn∑

j=1
j 6=i

E
{
ci(λ, µ)cj(λ, µ)∗ · EY

i (λ, µ)EY
j (λ, µ)∗

}
. (5.27)

Assuming that the estimation errors of speech and noise are uncorrelated from each
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other, i. e.,

0 = E
{
ES

s (λ, µ)ES
s̃ (λ, µ)∗

}
∀ s 6= s̃ (5.28)

0 = E
{
EN

n (λ, µ)EN
ñ (λ, µ)∗

}
∀ n 6= ñ (5.29)

0 = E
{
ES

s (λ, µ)EN
n (λ, µ)∗

}
∀ s, n (5.30)

(5.31)

the estimation errors EY
i (λ, µ) are also uncorrelated from each other, i. e.,

0 = E
{
EY

i (λ, µ)EY
j (λ, µ)∗

}
∀ j 6= i (5.32)

and Eq. (5.25) simplifies to

∣∣EY(µ)
∣∣2 =

Ns·Nn∑

i=1

c2
i (µ) ·

∣∣EY
i (µ)

∣∣2 . (5.33)

Hence, the total estimation error power is basically a weighted sum over the error

power of the different estimates Ŷi(λ, µ). A further evaluation of Eq. (5.33) utilizing

Eq. (5.6) yields

∣∣EY
i (µ)

∣∣2 = E

{∣∣EY
i (λ, µ)

∣∣2
}

= E

{∣∣ES
s (λ, µ) + EN

n (λ, µ)
∣∣2
}

(5.34)

= E

{∣∣ES
s (λ, µ)

∣∣2 +
∣∣EN

n (λ, µ)
∣∣2
}

+ (5.35)

E
{
ES

s (λ, µ)EN
n (λ, µ)∗ + ES

s (λ, µ)∗EN
n (λ, µ)

}

Since the estimation errors of speech and noise are assumed to be uncorrelated, the

previous equation simplifies to

∣∣EY
i (µ)

∣∣2 =
∣∣ES

s (µ)
∣∣2 +

∣∣EN
n (µ)

∣∣2 . (5.36)

Finally, the total estimation error is expressed in terms of the speech and noise

estimation errors given by

∣∣EY
∣∣2 =

NDFT−1∑

µ=0

(
Ns·Nn∑

i=1

c2
i (µ) ·

(∣∣ES
s (µ)

∣∣2 +
∣∣EN

n (µ)
∣∣2
))

, (5.37)

with the indices given by s = ((i− 1) mod Ns) + 1 and n =
⌈

i
Ns

⌉
.

5.5 Total Estimation Error Power Minimization

It was shown in the last section that the total estimation error power
∣∣EY

∣∣2 is

dependent on the weights ci(λ, µ) and the measurable estimation error EY
i (λ, µ) of

the noisy observation estimates. Moreover, minimizing the total estimation error
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power
∣∣EY

∣∣2 also minimizes the estimation error power of the speech ES
s (λ, µ) and

noise EN
n (λ, µ) estimates as related by Eq. (5.24) and (5.37).

Hence, the information of the different estimates Ŝs(λ, µ) and N̂n(λ, µ) is

optimally combined by minimizing the estimation error power
∣∣EY

∣∣2 of the enhanced

estimate Ŷ(λ, µ) of the noisy observation. As mentioned before, it is sufficient to

minimize
∣∣EY(µ)

∣∣2 in Eq. (5.24). This yields a constrained optimization problem

of the estimation error power
∣∣EY(µ)

∣∣2, which can be solved by the Lagrange

multipliers method [Bertsekas 1996; Bronstein et al. 1999]. In the following the

frequency index (µ) will be omitted for the sake of brevity.

With Eq. (5.33) describing the estimation error power and the constraint given

by Eq. (5.17), the Lagrange function is defined by

Λ(c1, . . . , cNs·Nn , ψ) =

Ns·Nn∑

i=1

c2
i

∣∣EY
i

∣∣2 + ψ ·
(

1 −
Ns·Nn∑

i=1

ci

)
. (5.38)

Building the partial derivation of Λ(c1, . . . , cNs·Nn , ψ) with respect to the weights

ci yields

∂Λc1, . . . , cNs·Nn , ψ

∂ci
= 2ci

∣∣EY
i

∣∣2 − ψ, with 1 ≤ i ≤ Ns ·Nn, (5.39)

and the partial derivation with respect to the Lagrange multiplier ψ results in

∂Λc1, . . . , cNs·Nn , ψ

∂ψ
= 1 −

Ns·Nn∑

i=1

ci. (5.40)

Setting the partial derivations Eq. (5.39) and Eq. (5.40) to zero and equating yields

the following system of equations,

ci =
ψ

2
∣∣EY

i

∣∣2 with 1 ≤ i ≤ Ns ·Nn. (5.41)

Using Eq. (5.41) in Eq. (5.40) and solving the equation with respect to ψ yields

ψ =
2

Ns·Nn∑
i=1

1

|EY
i |2

. (5.42)

Substituting ψ in Eq. (5.41) yields the weights ci according to

ci =
1

∣∣EY
i

∣∣2 Ns·Nn∑
j=1

1∣∣EY
j

∣∣2
. (5.43)
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Since the second partial derivations of Eq.(5.38) with respect to the weights ci

∂2Λc1, . . . , cNs·Nn , ψ

∂2ci
= 2

∣∣EY
i

∣∣2 with 1 ≤ i ≤ Ns ·Nn (5.44)

and with respect to the Lagrange multiplier ψ

∂2Λc1, . . . , cNs·Nn , ψ

∂2ψ
= 0 (5.45)

are greater or equal to zero, the found extremum is in fact an absolute minimum.

Adding the frequency index again to Eq. (5.43), the weights are finally given by,

ci(µ) =
1

∣∣EY
i (µ)

∣∣2 Ns·Nn∑
j=1

1∣∣EY
j

(µ)

∣∣2
(5.46)

Hence, the determined weights according to Eq. (5.46) minimize the total error

power
∣∣EY

∣∣2 =
∑NDFT−1

µ=0

∣∣EY(µ)
∣∣2 and thereby also the total error power of the

speech and noise estimates.

5.6 Total Estimation Error Power

A closed solution for the total estimation error power
∣∣EY

∣∣2 is found by substituting

Eq. (5.46) in Eq. (5.33) which yields the resulting error power after weighted

averaging according to

∣∣EY
min(µ)

∣∣2 =

Ns·Nn∑

i=1




1
∣∣EY

i (µ)
∣∣2 Ns·Nn∑

j=1

1∣∣EY
j

(µ)
∣∣2




2

∣∣EY
i (µ)

∣∣2 (5.47)

=

Ns·Nn∑

i=1

1

∣∣EY
i (µ)

∣∣2



1
Ns·Nn∑

j=1

1∣∣EY
j

(µ)
∣∣2






1
Ns·Nn∑

j=1

1∣∣EY
j

(µ)
∣∣2




(5.48)

=

Ns·Nn∑

i=1

ci(µ)
1

Ns·Nn∑
j=1

1∣∣EY
j

(µ)
∣∣2

(5.49)

∣∣EY
min

∣∣2 =

NDFT−1∑

µ=0

∣∣EY
min(µ)

∣∣2 (5.50)

=

NDFT−1∑

µ=0

1
Ns·Nn∑

i=1

1

|EY
i

(µ)|2

=
1

Ns·Nn∑
i=1

1

|ES
s (µ)|2

+|EN
n (µ)|2

, (5.51)
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with s = ((i− 1) mod Ns) + 1 and n =
⌈

i
Ns

⌉
. By a closer examination of Eq. (5.51)

it turns out that the equation describes a similar relation compared to the overall
resistance of a parallel circuit of resistors. Hence, the total estimation error power

after weighting
∣∣EY

min

∣∣2 is less than the minimum of the error power of the individual

estimates
∣∣EY

i

∣∣2 =
∑NDFT−1

µ=0

∣∣EY
i (µ)

∣∣2, i. e.,
∣∣EY

min

∣∣2 <
∣∣EY

i

∣∣2 ∀ i.

Since the estimation error
∣∣EY

i

∣∣2 varies in practice over the time, the weights

ci(µ) are thus calculated in each frame λ.

5.7 Complexity Reduction

With respect to speech enhancement applications, e. g., for a mobile phones scenario,

a dramatic complexity reduction of the codebook matching process is necessary.

According to Sec. 4.1.2 Eq. (4.11) the brute force search, considering a speech and

a noise codebook, consists of all combinations of the three parameters l,m, σn.

Hence the computational effort grows exponentially with any of the parameters.

Techniques known from gain shape vector quantizer (VQ) to determine the codebook

entries and the gains independently are not applicable here. The optimization of
the gains for a fixed but arbitrary combination of speech and noise codebook entries

does not guarantee positive gains which violates the model assumption, i. e., the
gains represents the short-term power of noise and speech (cf. Appendix E).

However, utilizing a voice activity detector (VAD) and the information combining

as explained in Chap. 5, it is possible to replace the brute force codebook matching

partly by a gain shape VQ or a cascade of gain shape VQs. The concept of gain

shape VQ is the determination of the spectral shape using a gain normalized

codebook in a first step and subsequently the calculation of the corresponding gain
in a second step. The employed VQ is similar to the one introduced in Sec. 4.4.2.

The optimal codebook entry for the current frame λ of either speech lopt or noise

mopt can be found by minimizing

arg min
m

dist

(
1

σ2
y(λ)

|Y(λ, µ)|2 , |Nm(λ, µ)|2
)
, (5.52)

arg min
l

dist

(
1

σ2
y(λ)

|Y(λ, µ)|2 , |Sl(λ, µ)|2
)
, (5.53)

with σ2
y(λ) =

∑NDFT−1

µ=0
|Y(λ, µ)|2. Since the codebook entries are gain normalized,

a distance measure is required whose mapping and order is only dependent on the
spectral shape and is independent to a scaling of |Sl(λ, µ)|2 or |Nm(λ, µ)|2. Thus,

the Itakura Saito distance is not applicable here in contrast to the joint brute force

speech and noise codebook matching. The relative power distance dist

∣∣∣P,P̂
REL is used

as distance measure instead which turned out to be the best metric.

After determining the optimal codebook entry of either
∣∣Nmopt (λ, µ)

∣∣2 or∣∣Slopt (λ, µ)
∣∣2, the corresponding gain σn or σs which represents the noise or
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speech power is calculated. The gain scales the found codebook entry to the

correct power, resulting in the estimate

∣∣∣N̂ (λ, µ)

∣∣∣ = σn(λ) ·
∣∣Nmopt (λ, µ)

∣∣ or
∣∣∣Ŝ(λ, µ)

∣∣∣ = σs(λ) ·
∣∣Slopt (λ, µ)

∣∣. The optimal gain can be found by minimizing the

distance between the selected codebook entry and the noisy observation Y(λ, µ).

Hence, the optimization is calculated in the minimum mean-square error (MMSE)

sense for the current frame λ according to:

dist

∣∣∣Y,N̂
MSE =

NDFT−1∑

µ=0

(
|Y(µ)| − σnNmopt (µ)

)2 !
= min , (5.54)

dist

∣∣∣Y,Ŝ
MSE =

NDFT−1∑

µ=0

(
|Y(µ)| − σsSlopt (µ)

)2 !
= min . (5.55)

and results in

σn =

NDFT−1∑
µ=0

|Y(µ)|Nmopt (µ)

NDFT−1∑
µ=0

∣∣Nmopt (µ)
∣∣2

, (5.56)

σs =

NDFT−1∑
µ=0

|Y(µ)| Slopt (µ)

NDFT−1∑
µ=0

∣∣Slopt (µ)
∣∣2

. (5.57)

Further details of the derivation and an analysis to what extend σs, σn are related
to the true speech or noise power are included in Sec. 4.4.2.

5.7.1 Using VAD

In a first step the computational complexity is reduced in phases of speech absence.

Utilizing a binary VAD vbin(λ), the brute force search according to Sec. 4.1.2

employing a speech and a noise codebook can be replaced by a gain shape VQ

employing a noise codebook. The corresponding block diagram is depicted in Fig. 5.1

using configuration a in the codebook matching block. While speech is present,

the brute force codebook matching block is selected, i. e., ŜCB(λ, µ) = ŜBF(λ, µ)

and N̂CB(λ, µ) = N̂BF(λ, µ). In the opposite case, a noise codebook gain shape

approach is utilized to determine the noise estimate, N̂CB(λ, µ) = N̂GS(λ, µ). Since

speech is absent, the speech estimate is set to zero, i. e., ŜCB(λ, µ) = 0.

5.7.2 Employing Information Combining

Using the information from the VAD, the brute force search, using a speech

and a noise codebook, is only necessary in phases of speech activity. Hence, a
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VAD

Codebook matching

aO Brute force: ŜBF, N̂BF

bO Fig. 5.2: ŜGSC, N̂GSC

Gain shape noise
codebook matching

Y(λ, µ)

ŜBF|GSC(λ, µ)

N̂BF|GSC(λ, µ)

ŜGS(λ, µ)=0

N̂GS(λ, µ)

vbin(λ) ∈ {0, 1} ŜCB(λ, µ)

N̂CB(λ, µ)

Speech present vbin(λ) = 1

Speech absent vbin(λ) = 0

Figure 5.1: Complexity reduction based on VAD

further complexity reduction is necessary during speech activity, i. e., the codebook

matching block utilizing the brute force search in Fig. 5.1 (configuration a ) yielding

N̂BF(λ, µ) and ŜBF(λ, µ) has to be replaced.

With respect to gain shape VQ, two scenarios exist which allow to replace the

brute force codebook matching. Given a very high SNR, i. e., N (λ, µ) very close to

zero, the brute force search can be replaced by gain shape VQ utilizing a speech

codebook and setting the noise estimate to zero. In the opposite case, where the

SNR is very low, a gain shape VQ employing a noise codebook is utilized and the

speech estimate is set to zero. Assuming the theoretical special case of orthogonal

speech and noise shapes (no spectral overlap) in each frame |Y(λ, µ)|2, two gain

shape VQ units, employing a speech and a noise codebook, can be used to estimate

a reliable speech and noise estimate.

Concerning realistic scenarios, neither orthogonal speech and noise shapes nor

infinite high or low SNR can be expected. However, depending on the SNR two

different cascades of gain shape VQ as depicted in Fig. 5.2 provide suitable speech

and noise estimates depending on the SNR. The upper cascade GS1 is subject to

a gain shape VQ unit utilizing a noise codebook. Subsequently, the determined

noise estimate N̂GS1(λ, µ) is subtracted from the noisy observation and bounded

to be greater or equal to zero. Afterwards, a gain shape VQ employing a speech

codebook is applied to determine the speech estimate ŜGS1(λ, µ). In the cascade

GS2 the codebooks are interchanged.

Doing so, a sequential optimization of first the noise estimate and following the
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ŜGSC(λ, µ)

N̂GSC(λ, µ)

Gain shape cascade GS1

Gain shape cascade GS2

Figure 5.2: Complexity reduction employing sequential optimization and in-

formation combining

speech estimate is carried out in GS1 and with respect to first the speech estimate

followed by the noise estimate in GS2, respectively. Note that the determined

speech as well as the noise estimates exhibit different reliability. Compared with the
brute force search, a sub-optimal solution is thereby provided in general. However,

cascade GS1 is expected to provide a reliable noise estimate N̂GS1(λ, µ) given a low

SNR, while cascade GS2 provides a reliable speech estimate ŜGS2(λ, µ) for high

SNR. Finally, the different speech ŜGS1(λ, µ), ŜGS2(λ, µ) and noise N̂GS1(λ, µ),

N̂GS2(λ, µ) estimates are merged independently for each frequency bin utilizing

the information combining approach introduced in Chap. 5. The final estimate of

speech is denoted by ŜGSC(λ, µ) and the noise estimate is given by N̂GSC(λ, µ).

Applying the sequential optimization with subsequent information combining
(Fig. 5.2) instead of the brute force approach (Sec. 4.1.2) reduces the complexity
from O(M · L) to O(M + L).

In order to obtain the complete complexity reduction, the codebook matching

block in Fig. 5.1 is set to configuration b . Hence, the speech ŜGSC(λ, µ) and noise

N̂GSC(λ, µ) estimates employing sequential optimization and information combining

are used instead of the joint brute force estimates ŜBF(λ, µ) and N̂BF(λ, µ).
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5.8 Evaluation

The codebook driven speech and noise estimation is evaluated in different configura-

tions by means of a noise reduction system. Different objective speech enhancement

scores serve as performance measures. Since the performance of the speech enhance-

ment system may strongly depend on the individual performance of the respective
sub systems, at first, a reference codebook system employing the brute force search

as explained in Sec. 4.1.2 and fixed speech and noise codebooks is defined. Using
this reference platform,

• the new modified decision-directed SNR (cf., Sec. 4.2) as well as

• the information combining method (cf., Chap. 5, Sec. 5.5)

are analyzed. In the second part of the evaluation, the reference system is com-

pared with the proposed system, comprising all features, i. e., the new modified

decision-directed SNR, the adaptive online noise codebook learning, the information

combining, and the complexity reduction.

The benchmarks are performed for all noisy input signals which are obtained

from the permutation of the following parameters:

• The input SNR varies from −10 dB to 35 dB in 5 dB steps2.

• 30 randomly chosen sentences, spoken by 15 male and 15 female speakers,

are selected from the test set of the TIMIT database [Garofolo & Consortium
1993]. Note the test set is not included in the training set for the speech

codebook. Three seconds of silence are inserted at the beginning of each

sequence.

• The resulting speech sequences are mixed with 12 different stationary and

non-stationary types of noise (F16, living room, train station, inside train,

highway inside car, outside traffic road, wind, jackhammer, forest, pub noise,

indoor soccer, modulated Gaussian noise). The Gaussian noise is modulated

with fmod = 0.5 Hz and generated according to Eq. (3.66). This results in 3600
different noisy speech data permutations, respectively 6 hours, 38 minutes

and 40 seconds.

The performance of the rated systems is evaluated by the objective scores3

segmental noise attenuation (SegNA), segmental speech attenuation (SegSA), as

well as the cepstral distance (CD). Regarding the CD, lower values indicate a lower

speech distortion. A high SegNA is desired while at the same time a low SegSA is

favored.

For the purpose of evaluation, a modular noise reduction system is created,

covering the different configurations, including the complexity reduction of the

codebook matching process and the information combining procedure.

2The mixing procedure is detailed in Appendix C.1. Note that for the adjustment of the

input SNR only speech and noise signal sections with speech presence are considered.
3The objective scores are described in detail in Appendix C.2.
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5.8.1 Overview of Evaluation System

The evaluation system is based on a standard noise reduction system as depicted
in Fig. 3.4 consisting of analysis, spectral weighting for speech enhancement and

synthesis. The block diagram of the proposed codebook driven noise reduction

system is illustrated in Fig. 5.3. The analysis and synthesis is carried out as

presented in Sec. 3.2.1. After analysis, the processing of the noisy input signal

Y(λ, µ) takes place in the frequency domain. The codebook matching block provides

estimates for the short-term power spectrum (STPS) of speech

∣∣∣ŜCB(λ, µ)

∣∣∣
2

and

noise
∣∣∣N̂CB(λ, µ)

∣∣∣
2

. The codebook matching is implemented as depicted in Fig. 5.1.

The VAD is estimated as introduced in Sec. 4.4 and the corresponding VAD

algorithm parameters are summarized in Tab. 5.3. Using configuration a , the

joint brute force search (cf. Sec. 4.1.2) is employed while speech is active to obtain∣∣∣ŜCB(λ, µ)

∣∣∣
2

and

∣∣∣N̂CB(λ, µ)

∣∣∣
2

, whereas the sequential optimization using a cascade

of gain shape VQs with subsequent information combining (cf. Sec. 5.5, Sec. 5.7.2)

is carried out using configuration b . In the following configuration a is referred

to as brute force and configuration b is referred to as GSC in the legend of the

respective plots. By setting vbin(λ) = 1 in Fig. 5.1 the VAD can be disabled.

In parallel, a second STPS noise estimate is computed by a statistical noise

estimator, indicated by

∣∣∣N̂Stat(λ, µ)

∣∣∣
2

, e. g., SPP [Gerkmann & Hendriks 2011],

Minimum Statistics [Martin 2006] or Baseline Tracing, cf. Sec. 3.4.1. Furthermore,

a second estimate for the STPS of speech
∣∣∣ŜDD(λ− 1, µ)

∣∣∣
2

is provided which is

detailed later. All speech and noise estimates are fed into the information combining

block which merges the respective estimates according to Sec. 5.5, to provide

enhanced estimates for the STPS of speech

∣∣∣ŜIC(λ, µ)

∣∣∣
2

and noise

∣∣∣N̂IC(λ, µ)

∣∣∣
2

,

respectively4. If the information combining block is disabled, the speech and

noise estimates yield

∣∣∣ŜIC(λ, µ)

∣∣∣
2

=

∣∣∣ŜCB(λ, µ)

∣∣∣
2

and

∣∣∣N̂IC(λ, µ)

∣∣∣
2

=

∣∣∣N̂CB(λ, µ)

∣∣∣
2

,

respectively. The expression information combining indicates in the legend of

related plots the enabled operation of the information combining block.

Subsequently, different SNR estimates are computed from the refined speech

and noise estimates. The estimate γ̂(λ, µ) of the a posteriori SNR is calculated

according to Eq. (3.29). Two different a priori SNR estimates are calculated: the

estimate ξ̂(λ, µ) is computed by the decision-directed approach [Ephraim & Malah

1984] and the new estimate ξ̂mod(λ, µ) is determined as introduced in Sec. 4.2. Note

ξ̂(λ, µ) is a function of

∣∣∣N̂IC(λ, µ)

∣∣∣
2

,

∣∣∣N̂IC(λ− 1, µ)

∣∣∣
2

and

∣∣∣ŜDD(λ− 1, µ)

∣∣∣
2

, while

4Note that in case of operating the codebook matching block in configuration b the

information combining algorithm is applied twice. First, while codebook matching using the
estimates provided by the cascade of gain shape VQs and second in the information combining

block employing
∣∣ŜCB(λ, µ)

∣∣2,
∣∣N̂CB(λ, µ)

∣∣2,
∣∣N̂Stat(λ, µ)

∣∣2,
∣∣ŜDD(λ − 1, µ)

∣∣2.
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Codebook matching & VAD
according to Fig. 5.1

aO Brute force

bO GSC (+ subsequent IC)

Information
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∣∣ŜCB

∣∣2 ∣∣N̂CB
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Figure 5.3: Block diagram of codebook based noise reduction system working

in the frequency domain including information combining
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Parameter Settings

Sampling frequency fs 16 kHz

Frame length LF 320 (=̂ 20 ms)

Frame advance LA 160 (=̂ 10 ms)

FFT length NDFT 512 (including zero-padding)

Frame overlap 50 % (
√

Hann-window)

Speech codebook entries L 128 (training sequence 3073 s, cf. Sec. 4.3.4)

Decision-directed SNR factor αξ = 0.98

Spectral weights G(λ, µ) Wiener Filter (cf. Sec. 3.4.3)

Spectral weights GDD(λ, µ) Wiener Filter (cf. Sec. 3.4.3)

Table 5.1: Simulation system settings

ξ̂mod(λ, µ) uses

∣∣∣N̂IC(λ, µ)

∣∣∣
2

,

∣∣∣N̂IC(λ− 1, µ)

∣∣∣
2

,

∣∣∣Ŝ(λ− 1, µ)

∣∣∣
2

and additionally takes

the speech estimate

∣∣∣ŜIC(λ, µ)

∣∣∣
2

into account. Based on the SNR estimates, two

different weighting gains are calculated. As mentioned before, the speech estimate∣∣∣ŜDD(λ, µ)

∣∣∣
2

is utilized by the information combining block and is provided by

multiplying the spectral weighting gain GDD(λ, µ) with Y(λ, µ). Due to causality,

only the previous frame
∣∣∣ŜDD(λ− 1, µ)

∣∣∣
2

can be used in the information combining

block. Hence, it is called decision-directed speech estimate. Since the chain of

information combining, SNR estimation and speech estimation ŜDD forms a loop,

the chance of error propagation with respect to the speech estimate
∣∣∣ŜIC(λ, µ)

∣∣∣
2

exists. This can be prevented, if the SNR estimate from which the weighting gain

GDD(λ, µ) is calculated is independent of the speech estimate

∣∣∣ŜIC(λ, µ)

∣∣∣
2

. Hence,

GDD(λ, µ) is calculated from the a priori SNR estimate ξ̂(λ, µ). For the actual

speech enhancement, another spectral weighting G(λ, µ) is utilized which depends

on the new a priori SNR estimate ξ̂mod(λ, µ). The enhanced time domain signal

ŝ(k) is obtained by applying an inverse DFT (IDFT), windowing using a square

root Hann-window and overlap-add. The common parameters of the simulation

system are detailed in Tab. 5.1. Note that the employed speech codebook is pre-

trained as detailed in Sec. 4.3.2 and evaluated in Sec. 4.3.4. The selected fixed

speech codebook comprises spectral envelopes and is used for all codebook driven

algorithms in this section.

Additionally, a representative of a conventional statistical based noise reduction

system is included in the benchmark and serves as anchor. Therefore, the noise
reduction system as depicted in Fig. 3.4 is utilized. The noise estimate is provided by

the speech presence probability (SPP) algorithm which is parameterized as suggested

in [Gerkmann & Hendriks 2011]. The estimate of the a priori SNR and a posteriori
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SNR is provided by the decision-directed approach [Ephraim & Malah 1984]. The

speech enhancement is carried out by spectral weighting which depends on the

a priori SNR estimate and is also implemented as Wiener Filter (cf. Sec. 3.4.3).

The enhanced time domain signal ŝ(k) is obtained by the same procedure as in the
proposed evaluation system. This system is referred to as SPP in the following.

5.8.2 Reference Codebook Implementation

The reference codebook matching system is based on fixed speech and noise code-
books. It utilizes a brute force search for the determination of the optimal parame-

ters lopt,mopt, σn,opt as explained in Sec. 4.1.2 using Nq = 16 quantization levels

for σn,opt, i. e., configuration a in Fig. 5.3. Since no VAD information is available,

i. e., vbin(λ) = 1, the brute force search is performed in each frame λ resulting

in the speech estimate
∣∣∣ŜCB(λ, µ)

∣∣∣
2

and in the noise estimate

∣∣∣N̂CB(λ, µ)

∣∣∣
2

. Two

different reference codebook matching systems are defined, representing different

degrees of a priori knowledge with respect to noise.

A This configuration exhibits a pre-trained large noise codebook, consisting of

four entries for each of the 11 noise types. Sub-codebooks for each type of

noise are trained as described in Sec. 4.3.1. The final noise codebook consists

of a concatenation of the respective sub-codebooks. In total, M = 44 entries

are created from 10 s training sequence for each noise type. Since “pub noise”
is very similar to speech, it is excluded from the noise codebook. Hence,

the noise codebook exists of 11 types of noise. Since all noise types (except
“pub noise”) to be evaluated are included in the training this configuration is

referred to as: A large fixed ref. CB (M=44)5.

B In contrast to configuration A, the training sequences for each noise type are

concatenated and a codebook with only M = 4 entries as representative for

a small fixed codebook is created. This is equivalent to strongly averaged

and imprecise a priori knowledge. This configuration is named: B small

fixed ref. CB (M=4).

5.8.3 Modified Decision-Directed SNR Estimation

The new decision-directed SNR estimate ξ̂mod(λ, µ) is compared to the conventional

decision-directed approach ξ̂(λ, µ) using the reference codebook implementation in

both configurations and the standard noise reduction system utilizing the SPP noise

estimator. This is achieved by selecting either ξ̂mod(λ, µ) or ξ̂(λ, µ) in Fig. 5.3 for the

calculation of the weighting gain G(λ, µ). The performance is evaluated by means of

the objective scores. Since the information combining block in Fig. 5.3 is disabled

5This choice is a tradeoff between the accuracy of a priori knowledge on noise and
numerical complexity. With respect to the employed computer cluster of 150 nodes and the

processing time, M is set to 44, yielding L · M · Nq = 90112 distance calculations per frame.
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in this investigation, the speech and noise estimates yield ŜIC(λ, µ) = ŜCB(λ, µ)

and N̂IC(λ, µ) = N̂CB(λ, µ), respectively.

Figure 5.4 depicts the averaged results for SegSA plotted over SegNA with the

input SNR as variable parameter. Hence, a fair comparison with respect to the

tradeoff SegNA versus SegSA is possible. The points of best performance would be

placed in the lower right corner of that figure. At first, the results based on the

conventional SNR estimates ( , , ) are analyzed amongst each other,

allowing a fair comparison of the codebook based noise reduction systems ( ,

) with the statistical based one ( ). As expected by the very condensed

a priori knowledge on noise, the codebook based system using configuration B

( ) marks the lower bound of the performance. Compared with SPP ( ), a

lower SegSA is observed over the complete input SNR range, but at the expense

of a significantly lower SegNA. The good SegSA performance is confirmed by the

best performance of the CD measure ( ) presented in Fig. 5.5. Comparing the
codebook enhancement system using configuration A ( ) with the SPP based

conventional system ( ), a reduced performance regarding the SegNA measure
is visible, yet significantly better than the codebook approach using configuration

B ( ). This is plausible since the noise codebook exhibits four codebook entries

of each occurring noise type. Regarding the SegSA scores, the good performance

of approach B is reflected, achieving the best scores for low input SNR.

In general, the use of the speech estimate ŜIC(λ, µ)= ŜCB(λ, µ) for the calculation

of the new SNR estimate ξ̂mod(λ, µ) is beneficial over the complete input SNR range
( , vs. , ). The noise attenuation performance increases while

the speech attenuation holds approximately the same, except from an outlier at

−10 dB input SNR for both configurations. Moreover, the codebook approach using

configuration A ( ) utilizing ξ̂mod(λ, µ) exhibits a similar SegNA performance

compared with the SPP based system ( ). The performance gain from the new

SNR estimate ξ̂mod(λ, µ) is also reflected in the CD measure, cf. Fig. 5.5. Over the
complete input SNR range a lower CD is observed. It is notable that although the

SegNA is increased the speech distortion is reduced at the same time.

5.8.4 Information Combining

In this section the information combining procedure is analyzed by means of the

reference codebook implementations, i. e., configuration a in Fig. 5.3 with enabled

information combining block. Since no VAD information is available, the brute force

codebook search is performed in each frame λ. Several speech and noise estimates are

merged to obtain a refined speech estimate ŜIC(λ, µ) and noise estimate N̂IC(λ, µ).

As depicted in Fig. 5.3, the speech estimates are provided by the codebook matching

unit ŜCB(λ, µ) and the decision-directed speech estimate ŜDD(λ − 1, µ) of the

last frame. Note that the determination of ŜDD(λ − 1, µ) is independent of the

refined speech estimate ŜIC(λ, µ) in order to prevent error propagation. The noise

estimates comprise the estimate N̂CB(λ, µ) from the codebook matching as well as

an independent statistically based noise estimate N̂Stat(λ, µ), e. g., Sec. 3.4.1.
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Example of Information Combining

A noisy input signal is generated consisting of ten different, six seconds long

stationary and non-stationary noise types mixed with five male and female English

speakers taken from the TIMIT database [Garofolo & Consortium 1993] at 0 dB

SNR. In order to increase the contrast between the statistical N̂Stat(λ, µ) and the

codebook based N̂CB(λ, µ) noise estimate, N̂Stat(λ, µ) is provided by Minimum

Statistics [Martin 2006] and parameterized as suggested by the author. The

parameters for the simulation remain the same as for the benchmark (cf., Tab. 5.1).

The result of the information combining procedure is summarized in terms of

spectrograms in Fig. 5.6 for noise and in Fig. 5.7 for speech, respectively. For each

plot, the most meaningful time section of the 60 s example is depicted. The two

spectrograms placed in the middle of each figure depict the two input estimates

which yield the refined estimate depicted in the lower spectrogram after information
combining. In the upper plot either the noise or clean speech signal is presented as

reference and marks the upper bound for the estimates N̂IC(λ, µ) and ŜIC(λ, µ).

While the codebook driven noise estimate N̂CB(λ, µ) in Fig. 5.6 exhibits a

reasonable performance with respect to the temporal structure, the statistical based

estimate N̂Stat(λ, µ) is reliable regarding the stationary noise components. However,

significant estimation errors occur occasionally in N̂CB(λ, µ), e. g., at position 45.4 s,
46.5 s and while “wind” noise is present for frequencies greater than 2 kHz. Due

to the sliding time window of Minimum Statistics, a significant underestimation

of the noise is often caused by the transition of noise types, e. g., from “wind”

to “jackhammer” noise at 54 s. The spectrogram of N̂IC(λ, µ), demonstrates that

the information combining procedure is able to combine the best of both noise
estimates, yielding a refined noise estimate which exhibits a precise spectral and

temporal structure. Moreover, dominant estimation errors are compensated by the
respective other noise estimate.

Since the speech codebooks exhibit spectral envelopes, the speech estimate

ŜCB(λ, µ) is spectrally smooth as illustrated in the second spectrogram of Fig. 5.7.

While this yields a sub-optimal estimate for voiced sounds, unvoiced sounds are

in contrast estimated reliably, e. g., at position 4.9 s or 15.7 s. On the other hand,

the decision-directed estimate ŜDD(λ, µ) is a rather aggressive estimate of speech

which tends to especially underestimate unvoiced sounds. However, voiced sounds

are precisely estimated including the spectral fine-structure caused by the speaker

dependent pitch, e. g., at 3.5 s or 9.5 s. Similar to the information combining of the

noise estimates, the speech estimate after information combining merges the best

of both speech estimates as shown in the corresponding spectrogram in Fig. 5.7.

More insights into the combining behavior are gained by analyzing the respective

information combining weights, which are visualized by means of spectrograms in

Fig. 5.8. Blue areas indicate a weight close to zero, while red areas denote weights
close to one. In general, it is observed that the magnitudes minima between the

pitch harmonics of voiced sounds are canceled out preferring the speech estimate

ŜDD(λ, µ). Whereas at the pitch lines either ŜCB(λ, µ) or ŜDD(λ, µ) is selected,
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0

1

Figure 5.8: Example of information combining weights of the speech

estimates ŜCB and ŜDD corresponding to Fig. 5.7 are

depicted as spectrograms. According to Eq. (5.18) the

speech estimate ŜIC(λ, µ) after information combining yields

[c1(λ, µ) + c3(λ, µ)] · ŜCB(λ, µ) + [c2(λ, µ) + c4(λ, µ)] · ŜDD(λ, µ)

with Ŝ1 = ŜCB and Ŝ2 = ŜDD.

e. g., at 9.5 s. This indicates that the spectral envelope of voice sounds is in general
estimated reliably by ŜCB(λ, µ). Moreover, voiced sounds are more frequently

selected from the codebook driven estimate ŜCB(λ, µ) as demonstrated at, e. g.,

position 4.9 s, 15.2 s or 15.7 s.

Noise Reduction Performance

The performance is also rated in terms of objective speech enhancement scores.

For the calculation of the weighting gain G(λ, µ) the conventional decision-directed

approach ξ̂(λ, µ) is used. The statistical noise estimate N̂Stat(λ, µ) for information

combining is provided by Baseline Tracing, cf. Sec. 3.5. The parameters for the

simulation and the VAD setup remain the same as detailed in Sec. 5.8.1.

It should be noted that the focus of this section is to emphasize the performance

gain by applying information combining to the codebook driven enhancement

systems and to create a reference for the evaluation of the online noise codebook

120







5.8 Evaluation

N̂IC,opt(λ, µ) and are considered as the best possible estimates. These estimates are

compared to the regularly computed estimates ŜIC(λ, µ), N̂IC(λ, µ), the individual

estimates ŜCB, ŜDD, N̂CB, N̂Stat, as well as a representative of a simple information

combining by averaging the individual estimates given by

Ŝmean(λ, µ) =
1

Ns

Ns∑

s=1

Ŝs(λ, µ), N̂mean(λ, µ) =
1

Nn

Nn∑

i=1

N̂n(λ, µ). (5.58)

The estimation errors of speech: ES
IC, ES

CB, ES
DD, ES

mean, and noise: EN
IC, EN

CB,

EN
Stat, E

N
mean are calculated in the MSE sense for each frame of the benchmark. For

the sake of clarity, a normalization with respect to the maximum occurred error

from the optimal estimates ES
IC,opt or EN

IC,opt is carried out, respectively. For a
clear presentation, the delta errors, given by

∆ES
s = ES

s − ES
IC,opt, s ∈ {IC,DD,mean}, (5.59)

∆EN
n = EN

n − EN
IC,opt, n ∈ {IC, Stat,mean}, (5.60)

are computed and summarized in Fig. 5.11 separately for speech and noise. The

respective delta errors (∆ES
s , ∆EN

n ) are depicted over the normalized estimation

error of the optimal estimate (ES
IC,opt, E

N
IC,opt). Hence, the abscissa of the plots

range from zero to one. Ordinate values greater than zero indicate an additional

error compared to the optimal estimate, which is considered as lower bound of the
estimation errors. The ordinate intercept is chosen from zero to three and presents

the most meaningful section.

In Fig. 5.11a the estimation errors of speech are outlined. The upper plot depicts

the delta estimation errors of the individual estimates, i. e., ∆ES
CB and ∆ES

DD. Since
the codebook based speech estimate ŜCB provides only spectral envelopes, which

are sub-optimal estimates, the largest delta errors ∆ES
CB among all methods are

observed. In contrast, the delta estimation errors of the decision-directed speech

estimates ∆ES
DD performs significantly better. In the lower plot, the performance of

the combined speech estimates is shown. While the simple information combining

method by averaging ∆ES
mean is able to outperform the codebook driven speech

estimate, a rather similar performance is observed regarding ∆ES
DD, yet yielding a

smaller variance. The proposed information combining methods clearly performs

best. In addition, the mean and the variance of the delta errors of each method

are summarized in Tab. 5.2. It is notable that the mean and variance of the delta
estimation error ∆ES

IC for the proposed method is close to zero.

The estimation errors regarding the noise estimates are depicted in Fig. 5.11b.

As the statistical based noise estimate N̂Stat(λ, µ) is not able to follow non-stationary

noise, the worst performance is expected and confirmed by ∆EN
Stat. In turn, the

codebook based noise estimate ∆EN
CB is also able to follow non-stationary noise

and thus clearly outperforms the statistically based estimate. The difference

between both methods is considerably pronounced compared to the individual

speech estimation methods. For this reason, the simple information combining
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delta error ∆ES
s of speech delta error ∆EN

n of noise

ŜCB ŜDD Ŝmean ŜIC N̂CB N̂Stat N̂mean N̂IC

mean 0.67 0.35 0.29 0.07 0.31 3.38 0.98 0.03

variance 0.86 1.12 0.15 0.10 2.18 127.48 9.56 0.02

Table 5.2: Mean and variance of the delta estimation errors ∆ES
s and ∆EN

n

of the different speech and noise estimates.

method by averaging ∆EN
mean performs worse compared to the codebook based

noise estimate ∆EN
CB. Again, the proposed method ∆EN

IC clearly achieves the best

scores, with a delta error very close to zero. The results are confirmed by Tab. 5.2.

Although the information combining of the proposed method is carried out

indirectly, the performance is virtually unaffected compared to the information

combining method exhibiting perfect knowledge on the estimation errors of speech

and noise. In case of noise estimation, the proposed method performs even better

compared to speech estimation.

5.8.5 Online Noise Codebook Adaptation

The investigations of the previous sections were based on the reference codebook

system which employs a pre-trained noise codebook. Since the noise codebook
training includes all considered noise types, the system covers unrealistic use cases

in general. In this section the online noise codebook adaptation as explained

in Sec. 4.5 is evaluated. The corresponding parameters for the VAD and online
learning are summarized in Tab. 5.3. Since the information about speech activity

is inherently available, the brute force codebook search is only applied in phases

of speech activity. Hence, the codebook matching and VAD block of Fig. 5.3 is

setup with configuration a as depicted in Fig. 5.1. The fixed part of the noise
codebook uses the very condensed noise codebook (M� = 4) from configuration B

of the reference system and the maximum number of codebook entries is defined
as M = 12, i. e., M◦ = 8 adaptive codebook entries. Hence, after r = 2 online

codebook updates the less used entries of the last LW frames are replaced in the

adaptive part of the codebook.

Figure 5.12 presents the averaged results for SegSA plotted over SegNA with the

input SNR as variable parameter. For reference, the SPP based enhancement system

( ) is depicted as well as the reference codebook system with configuration A

(M = 44, , ). Utilizing the online noise codebook adaptation ( , )

improves the SegNA enormously over the complete input SNR compared with all

reference systems ( , , ), e. g., up to 5.8 dB comparing with

at 0 dB input SNR. Utilizing the modified decision-directed SNR estimate ξ̂mod

( ) is advantageous again.

If the input SNR is very low, the occurrence of false positives during VAD

is increased (cf. Sec. 4.4.4). Hence, speech contributes occasionally to the noise
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Appendix D for further details. Moreover, as the input SNR increases or decreases,

the estimation error decreases which results in decreased speech distortion and is
confirmed by the course of the CD curve ( ). Since the speech estimate ŜIC is not

used for the a priori SNR estimate ξ̂, the error resulting from max (γ(λ, µ) − 1, 0)

in Eq. (4.19) appears to dominate. Hence, the effect of the local maximum is not

visible in the CD curve ( ) of the proposed system utilizing ξ̂. The same applies

for the reference codebook system . Although the new SNR estimate ξ̂mod is

used, the imprecise a priori knowledge on noise causes the dominant error in the

SNR estimation.

5.8.6 Complexity Reduction

The previous section confirmed a superior performance of the proposed enhancement

system utilizing online noise codebook learning. This is due to the very precise

estimate of the underlying noise signal. With respect to speech enhancement

applications, a dramatic complexity reduction of the codebook matching process

is necessary. Utilizing the VAD and information combining algorithm, the brute
force codebook search is replaced by a cascade of gain shape VQs as suggested in

Sec. 5.7.2. Hence, the codebook matching and VAD block of Fig. 5.3 is setup with
configuration b which is detailed in Fig. 5.1. The online noise codebook learning

remains. This configuration is referred as gain shape cascade (GSC) in the legend
of the respective plots. Note that the legend entry IC belongs to the activated

information combining block depicted in Fig. 5.36.

At first, the number of distance calculations which are necessary for either of the

methods are investigated. While for the brute force codebook search the number of

distance calculations is given by

ND,BF = p · (L ·M ·Nq)︸ ︷︷ ︸
brute force

+(1 − p) · (M + L+ 2)︸ ︷︷ ︸
gain shape + VAD

, (5.61)

the gain shape VQ based approaches7 need

ND,GSC = p · (2 · (L+M + 2))︸ ︷︷ ︸
gain shape cascade

+(1 − p) · (L+M + 2)︸ ︷︷ ︸
gain shape + VAD

, (5.62)

distance calculations. Hence, the reference codebook system with configuration

A comprising the large noise codebook without VAD knowledge (p = 1), needs

ND,BF,refFixedA = 90112 distance calculations per frame. Assuming 50 % speech

presence (p = 0.5), the proposed codebook system utilizing online noise codebook

adaptation and the brute force search requires only up to ND,BF,adaptive = 12359

6Combining GSC and IC, the information combining algorithm is applied twice. First,

while codebook matching using the estimates provided by the cascade of gain shape VQs and
second in the information combining block.

7Note that the gain calculation is taken into account by adding +2 inside the brackets as

the gain calculation is similarly computational complex to the distance calculation.
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tones, which is confirmed by informal listening test. In contrast to the conventional

noise reduction, musical tones are almost removed.

5.9 Summary

A generic solution is formulated for the joint speech and noise estimation problem

given the noisy observation. The solution considers several speech and noise

estimates and provides optimal mixing coefficients with respect to minimized

estimation error power regarding the noisy observation. At first, various estimates
of the noisy observation are computed by permuting all different speech and noise

estimates. Based on a distance measure between these estimates and the noisy

observation optimal mixing coefficients for each frequency bin of the individual

speech and noise estimates are determined. Applying the optimal mixing coefficients

to the individual speech and noise estimates yields the final refined speech and

noise estimate. This procedure is called Information Combining.

Although the proposed noise codebook online adaptation minimizes the probabil-

ity of missing a priori knowledge on noise, it is not guaranteed that an appropriate

codebook entry is available for each noisy observation Y, e. g., due to changing

noise while speech is present. In such cases, a second noise estimate N̂Stat, e. g.,

provided by the newly proposed statistical noise estimator Baseline Tracing, is

additionally considered. Utilizing the codebook driven speech estimate ŜCB and

the two different noise estimates N̂CB, N̂Stat, two estimations Ŷ1,2(λ, µ) for the

noisy observation Y are computed. For both permutations Ŷ1,2(λ, µ) a distance

to the noisy observation is calculated. Based on these distances, optimal mixing

coefficients for each frequency bin are calculated which minimize the estimation

error power regarding the noisy observation. Subsequently, both estimates are

merged resulting in the refined noise estimate N̂IC. Given a second speech estimate,

e. g., from the last enhanced frame of the speech enhancement system, the Infor-

mation Combining is likewise extended to also provide a refined speech estimate

ŜIC. The evaluation verified a tremendous improvement of noise attenuation, while

the speech distortion is reduced simultaneously.

With respect to feasible applications, e. g., mobile phones, a significant com-

plexity reduction is necessary which is accomplished by replacing the brute force

codebook matching. In a first step of the complexity reduction, the brute force

search is only applied in phases of speech activity exploiting the information from

VAD. During speech absence a gain shape VQ is utilized, i. e., the spectral shape

is determined using the noise codebook in a first step and the calculation of the

associated gain in a second step. With respect to gain shape VQ two scenarios

exist which allow the substitution of the brute force codebook matching. Given a

very high SNR, the brute force search can be replaced by gain shape VQ utilizing a

speech codebook and setting the noise estimate to zero. In the opposed case, a noise

codebook can be utilized and the speech estimate yields zero. With these considera-

tions, two cascades of gain shape VQs are constructed. The first cascade consists of

gain shape VQ utilizing a noise codebook which provides the estimate N̂GS1(λ, µ).
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Hereafter, a second VQ utilizing a speech codebook processes max(Y −N̂GS1, 0) and

yields the speech estimate ŜGS1(λ, µ). The second cascade is structured vice versa.

While the first cascade provides a reliable noise estimate for low SNR, the second
cascade provides a robust speech estimate for high SNR. Utilizing the Information

Combining procedure again, the best of all estimates is combined yielding the final

estimates of speech and noise. Hence, the brute force search is replaced by four

VQs and subsequent Information Combining. The proposed complexity reduction

decreases the number of distance calculations by a factor of approximately 60 from

12359 to 213. The proposed codebook matching exhibiting the full complexity

reduction is characterized by almost the same performance regarding noise and

speech attenuation, but at the expense of moderately increased speech distortion

compared with the brute force search. Hence, Information Combining can be used
for both, improving the estimation quality and reducing the complexity.

The proposed codebook based noise reduction system clearly outperforms

conventional state-of-the art noise reduction systems. The evaluation of the new

modified decision-directed a priori SNR estimate ξ̂mod, incorporating also the

speech estimate, confirmed a superior performance. While the noise attenuation
is improved, the speech distortion is reduced at the same time. A tremendous

performance gain is achieved, especially for transient and fast types of noise, e. g.,
of up to 12 dB improved noise attenuation compared with state-of-the art systems.

Although the proposed system achieves best scores regarding noise attenuation

and speech distortion, the variance of the spectral weighting gains is decreased

compared with conventional systems. This is an indicator for strongly reduced

musical tone artifacts, which is confirmed by informal listening tests. Musical tones

are almost removed.
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Chapter 6

Real-Time Implementation

6.1 High Quality Video Conferencing

A multimodal signal processing concept is proposed [CoVR 2013; Schlien et al. 2013]

which is suitable for flexible high-quality multi-point video conferencing. In contrast

to other, commercially available high quality solutions, e. g., from Cisco, Tandberg,

and Polycom, this system has been intentionally designed for off-the-shelf consumer
electronics at low cost. The desired high-quality communication is achieved by a

novel integration of dedicated algorithms for signal analysis and signal enhancement,
combined with state-of-the-art coding and transmission techniques. The proposed

multimodal signal processing concept enables a new audio-video scene composition

as a key feature, where the most active participants are placed side by side in a

virtual conference at the receiver (see Fig. 6.1). The gained information is further

employed to control the media encoders for improved compression efficiency. The

identification and extraction of the talkers – and their audio and video signals –

represents the major challenge, especially with multiple participants at the clients.

The technical focus regarding video analysis is on face detection and tracking.

For audio analysis, near field beamforming has been identified as the most important

aspect. The results of the video analysis are input to the audio analysis. Besides
the classical task of attenuating competing sound sources and background noise,

the beamformer outputs are further used for speaker activity estimation. Metadata
generated from these analyses is further exchanged and exploited in the network

side processing and the receivers.

Concepts of joint processing or multimodal fusion for improved multimedia
signal analysis have been a long-term research topic. In [Bub et al. 1995] an early

scheme for visually guided beamforming has been proposed. A system with a
video camera and two microphones has been discussed, e. g., in [Zhou et al. 2008].

Recently, [Minotto et al. 2014] used an eight-microphone-array and a video camera
for multimodal voice activity detection and sound source localization. Related work

on participant detection, localization and composition of audio-visual signals has
been presented, e. g., in [Jansen et al. 2011; Q. Liu et al. 2014; Zhang et al. 2008].

A general survey on multimodal fusion can be found in [Atrey et al. 2010]. [Strobel

et al. 2001] provide a good overview on joint audio-video object localization.

For evaluation and demonstration of the proposed concept, a real-time prototype
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Figure 6.2: Experimental setup: video conferencing scenario

6.1.1 Evaluation of Speaker Activity Estimation

The identification and separation of the most active talkers is the task of the pro-

posed multimodal signal analysis. The resulting activity indices jointly comprise the

information from the audio and video analysis. For their evaluation an assessment

of the spatial information from video as well as the activity estimation from audio
is needed. This section focuses on the evaluation of the audio analysis and the

impact of the spatial information provided by the video analysis. The stability of

the tracking algorithm and the possible bitrate savings due to region of interest

(ROI) encoding have been evaluated in [Hosten et al. 2013] and [Bulla et al. 2013].

A typical video conference scenario was arranged in a room, as depicted in

Fig. 6.2. The room has a reverberation time of 0.32 s and the eight sensors of

the microphone array have a spacing of 4 cm with a gap of 30 cm for the camera

mounting in the center. The sampling frequency is set to fs = 48 kHz. Audio

and video signals of three participants were recorded with a duration of about

5 min comprising single- and multi-talk sequences in different variations. The three

participants were placed in front of the microphone array at a distance of 2.5 m at

0◦, −17◦, and 17◦ azimuth in the horizontal plane.

The performance of the proposed audio analysis, i. e., beamforming and soft

voice activity detection (VAD), is evaluated in comparison to a conventional

beamformer and two other soft VAD systems, respectively. All possible combinations

of beamforming and soft VAD are applied to the test signals such that six different

combinations are tested in total. The configurations of the two beamformers are:

• Near Field Beamformer (NFB) - as proposed, cf. Sec. 2.1
The NFB is configured with N=6 non-uniform sub-bands. The corresponding

frequency range of each sub-band is given in Table F.1. The degree of the
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FIR sub-band beamformer filters hm
n was set to L= 4. In advance, seven

individual filter sets for the near field beamformers were pre-computed for
seven talker positions in front of the array with an azimuthal resolution

of 9◦. During runtime, the video analysis unit first detects the number
and the positions of participants. With respect to these positions the most

appropriate filter sets for the near field beamformers are chosen for each
detected participant.

• Delay-and-Sum Beamformer (DSB) according to [Laakso et al. 1996]

Usually, this conventional beamformer operates under the assumption that

the target is far away from the microphone array. This allows the usage of
simple geometric rules for the determination of the parameters. Because

the far-field assumption does not hold in this application, the delay from

each participant to the eight microphones was calculated using the correct

distances on the basis of the provided angle from the video analysis assuming a

distance of 2.5 m. This represents the best-case scenario for this beamformer.

For the soft VAD the following approaches are compared:

• Activity Index (AI) - as proposed, cf. Sec. F.1
The activity index calculation was configured with an audio frame length

of TF = 30 ms and a maximum statistics buffer V Buffer(λ) which contains
frames of the past 30 s. The initial energy normalization parameters were set

to LN = 30, γ = 0.8, and V min = 0.08,

• Ghosh according to [Ghosh et al. 2011],

• Sohn according to [Sohn et al. 1999].

Both conventional soft VAD (Ghosh, Sohn) systems are parameterized as suggested

in their original publications. The task of the audio analysis is to mark the phases

of activity and inactivity individually for the three talkers, i. e., to perform a speaker
activity estimation as a function of time and space.

Finally, an objective evaluation of the six combinations is performed which is

based on a numerical comparison of the VAD vbin,n(λ) with the ground truth VAD

vtrue,n(λ), where n represents the participant index. Thus, for each soft VAD value a

corresponding hard decision value vbin,n(λ) is derived named VAD-AI, VAD-Ghosh,

and VAD-Sohn, respectively. For a better comparability, the thresholds for the

determination of these hard decision values were adjusted such that all systems
yield detection rates in the same order of magnitude. The numerical evaluation is

performed in terms of three VAD measures1:

• Accuracy rate Pa: Percentage of signal frames with correct VAD estimation;

• Detection rate (or true positive rate) Pd: Fraction of active speech frames

that are detected correctly;

• False alarm rate (or false positive rate) Pf : Fraction of speech frames without

speech that are classified erroneously as speech.

All VAD measures for the six combinations are detailed in Appendix F.2.

1The objective scores are detailed in Appendix C.4
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The demonstrator was showcased on the International Workshop on Acoustic

Signal Enhancement (IWAENC 2012) [Hamm et al. 2012] demonstrating the BWE,
on the ITG Fachtagung Sprachkommunikation (ITG 2014) [Heese et al. 2014b]

presenting NELE, and on the International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2014) [Sauert et al. 2014] performing NELE as well as

statistical based noise reduction.

6.2.1 Codebook Based Noise Reduction

Considering the computational capabilities of current SBCs, a further complexity

reduction of the proposed codebook based noise reduction is necessary, cf. Sec. 5.7

and Sec. 5.8.6. Since the speech codebook comprises spectral envelopes, the

estimation performance of speech remains behind compared with the codebook

driven noise estimation, which exhibits the full spectral resolution.

In a first step, the speech codebook size is investigated. Figure 6.6 depicts

different speech codebooks comprising L ∈ {4, 5, 8} entries. For five or more codebook

entries, voiced and unvoiced sounds are modeled separately, e. g., entry number

one models the long-term speech spectrum average (LTA) while entry number four

characterizes unvoiced sounds. With respect to the mentioned estimation quality of

speech, the codebook size is decreased from 128 entries to L = 5, which reduces the
number of distance calculations according to Eq. (5.62) from 213 to ND,GS = 28.5

on average using M = 12 noise codebook entries.

With respect to the algorithmic complexity, the codebook driven VAD is identi-
fied as expensive. In each frame λ the speech codebook is adapted to the current

noisy pitch, employing a cepstral approach (cf. Sec. 4.4.2), which is computational
expensive. Hence, the influence of pitch adaptation on the VAD performance is

analyzed. For this purpose, the same benchmark as in Sec. 4.4.4 is carried out,

except that the speech codebook size is set to L = 5 entries (same training sequence

of 3073 s) and the speech codebook pitch adaptation shown in Fig. 4.6 is deactivated.

When applying a VAD, a compromise between detection-rate Pd and false-alarm-

rate Pf has to be made by choosing an appropriate threshold. This compromise

can be visualized, utilizing a receiver operating characteristic (ROC) curve as a

function of varying thresholds3. A fixed but arbitrary threshold corresponds to a

specific point on the ROC curve. The averaged results for the original and modified

codebook based VAD are depicted in Fig. 6.7 separately for various signal-to-noise

ratios (SNRs). It is notable, that a significant difference between the codebook

based approaches turns out only for low input SNR values below 5 dB. The effect

is more pronounced for large thresholds resulting in small false-alarm rates Pf .

Since the pitch adaptation of the speech codebook has its major influence at very

low SNR conditions and in particular for large thresholds, it is discarded in the

following.

In order to analyze the impact of the modified VAD and the reduced number of

speech codebook entries with respect to the noise reduction, a further benchmark

3For the sake of clarity, the thresholds thr ∈ {0, 1} are discarded in the presented figure.
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Summary

Single-microphone and multi-microphone speech enhancement techniques for mo-

bile communication are investigated. First, the acoustic front-end of the digital
processing chain is addressed by a novel filter design and optimization concept of a

near field beamformer. This pre-processing stage guarantees an improved SNR for

subsequent single-channel speech enhancement. Simplified assumptions regarding

the statistical characteristics of noise signals typically limit the performance of

state-of-the-art single-microphone systems and implicate unpleasant artifacts in

terms of musical tones. In this thesis new methods and strategies of Informa-
tion Combining have been developed to tackle in particular the problem of noise

estimation in case of non-stationarity. The proposed single-microphone speech
enhancement algorithms clearly outperform conventional systems with respect to

high noise attenuation and low speech distortion. At the same time, musical tone
artifacts are almost eliminated by the significantly improved speech and noise

estimation accuracy. This is confirmed by numerous benchmarks with objective

instrumental measures as well as real-time experiments with demonstrators.

Near Field Beamforming

A novel concept for the filter design of a filter-and-sum beamformer based on

numerical near field optimization is presented. The beamformer consists of a

non uniform filterbank with FIR filters in the sub-bands The proposed design

strategy combines the advantages of decoupled sub-band filters with a frequency

resolution according to the human auditory system. The optimization scheme

allows to closely approximate a predefined reception characteristic which can be

freely chosen according to the application. The novel system provides a distinct

spatial selectivity independently of the frequency. Hence, the beamformer achieves
a substantial SNR already at the acoustic front-end. Switching between different

reception characteristics, e. g., for speaker selection in a video conference scenario,

can be easily achieved using several pre-computed filter sets.

Single-Microphone Based Noise Suppression

Baseline Tracing

A novel short-term noise power spectral density (PSD) estimator Baseline Tracing is

presented. The basic idea consists of a constrained logarithmic magnitude tracing of
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the noisy observation separately for each frequency bin. This constraint magnitude

change causes a certain inertia of the noise estimate over time which corresponds
to the temporal statistics of noise. The estimator can be explained in terms of

delta modulation with an adaptive step size, operating in the slope overload mode.
In the linear amplitude domain, the short-term noise PSD of the current frame is

calculated by a simple scaling of the last noise estimate with a frequency and time
dependent tracing factor. Stretching or compressing is decided according to the sign

of the difference between the last short-term noise PSD estimate and the current
noisy frame. Doing so, the estimator traces the noisy observation. Since speech

onsets are assumed as sudden rises in the noisy observation, the tracing factor has

to be selected to only follow the slow variations of the noise. A fixed as well as an

adaptive tracing factor are introduced which take into account the long-term speech

spectrum average and the frame SNR. Compared to state-of-the-art systems, the

new Baseline Tracing algorithm with the fixed tracing factor performs similar with

respect to the noise PSD error measure while performing superior utilizing the

adaptive tracing factor. The noise reduction performance is characterized by a low

speech distortion and simultaneously high noise attenuation. The proposed concept

has extremely low computational complexity and memory footprint. With these
characteristics it is especially well suited for applications where processing power

and memory is limited.

Exploiting Spectral Dependencies

An approach to wideband speech enhancement is proposed that exploits spectral

dependencies between the low band (50 Hz – 4 kHz) and the high band (4 kHz –

7 kHz) of speech signals for improved noise reduction in the high band. While a

conventional noise suppression takes place in the low band, a joint noise suppression
approach is applied in the high band. Features from the enhanced low band

signal are extracted and used to estimate sub-band energies of the high band

using techniques known from artificial bandwidth extension. Compared to MFCC

features, the utilized RASTA-PLP features are more robust against short-term noise

variations and include furthermore a speaker normalization. The weighting gains

determined from these energy estimates are adaptively combined with conventional

gains, obtained in addition for the high band. This combining in the high band is

possible employing a pre-trained look-up table which depends on the average low

band SNR and the respective high band SNR. In order to increase the perceived

speech quality if only a noisy low band signal has been received, a slightly modified

version of the system can additionally be used to perform a joint noise reduction

and artificial bandwidth extension.

Codebook Based Speech and Noise Estimation

A priori knowledge about speech and noise allows to model and to cope with
highly non-stationary noise environments. Starting point is a brute force codebook

matching approach, which provides the upper performance bound and serves as

reference codebook processing scheme. The basic concept is based on a superposition
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of scaled speech and noise codebook entries. The speech codebook is pre-trained

once in advance, while the noise codebook is additionally adapted to new noise

types online. Training vectors for online noise codebook updates are identified

using a novel voice activity detector (VAD) and a codebook mismatch measure.

The VAD is realized as part of the codebook matching, but utilizes only a priori

knowledge of speech. A speech gain is provided in each frame which is a reliable

speech indicator and may contain a noise floor, especially at low input SNR. By
means of a baseline tracing algorithm, similar to noise reduction, the noise floor is

removed and subsequently the gain is mapped to soft VAD values between zero and

one. Instrumental measurements confirmed a consistent improvement compared

to state-of-the-art systems, resulting in higher detection rates at significant lower

false alarm rates, even for low input SNR and highly non-stationary noise.

Information Combining

A generic solution is formulated for the joint speech and noise estimation problem

given the noisy observation. The solution considers several speech and noise

estimates and provides optimal mixing coefficients with respect to minimized
estimation error power regarding the noisy observation. At first, various estimates

of the noisy observation are computed by permuting all different speech and noise

estimates. Based on a distance measure between these estimates and the noisy

observation optimal mixing coefficients for each frequency bin of the individual

speech and noise estimates are determined. Applying the optimal mixing coefficients

to the individual speech and noise estimates yields the final refined speech and noise
estimate. This procedure is called Information Combining. The estimation error

power after Information Combining is less than the minimum of the error power of

the individual estimates. Utilizing Information Combining two main restrictions of

codebook based speech and noise estimation are tackled:

Although the noise codebook is updated online, it is not guaranteed that an

appropriate codebook entry is available for each noisy observation. A noise codebook

update is prevented, for example, if the ambient noise changes while speech is

still present. In such cases, the noise estimation is restricted, but this impact

is compensated utilizing the proposed Information Combining. The necessary

second noise estimate is provided by a statistical noise estimator, e. g., the new

proposed Baseline Tracing. Given a second speech estimate, e. g., from the last

enhanced frame of the speech enhancement system, the Information Combining

is capable to provide also a refined speech estimate. The evaluation verified a

tremendous improvement of noise attenuation, while the speech distortion is reduced

simultaneously. Hence, the proposed Information Combining is used to overcome
missing a priori codebook knowledge.

Facing practical application scenarios the brute force codebook matching is too

expensive and a substantial complexity reduction is necessary. With respect to the
Information Combining procedure, the brute force codebook driven speech and

noise estimates can be replaced by two cascades of gain shape vector quantizer

(VQ) estimates. While the first cascade provides a reliable noise estimate for low
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SNR, the second cascade provides a robust speech estimate for high SNR. Utilizing

the Information Combining procedure again, the best of all estimates is combined
yielding the final estimates of speech and noise. Hence, the brute force search is

replaced by four gain shape VQs and subsequent Information Combining, reducing
the number of distance calculations in each frame by a factor of 60.

The simulations confirm that, the proposed codebook based noise reduction
system clearly outperforms conventional state-of-the art noise reduction systems. A

tremendous performance gain is achieved, especially for transient and fast types of
noise with up to 12 dB improved noise attenuation. Although the proposed system

achieves best scores regarding noise attenuation and speech distortion, the variance

of the spectral weighting gains is decreased compared to conventional systems.

This is a strong indicator for significantly reduced musical tone artifacts. Informal

listening tests confirmed that musical tones are almost removed by this technique.

Real-Time Implementation

The practical capability of the proposed algorithms is demonstrated by two ap-
plications. The novel near field beamformer is embedded in a high quality video

conferencing client. The identification and separation of the most active talkers is

the target of the proposed multimodal signal analysis. Exploiting information from

video and audio analysis, the most active speakers are determined as a function of

time and space. On this basis, the most active participants are artificially placed

side by side in a conference at the receiver. Due to the novel near field beamformer

actual no artifacts in the artificial scene composition of the demonstrator occur.

With respect to single-microphone speech enhancement, the codebook driven

enhancement system has been further investigated. Considering the computational

capabilities of current single-board computers (SBCs), a complexity reduction is

carried out for both, the codebook matching as well as the VAD. It turns out,

that already L = 5 carefully selected speech codebook entries are sufficient without

affecting the overall performance. Utilizing a software based private branch exchange
(PBX) a prove of concept is implemented on a lightweight embedded computing

platform.

Conclusion

The proposed Information Combining is a powerful method to merge the best of

several speech and noise estimates. It is of special interest, that the estimation error
power after Information Combining is less than the minimum of the error power of
the individual estimates. In the context of codebook driven noise suppression, the

proposed method is so efficient that the brute force search can be replaced by several

gain shape VQs estimates without loosing notable performance. Moreover, missing

a priori codebook knowledge is compensated incorporating a statistical fallback

noise estimator. Hence, Information Combining can be used for both improving the

estimation quality and reducing the complexity. The resulting estimation quality of

speech and noise is such accurate, that the occurrence of undesired musical tones

is almost avoided – a decisive step towards artifact-free speech enhancement.
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Appendix A

Optimized filter coefficients

A.1 Free Field

A.1.1 Sub-band beamformer

Microphone

# 1 2 3 4 5 6 7 8

1 −0.55096 0.95313 0.97401 0.98146 0.99065 0.98817 0.98622 0.98715
2 0.82418 0.77801 −0.22916 −0.27949 0.91870 0.56402 0.91225 0.98034

3 0.89846 −0.90478 −0.96104 −0.97088 −0.97977 −0.97411 −0.93783 0.95025
4 0.71215 −0.94958 −0.97249 −0.97588 −0.98681 −0.98492 −0.97337 0.94182
5 0.04905 −0.95201 −0.96443 −0.95723 −0.98661 −0.98280 −0.96814 0.67551

6 −0.86549 −0.91395 −0.30493 0.96073 −0.97812 −0.97785 −0.96386 0.89431
7 −0.79211 0.91849 0.97995 0.99018 0.78722 −0.71738 −0.72880 −0.74877

8 −0.18672 0.98019 0.99185 0.99526 0.98659 0.97245 0.91072 −0.67535

Table A.1: Optimized filter coefficients of sub-band 1 (1 Hz – 268 Hz)

Microphone

# 1 2 3 4 5 6 7 8

1 −0.41510 −0.64213 0.70482 −0.85706 0.97949 0.97739 0.97799 0.98783

2 0.04329 −0.06134 0.91892 −0.72908 0.33629 −0.76612 0.46939 0.97850

3 0.14936 0.74476 0.88976 0.07453 −0.96120 −0.96928 −0.95924 0.95238
4 0.06091 −0.17004 0.90249 −0.71018 −0.96844 −0.97641 −0.97315 0.84845

5 −0.06483 −0.27719 0.59026 −0.58652 −0.94317 −0.97184 −0.97118 −0.63597
6 −0.03628 −0.84770 0.57097 −0.71253 0.93546 −0.92366 −0.95713 −0.74877

7 0.28061 −0.84274 −0.79429 0.79044 0.98456 0.95764 −0.10158 −0.70714

8 0.66698 −0.89254 0.32669 0.92647 0.99223 0.98590 0.96347 0.11570

Table A.2: Optimized filter coefficients of sub-band 2 (268 Hz – 839 Hz)
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Microphone

# 1 2 3 4 5 6 7 8

1 −0.16934 0.95933 −0.24197 −0.97999 0.17398 0.97410 0.85469 0.19047

2 0.13251 −0.94855 0.88287 0.33649 −0.93793 0.69086 −0.74307 0.02136

3 0.14344 −0.96963 0.43211 0.95602 −0.85648 −0.64071 −0.30945 0.46151

4 0.36741 −0.96720 0.90696 −0.55528 0.37535 −0.89908 0.34223 0.75848
5 0.19800 −0.92705 0.74132 −0.92679 0.86626 −0.86340 0.00064 0.34685
6 0.12718 0.32359 0.90968 −0.96756 0.32632 −0.92725 −0.79812 −0.28475

7 −0.22162 0.90298 −0.48449 0.14034 0.00994 −0.66801 −0.71688 −0.74175
8 0.03805 −0.49440 −0.61180 0.98136 0.90343 0.94759 0.91011 0.09941

Table A.3: Optimized filter coefficients of sub-band 3 (839 Hz – 1549 Hz)

Microphone

# 1 2 3 4 5 6 7 8

1 0.22750 −0.18613 0.15414 −0.38216 −0.17940 0.52722 0.99139 −0.17122

2 −0.60693 0.30275 −0.04624 0.82993 0.33335 −0.96943 0.31047 −0.38974
3 0.23268 0.05010 −0.24007 −0.30234 −0.18941 −0.94356 −0.94837 0.83630
4 0.71505 −0.21618 −0.06626 −0.86615 −0.43333 0.19182 0.09029 0.87494

5 −0.59813 −0.45857 0.85817 0.68876 0.90434 0.65783 0.77719 −0.75468
6 −0.23858 0.30301 −0.17516 0.27536 0.45845 −0.93277 −0.89761 −0.50089

7 0.37863 0.50336 −0.86079 −0.46740 −0.87402 −0.45443 −0.96228 0.78333
8 −0.04781 −0.53750 0.70673 0.06062 0.57535 0.99006 0.52855 −0.30255

Table A.4: Optimized filter coefficients of sub-band 4 (1549 Hz – 2614 Hz)

Microphone

# 1 2 3 4 5 6 7 8

1 0.02943 −0.08057 0.12956 −0.11367 0.17923 −0.27472 0.43424 0.73270

2 −0.01953 0.06891 −0.12670 0.15798 −0.49291 0.10985 −0.86247 −0.43910

3 −0.03017 0.03451 −0.07490 −0.00192 0.45217 −0.03731 −0.58577 −0.37712
4 0.06483 −0.12040 0.25986 −0.22230 0.54781 −0.22690 0.35583 0.56455

5 0.00290 −0.01343 −0.02651 0.13035 −0.87764 0.64568 −0.12909 −0.12932
6 −0.02983 0.03832 −0.14253 0.03680 0.10643 −0.03254 −0.33007 −0.08442

7 0.01079 0.01040 0.10111 −0.06978 0.88298 0.18600 −0.16915 −0.08760
8 0.01489 −0.05148 0.01889 0.00158 −0.68755 0.30672 0.23880 0.04269

Table A.5: Optimized filter coefficients of sub-band 5 (2614 Hz – 4731 Hz)
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A.1 Free Field

Microphone

# 1 2 3 4 5 6 7 8

1 0.00574 0.00020 0.00307 −0.01478 −0.01924 −0.05988 −0.01492 0.39988
2 −0.01152 −0.01407 0.00497 0.02998 0.00708 −0.03735 −0.06875 −0.48879

3 0.02491 0.02607 −0.00599 −0.05903 0.07766 0.01011 −0.52104 0.33019
4 −0.02408 −0.05223 0.02301 0.06007 −0.20990 −0.22424 −0.04987 −0.26629

5 0.02490 0.05199 −0.01970 −0.05770 0.45996 0.42535 −0.13117 −0.00202
6 −0.01140 −0.05120 0.02401 0.03041 −0.47523 0.02861 0.04660 0.04486
7 0.00583 0.02600 −0.01203 −0.01244 0.48048 0.31310 0.05593 −0.05442

8 0.00035 −0.01134 0.00570 −0.00044 −0.32945 −0.08982 −0.02700 0.00278

Table A.6: Optimized filter coefficients of sub-band 6 (4731 Hz – 12049 Hz)

A.1.2 Full-band beamformer

Microphone

# 1 2 3 4 5 6 7 8

1 0.07114 0.08709 0.09633 0.00189 0.02439 0.02870 −0.02841 0.02239
2 −0.14259 −0.13731 −0.31511 0.00477 −0.13586 −0.01264 0.04188 −0.09627
3 0.10294 −0.02893 0.35399 −0.08881 0.26313 0.01171 −0.11276 0.23645

4 −0.04071 0.18617 −0.26620 0.18509 −0.26647 0.01308 0.14426 −0.29070
5 −0.15850 −0.13198 0.11949 −0.06987 0.03489 0.10417 −0.21182 0.16350

6 0.22776 0.10295 −0.03086 −0.14443 0.19931 −0.06697 0.08140 0.10562
7 −0.22693 −0.01725 −0.14352 0.22281 −0.33637 −0.01542 −0.05573 −0.15016
8 −0.07602 0.13150 0.11367 0.04684 0.40464 0.20658 0.02553 −0.01017

9 0.27695 0.19307 −0.02782 −0.24612 −0.50664 0.00226 −0.21517 0.15765
10 −0.17478 −0.15521 −0.23465 0.24704 0.25736 −0.14822 0.05646 0.05032

11 −0.10660 −0.03741 −0.19088 −0.09286 0.34148 0.14630 0.03514 −0.20626

12 0.04732 0.26890 0.22693 0.15783 −0.70559 0.28692 −0.11297 0.13077
13 0.15779 −0.17038 −0.03417 0.05641 0.23886 −0.33055 −0.22697 0.12992

14 −0.26853 0.09891 −0.36892 −0.24271 0.36039 0.11821 0.13105 −0.03884
15 −0.11058 −0.33622 0.03956 0.27293 −0.13001 0.20169 0.11744 −0.11779
16 0.15380 0.47596 0.27903 0.29828 −0.61597 −0.01738 −0.41010 0.11662

17 0.03261 0.12745 0.28921 −0.47747 0.62070 −0.18012 0.08566 0.13936
18 −0.33998 −0.45806 −0.96085 0.10487 0.22450 0.17929 0.05957 −0.12795

19 0.12421 0.34335 0.53825 0.19959 −0.61342 0.14576 0.01997 0.02016
20 0.05259 0.16416 0.32805 0.25343 0.04403 −0.34609 −0.27675 0.02015
21 −0.14684 −0.15170 −0.43962 −0.74714 0.51735 0.31674 0.07206 0.07732

22 −0.17884 −0.05999 −0.10195 0.46129 −0.21492 −0.05072 0.06525 0.08307
23 0.27463 0.36049 0.23246 0.30053 −0.25435 −0.17904 0.00963 −0.21249
24 −0.17838 −0.35165 0.06593 −0.52715 0.16324 0.15735 −0.29198 0.03816

25 −0.30466 0.19168 0.19709 0.17942 0.20223 0.10700 0.26580 0.36063
26 0.51328 0.30026 −0.46385 0.02337 −0.14990 −0.21520 −0.20237 −0.32870

27 −0.51609 −0.55543 0.28848 0.00660 −0.08665 −0.02601 0.08246 −0.04273
28 0.07060 0.31306 0.19634 −0.13852 0.00847 0.39711 0.00331 0.28108
29 0.05222 0.18153 0.10638 0.12000 0.21565 −0.38240 −0.22298 −0.01403

30 −0.07365 0.12908 −0.23198 −0.17577 −0.11658 0.12652 0.12301 −0.35409
31 −0.02498 −0.22959 0.06270 −0.08679 −0.28814 0.16540 −0.00623 0.58806
32 −0.03200 0.11154 0.09239 0.35299 0.39531 −0.07707 −0.00347 −0.52084

33 −0.09729 0.39019 0.13024 −0.51276 −0.16029 0.02570 −0.36402 0.29806
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# 1 2 3 4 5 6 7 8

34 0.07975 −0.11300 −0.29604 0.14854 −0.17850 0.08740 0.29717 0.09506
35 0.16184 −0.03297 −0.12553 0.09833 0.11316 0.15085 −0.00296 −0.26798

36 −0.36035 0.10496 0.09135 0.08446 0.08578 −0.19027 −0.43140 0.19261
37 0.18286 0.13877 0.24811 −0.39375 −0.27993 0.27624 0.28181 0.05073

38 0.14298 0.05902 −0.62067 0.31191 0.10679 0.04091 −0.15775 −0.05187
39 −0.14837 −0.24901 0.06011 0.14549 0.06177 −0.05738 −0.05364 −0.00948
40 −0.12265 0.11767 0.13854 −0.29634 −0.16578 0.04207 −0.03765 0.07745

41 0.27018 0.17324 0.06151 0.12862 −0.01377 0.27238 −0.03023 −0.06111
42 −0.15926 −0.14847 −0.32444 0.25567 0.10368 −0.20113 −0.08089 0.17735
43 −0.02650 −0.00145 −0.05649 −0.26119 −0.09827 0.07262 0.02996 −0.23661

44 0.09616 −0.11129 0.31829 0.07862 −0.06023 0.17022 0.00084 0.15807
45 −0.13720 0.36793 −0.16663 0.16253 0.11725 −0.13079 −0.17175 0.05730

46 0.15632 −0.34275 −0.14746 −0.11990 −0.10969 0.08482 0.17584 −0.15601
47 −0.13379 0.12700 0.15515 0.03144 0.04388 −0.00712 −0.11806 0.11733
48 0.04912 0.01166 −0.04966 0.03649 −0.01433 0.01163 0.02065 −0.03265

Table A.7: Optimized full-band filter coefficients

A.2 Reverberant Room

Microphone

# 1 2 3 4 5 6 7 8

1 −0.99948 −0.99447 0.99846 0.99955 0.99282 0.37780 0.30044 −0.99972

2 −0.99917 −0.97780 0.99788 0.99946 −0.02509 −0.99309 0.98454 −0.99968
3 −0.99825 0.96024 0.99604 0.99929 −0.98965 −0.99538 0.99549 −0.99961
4 −0.50439 0.97300 0.83226 0.99896 −0.99320 −0.99534 0.99788 −0.99946

5 0.99804 0.01759 −0.99617 0.99794 −0.99330 −0.99272 0.99877 −0.99900
6 0.99897 −0.98678 −0.99814 −0.15093 −0.99011 0.94023 0.99920 −0.81912

7 0.99928 −0.99446 −0.99877 −0.99794 0.08199 0.99595 0.99943 0.99911
8 0.99944 −0.99673 −0.99907 −0.99896 0.99359 0.99819 0.99958 0.99958

Table A.8: Optimized filter coefficients of sub-band 1 (1 Hz – 268 Hz)

Microphone

# 1 2 3 4 5 6 7 8

1 −0.71926 −0.48637 −0.99670 0.98006 0.99505 −0.99653 −0.99882 0.66781
2 0.96959 0.80318 −0.99555 −0.06960 0.99423 −0.99346 −0.99851 0.83343
3 0.96745 0.74212 −0.99179 −0.94972 0.99349 −0.93087 −0.99789 0.96119

4 0.70022 0.06959 0.02213 −0.94596 0.99205 0.99040 −0.99641 0.96985
5 −0.97312 −0.09498 0.99256 −0.87271 0.98635 0.99444 −0.99129 0.60781
6 −0.98668 0.86139 0.99634 0.15725 −0.94581 0.99489 −0.52403 −0.98877

7 −0.98976 0.95937 0.99756 −0.86858 −0.99366 0.99276 0.97721 −0.99609
8 −0.98912 0.98193 0.99813 −0.97641 −0.99716 −0.46079 0.88619 −0.99804

Table A.9: Optimized filter coefficients of sub-band 2 (268 Hz – 839 Hz)
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A.2 Reverberant Room

Microphone

# 1 2 3 4 5 6 7 8

1 −0.96654 0.99688 0.99690 −0.06746 0.99461 −0.99274 −0.99772 0.97905
2 0.26084 0.00165 0.94118 −0.99321 0.99054 −0.83507 −0.99424 0.65517

3 0.87508 −0.99270 −0.98928 −0.99146 0.95105 0.96827 0.05269 −0.89135
4 0.79587 −0.99180 −0.98641 0.59280 −0.97846 0.72550 0.98716 −0.80780

5 −0.07375 −0.63699 −0.36849 0.99134 −0.98443 −0.97900 0.98561 0.54200
6 −0.60351 0.99387 0.97906 0.99264 −0.33187 −0.98534 −0.01608 0.75816
7 −0.50297 0.99678 0.74940 −0.87677 0.99441 0.07934 −0.98924 0.26644

8 −0.61543 0.99738 −0.99457 −0.99721 0.99805 0.99543 −0.99381 −0.72760

Table A.10: Optimized filter coefficients of sub-band 3 (839 Hz – 1549 Hz)

Microphone

# 1 2 3 4 5 6 7 8

1 −0.99888 0.99566 0.12940 0.55757 0.98984 −0.99840 0.27608 −0.05137

2 −0.17041 0.04779 −0.98830 0.65512 0.60206 −0.99729 0.99201 −0.80324
3 0.99725 −0.99007 −0.78251 −0.69055 −0.71427 −0.99260 0.99066 −0.59038

4 0.99665 −0.98827 0.99390 −0.82807 0.91535 0.88406 0.23134 0.46190
5 −0.01613 −0.16682 0.99669 −0.75661 0.83123 0.97628 −0.99100 0.66678
6 −0.99637 0.98831 0.99647 0.43024 −0.95707 −0.11961 −0.99271 0.53379

7 −0.99609 0.99013 −0.53478 0.78183 −0.97554 −0.97768 −0.25621 −0.25858
8 0.99662 −0.88154 −0.99838 −0.45846 0.84962 0.67823 0.99708 −0.46794

Table A.11: Optimized filter coefficients of sub-band 4 (1549 Hz – 2614 Hz)

Microphone

# 1 2 3 4 5 6 7 8

1 −0.06206 −0.90128 −0.92650 −0.68340 −0.12689 0.27685 −0.99737 0.44595
2 0.94055 0.96540 0.89525 0.99654 0.66967 0.53433 −0.83029 0.97797

3 −0.96877 0.92654 0.55340 0.27228 −0.95850 0.08120 0.98684 −0.96775
4 −0.72231 −0.72542 −0.93887 −0.99692 −0.95720 0.57541 0.25564 −0.97797
5 0.97648 −0.80982 −0.83429 −0.99687 0.40895 0.74836 −0.98162 0.85678

6 0.82205 0.39063 0.96683 0.80609 0.89284 −0.51218 −0.59309 0.97257
7 −0.98853 0.34685 0.81806 0.99638 −0.93634 −0.34762 0.98807 −0.42139

8 0.05032 0.13273 −0.99559 −0.89950 −0.44582 0.98312 −0.80257 −0.30492

Table A.12: Optimized filter coefficients of sub-band 5 (2614 Hz – 4731 Hz)
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Microphone

# 1 2 3 4 5 6 7 8

1 −0.24818 −0.15122 0.32139 −0.07186 −0.39530 0.55145 −0.99959 0.19819
2 0.44246 0.42300 −0.95083 −0.10051 0.97126 −0.04898 0.75347 0.44091

3 −0.67355 −0.96852 0.98746 0.73087 −0.99801 −0.25283 −0.36988 −0.98893
4 0.74090 0.99633 −0.22434 −0.99719 0.17210 0.99650 −0.84638 0.99282

5 −0.88435 −0.33316 −0.99626 0.28482 0.60361 0.71572 0.99747 −0.56924
6 0.83249 −0.76373 0.79479 0.75302 −0.99726 −0.78153 −0.63883 0.11439
7 −0.61275 0.99917 −0.10899 −0.99891 0.43522 0.99843 0.30493 −0.03826

8 0.22406 −0.44149 −0.36195 0.41225 −0.32549 −0.08265 0.03311 0.05252

Table A.13: Optimized filter coefficients of sub-band 6 (4731 Hz – 12049 Hz)
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Appendix B

Equivalent Variance of Recursive and
Mean Average Smoothing

By assuming an uncorrelated signal x(k) and equating the variance of the mean

short-term expectation EK {·} and the recursive short-term expectation Ẽα {·}
estimators, the equivalent rectangular window length of the recursive short-term

expectation estimator can be calculated. The corresponding block diagram is

depicted in Fig. B.1, where x(k) is the input signal and hK(k), hα(k) are the

impulse responses of the short-term expectation operators. The averaged output
signal y(k) is given for the mean short-term expectation operator by yK(k) and for
the recursive short-term expectation operator by yα(k), respectively.

The impulse response of the mean short-term expectation EK {·} operator is
given by

hK(k) =

{
1
K

for 0 ≤ k < K

0 else ,
(B.1)

and the impulse response of the recursive short-term expectation operator Ẽα {·} is

defined as

hα(k) =

{
(1 − α) · αk for k ≥ 0, 0 < α < 1

0 else .
(B.2)

The parameters K and α control the smoothing properties of the respective short-

term expectation estimator. A relation between K and α is derived in the following

by equating the variance of both short-term expectation estimators.

In general, the variance of the output signal y(k) is given by

σ2
y = E

{
y2(k)

}
− (E {y(k)})2 , (B.3)

Smoothing
hK|α(k)x(k) yK|α(k)

Figure B.1: Block diagram of smoothing operation
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where E {·} denotes the expectation operator. Decomposing the output signal y(k)

into an alternating component ỹ(k) and a mean E {y(k)} yields,

y(k) = ỹ(k) + E {y(k)} , (B.4)

and the expression E
{
y2(k)

}
from Eq. (B.3) is now formulated in terms of Eq. (B.4)

by

E
{
y2(k)

}
= E

{
(ỹ(k) + E {y(k)})2

}
(B.5)

= E
{
ỹ2(k)

}
+ 2 · E {ỹ(k)} E {y(k)} + (E {y(k)})2 (B.6)

= E
{
ỹ2(k)

}
+ (E {y(k)})2 . (B.7)

Moreover, utilizing Eq. (B.7) in Eq. (B.3), the variance of y(k) is given by,

σ2
y = E

{
ỹ2(k)

}
. (B.8)

In the following derivation the filter impulse response h(k) represents either

the short-term mean expectation or the recursive short-term expectation operator.

Using the Wiener-Lee relation, the auto-correlation function of the alternating

component ỹ(k) is given by

ϕỹỹ(i) = ϕx̃x̃(i) ∗ ϕhh(i), (B.9)

where ∗ denotes the linear discrete convolution operator, ϕx̃x̃ represents the auto-
correlation function of the alternating component x̃(k) of the input signal and

ϕhh is the auto-correlation function regarding the filter impulse response h(k).

Assuming x̃(k) as zero mean and white yields

ϕỹỹ(i) = ϕx̃x̃(0) · δ(i) ∗ ϕhh(i) , (B.10)

ϕỹỹ(i) = ϕx̃x̃(0) · ϕhh(i) . (B.11)

Using the relation,

σ2
y = E

{
ỹ2(k)

}
= ϕỹỹ(0), (B.12)

the variance of y(k) is given by,

σ2
y = ϕx̃x̃(0) · ϕhh(0) (B.13)

= E
{
x̃2(k)

} ∞∑

j=0

h2(j) (B.14)

= σ2
x̃

∞∑

j=0

h2(j) . (B.15)

By equating the variance of the output signals yK(k) and yα(k) of both short-term

expectation operators,

σ2
yK

= σ2
yα

, (B.16)
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a relation between K and α can be found. Utilizing Eq. (B.15), the variance of the

mean short-term expectation operator EK {·} is given by,

σ2
yK

= σ2
x̃

∞∑

j=0

h2
K(j) = σ2

x̃

K−1∑

j=0

1

K2
= σ2

x̃ · 1

K
(B.17)

whereas the variance of the recursive short-term expectation operator Ẽα {·} yields

σ2
yα

= σ2
x̃

∞∑

j=0

h2
α(j) = σ2

x̃

∞∑

j=0

(1 − α)2 · α2·j (B.18)

= σ2
x̃(1 − α)2 · 1

1 − α2
= σ2

x̃
1 − α

1 + α
, (B.19)

with

∞∑

j=0

α2·j =
1

1 − α2
. (B.20)

Finally, the smoothing parameter α of the recursive short-term expectation estimator
is given by,

α =
K − 1

K + 1
, (B.21)

in terms of the equivalent rectangular window length K in samples and vice versa,

K =
1 + α

1 − α
. (B.22)
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Appendix C

Evaluation System for Speech
Enhancement

The evaluation of speech enhancement algorithms is a difficult task since the speech

quality is perceived subjectively. The aim of the evaluation is to quantify the

subjectively perceived speech quality. So far, the best way to evaluate speech

enhancement is probably to conduct a listening test. However, such tests are very

time consuming and costly as a large number of participants is required to get

statistically significant results.

On the other hand, so called instrumental measures also allow to assess the

speech quality. Each of the instrumental measures aim to predict different aspects

of the subjectively perceived speech quality, e. g., in terms of speech distortion and

noise attenuation. The interpretation of several instrumental measurements allows

a ranking of the investigated speech enhancement algorithms.

In this thesis the evaluation of the speech enhancement algorithms is based on

the evaluation framework and instrumental measures proposed in [Gustafsson et al.

1996; Quackenbush et al. 1988]. In the following, a brief overview of the evaluation

framework as well as the instrumental measures is given.

The framework is illustrated in Fig. C.1. The spectral weighting gains G(λ, µ)
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S̃(λ, µ)
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ỹ(k)= ŝ(k)
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Figure C.1: Evaluation framework for speech enhancement
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are determined in the short-term Fourier domain (STFD) based on the noisy input

signal y(k), which is the sum of the clean speech s(k) and the noise signal n(k).
Besides, the noisy input signal Y(λ, µ), the spectral weighting gain is applied to the

clean speech component S(λ, µ) as well as the noise component N (λ, µ). Finally, the

resulting filtered signals Ŝ(λ, µ) = Ỹ(λ, µ), S̃(λ, µ), and Ñ (λ, µ) are transformed

back into the time domain, where ŝ(k) denotes the enhanced noisy output signal,

s̃(k) is the filtered speech component, and ñ(k) is the filtered noise component,

respectively. This allows to investigate the influence of the enhancement algorithms
on the noisy input signal as well as on speech and noise separately.

C.1 Input Signal-to-Noise Ratio

The noisy input signal y(k) is generated from a clean speech signal s(k) which is

degraded by an additive noise component n(k). In order to control the degradation
the signal-to-noise ratio (SNR) of the input signal y(k) can be adjusted.

For the adjustment of the SNR only signal samples with speech presence are

considered. Note that the noise signal is assumed to be active all the time. The
speech presence is determined by the objective measurement of the active speech
level according to [ITU-T Recommendation P.56 1993]. Hence, the corresponding

power of speech Ps and noise Pn are computed by

Ps =
1

#{MS}
∑

κ∈M
S

s(κ)2 , (C.1)

Pn =
1

#{MS}
∑

κ∈M
S

n(κ)2 , (C.2)

where MS is a vector which contains all signal samples with speech presence and

#{MS} is the number of elements of vector MS. Given the desired SNR value

SNRdB in dB, the scaling factor a of the noise signal component is computed

according to

a =

√
Ps

Pn · 10SNRdB/10
(C.3)

and the noisy signal yields

y(k) = s(k) + a · n(k) . (C.4)

C.2 Instrumental Measures for Speech Enhancement

C.2.1 Segmental Speech and Noise Attenuation

The segmental speech attenuation (SegSA) and segmental noise attenuation (SegNA)

are defined as the segmented power ratios between the original speech and noise
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signals and their filtered versions, respectively. The measures SegSA and SegNA

are given in dB and defined by

SegSA/dB =
1

#{MS}
∑

λ∈M
S


10 · log10




LF −1∑
κ=0

s(κ+ λ · LF )2

LF −1∑
κ=0

s̃(κ+ λ · LF )2





 , (C.5)

SegNA/dB =
1

#{MN}
∑

λ∈MN


10 · log10




LF −1∑
κ=0

n(κ+ λ · LF )2

LF −1∑
κ=0

ñ(κ+ λ · LF )2





 , (C.6)

where MS denotes all frames with speech presence and MN is the set of frames to

be evaluated in total. #{MS} and #{MN} denote the number of frames in each

set MS and MN, respectively. The frame size is represented by LF .

Although the SegSA is not directly related to the manner of speech distortion,

the difference between SegNA and SegSA indicates the effective noise reduction.

For values greater than 0 dB the application of noise reduction appears reasonable.

C.2.2 Segmental Speech Signal-to-Noise Ratio

The segmental speech SNR (SegSpSNR) is defined as the geometric mean of the

SNR of short signal segments, where the difference between the original speech

signal s(k) and its filtered version s̃(k) is considered as noise. The SegSpSNR is

also given in dB and defined as

SegSpSNR(λ) = 10 · log10




LF −1∑
κ=0

s(κ+ λ · LA)2

LF −1∑
κ=0

(s(κ+ λ · LA) − s̃(κ+ λ · LA))2


, (C.7)

SegSpSNR/dB =
1

#{MS}
∑

λ∈MS

SegSpSNR(λ) , (C.8)

where MS is a vector which contains all frames with speech presence and #{MS}
is the number of elements of vector MS. This measure is an indicator for speech

distortion. Higher values of SegSpSNR result in a better performance. However,

no information about possible noise reduction is provided.

C.2.3 Cepstral Distance

The real cepstrum of a signal s(k) is defined as the inverse DFT (IDFT) of the

logarithm of the magnitude spectrum of the signal. For the signal frame λ of s(k)

161



Chapter C – Evaluation System for Speech Enhancement

the cepstrum is calculated according to

Cx(λ, q) = IDFT{ln |DFT{sλ(κ)}|} , (C.9)

where sλ(κ) denotes the samples of signal frame λ, κ = 0, . . . , LF is the sample
index within the frame, and q = 0, . . . , NDFT − 1 represents the cepstral bin index

(quefrency).

The cepstral distance (CD) corresponds to the speech distortion and is defined

as distance of the clean speech cepstrum Cs(λ, q) and the filtered clean speech

cepstrum Cs̃(λ, q). In general, the magnitude spectrum |S(λ, µ)| of s(k) is fully

described by NDFT cepstral coefficients. However, the coarse structure of the

spectrum is of interest which corresponds to the first cepstral coefficients. Hence,

the cepstral distance is calculated for first NCD = ⌈0.1 · LF ⌉ cepstral coefficients

according to

CD(λ) =
10

ln(10)

√√√√(Cs(λ, 0) − Cs̃(λ, 0))2+2

NCD∑

q=1

(Cs(λ, q) − Cs̃(λ, q))2, (C.10)

CD/dB =
1

#{MS}
∑

λ∈M
S

CD(λ) , (C.11)

where MS denotes all frames with speech presence and #{MS} is the number of

elements of vector MS. Lower values of the CD indicate a better performance.

C.2.4 PESQ

The perceptual evaluation of speech quality (PESQ) measure [Rix et al. 2001] aims

to provide an objective measure of the perceived audio quality that predicts the

results of a subjective listening test. PESQ compares the original clean speech

signal s(k) with the enhanced speech signal ŝ(k) = ỹ(k). The resulting PESQ

values are related to the mean-opinion score (MOS) and range from one (bad) to
4.5 (no distortion).

C.3 Instrumental Measures for Noise Estimation

The logarithmic error measures between the estimated

∣∣∣N̂ (λ, µ)

∣∣∣
2

and the true

short-term noise power spectral density (PSD) |N (λ, µ)|2 are defined as

Err(λ, µ) =
|N (λ, µ)|2∣∣∣N̂ (λ, µ)

∣∣∣
2
, (C.12)

LogErr =
1

#{MN}NDFT

∑

λ∈M
N

NDFT−1∑

µ=0

|10 log10 Err(λ, µ)| , (C.13)
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LogErrUnder =
1

#{MN}NDFT

∑

λ∈MN

NDFT−1∑

µ=0

|max(0, 10 log10 Err(λ, µ))| , (C.14)

LogErrOver =
1

#{MN}NDFT

∑

λ∈MN

NDFT−1∑

µ=0

|min(0, 10 log10 Err(λ, µ))| , (C.15)

LogErr = LogErrOver + LogErrUnder , (C.16)

where MN denotes all frames to be evaluated in total and #{MN} is the number of

elements of vector MN. Lower values indicate a better performance. In applications

such as speech enhancement an overestimation of the true noise power, as indicated
by LogErrOver, likely results in an attenuation of the speech and thus in speech

distortions. On the other hand, a noise power underestimation, pointed out by the

LogErrUnder probably causes a lower noise attenuation.

C.4 Instrumental Measures for VAD

The instrumental measures are based on the numerical comparison of vbin(λ) ∈
{0, 1} from the voice activity detector (VAD) algorithm under test with the ground
truth VAD vtrue(λ) ∈ {0, 1}. The true speech presence vtrue(λ) is provided by the

objective measurement of the active speech level according to [ITU-T Recommen-

dation P.56 1993] which is computed from the clean speech signal s(k). Based on

vbin(λ) and vtrue(λ) three VAD measures are defined:

• Accuracy rate Pa: Percentage of speech frames with correct VAD-estimation;

• Detection rate (or true positive rate) Pd: Fraction of active speech frames

that are detected correctly;

• False alarm rate (or false positive rate) Pf : Fraction of speech frames without

speech that are classified erroneously as speech.

To calculate these measures, three sets of frames are necessary. Here, MA denotes

the set of all frames, MS is the set of frames with speech activity (vtrue(λ) = 1),

and MF is the set of frames without speech activity (vtrue(λ) = 0). Let #{MA},

#{MS}, and #{MF} denote the number of frames in each set, respectively. The

objective VAD measures can now be formulated according to

Pa = 1 − 1

#{MA} ·
∑

λ∈M
A

|vbin(λ) − vtrue(λ)| , (C.17)

Pd =
1

#{MS} ·
∑

λ∈M
S

vbin(λ) , (C.18)

Pf =
1

#{MF} ·
∑

λ∈MF

vbin(λ) . (C.19)
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Appendix D

Independence Assumption of Speech
and Noise

Most algorithms in speech enhancement are derived based on short-term power

spectrum (STPS) quantities. Moreover, noise as well as speech is often estimated

from the STPS of the noisy observation |Y(λ, µ)|2. According to the additive signal

model, the STPS |Y(λ, µ)|2 of the noisy observation is given in terms of speech
S(λ, µ) and noise N (λ, µ) by

|Y(λ, µ)|2 = |S(λ, µ)|2 + |N (λ, µ)|2 (D.1)

+ S(λ, µ)N (λ, µ)∗ + N (λ, µ)S(λ, µ)∗ (D.2)

= |S(λ, µ)|2 + |N (λ, µ)|2 (D.3)

+ 2 |S(λ, µ)| |N (λ, µ)| cos(ϑS(λ, µ) − ϑN (λ, µ))︸ ︷︷ ︸
cross-term

(D.4)

where ϑS(λ, µ) and ϑN (λ, µ) denote the phase of speech and noise, respectively.

During the codebook matching procedure, as described in Sec. 4.1.2, the cross-

term of |Y(λ, µ)|2 is neglected. To verify the irrelevance of the cross-term, the
independence assumption of speech and noise is investigated with respect to short-

term signal frames λ in the following.
At first, an error measure is determined. With Errct(λ, µ) denoting the error

power which is associated with the cross-term of |Y(λ, µ)|2,

Errct(λ, µ) = 2 |S(λ, µ)| |N (λ, µ)| cos(ϑS(λ, µ) − ϑN (λ, µ)) , (D.5)

the relative error of the cross-term is defined for the current frame λ according to

RelErrct(λ)/dB = 10 · log10




NDFT−1∑
µ=0

|Errct(λ, µ)|

NDFT−1∑
µ=0

|Y(λ, µ)|2


 . (D.6)

In order to analyze the relative cross-term error RelErrct(λ) dependent on

different speech and noise signals as well as the input SNR, a benchmark is

performed. Therefore, noisy signals are generated from all permutations of the

following parameters:
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Appendix E

Optimization of σ
2
n

in the MMSE sense

The optimal gain σ2
n can be found by minimizing the distance between the noisy

observation and its estimate. Hence, the optimization of σ2
n for a fixed but arbitrary

combination of speech codebook entry |Sl(µ)|2 and noise codebook entry |Nm(µ)|2
is calculated in the minimum mean-square error (MMSE) sense for the current

frame λ. Rewriting Eq. (4.9) yields

∣∣∣Ŷl,m,σn (µ)

∣∣∣
2

= σ2
y |Sl(µ)|2 + σ2

n

(
|Nm(µ)|2 − |Sl(µ)|2

)
(E.1)

= σ2
y |Sl(µ)|2 + σ2

n |Dl,m|2 , (E.2)

with |Dl,m|2 = |Nm(µ)|2 − |Sl(µ)|2. The estimation error dist

∣∣∣Y,Ŷ
MSE in the mean-

square error (MSE) sense between the noisy observation Y(µ) and its estimate

Ŷl,m,σn (µ) is given by

dist

∣∣∣Y,Ŷ
SE = |Y(µ)|2 −

∣∣∣Ŷl,m,σn (µ)

∣∣∣
2

(E.3)

= |Y(µ)|2 − σ2
y |Sl(µ)|2 − σ2

n |Dl,m|2 (E.4)

dist

∣∣∣Y,Ŷ
MSE =

NDFT−1∑

µ=0

(
dist

∣∣∣Y,Ŷ
SE

)2
!

= min . (E.5)

Building the partial derivation of dist

∣∣∣Y,Ŷ
MSE with respect to σ2

n and setting to zero

yields the extremum of the distance given by

∂

∂σ2
n

(
dist

∣∣∣Y,Ŷ
MSE

)
=

NDFT−1∑

µ=0

2 ·
(

dist

∣∣∣Y,Ŷ
SE

)∂
(

dist

∣∣∣Y,Ŷ
SE

)

∂σ2
n

!
= 0 (E.6)

=

NDFT−1∑

µ=0

2
(
|Y(µ)|2−σ2

y |Sl(µ)|2−σ2
n |Dl,m|2

)(
−|Dl,m|2

)

= 2 · σ2
n ·

NDFT−1∑

µ=0

(
|Dl,m|2

)2
+ 2 · σ2

y ·
NDFT−1∑

µ=0

|Sl(µ)|2 |Dl,m|2
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+ 2 · σ2
y ·

NDFT−1∑

µ=0

Y(µ) |Dl,m|2

Hence, Eq. (E.6) can be transformed and σ2
n is expressed as:

σ2
n =

NDFT−1∑
µ=0

|Y(µ)|2 · |Dl,m|2 − σ2
y

NDFT−1∑
µ=0

|Sl(µ)|2 · |Dl,m|2

NDFT−1∑
µ=0

(
|Dl,m|2

)2

. (E.7)

Since the second partial derivation of Eq. (E.6) with respect to σ2
n yields

∂2

∂2σ2
n

(
dist

∣∣∣Y,Ŷ
MSE

)
= 2 ·

NDFT−1∑

µ=0

(
|Dl,m|2

)2
, (E.8)

and is greater than zero, the found extremum is in fact a minimum of dist

∣∣∣Y,Ŷ
MSE .

Since in general Eq. (E.9) is not fulfilled,

σ2
y

NDFT−1∑

µ=0

|Sl(µ)|2 · |Dl,m|2 ≤
NDFT−1∑

µ=0

|Y(µ)|2 · |Dl,m|2 , (E.9)

it is possible that σ2
n is negative, which violates the model assumption, i. e., σ2

n

represents the short-term power of noise.
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Appendix F

High Quality Video Conferencing

F.1 Activity Index Calculation

The activity index is a soft quantification of the activity of each participant on a

continuous scale between 0 (no activity) and 1 (high activity). It is based on the

separated speech signals provided by the parallel beamformers.

For the activity index calculation, it is beneficial to use only frequency sub-bands

which exhibit a reasonable SNR. Experimental studies have shown that noise, e.g.,

structure-borne sound, dominate the sound field especially in the first sub-band

(1-268 Hz, cf., Table F.1). Hence, the lowest frequency band is discarded for the
activity index calculation. Thus, the activity index calculation relies on the energy

of the remaining frequency bands only (cf. Sec. 2, Sec. 2.3.1).

The determination of the activity index vsoft,n(λ) of participant n is carried out

on signal frame λ of the corresponding beamformer output signal ŝn(k). The typical

audio frame length TF ranges between 20 ms and 40 ms leading to a frame size of

NF = ⌊fs · TF⌋samples. The short-term energy of the audio signal of participant n

is calculated by

Vn(λ) =

NF−1∑

i=0

ŝ2
n(λ ·NF + i) . (F.1)

Due to remaining noise and sudden outliers this energy fluctuates. Thus,

recursive smoothing of the energy is applied according to

V n(λ) = α2 · V n(λ− 1) + (1 − α2) · Vn(λ) . (F.2)

The smoothing factor α2 is chosen to be 0.98 (=̂2 ms equivalent rectangular window

Table F.1: Filterbank sub-bands

Band Frequency range / Hz Band Frequency range / Hz

1 1 - 268 4 1549 - 2614

2 268 - 839 5 2614 - 4731
3 839 - 1549 6 4731 - 12049
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length at fs = 48 kHz) which results in a system that still adapts quickly to changes

while the larger fluctuations are leveled out.

This smoothed energy could directly be used as an indicator of activity of

participant n. Since the frame energy depends strongly on the recording level of

the microphone array an additional step is necessary to map the frame energy into

a target scale from 0 (no activity) to 1 (strong activity). It was observed that the

smoothed energy measure provides values that increase steeply between situations

with no activity and high level of activity. Both, the change in gradient and the
mapping of the frame energy values can be achieved simultaneously by means of a

sigmoid function. The activity index vsoft,n(λ) is calculated by

vsoft,n(λ) =
1

1 + e−β·{V n(λ)−γ} , (F.3)

and ensures that the values show a more smooth transition between the different

activity levels of the participants.

The parameters β and γ of the sigmoid function depend strongly on the expected

minimum and maximum smoothed frame energy. Since these quantities are related

to the calibration of the microphones and background noise, they are not known

a priori and adaptive adjustment of the parameters is required. Therefore, the

maximum statistics of a sliding time window containing the smoothed energy frames

of the last seconds (typically 30 – 180 s) are exploited.

Given an audio frame buffer V Buffer(λ) containing the energies of the past frames

sorted in descending order, an estimate of the expected maximum frame speech

energy is obtained by averaging the LN highest-energy frames according to

V maxStat =
1

LN

LN −1∑

i=0

V Buffer(i) . (F.4)

The parameter γ, which defines the center of the sigmoid function, can now be

calculated according to

γ = max

{
V maxStat

2
, V min

}
, (F.5)

with V min serving as a lower bound to prevent underestimation for the expected

frame speech energy, e. g., in the initialization phase. The gradient of the function

is controlled by β which can be determined using the inverse of (F.3) by

β = −
ln
(

1
0.99

− 1
)

γ
. (F.6)

With this choice of β and γ the activity index for a frame energy of V (λ) = V maxStat

results in vsoft(λ) = 0.99. The parameters β and γ are updated according to this

procedure in each frame.
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F.2 Detailed Objective VAD Measures

Participant Accuracy rate Pa Detection rate Pd False alarm rate Pf

# NFB DSB NFB DSB NFB DSB

A 0.90 0.82 0.85 0.90 0.06 0.23
B 0.87 0.75 0.73 0.68 0.05 0.22
C 0.91 0.69 0.84 0.72 0.06 0.32

Table F.2: Detailed objective VAD measures for VAD-AI

Participant Accuracy rate Pa Detection rate Pd False alarm rate Pf

# NFB DSB NFB DSB NFB DSB

A 0.58 0.53 0.73 0.57 0.54 0.50

B 0.50 0.48 0.50 0.46 0.50 0.51
C 0.56 0.57 0.80 0.64 0.65 0.46

Table F.3: Detailed objective VAD measures for VAD-Ghosh

Participant Accuracy rate Pa Detection rate Pd False alarm rate Pf

# NFB DSB NFB DSB NFB DSB

A 0.64 0.56 0.83 0.87 0.50 0.67
B 0.56 0.49 0.77 0.86 0.55 0.70
C 0.55 0.48 0.78 0.86 0.56 0.69

Table F.4: Detailed objective VAD measures for VAD-Sohn

VAD Position Accuracy rate Pa False alarm rate Pf

(cf. Fig. 6.2) NFB DSB NFB DSB

VAD-AI
3 0.81 0.47 0.19 0.53
5 0.93 0.62 0.07 0.38

VAD-Ghosh
3 0.42 0.47 0.58 0.53
5 0.42 0.51 0.58 0.49

VAD-Sohn
3 0.39 0.24 0.61 0.76

5 0.36 0.24 0.64 0.76

Table F.5: Detailed objective VAD measures for all VADs at positions between
the talkers without video information
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Mathematical Notation & Abbreviations

Mathematical Notation

In this thesis, the following conventions are used to denote quantities: vectors are

underlined, e. g., y, scalar values are not, e. g., y. The cardinality of a vector, i. e.,

the number of elements is indicated by the #{·} operator, e. g., #
{
y
}

. Estimated
or approximated variables are marked with a hat, e. g., ŷ, and averaged or smoothed

values are denoted with a bar, e. g., y.

Time-domain signals are written in lower-case letters, e. g., y(k) with the sample
index k. The complex-valued discrete Fourier transform (DFT) coefficients are

labeled with the calligraphic upper-case letters, e. g., Y(λ, µ) with DFT bin index

µ ∈ {0, 1, . . . , NDFT − 1}, even DFT size NDFT, and frame index λ.

Mathematical Operators

≈ approximately equal to

=̂ equivalent to (usually a unit conversion)

!
= /

!

≤ shall be equal to / shall be less than or equal to

∧ / ∨ logical and / or

∈ element of

∀ for all

x∗ complex conjugate of x

|x| absolute value of x

⌊x⌋ floor function, i. e., largest integer which is not greater than x

⌈x⌉ ceiling function, i. e., smallest integer which is not less than x

E{x(k)} expectation value of x(k)

Re{x} real part of x

Im{x} imaginary part of x

exp{x} exponential function ex

log{x} logarithm of x to base 10

max
x

{f(x)} maximum of f(x) over x

173



Mathematical Notation & Abbreviations

arg max
x

{f(x)} argument x of maximum of f(x) over x

mean
x

{f(x)} average of f(x) over all x of a finite set

Principal Symbols

α(λ) time dependent scaling parameter of Baseline Tracing

αΦ VAD based noise PSD smoothing factor

αG(λ, µ) parameter of spectral weighting gain

αξ decision directed SNR smoothing factor

β(λ, µ) tracing factor of Baseline Tracing

βG(λ, µ) parameter of spectral weighting gain

δ(k) unit impulse sequence

∆(λ, µ) adaptive step-size parameter of Baseline Tracing

ϑY(µ) phase of noisy signal in the DFT domain

ϑN (µ) phase of noise signal in the DFT domain

ϑS(µ) phase of speech signal in the DFT domain

κ time index within a single signal frame λ

λ frame index

µ DFT bin index

φ(µ) speech dependent scaling parameter over the frequency of Baseline

Tracing

Ω normalized frequency

N̂ (λ, µ) estimated DFT coefficients of noise signal

C codebook containing codebook entry vectors

D(λ) parameter of Baseline Tracing

d(λ) parameter of Baseline Tracing

dist(P, P̂) distance between power spectra P(µ) and P̂(µ)

dist

∣∣∣P,P̂
IS (λ) Itakura-Saito distance between power spectra P(µ) and P̂(µ)

dist

∣∣∣P,P̂
MSE (λ) MSE between power spectra P(µ) and P̂(µ)

dist

∣∣∣P,P̂
REL (λ) Relative energy distance between power spectra P(µ) and P̂(µ)

e Euler’s number

EN
n (λ, µ) estimation error of the noise estimate

ES
s (λ, µ) estimation error of the speech estimate

EY
i (λ, µ) estimation error of the noisy observation estimate

f continuous frequency

fp Pitch frequency
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Principal Symbols

fs sampling rate

gw window normalization factor

G(λ, µ) spectral weighting gain

gmin lower bound for spectral weighting gain

j imaginary unit

k sample index

LA frame advance in number of samples

LF frame size in number of samples

LTA(f) long-term speech spectrum average

LTA−1(µ) inverse long-term speech spectrum average

c(λ, µ) information combining coefficients

n(k) noise signal in the time domain

NDFT DFT size, i. e., number of DFT bins

N̂CB(λ, µ) DFT coefficients of codebook estimated noise signal

Nm(µ) noise codebook entry with entry index m

σn gain factor of noise codebook entry

N (λ, µ) DFT coefficients of noise signal n(k)

N set of positive integers

N0 set of non-negative integers

p noise estimate change in percent every 10 ms

q quefrency bin index

S(µ) DFT coefficients of speech signal s(k)

s(k) speech signal in the time domain

Ŝ(µ) estimated DFT coefficients of speech signal

ŝ(k) enhanced speech signal in the time domain

ŜCB(λ, µ) DFT coefficients of codebook estimated speech signal

Sl(µ) speech codebook entry with entry index l

σs gain factor of speech codebook entry

γ(λ, µ) a posteriori SNR

ξ(λ, µ) a priori SNR

SNRCB(λ, µ) codebook SNR

SNRDD(λ, µ) decision directed SNR

SNRi(λ, µ) instantaneous SNR

t continuous time

TA frame shift in seconds

TF frame length in seconds

T training set for codebook creation
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Mathematical Notation & Abbreviations

w(k) window function

y(k) noisy signal in the time domain

Y(λ, µ) DFT coefficients of noisy signal y(k)

|Y(λ, µ)| magnitude of noisy signal y(k)

Ŷ(λ, µ) DFT coefficients of estimated noisy signal

z z-transform

Z set of integers

Φ̂nn(λ, µ) short-term estimate of PSD of noise

Φnn(λ, µ) short-term PSD of noise

Acronyms

API application programming interface

AR auto-regressive

BWE artificial bandwidth extension

CAT-iq cordless advanced technology – internet and quatliy

CD cepstral distance

DFT discrete Fourier transform

DSP digital signal processor

DTMF dual-tone multi-frequency signaling

FFT fast Fourier transform

FIR finite impulse response

GSC generalized sidelobe canceller

HMM hidden markov model

IDFT inverse DFT

IIR infinite impulse response

IMS IP Multimedia Subsystem

ISDN integrated services digital network

LCMV linearly constrained minimum variance

LPC linear prediction coefficient

LSF line spectral frequencies

176



Acronyms

LTA long-term speech spectrum average

MAP maximum a posteriori

MFCC mel frequency cepstral coefficients

ML maximum likelihood

MMSE minimum mean-square error

MOS mean-opinion score

MSE mean-square error

MVDR minimum variance distortionless response

MWF multichannel Wiener filter

NELE near-end listening enhancement

PBX private branch exchange

PDF probability density function

PESQ perceptual evaluation of speech quality

PSD power spectral density

PSTN public switched telephone network

QMF quadrature mirror filter

RASTA-PLP relative spectral transform - perceptual linear prediction

ROC receiver operating characteristic

ROI region of interest

SBC single-board computer

SegNA segmental noise attenuation

SegSA segmental speech attenuation

SegSpSNR segmental speech SNR

SIP session initiation protocol

SNR signal-to-noise ratio

SNR a priori SNR

SNR a posteriori SNR

SPP speech presence probability
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Mathematical Notation & Abbreviations

STFD short-term Fourier domain

STPS short-term power spectrum

VAD voice activity detector

VoIP voice over IP

VQ vector quantizer

ZCR zero-crossing rate
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