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Chapter 1

Introduction to the thesis work

1.1 Preface

This work has been devoted to development of image segmentation methods. Image
segmentation is a process of partitioning digital images into meaningful regions. Images
can be partitioned into two regions, foreground and background, or into a number of
regions corresponding to different objects. Examples of image segmentation applications
include:

1. Personal cameras and mobile phones have face and expression recognition. Face
recognition is also used on personal notebooks on a log-in screen as a replacement
for a password. We use mobile phones to read e.g. QR-codes. Text recognition is a
usual step after scanning text-documents. All these applications require an image
segmentation step.

2. Scene and object categorization divide images based on some keyword: seaside,
mountains, etc. They require a segmentation step as well to create some knowl-
edge about an image. Image editing software packages, like Photoshop, GIMP,
Corel PhotoPaint etc. contain tools for background removal, object separation and
repairing damaged images using knowledge gained from undamaged areas (in-
painting). These tools are implemented e.g. within Microsoft Office as well.

3. The game industry tends to combine, as much as possible, the virtual world with
the real one acquiring knowledge of an environment from a camera.

4. In industry, image segmentation is implemented within algorithms for measuring
objects, detecting and tracking them, as well as, examining for malfunctions of
products. Hand gestures are used to control processes instead of some other soft-
ware interface tools.

The research was performed for needs of the Garnics project, which is explained in the
next section.



1.2. THE GARNICS PROJECT

1.2 The Garnics project

This work was funded by the Garnics (GARdeNIng with a Cognitive System) project 1.
The Garnics project was coordinated by The Institute of Bio- and Geo-sciences (IBG-2)
at the Forschungszentrum lJiilich, the institute devoted to Plant Sciences. Its research
area, Plant Enabling Technologies, targets accurate measuring of structural and functional
plant traits under close-to-natural environmental conditions. The project was aimed at
developing methods for sensing plants’ structure and growth. Its goal was to develop a
system for monitoring and maintenance of sets of plants using a robot-gardener.

The main idea of the Garnics project is to use the channel representation of data
within different segmentation methods. Segmentation methods are modified to use
channel values as inputs. The research within this thesis, as well as papers by Wallen-
berg et al. [92, 93, 46] are devoted to the task above described.

The image segmentation task tackled with the Garnics project was to locate plants in
images, detect leaves and track them over time. Solving this task would enable measuring
leaf size and monitoring leaves’ and plants’ growth. This could enable e.g. phenotyping.

Therefore, large amount of research was devoted to development of image segmen-
tation, leaf localization and leaf tracking methods when only 2D color images are given.
The goal is to develop fast methods that achieve highly accurate and reliable results when
only little input data exists. Robust recognition with little input data can improve results
when additional prior knowledge about plant features or background environment is in-
troduced.

This work is devoted to research on plant recognition and leaf localization using only
knowledge on their color distribution.

1.3 Novelties presented in the thesis

The main idea of this research is to examine ways to introduce efficient estimation of
probability distribution functions to image processing methods. The work follows two
directions:

1. it investigates the possibility and advantages of using the channel framework over
the kernel density estimation approach within the Chan-Vese model and the Potts
model.

2. it proposes the block Gibbs sampler to estimate the probability distribution func-
tion of the smooth image and the edge-map of the Ambrosio and Tortorelli func-
tional.

Energy functionals are modified so that the channel framework can be used within
data-terms. Traditionally, kernel density estimators (KDE) are used to describe the prob-
ability distribution functions in segmentation methods. Theoretically, channel density
estimates (CDE), are equivalent to sampled kernel density estimates (see Section 3.4).

1Garnics (GARdeNIng with a Cognitive System); FP 7 ICT project no. 247947; website: www. garnics.eu
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Figure 1.1: The image segmentation task in the Garnics project was plant recognition and
leaf detection. The left image presents the robot used within the project. On the right,
we have an example of an ideal leaf extraction from a tobacco plant image.

The main difference of the CDE and KDE is how they approach the segmentation prob-
lem:

e KDEs are calculated on pixel values on the image and the speed of segmentation
depends a lot on the image content.

e For the channel framework look-up tables are precalculated and loaded (see Sec-
tion 3.6).

As channels are not calculated on values contained in image, basis functions are not posi-
tioned exactly on data-points and this can cause slightly worse segmentation results than
with KDEs. Therefore, when using the CDE approach, an appropriate look-up table needs
to be chosen.

Another novelty presented in this thesis is the stochastic approach to smooth-image
and edge-map reconstruction (see Chapter 7). This approach is similar to the one by
Geman and Geman [34] with a difference that in this thesis the block-Gibbs sampler is
used instead of the pixel-wise one. My contribution within this method is derivation of
equations and implementation of the algorithm within MATLAB which was used to obtain
and demonstrate the advantages of the idea.

Combination of the results from the region based segmentation and edge-map re-
trieved from the AT method could allow better differentiation of objects, or further par-
titioning of regions.

1.4 Organization of the thesis

The thesis is structured in the following way:
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e Chapter 2 introduces the problem of image segmentation, gives examples of its ap-
plication and an overview of state-of-the-art image methods related to the meth-
ods presented within the thesis.

e The channel framework s in the core of all image segmentation methods presented
within this thesis. Therefore its basics are introduced in Chapter 3.

e Chapter 4 presents the unsupervised 2-region segmentation method that parti-
tions a gray-value image into foreground and background using the Chan-Vese level-
set approach. This method can divide an image in two separate regions, but does
not allow a user input in defining regions. Difference between this and other state-
of-the-art level-set methods is that the channel framework is used to describe the
data term.

¢ Chapter 5 extends the previous method to vector/color images and adds the use of
prior knowledge for detecting foreground. Its novelty is the use of the weight coef-
ficient to adjust the trade-off between unsupervised and supervised segmentation.

e Chapter 6 deals with multi-label image segmentation using user inputs for con-
structing prior knowledge on different objects. In this contest the channel frame-
work is introduced to the Potts model.

e Chapter 7 gives a novel approach for smooth reconstruction of noisy images and to
construct their edge-map. It introduces the block-Gibbs sampler to edge-detection
methods.

e Chapter 8 summarizes the work presented within the thesis and presents possible
steps for further improvements.

The following information is contained in appendices:
e Appendix A describes notation used throughout the thesis.

e Appendix B describes data-sets used for evaluating segmentation algorithms. Be-
sides other, we have created a specific data-set which contains top-view images of
tobacco plants. Within this chapter several segmentation evaluation measures are
suggested as well.



Chapter 2

Image segmentation

2.1 Introduction

Segmentation is a process of partitioning an image into a number of connected, non-
overlapping regions. These regions represent different objects or parts of objects. As a
segmentation result pixels of an image are assigned a unique label that indicates which
region they belong to.

The segmentation result is expected to be a set of meaningful regions, e.g. different
objects. Unfortunately, segmentation is an ill-posed problem, which means (according
to Hadamard [41, 40]) that the problem may not have a solution, or the solution is not
unique, or it does not continuously depend on data. Therefore, it is hard to evaluate how
successful segmentation is. The correct segmentation result differs from the task image
segmentation is aimed at. Given an image depicting some scene or containing several
objects, results can differ depending on criteria used in the algorithm. Several different
areas can be segmented containing similar features as foreground objects. An algorithm
e.g. may choose one area based on its color intensity. A different algorithm can choose a
different object, or a part of an object, based on its distinctive texture rather than color.

In supervised image-segmentation methods a user gives hints to what a good result
would be. A user e.g. selects parts of regions and/or adjusts desired attributes of each
region. Thisimproves the segmentation process significantly. However, the development
of new technologies aims at automating processes and therefore, introducing as much as
possible, human way of thinking in algorithms. This way, less input from a user is needed,
most parameters can be left on their default values and processes are sped up.

2.2 Unsupervised image segmentation

Unsupervised image segmentation is segmentation where no prior knowledge on objects
or background is available. Animage is partitioned in a number of regions that differ from
each-other based on some criterion. In Chapter 4 a method is developed that extracts
foreground by separating an image in two regions that have different color distributions.

Results of unsupervised segmentation may sometimes seem meaningless to a human
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Figure 2.1: Some of selection tools implemented in Adobe Photoshop CS3 (a) Magic
Wand; (b) Magnetic Lasso

Figure 2.2: Examples of trimaps from GrabCut data-set [76, 9] a an image for segmenta-
tion; b trimaps imitating the use of lasso-tool: black —background pixels, dark gray —back-
ground pixels used for training, light gray —unknown pixels, white —foreground pixels; ¢
trimaps imitating the use of bounding box for prior knowledge calculation. Gray-scale
coding is the same as for lasso trimaps, except the set of foreground pixels is empty.

b
Figure 2.3: An example of using brush strokes for defining prior knowledge on multi-label

segmentation. a an image from Graz data-set [81] with brush strokes indicating different
regions; b segmentation result using the approach described in Chapter 6
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eye. Having in mind that no hints are used for determining what the foreground object is,
results may be quite different from human segmented ones. In the paper by Alpert et al.
[4] they try to develop a data-set that contains ground-truth segmentation that can be
used for evaluating unsupervised segmentation methods. Ground-truth segmentation
data are “correct” segmentation results that are provided by humans or some algorithm
that others should refer to.

2.3 Supervised image segmentation

A user can provide hints to segmentation in many ways and some of those are described
in following text. Some of these examples are presented also in [76]. Magic Wand/Magic
mask and Magnetic Lasso/Intelligent Scissors are common selection tools in photo edit-
ing software. These tools appear in e.g. Adobe Photoshop, Corel Photo-Paint and GIMP.
They divide an image into the active selection and the rest of the image. After selection,
the active part of an image is editable, while the rest of the image is preserved. Here, we
will present only an idea of these selection tools, and how user interaction is designed.

Magic Wand/Magic mask ® A user gives only one point as a seed to compute the active
selection area. The active area contains then pixels connected to the seed point
and with similar color up to some tolerance. Figure 2.1 (a) shows the result using
Magic Wand in Adobe Photoshop CS3.

Magnetic Lasso/Intelligent Scissors Here, a user is asked to trace the outline of the de-
sired area. While drawing the outline, the path is refined so that the selection area
would match better selected object at borders. As described in [76, 64] this is done
by calculating the minimum cost contour. Figure 2.1 (b) shows the use of Magnetic
Lasso/Intelligent Scissors in Adobe Photoshop CS3.

Trimaps partition an image domain into three regions 2 = {2, 2, 2, }. Region Q con-
tains definitive foreground pixels, €2, contains background pixels and €2, contains pixels
that need yet to be decided if they are foreground or background. They are introduced in
the paper by Boykov and Jolli [14]: §2; contain scribbles that mark foreground, {2 contain
scribbles that mark background and the rest of the image is an unknown region €2,,.
Rother et al. developed a data-set? that contains also trimaps as training data for
foreground and background segmentation for needs of their work [76, 9]. The data-set
contains trimaps that imitate the bounding boxes selection of objects or the lasso selec-
tion of an object. Figure 2.2 gives an example of trimaps from the GrabCut data-set.
The bounding box selection contains a full foreground object and some parts of back-
ground. Edges of the bounding box should be as close as possible to borders of the tar-
geted object. A bounding box trimap is made of three regions: 2 = {Q, Qp, Q). O
contains pixels that definitely belong to background, €2;; pixels that are used for training
an algorithm what background should be and €2, contains pixel that an algorithm has to

Thttps://helpx.adobe.com/photoshop/topics.html
2GrabCut data-set: http://tinyurl.com/grabcut



2.4. ENERGY FUNCTIONALS FOR IMAGE SEGMENTATION

classify as foreground or background. The bounding box selection is worth to examine as
a selection method because it requires an easy user interaction, just two clicks to define
a rectangle and with that a prior knowledge of the object. This makes it practical for fast
selection. Figure 2.2 gives an example of trimaps for bounding box selection from the
GrabCut data-set.

The lasso selection requires a user to roughly draw a boundary of the targeted object.
Lasso trimaps consists of 4 sets of pixels @ = {2, Qpr, L, Q¢ }. Qp, Qe and Q,, are the
same as for bounding box trimaps, while {2 contains pixels that are definitely foreground
and should be used for forming a prior knowledge. Lasso trimaps are used in following
works [9, 76]. They are used also in the work by Nieuwenhuis and Cremers [69].

Brush strokes/scribbles are present in papers by Santner et al. [81] and Nieuwenhuis
and Cremers[69] for providing prior knowledge. Unlike previous approaches presented in
this chapter, these methods are not limited to only 2 regions. Instead, labels that denote
different regions are assigned to scribbles. It is possible to use a solid brush or airbrush of
different sizes. A solid brush requires only its radius to be defined. An airbrush is defined
with two parameters: its radius/size and its opacity. Opacity defines the percentage of
pixels within the defined radius that are used for creating a brush stroke.

While in Santner et al. color and texture information from scribbles is used, Nieuwen-
huis and Cremers consider location of scribbles as well and estimate a joint probabil-
ity distribution of color and space from scribble data. Figure 2.3 shows an example of
scribble-driven multi-label segmentation.

Prior knowledge can be calculated also from an another image or a set of images. In
Chapter 5, Experiment 4 shows segmentation where the method is first trained on a set
of images of leaves and then segmentation is performed over a set of images to recognize
plants.

2.4 Energy functionals for image segmentation

2.4.1 The Mumford-Shah functional

In their paper [65], Mumford and Shah present an image as a function of two variables,
g(z,y), defined on an image domain Q with (z,y) € Q C R If g(z,y) is a gray-value
image, then g(z,y) : © — R. Generalizations of g(x,y) include additional image fea-
tures (e.g. local orientation or curvature in [20]), color or vector-valued images [22], i.e.
g: Q=R heEN

The image segmentation goal is to appropriately decompose the image domain (2:

Q=Q,U---UQ, (2.1)
so that:

e the image g or, in our case, some property of it is smooth or varies slowly inside
each region (),

e the image/some property of image ¢ is discontinuous or varies rapidly across most
of the boundary C' between the regions ();.

8
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Figure 2.4: The crack tip problem a data inside the circle is missing; b the global minimum
of Mumford-Shah functional [74]

Mumford and Shah formulated the functional to measure similarity between g(z, y) and
its smooth reconstruction u(zx, y).

E(u,C) = / (u — g)* + \|Vul*dzdy + v|C| (2.2)
o\C

where C'is the edge set and A\, v € R, denote some regularization parameters.

The first term of the functional (2.2) influences u to be similar to the original image g.
The second term influences u to be smooth on the whole image except its borders. The
third term is the border length and influences contours to be as short as possible.

In their original paper, Mumford and Shah examine minimization of the functional in
special cases, but do not offer a general solution on how to calculate the edge term. In
addition, the MS functional is not formulating a convex problem, and therefore does not
always have a global minimum.

This gives an opportunity to introduce different approximations of the functional in
order to calculate the edge-set. Different modifications lead to different segmentation
methods, e.g. the Ambrosio and Tortorelli [5], or the Chan-Vese [20] approach. The Potts
model [75], although not originated in the MS functional, takes its form in a special case.

The local behavior of the MS functional and its edge set is studied in the original paper
[65] and also in studies by Bonnet and David [10, 11] who prove the global minimum of
the crack-tip problem for MS functional. In the paper [74], authors design a synthetic
image that demonstrates that their algorithm reaches the global minimum in the crack-
tip problem. The syntheticimage (Fig. 2.4a)isgivenby I (x,y) = /7 (x,y) sin(0(x,y)/2)
where r(x, y) is the Euclidean distance of a point (z, ) to the image center and 6(z, y) is
the angle of the point (z, y) to the horizontal line. The center part of the image, denoted
by the circle, is missing. The global minimum of the MS functional recovers the missing
part and provides smooth reconstruction of the image as shown in Fig. 2.4 b.

2.4.2 The Chan-Vese level-set approach

The Chan and Vese [20] level-set approach serves for dividing an image in two regions.
Both regions can be composed of unconnected parts of the image.

9
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it is a modification of the Mumford-Shah functional so that the level-set approach can
be used. The idea of the level-set approach is to introduce the level-set function ¢ which
describes an image in the following way:

* Its positive values correspond to the foreground of the image.
¢ Its negative values correspond to the background of the image.
e The zero-level of ¢ is the border between foreground and background.

The function ¢ is evolved during the minimization process of the Chan-Vese functional
until @ minimum is reached.

Figure 2.5 shows an example of a segmentation result using the method described in
Chapter 5. This method segments an image in the following way:

1. A user selects a rectangle that contains only pixels belonging to the foreground.

2. From this rectangle, a probability distribution function of the foreground is calcu-
lated.

3. The level-set function ¢ is then initialized using this PDF.
4. ¢ evolves while the functional in Equation (2.9) is minimized.

5. Finally, values where ¢ > 0 are considered the foreground, ¢ < 0 are considered
as background and ¢ = 0 constructs the boundary.

Our contribution is the integration of the channel framework in the data-term of the
Chan-Vese functional.

Starting from Equation (2.2) and letting A — oo leads to the cartoon limit or the
minimal partition problem, where the functional (2.2) reduces to the piecewise constant
Mumford-Shah functional (PCMS).

N
B(u,C) =Y /Q(u _ 92z + v[C (23)

where €); are N different segmented regions for which u; takes constant values

1
u; = o /Qi(g)dx (2.4)

Zhu and Yuille [101] suggest using probability distribution functions p(g|€2;) as seg-
mentation descriptors. Using log-likelihood log p(g|€;) instead of the data term (u; — g)?
in (2.3) yields:

N
E.C) =Y. [ ~logplgl)ds +viC (2.5)

For a Gaussian model with constant variance o2, i.e.

10



CHAPTER 2. IMAGE SEGMENTATION

(u; — 9)2

1
503 +§Iog(27T02) , (2.6)

— logp(g[€2) =

the functional (2.5) reduces to (2.3).
The foreground boundary is described as:

C ={(z,y) € QCR*: ¢(x,y) = 0}, (2.7)

being the zero-level of a level set function ¢ : {2 — R. The image foreground is
defined by the part of the image domain for which ¢(z) takes positive values:

QO = {(z,y) € QCR*: §(z,y) > 0} (2.8)

and the image background is defined by the set 2, where the level set function takes
negative values.

The general piecewise constant Mumford-Shah functional (PCMS), Equation (2.5), has
the following form:

Ecv(¢) Z/Q(H(cﬁ)—1)|08(p(9|9b))—H(¢) log(p(g<y)) +v|VH(¢)|dz  (2.9)

The Zhu and Yuille extension of the original Chan-Vese approach allows better seg-
mentation of highly textured images. Experiment 1 in Chapter 4 demonstrates the inabil-
ity of the original Chan-Vese approach to segment images in which region distributions
do not resemble an uni-modal Gaussian distribution.

Minimization of the functional in Equation (2.9) requires posterior probability distri-
bution functions p(g|€2;) and p(g|€2) to be calculated. The channel framework is used
to approximate these PDFs. The channel framework is introduced in Chapter 3. The NRI
minimization method of the functional is given in Chapters 4 and 5.

Figure 2.5 shows an example of a segmentation result using the method described in
Chapter 5. This method segments an image in the following way:

1. A user selects a rectangle that contains only pixels belonging to the foreground.

2. From this rectangle, a probability distribution function of the foreground is calcu-
lated.

3. The level-set function ¢ is then initialized using this PDF.
4. ¢ evolves while the functional in Equation (2.9) is minimized.

5. Finally, values where ¢ > 0 are considered the foreground, ¢ < 0 are considered
as background and ¢ = 0 constructs the boundary.

The Chan-Vese level-set approach is limited to image segmentation in two regions
only. To segment an image into multiple regions depicting different objects and back-
ground usually the Potts model [75] is used. This model is introduced in the following
subsection.
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2.4. ENERGY FUNCTIONALS FOR IMAGE SEGMENTATION

Figure 2.5: Segmentation results using a modification of Chan-Vese level-set approach
with a prior knowledge described in Chapter 5: A user selects the rectangle area from
which the prior knowledge on foreground distribution is calculated. Images are divided

into foreground (the red area) and background (the blue area).

12



CHAPTER 2. IMAGE SEGMENTATION

2.4.3 The Potts model

The Potts model [75] is originally suggested in its discrete setting. The disadvantage of the
discrete setting is that the discrete grid causes artifacts in results. Artifacts consist in solo
pixels within regions or on a region edges that belong to random regions. Methods in [50,
16, 49] suggest regularization to reduce artifacts, but they require complex calculations
as well. Nieuwenhuis et al. [68] provide reviews of minimization methods that solve the
Potts model in the discrete or the continuous setting.

The Potts model can be solved in the spatially continuous setting with a bounded
image domain. Methods described in papers [19, 70, 73, 97, 82, 80, 69] suggest solving
the convex relaxation of the Potts model. While there is no mathematical proof that the
minimum they reach is the global minimum of the original non-convex Potts model, these
methods give better results to segmentation than methods using the discrete setting of
the Potts model. This is shown in many experiments in related papers and within this
thesis.

Within the thesis, the toolbox provided by Yuan et al. [99, 97, 98] for solving the Potts
model is used. They solve the convex relaxation of the continuous Potts model using the
continuous max-flow approach.

We have implemented the channel representation of image features in the data term
of the functional. The setup of minimization of the functional and the data-term are
described in following text. This method is used in Chapter 6.

The Convex Relaxed Potts model [99, 97, 98] has the following form:

N
Te"?; / pi(x)Cl-(x)d:c—i—; Q/ w(x)|V pi|dz (2.10)

where S is the constrained set of p(z) := (p1(2),..., pn(2)).

S = {p(fr)

Using this model, the continuous image domain 2 € R? is partitioned into a set of
disjoint regions €);:

N
Zpi(x)zl; pi(x) €10,1], i=1,...,N; ‘v’xGQ}, (2.11)

=1

N
U= ono=0 Vk#l (2.12)
=1

Functions p; € [0, 1] indicate the belonging of the value x to a region €2;.
The Potts model becomes the Mumford-Shah functional, Equation (2.3), by using fol-
lowing cost functions C;(x) in Equation (2.10):

Ci(z) = (wi(z) — g(x))” (2.13)

where u; takes constant values within each region, see Equation (2.4). Within this the-
sis, probability density estimates are used as measures of x values to belong to regions
Q,io=1,...,N.

Ci(z) = — log p(g(2)|<%) (2.14)
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2.4. ENERGY FUNCTIONALS FOR IMAGE SEGMENTATION

Figure 2.6: The goal of the Ambrosio-Tortorelli segmentation is to estimate the edge-map
on the image and give its cartoon/smooth reconstruction. a original images degraded
with a Gaussian noise; b estimated edge maps; c smoothed images.

The first term in Equation (2.10) is the data term, while the second term is the total
variation term that measures the perimeter of the responding region |5€2;|. The function
w(x) is a penalty function for the total variation term. Without using image-edge weights,
w(x) is constant everywhere. Within this thesis the function:

w(x) =\ e MW@l Ny e R, (2.15)

is used to add priority to values close to image edges.

2.4.4 The Ambrosio and Tortorelli approximation of the MS functional

Solving the AT functional recovers a smooth reconstruction of an image and its edge-map.
An example of using the AT functional is given in Figure 2.6.

Ambrosio and Tortorelli suggest the following approximation of the MS functional in
their paper [5]:

B / / (Blulz.y) — gz 9)* + (a1 — vz, 9)?| Vulz, y)])

(2.16)
+ (§IVola,y)l* + ho(z,y)*))dady

where v(z,y) : R? — [0, 1] is the smooth edge indicator function with v(z,y) ~ 1
on the edges, and v(x,y) ~ 0 on smooth regions. «, 3, p,h € RT are regularization
parameters. For p — 0 the energy I 47 converges to the original value of the Mumford-
Shah functional. Here, the idea behind this claim will be explained, while for the full proof
it is suggested to consult the original paper [5].

1. The first term influences u to be similar to g.

2. The second term influences u to be smooth on the whole domain except on edges,
and v to have non-zero values on edges.

14



CHAPTER 2. IMAGE SEGMENTATION

3. The third term penalizes the edge set. The term §|Vv|2 influences that the edge
is continuous and v? effects that v has only a small amount of non-zero elements.
Letting p — 0 makes the gradient of v take high values \/Lﬁ where it is non-zero and

therefore leads to edges becoming as thin as possible and as sharp as possible.

To reduce the number of parameters, in further development of equations, h is cho-
senash = i

The parameter 3 can be a scalar value 8 € R or it can also be a function of the form
B(x,y). This way a priority is given to certain regions for smoothing. The AT functional
can be used for inpainting as well. Inpainting is the process of reconstructing the missing
or corrupted parts of an image. This is achieved by choosing 3(z, y) = 0 for unknown or
damaged areas.

Our stochastic approach to solve the functional is presented in Chapter 7.

2.5 Summary

This chapter gave a short introduction to image segmentation and energy functionals that
are used within our methods. These include the Mumford-Shah functional, the Chan-
Vese functional, the Potts model and the Ambrosio-Tortorelli functional.

Functionals for image segmentation are modified so that the channel framework and
the block-Gibbs sampler can be used. The related image processing methods are ex-
plained in the following chapters.
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Chapter 3

The channel framework

3.1 Introduction

Originally, the channel framework was used to describe the information representation
in a human brain. E.g. in [33], authors show that different neurons are activated for dif-
ferent orientations in image structures. They present different orientations in channels
and observe positions of peak values.

The channel representation is also known as population codes [100] as it is used to de-
scribe the joint activity of a certain group. Population codes are e.g. used to characterize
cells, animal behavior in a group, etc.

The channel framework has already been introduced in computer vision problems
e.g. [30, 38, 39, 45, 92, 93]. In [30] channel smoothing is used to smooth a noisy image
but at the same time keep edges sharp. Therein, the channel framework is compared
to kernel density estimates. Authors show that channel density estimation is equivalent
to sampled kernel density estimation. This is demonstrated within this thesis chapter as
well.

The channel framework is also used in the work by Wallenberg et al. [93] where they
use channels to fuse information about color distribution features and depth of an image.
The channel representation, presented in this paper, aligns all features one after another
in a channel vector. This enables them to combine different features and use simple
calculations to achieve segmentation. However, using this representation, the correlation
between color components is lost.

Our approach and the work by Jonsson [46] form channel tensors by tensor-multiplying
vectors responding to different features. This is explained in detail in Section 3.3. This
representation is equivalent to sampled kernel density estimators. It also enables a better
approximation of PDFs compared to histograms. Still, creating channel tensors requires
a large amount of memory, and therefore, only up to three features are combined within
this thesis.

In the work by Jonsson [46], the channel framework is studied in detail and as a final
application, object recognition is chosen. in his work, channel-coded feature maps are
described as a generalization of the SIFT descriptor [57] with options of including more
features and replacing the linear interpolation between bins by a more general basis func-
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CHAPTER 3. THE CHANNEL FRAMEWORK

tion.

In this thesis, we suggest the channel framework to be implemented within the Chan-
Vese level-set approach. This method is described in Chapters 4 and 5. Also, it is imple-
mented, but in a different way than in [93] for representing the data term in the Potts
model for multi-label segmentation. The segmentation method presented in Chapter 6
is an interactive multi-label segmentation method based on a color distribution.

Channels are mainly used for approximating probability distribution functions (PDF).
Traditionally PDFs are approximated using either histograms or kernel density estimators.
Histograms are used in the work of Weiler and Eggert, [95]. Kernel density estimates are
also called Parzen density estimates and are used for estimating PDFs in the papers [77],
[48], [88] and [69].

3.2 Channel representation of a scalar

A channel vector is constructed from a scalar signal value s using the following transfor-
mation:

c(s) =[b(s—51),...,b(s — 35n,)]. (3.1)

b(s) is @ symmetric non-negative basis function with compact support. Basis functions
of channel representation are formed by shifting the function b(s) to channel centers
Si,i € [1, N.]. Channel centers are usually regularly spaced on the domain of the signal
value s. Figure 3.2 shows the encoding of a single value s € [S,in, Smaz] With N, = 6
channels formed using cos? basis functions.

As basis functions within this thesis, truncated cos? functions (functions that gives
only one cos? period and otherwise give 0) and truncated Gaussian functions are used.
Truncated cos? functions are used also in papers [38, 39, 45, 92, 93], while Gaussian func-
tions are implemented in [31]. In [46] B-splines are a primary choice as basis functions.
A special case is if basis functions are non-overlapping box functions regularly spaced on
the signal domain. In this case, the channel representation is equivalent to histograms.

In following text implementation of our basis functions is given.

A truncated cos? basis function

(3.2)

Basis functions are positioned at fixed points on the interval I, with a shiftd € R
between functions:

S — Smi
d = mazr mzn' 3.3
N2 (33)

This mapping is shown in Figure 3.1.
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3.2. CHANNEL REPRESENTATION OF A SCALAR

A truncated Gaussian kernel as a basis function

c=(c1,ca,...,CN,);

2
oz—Ai 8= Smin N —1\"
202 Ay A, ’

Gia S—”S8min __ n__l} < \Ij

Tl A An (3.4)
cn(s) = :
$=Smin _ n—1
0, A ~| = ]

As = Smaz — Smin,

A, =N.—1

Here, N. € N is the number of basis functions/ channels while o, ¥ € R are
regularization parameters.

A gray-value image g(x) : Q — I, is defined on an image domain Q2 € R? and takes
scalar values from an interval I = [Snin, Smaz] C R. To encode a gray-value image, it is
necessary to encode each pixel value. The pixel value s at a position x; is a scalar from
the interval I,. This produces the data-set of a size || x N, € R?, where N, is a number
of channels. This can be seen as a stack of IV, parallel images of a size (2, Figure (3.3).

Mapping the signal s to V. basis functions gives the vector of channel coefficients:

c(s) = [er,¢0, ..., en]
c(s,i) = ¢; (3.5)
i=1,.... N,

Channel parameters, e.g. the width of basis functions, are then chosen such that the
following equation holds:

Nc
Vs € I, ch(s) ~(Cy; CieR (3.6)
k=1

This means that the sum of channel coefficients across channels should be constant,
being exactly fulfilled for cos? basis functions and suitably chosen spline basis functions
as suggested in [30]. For the truncated Gaussians (3.4) is only approximately fulfilled.
Therefore, one should not use truncated Gaussians in algorithms where (3.4) needs to
hold exactly. At the same time, the following equation should hold as well:

“+o0o “+oo
/ cp()dr = / b(x)de =Cy; k=1,...N; CyeR (3.7)

Equations (3.6) and (3.7) ensure accurate approximations of probability distribution
functions later. If these equations are not met, a bias between regions will appear and
some regions might be preferred to other regions.
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'~
7
S

min d

Figure 3.1: Mapping a signal value s to N, = 6 channels with cos? basis functions, based
on Equation 3.2.

Usually, several features are considered while segmenting an image and not just a
gray-value intensity. There is a tendency to combine these features together in a channel
vector and process them all at the same time. Therefore, encoding just a scalar value in
channels is not enough. Also, pixel values of color images are vector quantities. E.g. RGB
images contain three signals to describe a pixel value: red value, green value and blue
value. To encode color images in channels we need to encode vector values instead of
scalar values. This encoding is presented in the next section.

3.3 Channel representation of a vector

To encode vector quantities [46], it is necessary that basis functions take vector quantities
as inputs. If a signal s is a vector of a size i € N, it is encoded in a channel tensor. The
size of a channel tensor is then Nch.

c(s) =[b(s — 81),...,b(s — 5n,)] (3.8)

If basis functions are separable, e.g. s = [u, v, w], b(s) = b, (u)b,(v)b,(w) it is pos-
sible to encode all elements of s separately in channel vectors and then combine them
into a channel tensor by taking the tensor product between them.

c(w) = [bu(u— @), ..., bulu — dn,)]

e(v) = [by(v — B),....by(v — By,)]

c(w) = [by(w — i), ... by(w —dy,)] (3.9)
&(s) = e(u) ® c(v) ® e(w)



3.3. CHANNEL REPRESENTATION OF A VECTOR

cfs)
b(S)mar

b)

a) o — = P
S

c(s)=[ca(s), Ca(S),....on(S)]

c)

F) 25 0

Figure 3.2: Encoding a scalar value in channels. a) a scalar value s, this is just one pixel
value e.g. s = 128; b) basis functions for encoding in channels; c) a resulting channel
vector

Figure 3.3: Encoding a gray-scale image in channels. a) a gray-scale image; b) basis func-
tions for encoding in channels; ¢) an encoded gray-scale image viewed as a stack of V..
gray-scale images
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If s is a vector with three coordinates, encoding it in channels maps the vector value to
a tensor. Tensor is a cube with a size N, x N, x N.. This mapping is given in Figure 3.4.
Within the thesis, only separable basis functions are used.

A pixel value of RGB images g(x) : 2 — R? consists of three color signals: red, green
and blue. The pixel value s = [sg, g, sp] is then encoded into a cube with a size N3
where N, is the number of channels:

¢(s) = c(sr) ® c(s¢) ® c(sp);
¢(s,k,i,5) = c(sgr, k) - c(sg, i) - c(sB, J); (3.10)
i jk=1,... N,

An image can contain h different signal components, responding to e.g. color values
or different image features. A pixel value s = [sq, So,...,s,] is then encoded into a
hypercube with a size N:

¢(s) =c(s1) ®e(s2)®,...,Rc(sp) (3.11)

As another example, different features are combined in the channel framework in
the work by Wallenberg et al. [93]. Therein, color signals and the depth information are
separately encoded in channels. However, they do not form the channel density tensor,
but they arrange channel vectors one after another, forming a new vector of channel coef-
ficients. Using this CDE representation, the correlation between color signals is lost. The
final channel vector is formed by putting channel vectors for different features one after
another in a line. Considering that for h features a channel tensor of a value has a size
N, it is not recommended to choose many features in a representation if the number of
channelsis required to be high as well. Otherwise, using channel representation becomes
memory costly.

3.4 Calculating channel density estimates (CDE)

If several samples of a signal value s exist, it is possible to build a soft histogram of the
signal s. Let s}, 512}, . 1K} pe K samples of the signal s. All samples can be encoded
in channels:

c(st), e(s™), ... e(sD). (3.12)

Summing up, or averaging channel vectors for each channel position gives a soft his-
togram q(s) of a signal s. This soft histogram is also called a channel density estimate
(CDE) of s. The CDE of s at a channel position n € [1, N.| has the following value:

K
q(s,n) = % Z b(sth —3,) (3.13)
i=1

The vector q is called a soft histogram because basis functions can be referred to as
bin functions. If basis functions are non-overlapping box functions, the channel repre-
sentation is equivalent to histogram representation. Unlike regular histograms, soft his-
tograms have bin functions that are smooth and overlap. Samples in histograms are put
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3.4. CALCULATING CHANNEL DENSITY ESTIMATES (CDE)

3. &)= cOBVcEHRc ()

Figure 3.4: Encoding a vector value in channels. 1) a color pixel value s = [s', s, sP); 2)
basis functions for encoding in channels; 3) a resulting channel tensor is a tensor product
of separately encoded signal values c(s) = [c(s%) ® ¢(s%) ® ¢(sP)]
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in the closest bin, therefore the accuracy of locating peaks in a histogram is limited by bin
spacing. In soft histograms bin functions overlap and weight a sample with the distance
to closest bin centers. This allows locating peaks in a soft histogram with a sub-bin accu-
racy. Therefore, soft histograms require more complex bin functions, but also less bins
than histograms to achieve similar performance in peak detection.

Channel density estimates are also similar to kernel density estimates. While KDEs
are calculated at data dependent positions, CDEs are calculated on fixed positions of the
signal domain. They can be seen as a regularly sampled kernel density estimate if a kernel
used for KDE is the same as a basis functions used for calculating CDE. This is proven in
the paper [30]. Here, we provide a sketch of a proof. In Figure (3.6), a value s is encoded
in channels. Channels contain kernels at fixed points in a signal space. Therefore, the en-
coded signal value produces the value ¢;(s) at the position ¢. Kernel density estimators
are calculated on data points. Let the kernel k(s) be chosen the same as in the channel
representation, and centered at the signal value s. If it is then sampled at the same po-
sitions as basis functions are placed in the case of CDE representation, at the position ¢,
KDE will produce the same value as a channel vector value at position k(t,s) = ¢(s).
The function used for forming the kernel b(s) needs to be symmetric, since otherwise,
kernels should be mirrored in the KDE representation and then compared to the CDE rep-
resentation. While KDEs are used to accurately estimate a continuous density function,
CDEs usually in practice give satisfying results with less computations.

To approximate the foreground probability distribution function, firstly, the set €2
is formed. This set is formed of samples of pixel values or regions that represent the
foreground area. Channel values are averaged over (), such that a soft histogram or a
channel density estimate of a foreground area is formed. Then, we calculate a probability
that a pixel value would be an outcome, given the region (2;.

In Chapter 4 the Chan-Vese level-set approach is used. The functional is given in Equa-
tion (2.9). Therein, the foreground is considered the area where the level-set function
¢ > 0 is positive. Therefore, in each iteration, the channel density estimate of the fore-
ground is calculated on the area where ¢ > 0. Accordingly, the channel density of the
background is calculated on the area where ¢ < 0. For gray-value images, the follow-
ing equations are used to calculate channels density estimates (CDEs) of foreground and
background:

q; = Jo H(o(x))c(s(x))dx
! f H(¢(x))dx -
q:f( H(¢(x)))e(s(x))dz .
LU HG@)e
where H(x) is the Heaviside function:
= { (1) izg (3.15)

and cis a channel vector calculated according to Equation (3.1).
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Vector images, e.g. RGB images, or images with several features, have tensors as-
signed to pixels after encoding. CDEs are calculated in the same way as if scalar values
are used:

o _ JaHO@)e(s(@)da
! Jo H(p())da

o _ Joll = HO@))e(s(@)de
’ I (L= H(¢(x)))dw

where ¢ is a tensor of channel coefficients calculated according to Equation (3.11).
Chapter 5includes user-provided prior knowledge for foreground. CDEs of foreground
and background are formed as a linear combination of the following terms:

(3.16)

f]f:wffl¢>0+(1—ch)f]fu; O<wf<1

) . ) (3.17)
Q= WpQso+ (1 —wp)qy,; 0<w, <1

Terms g, and g, are estimated on the region where the level set function is ¢ > 0
and ¢ < 0, respectively. qfu and q,,, are estimated from a user defined prior knowledge
of the targeted object (drawing scribbles, marking a rectangular area, other images...).

wy and wy are weight coefficients. Putting w; = 0 gives a user defined foreground,
wy = 1 gives us an automatic segmentation of the foreground. Values in between make
a trade-off between a complete unsupervised segmentation and a supervised segmen-
tation.

Chapter 6 describes an interactive multi-label segmentation method. Since this is an
interactive approach, channel density estimates for each region/ label €2; are calculated
from scribbles €,;“° marked by a user. The channel density estimate for each label i =

1,..., N is calculated as:
1

q;, = ¢(s(x))d. (3.18)
] o
A channel density estimate of e.g. foreground describes the foreground area. CDEs
are then compared to encoded pixel values to estimate if a pixel belongs to foreground
or not. The probability of a pixel to belong to a certain region is investigated in the next
section.

3.5 Approximation of probability distribution functions

The goal of introducing the channel framework is to retrieve a pixel’s probability to belong
to some region ;. Therefore, an approximation of the probability distribution function
of (), is needed. Within this thesis, this approximation is done by a simple linear interpo-
lation of an image encoded in channels with its foreground CDE. To calculate a probability
distribution function of a region €;, for each pixel the following procedure is applied: For
gray-value images, the scalar product of a pixel channel vector ¢(s) and the CDE q;is
taken. This scalar product gives large values when peaks of a channel vector and a CDE
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3. ) =[cr(s) . ca (5]

| >.
_ Jy H(9@®)e(9®)ds
Jo H(p(®))ag e L L

Figure 3.5: (1.) a pixel gray-scale intensity s is encoded with e.g. (2.) cos? basis functions
in channels to form the vector of channel coefficients (3.). Averaging vectors of channel
coefficients over a region 2 € R? gives the channel density estimates (CDE) of it (4.).

are at same channel positions. These pixel values are likely to be chosen given the CDE
of ;. If peaks of a channel vector and a CDE do not coincide, the scalar product will give
a small value. These pixel values have low probability to be chosen, given the CDE of (;.

Ne
p(z(@)10) o< > cnlz(y))ai(k) (3.19)
k=1
The procedure is the same for vector-valued images. There, each pixel contains a
channel tensor ¢(x). According to this, CDEs of regions on a vector valued images are
tensors as well, g;. Probability distributions are then calculated as:

Ne N. N

pE)|) < D> > i@ (y), k.1 5)a;(k, 1 5) (3.20)

k=1 =1 j=1

In Chapter 5, in Experiment 1 trimaps for lasso selection are used. While calculating
PDFs, locations of pixels that are definitely part of a region 2, are taken into account.
Also, in Chapter 6 positions of scribbles on an image domain {2 is used in an addition to
the color distribution to form the PDF of a region ();. Pixels whose coordinates on an
image are close to areas that are definitively part of {2, are given a higher probability,
while those that are far away have low probability. This probability is then fused with the
probability calculated from other image features.

This dependence of pixel location on an image is introduced in a PDF p(x|(2;) in the
following way:

p(s(x)|2) x (e(8)q;) - oa,(x);

3.21
x c () ( )
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c(s) the channel representation of the signal s

t- 1 S t Smax

k(s) @ kernel for signal s, sampled at the position t

K(t,s)

c(s)
k(t,s

\ 4

t-1 s t Sax

Figure 3.6: Comparison of the channel representation to sampling kernels centered at
the signal position
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where o, is a function that describes the spatial dependence for a region €2;. The set
defined by user interaction to belong to region €; has the notation €2}"*. Pixels contained
inz € 2 are described to definitely belong to region (2;, either with trimaps or scrib-
bles. The function oq, () = 1 for € Q'*. The function has values close to o, (x) ~ 1
for pixels that are spatially close to pixels in & € Q. It has values close to g, (x) ~ 0
for pixels that are spatially far from pixels in x € Q.

ogq, is implemented by applying a transform to a given trimap or a position of scrib-
bles. In our implementation we use the Matlab function bwdist to calculate the distance
transform. Using this function each pixel is assigned a Euclidean distance to the closest
pixel that is part of the region €2%°.

= omin v/ (@—zu)?+H(y—ye)?

oq,(w,y) = e T (3.22)

where v € R*.

3.6 Building a look-up table

To save time for calculating channel vector coefficients, a look-up table is used in the
folowing way:

1. Reducing the number of different colors reduces memory requirements for the
look-up table as well as the time needed for loading table values. Animage is quan-
tized to 7) possible different pixel values, such that pixel values take integer values
in the range [0, — 1]. n € Nis called quantization number.

2. Channel coefficients are calculated for all possible pixel values and stored in the
table. The look-up table contains axes for the number of channels and number of
possible pixel values.

3. When the segmentation algorithm runs, it loads a look-up table and reads needed
channel coefficients.

4. Segmentation is performed calculating PDFs as explained in Section 3.5.

Pixels of color images are composed of three signal values. Therefore, encoding color
images requires a table of a size N2 x 1. In this thesis, only the uniform quantization is
presented.

Look-up tables require a large amount of memory. However, according to Equations
(3.5) and (3.10) a look-up table is a sparse band matrix. This means that most of table
entries are zero and its entries are concentrated around the main diagonal. Therefore,
special functions and methods are used to store and access table entries, e.g. [35, 36, 26].

To calculate a probability distribution function p(g|€2;), the following procedure is
applied:
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1.

The CDE of a region (); is calculated. Let it be calculated from an area «. This
area can be a user selected region as the a-priori knowledge on a region €);. In the
Chan-Vese level set method,  can also be a region where a level-set function ¢ > 0
takes positive values if €); is a foreground, or where ¢ < 0 if €); is a background of

an image. .
(i) =— > =) (3.23)

|Oé| V| Tea

. The number of table entries can be reduced to only those where ¢, > 0. Approxi-

mation of a PDF has the following form:

p(gl) = > (@) () (3.24)

Vjlga (5)>0

3.7 Performance of the channel framework

To test advantages of the channel framework over the KDE approach in a segmentation
method, we perform a segmentation experiment, where we either apply KDE or CDE,
keeping the rest of the settings and source code identical. In detail, we do the following::

1.

6.

11 images are chosen from the Graz data-set [80]. These are RGB images of a size
391 x 625. This data-set is aimed at supervised segmentation where the prior
knowledge is obtained from scribbles.

Initialization as well as the minimization part of codes are exactly the same.

. The prior knowledge is given by scribbles.

Kernels used in the KDE method and basis functions for the channel framework
are functions of the same shape. The following kernel is used for kernel density
estimates:

2
k’(S,w) = e—ﬁ(s—w) ;
s,w € [0, 1]; (3.25)
o = 0.05;

where, s is a signal value, and w is the kernel center.

Only color distribution is used for describing regions. The spatial dependance of
scribbles is not introduced, so that results would not be influenced by the distance
function presented in Equation (3.21), but only by the kernel density estimation
and the channel representation of features.

Dice-score, Section B.3.3, is measured and reported.

Results show the following findings:
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1. With an increase of number of channels and quantization levels, the dice-score
increases and CDE comes close to KDE estimation. While the KDE performance is
not reached using these images, results are similar enough according to Table 3.2.
The KDE approach leads to dice — score = 0.9352, while the CDE approach using
50 quantization levels and 10 channels lead to dice — score = (0.8896.

2. Increasing the number of channels and quantization levels does not guarantee the
increase of the dice-score. That is because the used performance measure is a
dice-score and not the energy value. Segmentation results are evaluated to human
segmentation and can be quite subjective. Having this in mind, it can happen that
CDE estimation, by accident, fits better than KDEs user-defined results, although
the PDF approximation of color distribution is usually more accurate by using KDEs.

3. Larger number of quantization levels can sometimes cause that distributions of dif-
ferent regions become similar and cause false recognitions. Therefore it happens
that a large number of quantization levels produces worse results than a small num-
ber.

4. A smaller number of channels can sometimes act for smoothing of an image and
can cause better segmentation.

Results of the test are given in Figure 3.7.
Next we test the influence of noise introduced to images. Uniform noise is added to
each image with a different intensity k:

gn(z) = g(x) + k- w(z) (3.26)

wherew € [0, 1] is a uniform noise. Results are presented in Table 3.3 for three images
from the Graz data-set and they show following: Segmentation gets poorer in most cases
as the noise level increases. For the small number of channels, with an increase of the
noise level, results change dramatically, while for larger number of quantization levels
and larger numbers of channels, similar results are obtained even with addition of noise.
Examples of image segmentation are given in Figures 3.8, 3.9 and 3.10.

3.8 Memory requirements

The channel framework requires loading look-up tables. In our calculations we use single
data-type representation. This means that 32 bits are required for presenting one num-
ber. For a choice of n = 32, N. = 8 each data-point has 5 relevant channel coefficients
per signal and the others are close-to or equal 0. The look-up tables per signal are band
matrices. Therefore for one look-up table for only one signal the table has 5 - n = 160
single data-type non-zero entries, and takes 160 - 4 = 640byte. For a color image with 3
signals this results in 160° = 4096000 non-zero entries and requires 16.384M B.

If kernels are positioned on all possible positions of data-points and the same kernel
is used for forming all channels, it is necessary only to store points of the kernel and
translate its position in channel space for different values of pixels. This means that if
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kernel density estimate the channel framework
e kernels are positioned at all data- e channels are located at fixed posi-
points that belong to correspond- tions in signal space
ing scribbles

¢ channel vectors/tensors are read
from a look-up table for all scrib-
ble data-points and then aver-
aged.

¢ this gives us channel density esti-

mates (CDEs) of regions.
e kernels for all data-points are nec- ¢ the channel density estimate con-

essary for further calculations sists of NN, values and can be
stored and loaded also for other
segmentation where the same
prior is used.

e there is no need for individual
data-point values of scribbles any-

more
e estimates are calculated for each e channel vectors/tensors for each

pixel value using all above kernels pixel-value are read from a look-
up table and then interpolated
with values from the channel den-
sity estimate

Table 3.1: Main differences between the kernel density estimation and the channel
framework

N./qu 2 5 10 30 50
2 0.7664 0.7078 0.7160 0.7156 0.7156
5 — 0.8378 0.8156 0.8179 0.8170
10 — — 0.8926 0.8884 0.8896
20 — — — 0.9150 0.9149

Table 3.2: Performance of the channel framework in terms of dice-score. The average
dice-score over chosen images using KDE approach is: dice — score = 0.9352. The graph-
ical interpretation is presented in Figure 3.7.
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k=0 k=0.1 k=0.5 k=0.8

image 1 2 3 1 2 3 1 2 3 1 2 3

Ne=2;qu=>5 094 03 011092 0.09 0.11|042 0.09 0.12 | 0.42 0.09 0.47
Ne = D;qu =95 097 0.62 098|097 065 098|097 0.52 098|096 0.52 0.98
n. = 10;qu =50 | 0.94 0.57 098 | 0.94 0.57 098 | 093 0.52 096 | 0.86 0.51 0.94
n. = 10;qu =100 | 0.94 0.57 0.98 | 0.94 0.57 0.98 | 0.94 0.52 0.98 | 0.86 0.51 0.94
n.=20;qu =250 | 0.92 0.58 098|092 057 098 091 0.52 097|087 051 0.96
n. =20;qu =100 | 0.92 0.58 0.98 | 0.92 0.57 098 | 091 0.52 097|086 0.51 0.95

Table 3.3: Performance of the channel framework on noisy images. In the table, the dice-
score is presented for all cases. According to experiments, additive noise causes worse
results. Noise is added to three images from the Graz data-set; k presents the level of
noise as described in Equation (3.26)

n.g R

dice-score

T

I \<E approach
CDE approach |

075 -

45 @

40
2 g 10 qu

Figure 3.7: Quality performance of the channel framework approach and the kernel den-
sity estimation approach in terms of dice-score. Results are presented in Table 3.2.
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Figure 3.8: Segmentation of Image 1 in Table 3.3: original image, image with 2 quantiza-
tion levels, noisy image with £ = 0.8.

—

Ez',
=

Figure 3.9: Segmentation of Image 2 in Table 3.3: original image, image with 2 quantiza-
tion levels, noisy image with £ = 0.8.

Figure 3.10: Segmentation of Image 3 in Table 3.3: original image, image with 2 quanti-
zation levels, noisy image with & = 0.8.
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the kernel has 5 valuable channel coefficients per signal, for one signal table only these 5
entries are necessary and a position of the kernel, resulting in 5 - 4 = 20byte are needed
for table entries and 1byte for a position of the kernel in the channel space in a case that
there are 256 different possible positions in channel space. In a case that an image is
composed of 3 signals with integer values within the range [0, 255], 5-5-5-4 = 500bytes
are required for entries of the table, plus 3- 1 = 3bytes for saving positions of the kernel.

After reading the look-up table values, CDEs are calculated. A CDE is a vector that
contains for one signal images maximum /N, non-zero values of a type single, requiring
N, - 4bytes, or for images composed of three signals it contains a maximum of N2 non-
zero values, requiring N2 - 4bytes.

The channel framework has an advantage over the kernel density approach that it
offers simple calculations to achieve similar results. Let us assume that N. channels are
chosen and 7 quantization levels for a color image with 3 signals. To calculate a PDF of
related to the foreground of an image of size m x n and using k¥ € N data-points for cal-
culating the channel density estimate, the following amount of operations (summations
and multiplications) is required:

e for calculating the CDE: (k — 1) - N3;

e for calculating the PDF: (N2 + (N, — 1)) - m - n.

3.9 Summary

In this chapter, basics of the channel representation were given together with its imple-
mentation in approximating PDFs. The channel framework has already been used for
solving computer vision problems [30, 38, 39, 45, 92, 93]. In this thesis it is used to ap-
proximate posterior probability distribution functions within image segmentation algo-
rithms.

The channel framework is related to histograms and kernel density estimates. His-
tograms are calculated using N number of bins. Each value is assigned to a bin whose
center is closest in the signal space. Averaging bin values over an area gives us a his-
togram, the density estimate of that area. Channels are also calculated at N positions,
but in the channel framework basis functions that overlap are used. Overlapping of ba-
sis functions allows a sub-bin accuracy when calculating channel density estimates. This
means that the channel framework gives a richer information on probability distribution
functions than histograms for the same number of bins.

To calculate kernel density estimate of an area that contains M different sample val-
ues, kernels are positioned on all M data-points. This number is usually large, M > N
and calculating probability distribution functions requires many operations. This way, the
channel framework combines advantages of both histograms and kernel density estima-
tors.

Channels give more accurate approximation of smooth PDFs than histograms for the
same number of bins and channels require less computations than kernel density esti-
mators for M > N.
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3.9. SUMMARY

It is possible to form look-up tables for special type of images where different and
non-uniformly distributed basis functions will be used. This way it is possible, if the ap-
propriate look-up table is chosen, to reduce the number of channels while achieving out-
standing segmentation performance. Using look-up tables is useful especially if instead
of one image, a whole set of images needs to be segmented. If the same look-up table is
used for all images in the set, a look-up table is loaded in memory only once before the
segmentation process starts. During segmentation of all images table entries are read.
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Chapter 4

Unsupervised 2-region segmentation of
gray-value images

4.1 Introduction

The method in this chapter uses gray-value distribution as a segmentation criterion and
searches for two most distinguishing distributions to divide an image into foreground and
background. It is an unsupervised method, therefore no hints are given on what a correct
segmentation should be.

For image segmentation the Chan-Vese [20] approach is used. The functional is modi-
fied such that the channel framework can be used for describing and combining different
features in the data term of the functional. The channel framework is explained in Chap-
ter 3. It is presented as an alternative to histograms and KDEs offering combination of
advantages of both approaches.

The modified Chan-Vese functional is then solved using the Non-linear Richardson
fixed-point Iteration (NRI) approach which is an alternative to traditional gradient descent
minimization. This combination is another contribution of the thesis.

The example given in Figure 4.1 shows difficulties in developing an unsupervised method.

Figure 4.1: Example of an unsupervised segmentation. Having in mind that no prior
knowledge is given and the only feature the algorithm deals with is a gray-value distribu-
tion, segmentation results can sometimes seem meaningless to a human observer, while
still correct based on the presented criterion. Images respond to the original image, the
ground-truth segmentation and a result of our method, respectively.
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All human observers have selected a person as a foreground on the image. However, the
image could have been as well divided into a mountain area and a lake area. The segmen-
tation algorithm that uses only gray-value distribution as a segmentation criterion divides
the image into an area that contains lighter parts of mountains and their reflection in the
water, together with the person.

4.2 Related methods

4.2.1 Approximating probability distribution functions

In experiments, the method within this chapter is compared to the following unsuper-
vised 2-region segmentation methods: Kim et al. [48] and Brox and Cremers [88] use
kernel density estimates, also called Parzen density estimates, while Weiler and Eggert
[95] use histograms. Brown et al. [17] use the Gaussian model with constant variance.
They reduce the global Chan-Vese problem to a sequence of minimization problems.

Kim et al. [48] designed an experiment showing superiority of kernel density estima-
tors over Gaussian assumption models.

Ni et al. [67] create local histograms to describe intensity distributions which are com-
pared using the Wasserstein distance (L. N. Vaserstein [91]). In the paper by Ni et al. , it
is used for measuring distances between histograms. Their approach does not need a
smoothness term, but requires a high number of bins. This method is so far limited to
gray-value images, while the extension to color images is foreseen. Also, as a part of fu-
ture steps, they suggest addition of other image features described in local histograms
as well.

The original Chan-Vese formulation [20] has a Gaussian assumption of gray-value in-
tensity distribution for foreground and background. This can be seen in Equation (2.6).
The method by Brown et al. [17] is a convex relaxation of the original Chan-Vese model
such that global minimizers can be applied. It also contains a Gaussian assumption on
regions.

In addition to the above mentioned methods, our method is compared to a method
that uses just texture descriptors. The idea is to show that using the channel framework it
is possible to segment images with a gray-value distribution that would otherwise need
texture descriptors to be segmented. The Houhou-Thiran-Bresson model [43] is a seg-
mentation method based on texture features. They derive a texture descriptor based
on semi-local pixel information and use the Kullback-Leibler distance for comparing dis-
tances between distributions.

4.2.2 Minimizing the functional

Brown et al. [17] derived a convex formulation of the Chan-Vese energy functional. Still,
their experiments show that their method is independent on initialization, unlike the gra-
dient descent applied in the original Chan-Vese approach [20]. Brown et al. observe also
that their approach offers better results than the ones obtained by the gradient descent
applied to the original Chan-Vese model [20] and the method presented in the paper by
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Chan et al. [21] and is, therefore, closer to the possible global minimum of the original
Chan-Vese problem.

We design a similar experiment as the one presented in their paper to test the perfor-
mance of our NRI method. We test the sensitivity of the minimization method for getting
stuck in local minima. As the Experiment 2 shows, our method is fast, but is not immune
to local minima.

4.3 Solving the Chan-Vese functional

The Chan-Vese level set approach is introduced in Section 2.4.2. The functional to be
solved is:

Z / log p(g|€2;)dx + v|C|

ie{f,b}
C={(z,y) € QCR*: ¢(x,y) =0} (4.1)
Qp ={(r,y) € QCR?: ¢(x,y) > 0}
Q= {(z,y) € QC R?: ¢(x,y) < 0}

For calculating probabilities in the functional, the channel frameworkis used. Channel
density estimates g, and g, for foreground €1, and background €, regions are calculated
using:

Jo H(é(x,y))e(g(x,y))dxdy

U= T H (o, ) dady )
¢ - Jo(1 = H((z,y)))elg(z, y))dzdy '
' Jo(U = H(b(z,y)))dedy

where c are channel vectors as given in Section 3.3 and H(¢) is the Heaviside function:

o ={ 5 020 (@3)

Then, approximations of PDFs are calculated as:

Ne

plo(z 9)IQ) = clgla. y))ar(k);

k=1

p(g(z,y)|Q) = ch 9(2,9))a (k).

(4.4)

For solving the functional (4.1), the non-linear Richardson fixed point iteration (NRI)
is used which is explained in the following section.
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FIXED-POINT ITERATION (NRI) METHOD

4.4 Minimizing the functional using the Non-linear Richard-
son fixed-point Iteration (NRI) method

The non-linear Richardson fixed-point iteration (NRI) method was introduced in Com-
puter Vision in the paper by Papenberg et al. [71] and the paper by Krajsek and Scharr
[54]. In these publications authors claim that the NRI method has preferable properties
compared to traditional gradient descent. They show that the NRI method requires less
iterations than the gradient descent to converge to the solution.

We modify the Chan-Vese functional and calculate Euler-Lagrange equations. To be
able to derive the Euler-Lagrange equation, instead of the original Heaviside and Dirac
function, regularized Heaviside and Dirac functions are used, H.(¢) and §.(¢). We use the
same regularization as in the paper by Chan and Vese [20]. There, following regularization
functions are used:

L ¢ > e,
H(¢) =14 05 (1 + %qﬁ + %sin (%)) , o] <€, ;
0 O < —€
gy = o (Lreos(Z2)), ol <e,

€

[ 820 =0

—€

In the code, we describe the foreground boundary in Equation (4.1), using the following
approximation:

IC| = 6.(¢)| V| (4.6)

Assuming that ¢ makes sharp transitions between positive and negative values, and
that ¢ is sufficiently small, the width of edges in the edge-map obtained by calculating
the gradient |V ¢| may be small and approximately the same for all edges. In this case,
the integral of 6%(¢)|V|? is proportional to the edge length.

To obtain Euler-Lagrange equations, we variate the Chan-Vese energy given in Equa-
tion (4.1) with respect to ¢ using the test functionw : 2 — R, n € R:

_ i( / (— He(6 +nw) logp(g ()|

dn
— (1 = He(¢ + nw)) log p(g(x)|$2) (4.7)

+ (¢ + nw)|V (o + nw)|2)dm>

n=0
We separately calculate parts of the integral:
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dE(¢ + nw)

n=0

A

‘/

+ ( H.(9)(log p ()|Qf)>‘n0)d:c
(-0
(

Q J
(4.8)
+ Iogp( («’B)IQb)) )dw
n=0
& _
52
d )|V d
+ [ (v (500 + 1) 96 + ) >’n:0> z
Q
c
Using following entities:
€| = /H
(4.9)
9 = [ (1= Ho(e))ia
and considering that probability distributions functions have the following form:
N,
f (o)) 2o cu(x)er(y)dy
p(g(@)|Qy) = T = , (4.10)
Q
integral B1 becomes:
5 5 d
BL—— [ 0] § AP g cullen@iz
J p(g(x[S2)) ({He(qﬁ(y))dy
(4.11)

(4 He<¢<y>>dy)2 / 6

We change the order of coordinates and obtain:
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H(¢(x)) > cr(x)er(z)
Bl =—w / 5.(0(2)) / =1 da — / LAGCI) (4.12)

Ne

H.(6(y)) (2 cn(@)en(y) — plo(w)])
5.(6()) /

=1 >dy dr  (4.13)

Using the same procedure, we calculate the B2 integral. The integral B = B1 + B2 then
has the following form:

H(6(y)) (% cx(@)en(y) — p<g<y>|ﬂf>)
5.(6()) / d

eoplrEs “"9/ P[] !
(1 - H(o(y)) ( 5% cue)enty) - p<g<y>|9b>)
- / (o)) |

(4.14)

And can be also written as:

5= [ (- o) (oeptgt@in)] )

J d (4.15)

If p(g|€2f) and p(g|€2) are constant, integral B = 0. The integral B consists of simple
mathematical operations. However, a large number of calculation needs to be performed
and it is requires a significant amount of time for calculation. Therefore, to speed up
the algorithm, PDFs p(g|€2;) and p(g|€2) are held fixed during the minimization process.
Their values are updated in iterations of the segmentation process instead.

In the paper by Kim et al. [48], authors investigate influence of the integral B. In their
experiments they show that B is much smaller than other terms in Equation (4.8) for
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most images and in many cases neglecting it does not influence the segmentation result.
However, they observe that neglecting this term may in special cases result in a loss of
accuracy at corners of objects. This is also discussed in the paper by Jehan-Besson et al.
[44].

If segmentation is done only in one step, PDFs are just estimated once and then min-
imization is done, if BB is not calculated during the minimization process, the influence of
the change of PDFs with the change of the level-set function ¢ is ignored.

Next, we calculate the integral C in Equation (4.8). Using [ 0'(¢)d¢ = 0, the integral

C becomes:

> dx
n=0

c— / (ydif?((sg<¢<m> +10(2))V (6 + (@)
Q

- <2v56<¢<w>><v¢<w>,w<az>>)dw
Q (4.16)
-/ ( ~ (), (6(@))div(Vo(x)) + Me<¢<w>>div<w<w>v¢<w>>)dw

——w Q/ (2y66(¢(m))div(v¢(ac))> dx + waf (y<52(¢(m))v¢(a:), ﬁ>) ds

where 71 is the exterior normal to the boundary of €). Inserting integrals B and C (Equa-
tions (4.14) and (4.16)) in Equation (4.8) and equalizing the Gateaux differential with zero,
(0F,w) = 0, we obtain Euler-Lagrange equations:

0 = —0.(¢)log plgly) 206 (p)div(V ) — 6.(p)0B, inside

p(g|Qb)
0 =06%(¢)(Ve, i), ond
Ho(6(y)) ( 5 cn(@)enly) - p<g<y>mf>)
o8 = d{¢()) / ] W 447

M=

dy

/ (1 - H(6(y)) ( n(@)enly) —p<g<y>|9b>)

p(g(y)[€%) ||

d¢(¢) has non-zero values for |¢| < e and gradient changes div|V ¢| are highest on the
boundary between foreground and background, ¢ ~ 0 or ¢ < e. Considering this, .(¢)
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function can be neglected as values ¢ < ¢ have the highest influence in the equation
outcome. The Euler-Lagrange equations then become:

0 =— IogJIM —2vdiv(V¢) — 6B, inside
p(g|€2) (4.18)

0 =(Ve,i), ondQ

These Euler-Lagrange equations (4.17) are numerically solved by defining a regular dis-
crete grid G,, with the space of a size kK = 1 between N grid points on the image domain
(). Discrete image values evaluated on the grid points are represented as column vectors,
e.g. ¢ € RY. We obtain Euler-Lagrange equations in matrix/vector notation:

0=-r(@)+vAl®) (4.19)
where
r(¢) = log (]Zj <(:Z ||g;))> +6B(¢)
Ap,i,j) = 2w <a2¢((99§;2, v 8%(%9;2, yj))

=20 (d(wit1,Y;) + Q(Ti1,Y5) + D (i, yjr1) + d(@i,y5-1)) — 8v(wi, y5)
A(9) = 2vG () — 8vg
(4.20)

wheret =1,...,N,.

In the NRI method, all nonlinear terms are initialized with some fixed value ¢,, trans-
forming the nonlinear equation into a linear one. After solving the linear equation for
®m, the nonlinear terms are updated using ¢,, := ¢,,.1 and the new linear equation is
solved again. Thus, we obtain the fixed-point iteration for the m-th iteration.

1 1
¢m+1 = _G<¢m) - 8_1/

4
There is no proof of convergence of this minimization scheme.

() (4.21)

4.5 Implementation details

The method is implemented in the following way:
1. choose animage g € N™*" to segment
2. initialize ¢
3. calculate p(g|€2¢) and p(g|€2)

4. minimize the energy functional E(¢), (4.1) using (4.21) and keeping B fixed
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5. repeat 1-4 until convergence

¢ is initialized as a random vector with the same size as the image g, m x n. Chan-
nel vectors are calculated using Gaussian functions as basis functions. For a gray-value
g(z,y) = s at a position (x, y), the channel vector has the following form:

c=(c1,¢9,...,CN,);

A2 (5= spin n—1\°
a=—"1 — :
202 Ay A,

e*a S—”Smin __ n__l‘ < \I]
A An (4.22)
cn(s) =
S—”Smin __ TL_—l
0, soin 11| >

As = Smaz — Smin;

A,=N.—1

In the experiments, 8 — bit images are used, and in the implementation the full gray-value
range is considered [S,in, Smaz] = [0, 255].

Channel density estimates, g and g, are calculated from a region where the level
set function takes values ¢ > 0 for foreground and ¢ < 0 for background according to:

S5 H(é(z, y))ei(g(z, )
qs(k) = o

> > H(o(x,y))

r=1y=1

S5 5501 — H(dlw.y)ewlo(e, ) (4.23)

=1,...,N,

Finally, approximations of PDFs are given by Equations (4.4).

Instead of calculating channel coefficients in Equation (4.22) during the segmentation
process, a look-up table is used. Since images segmented within this chapter are gray-
value images that take integer values from interval [0, 255], no quantization of an image is
needed. Look-up tables are calculated for different sets of parameters. Parameters that
are varied in experiments are: the number of channels V., regularization parameter w of
the basis function in (4.22) and regularization parameters v and N; for NRI minimization.

4.6 Experiments
Within the experiments, look-up tables with n = 256 quantization levels and N. = 200

channels are used. The table contains 116 non-zero elements per channel of a type single.
This means that the table uses 20640 - 4 = 82.560K B.
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Each CDE contains a maximum of 200 non-zero single elements which means 200-4 =
800bytes per CDE. We calculate CDE for foreground and background as well, which means
1600bytes for representing CDEs.

4.6.1 Experiment 1: Quality of the PDF approximation using channels

This experiment is designed to resemble experiments performed in Kim et al. [48]. Therein,
authors show the superiority of KDE estimators over other density estimators, mainly his-
tograms and Gaussian mixture models. Histograms depend on their bin size and are only
efficient if large number of bins are used. Still, even then, KDEs approximate PDFs better.
Gaussian assumptions approximate PDFs with Gaussian functions, and usually require
mean and variance to be specified. This is, however, a considerable limitation, and Gaus-
sian mixture models are shown to be unsuitable in a case where true distributions of
foreground or background are different, but feature the same mean and variance.

We show that, using channel density estimators, it is possible to give reliable approxi-
mations of PDFs. Several synthetic images are constructed where foreground objects and
background objects are samples from different Gaussian distributions.

For the experiment, three synthetic images are constructed:

1. Foreground and background are constructed out of samples from Gaussian distri-
butions with different means and the same variance, Figure 4.2 (a).

2. Foreground and background are constructed out of samples from Gaussian distri-
butions with the same mean and different variances, Figure 4.2 (b).

3. Foreground objects are filled with samples from a uni-modal Gaussian distribution
and background is filled with samples from a bimodal Gaussian distribution with
the same mean and variance, Figure 4.3.

Figure 4.2 shows results of our method performed on setups 1 and 2. Our method has
no problem finding objects. Figure 4.3 shows that the method has no issues separat-
ing a bimodal Gaussian distribution with the same mean and variance from a uni-modal
one. Table 4.1 gives statistics of segmentation results. The quality of segmentation is
measured using the dice-score measure.

The experiment is also performed using methods with available codes?® for the fol-
lowing models: Original Chan-Vese implementation (smooth/non-texture images) [20],
Brown et al. model [17] and Houhou-Thiran-Bresson model [43].

Tests performed using the original Chan-Vese implementation (smooth/non-texture
images) [20] and the Brown et al. model are performed using 40 different parameter se-
tups for each method and the same parameters are used on all three experiment setups.
Values of parameters are hand-tuned and chosen to be close to their default values. The
average result is reported. Results show that both methods are able to segment images
from setups 1 and 2. All methods show to be highly sensitive to the choice of parameters
for the active contour function and the same parameter choice does not necessarily give

lwebsite:https://googledrive.com/host/0B3BTLeCYLunCc104YzV1UilSeVE/codes.html
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(b)

Figure 4.2: Experiment 1: The first image is the original image and the second one is
the segmentation result of our method. In (a) the setup 1 of the experiment foreground
and background are constructed out of samples from Gaussian distributions with dif-
ferent means and the same variance. In (b) the setup 2 of the experiment foreground
and background are constructed out of samples from Gaussian distributions with the
same mean and different variances.

correct segmentation results for all setups. Also, both methods fail at segmenting the
setup 3. This is due to the fact that the Gaussian assumption can not properly approxi-
mate bimodal distributions. This observation is also documented in the work by Kim et
al, where authors discuss that the approach of Yezzi et al. requires an appropriate a priori
selection statistics for the first and second image, while it completely fails for the third
image.

Results are given in Figures 4.4 -4.6 respectively, statistics are presented in Table 4.2.

The setup 3 is successfully segmented using texture descriptors in the Houhou-Thiran-
Bresson model [43]. On the other hand, this method is unable to recognize objects, when
the foreground is made from samples of a Gaussian distribution and is different by mean,
but not by variance from the background, Figure 4.6, (c).

Our method manages to successfully locate objects in all three images with the same
parameter setup. Therefore, using the channel framework, it is possible to obtain a sat-
isfying approximation of PDFs. Our method manages to outperform methods with Gaus-
sian assumption that use either gray-value distribution or even texture descriptors as
features.

4.6.2 Experiment 2: Dependence on the initialization

Traditionally, gradient descent is used for energy functional minimization. It is imple-
mented in works by Chan et al. [20], Brox and Cremers [88]. Kim et al. [48] and Weiler et
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(c)

(a)

(b)

Figure 4.3: Setup 3 of Experiment 1: (a) foreground objects are filled with samples from
a uni-modal Gaussian distribution and background is filled with samples from a bimodal
Gaussian distribution with the same mean and variance; (b) histograms of the foreground
objects and background objects; (c) objects that need to be found, the original image and
the segmentation result of our method.

Fig. 4.2 (a) —setup 1

Fig. 4.2 (b) —setup 2

Fig. 4.3 —setup 3

dice score
num. of alg. iter.

est. time (s)
NRI run-time (s)
num. of NRl iter

0.9904
12
0.2674
0.0250
74

0.9853
12
0.1427
0.0144
40

0.9955
9
0.2747
0.0166
44

Table 4.1: Performance of our method on synthetic images given in Experiment 1
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Figure 4.4: Performance of related methods on setup 1 in Experiment 1: (a) the Gaus-
sian assumption model as described in Brown et al. [17]; (b) the Chan-Vese model
(smooth/non-texture images) [20]; (c) the Houhou-Thiran-Bresson model [43]; (d) our
method.

©

. |
E |

(a)
(c)

Figure 4.5: Performance of related methods on setup 2 in Experiment 1: (a) the Gaus-
sian assumption model as described in Brown et al. [17]; (b) the Chan-Vese model
(smooth/non-texture images) [20]; (c) the Houhou-Thiran-Bresson model [43] (d) our
method.
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Figure 4.6: Performance of related methods on setup 3 in Experiment 1: (a) the Gaus-
sian assumption model as described in Brown et al. [17]; (b) the Chan-Vese model
(smooth/non-texture images) [20]; (c) the Houhou-Thiran-Bresson model [43]; (d) our

method.

(a)

(b)

(c)

(d)

setup 1 || 0.362
setup 2 || 0.779
setup 3 || 0.362

0.9911
0.1447
0.1370

0.5077
0.9690
0.4674

0.9904
0.9853
0.9955

Table 4.2: Performance in terms of dice-score of methods on setups 1, 2 and 3 in Ex-
periment 1: (a) the Gaussian assumption model as described in Brown et al. [17]; (b)
the Chan-Vese model (smooth/non-texture images) [20]; (c) the Houhou-Thiran-Bresson
model [43]; (d) our method. The experiment shows that the CDE method is able to rec-
ognize objects in images where either foreground or background have bimodal gaussian
distributions. On the other hand, Gaussian mixture models fail in the attempt as well as
the Houhou-Thiran-Bresson texture model.
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al. [95] as well. They all observe to get stuck in local minima.

Brown et al. [17] derived a convex formulation of the Chan-Vese energy functional
whose solution is shown to be close to the global minimum.

Within this chapter, the NRI minimization method is used. NRI has not been used
before for region segmentation, although it has already been successfully applied in im-
age reconstruction [54] and optical flow [71]. The major drawback of the NRI scheme
currently is that the convergence of the scheme is not theoretically proven.

To test if the algorithm is sensitive to the local minima, or if it reaches the global
minimum of the energy functional, the dependency of segmentation to its initialization
is tested. The setup of Experiment 2 is as follows:

1. The 11 images which are also chosen in the paper of Brown et al. [17] for demon-
stration of their algorithm are considered.

2. the NRl approach is used for minimization
3. the segmentation is performed 50 times for each image

As Brown et al. 's method is made not to take assumptions on the foreground object
position, there is no reason to prefer some region during its initialization. Therefore, dif-
ferent initialization schemes are not investigated and only samples of uniform noise are
used for initialization.

In Table 4.3, we give for each image energies which the method converged to, run-
times and numbers of iterations till convergence of the NRI. In Figures 4.7 and 4.8 seg-
mentation results and sensitivity to the initialization are given. The left image in all pairs
is an example of image segmentation result. The right image in all pairs is constructed as
the mean of 50 segmentation results with different initializations. It means that regions
that have highest values, the lightest regions of images, are chosen as foreground in most
cases. Darker regions correspond to pixels that are chosen as foreground in only few from
all 50 cases. If the image only contains white and black regions, the method converged
to the same solution in all 50 cases.

The conclusions are as follows:

¢ To examine the sensitivity of becoming stuck in local minima, we investigate energy
variances. A high variance means that the method converges to many different so-
lutions for the given image. A low variance is related to images where the method
converged to the same solution in all or most cases.

¢ Images of a boat, plane, landscape and cameraman converge to different solutions.
It shows that NRI is sensitive to local minima. This means that further improve-
ments to the minimization method are required or other minimization method
should be considered.
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Figure 4.7: Experiment 2 (part 1): Segmentation of images used in paper by Brown et al.
[17]. The left image depicts a randomly chosen segmentation result, while the right one
is the mean of 50 segmentation results with different initializations.
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Figure 4.8: Experiment 2 (part 2): Segmentation of images used in the paper by Brown
et al. [17]. The left image depicts a randomly chosen segmentation result, while the right
one is the mean of 50 segmentation results with different initializations.



4.6. EXPERIMENTS

energy val. average min. time (s) num. of iter. for min.
a swans 21.2+0 0.0222 31
b boat 23.3£0.6 0.0502 28
¢ planes 24.3+0 0.0557 31
d plane 21.54+0.55 0.0435 24
e bonsai 24.7+0 0.0474 26
f landscape 28.4 4+ 3.5 0.0499 28
g brain 2540 0.0176 30
h cameraman | 22.9+0.9 0.0156 20
i leaf 276 £ 0 0.0258 37
jlungs 31.9+0 0.0512 32
k squirrel 21.3+0 0.0191 28

Table 4.3: Performance of our segmentation method on images from the paper by Brown
etal. [17]

4.6.3 Experiment 3: Performance of the segmentation method on the
Weizmann data-set

The performance of our method is tested on the data-set given in the work by Alpert et
al. [4]. We use the data-set of 100 gray-value images each containing one object that
differs from its surroundings with respect to intensity, texture or low cues. For defining
the ground-truth, each image is segmented by three different human subjects. A pixel is
marked as foreground if it is marked like that by two of three human subjects.

For evaluation, the dice score is used as explained in Appendix B.3. The method is
trained on the first 20 images of the data set, using 50 different parameter setups. There
is no rich prior to be learned, only several parameters are tuned. These parameters are
the number of quantization levels, the number of channels and the variance of channel
basis functions.

Segmentation is then run over all images in the data set. Minimization convergence is
considered when |A¢| drops below 107®. Results of performance are presented in Table
(4.4) together with the results derived by Alpert et al. for several other segmentation
algorithms, namely:

* Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration
(4]

Segmentation by weighted aggregation (SWA) [86] with all features described in
[32] (SWA V1)

SWA with intensity contrast and filter responses as features (SWA V2) [86]

Normalized cuts segmentation including intervening Contours [58]

Mean-Shift [24] with intensity cues as features
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e Globalized probability of a boundary (gPb) algorithm [6]

The method by Alpert et al. [4] has the best dice-score, 0.86 4+- 0.01. Here, only auto-
matic segmentation methods are considered, while Bagon et al. [8] developed an inter-
active method and reported even higher dice-score, 0.87 4= 0.01. Our method comes on
the fifth place of presented algorithms.

Performance of our method can be seen in Table 4.5. In Figures 4.9, 4.10 and 4.11,
we see examples of segmentation results. Segmentation statistics of mentioned images
are given in Table 4.6.

The following observations can be made:

e Figure 4.9 gives examples of images where the method performed best. As seen
on the figure, all images have a large object as foreground and foreground and
background areas are similar in size, || ~ [€2].

¢ Figure 4.10 gives us some insights what are problematic areas to segment for the
method. These images contain an object distinguishing from background, but im-
ages contains many variates in texture. Therefore, sometimes parts of background
are fused with foreground or some foreground parts are considered background.
These results are a consequence of the segmentation method getting stuck in a
local minimum.

e Our method is unable to adapt to the posed problem in images that performed
the worst, Figure 4.11. This is because some of these images have more than one
distinguishable object, but human observers selected the only human made object
as foreground. E.g. in Figure 4.11 (b) there is a pen, a box and a wall. All users,
however, have chosen the pen as a foreground object. The segmentation algorithm
distinguishes between the wooden box as one region, and the wall together with
the pen as the other region.

Our method does not outperform all other state-of-the-art methods, as it only con-
siders a gray-value distribution as the criterion, no additional cues. Also, no additional
image pre-processing is performed on images.

4.7 Summary

The method presented within the chapter is aimed at unsupervised segmentation of gray-
value images in two regions. An image is divided in two regions that have most distin-
guishing gray-value distributions.

Two novelties to traditionally used methods are introduced:

1. the use of the channel-framework to approximate probability densities.

2. implementation of the NRI minimization method for solving the Chan-Vese level set
approach.
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Algorithm dice-score
method by Alpertetal. [4] | 0.86 & 0.01
SWA V1 0.83 £0.02

SWA V2 0.76 £ 0.02

N-Cuts 0.72 £0.02
our approach 0.61 £+ 0.005
MeanShift 0.57 £0.02

Gpb 0.54 £0.01

Table 4.4: The single-segment coverage test results for the single-object data-set table
from the paper by Alpert et al. [4]. While our method uses just the intensity distribution
in distinguishing two regions, other methods consider texture or low cues as well while
segmenting an image.

dice score
algorithm iterations
estimation time
run-time of NRI
number of iterations for NRI

0.61 = 0.005
22+£13
0.61 + 0.26s
0.62 £0.27s

23+4

Table 4.5: Performance of our method on the data-set given in [4]

Fig. 4.9 Fig. 4.10 Fig. 4.11
a b c a b C a b
dice score 0.9656 0.9691 0.9735 | 0.6539 0.6610 0.6836 | 0.1732 0.1420
num. of alg. iter. 24 20 12 31 18 12 22 14
est. time (ms) 0.2674 0.1427 0.2747 | 0.1520 0.1528 0.1412 | 0.2718 0.1516
NRI run-time (ms) || 0.2073 0.0941 0.1687 | 0.0700 0.1108 0.1209 | 0.0845 0.0859

Table 4.6: Performance of our method on the data-set given in [4]
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/ / /

Figure 4.9: Images where our method gave the best dice-score result. Columns respond
to the original image, the ground-truth segmentation and the result of our method re-
spectively.These images have two clearly distinguishing objects that contrast in intensi-
ties of foreground and background (while one has mostly higher intensities, the other
has lower intensities), and quite different dynamics in intensity (mean gradient vallue)
and therefore quite different distributions.
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Figure 4.10: Images where our algorithm gave an average dice score result. Columns re-
spond to the original image, the ground-truth segmentation and the result of our method
respectively.

Figure 4.11: Images where our algorithm gave the poorest dice-score result. Columns re-
spond to the original image, the ground-truth segmentation and the result of our method
respectively.
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Experiments separately demonstrate performance of the segmentation method re-
garding the choice of the data term and performance of the NRI minimization method.

e Experiment 1 shows that our channel approximation of probability distribution
functions contains rich information. It is shown that the method outperforms the
Gaussian assumption model. Methods that use KDE estimation, e.g. Kim et al. ,
or histograms, e.g. Ni et al. [67] are also able to segment images presented in the
experiment, as shown in respective papers. As discussed in Chapter 3, the channel
framework requires less bins than histograms for achieving similar results. It is also
faster to compute PDFs than using kernel density estimators.

e Experiment 2 shows the sensitivity of the NRI method to its initialization. We see
that even in MATLAB implementation, NRI converges fast to a minimum, Table 4.3.
Still, the experiment shows that the NRI method is not immune against getting stuck
in local minima.

e Experiment 3 shows performance of our method on the Weizmann data-set. While
our method does not outperform other state-of-the-art ones, it gives comparable
results although only gray intensity distribution is used as a segmentation criterion.

In conclusion, the CDE approach to solving Chan-Vese functional shows to be promis-
ing, but requires additional features to be considered in the segmentation process in
order to compete with the state-of-the-art methods. Also, the NRI approach needs addi-
tional investigation in order to avoid local minima.
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Chapter 5

2-region segmentation using color
distribution prior knowledge

5.1 Introduction

In this chapter we present an extension to the method described in Chapter 4. Prior
knowledge on color distributions of image regions is introduced. The targeted object is
predefined and it is known how its distribution looks like. This is then called supervised
segmentation.

The novelty presented in this chapter is the ability to adjust the weight coefficient for
the prior knowledge and therefore adjusting the trade off between a completely super-
vised and completely unsupervised segmentation. The method also aims at color images,
or more general vector images.

Having both the supervised and the unsupervised segmentation is useful in cases
where the prior is formed from data which does not fully describe the foreground ob-
ject and may also contain false information on its color distribution. In such a case, the
unsupervised part can improve the foreground prior.

The combination of the supervised and unsupervised method therefore, comes useful
in tools for rough selections of an object. We examine the following:

e A user can roughly select some parts of an object on an image to mark its position
and areas from which prior knowledge should be calculated. A user specifies hard
constraints that some areas are definitely foreground or background, while a seg-
mentation method needs to decide on unspecified pixels. Examples of different
user hints to segment an image are given in Chapter 2.

* Prior knowledge can be calculated on a different image or a set of images. Images
that are used as an example of foreground or background are called the training
data. In Section 5.5, a method is trained on the leaf collection data-set to recognize
tobacco plants on images in the tobacco plant data-set, see Chapter B.

e Prior knowledge can be given by a user designed channel density estimate of fore-
ground or background.
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Another addition to the method in the previous chapter is the use of a distance map
for introducing the spatial dependency of foreground and background. A distance map
is formed based on location of scribbles or lasso trimaps.

5.2 Related methods

Boykov and Jolly present their interactive graph cuts based image segmentation method
in [14]. They define an image energy cost as a linear combination of two cost functions
that describe region and boundary properties, respectively. Regularization terms give a
trade-off between region and boundary based segmentation. The region cost function is
calculated from gray-value intensities that are marked by a user as foreground or back-
ground. Using histograms, they approximate intensity distributions.

For energy minimization they use the max-flow algorithm as described in [15]. Regu-
larization terms are usually fixed, while other parameters are optimized during the min-
imization process. However, they limit their research on images that contain scalar val-
ues, i.e. gray-value images. They do not handle color images as they require a suitable
histogram representation of color distribution for vector valued images.

The GrabCut data-set ! for foreground and background segmentation was developed
for papers by Rother et al. [76] and Blake et al. [9]. The data-set contains a set of trimaps
that simulates lasso selection and a set that simulates bounding-box selection. The data-
set is evaluated using the average misclassification error E,,;s.

In the paper by Blake et al. [9] they suggest the Gaussian Mixture Markov Random
Field model to represent even vector valued intensities like color images in a compact
form. They test the performance of their algorithm on a lasso selection data-set.

Nieuwenhuis and Cremers [69] use kernel density estimates for approximating color
distributions. They also combine a color information with a spatial information of prior
data. Their approach is mainly aimed at multi-label segmentation, but is also evaluated
on the GrabCut data-set. They evaluate their approach only on lasso-selection trimaps,
while they dismiss the bounding-box as an unsuitable selection for their method. This
is because bounding-boxes contain both pixels that belong to foreground and pixels that
belong to background.

In the paper by Rother et al, authors test their method on the GrabCut bounding
box selection data-set. From a thin outer line of the bounding box, prior knowledge on
background is calculated. On the other hand, there is no prior knowledge on foreground.
They observe that, while in some cases their algorithm gives good segmentation results,
in other cases selection does not contain enough information on what the targeted object
is and additional user interaction is needed. In those cases, additional brush strokes are
added to define regions.

Lempitsky et al. [55] test the bounding-box selection. They also use Gaussian mixture
models for representing data-term. They introduce new bounding-boxes to the Grab-cut
data-set and their tightness. Tightness is defined using margins for the bounding boxes
marked by a user to restrict segmentation attention to the interior.

1GrabCut dataset: http://tinyurl.com/grabcut
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Our method is tested on the GrabCut data-set and evaluated using the E,,,;,c measure.
In addition to color distribution, where possible, the spatial information on foreground
and background is considered.

5.3 Solving the Chan-Vese functional

The Chan and Vese level set approach of (4.1), described in detail in Chapter 2, Section
2.4.2, solves the energy functional introducing the level-set function ¢. Evolving the level-
set function ¢, the functional is minimized and segmentation results are obtained. Fore-
ground and background regions are regions where ¢ has positive and negative values, re-
spectively. The zero-level of the level-set function ¢ corresponds to the boundary. Prob-
ability distribution functions of foreground and background are approximated using the
channel framework. The functional is then minimized using the NRI method as described
in Chapter 4.

The difference wrt. Chapter 4 is the interpretation of probabilities p(g|€2;). We rec-
ognize several different cases. The method can be:

1. fully unsupervised, where no prior knowledge is given, i.e. the case of Chapter 4;

2. fully supervised, where channel density estimates of regions are completely pre-
defined based on the prior knowledge.

3. semi-supervised, where regularization terms that serve to adjust the influence of
prior knowledge are introduced;

In the unsupervised method, channel density estimates are calculated from regions
where the level set function is ¢ > 0 for foreground and ¢ < 0 for background according
to:

o JaHO@)elo()dr

0 L H @) d o1
o _ ol Ho@)elo(a) de |
0T - Ho@))de

Inthe supervised method channel density estimates are calculated from a-priori given
regions {2, and €, that represent foreground and background:

o, elg(@)da
= ;

' 7 (5.2)
o o clo@)ia

bu |Qbu|

In the semi-supervised method, channel density estimates of previous two cases are
combined:

A N A (5.3)
q, = WpQgo + (1 —wp)qy,; 0<wy, <1
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wy and wy, are regularization parameters that adjust the trade-off between the supervised

and the unsupervised approach. Choosing wy = 0 and w, = 0 we get a fully supervised

segmentation. Values w; = 1 and w;, = 1 lead to fully unsupervised segmentation.
Unsupervised and semi-supervised methods can be:

1. a one-step segmentation method
2. an iterative segmentation method

In one-step segmentation, channel density estimates of regions are calculated only
once. In the iterative approach, prior knowledge is updated with segmentation results of
previous iterations and CDEs are recalculated.

The main difference between the iterative and non-iterative approach is explained in
Chapter 4. It is related to the minimization procedure. To recap, we tried to neglect the
0B in Equation (4.20) because it requires a large number of calculations and is, therefore,
computationally costly. If the one-step segmentation approach is used, § B should be
calculated within the minimization process. According to [44, 48], ignoring 6 B, in most
cases, does not change results, but it can in special cases cause the loss of accuracy at
corners of the foreground object.

In the iterative approach, PDFs are held fixed during the minimization process and
updated over iterations. This allows to neglect § B (see Section 4.4).

Having CDEs of foreground and background regions, it is possible to calculate proba-
bility distribution functions using the following equations:

(91€2f) o ZZZ (9. k,i,7)qr(k, i, 5);

k=1 =1 j=1

g|Qb ZCZCZC gvkazuj Qb I{Z,Z,j)

k=1 i=1 j=1

(5.4)

Compare Section A.1 for notation. Scribbles and lasso selection allow spatial dependence
to be introduced in calculating PDFs. This dependance is introduced by a distance func-
tion o.

plg(@)I) = ( (@), k.. )i (ki) ) - 0 (@)

IR
o (5.5)
plg@)|) (EZZ 2), ki, )i ki, 7)) - ()

k
k=1 i=1 j=1

The distance function should give high probability of outcome for pixels that are close
to scribbles. For distant pixels, the probability should be lower. The distance functions
oy and oy, are calculated as described in (3.22):
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T ymi)nemsv (z=2u)?+(y—yv)?
usyv f

op(z,y) =e

O—b(ﬂj,y) =e€

, (5.6)

min T—Tqy )2+ (y—yy )2
(zu,yy)eﬁgs’y ( w) 2+ (y—yov)

where v € R+.

5.4 Implementation details

The one-step segmentation method is organized in the following way:
1. choose animage g € N™*" to segment
2. acquire data to calculate prior knowledge on foreground and/or background
3. initialize ¢
4. calculate q¢>0 and q¢<0 according to Equations (5.1). Their numerical implemen-
tation is given in Equation (5.9).

5. calculate g, and g,,, according to Equation (5.2). Their numerical implementations
are given in (5.10)

6. calculate CDEs g, and g, according to Equation (5.11)
7. calculate p(g|€2s) and p(g|€2)

8. minimize the energy functional E(¢), Equation (4.1)

The iterative approach does the same but in addition updates prior knowledge in each
iteration:

9. repeat steps 4-8 with the updated ¢.

¢ is initialized as a random vector with the same size as the image g, m x n. Here, we
segment color images. RGB images are made of three signals g(z,y) = s = [s¥, 57, sP].
Channel vectors are calculated separately for each signal s° € {s%, 59, sP} using Gaus-
sian functions as basis functions.

c=(c1,co,...,cN,);
a—A% 8= Smin N —1 2_
202 A, A, ’
e—Oé S—Smin __ n__l < \Ij
Tl A Bn (5.7)
cn(s) =
0, |*Rme-TH >0

As = Smaz — Smin;

A,=N.—1
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For RGB images, signals usually take integer values from interval [$,in, Smaz] = [0, 255].
Channel tensors are formed as:

e(s®, 59, sP) = [e(sT) @ ¢(s%) @ ¢(sP)] (5.8)

Channel densities for unsupervised and semi-supervised methods are calculated from
areas where the level-set function is positive (¢ > 0) for the foreground and where the
level-set function is negative (¢ < 0) for the background.

3 3% H(o(w,y)elalr.9), o 1.5)
qA¢>0<k7i7j) = = mon
3 3 Higlr. )
3 S (1~ H(p(. ) g, ). k. 1.) (5.9)
docolk, i, j) = ==

S (1 - H(d(z,y))

z=1y=1

ki j=1,..., N,

Channel density estimates for the semi-supervised and the supervised method are
calculated from a-priori given regions €2%* and (2} that represent foreground and back-
ground:

L (zy) € Q¥
hy(w,y) = { 0, otherwise
S>3 byl w)élg(e.y). ki)
us .o rz=1y=1
Qf <k727j) = m n
Z Z 1(z,y)
o1 =1
_ L (zy) € (5.10)
(2, y) = { 0, otherW|se
S byl y)élg(a y). k.. )
.. r=1y=1
qz;LS(k7/l/7j) = m n
Z Z hb(x7y)
z=1y=1

ki j=1,...,N.

For the semi-supervised methods, combined CDEs are formed as a combination of terms
presented in Equations (5.9) and (5.10), according to:

q; =wrQuo+ (1 —wr)qp,; 0<wp<1

) . . (5.11)
Q= WQgo+ (1 —wp)qy,; 0<wy, <1
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Approximations of PDFs are given by the following equations:

(91€2) = ZZZ 9(x,y), ki, 5)qr (k. i, j)

IV (5.12)
g‘Qb ZZZ k7?/7])Qb(k7ll?j)
k=1 i=1 j=1
In the case where a distance function is introduced, the PDFs have following form:
p(g1Qy) = ZZZ (@,9). ki, §)ds(k, i, j) - oy,
k=1 =1 j=1
= min_yy/(2—zu)?+H(y—yv)?
(zu,yv)€EQYS
o(x,y) = !
(@, y) (5.13)
p(glh) = ZZZ v)s ki, §)as(k, i, §) - on;
k=1 =1 j=1
= min_yy/(z—zu)?+H(y—1y)?
oz, y) = (wu,40) €2

where v € R+.

A look-up table is used to encode the channels. The methods are tested with around
40 different parameter setups and the best case is reported. For each method, parame-
ters are generated around their default values.

5.5 Experiments

In experiments 1 and 2, the procedure using this method with a possible application is
presented. It is required to locate a plant, by selecting a part of it, or providing another
set of images for its description. There should also be a parameter to allow us to adjust
the level of supervision when locating objects. To locate objects, especially plants, it is
advised to use more different features to describe them and not just the color distribu-
tion. Therefore, the training and test data-set are chosen just large enough to show the
performance of the method, while in real application, these should be much larger, the
test data-set of around 100 images and around 20% of images for the training set.

In experiments = 80 quantization values and N, = 20 channels are used. The
look-up table has 5 x 5 x 5 = 125 non-zero channel values for each pixel value. Within
this chapter double precision type is used for presenting the channel values resulting in
needed 8 x 125 x 80 = 80K B. CDEs are tensors of 20 vectors containing 3 different
values. Therefore, one CDE requires maximum 20 x 20 x 20 x 8 = 64K B.
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5.5.1 Experiment1: Influence of the trade-off regularization parameter
between supervised and unsupervised segmentation

Since the segmentation method uses only the color distribution as a criterion for seg-
menting foreground, the experiment performed on the tobacco-plant data-set is limited
to recognizing a plant on an image. From the data-set 30 images are chosen. The fore-
ground prior is defined by a rectangle selection marked by user that contains only parts
of foreground. Based on this selection, the prior CDE g is calculated and combined with
the CDE 440 calculated from values where the level-set function is positive, ¢ > 0: There
is no prior knowledge on background, so, CDE of the background region is calculated on
region where the level-set function is negative, ¢ < 0. Different values of a regularization
parameter w; are used. This parameter adjusts the trade-off between a fully automatic
and a fully supervised segmentation.
The experiment is performed as follows:

1. 80 quantization values and 20 channels are used.

2. After each iteration, g, and g, are recalculated. Posterior distribution func-
tions of foreground and background are calculated using only color distribution
and no spatial information.

3. The result is considered final after 5 iterations.

Examples of segmentation results are given in Table 5.1 and Figures 5.1 and 5.2.
We observe the following:

1. Choosing w; = 0in Equation (5.11) results in a fully supervised case. Therein, only
parts of leaves are chosen as foreground region whose densities are similar to the
CDE g} built up from user’s selection. The foreground CDE is built only from values
contained in a user specified rectangle.

2. Small values of w; > 0 result in adding tolerance to other pixel values on the im-
age, while still preserving a similar foreground density estimate as when only prior
knowledge is used. This increases the dice-score in most cases.

3. For values wy > 0.5, g, has more influence than g%* in g, and the posterior
distribution function p(|€2y) is more similar to distribution built in the automatic
segmentation case. In Figures 5.1 and 5.2, we notice that parts of the floor around
plants are being added to foreground as well, e.g. the case a) for values w; > 0.5.

4. For wy = 1 we obtain the automatic segmentation (unsupervised segmentation)
case. This case gives as a result of segmentation two regions that have different
color distributions, while none of them has to be similar to the plant/leaf distribu-
tion. Therefore, large parts of the floor around plants are chosen as foreground.

65



5.5. EXPERIMENTS

wr

0.3

Figure 5.1: Experiment 1: The influence of regularization parameter wy (part 1). The first
row contains images of a tobacco plant with a rectangle area selected by a user to form
prior knowledge. Each next row contains segmentation results with a different choice of
wy. wy = 0 corresponds to fully supervised segmentation, while w; = 1 corresponds to
fully unsupervised segmentation. Dice-score results are given in Table 5.1

dice-score | wy =0 | wy =03 |wy =05 | wr=07|ws=1
a) 0.9304 | 0.9236 | 0.6774 | 0.5615 | 0.4856
b) 0.8268 | 0.8303 | 0.8316 | 0.8212 | 0.5732
c) 0.7087 | 0.8098 | 0.8720 | 0.8982 | 0.6412

Table 5.1: Experiment 1: The influence of regularization parameter wy. The table shows
the dice-score performance of our method on images given in Figures 5.1 and 5.2.
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5.5.2 Experiment 2: Performance of our segmentation method when
prior knowledge training and segmentation are performed on dif-
ferent images

This experiment tests if it is possible to use different images as training data such that it
is not necessary that a user marks interesting regions on any image to be processed later.

The data-set from Appendix B.2 with w; = 0 is used for the test. We train the color
distribution prior from 10 leaves from the leaves collection of a tobacco plant. Then, we
run the segmentation method on 50 images of a tobacco plant.

Examples of training data and result images are given in Figure 5.3. The average dice-
score performance is 0.9271.

This means that it is not obligatory that objects are selected on every image if a set
of images has properties that are similar enough. Instead, a different data-set describing
the object - object template, can be used to obtain prior knowledge. The segmentation
method will locate targeted object on given set of images. This is a quite common ap-
proach in training classifiers.

5.5.3 Experiment 3: Evaluating our method on the GrabCut benchmark
using lasso prior

This experiment examines performance of our method on the Grab-cut lasso selection
data-set. The data-set contains 50 different natural images showing one object distinct
from background.

Lasso selection requires a user to roughly select edges of a foreground object. Lasso
trimaps imitate a lasso selection of a foreground. Trimaps partition an image in three
regions: Pixels that definitely belong to background, pixels that definitely belong to fore-
ground and unknown pixels. The segmentation task is to classify unknown pixels. For the
evaluation of methods the average misclassification error is used (See Appendix B.3.4)

We used 10 channels for 50 quantization levels. In each iteration, the foreground
prior is updated with values where ¢ > 0. While calculating probabilities of foreground
and background, location is also taken into consideration.

Performance of our algorithm is compared to results presented in the paper by Nieuwen-
huis and Cremers [69]. Nieuwenhuis and Cremers test their interactive multi-label method
on the GrabCut benchmark. They combine color information with spatial information of
prior data. Their approach is compared to the GrabCut [76, 9] and to Random Walker
presented in [37]. Results are given in Table 5.2.

We obtain better results than ones tested in paper by Nieuwenhuis and Cremers [69],
except for the Random Walker presented in [37].

In most cases, parts of objects have the same color distribution as background, see
e.g. Figure 5.5. In Figure d) legs of the kangaroo have the same color distribution as the
ground next to it, while they contain different colors from the rest of its body. Therefore,
they are assigned to background.

To get an idea of how our segmentation method works, we discuss segmentation of
an image in Figure 5.6. Colors of trimap have following meaning:
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Figure 5.2: Experiment 2: The influence of regularization parameter wy (part 2). The first
row contains images of a tobacco plant with a rectangle area selected by a user to form
prior knowledge. Each next row contains segmentation results with a different choice of
wys. wy = 0 corresponds to fully supervised segmentation, while w; = 1 corresponds to
fully unsupervised segmentation. Dice-score results are given in Table 5.1
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examples of images of leaves used for training

Figure 5.3: Experiment 2: An example of a segmentation setup. The method is trained
from images of leaves to locate a plant in images. In the experiment 100 quantization
levels are used with 20 channels and w; = 0.3 in Equation (5.11).
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Method Eissin%
GrabCut - Simple mixture model [9] 16.3
GrabCut - learned GMMRF [9] 7.9
Nieuwenhuis and Cremers [69] 6.5
our method 5.49
Random Walker [37] 1.1

Table 5.2: Experiment 1: Results presented in the paper by Nieuwenhuis and Cremers.

1. black - definite background

2. blue - training pixels for background
3. green - unknown region

4. white - definitive foreground

As a result the hat on the image is segmented perfectly with perfect fit to the border.
The method misses some parts of the ears, so here an additional brush stroke might be
applied to improve segmentation. While the method manages to follow the border of the
neck part and to successfully distinguish it from the collar, the method includes a part of
the shirt in the middle of the image. Examining the associated image and the trimap, we
notice that the shirt contains similar colors as the neck. Also, the shirt color distribution is
not within the set of training pixels from background. Therefore, the algorithm chooses
it to be a foreground region.

5.5.4 Experiment 4: Evaluating our method on the GrabCut benchmark
using bounding-boxes as training data

The advantage of using a bounding box as a prior is that only two coordinates are needed
for specifying the rectangular area. We test our method on the GrabCut data-set but
using bounding boxes developed for [55]. In their paper, they specify bounding boxes
and define margins. In their experiments, the thickness of all margins is d = 0.06 of
the largest bounding box dimension. Prior knowledge on background is given from the
bounding-box margins, while prior knowledge on foreground does not exist. The inside
of the bounding box is then segmented.

Segmentation is performed on the whole data-set and the average misclassification
error is presented. The average performance is E,,;5s(%) = 15.14. Compared to results
obtained in the paper by Lempitsky et al. [55], we observe that the segmentation perfor-
mance is much worse than the one reported for other methods in the paper, Table 5.3. In
the table performance of methods that use one-step segmentation is presented. Figures
5.7-5.10 show performance of the method on some images from the GrabCut data-set.

The second setup examines the performance of our iterative segmentation method,
using 80 quantization levels and 20 channels. Segmentation is performed with 5 itera-
tions. Prior knowledge is recalculated in each iteration using pixels that are beforehand
assigned as foreground pixels. The foreground prior is formed using pixels where ¢ > 0
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Figure 5.4: Experiment 3: Performance of our method. The firstimage in a set depicts the
original image to be selected, the second image is the ground-truth segmentation, the
third image is the trimap that is used for segmentation and the fourth is the segmentation

result of our method. a) E,,,;ss = 0.9% b) E,,,;ss = 6.02%
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Figure 5.5: Experiment 3: Performance of our method. The firstimage in a set depicts the
original image to be selected, the second image is the ground-truth segmentation, the
third image is the trimap that is used for segmentation and the fourth is the segmentation

result of our method. ¢) E,,;ss = 3.54% d) E,,,;.s = 10.28%
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Figure 5.6: Experiment 3: Performance of our method. The first image in the first row
depicts the original image to be selected, the second image is the ground-truth segmen-
tation, the third image is the trimap that is used for segmentation and the fourth is the
segmentation result of our method. E,,;,, = 3.44. The second and the third row depict

details of segmentation.
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Method Eissin%
our method 15.14
GrabCut [9] 6.7
LP-Threshold [55] 5.4
MinMarginal-Pinpoint [55] 5.4
Unary-Threshold [55] 5.2
LP-Pinpoint [55] 5.0

Table 5.3: Experiment 4: Results of methods that estimate prior knowledge only once,
presented in the paper by Lempitsky et al. [55]

Method Eissin%
our method 16.09
GrabCut-original [9] 5.9
GrabCut-Pinpoint [55] 3.7

Table 5.4: Experiment 4: Results of methods that use iterative approach presented in the
paper by Lempitsky et al. [55]

from the previous iteration. For calculating probability distribution functions, no spatial
dependence is introduced and PDFs are calculated using Equation (5.12). The rectangle
area is cropped and segmentation is performed just on that area using information from
training pixels.

The outcome of the experiments are presented in Table 5.4 and Figures 5.11-5.14. The
average performance is E,,;ss(%) = 16.09. This table contains results of other methods
that re-estimate foreground prior knowledge over iterations. it is compared to other
iterative approaches presented in the paper by Lempitsky et al. [55].

Following conclusions can be made by investigating segmentation results. For images
where margins overlap with a large amount of a foreground region, the background prior
contains information about the foreground distribution as well, and results can be unde-
sirable. This is shown in Figure 5.13. Large part of the ground is contained in the margin
and is therefore assigned to background.

In case that the region within margins contains parts with a similar color distribution
as the foreground object, those parts of the foreground object will be assigned to back-
ground. E.g., in Figure 5.14 there is a person whose hair has a similar color distribution as
the ground contained in the margins, while these colors are not contained in the clothes.
Therefore, the hair is assigned to background.

Our method gave worse results than state-of-the-art methods for the presented prob-
lem. Also, there is no improvement when the iterative approach is implemented. We
conclude that when relying solely on color distribution as prior, the indication of this
prior by the training data needs to be more precise. Indicating bounding boxes alone, is
not enough.
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Figure 5.7: Experiment 4: Performance of our method; the one-step segmentation;
Eoiss = 19.22%
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Figure 5.8: Experiment 4: Performance of our method; the one-step segmentation;
Eiss = 11.69%
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Figure 5.9: Experiment 4: Performance of our method; the one-step segmentation;
Eiss = 3.61%
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Figure 5.10: Experiment 4: Performance of our method; the one-step segmentation;
E,iss = 5.38%
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Figure 5.11: Experiment 4: Performance of our method; the iterative approach; E,,,;c =
9.40%

Figure 5.12: Experiment 4: Performance of our method; the iterative approach; F,,,;.s =
11.05%
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Figure 5.13: Experiment 4: Performance of our method; the iterative approach; E,,;ss =
38.4%
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Figure 5.14: Experiment 4: Performance of our method; the iterative approach; E,,;;c =
8.24%

81



5.6. SUMMARY

5.6 Summary

In this chapter a supervised segmentation method in two regions was presented. It is
also possible to adjust the trade-off between a fully supervised and fully automatic seg-
mentation. For minimization of the functional, the NRI method is used again.

We examine the performance on the tobacco plant data-set presented in Appendix B
for foreground/ background segmentation. The task for our method is to extract a plant
from background based on prior knowledge gained from a user specified rectangle area.
We examine the influence of the regularization parameter w; in Equation (5.11) that gives
the trade-off between a fully automatic and fully supervised segmentation. As only color
distribution is used for forming prior knowledge, leaves cannot be separated on an image.
The dice-score is used as a measure of success.

The second experiment demonstrates that it is possible to calculate prior knowledge
on different images than those that shall be segmented. We train the method on a leaf
collection and perform segmentation on the tobacco plant data-set to separate a plant
from background.

We also evaluate our approach on the lasso selection GrabCut data-set. Results are
compared to the ones presented in the paper by Nieuwenhuis and Cremers [69] (two-
region case). Our method outperforms all tested methods except the Random Walker
[37].

The method is also tested against the bounding box selection method presented in
Lempitsky et al. [55] where it obtains poor results. Therefore, it is concluded that the
bounding-box selection does not specify the prior knowledge on regions well enough for
our method.
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Chapter 6

Interactive multi-region segmentation

6.1 Introduction

The methods described in previous chapters were limited to segmentation of two regions.
Images usually contain more than only two objects and therefore, removing background
does not provide the desired solution. Further improvement would then go in a direction
to increase the number of searched objects. Still, it is difficult to automatically decide on
how many different objects are present in images, and to define what should be consid-
ered as a whole object, weather small details should be considered as a separate item
and stand-alone objects, rather that just parts of a bigger object. Therefore, it is often
desired that a user gives a hint on the number.

In this chapter, we investigate multi-label segmentation approaches that contain prior
knowledge on targeted regions. The purpose of this chapter is to demonstrate the im-
plementation of the channel framework within a multi-region method.

For multi-label segmentation, instead of the Chan-Vese functional, the Potts model
[75] (see Section 2.4.3) is used. Our main contribution is implementing the channel
framework to approximate probability distribution functions of regions. PDFs are con-
tained within the cost function of the Potts model. For the minimization of the Potts
model, we use the implementation by Yuan et al. [99, 97, 98] of the continuous max-flow
algorithm for solving the 2D continuous-cut problem with multiple labels.

The method is evaluated on the Graz data-set contributed by Santner et al. [82]. This
data-set is also used for evaluation of the segmentation method presented within the
work by Nieuwenhuis and Cremers [69]. Within this data-set, scribbles are provided for
calculating prior knowledge on regions. For evaluation, the dice-score is used.

6.2 Related methods

The Potts model has been used in several approaches for multi-label image segmentation,
see e.g. [93, 80, 99, 69]. Different methods have been proposed for solving it. Nieuwen-
huis et al. [68] give overviews of minimization methods for the Potts model in discrete
and continuous settings.
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The Graph-cut algorithm is not preferred for multi-label segmentation problems as
it requires solving a higher dimensional graph. Instead, a popular decision for solving
the Potts model is minimizing its convex relaxation in the continuous setting. These are
described in papers e.g. [19, 70, 73, 97, 82, 80, 69]. Within our method, the minimization
by Yuan et al. [99, 97, 98] is used.

The channel framework is used for describing the data-term within the Potts model.
Locations of scribbles are considered as well, PDFs are multiplied with the distance func-
tion that gives high probabilities to values close to scribbles, while it gives low probabili-
ties to values farther away.

This is not the first time that channels are introduced to multi-label segmentation.
Channels are used together with the Potts model also in works by Wallenberg et al. [93].
They fuse information on color distributions with depth map intensity distribution of re-
gions. As this leads to > 3 different variables (R, G, B and the depth information - the
depth data and its gradients along axes), the tensor channel representation becomes cal-
culation costly, so instead, they encode all colors in channels and concatenate them to
form the vector of channel coefficients. In other words, the RGB vector is interpreted as
a channel vector of the spectral density with length N = 3 and the color matching func-
tion as basis functions. The resolution of the channel vector is then increased applying
spatial averaging[29].

This way, they do not exploit correlation between different features which our ten-
sor representation enables. Figures 6.1, 6.2 and 6.3 demonstrate disadvantages of this
approach.

Let us consider a synthetic image on Fig. 6.1 a). The image contains the following
regions (Fig. 6.1 b)):

e Square 1 contains all combinations of colors whose red and blue channel take val-
ues in the range R, B € [0, 128).

Square 2 contains values where { R, B} = {15,230}

Square 3 contains values where { R, B} = {230, 15}

Square 4 contains all combinations from the range R, B € [128, 255

The green channel is always 0 and will not be encoded in channels.

If the first and the fourth squares are used for forming the channel density estimate
of the foreground, the CDEs depicted on Figure 6.2 are obtained. Fig. 6.2 a) shows the
representation used by Wallenberg et al. [93] and Fig. 6.2 b) the tensor channel repre-
sentation.

If the probability distribution is calculated using Equation (5.4), the vector channel
representation will lead to the conclusion that the squares 2 and 3:

¢ a) the concatenated channel vector representation: have the same probability of
being a foreground as other two squares;

* b) the tensor channel representation: are not the part of the foreground.
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3 4

a) b)

Figure 6.1: a) The synthetic image used for comparing the concatenated channel vector
representation to channel tensor representation. b) description of used values - refer to
the text.

ar(k)

a)

~

ar(k,1)

b)

Figure 6.2: Channel density estimates: a) the concatenated channel vector representa-
tion; b) the tensor channel representation.
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a«(k) c(s)
) Kk P(slIQ)>0

This is shown on Figure 6.2.

a

ar(k,1)

P(s|Qp)=0

Figure 6.3: Probability of the square 3 to be a foreground part: a) the concatenated chan-
nel vector representation shows it is foreground; b) the tensor channel representation
shows it is not foreground.

Our method is compared to the following ones:

e Santner et al. test several color models (grayscale, RGB, HSV and CIELAB), as well as,
texture descriptors and implement algorithms on GPU. They approximate sampling
probability distributions using kernel density estimators. For minimizing the Potts
model, they use the minimization method presented in [73]. For segmentation
evaluation they use the dice-score measure.

¢ Nieuwenhuis and Cremers [69] take into consideration locations of scribbles to-
gether with color values of marked pixels. They implement PDF estimation and
minimization of the convex relaxation of the Potts model on GPU. Gaussian func-
tions are used as kernels for calculating KDEs. They test their method on the Graz
benchmark and show high quality results.

6.3 Solving the Potts model

The method minimizes the convex relaxation of the continuous setting of the Potts model,
as described in papers by Yuan et al. [99, 97, 98]:

N N
rpeig;Q/pi(x)C’i(x)dx—l—Z/w(x)wmdx (6.1)

i=1 Q

where p; € [0, 1] indicate the membership of the value at position x to a region 2;. The
first term is the data term. The second term in the equation is the total variation term
which measures the perimeter of the corresponding region |6€);].

With this model, the continuous image domain ) € R? is partitioned into a set of
disjoint regions €);:

N
U= una =0 Vvk#1 (6.2)

i=1
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In their original implementation, Yuan et al. [99, 97, 98] solve the convex relaxation
of the Potts model while labels are defined by different color values. Within the thesis,
the following cost function is used:

Ci(x) = — logp(g (=) ) (6.3)

Sampling distribution functions p(g(x)|{2;) are approximated using the channel frame-
work. Channel density estimates are calculated using the color distribution obtained from
the scribbles.

o Jou elg(z,y)de 6.4
qi = L f .
ws ldx
Finally, probabilities that pixels belong to a certain region are calculated using channel
density estimates. The location of scribbles is also taken into account using the distance
function oq,, which has high values near scribbles belonging to region €2; and low values
for distant regions.

e Q) (ZZZ ki, ) k,z,y)) o(z); zeQ (6.5)

k=1 =1 j=1

where o, (x) is a distance function that gives the dependency to sampling probability
distributions of scribble locations:

" m')enus’y (x—2u)?+(y—yv)?
oo,(z,y) =e (6.6)

6.4 Implementation details

Segmentation is performed in the following way:

1. calculate g, from scribbles for each region §2; using (5.3)
2. calculate p(g|€2;) for each region €2; using (5.4)

3. minimize the energy functional £(¢), (6.1)

For encoding pixel values into channels, Gaussian basis functions are used:

c=(c1,co,...,cN,);
A (5= Sy n—1 2_
202 A, A, ’
e—Oé S—Smin __ n__l < \Ij
Tl A Bn (6.7)
cn(s) =
S—Smin n__l
0, At = A >

As = Smaz — Smin;

A,=N.—1
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num. of non-zero channel table memory max. size
N. | n values per pixel value requirements of CDE
10 | 50 5xXHxb=125 125 x50 x 4 = 25K B 10x10x 10 x4 =4KB
8 |32 5xHxb=125 125 x 32 x4 =16KB 8Xx8x8x4=204KB
16 | 64 TXT7TxT7=343 343 x 64 x4 =87.8KB | 16 x 16 x 16 x 4 = 16.38K B

Table 6.1: Memory requirements for the implementation of the channel framework in
experiment setups

Channel tensors are formed as:
e(s7,59,58) = [e(s™) @ ¢(5%) @ c(sP)] (6.8)

The functional (6.1) is finally minimized using software by Yuan et al. [99], [97] and
[98].

6.5 Experiments

In the experiments, different parameter selections have been used. Table 6.1 shows
memory requirements for each parameter choice. For representing channel values, single
data-precision is used.

6.5.1 Experiment 1: Evaluating the algorithm on tobacco plant images

In this experiment, we demonstrate that by an addition of scribbles it is possible to sep-
arate leaves on an image from the tobacco plants data-set presented in Appendix B.

This can be assumed from the high dice-score values (> 0.8) of performance results
in Table 6.2; and visually verified in Figure 6.4, where we present results on 3 images.

Leaves are separated from background without a problem even with strokes of a small
radius. Stone areas that are often assigned to foreground in automatic segmentation
(cmp. Figure 5.2, w; = 1) are now correctly marked as background. However, in some
cases where leaves overlap, it is possible that a part of one leaf is fused with another
leaf. This can be observed in Figure 6.5. The reason behind is that color distribution of
the fused part is very similar to the one proposed by the scribble. As no constraint e.g.
shape prior is introduced, these parts are assigned to the targeted leaf as well.
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Figure 6.4: Experiment 1: Scribbles are added to images of a tobacco plant. We see that
the method is able to distinguish leaves on the plant.
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a b C d
dice-score | 0.8933 | 0.8453 | 0.8467 | 0.8463

Table 6.2: Experiment 1: Dice-score performance of our method applied to images in
Figures 6.4 and 6.5

Figure 6.5: Experiment 1: A part of a leaf is assigned to a wrong leaf. This is marked with
a yellow circle.

6.5.2 Experiment 2: Evaluating the algorithm on the Graz database

In this experiment, we perform segmentation on the Graz data-set[82] and compare re-
sults to those presented in papers by Santner et al. [82, 81] and [69]. The data-set con-
tains seeds in addition to the labels. The benchmark consists of 262 seed-ground-truth
pairs for 158 images.

Comparison to other segmentation methods can be found in Tables 6.3 and 6.4 and
Figures 6.6, 6.7 and 6.8.

Results are compared only to those of methods which use KDEs for describing the
data-term. The method is not compared to methods which use additional features, e.g.
texture information in CIELab + LBP [81].

Our RGB method gives better results than Santner’s basic KDE approach which does
not introduce the spatial dependency of scribble locations. Our method shows to keep
almost same performance even when the size of scribbles is increased from 3 to 13. Our
method outperforms the spatially constant method described in the paper by Nieuwen-
huis and Cremers [69] if the HSV color space is used, and has similar, but lower dice-score
than their spatially variant method.

RGB representation is the color space where each color is defined by how much of
the basic color component (in this case red, green and blue) it contains. An important
feature of the object, however, is whichever of the basic components in the color prevails.
Therefore, it is necessary to find another measure that would describe the order of the
R, G, B values and which is actually the color tone of the object. And this is exactly what
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hue measure does. Hue describes the position on the circular wheel that contains the
pure colors. The hue rotates through red, yellow, green, cyan, blue, magenta and back to
red. The values between these are mixtures of neighboring pure colors.

Another important feature of an object is its brightness. The maximum value of the
RGB triplet gives us the brightness of the color, or the value component in the HSV rep-
resentation.

Saturation in the HSV triplet is the difference between the highest and the lowest
value of the RGB triplet. Saturation is the purity of the color, or how much of the gray
component the color has. Gray values can be formed as mixtures of equal amount of all
of the pure colors. The zero saturation corresponds to gray values, while the maximum
saturation corresponds to pure colors - no white component

Eq. (6.9) shows the transformation between the RGB and HSV representation. For a
further description of color spaces consult e.g. [1].

R,G,B € |0,1];
V =max{R,G, B};
S =V —min{R,G, B},

(0, R=G=B=0;
o, ((G-B) _p.
. 60 < ), max{R,G, B} = R; | (6.9)
) 600 (2+ ER) | max{R,G,B} =G;
| 60°- 4+ 59 max{R,G, B} = B;
H € [0,360):;
S,V € [0,1]

In our method, only linear transformations are used and therefore it is not possible to
achieve the same quality of results with the RGB as well as HSV representation. Thus, it
is needed beforehand to convert the RGB representation to the HSV representation. The
HSV space shows in experiments as well to lead to better segmentation results.

Next, we examine images to see why some images show poor segmentation results.
We observe marked parts in Figure 6.8 a. All objects on the image have similar color dis-
tribution as background which is constructed of small stones, ground, grass and bushes.

In this image the method has assigned only one part of the branch as a foreground,
while the other part, which seemed separate and was not marked with scribbles is rec-
ognized as a background. Therefore, in this case, the scribble definition is not sufficient
and additional strokes on the other part would have helped the method to approach the
ground-truth segmentation.

In Figure 6.8 d, both the foreground and the background are constructed of gray val-
ues. The scribble that describes the background contains only the bright gray values and
therefore the dark gray values are missing in the training data of the background PDF.
Also, for the spacial dependency, the background scribble just defines that the middle of
the picture. On the other hand, foreground is defined with both bright and dark values.
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Method Brush | Benchmark Score
Random walker [37] 13 0.855
Santner et al. [81], RGB — 0.877
our approach - RGB, N. = 10,n = 50 3 0.8860
our approach - RGB, N. = 10,7 = 50 13 0.8865
our approach - CIELab, N, = 16,7 = 64 13 0.8879
Nieuwenhuis and Cremers [69], spatially constant 3 0.889
our approach - HSV, N, = 8,n = 32 5 0.9004
our approach - HSV, N, = 16,n = 64 13 0.9071
[69], spatially variant 5 0.922
[69], spatially variant 13 0.931

Table 6.3: Experiment 2: Comparison of our method to methods tested in [69]

Figure | Image | dice-score
Fig. 6.6 a 0.9911
b 0.9906
c 0.9938
d 0.9802
Fig. 6.7 a 0.9729
b 0.9669
c 0.9650
d 0.9434
Fig. 6.8 a 0.8331
b 0.8478
c 0.7239
d 0.7449

Table 6.4: Experiment 2: Performance of our method on the Graz data-set [69]

As a result, dark parts close to borders of the image are recognized as foreground.

To improve the segmentation, additional background scribbles should be put closer to
image borders.

In the method, the size of the brush stroke is not unlimited. One should pay atten-
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tion that the brush stroke stays within the object. Larger brushes cause more data to be
added to prior knowledge. While scribbles are concentrated within the targeted object,
segmentation results might not change as prior knowledge might not change a lot if the
object parts have the same color distribution. With an increased radius of the stroke
brush, we observe that scribbles can go over the borderline and catch parts of another
object. As the prior knowledge in this case contains also parts of another object, seg-
mentation performance decays. An example of this case is given in Figure 6.9.
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Figure 6.6: Experiment 2: Images where our method performed the best in terms of
dice score measure: the image with scribbles, the ground-truth segmentation, results
obtained using our method. These images show that using our method on simple images
with only two to three distinguishable regions, it is possible to approach really close to
the segmentation provided by human.
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Figure 6.7: Experiment 2: Images where our algorithm performed good: the image with
scribbles, the ground-truth segmentation, results obtained using our method. As on pre-
vious images, our method tends to give similar results to those provided by human, but
some parts of objects, mostly those in shadows are assigned to wrong objects.
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Figure 6.8: Experiment 2: Images where our algorithm gave the poorest dice score mea-
sure: the image with scribbles, the ground-truth segmentation, results obtained using
our method. On these images, color distribution is not sufficient to separate the targeted
objects and additional features should be included.

Figure 6.9: Experiment 2: Increasing scribble size may result in scribbles spreading to
other objects. This means that parts of other objects are used for calculating prior knowl-
edge as well. This may produce undesired segmentation results.

95



6.6. SUMMARY

6.6 Summary

In this chapter, results are reported for our image segmentation approach using channel-
based probability formulations for multi-label segmentation. Our contribution is intro-
ducing the channel framework to solve an interactive multi-label segmentation problem.
The channel framework is already used with Potts model for multi-label segmentation in
the work by Wallenberg et al. [93], but with a different setup.

Performance of the method is examined on tobacco plant images from the data-set
given in Appendix B but with scribbles added. While it is now possible to differentiate
leaves from background and from one another, parts of leaves are often merged to other
leaves. This is not surprising, as color distributions of different leaves are quite similar.
To avoid this problem, additional constraints should be introduced.

Our method is also evaluated on the Graz data-set and compared to methods pre-
sented in papers by Santner et al. [82, 80], Nieuwenhuis and Cremers [69]. While our
method does not surpass performance of state-of-the-art methods, it outperforms both
the basic Santner et al. [82] approach and the spatially constant approach by Nieuwen-
huis and Cremers [69]. At the same time it achieves comparable dice-score performance
to the spatially variant version of Nieuwenhuis and Cremers’ [69] approach.

The multi-label segmentation problem is studied only preliminary. This topic, how-
ever, deserves much more research to be performed. The PDF estimation is performed
using only MATLAB implementation. The channels offer the same complexity advantages
to KDE methods as in previous chapters and offer an ideal setup to be able to parallelise
the PDF calculation. However, parallel implementation of the method and implementa-
tion on the GPU are left for future work.
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Chapter 7

A stochastic approach to reconstruct a
smooth image and its edge-map

7.1 Introduction

In this chapter, we present another possible direction in future development of image
segmentation algorithms. The methods presented previously in this thesis can be used
for coarse detection of an object. Then, the result can be used as a defined region of
interest for the shape fitting method. A shape prior, as introduced subsequently, can
then be used to refine the detection of the object.

Approaches of previous chapters divide an image into a number of regions according
to their gray-value or color distribution. Usually, results differ from how a human would
segment the same image, and a way to make it more similar is to include additional object
features to be recognized. Humans can trace a shape of a targeted object and having this
in mind, methods have been developed targeting consideration of shape priors.

In practice, edge-detection is performed using various filters (a description of filters
can be found in e.g. [83]) on an image (Gradient, Laplace, Sobel[87]) and as a result give

Figure 7.1: The goal of the Ambrosio-Tortorelli segmentation is to estimate the edge-map
on the image and give its cartoon/smooth reconstruction. a original images degraded
with a Gaussian noise; b estimated edge maps; c smoothed images.
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often a binary image (Canny[18]).

In this chapter another approach to edge-detection of a gray-scale image is given®.
Here, the edge-map is obtained by reaching a minimum of an energy functional. While it
requires more time to process images, its parameters and results are more intuitive and
better understood than using the filter approaches. E.g. parameters of our approach are
the thickness of an edge and its length, while a result is a gray-scale image whose intensity
shows us the probability that there is an edge at some location. Figure 7.1 shows a result
of our method. Therefore, it is worth examining this method as well, as future research
will lead to possibility to perform calculations with a high speed and therefore allow this
method to compete with the previously mentioned ones.

Our method presented in this chapter is based on an another modification of the
Mumford-Shah functional, the Ambrosio-Tortorelli (AT) functional [5] which is introduced
in Section 2.4.4. Most state-of-the-art methods considering the AT functional minimize it
using the gradient descent approach and result in finding only the local minimum. Some
of these approaches, like the original paper [5], deliver a binary image as an edge-map
result and do not offer any confidence measure of the edge recognition.

We offer an approach that is independent on initialization and as a result gives a confi-
dence of edge-location. Our approach is based on an estimation theoretical point of view
of the problem. The AT functional is interpreted as the energy of a posterior probability
density function. The smooth reconstruction u of an image g and the edge-map recon-
struction v are treated as random variables and their true values are obtained applying
different estimators, the minimum mean square and the minimum median estimator on
their samples. Samples are obtained using the block-Gibbs-sampler. This approach is
similar to the work by Geman-Geman [34], with a difference that our approach uses the
block-Gibbs sampler instead of the pixel-wise Gibbs sampler. This modification provides
the increase of the speed of the method as the block-Gibbs sampler converges quicker
to the targeted distribution.

7.2 Related work

The method presented in this chapter is similar to the work by Geman-Geman [34] which
was the first paper to use pixel-wise Gibbs sampling in image processing. In the paper
by Rue and Held et al. [79], the block Gibbs sampler of Gaussian Markov random fields is
introduced which converges faster to the target distribution than the pixel-wise sampler.
The reason for this is that the block Gibbs approach samples whole vectors at once. While
Rue and Held concentrate on numerical implementation of the sampler, in this thesis, the
block Gibbs sampler has been introduced to an image smoothing and an edge detection
method.

Other important related methods are those by Patz and Preusser [72] and Pock and
Cremers [74]. In this chapter, we compare results of our experiments to those methods.

This work has been published in papers by Kai Krajsek, Ines Dedovi¢ and Hanno Scharr [51] and [52]
where the mathematical derivation and implementation were contributed by the author of this thesis.
Note that experiments shown in this chapter as well as an amount of the text are exactly the same as in
the related publications.
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Patz and Preusser [72] use the AT functional with stochastic images. They aim to give
a confidence of edge position by modeling distributions, but they solve the functional
implementing the gradient descent approach to Euler-Lagrange equations.

Pock and Cremers [74] apply a fast primal-dual algorithm to compute the solution
of a convex relaxation of the MS functional. They compare results of their method to
results obtained using the AT functional. Finally, they demonstrate the advantage of their
method to the AT method in terms of avoiding artifacts and offering a method that is
independent on initialization. We perform the same experiments with our method in
order to show that our approach is not prone to get stuck in local minima and can avoid
artifacts (where a smooth reconstruction image contains noise close to edges) as well,
with an appropriate choice of parameters. In addition to an estimation result, we are
able to give information on distribution of edges, e.g. error variances of the edge-map.

7.3 The AT energy in a discrete setting

The AT estimation problem, Equation (2.16), is formulated on a regular discrete image
domain €, with grid size h.

Bar(uw,0) = 6 (i = g + (o (1 = 0)?| (), ) + (gww ¥ 5) (7.)

Here, N, € Ndenotes the total number of pixels. Discrete images can be represented
as column vectors u,v,g € R, respectively. Gradients Vu, Vv are approximated
by finite difference operators that can be described by matrices acting on the column
vectors. The central difference is avoided as such approximation leads to checkerboard
artifacts as shown in [84]. Therefore, gradients are approximated by forward and back-
ward differences and taking their average:

> I(Vu)f? = w" D(Tu:

Np
S [(Vo)if? = " D(I)o; (7.2)
=1

2
1
D(I)=;) B/ IB, +B]IB,.
j=1

where ij and Bx; denote matrices whereby multiplication gives forward and back-
ward first order finite differences, respectively, along the dimension ;.

Images are interpreted as random vectors, i.e. each element of the vector is a real-
ization of a random variable. The task is to estimate the image u as well as the edge
indicator v from e.g. noisy or incomplete observation g. AT functional (7.1) is considered
to be the energy of the posterior PDF p(u, v|g) of image u and edge indicator function
v,

p(u,v|g) oc e”Par(WV), (7.3)
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True values of vectors w and v are then estimated from the posterior distribution function
(PDF) p(u, v|g), using the estimators described in the following section.

7.4 Bayesian Estimation Theory

An overview of Bayesian estimation theory can be found in [47], Chapter 11. Let z be a
variable whose true value we need to estimate. Let € = z — z denote the error between
the estimated vector Z and the particular true realization z of the target vector.

To estimate the true value, we define a loss function L : R*M» — R*. There are dif-
ferent loss functions, and the choice of a loss function leads to different estimators. The
expectation of a loss function L with respect to the posterior PDF p(z|g) is called a risk
R(z) = E [L]. The Bayesian estimator gives the true value of a variable by minimizing its
risk function.

zZ = args minR(2) (7.4)

In the following text several estimators are presented:

The Minimum Mean Squared Error Estimator (MMSEE) is obtained using the quadratic
loss function.

(7.5)

The Minimum Median Error Estimator (MMEE) is obtained using the absolute error loss
function.

2N,
L(e) = |l
j=1
z; = median(p(z;g))
= median/p(z|g)dz4j

(7.6)

where z; denotes the random vector without element z;, i.e. p(z;|g) is marginal-
ization of p(z|g) with respect to all dimensions but ;.

Itis either impossible to analytically solve these integrals, or they require complex calcula-
tions. To calculate them, it is necessary to use the Markov Chain Monte Carlo integration.
7.5 Introduction to the Monte Carlo integration

An introduction to Markov Chain Monte Carlo methods can be found in [66, 89, 23, 94].
The idea of Monte Carlo integration is to calculate complex integrals by decomposing the
integrated function to a multiplication of some other function and some density function
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defined on R™. This way, the integral can be calculated as the expectation of the function
over the density distribution function from its samples.
Let I(x), € R" be an integral which is impossible to solve analytically:

I(z) = / f(@)dw (7.7)

If it is possible to decompose f(x) = h(x)p(x), where p(x) is the density function de-
fined on R”, the integral in Equation (7.7) can be solved using Monte Carlo integration
from n samples:

I(x) —/f(a:)d:c—/h(:c)p(a:)d:c
n (7.8)

1
7j=1

The integral can be expressed as an expectation of h(x) over the density p(z) and calcu-
lated using a sufficient number of samples x4, . . ., z,, from the distribution p(z).

Let us combine the smooth reconstruction of an image and its edge map into variable
z = (u”,vT)T. The MMSEE and the MMEE, presented in Equations (7.5) and (7.6) can
be calculated by generating n samples 2/ from the posterior PDF p(z|g). Here, the upper
index denotes the sample ordinal number, meaning z7 is the j-th sample of z. The lower
index shows the position of an element in a vector, e.g. z; is the j-th element of z. The
MMSEE is then approximated by taking the mean of the variable z and the MMEE by
taking the median of samples’ values.

The estimated variance of each variable serves as a reliability measure of the point
estimates.

7.6 The Block-Gibbs sampler

It is impossible to sample directly from the distribution p(z|g) in Equations (7.5)-(7.6).
Therefore, Markov Chain Monte Carlo methods are used for approximate sampling from
some complex distribution.

Metropolis [63] and Hasting [42] propose algorithms to generate samples from some
complex distribution by considering samples from another suitable proposal distribution.
These samples form a Markov Chain. However, first b, — 1 samples are considered to
be a burn-in phase in which a chain has not yet converged to its stationary distribution.
Therefore, they are discarded. While some convergence tests exist to determine if a chain
has reached its stationary state, the number of burn-in samples is usually determined
experimentally. Brief overviews of some of these tests are given in [94].

The Gibbs sampler is a special case of the algorithm proposed by Metropolis and Hast-
ings. It was first introduced to image processing by Geman and Geman [34]. Within
this chapter, a block Gibbs sampler is used. It is different than the stochastic approach
presented in [34] because whole vectors are sampled at once, instead sampling each
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element of vectors at one time. If there is a partition of the target vector z = (a, b) such
that it is possible to sample from the conditional PDFs p(a|b, g) and p(b|a, g) in turn, it
is possible to approximately sample from p(a, b|g).

a’! ~p(alt’,g)

, . 7.9
bj+1 Np<b|aj+179>7 j:bn7"'7K; ( )

Hastings [42] claims that, after a considerable burn-in-phase, each sample of (7.9) is an
approximative sample from the posterior PDF p(a, b|g). First b, — 1 samples are con-
sidered to be a burn-in-phase and they are discarded. This approach is denoted as the
block-Gibbs sampler [78].

Conditional PDFs p(a|b, g) and p(b|a, g) can be derived from the full posterior PDF
p(a, blg) by means of the basic multiplicative rule of probability theory as

_ pla,blg)
’ p(alg)

Thus, conditional PDFs p(al|b, g) and p(b|a, g) can be obtained from the posterior PDF
p(a, blg) by setting one variable fixed combined with a suitable normalization.

By investigating the posterior PDF p(u, v|g) of the AT energy, we recognize that, by
fixing w or v the resulting AT energy becomes a quadratic function of the other variable.
Consequently, the corresponding conditional PDFs become Gaussian distributions from
which samples can be obtained directly.

If the edge indicator v is fixed, the energy of the conditional PDF becomes (please
note that the gradient is approximated by first order forward and backward differences
and taking their average Eq. (7.2)):

Np
Ear(u) = Blg — ul* + aZuTD(V)u+ C1;
i=1
N, ) 2
= (Vi i2 L ;
“ ;(2“ V)il +2p> (7.11)

V = (I — diag(v))?

NP
D(V)=> BL.VB, +B. VB,
1=1
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Quadratic complementation allows to transform the energy:
Ear(u) = (u—m,)"'Q,(u —m,) +c; + cs;
Q,.=p0I+aD(V);
m, = Q,'g;

N, ) (7.12)
— P 2y b.
=g 8Ig-59"Q,'g
and finally results in the Gaussian Markov random field (GMRF):
1 1/2 1 T
p(u!v,g) - 9 Np. ‘Qu’ €Xp _é(u - mu) Qu(u - mu) (7-13)
T2
Applying the same procedure when holding u fixed yields the GMRF:
1 1/2 1 T
Polu.g) = — 1@ exp (5 (v —m,) Q (v —m,)
272
L = o (diag (Vu))?;
e=(1,....,1)%; (7.14)
p 1
Q,=L+=D(I)+-1I;
2 p
m, =Q,'Le

Having obtained an appropriate number of samples using the scheme (7.9) with the
conditional PDFs (7.13) and (7.14) allows us to approximate different estimators as de-
scribed in Section 7.4.

7.7 Implementation details

The challenge is to sample from Gaussian distributions given in Equations (7.13) and
(7.14) with known mean values m,, m, and precision matries Q,,, Q,, respectively. As
the first order backward and forward differences are used to approximate gradients (Equ.
7.2), precision matrices in Equations (7.13) and (7.14), Q,,, Q,, are sparse symmetrical
matrices that have non-zero values for elements on the main diagonal, the first diagonal
below and the first diagonal above the main one.

With an appropriate selection of parameters o, 8 and p matrices Q, and Q, are
positive definite. As described in Rue and Held [78], this allows us to reduce Gaussian
distributions as Gaussian Markov random fields (GMRF). A GMRF has, in contrast to a
general Gaussian distribution, a band-limited precision matrix and this leads to an ef-
ficient Cholesky decomposition which we use in our sampling scheme.

Next, we apply the block-Gibbs sampler in the following way:
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1. Sampling starts from a zero mean Gaussian random vector g with identical covari-
ance matrix, i.e. each element of q is the realization of an independent zero mean
Gaussian random variable. Gaussian random variables can be generated from uni-
formly distributed variables using the Box-Muller algorithm [13]. We used the Mat-
lab function 'randn'.

2. The Cholesky decomposition M of the precision matrix QQ is computed, i.e. Q =
MM,

3. The linear equation system My = q is solved by back-substitution.

4. The calculated value of y is added then to the mean m. Insertingp = m+ M Tq
in the definition of the precision matrix directly proves that p is a sample from

N].,Np (m> Q_l)'

7.8 Experiments

We implemented the Gibbs sampler in MATLAB using standard built-in functions and per-
formed all experiments on an AMD Phenom |1 X6 1055T processor running at 3.5 Ghz. For
an 128 x 128 image our block-Gibbs sampler requires about 0.3s for each sample, i.e. a
sample of the image or the edge indicator function. A typical estimate of K — b,, = 1000
samples with b,, = 500 burn-in samples thus requires about 2 - 0.3(1000 + 500)s = 900s
which is in the same time range reported for the estimator proposed in [74].

However, in [74] a GPU implementation is considered running on a NVIDIA Tesla C1060,
such that we conclude that our algorithm has less complexity. The implementation of
our approach on parallel optimized hardware/ software is topic of future research. We
compute the MMSEE and MMEE for the K — b, samples. As we found no significant
differences between them, we report only results of the MMSEE in the following.

7.8.1 Experiment 1: Stochastic vs. deterministic AT

In Figure 7.2, results for a noise reduction and edge detection at a triple junction are
shown using the deterministic AT [5] and our stochastic approach. We observe that the
deterministic approach gets stuck in a local minimum when initializing with the observed
images (k, 1), as well as, when initialized with random images (c, d).

Our stochastic approach (i, j, e, f) correctly finds edges and in addition gives infor-
mation about the underlying distribution irrespective of its initialization. Our approach
also allows to estimate standard deviations of image (g) and edge-map (h). As expected,
variances are high for edge positions in the smooth image reconstruction. Variances are
low for edge positions in the edge map where the edge signal is highest and most certain.

7.8.2 Experiment 2: Piecewise smooth images and crack-tip problem

Pock and Cremers [74] compare the original AT approach to their MS method, which
we consider to be the current reference method concerning achievable segmentation
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Figure 7.2: Stochastic vs. deterministic AT. The edge map is inverted to its formulation
in Equation (7.1), such that variances would be more visible to a human observer. Here,
instead of the vector v, vector 1 —v is shown. The deterministic estimator uses traditional
gradient descent minimization. a original image; b degraded with 20% Gaussian noise; c,
d results obtained using the deterministic AT approach initialized with a random image
and edge indicator function, e,f mean vectors of the estimated image and the inverted
edge-map (MMSEE estimator), g,h standard deviations of estimated image and edge-
map of e and f, respectively, i,j median vectors of the estimated image and the inverted
edge-map (MMEE estimator), k, | another example of the local minimum obtained while
using the deterministic approach (image reconstruction and the edge-map) (parameters:
a = 6000, 5 =12.5, p = 0.8).

105



7.8. EXPERIMENTS

d

Figure 7.3: a, d original and degraded image with 5% Gaussian noise; b, e smoothed
image and close up with parameters: o« = 1000, 5 = 200, p = 1.2; c, f parameters:
a = 4000, 5 =70,p=0.3

quality. They show two experiments which we redo in the following. The first experiment
using a synthetic piece-wise smooth 128 x 128-image with 5% Gaussian noise added (see
Figure 7.3 a and d, and [74], Figure 4) focuses on visual noise artifacts.

Pock and Cremers state worse results for the deterministic AT approach, visible as
noise pattern close to image edges. In Figure 7.3, the same experiment is redone for
two different choices of p, however now using our stochastic AT approach. In the close-
up views in Figures 7.3 e and f, we see that using p = 1.2 we get similar artifacts as
reported in [74], which nicely vanish if p is reduced to 0.3 and the smoothness weight o
is increased.

The next experiment is the so-called Crack-Tip experiment (cmp. Figure (7.4) and [74],
Figure 6}, an inpainting experiment demonstrating how the deterministic AT optimization
approach gets stuck in local minima, depending on initial conditions. The synthetic im-
age I, Figure 7.4a, is given by I(x,y) = +/r(z,y)sin(0(x,y)/2) where r(z,y) is the
Euclidean distance of a point (x, y) to the image center and 6(z, y) is the angle of the
point (x, y) to the horizontal line.

The red circle in Figure 7.4 d represents the covered/ missing part of the image. Inside
the circle, the parameter /3 is set to be 0, and outside it is defined as co. The targeted
image, Figure 7.4 a is a global minimum of the Mumford-Shah problem [65]. Pock et
al. [74] use this example to show that their approach reaches the global minimum. The
classical AT method works well in the case of good initial conditions, but in other cases it
does not always come close to the global minimum of the AT energy, Figure 7.4 b, e.

Our stochastic approach visibly comes close to the true underlying image indepen-
dent of initial conditions, even locating the tip of the crack close to the center, Figure 7.4
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a b c
d e
Figure 7.4: a, d targeted global minimum of MS functional image, and observed image

with a circular gap in the middle; b, e image and border using deterministic AT approach
and a random image as an initialization,c, f our result

¢, f. Thus, we conclude that when applying a suitable estimator, the AT functional delivers
highest quality results, well comparable to the ones reported in [74].

7.9 Summary

We presented the block-Gibbs-sampling approach to the AT smooth image and edge-
map reconstruction. The work presented in this chapter was published in papers by Kai
Krajsek, Ines Dedovi¢ and Hanno Scharr [51, 52].

Geman and Geman [34] introduced MCMC algorithms to image segmentation. They
solve an energy functional for restoring a degraded image using a stochastic approach by
applying a pixel-wise Gibbs sampler within a discrete energy model. In our approach, the
usual AT energy is interpreted as a posterior energy and an efficient block-Gibbs-sampler
is used. The block-Gibbs-sampler allows us to sample the whole image or the whole
edge-map at once.

MMSEEs and the MMEEs are subsequently obtained by the sample mean and sample
median, respectively. No minimization of non-convex functionals is necessary within this
estimation framework. In addition, obtaining samples allows us to calculate standard de-
viations of images and edge-map as a confidence measure easily. This is also achieved by
the method of Patz and Preusser [72], however, using a gradient descent scheme sensi-
tive to local minima.

Our results are visually of the same quality as the ones of Pock and Cremers [74],
and also independent of the initial condition. In contrast to Pock and Cremers’ approach,
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we do not need to quantize gray values, allowing for better results on continuous-valued
images. We conclude, that we presented the first AT method combining high quality
results, independence of initial conditions, and error estimation.

108



Chapter 8

Conclusion and outlook

The aim of this thesis is to introduce the channel framework to Computer Vision prob-
lems, mainly image segmentation. With this aim, different methods mainly developed to
be used together with KDE are modified to use the channel framework.

8.1 The channel framework

The channel framework is designed as an alternative to KDE methods. It can even be
considered as a special case of a discrete implementation of kernel density estimators
where kernels are not calculated on data-points but on fixed locations in space. This way,
calculations of kernels are completely avoided, but values are just read from different
look-up tables. It can also be considered as a special case of histograms where bins are
overlapping and usually not rectangle functions. This allows using sub-bin accuracy and
for achieving similar results, considerably less bins are needed than for histogram imple-
mentations. In contrast to KDE, the idea of the channel framework is to avoid complex
calculations, but instead using look-up tables to read pre-calculated coefficients and only
simple multiplications and summations are required for obtaining the final PDF. Optimiza-
tion of look-up tables is a large research area and is outside of the scope of this thesis.

Within this work, we limit an implementation to only uniformly distributed channels
on the space of possible pixel values and using the same basis function on all positions.
Still, even with this setup we are able to obtain results comparable to state-of-the-art
methods. Further investigation will be concentrated on making more advanced look-up
tables specialized for different types of images. Together with this, rules on choosing
an appropriate look-up table should be developed. Look-up tables are particulary useful
when segmenting a set of images of the same type as it is possible to load a look-up table
only once and then segment the whole set of images, obtaining similar performance and
runtime.

8.2 Image segmentation methods

The following segmentation methods are considered:
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® an unsupervised two-region segmentation method,
* asupervised 2-region segmentation method with different user hints,
* an interactive multi-label segmentation method of color images.

Within the experiments, we show how our method competes with others from differ-
ent points of view: Speed, initialization dependency, sensitivity to e.g. bimodal Gaussian
distributions, image size, etc. .

Most of our methods give similar performance to state-of-the-art methods’. An ex-
ception is the bounding-box problem in Section 5.5.4 where our method fails to obtain
even close performance to the method by Lempitsky et al. [55]. Therefore, this method
requires further investigation, as bounding boxes are inapproprate to describe the PDF
of objects closely enough.

8.3 Possible extensions

Our methods can be extended to full object detection. In order to achieve this, more
features are needed to be considered.

Also, other image processing methods need to be added to include different cues.
E.g. for the application investigated within the Garnics project, shape priors could be
introduced which could improve segmentation of occluded leaves. In the paper by Erdem
etal. [28]itis shown that a shape prior can easily be introduced to Ambrosio and Tortorelli
segmentation. The method presented in the paper has high dependency on initialization
and therefore a good choice of region of interest is required.

Another possible research direction is the minimization of functionals. In Chapter 4,
the unsupervised 2-region segmentation, includes a novel minimization method. While
the non-linear Richardson fixed-point iteration method is quite fast, it is not immune to
getting stuck in local minima and its convergence is not proven. The NRI method is also
limited to 2-label segmentation, while no minimization method for multi-label segmen-
tation is developed so far.

And finally, the future work can be devoted to developing data-sets and tests for
grading the performance. Within this thesis, a number of different test data-sets have
been presented. The reason for not considering only one data-set is that all data-sets
presented in related papers are targeted to show advantages of a specific type of seg-
mentation method and do not offer a possibility for evaluating different characteristics
of segmentation methods. A perfect evaluation data-set would contain different tests
that would grade different characteristics of a segmentation method, requiring similar
inputs for different tests and reporting results in the same format for all tests.
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Appendix A

Notation

A.1 Notation

A.2 General notation regarding scalars, vectors and tensors

Scalar values are noted with a regular font. If a scalar value depends on coordinates or is
a scalar function of several variables it is noted as:

1. s-scalarvalue

2. s(x,y), s(g) - scalar value dependent on coordinates, or some other variable, e.g.
g

Images are 2D signal values and are usually stored as matrices, or vectors, e.g. variable
g. Matrices and vectors are noted with bold text. Elements of vectors are scalar values
and therefore, are noted with the regular font.

1. ¢(s) - vector function of a signal s
2. ¢(s) = [c1(8),ca(s), ..., ck(s)] - individual scalar elements of the vector

Tensors are noted in a similar way. To access individual scalar values of a tensor at some
position following notation is used:

1. ¢(s) - tensor function of a vector variable s

2. ¢(s, k,1,7) - individual scalar elements of the tensor at position (k, 7, j)

A.3 The Mumford-Shah functional

The Mumford Shah functional is presented in Section 2.4.1.
e O € R? -image domain

e (2;,U;€); = Q) -regions in which domain is partitioned
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g(z,y) - the original image

e u(x,y) - smooth reconstruction of the given image g(z, y).

C - the edge set

A, v € R, -regularization parameters

A.4 The Chan-Vese functional

A.4.1 General notation
The Chan-Vese functional is presented in Section 2.4.2.

e O € R? -image domain

Q, ) - foreground and background region

g(z,y) - original image

u; € R, - constant value within region Q;,i € {f, b}

¢(z,y) - the level-set function that divides regions

C ={(z,y) € Q CR?: ¢(z,y) = 0} - the edge-set

It is implemented with the gray-scale images in Chapter 4, Unsupervised 2-region
segmentation of gray-value images.

e c(x),z € R-channel vector representation of a value

* gy, q, - channel density estimation of foreground and background respectively

p(g(x)|Qf), p(g(x)|€2) - probability distribution function of foreground and back-
ground respectively

H(z),d(x),x € R - Heaviside and Dirac function of

H.(x),0.(z),z € R - Regularized Heaviside and Dirac function of =
The NRI method is presented in the matrix notation:

* ¢ - vector representation of the level-set function ¢(z, y)

* @, - the m-th iteration of the level set function using the NRI method
e G(¢,,),r(¢,,) - transformation functions used within NRI method

In Chapter 5 Chan-Vese approach is used on color images. This means that CDEs are
tensors in this case. In addition, prior knowledge is used to adjust the importance of
certain channels in CDEs. Therefore, a weight coefficient w that adjusts the influence of
prior knowledge is included.
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¢(x),z € R" n > 1 - tensors representing channel tensor representation of a
vector value x

d,>0, 940 - tensors representing channel density estimation of foreground and
background, independent of prior knowledge respectively

qfu, g, - tensors representing channel density estimation of foreground and back-
ground, using only prior knowledge on regions

qf, g, - channel density estimation of foreground and background respectively

wy,wp - regularization parameters that adjust the trade-off between the supervised
and the unsupervised approach for foreground and background respectively

p(g(x)|2f), p(g(x)|S2f) - probability distribution function of foreground and back-
ground respectively.

A.5 The Convex Relaxed Potts model

A.5.1 General notation

The Convex Relaxed Potts model is presented in Section 2.4.3

Q € R% - image domain

Q;,U;Q2; = € - regions in which domain is partitioned
g(x) - original image

pi(x) € [0, 1] - measure of pixel = belonging to region ©;
C;(x) - cost function for region €;

w(x) - penalty function for region edges; within the thesis the following equation
isused: w(z) = A- e MVI@I N 4 e R,

To estimate regions on an image we need to calculate CDEs of regions and PDFs of
regions. CDEs are calculated on areas with user-defined scribbles.

N € N - number of different regions

Q¥ i =1,...,N -areaonimage domain {2 marked by scribbles as a prior knowl-
edge for the region €);

e q;,t =1,..., N -tensor representing channel density estimation of the region (2,

p(g(x)|€2;) - probability distribution function of the region ;.
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A.6 The Ambrosio and Tortorelli approach

A.6.1 General notation

The Ambrosio and Tortorelli functional is presented in Section 2.4.4

Q € R - image domain;

g(z,y) - original image;

N, € N -the total number of pixels in the targeted image;
u(z,y) - smooth reconstruction of an image;

v(z,y) : R* — [0,1] - a smooth edge indicator function with v(z,y) =~ 1 on the
edges, and v(z, y) ~ 0 on smooth regions;

g, u, v - matrix representation of functions g(x, y), u(z,y), v(x, y) respectively;
a, 3, p, h € RT - regularization parameters;

B_+ and B _- - matrices whereby multiplication gives forward and backward first
J J
order finite differences, respectively, along the dimension z;

D - matrix gradient operator, used in the following way:

> (Vo) = o' DD

2
1
D(I) = > ijIBm; + ij, IB,-
j=1

(A.1)

Q. and Q, - precision matrices of conditional PDFs p(u|v, g) and p(v|u, g) respec-
tively;

m, and m,, - mean matrices of conditional PDFs p(u|v, g) and p(v|u, g) respec-
tively;

q - the realization of an independent zero mean Gaussian random variable;

p - obtained sample from Vy v, (m, Q).
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Evaluating segmentation result

B.1 Introduction

After performing segmentation, it is necessary to evaluate results and grade the quality
of segmentation methods. For this purpose, segmentation methods are compared on
the same set of images and evaluated using the same evaluation criteria.

To evaluate methods, we need the correct segmentation outcome, so that we can
compare results of segmentation methods to it. The correct segmentation outcome is
usually provided by human subjects and is called the ground-truth segmentation.

Therefore, data-sets for evaluation consist of a set of images that need to be seg-
mented and a set of their ground-truth segmentation. Data-sets for evaluation can be
aimed at unsupervised and supervised segmentation methods. An example of a data-set
aimed at unsupervised segmentation is the one developed for the paper by Alpert et al.
[4]. Data-sets aimed at interactive segmentation contain also a set of hints/user input for
segmentation. Examples of such data-sets are e.g. [76, 81, 69].

Next, to evaluate a segmentation method, a measure of segmentation success is re-
quired. This chapter provides several measures, e.g. a Receiver Operating Characteristic
curve (ROC curve), Precision-Recall curves (PR-curves), and F-measure/dice-score. Mea-
sures are described in detail in Section B.3.

Data-sets are usually divided in two sets:a training set and a test set. A training set
serves as a guidance for tuning parameters of a segmentation method. It contains rep-
resentative samples from the data-set. The rest of data forms a test set that serves to
evaluate a method’s performance.

For needs of this thesis, a tobacco-plant data-set is developed. It contains 235 top-
view images of tobacco plants with different size and different number of leaves on each
of the images. They are hand-segmented in the following way: On each image all leaves
are marked with positions of their tips and bases. Each leaf also contains a flag if it is oc-
cluded or not. In Chapter 5 this data-set is used to test if the method is able to separate
the plant object from background using a color distribution as a criterion. Segmentation
methods are trained on a part of a foreground on an image in Experiment 3 and on a sep-
arate leaf collection in Experiment 4. In Chapter 6 scribbles are added to leaves, and the
segmentation method is tested if it is possible to separate different leaves. To evaluate
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methods on the tobacco-plant data-set, the dice score is used.

B.1.1 Data-sets for unsupervised segmentation methods

Data-sets can be also designed to evaluate just a specific class of images, or can be tar-
geted at general segmentation problems. If they are targeted at a general segmentation
problem, it is required that they contain a large diversity of images.

Such data-sets are developed for the paper by Alpert et al. [4]. The first data-set con-
tains natural images containing one object on the background. The second data-set con-
tains images with two distinguishable objects on background. Both data-sets are aimed
at unsupervised segmentation. Each image is segmented by three different subjects. Pix-
els that are marked to belong to some region by at least two subjects are considered to
belong to the region. Data-sets are evaluated using the F-measure/dice-score. As within
this thesis unsupervised method is presented, the above mentioned data-set is used for
its evaluation. This way, the performance of our method is compared to state-of-the-art
methods for unsupervised segmentation. This data-set is chosen from available data-
sets since it handles gray scale natural images, segmentation to two regions and com-
pares region-based segmentation methods. These are all targeted characteristics of the
method developed in Chapter 4.

B.1.2 Ground-truth data-sets for interactive segmentation methods

Methods developed and presented in Chapters 5 and 6 target interactive region based
segmentation methods for color images that segment images in two or more regions. In
addition, the aim of this work is to compare CDE to KDE performance as the KDE approach
is the most similar one to CDE and at the same time gives state-of-the-art results. There-
fore, data-sets that test KDE approaches to mentioned segmentation problems/tasks are
considered.

The Grab-Cut data-set was developed for the work by Rother et al. [76] and is also
used in papers [9, 56, 69]. This data-set is aimed at interactive segmentation. The data-
set contains a set of images, a set describing ground-truth segmentation, a bounding-box
prior and trimaps resembling a lasso tool selection. The data-set is evaluated using the
E,.;ss measure.

Another data-set for interactive segmentation is presented in the PhD work by Sant-
ner [80]. This data-set serves for evaluating interactive multi-label segmentation meth-
ods. The data-set includes a variety of natural images, scribbles from which they calculate
a prior knowledge on an object and a ground-truth segmentation. The dice-score is used
for comparing segmentation results to the ground-truth. This data-set is also used in the
paper by Nieuwenhuis and Cremers [69].

B.2 Description of the tobacco-plant image data-set

Within the Garnics project, image segmentation is used for locating tobacco plants. There-
fore, 235 images containing top views of tobacco plants are chosen to form a ground-
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truth data set. Examples of images are given in Figure B.1.

On each image, outlines of leaves are marked and a binary mask is formed for each
leaf. Each mask has value 1 on positions where the leaf surface is present, and 0 other-
wise. For each leaf its base and tip are marked. This way, a leaf angle is calculated and it
is possible to extract leaves, and normalize them to same 2D orientation. Each leaf also
contains a flagifitis occluded or not. The process of hand-segmentation is given in Figure
B.2. Each data-set entry corresponds to one image file and is a *.mat file containing a
variable plant with the following structure:

e image - original image
e leafNum- number of segmented leaves
e leaves - array of leaf structures.
Each plant.leaves{#} entry has the following structure:
* mask - a leaf mask
* base - coordinates of base of a leaf
e tip - coordinates of tip of a leaf
e occlusion - a flag showing if a leaf is occluded or not
e angle - an angle of a leaf

Leaves from images are extracted, normalized to the same 2D orientation and centered
on 256 x 256 px sized images. Examples of extracted leaves are given in Figure B.3.

There are many plant features that can be used in the plant recognition process. We
give several examples of plant features that can be used:

Color distribution Color distribution of a plant object is used in Chapters 5 and 6 for
plant recognition. Leaves are similar in color distribution, therefore using it as only
criterion allows us easily to segment a plant from its background, but distinguishing
leaves can be difficult.

Depth information In papers [85, 27, 3, 92, 93] images of plants are paired with depth-
maps to enable separation of leaves. Depth-maps allow to separate leaves consid-
ering that leaves should be smooth surfaces and singularities in depth maps can
respond to object borders. Regions that quite differ in depth information proba-
bly belong to different objects. Depth-maps also allow a 3D reconstruction of an
image.

Leaf outline and vein structure Shape prior of objects is implemented in segmentation
methods e.g. [25, 28]. Leaf shape seems like a good idea to consider as a fea-
ture within a segmentation method. The problem of using a leaf shape is that the
shape is rather simple, and, therefore, influences many false recognitions. Within
the Garnics project ellipses are fitted to leaves to separate them [7]. Still, more
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accurate results are required, as ellipses turn out to be inadequate for fitting oc-
cluded leaves. Occluded leaves are most of time merged with the front-most leaf
or not recognized at all. If it is possible to locate the vein structure of leaves, dis-
tinguishing and separating them would become much easier. Within this thesis,
shape priors are recommended for future research.

Other Additional hints about the plant characteristic e.g. the possible leaf size, leaf ar-
rangement on stems could improve segmentation results.

The data-set can be used in the following way:

e A segmentation method can be trained on a small number of data-set entries, e.g.
20%.

e Prior knowledge on leaves and background is constructed and parameters are tuned
to achieve the best segmentation performance.

e With this setup, the segmentation method is run on the whole data-set.

e Leaf collection constructed from extracted leaves can also be used as a training
data instead.

The data-set is used in Chapter 5. Since just color distribution is used within our
method as a criterion, the task is to locate the whole plant and segment it from back-
ground.

In Chapter 6, scribbles are added to leaves and background and the method is tested
to distinguish them.

B.3 Evaluating segmentation results

The success of segmentation needs to be quantified, such that segmentation methods
can be graded and compared. Metrics used for evaluating segmentation methods orig-
inate from evaluation methods for information retrieval [90, 59]. Segmentation results
are compared to ground-truth segmentation.

An overview of metrics can be found in [59]. First, we define additional terms. A true
positive (hit) t, is a pixel that is correctly assigned to a region. Pixels that are correctly
addressed as not belonging to a region are true negatives (correct rejection) t,,. Pixels that
are assigned to some region and they do not belong to that region according to ground-
truth segmentation are false positives (false alarm) f,. False negatives (miss) are pixels
that are wrongly labeled as not belonging to some region f,,.

Precision P, recall R and fall-out (false positive rate) I’ are defined in the following
way: Precision gives the percentage of correctly recognized pixels from all recognized pix-
els as a part of a region, but does not show how many pixels are missed. Recall gives the
percentage of detected ground-truth, but does not show how many pixels are wrongly
assigned as a part of a region. Fall-out is known as (1 — speci ficity), where specificity
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Figure B.3: Examples of extracted leaves.
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shows the percentage of correctly unassigned pixels to a region from all unassigned pixels
[96].

p=—2% B.1
—— (B.1)
_ tP
R—%+ﬁ (B.2)
_
F = =S (B.3)

B.3.1 The Precision-recall curve (The PR-curve)

The precision and recall curve is a plot for evaluating edge-detection and segmentation
results. The PR-curve was first introduced to edge-detection methods in the work by
Abdou and Pratt [2] and is also used in works by Martin et al. [61, 62].

In [60, 61, 62], the authors use PR-curves to evaluate edge-detection methods. A
ground-truth is formed from human edge-detection results. These results are combined
into a ground-truth map. This map is then smoothed to increase tolerance to small local
errors in detection. Next, values for the threshold level are chosen as described in Figure
B.4.

Also, for a set of images that present a ground-truth, a histogram can be built that
shows how often pixels are chosen to e.g. belong to a region €2;. Threshold level values
are then chosen. For each threshold level value, pixels, that have frequency of being
chosen as belonging to the region €2; less or equal to the threshold value, are considered
as correctly segmented.

The PR curve gives a trade-off between the precision and the recall. To form a plot,
precision and recall are calculated for different threshold level values. The perfect PR-
curve has the highest precision value on all chosen threshold level values, P = 1. The
correct edge-detection should match as much as possible the map of high threshold level
values. Therefore, the recall should increase as with an increase of the threshold level
value as the number of false negatives f,, declines. Once all pixels that correctly belong to
(); are obtained, precision should decline to P = 0 as a high threshold level value detects
no pixels and there are no pixels to be correctly assigned as ¢,. On the other hand, any
pixel classified as a part of the region (2, is a f,. Recall should stay R = 1. This is shown
in Figure B.5 a).

B.3.2 The Receiver Operating Characteristic curve (ROC)

The receiver operating characteristic curve (ROC) is another plot for evaluating edge-
detection and segmentation methods. It is used in e.g. paper by Yitzhaky and Peli [96]
and a paper by Bowyer et al. [12] The ROC curve gives a trade-off between recall and
fall-out.

The ideal ROC curve has a zero value for a fall-out ' = 0 for all threshold level values
until all edge-pixels are retrieved. This is because pixels should not be misclassified as
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Figure B.4: An example of calculating threshold-levels for ground-truth entries in the
Berkeley image data-set [61, 62]. The task is to detect edges in the image a). For the
image a) a set of different ground-truth results is created b). From this set, a gray-value
ground-truth map is formed c) by e.g. summing up and normalizing all ground-truth re-
sults. The map will have lower values for pixels that are chosen as foreground by only
few users, while pixels that are chosen as foreground in all human segmentation results
have the highest values. For calculating values on a precision-recall (PR) curve, different
values for the threshold level are chosen. For each value of the threshold level, pixels on
the ground-truth map that have higher values are considered edge pixels.
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A a) PR curve - b) ROC curve
e 1 >

A4 /N
0 1 P 0 1 R

Figure B.5: Examples of a PR curve and a ROC curve. The red plot shows ideal PR and
ROC curves. The blue plot gives an example of some PR and ROC curves, as they typically
arise in experiments. Arrows show the increase of the threshold level value. Equations
for calculating precision, recall and fall-out are given in (B.3)

positives f, = 0. Recall increases as the number of false negatives declines. After the
highest threshold level value defined by ground-truth is reached, any higher level con-
tains less pixels that respond to correct edge-detection. Therefore, Fall-out increases as
number of false positives increases. This is shown in Figure B.5 b).

In the paper by Yitzhaky and Peli [96], ground-truth results are not provided by hu-
man subjects. Instead, ground-truth edge-detection is formed by performing NV different
edge-detection set-ups. These N experiments produce ground-truth with N possible
correspondence threshold (CT) levels. Each level consist of pixels with the same or higher
frequency of being assigned as an edge. Edge-detection results are calculated for each
threshold level value and an ROC curve is formed.

Inthe paper by Martin et al. [60], authors dismiss ROC curves as inefficient for evaluat-
ing edge-detectors since fall-out is sensitive to a resolution change. They consider edges
to be 1D and therefore, while the number of true positives grows linearly as the image
resolution increases, the number of true negatives grows quadratically.

B.3.3 The F-measure or a dice-score

For evaluating segmentation algorithms instead of plots, usually precision and recall are
combined into one number, the F-measure, also referred to as the F1-measure or the
dice-score [4, 81, 69]. The advantage of a dice-score is that it gives the grade of a method

in just one number.
P-R
F=292. B.4
P+ R (B.4)
In Alpert et al. [4] unsupervised methods for dividing an image in two regions are

evaluated. Each image in the data-set is segmented by three persons and pixels that are
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marked as a foreground by at least two persons is considered ground-truth foreground.
The Grab-cut [76] data-set is also evaluated using dice-score.

In Santner et al. [81] authors extend the use of a dice-score for evaluating multi-label
segmentation methods. If {2y, is a ground-truth region and (), is the corresponding re-
gion calculated by some segmentation method, the score is measured as:

2|98, N Q|

F= Zdzce " Z CAESGIE (B.5)

This data-set and evaluation is used also in paper by Nieuwenhuis and Cremers [69]
Segmentation methods in Chapters 6, 7 and 8 are evaluated using the dice-score mea-
sure.
These measures are developed to give a quantity measure to a segmentation method.
To discover the nature and the source of the introduced error, additional visual inspec-
tions are required.

B.3.4 The misclassification measure

For evaluating segmentation results on trimaps, Rother et al. [76] suggest the use of the
misclassification measure E,,;,; for the GrabCut data-set. The E,,;.s measure is also used
in papers [76, 9, 56, 69].

As mentioned in Chapter 2, trimaps can consist of sets of pixels that are definitive
foreground and background, and also a set of pixels that have yet to be classified to either
foreground or background. Unclassified pixels are referred to as an unknown area. The
misclassification measure shows the percentage of misclassified pixels on an unknown
area of an image:

no. of misclassified pixels

Emiss = . . s . . B.6
no. of pixels in unclassified trimap region (B.6)

As the number of misclassified pixels is normalized on an area that is given with a
trimap, sometimes, E,,;ss measure can be misleading. To explain this, we observe im-
ages in Figure B.6. Images depict segmentation results from Chapter 7, Experiment 1.
Gray-value coding of trimaps form the GrabCut data-set is given in Table B.1. Segmenta-
tion results of images a) and b) in Figure B.6 produce similar F,,;,, results. However, the
trimap for image a) has a small unknown area compared to the size of the whole image.
Therefore, the poor E,,;s; performance can be a result of a poor behavior of segmenta-
tion method near borderline. On the other hand, image b) has a large unknown area, and
alow E,,;s value is a result of a failed segmentation as a large part of the foreground is
not segmented.

B.4 Summary

In this annex different ground-truth data-sets were presented. They are used in the chap-
ters of the thesis for evaluation of segmentation methods. The data-set developed in
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Figure B.6: Results of the method in Chapter 7, Experiment 1: The first image in a row
depicts the originalimage to be selected, the second image is the ground-truth segmenta-
tion, the third image is the trimap that is used for segmentation and the fourth is the seg-
mentation result of our method. Coding of trimaps is given in Table B.1a) E,,,;ss = 23.8%
b) E,.;ss = 24.6% Both images have a similar misclassification error, while to an eye the
error of the first image is ‘only’ on borders and in the second image the whole part of an
object is missing.

Gray value | Meaning
0 background
64 background area used for model training
128 unknown region
255 foreground area used for model training

Table B.1: Gray value coding of lasso-selection trimaps in the GrabCut data-set [76]
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the paper by Alpert et al. [4] is used in Chapter 4 for evaluating automatic segmenta-
tion method in two regions based on a gray-value distribution. The Grab-Cut data-set
[76] is used in Chapter 5 for evaluating interactive foreground extraction. The data-set
developed within the work of Santner et al. [81] is used in Chapter 6 for evaluating inter-
active multi-label segmentation method. A special data-set for the Garnics project has
been developed in the context of the thesis. This data-set contains top-view images of
tobacco-plants. It is also used in Chapters 5 and 6.

Different evaluation measures are suggested for evaluating segmentation results. While
PR-curves and ROC-curves are used mostly for edge-detection methods [2, 61,62, 12, 96],
F-measure (dice-score) is usually used for region based segmentation methods e.g. [81,
69]. E,.iss measure is used to evaluate algorithms on the GrabCut data-set [76, 56, 69]
These measures give an idea of quality of a segmentation method, but segmentation
results need to be analyzed for the nature of the segmentation error.
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