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Abstract (English)

Transcriptional regulation orchestrates the proper temporal and spatial expression of genes. The iden-

tification of transcriptional regulatory elements, such as transcription factor binding sites (TFBSs), is

crucial to understand regulatory networks driving cellular processes such as cell development and the

onset of diseases.

The standard computational approach is to use sequence-based methods, which search over the

genome’s DNA for sequences representing the DNA binding affinity sequence of transcription factors

(TFs). However, this approach is not able to predict active binding sites, i.e. binding sites that are

being currently bound by TFs at a particular cell state. This happens as the sequence-based methods

do not account for the fact that the chromatin dynamically changes its state between an open form

(and accessible to TF binding) and closed (not accessible by TFs).

Advances in next-generation sequencing techniques have enabled the measurement of such open

chromatin regions in a genome-wide manner with assays such as the chromatin immunoprecipitation

followed by massive sequencing (ChIP-seq) and DNase I digestion followed by massive sequencing

(DNase-seq). Current research has proven that such open chromatin genome-wide assays improve

sequence-based detection of active TFBSs. The rationale is to restrict the sequence-based search of

binding sites to genomic regions where these assays indicate the chromatin is open and accessible for

TF binding, in a cell-specific manner.

We propose the first computational framework which integrates both DNase-seq and ChIP-seq data

to perform predictions of active TFBSs. We have previously observed that there is a distinctive pattern

at active TFBSs regarding both DNase-seq and ChIP-seq data. Our framework treats these data using

signal normalization strategies and searches for these distinctive patterns, the so-called “footprints”,

by segmenting the genome using hidden Markov models (HMMs). Given that, our framework –

termed HINT (HMM-based identification of TF footprints) – is categorized as a “computational foot-

printing method”.

We evaluate our computational footprinting method by comparing the footprint predictions to ex-

perimentally verified active TFBSs. Our evaluation approach creates statistics which enables the

comparison between our method and competing computational footprinting methods. Our compar-

ative experiment is the most complete so far, with a total of 14 computational footprinting methods

and 233 TFs evaluated.

Furthermore, we successfully applied our computational footprinting method HINT in two different

biological studies to identify regulatory elements involved in specific biological conditions. HINT has

proven to be a useful computational framework in biological studies involving regulatory genomics.
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Abstrakt (Deutsch)

Die Transkriptionsregulation beschreibt die zeitliche und räumliche Expreßion der Gene. Mit Hilfe

der Identifikation von transregulatorischen Elementen, wie beispielsweise

Transkriptionsfaktorbindestellen, können regulatorische Netzwerke beßer verstanden werden.

Regulatorische Netzwerke beschreiben zelluläre Prozeße wie zum Beispiel die Zellentwicklung und

das Entstehen von Krankheiten.

Beim herkömmlichen rechnergestützten Ansatz zur Identifikation von

Transkriptionsfaktorbindestellen wird auf Sequenzierungsmethoden zurückgegriffen, um die DNA

des Genoms nach Sequenzen mit unterschiedlichen Bindungsneigungen zu Transkriptionsfaktoren

(TF) zu durchsuchen. Mit diesem Ansatz ist es jedoch nicht möglich aktive Bindestellen

vorherzusagen. Eine aktive Bindestelle ist beispielsweise dann gegeben, wenn an der DNA-Sequenz

ein TF bindet. Dieser auf Sequenzierungstechniken beruhende Ansatz nimmt keinen Bezug

darauf, daß der Zustand des Chromatins dynamisch zwischen offen (so daß ein TF binden kann)

und geschloßen (so daß kein TF binden kann) wechseln kann.

Mit Sequenzierungsmethoden der nächsten Generation (next generation sequencing) kann offenes

Chromatin genomweit identifiziert werden. Beispiele hierfür sind die Kombination von Chromatin

ImmunoPrecipitation (ChIP-seq) oder DNase I Verarbeitung (DNase-seq) mit der

Sequenzierungstechnik. Aktuelle Studien haben belegt, daß die Verwendung von ChIP-seq und

DNase-seq zur Bestimmung von offenem Chromatin einen positiven Einfluß auf die Identifikation

von aktiven TFBS haben. Dabei wird die Suche nach charakteristischen DNA-Sequenzen auf die

Bereiche eingeschränkt, an denen das Chromatin offen ist und die TF somit in einer zellspezifischen

Art binden können.

Wir führen zum ersten Mal in dieser Arbeit ein rechnergestütztes Rahmenwerk ein, das DNase-seq

und ChIP-seq Daten kombiniert, um aktive TFBS vorherzusagen. Wir haben beobachtet, daß es bei

aktiven TFBS ein ausgeprägtes Muster in DNase-seq und ChIP-seq Daten gibt. Unser

Rahmenwerk führt zunächst eine Normalisierung des Signals aus und sucht dann in den Daten nach

diesen Mustern, den sogenannten Fußabdrücken. Dabei wird das Genom mit einem Hidden Markov

Modell segmentiert. Unsere Methode mit dem Namen HINT (HMM-basierte Identifikation von TF

Fußabdrücken) ist als „rechnergestützte Fußabdruck Methode“ klaßifiziert.

In unserer Evaluierungßtudie haben wir die vorhergesagten Fußabdrücke von HINT mit bereits

validierten Fußabdrücken verglichen. Dabei haben wir Statistiken erzeugt, um unsere Methode mit

anderen zu vergleichen. Unsere Experimente sind mit insgesamt 14 verglichenen Methoden und 233

TF die umfangreichsten.

Zudem haben wir HINT erfolgreich bei zwei biologischen Studien angewandt, um regulatorische

Elemente, die bei bestimmten biologischen Bedingungen vorkommen, zu identifizieren. HINT ist ein

nützliches rechnergestütztes Rahmenwerk für biologische Studien in der regulatorischen Genomik.
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Glossary

AUC Area under the ROC curve.

AUPR Area under the PR curve.

bp Base pair.

BWA Burrows-Wheeler aligner software.

cDC Classical dendritic cell.

CDP Common dendritic cell progenitor.

CENTRIMO Local motif enrichment analysis.

ChIP-seq Chromatin immunoprecipitation followed

by massive sequencing.

DC Dendritic cell.

DH Double-hit DNase-seq protocol.

DHS DNase hypersensitivity site.

DNA Deoxyribonucleic acid.

DNase-seq DNase I digestion followed by massive se-

quencing.

DREME Discriminative regular expression motif

elicitation.

ENCODE Encyclopedia of DNA Elements.

FC Gene expression fold change.

FIMO Find individual motif occurrences software.

FLR Footprint likelihood ratio.

FP-Exp Correlation of KS test statistic and gene ex-

pression FC.

FPR False positive rate.

FS Footprint score.

GEO Gene expression omnibus.

HINT HMM-based identification of TF footprints.

HMM Hidden Markov model.

IQR Interquartile region.

IUPAC International union of pure and applied

chemistry.

KS Kolmogorov-Smirnov.

MACS Model-based analysis for ChIP-Seq soft-

ware.

MPBS Motif-predicted binding site.

MPP Multipotent progenitor cell.

NGS Next-generation sequencing.

NK Naked (deproteinized) DNA DNase-seq

protocol.

OBS Observed vs bias signal.

pDC Plasmacytoid dendritic cell.

PFM Position frequency matrix.

PIQ Protein interaction quantification.

PR Precision-recall.

PWM Position weight matrix.

RGT Regulatory genomics toolbox.

RNA Ribonucleic acid.

ROC Receiver operating characteristics.

SH Single-hit DNase-seq protocol.

SRA Sequence read archive.

TC Tag count.

TF Transcription factor.

TFBS Transcription factor binding site.

TSS Transcription start site.
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CHAPTER 1

Introduction

1.1 Motivation

Gene Regulation and Transcription Factor Binding Sites

Every living organism is composed of multiple different cells. These cells contain genetic material

encoded in the form of deoxyribonucleic acid (DNA) molecules, also known as genome. The genome

can be represented as a categorical vector g = 〈g1, · · · ,gn〉, where gi ∈ {A,C,G,T} represents the

nucleotide at genomic position i. Certain regions within the genome encode the so-called genes.

Genes can be read by specialized proteins to produce other proteins. This protein-producing cycle is

the key mechanism for maintenance of life.

A couple of years ago, it was believed that, in possession of the complete genomic sequence g

for a given organism, it would be possible to exactly determine its phenotype and disease suscep-

tibility. However, after the analysis of the first genomes, it was clear that the simple determination

of an organism’s DNA nucleotide sequence is not enough to explain the great diversity of biological

processes. Such processes are governed by a complex chain of events called “gene regulation”. Gene

regulation includes a wide range of mechanisms that happen inside a cell in which genes are turned

“on” (i.e. they are expressed) and “off” (i.e. they are not expressed) dynamically. Depending on

which genes are “on” or “off”, the cell specializes in different functionalities (Alberts et al., 2007).

In the so-called post-genomic era, attention is turning to the understanding of how protein-coding

genes (about 25,000 in humans) and their products are regulated (Maston et al., 2006). These regu-

latory mechanisms drive the correct execution of biological processes and require a set of carefully

orchestrated steps that depend on the correct spatial and temporal expression of genes (Maston et al.,

2006). On the other hand, the deregulation of gene expression, i.e. errors regarding the regulatory

steps, is often linked to diseases (ENCODE Project Consortium, 2012).

To understand the molecular mechanisms that dictate the cell’s expression patterns, it is important

to identify the regulatory elements involved in these activities. One of the most important regulatory

players are transcription factors (TFs) – proteins that bind on the DNA enhancing or repressing the

expression of genes. These proteins bind to particular genomic regions called transcription factor

binding sites (TFBSs) (Maston et al., 2006). TFBSs may be active if they are currently being bound

by a TF or inactive, if they are not currently being bound by a TF.

Importance of the Identification of All Active TFBSs of a Cell

The identification of all active TFBSs of a cell is a very important task, since they are the key players

on regulatory mechanisms. By identifying active TFBSs we can develop regulatory networks, which

encode the interplay between different genes to control specific cell functions. Such a task leads to the

understanding of cellular mechanisms and the particular deregulatory steps which leads to disease.

There are a great number of successful experimental studies that benefited from the proper identifi-

cation of active TFBSs. For instance, studies were able to: (1) unravel cellular mechanisms (Lin et al.,

2015; Tsankov et al., 2015); (2) unravel disease mechanisms (Schaub et al., 2012; Vernot et al., 2012;
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Charos et al., 2012); (3) understand the function of different regions in the genome (Yip et al., 2012;

Whitfield et al., 2012; Natarajan et al., 2012) and (4) understand other cellular regulatory elements

such as long noncoding ribonucleic acids (lncRNAs) (Tilgner et al., 2012; Bánfai et al., 2012).

In summary, the identification of active transcription factor binding sites is important because of its

broad impact on many other cellular processes. Given the importance of the proper identification of

cell-specific active TFBSs, our research focuses on performing such a task by applying computational

methods to biological experimental data.

Computational Detection of Active TFBSs Must Consider the Chromatin Dynamics

Historically, the first computational approach to identify TFBSs was based solely on the DNA se-

quence (Stormo, 2000). Each TF has a particular DNA sequence affinity, i.e. they tend to bind to

specific DNA sequences. The computational sequence-based methods search the genome g for DNA

substrings that correspond to the affinity sequence of target TFs. However, although computational

sequence-based methods are able to detect TFBSs, they are not able to tell whether these sites are

active or inactive (Pique-Regi et al., 2011). This happens because such computational approach does

not consider the fact that only a few regions in the genome are accessible for TFs to bind. These

regions are called “open chromatin regions”. The number of open chromatin regions and their loca-

tion vary between different cell types and ultimately dictates which genes are accessible and being

expressed (ENCODE Project Consortium, 2012).

Recent advances in biological techniques (Shendure and Ji, 2008) have enabled the creation of ex-

perimental methods to identify these open chromatin regions (ENCODE Project Consortium, 2012).

We will explore two of these so-called “open chromatin next-generation sequencing (NGS) tech-

niques”: the chromatin immunoprecipitation followed by NGS – termed ChIP-seq (Johnson et al.,

2007); and the DNase I cleavage followed by NGS – termed DNase-seq (Crawford et al., 2004; Sabo

et al., 2004b). These techniques generate time series-like signals which span the entire genome and

indicate open chromatin regions. These signals can be viewed as a numeric vector x = 〈x1, · · · ,xn〉
where high data points xi ∈N

0 indicate open chromatin regions. Moreover, certain patterns in the sig-

nals generated by DNase-seq and ChIP-seq are indicative of active TFBSs. Therefore, we can apply

computational methods to process the DNase-seq and ChIP-seq signals and to identify these patterns.

By doing so, we can detect active TFBSs considering the open chromatin information.

Computational Detection of Active TFBSs Using DNase-seq and ChIP-seq

The DNA is found wrapped in proteins called histones. There are a number of post-translational

modifications on these histones which are indicative of open chromatin regions, such as the so-called

H3K4me1 and H3K4me3. By performing a histone modification ChIP-seq experiment we are able

to identify cell-specific open chromatin regions. Furthermore, the DNase-seq data also provides a

robust map of open chromatin regions with a very high spatial resolution. By combining these two

experimental data, we observe very characteristic patterns indicating the active binding of TFs in the

genome (Figure 1.1). This pattern is commonly referred to as TF “footprints”. A TF footprint is

defined as a region likely to be represent an active TFBS (Boyle et al., 2011; Gusmao et al., 2012).

The experiments presented in this thesis focus on the computational treatment of DNase-seq and

histone modification ChIP-seq data to perform computational predictions of active transcription bind-

ing sites. Such prediction is performed by searching the distinctive patterns, i.e. footprints, that

the DNase-seq and histone modification ChIP-seq signals exhibit around active TFBSs. We use the

traditional term “computational footprinting methods” for computational methods that searches for

footprints using open chromatin data, such as DNase-seq and histone modification ChIP-seq. The

computational footprinting framework presented in this thesis can be used in multiple different bio-

logical experiments to understand the regulation of genes.
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• Novel evaluation approach of computational footprinting methods: Until now, computa-

tional footprinting methods have been evaluated using the “TF ChIP-seq approach”. However,

biases were pointed in such evaluation scheme (Yardımcı et al., 2014). Therefore, we develop

a novel computational footprinting method evaluation approach based on gene expression.

• Comprehensive computational footprinting method comparison: We performed a compre-

hensive comparison including: (1) our novel HMM-based approach; (2) nine state-of-the-art

computational footprinting methods and (3) four baseline approaches. Our comparative exper-

iment is the most complete so far, with a total of 14 computational footprinting methods and

233 TFs evaluated.

• Analysis of relevant features on computational footprinting: A number of empirical anal-

yses were performed. These analyses evaluated relevant features for the computational pre-

diction of active TFBSs such as: method’s parameter selection, experimental bias correction,

optimal footprint scoring strategy and TF binding residence time.

• Case studies: We successfully applied our computational footprinting method in two different

studies to identify regulatory elements involved in specific biological conditions.

1.4 Document Structure

In Chapter 2 we introduce all the concepts needed for the understanding of our work. We define

the current challenges on computational identification of active TFBSs and provide a comprehensive

literature review on computational footprinting methods.

In Chapter 3 we formalize our approach to address the detection of active TFBSs. We describe the

treatment of the input DNase-seq and ChIP-seq data and the novel approach to detect active TFBSs

based on HMMs. Furthermore, in Chapter 4 we describe the full experiment design of this project.

We present the data used in our work, the execution of our computational footprinting approach and

method evaluation strategies.

In Chapter 5 we present the results of our experiments, which encompasses: the analyses on rele-

vant computational footprinting features, a comprehensive comparison of computational footprinting

methods and case studies in which our methodology was successfully applied to real biological sce-

narios. In Chapter 6 we discuss all results presented in this thesis, highlighting all the key findings.

Furthermore, we discuss future research opportunities. Further supplementary information and results

can be found in the Appendix A.
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CHAPTER 2

Background

In this chapter we provide background information required for the understanding of this thesis. First,

we introduce the necessary biological concepts (Section 2.1). Next, we present the biological exper-

imental techniques which are the main sources of data used in our analyses (Section 2.2). Then, we

introduce the problem which we are going to address in this thesis – the computational prediction

of active transcription factor binding sites (TFBSs; Section 2.3). Subsequently, we discuss the state-

of-the-art computational solutions to address this problem – the computational footprinting methods

(Section 2.4). Finally, we close this chapter with concluding remarks on the definitions made in

this chapter and a brief overview on our strategy to solve the problem of predicting active TFBSs

(Section 2.5).

2.1 Gene Regulation

In this thesis we focus on the biological field of gene regulation. Such research area focuses on the un-

derstanding of the cellular mechanisms behind the temporal and spatial expression of different genes

on different cellular conditions. We start this section by describing the basic concepts of molecular

biology (Section 2.1.1). Then, we describe the main biological processes regarding gene regulation

(Section 2.1.2). Finally, we discuss the role of chromatin dynamics on such regulatory processes

(Section 2.1.3). The concepts presented in this section are based on Alberts et al. (2007) and Lodish

et al. (2007).

2.1.1. Basic Concepts of Molecular Biology

In this thesis we focus on two important macromolecules which are found inside cells: proteins

(composed of amino acids) and nucleic acids (composed of nucleotides). Proteins assume many

roles: catalysis of chemical reactions (enzymes), metabolite processing, cell signaling, regulation of

the production of more proteins, structural function and others. Given such great variety of roles, one

might regard these macromolecules as fundamental for the maintenance of living organisms. There

are two types of nucleic acids: the deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The

main function of the DNA is to store the hereditary information of the organism. It is based on such

information that new proteins are generated. The RNA have many important functions; however we

will not focus on this molecule in this work.

The DNA molecule is formed by a double helix of paired nucleotide chains, each of which com-

posed of the nucleotide types: adenine (A), cytosine (C), guanine (G) and thymine (T). Each nu-

cleotide is composed of a sugar (deoxyribose), a phosphate group and a nitrogenous base (which de-

termines the nucleotide type). Within each DNA strand of the double helix, nucleotides are connected

through phosphodiester bonds (strong covalent bonds). Between each DNA strand, nucleotides are

paired and connected through hydrogen bonds (weaker than covalent bonds). Cytosines always pair

with guanines and adenines always pair with thymines. Because nucleotides are paired between the

double helix structure, it is common to refer to nucleotides as base pairs (bp). Figure 2.1 depicts a

graphical representation of the DNA molecule.
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Figure 2.1: DNA structure. (a) Representation of the DNA’s building block – the nucleotide. (b)

Multiple nucleotides from all possible types (A, C, G and T) form a single strand of DNA, which

in humans are as long as ∼250,000,000 nucleotides. (c) The DNA generally occurs as a double

strand. The biological process of polymerization allows the addition of nucleotides to a single strand,

forming the DNA double strand. Cytosines (C) always pair with guanines (G) connected through

three hydrogen bonds (pink lines); and adenines (A) always pair with thymines (T) through two

hydrogen bonds. (d) Linear scheme of the double DNA strands. (e) Double helix structure of the

double-stranded DNA molecule. This is the general structure in which the DNA occurs in nature.

Source: Alberts et al. (2007) (modified to fit thesis format and/or clarify key points).

Proteins are chemical compounds with high molecular weight formed by a variable-length chain of

amino acids. The amino acids that forms the proteins are composed of a central carbon atom which

binds to a hydrogen, a carboxyl group, an amine group and a side chain. The side chain may be of

various types and dictates the type of the amino acid. There are 20 amino acid types commonly found

at proteins. The specific order of each amino acid type in a protein determines its three-dimensional

structure. It is well-known that the protein’s function is directly related to its structure. The simple

substitution of one amino acid in the proteic chain is sufficient to modify the protein three-dimensional

conformation leading to a reduced functional capability or total dysfunction. Figure 2.2 shows the

different levels of protein structural conformation.

The process in which proteins are created based on the information encoded in the cell’s DNA is

called the “central dogma of molecular biology”. Here, the key parts of this process, which aid in the

understanding of this work, are presented. These key parts are: (1) the initiation, (2) the transcription

and (3) the translation.

During the initiation phase, a number of proteins called transcription factors (TFs) bind in the DNA

and recruit another protein called RNA polymerase (Figure 2.3a). The DNA region in which these

TFs and RNA polymerase bind to start transcription is called promoter. Then, in the transcription

phase, the RNA polymerase scans the DNA and creates an RNA molecule, based on the information

encoded in the DNA (Figure 2.3b). The part of the DNA which is transcribed by the RNA polymerase

is called gene. Finally, in the translation phase, the newly-generated RNA migrates outside the cell’s

nucleus and a protein called ribosome scans the RNA and creates a new protein molecule based on

the information encoded in the RNA (Figure 2.3c). The rate in which the transcription occurs for a

particular gene is called the gene’s expression.
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2.1.2. Gene Regulation with Transcription Factors

The transcription initiation was previously described as the step in which the RNA polymerase binds

to the promoter region in order to start the process of transcription. Nevertheless, there are many

factors that contribute to the expression of particular genes in particular types/stages/conditions of a

cell. We call “gene regulation” the wide range of mechanisms that are used by cells to increase or

decrease the production of specific gene products. Gene regulation may happen in different stages of

the central dogma. However, most part of the regulatory events happens at the transcription initiation

level. A major role of the regulation at this level is played by proteins termed TFs, which use their

physicochemical properties to direct the intensity level in which gene products are created. The TFs

bind to DNA regions called TFBSs which are close (promoter region; approximately < 1,000 bp

from the transcription start site) or far (distal regulatory regions; generally up to 1,000,000 bp) from

the gene. Different TFs may bind to different TFBSs to increase or decrease the expression of genes.

Figure 2.4 shows a graphical representation of a basic regulatory landscape of a gene. The number

of regulatory elements vary between genes; however the construct of TF and their DNA binding sites

are generally present.
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b

Figure 2.4: Basic regulatory landscape of a gene. (a) Schematic representation of a typical gene

regulatory region with proximal and distal regulatory regions, composed of transcription factor bind-

ing sites (TFBSs), which are regions in the DNA being bound by proteins called transcription factors

(TFs). The promoter typically spans less than 1 Kbp and is composed of: (1) a core promoter –

where the transcriptional machinery is being bound and (2) promoter-proximal regulatory region –

where TFs bind to increase/decrease gene expression. The distal regulatory regions are located up to

1 Mbp from the promoter. Among others, they are categorized as: (1) enhancers – where TFs bind to

increase gene expression and (2) silencers – usually decreasing or completely silencing expression.

(b) These distal elements may contact the core promoter or proximal promoter through a mechanism

that involves looping out the intervening DNA. Based on Lodish et al. (2007).

The TFs contain a specific part (formally called “domains”) within their structure, termed active

site, which enables them to bind to the DNA. There is a relatively short number of smaller structural

variants (which compose the final protein structure) in comparison to the number of different protein

types. Some of these structural variants, including the ones containing active sites, are repeated be-

tween different protein. These DNA-binding protein domains usually have affinities towards specific
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DNA sequences. These affinity sequences are termed “DNA motifs”. Figure 2.5 shows four DNA-

binding protein domains and examples of proteins that contain such domains and their respective

DNA binding affinity motifs.
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Figure 2.5: Different protein-DNA binding types. We show graphical representations of different

protein-DNA binding types (top) and examples of proteins with such binding domain type and their

DNA sequence binding affinity information (bottom). We show four DNA-binding TF classes: (a)

Homeo domain (also known as helix-turn-helix), (b) zinc finger, (c) leucine zipper and (d) helix-loop-

helix. This motivates the idea that, although there are many DNA-binding proteins, they usually have

a few DNA-binding domains. It is important to mention that, although we show only one affinity

DNA sequence for each example, proteins have flexibility within some parts of their motif to bind

different nucleotides. Source: Alberts et al. (2007) (modified to fit thesis format and/or clarify key

points).

2.1.3. Chromatin

The DNA is not isolated in the cell nucleus. Instead, it is found wrapped in proteic complexes, which

are associated to the compaction of the DNA. The most important protein complex is formed by four

pairs of histones named H2A, H2B, H3 and H4. The unit composed of the DNA wrapped in approxi-

mately 1.65 turns (∼147 bp) around the histone complex is called nucleosome. From this lower level

structure (nucleosome) the DNA structure is compacted in many levels. Such DNA+protein structure

is termed chromatin. This compaction organization is depicted in Figure 2.6. Briefly, the chromatin

can be found in a very condensed structure which does not allow transcription initiation (termed

heterochromatin, or simply “closed chromatin”); or in a decondensed form, allowing transcription

initiation and gene expression (termed euchromatin, or simply “open chromatin”).

Different parts of the genome are open or closed at different times, allowing a specific set of genes

to be expressed under different cell conditions. This is one of the main mechanisms behind the

fact that we observe such a high number of different cells, each of which expressing a different set

of genes, given that they all share the same underlying genomic information encoded in the DNA.

Figure 2.7 shows a graphical example of two cells at different stages of commitment. Although the

genomic region depicted is the same for these two cells, one present a closed chromatin structure,

while the other present an open chromatin structure. The closed chromatin observed for the long-

term hematopoietic stem cell (Figure 2.7a) does not allow the gene ATF3 to be transcribed, while

the open chromatin structure present in the monocyte cell (Figure 2.7b) does allow the expression

of ATF3 gene, since the TFs and transcription machinery are able to access that region and start the

transcription process.
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One of the main mechanisms associated to the chromatin switch between closed and open states is

the post-translational histone modification. The histone proteins’ N-terminal usually protrudes from

the nucleosome and is termed histone tail. Histone tails can undergo post-translational chemical mod-

ifications at specific amino acids. Such modifications include the methylation (addition of a methyl

group; labeled “me”) and the acetylation (addition of an acetyl group; labeled “ac”). These modifi-

cations have a specific nomenclature dictated by: histone type, amino acid type, amino acid position

within the histone tail and modification type. For instance, “H3K4me1” refers to the monomethyla-

tion (me1) of the lysine (K) in the fourth position of the tail of histone H3. Some histone modifica-

tions, such as H3K4me3, make the DNA more accessible to the binding of TFs; while others, such

as H3K27me3, make the DNA less accessible to the binding of TFs. Figure 2.8 displays the different

effects, on the chromatin structure, of modifications in lysines in the tail of histone H3.
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Figure 2.8: Main histone modifications on lysines of histone H3. The tail of the histone H3 un-

dergo post-translation modifications which are associated to chromatin remodeling. Different modi-

fications at different locations of the H3’s tail have contrasting effects such as transcription initiation

or repression. Source: Lall (2007) (modified to fit thesis format and/or clarify key points).

2.2 Next-Generation Sequencing Methods

Recently, novel DNA sequencing platforms have enabled the sequencing of a very large number of

DNA fragments (up to a few billions) on one single assay with a significant decrease in cost and com-

plexity (Hayden, 2014). However, although these techniques are able to sequence a very large number

of DNA fragments per single execution; these fragments are small (usually up to hundreds of bp). We

call these novel sequencing platforms “next-generation sequencing” (NGS) techniques (Shendure and

Ji, 2008). Since the development of the first NGS technologies (Tucker et al., 2009), they have been

constantly improving. We refer to Rusk (2010) for a full discussion on NGS technologies.

The emergence of NGS and its constant technological improvements have enabled the revisiting of

traditional biological assays to investigate regulatory elements (described in Section 2.1.2) using the

cell-specific chromatin dynamics context (described in Section 2.1.3). On revisiting such methods,

their protocols could be adapted in order to fit the NGS technologies, which enables them to be

performed in a genome-wide manner. Such large-scale analysis has potential to reveal the high-

dimensional relationships between regulatory elements. NGS-based assays have enabled multiple

current research progress, which unraveled the regulatory mechanisms linked to conditions, such as

cell differentiation or the onset of diseases, of multiple cells (ENCODE Project Consortium, 2012;

Neph et al., 2012; Thurman et al., 2012).

In this section we describe the following techniques: (1) Chromatin immunoprecipitation followed

by NGS (ChIP-seq; Section 2.2.1) and (2) DNase I footprinting followed by NGS (DNase-seq; Sec-
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tion 2.2.2). ChIP-seq combines chromatin immunoprecipitation with massively parallel DNA se-

quencing to identify the binding sites of DNA-associated proteins such as TFs or histones containing

a particular modification. The DNase-seq method is used to identify regions of open chromatin, i.e.

DNA regions accessible to the binding of TFs.

2.2.1. ChIP-seq

The ChIP-seq technique consists on retrieving target DNA-bound proteins and further sequencing of

the DNA fragments retrieved using NGS techniques (Johnson et al., 2007). These target proteins can

be, for instance, TFs or histones with a particular post-translational modification. This allows the

genome-wide identification of the genomic regions in which a target protein is bound within a single

experimental execution. When applied to a target TF, the ChIP-seq experiment allows us to identify

the TFBSs. When applied to histones with particular post-translational modification, the ChIP-seq

experiment allows us to identify the genomic regions in which these modified histones occur, and

therefore make inferences on that region’s particular chromatin structure.

The ChIP-seq protocol starts by isolating the nuclei of cells and breaking them in order to access the

genomic material (chromatin). The isolated genomic material is cross-linked in order to preserve all

protein-DNA binding events. Next, the cross-linked chromatin is sheared into approximately 200 bp

DNA fragments. Afterwards, the chromatin lysate is treated with an antibody that targets a particular

protein of interest. The solution is then immunoprecipitated. In this procedure, we retrieve only the

sheared chromatin fragments that contains the protein of interest. The immunoprecipitated solution

is separated and washed in order to keep only the DNA fragments. Then, these DNA fragments

are sequenced using an NGS technique. It is important to mention that only the beginning of the

retrieved DNA fragments are sequenced (50–100 bp) by NGS techniques. Such process is depicted

in Figure 2.9a–c.

The sequenced DNA fragments (termed “reads”) are mapped back into the reference genome us-

ing string alignment algorithms (Figure 2.9d), which are developed specially for mapping short DNA

reads (length of 50–100 bp) into a big reference genome (human genome length is ∼3.1 billion bp).

Such demanding computational problem is considered a solved problem and there are many avail-

able algorithms such as Bowtie 2 (Langmead and Salzberg, 2012) or the Burrows-Wheeler Aligner

(BWA) (Li and Durbin, 2009). Given these aligned reads, we can generate a genomic signal by cal-

culating the overlap between these reads at every genomic coordinate, i.e. every bp of the genome

(Figure 2.9e–f). Nevertheless, since only the first 50–100 bp of the fragments are sequenced, they

need to be extended to reflect the real length of the immunoprecipitated fragments (approximately

200 bp). This extension step reflects the fact that the protein is bound to virtually any location within

the immunoprecipitated DNA fragment.

Finally, we can identify the binding locations of the target protein by evaluating the genomic re-

gions with more reads mapped than expected by chance (often referred to as “enriched regions”). As

shown in Figure 2.9f such regions with more ChIP-seq mapped reads than expected by chance can

be seen as “peaks” in the signal generated by counting the number of mapped ChIP-seq reads in each

genomic position (Figure 2.9g). The identification of significant peaks in ChIP-seq mapped reads

is also a computational problem which was solved with the development of genomic peak-calling

algorithms such as the model-based analysis for ChIP-seq (MACS) (Zhang et al., 2008). Since the

ChIP-seq signal has a low resolution, i.e. it is smoothed given the fact that we have to extend the

aligned reads, the target protein is considered to be likely bound anywhere within the called peaks.

2.2.2. DNase-seq

The DNase-seq technique consists in the observation of the DNA digestion by a certain cleavage

agent able to break the DNA molecule (Crawford et al., 2004; Sabo et al., 2004b). The cleavage agent
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Then, a genomic signal is created by counting the number of overlapping reads at every genomic

position. In the DNase-seq case, we only count the first base pair in the start (5′ position) of the reads,

since that is the position in which the DNase I enzyme has cleaved the DNA and indicates an open

chromatin region (Figure 2.10f–g). The resulting genomic signal represents a nucleotide-resolution

map of the open chromatin positions within the whole genome.

Finally, we can detect the genomic regions with more reads mapped than expected by chance,

often referred to as “DNase hypersensitivity sites” (DHSs; Figure 2.10h). DHSs are detected by

using algorithms specially designed for such purpose such as the F-seq (Boyle et al., 2008). Each

DHS is composed of several DNase-seq signal peaks. Note that the depletions within two of these

nucleotide-resolution peaks are indicative of a region wherein the DNase I enzyme could not access

because there was a protein binding in that region. The DNase-seq signal depletion between two

DNase-seq peaks is called a “footprint” (Figure 2.10h). The identification of footprints gives us a

genome-wide map of putative active TFBSs.

There are two different protocols to perform the DNase-seq experiment, termed “single-hit” and

“double-hit”. There are a few experimental differences but the most important is the fragment size

selection and isolation. While the single-hit DNase-seq protocol selects for larger cleaved fragments

representing the extremities of the DHSs, the double-hit protocol selects for shorter cleaved fragments

within the DHSs. Nevertheless, the resulting genomic signal and all post-read alignment steps are the

same between these two approaches.

It is important to point the differences between DNase-seq and ChIP-seq. In the DNase-seq method,

we determine the binding of any protein in the region being analyzed, without knowing which protein

is binding; however in ChIP-seq we only determine the binding of a particular target protein with a

known antibody in the region of interest. Furthermore, while the DNase-seq can provide the precise

protein binding location, the ChIP-seq tells us an approximated region for the binding of the target

protein, since the protein binds virtually any locus within the ∼200 bp immunoprecipitated fragments.

The selection of the technique to use depends mainly on the experimental design and should consider

these important details.

2.3 Computational Prediction of Active Transcription Factor Binding

Sites

The identification of active TFBSs is a very important task, since they are the key players on most

regulatory mechanisms. The detection of such regulatory elements have enabled significant advances

in the understanding of many biological mechanisms such as cell differentiation (Lin et al., 2015;

Tsankov et al., 2015) and the onset of diseases (Schaub et al., 2012; Vernot et al., 2012; Charos et al.,

2012). In this thesis, we are going to address the computational prediction of active TFBSs.

The standard computational approach is the use of sequence-based methods, which search over

the genome’s DNA for sequences representing the DNA binding affinity sequence of TFs (Fig-

ure 2.5) (Stormo, 2000). However, this approach is not able to predict active binding sites, i.e. binding

sites that are being currently bound by TFs at a particular cell state (Section 2.3.1). To introduce the

cellular context, we can use the ChIP-seq for TFs (Section 2.3.2). However, success of ChIP-seq

assays depends on the existence of a good antibody against the TFs of interest and on the availability

of large numbers of cells. These two conditions are not always met in particular for primary cells.

Furthermore, ChIP-seq is an expensive technique. Therefore, experiments involving ChIP-seq are

restricted to the analysis of a small selection of TFs and cell types (Kim et al., 2008; Ouyang et al.,

2009) or require the effort of large consortia (ENCODE Project Consortium, 2012). A solution to

sequence-based and TF ChIP-seq-based methods’ limitation is to explore the fact that an open chro-

matin structure is crucial and a prerequisite to the active binding of a TF on the DNA (Arvey et al.,
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rithms. The most common sequence-based approach is called motif matching. This algorithm scans

the genome and scores every contiguous DNA sequence using a matrix representation of the TF’s

motif termed position frequency matrix (more details in Section 4.2.1). The TFBSs predicted using

computational sequence-based methods are called motif-predicted binding sites (MPBSs).

Computational sequence-based methods, such as the motif matching, have a low computational

complexity, which makes their genome-wide application easy (Mathelier and Wasserman, 2013).

However, while the genome is a large sequence of nucleotides (human genome length is ∼3.1 billion

bp), the TF’s binding affinity sequences are small (usually between 5–20 bp) and degenerate (only

a fraction of the motif is highly conserved). Therefore, it is hard to fine-tune the sensitivity at the

expense of the specificity (Stormo, 2000). Furthermore, this technique has a major disadvantage: it is

unable to identify active binding sites, i.e. binding sites that are actually being bound by proteins at a

specific cellular condition (Boyle et al., 2011). This happens because computational sequence-based

methods rely solely on the DNA sequence affinity of proteins. However, the DNA sequence is the

same between different cells for a particular organism; independent of cell type, cellular condition,

life stage, stimuli response, and others. The key characteristic which allows different cells with the

same genetic material to express a different set of proteins is the chromatin structure. Therefore,

information regarding the chromatin structure is a prerequisite to identify active (cell type-specific)

TFBSs (Arvey et al., 2012; Thurman et al., 2012).

In practice, the fact that computational sequence-based approaches are unable to identify active

binding sites is expressed as a very high number of false positive sequence-based predictions, repre-

senting the set of TFBSs not being accessed in a particular cellular condition. Figure 2.11 exemplifies

this issue. We applied the motif matching tool “find individual motif occurrences” (FIMO) (Grant

et al., 2011) in a genomic region using 520 TFs affinity representations with a conservative threshold

to accept binding site hits. The result shows more than 3,000 MPBSs on a 3,000 bp region, which

absolutely does not correspond to any possible biological regulatory model.

3,000 bp

25,779,000 25,780,000 25,781,000

ID2 Gene

AGTGCAAAAA
(HOXD10)

AAACCGGTTT
(TFCP2)

GAAAGCGAAA
(IRF8)

TGTGGTTT
(RUNX1)

AAATCACTG
(GFI1)

GTAAACA
(FOXL1)

TTTCTAGGAATT
(BCL6B)

AACAGCTGTT
(MYF6)

GGGAATTTCC
(RELA)

TTTCAGTTTC
(STAT1)

> 3,000 motif-predicted binding sites

motif-predicted binding sites

Figure 2.11: Main problem of computational sequence-based methods. The motif matching tool

FIMO (Grant et al., 2011) was applied in a 3,000 bp genomic region using 520 TF DNA sequence

binding affinity models and resulted in more than 3,000 MPBSs. Such biologically impossible sce-

nario exemplifies the fact that computational sequence-based approaches (such as motif matching)

are, alone, unable to identify active binding sites.
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thermore, a complete map of all putative active TFBSs, i.e. footprints, for a particular cell type can be

obtained with a few assays (in the example of Figure 2.12, two assays: ChIP-seq for H3K4me3 and

DNase-seq). However, the detection of footprints with DNase-seq and histone modification ChIP-seq

require special computational frameworks. Such computational frameworks which processes open

chromatin NGS-based data gained popularity over the last years and are used to address the problem

of active TFBS prediction. Such chromatin-based computational methods that use open chromatin

data to predict active binding sites are called “computational footprinting methods” and are the main

subject of this thesis.

2.4 Computational Footprinting Methods

In this section we present the state-of-the-art computational methods, which use the grammar of

active TFBSs to perform predictions of active TFBSs – the computational footprinting methods (Sec-

tion 2.4.1). We define the different types of computational footprinting methods (Section 2.4.2) and

describe how they have been evaluated in the literature (Section 4.2). Next, we show the current

challenges on the identification of active TFBSs using computational footprinting approaches (Sec-

tion 2.4.4). Finally, we close this section with a comprehensive literature review on published com-

putational footprinting methods (Section 2.4.5).

2.4.1. Method Definition

In this thesis we focus on computational footprinting methods to address the problem of active TFBS

prediction. We formalize the concept of computational footprinting method as follows:

Computational Footprinting Method: A computational framework to analyze open chromatin (NGS-

based) data and create a genome-wide map of active TFBSs.

The term “computational framework” refers to a set of methods and algorithms used to process

the open chromatin data and perform the prediction of putative active TFBSs. Such computational

framework has to be capable of executing within a reasonable amount of time with massive genome-

wide data. Therefore, effort has to be done on applying efficient data structures and algorithms with

minimal computational complexity. The output of computational footprinting methods consist of

multiple genomic regions, each of which starts and ends at particular genomic coordinates, which

represents the putative active binding sites. Furthermore, the predicted footprints should be as close

as possible, in terms of genomic position and predicted region’s width, to the real TFBSs. In other

words, the method should have a high spatial specificity.

The Footprint Score (FS) Method

The simplest computational footprinting approach, termed “the footprint score (FS)” (Neph et al.,

2012), consists on sliding a window across the genome and evaluating the ratio between the number

of reads (from a particular open chromatin experiment such as DNase-seq) inside the window and

inside the flanking regions of the window (Figure 2.13). More formally, let x = 〈x1, · · · ,xn〉 be a

genomic signal in which xi ∈ N
0 represents the number of DNase-seq mapped reads starting at the

genomic position i within a genome with total length n. The FS for a particular window represented

as a genomic region ri = [u,v], which is an interval from the genomic coordinate u to v (including

both), is calculated as

FSri
=

(

nC
ri
+1

nR
ri
+1

+
nC

ri
+1

nL
ri
+1

)

, (2.1)
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of putative active binding sites without specifying the TFs that are binding these regions. Although

further processing is necessary in order to identify which particular TF bind to these putative binding

sites; the advantage of such approach is that binding sites of unknown TFs can be detected. Fig-

ure 2.14a shows an example of the segmentation computational footprinting approach. The example

shown in this figure is similar to the FS shown in Figure 2.13.

On the other hand, site-centric methods (Figure 2.14b) start with putative binding sites obtained

by using, for instance, a sequence-based prediction method such as motif matching (Section 2.3.1).

Then, open chromatin experimental data around these a priori predictions are gathered and classified,

generally using unsupervised machine learning methods. This approach leads to footprints for target

TFs. The advantage of such approach is that we already know which TFs are binding to the predicted

footprints. However, the disadvantage is that it depends on the a priori TF evidence (such as the DNA

binding affinity motif), which is not always available. Consequently, site-centric techniques are only

able to identify binding sites from well-known TFs.

Moreover, the computational complexity of the site-centric approach is larger than that of

segmentation-based methods. To assess the complexity in terms of the big-O notation, let n be the

length of the genome, w be the length of a window in which footprints are being searched, m be the

number of TFs in which we are interested in analyzing and h be the number of MPBSs found by

applying a motif-matching algorithm. The segmentation approach requires the sliding of a window

of length w with offset of a fraction of w (usually 1
3 in the case of the FS method) in the genome

of size n. Therefore, the segmentation approach is O(n+w). The site-centric approach first re-

quires the application of the motif matching, which has complexity O(nw). Then, it performs a

classification algorithm in each MPBS, which has complexity of at least O(wh). Finally, the site-

centric approach performs this operation for each one of the m TFs. Therefore, it has complexity of

O(m(nw+wh)) = O(m((n+h)w)). In other words, the segmentation approach requires one execu-

tion per genome to provide footprint predictions for all putative TFBSs; the site-centric approach

requires one genome-wide execution per TF. In practice, if one is interested on a genome-wide

exploratory analysis (∼500–1000 TFs), the execution of site-centric methods requires a significant

amount of computational time.

2.4.3. Evaluation of Computational Footprinting Methods

There is no well-defined gold standard for the evaluation of footprinting methods. All works so far

have used ChIP-seq of TFs in conjunction with MPBSs as ground truth (Pique-Regi et al., 2011;

Cuellar-Partida et al., 2012). Such method provides a straightforward scenario for the evaluation of

computational footprinting methods. The idea behind such an evaluation approach is that the TF

ChIP-seq provides the cell-specificity and the MPBSs provides a countable structure which is used to

calculate statistics. In the following we define such procedure.

In the so-called “ChIP-seq evaluation approach”, MPBSs with ChIP-seq evidence (which can be,

for instance, MPBSs close to TF ChIP-seq peak summits) are considered “true” TFBSs. On the other

hand, MPBSs without ChIP-seq evidence are considered “false” TFBSs. Every TFBS prediction

(i.e. footprint) that overlaps a true TFBS is considered a correct prediction (true positive – TP) and

every prediction that overlaps a false TFBS is considered an incorrect prediction (false positive –

FP). Therefore, true negatives (TN) and false negatives (FN) are, respectively, false and true TFBSs

without overlapping predictions. This is depicted on Figure 2.15a.

The contingency table (TPs, FPs, TNs and FNs) enables the creation of receiver operating char-

acteristic (ROC) curves, which describe the sensitivity increase as we decrease the specificity of the

method (Figure 2.15b). The area under the ROC curve (AUC) is a good metric to evaluate the overall

performance of computational footprinting methods. Furthermore, the contingency table also en-

ables the evaluation of the area under the precision-recall (PR) curve (AUPR; Figure 2.15c). This

metric is indicated for problems with imbalanced datasets (distinct number of positive and negative

22







2.4. Computational Footprinting Methods

He et al. (2014) also indicated several TFs, such as nuclear receptors, in which the DNase-seq

footprint pattern resembles their DNase-seq sequence cleavage bias estimate. For instance, the aver-

age DNase-seq signal around binding sites of the transcription AR (androgen receptor) exhibits very

similar patterns when a comparison is made between DNase-seq data from a cell type in which AR is

known to be active (Figure 2.16b) and a cell type in which AR is known to be inactive (Figure 2.16c).

–0.2 0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0 P < 10
–5

, r
2

= 0.4673

m3134 GR

CTCF

LNCaP AR

J UN

SP1

NRF-1

FOS

ZBTB33

Cleavage bias

F
o
o
tp

ri
n
t 

s
c
o
re

 p
e
rf

o
rm

a
n
c
e

1

2

3

4

5 Plus
Minus

0.02

0.06

0.1

A
v
e
ra

g
e

D
N

a
s
e
-s

e
q
 p

ro
le

A
v
e
ra

g
e
 n

a
k
e
d
 D

N
A

D
N

a
s
e
-s

e
q
 p

ro
le

a
b

c

AR binding

AR not binding

0–25 25

0–25 25

Distance from TFBS center

Distance from TFBS center

Figure 2.16: Impact of DNase-seq sequence cleavage bias on computational footprinting. (a)

This graph shows the amount of DNase-seq sequence cleavage bias (x-axis) vs the performance (AUC

from the ChIP-seq evaluation approach) of the FS footprinting method. We clearly observe that there

is a strong negative correlation between these two variables. (b) Average DNase-seq signal profile

around ChIP-seq peaks of the AR TF in a cell type in which it is known that the AR TF is being

expressed (i.e. AR is actively binding). (c) Average DNase-seq signal profile around the same regions

as in (b); however in this case the DNase-seq is from a naked DNA experiment, where all proteins

were removed from the DNA. In this case AR is not binding the DNA, but a footprint pattern can still

be found. Source: He et al. (2014) (modified to fit thesis format and/or clarify key points).

Lack of Benchmark Data for Method Evaluation

Except for a few studies (Sherwood et al., 2014; Yardımcı et al., 2014; Kähärä and Lähdesmäki, 2015),

comparative analyses evaluating footprinting methods analyzed only a few (< 12) TFs. Also, a max-

imum of only four competing methods were evaluated using the same experiment design of a partic-

ular published study. In addition, the experiment design for evaluation of computational footprinting

methods vary between different publications. Despite the importance of method evaluation (Nature

Methods Editorial, 2015), there is a clear lack of benchmark data, evaluation standards and studies

performing a comprehensive analysis of computational footprinting methods.

Furthermore, when we consider the few studies that performed comparative analyses so far, all of

them have used the ChIP-seq evaluation scheme as described in Section 4.2. This evaluation requires

TF ChIP-seq experiments to be carried out on the very same cells as the DNase-seq experiment and

has a few caveats. First, TF ChIP-seq peaks are also observed in indirect binding events (Yardımcı

et al., 2014), i.e. a binding site might have ChIP-seq evidence of TF A when in fact it is actually

binding TF B which is interacting with A by an indirect binding event, such as DNA looping. Second,
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they have a lower spatial resolution than DNase-seq. Consequently, false MPBSs might be regarded

as true MPBSs by proximity to an active TFBS (Cuellar-Partida et al., 2012; Yardımcı et al., 2014).

Therefore, it is important to devise a new evaluation strategy which does not rely on ChIP-seq data

for independent evaluation of computational footprinting methods.

Yardımcı et al. (2014) proposed the use of gene expression data to evaluate footprint predictions

using the following idea: the higher the expression of a particular TF in cell type A in comparison

with cell type B, the higher the quality of the footprint predictions for that particular TF in cell type

A (in comparison with B). Nevertheless, this evaluation strategy, which can be used to complement

the ChIP-seq evaluation strategy, has not been systematically explored.

Transcription Factor Binding Residence Time

The open chromatin NGS-based techniques described in Section 2.2 also have constraints intrinsic to

the regulatory mechanism of the cell. These experimental limitations were not fully explored in the

light of computational footprinting method’s performance. The main limitation regards the residence

time of TFs binding on the DNA. Sung et al. (2014) showed that short-lived TFs, i.e. TFs that have a

low binding residence time, display a lower DNase-seq cleavage protection pattern, i.e. low number

of DNase-seq mapped reads surrounding the footprint, when compared to a TF with higher binding

residence time (Figure 2.17). Such fleeting TFs are harder to detect than other TFs with longer

residence time since their protection pattern is less pronounced.

Nevertheless, a systematic evaluation on the extent of the negative impact on footprint prediction

accuracy given the TF binding residence time issue has not been made. It is very important to measure

such impact to determine the feasibility of computational footprinting for certain TFs and cell types.

Furthermore, a TF-wise quantification of such impact would assist in determining the overall quality

of each TF’s footprint predictions.

2.4.5. Review on Computational Footprinting Methods

A number of computational footprinting methods have been proposed. These methods use differ-

ent combinations of open chromatin NGS-based experimental data sources, different algorithms and

target different experiment designs. Here, we discuss the main published methods, providing a com-

prehensive literature review on computational footprinting methods.

Hesselberth et al.

One of the first attempts to create a computational footprinting method for DNase-seq data was per-

formed by Hesselberth et al. (2009). In their study, they performed the DNase-seq experiment in the

Saccharomyces cerevisiae organism (yeast). They used a three-phase segmentation approach to detect

footprints in the DNase-seq data. In the first phase, the authors consider every possible window that

was contained within one of the specified target regions (DHSs) and compute a depletion score for

each of these regions. The second phase consists of selecting high-scoring windows using a greedy

algorithm, eliminating from consideration any window that overlapped a window with a higher score.

Finally, in a third phase, the authors shuffle the input data independently within each target region and

repeat the entire procedure, using the resulting scores to estimate quality scores. They introduced the

FS (Equation 2.1) as a quality metric of footprints.

Within this systematic identification of DNase-seq footprints, Hesselberth et al. (2009) analyzed

many features regarding such footprint predictions. They identified many known sequence motifs in

these footprints, observing that collectively, 35.2% of the footprints with a false discovery rate of 0.05

overlapped a conserved factor binding site inferred from ChIP-seq data. Furthermore, they observed

that the patterns of DNase I protection surrounding different TFs had different average shapes, i.e. the
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Figure 2.17: TF residence time. This graphs depicts the average DNase-seq signal around TFBSs

of TFs with: (a) long residence time – CTCF; (b) intermediate residence time – AP-1 (C-JUN) and

(c) short residence time – GR. Sung et al. (2014) suggests that the DNase-seq signal width of the

protection against the DNase I enzyme might be correlated with the residence time of TFs in the

DNA. Source: Sung et al. (2014) (modified to fit thesis format and/or clarify key points).

DNase-seq average signal varies depending on the binding type of TFs. Finally, they created a very

consistent genome-wide map of TFBSs for the Saccharomyces cerevisiae, which led into insights on

the chromatin architecture and gene expression of this organism.

Neph et al.

Neph et al. (2012) used a simplified version of the segmentation-based method originally proposed

in Hesselberth et al. (2009). Their method consists on applying a sliding window to find genomic

regions (6–40 bp) with low DNase-seq signal between regions (3–10 bp) with high DNase-seq signal

(peak-dip-peak pattern). They performed their experiments on human DNase-seq data. They also use

the FS to determine the most significant predictions. Their study amplified the analysis scale signif-

icantly, by detecting footprints for 41 diverse human cells with data from the encyclopedia of DNA

elements (ENCODE) repository (ENCODE Project Consortium, 2012). Such a large-scale study was

able to provide multiple new insights on computational footprinting. First, they found that genetic

variants affecting allelic chromatin states are concentrated in footprints, and that these elements are

preferentially sheltered from DNA methylation. Second, they showed that the average TF-wise pat-

terns of DNase I digestion is correlated to the crystallographic topography of protein-DNA interfaces,

indicating that TF structure has been evolutionarily imprinted on the genome. Finally, they performed

an extensive “brute force” de novo motif finding algorithm and found 683 unique DNA sequence

affinity motif structures, of which 394 (58%) matched distinct experimentally-verified motif models

present in Jaspar (Mathelier et al., 2014), Uniprobe (Robasky and Bulyk, 2011) and Transfac (Matys

et al., 2006) motif repositories.
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Boyle et al.

Boyle et al. (2011) designed a segmentation computational footprinting approach, which is based on

using hidden Markov models (HMMs) to predict the DNase-seq pattern described in Figure 2.12.

Briefly, their HMM uses a normalized DNase-seq signal to find regions with depleted DNase I diges-

tion (footprints) between two peaks of intense DNase I cleavage. As the DNase-seq profiles required

a nucleotide-resolution signal, which is usually noisy, the authors used a Savitzky-Golay smooth-

ing filter to reduce noise and to estimate the slope of the DNase-seq signal (Madden, 1978). Their

HMM had five states, with specific states to identify the decrease/increase of DHS signals around the

peak-dip-peak region. They also provided numerous insights into computational footprinting. First,

they described cell-specific footprint patterns, which correlate significantly with gene expression fold

change between different cells. Second, they described a conservation phenomenon which was not

observed in the conservation study performed by Hesselberth et al. (2009). They find that for most

TFs, there is a marked drop in conservation ∼10 bp immediately flanking the footprint. Beyond

this drop, conservation increases again before gradually decreasing to background levels, creating

a “shoulder” in this signal. They also described in details the unique binding characteristics that the

human insulator CTCF footprints displays. Finally, they used the STAMP (Mahony and Benos, 2007)

method to detect putative TFs in footprints, which simply searches for TFs on known DNA sequence

affinity information. Therefore, a de novo motif finding approach was not performed as in Neph et al.

(2012).

Pique-Regi et al. (Centipede)

One of the most common footprinting approaches was created by Pique-Regi et al. (2011). Their

strategy, termed Centipede, is a site-centric approach, which gathers experimental and genomic infor-

mation around MPBSs. It then uses a Bayesian mixture model as an unsupervised classification tool to

label each retrieved MPBS as either “bound” or “unbound”. Their approach was the first to integrate

multiple different experimental assays. The experimental data include DNase-seq and histone modi-

fication ChIP-seq. The DNase-seq data were used at its full spatial resolution (nucleotide-resolution),

by obtaining raw DNase-seq signal surrounding a 200 bp window around each MPBS. However, only

the average histone modification ChIP-seq signal was used. The genomic data include the scores

from the computational sequence-based approach used to create the MPBSs, sequence conservation

and distance to the nearest gene. They evaluated their approach on six TFs with ChIP-seq data avail-

able, using the ChIP-seq evaluation approach. Their reported average AUC for the six tested TFs

were as high as 98.11%. However, they did not observe a gain in accuracy when using a model with

both DNase-seq and histone modification ChIP-seq (median AUC = 96.52%).

Cuellar-Partida et al.

Cuellar-Partida et al. (2012) proposed a site-centric method to include open chromatin NGS-based

experimental data as priors for the motif matching procedure (Section 2.3.1). Their method uses a

probabilistic classification approach inspired in Bayes decision theory to compute better log-posterior

odds scores than the ones observed by purely using the DNA sequence binding affinity model. Be-

fore the computation of prior probabilities the DNase-seq or histone modification ChIP-seq signals

are smoothed as follows. To create smoothed DNase-seq signals they calculated the number of reads

aligning to a window of 150 bp, specified every 20 bp. Histone modification smoothed signal input

data was specified in a 25 bp resolution. In every position, it was summed 1 if a mapped read fell

within 0–200 bp from the 25 bp window and 0.25 if it occurred within 200–300 bp. After the com-

putation of prior probabilities with smoothed DNase-seq signal, they perform the motif match using

the program FIMO (Grant et al., 2011). They performed the first comparative study on computational
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footprinting methods, where they compared their method with Centipede and with a much simpler ap-

proach termed “tag count” (TC). The TC approach, similar to the FS, consists on ranking the MPBSs

using the number of DNase I cleavage hits within a window of length l around the MPBSs. More

formally, let the interval ri = [u,v] be the ith MPBS from a set R of MPBSs and x = 〈x1, ...,xn〉 be the

DNase-seq genomic signal from a genome of size n. The TC for ri = [u,v] is calculated as

TCri
=

u+v
2 + l

2−1

∑
j= u+v

2 − l
2

x j. (2.3)

Their results showed that, for their approach, the DNase-seq method dramatically improved the

sequence-based prediction of TFBSs. Furthermore, they find that adding the histone modifications

H3K4me3 or H3K27ac to their DNase-seq model improved the accuracy slightly. The comparison

showed that Centipede outperformed their method using the gold standard proposed in Pique-Regi

et al. (2011). However, in this case, they found that using the simple TC approach would outperform

both Centipede and their approach. They associate such results with the biases generated by such

gold standard created on the basis of TF ChIP-seq data.

Piper et al. (Wellington)

Piper et al. (2013) devised a segmentation approach based on a Binomial test. For a given candidate

footprint, it tests the hypothesis that there are more reads in the flanking regions than within the

footprint. Following an observation that DNase-seq cuts of the double-hit protocol are strand-specific,

Wellington only considers reads mapped to the upstream flanking region of the footprints. They

evaluate their method and competing methods in a ChIP-seq-based gold standard created with 214

human TF ChIP-seq datasets. First, they showed that using such observed strand imbalance of reads

increases the computational footprinting predictive power. Furthermore, their strategy outperformed

the competing methods by Hesselberth et al. (2009), Neph et al. (2012) and Pique-Regi et al. (2011).

Finally, this study performs a great contribution by creating a DNase-seq data processing package in

the programming language Python termed pyDNase. Such package allows a user-friendly application

of their methodology and also further DNase-seq data processing tools.

Sherwood et al. (PIQ)

Sherwood et al. (2014) developed a computational footprinting framework termed protein interac-

tion quantification (PIQ). PIQ is a site-centric method, which uses Gaussian process to model and

smooth the footprint profiles around candidate MPBSs (Sherwood et al., 2014). Active footprints are

estimated with an expectation propagation algorithm. Finally, PIQ indicates the set of motifs which

footprint signals are distinguishable from noise to reduce the set of candidate TFs. They compared

their method with competing methods in a very large benchmarking dataset containing 303 TFs bind-

ing on K562 human cell type. Through the same evaluation procedure used in the aforementioned

works (Pique-Regi et al., 2011; Cuellar-Partida et al., 2012; Piper et al., 2013), they measured a mean

AUC of 0.93 for PIQ against 0.87 for Centipede (Pique-Regi et al., 2011) and 0.65 for Neph (Neph

et al., 2012) approach.

Nevertheless, this study contains many further analyses which provide insights into computational

footprinting. They analyzed the differentiation of mouse embryonic stem cells into pancreatic and

intestinal endoderm cells and were able to identify and experimentally validate eight pioneer TF

families that perform changes in the chromatin dynamics. One of the most interesting findings is that

these pioneer TFs change the chromatin directionally. Besides the identification of pioneer TFs, they

also detected “settler” TFs, which binds the DNA after the chromatin structure changes performed by

the pioneer TFs.
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Yardımcı et al. (FLR)

The issues on computational footprinting presented by He et al. (2014) (Section 2.4.4) were analyzed

in Yardımcı et al. (2014). In this study, they proposed a site-centric method (termed FLR) based on

a mixture of multinomial models to classify MPBSs as active/inactive in an unsupervised manner.

The method uses an expectation maximization algorithm to find a mixture of two multinomial distri-

butions, representing active (footprints) and inactive (background) MPBSs. The background model

is initialized with either DNase-seq sequence cleavage bias frequencies or estimated de novo. Af-

ter successful estimation, MPBSs are scored with the log odds ratio for the footprint vs background

model. The model takes DNase-seq cuts within a small window around the candidate profiles (25

bp up/downstream) as input. DNase-seq sequence cleavage bias is estimated for 6-mers based on the

DNA sequences extracted within the same regions in which the cuts were retrieved. They showed that

their method significantly outperformed the simple TC approach. Furthermore, they also criticize the

TF ChIP-seq evaluation method on the basis that it is not able to identify indirect binding events.

For that reason, they performed a simple analysis based on gene expression and observed that the

footprints retrieved by their approach are significantly enriched on cell types where the tested TFs are

being expressed.

Sung et al. (DNase2TF)

Sung et al. (2014) also performed a number of analysis that contributed to the discussion initiated

in He et al. (2014). First, they developed a new segmentation computational footprinting approach

with very simple premises, which is called DNase2TF. DNase2TF is based on the calculation of a

binomial z-score based on the levels of DNase-seq depletion surrounding candidate footprints. At a

second step, DNase2TF interactively merges close candidate footprints whenever they improve deple-

tion scores. DNase2TF corrects for DNase-seq sequence cleavage bias using cleavage statistics for 2

or 4-mers. They reported that their method outperformed Hesselberth et al. (2009), Centipede (Pique-

Regi et al., 2011) and Wellington (Piper et al., 2013). Furthermore, as He et al. (2014), they also raised

the issue that some TF DNase-seq signatures resemble their cleavage bias. Moreover, they showed

that one of the main problems with DNase-seq footprinting was related to the fact that some TFs have

a very low residence time on DNA. Since they bind to the DNA in a short time period, the DNase-seq

protocol is not able to produce a clear peak-dip-peak pattern.

Kähärä et al. (BinDNase)

Kähärä and Lähdesmäki (2015) developed a supervised site-centric method based on logistic regres-

sion to predict active/inactive MPBSs. The algorithm starts with nucleotide-resolution DNase-seq

signal around the MPBSs (100 bps up/downstream) and selects discriminatory features using a back-

ward greedy approach. As a supervised approach, the method requires positive and negative exam-

ples, which is obtained from TF ChIP-seq data. They showed that their approach does not present

any significant gain in performance by modeling DNase-seq sequence cleavage bias. Furthermore,

they present a discussion on the standardization of DNase-seq data pre-processing, showing that data

on major repositories such as ENCODE are not always analyzed standardly. They state that their su-

pervised approach outperforms unsupervised site-centric approaches such as Centipede (Pique-Regi

et al., 2011) and PIQ (Sherwood et al., 2014). However, since their approach is supervised (i.e. needs

TF ChIP-seq data for model training), BinDNase is simply a sanity check for the TF ChIP-seq data.

Therefore, it has little use in real-case scenarios and shares the same issues regarding the usage of TF

ChIP-seq (Section 2.3.2).

30



2.4. Computational Footprinting Methods

Overview of Computational Footprinting Methods

In this section we made a comprehensive discussion on state-of-the-art computational footprinting

methods. A summary of the main computational footprinting methods and their features is presented

in Table 2.1. In this table we list the main characteristics of these computational footprinting methods:

• Type. The type of computational footprinting method: site-centric (SC) or segmentation

(SEG).

• Algorithm. The main algorithm that the method uses to perform footprint predictions.

• Bias Correction. Whether the method performs DNase-seq sequence cleavage bias correction

or does not perform such correction. Such correction estimates the sequence cleavage bias for

all DNA sequences of length k termed k-mers and use these bias estimates to correct footprint

predictions.

• Resolution/Smoothing. Whether the method applies a smoothing technique in the input open

chromatin data or if it uses the full base-pair (bp) resolution data.

• Footprint Ranking. The metric used to rank the footprint predictions. It is used as a quality

metric to filter out lower-scored footprints.

• Availability. The availability of software tool or source code. The methods obtain a ‘+’ if they

are public available (‘–’ otherwise).

• Usability. Defines how complex it is to execute the method. The methods natively supporting

standard genomic files and being executed with few commands (≤ 3) have ‘+’ (‘–’ otherwise).

• Others. Other important additional information about the method.

Table 2.1: Overview of computational footprinting methods. Source: Gusmao et al. (2016) (mod-

ified to fit thesis format and/or clarify key points).

Name Type Algorithm Bias Cor-

rection

Resolution/

Smoothing

Footprint

Ranking

Availa-

bility

Usa-

bility

Others

BinDNase SC Logistic Re-

gression

No bp / Sliding

Window

Probability + – Require TF

ChIP-seq for

Training

Boyle SEG HMM No bp None – –

Centipede SC Bayesian

Mix. Model

No bp Probability + – Integrates

Histone and

Sequence Data

Cuellar SC Weighted

Motif Match

no Sliding

Window

Sequence-

based Score

+ –

DNase2TF SEG Sliding Win-

dow

4-mer bp p-values + +

FLR SC Mixture

Model

6-mer bp Log-Odds + – Bias Correction

for Each TF

Neph SEG Sliding Win-

dow

no bp FS – –

PIQ SEG GP/Expectation

Propagation

No bp / GP Probability + + Support Repli-

cates, Time Se-

ries

Wellington SEG Sliding Win-

dow

No bp p-value + +
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2.5 Discussion

In this chapter we introduced the main concepts within the molecular biology field of gene regulation.

Then, we defined the problem we are going to address in this thesis, which is to identify active TFBSs,

i.e. DNA regions being bound by regulatory proteins at a particular cell state or condition. We have

discussed that sequence-based computational approaches which takes advantage of the protein-DNA

sequence binding affinity are not able to identify active sites, since the chromatin dynamics also needs

to be considered. Nevertheless, we show that novel open chromatin assays such as DNase-seq and

ChIP-seq capture such cell-specific chromatin dynamics. However, the magnitude and complexity of

the data generated by these biological experimental assays call for robust computational frameworks.

Finally, we discussed a particular type of computational framework for open chromatin data – the

computational footprinting methods – which addresses the TFBS identification problem by process-

ing such open chromatin data and searching for patterns that are indicative of active TFBSs. We

performed a comprehensive literature review on the main computational footprinting methods and

discussed the current challenges on this field.

In this thesis we investigate computational footprinting methods in detail. Among our goals are:

• The development of a computational footprinting method which takes advantage of the full

(nucleotide-resolution) grammar of active TFBSs given by the DNase-seq and histone mod-

ification ChIP-seq data. Given the experimental flexibility of the footprints obtained using

a segmentation-based approach, we are going to develop our method using the segmentation

approach.

• The investigation of techniques to process and normalize the DNase-seq and histone modifi-

cation ChIP-seq signals. Furthermore, we will analyze the correction of the DNase-seq signal

for DNase-seq sequence cleavage bias and other experimental artifacts, as these issues were

correlated with a decrease in accuracy for other computational footprinting methods.

• The comparison of multiple computational footprinting methods. We will investigate partic-

ularities associated to each method. Furthermore, we will analyze the correlation between

the accuracy of computational footprinting methods and multiple biological genomic features.

Moreover, we will also show the application our computational footprinting framework in real

case scenarios.

• The development of an alternative evaluation approach to that using TF ChIP-seq, to avoid

interpreting the results only in the light of a single evaluation methodology. Furthermore, an

attempt to create a benchmark dataset will be made, in order to standardize method comparison

within this field. Such benchmark dataset and the comparative method analyses will be per-

formed on a large compendium comprising many TFs, TF ChIP-seq data and gene expression

data.

• The investigation of the extent of the TF residence time’s impact on footprint prediction perfor-

mance. We plan to identify potential problematic TFs using only the input open chromatin data

to assist in the biological interpretation of the computational footprinting methods’ results.
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CHAPTER 3

Methods

In this chapter we describe the computational footprinting framework we devised to address the prob-

lem of active transcription factor binding site (TFBS) identification. Here, we exclusively present and

formalize our novel computational footprinting approach. Method parameterization and execution

details of our and other methods will be made in the next chapter.

Our methodological framework is divided into two main parts:

• In the first part, we discuss the input data processing (Section 3.1). We use data from next-

generation sequencing (NGS) open chromatin experiments which gives information regarding

the chromatin structure, allowing an accurate search for patterns of active TFBSs. In this first

part we describe all steps involved in the generation of DNase-seq and ChIP-seq signals from

the aligned reads and treatment of these signals through several steps which aim at reducing

bias and normalizing such genomic signals.

• In the second part, we define the novel method to identify footprints (i.e. putative active TFBSs)

using the processed signals (Section 3.2). Such method is based on the probabilistic framework

of hidden Markov models (HMMs).

Furthermore, we describe some details of the computational implementation of the methods de-

scribed in this chapter (Section 3.3). Finally, we close this chapter with a few concluding remarks on

the methodology choice and novelty of our approach (Section 3.4).

3.1 Input Signal Processing

As mentioned in Section 2.4.4, biological data from open chromatin NGS-based experiments, such

DNase-seq and ChIP-seq are affected by biases and noises intrinsic to the experimental protocol.

Therefore, a number of data processing steps are performed to assuage these biases and noises and

also to prepare the data for our computational footprinting method.

The input data processing pipeline is schematically represented in Figure 3.1. In this thesis, we use

DNase-seq and histone modification ChIP-seq data as the input for our computational footprinting

framework. With such data we are able to identify patterns of active transcription factor binding by

analyzing the regions in the genome which are both open and protected against DNase I digestion

(Section 2.3.3). Our method receives as input the DNase-seq and histone modification ChIP-seq

aligned reads (Figure 3.1a).

Given the aligned reads, we create genomic signals by counting the overlap between these reads at

every genomic coordinate (base pair; bp). This step, which is exemplified in Figure 3.1b, is formally

shown in Section 3.1.1. We refer to this signal as read overlap (raw) genomic signal. The read overlap

DNase-seq genomic signal is affected by the DNase-seq sequence cleavage bias. Such bias stems from

the fact that the DNase I enzyme prefers to bind to, and cleave, certain genomic sequences. Given

that, we perform a DNase-seq sequence cleavage bias correction. The DNase-seq sequence cleavage

bias correction, exemplified in Figure 3.1c, is thoroughly defined in Section 3.1.2. This step performs

local corrections in the DNase-seq signal while preserving signal scale, magnitude and shape.
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Both bias-corrected DNase-seq and read overlap histone modification ChIP-seq signals have dif-

ferent magnitude throughout the genome, i.e. the height of the peaks within each of these signals vary

greatly in distinct genomic regions. In order to normalize these signals while preserving the signal

scale and shape, we perform a within-dataset (local) normalization procedure (Section 3.1.3). The ef-

fect of such normalization procedure, as seen on Figure 3.1d, is the decrease in peak height variability

between different genomic regions. Furthermore, since our goal is to integrate both DNase-seq and

histone modification ChIP-seq signal, we perform a between-dataset (global) normalization approach

(Section 3.1.4). As seen on Figure 3.1e, such normalization approach brings these two different sig-

nals to the same data range, i.e. the data is fit into the interval [0,1], without losing their underlying

shape. After such normalization procedures, both signals will present less variability within and be-

tween datasets without enhancing background noise and without changes in the shape and duration

of the signal’s peaks.

Our computational footprinting method uses the increase and decrease of the signals. Therefore, we

also apply a method called Savitzky-Golay smoothing filter and differentiation to calculate the slope

of the signal based on a certain window of data points (Section 3.1.5). We observe in Figure 3.1f

that such slope signal assumes high positive values when there is an increase in the genomic signal

and a low negative value when there is a decrease in the genomic signal. The normalized and slope

versions of the DNase-seq and histone modification ChIP-seq signals correspond to our computational

footprinting method’s input, as will be described in Section 3.2.

3.1.1. Read Overlap Signal

NGS experiments, such as DNase-seq and ChIP-seq, provide multiple reads, i.e., short deoxyribonu-

cleic acid (DNA) sequences that are aligned into the genome. Here we formally define the genome as

a vector

g = 〈g1, · · · ,gn〉, (3.1)

where n equals the number of base pairs (coordinates) in the genome and each gi ∈ {A,C,G,T}
represents a nucleotide. As described in Section 2.1.1 the DNA has two strands, which we refer to

as the forward and reverse strand. Throughout this thesis consider g as the forward strand. Strand

differentiation will be mentioned only when this issue is important. Moreover, the reverse strand can

be inferred from the forward strand since each nucleotide pairs with a specific matching nucleotide.

We denote as g[u..v] a substring of g from the genomic coordinate u to v for all u ≤ v, including both

within the interval. Therefore, g[u..v] has total length u− v+1.

Furthermore, we refer to the term “genomic region” to denote an interval from a particular genomic

coordinate u to another genomic coordinate v. The genomic regions, as the genomic DNA substrings,

have both initial (u) and final (v) positions within the interval and u ≤ v for all intervals, which have

length u−v+1. A “genomic region set” is a collection of genomic regions, which are be represented

as R = {r1, · · · ,rm}.

We represent the reads obtained from any open chromatin NGS-based experiment, which are

aligned into a genome g, as a genomic regions set. Let R = {r1, · · · ,rm} be the set of m genomic

regions representing the reads from a particular NGS experiment aligned in g. In this case, each

ri = [u,v,s] represents a triple, where u is the coordinate in g where the aligned read starts, v is the

coordinate in g where the aligned read ends and s ∈ { , } corresponds to the DNA strand in which

the read was aligned to ( represents the forward strand, while represents the reverse strand).

With such a set R of genomic regions representing the aligned reads we are able to create a genomic

signal x, defined as a vector

x = 〈x1, · · · ,xn〉, (3.2)

by evaluating the overlap between the aligned reads R. Each xi ∈ N
0 represents the number of reads

in R that overlapped at the genomic position i.
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However, as previously discussed in Section 2.2, only the first base pairs of the DNA fragments

obtained from the biological experiments are sequenced by NGS techniques. We are interested in

evaluating the overlap of different aligned genomic regions (representing the aligned reads) for dif-

ferent biological experiments (DNase-seq and ChIP-seq). Consequently, we first define a mapping

function, which maps a particular read interval to a genomic region based on an extension parameter

η . Such function is written as

f ext(ri,η) = f ext([u,v,s],η) =

{

[u,u+η ] if s =

[v−η ,v] else.
(3.3)

With the extension function, we are able to define the overlap signal (x) as

xi = ∑
r j∈R

1
(

i ∈ f ext(r j,η)
)

, (3.4)

where 1(·) is an indicator function, which returns 1 if its parameter proposition is true or 0 otherwise.

The extension parameter used for the DNase-seq is η = 1 bp, since we are interested in the regions

in which the DNase I enzyme nicked the DNA, i.e. the start of each read. The extension parameter

used for ChIP-seq experiments is η = 200 bp. Such read size matches the average length of the DNA

fragments retrieved during the chromatin immunoprecipitation procedure.

3.1.2. DNase-seq Sequence Cleavage Bias

DNase-seq data was found to be affected by the DNase-seq sequence cleavage bias (He et al., 2014;

Meyer and Liu, 2014). This happens because the DNase I enzyme has an intrinsic preference to bind

to (and cleave) certain DNA sequences. In this section we describe our approach to estimate the

DNase-seq sequence cleavage bias and to correct the DNase-seq signal for such bias.

Estimation of DNase-seq Sequence Cleavage Bias

The estimation of DNase-seq sequence cleavage bias is performed based on DNA sequence words of

length k (k-mers). Since we want to capture the DNase-seq sequence cleavage bias within particular

regions enriched with DNase I activity, such bias estimation is performed in a set of genomic regions

of interest H = {h1, · · · ,hm}. Our approach consists on measuring, within these genomic regions of

interest: (1) the observed DNase I cleavage score for a k-mer w, which corresponds to the number

of DNase-seq cleavage hits centered on w; and (2) the background DNase-seq cleavage score, which

is defined by the total number of times w occurs. Then, the bias estimation is computed as the ratio

between the observed and background cleavage scores. Such estimation is performed for all possible

k-mers within the DNA alphabet {A,C,G,T}.

The process of estimation and correction of DNase-seq sequence cleavage bias is strand-specific,

which means that we will consider the DNA sequences and signal generated separately for each

DNA strand. However, for simplicity of notation, we will not explicitly denote strandedness in the

equations.

For each possible k-mer w, which is a string of length k constructed with symbols from the DNA

alphabet {A,C,G,T}, the observed cleavage score ow is calculated, for a set of genomic regions of

interest H = {h1, · · · ,hm}, as

ow = 1+
m

∑
i=1

∑
j∈hi

x j1

(

g[ j− k

2
.. j+

k

2
] = w

)

. (3.5)
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Similarly, the background cleavage score hw is calculated as

hw = 1+
m

∑
i=1

∑
j∈hi

1

(

g[ j− k

2
.. j+

k

2
] = w

)

. (3.6)

Finally, the estimated cleavage bias bi for a genomic position k + 1 ≤ i ≤ m− k + 1, given that

w = g[i− k
2 ..i+

k
2 ], is calculated as

bi =
ow

hw

. (3.7)

The estimated genomic bias signal point bi represents how many times the k-mer sequence g[i−
k
2 ..i+

k
2 + 1] was cleaved by the DNase I enzyme in comparison to its total occurrence in the set of

regions of interest H.

Correction of DNase-seq Sequence Cleavage Bias

The DNase-seq sequence cleavage bias correction is performed on smoothed versions of both read

overlap DNase-seq (x) and bias score b signals. The rationale is that we want to avoid dramatic signal

changes generated within nucleotide-resolution bias signals.

First, we create a smoothed DNase-seq signal x̂ using a 50 bp window, which is written as

x̂i =
x j

∑
i+24
j=i−25 x j

. (3.8)

Then, we create a smoothed bias score signal b̂ using the same 50 bp window as for the smoothed

DNase-seq signal, which is denoted as

b̂i =
b j

∑
i+24
j=i−25 b j

. (3.9)

With x̂ and b̂, we are able to calculate a signal of bias-correction factors c as

ci = x̂ib̂i. (3.10)

The pre-processed bias-corrected DNase-seq genomic signal (x̂bc) is obtained by applying

x̂bc
i = log(xi +1)− log(ci +1). (3.11)

The pre-processed bias-corrected DNase-seq signal generated by Equation 3.11 may include neg-

ative values. Since a few posterior statistical analyses required a signal consisting only of positive

values, we have shifted the entire signal by adding the global (genomic) minimum value. The global

minimum value ζ in the pre-processed bias-corrected DNase-seq signal is denoted as

ζ = min
i=1,··· ,n

x̂bc
i . (3.12)

The final DNase-seq bias-corrected signal xbc is calculated by summing the pre-processed bias-

corrected DNase-seq genomic signal (x̂bc) and the absolute global minimum value (ζ ). Such summa-

tion is simply defined as

xbc
i = x̂bc

i + |ζ |. (3.13)

where | · | represents the absolute value of a number.
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3.1.3. Within-Dataset Normalization

The next pre-processing step is applied on both DNase-seq sequence bias-corrected signal and read

overlap histone modification ChIP-seq signal. From this point further, DNA strand information is

not relevant anymore because we disregard the underlying DNA sequence. We will denote both

these signals (bias-corrected DNase-seq and read overlap histone modification ChIP-seq) here as x

for simplicity. This procedure is applied separately on each genomic signal. The within-dataset

normalization step aims to reduce the intrinsic variability present within DNase-seq or ChIP-seq data.

Such variability arise from the multiple biological and computational protocol steps.

First, the genome is partitioned into a set of non-overlapping bins Y = {y1, · · · ,ym}, where each yl

represents the interval [((l −1) · ι)+1, l · ι ] for a particular interval-length parameter ι . Furthermore,

we also create a genome partition of overlapping bins Z = {z1, · · · ,zm}, where each zl represents the

interval yl extended by ι/2 on both sides.

We are able to create a within-signal normalized signal by dividing the signal by non-zero signal

averages (Boyle et al., 2011) inside the proposed bins. For a given genomic signal entry xi at genomic

coordinate i, such that i ∈ yl , we apply

xnorm1
i =

xi

∑
j∈zl

x j1(x j > 0)
/

∑
j∈zl

1(x j > 0)
. (3.14)

3.1.4. Between-Dataset Normalization

After the within-dataset normalization, we perform a between-dataset normalization procedure to

force values inside the interval [0,1] by fitting the within-dataset normalized signals into a logistic

function (Hon et al., 2009).

Let Y = {y1, · · · ,ym} and Z = {z1, · · · ,zm} be non-overlapping and overlapping genomic partitions,

respectively, as described in Section 3.1.3. For a given genomic signal entry xi at genomic coordinate

i, such that i ∈ yl , we apply

xnorm2
i =

1

1+ e
−(xnorm1

i −ς t
zl
)/σzl

, (3.15)

where ς t
zl

is the t th percentile of the signal data points within the interval zl and σzl
is the standard

deviation of the signal data points within the interval zl , given by

σzl
=

√

√

√

√∑ j∈zl

(

xnorm1
j −µzl

)2

2ι
, (3.16)

where µzl
is the mean of the signal data points within the interval zl , given by

µzl
= ∑

j∈zl

xnorm1
j

2ι
. (3.17)

After the application of the within-dataset and between-dataset normalization procedures (for both

DNase-seq and histone modification ChIP-seq), we consider the output as our “normalized” signal.

For simplicity, we will denote such signal as xnorm.

3.1.5. Savitzky-Golay Smoothing and Slope

Our computational footprinting method uses an additional signal, which indicates upward and down-

ward trends in the normalized genomic signals. We will use the slope of the normalized signal to
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3.2. Computational Footprinting with Hidden Markov Models

assess such information (Boyle et al., 2011). In order to estimate the slope of the genomic signals

we apply a Savitzky-Golay smoothing filter followed by differentiation (Madden, 1978; Luo et al.,

2005).

The Savitzky-Golay smoothing filter and differentiation method consists of fitting the data into a

polynomial, performing a convolution (based on a specific window length τ) with a vector containing

Savitzky-Golay coefficients (Madden, 1978).

Let an odd-number τ be a specific window length in which the smoothing is going to be performed.

The Savitzky-Golay convolution is expressed as

x
slope
i =

τ̂

∑
j=−τ̂

c j+τ̂xnorm
i+ j , (3.18)

where τ̂ = τ−1
2 and c is the vector of Savitzky-Golay coefficients.

The derivation of the Savitzky-Golay coefficients is performed using an analytic solution that en-

ables the smoothing and differentiation within the same convolution depicted in Equation 3.18. First,

a polynomial will be fitted by linear least squares to a set of τ adjacent data points. These are the

same data points within the window of the convolution represented in Equation 3.18. Then, let z be

a variable which represents the index of the equally-spaced convolution, i.e. z = {z1,z2, · · · ,zτ} =
{−τ̂, · · · ,0, · · · , τ̂}. The fitted polynomial of degree τ is described as

Y = c0 + c1z+ c2z2 + cτzτ . (3.19)

The coefficients ci are obtained by solving the linear square’s normal equations

c = (J⊺J)−1
J⊺x̂, (3.20)

where x̂ is the vector of signals within the current convolution window of length τ (Equation 3.18),

and the ith row of the Jacobian matrix J, denoted as

∂ x̂

∂c
, (3.21)

has values 〈1,zi,z
2
i , · · · ,zτ

i 〉.
For the full linear squares derivation of the Savitzky-Golay coefficients and more details on the

effects of such smoothing filter, please refer to Luo et al. (2005).

3.2 Computational Footprinting with Hidden Markov Models

In order to detect footprints in genomic signals of the DNase-seq and histone modification ChIP-seq

experiments we need a technique which is able to segment the genome from a multidimensional input.

The grammar of active TFBSs shows a clear sequential pattern with regard to the intensities of the

DNase-seq and histone modification signals. However, the length of each of these pattern’s segment,

i.e. length of the background regions (with no detectable signals), the length of histone modification

or DNase-seq peaks and the duration of the footprints are diverse. Furthermore, segmented regions

might present a similar level of the signals. For instance, both the background genomic regions and

footprint genomic regions, which should definitely be separated by the computational footprinting

segmentation method, have the same signal landscape, i.e. low (close to zero) signals of both DNase-

seq and histone modification ChIP-seq signals. The difference between these regions is that the

footprint happen within two peaks of DNase-seq signals, which happen within two peaks of active

histone modification signals. Given these remarks, an obvious choice for such a segmentation task
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are hidden Markov models (HMMs). HMM is a computational technique based on Markov stochastic

processes. Such computational model is defined thoroughly in Section 3.2.1.

After defining the HMMs, we proceed to discuss how this probabilistic model is used to seg-

ment the genome in the context of the identification of active TFBSs. Figure 3.2 shows a schematic

pipeline of our computational footprinting framework using HMMs. First, we define a number of

different model topologies based on the grammar of active TFBSs and on remarks made by recent

studies on the heterogeneity of such grammar (Section 3.2.2). The different HMM topologies take

different input signals, which can be normalized and/or slope versions of the DNase-seq (Figure 3.2a)

and histone modification ChIP-seq (Figure 3.2b) signals. The HMM topologies used in this thesis

are stated in Figure 3.2c. Next, we define how the model is trained in a supervised manner, using

annotation of known TFBSs and a maximum-likelihood probability approach (Section 3.2.3; Fig-

ure 3.2d). Finally, the DNase-seq and histone modification ChIP-seq data are used as input for the

trained HMMs to make predictions of active TFBSs. To accomplish such a task, we use the Viterbi

algorithm (Section 3.2.4; Figure 3.2e).

DNase-seq
normalized

genomic signal

DNase-seq
slope

genomic signal

DNase-seq
processed signal

a

Maximum
likelihood

Viterbi algorithm

Footprints

HMM Training

HMM Decoding

Results

d
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f
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Topology

c

Histone
modi cation
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modi cation
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Figure 3.2: Computational footprinting framework. Graphical representation of the computa-

tional footprinting method pipeline. (a,b) Our computational footprinting method receives as input

normalized and/or slope signals of DNase-seq and/or histone modification ChIP-seq. (c) Different

HMM topologies were used. Such HMM topologies take different types of input data. (d) All HMMs

are trained using the supervised maximum likelihood method. (e) We use the Viterbi algorithm to

apply the HMM in the genomic signal and predict footprints. (f) The final footprints represent our

predictions of putative active TFBSs.
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3.2.1. Multivariate Continuous HMM

Markov chains are probabilistic models composed of a collection of states and transitions between

these states (Rabiner, 1989). These transitions correspond to the probability of changing between

states. The HMMs follow the same baseline idea, however they also contain within their model an

unknown sequence of states associated to each input symbol (Rabiner, 1989; Durbin et al., 1998). In

this section we formalize the concept of HMMs.

First, we define the input data for our HMM as a matrix

X = {xi j}d×n (3.22)

of d observed multivariate continuous genomic signals, each of which has length n. For a given

multivariate observation 〈x·1, · · · ,x·t, · · · ,x·n〉 from X, we have a corresponding hidden sequence path

q = 〈q1, · · · ,qt , · · · ,qn〉, where qt ∈W = {1, · · · ,w} represents the state emitting the vector x·t at the

t th genomic position and w is the total number of states given a particular HMM topology.

HMMs have two independence assumptions (Rabiner, 1989). The first assumption is that the prob-

ability to reach state t depends only on the previous state t −1

p(qt |q1, · · · ,qt−1) = p(qt |qt−1), (3.23)

and the second assumption dictates that the probability density function of emitting an input vector

x·t observed at state t, depends only on this current state

p(x·t|q1, · · · ,qt) = p(x·t|qt). (3.24)

Given the formalism previously defined, there are three general problems which can be addressed

directly through computationally efficient implementations of HMMs (Durbin et al., 1998). Let Θ be

the parameters of a HMM, we state these problems as:

Problem 1 Estimate the HMM parameters Θ in order to maximize p(X|Θ).

Problem 2 Given an observed multivariate input X and an HMM represented by the param-

eters Θ, find the sequence of hidden states q which best explains the input given

the HMM, i.e. that maximizes p(X,q|Θ) .

Problem 3 Given an observed multivariate input X and an HMM represented by the param-

eters Θ, compute the probability of the input sequence given the HMM p(X|Θ).

The first problem regards the HMM parameter estimation, i.e. model training. This problem will

be addressed in Section 3.2.3. The second and third problems represent our genomic segmentation

methodology using the HMM states in order to predict active binding sites. These problems will be

explored in Section 3.2.4. For a more thorough discussion, including proof of theorems, we refer

to Rabiner (1989); Durbin et al. (1998); Mitchell (1997); Bishop (2006); Duda et al. (2000).

The multivariate continuous HMM used to address the aforementioned problems is defined, in

terms of its parameters, as

Θ = {A,E,s}. (3.25)

The parameter A represents the matrix which contains the probabilities of transitioning between

the states of the HMM. We formalize this as

A = {auv}w×w, (3.26)
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3.2. Computational Footprinting with Hidden Markov Models

where auv represents the probability of transition from state u to v, which is

auv = p(qt = v|qt−1 = u). (3.27)

The parameter E represents the vector of probability density functions which represent the emis-

sions of symbols by the HMM. More formally,

E = 〈e1(x), · · · ,ew(x)〉, (3.28)

where each state u has a probability eu(x) of emitting the vector symbol x. Such probability density

function is represented by

eu(x) = p(x·t|qt = u). (3.29)

The parameter s represents the initial state transition probabilities. This is represented as a vector

of probabilities

s = 〈s1, · · · ,sw〉, (3.30)

where each si represents the probability of starting in a particular state.

3.2.2. HMM Topology

We refer to HMM topology as the number of states w and the predefined possible transitions between

these states (auv > 0). The mathematical modeling of a problem with HMMs require the knowledge of

the problem in order to be able to create a meaningful HMM topology. We implemented a number of

different HMM topologies, depicted in Figures 3.3–3.7. It is important to mention that all HMM states

from all topologies have transitions to itself, which were omitted in all figures for simplicity. In this

section we will define these topologies and discuss the rationale behind each topology choice. To en-

hance clarity, the HMM states will also be represented with labels using the UPPERCASE COURIER

font. Also, the HMM topologies’ names will be represented using the SMALL CAPITALS font.

DNASE + HISTONE MODEL

The DNASE + HISTONE MODEL (Figure 3.3) represents the main topology from our method. It com-

bines both DNase-seq and histone modification ChIP-seq in an HMM structure devised to recognize

the grammar of active TFBSs described in Section 2.3.3. The idea behind this topology is that we

are going to model the depletion between two peaks of DNase-seq using DNase-specific states and

we model the open chromatin region within the depletion between two peaks of histone modification

ChIP-seq using histone-specific states. We shall refer to this as the ORIGINAL DNASE + HISTONE

MODEL.

In this topology, the input matrix X (Equation 3.22) consists on the normalized and slope versions

of the DNase-seq and histone modification ChIP-seq signals. This input matrix can be represented as

a vector of input signal vectors

X = 〈 xnorm
dnase, x

slope
dnase, xnorm

histone, x
slope
histone 〉. (3.31)

The probability density function used for the emission probabilities (E) correspond to a multivariate

Gaussian (normal) density function with full covariance matrix. This is described as

p(x·t|qt = u) = p(x·t|µµµu,ΣΣΣu)

= 1√
(2π)D|ΣΣΣu|

e−
1
2 (x·t−µµµu)T (ΣΣΣu)−1(x·t−µµµu),

(3.32)

where µµµu and ΣΣΣu are, respectively, the d-dimensional mean vector and full covariance matrix of the
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Figure 3.3: DNASE + HISTONE MODEL HMM topology and genomic segmentation. (a) DNASE

+ HISTONE MODEL HMM topology. Each circle represents a labeled HMM state. Each arrow rep-

resents an allowed transition between states. Self-transitions exist in all states and were omitted for

simplicity. (b) Summary of the normalized and slope versions of the DNase-seq and histone modifi-

cation signals’ intensities at each state of the DNASE + HISTONE MODEL. The blank cells within this

table correspond to variable signal intensity between different input data and, although important for

the final HMM decoding, are not prerequisite for the HMM’s recognition of the grammar of TFBSs.

(c) DNase-seq and H3K4me3 (ChIP-seq) signals around the promoter region of the RCOR3 gene.

This region was annotated using the DNASE + HISTONE MODEL. The color code of the annotation

matches the color code of the DNASE + HISTONE MODEL representation. We are able to observe

several putative footprint predictions of varied sizes. Source: Gusmao et al. (2014) (modified to fit

thesis format and/or clarify key points).

emission probability density function at state u.

Figure 3.3a shows a graphical representation of the DNASE + HISTONE MODEL. The first state

(BACK) corresponds to the “background” regions with low concentration of DNase-seq and histone

modification ChIP-seq signals. The histone level states represent a peak in the histone modification

ChIP-seq signal, recognizing an increase in the histone modification ChIP-seq signal based on high

positive x
slope
histone values (UP), summit regions with x

slope
histone values close to zero and high xnorm

histone values

(TOP) and a decrease based on negative values of the x
slope
histone signal (DOWN). From the histone level

DOWN state, the model can either return to BACK (isolated histone modification peaks without further

DNase hypersensitivity sites) or continue to the DNase level UP state. The DNase level states are

equivalent to the histone level states, with the exception that the xnorm
dnase and x

slope
dnase signals are being rec-

ognized instead. From the DNase level DOWN state, the model decides between returning to a region
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of higher histone modification ChIP-seq signals (histone level UP state) and visiting the FOOTPRINT

state, which represents the dip between two peaks of intense DNase I cleavage. The regions of the

genome where the HMM has recognized as FOOTPRINT are the ones reported by our method as the

predicted footprints.

In Figure 3.3b we provide a full representation of the signal intensity levels observed in each

state. This diagram summarizes the aforementioned discussion of the observed signal intensities at

each model state. The different input signals have a clear sequential pattern when considered in

combination. Such pattern is captured by our HMM’s emission distribution full covariance matrix

(ΣΣΣu ∀ u ∈W ).

Figure 3.3c shows an example of a genomic region annotated by the DNASE + HISTONE MODEL.

In this example, we are able to visualize the difference in resolution between the histone modification

ChIP-seq and DNase-seq signals. The HMM is able to segment the genome and capture these resolu-

tion differences. This can be seen by the different time intervals in which the HMM remained at each

particular state between DNase level and histone level states.

DNASE + HISTONE ASYMMETRIC PEAKS MODEL

The DNASE + HISTONE ASYMMETRIC PEAKS MODEL (Figure 3.4) is an extension of the ORIGINAL

DNASE + HISTONE MODEL to account for the histone modification signal asymmetry, i.e. the fact

that some open chromatin regions have very low signals of active histone modifications on either its

downstream (left peak of the grammar of active TFBSs) or upstream (right peak of the grammar of

active TFBSs) regions (Kundaje et al., 2012). For such, two additional transitions were added (shown

in red in Figure 3.4) in order to allow the DNase level states to be visited when there are no histone

modification peaks before or after DNase hypersensitivity sites.

In this topology, the input matrix X is the same as depicted for the ORIGINAL DNASE + HIS-

TONE HMM (Equation 3.31), i.e. the normalized and slope versions of the DNase-seq and histone

modification ChIP-seq signals.

BACK

UP TOP DOWN

DOWN TOP UP

FOOT-

PRINT

Histone

Level

DNase

Level

DNase+histone
asymmetric peaks

Figure 3.4: DNASE + HISTONE ASYMMETRIC PEAKS MODEL topology. Each circle represents

a labeled HMM state. Each arrow represents an allowed transition between states. The red arrows

represent the transitions added from the ORIGINAL DNASE + HISTONE MODEL. Self-transitions

exist in all states and were omitted for simplicity. Source: Gusmao et al. (2014) (modified to fit thesis

format and/or clarify key points).
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DNASE + HISTONE WITHOUT SLOPE MODEL

The DNASE + HISTONE WITHOUT SLOPE MODEL (Figure 3.5) is a simplification of the ORIGINAL

DNASE + HISTONE MODEL. The simplification consists on removing the slope signals and per-

forming footprint predictions using only the normalized data. In the DNASE + HISTONE WITHOUT

SLOPE MODEL, the UP, TOP and DOWN states from the ORIGINAL DNASE + HISTONE HMM are

compressed into one state – HIGH – which recognizes high levels of DNase-seq signal (DNase level

state) or high levels of histone modification signal (histone level state).

In this topology, the HMM needs only the normalized signal and becomes bivariate (DNase-seq

and histone modifications normalized signals). The input matrix X can be represented as a vector of

input signal vectors

X = 〈 xnorm
dnase, xnorm

histone 〉. (3.33)

DNase+histone
without slope

BACK
FOOT-

PRINT

Histone

Level

HIGH HIGH

DNase

Level

Figure 3.5: DNASE + HISTONE WITHOUT SLOPE MODEL topology.Each circle represents a la-

beled HMM state. Each arrow represents an allowed transition between states. The red arrows repre-

sent the transitions added from the ORIGINAL DNASE + HISTONE MODEL. Self-transitions exist in

all states and were omitted for simplicity. Source: Gusmao et al. (2014) (modified to fit thesis format

and/or clarify key points).

DNASE-ONLY MODEL

The DNASE-ONLY MODEL (Figure 3.6) represents an alternative model to the DNASE + HISTONE

MODELS. Such model uses only DNase-seq signal and the following modifications were performed

in comparison to the ORIGINAL DNASE + HISTONE HMM. The histone level states were removed

and additional transitions were added: (1) from the DNase level DOWN state to the BACK state and (2)

from the BACK state to the DNase level UP state.

In this topology, the input matrix X can be represented as a vector of DNase-seq input signal vectors

X = 〈 xnorm
dnase, x

slope
dnase 〉. (3.34)

HISTONE-ONLY MODEL

The HISTONE-ONLY MODEL (Figure 3.7) represents an alternative model to the DNASE + HISTONE

MODELS. Such model uses only histone modification ChIP-seq signal. The changes in comparison

to the ORIGINAL DNASE + HISTONE HMM are exactly the same as for the DNASE-ONLY MODEL;

however, instead of removing the histone level states, the DNase level states are removed and addi-

tional transitions are created: (1) from the histone level DOWN state to the FOOTPRINT state and (2)

from the FOOTPRINT state to the histone level UP state.

In this topology, the input matrix X can be represented as a vector of histone modification ChIP-seq

input signal vectors

X = 〈 xnorm
histone, x

slope
histone 〉. (3.35)
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To calculate the emission probability density functions we need to estimate the Gaussian’s mean

(µu
i ) and covariance matrix (σu

ik) for every state u and input signal types i and k. This is performed,

using the maximum likelihood method, as

µu
i =

∑
n
j=1 xi j1(q j = u)

∑
n
j=1 1(q j = u)

, (3.38)

where µu
i is the Gaussian’s mean at state u for the signal i and

σu
ik =

∑
n
j=1(xi j −µu

i )
T (xk j −µu

k )1(q j = u)

∑
n
j=1 1(q j = u)−1

. (3.39)

where σu
ik is the Gaussian’s variance at state u between signals i and k.

As we define the HMM to start at the BACK state (the first HMM state), the initial transition vector

s was manually set with the following probabilities

s1 = 1

st = 0 ∀ t 6= 1
. (3.40)

3.2.4. HMM Decoding

Given HMMs with topologies described in Section 3.2.2 and parameters estimated as described in

Section 3.2.3 we are able to perform the prediction of footprints. This prediction is performed using a

well-known HMM decoding technique termed Viterbi “algorithm” (Rabiner, 1989), which addresses

the Problem 2 defined in Section 3.2.1. Briefly, it computes the sequence of hidden states q that

maximizes p(X,q|Θ). Then, given the computed sequence of hidden states we are able to identify the

ones which corresponds to the FOOTPRINT state. In this section we formalize the Viterbi algorithm

applied in the context of computational footprinting.

We are interested on identifying the most probable path q∗ given the input X on an HMM Θ. In

formal terms, we are interested in evaluating the following equation

q∗ = arg max
q

p(X,q|Θ) . (3.41)

The solution to the equation 3.41 can be found in an exaustive way by evaluating p(X,q|Θ) for all

wn possible instances of the n-length vector q, in which each element assumes one of the w HMM

states. It is clear, however, that the complexity of such approach, in terms of the big-O notation is

O(wn), i.e. it grows exponentially given the input vector with length n. Fortunately, it is possible to

solve the equation 3.41 using a dynamic programming algorithm which relies on the HMM indepen-

dence claims described by equations 3.23 and 3.24 with a polynomial complexity O(n×w2) using

the Viterbi algorithm. The Viterbi algorithm is formalized, in the context of our multivariate HMM,

in the following.

Let νu(t) be a Viterbi variable, which corresponds to the probability of the most probable path of

the input subset 〈x·1, · · · ,x·t〉 ending at state u. Assuming knowledge of νu(t), we are able to calculate

the probability for the path subset 〈x·1, · · · ,x·t+1〉 using the HMM independence claims as

νv(t +1) = ev(x·t+1)max
u

νu(t)auv (3.42)

Let out HMM decoding start at a figurative initial time 0. We define the initial Viterbi variables for

all HMM states as our initial HMM probabilities (equation 3.30) as

νu(0) = su. (3.43)
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From this initial time we are able to calculate the Viterbi variables for all the following input time

points using equation 3.42. Furthermore, we dynamically construct a “pointer” vector φφφ in which we

add the most probable states in each iteration of Viterbi variable calculations for the following input

time points. The algorithm is fully described as follows. In the following algorithm we denote as ε an

additional figurative last state of our path q in order to formally describe the algorithm termination.

Viterbi Algorithm

1. Initialization:

1.1. νu(0) = su

2. Iteration (t = 1, · · · ,n):
2.1. νv(t) = ev(x·t)maxu νu(t −1)auv

2.2. φv(t) = arg max
u

νu(t −1)auv

3. Termination:

3.1. p(X,q∗) = maxu νu(n)auε

3.2. q∗n = arg max
u

νu(n)auε

4. Reassembly (t = n, · · · ,1):
4.1. q∗t−1 = φq∗t (t)

The footprint predictions are defined as the set of genomic intervals F in which contiguous pre-

dicted hidden states qt = FOOTPRINT. This can be written as

F = { fi = [m,n] : qt = FOOTPRINT ∀ m ≤ t ≤ n and qm−1,qn+1 6= FOOTPRINT}. (3.44)

3.3 Implementation

We implemented our signal processing methodology and our HMM-based computational footprinting

framework as a Python command line tool. Our method is called HINT – HMM-based Identification

of TF Footprints – and will be referenced as such throughout this thesis. Such command line tool

implements all the steps described in this chapter.

HINT is part of the regulatory genomics toolbox (RGT), which is a computational framework

composed of a Python package and/or command line tools to handle genomic signals such as DNase-

seq and ChIP-seq. The HINT tool was first released in August 2014 and is available under the terms of

the GNU General Public License v3 (GPL v3). HINT python package dependencies are summarized

in Table 3.1.

The minimal input data required for HINT are BAM files, which is the standard file format for

aligned reads for either DNase-seq or histone modification ChIP-seq. Additionally, the user may

input a reference genome in order to perform the DNase-seq sequence cleavage bias correction (Sec-

tion 3.1.2). The tool outputs a BED file, which is the standard format for genomic regions (intervals).

Such output BED file corresponds to the predicted footprints.

HINT was tested on Python 2.7, Numpy 1.4.0, Scipy 0.7, Scikit-learn 0.14, Pysam 0.7.5, HMM-

learn 0.0.1. We used a local Linux Ubuntu 15.04 LTS x86 64-bit machine running with 8 Intel Core

i7-4770 CPU at 3.40GHz and 32 GB RAM. Furthermore, we ran HINT on an HPC cluster mainly

based on Intel Xeon-based 8– to 128–way SMP 64-bit nodes with Scientific Linux release 6.6 (Car-

bon).
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Table 3.1: HINT tool python package dependencies.

Package Version Website

Numpy ≥ 1.4.0 http://www.numpy.org/

Scipy ≥ 0.7.0 http://www.scipy.org/

Scikit-learn ≥ 0.14 http://scikit-learn.org/

HMMlearn ≥ 0.1.1 https://github.com/hmmlearn/hmmlearn/

Pysam ≥ 0.7.5 https://github.com/pysam-developers/pysam

For more information on HINT implementation please see:

http://www.regulatory-genomics.org/hint/

3.4 Discussion

In this chapter we described our computational footprinting framework. In the first part (Section 3.1),

we process the DNase-seq and histone modification ChIP-seq signals, as summarized in Figure 3.1.

In the second part (Section 3.2), we described our HMM-based approach (HINT), as summarized in

Figure 3.2. Our computational footprinting framework introduced new concepts to solve the identifi-

cation of active TFBS problem:

• We created a novel DNase-seq and histone modification ChIP-seq signal processing framework

that corrects for DNase-seq sequence cleavage bias and normalizes the signal considering both

within- and between-dataset signal variability. Furthermore, we applied the Savitzky-Golay

smoothing filter to obtain the slope of the genomic signal.

• We devised HMMs to segment the genome and search for the grammar of active TFBSs as

shown in Section 2.3.3. This novel approach is the first to integrate the full spatial profiles of

both DNase-seq and histone modification ChIP-seq signal.

• Our model is also flexible enough to consider only DNase-seq or histone modification ChIP-seq

data separately. Allowing for experimental flexibility.

• From a methodological perspective, HMMs are a favorable method choice. Window-based seg-

mentation methods (Hesselberth et al., 2009; Neph et al., 2012; Piper et al., 2013) has a high

dependency on footprint size definition. They rely on an extensive search using multiple win-

dow size extensions. Such methods do not take advantage of the HMM’s decoding algorithms,

which are able to model the length of the footprints using a probabilistic framework. Further-

more, site-centric approaches (Pique-Regi et al., 2011; Cuellar-Partida et al., 2012; Sherwood

et al., 2014; Yardımcı et al., 2014) do require a much higher preparation time, running time,

depend highly on the model’s parameters and do not necessarily fit our main goal, which is to

provide a map of all putative active TFBSs for a particular cell type.
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CHAPTER 4

Experiments

The main goal of this chapter is to present the experimental framework used in this thesis. In this

chapter we are going to:

• Describe the execution of our novel computational footprinting approach HINT, which was

formally presented in the previous chapter.

• Describe the execution of all competing computational footprinting methods.

• Formalize the computational footprinting method evaluation methodologies and metrics.

• Introduce common downstream analyses, which use footprint predictions to make inferences

about the regulatory network of a cell.

• State all statistical methods employed in this thesis.

The experimental framework used in this thesis is divided in two parts: the execution and the

evaluation of computational footprinting methods. First, we describe the execution of computational

footprinting methods (Section 4.1). We provide the detailed experimental workflow of our computa-

tional footprinting method HINT. Furthermore, we describe the execution of all competing methods

used in this thesis. In the second part, we define the methodology used to evaluate all computational

footprinting methods (Section 4.2). We describe two different evaluation strategies: the traditional

transcription factor (TF) ChIP-seq approach and the novel strategy we devised, which is based on

gene expression.

In addition, we describe two common downstream analyses, which use footprint predictions: the

TF enrichment analysis and the de novo motif finding. These analyses are described in Section 4.3.

Moreover, all statistical methods used on the analyses presented in this thesis are described in Sec-

tion 4.4. Finally, we close this chapter with a final discussion on our experimental framework (Sec-

tion 4.5).

4.1 Execution of Computational Footprinting Methods

In this section we describe the experimental framework regarding the execution of our computational

footprinting method – HINT – and the competing footprinting methods (Figure 4.1). First, we de-

scribe the data used as input for these methods: DNase-seq and histone modification ChIP-seq (Sec-

tion 4.1.1). Then, we proceed by characterizing HINT’s signal processing pipeline (Section 4.1.2) and

HINT’s execution (Section 4.1.3). Finally, we describe the execution of all competing computational

footprinting methods (Section 4.1.4)

4.1.1. Data

Data-seq Data

DNase-seq aligned reads were obtained in ENCODE Project Consortium (2012). We obtained data

generated from the single-hit (labeled as “SH”) and double-hit (labeled as “DH”) DNase-seq pro-
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Histone Modification ChIP-seq Data

Histone modifications ChIP-seq aligned reads were also obtained in ENCODE Project Consortium

(2012). We only obtained histone modification ChIP-seq data from cell types of the Comparative

Dataset, i.e. H1-hESC, K562 and GM12878. For each cell type, it was obtained data regarding

the activating histone modifications: H3K4me1, H3K4me3, H3K9ac, H3K27ac and H2A.Z. Addi-

tionally, to perform some analysis of relevant computational footprinting features we obtained data

regarding the histone modifications H3K4me1 and H3K4me3 for cell types HeLa-S3 and HepG2.

See Supplementary Table A.2 for a full histone modification ChIP-seq data description.

Genomic Information on Experimental Datasets

Both DNase-seq and histone modification ChIP-seq data are based on the human genome build 37

(hg19), except the DNase-seq for m3134 cell type, which is based on mouse genome build 37 (mm9).

Chromosome Y was removed from all analyses. It is usual to remove chromosome Y from such

types of analyses since it is present in male subjects only; and therefore introduces biases. The ge-

nomic sequences (DNA) for the human genome (hg19) and mouse genome (mm9) were also obtained

in ENCODE Project Consortium (2012).

4.1.2. HINT Signal Processing

HINT takes as input DNase-seq and/or histone modification ChIP-seq data. Here we discuss the

processing steps of such data from the obtained aligned reads to the final signal which is used by

HINT to make the footprint predictions. For simplicity, we ignore the fact that signals and intervals

are defined on distinct chromosomes.

Read Overlap Signal

We obtained the DNase-seq aligned reads and histone modification ChIP-seq aligned reads in EN-

CODE Project Consortium (2012) (Section 4.1.1). These datasets are already processed to remove

known experimental and computational artifacts (ENCODE Project Consortium, 2012; Derrien et al.,

2012; Ashoor et al., 2013; Diaz et al., 2012). We created the read overlap signal from both DNase-seq

and histone modification ChIP-seq pre-processed aligned reads as described in Section 3.1.1.

DNase Hypersensitivity Sites and Histone Modification ChIP-seq Peaks

To optimize execution time we constraint the application of our method (HINT) only in genomic re-

gions enriched with either DNase-seq and histone modification ChIP-seq signals. Enriched regions

are genomic regions with more reads aligned than expected by chance, given a statistical model. Here,

we describe how we obtained the enriched regions for DNase-seq data – called DNase hypersensitiv-

ity sites (DHSs) – and the enriched regions for histone modification ChIP-seq data – called histone

modification ChIP-seq peaks.

DNase Hypersensitivity Sites (DHSs)

DHSs, i.e. regions enriched with DNase-seq data, are estimated based on the DNase-seq read overlap

signal. The process consists on evaluating a smoothed DNase-seq signal and then finding regions

with more aligned reads than expected by chance based on a p-value cutoff of 0.01 calculated based

on a fitted Gamma distribution. The Gamma distribution was shown to outperform other models for

DNase-seq data (Boyle et al., 2008).
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For that, we used the F-seq software (Boyle et al., 2008), which was devised specially for DNase-

seq data and has shown to provide accurate DHSs (Boyle et al., 2008, 2011). We run the F-seq soft-

ware version 1.81 with the default parameters, except for the feature length option (set to 300) (Boyle

et al., 2011). F-seq source code is found in http://fureylab.web.unc.edu/software/

fseq/.

Histone Modification ChIP-seq Peaks

The histone modification ChIP-seq peaks were obtained by applying the “model-based analysis for

ChIP-seq” (MACS) software (Zhang et al., 2008) version 2.0.9 to the histone modification read over-

lap signals. Such peak-calling software was devised specially for ChIP-seq data. We executed MACS

software with the default parameters. However, we used two extra command options which are in-

dicated in the case of histone modification ChIP-seq (--nomodel --nolambda). The MACS software

source code is found at http://liulab.dfci.harvard.edu/MACS/.

DNase-seq Sequence Cleavage Bias Correction

The intrinsic DNase-seq sequence cleavage bias was previously shown to affect certain footprinting

methods (He et al., 2014). In this study, we are going to explore the DNase-seq sequence cleavage

bias correction using two approaches: (1) The “DHS sequence bias” considers the sequence bias

estimates within DHSs of each DNase-seq experiment. This approach captures DNase I cleavage,

read fragmentation and sequence complexity biases of DHSs of each DNase-seq experiment (He

et al., 2014). The “naked DNA sequence bias” considers the sequence bias estimates within naked

DNA DNase-seq experiments (Yardımcı et al., 2014). In this case, all DNA regions are open, therefore

the sequence bias estimates will mainly capture the DNase I cleavage bias. Both strategies use the

formalism described in Section 3.1.2.

In the DHS sequence bias correction approach, we use the same DNase-seq dataset in which the

read overlap genomic signal was created, to estimate the DNase-seq sequence cleavage bias. Fur-

thermore, the genomic regions of interest H from Section 3.1.2 correspond to the DHSs. In this

case, each dataset (each DNase-seq experiment for a particular cell type) has their own DNase-seq

sequence cleavage bias estimations and the correction is made on a cell-specific manner.

In the naked DNA sequence bias correction approach, we use a naked DNA DNase-seq experiment

to estimate the sequence cleavage bias. Moreover, the estimation is made on the whole genome, since

there are no significantly enriched signals in such dataset. Therefore, the set of genomic regions of

interest correspond to a single region which encompasses the whole genome, i.e. H = {[1,n]}, where

n is the total number of base pairs (bp) in the genome. In this case, each naked DNA DNase-seq

dataset has their own sequence cleavage bias estimations. The sequence cleavage bias correction

for a DNase-seq dataset is made using the naked DNA DNase-seq sequence cleavage bias estimates

which correlated best with the DHS sequence bias estimates for that DNase-seq dataset.

Another methodological choice is the size of the k-mer sequence cleavage bias estimates. For both

approaches (DHS and naked DNA sequence bias correction) we used 6-mers. As observed by He

et al. (2014), a 6-mer bias model captures significantly more information than k < 6 models and

the information gained with k > 6 models are not significant and does not justify the increase in

computational complexity (since the number of estimates is exponential).

Signal Normalization

In possession of the DNase-seq sequence cleavage bias corrected signals and read overlap histone

modification ChIP-seq signals we proceed to the signal normalization step, which consists on the

treatment of these genomic signals to: (1) reduce the within-dataset variability (as described in Sec-
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tion 3.1.3) and (2) reduce the variability between these different genomic signals (as described in

Section 3.1.4).

Within-dataset Normalization

In the within-dataset normalization step we divide the genome in multiple bins, to estimate and

correct the magnitude of the signal peaks, as shown in Section 3.1.3. The length of the bin, denoted

by ι was set to 10,000 bp. The reason for such a choice is that shorter regions would not capture

enough signal and lose statistical power. On the other hand larger regions would not achieve the goal

of correcting the magnitude of the peaks within the dataset range of signals (Gusmao et al., 2014).

Between-dataset Normalization

In the between-dataset normalization step, we fit the signal into a logistic function to force the

values to be within the interval [0,1]. In this step, we estimated the mean µ , standard deviation σ

and the percentile ς using data from chromosome 1, which was removed from the evaluation strategy.

Furthermore, we used the 98th percentile. Such a choice was made by observing the amount of

the genome which is enriched for both DNase-seq and histone modification ChIP-seq, which is, on

average ∼2% (Gusmao et al., 2014).

Signal Slope

Given the normalized DNase-seq and histone modification ChIP-seq signals, we proceed to calculate

the signals’ slope. The goal is to create the additional slope signal required by HINT (as described in

Section 3.1.5).

In the application of the Savitzky-Golay technique to calculate the signals’ slope, we used a 2nd-

order polynomial. Furthermore, the odd-valued window size τ for smoothing and estimation of the

slope of the signal was set to 9 bp for the DNase-seq signal, as suggested by Boyle et al. (2011).

For the histone modification ChIP-seq signal, such parameter was set to 201 bp, as it fits the read

extension length (η) considered during the creation of the read overlap signal.

HINT Input Signal

After these processing steps we have four different input signals for our computational footprinting

method HINT. Different HINT’s hidden Markov model (HMM) topologies use different combinations

of these four signals (the description of all topologies is found in Section 3.2.2). The four HINT’s

input signals are:

1. xnorm
dnase – the real-valued vector of normalized DNase-seq genomic signals.

2. x
slope
dnase – the real-valued vector of slope DNase-seq genomic signals.

3. xnorm
histone – the real-valued vector of normalized histone modification ChIP-seq genomic signals.

4. x
slope
histone – the real-valued vector of slope histone modification ChIP-seq genomic signals.

Figure 4.2 shows an example of two genomic regions with read overlap (count), normalized and

slope signals for two distinct genomic regions. In this figure we are able to observe the effect of the

within-dataset normalization strategy by looking at the different ranges of the histone modification

base overlap count signal (in black) – [0,40] on the genomic region depicted in Figure 4.2a vs [0,80] on

the genomic region depicted in Figure 4.2b in comparison to the range between these two regions of

the normalized signal [0,1]. The normalization preserves the shape of the peaks and does not attenuate
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undesired background noise signals. Furthermore, the effect of the between-dataset normalization

approach is more straightforward, as all normalized signals will be within the range [0,1]. Moreover,

this figure shows the difference in resolution between the different data sources. While ChIP-seq

peaks are smoothed and spans on average 250 bp, the DNase-seq peaks can be as short as 5 bp.

a
211,432,000 211,433,000 211,434,00026,946,000 26,947,000 26,948,000

[0,80]

[0,1]

[-1,1]

[0,10]

[0,1]

[-1,1]

[0,10]

[0,1]

[-1,1]

b

H3K4me3 read overlap

H3K4me3 normalized
H3K4me3 slope

DNase-seq read overlap

DNase-seq normalized

DNase-seq slope

Base pair level

[0,40]

[0,1]

[-1,1]

[0,16]

[0,1]

[-1,1]

[0,1]

[-1,1]

[0,16]

Figure 4.2: Genomic signal processing examples. Examples of histone modification H3K4me3

ChIP-seq and DNase-seq signals before treatment (read overlap; in black), normalized (in blue) and

after Savitzky-Goaly smoothing and differentiation (slope; positive values in green and negative val-

ues in red). Each signal’s range is displayed between square brackets next to each signal. In this

figure we show examples for two different regions in human chromosome 1. Source: Gusmao et al.

(2014) (modified to fit thesis format and/or clarify key points).

4.1.3. HINT Method Execution

Our computational footprinting method HINT segments the genome using normalized and slope ver-

sions of the DNase-seq and histone modification ChIP-seq signals. Such segmentation task is per-

formed on the basis of the grammar of active transcription factor binding sites (TFBSs). As shown in

Section 3.2.2 we have devised a number of different HMM topologies, which take different combi-

nations of input signals and address particularities of the TFBS patterns on the open chromatin data.

Here, we provide experimental details on how HINT is trained and applied on the genome.

HINT Training

We train the HMM models in a supervised manner. Briefly, a manual annotation is created for each

cell type, histone modification and HMM topology (Figures 3.3– 3.7) based on the DNase-seq and

histone modification ChIP-seq data.

We selected a 10,000 bp region (with genomic coordinates 211,428,000–211,438,000 in human

chromosome 1) around the promoter region of the gene RCOR3 and performed a cell-specific manual

annotation, in which each genomic position is assigned with a state from our HMM topology. This

promoter-proximal regulatory region annotated with HMM states was used to train the models which

use histone modifications H3K4me3, H3K9ac, H3K27ac and H2A.Z. As the histone modification

H3K4me1 is known to be associated to distal regulatory regions, we have additionally annotated

an enhancer region (with genomic coordinates 26,942,000–26,952,000 in human chromosome 1).

The selection of these regions was made randomly, but we checked ENCODE Project Consortium

(2012) tracks for evidence that the gene RCOR3 was expressed in all cell types analyzed and that the
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enhancer region was far (> 100 Kbp) from known genes and expressed regions but associated with

the expression of the closest gene’s transcription start site (TSS).

In order to help the annotation of the footprints, motif-predicted binding sites (MPBSs) obtained by

applying motif matching with all position frequency matrices (PFMs) from Jaspar (Mathelier et al.,

2014), Uniprobe (Robasky and Bulyk, 2011) and Transfac (Matys et al., 2006) PFM repositories

were detected inside the training regions (the details on the identification of MPBSs can be found in

Section 4.2.1). We consider “real” footprints all the DNase-seq signal depleted regions between two

DNase-seq peaks that overlap a MPBS. For the HISTONE-ONLY MODEL, we considered as footprints

all the DHSs within these regions. We trained five HMMs per cell type, one for each histone mod-

ification (H3K4me3, H3K9ac, H3K29ac and H2A.Z with the promoter-proximal regulatory region

and H3K4me1 with the distal regulatory region). In the case of the DNASE-ONLY MODEL, only one

HMM was trained for each cell type. Such training was performed in the promoter-proximal region.

The regions used for training were excluded from all further analyses. In possession of the manu-

ally annotated regions for each cell type, histone modification and HMM topology, all HMMs were

trained using the maximum-likelihood process described in Section 3.2.3.

Here, we show an example of a complete set of HMM parameters, regarding the ORIGINAL DNASE

+ HISTONE HMM topology (Figure 3.3) trained with DNase-seq + H3K4me3 using data from the

H1-hESC cell. The Table 4.1 represents the transition matrix. Each number represents the probability

of performing a transition from the HMM state depicted in the table’s first row to the HMM state

depicted in the table’s first column. In this transition matrix we are able to observe that only the

self-transitions and the transitions allowed by our model topology have a non-zero probability. The

transition matrix is the structure that directly defines our HMM topology.

The Table 4.2 exhibits the emission distribution mean values. It contains the mean in which each

signal type (represented in the columns) assumes at each state (represented in the rows). A closer

look into these vectors of means for each state and signal shows the grammar of active TFBS in a

numerical form. The states BACK and FOOTPRINT have low absolute means for all signal types. UP,

TOP and DOWN states have, respectively, high positive, close to zero and low negative slope signals.

Such emission parameters models the signal magnitude of the active TFBS grammar. We are able to

model both magnitude and shape of the signals when we consider the transition probabilities and the

mean component of the emission probability distributions.

Moreover, the Table 4.3 shows all covariance matrices from the emission distributions. The full

covariance matrix is depicted for each state, in which rows and columns are sorted by the input

signals: DNase-seq normalized, DNase-seq slope, H3K4me3 normalized and H3K4me3 slope. The

covariance matrix component of the emission probability distributions reflect the relationship between

our signals in our multivariate model. For instance, it is interesting to observe a negative value

(−0.0053) at the DNase level UP state (UP(D) in the table) on the covariance matrix corresponding

to the normalized DNase-seq vs the normalized histone modification ChIP-seq signal. Such data

behavior is in line with the observed grammar of TFBSs, where the DNase-seq signal generally start

to increase at the decrease of the histone modification ChIP-seq signal. Finally, when we consider all

HMM parameters, we are able to model the magnitude, shape and relationship between the chromatin

dynamics signals.

HINT Application

To reduce the dimensionality of the data, we used the DHS and histone modification ChIP-seq peaks

(Section 4.1.2). In the DNASE + HISTONE HMM topologies, we have extended these enriched regions

by 5,000 bp on each side and merged the resulting regions. We apply the trained HMM models in

these extended and merged regions. In the DNASE-ONLY MODEL and HISTONE-ONLY MODEL the

extension process is the same, however, using only the DHSs and histone modification ChIP-seq

peaks, respectively.
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Table 4.1: Example of HMM transition matrix. Transition probabilities of the HMM trained with

DNase + H3K4me3 using H1-hESC data. Transitions are specified from the states in the rows to the

states in the columns. Histone level states are denoted with “(H)” and DNase level states with “(D)”.

The FOOTPRINT state is abbreviated as “FP”. Source: Gusmao et al. (2014) (modified to fit thesis

format and/or clarify key points).

BACK UP (H) TOP (H) DOWN (H) UP (D) TOP (D) DOWN (D) FP

BACK 0.9997 0.0003 0.0 0.0 0.0 0.0 0.0 0.0

UP (H) 0.0 0.9915 0.0085 0.0 0.0 0.0 0.0 0.0

TOP (H) 0.0 0.0 0.9901 0.0099 0.0 0.0 0.0 0.0

DOWN (H) 0.0057 0.0 0.0 0.9861 0.0082 0.0 0.0 0.0

UP (D) 0.0 0.0 0.0 0.0 0.6515 0.3485 0.0 0.0

TOP (D) 0.0 0.0 0.0 0.0 0.0 0.783 0.217 0.0

DOWN (D) 0.0 0.0339 0.0 0.0 0.0 0.0 0.577 0.3891

FP 0.0 0.0 0.0 0.0 0.0564 0.0 0.0 0.9436

Table 4.2: Example of HMM emission’s mean vectors. Signals’ mean values for each state of the

HMM trained with DNase + H3K4me3 using H1-hESC data. Histone level states are denoted with

“(H)” and DNase level states with “(D)”. The FOOTPRINT state is abbreviated as “FP”. Source: Gus-

mao et al. (2014) (modified to fit thesis format and/or clarify key points).

DNase norm. DNase slope Histone norm. Histone slope

BACK 0.0045 -0.0002 0.0441 0.0007

UP (H) 0.0501 0.0043 0.1983 0.2995

TOP (H) 0.0445 -0.0075 0.4693 0.0158

DOWN (H) 0.0636 0.0003 0.2309 -0.4237

UP (D) 0.1537 0.6343 0.0894 -0.0647

TOP (D) 0.4244 0.0059 0.1091 -0.0735

DOWN (D) 0.1578 -0.6562 0.0816 -0.0434

FP 0.0902 -0.0162 0.1009 -0.0436

Given the trained HMM models, we identify footprints using the Viterbi decoding algorithm, as

described in Section 3.2.4. This process generates a set of footprints for every trained HMM model

and every cell type. We observed that the small transition probabilities from an HMM state to the

FOOTPRINT state and from the FOOTPRINT state to an HMM state often results in small delays

on entering in the FOOTPRINT state and leaving such state slightly early. Therefore, we perform a

small extension on the footprints. All resulting footprints are extended by 5 bp to each side. These

footprints represent our predicted active TFBSs.

In HINT’s HMM topologies that use histone modification data, we are able to create predictions

using more than one histone modification. For that, we simply merge all the footprint predictions

made using each histone modification individually. The use of combinations of histone modifications

will be discussed with more details in the next chapter.

4.1.4. Execution of Competing Methods

In this section we present the full description of the parameterization and execution of all com-

peting computational footprinting methods which were evaluated in this thesis. These methods

are categorized as segmentation methods (Neph (Neph et al., 2012), Boyle (Boyle et al., 2011),

Wellington (Piper et al., 2013) and DNase2TF (Sung et al., 2014)) and site-centric methods (Cen-
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Table 4.3: Example of HMM emission’s covariance matrices. Covariance matrices for each state

of the HMM trained with DNase + H3K4me3 using H1-hESC data. Within each state’s matrix, lines

and rows are sorted by signal type as DNase-seq normalized, DNase-seq slope, H3K4me3 normalized

and H3K4me3 slope. Histone level states are denoted with “(H)” and DNase level states with “(D)”.

The FOOTPRINT state is abbreviated as “FP”. Source: Gusmao et al. (2014) (modified to fit thesis

format and/or clarify key points).

B
A

C
K

0.0025 -0.0001 0.0001 0.0

U
P

(H
)

0.0222 0.0001 0.003 0.0057

-0.0001 0.0025 0.0 0.0 0.0001 0.0155 0.0006 0.0005

0.0001 0.0 0.0047 0.0 0.003 0.0006 0.0101 0.0105

0.0 0.0 0.0 0.0019 0.0057 0.0005 0.0105 0.0341

T
O

P
(H

) 0.0216 0.0003 -0.0009 0.0014

D
O

W
N

(H
) 0.0239 0.0001 -0.0033 -0.0002

0.0003 0.0196 0.0005 0.0003 0.0001 0.009 0.0002 -0.0006

-0.0009 0.0005 0.0047 -0.001 -0.0033 0.0002 0.0156 -0.0095

0.0014 0.0003 -0.001 0.0193 -0.0002 -0.0006 -0.0095 0.0313

U
P

(D
)

0.0705 0.0246 -0.0053 0.0025

T
O

P
(D

) 0.1559 -0.002 -0.0079 0.0052

0.0246 0.0714 -0.0038 -0.0015 -0.002 0.0384 -0.0008 0.0021

-0.0053 -0.0038 0.0045 -0.0056 -0.0079 -0.0008 0.007 -0.0096

0.0025 -0.0015 -0.0056 0.0125 0.0052 0.0021 -0.0096 0.0184

D
O

W
N

(D
) 0.0687 -0.011 -0.0048 0.004

F
P

0.0358 -0.0019 -0.0025 0.0007

-0.011 0.055 0.0039 -0.0 -0.0019 0.0225 0.0001 0.0002

-0.0048 0.0039 0.0039 -0.0044 -0.0025 0.0001 0.0068 -0.0069

0.004 -0.0 -0.0044 0.0109 0.0007 0.0002 -0.0069 0.0121

tipede (Pique-Regi et al., 2011), Cuellar (Cuellar-Partida et al., 2012), PIQ (Sherwood et al., 2014),

FLR (Yardımcı et al., 2014) and BinDNase (Kähärä and Lähdesmäki, 2015)). The competing compu-

tational footprinting methods use either DNase-seq data or a combination of DNase-seq and histone

modification ChIP-seq data. Only Centipede uses extra genomic information such as distance to the

nearest gene and conservation scores. To allow for a fair comparison (Nature Methods Editorial,

2015), we only used DNase-seq data, as experimental input data, for all methods. All the competing

methods were applied to the Comparative Dataset cell types (Section 4.1.1): H1-hESC (SH),

K562 (SH) and GM12878 (SH). Computational resources necessary for the execution of segmenta-

tion and site-centric competing methods are summarized in Table 4.4. The table shows the additional

steps needed to execute the footprinting method, the total execution CPU time in hours, the maximum

memory used during the execution and the total input storage necessary before the execution of each

method.

In addition to the published segmentation and site-centric methods, we also tested a few baseline

methods. These methods serve as control experiments, given their simplicity. The site-centric baseline

methods (PWM-Rank, TC-Rank and FS-Rank) consist on ranking MPBSs (defined in Section 4.2.1)

based on footprint quality scores. Furthermore, given the lack of a segmentation baseline method

in the literature, we devised a novel segmentation baseline method which uses signal processing

filter techniques. All baseline methods use only DNase-seq data and were applied to the Analysis

Dataset cell types (Section 4.1.1).

Neph Method

We obtained the footprint predictions for cell type K562 (SH) in Neph et al. (2012). As predictions

were not available for cell types H1-hESC (SH) and GM12878 (SH), we obtained the scripts and pa-

rameterization in https://github.com/StamLab/footprinting2012 (Neph et al., 2012).
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Table 4.4: Summary of computational resources. The computational resources were evaluated on

88 TFs binding on cell types H1-hESC (SH) and K562 (SH). Source: Gusmao et al. (2016) (modified

to fit thesis format and/or clarify key points).

Method Additional Steps CPU time (hours) Max. Memory (GB) Input Storage (GB)

BinDNase 1,2,4 7034 8 95.7

Boyle NA∗ NA∗ NA∗ NA∗

Centipede 1,2,4 7100 8 157.7

Cuellar 1,2,4 575 32 25.4

DNase2TF 3 31 32 29.3

FLR 2,4 870 16 43.1

HINT 3 56 4 17.7

Neph 3 47 4 14.6

PIQ - 386 32 18.7

Wellington 3 117 16 14.6
1 Requires extra input file processing.
2 Requires extra motif matching (Section 4.2.1).
3 Requires extra DNase-seq peak calling (DHSs).
4 Requires execution of method for each TF.
∗ Implementation not available.

Briefly, we used the DNase-seq read overlap signal as input with the parameters from the original pub-

lication: flanking component length varied between 3–10 bp and central footprint region length varied

between 6–40 bp. Afterwards, the footprints were filtered by a false discovery rate of 1%, which was

estimated based on the distribution of footprint scores (FSs) in each cell type (Neph et al., 2012).

Finally, we consider only predictions that occurred within DNase-seq hotspots, which were obtained

using the method described in Sabo et al. (2004a). We will refer to this framework as “Neph”.

Boyle Method

Since no source code or software is provided, we used footprint predictions from Boyle et al. (2011)

available at http://fureylab.web.unc.edu/datasets/footprints/. We will refer to

this method as “Boyle”.

Centipede

Centipede software was obtained at http://centipede.uchicago.edu/ (Pique-Regi et al.,

2011) and executed to generate posterior probabilities of regions being bound by TFs. The experi-

mental and genomic data used include DNase-seq, position weight matrix (PWM) bit-score, sequence

conservation and distance to the nearest TSS. The experimental data input was generated by obtaining

the read overlap DNase-seq signal surrounding a 200 bp window centered on each MPBS. Addition-

ally, we used conservation score, distance to the nearest TSS and the PWM bit-score to create the

required prior probabilities. These additional genomic data were obtained from PhastCons conserva-

tion score (placental mammals on the 46-way multiple alignment) (Siepel et al., 2005) and Ensembl

gene annotation from ENCODE (Hubbard et al., 2002).

All parameters were set to their default values, with exception of the level of shrinkage of multino-

60



4.1. Execution of Computational Footprinting Methods

mial parameters (L) and the level of shrinkage of negative binomial parameters (N). We observed that

Centipede is very sensitive to these parameters and we performed an extensive computational analysis

to estimate these parameters (Gusmao et al., 2014). Our analyses showed that the best parameteri-

zation for Centipede is: L = 0.75 and N = 0 for H1-hESC (SH) and GM12878 (SH) cell types; and

L = 0.75 and N = 0.25 for K562 (SH) cell type (Gusmao et al., 2014).

Cuellar Method

We applied this method as described in Cuellar-Partida et al. (2012). We created a smoothed DNase-

seq input signal by evaluating the number of DNase-seq cleavage based on a 150 bp window with 20

bp steps. We obtained their scripts at http://tlbailey.bitbucket.org/supplementary_

data/Cuellar2011/ and created priors using the smoothed version of the DNase-seq signal. As

suggested by the authors, the priors were submitted to the “find individual motif occurrences” (FIMO)

software (Grant et al., 2011) to obtain the predictions. We will refer to this method as “Cuellar”.

We also observed that the predictions are very sensitive to the p-value cutoff threshold from the pro-

gram FIMO. Therefore, we performed an extensive computational analysis to estimate this parameter.

It was found that the best cutoff threshold is at a p-value of 10−5 (Gusmao et al., 2014).

Wellington

We have obtained Wellington’s source code in http://jpiper.github.com/pyDNase (Piper

et al., 2013) and executed it with default parameters. Briefly, we used a footprint false discovery rate

(log10) cutoff of −30, footprint sizes varying between 6 and 40 with 1 bp steps and shoulder size

(flanking regions) of 35 bp.

Protein Interaction Quantification (PIQ)

We obtained PIQ’s implementation in http://piq.csail.mit.edu (Sherwood et al., 2014)

and executed it with default parameters, which are located in the script common.r. Briefly, MPBSs

were generated with the script pwmmatch.exact.r. The DNase-seq signal was created using the script

bam2rdata.r. And the footprints were detected with the script pertf.r.

Footprint Mixture (FLR)

Method implementation was obtained in https://ohlerlab.mdc-berlin.de/software/

FootprintMixture_109/ (Yardımcı et al., 2014). We executed the method using the 6-mer

cleavage bias frequencies for initialization of the background models. The width of the window

surrounding the TFBSs (PadLen) was set to the default value of 25 bp. Also, we use the expectation

maximization to re-estimate background during training (argument Fixed set to FALSE). We will

refer to this method as “FLR”.

DNase2TF

We obtained DNase2TF’s code from http://sourceforge.net/projects/dnase2tfr/

(Sung et al., 2014) and executed DNase2TF with a 4-mer cleavage bias correction. Other parameters

were set to their default values: minw = 6, maxw = 30, z_threshold =−2 and FDR = 10−3.

BinDNase

BinDNase’s method implementation was obtained at http://research.ics.aalto.fi/csb/

software/bindnase/ (Kähärä and Lähdesmäki, 2015). As a supervised approach, the method

requires positive and negative examples, which are obtained from TF ChIP-seq data (Section 4.2.2).
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We have used DNase-seq data around MPBSs on chromosome 1 for training. These MPBSs were

subsequently removed from the evaluation procedure. Note that this is the only method evaluated

here which requires TF ChIP-seq examples for training. We also point the fact that BinDNase did not

successfully execute for 19 TFs of our evaluation dataset (POU5F1, REST, RFX5, SP1, SP2, SRF,

TCF12 and ZNF143 binding in H1-hESC; ARID3A, CTCF, IRF1, MEF2A, PU1, REST, RFX5, SP1,

SP2, STAT2 and ZNF263 binding in K562) given our maximum running time criteria (one month

using 40 computational cluster nodes for each execution, i.e. each TF).

Site-centric Baseline Methods

Site-centric baseline methods consist on ranking the MPBSs for a particular TF based on a quality

metric. MPBSs can be seen as a set of genomic regions R = {r1, · · · ,rm} in which each ri = [u,v]
represents a binding site prediction (genomic region from u to v) based solely on the DNA sequence

and the protein’s binding affinity to that DNA sequence. MPBSs were obtained through the motif

matching algorithm, which is described in Section 4.2.1.

PWM-Rank

The PWM-Rank is a baseline method which consists on ranking MPBSs based on their motif match

bit-score. Such metric was obtained directly from the motif matching procedure (Section 4.2.1). The

terminology “PWM” stands for “position weight matrix”, which is the binding affinity structure that

is used to calculate the bit-scores in the motif matching procedure. This method is considered the

“absolute control”, since it does not use any experimental evidence of chromatin structure to detect

active TFBSs. Consequently, the results for the PWM-Rank method are the same for all the cell types

in the same organism, since they share the same DNA sequence.

TC-Rank

The TC-Rank method consists on ranking the MPBSs based on the number of aligned reads (referred

to as tag count; TC) within their vicinity. The method’s rationale is that the more TCs in the vicinity of

a MPBS, the more likely it is to be inside an open-chromatin region and therefore be an active TFBS.

In this thesis we used the most predominant window size for the TC calculation in the literature,

which is 100 bp in total (Cuellar-Partida et al., 2012; Yardımcı et al., 2014; He et al., 2014). Let

R = {r1, · · · ,rl} be a set of l MPBSs for a particular TF and x the read overlap DNase-seq signal, the

TC score for the MPBS ri = [u,v] was calculated as

TCri
=

(u+v)
2 +50

∑
j= (u+v)

2 −50

x j. (4.1)

FS-Rank

The FS-Rank method consists on ranking the MPBSs based on the footprint score (FS) metric, which

was used in previous works (Neph et al., 2012; He et al., 2014) as a quality score to rank footprints

predictions. The method’s rationale is that a MPBS with few DNase I cleavage within the binding

site region in comparison to its flanking regions corresponds to the pattern described as the grammar

of active TFBSs and therefore is more likely to be an active TFBS. Let R = {r1, · · · ,rl} be a set of l

MPBSs for a particular TF and x the read overlap DNase-seq signal, the FS for the MPBS ri = [u,v]
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was calculated as

FSri
=

(

nC
ri
+1

nR
ri
+1

+
nC

ri
+1

nL
ri
+1

)

, (4.2)

where nC
ri

, nL
ri

and nR
ri

are the number of DNase I cleavage hits within the MPBS ri, in the left (up-

stream) region of the MPBS ri and in the right (downstream) region of the MPBS ri. These values

were calculated as

nC
ri
=

v

∑
j=u

x j, nR
ri
=

2v−u

∑
j=v

x j, nL
ri
=

u

∑
j=2u−v

x j. (4.3)

Signal Processing Filters

The rationale of using signal processing filters for computational footprinting is to remove inade-

quate frequencies in order to make the DNase-seq peaks more pronounced and detectable by simpler

window-based approaches. We applied the method as follows. First, a filtering technique is applied to

DHSs. We tested four different filtering techniques: Butterworth, Chebyshev, Elliptic and Bessel (Lu-

tovac et al., 2000). Preliminary analyses showed that the Butterworth filtering technique provided

higher accuracies. Therefore, here we describe only the signal processing footprinting method using

the Butterworth filter.

As we wanted to investigate the accuracy of the filtering technique itself, we did not perform any

further signal processing methodology. Consequently, we could not use an HMM or techniques which

involve scoring genomic regions with sliding windows (such as FS or TC) to detect footprints in the

filtered signal. The reason is that the signal frequency and time-domain transformations affect the

absolute signal magnitude significantly. Since the transformations performed by the filtering tech-

nique do not significantly affect the signals’ standard deviation within small window frames (Shenoi,

2005), we used a standard deviation-based windowing approach to detect the significant depletions in

the data, i.e. the footprint pattern.

Signal Filtering

First, we applied the Butterworth signal filtering technique for each DHS. The rationale behind the

Butterworth filter is that an ideal signal processing filter should not only reject unwanted frequencies

but should also have uniform sensitivity for the wanted frequencies. Such an ideal filter can not

be achieved but it can be shown that successively closer approximations are obtained with increasing

numbers of filter elements of the right values. It was shown (Shenoi, 2005) that a low-pass filter could

be designed whose cutoff frequency was normalized to 1 radian per time unit and whose frequency

response (gain) was

Gn(ω) =

√

1

1+ω2n
, (4.4)

where ω is the angular frequency in radians per time unit t (which corresponds to our genomic coor-

dinates) and n is the number of poles in the filter.

Within this framework we were able to perform the signal frequency and time-domain transforma-

tions (Lutovac et al., 2000). We applied the Butterworth’s implementations of its high-pass, low-pass

and band-stop filters: (1) the high-pass filter removes background noise in the data; (2) the low-pass

filter attenuates the peaks in the genomic signal and (3) band-stop filter normalizes the signals in order

to prepare them for the standard deviation-based footprinting. All filters output real-valued signals

which contains negative values. In order to prevent numerical problems on the standard deviation-

based footprinting which these negative values might cause, we searched the global minimum value

and summed the absolute version of this value for all values of the genomic signal.
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Standard Deviation Footprinting

The second part of the method corresponds to the statistical analysis of the filtered signal to obtain

the footprint predictions. First, we measured the average standard deviation within the filtered signal

for: (1) a 20 bp window centered at the beginning of all MPBSs (Section 4.2.1) in the human chro-

mosome 1, (2) a 20 bp window centered at the ending of all MPBSs in the human chromosome 1. We

call these values, respectively ᾱ and β̄ . We considered all MPBSs obtained by applying motif match-

ing in cell type K562 and we considered the true MPBS the ones that contained ChIP-seq evidence

(Section 4.2.2). The human chromosome 1 was removed from all subsequent evaluation experiments.

Then, we were able to perform a window-based search within the genomic signal for 20 bp regions

in which the standard deviation estimated at a 20 bp window from the region’s start site (and region’s

end site) did not exceed a certain threshold value α̂ (and β̂ ) from the experimentally-estimated stan-

dard deviations ᾱ (and β̄ ). Such approach consists on a slightly modified version of the algorithm

proposed by Neph et al. (2012) using the standard-deviation technique proposed by Shenoi (2005).

Such modifications were performed in order to fit the filtered signals. The standard deviations were

calculated dynamically as the window slides within the selected regions. We will refer to this method

as “Filter”.

4.2 Evaluation of Computational Footprinting Methods

In this section we discuss the methodology used to evaluate the footprint predictions from the compu-

tational footprinting methods, which is depicted in Figure 4.3. We used two evaluation approaches.

The first is based on TF ChIP-seq data (ChIP-seq evaluation) and was generally used to perform com-

parative analyses in the literature (Pique-Regi et al., 2011; Boyle et al., 2011; Cuellar-Partida et al.,

2012). Nevertheless, TF ChIP-seq experiments has a few caveats. First, TF ChIP-seq peaks are also

observed in indirect binding events (Yardımcı et al., 2014). Second, the ChIP-seq low spatial reso-

lution makes that false binding sites might be regarded as true binding sites by proximity the actual

binding site (Cuellar-Partida et al., 2012; Yardımcı et al., 2014). To avoid the biases which stem from

TF ChIP-seq evaluation, we devised a second evaluation approach which does not require TF ChIP-

seq data. Instead, it is based on gene expression differences between pairs of cells (gene expression

evaluation).

Both evaluation strategies use MPBSs, which are TFBSs predicted using only DNA sequence infor-

mation and the TF’s DNA sequence affinity. In this thesis we used the computational sequence-based

method termed motif matching (Section 4.2.1). Then we proceed by defining the evaluation method-

ologies based on ChIP-seq (Section 4.2.2) and gene expression (Section 4.2.3).

4.2.1. Motif-Predicted Binding Sites

MPBSs are predictions of TFBSs made using only the genomic DNA sequence and the proteins’ DNA

sequence binding affinity. MPBSs are obtained applying a computational sequence-based method.

In this thesis we use an algorithm termed motif matching. The motif matching algorithm takes as

input the TF DNA sequence binding affinity, represented as a PFM (Figure 4.4). First, the PFM is

normalized, generating another structure called position weight matrix (PWM). Then, the genomic

DNA sequence is scanned using the PWM to find substrings which are likely to represent binding

sites, given the PWM model. The putative binding sites obtained with the motif matching algorithm

are termed MPBSs.
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where fi j is the frequency of base i at position j and s(i) is a pseudocount function. Pseudocounts are

small values used to avoid null probabilities. After the evaluation of the corrected probabilities, the

entries wi j of the PWM are calculated as

wi j = log2

pi j

b(i)
, (4.6)

where b(i) is the genomic frequency of nucleotide i in the genome. The background correction

function b(·) is used to correct the PWM for biases regarding the genomic imbalance between the

frequencies of the nucleotides.

PWMs are used to score any DNA sequence of length m by a summation of the corresponding

nucleotides between the DNA sequence and the PWM (Figure 4.4e). Such a score is called the

PWM’s bit-score.

Furthermore, we are able to assess the information content l = 〈l1, ..., lm〉 of each position j of the

PWM W by applying

l j = 2+ ∑
i∈D

pi j log2 pi j, (4.7)

where the number 2 is obtained from the total possible information content of the 4-character alphabet

D, i.e. log2 4 = 2. Based on the total information content for every position of the PWM, we are able

to create graphical representations of the binding affinity – termed logo graphs (Figure 4.4f) – by

multiplying the corrected probability of a certain nucleotide i at a certain position of the PWM j by

the total information content at that position (l j).

Motif Matching

From a PWM it is possible to estimate the sequence-based probability of the particular TF of binding

in the genome. We call this procedure motif matching. For each sequence of nucleotides of length

m, a bit-score is calculated. There are also many strategies to perform this calculation. The simplest

one is the summation of all the entries in wi j matching the nucleotide sequence of length m. More

formally, given a sequence of characters g representing the genome, where g = 〈g1, ...,gn〉∀gi ∈ D.

We are able to define a vector of bit-scores y = 〈y1, ...,yn−m〉 as

yi =
m

∑
j=1

∑
k∈D

1(k = gi)wk j, (4.8)

where 1(·) is an indicator function.

A genome-wide application of a PWM creates bit-scores for every possible contiguous nucleotide

sequence of length N within the genome. Then, several statistical techniques can be used to determine

a cutoff threshold to accept particular sequences as being bound by the protein, given the PWM. A

well-known statistical procedure is to estimate a bit-score cutoff that corresponds to the false positive

rate (FPR) of the distribution of the bit-scores from all possible m-mers (Wilczynski et al., 2009).

More formally, let C = {c1, ...,c4m} be the set of all m-mers constructed by picking m elements from

the set D with order and repetition, where each m-mer ci = 〈ci
1, · · · ,ci

m〉. Therefore, we are able to

calculate the set B = {b1, · · · ,b4m} of all the possible bit-scores for the PWM W as

bi =
m

∑
j=1

∑
k∈D

1(k = ci
j)wk j. (4.9)

Then, it is easy to find the false discovery rate threshold by finding the p-value that corresponds to
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Site 8

Site 7

Site 6

Site 5

Site 4
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Site 2

Site 1
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Source binding sites

a

B
its

Consensus sequence

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A 0 4 4 0 3 7 4 3 5 4 2 0 0 4

C 3 0 4 8 0 0 0 3 0 0 0 0 2 4

G 2 3 0 0 0 0 0 0 1 0 6 8 5 0

T 3 1 0 0 5 1 4 2 2 4 0 0 1 0

–1.93 0.79 0.79 –1.93 0.45 1.50 0.79 0.45 1.07 0.79 0.00 –1.93 –1.93 0.79

C 0.45 –1.93 0.79 1.68 –1.93 –1.93 –1.93 0.45 –1.93 –1.93 –1.93 –1.93 0.00 0.79

G 0.00 0.45 –1.93 –1.93 –1.93 –1.93 –1.93 –1.93 0.66 –1.93 1.30 1.68 1.07 –1.93

T

0.45 –0.66 0.79 1.68 0.45 –0.66 0.79 0.45 –0.66 0.79 0.00 1.68 –0.66 0.79

Σ = 5.23, 78% of maximum

c Position frequency matrix (PFM)

d Position weight matrix (PWM)

e Site scoring

G   A   C   C   A   A   A   T   A   A   G   G   C   A
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T   T   A   C   A   T   A   A   G   T   A   G   T   C

A
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Position

1
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0.45  –0.66  –1.93   –1.93    1.07  –0.66    0.79    0.00   0.00    0.79   –1.93  –1.93  –0.66  –1.93

Figure 4.4: PFMs and PWMs used in the motif matching technique. (a) A set of experimentally

validated binding sites was collected and aligned. The sequence variability of the collection of bind-

ing sites strongly affects the downstream models for predicting additional sites. Note the diversity

between the sites; for instance, only 50% of the nucleotides are identical between sites one and eight.

(b) The consensus sequence model using IUPAC symbols. For instance, the symbol “B” means pref-

erence for either nucleotides C, G or T. (c) PFMs created based on the source binding sites. (d) PWMs

created using the procedure described by Equations 4.5 and 4.6. (e) Using the PWM, a quantitative

score for any DNA sequence is generated by summing the values that correspond to the observed

nucleotide at each position. (f) A sequence logo scales each nucleotide by the total bits of informa-

tion multiplied by the relative occurrence of the nucleotide at the position (Equation 4.7). Sequence

logos enable fast and intuitive visual assessment of pattern characteristics. Source: Wasserman and

Sandelin (2004) (modified to fit thesis format and/or clarify key points).
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B fitted to a certain distribution, say normal

B ∼ N (µ,σ2). (4.10)

We observed that the p-value choice significantly affects many aspects of the evaluation procedure.

Therefore, we made a careful parameter selection analysis. Such an analysis indicated that a p-value

of 10−4 resulted in a significant amount of TF ChIP-seq peaks overlapping with MPBSs (Gusmao

et al., 2014). Higher p-values generate a very high number of MPBSs which impacts on computa-

tional time and increases the imbalance between true and false MPBSs (Gusmao et al., 2014). The set

of MPBSs after the application of the false discovery rate cutoff threshold is represented by a genomic

region set R = {r1, · · · ,rl}, where each MPBS ri = [u,v], is an interval from genomic positions u to v.

4.2.2. ChIP-seq Evaluation

The ChIP-seq evaluation approach uses MPBSs in conjunction with TF ChIP-seq peaks as ground

truth (Pique-Regi et al., 2011; Boyle et al., 2011; Cuellar-Partida et al., 2012). By evaluating the

overlap between MPBSs, TF ChIP-seq peaks and footprint predictions we are able to assess the

accuracy of computational footprinting methods (Figure 4.5). The advantage of this approach is

that it provides a straightforward scenario for the evaluation of computational footprinting methods.

Furthermore, this evaluation approach enables the comparison between different methods for each

individual TF.

Data

We obtained TF ChIP-seq datasets consisting on the enriched regions (peaks). On total, 144 ChIP-

seq peaks datasets were obtained to create the ChIP-seq evaluation datasets. All peaks were obtained

in ENCODE Project Consortium (2012) with exception of the following TFs: (1) AR – obtained in Yu

et al. (2010); (2) ER – obtained in Guertin et al. (2014); and (3) GR – obtained in John et al. (2011).

See Supplementary Table A.3 for a full description of TF ChIP-seq data and the TF PFMs matching

each ChIP-seq experiment.

Application of the ChIP-seq Evaluation Methodology

MPBSs with ChIP-seq evidence (located within 100 bp from the ChIP-seq peak summit) are consid-

ered “true” binding sites; while MPBSs without ChIP-seq evidence are considered “false” binding

sites. Every TF prediction (footprint) that overlaps a true binding site is considered a correct pre-

diction (true positive – TP) and every prediction that overlaps a false binding site is considered an

incorrect prediction (false positive – FP). Therefore, true negatives (TN) and false negatives (FN) are,

respectively, false and true binding site without overlapping predictions (Figure 4.5a). We consider

overlaps of at least one bp.

The contingency table (TPs, FPs, TNs and FNs) enables the creation of receiver operating char-

acteristic (ROC) curves, which describe the sensitivity increase as we decrease the specificity of the

method (Figure 4.5b). The area under the ROC curve (AUC) metric was calculated at 1%, 10% and

100% FPRs. By evaluating the AUC at different FPRs we avoid misleading interpretations due to

the rate in which the specificity decreases with sensitivity increase. The contingency table also en-

ables the creation of precision-recall (PR) curves (Figure 4.5c). The area under the PR curve (AUPR)

is a statistic indicated for problems with imbalanced datasets (distinct number of positive and neg-

ative examples) (Davis and Goadrich, 2006; Fawcett, 2006). In summary, the ChIP-seq evaluation

methodology provides four performance statistics for each TF: (1) AUC at 1% FPR; (2) AUC at 10%

FPR; (3) AUC at 100% FPR; and (4) AUPR. For any of these statistics, higher values indicate higher

method performance.
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a higher number of TFs to enhance statistical significance. Therefore, we created two ChIP-seq

evaluation scenarios, described below.

Benchmarking Dataset: For comparative analysis of several competing methods, we selected

the two cell types from the Comparative Dataset (Section 4.1.1) with the highest number of

TF ChIP-seq datasets evaluated in our study: K562 with 59 TFs and H1-hESC with 29 TFs. This was

required due to the high computational demands of the execution of some competing methods. All

methods described in this study were compared under this evaluation scenario (executed using the SH

DNase-seq data).

Comprehensive dataset: We have compiled a comprehensive dataset containing 235 combi-

nations of cell types and TFs with matching cellular background. We used the cell types from the

Analysis Dataset (Section 4.1.1). This dataset was built from a catalog of 144 TF ChIP-seq.

This dataset was used in analyses which required a large dataset for statistical significance. In this

scenario we only evaluated HINT and the baseline methods.

4.2.3. Gene Expression Evaluation

The ChIP-seq evaluation approach requires TF ChIP-seq experiments which, as indicated by Yardımcı

et al. (2014), has some intrinsic biases. First, TF ChIP-seq peaks are also observed in indirect binding

events. Second, they have a lower spatial resolution than DNase-seq. Therefore, false MPBSs might

be regarded as true MPBSs by proximity to an active TFBS. Recently, Yardımcı et al. (2014) indicated

that footprint quality scores, as measured by their method’s metric – the footprint likelihood ratio

(FLR) – were significantly higher in cells where the TF was expressed. This observation indicates

that comparing changes in expression and quality of footprints in a pair of cells provides an alternative

footprint evaluation measure. This led us to the development of a novel evaluation methodology based

on gene expression by applying this idea systematically for a large set of TFs.

Data

Expression profiling by array (Affymetrix Human Exon 1.0 ST Array) data was obtained in ENCODE

Project Consortium (2012). We obtained data for all Comparative Dataset cell types: H1-

hESC, K562 and GM12878. All samples from each cell type was used to infer the overall gene

expression profile. See Supplementary Table A.5 for a full gene expression data description.

Application of the Gene Expression Evaluation Methodology

We used limma (Ritchie et al., 2015) version 3.28.4 to perform between-array normalization on ex-

pression of H1-hESC, K562 and GM12878 cells and obtain gene expression fold change (FC) esti-

mates. This generated pairwise FCs between all three cell type pairs: H1-hESC vs K562, H1-hESC

vs GM12878 and K562 vs GM12878. We used the R programming language version 3.1.2 implemen-

tation of limma. The source code of this software is found at https://bioconductor.org/

packages/release/bioc/html/limma.html.

Then, we retrieved all non-redundant PFMs from Jaspar in which gene symbol is a perfect match

with genes present in the array platform. This leads us to 143 PFMs (Supplementary Table A.4). We

applied a genome-wide motif matching (Section 4.2.1) using these PFMs to create MPBSs.

Afterwards, we calculated footprint quality scores for all footprints from all computational foot-

printing methods, which intersect with MPBSs of a particular motif. In this thesis we used three

different metrics as footprint quality scores: (1) the FLR score (Yardımcı et al., 2014); (2) the TC and

(3) the FS. We only considered the footprints within DHSs that are in common between the cell type
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pair being evaluated, as described in Yardımcı et al. (2014). We expect that TFs with higher expres-

sion values in a particular cell type would present higher values regarding footprint quality metrics

with DNase-seq from that cell type.

A two-sample Kolmogorov-Smirnov (KS) test was used to assess the difference between each met-

rics’ distribution between the two cell types being evaluated. The KS statistic, which varies within

[0,1], is used to indicate the difference between two distributions; higher values indicate higher dif-

ferences. As the KS score do not indicate the direction of the changes in distribution, we obtained

a signed version by multiplying KS statistic by −1, in cases where the median of the quality scores

calculated in cell type A < median calculated in cell type B. We calculated the Spearman correlation

between the signed KS test statistic and the FC for each TF. Positive values indicate an association

between expression of TFs and quality of footprint predictions. We will call this correlation “FP-

Exp”. The higher the FP-Exp, the better the computational footprinting method. Figure 4.6 exhibits

a graphical description of the gene expression evaluation methodology.

4.3 Downstream Analyses

The predicted footprints from a computational footprinting approach represent a map of active TFBSs.

In possession of such footprints we are able to perform a number of different downstream analysis.

In this section we show two common downstream analyses that we are going to explore in this thesis:

the TF enrichment analysis and the de novo motif finding. The main goal of the TF enrichment

analysis is to identify TFs which are more likely to bind in footprints from a particular cell type when

compared to other cell type (Section 4.3.1). On the other hand, the de novo motif finding consists on

searching for novel TF DNA affinity sequences which do not match any known affinity sequence in

the literature (Section 4.3.2).

4.3.1. Transcription Factor Enrichment Analysis

The TF enrichment analysis is divided in two parts: (1) the application of a statistical test, on each cell

type or biological condition, to verify if TFs bind more than expected by chance at genomic regions

of interest (i.e. footprints); and (2) the comparison between the results of the statistical test for all

TFs between the different cell types or biological conditions being investigated.

We start by defining two genomic region sets: the target genomic region set and the background

genomic region set. The target genomic region set X = {x1, · · · ,xn} is composed of the genomic

regions associated to the target biological condition being tested (Figure 4.7a). It can be, for instance,

footprints identified in a group of differentially expressed genes. The background genomic region set

Y = {y1, · · · ,ym} (Figure 4.7b) is composed of a collection of random genomic regions throughout

the genome. The rationale is that the background genomic region set acts as a “control” to which we

can compare our target genomic region set against. By comparing the occurrence of putative active

TF binding within our target genomic region set X against the background genomic region set Y we

can perform a statistical test to assess the enrichment of TFs in X . For statistical power, the number

of background genomic regions m should be higher than the number of target genomic regions n.

After the definition of our target and background genomic region sets, we apply the motif matching

algorithm to identify MPBSs within these regions (Figure 4.7c). In the analyses presented in this

thesis, the motif matching was performed using all the PFMs available from Jaspar (Mathelier et al.,

2014) and Uniprobe (Robasky and Bulyk, 2011). Then, by overlapping the MPBSs with the target

and background genomic region sets, we create the following statistics for each TF t (Figure 4.7d):

at – The number of target genomic regions overlapping at least one MPBS from TF t.

bt – The number of target genomic regions which do not overlap any MPBS from TF t.
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Figure 4.6: Gene expression evaluation methodology. This figure shows an example of the gene

expression evaluation methodology using the footprint likelihood ratio (FLR) as a footprint quality

score, calculated on DNase-seq data from cell types H1-hESC (SH) and K562 (SH). (a) FLR score

distribution of footprints predicted with HINT overlapping with MPBSs of selected TFs. These TFs

have increasing expression in K562 (red) compared with H1-hESC cell types (blue). The signed

Kolmogorov-Smirnov (KS) statistic quantifies the separation of both distributions. The box plot

depicts the distribution median value (middle dot) and first and third quartiles (box extremities).

Box plots’ whiskers represent the 1.5 interquartile region (IQR) and external dots represent outliers

(data greater than or smaller than 1.5 IQR). (b) Scatter plot with signed KS statistic and expression

fold change (FC) for 143 TFs. There is a clear association between TF expression and KS statistic

(r = 0.97, adjusted p-value < 10−10). We call this correlation FP-Exp. The higher the FP-Exp, the

better the computational footprinting method. Source: Gusmao et al. (2016) (modified to fit thesis

format and/or clarify key points).
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ct – The number of background genomic regions overlapping at least one MPBS from TF t.

dt – The number of background genomic regions which do not overlap any MPBS from TF t.

Then, we apply the Fisher’s exact test on the aforementioned statistics at , bt , ct and dt . The null

hypothesis is defined as: the proportion TF binding at target genomic regions is not greater than the

proportion of TF binding at background genomic regions. Nevertheless, since we test a high number

of TFs (∼600 PFMs from Jaspar and Uniprobe) and each one requires a different and independent

statistical test, we perform a multiple testing correction. For that, we use the Benjamini and Hochberg

method (Benjamini and Hochberg, 1995) (also known as false discovery rate (FDR) control method).

The final result is a list of corrected p-values which describes the likelihood of the tested TFs to be

associated to the target genomic regions in comparison to the background genomic regions.

In possession of the corrected p-value list of TF enrichment for all cell types / biological conditions

being tested, we search for the TFs that presented significant p-values (< 0.05) in particular cell types

/ biological conditions. For that, we filter the list of TFs for the ones which: (1) present a significant

p-value in at least one of the conditions tested and (2) present a non significant p-value in at least one

of the conditions tested. The list of filtered TFs are likely to contain the regulators of specific cell

types / biological conditions.
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MPBSs

a b

c d

Target
Regions
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a+b+c+d
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Figure 4.7: TF enrichment analysis. (a) The target genomic region set is composed of the genomic

regions under study. (b) The background genomic region set is composed of “control” genomic

regions. It can be, for instance, random genomic regions in the same organism’s genome. (c) MPBSs

are created for a particular TF in which we are interested in evaluating if it is enriched in the target

genomic regions in contrast to the background genomic regions. (d) Based on the overlap between the

target genomic region set, the background genomic region set and the MPBSs for a particular TF, we

create a contingency table and perform the Fisher’s exact test. The test’s p-value gives an indication

on the enrichment of the TF at the target genomic regions.

4.3.2. De Novo Motif Finding

We show here a very simple protocol to search for novel TF DNA sequence affinity motifs within

footprint predictions. Such analysis extends our knowledge on the regulatory elements that binds a

particular cell type.
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First, we apply the motif matching algorithm on all predicted footprints using all PFMs from the

Jaspar (Mathelier et al., 2014) and Uniprobe (Robasky and Bulyk, 2011) repositories. Before the

motif matching, we extend all footprints by 10 bp to each side to be able to recognize larger sequence

motifs. The goal of this initial motif matching analysis is to eliminate all footprints which correspond

to known TF affinity motifs.

Then, we apply the de novo motif finding tool “discriminative regular expression motif elicitation”

(DREME) (Bailey, 2011) on the footprints that do not present any known motif. Such tool is opti-

mized to perform de novo motif analysis in datasets containing many sequences and is able to find

multiple different motifs. Briefly, DREME finds substrings that appear in a target genomic region set

(in our case, the footprints) more frequent than by chance given a background genomic region set (in

our case, random genomic regions with the same length of the footprints but with 100 times more

sequences). DREME outputs a number of novel motifs found on the sequence.

Since we performed an extension on the footprints prior to the execution of DREME, we might

find a couple of “artifact motifs”, i.e. small motifs that do not correspond to a footprint which are in

the border of the footprint prediction. To filter for these artifact motifs, we execute the “local motif

enrichment analysis” (CENTRIMO) software (Bailey and Machanick, 2012) tool on all sequences

associated to the de novo motifs found by DREME. This tool makes sure that the motifs found are

centrally enriched within the footprints’ regions and are not a product of the 10 bp extension.

The de novo motifs found by DREME which are significantly centrally enriched according to

CENTRIMO correspond to the results of our de novo motif analyses. These resulting motifs are

represented by PFMs based on the DNA sequence on the binding sites within the footprints.

4.4 Statistical Methods

All method comparison in this work is performed using the non-parametric Friedman-Nemenyi hy-

pothesis test. This hypothesis test is indicated when using multiple gold standard datasets and meth-

ods (Demšar, 2006). Such test provides a rank of the methods as well as the statistical significance

of whether a particular method was outperformed by other method. The test provides results for the

significance levels of 0.95 and 0.99. We obtained an implementation of the Friedman-Nemenyi hy-

pothesis test written in Java and it was run in the Java SE Runtime Environment (build 1.8.0_45-b14).

All correlations calculated in this work are based on the Spearman’s rank correlation coefficient

(denoted as r) (Duda et al., 2000). The Spearman’s rank correlation was chosen since it assesses

monotonic relationships (whether linear or not). All Spearman correlation p-values are based on a

two sided test with significance of 0.95. We used the R programming language version 3.1.2 imple-

mentation of the Spearman correlation test with the function cor.test.

All differences between the distribution of two samples (or more samples in a pair-wise man-

ner) are analyzed using the non-parametric Mann–Whitney–Wilcoxon hypothesis test (Duda et al.,

2000). All test p-values are based on a two sided test with significance of 0.95. We used the R pro-

gramming language version 3.1.2 implementation of the Mann–Whitney–Wilcoxon hypothesis test

with the function wilcox.test. The only exception is regarding the gene expression evaluation ap-

proach (Section 4.2.3), in which the Kolmogorov-Smirnoff hypothesis test was used, in accordance

to Yardımcı et al. (2014).

All p-values are corrected for multiple comparisons using the Benjamini and Hochberg method (Ben-

jamini and Hochberg, 1995) (also known as false discovery rate (FDR) control method). Multiple test

correction is necessary since we perform many hypothesis tests given our evaluation framework. We

used the R programming language version 3.1.2 implementation of the Benjamini-Hochberg multiple

test correction method with the function p.adjust.
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4.5 Discussion

In this chapter we defined our computational experimental framework. We described the datasets used

as input for our computational footprinting method and for the method evaluation experiments. We

defined the signal processing, training and execution of our computational footprinting method HINT.

Moreover, we described the execution of nine competing methods, categorized as either segmentation-

based or site-centric, and four baseline methods, which are regarded as control experiments. In total,

our comparative analysis encompasses 14 different computational footprinting methods. Further-

more, we described the evaluation methodologies, which are based on either TF ChIP-seq or gene

expression as ground truth to test footprint predictions. By having two different and independent

evaluation approaches we expect to provide a clear picture of the comparison between the tested

computational footprinting methods.

We have observed that there are a number of parameters from the computational footprinting meth-

ods or from the strategies used to generate the evaluation gold standard datasets that have a significant

impact on the performance and further analyses results. Therefore, we have performed multiple em-

pirical tests on parameter selection (Gusmao et al., 2014). The parameters shown in this chapter cor-

respond to the ones which maximize the performance of all computational footprinting methods on

empirical analyses performed using data from chromosome 1. To avoid overfitting and interpretation

biases, we have excluded the chromosome 1 from all our subsequent comparative analyses results.

Important results from parameter selection empirical analyses will be shown in the next chapter.

We close this chapter highlighting the main contributions performed in this thesis with regard to

the experimental design of computational footprint methods:

• So far, all studies that perform computational footprinting method comparison used the AUC

metric for the ChIP-seq evaluation strategy as a single resource to assess method performance.

In this thesis, in addition to using the AUC at various levels of the FPR, we use the AUPR,

which is indicated when there is a considerable gold standard data imbalance (very different

numbers of positive and negative instances) (Davis and Goadrich, 2006; Fawcett, 2006).

• We devised a novel evaluation strategy which does not rely on ChIP-seq data. Such evaluation

strategy uses gene expression fold change from cell type pairs to assess the overall quality of

computational footprinting method’s performance.

• No study so far have evaluated such a comprehensive number of different computational foot-

printing methods. Such a comprehensive analysis provides a full picture of the state-of-the-art

strategies for computational footprinting.

• Finally, we performed multiple parameter selection empirical analyses (Gusmao et al., 2014).

Such analyses resulted in maximally efficient footprint predictions for all computational foot-

printing methods tested, without adding overfitting biases.
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CHAPTER 5

Results

In this chapter we present the results generated by our experimental analysis on computational foot-

printing methods. First, we performed empirical analyses to determine the best parameters to our

computational footprinting methodology HINT (Section 5.1). Then, we investigated two current ma-

jor challenges in the area: the selection of an optimal footprint ranking strategy and the correction of

DNase-seq sequence cleavage bias (Section 5.2). Afterwards, we present our comprehensive compar-

ative analysis, which includes our method, nine competing methods and four baseline methods (Sec-

tion 5.3). We also provide an insightful discussion on an unexplored and critical challenge of com-

putational footprinting methods – the transcription factor (TF) binding residence time (Section 5.4).

Then, we show an example of downstream analysis – the de novo motif finding (Section 5.5). After,

we present two case studies in which our computational footprinting method was applied successfully

to unravel key regulatory TFs on two different biological experiments (Section 5.6). A full discussion

on the results presented in this study will be performed thoroughly in the next chapter (Chapter 6).

5.1 HINT Parameter Selection

We performed a number of preliminary analyses to find the best parameters for our computational

footprinting framework HINT. First, we studied the hidden Markov model (HMM) topology which

optimizes the accuracy on identifying correct footprints (Section 5.1.1). Then, we tested a number of

different combination of input histone modification data. Such test not only determined the best data

input types for our computational method but also provided interesting insights on the underlying

biological problem (Section 5.1.2). Finally, we investigated the level of dependence our method has

on the training data (Section 5.1.3).

In the analyses presented in this section, we used the ChIP-seq evaluation approach to assess per-

formance. All scenarios were tested with regard to their accuracy on predicting footprints using the

area under the receiver operating characteristic (ROC) curve (AUC) at 100% false positive rate (FPR)

on the Comprehensive Dataset. Since we are evaluating the impact on performance of dif-

ferent data types (DNase-seq, different combinations of histone modifications ChIP-seq and different

combinations of both DNase-seq and histone modifications) we opted to use the bit-score of the motif-

predicted binding sites (MPBSs) as the ranking metric to create the receiver operating characteristics

(ROC) curves. The rationale for the usage of such ranking strategy is that it is independent of the

experimental open chromatin datasets. This is necessary because: (1) this ranking strategy does not

bias the analysis towards specific HMM topologies/input data type and (2) it makes the analysis inter-

pretation simpler. In this scenario, we divided the gold standard dataset into two groups: the MPBSs

that contain at least one base pair (bp) overlap with HINT’s predicted footprints and the ones that do

not overlap. Both groups were sorted based on the motif matching bit-score. A single list is then

obtained by combining the ranked list of predicted sites before the ranked list of the non-predicted

sites. The ROC curve is created based on this combined ranked list of MPBSs. These analyses were

performed using data from chromosome 1 only, which was removed from the comparative analyses

(in Section 5.3) to allow a fair comparison.
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5.1.1. HMM Topology

We investigated the different HMM topologies presented in this thesis (Section 3.2.2). The empir-

ical test consists on evaluating the AUC using the Comprehensive Dataset from the ChIP-

seq evaluation approach. The distribution of the 233 AUCs at 100% FPR (one for each TF from

the Comprehensive Dataset) for all the HMM topologies can be seen in Figure 5.1. All the

HMM topologies that use histone modification data were tested using a combination of H3K4me1 +
H3K4me3.

We are able to observe in Figure 5.1 that the ORIGINAL DNASE + HISTONE provides higher accura-

cies than all other models. Furthermore, the HISTONE-ONLY MODEL provides the lowest accuracies.

This relates to the fact that the HISTONE-ONLY MODEL’S footprints are large and do not capture the

spatial specificity provided by the higher-resolution DNase-seq data.

DNase +
histone

DNase +
histone
w/o slope

DNase +
histone
asymmetric
peaks

DNase-only Histone-only

90

80

70

60

50

D
is

tr
ib

u
ti

o
n
 o

f 
A

U
C

a
t 

1
0
0

%
 F

P
R

 (
%

)

HINT HMM Topologies

PWM
bitscore

Figure 5.1: Performance of different HINT HMM topologies. Distribution of AUC at 100%

FPR of the ROC curves generated using the ChIP-seq evaluation Comprehensive Dataset on

different HINT HMM topologies. The histone modification combination H3K4me1 + H3K4me3

was used on the HMM topologies which use such data. Source: Gusmao et al. (2014) (modified to fit

thesis format and/or clarify key points).

We performed a Friedman-Nemenyi test on the distribution of accuracies from different HMM

topologies to assess statistical significance. The results can be seen in Table 5.1. We observed that

indeed the ORIGINAL DNASE + HISTONE MODEL significantly outperforms all other topologies.

This analysis shows that the proper integration of DNase-seq and histone modifications results in

significantly higher accuracies than using each of these data separately.

The possible reason for the good results of the ORIGINAL DNASE + HISTONE topology in relation

to the DNASE + HISTONE ASYMMETRIC peaks topology is the fact that the normalization method-

ology emphasizes even little increases in histone modification levels, leveraging the asymmetry issue

(Figure 5.2). Furthermore, the poor performance of the DNASE + HISTONE WITHOUT SLOPE topol-

ogy in comparison to the other DNASE + HISTONE topologies indicates that even with more complex

models (4 vs 2 variables and 8 vs 4 states, respectively) the slope signal and the additional states are

crucial in the accurate delineation of the footprints.

It is interesting to observe that the DNASE-ONLY HMM topology provides high accuracies (sig-

nificantly better than the DNASE + HISTONE WITHOUT SLOPE and HISTONE-ONLY topologies) and

is competitive with the ORIGINAL DNASE + HISTONE and ASYMMETRIC PEAKS DNASE + HIS-

TONE topologies. This fact shows the power of the DNase-seq data on identifying TF footprints.
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ification). We also evaluated the combination of all pairs and triples of histone modification signals

by simply merging all predicted sites (as described in Section 4.1.3). Such combinatorial analysis

generates 20 additional prediction sets (10 pairs and 10 triples). Note that extending to further com-

binations would deviate from one of the main goals of this study, which is to create a consistent map

of active transcription factor binding sites (TFBSs) with few genome-wide assays. We tested all the

25 combinations using the ChIP-seq evaluation Comprehensive Dataset gold standard.

Figure 5.3 presents the distribution of AUCs for all histone modification models tested plus the

DNASE-ONLY HMM topology for comparison purpose. We observed that most methods presented

the region between the first and third quartiles approximately between AUCs 80%–95%. In order

to test the statistical relevance of these differences, we performed a Friedman-Nemenyi test. The

Table 5.2 shows the accuracy ranking for all histone modification combinations in decreasing order,

providing information on which models significantly outperformed others.

Overall, results indicate that combinations with more histone modifications are better than single-

histone models. Several combinations of three marks (H3K4me1+H3K4me3+H3K9ac,

H3K4me1+H3K4me3 +H3K27ac, H2A.Z+H3K4me1+H3K4me3, H2A.Z+H3K4me3+H3K9ac and

H3K4me3+H3K9ac+H3K27ac) were similarly good, i.e. their AUC are not significantly lower than

any other combination. Similarly, if we only consider individual and pairs of histone modification,

H3K4me1+H3K4me3, H3K4me3+H3K9ac, H3K4me3+H3K27ac, H2A.Z+H3K4me3 and

H3K4me1+H3K9ac have similar AUCs. This indicates that any combination of these histone modifi-

cations, whenever available, would perform equally well. Nevertheless, we observed that the DNASE-

ONLY topology outperforms a few DNASE + HISTONE modification combinations significantly. This

represents further evidence of the importance of such high-resolution signal and might explain pre-

vious failed attempts to improve the accuracy of TF predictions by introducing histone modifications

individually (Pique-Regi et al., 2011; Cuellar-Partida et al., 2012).
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Figure 5.3: Performance of different histone modification combinations. Distribution of AUC at

100% FPR of the ROC curves generated using the ChIP-seq evaluation Benchmarking Dataset

on DNASE + HISTONE HINT topology with different combinations of histone modifications. We

show single, pairs and trios of histone modifications in red, blue and green, respectively. The DNASE-

ONLY accuracy is also shown (in black) for comparison purpose. Source: Gusmao et al. (2014)

(modified to fit thesis format and/or clarify key points).
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Table 5.2: Friedman-Nemenyi test on different histone modification combinations. Friedman-

Nemenyi hypothesis test results on AUC at 100% FPR of the ROC curves generated using the ChIP-

seq evaluation Benchmarking Dataset on DNASE + HISTONE HINT topology with different

combinations of histone modifications. We show single, pairs and trios of histone modifications in

shades of red, blue and green, respectively. In addition, we also show the DNASE-ONLY HMM

topology for comparison purpose (gray). The asterisk and the cross, respectively, indicate that the

method in the column outperformed the method in the row with significance levels of 0.01 and 0.05.

Source: Gusmao et al. (2014) (modified to fit thesis format and/or clarify key points).
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H3K4me3+H3K9ac+H3K27ac

H2A.Z+H3K4me3+H3K27ac ∗
H3K4me1+H3K4me3 ∗

H3K4me1+H3K9ac+H3K27ac ∗ +

H2A.Z+H3K4me1+H3K9ac ∗ ∗ ∗
H3K4me3+H3K9ac ∗ ∗ ∗

H2A.Z+H3K4me1+H3K27ac ∗ ∗ ∗ ∗ +

H3K4me3+H3K27ac ∗ ∗ ∗ ∗ ∗
H2A.Z+H3K4me3 ∗ ∗ ∗ ∗ ∗

H3K4me1+H3K9ac ∗ ∗ ∗ ∗ ∗ ∗
H3K4me1+H3K27ac ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

H2A.Z+H3K4me1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
H2A.Z+H3K9ac+H3K27ac ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

H3K4me3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
DNase-only ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

H2A.Z+H3K9ac ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
H3K9ac+H3K27ac ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

H3K4me1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
H2A.Z+H3K27ac ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ + +

H3K9ac ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
H3K27ac ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

H2A.Z ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

5.1.3. HMM Training

The annotation of certain genomic regions with the HMM states in order to train HINT is labori-

ous. Therefore, we decided to analyze whether HINT’s performance is impacted by training and

applying the method to data from different cell types. In this particular empirical test, we used

Comprehensive Dataset’s evaluation data for four cell types: H1-hESC (29 TFs), HeLa-S3

(20 TFs), HepG2 (21 TFs) and K562 (59 TFs).

We have compared the AUC values of HINT when it was trained in a particular cell type and

executed in the same cell type it was trained vs the other three cell types. The Friedman-Nemenyi test
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was applied to assess statistical significance.

Figure 5.4 shows the results for all models applied to all cell types tested. Each set of four boxplots

represent one of the four HINT models (trained with data from one of the four cell types), which

was applied to the signal generated from the cell type labeled on the bottom of the set. Statistical

significance are directly represented in the graph.

We can observe in Figure 5.4 that only in one out of twelve cases the AUC levels are significantly

different (p-value < 0.05). This corresponds to the HepG2 model, when used to generate footprints

in the same cell type and in K562 cell type. These results suggest that our signal processing workflow

and HMM model are able to robustly mitigate differences between distinct cell type signals. Conse-

quently, we can consider HINT cell-type training-independent. The practical implication of such an

important characteristic is that a simple application of a model already stored in our software tool,

trained for a particular cell type, is sufficient to generate accurate predictions for any other cell type,

without the need to re-train the model. Furthermore, this is evidence that the patterns that make the

grammar of active TFBSs are similar between different cells.
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Figure 5.4: Performance of different HMM training/testing scenarios. Distribution of AUC at

100% FPR of the ROC curves generated using the ChIP-seq evaluation Benchmarking Dataset

on HINT models trained in four different cell types (top x-axis labels) and applied to (tested on) the

same four cell types (bottom x-axis labels). The first boxplot within each set represents the model

trained in the same cell type as the one it was applied to. The significant Friedman-Nemenyi test

p-values are shown on the top of the boxplot. Source: Gusmao et al. (2014) (modified to fit thesis

format and/or clarify key points).

5.2 Footprint Scoring and Sequence Cleavage Bias Correction

In this section we focused on two important challenges regarding computational footprinting meth-

ods. First, we performed a series of empirical tests on HINT and competing methods to identify an

optimal footprint scoring metric (Section 5.2.1). We investigated such optimal scoring metric for both
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evaluation methodologies proposed (ChIP-seq and gene expression). Second, we investigated the im-

pact of the DNase-seq sequence cleavage bias on computational footprinting and whether such bias

could be corrected to improve the performance of HINT (Section 5.2.2). All DNase-seq sequence

cleavage bias analyses used only the ChIP-seq evaluation strategy, since we require the TF-wise re-

sults provided by this evaluation strategy.

Regarding the ChIP-seq evaluation analyses presented in this section; since such experiments re-

quired a few comparisons between HINT and other competing methods which only used DNase-seq

data as input, we opted to use the DNASE-ONLY HMM topology to provide a fairer comparison.

In analyses that involved HINT and competing methods we used the Benchmarking Dataset

as gold standard; while in analyses that involved only HINT we used the full Comprehensive

Dataset. Furthermore, we decided to use the AUC at 10% FPR to capture more subtle differences

in reported accuracies. These analyses were performed using data from chromosome 1 only, which

was removed from the comparative analyses (in Section 5.3) to allow a fair comparison.

5.2.1. Footprint Ranking Strategy

Some competing footprinting methods also provide statistics to rank footprint predictions. Wellington

and DNase2TF use read count statistics to provide p-values for each footprint. Several site-centric

approaches provide either probabilities (BinDNase, Centipede and PIQ) or log-odds scores (FLR) of

footprints. Other methods use statistics such as the footprints score (Neph) or position weight matrix

(PWM) bit-score (Cuellar), to rank predicted footprints.

The main goal of this empirical analysis is to identify the best scoring metric for footprint predic-

tions. For that, we used the TF-wise ChIP-seq evaluation approach to search for such scoring metric

by performing an empirical test on the accuracy of HINT and competing methods. Since the gene

expression evaluation differs in nature with regard to the scoring metric (footprint quality score), we

also evaluated the best scoring metric using such evaluation approach.

ChIP-seq Evaluation

The ChIP-seq evaluation scheme requires a metric to rank the footprint predictions. Since the ChIP-

seq evaluation scheme is calculated in a TF-wise manner, we can regard an optimal ranking score to

create the ROC curve as the best footprint ranking scheme.

We investigated three footprint scoring metrics: the tag count (TC), the footprint score (FS) and the

PWM bit-score (PWM). We assigned a quality score for each footprint predicted using the DNASE-

ONLY HINT method. The assignment of the TC and FS to each footprint can be performed straight-

forwardly using the DNase-seq data. Regarding the PWM metric, each footprint was assigned to

the bit-score of its overlapping MPBS. The PWM score assignment was performed as a “control”

experiment, since it requires MPBSs, which are only available for known TFs.

The test consists on ranking the footprints by each of these three different metrics and creating

the ROC curves based on each different ranking. Figure 5.5 shows the distribution of the AUC at

10% FPR for different footprint ranking strategies using HINT’s footprint predictions. The statistical

significance assessment in the graph corresponds to the Friedman-Nemenyi test.

We are able to observe that the TC is the best footprint ranking strategy (average AUC = 90%),

outperforming both FS and PWM (p-value < 0.01). Furthermore, it is clear that both FS and PWM

have significantly lower accuracies than the TC strategy (average AUC = 50% and 37%, respectively;

p-value < 0.01). It is clear that the PWM bit-score is the worst scoring metric, since it does not use

the cell-specific open chromatin information provided by the DNase-seq data. However, the success

of the TC metric in comparison to the FS is not so straightforward. The FS is defined as a ratio

between the DNase-seq at the center of the footprint and its flanking regions. The first problem that

the FS encounters is that it does not recover the absolute signal intensity, as the simpler TC metric
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does. The second problem of the FS metric regards the window length in which the average signal in

the center of the motif and flanking regions are calculated. This issue is similar to the one discussed

for window-based segmentation methods (Section 2.4.1). We believe these issues are related to the

higher observed accuracies for the TC metric.
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Figure 5.5: Performance of different footprint ranking strategies on HINT Distribution of

AUC at 10% FPR of the ROC curves generated using the ChIP-seq evaluation Comprehensive

Dataset on different footprint ranking strategies on HINT. The significant Friedman-Nemenyi test

p-values are shown on the top of the boxplot. Source: Gusmao et al. (2016) (modified to fit thesis

format and/or clarify key points).

Given its good performance, we evaluated the use of TC as the ranking strategy instead of each

method’s own ranking for the competing methods that present an intrinsic footprint scoring metric:

BinDNase, Centipede, Cuellar, DNase2TF, FLR, PIQ and Wellington. Previous to ranking by TC,

site-centric methods required the definition of a minimum probability score to define active foot-

prints. We tested the probability cutoff thresholds of 80%,85%,90%,95% and 99% for the site-

centric methods. The results can be seen in Figure 5.6. In all cases, using TC-based strategies/cutoff

was significantly better than the methods original ranking (p-value < 0.01; Friedman-Nemenyi test).

Concerning site-centric methods, the use of a probability threshold of 90% was best for all methods

except BinDNase, where 80% was best.

Given the results obtained in these empirical analyses, we selected the TC as the best footprint

ranking metric. Furthermore, the TC is used for HINT and all competing methods with regard to the

ChIP-seq evaluation approach on our comparative study.

Gene Expression Evaluation

The gene expression evaluation consists on correlating differences in gene expression with a footprint

quality score between two different cell types. Such correlation is termed FP-Exp. In this analysis,

we evaluated three footprint quality scores: the TC, the FS and the footprint likelihood ratio (FLR)

metric as suggested by Yardımcı et al. (2014). Figure 5.7 shows a selection of graphs that exhibit the

correlation between gene expression fold change (FC) and the Kolmogorov-Smirnov (KS) statistic

applied to the difference on the distribution between footprint quality scores for 143 evaluated TFs.

In this figure, we are able to observe that the FLR score presents high correlations (r > 0.9); while

the TC metric presents low correlations (r < 0.4) and several cases in which the signal of KS and fold

change disagree (off diagonal points).
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Figure 5.6: TC vs competing method’s own ranking strategy. Distribution of AUC values (10%

FPR) by using distinct ranking strategies for site-centric methods (a) BinDNase, (b) Centipede, (c)

Cuellar, (d) FLR, (e) PIQ and (f) segmentation methods DNase2TF and Wellington. Probability

cutoff thresholds of 80%,85%,90%,95% and 99% were used for the site-centric methods ranked with

the TC metric. Ranking strategies (x-axis) are ranked by decreasing median AUC. The significant

Friedman-Nemenyi test p-values are shown on the top of each boxplot. Source: Gusmao et al. (2016)

(modified to fit thesis format and/or clarify key points).

To investigate the footprint quality scores on the gene expression evaluation more thoroughly we

generated the distribution of the FP-Exp using each of the tested footprint quality score metrics on

all computational footprinting methods and all cell type pair combinations possible within the cell

types GM12878, H1-hESC and K562 (Figure 5.8). Furthermore, to assess statistical significance we

performed a Friedman-Nemenyi hypothesis test.

We observed that the FLR metric results in higher FP-Exp scores (average FP-Exp = 0.79) and

significantly outperforms the results generated with the other footprint quality scores (p-value < 0.05

for FS and p-value < 0.01 for TC). The FS presented a lower average FP-Exp (= 0.73) than the FLR

metric; however significantly outperformed the TC metric (p-value < 0.01). We also observed that

the ranking of methods by FP-Exp using FLR metric and FS are very similar (r = 0.89). Moreover,
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Figure 5.7: Correlation between KS statistic and FC expression for different scoring metrics.

Correlation between KS statistic vs fold change expression for cell type pair H1-hESC vs K562 by

evaluating either the FLR metric (left), FS (middle) and TC (right) as quality metric for the footprints.

Footprints were predicted with HINT, DNase2TF, Neph and FLR (from top to bottom, respectively).

Source: Gusmao et al. (2016) (modified to fit thesis format and/or clarify key points).

differently from what was observed for the ChIP-seq evaluation approach, the TC presents the lowest

FP-Exp scores (average FP-Exp = 0.35).

Given these results, we opt to use the FLR metric as the footprint quality score for our comparative

study with regard to the gene expression evaluation approach. However, we point that the FS metric

can be used as an alternative footprint quality score for the gene expression evaluation procedure

given its simplicity and similar accuracies to FLR metric.

5.2.2. Impact of DNase-seq Sequence Cleavage Bias

In this section we investigate the impact of the DNase-seq sequence cleavage bias on the perfor-

mance of HINT and whether the correction of such bias improves the footprint prediction accuracy.
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Source: Gusmao et al. (2016) (modified to fit thesis format and/or clarify key points).

We tested the two approaches described in Section 4.1.2: the “DHS sequence bias” and the “naked

deoxyribonucleic acid (DNA) sequence bias”. The DHS sequence bias considers the sequence bias

estimates within DNase hypersensitivity sites (DHSs) of each DNase-seq experiment. This approach

captures DNase I cleavage bias, read fragmentation and sequence complexity bias of DHSs of each

DNase-seq experiment. The naked DNA sequence bias considers the sequence bias estimates within

naked DNA DNase-seq experiments. In this case, all DNA regions are open, therefore the sequence

bias estimates will mainly capture the DNase I cleavage bias.

Throughout this section we used the following HINT variations: (1) HINT was applied without any

DNase-seq sequence bias correction (HINT w/o BC), (2) HINT was applied with the DHS sequence

bias correction approach (HINT bias-corrected; HINT-BC) and (3) HINT was applied with the naked

DNA sequence bias correction approach (HINT bias-corrected on naked DNase-seq; HINT-BCN).

This nomenclature will be used within this section.

DNase-seq Sequence Cleavage Bias is Protocol-Specific

First, to understand the nature of artifacts on DNase-seq experiments, we analyzed the DNase-seq

sequence cleavage bias estimates on the Full Dataset, i.e. all 61 Tier 1 and Tier 2 DNase-seq

datasets from ENCODE Project Consortium (2012) (Supplementary Table A.1). The sequence cleav-

age bias corresponds to the 6-mer estimations as shown in Equation 3.7. These experiments include

two existing DNase-seq protocols: the single-hit and double-hit techniques. For every DNase-seq

dataset we calculated the 6-mer bias estimates for the cell-specific DHS sequence bias. Furthermore,

we also included the naked DNA sequence bias estimates in this analysis from naked DNA DNase-

seq experiments for three cell types. A clustering analysis of the correlation between the pairwise

6-mer sequence bias estimates forms two clear groups, which splits experiments from single-hit and

double-hit protocols (Figure 5.9). This indicates that sequence biases are protocol-specific. Naked

DNA sequence bias estimates forms a sub-cluster within estimates from the double-hit experiments.
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Figure 5.9: Clustering of bias estimates. Ward’s minimum variance clustering based on pairwise

Spearman correlation coefficient (r) from bias estimates (all possible 6-mers within the DNA alphabet

{A,C,G,T}) of all encyclopedia of DNA elements (ENCODE) DNase-seq data and three naked DNA

DNase-seq data obtained from different sources. DNase-seq experiments were based on single-hit

(red), double-hit (blue) protocols or naked DNA (yellow). Source: Gusmao et al. (2016) (modified to

fit thesis format and/or clarify key points).

Impact of the DNase-seq Sequence Cleavage bias on the Accuracy of Computational

Footprinting Methods

Next, we evaluated the influence of sequence bias on all footprinting methods. In this analysis we

plot, for all computational footprinting methods, the TF-wise amount of bias vs the TF-wise footprint

prediction accuracy (Figure 5.10a). The amount of bias is calculated as the correlation between the

uncorrected DNase-seq signal and the bias signal (Equation 3.7). Such correlation between observed
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5.2. Footprint Scoring and Sequence Cleavage Bias Correction

DNase-seq and predicted bias signal is called “OBS” (observed vs bias signal). The footprint pre-

diction accuracy is measured through the ChIP-seq evaluation approach using the Benchmarking

Dataset.

Our analysis shows that only six out of 14 evaluated methods (Wellington, Neph, Boyle, DNase2TF,

Centipede and FS-Rank) present a significant negative Spearman correlation (r = −0.35, −0.32,

−0.28, −0.28, −0.24 and −0.22, respectively) between their accuracy performance and amount of

sequence bias (Figure 5.10a; p-value < 0.05). Methods explicitly using 6-mer sequence bias statistics

(HINT-BC, HINT-BCN and FLR) or performing smoothing (Cuellar, BinDNase and PIQ) are not sig-

nificantly influenced by sequence bias. Moreover, the performance of HINT-BC is the least affected

by sequence bias (r =−0.06).

Nevertheless, we noticed an increase in accuracy for bias-corrected versions of HINT. The reason

for such accuracy increase became clear when we examined the DNase-seq average signals, bias-

corrected and without correction, surrounding active TFBSs. As an example, we show sequence

bias estimates, corrected and uncorrected DNase-seq average profiles around TFBSs with the highest

AUC gain between HINT-BC and HINT w/o BC (Figure 5.10b–c). The NRF1 and EGR1 DNase-seq

profiles indicate that the bias-corrected signal fits better their sequence affinity than the uncorrected

signal. This means that the higher-affinity parts of NRF1’s and EGR1’s motif are located in the regions

with lowest DNase-seq cleavage. As a consequence, the distinctive pattern of active TF binding (i.e.

grammar of active TFBSs) are more clearly recognizable in the bias-corrected DNase-seq signals than

in the non-corrected DNase-seq signals.

Statistical Evaluation of DNase-seq Sequence Cleavage Bias Correction Strategies

Using the same experimental settings as explained in Figure 5.10, we have investigated more thor-

oughly the best DNase-seq sequence cleavage bias correction strategy. For that, we calculated the

distribution of the AUC at 10% FPR for HINT w/o BC, HINT-BC and HINT-BCN (Figure 5.11).

Furthermore, we performed a Friedman-Nemenyi hypothesis test on these three HINT scenarios.

By analyzing these results, we are able to observe that, although HINT-BC presents slightly higher

accuracies than HINT-BCN, these differences are not statistically significant. However, we are able to

observe that the accuracies of the HINT-BC strategy significantly outperforms the HINT w/o BC. This

is a strong indication that the DNase-seq sequence cleavage bias correction improves the performance

of computational footprinting methods. This is an important result since no previous computational

footprinting method that treated DNase-seq sequence cleavage bias observed significant gain in ac-

curacy (Yardımcı et al., 2014; Sung et al., 2014; Kähärä and Lähdesmäki, 2015). Given these results,

the DHS sequence cleavage bias correction is the strategy of choice for the application of HINT in all

other sections of this chapter.

Evaluation of whether the DNase-seq Sequence Cleavage Bias Correction is an Artifact of the

Genomic Nucleotide Frequency Distribution

Since the TFs have a sequence binding affinity preference, which in many cases is composed of C and

G nucleotides, the DNase-seq sequence cleavage bias correction could be simply creating “artifact”

peak-dip-peak patterns on the DNase-seq data, since the DNase I enzyme also has a preference to

bind CG-rich motifs.

To investigate such claim we calculated the distribution of the pairwise AUC differences between

the three HINT versions (HINT w/o BC, HINT-BC and HINT-BCN) for all TFs of the

Comprehensive Dataset gold standard (Figure5.12a). Furthermore, we also calculated the

CG content of these TF motifs (Figure 5.12b).

By analyzing Figure 5.12a–b we observe no correlation between CG content of the motifs and

the individual AUC of each method: HINT (w/o BC) r =−0.0144, HINT-BC r = 0.0254 and HINT-
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Figure 5.10: Effects of DNase I sequence cleavage biases on computational footprinting meth-

ods. (a) Association between the performance of footprinting methods (relative to TC-Rank perfor-

mance) and their sequence bias estimated for the TF if the Benchmarking Dataset. The x-axis

represents the correlation between the uncorrected and bias signal (observed vs bias signal; OBS). The

OBS is calculated for each TF by measuring the uncorrected DNase-seq signal and the bias signal for

every MPBS that overlaps a footprint from the evaluated method. Then, the Spearman correlation

is calculated between the average uncorrected and bias signals. Higher OBS values indicate higher

bias. The y-axis represents the ratio between the AUC at 10% FPR for each evaluated method and

the TC-Rank method; higher values indicate higher accuracy. (b–c) Average bias signal (top) and

uncorrected/bias-corrected DNase-seq signal (bottom) for the TFs: (b) NRF1 and (c) EGR1. Signals

in the top graph are DNA strand-specific (forward strand in red and reverse strand in blue). Signals

in the bottom graph were standardized to be in the interval [0,1]. The motif logo represents all under-

lying DNA sequences centered on the TFBSs. Source: Gusmao et al. (2016) (modified to fit thesis

format and/or clarify key points).
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Figure 5.11: Performance of different bias correction strategies. Distribution of AUC at 10%

FPR of the ROC curves generated using the ChIP-seq evaluation Comprehensive Dataset on

HINT using: the DHS sequence bias correction (HINT-BC), the naked DNA sequence bias correction

(HINT-BCN) and no DNase-seq sequence cleavage bias correction (HINT w/o BC). The significant

Friedman-Nemenyi test p-values are shown on the top of the boxplot. Source: Gusmao et al. (2016)

(modified to fit thesis format and/or clarify key points).

BCN r = 0.0108 (p-value > 0.05; Spearman correlation test). Furthermore, we observe no correlation

between CG content of motifs and differences in AUC: HINT-BC − HINT-BCN r = 0.0188, HINT-

BC − HINT (w/o BC) r = 0.0724 and HINT-BCN − HINT (w/o BC) r = 0.0644 (p-value > 0.05;

Spearman correlation test). This is evidence that the significantly higher performance of HINT-BC

over HINT is not due to artifacts generated by the bias correction strategy.
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Figure 5.12: Evaluation of bias correction strategies and CG content contribution. (a) Distribu-

tion of AUC (10% FPR) differences bettween HINT-BC and HINT (w/o BC), HINT-BCN and HINT

(w/o BC); HINT-BC and HINT-BCN for the Comprehensive Dataset. TFs are ranked by the

difference between HINT-BC and HINT-BCN. (b) CG content of TFs. The CG content is calculated

as nC+nG

nA+nC+nG+nT
, where nX is the frequency of the nucleotide X in all TFBSs. Source: Gusmao et al.

(2016) (modified to fit thesis format and/or clarify key points).
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DNase-seq Sequence Cleavage Bias Correction Decreases the Number of False Negatives

To better understand in which experimental cases the DNase-seq sequence cleavage bias correction

improves the accuracy of HINT, we generated DNase-seq profiles with uncorrected and bias-corrected

signals in TFBSs that matched true positive (TP), false negative (FN), false positive (FP) and true

negative (TN) predictions (i.e. the contingency table from the ChIP-seq evaluation scheme). The

results of such analysis is presented in Figure 5.13 for three selected TFs: GABP, NRF1 and EGR1.

This figure shows, for all TFs and signal types, the clear peak-dip-peak DNase-seq profile (i.e. the

grammar of active TFBSs) for the true positive predictions and a complete lack of such average pattern

for the true negatives.

The profile around the false positive predictions are virtually the same between the uncorrected

and bias-corrected DNase-seq signals. However, we are able to observe that the profiles around

false negative predictions are significantly lower in intensity and different in shape (p-value < 0.01;

Mann-Whitney-Wilcoxon on the DNase-seq signal distribution at flanking regions and motif center)

regarding the bias-corrected signal, in comparison to the uncorrected case. This shows that the DNase-

seq sequence cleavage bias correction strategy enhances the accuracy by correctly predicting TFs that

would not be otherwise predicted without such correction. Such observation is in line with the fact

that we observe a clearer dip-peak-dip pattern in the average DNase-seq signal for multiple TFs

(Figure 5.10b–c).
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Figure 5.13: Uncorrected and bias-corrected DNase-seq profile between different contigency

table statistics. This figure shows the: (a) uncorrected and (b) bias-corrected DNase-seq average

signal centered at HINT’s true positive (TP), false negative (FN), false positive (FP) and true negative

(TN) predictions of the binding site of transcription factors GABP, NRF1 and EGR1.
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Uncorrected DNase-seq Signal may Lead to Inaccurate TF Binding Predictions

An example that ignoring experimental artifacts might lead to false predictions can be seen in Fig-

ure 5.14. In this figure we show the DNase-seq profile for two motifs (termed 0458 and 0500) found

using Neph’s footprint predictions which did not match any existing known motif (i.e. de novo TF

motifs). These de novo motifs were reported in Neph et al. (2012). Bias corrected DNase-seq pro-

files reveal very weak footprint shape. Furthermore, we compared the overlap between footprints

generated by HINT-BC and Neph in the same cell type in which these de novo motifs were found

(H7-hESC). We observed that 24.99% (motif 0458) and 28.58% (motif 0500) of MPBSs associated

with a Neph footprint. In contrast, only 0.73% (motif 0458) and 1.71% (motif 0500) of MPBSs over-

lapped with a HINT-BC footprint. Altogether, this indicates that these motifs are indeed potential

artifacts of sequence cleavage bias (as Neph’s method do not use any bias correction strategy) and

reinforces the importance of bias correction prior to any DNase-seq analysis.
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Figure 5.14: Average bias and DNase-seq signals around binding sites of Neph’s de novo motifs.

Average bias and DNase-seq signals around binding sites of de novo motifs 0458 and 0500 on cell

type H7-hESC (Neph et al., 2012). In the top panel, we show the strand-specific average DNase-seq

signal on naked DNA DNase-seq experiments (MCF-7 cell type); the middle panel shows the strand-

specific estimated sequence cleavage bias signal; and the bottom panels shows the (1) uncorrected –

observed DNase-seq I cleavage signal and (2) corrected – DNase-seq signal after the bias correction

by using Equation 3.7. Signals in the top and middle graphs are DNA strand-specific (forward strand

in red and reverse strand in blue). Bottom panel signals were standardized to be in [0,1]. Below the

graphs, it is shown the motif logo estimated on the DNA sequences of these regions. These motifs

were discovered in the footprint analysis of Neph et al. (2012) and indicated in He et al. (2014) to

be possible artifacts of sequence cleavage bias. Source: Gusmao et al. (2016) (modified to fit thesis

format and/or clarify key points).
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5.3 Computational Footprinting Methods Comparison

In this section we present a comprehensive comparative analysis of HINT and all competing com-

putational footprinting methods. Since most competing methods use only DNase-seq data, we used

the DNASE-ONLY HINT topology for a fairer comparison Nature Methods Editorial (2015). Further-

more, the accuracies presented in this section were calculated using all chromosomes but the chromo-

some 1, since data from such chromosome was used to perform method parameter selection. HINT’s

DNase-seq sequence cleavage bias correction strategy followed the DHS cleavage bias scheme. Both

HINT and competing methods were executed exactly as described in Chapter 4.

The computational footprinting method comparison was performed using: (1) the ChIP-seq eval-

uation method with the Benchmarking Dataset (Section 5.3.1) and (2) the gene expression

evaluation method (Section 5.3.2). We close this section with a discussion on both evaluation method-

ologies in a general comparison showing the full experimental result’s picture (Section 5.3.3).

5.3.1. ChIP-seq Evaluation

In the ChIP-seq evaluation approach, we create ROC and precision-recall (PR) curves for each method

on the prediction of each TF in our Benchmark Dataset. Figure 5.15 shows examples of ROC

and PR curves for the TFs EGR1, GABP and C-JUN. At first glance we are able to observe that the

site-centric baseline methods FP-Rank and PWM-Rank present the lowest accuracies. Furthermore,

the site-centric baseline method TC-Rank and the segmentation baseline method Filter exhibit a good

performance. The Filter method often outperformed more complex computational footprinting meth-

ods (Cuellar, FLR and Centipede). The higher-ranked computational footprinting methods (HINT,

DNase2TF and PIQ) have very close AUC at 100% FPR. However, the PR curves in Figure 5.15

show us that these methods compete with regard to the delay in sensitivity decrease as specificity

increases. This is the main reason in which we also calculated the AUC at lower FPR levels and the

area under the PR curve (AUPR).

To have a better perspective of the results for all methods and TFs tested we calculated the distribu-

tion of the AUC at 100%, 10% and 1% FPR as well as the AUPR (Figure 5.16). AUC at lower FPRs

favors methods with higher sensitivity in expense of specificity. Also, AUC at lower FPRs tend to get

closer results to the AUPR, which is ideal for very imbalanced classification problems. We observe

the importance of using cell-specific open chromatin data (in this case, DNase-seq) by analyzing the

dramatic increase in accuracy from the PWM method to all other methods that use such open chro-

matin data. The only exception to this remark is the FS-Rank method, which uses DNase-seq data

but does present lower average accuracies than the PWM method. However, note that the FS metric,

when combined with footprint predictions, generally present higher accuracies than the PWM metric

(see “Gene Expression Evaluation” in Section 5.2.1). The reason for such lower FS-Rank accura-

cies stems from its inability to model the length of the DNase-seq depletion and peaks given that the

FS-Rank relies on a fixed-window length strategy.

Figure 5.16 shows that the HINT method is the best method with regard to all metrics tested.

HINT is closely followed by DNase2TF, PIQ and Wellington. It is interesting to observe that all

segmentation methods are in the top-six positions of the rank for all metrics. This suggests that

segmentation methods outperform site-centric approaches on the detection of active binding sites.

Moreover, the results from the different evaluation statistics (AUC at different FDR thresholds and

AUPR) result in very similar rankings (r > 0.98).
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Figure 5.15: Example of ROC and PR curves. (a) Example of ROC curves for the TFs EGR1,

GABP, and C-JUN. Each graph depicts a curve of a different color for each of the 14 computational

footprinting methods evaluated. (b) Example of PR curves for the TFs EGR1, GABP, and C-JUN.

5.3.2. Gene Expression Evaluation

In the gene expression evaluation approach, we calculate the correlation between changes in gene

expression for a number of TFs with differences in the quality of footprint predictions for these

factors. To measure the change in gene expression we use the gene expression fold change (FC).

The quality metric of footprints used is the footprint likelihood ratio (FLR) metric (Yardımcı et al.,

2014). Differences in such footprint quality metric is measured with the Kolmogorov-Smirnov (KS)

test statistic. The Spearman correlation between FLR score difference and expression FC, which

we refer to as FP-Exp, will be used to rank footprinting methods. Higher FP-Exp values indicate

better performance. The gene expression evaluation methodology only requires expression data and

is therefore more generally applicable than the ChIP-seq evaluation. However, differently from the

ChIP-seq evaluation, the gene expression approach cannot evaluate footprint predictions of individual

TFs.

In Figure 5.17 we show the top four methods with regard to the gene expression evaluation. Since

a single FP-Exp is evaluated for a collection of TFs, it is not possible to graphically display the

distribution of accuracies as in the ChIP-seq evaluation scheme. Nevertheless, we are able to observe

that HINT is again the top-ranked method, followed by DNase2TF, Neph and FLR.

We observed high average FP-Exp values for the majority of evaluated methods (FP-Exp = 0.79)

and very high FP-Exp values (FP-Exp > 0.9) for the four top performing methods on comparisons
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Figure 5.16: ChIP-seq evaluation accuracy distributions. Accuracy distribution for 14 footprinting

methods regarding all validation sets (ordered by Friedman Ranking). The accuracy is given by

the statistics: (a) AUC at 100% FPR (b) AUC at 10% FPR (c) AUC at 1% FPR and (d) AUPR.

Source: Gusmao et al. (2016) (modified to fit thesis format and/or clarify key points).

between pairs of cell types H1-hESC, K562 and GM12878 (Figure 5.17). Moreover, similar rankings

of methods are obtained for each cell pair: H1-hESC/K562 vs H1-hESC/GM12878 r = 0.99, H1-

hESC/K562 vs GM12878/K562 r = 0.96, and H1-hESC/GM12878 vs GM12878/K562 r = 0.97. We

also observed a high agreement between the ranking of computational footprinting methods using the

gene expression evaluation methodology and the ranking of methods using the ChIP-seq evaluation

approach (r > 0.88).

5.3.3. General Comparison

We integrated all the computational footprinting method’s results to perform a global comparison.

Figure 5.18 shows the ranking of all computational footprinting methods with regard to all evaluation

metrics: FP-Exp, AUCs (at 100%, 10% and 1% FPR) and AUPR. Furthermore, we combined all these

results and performed a Friedman-Nemenyi test for statistical significance (Table 5.3).

HINT has the highest FP-Exp, AUC and AUPR values and significantly outperforms all methods
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Figure 5.17: Gene expression evaluation accuracy correlations (FP-Exp). Correlation between

KS statistics from FLR scores vs fold change expression for cell type pairs H1-hESC vs K562 (left),

H1-hESC vs GM12878 (middle) and GM12878 vs K562 (right) for footprints predicted by: HINT,

DNase2TF, Neph and FLR (from top to bottom, respectively). Source: Gusmao et al. (2016) (modi-

fied to fit thesis format and/or clarify key points).

(p-value < 0.01). The next top performing method is DNase2TF, which significantly outperforms

all other methods except PIQ (p-value < 0.05 for Wellington; p-value < 0.01 for all others). PIQ

outperforms all of its lower ranked competitors but Wellington (p-value < 0.05 for Neph; p-value

< 0.01 for all others). The segmentation methods HINT, DNase2TF, Wellington and Neph are ranked

within the top five methods regarding all evaluation metrics, individually. Boyle is the only segmen-

tation method not included within the top five; however it displayed good accuracies (placed 6th in

the global ranking). The site-centric method PIQ obtained the best accuracies among the site-centric

methods (placed 3rd in the global ranking). All site-centric baseline methods (FS-Rank, PWM-Rank

and TC-Rank) are in the bottom four positions of the ranks. These results lead us to claim that the

segmentation approach is preferable over the site-centric approach.
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Table 5.3: Friedman-Nemenyi hypothesis test on different computational footprinting methods.

Friedman-Nemenyi hypothesis test results for all computational footprinting methods evaluated on the

distribution of all tested metrics: FP-Exp, AUCs and AUPR. The asterisk and the cross, respectively,

indicate that the method in the column outperformed the method in the row with significance levels of

0.01 and 0.05. Source: Gusmao et al. (2016) (modified to fit thesis format and/or clarify key points).
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5.4 Impact of Transcription Factor Residence Time

Despite the high average prediction values of top performing footprint methods, they consistently

perform worst in a similar set of TFs, i.e. HINT, DNase2TF and PIQ have 89% of TFs in com-

mon in the lower quartile of AUC at 10% FPR. This list includes nuclear receptors, which has low

residence binding time (Sung et al., 2014) and display a lower DNase I cleavage protection pattern

(Figure 5.19). A careful analysis of Figure 5.19 shows that, while corrected DNase-seq profiles from

ER have a better match with the underlying motif, this is not the case for AR and GR. However, we

observed a small gain in the AUC score comparing HINT (with DHS sequence cleavage bias correc-

tion) and HINT (without bias correction). This difference is in the upper quartile range for all 233

TFs analyzed from the Comprehensive Dataset. These results indicate that sequence cleavage

bias correction also brings improvements to footprint prediction of nuclear receptors. However, all

these nuclear receptor TFs have low AUC scores in all footprinting methods, i.e. lower quartiles for

HINT or TC AUC score. This indicates that short binding time indeed poses a challenge in footprint

prediction.

To further investigate this, we propose a statistic – termed protection score – inspired by the con-

cepts presented by Sung et al. (2014) to detect TFs with potential short residence time. The protection

score measures the difference between the amounts of DNase I digestion in the flanking regions and

within the TFBS on bias-corrected DNase-seq signals. More formally, the protection score for a

genomic region ri = [u,v] is defined as

PROTECTIONri
=

(nR
ri
−nC

ri
)+(nL

ri
−nC

ri
)

2N
, (5.1)

where nC,i, nL,i nL,i are the number of DNase-seq reads within, upstream and downstream of the

genomic region ri, respectively (Equation 2.2).

In short, the protection score indicates the average difference of DNase-seq counts in the flanking

region and the within TFBSs. Positive values will indicate protection in the flanking regions, while

values close to zero or negative indicate no protection. The protection score is similar to the FS. The

main difference is that the FS score measures the ratio between reads in flanking vs binding sites,

while the protection score measures the difference.

We used the protection score to analyze the predictive performance of methods on TFs with distinct

residence time. For this, we used the TFs from the Comprehensive Dataset. We observed

that TFs with known short residence time on DNA, such as nuclear receptors AR (Tewari et al.,

2012), ER (Sharp et al., 2006) and GR (McNally et al., 2000), present a negative protection score

(Figure 5.20a). TFs with intermediate and long residence time on DNA (C-JUN (Malnou et al.,

2010) and CTCF (Nakahashi et al., 2013), respectively) present a positive protection score. The

amount of protection is clearly reflected in the bias-corrected DNase-seq profiles (Figure 5.20b–d).

In addition, Figure 5.20a also reveals an association of the protection score and the performance of

HINT. Overall, the protection score positively correlates with the AUC values of evaluated methods,

such as TC-Rank (r = 0.19) and HINT (r = 0.26), and negatively correlates (r = −0.49) with the

sequence bias (adjusted p-value < 0.05). These results reinforce the concept that TFs with potential

short residence time are poorly detected via DNase-seq footprints in comparison to TFs with higher

residence time. Nevertheless, in the absence of biological experimental data on the residence time of

TFs, the protection score can be used to identify TFs with potential short residence time and can be

an important tool on experiments involving computational footprinting methods.
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Figure 5.19: Average DNase-seq signals around nuclear receptors. Average DNase-seq signals

around nuclear receptor TFs with ChIP-seq evidence in LNCaP, m3134 and MCF-7 cell types. In

the top panel, we show the strand-specific average DNase-seq signal on naked DNA DNase-seq ex-

periments (MCF-7 for datasets from single-hit and IMR90 for datasets with double-hit protocol); the

middle panel shows the strand-specific estimated DNase-seq sequence cleavage bias signal; and the

bottom panels shows the (1) uncorrected – observed DNase-seq I cleavage signal and (2) corrected –

DNase-seq signal after sequence cleavage bias correction. Signals in the top and middle graphs are

DNA strand-specific (forward strand in red and reverse strand in blue). Bottom panel signals were

standardized to be in [0,1]. Below the graphs, it is shown the motif logo estimated on the DNA se-

quences of these regions. Source: Gusmao et al. (2016) (modified to fit thesis format and/or clarify

key points).

5.5 De Novo Motif Finding on Predicted Footprints

The predicted footprints from a segmentation computational footprinting approach represent a map

of active TFBSs. In possession of such regulatory landscape one might be able to perform many

downstream analysis. Here we present an example of such analysis – the de novo motif finding. This

analysis consists on searching for novel TF DNA affinity sequences which do not match any known

affinity sequence in the literature.

We performed a de novo motif finding analysis on all 738,707 footprints predicted by HINT on cell

type H1-hESC as described in Section 4.3.2. After the initial motif matching to filter out footprints

that match with known TFs, we are left with ∼5.37% (39,703) of H1-hESC’s footprints. The tools

“discriminative regular expression motif elicitation” (DREME) and “local motif enrichment analysis”

(CENTRIMO) were applied to these filtered footprints.

Given the quality scores given by DREME and CENTRIMO, we were able to find six frequent mo-

tifs in H1-hESC which did not match with any existing motif from the repositories used. Figure 5.21

shows these six motifs and their DREME p-value. Each motif is named after its IUPAC consensus

sequence standards. We also show in Figure 5.21 the average DNase-seq signal on a 200 bp window

around each of these de novo motifs (DNase-seq profile graph). We are able to see that, with excep-

tion of the TACCCR motif, all other motifs presented a very clear peak-dip-peak DNase-seq pattern,

consistent with the grammar of active TFBSs. Furthermore, the motifs CKCSGAG and CCGGAGHC

present very clear signs of co-binding. This can be seen as a pattern of multiple dips with a 10–15 bp
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Figure 5.20: Impact of transcription factor residence binding time on computational footprint-

ing. (a) Scatter plot with the protection score (x-axis) vs the AUC (at 10% FPR) of HINT (y-axis)

for the TFs from the Comprehensive Dataset. We highlight nuclear receptors AR, ER and GR

(short residence time, red); C-JUN (intermediate residence time, blue); CTCF (long residence time,

green) and other TFs with either high (> 6) protection score or low (< 0.8) AUC values (grey). (b–d)

Average bias signal (top) and uncorrected/bias-corrected DNase-seq signal (bottom) for the TFs (b)

ER, (c) C-JUN and (d) CTCF. Signals in the top graph are DNA strand-specific (forward strand in red

and reverse strand in blue). Signals in the bottom graph were standardized to be in the interval [0,1].
The motif logo represents all underlying DNA sequences centered on the TFBSs. Source: Gusmao

et al. (2016) (modified to fit thesis format and/or clarify key points).

spacing between them, instead of a single dip in the middle of the DNase-seq profile graphs.

Needless to say, such de novo motifs need to be experimentally validated using biological methods.

However, the fact that we are able to see a peak-dip-peak pattern on the DNase-seq profile is a clear

indication of active TF binding. The intent of this analysis is to show an example of downstream anal-

ysis using footprints predicted with HINT. In Section 5.6 we will show the application of footprints

on real biological scenarios in which positive inferences could be performed.
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Figure 5.21: De novo TF motifs predicted on H1-hESC with HINT’s footprints. We show six

de novo motifs which satisfied all quality checks after the application of DREME and CENTRIMO

softwares on H1-hESC’s HINT footprint predictions which did not match any known DNA sequence

affinity motif. Each motif is named after its IUPAC consensus sequence (bold, top of each graph)

and the p-value of the DREME analysis is also shown. The graphs represent the average DNase-seq

signal around a 200 bp window centered on MPBSs found in the whole genome after applying each

de novo position frequency matrix. The motif sequence logo is shown below each de novo motif’s

graph.

5.6 HINT Case Studies – Identification of Regulatory TFs involved in

Different Biological Conditions

In this section we show two case studies in which our computational footprinting method was suc-

cessfully used to identify key regulatory players on two different biological analyses. The first case

study regards the identification of key regulatory TFs on the differentiation of dendritic cells in mouse

(Section 5.6.1). The second case study concerns the identification of TFs associated to (i.e. binds to-

gether with) the NF-κB TF, which is a key regulator on the mammalian inflammatory response (Sec-

tion 5.6.2). Both case studies exhibit a similar experimental workflow. Briefly, we first apply HINT to

detect footprint predictions in different cellular conditions. Then, we compare these different cellular

conditions to find the TFs more likely to be associated with each condition. For that, we use the TF

enrichment analysis as described in Section 4.3.1.

All the results shown in this section represent a subset of the analyses which were published in

papers co-authored by this thesis’ author. More specifically, the results shown in Section 5.6.1 were

published and authored by Lin et al. (2015) and the results shown in Section 5.6.2 were published and

authored by Kolovos et al..

5.6.1. Case Study: Regulatory Network during Differentiation of Dendritic Cells

This case study focuses on dendritic cells (DCs). DCs are professional antigen-presenting cells that

develop from hematopoietic stem cells through successive steps of lineage commitment and differen-
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tiation (Merad et al., 2013; Belz and Nutt, 2012). Here, we focus on four cell types which represent

such lineage commitment steps: multipotent progenitors (MPPs), common DC progenitors (CDPs),

classical DCs (cDCs) and plasmacytoid DCs (pDCs). Multipotent progenitors (MPPs) are committed

to common DC progenitors (CDPs), which further differentiate into specific DC subsets: the classical

DCs (cDCs) and plasmacytoid DCs (pDCs) (Belz and Nutt, 2012; Lin et al., 2015). The understand-

ing of DC differentiation is important since it has impact on the further understanding of adaptive

immune responses (Merad et al., 2013).

The goal of this study is to understand the regulatory circuitry that determines the differentiation of

MPPs to CDPs and CDPs to either cDCs or pDCs. It is known that the TF PU.1 is an important factor

within this cell differentiation framework (Belz and Nutt, 2012). The TF PU.1 is a master regulator,

since it initiates differentiation events and are associated to many other TFs. In this section we show

the results regarding our investigation of TFs which are significantly associated to PU.1.

In this study, ChIP-seq experiments were performed for several histone modifications, including

H3K4me1 (Lin et al., 2015). With the goal to capture the regulatory landscape of dendritic cell

differentiation associated to the PU.1 master regulator, we performed a TF enrichment analysis using:

• Only the PU.1 ChIP-seq peaks (i.e. PU.1 TFBSs). This analysis do not involve any footprinting.

The rationale of this analysis is to find TFs associated to the PU.1 master regulator.

• Footprints predicted with HINT on data from the H3K4me1 ChIP-seq that are also associated

with (i.e. close to) PU.1 TFBSs. The rationale of this analysis is to verify if footprints can

enhance the specificity of the TF enrichment analysis.

• Footprints predicted with HINT on data from the H3K4me1 ChIP-seq that are not associated

with PU.1 TFBSs. The rationale of this analysis is to find TFs which are associated to DC

differentiation but do not necessarily associate with the PU.1 master regulator.

This analysis, which is a part of the study performed by Lin et al. (2015), is presented as a case

study for our computational footprinting framework in the next subsections.

Computational Footprinting

We applied the HISTONE-ONLY HINT model (see “HISTONE-ONLY MODEL” in Section 3.2.2) to the

H3K4me1 ChIP-seq data. We followed the experimental settings as described in Chapter 4. Briefly,

we extended the H3K4me1 enriched regions by 5,000 bp to each side and applied our HISTONE-ONLY

HMM model trained with H3K4me1 data from random genomic regions. Given the lower resolution

of ChIP-seq data and the nature of the probabilistic model, footprints from H3K4me1 tend to span

larger regions. Therefore, we further reduced the footprint predictions by considering only 250 bp to

the left (downstream) and right (upstream) of its center.

As aforementioned, we performed three TF enrichment analyses: (1) on PU.1 peaks, (2) on

H3K4me1 footprints that overlap PU.1 peaks and (3) on H3K4me1 footprints that do not overlap

PU.1 peaks. These three definitions of target genomic region sets for the TF enrichment analysis

were used for data on the four different cells being analyzed: MPPs, CDPs, cDCs and pDCs. In all

tests, the size of the background genomic region sets were 100 times higher than the size of the target

genomic region sets.

Results

Figure 5.22a shows the overlap between H3K4me1 footprints and PU.1 ChIP-seq enriched regions

(peaks). We can observe different levels of overlap. A higher overlap was found on more specialized

cells (cDC; ∼68% of H3K4me1 footprints overlap with PU.1 peaks) in contrast to less specialized

103



5.6. HINT Case Studies – Identification of Regulatory TFs involved in Different Biological

Conditions

cells (MPP; ∼23% of H3K4me1 footprints overlap with PU.1 peaks). These results are consistent with

gene expression information obtained with DNA microarray analyses, which shows higher expression

of PU.1 in cDC than MPP (Lin et al., 2015).

We present here the three TF enrichment analyses results, using as the target genomic region set:

(1) only PU.1 peaks (Figure 5.22b); (2) H3K4me1 footprints that overlap PU.1 peaks (Figure 5.22c)

and (3) in H3K4me1 footprints that did not overlap PU.1 peaks (Figure 5.22d). The p-values from

the TF enrichment analyses are presented as a heatmap. The enrichment is represented in a gray to

blue scale. A gray heatmap entry represent no enrichment (p-value > 0.05) for the TF represented

in the row at the cell type represented in the column. A blue heatmap entry represents evidence of

enrichment (p-value < 0.05). Enriched TFs were separated in different clusters (numbered I to VI)

given their different enrichment levels in different cells.

We were able to detect many TFs involved in DC differentiation. For instance, in the foot-

print+PU.1 TF enrichment analysis shown in Figure 5.22c we observed the binding of the pioneer

PU.1 alongside evidence of KLF4 and RUNX1 in MPP. The AP1-like TFs (FOS and JUN) and some

IRF factors (IRF2, IRF4 and IRF5) appear to be cDC-specific. This means that these factors might

have some role on the differentiation from CDP to cDC cell type. On the other hand, TCF factors

(TCF3 and TCF4), EGR1 and KLF4 appear to play a role in the differentiation from CDP to pDC cell

type.

Interestingly, the TF enrichment analysis performed in H3K4me1 footprints captured most of the

PU.1-only enrichment analysis. Furthermore, the H3K4me1 footprint analyses recovered two TFs

(CEBPB and BHLHE40; marked in red in Figure 5.22c–d) which were not found by the PU.1-only

enrichment analysis.

The results presented here demonstrate the power of computational footprinting coupled with the

TF enrichment analysis to increase the specificity of biological analyses. The H3K4me1 footprints

represent regulatory regions and were shown to have a high overlap (∼80%) with open chromatin

regions (Lin et al., 2015). The H3K4me1 footprint predictions were used to search for TFs which

act in conjunction with PU.1 master regulator or independently from the PU.1 master regulator. Such

results, combined with other experimental data and knowledge from previous studies, were used to

devise a regulatory network on the differentiation of dendritic cells. The complete results of these

experiments are in Lin et al. (2015).

5.6.2. Case Study: Multimodal Role of NF-κB during Intermmediate-Early

Inflammatory Response

This case study focuses on the inflammatory mechanism of human umbilical vein endothelial cells

(HUVECs). In this study, we focused on the TF NF-κB. This TF is a key regulator of inflamma-

tory mechanisms (Hayden and Ghosh, 2012). However, NF-κB has still many unknown features

with regard to its interaction with other TFs and chromatin dynamic processes (Hayden and Ghosh,

2012). In HUVECs, the tumor necrosis factor alpha (TNFα) acutely remodels the cell’s transcrip-

tional program, but our understanding of how the activation of proinflammatory genes is achieved at

the expense of the ongoing transcriptional program is far from complete (Kempe et al., 2005). It is

known that NF-κB predominantly “hijacks” the regulatory machinery of the cell by binding already-

active enhancers, more than half of which do not carry NF-κB recognition motifs.

The goal of this study is to understand the different regulatory players involved in enhancers (i.e.

distal regulatory regions) in which:

• NF-κB is found (ChIP-seq peak evidence) and the NF-κB recognition motif is present (in the

DNA).

• NF-κB is found and the NF-κB recognition motif is not present.
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applied to the aligned reads (using the procedure described in Section 4.1.2).

Then, we applied the DNASE-ONLY HINT model (see “DNASE-ONLY MODEL” in Section 3.2.2)

to the DNase-seq data. We followed the experimental settings as described in Chapter 4. Briefly, we

extended the DHSs by 5,000 bp to each side and applied our DNASE-ONLY HMM model trained

with DNase-seq data from the HUVEC experiments presented in this thesis.

The resulting footprint predictions from the DNASE-ONLY HINT were separated in two categories.

The footprint predictions that overlaps NF-κB ChIP-seq enriched regions (peaks) (Papantonis et al.,

2012) that: (1) carries the canonical NF-κB motif and (2) do not carry such motif. Then we per-

formed a TF enrichment analysis in these two different conditions, considering the footprint predic-

tions (overlapping NF-κB peaks) as our target genomic region set. In both TF enrichment analyses

the background genomic regions correspond to random regions in the human genome. The size of

the background genomic region sets were 100 times higher than the size of the target genomic region

sets.

Results

NF-κB binding predominantly occurs at already-active (upon inflammation stimuli) distal regulatory

regions called enhancers. These are mostly intragenic, display little overlap with CTCF-bound sites,

and half carry the canonical motif or remain bound by NF-κB at 60 min after inflammatory stim-

ulation. To obtain a more precise view of NF-κB binding choices, we performed a TF enrichment

analysis on DNase-seq footprints. The analysis consists on comparing two different genomic region

sets: (1) NF-κB ChIP-seq enriched regions (peaks) at enhancer regions with the canonical NF-κB

motif and (2) NF-κB ChIP-seq enriched regions (peaks) at enhancer regions without the canonical

NF-κB motif.

The result of the TF enrichment analysis can be seen in Figure 5.23. We exhibit a heatmap that

combines the two conditions tested. The color code is a gradient from blue (TFs enriched in NF-κB

peaks with motif) to white (no enrichment) to red (TFs enriched in NF-κB peaks without motif).
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Figure 5.23: HUVEC cells footprint enrichment analysis results. Heatmap showing the TF en-

richment analysis results at HUVEC enhancer regions that overlap the footprints predicted with the

DNASE-ONLY HINT model. The heatmap represents enrichment between ChIP-seq enriched regions

with (blue) and without the canonical NF-κB motif (red). TFs induced or repressed by the inflam-

matory response factor TNFα are demarcated green and yellow, respectively. Source: Kolovos et al.

(modified to fit thesis format and/or clarify key points).
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As expected, REL-like TFs (REL, RELA and NF-κB1) are enriched in the NF-κB peaks with

canonical motif, since their DNA recognition motif are very similar to the canonical NF-κB motif.

Furthermore, the TFs KLF4, KLF7, ZNF281 and EGR1 appear to be significantly enriched in these

regions. Among these factors, there are the TNFα-induced REL, RELA, NF-κB1, KLF7 and EGR1.

On the other hand, we observe that the JUN-related TFs JUN, JUND, JUNB, FOS, FOS, FOSL1 and

FOSL2 are significantly associated to NF-κB-binding enhancer regions without the canonical NF-κB

motif. The only TNFα-repressed TF that appeared in our enrichment analysis – SOX17 – appears to

be slightly associated to the regions without NF-κB motif. The implications of such discovery are still

under investigation. The mechanisms behind these NF-κB-associated TFs and human inflammatory

response are further explored in Kolovos et al..

In summary, the analysis have shown that REL-like TFs (RELA and NF-κB1) are markedly en-

riched at the NF-κB peaks with canonical motif; whereas JUN-like TFs (JUN and FOS) appear to

be enriched at the NF-κB peaks without canonical motif. Further analyses show that the footprint

enrichment analysis prediction is backed by ENCODE Project Consortium (2012) ChIP-seq data

from HUVECs, where co-binding of NF-κB and JUN/FOS (and to a lesser extent GATA2) was most

prominent at enhancers without NF-κB recognition sites.

Differently from the previous case study, in which different cell types were being analyzed for

regulatory elements within their open chromatin regions; the analysis presented in this case study was

based on two conditions which differed only in the presence/absence of the NF-κB motif. In this

case, the usage of DNase-seq alleviates much of the noise from intervening unbound sequences. The

results presented in this section, combined with other experimental data, were used to understand the

mechanisms behind hijacked enhancers and the regulatory role of NF-κB in the human inflammatory

mechanism. The complete results of these experiments are found in Kolovos et al..
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CHAPTER 6

Conclusion

This work aimed at analyzing relevant features of computational footprinting methods, which use

mathematical models to predict active transcription factor binding sites (TFBSs) with open chromatin

data. We devised a novel computational footprinting framework – HINT – which uses DNase-seq

and histone modification ChIP-seq data to predict active TFBSs. HINT is the first method to inte-

grate the full resolution data of both DNase-seq and histone modification ChIP-seq. We performed

a comprehensive evaluation of 14 different computational footprinting methods, which showed that

our method HINT significantly outperformed its competitors. Furthermore, we addressed a number

of relevant characteristics on computational footprinting methods. Finally, we presented real case

scenarios in which footprint predictions obtained with HINT aided in the understanding of regulatory

mechanisms.

HINT Method

We devised HINT – a novel HMM-based computational footprinting method that segments the genome

based on the full resolution signals of DNase-seq and histone modification ChIP-seq data. We inves-

tigated the performance of five different HMM topologies. The ORIGINAL DNASE + HISTONE topol-

ogy was created to recognize the grammar of active TFBSs. Furthermore, we devised two topologies

which also combine DNase and histone data: the DNASE + HISTONE ASYMMETRIC PEAKS topol-

ogy considers the intrinsic asymmetry observed for histone modification peaks and the DNASE +

HISTONE WITHOUT SLOPE topology consists of a simpler HMM model which considers only signal

intensity. Moreover, we designed two additional topologies which: use only DNase-seq data and use

only histone modification ChIP-seq data. We observed that the ORIGINAL DNASE + HISTONE HMM

topology outperforms all other HMM topologies (Section 5.1.1). However, it is noticeable that the

DNASE-ONLY topology’s accuracies are very close to the DNASE + HISTONE topologies’ accuracies.

On the other hand, the HISTONE-ONLY topology presented the lowest accuracies. Our results showed

that: (1) The proper integration of DNase-seq and histone modifications increases the accuracy of the

prediction of active TFBSs and (2) The DNase-seq data has a great predictive power given its high

spatial specificity.

Furthermore, we tested, for the ORIGINAL DNASE + HISTONE topology, a number of different

histone modification combinations. We tested models using individual, pairs and triples of the ac-

tivating histone modifications H3K4me1, H3K4me3, H3K9ac, H3K27ac and H2A.Z. We showed

in Section 5.1.2 that many combinations perform equally well. However, the histone modifications

H3K4me1, H3K4me3 and H3K27ac seem to be particularly good predictors of open chromatin re-

gions. As expected, models containing more histone modifications generally outperformed models

with less histone modifications. However, the increase in performance is smaller when considering

higher number of histone modifications. This result, together with the fact that one of the goals of

our model is to generate accurate predictions with as few assays as possible, does justify an optimal

number of assays between a combination of two to three histone modifications.

With regard to HINT’s training, we observed that it is cell-type train-independent (Section 5.1.3).

This means that an HMM model trained with data from one cell type does not present a significant

change in accuracy when applied to another cell type. In practice, one could use a trained HMM
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(for a particular topology) and apply it to data from any other cell type. Although we did not test

this claim on different organisms, this seems to be the case, since the training robustness stems from

the efficacy of the normalization strategy. This result is very important from a practical perspective

because it allows the use of the method without the need to train new HMM models, given new data.

Guidelines for Computational Footprinting

Until now, it was not clear the extent in which experimental issues such as the DNase-seq sequence

cleavage bias and the transcription factor (TF) residence time had in the performance of computa-

tional footprinting methods. We performed an in-depth investigation of a number of features relevant

for the identification of active TFBSs using open chromatin data. We highlighted three insightful

experiments: (1) the selection of an optimal scoring strategy for computational footprinting methods

and whether such scoring strategy alone could outperform more complex approaches; (2) the impact

on performance of the DNase-seq sequence cleavage bias and (3) issues regarding the TF residence

time.

The TC-Rank is a computational footprinting method which consists on scoring and ranking motif-

predicted binding sites (MPBSs) based on the tag count (TC) metric. In contrast to positive evalua-

tions of the TC-Rank by previous works (Cuellar-Partida et al., 2012; He et al., 2014) we show that

it has poor sensitivity performance as indicated by the area under the receiver operating character-

istic (ROC) curve (AUC) at low false positive rate (FPR) levels. Such poor sensitivity was further

evidenced by observing the very low FP-Exp values of the gene expression evaluation methodology.

The ability of a footprint-specific metric, such as the FLR, to distinguish a change in binding events

appears to be a distinct advantage of computational footprinting methods over a more general statistic,

such as the TC, that only captures overall DNase hypersensitivity in a large window around MPBSs.

On the other hand, as pointed in Section 5.2.1 the TC metric outperformed the footprint score (FS),

position weight matrix (PWM) bit-score and method-specific scoring metrics on ranking footprints.

This shows that, while using TC to rank MPBSs and applying a cutoff strategy does not provide good

results, using TC to rank already-predicted footprints is the best strategy observed.

The refined DNase-seq protocol and experimental artifacts presented in He et al. (2014) underscore

that robust in silico techniques are required to correct for experimental artifacts and to derive valid

biological predictions. In Section 5.2.2 we showed that the correction of DNase-seq signal using the

“DNase hypersensitivity site (DHS) sequence cleavage bias” approach estimates virtually removes the

effects of sequence bias artifacts on computational footprinting. We demonstrated that such correction

can be performed prior to the execution of the computational footprinting method. On the other hand,

ignoring experimental artifacts might lead to false predictions, as observed previously for Neph et

al.’s predicted de novo motifs (Neph et al., 2012; He et al., 2014).

It was shown in Sung et al. (2014) that TFs with low residence time do not present a recognizable

footprint pattern. Therefore, these factors would not be accurately predicted by computational foot-

printing methods. This issue was discussed in details in Section 5.4. Although the TF residence time

is not an issue that can be solved computationally, we showed that we can use the protection score to

indicate footprints of TFs with potential short binding time. Such footprint predictions of TFs with

low protection score should be interpreted with caution.

Comparative Analyses on Computational Footprinting Methods

Our comparative evaluation analysis presented in Section 5.3 indicates the superior performance (in

decreasing order) of HINT, DNase2TF and PIQ in the prediction of active TFBS in all evaluated sce-

narios. Moreover, tools implementing these methods were user-friendly and had lower computational

demands than other evaluated methods. Clearly, the choice of computational footprinting approaches

should also be based on experimental design aspects. For example, PIQ is the only method supporting
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analysis of replicates and time-series. On the other hand, studies requiring footprint predictions for

latter de novo motif analysis should use segmentation approaches as HINT or DNase2TF.

The availability, usability and scalability of software tools implementing the methods are also im-

portant features. Neph, HINT, PIQ and Wellington provide tutorials and software to run experiments

with few command line calls. Of those, only HINT, PIQ and Wellington natively support standard ge-

nomic formats as input. Site-centric methods Cuellar, BinDNase, Centipede and FLR require a single

execution and input data per TF and cell type, while segmentation methods require an execution per

cell type only. These site-centric methods have computational demands 5 times (FLR and Cuellar)

to 50 times (BinDNase and Centipede) higher than the slowest segmentation method (Wellington) in

our comparative analysis using the Benchmarking Dataset (Table 4.4).

Examples of the infeasibility of site-centric methods on the basis of processing time can also be

taken from the case studies presented here (Section 5.6). The segmentation approach HINT was

executed four times in the dendritic cell case study (one time for each cell type) and one time in

the HUVEC inflammation case study (only the cell type HUVEC was analyzed). The total running

time of these five computational footprinting methods was ∼140 hours (or ∼1.5 hour in a 100-core

computational cluster). On the other hand, a site-centric approach would have to be executed for

each TF in which we are interested in performing the TF enrichment analysis, for each cell type.

This makes a total of ∼3000 executions (given a restricted set of 600 tested TFs), with an estimated

execution time (based on the fastest site-centric method PIQ) of 579,000 hours (or 241 days in a

100-core computational cluster).

In conclusion, the assessment of computational footprinting methods is a demanding task, both

computationally and technically. We have created a fair and reproducible benchmarking dataset for

evaluation of TF binding using two validation approaches: using ChIP-seq and using gene expression.

Although the rationales of the ChIP-seq and gene expression evaluation procedures are, in principle,

very different, we observed a high agreement between their respective ranking of methods. This

is evidence that this study provides a robust map of the accuracy of state-of-the-art computational

footprinting methods. We provide all statistics, basic data and computational scripts to evaluate future

computational footprinting methods. These resources are available at:

http://costalab.org/hint-bc

This is an important resource for increasing transparency and reproducibility of research on com-

putational footprinting methods.

Downstream Analyses and Case Studies

We present two common downstream analyses based on footprint predictions: the de novo motif

finding and the TF enrichment analysis.

We performed a de novo motif finding procedure on footprints predicted with HINT combining

the tools “discriminative regular expression motif elicitation” (DREME) and “local motif enrichment

analysis” (CENTRIMO; Section 5.5). We identified six novel motifs associated to human embryonic

cell type H1-hESC. Five of these motifs presented a particularly noticeable peak-dip-peak DNase-seq

pattern, indicative of active TF binding. Although this analysis used a particularly simple experiment

design, it exemplifies downstream analyses that can only be performed on footprint predictions from

segmentation-based computational footprinting methods.

In Section 5.6 we presented two case studies in which our computational footprinting method HINT

was successfully applied to identify TFs associated to different biological conditions. Both studies

use the same downstream analysis on the predicted footprints: the TF enrichment analysis. We have

shown that it is possible to explore different HINT’s HMM topologies to address specific biological

questions. The inclusion of such case studies had the main goal of showing the flexibility of our
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6.1. Future Work

computational footprinting framework towards very different experimental scenarios. There were

differences in the organism under study (mouse vs human), in the availability of input data (histone

modification ChIP-seq vs DNase-seq) and in the biological questions asked. Nevertheless, in these

two distinct scenarios, HINT’s predictions aided in the identification of the respective key regulatory

players.

6.1 Future Work

Although we covered a number of different challenges on the detection of active TFBSs with com-

putational genomic footprinting methods, this research area still has some unexplored aspects. In this

section we categorize these research opportunities as: computational footprinting method extension

and further downstream analyses that can be performed with footprint predictions.

Computational Footprinting Method Extension

We have systematically investigated the DNase-seq sequence cleavage bias. However, as extensively

explored in Meyer and Liu (2014), open chromatin genomic data are affected by other artifacts stem-

ming from either the biological protocol or the computational pre-processing steps, such as: (1) chro-

matin fragmentation and size selection, (2) tissue-specific signal variability generated by the phenol

chloroform extraction step commonly used to separate deoxyribonucleic acid (DNA) from protein,

(3) DNA amplification biases and duplications, (4) particularities of read mapping algorithms and (5)

TF binding characteristics. HINT can still be further expanded to encompass the correction of other

experimental artifacts.

Moreover, in this thesis we focused on using the open chromatin data from DNase-seq and histone

modification ChIP-seq. However, there are novel experimental biological assays, such as ATAC-seq

(assay for transposase-accessible chromatin) (Buenrostro et al., 2013), which are able to generate a

nucleotide-resolution genome-wide map of open chromatin regions. ATAC-seq also exhibits active

TF’s footprint-like patterns similar to DNase-seq; and has two major advantages over DNase-seq:

(1) ATAC-seq is less technical and (2) ATAC-seq requires a much lower number of cells to start the

protocol. Furthermore, current efforts are being made in order to obtain the genome-wide signal for

these experimental assays (DNase-seq, ChIP-seq and ATAC-seq) in a single-cell manner (Buenrostro

et al., 2015). In this new paradigm, we are going to be able to study tissue heterogeneity by analyzing

open chromatin profiles of individual cells.

Further Downstream Analyses

Here we have shown two common downstream analysis: the de novo motif finding (Section 5.5) and

the TF enrichment analysis (Section 5.6). Nevertheless, there are a number of different downstream

analyses that can be performed on computationally-predicted footprints, such as: (1) integration with

TF ChIP-seq data – to determine the exact position where the TF is binding without relying on purely

sequence-based metrics (Pique-Regi et al., 2011); (2) differential footprinting – which searches for

footprints that occur at particular cell conditions and finds, within these footprints, regulatory ele-

ments associated to such conditions (He et al., 2012); and (3) integrative analyses – in which the

footprints are integrated with further chromatin dynamics information, such as the spatial configura-

tion of the chromatin, to infer indirect binding events and protein tethering (Thurman et al., 2012).

Furthermore, no effort was made to improve current available downstream analysis, such as the

de novo motif finding, to handle the massive data generated by computational footprinting methods.

The research of novel downstream methods which are devised particularly for footprints is needed to

explore the full potential of computational footprint predictions.
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APPENDIX A

Appendix – Supplementary Tables

Table A.1: Summary of DNase-seq data. DNase-seq datasets used as input for computational foot-

printing methods (main comparative experiments and further empirical analyses) are highlighted in

bold. The other DNase-seq datasets were used in the DNase-seq bias estimates clustering analysis.

We represent both DNase-seq protocols as: single-hit (SH; generated in Crawford lab (ENCODE

Project Consortium, 2012)) and double-hit (DH; generated in Stamatoyannopoulous lab (ENCODE

Project Consortium, 2012)). Naked deoxyribonucleic acid (DNA) DNase-seq experiments are repre-

sented as NK. Source: Gusmao et al. (2016) (modified to fit thesis format and/or clarify key points).

Cell Type Protocol UCSC ID GEO/NCBI ID # Mapped Reads

H1-hESC SH wgEncodeEH000556 GSM816632 110303078

HeLa-S3 SH wgEncodeEH000540 GSM816643 54267867

HepG2 SH wgEncodeEH000537 GSM816662 50838536

HUVEC SH wgEncodeEH000548 GSM816646 31848532

K562 SH wgEncodeEH000530 GSM816655 365820647

LNCaP SH wgEncodeEH001097 GSM816637 163625945

MCF-7 SH wgEncodeEH000579 GSM816627 89113893

K562 NK – GSM1496625 202001412

MCF-7 NK – GSM1496626 210715393

H7-hESC DH wgEncodeEH000511 GSM736638

GSM736610

302050785

HepG2 DH wgEncodeEH000482 GSM736637

GSM736639

168883956

HUVEC DH wgEncodeEH000488 GSM736575

GSM736533

429088276

K562 DH wgEncodeEH000484 GSM736629

GSM736566

179970820

m3134 DH wgEncodeEM001721 GSM1014196 127594903

IMR90 NK – SRA068503 138604440

H7-hESC SH wgEncodeEH002554 GSM1008596 433296955

CD14+ SH wgEncodeEH003466 GSM1008582 287039145

SK-N-SH SH wgEncodeEH003483 GSM1008585 287186739

MCF-7/RandshRNA SH wgEncodeEH003468 GSM1008603 288004844

K562/SAHA-Ctrl SH wgEncodeEH003489 GSM1008580 503410467

MCF-7 SH wgEncodeEH003470 GSM1008565 89113893

IMR90 SH wgEncodeEH003482 GSM1008586 303769598

HeLa-S3/IFNa4h SH wgEncodeEH000577 GSM816633 110348694

K562/G2-Mphase SH wgEncodeEH003472 GSM1008567 431722812

K562/G1phase SH wgEncodeEH003469 GSM1008602 426934260

K562/SAHA1um72h SH wgEncodeEH003490 GSM1008558 503301111

MCF-7/HypLacAc SH wgEncodeEH001745 GSM816670 244207602
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Cell Type Protocol UCSC ID GEO/NCBI ID # Mapped Reads

K562/NaBut SH wgEncodeEH002559 GSM1008601 267722720

CD20+RO01794 SH wgEncodeEH003465 GSM1008588 256442597

GM12878 SH wgEncodeEH000534 GSM816665 245090730

A549 SH wgEncodeEH001095 GSM816649 133567925

MCF-7/CTCFshRNA SH wgEncodeEH003467 GSM1008581 295954052

K562/ZNFP5 DH wgEncodeEH003016 – 70400755

CD20+RO01778 DH wgEncodeEH001884 GSM1024765

GSM1024766

71398619

HeLa-S3 DH wgEncodeEH000495 GSM736510

GSM736564

70669968

K562/ZNF4C50C4 DH wgEncodeEH003009 – 82579252

A549 DH wgEncodeEH001180 GSM736506

GSM736580

75764710

K562/ZNFb34A8 DH wgEncodeEH003012 – 95113482

K562/ZNFg54A11 DH wgEncodeEH003015 – 76873236

CD14+ DH wgEncodeEH001196 – 33322702

MCF-7/EstCtrl0h DH wgEncodeEH003018 GSM1024764

GSM1024767

151170759

MCF-7/Est100nm1h DH wgEncodeEH003017 GSM1024783

GSM1024784

164440980

K562/ZNF4G7D3 DH wgEncodeEH003010 – 83034668

K562/ZNFe103C6 DH wgEncodeEH003013 – 78100065

K562/ZNF2C10C5 DH wgEncodeEH003008 – 173334712

LHCN-M2 DH wgEncodeEH003005 GSM1024786

GSM1024787

89558026

LHCN-M2/Diff4d DH wgEncodeEH003006 GSM1024771

GSM1024772

120358720

H1-hESC DH wgEncodeEH000496 GSM736582 24431583

MCF-7 DH wgEncodeEH000502 GSM736581

GSM736588

89482135

K562/ZNFf41B2 DH wgEncodeEH003014 – 109124535

CD14+/RO01746 DH wgEncodeEH001196 GSM1024791 67698560

GM12878 DH wgEncodeEH000492 GSM736496

GSM736620

47899421

K562/ZNFa41C6 DH wgEncodeEH003011 – 99106989

HepG2 DH wgEncodeEH000476 GSM646559 69810990

K562 DH wgEncodeEH000480 GSM646567 71250291

CD20+RO01778 DH wgEncodeEH002442 GSM1014525 240594387

K562/ZNFP5 DH wgEncodeEH003153 – 346226678

K562/ZNFa41C6 DH wgEncodeEH003152 – 372806338

LHCN-M2 DH wgEncodeEH003149 GSM1014524 255134452

LHCN-M2/Diff4d DH wgEncodeEH003154 GSM1014539 357827356

H7-hESC DH wgEncodeEH000834 GSM646563 302050785

HUVEC DH wgEncodeEH002460 GSM1014528 429088276

A549 DH wgEncodeEH003146 GSM1014517 350629033
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Table A.2: Summary of the histone modification ChIP-seq data. All datasets were generated in

Bernstein lab, associated to ENCODE Project Consortium (2012). Source: Gusmao et al. (2014)

(modified to fit thesis format and/or clarify key points).

Cell Type Data Type UCSC Access. GEO ID # Mapped Reads

H1-hESC H3K4me1 wgEncodeEH000106 GSM733782 27286943

H1-hESC H3K4me3 wgEncodeEH000086 GSM733657 19203931

H1-hESC H3K9ac wgEncodeEH000109 GSM733773 30288927

H1-hESC H3K27ac wgEncodeEH000997 GSM733718 31993560

H1-hESC H2A.Z wgEncodeEH002082 GSM1003579 76761942

K562 H3K4me1 wgEncodeEH000046 GSM733692 29197613

K562 H3K4me3 wgEncodeEH000048 GSM733680 25153055

K562 H3K9ac wgEncodeEH000049 GSM733778 32634427

K562 H3K27ac wgEncodeEH000043 GSM733656 24470196

K562 H2A.Z wgEncodeEH001038 GSM733786 38763180

GM12878 H3K4me1 wgEncodeEH000033 GSM733772 48444878

GM12878 H3K4me3 wgEncodeEH000028 GSM733708 64016296

GM12878 H3K9ac wgEncodeEH000035 GSM733677 19513948

GM12878 H3K27ac wgEncodeEH000030 GSM733771 19582373

GM12878 H2A.Z wgEncodeEH001033 GSM733767 32327975

HeLa-S3 H3K4me1 wgEncodeEH001750 GSM798322 38435440

HeLa-S3 H3K4me3 wgEncodeEH001017 GSM733682 35897578

HepG2 H3K4me1 wgEncodeEH001749 GSM798321 52320612

HepG2 H3K4me3 wgEncodeEH000095 GSM733737 18620773
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Table A.3: Position frequency matrices (PFMs) and transcription factors (TFs) ChIP-seq used

in the ChIP-seq evaluation methodology. ChIP-seq was obtained from multiple labs within the EN-

CODE Project Consortium (2012). PFMs were obtained from Jaspar (Mathelier et al., 2014),

Uniprobe (Robasky and Bulyk, 2011) and Transfac (Matys et al., 2006). Source: Gusmao et al.

(2016) (modified to fit thesis format and/or clarify key points).
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H1-hESC ATF3 Jaspar MA0093.2 Myers wgEncodeEH001566 691899 4804 1777 36.99

H1-hESC BACH1 Transfac M00495 Snyder wgEncodeEH002842 614421 11457 2941 25.66

H1-hESC BRCA1 Jaspar MA0133.1 Snyder wgEncodeEH002801 333055 2025 15 0.74

H1-hESC CEBPB Jaspar MA0466.1 Snyder wgEncodeEH002825 1342548 15557 9720 62.47

H1-hESC CTCF Jaspar MA0139.1 Myers wgEncodeEH001649 565933 54070 41994 77.66

H1-hESC EGR1 Jaspar MA0162.2 Myers wgEncodeEH001538 1060314 8743 5225 59.76

H1-hESC FOSL1 Jaspar MA0477.1 Myers wgEncodeEH001660 699220 1111 61 5.49

H1-hESC GABP Jaspar MA0062.2 Myers wgEncodeEH001534 181503 5652 2165 38.30

H1-hESC JUN Jaspar MA0488.1 Snyder wgEncodeEH001854 832374 2148 646 30.07

H1-hESC JUND Jaspar MA0491.1 Snyder wgEncodeEH002023 717223 9550 3784 39.62

H1-hESC MAFK Jaspar MA0496.1 Snyder wgEncodeEH002828 1221488 11425 7849 68.70

H1-hESC MAX Jaspar MA0058.2 Farnham wgEncodeEH001757 855374 11124 3126 28.10

H1-hESC MYC Jaspar MA0147.2 Snyder wgEncodeEH002795 614797 4551 1161 25.51

H1-hESC NRF1 Jaspar MA0506.1 Snyder wgEncodeEH001847 137117 4513 3636 80.56

H1-hESC POU5F1 Jaspar MA0142.1 Myers wgEncodeEH001636 2201678 3994 2757 69.02

H1-hESC RAD21 Jaspar MA0139.1 Snyder wgEncodeEH001836 565933 55674 42657 76.61

H1-hESC REST Jaspar MA0138.2 Myers wgEncodeEH001498 629168 13269 6440 48.53

H1-hESC RFX5 Jaspar MA0510.1 Snyder wgEncodeEH001835 629248 1695 697 41.12

H1-hESC RXRA Jaspar MA0512.1 Myers wgEncodeEH001560 1110004 1306 276 21.13

H1-hESC SIX5 Jaspar MA0088.1 Myers wgEncodeEH001528 1032447 3422 1680 49.09

H1-hESC SP1 Jaspar MA0079.3 Myers wgEncodeEH001529 1797400 15103 5303 35.11

H1-hESC SP2 Jaspar MA0516.1 Myers wgEncodeEH002302 1587339 2469 1247 50.50

H1-hESC SP4 Uniprobe UP00002 Myers wgEncodeEH002317 503235 5752 1802 31.32

H1-hESC SRF Jaspar MA0083.2 Myers wgEncodeEH001533 1024023 5102 2969 58.19

H1-hESC TCF12 Jaspar MA0521.1 Myers wgEncodeEH001531 893836 7829 1904 24.31

H1-hESC USF1 Jaspar MA0093.2 Myers wgEncodeEH001532 691899 26028 18288 70.26

H1-hESC USF2 Jaspar MA0526.1 Snyder wgEncodeEH001837 759040 6952 4488 64.55

H1-hESC YY1 Jaspar MA0095.2 Myers wgEncodeEH001567 1325447 18310 6506 35.53

H1-hESC ZNF143 Jaspar MA0088.1 Snyder wgEncodeEH002802 1032447 30687 3809 12.41

HeLa-S3 BRCA1 Jaspar MA0133.1 Snyder wgEncodeEH001814 333055 8114 88 1.08

HeLa-S3 CEBPB Jaspar MA0466.1 Snyder wgEncodeEH001815 1342548 61004 26770 43.88

HeLa-S3 CTCF Jaspar MA0139.1 Bernstein wgEncodeEH001012 565933 52783 38397 72.74

HeLa-S3 E2F4 Jaspar MA0470.1 Snyder wgEncodeEH000689 173646 2831 1397 49.34

HeLa-S3 E2F6 Jaspar MA0471.1 Snyder wgEncodeEH000692 1051116 4775 1457 30.51

HeLa-S3 ELK1 Jaspar MA0028.1 Snyder wgEncodeEH002864 100691 4809 1892 39.34

HeLa-S3 FOS Jaspar MA0476.1 Snyder wgEncodeEH000647 762222 9325 6900 73.99

HeLa-S3 GABP Jaspar MA0062.2 Myers wgEncodeEH001504 181503 6761 3571 52.81

HeLa-S3 JUN Jaspar MA0488.1 Snyder wgEncodeEH000746 832374 21903 3302 15.07

HeLa-S3 JUND Jaspar MA0491.1 Snyder wgEncodeEH000745 717223 31633 21182 66.96

HeLa-S3 MAFK Jaspar MA0496.1 Snyder wgEncodeEH002856 1221488 14185 8658 61.03

HeLa-S3 MAX Jaspar MA0058.2 Snyder wgEncodeEH002830 855374 29647 3204 10.80

HeLa-S3 MYC Jaspar MA0147.2 Snyder wgEncodeEH000648 614797 10226 1647 16.10

HeLa-S3 NFYA Jaspar MA0060.2 Snyder wgEncodeEH002066 428913 5978 2537 42.43

HeLa-S3 NFYB Jaspar MA0502.1 Snyder wgEncodeEH002067 470725 7156 4139 57.83

HeLa-S3 NRF1 Jaspar MA0506.1 Snyder wgEncodeEH000723 137117 2915 2369 81.26

HeLa-S3 RAD21 Jaspar MA0139.1 Snyder wgEncodeEH001789 565933 43420 30385 69.97

HeLa-S3 REST Jaspar MA0138.2 Myers wgEncodeEH001629 629168 10247 4524 44.14

HeLa-S3 STAT1 Jaspar MA0137.3 Snyder wgEncodeEH000614 1272026 16158 5655 34.99

HeLa-S3 USF2 Jaspar MA0526.1 Snyder wgEncodeEH001819 759040 12306 6099 49.56

HeLa-S3 ZNF143 Jaspar MA0088.1 Snyder wgEncodeEH002028 1032447 7048 1865 26.46

HepG2 ARID3A Jaspar MA0151.1 Snyder wgEncodeEH002858 2112327 17614 1041 5.91

HepG2 ATF3 Jaspar MA0018.2 Myers wgEncodeEH001568 496476 3290 270 8.20

HepG2 BHLHE40 Jaspar MA0464.1 Myers wgEncodeEH001515 572185 2859 1186 41.48

HepG2 BRCA1 Jaspar MA0133.1 Snyder wgEncodeEH001859 333055 1497 15 1.00

HepG2 CEBPB Jaspar MA0466.1 Myers wgEncodeEH002304 1342548 18114 10146 56.01

HepG2 CTCF Jaspar MA0139.1 Myers wgEncodeEH001516 565933 55733 44323 79.52

HepG2 ELF1 Jaspar MA0473.1 Myers wgEncodeEH001641 1026618 17998 8728 48.49

HepG2 GABP Jaspar MA0062.2 Myers wgEncodeEH001548 181503 10105 4722 46.72
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HepG2 JUN Jaspar MA0488.1 Snyder wgEncodeEH001794 832374 12669 7136 56.32

HepG2 JUND Jaspar MA0491.1 Myers wgEncodeEH001470 717223 21606 8490 39.29

HepG2 MAFF Jaspar MA0495.1 Snyder wgEncodeEH001841 1215808 37587 29284 77.90

HepG2 MAFK Jaspar MA0496.1 Snyder wgEncodeEH001842 1221488 61847 44299 71.62

HepG2 MAX Jaspar MA0058.2 Snyder wgEncodeEH002796 855374 11852 2101 17.72

HepG2 MYC Jaspar MA0147.2 Iyer wgEncodeEH000545 614797 4411 1160 26.29

HepG2 NRF1 Jaspar MA0506.1 Snyder wgEncodeEH001802 137117 1902 1699 89.32

HepG2 RAD21 Jaspar MA0139.1 Myers wgEncodeEH001608 565933 54261 40827 75.24

HepG2 REST Jaspar MA0138.2 Myers wgEncodeEH001549 629168 6021 2848 47.30

HepG2 RXRA Jaspar MA0512.1 Myers wgEncodeEH001506 1110004 17059 4628 27.12

HepG2 SP1 Jaspar MA0079.3 Myers wgEncodeEH001561 1797400 25465 5277 20.72

HepG2 SP2 Jaspar MA0516.1 Myers wgEncodeEH002264 1587339 2626 567 21.59

HepG2 SRF Jaspar MA0083.2 Myers wgEncodeEH001611 1024023 5311 2693 50.70

HepG2 USF1 Jaspar MA0093.2 Myers wgEncodeEH001472 691899 21885 14209 64.92

HepG2 USF2 Jaspar MA0526.1 Snyder wgEncodeEH001804 759040 6290 4621 73.46

HepG2 YY1 Jaspar MA0095.2 Myers wgEncodeEH001661 1325447 17871 4035 22.57

HUVEC CTCF Jaspar MA0139.1 Iyer wgEncodeEH000551 565933 43982 36279 82.48

HUVEC FOS Jaspar MA0476.1 Farnham wgEncodeEH001774 762222 46726 29319 62.74

HUVEC GATA2 Jaspar MA0036.2 Farnham wgEncodeEH001758 1028569 27454 6162 22.44

HUVEC JUN Jaspar MA0488.1 Snyder wgEncodeEH000719 832374 29502 4220 14.30

HUVEC MAX Jaspar MA0058.2 Snyder wgEncodeEH000768 855374 9120 2650 29.05

HUVEC MYC Jaspar MA0147.2 Iyer wgEncodeEH000561 614797 5143 1213 23.58

K562 ARID3A Jaspar MA0151.1 Snyder wgEncodeEH002861 2112327 9026 606 6.71

K562 ATF1 Uniprobe UP00020 Struhl wgEncodeEH002865 246442 14864 2609 17.55

K562 ATF3 Jaspar MA0018.2 Struhl wgEncodeEH000700 496476 1233 165 13.38

K562 BACH1 Transfac M00495 Snyder wgEncodeEH002846 614421 3806 1980 52.02

K562 BHLHE40 Jaspar MA0464.1 Snyder wgEncodeEH001857 572185 22497 5958 26.48

K562 CCNT2 Jaspar MA0140.2 Struhl wgEncodeEH001864 708983 20057 2284 11.38

K562 CEBPB Jaspar MA0466.1 Snyder wgEncodeEH001821 1342548 38715 24789 64.02

K562 CTCF Jaspar MA0139.1 Snyder wgEncodeEH002797 565933 54387 41122 75.60

K562 CTCFL Jaspar MA0139.1 Myers wgEncodeEH001652 565933 11533 8878 76.97

K562 E2F4 Jaspar MA0470.1 Farnham wgEncodeEH000671 173646 8181 2809 34.33

K562 E2F6 Jaspar MA0471.1 Farnham wgEncodeEH000676 1051116 16312 4251 26.06

K562 EFOS Jaspar MA0476.1 White wgEncodeEH001207 762222 10256 8796 85.76

K562 EGATA Jaspar MA0036.2 White wgEncodeEH001208 1028569 11478 3846 33.50

K562 EGR1 Jaspar MA0162.2 Myers wgEncodeEH001646 1060314 36997 25164 68.01

K562 EJUNB Jaspar MA0490.1 White wgEncodeEH001210 717235 12287 7788 63.38

K562 EJUND Jaspar MA0491.1 White wgEncodeEH001211 717223 26674 11027 41.33

K562 ELF1 Jaspar MA0473.1 Myers wgEncodeEH001619 1026618 27780 14324 51.56

K562 ELK1 Jaspar MA0028.1 Snyder wgEncodeEH003356 100691 2961 1315 44.41

K562 ETS1 Jaspar MA0098.2 Myers wgEncodeEH001580 1319961 10726 1734 16.16

K562 FOS Jaspar MA0476.1 Snyder wgEncodeEH000619 762222 7646 3423 44.76

K562 FOSL1 Jaspar MA0477.1 Myers wgEncodeEH001637 699220 11174 8865 79.33

K562 GABP Jaspar MA0062.2 Myers wgEncodeEH001604 181503 14393 5406 37.55

K562 GATA1 Jaspar MA0035.3 Farnham wgEncodeEH000638 1040470 4074 1923 47.20

K562 GATA2 Jaspar MA0036.2 Farnham wgEncodeEH000683 1028569 10648 4267 40.07

K562 IRF1 Jaspar MA0050.2 Snyder wgEncodeEH002798 2330047 8352 3274 39.20

K562 JUN Jaspar MA0488.1 Snyder wgEncodeEH000620 832374 9848 2150 21.83

K562 JUND Jaspar MA0491.1 Snyder wgEncodeEH002164 717223 40052 15395 38.43

K562 MAFF Jaspar MA0495.1 Snyder wgEncodeEH002804 1215808 25074 17425 69.49

K562 MAFK Jaspar MA0496.1 Snyder wgEncodeEH001844 1221488 19317 12423 64.31

K562 MAX Jaspar MA0058.2 Snyder wgEncodeEH002869 855374 31436 4766 15.16

K562 MEF2A Jaspar MA0052.2 Myers wgEncodeEH001663 3210613 5631 2664 47.30

K562 MYC Jaspar MA0147.2 Snyder wgEncodeEH000621 614797 5023 1312 26.11

K562 NFE2 Jaspar MA0501.1 Snyder wgEncodeEH000624 796063 2637 2177 82.55

K562 NFYA Jaspar MA0060.2 Snyder wgEncodeEH002021 428913 4286 2770 64.62

K562 NFYB Jaspar MA0502.1 Snyder wgEncodeEH002024 470725 10096 7786 77.11

K562 NR2F2 Uniprobe UP00009 Myers wgEncodeEH002382 626663 16678 2971 17.81

K562 NRF1 Jaspar MA0506.1 Snyder wgEncodeEH001796 137117 4211 3114 73.94

K562 PU1 Jaspar MA0080.3 Myers wgEncodeEH001482 2040890 28677 24657 85.98

K562 RAD21 Jaspar MA0139.1 Snyder wgEncodeEH000649 565933 17627 16218 92.00
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K562 REST Jaspar MA0138.2 Myers wgEncodeEH001638 629168 15849 4191 26.44

K562 RFX5 Jaspar MA0510.1 Snyder wgEncodeEH002033 629248 2201 475 21.58

K562 SIX5 Jaspar MA0088.1 Myers wgEncodeEH001483 1032447 4194 1554 37.05

K562 SMC3 Jaspar MA0139.1 Snyder wgEncodeEH001845 565933 23598 20753 87.94

K562 SP1 Jaspar MA0079.3 Myers wgEncodeEH001578 1797400 7206 3269 45.36

K562 SP2 Jaspar MA0516.1 Myers wgEncodeEH001653 1587339 3124 1735 55.53

K562 SRF Jaspar MA0083.2 Myers wgEncodeEH001600 1024023 4717 1473 31.22

K562 STAT1 Jaspar MA0137.3 Snyder wgEncodeEH000664 1272026 1476 204 13.82

K562 STAT2 Jaspar MA0517.1 Snyder wgEncodeEH000666 3077582 1923 1132 58.86

K562 STAT5A Jaspar MA0519.1 Myers wgEncodeEH002347 1292097 9811 2033 20.72

K562 TAL1 Jaspar MA0140.2 Snyder wgEncodeEH001824 708983 26260 11345 43.20

K562 THAP1 Jaspar MA0597.1 Myers wgEncodeEH001655 561707 3506 338 9.64

K562 TR4 Jaspar MA0504.1 Farnham wgEncodeEH000682 825980 587 170 28.96

K562 USF1 Jaspar MA0093.2 Myers wgEncodeEH001583 691899 18521 11966 64.60

K562 USF2 Jaspar MA0526.1 Snyder wgEncodeEH001797 759040 3083 2271 73.66

K562 YY1 Jaspar MA0095.2 Farnham wgEncodeEH000684 1325447 4948 3035 61.33

K562 ZBTB33 Jaspar MA0527.1 Myers wgEncodeEH001569 82928 3285 1454 44.26

K562 ZBTB7A Uniprobe UP00047 Myers wgEncodeEH001620 412506 21711 801 3.68

K562 ZNF143 Jaspar MA0088.1 Snyder wgEncodeEH002030 1032447 29069 3628 12.48

K562 ZNF263 Jaspar MA0528.1 Farnham wgEncodeEH000630 2577084 3081 1110 36.02

Mcf7 ER(160m) Jaspar MA0112.2 Hager GSM1325251 801832 1450 801 55.24

Mcf7 ER(40m) Jaspar MA0112.2 Hager GSM1325250 801832 10397 4696 45.16

HepG2 ARID3A Jaspar MA0151.1 Snyder wgEncodeEH002858 2112327 17614 1041 5.91

HepG2 ATF3 Jaspar MA0018.2 Myers wgEncodeEH001568 496476 3290 270 8.20

HepG2 BHLHE40 Jaspar MA0464.1 Myers wgEncodeEH001515 572185 2859 1186 41.48

HepG2 BRCA1 Jaspar MA0133.1 Snyder wgEncodeEH001859 333055 1497 15 1.00

HepG2 CEBPB Jaspar MA0466.1 Myers wgEncodeEH002304 1342548 18114 10146 56.01

HepG2 CTCF Jaspar MA0139.1 Myers wgEncodeEH001516 565933 55733 44323 79.52

HepG2 ELF1 Jaspar MA0473.1 Myers wgEncodeEH001641 1026618 17998 8728 48.49

HepG2 GABP Jaspar MA0062.2 Myers wgEncodeEH001548 181503 10105 4722 46.72

HepG2 JUN Jaspar MA0488.1 Snyder wgEncodeEH001794 832374 12669 7136 56.32

HepG2 JUND Jaspar MA0491.1 Myers wgEncodeEH001470 717223 21606 8490 39.29

HepG2 MAFF Jaspar MA0495.1 Snyder wgEncodeEH001841 1215808 37587 29284 77.90

HepG2 MAFK Jaspar MA0496.1 Snyder wgEncodeEH001842 1221488 61847 44299 71.62

HepG2 MAX Jaspar MA0058.2 Snyder wgEncodeEH002796 855374 11852 2101 17.72

HepG2 MYC Jaspar MA0147.2 Iyer wgEncodeEH000545 614797 4411 1160 26.29

HepG2 NRF1 Jaspar MA0506.1 Snyder wgEncodeEH001802 137117 1902 1699 89.32

HepG2 RAD21 Jaspar MA0139.1 Myers wgEncodeEH001608 565933 54261 40827 75.24

HepG2 REST Jaspar MA0138.2 Myers wgEncodeEH001549 629168 6021 2848 47.30

HepG2 RXRA Jaspar MA0512.1 Myers wgEncodeEH001506 1110004 17059 4628 27.12

HepG2 SP1 Jaspar MA0079.3 Myers wgEncodeEH001561 1797400 25465 5277 20.72

HepG2 SP2 Jaspar MA0516.1 Myers wgEncodeEH002264 1587339 2626 567 21.59

HepG2 SRF Jaspar MA0083.2 Myers wgEncodeEH001611 1024023 5311 2693 50.70

HepG2 USF1 Jaspar MA0093.2 Myers wgEncodeEH001472 691899 21885 14209 64.92

HepG2 USF2 Jaspar MA0526.1 Snyder wgEncodeEH001804 759040 6290 4621 73.46

HepG2 YY1 Jaspar MA0095.2 Myers wgEncodeEH001661 1325447 17871 4035 22.57

HUVEC CTCF Jaspar MA0139.1 Iyer wgEncodeEH000551 565933 43982 36279 82.48

HUVEC FOS Jaspar MA0476.1 Farnham wgEncodeEH001774 762222 46726 29319 62.74

HUVEC GATA2 Jaspar MA0036.2 Farnham wgEncodeEH001758 1028569 27454 6162 22.44

HUVEC JUN Jaspar MA0488.1 Snyder wgEncodeEH000719 832374 29502 4220 14.30

HUVEC MAX Jaspar MA0058.2 Snyder wgEncodeEH000768 855374 9120 2650 29.05

HUVEC MYC Jaspar MA0147.2 Iyer wgEncodeEH000561 614797 5143 1213 23.58

K562 ARID3A Jaspar MA0151.1 Snyder wgEncodeEH002861 2112327 9026 606 6.71

K562 ATF1 Uniprobe UP00020 Struhl wgEncodeEH002865 246442 14864 2609 17.55

K562 ATF3 Jaspar MA0018.2 Struhl wgEncodeEH000700 496476 1233 165 13.38

K562 BACH1 Transfac M00495 Snyder wgEncodeEH002846 614421 3806 1980 52.02

K562 BHLHE40 Jaspar MA0464.1 Snyder wgEncodeEH001857 572185 22497 5958 26.48

K562 CCNT2 Jaspar MA0140.2 Struhl wgEncodeEH001864 708983 20057 2284 11.38

K562 CEBPB Jaspar MA0466.1 Snyder wgEncodeEH001821 1342548 38715 24789 64.02

K562 CTCF Jaspar MA0139.1 Snyder wgEncodeEH002797 565933 54387 41122 75.60

K562 CTCFL Jaspar MA0139.1 Myers wgEncodeEH001652 565933 11533 8878 76.97
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K562 E2F4 Jaspar MA0470.1 Farnham wgEncodeEH000671 173646 8181 2809 34.33

K562 E2F6 Jaspar MA0471.1 Farnham wgEncodeEH000676 1051116 16312 4251 26.06

K562 EFOS Jaspar MA0476.1 White wgEncodeEH001207 762222 10256 8796 85.76

K562 EGATA Jaspar MA0036.2 White wgEncodeEH001208 1028569 11478 3846 33.50

K562 EGR1 Jaspar MA0162.2 Myers wgEncodeEH001646 1060314 36997 25164 68.01

K562 EJUNB Jaspar MA0490.1 White wgEncodeEH001210 717235 12287 7788 63.38

K562 EJUND Jaspar MA0491.1 White wgEncodeEH001211 717223 26674 11027 41.33

K562 ELF1 Jaspar MA0473.1 Myers wgEncodeEH001619 1026618 27780 14324 51.56

K562 ELK1 Jaspar MA0028.1 Snyder wgEncodeEH003356 100691 2961 1315 44.41

K562 ETS1 Jaspar MA0098.2 Myers wgEncodeEH001580 1319961 10726 1734 16.16

K562 FOS Jaspar MA0476.1 Snyder wgEncodeEH000619 762222 7646 3423 44.76

K562 FOSL1 Jaspar MA0477.1 Myers wgEncodeEH001637 699220 11174 8865 79.33

K562 GABP Jaspar MA0062.2 Myers wgEncodeEH001604 181503 14393 5406 37.55

K562 GATA1 Jaspar MA0035.3 Farnham wgEncodeEH000638 1040470 4074 1923 47.20

K562 GATA2 Jaspar MA0036.2 Farnham wgEncodeEH000683 1028569 10648 4267 40.07

K562 IRF1 Jaspar MA0050.2 Snyder wgEncodeEH002798 2330047 8352 3274 39.20

K562 JUN Jaspar MA0488.1 Snyder wgEncodeEH000620 832374 9848 2150 21.83

K562 JUND Jaspar MA0491.1 Snyder wgEncodeEH002164 717223 40052 15395 38.43

K562 MAFF Jaspar MA0495.1 Snyder wgEncodeEH002804 1215808 25074 17425 69.49

K562 MAFK Jaspar MA0496.1 Snyder wgEncodeEH001844 1221488 19317 12423 64.31

K562 MAX Jaspar MA0058.2 Snyder wgEncodeEH002869 855374 31436 4766 15.16

K562 MEF2A Jaspar MA0052.2 Myers wgEncodeEH001663 3210613 5631 2664 47.30

K562 MYC Jaspar MA0147.2 Snyder wgEncodeEH000621 614797 5023 1312 26.11

K562 NFE2 Jaspar MA0501.1 Snyder wgEncodeEH000624 796063 2637 2177 82.55

K562 NFYA Jaspar MA0060.2 Snyder wgEncodeEH002021 428913 4286 2770 64.62

K562 NFYB Jaspar MA0502.1 Snyder wgEncodeEH002024 470725 10096 7786 77.11

K562 NR2F2 Uniprobe UP00009 Myers wgEncodeEH002382 626663 16678 2971 17.81

K562 NRF1 Jaspar MA0506.1 Snyder wgEncodeEH001796 137117 4211 3114 73.94

K562 PU1 Jaspar MA0080.3 Myers wgEncodeEH001482 2040890 28677 24657 85.98

K562 RAD21 Jaspar MA0139.1 Snyder wgEncodeEH000649 565933 17627 16218 92.00

K562 REST Jaspar MA0138.2 Myers wgEncodeEH001638 629168 15849 4191 26.44

K562 RFX5 Jaspar MA0510.1 Snyder wgEncodeEH002033 629248 2201 475 21.58

K562 SIX5 Jaspar MA0088.1 Myers wgEncodeEH001483 1032447 4194 1554 37.05

K562 SMC3 Jaspar MA0139.1 Snyder wgEncodeEH001845 565933 23598 20753 87.94

K562 SP1 Jaspar MA0079.3 Myers wgEncodeEH001578 1797400 7206 3269 45.36

K562 SP2 Jaspar MA0516.1 Myers wgEncodeEH001653 1587339 3124 1735 55.53

K562 SRF Jaspar MA0083.2 Myers wgEncodeEH001600 1024023 4717 1473 31.22

K562 STAT1 Jaspar MA0137.3 Snyder wgEncodeEH000664 1272026 1476 204 13.82

K562 STAT2 Jaspar MA0517.1 Snyder wgEncodeEH000666 3077582 1923 1132 58.86

K562 STAT5A Jaspar MA0519.1 Myers wgEncodeEH002347 1292097 9811 2033 20.72

K562 TAL1 Jaspar MA0140.2 Snyder wgEncodeEH001824 708983 26260 11345 43.20

K562 THAP1 Jaspar MA0597.1 Myers wgEncodeEH001655 561707 3506 338 9.64

K562 TR4 Jaspar MA0504.1 Farnham wgEncodeEH000682 825980 587 170 28.96

K562 USF1 Jaspar MA0093.2 Myers wgEncodeEH001583 691899 18521 11966 64.60

K562 USF2 Jaspar MA0526.1 Snyder wgEncodeEH001797 759040 3083 2271 73.66

K562 YY1 Jaspar MA0095.2 Farnham wgEncodeEH000684 1325447 4948 3035 61.33

K562 ZBTB33 Jaspar MA0527.1 Myers wgEncodeEH001569 82928 3285 1454 44.26

K562 ZBTB7A Uniprobe UP00047 Myers wgEncodeEH001620 412506 21711 801 3.68

K562 ZNF143 Jaspar MA0088.1 Snyder wgEncodeEH002030 1032447 29069 3628 12.48

K562 ZNF263 Jaspar MA0528.1 Farnham wgEncodeEH000630 2577084 3081 1110 36.02

LnCaP AR(R1881) Jaspar MA0007.2 Yu GSM353644 913583 51799 12978 25.05

LnCaP AR(ethl) Jaspar MA0007.2 Yu GSM353643 913583 6103 685 11.22

m3134 GR(DEX) Jaspar MA0113.2 Stam. SRP004871 1051822 28078 7270 25.89
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Table A.4: PFMs used in

the gene expression evaluation

methodology. PFMs were ob-

tained from Jaspar (Mathelier

et al., 2014). Source: Gusmao

et al. (2016) (modified to fit

thesis format and/or clarify key

points).

Factor PFM ID

MYCN MA0104.3

PBX1 MA0070.1

TCF7L1 MA0522.1

TP53 MA0106.2

ETS1 MA0098.2

TCF7L2 MA0523.1

AR MA0007.2

SRY MA0084.1

TFAP2C MA0524.1

ZNF354C MA0130.1

FOXO1 MA0480.1

NR5A2 MA0505.1

FLII MA0475.1

FOXH1 MA0479.1

CREB1 MA0018.2

EGR2 MA0472.1

REST MA0138.2

RFX5 MA0510.1

SOX3 MA0514.1

FOXD3 MA0041.1

HNF4G MA0484.1

SOX9 MA0077.1

NKX3-1 MA0124.1

INSM1 MA0155.1

ERG MA0474.1

STAT1 MA0137.3

USF1 MA0093.2

EGR1 MA0162.2

CTCF MA0139.1

MAFB MA0117.1

E2F1 MA0024.2

STAT4 MA0518.1

MAFK MA0496.1

NFYA MA0060.2

GABPA MA0062.2

YY1 MA0095.2

KLF4 MA0039.2

SRF MA0083.2

STAT3 MA0144.2

HOXA5 MA0158.1

SREBF2 MA0596.1

HOXA9 MA0594.1

Factor PFM ID

FOSL2 MA0478.1

TCF12 MA0521.1

SOX10 MA0442.1

FOXP2 MA0593.1

ATOH1 MA0461.1

PPARG MA0066.1

GATA3 MA0037.2

NR2F1 MA0017.1

SOX17 MA0078.1

NKX2-5 MA0503.1

HLF MA0043.1

HNF1A MA0046.1

NR2E3 MA0164.1

PAX2 MA0067.1

PAX5 MA0014.2

RXRA MA0512.1

HINFP MA0131.1

MYOG MA0500.1

NKX3-2 MA0122.1

EBF1 MA0154.2

HNF1B MA0153.1

ESR1 MA0112.2

NR2C2 MA0504.1

FOXC1 MA0032.1

NRF1 MA0506.1

HNF4A MA0114.2

LHX3 MA0135.1

FOXL1 MA0033.1

RUNX2 MA0511.1

FOXI1 MA0042.1

FOXA2 MA0047.2

HSF1 MA0486.1

E2F4 MA0470.1

ZNF143 MA0088.1

FOXP1 MA0481.1

FEV MA0156.1

TFAP2A MA0003.2

FOXQ1 MA0040.1

ELF5 MA0136.1

ZNF263 MA0528.1

E2F3 MA0469.1

PAX4 MA0068.1

ESRRA MA0592.1

T MA0009.1

EN1 MA0027.1

FOXD1 MA0031.1

HLTF MA0109.1

MAX MA0058.2

CDX2 MA0465.1

FOXO3 MA0157.1

Factor PFM ID

THAP1 MA0597.1

SREBF1 MA0595.1

GFI1 MA0038.1

GATA4 MA0482.1

ZBTB33 MA0527.1

FOSL1 MA0477.1

FOXA1 MA0148.3

FOXF2 MA0030.1

ELK1 MA0028.1

RFX2 MA0600.1

MAFF MA0495.1

SP2 MA0516.1

NHLH1 MA0048.1

ZFX MA0146.2

ELK4 MA0076.2

CEBPB MA0466.1

NFE2L2 MA0150.2

BCL6 MA0463.1

NFIL3 MA0025.1

PRDM1 MA0508.1

NFKB1 MA0105.3

TBP MA0108.2

BRCA1 MA0133.1

ESR2 MA0258.2

RREB1 MA0073.1

RELA MA0107.1

JUN MA0489.1

IRF1 MA0050.2

REL MA0101.1

SOX5 MA0087.1

E2F6 MA0471.1

TP63 MA0525.1

NR4A2 MA0160.1

PAX6 MA0069.1

KLF1 MA0493.1

NR3C1 MA0113.2

ELF1 MA0473.1

MYC MA0147.2

NFATC2 MA0152.1

SPI1 MA0080.3

ZEB1 MA0103.2

KLF5 MA0599.1

RUNX1 MA0002.2

MEIS1 MA0498.1

GATA2 MA0036.2

GFI1B MA0483.1

MYB MA0100.2

MECOM MA0029.1

GATA1 MA0035.3

MEF2C MA0497.1

BHLHE40 MA0464.1
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Table A.5: Summary of the gene expression data. Expression profiling by array (Affymetrix Hu-

man Exon 1.0 ST Array) data was obtained in ENCODE Project Consortium (2012). Source: Gusmao

et al. (2016) (modified to fit thesis format and/or clarify key points).

Cell Type GEO Accession # Samples

GM12878 GSE12760 20

H1-hESC GSE14863 4

K562 GSE12760 21
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